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Abstract

Life and function of eukaryotic cells are governed by metabolic and signaling
pathways. These pathways are constituted by a multitude of organic molecules.
Many of these systems exhibit highly nonlinear behavior, caused by different
combinations of feedback loops, feedforward loops et cetera. Possible behaviors
include bistability, hypersensitivity, robustness and complex dose-response-
curves. These circumstances increase the difficulty of designing drugs for e.g.
cancer treatments and predicting their effectiveness. In a recent study, D.G.
Miguez observed an inverted hysteresis loop when treating the AKT-pathway
with the small-molecule inhibitor ZSTK ([32]). The main objective of this
thesis was to build a biologically sound, mathematical model to understand
the observed behavior. Furthermore, we tried to reproduce the experiments
using a different method.
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Chapter 1

Introduction

“How can unstable molecules stably store information?” ([26])

The sentence above is taken from a research paper from John E. Lisman
from 1985 ([26]). Biologists observed processes that – once triggered – contin-
ued irreversibly, despite the short lifetime of the involved molecules and the
initial stimulus. Lisman proposed a simple mechanism (basically consisting
of a positive feedback loop) to explain how long-term memory of neuronal
cells might work. Instead of utilizing any permanent “inscriptions”, Lisman
claimed the “wiring” of the molecules to be responsible.

Since then, molecular biologists have identified many biomolecules and
their relationships and it is now commonly accepted that bistable signal-
ing pathways provide a mechanism for permanent change in a cell and for
irreversibility of processes (e.g. cell division, frog metamorphosis ([10])).

Today, cellular signaling pathways are also thought to play a key role
in many types of cancer ([27],[37],[38],[19],[15]). Therefore, also commercial
interest in signaling pathways arises from their importance when developing
drugs. Highly nonlinear signaling pathways are a potential source of failure
in drug treatment. Nonlinearities can cause phenomena such as bistability,
hypersensitivity, robustness, schedule-dependent activity and complex dose-
response-curves ([31]).

One of the most studied nonlinear signaling cascades is the AKT pathway,
a frequent mutational target in cancer ([3], [30]). These mutations result in
constitutive activation of the pathway, driving uncontrolled cell proliferation
and resistance to apoptosis. At the core of the pathway is the serine/threonine
kinase AKT, a signaling hub that phosphorylates many downstream effectors
involved in cell growth and survival, cell cycle regulation, stress resistance,
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apoptosis, metastasis and insulin signaling ([18]). The architecture of the
AKT pathway presents several main self-regulatory loops ([6]): A negative
feedback loop via mTOR and an autocatalytic loop via IRS1. AKT activation
can be measured by monitoring the translocation to the cytoplasm of its direct
target FoxO1a, a member of the Forkhead family of transcription factors
involved in cell cycle progression ([20]).

In a yet unpublished study ([32]), FoxO1a translocation is used to study
the influence of the nonlinear self-regulation of AKT in response to pathway
inhibition. The study found a peculiar dose-response relationship when
treating 786-O cells with the small-molecule inhibitor ZSTK. This thesis
is aimed at exploring whether the observed behavior can be explained as
resulting from the architecture of the pathway – the “wiring” of the molecules
– or if additional elements are necessary.

Chapter 2 is intended to give an overview of the biological background of
the studied system. The chapter introduces the concept of receptors, feedback
loops and pathways. It also discusses in more detail the workings and the
constituents of the AKT signaling pathway.

Chapter 3 provides the reader with an introduction to the required math-
ematical tools for studying cellular signaling pathways.

The Materials and Methods employed while working on this thesis are
documented in chapter 4. This includes the numerical methods and the
experimental procedures.

Chapter 5 presents the results of the work performed for the thesis. It is
split in two parts: Presentation of the mathematical model and its numerical
evaluation, and presentation of the immunofluorescence experiments.

In chapter 6, the results are interpreted and discussed. Also, an outlook
is given on how the project could be continued.

Finally, the appendix features the detailed lab protocols, a list of figures
and the bibliography.
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Chapter 2

Biological Background

2.1 Intracellular signal transduction

In the evolution of life as we know it today, communication between cells
is a prerequisite for the forming of multi-cellular organisms. However, a
prerequisite for cell-to-cell communication is the development of intracellular
mechanisms to interpret extra-cellular signals. These mechanisms already
evolved in unicellular organisms. In most cases, the reception of signals
depends on receptor proteins located on the cell surface. These receptor
proteins bind the signal molecule, which activates the receptor, triggering one
or multiple intracellular signaling pathways. Such a signaling pathway consists
of a number of molecules (again, mainly proteins, therefore intracellular
signaling proteins) that are subsequently activated. At the end of such a
signaling cascade, so called effector proteins then alter the cell behavior by
affecting gene regulation, ion channels, metabolic pathways or parts of the
cytoskeleton ([1]).

2.1.1 Receptors

Even though there are signal molecules that do bind to intracellular receptors,
most extracellular signal molecules bind to receptor proteins on the surface of
the target cells ([1] pg. 891). The majority of these receptor proteins belong
to one of three classes:

� Ion-channel-coupled receptors

� G-protein-coupled receptors

� Enzyme-coupled receptors
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Out of these three classes, the third type is the relevant type for the
presented work. These receptors transduce signals to the interior of a cell by
either including a catalytic domain themselves or by binding to an enzyme
within the cell. The majority of these enzymes are kinases, with Tyrosine
Kinases being the most numerous. Enzyme-coupled receptors that activate
(or form) tyrosine kinases are referred to as Receptor Tyrosine Kinases or
RTKs. The AKT-signaling pathway starts with the activation of an RTK.

After the extracellular signal molecule (the first messenger) has been
bound to its respective receptor, the signal is further relayed within the cell
via intracellular signaling molecules.

2.1.2 Intracellular signaling molecules

Intracellular signaling molecules are divided into small and large intracellular
signaling molecules. The small molecules are also referred to as second
messengers and they typically spread the signal by diffusing to other parts of
the cell. Important examples are cyclic AMP and Ca2+.

The large molecules are proteins and they typically relay the signal by
activating the next signaling protein or effector proteins ([1] pg. 894). In most
cases, this activation happens via the gain or loss of phosphate groups. A large
class of proteins switches between its on- and off-states by phosphorylation
via a protein kinase and de-phosphorylation via a protein phosphatase. The
activity of the involved kinases and phosphatases may itself be controlled by
other kinases and phosphatases. These would then form a signaling cascade
in which the original signal is relayed throughout the cell, amplified and
often branched to different signaling pathways. AKT is also known as protein
kinase B, indicating its function within the AKT-pathway.

To some signals, cells respond very smoothly while to other stimuli they
might react very abruptly (in a highly non-linear way). Such behavior may
be caused by e.g.

� Cooperativity: Some enzymes require the simultaneous binding of
multiple signaling molecules to be activated. (PKA requires 4 molecules
of cAMP, for example, see [1] pg. 900)

� Simultaneous inhibition: If one signaling molecule activates the enzyme
catalyzing a reaction and at the same time inhibits an enzyme catalyzing
the opposite reaction, the response will also be sharpened.
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� Feedback loops: When the output of a process regulates that same
process, we talk about a feedback loop. Feedback loops are capable of
creating true all-or-none responses. For this reason, they are of special
interest for this thesis and will therefore be discussed in more detail
below.

2.1.3 Feedback loops

Whenever the output of a process regulates that same process, we will
talk about a feedback loop. In negative feedback, the output inhibits its
own production whereas in positive feedback, the output stimulates its own
production ([1] pg. 901). Unfortunately, this nomenclature is not perfectly
universal. In some texts, negative feedback refers to any feedback that
influences inhibitors and in some texts, negative feedback refers to any feedback
that increases (subjectively) undesirable effects.

Sufficiently strong positive feedback loops can give rise to switch-like
behavior of a signaling pathway. This means, that the output of the process
remains at a high level even though the initial stimulus is removed. Switch-
like behavior is essential for stable cell decisions, such as cell division or cell
differentiation ([11]).

In cellular signaling, feedback loops are typically formed by a whole cascade
of signaling molecules that influence each other’s activity either positively or
negatively. With an even number of negative regulation, the overall feedback
loop is a positive feedback loop; the most often discussed example being
double-negative feedback (see e.g. [11]).

A more general review of feedback and how it can give rise to switch-like
behavior will be given in the Mathematics chapter (see 3). This chapter will
now introduce in more detail the AKT signaling pathway.

2.2 The AKT-pathway

As mentioned in the introduction (chap. 1), the PI3-Kinase-AKT-pathway
plays a central role in promoting survival and growth of many cell types. This
chapter is dedicated to provide more details on which molecules form the
pathway and how they interact.

AKT activation primarily promotes cell survival, proliferation and growth
([42]). These are the main consequences of AKT overexpression in cancer.
Other effects of AKT activation include angiogenesis and an increased cellular
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Figure 2.1: An overview of ten AKT substrates. AKT-mediated phosphory-
lation leads to activation (arrows) or inhibition (blocking arrows) of these
molecules, resulting in the effects shown.(Figure from [30]).

metabolism rate (increased glucose uptake) ([30]). Figure 2.1 depicts the
cellular targets of AKT responsible for the mentioned effects.

The AKT signaling cascade is a highly nonlinear pathway. Hyperactivation
leads to insulin resistance, uncontrolled cell proliferation and metastasis, as
well as enhanced resistance to drug treatment ([18]). AKT serves as a hub
for multiple cell decisions and is indirectly regulated by the balance between
the kinase PI3K and the phosphatase PTEN.

There are over 100 reported non-redundant AKT substrates ([30]), result-
ing in the various effects described above. We will here focus on the pathway
upstream of AKT, on the signaling cascade that activates AKT.

The pathway is affected by a negative regulatory loop employing the
mTOR-raptor complex. There are also several positive regulatory loops
acting on AKT (see [31] pg. 91).
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2.2.1 The main constituents

IGF-receptor and IRS1

The insulin-like growth factor 1 receptor (IGF-1 receptor) is a transmembrane
receptor that belongs to the class of tyrosine kinase receptors.

The Insulin Receptor Substrate 1 (IRS1) is the linking molecule between
exterior signal and intracellular signaling pathway. IRS1 contains a pleckstrin
homology domain (PH-domain) and a phosphotyrosine-binding domain (PTB-
domain) and is located at the intracellular leaf of the plasma membrane.
Activation of the cell-surface receptor recruits IRS1 to the membrane and
IRS1 subsequently promotes the recruitment and activation of PI3K ([4]).

PI3K and ZSTK

Phosphoinositide 3-kinase (PI3K) is a heterodimeric lipid kinase composed
of a regulatory (p85) and a catalytic (p110) sub-unit. A simple model for
activation by growth factors has been proposed ([14]): PI3K complexes are
recruited to the plasma membrane through the interaction between the SH2-
domains in their regulatory subunits and the phospho-tyrosine residues on the
receptor. There, the catalytic sub-unit of PI3K is stabilized and comes in close
proximity with phosphoinositides. PI3K phosphorylates phosphoinositides on
the D3 position of their inositol ring. This generates the second messengers
phosphatidylinositol-3,4-biphosphate (PI-3,4-P2) and phosphatidylinositol-
3,4,5-triphosphate (PIP3) from the respective substrates (PI-4-P and PI-4,5-
P2) ([14]).

