

Bruchverhalten von Beton

VERGLEICH KIES- UND BRUCHSTEINZUSCHLAG

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Andreas KOLBITSCH

und als verantwortlichen mitwirkenden Assistenten

Univ.Ass. Dipl.-Ing. Dr.techn. Michael HÖFLINGER

eingereicht an der Technischen Universität Wien

Fakultät für Bauingenieurwesen

Institut für Hochbau und Technologie

von

Matić Stjepan, BSc

00725037

Hungereckstraße 36, 1230 Wien

Wien, am 13.02.2018

Zitat

"Eine Investition in Wissen bringt immer noch die besten Zinsen."

Benjamin Franklin

Danksagung

Mit der Fertigstellung dieser Arbeit geht ein Abschnitt meines Lebens, das Studium an der TU Wien, dem Ende entgegen. Deshalb möchte ich mich an dieser Stelle bei allen Personen bedanken, die zum Gelingen meiner Diplomarbeit beigetragen haben.

Ich bedanke mich beim Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Kolbitsch und seinem Institut für Hochbau und Technologie, für die Möglichkeit meine Diplomarbeit in diesem Fachbereich zu verfassen. Mein Interesse am Bauingenieurstudium wurde aufgrund seiner Vorlesungen noch bestärkt.

Ein ganz besonderer Dank geht an Univ.Ass. Dipl.-Ing. Dr.techn. Michael Höflinger, der mir wegweisend und mit viel Engagement immer zur Seite stand. Ohne Ihre Ratschläge und Hinweise wäre diese Arbeit nicht in der Form zustande gekommen.

Ebenfalls möchte ich der Firma Holcim Hrvatska d.o.o. und besonders Mihaela Gortan und Nevena Siljeg danken, die mich tatkräftig bei der Materialbeschaffung in Kroatien unterstützt haben.

Mein weiterer Dank gilt ebenfalls den Mitarbeitern des Institutes für Hochbau und Technologie im Forschungsbereich für Hochbaukonstruktionen und Bauwerkserhaltung, sowie dem Forschungsbereich für Baustofflehre, Werkstofftechnologie und Brandsicherheit der TU Wien, die mir für die Durchführung meiner Versuche die Laborräume zur Verfügung gestellt haben.

Zuletzt gebührt mein größter Dank meiner Familie. Meinen Eltern Ivo und Suzana Matić sowie meiner Schwester Sara Matić, die mir in allen Lebenslagen unterstützend zur Seite standen und immer an mich glaubten.

DANKE!

Verzeichnisse

Inhaltsverzeichnis

DA	NKSAGUNG	III
VE	RZEICHNISSE	IV
Inha Abk Abb Tab Fori	altsverzeichnis 	IV VI VII XI
KU	RZFASSUNG	14
AB	STRACT	15
1	EINLEITUNG	16
1.1 1.2 1.3	Motivation Zielsetzung Gliederung und Vorgehensweise	16 16 17
2	BETON	18
2.1 2.2 2.3	Bestandteile des Betons Expositionsklassen Frischbeton	18 26 26
3	HERSTELLUNG DER PROBEN	30
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Materialbeschaffung Zuschlagsarten Aufbereitung des Zuschlags Kornrohdichte und die Wasseraufnahme der Gesteinskörnungen Mischungsberechnung Geräte Durchführung der Probenherstellung Lagerung der Probekörper	30 32 44 47 56 58 59
4	MATERIALUNTERSUCHUNGEN	62
4.1 4.2 4.3 4.4 4.5 4.6	Allgemeines Grundlagen der Bruchmechanik Einachsialer Druckversuch Spaltzugversuch statischer E-Modulversuch Uniaxialer Keilspaltversuch	62 63 69 78 84 93
5	ZUSAMMENFASSUNG UND AUSBLICK	108
Vera Dru Spa stat	arbeitbarkeit ckfestigkeit Iltzugfestigkeit ischer Elastizitätsmodul	108 108 109 110

Uni	axialer Keilspaltversuch	111
6	LITERATURVERZEICHNIS	112
7	NORMEN	115
8	ABBILDUNGSVERZEICHNIS	
9	ANHANG	117
9.1	Sieblinien	117
9.2	Druckversuch - Auswertung	118
9.3	Druckversuch – Proben	120
9.4	Spaltzugversuch - Auswertung	136
9.5	Spaltzugversuch - Proben	138
9.6	statischer E-Modulversuch – Auswertung	156
9.7	Keilspaltversuch - Auswertung	158
9.8	Keilspaltversuch - Last-Verschiebungsdiagramme	165
9.9	Keilspaltversuch - Rissverlauf	189
10	EIDESSTATTLICHE ERKLÄRUNG	

Abkürzungsverzeichnis¹

Abb.	Abbildung	W/Z	Wasser / Zement
Tab.	Tabelle	gew.	gewählt
ca.	circa = ungefähr	vorh.	vorhanden
W/B	Wasser / Bindemittel	v. l. n. r.	von links nach rechts
GeK	Gesteinskörnung	d. h.	das heißt
LP-Topf	Luftporentopf	mittl.	mittlere
GK	Größtkorn	charakt.	charakteristische
Z	Zementgehalt	mind.	mindestens
NW	Nachweiskriterium		

¹ Genderhinweis:

Der Autor legt großen Wert auf Diversität und Gleichbehandlung. Im Sinne einer besseren Lesbarkeit wurde jedoch oftmals entweder die maskuline oder feminine Form gewählt. Dies impliziert keinesfalls eine Benachteiligung des jeweils anderen Geschlechts.

Abbildungsverzeichnis

Abb. 1: Gliederung der Diplomarbeit [Autor]	17
Abb. 2: Normalzementbezeichnung [Autor]	20
Abb. 3: Druckfestigkeitsentwicklung der reinen Klinkerphasen [ZEMTASCH]	21
Abb. 4: Grenzsieblinien Größtkorn 16 mm nach [B4710-1]	28
Abb. 5: Geologische Karte von der Republik Kroatien (mit Eintragungen) [1]	31
Abb. 6: Reliefkarte mit den Herkunftsorten der Zuschläge (mit Eintragungen) [2]	32
Abb. 7: Steinbruch der Firma Samoborka [Autor]	34
Abb. 8: Steinbruch Plovanija der Firma Holcim Hrvatska d.o.o. [3]	35
Abb. 9: Sieblinienoptimierung - Kalkstein [Autor]	36
Abb. 10: Lieferung des gebrochenen Kalkstein [Autor]	37
Abb. 11: Quarzkies [Autor]	38
Abb. 12: Vom Steinbruch erhaltene Korngrößenverteilung [Autor]	39
Abb. 13: Sollsieblinie Probekörper [Autor]	40
Abb. 14: Korngrößen Quarzkies [Autor]	41
Abb. 15: Korngrößen Kalkstein [Autor]	42
Abb. 16: Korngrößen Dolomit [Autor]	43
Abb. 17: Messproben (Kies, Dolomit, Kalkstein) [Autor]	44
Abb. 18: Luftporentopf + GeK _{wassergesättigt} + Auffüllwasser [Autor]	45
Abb. 19: Abtrocknung der Gesteinskörnung mittels Tuch [Autor]	45
Abb. 20: Messproben im Trockenschrank bei 105°C [Autor]	46
Abb. 21: Sollsieblinie GK 16 – Mischung für Probekörper [Autor]	47
Abb. 22: Walz-Kurve nach [BETONHER]	49
Abb. 23: Zusammenfassung der Stoffraumrechnung für 1 m ³ Beton [Autor]	52
Abb. 24: Formen (links: Würfel 100 mm [4] und rechts: Würfel 150 mm [5])	56
Abb. 25: Aufnahmevorrichtung und Zylinderformen [Autor]	56
Abb. 26: links: Rütteltisch und rechts: Betonmischer [Autor]	57
Abb. 27: Mettler - Elektronische Präzisionswaage - SM1220 [Autor]	57
Abb. 28: Regentonne 300 L [6]	57
Abb. 29: Vorbereitete Gesteinskörnungen [Autor]	58
Abb. 30: Verdichtete Prüfkörper, Links: Druck- und Spaltversuchskörper, Rechts: Keilspalt- und E-Modulversuchskörper [Autor]	59
Abb. 31: Lösen der Probekörper aus den Formen [Autor]	59
Abb. 32: Ablauf des Druck-, Spaltzug- und E-Modul Versuches [Autor]	60
Abb. 33: Ablauf des Keilspaltversuchs [Autor]	61
Abb. 34: Wasserlagerung der Probekörper, Links: Druck- und Spaltzugversuch, Rechts: Keilspalt- und E-Modulversuch [Autor]	61
Abb. 35: Probenkennzeichnung [Autor]	61
Abb. 36: Prozesszone der mikromechanischen Bruchvorgänge an der Rissspitze nach [KUNA2010]	64
Abb. 37: Rissöffnungsarten [BRUCHME]	65
Abb. 38: Rissöffnung und Spannungsverlauf [KUNA2010]	65
Abb. 39: Schema zur Gültigkeit des K-Konzepts [BRUCHME]	66
Abb. 40: Verhalten von Beton unter Zug [ING2010]	68

Abb.	41:	Rissprozesszone nach [ING2010]	. 69
Abb.	42:	Spannungsoptische Aufnahme von "Normalbeton" nach [SPANVE73]	. 70
Abb.	43:	Spannungs-Dehnungs-Linie im verformungsgesteuerten Druckversuch [ZEMTASCH]	. 70
Abb.	44:	Hydraulische Druck-Prüfmaschine der Firma Seger 2000 kN [Autor]	. 71
Abb.	45:	Nennmaße vom Würfel und Zvlinder [EN12390-1]	. 72
Abb.	46:	Probe während der Versuchsdurchführung (links: vorher, rechts: nachher) [Autor]	. 73
Abb.	47:	Druckversuch – Belastungsgeschwindigkeiten (2d, 7d und 28d) [Autor]	. 73
Abb.	48:	mittlere Betondruckfestigkeit – Q, K und D [Autor]	. 74
Abb.	49:	Druckfestigkeitsentwicklung – Q, K und D [Autor]	. 75
Abb.	50:	Bruchbilder der Würfelproben nach [EN12390-3]	. 76
Abb.	51:	Bruchbilder Einachsialer Druckversuch – Beton mit Quarzkies und einem Probenalter von 2, 7 und 28 Tagen [Autor]	. 77
Abb.	52:	Bruchbilder Einachsialer Druckversuch – Beton mit Kalkstein und einem Probenalter von 2, 7 und 28 Tagen [Autor]	. 77
Abb.	53:	Bruchbilder Einachsialer Druckversuch – Beton mit Dolomit und einem Probenalter von 2, 7 und 28 Tagen [Autor]	. 77
Abb.	54:	Spaltzugversuch (v. l. n. r.: Prüfmaschine, Versuchskörper vorher u. nachher) [Autor]	. 79
Abb.	55:	mittlere Spaltzugfestigkeit – Q, K und D [Autor]	. 80
Abb.	56:	Spaltzugfestigkeitsentwicklung – Q, K und D [Autor]	. 81
Abb.	57:	Bruchflächen Spaltzugversuch – Beton mit Quarzkies und einem Probenalter von 2 Tagen [Autor]	. 82
Abb.	58:	Bruchflächen Spaltzugversuch – Beton mit Quarzkies und einem Probenalter von 7 Tagen [Autor]	. 82
Abb.	59:	Bruchflächen Spaltzugversuch – Beton mit Quarzkies und einem Probenalter von 28 Tagen [Autor]	. 82
Abb.	60:	Bruchflächen Spaltzugversuch – Beton mit Kalkstein und einem Probenalter von 2 Tagen [Autor]	. 83
Abb.	61:	Bruchflächen Spaltzugversuch – Beton mit Kalkstein und einem Probenalter von 7 Tagen [Autor]	. 83
Abb.	62:	Bruchflächen Spaltzugversuch – Beton mit Kalkstein und einem Probenalter von 28 Tagen [Autor]	. 83
Abb.	63:	Bruchflächen Spaltzugversuch – Beton mit Dolomit und einem Probenalter von 2 Tagen [Autor]	. 84
Abb.	64:	Bruchflächen Spaltzugversuch – Beton mit Dolomit und einem Probenalter von 7 Tagen [Autor]	. 84
Abb.	65:	Bruchflächen Spaltzugversuch – Beton mit Dolomit und einem Probenalter von 28 Tagen [Autor]	. 84
Abb.	66:	Spannungs-Dehnungslinie von Beton [7]	. 85
Abb.	67:	Zug-Druckprüfmaschine Instron 4260 [Autor]	. 86
Abb.	68:	Wegaufnehmer und Kraftsensor [Autor]	. 87
Abb.	69:	statischer E-Modulversuch [Autor]	. 89
Abb.	70:	Belastungszyklus aller Versuchsreihen [Autor]	. 89
Abb.	71:	mittlerer statischer E-Modul – Q, K und D [Autor]	. 91
Abb.	72:	Entwicklung des statischen E-Moduls – Q, K und D [Autor]	. 91

Abb. 73: Zunahme des statischen E-Moduls in Abhängigkeit zur Festigkeit (Links: Druckfestigkeit, Rechts: Spaltzugfestigkeit) [Autor]	92
Abb. 74: Zunahme des statischen E-Moduls in Verhältnis zu seiner Festigkeitsentwicklung (Links: Druckfestigkeit, Rechts: Spaltzugfestigkeit) [Autor]	92
Abb. 75: Kraftübertragungsstücke (links) und Systemskizze Keilspaltmethode (rechts) nach [B3592]	
Abb. 76: Mindestabmessungen prismatischer Probekörper [Autor]	
Abb. 77: Kräfteverteilung in Abhängigkeit des Keilwinkels [Autor]	
Abb. 78: Prüfkeil, Lasteinleitungsvorrichtung und Kraftübertragungsstücke [Autor]	
Abb. 79: Unzulässiger Rissverlauf bei der Probe Q28dK01 (Starterkerbe mit 10% der Ligamenthöhe) [Autor]	
Abb. 80: Anbringung der Wegaufnehmer [Autor]	
Abb. 81: Abmessungen [Autor]	
Abb. 82: Keilspaltversuch [Autor]	
Abb. 83: Probe während Versuchsdurchführung (links: vorher, rechts: nachher) [Autor]	
Abb. 84: Bruchflächenansicht beim Beton mit Dolomit- D28dK01 [Autor]	
Abb. 85: Kraft-Verschiebungskurve zur Erläuterung der mittels Keilspaltmethode ermittelbaren bruchmechanischen Kennwerte [SCHNEE]	
Abb. 86: Systemskizze Probekörper und Kräfte [Autor]	100
Abb. 87: Beispiele für Rissverläufe nach [B3592]	101
Abb. 88: Probe K07dK05 - Überblick Last-Verschiebungskurve vor (links) und nach (rechts) der Korrektur [Autor]	103
Abb. 89: mittl. spez. Bruchenergie, charakt. Länge und Kerbzugfestigkeit [Autor]	103
Abb. 90: Last-Verschiebungskurve – Beton nach 2 Tagen [Autor]	104
Abb. 91: Last-Verschiebungskurve – Beton nach 7 Tagen [Autor]	104
Abb. 92: Last-Verschiebungskurve – Beton nach 28 Tagen [Autor]	104
Abb. 93: Systemskizze – Rissart 1 [Autor]	105
Abb. 94: Systemskizze – Rissart 2 [Autor]	106
Abb. 95: Systemskizze – Rissart 3 [Autor]	106
Abb. 96: Schub- und Kerbzugfestigkeitsdiagramm [Autor]	107
Abb. 97: Aussagekraft der spez. Bruchenergie (Basis: horizontale Spaltkraft F _H und Verschiebung s) beim Übergang von Mode I zu Mode II [Autor]	107
Abb. 98: Druckfestigkeit aller Versuchsproben	119
Abb. 99: Spaltzugfestigkeit aller Versuchsproben	137
Abb. 100: Belastungs-Dehnungsdiagramm – Betonalter 28 Tage	157
Abb. 101: Last-Verschiebungsdiagramm Q02dK	165
Abb. 102: Last-Verschiebungsdiagramm Q02dK01	166
Abb. 103: Last-Verschiebungsdiagramm Q02dK02	166
Abb. 104: Last-Verschiebungsdiagramm Q02dK03	166
Abb. 105: Last-Verschiebungsdiagramm Q02dK04	167
Abb. 106: Last-Verschiebungsdiagramm Q02dK05	167
Abb. 107: Last-Verschiebungsdiagramm K02dK	168
Abb. 108: Last-Verschiebungsdiagramm K02dK01	168
Abb. 109: Last-Verschiebungsdiagramm K02dK02	169

Abb. 111: Last-Verschiebungsdiagramm K02dK04. 169 Abb. 112: Last-Verschiebungsdiagramm K02dK05. 170 Abb. 113: Last-Verschiebungsdiagramm D02dK01. 171 Abb. 114: Last-Verschiebungsdiagramm D02dK03. 171 Abb. 115: Last-Verschiebungsdiagramm D02dK03. 171 Abb. 116: Last-Verschiebungsdiagramm D02dK05. 172 Abb. 119: Last-Verschiebungsdiagramm D02dK05. 172 Abb. 119: Last-Verschiebungsdiagramm Q07dK05. 172 Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 124: Last-Verschiebungsdiagramm K07dK01 176 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK03 176 Abb. 127: Last-Verschiebungsdiagramm K07dK04 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm K07dK05 177 Abb. 133: Last-Verschiebungsdiagramm K07dK05 <th>Abb. 110: Last-Verschiebungsdiagramm K02dK03</th> <th>. 169</th>	Abb. 110: Last-Verschiebungsdiagramm K02dK03	. 169
Abb. 112: Last-Verschiebungsdiagramm K02dK05. 170 Abb. 113: Last-Verschiebungsdiagramm D02dK01. 171 Abb. 114: Last-Verschiebungsdiagramm D02dK02. 171 Abb. 115: Last-Verschiebungsdiagramm D02dK02. 171 Abb. 116: Last-Verschiebungsdiagramm D02dK03. 171 Abb. 117: Last-Verschiebungsdiagramm D02dK04. 172 Abb. 118: Last-Verschiebungsdiagramm D02dK05. 172 Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 125: Last-Verschiebungsdiagramm K07dK05 175 Abb. 126: Last-Verschiebungsdiagramm K07dK04 174 Abb. 126: Last-Verschiebungsdiagramm K07dK04 177 Abb. 129: Last-Verschiebungsdiagramm K07dK05 176 Abb. 129: Last-Verschiebungsdiagramm K07dK04 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm K07dK05 <td>Abb. 111: Last-Verschiebungsdiagramm K02dK04</td> <td>. 169</td>	Abb. 111: Last-Verschiebungsdiagramm K02dK04	. 169
Abb. 113: Last-Verschiebungsdiagramm D02dK	Abb. 112: Last-Verschiebungsdiagramm K02dK05	. 170
Abb. 114: Last-Verschiebungsdiagramm D02dK01 171 Abb. 115: Last-Verschiebungsdiagramm D02dK02 171 Abb. 116: Last-Verschiebungsdiagramm D02dK03 171 Abb. 117: Last-Verschiebungsdiagramm D02dK04 172 Abb. 118: Last-Verschiebungsdiagramm D02dK05 172 Abb. 119: Last-Verschiebungsdiagramm Q07dK04 173 Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 125: Last-Verschiebungsdiagramm K07dK03 175 Abb. 126: Last-Verschiebungsdiagramm K07dK04 176 Abb. 127: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm K07dK05 177 Abb. 133: Last-Verschiebungsdiagramm D07dK05 177 Abb. 133: Last-Verschiebungsdiagramm D07dK05 179 Abb. 133: Last-Verschiebungsdiagramm D07dK05	Abb. 113: Last-Verschiebungsdiagramm D02dK	. 170
Abb. 115: Last-Verschiebungsdiagramm D02dK02. 171 Abb. 1116: Last-Verschiebungsdiagramm D02dK03. 171 Abb. 1117: Last-Verschiebungsdiagramm D02dK05. 172 Abb. 113: Last-Verschiebungsdiagramm Q07dK05. 172 Abb. 112: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK04 174 Abb. 126: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK04 176 Abb. 128: Last-Verschiebungsdiagramm K07dK05 177 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 177 Abb. 132: Last-Verschiebungsdiagramm D07dK01 178 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 134: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03	Abb. 114: Last-Verschiebungsdiagramm D02dK01	. 171
Abb. 116: Last-Verschiebungsdiagramm D02dK03. 171 Abb. 117: Last-Verschiebungsdiagramm D02dK04. 172 Abb. 118: Last-Verschiebungsdiagramm D02dK05. 172 Abb. 119: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK04 175 Abb. 126: Last-Verschiebungsdiagramm K07dK01 176 Abb. 127: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm D07dK05 177 Abb. 132: Last-Verschiebungsdiagramm D07dK01 178 Abb. 133: Last-Verschiebungsdiagramm D07dK02 180 Abb. 133: Last-Verschiebungsdiagramm D07dK03 180 Abb. 133: Last-Verschiebungsdiagramm D07dK03 180 Abb. 134: Last-Verschiebungsdiagramm D07dK03	Abb. 115: Last-Verschiebungsdiagramm D02dK02	. 171
Abb. 117: Last-Verschiebungsdiagramm D02dK04. 172 Abb. 118: Last-Verschiebungsdiagramm Q07dK05. 172 Abb. 119: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 124: Last-Verschiebungsdiagramm K07dK01 176 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK05 177 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK01 179 Abb. 132: Last-Verschiebungsdiagramm D07dK03 180 Abb. 133: Last-Verschiebungsdiagramm D07dK04 179 Abb. 134: Last-Verschiebungsdiagramm D07dK03 180 Abb. 135: Last-Verschiebungsdiagramm D07dK04 180 Abb. 136: Las	Abb. 116: Last-Verschiebungsdiagramm D02dK03	. 171
Abb. 118: Last-Verschiebungsdiagramm D02dK05. 172 Abb. 119: Last-Verschiebungsdiagramm Q07dK. 173 Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK05 175 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 126: Last-Verschiebungsdiagramm K07dK03 176 Abb. 126: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 131: Last-Verschiebungsdiagramm K07dK01 178 Abb. 132: Last-Verschiebungsdiagramm D07dK01 179 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK01 179 Abb. 136: Last-Verschiebungsdiagramm D07dK01 180 Abb. 137: Last-Verschiebungsdiagramm D07dK03 180 Abb. 138: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 1431: Last-Verschiebungsdiagra	Abb. 117: Last-Verschiebungsdiagramm D02dK04	. 172
Abb. 119: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 127: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK02 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK05 177 Abb. 133: Last-Verschiebungsdiagramm D07dK02 180 Abb. 134: Last-Verschiebungsdiagramm D07dK02 180 Abb. 135: Last-Verschiebungsdiagramm D07dK04 179 Abb. 136: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK02 180 Abb. 137: Last-Verschiebungsdiagramm D07dK05 181 Abb. 141: Last-Verschiebungsdiagram	Abb. 118: Last-Verschiebungsdiagramm D02dK05	. 172
Abb. 120: Last-Verschiebungsdiagramm Q07dK01 173 Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 124: Last-Verschiebungsdiagramm K07dK04 174 Abb. 125: Last-Verschiebungsdiagramm K07dK05 175 Abb. 126: Last-Verschiebungsdiagramm K07dK01 176 Abb. 127: Last-Verschiebungsdiagramm K07dK03 176 Abb. 128: Last-Verschiebungsdiagramm K07dK04 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK05 177 Abb. 132: Last-Verschiebungsdiagramm D07dK02 180 Abb. 132: Last-Verschiebungsdiagramm D07dK03 180 Abb. 135: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK03 180 Abb. 138: Last-Verschiebungsdiagramm D07dK03 180 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagram	Abb. 119: Last-Verschiebungsdiagramm Q07dK	. 173
Abb. 121: Last-Verschiebungsdiagramm Q07dK02 174 Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 124: Last-Verschiebungsdiagramm K07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 127: Last-Verschiebungsdiagramm K07dK03 176 Abb. 128: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK01 179 Abb. 133: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK04 180 Abb. 138: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-	Abb. 120: Last-Verschiebungsdiagramm Q07dK01	. 173
Abb. 122: Last-Verschiebungsdiagramm Q07dK03 174 Abb. 123: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm M07dK05 (korrigiert) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK01 179 Abb. 133: Last-Verschiebungsdiagramm D07dK02 180 Abb. 134: Last-Verschiebungsdiagramm D07dK03 180 Abb. 135: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK01 183 Abb. 144: Last-Verschi	Abb. 121: Last-Verschiebungsdiagramm Q07dK02	. 174
Abb. 123: Last-Verschiebungsdiagramm Q07dK04 174 Abb. 124: Last-Verschiebungsdiagramm K07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK04 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK05 (Korrigiert) 178 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 134: Last-Verschiebungsdiagramm D07dK02 180 Abb. 135: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK05 181 Abb. 136: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 138: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 139: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 131: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 142: Last-Verschi	Abb. 122: Last-Verschiebungsdiagramm Q07dK03	. 174
Abb. 124: Last-Verschiebungsdiagramm Q07dK05 175 Abb. 125: Last-Verschiebungsdiagramm K07dK01 176 Abb. 126: Last-Verschiebungsdiagramm K07dK02 176 Abb. 127: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK05 (Korrigiert) 178 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 134: Last-Verschiebungsdiagramm D07dK02 180 Abb. 135: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK04 180 Abb. 137: Last-Verschiebungsdiagramm D07dK05 181 Abb. 138: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 139: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 142: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 143: Last-Verschiebungsdiagramm Q28dK04 183 Ab	Abb. 123: Last-Verschiebungsdiagramm Q07dK04	. 174
Abb. 125: Last-Verschiebungsdiagramm K07dK. 175 Abb. 126: Last-Verschiebungsdiagramm K07dK01 176 Abb. 127: Last-Verschiebungsdiagramm K07dK03 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK04 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert) 178 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 134: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK04 180 Abb. 137: Last-Verschiebungsdiagramm Q28dK01 181 Abb. 138: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 144: Last-Verschiebungsdiagramm K28dK04 183 Abb. 145: Last-Verschie	Abb. 124: Last-Verschiebungsdiagramm Q07dK05	. 175
Abb. 126: Last-Verschiebungsdiagramm K07dK01 176 Abb. 127: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK 179 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 134: Last-Verschiebungsdiagramm D07dK02 180 Abb. 135: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK05 181 Abb. 138: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 143: Last-Verschiebungsdiagramm Q28dK03 183 Abb. 144: Last-Verschiebungsdiagramm Q28dK03 183 Abb. 145: Last-Verschieb	Abb. 125: Last-Verschiebungsdiagramm K07dK	. 175
Abb. 127: Last-Verschiebungsdiagramm K07dK02 176 Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK05 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert) 178 Abb. 133: Last-Verschiebungsdiagramm D07dK 179 Abb. 134: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK04 180 Abb. 138: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 144: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 145: Last-Verschiebungsdiagramm K28dK04 184 Abb.	Abb. 126: Last-Verschiebungsdiagramm K07dK01	. 176
Abb. 128: Last-Verschiebungsdiagramm K07dK03 176 Abb. 129: Last-Verschiebungsdiagramm K07dK04 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK. 179 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK04 180 Abb. 137: Last-Verschiebungsdiagramm D07dK05 181 Abb. 138: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 142: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 145: Last-Verschiebungsdiagramm K28dK01 183 Abb. 145: Last-Verschiebungsdiagramm K28dK02 185 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 145: Last-Verschie	Abb. 127: Last-Verschiebungsdiagramm K07dK02	. 176
Abb. 129: Last-Verschiebungsdiagramm K07dK04 177 Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK01 179 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK03 180 Abb. 138: Last-Verschiebungsdiagramm D07dK04 180 Abb. 139: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 144: Last-Verschiebungsdiagramm K28dK01 184 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 145: Last-Verschiebungsdiagramm K28dK02 185 Abb. 145: Last-Verschiebungsdiagramm K28dK03 185 Abb. 146: Last-Verschi	Abb. 128: Last-Verschiebungsdiagramm K07dK03	. 176
Abb. 130: Last-Verschiebungsdiagramm K07dK05 177 Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm M07dK05 (korrigiert) 178 Abb. 133: Last-Verschiebungsdiagramm D07dK 179 Abb. 134: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK04 180 Abb. 138: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 181 Abb. 141: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 144: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 146: Last-Verschiebungsdiagramm K28dK01 184 Abb. 147: Last-Verschiebungsdiagramm K28dK03 185 Abb. 148: Last-Verschiebungsdiagramm K28dK03 185 Abb. 149: Last-Verschiebungsdiagramm K28dK03 185 Abb. 149: Last-Verschieb	Abb. 129: Last-Verschiebungsdiagramm K07dK04	. 177
Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte) 178 Abb. 132: Last-Verschiebungsdiagramm D07dK. 179 Abb. 133: Last-Verschiebungsdiagramm D07dK01 179 Abb. 134: Last-Verschiebungsdiagramm D07dK02 180 Abb. 135: Last-Verschiebungsdiagramm D07dK03 180 Abb. 136: Last-Verschiebungsdiagramm D07dK04 180 Abb. 137: Last-Verschiebungsdiagramm D07dK04 180 Abb. 138: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 140: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 144: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 146: Last-Verschiebungsdiagramm K28dK03 185 Abb. 147: Last-Verschiebungsdiagramm K28dK03 185 Abb. 148: Last-Verschiebungsdiagramm K28dK04 185 Abb. 149: Last-Verschiebungsdiagramm	Abb. 130: Last-Verschiebungsdiagramm K07dK05	. 177
Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert) 178 Abb. 133: Last-Verschiebungsdiagramm D07dK 179 Abb. 134: Last-Verschiebungsdiagramm D07dK01 179 Abb. 135: Last-Verschiebungsdiagramm D07dK02 180 Abb. 136: Last-Verschiebungsdiagramm D07dK03 180 Abb. 137: Last-Verschiebungsdiagramm D07dK04 180 Abb. 138: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm D07dK05 181 Abb. 139: Last-Verschiebungsdiagramm Q28dK01 182 Abb. 141: Last-Verschiebungsdiagramm Q28dK02 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK03 182 Abb. 142: Last-Verschiebungsdiagramm Q28dK04 183 Abb. 143: Last-Verschiebungsdiagramm Q28dK05 183 Abb. 144: Last-Verschiebungsdiagramm X28dK05 183 Abb. 145: Last-Verschiebungsdiagramm K28dK01 184 Abb. 146: Last-Verschiebungsdiagramm K28dK02 185 Abb. 147: Last-Verschiebungsdiagramm K28dK03 185 Abb. 148: Last-Verschiebungsdiagramm K28dK03 185 Abb. 149: Last-Verschiebungsdiagramm K28dK03 185 Abb. 149: Last-Verschiebungsdiagramm K28dK03 185 Abb. 149: Last-Verschiebungsdiagramm K28dK04	Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte)	. 178
Abb. 133: Last-Verschiebungsdiagramm D07dK	Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert)	. 178
Abb. 134: Last-Verschiebungsdiagramm D07dK01	Abb. 133: Last-Verschiebungsdiagramm D07dK	. 179
Abb. 135: Last-Verschiebungsdiagramm D07dK02	Abb. 134: Last-Verschiebungsdiagramm D07dK01	. 179
Abb. 136: Last-Verschiebungsdiagramm D07dK03	Abb. 135: Last-Verschiebungsdiagramm D07dK02	. 180
Abb. 137: Last-Verschiebungsdiagramm D07dK04	Abb. 136: Last-Verschiebungsdiagramm D07dK03	. 180
Abb. 138: Last-Verschiebungsdiagramm D07dK05.181Abb. 139: Last-Verschiebungsdiagramm Q28dK.181Abb. 140: Last-Verschiebungsdiagramm Q28dK01182Abb. 141: Last-Verschiebungsdiagramm Q28dK02182Abb. 142: Last-Verschiebungsdiagramm Q28dK03182Abb. 142: Last-Verschiebungsdiagramm Q28dK04183Abb. 143: Last-Verschiebungsdiagramm Q28dK05183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK05183Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK03185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 152: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 137: Last-Verschiebungsdiagramm D07dK04	. 180
Abb. 139: Last-Verschiebungsdiagramm Q28dK.181Abb. 140: Last-Verschiebungsdiagramm Q28dK01182Abb. 141: Last-Verschiebungsdiagramm Q28dK02182Abb. 142: Last-Verschiebungsdiagramm Q28dK03182Abb. 143: Last-Verschiebungsdiagramm Q28dK04183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK05184Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK04186Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 138: Last-Verschiebungsdiagramm D07dK05	. 181
Abb. 140: Last-Verschiebungsdiagramm Q28dK01182Abb. 141: Last-Verschiebungsdiagramm Q28dK02182Abb. 142: Last-Verschiebungsdiagramm Q28dK03182Abb. 143: Last-Verschiebungsdiagramm Q28dK04183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK05183Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK04185Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 139: Last-Verschiebungsdiagramm Q28dK	. 181
Abb. 141: Last-Verschiebungsdiagramm Q28dK02182Abb. 142: Last-Verschiebungsdiagramm Q28dK03182Abb. 143: Last-Verschiebungsdiagramm Q28dK04183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK05184Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 140: Last-Verschiebungsdiagramm Q28dK01	. 182
Abb. 142: Last-Verschiebungsdiagramm Q28dK03182Abb. 143: Last-Verschiebungsdiagramm Q28dK04183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK184Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK01187Abb. 152: Last-Verschiebungsdiagramm D28dK02187	Abb. 141: Last-Verschiebungsdiagramm Q28dK02	. 182
Abb. 143: Last-Verschiebungsdiagramm Q28dK04183Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK184Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK05186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 142: Last-Verschiebungsdiagramm Q28dK03	. 182
Abb. 144: Last-Verschiebungsdiagramm Q28dK05183Abb. 145: Last-Verschiebungsdiagramm K28dK184Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm K28dK05186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 143: Last-Verschiebungsdiagramm Q28dK04	. 183
Abb. 145: Last-Verschiebungsdiagramm K28dK	Abb. 144: Last-Verschiebungsdiagramm Q28dK05	. 183
Abb. 146: Last-Verschiebungsdiagramm K28dK01184Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 145: Last-Verschiebungsdiagramm K28dK	. 184
Abb. 147: Last-Verschiebungsdiagramm K28dK02185Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 146: Last-Verschiebungsdiagramm K28dK01	. 184
Abb. 148: Last-Verschiebungsdiagramm K28dK03185Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 147: Last-Verschiebungsdiagramm K28dK02	. 185
Abb. 149: Last-Verschiebungsdiagramm K28dK04185Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 148: Last-Verschiebungsdiagramm K28dK03	. 185
Abb. 150: Last-Verschiebungsdiagramm K28dK05186Abb. 151: Last-Verschiebungsdiagramm D28dK186Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 149: Last-Verschiebungsdiagramm K28dK04	. 185
Abb. 151: Last-Verschiebungsdiagramm D28dK	Abb. 150: Last-Verschiebungsdiagramm K28dK05	. 186
Abb. 152: Last-Verschiebungsdiagramm D28dK01187Abb. 153: Last-Verschiebungsdiagramm D28dK02187	Abb. 151: Last-Verschiebungsdiagramm D28dK	. 186
Abb. 153: Last-Verschiebungsdiagramm D28dK02 187	Abb. 152: Last-Verschiebungsdiagramm D28dK01	. 187
	Abb. 153: Last-Verschiebungsdiagramm D28dK02	. 187

Abb. 154: Last-Verschiebungsdiagramm D28dK03	. 187
Abb. 155: Last-Verschiebungsdiagramm D28dK04	. 188
Abb. 156: Last-Verschiebungsdiagramm D28dK05	. 188

Tabellenverzeichnis

Tab. 1: Klinkermineralien nach [ZEMENT]	18
Tab. 2: Zementsorten nach [EN197-1]	19
Tab. 3: Zement – Festigkeitsklassen nach [EN197-1]	20
Tab. 4: Unterteilung von Gesteinskörnungen nach der Kornrohdichte [WENDBAU]	23
Tab. 5: Bezeichnung von Gesteinskörnungen nach Korngröße und Aufbereitungsart [WENDBAU]	23
Tab. 6: Verdichtungsmaßklassen nach [B4710-1]	27
Tab. 7: Ausbreitmaßklassen nach [B4710-1]	27
Tab. 8: Druckfestigkeitsklassen für Normal- und Schwerbeton [B4710-1]	29
Tab. 9: Überblick über das Versuchsprogramm [Autor]	30
Tab. 10: Optimierung der Istsieblinie an die Sollsieblinie [Autor]	36
Tab. 11: Kostenzusammenstellung – Kalkstein [Autor]	37
Tab. 12: Vom Steinbruch erhaltene Korngrößenverteilung [Autor]	39
Tab. 13: Sollsieblinie Probekörper [Autor]	40
Tab. 14: Bestimmung der Kornrohdichte und der Wasseraufnahme [Autor]	46
Tab. 15: Sollsieblinie GK 16 – Mischung für Probekörper [Autor]	47
Tab. 16: Grenzwerte (bei GK 22) für die Zusammensetzung, die Eigenschaften von Beton und die Verwendung der Zemente bei den verschiedenen Expositionsklassen (Ausschnitt) nach [B4710-1]	48
Tab. 17: Richtwerte für den Wasseranspruch in kg ie m ³ Frischbeton nach [B20]	51
Tab. 18: Empfohlener Mehlkorngehalt (Kornanteil mit Korngrößen <0,125mm) [B4710-1]	52
Tab. 19: Mischungsberechnung – Quarzkies [Autor]	53
Tab. 20: Mischungsberechnung – Kalkstein [Autor]	54
Tab. 21: Mischungsberechnung – Dolomit [Autor]	55
Tab. 22: Lagerung der Probekörper [ONR23303]	60
Tab. 23: Überblick über das Versuchsprogramm [Autor]	62
Tab. 24: Überblick Druckversuch [Autor]	72
Tab. 25: mittlere. Betondruckfestigkeit je Gesteinsart und Betonalter [Autor]	74
Tab. 26: Überblick Spaltzugversuch [Autor]	79
Tab. 27: mittlere Spaltzugfestigkeit je Gesteinsart und Betonalter [Autor]	80
Tab. 28: Überblick statischer E-Modulversuch [Autor]	88
Tab. 29: Ermittlung der Oberlast, Vorlast und Belastungsgeschwindigkeit [Autor]	90
Tab. 30: mittl. stat. E-Modul je Gesteinsart und Betonalter [Autor]	91
Tab. 31: Überblick Keilspaltversuch [Autor]	97
Tab. 32: Anzahl der zulässigen Rissverläufe [Autor]	101
Tab. 33: Zusammenfassung der Auswertung nach ÖNORM B 3592:2011 [Autor]	101
Tab. 34: Zusammenfassung der Auswertung nicht nach ÖNORM B 3592:2011 [Autor]	102
Tab. 35: Druckversuch – Abmessungen und Auswertung	118

136
156
158
159
160
161
162
163
164

Formelverzeichnis

Kerbzugfestigkeit σ _{KZ} (4.15)	99
Horizontalkraft F _H (4.16)	99
Ligamentfläche A _{Lig} (4.17)	100
Drehmoment M _b (4.18)	100
Widerstandsmoment W _y (4.19)	100
spez. Bruchenergie G _F (4.20)	100
charakteristische Länge Ich (4.21)	100
Schubfestigkeit τ_V (4.22)	105
Kerbzugfestigkeit $\sigma_{KZ,\beta}$ (4.23)	105
Schubfestigkeit $\tau_{V,\beta}$ (4.24)	105

Kurzfassung

Beton ist ein Verbundwerkstoff und seine Eigenschaften hängen vorrangig von den Eigenschaften seiner Komponenten und deren Wechselwirkung untereinander ab. In dieser Arbeit wird der Fokus verstärkt auf eine dieser Komponenten, die Gesteinskörnung, gelegt.

Im Mittel hat die Europäische Union einen jährlich wachsenden Bruchsteinanteil und einen weiter fallenden Kies- und Sandanteil. Dadurch wird ersichtlich, dass dem Kantkornzuschlag zukünftig eine immer bedeutendere Rolle zukommen wird.

Deshalb soll mittels Versuchen das Bruchverhalten von Betonprüfreihen mit jeweils unterschiedlichen Gesteinskörnungen untersucht werden. Dabei wird vor allem der Einfluss der Kornform und der Zuschlagsart in Bezug auf die Festigkeitsentwicklung geprüft.

Für die Versuche werden Kantkorn-Zuschläge (Dolomit und Kalkstein) aus Kroatien und ein Rundkorn-Zuschlag (Quarzkies) aus Österreich verwendet. Mittels Druck-, Spaltzug-, statischen Elastizitätsmodul- und Kerbspaltzugversuche an 2, 7 und 28 Tage alten Probekörper, konnten einige Erkenntnisse über den Einfluss der Kornform sowie der Gesteinsart abgeleitet werden.

Abstract

Concrete is a composite material and its properties depend on the properties of its components as well as on the interaction between them. In this thesis, the focus is increasingly placed on one of these components, the aggregate.

