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Kurzfassung der Dissertation

Information wird räumlich genannt, wenn sie Referenzen zum Raum beinhaltet.
Die vorliegende Dissertation zielt darauf ab, die Charakterisierung räumlicher
Information auf ein strukturelles Level zu heben. Toblers erstes Gesetz der Geogra-
phie und die Skaleninvarianz werden weithin zur Charakterisierung räumlicher
Information verwendet. Ihre formale Beschreibung basiert jedoch auf explizitenRe-
ferenzen zum Raum, was einer Verwendung für die strukturelle Charakterisierung
räumlicher Information entgegensteht. Der Autor führt daher ein Graphenmo-
dell ein, welches im Falle einer Einbettung des Graphen in einen Raum typische
Eigenschaften räumlicher Information aufweist, d. h. unter anderem Toblers Ge-
setz befolgt und skaleninvariant ist. Das Graphenmodell weist die Auswirkungen
dieser typischen Eigenschaften auf seine Struktur auch dann auf, wenn es als abs-
trakter Graph interpretiert wird. Daher ist es zur Diskussion dieser typischen
Eigenschaften auf einem strukturellen Level geeignet.

Ein Vergleich des Modells mit verschiedenen räumlichen und nicht-räumlichen
Datensätzen in der vorliegenden Dissertation legt nahe, dass räumliche Datensätze
durch eine gemeinsame Struktur gekennzeichnet sind, weil die betrachteten räum-
lichen Datensätze im Gegensatz zu den nicht-räumlichen Gemeinsamkeiten mit
dem Modell aufweisen. Dies lässt das Konzept einer räumlichen Struktur sinnvoll
erscheinen. Das eingeführte Modell ist ein Modell dieser räumlichen Struktur. Die
Dimension des Raumes wirkt sich auf räumliche Information und somit auch auf
die räumliche Struktur aus. Die Dissertation untersucht, wie die Eigenschaften des
Modells, insbesondere im Falle einer Gleichverteilung der Knoten im Raum, von
derDimension des Raumes abhängen und zeigt, wie eine Schätzung derDimension
aus der räumlichen Struktur eines Datensatzes gefolgert werden kann.

Die Ergebnisse der Dissertation, insbesondere das Konzept einer räumlichen
Struktur und das Graphenmodell, stellen einen grundlegenden Beitrag für die Dis-
kussion räumlicher Information auf einem strukturellen Level dar: Auf räumlichen
Daten operierende Algorithmen können unter Berücksichtigung der räumlichen
Struktur verbessert werden; eine statistische Evaluation von Überlegungen zu
räumlichen Daten wird möglich, da das Graphenmodell beliebig viele Testda-
tensätze mit kontrollierbaren Eigenschaften generieren kann; und das Erkennen
von räumlichen Strukturen sowie die Schätzung der Dimension und weiterer Pa-
rameter kann zum langfristigen Ziel beitragen, Daten mit unvollständiger oder
fehlender Semantik zu verwenden.



Abstract of the Thesis

Information is called spatial if it contains references to space. The thesis aims at
lifting the characterization of spatial information to a structural level. Tobler’s
first law of geography and scale invariance are widely used to characterize spatial
information, but their formal description is based on explicit references to space,
which prevents them from being used in the structural characterization of spatial
information. To overcome this problem, the author proposes a graph model
that exposes, when embedded in space, typical properties of spatial information,
amongst others Tobler’s law and scale invariance. The graph model, considered as
an abstract graph, still exposes the effect of these typical properties on the structure
of the graph and can thus be used for the discussion of these typical properties at a
structural level.

A comparison of the proposed model to several spatial and non-spatial data sets
in this thesis suggests that spatial data sets can be characterized by a common
structure, because the considered spatial data sets expose structural similarities to
the proposed model but the non-spatial data sets do not. This proves the concept
of a spatial structure to be meaningful, and the proposed model to be a model of
spatial structure. The dimension of space has an impact on spatial information,
and thus also on the spatial structure. The thesis examines how the properties
of the proposed graph model, in particular in case of a uniform distribution of
nodes in space, depend on the dimension of space and shows how to estimate the
dimension from the structure of a data set.

The results of the thesis, in particular the concept of a spatial structure and the
proposed graph model, are a fundamental contribution to the discussion of spatial
information at a structural level: algorithms that operate on spatial data can be
improved by paying attention to the spatial structure; a statistical evaluation of
considerations about spatial data is rendered possible, because the graph model
can generate arbitrarily many test data sets with controlled properties; and the
detection of spatial structures as well as the estimation of the dimension and other
parameters can contribute to the long-term goal of using data with incomplete or
missing semantics.
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Preface

Les photographes s'occupent des choses qui
disparaissent continuellement et quand ils
ont disparu là n'est aucune adaptation sur

terre qui peut les faire revenir encore.

—Henri Cartier-Bresson
french photographer

(1908–2004)

As a young child, I wanted to become an inventor: I invented rotating rockets that
need less fuel, because their angular momentum was preventing them from tilting;
invented new advanced arithmetic operations that generalize existing ones; and
I invented circuit boards for the independent control of multiple model railway
locomotives. Every time I had a new idea, it turned out that the invention was
great but already existed. When I went into secondary school, I recognized that
inventing existing things is no pleasure and that insights go before an invention.
That was when I decided to become a scientist.

I strove for insights, and the philosophical point of view became more and more
important to me. I had to decide whether I should proceed with philosophy or
natural sciences. One of my greatest teachers, Florian Pop, asked me whether I
would like to think about these fundamental philosophical questions, possibly
without gaining results, or whether I would like to derive results that turn out to
work, even when a philosophical justification is missing. I decided for the latter
and became a pragmatic scientist, but never lost the interest in these fundamental
philosophical questions completely.

Which topics should I conduct research on? There are many more interesting
research topics than I will, in my whole life, have the chance to pay attention
to. My decision to become a scientist is strongly linked with the desire to gain
insights, and insights itself can be gained by the exploration of principles. The
more fundamental the principles are, themore extensive is the scope of the insights.
It seems thus logical to explore fundamental laws and principles of a topic that
appears to be important to many different fields of science and in many contexts.
Spacetime is such a topic.
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Space and time have always been incredibly fascinating to me, because all matter
is bound to space and time, independent of where and when it exists; there is yet
no obvious reason for why matter always has a location. Spacetime is a physical
phenomenon, a geographical phenomenon, a psychological phenomenon, and
it is a social phenomenon. As a scientist, I am fascinated by the fact that these
phenomena nevertheless trace back to a common core – this is why we denote
these phenomena by the same name. I hence decided to explore the laws and
principles of space and time.

I have a passion for elegant things. Spacetime can be described by a very simple
structure, and many theories about spacetime are thus widely regarded as eleg-
ant. Spacetime is, moreover, fundamental to many elegant things including art:
everything we do, even the most aesthetic and elegant things, require space and
time to exist, independent of our culture and language. Space and time do not
only render elegant things possible, but space and time are as well limiting art, as
becomes apparent in the epigraph: art cannot overcome the influence of space and
time, because also art happens in space and time. To pay homage to the role of
space and time in art, each chapter opens with an epigraph dedicated to an art.

My research initially focussed on public transport, which happens in space and
time. This example suggests an algebraic modelling, because it is very specific
and we can understand how many aspects of this example relate. I used category
theory, algebraic structures and monoidal homology to model this example but
could draw only few general theoretical conclusions from this modelling. I hence
extended the focus to spatial and temporal information and started using human
activities and public transport only as examples of such information.

During my research on spatial information, I read hundreds of papers, took hun-
dreds of notes, discussed numerous ideas with colleagues and worked thousands
of hours. One day, there was the moment every researcher yearns for, the εὕρηκα
(eureka) moment: an idea emerged of how to characterize and model spatial in-
formation. Ideas often turn out to have a major drawback and are thus, sooner
or later, rejected. This idea however turned out to be the right one – no serious
drawback appeared, it is captivatingly simple and yet has a wide scope. I am more
than happy to present the idea and its context in this thesis, with the aim to impart
to the reader some of the model’s elegance.

•
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1
Introduction

—Franz Moritz Wilhelm Marc
german painter

(1880–1916)

Numerous aspects of spatial information have been examined, but yet, a structural
description is missing. Structural realism suggests that a long-lasting view of
spatial information could be gained by focusing on its structure. This thesis aims at
deciding whether spatial information can be characterized by a common structure,
with the aim of contributing to the long term goal of a transdisciplinary concept of
space and spatial information. The thesis’ main contributions include the concept
of spatial structure and the scale-invariant spatial graph model.

A very short overview on this topic has been provided by the author of this thesis
at the Vienna Young Scientists Symposium (Mocnik 2015). A more detailed dis-
cussion was published by Mocnik et al. (2015) at the 12th Conference On Spatial
Information Science. Parts of the thesis are based on these papers.

This chapter begins with a discussion of the concepts necessary to formulate the
hypotheses: the concepts of space, time and structure are discussed (section 1.1),
and the concept of human activities is introduced (section 1.2). Tobler’s first law
of geography is reviewed as a typical property of spatial information (section 1.3).
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1 Relations can even be
entities in other
representations. Entities
and relations have, in this
case, the same status. A
philosophical view on this
thematics has been given
by Esfeld et al. (2011).

We hypothesize that spatial data sets share, beside Tobler’s first law, a common
structure, and that this structure reflects the dimension of space (section 1.4).
The methodological approach (section 1.5), the relevance of the hypotheses, the
contributions of the thesis (section 1.6) and the limitations of the argumentation
(section 1.7) are discussed. We finally outline the overall argumentation of this
thesis (section 1.8).

1.1 Space, Time and Structure

Our understanding of space and time is characterized by its structure. We argue, in
this section, how information with spatial and temporal aspects can be represented,
and we introduce the concept of spatial structure.

Space and Time. Both, space as well as time, are fundamental to our life: most
human activities incorporate space and time, because they are performed some-
where and somewhen. Information thus often describes things that exist or happen
in space and time. Existing or happening in space and time means to be bound
to space and time, to its existence and its features. It has turned out that spatial
aspects of information can be crucial to solve problems, e. g. when investigating
and containing the Broad Street cholera outbreak in London (Snow 1854). It is
widely assumed that information is of spatial nature in large part (Franklin 1992)
but evidence is very rare (Hahmann et al. 2011).

Various concepts of space and time exist, e. g. the concept of a metric space (Lang
2002), the concept of a topological space (Bredon 1993), concepts of space in
physics (Basri 1966), concepts of geographical space (Couclelis 2005) and concepts
of space in psychology (Uttal 2008). These concepts describe several aspects of
what we perceive as space and time. Accordingly, many different features of space
and time, also ostensible contradicting ones, exist.

Representations of the World. The examination of information related to space
and time requires that the information is represented such that it is accessible
to our mind. When we are solving tasks in our environment, we build mental
representations of the parts of the world that are important for the solution. Such
a representation is task specific and influenced by our mental model, in particular
because our mental model is used to judge which parts of the world are useful. Our
mental model is influenced by our perception (BonJour 2013), and it is dynamic
and develops over time because perception depends on the situational context
and we perceive and therewith are able learn continuously (Glaser 1989). Our
representations of the world are thus necessarily situational and task-specific.

Representations are usually referring to things, which we will call entities in the
following. These entities can be related. We may choose different representations,
i. e. different entities and relations1, of the same reality due to the representations’
situational character.
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2 We distinguish between
the entity, the reference and
the symbol used to denote
the reference. (Ogden et al.
1923, pp. 6ff) We will denote
the entity and the reference
by the same symbol if no
distinction is necessary.

3 Several positions of
structural realism can be
distinguished (Frigg et al.
2011): epistemic structural
realism (Worral 1989), ontic
structural realism (Ladyman
1998), radical ontic
structural realism (van
Fraassen 2006), etc.

When relations are made explicit by formal representations, we can view these
representations as graphs, referring to the world2. We will, in the following, refer
to these graphs as graph representations. If a graph representation is meaningful,
the graph should inherit some of the features that the represented reality has:
the relations (together with the entities) as a whole should reveal some of the
properties of the world’s structure. Spatial information should, for example, reveal
some properties of the concepts of space. The concept of structure tries to capture
how several properties of a thing are related and has turned out to be important in
the scientific context.

Structure. In many fields of science, the term structure is used to denote how
elements of some bigger system are related, e. g. in linguistics, philosophy of
science and mathematics. We will use the tangible but still vague definition given
by Shapiro (1997, p. 74):

‘A structure is the abstract form of a system, highlighting the interre-
lationships among the objects, and ignoring any features of them that
do not affect how they relate to other objects in the system.’

Different systems can have the same structure, i. e. the configurations of its elements
can be the same, which renders the reuse of formal methods for these systems
possible. The elements of the systems however can, at the same time, represent
very different things.

Structure constituted by the interpretation of a system is of relative nature because
it depends on how we perceive and describe the system. This relative nature has
been described by Psillos (2006):

‘[…] the structure of a domain is a relative notion. It depends on,
and varies with, the properties and relations that characterise the
domain. A domain has no inherent structure unless some properties
and relations are imposed on it.’

The concept of structure plays a major role in the evolution of science, especially
in logics, mathematics and physics. The rise and use of mathematical structures
in the modern formulation of algebra is, for example, discussed by Corry (2004)
and Krömer (2007).

Structure Realism and the Evolution of Science. The philosophical position of
structuralism assumes that we can represent reality best in terms of formal entities
and relations, and not in terms of the real entities itself. This approach of formal
representations raises the problemof grounding but is very common in information
theory.

Worral introduced the position of structural realism3 in contemporary philosophy.
He argued that there is no need to accept the form of scientific realism that assumes
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4 We make no claim to
whether theories are true as
is done by the miracle
argument (Putnam 1975, pp.
72ff), but rather concentrate
on the pragmatic choice to
focus on structure.

5 Information representing
things happening in space
and time can be
non-spatiotemporal. Going
by public transport can, for
example, be understood as
an activity of spending
money without any spatial
or temporal aspects.

our theories to correctly describe reality, nor any position of anti-realism. Worral
instead claims that there exists a continuity of structural elements of theories,
e. g. formal representations, during the evolution of science. This claim suggests
that scientific progress is, in large part, based on the use of structures for the
formulation of theories, and that it can be convenient to formulate inter- and
transdisciplinary concepts in a structural way. The transition from Fresnel’s aether
theory to Maxwell’s theory of the electrodynamic field, in particular to Maxwell’s
equations (Poincaré 1905, pp. 178ff), is often discussed as an example of such a
continuity of structure (Worral 1989).

We will, in this thesis, focus on the structural description of information, with
the hope that structure is suitable to characterize information with spatial and
temporal aspects. This approach seems to be of special interest4 due to the fact that
the field of geographical information science is interdisciplinary and deals with
various competing, sometimes even incommensurable concepts, e. g. concepts of
space and time. A clear notation of structure is needed to differentiate between
entities and their representations in order to render a discussion of only structural
aspects possible.

Spatial Structure. When information, in particular interpreted representations,
exposes a number of references to space (or time), it is by definition called spatial
(or temporal). Information which is spatial and temporal at the same time is
called spatiotemporal5. The concept of information implies that we know how
entities and their relations are represented and that we can determine whether
the representation explicitly or implicitly refers to space. Information describing
entities in space refers, for example, implicitly to space.

The structure of spatial information as well as the structure of data which becomes
spatial information by interpretation is based on the properties of space and the
entities that constitute space: the existence of distance and the effort of travelling
leads to a predominance of relations between near things; the similarity of space
and physical processes at different scales of tangible reality leads to scale invariance
of the spatial structure; and non-uniform distributions of objects in space lead to
not necessarily uniform but in many cases bounded distributions of relations (cf.
section 3.2).

We call such a structure of data a spatial structure, and we say that data has a spatial
structure (in which case we also speak of spatial data) if it exposes some of these
properties. It is important to note that data can, by the above definition, have a
spatial structure without being interpreted and actually without being related to
space; we only require that the data’s structure can be interpreted such that it is
related to space and exposes some of these properties.

This thesis focuses on the examination of the spatial structure. We will discuss an
important example of spatial information in the next section, namely information
about human activities.
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1.2 Human Activities

Representations of human activities potentially have a spatial structure. We thus
use information about human activities throughout the thesis as an example of
spatial information. We review, in this section, several concepts of human activities,
and we discuss the prominent example of information about public transport.

Concept of Human Activities. Things that happen potentially change the world:
rainfall makes the ground wet, and kicking a ball makes the ball moving. We call
the second thing a (human) activity, because rainfall just happens but kicking a ball
is something that a human usually does by intention. In remark 621, Wittgenstein
(1967) raises the following quest ion: ‘when “I raise my arm”, my arm goes up. […]
what is left over if I subtract the fact that my arm goes up from the fact that I raise
my arm?’ Even if we do not provide an answer, there seems to be something that
distinguishes a human activity from other events that just happen. An overview
over human activities in general has been given by Wilson et al. (2012), over spatial
human activities by Miller (2004a) and Golledge et al. (1997).

Human activities are present virtually everywhere and anywhere in our daily life.
They constitute the way we are interacting with the world and other humans,
because interpersonal communication and human interaction are characterized
by perception-action cycles, which consist of several human activities (Ortmann
2014, pp. 84ff). These cycles can even be understood in terms of semiotic tri-
angles (Ogden et al. 1923, pp. 6ff): an entity (referent) is observed, yielding an
observation (reference). This observation can lead to an action (symbol) which has
been motivated by the observed entity and thus refers to it. The action can itself
be observed if it results in an observable change in the world and can therefore be
seen as another referent, which can evoke another perception-action cycle.

Existing concepts of activities and actions are very similar. The distinction between
both concepts is not clear, because both terms have been used differently by differ-
ent scientists. The concept of activities seems, in many cases, to refer to the
combination of several actions, and the beginning and the end of an activity are
not always well defined. Kicking a ball is, for example, in many cases regarded to
be an action, but playing soccer is more likely to be referred to as an activity. A
category of actions is often referred to as activities. Playing sport, for example, can
be referred to as an activity. The distinction between both concepts is, however,
not done in the same way by all scientists, and we thus will use the word activity
whenever a human is doing something that changes the world’s state.

Formally, we can understand an activity to be a transition of one state of the world
to another one. This transition, especially in space and time, can be described in
several ways (Strobach 1998). In the scope of this thesis, such a transition will be
understood as some intentional activity that transfers the world from one state to
another one without caring about how the transition is actually performed and
how it looks like.
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A transition happens between two states of the world, mostly different ones. In
most cases, not the entire world but only a small environment is changed by a
human activity. We thus focus on transitions between different states of a human’s
environment, not of the entire world. As humans performing the activity can
also change themselves (thinking is, for example, the state of one’s memory),
the human can be considered to be a part of its environment. Human activities
influence, inmany cases, each other, and activities that belong to the same thematics
suggest itself to be examined at once. Such a set of human activities is called a
human activity system if it also includes affordances of human activities, i. e. human
activities that are possible to perform but have not necessarily been performed.

Public Transport. Many examples of human activity systems exist. Public trans-
port is an example of a human activity system that is related to space. We will thus
use information about public transport as an example of spatial information in
this thesis.

