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Abstract

In 2012, a new boson with a mass of approximately 125 GeV was discovered at the Large
Hadron Collider (LHC) at CERN by the ATLAS and CMS Collaboration. Its properties
were found to have good agreement with the sought-after Higgs boson described in
the Standard Model of particle physics. Until then, the Higgs particle was the last
particle of the Standard Model that was not experimentally verified. One important
step in confirming the boson as the Standard Model Higgs boson is the measurement
of its coupling to 7 leptons with high precision. The most promising decay channel
to reach discovery significance is the H — 777~ decay. To enhance the performance
of the event classification of data taken at LHC at a center-of-mass energy of 13TeV,
boosted decision trees (BDT) are studied as potential signal extraction method. BDT
is a machine learning technique, which was optimized and trained by the use of Monte
Carlo samples. As a benchmark, the BDT performance is compared to other signal-
versus-background classifier like a cut-based method, which is the standard technique
used in high energy physics, and to other machine learning methods. The BDT analysis
performs significantly better than the other approaches and therefore has high potential
for future data analysis.



Kurzzusammenfassung

Im Jahr 2012 wurde am Large Hadron Collider (LHC) am CERN von der CMS und
ATLAS Collaboration ein neues Boson mit einer ungefihren Masse von 125 GeV ent-
deckt. Seine Eigenschaften stimmen gut mit jenen des gesuchten Higgs Bosons des
Standard Modells der Teilchenphysik iiberein. Bis dahin war das Higgs Boson das letzte
Teilchen des Standard Modells, das noch nicht experimentell beobachtet worden war.
Ein wichtiger Schritt um die Ubereinstimmung des Bosons mit dem Higgs Boson des
Standard Modells zu bestétigen, ist die Messung der Kopplung zu 7 Leptonen mit hoher
Prizision. Der vielversprechendste Zerfallskanal, um die notwendige Signifikanz fiir eine
Entdeckung zu erreichen, ist H — 7777, Um die Leistung der Eventklassifizierung von
Datensétzen, die am LHC bei einer Schwerpunktsenergie von 13 TeV detektiert werden,
zu erhthen, werden Boosted Decision Trees (BDT) als potentielle Signalextraktions-
methode untersucht. BDT ist eine selbstlernende Methode, die durch die Verwendung
von Monte Carlo Datensitzen optimiert und trainiert wird. Die BDTs werden mit den
Ergebnissen anderer Methoden, die Signalereignisse von Hintergrundereignissen trennen,
verglichen. Als Vergleich werden eine schnittbasierte Methode, die der Standardmethode
in der Hochenergiephysik entspricht, und zwei selbstlernende Methoden herangezogen.
Die BDTs weisen deutlich bessere Ergebnisse als die anderen Methoden auf und zeigen
somit hohes Potential fiir die zukiinftige Datenanalyse.
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1 Introduction

In the Standard Model of particle physics (SM) the Higgs mechanism plays an important
role as it provides an explanation of the mass generation for the W* and Z gauge bosons
and fermions [1]. It was predicted in 1964, implying the existence of a massive scalar
boson, the Higgs boson [2, 3, 4]. The discovery of the W* and Z gauge bosons in
1983 [5, 6] gave strong indication for the Higgs mechanism. In 2012, a boson with a
mass of 125 GeV was discovered at CERN by the ATLAS and CMS Collaborations. Its
properties show good agreement with those of the SM Higgs boson [7, 8, 9]. The masses
of fermions are generated by Yukawa couplings between the fermionic fields and the
Higgs field [10]. The confirmation of this coupling is essential for the identification of
the discovered boson as the SM Higgs boson. The Higgs boson decaying into a tau-
antitau pair (H — 7777) is the most promising decay mode for such a measurement.
Its expected event rate at the Large Hadron Collider (LHC) is high compared to most
other fermionic decay channels and it has a relatively small background contribution
with respect to decays to bb [11].

The purpose of this thesis is the investigation of the performance of Boosted Decision
Trees (BDT) for the H — 77 signal extraction. The analyses are performed for a
center-of-mass energy of 8 TeV and 13 TeV with the focus lying on the 13 TeV analysis.
The BDTs are trained on Monte Carlo (MC) samples simulating the different signal
and background processes that are included in the analyses. Furthermore, the BDT
performance is compared to a cut-based approach. The BDT analysis is conducted by
the use of the Toolkit for Multivariate Analysis (TMVA), which is a ROOT-integrated
environment.

The thesis starts out with an introduction to the SM focusing on spontaneous sym-
metry breaking and the Higgs boson (Chap. 2). Then, a brief overview on the LHC at
CERN is given with an emphasis on the CMS detector and its subsystems (Chap. 3).
Chapter 4 introduces the cut-based and multivariate analysis (MVA) approaches, gives
an overview on the TMVA framework and describes the methods of boosted decision
trees in more detail. In chapter 5 two possibilities for the performance quantification
are explained. The MC samples, used for training and evaluating the BDT algorithm,
are discussed in chapter 6. The 8 TeV MC samples are normalized to an luminosity
of £ =19.7fb~! and the 13TeV to £ = 10fb~!. The analysis for 8 TeV is performed
for the pr, channel under consideration of the Drell-Yan background and discussed in
chapter 7. The BDT optimization methods are also introduced in this chapter. In
chapter 8 the different analyses performed for 13 TeV are explained and their results are
compared. For 13 TeV not only the 7y, channel, but also ery, is studied and a more com-



plete background treatment is implemented by including the tf and W+ jets background.
Thereafter, the performance of the 13 TeV analyses is quantified by the CMS statistics
framework, which provides the possibility of the implementation of nuisance parameters
(Chap. 9). All results are summarized in chapter 10, which also provides an outlook.




2 The Standard Model of particle
physics

The SM is a theory describing all currently known elementary particles and their inter-
actions [1]. These interactions include the strong force, the weak force and the electro-
magnetic force which are described by a gauge theory. As the SM is formulated as a
local gauge theory, the forces are mediated via gauge bosons. In addition to the four
gauge particles, 12 fermions, consisting of quarks and leptons, and the Higgs boson are
included in the SM. Each fermion has an associated anti-fermion having opposite electric
charge.
The SM is built on 5 fundamental assumptions, namely

e Homogeneity and isotropy of space

Special relativity

e Gauge symmetry

Spontaneous symmetry breaking

CPT (Charge conjugation, Parity transformation, Time reversal) invariance

A big success of the SM is not only the description of the forces, but also the prediction
of elementary particles and their properties. For example, the Higgs boson was predicted
as a consequence of a spontaneous symmetry breaking in the SM in the 1960s [2, 3, 4].
In 2012, a boson was discovered at the LHC at CERN, which shows good agreement
with the properties of the predicted Higgs boson |7, 8, 9].

Nevertheless, there are still a lot of open questions that can not be answered by the
SM, only some of them will be mentioned here. Firstly, the fourth fundamental force,
gravitation, is not part of the SM as it can not be described by gauge theory yet.
Another open question is, if there exists a Grand Unified Theory (GUT) that unifies all
fundamental forces. Moreover, what is dark energy and dark matter? Why are fermions
arranged in 3 generations? Where are the missing CP (charge parity) symmetry breaking
processes?

Many theories try to solve these problems, like supersymmetry (SUSY) or extra di-
mensions.

Nonetheless, only the SM is discussed in the present chapter, starting with a more
detailed overview on its particles, then the fundamental forces are discussed and in the
last chapter the Higgs mechanism is introduced by global and local symmetry breaking.



2.1 Particles of the Standard Model and fundamental forces

2.1 Particles of the Standard Model and fundamental forces

Two groups of particles can be distinguished, fermions and bosons. The fermions contain
leptons and quarks, which have spin-1/2. The bosons consist of the vector bosons with
spin 1 that mediate the fundamental forces and the scalar Higgs boson with spin 0. All
particles of the SM are shown in Fig. 2.1.

mass —» =23 MeV/c* =1.275 GeVic? =173.07 GeVic* 1] =126 GeVic?
charge = 2/3 213 213 t o 1] H
spin —» 12 u 12 C 12 1 9 0
up charm top gluon l';g%grs]
=4.8 MeV/c? =95 MeVic? =418 GeV/c? 1]
-3 d /3 /3 b 0
12 112 S 12 1 »
down strange bottom photon
0.511 MeVie? 105.7 MeVic? 1.777 GeVie? 91.2 GeWie?
-1 -1 -1 o
112 e 1i2 u 1/2 T 1 ;
electron muon tau Z boson
=2 2 e\llc? =017 MeV/c* <155 MeVic? 80.4 GeWic?
Q 0 0 1
112 ])e 142 .I)I‘l 12 ])T 1 W
electron muon tau
neutrino neutrino neutrino W boson

Fig. 2.1: Fundamental particles of the SM [12].

2.1.1 Quarks

Quarks are fermions with spin 1/2 and exist as three doublets, corresponding to the three
generations: up and down (u,d), charm and strange (c,s) and top and bottom (t,b). The
mass increases with each generation, where u and d are the lightest quarks. The exact
mass is shown in Fig. 2.1. u-type quarks, namely u, t and ¢, have an electric charge of
+2/3 eg with eg denoting the elementary charge, whereas d-type quarks (d, b, s) have
charge -1/3 ¢g. The associated anti-quarks have the same properties, but opposite-signed
electric charge.

Quarks also have an additional characteristic, the colour charge. The colour charge can
occupy three different states: red, green and blue. Antiquarks have the complementary
colours. Quarks only form colourless boundary states, having ’white’ colour. This can
be achieved by three quarks (baryons and antibaryons), consisting of either three quarks
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or three antiquarks, one of each colour. Another possibility is a boundary state of two
quarks (mesons), consisting of one quark and one antiquark. These two states are well
investigated and were considered as the only possible boundary states. Only recently, a
new bounded state was discovered at CERN, the pentaquark, which binds five quarks (1
quark and 4 antiquarks, or vice versa) [13|. Bounded states of quarks are called hadrons.

Quarks interact via all three fundamental forces. For the strong and the electro-
magnetic force the quark flavour (u, d, t, b, ¢, s) is preserved, whereas for the weak
interaction transition between the different quark flavours is allowed.

2.1.2 Leptons

Similar to quarks, leptons are also spin 1/2 particles and exist in three generations,
classified by the electron e, muon p and tau 7, with the masses shown in Fig. 2.1 and
electric charge of -1ey. The electron is stable, although for collider experiments the
muon can be considered as stable too, as it normally survives until it leaves the detector.
On the other hand, the 7 has a very short lifetime of approximately 2.9 - 1073 s, with
the consequence that only its decay products can be detected in collider experiments.

For each of these leptons an associated neutrino (ve, v, v7) exists, which forms dou-
blets with the corresponding leptons, e.g. (e, V). The neutrinos have no electrical charge
and very low masses, which are almost equal to zero and could not be determined yet. In
the SM the lepton flavour is conserved separately for each group, only neutrino oscilla-
tions show transition between neutrinos of different generations. Neutrinos only interact
via the weak force and are therefore very hard to detect.

For each lepton there also exists an antilepton having opposite charge and chirality.

2.1.3 Fundamental forces and gauge bosons

Tab. 2.1: Properties of the fundamental forces and their gauge bosons.

Fundamental force Gauge symbol | coupling mass charge | spin
boson
Strong force 8 gluons g 1 0 0 1
Electromagnetism photon 0% %7 0 0 1
7 boson 7 _6 91.2 GeV 0 1
Weal force W boson | Wt | 10 80.4GeV | +1 | 1

In the SM the fundamental interactions between particles are described by a gauge
theory which is based on local symmetries. When this theory is quantized, the gauge
bosons emerge as force carrier between particles. The electroweak force is introduced
by a SU(2) x U(1) symmetry denoting the invariance of a Lagrangian under local SU(2),
a special unitary group of degree 2, transformation and local U(1), a unitary group of
degree 1, transformation. The strong force satisfies a SU(3) symmetry, a local invariance




2.2 Gauge theory and Higgs mechanism

under SU(3), a special unitary group of degree n, transformation. The different forces
interact with different strengths, which are quantified by the coupling constants, These
coupling constants arc shown in Tab. 2.1 compared to the strengeh of the scrong foree,
which is set to 1.

The strong force is described by the quantum chromodynamics (QCD). It is mediated
by 8 massless gluons, which interact with particles that have colour charge. Therefore
gluons only interact with quarks and other gluons, as thev also have colour charge. Only
considering the gauge theory, fundamental forees arve supposed to have infinite interaction
ranges and to have massless force carviers. Nevertheless, experiments on the strong force
have a finite range. This can be explained by the so-called quark confinement,

The electromagnetic interaction, described by the quantum electrodynamics (QED),
is mediased by photons. Photons are massless, like gluons, and interact with all particles
that have electric charge: all fermions except the neutrinos and W bosons. In contrast
to the strong foree, the clectromagnetic interaction has infinite range, consistent with a
gauge theory.

The force carriers of the weak interaction are three vector bosonsg with gpin 1, namely
the Z° boson with zero clectric charge and she W™ bosons with a charge of +ep. As
mentioned before, a gauge theory implies zero mass for all gauge bosons. Nevertheless,
the mediating bosons of the weak force has finite masses. This is introduced to the
theory by a local symmetry breaking of the SU(2)x U(1) symmetry. This symmetry
breaking requires the coupling to a new scalar field, the Higgs field, that gives mass to
the gauge bosons. Due to these magses the weak force has a very short interaction range.

The fourth fundamental force is given by the gravitation, which, together with the
electromagnetic force, is the defining force in everyday life as it has infinite range. Nev-
ertheless, on subatomic scales it can be neglected as its strength is much weaker compared
to the other forees. It is also the only fundamental foree that is not deseribed by che
oM. If gravitation can be described using quantum field theory the mediating particle
is given by the graviton. So far, the graviton has not been discovered.

2.2 Gauge theory and Higgs mechanism

The SM is described by a relativistic quantum gauge field theory. Historically, the
development of the SM began when physicists tried to combine quantum theory with
special relativity. The combination of these theories lead to relativistic quantum field
theory and its Dirac equation

iyt — k¥ (x) =0, {2.1)

which deseribes the free motion of relativistic particles. " denotes the Dirac matrices,
W (x) the wave function of a particle, x the four-vector and x = me
# = m, corresponds with 5= to the inverse Compton wavelength with m the particle
mass. This theory then was applied to classic electromagnesism, which was only possible

, in natural units
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by the introduction of a special local symmetry, gauge invariance. This was the birth
of the relativistic quantum gauge field. Local gauge invariance implies the invariance of
the Dirac equation under a local transformation of the wave function ¥

V(x) = @ OU(r) = U(q)¥(a), (2.2)

with a parameter ¢, A(x) being an arbitrary continuous and differentiable scalar function
and U(q) = ¢““®) denoting a unitary transformation. Inserting eq. (2.2) into eq. (2.1)
leads to a Dirac equation

{710 — 4(0u )] = K} ¥ (2) = 0. (2.3)

To obtain the invariance of the Dirac equation, a gauge field is introduced that transforms
in the way
/
B, — B, =B, — 0.\, (2.4)

to compensate the additional term of eq. (2.3). This leads to the equation
{+"[i0, — qBu] — k}¥(x) = 0. (2.5)
Substituting 0,, with the covariant derivative
D, = 8, +iqA,, (2.6)
the Dirac equation has the simple form
[iv'D,, — k|¥(x) = 0. (2.7)

As stated in the previous chapter gauge theory only leads to massless gauge bosons,
which works for photons as stated above but does not explain the masses of the Z and
W+ bosons of the weak force. This problem is overcome by the Higgs mechanism that
introduces the concept of the spontaneous breaking of a local gauge symmetry.

2.2.1 Global symmetry breaking and Goldstone bosons

The dynamics and kinematics of a system are often formulated by a Lagrangian density,
which leads to the equations of motion by applying the Euler-Lagrange equations [1]. In
the case of global symmetry breaking a complex scalar field

1
d=—— +1 2.8
\/5(¢>1 $2) (2.8)
is defined, which has global U(1) symmetry. A possible Lagrangian density of this

complex scalar field is
L=(9,0"0"® — m?0Td. (2.9)
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Fig. 2.2: Mexican Hat Potential V (®T®) with & = %(% + i¢2) being the complex scalar field.

The infinite number of ground states are determined by |®| = ¢q [14].

Considering the field ® constant in time and space, the derivatives vanish and the min-
imum energy is given for ¢1 = ¢2 = 0, which leads to the vacuum state ® = 0.

