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Abstract. In this document we illustrate the dimensional-reduction approach applied to 3D
solid elastic equations in order to obtain a beam model.
We start from the Hellinger-Reissner (HR) principle, in a formulation which guarantees the
selection of a compatible solution in a family of equilibrated fields. Then, we introduce a semi-
discretization within the cross-section, this allows to reduce the problem’s dimension from 3D
to 1D and to formulate the properly called beam model. After amanipulation of the 1D weak
model (done in order to guarantee the selection of an axis-equilibrated solution in a family of
axis-compatible fields), we introduce a discretization also along the beam axis obtaining the
related beam Finite Element (FE).

On one hand, the initial HR principle formulation leads to anaccurate stress analysis into
the cross-section, on the other hand, the 1D model manipulation leads to an accurate displace-
ment analysis along the beam-axis. Moreover, the manipulation allows to statically condensate
stresses at element level, improving the numerical efficiency of the FE algorithm.

In order to illustrate the capability of the method, we consider a slim cross-section beam
that shows interesting non trivial behaviour in bending andfor which the analytical solution is
available in literature. Numerical results are accurate indescription of both displacement and
stress variables, the FE solution converges to the analytical solution, and the beam FE models
complex phenomena like anticlastic bending and boundary effects.
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1 INTRODUCTION

In Reference [2] the authors develop a planar beam-model andthe correspondent beam Finite
Element (FE) applying a procedure structured in four main steps, listed in the following. The
main aim of the procedure is to obtain a simple beam model and the corresponding FE capable
of capturing the cross-section stress distribution with high accuracy.

(a) Formulation of the 2D linear elastic problem. The authors propose the Hellinger-Reissner
(HR) principle, a mixed formulation which considers displacement and stress as indepen-
dent variables. In particular, the authors introduce two possible HR principle formulations:
the first uses the gradient of displacements while the latteruses the divergence of stresses.
The divergence formulation seems to be the most interestingrespect to the procedure goals,
since it requires equilibrium on stresses as essential condition and weakly imposes compat-
ibility on displacements.

(b) Dimensional reduction. The authors introduce an approximation and integrate within the
cross-section, obtaining a properly called 1Dbeam model.

(c) Manipulation of the beam-model weak formulation. Integrating by parts, the authors
apply axial derivative to displacements. As a consequence displacement axial compatibility
becomes essential condition and axial equilibrium on stresses is weakly enforced.

(d) FE discretization. The authors introduce an axial approximation and integratealong the
beam axis, obtaining the beam FE.

The dimensional reductionis a mathematical, general procedure formulated firstly in Ref-
erence [6] and usable in many applicative fields. In particular, in References [9] and [10], the
authors apply the dimensional reduction to 3D elastic solidequations in order to obtain a plate
model. They provide an a posteriori model error estimation and use it to choose optimal basis
functions. More recently, other researchers use the dimensional reduction in their beam- and
plate- model derivation, considering also a more complicated initial problem (e.g., see Refer-
ences [3], [4]).
We remark that the dimensional reduction allows to avoid restrictive hypothesis in the beam-
model derivation. As a consequence, the model accuracy could be improved arbitrarily and the
procedure should be easily generalized to more complex situations such as non-linear constitu-
tive laws or thermal coupled problems.

Trough Step (c), the procedure introduced at the beginning of this section gives the opportu-
nity to manipulate the weak formulation in order to optimizethe structure of spaces where the
solution lives. As a consequence, the authors can exploit the initial HR formulation in order
to achieve the work’s aims, but obtain a displacement-basedFE formulation, as explained in
Reference [2] and also in the following.

In Reference [2], the authors highlight others advantages of the procedure, such as the ac-
curacy of stress description in numerical results, the convergence of numerical results to the
analytical solution, and the capability of the method to catch the boundary effects. It is worth
noting that correction factors are not required in the obtained beam models.