Public transport is simple to represent and information about public transport
is widely available, because clear regulations and information is needed to make
public transport effective: we are able to choose combinations of vehicles such
that the destination can be reached as fast as possible, if we have knowledge of
which vehicle will be located at which stop at which time, which direction a vehicle
takes and how fast it is travelling. The communication of these regulations to the
customers, e. g. by timetables, is thus crucial for a public transport system to work.

We should keep in mind that public transport is a very specific example of hu-
man activities because it is planned, e. g. by the creation of integrated periodic
timetables (Schöbel et al. 2013, Grujičić et al. 2014). The fact that public transport is
planned can lead to a very specific structure, e. g. in the case of periodic timetables
to symmetry minutes and other symmetries (Liebchen 2003). These characteristics
created by organizing public transport superpose the spatial structure.

The concept of human activities as transitions between states of the world affords
a representation of human activity systems by graphs. Such graph representations
can be used to discuss the structure of spatial information, e. g. Tobler’s first law of
geography.

1.3 Tobler’s First Law of Geography
Nodes of graph representations are, in many cases, related when they are in the
same neighbourhood. This important aspect of spatial structure is known as
Tobler’s first law of geography. We will, in the following, discuss this law by the
example of human activities.

Tobler’s Law. Stops of public transport have locations in space, and they are
connected by vehicles which are driving between them. Connections between
stops of the same neighbourhood occur, in many cases, much more often than
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6 This situation can be
compared to the physical
system of electrically
charged particles which are
coupled by springs. The
attractive force can be
characterized by Hooke’s
law and the repulsive force,
by Coulomb’s law.

between distant stops, e. g. in bus or railway networks. This fact translates to the
graph representation, which we gain by a representation of stops by nodes and
connections by edges: edges in neighbourhoods of nodes occur more often than
edges between non-neighboured nodes.

The correlation between the configuration of edges and the distance between the
nodes can also be observed for other types of representations, not only for public
transport networks. The generalization of this correlation, as a statistical statement,
is known as Tobler’s first law of geography (Tobler 1970):

Theorem (Tobler’s first law of geography/Tobler’s law). Everything is related to
everything else, but near things are more related than distant things.

When ‘costs’ of relations depend on the distance between the nodes to connect,
e. g. transport and communication costs, Tobler’s law can be assumed to be valid
to some extent. This suggests Tobler’s law to be an important aspect of spatial
structure.

Tobler’s Law Without Coordinates. In a graph representation, Tobler’s law sug-
gests some constellations of edges to occur more frequently than others. These
constellations become visually apparent, when the nodes are naturally embedded
in space: the nodes are placed at the locations of the things that they represent,
and we can visually test whether Tobler’s law is valid.

When the nodes of a graph representation contain no information about their
natural location, it is not clear how to embed them in space. We could expect
that the constellation of edges becomes, independent of their embedding, visually
apparent, but the converse is true: most graphs, even those that do not satisfy
Tobler’s law, appear to satisfy Tobler’s law if a suitable embedding is chosen, as will
be motivated by the example of a random graph.

The Gilbert model is a random graph model which assumes an edge between
two nodes to exist with a given probability (Gilbert 1959). When such a graph
is randomly embedded in space, we can try to move the nodes around until the
graph satisfies Tobler’s law. Existing force-directed graph drawing algorithms,
amongst others the Fruchterman-Rheingold algorithm, assume linear attractive
and inverse-quadratic repulsive forces6 and minimize, by the nodes’ movements,
the energy of the system (Fruchterman et al. 1991, Kobourov 2013). The attractive
force aims at minimizing the distance between nodes, which is expected for a
graph satisfying Tobler’s law, and the repulsive force ensures that the graph is
not collapsed to one point in space. The resulting graph satisfies Tobler’s law, as
becomes visually apparent (cf. figure 1.1).

Tobler’s law implies specific constellations of edges to be more probable. We
discussed that it is, in contrast to our intuition, hard to visually distinguish between
random Graphs and abstract graph representations which satisfy Tobler’s law. We
will hypothesize, in the next section, that such a distinction is however possible.
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Figure 1.1
Random graphs visually
satisfy Tobler’s law for a
suitable embedding; (a)
Gilbert model, and (b)
Gilbert model after
application of two
force-directed graph
drawing algorithms:
the ForceAltas2
algorithm (Jacomy et al.
2014) and the
Fruchterman-Rheingold
algorithm (Fruchterman
et al. 1991)

(a) Gilbert model (b) Gilbert model, nodes rearranged

7 We can only infer
semantics if the
representation is chosen in a
meaningful way.

1.4 Hypotheses

The definition of a spatial structure only makes sense if the structural properties
exposed by spatial data sets are similar. In this case, the structure can be used
to characterize data in a meaningful way. We demonstrated, in the last section,
that it is hard to visually detect such a spatial structure (cf. figure 1.1). Methods
to computationally detect the spatial structure may though exist, and we thus
hypothesize that spatial data sets share structural properties:

(1) The concept of spatial structure is meaningful, because most spatial data
sets share structural properties.

If the hypothesis turns out to be valid, we can lift the discussion of spatial informa-
tion from a semantic to a structural level. This lift would open new possibilities of
comparing and analysing spatial data, because the hypothesis implies that we can
categorize data sets by their structure in a meaningful way.

Since the dimension of space influences many of the properties of space, we expect
it to have an impact on the spatial structure of data. We thus raise the following
hypothesis:

(2) Spatial structure implicitly reflects the dimension of space.

It is not clear to which extent the dimension of space is decisive for the spatial
structure, and whether the dimension of space can be concluded. If the hypothesis
is valid, some semantics can, in principle7, be inferred from the structure.

In higher dimensions, there exist more interrelations because the volume per
surface ratio is larger. If the hypothesis is valid, i. e. if a spatial structure reflects
the dimension of space, we nevertheless expect the dimension to have a different
effect on the spatial structure than just a higher ratio of edges to nodes.
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1.5 Methodological Approach
We summarize, in this section, the approach that will be used to decide whether
the hypotheses are valid. A detailed view of the thesis’ outline, which explains how
the approach is implemented, is provided in section 1.8.

Hypothesis (1) claims that most data sets share structural properties, and a compar-
ison of the structure of spatial data sets is needed for a validation of the hypothesis.
The comparison of structures can be carried out in many different ways, and it
is only efficient if we know which aspects to focus on. We will discuss typical
properties of spatial information as examples of such aspects.

These typical properties are formulated in terms of things, which are embedded
in space, and relations between them. It is, in consequence, not possible to verify
that most spatial data sets have these properties, when the locations of the things
in space are not known. Instead, we can try to trace the effect of these properties
on the structure, in particular on the constellation of the relations. We will, for
this purpose, introduce a graph model that constructs edges for a set of nodes
embedded in space. The model has the typical properties of spatial information,
as can be proven by an analysis of its construction. It can, by the comparison of
the constellation of edges in the model to the constellation of relations of a data
set, implicitly be checked whether the data set exposes these typical properties.
Such a comparison will be performed for numerous spatial and non-spatial data
sets, amongst others by testing whether certain properties, which approximately
coincide for the proposed model, also coincide for the data sets.

The dimension of space has an influence on the structure of spatial data. Hypo-
thesis (2) claims that the dimension of the space is reflected by the spatial structure,
i. e. that the structure uniquely determines, with some uncertainty, the dimension.
When a method to conclude the dimension of the proposed model just by the
constellation of edges exists, the hypothesis is corroborated. We will discuss nu-
merous properties of the proposed model and argue which of them is best suited
to conclude the dimension. It will turn out that only combinations of the dimen-
sion and the density parameter, which is used for the generation of the proposed
model, can directly be concluded. The dimension can finally be concluded by the
comparison of different combinations of the dimension and the density parameter.

The hypotheses, which are corroborated by the argumentation of the thesis, as well
as some novel definitions, concepts and algorithms are contributions of this thesis.
They will, together with their relevance, be discussed in the next section.

1.6 Relevance and Contributions
The structure of spatial information has been argued in section 1.1 to be of high
relevance to the advance of the formal foundations in geographical information
science. The proposed model of spatial structure is, as far as I know, the first model
of spatial structure in general, that is, of the similarities of most spatial data sets.
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8 Both concepts have been
introduced in geographical
and mathematical contexts,
e. g. by Aldous et al. (2013),
but they are, in this thesis,
introduced in the context of
spatial information for the
first time.

Its simplicity should not hide the fact that it can play a major role in applied and
theoretical research, much like other network models, e. g. the Barabási-Albert
model, do in other fields of science. The simplicity is rather an important factor
for the applicability and the viability of the model.

The thesis makes the following contributions which are, as far as I know, new in
the field of geographical information science:

(1) the concept of spatial structure,

(2) a model of spatial structure in general, namely the (uniform) SISG model,
including some analytical properties of the model,

(3) the concepts of scale invariance of a spatial graph and, of transformations of
relative scale8,

(4) algorithms to measure to which degree the structure of a data set is spatial,
including an evaluation,

(5) the concept of total density,

(6) the concept of series of subgraphs, and

(7) a new view on graph representations of human activity systems, including
the collapsing of the state space, the definition of relevant interchange facilities,
the concept of packing a graph representation and the more advanced concept of
packing a graph representation of public transport.

These contributions are accompanied by a literature review of several aspects
of data sets about human activities, a discussion of typical properties of spatial
information, and a discourse on existing graph models and methods, and why
they do (not) work.

1.7 Limitations

The hypotheses and the methodological approach of how to corroborate the hypo-
theses have limitations. We discuss these limitations, in this section, to provide
the context in which the statements of this thesis can and should be understood.

The claims of the hypotheses are formulated on a structural level. Statements
can, without grounding, not be transferred from a structural level to the semantic
level of things and their properties: information about relations between things
explains how the things and their properties relate, but neither the objects nor
the properties can be identified with their real counterparts. The hypotheses can
thus only be used to draw structural conclusions, but these conclusions can, with
a grounding, be interpreted in terms of things and their properties.

We assume, in large part of the thesis, that information is represented by graphs.
This methodological limitation is crucial when a concrete data set shall be tested
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for a spatial structure. As the hypotheses are formulated on a structural level which
assumes information to consist of relations, the assumption of information to be
represented by graphs is, however, no real limitation.

The hypotheses cannot analytically be corroborated for all existing spatial data sets;
they can only be proven valid for single data sets. A validation of the hypotheses on
a large number of data sets is, by the absence of counter examples, able to suggest
that the hypotheses statistically are valid. Numerous data sets from different
domains are examined in this thesis. It yet remains to test the hypotheses on a
higher number of data sets to put the hypotheses on a firmer ground. This can
however only weaken the limitation but not invalidate it.

None of the limitations is crucial, and suggestions onhow to improve and generalize
the approach will be discussed in the conclusion (cf. section 6.2).

1.8 Outline of the Thesis
Graph representations of human activity systems are, throughout this thesis, ex-
amined as examples of data sets which expose relations between things, and they
are used for the evaluation of the hypotheses at a later point. We discuss, for this
purpose, concepts of human activities and introduce the concept of graph repres-
entations of human activity systems (section 2.1). The creation and use of data sets
is discussed (section 2.2), and existing data sets are reviewed (section 2.3). Graph
representations of public transport can be gained by timetables, but modifications
are necessary in order to use them as an almost prototypical example of spatial
information (section 2.4).

We discuss spatial structure by having graph representations of public transport
in mind: we motivate Tobler’s first law of geography by the principle of least
effort (section 3.1) and review additional typical properties of spatial information
(section 3.2). As existing graph models cannot be used to model spatial structure
(section 3.3), we propose a graph model of spatial structure (section 3.4) and prove
that it has the required properties (section 3.5). In addition, analytical results are
proven for the model (section 3.6).

The proposed model of spatial structure assumes a set of nodes which are placed
in space. We detailedly examine the model that is gained for a set of randomly
distributed nodes with uniform distribution. Statistical methods for the examina-
tion of the model’s properties (section 4.1) and the effect of the finiteness and the
non-connectedness on these properties (section 4.2) are discussed. We introduce
the concept of series of subgraphs to define additional statistical properties that are
less affected by the finiteness of themodel (section 4.3). The examination of various
properties (sections 4.4 to 4.6) can be used to classify the model (section 4.7).

As an evaluation of the proposed model, we compare the model to spatial and non-
spatial data sets. We tackle the question of how to test data for spatial structures
and discuss possible methods to compare data sets to the model (section 5.1).
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Algorithms for this comparison are provided (section 5.2). The algorithms are
evaluated by the proposed model (section 5.3) and used for the evaluation of
the provided algorithms on real data sets and the validation of the hypotheses
(section 5.4). This evaluation of the proposed model does not depend on how we
derived the model, but it is only based on the model as an abstract structure.

Mathematical definitions (appendixA) and computational aspects (appendix B) are
provided at the end of the thesis. The reader who is unfamiliar with mathematical
notations or computational aspects is referred to these appendices, in order to
understand the notations and algorithms used in the thesis.



2
Graph Representations of
Human Activity Systems

Der Spielmann richtet sich, da nimmt
Löchlein sich eine Jungfrau an die Hand,
juheia! wie er springt! Herz, Milz, Lung'

und Leber schwingt sich in ihm um, er fällt
in den Anger, dass ihm Ohren, Nase und

Maul von Blut überwallen, zu beiden
Seiten sieht man sein Herz heftig klopfen,
ihm hat gedünkt, als wären sieben Sonnen

am Himmel und lief er um wie ein
gedrehter Topf, ihm schwindelte es um den

Kopf, und er meinte zu versinken.

—Franz Magnus Böhme
german composer and scientist

(1827–1898)

Representations of human activities are, in many cases, examples of spatial inform-
ation. We will use them, in subsequent chapters, for the discussion and evaluation
of the proposed graph model. The evaluation is crucial for the validation of the
thesis’ hypotheses, and the discussion of the data sets and their semantics an
important part of the argumentation.

This chapter begins with a discussion of representations of human activities (sec-
tion 2.1). In particular, we introduce the concept of graph representations, which is
necessary for the structural discussion in the following chapters, (section 2.1.2) and
show how it applies to public transport (section 2.1.3). A review of methods to cre-
ate data sets, of existing data sets and of their use is provided (section 2.2). Graph
representations are introduced and will, in later chapters, be used as examples of
data sets (section 2.3). As graph representations are in many cases very large, we
discuss methods to reduce them in size with the aim of preserving the relevant
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structural information (section 2.4); some of the provided algorithms have high
complexity and can only be executed on the reduced data sets in a reasonable time.

2.1 Representations of Human Activities
We give, in this section, an overview of how human activities can be conceptualized
and represented. This overview provides the basis to introduce data sets in a later
section.

Representations of human activities are widely used, and various concepts of
human activities can be found in literature (section 2.1). Representations of human
activities by graphs are discussed (section 2.1.2), and a more detailed view of
representations of public transport is provided (section 2.1.3).

2.1.1 Concepts of Human Activities

Extensive research has been conducted on various aspects of the description and
conceptualization of human activities. We review, in this section, some of these
aspects and concepts.

A widely used concept is to understand human activities as transitions between
two states of the world. Such transitions can be concatenated and combined to
more complex activities, e. g. for describing the use of public transport (Frank
2007, 2008). Activities can also be described at the level of gestures, poses, move-
ments of segments of the body, and interactions (Ryoo 2008, pp. 52ff) as well as by
statistics and patterns (Chen et al. 2011). It is not trivial to perform a query on data
sets of human activities, because several concepts of human activities are, at least
in parts, incompatible. A method of searching human activities without visual
examples has, for example, been presented by İkizler Nazlı et al. (2008).

The activities which a person can perform are restricted by the environment
the person is placed in, and the environment may offer certain activities to be
performed. These opportunities of activities that the environment offers are called
affordances (Turvey 1992, Sanders 1997). Affordances can lead to activities when
they are performed, and affordances can be perceived by simulating activities,
as was discussed by Raubal (2001, pp. 39ff) and Ortmann (2014, pp. 84ff). The
interaction possibilities described by affordances have successfully been applied to
mobile robots (Raubal et al. 2008). The concept of affordances is broader than the
concept of activities, because it includes the environment. We will, in the scope
of this thesis, understand an activity as an operation that can be performed. This
concept of human activities includes activities that were performed, but also those
that are afforded by the environment.

Performed activities can have an impact on the environment. As the environment
determines the affordances and potentially also influences the activities’ results,
activities can indirectly influence other activities via the environment. This influ-
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ence of an activity on other activities or even the activity itself is a feedback loop
and can be interpreted as context of activities. Since this context can, in many
cases, only be grasped when the results of other activities can be observed or are
known, it can be hard or even impossible to completely understand how human
activities influence and constrain each other. It is beneficial for most applications
if conceptualizations of human activities take the effect of mutual dependencies
into account, e. g. when describing daily activity patterns (Hemmens 1970).

Conceptualizations of dependencies between human activities have been studied
by Abdalla et al. (2014) in order to support prospective memory for planning our
daily routines. Spatiotemporal, hierarchical and conceptual relations between tasks
and activities that are important for trip planning have been discussed by Abdalla
et al. (2013). Physical, social and mental affordances constraining decision-making
in the context of spatial tasks have been discussed by Raubal et al. (2004). We call
a set of human activities with mutual dependencies a human activity system:

Definition 2.1. A human activity system is set of affordances of human activities
which have many interdependencies and are influencing and constraining each
other.

Human activity systems can be relatively small and restricted to only one domain,
e. g. the system of traditional diving, fishing and hunting activities in parts of
Japan (Watanabe 1977), but also very large systems as, for example, the set of human
activities which have have an effect on our natural environment (Goudie 2013).
Climate change is, at least in large part, caused by human activities, and it is hard to
understand, because the number of involved activities and their interdependencies
is very large (Allen et al. 2014).

We discussed the concept of activities as transitions between states of the world
and how activities depend on each other. The notation of human activity system
was introduced as a set of human activities that have many interdependencies.
We will introduce a formal representation of human activity systems in the next
section.

2.1.2 Graph Representations

Representations of human activity systems that emphasize relations between activ-
ities are called graph representations. We introduce, in this section, a formal
definition of graph representations, and discuss their shortcomings.

Representations of human activities are very common in our daily lives, e. g. as-
sembly instructions for furnitures, cooking recipes, legislative texts, etc. When
we try to solve a task, the task itself determines which formal representation is
suitable, because the use of the formal representation has observable consequences
to the real world: whenever furnitures are assembled, a meal is cooked or one acts
in a social context, it has observable consequences to the real world: the furniture
may be assembled well, the meal may be delicious and one may impinge upon
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1 In the following, we
consider the class of states
and the class of activities to
meet the axioms of a set.
2 An activity refers, in this
context, not only to
performed but also to
possible activities, as was
discussed in section 2.1.1.

3 A graph representation of
a human activity system
embodied with the
concatenation meets the
axioms of a partial
semigroup.

someone else’s rights. We will, in the following, introduce a graph representation
of human activity systems that is suitable for the discussion of the structure of a
human activity system.

Graph Representations of Human Activity Systems. We will, in this thesis, un-
derstand an activity as a transition between states of the world, as was conceptu-
alized in the last section. Regarding the states1 of the environment as nodes and
the activities2 (i. e. the transitions) between them as directed edges, we obtain a
directed abstract graph.