In order to obtain a non-vanishing ground state, the Lagrangian density is modified
with the potential term V (®T®)

m?
202

with ¢ being a real parameter. The potential V(®T®) is illustrated in Fig. 2.2. With
the new Lagrangian density

V(0TD) = - [0ld — ¢2)2, (2.10)

L= (9,0"0"d - V(®'®), (2.11)

the vacuum state is given by ®T® = #3, which leads to an infinite number of possible
states that fulfil the relation ¢g = \/¢7 + ¢3. However, as soon as the system reaches
minimum energy, it occupies one particular state, just as a ferromagnetic system that
has one particular direction of magnetization. This means that the ground state does
not have the same symmetry any more, the symmetry is spontaneously broken.

If a real vacuum state with ¢1 = ¢ and ¢ = 0 is considered, the U(1) symmetry of
the ground state is broken, but the Lagrangian density in eq. (2.11)

d— =P, (2.12)

still has the symmetry. (¢o,0) is now expanded around the ground state, which leads to

@:¢0+@X+w>. (2.13)

10
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Inserting ® into the Lagrangian density (2.11) gives

2

2 1 1
— I V2dox + 50+ = | (2.14)

L= %(aux)(a“x) + %(@ﬂ/})(@“@b) 232 2% T2

The Lagrangian density shows two coupled real fields and can be separated into a free
and an interactive term £ = Lypce + Lint. The free Lagrangian density contains the
terms that show only one of the two fields, meaning the terms without interactions

[(@0)(@%) — 2mx] + 5 (00) (") (215)

N

'Cfree =

The free Lagrangian density contains two fields, one scalar field x with a mass of v/2m
and one scalar field 1 without mass, corresponding to a particle with spin 0 and m = 0.
These massless fields are the result of global symmetry breaking and are called Goldstone
bosons. This theorem was introduced by Yoichiro Nambu [15] and elucidated by Jeffrey
Goldstone [16].

2.2.2 Local symmetry breaking and the Higgs boson

Now a Lagrangian density is constructed that is invariant under a local U(1) gauge
transformation
(x) — ' (z) = e PO P(z), (2.16)

where 0(z) may be time and space dependent. The local U(1) symmetry requires the
introduction of a massless gauge field A, which gives a possible Lagrangian density

L = (D,®")(D'®) — EFWF‘“’ —V(®T®) (2.17)

with
D, =0, +iqA, (2.18)

denoting the covariant derivation, F},, being the electromagnetic tensor and V(ot®)
given by the same potential as in eq. (2.10). The Lagrangian density is invariant under
the local gauge symmetry

®(x) — @ (z) = e DP(z), (2.19)

Ay(z) — A;(m) =A,(x)+0,0(x) (2.20)

The minimum energy of the system is given for a vanishing field A, and constant ®
with ®T® = ¢g. Similar to the scalar field in the case of global symmetry breaking, the
ground state is also not unique but has an infinite number of possible states. Due to the
local symmetry, ®(z) can always be chosen real. By setting 0(z) accordingly, a specific
gauge symmetry is is chosen.

11



2.2 Gauge theory and Higgs mechanism

Like in the previous chapter, ®(z) is again expanded around the real ground state ¢g
using the real field h(z)

() = ¢o + \}ih(:c) . (2.21)

After inserting ®'(z) into the Lagrangian density (2.17) and separating the obtained
equation into a free and an interactive term, the free Lagrangian density is given by

1 1
Liree =5 [(0,h)(9"h) — 2m*h?] — L M+ CHrALA". (2.22)

The free Lagrangian density describes a scalar boson field h(x) with mass m = v/2m and
a vector field A, corresponding to a vector boson with mass m = V2q¢o. Therefore,
the local symmetry gives mass to the gauge bosons, in this toy example the photon
A, and leads to a new scalar field h(z) with non-vanishing mass, the Higgs boson.
This mechanism was introduced by Peter Higgs [3]. The interactive Lagrangian density
contains terms, where the gauge field A" mixes with h(z) field.

The electroweak interaction is described by a SU(2) x U(1) symmetry and the sponta-
neous symmetry breaking of SU(2) x U(1)y, — U(1)em. The derived Lagrangian density
can be split into two parts, the

Ly :é [(0,h)(0"Rh) — 2m*h?)

- iZ#uZW + iqﬁ%(g% +93) 2, 2"
h (2.23)

_ 1AWAW
1

2

The first line gives the free massive and neutral scalar Higgs field h(z), the second line
corresponds the free massive and neutral vector field Z,(x), the third to the electromag-
netic field A, (z) and the last line corresponds to the massive vector fields W (z) and
W, (), which interact with the electromagnetic field. The vector fields Z,,(z), W, ()
and W, (r) can be identified with the massive gauge bosons Z, W+ and W~ and the
scalar Higgs field h(z) with the massive Higgs boson H. The remaining terms of the
Lagrangian density contain all the other interaction terms and guarantee the renormal-

ization of the theory.

(DLW )7 = (D] [(DHW) — (DW )] + S gBaiw W,

2.2.3 Production modes of the Higgs boson

The SM predicts the dominant production modes at LHC (Fig. 2.3) of the Higgs boson
as follows [11].

e The production mode with highest cross section at the LHC is the gluon-gluon
fusion (ggF'). The Higgs boson is produced via a loop, dominantly, with a running
top quark, originating from two gluons (Fig. 2.3a).

12
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q q
D0
g
H H
—_— — W/Z i —

W)z

q w/z*

c) d)

Fig. 2.3: Feynman diagrams for the Higgs production modes, a) gluon-gluon-fusion, b) vector-
boson fusion ¢) Higgs strahlung d) associated production [17].

13



2.2 Gauge theory and Higgs mechanism

e The second most probable mode is given by vector-boson fusion (VBF)
(Fig. 2.3b), which is achieved by two quarks radiating a W* or Z° boson each
which combine to a Higgs boson. This production mode has a very distinct sig-
nature, as in addition to the Higgs two hadronic jets can be detected due to the
remaining quarks. These jets have a clear angular separation. Due to this unique
signature, this production mode is chosen for all analyses carried out through this
thesis.

e The third production mode is Higgs strahlung (Fig. 2.3¢), where the Higgs boson
is radiated off a W* or Z* boson. A W or Z boson is then also part of the final
state.

e tt fusion (Fig. 2.3d), which is like Higgs strahlung an associated production. The
Higgs boson is produced together with two top quarks that also appear in the final

state.
g1 02 T T T T T T T T T T T T T T o
-8. g ‘ I T I I : E g
s f LO EW) .
% B pp —» H (NNLO-NNLL QcD + N it
:E 3
I 1z
T 10 g
o “F E
£ ¢ i
(o] C
: pp— o (NNLO QCD + NLO EW) i
1= pp—» WH (NNLOQCD + NLD EW) .
[ Pp - Z+ (NNLOQCD + NLO EW)
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Fig. 2.4: Cross section for the dominant Higgs production modes: Gluon-gluon-fusion (pp — H),
Vector-boson fusion (pp — qgH), Higgs strahlung (pp — WH, pp — ZH), tt fusion
(pp — ttH) [11].

The cross sections for all these production modes are shown in Fig. 2.4 illustrating the
increase of production as a function of the center of mass energy /s. Of special interest
for the LHC are the cross sections at 7 and 8 TeV for Run I and 13 and 14 TeV for Run
IT.

2.2.4 Decay modes of the Higgs boson

When a new boson was discovered at CERN by the CMS and ATLAS Collaborations in
2012, its detected properties were found compatible with those of the Higgs boson. As
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2 The Standard Model of particle physics

the mass of the Higgs boson is a free parameter of the SM, after the discovery it was
experimentally determined with high accuracy by both collabroations with a combined
measured mass of my = 1254+0.21(stat.) £0.11(syst.) GeV [9]. Only when the mass mpy
is known, the branching ratios of the predicted decay modes can be calculated, as they
strongly depend on the mass of the Higgs boson [18|. This dependency is illustrated in
Fig. 2.5. In 2012, the excess in the specific decay modes was most significant in the ZZ
and v modes [7].

LMC HIGGS XS WG 2011

Higgs BR + Total Uncert

102!

102 = MR
100 120 140 160 180 200

M, [GeV]

Fig. 2.5: Branching ratio (BR) of the Higgs boson decay modes as a function of the mass of the
Higgs boson my including the uncertainties [14]

H — 777~ decay

The fermions of the SM become massive due to the Yukawa couplings between the
Higgs boson and the fermions [10]. Until now, none of the fermionic decay channels are
measured with a significance high enough (Z=5) to be declared a discovery, which is
necessary for identifying this boson as the SM Higgs boson [11].

The most promising channel is one Higgs boson decaying into two 7 leptons with
opposite charge (7777). Compared to other leptonic decays, this channel has a high
expected decay ratio in the SM (Fig. 2.5). Only bb has a higher branching ratio, but
this channel is overwhelmed by the irreducible pp — bb + X background [11].

At the LHC the upper limits for the H — 777~ decay channel were placed using
pp collision data recorded at /s = 7TeV and /s = 8 TeV. The ATLAS Collaboration
found an observed (expected) upper limit of 4.5 (3.4) times (o x B){3,C¢Y [19], with
(o % B)%?]\?[Gev denoting the cross section ¢ times branching ratio B for a SM Higgs
boson of my = 125 GeV in the SM, and the CMS Collaboration placing an upper limit
of 3.2 (3.7) times (o * B):2,%¢V [20].
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2.2 Gauge theory and Higgs mechanism

In the detector 7 leptons are not measured directly, but need to be reconstructed from
their decay products. A 7 lepton has two leptonic decay channels, namely

T e 4T+, (2.24)
T = u +U,t U (2.25)

and analogously for the antiparticle 7. Here, for each decaying 7 one light lepton 1 (e
or u) is detected. Furthermore the 7 also decays hadronically in many different decay
channels (Tab. 2.2). In this case the 7 lepton is reconstructed from 1 or 3 charged parti-
cles and several neutral particles, depending on the channel. A reconstructed hadronic
decay is denoted as 7. The light leptons (e or u) are symbolized as 1, whereas if all
leptons are concerned, they are denoted as L (e, u or 1) [21].

Tab. 2.2: Branching ratios of the most relevant 7 decay channels [21].

decay channel ‘ BR [%] ‘
leptonic 35.2
T — eVelr 17.8
T — eVelr 17.4
hadronic 64.8
T — mty, 11.1
T — mrty, 25.4
T — 7T07T07Til/7— 9.19
7 — mO0r070nty, 1.08
T > rErErty, 8.98
T — Ortrtnpty, 4.3
7= 00ttty 0.5
T — K*¥Xv, 3.74
others 0.51

Depending on the production mechanism of the Higgs boson (Fig. 2.3), the H — 77
decay shows different numbers of charged leptons in the signature. For ggF and VBF
only two charged leptons are present, namely LL’, denoting the six final states

LL = puty,, etn, ThTh, eft, [iji, €e. (2.26)

For the associated production with a W/Z boson one or two additional e or p are present.
One additional lepton originates from the W decay, which leads to the four most sensitive
final states

l+ L1y, =p + prp,,
e+ um, [ p+ ey,
M+ ThTh,
e+ ThTh , (2.27)
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whereas two additional leptons are present in the Z decay

I+ LL =1+ pm,,
+ eTh,
teu,
+ ThTh - (2.28)

The ee and up channels are not analysed in this content, as these two channels are
normally used in the H — ZZ — 4l decay channel [20].

In the analysis carried out in the course of this thesis, only the VBF production and
the final states u7, and er,, with ety being added secondly, are studied.

Background in the search for H — 77~

The contribution of different background processes strongly depends on the production
mode of the Higgs boson, the decay channel and the final state.

In case of VBF and the final states ur, and er, the biggest irreducible background
is given by the Drell-Yan process of a Z/v* boson decaying into a pair of 7 leptons.
Another background leading to the same leptonic final states is ¢t production. Another
source of a reducible background is given by a W boson decaying into a lepton 1 plus
neutrino v and jets, with one jet misidentified as a 75,. These three backgrounds are
investigated in this thesis [20].
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3 Experimental setup at CERN

CERN was established in 1954. Nowadays, it is one of the most prestigious research
centres for particle physics around the world. It is located near Geneva, Switzerland and
currently has 21 member states.

During the last 60 years several groundbreaking achievements have been made at
CERN [22], including

e 1960s: Invention of the multiwire proportional chamber by Georges Charpak.

e 1983: Discovery of the W and Z bosons in the UA1 and UA2 experiments using
proton-antiproton collisions at the Super Proton Synchrotron (SPS).

e 1989: At the Large Electron-Positron Collider (LEP) the number of light neutrino
families was determined to be three.

e 1995: First production of antihydrogen at the Low Energy Antiproton Ring
(LEAR).

e 1999: Discovery of direct CP violation in the NA48 experiment at the SPS.
e 2011: Trapping of antihydrogen for 1000 seconds in the ALPHA experiment.
e 2012: Discovery of a boson consistent with the Higgs boson at ATLAS and CMS.

e 2015: Discovery of pentaquarks at LHCb.

3.1 The Large Hadron Collider (LHC)

At the present time the LHC at CERN is the world’s largest and most powerful particle
collider. It was built after the shut-down of LEP in 2000 by re-using the LEP tunnel with
a circumference of 27km. As the LHC is a particle-particle collider, two rings were set
up, in which the beams counter-rotate. For particle-antiparticle colliders, it is sufficient
to provide one ring for both beams [23].

One of the main research goals of the LHC is the investigation of electroweak symmetry
breaking, which led to the discovery of a Higgs-like boson with a mass of 125 GeV.
At the moment, many studies are going on to gain more information on this boson.
Further investigations at the LHC include the search for SUSY, extra dimensions, new
massive vector bosons, heavy ion physics and SM physics, like top quark physics and
B-physics [24].



3.1 The Large Hadron Collider (LHC)

Tab. 3.1: Accelerator system at CERN [25].

‘ Accelerator ‘ Acronym ‘ max. energy ‘
Linear Accelerator 2 LINAC 2 50 MeV
Proton Synchrotron Booster PSB 1.4 GeV
Proton Synchrotron PS 26 GeV
Super Proton Synchrotron SPS 450 GeV
Large Hadron Collider LHC 7TeV

CMS
L H C ¢y Jimn Area
ALICE _,/\ LHCb
P

Gran Sasso

\ oy ;__j e East Area

B N, = o

-ToF w— = o | |
I /&. ; LINAC z/f\@

|
& = LINAC 3 / .‘ LEIR
Tons /

Fig. 3.1: Map of the accelerator complex at CERN [26].

20



3 Experimental setup at CERN

The LHC itself is only the last part of a whole system that combines several parti-
cle accelerators. Each accelerator is optimized to its energy range shown in Tab.3.1.
The acceleration in the first four accelerators, before the protons enter the LHC, takes
about 20 mins. The final acceleration in the LHC lasts for another 20 mins. Once the
acceleration is accomplished, the beams can circulate in the ring for several hours.

In 2010, the first proton collisions at energies of 3.5 TeV per beam were successfully
achieved. The combined center-of-mass energy of the two beams was then increased
from 7TeV in 2010 and 2011 to 8 TeV in 2012. After the long shut down from 2013 to
2015, when the LHC was upgraded, the data-taking process started again in 2015 at a
center-of-mass energy of 13 TeV.

In addition to the proton-proton collisions, the LHC and its pre-accelerators also
provide the possibility of the acceleration of heavy ions, e.g. lead ions. In the final
setup, the ions reach energies of 2.76 TeV /u, where u denotes the atomic mass.

The protons do not circulate in the ring in a continuous beam: they are bundled to
bunches of around 10! protons. These bunches collide every 25ns with a luminosity of
up to 103*cm 257!, The ring of the LHC provides four collision points. At each point
one of the four large detectors is situated:

e ALICE, A Large Ion Collider Experiment [27]
e ATLAS, A Toroidal LHC ApparatuS [28]
e CMS, Compact Muon Solenoid [29]

e LHCb, Large Hadron Collider beauty [30]
The LHC setup including all pre-accelerators and detectors is illustrated in Fig. 3.1.