In the AKT-pathway the relevant process is the PI3K-mediated conversion
of PIP2 to PIP3 ([42]). The PH-domain of AKT binds to PIP3 leading to
increased recruitment of AKT to the cell membrane (see figure 2.2).

ZSTK474 [2-(2-difluoromethylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-
triazine] is a s-triazine derivative that strongly inhibits the growth of tumor
cells ([44]). It is suggested that ZSTK474 binds to the ATP-binding site of
PI3K ([44]), thereby inhibiting the conversion of PIP2 to PIP3. ZSTK474
was used in the experiments for this thesis as a pathway inhibitor.

FoxO1 and Protein Kinase B: PKB/AKT

Protein kinase B is usually either abbreviated to PKB or the term AKT
is used. The existence of two names is due to its initial identification by
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Figure 2.2: AKT-activation through PI3K-mediated conversion of PIP2 to
PIP3. The p85-subunit of PI3K binds to IRS1 and the p110-subunit cat-
alyzes the conversion of the phosphoinositides. Additionally, some of the
cellular targets of both AKT and PI3K (dashed lines, as they are yet poorly
characterized) are shown. (Figure from [42]).
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three independent groups ([38]). Two groups named it after its homology to
protein kinases A and C, while one group derived a name from AKT being
the cellular homolog to retroviral oncogene “viral-akt”. The origin of this
term dates back to as far as 1928 and is merely a result of numbering mouse
cultures. AKT is a protein kinase that phosphorylates proteins at serine or
threonine amino-acid side chains. AKT is therefore a member of a family of
proteins called Serine/threonine-specific protein kinases (STK). It is a very
versatile and important protein kinase at the core of human physiology and
disease ([30]).

In mammals, three forms of AKT have been identified: AKT1, AKT2
and AKT3. They feature the same characteristic domain structure: An
amino-terminal PH-domain, a central kinase domain and a carboxyl-terminal
regulatory domain ([38]). The PH-domain is named after Pleckstrin, the pro-
tein in which it was first discovered and it serves to bind to phosphoinositides
(such as PIP3) with high affinity.

PIP3 plays a dual role in AKT activation: it recruits AKT to the membrane
and activates 3-phosphoinositide-dependent protein kinase 1 (PDK1) ([2]).
PDK1 and PDK2 phosphorylate AKT at Thr308 and Ser473, causing full
activation of AKT ([42]).

PI3K-dependent AKT activation is counterbalanced by the tumor sup-
pressor PTEN, which converts PIP3 to PIP2 ([41], [40]). PTEN is mutated in
many forms of human cancer ([36]). Mutations in PTEN result in increased
PIP3 levels, which trigger constitutive AKT activation and uncontrolled
proliferation ([24]).

AKT activation can be measured by monitoring the translocation to the
cytoplasm of its direct target FoxO1a, a member of the Forkhead family of
transcription factors involved in cell cycle progression ([20]).

mTOR and rapamycin

Rapamycin is an antifungal metabolite produced by a bacterial strain called
Streptomyces hygroscopius which was discovered in a soil sample from the
Easter Islands ([9]). It was named after the native word for the Easter Islands:
Rapa Nui. Soon after its discovery, Rapamycin (also called sirolimus) was
found to exhibit immunosuppressive effects and suppress cell proliferation ([9]).
Research subsequently focused on finding the target protein of rapamycin,
which was identified in yeast and named TOR (Target of Rapamycine).
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Figure 2.3: The role of the two mTOR-complexes in the AKT pathway. Note
the negative feedback loop consisting of IRS1, AKT and mTORC1 (Figure
from [30]).

Target of Rapamycin (TOR) is an evolutionarily conserved Serine/Thre-
onine protein kinase. It is found in yeast, worms, flies and mammals ([13]).
While yeast contains two distinct TOR genes to form two distinct Tor-
complexes (Tor1 to form Tor-Complex-1 and Tor2 to form Tor-Complex-2),
higher eukaryotes contain only one TOR gene (e.g. mTOR = mammalian
TOR, dTOR, ceTOR) to form both complexes.

TOR-complex 1 (TORC1) and TOR-complex 2 (TORC2) are functionally
distinct complexes that share their catalytic core (which is mTOR in mammals)
and a few of their other partner proteins ([13]). However, since they do not
share all of their partner proteins, their behavior is quite different. Both
complexes and their role in the AKT-pathway are shown in figure 2.3. The
defining subunit of mTORC1 is the Rapamycin-sensitive adaptor protein of
mTOR, called Raptor and the defining subunit of mTORC2 is the Rapamycin-
insensitive companion of mTOR, called Rictor.

For the presented thesis, one more interaction was of central importance:
mTORC1 (via an intermediate step employing S6K1) phosphorylates IRS1
at the plasma membrane and thereby suppresses the activation of AKT via
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Figure 2.4: A schematic overview of the AKT pathway. ZSTK, being a
synthetic drug, is not present naturally.

PI3K ([4]). This constitutes a negative feedback loop. Rapamycin inhibits
mTORC1 and attenuates that negative feedback loop ([4]).

2.2.2 Functional pathway scheme

As described in the chapter above, IRS-1 recruits PI3K to the membrane
and thereby activates it. PI3K turns PIP2 into PIP3, which recruits PDK1,
PDK2 and AKT to the membrane. PDK1 and PDK2 phosphorylate AKT.
Among other targets, AKT also indirectly activates the mTOR-complex-
1. This complex deactivates IRS-1, constituting a negative feedback loop.
Furthermore, AKT directly phosphorylates IRS1 at Ser629, preventing an
inhibitory phosphorylation at Ser636 ([29]). Because IRS1 is upstream of
AKT, this defines a positive feedback loop. Omitting the PIP/PDK-step
and adding ZSTK and FoxO1 as the input-/output-variables used in the
experiments, the pathway can be sketched as in figure 2.4.
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2.3 How to observe pathway activities: Im-

munofluorescence

2.3.1 General remarks

Since the very beginning of cell biology, optical microscopy has played a key
role in the advancement of the field. A typical animal cell is 10− 20µm
in diameter ([1]) and mostly colorless and translucent. Historically, the
invention and discovery of stains (late 19th century) and methods such as
the phase-contrast microscope, the dark-field microscope or the differential-
interference-contrast microscope were important milestones.

It is important to emphasize that microscopy of biomolecules crucially
depends on both the microscope and the preparation of the specimen.

2.3.2 Fluorescence microscopy

The fluorescence microscope itself is very similar to an ordinary light micro-
scope. The crucial addition to the beam path are two wavelength filters and
a beam-splitting, dichroic mirror (see figure 2.5). Typically, these 3 parts are
combined to form a “filter cube”. The first filter only transmits light within a
narrow range of wavelengths (the excitation wavelength). The beam-splitting
mirror then reflects this beam of light onto the sample. The fluorescent
molecules in the sample then absorb the excitation light and (after a short
delay) emit light at a different wavelength (the emission wavelength). Due to
energy conversion losses, the emission wavelength is always higher than the
excitation wavelength. The emitted light can pass the beam-splitting mirror
and the second filter, which blocks any remaining excitation or ambient light.
Finally, light arrives at the detector, which may typically be the eye or a
CCD camera.

Widely used fluorescent dyes are fluorescein (FITC), rhodamine and the
more modern Cy3, Cy5 and the Alexa dyes. Using multiple dyes with different
absorption/emission spectra allows for simultaneous detection of different
molecules.

A powerful method to achieve this coupling of target molecules to fluo-
rescent molecules is the binding of the fluorescent dye to antibodies that are
specific to the molecule of interest. This approach is known as Immunofluo-
rescence and will now be discussed in more detail since it was the method of
choice for this thesis.
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Figure 2.5: Principle of a fluorescence microscope. More specifically, an
inverted setup with a mercury-vapor lamp as the light source is shown.
(Figure taken from diploma thesis of Steve Pawlizak, 2009, University of
Leipzig)

2.3.3 Immunofluorescence

Antibodies (ABs) are proteins that are a main part of the vertebrate immune
system. They exist in billions of different forms ([1]) to recognize and bind to
specific target molecules (antigens). The precision offered by this specificity
makes antibodies valuable probes for fluorescence microscopy approaches. To
amplify the signal, a highly specific, but unmarked primary AB is bound to the
target molecule. Subsequently, a secondary AB (which carries the fluorophore)
binds to the primary AB. This method is called indirect immunofluorescence
as opposed to direct immunofluorescence in which the primary ABs carry the
fluorophore.

Problems and limitations of immunofluorescent approaches include ([35]):

� Photobleaching: The destruction of the fluorophore due to the genera-
tion of reactive oxygen species as a byproduct of fluorescence excitation.
Photobleaching can be minimized by reducing the intensity and duration
of the excitation light or the addition of antifade reagents (that reduce
the availability of singlet oxygen).

� Autofluorescence: In mammalian cells, flavin coenzymes (FAD and
FMN) and reduced pyridine nucleotides (NADH) fluoresce on their own.
This can be minimized by appropriate selection of filters.

� Fluorescence Overlap: When measuring fluorescence signals of more
than one color, it is possible that the emission spectra of the used dyes
overlap. This might lead to an overestimation of the measured signal
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in one color and should be avoided by choosing appropriate dyes and
filters.

Depending on the molecule of interest and the investigated cell type
or tissue, a number of preparatory steps is required. These may include
sectioning, freezing, disrupting cell membranes (permeabilization), etc. The
protocols used during the experiments within this thesis are given in 8.
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Chapter 3

Mathematical Theory

3.1 Introduction to Modeling

This chapter is aimed at giving the reader a brief introduction to mathematical
modeling as it is employed in biology. The presentation mainly follows the
Books “Mathematical Biology” by J. D. Murray ([34]), “Non-Linear-Dynamics
and Chaos” by Strogatz ([39]) and “Mathematical Physiology” by Keener
and Sneyd ([21]).

The examples given shall aid the reader to gain some intuition of what
behavior can be expected from a system with certain features (such as feedback,
non-linearities). Furthermore, this section is used to define important terms
such as Stability, Steady State and analysis tools like the rate balance plot
and the dose-response curve.

3.1.1 Models for Single Species

Probably the oldest subject of mathematical modeling has been the study
of population dynamics. Its history goes back as far as 1202 ([34]) and has
since been applicated in a vast number of fields.