Definition 2.2. A graph representation of a human activity system u�(S, A) is the
hypergraph consisting of the set of states S as nodes and the set of activities A as
edges. The set of states S is called the state space of the graph representation.

A graph representation of a human activity system is a hypergraph, because there
potentially exists more than one activity that leads from one to another state, e. g.
due to different modes of transportation. Edges that all start in a node p and end
in a node q cannot be distinguished any longer when the graph representation
is considered as an abstract graph, i. e. a graph whose nodes and edges have no
additional semantics.

We implicitly assume that we can concatenate two activities of a graph representa-
tion, as long as the end state of the first and the starting state of the second one
coincide. Concatenation defines an algebraic structure3 on the set.

Non-Representable Phenomena. Graph representations cannot cover every as-
pect of human activities, which prevents some phenomena from being modelled.
The following discussion aims at providing an intuition ofwhich phenomena can be
represented by graph representations, and which common phenomena of human
activities can only be represented by a more complex algebraic representation.

We implicitly assumed that the concatenation of two activities of a graph repres-
entation always exists, as long as the end state of the first and the starting state
of the second activity coincide. This implicit assumption is, in general, wrong
because concatenations are not always possible: the activities ‘walking from A to
B’ and ‘cycling from B to C’ can only be concatenated as long as there is a bicycle
available in B (Abdalla et al. 2012). There would not occur any problem with the
concatenation, if the first activity would not be ‘walking’ but ‘cycling’. At second
glance, it however becomes clear that ‘having (not) a bicycle with you’ is a state
that can be taken into account for the construction of the state space. When the
state is taken into account, we do not any longer expect that the activities ‘walking
from A to B’ and ‘cycling form B to C’ can be concatenated, because the end state
‘being at A without bicycle’ and the starting state ‘being at A with a bicycle’ do not
coincide.

Human activities can be performed in parallel, but graph representations cannot
describe this circumstance properly: activities that are performed in parallel can
be represented as one compound activity, but it cannot be represented how the
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activity is composed of other activities. Activities that start at the same point in
time but end at different ones cannot be represented at all.

Graph representations depend on two choices: the set of states, and the set of
activities. Similar states and similar activities are usually grouped together, when
a graph representation is constructed and these choices are performed. We can,
for example, walk down a road in many different ways (skippingly, lumbering,
etc.), at different speeds, at the left or the right pavement, or even forwards or
backwards. All thesemodesmay, in a graph representation, be combined to a single
activity ‘walking down a road’. It is however not clear which states and activities
shall be combined, and which shall considered to be different. This problem of
categorization arises as it does with every other representation.

Some activities may be performed more regularly or with a higher probability
than others. Graph presentations as introduced above cannot represent this fact.
We could however use weighted graphs to denote the probability of an activity to
be performed but would still not be able to represent that some concatenation of
activities happen more often than other ones. ‘Inserting a CD into the player’ and
‘pressing the player’s start button’ are activities that usually are performed with a
much higher probability in combination than the single activities.

The concept of graph representations captures some basic properties of how activ-
ities are related. We introduced a formal definition and discussed some of its
shortcomings. When graph representations of public transport are constructed,
specific problems occur. We will discuss these problems in the next section to gain
a better understanding of graph representations.

2.1.3 Graph Representations of Public Transport

Information about public transport is widely used. Several types of timetables exist
and are used for different purposes (e. g. travelling, waiting for someone at a stop)
and travelling habits (e. g. commuters, irregular travellers): stop-specific timetables,
route-specific timetables, commuter timetables with typical route combinations,
or combination of them. Route planning systems are, in addition, used to search
for the best solutions for transport tasks. We discuss, in this section, how graph
representations of public transport can be constructed and which problems occur
due to missing interchange facilities in the data. The discussion of this section
facilitates the transformation of existing data sets about public transport into graph
representations, which will be used for the evaluation of the proposed graph model
in section 5.4.

Graph Representations. The majority of the representations of public transport
names transport modes, stops, trips (i. e. sequences of stops), routes (i. e. sets of
trips usually involving the same stops, e. g. a bus line), and the times when a vehicle
of a certain trip will come to a stop. Such information can be represented by a
graph representation: stops are interpreted as states, and pairs of successive stops,
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i. e. stops p and q such that at least one vehicle travels from p to q without stopping
in between, as activities. The resulting graphs are directed, and the edges can be
named by a trip identification.

Alternatively, tuples consisting of stops and corresponding stop times can be
interpreted as states, which leads to more extensive sets of nodes. The activities
are again pairs of successive stops. Such a graph representation is called time-
considering because the states include temporal information, whereas the graph
representation with only stops as states is called time-ignoring because the states
do not include temporal information.

Definition 2.3. A graph representation is called time-considering if the states
incorporate time, otherwise time-ignoring.

Time-considering graph representations can be transformed into time-ignoring
ones by grouping all states corresponding to the same stop. We will, in this thesis,
only consider time-ignoring graph representations of public transport, but usually,
add interchange facilities to the time-considering representation before transform-
ing it into a time-ignoring one.

Adding Interchange Facilities to Graph Representations. Timetables contain,
in many cases, no information about interchange facilities between different
vehicles and modes, even if they are part of timetable planning and important for
public transport to work. We will define interchange facilities properly in order to
include them into the graph representation of public transport.

An interchange facility is the activity of staying at a stop for a certain amount
of time such that the span of time between the arrival with a vehicle at the stop
and the departure with another vehicle at the same stop at a later point in time is
seamlessly bridged. We formally define:

Definition 2.4. An edge e = ((p, t), (p, t′)) with p a stop and t and t′ stop times
is called an interchange facility between vehicles d and d′ if and only if there exists
an arriving vehicles d (coming to p at t) and a departing vehicles d′ (coming to p
in t′) such that the following requirements are met:

(a) the edge e is temporal, i. e. t < t′, and
(b) the vehicles d and d′ are not associated to the same trip.

Requirement (a) ensures that first vehicle is arriving at the stop before the second
one is leaving, which provides the chance to change the vehicle. The ‘change’ from
a vehicle to itself is not regarded as a change, because it has the same result as
staying in the vehicle without changing; hence requirement (b).

Relevant Interchange Facilities. We can add all possible interchange facilities
to a time-considering graph representation, also the ones that are never used in
reality. A bus line with hourly service, for example, affords, at each stop and for
each hour, interchange facilities of one hour, two hours, etc. (cf. figure 2.1a).
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Figure 2.1
Examples of interchange
facilities; the dashed edges
are interchange facilities;
non-relevant interchange
facilities are marked in grey

10am

11am

12am

1pm

(a) (b)

The issue lies with how to judge which interchange facilities are relevant in order
to gain a meaningful graph representation. This judgement can be made having
different use cases of the graph representation in mind.

We will approach the question of whether an interchange facility is relevant by
considering its relevance for travelling as fast as possible between two arbitrarily
chosen stops. A set of interchange facilities may, at the same time, lead to the same
travelling time, e. g. when to routes have a sequence of stops in common and one
can change the vehicle at all of these stops (cf. figure 2.1b). In such cases, we only
consider one of these interchange facilities as relevant, because this minimizes the
size of the group representation but does not change travelling time. We formally
define:

Definition 2.5. An interchange facility ((p, t), (p, t′)) between vehicles d and d′

is called relevant if and only if the following requirements are met:

(a) there is no interchange facility ((q, s), (q, s′)) starting at the previous stop q of
the vehicle d such that an edge ((q, s′), (p, t′)) exists.

(b) there exist no relevant interchange facilities ((p, t), (p, t″)) and ((p, t″), (p, t′)),
and

(c) one of the following criteria is met:
(i) d and d′ are associated to the same trip, and d is not antiparallel to d′

(i. e. the previous stop for d is the next stop for d′), or
(ii) the vehicle d is ending in p (i. e. there is no vehicle associated to the same

trip proceeding from p).

Figure 2.2
Requirements to an
interchange facility to be
regarded as relevant;
in (c), all depicted edges are
associated to the same trip;
cf. definition 2.5

(q, s) (q, s′)
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q

p
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q
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Requirement (a) ensures that, in case of vehicles driving in parallel, interchange
facilities are not considered relevant at every stop but only at the first one (cf.
figure 2.2a). The choice of interchange facilities to be relevant at the first stop is
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not necessarily the choice that we would choose in reality: we may prefer one
stop to another one for some reasons, e. g. because of a longer time span of the
interchange facility; because of the number of alternative connections if the change
was missed; because of the way we have to walk to change the vehicle; or because
of the environment where the change takes place in (it can be nice, unpleasant,
etc.). Independent of this choice, the effect on how to travel from one to another
stop in the transport network is roughly the same.

The number of relevant interchange facilities is minimized by requirement (b),
because changes are only considered relevant if they are not a concatenation of
two other relevant interchange facilities (cf. figure 2.2b).

Finally, requirement (c) ensures that interchange facilities between vehicles of the
same trip are not considered relevant if the vehicles are driving in the opposite
direction. This includes, in particular, the case that a vehicle is travelling a route,
turns around, and travels in the opposite direction: the effect of getting off, waiting,
and getting on the same vehicle is in this case the same as just staying at the vehicle
(cf. figure 2.2c).

When we add relevant interchange facilities to a graph representation of public
transport, we usually add only those interchange facilities that are not already part
of the representation.

Various concepts of human activities exist. We discussed the representation of
human activities by states of the world and transitions between these states, which
lead to the definition of graph representations. It was discussed how graph rep-
resentations of public transport can be build by timetables. We will discuss in the
next section, how data sets about human activities can be created in general, which
data sets exist and how they can be used.

2.2 Creation and Use of Data Sets

Data sets about human activities have been created in many contexts. This section
contains a review of existing methods to create and use data sets, with the aim
to promote the understanding of which properties data sets about human activ-
ities have. This knowledge is necessary for the understanding of the conceptual
modelling of spatial information and the validation of the hypotheses.

Environmental and body-worn sensors as well as sensors which are integrated in
smartphones and other mobile devices can be used to build data sets about human
activities (section 2.2.1). Methodological shortcomings influence the quality of
the resulting data sets (section 2.2.2). Numerous data sets about human activity
systems can be found in literature (section 2.2.3), and such data sets can, as formal
representations of human activities, be beneficial, as can be argued by existing
applications (section 2.2.4).
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2.2.1 Data Collection

Data about human activities, which are performed by single persons or groups of
persons, can be collected by the use of various types of sensors: environmental
sensors, body-worn sensors, smartphones, and many more. We discuss, in this
section, how these types of sensors have been used in different contexts and studies.

Environmental Sensors. Video cameras and other environmental sensors can
be placed in the environment in order to observe a person performing activit-
ies (Moeslund et al. 2006, Poppe 2007). Cooking activities, for example, have been
recorded in a realistic cooking environment (Rohrbach et al. 2012a).

Body-Worn Sensors. Body-worn sensors have the advantage that they always are
following the user and can thus be used to aid in more complex situations and in
situations when the user is moving between many places. Body-worn sensors have
however high requirements: they should be small, light, insusceptible and easy
to use. An overview over human activity recognition using body-worn sensors
has been given by Huynh (2008). It is possible to monitor and recognize the
activities in real-time (Karantonis et al. 2006). An example of activity recognition
has been given by Lukowicz et al. (2004), where progress in workshop activities
was monitored by acceleration sensors.

Smartphones. Smartphones usually contain sensors like accelerometers, gyro-
scopes, magnetometers, photometers, microphones, GPS sensors, etc., These
sensors have a high availability, because smartphones are, in many cases, car-
ried around with the user. This high availability makes smartphones interesting for
applications of daily life, because no additional device needs to be carried around.
Many algorithms for activity recognition take acceleration and gyroscope data into
account (Reiss et al. 2013, Anguita et al. 2013, Kwapisz et al. 2010, Brezmes et al.
2009). Even other sensors can be incorporated into the recognition of human activ-
ities to improve performance (Shoaib et al. 2014). Algorithms for human activity
recognition, especially for smartphones and other mobile sensors, have to be effi-
cient, because energy and computing power are limited on smartphones (Anguita
et al. 2012).

After the collection of raw data, a graph representation can be constructed. This
construction needs the data to be processed and analysed, e. g. in respect to se-
mantic aspects. We will discuss the quality of the resulting graph representation as
well as how the analysis can influence the completeness of the representation in
the next section.

2.2.2 Completeness and Quality of Collected Data

Graph representations cannot be construct from the collected raw data, when it
is unclear how to represent the data as a graph, or only performed activities are
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collected. We discuss, in this section, factors that can prevent collected data from
being represented as graphs.

Incomplete Semantics. Collected data contains, in many cases, no semantic data
about human activities, e. g. a video showing a person performing several activities.
The video contains information about the activities that are performed but the
information is not easily accessible. A formal description of the occurring activities
can be gained by processing the data, recognizing human activities and describing
them semantically.

The collection of sensor data does not explain why activities have been performed.
Knowledge of the user’s intentions can improve the effectiveness when making use
of the data, e. g. when a system assists a user by providing reminders or helpful
information for future activities (Abdalla et al. 2014). Activities are, in many cases,
motivated by a need and are hence goal-oriented. We can reason the goal of a
sub-activity by checking to which degree the sub-activity of a compound activity
is necessary to achieve the goal of the compound activity: walking to a bus stop,
for example, is necessary for travelling by bus, and the walk is much shorter than
the bus ride. The walk to the bus stop is, in conclusion, performed for the reason
of travelling by bus. Similar considerations, based on the degree of fulfilment of a
compound task, can provide insights in why a sub-activity is performed (Nieves
et al. 2013).

Missing Grounding. Activity recognition is well tested in controlled environ-
ments, but knowledge about the ground truth is necessary to apply activity re-
cognition in real environments. Otherwise, it is not possible to understand the
complete meaning of the data because no grounding can be made (Hossmann et al.
2012).

Missing Information About Affordances. Graph representations state that cer-
tain activities can be performed, i. e. that there is the possibility to perform these
activities, as was discussed in sections 2.1.1 and 2.1.2. When data contains no
information about affordances, the data does not afford a graph representations.

Affordances that have not been performed can by definition not be directly ob-
served. When performed activities are observed, only a subset of all possible
activities is collected. The more observations are made, the more probable it be-
comes that a large fraction of possible activities is covered. A year-long observation
of all vehicles driving through a town, for example, will reveal most roads that a
vehicle is allowed to drive on and even those that a vehicle is not allowed but able
to drive on.

The planning of activities presumes knowledge about affordances, e. g. when a road
is constructed or a timetable created. If we know how to interpret the resulting data
of the planning process (e. g. road signs, timetables), we can simulate the activities
by imagining what happens while performing them4. This simulation provides
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the possibility to estimate how activities are changing the state of the world and to,
in principle, construct a graph representation without having observation data.

We discussed how the quality of data about human activities is affected by the used
creation methods. Existing data sets about human activities and a great number of
studies have thus been created with much effort, as will be discussed in the next
section.

2.2.3 Existing Data Sets

Data sets about human activity systems have been created in various contexts. We
review, in this section, these data sets. Most of them have no graph representation
but are examples of representations of extensive human activity systems.

Daily routines are of interest for many research projects as well as for many ap-
plications. The Multinational Time Use Study (MTUS) provides human activity
data from numerous countries (Fisher et al. 2000). The National Human Activity
Pattern Survey (NHAPS) contains representative U. S. human activity patterns
that can be used to assess the exposure to environmental pollutants (Klepeis et al.
2001). Similar data has been collected in California to detect indoor pollutant
sources. Minute-by-minute activity collections have been published as the Califor-
nia Activity Pattern Survey (CAPS) (Jenkins et al. 1992). A corresponding data set
has been collected for Canada, published as the Canadian Human Activity Pattern
Survey (CHAPS) (Leech et al. 1996). Data from 19 studies about daily routines
have been combined into one data set, the Consolidated Human Activity Database
(CHAD) (McCurdy et al. 2000).

Cooking activities have been investigated, because they are prototypical for simple
and clearly-restricted indoor activities. Cooking activities are restricted to the
kitchen space and can be controlled by handing a recipe to the participants of the
study. Amongst others, video, infrared video, audio, accelerometer, gyroscope and
trajectory data was collected in several studies, which resulted, for example, in the
MPII Cooking Activities Data Set (Rohrbach et al. 2012a). Scalability issues arise
because many activities are compound. The MPII Cooking Composite Activities
was built for studying these phenomenon (Rohrbach et al. 2012b). A collection of
videos and natural language descriptions of cooking activities was created as the
The Saarbrücken Corpus of Textually Annotated Cooking Scenes. This data was used
for approaching the problem of grounding textural descriptions by visual inform-
ation (Regneri et al. 2013). The Carnegie Mellon University Multimodal Activity
Database (CMU-MMAC) contains several types of data, which was collected by
asking participants of a study to cook different recipes (De la Torre et al. 2008).

Human morning activities have been examined by diary notes as well as by record-
ing motion tracking data of persons and objects (Karg et al. 2014). The Opportunity
Data Set about morning activities has been conducted with the use of 72 sensors of



24 GRAPH REPRESENTATIONS OF HUMAN ACTIVITY SYSTEMS

10 modalities. The large number of sensors was used to establish a benchmarking
for such a scenario (Chavarriaga et al. 2013).

We reviewed data sets about human activities that have been build for several
purposes, amongst others for research and for practical ones. We will discuss in
the next section how data sets about human activity systems can be used.

2.2.4 Use of Data Sets

Human activities are an important factor for the solution of many everyday prob-
lems as well as for more complex ones. We argue, in this section, that the repres-
entation of human activities is beneficial, because it enables us to solve problems
in various fields, as numerous applications demonstrate.

The monitoring of humans health and activity-levels can help to understand and
forecast how diseases spread, and individual monitoring can improve patients
health, especially when themonitoring system is context-aware (Tentori et al. 2008,
Choudhury et al. 2006). In addition to amonitoring, knowledge of communication
and movements helps us to understand epidemics much better (Salathé et al. 2012,
Machens et al. 2013).

Medical healthcare systemsmeasuring vital signs and recognizing human activities
can help in patient monitoring (Van Laerhoven et al. 2004, Paradiso et al. 2005).
Assisted living can be improved by the extraction and modelling of human activity
patterns (Lymberopoulos et al. 2008, Tunca et al. 2014).

An increased context-awareness of mobile computing can lead to improvements
also in other fields of life. Besides healthcare applications, context-aware mo-
bile computing can assist in industrial applications like aircraft maintenance, car
production or emergency response operations by monitoring trainees’ learning
progress, supplementing natural senses and providing navigation aid (Lukowicz
et al. 2007).

Humans are interacting, amongst others by social networks. It is relatively easy
to trace whether humans are in contact in an (online) social network. Predicting
whether humans will get into contact face-to-face, based on knowledge of their
behaviour in online social networks, is much more challenging. Such a prediction
has been performed by Scholz et al. (2013) by the use of activities that have been
performed by a group of persons, e. g. publishing of scientific papers.

Forecasting traffic is important for transportation planning and for estimating
the impact on the environment. Amongst others, traffic forecasts are created
by predicting travel activities based on travel demand. Phenomena like traffic
jams or time-dependent average speeds occur because travel activities strongly
influence each other. These phenomena make the simulation of a large number of
agents complex. The simulation thus requires a convenient conceptualization of
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human activities as well as suitable algorithms. Such simulation systems are called
transport forecasting systems.