3.2 The CMS detector and its components

The CMS detector, like the ATLAS detector, is one of the LHC multipurpose detectors.
It is a combination of many subdetectors that are optimized for the detection of different
particles and their properties. Fig. 3.2 gives an overview of the components of CMS. The
detector follows an "onion-type" layout and can be divided in different layers.

e The innermost layer includes the tracking detector with a high solenoidal mag-
netic field. It is essential for precise momentum measurements by the curvature of
charged particle trajectories, caused by the magnetic field.

e The middle layer contains the electromagnetic and the hadronic calorimeter
and is therefore responsible for the measurement of the energy of the particles.
The calorimeters are placed inside the bore of the superconducting solenoid to
keep the amount of material in front of the calorimeters as low as possible. The
more material particles have to penetrate before they reach the calorimeters, the
higher is their energy loss, which leads to uncertainties in the energy measurement.
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3.2 The CMS detector and its components

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter :15.0m Pixel (100x150 ym) ~16m* ~66M channels
Overall length :28.7 m Microstrips (80x180 gm) ~200m? ~9.6M channels
Magnetic field :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m” ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PBWO,, crystals

HADRON CALORIMETER (HCAL)

Brass + Plastic scintillator ~7,000 channels

Fig. 3.2: Overview of the CMS detector [31].
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e The outer layer is given by the muon detector. As this layer is shielded by the
solenoid and the subdetector systems, only muons reach this detector. Therefore,
it is essential for the muon identification and further information of their momenta
can be extracted.

In Fig. 3.3 the tracks of different particles in the CMS detector are illustrated. The plot
shows the bending of the particles due to the magnetic field and their charge. The plot
shows in which subdetector the particles interact and the range of the particles in the
CMS detector [24].
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om im 2m im 4m 5m &m m
Key:
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Electron

Charged Hadron (e.g. Pion)
= = = = Neutral Hadron (e.g. Neutron)
----- Photon

Silicon §
Tracker \\ %‘;‘ y y

A Electromagnetic
}]1 ]' Calorimeter

Hadron Superconducting
Calorimeter Solencid

Iron return yoke interspersed
with Muon chambers

Transverse slice
through CMS

D Barmey, CERN, Fobsary 2004

Fig. 3.3: Tracks of different particles in the CMS detector [32].

The CMS coordinate system has its origin centered at the nominal collision point. It is
oriented such that the x-axis points inward toward the centre of the LHC ring, the y-axis
upward and the z-axis points along in the beam direction to the west. The azimuthal
angle ¢ is measured from the x-axis in the xy-plane [29]. The polar angle 6 is measured
from the z-axis. The pseudorapidity is defined as

n=lIn (tani) . (3.1)

3.2.1 Superconducting magnet

The choice of a magnet system is a central issue of the detector design. The momentum
of a particle is extracted by the Sagitta method. The relative uncertainty is defined by
the magnetic field B and the lever arm L,

Opr 1
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3.2 The CMS detector and its components

The design goal is that relative uncertainty on the transverse momentum pr of muons of
approximately 1 TeV should not exceed 10%. This is achieved by either a high magnetic
field, which is the case for CMS, or by a big detector, which was chosen for the ATLAS
detector. Using a superconducting solenoid, a magnetic field of 4T is reached. The
solenoid shows a length of 12.9m and an inner bore of 5.9m. In this bore, the tracker
and the two calorimeters are situated [24, 29].

3.2.2 Inner tracking system

The innermost layer of the CMS detector is the silicon tracker, which needs to satisfy
several requirements for the measurement process.

e Considering the luminosity of the LHC, approximately 1000 charged particles per
bunch-crossing are expected. Together with the bunch crossings every 25ns this
requires high granularity and fast response of the tracker.

e As particles with a transverse momentum of pp > 1 GeV are of special interest for
most searches, the tracker has to have efficient reconstruction of these particles.

e During each bunch crossing, several collisions take place, called pileup. Pileup is
a problem for the reconstruction, hence the identification of pileup vertices must
have a high resolution.

e Furthermore, a good coverage of all particles up to a pseudorapidity of n ~ 2.5 is
desired, with 6 denoting the polar angle of the particle direction. An event can
only be reconstructed correctly, if all decay products are detected.

To reach enough granularity and the required precision, the tracker is constructed with
10 layers of silicon microstrip detectors. To enhance the measurement precision on the
position of secondary vertices, 3 layers of silicon pixel detectors are located close to the
collision region [24, 29].

3.2.3 Electromagnetic and hadronic calorimeter

The aim of these two calorimeters is a precise measurement of the particle energy. The
electromagnetic calorimeter (ECAL) is most sensitive to photons and electrons, whereas
the hadronic calorimeter (HCAL) reconstructs also part of the energy of hadrons.

The ECAL consists of lead tungstate scintillating crystals. The granularity is given
by the size of the crystals. These crystals show fast light emission (80% within 25 ns)
and are radiation-hard. In the barrel region (|n| < 1.479), the light is detected by
avalanche photodiodes (APD). In the endcap region, vacuum phototriodes are installed
that cover the pseudorapidity range 1.479 < |n| < 3. The ECAL structure is illustrated
in Fig. 3.4 [24, 29].

The HCAL surrounds the ECAL. To enable the reconstruction of the missing trans-
verse energy E?”SS a good containment and hermeticity is required. Hence, the amount
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ECAL (EE)

Fig. 3.4: Geometrical configuration of the ECAL, transverse section [24].

of absorber material of the HCAL inside the solenoid is maximised. The absorber ma-
terial is chosen to be brass complemented by a scintillator layer. The HCAL is di-
vided into four subsystems. The hadronic barrel (HB) and endcap (HE) calorimeters
sit behind the ECAL as seen from the interaction point covering a range |n| < 1.3 and
1.3 < |n| < 3, respectively. The hadronic outer calorimeter (HO) is placed outside the
magnetic coil covering the same pseudorapidity range |n| < 1.3 as the HB. An extended
range 3 < |n| < 5 is covered by the hadronic forward calorimeters (HF). The locations
of the subsystems in the CMS detector are shown in Fig. 3.5 [24, 29].

3.2.4 Muon detector

Muons produced in the central interaction region are measured twice in the CMS de-
tector, in the inner tracker system and in the muon detector. The muon detector is
essential for the identification of the muon, but does not give a satisfying resolution on
the transverse momentum pr by its own. To increase the resolution the measurements
of the inner tracker and the muon detector are combined.

The muon detector is divided into three regions: the barrel region (|n| < 1.2) and the
two endcap regions (0.9 < |n| < 2.4). These regions are subject to different levels of
radiation, which influence the choice of the detector technologies. In total, three different
gaseous detectors are used. In the barrel region, the neutron-induced background rate
as well as the magnetic field and the expected muon rate are low, which led to the choice
of a drift tube (DT) chamber. In the endcap regions, where the expected muon rate is
high as well as the neutron-induced background and the magnetic field, cathode strip
chambers (CSC) are installed. In addition, resistive plate chambers (RPC) are used in
all regions. In Fig. 3.6 the layout of the muon system is illustrated [24, 29].
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3.2 The CMS detector and its components
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Fig. 3.5: CMS detector showing the locations of the hadronic barrel (HB), endcap (HE), outer
(HO) and forward (HF) calorimeters, longitudinal view [29].
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Fig. 3.6: Layout of the muon system for one quarter of the CMS detector [24].
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3.2.5 Trigger and data acquisition (DAQ)

Taking into account the design luminosity of the LHC and the bunch crossing rate of
40 MHz, up to 10? interactions are expected each second. It is not possible to read out
and store this amount of events since 1 event accounts to =~ 1 MB, which would lead to a
data rate of 60TB/s. A trigger selects the potentially interesting events and reduces the
rate of recorded events to a few hundred per second. This corresponds to a reduction
factor of 106.

The trigger and data acquisition (DAQ) system of CMS combines four different parts:
the electronics in the detection, the Level-1 trigger (L1), the readout network and the
High-Level trigger (HL T), which corresponds to an online event filter that is performed
in the processor farm. More detailed information on the trigger and DAQ can be found
in Refs. [24] and [29].
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4 Analysis methods and boosted
decision trees

The goal of experimental high energy physics is the observation of specific particle inter-
action processes. This involves the analysis of large data samples. A successful interpre-
tation of this data requires advanced computer techniques. In the case of the LHC, the
samples consist of proton-proton collision events. Each event contains the reconstruc-
tion of the particles that are produced during the interaction process and detected, e.g.
electrons, muons or jets. A jet corresponds to a collimated spray of hadrons or other
particles caused by the hadronization of quarks or gluons. Different physical processes
have different signatures in the event, like the number of jets or leptons, or specific
kinematic properties. The computer algorithm used for the analysis has to perform an
event classification and efficiently separate signal events from background events based
on the measured event properties. Variables with high separation power are defined as
input variables, which are used for the event classification. The choice of these variables
strongly depends on the processes that are included in the analysis.

This chapter provides two different analysis approaches, a cut-based analysis and a
multivariate analysis based on machine learning techniques. Since the focus of this thesis
lies on BDTs, this event classification method is described in more detail.

4.1 Cut-based analysis

The most straight forward way to separate signal and background is a simple cut-based
analysis. In this case a separation value, which corresponds to a cut between signal
and background region, is set for each input variable. Starting with the cut on the first
variable, only signal-like events, meaning events lying on the side of the cut with more
signal events, survive and therefore proceed to the next separation cut on the second
variable, and so on. The events on the "background-side" of the cut are removed and
not considered for evaluation. The aim is to keep as many signal events and remove as
much background as possible. The critical point consists in finding the optimal cuts,
which can be performed using the TMVA package [33].

During this process, two problems emerge. Firstly, there is a probability for back-
ground events to survive this separation process. This leads to background events that
are wrongly classified as signal and therefore wind up in a loss of purity of signal events.
Secondly, it is possible that signal events do not survive the selection and are wrongly
classified as background. This leads to a decrease in efficiency.



4.2 Multivariate analysis

One way to reduce the impact of these two problems is to extract more information
from the input variables, which can e.g. be accomplished by considering correlations
between this variables and the simultaneous analysis of information. Unfortunately, this
is not straight-forward for a pure cut-based method. As a consequence multivariate
analysis methods (MVA) based on machine learning are used.

4.2 Multivariate analysis

It is often not sufficient to consider variables one after the other. Analysis methods that
analyse several variables simultaneously often perform better. Multivariate analyses
(MVA) fulfil this requirement.

MVAs provide the possibility of simultaneous observation of several variables, which
means that relations between variables have an impact on the outcome. The information
extracted from these variables is then combined to one single classification quantity.

4.2.1 Training

In high energy physics, supervised learning is in wide use. In the course of this the anal-
ysis method is built using a large number of pre-classified events, meaning the method
is 'trained’. These classified events often correspond to samples that are produced by
a Monte Carlo simulation. For limited sample size, bigger training samples lead to
better outcome. Nevertheless, at some point the training performance reaches satura-
tion that can not be enhanced any further. During the training, the method learns the
properties and peculiarities of the samples and how to distinguish between signal and
background [33].

4.2.2 Testing

Typically, MVA methods assign a continuous value (MVA score x) of a certain interval,
e.g. |-1;1], with < 0 corresponding to a background-like event and x > 0 indicating
a signal-like event. A well-performing algorithm is characterized by a high separation
power between signal and background events, i.e. few signal events in the background.

As the final goal of a MVA is the event classification of data, the MVA is tested on
an independent second MC sample and is optimized with respect to the performance for
this unknown sample. Ideally, the MVA shows a similar performance as for the training
samples with only slight deviations due to statistical fluctuations. In most cases, the
MVA performs worse for the second sample compared to the training sample. This is
caused by the so-called overtraining.
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4.2.3 Qvertraining

Overtraining is a problem caused by a training sample that is too small. It occurs if
the machine learning problem has many free parameters but the samples do not provide
enough independent and general data points. In this case, statistical fluctuations in the
training sample and not general properties determine these parameters. With respect
to overtraining, it can be of advantage to reduce the number of free parameters in order
to achieve a better performance of the method. Overtraining is not a problem per se as
long as it is considered during the optimization process and will always occur to some
extant. It only gets problematical, when it causes the performance of a MVA method to
decrease significantly compared to other methods.

4.3 TMVA - Toolkit for Multivariate Analysis

The TMVA toolkit, which is a ROOT-integrated environment [34], provides a possibility
for the processing and application of multivariate classifiers. The toolkit includes several
different multivariate methods, which are all using a training sample (already classified
events) to derive the mapping function used for classification. TMVA was initially
designed for high energy physics [33].

4.4 Boosted decision trees (BDT)

There are various different MVA methods that can be used for signal extraction. This
thesis focuses on Boosted Decision Trees.

A decision tree consists of a sequence of yes or no decisions that can be illustrated as a
two-dimensional tree structure. Starting from the root node (Fig. 4.1) the variable with
best separation power and its value is evaluated during the training process (growing of
the decision tree). The separation splits the phase space into two subsets and the process
is then repeated for each set. After several turns, the final leaf nodes are reached, which
are classified as background- or signal-like. The classification depends on the number
of training events ending up in each particular node. If a majority of signal events is
observed, the leaf node will be classified as signal, otherwise as background. The main
difference between the cut-based method and BDTs is that in case of cut-based, only
one small part of the whole phase space is evaluated, while for BDTs all subspaces of
the whole phase space are classified as signal- or background-like and included in the
evaluation.

The 'Boosting’ refers to the extension from one tree to many trees. FKach tree is created
by the same training sample, but using differently weighted events. If in the first tree
a signal event ends up in a background node, it gets assigned a higher weight for the
generation of the second tree. This boosting significantly increases the performance of
the analysis method. In the end, all derived trees are combined to one single classifier.
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Fig. 4.1: Schematic view of a decision tree [33].

The performance of the combined classifier is given by the weighted average of the
performance of the single trees.

Naturally, this method needs to be adapted to the particular problem that needs to be
solved. The BDT method implemented in the TMVA package provides several param-
eters that characterize the BDT that will be constructed during the training process.
The parameters with biggest impact on the performance of the analysis are listed:

e Shrinkage, corresponding to the learning rate of the training process, which de-
termines how fast the BDT adapts to the training sample and therefore also to
fluctuations.

e NTrees, which is the number of created trees.
e MaxDepth, the maximal number of yes-no questions a tree can contain

e nCuts, giving the number of grid points in the variable range which are used for
finding the optimal cut

¢ BaggedSampleFraction, denoting the relative size of the random subsample of
the training sample used during the training process

e MinNodeSize, the minimum percentage of the training events that must end up
in each final leave node

e BoostType, declaring, which boosting algorithm is used (e.g. AdaBoost, Grad-
Boost)
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4.4.1 Boosting algorithms

The most commonly used boosting algorithm is the adaptive boosting (AdaBoost) [33].
For each final node of a decision tree, a misclassification rate € is defined, which is the
ratio of the number of misidentified events to the total number of events in each final leaf
node. For events that get misclassified in one decision tree a boost weight « is applied,
which is multiplied with the older weights, and is used for growing the next tree. The
boost weight is set by the misclassification rate e for signal or background, respectively,
and is given by
_l—ce¢

a=——".: (4.1)

After all events got assigned a new weight, the events are renormalized to the initial
number of expected events.

The result of an individual classifier (one tree) for each event is defined as y(x), where
x denotes the tuple of input variables. y(x) can only have the values +1 or —1, with
y(x) = 41 when the event ended up in a signal node or y(x) = —1 for events that
ended up in background nodes, respectively. The classification result for each event of
the boosted classifier is then given by

Nclassifiers

1

Notassifiers n(a;) + yi(x)] , (4.2)

YBoost (X) =
=1

with Nejssifiers corresponding to the number of individual classifiers (number of trees),
a; to the misclassification rate assigned to the event in tree ¢ and y;(x) to the classification
result of the particular tree encoded as £1. A high (low) ypeest(x) corresponds to a
signal-like (background-like) event.

The adaptive boost performs best for weak individual classifiers, so-called 'weak learn-
ers’. For decision trees, this requirement corresponds to small trees, meaning a small
depth of 2 to 3. In the analyses carried out throughout this thesis, this is fulfilled for all
BDTs.

The gradient boosting (GradBoost) [33], which will be used in the analysis later on,
can be understood as an expansion of the adaptive boost. Given a training sample of N
events, each event is characterized by a known variable set {y;,x;} withi=1,...,N. y;
corresponds to the encoded process of event ¢, either 41 for signal or —1 for background,
and x; to the set of input variables of the i-th event. The goal of the gradient boosting
is to find a function F*(x) that maps y to x, such that it minimizes some specified loss
function L(F(x),y).