In this document we generalize the so far introduced procedure to the 3D case. To this aim,
we consider only elastic homogeneous body and simple cross-section geometries whereas more
complicated models will be investigated in further studies.
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2 PROBLEM FORMULATION

We investigate a 3D linear elastic, homogeneous, and isotropic bodyΩ subjected to small
displacements. More in detail, we consider only prismatic bodies which we refer to asbeams.
Specifically, the beam is defined as:

Ω := l × A (1)

with l ⊂ R the beam longitudinal axis andA ⊂ R
2 the beam cross-section that we assume to be

orthogonal, closed, and bounded sets. Figure 1 represents the domain, the reference Cartesian
coordinate system, the left-hand side and the right-hand side cross-sectionsA0 andAl, and the
lateral surfaceL := ∂A× l where∂A is the cross-section boundary.
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z

z
l

∂A

A0 AlL

Figure 1: 3D beam geometry, coordinate system, dimensions,and adopted notations.

Denoting the domain boundary as∂Ω, we consider its partition{∂Ωt; ∂Ωs} with ∂Ωt :=
L ∪Al the externally loaded boundary and∂Ωs := A0 the displacement constrained boundary.

We impose to the beam the body and the external loads,fff : Ω → R
3 andttt : ∂Ωt → R

3

respectively, as well as a sufficiently smooth boundary displacement functionsss : ∂Ωs → R
3.

Introducing the symmetric stress tensor fieldσσσ : Ω → R
3×3
s and the displacement vector field

sss : Ω → R
3, the investigated problem can be formulated as follows

Findsss ∈ W andσσσ ∈ St such that∀ δsss ∈ Wand∀ δσσσ ∈ S0

δJHR := −

∫

Ω

δsss ·∇ ·σσσ dΩ−

∫

Ω

∇ ·δσσσ ·sss dΩ−

∫

Ω

δσσσ :DDD−1 : σσσ dΩ

−

∫

Ω

δsss ·fff dΩ+

∫

∂Ωs

δσσσ ·nnn ·sss dS = 0

(2)

with DDD the fourth order linear elastic tensor and

W :=
{
sss ∈ L2(Ω)

}

St :=
{
σσσ ∈ H(div,Ω) : σσσ ·nnn|∂Ωt

= ttt
}
; S0 :=

{
δσσσ ∈ H(div,Ω) : δσσσ ·nnn|∂Ωt

= 000
} (3)

We highlight that, sinceσσσ ∈ H(div,Ω) andsss ∈ L2(Ω), the HR functional stationarity (2)
privileges the regularity of stress components, in accordance with the study aims. Unfortu-
nately, space definitions imply that, in an hypothetical FE discretization, displacements could
be discontinuous whereas stress components should have some inter-element continuity. As a
consequence the assembling procedure must be done considering stress variables and the FE
discretization results non compatible with the usual displacement-based FE.

The HR functional stationarity (2) is deeply investigated in the mathematical literature: a
classical Reference is [5] in which the authors provide necessary conditions to ensure that Prob-
lem (2) iswell-posed. Moreover, with respect to the FE approximation, the authors give an error
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estimation and prove the convergence of both variablessss andσσσ.
Despite its advantages, the applications of the HR functional stationarity (2) to engineering
problems are not so diffused. The motivations could be: (i) the non-trivial conditions on the
dimension and regularity of both spacesW andS to ensure that the problem is well-posed,
(ii) the complexity of the FE shape functions approximatingtheH(div,Ω) space that may be
cumbersome for numerical manipulation.

3 DIMENSIONAL REDUCTION

In this section we introduce some cross-section approximated fields in the HR functional
stationarity (2) and we perform a cross-section integration in order to reduce the problem di-
mension (i.e. to develop the properly called beam model).

3.1 Cross-section approximations and notations

To approximate a generic scalar fieldγ (x, y, z) involved in the HR functional stationarity
(2), we express it as a linear combination of several assigned cross-section shape functions
rrrγ : A → R

d with undeterminedaxial coefficient functionŝγγγ : l → R
d

γ (x, y, z) ≈ rrrTγ γ̂γγ (4)

with d the number of cross-section shape functions used in the approximation and( ·)T the
transposition operation.