The Simulation of Travel/Activity Responses to Complex Household Interactive
Logistic Decisions (STARCHILD) is one of the first transport forecasting sys-
tems (Recker et al. 1986a, b). Other well-known transport forecasting systems
are the Toronto Area Scheduling Model for Household Agents (TASHA) (Miller et al.
2003) and the Transport Analysis and Simulation System (TRANSIMS) (Rilett et al.
2001, Los Alamos National Laboratory et al. 1998).

Warehouse logistics, as an example of logistic processes, is complex. High quality
information is needed to optimize the logistics, but the information is, in large part,
yetmanually collected. Hildebrandt et al. (2010) have argued how such information
can, by autonomous robotic observers, be collected. Performed activities can, by
methods from spatial cognition, be recognized in order to optimize the logistic
processes.

The understanding of human activities can help us to understand the phenomenon
of urbanization and to provide solutions for resulting problems. This better under-
standing can lead to improvements in urban design (Blanchard et al. 2009).

These examples demonstrate that formal representations, which can be interpreted
by computers and mobile phones, can be advantageous for solving problems in
many different fields. As information technology and algorithms become increas-
ingly powerful, data is more and more used in the personal environment, which
renders data about human activities even more important.

We discussed how raw data can be collected to create data sets about human
activities and which problems can occur in this process. Existing data sets and
their use demonstrate how much work is needed to build extensive data sets
and how fruitful their use can be. We will, in the next section, introduce graph
representations of human activities that can be created by available formalizations,
which avoids the problem of the raw data collection.

2.3 Examples of Graph Representations

When affordances and human activities are planned, we have knowledge about
the affordances. It is hence much less demanding to build graph representations
of planned activities.

We discuss, in this section, graph representations of several examples of planned
human activities: graph representations of public transport can be created from
existing timetable data (section 2.3.1), recipes are formal documents of how a
meal can be prepared (section 2.3.2), and graph representations of games can be
created by the rules of the game (section 2.3.3). These data sets will be used for the
validation of the thesis’ hypotheses in a later chapter.
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2.3.1 Data Sets About Public Transport

We use timetable information, in this thesis, as an example of a formal repres-
entation of human activities due to the following reasons: timetable information
is widely available (in various formats), often even as open data; it is a good
formalization of affordances of human activities because timetable information
is planned and not observed; and only a well-defined type of activities are rep-
resented in timetable information. Timetable information from public transport
in Sweden (Trafiklab 2013), for example, is provided in the General Transit Feed
Specification (GTFS) format5. We use, in this thesis, time-ignoring graph represent-
ations (with interchange facilities) of public transport in Sweden (cf. section 2.4.1
for details on interchange facilities).

2.3.2 Data Sets About Recipes

Cooking or baking is supported by recipes, which are instruction sets of activities
leading to the desired meal as a result. Recipes mostly include only one way of how
to achieve the desired result, but in general there exist additional ways. A recipe is,
in the context of this thesis, expected to include various ways of how to achieve the
desired result, because these ways can easily be inferred from a traditional recipe.

Ontologies have been introduced for the description of cooking, e. g. for plan-
ning food preparation in industrial scale (Houba et al. 2000) and annotation
processes (Ribeiro et al. 2006, Dufour-Lussier et al. 2012). These descriptions use,
in many cases, graphs to depict activities as well as the constraints and needs to
gain certain states, i. e. configurations of ingredients.

The recipe for Pizza Napoletana has, for example, been written down by the
European Union in order to enter the name in the register of traditional specialit-
ies (European Comission 2010). The recipe is very concise because it describes
in detail which activities have to be performed and in which order. We use, in
this thesis, a recipe describing many possibilities of how to bake Pizza Napoletana:
the recipe written down by the European Union is enhanced by permutations of
activities that do not constrain each other.

2.3.3 Data Sets About Games

Games have explicit rules and can be formalized without much efforts. The Game
Description Language serves this purpose (Love et al. 2006), because it provides
a language to formalize rules which have to be met during the game. The Game
Description Language can be used for deterministic and for non-deterministic
games (Thielscher 2011). In the latter case, there exists a large number of affordances
for each state, and the rules do not determine that a certain activity has to, but only
that it can be performed. Reasoning based on formal rules can provide knowledge
of the game without doing statistics for randomly played games (Haufe et al. 2012).
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Starting with a valid state (e. g. the initial state of the game), we can check for each
activity whether the rules are met, and whether the activity is therewith valid. An
explicit description of all states and transitions can however be hard to achieve,
because the number of states can be very high and because knowledge of the rules
does not necessarily imply that all states are known (Thielscher 2010).

We will consider three games in this thesis: Rubik’s Cube, Tic-tac-toe and a dice
that is thrown a number of times. These examples will turn out to be very different,
because they are influenced by space, time, and other aspects and constraints in
very different ways.

Rubik’s Cube. The Rubik’s Cube was invented by Ernő Rubik in 1974. It is a cube
consisting of smaller cubes such that each face of the Rubik’s Cube consists of nine
faces of the smaller coloured cubes. Each layer of smaller cubes can be rotated
independently. The aim of the game is to perform rotations such that the faces of
the Rubik’s Cube are unicoloured, i. e. such that all smaller cubes which are visible
at a face have the same colour.

As a possible formalization of the Rubik’s Cube game, we can consider the config-
uration of colours on the cube’s faces as state space, and the rotations as transitions
between different states.

Tic-Tac-Toe. A well known game is Tic-tac-toe, which is similar to the Roman
game terni lapilli. The game is played by two players who are alternately marking
the spaces in a 3 × 3-grid. The player who has marked either three spaces in a row,
column or on the diagonal wins.

As a possible formalization of the Tic-tac-toe game, the locations of the marks can
be considered as a state space, and the activity of placing a mark corresponds to
transitions between different state.

Throwing the Dice. When a dice is thrown, it shows a number between one and
six with equal probability. The randomness is used in many games to make the
game less deterministic and predictable. Consider that a person is throwing a dice
repeatedly. In every step, the dice shows a certain number, is thrown and shows
another number. The person who throws the dice may be able to memorize only
a certain number of results. We only discuss the case of a person that is able to
memorize one result at a time.

The number shown by the dice can be interpreted as a state. The state space consists
of six states which can be represented by the numbers one to six. The activity of
throwing the dice leads from one state to another one. As the result is random and
every state can be gained, the graph representation is the complete graph with six
nodes.

We discussed some examples of graph representations of human activity systems.
We will discuss in the next section, how graph representations can be modified in
order to reduce their size.
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2.4 Modification of Graph Representations

The creation of graph representations includes choices, and these choices are
usually made such that the graph representations are suitable for a certain purpose,
e. g. for the examination of a spatial or temporal structure. Graph representations
can thus contain information that is necessary for some purposes, but not for other
ones.

Twomethods of how tomodify graph representations, with the aim of reducing the
number of nodes and edges while preserving the relevant structural information,
are discussed in this section: one method to emphasize the structure by replacing
chains of edges by a new edge (section 2.4.1), and a second method which reduces
the size of the state space by making it coarser (section 2.4.2).

Some of the algorithms used for the evaluation in chapter 5 have high complexity,
and computations can thus only be made for smaller data sets. The discussed
methods to reduce the size of a graph representation are necessary to evaluate
the proposed model of spatial information on a number of data sets. Particular
attention is paid to the example of public transport networks as they expose a
(almost) prototypical spatial structure.

2.4.1 Packing of Edges

An essential aspect of the structure is, in case of a human activity system, which
affordances are offered, i. e. which edges join a node in a graph representation.
We propose, in the following, a method to reduce the number of edges while
preserving many of the edges that join a node.

Packing ofGraphRepresentations ofHumanActivities. The structure of graph
representations can be examined for different purposes. Some nodes and edges
may be more distinctive for the structure than others, depending on the purpose.
We use the following principles as a general approach for emphasizing the structure
of graph representations of human activity systems:

(a) nodes that have only few edges are eliminated, i. e. states of a graph repres-
entation are eliminated if it is predictable which activity is performed next,
and

(b) nodes with many edges are conserved.

There exist several possibilities of how to pack a graph representation of human
activity systems. We will consider the following one:

Definition 2.6. A graph representation of human activity systems is said to be
packed if the following steps have been performed:

(a) for two edges (p, q) and (q, r) whose nodes are pairwise non-equal and the
property that no other edge is joining the node q, the node q is removed from
the graph and the two edges are replaced by an edge (p, r), and
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(b) for two edges (p, q) and (q, r) as well as their opposite oriented edges whose
nodes are pairwise non-equal and the property that no other edge is joining
the node q, the node q is removed from the graph and the edges are replaced
by the two edges (p, r) and (r, p).

Figure 2.3
Steps executed for
creating a packed graph
representation;
cf. definition 2.6

p q r

(a)

p q r

(b)

Step (a) merges sequences of consecutive edges whenever there exist no edges
joining inner nodes. The same is performed in step (b) for sequences of consecutive
edges if sequences in the opposite direction exist. Trips in public transport are,
for example, usually operated in both directions, leading to opposite directed
sequences in a time-ignoring graph representation.

Packing of Graph Representations of Public Transport. Additional informa-
tion about activities is, in case of public transport, available, e. g. the trip that a
transport activity belongs to. Graph representations of public transport activit-
ies can, due to this additional information, be packed more efficiently by paying
attention to its specific structure:

Definition 2.7. A graph representation of public transport activities is said to
be timetable-packed if the following steps have been performed:

(a) for edges e0, … , ek from p to q and edges e′
0, … , e′

k from q to r whose nodes are
pairwise non-equal and who have the property that no other edge is joining
the node q and that ej and e′

j belong to the same trip for j ∈ {0, … , k}, the
node q is removed from the graph and every pair (ej, e′

j ) of edges is replaced
by an edge (p, r) of the same trip, and

(b) for edges e0, … , ek from p to q, edges e′
0, … , e′

k from q to r, edges f0, … , fl from
r to q and edges f ′

0 , … , f ′
l from q to p whose nodes are pairwise non-equal and

who have the property that no other edge is joining the node q, that ej and e′
j

belong to the same trip for j ∈ {0, … , k} and that fj and f ′
j belong to the same

trip for j ∈ {0, … , l}, the node q is removed from the graph, every pair (ej, e′
j )

of edges is replaced by an edge (p, r) of the same trip and every pair (fj, f ′
j ) of

edges is replaced by an edge (r, p) of the same trip.

Figure 2.4
Steps executed for creating a
timetable-packed graph
representation;
cf. definition 2.7p q r
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This packing is very similar to the packing of general graph representations, but
even works for a much denser graph where many trips exist between a sequence
of nodes. As each activity is associated with a certain trip, we are able to filter for
parallel transport activities where a change between different transport modes is
not very likely; two activities associated to the same trip are, most likely, of the
same transport mode. Time-ignoring graph representations do not distinguish
between vehicles stopping at different points in time at the same stop. The general
algorithm for packing hence produces worse packing results.

We discussed how graph representations can be packed by replacing certain con-
figurations of edges. This approach was justified in case of human activities and
public transport. We will discuss a more general approach in the next section.

2.4.2 Collapsing the State Space

The state space of a graph representation specifies which states of the world can
be distinguished by the representation. The state space of all possible states of the
world would be considerably too large for real applications6. We discuss, in this
section, how the state space of a graph representation can be collapsed in order to
emphasize the relevant aspects of the graph representation for certain applications.

A graph representation consists of states and activities, i. e. transitions between the
states. Both, the states and the activities, are choices that can be made when a rep-
resentation is build. The considered activities of a graph representations determine
which states are relevant. The state of ‘being located at a stop’ is, for example,
relevant for public transport activities. When less activities are represented in the
graph, potentially less states have to be represented.

Different sets of states may be used for the same set of activities, e. g. the location,
or the location in combination with time as states for public transport activities.
We discussed in section 2.1.3 a method to convert a time-considering graph rep-
resentation (e. g. a graph representation with location and time as states) into a
time-ignoring one (e. g. a graph representation with location as states), resulting
in a smaller representation.

The same principle also applies in general: the number of states can be reduced by
identifying certain states and thus making them indistinguishable. This approach
can formally be realized by introducing an equivalence relation on the state space:

Definition 2.8. Let ∼ be an equivalence relation on the state space of a graph
representation u�(S, A). We define the graph representation u�(S, A)/∼ to be the
graph consisting of the nodes S/∼ and the edges

A/∼= {([p], [q]) ∣ (p, q) ∈ A, p /∼q}

where [p] ∈ A/∼ denotes the equivalence class corresponding to the node p. We
call u�(S, A)/∼ the graph representation collapsed by ∼.
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7 The number of edges
potentially decreases if all
nodes with the same start
and the same end node are
identified.

By the very definition, the number of activities that are joining a state cannot
decrease7, and the resulting graph is a hypergraph. Activities in the collapsed state
space are transitions from a state to the same state if the starting and end state are
equivalent.

A time-ignoring graph representation can, as was motivated in section 2.1.3, be
gained by collapsing the state space of a time-considering graph representation.
The corresponding equivalence relation is, in case of public transport activities,
the relation that identifies all states corresponding to the same stop, ignoring the
time information.

The transformation of a time-considering to a time-ignoring graph (cf. section 2.1.3)
as well as the packing of graphs (cf. section 2.4.1) are examples where a graph is
collapsed by some equivalence relation. The collapsing of the state space does, in
contrast to the packing of edges, not focus on how the number of edges shall be
reduced but on how states are identified.

We have discussed two methods of modifying graph representations: one more
specific method, which only applies to graph representations of human activities
but requires no further knowledge about which activities are represented; and a
more general method, which can be more effective but requires specific choices of
which information shall be kept and which shall be lost.

Conclusion
Graph representations can describe structural aspects of human activities. Graphs
are general enough to even represent other types of data, but they are specific
enough to characterize the structure. This is why we introduced graph represent-
ations as an example of data that has, in many cases, a spatial structure. More
specifically, the main contributions of this chapter are as follows:

(1) We introduced the conceptual foundations necessary to understand how rep-
resentations are created and used.

(2) The creation and use of data sets was reviewed, including a discussion of the
completeness and the quality of created data sets.

(3) Examples of graph representations were introduced by reusing existing form-
alizations of human activity systems.

(4) Possibilities of emphasizing the structure, by reducing the size of the graph
representation while preserving the core structure of the representation, were
explored.

We will use graph representations, in particular the ones discussed in section 2.3,
as examples of spatial as well as non-spatial information, in subsequent chapters.





3
A Scale-Invariant

Spatial Graph Model

Att vara så rädd för en ringklocka! Ja, men
det är inte bara en klocka – det sitter

någon bakom den – en hand sätter den
i rörelse – och något annat sätter handen
i rörelse – men håll för örona bara – håll
för örona! Ja, så ringer han ändå värre!

ringer bara ända tills man svarar – och då
är det för sent! […] Det är rysligt! Men det

finns intet annat slut! – Gå!

—August Strindberg, Fröken Julie
swedish playwright, poet and painter

(1849–1912)

Spatial structure is characterized by characteristic properties that are exposed by
many spatial data sets. We will, based on these properties, develop a model of the
spatial structure.

Tobler’s first law of geography, as a typical property of spatial information, describes
the relations between things dependent on their distance. The law can be deduced
by the principle of least effort in case of human activities (section 3.1). Additional
properties of spatial information include scale invariance and the distribution
of the density of nodes in the graph (section 3.2). Existing graph models cannot
serve as models of spatial structure in general, because they do not expose these
properties (section 3.3). We introduce a model that has these typical properties of
spatial information (section 3.4) and formally prove that it has these properties
(section 3.5). When the number of nodes approaches infinity, we can prove further
analytical properties of the spatial graph model (section 3.6). Parts of this chapter
are based on a paper by Mocnik et al. (2015).
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3.1 Principle of LeastEffort andTobler’s First LawofGeography

Spatial structure is, amongst others, characterized by a very simple principle: near
things are more related than distant ones. This principle is however not universally
but only statistically true.

We discuss, in this section, the principle of least effort and show how Tobler’s first
law of geography can be deduced from this principle. In the second part of this
section, we discuss the role of metrics on Tobler’s first law of geography.

Principle of Least Effort. Zipf claimed that there is, in many cases, no reason
why humans should take more effort than needed to reach an aim. Zipf introduced
the following hypothesis to reflect this observation (Zipf 1947):

Theorem 3.1 (Principle of least effort). Effort is always minimized in human
behaviour.

When movements in space and time are costly, the principle of least effort claims
that movements are minimized, because effort is. In case of compound activities,
the total effort is minimized. This does not mean that the effort of every included
activity is minimized but that it is very likely. Movements in space and time
are, in particular, only performed if they are necessary or minimize the effort
in compound activities. This effect on movements, sometimes called cohesion,
leads to accumulations of people, and it was conceptualized by Stewart (1948) as
demographic force.

Analogously to gravitational force leading to extended theories which incorporate
distance, force, work and energy, gravity models for human activities have been
build (Fotheringham et al. 1980). These models incorporate distance decay func-
tions, which predict interactions between two places to be more likely the shorter
the distance is between both (Halás et al. 2014). This behaviour can, for example,
be observed for cities and their surroundings (Kopczewska 2013).

A model of gravitational force was used by Tobler et al. (1971) to predict the relative
locations of ancient Hittite villages in central Turkey which were named on the
Cappadocian tablets: when village names are assumed to more often cooccur on
the tablets in case they are related, gravitational forces can be assigned to the towns.
These forces can be used to predict the relative locations of the villages. Constantine
et al. (1993) applied these considerations to the example of departments in modern
France; instead of the cooccurrence, the relation of having a common border was
examined.

Tobler’s First Law of Geography. Gravity models predict, as discussed before,
human interactions between two places to be more likely the shorter the distance
is between both. Tobler observed that this prediction is also true for many other
relations (Tobler 1970):

Theorem 3.2 (Tobler’s first law of geography/Tobler’s law). Everything is related
to everything else, but near things are more related than distant things.
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1 The term naturally refers
to the fact that a
distinguished embedding
exists, and that no choice
has to be made to
distinguish this embedding.
There exist many
embeddings, but only one of
them is distinguished
because the embedding
maps things to their real
location in space.

The law cannot be understood as a strict law but rather as a universal statement that
is true in numerous cases, as was e. g. discussed by Hayashi (2006) and Hecht et al.
(2009). The law is however not necessarily true for all types of information whose
entities are related to space. There however exist networks that can naturally1

be embedded in space but do not follow Tobler’s law, e. g. qualitative constraint
networks of spatial entities (Fogliaroni 2013).

Tobler’s law relates to the concept of neighbourhood: things in the same small
neighbourhood are near and, inmany cases, more related than others, while distant
things are not in the same small neighbourhood and thus presumably less related.
The concept of neighbourhood is a central topological concept of space (Kuhn
2012), demonstrating that Tobler’s law describes parts of the nature of space.