Starting from an initial guess Fy(x) the recursive rule

Fr(x) = Fr_1(X) + Bnh(x;a,) , (4.3)

with the parameter set (5,,; anm), is applied M times. h(x;a,,), characteristic for the m-
th weak learner, denotes a simple function of the input variables x with the parameters
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4.4 Boosted decision trees (BDT)

a, = {ai,..,an}m. For each iteration m, the parameters a,, and the weighting factor
B are chosen such that the sum of the loss functions over all events is minimized

N

(Bm,a) = ar%minz L(Frn—1(xi) + Bh(xi;a),9:) - (4.4)
A =1

For the adaptive boost an exponential loss function L(F,y) = e F ™) is used, which
leads to the algorithm stated above. The disadvantage of this loss function lies in the
lack of robustness in the presence of outliers. Thus in noisy settings, the performance of
the adaptive boost is expected to decrease.

In the TMVA version used, the loss function of the gradient boost is given by the
binomial log-likelihood loss

L(F,y) = In(1 + e 2F(yy (4.5)

As this loss function can not be minimized straightforwardly, a steepest-descent ap-
proach is chosen. Thus the current gradient of the loss function is calculated, followed
by growing a regression tree whose leaf values are adjusted to the mean of the gradient
in each region. Iterating this procedure minimizes the loss-function as required [35].

Like the adaptive boost, the gradient boost performs best for weak classifiers. As
additional benefit, these small trees are also less prone to overtraining compared to
single decision trees without boosting [33] .

4.4.2 Performance of BDTs

Compared to other MVA methods, BDTs are often referred to as the best ’out of the
box’ classifier as only little tuning is needed to obtain a high performance. This is due
to the simplicity of the method: only one-dimensional optimization is required. This
also leads to relatively low computation time for the training compared to other MVAs.

A single decision tree strongly depends on fluctuations and can lead to significant
variations in performance. Using a boosted decision tree with a high number of trees,
but smaller trees and a low learning rate, this effect can be reduced significantly.

Not only the parameters of the BDT affect the performance, but also the number
of input variables. In contrast to many other MVA methods, input variables that do
not have a strong separation power do not have a strong influence on the outcome of
the BDT analysis. This is due to the way a BDT is constructed, as only the strongest
variables are chosen for the cuts.

Nevertheless, the theoretically best performance that can be obtained by BDTs is
significantly below the theoretical possibilities of other MVAs. This is mostly due to the
simplicity of the method. Despite this, in most cases BDTs still show better performance
than other MVAs. Most other MVAs require a very big number of training events, which
is often not available.
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5 Quantification of the performance

In order to choose the most powerful classification algorithm for a present problem, a
method to quantify the performance of different algorithms is needed. For comparing
different boosted decision trees the loss function (see previous chapter) provides a pos-
sibility. Nevertheless, as soon as different analysis methods need to be compared, no
matter whether multivariate or not, a different quantity must be set as Figure of Merit
(FoM). Among the various options, two will be discussed in this chapter, namely the ap-
proximate median significance (AMS) and the p-value with its corresponding Gaussian
significance Z.

Before the quantification of the performance of the event classification can take place,
the information that is provided by different analysis methods needs to be preprocessed.

5.1 Preparation of the analysis output before quantification
of the performance

During the classification procedure performed by a BDT, which corresponds to the main
analysis method throughout this thesis, each event gets assigned a classification value
(BDT score) between 1 (signal-like) and -1 (background-like). Two histograms, one for
signal and one for background, with the same binning are filled with the obtained BDT
scores.

In the beginning the binning is chosen equidistantly and rather narrow to preserve as
much information as possible. In order to reduce the impact of statistical fluctuations on
the FoM, a rebinning is performed with respect to the statistical uncertainties and the
amount of background events in the bins. A value for the maximal statistical uncertainty
per bin (RELSTATMAX) is defined that must not be exceeded, as well as a background
regulation term (BINC) that determines the factor of the increase in background events
per bin from signal region to background region. Starting on the right side of the
histogram (signal region) the rebinning algorithm calculates the statistical uncertainty
of the furthest to the right bin. If this value exceeds the limit set by RELSTATMAX,
the second furthest bin is added. The calculation is performed again and the procedure
is repeated until the statistical requirement is fulfilled. Then the process is performed
for the second bin, but from here on also a second requirement needs to be satisfied,
which is defined by the BINC parameter. This parameter corresponds to the factor of
increase in background events per bin.

These two parameters can be interpreted to following way. A decrease of RELSTAT-



5.2 Approximate median significance (AMS)

MAX leads to lower statistical uncertainties and a higher number of signal events in the
first bins in the signal region, but also to more background events. In case of BINC,
an increase of the value leads to more background events per bin especially in the back-
ground region and therefore also results in a reduction of the total number of bins. After
this ’smart rebinning’ is performed, the extracted histogram is ready for quantification.

In contrast to the BDT method, where each event that is evaluated gets assigned a
continuous value, no comparable quantity exists for the cut-based method. Instead, only
events that satisfy several requirements survive the analysis and are available for quan-
tification. To estimate the performance of these classification methods the output of the
analysis can be processed in order to deduce a histogram showing a distribution of the
survived signal and background events. The higher the separation between signal and
background events in this distribution, the better. A commonly used distribution vari-
able for the cut-based analysis is given by m2Y % denoting the SVFit mass estimation
of the 77-system. The histogram is then used for the quantification of the separation
power of the cut-based analysis.

5.2 Approximate median significance (AMS)

For quantification of the performance of the event classification and signal extraction a
histogram showing a distribution of signal and background events is used. The histogram
can be derived as discussed in sec. 5.1.

For each bin i of this histogram the approximate median significance AMS; is calcu-
lated by

AMS; (s, b;) = \/2 ((si 4 b+ breg) - In(1+ —1 ) — sl-> (5.1)
bz’ + breg
with s; being the number of signal events and b; the number of background events in
bin i [36]. The Figure of Merit, in this case the total AMS, is then given by the square
root of the quadratic sum of the approximate median significance of each bin of the
histogram, namely

AMS = \/Z AMS? (s, b;) . (5.2)

bins

The parameter br.q shown in eq. (5.1) corresponds to a regulation term, which disfavors
results with low event counts. For tuning the BDT parameters and picking the right
working point during the BDT optimization, by, is chosen as 1. This prevents choosing
a non stable working point that only reaches a higher AMS due to a very low background
in single bins caused by fluctuations. For quantifying the performance to compare BDTs
for different analyses, the regulation term is set to a very low value, as a higher b4

would underestimate the real signal extraction efficiency. For s << b eq.(5.1) reduces to
S

NG
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5 Quantification of the performance

In the actual calculation of the AMS also statistical and systematic uncertainties are
included, which are left out in eq. (5.1) for simplicity.

5.3 Significance and p-value

The p-value is extracted by testing a statistical hypothesis against an observed mea-
surement. It gives the probability of obtaining another measurement with equal or even
higher incompatibility while the tested hypothesis is true. Evaluating the p-value can
be based on the number of signal events found in a specific region or the corresponding
signal-to-background likelihood ratio [37].

Once the p-value is known, it can be converted into a significance Z in the following
way (see Fig. 5.1 for illustration).

x

S

p-value

|
k— Z— X

z2 . .
Fig. 5.1: Standard Gaussian distribution, ¢(x) = \/%6’7, showing the relation between the

p-value and the significance Z [37].

Counsidering a standard Gaussian distribution, the Gaussian significance Z is given by
Z=0"(1-p), (5.3)

with the integral of the upper tail of the standard Gaussian distribution ¢(x) corre-
sponding to the probability p, namely

p:/Z o(z)dz, (5.4)

and ®~! denoting the inverse function of

4 2
d(Z) = \/12?/_ e~ 7 d. (5.5)

In order to declare an observed excess a discovery, a frequentist statistical test is
carried out. First of all, a null hypothesis Hy is declared, which only includes the
background events. Then one also needs to specify a second hypothesis Hy, including
both background and signal (MC sample or data), which is tested against Hy. Depending
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5.3 Significance and p-value

on the agreement of these two hypotheses, the p-value is evaluated, which is equal to the
probability of finding data with equal or greater incompatibility. If the p-value is small
enough, the hypothesis Hy can be excluded and a discovery is made. In common use
the background-only hypothesis is rejected for a Gaussian significance of at least Z = 5,
which is equal to a p-value of 2.87 x 10~7. For the rejection of a signal hypothesis the
threshold is normally set to p=0.05, meaning 95% confidence level and a significance of
7=1.68.

In a frequentist statistical test additional to some parameters of interest, e.g. cross
section, nuisance parameters can be included. The values of these nuisance parameters
is not known a priori, but can be fitted from data. This additional freedom introduced
to the model provides a sufficient flexibility to adapt to the impact of systematic uncer-
tainties, but hence also leads to a decrease in sensitivity.

In order to illustrate the process of determining the p-value one example is discussed
in more detail. In an experiment, for each event one or more kinematic variables are
measured and displayed in histograms. For a variable x the entries of all bins of the
histogram are given by

n=(ny,..,nN), (5.6)

with N denoting the number of bins. The expected number of events in each bin corre-

sponds to
Eln] = psi +b;, (5.7)

with p corresponding to the signal strength and with s; and b; being the expected
numbers for signal and background events in the i-th bin, namely

Si = Stot fs(z;05) dz (5.8)

bin i

b; = biot fo(x;0) da . (5.9)
bin i
where fs(z;05) and fy(x;6,) are the probability density functions for signal and back-
ground. If g = 0, one gets the background-only hypothesis Hy. Moreover, s; and b;
depend on their nuisance parameters 65 and 6, which from now on will be referred to
as 0 =0(6s,0p).
The likelihood function that is needed for evaluating the p-value is given by the product
of the Poisson probabilities for all bins

M my

N
i+ b)) s b _
S |

|

i=1 e k=1

The second product corresponds to the impact of the nuisance parameter. my and ug are
derived by the use of a control sample, where mainly background events are expected.
my corresponds to the number of events in each of the M bins and ur = ug(6) is the
expectation value of my, a calculable quantity that depends on the nuisance parameters.

38



5 Quantification of the performance

The profile likelihood ratio for testing a hypothesized value p is then given by

Ap) = H b)) (5.11)

L(j1,0)

where L(j1,0) is the (unconditionally) maximized likelihood function, with i and 0 being

the maximum-likelihood (ML) estimators, and L(u,6) is the maximized function for

given y (conditional), with 6(s) being the conditional ML estimator of 6 for given .
As one can see in equation (5.11) X fulfils 0 < XA < 1. The higher A, the better
the agreement between data and the hypothesized value of u. The nuisance parameters
broaden the profile likelihood ratio, which reflects the impact of systematic uncertainties.
Instead of A,
ty=—21In Au) (5.12)

is commonly used for a statistical test. The higher ¢,, the stronger the disagreement
between the data and the hypothesized p. The quantification of the incompatibility is
given by the p-value
oo
o (513

tp,,ob.s
where t, s denotes the observed value of ¢, from data and f(t,|u) corresponds to the
probability density function (pdf) under assumption of a signal strength p (see Fig. 5.2
for illustration). The Gaussian significance can then be derived analogously to eq. (5.3).

f(t Ju)

tu,c)bs

p-value

/

t

Fig. 5.2: Probability density function (pdf), showing the relation between the observed value
t.,0bs from the test statistics and the p-value [37].

In case p is assumed non-negative, the definition of A needs to be adopted to

L(p0(1)

5 — >0

Mu) = &0 , (5.14)
L(p,0(1)) 1<0
L(0,6(0)) -

in order to avoid problems if the data leads to fi < 0. 6(x) and 6(0) refer to the
conditional ML estimators with a signal strength of u. Thus A(u) is used instead of A(u)
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5.3 Significance and p-value

in eq. (5.12) leading to
t,=—2In\(u). (5.15)

In case of trying to make a discovery of a signal process, the aim is to reject
the background-only hypothesis with a certain p-value. Considering eq. (5.7) the
background-only hypothesis corresponds to g = 0. As this is the most important case
in this analysis the notation gg = g is introduced. With pu = 0 eq. (5.14) reduces to

Lpdw) -
. . >0
20)={ Lodo M7, (5.16)
1 A<0
and eq. (5.15) then leads to
2 A0) 4>0
do = © a=0 (5.17)
0 <0

It is important to keep in mind that it is assumed that the existence of the signal process
only leads to an increase in events (/1 > 0), never a decrease. This also means that a
value below 0 does show incompatibility with the background-only hypothesis, not due
to signal events, but rather gives evidence for a fluctuation or underestimated systematic
errors in the background. In this analysis it is assumed that all systematic uncertainties
are already considered by the nuisance parameters 6.

A low test statistic gg for 4 = 0 shows a very good agreement with the background-
only hypotheses, meaning that it is extremely unlikely that a signal is present. The
higher go gets, the smaller the agreement with the hypothesis and the more significant
the signal. To quantify the disagreement, the p-value is computed by

po = / " Flaol0)dao. (5.18)

40,0bs

with f(go|0) denoting the pdf of the statistic ¢, under assumption of the background-only
hypothesis u = 0.

Now the probability density function (pdf) for the case of discovery will be discussed.
The approximation

(b — ) ( 1 )
o) =R o), 5.19
(0= Vi (5.19)

which is valid in the large sample limit and for one parameter of interest, is applied,
leading to

= ™
IN V

/12
2
=< , 5.20
q {0 (5.20)

o O
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5 Quantification of the performance

where fi follows the Gaussian distribution with a mean x/ = 0 and standard deviation
0. o is derived from the covariance matrix of the estimators of all nuisance parameters

61'7

V;j = COV[éi, éj] s (5.21)
with = 6y and o2 = Vj9. The inverse of the covariance matrix is defined as
0’InL
vilie_p|l=—2 5.22
5= o) 52

with an assumed expectation value of p'.
In the case of / = 0 one can show that the pdf is given by

1 1 1 1
_ - - —qo/2
f(q0]0) 25(%) t5 m\/%e : (5.23)

which is a combination of a é-function and a y2-distribution for one degree of freedom
with a factor of 1/2 each.

The cumulative distribution, given by the area under the pdf for the interval [—oo; o],
is found to be

F(g0l0) = ©(v/q0) - (5.24)

Thus the p-value is given by

po =1— F(qol0). (5.25)
Using eq. (5.3), the significance is obtained by the simple formula
Zo=®1(1-po) = v0- (5.26)
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6 Monte Carlo samples - Production,
treatment & size

Machine learning algorithms, like BDT, are trained using Monte Carlo (MC) samples
that simulate the outcome of the data taking process. These samples are produced
(sec. 6.1), processed (sec. 6.2) and are then used for optimizing the event classification
algorithm. Observables need to be found that show a high discrimination power between
signal and background. The variables that are used as input for the BDTs are discussed
in sec. 6.3. In sec. 6.4 the MC samples used for the different analyses carried out in the
course of this thesis are described in more detail.

6.1 Production of the MC samples

For the production of the MC samples, firstly the collision events are calculated via
mathematical models based on the SM. Thereafter a simulation of the detection process
in the CMS detector is applied, including the detector geometry and its response to the
collision events and detected particles. From that point on, the events are treated the
same way as data. A reconstruction algorithm, considering the measured properties of
the detected particles of an event, produces the final MC samples.

For the analysis, a preselection is applied that strongly reduces the number of back-
ground events. Only after this preselection, the MC samples are ready for constructing a
BDT method and thereafter quantifying its performance. The BDT algorithm is trained
using the MC samples to create an event classification method that is adapted to the
problem and can thus be used for the final signal extraction when applied on data.

6.2 Preselection

To reach high performance in a BDT analysis, it is often of advantage to reduce the back-
ground before applying the BDT on the MC samples. Some machine learning algorithms
perform better, if the ratio signal to background is higher, even though the number of
signal events may be reduced. Nevertheless, the size of the MC sample should not be
too small to ensure sufficient training potential. Only events that survive numerous
preselection cuts reach the BDT classifier.

As explained in sec. 2.2.4 the analysis is only carried out for the VBF production
mode and the channels p7p, and er,. This leads to the requirement that only events with



6.2 Preselection

one light lepton 1 (e or p) and one 7 decaying hadronically are included in the signal
samples. Furthermore, these two particles must have opposite electric charge, as the
Higgs boson is neutral. Due to VBF production two jets with large pseudorapidity gap
Anj, j, contribute to the signature. Therefore at least two jets need to be present in
the event with Anj, j, > 2.1 between the two leading jets, denoting the two jets with
highest transverse momentum pr. Detected jets are only kept in an event if they fulfil
requirements on several kinematic variables, namely ppr > 30GeV, n < 4.7 and a AR <
0.5 between the jets and the objects 73, u and e. n denotes the pseudorapidity (eq. 3.1)
and

AR = /(An)? + (Ag)? (6.1)

corresponds to a cone centred around the jet direction with ¢ being the polar angle.
In addition, a central jet veto is applied. This veto removes events from the analysis
containing a jet, which is not first or second leading jet and have a pseudorapidity n
with either 71 < n <my or ny < n < n.

