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Abstract

The world is full of a large amount of data that can be analyzed to understand the behavior,
structure, inner patterns or mutual relations between various variables, explaining how
the things around us principally work. Some of the data could, however, be specific and
require a special treatment when applying standard statistical analysis. This is the case
with so called compositional data.

Compositional data represent a special type of multivariate data carrying exclusively
relative information, and they can frequently be found in various experimental fields.
The main information of interest is then given by the respective ratios between the
compositional parts, and the data are often expressed as proportions or percentages, i.e.
as data with a constant sum constraint. All this makes the corresponding statistical
analysis difficult, because compositional data do not follow the standard Euclidean
geometry, which is required for applying the usual statistical procedures. Despite the
fact that a lot of progress has been made with defining a new geometry followed by the
log-ratio methodology, there are still several open issues in the field of compositional
data analysis.

This thesis is exclusively dedicated to compositional data analysis and its specific methods
and tools developed and investigated based on the current needs of practitioners. The
aim of the thesis is to present a comprehensive concept of the statistical analysis for
compositional data and to introduce new methodological contributions in the field of
time series analysis, correlation analysis, and an extension of compositional biplots. All
new concepts are demonstrated on data examples to see the practical impact of using
the appropriate geometry and methods for compositional data.
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Kurzfassung

In der heutigen Zeit beobachten wir mehr und mehr Daten, die analysiert werden können,
um das Verhalten, die Struktur, innere Muster, oder wechselseitige Beziehungen in einer
Vielzahl von Variablen zu verstehen, und eine Erklärung zu erhalten, wie die Dinge um
uns generell zusammenhängen. Einige dieser Daten könnten jedoch von spezieller Natur
sein und eine besondere Vorbehandlung benötigen, bevor Standardmethoden der Statistik
angewandt werden. Dies ist der Fall bei sogenannten Kompositionsdaten.

Kompositionsdaten repräsentieren einen Spezialfall von multivariaten Daten, die aus-
schließlich relative Information beinhalten, und sie können häufig in einer Vielzahl von
Anwendungen gefunden werden. Die interessierende Information liegt in den entsprechen-
den Verhältnissen der kompositionellen Variablen, und die Daten sind oft ausgedrückt in
Anteilen oder Prozenten, d.h. als Daten mit konstanter Summe. Das macht die statistische
Analyse aufwändiger, weil Kompositionsdaten nicht der üblichen euklidischen Geometrie
folgen, die den meisten statistischen Prozeduren zugrunde liegt. Obwohl viele Fortschritte
zur Entwicklung einer neuen Geometrie gemacht wurden, gefolgt von der sogenannten
log-ratio Methodik, gibt es noch immer viele offene Themen im Bereich der Analyse von
Kompositionsdaten.

Diese Dissertation ist ausschließlich der Analyse von Kompositionsdaten gewidmet, mit
ihren spezifischen Methoden und Werkzeugen, entwickelt und untersucht anhand der
derzeitigen Bedürfnisse der Praxis. Das Ziel der Dissertation ist es, ein umfangreiches
Konzept der statistischen Analyse von Kompositionsdaten zu präsentieren, und neue
methodische Beiträge in den Bereichen Zeitreihenanalyse und Korrelationsanalyse zu
liefern, sowie eine Erweiterung von kompositionellen Biplots. Alle neuen Konzepte werden
auf Datenbeispiele angewendet, um den praktischen Nutzen der geeigneten Geometrie
und der Methoden für Kompositionsdaten aufzuzeigen.
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CHAPTER 1
Introduction

1.1 Introduction and history

Compositional data (CoDa) can be found in all experimental fields. They represent
a special type of multivariate data that provide relative information between their
components, i.e. they describe the parts of some given whole. Considering the fact that
only the ratios are informative, compositional data occur frequently in geochemistry and
biosciences, but also in fields such as economics or political sciences. The scientists are
then more interested in the data structure provided by the ratios than in the absolute
mass of compounds depending on the sample size. These observations are thus called
compositional data, or compositions, and they mostly appear as proportions, percentages
or frequencies.

A simple example can be given to understand the basis of compositional data and to
distinguish the different interest of the data analysis and methods. Let us consider the
famous cocktail called Margarita. One cocktail of Margarita consists of mixing 3.5 cl
of tequila, 2 cl of Cointreau (triple sec) and 1.5 cl of freshly squeezed lime juice. In
mathematical terms, we obtain a composition x = (3.5, 2, 1.5) with the sum κ = 7. To
prepare two cocktails of Margarita, we can simply double the amounts of ingredients
to x∗ = (7, 4, 3). The total sum has changed to κ∗ = 14, but the ratios between the
compounds are unchanged. If we change the structure of ingredients, the resulting cocktail
would not be the famous Margarita, but we would shake another drink. Such easy example
shows why the relative information is important when dealing with compositional data.
The existence of this type of data was discovered by the failure of standard statistical
methods applied on them.

The starting point for the statistical analysis of compositional data can be dated back to
a paper by Pearson (1897), where the problem of so called spurious correlation and its
interpretation was pointed out. The paper describes the difficulties obtained by applying
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1. Introduction

standard correlation analysis to data with constant sum constraint. The criticism of the
application of standard multivariate analysis to compositional data continued by Chayes
(1960) in the interpretation of the product-moment correlation between components of a
geochemical composition, with negative bias as the distorting factor from the viewpoint of
any sensible interpretation. Nevertheless, the findings still did not lead to start building
a new appropriate methodology for working with compositional data. The main step
towards a proper compositional approach was done by Aitchison (1986), who decided
to define compositions in terms of ratios between parts and stated that the information
carried by compositional data is relative. It was also Aitchison (1986), who described
the specific principles for compositional data and came up with an idea that a log-ratio
(logarithm of a ratio) transformation provides a one-to-one mapping onto a real space
and started to build a methodology based on a variety of log-ratio coordinates. The
main advantage of using log-ratio coordinates enables to use standard unconstrained
multivariate statistics applied to transformed data with a possibility of coming back to
the simplex.

In the following years, it turned out that compositional data are not restricted entirely
to observations with a constant sum constraint, proportions or percentages, but the
concept covers all observations carrying relative information with a possibility of being
described with any prescribed sum constraint without altering the ratios between the
parts (Pawlowsky-Glahn and Egozcue, 2001). Moreover, the Aitchison geometry with the
Euclidean vector space structure was introduced (Pawlowsky-Glahn and Egozcue, 2001)
in order to express compositions in proper log-ratio coordinates followed by applying
standard statistical methods. Recently, compositional data analysis has consisted in repre-
senting the data in a log-ratio type of coordinates, applying the standard statistical tools
on the coordinates treated as real random variables followed by the final interpretation.
The interpretation of the resulting models can then carried out either in coordinates, or in
terms of the original units, called the principle of working in coordinates (Mateu-Figueras
et al., 2011).

In recent years, various statistical methods have been developed for or adjusted to the
field of compositional data with respect to their special geometric properties. This
dissertation consists of a collection of papers describing exclusively tools and methods
for compositional data.

1.2 Geometrical aspects of compositional data

The geometry of compositional data is a very important issue for enhancing statistical
methods when working with this type of data. Compositions are naturally represented as
closed data, where the constant sum constraint influences their sample space. Nevertheless,
data with some constraint do not follow the well-known Euclidean geometry traditionally
used for any kind of statistical analysis. The natural sample space for compositional data
is the simplex. For this reason, the proper geometry on the simplex has to be established.

2



1.2. Geometrical aspects of compositional data

1.2.1 Principles

Compositional data are characterized as multivariate observations containing relative
contributions of parts on a whole. In mathematical terms, a D-part composition is a
vector x = (x1, . . . , xD) with the simplex as the sample space

SD =
{

x = (x1, . . . , xD) : xi > 0 (i = 1, . . . , D),
D∑
i=1

xi = κ

}
, (1.1)

where κ is a given constant. Frequently in practice, the constant κ is chosen to be one,
as a unit sum constraint. As it was described in the introduction, an arbitrary prescribed
sum constraint does not change the information contained in the ratios between the
parts.

The compositions are usually represented as vectors of two or more components, thus
omitting one component should not change the resulting values. For this reason, compo-
sitional data analysis is meaningful only when three important conditions are fulfilled:
scale invariance, subcompositional coherence and permutation invariance (Aitchison,
1986).

Scale invariance

This principle assumes that vectors with proportional components represent the same
composition. The vectors of proportional positive components form an equivalence class.
The selection of representatives of the equivalent class can be achieved by applying the
closure operation. The closure for a composition x = (x1, . . . , xD) is defined as

C(x) =
(

κx1∑D
i=1 xi

, · · · , κxD∑D
i=1 xi

)
. (1.2)

The set of vectors with D positive components summing up to the constant κ form the
D-part simplex, SD. The size and the total weight of the whole is irrelevant, when
considering the compositional data analysis. By applying the closure operation, the data
from samples with different sizes can be compared. The statistical analysis is then scaling
invariant, when it provides the same answer independent from the value κ.

Considering the former example with Margarita and applying a closure operation on the
cocktail composition with κ = 100, percentages are obtained and the total sum of ingre-
dients has been filtered out. The new closed composition is then x∗ = (50, 28.57, 21.43)
containing exactly the same information. Moreover, the percentages tell us how to
prepare an arbitrary amount of drinks.

Subcompositional coherence

A subcomposition is a subset of the initial parts of the original composition that is formed
by reclosing the vector of the chosen components. Explicitly, a subcomposition xS with
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1. Introduction

s < D parts from a composition x is obtained by applying a closure operation to the
subvector (xi1 , xi2 , . . . , xis) of x, where the set of subscripts S = {i1, . . . , is} indicates
which parts are selected in the subcomposition (Pawlowsky-Glahn and Buccianti, 2011).
It is obvious that analyses concerning a subset of parts must not depend on other
non-involved parts. Moreover, if we add a new random component and work with the
resulting (D + 1)-part composition, the result should not change.

There are two additional principles related to subcompositional coherence. First, the
principle of scale invariance should hold for any of the possible subcompositions, keeping
the ratios of parts. The second one is called subcompositional dominance which states if
the distance or divergence is used to compare compositions, this distance or divergence
should be greater or equal to that obtained comparing the corresponding subcompositions.

Permutation invariance

Last but not least, the conclusions and results of a compositional analysis should not
depend on the order of the parts given in the data set. Based on the cocktail example,
this means that the order of the added ingredients should not affect the taste of the
resulting drink.

1.2.2 Aitchison geometry

Working with compositional data requires establishing a proper geometry on the simplex
SD to fulfill the conditions from function 1.2.1. The basic operations used on the vector
space structure of the simplex are based on the closure operation and they represent a
parallel operation to addition and multiplication by a constant in the real space. Consider
the compositions x,y ∈ SD. The perturbation of x with y is defined as the composition

x⊕ y = C(x1y1, x2y2, . . . , xDyD), (1.3)

and powering of x by a real number α as the composition

α� x = C(xα1 , xα2 , . . . , xαD). (1.4)

Then it can be shown that x⊕ n = x for n = C(1, 1, . . . , 1), thus the composition with
equal parts is the neutral element of perturbation. Using the opposite element of y,
y−1 = C(y−1

1 , y−1
2 , . . . , y−1

D ), the inverse perturbation 	 can be defined as

x	 y = x⊕ y−1. (1.5)

The simplex with operations perturbation and powering, (SD,⊕,�), represents a vector
space. Furthermore, the following inner product with its associated norm and distance

〈x,y〉a = 1
2D

D∑
i=1

D∑
j=1

ln xi
xj

ln yi
yj
, (1.6)

‖x‖2a = 〈x,x〉a, (1.7)

4



1.2. Geometrical aspects of compositional data

da(x,y) = ‖x	 y‖a, (1.8)

can be used to obtain a finite (D−1)-dimensional Hilbert space structure. It is important
to point out that this is Euclidean vector space structure on the simplex (Billheimer
et al., 2001; Pawlowsky-Glahn and Egozcue, 2001). Then the properties of (SD,⊕,�)
refer to the so called Aitchison geometry on the simplex, as well as to the Aitchison
distance, norm and inner product, denoted by the subscript a.

1.2.3 Log-ratio methodology

We already know that the simplex SD is a (D − 1)-dimensional subset of D-dimensional
real space. Therefore, compositions from SD are usually expressed in terms of a canonical
basis {e1, . . . , eD} of RD. Then any composition x ∈ SD can be written as

x = x1 · (1, 0, . . . , 0) + x2 · (0, 1, . . . , 0) + · · ·+ xD · (0, . . . , 0, 1). (1.9)

Nevertheless, the set of vectors {e1, . . . , eD} is neither a basis nor a generating system on
SD with respect to the given vector space structure. Despite that Equation 1.9 represents
a convex linear combination on RD, it is not a linear combination on SD, because the
sum and the product does not stand for a closed operation on the simplex to be able to
capture the property of scale invariance.

Building the basis within the Aitchison geometry requires finding a generating system of
SD. Such a generating system can be obtained as {w1, . . . ,wD} with

wi = C(1, 1, . . . , e, . . . , 1, 1) for i = 1, . . . , D, (1.10)

where e is the i-th component. Then, any composition x ∈ SD can be expressed as

x = (ln x1 �w1)⊕ (ln x2 �w2)⊕ · · · ⊕ (ln xD �wD). (1.11)

Since the closure operation included in perturbation and powering suggests the scale
invariance, adding an arbitrary constant does not change x. Thus the following equivalent
expression can be considered

x =
(

ln x1
g(x) �w1

)
⊕
(

ln x2
g(x) �w2

)
⊕ · · · ⊕

(
ln xD
g(x) �wD

)
, (1.12)

where g(x) stands for the geometric mean of all components. The coefficients coming
from Equation (1.12) represent the centered log-ratio (clr) transformation introduced by
Aitchison (1986),

y = (y1, . . . , yD) = clr(x) =
(

ln x1
g(x) , ln

x2
g(x) , . . . , ln

xD
g(x)

)
. (1.13)

The clr coordinates represent a one-to-one mapping from SD to RD, so it is possible to
use the original variable names for the interpretation of statistical results based on clr

5



1. Introduction

transformed data. However, the resulting data are collinear due to the new constraint
y1 + · · ·+ yD = 0, and the corresponding covariance matrix is singular.

Considering the same generating system {w1, . . . ,wD}, another basis can be obtained
by taking any (D − 1) vectors, for instance {w1, . . . ,wD−1}. Then any compositional
vector x ∈ SD can be expressed as

x =
(

ln x1
xD
�w1

)
⊕
(

ln x2
xD
�w2

)
⊕ · · · ⊕

(
ln xD−1

xD
�wD

)
, (1.14)

where the coefficients belong to the additive log-ratio (alr) transformation defined by
Aitchison (1986)

alr(x) =
(

ln x1
xD

, ln x2
xD

, . . . , ln xD−1
xD

)
. (1.15)

The basis {w1, . . . ,wD−1} is not orthogonal, which can be shown by computing the inner
product and the norm (Egozcue and Pawlowsky-Glahn, 2005). The alr transformation
is then not symmetrical in the components. Moreover, the essential problem with alr
coordinates is the non-isometric character of this transformation.

The Euclidean vector space structure of the simplex assures the existence of an or-
thonormal basis with respect to the inner product by applying the usual Gram-Schmidt
orthonormalization to any given basis. This assumption formed the background for
introducing the isometric log-ratio (ilr) transformation by Egozcue et al. (2003). This
transformation results in orthonormal coordinates z = (z1, . . . , zD−1) with respect to
the Aitchison geometry, and it also leads to an orthonormal basis of the hyperplane
H : y1 + · · ·+ yD = 0, formed by the clr transformation. Moreover, there exists a linear
relationship between the clr variables and the orthonormal coordinates,

y = Vz. (1.16)

The columns of the D× (D−1) matrix V = (v1, . . . ,vD−1) are orthonormal basis vectors
on the hyperplane H,

vD−i =
√

i

i+ 1

(
0, . . . , 0, 1,−1

i
, . . . ,−1

i

)>
, i = 1, . . . , D − 1, (1.17)

resulting in the ilr coordinates z.

There are infinitely many possibilities to construct an orthonormal basis. A special choice
of orthonormal coordinates that allows to interpret them in terms of the contributions
of the single compositional parts is as follows (Filzmoser et al., 2012). Consider the
compositions (xl, x1, . . . , xl−1, xl+1, . . . , xD), which are re-arranged such that the l-th part
is at the first position. We will use the notation x(l) = (x(l)

1 , x
(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ),

where each part with index l = 1, . . . , D could be placed on the first position, and the
sequence of the other parts remains unchanged. The ilr transformation of x(l) results in

6



1.2. Geometrical aspects of compositional data

z(l) = (z(l)
1 , . . . , z

(l)
D−1), where the components are defined by

z
(l)
i =

√
D − i

D − i+ 1 ln x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (1.18)

Then, the first ilr variable z(l)
1 explains all the relative information (log-ratios) about

the original compositional part xl. The coordinates z(l)
2 , . . . , z

(l)
D−1 explain the remaining

log-ratios in the composition (Fišerová and Hron, 2011). Note that the only important
position is that of x(l)

1 , because it can be fully explained by z(l)
1 . The other parts can be

chosen arbitrarily, because different ilr coordinates are orthogonal rotations of each other
(Egozcue et al., 2003). Note that the relation

yl =

√
D − 1
D

z
(l)
1 , l = 1, . . . , D, (1.19)

confirms our preliminary requirement on interpretability of the resulting coordinates, for
D →∞ both variables approach the same values. On the other hand, both yl and z

(l)
1

thus share also interpretational doubts, mentioned by defining the clr variables.

The advantage of obtaining an interpretation for each compositional part is redeemed by
the necessity of constructing D coordinate systems, where always just one variable is of
primary interest (at the first position). It is obvious that always the first coordinate z(l)

1
in each given system corresponds to the clr coordinate yl, for l = 1, . . . , D, differing by
the constant

√
D
D−1 .

Another strategy, how to obtain an orthonormal basis of the simplex and their respective
ilr coordinates with useful interpretation properties, is called sequential binary partitioning
(Egozcue and Pawlowsky-Glahn, 2005). It enables to build a special orthonormal basis
with coordinates called balances. This procedure is explained in detail in Chapter 4.

1.2.4 Center and variability

As the compositional data follow the Aitchison geometry on the simplex SD, the standard
descriptive statistics is not very informative in this case. Central tendency and dispersion,
the alternatives of the arithmetic mean and variance or standard deviation should be
properly defined, since they are described in the framework of the Euclidean geometry
in real space. For this reason, the concept of the center (Aitchison, 1997), the variation
matrix and the total variance (Aitchison, 1986) was introduced.

Following Pawlowsky-Glahn and Egozcue (2001), the center of a random composition
x ∈ SD is defined as cen(x) that minimizes the expression E[d2

a(x, cen(x))], thus

cen(x) = C(exp(E(ln(x)))). (1.20)

The definition of the center of x can then be expressed as a closed geometric mean
(Aitchison, 1997) and represents a mean of the simplex as a sample space.

7



1. Introduction

A measure of global dispersion of a compositional sample is called the total variance that
can be defined as

TotVar(x) = 1
2D

D∑
i=1

D∑
j=1

var
(

ln xi
xj

)
, (1.21)

where var denotes the variance. Furthermore, it is also possible to estimate the center
and the total variance using the ilr components and their properties corresponding to the
estimators of the mean and the variance-covariance in real sample spaces (Pawlowsky-
Glahn and Egozcue, 2001).

The dispersion of a compositional sample can also be described by the variation matrix
(Aitchison, 1986). The variation matrix of a D-part composition is a symmetric matrix
of order D, defined as

T = [tij ] =
[
var
(

ln xi
xj

)]
, i, j = 1, . . . , D, (1.22)

with zeros on the diagonal. When the elements of T are close to zero, the ratio xi/xj is
nearly constant, i.e. the two parts xi and xj are almost proportional. On the contrary,
high variability of the log-ratio indicates very different ratios of two parts among all the
observations.

The log-ratios in (1.22) can also be rescaled according to (1.18) so that they correspond,
up to orientation, to the normed coordinate of the two-part composition (xi, xj). The
resulting normalized variation matrix (Pawlowsky-Glahn et al., 2015) is defined as

T∗ = [t∗ij ] =
[
var
( 1√

2
ln xi
xj

)]
, i, j = 1, . . . , D, (1.23)

where t∗ij stands for the usual (sample) variance of the normalized log-ratio of parts i
and j (balance). Subsequently, the relation between T and T∗ is given as

T = 1
2T∗. (1.24)

The measure of variability could be normalized to the range (0,1] as

τij = exp(−var(t∗ij)) (1.25)

for 1 ≤ i, j ≤ D, i 6= j (Buccianti and Pawlowsky-Glahn, 2005; Filzmoser et al., 2010).
High variability of the log-ratio then tends to a result approaching zero and, conversely,
small variability is reflected by values of τij close to one with the limiting case of perfect
proportionality.

