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Abstract

Software industry is constantly looking for ways to improve the productivity of the
software development process, as well as the quality and durability of the developed
software product. A significant factor behind the difficulty of developing complex software
is the wide conceptual gap between the problem and the implementation domain of a
developed solution.

Model Driven Software Engineering (MDSE) is an approach to software development
whose aim is the automation of the development process through the specification of
models containing domain specific knowledge of the system under development, and
transformation of such models into the implementation of the system. Based on the
premise that the implementation code is not the main result of the development process,
but rather the system knowledge encoded inside the models, starting point in MDSE are
the conceptual and implementation independent models of the domain knowledge which
are then transformed, according to some formal rules, into implementations on selected
target environments.

One of the important issues when using the MDSE approach is that once the implemen-
tation artifacts are produced from the models, any existing defects at the model level get
transferred to the implementation level, where it is more expensive, in terms of time and
effort, to detect and correct them. To improve the development process when using a
model driven approach, adequate means for detecting and correcting defects already on
the model level are necessary.

One of the most popular modeling languages in MDSE is the Unified Modeling Language
(UML), a standard by the Object Management Group (OMG). UML is composed of
thirteen diagram types, which can be used for specifying structural and behavioral
aspects of a software system. In order to support the execution of models defined
with UML, OMG introduced a standard called Semantics of a Foundational Subset for
Executable UML Models (fUML), which defines the operational semantics for a subset of
UML. Furthermore, a reference implementation of an interpreter that can execute fUML
compliant models exists.

The goal of this thesis is to utilize this precise and standardized specification of the
semantics and the interpreter of fUML in order to address the lack of testing facilities
for fUML models, and thus advance the movement from code-centric to model-centric
development, promised by MDSE.
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CHAPTER 1
Introduction

1.1 Motivation

Increased business needs and the advances in computing technologies lead to the devel-
opment of complex software systems that are meant to operate in highly distributed
environments, consist of diverse devices that communicate using a variety of interaction
paradigms, can adapt to changes, and are at the same time stable enough to be reliable
[FR07].

In order to cope with the increasing complexity of these software systems, advances in
the used programming languages, such as concurrency and object-relational mapping, are
being constantly made. However, despite of these advances, the gap between the problem
domain and the implementation technologies with which the software systems are made,
leads to significant decrease of productivity of the software development process and the
quality of the final software product [Fra02].

In an effort to decrease this gap, researchers and developers in the area of model driven
software engineering (MDSE), are creating modeling languages at a higher level of
abstraction than traditional general purpose programming languages.

Models created using higher level modeling languages are described using concepts that
are closer to the problem domain, than to the implementation technology used for creating
the software systems. The technical details of the implementation environment on which
the system will run are abstracted away, thus enabling to more easily reason about the
structure and the behavior of the developed system.

Furthermore, using state-of-the-art techniques in MDSE, such as model-to-model and
model-to-text transformations, implementation artifacts such as implementation code,
database schema, configuration files and other, can be automatically produced from these
models.
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1. Introduction

By automating the development process of the implementation artifacts, a specification
of the system under development is separated from its implementation, thus improving
the portability of the system.

Once a new technical platform is created, an existing specification of a system can be
automatically translated into a solution based on the new platform.

Furthermore, making changes to the system at a higher level of abstraction, rather than
changing the implementation code, is less error prone and more efficient, as many details
of the implementation are hidden from the developer. This leads to the improvement
of the productivity of the development process, as well as of the maintainability of a
developed software system.

However, once the implementation artifacts are produced from the models, any existing
defects at the model level get transferred to the implementation level, where it is more
expensive, in terms of time and effort, to detect and correct them. To improve the
development process when using a model driven approach, adequate means for detecting
and correcting defects already on the model level are necessary.

In the context of general purpose programming languages several kinds of testing ap-
proaches for ensuring the quality of the implementation code, such as unit testing,
integration testing and system testing, are adopted. Among these, unit testing is fre-
quently adopted in practice, for ensuring the functional correctness of parts of the software
system, called units. In procedural and object oriented programming, a unit is often
an individual function or a procedure. Unit tests evaluate assertions concerning the
expected output and result of an operation invocation of some part of the software
program. Specified tests can be executed continuously during the development life cycle
to ensure that the introduction of a new functionality into the system or re-factoring of
the existing code has not caused an error somewhere else in the system.

Compared to general purpose programming languages, in MDSE the proper tool support
for debugging and testing of modeling languages is often missing. In order to enable
testing the functional correctness of models, the corresponding modeling languages must
have precisely defined semantics, which would enable their interpretation and execution.
Unfortunately, most of the modeling languages in MDSE lack the precise definition of
their semantics or contain partially defined semantics, leading to different interpretations
by different individuals.

Moreover, most of the existing approaches supporting the validation and verification of
models are based on translating these models to some other formalism, such as Petri
Nets [Rei85], for which analysis tools already exist. This complicates the validation and
verification process by introducing the forward-translation of models into some other
formalism so that they can be executed, and the backward-translation of the validation
and verification results to the model level. Both forward- and backward-translation lead
to increased complexity of the validation and verification process, as they introduce an
additional layer between the model under test and the specification of the test cases.
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Furthermore, the backward-translation can lead to loss of information as the results have
to be translated back to the model level.

In 2011, the Object Management Group (OMG) has created a standard called Semantics
of a Foundational Subset for Executable UML models (fUML) [Obj11], specifying the
semantics of a subset of the Unified Modeling Language (UML) [Obj15] precisely enough
so that the conform models can be directly processed by a machine. Using fUML, it is
possible to specify both structural and behavioral aspects of a system under development
in a standardized way, and additionally execute the models without the need of a
translation to another specification.

However, to support the move from code centric to model centric development of the
MDSE approach using the fUML subset, necessary tools for debugging and testing of
fUML models are required. A debugger for fUML conformant models has been developed
and presented by [MLK12]. However, in order to ensure the quality of fUML conformant
models, necessary facilities for testing such models are still missing.

1.2 Aim of Work
One of the most popular modeling languages in MDSE is the Unified Modeling Language
(UML) [Obj15], a standard by the Object Management Group (OMG). UML is composed
of thirteen diagram types, which can be used for specifying structural and behavioral
aspects of a software system [HWRK11]. However, the specification of the semantics of
UML, which is a prerequisite for executing and testing UML models, is scattered across
available documentation and expressed in natural English language, leading to different
interpretations of the same specification by different individuals.

In order to address this issue, OMG introduced a standard called Semantics of a
Foundational Subset for Executable UML Models (fUML) [Obj11], which defines the
operational semantics for a subset of UML. This subset is composed of the most relevant
part of class diagrams for modeling the structure and activity diagrams for specifying
the behavior of the system. Furthermore, a reference implementation of an interpreter
that can execute fUML compliant models exists.

The aim of this work is to utilize this precise and standardized specification of the semantics
and the interpreter of fUML to address the lack of testing facilities for fUML models.
More precisely, the aim is to provide means for validating the functional correctness of
fUML models, by testing the modeled behavior specified using fUML activity diagrams.
We adopt the concepts of unit testing for empowering users to maintain a high quality of
fUML activity diagrams systematically and continuously during the modeling process.

Therefore, we have developed a dedicated test specification language and an interpreter
for specifying and executing test cases for fUML models enabling the validation of the
correct behavior of fUML activities. Using the test specification language, a modeler can
specify assertions on the execution order of the activity nodes, input and output values,
and the runtime state of the model.

3



1. Introduction

The test interpreter is based on the extensions of the reference implementation of the
fUML virtual machine [MLK12], which is used to execute the activities under test and
to obtain execution traces, that are then used for evaluating the assertions defined in the
test specification.

The execution trace contains information regarding the chronological order of executed
activity nodes, the input and output relationships between the activity nodes describing
which inputs (outputs) were provided to (produced by) which nodes in the executed
activity, and the logical order describing which execution of nodes enabled the execution
of other nodes in the executed activity.

Based on a performed user study (cf. Section 8) there were indications that the developed
testing framework may help in ensuring the functional correctness of fUML models, by
providing means for detecting and correcting defects at the model level. Furthermore,
by having means to specify the test data and the test cases at the model level, the test
creation phase of the testing process may be simplified, leading to the increase of its
productivity. Additionally, specification of the test data and the test cases (testware) at
the model level may lead to increase of the maintainability of the testware itself, which
was indicated by a comparison of a set of test cases specified with our testing framework
on one side, and the JUnit testing framework on the other (cf. Section 8.2).

Having a set of test cases that are separated from the model under test and can be
easily repeated when new changes are introduced into the model, enables to support
regression testing. Finally, results at the model level can provide information in a more
understandable form, as they can be directly integrated into editing tools for better
visualization.

1.2.1 Challenges

When designing and developing a testing framework for models compliant to the fUML
subset, there is a number of challenges that have to be addressed. These challenges come
both from the specific nature of the models, as well as the testing process itself.

Challenge 1: Different levels of abstraction. UML can be used for sketching
and planning a system, as well as for specifying a system precisely enough to generate
executable code. Thus, the UML model may be specified at different levels of abstraction.
This has to be taken into account in the design of a testing framework for UML models.

For instance, an action within a UML activity may simply be named Check Application,
whereas no more details are available. In contrast, users may also use low-level actions,
such as Create Object or Add Structural Feature Value for specifying low-level data
manipulation. Depending on the level of abstraction, the models under test may vary
significantly, thus impacting the specification of the appropriate test cases.

Challenge 2: Concurrency. fUML activities provide modeling concepts for specifying
concurrent execution flows (e.g., fork nodes). Concurrency in an activity leads to the
existence of a potentially large number of possible execution paths of that activity, which
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have to be considered in the test evaluation. In particular, checking the correct execution
order of the activity nodes has to be evaluated for each possible execution path of the
activity under test. Furthermore, a user might be interested only in parts of an execution
path, checking only the order of some activity nodes, while ignoring the execution order
of rest of the nodes in the path.

Challenge 3: Test language design. One important question to address is how to
provide means for specifying the inputs needed by the fUML virtual machine for executing
an activity under test, as well as means for asserting the correct behavior of activities
under test based on the runtime information provided by the fUML virtual machine.
Furthermore, it might be useful to specify an initial state, in which the system should be
prior to the execution of a specified set of test cases. Decisions regarding these questions
influence both the complexity and flexibility of the language, as well as the complexity of
evaluating specified test cases by the test language interpreter.

Challenge 4: Test results design. Finally, the question how to specify and present
useful feedback to the user about the outcome of test executions has to be addressed.
In order to provide useful feedback concerning a test result, information regarding the
success or failure of each test case has to be presented to the user in a concise and useful
format. Based on the presented results, possible causes of a defect and therefore the
required corrections shall be more easily inferable by the user.

1.2.2 Contributions

The main contributions of this thesis are an executable test specification language and
an environment for testing fUML models. The environment is composed of an editor
for specifying the test cases in the test specification language, and an interpreter for
executing the test cases. With this test specification language and the environment,
we aim at establishing the means for specifying and executing test cases precisely and
efficiently to support users in maintaining a high quality of fUML models.

Therefore, we leverage the semantics of UML standardized by the OMG in the fUML
standard. With providing means for testing UML models on the model level, we aim
to foster the promised move from code centric to model centric development and to
contribute to a more complete set of tools for model driven development of software using
the UML standard. In the following, we summarize the contributions of this thesis.

Contribution 1: Design of a dedicated test specification language for fUML
models. To tackle the challenges of specifying test input data and test cases on the model
level taking multiple abstraction levels and concurrency in fUML models into account
(Challenges 1-3 from Section 1.2.1), we have designed a dedicated test specification
language for fUML models. In order to provide input to, as well as defining the expected
output from an fUML activity under test, it is necessary to specify objects and links
comprising the initial or expected states of the system under test, and make them
accessible to a set of test cases.

5
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For this purpose, we have designed the concept of a test scenario, as a component of a
test suite, which is composed of objects and links comprising a state of the system under
test and can be used for specifying the input data for the activity under test, an initial
state of the system prior to execution of a test case, as well as the expected output of
the execution of the activity under test.

Another important issue is the specification of assertions for evaluating the state of
the system during the execution of an activity under test. The execution state of an
activity under test is composed of objects and links provided as input or output of the
activity nodes within the activity under test. These states describe the structure of the
system under test at a certain point in time of the activity execution. Assertions on
these execution states may be specified by directly checking the values provided to or
from activity nodes of the activity under test, or by specifying complex constraints on
the set of objects and links comprising an execution state at the certain point in time.

To address this challenge, each test case in our test language is specified for an activity
execution with a defined input as a set of values provided as input to the activity, and
is composed of a number of assertions. These assertions can be used for validating the
order of activity node executions, as well as for asserting the state of the execution at the
certain point in time. Chapter 6 describes in detail the design of the testing language.

Contribution 2: Development environment enabling to create test cases more
efficiently using a dedicated test editor. In order to improve productivity of the
test creation process, we have developed an environment composed of an editor for
the test specification language, enabling to specify test cases precisely and easily. This
contribution relates directly to the challenge 3 from Section 1.2.1, as it guides the
user in the test design process while using our test specification language, and directly
contributes to the usability of the language. The editor enables referencing elements of
a UML model under test from a test case directly, with support for scoping and code
completion. Furthermore, beside standard syntax checking and highlighting, the editor
contains additional validation rules which can guide a user in correctly specifying the
test input data and the test cases. Details of the implementation of the test specification
language are given in Chapter 6.

Contribution 3: Framework for executing and validating the test cases. We
have developed a framework for executing the test cases created with our test specification
language, enabling the validation of the functional correctness of fUML models (Challenges
1-3 from Section 1.2.1). The framework is based on the extensions of the reference
implementation of the fUML virtual machine [MLK12].

The activity under test is executed with the test data specified within the test case by
the virtual machine. Thereof, the information regarding the chronological and logical
order of the executed activity nodes, as well as the execution states composed of objects
and links created and modified during the activity execution are captured. Once the
activity is executed and the aforementioned execution trace information is recorded, the
assertions defined within the tests are evaluated against the trace, and the test results

6
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are recorded and presented to the user. Chapter 7 details the developed framework.

Contribution 4: Test results model. We have developed a model of the test results
produced by executing the test cases (Challenge 4 from Section 1.2.1). The main
component of the model is a test suite result, composed of test case results for each
executed test case, containing information about the activity under test, and provided
input and output of the activity. Furthermore, a test case result is composed of assertion
results, for each assertion in the test case, providing information on the expected and the
real value produced by the activity under test (i.e., expected versus actual value produced
by an action within the activity, or specified node execution order versus possible node
execution order).

This model can be leveraged for building additional testing capabilities, such as the
calculation of test metrics, fault localization, and result visualization directly in a model
editor. An overview of the test results model and visualization is given in Chapter 7.

1.3 Methodological Approach
In this thesis we have applied the design science research approach by Hevner et al.
[HMPR04]. Design science creates and evaluates IT artifacts intended to solve identified
organizational problems. Hevner et al. define a framework for understanding, executing,
and evaluating IT research.

The core of the approach is the development and evaluation of a design artifact. The
artifact is designed to solve an identified problem or a need of the environment, thus,
assuring the relevance of the research. After the design phase, the artifact is evaluated,
and new knowledge is added to the knowledge base.

We outline the way this approach is applied to this thesis, according to the design science
research guidelines [HMPR04].

Design as an artifact. The result of this research is a testing framework composed of
a test specification language and a test interpreter, created with the aim of addressing
the lack of testing capabilities for fUML models, based on an OMG standard and the
reference implementation of an interpreter enabling the execution of such models.

Problem relevance. Tools for validation and verification of models existed long before
UML. However, they were constrained to their own domain and proprietary execution
semantics, and thus could not be interchanged with other tools and environments.

With the advent of the fUML standard, executable UML models enable the testing and
validation process in a more effective and efficient way, by providing means to specify
and present the test cases and the test results at the model level.

Design evaluation. During the development tests were performed in order to refine
and improve the design and implementation of the test specification language and the
test interpreter, as well as to ensure their correctness. Also, the ease of use and usefulness
of the framework were evaluated by performing a well-structured user study.

7
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Research contributions. The contributions of this thesis are the developed test
specification language for fUML models, and the environment composed of an editor
and an interpreter for specifying and executing the test cases, enabling the effective and
efficient testing of fUML models. The contributions were published and reviewed by
researchers in the MDSE community and their relevance was confirmed.

Research rigor. In the development and evaluation of the artifacts, rigorous and
well-structured methods following the design science research guidelines were applied.
The artifacts were created to address the lack of testing capabilities for executable UML
models based on fUML standard. Foundations of the related disciplines, such as model
based testing and static analysis of models in the area of MDSE, were evaluated.

Design as a search process. The design and implementation of the developed artifact
were improved several times during the research process, by continuously testing the
developed artifacts, by taking into account the comments from peer reviews and the
performed user study.

Communication of research. This thesis and the previous work on which the contri-
butions are based, are published to ensure validity and relevance of the approach, building
a new knowledge base for further research. The implementation of the framework is part
of a larger project called Moliz1 concerned with model execution, debugging and testing,
and is available as an open source project.

1.4 Structure of Work
In the following, the structure of the thesis is outlined.

Chapter 2: Tour of MDSE. In this chapter an overview of Model Driven Software
Engineering (MDSE) is presented. We present a general overview of metallevels in MDA
standard, transformations, and model execution.

Chapter 3: Related Work. In this chapter, we explain the concepts of validation
and verification in software development, and present relevant approaches to validation
and verification of software systems at the model level, based on testing and formal
analysis. In order to make the survey of the related work more comprehensive, we present
approaches to model based testing, where tests are specified at the model level, and used
for generation of corresponding tests at the implementation level.

Chapter 4: fUML Standard. In this chapter an overview of the fUML standard is
given. The testing framework, which is the topic of this thesis, is based on the fUML
standard and an extension of a virtual machine capable of interpreting the models
specified using fUML. The virtual machine and the extensions are presented in this
chapter.

Chapter 5: Testing Framework. This chapter provides an overview of the developed
testing framework. Furthermore, it introduces an example of an ATM machine with

1http://www.modelexecution.org/
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which the requirements of the testing language and the testing framework are motivated,
which are then implemented and presented in the subsequent chapters.

Chapter 6: Test Specification Language. An overview of the test specification
language and its features is given in this chapter. Each of the features, such as order
assertions, state assertions, test scenarios and others are presented in detail (contributions
1-2 from Section 1.2.1). At the end of the chapter, we describe some details of the Xtext
framework used for implementing the test specification language and the associated
editor.

Chapter 7: Test Interpreter. The test interpreter takes as input the fUML models
under test, and the test suites described with the testing language, executes the test
suites, and gives the results as output. The details of the implementation of each feature
of the test interpreter are given in this chapter (contributions 3-4 from Section 1.2.1).

Chapter 8: Evaluation. We have performed a user study with eleven participants
in order to evaluate ease of use and usefulness of the test specification language and
the testing framework. Details of the user study, provided material, results and lessons
learned are given in this chapter. At the end of the chapter, a comparison of the test
cases implemented in the testing language at the model level and JUnit at the code level,
is presented. This comparison gives some information regarding the complexity of the
test case specification and the performance of the framework.

Chapter 9: Conclusion and Future Work. Finally, the contributions of this thesis
are summarized and their limitations are discussed. In addition, an outlook on the future
work is given.

Parts of this thesis have been published in peer-reviewed conferences and workshops
[Ste12, MLMK13, MM14, MMLK15].

An initial idea and a prototype version of our test specification language for fUML
activity diagrams was presented in [Ste12]. In [MLMK13] we have presented a more
mature version of our testing framework, comprising the test specification language and
an interpreter capable of executing test cases for asserting the state of an executed fUML
model, as well as the execution order of nodes within an activity under test.

In [MM14] we have presented an overview of challenges in validating the functional
correctness of intra- and inter-organizational business process models, and an overview
of our testing framework and how it fits into this context.

Finally, in [MMLK15] we have presented our most recent version of the test specification
language and interpreter. The newly introduced features of the framework address the
concurrency in an activity under test when evaluating the execution order of activity
nodes, refinement of temporal and state operators for specifying state assertions, and
the use of OCL [Obj12] for specification of time frames and state expressions within
the state assertions. Furthermore, we have performed and presented a user study in
order to evaluate the ease of use and usefulness of our testing framework. Results of the
evaluation and lessons learned were presented.
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CHAPTER 2
Tour of MDSE

Since its beginning software industry was looking for ways to improve the productivity of
the software development process, as well as the quality and durability of the developed
software product [Fra02]. A significant factor behind the difficulty of developing complex
software is the wide conceptual gap between the problem and the implementation domain
of a developed solution [FR07].

Main problems and concerns of classic software development approaches, whether its a
waterfall, iterative-incremental, agile or some other approach, are productivity, portability,
interoperability, maintenance and documentation. As the development technologies and
environments are created, companies are forced to migrate so that they can maintain
their competitiveness with others.

This migration is forced by two factors: (i) the fact that new technologies often solve
problems which old technologies could not, or solve it in a more efficient and effective
way, and (ii) tool vendors eventually stop supporting old technologies once they become
obsolete. The situation can be further complicated by the fact that the new versions of
the same technology can be incompatible with the old versions. As a consequence of
these factors, existing software system is either transferred to the new version of the used
technology, or a completely new solution is developed using some new technology.

Software applications are not isolated entities, but rather form distributed information
system within an intra-organizational, as well as inter-organizational context. Con-
trary to old approaches imposing the development of isolated monolith applications,
contemporary approaches are based on development of software components that have
inter-communication, and which are organized into multi-layered distributed software
systems. Each of these components is built using the most appropriate technology, with
the mechanisms for communicating with other components within the system.

Documenting a developed software system is usually one of the weak points of every
software development project. The reason is usually the lack of time, as priority is always
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put on the final software product. Lack of documentation is most noticeable in the
maintenance phase, where after some time, even the developers of the software system
cannot understand how certain functionality has been realized in the system.

Object orientation, component based development, design patterns, and others present
different approaches that were developed over the years in order to improve the produc-
tivity of the development process, and to address the aforementioned issues related to
the software development process. Model Driven Software Engineering (MDSE) builds
on these approaches in order to further advance the way software is developed. Primary
concern of MDSE is reducing the gap between problem and software implementation
domains through the use of technologies that support systematic transformations of
problem-level abstractions to software implementations [FR07].

MDSE is an approach to software development whose aim is automation of the develop-
ment process through specification of models containing domain specific knowledge of the
system under development, and transformation of such models into the implementation
of the system. Main idea of this approach is the separation of domain knowledge of a
software system from the implementation technology used to realize it. MDSE is based
on the premise that the implementation code is not the main result of the development
process, but rather the system knowledge encoded inside the models. In the approach,
starting points are the conceptual and implementation independent models of the domain
knowledge which are then transformed, according to some formal rules, into selected
implementation environment.

The MDSE approach led to creation of the standard for software architectures called
Model Driven Architecture1 (MDA) defined by the OMG. MDA defines models as key
artifacts of the development process.

Rothenberg [RWLN89] defines modeling as a cost-effective use of something in place of
reality, which is simpler, safer and cheaper to use than reality for a particular purpose.
According to Rothenberg, a model is an abstraction of reality allowing us to deal with a
real-world problem in a simplified manner, avoiding the unnecessary complexity, danger
and irreversibility of reality. There are many practical usages of models, such as statistical,
meteorological, biological, ecological, and other. According to Bézivin [B0́5], computer
science may be described as the science of building models of software systems.

Based on the concepts with which a model of a software system is described, and their
dependency to the implementation platform in which the system is realized, MDA
standard defines three types of models.

• Computation Independent Model (CIM) describes a system independently from
the computing platform, i.e., any execution platform in which the system can be
implemented.

1http://www.omg.org/mda/

12

http://www.omg.org/mda/


2.1. Metalevels in the MDA Standard

• Platform Independent Model (PIM) describes a system taking the computing
platform into account, but independently of the concrete technology in which the
system will be implemented.

• Platform Specific Model (PSM) describes a system for a concrete implementation
technology in which the system is implemented.

By leveraging model transformations, as described in Section 2.2, PSMs can be auto-
matically generated from appropriate PIMs, and thereof code and other implementation
artifacts can be generated from PSMs.

2.1 Metalevels in the MDA Standard

OMG, an industry driven organization that develops and maintains standards for devel-
oping complex distributed software systems, launched the Model Driven Architecture
(MDA) as a framework of MDSE standards in 2001 [FR07]. MDA defines four main
levels at which models can be specified. These levels are, according to the MDA standard,
named from M0 to M3. Each model from a level Mi defines concepts of a model specified
at the level Mi-1, while at the same time its concepts are defined by a model at the level
Mi+1.

M0 level is the lowest modeling level of the MDA standard. At this level concepts
defining concrete objects of the real world are specified. For instance, at this level a
concrete information system at runtime can be specified.

M1 level constitutes modeling level at which models of a concrete software system are
specified. The concepts specified at this level describe concepts at the level M0, called
instances of the M1 concepts. As previously described, models of a system at this level
can be CIM, PIM or PSM. Each one of these models could model the same system,
therefore they are all specified at the same level. By using model transformations, these
models can be generated from each other.

M2 level is the modeling level at which concepts of a modeling language are defined.
Models specified at this level are called metamodels of models defined at the level M1,
while the models at the level M1 are called instances of the metamodels at the level M2.
MDA standard defines a number of modeling languages at the level M2, among which
the most popular is the Unified Modeling Language (UML) [Obj15]. UML can be used
to specify both structural and behavioral aspects of a software system, and is composed
of thirteen diagram types.

One of the structural diagram types of UML is the class diagram for modeling concepts
and relationships between them in a concrete software system. Class represents a type of
a certain object that can exist in a software system. Therefore a concept specified at the
level M1 can be defined as an instance of the UML class concept defined at the level M2.
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M3 level presents the highest modeling level of the MDA standard at which languages
for defining modeling languages at the M2 level are specified. These languages are called
metamodeling languages, and represent metametamodels of metamodels at M2 level. The
MDA standard defines exactly one metamodeling language at the level M3 called Meta
Object Facility (MOF) [Obj14].

An example depicting the metamodeling levels of the MDA standard is presented in
Figure 2.1.

As can be seen from the Figure 2.1, at the highest modeling level M3 of the MDA standard
is the MOF metamodeling language. This language contains concepts used for describing
modeling languages at the lower level M2, such as UML. The concepts of UML at the M2
level present instances of the concepts at the higher level M3. Fore example, in Figure
2.1 UML::Generalization is an instance of the MOF::Class concept.

UML contains concepts for describing structural and behavioral models of a software
system at the lower level M1. For example, in Figure 2.1 the System::Vehicle at the level
M1 is an instance of the UML::Class at the level M2.

Finally, at the level M0 the objects existing during runtime in a modeled system are
presented. For example, an object of the class System::Car with a value of the name
attribute set to BMW X5 M is presented at the level M0.

2.2 Model Transformations in the MDA Standard

Traditionally transformations from one model to another, as well as from a model to the
code of a modeled system, or other artifacts such as documentation, used to be manual.
Prior to the MDA, there were many case tools which were able to partially generate
implementation code from some proprietary PSM, however still there was a need for
coding phase to make the generated code complete. Furthermore, such tools were not
interoperable, which made it infeasible to transfer a model from one environment to
another, or reuse models in different contexts.

MDA focuses developer on creating PIMs. PSMs are generated automatically by applying
model-to-model transformations. An effort is needed to develop certain transformation
from one metamodel to another, however once specified model-to-model transformation
can be applied to infinite number of different PIMs describing different systems. By
focusing the developer to specification of PIMs, developers spend more time on creating
business processes implemented through a software system, and thus the time between
design phase and implementation is shortened, which leads to productivity increase
[Fra02].

For once defined PIM it is sufficient to create a transformation into a PSM, leading to
increase in portability. If several transformations have been defined for the same PIM
into several different PSMs, transformation rules between PSMs could be thereof deduced,
which could lead to further increase of portability.
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M0 level - runtime

M1 level - model

M2 level - metamodel

M3 level - metametamodel

MOF::Class

UML::Generalization UML::Class UML::Property

System::Vehicle

name  :String

System::Car

:Car

name = "BMW X5 M"

«instanceOf»

«instanceOf»

«instanceOf»«instanceOf»

attributes

generalization

general

«instanceOf»«instanceOf»

Figure 2.1: Metamodeling levels of the MDA standard, modified version of a figure taken
from [Obj15]
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M3

M2A M2BM2T

M1A M1T M1B

«conform»«conform»«conform»

«conform»«conform» «conform»

input output

Figure 2.2: Model transformations in the MDA standard, modified version of a figure
taken from [ATL06]

In MDSE, the aim of transformations is to provide means for specifying a method
of producing certain number of target models from certain number of source models.
Transformations should enable a developer to define a way to navigate through elements
of a source model, as well as matching the elements of a source model to the elements
of a target model. Formally, simple transformation should define a way of producing a
model M1B which conforms to the metamodel M2B, from a model M1A which conforms
to the metamodel M2A. This process is presented in Figure 2.2.

Transformation is defined by the transformation model M1T which conforms to the meta-
model M2T (i.e., the transformation language). This metamodel, as well as metamodels
M2A and M2B, conform to the metametamodel M3.