The cross-section shape functionsrrrγ are a set of linearly independent functions; as a con-
sequence, the fieldγ (x, y, z) is uniquely determined by the components ofγ̂γγ that are indeed
theunknownsof the developed beam model. Adopting Position (4) and usingthe engineering
notation, displacement and stress fields are given, respectively, by

sss :=





su
sv
sw



 ≈




rrrTu 000 000
000 rrrTv 000
000 000 rrrTw







ûuu
v̂vv
ŵww



 = RRRsŝss (5)

σσσ :=





σxx

σyy

σzz

τxy
τxz
τyz





≈




rrrTσx
000 000 000 000 000

000 rrrTσy
000 000 000 000

000 000 rrrTσz
000 000 000

000 000 000 rrrTτxy 000 000

000 000 000 000 rrrTτxz 000
000 000 000 000 000 rrrTτyz








σ̂σσx

σ̂σσy

σ̂σσz

τ̂ττxy
τ̂ττxz
τ̂ττ yz





= RRRσσ̂σσ (6)

In the same way, virtual displacement and stress fields become:

δsss = RRRsδŝss; δσσσ = RRRσδσ̂σσ (7)

In agreement with the engineering notation, we re-define thedifferential operator and the normal
unit vector product:

Tensor notation Engineering notation

∇ ·σσσ ≡
∂

∂x
EEE1RRRσσ̂σσ +

∂

∂y
EEE2RRRσσ̂σσ +

∂

∂z
EEE3RRRσσ̂σσ (8)

σσσ ·nnn ≡ (nxEEE1 + nyEEE2 + nzEEE3) RRRσσ̂σσ (9)
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where

EEE1 =




1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


 ; EEE2 =




0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1


 ; EEE3 =




0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0




(10)

In the matrix form, the fourth order linear elastic tensorDDD−1 is defined as follows:

DDD−1 :=
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)




(11)

with E the Young’s modulus andν the Poisson’s ratio which define the linear elastic properties
of the material constituting the body.
Due to assumption (4), computation of partial derivatives is straightforward:

∂

∂x
γ = rrrTγ

d

dx
γ̂γγ = rrrTγ γ̂γγ

′;
∂

∂y
γ =

∂

∂y
rrrTγ γ̂γγ = rrrTγ ,y γ̂γγ;

∂

∂z
γ =

∂

∂z
rrrTγ γ̂γγ = rrrTγ ,z γ̂γγ (12)

where the prime means the derivative alongx whereas( ·) ,y and( ·) ,z mean the derivatives
alongy andz respectively.

3.2 Model formulation

We assume that the lateral surfaceL is unloaded, i.e.ttt|L = 000. Moreover, since we need to
satisfy exactly the boundary equilibrium (seeSt definition (3)), we assume also thatttt|Al

can be

represented using the assigned profilesRRRσ. This means that there exist suitable vectorst̂ttx, t̂tty,
andt̂ttz such that

ttt|Al
=





rrrTσx
t̂ttx

rrrTτxy t̂tty
rrrTτxz t̂ttz



 (13)

At this point, we perform some substitutions, manipulations, and integrations. In particular
we introduce the engineering notations (8) and (9) and the approximations (5) and (6) into HR
functional stationarity (2), we develop algebraic products and we split integrals on the domainΩ
into integrals along the axisl and integrals on the cross sectionA. Consequently, HR functional
stationarity (2) could be expressed as

δJHR = −

∫

l

(
δŝssTGGGsσσ̂σσ

′ + δŝssTHHHsσσ̂σσ + δσ̂σσ′TGGGσsŝss+ δσ̂σσTHHHσsŝss + δσ̂σσTHHHσσσ̂σσ + δŝssTFFF
)
dx