1.3 Compositional data analysis in practice
Compositional data occur frequently in practice, because most measured features around
us are expressed in terms of contributions to some given whole. To demonstrate different
properties of compositional data, a practical example is considered in the following.
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1.3. Compositional data analysis in practice

1.3.1 Example: Employment data

Consider a data set including the number of employed people in the countries of the
European Union; the data come from EUROSTAT (Eurostat, the statistical office of the
European Union, 2013) and they play an important role for an application also presented
in Chapter 3. The six-part composition describes the number of employed people
in different fields of economic activity: agriculture, forestry and fishing (agriculture);
industry and construction (industry); financial and insurance activities (finance); real
estate activities (real estate); public administration, defense, education, human health
and social work activities (public); arts, entertainment, recreation and other service
activities (arts). The data are shown in Table 1.1.

agri finance real estate public arts industry
BE 53.00 157.00 26.10 1474.10 217.20 1340.70
BG 189.00 52.70 7.80 563.60 92.30 1061.90
CZ 149.20 136.70 45.70 957.80 194.50 1513.30
DK 69.60 82.10 26.80 896.90 140.50 767.00
DE 620.30 1313.40 277.30 10292.90 1945.60 11532.70
EE 29.10 10.50 10.70 139.40 26.60 209.20
IE 583.00 85.80 91.00 10.30 487.10 99.30
GR 490.00 112.70 5.90 857.30 177.20 1336.90
ES 753.20 424.80 96.20 3860.50 1380.30 6121.60
FR 773.80 857.30 318.20 7978.20 1710.10 7595.10
HR 198.10 35.30 2.70 276.20 52.80 460.90
IT 849.10 642.90 141.80 4641.60 1750.30 7470.10
CY 11.30 23.30 2.20 70.00 42.20 158.30
LV 73.30 24.20 23.00 202.30 41.40 293.00
LT 112.20 18.20 13.30 293.20 52.70 438.60
LU 3.10 29.50 1.60 72.50 25.90 51.40
HU 201.10 93.90 23.00 895.80 156.80 1217.20
MT 1.80 7.70 0.80 47.20 8.20 60.20
NL 208.30 220.80 64.80 2464.60 353.90 2323.60
AT 204.60 148.40 37.20 933.50 196.80 1482.40
PL 1960.20 393.70 146.90 3121.10 451.80 4768.10
PT 486.00 97.80 23.60 1038.80 281.40 1484.80
RO 2682.30 140.10 15.80 1228.40 237.80 2519.80
SI 77.10 31.30 2.70 195.00 31.10 257.80
SK 75.40 51.90 16.00 503.50 69.30 784.70
FI 102.80 51.10 23.30 696.70 142.30 705.40
SE 95.40 95.40 66.90 1508.60 231.70 1254.10
UK 347.20 1201.50 332.20 8741.00 1601.70 9098.20

Table 1.1: Number of employed people (in thousands) in the member states of the
European Union in 2013.
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1. Introduction

The data represent the structure of employment based on economic activity. The data
set contains the absolute values which differ a lot among the different countries. This
fact is given by the size of total employed population in different states. However, we
are interested in the relative information contained in the ratios between variables. For
instance, we can look at two particular countries like Austria and France. It is obvious
that the number of people working in France is much higher than in Austria due to the
number of inhabitants. But looking exclusively on the ratios, they yield very similar
results of the relative behavior.

1.3.2 Graphical representation

For a graphical representation of three-part compositions (D = 3), the ternary diagram
is widely used, as it is built as a two-dimensional plot. This graphical tool is widely
known for example in geology or petrology. The ternary diagram is an equitorial triangle,
where its vertices represent three parts of the composition. Each vertex is associated
with one part. The interpretation of data points in the ternary diagram is pretty simple.
When the given observation lies close to the vertex, it means that the proportion of the
corresponding variable represented by the vertex is high. If the point is situated directly
on the link between vertices, the proportion of the variable represented by the opposite
vertex is zero. A second possible interpretation is that all points on a straight line through
one of the corners have equal relative portions of the two remaining components. The
data point lying in the center of the ternary diagram, called baricenter, then has equal
proportions on all observed variables.

Figure 1.1 shows the ternary diagram for the employment data example. A three-part
subcomposition, with parts agri, finance and arts, is chosen to be depicted in the ternary
diagram and in the scatter plot of coordinates.
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Figure 1.1: Ternary diagram and ilr coordinates for employment data
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1.3. Compositional data analysis in practice

Comparing the ternary diagram with the scatter plot of ilr coordinates nicely indicates
the different behavior of data points in the graphs. The ternary diagram clearly shows
the proportional structure of the compositional parts. For instance, Romania yields
a high proportion of people employed in agriculture, while variables arts and finance
are negligible. On the other hand, Luxembourg shows low proportion of agricultural
employment against financial activities and activities corresponding to the variable arts.

In the case of the scatter plot, following ilr coordinates based on Equation (1.18) were
considered,

z1 =
√

2
3 ln x1√

x2x3
, (1.26)

z2 =
√

1
2 ln x2

x3
, (1.27)

in order to describe all relative information about the variable agri by the coordinate z1.
Romania is then located on the right, showing a high value of the coordinate z1, followed
by Croatia and Poland. On the other side with small values of z1, it is possible to find
Luxembourg and Malta. However, the ilr coordinates can be chosen in a different way
with respect to another variable. The use of coordinates enables us to apply standard
statistical methods, because we transformed the compositions into the Euclidean vector
space.

1.3.3 Absolute vs. relative information

The main idea of working with compositional data consists of realizing that the infor-
mation of interest contained in the data is relative. It is not a coincidence that the
problems of standard statistical analyses applied on compositional data was pointed out
by geochemists. In geochemistry, all elements present in a sample are rarely analyzed
jointly and it is very common to work only with subcompositions.

Figure 1.2 shows how important the aspect of relative versus absolute information is for
the analysis. The data coming from our employment example are again investigated.
To see the structure, the data were recalculated into percentages with respect to the
total employment in the given country. For illustration, the variable industry is taken
into account and plotted with focus on the absolute information (left) and the relative
information given by the clr transformation of the values (right). Comparing these two
European maps, both approaches show quite different patterns across the countries. For
instance, looking at the absolute values (percentages), the countries with the highest
proportion of industrial employment are Austria, Bulgaria, Czech Republic and Slovakia.
Applying the clr transformation, the structure of employment in industry has changed a
lot and the relative contribution of industry is more significant in countries like Croatia
and Greece. The completely different behavior is visible also for the Baltic countries,
and for example for Romania. Romania reveals quite a small percentage of industrial
employment, but from a relative point of view the performance is much higher. The
opposite pattern is then shown by Austria, where the contribution to employment in the
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1. Introduction

industrial sector is relatively smaller then it is observed by the map covering absolute
information. The difference between these two maps is given by the dominance of the
agricultural economic activity (agri) over the sample, that is clearly visible in Figure 1.3.
After using the clr transformation, the data are no longer dominated by the compositional
part agri and the true data structure with the relations between the variables are shown.
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Figure 1.2: The variable industry of the employment data: absolute information expressed
by percentages (left) and relative information expressed by clr coordinates (right). The
color scale is according to regular quantiles of the distribution.

1.4 Principal component analysis

Principal component analysis (PCA) represents a statistical method to find a set of
orthogonal directions in a data set, which maximize the variance of the data projected
on them (Jolliffe, 2013). These directions provide an uncorrelated representation of
the original data structure and they are called principal components. The number of
principal components is less than or equal to the number of original variables. Then the
first principal component has maximum variance among all linear combinations and thus
it explains as much variation in the data as possible. Accordingly, the second principal
component is the linear combination describing a maximum of the remaining variation
with the constraint that the correlation between the first and second principal component
is zero, and so on. The resulting vectors form an uncorrelated orthogonal basis set. It is
apparent that PCA can not only reveal patterns in the data structure, but it is also a
useful tool for dimension reduction. Principal component analysis belongs to the most
important methods of multivariate statistics and it represents also the essential method
for various multivariate procedures. For this reason, PCA for compositional data is of
primary interest and should be investigated.

The compositional approach to principal component analysis dates back to Aitchison
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1.4. Principal component analysis

(1983, 1986) in the sense of finding a useful transformation. The main idea is to transform
the compositional data to the real Euclidean space RD, where standard PCA can be
applied. A useful possibility seems to use the clr coordinates, because they represent a
one-to-one mapping from the simplex SD to the real space RD. This transformation treats
all components symmetrically by dividing by the geometric mean, and therefore it allows
to use the original variable names for the interpretation. However, these coordinates
result in singularity, because

∑D
i=1 yi = 0. Then PCA applied on the clr-transformed

data will result in D− 1 principal components. This problem can be avoided by using the
ilr coordinates, which can be derived from the clr transformation by using their mutual
relationship (1.16).

For the purpose of the principal component analysis, the matrix expression of the clr
coefficients is given as

y = F log(x), (1.28)

where

F =

1 −1
. . . ...

1 −1

 , (1.29)

where the undisplayed elements of the matrix are zero.

Now, we can assume an n×D data matrix X with n compositions xi, i = 1, . . . , n, in
the rows and apply (1.28) to each row to obtain a matrix of clr coefficients

Y = log(X)F>, (1.30)

and transform it into the n× (D − 1) matrix Z of corresponding ilr coordinates

Z = YV, (1.31)

where V = (v1, . . . ,vD−1) (with V>V = ID−1), that is the D×(D−1) matrix containing
orthonormal basis vectors from (1.17) on the hyperplane H. Denote T (Z) a location
estimator and C(Z) a covariance estimator for the ilr transformed data. After singular
value decomposition of C(Z) = GzLzG>z with the diagonal matrix Lz of eigenvalues and
the matrix Gz of eigenvectors of C(Z), the PCA transformation can be defined as

Z∗ = [Z− 1T (Z)>]Gz, (1.32)

with 1 standing for a vector of n ones (Filzmoser et al., 2009a). If the original data
matrix X has full rank D, then Z will have full rank D − 1 with scores Z∗ and loadings
Gz, represented by the columns of the respective matrices. The main problem arises
from the interpretation, since scores and loading obtained for ilr coordinates are usually
not interpretable. The solution is to go simply back to the clr space by back-transforming
the results. Then the scores are

Y∗ = Z∗V>, (1.33)
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1. Introduction

and for an arbitrary affine equivariant covariance estimator we obtain

C(Y) = VC(Z)V> = VGzLzG>z V>. (1.34)

The resulting back-transformed loading matrix is

Gy = VGz. (1.35)

Gy represents the matrix of eigenvectors to the nonzero eigenvalues of C(Y), which are
the same as for C(Z), and moreover, the explained variance corresponding to the chosen
number of principal components remains unchanged.

The convenience of such introduced notation is given by the possible extension with
properties of robustness by replacing the classical estimators of location T (Z) and
covariance C(Z) by robust versions.
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Figure 1.3: Standard (left) and compositional (right) biplot for the employment data.

Principal component analysis is widely used for constructing biplots, the most popular
method of visualizing the resulting loadings and scores of a dimension reduction technique
applied to multivariate data. It is possible to compare PCA results for the standard
and compositional approach on the given example with employment data. Figure 1.3
shows biplots constructed in two different ways. The left plot represents a biplot based
on the percentage data of total employment, where standard PCA was used. The right
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1.5. Correlation analysis

one is called compositional biplot, where PCA is applied on clr coordinates and thus the
original values in thousands of employees can be used for this analysis. Although the total
variance explained by the first two components is very similar, we can see quite different
properties of such constructed biplots. On the standard biplot, Romania lies far away
from the rest of the countries and also its location does not really correspond with the real
structure of employment by economic activity in this country. Romania is well known for
being an agricultural country, so one would expect Romania to be situated with respect
to the variable agri as it is on the compositional biplot. A similar inappropriate behavior
is observed by the countries Luxembourg and Bulgaria, where Bulgaria is placed in the
direction of the variable finance, and on the other hand, Luxembourg is in between real
estate and agri. Moreover, Romania located far away from the main group of observations
may suggest a possibility that this country can be considered as an outlier. Accordingly,
a robust extension of the biplot construction should be taken into account in this case to
investigate possible outlying observations (Hron and Filzmoser, 2014).

The compositional biplot then shows nice geographic patterns like the Baltic countries
together with Poland or central European states concentrated in the middle of the biplot.
There is also a group of countries like Cyprus, Luxembourg and Malta, located close
to the ray of the variable finance, that corresponds to the fact that the gross domestic
product of these countries is dominated by the financial sector.

The construction of a biplot will be fully described in Chapter 3. One can be also
interested in the influence of some other variables on the structure of employment in
these countries. For this reason, a new tool called ilr biplot is introduced in Chapter 3
extended also by how to incorporate non-compositional external variables to investigate
their mutual relations.

1.5 Correlation analysis

Correlation analysis represents one of the crucial statistical problems when applying
the standard statistical analysis on compositional data. Although correlation analysis
still represents a widely used tool to express the strength of a linear relation between
compositional parts in a quantitative way, it is not directly applicable on them (Pearson,
1897). Standard correlation measures are based on variances and covariances that are
defined for the Euclidean space and not for the simplex. The definition of the center and
variability for compositional data was already introduced in Section 1.2.4.

The term spurious correlation arises quite often in the case of compositional data and
it was already mentioned by Pearson (1897) in his seminal paper. The main idea of
spurious correlation is shown by the fact that the relation between compositional parts
may completely change, when only a subcomposition, coming out of the whole given
composition, is considered. The problem of spurious correlation can be described by
using the employment data example.

We can consider different attempts to analyze the mutual relations in the employment
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data. A first approach consists in computing usual Pearson correlation coefficients for
the raw data of absolute numbers in thousands of employees (Table 1.1). Correlations
obtained in this way are obviously influenced by the size of the total employment in
the respective country, which is the main factor dominating the resulting correlation
coefficients. Thus the corresponding values are all positive, mostly larger than 0.9. Some
of these correlations are shown in Table 1.2. The size of the total employment can be
filtered out by dividing each number of employees by the total size in a country to obtain
percentages for each category of economic activities. The correlation coefficients are
displayed in the second row of Table 1.2 and the correlation matrix is completely different
from the correlation matrix for absolute values of employees. The high positive values
of correlations totally disappeared in this case, that supports the impression of high
correlations being caused by a size effect. However, expressing our data in percentages
induces also some negative correlations. This fact is caused by analyzing correlations of
closed data, which are vectors with positive components adding up to a constant, in this
case 100. This effect is called negative bias and it was described by Aitchison (1986) and
is represented by the relation

cov(x1, x2) + cov(x1, x3) + · · ·+ cov(x1, xD) = −var(x1). (1.36)

The presence of negative bias in the covariance structure on the simplex SD is very
crucial when attempting to apply standard correlation analysis on compositional data.
For this reason, using standard correlation analysis for compositional data produces
results that do not follow the properties of scale independence and subcompositional
coherence, which are essential for working with compositions.

One would intuitively expect that conclusions obtained by one analyst should be compat-
ible with results obtained by another one, for instance by taking some subcomposition
of our sample. Taking into account only subcompositions is common in practice. For
example, in geochemistry, all elements present in a sample are rarely analyzed and it
is preferred to work only with subcompositions. With respect to our example, another
approach to correlation analysis is considered by taking only a subcomposition of in-
dustry, finance, real estate and public, and investigating the mutual relations between
these components. The corresponding correlation coefficients are then available in Table
1.2. Nevertheless, one would expect to see coherent results when analyzing different
subcompositions of the original data, which is not the case occurred for the employment
data set. This phenomenon is called spurious correlation and causes inconsistencies when
applying standard multivariate methods based on covariances on the compositional data.
For this reason, it would be convenient to find a new alternative approach to correlation
analysis for compositional data which allows to avoid the problems mentioned above.

One possible solution to measuring an association between compositional parts is the
variation matrix (1.22) introduced by Aitchison (1986). When the elements of the
variation matrix are close to zero, it can be stated that these two variables, parts, are
proportional. The opposite is then given by the high values of ratios, which indicate a
high relative variability among all the observations.
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1.5. Correlation analysis

industry industry industry industry finance finance
finance real estate public arts real estate public

absolute 0.974 0.924 0.973 0.970 0.958 0.991
percentages -0.088 -0.022 -0.428 -0.212 -0.137 0.197

subcomposition -0.502 -0.208 -0.911 -0.177 0.116
finance public public real estate

arts real estate arts arts
absolute 0.936 0.969 0.943 0.897

percentages 0.647 0.303 0.120 -0.013
subcomposition 0.199

Table 1.2: Spurious correlation: Pearson correlation coefficients for the employment data.

In Table 1.3, the variation matrix for the employment data example is illustrated. For
instance, the corresponding element of the variation matrix for public and industry is 0.08,
close to zero, which demonstrates the fact that these two parts are almost proportional
among all the observations given in the data set. The same can be observed for the
variables arts and finance, or industry and arts. On the other hand, agri and real estate
reveal quite low proportionality among all the countries in the EU.

industry agri finance real estate public arts
industry 0.00 0.68 0.24 0.48 0.08 0.14

agri 0.68 0.00 1.32 1.63 1.02 1.12
finance 0.24 1.32 0.00 0.64 0.18 0.12

real estate 0.48 1.63 0.64 0.00 0.36 0.47
public 0.08 1.02 0.18 0.36 0.00 0.12
arts 0.14 1.12 0.12 0.47 0.12 0.00

Table 1.3: Variation matrix for the employment data.

Focusing only on the bivariate case, the two-part subcomposition (x1, x2), the ilr coeffi-
cients (1.18) can be simplified to

z = 1√
2

ln x1
x2
. (1.37)

Then the ilr variable z is only univariate, but it contains all the relevant information
between x1 and x2 covered by the log-ratio. The variation matrix could then be normalized
by defining

corr(x1, x2) = exp(−var(z)), (1.38)

to the interval [0, 1] (Buccianti and Pawlowsky-Glahn, 2005; Filzmoser et al., 2010). Large
variability is indicated by values close to zero and small variability by values approaching
one. Nevertheless, this alternative does not fulfill the properties of the usual correlation,
especially the interpretation of positive and negative association between parts. Another
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problem related to correlation analysis for compositional data is to enable some statistical
inference, such as significance testing.

industry agri finance real estate public arts
industry 1.00 0.71 0.89 0.79 0.96 0.93

agri 0.71 1.00 0.52 0.44 0.60 0.57
finance 0.89 0.52 1.00 0.72 0.92 0.94

real estate 0.79 0.44 0.72 1.00 0.84 0.79
public 0.96 0.60 0.92 0.84 1.00 0.94
arts 0.93 0.57 0.94 0.79 0.94 1.00

Table 1.4: exp(−var(z)) for the employment data.

Correlation analysis of compositional data is meaningful only when it is applied on
orthonormal coordinates. The main approach to correlation analysis for compositional
data is based on using balances constructed mostly by sequential binary partitioning
(Egozcue and Pawlowsky-Glahn, 2005). The procedure of constructing balances is
described in detail in Chapter 4. However, all the previously mentioned approaches are
based on the ratios between two parts and the influence of other parts is completely
ignored. It would be convenient to build such balances containing also the rest of the
parts, because the association can be affected by the remaining components. Moreover, it
is necessary to symmetrize the orthonormal coordinates with respect to the investigated
parts x1 and x2 (without loss of generality). Accordingly, such built coordinates can be
constructed from two different coordinate systems resulting from permuting the parts
in a given composition and then focusing on the role of x1 or x2. The procedure of
constructing symmetric orthonormal coordinates is described in Section 4.3.

Consequently, correlations of symmetric balances can be computed for the employment
data example and compared to the previous approaches. Table 1.5 shows the resulting
Pearson correlation coefficients. Using orthonormal coordinates enables us to obtain the
correlation coefficient in the common sense of positive and negative values. Nevertheless,
special care should be devoted to the interpretation of the resulting correlation, because it
is expressed in terms of dominance of both parts to the average behavior of the rest. The
correlation coefficients presented in Table 1.5 are no longer comparable to the previous
results, because here the remaining parts are considered as well.

The problems of applying correlation analysis on compositional data are discussed in
Filzmoser and Hron (2009) and enriched by a new approach based on symmetrical
balances introduced in Chapter 4.