Levi et al. [LAD+14] developed a categorization of model transformations, for distin-
guishing different model transformations according to their properties and goals. Each
category corresponds to a transformation intent describing the purpose and goals to be
achieved by execution of a transformation belonging to the category. Each transformation
intent in the categorization catalog is documented by its name, a short description of
the general idea behind the intent, and the context specifying scenarios in which a
transformation with the described intent can be used.

According to authors of the categorization, there are several main categories of model
transformations, some of which are briefly mentioned here.
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First category are so called refinement transformations which produce output models
containing more details than the input models. A refinement transformation, for instance,
produces an output platform specific model from an input platform independent model.
Transformations for generating source code or serialized form of an input model fall under
this category.

Second category are abstraction transformations, which are inverse form of the
refinement transformations. Their goal is removal of unnecessary details of the input
model in order to produce a more generalized output model. Example of an abstraction
transformation is one which is used for specifying a query over an input model to produce
an output model representing a subset of the input model.

Transformations which produce output models satisfying a set of constraints from an
input model fall into the category called constraint satisfaction transformations.
Such transformations can be used for generating correct instances of a given metamodel,
or a set of instances that satisfy certain constraints.

Another category of transformations are translation transformations. These trans-
formations are used to produce an output model defined in a different modeling language
from the one used for defining the input model.

One example of transformations that fall into this category are so called migration
transformations. Migration transformations produce a model of the system defined in one
programming language or framework, from a model conforming to another programming
language or framework, facilitating the automated migration of a software system from
one platform to another.

Semantic definition transformations are used to define the semantics of a modeling
language. There are two subgroups of semantic definition transformations.

First subgroup are so called translational semantic transformations, which produce output
models in a modeling language with well defined and known semantics, from an input
model defined with a language that has partial or no definition of semantics. In this way,
for instance, validation and verification can be applied to the input models by analyzing
their analog output models, and converting the results back to the level of input models.

Another subgroup in this category are simulation transformations, which apply modifi-
cations to the input model producing different states of the modeled system, therefore
simulating the system’s execution in order to, for instance, facilitate validation.

One issue in MDSE, where models represent main artifacts of the development process
from which implementation code is produced by applying model transformations, is that
once a transformation is executed, any error created at the model level gets transferred
to the code level, where it is much harder to detect and correct it. Being able to execute
models created with a modeling language can facilitate creation of tools for validation
and verification of such models, further enabling the move to model centric development.

In this respect, transformations from the category of semantic definition transformations
are of uttermost importance. In the following subsection, we will describe how model
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execution can be achieved through the application of model transformations falling in
the category of semantic definition transformations.

2.3 Model Execution
With the advancement of MDSE approach, the software development process continuously
moves from being code centric to being model centric, where models represent the
main artifacts of the development process. As described earlier, the code and other
implementation artifacts are automatically produced from these models by applying
model-to-model and model-to-text transformations. In this context, the quality of the
models, described by both functional and non-functional requirements, becomes essential.

In order to provide means for ensuring the quality of the models, both through static
and dynamic analysis, the modeling languages with which these models are described
have to be executable. In order to enable executability of models, behavioral semantics
of modeling languages used must be specified precisely enough to be processable by a
machine.

There are many approaches for specifying behavioral semantics of modeling languages in
MDSE area, and they can be categorized into two main groups, namely the translational
semantics approach and the operational semantics approach [CCGT09, KT08]. These two
categories directly correspond to translational semantic transformations and simulation
transformations defined as semantics definition transformations in [LAD+14] as introduced
in Section 2.2.

These two groups of approaches can be also understood as building compilers (translational
semantics) or interpreters (operational semantics) for modeling languages. In the following,
we will describe these approaches and present some examples for each.

Translational approach. This approach is based on mapping concepts of an input
modeling language (called source language) to respective concepts of another language
(called target language), for which precisely specified semantics is available. Models
described with the input modeling language can be translated into the target language,
and can thereof be executed within the context of the target language.

One example of a translational approach is a DSL debugging framework presented by
Wu et al. [Wu06]. In this approach, Wu reuses an existing general purpose language
(GPL) debugger to build a DSL debugging framework. A mapping of the correspondences
between the DSL and the generated GPL code is produced, composed of a source code
mapping, debugging methods mapping, and debugging results mapping.

Another example of a translational approach where the semantics of UML activity
diagrams are defined by their translation into Petri Nets is presented by Störrle et al.
[Stö04a, Stö04c, Stö04b, Stö05, SH05]. Concepts of UML activity diagrams, such as
action node, decision node, control and data flow edges, etc. are mapped into Petri
Net places and transitions, and can be thereof executed with existing tools in order to
facilitate validation and verification tasks.
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The advantage of the translational approach for defining the semantics of a modeling
language is the ability to reuse the existing tools for execution of the target language
models. Once the mapping from the source language to the target language is performed,
the results of verification and validation tasks performed on the models of the target
language can be translated back to the models of the source language, providing the
same facilities for a source language which exists for the target language.

The main drawback of this approach is the necessity of creation and maintenance of
transformations between the source and the target language, as well as the execution
results back to the source language. Furthermore, this additional level of indirection
affects both the applicability of the approach due to correspondence between concepts of
the source and the target language, as well as the complexity of the developed tools.

Operational semantics approach. Another approach to defining semantics of a
modeling language is by specifying execution steps for a modeling language, in form of
rules, which when applied to a conforming model change its structure in a predefined
way. Thereof, an interpreter of a modeling language would apply the rules to a model,
transitioning the modeled system, from one runtime state to another. While runtime states
of an executable model can be realized using metamodeling techniques, the execution of
the steps of transforming the runtime states from one to another can be done in three
ways, namely by means of a general purpose programming language, integration of an
action language as part of the modeling language, or by use of model transformation
languages for accessing and modifying the runtime states of a modeled system [May14].

Wachsmuth et al. [Wac08] present an approach where an interpreter is developed as a
transition system by using the modeling means standardized by OMG. Metamodels are
used to model configuration sets (runtime states of a system), and model transformations
are used to specify transition relations. A configuration represents the current state of
the system being executed, and is composed of objects, their attribute values and links
that exist between them. Transition relation is specified by a set of transformation rules
which are applied to the current configuration to obtain the next one.

Each of the approaches for specifying the semantics of modeling languages have their
advantages and disadvantages, however overall the advantage of the operational semantics
approach compared to the translational semantics approach is that there is no level of
indirection between source and target modeling language, reducing the complexity of
developing and maintaining the execution, debugging and testing tools. However, for
each new language, a new set of tools has to be developed.
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CHAPTER 3
Related Work

In Model Driven Software Engineering (MDSE) main artifacts of the software development
process are the models created using modeling languages that are at the higher level of
abstraction than existing general purpose programming languages. By leveraging model
transformations, the implementation artifacts (such as source code, configuration files,
and other) are automatically or semi-automatically generated from specified models, thus
improving the productivity of the software development process.

Furthermore, with advancement of model execution, models are not only used as higher-
level specifications of the software system from which the implementation of a system
is generated, but also become primary artifacts of the software development process.
As models can be directly interpreted by a machine, they become formal enough to
be considered as primary development products, and could potentially take over as
implementation artifacts. In order to support such move from code centric to model
centric development, promised by MDSE, advanced development methods and tools are
necessary at the model level.

This is especially true for ensuring the quality of the produced software already at
the model level, as any defects not captured in the models get transferred to the
implementation level, where it is more expensive, in terms of time and effort, to detect
and correct them. In software development, quality of the produced software is ensured
by the validation and verification process.

Software verification and validation is concerned with both ensuring that the product
was built according to the requirements and design specification, as well as ensuring that
the product meets the user requirements, and that the specification of the requirements
was correct in the first place.

In MDSE, validation and verification of the developed models is commonly realized
by applying formal methods. In this context, the validation and verification process is
composed of a translation of specified models into a certain formalism (e.g., first-order
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logic), and subsequently applying existing tools for checking general correctness properties,
such as e.g., absence of deadlocks, and checking that no invalid system states are produced
by system operations.

As the development process becomes more model centric through the use of executable
models, model testing will increase in popularity as means for verification and validation
in MDSE. A test case defines input to the system under test and assertions on the
expected output from the execution. Testing provides means for establishing a certain
level of confidence that the selected set of functional or non-functional requirements are
met, however it cannot prove the absence of defects in the system as a whole [Som06].

Beside testing new or modified functionality of a software system, existing functionality
of the system has to be tested on a regular basis to ensure that any regression in the
system has not been introduced by additions of new parts. Regression testing, as an
important technique in this respect, is concerned with re-running a selected set of tests
to ensure that no defects have been introduced into the already existing functionality of
the system by addition of some new functionality.

Testing in MDSE can be applied in two ways. Models can be executed with provided
test input data, and the output of their execution can be evaluated against a specified
expected output. The purpose here is to test the quality of the models themselves.

Another approach to testing in MDSE is the use of models to test the implementation of a
modeled system, i.e., the source code. In this approach, test cases at the implementation
level are generated from models that specify the intended behavior of the system. Thereby,
the test case generation is driven by predefined test objectives. This approach is referred
to as model based testing.

In Section 3.1 and Section 3.2, we survey existing approaches of ensuring the quality of
models based on testing and formal methods, respectively. In order to make the survey
of the state of the art more complete, in Section 3.3 we survey some of the existing
approaches to model based testing.

3.1 Testing Approaches in MDSE

Testing is an important phase of the development process of a software system. It is com-
monly used for ensuring that the user requirements implemented as part of the system’s
functionality are fulfilled. There are two general types of user requirements: functional
requirements specifying what the system should do, and non-functional requirements
specifying the level of reliability, safety and performance of the system during its use (e.g.,
performance described in terms of resource usage such as memory, CPU time, network
load, etc.).

The functional testing process, which is the focus of this work, is a dynamic process
performed by executing the system under test with a given set of inputs, and asserting
the generated output of the system against the expected output defined by the test

22



3.1. Testing Approaches in MDSE

designer. The tests can be used not only to show that the system implements the correct
functionality for a specified set of inputs, but it can be also be used repeatedly over the
lifetime of the system, to ensure that modification of existing functionality or addition of
a new one has not introduced any new defects into the system (commonly referred to as
regression testing).

In this subsection we will present several approaches to functional testing of behavioral
models of software systems, focusing on models specified using the fUML standard. There
has been substantial research done on functional testing of UML based models outside of
the scope of fUML. To make the overview of related work more comprehensive we also
give an overview of several such works.

For UML 2 activities and actions, Crane and Dingel [CD08] present the ACTi interpreter,
which offers several dynamic analysis capabilities, such as reachability and deadlock
analysis, as well as assertions on objects during the execution of activities. The ACTi
interpreter is based on the System Model formalization [BVCR06, BVCR07, Tea02].
With the System Model formalization, the meaning of a model M is defined through
the set of all possible instances of M, which satisfy all defined constraints of M. In this
formalization, static aspects of a modeled system are defined using the bottom layer of
UML 2.0 structural foundation, and the constraints of behavioral models are captured
by state machines.

The ACTi interpreter was developed using the Java programming language, and supports
the interpretation of UML activities. The process of interpreting an activity is composed
of several steps. In the first step, the user has to provide a file defining the structure of the
system in a form of a class diagram, and an optional file with the specification of objects
existing in the initial state prior to activity execution. Furthermore, the user provides
a separate file defining the activity to be executed. In the next step, the interpreter
initializes the state of the system using the provided files containing the system structure
specification and the optional initial system state specification.

Following this step, the interpreter loads the file with the activity specification, and
generates a graph representation of the activity following the System Model formalism.
With this formalism, the state of the executed activity is encoded and modified to simulate
the behavior of the activity. Execution steps can be performed in two different modes,
namely random and guided.

The random execution mode provides the possibility to use randomization for all non-
deterministic choices in order to obtain different execution paths of the activity being
executed. On the other hand, the guided execution mode provides the capability to
suggest a path to the interpreter with the manual input, enforcing the order of node
executions of the given activity.

Once the activity is executed, a trace of the performed execution is generated by the
interpreter. This execution trace contains information regarding the order of node
executions constituting the executed path(s) of the activity, as well as information on
the evolution of system state performed by the activity execution.
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Beside the capability to execute an activity and produce the execution trace with
information detailing such an execution, the ACTi interpreter additionally provides
several analysis capabilities. More precisely, two main kinds of analysis are possible:
performing a path analysis and performing assertions on the system’s state after execution.

In the path analysis, the user can specify and validate several different properties of
each executed path, such as desirable nodes specifying that any path not containing the
specified nodes should be considered invalid, undesirable nodes which is the opposite
of the previous property, mutual exclusivity specifying pair of nodes which should not
appear on a path in order for it to be considered valid, precedence defining a mandatory
order of pairs of nodes on any possible path, times executed specifying that a certain
node should be encountered a predefined number of times in any possible path.

When it comes to path analysis, the advantage of our testing framework compared to
ACTi interpreter, is on one hand that it is not necessary to execute each possible path
of the activity in order to perform the path analysis. Using the logical dependencies of
nodes recorded in the execution trace, our testing interpreter is capable to compute and
perform validations on each path without actually executing it, as described in Chapter
7. For instance, the ACTi interpreter requires to either guide the interpreter to execute
the activity in a predefined way, or to use randomization and then manually instruct the
interpreter to execute the activity a number of times and perform the path analysis.

On the other hand, the disadvantage of our testing framework compared to the ACTi
interpreter when it comes to path analysis is the lack of advanced operators for expressing
desired paths, in particular, expressing mutually exclusive nodes, and the number of
times a specific node should appear in a path. However, other mentioned path analysis of
the ACTi interpreter are fully supported by the order assertions of our testing framework
described in Chapter 6. The aforementioned disadvantages represent potential extensions
for our testing framework, and could be included as future work.

The second kind of analysis that can be performed with ACTi interpreter is the assertion
of the state of a modeled system. Assertions are possible only on the properties of objects
of the state after the complete execution of the activity. As opposed to this, our testing
framework is capable of specifying state assertions against not only properties of objects,
but rather complete system state at a given point in time of the activity execution,
using the constructs of the test specification language, as well as the well known OCL
expression language (cf. Chapters 6 and 7). However, the current version of our testing
framework still doesn’t support analysis of effects of concurrency in an activity on a state
assertion outcome, but rather validates the state assertions against a single executed
path.

Beside these two kinds of analysis, the ACTi interpreter supports two additional ones.
The first one considers any leftover control tokens in an executed activity, possibly
indicating a deadlock. If such a situation occurs, the interpreter warns the user about
the situation, and it is up the user to decide whether the situation represent an invalid
state (i.e., deadlock). At the moment, our testing framework does not support this kind
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of analysis, representing potential future work.

Another analysis capability of ACTi is static verification of abstract syntax correctness
of provided activity models. ACTi is capable to indicate state constraint violations, such
as an incoming control flow into an initial node, or an outgoing control flow from a final
node. As our testing framework is used for standard fUML models, existing UML model
editors can be used for detecting such abstract syntax violations.

Another characteristic of the ACTi interpreter that has to be mentioned is that in
comparison to our testing framework, ACTi is not compliant to fUML. In particular, it
does not support the action language of fUML but a proprietary action language.

Another approach for testing fUML based models has been presented by Lazăr et al.
[LLP+10]. In this work, the authors have proposed a tool chain aimed at building and
testing executable UML models based on the fUML standard. This tool chain consists of
tools for the creation, execution, and testing of the executable fUML models, accompanied
by a code generation tool which enables generation of implementation code in general
purpose programming languages such as Java and C++, from the created and tested
models in previous phases.

In the creation phase, the structural and behavioral models complying with the fUML
standard are specified. On one hand, for creating the structural models represented by
fUML class diagrams, a standard editor provided by EMF platform is used [SBPM08].
On the other hand, for creating the behavioral models the authors have developed
their own action semantics language and an accompanying editor, for specifying the
behavioral models complying with the fUML standard. The action language is proposed
and presented in an earlier work by the same group [LLP+09].

For the execution phase in the tool chain, the authors propose to use the standard
reference implementation of the fUML virtual machine developed by Model Driven
Solutions1. The authors provided the integration of this virtual machine implementation
with the Eclipse workbench, so that the specified structural and behavioral models created
in the previous phase can be directly provided to the virtual machine. The execution is
realized by either passing the activities created with their action language, along with
required activity parameter values, or by writing the test activities with their action
language and executing them as tests.

Finally, in the generation phase, implementation code can be generated from the specified
models. For this purpose, the authors have developed a set of templates specifically
designed for activities created using their action language. These templates can be used
to generate implementation code in a general purpose programming language such as
Java.

The approach to testing fUML models proposed in this work is based on the creation of
additional test activities designed for testing activities specifying behavior of the modeled

1http://portal.modeldriven.org/
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system. While this approach enables modelers to express tests on the expected output of
activities, asserting the execution order of activity nodes, as well as the evolution of the
system’s state during execution is not possible.

In a later work done by the same group of authors [CML13], an fUML virtual machine
based on the K-framework [Rc10] is proposed. In this work, the authors propose to
develop a complete virtual machine for fUML models featuring debugging and testing
capabilities. The K-framework is a rule-based rewriting system, where the state of the
executed model at some point in time is represented by a configuration composed of a
set of actions comprising an activity in the model, and a set of values passed into each
of the parameters of those actions. By applying a set of rewriting rules to the initial
configuration, the execution of a model is performed, and finally the output pins of each
action are mapped to a set of values. The proposed work seems to be in a very early
stage of development, and so far no evidence about the existence of an implementation
of the proposed debugging and testing tools based on this framework could be found.

One interesting approach for testing of dynamic properties of models based on the UML
standard has been presented by Hilken et al. [HHG14]. In this approach, two types of
models are defined: a so called application model, describing the static and dynamic
aspects of a system, and the filmstrip model, defining an instance of a complete execution
scenario.

The application model is defined by using UML class diagrams for specifying the static
aspects, and is further enriched with OCL operation contracts for each of the defined
class operations, specifying the dynamic aspects of the system. The OCL operation
contracts are specified in terms of OCL pre and post conditions of defined UML class
operations.

The filmstrip model is defined as a single object diagram, composed of several object
diagrams specifying each system state after an operation execution, and a set of operation
calls between these states describing the state transitions. For each object created or
modified by an operation execution, an additional instance is created in a corresponding
state, recording the state change in terms of object attributes and link end values. Due
to the existence of temporal relations between system states, the filmstrip model can be
used to analyze dynamic properties of the system, in terms of object attribute values and
links that exist between them representing the system’s state and state changes during
execution.

Similarly to our approach, in this work the static aspects of the system are described
in terms of UML class diagrams. Furthermore, an execution of a model is represented
by a sequence of UML object diagrams, similarly to our execution trace metamodel (cf.
Chapter 7). However, the specification of the behavior is realized in a declarative form,
comprised of OCL pre and post conditions of defined UML class operations, which have
to be transformed into another formalism to simulate the execution.

In their earlier work [GBR07, GBR05], the authors have presented an approach for
dynamic construction of system execution states from a UML model, by transforming the
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defined UML class diagrams and OCL constraints into relational logic, which is in turn
interpreted and found results are transformed back to the model level. The approach is
implemented as part of the UML based specification environment (USE) tool.

USE allows to validate UML and OCL models by constructing snapshots representing
system states at a particular point in time with objects, attribute values, and links.
These snapshots are represented as object diagrams in the tool. Class invariants and
pre and post conditions of operations are specified using OCL [Obj12], which can then
be validated on snapshots of the system states. The tool contains a language called A
Snapshot Sequence Language (ASSL) which can be used for the construction of snapshots
in an automatized way, apart from manually giving commands. Thus, it is possible to
specify properties a resulting snapshot has to satisfy.

In the USE tool, it is possible to define two different types of tests: a test case and a
validation case. A test case certifies that it is allowed to construct a snapshot fulfilling
the defined invariants. A validation case is used to validate whether a dynamically loaded
invariant is a consequence of the given invariants from the specification of the system.

In USE, the testing process is focused on validating the initial and final states of execution
of each operation specifying certain functionality in the system. As opposed to this,
our testing framework enables validation of each intermediate state within an activity
specifying an operation in the system. Furthermore, it is not possible to check the order
of execution of steps within an operation, as the assertions on the execution states are
defined only by OCL pre and post conditions of defined operations.

Dinh-Trong et al. [DTKG+05, DTGF+05] present an approach to testing UML models by
translating them into an executable form, and comparing the specified expected behavior
of the model under test with the actual one observed during testing. The executable
form of the models under test are generated from class and activity diagrams. Test input
data is generated from class and interaction diagrams. If the observed behavior differs
from the expected one, failures are reported.

To support the approach, the authors have developed a tool called Eclipse Plugin for
Testing UML Designs (EPTUD). The tool transforms a UML model under test into a
testable and executable form, executes the testable form with the test inputs, and reports
failures. In the approach, the operations of the classes from the class diagram are defined
by specifying corresponding activity diagrams. Each activity diagram specifies a sequence
of actions needed to perform the operation.

To support the action semantics for the activity diagrams, the authors had developed
an action language called Java like Action Language (JAL). JAL supports several types
of actions, such as call operation action, calculation action, create and destroy object
action, and several others for manipulating the objects and links within a state of the
system under test. JAL can be used to express an activity diagram in a textual format.

The first phase of the testing process consists of providing the UML model under test and
a set of test adequacy criteria. In the following phase, a set of test cases satisfying the
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test adequacy criteria is generated. A test case is a tuple consisting of three components:
a prefix P representing a sequence of events applied to the system’s initial state to create
a state from which the testing starts, a sequence of system events E by which the test
case is performed, and an oracle O defining the expected behavior of the system in the
form of a set of tuples composed of an OCL constraint ci that should be satisfied in a
state created after an event ei.

Following the test generation phase, the executable design under test is generated,
composed of a static structure representing the runtime configurations of the system
under test, and a simulation engine generated from the activity diagrams specified using
JAL. The engine decodes system events executing the actions within the activity diagrams,
and sends a sequence of actions for updating the structure of the system by modifying
the runtime configurations.

In the final phase, a scaffolding is added which actually executes the tests and performs
validation. Several different types of checks are performed, such as whether pre and post
conditions of operations are satisfied, whether the configuration of the system produced
by tested operation satisfy defined constraints in class diagrams, and whether the oracle
constraints evaluate to true.

Main disadvantage of this approach, compared to our testing framework, is a need for
translation of model under test into an own executable form in order to perform a test
evaluation. Furthermore, for defining the action semantics of activities specifying the
behavior of the model under test, a proprietary non-standard action language is used.

Pilskalns et al. [PAK+07] present an approach for testing UML models composed of
class and sequence diagrams. The approach defines an aggregate model that combines
both structural and behavioral information and can be used to execute the model for
testing purposes. OCL class invariants and pre and post conditions of operations are
used to validate the correct behavior of models.

The behavior of a modeled system is represented using sequence diagrams, while the
structural information is represented using class diagrams. A Testable Aggregate Model
(TAM) is constructed from information contained in the original UML model under test.
This model allows to generate and execute tests, and represents an aggregation of the
information provided by several views of the system represented by sequence diagrams,
class diagrams and OCL constraints. The approach consist of three main steps.

First step is building the TAM from the original UML model. This step consists of
constructing a directed graph representing each sequence diagram, a set of class and
constraint tuples from class diagrams and OCL constraints, and finally combining the
two. A directed graph is created by mapping classifiers and sequence message calls from
a sequence diagrams to vertices and edges in the directed graph, respectively. Class and
constraint tuple consist of a class name, attributes and operations from the class and
its supertypes, and OCL constraints. Finally, as the last phase of this step the directed
graphs and tuples are combined together by replacing the vertices with corresponding
tuples.
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Next step is to determine the input model and generate the test cases. Input model
consists of sets of values for attributes of classes from the original model that determine
the path of traversing the TAM. First the variables that determine the path of execution
of the TAM are selected, then the range of the values to be assigned are determined
by applying combinatorial techniques, and finally concrete values from the determined
ranges are assigned to the variables.

Finally, last step is the execution of the generated tests. This step consists in traversing
the TAM using the test cases generated in the previous step. Each tuple in the graph
is visited, and the state and trace information is recorded for each path. The trace
information is finally validated against the OCL constraints.

For each executed test, potential faults are recorded, and test results are presented. Two
different types of faults can be revealed by the test execution. First type of fault is
called path fault, discovered in case a certain path in the graph is not traversable or
does not exist. Second type of fault, called OCL fault, occurs when states recorded in
the execution trace violate the defined OCL expressions. For the validation of OCL
constraints, the USE tool is applied.

As opposed to our testing framework, this approach concerns testing UML class and
sequence diagrams of a model under test, and the execution of the model and recording
of an execution trace is achieved by a translation of the model under test into an own
proprietary executable form. However, when it comes to what is being tested, it is very
similar to our approach. As in our testing framework, path validation concerns detection
of non-executable or non-existing paths, which can be achieved with our order assertions
for an activity under test (cf. Section 6.1.4). Furthermore, validation of OCL constraints
in each execution state is similar to our state assertions (cf. Section 6.1.5).

Another interesting line of work related to model testing is work on temporal OCL
(e.g., [BGKS13]). Temporal OCL is an extension of OCL with temporal operators and
quantifiers enabling not only the evaluation of OCL expressions on a single state of a
system but also on its evolution. Thus, temporal OCL could be used in a similar way
as our state assertions for testing purposes. However, our testing framework does not
extend OCL with temporal expressions, but rather uses it in its original form and instead
provides temporal expressions as part of the test specification language.

A summary of the discussed approaches and their comparison with our testing approach
is given in Figure 3.1.

3.2 Formal Method Approaches in MDSE
Formal methods represent techniques based on mathematical models and tools for the
development and analysis of software system [Hax10]. In specification and design phases,
using formal methods, it is possible to increase the level of confidence that the developed
product corresponds to the specified requirements. They can help in increasing the
number of defects found in earlier stages, such as requirements specification and system
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design, rather than in the testing and maintenance. As they are usually more expensive
and complex than e.g., testing approaches, formal methods are commonly used in the
development of safety, business, and mission critical software, where the defects in the
final software product might have high impact (e.g., loss of lives or high loss of value)
[Hax10]. There are two main parts of a formal method, namely formal specification and
formal verification.

A formal specification in software development is a description of a software system
expressed in a formal notation, that is a language that has a precise syntax, and where
each concept of that language has defined unique mathematical meaning [Hax10]. In the
requirements analysis phase of a software development process, a formal specification
of a software system is created, giving a description of the requirements which are to
be implemented by the system [Hax10]. Formal specifications are abstract in the sense
that they omit unnecessary details of the implementation, precise in the sense that they
do not leave room for different interpretation, and allow for formal analysis as they are
based on precise mathematical formulas.

The formal verification, on the other hand, is the process of investigating whether
a software system is correct according to its specification, by applying mathematics
[Hax10]. Software verification had been traditionally done by code inspection and testing.
However, in large systems due to a huge number of possible system executions it is only
possible to cover a small part of them by applying testing techniques. The advantage of
formal verification methods is on one hand, that they consider large number of possible
executions, and on the other that defects can be found before the system is implemented.
The disadvantage, however is that the formal specifications are at the higher level of
abstraction than the software system itself, therefore formal verification is usually used
as a supplement to testing [Hax10].

There are two main approaches to formal verification, namely theorem proving and model
checking. Theorem proving represents the process of constructing a mathematical proof
(i.e., strong mathematical argument), for a mathematical statement to be true. Proofs
can be classified into two groups: semi-formal proofs written using a mix of mathematical
formulas and natural language, and formal proofs which are completely expressed in a
formal mathematical language having a precisely defined syntax and semantics.

A proof of a mathematical statement consists of a sequence of argumentation steps, where
each step consists of some premises which yield a number of conclusions. Each step is
repeated, where the conclusions of a previous step are used as premises in the current step
to yield a new set of conclusions. Steps are repeated until the mathematical statement,
i.e., theorem, to be proved is drawn as a conclusion in the last step. There are three
main groups of computer based tools that are used in theorem proving: proof checkers
which automatically check whether a postulated proof is actually a correct proof of a
given theorem, interactive theorem provers which can be used to interactively construct
a correct proof, and automated theorem provers which automatically search for a proof
of a given theorem.
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Romero et al. [RSGVF14] discuss a subset of fUML standard called base semantics, cov-
ering its formal definition and usage for theorem proving, and show how the standardized
formal semantics of fUML can be utilized to perform formal verification through theorem
proving. Furthermore, they discuss existing deficiencies of the standard in context of
formal verification, which need to be improved. We are not aware of any other work
applying theorem proving on UML activity diagrams.

Another approach to formal verification in software development is model checking.
Model checking presents an automated approach to verify that a model of a software
system specified as a finite state automata satisfies a given set of formally specified system
requirements. A finite state automata describes a finite set of system states, through
which the system evolves over time during its execution. The requirements which are to
be verified are formalized as a set of constraints on how the state of the system is allowed
to evolve over time [Hax10].