The basic assumption is the following: Let N(t) be the population of a
species at a time t. Then

dN

dt
= births− deaths (3.1)

is the rate of change of the population (assuming that change only arises from
birth and death of individuals). In the simplest model, births and deaths
are proportional to the population number N : births = k1N , deaths = k2N
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(with k1 and k2 being positive constants) resulting in

dN

dt
= k1N − k2N (3.2)

which gives, after integration

N(t) = N0e
(k1−k2)t (3.3)

For k1 > k2 the population grows (see figure 3.1), for k1 < k2 the population
decays. Introducing r = k1 − k2, equation (3.3) becomes

N(t) = N0e
rt (3.4)

In physics, this equation is especially well known for r < 0 as it accurately
describes e.g. the decay of radioactive substances or the attenuation of light
intensity propagating in an absorbing medium (with time t being replaced by
penetration depth).

In biological systems, the assumptions of linear dependence of birth- and
death-rates on the current size of population are often far too much simplified.

A biologically plausible way to account for limited resources (space, food)
is to include a carrying capacity K in the model. The carrying capacity is
then defined as the number of individuals which prevents further increase (so
for N = K, dN

dt
= 0 shall be valid). This can mathematically be achieved by

multiplying (3.2) by (1− N
K

), yielding

dN

dt
= rN(1− N

K
) (3.5)

with r defined as before.
Integration gives the logistic growth law

N(t) =
N0 ∗K ∗ ert

K +N0(ert − 1)
(3.6)

which is plotted in figure 3.2.
Note that the same behavior is observed when modeling the reaction

A+N → N +N using the law of mass action (see chapter 3.2.1).

3.1.2 Models for Interacting Species

Things become more complicated when we take into consideration that
ecosystems never consist of only one species. Two species can interact
competitively (both species hinder each other), they can mutually benefit
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from each other (symbiosis) or one species eats the other. The last case is
discussed in the classic “predator-prey”-model. The model dates back to
the 1920s and is named after both Alfred J. Lotka and Vito Volterra. Lotka
derived the equations from a hypothetical chemical reaction that could exhibit
oscillations while Volterra proposed the model to explain the oscillatory levels
of certain fish catches ([34]).

The assumptions of the model are: There are two species, “prey” N and
“predator” P . Without each other, the prey is allowed to grow indefinitely
while the predator is going extinct, following eq. 3.4 with r > 0 for the prey
and r < 0 for the predator.

The interaction of the two now limits the behavior by adding a decay-term
for the prey and a growth-term for the predator. Both terms are proportional
to both species, yielding

dN

dt
= aN − bPN (3.7)

dP

dt
= cNP − dP (3.8)

In this representation, a, b, c and d are all positive.

A standard tool for analyzing systems like this is non-dimensionalization.
Non-dimensionalization reveals how many parameters are actually necessary
to determine the behavior of the system. For the Lotka-Volterra-model, we
can define n = cN

d
, p = bP

a
, τ = at and α = d/a to re-write equations 3.7, 3.8

as
dn

dτ
= n(1− p) (3.9)

dp

dτ
= αp(n− 1) (3.10)

It is possible to plot parametrical solutions of this system in the n, p plane,
that is, without representing time. Eliminating time from the above system
yields:

dn

dτ
= α

p(n− 1)

n(1− p)
(3.11)

Integrating 3.11 gives the phase trajectories

αn+ p− lnnαp = H (3.12)

with H > Hmin = 1 + α being a positive constant. Figure 3.3 shows some
of the trajectories. Note that the trajectories are closed, indicating periodic
solutions.
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Figure 3.3: Phase-Plane trajectories for various values of H for the Lotka-
Volterra system. The arrows denote the direction of change with increasing
time τ . (Figure adapted from [34])

3.2 Reaction Kinetics

This chapter is based on the book by Keener and Sneyd ([21], sections 3.2.1,
3.2.2), the original papers by Goldbeter and Koshland ([16],[23], section 3.2.3)
and the paper by Ferrell ([12], section 3.3).

3.2.1 The law of mass-action

In modeling cellular networks, complexity does not arise from the necessary
equations themselves, but from the complexity of the networks.

The basic equations are all rather simple. The most basic reaction A+B →
C can be modeled using the law of mass action:

d[C]

dt
= k[A][B] (3.13)

dC
dt

is the accumulation of the product C, while [A] and [B] give the
concentrations of the educts A and B, respectively. The reaction constant k
incorporates all other properties of the reaction, such as size and shape of
the educts, temperature, et cetera.

The law of mass action is not sufficient to accurately model very low
concentrations, concentrations at which the reaction saturates or changing
temperatures. Furthermore, due to thermodynamics, we have to take into
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consideration that the backward reaction C → A+B is also possible. The
more complete reaction scheme should therefore be written as:

A+B
k1
�
k2

C (3.14)

Applying the law of mass action gives the following rate law:

d[C]

dt
= k1[A][B]− k2[C] (3.15)

To model reactions of the type A+ A�k1
k2
C, one must take into consid-

eration the stochastic weights of the molecule species:

d[C]

dt
=

1

2
k1[A]2 − k2[C] (3.16)

3.2.2 Michaelis-Menten Kinetics

Enzymes are biological catalysts. They can increase the rate of a catalyzed
reaction by a factor of 1012 or more. Many cellular processes are possible
only because each cell is equipped with its own set of enzymes. Therefore,
enzyme-catalyzed reactions play a crucial role in biological systems. (adapted
from: [22])

Enzymatic reactions can be written as a substrate S, forming a product
P , when combined with an enzyme E:

S + E
k1
�
k−1

P + E (3.17)

Experiments show, that enzyme kinetics usually do not follow the simple
mass-action law described above. Typically, increasing the amount of substrate
only increases the reaction rate until a level of saturation is reached (whereas
the law of mass action predicts a linear dependence of the reaction rate on
the substrate concentration).

A widely used model was proposed by Michaelis and Menten in 1913. The
model introduces a transition state C (for complex). The substrate forms
a complex with the enzyme and the complex can then break down into the
product (and the enzyme). The scheme then looks like this:

S + E
k1
�
k−1

C
k2
�
k−2

P + E (3.18)
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In many cases, it is justified to further simplify the scheme by neglecting
the back-reaction of the final product (for instance, if the final product is
constantly removed).

S + E
k1
�
k−1

C
k2−→ P + E (3.19)

Applying mass-action rate laws to this reaction scheme yields the following
set of differential equations:

d[S]

dt
= k−1[C]− k1[S][E] (3.20)

d[E]

dt
= (k2 + k−1)[C]− k1[S][E] (3.21)

d[C]

dt
= k1[S][E]− (k2 + k−1)[C] (3.22)

d[P ]

dt
= k2[C] (3.23)

Since d[E]
dt

= −d[C]
dt

, it follows that the quantity [C] + [E] = E0 = const. is
conserved. Note that [P ] can be calculated by direct integration.

There are two famous approximations for the Michaelis-Menten model:

� The Equilibrium Approximation

� The Quasi-Steady-State Approximation

The equilibrium approximation was the original approximation proposed
by Michaelis and Menten in 1913, while the quasi-steady-state approximation
was proposed by Briggs and Haldane in 1925.

The basic assumption of the equilibrium approximation is that the sub-
strate is in immediate equilibrium with the complex, k1[S][E] = k−1[C]. This

is equivalent to asking that the process C
k2−→ P + E be much slower than

the first step. The second (the slower) process is then referred to as the
rate-limiting process.

In the quasi-steady-state approximation, it is assumed that the rate of
complex-formation and breakdown are approximately equal (so d[C]

dt
≈ 0). A

more thorough mathematical analysis (employing non-dimensionalization)
translates this assumption to the requirement that E0

S0
� 1, typically in the

25



Figure 3.4: The reaction scheme modeled by Goldbeter and Koshland. If,
for instance, Wact were to be the phosphorylated form of a protein W , the
enzyme E1 would be a kinase and E2 a phosphatase.

range of 10−2 to 10−7. This is a reasonable assumption in enzymatically
catalyzed reactions in biological systems.

The results of the two approximations look rather similar, leading some-
times to confusion. In both cases, the result takes the form:

d[P ]

dt
=

k2E0[S]

[S] +KMM

(3.24)

The difference lies in the definition of KMM and the assumptions of the
models. In the equilibrium approximation,

KMM =
k−1
k1

(3.25)

while in the quasi-steady-state approximation,

KMM =
k−1 + k2
k1

(3.26)

For a more detailed discussion and derivation of the two approximations,
the book Mathematical Physiology ([21]) is recommended.

3.2.3 The Goldbeter-Koshland model

In 1982, Goldbeter and Koshland proposed an elegant mechanism to model
highly sensitive switching behavior. Unlike other models, they do not rely on
high Hill-coefficients caused by highly cooperative processes such as multiple
enzyme-binding sites, cooperativity between many enzymes or the like.

The Goldbeter-Koshland model can be sketched as in figure (3.4). A
substrate W can exist in one of two forms, W and Wact, for instance. The
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reaction W → Wact is catalyzed by an enzyme E1 and the reaction Wact → W
is catalyzed by E2. This produces the system:

W + E1

k1
�
k−1

C1
k2−→ E1 +Wact (3.27)

Wact + E2

k3
�
k−3

C2
k4−→ E2 +W (3.28)

It is then possible to model both reactions with Michaelis-Menten approxima-
tions.

d[Wact]

dt
=

k2E1[W ]

[W ] +K1

− k4E2[Wact]

[Wact] +K2

(3.29)

d[W ]

dt
= −d[Wact]

dt
=

k4E2[Wact]

[Wact] +K2

− k2E1[W ]

[W ] +K1

(3.30)

In a steady state, d[W ]
dt

= 0, it follows from 3.30 that

k2E1[W ]

[W ] +K1

=
k4E2[Wact]

[Wact] +K2

(3.31)

which can be written as

k2E1

k4E2

=
[Wact]([W ] +K1)

([Wact] +K2)[W ]
(3.32)

Substituting v1
v2

= [E1]k2
[E2]k4

and normalizing y = [W ]
[Wact]+[W ]

and K̂i = Ki/Wtot

gives
v1
v2

=
(1− y)(K̂1 + y)

y(K̂2 + 1− y)
(3.33)

The dependence of y (which is the ratio W
Wtot

with Wtot = W +Wact) on the
ratio v1

v2
is shown in figure 3.5. It can be seen that the Goldbeter-Koshland-

function produces highly sensitive, non-linear behavior. The ratio v1
v2

= [E1]k2
[E2]k4

can be influenced by either varying the reaction coefficients or the amount
of enzyme. The function thereby offers a way to model switches in reaction
networks.

3.3 Steady States and Rate-Balance plots

Bistability provides a mechanism to create irreversibility in cell life cycles
and cell signaling. This is not a trivial property, since the basic biochemical
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Figure 3.5: Plots of y = [W ]/[Wtot] as a function of v1/v2 for different values
of Ki. Note the step-like behavior for low values of Ki. (Figure from [21])

reactions involved are all reversible ([11]) (Proteins are phosphorylated and
dephosphorylated, degraded and synthesized etc. ).

As early as in 1961, it was proposed that one possible mechanism for
creating irreversibility (or memory) is in the way the pathways are wired (see
[33]). In perfect analogy to electrical engineering, we try to work our way up
from simple basic circuits or circuit elements to complex signaling networks.