1.6 T spaces: incorporating a total
Compositional data were previously introduced as a special type of multivariate data
carrying relative information contained in the ratios between compositional parts. This
means that compositional data analysis usually deals with data sets where the total is
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industry agri finance real estate public arts
industry 1.00 0.61 0.09 -0.07 0.23 0.03

agri 0.61 1.00 -0.39 -0.37 -0.28 -0.35
finance 0.09 -0.39 1.00 0.00 0.49 0.70

real estate -0.07 -0.37 0.00 1.00 0.45 0.20
public 0.23 -0.28 0.49 0.45 1.00 0.39
arts 0.03 -0.35 0.70 0.20 0.39 1.00

Table 1.5: Correlations computed for symmetric balances for the employment data.

unknown or uninformative. The standard practice, the log-ratio approach for working
with compositional data is to express the observations in coordinates. Thus, the data
are projected into the simplex SD, a (D − 1)-dimensional subset of the real space RD,
by applying the closure operation (1.2), where κ is frequently chosen as one. However,
the data are then prepared for performing further compositional data analysis, but all
information about the total amount is ignored.

Nevertheless, there are some situations in practice, where both relative and absolute
information are of interest and should be taken into account to provide reasonable
results of the corresponding data analysis. For instance, this is the case in multivariate
time series analysis adjusted for compositional data, called compositional time series
(Barceló-Vidal et al., 2011). Compositional time series should be treated carefully from
the perspective of relative information contained in the ratios in investigated time points
by using the log-ratio approach. One of the typical goals of time series analysis is to
produce predictions of the future based on past and present data, and the analysis of
trends. As it was already described above, information about the total abundance is
completely ignored by using log-ratio transformations and it is not available for further
data analysis as required by time series procedures.

In general, to investigate any compositional vector x preserving also information about
the total, two alternative approaches arise frequently in practice. The first alternative
suggests to take the logarithms of each component to form ln(x). The second one
corresponds to treating a log-transformed total together with a composition in one joint
analysis. For those purposes, the new product space T = R+ × SD has been introduced
(Pawlowsky-Glahn et al., 2014).

1.6.1 Space structure of T = R+ × SD

Incorporating the total information into the analysis, the space structure of the product
space T = R+ × SD should be investigated. Firstly, the space structure of the positive
orthant RD+ needs to be analyzed by taking the logarithmic transformation of each
component for x ∈ RD+ in order to establish operations for further analysis in the product
space T . Consider a vector with D strictly positive components, x ∈ RD+ . According
to Pawlowsky-Glahn and Egozcue (2001), the logarithmic transformation applied to
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each component in RD+ induces Euclidean space structure over R. Then it is possible to
define corresponding operations on RD+ . Concretely, the Abelian group operation is called
plus-perturbation, and the external multiplication is plus-powering. In mathematical
terms, they are defined for x,y ∈ RD+ and α ∈ R as

x⊕+y = [x1 · y1, . . . , xD · yD], (1.39)

α�+x = [xα1 , . . . , xαD], (1.40)

and the respective inner product in RD+ for x,y ∈ RD+ is called plus-inner-product defined
as

〈x,y〉+ = 〈ln x, ln y〉, (1.41)

where 〈, 〉 stands for the usual Euclidean inner product in RD. Assuming the above
mentioned operations and the inner product, RD+ is a D-dimensional real Euclidean vector
space. Additionally, the associated distance and norm are defined as

d+(x,y) = d(ln x, ln y), ‖x‖+ = ‖ ln x‖, (1.42)

where d and ‖ · ‖ represent the Euclidean distance and norm in RD.

With such introduced definitions and alternative Euclidean structure concerning different
group operation ⊕+ and alternative metrics in RD+ , one can proceed to introduce the
space structure of the new product space T = R+ × SD.

Consider a vector with D strictly positive components, x ∈ RD+ , which results after
the closure operation in a D-part composition C(x) ∈ SD. The absolute information
t(x) ∈ R+ can then be defined by some appropriate function t(·), which can stand as the
total sum, the product, the arithmetic or geometric mean, or any other value related to
the respective problem.

Thus, the extended vector x̃,

x̃ = [t(x), C(x)] = [t(x), x̃1, x̃2, . . . , x̃D], (1.43)

represents an element of the product space T = R+ × SD, the set of possible values of
t(x) and C(x). As for the Aitchison geometry in Section 1.2.2, it is necessary to adopt
Euclidean space structure in T by defining appropriate operations corresponding to the
general principles for working with compositional data.

The Abelian inner group operation and the external multiplication in the product space T
are called T -perturbation and T -powering (Pawlowsky-Glahn et al., 2014). For x̃, ỹ ∈ T
and α ∈ R, they correspond to

x̃⊕T ỹ = [t(x)⊕+t(y),x⊕ay] = [t(x) · t(y), C(x̃1ỹ1, . . . , x̃DỹD)], (1.44)

α�T x̃ = [α�+t(x), α�ax] = [(t(x))α, C(x̃α1 , . . . , x̃αD)], (1.45)

20



1.6. T spaces: incorporating a total

where ⊕+ and �+ represent perturbation and powering in R+ and ⊕a and �a perturbation
and powering in SD as introduced in Section 1.2.2. The inner product in T is called
T -inner-product and for x̃, ỹ ∈ T , it is defined as

〈x̃, ỹ〉T = 〈t(x), t(y)〉+ + 〈C(x), C(y)〉a, (1.46)

where 〈, 〉+ stands for the inner product in R+ and 〈, 〉a for the Aitchison inner product
in SD (Pawlowsky-Glahn and Egozcue, 2001).

As (⊕+,�+, 〈, 〉+) and (⊕a,�a, 〈, 〉a) define the operations and metrics in R+ and SD,
respectively the same then holds for (⊕T , �T and 〈, 〉T ) in T . Consequently, the product
space T = R+ × SD with T -perturbation (⊕T ), T -powering (�T ) and T -inner product
(〈, 〉T ) is a D-dimensional Euclidean vector space on R. The definition of the Euclidean
vector space allows us to define the corresponding square distance in T as

d2
T (x̃, ỹ) = d2

+(t(x), t(y)) + d2
a(C(x), C(y)) = ln2 t(x)

t(y) + d2
a(C(x), C(y)). (1.47)

1.6.2 Practical consequences

In practical situations, it is important to consider if the total abundance is of interest and
if it should be part of the compositional data analysis. The next step is then to decide,
which is the relevant total function t(·) to use. The main task is to find an isometry
between RD+ and T = R+ × SD, because then the mathematical properties between
these two spaces are equivalent. In general, an arbitrary value t(·) related to the specific
problem can be appointed. However, it is obvious that a special treatment is required to
establish the conditions of compatibility on the total function t(·), so that the statistics
or calculus applied on C(x) are compatible with those performed on T = R+ × SD. Two
special cases, the total sum and the product total, with all their properties are discussed
in detail in Pawlowsky-Glahn et al. (2014), as well as their characteristics of centers and
metric variances.

Figure 1.4 shows compositional biplots constructed for the employment data example
including the total abundance information in the way described above. Compositional
parts are treated in the usual way for constructing a biplot, therefore the clr coordinates
are used. The total is then considered in the logarithmized and scaled form in order to
investigate the mutual relations between compositional parts and the total. It is clear
that incorporating the total either as the total sum, or the product total, yield quite
similar results, only with few distinctions, in this case. However, this does not represent
a general rule. We can observe that the total information has a significant effect in the
whole data set. The observations located in the direction of the ray standing for the
total are countries with a high number of inhabitants and also with the total employed
population. The importance of the total is also pointed out by the length of the link,
which is very dominating in the biplot together with the variable agri. In addition, the
total variance explained by the first two principal components is much lower than in the
case of considering the variables without a total (see Figure 1.3).
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Figure 1.4: Biplot for the employment data including a total: the total sum (left) and
the product total (right).

A particular application of T spaces will be demonstrated in Chapter 2, where multivariate
time series for compositional data are investigated and the total abundance is incorporated
as a total sum treated jointly with compositional time series.

1.7 Implementation in R

The first implementation of compositional data analysis in R (R Core Team, 2015) was
introduced by van den Boogaart et al. (2010) in the package compositions. The package
provides functions for a consistent analysis of compositional data and positive numbers
in the way proposed originally by John Aitchison. The implemented methods offer a
statistical analysis of four different scales of amount data: compositional data with
relative geometry (Aitchison simplex), compositional data in absolute geometry (classical
simplex), positive data with relative geometry (log-scale analysis) and positive data with
absolute geometry (RD+).

The second package for compositional data analysis and methods is called robCompositions
implemented by Templ et al. (2011). In addition to classical statistical procedures in
compositions, the package robCompositions considers also robust statistical tools for
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1.8. Outline of the thesis

compositional data together with corresponding graphics. To express compositions in
coordinates, three different possibilities are available: additive, centered and isometric
log-ratio transformations. Their implementation differs from the package compositions
by preserving variable names and absolute values. Considering the ilr transformation,
the special choice of orthonormal coordinates based on Fišerová and Hron (2011) is used
due to its convenient interpretation properties. The package provides methods for robust
principal component analysis, multivariate outlier detection, discriminant analysis and
robust imputation of missing values, to name a few.

1.8 Outline of the thesis

This thesis is principally dedicated to compositional data analysis and methods. New
tools and methods are developed and compared with the results of standard statistical
procedures to show corresponding problems and main advantages of using compositional
data analysis. The first introductory chapter presents the history and the main concept
of working with compositions and gives an overview on differences and awareness that
should be taking into account by using methods developed for compositional data. The
second chapter introduces compositional time series and an application of T spaces in
their modeling. The third chapter focuses on the construction of biplots based on the
special choice of orthonormal coordinates with respect to enhancing useful interpretation
properties followed by incorporating also external non-compositional variables into such
constructed biplots. The last chapter discusses potential measures of association between
compositional parts focused on building new symmetrical balances and their particular
correlation analysis. All statistical procedures and graphics were performed in R, an
environment for statistical computing and graphics (R Core Team, 2015).

Chapter 2 introduces compositional time series as multivariate time series describing
relative contributions to some total. Vector autoregressive models are used to compare
the standard and compositional methods. The standard approach based on raw data is
then compared with the compositional one applied on transformed data. The theory of T
spaces is customized for the application of the time series concept. The chapter provides
also a concise methodology for an interpretation of the coordinates in the transformed
space together with the corresponding statistical inference (like hypotheses testing).

Kynčlová, P., Filzmoser, P., Hron, K. (2015). Modeling compositional time series
with vector autoregressive models. Journal of Forecasting 34 (4), pp. 303–314.

Chapter 3 examines biplots as a widely used statistical tool for visualizing the resulting
loadings and scores of a dimension reduction technique applied to multivariate data. In
the case of compositions, the data have to be pre-processed with a log-ratio transformation
before the dimension reduction is carried out. The chapter shows the properties of the
compositional biplot and introduces an alternative called the ilr biplot as a new tool
based on a special choice of orthonormal coordinates resulting from an isometric log-ratio
(ilr) transformation. The methodology is demonstrated on real data sets.
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Kynčlová, P., Filzmoser, P., Hron, K. (2015). Compositional biplots including
external non-compositional variables. Submitted to Statistics.

Chapter 4 discusses different existing and potential measures of association between
compositional parts. Correlation coefficients are most popular in statistical practice for
measuring pairwise variable associations, but for identifying the association between
two compositional parts, standard correlation analysis is not suitable. This chapter
introduces an approach of symmetrical balances that capture all relative information in
form of aggregated log-ratios of both compositional parts of interest. The balances form
orthonormal coordinates, which enables to use standard correlation measures relying on
the Euclidean geometry. The idea is supported by simulation studies and an example
providing deeper insight into the proposed approach to compare it with alternative
measures.

Kynčlová, P., Hron, K., Filzmoser, P. (2015). Correlation between compositional
parts based on symmetric balances. Submitted to Mathematical Geosciences.
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CHAPTER 2
Modeling compositional time

series with vector autoregressive
models

Abstract: Multivariate time series describing relative contributions to a
total (like proportional data) are called compositional time series. They
need to be transformed first to the usual Euclidean geometry before a time
series model is fitted. It is shown how an appropriate transformation can
be chosen, resulting in coordinates with respect to the Aitchison geometry
of compositional data. Using vector autoregressive models, the standard
approach based on raw data is compared with the compositional approach
based on transformed data. The results from the compositional approach are
consistent with the relative nature of the observations, while the analysis of
the raw data leads to several inconsistencies and artifacts. The compositional
approach is extended to the case when also the total of the compositional
parts is of interest. Moreover, a concise methodology for an interpretation
of the coordinates in the transformed space together with the corresponding
statistical inference (like hypotheses testing) is provided.

Key words: VAR model; Compositional data; Isometric log-ratio transfor-
mation; Granger causality
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2. Modeling compositional time series with vector autoregressive models

2.1 Introduction
Compositional data represent a special type of multivariate data that generally describe
parts of a given whole (Aitchison, 1986; Pawlowsky-Glahn and Buccianti, 2011). A
D-part composition is defined as a vector x = (x1, . . . , xD)> with strictly positive real
components. They carry only relative information, which is given by the ratios between
the components (parts). Most standard statistical methods assume that the analyzed
data come from the real Euclidean space with the Euclidean geometry, whereas the
natural sample space of compositions is the simplex (Aitchison, 1986). Thus, using
classical statistical tools for modeling compositional data may lead to inadequate results.

Compositional time series (CTS) represent multivariate time series of compositions, often
characterized by a constant sum constraint representation, at each time point t. Thus
a CTS can be defined as the series {xt : t = 1, . . . , n}, where xt = (x1t, . . . , xDt)> are
elements of the simplex SD, the sample space of representations of compositional data to
a chosen constant sum constraint κ. CTS are thus characterized by positive components
x1t, . . . , xDt with a constant sum at each time t (frequently the constant is taken as
1). This constraint forms in practice the crucial problem when modeling compositional
time series by standard multivariate time series methods. From the methodological
point of view, the problem with a statistical analysis of CTS using standard methods is
caused by the specific geometry of compositional data, the Aitchison geometry on the
simplex (Egozcue and Pawlowsky-Glahn, 2006), that accounts for inherent properties of
compositional data (Egozcue, 2009).

Several approaches for modeling CTS have been introduced. The principal strategy is
based on using log-ratio transformations. This procedure consists of transforming given
CTS to the space of coordinates – the real vector space with the Euclidean structure –
to leave the Aitchison geometry and, practically, break the unit sum constraint of the
original time series. Subsequently, standard multivariate time series methods can be
applied to the transformed time series.

In the context of CTS, the most frequently used transformations have been additive
log-ratio (alr) transformations (Aitchison, 1986; Mills, 2010; Barceló-Vidal et al., 2011),
although they lead to oblique coordinates with respect to the Aitchison geometry. The
reasonable alternative is represented by the isometric log-ratio (ilr) transformations
(Egozcue et al., 2003) that result in orthonormal coordinates. In Bergmann (2008) a
particular choice of ilr coordinates was used in order to facilitate the interpretation of
the results; nevertheless, due to the apparent complexity of the interpretation of the
ilr coordinates, their systematic use for the analysis of CTS is still not fully accepted
(Barceló-Vidal et al., 2011). Consequently, although several different approaches for
analyzing CTS have been proposed (see Larrosa, 2005), even with a compositional
VARIMA model on the simplex (Barceló-Vidal et al., 2011), compositional time series
modeling does not appear to be extensively known.

According to Barceló-Vidal et al. (2011), the full compositional VARIMA model and the
estimation of the parameters do not depend on the specific log-ratio transformation used.
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2.2. The simplex SD as a compositional space

However, restricted models, that are applied to facilitate the interpretation of parameters,
lead to different compositional ARIMA models depending on the transformation applied
to the data.

This paper is based on using a special choice of an ilr transformation in order to facilitate a
concise approach for the interpretation in coordinates. We focus on vector autoregressive
(VAR) models, but an extension to more general models would be possible. Section
2.2 provides a general introduction to the geometry of compositional data, and Section
2.3 refers to special transformations in this context. Section 2.4 explains how the VAR
model can be used for compositional data, and it also shows that the resulting final
model and the predictions do not depend on the particular choice of the transformation.
Further extensions concerning modeling both the relative and absolute information in
the context of time series are contained in Section 2.5. Practical examples in Section 2.6
highlight major differences of time series modeling and hypothesis testing when using
untransformed or appropriately transformed data. The final Section 2.7 concludes.

2.2 The simplex SD as a compositional space
The sample space of representations of D-part compositions to a chosen constant sum
constraint is given by the simplex

SD =
{

(x1, . . . , xD)> : xi > 0, i = 1, . . . , D;
D∑
i=1

xi = κ
}
, (2.1)

where κ is a positive constant. Due to the relative character of compositional data, the
specific choice of κ is not relevant; the information contained in the ratios between the
compositional parts remains the same. The (D − 1)-dimensional vector space structure
on the simplex SD is induced by the operations perturbation and power transformation,
defined for compositions x,y ∈ SD and α ∈ R as

x⊕ y = C(x1y1, x2y2, . . . , xDyD)>, α� x = C(xα1 , xα2 , . . . , xαD)>, (2.2)

respectively. Here C(·) denotes the closure operation that converts each compositional
vector from RD+ into its representation in SD. Using the opposite element of y, y−1 =
C(y−1

1 , y−1
2 , . . . , y−1

D )>, the inverse perturbation 	 can be defined as

x	 y = x⊕ y−1. (2.3)

Additionally, the Aitchison inner product is defined for two compositions x,y ∈ SD as

〈x,y〉a = 1
2D

D∑
i=1

D∑
j=1

ln xi
xj

ln yi
yj
, (2.4)

which induces the Euclidean vector space structure of the simplex SD. The inner product
can be used to construct a norm and a distance in the simplex

‖x‖2a = 〈x,x〉a, da(x,y) = ‖x	 y‖a. (2.5)
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2. Modeling compositional time series with vector autoregressive models

The distance is known as the Aitchison distance and it holds important properties as-
sociated with compositional data, like invariance under perturbation, invariance under
permutation of parts and subcompositional coherence (Pawlowsky-Glahn and Buccianti,
2011).

Compositions in SD can be expressed as perturbation-linear combination of compositional
vectors, forming a basis or a generating system of SD (with respect to the Aitchison
geometry). The corresponding coordinates of compositions (real vectors) thus result from
transformations of SD onto RD−1 or a hyperplane of RD. Because the coordinates are
formed by logarithms of ratios (log-ratios), we refer to log-ratio transformations. The
preferable representation of compositions is formed by their coordinates with respect
to an orthonormal basis, leading to a one-to-one isometric mapping of the Aitchison
geometry on the simplex SD to the Euclidean geometry in the real space RD−1. A brief
review of the frequently used log-ratio transformations is provided in the next section.

2.3 Log-ratio transformations of compositions and their
interpretation

Consider a composition x = (x1, . . . , xD)> ∈ SD. The additive log-ratio (alr) transfor-
mation is a mapping from the simplex SD to the real space RD−1, and it depends on the
choice of the denominator in the log-ratios, forming the coordinates. Accordingly, the alr
transformations are defined as

y(k) = alrk(x) =
(

ln x1
xk
, . . . , ln xk−1

xk
, ln xk+1

xk
, . . . , ln xD

xk

)>
, k = 1, . . . , D. (2.6)

Although the alr transformations seem to be easily interpretable, they are not isometric,
because their corresponding bases on the simplex are not orthonormal with respect to
the Aitchison geometry (Egozcue and Pawlowsky-Glahn, 2006).

The centered log-ratio (clr) transformation of x ∈ SD is defined as

z = (z1, . . . , zD)> = clr(x) =
(

ln x1
g(x) , . . . , ln

xD
g(x)

)>
, (2.7)

where g(x) is the geometric mean of the parts of x. This transformation is isometric
and maps SD into the subspace V = {z ∈ RD : z1 + · · · + zD = 0} of RD. Thus,
the transformed composition lies on a hyperplane through the origin of RD, which is
orthogonal to the vector of units 111D. The clr transformation is closely connected with
the isometric log-ratio transformation. Assuming that the inverse clr transformation is
an isometry of V onto SD, then an orthonormal basis in SD can be derived from an
orthonormal basis in V .

Let {v1, . . . ,vD−1} be an arbitrary of the space V ⊂ RD, then the vectors ei = clr−1(vi),
i = 1, . . . , D − 1, represent an orthonormal basis in the simplex SD. According to this
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2.3. Log-ratio transformations of compositions and their interpretation

apparent finding, we can define the isometric log-ratio (ilr) transformations as one-to-
one mappings, assigning for a composition x ∈ SD coordinates with respect to a basis
{e1, . . . , eD−1} on the simplex, i.e.

u = ilr(x) = (〈x, e1〉a, . . . , 〈x, eD−1〉a)>. (2.8)

The ilr transformations represent an isometric isomorphism of vector spaces. Thus, for
x,y ∈ SD and α, β ∈ R,

ilr(α� x⊕ β � y) = α · ilr(x) + β · ilr(y) (2.9)

and also

〈x,y〉a = 〈ilr(x), ilr(y)〉, da(x,y) = d(ilr(x), ilr(y)), ‖x‖a = ‖ilr(x)‖ = ‖u‖. (2.10)

The ilr coordinates can also be expressed as linear combinations of logarithms of parts
whose coefficients add to zero. Considering the D × (D − 1) matrix V with columns
vi = clr(ei), the vector of ilr coordinates associated to the matrix V of a composition
x ∈ SD with respect to ei, i = 1, . . . , D − 1, is

uV = ilrV(x) = V>clr(x) = V> log(x), (2.11)

where the matrix V is called contrast-matrix associated with the orthonormal basis ei,
i = 1, . . . , D − 1 (Egozcue et al., 2003).