On average, the European Union has an annual increasing percentage of crushed aggregates and a further falling gravel and sand content every year. This makes it clear that crushed stone will play a major role in the future.

Therefore, a comprehensive series of concrete tests with each different aggregates is conducted to determine material properties. In particular, the influence of the grain shape and the type of aggregate in terms of strength development is examined.

For the experiments are used crushed stone aggregates (dolomite and limestone) from Croatia and uncrushed aggregates (quartz gravel) from Austria. By accomplishing compression, splitting tensile, static modulus of elasticity and cut-through-tensile tests at 2, 7 and 28 days long storing specimens, some results could be lead off on the influence of the grain shape as well as on the influence of the rock type.

1 Einleitung

1.1 Motivation

Beton ist ein vielseitiger und kostengünstiger Werkstoff, der es ermöglicht Bauwerke wirtschaftlich herzustellen. Bezüglich der Wirtschaftlichkeit sind vor allem beim Ortbeton die kurzen Transportwege wichtig. Dabei spielt der Zuschlagsstoff eine besondere Rolle, da er im Normalfall 70% des Betonvolumens einnimmt. Durch die immer knapper werdenden Ressourcen und mit dem Blick auf die Umwelt, wird es immer wichtiger die vor Ort anstehenden Gesteinsvorkommen zu nutzen.

Die Motivation für die Bearbeitung dieses Themas kam während eines Urlaubs in Kroatien. Dort wird größtenteils Beton mit Kantkornzuschlag verarbeitet, was in Österreich nicht der Fall ist. Dies belegen auch die Statistiken laut des UEPG-Verbands (Union Européenne des Producteurs de Granulats" / European Aggregates Association / Europäischer Gesteinsverband), dass das Verhältnis der Gesteinsproduktion von Kies & Sand zu Bruchstein

- in Kroatien 22/78% und
- in Österreich 75/25% beträgt.

Im Mittel hat die EU einen jährlich wachsenden Bruchsteinanteil von 46,9% und einen weiter fallenden Kies- und Sandanteil von 40,1%. Somit ist ersichtlich, dass dem Kantkornzuschlag eine immer bedeutendere Rolle zukommen wird.

1.2 Zielsetzung

Das Ziel dieser Arbeit ist die Untersuchung des Bruchverhaltens von Beton mit unterschiedlichen Zuschlägen. Dabei soll der Rundkornzuschlag mit dem Bruchsteinzuschlag verglichen werden. Es soll geprüft werden, welchen Einfluss die Kornform und die Art des Zuschlagstoffes auf die Festigkeitsentwicklung des Betons hat.

Für die Versuche werden Kantkorn-Zuschläge (Dolomit und Kalkstein) aus Kroatien und ein Rundkorn-Zuschlag (Quarzkies) aus Österreich verwendet. Aus den drei unterschiedlichen Zuschlägen, die jeweils andere Sieblinien aufweisen, wurden drei idente Sieblinien hergestellt. Dies war notwendig um die Zuschläge untereinander vergleichen zu können und anschließend Rückschlüsse vom Einfluss des Zuschlags auf die Festigkeit zu führen.

Bei Proben mit unterschiedlichem Betonalter werden anschließend Prüfungen der Druck-, Spaltzug- und Kerbspaltzugfestigkeit durchgeführt, sowie das statische Elastizitätsmodul ermittelt.

1.3 Gliederung und Vorgehensweise

Die Arbeit gliedert sich in einen theoretischen und praktischen Teil (siehe Abb. 1).

Abb. 1: Gliederung der Diplomarbeit [Autor]

Im theoretischen Teil werden zuerst die Grundlagen des Werkstoffes Beton, von den Ausgangsstoffen bis hin zur Herstellung, erörtert. Dabei liegt der Fokus bei dieser Arbeit auch immer auf den Besonderheiten beim Einsatz von Kantkorn- und Rundkornzuschlägen. Im darauffolgendem Kapitel wird näher auf die einzelnen Prüfverfahren, die bei den unterschiedlichen Versuchen dieser Arbeit zum Einsatz kommen, eingegangen. In weiterer Folge werden dann die ermittelten Werte, die es ermöglichen sollen Aussagen über das Bruchverhalten zu treffen, analysiert.

Im praktischen Teil wird auf die verwendeten Materialien sowie auf die angewandten Untersuchungsmethoden eingegangen. Die Vorbereitungen und Versuche bzw. Prüfungen, die im Labor des Instituts für Hochbau und Technologie durchgeführt werden, werden genau beschrieben. Hierbei wird besonders Wert gelegt auf das Aufzeigen der Herausforderungen bei der Erstellung repräsentativer Versuchsergebnisse.

2 Beton

2.1 Bestandteile des Betons

2.1.1 Zement

Herstellung und Zusammensetzung

Zement ist ein feingemahlener Stoff, der nach dem Anrühren mit Wasser infolge chemischer Reaktion (Hydratation) selbstständig erhärtet, zu dem sogenannten Zementstein.

Die wesentlichen Ausgangsstoffe zur Erzeugung von Zement sind Kalkstein, Ton und Mergel. Dabei können bei Bedarf zusätzlich Korrekturmaterialien wie Quarzsande und eisenoxidhaltige Stoffe eingesetzt werden. Die Rohstoffe werden aus Steinbrüchen und Tongruben gewonnen. Das Rohmaterial wird zerkleinert und für die weitere Behandlung ins Zementwerk transportiert. Das erforderliche Mengenverhältnis für die Zementherstellung beträgt in der Regel

- zwei Teile Kalkstein und
- ein Teil Ton bzw. Mergel.

Die Rohmaterialaufbereitung erfolgt indem das Rohmaterial in der Rohmehlmühle getrocknet und gleichzeitig gemahlen wird. Dadurch entsteht das Rohmehl, welches durch Hinzufügen der Korrekturmaterialien die richtige Zusammensetzung erhält und so beim nachfolgenden Brennvorgang die Sinterung erleichtert. [ZEMENT]

Der Brennvorgang verläuft in zwei Stufen, der Entsäuerung und dem Sinterprozess. Bei der Entsäuerung wird das Rohmehl auf ca. 900 bis 1100°C erhitzt. Ab ca. 550°C beginnen die Tonmineralien, zu entwässern. Die eigentliche Entsäuerung, bei der sich der Kalkstein (CaCO₃) in Calciumoxid (CaO) und Kohlendioxid (CO₂) aufteilt, setzt ab ca. 800°C ein. Nach der Entsäuerung gelangt das Material zur Weiterbehandlung in einen Drehrohrofen. Das Rohmehl erlangt durch die Drehbewegungen des Ofens eine kugelige Form und wird mit konstanter Geschwindigkeit in immer heißeren Ofenzonen in Richtung des Brenners geführt. Bei einer Temperatur von etwa 1450°C bilden sich durch den Sinterprozess die Klinkermineralien (siehe Tab. 1: Klinkermineralien). Nach einer raschen Abkühlung wird das Material in Klinkersilos gelagert. [ZEMENT]

Bezeichnung	Kurzform	Chemische Formel	
Tricalciumsilikat	C₃S	3CaO.SiO ₂	Ca. 80% der
Dicalciumsilikat	C ₂ S	2CaO.SiO ₂	Klinkermasse
Tricalciumaluminat	C ₃ A	3CaO.Al ₂ O ₂	
Calciumaluminatferrit	C₄AF	4CaO.Al ₂ O ₃ .Fe ₂ O ₃	

Tab. 1: Klinkermineralien nach [ZEMENT]

Dem Zementklinker werden dann, je nach Zementsorte, die Zumahlstoffe

- S Hüttensand (Hochofenschlacke)
- P natürliches Puzzolan
- Q natürliches getempertes Puzzolan
- V kieselsäurereiche Flugasche
- W kalkreiche Flugasche
- T gebrannter Schiefer
- L Kalkstein (org. Kohlenstoff ≤ 0,5 M.-%)
- LL Kalkstein (org. Kohlenstoff ≤ 0,2 M.-%)
- D Silicastaub
- M Mixtur (mit Angabe der Komponenten, z.B. M (S-V-L))

in unterschiedlichen Mengen zugeführt und gemeinsam in Walzen- und Kugelmühlen gemahlen. Dadurch können die erforderlichen Eigenschaften des Zements gesteuert werden, wobei die Grenzen der Anteile durch die Norm EN 197-1:2011² geregelt sind (siehe Tab. 2).

		Zusammensetzung (Massenanteile in Prozent ^a)											
1						ŀ	lauptbesta	ndteile					
Haupt- arten	Bezeichnung der 27 Produkte		Klinker	Hütten- S sand s	Silica- staub	Puz	zolan	Flugasche		Ge- brann- ter	Kalkstein		Neben-
		,				natürlich	natürlich getempert	kiesel- säurereich	kalk- reich	Schie- fer	ð-		bestandteile
			к	s	Db	Р	Q	v	w	т	L	LL	
CEM I	Portlandzement	CEM I	95-100	-	_	-	_	-	-	-	-	-	0-5
	Portlandhütten-	CEM II/A-S	80-94	6-20	_	_	_	-	-	_	_	-	0-5
	zement	CEM II/B-S	65-79	21-35				_	_	_	_	-	0-5
	Portland- silicastaubzement	CEM II/A-D	90-94	-	6-10	-	-	-	-	-	-	-	0-5
		CEM II/A-P	80-94	-	-	6-20	-	-	-	-	-	-	0-5
1	Portland-	CEM II/B-P	65-79	-	-	21-35	-	-	-	-	-	-	0-5
1	puzzolanzement	CEM II/A-Q	80-94	-	-	-	6-20	-	-	-	_	-	0-5
		CEM II/B-Q	65-79	-	-	-	21-35	-	-	-	-	-	0-5
		CEM II/A-V	80-94	-	-	-	-	6-20	-	-	-	-	0-5
CEM II	Portland- flugaschezement	CEM II/B-V	65-79	-	-	-	-	21-35	-	-	-	-	0-5
		CEM II/A-W	80-94	-	-	-	-	-	6-20	-	-	-	0-5
		CEM II/B-W	65-79	-	-	-	-	-	21-35	-	-	-	0-5
	Portland-	CEM II/A-T	80-94					_	_	6-20		-	0-5
	schieferzement	CEM II/B-T	65-79	-	-	-	-	-	-	21-35	-	-	0-5
		CEM II/A-L	80-94	-	-	-	-	-	-	-	6-20	-	0-5
	Portland-	CEM II/B-L	65-79	-	-	-	-	-	-	-	21-35	-	0-5
	kalksteinzement	CEM II/A-LL	80-94	-	-	-	-	-	-	-	-	6-20	0-5
		CEM II/B-LL	65-79	-	_	-		_	_			21-35	0-5
	Portlandkomposit-	CEM II/A-M	80-88	(12-20)	0.5
	zement ^C	CEM II/B-M	65-79	(21-35				>	
		CEM III/A	35-64	36-65	-	-	-	-	-	-	-	-	0-5
CEM III	Hochofenzement	CEM III/B	20-34	66-80	-		-	-	-		-	-	0-5
		CEM III/C	5-19	81-95	-	-	-	-	-	-	-	-	0-5
CEM IV	Puzzolan- zement ^C	-Sindvger	näß*T	abelle	NAD	10 de	CONO 36-55	RM B4	710-1	-	-	-	0-5
	Komposit- für	die Betor	herst	ellunc	nach	diese	er Nor	m nich	t zulà	issia	-	-	0-5
CEMV	zement ^C	CEM V/B	20-38	31-49	-	<	31-49 -	>	_	_	_	-	0-5

Tab. 2: Zementsorten nach [EN197-1]

² Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement

Aus der Bezeichnung der Normalzemente (siehe Abb. 2) können die wichtigsten Informationen herausgelesen werden, wie zum Beispiel

Abb. 2: Normalzementbezeichnung [Autor]

Die Mahlfeinheit des Zements kann durch die Art und Dauer des Mahlvorganges beeinflusst werden. Je feiner ein Zement gemahlen ist, desto größer ist die spezifische Oberfläche und desto rascher findet die Reaktion mit Wasser statt. Dies führt zu einer höheren Frühfestigkeit sowie Normfestigkeit nach 28 Tagen (siehe Tab. 3), aber auch zu erhöhter Wärmeentwicklung durch die Hydratation.

In geringen Mengen kann auch Calciumsulfat (CaSO₄) zur Steuerung des Erstarrungsbeginns dem Zement beigemengt werden. Der Zusatz von Calciumsulfat bewirkt eine Verzögerung des Erstarrens des Zements.

Festigkeits-		Druckfe: MF	stigkeit Pa	Erstarrungs-	Raum- beständigkeit			
klasse	Anfangs	festigkeit	Normfe	stigkeit	beginn	maß)		
	2 Tage	7 Tage	28 1	age	min	Mm		
32,5 L ^a	-	≥ 12,0						
32,5 N	-	≥ 16,0	≥ 32,5	≤ 52,5	≥ 75			
32,5 R	≥ 10,0	-						
42,5 L ^a	-	≥ 16,0		≤ 62,5				
42,5 N	≥ 10,0	-	≥ 42,5		≥ 60	≤ 10		
42,5 R	≥ 20,0	-						
52,5 L ^a	≥ 10,0	-						
52,5 N	≥ 20,0	-	≥ 52,5	-	≥ 45			
52,5 R	≥ 30,0	-						
^a Die Festigke	eitsklasse gilt i	nur für CEM I	II-Zemente					

Tab. 3: Zement – Festigkeitsklassen nach [EN197-1]

Für die Auswahl des Zementes spielen folgende Kriterien eine wesentliche Rolle:

- o Ausschalfristen
 - kurze Ausschalfristen → Zement mit rascher Festigkeitsentwicklung

- o Nachbehandlungsbedingungen
 - kurze Nachbehandlung → Zement mit rascher Festigkeitsentwicklung
- Ausführungszeitpunkt (Sommer Winter)

Bei niedrigen Temperaturen verläuft die Hydratation langsam und kommt bei Temperaturen unter ± 0°C zum Stillstand. Deshalb sollte bei Betonierarbeiten unter + 5°C besondere Vorkehrungen getroffen werden.

- kühle Temperaturen → Zement mit hoher Wärmeentwicklung
- heiße Temperaturen → Zement mit geringerer Wärmeentwicklung
- o Bauteilabmessungen (Wärmeentwicklung)
 - dicke Bauteile → Zement mit geringer Wärmeentwicklung
- o Umgebungsbedingungen (Expositionsklassen)
 - Sulfatangriff \rightarrow C₃A freier Zement

Hydratation des Zementes

Bei der Reaktion von Zement und Wasser, der sogenannten Hydratation, entsteht der Zementstein. Dabei reagieren alle im Zementklinker enthaltenen Phasen mit Wasser (siehe oben Tab. 1: Klinkermineralien), Tricalciumsilikat (C_3S), Dicalciumsilikat (C_2S), Tricalciumaluminat (C_3A) und Calciumaluminatferrit (C_4AF). Die verschiedenen Klinkerphasen unterscheiden sich durch ihre Reaktionsgeschwindigkeit, sowie durch ihren Beitrag zur Festigkeitsentwicklung des Zementsteins (siehe Abb. 3). [ZEMTASCH]

Abb. 3: Druckfestigkeitsentwicklung der reinen Klinkerphasen [ZEMTASCH]

Für die Festigkeit des Zementsteins entscheidend sind vor allem die faser- und folienartigen Calciumsilikathydrate (CSH-Phasen), die bei der Hydratation von C₂S und C₃S entstehen. Für die Frühfestigkeit ist hauptsächlich das C₃S zuständig, wohingegen die Druckfestigkeit bedingt durch das C₂S im Laufe der Hydratation langsam ansteigt und seinen Beitrag zur hydraulischen Erhärtung bei der Nacherhärtung (nach 28 Tagen) erfüllt. Bei der Bildung von CSH-Phasen entsteht Calciumhydroxid (Ca(OH)₂), welches stark basisch ist und so das Porenwasser auf einen pH-Wert > 12,5 erhöht. Dadurch ist der Korrosionsschutz des Bewehrungsstahls im Beton sichergestellt. [WENDBAU]

Das C₃A hat von allen Klinkerphasen die höchste Reaktionsgeschwindigkeit (beim Anmachen von reinem C₃A, tritt die Erhärtung binnen Sekunden ein), es trägt jedoch wenig zur Festigkeit bei. Die Verarbeitbarkeit kann durch die Zugabe von Sulfaten bei der Zementherstellung verbessert werden, weil dadurch der Erstarrungsprozess von C₃A verlangsamt wird, durch die Bildung von Trisulfat (Ettringit, Monosulfat). Bei der Reaktion von C₃A mit Calciumsulfat kommt es zu einer Volumenvergrößerung, die im noch nicht erhärteten Beton keine Schäden verursacht. Im Falle von erhärtetem Beton ist diese Reaktion von entscheidender Rolle. Wenn Sulfate (z.B. gipshaltiges Wasser) von außen in den bereits erhärteten Beton eindringen kommt es zu einer Ettringitbildung mit schädlicher Volumenzunahme. Dadurch wird das Gefüge des Zementsteins im Beton zerstört. Einen hohen Sulfatwiderstand wird durch den Einsatz von C₃A-freiem Zement und der Verringerung des Porenraumes erreicht. [WENDBAU]

2.1.2 Gesteinskörnungen

Die europäische Normung hat zur Vereinheitlichung der Bezeichnung für körnige mineralische Materialien den Begriff "Gesteinskörnung" eingeführt. Früher wurden die Gesteinskörnungen welche zur Herstellung von Beton dienten als Zuschlag bezeichnet, der bis heute noch ein gebräuchlicher Begriff ist.

Im Beton bilden die Gesteinskörnungen das Korngerüst, die durch den Zementstein miteinander verbunden sind. Dabei nimmt der Zuschlag im Beton den größten Volumenanteil an (siehe Abb. 23 auf Seite 52) und hat deshalb eine bedeutende Rolle. Die Gesteinskörner bestehen vorwiegend aus natürlichen, künstlichen oder recycelten Körnungen. Natürliche Gesteinskörnungen kommen aus mineralischen Vorkommen, wie Flussablagerungen und Steinbrüchen. Diese werden ausschließlich mechanisch aufbereitet (Waschen, Sieben und Brechen). Zu den künstlich hergestellten Gesteinskörnungen zählen Hochofenstückschlacke, Kesselschlacke, Flugaschen, ungemahlener Schlackensand, Ziegelsand, Ziegelsplitt, Blähton, Blähschiefer, Hütten- und Sinterbims. Um die Rohstoffresourcen zu schonen, wird in zunehmenden Maße, Material welches bei Abbrucharbeiten anfällt, als recyclierte Gesteinskörnung wiederverwertet. [WENDBAU] Die Gesteinskörnungen können nach unterschiedlichen Kriterien eingeteilt werden. Grundsätzlich wird bei der Anwendung im Betonbau je nach Kornrohdichte zwischen leichten, normalen und schweren Gesteinskörnungen unterschieden (siehe Tab. 4).

Art der Gesteinskörnung	Kornrohdichte				
schwere Gesteinskörnung	> 3.000 kg/m³				
normale Gesteinskörnung	2.000 bis 3.000 kg				
leichte Gesteinskörnung	< 2.000 kg/m³				

Tab. 4: Unterteilung von Gesteinskörnungen nach der Kornrohdichte [WENDBAU]

Eine weitere Unterteilung erfolgt nach der Aufbereitungsart des Zuschlags, in gebrochene und ungebrochene Körnungen. Dabei werden ungebrochene Körnungen je nach Korngröße als Sand, Kies oder Grobkies bezeichnet und die gebrochenen Körnungen werden Brechsand, Splitt und Schotter genannt. Die Sande und Brechsande können weiter in Feinst-, Fein- und Grobsande gegliedert werden (siehe Tab. 5).

 Tab. 5: Bezeichnung von Gesteinskörnungen nach Korngröße und Aufbereitungsart

 [WENDBAU]

Korngrößo	Bezeichnung von							
Kongroße	ungebrochenen Körnungen	gebrochenen Körnungen						
< 0,25 mm	Feinstsand	Feinst-Brechsand						
< 1 mm	Feinsand	Fein-Brechsand						
1 - 4 mm	Grobsand	Grob-Brechsand						
4 - 32 mm	Kies	Splitt						
> 32 mm	Grobkies	Schotter						

Die Gesteinskörnungen müssen je nach Verwendungszweck bestimmte Anforderungen bezüglich Festigkeit, Frostbeständigkeit, Verschleißwiderstand, Kornform, Reinheit und Kornzusammensetzung erfüllen. Diese maßgeblichen Anforderungen an natürliche und industriell hergestellte Gesteinskörnungen für Beton sind in der ÖNORM B 3131³ festgelegt und gemeinsam mit der ÖNORM EN 12620⁴ anzuwenden.

Die Gesteinskörnungen müssen so fest sein, dass sie die Herstellung eines Betons der geforderten Festigkeit ermöglichen und dürfen dabei nicht unter Einwirkung von Wasser erweichen oder zersetzten. Außerdem dürfen keine Stoffe enthalten sein die sich zersetzen, mit den übrigen Bestandteilen des Betons störende Verbindungen eingehen, die Eigenschaften des Betons oder den Korrosionsschutz der Bewehrung im Beton beeinträchtigen. Diese Anforderungen werden im Allgemeinen durch natürlichen Sand und Kies oder die durch brechen gewonnenen Gesteinskörnungen erfüllt. Schädliche bzw. unverträgliche Bestandteile der Gesteinskörnung wären unter anderem abschlämmbare Stoffe, Glimmer,

³ ÖNORM B 3131 - Gesteinskörnungen für Beton - Regeln zur Umsetzung der ÖNORM EN 12620

⁴ ÖNORM EN 12620 - Gesteinskörnungen für Beton

Stoffe organischen Ursprungs, erhärtungsstörende Stoffe, Schwefelverbindungen, alkalilösliche Kieselsäure und stahlangreifende Stoffe sowie bei künstlicher Gesteinskörnung glasige und nicht raumbeständige Stücke. [BETON16]

2.1.3 Zugabewasser

Das Zugabewasser kann, je nach seiner Beschaffenheit, die Erstarrungszeit und die Festigkeitsentwicklung des Betons, sowie den Korrosionsschutz der Bewehrung beeinflussen. Deshalb sollte vor der Herstellung des Betons die Eignung und die Zusammensetzung des Zugabewassers geklärt werden. Der Verwendungszweck des Betons sollte mitberücksichtigt werden, da sich die Anforderungen an das Zugabewassers ändern können.

Im Allgemeinen wird das Zugabewassers in folgenden Arten unterschieden [EN1008]

o Trinkwasser

Dieses Wasser wird als geeignet für den Beton angesehen und muss nicht geprüft werden.

- Restwasser aus Wiederaufbereitungsanlagen der Betonherstellung Dieses Wasser beinhaltet
 - Wasser aus dem Restbeton,
 - Reinigungswasser vom Mischer und Betonpumpen,
 - Brauchwasser vom Sägen, Schleifen und Wasserstrahlen von Festbeton,
 - Wasser, das bei der Frischbetonherstellung anfällt

und ist üblicherweise für Beton geeignet. Das Restwasser sollte aus Anlagen entnommen werden, bei denen die Feststoffe homogen Verteilt oder mittels Absetzbecken von Feststoffanteilen getrennt werden. Der Feststoffgehalt ist mittels Dichtebestimmung zu bestimmen und bei der Betonzusammensetzung zu berücksichtigen (Anforderungen laut ÖNorm EN 1008:2002 – Anhang A).

o Grundwasser

Dieses Wasser kann für Beton geeignet sein, muss jedoch geprüft werden.

Natürliches Oberflächenwasser und industrielles Brauchwasser

Dieses Wasser kann für Beton geeignet sein, muss jedoch geprüft werden.

- Meerwasser oder Brackwasser (= Mischung von Süß- und Salzwasser)
 Dieses Wasser darf für unbewehrten Beton oder Beton mit eingebetteten Metallteilen verwendet werden, es ist im Allgemeinen jedoch nicht für die Herstellung von bewehrten oder vorgespannten Beton geeignet. Bei Beton mit Stahlbewehrung oder eingebetteten Metallteilen ist der zulässige Gesamtchloridgehalt im Beton einzuhalten.
- o Abwasser

Dieses Wasser ist nicht für den Beton geeignet.

2.1.4 Zusatzstoffe

Zumahlstoffe werden dem Zement im Zementwerk zur Steuerung seiner chemischen und physikalischen Eigenschaften beigegeben. Im Gegensatz dazu werden Zusatzstoffe bei der Frischbetonherstellung beigegeben um bestimmte Eigenschaften des Betons zu beeinflussen. Die Zugabemenge ist im Allgemeinen so groß, dass sie bei der Stoffraumberechnung mitberücksichtigt werden muss.

Die ÖNORM B 4710-1 unterteilt die Zusatzstoffe in zwei Gruppen

• Zusatzstoff Typ I (nahezu inaktive Zusatzstoffe)

Zusatzstoffe vom Typ I, reagieren nicht mit Zement und Wasser und haben somit keine Auswirkung auf die Hydratation.

• Gesteinsmehle

dienen zur Erhöhung des Mehlkornanteils (=Anteil <0,125mm) und somit zur Verbesserung der Verarbeitbarkeit und ein geschlosseneres Gefüge

- Pigmente werden zur Herstellung von eingefärbtem Beton verwendet
- Zusatzstoff Typ II (puzzolanische oder latent hydraulische Zusatzstoffe)
 Zusatzstoffe vom Typ II, sofern nachgewiesen, werden dem W/B-Wert⁵ angerechnet.
 - Flugasche
 - Silikastaub
 - Aufbereitete hydraulisch wirksame Zusatzstoffe
 - Hüttensandmehl

2.1.5 Zusatzmittel

Betonzusatzmittel sind Stoffe die in geringen Mengen zugegeben werden um die chemischen oder physikalischen Eigenschaften vom Beton zu beeinflussen.

- BV Betonverlüssiger Verminderung des Wasseranspruchs und/oder Verbesserung der Verarbeitbarkeit
- FM Fließmittel stärkere Wirkung als BV, zur Herstellung von Fließbeton, Selbstverdichtender Beton und hochfestem Beton
- LP Luftporenbildner Einführung gleichmäßig verteilter, kleiner Luftporen zur Erhöhung des Frost- und Taumittelwiderstandes
- o DM Dichtungsmittel Verminderung der kapillaren Wasseraufnahme
- VZ Verzögerer Verzögerung des Erstarrens
- BE Beschleuniger Beschleunigung des Erstarrens und/oder des Erhärtens

⁵ W/B: Der Wert beschreibt das Verhältnis zwischen der Masse des Anmachwassers und der Masse des Bindemittels

- o ST Stabilisierer Verminderung des Absonderns von Anmachwasser (Bluten)
- CR Chromatreduzierer Reduktion von Chrom (VI) zu Chrom (III)
- RH Recyclinghilfen f
 ür Waschwasser Wiederverwendung von Waschwasser, das beim Reinigen von Mischfahrzeugen und Mischern anfällt
- SR Sedimentationsreduzierer Verringerung der Sedimentationsneigung von Frischbeton

[BETONZUS]

2.2 Expositionsklassen

Zur Gewährleistung der Dauerhaftigkeit muss neben der fachgerechten Planung und Ausführung, auf die Wahl geeigneter Ausgangsstoffe und das Einhalten bestimmter Grenzwerte (max. W/B-Wert, mind. anrechenbarer Bindemittelgehalt, etc.) geachtet werden. [DAUER13]

Diese Grenzwerte sind nach ÖNORM B 4710-1:2018 abhängig von den vorherrschenden Expositionsklassen. Diese Klassen beziehen sich auf die Umgebungsbedingungen und werden auch als Umweltklassen bezeichnet. Nachfolgend sind alle Expositionsklassen aufgelistet und bei nicht aufgeführten Fällen sind diese sinngemäß zuzuordnen. Außerdem können auch mehrere Einwirkungen zugleich durch die Umgebung auf den Beton einwirken. Für solche Fälle muss die Kombination mehreren Umweltklassen vorgenommen werden. [B4710-1]

- X0 Zero Risk kein Korrosions- oder Angriffsrisiko
- o XC Carbonation Bewehrungskorrosion, ausgelöst durch Karbonatisierung
- o XW Wasserundurchlässigkeit (drückendes Wasser)
- XD Deicing Salt Bewehrungskorrosion, ausgelöst durch Chloride, ausgenommen Meerwasser
- o XF Frost Frostangriff mit oder ohne Taumittel
- o XA Chemical Attack Chemischer Angriff
- o XM Mechanical Abrasion Verschleißbeanspruchung

2.3 Frischbeton

Die wichtigsten Eigenschaften des Frischbetons sind die Verarbeitbarkeit. Bei der Verarbeitbarkeit unterscheidet man Konsistenz, Zusammenhaltungsvermögen und Verdichtungswilligkeit. Die Verarbeitbarkeit wird durch die Konsistenzklassen (siehe Tab. 6 und Tab. 7) beschrieben. Beeinflusst wird die Frischbetonkonsistenz durch

- Wassergehalt,
- o Korngrößenverteilung,
- o Kornform,
- Größtkorn des Zuschlags,
- Mehlkorngehalt und
- o dem Gehalt von Zusatzmittel.

Tab. 6: Verdichtungsmaßklassen nach [B4710-1]

Klasse	Verdichtungsmaß	Beschreibung					
CO	≥ 1,46	erdfeucht					
C1	1,45 bis 1,26	sehr steif					
C2	1,25 bis 1,11	steif					
C3 ^a	1,10 bis 1,04	-					
^a Für besondere Anwendungen im Fertigteilbau (z.B. Tübbinge)							

Klassenbezeichnung in Österreich	Ausbreitmaß (Durchmesser)	Beschreibung			
	mm				
F38	350 bis 410	steif plastisch			
F45	420 bis 480	plastisch			
F52	490 bis 550	weich			
F59	560 bis 620	sehr weich			
F66	630 bis 690	fließfähig			
F73	700 bis 760	sehr fließfähig			

Tab. 7: Ausbreitmaßklassen nach [B4710-1]

Der Wassergehalt des Betons beeinflusst die Konsistenz des Frischbetons und die erforderliche Wassermenge der Betonmischung hängt wiederum von der Korngrößenverteilung der Gesteinskörnung ab. Ein feinkörnigeres Gemisch erfordert eine höhere Zementleimmenge, somit auch Wassermenge, die zur Umhüllung der Gesteinskörnung und der Erzielung eines geschlossenen Betongefüges erforderlich ist. Ebenso ist bei gebrochener Gesteinskörnung der Wasseranspruch bei gleicher Verarbeitbarkeit des Betons größer, als bei ungebrochenen Gesteinskörnern (Rundkorn).

Die Gründe für den höheren Wasseranspruch von gebrochenen Gesteinskörnungen können auf mehrere Faktoren zurückgeführt werden. Gebrochene Gesteinskörnungen haben bereits durch Ihre Form eine größere Oberfläche als abgerundete Gesteinskörner. Außerdem bekommen sie bedingt durch das Brechen beim Herstellungsprozess eine raue Oberfläche. Auf Mikroebene betrachtet haben sie dadurch eine größere Oberfläche als runde, wesentlich glattere Gesteinskörner. In der Annahme identischer mineralogischen Eigenschaften des Zuschlags, hat das Kantkorn im Vergleich zum Rundkorn, aufgrund der oben angeführten Faktoren, einen geringfügig höheren Wasserabsorptionsgrad. Mit steigendem Wassergehalt wird der Beton in seiner Konsistenz weicher, jedoch ist die weichere Konsistenz, die durch die Erhöhung des W/B-Wert erreicht wurde nicht gleichbedeutend mit einer Verbesserung der Verarbeitbarkeit. Durch den höheren Wassergehalt wird der Zusammenhalt des Frischbetons verschlechtert und die Gefahr von Entmischung (Trennung von grober Gesteinskörnung und Feinmörtel) und Bluten (Absondern von Wasser an der Betonoberfläche) wird vergrößert. [BETON16]

Das für die Konsistenz F45 genannte Ausbreitmaß von 420 bis 480 mm (siehe Tab. 7) gilt erfahrungsgemäß nur für Beton mit Rundkorn; für Beton mit Kantkorn liegt im Falle von Konsistenz F45 das entsprechende Ausbreitmaß eher am unteren Klassenrand. [BETON16]

Die Kornzusammensetzung einer Gesteinskörnung wird durch Sieblinien dargestellt (siehe Abb. 4), indem auf der Ordinatenachse der Siebdurchgang in % der Masse und auf der Abszissenachse die jeweilige Korngröße aufgetragen wird. Die Sieblinienbereiche sind gekennzeichnet von 1...grobkörnig bis 5...feinkörnig (siehe Eintragungen in Abb. 4).

Abb. 4: Grenzsieblinien Größtkorn 16 mm nach [B4710-1]

Die Oberflächenfeuchtigkeit der Gesteinskörnung ergibt sich aus der Gesamtfeuchte abzüglich der Kernfeuchte im Innern der Gesteinskörner. Die Kernfeuchte wirkt sich nicht auf die Konsistenz und den W/B-Wert des Betons aus. Die Oberflächenfeuchte der Gesteinskörnung hängt von der jeweiligen Lagerung ab. Bei nassen Gesteinskörnungen nach starken oder langen Regenfällen und unmittelbar nach Gewinnung aus einem Fluss oder See muss der Anteil der Oberflächenfeuchte jeweils von dem Wassergehalt des Zugabewassers abgezogen werden. Der Beton benötigt für ein gutes Zusammenhaltungsvermögen und zur Vermeidung von Entmischung und Bluten, neben der geeigneten Korngrößenverteilung auch eine bestimmte Menge an Mehlkorn. Unter Mehlkorn versteht man den Kornanteil mit einer Korngröße <0,125 mm im Beton, der aus Zement, Zusatzstoffen und dem in der Gesteinskörnung enthaltenen Kornanteil 0/0,125 mm zusammensetzt. Ein überhöhtes Maß an Mehlkorn vergrößert den Wassergehalt unnötig und vergrößert das Schwinden und die Rissgefahr. Dadurch werden bestimmte Festbetoneigenschaften beeinträchtigt, wie den Frost-Tausalzwiderstand, Verschleißwiderstand und den Widerstand gegen chemischen Angriff. Deshalb wird in der ÖNORM B 4710-1 ein empfohlener Mehlkorngehalt (siehe Tab. 18 auf Seite 52) angegeben. Für Selbstverdichtende Betone (SCC-Self Compacting Concrete) gelten besondere Bestimmungen.

Die Anforderungen an die Festigkeit werden durch die Druckfestigkeitsklassen (siehe Tab. 8) und die Anforderungen an die Dauerhaftigkeit durch die Expositionsklassen (Kapitel 2.2 Expositionsklassen) beschrieben.

Druckfestigkeitsklasse	Charakt. Mindestfestigkeit von Zylindern f _{ck,cyl}	Charakt. Mindestfestigkeit von Würfeln f _{ck,cube}
	N/mm²	N/mm²
C8/10	8	10
C12/15	12	15
C16/20	16	20
C20/25	20	25
C25/30	25	30
C30/37	30	37
C35/45	35	45
C40/50	40	50
C45/55	45	55
C50/60	50	60
C55/67	55	67
C60/75	60	75
C70/85	70	85
C80/95	80	95
C90/105	90	105
C100/115	100	115

Tab. 8: Druckfestigkeitsklassen für Normal- und Schwerbeton [B4710-1]

Einer der wichtigsten Größen für die Eigenschaften des Betons ist der Wasser/Bindemittel-Wert (W/B-Wert). Er gibt das Verhältnis zwischen Wassergehalt W zum Bindemittelgehalt B im Beton an und je geringer der W/B-Wert im Frischbeton ist desto höher ist die Festigkeit, sowie die Dichtheit im erhärtetem Zustand.

3 Herstellung der Proben

3.1 Materialbeschaffung

3.1.1 Allgemeines

Aufgrund der Tatsache, dass ich sehr oft nach Kroatien fahre, bot sich die Möglichkeit an den Zuschlag aus Kroatien für meine Versuche zu verwenden. Dadurch können in weiterer Folge anknüpfende Untersuchungen mit Bruchsteinzuschlägen aus Österreich durchgeführt werden, um noch zusätzliche Vergleiche zu erhalten.

Am Anfang dieser Diplomarbeit standen zwei Möglichkeiten des Versuchsaufbaus zur Auswahl. Die erste Möglichkeit war es eine größere Anzahl von Zuschlagsarten zu verwenden, mit weniger Prüfverfahren. Die Alternative dazu war, weniger unterschiedliche Zuschlagsarten genauer zu vergleichen indem mehrere unterschiedliche Prüfverfahren durchgeführt werden. Die Entscheidung fiel auf Letzteres, wobei vor allem das Sammeln verschiedenartiger Versuchsdaten für eine bessere Aussage über das Bruchverhalten ausschlaggebend war. Nachfolgend soll Tab. 9 einen kurzen Überblick über die durchgeführten Versuche geben.

Gesteinsart	Versuch		Betonalter	ſ		Anmerkung
		2 Tage 7 Tage 28 T		28 Tage	Summe	
	Druck	6	6	4	16	
Quarzkies	Spaltzug	5	5	5	15	Bundkorn
QualZhies	E-Modul	3	3	3	9	KUHUKUHI
	Keilspalt	5	5	5	15	
		55				
	Druck	6	6	4	16	
Kalkatain	Spaltzug	5	5	5	15	Kontkorn
Naikstein	E-Modul	3	3	3	9	Nanikom
	Keilspalt	5	5	5	15	
					55	
	Druck	6	6	4	16	
Dolomit	Spaltzug	5	5	5	15	Kontkorn
Dolonin	E-Modul	3	3	3	9	Nanikom
	Keilspalt	5	5	5	15	
		55				
		165				

Tab. 9: Überblick über das Versuchsprogramm [Autor]

3.1.2 Geologische Situation in Kroatien

Bereits der erste Blick auf die geologische Karte (siehe Abb. 5) zeigt deutlich, dass Kroatien in zwei verschiedene Regionen eingeteilt werden kann. Im Nord-Osten Kroatiens sind die Schattierungen von Gelb (eruptives, metamorphes und klastisch sedimentäres Gestein) dominant, während im Süd-Westen die Farben Blau und Grün (Karbonat-Sediment Gestein) dominieren. Eine solche scharfe Teilung der Regionen ist das Ergebnis des geologischen Aufbaus der unterschiedlichen geotektonischen Einheiten, der Pannonischen Tiefebene im Norden und dem Dinarischen Gebirge im Süden. Im Allgemeinen ist das Pannonische Becken aus eruptivem, metamorphem und klastischem sedimentärem Gestein aus dem Präkambrium bis Quartär⁶, während im Dinarischen Gebirge, d.h. der Bereich von Istrien bis Konavle, hauptsächlich Karbonat-Sedimente Gesteine aus dem Mesozoikums⁷ vorherrschen. [PHECIM]

Gesamt - Gesteinsanteile in Kroatien [@HGI]

- > 50% Carbonate (Kalkstein und Dolomit)
- o 40% dicke nicht konsolidierte quartäre Sedimentablagerungen
- o < 5% eruptive und metamorphe Gesteine</p>

Im Norden und Nordosten von Kroatien

- o 90% dicke nicht konsolidierte quartäre Sedimentablagerungen
- o 10% eruptiv und metamorphe Gesteine

Im Süden Kroatiens

o Carbonate (Kalkstein und Dolomit)

Abb. 5: Geologische Karte von der Republik Kroatien (mit Eintragungen) [1]

⁶ Das Quartär ist der jüngste Zeitabschnitt der Erdgeschichte

⁷ Das Mesozoikum ist innerhalb der Erdgeschichte der mittlere Zeitabschnitt des Phanerozoikums.

3.2 Zuschlagsarten

3.2.1 Allgemeines

Nach gründlicher Recherche über die Steinbrüche in Kroatien und deren Abbauprodukte kamen mehrere in die engere Wahl. Dabei spielten vor allem die Erreichbarkeit, die Kosten für die Beschaffung und der Wille des jeweiligen Unternehmens den erhöhten Aufwand für so geringen Abnahmemenge in Kauf zu nehmen, eine Rolle.

Abb. 6: Reliefkarte mit den Herkunftsorten der Zuschläge (mit Eintragungen) [2]

3.2.2 Dolomit

Die erste Wahl fiel auf das Unternehmen Samoborka, aufgrund der guten Erreichbarkeit. Samoborka ist ein großer Baustoffhersteller und betreibt mehrere Steinbrüche in Kroatien. Eines davon befindet sich in der Nähe der Stadt Samobor, kurz vor der slowenischen Grenze. In dem Steinbruch wird das Gestein Dolomit im Tagebau abgebaut.

