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Abstract. In theory and practice of modern SAT solving, clause-elim-
ination procedures are essential for simplifying formulas in conjunctive
normal form (CNF). Such procedures identify redundant clauses and
faithfully remove them, either before solving in a preprocessing phase or
during solving, resulting in a considerable speed up of the SAT solver.
A wide number of effective clause-elimination procedures is based on
the clause-redundancy property called blocked clauses. For checking if
a clause C is blocked in a formula F , only those clauses of F that are
resolvable with C have to be considered. Hence, the blocked-clauses re-
dundancy property can be said to be local. In this paper, we argue that
the established definitions of blocked clauses are not in their most gen-
eral form. We introduce more powerful generalizations, called set-blocked
clauses and super-blocked clauses, respectively. Both can still be checked
locally, and for the latter it can even be shown that it is the most gen-
eral local redundancy property. Furthermore, we relate these new notions
to existing clause-redundancy properties and give a detailed complexity
analysis.

1 Introduction

Over the last two decades, we have seen enormous progress in the performance
of SAT solvers, i.e., tools for solving the satisfiability problem of propositional
logic (SAT) [1]. As a consequence, SAT solvers have become attractive reasoning
engines in many user domains like the verification of hardware and software [2]
as well as in the backends of other reasoning tools like SMT solvers [3] or even
first-order theorem provers [4]. In such applications, however, SAT solvers often
reach their limits, motivating the quest for more efficient SAT techniques.

Clause-elimination procedures which simplify formulas in conjunctive nor-
mal form (CNF) play a crucial role regarding the performance of modern SAT
solvers [5–12]. Either before solving (“preprocessing”) or during solving (“inpro-
cessing”), such procedures identify redundant clauses and remove them without
changing the satisfiability or unsatisfiability of the formula [6, 7].

An important redundancy property is that of blocked clauses [13, 14]. Infor-
mally, a clause C is blocked in a CNF-formula F if it contains a literal l such
that all possible resolvents of C on l with clauses from F are tautologies. As
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only the resolution environment of a clause C and not the whole formula F has
to be considered to check whether C is blocked, the blocked-clauses condition is
said to be a local redundancy property.

Blocked clauses have not only shown to be important for speeding up the
solving process [8, 14], but they also yield the basis for blocked-clause decompo-
sition which splits a CNF into two parts such that blocked-clause elimination can
solve it. Blocked-clause decomposition [9] is successfully used for gate extraction,
for efficiently finding backbone variables, and for the detection of implied binary
equivalences [10, 11]. The winner of the SATRace 2015 competition, the solver
abcdSAT [12], uses blocked-clause decomposition as core technology.

These success stories motivate us to have a closer look at local redundancy
properties in general, and at blocked clauses in particular. We show in this
paper that the established definitions of local clause redundancy properties like
blocked clauses are not in their most general form and introduce more powerful
generalizations, called set-blocked clauses and super-blocked clauses. Both can
still be checked locally and for the latter we show that it is actually the most
general local redundancy property. Furthermore, we relate these new notions to
existing clause redundancy properties and give a detailed complexity analysis.

Our paper is structured as follows. After introducing the necessary prelimi-
naries in Section 2, we present some observations on blocked clauses in Section 3.
In Section 4, we introduce the notion of semantic blocking and show that it is the
most general local redundancy property. After this, the syntax-based notions of
set-blocking and super-blocking are introduced in Section 5, where we also relate
the different redundancy properties to each other and show that super-blocking
coincides with semantic blocking. In Section 6, we give a detailed complexity
analysis and in Section 7, we outline the relationship to existing redundancy
properties before concluding with an outlook to future work in Section 8.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF) which
are defined as follows. A literal is either a Boolean variable x (a positive literal)
or the negation ¬x of a variable x (a negative literal). For a literal l, we define
l̄ = ¬x if l = x and l̄ = x if l = ¬x. Accordingly, for a set L of literals, we define
L̄ = {l̄ | l ∈ L}. A clause is a disjunction of literals. A formula is a conjunction
of clauses. A clause can be seen as a set of literals and a formula as a set of
clauses. A tautology is a clause that contains both l and l̄ for some literal l. For a
literal, clause, or formula F , var(F ) denotes the variables in F . For convenience,
we treat var(F ) as a variable if F is a literal, and as a set of variables otherwise.

An assignment over a set V of variables is a function that assigns to every
variable in V either 1 or 0. If for an assignment τ and a formula F , the domain
of τ coincides with var(F ), then τ is said to be an assignment of F . Given an
assignment τ and a literal l, τl is the assignment obtained from τ by interchanging
(“flipping”) the truth value of l, i.e., by defining τl(v) = 1 − τ(v) if v = var(l)
and τl(v) = τ(v) otherwise.



A literal l is satisfied by an assignment τ if l is positive and τ(var(l)) = 1
or if it is negative and τ(var(l)) = 0. A clause is satisfied by an assignment τ
if it contains a literal that is satisfied by τ . Finally, a formula is satisfied by an
assignment τ if all of its clauses are satisfied by τ . A formula is satisfiable if there
exists an assignment that satisfies it. Two formulas are logically equivalent if they
are satisfied by the same assignments. Two formulas F and F ′ are satisfiability
equivalent if F is satisfiable if and only if F ′ is satisfiable.

Given two clauses C1 and C2 with literal l ∈ C1 and l̄ ∈ C2, the clause
C = (C1 \ {l}) ∪ (C2 \ {l̄}) is called the resolvent of C1 and C2 on l. Given a
formula F and a clause C, the resolution environment, envF (C), of C in F is
the set of all clauses in F that can be resolved with C:

envF (C) = {C ′ ∈ F | ∃l ∈ C ′ such that l̄ ∈ C}.