Scope of Tobler’s First Law of Geography. Tobler’s law claims that a correlation
exists between relations in space, by the concept of ‘near’, and relations of some
other domain. There is no reasonwhy the claim should not be true for two arbitrary
domains, but just in case that one of the domains is space. As long as things of two
domains are related, it seems likely that also the relations of these two domains can
correlate. Such a generalization of Tobler’s law is not true in general but applies to
many examples.

One example of a generalization of Tobler’s law is the correlation between intra-
industry trade and GDP. The exchange of similar products, which belong to the
same type of industry, between two countries in both directions is called intra-
industry trade. It has been shown that intra-industry trade is correlated to numer-
ous factors, amongst others to per capita income, country size, (spatial) distance of
the involved countries, common borders, trade barriers, common languages and
product standardizations (Balassa et al. 1987). Analogously to Tobler’s law, which
claims that things are more related if they are near in space, Taegi et al. (2001)
proved that countries have a high share of intra-industry trade if their economics
are of similar size, i. e. if their GDPs are ‘near’ in the one-dimensional vector space
representing the size of the GDP.

Tobler’s law describes the structure of information. As the generalization of Tobler’s
law applies to at least some examples, Tobler’s law is however not a unique property
of spatial information.

Meaning of ‘Near’ in Tobler’s First Law of Geography. Tobler’s law leaves vague
what is meant by ‘near’. Tobler (2004) and Miller (2004b) point out that several
concepts of ‘near’ are appropriate in the context of Tobler’s law. These concepts
relate, more or less, to some distance function in space. Such a distance function
is not necessarily metric (cf. definition A.1), but it is expected to share at least
some properties with a metric. Examples of such distance functions that are not
metrics are travelling time and fuel consumption. The choice of the distance
function has an influence on how spatial structure can be modelled by Tobler’s
law. This influence can be estimated and is not very decisive in many cases, as will
be discussed in the following.
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2 The class of metrics
induced by p-norms is the
most important one and
includes the Euclidean and
the Manhattan metric (cf.
chapter A.1).
3 The term neighbourhood is
used with slightly different
meanings in mathematics
and spatial sciences, but
both concepts share the idea
of representing regions that
are partially ordered by a
containment relation.

Different metrics assign to a pair of points different distances. It has been proven
that the metric distance between points in a real vector space of finite dimension
differs only to a constant factor for different metrics induced by p-norms2 (Dieud-
onné 1969, p. 106). This fact shows that the difference between such metrics is
limited.

A metric gives a meaning to the word ‘near’, because it defines neighbourhoods3
by the induced topology. All metrics induce the same topology on real vector
spaces of finite dimension, because a homeomorphism can be constructed between
any pair of real vector spaces of the same dimension, even when endowed with
different topologies (Rudin 1991, pp. 16f). In particular, the Euclidean metric,
the Manhattan metric, the French railway metric and others all induce the same
topology.

Figure 3.1
Visualization of the
construction of different
metrics; (a) Euclidean
metric, (b) Manhattan
metric, and (c) French
railway metric x

y

(a) Euclidean metric

x

y

(b) Manhattan metric

x

y

(c) French railway metric

Mathematical results have, in the context of Tobler’s law, only limited validity,
because the concepts of ‘near’, neighbourhood and distance function in Tobler’s law
do not completely coincide with the corresponding mathematical concepts. The
similarity between the concepts however suggests that models of spatial structure
which incorporate Tobler’s law depend only little on the choice of a distance
function.

We discussed the principle of least effort and Tobler’s law as well as the scope of
Tobler’s law and its role in spatial information. We argued that Tobler’s law is
a typical property of spatial information and that the choice of a metric is not
crucial when Tobler’s law is used formodelling spatial structure, because themetric
influences the meaning of ‘near’ only very limitedly. We will, in the next section,
discuss additional typical properties of spatial information that the proposedmodel
of spatial structure is expected to have.

3.2 Typical Properties of Spatial Information

Spatial information is statistically characterized by some core properties, and we
expect a model of spatial structure to expose these properties. Tobler’s law has
already been discussed in the last section, because it is the most prominent one.
Graph representations of data were motivated in section 2.1.2 to be beneficial for
the purpose of discussing the data’s structure. Spatial information will thus in the
following be assumed to be represented as graphs.
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4 Time has a similar effect
on information as space,
because it can also be
modelled by
(one-dimensional)
Euclidean vector spaces.

5 The concept of scale
invariance of a collection,
possibly denoted as a graph,
of objects and their
interrelations embedded in
space, should not be
confused with the concept
of scale-freeness of a graph;
scale-freeness is
characterized by a power
law distribution of the
nodes’ edge degrees and
hence, by the invariance of
the distribution’s shape,
invariant under rescaling of
the total number of edges.

We review, in this section, Tobler’s law as a core property of spatial structure
(section 3.2.1). Scale invariance is another property of spatial structure. It claims
that the structure of data is invariant, when space is scaled and the distance between
nodes in space is thus scaled by a constant factor (section 3.2.2). The outdegree
of nodes in a graph representation of spatial information is typically bounded, in
regions of low node density as well as in regions of high node density (section 3.2.3).

The properties and the structure of spatial information are based on the properties
of space and the entities that constitute space: the existence of distance and the
effort of travelling leads to a predominance of relations between near things; the
similarity of space and physical processes at different scales of tangible reality
leads to scale invariance of spatial information; and non-uniform distributions
of objects in space lead to not necessarily uniform but in many times bounded
distributions of relations. We call such properties of spatial information based
on space a spatial structure4 in this paper, and we say that a data set has a spatial
structure if it exposes some of these properties.

3.2.1 Tobler’s First Law

Tobler’s law is a correlation of information and space, which is typical for geograph-
ical information, but also for many examples of spatial information in general.
This correlation is an autocorrelation, because the configuration of things, i. e.
their relations, is influenced by their location in space, and the location of things
in space is influenced by their configuration. The law was discussed in section 3.1.

3.2.2 Scale Invariance

Space, conceptualized as a Euclidean vector space, has no preferred unit. After
rescaling space, it cannot be distinguished from the unscaled one, and many
physical processes of our tangible world remain (nearly) the same when rescaled.
Classical mechanics holds, for example, for everyday items as well as for solar
systems. As soon as objects are placed in space, they define a unit and a scale. If
interrelations between objects only depend on relative distances and the Euclidean
structure, the objects and their interrelations do not change with rescaling. This
effect of scale invariance5 can be observed in several data sets, e. g. for metro and
railway networks (Louf et al. 2014) and road networks (Kalapala et al. 2006).

3.2.3 Bound Outdegree

The average edge degree in a planar graph can be proven to be strictly less than six,
which can be seen by Euler’s formula and the fact that a face has at least three edges
and each edge has at most two faces. A result by Chrobak et al. (1991) shows that
the edges of a planar graph can be oriented such that the outdegree is bounded by
three. We expect that the outdegree of a graph embedded in space behaves similar,
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even if it is not completely planar, and we expect the outdegree, in consequence,
to have an upper bound which is considerably lower than the one of a complete
graph.

When nodes are non-uniformly distributed in space, we could expect the outdegree
to be non-uniformly distributed for different nodes as well. Following the above
argument, we however expect the outdegree to be bounded, as is true in the
example of public transport: nodes representing stops of public transport are
usually more dense in city centres than in the countryside, but there exist edges in
the countryside, and the outdegree is not arbitrarily high in city centres.

3.2.4 Summary

The discussed properties are not valid for every spatial data set but for many ones,
and they can be motivated by the structure of space. A graph model of spatial
information should thus have these typical properties of spatial information:

Typical Properties of Spatial Information 3.3. Graph representations
of spatial information have, in many cases, the following properties:

(a) nodes in the same neighbourhood are more likely to be adjacent than others,
(b) edges exist in regions of low node density,
(c) only a limited number of edges exists in regions of high node density, and
(d) the distribution of entities in space is independent of scale.

We discussed typical properties of spatial information. These properties will be
used in section 3.4 to motivate the construction of the proposed model of spatial
structure. We will review existing graph models in the next section and motivate,
why they are not suitable to model spatial structure in general, based on the typical
properties of spatial information, which were discussed.

3.3 Existing Graph Models

Graph models with several structures exist. It has turned out that they can be
successfully used for many applications. There exists, yet, no model of spatial
structure.

We review, in this section, existing graph models, in particular random graph
models (section 3.3.1) and structural graph models (section 3.3.2). These graph
models can be classified as complex networks, scale-free networks and small-
world networks (section 3.3.3). Further graph models are modelling spatial aspects
(section 3.3.4) and temporal aspects (section 3.3.5). These models are not suitable
to model spatial structure in general, as we will argue by the typical properties of
spatial information, which were discussed in the last section.
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3.3.1 Random Graph Models

Euler’s discussion of the Königsberg bridge problem (Euler 1741) is considered to
be the first publication on graphs. Since then, the construction of graphs has
been studied in connection with its properties, e. g. by Barabási (2002). Graphs
have been constructed as formalization of reality, e. g. by Kirchhoff (1845), who
studied the current and the potential difference in electrical circuits, resulting in
Kirchhoff ’s circuit laws.

In 1959, Erdős and Rényi as well as Gilbert independently introduced randomly
generated graphs (Erdős et al. 1959, Gilbert 1959). Both models were the starting-
point for a new generation of simple graphs that can be described by probability
distributions. Graphs having this property are called random graphs. The following
models are examples of random graphs:

Erdős-Rényi Model. A graph of the model u�Erdős-Rényi(n, e) is a randomly chosen
graph of all simple graphs consisting of n nodes and e edges (Erdős et al. 1959).

Gilbert Model. A graph of the model u�Gilbert(n, p) is a simple graph consisting of
n nodes and an edge between two nodes with probability p (Gilbert 1959).

Random graph models are not suitable for modelling spatial structure in general,
because spatial structure is not completely random: the structure of spatial in-
formation is influenced by space, and some configurations of edges are expected
to occur more often than others.

3.3.2 Structural Graph Models

Graph models of specific aspects of information, modelling its specific structure,
have been introduced. They have been successfully applied to various use cases.

Barabási-Albert Model. A simple graph of the model u�Barabási-Albert(n) is incre-
mentally constructed by adding nodes to an existing graph, beginning with a
graph consisting of one node and no edge. In each of the n − 1 subsequent steps,
a node p is added as well as an edge (p, q) for each node q of the graph with the
probability deg q /∑r deg r where r runs over the set of all nodes. The majority
of nodes is, in consequence, joined by a very low number of edges, whereas only
a very low number of nodes is joined by a large number of edges, resulting in a
power-law degree distribution (Barabási et al. 1999). This model and similar ones
have been used to model internet links (Barabási et al. 2000, Yook et al. 2002),
citation networks (Barabási et al. 2002) and social networks (Sala et al. 2010). The
construction of Barabasi-Albert models does not reflect Tobler’s law and is not
able to model spatial structure in general.

Watts-Strogatz Model. For the construction of a simple graph of the model
u�Watts-Strogatz(n, k, p) with k ∈ 2ℤ and 0 ≤ p ≤ 1, two steps are executed. In



40 A SCALE-INVARIANT SPATIAL GRAPH MODEL

6 The terms graph and
network will be used
synonymously in this thesis.
For a detailed view on the
difference, see section A.2.

the first step, a regular ring lattice with nodes pi, i ∈ {0, … , n − 1}, is construc-
ted. In such a lattice, two nodes pi and pj are adjacent if and only if 0 < |i − j|
mod (n − k/2) ≤ k/2. Each node has, thus, k edges. In the second step, each edge
is rewired with probability p. We can construct completely regular graphs (p = 0),
completely random graphs (p = 1) and graphs which are in between (0 < p < 1)
by choosing a suitable value for the parameter p (Watts et al. 1998). Spatial graphs
usually have longer path length than this model, because edges tend to exist only
in neighbourhoods.

Exponential Random Graph Models. The exponential family of distributions
is an important class of probability distributions including normal, exponential,
Poisson and many more distributions. Any graph model whose edges follow
a distribution of the exponential family is called an exponential random graph
model (Holland et al. 1981). Exponential random graph models have been used
to model social networks (Hunter et al. 2008). These graphs are tailored to fit
statistical properties, but they do not refer to spatial properties and are incapable
to model spatial structure.

Hierarchical Network Model. The class of hierarchical network models includes
all graph models that are based on an iterative way of replicating an initial graph
and adding edges between the replicates and the initial graph (Barabási et al. 2001).
These models are suitable to model hierarchical aspects, which spatial data, in
principle, can have. Spatial data however is, at the core, not solely characterized by
hierarchies but primarily by Tobler’s law and other properties.

Additional graph models have been introduced for specific properties, e. g. the
pairing model (Wormald 1999) as a model of random regular graphs, i. e. graphs
where each node has the same degree. These models are less well-known and do
not expose typical properties of spatial information.

3.3.3 Classification of Graph Models

The discussed graph models can loosely be classified by a number of graph proper-
ties. We review, in this section, widely used classes of graph models and provide
an overview of how existing graph models can be classified.

Complex Networks. A graph is called a complex network6 if it has non-trivial
topologic features, i. e. features only depending on the abstract graph that can
neither be found in completely regular nor in completely random graphs. Features
that have been of interest are a degree distributionwith high values for high degrees,
a high clustering coefficient and a hierarchical structure. Examples are scale-free
and small-world graphs (Strogatz 2001, Albert et al. 2002, Newman 2003b).

Scale-Free Networks. A graph is called scale-free if the number P(k) of nodes
with k edges follows a power law for large values of k, i. e. if there exists a real
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Table 3.1
Classification of graph
models according to widely
used classes of networks.
The Exponential random
graph model is not included,
because it heavily depends
on the choice of the
distribution.

Model complex scale-free small-
world

ultra-
small-
world

Erdős-Rényi no no yes no

Gilbert no no yes no

Barabási-Albert yes yes no yes

Watts-Strogatz yes no yes (p = 1) no

Hierarchical yes yes no yes

number γ such that
P(k) ∼ k−γ.

The Barabási-Albert model and the hierarchical network model are examples of
scale-free graph models.

In a scale-free network, there exist relatively many nodes, called hubs, with a degree
that exceeds the average degree. These hubs are adjacent to nodes with a smaller
degree, which itself usually are adjacent to nodes with even smaller degree, etc.

The term ‘scale-free’ refers to the fact that the power law distribution does not
depend on the number of edges in the graph, because

P(ck) ∼ c−γk−γ ∼ k−γ ∼ P(k).

It has been shown that this behaviour comes in many cases, but not necessarily,
along with an inductive creation of a graph where new edges are introduced more
likely between nodes of higher degree. Such a process of inductive creation can be
found in the links of the web (Barabási et al. 1999).

Small-World andUltra-Small-WorldNetworks. A graph is called a small-world
graph, if the average shortest path length L(n) between randomly chosen pairs
of nodes grows proportionally to the logarithm of the number of nodes n in the
graph, i. e.

L(n) ∼ log n.

If the average shortest path length grows even slower with L(n) ∼ log log n, the
graph is called an ultra-small-world graph. Scale-free graphs are examples of
ultra-small-world graphs (Cohen et al. 2003). Some neural networks, power grid
networks and collaboration networks of film actors have been shown to be small-
world graphs (Watts et al. 1998).

An overview of the classification of existing graph models is provided in table 3.1.
We will use this classification as a basis to discuss in section 4.7 how the scale-
invariant spatial graph model, which is introduced in section 3.4, can be classified.
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3.3.4 Graphs Related to Space

An overview over graphs which are related to space and their properties has been
given by Barthélemy (2011). The following classes of graphs relate to space:

Planar Graphs. Mathematical research has been conducted on planar graphs, i. e.
graphs which can be embedded in ℝ2 such that their edges do, apart from their
endpoints, not intersect.

Many characterizations of planar graphs have been discussed (Kuratowski 1930,
Whitney 1931, MacLane 1937, Wagner 1937, de Fraysseix et al. 1982, Schnyder 1989,
de Verdière 1990, Archdeacon et al. 1995). Graphs have been proven to be planar
if and only if they neither contain, after the contraction of edges, the complete
graph K5 with 5 nodes nor the complete bipartite graph K3,3 with 6 nodes as a
subgraph (Wagner 1937). Spatial data sets usually cannot be represented by planar
graphs, because spatial structures characterize data sets globally and spatial data
sets thus remain spatial after localmodifications, in particular after the introduction
of K5 or K3,3 as subgraphs. The study of planar graphs however can help us to gain
a deeper understanding of graphs in the plane.

Figure 3.2
Graphs that do not occur as
subgraphs of planar graphs;
(a) K5, and (b) K3,3

(a) K5 (b) K3,3

Spatial Graphs. Another important class contains graphs whose nodes can be
embedded in space (Haggett et al. 1969), either by their natural location or by an
explicitly chosen embedding, e. g. in the case of conceptual spaces (Gärdenfors
2000, pp. 15ff). Graphs of this class are called spatial graphs, because they are, by its
features, related to space, usually Euclidean space. These features are either explicit
by semantic annotation, or implicit by the structure of the graph (Barthélemy 2011),
and they are, in many cases, empirically collected. These graphs usually model
specific applications, and empirical data about the application is needed.

Spatial Graphs with Given Statistical Properties. Kosmidis et al. (2008) con-
struct graphs which are embedded in space and have given statistical properties.
The constructed graphs have, in particular, a given degree distribution and a given
distribution of distances between adjacent nodes. The properties of such graphs
strongly depend on the given distributions, and they do, in general, not coincide
with the ones of spatial structures.

Spatial Generalizations of Complex Graph Models. The Erdős-Rényi and the
Gilbert model can be modified in two ways in order to generate only planar
graphs: edges can, after the construction, be removed such that a planar graph is
achieved (Barthélemy 2011), or only planar graphs can be considered during the
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7 In case that devices with a
higher range are chosen for
areas of low device density,
the model does not apply: it
fits well to handheld
transceivers (all of the same
power) but not to
radio-relay systems.

construction (Denise et al. 1996, McDiarmid et al. 2005). The model has even been
generalized to graphs that are embeddable on fixed surfaces (McDiarmid 2008).

Spatial generalizations of the Barabási-Albert model require each node to have
a location in a Euclidean space, and new nodes are usually randomly distributed
with uniform distribution. The probability to add an edge (p, q) from the new
node to an old one is deg q /∑r deg r ⋅ f (d(p, q)) where r runs over the set of all
nodes and f is a function, e. g. an exponential function (Barthélemy 2003) or a
power function (Xulvi-Brunet et al. 2002, Yook et al. 2002).

The Watts-Strogatz model has been generalized by rewiring the graphs’ edges not
only by a fixed probability p but also by the distance between the nodes (Jespersen
et al. 2000).

These generalizations share aspects of spatial information, but as most of their
characteristics originate from the non-generalized models, they are not suitable as
models of spatial structure in general.

Geometric Graph Models. This class of models assumes nodes to have explicit
locations in a Euclidean space, and edges are modelled by the nodes’ location
in space. These models usually start with a random set of points (uniformly
distributed) and introduce an edge between two nodes p and q with distance
d(p, q) with probability f (d(p, q)), where f ∶ℝ → [0, 1] is a probability function.
Huson et al. (1995) uses the probability function

f (l) =
{

1 if l < r
0 otherwise

to model a network of radio transmitters and receivers7. Waxman (1988) discusses
a similar model with a smoothened, continuous probability function

f (l) = β exp (− l
r) .

