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Abstract. In this document we illustrate the dimensional-reductippmach applied to 3D
solid elastic equations in order to obtain a beam model.

We start from the Hellinger-Reissner (HR) principle, in anfolation which guarantees the
selection of a compatible solution in a family of equilikedffields. Then, we introduce a semi-
discretization within the cross-section, this allows tduee the problem’s dimension from 3D
to 1D and to formulate the properly called beam model. Aftenanipulation of the 1D weak
model (done in order to guarantee the selection of an axislégated solution in a family of
axis-compatible fields), we introduce a discretizatioroaddéong the beam axis obtaining the
related beam Finite Element (FE).

On one hand, the initial HR principle formulation leads to accurate stress analysis into
the cross-section, on the other hand, the 1D model maniipulé¢ads to an accurate displace-
ment analysis along the beam-axis. Moreover, the manijpmaitlows to statically condensate
stresses at element level, improving the numerical efigienthe FE algorithm.

In order to illustrate the capability of the method, we calsia slim cross-section beam
that shows interesting non trivial behaviour in bending dodwhich the analytical solution is
available in literature. Numerical results are accuratedascription of both displacement and
stress variables, the FE solution converges to the analsicolution, and the beam FE models
complex phenomena like anticlastic bending and boundéey tst
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1 INTRODUCTION

In Reference [2] the authors develop a planar beam-moddhambrrespondent beam Finite
Element (FE) applying a procedure structured in four magpstlisted in the following. The
main aim of the procedure is to obtain a simple beam modelt@ddrresponding FE capable
of capturing the cross-section stress distribution witfhraccuracy.

(a) Formulation of the 2D linear elastic problem. The authors propose the Hellinger-Reissner
(HR) principle, a mixed formulation which considers disggenent and stress as indepen-
dent variables. In particular, the authors introduce twssgide HR principle formulations:
the first uses the gradient of displacements while the lages the divergence of stresses.
The divergence formulation seems to be the most interesgspect to the procedure goals,
since it requires equilibrium on stresses as essentialitondnd weakly imposes compat-
ibility on displacements.

(b) Dimensional reduction. The authors introduce an approximation and integrate itté
cross-section, obtaining a properly called k&m model

(c) Manipulation of the beam-model weak formulation. Integrating by parts, the authors
apply axial derivative to displacements. As a consequeispdatement axial compatibility
becomes essential condition and axial equilibrium on séess weakly enforced.

(d) FE discretization. The authors introduce an axial approximation and integakieg the
beam axis, obtaining the beam FE.

The dimensional reductioms a mathematical, general procedure formulated firstly efr R
erencel[6] and usable in many applicative fields. In paricuh References [9] and [10], the
authors apply the dimensional reduction to 3D elastic sadjdations in order to obtain a plate
model. They provide an a posteriori model error estimatiuh ase it to choose optimal basis
functions. More recently, other researchers use the diimealsreduction in their beam- and
plate- model derivation, considering also a more com@iganitial problem (e.g., see Refer-
encesl[3],[[4]).

We remark that the dimensional reduction allows to avoidriectse hypothesis in the beam-

model derivation. As a consequence, the model accuracy @euimproved arbitrarily and the

procedure should be easily generalized to more compleatgns such as non-linear constitu-
tive laws or thermal coupled problems.

Trough Steprfc), the procedure introduced at the beginrfitiy®section gives the opportu-
nity to manipulate the weak formulation in order to optimike structure of spaces where the
solution lives. As a consequence, the authors can expleiinitial HR formulation in order
to achieve the work’s aims, but obtain a displacement-b&getbrmulation, as explained in
Reference [2] and also in the following.

In Referencel]2], the authors highlight others advantadelseoprocedure, such as the ac-
curacy of stress description in numerical results, the emgence of numerical results to the
analytical solution, and the capability of the method tachahe boundary effects. It is worth
noting that correction factors are not required in the otgdibeam models.