Due to the relative character of compositional data and the dimension of the simplex
(one less than the number of parts in a composition), a problem of interpretation of the
orthogonal coordinates (also called balances) arises in the sense of their relation to the
original compositional parts. This problem was solved by introducing the sequential binary
partition procedure (Egozcue and Pawlowsky-Glahn, 2005) that consists in splitting parts
of a composition into separated groups so that balances representing the groups and
the relations between the groups are constructed. A special choice of balances leads to
coordinates

ilr(x) = (z1, . . . , zD−1)>, zj =
√

D − j
D − j + 1 ln xj

D−j

√∏D
l=j+1 xl

, j = 1, . . . , D − 1.

(2.12)
Here, all the relative information (ratios) of part x1 to the parts x2, . . . , xD is contained in
the balance z1 (Fišerová and Hron, 2011; Filzmoser et al., 2012). Parts of the remaining
subcomposition are represented by z2, . . . , zD−1, nevertheless, already without a similar
interpretation as for z1. This can be simply achieved by perturbing parts of the original
composition in (2.12) and considering the particular role of z1. Finally, the inverse ilr
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2. Modeling compositional time series with vector autoregressive models

transformation x = ilr−1(z), where

x1 = exp
(√

D − 1
D

z1

)
, (2.13)

xi = exp
(
−

i−1∑
j=1

1√
(D − j + 1)(D − j)

zj +
√

D − i
D − i+ 1zi

)
, i = 2, . . . , D − 1,

(2.14)

xD = exp
(
−
D−1∑
j=1

1√
(D − j + 1)(D − j)

zj

)
. (2.15)

is used to express the coordinates back on the simplex.

Coordinate representations given by different log-ratio transformations are related by
linear relationships, because vectors alrk(x), clr(x) and ilrV(x) represent coordinates of
the same composition x with respect to different bases of the Euclidean vector space
(SD,⊕,�). Specially, consider two different orthonormal bases of V , {v1, . . . ,vD−1} and
{v∗1, . . . ,v∗D−1}, and the corresponding matrices V and V∗,

V = [v1 : · · · : vD−1], V∗ = [v∗1 : · · · : v∗D−1]. (2.16)

Then a linear relationship between two ilr transformations of a composition x ∈ SD with
respect to the different bases can be defined as

ilrV(x) = V>V∗ilrV∗(x). (2.17)

Other relations between log-ratio transformations can be found in Egozcue et al. (2003);
Barceló-Vidal et al. (2011).

Finally, let us introduce a (perturbation) matrix product in the simplex, defined for
A ∈ RD×D and x ∈ SD as

A � x = C
( D∏
j=1

x
a1j

j , . . . ,
D∏
j=1

x
aDj

j

)>
. (2.18)

This operation forms a linear transformation with respect to the Aitchison geometry, but
only if the rows of A add up to zero, i.e. A111D = 000D. Otherwise, the matrix product
on the simplex is not scale invariant, i.e. A � x 6= A � (kx) for k > 0. Assuming
the same restriction for the columns of A, A>111D = 000D, then the function x → A � x
represents an endomorphism on the simplex SD. The matrix associated with the identity
endomorphism is the so-called centering matrix GD = ID −D−1111D111>D.

Let x,y ∈ SD and y = A � x be an endomorphism on SD. It is easy to see that this
endomorphism can be expressed as

clr(y) = A · clr(x) (2.19)
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in the space of clr coordinates (hyperplane of RD). By using the relationship between clr
and ilr transformations, this results in

ilrV(y) = AV · ilrV(x), (2.20)

where the matrix AV is obtained from A as AV = V>AV. It can be shown that A is
not the only matrix that corresponds to AV in this transformation. In fact, AV can
also be expressed as AV = V>A0V, where A0 = VAVV> = VV>AVV> = GDAGD

(see Pawlowsky-Glahn and Buccianti, 2011). Accordingly, A and A0 represent the same
linear transformation on the simplex SD, i.e. A � x = A0 � x.

2.4 VAR model for compositional time series

2.4.1 The vector autoregressive (VAR) model

Let xt = (x1t, . . . , xDt)> be a compositional vector measured at time t, t = 1, . . . , n. Then
zt = (z1t, . . . , zD−1,t)> represents coordinates of xt obtained by using an ilr transformation
(determined by a contrast-matrix V).

Here we consider a vector autoregressive (VAR) model in reduced form with p lags,
denoted as VAR(p) model, that is defined as

zt = cV + A(1)
V zt−1 + A(2)

V zt−2 + · · ·+ A(p)
V zt−p + εεεt, (2.21)

where cV is a real vector, A(i)
V (i = 1, . . . , p) are parameter matrices, and εεεt is the error

component (see, e.g., Lütkepohl, 2007). The error process is considered to be a zero
mean white noise process with covariance matrix ΣΣΣεεε. This means that the transformed
observation zt is modeled based on the p earlier observations zt−1, . . . , zt−p. The VAR(p)
model can be equivalently expressed directly on the simplex as

xt = b⊕
(

A(1) � xt−1

)
⊕
(

A(2) � xt−2

)
⊕ · · · ⊕

(
A(p) � xt−p

)
⊕wt, (2.22)

where b represents the compositional counterpart to cV and {wt} is the white noise
process on the simplex (see Barceló-Vidal et al., 2011).

Let us consider two different ilr transformed coordinates zt and z∗t (t = 1, . . . , n) for given
compositional time series {xt : t = 1, . . . , n}. Let zt = ilrV(xt) represent ilr coordinates
of the composition xt ∈ SD associated with the matrix V, and z∗t = ilrV∗(xt) represent
ilr coordinates associated with the matrix V∗. Using the following relations,

z∗t = V∗>Vzt, A(i)
V∗ = V∗>VA(i)

V V>V∗, i = 1, . . . , p, (2.23)

it can be shown that a VAR model for compositional time series does not depend on the
concrete choice of the ilr transformation. In this case we say that two VAR(p) models,
resulting from two different ilr transformations

zt = cV + A(1)
V zt−1 + A(2)

V zt−2 + . . .A(p)
V zt−p, (2.24)
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2. Modeling compositional time series with vector autoregressive models

z∗t = cV∗ + A(1)
V∗z

∗
t−1 + A(2)

V∗z
∗
t−2 + . . .A(p)

V∗z
∗
t−p, (2.25)

are compositionally equivalent. This means that the final model on the simplex (2.22),
obtained from using the inverse ilr transformation, is invariant to the choice of the ilr
transformation, and the same predictions are thus obtained (Barceló-Vidal et al., 2011)
(the equivalent properties also holds for alr and clr transformations). Moreover, within
the log-ratio methodology, the obtained predictions can be always rescaled to a prescribed
constant sum constraint without loss of information.

While for prediction purposes, any of the above mentioned log-ratio transformations
can be applied due to the compositional equivalence of VAR models, the role of an
appropriate coordinate representation becomes crucial if also statistical inference (like
hypotheses testing) is considered. In the following sections we show how ilr coordinates
(2.12) can be used for this purpose.

2.4.2 Model specification

The order of a VAR model, i.e., the number of lags p of VAR(p), is unknown in practice,
but it can be chosen by using selection criteria. The general approach is to fit VAR(p)
models for p = 0, . . . , pmax and then choose that number of lags which minimizes the
corresponding function of the given selection criterion.

In this paper, the Akaike information criterion (AIC), the Hannan–Quin criterion (HQ),
the Schwarz criterion (SC) and the final prediction error (FPE) are computed to choose
the value p. They are defined as

AIC(p) = ln |Σ̂ΣΣεεε(p)|+
2
n
pK2, (2.26)

HQ(p) = ln |Σ̂ΣΣεεε(p)|+
2 ln lnn

n
pK2, (2.27)

SC(p) = ln |Σ̂ΣΣεεε(p)|+
lnn
n
pK2, (2.28)

FPE(p) =
[
n+Kp+ 1
n−Kp− 1

]K
|Σ̂ΣΣεεε(p)|, (2.29)

where K = D − 1 is the dimension of zt, n is the length of the time series, and Σ̂ΣΣεεε(p) is
the maximum likelihood estimator of the residual covariance matrix (see, e.g., Lütkepohl,
2007). All the above criteria for model specification are invariant to the choice of the ilr
transformation, since the value of the determinant of Σ̂ΣΣεεε(p) remains unchanged.

The above criteria have different properties: The AIC criterion tends to asymptotically
overestimate the real order with a positive probability. On the contrary, HQ and SC yield
consistent estimates of the order p, and under general conditions the estimated order
converges in probability, if the true VAR order p is less than or equal to pmax (see, e.g.,
Lütkepohl, 2007). In many cases, the choice of the order depends on the objective of the
analysis. For instance, if forecasting is the main aim, then the correct order of the VAR
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2.4. VAR model for compositional time series

model is not needed. In this case it is reasonable to find a suitable model for prediction
by choosing such an order that minimizes a measure of forecast precision. Note that the
order of a VAR model can also be specified by sequential testing procedures, namely by
testing zero restrictions on parameter matrices (see Lütkepohl, 2007).

2.4.3 Estimation of VAR models

The stationary VAR(p) model (2.21) can be written in the form of a matrix equation

Y = ZB + E, (2.30)

where Y = (z1, . . . , zn)>, the t−th row of the n × [(D − 1)p + 1] matrix Z equals
Zt = (1, z>t−1, . . . , z>t−p)> and B = [c,A(1), . . . ,A(p)]> contains the parameters. Assuming
a sample of size n, z1, . . . , zn, and p presample values, z−p+1, . . . , z0, the parameters B
can be estimated separately for each equation (formed by the columns of Y) by the
ordinary least squares (OLS) method. If the regressors in all equations are the same (no
restriction for parameters are imposed), the estimator is identical to the generalized least
squares (GLS) estimator. This estimator is also identical to the maximum likelihood (ML)
estimator (conditional on the size of a given initial presample), if the VAR(p) process zt
is normally distributed and εεεt (rows of the n× p error matrix E) represent a white noise
process, thus εεεt ∼ N (0,ΣΣΣεεε), t = 1, . . . , n.

Such an estimator has the convenient asymptotic properties of standard estimators, it
is consistent and asymptotically efficient. If the VAR(p) process is not stationary, or if
restrictions are imposed on the parameters, the GLS estimator may be more beneficial
(Lütkepohl, 2007).

2.4.4 Hypotheses testing

A frequent task in the context of multivariate time series analysis is testing for causality.
For that reason, the Granger causality was introduced (see, e.g., Lütkepohl, 2007), which
represents a statistical concept that is based on prediction. In other words, we are inter-
ested in testing whether one variable could help to improve predictions of the remaining
observed variables. Considering our special choice (2.12) of the ilr transformation, our
aim is to test whether variability of z1, that carries all relative information of the chosen
compositional part x1 to all parts x2, . . . , xD (up to a permutation of these parts), has
an effect on the coordinates z2, . . . , zD−1, representing the remaining subcomposition.

Consider our VAR(p) model (2.21) with no restrictions on the parameters. Using the
operation of vectorization for the estimated parameters B̂, we obtain

β̂̂β̂β = vec(B̂) = vec


ĉcc>

(Â(1))>
...

(Â(p))>

 . (2.31)
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2. Modeling compositional time series with vector autoregressive models

Under general assumptions for VAR models, β̂̂β̂β is consistent and asymptotically normally
distributed with asymptotic covariance matrix

âvar(β̂̂β̂β) = Σ̂ΣΣεεε ⊗ (Z>Z)−1 (2.32)

with
Σ̂ΣΣεεε = 1

n− (D − 1)p− 1

n∑
t=1

(zt − ZB̂)(zt − ZB̂)>. (2.33)

Considering the mentioned properties, we may test linear hypotheses for parameters of
the general form Rβ̂̂β̂β = r by using the Wald statistics

(
Rβ̂̂β̂β − r

)>{R
[
âvar(β̂̂β̂β)

]
R>

}−1(
Rβ̂̂β̂β − r

)
∼ F

(
q, n− (D − 1)p− 1

)
, (2.34)

where q is the number of parameters tested and R is a q × (D − 1)2p+D − 1 restricting
matrix. The structure of the restricting matrix R depends on the particular tested null
hypothesis. The elements of R are 0, when the corresponding parameter is not tested,
and they are 1, when the significance of a parameter is tested (see, e.g., Lütkepohl, 2007).

Without loss of generality, the main interest consist in testing Granger causality from z1
to the remaining coordinates z2, . . . , zD−1. However, the hypothesis can also be tested
reversely, i.e. if the coordinates z2, . . . , zD−1 have a significant effect on z1. The particular
null hypothesis about non Granger causality generally depends on the concrete objective
of the analysis and the structure of data.

2.5 T spaces in the time series context
In this section we introduce an extension of the above considerations to the case, when
both relative and absolute information are of interest. The concept of compositional data
analysis as it was introduced in sections 2.2 and 2.3 was based on the assumption that
compositional data carry exclusively relative information, which is contained in the ratios
between their parts. Nevertheless, in practice both relative and absolute information
is often necessary to be taken into account in order to provide a reasonable output of
a data analysis. The latter information is expressed by modeling absolute values of
the sum of the original compositional parts (if this is not trivial, like for proportional
representations of compositions summing up to one). Although a careful treatment of
relative information is required, provided by the log-ratio approach, the absolute values
predictions may represent the final objective of multivariate time series analysis in the
case of forecasting.

Formally, consider a vector with D strictly positive components, x ∈ RD+ . For the
log-ratio approach, the data can be expressed as closed observations with a constant
sum κ, frequently with κ = 1, without loss of information (Aitchison, 1986). Thus, all
information about the total amount is ignored. This information can be incorporated
by defining an extended vector space T = R+ × SD, that allows to model the relative
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structure of the values and the absolute total sum as an additional variable jointly in one
model (see Pawlowsky-Glahn et al., 2013).

The vector x̃ = [t(x), C(x)] = [tx, x̃1, x̃2, . . . , x̃D] is the element of T = R+ × SD, where
t(x) stands for the total sum, i.e. t(x) =

∑D
i=1 xi. In the time series context, often the

logarithm of the total t(x) will be taken. The compositions x = (x1, . . . , xD)> are modeled
by employing a log-ratio transformation; in our case the suggested ilr transformation.
Subsequently, the statistical analysis can be performed (including Granger causality with
the total variable). In the case of time series analysis, also the back-transformation to
the original values is often required for prediction purposes. Hence the log-total needs to
be back-transformed by the exponential transformation, and the forecasted compositions
in proportions are multiplied by these values. An example in the next section will show
the usefulness of this procedure.

2.6 Illustrative examples

2.6.1 First example

We consider a data set that contains compositional time series of monthly measured paper
production shares in Europe from May 2004 to December 2009, The data set was kindly
provided by Statistics Austria. The time series is represented as proportions of the overall
paper production per month in Austria (x1), the eurozone countries without Austria
(x2), and EU countries not in the eurozone plus the remaining countries in Europe (x3).
Therefore, for each month, the values of the three categories sum up to one.

The aim of this section is to compare the standard approach, when the VAR model
is applied directly to the original time series, and the compositional approach based
on using the ilr transformation (2.12) and applying the VAR model to the coordinates.
Figure 2.1 shows plots of the raw (left) and ilr transformed (right) data. The ilr-variable
z1 (solid line) represents th relative information of the Austrian paper production to the
other two parts, while z2 describes the relative information between x2 and x3.

The process of modeling time series consists of model specification, parameter estimation,
and diagnostic checking of an assumed VAR(p) model. In this case, a seasonal VAR model
is considered because of the monthly observed data. The number of lags is chosen based
on using the model selection criteria mentioned in section 2.4.2. In our example, just the
proportional data are available and thus a singularity problem occurs when analyzing
the raw data with the standard approach due to the unit sum constraint. This problem
is usually “circumvented” by omitting one variable, and applying the VAR model only to
the remaining two parts; the values for the omitted part is supposed to be calculated
afterwards as the complement to one. Nevertheless, the information contained in the
last variable is dropped out as the unit sum constraint is just a proper representation
of compositional data, not their inherent property. Thus to demonstrate the results of
the standard approach, three models were built for the case of omitting subsequently
variable x1, x2, and x3, respectively, from the original time series. For the compositional
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Figure 2.1: Left: Raw untransformed paper production time series (solid line: Austria
(x1), dashed line: eurozone countries without Austria (x2), dotted line: EU states not
in the eurozone plus other countries in Europe (x3)); right: ilr-transformed time series
(solid line z1, dashed line z2).

approach, all three time series can be used. Using the mentioned model selection criteria,
the resulting numbers of lags p for the original and the ilr-transformed time series are
shown in Table 2.1. The same numbers of lags are obtained here for all three cases of
omitting one variable, nevertheless, with no guarantee that the results will not differ in
general. A VAR(1) model is selected for the standard and the compositional approach in
order to allow a subsequent comparison of the results.

Table 2.1: Resulting numbers of lags, using different model selection criteria, for the
untransformed and the ilr-transformed data.

Approach AIC(p) HQ(p) SC(p) FPE(p)
untransformed 4 1 1 4
ilr-transformed 4 1 1 4

The undesirable effect of omitting one compositional part in our VAR(1) models for the
original time series can be seen, e.g., in case of forecasting future values. For this purpose
we use data from May 2004 to November 2009 for forecasting the (relative) values for
December 2009. We apply all three possible VAR models for the original data as well as
the ilr approach and compare the corresponding forecasts also with the true December
2009 composition. The results differ for the standard approach in each case of omitting
one variable from the model, whereas for the compositional approach the predictions are
always the same due to the invariance of using log-ratio transformations. The elimination
of a variable from the standard analysis and its subsequent calculation as the complement
to one might even cause that the obtained predictions can be negative or equal to zero, or
they could be greater than one. This can not occur when using log-ratio transformations.

The relationships between the variables (original parts or the ilr coordinates, respectively)
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can be further analyzed by Granger causality analysis. In our example, the hypothesis
tested using the ilr approach is H0 : a(1)

21 = 0, which represents Granger non-causality
between the coordinates defined by (2.12). With this transformation, the aim is to test
the influence of the relative amount of paper production in Austria to the other European
countries, and also conversely. In other words, we are interested in testing, if coordinate
z1 has no effect on z2, i.e., whether relative information on x1 (production of paper in
Austria) does not influence the ratio to x2 and x3. In our case, the Granger non-causality
of z1 to z2 is not rejected on the significance level 0.05. This means that past values of
z1 probably does not contain information that is useful for predicting z2. The relative
information contained in the paper production of Austria is then not useful in forecasting
the ratio to the other countries. Conversely, we can test, whether H0 : a(1)

12 = 0 (the ratio
between x2 and x3 has no effect on the variable x1). In this case, the null hypothesis is
also not rejected on the significance level 0.05.

Similar tests can also be carried out for the standard approach. However, the crucial
problem consists in omitting one variable as the initial step of the analysis. Granger
causality can be investigated only between two variables. The null hypothesis cannot be
rejected in each case on the significance level 0.05. The resulting p-values for reasonable
combinations are summarized in Table 2.2.

Apparently, tests for Granger causality for the standard and compositional case are not
comparable, because they produce results with completely different interpretation with
respect to the original time series. Using the standard approach, one effect is always
excluded from the complex analysis. According to the obtained results, one cannot
state any information about the excluded variable and its influence to the remaining
observations. On the contrary, the log-ratio approach offers the overall analysis of all
components. The testing is performed in the space of ilr coordinates, which enhances
interpretability of the results. Thus, although the null hypothesis was not rejected in
all mentioned cases, the ilr results are more reasonable due to modeling effects of all
variables.

Table 2.2: Testing Granger causality.