Once the automata of the system and the requirements to be verified are formally
specified, a model checker can be applied to verify the requirements. The model checker
performs this process by exhaustively exploring all system states, and checking if the
constraints specifying the requirements are satisfied in those states. The requirements
specification is typically expressed in a temporal logic language containing concepts for
defining how a system state can evolve over time. Temporal logic is an extension of
propositional logic with operators that can express relations between properties of a
system over time during its execution. There are two main groups of properties which are
verified during model checking, namely safety properties and liveness properties. Safety
properties express that a system never reaches an undesired state, and liveness properties
express that the system will eventually reach a desired state [Hax10].

The advantage of model checking over theorem proving is that it is fully automated
and therefore much faster and easier to use. However, when checking large systems, the
number of states which are needed to be explored might exceed the available computer
resources such as processor speed and size of memory, known as state space explosion.
In this case, the theorem proving might have an advantage over model checking. Also,
some systems cannot be easily formalized as finite state automata, and in these cases the
theorem proving can be easier to apply.

As UML activity diagrams can be easily formalized as finite state automata, there
are significant research results on applying model checking for their verification. In
this section, we present an overview of the research concerned with the verification of
functional requirements in UML activity diagrams, based on model checking.

Daw et al. [DMC15] present an approach and an Eclipse Plugin for the verification
of UML activity diagrams against specified requirements. The verification process is
composed of the translation of UML activity models into a representation suitable for
one of several model checkers, such as UPPAAL, SPIN, and NuSMV, and the subsequent
verification of user-defined requirements with a selected model checker. The requirements
are formulated as LTL or CTL formulas, and fed into the model checker by the plugin.
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A verification result is generated in the form of a text file, showing the satisfiability of
the given requirements, or presenting a counter example in case the requirements were
violated.

Abdelhalim et al. [AST13] present an approach to verification of fUML models by
performing an automatic formalization of fUML models into communicating sequential
processes without any interaction with the modeler, in order to isolate the modeler
from the formal methods domain. The verification process provides the modeler with
a UML sequence diagram that represents the model checking result in the case where
an error has been found in the model. The approach also considers the formalization
of systems consisting of asynchronous communication between components allowing to
check dynamic concurrent behaviors of the systems.

The authors have developed a comprehensive framework that is implemented as a plugin
to the MagicDraw tool called Compass. The framework uses the Epsilon Framework
as a model transformation tool that utilizes the MDSE approach. Furthermore, an
optimization approach is included in order to be able to formalize concurrent systems,
and at the same time comply with the fUML inter-object communication mechanism.
The formalization language used for enabling the execution of the modeled system is
CSP [Hoa78]. The system is formalized as a set of processes that are executed and can
communicate by means of signals.

The verification process is composed of several phases. In the first phase, the modeler
develops the fUML model of the system using the case tool MagicDraw. Behavior of each
active class in the system is specified by means of an fUML activity diagram. Following
the first phase, the fUML is exported into the XML Metadata Interchange (XMI) format.

In the second phase, the model formalizer component reads the XMI representation of
the fUML model and transforms it into a CSP script. The model formalizer uses the
Epsilon Framework to perform model-to-model and model-to-text transformation tasks.
The generated CSP script contains a process for each active class in the system, as well
as a formalization of the inter-object communication mechanism to allow those processes
to communicate with each other asynchronously via signals.

An object-to-class mapping table is generated by the model formalizer for traceability
between the modeler friendly feedback and the original fUML model. In case a problem is
detected during the formalization process, the model formalizer generates the formalization
report containing information about the errors in the fUML model which led to the
problem (e.g., an fUML activity diagram without a connected initial node cannot be
formalized).

In the last phase, the framework checks the generated CSP script for deadlocks. In
case a deadlock is present, a counter example is generated that includes a sequence
of events that led to the deadlock. The UML Sequence Diagram Generator reads the
counter example and visualizes it in the form of a UML sequence diagram. The generated
sequence diagram represents the deadlock scenario in a modeler friendly format.
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Laurent et al. [LBBG14] present an approach to verifying fUML models covering control
and data flows of a process modeled using activity diagrams, taking into account resource
and time constraints. The formalization is implemented using the Alloy modeling
language, and a graphical tool on top of the implementation is provided. The result of
the verification process is displayed on the process model diagram.

The verification process addresses several different properties. Questions regarding control
flow, such as whether the process terminates or whether a certain task ever gets executed,
are analyzed. Data flow analysis addresses the issue of missing data, that is the attempt
to access the data which has been previously deleted. Resource and timing analysis
addresses the questions regarding missing resources or whether it is possible to finish the
process in a given time whatever the path taken. Beside these global properties which
should hold for any given process, it is possible to specify and check so called business
properties representing specific constraints which should hold for a concrete process (e.g,
is the action A executed if the condition C is fulfilled).

A prototype implementation in the form of an Eclipse EMF plugin is provided. The
prototype assists the modeler by automatically verifying fUML processes in the form of
XMI instances. The prototype comes with a library of predefined properties that can be
checked, and also allows to add business properties through a graphical interface.

Planas et al. [PCG11] propose a lightweight verification method for fUML models,
focusing on the verification of the strong executability correctness property of action based
operations. If every time an operation is invoked, the set of modifications the operation
performs on the system leads the system into a new state which is fully consistent with all
defined integrity constraints, the operation is strongly executable (SE). In the approach
the structural models of the system are described using UML class diagrams and OCL,
and operations are defined using the Alf Action Language.

Given an input in form of structural and behavioral models, the method returns an
answer that an operation is SE, or otherwise gives a corrective feedback consisting of a
set of actions and conditions that should be added in order to make the operation SE.
After addition of the actions and conditions from the corrective feedback the operation
might not be SE, as some additional constraints might be violated. Thus, the process is
recursively repeated until the operation becomes SE.

When analyzing the SE of an operation, all of its execution paths must be taken into
account. Thus, the process consists of the following steps. In the first step, all of the
paths of the operation are computed. Next, each action in each path is analyzed to check
if its execution violates any of the integrity constraints from the structural model. Finally,
in the last step a contextual analysis of each potentially violating action is performed to
check if other actions or conditions compensate the effect of this potentially violating
action to achieve a consistent state of the system. If all potential violating actions can
be discarded, it is concluded that the operation is SE.

Eshuis and Wieringa [EW04] present a formalization of workflow models specified as
UML activity diagrams for verifying functional requirements. In their approach, activity
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diagrams are translated into transition systems, functional requirements are defined as
LTL formulas, and these LTL formulas are evaluated on the obtained transition systems
using the NuSMV model checker.

Beato et al. [MEBSECdlF05] present a tool called TABU (Tool for the Active Behavior
of UML), which provides a formal framework for the verification of UML models. The
state of the system is represented by UML class diagrams, and the behavior is represented
by UML activity diagrams and state machines. Underneath, the tool uses the model
checker SMV [McM92] for the verification process, facilitating an automatic translation
of defined UML behavioral models into a representation fitted for use within SMV, and
an assistant for formulating the properties to be verified by the SMV model checker.

The properties which can be formulated and verified with the tool fall into two categories.
First category are so called occurrence properties, that specify that a certain state or an
action is never, always, or at least once reached (i.e., traversed) during model execution.
Second category are so called order properties describing in which order certain actions
or states are traversed during model execution, such as precedence (e.g., action A before
action B) and response (state D responds to state C).

Most of the presented model checking approaches for UML / fUML activity diagrams are
focused on the verification of global system properties, such as liveness [LBBG14], the
existence of deadlocks in a model [AST13], and strong executability of activities [PCG11].
Therefore, as previously mentioned, they can be used to improve the validation process
performed by testing approaches.

Some of the approaches, such as the ones proposed by Laurent et al. [LBBG14] and
Beato et al. [MEBSECdlF05] address similar properties as our testing framework, such
as the order of node execution in an activity, or state related constraints, much in a way
our order and state assertions are used.

For instance, the work by Beato et al. [MEBSECdlF05] addresses properties that are
similar to the properties addressed by our testing framework. Much like using our testing
framework, it is possible to verify some simple properties related to the execution order of
UML activities and nodes within activities. However, the tool doesn’t support verification
of the system state modified during the execution of an activity diagram.

3.3 Model Based Testing

Testing a software system to validate whether the implementation fulfills the specified
functional or non-functional requirements is an essential phase of the software development
process. Time and effort required to create the test cases, execute them, and asses
whether they appropriately cover the functionality of the system under development can
be significant.

In MDSE models can be used for several purposes. Complete code or code fragments
can be automatically generated from the specified models. Furthermore, out of models,

35



3. Related Work

test cases can be derived manually or automatically. Also, the models themselves can be
used to describe test cases and thereof generated test cases at the implementation level
of the system under test [Rum03]. Last two approaches to using models for the purpose
of testing, are usually referred to as model based testing (MBT).

Model based testing represents a technique in software testing, coming from MDSE area,
whose intention is to automate the validation process, thus reducing its initial cost. Model
based testing tools automatically generate test cases from models of a software system.
The generated tests are executable and include an oracle component which assigns a
pass/fail verdict to each test [Utt05].

Model based testing is commonly realized in four phases: building an abstract model of
the system under test, validating the model to ensure there are no defects at the model
level, generating abstract tests from the model, and refining abstract tests into concrete
executable tests. The two last phases are usually automatic.

Once these phases are done, the concrete tests can be executed on the system under test in
order to detect defects at the code level. According to Utting [Utt05] different approaches
in model based testing can be differentiated in accordance with several different aspects.

One such aspect is the nature of the model under test. The model from which the tests
are generated can contain only the concepts of the system under test, or the concepts of
the environment in which the system runs, or more commonly the combination of both.

Another aspect is the model notation. Different formal specifications such as Z, VML,
and Spec# for modeling the system under test in an MBT approach, but also transition
based notations such as statecharts and UML state machines have been used.

Third common aspect is control of test generation. One approach to controlling the test
generation is to specify a model coverage criteria. Most code based criteria, such as
statement and decision coverage, have been adopted in practice.

Another aspect is so called on-line or off-line test generation. On-line model based
testing generates tests in parallel with executing them, while off-line model based testing
generates tests as a separate step from their execution. This has some advantages, such
as repeatability of the generated tests for the purpose of regression testing.

Finally, one additional important aspect for differentiating approaches to model based
testing is requirements traceability. It might be necessary to record a trace which relates
each specified requirement at the model level with the corresponding generated test at
the code level. This traceability can help with validation of specified requirements, as
well as assessing the achieved coverage criteria.

Depending on the level of abstraction of the model of the system under test (SUT), model
based testing can be considered black-box or gray-box [SL15]. An abstract representation
of the SUT can lead to black-box model based testing, while a model of the SUT that
includes design information leads to gray-box model based testing.
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In model based testing, a typical test consists of a description of test data, a test driver,
and an oracle characterizing the expected test result. In model based testing using UML
[Obj15], the test data can usually be described by a UML object diagram. The object
diagram shows the necessary objects as well as concrete values for their attributes and
links, needed for execution of part of a system under test. The test driver can be defined
as a simple method call, or modeled using a diagram representing the behaviour of the
system under test, e.g., UML sequence diagrams or UML activity Diagrams. The usage
of behavioural diagrams for specifying the test driver has the advantage that not only
triggering method calls can be described, but it is also possible to model desired object
interactions and check object states during the test run [Rum03]. Finally, an oracle
can be described through a combination of UML object diagrams and OCL [Obj12]
constraints.

Holzer et al. [HJK+11] describe an application of FQL (FShell Query Language), a code
coverage specification language for ANSI C programs, to UML activity diagrams and
state machines, in order to automatically generate a set of abstract test cases on the
model level, which are then automatically concertized into test cases at the code level.

In FQL, programs under test are represented by control flow automata where vertices
represent concrete statements within the program, and edges represent transitions , i.e.,
branches of control flow between statements. Using FQL it is possible to specify code
coverage which should be achieved by generated test cases. More precisely, it is possible
to specify code coverage criteria, such as basic blocks coverage and condition coverage
specifying which statements and condition edges in the program should be traversed
during execution of a generated test suite.

As UML activity diagrams and state machines are easily interpreted as control flow
automata, application of FQL for specifying test coverage for such models seems natural.
In order to support such specification using FQL, authors have developed a syntax
extension of FQL to support expressing path coverage of UML activity diagrams. The
extensions support specifying path coverage using statements involving activity nodes
and control flow conditions. It is possible to specify which nodes in an activity should be
covered by a test case, as well as which control flow conditions should be evaluated to
true during a test execution.

In order to facilitate test generation at the model level, a model under test is translated
into a corresponding C program, and the specified code coverage statements at the
model level are translated into corresponding ones at the code level. Thereof, the FShell
interpreter is used to generate a test suite for the C program representing the input
model.

The main drawback of this approach is that in order to facilitate the verification process
of an activity diagram it has to be first converted into a C program which increases
complexity of the approach and might lead to inconsistencies between the original model
and the target representation. Furthermore, the results of test execution has to be
translated back to the model level, which might lead to inconsistencies or data loss.
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It would be interesting to investigate how this approach could be used to generate
test cases at the model level specified using our test specification language, and what
additional extensions of the test specification language might be needed to support this.
This way, translation of input UML activity diagrams into their C program representation,
as well as translation of test case results back to the model level can be omitted, and
therefore complexity of the verification process reduced and potentially the confidence of
the verification process could be increased.

Another interesting approach to model based testing based on UML activity diagrams
is presented by Linzhang et al. [LJX+04]. In the approach, a set of test scenarios at
the model level is generated for a set of UML activity diagrams, which traverse each
path and node previously specified to be covered by the test execution. The approach is
supported by a tool which as the first step parses an input UML activity diagram, and
derives a set of test scenarios satisfying a set of previously defined path coverage criteria.
Thereof, the test scenarios are processed to derive a set of test cases at the code level.
The concrete input and output parameters for the system under test are derived from
the action sequence and guard values in a test scenario obtained at the model level.

Lei et al. [LWL08] present an approach to testing concurrent Java programs by using
UML activity diagrams to generate test cases in order to discover any existing data races
and potential deadlocks. The approach is based on tagging each action within a UML
activity diagram representing the program under test with corresponding annotation
indicating a field of an operation or a class being read and written by the actions during
the activity execution.

The approach is composed of several steps. In the first step, based on path analysis
performed on the input activity diagram, a random set of test cases is generated. The
test case generation algorithm is based on the previously described approach by Linzhang
et al. [LJX+04]. The paths of the input activity diagram to be executed indicated by
the generated test cases, along with the data access annotations of actions within the
input activity diagrams, are taken as input for generating the instrumentation code for
executing the input activity diagram.

In the final (verification) step, based on the previously obtained execution traces, an
analysis is performed to identify any existing data races in the modeled process under
test. The verification step is performed based on analyzing the actions which can be
executed concurrently in a single process or can be executed by multiple threads during
a single run of the program, and which read and write to the same variables as declared
by the annotations from the input model. Each executed path from the generated set of
test cases with actions which comprise a data race is detected and reported.

As described in Chapter 7, our testing framework supports validation of execution orders
of an activity under test taking into account any existing concurrency in the activity.
However, the state assertions are currently validated only against a single execution path
traversed by the fUML virtual machine. It would be interesting to investigate how the
approach by Lei et al. [LWL08] could be applied in our testing framework, in order to
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detect any potential paths in which data races could occur. If such a path is identified,
it could be possible to evaluate each state assertion from the defined test suite in our
testing framework against the path.

A similar approach for generating test cases from UML activity diagrams is presented by
Kim et al. [KKBK07]. In this approach a UML activity diagram used for test generation
is translated into a so called input output activity diagram, which models each action of
the original activity as either an accept event or send signal component. Therefore, the
activity is modeled in such a way that only external inputs and outputs of the activity
are considered, reducing the state space during test case generation.

Chen et al. [MXX] present an approach to test case generation for Java programs modeled
as UML activity diagrams. In this approach, instead of deriving a constrained set of
test cases satisfying a predefined coverage criteria, this set is randomly generated from
the model, and each generated test is executed at the code level to obtain the execution
traces from the program under test. Once the traces are generated, they are compared
with the behavior defined in the input UML activity and based on a predefined coverage
criterion, a selection of test cases from the previously generated set is performed to
achieve the coverage goal.

Another interesting approach for generating test cases from UML activity diagrams is
presented by Debasish and Debasis [DD09]. In this approach the test generation process
is realized in three steps. In the first step, a model of a process under test represented
by a UML activity diagram is augmented with additional test information, required for
generating the test cases. This information comprises the indication of which objects
are created or modified by the activity under test. This is done by indicating which
input and output pins consumed or provided which objects. In the next step, the input
diagram is converted into a graph representation. This graph is a directed graph in which
every node represents an activity node from the input activity. In this graph each pair of
forks and joins is replaced by a node representing a higher level activity node, therefore
eliminating the state explosion induced by any concurrent behavior within the activity
under test.

Finally the graph generated in the previous step is used as input for generating the
test cases for the modeled process. Authors defined a so called activity path coverage
criterion, which assumes that in each generated path from the activity each existing
loop is executed at most two times. A set of test cases is generated, such that each
test case from the generated set covers a distinct path from the graph, such that the
aforementioned coverage criterion is reached.

The test cases target a set of faults to be detected, such as faults in decision nodes and
loops, and synchronization faults. A decision node fault occurs when an unexpected
alternative path is taken during the activity execution. A loop fault may occur either
in entry or exit condition, resulting in loops being not executed at all, or never ending.
Furthermore, an unexpected number of iterations in a loop can be detected. Finally,
a synchronization fault occurs when an activity starts execution prior to finishing the
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execution of all preceding activities.

The order assertions defined within our testing framework (cf. Chapter 6) can be used
for detecting decision node and synchronization faults within an activity under test.
Furthermore, our approach supports evaluation of order assertions taking into account
concurrency modeled within the activity under test. However, the disadvantage of the
current version of the testing framework is the lack of loop fault detection. Therefore,
it would be interesting to investigate what are the necessary extensions to the testing
framework in order to support loop faults detection.

There is a vast amount of research done in the area of model based testing, concerned with
generating test cases from UML models other than activity diagrams. Instead of trying
to exhaustively describe every possible model based testing approach based on UML
models, the related work presented so far was constrained to only those approaches based
on UML activity diagrams. To make the overview more comprehensive, we conclude
the related work with shortly describing several approaches outside of the UML activity
diagram scope.

For instance, in an approach by Bouquet et al. [BGL+07] the authors define a subset of
UML2 for model based testing purposes. This subset allows designing formal behavior
models of the SUT, which can be automatically interpreted to generate test suites. The
structure of the SUT is modeled using UML class diagrams, and the test data for the
SUT is modeled using UML object diagrams. For modeling the behavioral aspects of
the SUT, UML state diagrams are used. The expected behavior of the class operations,
as well as transitions between states within state machines, are formalized using OCL
constraints.

An approach where test cases at the model level are generated from UML sequence
diagrams is presented by Grigorjevs [Gri11]. This approach is based on automated test
case generation for timing details verification of the SUT. As input of the test case
generation process a sequence diagram in XMI format, along with the transformation
rules, are provided. The transformation uses a UML sequence diagram as a source model,
and a UML testing profile [Obj13b] as a destination model.

The test generation process consists of several steps. In the first step, an instance of a
UML sequence diagram representing the model of the system under test in XMI format
is provided as input for the transformation into the analogue representation of the model
in a relational database table. In the second step, the relational table representing the
system under test is transformed into another relational table representing the system
under test, in a more adequate way for the test case generation. Finally, test data is
generated out of the model representation from the previous step, by applying defined
transformation rules.

There are other approaches, such as the one by Zech et al. [ZFKB12], where test case
generation and selection are based on model changes recorded by a versioning system.
This approach provides support for regression testing of arbitrary XMI based model
representations, that can be parameterized with different change identifications, impact
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analyses, and regression test selection strategies defined with OCL. The approach is
based on the model repository MoVE supporting versioning of arbitrary models.
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CHAPTER 4
fUML Standard

4.1 Introduction
The Unified Modeling Language (UML) is an object-oriented graphical modeling language,
developed and standardized by the Object Management Group (OMG), used to specify,
construct, visualize, and document both structural and behavioral aspects of a software
system under development [Obj15]. UML is widely accepted standard for modeling
software systems.

UML consists of the infrastructure, the superstructure, the object constraint language
(OCL) [Obj12], and the diagram interchange standard. Infrastructure forms the basis of
the language definition of UML, and therewith of the superstructure. Superstructure
represents the actual definition of the UML modeling language. Object constraint
language can be used for specifying additional constraints on the models, or querying the
models. Finally, specification of layout exchange information for UML diagrams between
UML tools is defined by the diagram interchange.

Please note that the latest version of UML, UML 2.5 [Obj15], removes the distinction
between the infrastructure and the superstructure, leading to simplification of the standard
as the complete specification of the language is given in a single document.

For modeling the structural aspects of a system, UML contains following six diagram
types.

• Class diagram. A class diagram is used for describing structural concepts existing
in a modeled system (i.e., classes), composed of their properties (i.e., attributes),
their behavior (i.e., operations), and relationships that may exist between them
(i.e., associations).

• Object diagram. An object diagram can be used to describe a state of a running
system at the certain point in time of the system’s execution, consisting of existing
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objects in the state, their attribute values, and relationships that exist between
them.

• Package diagram. A package diagram is used for grouping the components of a
modeled system into separate packages.

• Component diagram. A component diagram models different components, with
defined interfaces and dependencies, out of which a system is composed.

• Composite structure diagram. A composite structure diagram can be used for
hierarchically decomposing the elements of a modeled system.

• Deployment diagram. A deployment diagram can be used for modeling the
communication between elements of a modeled system during runtime, as well as
specification of the deployment of runtime artifacts, such as files on a server running
the system.

For modeling the behavioral aspects of a system, UML contains following seven diagram
types.

• Use case diagram. A use case diagram can be used to model the functionality
provided by a modeled system. It models the interaction of users (i.e., actors) with
the system, as well as relationships between users and different use cases of the
system.

• Activity diagram. An activity diagram is used for describing actions that are
executed by a system, as well as the control and data flow between those actions.

• State machine diagram. A state machine diagram models the lifecycle of an
object consisting of states in which such object can be, the possible transitions
between the states, and the actions that can be executed in each state.

• Sequence diagram. A sequence diagram can be used to model interactions
between objects in a modeled system, needed for accomplishing a certain task.

• Communication diagram. Similar to sequence diagram, it is used for modeling
interactions between objects in a modeled system, however describing the structural
relationships between interaction partners.

• Timing diagram. A timing diagram can be used for modeling the state changes
of interacting objects in a modeled system during an interaction.

• Interaction overview diagram. An interaction overview diagram describes the
coordination of different interactions by visualizing in which order interactions can
take place.
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Figure 4.1: Excerpt of the UML metamodel containing the basic concepts of activity
diagrams [Obj15]

The abstract and concrete syntax of UML is precisely and completely specified by the
UML OMG standard [Obj15]. However, the execution semantics of UML is neither
precisely nor completely specified. It is only informally defined in English prose and
scattered throughout the standard. This leads to different interpretations of the same
specification by different individuals.

In order to address this issue, a standard called Semantics of a Foundational Subset for
Executable UML Models (fUML) [Obj11] was introduced by OMG.

The fUML standard defines precise execution semantics for a subset of UML containing
the most relevant part of class diagrams for modeling the structure, and activity diagrams
for modeling the behavior of a software system. This subset was designed with intention
to build a foundation with which the execution semantics of higher level UML modeling
concepts could be defined.

4.2 Modeling Behavior with fUML Activities

Activity diagrams are used for describing behavior of a modeled system. An activity
diagram can describe a workflow at a very high level of abstraction, as well as low level
operations on objects and their properties.

An excerpt of a metamodel containing the basic concepts for modeling activities is
depicted in Figure 4.1.

Activities are composed of activity nodes and activity edges. Actions are activity nodes
modeling a single step in the activity, such as processing data or control flow. Actions
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Activities describe the behavior of a system.
Decision nodes are used to define alternative branches 
and the guard conditions that specify under which 
conditions branch has to be chosen.

Actions represent the individual steps necessary to 
accomplish an activity. Merge nodes merge alternative branches.

Actions can have inputs which are modeled using 
input pins and outputs which are modeled using 
output pins.

Fork nodes are used to model concurrent branches.

An object flow edge describes the data flow between
actions. Join nodes join concurrent branches.

A control flow edge describes the control flow 
through the actions.

The initial node is used to specify the staring point of an 
activity.

The final node specifies the end of an activity and 
therewith the end of every control or data flow.

Activity

Action

Action

Action Action

Action Action

Figure 4.2: Modeling concepts of UML activity diagrams [May11]

can have inputs and outputs modeled using so called input pins and output pins. For
modeling input or output of an activity, activity parameter nodes can be used.

To define start or end of an activity, and alternative or concurrent branches, control
nodes can be used. Initial node is used for modeling the start of an activity. End of an
activity can be modeled using activity final node.

For modeling concurrent branches within an activity, fork and join nodes can be used.
Alternative branches are modeled using decision and merge nodes.

Activity nodes within an activity are connected by activity edges. Control flow edges are
used for modeling the control flow within an activity. Data flow within an activity is
modeled using data flow edges. In Figure 4.2, diagram notation of modeling concepts of
UML activity diagrams are presented.

For understanding the activity diagram execution semantics, it is important to understand
the concept of tokens originating from Petri Nets [Rei85]. Tokens are used to describe
possible execution flows of an activity. There is no additional modeling notation for
tokens, and they are not part of the UML metamodel.

Tokens flow along activity edges from one activity node to another, possibly carrying
objects representing the data flow within the activity. Tokens carrying data are called
data tokens or object tokens. Tokens which do not carry data are called control tokens.

An activity node can be executed if all incoming edges of that node have received a token.
Once an activity node is executed, tokens are provided on all outgoing edges of that node.
There can be more than one token in an activity during execution, e.g., when fork nodes
are executed, or when there are more than one initial node in the activity.

UML provides predefined primitive actions for modeling the manipulation of objects and
links, and communication among objects [May11]. These actions are primitive enough
to be interpreted and executed by a computer, and thus they are included in the fUML
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UML Included fUML Included
Executable Nodes

Structured Activity Node Yes Conditional Activity Node Yes
Loop Node Yes Sequence Node No
Expansion Region Yes

Control Nodes
Initial Node Yes Activity Final Node Yes
Decision Node Yes Merge Node Yes
Fork Node Yes Join Node Yes
Flow Final Node No

Object Nodes
Activity Parameter Node Yes Expansion Node Yes
Central Buffer Node No Data Store Node No

Activity Edges
Control Flow Yes Object Flow Yes

Object Related Actions
Create Object Action Yes Destroy Object Action Yes
Read Self Action Yes Test Identity Action Yes
Reclassify Object Action Yes Read Is Classified Object Action Yes
Read Extent Action Yes Start Classifier Behavior Action Yes
Start Object Behavior Action Yes

Link Related Actions
Create Link Action Yes Create Link Object Action No
Read Link Action Yes Read Link Object End Action No
Read Link End Qualifier Action No Clear Association Action Yes
Destroy Link Action Yes

Variable and Structural Feature Related Actions
Add Variable Value Action No Read Variable Action No
Clear Variable Action No Remove Variable Value Action No
Add Struct. Feature Value Action Yes Read Struct. Feature Value Action Yes
Clear Struct. Feature Action Yes Remove Struct. Feature Value Action Yes
Value Specification Action Yes

Communication Related Actions
Accept Call Action No Accept Event Action Yes
Call Behavior Action Yes Call Operation Action Yes
Broadcast Signal Action No Send Signal Action Yes
Send Object Action No Reply Action No

Other Actions
Opaque Action No Raise Exception Action No
Reduce Action Yes Unmarshall Action No

Table 4.1: Modeling concepts of UML activities and actions language included in fUML
subset version 1.0 [May11]

standard. Comparison of available activities and actions language of UML and fUML,
showing which primitive actions and control nodes of UML metamodel are included in
the fUML standard, is presented in Table 4.1.

The fUML standard, as stated before, defines a subset of the UML modeling concepts and
a precise execution semantics for the selected elements. The package structure of fUML
metamodel is same as the package structure of UML. Packages that are not included
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Modeling of Structure
Classes Yes Components No
Composite Structures No Deployments No

Modeling of Behavior
Actions Yes State Machines No
Common Behaviors Yes Interactions No
Activities Yes Use Cases No

Table 4.2: UML packages included in fUML subset version 1.0 [May11]

in fUML are entirely excluded. Those packages that are included may be restricted
compared to the corresponding packages in UML, i.e., some elements of a package may
be excluded and additional constraints may be defined.

In Table 4.2 the packages of the UML metamodel which are included in fUML are
presented. The packages are grouped into two categories: the packages for structural
modeling and the packages for behavioral modeling.

The fUML standard comprises a foundational core of UML composed of modeling concepts
for describing the structure and the behavior of a system. For describing the structure
classes are used, and for describing the behavior of the system activities are used. This
subset constitutes the abstract syntax of fUML, on which additional wellformedness
rules in form of OCL constraints are imposed. These OCL constraints are necessary for
precisely defining the semantics of the modeling concepts in the subset.