The variables in var(C) are referred to as local variables and the variables in
var(envF (C)) \ var(C) are the external variables, denoted by extF (C).

Next, we formally introduce the redundancy of clauses. Intuitively, a clause
C is redundant w.r.t. a formula F if neither its addition to F nor its removal
from F changes the satisfiability or unsatisfiability of F .

Definition 1. A clause C is redundant w.r.t. a formula F if F \ {C} and
F ∪ {C} are satisfiability equivalent. A redundancy property is a set of pairs
(F,C) where C is redundant w.r.t. F . Finally, for two redundancy properties P1

and P2, P1 is more general than P2 if P2 ⊆ P1. Accordingly, P1 is strictly more
general than P2 if P2 ⊂ P1.

As an example, consider the formula F = {(a ∨ b), (¬a ∨ ¬b)}. The clause
C = (¬a ∨ ¬b) is redundant w.r.t. F since F \ {C} and F ∪ {C} are satisfiabil-
ity equivalent (although they are not logically equivalent). Furthermore, the set
{(F,C) | F is a formula and C is a tautology} is a redundancy property since
for every formula F and every tautology C, F \ {C} is satisfiability equivalent
to F ∪ {C}.

Also note that C is not redundant w.r.t. F if and only if F \{C} is satisfiable
and F ∪ {C} is unsatisfiable. Redundancy properties as defined above yield not
only the basis for clause-elimination but also for clause-addition procedures [7].

3 Observations on Blocked Clauses

In the following, we recapitulate the notion of blocked clauses due to Heule et
al. [6] which we will refer to as literal-blocked clauses in the rest of the paper.
Motivated by the examples given in this section, we will generalize this notion
of blocking to more powerful redundancy properties.

Definition 2. Given a formula F , a clause C, and a literal l ∈ C, l blocks C
in F if for each clause C ′ ∈ F with l̄ ∈ C ′, C ∪ (C ′ \{l̄}) is a tautology. A clause
C is literal-blocked in F if there exists a literal that blocks C in F . By BC we
denote the set {(F,C) | C is literal-blocked in F}.



a ∨ bx ∨ b ∨ ¬a
¬b ∨ ¬x

¬b ∨ a

Fig. 1. The clause (a ∨ b) from Example 3 and its resolution environment.

Example 1. Consider the formula F = {(¬a ∨ c), (¬b ∨ ¬a)} and the clause
C = (a∨ b). The literal b blocks C in F since the only clause in F that contains
¬b is the clause C ′ = (¬b∨¬a), and C ∪ (C ′ \ {l̄}) = (a∨ b∨¬a) is a tautology.

Proposition 1. BC is a redundancy property.

Proposition 1 paraphrases results from [6] and actually follows from results in
this paper (cf. Proposition 6 and Corollary 9). Intuitively, if an assignment τ
satisfies F \ {C} but falsifies C which is blocked by literal l, then τl satisfies C.
The condition that l blocks C thereby guarantees that τl does not falsify any
other clauses in F . Hence, τl satisfies F ∪ {C} and thus F \ {C} and F ∪ {C}
are satisfiability equivalent. Next, we illustrate how a satisfying assignment of
F ∪ {C} can be obtained from one of F \ {C} [6]. This approach is used when
blocked clauses have been removed from a formula during pre- or inprocessing.

Example 2. Consider again the formula F = {(¬a∨c), (¬b∨¬a)} and the clause
C = (a∨ b) from Example 1. We already know that b blocks C in F . So let τ be
the assignment that falsifies the variables a, b, and c. Clearly, τ satisfies F but
falsifies C. Now, the assignment τb, obtained from τ by flipping the truth value
of b, satisfies not only C but also all clauses of F : The only clause that could
have been falsified by flipping the truth value of b is (¬b ∨ ¬a), but since ¬a is
still satisfied by τb we get that τb satisfies F ∪ {C}. ut
Literal-blocked clauses generalize many other redundancy properties like pure
literal or tautology [6]. One of their particularly important properties is that for
testing if some clause C is literal-blocked in a formula F it suffices to consider
only those clauses of F that can be resolved with C, i.e., the clauses in the reso-
lution environment, envF (C), of C. This raises the question whether there exist
redundant clauses which can be identified by considering only their resolution
environment, but which are not literal-blocked. This is indeed the case:

Example 3. Let C = (a ∨ b) and F an arbitrary formula with the resolution
environment envF (C) = {(x ∨ b ∨ ¬a), (¬b ∨ ¬x), (¬b ∨ a)} (see Fig. 1). The
clause C is not literal-blocked in F but redundant: Suppose that there exists an
assignment τ that satisfies F but falsifies C. Then, τ must satisfy either x or ¬x.
If τ(x) = 1, then C can be satisfied by flipping the truth value of a, resulting in
assignment τ ′ = τa. Thereby, τ ′(x) = 1 guarantees that the clause (x ∨ b ∨ ¬a)
stays satisfied. In contrast, if τ(x) = 0, we can satisfy C by the assignment τ ′′,
obtained from τ by flipping the truth values of both a and b: Then, τ ′′(b) = 1
guarantees that (x ∨ b ∨ ¬a) stays satisfied whereas τ ′′(x) = 0 and τ ′′(a) = 1
guarantee that both (¬b∨¬x) and (¬b∨a) stay satisfied. Since flipping the truth
values of literals in C does not affect the truth of clauses outside the resolution
environment, envF (C), we obtain in both cases a satisfying assignment of F . ut