Similar to the jets also the other particles, namely 75, p and e, have to fulfil several
requirements on pp, n, AR and I, denoting the isolation of the particle that quantifies
the separation between the concerned particles and other particles.

Additionally, there are also requirements for combined quantities. For example, the
transverse mass of the lepton—E}”iss—sys‘cem must have a value below 70 GeV with

mr = /2 pr(iep) - pr(ER™) - (1 = cos(Adye, ppes) (6.2)

where EMs$ denotes the missing transverse energy. The visible mass, meaning the mass
of the system of the hadronic 7 decay and the lepton, is required to be m,;s > 40 GeV.
Furthermore the baseline for the mass of the two-leading-jets-system is set to m;; >
500 GeV. Additional cuts are set on the isolation of the leptons, which is defined as

I(L)= Y pr+max|0, Y pT+ZpT—% > |- (6.3)

charged neutral charged,PU

Zcharged pr is the scalar sum of the pr of all charged hadrons, electrons and muons that
originate from the primary vertex and are located in a cone of size AR centred on the lep-
ton direction. ) ... PT and Z,Y pr denote the sums the neutral hadrons and photons
in the same cone, including neutral pileup particles. The pileup contribution of photons
and neutral hadrons is estimated from the charged pileup particles (% > char ged, PU pr)
and subtracted from the total contribution of neutral particles. Events are rejected if
the events contain b-tagged jets or additional leptons.

All preselection requirements are summarized in Tab. 6.1.
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Tab. 6.1: Summary of all preselection requirements for 73, i, e, jets and combined quantities.

Particle Observable | Definition \ Requirement ‘
T pr transverse momentum of 7y, >20 GeV
n pseudorapidity of 7, <2.3
1 isolation of 7y, <1GeV
AR separation cone between 7, & p and 7, & e <0.5
I pT transverse momentum of g >18 GeV
n pseudorapidity of <2.1
I isolation of u <0.15 GeV
Ay distance between primary vertex and <0.045cm
collision point in x-y-plane
d, distance between primary vertex and <0.2cm
collision point in z-axis
e pT transverse momentum of e >23 GeV
" pseudorapidity of e <2.1
I isolation of e <0.15 GeV
AR seperartion cone between u & e <0.15
jets pT transverse momentum of the jet >30 GeV
n pseudorapidity of the jet <4.7
AR separation cone between jets & other objects <0.5
Qlep * Gr product of the 7, and lepton charge <0
(opposite charge requirement)
no. jets number of jets >2
no. 7 number of 7y, =1
no. e+ total number of e and pu =1
mr transverse mass of the lepton—E}mss—system <70 GeV
Mois visible mass, mass of the p-7-system >40 GeV
ANy o pseudorapidity gap between the two leading jets >2.1
CJV central jet veto v
bjetveto veto on b-tagged jets v
lepveto veto on additional leptons v
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6.3 Input variables for the analysis

It is essential to find variables with high discrimination power between signal and back-
ground events. For the 8 TeV and 13 TeV analysis almost the same input variables are
calculated from the MC events with the only difference that for 8 TeV also the SVFit
estimation of the transverse momentum of the 7-7-system is included. Therefore, there
are 13 variables taken into consideration in the 8 TeV analysis and only 12 for the 13 TeV
analysis.

Tab. 6.2: List of the potential input variables for the BDT analysis that are taken into consid-
eration.

Input variable | Definition

m2V SVFit estimation of the mass of the 7-7-system

ARjep separation cone between lepton and 73,

ANy o pseudorapidity gap between the two leading jets
mjj mass of the two-leading-jets-system

iy * Mja product of the pseudorapidities of the two leading jets
pipt vector sum of the pp of the lepton, 73, E:,”?iss and the two jets
Eg’?iss missing transverse energy with respect to the visible decay products
mr transverse mass of the lepton- EI"**$-system

Mep centrality | pseudorapidity of the lepton with respect to the two leading jets
p7m scalar sum of the pr of the lepton, 7, E’Tmss and the two jets
S sphericity, quantity for the isotropy of the energy flow in the event

Mouyis visible mass of the lepton-7-system

p%VF it SVFit estimation of the pp of the two 7 leptons

All investigated input variables are listed in Tab. 6.2 which contains also the 7,
centrality

2
4 n n2
(77 2 )

Comp(n) = € m=m)? (6.4)

where 7 corresponds to the pseudorapidity of the lepton and 7; and 72 to the pseudora-
pidities of the two leading jets. All variables of the 13 TeV analysis for the pu7 channel are
shown in Fig. 6.1 and 6.2. Four MC samples are included in the histograms, the signal
process H — 77 and the background processes Drell-Yan production, tt and W+ jets.
As the different processes differ strongly in the number of expected events, each curve
in the histogram is normalized to 1.
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6.4 Monte Carlo samples - Signal and background

The MC samples that are used in the analysis are produced following the procedure
described in sec. 6.1 and then the preselection (see sec. 6.2) is applied that strongly
reduces the size of the samples. Before the preselection is applied and the samples
have reached there final size, each event needs to be reweighted in order to satisfy the
physically expected yield. The expected number of events for each process naturally
depends on the overall luminosity. Therefore, a weighting factor is calculated for all

events according to
Ne:):p

VVlumi = NMC ) (65)
with Njso denoting the size of the MC samples before any selection and
Negp =L x 0, (6.6)

where L is the luminosity and ¢ the production cross section.

As already stated in sec. 2.2.3 and 2.2.4 the events of the signal process originate
from a Higgs boson produced via VBF. Only in the testing sample of the 8 TeV analysis
several events are included generated through ggF in addition to the events produced
via VBF. For 8 TeV only the pu7p, channel is analyzed as final state of the H — 77, for
13 TeV also the et channel is added.

With respect to background processes, for the 8 TeV analysis only the Drell-Yan (DY)
production is considered, whereas for the 13 TeV analysis three background sources are
included, namely DY, ¢t and W+jets, which are described in more detail in sec. 2.2.4.

6.4.1 Analysis for 8 TeV

As for 8 TeV simply the pr channel is considered, only two MC samples exist for the
analysis, one for the VBF Higgs boson signal and one for the Drell-Yan background,
which are split into half for training and testing purpose with a sample size shown in
Tab. 6.3. The Drell-Yan sample listed in the table is split up into subsamples with respect
to the number of jets in each event. Each subsample is reweighted with a different factor
Wiumi to reach best alignment with physics. As additional signal events, a small number
of Higgs events originating from ggF is added only for the testing procedure of the signal
extraction algorithm, not for the training.

All 8 TeV samples are normalized to an integrated luminosity £ of approximately
19.7fb 1.

6.4.2 Analysis for 13 TeV

In contrast to the 8 TeV analysis, the samples for 13 TeV are normalized to an integrated
luminosity of only £ = 10fb~!. Due to the higher cross section (XS) (see Fig. 2.4)
and branching ratio (BR) at this energy a similar yield as for 8 TeV in terms of number
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6.4 Monte Carlo samples - Signal and background

Tab. 6.3: Size of the MC samples for 8 TeV, final state p7, used for training (Nasc, trein) and
testing (Nasc, test) Purpose, the total size Nasc, tor, the weighting factor Wiy, and the
expected total number of events Negp, tor for £ = 19.7 fb~!. The table contains Higgs
events from VBF and ggF production and the Drell-Yan background split according
to the number of jets.

ur, 8TeV, £ =19.7fb~ !
Process H NMC,train ‘ N]\/IC,test H NMC’,tot ‘ VVlum'L Nea:p,tot

H,VBF 5446 5449 10895 | 0.00180 20
H, ggF - 669 669 0.02269 15
DY tot 5916 5899 11815 - 1423
DY ljet 108 98 206 0.4385 90
DY 2jets 1731 1734 3465 0.1771 614
DY 3jets 2128 2122 4250 0.0988 420
DY 4jets 1949 1945 3894 0.0768 299

of signal events is reached. For 13TeV not only the cross section and branching ratio
change, but also the kinematic variables of the objects of the events have altered values
and distributions.

Regarding the signal process, only the VBF production is included. In case of back-
ground processes, DY, tt and W-jets are taken into consideration. As the analysis is
carried out for the pu7 channel and later on also for the er final state, MC samples for
both final states were produced.

In Tab. 6.4 and 6.5 the first four rows each denote the size of the inclusive MC
samples with the preselection described in section 6.2. The samples for the signal and
the DY background have reasonable size for BD'T analysis and good statistics, whereas
tt samples only provide 2-3 MC events for 1 expected event. It is not possible to use the
Wjets sample for the training algorithm like BDT with only 48 events surviving the
preselection. As workaround the preselection on the chargedIsoPtSum is loosened for
the W-jets sample. Previously chargedIsoPtSum<1 was required, whereas now it is set
to chargedIsoPtSum<1000. This modification is chosen as it is not strongly correlated
with the input variables. It leads to a sample size for ur of 1007 events (see Tab. 6.4,
row 5), which is still very low in statistics as 1 MC event corresponds to 3 expected
events.

In order to improve the training performance of the BDT with respect to the Wjets
background, the inclusive MC sample (discussed above) is replaced with the the hp-
binned sample. This hp-binned sample is split into subsamples according to the hr of
the events with

hr = pr, hr>100. (6.7)
jets

The sample size of the four hp-samples is shown in Tab. 6.4. Each sample covers a
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6 Monte Carlo samples - Production, treatment & size

Tab. 6.4: List of the total size of the MC samples Nysc, ot for 13 TeV and the final state pr,
the weighting factor W, and the expected total number of events N¢gp tor for £ =
10fb~!. The table contains Higgs events from VBF production and the Drell-Yan, t
and W+jets background.

ur, 13TeV, £ = 10fb1

Process H NMC’, tot ‘ VVlumz Ne:t:p, tot
H VBF 89764 | 0.000240 22
DY 78404 0.0123 964
tt 1963 0.4160 817
Wjets 48 61.42 2948
W-jets  loose 1007 2.928 2948
W+jet _ht tot 1644 2442
W--jets_htl 385 4.2470 1635
W-tjets__ht2 626 1.1750 736
W--jets _ht3 409 0.1474 60
W-jets_ht4 224 0.0505 11
W+jet _ht loose tot 78443 2442
W-jets htl loose 5633 0.29030 1635
Wjets_ht2 loose 19471 0.03778 736
Wjets_ht3 loose 27244 0.00221 60
W+jets_ht4d loose 26095 0.00043 11
W-jets  omb 1784 2948
W+jets_loose comb 78583 2948
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6.4 Monte Carlo samples - Signal and background

Tab. 6.5: List of the total size of the MC samples Npsc,1or for 13 TeV and the final state er,
the weighting factor Wi, and the expected total number of events N¢gyp ot for £ =
10fb~!. The table contains Higgs events from VBF production and the Drell-Yan, ¢
and W+jets background.

er, 13TeV, £ =10fb~!

Process H ]\[Z\/[C7 tot ‘ VVlumi Ne:cp, tot
H,VBF 52025 | 0.00239 12
DY 34351 | 0.00707 243
tt 1110 0.41600 462
Wjets 30 61.48 1845
Wjets loose 647 2.851 1845
W-Hjet _ht_tot 1080 1411
W--jets_htl 192 4.3620 838
W-tjets_ht2 446 1.1750 524
Wjets_ht3 283 0.1474 42
W-jets__ht4 159 0.0512 8
W+jet _ht loose_tot 55070 1411
W-jets htl loose 3396 0.24660 838
W-jets _ht2 loose 13317 | 0.03936 524
W-jets ht3 loose 19408 | 0.00215 42
W-jets _ht4 loose 18949 | 0.00043 8
W-jets _comb 1163 1845
W-jets_loose comb 95153 1845
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6 Monte Carlo samples - Production, treatment & size

different hp range, namely 100-200 (ht1), 200-400 (ht2), 400-600 (ht3) and 600-inf (ht4).
This means that the hAr range from 0 to 100 is not covered by these samples. In order
not to neglect these events in the analysis, events with hy < 100 are extracted from the
loose inclusive sample and added to the hp-binned samples. To fulfil the requirement
of a total expected number of events of 2948 (1845) for the p7 (er) channel the events
added to the hr-binned samples must be reweighted. The new weighting factor is given
by AN,
eExXp
VVlum'L,new AN]\/[C

where ANy, is the difference in expected events between the inclusive and the sum of all
hr-binned samples, which leads to ANgg, = 506 (434). ANjsc is the number of events
in inclusive sample with hp < 100, namely ANy;e = 140 (83). It must be kept in mind
that for the hp-combined sample events with original (hp-binned) and loose (inclusive)
preselection are combined.

To further increase the training performance of the BDT and lower the statistical
uncertainties, it is of advantage to further enlarge the sample size of the W+jets back-
ground. For this reason the hp-binned samples are also generated with loose preselection
leading to a sample size also shown in Tab. 6.4 and 6.5 (W-+jets _ht loose tot). These
samples are then again complemented by events with hr < 100 of the loose inclusive
sample.

To summarize, two bigger samples of the W+jets background are generated. On
the first one the original preselection is applied. It covers the whole hr range with
a sample size of 1784 (1163) events (Tab. 6.4 (6.5), W-+jets _comb). The second one
fulfils the loose preselection, leading to a MC sample containing 78583 (55153) events
(Tab. 6.4 (6.5), W+jets_loose comb). It is essential to keep in mind that these two
samples are NOT independent from each other, as all events of the smaller sample also
appear in the bigger one.

(6.8)
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7 Multivariate analysis using the 8 TeV
Monte Carlo sample

In sec. 4.4 the principles of the a boosted decision tree are introduced and the most
important tuning parameters of the algorithm are explained.

There are two optimization procedures to obtain the best result for the signal ex-
traction. These general optimization processes are explained below, but they are not
restricted to the analysis of the 8 TeV samples. The optimization procedure for the
13 TeV analysis (see Chap. 8) follows the same pattern as shown in this chapter.

As stated in sec. 6.3, 13 input variables are tested. With this set of variables a rough
optimization is carried out on the BD'T parameters, which are introduced in sec. 4.4. For
machine learning methods sometimes a smaller set of input variables leads to a higher
FoM. Thus it can be of advantage, also in terms of computation time, to reduce the set
of input variables to the most powerful ones. To find the best subset one optimization
of the input variable set is performed. After this choice is made, a proper optimization
of the BDT parameters is performed.

7.1 Optimization of BDT parameters

The first step of performing an optimization of the BDT parameters is choosing an
initial parameter set by an educated guess. The goal is to perform a multi-dimensional
optimization with mostly continuous parameters. This is broken down into 1-dimensional
scans of all parameters, to get a feeling for the impact of the single parameters on the
performance. The parameter set is subsequently adjusted under consideration of the
gained information. Often, it is of advantage not to choose the global maximum as
working point, especially if it is located in an unstable region with a high variation in
the AMS values in the neighbourhood.

In Fig. 7.1 and 7.2 several 1-dimensional scans of the BDT parameters are displayed.
The difference between training and testing set gives information on the magnitude of
the overtraining. E.g. for MaxDepth a significant overtraining occurs starting from
MaxDepth=3, with firstly a stagnation and then even a decrease of the performance of
the algorithm. A similar observation is made for Shrinkage. The higher the Shrinkage the
stronger the adaptation to the fluctuation of small samples. Another effect of fluctuations
can be noticed in the plot for MinNodeSize. For low values the constructed trees have
very small final nodes. Therefore it is much more probable that the trees are dominated
by fluctuations. On the other hand, some BDT parameters affect the performance of



7.1 Optimization of BDT parameters

Fig. 7.1: FoM (AMS) as a function of different BDT parameters using the MC samples for the
signal H — 77 and the Drell-Yan background (red line: FoM for training samples, blue
line: FoM for test samples), left: 8 TeV, right: 13 TeV.
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7 Multivariate analysis using the 8 TeV Monte Carlo sample

Fig. 7.2: FoM (AMS) as a function of different BDT parameters using the MC samples for the
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signal H — 77 and the Drell-Yan background (red line: FoM for training samples, blue
line: FoM for test samples), left: 8 TeV, right: 13 TeV.
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7.1 Optimization of BDT parameters

the analysis only slightly, but do have a strong influence on the computation time, like
nCuts. In order to save some computation time, nCuts is chosen relatively small, namely
nCuts=20.