There are three available alternatives for representing fUML models. One is use of
graphical notation defined by UML standard, i.e., class and activity diagram notations.
Another alternative is representation of fUML models in the textual concrete syntax
defined by the Alf standard [Obj13a]. Finally, a mixture of the previous two can be used.

4.3 Execution Semantics of fUML
The semantics of fUML is defined by an execution model specifying a virtual machine
capable of interpreting the fUML models. A reference implementation of the fUML
virtual machine was implemented by Model Driven Solutions1 using Java programming
language, and is available under the Academic Free License version 3.0.

4.3.1 The Execution Model of fUML

The execution model of fUML is realized in an operational way. In particular, an
interpreter for fUML models is defined using a subset of fUML called base UML subset
(bUML). The execution semantics of bUML in turn is specified with the first order logic
formalism Process Specification Language (PSL) [Int04].

Beside the packages containing concepts for modeling structure and behavior of a system,
fUML also comprises packages defining the execution model that specifies the execution

1http://portal.modeldriven.org/
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semantics of all concepts included in fUML, as well as an execution engine and an
execution environment that allow the execution of fUML models. The execution model
is structured into the following packages.

• Loci. This package specifies the execution engine and the environment

• Classes. This package defines the structural semantics of fUML.

• Common Behaviors, Activities, Actions. These packages define the behavioral
semantics of fUML.

The execution engine offers three operations.

• Execute. To execute a behavior synchronously, the execute operation can be used.
For this operation input can be provided, and output is returned.

• Evaluate. This operation is used for evaluating value specifications, and returning
the corresponding values.

• Start. To execute a behavior asynchronously, the start operation can be used. The
operation returns a reference to the instance of the execution behavior.

To execute an fUML activity model, the execution engine performs the following steps
[May11].

1. Input values are provided to the input activity parameter nodes. In order
to execute the activity, all its input parameter nodes have to obtain values.

2. The enabled nodes are identified. In this step, nodes which can be executed
are identified. At the beginning of the execution, nodes which are enabled are
initial nodes, activity input parameter nodes, and actions without any incoming
edges.

3. Distribution of control tokens to enabled nodes. Control tokens are dis-
tributed to the identified enabled nodes from the previous step.

4. Execution of enabled activity nodes.

5. Output values are provided to the output activity parameter nodes.
Once there are no more enabled nodes in the activity, execution terminates, and
values are provided to all output parameter nodes of the activity.

Furthermore, the fourth step of execution of an fUML activity can be divided into
following steps.
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Figure 4.3: Overview of fUML execution environment extensions [May14]

1. Check if enabled activity node can be executed. It is checked if control
tokens are available on all incoming control flow edges of the activity node, and if
the necessary data tokens are provided to all input pins.

2. Consumption of the tokens. Once an activity node can be executed, all tokens
from incoming edges are removed and added to the activity node.

3. Execution of the activity node. Once the tokens are consumed, the behavior
of the activity node is executed. Any generated data tokens are provided to the
corresponding output pins of the activity node.

4. Sending of tokens to the subsequent activity nodes. All outgoing control
flow edges of the executed activity node receive a control token. In case any data
is generated, data tokens are sent through the output pins to the outgoing object
flow edges and, subsequently to successor nodes.

5. Check if the activity node should execute again. Once the activity node is
executed, and all control and data tokens are sent, it is checked if the executed
activity node can be executed again by repeating previous four steps.

6. Execution of subsequent activity nodes. Previous five steps are performed
for all activity nodes that received tokens in the previous step.

4.3.2 Extensions of the fUML Execution Environment

The fUML virtual machine takes as input an fUML model, a reference to the activity that
shall be executed, as well as input parameter values and a context object for this activity.
After the execution, it provides as output the end result of the execution comprising the
output parameter values obtained for the executed activity. The execution process is
depicted on left side of Figure 4.3.
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As can be seen from Figure 4.3, the standardized fUML execution environment comprising
the fUML virtual machine does not provide means for the analysis methods, such as
testing, debugging, and non-functional property analysis. In order to support these
analysis methods, the virtual machine needs to contain following characteristics [May14].

Observability. The ability to monitor the state of an execution being carried out by the
virtual machine. This characteristic is important for analysis methods such as debugging,
non-functional property analysis, profiling and monitoring.

Controllability. The ability to control executions being carried out by a virtual machine.
This characteristic is necessary for analysis methods such as debugging and non-functional
property analysis.

Analyzability. The ability to analyze ongoing or completed executions based on
captured runtime information. This characteristic is essential for supporting analysis
methods such as testing, non-functional property analysis, and evolution (e.g., version
differencing).

To overcome the limitations of the standardized virtual machine, and support the
necessary characteristics for the analysis methods, an extension of the fUML execution
environment has been developed [MLK12]. An overview of the extensions is depicted
on the right side of Figure 4.3. The extensions comprise an event mechanism, issuing
events for notifying about the state changes of an ongoing model execution, a command
interface to the fUML execution environment, enabling the issuing of commands for
controlling the execution of a model, and a trace model capturing the execution traces of
fUML activities, which provides ability to dynamically analyze partially or completely
performed execution of a model.

For building our testing framework, the trace model is essential. Further details on the
trace model, and how it is used by the testing framework, are given in Chapter 7.
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CHAPTER 5
Testing Framework

In this chapter, we introduce an example of a UML model specifying an automatic teller
machine (ATM) system, which serves as running example throughout this and the two
following chapters. Based on the example, we derive the functional requirements for
our testing framework. Finally, at the end of the chapter an overview of the framework,
describing the process of specifying and executing the test cases, is given.

5.1 ATM Example
The structure of an ATM system, where a client can withdraw or deposit an amount of
money from (to) his or her account, is depicted in Figure 5.1.

The ATM system provides several functionalities. A user can withdraw or deposit an
amount of money from (to) his or her account (withdraw and deposit operations of the
ATM class). For performing the withdraw or deposit process, a transaction has to be
created and maintained during the process, and finally closed and recorded once the
process is completed (startTransaction and endTransaction operations of the ATM class).

ATM

+ deposit(Card, int, int) :boolean
+ withdraw(Card, int, int) :boolean
+ startTransaction() :void
+ endTransaction() :void

Transaction

- number :int

Card

- number  :int
- pin  :int

+ validatePin(int)  :boolean

Account

- number :int
- balance :int

+ makeDeposit(int) :boolean
+ makeWithdrawal(int) :boolean

Record

- number :int
- amount :int
- timeStamp :TimeStamp

Deposit

Withdrawal

0..1
currentTransaction

0..*
records

+card
0..1

+account
1

0..*
completedTransaction

Figure 5.1: Structure of the ATM system
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Figure 5.2: Activity MakeWithdrawal of the Account class

The ATM keeps track of all processed transactions, as well as the transaction currently
being processed (completedTransactions and currentTransaction associations between
ATM and Transaction classes). In order to perform a deposit or withdrawal in the ATM
system, user needs to use a card, represented by the class Card. The card has a number
and a pin, used for validating the identity of the user.

The operation validatePin of the Card class specifies the validation process. Each card
is associated with an account (association account between classes Card and Account),
for which a deposit or a withdrawal can be performed. Operations makeWithdrawal and
makeDeposit of the Account class specify the process of making a withdrawal or a deposit
on the account. For each withdrawal and deposit created for the account, a list of records
(association records between Account and Record classes) is kept.

Activity MakeWithdrawal implementing the makeWithdrawal operation of the Account
class is depicted in Figure 5.2.

As the first step, the balance of the account is read (context and readBalance actions)
and it is checked whether it is greater or equal to the amount of money to be withdrawn
from the account, provided by the user (action greaterOrEquals). If the amount of money
to be withdrawn is greater than the balance of the account, a false value (successFalse
action) is provided as the output of the activity.

Otherwise, the difference between the balance of the account and the provided amount
is computed (minus action), and set as the new balance of the account (context* and
setBalance actions). A new withdrawal record is created (createNewWithdrawal action),
and its amount is set to the value of the provided amount by the user (setAmount
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action). Finally, the new withdrawal record is added to the list of records of the account
(addWithdrawalToAccount action), and a true value is returned as output of the activity
(successTrue action).

Actions readBalance and setBalance are readStructuralFeature and addStructuralFeature
actions respectively, invoked on the object provided as output of the context action. Here,
the action readBalance retrieves the balance (an integer value) of the current account
object for which the activity MakeWithdrawal was invoked, and sends it to its output pin
result. Furthermore, the action setBalance sets the balance of the current account object
to the integer value provided to its input pin value, and provides the account object to
its output pin result, with the new balance set. The context action is a readSelf action,
used to retrieve the object which is set as context of the activity. This action is defined
only once in the activity, however, for readability it is presented twice in the diagram of
the activity.

In order to ensure the functional correctness of performing a withdrawal from an account,
the activity MakeWithdrawal of the ATM system has to fulfill a number of functional
requirements:

1. The amount of money to be withdrawn from the account should be checked before
calculating the new balance of the account and before calculating the output of the
activity indicating whether the withdrawal was successful.

2. If the amount of money to be withdrawn does not exceed the balance of the account:
a) the balance of the account should be updated accordingly,
b) a new withdrawal record should be created and added to the records of the

account, and
c) a true value should be returned as output of the activity.

3. If the amount of money to be withdrawn exceeds the balance of the account:
a) the balance of the account should remain the same,
b) the number of records of the account should remain the same,
c) no new withdrawal record should be created in the system, and
d) a false value should be returned as output of the activity.

Activity ATM.Withdraw implementing the withdraw operation of the ATM class is
depicted in Figure 5.3. To perform the withdraw process, as a first step a new transaction
is created and set as the current transaction of the ATM system (startTransaction action).
For the pin provided by the user it is checked whether it corresponds to the pin of the card
(validatePin action). If the provided pin does not correspond to the pin stored on the
card (i.e., it is not valid), a false value is provided as output of the activity (successFalse
action).

Otherwise, the account is retrieved (readAccount action), the withdrawal is performed
resulting in an update of the account’s balance, and a withdrawal record is created and
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Figure 5.3: Activity Withdraw of the ATM class

added to the list of records of the account (makeWithdrawal action). Finally, the current
transaction is ended and added to the completed transactions in the ATM system (action
endTransaction). The actions startTransaction and endTransaction are call behavior
activities, used to invoke activities specifying processes of setting and removing the
current transaction of the ATM system represented by the operations startTransaction
and endTransaction of the ATM class.

To ensure the functional correctness of handling withdrawals in the ATM system, the
activity ATM.Withdraw has to fulfill following functional requirements:

1. At the beginning of the withdrawal process, a new transaction is created, set as the
current transaction of the ATM, and maintained until the end of the withdrawal
process.

2. If an invalid pin is provided, or the amount of money to be withdrawn exceeds the
balance of the account:
a) the number of the withdrawals and the balance of the account should remain

the same, and
b) a false value should be returned as output of the activity.

3. If a valid pin is provided and the amount of money to be withdrawn from the
account does not exceed the balance of the account:
a) the withdrawal records and the balance of the account should be updated

accordingly, and
b) a true value should be returned as output of the activity.

4. For each execution of a withdrawal:
a) after the update of the account’s balance or the non successful validation of

the pin or the balance, the current transaction of the ATM should be removed
and added to the completed transactions, and
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b) the balance of the account should be equal to the difference of the sum of all
deposits and the sum of all withdrawals.

Based on the presented functional requirements for the ATM system, in the next section
we will derive and present requirements for our testing framework.

5.2 Testing Framework Requirements
In order to be able to test the functional requirements of the ATM system, our testing
framework has to provide several capabilities.

Looking back at the requirement 1 from Section 5.1 for the Account.MakeWithdrawal
activity, it is stated that the elements of the activity performing the check whether the
amount of money to be withdrawn from the account does not exceed the current balance
of the account should always be executed before the elements performing the calculation
of the new balance after the withdrawal, as well as before calculating the output of the
activity. Therefore, we need a way to specify that the action greaterOrEquals, comparing
the amount provided as input of the activity with the balance of the account, should be
executed before the action minus, which calculates the difference between the balance
of the account and the provided amount. Also, it has to be checked that the actions
successFalse and successTrue calculating the output of the activity are executed after the
action greaterOrEquals. Moreover, we are not concerned with activity nodes which might
be executed before, after or between the actions greaterOrEquals and minus, therefore
we need a way to specify a relative order of node executions concerning specific nodes of
an execution path.

Furthermore, the need to specify a relative execution order of nodes also comes from the
fact that in an activity it is possible to specify concurrent flow of control and data, e.g.,
by using fork and join nodes, or by specifying several starting nodes, as is the case in the
activity Account.MakeWithdrawal. This can lead to the existence of a number of possible
execution paths of the activity under test, which all have to be taken into account when
evaluating the execution order of nodes. Therefore, in order to define this requirement,
our testing framework should provide means for specifying a relative execution order
of nodes within an activity under test, where only the order between selected nodes is
indicated, while the rest of the nodes are ignored.

In the requirements 2a and 3a of the Account.MakeWithdrawal activity, it is stated that
depending of whether the withdrawal amount does or does not exceed the balance of
the account, the balance should be updated accordingly or remain the same, once the
activity is executed. Therefore, it should be possible to specify assertions checking the
value of a property of an object manipulated by an activity at a certain point in time of
the activity execution.

The requirements 2b and 3b state that, based on whether the amount to be withdrawn
exceeds the balance of the account, a new withdrawal record should or should not be
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created and associated with the account, once the activity is executed. In order to be able
to define these requirements, our testing framework needs to provide means for specifying
assertions regarding links between objects, that are processed by an activity under
test. For these requirements, we would need to specify that the number of withdrawals
associated with the account, is increased by one in case of a successful withdrawal or
remains the same in case of an unsuccessful withdrawal.

The requirements 2c and 3c for the Account.MakeWithdrawal activity specify that a true
or false value should be provided as output of the activity once the execution is completed,
depending on whether the amount to be withdrawn exceeds the balance of the account.
Therefore, in order to be able to define these requirements, our testing framework should
provide means for specifying assertions on the values provided as output of the activity
under test.

Requirement 1 for the ATM.Withdraw activity states that an instance of the Transaction
class should be created and set as the current transaction of the ATM object. Stating
that an instance of a class should exist within the system at the certain point in time
could be specified as an assertion on a complete state of the system, rather than as
an assertion of a specific object processed by the activity under test. Therefore, it is
necessary to provide means for specifying assertions on the complete execution state of
an activity under test at the certain point in time. This is also necessary for specifying
a test case checking the fulfillment of Requirement 3c of the Account.MakeWithdrawal
activity.

Requirements 2 and 3 for the ATM.Withdraw activity are similar to the requirements 2
and 3 for the Account.MakeWithdrawal activity, and can be expressed using the same
means. However looking back at the requirement 4b for the ATM.Withdraw activity, it
might be necessary to express complex assertions involving iteration and computation over
objects and their properties, existing in an execution state of the system at the certain
point in time. In this requirement, it is stated that the balance of the account should be
equal to the difference between the sum of all deposits and the sum of all withdrawals
associated with the account. Therefore, we need a way to specify an expression iterating
over all records of the account, summing up all amounts of deposit and withdrawal
records respectively, and calculating their difference.

Having a look at the requirements 1 and 4a of the ATM.Withdraw activity, we can
observe that a testing framework for fUML models has to provide another capability.
These two requirements together state that for each execution of the withdrawal process,
a new transaction has to be created that is maintained during the withdrawal process,
and ended and recorded at the end of the process. To be able to assert this requirement,
we have to be able to check the state of the system at different points in time of the
execution as well as the states of the system between certain time frames within the
execution.

The selection of the states to be checked may be based on the execution of certain
activity nodes or based on conditions that are fulfilled by these states. For instance, for
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checking requirement 1, we have to specify the time frame between starting and ending a
new transaction. This can be done based on the state of the system. In particular, a
transaction is started as soon as the current transaction of the ATM is set, and ended as
soon as the current transaction is again unset. Similarly, for checking requirement 4a,
we have to identify the last execution state of the system within the withdrawal process.
This is the state of the system after the execution of the action endTransaction.

The requirements for our testing framework are summarized as follows.

TF-R1 The testing framework should provide the possibility to test the chronological
order in which nodes of the activity under test should be executed. Thereby, the
framework ensures that the specified order is correct for each possible execution
of the activity, taking into account parallelism.

TF-R2 The testing framework should enable to check whether for a given activity input,
the correct output is produced. Also, it should enable to check the inputs and
outputs of actions within the activity under test.

TF-R3 It should be possible to check the state of the system during the execution of
the activity under test composed of objects existing in the respective state:

a) by selecting the objects to be checked, and
b) by checking either their property values directly or evaluating complex

constraints over the whole state.

TF-R4 Furthermore, it should be possible to select the states to be checked through the
definition of time frames

a) by referring to actions within the activity under test denoting the start and
end of the time frame to be considered, or

b) by specifying constraints that should be satisfied by the states to be checked.

5.3 Testing Framework Overview

The process of testing fUML activities with our testing framework, depicted in Figure
5.4, is performed in three main phases: test creation phase, activity execution phase, and
test evaluation phase.

In the test creation phase, a test suite is specified using the test specification language.
A test suite is composed of test scenarios and test cases.

A test scenario is composed of a set of objects and links describing a state of the system
under test. A scenario may be used for specifying the initial state of the system under
test, or can be used for asserting (1) the output of an activity under test or (2) an
intermediate states during the execution of the activity. Furthermore, the initial state of
the system can be created by composing several test scenarios within a test case.
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A test case specifies the activity under test, and data provided as input to the activity
under test. Objects and links defined within scenarios can be provided as the input data
for an activity under test within the test case. Finally, a test case is composed of a set of
assertions for validating the execution states of the activity under test, or for validating
the execution order of activity nodes.

The state assertions may specify an expected output of an action within the activity
under test, or the activity itself. Furthermore, it is possible to specify OCL [Obj12]
expressions that should be evaluated at a certain point in time of the activity execution.

Order assertions can be used to specify absolute or relative orders of node execution
within the activity under test. The order assertion is specified by listing the nodes of the
activity under test, in the order in which they are expected to be executed, separated by
a comma. For specifying relative order in an order assertion, where one or more nodes
in the order assertion are skipped, special escape characters are available. More details
regarding the test specification language, and how to specify test scenarios and test cases,
are given in Chapter 6.

Test execution framework

1

Model 
Execution

Artifact Task
Automated

in/out relation

Test 
Evaluation

Execution 
TraceTest Suite

fUML Model

ActivitiesClasses

Test 
Scenarios

Test Cases
test t1 activity a1 {
var v = act1.result
assertState before
act5 { v::x = 300 }

}

Test Verdict
t1 failure
ass1.1 failure
ass1.2 success
t2 success
ass2.1 success

Test creation Activity execution Test evaluation

Figure 5.4: Overview of the testing framework

In the activity execution phase, the test input data specified in test scenarios is converted
into the fUML representation and, together with the activities under test, provided as
input to the fUML virtual machine. The fUML virtual machine executes the activities
under test, and thereof produces execution traces, containing information needed for
evaluating the test cases.

The execution trace contains information such as for instance the logical and chronological
dependencies between executed activity nodes, as well as information regarding which
objects and links were created or destroyed by which actions within the activity under
test. The fUML virtual machine and the execution trace produced by it are described in
Chapter 4 and Chapter 7, respectively.
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In the test evaluation phase, the execution trace and the test cases are provided to the
test interpreter. The interpreter evaluates each assertion by analyzing the execution
trace and produces the test verdict. The test verdict contains information regarding the
executed activity under test, the input provided to the activity under test, and a set of
results for each specified assertion.

In case of a failing order assertion, the number of execution paths which are not valid
according to the specified order, as well as several invalid execution paths are presented.
If a state assertion specifying an expression regarding inputs or outputs of a node within
the activity under test, or the inputs or outputs of the activity itself fails, the expected
and the real values are presented. In case of an OCL constraint violation, the name of the
constraint is presented. The details concerning the test evaluation phase are presented in
Chapter 7.
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CHAPTER 6
Test Specification Language

In this chapter we give a detailed overview of our test specification language. Each concept
of the test specification language, such as test scenarios and test cases, are presented
in detail in Section 6.1. In the following Section 6.2 we revisit the ATM example from
Chapter 5, and we specify and present test cases derived from the presented functional
requirements for the ATM model. Finally, in Section 6.3 we give an overview of the
Xtext framework used for implementing our test specification language.

6.1 Test Language Concepts
In order to support testing of fUML activities, we have designed and developed a test
specification language and an environment containing an editor for specifying test cases
on the model level. Our test specification language supports specifying assertions on the
execution order of nodes contained by the activity under test, as well as assertions on
the state of the system under test.

To test an activity, it might be necessary to provide input values to all its input parameters
(cf. Chapter 4). A test designer might specify input for an activity under test by creating
a test scenario, composed of objects and links that can be used in the test cases. How to
specify a test scenario, comprising objects and links, is described in Subsection 6.1.2.

The main component of the test specification language is a test case. A test case is used
for validating an activity under test for a defined input, and is composed of a number of
assertions for validating the execution order of activity nodes, as well as for checking the
state of the system during the execution of the activity under test. Details on specifying
a test case are given in Subsection 6.1.3.

A test designer might be interested in asserting complete or partial execution orders
of nodes of an activity under test (TF-R1 from Section 5.2). For instance, the func-
tional requirement 1 of the Account.MakeWithdrawal activity of the ATM system from
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Chapter 5 can be specified as an order assertion where it is checked whether the action
greaterOrEquals performing the validation of the amount of money to be withdrawn
from the account is always executed before the action calculating the new balance of the
account.

Furthermore, an activity under test might call other activities, whose order of execution
might be of interest in a specific test case. Our test specification language supports
specifying relative execution orders of activity nodes, as well as specifying assertions on
the execution order of nodes (so-called suborders) contained by activities that are called
by the activity under test. Details on specifying and using order assertions in the test
specification language are given in Subsection 6.1.4.

The execution of an action within an fUML activity might lead to the creation or
modification of objects in the current system state, resulting in the creation of a new
state of the system. Each action within the activity under test, which modified the
system state in some way, is a creator of a new state within the trace of execution. A
test designer might be interested in specifying assertions on the objects and links created
as output of the activity under test, or as output of an action within the activity under
test (TF-R2 from Section 5.2). For instance, the functional requirement 2c for the
Account.MakeWithdrawal activity of the ATM system from Chapter 5 can be specified as
an assertion of the value provided as output of the activity under test. Details on how to
specify and use state assertions for checking the execution states are given in Subsection
6.1.5.

In order to support validation of complex assertions on the system states, involving for
example iterations or calculations over instance property values in a certain execution
state, we have added support for evaluation of OCL [Obj12] constraints in our test
specification language (TF-R3 and TF-R4 from Section 5.2). For example, specification
of the functional requirement 4b of the ATM.Withdraw activity from Chapter 5 requires
complex expressions for selecting objects from an execution state, namely all deposit
records and withdrawal records associated with a given account and calculating the sum
of their property values, i.e. the sum of all deposit and withdrawal amounts. Details
on specifying and using OCL constraints in the test specification language are given in
Subsection 6.1.5.

6.1.1 Import Statement

An import statement is used for importing elements of a model under test. An example
of an import statement is presented in Listing 6.1.

Listing 6.1: Import statement specification
1 import package_name.∗

In Listing 6.1, all elements of the package with the name package_name are imported
into the test suite.
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6.1.2 Test Scenario

In order to execute the activity under test, it might be necessary to provide values for all
activity input parameters as well as a context object. For specifying objects and links of
existing classes and associations in a model under test, which can be used as input or
context of an activity under test, a test scenario can be defined.

A test scenario is composed of a name, definitions of objects, and definitions of links. In
Listing 6.2, an example of a test scenario is presented.

Listing 6.2: Test scenario specification
1 scenario scenario_name[
2 object object_name: class_name {property_name = ’ string ’ ; . . . }
3 link association_name {
4 source association_end = object_name;
5 target association_end = object_name;
6 }
7 ]

The definition of an object is composed of a name (object_name), type of the object
(class_name), and property value declarations. Property value declaration is composed
of the name of the property (property_name), assignment operator (=), and a value
declaration (e.g., ’string’). Property declarations are separated by a colon (;). In the
testing language, there are three primitive types of property that can be used:

• String - arbitrary sequence of characters declared between single quotation marks
(e.g. ’this is a string’)
• Boolean - values true and false
• Integer - signed numerical values (..., -10, 0, 10, ...)

The definition of a link is composed of type of the link (association_name), source and
target end declaration. Declaration of a link end is composed of name of the association
end of the link (association_end), assignment operator (=), and the name of the object
set as the link end value (object_name).

6.1.3 Test Case

A test case is the main component of a test suite. It groups a set of assertions on the
state of execution or order of execution of a specified activity under test. Furthermore,
it specifies which input is provided to the activity under test, i.e., which objects or
primitive values are provided to which activity input parameters. An example of a test
case declaration is presented in Listing 6.3.

Listing 6.3: Test case specification
1 test test_name activity activity_name ([parameter_node_name = value, . . . ] ) [on context_object] {
2 [ initialize scenario_name ; ]
3 // body composed of a set of assertions
4 }
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As presented in Listing 6.3, a test case is composed of a test name (test_name), the
name of the activity under test (activity_name), an optional list of input parameter
assignments (parameter_node_name = ’value’), an optional declaration of a context
object (context_object), and a set of assertions.

The keyword initialize, as presented in Listing 6.3 in line 2, can be used for loading a test
scenario as the initial state of the system. By using the initialize statement, all objects
and links defined within a scenario will be loaded as the initial state of the system under
test. It is possible to load several scenarios in a single test case, by separating the names
of the loaded scenarios with comma in the initialize statement.

Values provided as input to a parameter node of the activity under test can be either a
primitive value (String, Integer, or Boolean), or an object defined within a test scenario.
If no initialize statement has been defined, only objects provided as input or set as context
of the activity under test will exist in the initial state.

In the body of the test case several kinds of assertions can be defined. There are two
main types of assertions: order assertion and state assertion, which are explained in the
following sections.

6.1.4 Order Assertion

An order assertion is used for asserting the expected order in which the nodes of the
activity under test should be executed. It is composed of the keyword assertOrder and a
list of activity nodes in order in which they are expected to be executed, separated by
comma.

To specify a relative order of activity node executions, special escape characters can be
used. For skipping exactly one node in an order assertion an underscore character (’_’)
can be used. For skipping zero or more nodes in an order assertion, a star character (’*’)
can be used. An example of an order assertion is presented in Listing 6.4.

Listing 6.4: Order assertion specification
1 assertOrder node_one, node_two, ∗ , node_three , _;

In Listing 6.4, it is asserted that the first executed node in the activity under test is
node_one, immediately followed by node_two, after which there might be an arbitrary
number of nodes executed until node_three is reached. Finally, there is exactly one node
executed after node_three, which is also the last executed node of the activity under test.

It is also possible to specify a suborder of nodes of an activity invoked by a call behavior
or a call operation action from within the activity under test. An example of specifying
a suborder in an order assertion is presented in Listing 6.5.

Listing 6.5: Order assertion specification with a defined suborder
1 assertOrder node_one (sub_node_one, sub_node_two, ∗) , node_two, ∗;
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In Listing 6.5, a suborder is defined for a node node_one of the activity under test. In
this case, the node node_one might be either a call operation or a call behavior action,
used for invocation of another activity from within the activity under test. Inside the
brackets, next to the call action as presented in Listing 6.5, nodes of the called activity
are specified in the order in which they should be executed. Same set of escape characters
and rules apply for the suborder specification, as for the order assertion itself.

6.1.5 State Assertion

State assertions are used for checking the state of the system during the execution of an
activity under test. A state assertion is composed of a temporal expression, selecting the
subset of the execution states that are to be checked, and the body of the state assertion
composed of a set of state expressions for checking the selected states.

Temporal expressions are used for defining a time frame that includes all system states
that should be checked by the state assertion. The time frame of a state assertion can
be defined by referring to the actions within the activity under test, or by referring to
constraints that should be satisfied in the states defining the time frame. Examples of
the three types of state assertions are presented in Listing 6.6.

Listing 6.6: State assertion time frame specification
1 assertState always after | until action action_one [ until action action_two] { . . . }
2 assertState always after | until constraint ’constraint_one ’
3 [ until constraint ’constraint_two ’ ] { . . . }
4 finally { . . . }

Temporal expressions. In the following, we explain temporal expressions based on
the examples presented in Figure 6.1. An execution trace produced by the fUML virtual
machine for an activity execution is presented. The execution trace is composed of a
set of n system states (S1 to Sn), each created by the execution of an action within the
activity under test (actionA to actionX). The states are organized in chronological order.
More precisely, the state S1 created by action actionA precedes the state S2 created by
action actionB. This relation between states is indicated by the arrow labeled with word
time.

There could be a number of state expressions defined for an execution of the activity
under test, and each of these expressions have their value for each state in the execution
trace. In Figure 6.1, three hypothetical expressions, denoted with a, b, and c are depicted,
together with their values presented in each state. For instance, the value of expression a
in states S2 to Sn is evaluated to true.