Null hypothesis p-value
z1 does not Granger cause z2 0.741
z2 does not Granger cause z1 0.203
x1 does not Granger cause x2 0.426
x1 does not Granger cause x3 0.291
x2 does not Granger cause x1 0.387
x3 does not Granger cause x1 0.387
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2. Modeling compositional time series with vector autoregressive models

2.6.2 Second example

The second example consists of modeling a four-part compositional time series data set.
The data represent gross bonuses of metal production in Austria (in thousands of euros)
considering white-collar workers (x1), blue-collar workers (x2), commercial apprentices
(x3) and industrial apprentices (x4). The data are available monthly from January 2004
till November 2010, see Figure 2.2. Our goal is to model the relative structure (relative
contributions of the parts on the total metal production) of the compositional time series.
However, one can also be interested in predictions of the original absolute values (in
thousands of euros), based on the multivariate (relative) structure of the compositional
data and the total of the compositional parts. For interpretation purposes, we can define
the total of the metal production as the sum of all compositional parts in (original)
absolute values as

Xt = x1 + x2 + x3 + x4

and then investigate this total as an additional variable in coordinate representation
of the compositional time series. Consequently, the predicted total is used to compute
predictions in absolute numbers. The compositional approach using the methodology of
T spaces (Section 2.5) for modeling multivariate time series of compositions with a total
is compared to the standard approach for the original data.
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Figure 2.2: Time series of metal production in absolute numbers plotted separately (left)
and jointly (right); x1 is represented by a solid, x2 by a dashed, x3 by a dotted and x4
by a dashed-dotted line, respectively.

Initially, the VAR model is applied to the variables x1, x2, x3, x4 in the standard way. The
metal production data from Austria are represented as monthly measured data, thus the
seasonal effect is considered by including dummy variables in the model. The suggested
numbers of lags according to the mentioned model selection criteria are summarized in
Table 2.3, and a lag of one is selected. In contrast to the first example, the time series
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observations were collected in absolute values (without any constant sum constraint),
thus omitting a variable for the standard approach is not necessary.

Considering the compositional structure of the data, the theory of T spaces can be
involved to perform a reasonable analysis taking the Aitchison geometry of compositional
data into account. The isometric log-ratio transformation (2.12) is applied to the observed
variables, and the total sum is taken as an additional variable in the model. The ilr
transformed data values and the log-transformed total sum Xt are displayed in Figure 2.3.
Subsequently, the time series are investigated also by taking into account the monthly
seasonality to choose the corresponding number of lags p (summarized in Table 2.3).
Finally, the VAR model with p = 1 lag is selected for both the standard and compositional
analyses.
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Figure 2.3: Ilr transformed time series (z1 solid, z2 dashed and z3 dotted line) and log
transformed total Xt of metal production (dashed-dotted line).

As in the previous example, the time series can be tested for Granger causality in
order to detect significant effects between variables, and between variables and the
total, respectively. In the case of applying the compositional approach, hypothesis
testing is carried out in the space of orthonormal coordinates. Consequently, we consider
the ilr coordinates z1, z2, z3 and log-transformed total Xt, where z1 explains all relative
information (ratios) about the original compositional part x1 with respect to the remaining
parts x2, x3 and x4. The reasonable null hypothesis seems to be whether z1 does not
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Table 2.3: Resulting numbers of lags, using different model selection criteria, for the
standard approach and the compositional approach using T spaces.

Approach AIC(p) HQ(p) SC(p) FPE(p)
standard 10 1 1 2

compositional 10 1 1 1

Granger cause z2, z3 and log(Xt). The resulting p-value is 0.526, which indicates that
Granger non-causality cannot be rejected at the significance level 0.05. In other words,
the relative information of x1, here gross bonuses of white-collar workers in the metal
production in Austria, to the other compositional parts (included in the coordinate z1)
does not have a significant effect for predicting the coordinates z2, z3 and log(Xt).

The previous null hypothesis focused only on all the relative information of the part x1
to the remaining parts. Nevertheless, one might also be interested in testing the relative
information concerning x2 (and x3, x4, respectively). This can be achieved by exchanging
x1 with another part of interest in the ilr-transformation (2.12), and again focusing on the
coordinate z1. In that way we obtain significance for z1, which accounts for all the relative
information of x4 to x1, x2, x3, on the coordinates z2, z3 and the log-transformed total Xt.
The corresponding p-value of 0.043 indicates that the relative information contained in x4,
representing industrial apprentices, has a significant effect on predicting time series of the
other variables x1, x2, x3 and the total. In other words, the development of gross bonuses
of industrial apprentices influences the data structure of the other workers employed in
the metal industry in Austria. Nevertheless, note that by omitting the total variable
from the above test, the influence of z1 on the (purely) relative structure of the other
parts (represented by the variables z2, z3) is not significant.

The alternative possibility of investigating causality consists in testing, whether the
additional total variable affects the observed variables x1, x2, x3 and x4. In the space
of coordinates, we thus test whether log(Xt) does not Granger cause z1, z2, z3. This
particular null hypothesis is not rejected on the significance level 0.05, where the resulting
p-value of 0.115 obviously does not depend on a permutation of the compositional parts
in (2.12), resulting in different interpretations of the coordinate z1.

Testing Granger causality with the standard approach is definitely not comparable with
the compositional one. The testing by applying compositional techniques is performed in
the space of coordinates and the total is considered as an additional variable involved in
the investigated model (in its log-transformed form). Nevertheless, the null hypothesis
that x4 does not Granger cause x1, x2, x3 using the original values is rejected on the
significance level 0.05 (based on the p-value 6.16 · 10−6) as well. The similar hypotheses,
whether one concrete variable has no influence on the other ones, cannot be rejected in all
the remaining cases. We can conclude that past values of x4, gross bonuses of industrial
apprentices, could be very useful in predicting the future values of the remaining variables.
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Finally, it might be interesting to compare the accuracy of the predictions obtained
by the different approaches. In the compositional case, a back-transformation to the
simplex is required to attain the final predictions. As a measure of prediction accuracy
we consider the root mean squared error of prediction (RMSEP),

RMSEP =

√√√√ 1
m

m∑
t=1
‖xt − x̂t‖2,

where m is the number of predicted values ahead. In our case, predictions for 24
subsequent months are made (from December 2009 to November 2011) to compare the
accuracy of forecasting. The results show that the RMSEP for the compositional case is
167.02, whereas when using the standard approach the RMSEP is 170.94. According to
these results, the compositional approach results in slightly better predictive ability than
the conventional one.

2.7 Concluding remarks
Compositional time series are by definition multivariate, mostly represented with a
constant sum constraint, and they carry only relative information. Since their sample
space is the simplex rather than the real space with the usual Euclidean geometry, they
need to be expressed in appropriate (preferably orthonormal) coordinates with respect to
the Aitchison geometry before VAR models are employed. We have proposed a specific
ilr-transformation to represent the compositional parts in orthonormal coordinates, that
is preferable among other log-ratio transformations, because it allows for a meaningful
interpretation of the results in terms of the original compositional parts. Moreover, the
particular choice of the ilr transformation does not change the resulting predictions of
the original compositional values.

Applying VAR models directly to the raw untransformed data may lead to inappropriate
models that do not respect the compositional nature of the data. One may get artifact
like singularity of the data due to their constant sum constraint, or predictions outside
the data range of proportional data (negative or larger than one). Omitting a variable in
case of time series with constant sum can even lead to different models and prediction,
depending on which variable is omitted. Also for compositional time series without
a constant sum constraint, the analysis of the raw data will not focus on the relative
information inherent in the data, and may be driven by large values rather than by small
ones, which might be of equal importance in a relative sense.

Compositional time series can also be represented as compositional data with a total.
The main idea of modeling these time series is based on the theory of T spaces that
enables modeling the relative structure of variables with the absolute total sum together
in one model. This approach is thus especially useful when both relative and absolute
information is of interest for time series analysis. Furthermore, using the T spaces
approach, the total is included in the model as a separate information from the relative
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one (represented by orthonormal coordinates), so that Granger causality also between
the coordinates and the total can be investigated. This fact can be of interest in many
real-world problems.
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CHAPTER 3
Compositional biplots including

external non-compositional
variables

Abstract: Biplots represent a widely used statistical tool for visualizing the
resulting loadings and scores of a dimension reduction technique applied to
multivariate data. If the underlying data carry only relative information (i.e.
compositional data expressed in proportions, mg/kg, etc.) they have to be
pre-processed with a log-ratio transformation before the dimension reduction
is carried out. In the context of principal component analysis, the resulting
biplot is called compositional biplot. We introduce an alternative, the ilr
biplot, which is based on a special choice of orthonormal coordinates resulting
from an isometric log-ratio (ilr) transformation. This allows to incorporate
also external non-compositional variables, and to study the relations to the
compositional variables. The methodology is demonstrated on real data sets.

Key words: Compositional data; Log-ratio transformations; Principal com-
ponent analysis; Singular value decomposition; Compositional biplot; Ilr
biplot

3.1 Introduction
Compositional data represent multivariate observations where the relevant information is
contained in the ratios between the variables. Usually, already the measurement unit of
such data (proportions, percentages, mg/kg, ppm, etc.) reflects their relative character.
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Since the interest is only in the ratios, the chosen unit is irrelevant, and it forms just
a proper representation of the variables, called compositional parts Aitchison (1986).
Geometrically, compositional data follow the Aitchison geometry on the simplex Egozcue
and Pawlowsky-Glahn (2006). Consequently, standard statistical methods that rely on
the standard Euclidean geometry in real space usually fail when they attempt to capture
the multivariate structure of compositional data.

In the last two decades, several papers related to the proper statistical treatment of
compositional data have appeared, employing the log-ratio methodology to composi-
tional data analysis Aitchison (1986); Buccianti (2013); Buccianti et al. (2006); Egozcue
et al. (2003); Egozcue and Pawlowsky-Glahn (2005); Pawlowsky-Glahn and Buccianti
(2011). This is also the case in the context of principal component analysis (PCA) for
compositional data Aitchison and Greenacre (2002); i Estadella et al. (2011); Filzmoser
et al. (2009a); Filzmoser and Hron (2013); Hron and Filzmoser (2014). Nevertheless, the
recent developments concern just the case of PCA working only with compositional parts
Aitchison and Greenacre (2002); Filzmoser et al. (2009a); Hron and Filzmoser (2014) or
when supplementary variables are projected into a PCA biplot of compositional data
i Estadella et al. (2011). A concise methodology on how to incorporate also additional
non-compositional variables into one PCA is still not available, despite the fact that
these cases frequently occur in practice. Examples are chemical concentration data of air
quality measurements with external information like wind-speed or solar radiation, or
election data with external information characterizing the districts or regions.

The goal of this paper is to introduce an approach, based on the isometric log-ratio
transformation for compositional data Egozcue et al. (2003), for exploring the relations
between compositional parts and external non-compositional variables using biplots of
principal components. In the next section, some basics on biplots are recalled (Section
3.2). Section 3.3 treats biplots from a compositional data analysis point of view. Section
3.4 provides a detailed description of the methodology to include additional variables to
compositional data in this context. Its usefulness for practical applications is demonstrated
on two examples (Sections 3.5): for a data set from the German federal election, and
for employment data in the European Union. The final Section 3.6 discusses possible
problems and extension of the new analytical tool.

3.2 The PCA biplot: construction and interpretation

Consider a given data matrix X of dimension n × D. The n rows are formed by the
observation vectors xi., for i = 1, . . . , n, and the D columns by the variable vectors xj ,
for j = 1, . . . , D. Throughout the manuscript, a “.” in the index of a vector will refer to
the corresponding row of a matrix, and a vector will always be a column-vector. Thus,
X = (x>1., . . . ,x>n.)> = (x1, . . . ,xD). We further assume that X is mean-centered, i.e. the
column-wise arithmetic mean is subtracted from each column.

A PCA biplot can be constructed using singular value decomposition (SVD) of X, given
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3.2. The PCA biplot: construction and interpretation

by
X = UDV>, (3.1)

where U ∈ Rn×n and V ∈ RD×D represent orthogonal matrices and D ∈ Rn×D is a
(rectangular) diagonal matrix, where the diagonal consists of non-negative values, the
singular values, which are arranged in descending order (d11 ≥ d22 ≥ · · · ≥ dkk ≥ 0).
Here, k ≤ min(n,D) denotes the rank of X. With this decomposition, X can be expressed
as

X =
k∑
i=1

diiuivi>, (3.2)

where ui and vi, respectively, represent the i-th column of the matrix U and V, respec-
tively. Due to the orthogonality of U and V the following equations hold:

XX>ui = d2
iiui, (3.3)

X>Xvi = d2
iivi. (3.4)

Thus, ui is the i-th eigenvector of XX> to the eigenvalue d2
ii, and vi is the i-th eigenvector

of X>X to the same eigenvalue d2
ii. From the latter equation it is immediate that vi is

also an eigenvector of the sample covariance matrix

S = 1
n− 1X>X, (3.5)

which thus corresponds to the i-th loading vector of a classical PCA. Accordingly, the
PCA scores information is contained in the matrix V Jackson (1991).

The goal of the biplot is to plot information of the observations (PCA scores) as well as
information of the variables (PCA loadings) in one plot Gabriel (1971). For this purpose
we define the decomposition X = GH>, where the rows of the matrix

G
n×k

= (g1·, . . . ,gn·)> =
√
n− 1U (3.6)

contain the information of the observations, and the rows of the matrix

H
D×k

= (h1·, . . . ,hD·)> = 1√
n− 1

VD, (3.7)

contain information of the variables. The scores information is usually shown by points
in the biplot, while the loadings information is drawn by rays. Since a biplot is usually
two-dimensional, the information contained in X is exactly reproduced if the rank k
of X is two (or less). Otherwise, the descriptive ability of the biplot relies on the
amount of variability explained by the first two principal components, and we only obtain
GH> ≈ X.

With the above choices of the matrices G and H, the following properties are obtained
Gabriel (1971) and visually explained in Figure 3.1:
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3. Compositional biplots including external non-compositional variables
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Figure 3.1: Graphical illustration of standard biplot properties.

• The inner product between the rows of G and the rows of H estimates the original
matrix of observations X, i.e. g>i·hj· ≈ xij .

• Since HH> ≈ 1
n−1X>X = S, a biplot constructed in this way is called covariance

biplot.

• The length of a ray estimates the standard deviation of the respective variable,
‖hj·‖2 = h>j·hj· ≈ 1

n−1x>j xj .

• Consequently, the cosine of the angle between two rays expresses the approxi-
mated correlation coefficients between the corresponding variables, cos (hi·,hj·) =

h>i·hj·
‖hi·‖‖hj·‖ ≈

x>i xj

‖xi‖‖xj‖ .

• The squared distances between the rows of H approximate the mean squared
difference between the variables, ‖hi· − hj·‖2 ≈ 1

n−1‖xi − xj‖2.

• The squared distances between the rows of G approximate the squared Mahalanobis
distance between the observations, ‖gi· − gj·‖2 ≈ (xi· − xj·)>S−1(xi· − xj·).

The above well-known properties for the covariance biplot will be explored in the following
for compositional data.
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3.3. Biplots for compositional data

3.3 Biplots for compositional data

3.3.1 The clr transformation and corresponding biplot properties

Compositional data follow the Aitchison geometry on the simplex. Before applying
PCA and constructing a biplot, the data need to be transformed to the usual Euclidean
geometry. A popular transformation for this purpose Aitchison and Greenacre (2002)
is the centered log-ratio (clr) transformation Aitchison (1986), defined for a D-part
composition x = (x1, . . . , xD)> as

y = (y1, . . . , yD)> =

ln x1
D

√∏D
i=1 xi

, . . . , ln xD
D

√∏D
i=1 xi

> . (3.8)

The expression in the denominator, D

√∏D
i=1 xi, represents the geometric mean of the

given composition x, denoted as g(x).

Let us assume the n × D matrix Y as a matrix of clr coefficients of X, the original
uncentered compositional data matrix. The elements of Y are denoted by yij , the rows by
yi·, and the columns by yj . Since the clr transformation preserves the distances between
the objects Egozcue et al. (2003), the standard procedures can be applied for the newly
constructed matrix Y. For the sake of convenience, we will use the same notation as in
the last section. Accordingly, in analogy to (3.1), the SVD decomposition of Y is given
by

Y = UDV>. (3.9)

Further, the matrices G and H are defined according to (3.6) and (3.7), respectively.
Using only the first two components of these matrices for the biplot construction, the
relation GH> = Y holds if the rank of Y is not larger than two–otherwise this relation
is only approximately valid, and the quality of the approximation depends on the rank of
Y. The rows of the matrix G contain the object information, and the rows of the matrix
H contain the information of the clr variables. Both sources of information are used to
construct the so-called compositional biplot Aitchison and Greenacre (2002).

The essential difference between the standard and the compositional biplot is that H does
not directly represent the original variables but transformed versions thereof. It is possible
to interpret the single clr variables as those capturing all the relative information (ratios)
about the corresponding compositional parts (in the numerator of the log-ratio) Fišerová
and Hron (2011). Nevertheless, from a numerical perspective, one should be aware of the
fact that the geometric mean in the denominator can be driven by possible distortion
(like rounding errors) of the involved parts. For this reason, the interpretation of clr
variables in the sense of the original compositional parts (in terms of (sub)dominance of
the part of interest to the “mean” part in the composition) requires a careful selection of
parts, included in the parent composition. As a consequence, the interpretation of the
relations in the compositional biplot has to be adapted (Figure 3.1):
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3. Compositional biplots including external non-compositional variables

• Similar to the standard biplot, the inner product between the rows of G and the
rows of H estimates the matrix of clr coefficients Y,

g>i·hj· =
√
n− 1u>i·

1√
n− 1

(vj·D) = u>i·Dvj· ≈ yij = ln xij
g(x) , (3.10)

where ui· and vj· are i-th and j-th row of U and V, respectively.

• The lengths of the rays estimate the standard deviations of clr transformed variables
(clr coefficients),

‖hj·‖2 = h>j·hj· =
1

n− 1(vj·D)>(vj·D) ≈ 1
n− 1y>j yj = var

(
ln xj
g(x)

)
. (3.11)

• The links between the vertices of the rays estimate the standard deviation of the
log-ratio between the corresponding compositional parts, hence

‖hi· − hj·‖2 ≈
1

n− 1(yi − yj)>(yi − yj) = 1
n− 1

n∑
l=1

(yli − ylj)2

= 1
n− 1

n∑
l=1

(
ln xli
g(x) − ln xlj

g(x)

)2
= 1
n− 1

n∑
l=1

(
ln xli
xlj

)2

= var
(

ln xi
xj

)
.

(3.12)

• The projection of a score onto a link represents an approximate difference between
the two clr coordinates yij and yik, which is the log-ratio between the original
values xij and xik,

gi·>(hj· − hk·) =
√
n− 1ui·>

1√
n− 1

(vj· − vk·)D

≈ yij − yik = ln xij
g(x) − ln xik

g(x) = ln xij
xik

.
(3.13)

• The Euclidean distance between the rows of G approximates the Mahalanobis
distance between the clr coefficients in the full space with the estimated covariance
matrix SY of the clr-transformed variables,

‖gi· − gj·‖2 = (gi· − gj·)>(gi· − gj·) = (n− 1)(ui· − uj·)>(ui· − uj·)
≈ (yi· − yj·)>S−1

Y (yi· − yj·).
(3.14)

Several further properties of the compositional biplot are listed in Aitchison and Greenacre
(2002). Although these are important for interpreting the relations among the composi-
tional parts, they cannot be explored for relating compositional variables with external
information.
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3.3. Biplots for compositional data

The important difference between the standard and the compositional biplot is in the
interpretation of the rays and of the links between the vertices of the rays. While in the
standard biplot, rays and links represent variability among the variables, they represent
relative variability in the compositional biplot. Specifically, the correlation measure
expressed by the cosine of the angle between two rays (standard biplot) is replaced by the
variance of a log-ratio, expressed as the (squared) length of a link in the compositional
biplot Aitchison (1986). Accordingly, when the vertices coincide, or nearly so, then the
variance var(ln xi

xj
) is approximately equal to zero. Thus, the ratio between xi and xj is

constant, or nearly so, and it could be stated that variables xi and xj are interchangeable.

In many situations, the clr coordinates themselves are not appropriate for a statistical
analysis, because due to the constraint y1 + · · ·+ yD = 0, resulting from the fact that clr
variables represent coordinates with respect to a generating system, the corresponding
covariance matrix is singular. A correlation coefficient between clr variables would thus
result in biased values. The reason is that for the covariance structure of clr variables
the following relations hold:

∑
i 6=j cov(yi, yj) = −var(yi), i = 1, . . . , D. Consequently,

the corresponding correlation coefficients loose their predicative value, because they
cannot vary freely between −1 and 1. From this perspective, also for combining the
clr variables with external non-compositional ones, the singularity constraint would
result in problematic issues. For example, any clr variable cannot be principally taken
separately without considering its relation to the other variables, expressed by the zero
sum constraint. It thus complicates intepretability of the biplot in the sense of relative
information on single compositional parts, discussed in the following. To sum up, this all
makes the use of clr variables for the purpose of PCA and the compositional biplot with
additional non-compositional variables not recommendable.