From today’s understanding, bistability in biological systems relies on a
feedback loop (either positive, double-negative or autocatalysis) and some
type of non-linearity ([11]).

To understand this, it is helpful to become acquainted with rate-balance
plots. These are a major tool in chaos theory and are explained thoroughly
in Strogatz’ book “Non-Linear Dynamics and Chaos” ([39]).

The concept is the following: If the change of a quantity is given by
a rate law in the form dN

dt
= f(N, pi), then any state where dN

dt
= 0 is

called a steady state. If the function f(N, pi) can be split into two separate
parts f(N) = fprod(N, pi)− fdec(N, pi), the zero points of f(N) become the
intersections of fprod(N, pi) and fdec(N, pi). This means that the number
of steady states can be found by counting the number of intersections, as
demonstrated in figure 3.6.
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Figure 3.6: A hypothetical rate-balance plot. The intersections of fprod and
fdec are steady states of the system. It can immediately be seen that the
system has two steady states (marked with circles).

The separation of f(N, pi) can contain biological meaning: fprod(N, pi)
and fdec(N, pi) can group reactions that produce and break up the substance
N , respectively.

As an additional benefit, the graphic representation makes it easy to
distinguish between stable and instable steady states:

So far, we have defined that Nsteady is a steady state when fprod(Nsteady) =
fdec(Nsteady).

We now declare Nsteady to be a stable steady state when fprod(N) > fdec(N)
for N < Nsteady and fprod(N) < fdec(N) for N > Nsteady. This is equivalent

to asking for d2N
dt2

(Nsteady) < 0. However, the first formulation can easily be
applied to analyze rate-balance-plots, as demonstrated in figure 3.7. This
helps greatly in understanding the influence of parameters on the qualitative
behavior of a complex system.

3.3.1 Bistability and Hysteresis

Employing the tools from the above section, we shall now analyze how a
system can exhibit bistability. A system is called bistable when there are
two stable steady states. For continuous functions f(N, pi), this implies the
existence of a third, unstable steady state in between (see figure 3.8). The
unstable steady state is also referred to as the threshold, as it marks the
amount of N needed for the system to continue towards the high state.
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Figure 3.7: The same hypothetical rate-balance plot as in figure 3.6. It can be
seen that only the high steady state is stable: A small decrease of N results
in net production of N , therefore increasing N again. In case N increases
beyond Nsteady, a net decay reduces N back to Nsteady.

Figure 3.8: A rate-balance plot with two stable steady states (dark circles)
and one threshold unstable state in between (light circle).
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Figure 3.9: Suppose a stimulus can be applied to the system that increases
the production rate by a constant amount. In the figure, 4 exemplary stages
are shown then: a) the original case with two stable states, b) a little stimulus
only shifts the states but does not change their number, c) more stimulus
removes the low steady state, d) only the high steady state remains.

The remaining question is, which biological phenomena can plausibly be
modeled by such rate-balance plots? An important paper by James E. Ferrell
from 2001 ([12]) lists two mechanisms that can lead to bistability in biological
systems:

� Nonlinear positive feedback

� Back reaction saturation

Bistable systems can function as biological switches, in many case as
irreversible ones. This can be understood by considering figure 3.9. Suppose
the system rests in the (stable) state Nlow. If some stimulus increases the
forward reaction rate, all the steady states are shifted. If at some point,
the system becomes monostable, the system will naturally reach that single
steady state, which is Nhigh in the example. After removing the stimulus
(resetting the rates), the system will remain in the high state.

The above system exhibits Hysteresis, as its state does not only depend
on the current parameters, but also on its history.

The situation can also be plotted in another way, as the realized state of
the system depending on the current input stimulus. This is shown in figure
3.10.
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Figure 3.10: A hysteretic Dose-Response Curve. Increasing the stimulus S
above a certain threshold abruptly changes the state of the system. The
system remains in that state even when the stimulus is again reduced.

This constitutes the case of an irreversible switch. The more general
case (though sometimes harder to realize) is the reversible switch, illustrated
by figure 3.11. In this case, the system reaches its original state when the
stimulus is completely removed.

In general, hysteresis occurs in a system, when there is a parameter range
where multiple steady states are possible for the same input values. The
simplest possibility being two stable steady states within the range and just
one stable steady state for the parameter being outside the range. The system
then remains in the steady state that was achieved before the parameter
entered the range of multiple stabilities.

3.3.2 Proteresis

An easily overlooked phenomenon is inverted hysteresis, sometimes called
“clockwise” hysteresis. For reasons explained further below, the terms “clock-
wise” and “counter-clockwise” are quite ambiguous, so the term “Proteresis”
was coined to emphasize that it is actually a phenomenon distinct from
Hysteresis. Clockwise hysteresis loops are quite common in pharmacody-
namics (e.g. [28]). However, in pharmacodynamics they result from plotting
Dose-Response curves over time and the resulting hysteresis can easily be
explained by delay-effects in the human organism. In physics, real proteresis
was recently observed in the magnetism of ultrasmall Co:CoO core-shell nan-
oclusters (see [43] and [25]). Furthermore, a proteretic all-optical bi-stable
device was theoretically designed and modeled for possible use in the field of
Optics Communications ([8]).
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Figure 3.11: A general, hysteretic dose-response curve. For a certain range of
stimulus intensity (between Soff and Son), the state of the system depends
on its history.

Figure 3.12: An inverted hysteresis or “proteresis” curve. Comparing the
figure to fig. 3.11 shows that Son < Soff

The interesting property of proteretic loops is their “anticipatory” behavior.
A proteretic switch can be turned on at a threshold Son and turned off at a
threshold Soff with Soff > Son. For a hysteretic switch, Soff < Son is the
case. Which state the system will be in when S is between Son and Soff
depends on the history of the system for both cases.

A hysteretic system will be in the low state if it was in the low state before
and in the high state, if it was in the high state before. This behavior has a
very “natural” or “conservative” feeling to it. A proteretic system will be in
the high state if it was in the low state before and in the low state if it was
in the high state. This is obviously more exotic as it constitutes a bistable
device that has two stable states, but is easier to switch from one state to
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Figure 3.13: a) The same, proteretic system as in figure 3.12. b) The same
system, but instead of x, (1 − x) is the observable quantity. The system’s
behavior now appears counter-clockwise.

the other than to keep in its original state.

In literature, proteresis is often described as “clock-wise hysteresis”. How-
ever, when observing a quantity that decreases when the input is increased,
the connections counter-clockwise ↔ hysteresis, clock-wise ↔ proteresis do
not hold. In the simplest case, we might measure (1− x) instead of x. Figure
3.13 illustrates the problem: Measuring (1 − x) instead of x flips the dose-
response curve upside-down. And even though this curve still describes the
same system, it is no longer “clock-wise” but “counter-clockwise”.

Especially in biology, it is very likely that only one form of e.g. an enzyme
can be observed (e.g. only the phosphorylated form), leading to dose-response
curves that can be clockwise or not. To decide whether a system is proteretic
or hysteretic, the defining characteristic is whether it keeps or changes its
state when entering the bistable region.
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Chapter 4

Materials and Methods

Fluorescence microscopy is a standard method in cell biology today. However,
applying the general method to a specific cell type and a specific target
molecule still provides a challenge. In the presented thesis, it proved to be
difficult finding suitable antibodies and a working staining protocol.

Mathematical modeling of cellular signaling pathways is still a compara-
tively young field of study. At the moment, a lot of effort is put into classifying
general motifs or “building blocks” of pathways in order to understand, what
interactions are necessary and which are sufficient to generate certain be-
haviors. A good example are the works of J. E. Ferrell ([10],[12],[11]), A.
Carracedo and P. Pandolfi ([6],[5]) or D. A. Charlebois ([7]) who try to identify
feedforward motifs, feedback loops and analyze what implications those have
on drug development.

The general method involves writing down a system of differential equa-
tions to model the biological system. To analyze that system, analytical tools
like phase-plane-analysis or bifurcation diagrams (explained in chapter 3) can
be used. For bigger systems, these methods fail. It is then necessary to either

1. Simplify the system

2. Analyze the system numerically

or a combination of the two. Simplifying the system to a degree where
analytical methods become feasible might make the biological system unre-
alistic and/or prevent the mathematical system from exhibiting the desired
(observed) behavior. For these reasons, numerical analysis is becoming more
important and widely-used.
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4.1 Numerical Methods

As mentioned, in the field of systems biology, analytical tools are mainly used
to study smaller parts of pathways. To model more complex pathways (or
even “complete” pathways), numerical methods are necessary.

Models of cellular signaling pathways are typically made from rate-law
equations. As a result, the pathway is modeled as a system of first-order
ordinary differential equations (ODEs).

The Runge-Kutta-method is a popular way to approximate numerical
“solutions” for such systems. The classic Runge-Kutta-method is defined as
follows (from [17]):

For the equation y′(x) = f(x, y) with initial condition y(x0) = y0, a
solution y(x) can be approximated through recursive use of:

y(xi+1) = y(xi) +
1

6
h(k1 + 2k2 + 2k3 + k4) (4.1)

with
k1 = f(xi, yi) (4.2)

k2 = f(xi +
h

2
, yi +

h

2
k1) (4.3)

k3 = f(xi +
h

2
, yi +

h

2
k2) (4.4)

k4 = f(xi + h, yi + hk3) (4.5)

MatLab offers a standard library of ordinary differential equation solvers
(ODE-Solver). The ode45-solver uses a refined version of the described
Runge-Kutta method and was used for simulations in this thesis.

In MatLab, the function pathway.m was created. It contains the model-
defining rate-law equations and calculates a numerical solution for a set time
period. The resulting concentration changes can be plotted and the return
value of the function is the final state of the system. The time period was
chosen sufficiently large to ensure that the final state is a steady state.

The function pathwayDR.m calls the function pathway.m multiple times
and varies the input parameters of the model (initial concentrations) to create
Dose-Response-Curves.
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4.2 Immunofluorescence imaging

Part of the thesis work involved realizing an experimental protocol to repeat
the results of Miguez ([32], manuscript in preparation) and verify the model
created and described here.

In [32], Mı́guez et al studied the AKT-pathway in a human renal cancer cell
line (so called 786-O cells). The cells were engineered to stably express EGFP-
FoxO1a, a fluorescent fusion protein that translocates from the cytoplasm
to the nucleus in response to pathway deactivation. Due to the absence of
PTEN in 786-O cells, the AKT pathway is constitutively active, which means
that the EGFP-FoxO1a is constitutively localized in the cytoplasm. After
pathway inhibition, EGFP-FoxO1a translocates the to the nucleus. Since it
is possible that the fusion protein EGFP-FoxO1a behaves differently than
unmodified FoxO1a, we tested an immunofluorescence approach for this thesis
instead.

The cells used for the new experiments were again 786-O human renal
cancer cells. The cells were cultured on standard p100 plates in DMEM
F12 medium with Penicillin, Streptomycin and 7.5% FBS. DMEM and
Trypsin/EDTA were supplied by the company VWR. Penicillin and Strepto-
mycin were supplied by Sigma-Aldrich.