−δσ̂σσTSSS = 0

(14)

where we defined

HHHsσ =HHHT
σs =

∫

A

(
RRRT

sEEE2RRRσ,y +RRR
T
sEEE3RRRσ,z

)
dS; HHHσσ =

∫

A

RRRT
σDDD

−1RRRσdS

GGGsσ = GGGT
σs =

∫

A

RRRT
sEEE1RRRσdS; FFF =

∫

A

RRRT
s fffdS; SSS =

∫

A0

RRRT
σEEE1sssdS

(15)

5



Ferdinando Auricchio, Giuseppe Balduzzi and Carlo Lovadina

Since cross-section shape functionsrrrγ are assigned, matricesHHHsσ, HHHσσ, andGGGsσ become
constant-coefficient matrices, playing the role of the beamstiffness.
Equation (14) represents the so called1D beam model weak formulation.

4 FE DERIVATION

In order to obtain the beam FE formulation we start from the beam model variational formu-
lation (14). Assumingsss = 000 and integrating by parts with respect to thex direction both the
first and the third terms, we obtain the following, alternative beam model formulation:

Find ŝss ∈ W̃ andσ̂σσ ∈ S̃ such that∀ δŝss ∈ W̃ and∀ δσ̂σσ ∈ S̃

δJHR=

∫

l

(
δŝss′TGGGsσσ̂σσ − δŝssTHHHsσσ̂σσ + δσ̂σσTGGGσsŝss

′ − δσ̂σσTHHHσsŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx

−δŝssTTTT = 0

(16)

with W̃ := {ŝss ∈ H1(l) : ŝss|x=0 = 000}; S̃ := L2(l) andTTT =
∫
Al
RRRT

s tttdA
It is interesting to highlight the following statements.

• x− derivatives applied to displacement variables together with the definition ofW̃ –
in which the axial compatibility is theessentialcondition – lead to a formulation that
guarantees the selection of an axis equilibrated solution in a family of axis compatible
fields.

• y− andz− derivatives applied to stress variables (seeHHHsσ definition (15)) together with
the definition ofSt – in which cross-section equilibrium is theessentialcondition – lead
to a formulation that guarantees the selection of a cross-section compatible solution in a
family of cross-section equilibrate fields.

• The weak formulation is symmetric.

In order to construct the FE approximation of thei-th axial coefficient function̂γi, involved in
the beam model weak formulation (16), we express it as a linear combination of some assigned
axis shape functionsNNNγi : l → R

t with unknownnumerical coefficients̃γγγi ∈ R
t:

γ̂γγ (x) ≈NNNγγ̃γγ (17)

where

NNNγ =




NNNT
γ1 000 · · · 000
000 NNNT

γ2 · · · 000
...

...
. . .

...
000 000 · · · NNNT

γd


 ; γ̃γγ =





γ̃γγ1

γ̃γγ2
...
γ̃γγd





(18)

The FE discretization of the model follows from the introduction of the axis shape function
approximation (17) into the variational formulation (16).Collecting unknown coefficients in a
vector and requiring the satisfaction of Equation (16) for all possible virtual fields, we obtain
the following algebraic system:

[
000 KKKsσ

KKKσs KKKσσ

]{
s̃ss
σ̃σσ

}
=

{
T̃TT
000

}
(19)
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where

KKKsσ =KKKT
σs =

∫

l

(
NNN ′T

s GGGsσNNNσ −NNNT
sHHHsσNNNσ

)
dx (20)

KKKσσ = −

∫

l

NNNT
σHHHσσNNNσdx; T̃TT = −

∫

l

NNNT
sFFFdx− NNNT

s

∣∣
x=l

TTT (21)

5 SHAPE FUNCTION DEFINITIONS

In Reference [1], in order to ensure that the beam model iswell-posed, the authors indicate
as a possible choice the following condition:

∇ ·S0 = W (22)

Unfortunately, to define cross-section shape functions over a generic cross-section geometry
which approximateS0 and satisfy condition (22) is not trivial. Consequently, welimit our
attention to simple cross-section geometries, specifically we require that the cross-section could
be divided in elementary rectangles, as illustrated in Figure 2.