3.3.2 The ilr transformation and biplot construction

The isometric log-ratio (ilr) transformation results in orthonormal coordinates z =
(z1, . . . , zD−1)> with respect to the Aitchison geometry, and it also leads to an orthonormal
basis of the hyperplane H : y1 + · · ·+ yD = 0, formed by the clr transformation Egozcue
et al. (2003). Consequently, there exists a linear relation between the clr variables and
the orthonormal coordinates Egozcue et al. (2003),

y = Vz. (3.15)

The columns of the D× (D−1) matrix V = (v1, . . . ,vD−1) are orthonormal basis vectors
on the hyperplane H,

vD−i =
√

i

i+ 1

(
0, . . . , 0, 1,−1

i
, . . . ,−1

i

)>
, i = 1, . . . , D − 1, (3.16)

resulting in the ilr coordinates z. In particular, this means that PCA results in the
same principal component scores with non-zero variances (the last principal component
is formed by the normal vector on H, thus having zero variability).
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3. Compositional biplots including external non-compositional variables

There are infinitely many possibilities to construct an orthonormal basis. A special choice
of orthonormal coordinates that allows to interpret them in terms of the contributions
of the single compositional parts is as follows Filzmoser et al. (2012). Consider the
compositions (xl, x1, . . . , xl−1, xl+1, . . . , xD), which are re-arranged such that the l-th part
is in the first position. We will use the notation x(l) = (x(l)

1 , x
(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ),

where each part with index l = 1, . . . , D could be placed on the first position, and the
sequence of the other parts remains unchanged. The ilr transformation of x(l) results in
z(l) = (z(l)

1 , . . . , z
(l)
D−1)>, where the components are defined by

z
(l)
i =

√
D − i

D − i+ 1 ln x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (3.17)

Then, the first ilr variable z(l)
1 explains all the relative information (log-ratios) about

the original compositional part xl. The coordinates z(l)
2 , . . . , z

(l)
D−1 explain the remaining

log-ratios in the composition Fišerová and Hron (2011). Note that the only important
position is that of x(l)

1 , because it can be fully explained by z(l)
1 . The other parts can be

chosen arbitrarily, because different ilr transformations are orthogonal rotations of each
other Egozcue et al. (2003). Note that the relation

yl =

√
D − 1
D

z
(l)
1 , l = 1, . . . , D (3.18)

confirms our preliminary requirement on interpretability of the resulting coordinates, for
D →∞ both variables approach the same values. On the other hand, both yl and z

(l)
1

thus share also interpretational doubts, mentioned by defining the clr variables.

The advantage of obtaining an interpretation for each compositional part is redeemed by
the necessity of constructing D coordinate systems, where always just one variable is of
primary interest (at the first position). It is obvious that always the first coordinate z(l)

1
in each given system corresponds to the clr coordinate yl, for l = 1, . . . , D, differing by
the constant

√
D
D−1 .

Consider now an n× (D − 1) matrix Z(l) with ilr coefficients due to (3.17), for each of
the n observations. Assuming D different coordinate systems, then D singular value
decompositions are required to obtain scores and loadings for the biplot construction.
For l = 1, . . . , D, an SVD gives

Z(l) = U(l)DV(l)>. (3.19)

As it has been shown in Filzmoser et al. (2009a), the diagonal matrix D is the same as
in (3.9) for the clr-transformed data. Moreover, all matrices U(l) are equal, and they
correspond to the matrix U in (3.9). This means that the scores in the clr space are
identical to the scores of the ilr space, apart from the last column of the clr score matrix
that contains zeros. Due to the relationship (3.15) between clr and ilr coordinates by
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3.3. Biplots for compositional data

a matrix with orthonormal columns, and the fact that different ilr-transformations are
orthogonally related, we get

V = V(l)V(l), for l = 1, . . . , D, (3.20)

where V are the loadings from an SVD of Y, and the matrix V(l) stands for corresponding
permutations of the orthonormal basis matrix V , see Egozcue et al. (2003) and Filzmoser
et al. (2009a). Considering relation (3.18) it is immediate that the l-th row of V is
equivalent to the first row of V(l), differing only by the constant

√
D
D−1 .

For constructing the biplot, a decomposition of the form

Z(l) = G(l)H(l)>, l = 1, . . . , D, (3.21)

is required. With the above statements, and in analogy to the clr biplot, it is clear that

G(l) = G =
√
n− 1U, (3.22)

and
H(l) = 1√

n− 1
V(l)D. (3.23)

Due to the relation between the matrices V and V(l), the first row h(l)
1· of the ilr loadings

information H(l) is related to the l-th row hl· of the clr loadings information H by

h(l)
1· =

√
D

D − 1hl·, l = 1, . . . , D. (3.24)

The relationships between the loadings of ilr and clr coefficients are leading to similar
properties and to an interpretability as in the compositional biplot. It was shown that the
loadings, corresponding to the D first coordinates z(l)

1 of the coordinate systems (3.17),
only differ by a constant from those coming from the D clr variables. The important
aspect is that now the loadings come from different orthonormal coordinate systems,
those that we are used to deal with in practice Eaton (1983). Methodologically, this
is crucial to employ further (non-compositional) variables and to study relationships
between them and the coordinate representations of the composition. Doing that by
ignoring the zero constant sum constraint of clr variables with singular covariance matrix
has no theoretical justification. The properties of the ilr biplot, formed by merging
the loading information (coming from D coordinate systems) and scores of a D-part
composition, are illustrated in Figure 3.2.

• The inner product between the rows of G and the rows of H(l) gives

g>i·h
(l)
1· =

√
D

D − 1g>i·hl· =
√

D

D − 1u>i·Dvl·

≈

√
D

D − 1yil =
√

D

D − 1 ln xil
g(x) .

(3.25)
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3. Compositional biplots including external non-compositional variables

• The lengths of the rays represent

‖h(l)
1· ‖

2 = D

D − 1h>l· hl· ≈
D

D − 1
1

n− 1y>l yl = D

D − 1var
(

ln xl
g(x)

)
. (3.26)

• The links between the vertices are

‖h(i)
1· − h(j)

1· ‖
2 = D

D − 1‖hi· − hj·‖2

≈ D

D − 1
1

n− 1(yi − yj)>(yi − yj) = D

D − 1var
(

ln xi
xj

)
.

(3.27)

• The projection of a score to the link yields

gi·>(h(j)
1· − h(k)

1· ) =
√

D

D − 1gi·>(hj· − hk·)

≈

√
D

D − 1(yij − yik) =
√

D

D − 1 ln xij
xik

.

(3.28)

• As for the clr biplot, the Euclidean distance between the rows of G gives

‖gi· − gj·‖2 ≈ (yi· − yj·)>S−1
Y (yi· − yj·). (3.29)

• The angles between ilr coordinates and clr coefficients remain the same, despite the
fact that they are not used for interpreting a correlation structure of a compositional
biplot.

cos(h(i)
1· ,h

(j)
1· ) =

D
D−1h>i·hj·
D
D−1‖hi·‖‖hj·‖

≈ y>i yj
‖yi‖‖yj‖

. (3.30)

In the following, the biplot constructed by merging information from loadings of D
orthonormal coordinate systems together into one planar graph, as described above, will
be called ilr biplot. In order to avoid possible confusion, we should note that the ilr
biplot as defined here thus corresponds to a scaled compositional biplot of clr variables;
they both differ just in the interpretation of the loadings, coming from the employed
orthonormal coordinate systems in the ilr biplot. This helps to consider the (scaled)
clr variables separately (consequently also within the compositional biplot), and not as
an inherent part of the coordinates with respect to a generating system. On the other
hand, a biplot of ilr coordinates for an interpretable choice of balances Egozcue and
Pawlowsky-Glahn (2005), following the properties of a standard biplot, can be constructed
as well. In the next step we describe how the ilr biplot can be extended by additional
non-compositional variables.
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Figure 3.2: Graphical illustration of ilr biplot properties.

3.4 Compositional biplots with additional variables

The next step to construct a meaningful biplot for both compositional data and external
non-compositional variables is to analyze, whether the use of a clr transformation or
ilr coordinate systems (3.17) for the compositional part of the data would yield the
same results (up to a scaling constant) as in the previous section. Consider q additional
non-compositional variables X∗ = (x∗1, . . . ,x∗q)>, which have already been preprocessed
accordingly (e.g. scaled). In the following we have to distinguish different cases how to
combine external and compositional variables.

Initially, let us assume only one composition and external variables. We could consider
two joint matrices (Y

...X∗) ∈ Rn×(D+q) and (Z(l)...X∗) ∈ Rn×(D+q−1), where Y represents
clr coordinates and Z(l), l = 1, . . . , D, are ilr coefficients for D different coordinate systems.
Subsequently, it is required to apply the SVD for both matrices to compare scores and
loadings of a compositional and ilr biplot, respectively. For l = 1, . . . , D the SVD gives

(Y
...X∗) = U∗D∗V∗> = G∗H∗>, (3.31)

(Z(l)...X∗) = U∗(l)D∗(l)V∗(l)
>

= G∗(l)H∗(l)
>
. (3.32)

The diagonal matrices D∗(l), l = 1, . . . , D, are the same and they are equal to D∗ (up to
its last zero row/column) corresponding to the SVD for clr coordinates with external
variables. Similarly, it is straightforward to show that the scores for the compositional
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3. Compositional biplots including external non-compositional variables

and ilr biplot, respectively, are identical,

G∗(l) = G∗ =
√
n− 1U∗, l = 1, . . . , D. (3.33)

The loadings of the SVD of (3.9) and (3.32) are related according to a linear relation
between the clr and the ilr transformation (3.15) as

V∗ = V(l)V∗(l), l = 1, . . . , D, (3.34)

where the matrix V(l) represents the corresponding permutation of the orthonormal basis
matrix V (3.16). Accordingly, a relation between the loadings using the ilr transformation
and the clr transformation to construct a biplot including external non-compositional
variables is obtained as

h∗1·
(l) =

√
D

D − 1h∗l· for l = 1, . . . , D. (3.35)

Since we have stated the same relation for loadings without external variables (3.24), it
is obvious that incorporating new non-compositional variables to the construction of a
biplot does not influence the resulting loadings and scores of the compositional parts.

Consequently, a meaningful interpretation between compositional parts and external
variables can be investigated. The representation of the relations among the compositional
variables has been introduced in Section 3.3 and in the case of external variables the
important role is played by the angles showing the approximate correlation coefficient
between two external variables as in the standard biplot. Similarly, for the purpose of
interpreting the relations between both types of variables only angles can be considered.
Thus the angles can also approximate the correlation structure between the chosen
external variable x∗i i = 1, . . . , q and an arbitrary compositional part xl (l = 1, . . . , D),
since the compositional variable is expressed (in the above sense) using coordinate z(l)

1 ,
l = 1, . . . , D, being a standard real variable.

Furthermore, let us assume two different compositional variables to investigate their
mutual relations among parts in a biplot (external variables are not considered for
simplicity). Let X1 = (x11, . . . ,x1D1)> and X2 = (x21, . . . ,x2D2)> be two different
compositions with D1 respectively D2 parts. To compare loadings and scores it is
necessary to construct the SVD for the merged matrices of the clr and ilr coordinates for
both compositional variables as follows

(Y1
...Y2) = ŨD̃Ṽ> = G̃H̃>, (3.36)

(Z(l)
1
...Z(k)

2 ) = Ũ(lk)D̃(lk)Ṽ(lk) = G̃(lk)H̃(lk), (3.37)

where l = 1, . . . , D1 and k = 1, . . . , D2. Here Y1 and Y2, respectively, represent clr
coefficients of X1 and X2, respectively, and Z(l)

1 ,Z(k)
2 stand for their ilr coordinates

according to (3.17). The relationships between scores and loadings for the compositional
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3.4. Compositional biplots with additional variables

biplot and the ilr biplot correspond directly to the simple case of one composition in
Section 3.2. Since, by omitting the last two rows and columns of D̃, the diagonal matrices
D̃(lk) and D̃ are the same, for l = 1, . . . , D, the corresponding scores are equal,

G̃(lk) = G̃ =
√
n− 1Ũ. (3.38)

We can derive an analogous relation also for the loadings,

h̃(lk)
1· =

√
D1

D1 − 1 h̃l·, l = 1, . . . , D1, (3.39)

thus the ilr loadings concerning the first composition differ only by a constant
√

D1
D1−1 ,

where D1 is the number of parts of the first composition. A similar relation can also be
derived for the loadings highlighting parts of the latter composition, i.e.

h̃(lk)
D1· =

√
D2

D2 − 1 h̃(D1+k)·, k = 1, . . . , D2. (3.40)

Taking into account the mentioned relations between scores and loadings, an appropriate
interpretation of the properties can be incorporated for the case of a biplot constructed
for two different compositional variables. Because the ilr coordinates represent standard
real variables, their relation for those coordinates resulting from different compositions
can be analyzed using angles of the corresponding rays like in the standard biplot. Of
course, for measuring the strength of the relative relation between the parts within one
composition, the links between the rays still represent the preferred option.

Generally, it is feasible to construct a meaningful biplot for more compositions and external
non-compositional variables simultaneously as a simple extension of two previously
described cases. The main idea consists in applying a special choice of ilr coordinates
(3.17) for each composition and preprocessing external non-compositional variables by the
corresponding transformations. Consequently, the transformed variables are merged into
one joint matrix followed by SVD to obtain scores and loadings for a biplot construction.
Such a biplot representation reflects all possible combinations of the previously mentioned
cases.

The main convenience is given by a simple relationship between the resulting SVD for clr
and ilr coordinates. Obviously, it is not necessary to construct D coordinate systems when
scores are always the same and loadings differ from using the clr transformation only by a
scaling constant. It is possible to apply the clr transformation for the compositional parts
followed by the same interpretation of the biplot as for a special choice of ilr coordinates
(3.17). It is apparent that an appropriate interpretation of scores and loadings always
depends also on the characteristic structure of the examined data. Selected cases are
demonstrated on real-world data examples in Section 3.5.
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3. Compositional biplots including external non-compositional variables

3.5 Applications

3.5.1 Election data

The first example describes the results of a federal election in Germany in different federal
states (Table 3.1) in September 2013 (data come from German Federal Statistical Office).
The aim is to analyze the relations between the votes for the political parties in the
elections (compositional variables), and their relation to the unemployment rate and
the average monthly income (external non-compositional variables). We consider the
votes for the Christian Democratic Union and Christian Social Union of Bavaria, also
called The Union (CDU/CSU), Social Democratic Party (SDP), The Left (DIE LINKE),
Alliance ’90/The Greens (GRÜNE), Free Democratic Party (FDP) and the rest of the
parties participated in the elections (other parties). The votes are examined in absolute
values (number of valid votes). The unemployment in the federal states is reported in
percentages, and the average monthly income in euros.

As mentioned formerly, we are interested in relative information (ratios between the votes
for the parties) contained in the data and also the influence of some additional effects.
Initially, it is necessary to use appropriate transformations for all variables to obtain a
meaningful biplot structure. For the numbers of valid votes, the ilr transformation (3.17)
is used. The unemployment information, provided in percentages, is logit-transformed
in order to change the relative scale of percentages (as a special case of compositional
data) into the absolute one Filzmoser et al. (2009a), and the average monthly income is
scaled using its mean and its standard deviation. Subsequently, PCA is performed on
these joint data to obtain scores and loadings for constructing the biplot.

Figure 3.3 (left) shows the resulting biplot. In order to avoid possible confusion, names
of the original compositional parts are displayed using a function ilr(.). It should stress
the fact that the relative information, conveyed by the corresponding coordinates z(l)

1
from (3.17), is considered instead of the parts themselves. The explained variance is high,
with 92.8%. It is obvious that the federal states are split into two groups. The right
located group of states corresponds exactly to the states of former East Germany, except
Berlin. The rest of them, left located, are states of former West Germany.

The lengths of the rays of the compositional variables represent the variability of respective
ilr coordinates, and the lengths of the rays of the external variables stand for their own
variability. The longest ray of the compositional variables represents the standard
deviation of ilr variable DIE LINKE, which explains all the relative information of DIE
LINKE to the rest of the considered parties. This means that the relative variability of
the obtained votes differs a lot among all observed states. On the other hand, SDP and
other parties show the smallest relative variability.

The important role in the interpretation of compositional variables in biplots is played by
links between vertices of the rays. As the links stand for standard deviations of log-ratios,
they can provide the information about relative variability of compositional parts. When
the variance of the log-ratios var(ln xi

xj
) is approximately zero or nearly so, we can say
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that the proportion of the variables is stable, thus xi and xj are interchangeable. This is
the case for the pair GRÜNE and SDP, and to some extent also for the pair CDU/CSU
and other parties. It means their proportion is almost equal among all observations.
On the other hand, GRÜNE and DIE LINKE, FDP and DIE LINKE show the highest
proportional variability.

The relation between external non-compositional variables can be examined as in the
standard biplot. Accordingly, since the rays for income and unemployment are almost
orthogonal, these variables seem to be nearly uncorrelated. The angles of the rays are also
informative for investigating the relations between external variables and compositional
ones, since the latter are ilr coordinates z(l)

1 which explain all relative information about
the original part xl. Accordingly, the parties GRÜNE and SDP are strongly positively
related to average monthly income. In contrast, the income variable is uncorrelated with
voters of FDP and DIE LINKE, there is no essential relationship between income and
votes for these political parties. The variable unemployment is strongly negatively related
to FDP and CDU/CSU. The opposite relation seems to exist between unemployment
and DIE LINKE, i.e. the rate of unemployment influences the proportional structure of
people voting DIE LINKE.

Also the federal states can now be associated with the variables: The division of the
states into the western and the eastern group is based on differences in the income (higher
in the west) and unemployment (higher in the east), but also in the voting behavior. For
example, in the eastern states DIE LINKE is much more dominant, and FDP is stronger
in the west.
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Figure 3.3: Biplots for the German federal elections including unemployment and average
monthly income: ilr biplot (left) and standard biplot (right).
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3. Compositional biplots including external non-compositional variables

We also want to compare the results obtained using the ilr biplot with the case, where
the compositional nature of the election data is not accounted for. Therefore, these raw
percentage data are combined with the external variables unemployment (in percent)
and income (in absolute numbers, scaled). Then, an SVD is carried out to the combined
data, and the results are shown in a standard biplot in Figure 3.3 (right). Despite the
high explained proportion of variance (99.65%), it is obvious that the resulting biplot
differs a lot from the previous solution. We still have the separation of the states into
the two groups, which are the result of different income. However, all other variables are
essentially uncorrelated to this main direction. Also, this second PCA direction expresses
not even 1% of the variability, and is thus rather irrelevant for an interpretation.

We also tried to use a logit-transformation for each of the compositional variables, and join
this information with the external variables, i.e. with logit-transformed unemployment
and scaled income. The resulting biplot is quite similar to the ilr biplot. There is,
however, no guarantee for this phenomenon, as it will be shown in the next example.

3.5.2 Employment data

The aim of the second example is to show how it is possible to construct and interpret
a biplot for two different compositions with external non-compositional variables. We
consider a data set consisting of the number of employed people in the countries of
the European Union (except of Ireland); the data come from EUROSTAT. The first
composition describes the number of employed people in different fields of economic
activity: agriculture, forestry and fishing (agri); industry and construction (industry);
financial and insurance activities (finance); real estate activities (real estate); public
administration, defense, education, human health and social work activities (public); arts,
entertainment, recreation and other service activities (arts). The second composition
illustrates employment in various age categories: from 15 to 24 years (15-24); from 25 to
64 years (25-64); and from 65 years and over (65+). The external variables are: shares
of young people living with their parents (young), and people at the risk of poverty or
social exclusion (poverty); both are given in percentages.

Each compositional data set is ilr-transformed with D coordinate systems (3.17) (instead,
for simplicity, just the clr transformation can be taken), and afterwards joined together
with the external variables. Figure 3.4 shows the resulting ilr biplot. The proportion of
explained variance for these first two components is 79.1%. The notation ilr1 and ilr2 is
used to stress that the respective relative information on compositional parts is related
to two particular compositions. It is visible that many observations which are close
to each other are also geographically in a neighborhood, for instance the Baltic states
(Estonia, Latvia, Lithuania) or the Scandinavian countries (Denmark, Finland, Sweden).
Close groups of observations have a similar proportional behavior of the considered
variables. In general, richer countries are concentrated in the left part of the biplot,
whereas less economically strong ones are in the right part. This is also supported by
the external variables poverty, pointing to the right side, and real estate, pointing to
the richer countries. On the top of graph we can recognize a group of countries whose
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gross domestic product (GDP) consists particularly from activities of the financial sector
(Luxembourg, Malta and also Cyprus).
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Figure 3.4: Ilr biplot of employed people by economic activity and age, including the
risk of poverty or social exclusion and the share of young people living with their parents.