Der Dolomit CaMg(CO₃)₂ ist ein Magnesiumkarbonatgestein und ist im Vergleich zum chemisch verwandten Kalkstein etwas härter, schwerer und nicht so farbenreich. Die Farbgebung des Dolomits reicht von graugelb bis grau und die Struktur ist allgemein mikrokristallin, zuckerkörnig oder sandsteinähnlich rau. Außerdem ist er nicht so wetterbeständig wie Kalkstein. [WENDBAU]

Dolomit CaMg(CO₃)₂

0	Reindichte:	2,7 - 2,9 g/cm³
0	Härte nach Mohs8:	Härte 3,5 bis 4
0	Porosität:	0,5 - 2,0 Vol%
0	Wasseraufnahme:	0,2 - 0,6 M%
0	E-Modul:	20.000 - 80.000 N/mm²
0	Poissonzahl v:	0,08 - 0,20
0	einachsige Druckfestigkeit:	80 - 200 N/mm²
0	Zugfestigkeit:	2,5 - 25 N/mm²
0	Biegezugfestigkeit:	3 - 19 N/mm²
0	Abriebfestigkeit:	15 - 40 cm³/50 cm²
0	Spaltbarkeit ⁹ :	vollkommen
0	Bruch:	muschlig, spröde
0	Farbe:	elfenbein, hellgrau, graugelb, grüngrau

Die unterschiedlichen Angaben in der Literatur wurde hier zu einer Bandbreite zusammengefasst. [GEO2015], [WENDBAU], [FELS2017]

Häufig kommt Dolomit vermischt mit Kalkspat (Calcit) CaCO₃ vor und wird dann nach dem Dolomitisierungsgrad unterteilt in:

- < 10% Dolomit: Kalkstein
- o 10 50% Dolomit: dolomitischer Kalkstein
- o 50 90% Dolomit: kalkiger Dolomit
- > 90% Dolomit: Dolomit

⁸ Die Härte eines Minerals ist der Widerstand, dem es gegenüber Ritzen oder Schleifen zeigt. Die Härte wird mit der Mohs-Skala gemessen.

⁹ Spaltbarkeit ist eine Tendenz, an bestimmten parallelen Ebenen im Kristallgitter eines Minerals zu brechen aufgrund der Kraft der Bindungen zwischen den verschiedenen Atomen.

Nach einigen Vorbereitungen wurde Mitte November der Weg von Wien nach Zagreb mit einem Auto und einem Einachsanhänger zurückgelegt um anschließend von Zagreb zur 30 km entfernte Zentrale des Unternehmens Samoborka zu fahren. Dort angekommen hat man den 500 kg Dolomit 0/16 mm bestellt und bezahlt. Anschließend musste direkt zum, eine gute halbe Stunde Fahrt entfernten, Steinbruch gefahren werden um die Gesteinskörner aufzuladen. Dort wurde das Auto mit samt dem Anhänger gewogen. Anschließend wurde man von einem Mitarbeiter zum Hügel mit dem Dolomit 0/16 mm gelotst.

Abb. 7: Steinbruch der Firma Samoborka [Autor]

Nach dem Aufladen der Gesteinskörner in den Anhänger musste man beim Verlassen des Geländes wieder auf die Waage, die eine Zuladung von 512 kg zeigte. Anschließend fuhr man vollbeladen wieder zurück nach Zagreb. Nach einem mehrtägigen Aufenthalt in Zagreb wurde der Zuschlag nach Wien gebracht. In der darauffolgenden Woche wurde der Dolomit Zuschlag ins Labor der TU Wien transportiert.

3.2.3 Kalkstein

Im nordwestlichen Teil der Halbinsel Istrien, nahe der Stadt Plovanija, befindet sich der Steinbruch des Unternehmens Holcim Hrvatska d.o.o.. Im Steinbruch von Plovanija wird Kalkstein abgebaut, der für eine breite Palette von Produkten verwendet wird. Der aus der oberen Kreidezeit stammende helle, annähernd weiße Kalkstein, verfügt über eine dichte, feinkörnige Struktur und lagert in Schichtendicken von 0,1 bis 1 Meter.

Die im Meer sedimentierten Kalksteine sind meist dicht bis feinkörnig und von weißer bis hellgrauer Farbe. Eisenoxide färben den Kalkstein rot, organische Bestandteile hingegen schwarz. Kalkstein besteht chemisch aus Calcit (CaCO₃) und ist daher in dem mitteleuropäischen Klima meist nicht wetterbeständig aber in der Regel frostbeständig. Außerdem kann Politur und Farbe unter dem Einfluss von sauren Regen verschwinden. Da Kalkstein CO₂ austreibt, zählt er nicht zu den hitzebeständigen Gesteinen. [WENDBAU]

Kalkstein CaCO₃ [GEO2015]

0	Reindichte:	2,7 - 2,9 g/cm³
0	Härte nach Mohs:	Härte 3
0	Porosität:	0,5 - 2,0 Vol%
0	Wasseraufnahme:	0,2 - 0,6 M%
0	E-Modul:	50.000 - 80.000 N/mm²
0	Poissonzahl ¹⁰ v:	0,10 - 0,20
0	einachsige Druckfestigkeit:	80 - 200 N/mm²
0	Zugfestigkeit:	4 - 25 N/mm²
0	Biegezugfestigkeit:	3 - 19 N/mm²
0	Abriebfestigkeit:	15 - 40 cm³/50 cm²
0	Spaltbarkeit:	vollkommen, Doppelbrechung
0	Bruch:	muschelig, spröde
0	Farbe:	milchig-weiß, grau, gelb, rot, braun und schwarz

Die unterschiedlichen Angaben in der Literatur wurde hier zu einer Bandbreite zusammengefasst. [GEO2015], [WENDBAU], [FELS2017]

Abb. 8: Steinbruch Plovanija der Firma Holcim Hrvatska d.o.o. [3]

Der erste Kontakt mit "Holcim Hrvatska d.o.o." erfolgte Ende November, dabei wurden verschiedenste Punkte im Hinblick auf den Zuschlag und den Transport besprochen. Das Unternehmen erklärte sich bereit zu helfen und so konnte anschließend mit dem Speditionsunternehmen "Gebrüder Weiss G.m.b.H" der Transport an die TU Wien abgeklärt werden.

Von "Holcim Hrvatska d.o.o." erhielt man die drei Korngrößenverteilungen für die Korngruppen 0/4, 4/8 und 8/16 mm. Damit konnte der Massenanteil der einzelnen Korngruppen berechnet und an die Sollsieblinie angepasst werden (siehe Tab. 10 und Abb. 9). Der Grund

¹⁰ Poissonzahl v, auch Querdehnungszahl genannt, ist ein elastischer Materialkennwert der zur Berechnung der Querkontraktion verwendet wird.

für die Sieblinienoptimierung war der, dass nicht benötigte Gesteinskörnungen nicht unnötig transportiert und so die Transportkosten möglichst geringgehalten werden sollen.

Körnung Faktor Siebdurchgang [M%] bei Siebnennweite [m							ite [mr	n]				
Konnung	1.Ansatz	2.Ansatz	0,063	0,125	0,25	0,5	1	2	4	8	16	22
А			0	0	3	6	13	23	37	61	90	100
В					10	20	30	44	59	78		
С			3	7	18	31	44	58	71	86	100	100
Sollsieblinie			2,3	5,3	8,3	16,5	25,8	38,8	53,5	73,8	100	100
0/4	53,5%	49,0%	11	13	21	34	52	78	98	100	100	100
	0/4 x l	Faktor	5,4	6,4	10,3	16,7	25,5	38,2	48,0	49,0	49,0	49,0
4/8	20,3%	23,5%	0	0	0	0	0	3	19	95	100	100
	4/8 x I	Faktor	0	0	0	0	0	0,7	4,5	22,3	23,5	23,5
8/16	26,3%	27,5%	0	0	0	0	0	0	1	8	93	100
	8/16 x	Faktor	0	0	0	0	0	0	0,3	2,2	25,6	27,5
Istsieblinie		5,4	6,4	10,3	16,7	25,5	38,9	52,8	73,5	98,1	100	
Sollsieblinie			2,3	5,3	8,3	16,5	25,8	38,8	53,5	73,8	100	100
Abweichung			3,1	1,1	2,0	0,2	-0,3	0,2	-0,7	-0,2	-1,9	0

Tab. 10: Optimierung der Istsieblinie an die Sollsieblinie [Autor]

Abb. 9: Sieblinienoptimierung - Kalkstein [Autor]

Anschließend wurde überschlagsmäßig der Materialbedarf für die Versuche ermittelt. Für drei Versuchsreihen (2d, 7d und 28d) ergab sich ein Gesamt Probenvolumen von $V_{Gesamt} = 0,106 \text{ m}^3$. Wenn man von einem Zuschlagsanteil von ungefähr 1800 kg/m³-Frischbeton ausgeht, ist mindestens eine Menge von 190,8 kg erforderlich. Um mögliche Verluste und Toleranzen mit einzurechnen, wurde 350 kg Kalkstein geordert.
Gebrochener K	alkstein			1 € ~ 7,51					
Körnung	Anteil	Gewicht (gerundet)	Preis [kn/to]	Gesamt [kn]	Preis [€/to]	Gesamt [€]			
0/4mm	49,0%	170 kg	70,71	6,01 kn	9,42	0,80€			
4/8mm	23,5%	85 kg	70,74	6,72 kn	9,43	0,90€			
8/16mm	27,5%	95 kg	78,00	13,26 kn	10,39	1,77€			
	100,0%	350 kg		25,99 kn		3,46€			
			+USt 25%	6,50 kn		0,87€			
			Summe	32,49 kn		4,33€			
Lieferkosten		350 kg			+	165,60€			
					Σ	169,93 €			

ab. 11: Kostenzusammenstellung – Kalkstein [Autor]
--

Nachdem "Holcim Hrvatska d.o.o" den Auftrag erhielt und bezahlt wurde, konnten die Gesteinskörnungen in Säcke verpackt und auf eine Palette geschlichtet werden. Nach der Bestätigung aus dem Steinbruch, dass die Ware abholbereit ist, konnte dem Spediteur der Auftrag erteilt werden. Nach ein paar Tagen wurde die Ware entgegengenommen und in das Labor gebracht, wo es für die weitere Bearbeitung bereitstand.

Abb. 10: Lieferung des gebrochenen Kalkstein [Autor]

3.2.4 Quarzkies

Beim Rundkorn fiel die Entscheidung auf Quarzkies aus dem Marchfeld, welches vom Unternehmen "Herzer Sand- und Kieswerk" vertrieben wird. Es wurde eine Menge von 400 kg gekauft und mit dem Anhänger in das Labor, wo es auf seine weitere Verarbeitung wartet, gebracht.

Abb. 11: Quarzkies [Autor]

Quarz besteht chemisch aus Siliziumdioxid (SiO₂) und ist der Hauptbestandteil der meisten Sande und Kiese. Quarz ist ein Mineral, welche häufig in vielen magmatischen und metamorphen Gesteinen, besonders Granit und Gneis, aber auch in klastischen Sedimenten vorzufinden ist. Reiner Quarz ist farblos und er verfärbt sich durch verschiedenste Einschlüsse - hellgrau, grünlich, braunrötlich, bläulich, rauchbraun, zitronengelb, violett, rosarot. Quarzsande und Quarzkiese sind feuerbeständig und ein unlösliches Material. Quarz gehört mit einer Mohs'schen Härte von 7 zu den härtesten Naturmaterialien.

Quarz SiO₂ [GEO2015]

0	Dichte:	2,64 - 2,68 g/cm ³
0	Härte nach Mohs:	Härte 7
0	Porosität:	0,4 - 2,0 Vol%
0	Wasseraufnahme:	0,2 - 0,5 M%
0	E-Modul:	60.000 - 105.000 N/mm²
0	Poissonzahl v:	0,11 - 0,25
0	einachsige Druckfestigkeit:	150 - 300 N/mm²
0	Zugfestigkeit:	17 - 28 N/mm²
0	Biegezugfestigkeit:	13 - 25 N/mm²
0	Abriebfestigkeit:	7 - 8 cm ³ /50 cm ²
0	Spaltbarkeit:	fehlt
0	Bruch:	muschelig
0	Farbe:	hellgrau, grünlich, braunrötlich, bläulich, rauch
		braun, zitronengelb, violett, rosarot

Die unterschiedlichen Angaben in der Literatur wurde hier zu einer Bandbreite zusammengefasst. [GEO2015], [WENDBAU], [@FELS2012]

3.3 Aufbereitung des Zuschlags

Für die Versuche kommen drei Zuschlagsarten – Dolomit, Kalkstein und Quarzkies – zur Anwendung. Um den Einfluss der Kornform und der Gesteinsart auf die Festigkeitsentwicklung untersuchen zu können, sollte für die unterschiedlichen Zuschlagsarten eine idente Sieblinie gewählt werden. Deshalb mussten die Gesteinskörnungen gesiebt und in einzelne Kornfraktionen unterteilt werden (siehe Abb. 12 und Tab. 12) um sie dann später wieder nach der festgelegten Sieblinie zu mischen.

								-			-	-	-		
Vom Steinbruch		Siebdurchgang [M%] bei Siebnennweite [mm]													
erhaltene Korngrößenverteilung			Σ	Sieb- bod.	0,063	0,125	0,25	0,5	1	2	4	8	11,2	16	22
mit	Summe Siebdurchgang	[%]		0,00	0,03	0,47	3	7	14	23	38	76	87	99	100
0 P O	Sighrückstand	[%]		0,03	0,44	2,12	4,8	7	9	15	39	11	12	1	0
	Siedruckstand	[kg]	320,8	0,10	1,40	6,80	15,4	21,6	28,5	46,6	123,8	35,6	39,0	2,1	0
stein	Summe Siebdurchgang	[%]		0,00	0,03	0,20	2	9	20	34	52	76	86	98	100
alks	Sichrückstand	[%]		0,03	0,17	1,69	7	11	14	18	24	11	11	2	0
×	Slebruckstand	[kg]	343,3	0,10	0,60	5,80	24,2	37,5	47,6	61,4	82,5	36,9	39,1	7,6	0
zkies	Summe Siebdurchgang	[%]		0,00	0,04	1,13	4	14	26	32	43	68	81	97	100
uarz	Sighrückstand	[%]		0,04	1,08	2,89	10	11	6	11	25	14	16	3	0
ō Siebrückstand	[kg]	276,6	0,12	3,00	8,00	28,6	31,5	17,0	31,5	67,8	37,4	44,5	7,2	0	

Tab. 12: Vom Steinbruch erhaltene Korngrößenverteilung [Autor]

Abb. 12: Vom Steinbruch erhaltene Korngrößenverteilung [Autor]

Ursprünglich wurde eine Sieblinie gewählt, die in der oberen Hälfte des günstigen Bereichs liegt, das heißt zwischen den Sieblinienbereichen A und B. Jedoch ergab sich nach Sieben aller Zuschläge, dass einzelne Kornfraktionen nicht in ausreichender Menge vorhanden waren. Somit musste die ursprüngliche Sollsieblinie angepasst werden (siehe Tab. 13).

Sollsieblinie		Siebdurchgang [M%] bei Siebnennweite [mm]													
	Probekörper		Σ	Sieb- bod.	0,063	0,125	0,25	0,5	1	2	4	8	11,2	16	22
en-	А				0	0	3	6	13	23	37	61	76	90	100
blinid ereich	В						10	20	30	44	59	78			
Sie be	С				3	7	18	31	44	58	71	86	93	100	100
eblinie körper	Summe Sieb- durchgang	[%]		0	0,03	0,30	3,0	12,0	23,5	32,0	48,0	75,0	86,0	99,0	100
Sollsie Probel	Siebrück- stand	[%]	100	0,03	0,27	2,70	9,0	11,5	8,5	16,0	27,0	11,0	13,0	1,0	0
ngliche sblinie	Summe Sieb- durchgang	[%]		0	2,25	5,25	8,3	16,5	25,8	38,8	53,5	73,8	86,0	100	100
ursprü Sollsie	Siebrück- stand	[%]	100	2,25	3,00	3,00	8,3	9,3	13,0	14,8	20,3	12,3	14,0	0	0

Tab. 13: Sollsieblinie Probekörper [Autor]

Abb. 13: Sollsieblinie Probekörper [Autor]

Abb. 15: Korngrößen Kalkstein [Autor]

Abb. 16: Korngrößen Dolomit [Autor]

3.4 Kornrohdichte und die Wasseraufnahme der Gesteinskörnungen

Die Kornrohdichte ist die Dichte des Kornes einschließlich seiner Gesteinshohlräume und spielt bei der Betonberechnung eine entscheidende Rolle. Mit der Kornrohdichte kann das Volumen, das die Gesteinskörnung im Beton einnimmt, berechnet werden. Sie wird anschließend für die Stoffraumrechnung (siehe Kapitel 3.5 Mischungsberechnung) verwendet.

Die Versuche wurden im Labor des Institutes für Hochbau und Technologie im Forschungsbereich für Baustofflehre, Werkstofftechnologie und Brandsicherheit der TU Wien durchgeführt.

Die Bestimmung der Kornrohdichte kann mittels Pyknometer- oder Wasserverdrängungsverfahren erfolgen. Das Wasserverdrängungsverfahren ist im Vergleich zum Pyknometer Verfahren nicht so aufwändig und wurde deshalb für die Ermittlung der Kornrohdichte des Zuschlags verwendet. Die nachfolgende Ausführung und die Berechnungen wurden auf Basis der ÖNORM EN 1097-6:2013 durchgeführt.

Verwendete Geräte und Werkzeuge:

- Luftporentopf (8 Liter)
- Waage Kern DE 35K5DL (Max. 15/35 kg d = 5/10 g)
- Waage Sartorius QS-16000B (Max. 16 kg d = 1 g)
- Thermometer (Genauigkeit 1/10°C)
- o Trockenschrank Memmert UF260Plus

Für die Bestimmung der Kornrohdichte wurde mind. 5 kg Gesteinskörnung mit einer Korngröße von 2/16 mm verwendet.

Abb. 17: Messproben (Kies, Dolomit, Kalkstein) [Autor]

Die Gesteinskörnungen (GeK) wurden 24 Stunden unter Wasser gelagert. Die wassergesättigten Proben wurden dann in den Luftporentopf (LP-Topf) gefüllt und vollständig mit Wasser bedeckt. Danach wurde der LP-Topf zum Überlaufen gebracht, abgetrocknet und gewogen. Zuletzt wurde die Temperatur des Wassers im Behälter gemessen.

$M_2 = Luftporentopf + GeK_{wasserges "attigt} + Auff" "ullwasser"$

Masse M₂ (3.1)

Abb. 18: Luftporentopf + GeK_{wassergesättigt} + Auffüllwasser [Autor]

Die Messproben wurden dann aus dem Wasser entnommen und auf einem Tuch abgetrocknet, bis die Oberfläche matt und keinen sichtbaren Wasserfilm mehr aufwiesen, aber noch feucht aussahen. Anschließend wurden die Proben erneut gewogen.

$M_1 = GeK_{wasserges \"attigt}$

Masse M₁ (3.2)

Abb. 19: Abtrocknung der Gesteinskörnung mittels Tuch [Autor]

Danach wurde der Luftporentopf mit Wasser befüllt und gewogen.

$$M_3 = Luftporentopf + Wasser$$
 Masse M₃ (3.3)

Die wassergesättigte Gesteinskörnung wurde bis zum Erreichen der Massenkonstanz in der Wärmekammer bei einer Temperatur von 105°C getrocknet. Durch mehrmaliges wiegen wurde nach 20, 25 und 48 Stunden, bei dem keine Änderung der Masse feststellbar war, sichergestellt, dass die Probe trocken ist.

$$M_4 = GeK_{trocken}$$
 Masse M₄ (3.4)

Abb. 20: Messproben im Trockenschrank bei 105°C [Autor]

Zur Berechnung der Kornrohdichte wurde die Masse der getrockneten Gesteinskörnung M₄ durch das Volumen der Gesteinskörnung dividiert.

$$\rho_{rd} = \frac{M_4 \times \rho_W}{M_3 - (M_2 - M_1)} [g/cm^3]$$
 Kornrohdichte ρ_{rd} (3.5)

Die Berechnungen sind zusammenfassend für alle drei Gesteinsarten in der Tab. 14 dargestellt. Die dadurch ermittelten Kornrohdichten kommen anschließend für die Stoffraumrechnung (3.16) zur Anwendung.

		Gesteinskörnung					
			Kies	Dolomit	Kalkstein		
GK (wassergesättigt) + Topf			6730,0 g	6635,0 g	6775,0 g		
GK-Topf			1050,0 g	1042,5 g	892,5 g		
GK (wassergesättigt)		M1	5584,0 g	5436,5 g	5735,5 g		
LP-Topf			4635,0 g	4635,0 g	4635,0 g		
LP-Topf + GK + Auffüllwasser		M2	16130,0 g	16120,0 g	16250,0 g		
LP-Topf + Wasser (8 Liter)		М3	12626,2 g	12625,4 g	12623,8 g		
Wassertemperatur	bei M2		16,3°C	17,1°C	17,4°C		
Wasserdichte (Temperatur)			0,9989 g/cm ³	0,9988 g/cm ³	0,9988 g/cm ³		
GK (trocken) + Topf	nach 20h		6577,0 g	6420,5 g	6583,0 g		
	nach 25h		6577,0 g	6420,0 g	6583,0 g		
	nach 48h		6577,0 g	6420,0 g	6583,0 g		
GK-Topf			1050,0 g	1042,5 g	892,5 g		
GK (trocken)		M4	5527,0 g	5377,5 g	5690,5 g		
Kornrohdichte		ρ _{rd}	2,65 g/cm ³	2,77 g/cm ³	2,69 g/cm ³		
Wasseraufnahme		WA _{cm}	1,03%	1,10%	0,79%		

Tab. 14: Bestimmung der Kornrohdichte und der Wasseraufnahme [Autor]

3.5 Mischungsberechnung

Bei geringen Betonfestigkeiten verläuft der Bruch durch den Zementstein. Anders bei Beton mit höheren Festigkeiten, hier verläuft der Bruch durch die Gesteinskörnung. Durch die Verwendung eines Betons einer höheren Festigkeitsklasse soll bei Versuchen im Alter von 2, 7 und 28 Tagen, diese unterschiedlichen Bruchvarianten enthalten sein und eine bessere Aussage über den Einfluss des Zuschlags auf die Festigkeitsentwicklung des Betons ermöglichen.

Für die Versuche soll ein Beton mit einer mind. Festigkeitsklasse C35/45 hergestellt werden, der die Expositionsklassen XC3, XD2, XF1 und XA1L abdeckt (siehe Kap. 2.2 Expositionsklassen). Das Nennmaß des Größtkorns (GK) der Gesteinskörnung wurde unter Berücksichtigung der kleinsten Probenabmessung mit 16 mm gewählt. Die endgültige Sieblinie (siehe Abb. 21 u. Tab. 15) wurde erst nach dem Sieben aller drei Zuschläge festgelegt, da ich hinsichtlich der Zuschlagsmenge begrenzt war. Bezüglich der Zementsorte kommt ein CEM II/A-M(S-L) 42,5 N WT38 zum Einsatz, mit einer Dichte von $\rho_z = 3,0$ kg/dm³.

Sollsieblinie		Siebdurchgang [M%] bei Siebnennweite [mm]													
Probekörper			Σ	Sieb- bod.	0,063	0,125	0,25	0,5	1	2	4	8	11,2	16	22
en-	А				0	0	3	6	13	23	37	61	76	90	100
blini ereich	В						10	20	30	44	59	78			
Sie be	С				3	7	18	31	44	58	71	86	93	100	100
eblinie körper	Summe Sieb- durchgang	[%]		0	0,03	0,30	3,0	12,0	23,5	32,0	48,0	75,0	86,0	99,0	100
Sollsie Probel	Siebrück- stand	[%]	100	0,03	0,27	2,70	9,0	11,5	8,5	16,0	27,0	11,0	13,0	1,0	0

Tab.	15: Sollsieblinie	GK 16 -	Mischung für	Probekörper	[Autor]
					[,

Abb. 21: Sollsieblinie GK 16 – Mischung für Probekörper [Autor]

Aus den gewählten Expositionsklassen ergeben sich folgende Grenzwerte (siehe Tab.) der Betonzusammensetzung, ein max. W/B-Wert von 0,60 und ein mind. Bindemittelgehalt von 300 kg. Da dieser Mindestbindemittelgehalt z nur für GK 22 mm gilt, muss er bei Verwendung von GK 16 mm noch um 5% erhöht werden.

min.
$$z = 300 kg/m^3 \cdot 1,05 = 315 kg/m^3$$
 Mindestzementgehalt z (3.6)

Tab. 16: Grenzwerte (bei GK 22) für die Zusammensetzung, die Eigenschaften von Beton
und die Verwendung der Zemente bei den verschiedenen Expositionsklassen (Ausschnitt)
nach [B4710-1]

	XC3	XD1 XD2	XF1	XA1L				
max. W/B-Wert	0,60	0,55	0,55	0,55				
Anrechenbarer Bindemittelgehalt, mindestens (in kg/m ³)	280	300	300	300				
Luftgehalt, mindestens (in %)	-	-	-	-				
L300 (gemäß ONR 23303) mind. (in %)	-	-	-	-				
AF ^j (gemäß ONR 23303) max. (in mm)	-	-	-	-				
Andere Anforderungen	-	-	-	-				
Gesteinskörnung	Mindestanforderungen an natürliche und industriell hergestellte Gesteinskör- nungen bei den verschiedenen Expositionsklassen siehe [B4710-1]							
CEMI	+	+	+	+				
CEM II/A-S	+	+	+	+				
CEM II/A-V	+	+	+	+				
CEM II/A-W	+	+		+				
CEM II/A-L CEM II/A-LL	+	+	+	+				
CEM II/A-M	+	+	+	+				
CEM II/A-D	+	+	+	+				
CEM II/B-S	+	+	+	+				
CEM II/B-V	+	+	+	+				
CEM II/B-L CEM II/B-LL								
CEM II/B-M	+	+		+				
CEM III/A		+	+	+				
CEM III/B				+				
Legende: + einsetzbar, - nicht einsetzba	r, 🗆 mit Nachweisen	einsetzbar (siehe [B4	4710-1])					

Für die Bestimmung des Zielwerts der Betondruckfestigkeit $f_{cm,cube}$ sollte bei unbekannter Standardabweichung, ein Vorhaltemaß von 6 bis 12 N/mm² (laut ÖNORM B 4710-1:2018) in Abhängigkeit von der Herstellungseinrichtung berücksichtigt werden, damit die mind. Druckfestigkeit sicher erfüllt werden. In diesem Falle wurde ein Vorhaltemaß von v = 6 N/mm² gewählt.

$$f_{cm,cube} = f_{ck,cube} + v = 45 + 6 = 51 N/mm^2$$
 f_{cm,cube} (3.7)

Die Betondruckfestigkeitsklassen (siehe Tab. 8 auf Seite 29) beziehen sich auf eine 28-Tage-Wasserlagerung der Probekörper nach ÖNORM EN 12390-2:2009 und müssen in diesem Fall nicht auf die Trockenlagerung umgerechnet werden, da alle Versuche mit Wassergelagerten Probekörpern durchgeführt wurden. In Österreich ist es aufgrund der in Tab. 22 auf Seite 60 vorgeschriebenen Trockenlagerung für Druckfestigkeitsversuche notwendig, die Druckfestigkeitswerte $f_{c,dry,cube}$ gegenüber denen der Referenzlagerung $f_{c,cube}$ abzumindern. Deshalb wird hier vollständigkeitshalber der Umrechnungsfaktor für die Trockenlagerung angegeben.

$$f_{c,cube} = 0.92 \cdot f_{c,dry,cube}$$

(für Normalbeton ≤ C50/60 , Würfel 150 mm) Lagerungsfaktor (3.8)

Der erforderliche W/Z¹¹-Wert um die gewählte Druckfestigkeit zu erreichen, wird mit Hilfe der Walzkurven, die den Zusammenhang zwischen Betondruckfestigkeit, Zementfestigkeitsklasse und W/Z-Wert darstellt (siehe Abb. 22), ermittelt. Dabei ergibt sich ein max. W/Z-Wert von ca. 0,5.

gew.
$$W/Z = 0.5 \le min \begin{cases} 0.6 \ (Expositionsklasse) \\ 0.5 \ (Walz - Kurve) \end{cases}$$
 gew. W/Z-Wert (3.9)

Abb. 22: Walz-Kurve nach [BETONHER]

¹¹ W/Z: Der Wert beschreibt das Verhältnis zwischen der Masse des Anmachwassers und der Masse des Zements

Die Druckfestigkeitsklassen beziehen sich auf Proben in Würfelform mit einer 150 mm Kantenlänge. Bei der Verwendung von Würfel mit einer Kantenlänge von 100 mm, muss dies bei der Auswertung der Druckfestigkeitsprüfung mittels Abminderung-Formfaktor (3.10) berücksichtigt werden.

$$f_{c,cube} = 0.97 \cdot f_{c,cube,100mm}$$
 Formfaktor (3.10)

Um den Nachweis der Identität der Betondruckfestigkeit zu erbringen sind folgende Identitätskriterien nach ÖNORM B 4710-1 Tabelle B.1 zu erfüllen (siehe NW¹²-Kriterium 1 (3.11) sowie das NW-Kriterium 2 (3.12)).

Nachweis Kriterium 1 - Mittelwert für 2 bis 4 Prüfergebnisse

$$f_{cm,cube} \ge f_{ck,cube} + 1 = 45 + 1 = 46 N/mm^{2}$$

$$f_{cm,cube,100mm} \ge \frac{46 N/mm^{2}}{0.97} = 47.4 N/mm^{2}$$
NW-Kriterium 1 (3.11)

Nachweis Kriterium 2 - jedes einzelne Prüfergebnis

$$f_{ci,cube} \ge f_{ck,cube} - 4 = 45 - 4 = 40 N/mm^{2}$$

$$f_{ci,cube,100mm} \ge \frac{40 N/mm^{2}}{0.97} = 41 N/mm^{2}$$
NW-Kriterium 2 (3.12)

Somit müssen die tatsächlich nachzuweisenden Festigkeiten (Formfaktor bereits berücksichtigt) einen Mittelwert von $f_{cm,cube,100mm} \ge 47,4 \text{ N/mm}^2$ und eine Einzeldruckfestigkeit von $f_{ci,cube,100mm} \ge 41 \text{ N/mm}^2$ mindestens erreichen, damit der Beton in die Festigkeitsklasse C35/45 fällt.

Für die Ermittlung des Wasseranspruchs für die Gesteinskörnung wird die Tab. 17 verwendet. Für eine weiche Konsistenz F45 und einer Sieblinie zwischen A16 und B16 ergibt sich ein Wasseranspruch von ca. 190 kg je m³ Frischbeton. Die Richtwerte beruhen auf empirischen Ermittlungen und sind deshalb als Anhaltswerte für Rundkornzuschläge mit entsprechender Streuweite zu verstehen.

Bei gebrochener Gesteinskörnung ist in der Regel der Wasseranspruch für die gleiche Verarbeitbarkeit des Betons etwas größer. Dies hat sich im Nachhinein bei der Verarbeitung und dem Befüllen der Probenformen bestätigt. Dabei wäre die Reihenfolge bezüglich der Verarbeitbarkeit die, dass Quarzkies am einfachsten zum Einbringen und Verdichten war, gefolgt von Kalkstein und am schwierigsten war der Dolomit. Um genaue Werte der Konsistenz zu erhalten wären Frischbetonprüfungen notwendig, wie zum Beispiel durch das Ausbreitmaß oder das Verdichtungsmaß.

¹² NW: Nachweiskriterium

	Wassera	Wasseranspruch in kg je m ³ Frischbeton								
Sieblinie	ķ	Konsistenzbezeichnungen								
	steif	plastisch	weich							
A32	130	150	170							
B32	150	170	190							
C32	170	190	210							
A16	140	160	180							
B16	160	180	200							
C16	190	210	230							
A8	160	180	200							
B8	190	205	230							
C8	210	230	250							

 Tab. 17: Richtwerte f

 Generation
 Generation

$$erf. w = 190 kg/m^3$$
 Werf. (3.13)

gew.
$$w/z = 0.5$$
 \rightarrow $z = \frac{w}{0.5} = \frac{190}{0.5} = 380 \, kg/m^3$ $z_{erf.}$ (3.14)

Überprüfung des Mindestmittelgehalts:

vorh.
$$z = 380 \ kg/m^3 \ge min. \ z = 300 \ kg/m^3$$

Bei feuchten oder nassen Gesteinskörnungen muss der Anteil der Oberflächenfeuchte jeweils von dem Wassergehalt des Zugabewassers abgezogen werden (siehe Formel w_{Zugabe} (3.15)). Dies war in diesem Fall nicht nötig, da die Zuschlagsstoffe über mehrere Monate trocken gelagert wurden. Die Kernfeuchte im Inneren der Gesteinskörner wirkt sich nicht auf die Konsistenz und den W/B-Wert des Betons aus.

$$w_{Zugabe} = erf. \ w - w_{Oberflächenfeuchte} = 190 - 0 = 190 \ kg/m^3 \qquad w_{Zugabe}$$
(3.15)

Für die Zusammensetzung des Betons müssen die einzelnen Dichten der verwendeten Ausgangsstoffe bekannt sein. Dadurch kann mittels der Stoffraumrechnung (3.16) für 1 m³ Beton die erforderlichen Mengen von Zement, Gesteinskörnung, Wasser, Zusätzen und Fasern berechnet werden. Dabei geht man davon aus, dass sich der Beton aus den Volumenanteilen der einzelnen Stoffe und dem Porenvolumen zusammensetzt.

$$1000dm^{3} = \frac{z}{\rho_{z}} + \frac{w}{\rho_{w}} + \frac{g}{\rho_{g}} + p + \frac{f}{\rho_{f}}$$
 Stoffraumrechnung (3.16)

Z	Zementgehalt [kg]
w	Wassergehalt [kg]
g	Gesteinskörnungsgehalt [kg]
f	Gehalt an Zusatzstoffen [kg]
ρ_z	Rohdichte des Zements [kg/dm ³]
ρw	Rohdichte des Wassers [kg/dm3]
ρ _g	Rohdichte der Gesteinskörnung [kg/dm ³]
ρ _f	Rohdichte der Zusatzstoffe [kg/dm ³]
p	Porenvolumen [dm ³]

Da der Zementgehalt sowie der Wassergehalt schon bekannt sind und keine weiteren Zusatzstoffe zugegeben werden, fehlen nur mehr das Porenvolumen und der Anteil der Gesteinskörnung. Das Porenvolumen wird mit 1,5% (\triangleq 15 dm³) geschätzt und somit kann mittels der Stoffraumrechnung (3.16) der Gesteinskörnungsgehalt berechnet werden. Im Anschluss wurden diese Berechnungen für den jeweiligen Zuschlag – Dolomit, Kalkstein und Quarzkies – durchgeführt (siehe Tab. 19, Tab. 20 und Tab. 21). Die Volumenanteile aller drei Betonzusammensetzungen sollen ident sein, um die Mischungen miteinander vergleichen zu können. Somit unterscheidet sich nur das Gewicht der Gesteinskörnungen, durch die unterschiedlichen Kornrohdichten (siehe Abb. 23).

Abb. 23: Zusammenfassung der Stoffraumrechnung für 1 m³ Beton [Autor]

Zu guter Letzt muss noch überprüft werden ob der Mehlkornanteil, der eine Korngröße von < 0,125 mm besitzt, in geeigneter Menge vorhanden ist (siehe Kapitel 2.3 Frischbeton). Laut ÖNORM B 4710-1:2018 (siehe Tab. 18) ist der empfohlene Mehlkorngehalt für GK 16 mm mit 400 ± 25 kg/m³ angegeben.