O z

y

h

b

h1

h2

hj

hn

b1 b2 bi bm

fiber

Figure 2: Cross-section geometry definition, coordinate system, dimensions, and adopted notations.

The simplest case we can consider is a prismatic beam with a rectangular cross-section:

A =

{
(y; z) ∈ R

2 | y ∈

[
−
h

2
,
h

2

]
and z ∈

[
−
b

2
,
b

2

]}
(23)

with h the thickness andb is the depth of the beam.
In this case, the cross-section shape functions may be defined as the tensor product of twoprofile
function vectorspppγ (y) andqqqγ (z):

pppγ : h → R
g; qqqγ : b → R

k; rrrγ := vec
(
pppγ (y)qqq

T
γ (z)

)
(24)

where vec( ·) is the linear operator that reshapes a tensor into a column vector.
We assume that the profile functions are complete polynomials and we denote withdeg( ·)

their maximum degree. Introducing the profile function definition (24) into the condition (22),
we obtain the profile vector properties summarized in Table 1.
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We can build non-elementary cross-sections assembling elementary rectangular blocks (called
fibres). The fibre assembling can be implemented imposing to each profile function the conti-
nuity specified in Table 1.

In order to ensure that the beam FE is well-posed and stable, according to the condition (22),
we choicẽW andS̃ such that

d

dx
W̃ = S̃ (25)

Being also axis shape functions complete polynomials and introducing the axis shape function
definition (17) into the condition (25), we obtain the axis shape-function properties summarized
in Table 1, together with properties of profile vectors. During the FE assembling procedure we
must impose axial continuity on displacements, as specifiedin Table 1.

Variable deg (pppγ) y continuity deg (qqqγ) z continuity deg (NNNγ) x continuity
u 1 C−1 1 C−1 2 C0

v 2 C−1 1 C−1 3 C0

w 1 C−1 2 C−1 3 C0

σx 1 C−1 1 C−1 1 C−1

σy 3 C0 1 C−1 3 C−1

σz 1 C−1 3 C0 3 C−1

τxy 2 C0 1 C−1 2 C−1

τxz 1 C−1 2 C0 2 C−1

τyz 2 C0 2 C0 3 C−1

Table 1: Degree and continuity of cross-section profile vectors and axis shape functions (C−1 means discontinuous
function).

It is worth noting that, since all stress components are discontinuous along the beam-axis, it is
possible to statically condensate them out at element level, reducing significantly the dimension
of global stiffness matrix and improving the FE algorithm efficiency.

6 NUMERICAL RESULTS

To illustrate the model capability we consider the bending of a beam with the slim cross-
section represented in Figure 3. We choose this example since the beam shows interesting non
trivial behaviours in bending and its analytical solution is available in literature.

z

y
b/2

h

3a3a3a3a aa a/2

2a/3
2a/3

2a/3

Figure 3: Slim cross section: geometry and mesh definition.

The beam geometrical dimensions areh = 0.2mm, b = 3mm, and l = 20mm whereas
a = 0.1mm. The beam is clamped in the left-hand side cross sectionA0 (i.e.,sss = 000, as already
specified in Section 4) and loaded in the right-hand side cross sectionAl by a distributed shear
load (i.e.,fff = 000 andttt = {0,−1, 0}T MPa). The material parameters are:E = 105MPa and
ν = 0.25. Finally, the axis discretization is done through a regularmesh of 10 elements whereas
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the cross-section discretization is done through 48 non regular rectangular fibres with more fine
grid where complex phenomena occur. However, this aspect will be more clear at the end of
this section.

Figure 4 plots the deformed cross-section atx = 10mm (to highlight deformations, displace-
ments are amplified of a factor 10).
It is interesting to notice the following statements.

• Discontinuities between fibres in transversal displacement fieldssv andsw are evident.
They are the consequence of the assumption of Table 1 (we let the displacement cross-
section shape functions violate the compatibility into thecross section).