4 A Semantic Notion of Blocking

In the examples of the preceding section, when arguing that a clause C is redun-
dant w.r.t. some formula F , we showed that every assignment τ that satisfies
F \{C}, but falsifies C, can be turned into a satisfying assignment τ ′ of F ∪{C}
by flipping the truth values of certain literals in C. Since this flipping only affects
the truth of clauses in the resolution environment, envF (C), of C, it suffices to
make sure that τ ′ satisfies envF (C) in order to guarantee that it satisfies F∪{C}.
This naturally leads to the following semantic notion of blocking:

Definition 3. A clause C is semantically blocked in a formula F if, for every
satisfying assignment τ of envF (C), there exists a satisfying assignment τ ′ of
envF (C) ∪ {C} such that τ(v) = τ ′(v) for all v /∈ var(C). By SEMBC we denote
the set {(F,C) | C is semantically blocked in F}.

Note that clause C in Example 3 is semantically blocked in F . Note also that if
the resolution environment, envF (C), of a clause C is not satisfiable, then C is
semantically blocked.

Theorem 2. SEMBC is a redundancy property.

Proof. Let F be a formula and C a clause that is semantically blocked in F .
We show that F ∪ {C} is satisfiable if F \ {C} is satisfiable. Suppose that there
exists a satisfying assignment τ of F \ {C}. We proceed by a case distinction.

Case 1: C contains a literal l with var(l) /∈ var(F \ {C}). Then, τ can be easily
extended to a satisfying assignment τ ′ of F ∪ {C} that satisfies l.

Case 2: var(C) ⊆ var(F \ {C}). In this case, τ is an assignment of F ∪ {C}.
Suppose that τ falsifies C. It follows that C is not a tautology and so it does not
contain a literal l such that l̄ ∈ C, hence C /∈ envF (C). Thus, envF (C) ⊆ F \{C}
and so τ satisfies envF (C). Since C is semantically blocked in F , there exists
a satisfying assignment τ ′ of envF (C) ∪ {C} such that τ(v) = τ ′(v) for all
v /∈ var(C). Now, since τ ′(v) differs from τ only on variables in var(C), the only
clauses in F that could possibly be falsified by τ ′ are those with a literal l̄ such
that l ∈ C. But those are exactly the clauses in envF (C), so τ ′ satisfies F ∪{C}.

Hence, C is redundant w.r.t. F and thus SEMBC is a redundancy property. ut

If a clause C is redundant w.r.t. some formula F and this redundancy can be
identified by considering only its resolution environment in F , then we expect
C to be redundant w.r.t. every formula F ′ in which C has the same resolution
environment as in F . This leads us to the notion of local redundancy properties.

Definition 4. A redundancy property P is local if, for any two formulas F, F ′

and every clause C with envF (C) = envF ′(C), either {(F,C), (F ′, C)} ⊆ P or
{(F,C), (F ′, C)} ∩ P = ∅.

Theorem 3. SEMBC is a local redundancy property.



Preparatory for showing that SEMBC is actually the most general local redun-
dancy property (cf. Theorem 5 below), we first prove the following lemma.

Lemma 4. Let F be a formula and C a clause that is not semantically blocked
in F . Then, there exists a formula F ′ with envF ′(C) = envF (C) such that C is
not redundant w.r.t. F ′.

Proof. Let F be a formula and C a clause that is not semantically blocked in
F , i.e., there exists a satisfying assignment τ of envF (C) but there does not
exist a satisfying assignment τ ′ of envF (C) ∪ {C} such that τ(v) = τ ′(v) for all
v /∈ var(C). We define the set T of (unit) clauses as follows:

T = {(v) | v /∈ var(C), τ(v) = 1} ∪ {(¬v) | v /∈ var(C), τ(v) = 0}.

We furthermore define F ′ = envF (C)∪{C}∪T . Clearly, since C can be falsified
and since the clauses in T contain only literals with variables that do not occur
in C, we get that neither C nor any clause of T contains a literal l̄ with l ∈ C.
We thus have that envF ′(C) = envF (C).

Now observe the following: The assignment τ satisfies envF (C) and, clearly,
also T , hence F ′\{C} is satisfiable. Furthermore, by the construction of T , every
assignment that satisfies F ′ must agree with τ on all variables v /∈ var(C). Now,
since there does not exist a satisfying assignment τ ′ of envF (C)∪{C} such that
τ(v) = τ ′(v) for all v /∈ var(C), it follows that F ′ ∪ {C} = F ′ is unsatisfiable.
Therefore, F ′ \ {C} and F ′ ∪ {C} are not satisfiability equivalent and thus C is
not redundant w.r.t. F ′. ut

Theorem 5. SEMBC is the most general local redundancy property.

Proof. Suppose there exists a local redundancy property P that is strictly more
general than SEMBC. Then, there exists some pair (F,C) such that (F,C) ∈ P
but (F,C) /∈ SEMBC. Now, since (F,C) /∈ SEMBC it follows by Lemma 4 that
there exists a formula F ′ with envF ′(C) = envF (C) such that C is not redun-
dant w.r.t. F ′. But since P is local and envF ′(C) = envF (C), it follows that
(F ′, C) ∈ P, hence P is not a redundancy property, a contradiction. ut

5 Super-Blocked Clauses

In the following, we introduce syntax-based notions of blocking which strictly
generalize the original notion of literal-blocking as given in Definition 2. We will
first introduce the notion of set-blocking which is already a strict generalization
of literal-blocking. This notion will then be further generalized to the so-called
notion of super-blocking which, as we will prove, coincides with the notion of
semantic blocking given in Definition 3.

