

DIPLOMARBEIT

AD trifft BIM

Entwicklung einer digitalen Werkzeugkette zur Variantenbildung von Bürotypologien mittels
Algorithmic Design & Building Information Modeling

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines/einer Diplom-Ingenieurs / Diplom-Ingenieurin unter der Leitung

Associate Prof. Dipl.-Ing. Dr.techn. Iva Kovacic

E 234
Institut für Interdisziplinäres Bauprozessmanagement
E 234-02
Forschungsbereich Industriebau und Interdisziplinäre Bauplanung

eingereicht an der Technischen Universität Wien

Fakultät für Architektur und Raumplanung

von

Sophia S. Pibal 01027815

Wien, am 05.04.2018

KURZFASSUNG

Die Anwendung von Algorithmic Design (AD) und Building Information Modeling (BIM) in der frühen Phase eines Projekts bietet die Möglichkeit zeit- und ressourceneffizient mehrere Entwurfsvarianten zu erzeugen, vergleichen und durch gezielte Auswertungen des Building Information Models eine geeignete Variante zu identifizieren.

Ziel dieser Arbeit war es daher, eine Werkzeugkette zu entwickeln, um eine unbestimmte Anzahl an Varianten einer Entwurfsaufgabe zu generieren und durch Auswertung der BIM-Daten zu eruieren, welche Variante sich für die Entwurfsaufgabe am besten eignen könnte. Der Fokus der Werkzeugkette lag auf der Entwicklung eines Algorithmus in GRASSHOPPER und dessen Übersetzung in ein intelligentes Gebäudemodell in ARCHICAD. Die Live-Connection zwischen GRASSHOPPER und ARCHICAD ermöglicht eine bidirektionale Weitergabe von Informationen zwischen den beiden Programmen, hier kontrollieren die entworfenen Parameter des GRASSHOPPER Algorithmus das ARCHICAD-BIModell. Durch Änderung der Parameter ergeben sich verschiedene Varianten des Entwurfs. Use Case für die Variantenbildung stellen Bürotypologien dar. Bewertet werden diese anhand der Faktoren Energieeffizienz, Materialeffizienz, Flexibilität, Kosten und Flächeneffizienz, was manuell oder mit weiteren Softwarelösungen wie etwa ARCHIPHYSIK geschieht. Der Vergleich der Varianten erfolgt mittels Netzdiagrammen,

welche die vorteilhaftesten Varianten identifizieren.

ABSTRACT

The usage of Algorithmic Design (AD) and Building Information Modeling (BIM) in the early stage of a project offers the possibility to create multiple designs. Analyzation of the Building Information Model will facilitate the determination of which design version is the best solution to the problem.

The aim of this thesis was to develop a toolchain to generate an indeterminate number of design versions, and to assess which option facilitates the best solution using the BIM data. The toolchain's focus was the layout of an algorithm in GRASSHOPPER and its translation into an intelligent building model in ARCHICAD. The live connection between GRASSHOPPER and ARCHICAD offers a bidirectional transfer of information. The drafted parameters of the GRASSHOPPER algorithm control the ARCHICAD BIModell. The software conjunction is not working like a classic model transfer from A to B, instead it is working simultaneously and in both directions. Changing the parameter values results in the creation of various design options. Office typologies represent the Use Case of different variants. Those are evaluated on the basis of the factors energy efficiency, material efficiency, flexibility, costs, and space efficiency, either achieved through entering data in manually or using additional software solutions like ARCHIPHYSIK.

The comparison of the various design options is executed with the aid of spider charts, to which the data output is applied. As a result, the best solution to the problem is evaluated.

INHALTSVERZEICHNIS

00	KURZFASSUNG ABSTRACT	2
01	FORSCHUNGSZIEL	8
02	STAND DER TECHNIK	9
	COMPUTATIONAL DESIGN	9
	2.1 CAD	10
	2.2 BIM	11
	2.3 Generatives Design	13
	2.4 Parametrisches Design	13
	2.5 Algorithmisches Design2.6 Analyse und Simulation	14 15
^ 2		
	METHODE	17
	3.1 Software Tools	18
	ArchiCAD	18
	Rhinoceros	18
	Grasshopper	19
	ArchiPHYSIK	22
	Schnittstellen und Live-Verbindungen	23
	ArchiCAD Nodes in Grasshopper	24
	ArchiCAD - ArchiPHYSIK	26

3.	2 Analyse Büro	27
3.3	3 Methode der Variantenbildung	46
3.	+ Parameter	48
3.	5 Workflow	50
3.6	6 Effizienzbewertung & Netzdiagramm	72
$V \leftarrow V$	ARIANTENBILDUNG	90
Ч.	1 Grundstück	91
4.3	2 Auswahl Typologie	93
4. ;	3 Variantenbildung	99
	V001 - V018	101
	3D BIModell	
	ArchiCAD Favoriten	
	Grundriss und Schnitt M 1:500	
	Bewertung & Netzdiagramm	
4 .	4 Auswahl Variante - Netzdiagramme	155

O5 RESÜMEE

Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

O1 FORSCHUNGSZIEL

In der frühen Planungsphase getroffene Entscheidungen beeinflussen den gesamten Lebenszyklus eines Gebäudes maßgeblich. Deshalb ist es gerade in dieser Phase essentiell, abschätzen zu können, welche Entwurfsparameter sich negativ oder positiv auf das Projekt auswirken. Der Prozess der Entwurfsfindung ist insofern aufwändig, als dass, um eine geeignete Lösung für ein Entwurfsproblem zu finden, zumeist nicht nur ein Vorentwurf, sondern eine Reihe verschiedener Design-Optionen erstellt werden müssen. Eine Überlegung dazu ist es daher, durch eine automatisierte Suche nach möglichen Lösungen in der frühen Entwurfsphase und durch eine entsprechende Evaluierung dieser anhand der Paramater Energie-, Materialund Flächeneffizienz sowie weiterer möglicher Faktoren eine Variante zu finden, die sich für eine Weiterbearbeitung eignet. Wie kann dieser Prozess mithilfe computergestützter Tools wie Algorithmic Design (AD), Building Information Modeling (BIM), Simulationstools und anderen Anwendungen verbessert werden? Aus diesen Problemstellungen ergibt sich folgende Forschungsfrage:

Inwiefern können Algorithmic Design und Building Information Modeling in den Workflow integriert werden, um den Prozess der Vorentwurfsfindung in der frühen Entwurfsphase effizienter zu gestalten?

Das Ziel dieser Arbeit war es zu testen, wie sich AD und BIM für eine digitale Werkzeugkette zur Bildung von Varianten in der frühen Entwurfsphase eignen. In weiterer Folge wurde eine Evaluierungsmethode für Varianten entwickelt, um herauszufinden, welche Design-Optionen sich für eine Projektweiterentwicklung als effizient erweisen. Im Zuge dessen wurde die Kompatibilität von AD und BIM für die Variantenbildung mithilfe der Live-Connection von GRASSHOPPER und ARCHICAD getestet. Hier wurden die Positiva der beiden Softwarelösungen vereint – Design-Kontrolle durch Parameter in einem Algorithmus und ein intelligentes Gebäudemodell. Ein GRASSHOPPER-Script definiert hierbei das Building Information Model in ARCHICAD. Da hier nicht das Gebäude selbst entworfen wird, sondern ein Algorithmus und seine Parameter, die modifizierbar sind, können durch eben diese eine unbestimmte Anzahl an Varianten eines Typus generiert werden.

Die vorliegende Arbeit gliedert sich in drei Teilbereiche, beginnend mit der Darlegung des Stands der Technik: den gängigen digitalen Methoden zur Form- und Entwurfsfindung und Auswertung von Daten.

Im zweiten Teil der Arbeit wird eine Strategie zur Variantenbildung entwickelt. Als erster Punkt dieses Kapitels werden die Softwaretools, die für die Werkzeugkette relevant sind, beschrieben. Die gelisteten Softwarelösungen ARCHICAD und RHINO 3D bzw. GRASSHOPPER wurden wegen ihrer 2016 erschienen Live-Connection gewählt und generieren die Geometrie; zur Ermittlung der Energieeffizienz wird ARCHIPHYSIK wegen seiner CAD-Schnittstelle zu ARCHICAD angewandt und ECO2SOFT wird schließlich wegen seiner Verbindung zu den Baubook-Daten (ähnlich zu ARCHIPHYSIK) zur Auswertung der Materialeffizienz genutzt. Die Auswertungen bezüglich Flächeneffizienz, Flexibilität und Kosten erfolgten manuell und literaturgestützt. In diesem Teil erfolgt auch die Analyse von Bürotypologien, welche als Use-Case die Parameter für den GRASSHOPPER-Algorithmus liefern. Überlegt wurde hier auch die Methode, mit der die Bildung der Varianten funktioniert. Es folgt eine Beschreibung der gescripteten GRASSHOPPER-Algorithmen, des Workflows, der Anwendung und der Verbindung von GRASSHOPPER mit ARCHICAD. Den letzten Punkt dieses Kapitels bilden die Beschreibung der Methode zur Effizienzbewertung und die hierfür erstellten Netzdiagramme.

Im dritten Teil der Arbeit erfolgt der "Proof of Concept" in Form der Variantenbildung durch die digitale Werkzeugkette. Beginnend mit der Vorauswahl einer Typologie wird nach der Festlegung der für das Grundstück am besten geeigneten Geometrie die Generierung der Design-Optionen vorgenommen. Die im vorigen Kapitel festgelegten Parameter des Algorithmus zur Bildung der verschiedenen BIM-Varianten werden dabei angewandt. Jede der in ARCHICAD durch GRASSHOPPER virtuell gebauten BIM-Varianten wird auf die sechs im vorherigen Kapitel festgelegten Faktoren der Effizienz getestet und bewertet (durch die Auswertung der BIM-Daten). Schlussendlich wird ein interner Vergleich der Varianten durchgeführt, bei dem ergeben soll, welche Variante sich für eine Weiterbearbeitung eignet.

O2 STAND DER TECHNIK

Computational Design

Computergestütze Arbeitsmethoden sind aus dem Arbeitsalltag von ArchitektInnen nicht mehr wegzudenken, weshalb es für diese mittlerweile fast genauso wichtig geworden ist ein fundiertes Wissen in der Anwendung und Manipulation der jeweiligen Software zu haben, wie ein Wissen in Hinblick auf die klassischen Felder der Architektur. Wobei die größere Herausforderung nicht das Erlernen und Anwenden der Software selbst ist, sondern die Entwicklung eines Verständnisses für Computational Design Thinking. Um den Begriff Computational Design Thinking überhaupt näher beleuchten zu können, muss zuerst der Unterschied zwischen Computerisation und Computation erläutert werden. Computerisation beschreibt die Digitalisierung bereits bestehender, durchdachter und vordefinierter Ideen, Prozesse und Entwürfe (vgl. Ahlquist und Menges 2011, S.10). Der Computer wird dabei als virtuelles Zeichenbrett verstanden, das dem Designer ermöglicht, auf eine einfache Art planerische Dokumentationen beziehungsweise digitalen Modelle und Datensammlungen zu erstellen, sowie Manipulationen vorzunehmen - (vgl. Peters und de Kestelier 2013, S.10) wie etwa additive Schritte, Skalierungen, Präzisierungen sowie Vervielfältigungen, die durch die Digitalisierung sowohl wiederholbar, als auch reversibel sind. Diese digitalisierten Prozesse, Daten, Zeichnungen und Arbeitsschritte werden vorab definiert und auf dadurch nur dokumentiert. Im Gegensatz dazu beschreibt der Begriff Computation einen computergestützten Vorgang, der dem Designer und Architekten durch Nachahmung und Erweiterung des menschlichen Intellekts, (vgl. Ahlquist und Menges 2011, S.10) die Möglichkeit bietet, seine Fähigkeiten auszudehnen, um so komplexe Probleme effizienter zu lösen, (vgl. Peters und de Kestelier 2013, S.10) und dabei manuell zu zeitaufwändige und sich wiederholende Arbeitsschritte automatisieren zu können.

"Computational design is a broad term that encompasses many activities, ranging from design generation to task automation" (Michael Kilkelly, 2016).

Es können die folgenden Benefits des Computational Design genannt werden: zum einen die Formfindung und Herstellung mehrerer Entwurfsoptionen (Varianten) - dies erfolgt durch automatisierte und sich wiederholende Prozesse und Algorithmen; weiters ermöglicht es den Zugang zu Daten für Vergleiche und Auswertungen, sowie computergestützte Simulationen und Analysen zur Untersuchung und Optimierung der Modelle. Die Entwicklung von Computerisation zu Computation in der Architektur bedeutet folglich:" [...] CAD software shifts from a representation tool to a medium for algorithmic computation, from which architecture can emerge" (Leitão, Santos und Lopes 2012, S.141).

CAD

CAD - computer aided design - "bezeichnet den rechnergestützten Entwurf oder die rechnergestützte Konstruktion" (Hauschild und Karzel 2010, S.105). Zweidimensionale Zeichensysteme versuchen, die Differenz zwischen dem Abgebildeten und dem Proportionalen zu verringern. Es handelt sich um eine maßstabslose computergestütze Darstellung von Zeichnungen, die aber proportionale Abhängigkeiten aufweisen und somit verlustfrei skalierbar sind (vgl. Ostwald 2012, S.7). CAD Systeme in 2D sind somit als erweiterter Zeichentisch zu verstehen, (vgl. Hauschild und Karzel 2010, S.21) deren Zeichnungen jedoch nur von Menschen interpretiert werden können und somit eine Schwäche hinsichtlich der Computation aufweisen. Die nicht vorhandene Indexikalität in 2D CAD Systemen wird jedoch in 2 1/2 D und 3D Systemen angewandt und lässt dadurch eine Interpretation der Daten und Darstellungen durch den Computer zu (vgl. Ostwald 2012, S.7). BIM stellt eine Form dieser intelligenten Weiterentwicklung des zweidimensionalen Zeichnens dar und "places the indexical (information) centrally between the proportional (building) and the representational (model)" (ebd., S.8).

BIM

Als "Building Information Modeling" versteht sich ein umfassendes und innovatives Tool, das versucht den Lebenszyklus eines Bauwerks, von Design und Planung, über die Ausführung und Herstellung bis zur Wartung und dem Rückbau zu umfassen. BIM kann entweder als Building Information Model, das jeweilige Modell selbst betreffend, oder als Building Information Modeling, den Prozess darstellend, definiert werden, (vgl. Levy 2012, S.ix) wobei BIM immer als Werkzeug und nicht als Ziel verstanden werden soll. Um ein Projekt erfolgreich abwickeln zu können, bedarf es mehr als nur einer Person - ein Team aus verschiedenen Disziplinen ist notwendig. Die Kommunikation, die zwischen den einzelnen Projektbeteiligten herrscht, gestaltet sich jedoch oftmals als schwierig. Vor allem ein sehr spätes Miteinbeziehen der Beteiligten in den Entwurfsprozess - und nicht schon in der frühen Projektphase - führt oft zu Missverständnissen und Fehlern und kann in verlängerte Bauzeiten sowie erhöhte Kosten münden. Genau diese Probleme versucht, das Konzept des BIM zu vermeiden (vgl. Kymmell 2007, S3ff). Um eine erfolgreiche Zusammenarbeit im Prozess zu gewährleisten, wird ein digitales Gebäudemodell erstellt. Dieses Modell ist "intelligent" und wird von allen Beteiligten genützt. So sollen die Anstrengungen der einzelnen Beteiligten in einem großen Datenmodell zusammengefasst, dokumentiert und bearbeitet werden können.

"Building Information Model is an integrated, structured, virtual graphic database [...] that consists of three dimensional parametric objects and allows for interoperability." (Kensek 2012, S.120).

"BIM is the creation and use of coordinated, internally consistent, computable information about a building project in design and construction. The ability to keep this information up-to-date and accessible in an integrated digital environment gives architects, engineers, builders, and owners a clear overall vision of their projects and contributes to the ability to make better decisions faster - helping raise the quality and increase the profitability of projects." (Cory und Schmelter-Morrett 2012, S.138).

BIM gibt, durch die Erstellung eines digitalen dreidimensionalen Modells, die Möglichkeit ein virtuelles Gebäude zu erstellen, das es ermöglicht, den Prozess des Bauens zu simulieren und zu koordinieren, noch bevor wirklich gebaut wird (vgl. Garber 2014, S.14). Es macht den Prozess transparenter und die Schwächen eines Projekts sichtbar. Jedoch werden Informationsmodelle oft erst spät genützt und überhaupt erstellt und dadurch kann BIM nicht sein volles Potential ausschöpfen. Wünschenswert wäre es, BIM bereits in der frühen Entwurfsphase anzuwenden und schon in dieser auch alle Beteiligten miteinzubeziehen.

BIM nur als Dokumentationstool und nicht als Designtool zu verwenden, wäre eine verpasste Chance. Verschiedene Softwarepakete bieten Designern und Architekten die Möglichkeit, bereits in der frühen Entwurfsphase Simulationen, Analysen und Manipulationen zur Optimierung des Early Design durch zuführen. Somit kann der Entwurf kritisch untersucht und verbessert werden. Durch diese Manipulationen, bezogen auf den Prozess der Optimierung, können Varianten erstellt werden, die es zulassen, schlussendlich die "beste" Lösung für das Problem zu finden - was wohl eines der größten Potentiale von BIM in Early Design Stage darstellt (vgl. Levy 2012, S.8).

Generatives Design

"Die Entwurfsfindung erfolgt als regelbasierter, jedoch ergebnisoffener Prozess und führt damit zur Weiterentwicklung von Typologien, indem Fragen der Strukturbildung z.B. durch Formgrammatiken (shape grammars) gelöst werden. Teildisziplinen: algorithmisches, parametrisches und kybernetisches Entwerfen." (vgl. Hauschild und Karzel 2010, S.105).

Formgrammatiken (shape grammars) definieren sich durch drei primitive geometrische Elemente, Punkt, Linie und Ebene. Ausgehend von diesen kann annähernd jede Geometrie erzeugt werden (vgl. Garber 2014, S.149). Es wird also nicht eine einzige Form erarbeitet, sondern anhand von Parametern eine Anleitung zur Formfindung entworfen. So verlagert bei Generativem Design laut Kolarevic (2003) der Entwurfsprozess von "form making" zu "form finding". Generative Design "[...] can be described as a design method where generation of form is based on rules or algorithms, often deriving from computational tools, such as Processing, Rhinoceros, Grasshopper and other scripting platforms." (Agkathidis 2015, S. 14).

Parametrisches Design

Laut Eastman (2008) sind parametrische Objekte dadurch definiert, dass sie Parameter beinhalten wie z.B. Abstände, Winkel und geometrische Regeln sowie Abhängigkeiten. Die Werte der Parameter sind veränderbar und erzeugen bei Änderung verschiedene Ergebnisse. So kann eine Software parametrische Objekte enthalten, deren Werte der Parameter Länge, Breite und Position verändert werden können (vgl. Kensek 2012, S.120). Nach Änderung der Werte bleibt es jedoch vom Grundprinzip her das gleiche Objekt, stellt jedoch eine Variante dessen dar. "The process of parametric design involves selecting appropriate sets of parameters for a problem and establishing a series of functions, expressed in terms of variables and geometrical relationships. It allows the exploration of many solutions; however, the product variation depends on how the designer approached and defined the problem and its constraints."(ebd., S.120). Es wird beim parametrischen Design nicht die endgültige Form eines Objektes entworfen, sondern die Parameter die zu mehreren Varianten führen können.

Algorithmisches Design

Als Algorithmus wird eine bestimmte und finite Anzahl von Schritten, die zu einer Problemlösung führen, bezeichnet. Er enthält unmissverständliche Anweisungen und einen klar definierten Input und erzeugt so einen klar definierten Output (vgl. Tedeschi 2014, S.22f). Der Software-Hersteller Graphisoft vergleicht den Prozess des algorithmischen Designs in Kombination mit BIM mit einem Rezept. Hier werden die Zutaten als Input-Parameter bezeichnet, die Mengenangaben als Werte der Parameter, die Abfolge des Kochprozesses als eindeutige Anweisungen und die fertige Speise quasi als Output. Wie beim parametrischen Design wird auch hier nicht die Form, sondern ein Set von Parametern zur Formfindung entworfen. "In order to get to the best design solution you create the process or the recipe and not the final outcome" (Graphisoft 2017). So können mit Hilfe von Algorithmen, wenn richtig befolgt, eine Vielzahl an Varianten erzeugt werden, aus welchen die beste gewählt werden kann (vgl. ebd.). Generative Algorithmen zur Modellierung kombinieren assoziatives Modellieren (Elemente sind in einer fixen Abfolge miteinander verbunden und ändern sich sobald ein Teil modifiziert wird) und generatives Modellieren (Form wird nicht durch eine Zeichnung definiert, sondern über Zahlen als Input-Data, mathematische Operationen, Abhängigkeiten und Funktionen). Die Modellierung sowie der Output erfolgt dementsprechend über die Verwendung von Algorithmen (vgl. Milena und Ognen 2010, S.178).

Analyse und Simulation

Eine der gängigsten Analysemethoden in der Architektur stellt das Mapping dar. Hierbei handelt es sich um eine Methode zur Informationsdarstellung mithilfe von Zahlen, Texten und Grafiken. Herangezogen werden entweder eigens erhobene oder extern erhobene Daten. Der Output der verarbeiteten Daten soll eine leichte Lesbarkeit aufweisen und eine Vielzahl an Informationen komprimiert darstellen. Als Output sind hierbei neben Karten im herkömmlichen Sinn auch andere grafische Darstellungsmodi zu erwähnen wie z.B. Icons, Symbole, Piktogramme und Diagramme (vgl. Hauschild und Karzel 2010, S.16f).

Ähnlich der Analyse sollen auch das Verfahren der Simulation den Arbeitsprozess und das Treffen von Entscheidungen zur Findung der besten Lösung erleichtern. Daten und Informationen werden digital verarbeitet und virtuell simuliert und geprüft. Im Falle eines Gebäudes wird dieses so realitätsgetreu wie möglich digital erstellt, um Simulationen vorzunehmen und um auf diese Weise Mängel und Fehlendes feststellen zu können. (vgl. ebd., S.18 f) In der dynamischen Gebäudesimulation kommen folgende Simulationsbereiche zum Einsatz:

- "Akkustiksimulation
- Brandverhaltenssimulation
- Energieeffizienzsimulation
- Lichtsimulation
- Lüftungs-/Strömungssimulation [...]
- Raumbedarfssimulation
- statische Simulation [...]
- thermische Simulation [...]
- Verkehrsstromsimulation" (ebd., S.19)

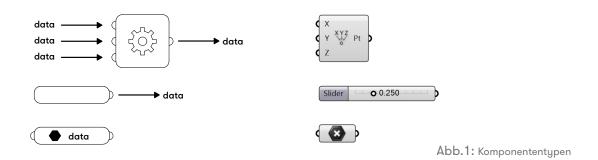
Werkzeuge und Softwarelösungen zur Simulation haben insofern großes Potential, da diese nicht nur für die Bewertung und Auswertung vorhandener Strukturen herangezogen werden können, sondern sie "führen im Entwurfsprozess zu einer faktenbasierten, digitalen Formfindung und -strukturierung. Mittelfristig werden Planungs- und Simulationsumgebungen zusammenwachsen." (ebd., S.19).

O3 METHODE

Ziel der Arbeit ist die Entwicklung einer digitalen Werkzeugkette zur Variantenbildung und Evaluierung von Gebäuden in der frühen Entwurfsphase. Als Fallstudie werden Varianten von Bürotypologien produziert. Getestet wird die Kompatibilität algorithmischen Design-Tools und BIM-Software. Die algorithmische Variantenbildung der BIModelle wird mithilfe von ARCHICAD 21 und dem RHINO 3D Plug-In GRASSHOPPER erarbeitet. Diese Software-Lösungen (für die Modellierung der Varianten) wurden auf Grund der 2016 erschienen Live-Connection ausgewählt. Hier erfolgt keine klassische Modellübergabe von A nach B, sondern es befinden sich die Programme mithilfe der Live-Connection zwischen GRASSHOPPER und ARCHICAD während der Bildung der Varianten in stetem Informationsaustausch. Der in GRASSHOPPER geschriebene Algorithmus kontrolliert die Parameter das BIModell in ARCHICAD. Die Software ARCHIPHYSIK wurde zur folglich Erstellung der Energieausweise aufgrund der CAD-Schnittstellenfunktion, die die Datenübergabe zwischen ArchiCAD und ArchiPHYSIK erleichtert, ausgewählt. Die weiteren Auswertungen von Flexibilität, Rohbaukosten, Fassadenkosten und Flächeneffizienz erfolgen manuell. Die Materialeffizienz wird anhand der baubook-Software ECO2SOFT (Baubook) ermittelt. Die Bewertung der evaluierten Varianten erfolgt wiederum manuell mittels Netzdiagrammen, die einen schnellen Überblick über die verschiedenen Lösungen liefern und somit die Auswahl der am besten geeignetsten Variante ermöglichen sollen.

O31 SOFTWARE

ARCHICAD


ARCHICAD ist ein von dem ungarischen Softwarehersteller GRAPHISOFT entwickeltes BIM-Tool für Architekten. Anders als bei anderen CAD-Programmen arbeitet ARCHICAD mit "data-enhanced" parametrischen Objekten ("smart objects"). In ARCHICAD kann sowohl in 2D als auch in 3D gearbeitet werden und das in verschiedenen Ansichten wie z.B. Grundriss, Schnitt, Ansicht, im Detail und in 3D, wo die Daten des Modells gespeichert sind. Es wird ein virtuelles Gebäudemodell in 3D mittels vordefinierten oder hinzuladbaren parametrischen 3D-Objekten wie Wände, Decken, Stützen, Fenster, Dächer und Möblierungen erstellt. Diese Objekte sind modifizierbar durch Änderung derer Parameter. Außerdem updaten sie sich durch ihre Abhängigkeit in allen Ansichten. Das durch die "smart objects" erstellte Modell ist nicht nur für Visualisierungen verwendbar, sondern intelligent in dem Sinn, dass die Objekte Datensätze und Listen beinhalten, die für Auswertungen wie z.B. Energieeffizienz, Materialmengen, Raumlisten, Kosten usw. herangezogen werden können. Durch die Funktion "Teamwork" können mehrere Personen gleichzeitig via Server an einem 3D-Modell arbeiten und so schon früh den Aspekt der Interdisziplinarität in den Entwurfsprozess miteinbinden. Der Import und Export von Daten erfolgt anhand der Formate DWG, DXF, IFC, BCF und der programmeigenen Formate wie z.B. PLN. Die 2016 veröffentlichte Live-Connection zwischen dem RHINO 3D Plug-In GRASSHOPPER und ARCHICAD gibt die Möglichkeit, ohne klassischen Modellaustausch und somit zeitgleich und bidirektional das Modell in beiden Programmen zu bearbeiten (vgl. Graphisoft, 2018).

RHINO 3D

"Rhinoceros 3D ist eine Modelliersoftware die NURBS-Kurven, -Flächen, Volumenkörper, Punktwolken und Polygonnetze erzeugen, bearbeiten, analysieren, dokumentieren, rendern, animieren sowie übersetzen kann. Es gibt keine Grenzen bezüglich Komplexität, Grad oder Größe, die über diejenigen ihrer Hardware hinausgehen." (Rhino3D, 2018).

GRASSHOPPER

GRASSHOPPER arbeitet immer parallel mit der RHINOCEROS 3D-Modeling-Umgebung und ist keine unabhängige Anwendung. Mit Zuhilfenahme des Plug-Ins GRASSHOPPER lassen sich visuelle Algorithmen erstellen, indem komplexe Aufgaben in eine Liste aus genau definierten Anweisungen vereinfacht werden. Da das Scripting der Algorithmen visuell erfolgt, müssen folgend die Komponenten erläutert werden. Es wird zwischen 3 Typen von Komponenten unterschieden; 1. Standard-Komponenten, die Operationen ausführen; 2. Input-Komponenten, die Daten (z.B. Zahlen) liefern; 3. Container-Komponenten, die Daten beinhalten (vgl. Tedeschi 2014, S.40).

Dargestellt wird der Algorithmus durch Node-Diagramme der verbundenen Komponenten.

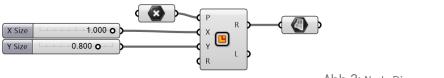


Abb.2: Node-Diagramm

Die Komponenten repräsentieren unter anderem Folgendes:

- Punkte, Kurven, Oberflächen
- Vektoren
- Geometrische Operationen wie Extrudieren, Rotieren etc.

Die Algorithmen werden auf dem "Canvas" gebaut, indem die Nodes durch Doppelklick und textlicher Eingabe oder per Drag & Drop platziert werden (vgl. Tedeschi 2014, S.37f).