Although in this chapter only the BDT parameter optimization is discussed, the pa-
rameter scans shown in the plots are already performed with the fully optimized param-
eter and variable set, to show the dependency of the final BDT on each parameter. This
fully optimized parameter and variable set is shown in Tab. 7.1 and 7.2.

In addition to the 1-dimensional scans, also 2-dimensional scans of the parameters are
performed which show better the impact of correlations between the chosen parameters.
Two examples are given in Fig. 7.3. The upper plot shows the 2D scan of MinNodeSize
and NTrees, the second plot MinNodeSize and Shrinkage. In the graphics, stable regions
can be identified for a MinNodeSize of approximately 4-5%, a number of trees (NTrees)
of 1400-1600 and a Shrinkage of 0.05-0.08.

In the plot on top of Fig. 7.3 one can identify a region with overall low AMS on the
left side of the plot. This region is characterized by a very low number of trees, which
indicates that this low number of trees is not sufficient for a proper training of the BDT
algorithm. Another distinct region, which shows strong fluctuations and low AMS, is
located in the lower right edge. Also for the bottom plot in Fig. 7.3 a strongly fluctuating
region with low AMS can be detected. This fluctuations are caused by two reasons, firstly
a high learning rate (Shrinkage) that allows fluctuations in the MC samples to have a
high impact on the BDT and secondly a low MinNodeSize, where outliers have more
influence on the analysis.

Similar to the 1D scans, also the 2D scans illustrated are already performed with the
optimized variable and parameter set to show the final dependencies and AMS values.

The final parameter set that is chosen for the 8 TeV analysis with the H — 77 signal
and Drell-Yan background is summarized in Tab. 7.1.

Tab. 7.1: Values of BDT parameters after optimization for the 8 TeV analysis.

’ BDT parameter ‘ value ‘
NTrees 1500
Shrinkage 0.06
MinNodeSize 4.4%
MaxDepth 3
nCuts 20
UseBaggedSample v
BaggedSampleFraction 0.75
BoostType GradBoost
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7 Multivariate analysis using the 8 TeV Monte Carlo sample

MinNodeSize
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Fig. 7.3: 2D scans of BDT parameters, top: Figure of Merit (AMS) as a function MinNode-
Size and NTrees, bottom: Figure of Merit (AMS) as a function of MinNodeSize and

Shrinkage.
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7.2 Optimization of the input variable set

7.2 Optimization of the input variable set

As stated earlier 13 input variables are available for the 8 TeV analysis, which are listed
in Tab. 6.2. To choose the optimal variable subset that leads to the highest performance
of the signal extraction a 13-dimensional optimization problem needs to solved. Using
the brute force method, which corresponds to testing every single possibility, is not
feasible for such a high dimensional problem. Therefore, a different approach is chosen
for finding the best variable set.

Starting with the whole set, the set of variables is reduced in size, always eliminating
the least important variable. This means that starting with 13 variables, each variable is
excluded once and the obtained BDT is evaluated. The subset that reaches the highest
AMS is then chosen as new starting point. From there again every variable is excluded
once and so on, until only a single variable is used as input. In the end the subset
of input variables that reaches the highest AMS overall is taken as the optimal input
variable set.

The best performance is obtained not with the full set of input variables, but with
a subset of 8 variables. The performance even decreases using more input variables.
Nevertheless, if the input set is reduced even further, the AMS decreases as well, as not
enough information is provided any more for the classification of the events. In Fig. 7.4
the dependency of the AMS on the number of input variables is shown. The AMS
steadily increases with the number of input variables until a subset of 8 input variables.
Adding more variables, the performance decreases again. Therefore, a subset of 8 input
variables is chosen for the analysis, including the variables listed in Tab. 7.2. In the
table the variables are sorted by their importance on the performance of the BDT. The
most important variable is the one which is eliminated last.

111

FoM

ll1111lHHMHHHHMHHXHH

2 4 6 8 10 12 14

Number of variable

Fig. 7.4: Figure of Merit (AMS) as a function of the number of input variables in the BDT
algorithm for 8 TeV using the BDT parameter values stated in Tab. 7.1.
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7 Multivariate analysis using the 8 TeV Monte Carlo sample

Tab. 7.2: Subset of 8 input variables chosen for the 8 TeV analysis after optimization, sorted by
their importance for the performance of the BDT.

’ Rank ‘ Input variable

L. MSV Fit
Anjl \J2
p%um
Pt
Muyis
Evss centrality
ARZEP,T

Miep centrality

@O NSO W N

7.3 Results of the optimized BDT analysis

After a full optimization of the BDT parameters and input variable set, the performance
of the BDT method is evaluated. The classifier reaches a figure of merit (FoM), in this
case an approximate median significance, of AMS=3.5. Fig. 7.5 shows the distribution
of signal and background events after the event classification using the optimized BDT.
The right side of the histogram corresponds to the signal region, the left side to the
background region. The histogram shows the BDT score after the smart rebinning (see
sec. 5.1), which causes the smooth increase in background from right to left.

7.4 Comparison of the BDT analysis with a cut-based
analysis for 8 TeV

Until now the optimization and comparison between different classifiers only has been
done for BDTs generated with different parameters and input variables. To get a feeling
for the power of BDTs, it is useful to compare the performance of the constructed BDT
with a different signal extraction method. For this comparison a cut-based analysis is
chosen as this method was also used in earlier analyses [20]. The cut-based analysis
throughout this thesis is optimized by the use of the TMVA package [33].

For the cut-based method, all surviving events distributed according to the SVFit
mass estimation of the 77-system m3Y % are used to evaluate the performance.

The histograms of the two methods that are used for evaluation are shown in Fig. 7.5
(BDT) and Fig. 7.6 (cut-based). The AMS that is reached after the full optimization is
given by AMS=3.5 for the BDT and AMS=2.1 for the cut-based analysis. This shows a
significant improvement of the BDT method compared to the cut-based analysis.

For extracting these results, several approximations are made here. First of all, only
the Drell-Yan background Z — 7,7, was included in the analysis. The AMS, which is
used for quantification, only provides a simplified statistical treatment. In terms of sys-
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7.4 Comparison of the BD'T analysis with a cut-based analysis for 8 TeV

tematics, only normalization uncertainties are included, but e.g. no shape uncertainties.
For an adequate evaluation of the significance, the CMS CombinedLimit framework (see
Chap. 9) can be implemented.

As these approximations are done, the comparison is only qualitative. BDT does give
better results in this case, but it is not clear by how much its performance will exceed
the cut-based analysis when a full analysis is performed.
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Fig. 7.5: Histogram showing the distribution of the BDT score for the signal process H — 71
stacked on top of the Drell-Yan background process Z — 77 in the final state 7, for
8 TeV normalized to a luminosity of £ = 19.7fb~'.
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7 Multivariate analysis using the 8 TeV Monte Carlo sample
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Fig. 7.6: Histogram showing the m2Y i distribution for the events that survived the cut-based
analysis including the signal process H — 77 stacked on top of the Drell-Yan back-
ground process Z — 77 in the final state 7, for 8 TeV normalized to a luminosity of
L£=19.7fb~"
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8 Multivariate analysis using the 13 TeV
Monte Carlo sample

The main purpose of this thesis is to find the best BDT algorithm for the event classifica-
tion and signal extraction of the H — 77 decay in the final states u7, and ety at 13 TeV
under consideration of three backgrounds, Drell-Yan production, ¢t and W+jets. The
BDT algorithm is optimized with respect to the BDT parameters and input variables
using the same procedure as discussed in sec. 7.1 and 7.2.

As a first step, only the H — 77 signal process and the Drell-Yan background in the
uty, final state are investigated, which means that the processes considered are the same
as in the analysis for 8 TeV. The initial set of optimized parameters and input variables,
is the one obtained in the previous chapter. The biggest difference between the analysis
for 8 TeV and 13TeV consists in the different size of the MC samples available. As
illustrated in Tab. 6.3, for the 8 TeV MC samples each process has a sample size of
approximately 11000-12000 events, whereas for 13 TeV the samples contain 90000 and
78000 events for the signal and the Drell-Yan process in the p7p, channel. The impact of
the sample size on the BDT analysis can be studied.

The 8 TeV and 13 TeV MC samples are normalized to different luminosities, namely
Lsrey = 1977 and Li37ey = 10fb~ L. The input variables have different values and
the shapes of their distributions have changed. The performance that is reached in both
analysis is not directly comparable.

Later on two additional backgrounds are included in the analysis, namely the ¢ and
the W-jets background. As these backgrounds have different properties compared to
the signal and Drell-Yan process, a new optimization of the BD'T with respect to the
parameters and the chosen input variable subset is performed.

Lastly the ety final state is analysed. Two approaches of combining the two analyses
of ur, and ety are introduced. They are further discussed in chapter 9.

8.1 Optimization of the BDT with respect to the signal and
DY processes (i1, channel)

Here, only the Drell-Yan background is included in the event classification method. For
both the signal process H — 77 and the DY background the final state u7y, is considered.

To construct the BDT, the algorithm is optimized using the same procedure as in the
previous chapter. The procedures of tuning the BDT parameters and choosing the most



8.2 Comparison of BDT to a cut-based analysis and other machine learning approaches

powerful subsample of input variables is performed iteratively. The best parameters and
variables obtained are summarized in Tab. 8.1 and 8.2.

When compared to the 8 TeV analysis, the parameters only show slight variations.
The values of NTrees, MaxDepth, nCuts and the boosting type remain the same. The
BaggedSampleFraction changes from 0.75 to 0.5 and the modifications in Shrinkage
(0.06—0.07) and MinNodeSize (4.4%—4.0%) are minor. Regarding the input variables,
the importance of single variable changes but the variable set stays the same, only An;,
is replaced by my;.

In Fig. 8.1 the reduction process of the variable set is illustrated. In contrast to
8 TeV, no obvious maximum emerges. As the 8 TeV analysis uses smaller MC samples,
this maximum probably emerges as a consequence of overtraining, which is higher for
a larger set of input variables. For 13 TeV, starting from one variable the FoM initially
increases until an amount of 8 variables. From there on, the FoM stays stable and does
not vary strongly for additional input variables. The subset with the 8 most powerful
variables is chosen for the analysis.

For the optimized BDT an AMS of 3.7 is reached for the testing samples. The BDT
score distribution that is used for calculating the AMS is given in Fig. 8.2.

Tab. 8.1: Values of BDT parameters for the 13 TeV analysis with final state p7, only including
the Drell-Yan background.

‘ BDT parameter ‘ value ‘
NTrees 1500
Shrinkage 0.07
MinNodeSize 4.0%
MaxDepth 3
nCuts 20
UseBaggedSample v
BaggedSampleFraction 0.5
BoostType GradBoost

8.2 Comparison of BDT to a cut-based analysis and other
machine learning approaches

The BDT analysis for the purp, channel including the DY background carried out in the
previous section gives an AMS of 3.7. A cut-based analysis is performed leading to
AMS=1.92 with the event distribution shown in Fig. 8.3.

Parallel to this thesis two other MVA methods are tested on the same MC samples,
namely NeuroBayes and deep neural networks. The NeuroBayes analysis is carried out
by the use of the TMVA package [33]. After optimization an AMS of 3.1 [38] is obtained.
Deep neural networks reach an AMS of 2.15 [17].
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8 Multivariate analysis using the 13'TeV Monte Carlo sample

Tab. 8.2: Subset of 8 input variables chosen for the 13 TeV analysis with final state p7, including
DY background, sorted by their importance for the performance of the BDT.

’ Rank ‘ Input variable

1. myj
Myis
Miep centrality
SV Fit
mT’T
tot
Pr
p%um
ARlep,T

E%iss centrality

QNSO

FoM

- S S T R

Number of variables

Fig. 8.1: Figure of Merit (AMS) as a function of the number of input variables in the BDT

algorithm for 13 TeV using the BDT parameter values stated in Tab. 8.1. Included
processes: signal, DY background; final state: pu7p,.
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Fig. 8.2: Histogram showing the distribution of the BDT score for the signal process H — 71
stacked on top of the Drell-Yan background process Z — 77 with final state ur, for
13 TeV normalized to a luminosity of £ = 10fb~".
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Fig. 8.3: Histogram showing the surviving events after a cut-based analysis with distribution
variable m2Y £ for the signal process H — 77 stacked on top the Drell-Yan background
process Z — 77 with final state pur, for 13 TeV normalized to a luminosity of £ =
10fb "
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8 Multivariate analysis using the 13'TeV Monte Carlo sample

Summarizing, for the ur, analysis including the DY background the BDT analysis
performs significantly better than the other approaches. The deep neural network only
gives a slightly better result than the cut-based analysis. The reason for this is most
probably a too small sample size of the MC training samples.

8.3 Impact of the MC sample size on the BDT performance

As the MC samples for the signal and DY processes for 8 TeV and 13 TeV significantly
vary in size for the two analyses, the 1-dimensional scans performed for the optimization
purpose can also be used for studying the impact of the sample size on the choice of the
BDT parameters. The 1D scans are shown in Fig. 7.1 and 7.2.

One can extract two main consequences of bigger samples. Firstly, the variations
between obtained FoMs for similar parameter sets are reduced, which corresponds to
a reduced influence of fluctuations for bigger samples. Secondly, the red line is closer
to the blue one, which equals to less overtraining. The bigger the samples, the less
the probability for the machine learning algorithm to overtrain on outliers instead of
adapting to global characteristics.

8.4 Performance of the BDT considering the DY, ¢t and
W+ jets background for the u7;, channel

In order to improve the analysis with respect to a more complete background treatment,
the tt and Wjets background is added. The size of the MC samples is shown in Tab. 6.4.
The tt and especially the W+jets background samples are significantly smaller than the
others as discussed in detail in sec. 6.4.2. For this reason, the preselection is loosened
and a special sample is used for W+jets.

As a first attempt the new backgrounds are included in the testing samples, whereas
the BDT algorithm itself remains unchanged: The used BDT is only trained on the
DY background. This does not lead to a satisfying outcome. The observed AMS drops
from 3.7 (only DY) to 0.6. The event distribution is shown in Fig. 8.4. The W+jet
background clearly contributes strongly to the background in the signal region, but also
tt has a high impact.

A possible way out is the generation of a new BDT method which is trained on all
three backgrounds. In order not to distort the quantification of the BDT performance
by events that only survive the analysis due to the loosened preselection, the W-t+jets
sample with original preselection is used for testing purpose. On the other hand, for
training it is essential to use MC samples as big as possible to prevent overtraining,
which motivates the use of the loose W+jets sample there.

The new BDT method undergoes the optimization process leading to the input vari-
able set and BDT parameters shown in Table 8.3 and 8.4. Compared to the variable
subset used for the BDT analysis in sec. 8.1, the two variables m;; and m,;, are replaced
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8.5 BDT analysis with a different final discriminant

by Anj, j, and mp, the others stay the same. Having a look at the input variable dis-
tributions in Fig. 6.1 and 6.2, at least for the variable m,;s it is obvious that it looses
importance, as the new backgrounds do not show an as distinct discrimination to the
signal as the DY process. mg gains separation power, as the new backgrounds show
exactly the opposite distribution compared to the old processes. The most significant
change in the BDT parameters concerns Shrinkage, which now has value of 0.17, com-
pared to 0.07 before. The other variables only experience minor modifications. NTrees
increases from 1300 to 1500, MinNodeSize from 3.5% to 4.0%, nCuts form 20 to 40 and
BaggedSampleFraction for 0.4 to 0.5.
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Fig. 8.4: Distribution of the BDT score for the signal process H — 77 stacked on top of the
3 backgrounds DY (Z — 77), tt and W+jets, with the final state ur, for 13 TeV
normalized to a luminosity of £ = 10fb~!. The BDT is only trained on DY.

Testing the BDT trained on all three background samples gives an AMS of 2.6 (for the
BDT score distribution, see Fig. 8.5), which is still significantly lower than without the ¢
and W-jets backgrounds. Nevertheless, it shows a significant improvement compared to
the result obtained by the BDT only trained on DY. The still relatively low statistics of
the new backgrounds strongly affect the uncertainties in the event distribution leading to
bigger uncertainties in the region with more W+jets background events, as visible in the
plot. To compare with a different event classifier the cut-based analysis is extended to 3
backgrounds giving an AMS of 1.05. With respect to the cut-based analysis performed
only with DY (see Fig. 8.3), the optimal event selection is now much tighter. The
distribution of the events is illustrated in Fig. 8.6.