Temporal operators in combination with the specification of actions (or alternatively OCL
constraints) are used to specify a time frame selecting the system states to be checked
by the state assertion. We support the temporal operators after and until defining that
all states after or until an action has been executed (or alternatively an OCL constraint
evaluates to true) shall be checked (cf. Listing 6.6, lines 1-3). If OCL constraints are
used, they are evaluated in each state starting from the first state. Those states in which
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time

(2b) eventually after 
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(1b) sometimes until b {c}

Figure 6.1: Usage of temporal operators and quantifiers in state assertions

the constraints are evaluated to true for the first time, are taken as start and end points
of the time frame.

Temporal quantifiers are used for specifying in which states of the defined time frame the
state expressions of the state assertion should evaluate to true. Our test specification lan-
guage provides the temporal quantifiers always, eventually, immediately, and sometimes,
described in the following, based on the examples depicted in Figure 6.1.

If the temporal quantifier always is used, each expression in the state assertion should
evaluate to true in each state in the time frame. The temporal expression (1a) (cf. Figure
6.1) specifies that in each state starting from the first one until the state produced by
actionB, the value of the state expression c should evaluate to false.

If the temporal quantifier eventually is used, it means that each expression should evaluate
to true in one of the states in the time frame and should remain true in all following
states in the time frame. The temporal expression (2b) (cf. Figure 6.1) specifies that
from the first state in which the value of the state expression a becomes true, until the
first state in which the value of the state expression b becomes true, the value of the
state expression c should become true in one state and remain true in each following
state in the time frame.

The temporal quantifier immediately is used to specify that each expression should be true
in either a state created by the specified action or the one right before it, or if an OCL
constraint is used instead, in the first state where the specified constraint is evaluated to
true or the state right before it, depending on the temporal operator used. The temporal
expression (3a) (cf. Figure 6.1) specifies that the value of the state expression c should
evaluate to true in the state created by action actionD.

If the temporal quantifier sometimes is used, each expression should evaluate to true in
at least one of the states in the defined time frame. The temporal expression (1b) (cf.
Figure 6.1) specifies that the expression c should evaluate to true in at least one of the
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states from the first state until the state where b becomes true.

In Listing 6.6 in line 4, finally temporal expression is presented. This temporal expression
can be used as a shorthand for a temporal expression stating that the last state of the
activity execution is to be checked by a state expression.

State expressions. For checking the state of an object provided as input or output of
an action within the activity under test, or as input or output parameter of the activity
itself, an object state expression can be defined within a test case. In Listing 6.7, two
object state expressions are presented.

Listing 6.7: Object state expression specification
1 action_one . result = null ;
2 activity_name. result = scenario_name.object_name;

An object state expression, as presented in Listing 6.7 in line 1, is composed of a name
of an action (action_one), name of the action pin (result), an operator, and an object
which is compared to the object provided as input or output of the pin.

In Listing 6.7 in line 2 a value provided as input or output from an activity parameter
node is checked. To specify the expected object provided by / to a pin or activity
parameter node, the objects from a specified test scenario can be used. In line 2 of
the listing 6.7, an object with a name object_name defined within the scenario named
scenario_name is specified as the expected value of the result output pin of the activity
under test.

For checking a value of a property of an object provided as input or output of an action of
the activity under test, or as input or output parameter of the activity itself, a property
state expression can be defined within a test case. In Listing 6.8 an example of a property
state expression is presented.

Listing 6.8: Property state expression specification
1 action_one . result : :property_name = ’aString ’ ;

A property state expression, as presented in Listing 6.8, is composed of the name of an
action (action_one) or alternatively the name of the activity, a name of the action pin
(result) or alternatively the name of an activity parameter node, a double colon separator
(’::’), the name of the property to be checked (property_name), an operator, and a value
which is compared to the value provided as input or output of the action pin or activity
parameter node.

Beside the equality operator, also the following operators are available:

• inequality operator (!=),
• comparison operators (>, <, >=, and <=) for integer values,
• inclusion operator (includes) for checking if a list of values provided as input or

output of an action (or activity) contains the declared value, and
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• exclusion operator (excludes) for checking if a list of values provided as input or
output of an action (or activity) does not contain the declared value.

OCL constraints. OCL [Obj12] is a formal language providing concepts for defining
expressions on UML models. Use cases of OCL include the definition of constraints on
UML models, the definition of operation pre and post conditions, as well as the definition
of expressions calculating values for derived properties. OCL is like UML standardized
by OMG and one of the standards that are part of the OMG MDA framework.

Since OCL is a standardized expression language, targeted at UML, and well-known in the
MDE community, we decided to integrate it with our testing framework to enhance the
expressiveness of state assertions. In particular, we support the use of OCL for expressing
complex conditions on system states in state assertions, as well as for specifying temporal
expressions selecting the states to be asserted.

Integrating an OCL constraint in a test case is composed of two parts:

• an invocation of the OCL constraint in a test case, and
• a specification of the OCL constraint itself.

An example of invocation of an OCL constraint is given in Listing 6.9.

Listing 6.9: Invocation of an OCL constraint in a test case
1 check ’constraint_name’ [on action_one . result ] ;

As can be seen from Listing 6.9, an OCL constraint is invoked by its name (’con-
straint_name’) and an optional context declaration which limits the evaluation of the
constraint on a single object (’on action_one.result’). If ’on’ part is left out, the constraint
is evaluated on each object in the selected set of states that is of the type declared as the
context of the OCL constraint itself.

An example of a specification of an OCL constraint is given in Listing 6.10.

Listing 6.10: Specification of an OCL constraint
1 package package_name
2 context class_name
3 inv constraint_name: property_name = ’aString ’
4 endpackage

An OCL constraint is defined within a package declaration (package_name). The
package that has to be declared is the package that contains the context type of the
OCL constraint. Each constraint is defined for a context type (class_name), has a name
(constraint_name), and a body (property_name = ’aString’). More details about the
implementation and usage of OCL constraints in our testing framework are given in
Chapter 7.
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6.2 ATM Example Revisited

In this section we will present one possible implementation of test cases for asserting
the fulfillment of the functional requirements of the ATM example presented in Section
5.1 using our test specification language. For each activity presented in Section 5.1, we
present a set of test cases implementing the specified ATM functional requirements, and
explain in more detail each defined component.

6.2.1 Testing the Account.MakeWithdrawal Activity

The activity MakeWithdrawal of the Account class presented in Chapter 5 implements
the process of making a withdrawal for an account in the ATM system. In order to be
able to make a withdrawal, an account associated with a card inserted into the ATM has
to exist prior to starting the process.

Therefore, in order to test the MakeWithdrawal activity of the Account class (cf. Figure
5.2), an initial state must be specified. The initial state should contain an instance of the
Account class, with possibly a number of existing records associated with it. In Listing
6.11 a scenario specifying one possible initial state of the ATM system is presented.

Listing 6.11: Test scenario for testing the Account.MakeWithdrawal activity
1 scenario BankingTD[
2 object accountTD: Account {balance = 100;}
3 object depositTD: Deposit {amount = 100;}
4 link account_record {source account = accountTD; target records = depositTD;}
5 ]

The presented scenario BankingTD in Listing 6.11 contains an instance of the Account
class named accountTD, with the property balance set to value 100. Furthermore, it
contains an instance of the Deposit class named depositTD, with the same value for the
amount property. This instance represents a deposit of the account, made by the user
at some earlier point in time. Thus, also a link between the objects accountTD and
depositTD is defined in the test scenario.

In order to test the first two functional requirements for the MakeWithdrawal activity,
we need to write a test case specifying a value to be provided to the input parameter
amount of the activity, which does not exceed the value of the balance property of the
Account instance. Also, the instance of the Account class, for which a withdrawal is to be
performed, has to be set as context of the activity. An example test case implementing
the first two functional requirements (requirements 1 and 2a-c) for the MakeWithdrawal
activity is presented in Listing 6.12.
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Listing 6.12: Account.MakeWithdrawal activity test case: an amount to be withdrawn
not exceeding the balance of the account

1 test makeWithdrawalSuccess activity Account.MakeWithdrawal(amount=25) on BankingTD.accountTD {
2 initialize BankingTD;
3 assertOrder ∗ , greaterOrEquals , ∗ , setBalance , ∗ , successTrue ;
4 finally {
5 context . result : : balance = 75;
6 check ’NumOfWithdrawalsSuccess’ on context . result ;
7 success = true ;
8 }
9 }

As can be seen in line 1 of Listing 6.12, a value 25 is provided as input to the activity
parameter amount, specifying the amount of money to be withdrawn from the account.
The readBalance and setBalance actions are read feature value and add feature value
actions respectively, which retrieve and set the balance property value of the account
object provided to their input pins, respectively. These two actions require that an object
of the Account class is set as context of the activity under test. Therefore, the context
of the activity has been set to the instance accountTD of the Account class (line 1 in
Listing 6.12), previously specified in the test scenario BankingTD from Listing 6.11.

In line 2 of the Listing 6.12, an initialize statement has been specified. As described in
the Section 6.1.3, the initialize keyword enables a test designer to load one or more test
scenarios as the initial state of the system under test. In this way, in Listing 6.12 in line
2, we specify an initial state of the system composed of an instance of the Account class
accountTD and an instance of the Deposit class depositTD with their property values set
as specified in the test scenario BankingTD, comprising a valid initial state of the ATM
system.

The functional requirement 1 of the MakeWithdrawal activity (cf. Chapter 5) specifies
that the validation of the account’s balance against the amount of money to be withdrawn
has to be performed before the calculation of the new balance of the account. This
requirement can be implemented as an order assertion presented in line 3 in Listing 6.12.

Here, we specify that the action greaterOrEquals, which performs validation of the balance
against the amount to be withdrawn, should be executed before the action setBalance
updating the balance of the account. As there may be additional nodes executed before,
after and in between the relevant actions, we have specified appropriate activity nodes
and escape characters in the order assertion.

The functional requirement 2a of the MakeWithdrawal activity specifies that the balance
of the account should be correctly updated after a successful withdrawal of the account
has been made. As the action context retrieves the account instance set as context of
the activity, the aforementioned requirement can be implemented as a property state
expression, asserting the balance property value of the account object provided as output
of the context action, at a certain point in time. As the amount of 25 was provided as
input of the activity in line 1 in Listing 6.12, and the initial balance of the account is
100 as specified in the test scenario, we assert that the updated balance is 75 in line 4 of
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Listing 6.12. As we are interested in the last state of execution of the MakeWithdrawal
activity, the assertion is specified within the finally time expression.

The functional requirement 2b of the MakeWithdrawal activity specifies that a new
withdrawal record should be created for the account, if the amount of money to be
withdrawn does not exceed the balance of the account. To implement this functional
requirement we need the ability to specify an expression for evaluating the number
of records of the account existing at the end of the activity execution. As previously
described in Section 6.1, we have integrated into our test specification language the ability
to use OCL [Obj12] for specifying and evaluating complex expressions regarding a set of
execution states of the activity under test.

In line 6 in Listing 6.12 an OCL expression named NumOfWitdrawalsSuccess is evaluated
on the instance of the Account class, provided by the output pin result of the context
action. This action is a call behavior action, which receives an integer value through the
input pin value to be set as new balance of the account instance, and provides the same
instance of the Account class as its output on the result output pin.

The OCL constraint itself is specified in Listing 6.13 in line 6. The constraint selects
all instances of the class Withdrawal associated with the instance of the Account class
through the link records (i.e., select(oclIsTypeOf(Withdrawal))), and invokes the OCL
operation size() retrieving the number of instances, i.e., withdrawal records found. As
there were no previous records of class Withdrawal in the initial state of the system (cf.
Listing 6.11), the retrieved value of the size() operation is asserted to be 1.

Listing 6.13: OCL constraints for testing the Account.MakeWithdrawal activity
1 context Withdrawal
2 inv NoWithdrawalsCreated: Withdrawal.allInstances() −> size() = 0
3

4 context Account
5 inv NumOfWithdrawalsFail: records −> select(oclIsTypeOf(Withdrawal)) −> size() = 0
6 inv NumOfWithdrawalsSuccess: records −> select(oclIsTypeOf(Withdrawal)) −> size() = 1

The functional requirement 2c of the MakeWithdrawal activity specifies that a true value
should be provided as its output. The implementation of this requirement is presented in
Listing 6.12 in line 7. In this state assertion it is checked that a true value is provided as
output of the activity via its output parameter success.

In Listing 6.14 a test case implementing the functional requirements 3a-d for the Make-
Withdrawal activity is presented.
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Listing 6.14: Account.MakeWithdrawal activity test case: an amount to be withdrawn
exceeding the balance of the account

1 test makeWithdrawalFail activity Account.MakeWithdrawal(amount=150) on BankingTD.accountTD {
2 initialize BankingTD;
3 assertOrder ∗ , greaterOrEquals , ∗ , successFalse ;
4 finally {
5 context . result : : balance = 100;
6 check ’NumOfWithdrawalsFail’ on context . result ;
7 check ’NoWithdrawalsCreated’ ;
8 success = false ;
9 }
10 }

The test case makeWithdrawalFail specifies as input an amount of money to be withdrawn
from the account (line 1 in Listing 6.14) which exceeds the balance of the account. As
explained in the description of the test case in Listing 6.12, the MakeWithdrawal activity
contains actions which require a context object to be set (i.e., readBalance and setBalance
actions), so a context object for the activity has been set (line 1 in Listing 6.14).
Furthermore, using the initialize statement (line 2 in Listing 6.14), the scenario from
Listing 6.11 is set as the initial state of the system under test.

The functional requirement 3a of the MakeWithdrawal activity specifies that the balance
of the account should remain the same in case that the amount to be withdrawn exceeds
it. Therefore, we have implemented this requirement as a property state expression
presented in Listing 6.14 in line 5. The action context retrieves the account object set as
context of the activity under test. As the value of balance property of the account object
was set to 100 in the initial state, specified in the Listing 6.11 in line 2, the assertion
specifies 100 as the expected value of the balance property.

The functional requirement 3b of the MakeWithdrawal activity specifies that the number
of the records of the account should remain the same in case a value exceeding the
account’s balance is provided as input. The state assertion implementing this requirement
is presented in Listing 6.14 in line 6. It calls an OCL expression selecting and counting
the instances of the Withdrawal class associated with the account. This amount of
withdrawal records is asserted to be 0 (constraint NumOfWithdrawalsFail from Listing
6.13 in line 5), as there should be no new records associated with the account.

The functional requirement 3c of the MakeWithdrawal activity specifies that no new
withdrawal record should be created in the system. As the initial state of the system
specified with the test scenario in Listing 6.11 contains a single instance of the Account
class, and no instances of the Withdrawal class, in order to specify this requirement, we
have to check that once the activity has been executed, in the last system state there
should be no existing instances of the Withdrawal class, whether they are associated with
the instance of the Account class or not. Therefore, this requirement can be implemented
as an OCL constraint specified in Listing 6.13 in line 2.

The constraint retrieves all instances of the Withdrawal class using the allInstances()
OCL operation, on which the size() operation is called to retrieve the number of existing
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Withdrawal instances. Finally, this amount is asserted to 0, as there were no instances
in the initial state. The state assertion implementing the requirement is presented in
Listing 6.14 in line 7.

The last functional requirement 3d of the MakeWithdrawal activity specifies that a false
value is provided as output of the activity if the amount of money to be withdrawn
exceeds the balance of the account. This functional requirement is implemented by the
state assertion in Listing 6.14 in line 8, asserting that the activity MakeWithdrawal
provides a false value for its output parameter success.

6.2.2 Testing the ATM.Withdraw Activity

The Withdraw activity of the ATM system presented in Chapter 5 (cf. Figure 5.3)
implements the process of withdrawing an amount of money from the ATM system.
The user puts the card into the ATM, provides the pin, and an amount of money to be
withdrawn. The system validates the pin provided, and if the validation is successful,
invokes the process for making a withdrawal record on the account and updating the
balance accordingly (the MakeWithdrawal activity in Figure 5.2).

Therefore, in order to test the Withdraw activity of the ATM, an initial state containing
an instance of the ATM class as well as an instance of the class Card must be defined.
In addition, the card has to be associated to the account accountTD specified in the test
scenario BankingTD (cf. Listing 6.11) In Listing 6.15 the scenario specifying an initial
state of the ATM system required for testing the activity is presented.

Listing 6.15: Test scenario for testing the ATM.Withdraw activity
1 scenario BankingTDWithAtm[
2 object atmTD: ATM { }
3 object cardTD: Card {pin = 1985;}
4 link card_account {source card = cardTD; target account = BankingTD.accountTD;}
5 ]

The scenario is composed of two objects and a link: an object of the class ATM, an object
of the class Card with a value of 1985 set for the property pin, and a link between objects
cardTD and accountTD. As can be seen from Listing 6.15, it is possible to associate
objects from different scenarios, enabling the composition of input data for test cases.
In Listing 6.15 in line 4 a link between the cardTD object defined within the scenario
BankingTDWithAtm and the accountTD object defined within the scenario BankingTD
(cf. Listing 6.11 in line 2) has been specified.

In Listing 6.16 a test case implementing the functional requirements 1 and 2a-b (cf.
Chapter 5) for the Withdraw activity is presented. The test case specifies an incorrect
pin and an amount of money to be withdrawn which exceeds the balance of the account
as input for the activity under test. In line 3 in Listing 6.16 an initialize statement is
defined, which loads both test scenarios from Listings 6.11 and 6.15, comprising the
initial state of the system.
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Listing 6.16: ATM.Withdraw Activity Test Case: an amount to be withdrawn exceeding
the balance of the account, with wrong pin provided

1 test atmWithdrawFail activity ATM.Withdraw(card = BankingTDWithAtm.cardTD,
2 pin = 1986, amount = 150) on BankingTDWithAtm.atmTD {
3 initialize BankingTD, BankingTDWithAtm;
4 always after startTransaction until endTransaction {
5 check ’TransactionInProgress ’ ;
6 }
7 finally {
8 readAccount. result : : balance = 100;
9 check ’NumOfWithdrawalsFail’ on readAccount. result ;
10 success = false ;
11 check ’TransactionEnded’ , ’TransactionRecorded ’ , ’BalanceRecords ’ ;
12 }
13 }

The functional requirement 1 of the Withdraw activity specifies that a new transaction
should be created at the beginning of the withdrawal process, and maintained during its
execution. As the actions responsible for creation and removal of the current transaction
in the ATM system are actions startTransaction and endTransaction, the time frame
for this assertion is defined as a set of those states which are created between these two
actions, and can be defined using the appropriate temporal operators after and until,
as presented in Listings 6.16 and 6.17 in lines 4-6. The OCL expression asserting that
the current transaction property of the ATM object is not null (TransactionInProgress
constraint) is defined in line 2 in Listing 6.18.

The functional requirement 2a of the Withdraw activity specifies that in case an invalid
pin is provided, or the amount of money to be withdrawn exceeds the balance of the
account, the number of withdrawal records and the balance of the account should remain
the same. The requirement can be implemented as the state assertion presented in Listing
6.16 in lines 8-9. Here, we specified that the balance of the account provided by action
readAccount has to be 100, which was the original value specified in the scenario 6.11.

Furthermore, an OCL constraint with name NumOfWithdrawalsFail specified in Listing
6.13 in line 5, is checked on the account. As the number of withdrawal records associated
with the account were 0 in the initial state, according to the requirement, we assert that
this value remained 0.

The functional requirement 2b of the Withdraw activity specifies that if an invalid pin,
or the amount to be withdrawn exceeding the balance of the account is provided, a
false value should be returned from the activity. This functional requirement can be
implemented as the state assertion in line 10 in Listing 6.16. Here, we have specified that
a false value should be returned from the output pin success of the activity.

The functional requirements 1 and 3a-b (cf. Chapter 5) for the Withdraw activity are
implemented as the test case presented in Listing 6.17.
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Listing 6.17: ATM.Withdraw Activity Test Case: an amount to be withdrawn not
exceeding the balance of the account, with a correct pin inserted

1 test atmWithdrawalSuccess activity ATM.Withdraw(card = BankingTDWithAtm.cardTD,
2 pin = 1985, amount = 25) on BankingTDWithAtm.atmTD {
3 initialize BankingTD, BankingTDWithAtm;
4 always after startTransaction until endTransaction {
5 check ’TransactionInProgress ’ ;
6 }
7 finally {
8 readAccount. result : : balance = 75;
9 check ’NumOfWithdrawalsSuccess’ on readAccount. result ;
10 success = true ;
11 check ’TransactionEnded’ , ’TransactionRecorded ’ , ’BalanceRecords ’ ;
12 }
13 }

In the test case, we have specified a correct pin of the card, and an amount of money to
be withdrawn which does not exceed the balance of the account. In line 3 of Listing 6.17
an initialize statement has been specified, which loads both test scenarios from Listing
6.11 and Listing 6.15, as required objects for testing the Withdraw activity are defined
within these two scenarios.

As in the previous test case from Listing 6.16, we have specified a state assertion for
checking the requirement 1 of Withdraw activity in the same way in lines 4-6 in Listing
6.17. The functional requirement 3a specifies that, if a correct pin of the card is provided
and an amount of money not exceeding the balance of the account is provided, the
number of withdrawal records and the balance of the account should be updated. As
the balance of the account was set to 100 in the initial state (cf. Listing 6.11), and the
amount to be withdrawn provided in the test case was set to 25, we have implemented
this requirement as a state assertion in line 8 in Listing 6.17, asserting the value of the
property balance of the account instance provided from the output pin result of the
readAccount action to 75.

In line 9 of Listing 6.17 it is asserted that a new withdrawal record has been created.
Here, we have specified that the OCL constraint NumOfWithdrawalsSuccess should be
evaluated on the account instance provided as output of the action readAccount. The
OCL constraint itself is specified in Listing 6.13 in line 6. As the number of withdrawal
records associated with the account was 0 in the initial state, we have specified that it
should be updated to 1, as specified in the OCL constraint.

The functional requirement 3b specifies that in case the correct pin and an amount of
money to be withdrawn not exceeding the balance of the account are provided, a true
value should be returned as output of the activity. This requirement is implemented as
the assertion in line 10 in Listing 6.17, asserting that the value provided from output pin
success of the activity is equal to true.

The last functional requirement 4a-b for the Withdraw activity is implemented as three
OCL constraints in Listing 6.18 in lines 3-8, and invoked in line 11 in Listings 6.16 and
6.17, respectively.
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Listing 6.18: OCL constraints for testing the ATM.Withdraw activity
1 context ATM
2 inv TransactionInProgress: currentTransaction != null
3 inv TransactionEnded: currentTransaction = null
4 inv TransactionRecorded: completedTransactions −> size() = 1
5 context Account
6 inv BalanceRecords: (records −> select(oclIsTypeOf(Deposit)) −> collect(Record : :amount) −> sum()
7 − records −> select(oclIsTypeOf(Withdrawal)) −> collect(amount) −> sum() )
8 = balance

The functional requirement 4a specifies that once the withdrawal process is completed,
the transaction set as current transaction of the ATM is removed from being the current
one, and added to the list of completed transactions. This requirement is implemented as
OCL constraints TransactionEnded and TransactionRecorded in lines 3 and 4 in Listing
6.18, respectively.

The functional requirement 4b specified that once the withdrawal process is completed,
the balance of the account should be equal to the difference of the sum of all deposits
and the sum of all withdrawals. This requirement is implemented as OCL constraint
BalanceRecords in lines 6-8 in Listing 6.18. Here, we select all instances of the class
Deposit, and collect all values of the property amount, and call the sum() OCL operation,
to calculate the sum of amounts of all deposit records associated with the account. The
same expression is specified and evaluated for the withdrawal records. Finally, the sum
of withdrawals is subtracted from the sum of deposits, and asserted to be equal to the
value of the balance property of the account.

6.3 Test Language Implementation

We have implemented an environment for creating test cases with our test specification
language using the Xtext framework 1 based on EMF [SBPM08]. Xtext is a framework
for building textual software languages, and covers all aspects of a complete language
infrastructure, consisting of parser, code generator or interpreter, up to complete Eclipse
IDE integration, providing features such as, syntax highlighting, background parsing,
error marking, content assist, and quick fixes [Bet13].

Xtext brings many important features to the language infrastructure at runtime, such
as validation, linking and scoping. With validation it is possible to check constraints of
a developed language, which are not detectable during the parsing phase. Additional
checks can be done in a declarative way, providing the errors and warnings which are
presented in the IDE. These checks are done during runtime, as the user is creating a
model of the developed language, thus immediate feedback is provided. It is also possible
to provide quick fixes corresponding to generated errors and warnings during validation.

Xtext contains a generator that takes as input a grammar of a specified language, and
will generate artifacts related to the UI editor for the specified language, and more

1http://www.eclipse.org/Xtext/

78

http://www.eclipse.org/Xtext/


6.3. Test Language Implementation

importantly will generate an ANTLR specification from the grammar with all the actions
needed to create the abstract syntax tree (AST).

Main component of the Xtext framework is a domain specific language for describing
concrete syntax of a developed language. The described concrete syntax is mapped
to an in-memory representation model, produced by a parser when an input file with
the grammar specification is loaded. Xtext grammar includes mechanisms to combine
a developed language with existing grammars of other languages, enabling grammar
compositions. This mechanism is called grammar mixin [xte13].

Xtext parser creates in-memory object graphs, represented by EMF Ecore metamodel
instances, while consuming the grammar specification. The parser can infer Ecore
metamodels representing the abstract syntax of the language from a specified grammar,
but also can generate a grammar from an imported Ecore metamodel.

Parsing of a specified grammar in Xtext can be separated into four phases: lexing, parsing,
linking, and validation.

In the first phase, called lexing, a sequence of characters is transformed into a sequence of
tokens, where token represents a strongly typed part of region of the input sequence. It
consists of a number of characters, and is matched by a specific terminal rule or keyword,
and represents an atomic symbol of the developed language.

Xtext comes with predefined grammars containing most used terminal rules for data
types, such as strings and integers, which can be imported for reuse into the grammar of
the developed language. An example of a terminal rule is presented in Listing 6.19.

Listing 6.19: An example of a terminal rule
1 terminal ID:
2 ( ’^ ’ )?( ’a ’ . . ’z ’ | ’A’ . . ’Z’ | ’_’ ) ( ’a ’ . . ’z ’ | ’A’ . . ’Z’ | ’_’ | ’0 ’ . . ’9 ’ )∗;

Token ID from Listing 6.19 starts with an optional character ’ˆ’, followed by a letter
(’a’..’z’|’A’..’Z’) or underscore (’_’), followed by any number of letters, underscores, and
numbers (’0’..’9’). Terminals are expressed using Extended Bacus-Naur Form-like rules,
with four different possible cardinalities: exactly one (default), one or none (operator ?),
zero or more (operator *), and one or more (operator +).

Keywords are represented by terminal rule literals. Furthermore, to allow internal
grammar composition, rules can refer to other rules, called rule calls. An example of a
rule call is presented in Listing 6.20. Here, a rule named QualifiedName is specified as a
combination of one or more IDs from Listing 6.19, concatenated with dot symbol.

Listing 6.20: An example of a rule call
1 QualifiedName:
2 ID ( ’ . ’ ID)∗

In the second phase, called parsing, a parser is fed with a sequence of terminals, on which
parser rules are applied. Thereof, a tree of non-terminal and terminal tokens is produced
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by the parser. This tree is composed of objects comprising the linked abstract syntax
tree (AST).

There is a number of expressions for directing how the AST is constructed. Assignments
are used for assigning the consumed information to a feature of currently produced
object within a rule. There are three different assignment operators, each with a different
semantics: the = operator used for single valued features, the += operator for multi
valued features, and the ?= operator for boolean features.

One important feature of Xtext is cross-linking of produced elements from rules within a
grammar definition. The syntax of cross-links is presented in Listing 6.21.

Listing 6.21: Xtext cross-link rule definition
1 ’ [ ’ type=TypeRef ( ’ | ’ ^terminal = CrossReferenceableTerminal )? ’ ] ’ ;

The cross-linking feature of Xtext enables definition of which property of an Xtext element
of the developed language grammar can be used for referencing to it from other elements
in the grammar. As can be seen from Listing 6.21 there is an optional part of a cross link
composed of a vertical bar followed by CrossReferenceableTerminal. This part describes
the concrete text by which the cross link is established. If it is omitted, a rule with a
name ID is used as text for establishing the cross link.

For instance, in our test language for referring to a specific test scenario in an initialize
statement within a test case, the name of the test scenario is used for linking. Therefore,
the cross referenceable terminal for a test scenario is its user defined name.

In the linking phase, the cross links explained earlier are resolved. Linking enables
specification of references between elements of the language using so called cross links.
Beside defining cross links within the grammar, it might be necessary to specify linking
semantics, usually provided using the scoping API. Xtext uses lazy linking by default,
which is a preferred use of linking due to improved performance, where it is not needed
to load a complete model. However, cyclic linking is not supported in Xtext.

Scoping is used for determining which elements can be referenced from a certain link,
based on the context in which the link is defined. While declaration of a cross link in
grammar defines a type of objects which can be referenced from a certain link, filtering of
objects of the specified type which can be referenced from a link is done by implementing
so called scope providers. Scoping in Xtext is devided into global and local scoping.
Global scopes, on one hand, define visibility of elements coming from an external resource,
that can be referenced from a certain link. Local scoping, on the other hand, is used for
restricting the visibility of elements referable from a certain link based on the context of
its definition.