Both models depend on the absolute distance between points and are, in con-
sequence, not scale-invariant. They are not suitable to model spatial structure.

Aldous et al. (2013) discussed the class of scale-invariant graphs. A scale-invariant
variant of this model was discussed by Aldous et al. (2010): for a given k > 0, edges
to the k nodes with minimal distance are introduced for each node. This model
does not reflect the fact that the distribution of the edges in spatial information,
in particular the number of edges per node, usually depends on the location of
the nodes in space. The number of bus routes leading through a certain stop, for
example, is not constant.

Graph models do not necessarily expose a spatial structure, even if they are related
to space, because they do not necessarily have the structure that spatial information
commonly has. The discussed models are, thus, no models of spatial structure.
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3.3.5 Graphs Related to Time

Time shares some features with (one-dimensional) space, because both have a
Euclidean structure. Graphs describing temporal data may, hence, suggest itself to
be familiar to spatial graphs.

Evolving Networks. Change in networks can be modelled over time: nodes and
edges can be added, modified or removed. Such an evolving network is not suitable
to model spatial structure, because it is only able to model dynamic structures, e. g.
the nervous system or modes of communication. A more detailed view has been
given by Holme et al. (2012).

Existing graph models are, as was argued, tailored to model specific structures
but not spatial structure in general. They thus cannot serve as models of spatial
structure.

3.4 The SISG Model
A graph model of spatial structure can be expected to have the typical properties
of spatial information, which were discussed in section 3.2. Such a model is not a
model of public transport nor a model of human activities. It is a model that shares
some properties with many types of spatial information, namely these properties
that seem to be central in the concept of spatial information.

We propose, in this section, a model of spatial structure. The model is motivated
by properties 3.3, and a formal proof will be provided in section 3.5.

For a given set of nodes embedded in space, we ask which edges have to be in-
troduced such that the resulting graph meets properties 3.3. If the graph has
property 3.3(a), the configuration of the edges depends on the distance between
nodes. On the other hand, the configuration must not depend on the absolute
distance between nodes in order to have property 3.3(d), and the graph model
is only allowed to depend on the relative distances between nodes. In order to
have properties 3.3(b) and (c), the number of edges joining a node may vary for
regions of different node density, but the number of edges has to be bounded. The
following graph model has these properties, as we will prove in section 3.5.

Definition 3.4. (1) Let V be an n-dimensional Euclidean vector space with
metric d. To a finite set of points S ⊂ V and a real number ρ > 1, we associate the
abstract (directed and simple) graph ℳρ(S, V) consisting of

(i) a node for every point p ∈ S, and
(ii) a directed edge (p, q) if and only if

d(p, q) ≤ ρ ⋅ min
p0∈S⧵{p}

d(p, p0)

where the minimum is assumed for p0 being a nearest neighbour of p.
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The graph ℳρ(S, V) is called the scale-invariant spatial graph model (SISG model)
of the generating set S ⊂ V of dimension dim V and density parameter ρ. We call
ℳρ(S, V) to be generated by the set S. If the vector space is apparent from the
context, we will even write ℳρ(S).

(2) The simple undirected graph associated to ℳρ(S) is called the undirected
scale-invariant spatial graph model.

A model ℳρ(S, V) is, by definition, an abstract graph, i. e. a node p̃ is an abstract
object that is not placed in the vector spaceV ; each node ̃p can however canonically
be identified with a point p ∈ V in space. We will denote both, the node p̃ and the
corresponding point p, by the same symbol as long as no confusion arises.

We did only motivate that SISG models have the typical properties of spatial
information, which were discussed in section 3.2. A formal proof will be provided
in the next section.

3.5 The SISGModel Has Typ. Properties of Spatial Information

The SISG model is a model of spatial structure, and it is thus expected to have
properties 3.3. We provide, in this section, formal proofs that the model has these
properties.

3.5.1 Property (a)

Tobler’s law claims that near things are more related than distant ones. The con-
struction of the SISG model reflects this law by introducing edges only in neigh-
bourhoods. We can formally prove:

Proposition 3.5. (1) If a node p of ℳρ(S) is adjacent to a node q, then it also is
to every node q′ with d(p, q′) ≤ d(p, q).

(2) If a node p of ℳρ(S) is not adjacent to a node q, then it is neither to any node q′

with d(p, q′) ≥ d(p, q).

Proof. (1) Let p, q and q′ be nodes with d(p, q′) ≤ d(p, q) and (p, q) an edge. Then

d(p, q′) ≤ d(p, q) ≤ ρ ⋅ min
p0∈S⧵{p}

d(p, p0).

Thus, also (p, q′) is an edge.

(2) Let p, q and q′ be nodes with d(p, q′) ≥ d(p, q) such that no edge (p, q) exists.
Then

d(p, q′) ≥ d(p, q) > ρ ⋅ min
p0∈S⧵{p}

d(p, p0).

Thus, there exists no edge (p, q′) either.
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The proposition proves SISG models to have property 3.3(a), because for each node
of the graph there exist edges to all other nodes of a certain neighbourhood, i. e. to
all nodes that are nearer than a certain distance, and no edges to all other nodes of
the graph.

3.5.2 Property (b)

When the density of nodes in space is lower, there are, statistically, less nodes in a
neighbourhood of a fixed size. The low number of neighboured nodes can lead
to single nodes that are not connected to other nodes. By the construction of the
SISG model, there however exists for each node at least one outgoing edge, namely
the one starting in that node and ending in a node at minimal distance. We can
prove:

Proposition 3.6. If there exist at least two nodes in ℳρ(S), every node has out-
degree of at least 1.

Proof. Assume that there exist at least two nodes. For an arbitrary node p, there
exists a node p′ ≠ p such that d(p, p′) ≤ d(p, q) for all nodes q ∈ S ⧵{p}, because
S is finite. As ρ > 1, we have d(p, p′) < ρ ⋅ minp0

d(p, p0). This proves (p, p′) to be
an edge.

The proposition proves SISGmodels with at least two nodes to have property 3.3(b),
because every node has outdegree of at least 1. If the density parameter is signific-
antly larger than 1, the average outdegree can be expected to be, too.

3.5.3 Property (c)

In regions of higher node density, there are, statistically, more nodes in a neigh-
bourhood of a fixed size. The number of edges between such neighboured nodes
is bounded by the number of edges in the complete graph. The expectation value
of the number of edges is however much lower for uniformly distributed nodes, as
is formally proven by the following theorem:

Theorem 3.7. In a SISG model ℳρ(S, V) with S uniformly distributed, the expect-
ation value of the outdegree of a node converges to ρdim V for |S| → ∞.

Proof. Consider points to be uniformly distributed in a vector space of dimension
n = dim V . For an arbitrarily chosen point p and a real number L > 0, let
S be the set of all points in the n-dimensional ball Bn(p, L) of radius L centred
in p. We denote the minimal distance between p and the remaining points by
r = minp0∈S⧵{p} d(p, p0).

If for an R < L the n-dimensional open ball Bn(p, R) does not contain any point
of S apart from p, the points of S′ = S ⧵{p} are in B(L, R) = Bn(p, L) ⧵ Bn(p, R).
Denoting the volume of the n-dimensional ball of radius L by Voln(L), the density
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8 The cases where more
than one point is at minimal
distance is a null set.

of points in the ball Bm(p, L) equals s/Volm(L) with s = |S| for L ≫ R. We thus
expect

μ = s
Voln(L)

⋅ [Voln(ρR) − Voln(R)] + 1 = s(ρn − 1)
Voln(R)
Voln(L)

+ 1 (∗)

points in B(ρR, R), namely the one8 at minimal distance r and the ones in the
inner of B(ρR, R). (The second equality is due to the fact that Voln(ρR) equals
ρn Voln(R).) If R ≤ r, we expect at least μ points in B(ρr, r), i. e. at least μ edges
starting in p.

For a given R, the probability of R ≤ r, i. e. the probability that all s − 1 points S′

have distance greater than R to the point p, is

(1 −
Voln(R)
Voln(L) )

s−1

.

Inserting equation ∗ proves that the probability of at least μ edges starting in p is

ν(μ) = (1 −
μ − 1

s(ρn − 1))

s−1

.

The probability that at most μ edges are starting in p equals 1 − ν(μ), and the
corresponding probability density function is given by − d

dμ
ν(μ). To compute the

expectation value for the number of edges starting in p, we first compute

π(μ) = − ∫μ d
dμ

ν(μ) dμ

= −μ ⋅ ν(μ) + ∫ν(μ) dμ

= [(μ − 1) (
1
s

− 1) − ρn
] ⋅ ν(μ).

The expectation value of the number of edges starting in p can be computed as

π(μ)|
s−1
1 = ρn + [(s − 2) (

1
s

− 1) − ρn
] ⋅ (1 − s − 2

s
⋅ 1
ρn − 1)

s−1

.

The second summand vanishes for s → ∞.

This proves SISG models to have property 3.3(c). We can conclude:

Corollary 3.8. The graph ℳρ(S, V) with S uniformly distributed is expected to
have |S| ⋅ ρdim V edges for |S| → ∞.

3.5.4 Property (d)

The SISG model introduces edges for a given set of points in space, and the con-
figuration of the edges only depends on the location of the points in space. The
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change of scale in the vector space, which is a transformation of the vector space,
leaves the configuration of edges invariant, as has been discussed in section 3.2.2.
We formally define a scale transformation as follows:

Definition 3.9. Let V be a Euclidean vector space. A map τ∶V → V is called a
scale transformation or a transformation of relative scale σ if and only if for every
pair p and q, their distance is increased by the factor σ > 0 under the application
of τ:

d(τ(p), τ(q)) = σ ⋅ d(p, q).

The transformations of relative scale 1 are exactly the isometries, i. e. distance-
preserving transformations τ∶V → V . Other examples of scale transformations
are changes of the bases of a vector space that scale each base vector by the same
factor, i. e. transformations of the form σ ⋅ id. As the factor is not vanishing, scale
transformations are bijective:

Proposition 3.10. Every scale transformation is bijective.

Proof. Let τ be a scale transformation of relative scale σ . Assume τ(p) = τ(q).
Then, the distance between τ(p) and τ(q) is vanishing. As σ > 0, the distance
between p and q is also vanishing. The points p and q are hence equal. This proves
that τ is injective.

Define a scale transformation ι∶V → V as the linear map 1 /σ ⋅ id. As ι is a scale
transformation of relative scale 1 /σ , the concatenation τ ∘ ι is a scale transformation
of relative scale 1, i. e. an isometry. A result by Wobst (1975) shows that τ ∘ ι is
surjective, and thus, also τ.

The Mazur-Ulam theorem proves that scale transformations are combinations of
translations and linear transformations:

Proposition 3.11. Every scale transformation is affine.

Proof. Let τ be a scale transformation of relative scale σ . Define ι∶V → V as the
linear map 1 /σ ⋅ id. Then τ ∘ ι is an isometry. The Mazur-Ulam theorem proves
that τ ∘ ι is affine (Mazur et al. 1932, Wobst 1975). As ι is linear and bijective, the
map τ is affine.

Scale-transformations leave SISG models invariant, because the construction of
SISG models does not refer to the absolute locations of the points of the generating
set in space, but only to the distances between these points. We are thus able to
prove that SISG models have property 3.3(d):

Theorem 3.12. SISG models are invariant under scale transformations, i. e.

ℳρ(S) = ℳρ(τ(S))

for every scale transformation τ∶V → V .
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Proof. A scale transformation τ maps the nodes of ℳρ(S) to the one of ℳρ(τ(S)),
and as τ is injective by proposition 3.10 and by the definition of ℳρ(τ(S)) surjective,
it is an isomorphism between the sets of nodes.

There exists, by definition of the SISG model, a directed edge (p, q) in ℳρ(S) if
and only if

d(p, q) ≤ ρ ⋅ min
p0∈S⧵{p}

d(p, p0).

As τ is a scale transformation of relative scale σ > 0, this is equivalent to

d(τ(p), τ(q)) ≤ ρ ⋅ min
τ(p0)∈τ(S)⧵{τ(p)}

d(τ(p), τ(p0)).

This equation is the condition for the existence of an edge (τ(p), τ(q)), which
proves that an edge (p, q) in ℳρ(S) exists if and only if an edge (τ(p), τ(q)) exists
in ℳρ(τ(S)). This proves τ to induce an isomorphism of graphs.

The theorem proves SISG models to have property 3.3(d). It applies, in particular,
to translations because translations are scale-transformations:

Corollary 3.13. SISG models are invariant under translations, i. e.

ℳρ(S, V) = ℳρ(v + S, V)

for every vector s ∈ V .

We formally proved SISG models to have properties 3.3. Further analytical results
are proven in the next section.

3.6 Propositions on SISG Models
Analytical properties of SISG models are hard to prove, because the structure of
a model depends on the locations of its nodes, and these locations are irregular.
When no information about the locations is known, only very little conclusions
can be drawn.

We provide, in this section, simple analytical results for SISG models. Many
properties are, due to their complexity, not analytically discussed. A statistical
discussion of these properties is postponed to the next chapter.

The following proposition relates the local structure, i. e. the structure of subgraphs,
to the global structure of SISG models:

Proposition 3.14. Every subgraph of a SISG model is a subgraph of the SISG
model with the same density parameter and the subgraph’s nodes as generating set.

Proof. Let G be a SISG model and H ⊂ G a subgraph. Denote the distance from a
node n to its closest neighbour in the graph G by dmin(G, n). As every node of H
is a node of G, the minimal distance dmin(H, n) is larger or equal than dmin(G, n)
for every node n in H. Every edge in H is, thus, also an edge in the SISG model
generated by the nodes of H.
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Proposition 3.15. Every connected component of a SISG model is a SISG model
with the same density parameter and its nodes as generating set.

Proof. Let G be a SISG model and H ⊂ G a connected component. The minimal
distance dmin(H, n) of a node n in H is larger or equal than dmin(G, n), as shown in
the proof of proposition 3.14. As there exist no edges from H to another connected
component H′, the closest neighbours of the nodes of H are in again H: if a node
n in H would have n′ in H′ as a closest neighbour, an edge from n to n′ would
exist proving H and H′ to be connected. The minimal distances dmin(H, n) and
dmin(G, n) are thus equal for all nodes n inH. This proves the SISGmodel generated
by the nodes of H to be exactly the connected component H.

Figure 3.3
Example of holes of size 6;
(a) directed hole, and
(b) undirected hole

(a) Directed hole (b) Undirected hole

Proposition 3.16. In a SISG model, there exist no directed holes of size greater
than 2.

Proof. Assume that a hole exists, which consists of a directed cycle along the nodes
p0, … , pm. The distance between consecutive nodes of the cycle decreases, because
otherwise there would exist edges in the opposite direction:

d(pk−1, pk) > d(pk, pk+1) for all 0 < k < m,
d(pm−1, pm) > d(pm, p0) and d(pm, p0) > d(p0, p1).

This yields, by induction,

d(p0, p1) > d(p1, p2) > … > d(pm, p0),

contradicting d(pm, p0) > d(p0, p1).

Corollary 3.17. In a SISG model, a node with indegree of at least 2 exists in each
connected component with at least three nodes.

Proof. By proposition 3.15, a connected component in the model is a SISG model
itself, generated by its nodes. We thus assume that the model is connected, without
loss of generality. If each node would have indegree less than 2, each node would
have outdegree 1 (each node has, by proposition 3.6(3), outdegree of at least 1) and
hence, also indegree 1, because the sum of outdegrees equals the sum of indegrees.
As the graph is connected, the model is a hole, contradicting the proposition.
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Proposition 3.18. In an undirected SISG model of dimension 1, there exist no
holes of size greater than 3.

Proof. Assume that a hole of size greater than 3 exists. As the nodes of the hole
are associated to points on the line, an order relation is naturally defined by their
location, i. e. p0 < p1 < … < pm with edges between pk and pk+1 for every
0 < k < m − 1. As a hole is closed, there exists an edge between the minimal and
the maximal element, i. e. either an edge (p0, pm) or an edge (pm, p0) in the directed
graph. In the first case, there exist edges (p0, pk), in the latter case edges (pk, pm) for
every 0 < k < m. In both cases, nodes of the hole in the undirected model would
be connected by edges that are not part of the hole, because either p0 or pm would
be adjacent to more than 2 nodes, contradicting the definition of a hole.

We were able to analytically discuss subgraphs of SISG models and to prove that
connected components of SISG models are again SISG models. Some configura-
tions of edges cannot occur in SISG models. We provided such configurations that
cannot occur, and when such a configuration occurs in a graph, we can conclude
that the graph is no SISG model.

Conclusion
Spatial structure captures the core concepts of spatial information. It shares many
properties with various examples of spatial information, and can thus be used to
lift the discussion of spatial information from a semantic to a structural level. We
introduced, for this purpose, a graph model of spatial structure. More specifically,
the main contributions of this chapter are as follows:

(1) Tobler’s law was motivated by the principle of least effort. We discussed the
scope of the model and addressed the issue of the meaning of ‘near’ in the context
of the law. This discussion provides the context in which Tobler’s law is valid.

(2) Typical properties of spatial information were discussed, including Tobler’s
law, scale invariance and a bound outdegree of the nodes of a graph representation.

(3) We defined the SISG model as a graph model of spatial structure, and we
provided proofs that it has typical properties of spatial information.

(4) The role of subgraphs of SISG models has been discussed. We argued, in
particular, in how far subgraphs are SISG models again and showed that some
graphs cannot occur as induced subgraphs of SISG models.

One of the main contributions of the thesis, the SISG model, is simple to define
and use. It provides, together with the other contributions of this chapter, a
mathematical foundation for the discussion of spatial structure, as we will see in
subsequent chapters.





4
The Uniform Scale-Invariant

Spatial Graph Model

H2p(X, ℚ)alg = H2p(X, ℚ) ∩ Hp,p(X)

—William Vallance Douglas Hodge
scottish mathematician

(1903–1975)

The generation of a SISG model presumes a generating set, i. e. a set of points
which are located in a vector space (cf. section 3.4), but no presumptions about
the distribution of the points are made. An important case is the one of randomly
distributed points, with a uniform distribution.

Definition 4.1. A SISG model with a generating set of s randomly distributed
points with uniform distribution in the m-dimensional unit ball is called a uniform
scale-invariant spatial graph model ℳm

ρ (s).

We discuss statistical properties of uniform SISG models in this chapter. Non-
statistical methods are, in many cases, not suitable to analyse spatial data and
SISG models, because they can, in contrast to the spatial structure, react sensitive
to local modifications of the data (section 4.1). The examination is affected by
the finiteness and non-connectedness, and hence the concepts of inner and outer
regions are introduced (section 4.2). The dependency of a graph’s properties on
the number of nodes can be analysed by examining induced subgraphs of different
sizes. The concept of series of subgraphs addresses this approach (section 4.3). The
properties of uniform SISG models can be classified into ones that only depend on
the combination ρm of the density parameter ρ and the dimension m (section 4.4),
and the ones that depend on the density parameter and the dimension separately
(section 4.5). Additional properties are reviewed (section 4.6), and the uniform
SISG model is classified by its properties (section 4.7).
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1 Statistical properties can
become even more
insensitive to local
modifications, if they are
not computed for the
directed graph but for the
associated undirected one.