• The deformed section is concave, whereas the deformed beamaxis is convex. This phe-
nomenon is known in literature asanticlastic bendingand it becomes more and more
significant for higher values of the ratiob/h. It is worth noting that this phenomena is
usually ignored in structural design and analysis because the adopted beam models are
not able to catch it. Nevertheless, in practical applications, it can be of interest for the
induced deformations (see Reference [7]) but also for the induced stress. We clarify this
aspect in the following.

Figure 4: Transversal cross-section displacements (amplification factor 10) evaluated atx = 10mm

Figures 5(a) and 5(c) plot the cross-section shear distributionsτxy (10, y, z) andτxz (10, y, z)
respectively.

Since the cross-section, as well as the boundary load and thedisplacement constrain are
symmetric respect to both they− andz− axis, it is not surprising to obtain symmetric stress
distributions. In particularτxy has an even distribution respect to both the cross-section axis, i.e.
τxy (10, y, z) = τxy (10,−y, z) = τxy (10, y,−z), whereasτxz has an odd distribution respect
to both the cross-section axis, i.e.τxz (10, y, z) = −τxz (10,−y, z) = −τxz (10, y,−z). For
this reason, in Figures 5, we plot distributions only fory, z > 0 in a dimensionless coordinate
system.

Due to the cross-section’s geometry with high ratiob/h, the shear componentτxz becomes
of the same order of magnitude of the other componentτxy. As evidenced in Reference [8], if
the analytical solution is considered, the ratiomax(y,z)∈A (|τxy|) /max(y,z)∈A (|τxz|) is close to
1 for the consideredb/h ratio. From numerical results the ratio between the maximumshear
components results to be equal to1.03, in agreement with the analytical solution.

The associated relative errorserelxy anderelxz are defined both in Equation (26).

erelxy =

∣∣τxy (10, y, z)− τ refxy (10, y, z)
∣∣

max(y,z)∈A

(∣∣∣τ refxy (10, y, z)
∣∣∣
) ; erelxz =

∣∣τxz (10, y, z)− τ refxz (10, y, z)
∣∣

max(y,z)∈A

(∣∣∣τ refxz (10, y, z)
∣∣∣
) (26)
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Figure 5: Shear components evaluated atx = 10mm for the case of homogeneous, slim cross-section: cross-
section distributions 5(a) and 5(c), cross-section relative error distributions 5(b) and 5(d) (results plotted fory, z >
0).

The reference distributionsτ refxy (10, y, z) andτ refxz (10, y, z) are the analytical solutions of the
3D elastic problem provided trough the Saint-Venant beam solution, as well illustrated in Ref-
erence [8][Chap. 12]. Specifically, shear distributionsτ refxy (10, y, z) andτ refxz (10, y, z) are ex-
pressed as Fourier series that we truncate at a negligible term respect to the machine precision.

Looking at the relative error distributions (Figures 5(b) and 5(d)), we notice how the error is
always less than the5%, and how the higher relative errors are confined close to the edges. On
the contrary, the magnitude of the relative error is lower than the1% on the rest of the cross-
section. According our results, we can argue that the numerical solution is reasonably accurate,
despite the relatively coarse cross-section mesh.

7 CONCLUSIONS

In this paper we present a 3D beam model and its correspondentFE: starting from the weak
problem formulation of the elastic problem (the HR functional stationarity), we obtain the beam
model through the dimensional reduction approach. Introducing the axis FE discretization we
obtain the numerical scheme used to obtain the results presented in Section 6.
Numerical results highlight the capability of the adopted numerical scheme to describe accu-
rately both displacement and stress fields, giving interesting perspective for further studies. In
particular, in authors opinion, the capability of the beam FE to catch accurately shear stress dis-
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tributions is promising (despite the quite large computational effort) and it could be extremely
useful in further applications of the beam model such as laminated beam analysis and shear
stress analysis of non trivial cross-section geometries.
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