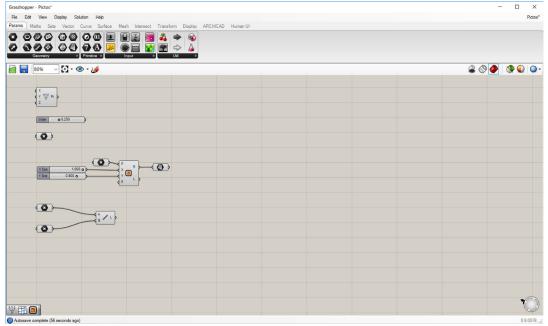
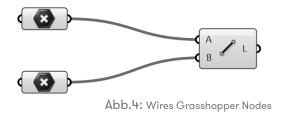



Abb.3: Canvas Grasshopper

Um die einzelnen Komponenten miteinander zu verbinden, damit diese komplexere Operationen durchführen können, werden sie mittels "Wires" (Kabeln) miteinander verbunden. Diese Verbindungen verlaufen linear, sind finit und lassen keine Loops zu (vgl. ebd., S.44).

Die in GRASSHOPPER verfassten Algorithmen generieren zwei Outputs, zum einen den visuellen Algorithmus selbst, zum anderen das 2D oder 3D Modell, das parallel im RHINOCEROS 3D-Fenster errechnet wird. Hierbei führt der Algorithmus zu einer Geometrie (vgl. Tedeschi 2014, S.24).

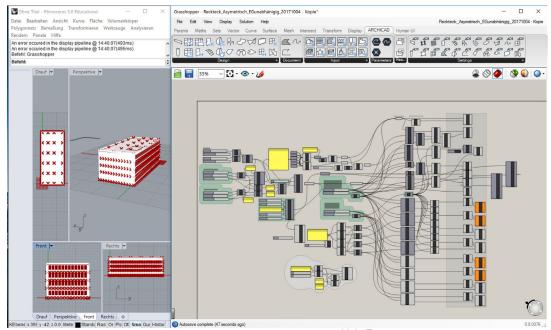


Abb.5: Rhino 3D und Grasshopper Fenster

Durch die Live-Connection zwischen GRASSHOPPER und ARCHICAD kann diese Geometrie in ein BIModell übersetzt werden. Diese wird im folgenden Kapitel näher erläutert.

ARCHIPHYSIK

ARCHIPHYSIK isteinProgrammfürdenbauphysikalischen Nachweiszu Wärme-, Feuchte-sowie Schallschutz. Berechnet werden Energiekennzahlen, Nachweis der sommerlichen Überwärmung, als auch der ökologische Fußabdruck. "Berechnungsmodelle, geforderte Formulare für die Dokumentation sowie Grenzwerte für Bauteile und Gebäude werden durch einfache Lokalisierung des Projekts gewählt. Für die Weiterverwendung von CAD-Daten stehen 3D CAD- Schnittstellen zur Verfügung. Es werden Aufbauten, Flächen und Volumen aus dem CAD übernommen bzw. aktualisiert. ArchiPHYSIK bietet mit seiner Schnittstelle zum Architektur-CAD - gerade im Entwurfsbereich eine wesentliche Erleichterung. In einem semi-automatisierten Verfahren werden Änderungen am Gebäudemodell einer erneuten Berechnung in ArchiPHYSIK zugeführt. Mit wenig Aufwand wird das Gebäude erneut berechnet. So sehen Sie als Planer innerhalb kürzester Zeit die energetischen Auswirkungen Ihrer Maßnahmen." (Battisti und Somogyváry 2017, S.1).

ECO2SOFT

ECO2SOFT ist ein "[O]nline-Tool für die ökologische Bewertung von Gebäuden" (Eco2Soft, 2017) im gesamten Lebenszyklus. Mithilfe von ECO2SOFT können die Berechnung des Entsorgungsindikators bzw. von Ökobilanzen von Gebäuden sowie eine OI3-Berechnung erstellt werden. "Grundlage für die Berechnungen bilden Hintergrunddaten der Plattform www. baubook.info. Entweder zieht man für die Berechnung produktspezifische Rechenwerte heran oder greift auf produktgruppen-spezifische Richtwerte zurück (ebd.)". Es können für das zu berechnende Gebäude "Folder" erstellt werden. Nach einer Auswahl der bereitgestellten Werte der Materialien erfolgt eine manuelle Eingabe von Flächen, Energiebedarf, Transportwegen und Entsorgungswegen in das Online-Tool. Resultate der Berechnungen können als Listen und grafische Darstellungen der Bauteile exportiert werden (vgl. ebd.).

SCHNITTSTELLEN UND LIVE-CONNECTIONS

GRASSHOPPER - ARCHICAD

Die GRASSHOPPER-ARCHICAD Live-Connection ist ein Add-On für ARCHICAD und ein Plug-In für GRASSHOPPER. Es ermöglicht dem Benutzer, in GRASSHOPPER erstellte Algorithmen von Geometrien in BIM-Elemente zu übersetzen und so den BIM-Prozess schon früh in den Designprozess einzubinden. Eine Modellübergabe von Programm A zu Programm B ist durch die Live-Connection nicht notwendig, da die Bearbeitung des GRASSHOPPER-Algorithmus und Eingriffe auf BIM-Elemente ARCHICAD bi-direktional erfolgen. Dafür müssen die Programme GRASSHOPPER und ARCHICAD simultan geöffnet und die Verbindung durch das Plug-In gestartet sein. Sie ermöglicht es, BIM-Elemente als Nodes in GRASSHOPPER mit dem bestehenden Algorithmus zu verknüpfen, welche sich in weiterer Folge in ARCHIAD zu einem BIModell zusammensetzen. Änderungen des Modells sind sowohl in GRASSHOPPER als auch in ARCHICAD möglich. "Use this solution for seamless, bi-directional geometry transfer, and to translate basic geometrical shapes into full BIM elements while adding algorithmic editing functionality." (Graphisoft.akamaized 2018) Die Algorithmen dieser Arbeit wurden mit der ersten Version der GRASSHOPPER-ARCHICAD Live-Connection (Stand 2017) Jedoch bringt die im Dezember 2017 veröffentlichte Version 2.0 hier nicht berücksichtigte Neuerungen mit sich. "The latest update of GRAPHISOFT's Grasshopper-ARCHICAD live connection opens a new level of intelligent workflows between the two design environments (algorithmic design and BIM). With the brand new "Deconstruct" function, users can now use their BIM models as the backbone of their design, adding algorithmic design logic using Grasshopper. This allows designers to maintain the basic design logic in BIM (such as the base geometry of the building) and extend that with intelligent design details that follow changes in the core design." (Graphisoft, 2018)

ARCHICAD Nodes in GRASSHOPPER

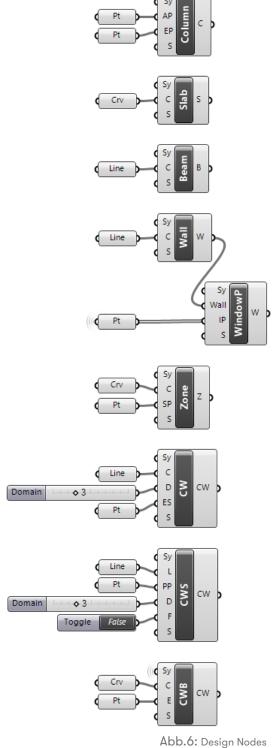
DESIGN NODES

GRASSHOPPER zu ARCHICAD

- Stützen
- Decken
- Träger
- Wände
- Fenster
- Türen
- Zonen / Räume
- Curtain Walls
- Dächer
- Schalen
- Mesh
- Morph

INPUT

Die Design Nodes der GRASSHOPPER-ARCHICAD Live-Connection benötigen geometrischen Input - wie Punkte, Linien und Kurven, die ihre Position anzeigen.


Pt - Punkt

Line - 2D Linie

Crv - Polylinie oder Spline

OUTPUT

Die Live Connection 2.0 ermöglicht es dem User, die ARCHICAD-Komponenten in GRASSHOPPER weiter zu bearbeiten.

ARCHICAD Leiste in GRASSHOPPER

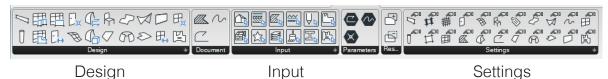


Abb.7: ArchiCAD Leiste in Grasshopper

SETTINGS

Mithilfe der Settings-Komponente, die für jede Design-Komponente verfügbar ist, können die durch GRASSHOPPER erstellten Geometrien und damit verbundenen das ARCHICAD-Design-Nodes Element definieren. Dies erfolgt über die INPUT-Nodes.

Sie beinhalten eine Liste von Werten, die aus ARCHICAD bezogen werden:

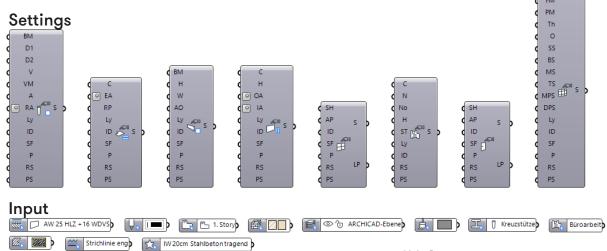
Input ((IA ID OII S SF Р RS Setting Abb.8: Node

OA O

Design

c 🖂 w

s


- Composite
- Fill Pattern
- Line Type
- Profile
- Surface

Building Material

AW 25 HLZ +16 WDVS

o 3.5

- Favorite
- Layer
- Pen
- Story Plane

ARCHICAD - ARCHIPHYSIK

Die ARCHICAD-ARCHIPHYSIK-Schnittstelle Version 5 ist ein Plug-In, das den Austausch von CAD-Daten zwischen den beiden Programmen ermöglicht um eine nonkonforme Energieausweisberechnung durchführen zu können. Die Ermittlung basiert auf der Weitergabe der Information von Elementen. Herangezogen werden Wand, Decken und Schraffurflächen, Bauteilaufbauten, Lage der thermischen Gebäudehülle und die geografische Orientierung. Die Ermittlung der Grundfläche und das Volumen der Räume erfolgt durch Weitergabe der Raumstempel. Auch Glasflächen und gesamte Fensterflächen werden in die Evaluierung miteinbezogen. die Weitergabe erfolgt in der ARCHICAD Version 21 und ARCHIPHYSIK Version 15 mit einem Assistenten, der in ARCHICAD startet und die gesamte Übergabe des BIModells bzw. dessen Daten nach ARCHIPHYSIK leitet und eine laufende visuelle Kontrolle der Daten ermöglicht. Nicht erfassbare Daten können in ARCHIPHYSIK manuell vor der Auswertung ergänzt werden (vgl. ArchiPHYSIK 2018).

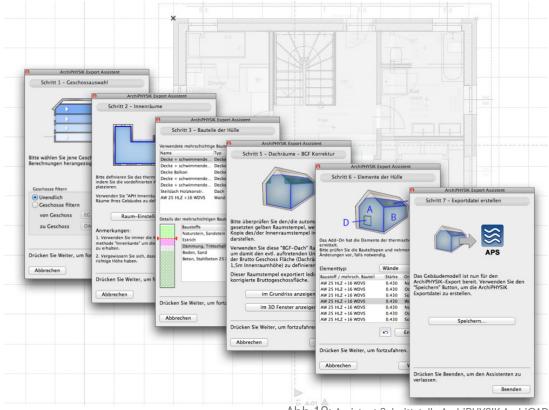


Abb. 10: Assistent Schnittstelle ArchiPHYSIK-ArchiCAD

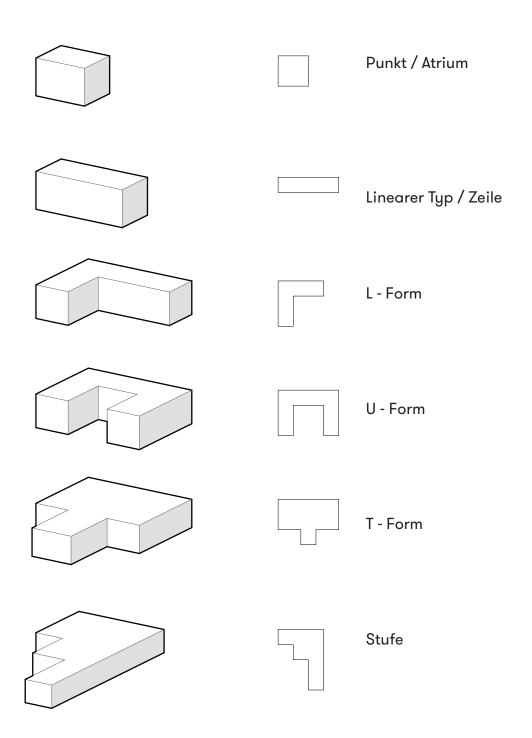
O3.2 ANALYSE BÜRO

Bürotypologien

Arbeitsplatz

Struktur + Tiefe

Bürotypen


Raster

Flexibilität

Fassade

Für die Entwicklung der Werkzeugkette werden als Fallstudie Bürotypologien in der frühen Entwurfsphase gebildet. Folgend werden Bürostandards analysiert, um die Parameter für den Algorithmus zu erhalten. Es erfolgt eine Analyse der gängigen Bautypologien, Arbeitsplatzgrößen, Fassadenraster, Organisationsformen und Anforderungen an Flexibilität und Flächen. Anhand der aus der Analyse hervorgehenden Parameter, die den Algorithmus definieren, soll dieser es ermöglichen, eine unbestimmte Anzahl an Bürotypen zu erzeugen und so die beste Lösung zu finden.

Bürotypologien

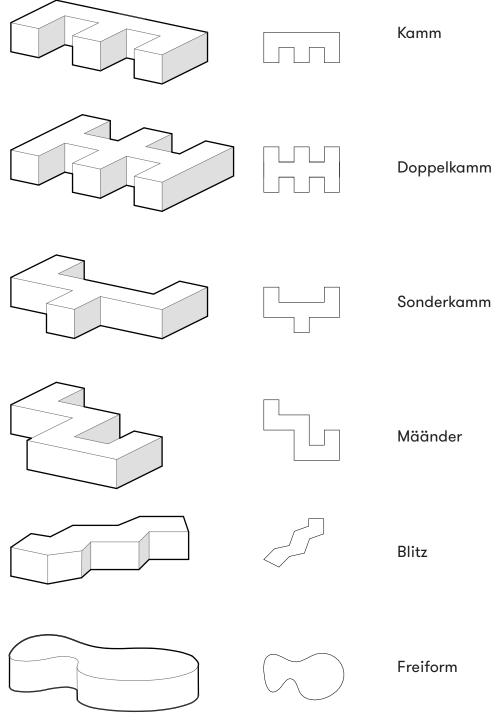
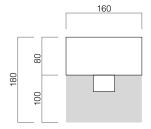
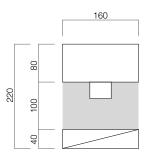
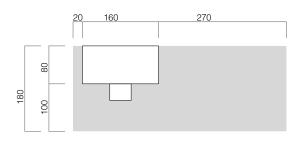
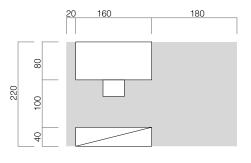
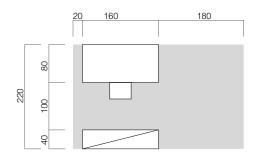
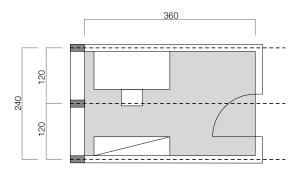




Abb.11: Bürotypologien


Arbeitsplatz


Einzel-Arbeitsplatz Schreibtischmaße + Bewegungsfläche


Einzel-Arbeitsplatz mit Schrank


Arbeitsplatzmodul 8m² minimale Anforderung 180 x 450 cm

Arbeitsplatzmodul 8m² minimale Anforderung 220 x 350 cm

Arbeitsplatzmodul - Raster 90cm

Zellenbüro - Raster 120 cm

Abb.12: Arbeitsplatztypen

Bürotypen

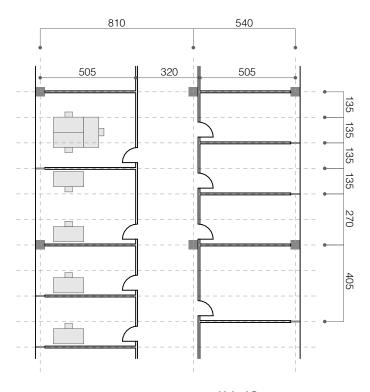


Abb.13: Zellenbüro Schema

- 10-17m²
- "Klassiker"
- konzentrierte Arbeit
- Behörden und Verwaltung
- · AP entlang der Fassade
- · individuelle Beleuchtung und Belüftung
- mangeInde Kommunikation
- hoher Flächenverbrauch

Zellenbüro

Der Typ des Zellenbüros definiert sich durch Einzel- oder Mehrpersonenarbeitsplätze, die entlang der Fassade angeordnet sind und durch Flur einen erschlossen werden. Zwar fördert dieser Typ nicht die Kommunikation, jedoch lässt er konzentriertes und individuelles Arbeiten Zellenbüro kann zu. Das sowohl in Ein. Zwei- und Dreibundanlagen realisiert werden. Zu große Raumtiefen bedeuten iedoch 810 ungünstige Raumproprtionen. weiterer Vorteil Zellenbüros ist die individuelle Steuerung der Belüftung und Belichtung pro Einzel- oder Mehrpersonenarbeitsplatz. Zu Nachteilen den des Zellenbüros gehören der mangelnde Kontakt und Kommunikation sowie ein hoher Flächenverbrauch. Weiters sind bei Zwei- und Dreibundanlagen meist dunkle und schmale Flure anzutreffen (vgl. Jocher und Loch 2010, S.382). 31

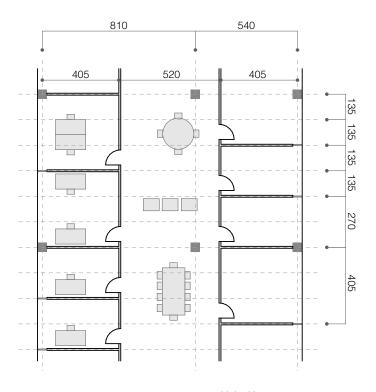


Abb.14: Kombibüro Schema

- 8-12 m²
- Konzentration + Kommunikation
- Dreibundanlage
- Mittelzone = Flur = Gemeinschaftszone
- Einzelarbeitsplatz + Gemeinschaft

Kombibüro

Das Kombibüro versucht, den Wunsch nach dem optimalen Mittelweg zwischen Konzentration und Kommunikation zu erfüllen. Die Struktur des Kombibüros siedelt sich zumeist einer Dreibundanlage Entlang der Fassade befinden sich Einzel- oder Mehrpersonenarbeitsplätze. Die Mittelzone definiert durch den offenen Gemeinschaftsbereich, der auch gleichzeitig die Erschließung darstellt, wodurch eine zusätzliche Flurfläche nicht notwendig ist. Die Größe der Einzelarbeitsplätze wird zugunsten der Gemeinschaftsfläche reduziert. Eine häufige Trakttiefe für diesen Typ sind 14m. (vgl. Jocher und Loch 2010, S.383)

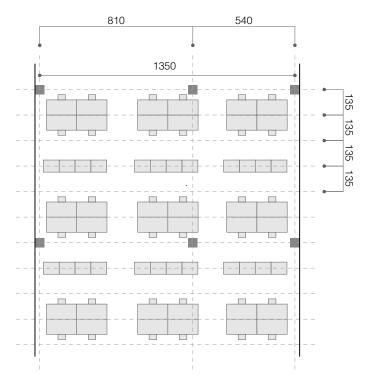


Abb.15: Großraumbüro Schema

- 20 100 Mitarbeiter pro Büroeinheit
- Übersichtlichkeit + Großzügigkeit
- variable AP-Positionierung
- · variable Flächenzuordnung
- · keine Bindung an Gebäudetiefen und Raster
- Nutzfläche = Verkehrsfläche
- · Kern als Fixpunkt
- natürliche Belichtung und Belüftung problematisch

Großraumbüro

Das Großraumbüro hat sich von einem orthogonal organisierten Typus hin zu einer frei organisierbaren Bürolandschaft entwickelt, die auch "RaumimRaum"-Systeme beinhalten kann. Es definiert sich als frei bespielbarer Raum, dessen irreversiblen Punkte der Treppenkern, WC und Garderoben sind. Die Erschließung der Arbeitsplätze erfolgt flurlos, sodass der der Großteil der Fläche Arbeitsplatz und Verkehrsfläche gleichermaßen darstellt. Bei diesem Тур Fassadenraster spielen Gebäudetiefen sowie eine nebensächliche Rolle. Jedoch kann bei zu großen Tiefen nicht mehr natürlich belichtet und belüftet werden. Nachteile dieses Typus sind die enstehenden Hierachien durch die Nähe des AP zur Fassade. akustische Probleme, keine Rückzugsmöglichkeiten und fehlende Privatsphäre (vgl. Jocher und Loch 2010, S.386).

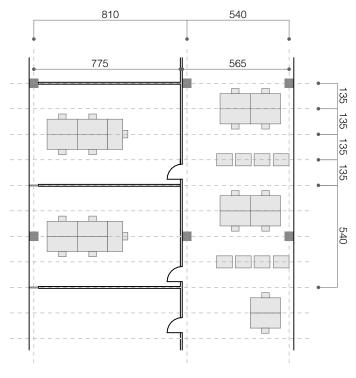


Abb.16: Gruppenbüro Schema

- max. 25 Mitarbeiter pro Büroeinheit
- · Weiterentwicklung Großraumbüro
- · große Bereiche
- · variable Flächenzuordnung
- keine Bindung an Gebäudetiefen und Raster
- Nutzfläche = Verkehrsfläche
- Kern als Fixpunkt
- Kommunikation und Teamarbeit

Gruppenbüro

Das Gruppenbüro versteht sich als eine Weiterentwicklung des Großräumbüros. das versucht. dessen Vorzüge hervorzuheben. Hier werden anders als beim Großraumbüro mit Büroeinheiten von 20-100 Mitarbeitern, Büroeinheiten mit maximal 25 Mitarbeitern organisiert. Der Unterschied zum Großraumbüro liegt auch in der geringeren Raumgröße und Raumtiefe. Es ist nicht vollkommen offen gestaltet, sondern in große Bereiche unterteilt. Bei diesem Typ wird die Zusammenarbeit als Team und Kommunikation betont. Die Erschließung erfolgt auch hier flurlos über die Nutzfläche. (vgl. Jocher und Loch 2010, S.384)

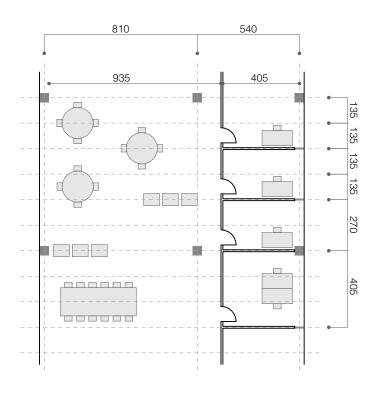


Abb.17: Businessclub Schema

- 8-12 m²
- kein fixer Arbeitsplatz
- Raumhöhe mind. 3 Meter
- Nutzfläche = Verkehrsfläche
- wenige Standardarbeitsplätze

Businessclub

DerBusinessclubhatalsVorbild das Kombibüro. Wobei es hier weniger Standardarbeitsplätze gibt und mehr Gruppen-, oder Steharbeitsplätze Die Besprechungsräume. Standardarbeitsplätze werden jedoch trotzdem entlang der Fassade angeordnet. Die Erschließung erfolgt über Nutzfläche die und es gibt keine zusätzlichen Flur- oder Verkehrsflächen. Dieser Typ verlangt eine Mindestraumhöhe 3 von Metern.

Anders als bei den anderen Typen haben die Mitarbeiter beim Businessclub meist keinen fixen Arbeitsplatz, sondern wählen ihren Arbeitsort innerhalb des Büros anhängig von ihrer derzeitigen Tätigkeit aus. (vgl. Jocher und Loch 2010, S.385)

Bürotypen Daten

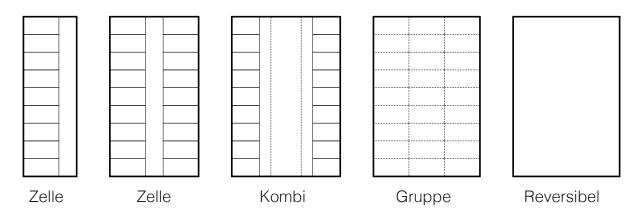
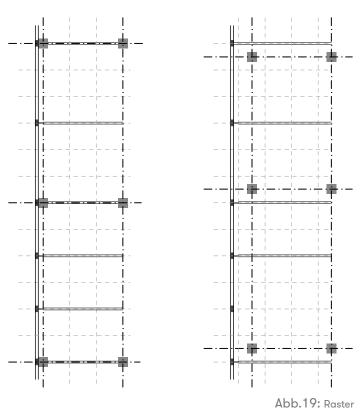


Abb.18: Einbund-, Zweibund-, Dreibundbüro

Bürotyp	Zelle einbund	Zelle zweibund	Kombi dreibund	Gruppe	Reversibel
Gebäudetiefe	7 bis 10 m	12 bis 14 m	13 bis 20 m	12 bis 24 m	13 bis 20 m
Erschließung	Flur	Flur	Flurzone	Flurzone	-
AP m ²	10 bis 17 m ²	10 bis 17 m ²	8 bis 12 m ²	12 bis 15 m ²	8 bis 15 m ²
Raumtiefe	3,5 bis 5,5 m	3,5 bis 5,5 m	3,5 bis 4,5 m	5 bis 15 m	3,5 bis 7,5 m
zwei Achsen	2,4 bis 3 m	2,4 bis 3 m	2,3 bis 3 m	-	2,3 bis 3 m
drei Achsen	3,6 bis 4,5 m	3,6 bis 4,5 m	3,6 bis 4,5 m	-	3,5 bis 4,5 m
Lichte Raum- höhe	> 2,5 m	> 2,5 m	2,75 bis 3 m	3,5 bis 4 m	> 3 m

Tab.1: Übersicht Bürodaten


Lichte Raumhöhe

Grundfläche	Lichte Raumhöhe		
< 50 m ²	> 2,5 m		
50 m² bis 100 m²	> 2,75 m		
100 m² bis 2000 m²	> 3 m		
> 2000 m ²	> 3,25 m		

Tab.2: Raumhöhen

(Jocher und Loch 2010, S.380-381)

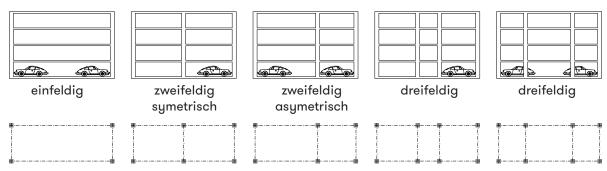
Raster

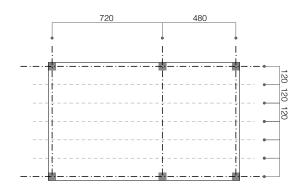
Tiefgarage

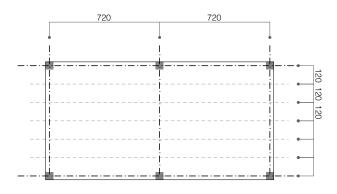
Das Konstruktionsraster muss auf die Stellplatzgröße und die Fahrbahnbreite abgestimmt werden. Auch die Position des Kerns muss bedacht werden.

Unterschieden wird zwischen Ausbauraster, Fassadenraster und Konstruktionsraster.