4.1 Statistical Methods

The characterization of SISG models requires stable properties, i. e. properties that
are insensitive to local modifications. Statistical methods can, in many cases, be
used to compute stable properties.

We discuss, in this section, the role of statistics for the examination of the uniform
SISG model’s properties, and we introduce a method that turns global properties
into local ones by making them statistical.

The Role of Statistical Properties. The examination of the properties of SISG
models aims at characterizing thesemodels and at understanding how thesemodels
behave under operations, e. g. which nodes can be reached when moving from
one to another node. These properties are influenced by the generating set, but in
many applications, only very general assumptions on the generating set are made.
The distribution of the points in the generating set, for example, is in many cases
known. Properties are, in this context, of special interest, if they are insensitive to
small modifications of the generating set and to local modifications of the graph
in general.

The properties discussed in section 3.6 are not suitable for the characterization
of SISG models, because they are, by and large, sensitive to local modifications.
Statistical properties1 aim atmaking properties insensitive to local modifications by
summarizing their values. The properties discussed in this chapter are of statistical
nature due to two reasons: (1) they are based on values that are insensitive to small
modifications, e. g. the number of nodes and edges for the definition of density
in section 4.4.2, or (2) they are defined for every node, or very small subgraphs,
and the resulting values are summarized, e. g. centrality, clustering and diversity
coefficients in sections 4.4.6 to 4.4.8. In the latter case, a mechanism for the
computation of properties on subgraphs is needed. Such a mechanism is discussed
in the following.

Localization of Global Properties. Some properties, called global properties, de-
scribe a graph as a whole. Examples of global properties are topological properties,
such as connectivity. A small modification of the graph can result in a significant
change of global properties, as can be seen in the example of connectivity: a graph
with two connected components becomes connected if an edge between these
components is introduced. Global properties are, in many cases, not suitable to
describe graphs whose structure is inhomogeneous.

In contrast to global properties, local properties describe only the neighbourhood
of single nodes. Centrality, clustering and diversity coefficients (cf. sections 4.4.6
to 4.4.8) are, for example, by construction only considering neighbourhoods of
a certain diameter. Small modifications of the graph usually lead to significant
changes of some neighbourhoods’ properties, but the statistical distribution of the
properties for all neighbourhoods does not change significantly.



EFFECT OF FINITENESS AND NON-CONNECTEDNESS 55

2 The notation of a ball is
common in graph theory,
but the author could not
trace who introduced it.

3 This is due to the fact that
the ratio of the surface area
to the volume is decreasing
with increasing diameter.

When a global property is of interest but insensitivity to small modifications is
required, we can examine the distribution of the property on small subgraphs.
Balls are such small subgraphs that can easily be constructed and that are suitable
to compute global properties for:

Definition 4.2. In a graph G, the ball2 (or subgraph) BG(p, r) with centre node
p and radius r ∈ ℕ is the set of nodes q with δ(p, q) ≤ r where δ denotes the
undirected distance.

Instead of considering a global property of the whole graph, we can examine the
property for each ball of a certain radius, which turns the property into a local
one. The property computed for each ball can be examined statistically, e. g. by
examining its distribution.

We argued why statistical properties are suitable for characterizing SISG models,
and we discussed how global properties can be turned into statistical and local
properties. We will discuss in the next section, how these properties are influenced
by the finiteness and the non-connectedness of the graph.

4.2 Effect of Finiteness and Non-Connectedness
Properties are, in many cases, analytically easier to compute and to understand for
infinite uniform SISG models than for finite ones, because the density of nodes
in space is only uniform for infinite models. As data sets are finite, it is however
important to examine finite SISG models.

We examine, in this section, how the finiteness and the non-connectedness in-
fluence the properties of SISG models. Concepts of inner and outer regions are
introduced for this purpose.

Representations of spatial information which are used by computers are necessarily
finite. In finite graphs, the density of points in space cannot be uniform. The points
are placed in a region U of space, and the density of points decreases near the
boundary of this region. We will call these regions V ⊂ U near the boundary
outer regions, and all other regions V ′ ⊂ U inner regions. The inner regions are
characterized by the fact that their density does not depend on the size of the
whole graph.

The average distance to the next node differs for inner and outer regions of the
model, because nodes are not uniformly distributed in finite models. The more
nodes the model contains, the relatively less of them are located in the outer
regions.3

Understanding the outer regions is more complicated than understanding the
inner regions, especially for analytical reasoning, because uniform distributions
are less complicated to describe than non-uniform ones. (We have, for this reason,
proved analytical results only for infinite SISG models in sections 3.5 and 3.6.) This
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fact makes it complicated to understand small SISG models. The properties of
small models are, in addition, expected to have higher variance than the ones of
greater models because the statistical population is greater.

Many real world representations are connected, e. g. many graph representations
of public transport; SISG models are however not necessarily connected. For
extensive generating sets and low density parameters and dimensions, SISGmodels
are usually not connected: the number of nodes in the largest component is
statistically growing much slower than the number of nodes in the graph (cf.
figure 4.1), because the number of edges is low for low density parameters and
dimensions according to corollary 3.8. It is, due to this behaviour, hard to generate
large connected SISG models for low density parameters and dimensions. We
consider, in many cases, only the largest connected component of a model, because
many properties are only of interest for connected models.

Figure 4.1
Number of nodes in the
largest connected
component in SISG models;
mean value for 1000 models
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We argued that finite uniform SISG models are harder to understand, and that
it is hard to generate large connected SISG models with low density parameters
and dimensions. These problems can, in parts, be overcome by choosing suitable
methods to compute properties, as will be argued in the next section.

4.3 Series of Subgraphs
Many properties depend on the number of nodes of the graph. Such dependencies
can be examined by computing the property for subgraphs of different sizes. The
computations of a property for subgraphs is only very little influenced by the
graph’s finiteness, because small subgraphs of finite uniform SISG models cannot
be distinguished from the ones of infinite models.

We discuss, in this section, how to choose suitable subgraphs for the purpose of
examining the described dependency and introduce the notation of a series of
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subgraphs. The described approach applies, in particular, to SISG models, but also
to other graphs.

Inner regions of uniform SISGmodels have, in the previous section, been argued to
be less complicated to understand than outer regions, because the configuration of
the nodes and edges is uniform in inner and non-uniform in outer regions. When
we examine a property on subgraphs, it seems advantageous to choose subgraphs
that are part of the inner region of the graph and to choose subgraphs that contain
nodes that are related. The importance of this argument becomes apparent, when
an induced subgraph consisting of arbitrarily chosen nodes is considered for a
sparse graph: the more nodes the graph has, the less likely it is that the subgraph
is connected. It can even happen that the induced subgraph contains no edges at
all, even if the original graph is connected.

A node in the inner regions can be found by the 2-dSweep algorithm (cf. sec-
tion B.3): the algorithm computes a centre node, which is most likely located in the
inner region. We can, in a second step, construct a subgraph with a desired number
of nodes, placed around the computed centre node, by consecutively adding for
each node an adjacent node. Such a subgraph can be expected to have a large
number of edges, because only adjacent nodes are added, and in case of a SISG
model, nodes with a short distance in space, which are more likely related than
arbitrary ones, are added with a high probability.

The method of adding only adjacent nodes works as long as the number of nodes
in the subgraph is smaller than the number of nodes in the connected component.
The constructed subgraph is, in this case, connected. When the number of nodes
in the subgraph equals the connected component, we can proceed by adding an
arbitrary node of another connected component. This algorithm defines a series
of subgraphs. We formally define:

Definition 4.3. For a graph G, a series of subgraphs G0 ⊂ … ⊂ Gs is constructed
as follows: the subgraph G0 consists of a starting node, computed using the 2-
dSweep algorithm. Having already defined a subgraph Gk, we consecutively find
for each node p ∈ Gk a node p′ ∉ Gk, if existent, such that an edge (p, p′) exists,
or if this is not possible, such that an edge (p′, p) exists, and add the node p′ to the
subgraph. This defines a series of subgraphs Gk ⊂ Gk+1 ⊂ Gk+2 ⊂ … If for a single
node p such a node p′ can be found, we just proceed. If no node p′ can be found at
all, Gk is a connected component. In this case, an arbitrary node p′ ∉ Gk is added.
Applying the algorithm inductively yields a series of subgraphs with Gs = G.

Figure 4.2
Series of subgraphs (Gi); the
subgraph Gi contains the
nodes 1, … , i; note that only
one possible series is
depicted, because choices
have to be made1

2

3 4

5

6
7
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In a series of subgraphs, each step increases the number of nodes by 1, and the
connected components are added to the graph G0 one after another. There exist, in
general, many different series of subgraphs, because the definition contains some
choices. To compensate for these choices, we can evaluate a property on several
series of subgraphs and take the mean value for all subgraphs of the same size.
This mean value is more meaningful for statistical considerations than the single
values, because the variance is decreased and the properties are more similar to
the expectation values.

We introduced the notation of a series of subgraphs, which can be used to exam-
ine the dependency of the graph’s properties on the number of nodes. Series of
subgraphs will be considered for several properties in subsequent sections.

4.4 Properties Depending Only on ρρρm

Many properties of uniform SISG models ℳm
ρ (s) only depend on ρm, i. e. they

statistically coincide for two SISG models ℳm
ρ (s) and ℳm′

ρ′ (s), if ρm = ρ′m′
. We

can, in consequence, not distinguish between two SISG models, if the value of ρm

is equal for both models, and we can only guess ρm, but not ρ or m independently,
for a given abstract uniform SISG model ℳm

ρ (s).

The correlation between themetric distance of one node to another and the distance
in the graph, by the means of the length of the shortest path, is the reason for why
many properties only depend on ρm: the number of nodes within a distance r is
expected to scale by the volume γmrm of the m-dimensional ball of radius r, where
γm is a coefficient depending on the dimension m. The radius of the ball r scales
with the density parameter ρ, because the maximal distance, at which an edge
between a considered node and another one exists, linearly depends on the density
parameter ρ. Whenever a property of the uniform SISG model depends on the
number of nodes within a fixed distance, it thus scales by ρm.

We discuss, in this section, such properties of the uniform SISG model that only
depend on ρm. The number of nodes and edges (section 4.4.1), the density and
the total density (section 4.4.2) are of special interest, because they characterize
uniform SISG models well. They will be used in chapter 5 to test data for spatial
structures.

4.4.1 Number of Nodes and Edges

We expect the uniform SISGmodel ℳρ(s) to have s⋅ρm edges for s → ∞, according
to corollary 3.8. We thus expect:

Proposition 4.4. For the SISG model ℳρ(s) with e edges and s nodes, we expect
e/s = ρm for s → ∞.
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Figure 4.3
Distribution of e/s where s
the number of nodes and e
the number of edges;
aggregated for 1000 graphs
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4 The number of edges in
the complete graph, for
example, grows
quadratically with the
number of nodes.

The proposition claims that the ratio between the number of edges and the number
of nodes is constant for fixed density parameter and fixed dimension. In particular,
the number of edges grows linearly with the number of nodes, unlike it does
for many other graph models4, because edges only connect nodes in the same
neighbourhood: when a node is added to the model, only a small neighbourhood
is affected. The ratio between the number of edges and the number of nodes has
low variance, and the variance is lower for smaller values of ρm (cf. figure 4.3).

4.4.2 Density and Total Density

Density characterizes the ratio between edges and nodes in a graph. It is defined
such that complete simple undirected graphs have density 1, and graphs without
edges have density 0. The following definition of the density has been given
by Coleman et al. (1983):

Definition 4.5. The density of a graph G consisting of n > 1 nodes and e edges
is defined as

cdensity(G) = e
n ⋅ (n − 1)

.

By proposition 4.4, the expected density for a SISG model is as follows:

Proposition 4.6. The uniform SISG model ℳρ(s) is expected to have density
ρm/(s − 1) for s → ∞.

When the density of a finite graph is examined, the effect of finiteness has to
be taken into account, as was discussed in section 4.2. This effect occurs, in
particular, when the density is evaluated for a series of subgraphs (cf. section 4.3).
We can modify the definition of the density, in case of a subgraph, to overcome
this problem: we take not only edges inside the subgraph into account, but also
these edges that start at a node of the subgraph:

Definition 4.7. The total density of a subgraph H ⊂ G consisting of n > 1 nodes
is defined as

ctotal density(H, G) = e
n ⋅ (n − 1)

,

where G has e edges starting at a node in H.

Figure 4.4
Computation of the (total)
density for the subgraph
which is depicted in red; the
dashed edges are taken into
account for the computation
of the density; (a) density,
and (b) total density

(a) Density (b) Total density
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Figure 4.5
Density and total density for
a series of subgraphs; mean
value for 1000 models with
10 series each
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Figure 4.6
Density for a series of
subgraphs; mean value for
1000 models with 10 series
each
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Total density for a series of
subgraphs; mean value for
1000 models with 10 series
each
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5 The dependency has only
been evaluated for four
different combinations of
density parameters and
minimal dimensions. We
can thus not conclude that
the property only depends
on ρm, but the
considerations suggest this
dependency.

A comparison of the density and the total density of subgraphs shows why the
total density avoids, by and large, the problem of finiteness. Let N = ⋃i Ni be a
partition of the nodes of a finite graph G, and Gi ⊂ G the subgraphs induced by
the Ni. The definition of the density of a subgraph Gi takes only edges between
nodes of Ni into account, but all edges that start at a node n ∈ Ni and and at
another node n ∈ Nj with i ≠ j are left out (cf. figure 4.4). This fact leads to
smaller density values than would be expected if the finiteness would be taken into
account, because only a subset of all edges are considered.

Every edge of G is, in the computation of the total density of all subgraphs Gi,
considered exactly once, namely in the computation for the subgraph Gi that
contains the starting node of the edge. Assume each node of G to statistically
have the same in- and outdegree. If an Ni is completely contained in the inner
region of the graph, the total density of the subgraph induced by Ni is, in contrast
to the density, not affected by the effect of finiteness. Proposition 4.6 refers to
the estimation value of the density in case that the number of nodes approaches
infinity. The density is, in the limit, not affected by the effect of finiteness. The
proposition is thus even valid for the total density, and the total density can be
expected to even faster converge. The density and the total density thus converge
for the number of nodes approaching infinity (cf. figure 4.5).

The choice of the sets Ni has a strong influence on the properties of the induced
subgraphs Gi, as was discussed in section 4.3. The density of a subgraph whose
nodes are independent, i. e. not related, vanishes for example, even if the graph
contains numerous edges. This influence can however be expected to be limited
for randomly chosen induced subgraphs, because such special cases rarely occur if
the nodes’ indegrees are approximately equal, and the outdegrees as well.

The densities and total densities of ℳ1
2(s) and ℳ 2

√2(s) converge for s → ∞, and
they also do for ℳ2

2(s) and ℳ 3
3√4(s) (cf. figure 4.6 and 4.7). This convergence was

expected by proposition 4.6, because the values of ρm are equal for these models.
The density of SISG models has low variance, and the variance is lower for smaller
values of ρm (cf. figure 4.8).

4.4.3 Subgraphs of a Minimal Degree

The edge degree is not necessarily equally distributed in a graph: some nodes may
be joined by a high number of edges, whereas others only by a low one. Subgraphs
of higher or lower edge degree can, in particular, exist. The minimal degree of a
graph has been mentioned (as minimum degree) by Albert et al. (2002).

Definition 4.8. A graph is called to have minimal degree κ if every node in the
graph has at least degree κ and a node of degree κ exists. We denote the number of
maximal subgraphs of minimal degree κ of a graph G by csubgraphs of min degree κ(G).

The number of subgraphs of minimal degree κ seems5 to only depend on κ and ρm

for s → ∞ (cf. figure 4.9).
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Figure 4.8
Distribution of the density;
aggregated for 1000 graphs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
⋅10−2

0

50

100

density

oc
cu

rr
en

ce
s

ℳ1
2(100)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
⋅10−2

0

50

100

density

oc
cu

rr
en

ce
s

ℳ 2
√2(100)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
⋅10−2

0

20

40

density

oc
cu

rr
en

ce
s

ℳ2
2(100)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
⋅10−2

0

20

40

density

oc
cu

rr
en

ce
s

ℳ 3
3√4(100)



64 THE UNIFORM SCALE-INVARIANT SPATIAL GRAPH MODEL

6 We call a random walk
stationary, if the probability
distribution Pi of the walk to
be at a certain node in the
ith step equals the
probability distribution Pi+1.

4.4.4 Degree Coefficient

The distribution of the degrees of nodes is characteristic for a graph. It has, for
example, been described by Albert et al. (2002).

Definition 4.9. The degree coefficient cdegree, κ(G) of a graph is the number of
nodes that have degree κ. The maximal degree coefficient cmax degree(G) of a graph is
the maximal degree of a node in the graph.

The degree coefficients seem to only depend on ρm for s → ∞ (cf. figure 4.12),
and the maximal degree coefficient as well (cf. figure 4.10) The distribution of the
nodes’ degrees seems to only depend on ρm (cf. figure 4.11).

A graph is called scale-free, if cdegree, κ(G) is, for κ > κ0, proportional to κ−γ for
some γ > 0 and some κ0 > 0 (Barabási et al. 1999). It can be seen in figure 4.11
that SISG models are approximately scale-free. For many graphs, the exponent γ is
in the interval [2, 3] (Hayashi 2006, Albert et al. 2002). The exponent is however
larger for some SISG models.

4.4.5 Spectral Graph Properties

The behaviour of random walks on a lattice depends on the dimension of space:
in a one- or two-dimensional lattice, the set of random walks which return to its
starting point only finitely many times is a null set, i. e. we can expect a random
walk to return infinitelymany times; in a lattice of dimension greater than three, the
set of random walks which return infinitely many times is a null set, and we expect
a random walk to only return finitely many times (Polya 1921). Whether random
walks are stationary6, as well as other properties of random walks, is determined by
the largest and the second largest eigenvalue of the graphs adjacencymatrix (Lovasz
1993, Spielman 2012):

Definition 4.10. We define the (hypergraph) adjacency matrix A of a graph to be
the matrix with one row and one column for each node, and the number of edges
between two nodes n and m as entry Anm. The simple undirected adjacency matrix
of a graph G is the adjacency matrix of the simple undirected graph associated to
the graph G.

The general theory of eigenvalues of the adjacency matrices of graphs (called
spectral graph theory) reveals, in addition to the stationarity of walks, even more
properties (Spielman 2012, Brouwer et al. 2012). We discuss, in this thesis, only the
behaviour of the dominant eigenvalue, because it is related to random walks and
because it can be computed efficiently.

Definition 4.11. The dominant eigenvalue ceigen(G) of a graph G is the dominant
eigenvalue of its simple undirected adjacency matrix.