Definition 5. Let F be a formula and C a clause. A non-empty set L ⊆ C
blocks C in F if, for each clause C ′ ∈ F with C ′ ∩ L̄ 6= ∅, (C \ L) ∪ L̄ ∪ C ′ is
a tautology. We say that a clause is set-blocked in F if there exists a set that
blocks it. We write SETBC to refer to {(F,C) | C is set-blocked in F}.



Example 4. Let C = (a∨ b) and F = {(¬a∨ b), (¬b∨a)}. Then, C is set-blocked
by L = {a, b} but not literal-blocked in F . ut

Given an assignment τ that satisfies F \ {C} but falsifies C, the existence of
a blocking set L guarantees that a satisfying assignment τ ′ of F ∪ {C} can
be obtained from τ by flipping the truth values of the literals in L. Since
(C \ L) ∪ L̄ ∪ C ′ is a tautology for every C ′ in the resolution environment of
C, it holds that (i) C ′ itself is a tautology and thus satisfied by τ ′, or (ii) C ′

contains a literal of L which is satisfied by τ ′ since its truth value is flipped, or
(iii) C ′ contains a literal l which is satisfied since l̄ ∈ C is falsified by τ and the
truth value of l is not flipped. Hence, τ ′ satisfies F ∪ {C}.

Proposition 6. Set-blocking is strictly more general than literal-blocking, i.e.,
it holds that BC ⊂ SETBC.

Proof. Example 4 shows that BC 6= SETBC. It remains to show that BC ⊆ SETBC.
Let F be a formula and C a literal-blocked clause in F . We distinguish two cases:

Case 1: C is a tautology. Then, l, l̄ ∈ C for some literal l. Let L = {l, l̄}. It
follows that (C \ L) ∪ L̄ ∪ C ′ is a tautology for every C ′ with C ′ ∩ L̄ 6= ∅.
Case 2: C is not a tautology. Since C is literal-blocked, there exists some literal
l ∈ C such that for every clause C ′ ∈ F with l̄ ∈ C ′, C ∪ (C ′ \{l̄}) is a tautology.
Let L = {l} and let C ′ ∈ F with C ′∩L̄ 6= ∅. Then, as C ′ contains l̄, C∪(C ′\{l̄})
is a tautology. Since C is not a tautology, C ′ contains some literal l′ 6= l̄ such that
l̄′ ∈ C∪(C ′\{l̄}). Now, since l′ 6= l̄ we have that l̄′ 6= l and thus l̄′ ∈ (C\{l})∪C ′.
But then, (C \ L) ∪ L̄ ∪ C ′ is a tautology.

Thus, C is set-blocked in F and therefore BC ⊆ SETBC. ut

We already argued slightly informally why set-blocked clauses are redundant.
However, the fact that SETBC is a redundancy property follows directly from the
properties of super-blocked clauses, which we introduce next. In the following, for
a formula F and an assignment τ , we denote by F |τ the set of clauses obtained
from F by removing all clauses that are satisfied by τ . Recall that the external
variables, extF (C), are those that are contained in envF (C) but not in C.

Definition 6. A clause C is super-blocked in a formula F if, for every assign-
ment τ over the external variables, extF (C), C is set-blocked in F |τ . We write
SUPBC for the set {(F,C) | C is super-blocked in F}.

For instance, the clause C in Example 3 is not set-blocked but super-blocked in
F since it is set-blocked in F |τ and F |τ ′ for τ(x) = 1 and τ ′(x) = 0. Again,
the idea is that from an assignment τ that satisfies F \ {C} but falsifies C, a
satisfying assignment τ ′ of F ∪{C} can be obtained by flipping the truth values
of certain literals of C. However, for making sure that the flipping does not falsify
any clauses C ′ in the resolution environment of C, also the truth values of literals
l ∈ C ′ with var(l) ∈ extF (C) are considered. This is in contrast to set-blocking,
where only the truth values of literals whose variables are contained in var(C)
are considered. Finally, note that if a clause is set-blocked in F , then it is also
set-blocked in every F ′ ⊆ F and thus in every F |τ . Hence we get:



Proposition 7. Super-blocking is strictly more general than set-blocking, i.e.,
it holds that SETBC ⊂ SUPBC.

Theorem 8. A clause is super-blocked in a formula F if and only if it is se-
mantically blocked in F , i.e., it holds that SUPBC = SEMBC.

Proof. For the “only if” direction, let F be a formula, C a clause that is super-
blocked in F , and τ a satisfying assignment of envF (C). If τ satisfies C, or C
contains a literal l with var(l) /∈ var(F ) (implying that τ can be straightfor-
wardly extended to a satisfying assignment of C), then it trivially follows that
C is semantically blocked in F . Assume thus that var(C) ⊆ var(F ) and that
τ does not satisfy C. Furthermore, let τE be obtained from τ by restricting it
to the external variables extF (C). Since C is super-blocked in F , there exists a
non-empty set L ⊆ C that blocks C in F |τE . Consider the following assignment:

τ ′(v) =


0 if ¬v ∈ L,
1 if v ∈ L,
τ(v) otherwise.

Since τ falsifies C there is no literal l with l, l̄ ∈ L, hence τ ′ is well-defined.
Clearly, τ ′ satisfies C and τ ′(v) = τ(v) for all v /∈ var(C). It remains to show
that τ ′ satisfies envF (C). Since τ ′ differs from τ only on the truth values of
variables in var(L), τ ′ can only falsify clauses containing a literal l̄ with l ∈ L.
Let C ′ be such a clause. We proceed by a case distinction.