For instance, in our test language, scoping is used for constraining the set of activity
nodes which can be declared in an order assertion. More precisely, only activity nodes
which belong to the activity under test should be referable from an order assertion.
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Similarly, scoping was used for constraining the set of referable activity parameters from
a test case, for declaring the input to the activity under test.

The default linking in Xtext relies on a scope service, which provides context for each
element in a program. During the cross reference resolution, the linker asks the scope
service to provide the scope for the elements that are referable from the cross link it is
trying to resolve, and if the element from the cross reference is in that scope, the cross
reference is resolved by the linker. Otherwise, an error is presented in the editor.

Finally, in the validation phase, the abstract syntax tree can be semantically analyzed to
check the overall correctness of the program. This analysis includes type checking and
custom constraint checking concerning the semantics of the program elements.

For instance, in our test specification language, in an order assertion specification it is
not allowed to define two adjacent escape characters (e.g., nodeA, *, *, nodeB, for more
details on order assertions implementation cf. Chapter 7). Therefore, we have defined
the validation rule that checks the specification of each order assertion in a test case,
and each invalid order specification will be marked inside the editor during test creation.
Implementing constraint checking such as this one, is less complex once the parsing is
done and the abstract syntax tree is generated, rather than integrating it into the parsing
phase.

Abstract syntax tree of a specified grammar in Xtext is represented by an Ecore metamodel
generated from the grammar, or manually created and imported into the grammar.
Complete definition of the language is contained within an instance of an EPackage
element, containing a number of EClass instances for each parser rule, and a number
of EDataType instances for each terminal rule or a data type rule defined within the
grammar.

Xtext provides generic implementations for language infrastructure, and also uses code
generation for some components. Among generated components are the parser, the
serializer, the inferred Ecore metamodel, and other. For configuring the generator, Xtext
uses a domain specific language called modeling workflow engine (MWE).

The general architecture of the language generator is composed of generator fragments,
an URI pointing to the grammar, and the file extensions for the developed language.
By using generator fragments, different components for generating different parts of
the language infrastructure can be declared and invoked in the order in which they are
declared. There are fragments for generating parsers, serializers, the EMF code, and
other components. Further details on specifying a generator workflow using MWE can
be found in [xte13].

Xtext provides many additional features, such as serialization, formatting and encoding,
which are described in more details in [xte13]. Instructions on installing the testing frame-
work and a complete overview of the test specification language grammar implementation
in Xtext are given in appendices A and B, respectively.
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CHAPTER 7
Test Interpreter

In this chapter we will present our test interpreter, used for evaluating the test cases on the
execution trace of an activity under test. First we give an overview of the framework and
the execution trace provided by the fUML virtual machine, containing the information
about the executed activity nodes, as well as the execution states comprised of objects
and links created and modified by the activity execution. Thereof, we describe in detail
the implementation of evaluating order assertions, state assertions, and OCL expressions.
Finally, we conclude the chapter with the presentation of the test results model produced
by the test interpreter, representing the results of the evaluated test cases and revisit the
ATM example

7.1 Overview
Each test case in the test specification language specifies an activity under test, and a set
of values provided as input to each activity input parameter of the activity under test
(as described in Chapter 6). The activity, along with the input values, is provided into
the fUML virtual machine, which executes the activity under test. Thereof, an activity
execution trace, is produced by the virtual machine. The test interpreter, takes as input
the specified test cases and the execution trace, performs the evaluation of each assertion
within a test case, and produces the test results. The process of executing and evaluating
test cases is shown in Figure 5.4.

The standardized fUML virtual machine does not provide means for implementing analysis
methods, such as debugging and testing, as it provides means only for executing a specified
fUML activity and records the output values of the activity parameters after the execution
has been completed. For implementing analysis methods, such as debugging and testing,
there are several important characteristics that have to be provided by the execution
environment. One of those characteristics is observability [May14]. Observability of
an execution environment presumes ability to observe the execution of a model during
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runtime. Another important characteristic of an execution environment is controllability,
that is ability to control executions being carried out by the execution environment.
Finally, an important characteristic of an execution environment for analysis methods,
such as testing, is analyzability. Analyzability presumes ability to analyze ongoing or
completed executions based on the captured runtime execution.

Therefore, our testing framework is based on an implementation of extended version of
the fUML virtual machine [May14]. This extended virtual machine contains (i) an event
mechanism enabling the runtime observation of model executions carried out by the
fUML virtual machine, (ii) a command interface providing execution control over model
executions carried out by the fUML virtual machine, and (iii) a trace model recorded
for model executions carried out by the fUML virtual machine containing information
regarding executed activity nodes, input and output relations between nodes and other.
Test interpreter of our testing framework depends on this recorded trace model for
evaluation of specified test case assertions.

As the first step, specified data in the test scenarios has to be translated into the fUML
representation, in order to be provided to the virtual machine which executes the activity
under test with the given input. As described in Chapter 6, a test scenario is composed
of objects and links which can be provided as input or an initial state to the activity
under test. Each object and link specified in a test scenario, and provided as input to
the activity under test, is translated into the fUML representation. Furthermore, if a
test scenario is specified as an initial state of the activity under test, all objects and links
defined within it are translated into fUML representation and loaded as the initial state
of the activity under test. In order to isolate specified test cases within a test suite, each
time a test case is to be executed, the final state of the system is cleared and the initial
state defined by the activity inputs or a test scenario set as initial state of the activity
under test, is loaded into the virtual machine.

7.2 Trace Model

In Figure 7.1 a model of the execution trace, produced by the fUML virtual machine is
presented. Main element of the trace model is the Trace class. It is composed of value
instances (i.e., objects and links) created or modified during the execution of an activity
under test, and activity execution objects containing information about each executed
activity.

For each object or link, created or modified during execution of an activity, an instance
of the ValueInstance class is created. Objects that were provided to the activity existed
in the initial state, and thus they are referenced from the trace as initial locus value
instances (the reference initialLocusValueInstances).

Whenever an object is instantiated or modified, a snapshot of that object containing
the current values of its attributes is created, represented by the class ValueSnapshot.
Each value instance contains all snapshots of that instance that were created during an
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Figure 7.1: Excerpt of the execution trace model [May14]

activity execution (the reference snapshots), as well as a reference to the original value
snapshot provided to or created during an activity execution (the reference original).

For each executed activity, an instance of the class ActivityExecution is created. Each
activity execution contains an identifier (the attribute activityExecutionID) and a reference
to the activity that was executed (the attribute activity). An object provided as context of
an executed activity is referenced from an instance of corresponding activity execution (the
reference contextValueSnapshot). For each input and output object provided to (from) an
activity, a corresponding instance of InputParameterSetting and OutputParameterSetting
is created, referring to the parameter for which it was created. Parameter settings refer
to the value snapshots consumed or produced by the executed activity (the reference
valueSnapshot).

For each node within an executed activity, an instance of the class ActivityNodeExecution
is created. Activity node execution refers to the activity node for which it was created
(the attribute node), and a flag value indicating if the node was executed or not (the
attribute executed).

The chronological order of nodes within the executed activity, describing the time order
in which the nodes were executed, is recorded by a unary association (association ends
chronologicalSuccessor and chronologicalPredecessor). The logical dependency of nodes
within the executed activity, describing which nodes provided input to which other
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nodes, is recorded by another unary association (association ends logicalSuccessor and
logicalPredecessor).

For each action within the executed activity, an instance of the ActionExecution is created.
An action execution contains references to the input and output values provided to or
from an executed action. If an action within the executed activity is either a call behavior
action or a call operation action, for such action an instance of CallActionExecution,
containing a reference to the executed activity, is created.

Based on this recorded trace of an activity execution, test interpreter is able to evaluate
specified order and state assertions from a test suite. Implementation details of the test
interpreter for each kind of assertion from the test specification language are presented
in the rest of the chapter.

7.3 Order Assertions

Concurrency in an activity leads to the existence of a potentially large number of possible
execution paths of that activity, which have to be considered in the test evaluation. In
particular, order assertions checking the correct execution order of activity nodes have
to be evaluated for each possible execution path of the activity under test. We have
implemented two algorithms for evaluating order assertions, presented in the following
subsections.

7.3.1 Execution Tree Generation Algorithm

Once an activity is executed, the execution trace of that activity is recorded by the fUML
virtual machine. The metamodel of the trace is presented in Figure 7.1. The execution
trace is obtained from a single execution of the activity under test, for the given input
defined by the test case being evaluated.

The information needed for evaluating order assertions consists of the logical input/output
dependencies between the executed activity nodes captured by the execution trace.
Thereby, an activity node B depends on an activity node A, if B received an object token
or control token from A as input. This information is captured in the execution trace by
links called logicalSuccessor and logicalPredecessor pointing from A to B and from B to
A, respectively. Based on this logical order it is possible to compute execution paths of
an activity for a given input.

An execution tree, generated by our algorithm and from which possible execution paths
of an activity are computed, will be presented on an example activity depicted in Figure
7.2.

This activity is composed of eleven activity nodes. There are several important properties
of the depicted example activity. The activity contains two potential starting nodes. The
execution of the activity can start either from node initial or node actionB.
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ExampleActivity

initial

actionB

actionC

fork

actionD

actionE
join

actionF

final

actionG

actionA

Figure 7.2: An example activity with several starting and several ending nodes

Furthermore, it contains two ending nodes, i.e., final node and actionG node. An
important thing to notice about these two nodes is that, if the final node is executed
before actionG node, the actionG node will not be executed. As the type of the final
node is activity final node, once it is executed, the execution of the whole activity is
terminated by the virtual machine (cf. Figure 4.2). However, if actionG node is executed
first, the final node will be executed also.

Finally, the activity contains a parallel path composed of two nodes, i.e., actionD and
actionE. As these two actions lay on a parallel path, they can be executed in any order.
An execution trace of the activity from Figure 7.2, produced by the virtual machine, is
presented in Figure 7.3.

As can be seen in Figure 7.3, for each node in the activity, a corresponding instance of
an activity node execution or an action execution is created. The logical dependencies
between nodes, that is which node provided input to, or consumed output from, which
other node is represented by the links logicalSucc. and logicalPred., respectively. Nodes
without any incoming logicalSucc. links are called starting nodes, and nodes without any
outgoing logicalSucc. links are called ending nodes.

Algorithm 1 Generation of execution trees for each starting node from a given activity
execution e
1: procedure GenerateTrees(ActivityExecution e)
2: for n in e.nodeExecutions do
3: if predecessors(n).size() = 0 then
4: list← GenerateTree(n)
5: return list

The entry point of our execution tree generation procedure is presented in Algorithm
1. In this procedure, for each node of the activity from the execution trace, we check if
that node has no predecessors, i.e., it is a starting node, and if so we invoke a procedure
GenerateTree depicted in Algorithm 2 on it, in order to generate an execution tree of
that node. Finally, we add it to a list of generated execution tree nodes, returned by the
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Figure 7.3: An excerpt of an execution trace produced by the fUML virtual machine for
the activity from Figure 7.2
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Figure 7.4: Execution tree generated from the execution trace from Figure 7.3, with the
node initial as its root

procedure. In each generated execution tree, each branch from the root node to each leaf
node, represents an execution path of the activity. An execution tree, starting from node
initial, generated from the execution trace of the example activity is depicted in Figure
7.4.

The execution tree of the example activity is generated in following order of steps. Once
the initial node is executed, the execution can proceed with either the node actionA or
actionB. Therefore, two execution tree nodes referring to the actionA and actionB nodes,
are created and added as children of the execution tree node referring to the initial node.
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Assuming that the next chosen node to be executed is the node actionA, an execution tree
node referring to it is created and added as a child of the previously created execution
tree node referring to the node initial. As the node actionC which received the input
from the node actionA still awaits input from the node actionB, it cannot be executed.
At the same time, the node actionB has no incoming edges, and therefore is the only
node which can be executed at that point in time. Therefore, an execution tree node
referring to the node actionB is created and added as a child of the previously created
execution tree node referring to the node actionA.

Once the node actionB is executed, the node actionC becomes executable, and since
it is the only node that is executable at that point in time, it is the next chosen node.
Execution of node actionC is followed by execution of the node fork, after which possible
executable nodes are actionD and actionE. The appropriate execution tree nodes are
created and added into the execution tree in the same way as in the previous steps,
and this process continues until a node which has no outgoing edges, and therewith no
successor nodes, is reached. The remainder of each execution path after execution of the
parallel nodes actionD and actionE is same, therefore it is only presented once in Figure
7.4.

The procedure for generating an execution tree for a given activity node execution is
presented in Algorithm 2. For a given activity node execution n from the trace, we create
an instance of the execution tree node e. An execution tree node contains reference to
the activity node execution of the execution trace for which it was created (node n itself),
and a list of its children, i.e., nodes which may follow the activity node execution n on
an execution path of the activity under test.

Thereof, all potential successor nodes of the current node n are computed, i.e., operation
potentialSuccessors(n). Potential successor nodes are all nodes from the trace that might,
under certain conditions follow the current node on an execution path of the activity
under test.

For each node m in the list of potential successors, several conditions defining whether
the node is executable in the context of the current path, implemented by the operation
isExecutable(m, n), are checked and if they are fulfilled, an execution tree node for m
is created and added as a child of the current node in the execution tree. Finally, this
process is recursively repeated for each node executable in context of an execution path,
creating a corresponding execution tree node for it, and adding the generated result as a
child of the current execution tree node.

The procedure for retrieving all potential successor nodes of an execution tree node, used
in line 3 in Algorithm 2, is presented in Algorithm 3. When computing all potential
successors of a given node n from the trace, first we have to check all of the starting
nodes, that is those nodes which do not contain any logical predecessors in the trace.
Each such starting node can be added to the list of all potential successors of the current
node (line 6 in Algorithm 3). For instance, in the activity depicted in Figure 7.2, when
computing the potential successors of the initial node, this step will ensure that the path
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with the node actionB will be included.

Algorithm 2 Generation of an execution tree for a given activity node execution n
1: procedure GenerateTree(ActivityNodeExecution n)
2: e← new ExecutionTreeNode(n)
3: list← potentialSuccessors(n)
4: for m in list do
5: if isExecutable(m, n) then
6: e.children← GenerateTree(m)
7: return e

Algorithm 3 Retrieve potential successors of a given activity node execution n
1: procedure potentialSuccessors(ActivityNodeExecution n)
2: psList← new list
3: snList← startNodes()
4: for s in snList do
5: if s 6= n then
6: psList← s
7: psList← descendants(s) / descendants(n) / n

8: psList← successors(n)
9: aList← ancestors(n)

10: for a in aList do
11: dList← descendants(a)
12: for d in dList do
13: if d 6= n and isNotAncestor(s, n) then
14: psList← d

return psList

For the purpose of explaining further steps of the algorithm, we will call the execution
path on which the node n lies the main path. Each descendant of each starting node from
the trace, up to the node n, can be added to the list of all potential successors of the
node n. A descendant of a node x is any direct or indirect logical successor of the node x.
Therefore, all descendants of each starting node, which are not descendants of the node
n and the node n itself, can be added to the list of potential successors of the current
node n (line 7 in Algorithm 3). The operator ’/’ is used here as a relative complement,
taken from set theory. For instance, A/ B is a subset of A such that each element in this
subset belongs to A and at the same time does not belong to B. This step ensures that
any node laying on a parallel path that did not originate from the main path will be
included in the list of potential successors for the node n.

For instance, in the activity depicted in Figure 7.2, when computing potential successors
of the initial node, this step would ensure that any node laying on a path between actionB
and actionC would be included in a list of potential successors of the initial node.
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Additionally, each direct logical successor of the node n is a potential successor of the
node n, so it can be automatically added to the list of all potential successor nodes of
the node n (line 8 in Algorithm 3).

Finally, each descendant of each ancestor of the node n, which is not an ancestor of the
node n, can be added to the list of potential successors of the node n. An ancestor of a
node x is any direct or indirect logical predecessor of the node x. This step ensures that
that any node laying on a parallel path that forked from the same path as the main path
will be included as a potential successor of the node n (lines 12-14 in Algorithm 3). For
instance, in the activity depicted in Figure 7.2, when computing potential successors of
the execution tree node of the actionE, this step ensures that the node actionD will be
included.

The procedure for checking if a node m from the list of potential successors of the node
n can be added as a successor of the node n on a certain execution path, used in line
4 in Algorithm 2, is presented in Algorithm 4. A node m can be added to the list of
successor nodes of the given node n if it was executed, if it was not already added on
the current path up to the node n, and if all logical predecessors of such node have been
already added on the current path to the node n.

Algorithm 4 Check if a potential successor of a given activity node execution m can be
added as a child of a given activity node execution n
1: procedure isExecutable(ActivityNodeExecution m, ActivityNodeExecution n)
2: if isAlreadyAdded(m, n) or isExecuted(m) = false then
3: return false

4: list← predecessors(m)
5: for p in list do
6: if isAlreadyAdded(p, n) then
7: return false

8: return true

Once the execution trees for each starting node from the trace are generated, by applying
a simple depth first search, we can go through and validate each execution path of an
activity under test. Union of all paths between the root node and the leaf nodes from
each generated execution tree represents a set of all activity execution paths.

An important disadvantage of the execution tree generation algorithm is that it can
lead to state explosion, and generating all of the paths for an order assertion might be
inefficient for very loosely coupled activities (activities with a large number of starting
or ending nodes and parallel constructs such as fork and join). Therefore, we have
implemented an additional more efficient algorithm, based on creating and analyzing
an adjacency matrix representation of an execution trace, presented in the following
subsection.

Validation of an order assertion for an activity under test can be performed either by
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rb. fb. ge. ige. fa. m. sb. sa. aw. cw. st.
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actionG (g) 
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Figure 7.5: Adjacency matrix of the activity from Figure 7.2, generated from the execution
trace from Figure 7.3 produced by fUML virtual machine

analyzing an execution path obtained from an execution tree of the activity, or by
analyzing the adjacency matrix (as described in the following subsection). The algorithm
for validating an order assertion against an execution path or the adjacency matrix will
be presented in the following subsection.

7.3.2 Adjacency Matrix Analysis Algorithm

We have implemented an algorithm based on adjacency matrix to evaluate order assertions
in the presence of concurrency, that enables to verify the correctness of the execution
order of activity nodes for a given input. As a first step the algorithm transforms the
execution trace of an activity under test into an adjacency matrix [CSRL01].

The adjacency matrix constructed for the execution trace from Figure 7.3 is presented in
Figure 7.5. The matrix constitutes a two dimensional array of Boolean values, where a
true value (abbreviated with T) indicates the existence of a logicalSucc. link between
two activity nodes. For instance, a true value in the first row and the second column
indicates the mentioned logicalSucc. link pointing from initial node to the actionA node.

Based on the constructed adjacency matrix, order assertions can be evaluated efficiently
by analyzing the dependencies between activity nodes specified in the order assertions.
For instance, to evaluate an order assertion assertOrder *, A, B, *, we have to check
whether B depends on A, i.e., whether a true value in the adjacency matrix indicates B
as being adjacent to A. If this is not the case, there exists no input/output dependency
between A and B, and hence they may be executed in reverse order.

Furthermore, we have to check that there are no other nodes independent of both A and
B, i.e., nodes that lie on parallel paths and may be executed between them. We can
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compute all ancestors and all descendants for both node A and node B, and check if there
is a node X which does not belong to either ancestors or descendants of either the node
A or the node B. If there is at least one such node X, then the order assertion should fail.

For the evaluation of jokers ’_’ and ’*’, also indirect input/output dependencies between
activity nodes have to be considered, which can also be efficiently calculated from the
adjacency matrix. For instance, to evaluate an order assertion assertOrder A, _,

B, we have to check whether an arbitrary activity node X exists on which B depends
and which itself depends on A, i.e., X provided input to B and received input from A.
Additionally, we need to check that there are no nodes independent of A, X, and B, which
lie on parallel branches.

In the evaluation of order assertions, our algorithm always considers groups of three
activity node specifications. For instance, an order assertion assertOrder A, B, C, D

is divided into two groups {A, B, C} and {B, C, D}. The evaluation result of an order
assertion is then the conjunction of the evaluation results for each group.

In order to make the order assertion evaluation algorithm feasible, we constrain the order
assertion specification so that no subsequent use of jokers is allowed, i.e., (*,*), (*,_),
(_,*), and (_,_). This leads to existence of thirteen patterns for each group of three
node specifications (e.g., node, *, node).

Thereof, we implemented a set of rules for each pattern of a three node group, such as the
ones presented earlier, and validate them against each group from the order specification,
either against the adjacency matrix, or a single execution path computed from the
execution tree presented in previous subsection. The order assertion can be evaluated
first on the adjacency matrix, to validate the execution order of any possible path of
the activity under test in an efficient way. In case the validation against the adjacency
matrix fails, we perform a search through the execution tree, in order to find one or more
counter examples of execution paths which violate the order specification. As soon as
one or more incorrect paths are found, the exploration of the generated execution tree is
terminated, and the found counter example presented to the user.

7.4 State Assertions
As described in Chapter 6, a test case may contain state assertions for evaluating state
of execution of an activity under test. Each state assertion is composed of definition of a
time frame selecting a set of activity execution states to be evaluated, and a set of state
expressions evaluated on the objects and links in the selected set of states.

Therefore, evaluation of state assertions in the testing framework is divided into two
phases. In the first phase, based on the specified time frame (cf. Section 6.1.5) a set
of relevant snapshots of objects and links from the execution trace, comprising a set of
execution states of the activity under test, are collected.

As described in Section 6.1.5, for specifying a time frame of a state assertion it is possible
to refer to either actions within the activity under test, or by specifying OCL constraints
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Figure 7.6: Excerpt of sequence execution trace model

which determine start and end state of the time frame. In order to enable selection of
relevant states based on the specified time frame, we convert the trace model (described
by the model from Figure 7.1) into a so called sequence execution trace, depicted in
Figure 7.6.

Looking at the original execution trace in Figure 7.1, information for both computing
the selected set of objects and links defined by time frames and for evaluating the state
expressions within a state assertion is sufficient. However, computing the time frames
defined within a state assertion, especially in case the time frame is defined using OCL,
as well as evaluating OCL expressions for each execution state in the time frame, by
using the execution trace from Figure 7.1 directly, is not straightforward. For instance,
every time an OCL constraint is to be evaluated in a specified time frame, a set of objects
and links comprising the relevant states for the time frame has to be computed from the
execution trace. Therefore, we have created the sequence trace representation described
in the following, and a transformation of execution trace into this representation, with
the aim to reduce the complexity of implementing the state assertion evaluation and the
use of OCL constraints.

A sequence trace (the class SequenceTrace) is composed of a number of sequences (class
Sequence in Figure 7.6) created for each activity execution from the original execution
trace (class ActivityExecution from Figure 7.1). A sequence is composed of a set of
states (class State in Figure 7.6), created for each action execution from the original
trace, which modified the state of the system in some way. More precisely, for each
action (ActionExecution class from Figure 7.1) whose execution modifies the state of
the system in some way, a new state (State class from Figure 7.6) is created. There is a
set of action types which can modify the system state, such as CreateObjectAction or
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DestroyObjectAction, for which the transformation creates a new state, adding a reference
to a new snapshot or removing a reference to an existing snapshot from the previous
state in order to create the new state, and setting the respective action as the creator of
the new state (link stateCreator in Figure 7.6). States are composed of objects and links
created or modified by the creator action of the corresponding state, and those objects
and links from the previous state which were unaffected by the creator action of the new
state. This way, we have a distinct set of states with objects and links existing at the
specific point in time of execution, representing state transitions of the system under
test. Furthermore, the chronological order between states is recorded (association ends
successor and predecessor in Figure 7.6). Again, as described earlier, having the states
created before the actual evaluation of the state expressions and OCL constraints, rather
than fetching this information directly from the execution trace produced by the virtual
machine during test evaluation, makes implementation of the evaluation less complex
and more efficient.

Once the sequence trace is generated, the evaluation of the time frames of state assertions
is performed in the following way. If the start or end point of the time frame is specified
by referring to actions within the activity under test (cf. Figure 6.1), then the set of
states which are to be selected for evaluation is composed of the state created by the
action associated with the after operator and all subsequent states until the last state
before the execution of the action associated with the until operator.

On the other hand, if the start and end points of the time frame are specified by using
OCL expressions, then the set of states which are to be selected for evaluation is composed
of those states that exist after the first state in the state sequence in which the specified
OCL constraint for the start point evaluates to true, and all subsequent states until the
state in which the specified OCL constraint for the end point evaluates to true for the
first time in the state sequence.

In the second phase, state expressions defined within the state assertion are evaluated
on the selected set of states. As described in Section 6.1.5, a state expression might be
specified for a single property or the whole object provided as input or output of an
action within the activity under test. In case a state expressions for a single property of
an object is specified, the object snapshots are retrieved from each state from a selected
set of states, and the value of the specified property of each snapshot is asserted against
the specified expected value. In case a state expression for the whole object is specified,
each property value of relevant snapshots, retrieved from the selected set of states, is
compared to a corresponding property value of the specified expected object from a test
scenario.

The real advantage of the sequence trace, compare to using the execution trace directly,
comes with OCL constraint evaluation. If an OCL expression was specified in the body of
a state assertion, the OCL constraint is evaluated against each state from the selected set
of states by the time frame. As opposed to the state expressions from the test language,
which are specified for a single object produced or modified during the execution of an
activity under test, the OCL constraints are usually specified as a property of the whole
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system state at certain point in time of its execution. Therefore, it usually includes
computing all existing object and link snapshots comprising the state under evaluation,
and validation of the specified OCL constraint on the state. Having the sequence trace
computed before the actual evaluation of the OCL constraints, simplifies the evaluation
process. The implementation of evaluating the OCL expressions in both the time frames,
as well as in the body of a state assertion, is described in the following section.

7.5 OCL Expressions
For integrating OCL expression language with our testing framework we have used
the DresdenOCL API (application programming interface) [FJS+11]. DresdenOCL
provides an integration process of OCL with different modeling languages based on
EMF framework, built around small specifications out of which all necessary artifacts for
editing and evaluating OCL expressions can be created.

The integration process is composed of five phases. During the first phase, called
metamodel integration, the metamodels of OCL and the modeling language are combined.
The resulting metamodel is used by EMF code generator to generate Java classes for
the resulting metamodel. In the following phase, called concrete syntax integration, the
textual syntax of both languages is integrated and used for the generation of a textual
parser and editor. The first two phases are only required for embedding OCL definitions
into the modeling language.

As we are using the external integration of the OCL with our test specification language,
that is, the OCL expressions are specified outside of the test specification language, these
two steps are not used. Third step is metamodel adaptation, required for both internal
and external integration, and consists of creation of a pivot model representation of
concepts within the modeling language, enabling parsing of OCL constraints that refer
to the elements of the language.

Fourth step, called static semantics integration, results in static semantics analysis for
integrated languages from step two. Fourth step is optional, as the metamodel adaptation
from step three is sufficient for external OCL definitions, to allow semantic analysis
of constraints. In the last step, called dynamic semantics integration, infrastructure
for evaluation of integrated OCL constraints is provided. The excerpt of the package
architecture1 of DresdenOCL API is depicted in Figure 7.7.

As can be seen in Figure 7.7, at the top of the DresdenOCL architecture is an API
providing a facade for access to the DresdenOCL tools, such as OCL parser and interpreter,
code generation and model browsing, from other plugins within the EMF framework. On
the next level below the API are the tools, such as OCL parser and OCL interpreter, as
depicted in the figure.

Below the tools level is the OCL level. This level consists of libraries describing the
OCL syntax and semantics for use by the tools at the higher level. As depicted in

1taken from http://emftext.org/index.php/DresdenOCL:Documentation
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Figure 7.7: Excerpt of the package architecture of DresdenOCL
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Figure 7.7, there are three packages defined at this level. The Essential OCL package
contains definition of the abstract syntax of the OCL necessary for both interpretation
and evaluation of the OCL expressions by the parser and interpreter at the tools level.
The OCL Standard Library Model package contains models of all standard operations
which can be used in OCL expressions, as defined by the OCL standard (cf. [Obj12]). The
last package OCL Standard Library Semantics contains implementation of the operations
from the OCL Standard Library Model package, used by the OCL interpreter at the tools
level.

Finally, at the variability level of the DresdenOCL architecture, the Pivot model and
the Instance Types model are defined. The pivot model is composed of adapter types for
each type from the metamodel of the language. It is used to abstract from the original
metamodel of the language on which the OCL constraints are defined, and is used during
the OCL constraint parsing phase. The instance types model is used for adapting the
model instance elements, used during the interpretation of the OCL constraints on a
model instance.

7.5.1 Metamodel Adaptation and OCL Interpretation

During the metamodel adaptation phase, for each class from the metamodel of fUML
a corresponding adapter class is generated. The fUML metamodel and an instance of
it is represented by corresponding interfaces in the DresdenAPI, and can be retrieved
by using a so called model and instance provider utility classes, respectively. These two
providers are created by DresdenOCL during the generation of the metamodel adapters.