Wobei das Konstruktionsraster die Position des Tragwerks (oft Stützen) bestimmt. Ausbau- und Fassadenraster sollten sich überlagern, um Trennwandanschlüsse an der Fassade zuzulassen. Ausbauund Konstruktionsraster können deckungsgleich ausgeführt oder getrennt werden. Bei einem versetzten Anordnen entfallen die Anschlussprobleme bei Stütze Trennwand. und jedoch verursacht dies einen Raumverlust. (vgl. Jocher und Loch 2010, S.389)

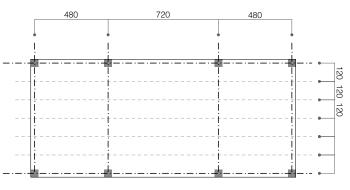
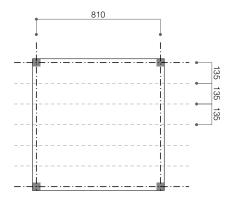


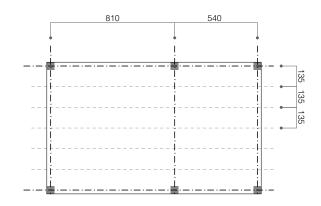

Abb.20: Tiefgaragen und Raster

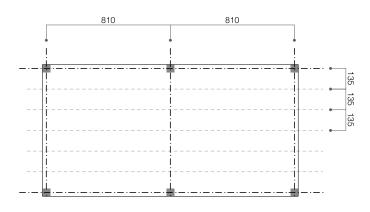

Rastermaß 1,20 m

- Fassadenraster +
 Ausbauraster
- bauteiloptimiert und wirtschaftlich
- Zellenbüros mit 2,30m
 Breite sehr klein aber anwendbar für wirtschaftliche Bauten
- Tiefgaragenstellplatz mit 2,40m Breite und Fahrgasse mit 6,80m Breite bei 16,8m Gebäudetiefe
- ab 15m keine natürliche Belüftung und Belichtung mehr möglich
- Ausbau- und Konstruktionsraster sind deckungsgleich

(Jocher und Loch 2010, S.394)


Abb.21: Raster 1,20m Schema


Rastermaß 1,35 m

- Fassadenraster + Ausbauraster
- leitet sich aus
 Einzelarbeitsplatz +
 Schrank ab
- sehr gut geeignet für Zellen oder Kombibüro
- anpassungsfähiges
 Raster, da vielfältige Unterteilungen möglich sind
- wirtschaftliche Gestaltung der Tiefgarage
- Ausbau- und Konstruktionsraster deckungsgleich

(Jocher und Loch 2010, S.396)

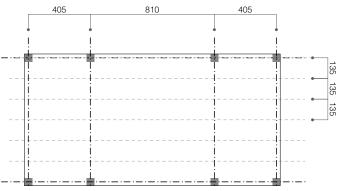


Abb.22: Raster 1,35m Schema

Rastermaß 1,50 m

- Fassadenraster + Ausbauraster
- Bei Doppelarbeitsplätzen sind vielfältige Unterteilungen möglich
- wirtschaftliche Gestaltung der Tiefgarage
- für Zellenbüro mit Doppelarbeitsplatz besonders geeignet

(Jocher und Loch 2010, S.398)

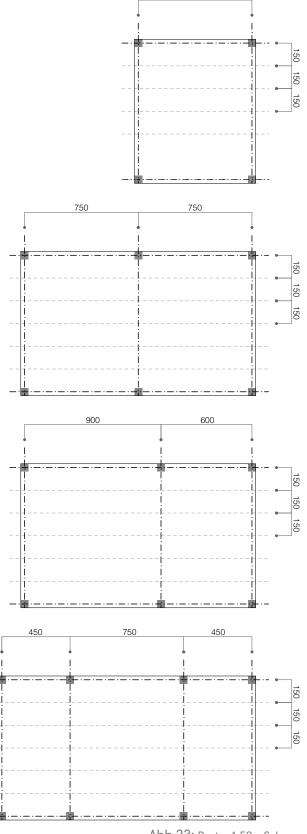
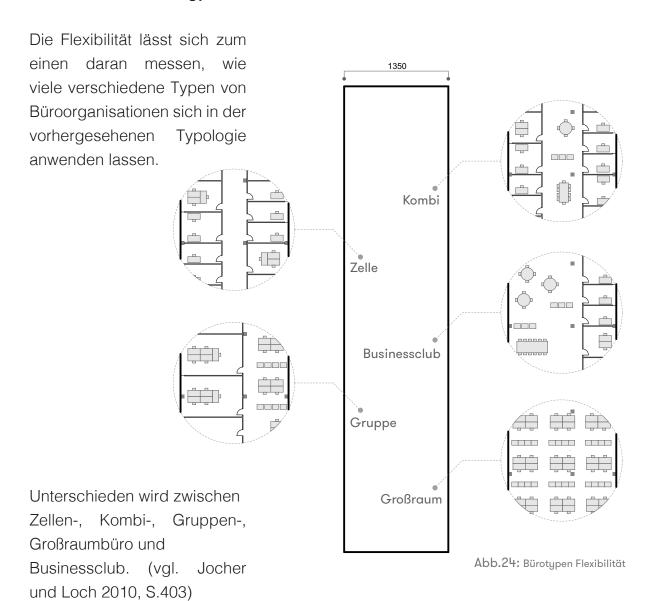



Abb.23: Raster 1,50m Schema

Flexibilität

- · Anwendbare Bürotypen
- Kern
- Tragwerkstyp

Anwendbare Bürotypen

Kern

Die Position der Kerne beeinflusst die Flexibilität des Gebäudes dahingehend, dass bei richtiger Positionierung eine Unterteilung in mehrere Flächen möglich wird und so über einen Kern mehrere Teilbereiche erschlossen werden können. ohne zusätzliche Verkehrsflächen einplanen zu müssen.

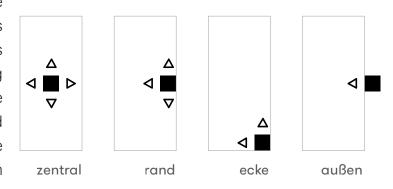
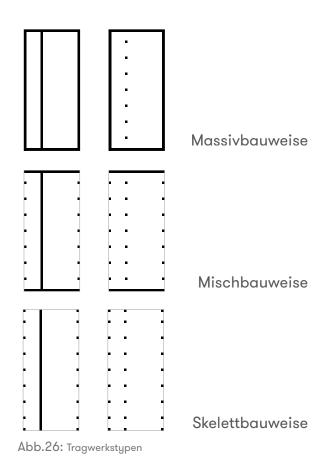
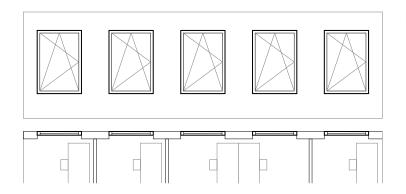
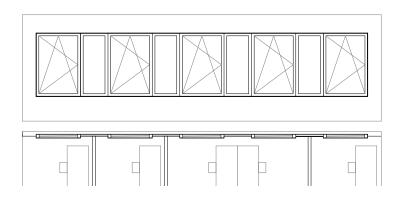



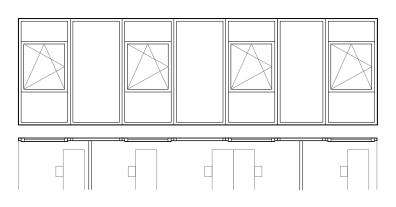
Abb.25: Kernposition


Tragwerkstyp

Es muss bedacht werden, welche Arbeitsprozesse entworfen werden soll - ob diese funktional konstant sind oder sich verändern. Ein unspezifisches Grundrissystem ist flexibler als eine vordefiniertes und kann vor allem durch Skelettbau erreicht werden. Die Massivbauweise eignet sich wenig für reversible StrukturenundschränktdieFlexibilität Mischsysteme definieren ein. Bauweisen daher als teilflexibel. So ist die flexibelste Strategie, Stützen und Kern im Rohbau und besondere Ausprägungen dem Ausbau zu entwickeln (vgl. Jocher und Loch 2010, S. 87).



Fassade


Fassadentypen

Lochfassade

Bandfassade

Pfosten-Riegel Fassade Curtain Wall

Abb.27: Fassadentypen

Lochfassade	Bandfassade	Pfosten-Riegel Fassade Curtain Wall
Konstruktion der Fassade meist massiv und tragend	Konstruktion der Fassade wird gebildet aus aneinandergereihten Element-	Konstruktion in raumhoher Verglasung aus Pfosten- und Riegelementen
Fenster schließen "Loch" Typischer Fenster- flächenanteil von 30%	en, die ein Fensterband bilden, mit Sturz und Brüstung	Sie ist selbsttragend vor den Geschossdecken stehend oder von diesen
W	Fenster bilden "Band"	abgehängt
Vorteile		
technisch einfacheKonstruktion	Typischer Fenster- flächenanteil von 60%	Typischer Fenster- flächenanteil zirka 90%
• gute		
Wärmedämmwerte	Energieeinsparung durch	Ähnlicher Lichteintrag zu
individuelle Steuerungeinfache Pflege und	erhöhte natürliche Be- lichtung	60% Fensterflächenanteil
Wartung		Vorteile
Nachteile	Vorteile	 hohe Transparenz
 natürliche Lüftung 	 Tageslichtausnutzung 	 hohe Flexibilität im
meist unzureichend	• individuelle Steuerung	 Innenausbau
eingeschränkter	 einfache Pflege 	 geeignet für alle
 Innenausbau 	 hohe Flexibilität im In- 	Typen
 für Zellentyp 	nenausbau	Nachteile
	Nachteile	 hoher Wärmeeintrag
	 Wartung des Sonnen- 	und -verlust
	schutzes	 hoher Konstruktion-
	 Installationskosten 	saufwand
	 für Kombibürotyp 	 Pflege und Wartung

aufwändig

S.438-445)

(Jocher und Loch 2010,

O33 METHODE DER VARIANTENBILDUNG

Ausgehend von den Bürotypologien wurde zu jeder Typologie ein Algorithmus in Form eines Grasshopper-Scripts erstellt, welches, ermöglicht durch die GRASSHOPPER-ARCHICAD Live-Verbindung, in ein parametrisches BIModell übersetzt wird. Die geometrischen Parameter sind in jedem Script so eingearbeitet, dass durch Veränderung der Werte Varianten erzeugt werden können. Die in GRASSHOPPER erstellten Geometrien werden mit den Design-Nodes, Komponenten der Verbindung, die in BIM Elemente übersetzt werden, verknüpft. Daraufhin errechnet sich parallel im geöffneten ARCHICAD-Fenster das BIModell. Zum Beispiel die Änderungen der Geschosse werden im GRASSHOPPER Script vorgenommen und zeitgleich in ARCHICAD virtuell gebaut. So könne ausgehend von einem Script eine unbestimmte Anzahl an Varianten erzeugt werden, die sich durch BIM für Vergleiche und Bewertungen heranziehen lassen.

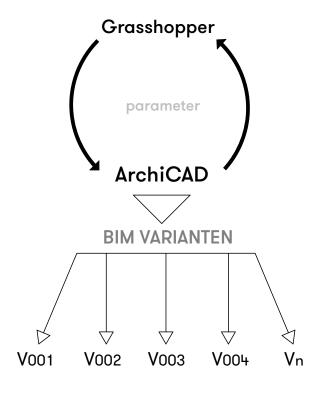


Abb.28: Konzept Variantenbildung

Die Varianten der Typologien werden hinsichtlich Energieeffizienz, Flexibilität, Flächeneffizienz, Materialeffizienz und Fassaden- und Rohbaukosten untersucht und bewertet. Die Auswertung erfolgt mittels Netzdiagramm.

Abb.29: Konzept Auswertung

O3_{.4} PARAMETER

Grundform

Bürotypologie

Fassadenraster

1.20

1.35 Meter

1.50

Geschossanzahl

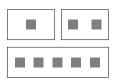
1 - n

Fassadentyp

Lochfassade Bandfassade Pfosten-Riegelfassade

Geschosshöhe

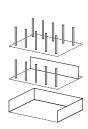
x - n Meter

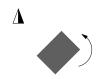

Kernposition

zentral rand ecke außen

Konstruktionsraster

Vielfaches Fassadenraster




Kernanzahl

1 - n

Tragwerkstyp

Skelett Misch Massiv

Ausrichtung am Grundstück

Abb.30: Parameter Büro

Jeder Geometrie einer Bürotypologie ist ein **GRASSHOPPER-Script** zugeordnet, das die angeführten Parameter enthält. Durch die Änderung der Prameterwerte innerhalb des GRASSHOPPER-Scripts lassen sich unterschiedlichste Varianten erzeugen. Weitere Parameter können über die Settings und Input-Nodes mittels ARCHICAD festgelegt werden.

Parameter ARCHICAD

Settings und Input

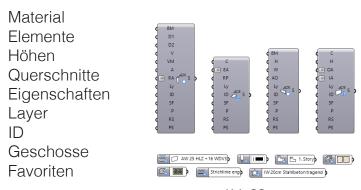
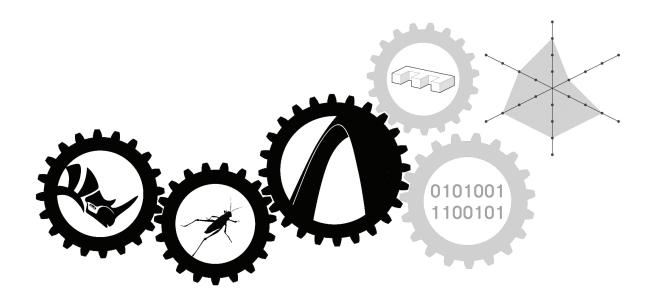
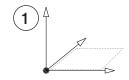
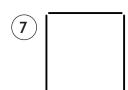



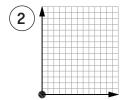
Abb.32: Settings und Input

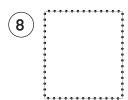
03_{.5} WORKFLOW

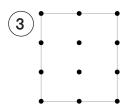

Der Workflow der Variantenbildung beginnt in GRASSHOPPER. Hier werden die Geometrien der Typologien anhand der Parameter definiert. Generiert werden Referenzpunkte, -linien und -kurven, denen im nächsten Schritt BIM-Elemente aus den ARCHICAD-Nodes zugeordnet werden. Die Detaillierung erfolgt anhand der Setting und Input-Nodes. In ARCHICAD werden Elemente, Materialien, Komponenten, Bauteile und Objekte erstellt, die durch die InputNodes in GRASSHOPPER in den Algorithmus eingefügt werden. Die Parameter werden in GRASSHOPPER so lange verändert bis die gewünschte Variante erreicht wird und in ARCHICAD als BIModell virtuell gebaut werden kann. Die daraus resultierenden Modelle und Daten können spätr für Auswertungen herangezogen werden.

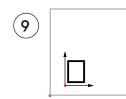
Punkt + Zeile

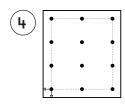


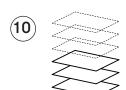

Workflow


Definition Ursprungspunkt im Koordinatensystem (x,y,z)

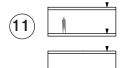

Referenzlinien der Wände werden durch die isolierten Eckpunkte erstellt

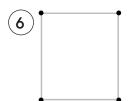

Vervielfachung des Fassadenrasters ergibt Länge X und Länge Y FR * x = X FR * y = Y

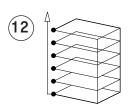

Referenzlinien der Wände werden im Fassadenraster unterteilt und ergeben die Referenzpunkte für die Fenster


Fassadenraster wird mit einem bestimmten Faktor multipliziert und ergibt so das Tragwerksraster FR * x * n = TWR

Referenzkurve für die Wände des Kerns werden innerhalb des Koordinatensystems im 1/2 Fassadenraster frei platziert

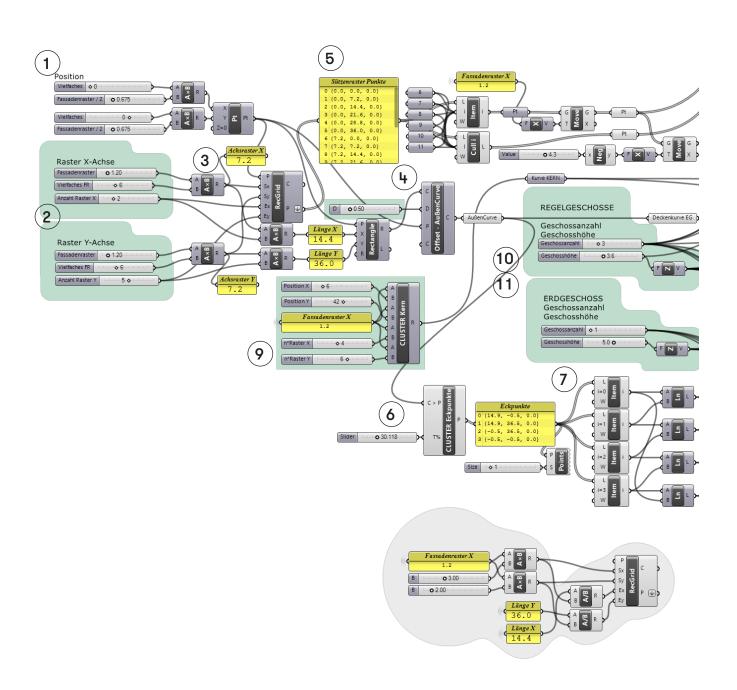

Offset der Außenkurve des Tragwerksrasters wird erstellt und ergibt die Referenzkurve der Decken


Definition der Anzahl der Geschosse


Um ein asymetrisches Stützenraster zu erhalten, werden Punkte des TWR um einen bestimmten FR-Wert versetzt

Definition der Geschosshöhe

Die Eckpunkte der Außenkurve der Decken werden ermittelt



Linear Array der ReferenzKurven, -Linien und -Punkte entlang der Z-Achse

Abb.33: Workflow Punkt+Zeile

Grasshopper Script

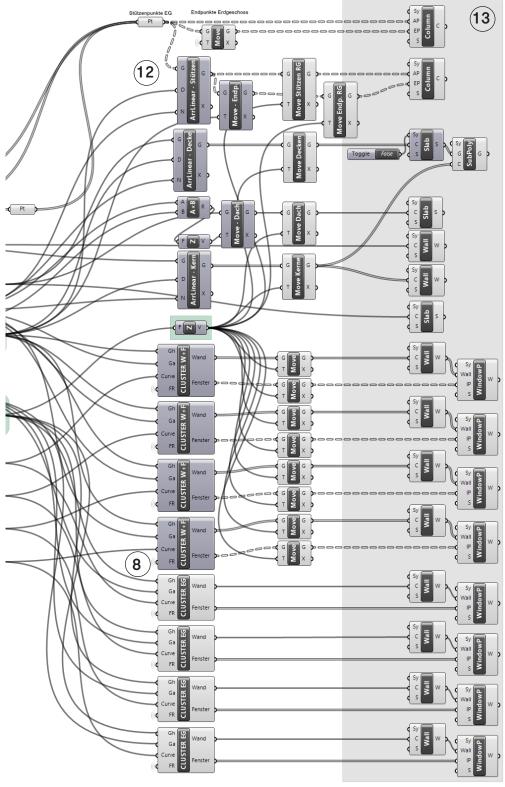


Abb.34: GH-Script Punkt+Zeile

Cluster

• Eckpunkte einer Polylinie isolieren

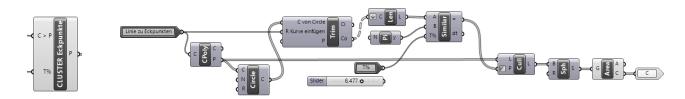
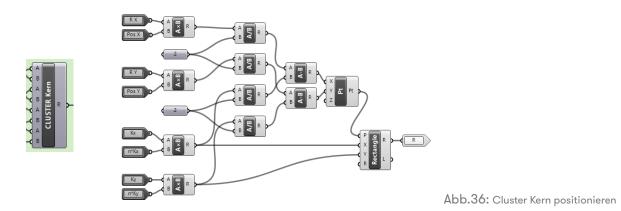



Abb.35: Cluster Eckpunkte isolieren

• Kerne im 1/2 Raster frei positionieren

• Referenzlinien der Wände für Referenzpunkte der Fenster unterteilen

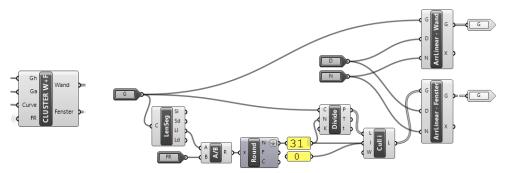


Abb.37: Linien teilen

RHINO 3D - GRASSHOPPER - ARCHICAD

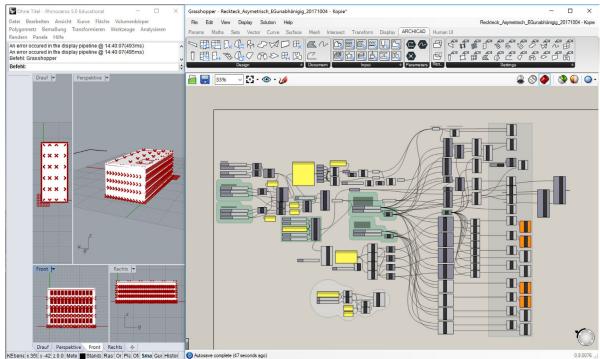


Abb.38: Rhino 3D + Grasshopper Script

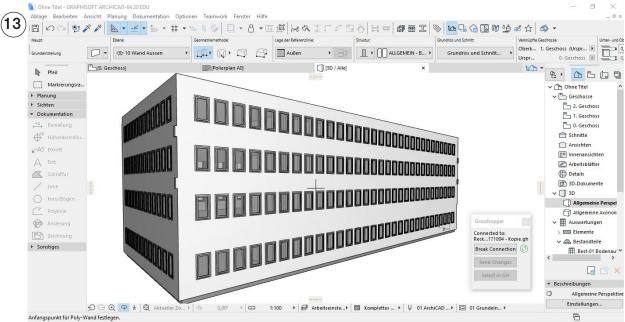
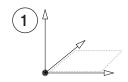
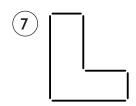
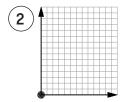
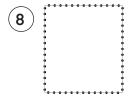
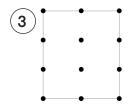



Abb.39: ArchiCAD BIM Modell

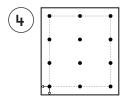

L-Form

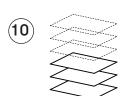

Workflow

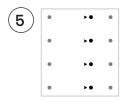

Definition Ursprungspunkt im Koordinatensystem (x,y,z)

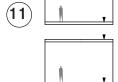

Referenzlinien der Wände werden durch die isolierten Punkte erstellt

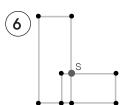
Vervielfachung des Fassadenrasters ergibt Länge X und Länge Y FR * x = X FR * y = Y


Referenzlinien der Wände werden im Fassadenraster unterteilt und ergeben die Referenzpunkte für die Fenster

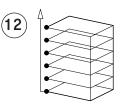

Fassadenraster wird mit einem bestimmten Faktor multipliziert und ergibt so das Tragwerksraster FR * x * n = TWR


Referenzkurve für die Wände des Kerns werden innerhalb des Koordinatensystems im 1/2 Fassadenraster frei platziert

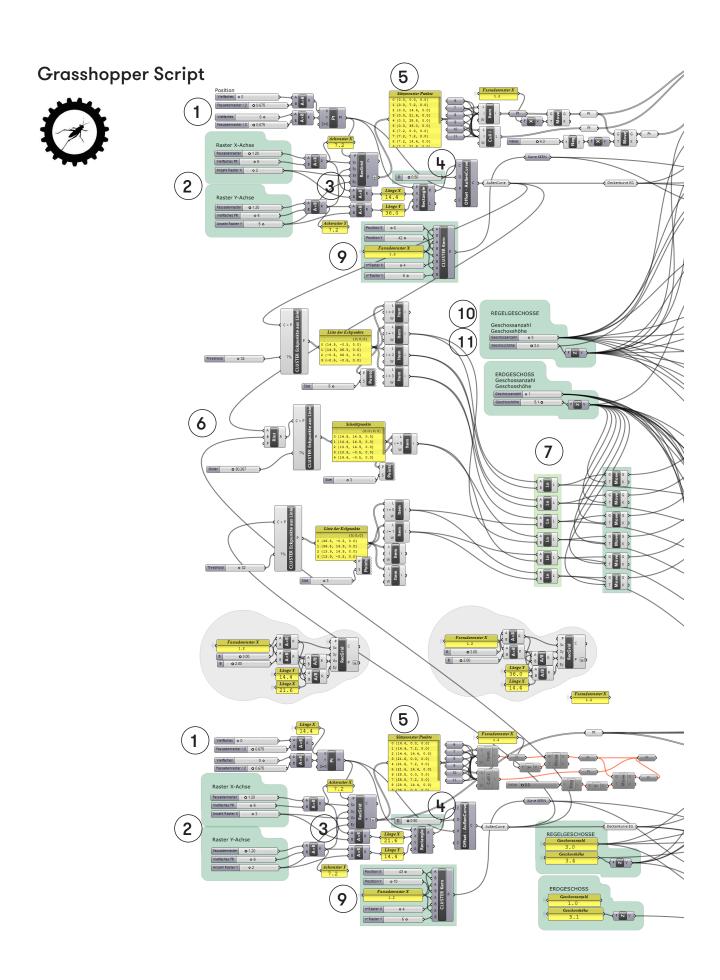

Offset der Außenkurve des Tragwerksrasters wird erstellt und ergibt die Referenzkurve der Decken


Definition der Anzahl der Geschosse

Um ein asymetrisches Stützenraster zu erhalten werden Punkte des TWR um einen bestimmten FR-Wert versetzt



Definition der Geschosshöhe


Die Eckpunkte der Außenkurve der Decken werden ermittelt

Schnittpunkt wird ermittelt

Linear Array der Referenz-Kurven, -Linien und -Punkte entlang der Z-Achse

Abb.40: Workflow L-Form

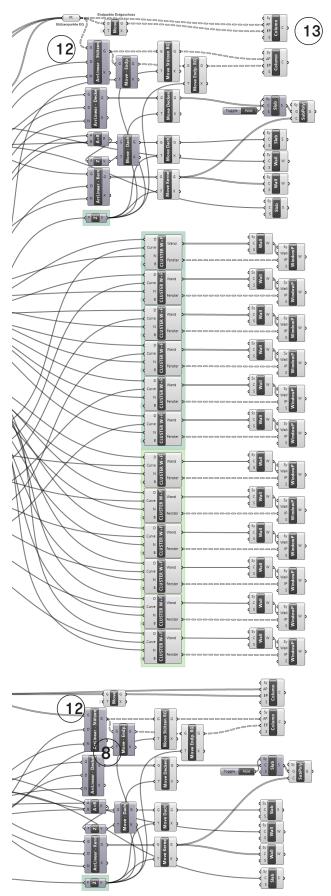
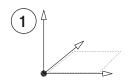
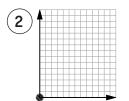
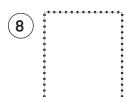
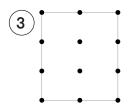



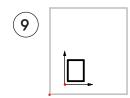
Abb.41: Grasshopper Script L-Form

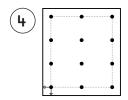
U-Form

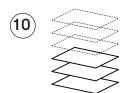

Workflow


Definition Ursprungspunkt im Koordinatensystem (x,y,z)

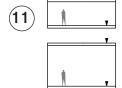

Referenzlinien der Wände werden durch die isolierten Punkte erstellt

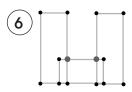

Vervielfachung des Fassadenrasters ergibt Länge X und Länge Y FR * x = X FR * y = Y

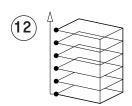

Referenzlinien der Wände werden im Fassadenraster unterteilt und ergeben die Referenzpunkte für die Fenster


Fassadenraster wird mit einem bestimmten Faktor multipliziert und ergibt so das Tragwerksraster FR * x * n = TWR

Referenzkurve für die Wände des Kerns werden innerhalb des Koordinatensystems im 1/2 Fassadenraster frei platziert

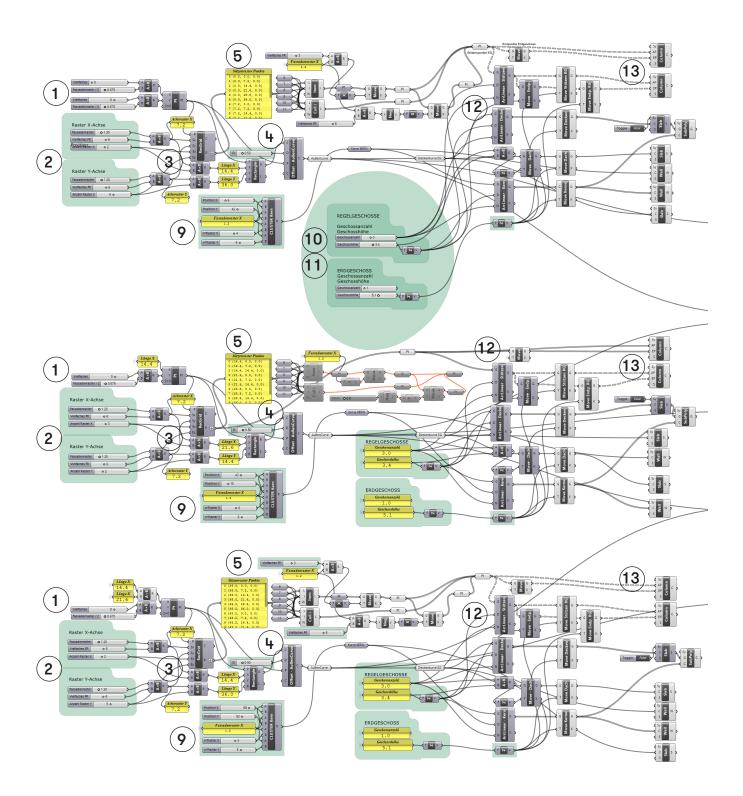

Offset der Außenkurve des Tragwerksrasters wird erstellt und ergibt die Referenzkurve der Decken