Größtkorn der Gesteinskörnung (GK)	Empfohlener Mehlkorngehalt
8	475 ± 25 kg/m³
16	400 ± 25 kg/m³
22	375 ± 25 kg/m³
32	350 ± 25 kg/m³

Tab. 18: Empfohlener Mehlkorngehalt (Kornanteil mit Korngrößen <0,125mm) [B4710-1]

Die Sieblinie (siehe Abb. 21) der Mischung für die Probekörper hat bei der Nennweite 0,125 mm einen Siebdurchgang von 0,30%. Somit ist je nach Zuschlagsart ein Mehlkorngehalt von $MK_{Quarzkies} = 387,96 \text{ kg/m}^3$, $MK_{Kalkstein} = 388,08 \text{ kg/m}^3$ bzw. $MK_{Dolo-mit} = 388,30 \text{ kg/m}^3$ enthalten, was der empfohlenen Menge Mehlkorn entspricht. Es wurden keine Zusatzstoffe verwendet und deshalb ist f = 0 kg/m³.

$$MK = z + g_{<0,125mm} + f$$

 $MK_{Ouarzkies} = 380 + 0.30\% \cdot 2650 \ kg/m^3 + 0 = 387.96 \ kg/m^3$

 $MK_{Kalkstein} = 380 + 0.30\% \cdot 2690 \ kg/m^3 + 0 = 388.08 \ kg/m^3$

 $MK_{Dolomit} = 380 + 0.30\% \cdot 2770 \ kg/m^3 + 0 = 388.30 \ kg/m^3$

Mehlkorngehalt (3.17)

Beton Mischungsberechnung												Blatt	QUARZKIE			ES		
Firmenan Bauteil	Firmenangabe Bauteil Quarzkies Mischungsberechnung																	
Anforderu	Ingen	B2																
Festigkeitsk	dasse				C 35	/	45	Aus	sbreitmaß				а	=			mm	
Konsistenzl	klasse					F45		Ver	dichtungsma	aß			V	=				
Kurzbezeichnung der Umweltkl B2 max min min f _{ck} z													max W/B	min f _{ck}	min z			
Kein Ang	griffsrisiko)	X0 X Betonkorr Frostangriff mit u. o. Taumittel XF 1 0,55 300										300					
x Bewehru	rungsrisiko - Karbonatisierung XC 3 0,60 280 x Betonkorrosion - chemischer Angriff XA 1L 0,55 3										300							
x Bewehrungskorrosion - Chloride XD 2 0,55 300 Betonkorrosion - Verschleißbeanspruchung XM																		
Bewehrungskorrission - Chloride Meerw. XS																		
unbewe	hrtes Bau	teil							bewehrtes Ba	auteil								
x Sichtbet	on								Außenbauteil	I								
Pumpbe	ton								hoher Wasser	reindri	ngwiderstar	nd						
Frühfest	igkeit								Niedrige Wär	meent	wicklung							
Zementgehal	t z _{min} =	300 k	g/m³ +	5% =	315	kg/m	1 ³	Sieb	linienbereich	/ Größ	tkorn				1	.6	mm	
Luftgehalt		- V	-%					Erfo	rderliche Vera	ırbeituı	ngszeit						h	
Ausgangsst	offe			1						-		1						
Stoff		Art			Herste	eller		Ges	teinskörnun	ng	Art		Hers	telle	<u>r / L</u>	ietera	ant	
Zement	CEMII/	A-M(S-L) 42	,5N W138	Lafa	rge, Ma	nnerso	dorf	0	/ 4 mm	· · · · · ·	Quarzkies	Herz	er Sand-	und	Kies\	verk,	1220	Wien
Zusatzstoff								4	/ 8 mm	· · · · ·	Quarzkies	Herz	er Sand-	und	Kies\	verk,	1220	Wien
Zusatzmittei	2usatzmittel 8 / 16 mm Quarzkies Herzer Sand- und Kieswerk, 1220 W										wien							
Zusatzmittei 16 / 32 mm Quarzkies Herzer Sand- und Kieswerk, 1220 Wier												wien						
Steptinie: siene Anhang - Sollsieblinie Probekorper Kennwert:																		
w/z-Wert für funder w/h -Wert für Expositionskl < 0.6 Gewählter w/h -Wert 0.5																		
Angestrebte I	Druckfest	igkeit f _{cm dn}	· · · ·			N/m	m²	Dic	,₋ hte in kg/dm³		Stoffrau	um in	dm³/m³	=	-	10	00	
Wassergehalt	tw	-B Cill, dry		w=	190	kg/m	1 ³ :		1.00	\rightarrow		190	,	-190				
Zementgehal	tz		, 0	Z=	380	kg/m	1 ³ :		3,00	\rightarrow		127		1		-1	27	
Zusatzstoffge	ehalt f	(k = 0)	/z= 100	f=	0	kg/m	n ³ :		2,70	\rightarrow		0				1	0	
Porenvolume	en p			p=	1,5	V-%		x10		\rightarrow		15				-1	15	
Gesteinskörn	ungsgeha	alt g		g=	1774	kg/m	1 ³		2,65	÷		668		\leftarrow		= 6	668	
			FB-N	lasse	2345	FB-	Rohdi	chte	2,35			1000						
Stof	f		Zusamme	nsetzu	ng für	1 m³			Zu	samm	ensetzung	; für	1,00	00	m³			
Gesteinski	örnung	Anteil	Stoffra	um	Kornro dicht	bh- te	Mas trocl	sse ken	Masse trocken		Oberfläch	enfe I	uchte		м	lasse	feud	:ht
		in %	dm³/	m³	kg/dr	n³	kg/	m³	kg		M-%		kg			kg/	dm³	
0 / 4	mm	48	321		2,65	5	851	.,4	851,4			<u> </u>			<u> </u>		0	
4 / 8	mm	27	180)	2,65	5	478	3,9	478,9							(0	
8 / 16	mm	24	160)	2,65		425	5,7	425,7							(0	
16 / 22	mm	1	/		2,65)	17	,/	1/,/							(0	
Summe		100	668				1//	3,8	1//3,8							(0	
Zusatzstoff		0	0				0,0	0	0,0		-		-					
Zement							380),0) 0	380,0		-		-					
Sollwort Erico	hhotonm	2550					224),U 2 0	190,0		-							
Zucatzmittel	nbelonn (lasse	M % do	Zomor	ator)		254	3,0										
Zusatzmittel	l		w-76 des	s zemer	iles)										-			
Mehlkorngeh	nalt MK =	380,0	00 kg/m³ +	7,	96 kg/m	1 ³ Gest	teinsk.	<0,1	125mm + 0	kg/m³	Zusatzstoff	=	387,9	96	kg/r	n³		
Mischurz	veb äl+e :- *	A = 1	. 107		0.50				Ort Dation		Mkzul	=	400	±25	kg/r	n³		
wiischungsve		7F	. 4,07 711	•	0,50 W				on, Datum:			Unte	asciinit:					

Tab. 19: Mischungsberechnung – Quarzkies [Autor]

Beton Mischungsberechnung													Blatt Nr		KALKSTEIN			N	
Firmenan Bauteil	gabe	Kalkstein	Mischung	sbere	chnung					<u> </u>									
Anforderu	Ingen	B2																	
Festigkeitsk	lasse				C 35	/	45	Aus	sbreitmaß				а	=			mm		
Konsistenzł	klasse					F45		Ver	dichtungsma	aß			v	=					
Max min Kurzbezeichnung der Umweltkl B2 W/B f _{ck} z															max W/B	min f _{ck}	min z		
Kein Ang	griffsrisiko)		XO		x Betonkorr Frostangriff mit u. o. Taumittel XF 1 0,55 30									300				
x Bewehru	Ingsrisiko	- Karbonat	tisierung	XC :	3 0,60		280	х	Betonkorrosio	on - cl	nemischer Ar	ngriff		ХА	1L	0,55		300	
x Bewehru	x Bewehrungskorrosion - Chloride XD 2 0,55 300 Betonkorrosion - Verschleißbeanspruchung XM																		
Bewehru	Bewehrungskorrission - Chloride Meerw. XS																		
unbewel	hrtes Bau	teil							bewehrtes Ba	auteil									
x Sichtbet	on								Außenbauteil	I									
Pumpbe	ton								hoher Wasser	reindri	ngwiderstan	d							
Fruntest	igkeit	200 1	- /3	E0/	215		3	c: . I	Niedrige wari	meent	WICKIUNG			1					
Zementgehal	t z _{min} =	300 k	(g/m³ +	5% :	= 315	kg/m		Sieb	rdorlicho Vora	/ Groi	stkorn					.6	mm b	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Luftgehalt - V-% Erforderliche Verarbeitungszeit h																		
Stoff		Art			Horste	llor		Geo	teinskörnun	na l	Art		Hore	مالم	r / 1	iefer	nt		
Zement	CEMII//	A-M(S-I) 42	2.5N WT38	Laf	arge. Mai	nerso	dorf	0	/ 4 mm	<u>'8</u>	Kalkstein	Hol	cim HR (1.0.0	Plo	vaniia	. Kroa	atien	
Zusatzstoff		(,						4	/ 8 mm		Kalkstein	Hol	cim HR (d.o.o	, Plo	vanija	, Kroa	atien	
Zusatzmittel								8	/ 16 mm	Hol	cim HR (d.o.o.	<u>,</u> Plo	vanija	, Kroa	atien			
Zusatzmittel	usatzmittel 16 / 32 mm Kalkstein Holcim HR.d.o.o. Plovanija, Kroatije									atien									
Sieblinie: siehe Anhang - Sollsieblinie Probekörper Kennwert:																			
Stoffraumr	echnung	ţ																	
w/z-Wert fü	w/z-Wert für f _{cm,dry} ≤ 0,5 w/z-Wert für Expositionskl. ≤ 0,6 Gewählter w/b-Wert 0,5																		
Angestrebte [Druckfesti	igkeit f _{cm,dn}	y			N/mr	m²	Dic	hte in kg∕dm³		Stoffrau	ım in	dm³/m³	=		10	00		
Wassergehalt	W			w=	190	kg/m	1 ³ :		1,00 →			190			<u> </u>	-1	90		
Zementgehal	t z	f	0	Z=	380	kg/m	I ³ :	<u> </u>	3,00	\rightarrow		127		<u> </u>	<u> </u>	-1	27		
Zusatzstoffge	halt f	(k = 0)	100	f=	0	kg/m	I ³ :	<u> </u>	2,70	\rightarrow		0		<u> </u>	<u> </u>		0		
Porenvolume	en p			p=	1,5	V-%		x10		\rightarrow		15		-	⊢		15		
Gesteinskörn	ungsgeha	alt g		g=	1801	kg/m	3		2,69	\leftarrow		668			<u> </u>	= 6	68		
			FB-N	lasse	2372	FB-	Rohdi	chte	2,37			1000							
Stof	f		Zusamme	nsetz	ung für	1 m³	Ma		Zu:	samm I	nensetzung	für	1,00	00	m³				
Gesteinskö	örnung	Anteil	Stoffra	um	dicht	e:	troc	ken	trocken		Oberfläch	enfe I	uchte		N	lasse	feuc	:ht	
		in %	dm³/ı	m³	kg/dr	n³	kg/	m³	kg		M-%		kg		<u> </u>	kg/	d m³		
0 / 4	mm	48	321		2,69		864	1,4	864,4								0		
4 / 8	mm	27	180		2,69		486	5,2	486,2						<u> </u>		0		
8 / 16	mm	24	160		2,69		432	2,2	432,2						├──		<u>)</u>		
10 / 22	111111	100	669		2,09		100	,0	1800.0	ľ		1			<u> </u>		5		
Zusatzstoff		100	000				180	0,9	1800,9		-						5		
Zusaizsion		0	0				380	0	380.0		-		-						
Wasser							190),0).0	190.0		-	L	-		L				
Sollwert Frisc	hbetonm	asse					237	0.9											
Zusatzmittel	(M-% des	Zeme	ntes)														
					,										1				
Mehlkorngeh	alt MK =	380,	00 kg/m³ +	8	,08 kg/m	1 ³ Gest	teinsk.	<0,1	25mm + 0	kg/m	³ Zusatzstoff	=	388,0 400)8 +25	kg/r	n³ n³			
Mischungsve	rhältnis N	/IV = 1 7F	: 4,74 7U	:	0,50 W				Ort, Datum:		WIKZUI	– Unte	erschrift:	±23	<u>~~</u> 8/1				

Tab. 20: Mischungsberechnung – Kalkstein [Autor]

Tab. 21: Mischungsberechnung	– Dolomit [Autor]
------------------------------	-------------------

	Beton Mischungsberechnung												Blatt Nr			DOLOMIT		
Firmenan; Bauteil	Firmenangabe Bauteil Dolomit Mischungsberechnung																	
Anforderu	Ingen	B2																
Festigkeitsk	dasse				C 35	/	45	Aus	sbreitmaß			а	=			mm		
Konsistenzl	klasse					F45		Ver	dichtungsma	aß		v	=					
Kurzbezeichnung der Umweltkl B2 W/B f _{ck} z W/B												min f _{ck}	min z					
Kein Ang	griffsrisiko	iffsrisiko X0 x Betonkorr Frostangriff mit u. o. Taumittel XF 1 0,55 30											300					
x Bewehru	Ingsrisiko	- Karbonat	isierung	XC	2 3 0,60 280 x Betonkorrosion - chemischer Angriff XA 1L 0,55 30									300				
x Bewehrungskorrosion - Chloride XD 2 0,55 300 Betonkorrosion - Verschleißbeanspruchung XM																		
Bewehrungskorrission - Chloride Meerw. XS																		
unbewehrtes Bauteil bewehrtes Bauteil																		
x Sichtbet	on								Außenbauteil									
Pumpbe	ton								hoher Wasser	reindring	gwiderstand							
Frühfest	igkeit								Niedrige Wärn	meentwi	cklung							
Zementgehal	t z _{min} =	300 k	.g/m³ +	5%	= 315	kg/m	۱ ³	Sieb	linienbereich	/ Größtk	orn				L6	mm		
Luftgehalt		- \	/-%					Erfo	rderliche Vera	rbeitung	szeit					h		
Ausgangsstoffe																		
Stoff		Art			Herste	eller		Ges	teinskörnun	ng	Art	Hers	telle	r / L	iefera	int		
Zement	CEMII/	A-M(S-L) 42	2,5N WT38	Laf	arge, Ma	nnerso	dorf	0	/ 4 mm		Dolomit	Samoborka	ı d.d.,	, San	nobor,	Kroa	tien	
Zusatzstoff								4	/ 8 mm		Dolomit	Samoborka	ı d.d.,	, San	nobor,	Kroa	tien	
Zusatzmittel	usatzmittel 8 / 16 mm Dolomit Samoborka d.d., Samobor, Kroatier										tien							
Zusatzmittel 16 / 32 mm Dolomit Samoborka d.d., Samobor, Kroatien											tien							
Sieblinie: siehe Anhang - Sollsieblinie Probekörper Kennwert:																		
Stoffraumr	echnung	l.																
w/z-Wert fü	ir f _{cm,dry} ≤	0,5	W,	/z-We	rt für Exp	ositior	nskl. ≤	0	,6	***	Gewählter	w/b-Wert	0	,5 1				
Angestrebte I	Druckfest	igkeit f _{cm,dn}	Ý			N/m	m ²	Dic	hte in kg/dm³		Stoffraun	n in dm³/m³	=	-	10	00		
Wassergehalt	W			W=	190	kg/m	1 ³ :	-	1,00	\rightarrow	1	.90			-1	90		
Zementgehal	tz	f,	/z=	Z=	380	kg/m	1 ³ :	-	3,00	\rightarrow	1	.27			-1	27		
Zusatzstoffge	ehalt f	(k = 0)	100	t=	0	kg/m	1 ³ :	1.0	2,70	\rightarrow		0			(0		
Porenvolume	en p	1.		p=	1,5	V-%	2	x10	0.77	\rightarrow		15	<u> </u>	—	-1	15		
Gesteinskorn	ungsgeha	altg	50 M	g=	1849	kg/m	N 1 1		2,//	\leftarrow	e	000	\leftarrow	1	= 6	68		
	<i>c</i>		- FB-IV	lasse	2420	FB-	Konal	cnte	2,42					2				
Stor	T		Zusamme	nsetz	Kornro	<u>1 m²</u> 2h-	Ma	sse	Zu: Masse	samme	nsetzung i	ur 1,000	10	m°				
Gesteinski	örnung	Anteil	Stoffra	um	dicht	te	troc	ken	trocken	C	berfläche	nfeuchte		N	lasse	feud	:ht	
		in %	dm³/ı	m³	kg/dr	n³	kg/	m³	kg	N	1-%	kg			kg/	dm³		
0 / 4	mm	48	321		2,77	7	887	7,3	887,3						(C		
4 / 8	mm	27	180		2,77	7	499	9,1	499,1						(C		
8 / 16	mm	24	160		2,77	7	443	3,6	443,6						(0		
16 / 22	mm	1	7		2,77	7	18	,5	18,5						(0		
Summe		100	668				184	8,5	1848,5						(0		
Zusatzstoff		0	0				0,	0	0,0		-	-						
Zement							380	0,0	380,0		-	-						
Wasser							190	0,0	190,0		-			1				
Sollwert Frisc	hbetonm	lasse					241	8,5										
Zusatzmittel	(M-% des	Zeme	entes)													
														Ļ	-			
Mehlkorngeh	nalt MK =	380,0	00 kg/m³ +	8	3,30 kg/m	1ª Ges†	teinsk	. <0,1	125mm + 0	kg/m³ Z	usatzstoff = Mkzul =	= 388,3 = 400	30 ±25	kg/ı kg/ı	n³ n³			
Mischungsve	erhältnis N	ΛV = 1 ZE	: 4,86 ZU	:	0,50 W				Ort, Datum:		ι	Jnterschrift:						

3.6 Geräte

Für die Herstellung der Probekörper wurden folgende Geräte verwendet

- o Formen
 - Zweifachform für 100 mm Würfel
 55-C0100/P102, Kunststoff, Gewicht ca. 1,0 kg [@KUBO] siehe Abb. 24
 Verwendung für Druckfestigkeitsversuch
 - Form für 150 mm Würfel
 55-C0100/P15, Kunststoff, Gewicht ca. 1,4 kg [@KUBO]
 Verwendung für Keilspaltversuch

• Form für D103,6 x 200 mm Zylinder

Eigenbau, bestehend aus KG-Rohren (PVC, NW 110 mm, $Ø_{INNEN} = 103,6$ mm) und Schalplatten (Fichte, gelb imprägniert, Stärke 20 mm). Die Zylinderformen sind für die einmalige Verwendung und werden beim Ausschalen an der vorgefrästen Nut zerschnitten. Die Aufnahmevorrichtung für die Zylinderformen sind für den mehrmaligen Gebrauch ausgelegt.

Verwendung für Spaltzug- und Elastizitätsmodulversuch

Abb. 25: Aufnahmevorrichtung und Zylinderformen [Autor]

o Verdichtungsgerät

Rütteltisch – AEG VT800/1250-EY siehe Abb. 26

o Betonmischer

AL-KO Top 1402HR

Leistung: 600 W (230 V), Trommelinhalt: ca. 132 L, Trommelverstellung: Handrad, Trommelarretierung: 4 Stellungen, Gewicht: 48 kg

Abb. 26: links: Rütteltisch und rechts: Betonmischer [Autor]

Trapezkelle und Glättkelle aus Stahl

Die Trapezkelle ist für ein angemessenes Aufrühren des Materials im Mischbehälter erforderlich.

- Nicht reagierendes Entschalungsmittel
- o Waage

Mettler - Elektronische Präzisionswaage, Bauart SM1220, Baujahr 1989, Höchstlast 12.000 g / 2.000 g mit einer Teilung von 1 g / 0,1 g

Abb. 27: Mettler - Elektronische Präzisionswaage - SM1220 [Autor]

o Wasserlager

GRAF Regentonne 300 L - für die Wasserlagerung der Probekörper mit einer Temperatur von $(20 \pm 2)^{\circ}$ C

Abb. 28: Regentonne 300 L [6]

3.7 Durchführung der Probenherstellung

Alle drei Gesteinskörnungen – Quarzkies, Kalkstein und Dolomit – wurden über mehrere Monate im selben Raum gelagert und waren somit den selben Umgebungsbedingungen $((20 \pm 2)^{\circ}C \text{ und trocken})$ ausgesetzt.

Um die zuvor festgelegte Sieblinie zu erhalten wurden die einzelnen Kornfraktionen (0,063 bis 16 mm) gewogen und in einen Behälter zugegeben (siehe Abb. 29). Ebenfalls wurden das Anmachwasser und der Zement mittels Waage dosiert. Dies wurde für alle drei Gesteinskörnungen durchgeführt.

Abb. 29: Vorbereitete Gesteinskörnungen [Autor]

Vor der Herstellung der ersten Mischung wurde die Innenseite des Mischers leicht angefeuchtet. Danach wurden zunächst die Gesteinskörnungen zugegeben und trocken vorgemischt um eine homogene Mischung des Zuschlags zu erhalten. Anschließend wurde der Zement in den Mischer zugegeben und weiter trocken vorgemischt. Zum Schluss wurde das Wasser in den Mischer hinzugefügt. Nach der Zugabe aller Betonbestandteile in den Mischer wurde ca. 3 Minuten gemischt um eine homogene Mischung zu erzielen. Vor der Entnahme aus dem Mischer wurde der Beton nochmals kurz mit der Trapezkelle durchgemischt.

Die Innenflächen der Formen wurden zuvor mit dem Entschalungsmittel bedeckt, um zu verhindern, dass der Beton an der Form haftet. Nach dem Einbringen des Betons in die Formen, wurde der Beton mit dem Rütteltisch verdichtet. Die vollständige Verdichtung ist erreicht, sobald keine größeren Luftblasen an die Oberfläche treten und die Oberfläche annähernd glatt wird. Ein übermäßiges Rütteln ist zu vermeiden, um ein Entmischen des Betons zu verhindern. Ebenfalls sollte die Form gegen den Tisch gehalten werden.

Der überstehende Beton wurde in einer Sägebewegung mit einer Glättkelle aus Stahl, die über die Oberfläche geführt wurde, entfernt. Anschließend wurde mit der Kelle der obere Rand der Form bündig abgestrichen und geglättet.

Abb. 30: Verdichtete Prüfkörper, Links: Druck- und Spaltversuchskörper, Rechts: Keilspaltund E-Modulversuchskörper [Autor]

3.8 Lagerung der Probekörper

Die nachfolgenden Festlegungen basieren auf der ÖNORM EN 23303:2010

Die Probekörper müssen laut der ÖNORM EN 2303:2010 bei einer Temperatur von $(20 \pm 5)^{\circ}$ C mindestens 16 h, jedoch nicht länger als 3 Tage in der Form verbleiben, wobei sie vor Stoß, Rütteln und Austrocknen zu schützen sind. Bei allen Prüfreihen wurde festgelegt, dass die Probekörper nach einem Tag aus der Form entfernt werden.

Abb. 31: Lösen der Probekörper aus den Formen [Autor]

In der unten angeführten Tab. 22 sind die in Österreich vorgeschriebenen Lagerungsarten für die jeweiligen Prüfungen aufgelistet. Für die Keilspaltmethode ist laut der ÖNORM B 3592:2011 keine bestimmte Lagerungsbedingung für die Prüfkörper angegeben.

Prüfung	Lagerung der Probekörper
Druckfestigkeit	bis zu einem Betonalter von 7 Tage Wasserlagerung, danach Luftlagerung (Raumluft) ^a
Biegezugfestigkeit	bis Prüfung unter Wasser
Spaltzugfestigkeit	bis Prüfung unter Wasser
Elastizitätsmodul	bis Prüfung unter Wasser
Wassereindringtiefe	bis Prüfung unter Wasser
Frostklasse XF1	gemäß 9.9 (Prüfung zur Beurteilung der Frostklasse XF1) in [ONR23303]
Frostklasse XF2, XF4	gemäß 9.11 (Prüfung zur Beurteilung der Frostklasse XF2 u. XF4) in [ONR23303]
Frostklasse XF3	gemäß 9.10 (Prüfung zur Beurteilung der Frostklasse XF3) in [ONR23303]
Längenänderung	gemäß 9.12 (Längenänderung von Betonprobekörpern) in [ONR23303]
Abreißfestigkeit	gemäß 9.5 in [ONR23303]
Rohdichte	analog zugehöriger Festigkeitsprüfung
^a Bei Luftlagerung für die	Konformitätsprüfung darf die Temperatur bis zu insgesamt 3 Tagen bis auf +15°C absinken

Tab. 22: Lagerung der Probekörper [ONR23303]

Da es bei der Druckfestigkeits- sowie der Spaltzug- und Elastizitätsmodulprüfung unterschiedliche Lagerungsarten gibt, wurde der Entschluss getroffen alle Probekörper bis zur Prüfung unter Wasser zu lagern. Die Vorteile einer einheitlichen Wasserlagerung sind

- o durchgehend einheitliche Lagerung bei allen Prüfreihen (2d, 7d, 28d),
- o und es ist organisatorisch einfacher zu handhaben.

Um einen besseren Überblick zu erhalten ist der Ablauf der Versuchsreihen graphisch dargestellt (siehe Abb. 32 und Abb. 33)

Abb. 32: Ablauf des Druck-, Spaltzug- und E-Modul Versuches [Autor]

Abb. 33: Ablauf des Keilspaltversuchs [Autor]

Bei der Wasserlagerung werden die Probekörper bis zum Prüfbeginn bei einer Wassertemperatur von $(20 \pm 2)^{\circ}$ C gelagert und maximal 0,5 Stunden vor der Prüfung aus dem Wasser genommen. Um die Proben bis zur Prüfung vor einer möglichen Austrocknung zu schützten werden sie in feuchten Tüchern gehüllt. [ONR23303]

Abb. 34: Wasserlagerung der Probekörper, Links: Druck- und Spaltzugversuch, Rechts: Keilspalt- und E-Modulversuch [Autor]

Die Probekörper wurden deutlich und dauerhaft ohne Beschädigung gekennzeichnet, um eine einwandfreie Identifizierung bis zur Prüfung sicherzustellen. Dabei wurde die in Abb. 35 dargestellte Codierung verwendet.

Abb. 35: Probenkennzeichnung [Autor]

4 Materialuntersuchungen

Die Versuche wurden im Labor des Institutes für Hochbau und Technologie im Forschungsbereich für Hochbaukonstruktionen und Bauwerkserhaltung der TU Wien durchgeführt.

4.1 Allgemeines

Beton ist ein Verbundwerkstoff, dessen Eigenschaften von seinen einzelnen Komponenten und deren Wechselwirkung untereinander abhängt. Es ist bekannt, dass die Kontaktzone zwischen Zementstein und Gesteinskorn das schwächste Glied im Beton ist und eine grundlegende Rolle im Prozess des Versagens einnimmt. Dieser Prozess hängt stark von den Eigenschaften der Aggregate (insbesondere der groben Aggregate) und den relativen Festigkeitsunterschieden zwischen der Zementsteinmatrix und dem Zuschlag ab. Diese Arbeit untersucht das mechanische Verhalten von konventionellen Betonen¹³ mit Gesteinskörnungen, die Unterschiede in Festigkeit, Form und Oberflächenstruktur, Porosität und Absorption sowie Grenzflächenhaftung aufweisen. Zwei verschiedene Bruchsteinsorten (K-Kalkstein und D-Dolomit) und ein Rundkornzuschlag (Q-Quarzkies) wurden für die Versuche verwendet (siehe Kapitel 3 Herstellung der Proben). Die Betonmischungen wurden mit einem Wasser / Zement-Verhältnis von 0,50 entworfen und mit einer Sieblinie, die bei allen drei Zuschlagsarten ident ist. Tab. 23 enthält einen kurzen Überblick über die Durchgeführten Versuche. Die Auswirkungen der Gesteinsart auf das Festigkeitsniveau und deren Festigkeitsentwicklung werden anschließend erörtert.

Gesteinsart	Versuch		Betonalte	r		Anmerkung
		2 Tage	7 Tage	28 Tage	Summe	
	Druck	6	6	4	16	
Quarzkies	Spaltzug	5	5	5	15	Bundkorn
QualZkies	E-Modul	3	3	3	9	Runakom
	Keilspalt	5	5	5	15	
					55	
	Druck	6	6	4	16	
Kalkatain	Spaltzug	5	5	5	15	Kontkorn
RaikStein	E-Modul	3	3	3	9	Nanikom
	Keilspalt	5	5	5	15	
					55	
	Druck	6	6	4	16	
Dolomit	Spaltzug	5	5	5	15	Kontkorn
Dolomit	E-Modul	3	3	3	9	Kanikom
	Keilspalt	5	5	5	15	
					55	
		165				

Tab. 23: Überblick über das Versuchsprogramm [Autor]

¹³ Normal- oder Schwerbeton wird ab einer Festigkeitsklasse von C55/67 als hochfester Beton bezeichnet und Betone > C100/115 werden als Ultra-Hoch-Feste Betone (UHFB) bezeichnet.

4.2 Grundlagen der Bruchmechanik

Einer der wesentlichsten Aufgaben eines Bauingenieurs ist es sicherzustellen, dass die von ihm berechneten bzw. untersuchten Konstruktionen nicht infolge von mechanischer Überbeanspruchung versagen.

Dabei sind die wichtigsten Versagensarten

- o das überschreiten zulässiger Verformungen,
- o das Knicken oder Beulen und
- o das Brechen.

Ein Bruch kann plötzlich auftreten, ohne dass zuvor eine sichtbare Schädigung erkennbar war. Ebenso können schon Risse bzw. Trennflächen vorhanden gewesen sein, die den Bruch auslösen. Der Einfluss von Rissen auf das mechanische Versagensverhalten von Festkörpern ist Gegenstand der Bruchmechanik. Die Grundlagen für die Berechnung von Spannungen im Bereich eines Risses in einem linear-elastischen Material bietet die Elastizitätstheorie, die jedoch in vielen Fällen nicht ausreicht. [ING2010]

Daher wird unterschieden in

- o linear-elastische Bruchmechanik bei spröden Werkstoffen
- o elastisch-plastischen Bruchmechanik bei zähen Werkstoffen und
- o nichtlineare Bruchmechanik bei entfestigten Werkstoffen wie z.B. Beton

Im Vorhinein sei erwähnt, dass hier nur ein kurzer Einblick in die Bruchmechanik gegeben wird. Ebenfalls werden die sehr umfangreichen Formeln und Herleitungen nicht angeführt, da dies sonst den Umfang der Diplomarbeit sprengen würde. Für diejenigen die sich detaillierter mit den Bruchmechanismen beschäftigen möchten, ist an dieser Stelle an die vorhandenen Grundlagenbücher wie zum Beispiel [KUNA2010]¹⁴ oder [BRUCHME]¹⁵ verwiesen.

4.2.1 Linear elastische Bruchmechanik

Unter einem Riss wird eine Öffnung verstanden, die im unbelasteten Zustand keine Dehnungen erfährt. Seine gegenüberliegenden Berandungen sind die Rissoberflächen, die in der Regel belastungsfrei sind. Der Riss endet an der Rissfront bzw. Rissspitze. Eine wichtige Rolle spielt die Größe der Prozesszone. Darunter versteht man den Bereich um die Rissspitze, in der sehr komplexe mikroskopische Prozesse der Bindungslösung stattfinden.

¹⁴ Numerische Beanspruchungsanalyse von Rissen – Finite Elemente in der Bruchmechanik

¹⁵ Bruchmechanik – Mit Einführung in die Mikromechanik

Abb. 36: Prozesszone der mikromechanischen Bruchvorgänge an der Rissspitze nach [KUNA2010]

In der linear-elastischen Bruchmechanik werden Bauteile betrachtet, die Risse aufweisen, deren Verformungsverhalten im gesamten Bereich als linear-elastisch angenommen werden darf. Mit Ausnahme von sehr spröden Materialien gibt es in fast allen Strukturen materielles oder geometrisches nichtlineares Verhalten, vor allem innerhalb oder außerhalb der Prozesszone um die Rissspitzen. Damit diese nichtlinearen Effekte vernachlässigt werden können, muss man sich auf eine im Vergleich zur Größe des Risses oder den Bauteilabmessungen kleine Region beschränken. [KUNA2010]

Die Anwendung der linearen Elastizitätstheorie bei der Betrachtung an rissbehafteten Bauteilen führt dazu, dass an den Rissspitzen unendlich große Spannungen vorhanden sind (siehe Abb. 38). Deshalb kann hier auch nicht das Festigkeitskriterium angewandt werden, da ein Bauteil mit einem Riss schon bei der geringsten Belastung versagen würde. Deshalb wurden theoretische Konzepte entwickelt, die zur Beurteilung der Festigkeit bei rissbehafteten Bauteilen auf die linear-elastischen Materialgleichungen nicht verzichten. [ING2010]

In der linear-elastischen Bruchmechanik gilt das Superpositionsprinzip, das uns erlaubt komplexe Belastungen einer Risskonfiguration auf die Kombination einer Reihe bekannter Lösungen mit einfacheren Teilbelastungen zurückzuführen. Dabei Verursachen die Lasten an einem betrachteten Riss jeweils unterschiedliche Rissöffnungsarten bzw. Rissöffnungsmoden die in Abb. 37 dargestellt sind und folgende Definitionen haben:

• Modus I: Öffnungsmodus

Die Öffnung des Risses erfolgt senkrecht zur Rissebene, die durch eine Zugbeanspruchung verursacht werden kann.

- Modus II: Ebener Schermodus
 Die Rissufer verschieben sich in ihrer Ebene senkrecht zur Rissfront, was einer transversalen Schubbeanspruchung entspricht.
- Modus III: Nichtebener Schermodus
 Die Rissufer verschieben sich in ihrer Ebene parallel zur Rissfront, was mit nichtebenen longitudinalen Schubbeanspruchung verbunden ist.

Durch die Überlagerung dieser drei Moden kann jede Art von Verformung eines Risses dargestellt werden. [KUNA2010]

Abb. 37: Rissöffnungsarten [BRUCHME]

K-Konzept

Der Rissöffnungs-Modus I ist in der Praxis der wichtigste Fall und wird anschließend kurz erläutert. Dabei handelt es sich um einen Sonderfall eines geradlinigen Risses, dessen Ligament sich in x- Richtung erststreckt und ausschließlich durch eine Zugbelastung normal zum Riss beansprucht wird. In einen solchen Fall ist die Spannungskomponente σ_{22} die normal am Rissligament wirkt (siehe Abb. 38) von Interesse. Diese Spannungskomponente kann als Widerstand gegen das Weiterreißen bzw. das verlängern des Risses entlang des Ligaments über die Rissspitze verstanden werden. [ING2010]

Abb. 38: Rissöffnung und Spannungsverlauf [KUNA2010]

Die vollständige Lösung des Problems ist die sogenannte Nahfeldlösung, die folgendermaßen lautet

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{bmatrix} = \frac{K_I}{\sqrt{2\pi r}} \begin{bmatrix} \cos\frac{\theta}{2} \left[1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right] \\ \cos\frac{\theta}{2} \left[1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right] \\ \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \end{bmatrix}$$
Spannungszustand an der Rissspitze in Polarkoordinaten [KUNA2010] (4.1)

Die Formel gibt die Spannungsverteilung in kleiner Umgebung einer Rissspitze an, wobei die Stärke des Spannungszustands durch den Spannungsintensitätsfaktor KI angegeben wird. Dabei hängt der Spannungsintensitätsfaktor K₁ von der Belastung, den geometrischen

der

sowie den mechanischen Randbedingungen des vorliegenden Problems ab. Mit dem Spannungsintensitätsfaktor, der für sich betrachtet keine mechanische Spannung darstellt, ist eine physikalische Größe hergeleitet worden, die die Spannungsverteilung in einer kleinen Rissspitzenumgebung vollständig charakterisiert. Daraus folgt, dass der Spannungsintensitätsfaktor für das Bauteilversagen, als maßgebliche Größe betrachtet werden kann. Mit Bauteilversagen wird hierbei ein Rissfortschritt verstanden, der einsetzt, wenn der Spannungsintensitätsfaktor den kritischen Wert, der Bruchzähigkeit oder auch kritischer Spannungsintensitätsfaktor K_{lc} genannt, erreicht. [ING2010]

$$K_I < K_{Ic}$$
Nachweis erbrachtBruchzähigkeitsnachweis (4.2) $K_I = K_{Ic}$ Rissfortschritt setzt ein K_I Spannungsintensitätsfaktor [N/mm^{3/2}] K_{Ic} kritischer Spannungsintensitätsfaktor [N/mm^{3/2}]

Bei der Anwendung des K-Konzeptes wird akzeptiert, dass die Spannungen an der Rissspitze rechnerisch singulär werden d.h. gegen unendlich verlaufen (siehe Abb. 38). Jedoch können die im Bauteil tatsächlich auftretenden Spannungen, die Festigkeitswerte des Materials nicht übersteigen. Deshalb gibt es Gültigkeitsbeschränkungen des K-Konzeptes, die Sicherstellen das die Genauigkeit im ingenieurmäßigen Sinne ausreichend ist. Diese Beschränkung wird K_I-bestimmtes Feld genannt, da mit zunehmenden Abstand von der Rissspitze die Genauigkeit abnimmt.

Die Ungenauigkeiten werden durch die Prozesszone verursacht, in der die sehr hohen Spannungen zu nichtlinearem Materialverhalten führen. Bei duktilen Materialien wie Metallen ist vor allem die plastische Zone dafür verantwortlich und bei spröden oder faserigen Werkstoffen ist der Grund für die Nichtlinearität das Vorhandensein von Mikrorissen oder anderen Prozessen. Somit muss die Prozesszone, auf dem nichtlineares Verhalten vorliegt, viel kleiner sein als das K₁-bestimmte Feld bzw. Nahfeld, damit das K-Konzept seine Gültigkeit beibehält (siehe Abb. 39). [ING2010], [KUNA2010]

Abb. 39: Schema zur Gültigkeit des K-Konzepts [BRUCHME]

Dies ist mitunter ein Grund weshalb die lineare Bruchmechanik nicht auf Beton angewendet werden kann. Jedoch wird für ein besseres Verständnis ein kurzer Einblick in die lineare Bruchmechanik gegeben.

Energetisches Bruchkriterium

Griffith hat 1921 [GRIFFITH] ein bruchmechanische Konzept erarbeitet, dass auf energetischen Betrachtungen beruht. Dabei wird von der Annahme ausgegangen, dass die Erzeugung einer Bruchfläche ein energieaufbrauchender Prozess ist. Somit muss Arbeit geleistet werden um einen Riss voranzutreiben und dadurch neue Oberflächen zu erzeugen. Diese Arbeit wird als spezifische Bruchflächenenergie γ bezeichnet. Ihre Größe hängt vom Werkstoffverhalten ab und stellt einen kritischen Werkstoffkennwert G_c dar, der auch Energiefreisetzungsrate genannt wird. Im Falle von ideal-sprödem Werkstoff beträgt G_c = 2 γ , da beim Bruch immer zwei Oberflächen gebildet werden. Bei Werkstoffen wie Beton, die sich nicht linear-elastisch Verhalten, treten nicht vernachlässigbare plastische Verformungen an der Rissspitze auf. Deshalb zeigte Irwin 1957 [IRWIN], dass die spezifische Oberflächenenergie γ auch plastische γ_{pl} , thermische γ_{th} , akustische γ_{ak} , elektrische γ_{el} und andere Energieanteile enthalten kann.

$$G_c = 2(\gamma + \gamma_{pl} + \gamma_{th} + \gamma_{ak} + \gamma_{el} + ...)$$
 kritische
Energiefreisetzungsrate G_c (4.3)

G_c Energiefreisetzungsrate γ spezifische Oberflächenenergie

Bei der Rissentstehung nimmt die in dem gezogenen elastischen Körper gespeicherte Energie ab. Dieser Potentialverlust // ist berechenbar als die Arbeit, die geleistet werden muss, um den unter der vorhandenen Zugspannung klaffenden Riss wieder zu schließen. [ING2010]

Das energetische Bruchkriterium nach GRIFFITH :

$2\gamma = \frac{{\sigma_c}^2 a}{E}$	$\frac{\pi}{2} = G$	Energetisches Bruchkriterium nach <i>GRIFFITH</i> (4.4)
σ _c γ Ε a	kritische Bruchlast spezifische Oberflächenenerg Elastizitätsmodul halbe Risslänge	ie
$G = G_c$		bruchmechanisches Versagenskriterium (4.5)

besagt, dass zur Initiierung und Aufrechterhaltung eines Rissfortschrittes die bereitgestellte Energiefreisetzungsrate G größer sein muss, als die zur Erzeugung der Rissoberfläche erforderliche Bruchflächenenergie G_c. [KUNA2010]

Bei einem Vergleich des Spannungsintensitätskonzept (K-Konzept) von *Irwin* [IRWIN] und dem Energiekriterium von *Griffith* erkennt man, dass sie gleichwertig sind und ineinander umgerechnet werden können. [KUNA2010]

$$K_c = \sqrt{E \cdot G_c} \tag{4.6}$$

4.2.2 Nichtlineare Bruchmechanik

Werkstoffe die eine sehr kleine Prozesszone im Bereich der Rissspitze aufweisen, können mit ausreichender Genauigkeit durch die linear-elastische Bruchmechanik beschrieben werden. Jedoch lässt sich Beton mit der linear-elastischen Bruchmechanik nur schlecht abbilden. Der Grund dafür ist sein entfestigtes Verhalten, da der Beton schon von Anfang an, auch ohne äußere Belastung, zahlreiche Poren und Mikrorisse enthält.

Abb. 40: Verhalten von Beton unter Zug [ING2010]

In Abb. 40 ist ein Lastverformungsdiagramm eines weggesteuerten Zugversuchs eines Betonkörpers dargestellt. Dabei zeigt sich, dass der Werkstoff sich zunächst analog der linearen Elastizitätstheorie, linear-elastisch bis zum Punkt A verhält. Erst nachdem die Mikrorisse geöffnet werden, kommt es zu einer Abweichung von der Geraden. Im Punkt B ist die Zugfestigkeit an einer Stelle der Probe, aufgrund von Fehlstellen, erreicht. Nun wird unter verformungsgesteuerten Bedingung die Dehnung weiter erhöht und es kommt zum Abnehmen der Lastübertragungsfähigkeit des Materials. Das bedeutet das die sogenannte Dehnungs-Entfestigung des Werkstoffes lokal einsetzt. Der Rest der Probe verhält sich weiterhin elastisch und zieht sich entsprechend der äußeren Belastung (Zugkraft verringert sich) wieder zusammen. Der Bereich um die Rissspitze wird als Bruchprozesszone bezeichnet, die sich durch Mikrorissbildung kennzeichnet. Dort bildet sich schließlich ein Makroriss. Am Ende führt das letztendlich zur vollständigen Trennung der Probe. [TRUNK99], [ING2010]

Durch die fortlaufende Öffnung des Risses wird Verformungsenergie verzehrt. Die Fläche unter dem Lastverformungsdiagramm ist die Bruchenergie, die wenn man sie auf den ursprünglichen Querschnitt bezieht, als spezifische Bruchenergie G_F bezeichnet.

$$G_F = \int_{0}^{w_c} \sigma(w) \, dw \qquad \text{spezifische Bruchenergie } \mathbf{G}_F \, (4.7)$$

Die in der Rissebene auftretenden Verschiebungen werden als Rissöffnung w eines fiktiven Risses aufgefasst, welches auf dem *fiktiven Rissmodell nach HILLERBORG* beruht. Dabei ist die Spannungsübertragungsfähigkeit des Werkstoffes ab dem Erreichen einer kritischen fiktiven Rissöffnung w_c gleich null (siehe Abb. 40 und Abb. 41). Beim Betrachten der Spannungsverteilung an der Rissspitze in Abb. 41, erkennt man das die Spannung zur Rissspitze hin zunimmt. Nachdem Erreichen der Zugfestigkeit ft fällt sie wieder auf die Spannung, die dem Bereich entspricht, der nicht mehr vom Riss beeinflusst wird. [ING2010]

Abb. 41: Rissprozesszone nach [ING2010]

Das mechanische Verhalten eines Werkstoffes lässt sich somit durch folgende Kennwerte beschreiben: [TRUNK99]

1) Elastizitätsmodul E

Dient zur Beschreibung des Werkstoffverhaltens vor der Schädigung

2) Festigkeit ft

Spannung die den Beginn der lokalen Schädigung bestimmt

- Dehnungs-Entfestigungs-Funktion σ(w)
 Bestimmt die Lastübertragungsfähigkeit des geschädigten Werkstoffes in Abhängigkeit der lokalen Verformung
- 4) spezifische Bruchenergie G_F
 Auf die Bruchfläche bezogene Brucharbeit, welche zum Durchtrennen des Werkstoffes benötigt wird

4.3 Einachsialer Druckversuch

4.3.1 Allgemeines

Eine der wichtigsten bautechnischen Eigenschaften des Betons, ist seine Druckfestigkeit. Durch eine von außen, gleichmäßig verteilte, einachsige Druckspannung entsteht im Beton ein ungleichmäßiger, räumlicher Spannungszustand. Die Zuschläge, die eine höhere Steifigkeit als der Zementstein besitzen, ziehen einen größeren Anteil der abzuleitenden äußeren Druckkräfte an, sodass die in Kraftrichtung wirkenden Druckspannungen im Zuschlag größer sind als im Zementstein. [ING2010]

Abb. 42: Spannungsoptische Aufnahme von "Normalbeton" nach [SPANVE73]

Die Abb. 42 zeigt eine spannungsoptische Aufnahme eines belasteten Normalbetonmodells ohne Matrix (aus Versuchsgründen). Beim Betonmodell besteht die Gesteinskörnung aus spannungsdoppelbrechenden Kunststoffscheiben und der Zementstein dazwischen aus Luft. Dadurch ist der Steifigkeitskontrast besonders groß und das Ergebnis deutlicher zu erkennen. Dort wo die Isochromaten (Linien) eng aneinander liegen, treten Spannungskonzentrationen auf und verdeutlichen den inneren Kräfteverlauf innerhalb des Betons. [ING2010]

Die Spannungsverteilung, die sich in der unmittelbaren Umgebung der Gesteinskörner einstellt, muss aufgrund von Gleichgewichts- und Verträglichkeitsbedingungen auch in den Gesteinskörnern vorhanden sein. Deshalb sind Gesteinskörner in Richtung der äußeren Druckkraft bzw. in Richtung des benachbarten Gesteinskorn und einer Zugbeanspruchung rechtwinkelig zur Richtung der Druckkraft ausgesetzt. [SPANVE73]

Die Verbundfestigkeit zwischen dem Zementstein und der Gesteinskörnung ist meist gering, aufgrund der bereits vor der Belastung vorhandenen Risse in den Kontaktzonen. Deshalb beginnen, ab einer Spannung von etwa 30 bis 40% der Druckfestigkeit, die vorhandenen Risse zu wachsen (siehe Abb. 43). Dieser Bereich wird als quasi-elastisch bezeichnet.