In this document we generalize the so far introduced praeetduthe 3D case. To this aim,
we consider only elastic homogeneous body and simple e®ssen geometries whereas more
complicated models will be investigated in further studies
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2 PROBLEM FORMULATION

We investigate a 3D linear elastic, homogeneous, and @icttmody €2 subjected to small
displacements. More in detail, we consider only prismatidies which we refer to dseams
Specifically, the beam is defined as:

Q:=IxA (1)

with I C R the beam longitudinal axis antl C R? the beam cross-section that we assume to be
orthogonal, closed, and bounded sets. Figlire 1 representomain, the reference Cartesian
coordinate system, the left-hand side and the right-hathel @ioss-sectiond, and 4,;, and the
lateral surfacd. := 0A x [ wheredA is the cross-section boundary.

Y Ay

Ay
=x >
4
9A
l >

Figure 1: 3D beam geometry, coordinate system, dimensémusadopted notations.

A

Denoting the domain boundary &$), we consider its partitioq d€2;; 092, } with 0, :=
L U A, the externally loaded boundary a8if2, := A, the displacement constrained boundary.
We impose to the beam the body and the external loAds? — R? andt : 9, — R?
respectively, as well as a sufficiently smooth boundaryldanent functios : 90, — R3.
Introducing the symmetric stress tensor field 2 — R?*3 and the displacement vector field
s : Q1 — R3, the investigated problem can be formulated as follows

Finds € W ando € S, such that/ s € WandV do € S,
0Jmr ::—/53-V-adQ—/V-5a-sdQ—/5a:D_l:adQ
Q Q Q

—/5s-fdQ+/ 0o -n-5dS =0
Q 00

with D the fourth order linear elastic tensor and

W:={seL*Q)}
Sy:={o € H(div,Q) :0 -n|mt:t}; So:= {60 € H(div,Q) : 60 -n|,, =0}

)

3)

We highlight that, since € H(div,Q) ands € L?(Q2), the HR functional stationarity12)
privileges the regularity of stress components, in acawdawith the study aims. Unfortu-
nately, space definitions imply that, in an hypothetical F&tiktization, displacements could
be discontinuous whereas stress components should haeeistanelement continuity. As a
consequence the assembling procedure must be done camgigieess variables and the FE
discretization results non compatible with the usual dispient-based FE.

The HR functional stationarity [2) is deeply investigatadhie mathematical literature: a
classical Reference isl|[5] in which the authors provide sgagy conditions to ensure that Prob-
lem (2) iswell-posed Moreover, with respect to the FE approximation, the awgtigore an error
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estimation and prove the convergence of both variabbesdo.

Despite its advantages, the applications of the HR funatistationarity [(2) to engineering
problems are not so diffused. The motivations could be:h@) non-trivial conditions on the
dimension and regularity of both spacés and .S to ensure that the problem is well-posed,
(i) the complexity of the FE shape functions approximating / (div, 2) space that may be
cumbersome for numerical manipulation.

3 DIMENSIONAL REDUCTION

In this section we introduce some cross-section approedaelds in the HR functional
stationarity [(2) and we perform a cross-section integraiioorder to reduce the problem di-
mension (i.e. to develop the properly called beam model).

3.1 Cross-section approximations and notations

To approximate a generic scalar fiejdzx, y, z) involved in the HR functional stationarity
(2), we express it as a linear combination of several asdigness-section shape functions
r, : A — R? with undeterminedxial coefficient function$ : | — R¢

v (z,y,2) ~rly (4)

with d the number of cross-section shape functions used in theoxippation and(-)” the
transposition operation.

The cross-section shape functiansare a set of linearly independent functions; as a con-
sequence, the field (z, y, z) is uniquely determined by the componentsyathat are indeed
the unknownf the developed beam model. Adopting Position (4) and uiegengineering
notation, displacement and stress fields are given, resplcby

Su rl 0 0 u
s=¢ s, p~| 0 rI' 0 v p =R, (5)
Sw 0 0 rl w
- (v 0 0 0 0 0 (6, )
Oy 0 rfy 0o 0 0 O a,
Oss 0o o L 0 0 O o. | o, .
7TV (T 0 0 0 L 0 0 Fay = R,0 (6)
Taz 0 0 0 o0 rL 0 Tz
| Ty ) | 0 0 0 0 0 rfyz 1 U7y
In the same way, virtual displacement and stress fields becom
0s = R,08; 00 = R,60 (7)

In agreement with the engineering notation, we re-defindifferential operator and the normal
unit vector product:

Tensor notation Engineering notation
0 .0 .0 .
V.o = —FR,6+—F;R,6 +—FEz:R.0 (8)
Ox dy 0z
on = (n.E1+nyEy+n.E;3) R,6 (9)

4
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where
100000 000100 000O0T1O0
E,=|000100{; Ea=]101000O0}; Es=]0000601
000O0OT1O 000 0O0°1 001 00O
(10)
In the matrix form, the fourth order linear elastic ten#br! is defined as follows:
1 - —v 0 0 0 i
—v 1 —v 0 0 0
1 —v —v 1 0 0 0
-1 . -
D  FE 0 0 0 2(1+v) 0 0 (11)
0 0 0 0 2(14v) 0
| 0 0 0 0 0 2(1+y)_

with £ the Young’s modulus and the Poisson’s ratio which define the linear elastic propstti
of the material constituting the body.
Due to assumption{4), computation of partial derivatiwestraightforward:

) d. 7., 0 0, 9D . .
S =T Y=Y 5o = 8—3/1”% =¥ Y= Y =Ty (12)

where the prime means the derivative alonghereas( -),, and(-),. mean the derivatives
alongy andz respectively.

3.2 Moded formulation

We assume that the lateral surfaés unloaded, i.ez|, = 0. Moreover, since we need to
satisfy exactly the boundary equilibrium (s€edefinition (3)), we assume also thagl can be

represented using the assigned proffies This means that there exist suitable vecfgrsiy,
andt, such that

t, =< rlt, (13)
T

At this point, we perform some substitutions, manipulasicend integrations. In particular
we introduce the engineering notatiohs (8) ddd (9) and tpecagmations[(b) and (6) into HR
functional stationarityL(2), we develop algebraic produstd we split integrals on the doméin
into integrals along the axisand integrals on the cross sectidnConsequently, HR functional
stationarity [(2) could be expressed as

0Jm = — / (08"Go6" + 68" H,s60 + 66" G, 8 + 66" H ;8 + 66" H 06 + 08" F) du
l

(14)
—5678 =0
where we defined
H,, = HJTS :/ (RSTEQRU,y +R8TE3RU,Z) ds; H,, = / RJTD‘lRUdS
A A
B (15)
G, = GZS = / RSTElRodS; F = / RSdeS; S = RZElgdS
A A Ao

5
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Since cross-section shape functiansare assigned, matriced,,, H,,, andG,, become
constant-coefficient matrices, playing the role of the beéffness.
Equation[(14) represents the so callddl beam model weak formulation

4 FE DERIVATION

In order to obtain the beam FE formulation we start from thenbenodel variational formu-
lation (14). Assuming = 0 and integrating by parts with respect to thelirection both the
first and the third terms, we obtain the following, altermatbeam model formulation:

Find$ € W andé € S such that/ 55 € W andV 66 € S
5] = / (08" G006 — 08" H 6 + 66" G,s8' — 66" H 8 — 66" H,,6 — 68" F) dz  (16)
l

—58'T =0

with W .= {8 € H'(I) : 8|,_, = 0}; S := L2(l) andT = [, RTtdA
It is interesting to highlight the following statements.

» x— derivatives applied to displacement variables togethén e definition of W —
in which the axial compatibility is thessentialcondition — lead to a formulation that
guarantees the selection of an axis equilibrated solutica flamily of axis compatible
fields.

« y— andz— derivatives applied to stress variables (&g definition [1%)) together with
the definition ofS; — in which cross-section equilibrium is tlessentiacondition — lead
to a formulation that guarantees the selection of a crostsesecompatible solution in a
family of cross-section equilibrate fields.

* The weak formulation is symmetric.

In order to construct the FE approximation of thié axial coefficient functiory;, involved in
the beam model weak formulatidn (16), we express it as arlic@abination of some assigned
axis shape functiond',; : I — R’ with unknownnumerical coefficienty, € R":

¥ (z) ~ Ny (17)
where N
Nzl ()T 0 o
0 N 0 ~
O T I 2 S (18)
0 0 - N, 7

The FE discretization of the model follows from the introtlac of the axis shape function
approximation[(1l7) into the variational formulatidn [1&ollecting unknown coefficients in a
vector and requiring the satisfaction of Equatibnl (16) fibpassible virtual fields, we obtain
the following algebraic system:

[KO f]{;}z{g} (19)
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where

K. — KT — / (NTG.,N, — NTH,N,)dz (20)
l
K., =— / N'H, ,Ndz; T=-— / NTFdz — NT| T (21)
l l

5 SHAPE FUNCTION DEFINITIONS

In Reference 1], in order to ensure that the beam modekisposedthe authors indicate
as a possible choice the following condition:

V-So=W (22)

Unfortunately, to define cross-section shape functions avgeneric cross-section geometry
which approximateS, and satisfy condition(22) is not trivial. Consequently, lieit our
attention to simple cross-section geometries, speckigad require that the cross-section could
be divided in elementary rectangles, as illustrated in &gl

Y fiber
hn,
h;
! h
O hg z
h1
by by b by,

Figure 2: Cross-section geometry definition, coordinagtesy, dimensions, and adopted notations.

The simplest case we can consider is a prismatic beam wittt@ngular cross-section:

A:{(y;z)ER2 | ye {—g,g} and z ¢ {—g,g}} (23)

with h the thickness andlis the depth of the beam.
In this case, the cross-section shape functions may be detgthe tensor product of tvpsofile
function vector®, (y) andg., (2):

Py h—R% g, :b—RY r, :=vec(p, (y) g (2)) (24)

where veq - ) is the linear operator that reshapes a tensor into a colugtove

We assume that the profile functions are complete polynanaiadl we denote witheg( - )
their maximum degree. Introducing the profile function débn (24) into the condition[(22),
we obtain the profile vector properties summarized in Table 1

7
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We can build non-elementary cross-sections assemblinggeiary rectangular blocks (called
fibreg. The fibre assembling can be implemented imposing to eadfiigofunction the conti-
nuity specified in Tablgl1.

In order to ensure that the beam FE is well-posed and statderding to the conditior (22),

we choicell andS such that

3 (25)

dx
Being also axis shape functions complete polynomials aimddocing the axis shape function
definition (17) into the conditio.(25), we obtain the axiapb-function properties summarized
in Table[1, together with properties of profile vectors. Dgrthe FE assembling procedure we

must impose axial continuity on displacements, as spediiiddble].

Variable | deg (p,) y continuity deg(gq,) =z continuity deg(N.,) = continuity
u 1 Cct 1 Cct 2 Y
v 2 Cct 1 ct 3 C°
w 1 Cct 2 ct 3 C°
o 1 Cct 1 ct 1 Cct
oy 3 C° 1 Cct 3 Cct
o 1 Cct 3 C° 3 Cct
Tay 2 o 1 ct 2 Cct
Tz 1 Cct 2 C° 2 Cct
Tyz 2 o 2 C° 3 Cct

Table 1: Degree and continuity of cross-section profilemecand axis shape functionS{! means discontinuous
function).

It is worth noting that, since all stress components areotiscuous along the beam-axis, itis
possible to statically condensate them out at element,lesailicing significantly the dimension
of global stiffness matrix and improving the FE algorithrfi@éncy.

6 NUMERICAL RESULTS

To illustrate the model capability we consider the bendihg beam with the slim cross-
section represented in Figure 3. We choose this example #iecbeam shows interesting non
trivial behaviours in bending and its analytical solutisravailable in literature.

b/2 ?y 3a_ . 3a. . 3a . 3a .a.a_ af2
‘ ‘ ‘ T 11 |20/3

13473

Figure 3: Slim cross section: geometry and mesh definition.

The beam geometrical dimensions @&re= 0.2mm, b = 3mm, and/ = 20mm whereas
a = 0.lmm. The beam is clamped in the left-hand side cross sectipfre.,s = 0, as already
specified in Sectionl4) and loaded in the right-hand sidescsestionA4,; by a distributed shear
load (i.e.,f = 0 andt = {0, —1, O}T MPa). The material parameters arg: = 10°> MPa and
v = 0.25. Finally, the axis discretization is done through a regmash of 10 elements whereas
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the cross-section discretization is done through 48 nomaegectangular fibres with more fine
grid where complex phenomena occur. However, this aspdicb&imore clear at the end of
this section.

Figurel4 plots the deformed cross-sectiom at 10mm (to highlight deformations, displace-
ments are amplified of a factor 10).
It is interesting to notice the following statements.