Definition der Anzahl der Geschosse


Um ein asymetrisches Stützenraster zu erhalten werden Punkte des TWR um einen bestimmten FR-Wert versetzt

Definition der Geschosshöhe

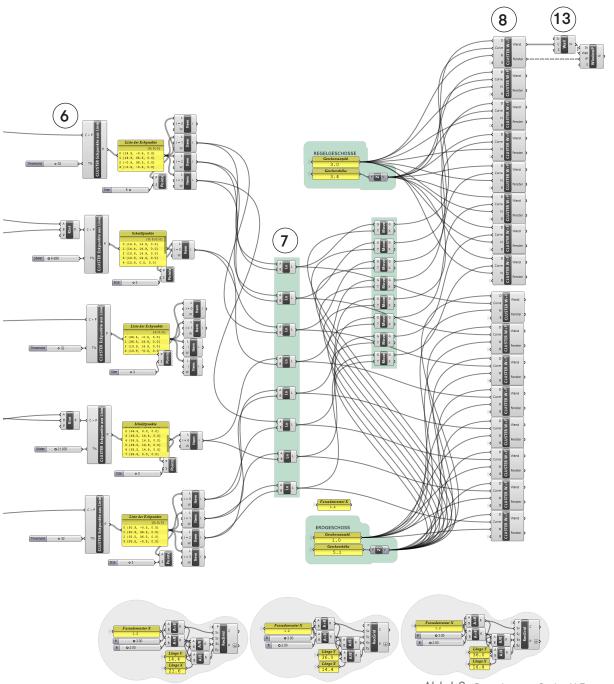
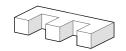
Die Eckpunkte der Außenkurve der Decken werden ermittelt Schnittpunkt wird ermittelt

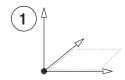


Linear Array der Referenz-Kurven, -Linien und -Punkte entlang der Z-Achse

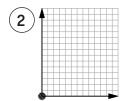
Abb.42: Workflow U-Form

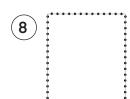
Grasshopper Script

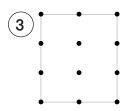



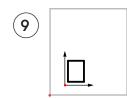

Abb.43: Grasshopper Script U-Form

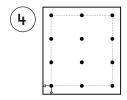
Kamm + Mäander

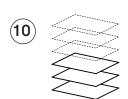

Workflow

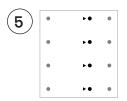

Definition Ursprungspunkt im Koordinatensystem (x,y,z)

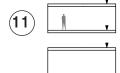

Referenzlinien der Wände werden durch die isolierten Punkte erstellt

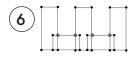

Vervielfachung des Fassadenrasters ergibt Länge X und Länge Y FR * x = X FR * y = Y

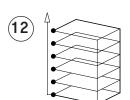

Referenzlinien der Wände werden im Fassadenraster unterteilt und ergeben die Referenzpunkte für die Fenster


Fassadenraster wird mit einem bestimmten Faktor multipliziert und ergibt so das Tragwerksraster FR * x * n = TWR


Referenzkurve für die Wände des Kerns werden innerhalb des Koordinatensystems im 1/2 Fassadenraster frei platziert

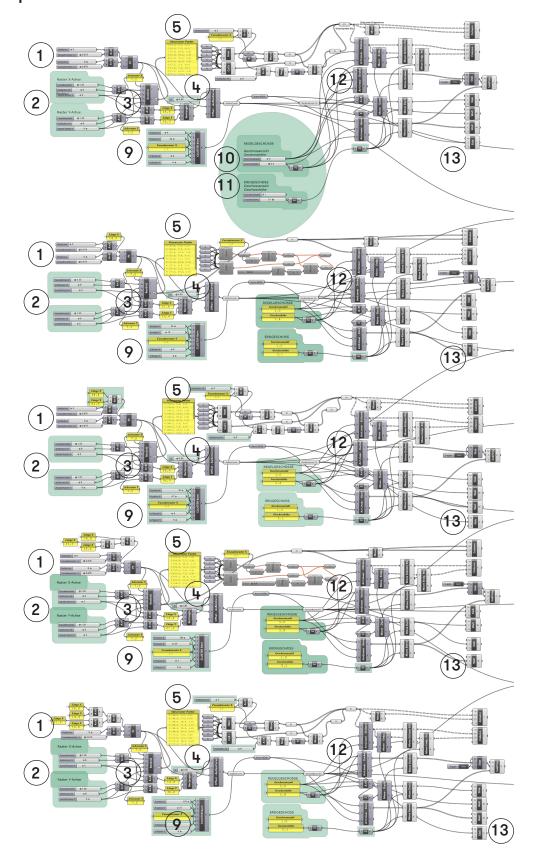

Offset der Außenkurve des Tragwerksrasters wird erstellt und ergibt die Referenzkurve der Decken


Definition der Anzahl der Geschosse


Um ein asymetrisches Stützenraster zu erhalten werden Punkte des TWR um einen bestimmten FR-Wert versetzt

Definition der Geschosshöhe

Die Eckpunkte der Außenkurve der Decken werden ermittelt Schnittpunkt wird ermittelt



Linear Array der Referenz-Kurven, -Linien und -Punkte entlang der Z-Achse

Abb.44: Workflow Kamm und Mäander

Grasshopper Script

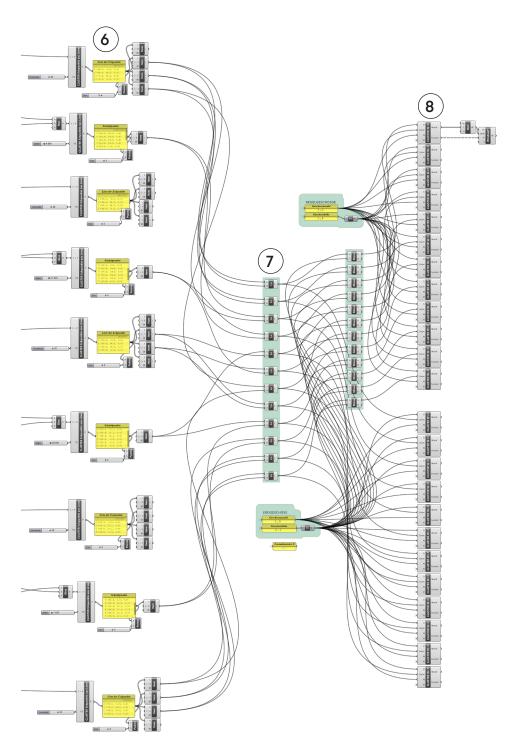
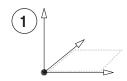
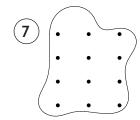
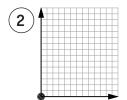
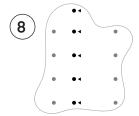
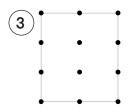



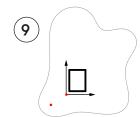
Abb.45: Grasshopper Script Kamm und Mäander

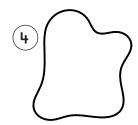

Freiform

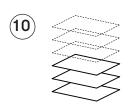

Workflow

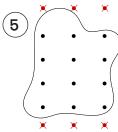

Definition Ursprungspunkt im Koordinatensystem (x,y,z)


Stützen befinden sich nun innerhalb der Referenzkurve für Decken und Fassade


Vervielfachung des Fassadenrasters ergibt Länge X und Länge Y FR * x = X FR * y = Y

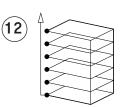

Um ein asymetrisches Stützenraster zu erhalten werden Punkte des TWR um einen bestimmten FR-Wert versetzt


Fassadenraster wird mit einem bestimmten Faktor multipliziert und ergibt so das Tragwerksraster FR * x * n = TWR


Referenzkurve für die Wände des Kerns werden innerhalb des Koordinatensystems im 1/2 Fassadenraster frei platziert

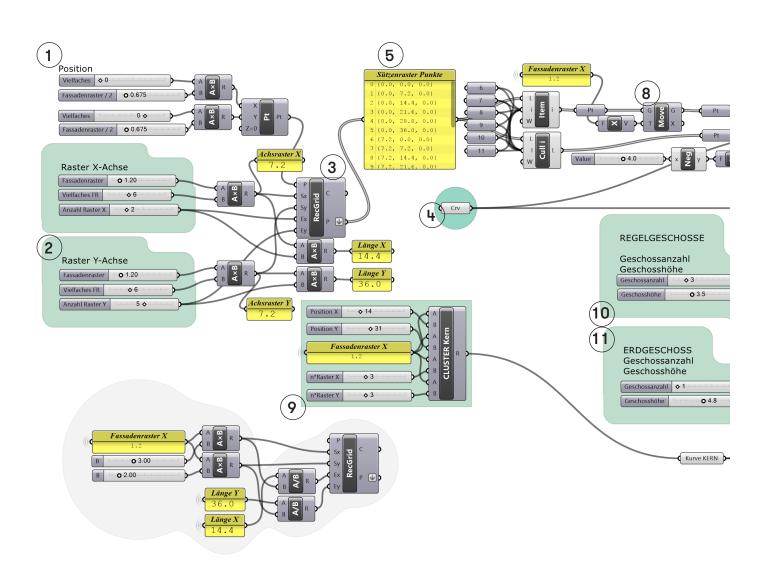
Referenzkurve wird in Rhino oder ArchiCAD erstellt und mit dem Skript verknüpft

Definition der Anzahl der Geschosse


Kurve wird an das Stützenraster angepasst. Es ergeben sich Stützen die nicht innerhalb der Kurve liegen

Definition der Geschosshöhe

Punkte des Stützenrasters die nicht innerhalb der Kurve liegen werden entfernt



Linear Array der Referenz-Kurven, -Linien und -Punkte entlang der Z-Achse

Abb.46: Workflow Freiform

Grasshopper Script

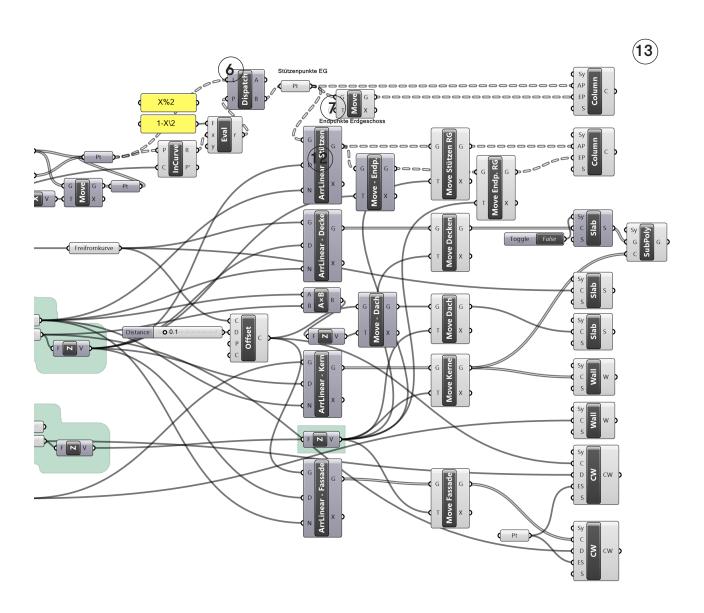


Abb.47: Grasshopper Script Freiform

OS6 EFFIZIENZBEWERTUNG & NETZDIAGRAMM

Die Bewertung der Varianten erfolgt anhand verschiedener Faktoren, die im Folgenden en détail erläutert werden.

Die Auswertungen der Faktoren werden mittels Schulnoten auf ein Netzdiagramm Aufgetragen, wobei die Note "Eins" als beste und "Fünf" als schlechteste gilt. Die Auswahl der "besten" Variante erfolgt anhand der Größe der Fläche des Netzdiagramms - je größer, desto effizienter.

- Energieeffizienz (E)
- Materialeffizienz (M)
- Flexibilität (F)
- Fassadenkosten € (F€)
- Rohbaukosten € (R€)
- Flächeneffizienz (FE)

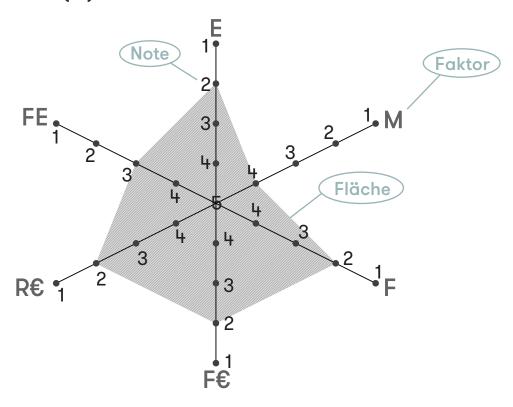


Abb.48: Netzdiagramm Schema

Energieeffizienz

ArchiPHYSIK

Mithilfe des Programms ArchiPHYSIK 15 und dessen Schnittstelle zu ArchiCAD 21 wird pro Variante ein Energieausweis erstellt, indem die Daten des BIModells aus ArchiCAD in ArchiPHYSIK importiert und ausgewertet werden. Berechnungen werden laut OIB Richtlinie 6:2007-04 durchgeführt und erfolgt für die Kategorie Bürogebäude.

Die erhaltenen Labels des Energieausweises werden wie folgt in Schulnoten kategorisiert:

1 =sehr gut = A++und A+

2 = gut = B

3 = befriedigend = C und D

4 = genügend = E und F

5 = nicht genügend

Diese Werte werden bei der Bewertung auf das Netzdiagramm aufgetragen.

Energie

1 = A++, A+

2 = B

3 = C, D

4 = E, F

5 = G

Materialeffizienz

Die Materialeffizienz der Varianten wird anhand des Entsorgungsindikators ermittelt. Dieser wird mittels baubook-Software ECO2SOFT berechnet.

Entsorgungsindikator

- "• Der Entsorgungsindikator stellt die Entsorgungs- und Recyclingeigenschaften eines Gebäudes im gesamten Lebenszyklus dar.
- Semiquantitative
 Bewertungsmethode, die
 sich aus einer Bewertung der
 Entsorgungseigenschaften des
 Baustoffes und des Bauteils
 zusammensetzt.
- Die Berechnung des Entsorgungsindikators ist mittlerweile fixer Bestandteil von unterschiedlichen Gebäudezertifizierungssystemen" (Boogmann 2016, S.90)

Entsorgungs-indikator

- 1 = sehr gut
- 2 = gut
- 3 = befr.
- 4 = genügend
- 5 = nicht gen.

Bewertung von Baustoffen

Entsorgungseinstufung von Baustoffen

	1	2	3	4	5
Recycling	Wiederverwendung, Recycling zu techn. vergleichbaren Produkt	Recycling zu hoch- wertigem Rohstoff mit hohem Marktwert: Rohstoff nach Aufbe- reitung	Recycling zu hoch- wertigem Rohstoff mit niedrigem Marktwert	technisch möglich, aber nicht praktik- abel; Downcycling	technisch und wirtschaftlich nicht vertretbarer Aufwand
Verbrennung	Verursacht keine abfallspezifischen Schadstoffe	In größeren Anlagen unproblematisch	In Abfall- verbrennungs- anlagen	Nach Aufbereitung	Materialien mit hohem Schadstoff- gehalt
Ablagerung	Kompostierung bzw. Vererdung	Auf Baurestmassen- bzw. Inertstoff- deponien	Auf Baurestmassen- deponie erlaubt	Auf Massenabfall- oder Reststoff- deponie; Emissionen möglich	Gefährlicher Abfall, starke Verun- reinigung

Tab.3: Entsorgungseinstufung

Verwertungspotential von Baustoffen

	1	2	3	4	5
Abfallmenge	25 % Abfall	50 % Abfall	75% Abfall	100% Abfall	125% Abfall

Tab.4: Verwertungspotential

Bewertung von Bauteilen

EI_{KON}

Materialbezogene Entsorgungskennzahl der Bauteile:

- 1. Berechnung des anfallenden Volumens
- 2. Gewichtung mit der Entsorgungseinstufung der Baustoffe
- 3. Gewichtung mit dem Verwertungspotential der Baustoffe
- 4. Berücksichtigung der Abfallfraktionen

(BO 2012)

El_{KON} = ∑ (anfallender Voumen SCHICHT x Entsorgungseinstufung SCHICHT x Verwertungspotential SCHICHT) - Abfallfraktion BAUTEIL

El = Flächengewichtete Mittelung aller Elkon eines Gebäudes

"Der Leitfaden zur Berechnung Entsorgungsindikators des Bauteilen und Gebäuden wurde vom IBO für die einheitliche Vorgehensweise für die Berechnung der Entsorgungseigenschaften von Gebäuden erstellt. Als semiquantitative Methode beurteilt der Entsorgungsindikator den aktuellen Entsorgungsweg einer Bauteilkomponente und das Verwertungspotenzial, das bei Verbesserung der Rahmenbedingungen zum angenommenen Zeitpunkt der Entsorgung des Bauprodukts aus wirtschaftlicher und technischer Sicht möglich wäre, auf einer Skala von 1 bis 5. Je stärker sich die Entsorgung von Bauteilen auf die Umwelt auswirkt, umso höher der Entsorgungsindikator." (IBO 2018).

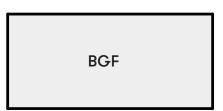
	Ора	ake und transparente Bauteile	ΔΟ)13	PENRT MJ	GWP100 S kg CO ₂ equ. k	AP	EI _{KON} Punkte
BG	Menge	Bauteil	BG6, BZF	pro m² Bt		pro m² BZF (OI3)		pro m² Bt
0	212,20 m²	AWI03_a	102	76	1.643	-3,5	0,359	1,97
0	79,12 m²	// DAI05_a	73	146	1.123	16,1	0,245	2,26
0	21,00 m²	Dreifach_Ar_Holz_Passiv	34	258	358	18,6	0,144	
0	59,75 m²	EAm04_a1m_a	81	213	1.206	61,8	0,225	1,52
0	30,25 m²	EAm04_b1m_a	57	299	836	44,7	0,163	2,24
0	79,12 m²	EFu01_a	124	248	1.656	103,1	0,386	1,72
0	79,12 m²	// GDI01_a	62	124	835	14,1	0,239	1,42
0	79,12 m²	KDI01_a	60	120	868	10,0	0,222	1,95
2	134,86 m²	IWI01_a	23	27	318	7,2	0,085	0,41
		Summe			8.844	271,9	2,068	1,61
<u> </u>	<u> </u>	a Wared a reason of	013		PENRT MJ	GWP100 S kg CO ₂ equ.	AP	EI Punkte
G		Gebäude gesamt	BG6, BZF			pro m² BZF (OI3)		pro m² Bt
	<u>u</u>		616		8.844	271,9	2,068	1,61
								••••••

Abb.49: Screenshot eco2soft

Flächeneffizienz

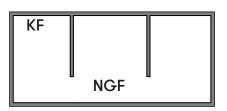
Bruttogrundfläche (BGF)

ist die Summe der
Grundflächen aller
Grundrissebenen eines
Bauwerks. Sie ist in Nettogrundfläche
und Konstruktionsgrundfläche
gegliedert. NGF ist die Summe der
zwischen den Bauteilen befindlichen
Bodenfläche aller Grundrissebenen.
KF ist die Fläche der Bauteile.


NF / BGF 1 = 1 - 0,75 2 = 0,7 - 0,55 3 = 0,5 - 0,35

4 = 0.3 - 0.05

5 = 0


Nutzfläche (NF)

ist die Summe jener Flächen, die dem Verwendungszweck des Bauwerks unmittelbar dienen (Arbeitsplätze, Lager)

Verkehrsfläche (VF)

dient dem Zugang und dem Verlassen von Nutz- und Funktionsflächen (Technischen Anlagen oder dem Verkehr zwischen diesen Flächen (Kern, Flur, Gänge). (vgl. Hegner and Kerz, 2018)

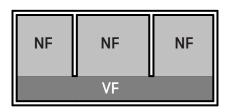


Abb.50: Flächen Schema

Grasshopper

In Grasshopper wurde ein Algorithmusteil erstellt, der eine frei definierbare Größe von Arbeitsplätzen innerhalb des Rasters in die BGF einfügt.

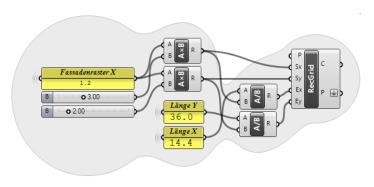


Abb.51: Grasshopper Script Teil Flächeneffizienz

Nutzfläche und Verkehrsfläche

Für Bürogebäude wird ein Satz von 31% an Verkehrsfläche von der BGF abgezogen, um die Nutzfläche zu erhalten (vgl. Bogenstätter 2007).

Berechnung

Die Bewertung der Flächeneffizenz wird durch das Verhältnis zwischen Nutzfläche zu Bruttogrundfläche berechnet. Je näher sich der errechnete Wert der Zahl Eins annähert, desto effizienter wird er bewertet.

Die Auftragung des ermittelten Wertes auf das Netzdiagramm erfolgt mittels Schulnoten. Wobei 1 als beste und 5 als schlechteste gewertet wird.

NF / BGF

1 = 1 - 0.75

2 = 0.74 - 0.55

3 = 0.54 - 0.35

4 = 0.34 - 0.05

5 = 0

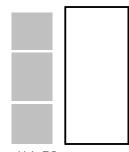


Abb.52: NF durch BGF

630 m2 / 810 m2 = 0,77 Note 1

Rohbaukosten

Benchmarks + Reihung

Die Kostenermittlung des Rohbaus nach Baukostenindex (BKI 2016) erfolgt mittels €/Einheit und reicht von einem Mindestwert über den Mittelwert bis hin zum Höchstwert und sind als Benchmarks zu betrachten. Um die erhaltenen Kosten auswerten und unter Verwendung eines Netzdiagrammes bewerten zu können, werden die Werte aller Grobelemente laut BKI gelistet. Um die Gesamtnote für die Rohbaukosten zu erhalten, wird aus allen Einzelnoten der Grobelemente (pro Variante) ein Durchschnittswert berechnet. Die Noten reichen von 1 bis 5, wobei 1 als beste und 5 als schlechteste gewertet wird. Um diese Noten zu vergeben, erfolgt wiederum eine interne Reihung der Rohbaukosten der Varianten. Fassadenkosten werden als eigenes Kapitel behandelt. Folgend werden die Grobelemente und deren Kostenermittlung dargestellt. Es werden Grobelemente nicht alle aus dem BKI gelistet; es erfolgt eine Auswahl bestimmter Grobelemente.

Rohbau

1 = sehr günstig

2 = günstig

3 = mittlere K.

4 = hohe Kosten

5 = sehr hohe Kosten

Unterböden und Bodenplatten

324.15.00	Stahlbeton, Ortbeton, Platten		€/Einheit	
01	Bodenplatte, Ortbeton, d=15cm, Schalung, Bewehrung (Einheit: m2 Plattenfläche)	36,00	47,00	60,00
08	Bodenplatte, Ortbeton, d=20cm, Schalung, Bewehrung (Einheit: m2 Plattenfläche)	41,00	56,00	75,00
09	Bodenplatte, WU-Ortbeton, d=25-30cm, Schalung, Bewehrung (Einheit: m2 Plattenfläche)	74,00	97,00	120,00
10	Bodenplatte, Ortbeton, d=25cm, Scha- lung, Bewehrung (Einheit: m2 Plattenfläche)		62,00	77,00
11	Bodenplatte, Ortbeton, d=15-30cm, Schalung, Bewehrung (Einheit: m2 Plattenfläche)	58,00	74,00	110,00
12	Bodenplatte, WU-Ortbeton, d=35cm, Schalung, Bewehrung (Einheit: m2 Plattenfläche)	130,00	270,00	540,00
14	Bodenplatte, Stahlfaserbeton, d=15cm, 14 Schalung, Randdämmung (Einheit: m2 Plattenfläche)		55,00	59,00
15	Bodenplatte, Stahlfaserbeton, d=20-25cm, Schalung (Einheit: m2 Plattenfläche)		64,00	69,00
16	Bodenplatte, WU-Ortbeton, d=25-30cm,		110,00	150,00

Tab.5: Unterböden und Bodenplatten BKI

Innenstützen

343.21.00	Betonstütze, Ortbeton, schwer		€/Einheit	
01	Betonstütze, Ortbeton, Querschnitt bis 2500 cm2, Schalung, Bewehrung (Einheit: m Stützenlänge)	110,00	160,00	230,00
02	Betonstütze, Ortbeton, Querschnitt 24x24cm, Schalung, Bewehrung (Einheit: m Stützenlänge)	78,00	99,00	110,00
03	Betonstütze, Ortbeton, Querschnitt 20x20cm, Schalung, Bewehrung (Einheit: m Stützenlänge)	83,00	88,00	95,00
04	Rundstütze, Ortbeton, D=20-30cm, Schalung, Bewehrung (Einheit: m Stützenlänge)		140,00	160,00
343.24.00	Betonstütze, Fertigteil, schwer			
01	Betonfertigteil-Stütze, bx- d=40x40-70x70cm, l=8,50-12,28m, Be- wehrung (Einheit: m Stützenlänge)	160,00	230,00	270,00
343.31.00	Holzstütze, Vollholz			
81	Stütze Holz	50,00	150,00	190,00
343.41.00	Metallstütze, Profilstahl			
01	Profilstahlstütze mit Rostschutzanstrich, O1 Schraub- und Schweißverbindungen (Einheit: m Stützenlänge)		130,00	170,00

Tab.6: Innenstützen BKI

Deckenkonstruktionen

351.15.00	Stahlbeton, Ortbeton, Platten	€/Einheit		
01	Deckenplatten, Ortbeton, d=18-20cm, Unter- züge, Schalung, Bewehrung (Einheit: m2 Deckenfläche)		120,00	140,00
02	Deckenplatten, Ortbeton, d=25cm, Unterzüge, Schalung, Bewehrung (Einheit: m2 Deckenfläche)	110,00	130,00	160,00
03	Deckenplatten, Ortbeton, d=30-40cm, Unter- züge, Schalung, Bewehrung (Einheit: m2 Deckenfläche)		150,00	170,00
06	Deckenplatten, Ortbeton, d=20-22cm, Unter- züge, Schalung, Bewehrung (Einheit: m2 Deckenfläche)		110,00	140,00
351.25.00	Stahlbeton, Fertigteil, Platten			
01	STB-Deckenplatten, Fertigteil oder teilelementierte Decke, d=16-20cm, Bewehrung (Einheit: m2 Deckenfläche)	75,00	97,00	130,00
03	STB-Deckenplatten, Fertigteil oder teilelementierte Decke, d=22cm, Bewehrung (Einheit: m2 Deckenfläche)	84,00	91,00	100,00
351.26.00	Stahlbeton, Fertigteil, Plattenbalken			
01	Spannbeton-TT-Decke, I=6,10, b=2,5-3,0m, d=10cm, Vernähen der Längsseiten, Verschweißen der TT-Platten, Überbeton, d=10cm, Bewehrung, Unterzüge (Einheit: m2 Deckenfläche)		210,00	220,00

Tab.7: Decken BKI

Dachkonstruktionen

361.91.00	Flachdächer		€/Einheit	
81	Flachdächer verschiedener Konstruktionsarten (Plattendecke, Plattenbalkendecke, Balken- bzw. Trägerdecke), Ortbeton, teils Betonfertigteile, Spannweite 5-12m (Einheit: m2 Dachfläche)	120,00	160,00	190,00
82	Flachdächer, Ortbeton, Spannweiten >12m, Schalung, Bewehrung (Einheit: m2 Dachfläche)	190,00	230,00	270,00
84	Flachdächer, verleimte Brettschicht- binder, Spannweiten 5-8m (Einheit: m2 Dachfläche)	97,00	130,00	280,00
Flachdächer verschiedener Konstruktionsarten (Plattendecke, Plattenbalkendecke, Balken- bzw. Trägerdecke), Ortbeton, teils Betonfertigteile, Spannweite 5-12m (Einheit: m2 Dachfläche)		110,00	130,00	180,00

Tab.8: Dächer BKI

Fassadenkosten

Benchmarks + Reihung

Die Kostenermittlung nach BKI 2016 erfolgt mittels €/Einheit und reicht von einem Mindestwert über den Mittelwert zum Höchstwert und sind Benchmarks.

Die Auswertung und Bewertung mittels Netzdiagramm erfolgt auf die gleiche Weise wie bei den Rohbaukosten, um die Noten zu vergeben, erfolgt eine interne Reihung der Varianten und vergabe der Noten. (siehe Rohbaukosten)

Die Fassadenkosten werden als eigenes Kapitel behandelt und beinhalten die Elemente der Hülle.