Abb. 43: Spannungs-Dehnungs-Linie im verformungsgesteuerten Druckversuch [ZEMTASCH]

Bei weiterer Spannungserhöhung bis etwa 80% der Druckfestigkeit wachsen die Risse in der Mörtelphase des Betons, vorzugsweise parallel zur Richtung der äußeren Belastung, weiter an. Dadurch wird der Beton von einem System feiner Mikrorisse durchzogen, was zu bleibenden Verformungen und ein Abweichen von dem linearen Spannungs-Dehnungs-Verhalten führt. Mit steigender Spannung nimmt die Häufigkeit und die Länge der Mikrorisse zu. Das bewirkt, dass sich kleinere Risse zu größeren vereinen. Der Bereich ist in Abb. 43 mit *"stabiles Risswachstum"* beschrieben, da die Risse noch nicht zum Bruch führen. Sobald in einem meist begrenzten Bereich die Mikrorisse auf eine kritische Länge gewachsen sind, hat der Beton seine Druckfestigkeit erreicht. Bei konstanter Belastungsgeschwindigkeit die Spannung nach Erreichen der Druckfestigkeit reduziert und so wachsen die Mikrorisse nur langsam. Dadurch entsteht der abfallende Ast der Spannungs-Dehnungs-Dehnungs-Dehnungs-Linie. [SPANVE73]

4.3.2 Systemaufbau des Druckversuches

Die einzelnen Komponenten werden im folgenden Abschnitt näher beschrieben:

Prüfmaschine

Zur Prüfdurchführung des Druckversuches ist eine Druckprüfmaschine erforderlich, die gemäß ÖN EN 12390-4:2000 kalibriert ist. Dabei muss die Last stetig mit einer Belastungsgeschwindigkeit von $0,6 \pm 0,2$ N/mm²·s gesteigert werden, bis die Höchstlast erreicht ist.

Für die, in dieser Arbeit durchgeführten Druckversuche, wurde eine Hydraulische Druck-Prüfmaschine der Firma Seger verwendet (siehe Abb. 44). Sie hat eine maximale Prüflast von 2000 kN.

Abb. 44: Hydraulische Druck-Prüfmaschine der Firma Seger 2000 kN [Autor]

Probekörper

Die Probekörper können Würfel, Zylinder oder Bohrkerne sein und müssen den Anforderungen, hinsichtlich Form und Größe, nach ÖN EN 12390-1:2012 (siehe Abb. 45) entsprechen. Das gewählte Grundmaß d sollte mindestens dem 3,5-fachen Größtkorn der Gesteinskörnung betragen. Prüfkörper mit d kleiner als das 3,5-Fache, jedoch nicht kleiner als das 2-fache Größtkorn, sollten nur in Ausnahmefällen zur Prüfung herangezogen werden. Wegen der größeren Versuchsstreuungen sollte dann jedoch eine größere Anzahl von Prüfkörpern geprüft werden.

Abb. 45: Nennmaße vom Würfel und Zylinder [EN12390-1]

Aufgrund der Mindestmaße wurde ein Würfel mit einer Seitenlänge von 100 mm gewählt. Die einzelnen Probenabmessungen sind in der Tab. 35 auf Seite 118 aufgelistet.

4.3.3 Versuchsdurchführung

Alle Proben der Prüfserie 2d, 7d und 28d wurden mit derselben Sieblinie und Betonrezeptur, wie in Kapitel 3 beschrieben, hergestellt. Die Versuchsproben wurden bis kurz vor der Prüfung in Wasser gelagert (siehe Kapitel 3.8).

Je Gesteinsart – Quarzkies, Kalkstein und Dolomit – wurden 16 Proben hergestellt. Wobei jeweils 6 Proben nach 2 Tagen bzw. 7 Tagen und 4 Proben nach 28 Tagen geprüft wurden. Dadurch soll Untersucht werden, wie sich die Druckfestigkeit des Betons, mit unterschiedlicher Gesteinsart und Kornform entwickelt.

Gesteinsart	Kurzbezeichnung	Alter	Anzahl	Anmerkung						
	Q 02dD	2 Tage	6							
Quarzkies	Q 07dD	7 Tage	6	Rundkorn						
	Q 28dD	28 Tage	4							
Kalkstein	K 02dD	2 Tage	6							
	K 07dD	7 Tage	6	Kantkorn						
	K 28dD	28 Tage	4							
	D 02dD	2 Tage	6							
Dolomit	D 07dD	7 Tage	6	Kantkorn						
	D 28dD	28 Tage	4							
		Probenanzahl	48							

Tab. 24: Überblick Druckversuch [Autor]
Kurz vor dem Versuch wurde die jeweilige Probe aus dem Wasserbad entnommen und die überschüssige Feuchtigkeit mit einem trockenen Tuch abgewischt. Danach wurde der Versuchskörper vermessen und gewogen (siehe Tab. 35 auf Seite 118).

Bei der Durchführung des Druckversuches ist darauf zu achten, dass die Probenkörper eine ebene Oberfläche aufweisen, um einwandfreie Prüfergebnisse zu erhalten. Deshalb erfolgt die Lastaufbringung bei Würfeln senkrecht zur Einfüllrichtung. Der Probekörper wird dann genau mittig auf die Druckplatte der Druckprüfmaschine gestellt (siehe Abb. 46).

Abb. 46: Probe während der Versuchsdurchführung (links: vorher, rechts: nachher) [Autor]

Mit steigender Beanspruchungsgeschwindigkeit nimmt die Betondruckfestigkeit zu und deswegen wurde die gleiche Belastungsgeschwindigkeit bei allen Versuchsreihen (2d,7d und 28d) gewählt (siehe Abb. 47). Die Prüflast wurde stetig mit einer Belastungsgeschwindigkeit von 0,6 N/mm²·s gesteigert, bis die Höchstlast erreicht wurde.

Abb. 47: Druckversuch – Belastungsgeschwindigkeiten (2d, 7d und 28d) [Autor]

4.3.4 Versuchsauswertung

Die im einachsialen Druckversuch ermittelte Festigkeit fc ergibt sich nach der Gleichung

$$f_c = \frac{F \cdot 1000}{A_c}$$

Druckfestigkeit fc (4.8)

- fc Druckfestigkeit, in MPa (N/mm²)
- F Höchstlast beim Bruch, in kN
- Ac Fläche des druckbeanspruchten Probenquerschnittes, in mm²

Im Anschluss ist eine Übersicht, welche die mittlere Betondruckfestigkeit je nach Gesteinsart in Abhängigkeit des Betonalters aufzeigt. Die vollständige Auswertung der Druckfestigkeit aller Proben sind in der Tab. 35 auf Seite 118 aufgelistet und nochmals graphisch in Abb. 98 auf Seite 119 dargestellt.

In Tab. 25 erkennt man, dass bei Proben mit Kantkorn im Vergleich zum Rundkorn, bei gleichen Bedingungen, die Druckfestigkeit nach 2 Tagen um 30 bis 67%, nach 7 Tagen 22 bis 28% und nach 28 Tagen nur mehr 1 bis 10% größer ist. Der Einfluss der Kornform auf die Druckfestigkeit wird mit steigendem Betonalter geringer.

Probekörper	Dichte ρ _{mittel} [kg/m³]	Druckfestigkeit f _{c,mittel} [N/mm²]	Standard- abweichung [N/mm ²]	Druckfestigkeit im Vergleich zu Rundkorn (Q)		
Q 02d	2347	15,2	0,3			
K 02d	2358	19,7	0,3	+30%		
D 02d	2433	25,3	0,2	+67%		
Q 07d	2362	28,0	0,4			
K 07d	2362	34,3	0,3	+22% +28%		
D 07d	2431	36,0	0,7			
Q 28d	2381	49,2	0,9			
K 28d	2374	54,2	0,6	+10%		
D 28d	2446	49,5	1,3	+1%		

Tab. 25: mittlere. Betondruckfestigkeit je Gesteinsart und Betonalter [Autor]

Abb. 48: mittlere Betondruckfestigkeit – Q, K und D [Autor]

Abb. 49: Druckfestigkeitsentwicklung – Q, K und D [Autor]

Ebenfalls interessant ist die Entwicklung zwischen den beiden Kantkornzuschlägen. Anfänglich verfügt der Dolomitzuschlag über die höchste Druckfestigkeit. Bedingt durch die schwächere Festigkeitszunahme des Dolomitzuschlags nach ca. 8 Tagen, wurde er vom Kalksteinzuschlag übertroffen. Beim Kalksteinzuschlag ist besonders die Festigkeitssteigerung innerhalb der ersten 7 Tagen sehr hoch. Aufgrund der annähernd selben Kornform und Oberflächenrauigkeit im Falle von Kalkstein und Dolomit (siehe Abb. 15 und Abb. 16 auf Seite 42f) leisten diese beiden Faktoren vermutlich keinen Beitrag zum unterschiedlichen Verlauf der oben angeführten Druckfestigkeitskurven. Die starke Festigkeitssteigerung ist wahrscheinlich auf die chemische Grenzflächenreaktion zwischen Zementstein und Kalkstein zurückzuführen, welche die Haftung zwischen den einzelnen Phasen verbessert. Dies wird bei der Auswertung der Spaltzugfestigkeit näher erläutert.

Das Bruchbild des Prüfkörpers wird anschließend dokumentiert und den Bruchtypen gemäß Abb. 50 zugeordnet. Die Bruchtypen für Zylinderproben sind ebenfalls in der ÖN EN 12390-3:2012 vorhanden, an dieser Stelle wird aber nicht näher darauf eingegangen.

Die zufriedenstellenden Bruchbilder weisen auf allen vier freiliegenden Flächen einen in etwa übereinstimmenden Rissbefall auf. Die Flächen die im Kontakt mit den Druckplatten waren, weisen geringe Schädigungen auf. Alle Proben die beim Druckversuch zum Einsatz kamen, hatten ein zufriedenstellendes Bruchbild.

Abb. 50: Bruchbilder der Würfelproben nach [EN12390-3]

Nachfolgend ist eine Gegenüberstellung der Bruchbilder einzelner Gesteinsarten nach 2, 7 und 28 Tagen dargestellt. Bei allen drei Gesteinsarten – Quarzkies, Kalkstein und Dolomit – verläuft die Bruchfläche durch den Zementstein und entlang der Kontaktzone zwischen Gesteinskorn und Zementstein. Entstanden ist die Bruchfläche aufgrund der Spannungsverteilung im Bereich der Gesteinskörner die neben Druckspannungen auch, rechtwinkelig zur Druckkraft wirkende Zugspannungen, verursacht.

Beton mit Rund- und Kantkornzuschlag weist sehr ähnliche Rissmuster auf. Deshalb ist anhand der Bruchfläche kein Unterschied erkennbar, aber vergleicht man die Druckfestigkeiten in Abb. 49 ist deutlich ersichtlich, dass die Druckfestigkeit beim Beton mit Kantkornzuschlag höher ist. Das ist vor allem auf die bessere Verbundfestigkeit zwischen Zementstein und Gesteinskorn zurückzuführen. Das Rundkorn des Quarzkieses hat aufgrund seiner Form eine geringere Oberfläche, als ein vergleichbares Kantkorn, was zu einer höheren Spannung in der Kontaktzone führt. Ebenfalls ist die Oberflächenbeschaffenheit des Quarzkieses deutlich glatter als beim Bruchsteinzuschlag (Kalkstein und Dolomit), was eine schlechtere Verzahnung in der Kontaktfläche bewirkt.

Abb. 51: Bruchbilder Einachsialer Druckversuch – Beton mit Quarzkies und einem Probenalter von 2, 7 und 28 Tagen [Autor]

Abb. 52: Bruchbilder Einachsialer Druckversuch – Beton mit Kalkstein und einem Probenalter von 2, 7 und 28 Tagen [Autor]

Abb. 53: Bruchbilder Einachsialer Druckversuch – Beton mit Dolomit und einem Probenalter von 2, 7 und 28 Tagen [Autor]

4.4 Spaltzugversuch

4.4.1 Allgemeines

Bei der Ermittlung der Spaltzugfestigkeit wird der Probekörper entlang zwei gegenüberliegenden Mantellinien mit einer Druckkraft beansprucht. Dadurch entsteht ein zweiachsiger Spannungszustand in der Probe, nämlich Druck in Richtung der Belastung und Zug orthogonal dazu. Aufgrund der deutlich niedrigeren Zugfestigkeit des Betons, im Vergleich zur Druckfestigkeit, verursacht die Zugspannung ein Aufspalten des Probekörpers.

4.4.2 Systemaufbau des Spaltzugversuches

Im folgenden Abschnitt werden die einzelnen Komponenten näher beschrieben:

Prüfmaschine

Zur Prüfdurchführung wurde dieselbe Druckprüfmaschine wie beim einachsialen Druckversuch (Kapitel 4.3) verwendet. Die Last muss mit einer Belastungsgeschwindigkeit von 0,04 bis 0,06 N/mm²·s kontinuierlich und stoßfrei auf den Probekörper aufgebracht werden. Der Versuch endet sobald die Höchstlast erreicht ist.

Probekörper

Die Spaltzugfestigkeit wird an Zylindern oder prismatischen Probekörpern bestimmt. Jedoch sollten vorzugsweise zylindrische Probekörper verwendet werden, da bei dieser Form der Einfluss der Probekörpergröße auf die gemessene Spaltzugfestigkeit als nicht signifikant festgestellt wurde. [EN12390-6]

Aufgrund dieser Schlussfolgerung und der Tatsache, dass in dieser Arbeit die Spaltzugversuche mit zylindrischen Probekörpern durchgeführt werden, die weiteren Erklärungen auf die Bestimmung der Spaltzugfestigkeit von zylindrischen Prüfkörpern beschränkt.

Die Probekörper müssen die Anforderungen, laut ÖN EN 12390-1:2012 (siehe Abb. 45) hinsichtlich Form und Größe erfüllen, wobei das Verhältnis von Länge zu Durchmesser ≥ 1 sein darf.

Aufgrund der Mindestmaße wurde ein Zylinder mit einem Durchmesser von ungefähr 100 mm und einer Höhe von 200 mm gewählt. Die einzelnen Probenabmessungen sind in der Tab. 36 auf Seite 136 aufgelistet.

4.4.3 Versuchsdurchführung

Je Gesteinsart – Quarzkies, Kalkstein und Dolomit – wurden 15 Proben hergestellt. Wobei jeweils 5 Proben nach 2, 7 und 28 Tagen geprüft wurden (siehe Tab. 26).

Gesteinsart	Kurzbezeichnung	Alter	Anzahl	Anmerkung
	Q 02dS	2 Tage	5	
Quarzkies	Q 07dS	7 Tage	5	Rundkorn
	Q 28dS	28 Tage	5	
	K 02dS	2 Tage	5	
Kalkstein	K 07dS	7 Tage	5	Kantkorn
	K 28dS	28 Tage	5	
	D 02dS	2 Tage	5	
Dolomit	D 07dS	7 Tage	5	Kantkorn
	D 28dS	28 Tage	5	
		Probenanzahl	45	

Tab. 26: Überblick Spaltzugversuch [Autor]

Die Probekörper wurden, wie schon im *Kapitel 3.8 Lagerung der Probekörper* erwähnt, bis zur Prüfung im Wasserbad gelagert. Kurz vor dem Einbau in die Prüfmaschine wurde die jeweilige Probe aus dem Wasserbad entnommen und die überschüssige Feuchtigkeit mit einem Tuch trockengewischt. Anschließend wurde der Versuchskörper vermessen und gewogen (siehe Tab. 36 auf Seite 136).

Abb. 54: Spaltzugversuch (v. l. n. r.: Prüfmaschine, Versuchskörper vorher u. nachher) [Autor]

Der Probekörper wird, mit zwei gegenüberliegenden Zwischenstreifen, mittig in die Prüfmaschine eingesetzt und durch Schaumkeile fixiert. Die Druckkraft wird anschließend, an den zwei gegenüberliegenden Mantellinien aufgebracht. Die Last wird konstant mit einem Spannungszuwachs von 0,05 N/mm²·s erhöht bis zum Erreichen der maximalen Last.

4.4.4 Versuchsauswertung

Die im Versuch ermittelte Spaltzugfestigkeit wird mit nachfolgender Gleichung berechnet:

$$f_{ct} = \frac{2 \cdot F}{\pi \cdot L \cdot d}$$

Spaltzugfestigkeit f_{ct} (4.9)

f_{ct} Spaltzugfestigkeit, in MPa (N/mm²)

F Höchstlast, in kN

L Länge der Kontaktlinie des Probekörpers, in mm

d Querschnittsmaß, in mm

Die vollständige Auswertungen der Spaltzugfestigkeit aller Proben sind in Tab. 36 auf Seite 136 aufgelistet. In Tab. 27 ist zu erkennen, dass bei Proben mit Kantkorn im Vergleich zum Rundkorn, bei gleichen Bedingungen, die Spaltzugfestigkeit nach 2 Tagen um 28 bis 37%, nach 7 Tagen 11 bis 16% und nach 28 Tagen um 22 bis 45% größer ist. Das liegt an der besseren Haftung und Verzahnung zwischen Zementstein und der rauen Oberfläche der gebrochenen Gesteinskörnung.

Probekörper	Dichte Spaltzugfestigke Pmittel fct,mittel [kg/m³] [N/mm²]		Standard- abweichung [N/mm²]	Spaltzugfestigkeit im Vergleich zu Rundkorn (Q)
Q 02d	2367	1,44	0,14	
K 02d	2355	1,85	0,08	+28%
D 02d	2423	1,97	0,04	+37%
Q 07d	2362	2,40	0,38	
K 07d	2355	2,79	0,15	+16%
D 07d	2415	2,67	0,35	+11%
Q 28d	2381	2,84	0,31	
K 28d	2386	4,11	0,24	+45%
D 28d	2431	3,46	0,36	+22%

Abb. 55: mittlere Spaltzugfestigkeit – Q, K und D [Autor]

Bei der Spaltzugfestigkeitsentwicklung in Abb. 56 zeigt sich der selbe Verlauf, wie bei der Druckfestigkeitsentwicklung (siehe Abb. 49), zwischen den Kantkornzuschlägen Kalkstein und Dolomit. Dabei ist vor allem beim Kalkstein die rapid ansteigende Frühfestigkeit auffällig. Diese Entwicklung ist, wie schon bei der Auswertung der Druckfestigkeit erwähnt, wahrscheinlich auf die Grenzflächenreaktion zwischen dem Kalksteinzuschlag und der Zementmatrix zurückzuführen.

Abb. 56: Spaltzugfestigkeitsentwicklung – Q, K und D [Autor]

In der Publikation [INTERACT] wurde die Reaktion in der Übergangszone zwischen Calcit¹⁶ und Zementstein untersucht. Dabei wurde entdeckt, dass die Bindung zwischen Calcit und Zementstein besser ist als bei anderen Zuschlagsstoffen. Dabei findet eine Art "Korrosion" bzw. Ätzen der Calcit-Oberfläche beim Gesteinskorn statt, welches durch die anschließende Ausfällung von vielen kleinen Kristallen für die Festigkeitserhöhung verantwortlich ist.

Beim Dolomitzuschlag ist die Erhöhung der Spaltzugfestigkeit nicht im selben Ausmaß wie beim Kalksteinzuschlag, da der Dolomit einen geringeren Anteil an Calcit aufweist und somit die Reaktion mit dem Zementstein geringer ausfällt.

¹⁶ Der Kalkstein besteht chemisch aus Calcit (CaCO₃)

Bei der Betrachtung der in Abb. 57, Abb. 58 und Abb. 59 dargestellten Bruchflächen der Betonproben mit dem Zuschlagstoff Q-Quarzkies (Rundkorn), erkennt man die Veränderung der Bruchart. Beim zwei Tage alten Beton Q02d verläuft die Bruchfläche vollständig durch den Zementstein und die Gesteinskörner werden "ausgeschält". Dafür ist vor allem die Haftung zwischen Zementstein und Gesteinskorn, aufgrund der geringen Rauigkeit des Rundkorns, verantwortlich.

Abb. 57: Bruchflächen Spaltzugversuch – Beton mit Quarzkies und einem Probenalter von 2 Tagen [Autor]

Die sieben Tage alten Proben zeigen bereits eine Verbesserung, dabei verläuft der Bruch zum größten Teil durch den Zementstein und spaltet vereinzelt Gesteinskörner.

Abb. 58: Bruchflächen Spaltzugversuch – Beton mit Quarzkies und einem Probenalter von 7 Tagen [Autor]

Nach 28 Tagen verläuft der Bruch, zur Hälfte durch die Zementmatrix und zur Hälfte durch die Gesteinskörnung.

Abb. 59: Bruchflächen Spaltzugversuch – Beton mit Quarzkies und einem Probenalter von 28 Tagen [Autor]

Beim Kantkornzuschlag – Kalkstein und Dolomit – verläuft bereits in der frühen Phase ein geringer Anteil der Bruchfläche durch das Gesteinskorn. Der gute Verbund zwischen Zementstein und Gesteinskorn ist vor allem durch die Rauigkeit des Kantkorns bestimmt.

Abb. 60: Bruchflächen Spaltzugversuch – Beton mit Kalkstein und einem Probenalter von 2 Tagen [Autor]

Nach sieben Tagen verläuft der Bruch ungefähr schon zur Hälfte durch das Gesteinskorn und nach 28 Tagen verläuft der Bruch schon fast vollständig durch den Zuschlag.

Abb. 61: Bruchflächen Spaltzugversuch – Beton mit Kalkstein und einem Probenalter von 7 Tagen [Autor]

Abb. 62: Bruchflächen Spaltzugversuch – Beton mit Kalkstein und einem Probenalter von 28 Tagen [Autor]

Abb. 63: Bruchflächen Spaltzugversuch – Beton mit Dolomit und einem Probenalter von 2 Tagen [Autor]

Abb. 64: Bruchflächen Spaltzugversuch – Beton mit Dolomit und einem Probenalter von 7 Tagen [Autor]

Abb. 65: Bruchflächen Spaltzugversuch – Beton mit Dolomit und einem Probenalter von 28 Tagen [Autor]

4.5 statischer E-Modulversuch

4.5.1 Allgemeines

Der Elastizitätsmodul E für Beton ist ein Werkstoffkennwert, der unerlässlich ist und zum Beispiel für die Abschätzung der Bauwerksverformung für kurzzeitige Einwirkungen der Gebrauchslast, der Elastischen Rückverformung bei Entlastung oder zur Tragwerksanalyse für den Gebrauchszustand verwendet wird.

Ein wichtiges Merkmal des Betons ist seine Spannungs-Dehnungslinie (siehe Abb. 66), welche den Zusammenhang zwischen einer Spannung und der von ihr in Belastungsrichtung ausgelösten Dehnung beschreibt. Im Falle von einachsiger Beanspruchung gilt das Hook'sche Gesetz.

Abb. 66: Spannungs-Dehnungslinie von Beton [7]

Beton folgt näherungsweise dem elastischen Verhalten bei kurzzeitig einwirkender Druckbelastung bis zu ca. 40% seiner Druckfestigkeit und bei kurzzeitig einwirkender Zugbelastung bis ca. 70% seiner Zugfestigkeit. Bei höheren Spannungen steigt die Dehnung im Verhältnis zur Spannung überproportional an. Bei Entlastung ist nur ein kleiner Teil der dadurch entstandenen Verformung reversibel, d.h. elastisch. Der restliche Anteil der Verformung ist irreversibel und somit bleibend. Mit steigender Spannung nehmen diese permanenten Verformungen zu. Für den Beton ist charakteristisch, dass er sich nach dem Erreichen seiner Höchstspannung deutlich entfestigt und deshalb bei steigender Dehnung die aufnehmbare Spannung abnimmt.

Der E-Modul des Betons wird durch die E-Moduls seiner Komponenten bestimmt. Dabei hängt der E-Modul des Zementsteins von seiner Porosität (W/Z-Wert) und dem Hydratationsgrad (d.h. das Alter des Betons) ab. Der Elastizitätsmodul von Zementstein im Alter von 28 Tagen liegt im Bereich von 9.000 N/mm² (W/Z = 0,7) bis 20.000 N/mm² (W/Z = 0,4). Außerdem weist ein wassergesättigter Zementstein im Vergleich zum trockenen einen um ca. 10% geringeren E-Modul auf. [BETON16]

Bei Gesteinskörnern kann der Elastizitätsmodul im großen Bereich schwanken, da es auf den mineralogischen Charakter des Gesteins ankommt. Bei herkömmlich eingesetzter Gesteinskörnung liegt der E-Modul in etwa zwischen 10.000 N/mm² für Sandstein und 90.000 N/mm² für Basalt. Er ist somit meist deutlich größer (d.h. steifer) als es der E-Modul

des Zementsteins ist. Somit bewirkt eine Zunahme des Zementsteingehalts eine Abnahme des E-Moduls. [BETON16]

Zusammenfassend sind folgende Parameter für den E-Modul des Betons wesentlich:

- o W/Z-Wert
- o Alter des Betons
- o E-Modul und Volumenanteil der Gesteinskörner
- Feuchtezustand des Betons

4.5.2 Systemaufbau des statischen E-Modulversuches

Prüfmaschine

Zur Versuchsdurchführung ist eine Prüfmaschine erforderlich, die in der Lage ist, Prüflasten bei bestimmten Laststufen konstant zu halten. Für die, in dieser Arbeit durchgeführten statischen E-Modulversuche, wurde die mechanische Zug-Druckprüfmaschine Instron 4260 mit einer DOLI Steuerung verwendet (siehe Abb. 67). Die Prüfmaschine hat eine maximale Prüflast von 150 kN und eine Prüfraumgröße von 75x115 cm.

Abb. 67: Zug-Druckprüfmaschine Instron 4260 [Autor]

Probekörper

Für die Ermittlung des Elastizitätsmodul sind Zylinder oder prismatische Probekörper gemäß ÖN EN 12390-1:2012 (siehe Abb. 45), mit einem Verhältnis von Höhe zu Durchmesser zwischen 2 und 4 zu verwenden. Aufgrund der Mindestmaße wurde ein Zylinder mit einem Durchmesser von ungefähr 100 mm und einer Höhe von 200 mm gewählt. Die einzelnen Probenabmessungen sind in der Tab. 37 auf Seite 156 aufgelistet.

Wegaufnehmer

Die für die Dehnungsmessung erforderlichen Wegaufnehmer müssen eine Messlänge von mind. 2/3 der geringsten zulässigen Probenabmessung (GK 16 mm x 3,5fach = 56 mm) und ein Auflösungsvermögen von $(5x10^{-6} \pm 5) \mu m/m$ aufweisen. Die Messungen müssen an mindestens zwei gegenüberliegenden Probenseiten durchgeführt werden und einen Abstand von mindestens h/4 von den Druckflächen aufweisen. [ONR23303]

Bei der Versuchsdurchführung kamen zwei Wegaufnehmer zum Einsatz, der die Verschiebung der Spitze einer Tastzunge in ein elektrisches Signal umformt. Die Umformung erfolgt mit Hilfe von Dehnungsmessstreifen, die in einer Vollbrückenschaltung auf der Messzunge innerhalb des Gerätes angeordnet sind (siehe Abb. 68).

• Marke:

Hottinger Baldwin Messtechnik GmbH

- o Messsystem: DMS-Vollbrücke
- \circ Kennwert: ± 2.5 mV/V
- Linearitätsabweichung: ± 0.05%
- Nennmessbereich: ± 2.5 mm
- Nenntemperaturbereich: -10...+60°C

Abb. 68: Wegaufnehmer und Kraftsensor [Autor]

Kraftaufnehmer

Der Kraftaufnehmer hat die Aufgabe den genauen Kraftverlauf aufzuzeichnen, welcher durch die Prüfmaschine auf dem Probekörper aufgebracht wird. Der zusätzliche Kraftsensor ist erforderlich, da der Sensor der Prüfmaschine für die Durchführung und Steuerung des Belastungszyklus belegt ist. Es kam der rotationssymmetrische Kraftsensor U10 zum Einsatz, womit Zug- und Druckkräfte gemessen werden können (siehe Abb. 68).

0	Marke:	Hottinger Baldwin Messtechnik GmbH
0	DMS-Messsystem:	350 Ohm
0	Nennkraft:	1,25 kN
0	Nennkennwert:	11,5 mV/V
0	Messkörper:	aus hochfestem Aluminium
0	Biegemomenteinflüsse:	kompensiert
0	HBM - Genauigkeitsklasse:	0,02

4.5.3 Versuchsdurchführung

Vor Beginn der E-Modul Messung sollte die Druckfestigkeit des zu Prüfenden Betons ermittelt werden. Dies wurde zuvor durchgeführt im *Kapitel 4.3 Einachsialer Druckversuch* und dient als Grundlage für die E-Modul Messung.

Je Gesteinsart – Quarzkies, Kalkstein und Dolomit – wurden 9 Proben hergestellt. Wobei jeweils 3 Proben nach 2, 7 und 28 Tagen geprüft wurden (siehe Tab. 28).

Gesteinsart	Kurzbezeichnung	Alter	Anzahl	Anmerkung
	Q 02dE	2 Tage	3	
Quarzkies	Q 07dE	7 Tage	3	Rundkorn
	Q 28dE	28 Tage	3	
	K 02dE	2 Tage	3	
Kalkstein	K 07dE	7 Tage	3	Kantkorn
	K 28dE	28 Tage	3	
	D 02dE	2 Tage	3	
Dolomit	D 07dE	7 Tage	3	Kantkorn
	D 28dE	28 Tage	3	
		27		

Tab. 28: Überblick statischer E-Modulversuch [Autor]

Die Probekörper wurden, wie schon im *Kapitel 3.8 Lagerung der Probekörper* erwähnt, bis zur Prüfung im Wasser gelagert. Kurz vor dem Einbau in die Prüfmaschine wurde die jeweilige Probe aus dem Wasserbad entnommen und die überschüssige Feuchtigkeit mit einem Tuch trockengewischt. Anschließend wurde der Versuchskörper vermessen und gewogen (siehe Tab. 37 auf Seite 156).

Der Probekörper wird mittig auf den Kraftaufnehmer gelegt und die zwei Wegaufnehmern werden seitlich angebracht. Die Last wird dann über Lasteinleitungsplatten und den Kugel-Ausgleich, der schräge Auflagerflächen ausgleicht, aufgebracht.

Abb. 69: statischer E-Modulversuch [Autor]

Die Höhe und der Verlauf der Belastung ist in Abb. 70 dargestellt. Die Ober- und die Vorspannung des Belastungszykluses werden mit den nachfolgenden Formeln berechnet. Die gewählten Druckfestigkeiten, sowie die errechneten Werte für den Belastungszykluses sind in Tab. 29 aufgelistet.

$$\sigma_{a} = \frac{f_{c}}{3} \qquad [N/mm^{2}] \qquad \text{Oberspannung (4.12)}$$

$$f_{c} \quad \text{Druckfestigkeit [N/mm^{2}]}$$

$$\sigma_{b} = 0,1 \cdot \sigma_{a} \qquad [N/mm^{2}] \qquad \text{Vorspannung (4.13)}$$

130

Abb. 70: Belastungszyklus aller Versuchsreihen [Autor]

Die Spannung wird gleichmäßig mit einer Belastungsgeschwindigkeit von 0,6 N/mm² pro Sekunde erhöht, bis die Oberspannung σ_a erreicht ist. Unter gleichbleibender Oberlast wird dann nach 60 Sekunden Wartezeit mit 0,6 N/mm² bis zur Vorlast σ_b entlastet. Die Vorlast wird ebenfalls 60 Sekunden lang gehalten. Anschließend wird die gleiche Belastungssteigerung weitere drei Mal Durchgeführt. Wobei beim letzten Belastungszyklus die Oberspannung nur eine Dauer von 30 Sekunden aufweist. Durch die Be- und Entlastungszyklen wird sichergestellt, dass bei der 3.Belastung fast nur noch elastische Verformungen auftreten.

		Fläche:	d =	100mm	\rightarrow A _{zyl.} =	7854mm²						
nreihe	Zuschlag	gewählte Druckfestig.	Ober- spannung	Vor- spannung	Oberlast:	Vorlast:	Belastungs		eschwindigkeit bis			
obe	8	f _c	$\sigma_a = \frac{1}{3} \cdot f_c$	$\sigma_{\rm b} = \sigma_{\rm a} \cdot 0, 1$			Vor	last	Oberlast			
Pn		[N/mm²]	[N/mm²]	[N/mm²]	[kN]	[kN]	[N/mm²·s]	[N/s]	[N/mm²·s]	[N/s]		
	Q Quarzkies	47,0	15,7	1,6	123,0	12,3	0,6	4712	½ · 0,6	1178		
02d	K Kalkstein	47,0	15,7	1,6	123,0	12,3	0,6	4712	½ · 0,6	1178		
	D Dolomit	47,0	15,7	1,6	123,0	12,3	0,6	4712	½ · 0,6	1178		
	Q Quarzkies	24,8	8,3	0,8	65,0	6,5	0,6	4712	½ · 0,6	1178		
07d	K Kalkstein	30,6	10,2	1,0	80,0	8,0	0,6	4712	½ · 0,6	1178		
	D Dolomit	30,6	10,2	1,0	80,0	8,0	0,6	4712	½ · 0,6	1178		
	Q Quarzkies	13,8	4,6	0,5	36,0	3,6	0,6	4712	½ · 0,6	1178		
28d	K Kalkstein	18,0	6,0	0,6	47,0	4,7	0,6	4712	½ · 0,6	1178		
	D Dolomit	22,9	7,6	0,8	60,0	6,0	0,6	4712	¼ · 0,6	1178		

Tab. 29: Ermittlung der Oberlast, Vorlast und Belastungsgeschwindigkeit [Autor]

4.5.4 Versuchsauswertung

Die Ermittlung des Elastizitätsmoduls erfolgt im letzten Belastungszyklus, in der Belastungssteigerung von Vor- zu Oberspannung. Dabei wird aus dem Mittelwert der im letzten Messzyklus unter σ_a und σ_b ermittelten Dehnung der statische E-Modul mit der nachfolgenden Formel berechnet.

$$E_b = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\sigma_a - \sigma_b}{\varepsilon_a - \varepsilon_b} \qquad [N/mm^2] \qquad stat. E-Modul (4.14)$$

$$\varepsilon_a \qquad mittlere Dehnung unter \sigma_a$$

 ϵ_b mittlere Dehnung unter σ_b

In Tab. 30 bzw. Abb. 72 erkennt man eine entgegengesetzte Ausgangslage des stat. E-Moduls beim Verhältnis von Kantkornzuschlag (Kalkstein und Dolomit) zu Rundkornzuschlag. Der Beton mit Kalksteinzuschlag hat bei einem Alter von 2 Tagen einen um 21% höheren stat. E-Modul als der Beton mit Quarzkieszuschlag. Das Gegenteilige ist beim Beton mit Dolomit Zuschlag zu erkennen, der einen um 23% geringeren statischen E-Modul aufweist als der Beton mit Quarzkieszuschlag. Mit höherem Betonalter verringert sich der Abstand des statischen E-Moduls zwischen den Zuschlägen Dolomit und Quarzkies. Nach 28 Tagen hat der Beton mit Dolomitzuschlag einen um 5% höheren und der Kalksteinzugschlag einen um 19% höheren stat. E-Modul.

	Dichte	stat. E-Modul	Standard-	stat. E-Modul im
Probekörper	ρ _{mittel}	E _{b,mittel}	abweichung	Vergleich zu Rund-
	[kg/m³]	[N/mm²]	[N/mm²]	Korn (Q)
Q02d	2372	24315	201	
K02d	2366	29375	862	+21%
D02d	2419	18837	1032	-23%
Q07d	2381	28581	952	
K07d	2354	30036	1757	+5%
D07d	2420	22543	1601	-21%
Q28d	2360	29899	192	
K28d	2366	2366 35637 727		+19%
D28d	2426	31387	627	+5%

Tab. 30: mittl. stat. E-Modul je Gesteinsart und Betonalter [Autor]

Abb. 71: mittlerer statischer E-Modul – Q, K und D [Autor]

Bei den drei unterschiedlichen Probenarten wurde sichergestellt, dass der W/Z- Wert, das Alter und der Feuchtegehalt des Betons sowie der Volumenanteil der Gesteinskörner ident sind. Somit bleibt als wesentlicher Parameter zur Beeinflussung des E-Modul des Betons nur mehr der E-Modul der Gesteinskörner übrig. Betrachtet man die Entwicklung des E-Moduls im Abb. 72 genauer, stellt man fest, dass die Betonproben mit Dolomitzuschlag im Vergleich zu denen mit Quarzkieszuschlag nach ca. 22 Tagen steifer sind.

Abb. 72: Entwicklung des statischen E-Moduls – Q, K und D [Autor]

Das lässt die Schlussfolgerung zu, dass ein weiterer Parameter für die Entwicklung des Elastizitätsmoduls von Bedeutung ist. Wahrscheinlich ist der gute Haftverbund zwischen Gesteinskorn und Zementstein, wie bereits in *Kapitel 4.4 - Spaltzugversuch* erläutert, für die Erhöhung des E-Moduls verantwortlich.

Betrachtet man das Verhältnis zwischen E-Modul und Druck- bzw. Spaltzugfestigkeit (siehe Abb. 73 und Abb. 74) erkennt man bei den Proben mit Kantkornzuschlag einen steileren Anstieg im letzten Abschnitt (7 bis 28 Tage) des statischen Elastizitätsmoduls.

Abb. 73: Zunahme des statischen E-Moduls in Abhängigkeit zur Festigkeit (Links: Druckfestigkeit, Rechts: Spaltzugfestigkeit) [Autor]

Die höhere Steigerung des E-Moduls im Verhältnis der Druck bzw. Spaltzugfestigkeit beim Kantkornzuschlag (K-Kalkstein und D-Dolomit) kann wahrscheinlich auf den Anstieg des Elastizitätsmoduls des Zementsteines sowie auf die gute Verbundfestigkeit im Bereich der Kontaktzone zwischen Zementstein und Gesteinskorn zurückgeführt werden. Dadurch wird der E-Modul des Betons mit Kantkornzuschlag deutlich erhöht.

Abb. 74: Zunahme des statischen E-Moduls in Verhältnis zu seiner Festigkeitsentwicklung (Links: Druckfestigkeit, Rechts: Spaltzugfestigkeit) [Autor]

4.6 Uniaxialer Keilspaltversuch

4.6.1 Allgemeines

Die Keilspaltmethode ist ein Verfahren zur Ermittlung bruchmechanischer Kennwerte, wie des Risswiderstandes bzw. die spezifische Bruchenergie. Dabei wird an einen prismatischen oder zylindrischen Probekörper eine Starterkerbe eingeschnitten, um den Beginn des Risses zu definieren (siehe Abb. 75). Der Probekörper wird dann in der Prüfeinrichtung durch eine reibungsarme Keilbelastungseinrichtung auseinandergedrückt. Der dadurch entstehende Riss wird dann über die gesamte Prüfdauer mittels Wegaufnehmer in einem Last-Verschiebungsdiagramm aufgezeichnet. Somit wird das Vor- und Nachbruchlastverhalten aufgezeichnet und dient in weiterer Folge zur Ermittlung der spezifischen Bruchenergie G_F.

Abb. 75: Kraftübertragungsstücke (links) und Systemskizze Keilspaltmethode (rechts) nach [B3592]

4.6.2 Systemaufbau der Keilspaltmethode

Die einzelnen Komponenten der Keilspaltmethode werden im folgenden Abschnitt näher beschrieben:

Prüfmaschine

Zur Prüfdurchführung der Keilspaltmethode ist eine weggesteuerte Prüfmaschine erforderlich, mit der die Verschiebung des Keils in einer konstanten Geschwindigkeit von 0,1 bis 10 mm/min durchgeführt werden kann. Es kommt die mechanische Zug-Druckprüfmaschine Instron 4260 zum Einsatz, die schon beim statischen E-Modulversuch verwendet wurde (siehe Kapitel 4.5.2).

Probekörper

Für die Keilspaltmethode können gesägte, gebohrte oder in Form hergestellte Probekörper verwendet werden. Bezüglich der Form kommen, wie schon zuvor erwähnt, prismatische oder zylindrische Probekörper zur Anwendung. Nach der ÖNORM B 3592:2011 müssen zementgebundene Werkstoffe folgende in Abb. 76 dargestellten Mindestwerte bei den Abmessungen des Probenkörpers einhalten.