Initially, let us consider only the first composition (economic activity) and relations
within these variables. The most significant ray is apparent for the agricultural sector,
expressing a large standard deviation of all relative information of the variable agri to the
remaining sectors. The links suggest that variables public and industry are proportionally
almost equal, the proportion remains almost the same among all the observations. The
same behavior can also be observed for the pairs finance and arts, industry and arts,
public and arts, finance and public. On the contrary, the highest proportional variability
is evident between agriculture and real estate activities, resp. financial activities. Within
the second composition, the links seem to be very similar for all given parts.

Subsequently, we can also investigate relations between both compositions. Since the
same ilr transformation (3.17) was used for both of them, the resulting conclusions
(concerning the biplot interpretation) are made in the same way as dealing with standard
real variables. We can see that the rays for public and young employees (15-24) nearly
coincide, thus the behavior of these two variables within their parent compositions is
positively correlated. The analogous relation can also be identified between 15-24 to arts
and finance, then between 25-64 to industry and finance. Oppositely, the dominance of
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3. Compositional biplots including external non-compositional variables

agriculture and young workers in their respective compositions is negatively correlated.
It means that the agricultural sector is more important in countries with lower relative
representation of young workers (this corresponds also to its positive correlation with
employees over 65 years).

Considering now the external variables, we see that the percentage of young people living
with their parents is uncorrelated to the proportion of employed people in the agricultural
sector. The same conclusion can be stated also for the arts sector. On the contrary, the
variable young is strongly related to the relative information of the industrial sector. On
the other hand, the young is strongly negatively correlated with real estate activities
since these variables lay approximately on the same line. The risk of poverty appears
uncorrelated with employed people between 25 and 64 years. Moreover, the variable
poverty is strongly negatively correlated with the relative amount of people employed in
the public administration. Additionally, the risk of poverty seems to be related also to
the variables agri and industry.

It is interesting to compare the compositional biplot also with a biplot constructed in
the standard way, i.e. by ignoring the compositional nature of both compositions. Figure
3.5 shows two standard biplots with different data preprocessing transformations. The
left graph represents data without scaling, since the data are expressed in percentages,
scaling seems to be unreasonable in this case. Regardless, the resulting biplot does not
look very meaningful for the purpose of interpretation. The non-compositional variables
reflect significantly higher variability than other observed variables (much longer rays).
For this reason, the logit transformation was used for all non-compositional variables and
the biplot is shown in Figure 3.5 (right). The explained variance is much lower in this
case (72.18%) and there are some significant differences to the ilr biplot. For instance,
the age structure of the employed people is completely different. The ray of employed
people in age of 25 to 64 is slightly visible and the variance of young people (15-24) has
changed its direction. In the ilr biplot the ray coincides with the public variable, whereas
here it seems to be correlated with real estate activities.

In conclusion, the construction of the ilr biplot enhances the applicability of the com-
positional biplot, whereas they visualize the same scores and loadings (up to a scaling
constant). Frequently, standard biplots result in misleading representations and their
construction does not consider the natural geometric structure of compositional data. As
it was shown in the examples, the ilr biplot usually yields more reasonable results.

3.6 Discussion

The multivariate data structure of compositional data can be analyzed with the clr biplot,
i.e. a biplot based on singular value decomposition of the clr-transformed data. Instead of
the clr transformation, we considered a specific ilr transformation for each compositional
variable. Variable-wise, this yields the same information as clr, up to a scaling constant.
However, from an interpretation point of view, the ilr version is more convenient, since
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Figure 3.5: Standard biplot of employed people by economic activity and age with external
non-compositional variables: no transformation used (left), using logit transformation
(right).

each ray in the plot represents an individual orthonormal coordinate with a meaningful
interpretation.

The ilr version of the biplot has the additional advantage that it is possible to reasonably
combine compositional data with other compositions, and/or with non-compositional
(external) variables. The idea is that each composition is ilr-transformed, the results are
combined, and then external variables merged. We have shown how the relations between
the variables of different compositions, relations to external variables, and relations to
the observations can be interpreted.

As in the non-compositional case, a proper preprocessing of external variables should be
considered. It has been shown on real examples that the most convenient transformations
are logit transformation for percentage data and simple scaling for variables containing
absolute values. Possibly also the log-transformation can be applied, when the effect
of relative scale of the original variable needs to be suppressed Mateu-Figueras and
Pawlowsky-Glahn (2008). A scaling of the compositions is not necessary since the
log-ratio transformations are invariant with respect to scaling.

It has been shown on practical real-world examples that the ilr biplot provides a more
reasonable representation of the data structure than standard biplots since it captures
the different geometrical features of compositional data. As in the usual case, a proper
interpretation depends also on the explained proportion of variance. The higher variance,
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3. Compositional biplots including external non-compositional variables

the better the ilr biplot reveals the real multivariate data structure. It is of course possible
to show an ilr biplot not only for the first two components, but also for higher-order
pairs.

In further research, a robust version of the ilr biplot can be considered and constituted,
based on robust PCA for compositional data Filzmoser et al. (2009a). A robustified
version will be less sensitive to outlying observations.
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Abbreviations

Abbreviation State
BB Brandenburg
BE Berlin
BY Bavaria
BW Baden-Württemberg
HB Bremen
HE Hesse
HH Hamburg
MV Mecklenburg-Vorpommern
NI Lower Saxony
NW North Rhine-Westphalia
RP Rhineland-Palatinate
SH Schleswig-Holstein
SL Saarland
SN Saxony
ST Saxony-Anhalt
TH Thuringia

Table 3.1: Codes representing names of German states
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Abbreviation Country
AT Austria
BE Belgium
BG Bulgaria
CY Cyprus
CZ Czech Republic
DE Germany
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GR Greece
HR Croatia
HU Hungary
IT Italy
LT Lithuania
LU Luxembourg
LV Latvia
MT Malta
NL Netherlands
PL Poland
PT Portugal
RO Romania
SE Sweden
SI Slovenia
SK Slovakia
UK United Kingdom

Table 3.2: Codes representing names of European countries
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CHAPTER 4
Correlation between

compositional parts based on
symmetric balances

Abstract: Correlation coefficients are most popular in statistical practice
for measuring pairwise variable associations. Compositional data, carrying
only relative information, require a different treatment in correlation analysis.
For identifying the association between two compositional parts, symmetrical
balances are constructed that capture all relative information in form of
aggregated log-ratios of both compositional parts of interest. The balances
form orthonormal coordinates, and thus standard correlation measures relying
on the Euclidean geometry can be used to measure the association. Simulation
studies and an example provide deeper insight into the proposed approach,
and allow for comparisons with alternative measures.

Key words: Correlation analysis; Compositional data; Sequential binary
partitioning; Symmetrical balances; Log-ratio transformations

4.1 Introduction
Compositional data are characterized by observations on compositional parts that con-
tribute to some whole. Typical examples are the number of votes for political parties in a
regional election with a given population, or concentrations of chemical elements in some
material with defined weight. An analysis of the associations between the compositional
parts (political parties, chemical elements) based on the underlying data is often a first
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step to understand the multivariate data structure. However, applying correlation analysis
to compositional data can lead to so-called spurious correlations. The problem of spurious
correlations dates back to the seminal paper by Pearson (1897) where difficulties obtained
by applying standard correlation analysis to data with a constant sum constraint are
described. There was a long way (with one important milestone (Chayes, 1960)) to realize
that any such reasonable measure cannot be based on the original compositional parts,
but exclusively on (log)-ratios forming the only relevant information in compositions
Aitchison (1986). In the following years, it turned out that compositional data are not
restricted entirely to observations with a constant sum constraint (like proportions or
percentages), but the concept covers all observations carrying relative information, with
a possibility of being expressed with any prescribed sum constraint without altering
the ratios between the parts (Pawlowsky-Glahn et al., 2015). The specific principles
of compositional data (scale invariance, permutation invariance and subcompositional
coherence) induce the Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001) with
the Euclidean vector space structure that enables to express compositions in proper
log-ratio coordinates and continue with statistical processing using standard multivariate
statistical tools.

Aitchison (1986) proposed to change completely the point of view on association between
compositional parts by introducing the variation matrix. Accordingly, the association
between two parts, expressed by the variance of the corresponding log-ratio, is stronger,
when the ratio between them tends to be constant. Although this concept turned out to
be successful in a range of applications during the last 30 years (Pawlowsky-Glahn and
Buccianti, 2011), there are still certain limitations of the approach that inhibit its wider
acceptance by the geochemical community (Filzmoser et al., 2010; Reimann et al., 2012).
They result mainly from the lack of possibilities of distinguishing positive and negative
association, an essential feature in case of the correlation coefficient. In order to get an
impression about such a behavior between geochemical variables, many researchers in
the field tend to return back to improper preprocessing tools like the log-transformation
that violates the scale invariance principle of compositional data.

This paper proposes to measure the strength of association between compositional parts
through the correlation coefficient between a particular choice of orthonormal coordinates
with respect to the Aitchison geometry. The orthonormal coordinates are based on
log-ratios, formed always by a part of interest and the remaining variables, aggregated
in terms of a weighted geometric mean. Methodologically, it follows the idea of having
log-ratio coordinates that express all relative information about the parts of interest
(Filzmoser et al., 2009b). Two such coordinates need to be constructed simultaneously
in a coordinate system, each corresponding to one of the parts. After a brief review
of recent possibilities concerning association between compositional parts in the next
section, these coordinates are derived in Section 4.3. A detailed discussion of the new
correlation measure together with some possible alternatives is provided in Section 4.4.
Sections 4.5 and 4.6 employ a geochemical data set in simulations and comparisons to
provide deeper insight into the properties of the proposed association measure. The final
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Section 4.7 concludes and provides some outlook.

4.2 Measures of compositional association

4.2.1 Correlation analysis for compositional data

The most popular way of measuring association (relation) between variables in practice
is by using a correlation measure. Nevertheless, its application on compositional data
does not get so straightforward. Let us recall that a D-part composition is represented
as a vector x = (x1, . . . , xD)>, where all components are positive real numbers that
carry only relative information (Aitchison, 1986; Pawlowsky-Glahn et al., 2015). This
means that only the ratios between the parts are informative and they form the basis
of a reasonable (statistical) processing. Moreover, one should follow the principles of
compositional data (Egozcue, 2009) in order to have a guarantee of a reliable analysis.
Particularly, the representation of a compositional vector with any sum of components
(proportions, percentages, mg/kg, ...) should yield the same results according to the scale
invariance principle. These essential assumptions constitute the source of the problems
to apply standard correlation analysis on compositional data.

Let us consider compositional data with a fixed prescribed constant sum constraint (the
case of proportions), that still occur sometimes in the literature. In this case, correlation
analysis is influenced also by the presence of negative bias in the covariance structure. It
is represented by the relations

cov(xi, x1) + cov(xi, x2) + · · ·+ cov(xi, xi−1) + cov(xi, xi+1) + cov(xi, xD) = −var(xi),
(4.1)

(for i = 1, . . . , D), that make the interpretation of the correlation coefficient meaningless
(its value cannot freely vary between −1 and 1). Consequently, this leads to the effect
known as subcompositional incoherence (Aitchison, 1986), i.e. the correlation between
parts of a composition withD parts can be completely in contradiction with the correlation
resulting from a subcomposition containing d parts, d ≤ D. Nevertheless, this is just an
illustration of the fact that standard statistical analysis of the original compositional
data (that are driven by the Aitchison geometry) cannot be recommended in general.

The Euclidean vector space structure of the Aitchison geometry enables to get a coordinate
representation of compositions in the real space, where standard statistical methods
can be applied. The resulting centered log-ratio (clr) (Aitchison, 1986) and isometric
log-ratio (ilr) coordinates (Egozcue et al., 2003), which seem to be recently the most
popular in practice, correspond to coordinates with respect to a generating system and
an orthonormal basis, respectively.

Accordingly, the clr coordinates are defined as

y = (y1, . . . , yD)> =
(

ln x1√∏D
i=1 xi

, . . . , ln xD√∏D
i=1 xi

)>
, (4.2)
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imposing the zero sum constraint of the new variables, y1+· · ·+yD = 0. Although it seems
to be attractive to assign each single original compositional part to a clr coefficient (and
then even continue with correlation analysis), this effort has no geometrical background
and should be avoided. Particularly, similar relations as those in (4.3),

cov(yi, y1)+cov(yi, y2)+· · ·+cov(yi, yi−1)+cov(yi, yi+1)+cov(yi, yD) = −var(yi), (4.3)

(for i = 1, . . . , D), that show a distortion of the covariance structure, support the
argumentation.

Following general theoretical assumptions (Eaton, 1983), correlation analysis of compo-
sitional data in the usual sense is meaningful exclusively in log-ratio coordinates with
respect to a basis, preferably to an orthonormal one, that guarantees isometry between
the Aitchison geometry and the real space. Nevertheless, only D−1 such coordinates exist
and it is not possible to assign a coordinate to each part simultaneously like in the case
of a canonical basis for standard observations. Searching for interpretable orthonormal
(ilr) coordinates led to the concept of balances (Egozcue and Pawlowsky-Glahn, 2005)
as coordinates with a specific interpretation in terms of balances between groups of
compositional parts. These new coordinates are constructed using a procedure called
sequential binary partitioning (SBP), where the original parts are separated sequentially
into non-overlapping groups of parts (Egozcue and Pawlowsky-Glahn, 2005). Concretely,

order x1 x2 x3 x4 x5 x6 x7 r s

1 + + + + – – – 4 3
2 + + – – 0 0 0 2 2
3 + – 0 0 0 0 0 1 1
4 0 0 + – 0 0 0 1 1
4 0 0 0 0 + – – 1 2
5 0 0 0 0 0 + – 1 1

Table 4.1: Example of SBP of a seven-part composition.

the main idea of SBP consists of dividing a given group of parts into two subgroups in
each order of partition until D − 1 steps are performed. At the beginning, all parts of
a composition are separated into two groups. In each step, the groups formed in the
previous step are split again into two subgroups: the first group labeled by +, the second
one labeled by −. The zero entries represent parts which are not involved in a partition of
a given order. The process ends when all groups consist of a single part. The procedure
is usually accompanied with a table, where the resulting partitioning scheme is depicted;
see Table 4.1 for an example. The corresponding balances are computed as follows,

zi =
√

rs

r + s
ln
(∏

+ xj
)1/r(∏

− xk
)1/s , i = 1, . . . , D − 1. (4.4)
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Here. the products
∏

+ and
∏
− include parts labeled as + or −, and r and s stand for

the number of positive and negative signs in the i-th partition, respectively (see Table
4.1). Formula (4.4) indeed supports the naming balances: each coordinate represents
a log-ratio between two groups of parts, given by their respective geometric means, or
alternatively, it contains all the information about the ratios between parts coded as
+ and parts coded as – (Fišerová and Hron, 2011). Although correlation analysis of
balances is now possible (Filzmoser and Hron, 2009), due to (4.4) its interpretation is
not straightforward without a deeper prior (expert) knowledge of how the SBP should
be constructed.

Consequently, an alternative approach was introduced coming from the idea of having
“automated” coordinates that would better stress the role of single compositional parts
(Filzmoser et al., 2009b; Fišerová and Hron, 2011). A particular form of SBP (see Table
4.2) leads to coordinates

z = (z1, . . . , zD−1)>, zi =
√

D − i
D − i+ 1 ln xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1. (4.5)

It is obvious that the balance z1, being proportional to y1, contains all the relative
information of the part x1 with respect to the remaining parts of the composition, since
this part is not contained in any other coordinate of (4.5). The variable z1 can be
interpreted in terms of dominance of x1 to the other parts, represented by their geometric
mean, thus to their average behavior. Unfortunately, the same interpretation in sense

order x1 x2 x3 . . . xD−2 xD−1 xD r s

1 + – – . . . – – – 1 D − 1
2 0 + – . . . – – – 2 D − 2

. . . . . . . . .
D − 2 0 0 0 0 + – – 1 2
D − 1 0 0 0 0 0 + – 1 1

Table 4.2: SBP corresponding to coordinates (4.5).

of explaining all relative information cannot be assigned to z2 and x2, because this
balance already does not contain the first part. Nevertheless, a good candidate for the
correlation between relative contributions of x1 and x2 in a given composition would be
a symmetrical form of z1 and z2 because of the exclusive position of the parts of interest
(x1, x2) in the respective coordinates. This task will be further developed in Section 3.
Obviously, the role of x1 and x2 can also be interchanged, and a similar construction
for different parts can be obtained by permuting the parts in (4.5). Without loss of
generality, just the case of x1 and x2 will be considered in the following.
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4. Correlation between compositional parts based on symmetric balances

4.2.2 Variation matrix as a measure of stability

A main tool of measuring compositional association between two compositional parts
has been the variation matrix as a measure of stability (Aitchison, 1986). The variation
matrix of a D-part composition is a symmetric matrix of order D, defined as

T = [tij ] =
[
var
(

ln xi
xj

)]
, i, j = 1, . . . , D, (4.6)

with zero diagonal elements. When the elements of T are close to zero, the ratio of xi/xj
is nearly constant, i.e. the two parts xi and xj are almost proportional. On the contrary,
high variability of the log-ratio indicates very different ratios of two parts among all the
observations.

The log-ratios in (4.6) can also be rescaled according to (4.5) so that they correspond,
up to orientation, to the normed coordinate of the two-part composition (xi, xj)>. The
resulting normalized variation matrix (Pawlowsky-Glahn et al., 2015) is defined as

T∗ = [t∗ij ] =
[
var
( 1√

2
ln xi
xj

)]
, i, j = 1, . . . , D, (4.7)

where t∗ij stands for the usual (sample) variance of the normalized log-ratio of parts i
and j (balance). Subsequently, the relation between T and T∗ is given as T = 1

2T∗.
The measure of variability could be normalized to the range (0,1] as τij = exp(−var(t∗ij))
for 1 ≤ i, j ≤ D, i 6= j (Buccianti and Pawlowsky-Glahn, 2005; Filzmoser et al., 2010).
High variability of the log-ratio then tends to a result approaching zero and, conversely,
small variability is reflected by values of τij close to one with the limiting case of perfect
proportionality. However, this is still just a proper normalization of the elements of
the variation matrix and not a correlation measure in the common sense. Particularly,
the concept of proportionality does not allow to think in terms of positive and negative
association, as it is known from the correlation coefficient.

A different approach to normalization, proposed by Egozcue et al. (2013), is based on the
idea that “completely non-proportional” components of a D-part composition correspond
to consistent values off the diagonal. Hence, each element out of the diagonal would have
the value 2D · TotVar/D(D − 1) = 2TotVar/(D − 1), where

TotVar(x) = 1
2D

D∑
i=1

D∑
j=1

var
(

ln xi
xj

)
(4.8)

stands for a measure of global dispersion, called the (Pawlowsky-Glahn and Egozcue,
2001). If we divide each non-diagonal element by this value, we obtain a matrix for
complete non-proportionality. This normalization thus leads to the matrix T̃,

T̃ = D − 1
2TotVarT. (4.9)
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4.3. Constructing symmetric balances

If the values of T̃ are greater than one, the corresponding pair of parts is less proportional
than the log-ratio variance that would be observed in a complete non-proportional
composition. Values less than one show association between the parts. The smaller the
value is, the more associated these two parts are. One can ask if the possible association
is significant and statistical hypothesis testing can be carried out. For this purpose, the
following two balances,

zv1(i,j) = 1√
2

ln xi
xj
, zv2(i,j) =

√
2(D − 2)√

D
ln xixj

D−2
√∏

k 6={i,j} xk
, (4.10)

accompanied by the complementary D − 2 orthonormal coordinates, were employed
(Egozcue et al., 2013). The first of them corresponds to an element of the normalized
variation matrix, and the latter one links this log-ratio (capturing relative information on
the subcomposition (xi, xj)>) with the remaining parts in the given composition. These
coordinates allow to test for significance of the elements in the variation matrix indirectly
through a regression model, so that deviations from the exact association would be
explained within the whole composition. Nevertheless, the interpretation of the elements
of the variation matrix themselves is not further enhanced by using this approach.

4.3 Constructing symmetric balances
All the introduced approaches to measuring association between compositional parts
are based, directly or indirectly, on working with orthonormal coordinates. However,
constructing interpretable balances with SBP (4.4) for correlation analysis needs some
prior expertise. It is also important to note that the normalized variation matrix considers
only associations between two parts of a given composition. Although this seems to
be a clear advantage, one should be aware that any part in the compositional vector is
defined by ratios with all other parts in the composition. Consequently, the association
based on the simple log-ratio ignores that both parts are unavoidably influenced also
by the remaining components. This fact should be taken into account for considering
any reasonable coordinates that would allow for a correlation analysis between relative
contributions conveyed by both parts. As mentioned in the previous section, one possible
setting of coordinates would be (4.5). Nevertheless, it is necessary to symmetrize with
respect to parts x1 and x2 (without loss of generality).