8.5 BDT analysis with a different final discriminant

So far the BDT score obtained during the BDT classification is used as final discrimi-
nant. It is conceivable that a better performance can be obtained by using a different

70



8 Multivariate analysis using the 13'TeV Monte Carlo sample

Tab. 8.3: Subset of 8 input variables chosen for the 13 TeV analysis, final state ury,, including
DY, tt and W+jets background, sorted by their importance.

’ Rank ‘ Input variable
1' AT]jl:jQ

p%um
mi\_/th
pE!
Miep centrality
E}”iss centrality
A-Rlep,’r

mr

PN U W

Tab. 8.4: Values of BDT parameters for the 13 TeV analysis, final state u7y, including the Drell-
Yan, t¢ and W+jets background.

’ BDT parameter \ value ‘
NTrees 1300
Shrinkage 0.17
MinNodeSize 3.5 %
MaxDepth 3
nCuts 40
UseBaggedSample v
BaggedSampleFraction 0.4
BoostType GradBoost
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Fig. 8.5: BDT score distribution for the signal process H — 77 stacked on top of the Drell-
Yan (Z — 77), tt and W+jets background processes for 13 TeV in the final state ury,
normalized to a luminosity of £ = 10fb™".
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8.6 BDT analysis for the ety channel
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Fig. 8.6: Histogram showing the surviving events after a cut-based analysis with m2V ¥ as

TT

distribution variable for the signal process H — 77 stacked on top of the Drell-Yan
(Z — 771), tt and W+jets background processes with final state u7;, normalized to a
luminosity of £ = 10fb~*.

distribution.

Like for the cut-based analysis, only a few events are used that survive a cut on
the BDT score. Several variables are tested as discriminants, like meV Fit and Mauis, and
scans are performed to find the optimal cut on the BDT score. With respect to the other
discriminants, m,;s gives the best results with the cut BDTscore>0.95. The cut value
applies to the original BDT score before the smart rebinning is performed. The surviving
events are then distributed as a function of their visible mass myis. This variable is
excluded from the input variable set of the BDT. The method gives AMS=2.13, which is
lower than for the standard BDT evaluation method used before that gave AMS=2.61.
Nevertheless, it is still significantly higher than the performance of the cut-based analysis
with an AMS of 1.45. The m,;s distribution is shown in Fig. 8.7.

In order to compare this method to the one used for the cut-based analysis, a similar
number of surviving signal events is required, namely Neg, sig = 3.35. Under this condi-
tion the cut on the BDT score is set to BDTscore>0.9, leading to AMS=1.58, which is
also higher than for the cut-based analysis.

8.6 BDT analysis for the e7;, channel

Firstly the analysis of the e, final state including the three backgrounds Drell-Yan, tf
and Wjets is performed using the BDT generated for the 7, channel. As this analysis
did not give a satisfying result - the AMS only reaches a value of 1.7 - a new BDT is
trained. The optimized values are listed in Tab. 8.5 and 8.6.

The strongest variable in the p7;, channel, Anj, ;,, does not feature in the optimized
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8 Multivariate analysis using the 13'TeV Monte Carlo sample
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Fig. 8.7: m,;s distribution after a cut on the BDT score. Processes included in the analysis:
signal process H — 77, DY Z — 77, tt and W+jets background, in the final state u7y,
normalized to a luminosity of £ = 10fb™*.

variable set of erj,, whereas the strongest variable for er;,, m;j, is removed from the
utr analysis. The other variables show altered importance for the analysis as well and
the variable e, centrality is replaced with pf?*. The BDT parameters do not change
strongly. The most significant changes concern NTrees (1300—1600) and Shrinkage,
which is reduced from 0.17 to 0.13. BaggedSampleFraction is increased from 0.4 to 0.6,

the other parameters remain unchanged.

The BDT determined by the these parameter values and input variables gives
AMS=2.0. The corresponding event distribution is shown in Fig. 8.8.

Tab. 8.5: Subset of 8 input variables chosen for the 13 TeV analysis in the er}, final state including
DY, tt and W+jets background, sorted by their importance.

’ Rank ‘ Input variable

N e
K
mTT
Miep centrality

tot
pr

Myis
mr
sum

br
ARlep,T

NS oA W
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8.6 BDT analysis for the ety channel

Tab. 8.6: Values of the BDT parameters for the 13 TeV analysis in the ey, final state including
the Drell-Yan, ¢t and W+jets background.

’ BDT parameter ‘ value ‘
NTrees 1600
Shrinkage 0.13
MinNodeSize 3.5 %
MaxDepth 3
nCuts 40
UseBaggedSample v
BaggedSampleFraction 0.6
BoostType GradBoost
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Fig. 8.8: Distribution of the BDT score for the signal process H — 77 stacked on top of the
Drell-Yan (Z — 77), tt and W+jets background processes for 13 TeV in the final state
ey, normalized to a luminosity of £ = 10fb~".

74



8 Multivariate analysis using the 13'TeV Monte Carlo sample

8.7 Combination of the u7, and e7, final states

As the event classifiers are generated for both the p7y, and the er, channel in the course
of the previous chapters, the next logical step is to combine the results obtained from
these analyses. The aim is to enhance the performance of the signal extraction by this
combination, as the information of both channels is used. For the combined analysis two
different approaches are studied.

For the first method, the two channels are analysed separately using the BDTs gen-
erated in the previous chapters. The BDT score distributions obtained are narrowly
binned. Subsequently, the content of the bins of the two histograms is summed up for
each bin separately. The resulting BDT score distribution is then handled in the same
way as the previous distributions in order to calculate the AMS. Performing this proce-
dure an AMS of 2.9 is reached using the event distribution containing MC events from
both the p7, and the er, final state. To justify using this method, it is instructive
to check that the distributions of the ur, and er, channel do not differ much and the
separation power is preserved. In Fig. 8.9 the distributions for the different processes
are shown before the smart rebinning is performed. Only small differences are visible in
the distributions.

The second method follows the idea of a new BDT trained on the whole range of
events available for both final states and considering these two channel as one big new
channel. For this purpose, the BDT is reoptimized leading to the input variables and
BDT parameter values shown in Tab. 8.7 and 8.8. The optimized BDT gives an AMS
of 2.9 with the corresponding event distribution shown in Fig. 8.10.

The set of the combined analysis is very similar to the variable set of the u7, analysis,
except that in the combined analysis 7 variables are used instead of 8. The variable that
is removed form the set is AR, . Compared to the er; channel, E}”iss centrality is
added, whereas m;; and m,;s are removed from the set. In terms of BDT parameters,
the same values are used as for the er, analysis.

Tab. 8.7: Subset of 7 input variables chosen for the 13 TeV analysis for the combined analysis of
the ur, and er, final state including DY, ¢t and W+jets background, sorted by their
importance.

’ Rank ‘ Input variable
L. Anjj

p%um

SV Fit
Mer

EMss centrality

tot
br

Miep centrality
mr

N Ut W
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8.7 Combination of the uty and ety final states
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Fig. 8.9: BDT score distribution for the signal process (BDT_S), the DY (BDT_B1), ¢t
(BDT_B2) and W+jets (BDT _B3) background for the pr, (left) and er, (right) final

states for the 13 TeV MC samples.
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8 Multivariate analysis using the 13'TeV Monte Carlo sample

Tab. 8.8: Values of BDT parameters for the 13 TeV analysis for the combined analysis of the ur,
and e7;, final states including the Drell-Yan, ¢t and W-+jets background.

BDT parameter ‘ value ‘
NTrees 1600
Shrinkage 0.13
MinNodeSize 3.5 %
MaxDepth 3
nCuts 40
UseBaggedSample v
BaggedSampleFraction 0.6
BoostType GradBoost
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Fig. 8.10: Distribution of the BDT score for all processes normalized to a luminosity of £ =
10fb~!. The BDT is trained on both final states, u7, and ety,.
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8.7 Combination of the uty and ety final states

Tab. 8.9: Summary of BDT parameters and input variables for all analyses carried out for 13 TeV.

13 TeV UTh ety UTh + eTh
DY, tt, DY, tt, DY, ¢,
£=100"" only DY |\ ets W jets Wt jets
NTrees 1500 1300 1600 1600
Shrinkage 0.07 0.17 0.13 0.13
MinNodeSize 4.0% 3.5% 3.5% 3.5%
MaxDepth 3 3 3 3
nCuts 20 40 40 40
UseBaggedSample v v v v
BaggedSampleFraction 0.5 0.4 0.6 0.6
BoostType GradBoost | GradBoost | GradBoost || GradBoost
mVFi v v v v
ARjep » v v
Anjj \/ \/ \/
m]‘j v v
i1~ Mo
Pt v v v v
EVss centrality v v v
mr v v v
Miep centrality v v v v
" v v v v
sphericity
Mayis v v
AMS [ 37 26 | 20 | 29
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8 Multivariate analysis using the 13'TeV Monte Carlo sample

8.8 Comparison between different BDT parameter sets and
input variables for 13 TeV

All BDT parameters and input variable sets of the different analyses performed in this
chapter are summarized in Tab. 8.9.

Out of the 12 considered input variables, three are included in each analysis for 13 TeV,
namely meV Fit p7"™ and 1, centrality. For the searches including the three background
processes DY, tt and W-jets, two more variables are present in each BDT analysis,
An;; and mp. Two variables were never included in the optimal variable set, namely
Mep centrality and sphericity.

The most significant difference between the optimal BDT parameter sets for the anal-
yses for 13 TeV are given in the values of the Shrinkage parameter. When considering
only the DY background process, the parameter is chosen relatively small (0.07), whereas
for the three backgrounds DY, ¢ and W-jets it increases. For the u7j, channel it is set
to 0.17, for ery, it is 0.13. The other parameters do not vary significantly. Gradiant
boosting and bagging, the use of a random subsample for training, are for all performed
analyses the best options in terms of performance. BaggedSampleFraction stays in a
range from 0.4 to 0.6 and the values of NTrees are between 1300 to 1600. MaxDepth
always has the value 3 and MinNodeSize is set to approximately 3.5%.
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O CMS statistic framework

For the analyses discussed in Chap. 7 and 8 the AMS is used for the quantification of
the performance and the comparison between different analysis methods and BDTs. In
sec. b a second method of quantifying the performance was introduced, the Gaussian
significance derived from the corresponding p-value (see sec. 5.3 for detailed explanation).

In the present chapter one possibility of calculating the Gaussian significance of the
event classification process is described by the use of the two CMSSW frameworks "Com-
binedLimit" and "CombineHarvester". The CombinedLimit framework provides a broad
range of statistical evaluation methods, which are described in Ref. [39]. It can be used
for setting limits on signal processes and calculating the p-value after event classification,
which is used in the present case. The framework requires two input files, a datacard
of the signal extraction problem and a ROOT file containing event distributions for all
processes. The CombineHarvester is an auxiliary tool to create the datacard, which is
then used by the CombinedLimit framework.

The CombinedLimit framework further provides the opportunity of including vari-
ous systematic uncertainties. In the datacard (see sec. 9.2) all signal and background
processes included in the analysis are declared as well as all occurring systematic un-
certainties that are discussed in sec. 9.1. Systematic uncertainties include normalization
uncertainties and shape uncertainties, which require more specific information on the
processes. This information is provided in ROOT data files by additional histograms.
In sec. 9.1 and 9.3 the production of the ROOT input file is explained in detail.

In the end of this chapter the significance is calculated by CombindLimit for the
analyses for 13 TeV including the Drell-Yan, ¢t and W+jets background. Firstly the
statistical significance for the combined sample set including both the p7y, and ery, final
states is estimated, followed by the evaluation of the signal extraction process with the
two final states being considered as separate channels.

9.1 Systematic uncertainties

The BDT score distribution that is used for the quantification of the BDT performance
is strongly affected by imprecisely known quantities. These have several origins. They
are either theory related or occur during the experimental process. All of them are com-
bined in the term systematic uncertainties. One has to differentiate between systematic
uncertainties that alter the total number of detected events and therefore change the
normalization and those that affect the shape of the event distribution, or both.



9.1 Systematic uncertainties

9.1.1 Normalization uncertainties

In the calculation of the significance several normalization uncertainties are included.
They can be caused by uncertainties of the cross section of the processes, the detection
process or the beam luminosity in the experiment. The uncertainty in the luminosity
is 3% for all processes. Furthermore, each process has cross section uncertainties. The
uncertainty for the Drell-Yan Z — 77 process is 10%, in tt it is 25% and in the signal
process H — 77 it is given by 20%. In the W-jets background the uncertainty is
determined to be 50% [20]. The uncertainty for W+jets also affects the shape and is
implemented as shape uncertainty, as explained in the following section.

9.1.2 Shape uncertainties

In addition to normalization uncertainties of the expected number of events, also other
uncertainties exist that affect specific kinematic observables like the energy of the par-
ticles. These uncertainties are caused by the finite resolution of the detectors or the
misidentification of particles and jets. Therefore the total number of expected events
may not be affected, but the BDT algorithms gives a different result as the distribution
of the input variables of data may differ from the training sample.

In order to provide information on the altered shape, several histograms showing
different BDT score distributions need to be provided to the CombindLimit framework.
The framework gets all information through the ROOT input file. First of all, the
‘original’ distribution is included in the ROOT file, which is used for the significance
calculations. Then, for each shape uncertainty two more histograms (DOWN and UP)
are added to the file, one showing the distribution assuming down-scaled values, the
other for up-scaled values.

Two types of shape uncertainties will be discussed. The first ones are caused by
identification uncertainties and therefore also lead to a change in the number of expected
events. The others alter the kinematic quantities of the events by uncertainties in the
energy scale of the particles. For the calculation of the significance performed in this
thesis the included shape uncertainties are explained in this chapter.

For gathering information on the energy scale uncertainties, the analysis is done by
manipulating the energy of the concerned particle. These manipulations are performed
before the final preselection (see Tab. 6.1) is applied on the MC events.

Identification efficiency of real and fake 7

The identification and trigger efficiency of real 7, leads to a total rate uncertainty of 8%,
which is relevant for the signal process, the Drell-Yan and the ¢t process. The W+jets
background consists exclusively of electrons, muons and jets, which are misidentified as
7. The identification of the fake 75, leads to an estimated rate uncertainty of 50%. [20]

To derive the histograms providing the information on the uncertainty in the identifi-
cation of real 7, randomly 8% of the events of the affected processes (signal, DY, tt) are
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9 CMS statistic framework

removed form the initial MC samples. The BDT is applied and the BDT score distribu-
tions of the processes are used as the DOWN histograms for the particular uncertainty.
As there are not more events available than the ones included in the initial MC samples
(all of them already used for the analysis), it is not possible to add an amount of 8%
additional events. Therefore the UP histograms are created by adding the differences
between the original and DOWN histograms to the original histograms, which gives the
UP histograms. The same procedure is applied for the identification uncertainty of the
fake 7, (50%) of the W+jets background.

Energy scale uncertainty of 7,

This uncertainty causes a change in the distribution for several input variables and there-
fore also a different shape of the BDT score distribution. In particular the uncertainty
in the energy scale of each 7, is given by 3% [20]. In order to extract the additional
histograms needed, the energy of the 75 in each event is rescaled, once with a factor of
1.03 to obtain the UP and once with 0.97 for the DOWN histograms.

This change of the energy affects also other quantities of the event which are relevant
for the BDT analysis.

For the 71, energy scale the following input variables are affected: meV Fit ™, pé?t
and my;s. As the mass estimation of the 77-system is calculated by the highly complex
SVFit algorithm, the dependency of mfy Fit on E;, is approximated by a rescaling factor
of 1.015 for UP and 0.975 for DOWN. The p%*™ corresponds to the scalar sum of all
transverse momenta and therefore contains the py of the lepton (u or e), the hadronically
decaying tau 75, the missing transverse energy EI’?“S and the two leading jets.

As the original MC samples only include events with pp(7) > 20 already before the
preselection, the preselection cut on pr(7,) can not be loosened. Therefore only the
down-scaling of the 7, energy makes sense, as for the up-scaling also events that are not
available in the MC samples would survive the preselection. The derived BDT score
distribution would be biased in the way that events with low pp(7;,) were not included
in the analysis.

After the rescaling the original preselection is applied. The derived MC sample is
then used for firstly generating the BDT score distribution of the DOWN histograms.
By adding the differences between the original and the DOWN histograms to the original
histograms, the UP histograms are produced.