The culturing protocol can be found in full detail in section 8.1. To perform
the immunofluorescence experiments, cells were fixed with Paraformaldehyde
according to the protocol 8.2. Immunofluorescence staining was performed as
described in 8.3.

Fluorescence microscopy was either performed in-house at Universidad
Autonoma de Madrid (UAM) or at the “Centro de Biologia Molecular Severo
Ochoa” (CBM).

At the CBM, a coupled microscope system was used, consisting of a
inverted Zeiss Axiovert200M and a confocal Zeiss LSM510 using Argon and
Helium lasers.

At UAM, the fluorescence microscope was a Leica DMI LED microscope.
The objective was the Leica HI Plan I 20x/0.30 PH1. Imaging was done with
the Leica DFC 3000 G camera on a ring c-mount 0.55x.
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Chapter 5

Results

5.1 Modeling the PI3K/AKT/mTOR path-

way

To investigate the role of the different members of the AKT-pathway, a
mathematical model was simulated in MatLab. The model was designed
to be as simple as possible while still showing the desired characteristics.
On the other hand it was designed to be complicated enough to satisfy a
sense of biological realism. This means the model does not contain arbitrary
production and destruction of components, but activation and inactivation of
a fixed amount of substances. Furthermore, reactions follow the laws of mass
action and enzyme kinetics. These biochemical requirements strongly increase
the number of variables (though they are connected by some conservation
laws) even in a simple system.

As described in chapter 2, the AKT-PI3K-pathway can be sketched like
this:

IRS1 (which has autocatalytic properties) activates PI3K, PI3K activates
AKT, AKT activates mTOR, mTOR inhibits IRS1.

This could be further abstracted to the circuit shown in figure 5.2. This
highly abstracted, reduced approach will be discussed later (chapter 6). To
make the model biologically plausible, it has to account for:

1. Limited amounts of all the substances

2. Amounts cannot become negative

3. Interactions happen by forming complexes

38



Figure 5.1: The AKT-pathway as described before.

Figure 5.2: A very basic circuit that is structurally equivalent to the AKT-
pathway.
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Figure 5.3: Graphical representation of the full pathway model

To incorporate the limited amounts, we make the assumption of a fixed
amount of IRS1, PI3K, AKT, mTOR and FoxO, respectively. Instead of
being produced and destroyed, the substances are modeled as changing from
an “inactive” to an “active” state and vice versa.

To model the enzymatic activity, a Michaelis-Menten approach was used
(see chapter 3.2). For all constituents of the pathway, we assume that the
equilibrium between active and inactive state is the result of an activating
and a deactivating enzyme. All enzyme interactions are modeled as proposed
by Michaelis-Menten. Enzymes that were not part of the studied pathway (in
the sense that they were not part of the network structure) were considered to
stay at constant concentrations and labeled E1 to E6. The ZSTK-mediated
inhibition of PI3K was modeled as PI3K and ZSTK forming a complex COMP
that is passive in the pathway. The reaction was modeled following the law
of mass action.

Figure 5.3 shows the graphic representation of the pathway as it was
modeled. The rate-law equations are given as:

d[IRS1 ]

dt
= k1

[mTOR][IRS1act ]

Km1 + [IRS1act ]
− k2

[IRS1act ][IRS1 ]

Km2 + [IRS1 ]
− k10

E5[IRS1 ]

Km10 + [IRS1 ]
(5.1)

d[mTOR]

dt
= k3 ∗

[AKTphos] ∗ [mTORrictor]

(Km3 + [mTORrictor]
− k4 ∗

E1 ∗ [mTOR]

(Km4 + [mTOR]
(5.2)

d[AKTphos ]

dt
= k5 ∗

[PI3Kact ] ∗ [AKT ]

Km5 + [AKT ]
− k6 ∗

E2 ∗ [AKTphos ]

(Km6 + [AKTphos ])
(5.3)
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d[PI3K ]

dt
= −k7 ∗

[IRS1act ]) ∗ ([PI3K ])

Km7 + [PI3K ]
+ k8 ∗

E3 ∗ [PI3Kact ]

Km8 + [PI3Kact ]

−k9 ∗
E4 ∗ [PI3K ]

Km9 + [PI3K ]
− k12 ∗ [PI3K ] ∗ [ZSTK ] + k−12 ∗ [Comp]

(5.4)

d[Comp]

dt
= k12 ∗ [PI3K ] ∗ [ZSTK ]− k−12 ∗ [Comp] (5.5)

d[FoxOphos ]

dt
= k13 ∗

[AKTphos ] ∗ [FoxO ]

Km13 + [FoxO ]
− k14 ∗

E6 ∗ [FoxOphos ]

Km14 + [FoxOphos ]
(5.6)

To account for the influence of rapamycin, the factor (1−0.5∗ [Rapa]) was
multiplied with the first term of 5.1. For [Rapa] = 0, the factor is equal to 1
and has no influence. For [Rapa] = 1, the factor becomes 1

2
, so it weakens

the negative feedback exerted by mTOR on IRS1.

For the actual computations, the number of variables was reduced by taking
into account that the overall amount of each substance must be conserved
(except rapamycin). So, [IRS1act ] was replaced by [IRS1tot ] − [IRS1 ], with
[IRS1tot ] = const. etc.

The full MatLab-Code can be found in 7.

Simulating this set of ODEs for several different initial conditions yields
plots as in figure 5.4. In the first case (no ZSTK, figure 5.4a), the pathway
is active, so after a little time, the system reaches a steady state in which
PI3Kact, mTOR and FoxO are stably expressed. In the ZSTK-treated case
(figure 5.4b), the concentrations of PI3Kact, mTOR and phosphorylated FoxO
are greatly decreased, indicating successful pathway inhibition. Another very
pronounced effect is the increase in IRSact due to the absence of mTOR. Note
that both simulations reach a steady state.

In the performed experiments, the drug ZSTK is the component that can
directly be varied by the experimenter. FoxO is accessible to observation and
the amount of nucleic FoxO (which is not phosphorylated) will therefore be
regarded as the “response” of the system.

In figure 5.5, dose-response-curves are plotted. In figure 5.5a, the initial
conditions where the individual components’ concentrations when the system
was allowed to reach a steady state with no ZSTK present (the final steady
state of the simulation in figure 5.4a). In figure 5.5a, the steady state after
treatment with ZSTK (figure 5.4b) was chosen as the initial steady state. For
every single point of the curves in figure 5.5, new simulations were run with
the initial conditions chosen as explained, and the ZSTK concentrations as
noted on the x-axes.
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(a) No ZSTK present

(b) ZSTK treatment

Figure 5.4: Simulation results of the AKT-pathway. Initial conditions were
the same for both simulations, ecxept for the amount of ZSTK.
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(a) Initially low ZSTK-steady-state

(b) Initially high ZSTK-steady-state

Figure 5.5: Simulated steady-state-concentrations of FoxO-phos in the AKT-
pathway for different ZSTK concentrations
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Figure 5.6: The average (mean) Dose-Response Curve for different expres-
sion levels of AKT (±5%). The light lines display the minimum/maximum
responses.

In the actual experiments, a multitude of cells has to be observed. Natu-
rally, these cells vary in size, health and expression levels of proteins, including
AKT. To account for this natural variation of cell phenotypes, the simulations
were run for different values of overall AKT. Figure 5.6 shows the averaged
Dose-Response-Curve which is closer to what can be expected to be observed
in the experiment than figure ??.

Figure 5.7 shows the effect of rapamycin on the system. Note that the
curves are not only shifted towards higher concentrations of ZSTK, but also
the change from proteretic to hysteretic behavior.

5.2 The immunofluorescence images

A number of immunofluorescence staining protocols was tested (see sections
8). Unfortunately, no quantifiable results were achieved.

Figures 5.8 and 5.9 exemplarily show the results for incubation with no
ZSTK and with a high amount (5µM) of ZSTK, respectively.

Addition of ZSTK is expected to inhibit PI3K (see section 2.2), thereby
decreasing the activity of the AKT-pathway. This in turn leads to reduced
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(a) Rapamycin = 0

(b) Rapamycin = 1

Figure 5.7: Dose-Response Curves for two levels of rapamycin. The error-bars
show standard deviations resulting from variation of overall AKT-expression.
The left figure results from the same simulation as fig. 5.6. For the right
figure (5.7b), the negative feedback via mTOR is reduced to half its strength
by setting the rapamycin-variable to 1 (arb. unit).
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Figure 5.8: Immunofluorescence image of 786-O cells. FoxO1 is shown in
green and is evenly distributed in the cell.

phosphorylation of FoxO1. This leads to increased migration of FoxO1 to the
nucleus. Qualitatively, this can be observed in the two images (fig. 5.8 and
5.9).

The effect was not sufficiently pronounced to allow for quantification.
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Figure 5.9: Immunofluorescence image of 786-O cells treated with ZSTK.
FoxO1 is shown in green and is concentrated in the nucleus.
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Chapter 6

Discussion and Outlook

6.1 The AKT-pathway

As shown in the results, proteretic behavior can occur in cellular signaling
pathways. This has consequences for drug scheduling in cancer therapy. The
proteretic behavior is equivalent to a de-sensitization of the system: The same
dose will create less response when applied shortly after the former dose.

The architecture found in the modeled AKT-pathway can be thought of
consisting only of:

1. A negative feedback-loop

2. A positive auto-catalytic loop

3. Non-linearities

These ingredients are sufficient to create proteretic behavior in a certain
parameter range. In contrast, hysteretic behavior only needs non-linearities
and negative feedback.

The simulations indicate that Rapamycin removes the proteretic behavior
from the pathway. Further, it decreases the sensitivity of the system to treat-
ment with ZSTK. Both observations are in accordance with the unpublished
results from D.G. Mı́guez ([32], figure 6.1). This suggests that combined
treatment with both drugs might be more reliable and less schedule-dependent,
but require higher doses.
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Figure 6.1: Experimental dose-response curves, showing that pretreated cells
become desensitized for a wide range on ZSTK474 concentration

6.2 Experimental Procedure

As shown in the experimental results, the addition of ZSTK inhibits the AKT
pathway and the strength of the inhibition can in principle be monitored
by monitoring the migration of FoxO1 to the cell nucleus. However, our
approaches to image FoxO1 by immunofluorescence did not yield quantifiable
results.

However, quantifiable results are essential to test the predictions of the
presented model (5.1). Especially the supposed occurrence of inverted hys-
teresis calls for very precise and robust quantification to rule out random
errors as the reason for differences between the untreated and pre-treated
dose-response-curves.

Engineering GFP (green fluorescent protein) to FoxO1 might be a rea-
sonable experiment, as this produced the results that motivated this thesis.
Repeating those experiments with higher precision and in a new setup should
provide new insights.

The drawback of the GFP-approach lies in the alteration of the target
molecule. It is difficult to decide whether an effect would also occur with the
unmodified molecule.