Case 1: C ′ contains an external literal l (i.e., var(l) ∈ extF (C)) that is satisfied
by τ . Then, since var(l) /∈ var(C) and thus l /∈ L, it follows that τ ′ agrees with
τ on the truth value of l and thus l is satisfied by τ ′.

Case 2: C ′ does not contain an external literal that is satisfied by τ . In this
case, C ′ is contained in F |τE and thus, since L set-blocks C in F |τE , we have
that (C \L)∪ L̄∪C ′ is a tautology. If C ′ is a tautology, then it is easily satisfied
by τ ′, so assume that it is not a tautology. Clearly, since C is not a tautology,
we have that (C \L)∪ L̄ is not a tautology, hence there are two literals l, l̄ such
that l ∈ C ′ and l̄ is in C \ L or in L̄. If l̄ ∈ C \ L, then τ ′ agrees with τ on l̄,
hence l̄ is falsified by τ ′ and thus l is satisfied by τ ′. In contrast, if l̄ ∈ L̄, then
l ∈ L and thus l is satisfied by τ ′. In both cases τ ′ satisfies l and thus C ′.

For the “if” direction, let F be a formula and C a clause that is not super-
blocked in F , i.e., there exists an assignment τE over the external variables,
extF (C), such that C is not set-blocked in F |τE . Then, let

τ(v) =


1 if ¬v ∈ C,
0 if v ∈ C,
τE(v) otherwise.

Clearly, τ is well-defined since C cannot be a tautology, for otherwise it would
be set-blocked in F |τE . Furthermore, τ falsifies C and since (by definition) every
clause C ′ ∈ envF (C) contains a literal l̄ such that l ∈ C it satisfies envF (C).



Now let τ ′ be a satisfying assignment of C such that τ ′(v) = τ(v) for all
v /∈ var(C). As τ ′ satisfies C, it is obtained from τ by flipping the truth values
of some literals L ⊆ C. We show that τ ′ does not satisfy envF (C). Clearly, τ ′

agrees with τE over the external variables extF (C) and since C is not set-blocked
in F |τE , there exists a clause C ′ ∈ F |τE with C ′∩L̄ 6= ∅ such that (C\L)∪L̄∪C ′

is not a tautology and neither τE nor τ ′ satisfy any external literal in C ′.

Let l ∈ C ′ be a (local) literal with var(l) ∈ var(C). Since (C \L)∪ L̄∪C ′ is
not a tautology it follows that l̄ /∈ C \L and l̄ /∈ L̄. Since var(l) ∈ var(C) we get
that l ∈ C \L or l ∈ L̄. In both cases, l is not satisfied by τ ′. Thus, no literal in
C ′ is satisfied by τ ′ and consequently τ ′ does not satisfy C ′ ∈ envF (C), which
then allows to conclude that C is not semantically blocked in F . ut

Corollary 9. SETBC is a (local) redundancy property.

6 Complexity Analysis

In this section, we analyze the complexity of testing whether a clause is set-
blocked or super-blocked. We further consider the complexity of testing restricted
variants of set-blocking and super-blocking which gives rise to a whole family of
blocking notions. Note that all complexity results are w.r.t. the size of a clause
and its resolution environment.

Definition 7. The set-blocking problem is the following decision problem: Given
a pair (F,C), where F is a set of clauses and C a clause such that every C ′ ∈ F
contains a literal l̄ with l ∈ C, is C set-blocked in F?

Theorem 10. The set-blocking problem is NP-complete.

Proof. We first show NP-membership followed by NP-hardness.

NP-membership: For a non-empty set L ⊆ C, it can be checked in polynomial
time whether (C \ L) ∪ L̄ ∪ C ′ is a tautology for every C ′ with C ′ ∩ L̄ 6= ∅. The
following is thus an NP-procedure: Guess a non-empty set L ⊆ C and check if
it blocks C in F .

NP-hardness (proof sketch): We give a reduction from SAT by defining the
following reduction function on input formula F which is w.l.o.g. in CNF:

f(F ) = (F ′, C), with C = (u ∨ x1 ∨ x′1 ∨ · · · ∨ xn ∨ x′n),

where var(F ) = {x1, . . . , xn} and u, x′1, . . . , x
′
n are new variables that do not

occur in F . Furthermore, F ′ is obtained from F by

– replacing every clause D ∈ F by a clause t(D) obtained from D by adding
¬u and replacing every negative literal ¬xi by the positive literal x′i, and

– adding the clauses (¬xi ∨ ¬x′i), (¬xi ∨ u), (¬x′i ∨ u) for every xi ∈ var(F ).



The intuition behind the construction of F ′ and C is as follows. By including u
in C and adding ¬u to every t(D) with D ∈ F , we guarantee that all clauses
in F ′ contain a literal l with l̄ ∈ C. This makes (F ′, C) a valid instance of the
set-blocking problem. The main idea, however, is, that blocking-sets L of C in
F ′ correspond to satisfying assignments τ of F .

An assignment τ , obtained from a blocking set L by defining τ(xi) = 1 if
xi ∈ L and τ(xi) = 0 otherwise, satisfies F because of the following:

1. Since all C ′ = t(D) with D ∈ F , as well as C, contain—apart from ¬u—only
positive literals, (C \ L) ∪ L̄ ∪ C ′ is only a tautology if L contains a literal
of C ′. Now, the clauses (¬xi ∨ u), (¬x′i ∨ u) force u to be contained in L and
thus L must contain a literal l 6= ¬u of every t(D) with D ∈ F .

2. The reason why negative literals ¬xi are replaced by positive literals x′i is as
follows: If C were of the form (u∨x1∨¬x1∨· · ·∨xn∨¬xn), it would be trivially
blocked by every set L containing two complementary literals xi,¬xi. Hence,
satisfying assignments would not correspond to blocking sets.