Energy scale uncertainty of E/s

The reconstruction of Ef**** shows an uncertainty of 5% [20], which leads to the rescaling
factors of 1.05 of EF for the UP and 0.95 for the DOWN histograms. The m2Y ¥ is
modified by the factor of 1.025 for UP and 0.975 for DOWN. The variables p7"* and

pift are calculated as shown for the 7, energy scale uncertainty.
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9.2 Datacard

In contrast to the 75, energy scale uncertainty it is possible to extract both the UP
and DOWN histograms by applying the BDT on the modified MC samples.

Energy scale uncertainty of jets

The jet energy scale uncertainty concerns all jets included in the MC event and is given
by 3% [20]. By modifying the energy scale also the transverse momenta pp(jet) of the
jets change. This affects the p$*™ and p!?’ as they depend on the pr of the two leading
jets. Also the m;; needs to be recalculated.

For the 7, and E}”iss energy scale uncertainty only the cut pr > 30GeV on the pp
of the respective object (7, or EM¥%) is based on the transverse momentum. For the
jets also another preselection criteria, namely the central jet veto CJV, introduced in
sec. 6.2, depends on pr(jet).

During original preselection the selection cut pr(jet) is applied on all jets removing
those with a pr too small, but keeping the event in each case as long as at least to jets
survive. Then a central jet veto is applied, which removes the whole event from the
analysis if at least one jet has an n with 191 < n <12 or 12 < n < n1. If the preselection
cut is now lowered, more jets are kept in the event, which increases the probability of the
event having jets with n; < n < n2 or ny < n < ny. Therefore more events are removed
from the sample due to the CJV. The final MC samples contain fewer events caused by
a looser pr selection cut.

9.2 Datacard

The datacard is produced by the CombineHarvester framework. To generate the datac-
ard all event categories, processes and uncertainties must be declared. Several parame-
ters are provided by the tool that need to be filled accordingly.

Firstly, the categories that declare the production process and the final state need to
be set. In the particular case either one or two are created named according to the final
state that is analysed, namely muTau_vbf and/or eTau_vbf, which also get assigned
a bin_id of 1 and/or 2. More information is provided in the datacard by additional
parameters that are defined, namely analysis="htt", era="13TeV", channel="mt" or
"et" and the mass="125", which corresponds to the Higgs mass and is only set for the
signal process. Then the processes are defined and split into signal and background
processes: sig_procs only contains the signal "sgn", whereas bkg_procs contains "DY",
"ttbar" and "Wjets".

For the systematic uncertainties two different types must be distinguished. The nor-
malization uncertainties are declared by using the distribution type "1nN", which corre-
sponds to a log-normal distribution and is recommended for multiplicative corrections
like normalization. All processes that are affected by a particular normalization uncer-
tainty get assigned the size of the uncertainty. The value is defined by 1 + Az/z, with
Ax/x corresponding to the relative uncertainty. Four different norm uncertainties are
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9 CMS statistic framework

included, namely lumi with the factor 1.03, which affects all processes, and the uncer-
tainties for each specific process, namely sgn125_norm with a factor of 1.2, DY_norm with
1.1 and ttbar_norm with 1.25. All of them are introduced in sec. 9.1.1.

The second type is given by the shape uncertainties. In this case the distribution
type must be set to "shape", which tells the CombinedLimit framework that there are
additional histograms available in the ROOT input file, that give information on the
impact of various uncertainties on the event distribution. These shape uncertainties
always affect the distribution of all processes. The uncertainties included are given by
"IDfakeTau", "IDrealTau", "tau_energy", "met_energy" and "jet_energy", which
are discussed in section 9.1.2.

Additionally, the datacard displays the number of observed events for each process,
which corresponds to the weighted number of MC events. These numbers are automat-
ically extracted from the ROOT input file as well as the number of bins and processes
(imax and jmax). The number of nuisance parameters, denoted as kmax, is not stated
in the datacard, but is directly extracted from the ROOT file by the CombinedLimit
tool.

For each analysis carried out a separate datacard is generated that matches the present
event classification problem. Two examples are provided below, the first one shows the
datacard for the u7, analysis, the second one the combination of the ur, and the er,
final states considered as separate channels.
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htt_mt_1_13TeV_125.txt

# Datacard produced by CombineHarvester with git status: CombineHarvester-v15.5-13-g9c77453

imax 1 number of bins

jmax 3 number of processes minus 1

kmax * number of nuisance parameters

shapes * htt_mt_1_13TeV htt_mt.input.root htt_mt_1_13TeV/$PROCESS htt_mt_1_13TeV/$PROCESS_$SYSTEMATIC
shapes sgn htt_mt_1_13TeV htt_mt.input.root htt_mt_1_13TeV/sgn$MASS htt_mt_1_13TeV/sgn$MASS_$SYSTEMATIC

bin htt_mt_1_13TeV

observation 4785.4404

bin htt_mt_1_13TeV htt_mt_1_13TeV htt_mt_1_13TeV htt_mt_1_13TeV
process sgn DY ttbar Wjets
process 0 1 2 3
rate 21.51 963.8 817 2862
DY_norm 1nN - 1.1 - -
IDfakeTau_ shape - - - 1
IDrealTau_ shape 1 1 1 -
jet_energy_ shape 1 1 1 1
lumi 1nN 1.03 1.03 1.03 1.03
met_energy_ shape 1 1 1 1
sgnl125_norm 1nN 1.2 - - -
tau_energy_ shape 1 1 1 1
ttbar_norm 1nN - - 1.25 -

pIeseie( z'6
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combined_125.txt

# Datacard produced by CombineHarvester with git status: CombineHarvester-v15.5-13-g9c77453

imax 2 number of bins
jmax 3 number of processes minus 1
kmax * number of nuisance parameters

shapes * htt_et_2_13TeV htt.input.root htt_et_2_13TeV/$PROCESS htt_et_2_13TeV/$PROCESS_$SYSTEMATIC
shapes sgn htt_et_2_13TeV htt.input.root htt_et_2_13TeV/sgn$MASS htt_et_2_13TeV/sgn$MASS_$SYSTEMATIC

shapes * htt_mt_1_13TeV htt.input.root htt_mt_1_13TeV/$PROCESS htt_mt_1_13TeV/$PROCESS_$SYSTEMATIC
shapes sgn htt_mt_1_13TeV htt.input.root htt_mt_1_13TeV/sgn$MASS htt_mt_1_13TeV/sgn$MASS_$SYSTEMATIC

bin htt_et_2_13TeV htt_mt_1_13TeV

observation 2624.8958 4785.4404

bin htt_et_2_13TeV htt_mt_1_13TeV htt_et_2_13TeV htt_et_2_13TeV htt_et_2_13TeV htt_mt_1_13TeV htt_mt_1_13TeV htt_mt_1_13TeV
process sgn sgn DY ttbar Wjets DY ttbar Wjets
process 0 0 1 2 3 1 2 3
rate 12.47 21.51 243 461.8 1798 963.8 817 2862
DY_norm 1nN - - 1.1 - - 1.1 - -
IDfakeTau_ shape - - - - 1 - - 1
IDrealTau_ shape 1 1 1 1 - 1 1 -
jet_energy_ shape 1 1 1 1 1 1 1 1
lumi 1nN 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
met_energy_ shape 1 1 1 1 1 1 1 1
sgn125_norm 1nN 1.2 1.2 - - - - - -
tau_energy_ shape 1 1 1 1 1 1 1 1
ttbar_norm 1nN - - - 1.25 - - 1.25 -
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9.4 Results of the 13 TeV analysis

9.3 ROOT input file

The ROOT input file provides the histograms for the calculation of the expected signal
significance. In the present case the histograms show the BDT score distribution of the
MC events. The ROOT file is named according to the analysis, e.g. htt.input.root
(including pry, and ery) or htt_mt.input.root if only one channel is considered.

All histograms of one category are arranged in a folder named accordingly to the
category (htt_mt_1_13TeV or htt_et_2_13TeV). In each folder several histograms are
stored. The most important one is called "data_obs", which normally provides the
distribution of the actual data taken from the experiment. So far no data is analysed, but
the analysis method is tested using MC samples. Therefore the "data_obs" histogram
includes the MC events of all processes. Furthermore the distribution of each process
is shown in a separate histogram, namely "sgn125"  "DY", "ttbar" and "Wjets". The
names must correspond to the names of the processes declared in the datacard. For
the shape uncertainties additional histograms are added for each process. For instance
the signal process is affected by the uncertainties in the real 73, identification, the jet
energy scale, the E’Tm“ energy scale and the 75, energy scale. The datacard shows which
shape uncertainty affects which process. For each uncertainty, one UP and one DOWN
shape histogram is added to the ROOT file. This sums up to one histogram showing
the "observed data", 1+4x2 histograms for the signal process, 14+4x2 for DY, 1+4x2 for
tt and 1+4x2 for the W+jets background. In total this leads to 37 histograms in each
category folder. In the ROOT input file all histograms show the same binning, namely
21 bins in the BDT score range [-1,1].

9.4 Results of the 13 TeV analysis

As discussed above, the Gaussian significance is calculated by the CMS CombinedLimit
framework. The significance is firstly calculated for the single 7, channel and the single
et channel leading to the values 2.3 and 2.0.

The combination of these two channels is performed in two different ways, similar to
sec. 8.7. In the first case, both channels are considered separately and two categories
are defined in the datacard. This leads to a significance of 3.4, denoted as ur, erp,.

In the second case, the BDT, which is trained on events from both channels, is used
to generate the histograms for the ROOT input file. Here, the two final states are
considered as one channel, which means that also in the datacard only one channel (one
category) is defined. The evaluation of this analysis (u7, + erp) gives a significance of
4.0. This value is significantly higher than the significance of p7, er;, and seems to be
overestimated compared to the other values. This overestimation may be a consequence
of the fact that statistical uncertainties are not included in CombinedLimit calculations.

In Tab. 9.1 the AMS and the significance calculated by the CombinedLimit tool for
all analyses considering all three backgrounds are summarized. It must be borne in
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9 CMS statistic framework

mind, that these quantifications of the performance can not exactly be compared, as
different uncertainties are included in each evaluation method. The calculation of the
AMS considers the statistical uncertainties of each bin, whereas these uncertainties are
not included in the significance derived by CombinedLimit. In case of the systematic
uncertainties, only the normalization uncertainties are taken under consideration in the
AMS. The significance on the other hand also includes shape uncertainties.

Overall, the AMS and the CombinedLimit significance agree reasonably. For both
quantities the p7y, channel shows better results than the er, channel and the combined
analyses give higher values than the single analyses. Nevertheless, it is essential to
include statistical uncertainties in the evaluation of the significance calculations of the
CombinedLimit tool for further investigations.

Tab. 9.1: Summary of the AMS and the significances calculated by CombinedLimit for different
analyses. ur, et corresponds to two separate BDT classifiers, whereas ury, + e,
corresponds to one BDT trained on events from both channels.

’ Channels \ AMS \ Gaussian significance

WTh 2.6 2.3
ety 2.0 2.0
UTh €T 2.9 3.4
uth +etn | 2.9 4.0
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10 Conclusions and outlook

This thesis presents a study on the signal extraction performance of Boosted Decision
Trees for the H — 777~ channel. The scarch includes events of a Higgs boson produced
by vector-boson fusion decaving to a pair of 7 making use of the final states pr, and e7y,.
The background treatment is performed hy implementation of the irreducible Drell-Yan
background process (4 — 7777) and the reducible # and W—jets processes.

The aim of the study is the optimization of a BDT method for the signal extraction
for 8 and 13 TcV, with a focus on the 13 TeV analysis. Both analyses are performed by
utilizing simulated Monte Carlo samples. The MC samples used for the 8 TeV analysis
are normalized to a luminosity of £ = 19.7fb~ 1 and are provided for the signal process
and the Drell-Yan background both for the final state pr,. For 8 TeV, the optimized
BDT algorithm performs significantly better (AMS 3.3) than the cut-based analysis
(AMS=2.1). The absolute numbers arc only indicative as many approximations arc
made, like the simplified statistics and systematics treatment and the consideration of
only DY. However, the BDT analysis performs significantly better than the cut-based.

For 13 TeV, the BDT is firstly trained and optirized on the MC samples for the signal
and DY processes for the final state p7y, normalized to £ = 10fb~!, The choice of the
starting poeint of the optimization procedure is made considering the insights gained in
the 8 TeV analysis. The optimized BDT gives an AMS of 3.7, compared to 1.9 from the
cut-based analysis.

For the following analyses results, two types of quantifying the performance are con-
ducted. The value stated first is the approximate median significance, the second value
stated in brackets denotes the significance calculated by the CMS CombinedLimit frame-
work. For a more complete background treatment, the ¢ and Wjets processes are
implemented. Under consideration of these three backgrounds the optimization of the
BDT algorithmn is performed again. The performmance of the optimized BDT is given by
a significance of 2.6 (2.3), whereas an AMS of 1.03 is obtained for the cut-based analysis.
For the analysis of the ery, the BDT is reoptimized leading to a significance of 2.0 (2.0).
As the gignal vield in this channel is lower than in g1y, a lower AMS in er, was expected.

To make use of the signal extraction performance of both channels, two different
approaches for combining the two channels are studied. In the first approach (um, ems)
the event clagsification is performed separately for each channel. The AMS is calculated
from the sum of the events of both channels. In the CombinedLimit framework, two
separate channels are declared. The significance is calculated to 2.9 (3.4). For the second
approach the BD'T algorithm is reoptimized and trained only once using the MC samples
for both the p7y, and ey, channel. This leads to a significance of 2.9 (4.0). The AMS does



not include shape uncertainties, which are considered in CombinedLimit. Due to these
differences, the values of the differently calculated significances can not be compared
directly.

The study of the pur, channel for 13 TeV only including the DY background is per-
formed with different analyses methods. Besides BDT, the performance of a cut-based
approach and two multivariate analyses that are not part of this thesis, namely Neu-
roBayes [38] and deep neural networks [17], is investigated. A comparison shows, that
the BDT analysis performs significantly better than the other approaches. An additional
advantage of a BDT is its good "out-of-the-box" performance and it requires relatively
low effort for optimization compared to deep neural networks.

This gives evidence that a BDT analysis has high potential to enhance the performance
of the signal extraction when applied on the 13 TeV data. CMS is currently in the data
taking process. In 2016, enough data will be available to perform the H — 777~
analysis utilizing the optimized BDT algorithms extracted in the course of this thesis.
Before this analysis can be done, several tasks need to be accomplished. Firstly, a full
implementation of the CMS Statistic framework (CombinedLimit) is required, including
the statistical uncertainties. Secondly, the background treatment must be completed. A
validation on the background modelling must be performed as well as the background
estimation techniques based on data control regions will be updated.
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A Acronyms

ALICE A Large Ton Collider Experiment

AMS
APD

Approximate median significance

Avalanche Photodiode

ATLAS A Toroidal LHC ApparatuS

BDT
BR

CJv
CMS

CP

CPT

CSscC
DAQ
DT
DY
ECAL
FoM
ggF
GUT
HCAL
HB

Boosted Decision Tree
Branching Ratio

Central Jet Veto
Compact Muon Solenoid

Charge conjugation, Parity
transformation

Charge conjugation, Parity
transformation, Time reversal

Cathode Strip Chambers
Data Acquisition

Drift Tube

Drell-Yan

Electromagnetic Calorimeter
Figure of Merit

gluon-gluon Fusion

Grand Unified Theory
Hadronic Calorimeter

Hadronic Barrel Calorimeter

HE
HF
HLT
HO

L1
LEAR
LEP
LHC
LHCb
LINAC
MC
ML
MVA
pdf
PS
PSB
QCD
QED
RPC
SM

SPS
SU

Hadronic Endcap Calorimeter
Hadronic Forward Calorimeter
High-Level Trigger

Hadronic Outer Calorimeter
Level-1 Trigger

Low Energy Antiproton Ring
Large Electron-Positron Collider
Large Hadron Collider

Large Hadron Collider beauty
Linear Accelerator

Monte Carlo
Maximum-Likelihood
Mulivariate Analysis
Probability Density Function
Proton Synchrotron

Proton Synchrotron Booster
Quantum chromodynamics
Quantum electrodynamics
Resistive Plate Chambers

Standard Model of particle
physics

Super Proton Synchrotron

Special Unitary Group



SUSY Supersymmetry VBF  Vector-Boson Fusion
TMVA Toolkit for Multivariate Analysis XS Cross Section

U Unitary Group
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