Once the results can be reproduced with 786-O cells, it will be interesting
to test the same pathway in other cell lines.
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6.3 Inverted Hysteresis in general

The question remains whether simpler systems can exhibit proteretic behavior.
Identifying more proteretic systems might aid in defining necessary ingredients
for proteretic behavior.

A more profound understanding of this exotic behavior would also allow
to make definite statements about a pathway’s architecture. If a pathway
displays proteretic behavior in a dose-response experiment, it might be safe
to say, for instance, that there must be some kind of negative feedback loop
in the pathway. Identifying such a negative feedback could then open up new
methods to alter the pathway’s activity.
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Chapter 7

MatLab-Code

7.1 The model

function [ y fin ] = akt model(akt tot,all init,zstk,rapa)
% akt model.m
% This function runs the actual simulation the Akt-pathway.
% The pathway is modeled as a set of differential equations that are
% numerically solved using the modified Runge-Kutta-algorithm supplied
% by MatLab under the name "ode45".

% The return value "y fin" is a vector containing the final state of the
% system.

%% Plotting on/off
plot on = 0;

%% Parameters
k1 = 4; % reaction irs act --> irs, enzyme mTOR
km1 = 0.11;

k2 = 2; % reaction irs --> irs-act, enzyme irs-act (autocatalysis)
km2 = 0.11;

k10 = 1; % small "native" irs-act-production, so steady-state not zero
km10 = 0.11;
E5 = 0.05;

k3 = 1; % rictor --> mTOR, enzyme AKTP
km3 = 0.11;

51



k4 = 1; % mTOR --> rictor, mediated by constant enzyme E1
km4 = 0.11;
E1 = 0.05;

k5 = 1; % akt -> akt-p reaction, enzyme PI3K act
km5 = 0.11;

k6 = 1; % akt-p --> akt, enzyme E2 (constant)
km6 = 0.11;
E2 = 0.25;

k7 = 1; % PI3K --> PI3K act, enzyme IRS act
km7 = 0.11;

k8 = 1; % PI3K act --> PI3K, constant enzyme E3
km8 = 0.11;
E3 = 0.5;

k9 = 1; % equilibrate PI3K<->PI3K act, enz. E4
km9 = 0.11;
E4 = 0.5;

k12 = 100; % PI3K + ZSTK -> COMP (inhibition of PI3K by ZSTK)
k 12 = 0.1;

k13 = 1; % Fox -> FoxP by AKTP
km13 = 0.01;

k14 = 1; % FoxP -> Fox by E6
km14 = 0.01;
E6 = 0.06;

constants=[k1,km1,k2,km2,k3,km3,k4,km4,k5,km5,k6,km6,k7,km7,k8,km8,...
k12,k 12,k13,km13,k14,km14,E1,E2,E3,E4,E5,E6];

%% initial conditions:

man init = 1;

if man init == 1

IRS tot = 1;
IRS 0 = 0.5;

mTOR tot = 0.4;
mTOR 0 = 0.2;
%rictor 0 = mTOR tot - mTOR 0;

AKT tot = akt tot;
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AKTP 0 = 0.05;
AKT 0 = AKT tot - AKTP 0;

PI3K tot = 1;
PI3K act 0 = 0.5;
PI3K 0 = PI3K tot - PI3K act 0;

ZSTK 0 = zstk;

COMP 0 = 0;

Fox tot = 1;
FoxP 0 = 0.5;

end

%% Solve ODEs to get initial state

tspan = [0,100];

init = all init;
%init = [IRS 0 mTOR 0 AKTP 0 PI3K 0 COMP 0 FoxP 0];
%init = [IRS 0 mTOR 0 AKTP 0 PI3K 0 COMP 0 FoxP 0];
options = [];

[t,y] = ode45(@irs fun,tspan,init,options,constants,rapa);

%% Define the function

function dydt = irs fun(t,y,constants,rapa)
IRS = y(1);
mTOR = y(2);
AKTP = y(3);
PI3K = y(4);
COMP = y(5);
FoxP = y(6);

dydt = [
k1*(1-0.5*rapa)*mTOR*(IRS tot-IRS)/(km1+IRS tot-IRS)-...

k2*(IRS tot-IRS)*IRS/(km2+IRS) - k10*E5*IRS/(km10+IRS); %IRS
k3*AKTP*(mTOR tot-mTOR)/(km3+mTOR tot-mTOR) -...

k4*E1*mTOR/(km4+mTOR); %mTOR
k5*(PI3K tot-COMP-PI3K)*(AKT tot-AKTP)/(km5+AKT tot-AKTP)-...

k6*E2*AKTP/(km6+AKTP); %AKTP
-k7*(IRS tot-IRS)*(PI3K)/(km7+PI3K) +...

k8*E3*(PI3K tot-PI3K-COMP)/(km8+PI3K tot-PI3K-COMP) -...
k9*E4*PI3K/(km9+PI3K) - k12*PI3K*(ZSTK 0-COMP) + k 12*COMP; %PI3K
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k12*PI3K*(ZSTK 0-COMP) - k 12*COMP; %COMP
k13*AKTP*(Fox tot-FoxP)/(km13+Fox tot-FoxP) -...

k14*E6*FoxP/(km14+FoxP)]; %FoxP

end

%% Preparing the results

IRS = y(:,1);
IRS act = IRS tot - IRS;
mTOR = y(:,2);
rictor = mTOR tot - mTOR;
AKTP = y(:,3);
AKT = AKT tot - AKTP;
PI3K = y(:,4);
COMP = y(:,5);
PI3K act = PI3K tot - PI3K - COMP;
ZSTK = ZSTK 0 - COMP;
FoxP = y(:,6);

y fin = y(end,:); % The return values, for akt model DR.m

%% Plotting
if plot on == 1

figure()

plot(t,IRS act,'--r',t,IRS,'--g',t,PI3K act,'.-b',t,mTOR,'.-r',...
t,FoxP,'.-k');

legend('IRS act','IRS','PI3K act','mTOR','FoxP');
xlabel('Time [arb. units]');
ylabel('Concentration [arb. units]');
title('The Akt-pathway');

end

end

7.2 The Dose-Response-Curves

function [output] = akt model DR(AKT,rapa)
% akt model DR collects data twice:
% 1st run: starts in steady state (achieved after running one
% simulation), then increases ZSTK (starts a new simulation
% for each ZSTK concentration, each time starting from the
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% initially achieved steady state)

% 2nd run: starts in a steady state achieved after "treatment"
% with ZSTK, then decreases ZSTK, everytime from the same
% initial steady state
%

%% Parameters
ZSTK points = linspace(0,1,61); %evenly spaced ZSTK-concentrations
ZSTK points rev = fliplr(ZSTK points);

akt tot = AKT;

%% Evaluate the ODEs

% 1st run
% "high init" refers to high expression of akt-p -> zstk is low
high init = akt model(akt tot,[0.5 0.2 0.05 0.5 0 0.5],0,rapa);

val inc = zeros(size(ZSTK points,2),size(high init,2));
val dec = zeros(size(ZSTK points,2),size(high init,2));

for i=1:size(ZSTK points,2)

init = high init;
zstk = ZSTK points(i); %set zstk to next point
init(4) = init(4) + init(5); %add COMP to PI3K
init(5) = 0; %clear COMP

val inc(i,:)=akt model(akt tot,init,zstk,rapa);
end

% 2nd run
% "low init" refers to low expression of akt-p -> zstk is high
low init = akt model(akt tot,[0.5 0.2 0.05 0.5 0 0.5],1,rapa);

for i=1:size(ZSTK points,2)

init = low init;
zstk = ZSTK points rev(i); %set zstk to next point
init(4) = init(4) + init(5); %add COMP to PI3K
init(5) = 0; %clear COMP

val dec(i,:)=akt model(akt tot,init,zstk,rapa);
end

%% Plot the dose-response curves
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irs1 act inc ZSTK = 1-val inc(:,1);
irs1 act dec ZSTK = 1-val dec(:,1);

mTOR inc ZSTK = val inc(:,2);
mTOR dec ZSTK = val dec(:,2);

aktp inc ZSTK = val inc(:,3);
aktp dec ZSTK = val dec(:,3);

pi3k act inc ZSTK = 1-val inc(:,4)-val inc(:,5);
pi3k act dec ZSTK = 1-val dec(:,4)-val dec(:,5);

nuc fox inc = 1 - val inc(:,6);
nuc fox dec = 1 - val dec(:,6);

output = [nuc fox inc,nuc fox dec];

plot switch = 0; % to limit which plots are executed
if plot switch == 1

figure()
plot(ZSTK points,irs1 act inc ZSTK,'.-r',...

ZSTK points rev,irs1 act dec ZSTK,'.-b')
legend('increase zstk','decrease zstk')
xlabel('zstk')
ylabel('irs1-act')
title(['Dose-Response curves at rapa = ',num2str(rapa)])

figure()
plot(ZSTK points,mTOR inc ZSTK,'.-r',...

ZSTK points rev,mTOR dec ZSTK,'.-b')
legend('increase zstk','decrease zstk')
xlabel('zstk')
ylabel('mTOR')
title(['Dose-Response curves at rapa = ',num2str(rapa)])

figure()
plot(ZSTK points,aktp inc ZSTK,'.-g',...

ZSTK points rev,aktp dec ZSTK,'.-r')
legend('increase zstk','decrease zstk')
xlabel('zstk')
ylabel('aktp')
title(['Dose-Response curves at rapa = ',num2str(rapa)])

figure()
plot(ZSTK points,pi3k act inc ZSTK,'.-b',...

ZSTK points rev,pi3k act dec ZSTK,'.-k')
legend('increase zstk','decrease zstk')
xlabel('zstk')
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ylabel('pi3k-act')
title(['Dose-Response curves at rapa = ',num2str(rapa)])

figure()
plot(ZSTK points,nuc fox inc,'.-r',...

ZSTK points rev,nuc fox dec,'.-k')
legend('increase zstk','decrease zstk')
xlabel('zstk')
ylabel('foxo')
title(['Dose-Response curves at rapa = ',num2str(rapa)])

figure()
plot(ZSTK points,nuc fox inc,'.-r')
xlabel('Concentration of ZSTK [arb. units]')
ylabel('FoxO in the nucleus')
title('Final steady-state-concentrations'...

' for first time exposure to ZSTK')

figure()
plot(ZSTK points rev,nuc fox dec,'.-k')
xlabel('Concentration of ZSTK [arb. units]')
ylabel('FoxO in the nucleus')
title('Final steady-state-concentrations'

' of FoxO for pre-treated cells')

figure()
plot(ZSTK points,nuc fox inc,'.-r',...