3. The clauses (¬xi ∨ ¬x′i) guarantee that xi and x′i cannot both be contained
in L. Since L contains a literal of every t(D), it is thus guaranteed that τ
satisfies every D ∈ F : If L contains a positive literal xi ∈ t(D), then xi ∈ D
is satisfied by τ . If L contains a negative literal x′i ∈ t(D), then xi /∈ L, hence
τ(xi) = 0 and thus ¬xi ∈ D is satisfied by τ .

Similarly, one can show that every set L, obtained from a satisfying assignment τ
of F by defining L = {u}∪{xi | τ(xi) = 1}∪{x′i | τ(xi) = 0}, blocks C in F ′. ut

We next analyze the complexity of testing whether a clause is super-blocked. To
do so, we define the following problem:

Definition 8. The super-blocking problem is the following decision problem:
Given a pair (F,C), where F is a set of clauses and C a clause such that every
C ′ ∈ F contains a literal l̄ with l ∈ C, is C super-blocked in F?

Theorem 11. The super-blocking problem is ΠP
2 -complete.

Proof. Again, we first show ΠP
2 -membership followed by ΠP

2 -hardness.

ΠP
2 -membership: The following is a ΣP

2 -procedure for testing whether C is not
super-blocked in F : Guess an assignment τ over the external variables, extF (C),
and ask an NP-oracle whether C is set-blocked in F |τ . If the oracle answers no,
then return yes, otherwise return no.

ΠP
2 -hardness (proof sketch): We give a reduction from ∀∃-SAT to the super-

blocking problem. Let φ = ∀X∃Y F be an instance of ∀∃-SAT and assume
w.l.o.g. that F is in CNF. We define the reduction function

f(φ) = (F ′, C), with C = (u ∨ y1 ∨ y′1 ∨ · · · ∨ yn ∨ y′n),

where Y = {y1, . . . , yn} and u, y′1, . . . , y
′
n are new variables not occurring in φ.

Furthermore, F ′ is obtained from F by



– replacing every clause D ∈ F by a clause t(D) which is obtained from D by
adding ¬u and replacing every negative literal ¬yi by the positive literal y′i
for yi ∈ Y ; and by

– adding the clauses (¬yi ∨ ¬y′i), (¬yi ∨ u), (¬y′i ∨ u) for every yi ∈ Y .

As super-blocking coincides with semantic blocking, we show that φ is satisfiable
if and only if C is semantically blocked in F ′.

The reduction is similar to the one used for proving Theorem 10. Here, how-
ever, only the existentially quantified variables of φ are encoded into C, hence
all xi ∈ X are external variables.

For the “only if” direction, we assume that φ is satisfiable and that we
are given some arbitrary satisfying assignment τ of F ′. By restricting τ to the
variables in X we can then obtain an assignment σX over the variables in X.
Since φ is satisfiable, there exists an assignment σY over the variables in Y
such that σX ∪ σY satisfies F . From this we can in turn obtain a satisfying
assignment τ ′ of F ′ ∪ {C} by defining τ ′(xi) = σX for xi ∈ X, τ ′(yi) = σY (yi)
and τ ′(y′i) = 1− σY (yi) for yi ∈ Y , and finally τ ′(u) = 1. Since τ ′ differs from τ
only on variables in var(C), C is semantically blocked in F ′.

Likewise, for showing the “if” direction, we assume that C is semantically
blocked in F ′ and that we are given some arbitrary assignment σX over the
variables in X. The crucial observation is then that for σX we can construct
an assignment τ that satisfies F ′, by defining τ(xi) = σX(xi) for all xi ∈ X
and τ(v) = 0 for all v ∈ C. The assignment τ satisfies F ′ since every C ′ ∈ F ′

contains a literal l̄ with l ∈ C. Then, since C is semantically blocked in F ′, there
exists a satisfying assignment τ ′ of F ′ ∪ {C} that corresponds with σX over X.
Since (¬yi ∨ u) and (¬y′i ∨ u) are in F ′ for every yi ∈ Y , it is also guaranteed
that u must be satisfied by τ ′ and thus τ ′ satisfies a literal l 6= ¬u in every t(D)
with D ∈ F . Finally, an assignment σY over the variables in Y can be obtained
by defining σY (yi) = 1 if and only if τ ′(yi) = 1. Then, σX ∪ σY is a satisfying
assignment of F . ut

We have already seen that the set-blocking problem is NP-complete in the general
case. However, a restricted variant of set-blocking is obtained by only allowing
blocking sets whose size is bounded by a constant. Then, the resulting problem
of testing whether a clause C is blocked by some non-empty set L ⊆ C, whose
size is at most k for k ∈ N+, turns out to be polynomial: For a finite set C
and k ∈ N+, there are only polynomially many non-empty subsets L ⊆ C with
|L| ≤ k. To see this, observe (by basic combinatorics) that the exact number of
such subsets is given by the following sum which reduces to a polynomial with
degree at most k:

k∑
i=1

(
|C|
i

)
.

Hence, the number of non-empty subsets L ⊆ C with |L| ≤ k is polynomial in
the size of C. This line of argumentation is actually very common. For the sake
of completeness, however, we provide the following example:



Example 5. Let |C| = n and k = 3 (with k ≤ n). Then, the number of non-empty

subsets L ⊆ C with |L| ≤ k is given by the polynomial
∑3

i=1

(
n
i

)
= 1

6n
3 + 5

6n of
degree k = 3. ut

Now, as there are only polynomially many potential blocking sets and since it
can be checked in polynomial time whether a given set L ⊆ C blocks C in F
(as argued in the proof of Theorem 10), it can be checked in polynomial time
whether for some clause C there exists a blocking set L of size at most k.