For example, an fUML model is represented by an object of FUMLModel class, generated
by the DresdenOCL framework during model adaptation. Furthermore, for each concept
from the fUML metamodel, such as for example Class_ or Association concepts, a
corresponding adaptation class (i.e., FUMLClass and FUMLAssociation, respectively) is
generated.

By using a facade utility class from the API, first a metamodel adapter is retrieved,
containing a model instance provider utility. The model instance provider can be used for
loading an existing instance of the adapted metamodel, or for creating it during run-time.

Model instance provider makes use of several special classes, most notably FUMLMod-
elInstance and FUMLModelInstanceObject, representing the instances of an fUML model
and its elements, respectively. For creating and populating an instance of an fUML
model, the class FUMLModelInstanceFactory is used. This class provides functionality
for creating instances of fUML models, instances of model elements such as objects and
links, and instances of primitive types used within the model. Finally, the FUMLMod-
elInstanceProvider class can be used for creating an empty instance of fUML model
adaptation, or loading a predefined instance from a resource such as an XML serialization
of an fUML model.

At the beginning of evaluation of an OCL constraint, based on the specified time frame
from the state assertion, a corresponding state is retrieved from the sequence trace (cf.
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Figure 7.6). For this state, a corresponding adapter instance, representing a single system
state, is created. This model instance adapter is populated with adapter instances for
each object and link from the original state retrieved from sequence trace. Once the
model instance of a state is created, it is stored so it can be reused for evaluation of other
OCL constraints in the test suite.

After creating the model instance of a state, the evaluation of the OCL constraint itself
can be performed. For this step an OCL interpreter instance is initialized for a given
model instance representing the state, by using the generated adaptation API. Finally,
the OCL interpreter takes as input the OCL constraint to be evaluated, and the model
instance representing the state in which the OCL constraint is to be evaluated, and finally
returns a boolean value indicating the result of the OCL constraint evaluation.

In case a context object was defined for the OCL constraint (cf. Section 6.1.5), the object
is retrieved from the model instance representing the state and the OCL constraint is
evaluated on it. However, if a context object was not defined, then the OCL constraint is
evaluated for the complete model instance representing the state (cf. Section 6.1.5).

As described in the previous chapter, an OCL constraint can be used in a state assertion
to define a start or end point of a time frame. In this case, the specified OCL constraint
is evaluated on each model instance adapter of each state from the sequence trace in a
chronological order, and the first state in which the constraint is evaluated to true is
taken as the start or end point of the specified time frame.

For evaluating the OCL expressions, each primitive operation, such as for instance
summation of numbers, has to be implemented for each primitive type supported in
the adapted modeling language. As we are defining test cases for fUML models, the
adaptation is done for each primitive type in fUML, such as Integer, String, and Boolean.
For instance, for the string type operations such as string concatenation or extraction of
a substring, an appropriate implementation has to be provided in our testing framework.
Further details on the architecture of the DresdenOCL and implementation of the OCL
parser and interpreter are given on the framework website2 .

7.6 Test Results

In order to provide useful feedback to the user of the testing framework, we have
implemented a model of the test results produced from an execution of a specified test
suite. The model is presented in Figure 7.8. In this figure, the concepts from the testing
language are filled with dots, while the fUML concepts are grayed out, in order to
distinguish them from the concepts of the results model.

Main component of the test results model is the TestSuiteResult. It is created for an
executed test suite, and contains information about outcome of each defined test case
within it (association testCaseResults). For each test case from an executed test suite, an

2http://emftext.org/index.php/DresdenOCL
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Figure 7.8: Test results model
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instance of TestCaseResult is created. It contains the name of the test case (attribute
testName), a reference to the ActivityExecution representing the execution of the activity
under test in the execution trace (association activityUT), and input values set for
each input parameter of the activity under test (association inputValues). Test case
result contains a flag executed indicating whether the test case was executed. If an error
occurred and the test case was not able to execute, message containing information about
the error is recorded (attribute error).

For each assertion defined within a test case, an instance of AssertionResult is created.
Assertion result records the outcome of an assertion evaluation (attribute result). If the
assertion could not be evaluated, a flag hasError is set to true, and the message about
the error is recorded (attribute error).

If an order assertion has been evaluated, an instance of OrderAssertionResult is created.
Specification of order which has been evaluated is recorded by the association orderSpeci-
fication. If any suborder specification has been defined, a list of results for each suborder
is recorded (association subResults). For each checked path which failed the validation, a
result (class PathCheckResult) is recorded. This result is used for any counter example
of a failing assertion, if found (cf. Section 7.3). The number of failing paths found and
added to the assertion result is constrained to a predefined value.

If a state assertion has been evaluated, an instance of StateAssertionResult is created.
For each state expression defined within the state assertion, a corresponding StateEx-
pressionResult instance is created. StateExpressionResult contains information about
outcome of the evaluation, and the expected and actual values asserted. Furthermore,
for each constraint invoked within the state assertion, an instance of ConstraintResult is
created. ConstraintResult contains information about the constraint which was evaluated,
as well as the outcome of the evaluation.

7.7 ATM Example Revisited

In Listing 7.1 results of running the test case from Listing 6.14 from Chapter 6 are
presented.

Listing 7.1: Result of the Account.MakeWithdrawal activity test case with exceeding
amount

1 TestCase: makeWithdrawalFail
2 Activity : Account.MakeWithdrawal
3 Activity context object : accountTD
4 Activity input : amount = 150;
5

6 State assertion : always after action successFalse
7 Constraints checked : 2
8 Constraints failed : 1
9 Constraint : NoWithdrawalsCreated
10 State expressions checked : 2
11 State expressions failed : 0
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Looking at the Listing 7.1 in lines 8-9, we see that the evaluation of the OCL constraint
NoWithdrawalsCreated, implementing the functional requirement 2c from Chapter 6 for
the Account.MakeWithdrawal activity, has failed. If we look closely to the activity under
test (cf. Figure 5.2), the action createNewWithdrawal has no incoming edges, and thus
will always be executed, regardless of the input or the initial state of the activity under
test.

To fix this defect, it is necessary to introduce an additional control flow from the action
setBalance to the action createNewWithdrawal, ensuring that the new withdrawal instance
is only created when the amount provided does not exceed the balance of the account.

In Listing 7.2 results of running the test case from Listing 6.12 from Chapter 6 are
presented.

Listing 7.2: Result of the Account.MakeWithdrawal activity test case with non-exceeding
amount

1 TestCase : makeWithdrawalSuccess
2 Activity : Account.MakeWithdrawal
3 Activity context object : accountTD
4 Activity input : amount = 25;
5 Order specification : ∗ , greaterOrEquals, ∗ , setBalance, ∗ , successTrue;
6 Validation result : SUCCESS
7

8 State assertion : always after action successTrue
9 Constraints checked : 1
10 Constraints failed : 0
11 State expressions checked : 2
12 State expressions failed : 1
13 Expression : context.result : :balance = 75 / Actual was: −75.0

Looking at the Listing 7.2 in lines 12-13, we see that the evaluation of the property state
expression checking the balance of the account has failed. Based on the expected and
the real value of the balance, it is visible that there is a defect in the activity concerning
calculation of the new balance during the withdrawal process. If we look closely to the
activity under test (cf. Figure 5.2), the object flows providing input for the action minus
are wrong, i.e., the object flow pointing to the pin X should actually point to the pin Y
and the object flow pointing to the pin Y should actually point to the pin X.

To fix this defect, it is necessary to switch the object flows for the action minus in the
correct way. The corrected version of the Account.MakeWithdrawal activity is presented
in Figure 7.9.

In Listings 7.3 and 7.4, results of running the test cases from Listings 6.16 and 6.17 are
presented, respectively.
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Figure 7.9: The corrected version of the Account.MakeWithdrawal activity

Listing 7.3: Result of the ATM.Withdraw activity test case with incorrect pin and
exceeding amount

1 TestCase: atmWithdrawalFail
2 Activity : ATM.Withdraw
3 Activity context object : atmTD
4 Activity input : card = cardTD; pin = 1986; amount = 150;
5

6 Order specification : ∗ , greaterOrEquals, ∗ , successFalse;
7 Validation result : SUCCESS
8

9 State assertion : always after action successFalse
10 Constraints checked : 4
11 Constraints failed : 2
12 Constraint : TransactionEnded
13 Constraint : TransactionRecorded
14 State expressions checked : 2
15 State expressions failed : 0

Listing 7.4: Result of the ATM.Withdraw activity test case with correct pin and non-
exceeding amount

1 TestCase: atmWithdrawalSuccess
2 Activity : ATM.Withdraw
3 Activity context object : atmTD
4 Activity input : card = cardTD; pin = 1985; amount = 25;
5

6 State assertion : always after action makeWithdrawal
7 Constraints checked : 4
8 Constraints failed : 2
9 Constraint : TransactionEnded
10 Constraint : TransactionRecorded
11 State expressions checked : 2
12 State expressions failed : 0
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Figure 7.10: The corrected version of the ATM.Withdraw activity

As can be seen in Listings 7.3 and 7.4 in lines 8-10, two constraints checking whether
the current transaction was removed from the ATM and added to the list of completed
transactions of the ATM have failed. As these two operations are perform by the action
endTransaction in the activity under test, an assumption could be made that something
went wrong with execution of this action. If we look closely at the activity diagram in
Listing 5.3, there are two incoming control flow edges into the action endTransaction.

As described in Chapter 4, an action within an fUML activity can be executed only if
it has received control and data tokens on all of its incoming edges. In the Withdraw
activity from Figure 5.3, the action endTransaction can receive a control token from
either the action successFalse or the action makeWithdrawal but not from both, during
an execution of the activity, and therefore can never be executed. In order to resolve
this fault, it is necessary to introduce a merge node before action endTransaction, so
that when a control token comes from either successFalse or makeWithdrawal, it can be
executed. The corrected version of the ATM.Withdraw activity is presented in Figure
7.10.

For installation instructions of our testing framework in the EMF environment please
refer to Appendix A.
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CHAPTER 8
Evaluation

To evaluate the ease of use and usefulness of our testing framework, we have performed
a user study with eleven participants. In the following section, we present setup of the
user study including a description of the tasks that the participants had to complete,
the results of the user study consisting in our observations of the participants during the
execution of the tasks, and lessons learned from the user study. Finally, we present a
brief comparison of test cases written in our test specification language and using JUnit
framework at the code level, accessing the execution trace directly. We have executed
the tests and compared the execution times in order to evaluate the overhead introduced
by the test specification language interpreter.

8.1 User Study
The target group of our testing framework are practitioners in the MDE domain using
UML activity diagrams to define the behavior of systems. Thus, in order to obtain
relevant results, our selection of participants was based on their background in UML and
unit testing. A background in fUML was desirable but not mandatory for participants of
the user study.

The user study consisted of four steps: (i) an introduction to fUML and our testing
framework, (ii) a questionnaire regarding the skill level of the participants in using
languages relevant for the user study, (iii) two tasks that had to be completed with our
testing framework, and (iv) an opinion questionnaire where the participants rated the
ease of use and usefulness of the testing framework for completing the given tasks. The
user study was done with each participant separately.

At the beginning of the user study, the participant was given a quick introduction
into fUML and our testing framework. This introduction included the most important
concepts of fUML comprising fUML’s class concepts, activity concepts, and action
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Language no experience beginner average expert
UML Class Diagrams 5 6
UML Activity Diagrams 8 3
UML Action Language 3 3 3 2
OCL 1 5 2 3
Unit Testing (e.g., JUnit) 1 3 6 1

Table 8.1: Results of the skills questionnaire

language. Furthermore, the introduction contained a simple exemplary fUML model,
which was used to introduce the main concepts of our test specification language.

After the introduction, the participant was given a questionnaire for assessing his/her
knowledge of UML, OCL, and unit testing. Among the participants we had post doctoral,
doctoral, and master students with different levels of knowledge of these languages. As
can be seen in Table 8.1, most of the participants had a good background in UML
being slightly more experienced with class diagrams than with activity diagrams. The
knowledge of the UML action language was balanced from having no experience to being
an expert. Most of the participants declared their experience with OCL at the beginner
level, while unit testing knowledge was declared as average by most of the participants.

After completing the skill questionnaire, the participant was asked to complete two
tasks with our testing framework. The aim of the first task was to slowly introduce the
participant into our test specification language as well as to evaluate its ease of use. In
the first task, the participant had to define a test suite implementing given requirements
for two given and correct UML activity diagrams. To perform this task, the participant
used the testing framework, including the editor for the test specification language and
the test interpreter for executing the test cases and providing the test results as console
output.

As first task, the participant needed to specify a test scenario with an object to be
provided as input to the activity under test, and two test cases with two different order
assertions and two different state assertions. The activity was composed of several simple
fUML actions, such as Value Specification Action and Read Structural Value Action.

For the second activity, the participant needed to specify a test scenario with several
objects and links, a context object for the activity under test, two state assertions asserting
the state at the beginning and at the end of the activity, and one OCL expression for
checking the state of the object provided as output of the activity. The activity was
composed of several simple fUML actions, and one Expansion Region for iterating over a
set of objects.

As the second task, the participant was given a defective activity diagram, two test cases
testing the activity diagram, and the test results of these test cases. Based on the test
cases and test results, the participant had to locate the defects and suggest corrections.
With the second task, we aimed at evaluating the usefulness of test cases and test results
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Figure 8.1: Structure and logic layer of the online Web Shop application

with regard to detecting and locating defects in UML activity diagrams. The activity, as
in the first task, was composed of several simple fUML actions.

Finally, at the end of the user study, an opinion questionnaire was given to the participants,
where each participant rated his/her subjective opinion on the ease of use and usefulness
of our testing framework.

8.1.1 Provided Material

For performing the user study, we have used an example of an online Web Shop application,
whose data and logic layer are presented in Figure 8.1. The Web Shop manages several
kinds of entities. A user (class Customer) can log in to the shop, browse products (class
Product), and add items (classes Item and CartItem) to his/her cart (class Cart). Once
the user completes selection of the products, by adding items into the cart, he/she can
create an order (class Order), composed of order lines (class OrderLine) created for each
item in the cart.

The main component of the service layer is the ApplicationController. It is used to create
a session for a given user, find items, add items into a cart, remove items from a cart,
and confirm orders. For implementing this functionality, the ApplicationController uses
services provided by the CustomerService, the CatalogService, and the OrderService.
Activities implementing the behavior of each relevant operation of the service layer were
given in each task.

Task 1. Writing the Test Cases: In Figure 8.2 the activity CheckCredentials specifying
the process of checking credentials of an existing user in the system is presented. This
activity is responsible for checking the credentials of a customer when the customer logs
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Figure 8.2: Activity CheckCredentials of the CustomerService class

into the Web Shop. For a given customer, it is checked whether the provided login and
password correspond to the login and password associated with the customer. If this is
the case, true is returned. In case a wrong login or password was provided, a false value
is provided as output of the activity.

The participants were asked to specify a test suite for the activity CheckCredentials, that
will:

1. Check if given that the correct login and password of an existing customer are
provided as input to the activity

• the actions loginEquals and passwordEquals are executed.

• a true value is provided as output of the activity.

2. Check if given that the incorrect password is provided as input to the activity

• the actions passwordEquals and passwordFalse are executed.

• a false value is provided as output of the activity.

An example of a correct implementation of a test suite specifying these requirements is
presented in Listing 8.1.
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Listing 8.1: An example test suite implementing requirements for the CheckCredentials
activity

1 scenario TestData[
2 object customerTD: Customer{
3 login = ’user ’ ;
4 password = ’pass ’ ;
5 }
6 ]
7 test correctPass activity CheckCredentials(customer = TestData.customerTD,
8 login = ’user ’ , password = ’pass ’ ){
9 assertOrder ∗ , loginEquals , ∗ , passwordEquals , ∗;
10 finally { corresponds = true ; }
11 }
12 test incorrectPass activity CheckCredentials(customer = TestData.customerTD,
13 login = ’user ’ , password = ’wrong−pass ’ ){
14 assertOrder ∗ , passwordEquals , ∗ , passwordFalse , ∗;
15 finally { corresponds = false ; }
16 }

In this listing, the presented test suite is composed of one test scenario and two test case.
The test scenario, presented in lines 1-6, contains an object of Customer class, with some
arbitrary values of the properties login and password. This object is then passed as input
into the CheckCredentials activity in the test cases in lines 7-8 and 12-13.

The first test case implements the first part of the requirements, specifying that if
the correct login and password are provided as input, the actions loginEquals and
passwordEquals are executed (line 9 in Listing 8.1), and that a true value is provided as
output of the activity (line 10 in Listing 8.1).

The second test case implements the second part of the requirements, specifying that if
an incorrect password (value wrong-pass in line 13 of Listing 8.1) is provided as input,
actions passwordEquals and passwordFalse are executed (line 14 in Listing 8.1), and that
a false value is provided as output of the activity (line 15 in Listing 8.1).

In Figure 8.3 the activity ConfirmOrder specifying the process of creating an order is
presented. The activity retrieves the cart of a given customer, creates a new order, adds
an order line into the order for each cart item from the cart, and finally destroys all cart
items as well as the cart itself. The order is provided as output of the activity.

The participants were asked to define a scenario consisting of the following objects and
links:

• One instance of class OrderService.
• Two instances of class Product with attribute ’name’ set arbitrarily.
• Two instances of class Item with different unit costs, associated with the given

products.
• Two instances of the class CartItem with different quantities, associated with the

given items.
• One instance of the class Cart, associated with the CartItem instances.
• One instance of the class Customer associated with the Cart instance.
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Figure 8.3: Activity ConfirmOrder of the OrderService class

Once the scenario was specified, rest of the task was to write a test suite that will:

1. Check that the order instance provided as output of the activity is associated with
the customer provided as input.

2. Check that the cart has been removed from the customer by the activity.
3. Check that the number of order lines in the newly created order is equal to the

number of cart items that were contained by the cart of the provided customer.

Correct implementation of the test scenario is given in Listing 8.2.

Listing 8.2: An example of the test scenario implementing specified requirements for the
ConfirmOrder activity

1 scenario TestData[
2 object orderService: OrderService{}
3

4 object productOne: Product{ name = ’product−A’ ; }
5 object productTwo: Product{ name = ’product−B’ ; }
6 object itemOne: Item{ unitCost = 5; }
7 object itemTwo: Item{ unitCost = 10; }
8 link item_product{ source item = itemOne; target product = productOne; }
9 link item_product{ source item = itemTwo; target product = productTwo;}
10

11 object cartItemOne: CartItem{ quantity = 1; }
12 object cartItemTwo: CartItem{ quantity = 5; }
13 link cartItem_item{ source cartItem = cartItemOne; target item = itemOne; }
14 link cartItem_item{ source cartItem = cartItemTwo; target item = itemTwo; }
15

16 object aCart: Cart{}
17 link cart_cartItem{ source cart = aCart; target cartItem = itemOne; }
18 link cart_cartItem{ source cart = aCart; target cartItem = itemTwo; }
19

20 object aCustomer: Customer{}
21 link cart_customer{ source customer = aCustomer; target cart = aCart; }
22 ]
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An example of the test suite correctly implementing the requirements for the ConfirmOrder
activity is presented in Listing 8.3.

Listing 8.3: An example of the test suite implementing specified requirements for the
ConfirmOrder activity

1 test confirmOrder activity ConfirmOrder(customer = TestData.aCustomer)
2 on TestData.orderService {
3 initialize TestData;
4 assertState always after action setCustomer {
5 setCustomer . result : : customer = TestData.aCustomer;
6 }
7 finally {
8 customer : : cart = null ;
9 check ’orderLineCheckTwoItems’ on order ;
10 }
11 }

The test suite presented in Listing 8.3 is composed of a single test case, where an object of
Customer class from test scenario given in Listing 8.2 is provided as input of the activity
ConfirmOrder. In line 3, an initialize statement is specified which instructs the testing
framework to load all defined objects and links from the scenario as the initial state of
the system under test.The first requirement of the ConfirmOrder activity specifying that
the order provided as output of the activity should contain the customer object which
was provided as input is specified in lines 4-6 in Listing 8.3.

The second requirement, stating that the cart has been removed from the customer
upon activity execution, is specified in line 8 in Listing 8.3. Finally, the last requirement
stating that the number of order lines of the newly created order should be equal to the
number of the cart items that were contained by the cart, is specified in line 9 in Listing
8.3 as an OCL constraint. The OCL constraint itself, invoked in Listing 8.3 in line 9, is
presented in Listing 8.4.

Listing 8.4: OCL constraint for testing the ConfirmOrder activity
1 context Order
2 inv orderLineCheckTwoItems: orderLines −> size() = 2

Task 2. Reading Test Cases and Results: In Figure 8.4 the activity specifying the
process of retrieving a cart of a given customer, is presented. If a given customer is
associated with an existing cart, that cart is provided as output of the activity. Otherwise,
a new cart object is created, set as cart of the given customer, and provided as output of
the activity.

Listings 8.5 and 8.6 show the test cases for evaluating the correctness of the GetCart
activity. In Listings 8.7 and 8.8 the test results of the given test cases are shown indicating
that the activity is not correct. Based on the test cases and test case results, the task is
to suggest corrections of the activity, such that the tests will be executed successfully.
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Figure 8.4: Activity GetCart of the OrderService class

Listing 8.5: Test scenario
1 scenario OrderServiceScenario[
2 object customer: Customer {login=’customer ’ ; password=’pass ’ ;}
3 ]
4 scenario OrderServiceScenario2[
5 object customer: Customer{login=’customer ’ ; password=’pass ’ ;}
6 object cart: Cart{}
7 link cart_customer{
8 source customer=OrderServiceScenario2.customer;
9 target cart=OrderServiceScenario2.cart;
10 }
11 ]

Listing 8.6: Test cases
1 test getCartTest activity OrderService .GetCart(customer=OrderServiceScenario.customer){
2 assertOrder ∗ , getCart , ∗ , l i stSize , ∗ , sizeEquals , cartExistsDecision ,
3 newCart , setCart , getCartForOutput;
4 assertState immediately after action getCart {
5 getCart . result = null ;
6 }
7 finally {
8 GetCart. cart != null ;
9 }
10 }
11 test getCartTest2 activity OrderService .GetCart(customer=OrderServiceScenario2.customer){
12 initialize OrderServiceScenario2;
13 assertOrder ∗ , getCart , ∗ , l i stSize , ∗ , sizeEquals ,
14 cartExistsDecision , getCartForOutput;
15 assertState immediately after action getCart{
16 getCart . result = OrderServiceScenario2.cart;
17 }
18 finally {
19 GetCart. cart = OrderServiceScenario2.cart;
20 }
21 }
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Listing 8.7: Test case 1 results report
1 Test Suite Run: 29−09−2014 15:39:41
2 TestCase : getCartTest
3 Activity : OrderService.GetCart
4 Activity input : OrderService.customer = OrderServiceScenario.customer;
5 Order specification : ∗ , getCart, ∗ , listSize, ∗ , sizeEquals, cartExistsDecision,
6 newCart, setCart, getCartForOutput
7 Number of paths checked : 4
8 Number of invalid paths : 4
9 Failed path: customerFork, listSizeValue, getCart, listSize, sizeEquals, cartExistsDecision
10 Validation result : FAIL
11

12 State assertion : always after action sizeEquals
13 State expressions checked : 1
14 State expressions failed : 1
15 Expression : GetCart.cart != null / Actual was: NULL

Listing 8.8: Test case 2 results report
1 TestCase : getCartTest2
2 Activity : OrderService.GetCart
3 Activity input : OrderService.customer = OrderServiceScenario.customer;
4 Order specification : ∗ , getCart, ∗ , listSize, ∗ , sizeEquals,
5 cartExistsDecision, getCartForOutput
6 Number of paths checked : 4
7 Number of invalid paths : 4
8 Failed path: customerFork, listSizeValue, getCart, listSize, sizeEquals,
9 cartExistsDecision, newCart, setCart
10 Validation result : FAIL
11

12 State assertion : always after action setCart
13 State expressions checked : 1
14 State expressions failed : 1
15 Expression : GetCart.cart != null / Actual was: NULL

In this task, two defects have been introduced. The first defect are incorrectly set
guards of the outgoing edges of the decision node, leading to execution of wrong actions
depending on whether provided user is associated with a cart or not. The second defect
renders the action getCartForOutput non-executable, as there is more than one incoming
edge to this action. Both defects can be detected from the failing order assertion, and
the examples of paths which do not comply with the specified order. It can be seen that
the activity executes until the action getCartForOutput is reached, but the action itself
is not being executed. Furthermore, failing state assertions of the activity output should
provide further indication of action getCartForOutput not being executed.

In order to correct this defect, a merge node should be introduced before the getCart-
ForOutput action. The corrected version of the activity from Figure 8.4 is presented in
Figure 8.5.

8.1.2 Results

We observed the participants during performing the tasks given in order to find out
how quickly they learn to specify test cases for UML activity diagrams using our test
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Figure 8.5: Corrected version of the activity OrderService.GetCart

specification language, i.e., how easy the test specification language is to use, and whether
the test results are useful for detecting and correcting defects in UML activity diagrams.
We made the following observations for the first task, where the participants had to
define test cases for testing predefined requirements on a given activity diagram.

Test scenarios. Most of the participants had problems to understand the purpose
of test scenarios, because they tried to define the test scenarios before thinking about
and writing the actual test cases. However, after having defined the first test case, the
participants understood how to use test scenarios for providing input to the activity
under test. For instance, some of the participants tried to specify an object within the
test case itself, to be provided as input to the activity.

Order assertions. Another frequently observed problem encountered by the participants
was to correctly specify order assertions. Several participants specified the expected order
of activity nodes incorrectly, as they forgot to use jokers for allowing arbitrary nodes to be
executed between two nodes of interest. However, after running the order assertion and
reading the failing test result, all participants were able to correct the order assertion. For
instance, a participant specified the order assertion from requirement 1 in the first part of
the task 1 of the user study as assertOrder loginEquals, passwordEquals. Furthermore,
some participants were not sure whether they should specify the requirement as a one or
two assertions, i.e., assertOrder *,loginEquals, * and assertOrder *, passwordEquals,
*, as opposed to assertOrder *, loginEquals, *, passwordEquals, *.

State assertions. Another recurring issue was related with specifying state assertions,
in particular, with understanding the relation between temporal expressions and state
expressions. More precisely, a large number of participants specified for each state
expression an own state assertion with its own temporal expression, even though the
temporal expressions were semantically and syntactically identical (i.e., only one state
assertion would have been sufficient). For instance, the requirement 1 and 2 in the
second part of the task 1 could have been specified as a single finally state assertion with
two state expressions within it implementing both requirements. However, many of the
participants were specifying additional finally state assertions for each state expression
implementing a concrete requirement.

116



8.1. User Study

OCL expressions. Several participants had issues with specifying the OCL expression
required for one of the test cases. However, this was due to the fact that these participants
had little experience with OCL. Connecting the OCL expression with a test case was not
an issue for any of the participants.

As can be concluded from these observations, the participants did not experience major
difficulties to implement the requirements of the tasks given, and were able to quickly
grasp the concepts of the test specification language.

In the second task, the participants needed to read given test cases for a defective UML
activity diagram as well as the test results, detect the defects, and suggest corrections
of the activity diagram. Thereby, two defects were introduced into the UML activity
diagram. One defect consisted in wrong guards for a decision node, which led to the
execution of a wrong path. This defect was detectable from the test result of a failing
order assertion. The second defect consisted in a missing merge node, which led to an
activity node not being executed. This defect was detectable from the test results of a
failing order assertion and a failing state assertion. We made the following observations
for this task.

Understanding test cases. The participants had no problems in understanding the
given test cases and their purpose. They were able to describe the requirements tested
by the test cases.

Understanding test results. Out of the eleven participants, five were able to locate
both defects, three were able to locate the first defect only, and three were not able
to locate any of the defects. Thereby, we observed that most of the participants had
problems in understanding the test result of the defined order assertions. Indeed, several
participants reported that it is hard to grasp the meaning of the test result on the first
look. However, after having a detailed look on the counter-examples given by the test
result (i.e., execution orders of activity nodes invalid with respect to the defined order
assertions), most of the participants were able to locate the first defect. For the second
defect, knowledge about the necessity of merge nodes for merging alternative execution
paths in UML activities was required. Thus, the reason why six participants were not
able to detect this defect is their lack of knowledge about the execution semantics of
UML activities as defined by the fUML standard.

At the end of the study, the participants had to fill in an opinion questionnaire, where
they had to rate how difficult it was for them to accomplish the different tasks. As can be
seen from the results of this questionnaire depicted in Table 8.2, our reported observations
correspond to the ratings of the participants. According to the participants, it was easy
to read and understand the UML class and activity diagrams that were subject of both
tasks. Furthermore, it was easy to write test cases for given requirements as part of
the first task as well as to read and understand the test cases given in the second task.
However, reading and understanding the test results as well as locating and correcting
defects of activity diagrams based on these results was more difficult for the participants.
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Task very easy easy medium hard very hard
Read class diagrams 7 4
Read activity diagrams 3 7 1
Write test cases 8 3
Read test cases 3 4 2 2
Read test results 3 4 2 2
Correct activity diagrams 1 3 2 2 3

Table 8.2: Results of the opinion questionnaire

8.1.3 Lessons Learned

For completing the first task, the participants needed around one hour in average, while
performing the second task took around twenty minutes in average. Furthermore, during
the first task, the participants needed less and less time for writing new test cases. These
time differences were a result of the fact that with the first task the participants were
introduced into the concepts of our test specification language and were learning how to
use the different concepts correctly for realizing test cases.