Folgend werden die Grobelemente und deren Kostenermittlung dargestellt. Es werden nicht alle Grobelemente aus dem BKI gelistet; es erfolgt eine Auswahl bestimmter Grobelemente.

Fassade

1 = sehr gut

2 = gut

3 = neutral

4 = hohe Kosten

5 = sehr hohe Kosten

Außenfenster

334.63.00	Fenster, Kunststoff		€/m2	
01	Kunststofffenster, Isolierverglasung, Dreh- Kipp-Beschläge	310,00	350,00	390,00
02	Kunststofffenster, Dreischeiben-Wärmes- chutzverglasung, u-Wert=0,7W/m2K, Gasfül- lung Krypton oder Argon, Beschläge	570,00	600,00	610,00
334.64.00	Fenster, Metall			
01	Metallfenster, auch Leichtmetall, Isolierver- glasung, Fensterbänke, innen und außen, pulverbeschichtet oder lackiert	490,00	680,00	790,00
81	Metall-Einfachfenster, überwiegend öffenbar, Isolierverglasung	710,00	860,00	1110,00
334.65.00	Fenster, Mischkonstruktionen			
03	Holz-Alu-Fenster, hochwärmegedämmt, Dreischeiben-Wärmeschutzverglasung	560,00	720,00	980,00
334.66.00	Fenster, Metall, Aluminium			
01	Alufensterelemente, thermisch getrennte Profile, Wärmeschutzverglasung, Öffnungsflügel	420,00	560,00	710,00
81	Alu-Einfachfenster, überwiegend öffenbar, Isolierverglasung	460,00	610,00	830,00

Tab.9: Außenfenster BKI

Nichttragende Außenwände

332.12.00	Mauerwerkswand, Porenbeton		€/Einheit	
02	Porenbeton-Mauerwerk, d=17,5-20cm, Schneiden von Schrägen (Einheit: m2 Wand- fläche)	55,00	79,00	110,00
332.14.00	Mauerwerkswand, Kalksandstein			
01	Kalksandstein-Mauerwerk, d=11,5cm (Einheit: m2 Wandfläche)	63,00	77,00	96,00
332.21.00	Betonwand, Ortbeton, schwer			
01	Brüstung, Ortbeton, d=17cm, Schalung, Bewehrung (Einheit: m2 Wandfläche)	63,00	67,00	75,00
02	Attika, Ortbeton, d=20-25cm, Schalung, Bewehrung (Einheit: m2 Wandfläche)	150,00	170,00	200,00
351.26.00	Betonwand, Ortbeton, leicht			
01	Ortbeton, Schalung, Bewehrung (Einheit: m2 Wandfläche)	150,00	150,00	160,00

Tab.10: Außenwände BKI

Elementierte Außenwände

337.21.00	Holzkonstruktionen		€/Einheit	
01	Fassadenelemente als Holzkonstruktion, teilweise in Pfosten-Riegel-Bauweise, Isolierverglasung, Brüstungselemente gedämmt (Einheit: m2 elem. Fläche)	390,00	590,00	730,00
02	Holzrahmenwand, zweischalig, äußere Schale 14cm, innere Schale 6cm, nichttra- gend (Installationsebene), OSB 3 Platten, d=12cm, auf der Außenseite, Dampfbrem- spappe, Mineralwolldämmung WLG 040, d=140mm (Einheit: m2 elem. Fläche)	110,00	110,00	110,00
03	Holzrahmenwandelement, beidseitig beplankt, Wärmedämmung, Dampfsperre, Gesamtdicke 200-300mm (Einheit: m2 elem. Fläche)		180,00	200,00
81	Fassadenelemente mit Brüstung und Fensterband, auch Türfensterelemente, Holz, Isolierglas, Anstrich (Einheit: m2 elem. Fläche)	400,00	690,00	900,00
337.22.00	Holz-Mischkonstruktionen			
01	Holz/Alu-Pfosten-Riegel-Fassade, Wärme- schutzverglasung, Öffnungsflügel (Einheit: m2 elem. Fläche)	390,00	550,00	700,00
337.41.00	Metallkonstruktionen			
01	Fassadenelement als Pfosten-Riegel-Kon- struktion mit Brüstung und Fensterband, Stahl, Leichtmetall, Isolierglas, Ober- flächen endbehandelt (Einheit: m2 Fläche)		740,00	1130,00
02	Fassadenelemnt mit Brüstung und Fensterband, Stahl, Leichtmetall, Isolierglas,		680,00	860,00

Tab.11: Elementierte Außenwände BKI

Flexibilität

Anwendbare Bürotypen

Die Flexibilität lässt sich zum einen daran messen, wie viele verschiedene Typen von Büroorganisationen sich in der vorhergesehenen Typologie anwenden lassen.

wird Unterschieden zwischen Zellen-, Kombi-, Großraumbüro Gruppen-, und Businessclub. Wobei die Flexibilität mit der Anzahl der anwendbaren Organisationsformen steigt.

Bürotypen

1 = 5 Typen

2 = 4 Typen

3 = 3 Typen

4 = 2 Typen

5 = 1 Typ

Kern

Die Position der Kerne beeinflusst die Flexibilität des Gebäudes dahingehend, günstiger als dass bei Positionierung eine Unterteilungen in mehrere Flächen möglich wird und so über einen Kern mehrere Teilbereiche erschlossen werden können. ohne zusätzliche Verkehrsflächen einzuplanen.

Kern

1 = zentral

2 = rand

3 = ecke

4 = außen

5 = x

Tragwerk

Die Flexibilitätsnote, die dem Tragwerk gegeben wird, hängt von den verschiedenen Tragwerkstypen ab.

So wird ein Skelettbau aufgrund seiner hohen Flexibilität mit der Note 1 bewertet, eine semi-flexible Mischbauweise mit der Note 3 und ein nicht flexibler Massivbau mit der Note 5.

Tragwerk

1 = Skelett

3 = Misch

5 = Massiv

Flexibilität Benotung

Die absolute Flexibilität jeder Variante geht aus dem Mittelwert der Benotung von Bürotypenanzahl, Kern und Tragwerk hervor.

So erhält eine Variante mit

Bürotyp = 2 Kern = 3 Tragwerk = 1

die Gesamtnote 2, welche auf das Netzdiagramm aufgetragen wird.

O4 VARIANTENBILDUNG

Ziel der Variantenbildung ist es eine Variante einer Bürotypologie zu finden, die folgende Entwurfsanforderungen erfüllt:

- Vorgaben des Grundstücks
- Hohe Flexibilität
- Energieeffizient
- Materialeffizient
- Kosteneffizient
- Flächeneffizent

Im ersten Schritt wird ausgehend von den Parametern der Geometrie eine Typologie gesucht, die den Anforderungen des Grundstücks entspricht. Nach der Auswahl der Typologie wird diese hinsichtlich der weiteren Anforderungen an Geometrie und Faktoren der Effizienz angepasst und die vorab erstellten Bauteile in ArchiCAD werden mit dem Algorithmus in Grasshopper verknüpft. Die Daten der generierten Varianten der BIModelle werden folgend ausgewertet und am Ende der Evaluierung verglichen, um die beste Lösung zu bestimmen.

04.1

GRUNDSTÜCK

Standort Aspern 1220 Wien

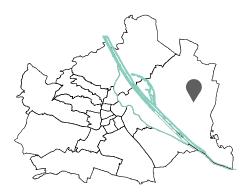
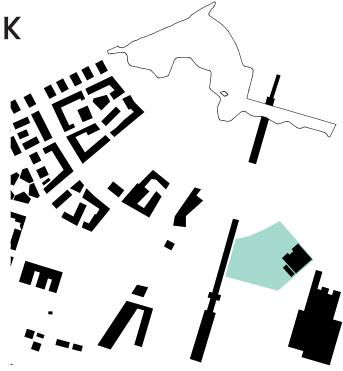
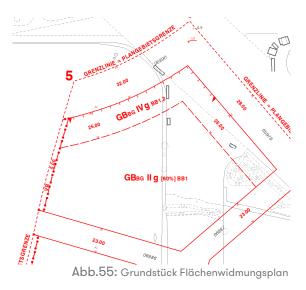
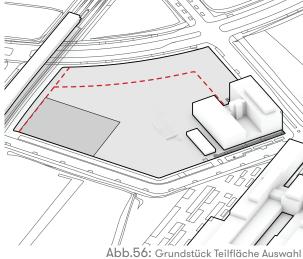
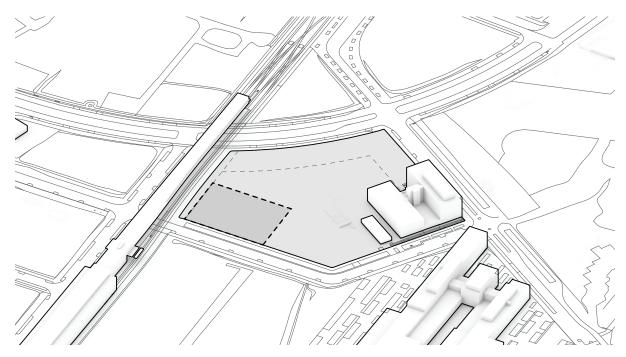
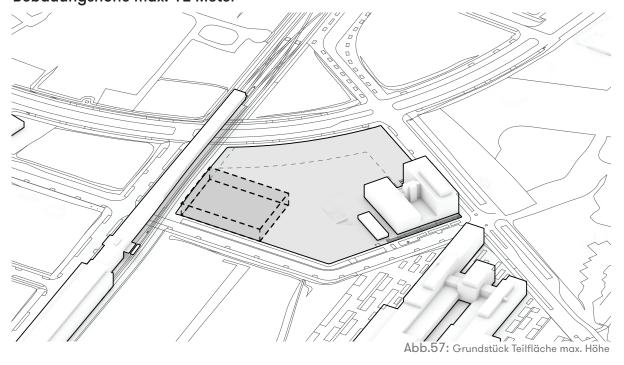


Abb.53: Wien maßstabslos


Abb.54: Seestadt Aspern maßstabslos

- Bauklasse II max. Bebauungshöhe 12m
- geschlossene Bauweise
- · teilweise offen
- Beschränkung der bebaubaren Fläche:
 60% des jeweiligen Teiles des Bauplatzes



Ausgewählter Teil des Grundstücks 3200 m²

Bebauungshöhe max. 12 Meter

O42 AUSWAHL TYPOLOGIE

Vergleich der Typologien

Vergleich der Typologien Für die Auswahl der Typologie wird mit den Grasshopper-Scripts getestet, welche Typologie die Bedingungen "Bebaubare Fläche" und "effiziente Trakttiefe" für das Grundstück am besten erfüllt und sich dadurch für die Variantenbildung eignet. Dazu wurden die Algorithmen der einzelnen **Typologien** vereinfacht in und einem Script zusammengefasst.

Die Typologien werden nach dem Parameter des Fassadenrasters inkl. eines Offsets von 0,50 m in das Grundstück eingepasst. Mit diesen Werten wird die Beschränkung der bebaubaren Fläche und die Trakttiefe ermittelt. Je näher sich dieser Wert an die zu erzielende Zahl annähert, desto geeigneter ist der Typ für die Variantenbildung. Ablesbar sind unter anderem auch die m2 sowie das Achsraster.

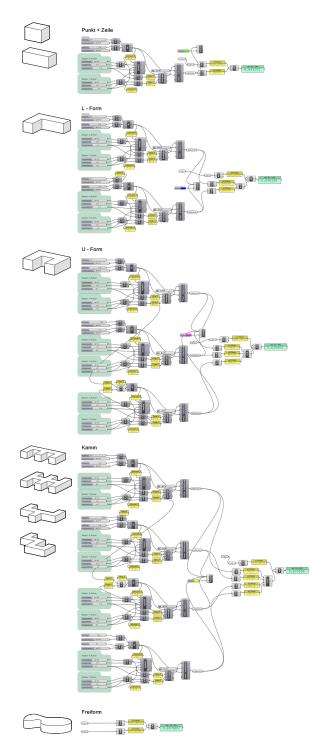


Abb.58: Grasshopper Script Typologieauswahl

Punkt + Zeile

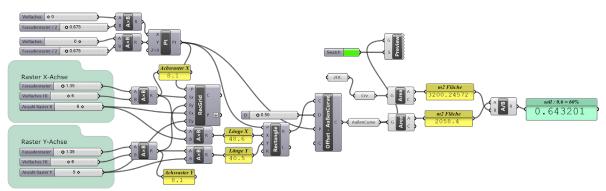


Abb.59: Script Typologieauswahl Punkt+Zeile

Fassadenraster: 1,20 m Achsraster: 7,2 m

m²: 1901,8 Trakttiefe: 36 m

Bebaute Fläche: 59 %

Fassadenraster: 1,35 m

Achsraster: 8,1 m m²: 2058,4 Trakttiefe: 40,5 m Bebaute Fläche: 64 %

Fassadenraster: 1,50 m

Achsraster: 7,5 m m²: 1771,00 Trakttiefe: 37,5 m

Bebaute Fläche: 62 %

Fassadenraster: 1,20 m

Achsraster: 7,2 m m²: 1161,64 Trakttiefe: 21,6 m Bebaute Fläche: 36 %

Abb.60: Typologieauswahl Punkt+Zeile Pictos

Fassadenraster: 1,35 m

Achsraster: 8,1 m

m²: 992,44

Trakttiefe: 16,2 m Bebaute Fläche: 31 %

1,35 m

Fassadenraster: 1,50 m

Achsraster: 7,5 m m²: 1257,25 Trakttiefe: 15 m Bebaute Fläche: 39 %

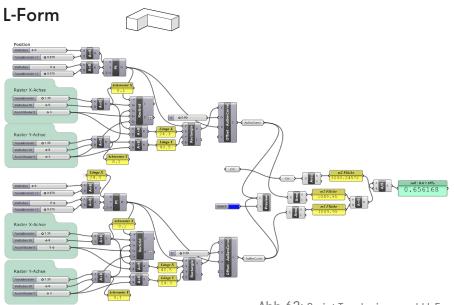
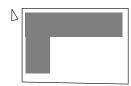


Abb.62: Script Typologieauswahl L-Form


Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1812,52 Trakttiefe: 21,6 m Bebaute Fläche: 56 %

Fassadenraster: 1,35 m Achsraster: 8,1 m m²: 1869,67 Trakttiefe: 24,3 m Bebaute Fläche: 58 %

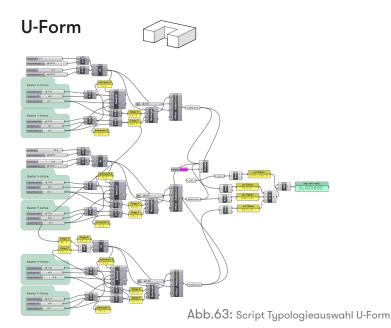
Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 1786,00 Trakttiefe: 22,5 m Bebaute Fläche: 55 %

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1235,08 Trakttiefe: 14,4 m Bebaute Fläche: 38 %

Fassadenraster: 1,35 m Achsraster: 8,1 m m²: 1410,40 Trakttiefe: 16,2 m Bebaute Fläche: 44 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 1336,00 Trakttiefe: 15 m Bebaute Fläche: 41 %

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 2175,40 Trakttiefe: 28,8 m Bebaute Fläche: 67 %



Fassadenraster: 1,35 m Achsraster: 8,1 m m²: 2000,89 Trakttiefe: 24,3 m Bebaute Fläche: 62 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 2123,50 Trakttiefe: 31 m Bebaute Fläche: 66 %

Abb.61: Typologieauswahl L-Form Pictos

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1727,80 Trakttiefe: 14,4 m Bebaute Fläche: 53 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 1696,00 Trakttiefe: 15 m Bebaute Fläche: 53 %

Fassadenraster: 1,35 m Achsraster: 7,2 m m²: 2107,00 Trakttiefe: 16,2 m Bebaute Fläche: 65 %

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1650,92 Trakttiefe: 14,4 m Bebaute Fläche: 51 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 1718,50 Trakttiefe: 15 m Bebaute Fläche: 53 %

Abb.64: Typologieauswahl U-Form Pictos

Fassadenraster: 1,35 m Achsraster: 8,1 m m²: 1858,36 Trakttiefe: 16,2 m Bebaute Fläche: 59 %

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1961,96 Trakttiefe: 14,4 m Bebaute Fläche: 61 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 2056,00 Trakttiefe: 14,4 m Bebaute Fläche: 64 %

Fassadenraster: 1,35 m Achsraster: 7,2 m m²: 1778,95 Trakttiefe: 16,2 m Bebaute Fläche: 55 %

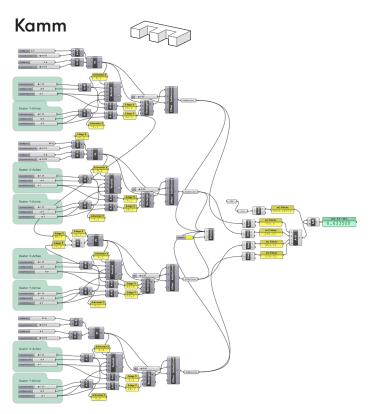


Abb.65: Script Typologieauswahl Kamm

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1889,36 Trakttiefe: 14,4 m Bebaute Fläche: 58 %

Fassadenraster: 1,35 m Achsraster: 8,1 m m²: 2246,32 Trakttiefe: 16,2 m Bebaute Fläche: 70 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 2056,00 Trakttiefe: 15 m Bebaute Fläche: 64 %

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 1744,84 Trakttiefe: 14,4 + 7,2 m Bebaute Fläche: 54 %

Achsraster: 7,2 m m²: 2049,49 Trakttiefe: 16,2 + 8,1 m Bebaute Fläche: 64 %

Fassadenraster: 1,35 m

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 1885,35 Trakttiefe: 15 + 7,5 m Bebaute Fläche: 58 %

Abb.66: Typologieauswahl Kamm Pictos

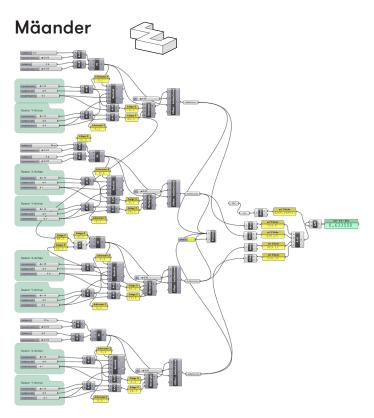


Abb.67: Script Typologieauswahl Mäander

Fassadenraster: 1,20 m Achsraster: 7,2 m m²: 2100,00 Trakttiefe: 14,4 m

Bebaute Fläche: 65 %

Fassadenraster: 1,35 m Achsraster: 8,1 m m²: 2204,49

Trakttiefe: 16,2 m Bebaute Fläche: 68 %

Fassadenraster: 1,50 m Achsraster: 7,5 m m²: 2137,50 Trakttiefe: 15 m

Bebaute Fläche: 70 %

Fassadenraster: 1,20 m Achsraster: 7,2 m

m²: 1054,08 Trakttiefe: 7,2 m Bebaute Fläche: 34 %

Fassadenraster : 1,35 m Achsraster : 7,2 m m² : 1102,24 Trakttiefe : 8,1 m

Bebaute Fläche: 34 %

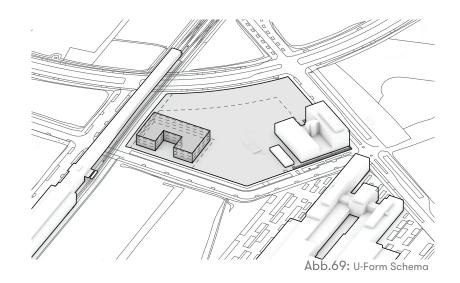
Fassadenraster: 1,50 m Achsraster: 7,5 m

m²: 1122,18 Trakttiefe: 7,5 m Bebaute Fläche: 35 %

Abb.68: Typologieauswahl Mäander Pictos

O43 VARIANTENBILDUNG

Ausgewählte Typologie


Fassadenraster: 1,35 m

Achsraster: 8,1 m

m²: 1858,36

Trakttiefe: 16,2 m

Bebaute Fläche: 59 %

Fixierte Parameter nach Auswahl der Typologie

maximale Höhe von 12m 3 Geschosse + Geschoßhöhen 4,25+3,50

maximal bebaubare Fläche 60% U Typologie

Fassadenraster 1,35 Trakttiefe 16,2m

Tragwerk Stützen

Veränderbare Parameter

Die veränderbaren Parameter werden folgend, pro Variante, in einem Baumdiagramm angezeigt.

Grasshopper Script

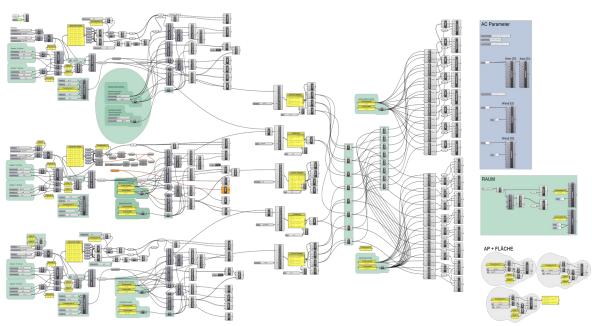


Abb.70: U-Form Script Variantenbildung

ArchiCAD Favoriten

Vorab werden in ArchiCAD Favoriten von Bauteilen, Objekten und Baustoffen erstellt, die in Grasshopper mithilfe der Live-Verbindung mit dem Script über die Settings verbunden werden und somit den Workflow erleichtern und die Größe des Scripts verringern.

Die Favoriten wurden nach den Grobelementen laut BKI 2016 (Kapitel 3.7) erstellt.

Abb.71: Favoriten in ArchiCAD

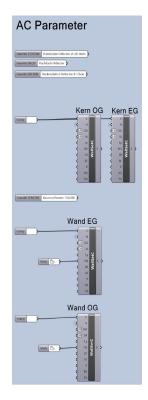
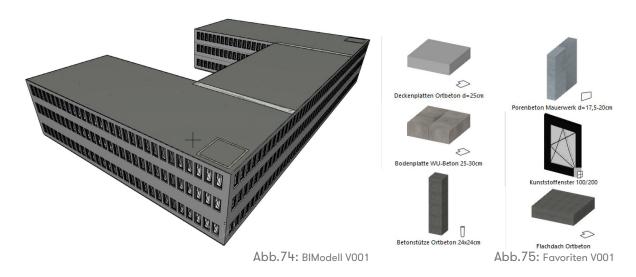
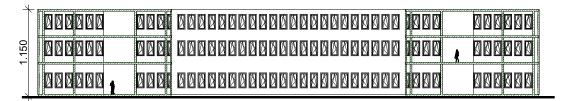



Abb.72: Favoriten in Grasshopper


Grasshopper V 0 0 1 ArchiCAD Grundstück & Ausrichtung Typologie 1,20 m 1,35 m 1,50 m Fassadenraster Vielfaches x von Fassadenraster > X-Länge und Y-Länge Konstruktionsraster & Abmessungen Geschosshöhe Geschossanzahl Tragwerkstyp Fassadentyp Kernposition Kernanzahl **ArchiCAD Favoriten VARIANTE 001**

BIModell

ArchiCAD Favoriten

Grundriss & Schnitt M1:500

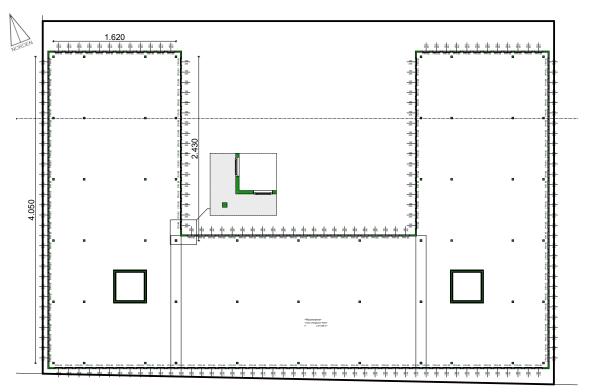


Abb.76: Schnitt und Grundriss V001

Flexibilität: Note 1

Kernposition: zentral ___ Note 1

Tragwerk: Skelettbauweise ____ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 2

El_{kon}... 2,34 Punkte pro m²

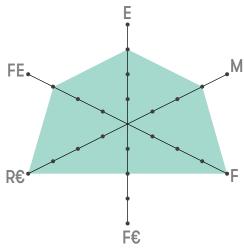
• Energieeffizienz: Note 2

Tab.12: Energieausweis ARCHIPHYSIK V001

Rohbaukosten: Note 1

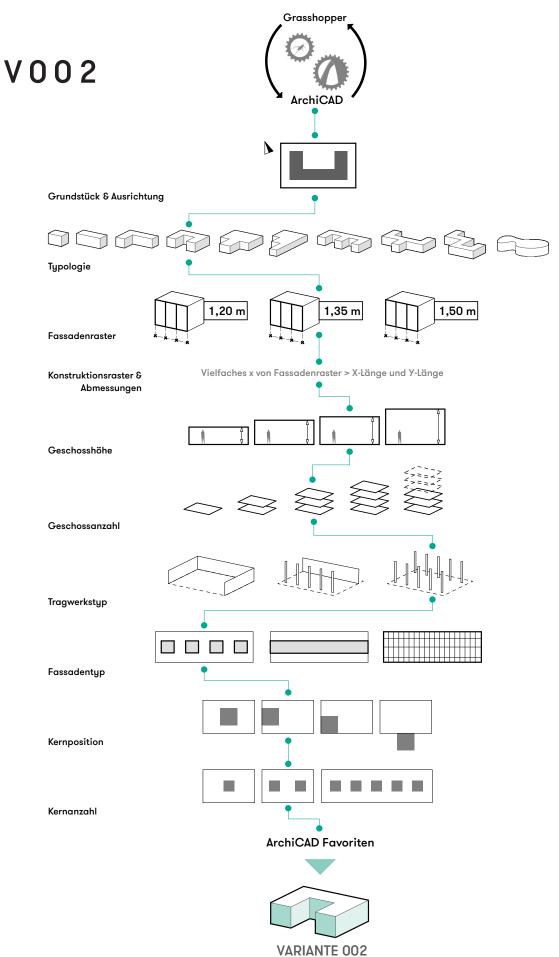
Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.13: Berechnung Rohbaukosten V001

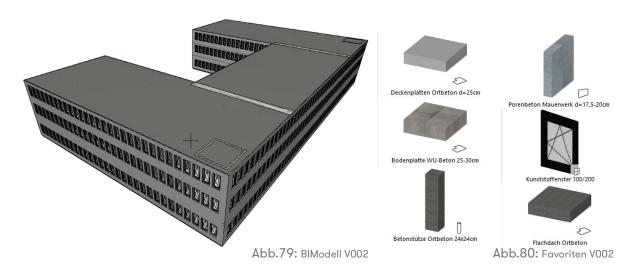

• Fassadenkosten: Note 3

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Außenwand	332.21.01	m2	150		11716,90	1757535
Fenster	334.63.02	m2	600	582 * 2m2	1164	698400
					_	2455935