Abb. 76: Mindestabmessungen prismatischer Probekörper [Autor]

Aufgrund der Mindestmaße wurde ein Würfel mit einer Seitenlänge von 150 mm gewählt und einer Aussparung von 40x25 mm für die Lasteinleitungsflächen. Die einzelnen Probenabmessungen sind im Anhang auf der Seite 158 und 159 aufgelistet.

Prüfkeil, Lasteinleitungsvorrichtung und Kraftübertragungsstücke

Die Aufgabe des Prüfkeiles ist es, die von der Prüfmaschine erzeugte vertikale Druckkraft F_M in eine horizontale Spaltkraft F_H umzulenken. Je größer der Keilwinkel α , umso kleiner die Spaltkraft. In der Abb. 77 ist zur besseren Veranschaulichung die Kräfteverteilung mit den Prüfkeilwinkeln α und 2α abgebildet.

Abb. 77: Kräfteverteilung in Abhängigkeit des Keilwinkels [Autor]

Bei der Keilspaltmethode muss laut ÖNORM B 3592:2011 ein Prüfkeil aus Stahl verwendet werden, welcher bei spröden Probekörpern, wie Beton, einen Winkel von $(15 \pm 5)^{\circ}$ aufweisen muss. Für die Versuche in dieser Arbeit, wurde ein Keil mit einem Winkel von 15° verwendet. Die Lasteinleitung auf den Prüfkeil erfolgt mittig über einen halbzylinderförmigen Druckstempel, der eine gelenkige Lagerung des Keils sicherstellt, wie in Abb. 78 dargestellt.

Die Kraftübertragungsstücke (siehe Abb. 75 und Abb. 78) bestehen aus reibungsarmen Walzlagern, Stahlachsen und gefrästem Stahlrahmen. Deren Zweck ist die Übertragung der Prüflast auf die Lasteinleitungsflächen.

Lasteinleitungsflächen

Zur Übertragung der Horizontalkräfte auf die zu prüfende Ligamentfläche sind Lasteinleitungsflächen erforderlich. Dies können Lasteinleitungsplatten sein, die auf die Probekörper geklebt werden oder Lasteinleitungsflächen die direkt aus der Probe hergestellt werden. Letzteres wurde für diese Arbeit bei den Keilspaltversuchen angewandt.

Starterkerbe

Der Zweck der mittig angeordneten Starterkerbe ist es, dem Riss einen definierten Anfangspunkt zu geben. Laut ÖNORM B 3592:2011 wird vor dem Versuch eine Starterkerbe in die zu prüfende Ligamentfläche eingeschnitten. Diese weist eine Tiefe von 10% der Ligamenthöhe und einer Breite von $(3 \pm 0,5)$ mm auf. Zusätzlich sind bei Probekörpern aus einem Material und mit rechteckiger Ligamentfläche zusätzlich die vertikalen Seitenränder der Ligamentfläche einzuschneiden. Dabei beträgt die Tiefe 5% von der Ligamentbreite und die Schnittbreite $(3 \pm 0,5)$ mm.

Aufgrund der großen Probenabmessungen konnten bei diesen Versuchskörpern keine seitlichen Einschnitte von 5% der Ligamentfläche ausgeführt werden. Beim ersten Keilspaltversuch mit einer Starterkerbe von 10% der Ligamenthöhe bei der Probe Q28dK01 (siehe Abb. 79) entstand der Riss im Bereich der Lasteinleitungsfläche und hatte somit einen unzulässigen Rissverlauf. Deshalb fiel die Entscheidung die Starterkerbe auf 20% der Ligamenthöhe zu vergrößern, um so einen Rissbeginn in der Starterkerbe zu erreichen.

Abb. 79: Unzulässiger Rissverlauf bei der Probe Q28dK01 (Starterkerbe mit 10% der Ligamenthöhe) [Autor]

Wegaufnehmer

Für die Messung der Horizontalverformung werden zwei induktive Wegaufnehmer mit Wegtasterspitze verwendet. Diese werden kraftschlüssig mit dem Probekörper mittels einem Aluminiumrahmen, in der Höhe der Rollenlagerachse, verbunden (siehe Abb. 80). Je Seite wird ein Wegaufnehmer befestigt, um einen unsymmetrischen Rissverlauf zu erkennen. Durch die Aufzeichnung der Rissöffnung und der Last kann in weiterer Folge die Last-Verschiebungskurve erstellt werden (siehe Abb. 85).

Abb. 80: Anbringung der Wegaufnehmer [Autor]

4.6.3 Versuchsdurchführung

Alle Proben der Prüfserie 2d, 7d und 28d wurden mit derselben Sieblinie und Betonrezeptur, wie in *Kapitel 3* beschrieben, hergestellt. Die Versuchsproben wurden bis kurz vor der Prüfung in Wasser gelagert (siehe Kapitel 3.8).

Je Gesteinsart – Quarzkies, Kalkstein und Dolomit – wurden 15 Proben hergestellt. Wobei jeweils 5 Proben nach 2, 7 und 28 Tagen geprüft wurden. Dadurch soll Untersucht werden wie die Festigkeitsentwicklung des Betons mit den unterschiedlichen Gesteinsarten, sowie Kornform (Rundkorn und Kantkorn), sich auf den Risswiderstand und das Bruchverhalten auswirken.

Gesteinsart	Kurzbezeichnung	Alter	Anzahl	Anmerkung
	Q 02dK	2 Tage	5	
Quarzkies	Q 07dK	7 Tage	5	Rundkorn
	Q 28d	28 Tage	5	
	K 02dK	2 Tage	5	
Kalkstein	K 07dK	7 Tage	5	Kantkorn
	K 28dK	28 Tage	5	
	D 02dK	2 Tage	5	
Dolomit	D 07dK	7 Tage	5	Kantkorn
	D 28dK	28 Tage	5	
		45		

Tab. 31: Überblick Keilspaltversuch [Autor]

Kurz vor dem Versuch wurde die jeweilige Probe aus dem Wasserbad entnommen und die überschüssige Feuchtigkeit mit einem trockenen Tuch abgewischt. Danach wurde der Versuchskörper vermessen und gewogen (siehe Abb. 81, sowie Tab. 38 auf Seite 158 und Tab. 39 auf Seite 159).

- α Keilwinkel in Grad
- hLig Höhe der Ligamentfläche, in mm
- bLig Breite der Ligamentfläche, in mm
- ALig Ligamentfläche, in mm²
- a Abstand Kontaktpunkt Keil mit Rollenlager und Grund der Starterkerbe, in mm
- b Schwerpunktabstand Ligamentfläche, in mm

Abb. 81: Abmessungen [Autor]

Anschließend wurde der Aluminiumrahmen auf den Probekörper gelegt und mittels den Klemmschrauben befestigt. Die Probe wurde in die Prüfmaschine auf das Linienauflager gelegt und mittels Schaumkeilen fixiert. Danach wurden die Kraftübertragungsstücke, sowie der Prüfkeil eingelegt. Die beiden induktiven Wegaufnehmer wurden anschließend in die

vorgesehenen Öffnungen des Aluminiumrahmens geschoben und mit den Kunststoffklemmschrauben fixiert.

Abb. 82: Keilspaltversuch [Autor]

Als nächsten Schritt wurde die Lasteinleitungsvorrichtung abgesenkt und der Versuch konnte gestartet werden. Die Prüflast wurde mit einer geringen weggesteuerten Belastungsgeschwindigkeit von 1,75 mm/min aufgebracht um ein stabiles Aufspalten der Probe zu ermöglichen. Sobald die Probe vollständig versagt hat, wurde der Versuch beendet.

Abb. 83: Probe während Versuchsdurchführung (links: vorher, rechts: nachher) [Autor]

Abb. 84: Bruchflächenansicht beim Beton mit Dolomit- D28dK01 [Autor]

4.6.4 Versuchsauswertung

Die während der Versuche gemessene horizontale Verschiebung s der Schnittufer, sowie die aufgezeichnete Prüflast F_M werden für die Ermittlung der Kraft-Verschiebungskurve benötigt.

Abb. 85: Kraft-Verschiebungskurve zur Erläuterung der mittels Keilspaltmethode ermittelbaren bruchmechanischen Kennwerte [SCHNEE]

Die nachfolgend angeführten Formeln sind aus der ÖNORM B 3592:2011 entnommen. Die Kerbzugfestigkeit σ_{KZ} wird aus der maximalen Spaltkraft $F_{H,max}$, der Ligamentfläche A_{Lig} und dem aus den Abmessungen ergebenden Dreh- und Widerstandsmoment ermittelt. Weiterst ist die Kerbzugfestigkeit im Wesentlichen vergleichbar mit der Haftzugfestigkeit.

$$\sigma_{KZ} = \frac{F_{H,max}}{A_{Lig}} + \frac{M_b}{W_y} \qquad [N/mm^2] \qquad \qquad \text{Kerbzugfestigkeit } \sigma_{KZ} \text{ (4.15)}$$

Die maximale Horizontalkraft $F_{H,max}$ wird über die aufgebrachte Vertikallast F_M der Prüfmaschine und dem Lastumlenkungswinkel, der durch den Keilwinkel α bestimmt wird, berechnet (siehe Abb. 86).

$$F_{H} = \frac{F_{M}}{2\tan\left(\frac{\alpha}{2}\right)}$$
 [N] Horizontalkraft F_H (4.16)

Abb. 86: Systemskizze Probekörper und Kräfte [Autor]

$A_{Lig} = h_{Lig} \cdot b_{Lig}$	[mm²]	Ligamentfläche A _{Lig} (4.17)
$M_b = F_H \cdot (a+b)$	[Nm]	Drehmoment M_b (4.18)
$W_y = \frac{b_{Lig} \cdot h_{Lig}^2}{6}$	[mm³]	Widerstandsmoment W_y (4.19)

Die spezifische Bruchenergie ist das Flächenintegral der Kraft-Verschiebungskurve, bezogen auf die Bruch- bzw. Ligamentfläche (siehe Abb. 85).

$$G_F = \frac{1}{A_{Lig}} \int_{0}^{s_{max}} F_H \cdot ds \qquad [J/m^2] \text{ bzw. [N/m]} \qquad \text{spez. Bruchenergie } G_F \text{ (4.20)}$$

s horizontale Verschiebung der Rissufer [m]

Die charakteristische Länge l_{ch} ist als Maß für die Sprödigkeit eines Werkstoffs definiert und kann mit bekannten Elastizitätsmodul E, welches im *Kapitel 4.5* ermittelt wurde, berechnet werden. Eine kleine charakteristische Länge, wie beim Beton $l_{ch} = 0,2$ m, bedeutet sprödes Materialverhalten und eine große charakteristische Länge (z.B. Asphalt bei +10°C $l_{ch} = 0,6$ m) deutet auf duktiles Materialverhalten hin.

$$l_{ch} = \frac{G_F \cdot E}{\sigma_{KZ}^2} \qquad [m] \qquad \qquad \text{charakteristische Länge } l_{ch}$$
(4.21)

E Elastizitätsmodul [N/m²]

Bei der Auswertung der Versuchsergebnisse ist zu beachten, dass eine Prüfung, laut ÖNORM B 3592:2011, nur gültig ist wenn der Rissverlauf nicht mehr als 12,5° von der Vertikalen abweicht. Beispiele für zulässige und unzulässige Rissverläufe sind in der Abb. 87 dargestellt.

Abb. 87: Beispiele für Rissverläufe nach [B3592]

Nach dem Abschluss aller Keilspaltversuche, sowie deren Beurteilung hinsichtlich des Bruchtyps, ergab sich folgendes Ergebnis. Insgesamt hatten 15 von 45 Proben (33,3%) einen zulässigen Rissverlauf. Vor allem bei der Versuchsreihe Q mit Quarzkies als Zuschlag ist die Anzahl an zulässigen Proben besonders niedrig mit 13,3%. Die Versuchsreihen K und D mit Kantkorn als Zuschlag, haben einen deutlich höheren Anteil an zulässigen Proben. Einen Einfluss des Betonalters auf den Rissverlauf ist nicht zu erkennen.

Gesteinsart		Kurzbezeich- nung	Alter	Anzahl	davon mit zulässigen Rissverlauf		sigen f	
E		Q 02d	2 Tage	5	0	0%		
ldko	Quarzkies	Q 07d	7 Tage	5	1	20%	13,3%	
Rur		Q 28d	28 Tage	5	1	20%		
Ę	Kalkstein Dolomit	K 02d	2 Tage	5	2	40%		
Itkoi		K 07d	7 Tage	5	1	20%	46,7%	
Kar		K 28d	28 Tage	5	4	80%		
Ę		D 02d	2 Tage	5	0	0%		
otkoi		D 07d	7 Tage	5	4	80%	40%	
Kar		D 28d	28 Tage	5	2	40%		
			Probenanzahl	45	15	33,3	3%	

Tab. 32: Anzahl der zulässigen Rissverläufe [Autor]

In der ÖNORM B 3592:2011 gibt es Regelungen, bezüglich der Auswertung und der Mittelwertbildung, weshalb in weiterer Folge nur die in Tab. 33 dargestellten Werte heraus kamen.

				Auswertung It. ÖNORM B3592				Auswertung It. ÖNORM B3592								
				Kerb	zug-	Star	ndard-	Riss-	sp	ez.	Sta	ndard-	cha	rakt.	Sta	indard-
	Probe-	ss- auf		festi	gkeit	abwe	ichung	öffn.	Bruch	nener	abw	eichung	Lär	nge	abw	eichung
	körper	Ris verl	$\mathbf{F}_{\mathrm{H,max}}$	σ _{κz}	$\sigma_{\text{KZ},m}$			S _{max}	\mathbf{G}_{F}	G _{F,m}			I _{ch}	I _{ch,m}		
		-	[N]	[N/mm²]	[N/mm²]	[N/mm²]	[%]	[mm]	[N/m]	[N/m]	[N/m]	[%]	[m]	[m]	[m]	[%]
	D07dK01	zul.	8659	3,4			v 0,7%	1,2	120			v 1,0%	0,25			v 0,1%
p	D07dK02	zul.	8016	3,2			┥ 6,3%	1,0	102			🖋 14,6%	0,24			v 2,4%
0	D07dK03	zul.	8980	3,5	3,4	0,1	v 2,4%	1,3	131	119	9	10,3%	0,26 0,25	0,01 🗹 5,4%		
Δ	D07dK04	zul.	8720	3,5			v 3,3%	1,2	123			v 3,3%	0,24			v 2,9%
	D07dK05	unzul.	9183	3,7				1,6	130							
	K28dK01	zul.	10743	4,4		~	v 3,9%	1,0	125			v 4,8%	0,16			v 2,9%
D	K28dK02	zul.	10539	4,3			🖋 1,6%	0,9	116			v 2,4%	0,15			v 5,4%
28	K28dK03	zul.	10112	4,2	4,2	0,1	v 0,2%	1,0	130	119 10	10	v 9,4%	0,18	0,16	0,01	10,0%
Y	K28dK04	zul.	9916	4,0			✓ 5,3%	0,8	105			11,8%	0,16			v 1,7%
	K28dK05	unzul.	10646	4,4				1,5	167							

Tab. 33: Zusammenfassung der Auswertung nach ÖNORM B 3592:2011 [Autor]

Aufgrund der geringen Anzahl der daraus ermittelten Werte, wurde auf die Einhaltung der mind. Anzahl für die Mittelwertberechnung verzichtet. Die so ermittelten Werte sind in der nachfolgenden Tab. 34 angeben.

				Auswertung nicht laut ONORM B3592													
		.		Kerbzug-		Standard-		Riss-	spez.		Standard-		charakt.		Standard-		
	Probe-	ss- auf		festigkeit		abweichung		öffn.	Bruchener		abweichung		Länge		abweichung		
körper		Ri: /er	F _{H,max}	$\sigma_{KZ} \sigma_{KZ,m}$				S _{max}	G_F	G _F G _{F,m}				I _{ch} I _{ch,m}			
		-	[N]	[N/mm²]	[N/mm²]	[N/mm²]	[%]	[mm]	[N/m]	[N/m]	[N/m]	[%]	[m]	[m]	[m]	[%]
K 02d	K02dK01	unzul.	5916	2,4				1,2	42								
	K02dK02	unzul.	7119	2,8				1,7	112								
	K02dK03	zul.	7422	2,9	2,5	0,4	🖋 17,6%	1,2	93	100	7	v 7,3%	0,26	0,26	0,18		0,0%
	K02dK04	zul.	5154	2,1			🖋 17,6%	2,0	108			v 7,3%	0,62			×	135%
	K02dK05	unzul.	6449	2,5				0,9	43								
Q 07d	Q07dK01	unzul.	4981	2,0		0,0		1,4	55	97	0			0,28			
	Q07dK02	unzul.	3934	1,5				2,2	46						0,00		
	Q07dK03	unzul.	8578	3,3	2,9			1,1	81								
	Q07dK04	unzul.	5397	2,1				1,9	54								
	Q07dK05	zul.	7369	2,9			v 0,0%	1,4	97			v 0,0%	0,28				0,0%
K 07d	K07dK01	unzul.	6936	2,8	3,7	0,0		1,5	80	144	0			0,26			
	K07dK02	unzul.	5838	2,3				1,6	35								
	K07dK03	unzul.	6680	2,6				1,3	35						0,00		
	K07dK04	unzul.	5885	2,3				1,2	56								
	K07dK05	zul.	9258	3,7			v 0,0%	1,2	144			v 0,0%	0,26			~	0,0%
D 07d	D07dK01	zul.	8659	3,4	3,4	0,1	v 0,7%	1,2	120	119	9	1,0%	0,25		0,01	>	0,1%
	D07dK02	zul.	8016	3,2			v 6,3%	1,0	102			🖋 14,6%	0,24			~	2,4%
	D07dK03	zul.	8980	3,5			🖌 2,4%	1,3	131			🖋 10,3%	0,26	0,25		~	5,4%
	D07dK04	zul.	8720	3,5			v 3,3%	1,2	123			v 3,3%	0,24			~	2,9%
	D07dK05	unzul.	9183	3,7				1,6	130								
Q 28d	Q28dK01	unzul.	8163	2,6	4,0	0,5		1,1	56	142	37				0,00		
	Q28dK02	unzul.	7079	2,8				1,6	68								
	Q28dK03	unzul.	7803	3,2				1,3	95					0,22			
	Q28dK04	unzul.	8586	3,5				0,3	37								
	Q28dK05	zul.	9908	4,0			v 0,0%	1,1	142			v 0,0%	0,22			~	0,0%
K 28d	K28dK01	zul.	10743	4,4		0,1	🖌 3,9%	1,0	125	119	10	v 4,8%	0,16	0,16		>	2,9%
	K28dK02	zul.	10539	4,3			🖌 1,6%	0,9	116			2,4%	0,15			~	5,4%
	K28dK03	zul.	10112	4,2	4,2		v 0,2%	1,0	130			9,4%	0,18		0,01	v 1	0,0%
	K28dK04	zul.	9916	4,0			v 5,3%	0,8	105			🖋 11,8%	0,16			~	1,7%
	K28dK05	unzul.	10646	4,4				1,5	167								
D 28d	D28dK01	zul.	9281	3,7	3,8	0,1	v 2,3%	1,1	124	126	3	v 2,0%	0,21	0,21			2,6%
	D28dK02	unzul.	9840	4,1				1,4	160								
	D28dK03	unzul.	10060	4,1				1,5	169						0,01		
	D28dK04	zul.	8831	3,9			v 2,3%	1,3	129			2,0%	0,20				2,6%
	D28dK05	unzul.	9729	3,9				1,7	179								

Tab. 34: Zusammenfassung der Auswertung nicht nach ÖNORM B 3592:2011 [Autor]

Beim Probekörper K07dK05 haben sich während dem Versuch, die nicht ordnungsgemäß angebrachten Kraftübertragungsstücke bewegt. In Abb. 88 sieht man den horizontalen Abschnitt der Last-Verschiebungskurve in der sich die Kraftübertragungsstücke an die Lasteinleitungsflächen anpassen und sich dann erst die Prüflast weiter erhöht. Aufgrund der Tatsache das der Versuchskörper K07dK05 (sieben Tage alter Beton mit Kalksteinzuschlag) die einzige Probe mit zulässigem Rissverlauf war, entschloss ich mich die Last-Verschiebungskurve zu korrigieren. Die Korrekturschritte sind in Abb. 131 auf Seite 178 dargestellt,

sowie die korrigierte Last-Verschiebungskurve in Abb. 132 auf Seite 178. Nachfolgend ist in Abb. 88 die Last-Verschiebungskurve vor und nach der Änderung dargestellt.

Abb. 88: Probe K07dK05 - Überblick Last-Verschiebungskurve vor (links) und nach (rechts) der Korrektur [Autor]

Die spezifische Bruchenergie G_F des Probekörpers K07dK05 betrug vor der Korrektur 289 N/m und eine Rissöffnung von 2,1 mm. Mit der korrigierten Last-Verschiebungskurve beträgt die spez. Bruchenergie nur mehr 144 N/m, sowie eine Rissöffnung von 1,2 mm, was im Vergleich zu den anderen Werten weiterhin (siehe Abb. 89) als zu hoch bewertet wurde.

Aufgrund der geringen Anzahl zulässiger Rissverläufe beim Keilspaltversuch haben die Ergebnisse keinen allzu großen Stellenwert. Sie bieten jedoch die Möglichkeit gewisse Schlussfolgerungen zu ziehen. In Abb. 89 ist die Auswertung der mittleren spez. Bruchenergie, charakteristischen Länge sowie Kerbzugfestigkeit in Abhängigkeit des Betonalters dargestellt. Die spezifische Bruchenergie bei Quarzkies ist ungefähr bis zum 10.Tag am niedrigsten und erreicht nach 28 Tagen den höchsten Wert. Bei der charakteristischen Länge fällt auf, dass der Beton mit Kantkornzuschlag (Kalkstein und Dolomit) im Vergleich zum Rundkornzuschlag ein spröderes Materialverhalten aufweist. Vor allem der Kalksteinzuschlag hat mit einer mittleren charakteristischen Länge von 0,16 m nach 28 Tagen einen besonders niedrigeren Wert, was der hohen Steifigkeit der Gesteinskörnung zugeschrieben werden kann.

Abb. 89: mittl. spez. Bruchenergie, charakt. Länge und Kerbzugfestigkeit [Autor]

Da die Probe K02dK04 mit einer charakteristischen Länge I_{ch} von 0,62 m um ein Vielfaches von dem zu erwartenden Wert abweicht, wurde es für die Ermittlung der mittleren charakteristische Länge I_{ch,m} der Versuchsreiche K02d nicht berücksichtigt (siehe Tab. 34).

Abb. 90: Last-Verschiebungskurve – Beton nach 2 Tagen [Autor]

Abb. 91: Last-Verschiebungskurve – Beton nach 7 Tagen [Autor]

In den Last-Verschiebungskurven der 28 Tage alten Betonproben sind keine besonderen Unterschiede zwischen Rund- und Kantkornzuschlag erkennbar.

Abb. 92: Last-Verschiebungskurve – Beton nach 28 Tagen [Autor]

Rissarten und Spannungen in der Rissebene

Um auch noch die restlichen Versuchsproben, die einen unzulässigen Rissverlauf aufweisen, auswerten zu können, kategorisierte ich die einzelnen Rissverläufe in drei Gruppen. Anschließend wurde aufgrund geometrische Beziehungen die Kraftanteile die normal und parallel zu Rissebene wirken berechnet. Die dadurch ermittelten Kräfte ergeben dann die Kerbzugfestigkeit σ_{KZ} bzw. $\sigma_{KZ,\beta}$ sowie die Schubfestigkeit τ_V bzw. $\tau_{V,\beta}$ in der Ligamentfläche, bezogen auf die Bruchfläche.

Die erste Gruppe, die sogenannte Rissart 1, sind die Proben mit zulässigen Rissverlauf innerhalb dem Winkel von \pm 12,5° (siehe Abb. 93). Sie stimmt mit der zuvor durchgeführten Auswertung überein und wurde zusätzlich noch mit der Berechnung der Schubfestigkeit τ_V erweitert.

Rissart 1

$$\tau_V = \frac{F_{V,max}}{A_{Lia}}$$

[N/mm²]

Schubfestigkeit τ_V (4.22)

Aus Bruchmechanischer Sicht entspricht die Rissart 1 der Rissöffnungsart - Modus I laut Abb. 37 auf Seite 65.

Abb. 93: Systemskizze – Rissart 1 [Autor]

Die Rissart 2, hat einen Rissverlauf der in der Starterkerbe beginnt aber nicht innerhalb dem Winkel von $\pm 12,5^{\circ}$ verläuft (siehe Abb. 94). Da der Winkel β bei der Rissart 2 und 3, nicht mehr vernachlässigbar ist, wird er bei der Ermittlung der Kräfte berücksichtigt.

Rissart 2 u. 3

$$\sigma_{KZ,\beta} = \frac{F_{H,\beta,max}}{A_{Lig,\beta}} + \frac{M_{b,\beta}}{W_{y,\beta}} \qquad [N/mm^2] \qquad \text{Kerbzugfestigkeit } \sigma_{KZ,\beta} \text{ (4.23)}$$

$$\tau_{V,\beta} = \frac{F_{V,\beta,max}}{A_{Lig}} \qquad [N/mm^2] \qquad \text{Schubfestigkeit } \tau_{V,\beta} \text{ (4.24)}$$

β Winkel zw. Lot und Ligamentfläche

Abb. 94: Systemskizze – Rissart 2 [Autor]

Mit der letzten Gruppe, Rissart 3, wären alle Rissvarianten die beim Keilspaltversuch aufgetreten sind abgedeckt. Bei der Rissart 3 beginnt der Riss in der Ecke für die Aussparung der Lasteinleitungsflächen (siehe Abb. 95). Der Riss verläuft dann in einem Winkelbereich von 40° bis 55° zur Vertikalen.

Abb. 95: Systemskizze – Rissart 3 [Autor]

Die Rissarten 2 und 3 sind in eine Mischform der Rissöffnungsarten – Modus I (Öffnungsmodus) und Modus II (Ebener Schermodus).

Durch die Auswertung der Spannungen innerhalb der Rissebene, hat man jetzt die Möglichkeit die zulässigen und unzulässigen Proben miteinander zu vergleichen (siehe Abb. 96). Die Probe D28dK05 hat einen sehr ungleichmäßigen Rissverlauf (β = 10° bis 25°) und weicht deshalb stark von den anderen Proben mit gleicher Rissart ab. Außerdem fällt auf, dass bei der Rissart 3 die Proben mit Q - Quarzkies (Rundkorn) eine relativ große Streuung bei dem jeweiligen Betonalter aufweisen.

Abb. 96: Schub- und Kerbzugfestigkeitsdiagramm [Autor]

In der nachfolgenden Abbildung ist die spezifische Bruchenergie, getrennt nach den jeweiligen Rissarten, dargestellt. Hierbei wurden nur die Versuchsdaten der Last-Verschiebungskurve, welche durch die Spaltkraft F_H und der horizontalen Verschiebung s ermittelt wurde, verwendet. Das heißt es wurden keine geometrische Beziehung wie bei der Spannungsermittlung in der Rissebene angewandt, da der Aufwand zu groß wäre (Modus II). In der Abb. 97 kann man erkennen, dass bei der Rissart 3, in welcher der ebene Schermodus (Mode II) überwiegt, die ursprünglich ermittelte spezifische Bruchenergie keine Aussagekraft hat.

Abb. 97: Aussagekraft der spez. Bruchenergie (Basis: horizontale Spaltkraft F_H und Verschiebung s) beim Übergang von Mode I zu Mode II [Autor]

5 Zusammenfassung und Ausblick

Beton ist ein vielseitiger und kostengünstiger Werkstoff, der es ermöglicht Bauwerke wirtschaftlich herzustellen. Bezüglich der Wirtschaftlichkeit sind vor allem beim Ortbeton die kurzen Transportwege wichtig. Dabei spielt der Zuschlagsstoff eine besondere Rolle, da er im Normalfall 70% des Betonvolumens einnimmt. Durch die immer knapper werdenden Ressourcen und mit dem Blick auf die Umwelt, wird es immer wichtiger die vor Ort anstehenden Gesteinsvorkommen zu nutzen. Denn häufig übersteigen bei größeren Entfernungen die Transportkosten dieser Massenrohstoffe die Kosten für Gewinnung und Aufbereitung. Darüber hinaus führen Schwerlasttransporte über lange Strecken zu einer erheblichen Belastung der Umwelt und der Verkehrswege. Somit ist ersichtlich, dass dem Kantkornzuschlag eine immer bedeutendere Rolle zukommen wird.

Das Ziel dieser Arbeit ist die Untersuchung des Bruchverhaltens von Beton mit unterschiedlichen Zuschlägen. Dabei soll der Rundkornzuschlag mit dem Bruchsteinzuschlag verglichen werden. Es soll geprüft werden, welchen Einfluss die Kornform und die Art des Zuschlagstoffes auf die Festigkeitsentwicklung des Betons hat. Für die Versuche wurden Kantkorn-Zuschläge (Dolomit und Kalkstein) aus Kroatien und ein Rundkorn-Zuschlag (Quarzkies) aus Österreich verwendet. Aus den drei unterschiedlichen Zuschlägen, die jeweils andere Sieblinien aufwiesen, wurden drei idente Sieblinien hergestellt. Dies war notwendig um die Vergleichbarkeit der Zuschläge untereinander zu ermöglichen. Dadurch war das Führen von Rückschlüsse betreffend dem Einfluss des Zuschlags auf die Festigkeit erst möglich. Bei Proben mit unterschiedlichem Betonalter wurden anschließend Prüfungen der Druck-, Spaltzug- und Kerbspaltzugfestigkeit durchgeführt, sowie das statische Elastizitätsmodul ermittelt.

Verarbeitbarkeit

Hinsichtlich der Verarbeitbarkeit war schon von vorhinein klar, dass der Rundkornzuschlag im Vergleich zum Kantkornzuschlag einfacher zu verarbeiten ist. Das Bedeutet eine höhere Konsistenzklasse bei gleichem W/Z-Wert und somit wird eine geringere Verdichtungsenergie benötigt. Betreffend der Verarbeitbarkeit ist die Zuordnung die, dass der Quarzkies am einfachsten zum Einbringen und Verdichten war, gefolgt von Kalkstein und am schwierigsten war der Dolomit.

Druckfestigkeit

Bei der Druckfestigkeit konnte man erkennen, dass bei Proben mit Kantkornzuschlag im Vergleich zum Rundkornzuschlag, bei gleichen Bedingungen, die Druckfestigkeit nach 2 Tagen um 30 - 67%, nach 7 Tagen 22 - 28% und nach 28 Tagen nur mehr 1 - 10% größer
war. Der Einfluss der Kornform auf die Druckfestigkeit wird mit steigendem Betonalter geringer.

Ebenfalls interessant war die Entwicklung zwischen den beiden Kantkornzuschlägen (Kalkstein und Dolomit). Anfänglich verfügte der Dolomitzuschlag über die höchste Druckfestigkeit. Bedingt durch die schwächere Festigkeitszunahme des Dolomitzuschlags nach ca. 8 Tagen, wurde er vom Kalksteinzuschlag übertroffen. Beim Kalksteinzuschlag war besonders die Festigkeitssteigerung innerhalb der ersten 7 Tagen sehr hoch. Aufgrund der annähernd selben Kornform und Oberflächenrauigkeit im Falle von Kalkstein und Dolomit leisten diese beiden Faktoren vermutlich keinen Beitrag zum unterschiedlichen Verlauf der Druckfestigkeitskurven. Die starke Festigkeitssteigerung war wahrscheinlich auf die chemische Grenzflächenreaktion zwischen Zementstein und Kalkstein zurückzuführen, welche die Haftung zwischen den einzelnen Phasen verbesserte. Bei dieser Reaktion findet eine Art "Korrosion" bzw. Ätzen der Calcit¹⁷-Oberfläche beim Gesteinskorn statt, welches durch die anschließende Ausfällung von vielen kleinen Kristallen für die Festigkeitserhöhung verantwortlich ist. Dadurch ist die Bindung zwischen Calcit und Zementstein besser als bei anderen Zuschlagsstoffen.

Außerdem wies der Beton mit Rund- und Kantkornzuschlag sehr ähnliche Rissmuster auf. Deshalb war anhand der Bruchfläche kein Unterschied erkennbar, aber verglich man die Druckfestigkeiten war deutlich ersichtlich, dass die Druckfestigkeit beim Beton mit Kantkornzuschlag höher war. Das wurde vor allem auf die bessere Verbundfestigkeit zwischen Zementstein und Gesteinskorn zurückgeführt. Das Rundkorn des Quarzkieses hat aufgrund seiner Form eine geringere Oberfläche, als ein vergleichbares Kantkorn, was zu einer höheren Spannung in der Kontaktzone führte. Ebenfalls ist die Oberflächenbeschaffenheit des Quarzkieses deutlich glatter als beim Bruchsteinzuschlag (Kalkstein und Dolomit), was eine schlechtere Verzahnung in der Kontaktfläche bewirkte.

Spaltzugfestigkeit

Bei den Auswertungen der Spaltzugversuche konnte man bei den Festigkeiten erkennen, dass beim Beton mit Kantkornzuschlag im Vergleich¹⁸ zum Rundkornzuschlag, bei gleichen Bedingungen, die Spaltzugfestigkeit nach 2 Tagen um 28 - 37%, nach 7 Tagen 11 - 16% und nach 28 Tagen um 22 - 45% größer war. Das lag an der besseren Haftung und Verzahnung zwischen Zementstein und der rauen Oberfläche der gebrochenen Gesteinskörnung.

¹⁷ Der Kalkstein besteht chemisch aus Calcit (CaCO₃)

¹⁸ Hierbei wird die Spaltzugfestigkeit des Betons mit Rundkornzuschlag (Quarzkies), welche nach 2, 7 und 28 Tagen ermittelt wurde, mit 100% angegeben und dient somit als Ausgangslage für den Vergleich mit den Kantkornzuschlägen.

Bei der Spaltzugfestigkeitsentwicklung zeigte sich derselbe Verlauf, wie bei der Druckfestigkeitsentwicklung, zwischen den Kantkornzuschlägen Kalkstein und Dolomit. Dabei war vor allem die rapid ansteigende Frühfestigkeit auffällig. Diese Entwicklung wurde, wie schon bei der Auswertung der Druckfestigkeit erwähnt, auf die Grenzflächenreaktion zwischen dem Kalksteinzuschlag und der Zementmatrix zurückgeführt.

Beim Dolomitzuschlag war die Erhöhung der Spaltzugfestigkeit nicht im selben Ausmaß wie beim Kalksteinzuschlag, da der Dolomit einen geringeren Anteil an Calcit aufwies und somit die Reaktion mit dem Zementstein geringer ausfiel.

Bei der Betrachtung der Bruchflächen der Betonproben mit dem Zuschlagstoff Q-Quarzkies (Rundkorn) konnte man die Veränderung der Bruchart erkennen. Beim zwei Tage alten Beton mit Quarzkieszuschlag verlief die Bruchfläche vollständig durch den Zementstein und die Gesteinskörner wurden "ausgeschält". Dafür wurde vor allem die Haftung zwischen Zementstein und Gesteinskorn, aufgrund der geringen Rauigkeit des Rundkorns, verantwortlich gemacht. Die sieben Tage alten Proben zeigten bereits eine Verbesserung, dabei verlief der Bruch zum größten Teil durch den Zementstein und spaltete vereinzelt Gesteinskörner. Nach 28 Tagen verlief der Bruch, zur Hälfte durch die Zementmatrix und zur Hälfte durch die Gesteinskörnung.

Bei der Untersuchung der Bruchflächen beim Kantkornzuschlag – Kalkstein und Dolomit – konnte man bereits in der frühen Phase erkennen, dass ein geringer Anteil der Bruchfläche durch das Gesteinskorn verläuft. Der gute Verbund zwischen Zementstein und Gesteinskorn ist vor allem durch Rauigkeit des Kantkorns bestimmt und der Grenzflächenreaktion zwischen dem Calcit und der Zementmatrix. Nach sieben Tagen verlief der Bruch ungefähr schon zur Hälfte durch das Gesteinskorn und nach 28 Tagen schon fast vollständig durch den Zuschlag.

statischer Elastizitätsmodul

Beim statischen Elastizitätsmodul konnte man eine entgegengesetzte Ausgangslage beim Verhältnis von Kantkornzuschlag (Kalkstein und Dolomit) zu Rundkornzuschlag erkennen. Der Beton mit Kalksteinzuschlag hatte bei einem Alter von 2 Tagen einen um 21% höheren stat. Elastizitätsmodul als der Beton mit Quarzkieszuschlag. Das Gegenteilige war beim Beton mit Dolomit Zuschlag zu erkennen, der einen um 23% geringeren statischen E-Modul aufwies als der Beton mit Quarzkieszuschlag. Mit höherem Betonalter verringerte sich der Abstand des statischen E-Moduls zwischen den Zuschlägen Dolomit und Quarzkies. Nach 28 Tagen hatte der Beton mit Dolomitzuschlag einen um 5% höheren und der Kalksteinzugschlag einen um 19% höheren stat. E-Modul.

Bei den drei unterschiedlichen Probenarten wurde sichergestellt, dass der W/Z- Wert, das Alter und der Feuchtegehalt des Betons sowie der Volumenanteil der Gesteinskörner ident

waren. Somit blieb als wesentlicher Parameter zur Beeinflussung des E-Modul des Betons nur mehr der E-Modul der Gesteinskörner übrig. Betrachtete man die Entwicklung des E-Moduls genauer, stellte man fest, dass die Betonproben mit Dolomitzuschlag im Vergleich zu denen mit Quarzkieszuschlag nach ca. 22 Tagen steifer war. Das ließ die Schlussfolgerung zu, dass ein weiterer Parameter für die Entwicklung des Elastizitätsmoduls von Bedeutung ist. Wahrscheinlich ist der gute Haftverbund zwischen Gesteinskorn und Zementstein, für die Erhöhung des E-Moduls verantwortlich.

Betrachtete man das Verhältnis zwischen E-Modul und Druck- bzw. Spaltzugfestigkeit konnte man den steileren Anstieg im letzten Abschnitt (7 bis 28 Tage) des statischen Elastizitätsmoduls erkennen. Die höhere Steigerung des E-Moduls bei den Proben mit Kantkornzuschlag (K-Kalkstein und D-Dolomit) könnte auf den Anstieg des Elastizitätsmoduls des Zementsteines, in Kombination mit der guten Verbundfestigkeit im Bereich der Kontaktzone zwischen Zementstein und Gesteinskorn zurückgeführt werden.

Uniaxialer Keilspaltversuch

Die spezifische Bruchenergie bei Quarzkies war ungefähr bis zum 10.Tag am niedrigsten und erreichte nach 28 Tagen den höchsten Wert. Bei der charakteristischen Länge fiel auf, dass der Beton mit Kantkornzuschlag (Kalkstein und Dolomit) im Vergleich zum Rundkornzuschlag ein spröderes Materialverhalten aufwies. Vor allem der Kalksteinzuschlag hatte mit einer mittleren charakteristischen Länge von 0,16 m nach 28 Tagen einen besonders niedrigen Wert, was der hohen Steifigkeit der Gesteinskörnung zugeschrieben werden konnte.

Aufgrund der geringen Anzahl zulässiger Rissverläufe beim Keilspaltversuch konnte den Ergebnissen kein allzu großer Stellenwert zugeschrieben werden.

Insgesamt konnte gezeigt werden das bei der Verwendung von Bruchstein als Zuschlagsstoff, deutlich höhere Festigkeiten erzielt werden können als mit dem Rundkornzuschlag. Deshalb wäre es Empfehlenswert in diesem Bereich noch weitere Untersuchungen hinsichtlich der Verarbeitbarkeit, sowie dem Vor- und Nachbruchverhalten zu führen.