 Discontinuities between fibres in transversal displagenfields s, ands,, are evident.
They are the consequence of the assumption of Table 1 (wkdeatisplacement cross-
section shape functions violate the compatibility into ¢hess section).

» The deformed section is concave, whereas the deformed arians convex. This phe-
nomenon is known in literature amticlastic bendingand it becomes more and more
significant for higher values of the ratig'h. It is worth noting that this phenomena is
usually ignored in structural design and analysis becausadopted beam models are
not able to catch it. Nevertheless, in practical applicejat can be of interest for the
induced deformations (see Refererice [7]) but also for tHadad stress. We clarify this
aspect in the following.

Figure 4: Transversal cross-section displacements (&ogtion factor 10) evaluated at= 10mm

Figureg 5(d) and 5(c) plot the cross-section shear disioibsi,.,, (10, v, ) andr, (10, y, 2)
respectively.

Since the cross-section, as well as the boundary load andispéacement constrain are
symmetric respect to both the- and z— axis, it is not surprising to obtain symmetric stress
distributions. In particular,, has an even distribution respect to both the cross-sectieniz.
Toy (10,9, 2) = 74y, (10, —y, 2) = 74, (10,y, —2), whereasr,, has an odd distribution respect
to both the cross-section axis, i.e,. (10,y,2) = —7,, (10, —y, 2) = —7, (10,y, —z). For
this reason, in Figurds 5, we plot distributions only for > 0 in a dimensionless coordinate
system.

Due to the cross-section’s geometry with high ratié, the shear component, becomes
of the same order of magnitude of the other compongntAs evidenced in Referencel [8], if
the analytical solution is considered, the ratiax, .yca (|72y|) / max(, .)ca (|72-|) is close to
1 for the considered/h ratio. From numerical results the ratio between the maxinstiear
components results to be equallt63, in agreement with the analytical solution.

The associated relative errm‘“ﬁl ande’ are defined both in Equation (26).

}Txy (10,y,2) — T;;f (10, y, z)’ el _
T;;f (10, vy, 2) ) Max(y,.)cA (

9

’Tmz (107 Y, Z) B T:;;f (107 Y, Z)‘
7 (10,5, 2))

rel __
Ty

(26)

max(%z)eA (
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4.68E-2

3.12E-2

1.56E-2

0.5
2z/b

i l
(b) relative erroe;

1.0

4.83E-2

S mmﬂmgmgl 3 . 22E'2

0.5 .
1.61E-2

0 0
0 0.5 . 0.5
2z/b 2z/b

(€) 72:(10,y, 2) (d) relative erroe’¢

Figure 5: Shear components evaluated: at 10mm for the case of homogeneous, slim cross-section: cross-

section distributions 5(k) afid 5{(c), cross-section nedatiror distributiong 5(b) arid 5(d) (results plottedgor >
0).

The reference distributiong/ (10,y, z) and7/</ (10,y, z) are the analytical solutions of the
3D elastic problem provided trough the Saint-Venant beadntiso, as well illustrated in Ref-
erencel[3][Chap. 12]. Specifically, shear distributieffg (10,y, z) and7/</ (10,y, ) are ex-
pressed as Fourier series that we truncate at a negligioteréspect to the machine precision.

Looking at the relative error distributions (Figufes 5(b§igb(d)), we notice how the error is
always less than th&o, and how the higher relative errors are confined close todges On
the contrary, the magnitude of the relative error is lowantthel% on the rest of the cross-
section. According our results, we can argue that the nwalegolution is reasonably accurate,
despite the relatively coarse cross-section mesh.

7 CONCLUSIONS

In this paper we present a 3D beam model and its correspoR&eistarting from the weak
problem formulation of the elastic problem (the HR functbstationarity), we obtain the beam
model through the dimensional reduction approach. Intcoduthe axis FE discretization we
obtain the numerical scheme used to obtain the resultsimieeban Section6.

Numerical results highlight the capability of the adopteserical scheme to describe accu-
rately both displacement and stress fields, giving intarggterspective for further studies. In
particular, in authors opinion, the capability of the beaBt& catch accurately shear stress dis-

10
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tributions is promising (despite the quite large compotai effort) and it could be extremely
useful in further applications of the beam model such asrated beam analysis and shear
stress analysis of non trivial cross-section geometries.
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