After each written test, the participants were making less mistakes in realizing the next
one. By the time they got to the second task, all participants had a clear understanding
about all the concepts provided by the test specification language. From this observation,
we conclude that our test specification language has a gentle learning curve.

One of the possible improvements that we discovered during the user study is that some
concepts of the test specification language, such as the specification of links in test
scenarios, could be improved. Furthermore, additional validations by the editor would
significantly improve the specification of test cases, as it prevents defects in the test cases
themselves.

Although most of the participants were experienced with UML activity diagrams and
fUML, many had a lack of knowledge concerning details of the execution semantics of
UML activity diagrams. Due to this lack of knowledge, many of the participants had
issues with detecting and correcting defects introduced into activity diagrams.

The visualization of test results is crucial for making them understandable and useful
for locating defects. Providing more effective means for visualizing test results is part of
possible future work. For instance, it would be interesting to investigate the integration
of the visualization of test results with UML modeling editors, such that the test results
can be presented on the tested activity diagrams themselves. Furthermore, presenting
the states of a system caused by the execution of an activity under test in the form of
UML object diagrams could be useful to users, as it may provide more insight into the
cause of failing test cases.

118



8.2. Comparison with JUnit Tests

8.2 Comparison with JUnit Tests
In order to compare the complexity of specifying a set of test cases at the model level
using our test specification language, as opposed to specifying the same set of test
cases at the code level using the JUnit testing framework, as well as to evaluate the
performance overhead effecting the execution times induced by our test interpreter, we
have implemented a set of test cases using JUnit framework [MH03] at the code level,
and measured their execution times. The test cases specified same requirements from the
user study, and were specified using the JUnit testing framework by directly invoking
assertions on the execution trace.

Regarding the functional requirements, only difference between the test cases in JUnit and
corresponding test cases in the test specification language, was that we haven’t included
the evaluation of order assertions considering parallelism, but rather just a single default
execution recorded in the trace by the virtual machine. Considering the parallelism in
JUnit test cases would require a lot of additional coding, and to our knowledge would
not contribute to the evaluation, as the same mechanism would have to be used in both
cases.

The user study was implemented by three classes. A utility class providing means for
setting up the scenarios, executing the activity under test, and retrieving objects and
links produced by actions and activity had around 450 lines of code. If it was to include
evaluation of order assertions considering the parallelism, it would grow substantially,
thus the complexity reduction by using the testing framework at the model level is already
quite significant.

Additionally, two classes implementing JUnit test cases for the first and second task
from the user study were defined. In the first task, as described in previous sections,
the functionality for checking the credentials and confirming an order in the system was
under test. This task was implemented in JUnit as three test cases, with a bit less than
200 lines of code.

In the second task, as described in previous sections, the functionality for retrieving a
cart for a given customer was under test. This task was implemented in JUnit as two
test cases, with around 150 lines of code.

On the other hand, the test cases defined in the test specification language were around
80 lines of code long in total, leading to the significant reduction of their complexity.
Moreover, the test cases specified at the model level are much more easy to read and
understand, as they do not expose the test designer to the intricacies of the inner workings
of the execution engine, as well as the trace model.

By reducing the size of the test cases, and abstracting the intricacies of the fUML virtual
machine and the execution trace from the test designer, the maintainability of the test
cases is improved. As the test cases are at the model level, and the assertions are more
concise and directly refer to model elements of the system under test, they can be more
easily changed when new requirements arise, or the models under test are changed.
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Furthermore, we have executed the defined JUnit and test language test cases, and
compared their execution times. The comparison of number of lines of code, as well as
the running times between JUnit and testing framework test cases are given in Table 8.3.

Lines of Code
JUnit Testing Framework

Utility classes 450 none
Task 1 200 23
Task 2 150 60

Running Times (ms)
JUnit Testing Framework

Setup 3773 6547
Check Credentials Correct 78 76
Check Credentials Incorrect 16 8
Confirm Order 52 43
Get Cart (no cart) 78 72
Get Cart (with cart) 19 12

Table 8.3: Comparison of JUnit and the Testing Framework test cases
As can be seen from the Table 8.3, running times of test cases in JUnit and the testing
framework differ slightly. However, the time required to setup the test cases and models in
JUnit and testing framework differ significantly. This setup time in the testing framework
is composed of time required for converting the UML model under test into the fUML,
converting and loading test scenarios into the VM, and converting the test cases from the
test language into an internal representation. In case of JUnit, the setup time consists
only of converting UML model under test into the fUML, as the test cases are specified
directly in Java programming language.
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CHAPTER 9
Conclusion and Future Work

In this thesis, we presented contributions towards addressing the lack of testing facilities
for UML models, based on the precise and standardized specification of the semantics
of a subset of UML called fUML [Obj11], and an interpreter capable of executing
fUML conformant models. The main contributions of this thesis are an executable test
specification language and an environment for testing fUML models. By leveraging
the semantics of UML standardized by the OMG in the fUML standard, and building
on an extended version of a virtual machine for fUML models (cf. Chapter 4), we
have developed a test specification language and a test interpreter, providing means
for improving the quality of the developed models, enabling detection and correction of
defects at the model level early in the design stage. In the following, we summarize the
contributions elaborated in the course of this thesis, as well as conclusions derived from
their evaluation.

Contribution 1: Design of a dedicated test specification language for fUML
models. Our test specification language enables development of test cases for fUML
activities at the model level, composed of assertions on the state of the execution of an
activity under test, as well as assertions on the order of execution of activity nodes within
the activity under test.

An activity might require input in form of objects provided to its parameter nodes, in
order to be executed. Furthermore, system might be in a certain initial state when an
activity is being invoked during a test. For this purpose, our test specification language
enables to define test scenarios composed of objects, their attribute values, and links
between them, which can be set as initial state of the system under test, as well as
provided as input to an activity under test.

User can specify state assertions to check objects, their attribute values, and links between
them, that were consumed or produced by a certain activity node or an activity parameter
node, at the certain point in time of the activity execution. A state assertion is composed
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of a time frame, specifying the observed part of execution of the activity under test, and
a set of expressions which are checked within the specified time frame. Specification
of time frames within the state assertions can be realized by use of a set of temporal
operators and quantifiers with the combination of activity nodes representing a beginning
and end of an observed time frame (cf. Chapter 6).

Beside expressions for directly checking the state of objects, user can specify OCL
constraints which should be evaluated on the state of the system under test at some
point in time of the activity execution. OCL enables specification of complex expressions
involving operations such as iteration and calculation over objects and their attribute
values. Furthermore, OCL constraints can be used for specifying time frames determining
the part of execution for which state assertions are checked.

Assertions on the order of execution of activity nodes can be specified for both absolute
as well as relative paths of an activity execution. An order assertion is composed of a list
of nodes, specified in order in which they are expected to be executed. For specifying a
relative order of execution, special escape characters can be used, namely _ and *, for
skipping one or more nodes in an execution path.

Contribution 2: Development environment enabling to create test cases more
efficiently using a dedicated test editor. We have developed an editor for more
efficiently specifying the test cases on a UML activity under test. The editor was
developed using Eclipse Modeling Framework and Xtext, for creating text based domain
specific languages. The editor supports direct linking of test language concepts to the
elements of the UML model under test, auto-completion, scoping, and validation (cf.
Chapter 6).

Contribution 3: Framework for execution and evaluation of the test cases.
We have developed a test interpreter capable of executing the test cases created using
our test specification language (cf. Chapter 7). The test interpreter is built on top of an
extended version of the fUML virtual machine, which records the trace of execution of
an activity under test. Once the activity under test is executed, the specified assertions
from the test cases are evaluated by analyzing the trace of execution of the activity under
test. Thereof, test results indicating which assertions succeeded and which failed are
produced and presented to the user.

Test case evaluation process executed by the test interpreter is composed of several steps.
At the beginning, specified test scenario is loaded into the virtual machine, and the
activity under test is executed with the specified input. Thereof, a trace containing
information regarding which objects were produced or modified by the activity execution,
as well as the chronological and logical order of nodes within the activity under test is
recorded.

Next, each assertion in the test case is evaluated by analyzing the trace of execution.
State assertions are evaluated by selecting and evaluating the objects and their attribute
values from the trace against the specified values from the assertions. Furthermore,
information regarding the chronological and logical order of execution of activity nodes
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is analyzed to evaluate specified order assertions. Validation of order assertions takes
into account possibility of specifying concurrent paths of execution within an activity.
Concurrency within an activity can be modeled using fork/join constructs, or several
starting nodes (nodes without incoming edges) or multiple outgoing control flows of
actions.

In order to support complex expressions on the state of execution of an activity under
test, our testing framework supports the specification and evaluation of OCL expressions
within defined test cases. For defining and evaluating OCL expressions within test cases,
we made use of the DresdenOCL framework (cf. Chapter 7). DresdenOCL supports
integration of specifying and evaluating OCL constraints on any modeling language
developed using EMF technologies.

Contribution 4: Test Results Model. Once a test case is evaluated by the testing
framework, test results are produced and presented to the user (cf. Chapter 7). The
main component of the test results model is a test suite result composed of test case
results for each evaluated test case of an executed test suite. Test case result contains
information such as the name of the activity under test, input provided to the activity,
and results of each evaluated assertion within the test case (cf. Chapter 7).

We have performed a user study with eleven participants, in order to evaluate the ease
of use and usefulness of our test specification language and the testing framework (cf.
Chapter 8). During the study, most of the participants found specifying the test scenarios
and the test cases on an UML model under test intuitive and easy to use. There were
problems with understanding the test results and applying necessary actions to correct
any defects during the testing process, however this was in most cases due to the level of
familiarity of a participant with the fUML standard. Based on the user study, we were
able to do some improvements to the test specification language and the test interpreter.
The study has shown the applicability of the approach.

In the rest of this section we will discuss some limitations of the testing framework, as
well as some possible directions of the future work. These limitations and future work
directions are based on our experience during building the testing framework, as well as
the results of the performed user study (cf. Chapter 8).

Effect of concurrency on object flows. Current version of the testing framework
considers concurrency in an activity under test during an order assertion evaluation.
However, the state assertions are evaluated only against the single activity execution, as
produced by the virtual machine. In order to improve the scope of testing capabilities of
the testing framework, as well as to improve the test results produced, it is necessary to
consider several execution paths when evaluating the state assertions.

Support for deep call hierarchies Beside missing to take into account object flows
when evaluating the effect of concurrency on an activity execution, current implementation
of the testing framework doesn’t support activity call hierarchies deeper that a single
level. In other words, it is only possible to specify order assertions on activities invoked by
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the activity under test. However, it might be useful to be able to specify order assertions
on deeper levels.

As there can be potentially huge number of execution paths of an activity under test, for
a given input, it would be impossible or at least inefficient to perform validation of state
assertions on each execution path. It would be useful to investigate how concurrency
might effect actions within an activity under test which produce or modify the state of
the system considered by a specified state assertion. Once such actions are identified,
execution paths of the activity under test on which re-ordering of such actions could take
place should be validated against specified state assertions.

Mocking of called activities. Mocking is a very well known software programming
technique, used in unit testing for isolating a unit under test (e.g., a method or an
object), from any existing dependencies whose execution might influence the test results.
In software programming, a mock is usually an object used in place of a real one, and
whose behavior can be manipulated for the purpose of a unit test. To achieve a similar
goal when testing an activity, it might be necessary to isolate it from any existing called
activity. In the current version of the testing framework, this can be accomplished only
by modifying the model of the activity under test. Therefore, it would be interesting to
investigate possibility of specifying activity mocks within a test case, which could then
be used to replace the dependencies of the activity under test during the test execution.

Integration of OCL syntax with the test specification language. As described
in Chapter 6, the test specification language supports evaluation of OCL constraints
on set of execution states, as well as their use for specification of the time frame of a
state assertion. However, in the current version of the test specification language, the
OCL constraints have to be specified outside of a test case, within an OCL file, and
then invoked by the name of the constraint from within a state assertion. This is not
only an inconvenience, but it might lead to test case execution failure, as there is no
validation of the relation between the specified state assertion and the invoked OCL
constraint. Therefore, it would be interesting to investigate possibility of integrating the
OCL constraints directly within the test specification language.

Test coverage analysis. Test coverage represents a measure of the proportion of a
program exercised by a test suite, usually expressed as a percentage. This typically
involves collecting information regarding which parts of a program are actually executed
during a test suite run. There are several different test coverage criteria, such as statement
coverage, branch coverage, and path coverage, and a considerable research work done
in this area [DeM89, HJK+11, PAOC13]. It would be an interesting line of research to
investigate how test coverage can be defined and analyzed for fUML models, for a defined
test suite at the model level.

Corrective feedback. Another interesting line of research would be to investigate
possible application of model slicing techniques for providing a corrective feedback to
the user when certain assertion of a test case for an fUML model fails. Calculating a
subset of a model under test, affecting the elements of the model asserted by a test case,
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represents a so called model slicing technique [HBD03, ACH+13, SCWM10, RWMR13].
For instance, if a state assertion for a certain activity node fails during a test suite run,
it might be possible to isolate a subset of activity nodes which directly influence the
variable from the state assertion and provide more information what might have caused
the failure. If and how this could be done represents one possible research direction.

Test case generation. Another possible future research direction is to apply model
based testing approaches to generate test cases for fUML activities based on defined
coverage criteria. An overview of model based testing approaches, for automating the
process of generation and execution of test suites at the code level, was given in Chapter
3.

Integration of test results for better visualization. Integration of test results of
running a test suite with JUnit for instance, or with a model editor, might provide better
visualization of test results and therewith improve the understandability and usefulness
of test results. Furthermore, visualization of states created during the model execution
might provide more insight into what led to certain assertion failure. This also presents
one possible direction of further research.

125





APPENDIX A
Installing Eclipse Environment

and Running the Testing
Framework

A.1 Installing the Environment

The following tools and plugins are required and have been tested for building and
running the Testing Framework:

• Java JDK version: 1.7

• Eclipse Modeling Framework version: Kepler SR2

• Xtext Framework with Xbase version: 2.5

• EMFText (prerequisite for DresdenOCL) version: 1.4.1

• DresdenOCL version: 3.3.0

Once the Java JDK and Eclipse have been downloaded and installed, it is necessary
to install the Xtext framework. This can be done through Help->Install Modeling
Components, and then by selecting Xtext and clicking Finish.

In order to install DresdenOCL plugin successfully, first the EMFText plugin needs to
be installed. This can be done through Help->Install New Software dialogue. In the
dialogue box, click Add, and add the appropriate information (name: EMFText, location:
http://emftext.org/update), and click Finish.
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A. Installing Eclipse Environment and Running the Testing Framework

Finally, installing the DresdenOCL plugin can be done through Help->Install New
Software dialog. In the dialogue box, click Add, and add the appropriate information
(name: DresdenOCL, location http://www.dresden-ocl.org/update/kepler/),
and click Finish.

At this point, the environment should be ready for the Testing Framework. The framework
is available under the open source public license, and can be checked out from GitHub
repository at https://github.com/moliz. Once the project is checked out from the
repository, it can be built and run as an Eclipse application from within Eclipse IDE.

A.2 Setting up a Project
Create standard Java project by selecting New->Java Project from package explorer.
Once the project is created, import the UML model under test into a package which is
on the build path within the project (e.g., src). Also, if you want to use an OCL file
where the OCL constraints for the test case will be defined, the file should be created or
imported into a package which is on the build path within the project (e.g., src).

If you intend to use the OCL constraints, the OCL file with the constraints has to
be loaded into the DresdenOCL tool. This is done by selecting the UML file in the
package explorer, and selecting DresdenOCL->Load as model... and selecting ’UML
Class Diagram’ as the metamodel of the loaded model, and clicking Finish.

Once the model and OCL file are imported, create a new file by selecting New->’File’
inside a package which is on the build path within the project (e.g., src). Make sure to
give the file extension ’.umltest’. The Eclipse will ask you to add the Xtext nature to the
project - select yes.

A.3 Running the Test Cases
Once the test suite has been defined, it can be run by selecting the Run->Run Con-
figurations... Double-click the fUML TestSuite in the left pane, and select the UML
model file, test suite resource file, and the OCL resource file. Note that the OCL file is
optional. Furthermore, to obtain a counter example in case of a failing order assertion,
OrderAssertion Brute Force should be checked.

In the top part of Figure A.1 an example of a test case written in our test editor is
presented. In the middle, a run dialog is presented, where the user can specify the
location of the UML model file holding the model under test, the test suite resource file
holding the test suite to be run, and an OCL resource file where any OCL constraint
that is invoked within the test suite is defined. Finally, in the bottom part of the figure,
results of running the test suite printed out in a console view are presented.
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A.3. Running the Test Cases

Figure A.1: Example of running a test suite
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APPENDIX B
Xtext Implementation of the Test

Specification Language

In this subsection we will present each part of the grammar of our test specification
language implemented in Xtext. In our implementation, we have specified the gramar
beforehand, and therefore the Ecore metamodel of the language was generated from the
grammar.

In Listing B.1 main component for declaring the qualified name of the language and
imported metamodels is presented. As can be seen on line 1 in Listing B.1 Xbase1 is
introduced into the grammar. Xbase represents a reusable expression language containing
mechanisms for performing type checking according to the Java type system, as well as
many default implementations of UI aspects. Furthermore, Xbase expression language
contains many features such as object instantiation, method invocation, exceptions and
many more.

Listing B.1: Test language grammar declaration
1 grammar org.modelexecution.fumltesting.uml.UmlTestLang with org.eclipse.xtext.xbase.Xbase
2 import "http:/www. eclipse . org/uml2/4.0.0/UML" as uml
3 import "http:/www. eclipse . org/emf/2002/Ecore" as ecore
4 generate umlTestLang "http:/www.modelexecution . org/fumltesting/uml/UmlTestLang"

The two import statements on lines 2-3 in Listing B.1 are used for importing elements of
UML and Ecore metamodels into the grammar, which enable referencing UML model
elements from elements of the test specification language. Finally, generate statement
instructs to Xtext to generate the metamodel of the language based on the grammar
definition.

1http://wiki.eclipse.org/Xbase
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B. Xtext Implementation of the Test Specification Language

The main components of the language are declared in Listing B.2. The starting point in
the language is a test suite. A test suite is composed of import statements, scenarios and
test cases.

Listing B.2: Test suite grammar
1 UMLTestSuite:
2 (imports += Import)∗ (scenarios += UMLScenario)∗ (tests += UMLTestCase)∗;

Import statement grammar rule is presented in Listing B.3.

Listing B.3: Import statement grammar
1 Import:
2 ’import ’ importedNamespace = QualifiedNameWithWildcard;

Import grammar is composed of the keyword import and the qualified name of the
imported UML package where the model under test is located. The rule QualifiedName-
WithWildcard is defined by the Xbase library.

A test scenario is used for specifying objects and links that can be used to provide input
to the activities under test, or as expected value of assertions within a test case. The
grammar of a test scenario is presented in Listing B.4.

Listing B.4: Test scenario grammar
1 UMLScenario:
2 ’scenario’ name = ID ’ [ ’ (objects += UMLObjectSpecification)∗ (links += UMLLink)∗ ’ ] ’ ;

A test scenario is composed of a name, a number of objects, and a number of links.
Grammar for specifying an object is presented in Listing B.5.

Listing B.5: Object specification grammar
1 UMLObjectSpecification:
2 ’ object ’ name = ID ’ : ’ type = [uml : :Class|QualifiedName] ’{ ’ (attributes += UMLAttribute)∗ ’} ’ ;

Object specification grammar is composed of a name of the object, a UML class declared
as type of the object, and a number of attribute declarations. Grammar for specifying
an attribute value of an object is presented in Listing B.6.

Listing B.6: Attribute specification grammar
1 UMLAttribute:
2 att = [uml : :Property|QualifiedName] ’=’ value = UMLValue ’ ; ’ ;

Attribute value grammar rule is composed of a UML property which is a type of the
attribute, = assignment operator, and a value assigned to the attribute. In Listing B.7
grammar for specifying simple and object values is presented.
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Listing B.7: Simple and object value grammar
1 UMLValue:
2 UMLSimpleValue | UMLObjectValue;
3 UMLSimpleValue:
4 (negative ?= ’−’)? value = XLiteral;
5 UMLObjectValue:
6 value=[UMLObjectSpecification|QualifiedName ] ;

As can be seen in Listing B.7 a value can be either a simple value or an object value.
A simple value is a literal (e.g., string, integer or boolean) defined in Xbase, with an
optional minus sign for specifying negative integers. Object value is simply a reference
to an object defined within the test specification language.

Finally, the grammar for a link specification which can be defined within a test scenario
between two objects, is presented in Listing B.8.

Listing B.8: Link specification grammar
1 UMLLink:
2 ’ link ’ assoc=[uml : :Association|QualifiedName] ’{ ’
3 ’ source ’ sourceProperty=[uml : :Property|QualifiedName]
4 ’=’ sourceValue=[UMLObjectSpecification|QualifiedName] ’ ; ’
5 ’ target ’ targetProperty=[uml : :Property|QualifiedName]
6 ’=’ targetValue=[UMLObjectSpecification|QualifiedName] ’ ; ’
7 ’} ’ ;

Link grammar is composed of the association of which the link is an instance, source
keyword followed by the reference to the source property and source object representing
the source end of the link, and the target keyword followed by the target property and
the target object representing the target end of the link.

Next component of a test suite is a test case. A test case is composed of a name, a
reference to an activity under test, activity input elements for each input required by the
activity under test, an optional context object reference, an initialize statement and a
number of assertions. As can be seen from Listing B.9 an initialize statement is composed
of the initialize keyword, and one or more references to the test scenarios separated by
comma.

Listing B.9: Test case grammar
1 UMLTestCase:
2 ’ test ’ name = ID ’ activity ’ activityUnderTest = [uml : :Activity|QualifiedName]
3 ( ’( ’ inputs += UMLActivityInput ( ’ , ’ inputs += UMLActivityInput)∗ ’) ’ )?
4 ( ’on’ contextObject = [UMLObjectSpecification|QualifiedName] ) ? ’{ ’
5 ( ’ in it ia l ize ’ (initScenarios += [UMLScenario] ) ( ’ , ’ (initScenarios += [UMLScenario] ) )∗ ’ ; ’ )?
6 (assertions += UMLAssertion)∗
7 ’} ’ ;

Activity input grammar is presented in Listing B.10. Activity input is composed of an
activity parameter node, assignment operator =, and a value provided as input to the
parameter node.
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B. Xtext Implementation of the Test Specification Language

Listing B.10: Activity input grammar
1 UMLActivityInput:
2 parameter = [uml : :ActivityParameterNode|QualifiedName] ’=’ value = UMLValue;

As described in Chapter 6, there are three types of assertions that can be specified in the
test specification language. Grammar specifying existing kinds of assertions is presented
in Listing B.11.

Listing B.11: Assertions grammar of the test specification language
1 UMLAssertion:
2 UMLOrderAssertion | UMLStateAssertion | UMLFinallyStateAssertion;

The grammar for the order assertion is presented in Listing B.12.

Listing B.12: Order assertion grammar
1 UMLOrderAssertion:
2 ’assertOrder ’ order = UMLNodeOrder ’ ; ’ ;
3 UMLNodeOrder:
4 nodes += UMLNodeSpecification ( ’ , ’ nodes += UMLNodeSpecification)∗;
5 UMLNodeSpecification:
6 node = [uml : :ActivityNode|QualifiedName] ( ’ : ’ size = XNumberLiteral)?
7 ( ’( ’ subOrder = UMLNodeOrder ’) ’ )? | joker=’∗ ’ | joker=’_’ ;

An order assertion is composed of the keyword assertOrder and one or more node
specifications separated by comma. A node specification is either an activity node owned
by the activity under test,or a joker (star or underscore). If an activity node is specified as
element of an order assertion, then an optional size argument can be specified signifying
the occurrence of the node in the path (can be used for loops). Furthermore, for each
activity node it is possible to specify an optional suborder, in case an activity is invoked
from the activity under test.

Grammar of a state assertion is presented in Listing B.13. A state assertion is composed of
the keyword assertState, a temporal quantifier, a temporal operator, a reference point for
specifying one end of the time frame, an optional until point for specifying an additional
end of the time frame, and a number of expressions for checking the selected states.

Listing B.13: State assertion grammar
1 UMLStateAssertion:
2 ’ assertState ’ quantifier = UMLTemporalQuantifier operator = UMLTemporalOperator
3 referencePoint = UMLReferencePoint ( ’ until ’ untilPoint = UMLReferencePoint)?
4 ’{ ’ (checks += UMLCheck)∗ ’} ’ ;

Grammar for specifying a temporal quantifier and a temporal operator is presented in
Listing B.14. For specifying the grammar of quantifier and operator we make use of
Xtext enumerations [xte13].
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Listing B.14: Temporal operator and temporal quantifier grammar
1 enum UMLTemporalOperator:
2 after | until;
3 enum UMLTemporalQuantifier:
4 always | sometimes | eventually | immediately;

For specifying a reference point of a time frame it is possible to refer to an action within
the activity under test or to invoke evaluation of an OCL constraint, as described in
Chapter 6. In Listing B.15 grammar for specifying reference points is presented.

Listing B.15: Reference point grammar
1 UMLReferencePoint:
2 UMLActionReferencePoint | UMLConstraintReferencePoint;
3 UMLActionReferencePoint:
4 ’action ’ action = [uml : :Action|QualifiedName ] ;
5 UMLConstraintReferencePoint:
6 ’ constraint ’ constraintName = XStringLiteral;

Within a state assertion a number of expressions for checking the state can be specified.
There are two kinds of expressions that can be specified within a state assertion, as
presented in Listing B.16.

Listing B.16: Grammar specifying possible kinds of state expressions for checking the
state in a state assertion

1 UMLCheck:
2 UMLConstraintCheck | UMLStateExpression;

The constraint check is used for specifying invocation of an OCL constraint of the state
selected by a state assertion. Grammar for specifying an invocation of an OCL constraint
is presented in Listing B.17.

Listing B.17: Grammar for specifying an invocation of an OCL constraint
1 UMLConstraintCheck:
2 ’check ’ constraintNames += XStringLiteral ( ’ , ’ constraintNames += XStringLiteral)∗
3 ( ’on’ object = [uml : :ObjectNode|QualifiedName] ) ? ’ ; ’ ;

An invocation of an OCL constraint is composed of the keyword check, a number of
constraint names separated by comma, and an optional on declaration for limiting the
evaluation of the constraints on a single object within the asserted states.

Beside the constraint check, within a state assertion it is possible to specify number of
state expressions which are specialized into either object state expression or property state
expression, as presented in Listing B.18.
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B. Xtext Implementation of the Test Specification Language

Listing B.18: Grammar for specifying state expressions
1 UMLStateExpression:
2 UMLObjectStateExpression | UMLPropertyStateExpression;
3 UMLObjectStateExpression:
4 pin = [uml : :ObjectNode|QualifiedName] operator = UMLArithmeticOperator value = UMLValue ’ ; ’ ;
5 UMLPropertyStateExpression:
6 pin = [uml : :ObjectNode|QualifiedName] ’ : : ’ property = [uml : :Property|QualifiedName]
7 operator = UMLArithmeticOperator value = UMLValue ’ ; ’ ;

Object state expression is composed of a an input or output pin of the activity under
test or an action within the activity under test, the arithmetic operator, and a value
compared to the object provided as input or output of the specified pin. Property state
expression, compared to the object state expression, contains an additional operator (’::’)
and a property of the object being checked.

The grammar for specifying arithmetic operator is presented in Listing B.19.

Listing B.19: Arithmetic operator grammar
1 enum UMLArithmeticOperator:
2 equal = ’=’ | not_equal = ’!=’ | greater = ’>’ | smaller = ’<’ | greater_equal = ’>=’ |
3 smaller_equal = ’<=’ | includes = ’ includes ’ | excludes = ’excludes ’ ;

Similarly as for the temporal operators and quantifiers, we make use of Xtext enumerations
for specifying the grammar of the arithmetic operator.

The last kind of assertion possible to specify in a test case is the finally state assertion.
In Listing B.20 the grammar for specifying the finally state assertion is presented.

Listing B.20: Finally assertion grammar
1 UMLFinallyStateAssertion:
2 ’ f inally ’ ’{ ’ {UMLFinallyStateAssertion} (checks += UMLCheck)∗ ’} ’ ;

Finally assertion is composed of the keyword finally and a number of expressions for
checking the selected states. In this rule an action for making an object of the finally
state assertion is specified (i.e., {UMLFinallyStateAssertion}), which is necessary to
ensure that a finally state assertion with an empty body would cause the object creation
in the AST.
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