6 Literaturverzeichnis

- [ARPN2006] RIFATH, Sharmin; MUSHTAQ, Ahmed; MOHIUDDIN, Ahmed: Comparison of strength performance of concrete with uncrushed or crushed coarse aggregates, ARPN Journal of Engineering and Applied Sciences, Volume 1, No. 2, August 2006
- [B20] BISCOPING, Michaela; KAMPEN, Rolf; InformationsZentrum Beton GmbH: Zement-Merkblätter Nr. B 20 - Zusammensetzung von Normalbeton – Mischungsberechnung, Erkrath: InformationsZentrum Beton GmbH, Februar 2017
- [BETON16] BERGMEISTER, Konrad; FINGERLOOS, Frank; WÖRNER, Johann-Dietrich: Betonkalender 2016, 105 Jahrgang – Berlin: Wilhelm Ernst & Sohn, 2016
- [BETONHER] PICKHARDT, Roland; BOSE, Thomas; SCHÄFER, Wolfgang: Beton -Herstellung nach Norm; 21 überarbeitete Auflage – Erkrath: VBT Verlag Bau u. Technik, 2016
- [BETONZUS] Grundsätze für die Erteilung von Zulassungen für Betonzusatzmittel (Zulassungsgrundsätze), März 2002, Zulassungs- und Überwachungsgrundsätze Betonzusatzmittel, Schriften des Deutschen Instituts für Bautechnik, Reihe B, H. 10, Berlin 2002.
- [BRUCHME] GROSS, Dietmar; SEELIG, Thomas: Bruchmechanik Mit Einführung in die Mikromechanik; 5. erweiterte Auflage – Berlin Heidelberg : Springer Verlag, 2011
- [DAUER13] STARK, Jochen; WICHT, Bernd: Dauerhaftigkeit von Beton; 2. aktualisierte und erweiterte Auflage; Berlin Heidelberg : Springer Verlag, 2013
- [ENER2017] MOHAMED, Ibrahim Hachani; ABDELOUAHED Kriker; MEHDI, Seghiri: Experimental study and comparison between the use of natural and artificial coarse aggregate in concrete mixture, Energy Procedia, Volume 119, July 2017, S. 182-191
- [FELS2017] ENGEL, Jens; LAUER, Carsten: Einführung in die Boden- und Felsmechanik - Grundlagen und Berechnungen; 2. aktualisierte Auflage; München: Carl Hanser Verlag GmbH & Co. KG, 2017
- [GEO2015] McCANN, Tom; MANCHEGO VALDIVIA, Mario: Geologie im Gelände Das Outdoor Handbuch; Berlin Heidelberg : Springer Verlag, 2015

- [GRIFFITH] GRIFFITH; Alan Arnold: The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, Volume 221, 1921, S.163-198
- [ING2010] REINHARDT, Hans-Wolf: Ingenieurbaustoffe; 2 vollständig überarbeitete Auflage – Berlin: Wilhelm Ernst & Sohn, 2010
- [INTERACT] MONTEIRO, P.J.M.; MEHTA, P.K.: Interaction between carbonate rock and cement paste; Cement and Concrete Research, Volume 16, Issue 2, March 1986, S. 127-134
- [IRWIN] IRWIN; George Rankin: Analysis of stresses and strains near the end of a crackt traversing a plate, Journal of Applied Mechanics, Vol. 24, 1957, S.361-364
- [KUNA2010] KUNA, Meinhard: Numerische Beanspruchungsanalyse von Rissen Finite Elemente in der Bruchmechanik; 2. Auflage – Wiesbaden: Vieweg+Teubner Verlag, 2010
- [PHECIM] HEĆIMOVIĆ, Ivan: Geological Map of the Republic of Croatia at the Scale 1:300000, Kartografija i geoinformacije - Zagreb, 2010, Vol.9 No.14, S.126-132
- [PMOBR] MOHR, Benjamin; BRYANT, Lindsay: Utilization of quarry by-products for reduction of expansion due to alkali-aggregate reaction, Cement and Concrete Composites, Volume 73, Oktober 2016, S. 235-240
- [SCHNEE] A. Schneemayer: Uniaxiales und biaxiales Bruchverhalten von Faserbeton; Diplomarbeit an der TU Wien, Institut für Hochbau und Technologie, 2010
- [SPANVE73] WISCHERS, Gerd; LUSCHE Manfred: Einfluß der inneren Spannungsverteilung auf das Tragverhalten von druckbeanspruchtem Normal- und Leichtbeton; Betontechnische Berichte 13, 1973, S.135-163
- [TRIAX2014] PIOTROWSKA, E.; MALECOT, Y.; KE, Y.: Experimental investigation of the effect of coarse aggregate shape and composition on concrete triaxial behaviour, Mechanics of Materials, Volume 79, December 2014, S.45-57
- [TRUNK99] TRUNK, Bernhard Günter: Einfluss der Bauteilgröße auf die Bruchenergie von Beton, Dissertation an der Technischen Hochschule Zürich, 1999
- [WENDBAU] NEROTH, Günter; VOLLENSCHAAR Dieter: Wendehorst Baustoffkunde, 27 Auflage – Wiesbaden: Vieweg+Teubner Verlag, 2011

- [WISCH78] WISCHERS, Gerd: Aufnahme und Auswirkungen von Druckbeanspruchungen auf Beton; Beton 28 Heft 2; 1978; S.63-67
- [ZEMENT] Zement+Beton Handels- und Werbeges.m.b.H; Zementerzeugung in Österreich, 4. überarbeitete Auflage, September 2012
- [ZEMTASCH] Verein Deutscher Zementwerke e.V.: Zement-Taschenbuch 2008, 51. Ausgabe - Düsseldorf: Bau+Technik, 2002
- [@FELS2012] SPANG, Christian: Einführung in die Felsmechanik, Regensburg, http://dr-spang.de/pdf_seminar/P1410_Felsmechanik_DB_2012_.pdf -20.12.2017
- [@HGI] KOVAČEVIĆ, Erli; MIKO, Slobodan; DEDIĆ, Željko: Past mining and present quarring impacts on the dalmatian karst enviroment, Croatia, http://www.hgi-cgs.hr/pdf/6_3_Kovacevic.pdf, 29.08.2017
- [@KUBO] www.controls-group.com/eng/concrete-testing-equipment/cube-moulds--.php – Internetseite, Hersteller Controls Group, 03.09.2017
- [@MINGO] http://www.mingo.hr Internetseite, Kroatisches Wirtschaftsministerium
- [@RUD] www.rudarstvo.com Internetseite, Bergbauwesen in Kroatien
- [@RUDV] http://rudarstvo.azo.hr/viewer.htm Internetseite, Karte der Bergbaugebiete zur Gewinnung von mineralischen Rohstoffen

7 Normen

[B3592]	ÖNORM B 3592: 2011-09-01 – Bestimmung der Kerb-Spaltzugfestigkeit und der spezifischen Bruchenergie von Baustoffen, Baustoffverbindungen und Verbundwerkstoffen – Keilspaltmethode
[B4710-1]	ÖNORM B 4710-1: 2018-01-01 - Beton - Festlegung, Eigenschaften, Her- stellung, Verwendung und Konformität - Teil 1: Regeln zur Umsetzung der ÖNORM EN 206-1 für Normal- und Schwerbeton
[EN197-1]	ÖNORM EN 197-1:2011-10-15 - Zement - Teil 1: Zusammensetzung, An- forderungen und Konformitätskriterien von Normalzement
[EN1008]	ÖNORM EN 1008:2002-10-01 - Zugabewasser von Beton: Festlegungen für die Probenahme, Prüfung und Beurteilung der Eignung von Wasser, einschließlich bei der Betonherstellung anfallendem Wasser, als Zugabe- wasser für Beton
[EN1097-6]	ÖNORM EN 1097-6: 2013 08 15, Prüfverfahren für mechanische und phy- sikalische Eigenschaften von Gesteinskörnungen - Teil6: Bestimmung der Rohdichte und der Wasseraufnahme
[EN12390-1]	ÖNORM EN 12390-1: 2012-11-01 - Prüfung von Festbeton – Teil 1: Form, Maße und andere Anforderungen für Probekörper und Formen
[EN12390-2]	ÖNORM EN 12390-2: 2009-07-01 - Prüfung von Festbeton – Teil 2: Her- stellung und Lagerung von Probekörpern für Festigkeitsprüfungen
[EN12390-3]	ÖNORM EN 12390-3: 2012-04-01 - Prüfung von Festbeton – Teil 3: Druck- festigkeit von Probekörpern
[EN12390-4]	ÖNORM EN 12390-4: 2000-10-01 - Prüfung von Festbeton – Teil 4: Be- stimmung der Druckfestigkeit - Anforderungen an Prüfmaschinen
[EN12390-6]	ÖNORM EN 12390-6: 2010-02-15 - Prüfung von Festbeton – Teil 6: Spalt- zugfestigkeit von Probekörpern
[ONR23303]	ONR 23303: 2010-09-01 - Prüfverfahren Beton (PVB) - Nationale Anwen- dung der Prüfnormen für Beton und seiner Ausgangsstoffe

8 Abbildungsverzeichnis

[1]	http://www.hgi-cgs.hr/images/geoloska-karta-republike-hrvatske-1- 300.jpg
	06.09.2017
[2]	http://scilands.de/service/downloads/geschummerte_karten/Hills- hade_H_CZ_SK_SLO_HR_SRB_BIH_CG.jpg
	04.10.2017
[3]	http://www.holcim.hr/hr/proizvodi-i-usluge/agregati/plovanija
	06.09.2017
[4]	http://www.controls-group.com/backend/prodotti/img_up- load/img_big/1309171254420_55_c0100_p102_rev_1_17.09.2013.jpg
	03.09.2017
[5]	http://www.controls-group.com/backend/prodotti/img_up- load/img_big/1110251716120_3.jpg
	03.09.2017
[6]	http://www.graf-online.de/regenwassernutzung-oberirdisch/regenton- nen/regentonne-eckig/regentonne-eckig.html
	03.09.2017
[7]	http://www.beton.wiki/images/f/f3/E-Modul.jpg
	22.12.2017

9 Anhang

9.1 Sieblinien

······· A ······ B ······ C – – Sollsieblinie Probekörper – Quarzkies – Kalkstein – Dolomit

		Colleichlinic Drohokörner	Siebdurchgang [M%] bei Siebnennweite [mm]													
		Sonsiebillie Probekorper	Summe	Siebb.	0,063	0,125	0,25	0,5	1	2	4	8	11,2	16	22	
blinien-	he	A			0	0	3	6	13	23	37	61	76	90	100	
	reic	В					10	20	30	44	59	78				
Sie	be	С			3	7	18	31	44	58	71	86	93	100	100	
blinie	körper	Summe Siebdurchgang [%]		0	0,03	0,30	3,0	12,0	23,5	32,0	48,0	75,0	86,0	99,0	100,0	
Sollsie	Probel	Siebrückstand [%]	100	0,03	0,27	2,70	9,0	11,5	8,5	16,0	27,0	11,0	13,0	1,0	0,0	

	Vom Hersteller erhaltene	Siebdurchgang [M%] bei Siebnennweite [mm]													
	Korngrößenverteilung	Summe	Siebb.	0,063	0,125	0,25	0,5	1	2	4	8	11,2	16	22	
it	Summe Siebdurchgang	[%]		0,00	0,03	0,47	3	7	14	23	38	76	87	99	100
Dolom	Sighrückstand	[%]		0,03	0,4	2,1	4,8	7	9	15	39	11	12	1	0
	Siebruckstand	[kg]	320,8	0,1	1,4	6,8	15,4	21,6	28,5	46,6	123,8	35,6	39,0	2,1	0,0
ein	Summe Siebdurchgang	[%]		0,00	0,03	0,20	2	9	20	34	52	76	86	98	100
lkste	Sighrückstand	[%]		0,03	0,2	1,7	7	11	14	18	24	11	11	2	0
Ka	Siebruckstallu	[kg]	343,3	0,1	0,6	5,8	24,2	37,5	47,6	61,4	82,5	36,9	39,1	7,6	0,0
ies	Summe Siebdurchgang	[%]		0,0	0,0	1,1	4	14	26	32	43	68	81	97	100
Quarzk	Sighrückstand	[%]		0,04	1,1	2,9	10	11	6	11	25	14	16	3	0
	Siedruckstand		276,6	0,1	3,0	8,0	28,6	31,5	17,0	31,5	67,8	37,4	44,5	7,2	0,0

F (1)	die Misshung oufoudoulishou Zusch	Siebdurchgang [M%] bei Siebnennweite [mm]													
Fu	die Mischung erforderlicher zusch	Summe	Siebb.	0,063	0,125	0,25	0,5	1	2	4	8	11,2	16	22	
omit	Druck- und Spaltzugversuch	[kg]	28,751	0,009	0,078	0,776	2,588	3,306	2,444	4,600	7,763	3,163	3,738	0,288	0,000
Dolo	Keilspalt- und Elastizitätsversuch	[kg]	43,496	0,013	0,117	1,174	3,915	5,002	3,697	6,959	11,744	4,785	5,655	0,435	0,000
Kalkstein	Druck- und Spaltzugversuch	[kg]	28,010	0,008	0,076	0,756	2,521	3,221	2,381	4,482	7,563	3,081	3,641	0,280	0,000
	Keilspalt- und Elastizitätsversuch	[kg]	42,375	0,013	0,114	1,144	3,814	4,873	3,602	6,780	11,441	4,661	5,509	0,424	0,000
Quarzkies	Druck- und Spaltzugversuch	[kg]	27,588	0,008	0,074	0,745	2,483	3,173	2,345	4,414	7,449	3,035	3,586	0,276	0,000
	Keilspalt- und Elastizitätsversuch	[kg]	41,737	0,013	0,113	1,127	3,756	4,800	3,548	6,678	11,269	4,591	5,426	0,417	0,000

9.2 Druckversuch - Auswertung

Prüfmaschine: Hydraulische Druckprüfmaschine Seger - 2000kN Belastungsrichtung Einstellungen: 2,0 mm/min Belastungsgeschwindigkeit bis Ausgangsbelastung: 2,0 mm/min Belastungsgeschwindigkeit bis Bruchlast: 0,6 N/mm²*s Kraftgesteuert 0,6 x A_{würfel} = Ausgangsbelastung / Umschaltpunkt: 1000 N

_			0, -												
Probekörpe		Alter	Form	Abr	nessung	gen	Masse	Dic	hte	Fläche	Höchstlast	Druckfe	stigkeit	Stan	dard-
				L	В	н		ρ	ρ_{mittel}	A _c	F	f _c	f _{c,mittel}	abwei	chung
		[d]		[mm]	[mm]	[mm]	[g]	[kg/m³]	[kg/m ³]	[mm ²]	[kN]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[%]
	Q02dD01	2	Würfel	99,9	100,2	100,2	2363	2358		10006	154	15,3			1,2%
	Q02dD02	2	Würfel	99,3	100,2	100,2	2350	2360		9944	154	15,5			2,2%
020	Q02dD03	2	Würfel	100,9	100,2	100,3	2375	2344	2347	10106	155	15,3	15.2	03	0,9%
ð	Q02dD04	2	Würfel	100,2	100,3	100,2	2370	2353	2347	10053	153	15,2	13,2	0,3	0,1%
	Q02dD05	2	Würfel	100,7	100,2	100,3	2364	2337		10090	151	14,9			1,7%
	Q02dD06	2	Würfel	101,4	100,2	100,3	2374	2331		10153	150	14,8			2,7%
	K02dD01	2	Würfel	101,0	100,1	100,1	2378	2349		10112	197	19,5			1,0%
	K02dD02	2	Würfel	100,6	100,1	100,1	2381	2363		10066	197	19,6			0,6%
020	K02dD03	2	Würfel	100,4	100,2	100,1	2376	2360	2358	10057	202	20,0	19.7	0.3	1,7%
×	K02dD04	2	Würfel	99,7	100,1	100,2	2347	2347	2000	9980	192	19,3	,	0,0	2,3%
	K02dD05	2	Würfel	100,1	100,2	100,1	2365	2356		10028	196	19,6			0,7%
	K02dD06	2	Würfel	100,3	100,1	100,2	2387	2374		10037	203	20,3			2,9%
	D02dD01	2	Würfel	100,4	100,1	100,2	2453	2435		10054	255	25,4			0,5%
_	D02dD02	2	Würfel	101,4	100,2	100,1	2463	2421		10162	256		0,3%		
020	D02dD03	2	Würfel	101,0	100,2	100,2	2453	2420	2433	10118	257	25,4	25.3	0.2	0,5%
	D02dD04	2	Würfel	99,9	100,2	100,2	2434	2427		10011	257	25,6	- / -	0,2	1,4%
	D02dD05	2	Würfel	100,1	100,2	100,1	2453	2444		10023	250	24,9			1,5%
	D02dD06	2	Würfel	99,9	100,1	100,2	2454	2449		10002	251	25,1			0,6%
	Q07dD01	7	Würfel	99,2	100,2	100,2	2340	2350		9943	278	28,0			0,2%
-	Q07dD02	7	Würfel	99,5	100,2	100,2	2361	2364		9967	285	28,6			2,1%
02	Q07dD03	7	Würfel	99,1	100,3	100,2	2355	2365	2362	9938	276	27,8	28.0	0.4	0,8%
a	Q07dD04	7	Würfel	99,7	100,2	100,2	2372	2370		9989	274	27,5	,	-, -	2,0%
	Q07dD05	7	Würfel	100,5	100,2	100,2	2377	2356		10069	287	28,5			1,7%
	Q07dD06	7	Würfel	101,2	100,2	100,2	2406	2369		10139	282	27,8	7,8		0,8%
	K07dD01	7	Würfel	99,6	100,2	100,1	2361	2364		9973	341	34,2			0,1%
-	K07dD02	7	Würfel	99,6	100,1	100,2	2354	2358		9968		34,2			0,1%
01	K07dD03	7	Würfel	99,5	100,2	100,2	2358	2361	2362	9966	338	338 33,9 34,3		0,3	0,9%
×	K07dD04	7	Würfel	98,7	100,2	100,2	2344	2365		9891	342	34,6			1,0%
	K07dD05	7	Würfel	99,4	100,2	100,2	2356	2360		9965	337	33,8			1,3%
	KU/dD06	/	Wurfel	100,2	100,2	100,2	23/6	2362		10042	349	34,8			1,4%
	D07dD01	7	Würfel	100,7	100,1	100,2	2446	2422		10081	352	34,9			3,0%
5	D0/dD02	/	Wurfel	100,0	100,2	100,2	2452	2442		10023	356	35,6			1,2%
01		7	Wurfel	101,2	100,2	100,2	2467	2428	2431	10138	361	35,6	36,0	0,7	1,0%
		7	Wurfel	101,2	100,2	100,2	2478	2439		10141	300	30,1			0,3%
		7	Würfol	101,3	100,1	100,2	2403	2425		1013/	3/6	37,1			3,0%
	0284001	20	Wurtel	101,0	100,1	100,2	24/8	2431		10174	3/3	30,7			1,9%
p	0284002	28	Wurfel	100,6	100,1	100,2	2405	2386		10066	494	49,0			0,4%
28		28	Wurfel	100,3	100,2	100,2	2402	2380	2381	10049	505	50,3	49,2	0,9	2,2%
		28	Wurfel	100,6	100,2	100,2	2402	23//		10084	500	49,6			0,8%
	Q280D04	28	wurter	100,9	100,3	100,2	2406	2373		10113	465	48,0			2,0%
σ	K280D01	28	wurfel	100,4	100,3	100,1	2396	2378		10065	551	54,8			1,1%
28	K28dD02	28	wurfel	100,2	100,2	100,1	23/0	2358	2374	10039	543	54,1	54,2	0,6	0,2%
×	K28dD03	28	Wurfel	100,7	100,2	100,1	2402	23/8		10085	551	54,6			0,8%
	D204 D24	20	wurtel	100,3	100,3	100,2	2401	2382		10001	530	53,3			1,7%
σ	D28dD01	28	wurfel	100,9	100,2	100,1	2480	2451		10105	510	50,4			1,8%
28	D280D02	28	wurfel	99,2	100,2	100,1	2442	2454	2446	9940	508	51,1	49,5	1,3	3,2%
	D28dD03	28	Wurtel	101,5	100,2	100,2	2485	2440		10168	485	47,7			3,7%
	D28dD04	28	Würfel	101,6	100,2	100,2	2485	2437		10179	497	48,9			1,3%

Tab. 35: Druckversuch – Abmessungen und Auswertung

Abb. 98: Druckfestigkeit aller Versuchsproben

9.3 Druckversuch – Proben

9.3.1 Druckversuch – Q02dD

Q02dD01

Q02dD02

Q02dD03

Q02dD04

Q02dD05

Q02dD06

9.3.1 Druckversuch – K02dD

K02dD01

K02dD02

K02dD03

K02dD04

K02dD05

K02dD06

9.3.2 Druckversuch – D02dD

D02dD01

D02dD02

D02dD03

D02dD04

D02dD05

D02dD06

9.3.1 Druckversuch – Q07dD

Q07dD01

Q07dD02

Q07dD03

Q07dD04

Q07dD05

Q07dD06

9.3.1 Druckversuch – K07dD

K07dD01

K07dD02

K07dD03

K07dD04

K07dD05

K07dD06

9.3.2 Druckversuch – D07dD

D07dD01

D07dD02

D07dD03

D07dD04

D07dD05

D07dD06

9.3.1 Druckversuch – Q28dD

Q28dD01

Q28dD02

Q28dD03

Q28dD04

9.3.1 Druckversuch – K28dD

K28dD01

K28dD02

K28dD03

9.3.2 Druckversuch – D28dD

D28dD01

D28dD02

D28dD03

D28dD04

9.4 Spaltzugversuch - Auswertung

Tab. 36: Spaltzugversuch – Abmessungen und Auswertung

Probekörner		ŗ		Ahmessungen									Dichte		Spaltzug-		Standard-	
FIC	bekorper	Alte		_		ADITIES	sunger	1			IVIASSE	DIC	nie	last	festi	gkeit	abwai	chung
		1	D1 _{0°}	D1 _{90°}	D2 _{0°}	D2 _{90°}	Lo	Lu	D	L		ρ	ρ_{mittel}	F	f _{ct}	f _{ct,mittel}	auwei	citutig
		[d]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[g]	[kg/m³]	[kg/m³]	[kN]	[N/mm²]	[N/mm²]	[N/mm²]	[%]
	Q02dS01	2	103,6	103,9	103,8	103,4	201,7	200,2	103,7	200,9	3991	2354		40	1,22			15,5%
σ	Q02dS02	2	103,3	103,5	103,5	103,2	200,5	200,8	103,3	200,6	3994	2373		51	1,57			8,6%
02	Q02dS03	2	103,1	103,3	102,3	104,1	202,1	201,6	103,2	201,8	3992	2364	2367	49	1,51	1,44	0,14	4,8%
0	Q02dS04	2	103,1	103,1	102,4	103,8	201,8	201,3	103,1	201,6	3993	2373		44	1,36			5,9%
	Q02dS05	2	103,4	104,1	102,7	104,3	200,5	200,4	103,6	200,5	4010	2372		51	1,56			8,1%
	K02dS01	2	103,3	103,7	102,6	104,3	201,4	201,7	103,4	201,5	3998	2360		62	1,89			1,9%
σ	K02dS02	2	103,1	103,4	103,4	103,3	202,4	202,0	103,3	202,2	3996	2357		65	1,98			6,9%
02	K02dS03	2	103,9	103,9	103,6	103,4	201,8	202,9	103,7	202,3	3997	2339	2355	58	1,75	1,85	0,08	5,4%
×	K02dS04	2	103,6	103,0	103,7	103,6	201,1	201,8	103,5	201,5	3988	2354		61	1,86			0,6%
	K02dS05	2	103,5	103,4	103,2	103,8	201,2	200,7	103,5	200,9	3990	2362		58	1,78			4,0%
	D02dS01	2	103,7	103,3	103,7	103,2	202,8	201,0	103,5	201,9	4120	2427		65	1,98			0,7%
σ	D02dS02	2	103,2	103,9	103,8	103,4	201,4	202,8	103,6	202,1	4127	2422		67	2,02			2,7%
02	D02dS03	2	103,5	103,2	103,5	104,0	201,2	201,6	103,6	201,4	4113	2425	2423	63	1,91	1,97	0,04	3,0%
	D02dS04	2	103,6	103,1	104,4	102,6	197,6	197,9	103,4	197,7	4033	2428		63	1,97			0,3%
	D02dS05	2	103,8	103,7	104,3	102,8	197,6	198,6	103,6	198,1	4028	2411		64	1,97			0,0%
	Q07dS01	7	103,9	103,7	104,2	102,8	201,3	200,7	103,6	201,0	4003	2361		65	2,00			16,8%
σ	Q07dS02	7	103,2	103,7	103,3	103,8	201,1	200,0	103,5	200,5	3999	2371		96	2,94			22,2%
0	Q07dS03	7	103,1	103,2	103,8	102,6	201,8	202,1	103,2	201,9	3966	2350	2362	65	1,98	2,40	0,38	17,7%
a	Q07dS04	7	103,7	103,6	103,1	103,8	202,1	202,1	103,5	202,1	4025	2366		79	2,42			0,6%
	Q07dS05	7	102,9	103,5	102,2	104,5	201,1	201,2	103,3	201,1	3979	2361		88	2,68			11,8%
	K07dS01	7	103,6	103,4	104,8	101,8	201,4	201,1	103,4	201,2	3984	2358		94	2,87			3,0%
5	K07dS02	7	103,4	103,8	105,0	101,9	200,4	200,1	103,5	200,2	3951	2344	14 87 52 2355 91 50 99	87	2,66			4,7%
01	K07dS03	7	103,1	103,4	102,3	103,9	201,7	201,5	103,2	201,6	3980	2362		91	2,79	2,79	0,15	0,1%
×	K07dS04	7	103,5	103,8	103,7	103,5	201,4	200,5	103,6	201,0	3996	2360		3,03			8,6%	
	K07dS05	7	103,5	103,7	102,5	105,2	201,3	201,7	103,7	201,5	4002	2350		85	2,60	Ī		7,0%
	D07dS01	7	103,5	103,4	104,5	102,6	200,8	200,6	103,5	200,7	4084	2418		94	2,88		0,35	7,8%
σ	D07dS02	7	103,4	103,9	103,2	103,5	201,5	200,9	103,5	201,2	4073	2407		67	2,06			22,9%
0	D07dS03	7	103,6	103,6	102,9	103,8	203,0	202,3	103,5	202,7	4122	2419	2415	83	2,53	2,67		5,2%
	D07dS04	7	103,7	103,4	102,2	104,9	204,3	204,9	103,5	204,6	4151	2410		94	2,81			5,3%
	D07dS05	7	103,8	103,2	103,6	103,7	204,0	203,1	103,6	203,5	4147	2419		102	3,07			15,0%
	Q28dS01	28	103,8	103,9	103,3	104,4	201,2	201,0	103,8	201,1	4051	2379		112	3,41			19,9%
σ	Q28dS02	28	103,6	103,9	104,7	102,6	201,5	201,0	103,7	201,3	4030	2371		88	2,68			5,6%
28	Q28dS03	28	104,4	103,7	105,5	102,2	201,4	201,0	103,9	201,2	4058	2377	2381	94	2,86	2,84	0,31	0,5%
0	Q28dS04	28	103,5	103,3	104,0	103,3	199,4	200,0	103,5	199,7	4016	2389		81	2,50			11,9%
	Q28dS05	28	103,7	103,4	104,4	103,5	198,5	199,7	103,7	199,1	4020	2390		90	2,76			2,9%
	K28dS01	28	103,9	104,2	104,1	103,4	200,2	200,1	103,9	200,1	4028	2374		141	4,30			4,6%
σ	K28dS02	28	103,2	103,5	104,2	102,8	201,2	201,2	103,4	201,2	4038	2389		131	4,01			2,4%
28	K28dS03	28	103,2	103,4	103,6	102,7	200,7	201,2	103,2	200,9	4032	2399	2386	128	3,94	4,11	0,24	4,3%
×	K28dS04	28	103,2	103,4	103,2	102,3	201,7	201,5	103,0	201,6	4012	2389		125	3,83			6,9%
	K28dS05	28	103,3	104,1	103,5	103,0	201,3	200,5	103,5	200,9	4020	2378		147	4,49			9,0%
	D28dS01	28	103,3	103,9	103,5	103,6	202,2	202,1	103,6	202,2	4148	2436		116	3,52			1,7%
σ	D28dS02	28	103,4	103,5	103,9	102,7	202,5	203,0	103,4	202,8	4143	2434		97	2,94			15,2%
28	D28dS03	28	103,6	103,5	104,7	103,0	201,4	202,1	103,7	201,8	4151	2435	2431	120	3,64	3,46	0,36	5,0%
	D28dS04	28	104,0	103,6	103,0	104,8	201,9	202,4	103,8	202,2	4142	2419		132	3,99			15,3%
	D28dS05	28	103.9	103.7	104.8	102.9	202.0	201.7	103.8	201.8	4151	2429		106	3,23			6.9%

136

Abb. 99: Spaltzugfestigkeit aller Versuchsproben

9.5 Spaltzugversuch - Proben

9.5.1 Spaltzugversuch – Q02dS

Q02dS01

Q02dS03

Q02dS04

9.5.1 Spaltzugversuch – K02dS

K02dS01

K02dS02

K02dS03

K02dS04

9.5.2 Spaltzugversuch – D02dS

D02dS01

D02dS03

9.5.1 Spaltzugversuch – Q07dS

Q07dS01

Q07dS02

Q07dS03

Q07dS04

Q07dS05

9.5.1 Spaltzugversuch – K07dS

K07dS01

K07dS02

K07dS03

K07dS04

9.5.2 Spaltzugversuch – D07dS

D07dS01

D07dS02

D07dS04 D74504 DZASO4 inische Universität Wien CBC D07dS05 D745 305 DTASOS CBC TU 2 is անսնենս

9.5.1 Spaltzugversuch – Q28dS

Q28dS01

Q28dS02

Q28dS03

Q28dS04

Q28dS05

9.5.1 Spaltzugversuch – K28dS

K28dS01

K28dS02

K28dS03

K28dS04

K28dS05

9.5.2 Spaltzugversuch – D28dS

D28dS01

D28dS02

D28dS03

		er		A	bmes	sunge			Masse	Dict	hte	Fläche	Ober-	Vor-	mitt .	lere	stat. E-	Modul	Stand	dard-
-	Probe-	λlΑ		_	_		_						spannung	spannung	Dehr	gunu			abwei	chung
-	körper	1	D_1	D_2	Ľ	L_2	۵	_		٩	ρ_{mittel}	$A_{zyl.}$	σ _a	$\sigma_{\rm b}$	ε ^a	ε _b	щ	$E_{b,mittel}$	-	•
		[d]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[g]	[kg/m ³]	[kg/m³]	[mm²]	[N/mm ²]	[N/mm ²]	[-]	-	[N/mm ²]	[N/mm²]	[N/mm²]	[%]
p	Q02dE01	2	104,1	102,5	201,0	200,7	103,3	200,9	3976	2361		8383	4,29	0,43	0,00018	0,00002	24518			0,83%
020	Q02dE02	2	104,2	102,5	200,8	200,8	103,4	200,8	3999	2374	2372	8390	4,29	0,43	0,00018	0,00002	24311	24315	201	0,0%
)	Q02dE03	2	103,8	102,6	200,3	200,4	103,2	200,4	3989	2380		8364	4,30	0,43	0,00019	0,00003	24116			0,8%
p	K02dE01	2	103,8	103,1	201,6	199,8	103,5	200,7	3990	2365		8407	5,59	0,56	0,00020	0,00003	28334			3,5%
20>	K02dE02	2	103,1	103,7	200,9	201,1	103,4	201,0	4004	2372	2366	8399	5,60	0,56	0,00019	0,00002	30444	29375	862	3,6%
1	K02dE03	2	102,1	105,0	200,9	200,6	103,6	200,8	3992	2360		8426	5,58	0,56	0,00019	0,00002	29347			0,1%
р	D02dE01	2	103,2	103,1	203,0	202,3	103,2	202,7	4110	2427		8357	7,18	0,72	0,00078	0,00041	17414			7,6%
200	D02dE02	2	103,7	103,3	201,3	202,0	103,5	201,6	4089	2411	2419	8412	7,13	0,71	0,00047	0,00014	19270	18837	1032	2,3%
	D02dE03	2	102,8	104,3	201,8	202,0	103,6	201,9	4111	2418		8423	7,12	0,71	0,00045	0,00013	19826			5,3%
p	Q07dE01	7	102,7	103,7	200,7	200,4	103,2	200,5	3992	2381		8361	7,77	0, 78	0,00026	0,00004	30801			7,77%
200	Q07dE02	7	102,3	103,8	200,1	200,8	103,0	200,5	3987	2386	2381	8336	7,80	0,78	0,00033	0,00006	26044	28581	952	8,9%
)	Q07dE03	7	102,5	103,8	201,2	201,2	103,2	201,2	3995	2375		8362	7,77	0,78	0,00028	0,00003	28897			1,1%
p	K07dE01	7	103,0	103,8	201,1	202,1	103,4	201,6	3992	2360		8392	9,53	0,95	0,00030	0,00003	32521			8,3%
20>	K07dE02	7	102,9	104,7	202,4	201,7	103,8	202,1	4017	2349	2354	8463	9,45	0,95	0,00035	0,00006	28852	30036	1757	3,9%
	K07dE03	7	104,0	102,8	201,0	201,3	103,4	201,1	3976	2354		8397	9,53	0,95	0,00036	0,00006	28736			4,3%
р	D07dE01	7	102,9	103,9	202,4	201,0	103,4	201,7	4118	2431		8399	9,53	0,95	0,00095	0,00053	20351			9,7%
200	D07dE02	~	102,5	104,0	203,0	202,3	103,3	202,7	4111	2423	2420	8373	9,55	0,96	0,00045	0,0000	24132	22543	1601	7,0%
	D07dE03	~	102,7	104,4	200,6	201,0	103,6	200,8	4072	2408		8424	9,50	0,95	0,00066	0,00029	23147			2,7%
р	Q28dE01	28	103,0	104,3	200,4	200,4	103,7	200,4	3994	2362		8439	14,58	1,46	0,00062	0,00018	29707			-0,64%
820	Q28dE02	28	104,4	102,9	200,8	199,5	103,6	200,2	3952	2341	2360	8435	14,59	1,46	0,00171	0,00066	12462	29899	192	58,3%
)	Q28dE03	28	104,6	102,2	198,9	199,7	103,4	199,3	3979	2378		8395	14,66	1,47	0,00038	-0,00006	30091			0,6%
р	K28dE01	28	104,5	102,5	201,4	201,6	103,5	201,5	4015	2368		8416	14,62	1,46	0,00043	0,00007	36563			2,6%
82>	K28dE02	28	104,1	104,0	200,9	200,4	104,0	200,7	4008	2350	2366	8501	14,47	1,45	0,00045	0,00008	34787	35637	727	2,4%
	K28dE03	28	102,6	103,8	200,7	200,3	103,2	200,5	3989	2379		8362	14,71	1,47	0,00043	0,00006	35563			0,2%
р	D28dE01	28	103,1	104,0	201,4	201,1	103,5	201,2	4125	2435		8417	14,62	1,46	0,00056	0,00014	30889			1,6%
820	D28dE02	28	103,8	103,3	201,6	201,6	103,6	201,6	4122	2428	2426	8422	14,61	1,46	0,00052	0,00010	31000	31387	627	1,2%
	D28dE03	28	103,7	104,1	202,6	202,9	103,9	202,8	4149	2415		8473	14,52	1,45	0,00048	0,00007	32272			2,8%

9.6 statischer E-Modulversuch – Auswertung

Abb. 100: Belastungs-Dehnungsdiagramm – Betonalter 28 Tage

9.7 Keilspaltversuch - Auswertung

9.7.1 Probenabmessungen

Pro	bekörper	ter				Abmes	sunger	1			
		Ali	L	В	H ₁	H_2	Н	h ₁	h_2	h	s
		[d]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	Q02dK01	2	150,5	150,5	152,4	151,8	152,1	127,4	126,7	127,1	23,2
D	Q02dK02	2	150,5	150,5	150,5	150,7	150,6	126,4	126,4	126,4	21,7
00	Q02dK03	2	150,4	150,5	149,8	150,4	150,1	125,2	126,5	125,8	20,5
0	Q02dK04	2	150,5	150,4	151,1	151,0	151,1	126,6	126,4	126,5	20,3
	Q02dK05	2	150,5	150,6	152,1	151,9	152,0	127,2	126,9	127,0	22,4
	K02dK01	2	150,5	150,4	152,7	152,7	152,7	127,7	127,6	127,7	22,5
Sd	K02dK02	2	150,4	150,4	150,3	150,8	150,5	126,4	126,3	126,3	21,3
) V	K02dK03	2	150,4	150,3	151,5	150,7	151,1	127,5	127,9	127,7	22,6
-	K02dK04	2	150,5	150,5	151,9	151,8	151,9	127,7	128,4	128,0	22,9
	K02dK05	2	150,4	150,5	150,1	149,7	149,9	126,1	126,5	126,3	20,9
	D02dK01	2	150,4	150,4	150,9	150,8	150,9	126,5	126,2	126,3	21,2
2d	D02dK02	2	150,4	150,4	150,7	150,3	150,5	127,1	125,9	126,5	21,2
00	D02dK03	2	150,2	150,4	152,0	152,2	152,1	126,9	126,3	126,6	21,7
_	DUZOKU4	2	150,4	150,4	151,8	152,2	152,0	127,3	127,4	127,3	22,5
		2	150,5	150,5	153,3	152,4	152,8	128,7	127,4	128,0	21,2
	Q0/dK01	1	150,5	150,6	152,8	150,8	151,8	127,0	126,9	126,9	22,4
J7d		7	150,5	150,6	149,4	149,3	149,3	126,0	126,5	126,3	21,8
ø		7	150,4	150,5	148,0	149,7	149,2	125,2	125,4	125,3	20,7
	Q070K04	7	150,5	150,7	150,7	150,5	150,0	120,9	125,7	120,3	21,3
		7	150,5	150,5	152.4	152.5	152.5	123,3	120,0	120,1	21,7
	K07dK02	7	150,0	150,5	1/0.8	152,5	152,5	127,1	120,0	120,0	21,0 22.1
07d	K07dK03	7	150,5	150,4	152 1	150,0	151.2	120,7	127,1	120,3	22,1
¥	K07dK04	7	150,5	150,5	151.0	151,5	151.3	127,5	127,0	127,0	23.0
	K07dK05	7	150.8	150.9	150.7	150.7	150.7	126.7	126.0	126.4	21.2
	D07dK01	7	150,4	150,6	151,4	150,2	150,8	127,1	126,3	126,7	22,2
5	D07dK02	7	150,5	150,5	150,4	152,2	151,3	128,1	128,0	128,1	23,3
07	D07dK03	7	150,4	150,5	148,6	149,1	148,8	127,0	126,3	126,6	21,9
Δ	D07dK04	7	150,5	150,5	153,1	152,2	152,6	128,2	128,3	128,3	23,5
	D07dK05	7	150,7	150,5	151,0	153,8	152,4	127,5	128,0	127,7	22,9
	Q28dK01	28	150,6	150,7	151,7	151,8	151,7	127,2	127,8	127,5	11,3
ğ	Q28dK02	28	150,6	150,7	150,1	150,1	150,1	126,9	126,5	126,7	22,5
58	Q28dK03	28	150,5	150,5	150,3	151,0	150,7	126,7	126,9	126,8	22,9
0	Q28dK04	28	150,6	150,6	151,9	151,6	151,8	126,5	127,0	126,8	22,2
	Q28dK05	28	150,5	150,5	150,6	150,4	150,5	127,0	127,6	127,3	23,6
	K28dK01	28	150,6	150,5	150,6	151,6	151,1	127,7	127,6	127,6	23,5
g	K28dK02	28	150,4	150,6	151,2	150,6	150,9	126,6	126,4	126,5	22,7
223444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444<l< th=""><th>K28dK03</th><th>28</th><th>150,6</th><th>150,6</th><th>152,5</th><th>153,1</th><th>152,8</th><th>127,1</th><th>127,1</th><th>127,1</th><th>23,6</th></l<>	K28dK03	28	150,6	150,6	152,5	153,1	152,8	127,1	127,1	127,1	23,6
-	K28dK04	28	150,7	150,7	150,8	150,4	150,6	127,8	127,7	127,8	23,6
	K28dK05	28	150,8	150,9	152,3	153,1	152,7	127,0	127,7	127,4	23,7
	D28dK01	28	150,5	150,8	151,9	152,5	152,2	127,9	128,1	128,0	23,7
8d	D28dK02	28	150,5	150,5	153,4	152,9	153,2	128,0	127,4	127,7	24,2
0 2	D28dK03	28	150,3	150,6	152,1	151,7	151,9	126,5	126,1	126,3	22,3
	D28dK04	28	150,5	150,5	152,7	152,8	152,8	127,3	127,3	127,3	22,8
	D28dK05	28	150,5	150,6	151,7	151,3	151,5	125,7	125,7	125,7	21,8

Tab. 38: Keilspaltversuch – Abmessungen (Teil 1)

- α
- \mathbf{h}_{Lig}
- b_{Lig}
- $\mathsf{A}_{\mathsf{Lig}}$
- Keilwinkel in Grad Höhe der Ligamentfläche, in mm Breite der Ligamentfläche, in mm Ligamentfläche, in mm² Abstand Kontaktpunkt Keil mit Rollenlager und Grund Starterkerbe, in mm Schwerpunktabstand Ligamentfläche, in mm а
- der b

Tab. 39: Keilspaltversuch - Abmessungen (Teil 2)