Since the definition of super-blocking is based on the definition of set-blocking,
one can also consider the complexity of restricted versions of super-blocking
where the size of the according blocking sets is bounded by a constant. We thus
define an infinite number of decision problems (one for every k ∈ N+) as follows:

Definition 9. For any k ∈ N+, the k-super-blocking problem is the following
decision problem: Given a pair (F,C), where F is a set of clauses and C a clause
such that every C ′ ∈ F contains a literal l̄ with l ∈ C, does it hold that, for every
assignment τ over the external variables extF (C), there exists a non-empty set
L ⊆ C with |L| ≤ k that blocks C in F |τ?

Theorem 12. The k-super-blocking problem is in co-NP for all k ∈ N+.

Proof. Consider the statement that has to be tested for the complement of the
k-super-blocking problem:

There exists an assignment τ over the external variables extF (C) such
that no non-empty subset of C with |C| ≤ k blocks C in F |τ .

Since it can be checked in polynomial time whether a given set L ⊆ C blocks C
in F |τ , the following is an NP-procedure:

Guess an assignment τ over the external variables extF (C) and check
for every non-empty subset of C (with |C| ≤ k) whether it blocks C in
F |τ . If there is one, return no, otherwise return yes.

Hence, for every integer k ∈ N+, the k-super-blocking problem is in co-NP. ut

Hardness for the complexity class co-NP can be shown already for k = 1.

Theorem 13. The 1-super-blocking problem is co-NP-hard.

Proof. By a reduction from the unsatisfiability problem of propositional logic.
Let F = {C1, . . . , Cn} be a formula in CNF and define the reduction function

f(F ) = (F ′, C), with C = (u1 ∨ · · · ∨ un),

where u1, . . . , un are new variables that do not occur in F , and F ′ =
⋃n

i=1 Fi

with Fi = {(¬ui ∨ l̄) | l ∈ Ci}. Clearly, (F ′, C) is a valid instance of the 1-super-
blocking problem and var(F ) = extF ′(C). We show that F is unsatisfiable if and
only if, for every assignment τ over extF ′(C), there exists a ui ∈ C such that
{ui} set-blocks C in F ′|τ .



For the “only if” direction, assume that F is unsatisfiable and let τ be an
assignment over extF ′(C). Since var(F ) = extF ′(C) it follows that there exists
a clause Ci in F that is falsified by τ . But then, since every clause in Fi contains
a literal l̄ with l ∈ Ci, it follows that Fi is satisfied by τ . Hence, Fi ∩ F ′|τ = ∅
and thus, since ¬ui only occurs in Fi, {ui} trivially set-blocks C in F ′.

For the “if” direction, assume that for every τ over extF ′(C), there exists a
ui ∈ C such that {ui} set-blocks C in F ′|τ . Since var(F ) = extF ′(C) it follows
that for every assignment τ of F and every clause (¬ui∨ l̄) ∈ F ′|τ (with l ∈ Ci),
T = (C \ {ui}) ∪ {¬ui} ∪ {¬ui, l̄} is a tautology. But since T cannot contain
complementary literals it must be the case that (¬ui ∨ l̄) /∈ F ′|τ which implies
that every l ∈ Ci is falsified by τ . It follows that F is unsatisfiable. ut

Corollary 14. The k-super-blocking problem is co-NP-complete for all k ∈ N+.

The notions of set-blocking and super-blocking, together with the correspond-
ing restrictions discussed in this section, give rise to a whole family of blocking
notions which differ in both generality and complexity. We conclude the follow-
ing: (i) Considering the assignments over external variables (as is the case for
super-blocking) leads to co-NP-hardness. (ii) If blocking sets of arbitrary size
are considered, the (sub-)problem of checking whether there exists a blocking
set is NP-hard. (iii) If the size of blocking sets is bounded by a constant k, the
(sub-)problem of testing whether there exists a blocking set turns out to be
polynomial. (iv) The problem of testing whether a clause is super-blocked in the
most general sense, where the size of blocking sets is not bounded by a constant,
is ΠP

2 -complete. Hence, we can summarize the following complexity results:

|L| is unrestricted |L| ≤ k for k ∈ N+

Super-blocking ΠP
2 -complete co-NP-complete

Set-blocking NP-complete P

Note that the cardinality |L| of blocking sets is of course bounded by the length
of the clauses, thus we can restrict |L| ≤ |C|. This is particularly interesting for
formula instances with (uniform) constant or maximal clause length.

Finally, we conclude the discussion by returning to the starting point of this
paper: literal-blocked clauses. Obviously, we can write the definition for set-
blocking with |L| ≤ 1 as follows: A set {l} ⊆ C blocks a clause C in a formula F
if for each clause C ′ ∈ F with l̄ ∈ C ′, (C \{l})∪C ′ is a tautology. (Note that we
write (C \{l})∪C ′ instead of (C \{l})∪{l̄}∪C ′ since l̄ is anyhow required to be
contained in C ′.) This is very similar to the original definition of literal-blocked
clauses which requires C ∪ (C ′ \ {l}) to be a tautology.

7 Comparison with Other Redundancy Properties

In the following, we consider several local and non-local redundancy properties
as presented in [7] and relate them to the previously discussed local redundancy
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Fig. 2. Hierarchy of redundancy properties [7] extended with novel local redundancies.
For redundancy properties P1 and P2, an arrow from P1 to P2 denotes that P2 ⊆ P1.

properties. From the three basic redundancy properties tautology (T), subsump-
tion (S), and literal-blocked clauses (BC), extended redundancy properties are
derived as follows.