ZSTK points rev,nuc fox dec,'.-k')
legend('No pre-treatment','pre-treated cells')
xlabel('Concentration of ZSTK [arb. units]')
ylabel('FoxO')
title('The complete Dose-Response-Curve')

end % Move this "end" to decide what is plotted

end

7.3 The averaging over different total amounts

of AKT

function [] = DR avg()
% This program runs akt model DR a few times, varying akt tot,
% thereby varying the resulting fox o curves. (Varying akt tot shall
% account for different cells, which may express different natural
% levels of AKT)
%
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% Furthermore, the Rapamycin-Parameter can be chosen in this program
% and handed down to the model
%

%% Parameters

rapa = 0;

N akt = 7; % Defines, how many akt-levels are to be simulated

AKT vary = linspace(0.097,0.103,N akt); % Evenly spaced akt-levels

%% Run the DR simulations

testo = akt model DR(0.1,rapa); % running one test-simulation

val inc = zeros(size(testo,1),N akt); % assign a matrix of correct size
val dec = zeros(size(testo,1),N akt);

for j=1:N akt

temp = akt model DR(AKT vary(j),rapa);
val inc(:,j) = temp(:,1);
val dec(:,j) = temp(:,2);

end

zstk guess = linspace(0,1,size(testo,1));

val inc med = median(val inc,2);
val inc mean = mean(val inc,2);
val inc dev = std(val inc,1,2);
val inc min = min(val inc,[],2);
val inc max = max(val inc,[],2);

val dec med = median(val dec,2);
val dec mean = mean(val dec,2);
val dec dev = std(val dec,1,2);
val dec min = min(val dec,[],2);
val dec max = max(val dec,[],2);

%% Plot the dose-response curves

% Figures with standard deviation

figure()
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errorbar(zstk guess,val inc med,val inc dev,'.-r')
hold on
errorbar(fliplr(zstk guess),val dec med,val dec dev,'.-k')
legend('not pre-treated','pre-treated')
xlabel('ZSTK')
ylabel('Nucleic FoxO1')
title(['Median Dose-Response curves at rapa = ',num2str(rapa)])
hold off

figure()
errorbar(zstk guess,val inc mean,val inc dev,'.-r')
hold on
errorbar(fliplr(zstk guess),val dec mean,val dec dev,'.-k')
legend('not pre-treated','pre-treated')
xlabel('ZSTK')
ylabel('Nucleic FoxO1')
title(['Mean Dose-Response curves at rapa = ',num2str(rapa)])
hold off

% Figures mean/median ONLY
figure()
plot(zstk guess,val inc med,'.-r',fliplr(zstk guess),val dec med,'.-k')
legend('not pre-treated','pre-treated')
xlabel('ZSTK')
ylabel('Nucleic FoxO1')
title(['Median Dose-Response curves at rapa = ',num2str(rapa)])

figure()
plot(zstk guess,val inc mean,'.-r',fliplr(zstk guess),val dec mean,'.-k')
legend('not pre-treated','pre-treated')
xlabel('ZSTK')
ylabel('Nucleic FoxO1')
title(['Mean Dose-Response curves at rapa = ',num2str(rapa)])

% Figures with min-max
figure()
hold on
plot(zstk guess,val inc med,'.-r',fliplr(zstk guess),val dec med,'.-k')
plot(zstk guess,val inc min,'-r',fliplr(zstk guess),val dec min,'-k')
plot(zstk guess,val inc max,'-r',fliplr(zstk guess),val dec max,'-k')
legend('not pre-treated','pre-treated')
xlabel('ZSTK')
ylabel('Nucleic FoxO1')
title(['Median Dose-Response curves at rapa = ',num2str(rapa)])
hold off

figure()
hold on
plot(zstk guess,val inc mean,'.-r',fliplr(zstk guess),val dec mean,'.-k')
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plot(zstk guess,val inc min,'-r',fliplr(zstk guess),val dec min,'-k')
plot(zstk guess,val inc max,'-r',fliplr(zstk guess),val dec max,'-k')
legend('not pre-treated','pre-treated')
xlabel('ZSTK')
ylabel('Nucleic FoxO1')
title(['Mean Dose-Response curves at rapa = ',num2str(rapa)])
hold off

end
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Chapter 8

Lab-Protocols

The cells used were 786-O cells and they were handled according to the
following protocols:

8.1 Passing the cells

1. Discard old medium

2. Wash with PBS (37 ◦C)

3. Add 1.7 ml Trypsin+EDTA (37 ◦C)

4. Make sure all the cells detach from the plate

5. Deactivate Trypsin+EDTA by adding 2 ml complete DMEM + Pen/Strep
+ 7.5%FBS (37 ◦C)

6. Wash the plate with the DMEM and transfer the cells to a falcon tube.

7. Repeat step 6 with 2 ml of DMEM

8. Centrifuge for 5 minutes at 1500 rpm

9. Discard media with vacuum device

10. Resuspend the cells in complete DMEM

11. Seed to new plate
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8.2 Fixing the cells for immunos

1. Grow cells on coverslips in 12-well plate (1/20 the area of a p100 plate),
therefore dilution of 1:20 or 1:40 works well (1:20 gave quite a high
density)

2. Wait over night, so the cells adhere to the coverslip

3. Actual fixing:

4. Discard medium with vacuum device

5. OPTIONAL: Wash with PBS 1x

6. Fix with 1 ml of 4% Paraformaldehyde in PBS

7. Wait for 15 minutes at room temperature

8. Discard PBS-PFA with vacuum device

9. NOT OPTIONAL: Wash a few times with PBS

10. Keep in PBS 1x at 4 ◦C in the fridge

8.3 Immuno first try at CBM 23. + 24.10.2014

1. Prepare PBS with 3% BSA, prepare methanol/triton

2. Prepare cells as described in 8.2

3. Remove PBS using a vacuum device, placing the tip in the edge of the
well

4. Permeabilization:

� Option a: done for two samples: Methanol permeabilization: 700µl
of −20 ◦C methanol for 5 minutes.

� Option b: done for two samples, according to Jaime probably the
better option: 700µl of triton 4 ◦C for 5 minutes at 4 ◦C

5. Wash with PBS after permeabilization!!

6. Blocking: Remove the PBS, add PBS with 3% BSA and wait for
minimum 10 minutes at room temperature (note: longer does not
matter, prepare BSA early, because the homogeneous distribution takes
a long time)
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7. While blocking, prepare humidity chamber: e.g. p100 plate with filter
paper + parafilm

8. Prepare primary antibody(ies): Dilute AB in PBS+BSA!! Optional:
Also add Topro or Phalloidin (only compatible with triton permeabi-
lization) Prepare 30µl per coverslip

9. Place one 25µl droplet per coverslip on the parafilm in the humidity
chamber

10. Take coverslip from the 12-well plate (tweezers) and wash 30 times in
bowl of PBS

11. Place coverslip on drop of primary antibody.

12. Leave overnight at room temperature (? or was it the fridge?) (probably
also possible: waiting 1 hour at 37 ◦C)

13. Prepare secondary antibodies in PBS+BSA and put drops on second
humidity chamber (just as with the primary AB)

14. Wash coverslips 30 times in PBS, place on secondary-AB drops

15. Wait 30 minutes at 37 ◦C

16. Wash again and put on 9µl fluoromont/mowiol drops

17. Remove unnecessary fluoromont/mowiol with paper

18. Wait over night at room temperature

8.4 Immuno second try at CBM 12. + 13.11.2014

1. Prepare PBS with 3% BSA, prepare Triton 0.2%

2. Prepare cells as described in 8.2

3. Remove PBS using a vacuum device, placing the tip in the edge of the
well

4. Permeabilization: 1 ml of triton at 4 degrees for 5 minutes at 4 degree

5. Wash with PBS after permeabilization!!
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6. Blocking: Remove the PBS, add PBS with 3% BSA and wait for
minimum 10 minutes at room temperature (note: longer does not
matter, prepare BSA early, because the homogeneous distribution takes
a long time)

7. While blocking, prepare humidity chamber: e.g. p100 plate with filter
paper + parafilm, use distilled water!

8. Prepare primary antibody(ies): Dilute AB in PBS+BSA!! anti foxo1
1:50 (3 samples), 1:25 (1 sample): diluted 2.4/1.6 microlitres in 120/40
microlitres, respectively. also anti-tubulin-ab from CBM.

9. Place one 30µl droplet per coverslip on the parafilm in the humidity
chamber

10. Take coverslip from the 12-well plate (tweezers)

11. Place coverslip on drop of primary antibody.

12. Leave overnight in the fridge at 4 ◦C (probably also possible: waiting 1
hour at 37 degrees)

13. Prepare secondary antibody(ies) in PBS+BSA and put 30µl drops on
humidity chamber (just as with the primary AB)(prepare 40µl per
sample). we used FITC anti-rabbit secondary AB for FoxO1-staining
at 1:25 dilution and anti-mouse 555 nm for tubulin-staining.

14. Wash coverslips 30 times in PBS, place on 2nd AB drops

15. Wait 30 minutes at 37 ◦C

16. Prepare DAPI 1:1000, 30 ul drops again

17. Incubate for 15 minutes at 37 ◦C.

18. Wash again and put on 9µl moviol drops

19. Remove unnecessary fluoromont/moviol with paper

20. Wait 1-2 h at 37 ◦C

21. Store at 4 ◦C
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8.5 Immuno third try at UAM 20.-25.11.2014

1. At least one day before! Prepare PBS with 3% BSA:

� BSA is a powder that is stored in the fridge

� To prepare 3% PBS-BSA solution dissolve 3g BSA in 100 ml PBS

� Weigh the proper amount using the fine scale

� Pour in small amount of PBS, then add the rest of PBS

� Agitate using the agitator

� Leave in fridge for some hours for the BSA to dissolve completely
and diffuse homogeneously.

2. Prepare Triton 0.2%

� Triton is a very viscous liquid that is stored in the chemicals
wardrobe

� Prepare a stock aliquote

� To prepare the 0.2% solution, use Triton from the stock aliquote

� Dissolve in PBS: Works better when PBS is warm, start inverting
the tube as soon as possible

3. Prepare cells as described in 8.2 - also a day before.

4. Remove PBS using a vacuum device, placing the tip in the edge of the
well

5. Permeabilization: 1 ml of triton at 4 ◦C for 5 minutes at 4 ◦C

6. Wash with PBS after permeabilization!

7. Blocking: Remove the PBS, add PBS with 3% BSA and wait for
minimum 10 minutes at room temperature (note: longer does not
matter)

8. While blocking, prepare humidity chamber: p100 plate with filter paper
+ parafilm (sticky side up), use distilled water!

9. Prepare primary antibody(ies): Dilute AB in PBS+BSA!! New anti-
FoxO1 (Cell Signaling Technologies FoxO1 (C29H4) Rabbit mAB) 1:100
(all samples), mouse serum 1:50 (4 samples): Prepare 4 drops with
FoxO1 and mouse serum and 2 drops with only FoxO, calculated 25µl
per drop plus 10µl for pipetting errors.
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10. Place one 25µl droplet per coverslip on the parafilm in the humidity
chamber

11. Take coverslip from the 12-well plate (tweezers)

12. Place coverslip on drop of primary antibody (cells facing the antibody).

13. Leave overnight in the fridge at 4 ◦C (probably also possible: waiting 1
hour at 37 degrees)

14. Prepare secondary antibody(ies) in PBS+BSA and put 25µl drops
on humidity chamber (just as with the primary AB). All samples
used anti-mouse-555 1:500 (from the other lab), half the samples anti-
rabbit(FoxO1)-488 1:25 from our lab, half the samples anti-rabbit(FoxO1)-
488 1:500 from the other lab.