Pro	bekörper			Abmes	sunger	۱		Masse	Dic	hte	Ligamentfl.
	-	h _{lig 1}	h _{lig 2}	hlia	blig	а	b		ρ	Pmittel	Alia
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[a]	[kɑ/m³]	[kg/m ³]	[mm ²]
	Q02dK01	103.9	102.8	103.3	150.6	41.3	51.7	7703	2339		15556
-	Q02dK02	105.0	104.5	104.7	150.6	38.4	52.4	7704	2358		15767
02	Q02dK03	105.3	104.1	104.7	150.5	37.9	52.3	7650	2353	2347	15761
a	Q02dK04	105,1	104,7	104,9	150,6	38,6	52,5	7679	2348		15793
	Q02dK05	109,9	104,6	107,2	150,6	37,3	53,6	7716	2342		16141
	K02dK01	105,3	104,3	104,8	150,6	40,4	52,4	7764	2350		15774
σ	K02dK02	105,2	104,9	105,1	150,5	38,0	52,5	7670	2352		15812
02	K02dK03	104,7	105,0	104,8	150,4	38,8	52,4	7719	2356	2349	15769
×	K02dK04	104,9	104,5	104,7	150,6	39,7	52,3	7753	2352		15762
	K02dK05	105,0	104,5	104,7	150,5	37,7	52,4	7645	2352		15766
	D02dK01	104,8	104,7	104,8	150,6	38,6	52,4	7873	2412		15780
D	D02dK02	104,6	104,9	104,7	150,5	38,3	52,4	7834	2403		15762
03	D02dK03	104,6	104,6	104,6	150,5	40,0	52,3	7896	2406	2406	15743
	D02dK04	104,0	104,7	104,3	150,6	40,1	52,2	7907	2406		15715
	D02dK05	104,1	104,8	104,4	150,6	40,9	52,2	7945	2398		15728
	Q07dK01	104,9	104,9	104,9	150,5	39,4	52,4	7690	2337		15786
24	Q07dK02	104,6	104,4	104,5	150,6	37,4	52,2	7591	2338		15733
0	Q07dK03	104,5	104,4	104,5	150,6	37,2	52,2	7552	2336	2337	15728
0	Q07dK04	104,5	104,2	104,4	150,6	38,7	52,2	7626	2334		15724
	Q07dK05	105,4	103,9	104,7	150,5	39,0	52,3	7664	2342		15750
	K07dK01	104,9	104,8	104,8	150,5	40,1	52,4	7699	2332		15774
20	K07dK02	104,7	104,5	104,6	150,7	38,2	52,3	7642	2344		15757
0	K07dK03	104,8	104,5	104,7	150,5	39,0	52,3	7702	2346	2338	15753
-	K07dK04	104,7	104,6	104,6	150,6	39,1	52,3	7687	2338		15754
	K07dK05	104,4	104,6	104,5	150,4	38,6	52,3	7644	2329		15721
	D07dK01	104,5	104,5	104,5	150,6	38,8	52,3	7897	2414		15736
7d	D07dK02	104,5	104,5	104,5	150,5	39,3	52,3	7926	2411		15731
0	D07dK03	104,7	104,5	104,6	150,4	36,7	52,3	7807	2414	2410	15732
	D07dK04	104,6	104,4	104,5	150,4	40,7	52,2	7970	2408		15/14
	D07dK05	104,4	104,5	104,5	150,4	40,4	52,2	7947	2403		15/1/
	Q28dK01	116,0	116,1	116,0	150,6	28,2	58,0	7724	2343		1/4/0
80	Q280K02	103,5	103,9	103,7	150,5	38,9	51,9	7657	2346	00.47	15610
ø	Q280K03	103,5	103,4	103,5	150,5	39,7	51,7	7684	2350	2347	15570
	Q280K04	104,1	103,7	103,9	150,5	40,4	52,0	7097	2009		10000
		103,5	103,7	103,0	150,4	39,3	51,0	7703	2337		15564
	K28dK02	103,2	103,7	103,5	150,3	40,2 20.9	51,7	7650	2307		10002
28d	K28dK02	103,0	103,2	103,5	150,5	39,0	51,0	7039	2342	2240	15520
Y	K28dK04	103,0	104.0	103,2	150,5	30 /	51.0	7716	2352	2049	15617
	K28dK05	103,0	103.2	103,0	150,5	41.8	51.7	7770	2342		15563
	D28dK01	104.0	104 /	104.2	150.0	40.5	52.1	7066	2/09		15675
-	D28dK02	103.5	103.5	103.5	150,4	42.2	51 7	8046	2400		15562
280	D28dK03	103.8	102.8	103.3	150.3	41 1	51.6	7934	2416	2406	15524
	D28dK04	96.9	103.5	100.2	150.4	45.1	50.1	7881	2383	2,00	15070
	D28dK05	103.8	103,7	103,8	150,4	40,2	51.9	7853	2395		15603

9.7.2 Auswertung It. ÖNORM B3592

								Auswer	tung laut Ö	ÖNORN	1 B 3592
Pro	bekörper	ter	Riss-	Riss-	Winkel			Kerbzug	festigkeit	Sta	ndard-
		A	verlauf	art	β	F _{M,max}	F _{H,max}	σ_{KZ}	$\sigma_{KZ,mittel}$	abwe	ichung
		[d]			[°]	[N]	[N]	[N/mm²]	[N/mm²]	[N/mm²]	[%]
	Q02dK01	2	unzulässig	3	45,0	1357	5154	2,1			
σ	Q02dK02	2	unzulässig	3	40,0	501	1901	0,7			
02	Q02dK03	2	unzulässig	3	40,0	457	1736	0,7	MW n.zul.	nicht	
a	Q02dK04	2	unzulässig	3	45,0	699	2655	1,0		Zui.	
	Q02dK05	2	unzulässig	3	50,0	806	3060	1,2			
	K02dK01	2	unzulässig	3	45,0	1558	5916	2,4			
σ	K02dK02	2	unzulässig	2	12,5	1874	7119	2,8		un la la f	
02	K02dK03	2	zulässig	1		1954	7422	2,9	MW n.zul.	nicht	
X	K02dK04	2	zulässig	1		1357	5154	2,1		zui.	
	K02dK05	2	unzulässig	3	45,0	1698	6449	2,5			
	D02dK01	2	unzulässig	3	45,0	1304	4954	1,9			
σ	D02dK02	2	unzulässig	3	45,0	1372	5211	2,0			
02	D02dK03	2	unzulässig	3	45,0	1032	3920	1,6	MW n.zul.	nicht	
Δ	D02dK04	2	unzulässig	2	12,5	1357	5154	2,1		zui.	
	D02dK05	2	unzulässig	3	45,0	1055	4007	1,6			
	Q07dK01	7	unzulässig	3	50,0	1312	4981	2,0			
σ	Q07dK02	7	unzulässig	3	40,0	1036	3934	1,5			
0	Q07dK03	7	unzulässig	3	40,0	2259	8578	3,3	MW n.zul.	nicht	
Ø	Q07dK04	7	unzulässig	3	45,0	1421	5397	2,1		zul.	
	Q07dK05	7	zulässig	1	,	1940	7369	2,9			
	K07dK01	7	unzulässig	3	40.0	1826	6936	2.8			
-	K07dK02	7	unzulässig	3	45.0	1537	5838	2.3			
076	K07dK03	7	unzulässig	3	45.0	1759	6680	2.6	MW n.zul.	nicht	
Y	K07dK04	7	unzulässig	3	40.0	1549	5885	2.3		zul.	
	K07dK05	7	zulässig	1	- / -	2438	9258	3,7			
	D07dK01	7	zulässia	1		2280	8659	3.4			✓ 0.7 ^o
σ	D07dK02	7	zulässig	1		2111	8016	3,2			✓ 6.3 ^o
020	D07dK03	7	zulässig	1		2364	8980	3,5	3,4	0,1	2,49
۵	D07dK04	7	zulässig	1		2296	8720	3,5	,	,	3 ,39
	D07dK05	7	unzulässig	2	12,5	2418	9183	3,7			
	Q28dK01	28	unzulässig	3	45.0	2149	8163	2.6			
8	Q28dK02	28	unzulässig	3	40.0	1864	7079	2.8			
28	Q28dK03	28	unzulässia	3	45.0	2055	7803	3.2	MW n.zul.	nicht	
Ø	Q28dK04	28	unzulässig	3	47,5	2261	8586	3,5		zul.	
	Q28dK05	28	zulässig	1	1-	2609	9908	4,0			
	K28dK01	28	zulässig	1		2829	10743	4.4			3 .99
-	K28dK02	28	zulässig	1		2775	10539	4.3			 ✓ 0,0 ✓ 1.6^o
280	K28dK03	28	zulässig	1		2663	10112	4.2	4.2	0.1	 ✓ 0.2^o
×	K28dK04	28	zulässia	1		2611	9916	4.0	.,_	.,.	✓ 5.3 ^o
	K28dK05	28	unzulässig	2	12.5	2803	10646	4.4			,.
	D28dK01	28	zulässio	1	,.	2444	9281	37			
-	D28dK02	28	unzulässin	2	12.5	2591	9840	4 1			
280	D28dK03	28	unzulässig	2	12,5	2649	10060	4 1	MW n zul	nicht	
Δ	D28dK04	28	zulässio	1	12,0	2325	8831	3.9		zul.	
	D28dK05	28	unzulässig	2	17.5	2562	9729	3.9			

Tab. 40: Keilspaltversuch – Auswertung (Teil 1) nur von zulässigen Rissverläufen nach ÖNORM B3592:2011

MW n. zul.: Mittelwertbildung nicht zulässig, <50% zulässiger Werte Rissart 1,2 und 3 laut Abb. 93, Abb. 94 und Abb. 95 auf Seite 105

				Aus	swertu	ıng laut Ö	NORM	B 3592		
Pro	bekörper	Rissöffn.	spez. Bru	chenergie	Sta	ndard-	chara	kt. Länge	Sta	ndard-
		Smax	G⊧	G _{F mittel}	abwe	eichung	l _{ch}	Ch mittel	abwe	eichung
		[mm]	[N/m]	[N/m]	[N/m]	[%]	[m]	[m]	[m]	[%]
	Q02dK01	2.0	109							
σ	Q02dK02	1,7	26							
02	Q02dK03	2,0	28	MW n.zul.	nicht			MW n.zul.	nicht	
a	Q02dK04	1,0	25		ZUI.				ZUI.	
	Q02dK05	1,7	37							
	K02dK01	1,2	42							
p	K02dK02	1,7	112		nicht				nicht	
02	K02dK03	1,2	93	MW n.zul.				MW n.zul.		
X	K02dK04	2,0	108		zui.				201.	
	K02dK05	0,9	43							
	D02dK01	1,8	70							
p	D02dK02	1,1	27		nicht				nicht	
00	D02dK03	1,5	59	MW n.zul.	zul.			MW n.zul.	zul.	
	D02dK04	2,0	108							
	D02dK05	1,6	40							
	Q07dK01	1,4	55							
7d	Q07dK02	2,2	46		nicht				nicht	
o a	Q07dK03	1,1	81	MW n.zul.	zul.			MW n.zul.	zul.	
	Q07dK04	1,9	54							
	QU/dK05	1,4	97							
	K07dK01	1,5	80							
P7(KU/dKU2	1,6	35		nicht			N/0.4 /	nicht	
X		1,3	35	ivivv n.zui.	zul.			ivivv n.zui.	zul.	
		1,∠ 1.2	111							
		1.2	120			1.0%	0.25			0 1%
_	D07dK02	1,2	120			▼ 1,0 %	0,23			 ▼ 0,1 % ✓ 2.4%
070	D07dK03	1,0	131	119	q	 ✓ 14,0% ✓ 10,3% 	0,24	0.25	0.01	$\sqrt{2}, \frac{7}{6}$
D	D07dK04	1,0	123	110	Ŭ	3.3%	0,20	0,20	0,01	2.9%
	D07dK05	1.6	130			• 0,070	0,21			• _,• / •
	Q28dK01	1.1	56							
σ	Q28dK02	1,6	68							
28	Q28dK03	1,3	95	MW n.zul.	nicht			MW n.zul.	nicht	
a	Q28dK04	0,3	37		ZUI.				ZUI.	
	Q28dK05	1,1	142							
	K28dK01	1,0	125			√ 4,8%	0,16			√ 2,9%
σ	K28dK02	0,9	116			✓ 2,4%	0,15			🖌 5,4%
28	K28dK03	1,0	130	119	10	v 9,4%	0,18	0,16	0,01	🖌 10,0%
X	K28dK04	0,8	105			✓ 11,8%	0,16			✓ 1,7%
	K28dK05	1,5	167							
	D28dK01	1,1	124							
g	D28dK02	1,4	160		nicht				nicht	
0 28	D28dK03	1,5	169	MW n.zul.	711			MW n.zul.	711	
	D28dK04	1,3	129		201.				201.	
	D28dK05	1,7	179							

Tab. 41: Keilspaltversuch – Auswertung (Teil 2) nur von zulässigen Rissverläufen nach ÖNORM B3592:2011

MW n. zul.: Mittelwertbildung nicht zulässig, <50% zulässiger Werte Rissart 1,2 und 3 laut Abb. 93, Abb. 94 und Abb. 95 auf Seite 105

9.7.3 Auswertung zulässiger Proben mit Rissart 1

		ļ							Ausw	ertung zu	lässige P	roben mit	Rissart 1	(nicht It	ÖNORN	B 359	2)		zus	itzliche ∕	Auswert	ung für	Rissart
Pro	bekörper	jni -s	Riss- V	Minkel	_	Keilk	raft Kerl	ozugfestig.	. Star	dard-	Rissöffn.	spez. Bru	chenergie	Standa	rd- châ	ırakt. Lä	nge	standard-		Schubs	pannung	Sta	idard-
		sis: erla	art	8 1	M,max FH,n	nax F _{K,m}	ax dk	z Okz,mitte	abwe	ichung	S _{max}	പ്പ	G _{F,mittel}	abweich	Bun	ch ch,	mittel at	weichung	F _{V,ma:}	μ	$T_{\beta,mittel}$	abwe	ichung
		97		[]	[N]	<u>ا</u>]	[Nm	m²] [N/mm ²	²][N/mm ²	[%]	[mm]	[N/m]	[N/m]	[N/m]	[%] [I	-] [u	n] [r	l] [%]	Z	[N/mm ²]	[N/mm ²]	[N/mm²	[%]
	Q02dK01	unzul.	3	45,0	1357 51	154 5.1	98 2,	-			2,0	109											
pa	Q02dK02	unzul.	3	40,0	501 15	901 1.5	18 0,	7	tq oi q		1,7	26	N.M.N	http://		2		+4			the the test	+doio	
20 0	Q02dK03	unzul.	З	40,0	457 17	736 1.7	51 0,		711		2,0	28		711		≥ _ 					vorh	vorh	
ว	Q02dK04	unzul.	3	45,0	699 2t	655 2.6	78 1,	0	- 10-2		1,0	25		- m-		-							
	Q02dK05	unzul.	3	50,0	806 3(060 3.0	86 1,	2			1,7	37											
	K02dK01	unzul.	З	45,0	1558 55	916 5.5	67 2,	4			1,2	42											
p	K02dK02	unzul.	2	12,5	1874 71	119 7.1	80 2,	æ			1,7	112	•										
20 3	K02dK03	zul.	۲		1954 74	422 7.4	86 2,	9 2,5	0,4	🖋 17,6%	1,2	63	100	7	7,3%	0,26 0,	26 0,1	8 🗸 0,0'	% 97	7 0,1	0,1	0'0	v 18,0%
к	K02dK04	zul.	1		1357 51	154 5.1	98 2,	-		🖋 17,6%	2,0	108		>	7,3%	0,62		💥 135'	% 679	0,0			✔ 18,0%
	K02dK05	unzul.	3	45,0	1698 64	449 6.5	05 2,	ю			0'0	43											
	D02dK01	unzul.	ю	45,0	1304 45	954 4.5	97 1,	6			1,8	20						-					
р	D02dK02	unzul.	Э	45,0	1372 52	211 5.2	56 2,	0	t d o i o i		1,1	27	N. M. A.	4 de jour		-		1			4 di ci ci	140:00	
20	D02dK03	unzul.	3	45,0	1032 35	920 3.5	54 1,				1,5	65				2 ;		10			mont	mont	
۵	D02dK04	unzul.	2	12,5	1357 51	154 5.1	98 2,	1 II.2UI.	zul.		2,0	108	11.2UI.	Zul.		Ë	zui. zu	<u> </u>			VOILI.	VOIII.	
	D02dK05	unzul.	З	45,0	1055 40	007 4.0	41 1,	ő			1,6	40	•										
	Q07dK01	unzul.	3	50,0	1312 45	981 5.C	24 2,	0			1,4	22											
p.	Q07dK02	unzul.	3	40,0	1036 35	934 3.5	68 1,	ы			2,2	46		<u> </u>							1		
20	Q07dK03	unzul.	3	40,0	2259 85	578 8.6	52 3,	3 2,9	0,0		1,1	81	97	0		Ó	28 0,0	0			0,1	0,0	
Ø	Q07dK04	unzul.	3	45,0	1421 53	397 5.4	44 2,	-			1,9	54									T		
	Q07dK05	zul.	-		1940 73	369 7.4	32 2,	6		🖋 0,0%	1,4	26		>	0,0%	0,28		√ 0'0	% 97(0,1	T		V 0,0%
	K07dK01	unzul.	3	40,0	1826 65	936 6.5	96 2,	8			1,5	80				-		-					
p,	K07dK02	unzul.	3	45,0	1537 58	838 5.8	88 2,	3			1,6	35											
20 3	K07dK03	unzul.	3	45,0	1759 66	680 6.7	38 2,	6 3,7	0,0		1,3	35	144	0		, 0	26 0,0	0			0,1	0'0	
к	K07dK04	unzul.	3	40,0	1549 58	885 5.5	35 2,	8			1,2	56											
	K07dK05	zul.	-		2438 92	258 9.3	38 3,	7		V 0,0%	1,2	144		>	0,0%	0,26		 0,0 	% 121	9 0,1			V 0,0%
	D07dK01	zul.	1		2280 86	659 8.7	34 3,	4		%L'0 🎤	1,2	120		~	1,0%	0,25		🗸 0,1'	% 114(0,1			✔ 0,7%
p,	D07dK02	zul.	1		2111 80	016 8.C	85 3,	2		🖋 6,3%	1,0	102		>	14,6%	0,24		🗸 2,4'	% 105!	5 0,1			🖋 6,7%
20 (D07dK03	zul.	1		2364 89	980 9.0	57 3,	5 3,4	0,1	 2,4% 	1,3	131	119	> ດ	10,3%	0,26 0,	25 0,0	1 🗸 5,4	% 118	2 0,1	0,1	0,1	✔ 4,5%
a	D07dK04	zul.	-		2296 87	720 8.7	.95 3,	ß		🖋 3,3%	1,2	123		>	3,3%	0,24		 2,9 	% 114	3 0,1			✔ 1,6%
	D07dK05	unzul.	2	12,5	2418 91	183 9.2	.63	7			1,6	130											
	Q28dK01	unzul.	3	45,0	2149 81	163 8.2	34 2,	ő			1,1	56											
pg	Q28dK02	unzul.	3	40,0	1864 7(079 7.1	40 2,	œ			1,6	68				T			_				
2 2	Q28dK03	unzul.	e	45,0	2055 78	803 7.5	70 3,	2 4,0	0,5		1,3	95	142	37		ő	22 0,0	0			0,1	0'0	
)	Q28dK04	unzul.	с С	47,5	2261 8	586 8.6	60 3,	<u>م</u>			0,3	37		4		Т			2	,			
	Q28dK05	zul.	-		2609 9(3.6 806	94 4,	0		V 0,0%	1,1	142		>	0,0%	0,22	_	0'0'	% 130	4 0,1			V 0,0%
	K28dK01	zul.	-		2829 107	743 10.8	35 4,	4		3,9%	1,0	125		>	4,8%	0,16		 2,9 	% 141	4 0,1			4,1%
pg	K28dK02	zul.	-		2775 10	539 10.6	30 4,	<i>с</i>		💙 1,6%	0,9	116		>	2,4%	0,15		 5,4 	% 138	7 0,1			 2,1%
K 2	K28dK03	zul.	- ·		2663 10	112 10.1	99 4,	4,2	0,1	 ✓ 0,2% ✓ 2,2% 	1,0	130	119	10 2	9,4%	0,18 0,	16 0,0	10,0	% 133	0,1	0,1	0,1	 1,9% 1,2%
	K280KU4	zuı.	(36 1102	916 10.0	0Z 4			💙 5,3%	0,8	GOL		>	11,8%	0,16		× 1, 1	% 130	0,1			4,3%
	K28dK05	unzul.	2	12,5	2803 10t	646 10.7	38 4,	4			1,5	167											
	D28dK01	zul.	-		2444 92	281 9.3	61 3,	~		💙 2,3%	1,1	124		>	2,0%	0,21		2,6	% 122	0,1			0,5%
p 8	D28dK02	unzul.	0	12,5	2591 98	840 9.5	25 4,				1,4	160									č		
2 a	D280K03	unzul.	. 7	12,5	2649 100	060 10.1	4/ 4,	3,8	0,1	000	1,5	169	126	en en	,00 O	o C	21 0,0			č	0,1	0,1	A 0 F0/
	DZ80NU4	zui.	- c	175	10 C222	831 0.2 700 0.0	0/ 0/			× 2,370	0,1 7 4	129		>	Z,U%	0,20		oʻ7 ►	άII %	0, I			v,5%
	D 200NUC	unzui.	V	1 c' / L	16 70C7	129 3.6	13 J,	n			1,1	112		-		_	_						

Tab. 42: Auswertung von zulässigen Proben mit Rissart 1

												Auswe	ertung	unzula	assige F	roben	mit Kiss	art z			
5	bekörper	jn -s	Riss-	Winkel	_		Keilkraft	Kräfte	im Riss	₹-	bmessi	ungen	×	erbzug	festig.	Stan	dard-	Schubsp	annung	Star	dard-
		Ris: Verla	art	<u>ස</u> ව	F _{M,max}	F _{H,max}	F _{k,max} INI	F _{H,β,max} INI	F _{v,ß,max} INI	h _{Lig.β}	a ₆ [mm] [b _β /	A _{Lig.β} mm²l [N	σ _{kZ,β} (Jkz, B, m V/mm²l[[abwei	chung	T _β [N/mm ²]	T _{β,mittel}	abwe	ichung
	Q02dK01	unzul.	e	45.0	1357	5154	5.198										[n/]				[0/]
p	Q02dK02	unzul.	e	40,0	501	1901	1.918								+doio	toiot*			+doio	td cic	
102	Q02dK03	unzul.	e	40,0	457	1736	1.751								nicht vorh	nicht			nicht	vorh	
ס	Q02dK04	unzul.	Э	45,0	669	2655	2.678														
	Q02dK05	unzul.	Э	50,0	806	3060	3.086														
	K02dK01	unzul.	e	45,0	1558	5916	5.967														
p	K02dK02	unzul.	2	12,5	1874	7119	7.180	6747	2456	107,6	40,1	53,8 1	6195	2,6			V 0,0%	0,2			🖋 0,0%
20 3	K02dK03	zul.	-		1954	7422	7.486								2,6	0,0			0,2	0,0	
Я	K02dK04	zul.	1		1357	5154	5.198														
	K02dK05	unzul.	З	45,0	1698	6449	6.505														
	D02dK01	unzul.	3	45,0	1304	4954	4.997														
p	D02dK02	unzul.	e	45,0	1372	5211	5.256														
20	D02dK03	unzul.	e	45,0	1032	3920	3.954								1,9	0,0			0,1	0,0	
a	D02dK04	unzul.	2	12,5	1357	5154	5.198	4885	1778	106,9	42,3	53,4 1	6096	1,9			V 0,0%	0,1			V0,0 📏
	D02dK05	unzul.	З	45,0	1055	4007	4.041														
	Q07dK01	unzul.	e	50,0	1312	4981	5.024														
p,	Q07dK02	unzul.	e	40,0	1036	3934	3.968								+doio	+doio			+ doio	+d cic	
20	Q07dK03	unzul.	ო	40,0	2259	8578	8.652								uncht.	unch .			vorb	work	
ס	Q07dK04	unzul.	e	45,0	1421	5397	5.444								VOLLI.	VOLLI.			VOLU.	VOIII.	
	Q07dK05	zul.	1		1940	7369	7.432														
	K07dK01	unzul.	e	40,0	1826	6936	6.996														
p,	K07dK02	unzul.	З	45,0	1537	5838	5.888								hto:	ht+			hinh+	ht oic	
20 3	K07dK03	unzul.	З	45,0	1759	6680	6.738								worh	work			vorh	vorh	
Я	K07dK04	unzul.	З	40,0	1549	5885	5.935														
	K07dK05	zul.	1		2438	9258	9.338														
	D07dK01	zul.	-		2280	8659	8.734														
p	D07dK02	zul.	-		2111	8016	8.085														
20	D07dK03	zul.	-		2364	8980	9.057								3,5	0,0			0,2	0,0	
a	D07dK04	zul.	-		2296	8720	8.795														
	D07dK05	unzul.	2	12,5	2418	9183	9.263	8704	3168	107,0	42,7	53,5 1	6609	3,5			V 0,0%	0,2			🖋 0,0%
	Q28dK01	unzul.	З	45,0	2149	8163	8.234														
pg	Q28dK02	unzul.	e	40,0	1864	7079	7.140								nicht	nicht			nicht	nicht	
3 28	Q28dK03	unzul.	ო	45,0	2055	7803	7.870								vorh.	vorh.			vorh.	vorh.	
ົ	Q28dK04	unzul.	ო	47,5	2261	8586	8.660														
	Q28dK05	zul.	1		2609	9908	9.994						_								
	K28dK01	zul.	1		2829	10743	10.835														
p	K28dK02	zul.	-		2775	10539	10.630														
32	K28dK03	zul.	-		2663	10112	10.199								4,1	0,0			0,2	0,0	
Я	K28dK04	zul.	-		2611	9916	10.002														
1	K28dK05	unzul.	2	12,5	2803	10646	10.738	10090	3673	105,9	44,1	52,9 1	5940	4,1			V 0,0%	0,2			🖋 0,0%
	D28dK01	zul.	-		2444	9281	9.361														
p	D28dK02	unzul.	2	12,5	2591	9840	9.925	9327	3395	106,0	44,5	53,0 1	5939	3,8			V 6,0%	0,2			🖋 13,4%
32 0	D28dK03	unzul.	2	12,5	2649	10060	10.147	9535	3470	105,8	43,4	52,9 1	5901	3,9	3,6	0,3	🖋 7,6%	0,2	0,2	0,0	🖋 11,2%
]	D28dK04	zul.	-		2325	8831	8.907														
1	D28dK05	unzul.	2	17,5	2562	9729	9.813	8276	5273	114,5	47,3	57,2 1	7216	3,1			💙 13,5%	0,3			💙 24,6%

Tab. 43: Auswertung von unzulässigen Proben mit Rissart 2

9.7.4 Auswertung zulässiger Proben mit Rissart 2

MW n. zul.: Mittelwertbildung nicht zulässig, <50% zulässiger Werte Rissart 1,2 und 3 laut Abb. 93, Abb. 94 und Abb. 95 auf Seite 105

											⊲	Nuswei	tung (ınzuläs	sige Pr	oben r	nit Rissa	rt 3			
Prot	oekörper	jni -s	Riss-	Winkel	-	_	Keilkraft	Kräfte i	n Riss	⋖-	bmessi	ugen	<u>×</u>	erbzugf	estig.	Stan.	dard-	Schubsp	annung	Stan	dard-
		si Я erls	art	œ.	F _{M,max}	F _{H,max}	F _{k,max}	F _{H,β,max}	F _{V,β,max}	h _{Lig, β}	a B	b _β	Lig, B	J _{KZ,B} C	hz,β,m	abwei	chung	τ _β	$\tau_{\beta,mittel}$	abwe	chung
		•		<u> </u>	Ξ	Z	Z	Z	Z	[mm]	[mm]	mm] [r	nm²][N	/mm²][[N	//mm²][[^	√mm²]	[%]	[Nmm ²]	[Nmm ²]	N/mm ²]	[%]
-	Q02dK01	unzul.	ო	45,0	1357	5154	5.198	3164	4124	78,1	23,2	39,1 1	1766	1,6		•••	K 74,5%	0,4		<u></u>	K 78,8%
p	Q02dK02	unzul.	3	40,0	501	1901	1.918	1296	1414	85,9	23,1	43,0 1	2940	0,6		•••	Ҝ 36,9%	0,1		<u></u>	K 44,3%
zo 7	Q02dK03	unzul.	e	40,0	457	1736	1.751	1183	1291	85,9	24,8	42,9 1	2927	0,5	0,9	0,4	K 41,1%	0,1	0,2	0,1	K 49,0%
)	Q02dK04	unzul.	e	45,0	669	2655	2.678	1631	2125	78,1	27,9	39,0 1	1758	0,9		v	4,4%	0,2			7,8%
-	Q02dK05	unzul.	e	50,0	806	3060	3.086	1658	2603	72,1	27,6	36,1 1	0855	1,0		v	/ 7,9%	0,2			22,3%
	K02dK01	unzul.	3	45,0	1558	5916	5.967	3633	4734	78,1	24,2	39,1 1	1767	1,8		•	🏉 6,1%	0,4			/ 4,4%
p	K02dK02	unzul.	2	12,5	1874	7119	7.180														
Z0 X	K02dK03	zul.	1		1954	7422	7.486								1,9	0,1			0,4	0,0	
	K02dK04	zul.	1		1357	5154	5.198														
_	K02dK05	unzul.	3	45,0	1698	6449	6.505	3960	5160	78,1	26,9	39,0 1	1750	2,0		•	🏉 6,1%	0,4			/ 4,4%
	D02dK01	unzul.	3	45,0	1304	4954	4.997	3042	3964	78,0	26,4	39,0 1	1755	1,6			/ 9,8%	0,3			🌒 9,5%
p	D02dK02	unzul.	3	45,0	1372	5211	5.256	3200	4170	78,1	26,3	39,0 1	1753	1,6			/ 15,5%	0,4			/ 15,2%
70	D02dK03	unzul.	ო	45,0	1032	3920	3.954	2407	3137	78,0	25,6	39,0 1	1733	1,2	1,4	0,2	/ 13,8%	0,3	0,3	0'0	🥒 13,2%
a	D02dK04	unzul.	2	12,5	1357	5154	5.198														
_	D02dK05	unzul.	3	45,0	1055	4007	4.041	2460	3206	78,1	26,3	39,1 1	1771	1,3		•	/ 11,4%	0,3			🥒 11,5%
	Q07dK01	unzul.	e	50,0	1312	4981	5.024	2699	4237	72,1	27,7	36,1 1	0858	1,6		~	/ 10,5%	0,4			/ 5,7%
р,	Q07dK02	unzul.	3	40,0	1036	3934	3.968	2681	2925	86,0	22,9	43,0 1	2948	1,2			Ҝ 33,8%	0,2			Ҟ 38,8%
20	Q07dK03	unzul.	3	40,0	2259	8578	8.652	5845	6379	85,9	24,5	43,0 1	2933	2,6	1,7	0,5	K 47,5%	0,5	0,4	0,1	🗮 33,6%
ð	Q07dK04	unzul.	з	45,0	1421	5397	5.444	3314	4319	78,1	26,2	39,0 1	1765	1,7		v	/ 3,2%	0,4			IO 0,5%
-	Q07dK05	zul.	1		1940	7369	7.432														
	K07dK01	unzul.	3	40,0	1826	6936	6.996	4727	5158	86,0	22,8	43,0 1	2946	2,0			🧳 8,0%	0,4			/ 0,4%
p,	K07dK02	unzul.	3	45,0	1537	5838	5.888	3584	4671	78,1	24,9	39,1 1	1768	1,8		•	/ 4,7%	0,4			🌒 0,0%
20 2	K07dK03	unzul.	3	45,0	1759	6680	6.738	4102	5346	78,1	23,6	39,1 1	1761	2,0	1,9	0,1	🧳 7,3%	0,5	0,4	0,0	14,5%
	K07dK04	unzul.	З	40,0	1549	5885	5.935	4010	4376	86,1	21,0	43,0 1	2958	1,7		•	/ 10,5%	0,3			/ 14,9%
-	K07dK05	zul.	-		2438	9258	9.338														
	D07dK01	zul.	1		2280	8659	8.734														
p.	D07dK02	zul.	٢		2111	8016	8.085								1010	440:00			10101	10101	
20	D07dK03	zul.	1		2364	8980	9.057								nicht	mont			ment	ment	
	D07dK04	zul.	1		2296	8720	8.795														
-	D07dK05	unzul.	2	12,5	2418	9183	9.263														
-	Q28dK01	unzul.	з	45,0	2149	8163	8.234	5563	6071	86,0	38,3	43,0 1	2955	2,9			/ 14,5%	0,5			/ 13,3%
p	Q28dK02	unzul.	e	40,0	1864	7079	7.140	4824	5264	86,0	21,8	43,0 1	2943	2,1			/ 17,7%	0,4			24,8%
32 1	Q28dK03	unzul.	ო	45,0	2055	7803	7.870	4791	6244	78,1	23,6	39,1 1	1754	2,4	2,5	0,3	/ 5,3%	0,5	0,5	0,1	1,8%
2	Q28dK04	unzul.	e	47,5	2261	8586	8.660	3999	7682	67,5	32,5	33,7 1	0156	2,7			🌒 8,5%	0,8			Ҟ 39,9%
-	Q28dK05	zul.	-		2609	9908	9.994														
	K28dK01	zul.	٢		2829	10743	10.835														
pg	K28dK02	zul.	-		2775	10539	10.630								nicht	nicht			nicht	nicht	
2	K28dK03	zul.	-		2663	10112	10.199								vorh	vorh			vorh	vorh	
1	K28dK04	zul.	-		2611	9916	10.002														
-	K28dK05	unzul.	2	12,5	2803	10646	10.738														
	D28dK01	zul.	-		2444	9281	9.361														
p8	D28dK02	unzul.	2	12,5	2591	9840	9.925								nicht	nicht			nicht	nicht	
20	D28dK03	unzul.	2	12,5	2649	10060	10.147								vorh.	vorh.			vorh.	vorh.	
<u>- 1'</u> 1	D28dK04	zul.	-	!	2325	8831	8.907						1								
-	D28dK05	unzul.	2	17,5	2562	9729	9.813														

9.7.5 Auswertung zulässiger Proben mit Rissart 3

Tab. 44: Auswertung von unzulässigen Proben mit Rissart 3

MW n. zul.: Mittelwertbildung nicht zulässig, <50% zulässiger Werte Rissart 1,2 und 3 laut Abb. 93, Abb. 94 und Abb. 95 auf Seite 105

9.8 Keilspaltversuch - Last-Verschiebungsdiagramme

9.8.1 Last-Verschiebungsdiagramme – Q02dK

Abb. 101: Last-Verschiebungsdiagramm Q02dK

Abb. 102: Last-Verschiebungsdiagramm Q02dK01

Abb. 103: Last-Verschiebungsdiagramm Q02dK02

Abb. 104: Last-Verschiebungsdiagramm Q02dK03

Abb. 105: Last-Verschiebungsdiagramm Q02dK04

Abb. 106: Last-Verschiebungsdiagramm Q02dK05

9.8.2 Last-Verschiebungsdiagramme – K02dK

Abb. 107: Last-Verschiebungsdiagramm K02dK

Abb. 108: Last-Verschiebungsdiagramm K02dK01

Abb. 109: Last-Verschiebungsdiagramm K02dK02

Abb. 110: Last-Verschiebungsdiagramm K02dK03

Abb. 111: Last-Verschiebungsdiagramm K02dK04

Abb. 112: Last-Verschiebungsdiagramm K02dK05

9.8.3 Last-Verschiebungsdiagramme – D02dK

Abb. 113: Last-Verschiebungsdiagramm D02dK

Abb. 114: Last-Verschiebungsdiagramm D02dK01

Abb. 115: Last-Verschiebungsdiagramm D02dK02

Abb. 116: Last-Verschiebungsdiagramm D02dK03

Abb. 117: Last-Verschiebungsdiagramm D02dK04

Abb. 118: Last-Verschiebungsdiagramm D02dK05

9.8.4 Last-Verschiebungsdiagramme – Q07dK

Abb. 119: Last-Verschiebungsdiagramm Q07dK

Abb. 120: Last-Verschiebungsdiagramm Q07dK01

Abb. 121: Last-Verschiebungsdiagramm Q07dK02

Abb. 122: Last-Verschiebungsdiagramm Q07dK03

Abb. 123: Last-Verschiebungsdiagramm Q07dK04

Abb. 124: Last-Verschiebungsdiagramm Q07dK05

9.8.5 Last-Verschiebungsdiagramme – K07dK

Abb. 125: Last-Verschiebungsdiagramm K07dK

Abb. 126: Last-Verschiebungsdiagramm K07dK01

Abb. 127: Last-Verschiebungsdiagramm K07dK02

Abb. 128: Last-Verschiebungsdiagramm K07dK03

Abb. 129: Last-Verschiebungsdiagramm K07dK04

Abb. 130: Last-Verschiebungsdiagramm K07dK05

Abb. 131: Last-Verschiebungsdiagramm K07dK05 (Korrekturschritte)

Abb. 132: Last-Verschiebungsdiagramm K07dK05 (korrigiert)

9.8.6 Last-Verschiebungsdiagramme – D07dK

Abb. 133: Last-Verschiebungsdiagramm D07dK

Abb. 134: Last-Verschiebungsdiagramm D07dK01

Abb. 135: Last-Verschiebungsdiagramm D07dK02

Abb. 136: Last-Verschiebungsdiagramm D07dK03

Abb. 137: Last-Verschiebungsdiagramm D07dK04

Abb. 138: Last-Verschiebungsdiagramm D07dK05

9.8.7 Last-Verschiebungsdiagramme – Q28dK

Abb. 139: Last-Verschiebungsdiagramm Q28dK

Abb. 140: Last-Verschiebungsdiagramm Q28dK01

Abb. 141: Last-Verschiebungsdiagramm Q28dK02

Abb. 142: Last-Verschiebungsdiagramm Q28dK03

Abb. 143: Last-Verschiebungsdiagramm Q28dK04

Abb. 144: Last-Verschiebungsdiagramm Q28dK05

9.8.8 Last-Verschiebungsdiagramme – K28dK

Abb. 145: Last-Verschiebungsdiagramm K28dK

Abb. 146: Last-Verschiebungsdiagramm K28dK01

Abb. 147: Last-Verschiebungsdiagramm K28dK02

Abb. 148: Last-Verschiebungsdiagramm K28dK03

Abb. 149: Last-Verschiebungsdiagramm K28dK04

Abb. 150: Last-Verschiebungsdiagramm K28dK05

9.8.9 Last-Verschiebungsdiagramme – D28dK

Abb. 151: Last-Verschiebungsdiagramm D28dK

Abb. 152: Last-Verschiebungsdiagramm D28dK01

Abb. 153: Last-Verschiebungsdiagramm D28dK02

Abb. 154: Last-Verschiebungsdiagramm D28dK03

Abb. 155: Last-Verschiebungsdiagramm D28dK04

Abb. 156: Last-Verschiebungsdiagramm D28dK05

9.9 Keilspaltversuch - Rissverlauf

9.9.1 Keilspaltversuch – Rissverlauf Q02dK

Q02dK01

Q02dK02

Q02dK03

Q02dK04

Q02dK05

9.9.2 Keilspaltversuch – Rissverlauf K02dK

K02dK01

K02dK02

K02dK03

K02dK04

K02dK05

9.9.3 Keilspaltversuch – Rissverlauf D02dK

D02dK01

D02dK02

D02dK03

D02dK04

D02dK05

9.9.4 Keilspaltversuch – Rissverlauf Q07dK

Q07dK01

Q07dK02

Q07dK03

Q07dK04

Q07dK05

9.9.5 Keilspaltversuch – Rissverlauf K07dK

K07dK01

K07dK02

K07dK03

K07dK04

K07dK05

9.9.6 Keilspaltversuch – Rissverlauf D07dK

D07dK01

D07dK02

D07dK03

D07dK04

D07dK05

9.9.7 Keilspaltversuch – Rissverlauf Q28dK

Q28dK01

Q28dK02

Q28dK03

Q28dK04

Q28dK05

9.9.8 Keilspaltversuch – Rissverlauf K28dK

K28dK01

K28dK02

K28dK03

K28dK04

K28dK05

9.9.9 Keilspaltversuch – Rissverlauf D28dK

D28dK01

D28dK02

D28dK03

D28dK04

D28dK05

10 Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die hier vorliegende Diplomarbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt sowie der Literatur wörtlich und inhaltlich entnommene Stellen als solche gekennzeichnet habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Wien, am 13.02.2018

Matić Stjepan