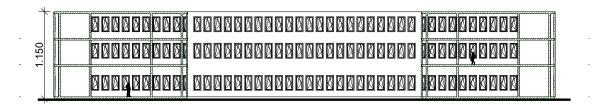
Tab.14: Berechnung Fassadenkosten V001


Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69


V001

103



BIModell

ArchiCAD Favoriten

Grundriss & Schnitt M1:500

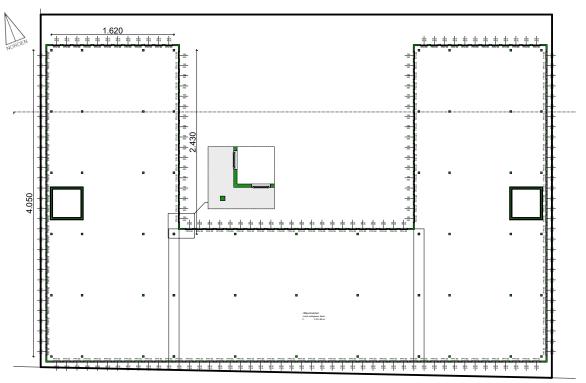


Abb.81: Schnitt und Grundriss V002

• Flexibilität: Note 2

Kernposition: rand ____ Note 2

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 2

El_{kon} ... 2,34 Punkte pro m²

Energieeffizienz: Note 2

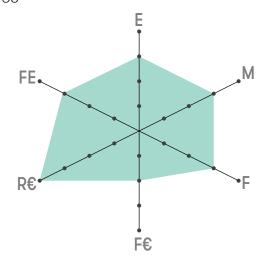
Tab.15: Energieausweis ARCHIPHYSIK V002

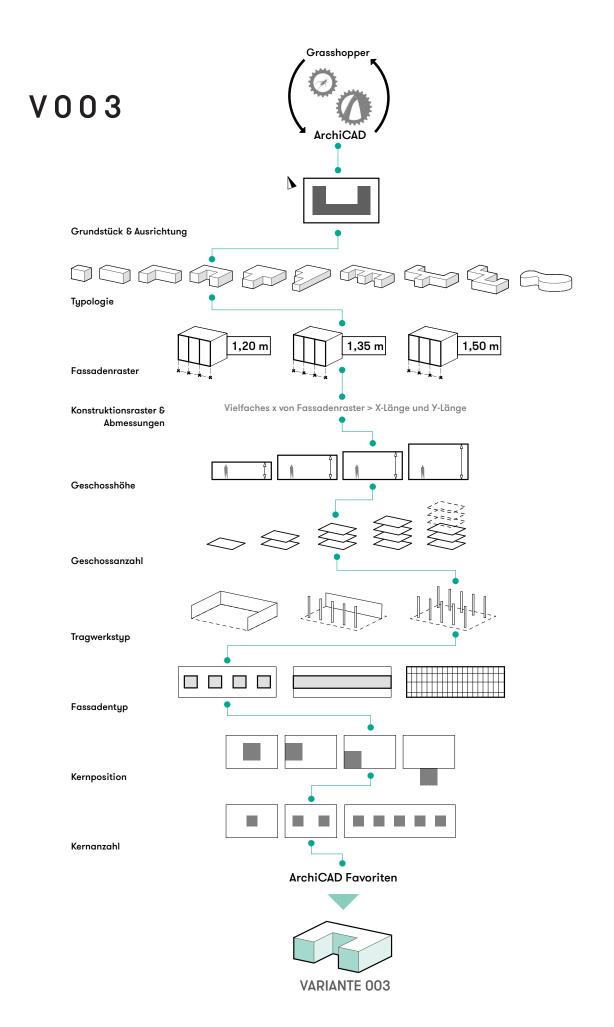
Rohbaukosten:

	Ι.		_	4
ľ	V (זכ	.е	- 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

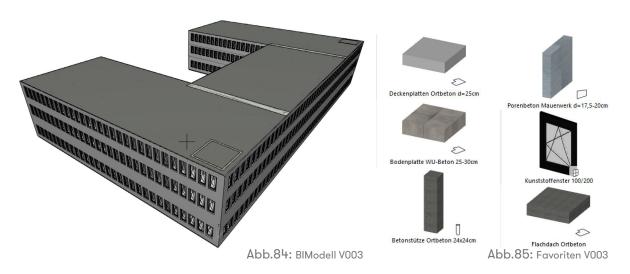
Tab.16: Berechnung Rohbaukosten V002


• Fassadenkosten: Note 3


Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Außenwand	332.21.01	m2	150		11716,90	1757535
Fenster	334.63.02	m2	600	582 * 2m2	1164	698400
						2455935

Tab.17: Berechnung Fassadenkosten V002

Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

BIModell

ArchiCAD Favoriten

Grundriss & Schnitt M1:500

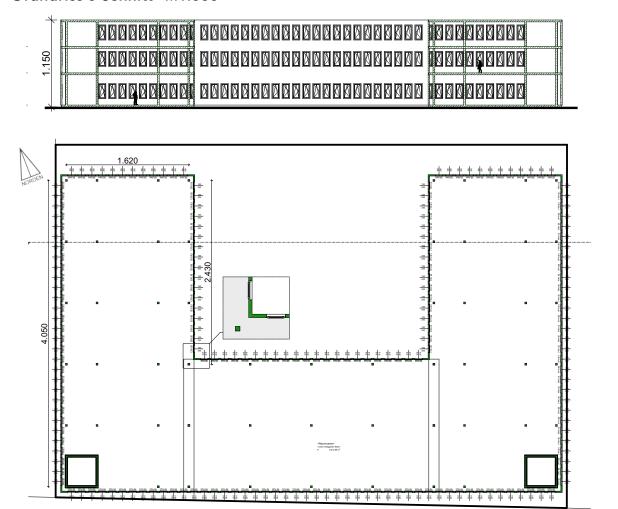


Abb.86: Schnitt und Grundriss V003

Kernposition: ecke ___ Note 3

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 2

El_{kon} ... 2,34 Punkte pro m²

• Energieeffizienz: Note 2

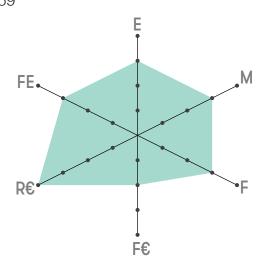
Tab.18: Energieausweis ARCHIPHYSIK V003

Rohbaukosten:

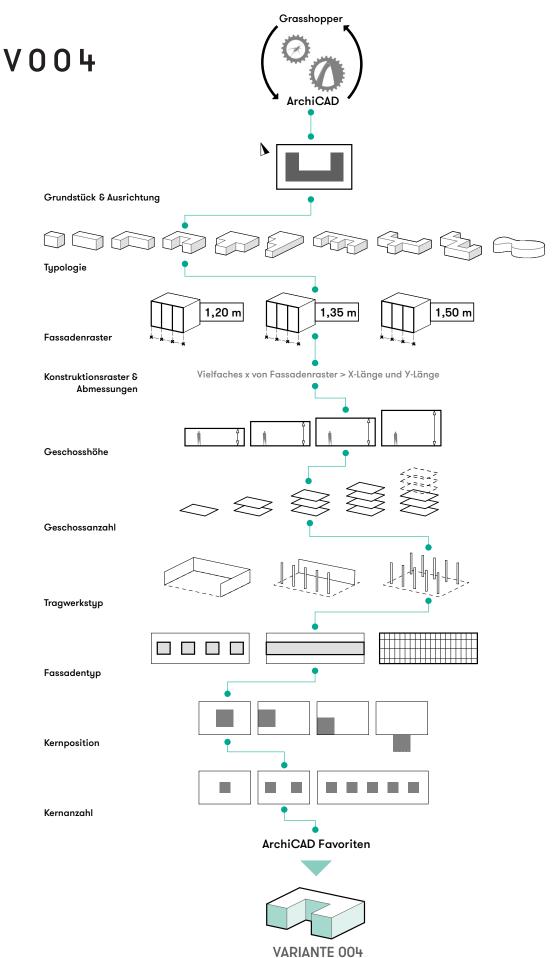
Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.19: Berechnung Rohbaukosten V003


Fassadenkosten: Note 3

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Außenwand	332.21.01	m2	150		11716,90	1757535
Fenster	334.63.02	m2	600	582 * 2m2	1164	698400
						2455935


Tab.20: Berechnung Fassadenkosten V003

Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

109

ArchiCAD Favoriten

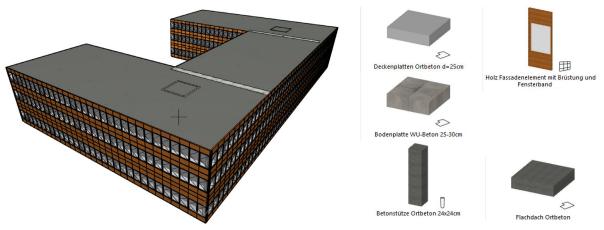


Abb.89: BIModell V004

Abb.90: Favoriten V004

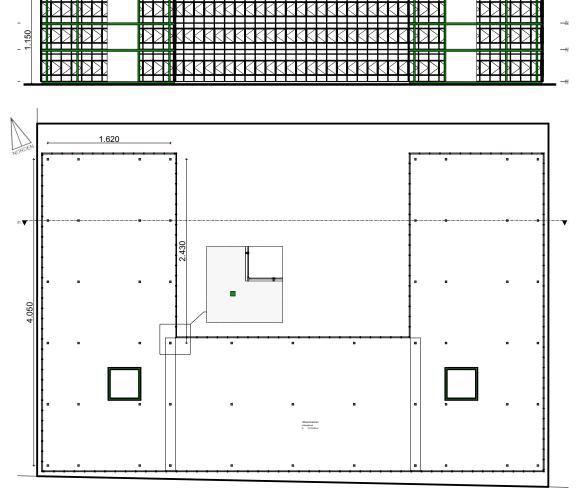
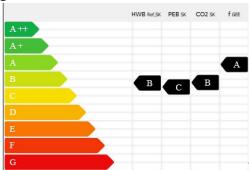


Abb.91: Schnitt und Grundriss V004

Kernposition: zentral ___ Note 1


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 3

El_{kon} ... 3,40 Punkte pro m²

• Energieeffizienz: Note 2

Tab.21: Energieausweis ARCHIPHYSIK V004

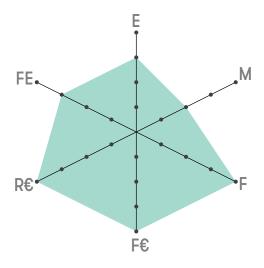
Rohbaukosten:

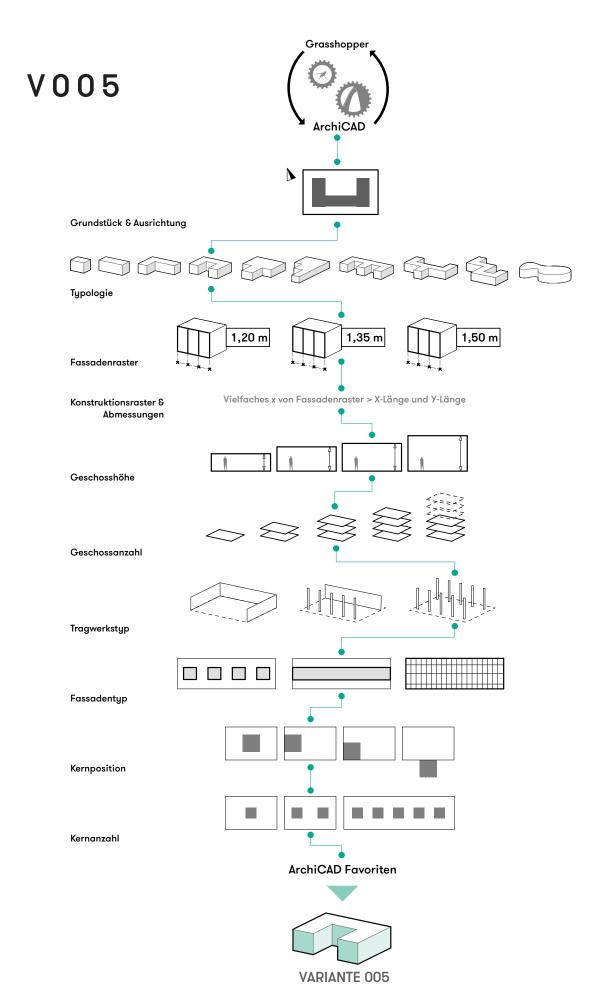
Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.22: Berechnung Rohbaukosten V004

• Fassadenkosten: Note 1


Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Elementfassade	337.21.81	m2	690	2880,90	1987821
					1987821


Tab.23: Berechnung Fassadenkosten V004

Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m²

NF / BGF = 0,69

ArchiCAD Favoriten

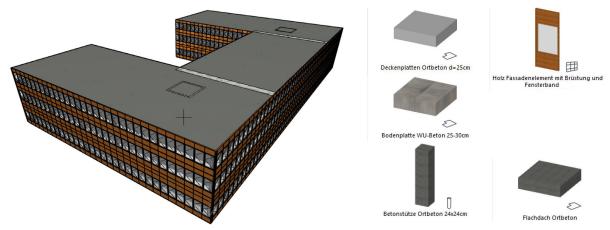


Abb.94: BIModell V005

Abb.95: Favoriten V005

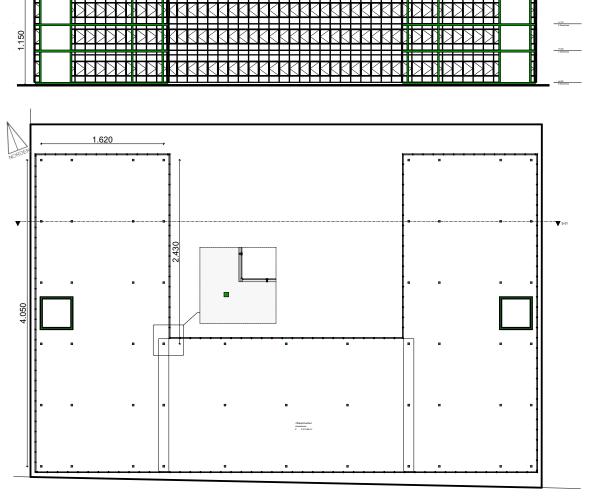


Abb.96: Schnitt und Grundriss V005

Kernposition: rand ___ Note 2


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 3

El_{kon} ... 3,40 Punkte pro m²

• Energieeffizienz: Note 2

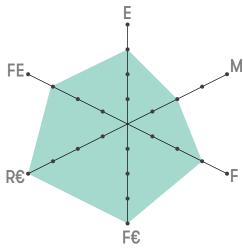
Tab.24: Energieausweis ARCHIPHYSIK V005

Rohbaukosten:

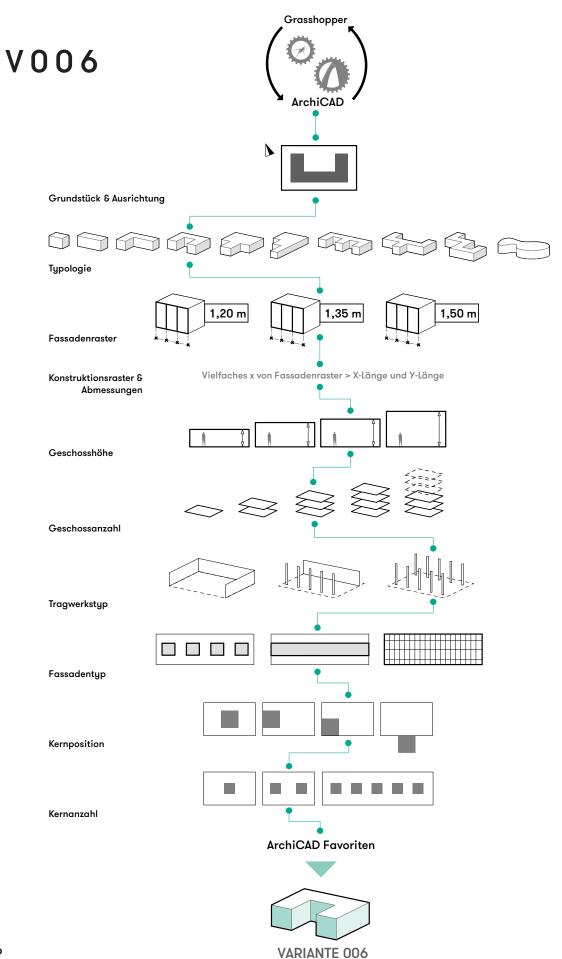
Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.25: Berechnung Rohbaukosten V005


• Fassadenkosten: Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Elementfassade	337.21.81	m2	690	2880,90	1987821
					1987821


Tab.26: Berechnung Fassadenkosten V005

• Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

115

ArchiCAD Favoriten

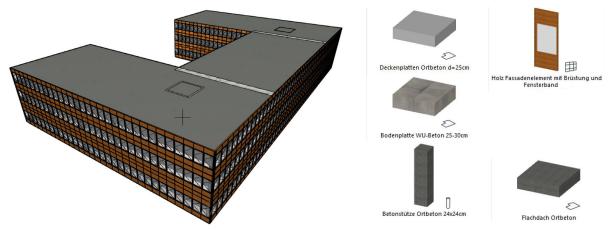
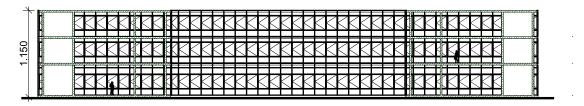



Abb.99: BIModell V006

Abb.100: Favoriten V006

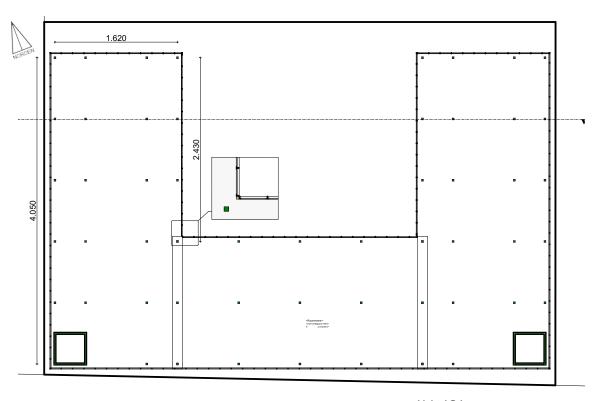
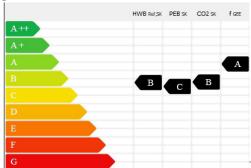


Abb.101: Schnitt und Grundriss V006

Kernposition: ecke ___ Note 3


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ____ Note 2

• Materialeffizienz: Note 3

El_{kon} ... 3,40 Punkte pro m²

• Energieeffizienz: Note 2

Tab.27: Energieausweis ARCHIPHYSIK V006

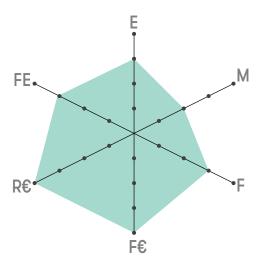
Rohbaukosten:

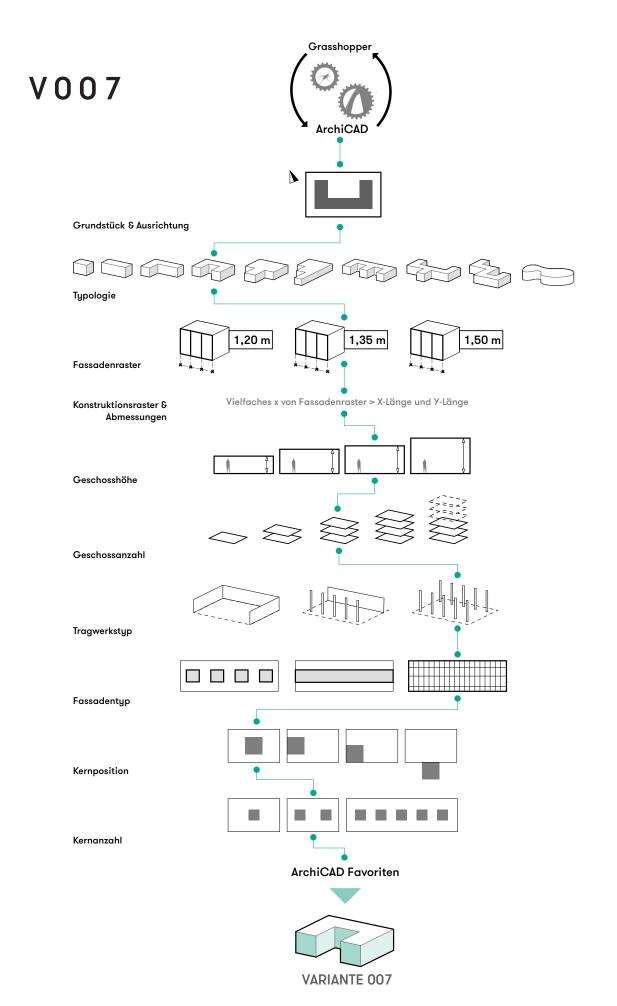
Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

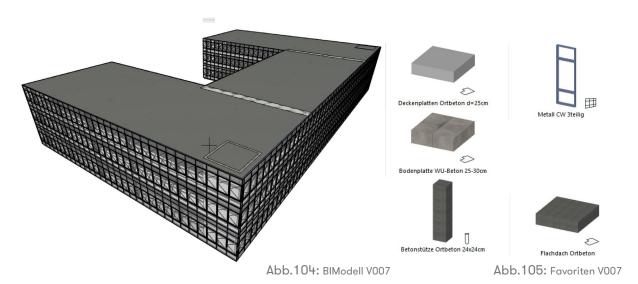
Tab.28: Berechnung Rohbaukosten V006

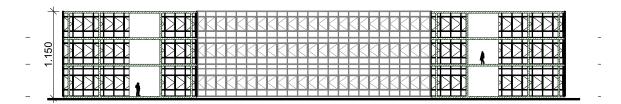
Fassadenkosten: Note 1


Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Elementfassade	337.21.81	m2	690	2880,90	1987821
					1987821


Tab.29: Berechnung Fassadenkosten V006

• Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m²


NF / BGF = 0,69

ArchiCAD Favoriten

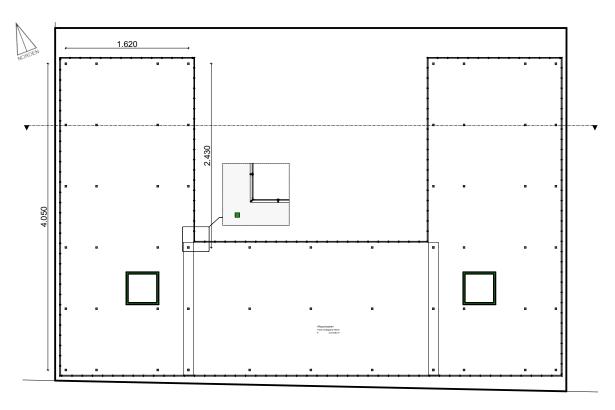
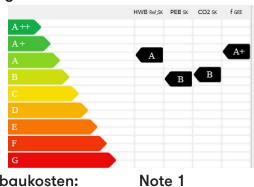


Abb.106: Schnitt und Grundriss V007

Kernposition: zentral ___ Note 1


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 3

El_{kon} ... 2,73 Punkte pro m²

Energieeffizienz: Note 2

Tab.30: Energieausweis ARCHIPHYSIK V007

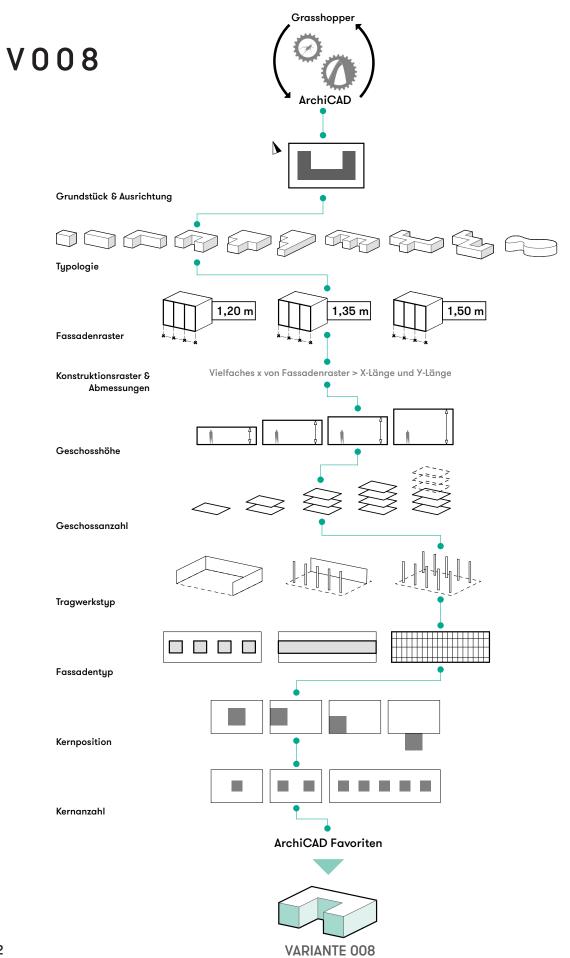
Rohbaukosten:

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

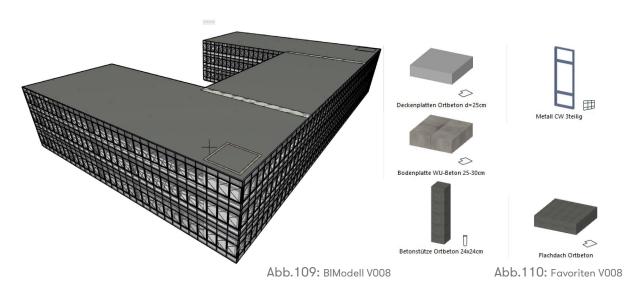
Tab.31: Berechnung Rohbaukosten V007


Fassadenkosten: Note 2

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Curtain Wall	337.41.10	m2	740	2880,90	2131866
					2131866


Tab.32: Berechnung Fassadenkosten V007

Flächeneffizenz: Note 2


> BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69



121

ArchiCAD Favoriten

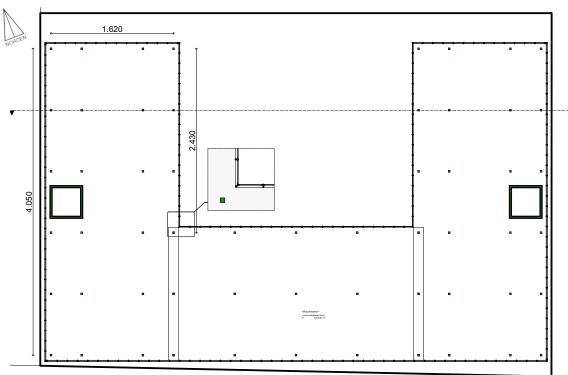


Abb.111: Schnitt und Grundriss V008

Kernposition: rand ___ Note 2

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 3

El_{kon}... 2,73 Punkte pro m²

• Energieeffizienz: Note 2

Tab.33: Energieausweis ARCHIPHYSIK V008

Rohbaukosten:

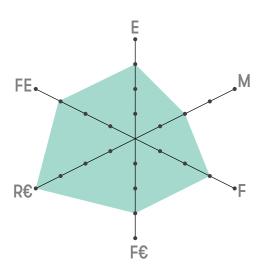
Note 1

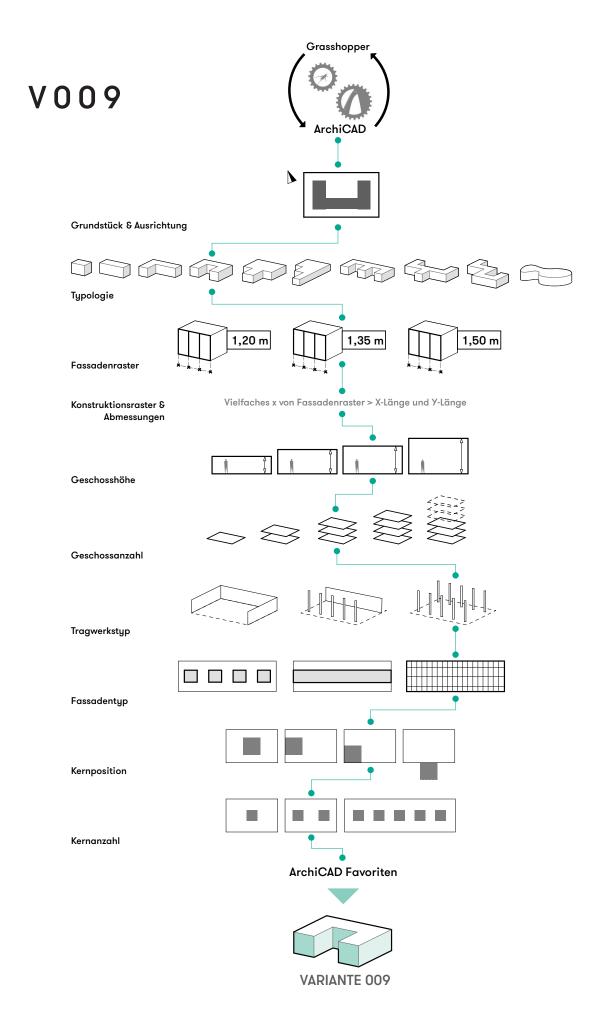
Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.34: Berechnung Rohbaukosten V008

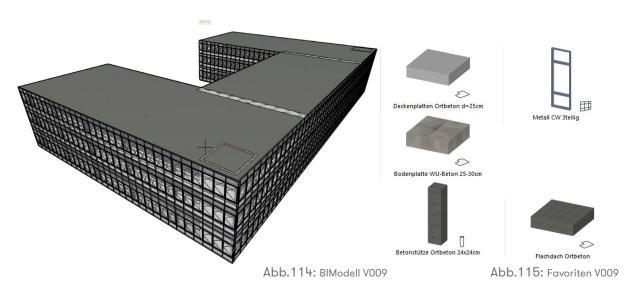
Fassadenkosten: Note 2

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Curtain Wall	337.41.10	m2	740	2880,90	2131866
					2131866