Accordingly, we consider two coordinate systems z and z∗ resulting from the permutation
of the parts in (4.5) and focus on the role of x1 and x2, respectively. It is obvious from
Table 4.3 with the corresponding SBPs that the first two coordinates from each system
(4.11)(4.12) fully describe the subcomposition (x1, x2)> within the given composition.

z1 =

√
D − 1
D

ln x1
D−1
√∏D

i=2 xi

, z2 =
√
D − 2
D − 1 ln x2

D−2
√∏D

i=3 xi

, (4.11)
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4. Correlation between compositional parts based on symmetric balances

x1 x2 x3 x4 . . . xD−1 xD
z1 + – – – . . . – –
z2 0 + – – . . . – –
z3 0 0 + – . . . – –
...

...
...

...
...

...
...

...
zD−1 0 0 0 0 . . . + –

x1 x2 x3 x4 . . . xD−1 xD
z∗1 – + – – . . . – –
z∗2 + 0 – – . . . – –
z3 0 0 + – . . . – –
...

...
...

...
...

...
...

...
zD−1 0 0 0 0 . . . + –

Table 4.3: Construction of balances z (left) and z∗ (right).

z∗1 =

√
D − 1
D

ln x2
D−1
√
x1
∏D
i=3 xi

, z∗2 =
√
D − 2
D − 1 ln x1

D−2
√∏D

i=3 xi

, (4.12)

Using the SBPs from Table 4.3, it is now possible to build matrices of clr representations
of orthonormal basis vectors corresponding to the first two balances of z and z∗ (Egozcue
et al., 2003) as

Vz
D×2

=



√
D−1
D 0

− 1
D−1

√
D−1
D

√
D−2
D−1

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1

...
...

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1


Vz∗
D×2

=



− 1
D−1

√
D−1
D

√
D−2
D−1√

D−1
D 0

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1

...
...

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1


,

where Vz∗ results from a permutation of the first two rows of Vz. Consequently, the first
two balances of z and z∗ are related through an orthogonal transformation as

z∗ = Vz
>Vz∗z, (4.13)

where the orthogonal matrix Vz
>Vz∗ has the form

Vz
>Vz∗ =

 − 1
D−1

√
D−2
D

D
D−1√

D−2
D

D
D−1

1
D−1

 . (4.14)

Note that both matrices Vz and Vz∗ are closely connected to the respective coordi-
nates. Namely, their columns v1 = (v11, . . . , vD1)>,v2 = (v12, . . . , vD2)> and v∗1 =
(v∗11, . . . , v

∗
D1)>, v∗2 = (v∗12, . . . , v

∗
D2)> with zero sums of their elements represent logcon-

trast coefficients of z1, z2 and z∗1 , z∗2 , respectively (Aitchison, 1986), i.e.

z1 =
D∑
i=1

vi1 ln xi, z2 =
D∑
i=1

vi2 ln xi, z∗1 =
D∑
i=1

v∗i1 ln xi, z∗2 =
D∑
i=1

v∗i2 ln xi. (4.15)
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4.3. Constructing symmetric balances

Because of the roles of the above mentioned coordinates with respect to the single parts x1
and x2, one can construct new symmetric balances capturing their relative contributions
expressed through log-ratios to other parts in the composition. Let x1 be the first part
of interest; the case of x2 can be processed accordingly. Based on basic geometry, a
symmetric coordinate zs1 capturing relative information about x1 corresponds to an angle
bisector of v1 and v∗2. Similarly, the coordinate zs2 (that stands for x2) would correspond
to an angle bisector of v2 and v∗1. See Figure 4.1 for an illustration.

z1

z2

z
2

*

z
1

*

z
1

s

z
2

s

Figure 4.1: Graphical illustration of the symmetric balances.

Particularly, the new symmetric orthonormal coordinate is computed using the respective
logcontrast coefficients as

zs1 = 1
‖v1 + v∗2‖

(v1 + v∗2)> ln x. (4.16)

The sum of v1 and v∗2 results in a vector with elements

v1 + v∗2 =
(
D − 1 +

√
D(D − 2)√

D(D − 1)
,− 1√

D(D − 1)
,

−
√
D − 2 +

√
D√

D(D − 1)(D − 2)
, . . . ,−

√
D − 2 +

√
D√

D(D − 1)(D − 2)

)>
,

(4.17)

and norm

‖v1 + v∗2‖ =

√
2 · (D − 1 +

√
D(D − 2))

D − 1 . (4.18)

Subsequently, logcontrast coefficients of the symmetric coordinate zs1 are given as
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4. Correlation between compositional parts based on symmetric balances

v1 + v∗2
‖v1 + v∗2‖

=
(√

D − 1 +
√
D(D − 2)

√
2D

,− 1√
2D(D − 1 +

√
D(D − 2))

,

−
√
D − 2 +

√
D√

2D(D − 2)(D − 1 +
√
D(D − 2))

, . . . ,

−
√
D − 2 +

√
D√

2D(D − 2)(D − 1 +
√
D(D − 2))

)>
,

(4.19)

followed by the resulting coordinate,

zs1 =

√
D − 1 +

√
D(D − 2)

2D ln x1

x

1
D−1+

√
D(D−2)

2

(
x3x4 · · ·xD

) √
D−2+

√
D√

D−2(D−1+
√

D(D−2))

. (4.20)

The same procedure is applied to the coordinates z∗1 and z2, describing information about
the compositional part x2, in order to obtain the second symmetric coordinate zs2. Thus

zs2 =

√
D − 1 +

√
D(D − 2)

2D ln x2

x

1
D−1+

√
D(D−2)

1

(
x3x4 · · ·xD

) √
D−2+

√
D√

D−2(D−1+
√

D(D−2))

. (4.21)

From the above construction it is clear that zs1, z
s
2, z3, . . . , zD−1, or alternatively

zs1, z
s
2, z
∗
3 , . . . , z

∗
D−1, form orthonormal coordinates of the composition x. The inter-

pretation of the resulting symmetric balances is indeed as expected, they both capture
dominance of x1 and x2, respectively, with respect to the other components in a symmet-
ric manner. Although the coefficients in the denominator of (4.20) and (4.21) seem to be
quite complicated, one does not need to take care about them in practice, because they
result just from the normalization needed to achieve orthonormality of the coordinates.
More important is weighting of x2 in zs1 (and x1 in zs2) that is different for the remaining
parts, which reflects the compromise resulting from symmetrizing the input coordinates
(4.11) and (4.12). Nevertheless, it is visible that the ratio of both weights, i.e.

1
D−1+

√
D(D−2)

√
D−2+

√
D√

D−2(D−1+
√
D(D−2))

=
√
D − 2√

D − 2 +
√
D

(4.22)

(see Figure 4.2), is stabilized quite soon with an increasing number of parts to approxi-
mately one half in favor of the remaining parts.
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Figure 4.2: Ratio between weights in symmetric balances.

4.4 Correlation analysis with symmetric balances
The symmetric balances, as constructed in the previous section, allow to perform correla-
tion analysis between coordinates which express one part of interest with respect to the
other parts in the composition. For this purpose, the Pearson correlation coefficient can
be taken,

ρ(zs1, zs2) = cov(zs1, zs2)√
var(zs1)var(zs2)

, (4.23)

or any other alternative correlation measure. The interpretation in the sense of positive
and negative association (known from the correlation coefficient) is possible and statistical
inference like significance testing can be performed as usual. It is just important to
emphasize that it is not a correlation between the original components, but between
coordinates assigned to them. Their specific interpretation consists in terms of dominance
of both parts to the average behavior of the rest as described in detail above. Hence,
the remaining parts can influence the value of the correlation coefficient as well, which
fully corresponds to the relative nature of compositional data. Similarly, the correlation
for any other pair of parts in x can be calculated by permuting the parts in (4.20) and
(4.21). By summarizing all corresponding correlation coefficients in one matrix, the
compositional correlation matrix RC(x) of dimension D×D is obtained. It is symmetric
with unit diagonal as the standard correlation matrix. Moreover, any scaling and
shifting in the compositional sense, i.e. by perturbing x with a non-random composition
b = (b1, . . . , bD)> and powering with a real constant a in order to get a composition
a� x⊕ b = (xa1b1, . . . , x

a
DbD) (up to an arbitrary scaling constant, see Pawlowsky-Glahn

et al., 2015, for details), yields the same result, RC(a � x ⊕ b) = RC(x). Although
practical experience shows some further interesting properties (like positive definiteness),
it is crucial to realize that the elements of RC(x) are formed by using D(D − 1)/2
different coordinate systems, and thus the matrix cannot be processed as a whole, e.g.
by computing principal components.
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4. Correlation between compositional parts based on symmetric balances

Constructing symmetric balances seems to be the most relevant way how to perform
correlation analysis between relative contributions of compositional parts. Nevertheless,
the form of the coordinates z and z∗ inspires to consider also other possibilities that will
be briefly mentioned. The first option consists in taking correlation coefficients between
the coordinates (4.11) and (4.12), respectively,

ρ(z1, z2) = cov(z1, z2)√
var(z1)var(z2)

, ρ(z∗1 , z∗2) = cov(z∗1 , z∗2)√
var(z∗1)var(z∗2)

, (4.24)

and then compute their average as follows

ρave(z, z∗) = ρ(z1, z2) + ρ(z∗1 , z∗2)
2 . (4.25)

Another idea to construct a correlation coefficient with similar interpretation as for the
symmetric balances follows the approach from linear discriminant analysis (Johnson and
Wichern, 2007) based on calculating the so-called pooled covariance matrix from

Σz =
(

var(z1) cov(z1, z2)
cov(z2, z1) var(z2)

)
and Σz∗ =

(
var(z∗1) cov(z∗1 , z∗2)

cov(z∗2 , z∗1) var(z∗2)

)
. (4.26)

The pooled covariance matrix represents here an average of the covariance matrices Σz
and Σz∗ ,

Σp(z, z∗) = Σz + Σz∗

2 =
(

Σp11 Σp12

Σp21 Σp22

)
, (4.27)

and the elements are taken to get the resulting correlation coefficient,

ρpool(z, z∗) = Σp12√
Σp11Σp22

. (4.28)

The next section will be devoted to thorough simulation studies to investigate, whether
one would benefit from employing these alternative approaches in addition to the main
proposal formed by correlation analysis of symmetric balances.

4.5 Simulation studies
The main aim of the following simulation studies is to investigate the properties of the
different correlation coefficients as introduced in the previous section, and to compare
also with some other approaches that are used in the literature. In this section we use
the data obtained from the moss layer in the Kola Project (Reimann et al., 1998). The
data are available in the R-package mvoutlier as data set moss (R Core Team, 2015),
and they contain concentrations of 31 chemical elements in more than 600 soil samples
measured in the moss layer.
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4.5. Simulation studies

4.5.1 Simulation 1: Dependence on the number of parts

The first simulation setting compares the different approaches for correlation analysis for
a varying number of parts involved in the computation of the correlation coefficients. We
select randomly k parts (4 ≤ k ≤ 30), and compute the correlation between the first two
parts. For each fixed k, the random selection is done 10.000 times, resulting in 10.000
correlation values for each method. When comparing two methods, we compare the
outcomes of all results for fixed k in terms of the Pearson correlation. A value close to
one would indicate approximately the same outcome of both methods. The left panels in
Figure 4.3 show these pairwise comparisons of the different correlation measures, with
the considered number of parts on the horizontal axes, and the resulting correlations
between the point clouds of the 10.000 outcomes on the vertical axes. The right panels
show again pairwise comparisons of correlation measures, but this time the maximum
difference of the 10.000 results is computed.

It can be seen that the relation between correlations of symmetric balances and average
correlations or correlations based on the pooled covariance matrix, respectively, are very
close regardless of the number of parts, with some few exceptions for lower numbers
of parts in the compositional data set (Figure 4.3 (a,b)). It is then clear that the
difference between correlations for symmetric balances and correlations based on either
the coordinates z1, z2 or the coordinates z∗1 , z∗2 are also small. On the other hand, the
correlations between the coordinates z1, z2 and z∗1 , z∗2 , respectively, reveal quite a different
behavior (Figure 4.3 (c)). Particularly, for a lower numbers of parts, the correlation
coefficients can differ quite substantially, though they converge readily with increasing
dimension of the data. Although using simply coordinates (4.5) to capture the relation
between compositional parts seems to be attractive (Buccianti et al., 2014), one should
be aware that the asymmetry matters. Just for the sake of curiosity, the same simulation
has also been done for correlations between symmetric balances and the respective
clr variables, with a similar result as before (Figure 4.3 (d)). This fact supports the
conclusion that by suppressing alternative correlation measures from the previous section
in favor of correlation between symmetric balances, almost no new information is lost.
On contrary, it could be quite dangerous to compute correlations from non-symmetric
coordinates or negatively-biased clr coefficients. Particularly for lower numbers of parts,
the difference between them and the more relevant symmetrized coordinate approach
can be substantial.

4.5.2 Simulation 2: Permutation tests

Here we consider only the approach of symmetrical balances. It is possible to test the
respective correlation coefficient by applying permutation tests for correlations, where the
random permutations are drawn without replacement among the observations in the data
set. The goal of this simulation study is to investigate the behavior of the correlation
coefficient between symmetrical balances ρ(zs1, zs2) while permuting the observations, and
thus to perform hypothesis testing using the permutation test (Good, 2000).
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4. Correlation between compositional parts based on symmetric balances

(a) Comparison of correlations between symmetric balances and average correlation
coefficient.
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(b) Comparison of correlations between symmetric balances and pooled covariance
matrix approach.
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(c) Comparison of correlations between coordinates z and z∗.
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(d) Comparison of correlations between symmetric balances and clr coefficients.
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Figure 4.3: Pairwise comparisons of different correlation measures based on 10.000
random selections of data sets with k parts (4 ≤ k ≤ 30); left: Pearson correlations of
the resulting point clouds; right: maximum difference between all results.
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We can test the null hypothesis about no association between relative contributions
to x1 and x2, represented by H0 : ρ(zs1, zs2) = 0, against the alternative hypothesis,
H1 : ρ(zs1, zs2) 6= 0, in three different cases:

(P1) permuting the observations of the second part x2,

(P2) permuting the observations of both parts x1 and x2 independently,

(P3) permuting the observations of the remaining variables x3, . . . , xD.

The correlation coefficient r0 is computed as correlation between our symmetrical bal-
ances corresponding to the parts x1 and x2, i.e. r0 = ρ̂(zs1, zs2). A permutation of
the observations according to one of the above schemes (P1)-(P3) leads to modified
correlation coefficients ri = ρ̂(zs1(i), z

s
2(i)), i = 1, . . . ,M , where M stands for the number

of permutations. Then we can calculate the resulting p-value as

p = #(|r0| < |ri|,∀i)
M

, i = 1, . . . ,M. (4.29)

If p < 0.05, the null hypothesis can be rejected at the significance level 0.05 and it can
be stated that the correlation between two parts x1 and x2 is significant. Note that this
procedure is strictly defined for non-compositional variables. In case of compositions we
can only expect the same test behavior if the observations in both parts x1 and x2 are
permuted independently.

The test was performed for all possible combinations of pairs of compositional parts in
the data set moss, and all schemes (P1)-(P3) of permutation testing were considered.
The number of replicates M was set to 1000. The main interest of the tests consists in
investigating the behavior of the p-values depending on the used scheme (P1)-(P3), and
depending on the size of the original correlation coefficient r0. The results are shown in
Figure 4.4 and 4.5.

Figure 4.4 shows, how the resulting p-values are depending on the original correlation
coefficients r0. The cases, where the null hypothesis is rejected, are depicted in black and
non-rejecting situations are in gray. The null hypothesis is not rejected when the original
correlation is approximately zero, i.e. relative contributions to x1 and x2 are uncorrelated.
The relative frequency of non-reject events is then displayed on Figure 4.5. The majority
of non-rejects are cumulated around a correlation of zero. The results for the situations
where only observations in part x2 are permuted, and where observations in both x1
and x2 are permuted independently are quite the same. A different outcome is observed
when only the observations in the remaining parts x3, . . . , xD are permuted. Here it is
seen that even for original correlations further away from zero, the test does not report
significance. This demonstrates that the correlation between x1 and x2, represented
by the balances zs1 and zs2, is also heavily depending on the behavior of the remaining
parts in the composition. Since the moss data set has D = 31 parts, the remainder can
inherently contain important relative information for the association. As noted above, the
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Figure 4.4: p-values of permutation tests for correlations between symmetrical balances,
in relation to the original correlation coefficient r0; left: only observations in the remainder
are permuted (P3); middle: observations in part x2 is permuted (P1); right: observations
in parts x1 and x2 are permuted independently (P2).

classical permutation test for uncorrelatedness is not properly defined in this situation,
but it is still interesting to see the effects. Overall, the permutation tests provide useful
information about the importance of the remaining variables when processing correlation
analysis for compositional data.
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Figure 4.5: Relative frequency of non-rejects in permutation tests for the correlation
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4.6. Example

4.6 Example
As in the previous section, we consider themoss data set by comparing different association
measures. The resulting pairwise correlation coefficients are presented by so-called heat
maps, see Figure 4.6, where the values are simply color coded. In addition, the variables
are grouped in order to identify patterns in the matrix of pairwise correlations. In
Figure 4.6 we compare the heatmaps for associations based on the variation matrix
coefficients (upper left), and further correlations for log-transformed data (upper right),
for symmetrical balances (lower left), and for clr coordinates (lower right). Due to the
individual grouping in each heatmap, the order of the rows and columns changes and
makes a direct comparison difficult. However, in this representation one can clearly see the
difference in patterns. The variation matrix approach leads to a very different structure
due to the non-negative association measures. Also the heatmap for log-transformed
data, still very commonly applied in geochemistry, reveal a different structure compared
to that for symmetrical balances. In particular, only few negative correlations, but
mainly positive ones are obtained. Finally, the heatmaps for symmetrical balances and
for clr coordinates are very similar. This is to be expected from the simulation results,
see Figure 4.3(d), since for larger numbers of parts the two approaches for computing
correlations get very similar.

4.7 Discussion
Correlation analysis of the original compositional parts fails to provide interpretable
results, if a fixed constant sum constraint is employed. This is due to the relative
nature of compositions represented particularly by scale invariance, and it leads to a
negative bias of the correlation structure. The only safe way to perform correlation
analysis of compositional data is to express them in orthonormal log-ratio coordinates.
Although sequential binary partitioning and the resulting balances can be very useful,
when prior knowledge about geochemical processes in the data are available, automated
and interpretable orthonormal coordinates that capture relative information about single
compositional parts can help to reveal hidden geochemical patterns, when such information
is not available.

For the purpose of interpretable correlation analysis in orthonormal log-ratio coordinates,
so-called symmetric balances were introduced by using a special choice of balance
coordinates. They allow to treat two compositional parts in a symmetric way in one
coordinate system and to compute the correlation coefficient. Although the symmetric
balances cannot be simply identified with the original compositional parts, because they
capture just relative contributions of the parts within a given composition, it seems
to be the first successful attempt to have correlation analysis of compositional data
interpretable in terms of a pair of compositional parts. Particularly, the possibility of
analyzing negative and positive associations as often required in practice (and not available
using the variation matrix approach) can help to eliminate inappropriate data processing,
for instance using the popular (but scale dependent) log-transformation. Moreover, one
should be aware that also other parts are naturally involved into the correlation between
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4. Correlation between compositional parts based on symmetric balances
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Figure 4.6: Heatmaps of correlations for the moss data set based on the variation matrix
coefficients (upper left), log-transformed data (upper right), symmetrical balances (lower
left), and clr coordinates (lower right).
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4.7. Discussion

two given components by constructing symmetric balances. Nevertheless, it follows closely
the definition of compositional data, that none of the parts can be analyzed without
considering relations (ratios) to the other parts. This, however, has the consequence
that measurement errors in some parts may affect the resulting correlation coefficients of
symmetric balances A possible way out seems to be appropriate weighting of the parts
according to their relevance, as proposed recently in (Egozcue and Pawlowsky-Glahn,
2015; Filzmoser and Hron, 2015). This will be further investigated in subsequent work.

Correlation coefficients can be seen as summarizing the information of the variable
relations shown in scatter plots. With the concept of symmetrical balances we also
have an appropriate graphical representation of two compositional parts in terms of
orthonormal coordinates. This can serve as a new way of investigating pairwise relations.

Finally, here only the Pearson correlation was used to measure association. Clearly, one
can also employ alternative correlation estimators, like the Spearman correlation for
identifying non-linear relations, or robust correlation estimators for downweighting the
influence of outlying observations.
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