15. Wash coverslips 30 times in PBS, place on secondary AB drops

16. Incubate 30 minutes at 37 ◦C

17. Prepare DAPI 1:1000, 25µl drops again

18. Incubate for 15 minutes at 37 ◦C.

19. Wash again and put on 9µl mowiol drops

20. Remove unnecessary fluoromont/mowiol with paper

21. Wait overnight at room temperature.

22. Store at 4 ◦C

8.6 Immuno fourth try at CBM around 3.-

5.12.2014

1. At least one day before! Prepare PBS with 3% BSA:

� BSA is a powder that is stored in the fridge

� To prepare 3% PBS-BSA solution dissolve 3g BSA in 100 ml PBS

� Weigh the proper amount using the fine scale

� Pour in small amount of PBS, then add the rest of PBS

� Agitate using the agitator
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� Leave in fridge for some hours for the BSA to dissolve completely
and diffuse homogeneously.

2. Prepare Triton 0.2%

� Triton is a very viscous liquid that is stored in the chemicals
wardrobe

� Prepare a stock aliquote

� To prepare the 0.2% solution, use Triton from the stock aliquote

� Dissolve in PBS: Works better when PBS is warm, start inverting
the tube as soon as possible

3. Prepare cells as described in 8.2 - also a day before.

4. Remove PBS using a vacuum device, placing the tip in the edge of the
well

5. Permeabilization: 1 ml of triton at 4 ◦C for 5 minutes at 4 ◦C

6. Wash with PBS after permeabilization!!

7. Blocking: Remove the PBS, add PBS with 3% BSA and wait for
minimum 10 minutes at room temperature (note: longer does not
matter)

8. While blocking, prepare humidity chamber: p100 plate with filter paper
+ parafilm (sticky side up), use distilled water!

9. Prepare primary antibody(ies)(see spreadsheet).

10. Place one 25µl droplet per coverslip on the parafilm in the humidity
chamber

11. Take coverslip from the 12-well plate (tweezers)

12. Place coverslip on drop of primary antibody (cells facing the antibody).

13. Leave overnight in the fridge at 4 ◦C (probably also possible: waiting 1
hour at 37 degrees)

14. Prepare secondary antibody(ies) in PBS+BSA and put 25µl drops
on humidity chamber (just as with the primary AB). All samples
used anti-mouse-555 1:500 (from the other lab), half the samples anti-
rabbit(FoxO1)-488 1:25 from our lab, half the samples anti-rabbit(FoxO1)-
488 1:500 from the other lab.
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15. Wash coverslips 30 times in PBS, place on secondary AB drops

16. Incubate 30 minutes at 37 ◦C

17. Wash 30 times in PBS

18. Prepare DAPI 1:1000, 25µl drops again

19. Incubate for 15 minutes at 37 ◦C.

20. Wash again and put on 9µl mowiol drops

21. Push coverslip lightly into the mowiol with the tweezers

22. Remove unnecessary fluoromont/mowiol with paper

23. Wait overnight at 4 ◦C

24. Store at 4 ◦C

8.7 Immuno fifth try at UAM around 14.-

16.12.2014 and sixth try 21.-23.1.2015 and

also seventh 27.-29.1.2015

1. At least one day before! Prepare PBS with 3% BSA:

� BSA is a powder that is stored in the fridge

� To prepare 3% PBS-BSA solution dissolve 3g BSA in 100 ml PBS

� Weigh the proper amount using the fine scale

� Pour in small amount of PBS, then add the rest of PBS

� Agitate using the agitator

� Leave in fridge for some hours for the BSA to dissolve completely
and diffuse homogeneously.

2. Prepare Triton 0.2%

� Triton is a very viscous liquid that is stored in the chemicals
wardrobe

� Prepare a stock aliquote

� To prepare the 0.2% solution, use Triton from the stock aliquote
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� Dissolve in PBS: Works better when PBS is warm, start inverting
the tube as soon as possible

3. Prepare cells as described in 8.2 - also a day before.

4. Remove PBS using a vacuum device, placing the tip in the edge of the
well

5. Permeabilization: 1 ml of triton at 4 ◦C for 5 minutes at 4 ◦C

6. Wash with PBS after permeabilization!!

7. Blocking: Remove the PBS, add PBS with 3% BSA and wait for
minimum 10 minutes at room temperature (note: longer does not
matter)

8. While blocking, prepare humidity chamber: p100 plate with filter paper
+ parafilm (sticky side up), use distilled water!

9. Prepare primary antibody(ies): Dilute AB in PBS+BSA!! calculate e.g.
25µl per drop plus 10µl for pipetting errors.

10. Place one 25µl droplet per coverslip on the parafilm in the humidity
chamber

11. Take coverslip from the 12-well/24-well(immuno6) plate (tweezers)

12. Place coverslip on drop of primary antibody (cells facing the antibody).

13. Leave overnight in the fridge at 4 ◦C (probably also possible: waiting 1
hour at 37 degrees)

14. Prepare secondary antibody(ies) in PBS+BSA and put 25µl drops
on humidity chamber (just as with the primary AB). All samples
used anti-mouse-555 1:500 (from the other lab), half the samples anti-
rabbit(FoxO1)-488 1:25 from our lab, half the samples anti-rabbit(FoxO1)-
488 1:500 from the other lab.

15. Wash coverslips 30 times in PBS, place on secondary AB drops

16. Incubate 30 minutes at 37 ◦C

17. Wash 30 times in PBS

18. Prepare DAPI 1:1000, 25µl drops again
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19. Incubate for 15 minutes at 37 ◦C.

20. Wash again and put on 9µl mowiol drops

21. Push coverslip lightly into the mowiol with the tweezers

22. Remove unnecessary fluoromont/mowiol with paper

23. Wait overnight at 4 ◦C

24. Store at 4 ◦C

8.8 Treating cells with ZSTK

1. Plate cells on coverslips, let adhere overnight, as in 8.2 steps 1 to 2.

2. Prepare ZSTK: 1.2µl of the aliquote in 12 ml of medium

3. Remove medium from wells

4. Wash with PBS

5. Add medium and ZSTK

6. Incubate at 37 ◦C for 2 hours

7. Proceed with fixing (8.2)
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[7] Daniel A. Charlebois, Gábor Balázsi, and Mads Kærn. Coherent feedfor-
ward transcriptional regulatory motifs enhance drug resistance. Phys.
Rev. E, 89(5), May 2014.

[8] N. Davoudzadeh, M. Tafazoli, and M.R. Sayeh. All-optical proteretic
(reversed-hysteretic) bi-stable device. Optics Communications, 331:306–
309, nov 2014.

74



[9] Yoh Dobashi, Yasutaka Watanabe, Chihiro Miwa, Sakae Suzuki, and
Shinichiro Koyama. Mammalian target of rapamycin: a central node of
complex signaling cascades. Int J Clin Exp Pathol, 4(5):476–495, 2011.

[10] James E Ferrell. Tripping the switch fantastic: how a protein kinase
cascade can convert graded inputs into switch-like outputs. Trends in
Biochemical Sciences, 21(12):460–466, dec 1996.

[11] James E Ferrell. Self-perpetuating states in signal transduction: positive
feedback, double-negative feedback and bistability. Current Opinion in
Cell Biology, 14(2):140–148, Apr 2002.

[12] James E. Ferrell and Wen Xiong. Bistability in cell signaling: How
to make continuous processes discontinuous, and reversible processes
irreversible. Chaos, 11(1):227, 2001.

[13] K. G. Foster and D. C. Fingar. Mammalian Target of Rapamycin
(mTOR): Conducting the Cellular Signaling Symphony. Journal of
Biological Chemistry, 285(19):14071–14077, mar 2010.

[14] T F Franke. PI3K/Akt: getting it right matters. Oncogene, 27(50):6473–
6488, oct 2008.

[15] David A. Fruman and Christian Rommel. PI3k and cancer: lessons,
challenges and opportunities. Nature Reviews Drug Discovery, 13(2):140–
156, jan 2014.

[16] A. Goldbeter and D. E. Koshland. Sensitivity amplification in biochemical
systems. Quart. Rev. Biophys., 15(03):555, aug 1982.

[17] K Held, H Leeb, C Lemell, and H M”uller. Skriptum zur vu 138.094
’numerische methoden und simulation’. TU Wien, Mrz 2015.

[18] Bryan T. Hennessy, Debra L. Smith, Prahlad T. Ram, Yiling Lu, and
Gordon B. Mills. Exploiting the PI3k/AKT pathway for cancer drug
discovery. Nat Rev Drug Discov, 4(12):988–1004, dec 2005.

[19] M. Christine Hollander, Gideon M. Blumenthal, and Phillip A. Dennis.
PTEN loss in the continuum of common cancers, rare syndromes and
mouse models. Nature Reviews Cancer, 11(4):289–301, apr 2011.

[20] Tweeny R Kau, Frank Schroeder, Shivapriya Ramaswamy, Cheryl L
Wojciechowski, Jean J Zhao, Thomas M Roberts, Jon Clardy, William R

75



Sellers, and Pamela A Silver. A chemical genetic screen identifies in-
hibitors of regulated nuclear export of a forkhead transcription factor in
PTEN-deficient tumor cells. Cancer Cell, 4(6):463–476, dec 2003.

[21] James Keener and James Sneyd. Mathematical Physiology, volume 8/1.
Springer-Verlag New York, 2 edition, 2009.

[22] J. Koolman, K.-H. Roehm, and J. Wirth. Color Atlas of Biochemistry,
Second Edition. Georg Thieme Verlag, 2005.

[23] D. Koshland, A Goldbeter, and J. Stock. Amplification and adaptation
in regulatory and sensory systems. Science, 217(4556):220–225, jul 1982.

[24] Nick R. LESLIE and C. Peter DOWNES. PTEN function: how normal
cells control it and tumour cells lose it. Biochem. J., 382(1):1–11, aug
2004.

[25] X. Z. Li, X. H. Wei, R. Skomski, and D. J. Sellmyer. Structure and
magnetism of Co:CoO core-shell nanoclusters. Journal of Nanoparticle
Research, 12(3):789–794, oct 2009.

[26] J. E. Lisman. A mechanism for memory storage insensitive to molecular
turnover: a bistable autophosphorylating kinase. Proceedings of the
National Academy of Sciences, 82(9):3055–3057, may 1985.

[27] Pixu Liu, Hailing Cheng, Thomas M. Roberts, and Jean J. Zhao. Tar-
geting the phosphoinositide 3-kinase pathway in cancer. Nature Reviews
Drug Discovery, 8(8):627–644, aug 2009.

[28] Christopher Louizos, Jaime A Yáñez, M Laird Forrest, and Neal M
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