Given a formula F and a clause C, ALA(F,C) is the unique clause obtained
from C by repeating asymmetric literal addition, as defined in the following, until
a fixed point is reached: If l1, . . . , lk ∈ C and there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈
F \{C} for some literal l, let C := C∪{l̄}. The special case where k = 1 is called
hidden literal addition (HLA). Due to space limitations, we will not consider HLA
separately. Given a formula F and a clause C, (F,C) ∈ AT (resp., AS or ABC)
if (F,ALA(F,C)) ∈ T (resp., S or BC).

Finally, we introduce the redundancy properties prefixed with R [7]. Given a
formula F and a clause C, (F,C) ∈ RP if either (i) (F,C) ∈ P or (ii) there is a
literal l in C such that for each clause C ′ ∈ F with l̄ ∈ C ′, (F,C ∪C ′ \ {l̄}) ∈ P.
Examples are RT, RS, and RAT. Especially RAT is extremely powerful, because it
captures all known SAT solving techniques including preprocessing, inprocessing,
and clause learning [7, 15].

These notions of redundancy lead to the hierarchy depicted in Figure 2 which
we extend with the previously introduced set-blocked and super-blocked clauses.
We discuss the incomparability with redundancy properties based on T in detail;
incomparability with subsumption-based properties works analogously.

Proposition 15. AT 6⊆ SETBC and SETBC 6⊆ AT.

Proof. Let C = (a ∨ b ∨ c) and F = {(¬a ∨ x), (¬b ∨ x), (¬c ∨ x), (a ∨ b)}. Since
¬b ∈ ALA(F,C), it follows that (F,C) ∈ AT. Now, assume that C is set-blocked
by some set L ⊆ C, i.e., for every C ′ with C ′ ∩ L̄ 6= ∅, (C \ L) ∪ L̄ ∪ C ′ is a
tautology. Since L ⊆ C is non-empty, (¬v ∨ x) ∩ L̄ 6= ∅ for at least one (¬v ∨ x)
with v ∈ {a, b, c}. Let therefore C ′ be such a (¬v ∨ x). Then, v 6∈ (C \ L) and
v 6∈ L̄. Hence, (C \ L) ∪ L̄ ∪ C ′ is not a tautology and thus C is not set-blocked
by L, a contradiction. We conclude that (F,C) /∈ SETBC.

Finally, let F = ∅ and C = (a). Then, (F,C) ∈ SETBC, but (F,C) 6∈ AT. ut

Proposition 16. AT 6⊆ SUPBC and SUPBC 6⊆ AT.

Proof. Consider again the clause C = (a∨ b∨ c) and the formula F = {(¬a ∨ x),
(¬b ∨ x), (¬c ∨ x), (a ∨ b)} from the proof of Proposition 15, and observe that



extF (C) = {x}. Here, for the assignment τ that falsifies the external variable
x, F |τ = F and since C is not set-blocked in F (as shown in the proof of
Proposition 15), it is not set-blocked in F |τ , hence (F,C) /∈ SUPBC.

To see that SUPBC 6⊆ AT, let F = ∅ and C = (a). Then, since (F,C) ∈ SETBC

and SETBC ⊂ SUPBC, we get that (F,C) ∈ SUPBC but (F,C) /∈ AT. ut

From Proposition 16 together with the fact that AT ⊂ RAT we get:

Corollary 17. RAT 6⊆ SUPBC.

Proposition 18. SETBC 6⊆ RAT.

Proof. Consider the clause C = (a ∨ b) and the formula F = {(a ∨ b), (¬a ∨ b),
(a ∨ ¬b)}. Clearly, C is set-blocked by L = {a, b} in F and thus (F,C) ∈ SETBC.

Now, for the literal a there is only the clause C ′ = (¬a∨ b) that contains ¬a
and C∪C ′ \{¬a} = (a∨b). Furthermore, for the literal b there is only the clause
C ′′ = (a∨¬b) that contains ¬b and here again we get that C∪C ′′\{¬b} = (a∨b).
Since ALA(F \ {C}, (a ∨ b)) = (a ∨ b) is not a tautology, (F,C) /∈ RAT. ut

Corollary 19. RAT is incomparable with SETBC and SUPBC.

8 Conclusion

Previous research and recent SAT competitions have clearly revealed the power
of solving techniques based on the redundancy property of literal-blocked clauses.
One reason for the success of this redundancy property is that it is local in
the sense that it can be efficiently checked by considering only the resolution
environment of a clause [8, 12, 14]. In this paper, we showed that there are even
more general local redundancy properties like set-blocked clauses (SETBC) and
super-blocked clauses (SUPBC). Local redundancy properties are particularly
appealing in the context of real-world verification, where problem encodings
into SAT often lead to very large formulas in which the resolution environments
of clauses are still small.

Our complexity analysis showed that checking the newly introduced redun-
dancy properties is computationally expensive in the worst case. This seemingly
limits their practical applicability at first glance. However, we presented bounded
variants that can be checked more efficiently and we expect them to considerably
improve the solving process when added to our SAT solvers. While the focus of
this paper lies on the theoretical investigation of local redundancy properties,
thereby contributing to gaining a deeper understanding of blocked clauses, a
practical evaluation is subject to future work.

Another direction for future work is lifting the new redundancy properties to
QSAT, the satisfiability problem of quantified Boolean formulas (QBF). There,
literal-blocked clauses have been shown to be even more effective than in SAT
solving [6, 16] and we expect that this also holds for quantified variants of SETBC

and SUPBC.
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