Tab.35: Berechnung Fassadenkosten V008


Flächeneffizenz: Note 2

BGF ... 1858,36 m²


NF ... 1282,26 m²

NF / BGF = 0,69

ArchiCAD Favoriten

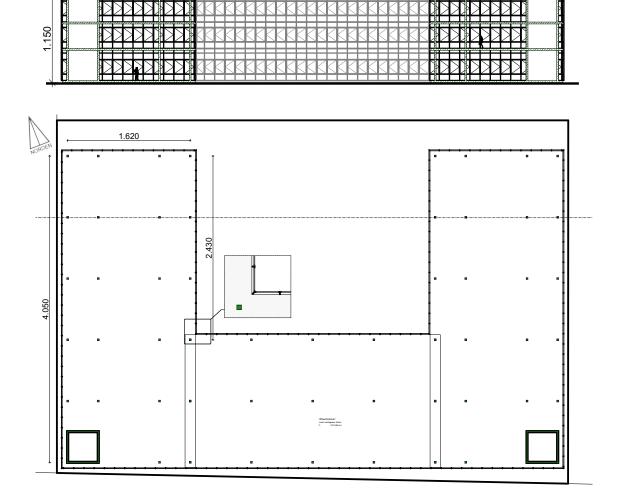


Abb.116: Schnitt und Grundriss V009

Kernposition: ecke ___ Note 3

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 3

El_{kon} ... 2,73 Punkte pro m²

• Energieeffizienz: Note 2

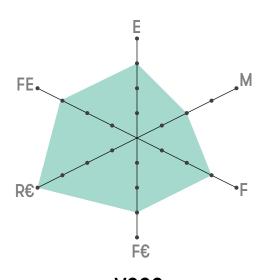
Tab.36: Energieausweis ARCHIPHYSIK V009

Rohbaukosten:

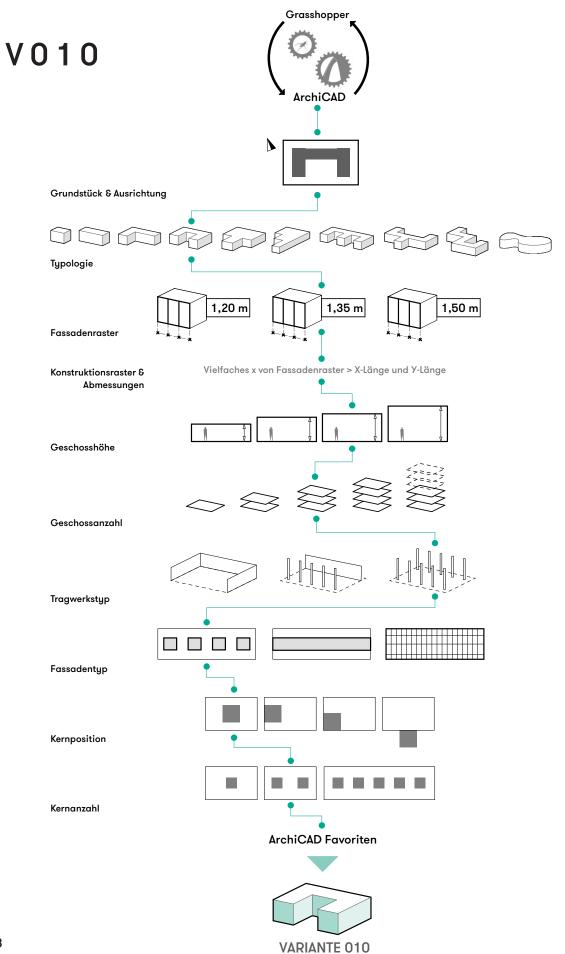
Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

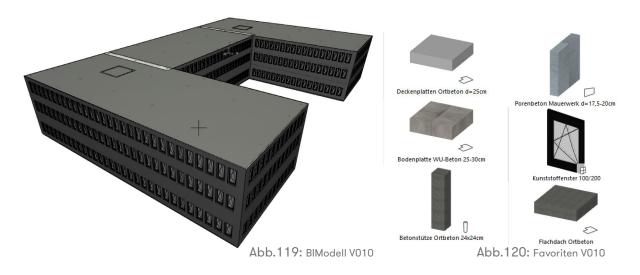
Tab.37: Berechnung Rohbaukosten V009

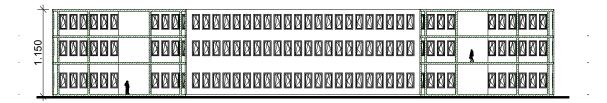

Fassadenkosten: Note 2

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Curtain Wall	337.41.10	m2	740	2880,90	2131866
					2131866


Tab.38: Berechnung Fassadenkosten V009

Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69



127

ArchiCAD Favoriten

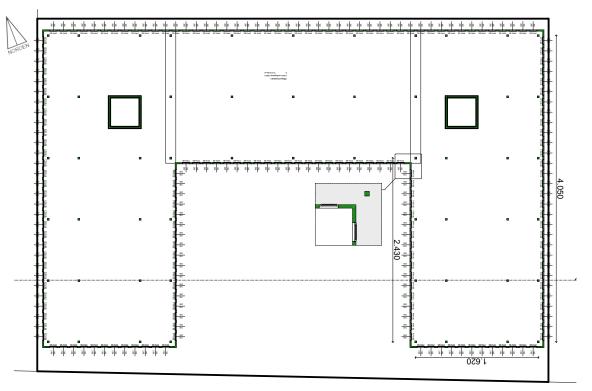


Abb.121: Schnitt und Grundriss V010

Kernposition: zentral ___ Note 1

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 2

El_{kon}... 2,34 Punkte pro m²

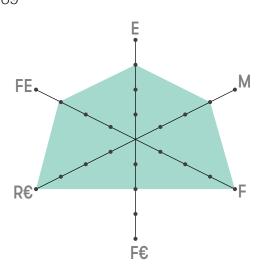
Energieeffizienz: Note 2

Tab.39: Energieausweis ARCHIPHYSIK V010

Rohbaukosten:

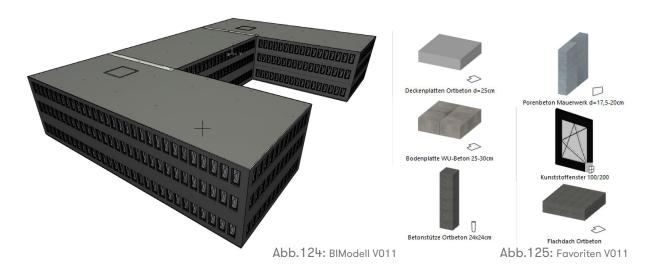
Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9


Tab.40: Berechnung Rohbaukosten V010

Fassadenkosten: Note 3

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Außenwand	332.21.01	m2	150		11716,90	1757535
Fenster	334.63.02	m2	600	582 * 2m2	1164	698400
				Tab.41: E	Berechnung Fa	2455935 ssadenkosten V010


Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

Grasshopper V 0 1 1 **ArchiCAD** Grundstück & Ausrichtung Typologie 1,20 m 1,35 m 1,50 m Fassadenraster Vielfaches x von Fassadenraster > X-Länge und Y-Länge Konstruktionsraster & Abmessungen Geschosshöhe GeschossanzahlTragwerkstyp Fassadentyp Kernposition Kernanzahl **ArchiCAD Favoriten VARIANTE 011**

ArchiCAD Favoriten

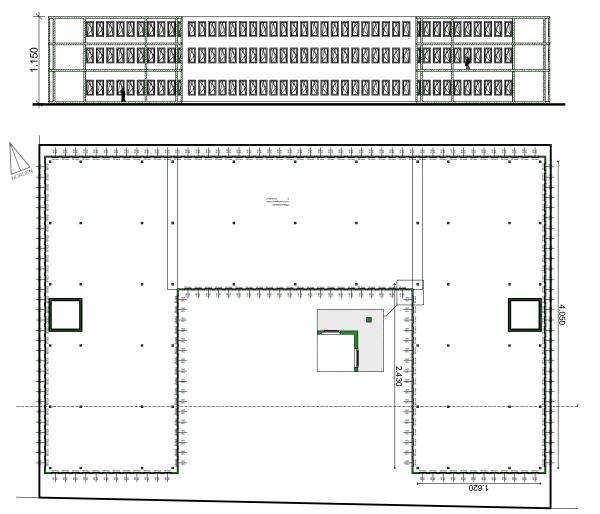


Abb.126: Schnitt und Grundriss V011

Kernposition: rand ___ Note 2

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 2

El_{kon} ... 2,34 Punkte pro m²

• Energieeffizienz: Note 2

Tab.42: Energieausweis ARCHIPHYSIK V011

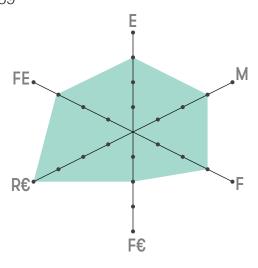
· Rohbaukosten:

Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

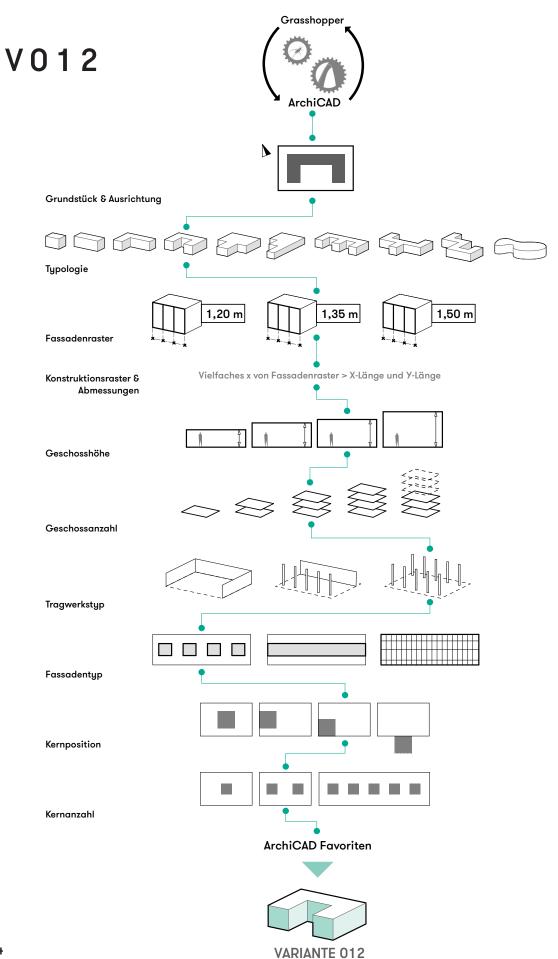
Tab.43: Berechnung Rohbaukosten V011

Fassadenkosten: Note 3

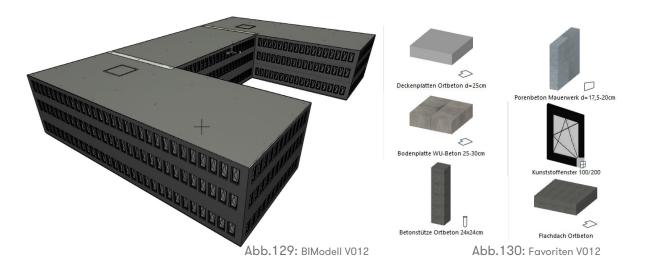

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Außenwand	332.21.01	m2	150		11716,90	1757535
Fenster	334.63.02	m2	600	582 * 2m2	1164	698400
						2455935

Tab.44: Berechnung Fassadenkosten V011

Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m²

NF / BGF = 0,69




V011

133

ArchiCAD Favoriten

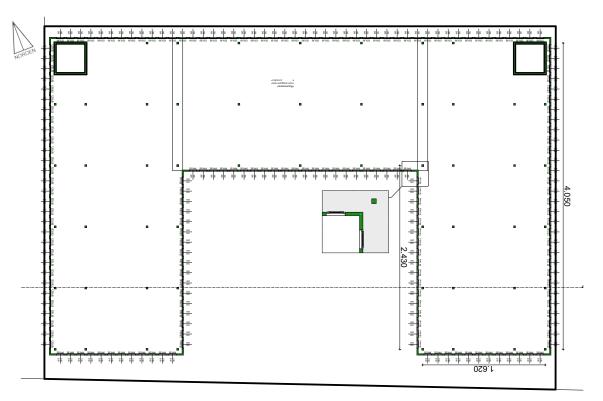


Abb.131: Schnitt und Grundriss V012

Kernposition: ecke ___ Note 3

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 2

El_{kon}... 2,34 Punkte pro m²

• Energieeffizienz: Note 2

Tab.45: Energieausweis ARCHIPHYSIK V012

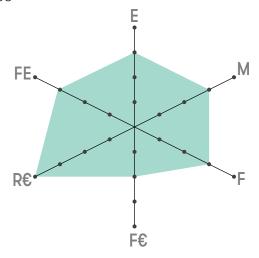
Rohbaukosten:

Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

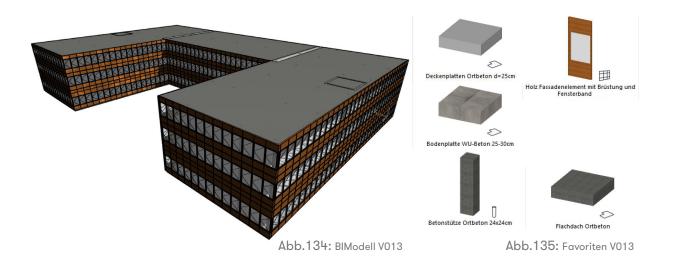
Tab.46: Berechnung Rohbaukosten V012

• Fassadenkosten: Note 3


Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Außenwand	332.21.01	m2	150		11716,90	1757535
Fenster	334.63.02	m2	600	582 * 2m2	1164	698400
						2455935

Tab.47: Berechnung Fassadenkosten V012

Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m²

NF / BGF = 0,69

Grasshopper V 0 1 3 **ArchiCAD** Grundstück & Ausrichtung Typologie 1,20 m 1,35 m 1,50 m Fassadenraster Vielfaches x von Fassadenraster > X-Länge und Y-Länge Konstruktionsraster & Abmessungen Geschosshöhe Geschossanzahl Tragwerkstyp Fassadentyp Kernposition Kernanzahl ArchiCAD Favoriten **VARIANTE 013**

ArchiCAD Favoriten

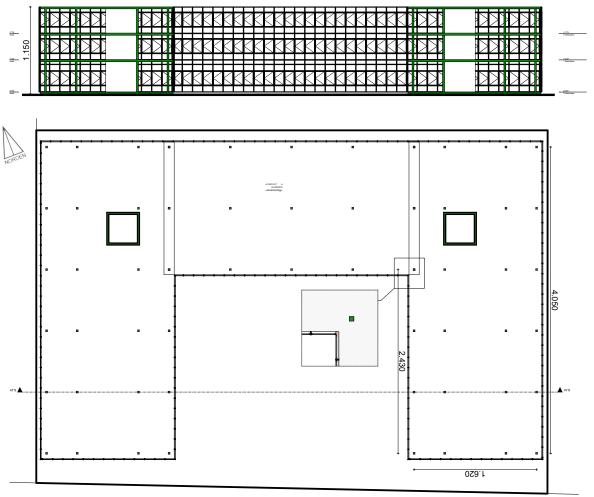
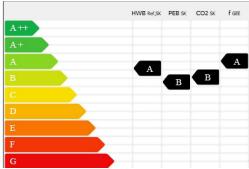


Abb.136: Schnitt und Grundriss V013

Kernposition: zentral ___ Note 1


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 3

El_{kon} ... 3,40 Punkte pro m²

• Energieeffizienz: Note 2

Tab.48: Energieausweis ARCHIPHYSIK V013

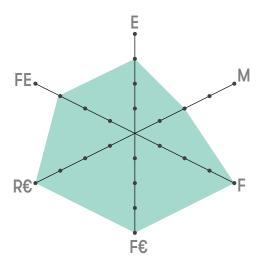
Rohbaukosten:

Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

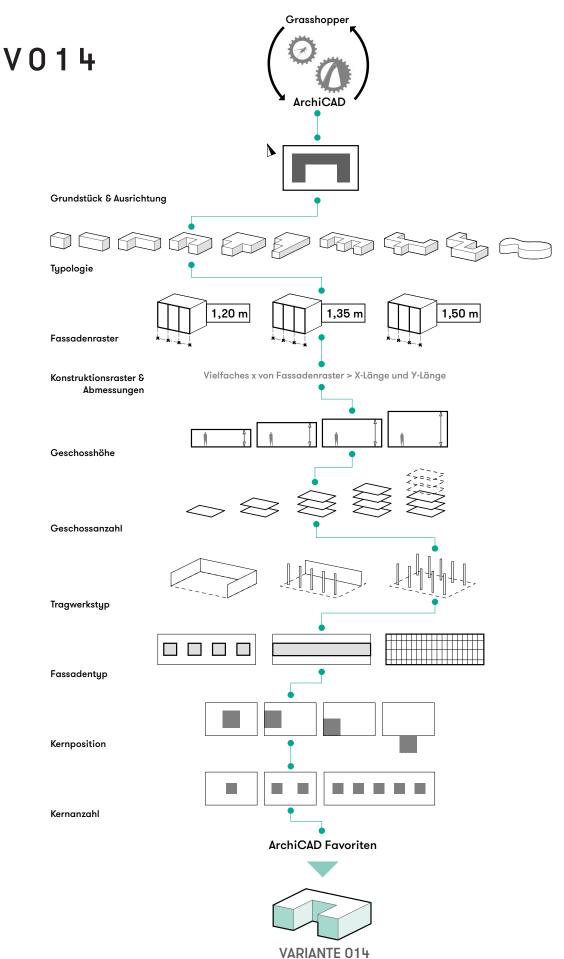
Tab.49: Berechnung Rohbaukosten V013

• Fassadenkosten: Note 1

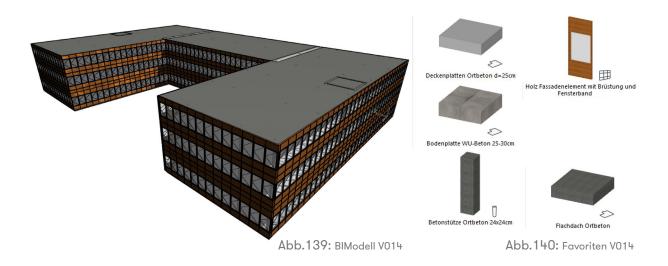

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Elementfassade	337.21.81	m2	690	2880,90	1987821
					1987821

Tab.50: Berechnung Fassadenkosten V013

Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m²

NF / BGF = 0,69



139

V013

ArchiCAD Favoriten

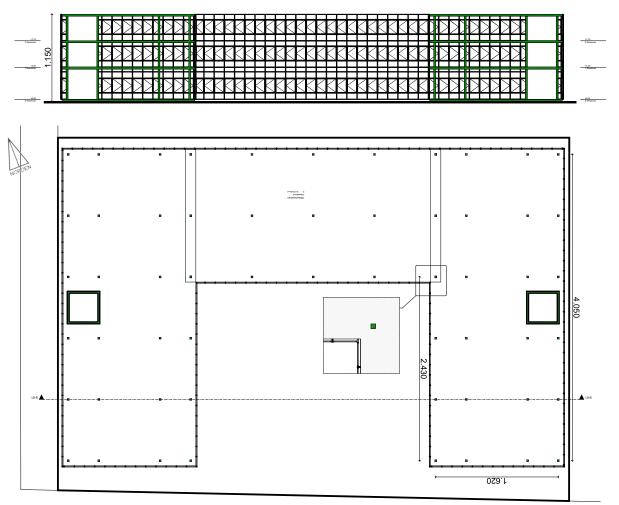
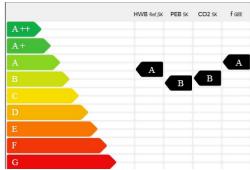


Abb.141: Schnitt und Grundriss V014

Kernposition: rand ____ Note 2


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 3

El_{kon} ... 3,40 Punkte pro m²

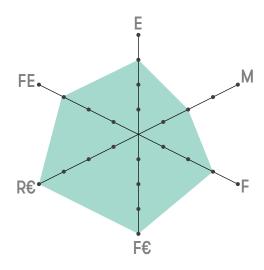
Energieeffizienz: Note 2

Tab.51: Energieausweis ARCHIPHYSIK V014 Rohb 1

aukosten:	Note
-----------	------

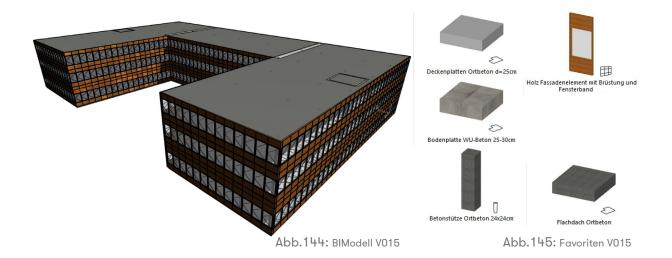
Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.52: Berechnung Rohbaukosten V014


Fassadenkosten: Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Elementfassade	337.21.81	m2	690	2880,90	1987821
					1987821

Tab.53: Berechnung Fassadenkosten V014


Flächeneffizenz: Note 2

> BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

Grasshopper V015 **ArchiCAD** Grundstück & Ausrichtung Typologie 1,20 m 1,35 m 1,50 m Fassadenraster Vielfaches x von Fassadenraster > X-Länge und Y-Länge Konstruktionsraster & Abmessungen Geschosshöhe Geschossanzahl Tragwerkstyp Fassadentyp Kernposition Kernanzahl **ArchiCAD Favoriten VARIANTE 015**

ArchiCAD Favoriten

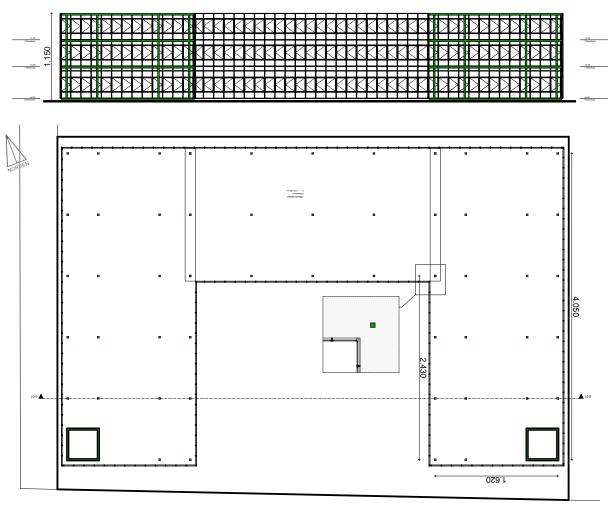
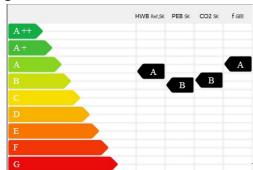


Abb.146: Schnitt und Grundriss V015

• Flexibilität: Note 2

Kernposition: ecke ___ Note 3


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 3

El_{kon} ... 3,40 Punkte pro m²

• Energieeffizienz: Note 2

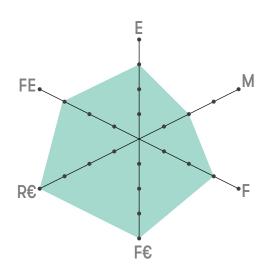
Tab.54: Energieausweis ARCHIPHYSIK V015

Rohbaukosten:

Note 1

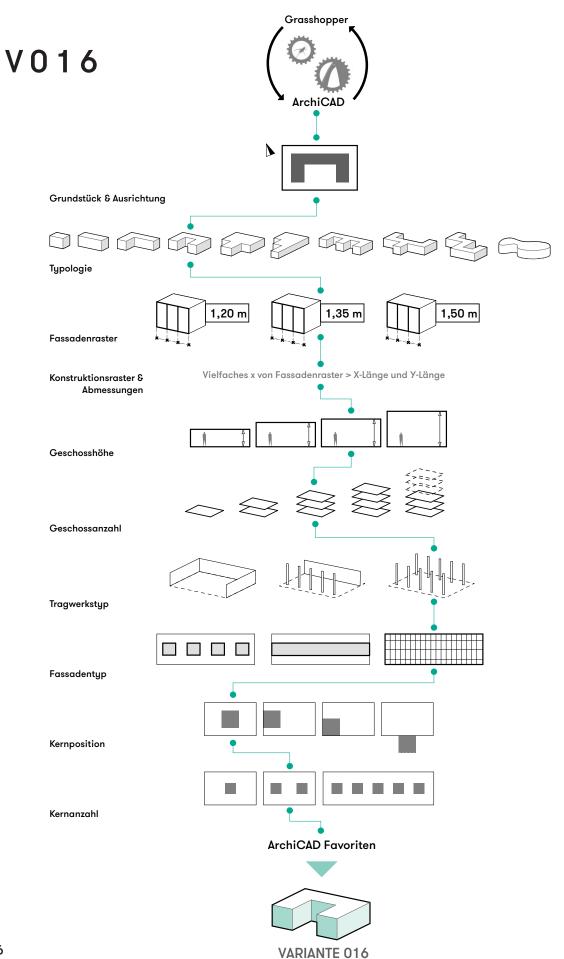
Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.55: Berechnung Rohbaukosten V015

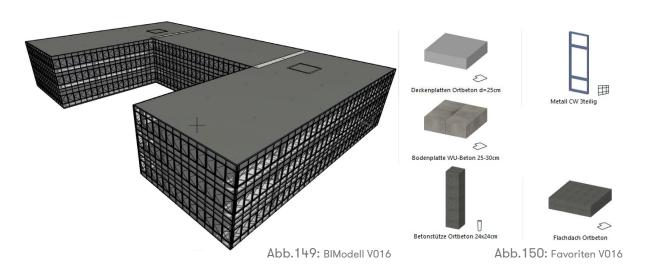

Fassadenkosten: Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Elementfassade	337.21.81	m2	690	2880,90	1987821
					1987821

Tab.56: Berechnung Fassadenkosten V015


• Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69



V015

145

BIModell ArchiCAD Favoriten

Grundriss & Schnitt M1:500

Abb.151: Schnitt und Grundriss V016

Flexibilität: Note 1

Kernposition: zentral ___ Note 1

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 3

El_{KON} ... 2,73 Punkte pro m²

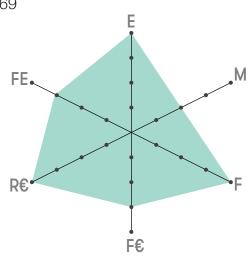
• Energieeffizienz: Note 1

Tab.57: Energieausweis ARCHIPHYSIK V016

Rohbaukosten: Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
				Tab.58	: Berechnung R	958086,9 Pohbaukosten V016

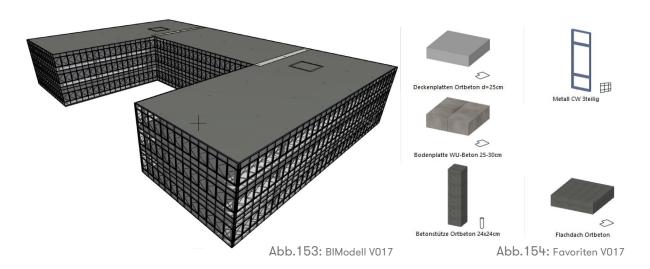
Fassadenkosten: Note 2


Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Curtain Wall	337.41.10	m2	740	2880,90	2131866
					2131866

Tab.59: Berechnung Fassadenkosten V016

• Flächeneffizenz: Note 2

148


BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

V016

Grasshopper ArchiCAD Grundstück & Ausrichtung Typologie 1,20 m 1,35 m 1,50 m Fassadenraster Vielfaches x von Fassadenraster > X-Länge und Y-Länge Konstruktionsraster & Abmessungen Geschosshöhe Geschossanzahl Tragwerkstyp Fassadentyp Kernposition Kernanzahl **ArchiCAD Favoriten VARIANTE 017**

BIModell ArchiCAD Favoriten

Grundriss & Schnitt M1:500

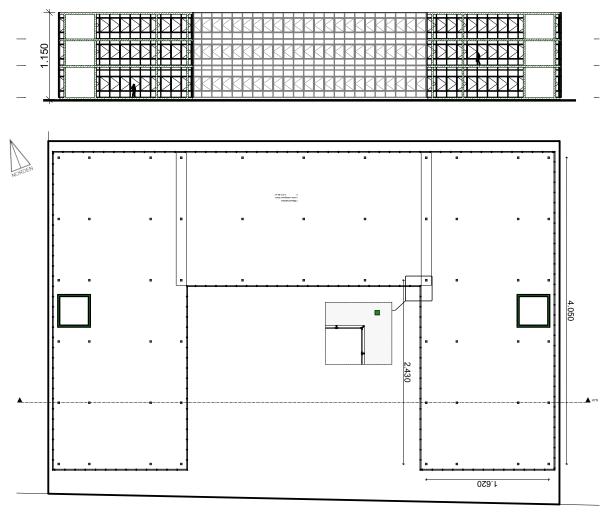


Abb.155: Schnitt und Grundriss V017

Flexibilität: Note 2

Kernposition: zentral ___ Note 2

Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

Materialeffizienz: Note 3

El_{kon} ... 2,73 Punkte pro m²

• Energieeffizienz: Note 1

Tab.60: Energieausweis ARCHIPHYSIK V017

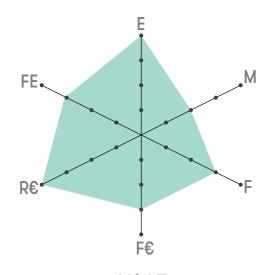
Rohbaukosten:

Note 1

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

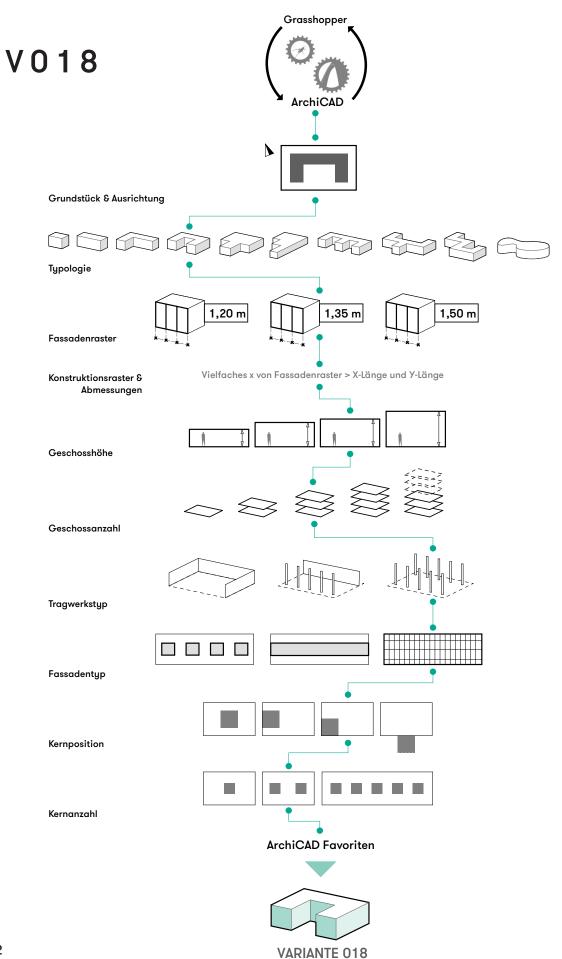
Tab.61: Berechnung Rohbaukosten V017

Fassadenkosten: Note 2

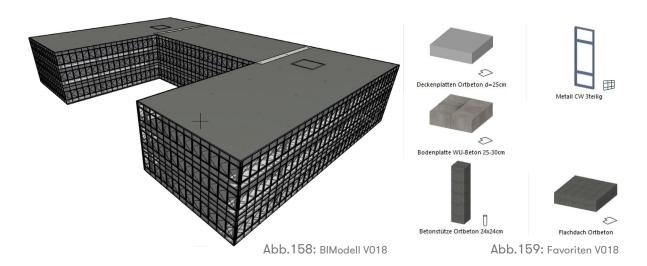

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Curtain Wall	337.41.10	m2	740	2880,90	2131866
					2131866

Tab.62: Berechnung Fassadenkosten V017

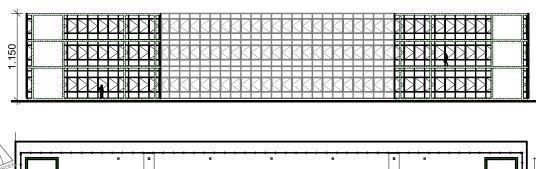
Flächeneffizenz: Note 2


BGF ... 1858,36 m² NF ... 1282,26 m²

NF / BGF = 0,69



V017


151

BIModell ArchiCAD Favoriten

Grundriss & Schnitt M1:500

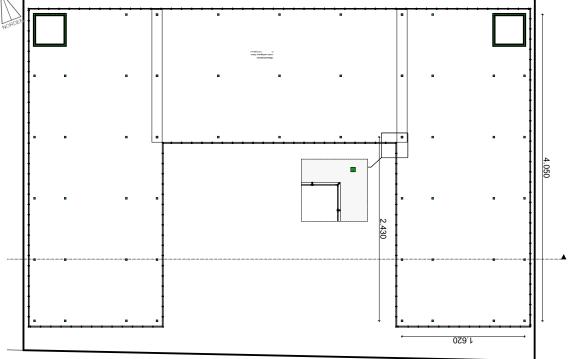
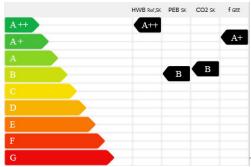


Abb.160: Schnitt und Grundriss V018

• Flexibilität: Note 2

Kernposition: ecke ___ Note 3


Tragwerk: Skelettbauweise ___ Note 1

Anwendbare Bürotypologien: 4 von 5 ___ Note 2

• Materialeffizienz: Note 3

El_{kon} ... 2,73 Punkte pro m²

• Energieeffizienz: Note 1

Tab.63: Energieausweis ARCHIPHYSIK V018

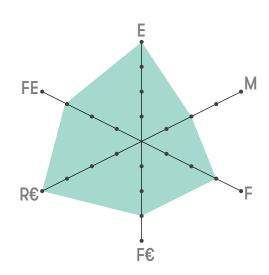
Rohbaukosten:

Note 1

Note 2

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit		Menge	Gesamtkosten in €
Stütze	343.21.02	Meter Stützenlänge	99	57 x 4m 114x3,5m	627	62073
Decke	351.15.02	m2	130		3717,90	483327
Bodenplatte	324.15.10	m2	62		1858,95	115254,9
Dach	361.91.81	m2	160		1858,95	297432
						958086,9

Tab.64: Berechnung Rohbaukosten V018


Fassadenkosten:

Bauteil	Element laut BKI	Einheit	Kosten € / Einheit	Menge	Gesamtkosten in €
Curtain Wall	337.41.10	m2	740	2880,90	2131866
					0101000

Tab.65: Berechnung Fassadenkosten V018

Flächeneffizenz: Note 2

BGF ... 1858,36 m² NF ... 1282,26 m² NF / BGF = 0,69

AUSWAHL VARIANTE VERGLEICH NETZDIAGRAMME

Der Vergleich der Netzdiagramme ergibt, dass die Diagramme der Varianten V004, V013 und V016 die größten Flächen aufweisen und somit die best geeignetsten Design-Optionen für eine weitere Bearbeitung darstellen.

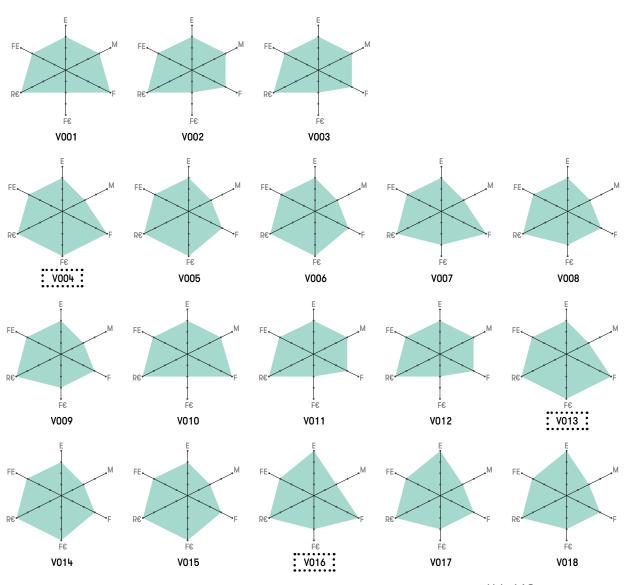


Abb.162: Netzdiagramme

O5 RESÜMEE

Das Ziel der Arbeit, die Entwicklung und Implementierung einer Werkzeugkette zur Variantenbildung und Evaluierung von Bürotypologien mittels **Algorithmic Design (AD)** und **Building Information Modeling (BIM)** zu erstellen, wurde erfüllt. Ein Algorithmus in GRASSHOPPER und ARCHICAD, der die Geometrie und die BIM-Elemente der **Varianten** kontrolliert, wurde entworfen. Es wurden für den "Proof of Concept" 18 BIM-Varianten einer zuvor durch den ersten Teil des Algorithmus ausgewählten Typologie eines Bürotyps generiert und mithilfe der vorab in dieser Arbeit festgelegten Bewertungskriterien auf ihre Effizienz getestet. Ziel dessen war es, eine optimale Variante zu ermitteln. Die Auswertung und der Vergleich der Varianten mittels Netzdiagrammen ergaben drei Varianten, die sich für eine Weiterbearbeitung anbieten.

Getestet wurde in erster Linie die Kompatibilität von Algorithmic Design und Building Information Modeling in den Programmen GRASSHOPPER und ARCHICAD in ihrer Anwendung zur Erstellung von Entwurfsvarianten. Zur Live-Connection der beiden Softwarelösungen kann die Aussage getroffen werden, dass dem Hersteller GRAPHISOFT eine positive Lösung gelungen ist. Die Implementierung von ARCHICAD-BIM-Elementen in den Algorithmus in GRASSHOPPER sowie die Bidirektionalität der Programme stellen ein weiteres Positivum dar und zeigen, dass sich AD und BIM in der frühen Entwurfsphase als gut kombinierbar erweisen. Als weitaus effizienter als vorerst angenommen erwies sich die Datenauswertung der BIModelle. Untersucht wurden diese auf Energieeffizienz, Materialeffizienz, Flexibilität, Flächeneffizenz, Rohbaukosten und Fassadenkosten. Jede der 18 BIM-Varianten wurde auf diese Faktoren überprüft und ausgewertet und mithilfe eines Netzdiagramms benotet. Die Evaluierung der Energieeffizienz anhand des Programms ARCHIPHYSIK erwies sich durch die Schnittstelle zwischen ARCHICAD 21 und ARCHIPHYSIK 5 als funktional und verwendbar. Wünschenswert im Sinne eines optimalen Workflows wäre eine vergleichbare, bidirektionale Connection zwischen ARCHICAD und ARCHIPHYSIK,

wie sie zwischen ARCHICAD und GRASSHOPPER bereits existiert. Auch die Bewertung der Materialeffizienz mittels ECO2SOFT funktioniert, auch wenn die Eingabe manuell erfolgen musste. Auch hier ist daher zumindest anzumerken, dass eine Schnittstelle für eine automatisierte Eingabe der CAD-Daten von Vorteil wäre. Auswertungen hinsichtlich Flächeneffizienz und Flexibilität mussten manuell und analog erfolgen, da hierfür keine Softwarelösungen vorlagen. Hinsichtlich der Bewertung der Kosten erwies sich eine interne Reihung der Varianten als bessere Lösung, als die Noten der Kosten vorab zu fixieren und zu bewerten.

Die 18 BIM-Varianten wurden nach dem vorab gewählten Typ der U-Form generiert. In erster Linie unterscheiden diese sich hinsichtlich der Ausrichtung am Grundstück, der Faktoren Flexibilität, Energieeffizienz, Fassadenkosten (3 Fassadentypen: Loch-, Band-, Pfosten-Riegel-Fassade) und Materialeffizienz. Die Rohbaukosten sind ident, da die gleichen BIM-Elemente verwendet wurden. Durch den vorab gewählten U-Typ ist auch die Flächeneffizienz ident. Die 3 Varianten – V004, V013 und V016 – mit den größten Flächen der Netzdiagramme sind zwei Typen mit Band- und ein Typ mit Curtain-Wall-Fassade, die sich auch in ihrer Ausrichtung am Grundstück unterscheiden. Bezogen auf die Flexibilität weisen alle drei Typen ein Skeletttragwerk, einen zentralen Kern und 4 von 5 anwendbaren Bürotypen auf. Die Varianten 004 und 013 haben geringere Fassadenkosten auf, jedoch bekam die Variante 016 hinsichtlich der Energieeffizienz eine bessere Note. Abgesehen von den verschiedenen Einzelnoten weisen jedoch alle drei die gleiche Netzdiagrammfläche auf und eigenen sich nach der Bewertung für eine vertiefte Weiterbearbeitung.

Die Prozesse der Bewertung und Auswertung sind grundsätzlich in den Algorithmus implementierbar und könnten im Rahmen einer Weiterbearbeitung bzw. Ausarbeitung des hier vorliegenden Themas erfolgen.

Um eine noch reibungslosere Datenübergabe beziehungsweise einen optimierten Vergleich der Varianten vollziehen zu können, ist auch eine Optimierung des Templates in ARCHICAD anzudenken. Bezogen auf die Weiterverarbeitung der Daten durch Softwarelösungen, die Baubook-Daten verwenden, wäre ein solcher BIM-Objektkatalog, eingebettet in das Template, von großem Vorteil. Diese BIM-Elemente, die auch in den GRASSHOPPER-Algorithmus als Favoriten implementierbar sind, würden die Auswertung "Variantenbildung" maßgeblich effizienter gestalten.

Generell ist anzumerken, dass die in dieser Arbeit manuell ausgeführten Schritte eine positive Grundlage für eine automatisierte Werkzeugkette zur Variantenbildung und Bewertung von Gebäudetypologien darstellen. "Machine Learning" und eine durchgehend digitale Werkzeugkette, bei der die optimale Variante (des frühen Entwurfs) automatisch ermittelt wird, ist ein Ziel für die Zukunft.

Literaturverzeichnis

Agkathidis, A., 2015. Generative Design Methods. In Proceedings of eCAADe (pp. 47-55).

ArchiPHYSIK. (2018). ArchiCAD ArchiPHYSIK Schnittstelle v 5.0. [online] http://www.archiphysik.at/archicad-archiphysik-schnittstelle-5-0/ [Zugriff 28 Feb. 2018].

Battisti K., und Somogyváry B. 2017. ArchiPHYSIK 14, Bauphysikalische Berechnungen für energieeffiziente Gebäude.

BKI Baukosteninformationszentrum 2016. BKI Baukosten Gebäude + Bauelemente + Positionen Neubau 2017 - Kombi Teil 1-3: Statistische Kostenkennwerte Gebäude, Positionen und Bauelemente

Bogenstätter, U., 2007. Flächen- und Raumkennzahlen, ifBOR FRZ.

Cory, C. and Schmelter-Morret, S., 2012. Applying BIM in design curriculum. Computational Design Methods and Technologies: Applications in CAD, CAM and CAE Education, IGI-Global, PA, pp.122-138.

Detail 2013. best of Detail: Büro/Office: Ausgewählte Büro-Highlights aus DETAIL / Selected office highlights from DETAIL

Eco2Soft 2017. Das online Tool für ökologische Bewertung von Gebäuden. [online] https://www.baubook.info/Download/eco2soft_Folder.pdf [Zugriff 15 Dez. 2018].

Garber, R., 2014. BIM Design: Realising the Creative Potential of Building Information Modelling. John Wiley & Sons.

Gasser, M., zur Brügge C., und Tvrtković M., 2010. Raumpilot Arbeiten.

Graphisoft.com. 2018. About ARCHICAD — A 3D architectural BIM software for design & modeling. [online] http://www.graphisoft.com/archicad/ [Zugriff 12 Dez. 2018].

Graphisoft.akamaized.net. 2018. [online] https://graphisoft.akamaized.net/cdn/marketing/ac21/archicad-21-leporello.pdf [Zugriff 12 Jan. 2018].

Hauschild, M. and Karzel, R., 2010. Digitale Prozesse: Planung, Gestaltung, Fertigung. Walter de Gruyter.

Hegner, H. and Kerz, N. 2018. Nachhaltiges Bauen in Deutschland - Bewertungsystem des Bundes für Büro- und Verwaltungsbauten.

IBO - Österreichisches Institut für Bauen und Ökologie GmbH, 2012. EI - ENTSORGUNGSINDIKATOR. Leitfaden zur Berechnung des Entsorgungsindikators von Bauteilen und Gebäuden

IBO - Österreichisches Institut für Bauen und Ökologie. 2018 [online] https://www.ibo.at/materialoekologie/lebenszyklusanalysen/ei-entsorgungsindikator/ [Zugriff 1 Mar. 2018].

Jocher, T., Loch, S., 2010. Raumpilot. Grundlagen. Krämer.

Kilkelly, M., 2018. 5 Ways Computational Design Will Change the Way You Work - ArchSmarter -. [online] ArchSmarter. Available at: http://archsmarter.com/computational-design/[Zugriff 12 Jan. 2018].

Kymmell, W., 2007. Building Information Modeling: Planning and Managing Construction Projects with 4D CAD and Simulations (McGraw-Hill Construction Series): Planning and Managing Construction Projects with 4D CAD and Simulations. McGraw Hill Professional.

Kensek, K.M., 2012. Advancing BIM in academia: Explorations in curricular integration. Computational Design Methods and Technologies: Applications in CAD, CAM and CAE Education, IGI-Global, PA, pp.101-121.

Lévy, F., 2012. BIM in small-scale sustainable design. John Wiley & Sons.

Leitão, A., Santos, L. und Lopes, J., 2012. Programming languages for generative design: a comparative study. International Journal of Architectural Computing, 10(1), pp.139-162.

Menges, A. and Ahlquist, S. eds., 2011. Computational Design Thinking: Computation Design Thinking. John Wiley & Sons.

Milena, S. and Ognen, M., 2010, November. Application of generative algorithms in architectural design. In Proceedings of the 12th WSEAS international conference on Mathematical and computational methods in science and engineering (pp. 175-180). World Scientific and Engineering Academy and Society (WSEAS).

Ostwald, M. (n.d.). Systems and Enablers. Computational Design Methods and Technologies. Computational Design Methods and Technologies: Applications in CAD, CAM and CAE Education, IGI-Global, PA, pp.1-17.

Peters, B., 2013. Computation works: the building of algorithmic thought. Architectural design, 83(2), pp.8-15.

Rhino 5 Features, 2017. [online] https://www.rhino3d.com/features [Zugriff 18 Dez. 2018]

Tedeschi, A., 2014. AAD algorithms-aided design. Parametric strategy using Grasshopper, 3.

Abbildungsverzeichnis

Abb.1: Komponententypen17	Abb.73: Variantenbaum V001	9
Abb.2: Node Diagramm	Abb.74: BIModell V001	
Abb.3: Canvas Grasshopper	Abb.76: Schnitt und Grundriss V001	
Abb.4: Wires Grasshopper Nodes	Abb.75: Favoriten V001	10
Abb.5: Rhino 3D und Grasshopper Fenster19	Abb.77: Netzdiagramm V001	10
Abb.6: Design Nodes22	Abb.78: Variantenbaum V002	
Abb.7: ArchiCAD Leiste in Grasshopper		
Abb.7. Archicad Leiste III Grassnopper	Abb.79: BIModell V002	
Abb.9: Settings und Input in Grasshopper23	Abb.81: Schnitt und Grundriss V002	103
Abb.8: Node	Abb.80: Favoriten V002	10:
Abb.10: Assistent Schnittstelle ArchiPHYSIK-ArchiCAD 24	Abb.82: Netzdiagramm V002	
Abb. 11. Büretun elegien	ADD.02. Netzalagramm vooz	. 10
Abb.11: Bürotypologien	Abb.83: Variantenbaum V003	
Abb.12: Arbeitsplatztypen28	Abb.84: BIModell V003	10
Abb.13: Zellenbüro Schema29	Abb.86: Schnitt und Grundriss V003	10
Abb.14: Kombibüro Schema30	Abb.85: Favoriten V003	
Abb.15: Großraumbüro Schema31	Abb.87: Netzdiagramm V003	
Abb.16: Gruppenbüro Schema32	Abb.88: Variantenbaum V004	10
Abb.17: Businessclub Schema33	Abb.89: BIModell V004	
Abb.18: Einbund-, Zweibund-, Dreibundbüro34	Abb.91: Schnitt und Grundriss V004	
Abb.19: Raster35		
	Abb.90: Favoriten V004	IU'
Abb.20: Tiefgaragen und Raster35	Abb.92: Natzdiagramm V004	110
Abb.21: Raster 1,20m Schema36	Abb.93: Variantenbaum V005	11
Abb.22: Raster 1,35m Schema37	Abb.94: BIModell V005	
Abb.23: Raster 1,50m Schema38	Abb.96: Schnitt und Grundriss V005	
Abb.24: Bürotypen Flexibilität39	Abb.95: Favoriten V005	117
Abb.25: Kernposition40	Abb.97: Netzdiagramm V005	113
Abb.26: Tragwerkstypen40	Abb.98: Variantenbaum V006	111
Abb.27: Fassadentypen41		
Abb.27: Fassadentypen	Abb.99: BIModell V006	
Abb.28: Parameter Büro44	Abb.101: Schnitt und Grundriss V006	11!
Abb.29: Parameter ArchiCAD Nodes45	Abb.100: Favoriten V006	11!
Abb.30: Settings und Input45	Abb.102: Netzdiagramm V006	
Abb.31: Konzept Variantenbildung46	ADD. 102. Netzaragrammi v000	44
Abb. 31. Konzept variantenblidung	Abb.103: Variantenbaum V007	
Abb.32: Konzept Auswertung47	Abb.104: BIModell V007	118
Abb.33: Workflow Punkt+Zeile49	Abb.106: Schnitt und Grundriss V007	118
Abb.34: GH-Script Punkt+Zeile51	Abb.105: Favoriten V007	
	Al- I- 107. N-+I'	440
Abb.36: Cluster Kern positionieren	Abb.107: Netzdiagramm V007	- I I
Abb.37: Linien teilen 52	Abb.108: Variantenbaum V008	120
Abb.35: Cluster Eckpunkte isolieren52	Abb.109: BIModell V008	12
Abb.38: Rhino 3D + Grasshopper Script53	Abb.111: Schnitt und Grundriss V008	
Abb.39: ArchiCAD BIM Modell53		
	Abb.110: Favoriten V008	. 16
Abb.40: Workflow L-Form55	Abb.112: Netzdiagramm V008	12
Abb.41: Grasshopper Script L-Form57	Abb.113: Variantenbaum V009	12
Abb.42: Workflow U-Form59	Abb.114: BIModell V009	
Abb.43: Grasshopper Script U-Form61	Abb.116: Schnitt und Grundriss V009	
Abb.44: Workflow Kamm und Mäander63		
ADD.44: Workflow Ramm und Maander	Abb.115: Favoriten V009	
Abb.45: Grasshopper Script Kamm und Mäander 65	Abb.117: Netzdiagramm V009	12!
Abb.46: Workflow Freiform67	Abb.118: Variantenbaum V010	12
Abb.47: Grasshopper Script Freiform69	Abb.119: BIModell V010	
Ab Li 10. Notadi a grana na Cabana a		
Abb.48: Netzdiagramm Schema70	Abb.121: Schnitt und Grundriss V010	
Abb.49: Screenshot eco2soft74	Abb.120: Favoriten V010	12
Abb.50: Flächen Schema75	Abb.122: Netzdiagramm V010	12
Abb.52: NF durch BGF	Abb.123: Variantenbaum V011	120
Abb.51: Grasshopper Script Teil Flächeneffizienz76		
	Abb.124: BIModell V011	
Abb.53: Wien maßstabslos88	Abb.126: Schnitt und Grundriss V011	130
Abb.54: Seestadt Aspern88	Abb.125: Favoriten V011	130
Abb.55: Grundstück Flächenwidmungsplan89	Abb.127: Netzdiagramm V011	
Abb.56: Grundstück Teilfläche Auswahl	Abb.128: Variantenbaum V012	
Abb.57: Grundstück Teilfläche max. Höhe90	Abb.129: BIModell V012	
Abb.58: Grasshopper Script Typologieauswahl91	Abb.131: Schnitt und Grundriss V012	13
Abb.60: Typologieauswahl Punkt+Zeile Pictos92	Abb.130: Favoriten V012	133
Abb.59: Script Typologieauswahl Punkt+Zeile92	Abb 132: Notzdiagramm \/012	10
Abb 61. Tupologicaupyahl L Form Diston	Abb. 132: Netzdiagramm V012	. 10
Abb.61: Typologieauswahl L-Form Pictos93	Abb.133: Variantenbaum V013	
Abb.62: Script Typologieauswahl L-Form93	Abb.134: BIModell V013	13
Abb.64: Typologieauswahl U-Form Pictos94	Abb.136: Schnitt und Grundriss V013	
Abb.63: Script Typologieauswahl U-Form94	Abb.135: Favoriten V013	
Abb 66: Tupologicaupyabl Vame Distan		
Abb.66: Typologieauswahl Kamm Pictos95	Abb.137: Netzdiagramm V013	. I3
Abb.65: Script Typologieauswahl Kamm95	Abb.138: Variantenbaum V014	13
Abb.68: Typologieauswahl Mäander Pictos96	Abb.139: BIModell V014	
Abb.67: Script Typologieauswahl Mäander96	Abb.141: Schnitt und Grundriss V014	
Abb.69: U-Form Schema		
ALL 70. H.F Contact Vanishand 111	Abb.140: Favoriten V014	
Abb.70: U-Form Script Variantenbildung98	Abb.142: Netzdiagramm V014	140
Abb.71: Favoriten in ArchiCAD98	Abb.143: Variantenbaum V015	14
Abb.72: Favoriten in Grasshopper98	Abb.144: BlModell V015	. 143

Abb.145: Favoriten V015 Abb.146: Schnitt und Grundriss V01	5142
Abb.147: Netzdiagramm V015	143
Abb.148: Variantenbaum V016	144
Abb.149: BIModell V016	145
Abb.150: Favoriten V016	
Abb.151: Schnitt und Grundriss V01	6145
Abb.152: Netzdiagramm V016	146
Abb.153: Variantenbaum V017	147
Abb.154: BIModell V017	
Abb.155: Favoriten V017	148
Abb.156: Schnitt und Grundriss V01	
Abb.157: Netzdiagramm V017	149
Abb.158: Variantenbaum V018	150
Abb.159: BIModell V018	151
Abb.160: Favoriten V018	151
Abb.161: Schnitt und Grundriss V018	8151
Abb.162: Netzdiagramm V018	152

Tabellenverzeichnis

Tab.1: Ubersicht Bürodaten	36
Tab.2: Raumhöhen	36
Tab.3: Entsorgungseinstufung	75
Tab.4: Verwertungspotential	75
Tab.5: Unterböden und Bodenplatten BKI	80
Tab.4: Verwertungspotential	81
Idh /·I)ecken BKI	82
Tab.8: Dächer BKI	83
Iah 9. Außentenster BKI	85
Tab.10: Außenwände BKI	86
Tab.10: Außenwände BKI Tab.11: Elementierte Außenwände BKI Tab.12: Energieausweis ARCHIPHYSIK V001	87
Tab.12: Energieausweis ARCHIPHYSIK V001	103
Tab. 13: Berechnung Rohbaukosten V001 Tab. 14: Berechnung Fassadenkosten V001 Tab. 15: Energieausweis ARCHIPHYSIK V002	103
Tab.14: Berechnung Fassadenkosten V001	103
Tab.15: Energieausweis ARCHIPHYSIK V002	106
Tab.16: Berechnung Rohbaukosten V002	106
Tab.17: Berechnung Fassadenkosten V002	106
Tab.18: Energieausweis ARCHIPHYSIK V003	109
Tab. 16: Berechnung Rohbaukosten V002	109
lab.20: Berechnung Fassadenkosten V003	109
Tab.21: Energieausweis ARCHIPHYSIK VUU4	112
Tab.22: Berechnung Rohbaukosten VUU4	112
Tab. 23: Berechnung Fassadenkosten VUU4	112
Tab.24: Energieausweis ARCHIPHYSIK VUU5	115
Tab.22: Berechnung Rohbaukosten V004	115
Tab.20: Berechnung Fassadenkosten VUU5	115
Tab. 20: Days a brown a Dalah suda atau V004	110
Tab. 20: Berechnung Konbaukosten VUU0	110
Tab 20: Energia quavaia ADOLIDHYOK VOO7	101
Tab 21. Parachauna Dabbaukastan V007	121
Tab. 22. Parachauna Facandankosten VOO7	121
Tab 22: Energia guavaia ADCHIDHVSIV VOO	121
Tab 34: Rarachauna Dahbaukastan VOOS	12L
lab.27: Energieausweis ARCHIPHYSIK V006	12L
Tab 36: Energieausweis APCHIPHYSIK V000	127
Tab 37: Berechnung Pohhaukosten V009	127
Tab 38: Berechnung Fassadenkosten V009	127
Tab 39: Energieausweis ARCHIPHYSIK V010	130
Tab. 40: Berechnung Rohbaukosten V010	130
Tab.41: Berechnung Fassadenkosten V010	130
Tab. 37: Berechnung Konbaukosten VUU9	133
Tab.43: Berechnung Rohbaukosten V011	133
Tab.44: Berechnung Fassadenkosten V011	133
Tab. 45: Energieausweis ARCHIPHYSIK V012	136
Tab.46: Berechnung Rohbaukosten V012	136
Tab.46: Berechnung Rohbaukosten V012 Tab.47: Berechnung Fassadenkosten V012	136
3	