The power iteration algorithm that computes the dominant eigenvalue is discussed
in section B.6. The dominant eigenvalues for the simple as well as for the hy-
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Figure 4.9
Number of subgraphs of a
minimal degree; mean value
for 1000 models

ℳ1
2(60)

ℳ 2
√2(60)

ℳ2
2(60)

ℳ 3
3√4

(60)

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

minimal degree

oc
cu

rr
en

ce
s

Figure 4.10
Maximal degree coefficient
cmax degree for a series of
subgraphs; mean value for
1000 models with 10 series
each
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Figure 4.11
Distribution of the degree of
nodes; mean value for 1000
models

ℳ1
2(60)

ℳ 2
√2(60)

ℳ2
2(60)

ℳ 3
3√4

(60)

80692x−5.49

fit for ℳ2
1 (60)

10722x−3.49

fit for ℳ2
2(60)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

5

10

15

degrees

oc
cu

rr
en

ce
s



66 THE UNIFORM SCALE-INVARIANT SPATIAL GRAPH MODEL

Figure 4.12
Degree coefficients for a
series of subgraphs; mean
value for 1000 models with
10 series each
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7 A measure is called robust
if it is insensitive to local
modifications of the graph.

pergraph adjacency matrix seem to only depend on ρm (cf. figure 4.13 and 4.14).
Barthélemy (2011) makes a short comment about spectral theory of spatial graphs
and Albert et al. (2002), for complex networks.

4.4.6 Centrality

Nodes can be very central for a graph when many shortest paths contain them.
There exist differing notations of centrality for graphs. A common one has been
introduced by Freeman (1979, 1977):

Definition 4.12. The centrality coefficient of a graph G = (N , E) is defined as

ccentrality(G) = ∑
p

maxq deg q − deg p
(|N| − 2) ⋅ (|N| − 1)

.

The centrality coefficient seems to only depend on ρm (cf. figure 4.15). The distri-
bution of the centrality coefficient of subgraphs seems, at large, to only depend on
ρm, and the coefficient varies notably for different subgraphs (cf. figure 4.16).

4.4.7 Clustering

In a graph, the existence of regions with a large number of edges is called clustering.
There exist differing definitions of clustering, e. g. the one given by Watts et al.
(1998) and Barrat et al. (2000). We use the following definition, which has been
introduced by Newman (2003b):

Definition 4.13. The clustering coefficient of a graph G = (N , E) is defined as

cclustering(G) = 3 ⋅
ntriangles

ntuples
,

where ntriangles denotes the number of directed cycles of length 3 and ntuples denotes
the number of open walks of length 2.

Closed walks are, according to the definition, not counted for ntuples to ensure
that a complete directed graph has maximal clustering coefficient, i. e. a clustering
coefficient of 1.

The clustering coefficient does not solely depend on ρm (cf. figure 4.17). It has
high variance, as can be seen in figure 4.18, and can hence not be used to reliably
reconstruct the parameters.

We would expect the variance to be low because clustering is, in general, a robust7
measure: local modifications do not change the number of clusters and does not
considerably change statistical properties. The fact that the variance is, against our
expectations, high shows that SISG models with the same number of points in
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Figure 4.13
Dominant eigenvalue for
the simple adjacency matrix
for a series of subgraphs;
mean value for 1000 models
with 10 series each
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Figure 4.14
Dominant eigenvalue for
the hypergraph adjacency
matrix for a series of
subgraphs; mean value for
1000 models with 10 series
each
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Figure 4.15
Centrality coefficient for a
series of subgraphs; mean
value for 1000 models with
10 series each
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Figure 4.16
Distribution of the
centrality coefficient for
balls of radius 10;
aggregated for 1000 graphs
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Figure 4.17
Clustering coefficient for a
series of subgraphs; mean
value for 1000 models with
10 series each
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the generating set, the same minimal dimension and the same density coefficient
can differ considerably in this aspect. The clustering coefficient does thus not
characterize SISG models well.

The distribution of the clustering coefficient of subgraphs seems, at large, to only
depend on ρm, and the coefficient varies notably for different subgraphs (cf. fig-
ure 4.18).

4.4.8 Diversity

Diversity measures how independent the edges of a graph are, by determining
how many edges share no common end points. The diversity coefficient vanishes
when all edges of a simple graph share a common end point and equals 1 if no
edge does. We use the following definition that has been given by Macindoe et al.
(2010) and Richards et al. (2009):

Definition 4.14. The diversity coefficient of a graph G = (N , E) is defined as

cdiversity(G) = 8 ⋅
√nindependent dipoles

|N| ⋅ (|N| − 2)
,

where nindependent dipoles denotes the number of pairs (e, e′) of edges where no edge
(p, q) exists with e joining p and e′ joining q.

The diversity coefficient seems to only depend on ρm (cf. figure 4.19). The distribu-
tion of the diversity coefficient of subgraphs seems, at large, to only depend on ρm,
and the coefficient varies notably for different subgraphs (cf. figure 4.20).
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Figure 4.18
Distribution of the
clustering coefficient for
balls of radius 10;
aggregated for 1000 graphs
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Figure 4.19
Diversity coefficient for a
series of subgraphs; mean
value for 1000 models with
10 series each
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4.5 Properties Depending on ρρρ andm

We have motivated, in the last section, why properties depend, in many cases, only
on ρm, where ρ is the density parameter and m the dimension of the SISG model.
Properties of the uniform SISG model depend, in general, independently on the
density parameter ρ and the dimension m: properties differ, in general, for two
parameter sets (ρ, m) and (ρ′, m′), even if ρm and ρ′m′

are equal.

We discuss, in this section, various properties that depend on ρ and m independ-
ently. The volume of the sphere (section 4.5.1) is of special interest because it
characterizes uniform SISG models well. It will be used in chapter 5 to test data
for spatial structures.

4.5.1 Volume of the Sphere

The volume of the ball and the volume of the sphere depend on the dimension of
space. Similar to the definitions in metric spaces, we define for graphs:

Definition 4.15. In a graph G, the sphere SG(p, r) with centre node p and radius
r ∈ ℕ is the set of nodes q with δ(p, q) = r, where δ denotes the undirected
distance. The volume of the sphere denotes the number of nodes of the sphere.

By the very definition, a ball (cf. definition 4.2) is the union of spheres contained
in the ball:

Proposition 4.16. For a graph G and an integer r ≥ 0, the following holds:

BG(p, r) =
r

⋃
i=0

SG(p, i).

It is hence sufficient to only consider the volume of the sphere in the discussion
which aims at the reconstruction of the parameters.
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Figure 4.20
Distribution of the diversity
coefficient for balls of radius
10; aggregated for 1000
graphs
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The volume of the sphere does not solely depend on ρm (cf. figure 4.21). It is a
robust measure, because the average shortest path length is a robust measure and
the modification of a single edge does not considerably change the number of
nodes located at a certain distance from the centre node.

Figure 4.21
Volume of the sphere for
several radii for the largest
component of the associated
undirected graph; mean
value for 100 models and 10
centre nodes
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During the reconstruction of the parameters, it can be advantageous to represent
properties by a single number instead of a distribution. We define:

Definition 4.17. For a graph G, we define σ3(G, p) as the arithmetic mean of the
three maximal volumes of spheres with centre node p, and σ3(G) as the arithmetic
mean of σ3(G, p) for all nodes p in the graph.

Figure 4.22
Distribution of the mean
value of σ3 for 100 centre
nodes; aggregated for 100
graphs
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The arithmetic mean was chosen in the definition of σ3, because it is slightly more
stable than the maximal volume alone. The variance of σ3 is high, but the values
of σ3 for different parameters differ even more (cf. figure 4.22). The property σ3 is
hence a suitable candidate for the reconstruction of the parameters.

4.5.2 Diameter

The diameter of a graph specifies the maximal length of the shortest paths in a
graph. It has, for example, been defined by Diestel (2005, p. 8):
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Definition 4.18. The diameter of a graph G is defined as

cdiameter(G) = max
p, q

δ(p, q),

where δ denotes the undirected distance in G.

Algorithms to compute the diameter are discussed in section B.4, e. g. the Floyd-
Warshall algorithm, the iFub and DiFub algorithms as well as the 2-Sweep and
2-dSweep algorithms.

Figure 4.23
Diameter for a series of
subgraphs; mean value for
1000 models with 10 series
each and 10 values for each
diameter computation using
the 2-Sweep algorithm
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The diameter does not solely depend on ρm (cf. figure 4.23), but the behaviour of
the diameter for s → ∞ is not in an obvious way related to the density parameter
nor to the minimal dimension. The diameter is increasing for larger subgraphs but
becomes again smaller when the subgraph approaches the whole graph. It can be
shown that the decrease of the diameter, when the subgraph approaches the whole
graph, is an effect of outer regions due to the finiteness of the models. This effect
renders the data useless for the reconstruction of the parameters. In addition, it
cannot be used to reliably reconstruct the parameters, because the diameter of a
graph can fundamentally change under edge operations.

4.5.3 Average Shortest Path Length

The average shortest path length is a measure for how many edges are, in average,
needed to relate two nodes in a graph. It has, for example, been defined by Albert
et al. (2002).

Definition 4.19. The average shortest path length of a connected graph G =
(N , E) is defined as

caverage shortest path length(G) = 1
|Δ|

⋅ ∑
(p, q)∈Δ

δ(p, q),

where δ denotes the undirected distance in G and Δ = {(p, q) ∣ 0 < δ(p, q) < ∞}.
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The average shortest path length can, as the average of all shortest path lengths,
e. g. be computed by the use of partial shortest path trees, which are discussed in
section B.2.

Figure 4.24
Average shortest path length
for a series of subgraphs;
mean value for 1000 models
with 10 series each and
computation of the shortest
path for 10 randomly chosen
pairs
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The average shortest path length behaves, for different sizes of models, similarly to
the diameter. The average shortest path length is more suitable than the diameter
for the purpose of recovering the density parameter and the minimal dimension,
because it is more stable than the diameter. There are however two reasons for
why the average shortest path length cannot be used: (1) the behaviour of models
with the same ρm can be similar, as in the example of ℳ2

2(60) and ℳ 3
3√4(60) in

figure 4.24; and (2), the average shortest path length has a high variance, as can
be seen in figure 4.25. This fact shows that SISG models with the same number of
points in the generating set, the same minimal dimension and the same density
coefficient can differ considerably in this aspect. Average shortest path lengths
are hence not characteristic for the combination of the density parameter and the
dimension that is used to generate SISG model.

4.5.4 Cliques

Subgraphs where all nodes are directly related by edges are called cliques, and their
number and sizes are characterizing the graph. Cliques have, for example, been
defined by Luce et al. (1949):

Definition 4.20. A clique of an undirected graph G = (N , E) is a set of nodes
N′ ⊂ N such that the induced subgraph is complete. A maximal clique is a clique
N′ such that no clique N″

⊋ N′ exists. The number of maximal cliques with κ nodes
cmax cliques, κ(G) of a graph G is defined as the number of maximal cliques with κ
nodes in the associated undirected graph.

The Bron-Kerbosch algorithm, which computes maximal cliques, is discussed in
section B.5. The number of nodes in maximal cliques is low, because the density of
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Figure 4.25
Distribution of the average
shortest path length in the
largest component of the
associated undirected graph;
aggregated for 1000 graphs
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Figure 4.26
Number of maximal cliques;
mean value for 1000 series
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uniform SISG models is low, and it does not solely depend on ρm (cf. figure 4.26).
The number of nodes in maximal cliques for s → ∞ is however not in an obvious
way related to the density parameter nor to the minimal dimension. The distri-
bution of maximal cliques can only be fitted with high uncertainty, because most
cliques contain only very few nodes. It hence cannot be used to reliably reconstruct
the parameters.

4.6 Other Properties

A number of graph properties was discussed in the last two sections, but others
were not. The selection of the discussed properties was made for two reasons: (1)
the chosen property is either characteristic of uniform SISG models, or (2) the
property is correlated to the density parameter and the dimension in a simple and
obviousway. Properties of the SISGmodel that usually differ from the one for graph
representations of human activities, e. g. the number of connected components,
were not discussed. An overview of numerous graph properties has been given
by Wasserman et al. (1994), Barthélemy (2011), Albert et al. (2002) and Newman
(2003b). We provide, in this section, an overview on some of the graph properties
that were not discussed.

The tree-width of a graph was introduced by Robertson et al. (1986) as the size of
the largest vertex set minus one in an optimal tree-decomposition of the graph.
While the tree-width is commonly used to characterize graphs in respect to their
tree-decompositions, the computation of the tree-width is, in general, an NP-hard
problem (Arnborg et al. 1987). Fast algorithms for similar problems exist for
specific classes of graphs, e. g. an algorithm by Seymour et al. (1994) to compute
the branch-width of planar graphs in O(n2) time, and an algorithm by Kammer
et al. (2015) to compute a tree-decomposition of width O(k) for a planar graph
of tree-width k with n nodes in O(nk2 log k) time. Though SISG models are not
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8 A set of nodes is called
independent if they are
pairwise non-adjacent.

planar, they share many properties with planar graphs. We thus expect the tree-
width to be unbound and its computation with existing algorithms to be very
time-consuming.

Graphs can be compared by transforming them into each other using node or edge
replacement operations according to a grammar (Rozenberg 1997). The induced
isomorphism classes characterize the graph. Algebraic and category theoretic
approaches, like pull backs and push outs, can, in a similar way, be used to relate
graphs (Rozenberg 1997, Kahl 2002). Alternatively, graphs (called motifs) that
regularly appear as subgraphs characterize the graph (Barthélemy 2011). These
properties can react sensitive to the local structure of graph representations and
are time-consuming to compute.

The numbers of colours needed to colour the nodes of a graph such that any edge
only joins nodes of different colours is called the chromatic number (Brooks 1941).
It can react very sensitive to local modifications of the graph.

A node cover is a set of nodes such that each edge joins at least one node of
the cover. The set of minimal node covers is indirectly discussed, because it is a
complement to a maximal independent set8 which itself is a clique in the graph’s
complement (Tarjan et al. 1977).

Graphs can be characterized by communities, which are subgraphs whose nodes
are linked by a large number of edges but have only few edges to nodes outside the
subgraph (Fortunato 2010). Similarly, we can characterize graphs by identifying
large subgraphs with high densities (Gibson et al. 2005, Lee et al. 2010). In addition,
a graph is characterized by its degree correlation, i. e. by the number of edges
between nodes of high and low degrees (Maslov et al. 2004, Pastor-Satorras et al.
2001, Vázquez et al. 2002, Newman 2003a, 2002). All these properties are, however,
loosely related to the idea of the clustering coefficient and thus not discussed in
this thesis.

Resilience is the property of a graph to become less and less connected when
edges are removed. Graphs can behave different when edges are removed, and
the diameter can be more or less stable under these modifications (Albert et al.
2000). Resilience is not explicitly discussed in this thesis, because it is related to
other properties such as the diameter, the average shortest path length, the degree
coefficient and many more.

In geographical literature, numerous indices for graphs have been defined (Haggett
et al. 1969, Kansky et al. 1989, Rodrigue et al. 2013, Xie et al. 2007). These indices
are not discussed in this thesis, because they usually are combinations of already
known properties or related to them.

We argued that only few properties of graphs are suitable for characterizing SISG
models or graph representations, and we discussed why only few are suitable. The
examination of the properties in sections 4.4 and 4.5 as well as the overview of the
non-examined properties make no claim to be complete.
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4.7 Classification

Classifications of existing graph models are widely used. The most prominent
classes were discussed in section 3.3.3: the class of complex, of scale-free and of
small-world networks. We classify uniform SISG models in this section, according
to these prominent classes.

As the topological properties of SISG models and uniform SISG models are non-
trivial, they are complex networks: they have a distinct local structure, i. e. each
node is only adjacent to a small number of other nodes, and the expectation value
for this number is independent of the size of the graph; the number of edges is
linear to the number of nodes; and the clustering coefficient is almost independent
of the number of nodes, if the number of nodes is larger than 20, as can be seen in
figure 4.17. The model is, in spite of these non-trivial topological properties, far
from being regular if the nodes are not regularly arranged.

Uniform SISGmodels are, essentially, scale-free: the number of nodes with a degree
k is approximately proportional to k−γ for k larger than a threshold which depends
on ρm, as can be seen in figure 4.11.

The average shortest path length of uniform SISG models grows much faster
than logarithmic if the number of nodes in the model is small, as can be seen in
figure 4.24. Uniform SISG models are hence neither small-world nor ultra-small-
world networks.

We argued that uniform SISG models are complex networks and, essentially, scale-
free. They are, however, neither small-world nor ultra-small-world networks.

Conclusion

Uniform SISG models are models of spatial structure that assume the points of
the generating set to be randomly distributed with uniformly distribution. When
no further assumptions are made on the distribution of the nodes, we may use
uniform SISG models as prototypes of spatial structures. We examined properties
of uniform SISG models in this chapter. More specifically, the main contributions
of this chapter are as follows:

(1) Statistical methods are suitable to characterize uniform SISG models but non-
statistical ones are, in most cases, not because they are sensitive to local modifica-
tions of the model.

(2) The concept of localization of global properties was introduced for graphs. It
can render global properties less sensitive in respect to local modifications of the
model, because the localized property can statistically be examined.

(3) The effect of finiteness and non-connectedness impedes the analysis of uni-
form SISG models. We introduced the concept of inner and outer regions to
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understand this effect. The examination of series of subgraphs avoids this problem
by examining only inner regions of the model.

(4) Most properties of uniform SISG models are either not characteristic of uni-
form SISG models, i. e. they cannot be used to distinguish uniform SISG models
from other graphs, or they are not correlated to the density parameter and the
dimension in a simple and obvious way. The number of nodes and edges, the
density, the total density and the volume of the sphere are exceptions.

(5) UniformSISGmodels are complex and scale-free networks, but they are neither
small-world nor ultra-small-world networks.

We will, in the next chapter, compare data sets to uniform SISG models by the
number of nodes and edges, the density, the total density and the volume of the
sphere. The comparison can shed light on the question whether a data set has a
spatial structure. The quality of the results of this comparison is predicated on the
discussion of this chapter, showing the importance of this chapter’s results.
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Testing Data for Spatial Structures
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—Johann Sebastian Bach, BWV847
german composer and musician

(1685–1750)

Data sets inherit a characteristic structure when they have references to space.
We can only indirectly decide whether a data set has such a spatial structure if
semantics, and in consequence also explicit references to space, is missing: a
comparison of the data set to uniform SISG models reveals whether both share
properties and whether their structure is similar.

Spatial information exposes references to space, but the underlaying data set does,
by definition, not. The comparison of the data set to uniform SISG models can,
in consequence, not assume the data set to expose references to space. The issue
lies with the comparison of the structure of the abstract SISG model to the ones
of data sets: which structural properties shares the (abstract) graph model with
spatial data sets, and shares it the same properties with non-spatial data sets? Are
we, in consequence, able to conclude whether a data set has a spatial structure due
to the fact that it is similar to a SISG model?

We discuss the problem of how to test whether data has a spatial structure and
argue how such a test can be performed (section 5.1). Algorithms are provided to
estimate the density parameter and the minimal dimension of an abstract uniform
SISG model (section 5.2). These algorithms can be evaluated by applying them
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1 There exist graphs whose
nodes are related to
locations in space but which
do not expose these typical
properties, e. g. qualitative
spatial networks. These
graphs are, in consequence,
very different from SISG
models.

to uniform SISG models: the estimated parameters approximately coincide with
the ones that were used to generate the SISG models (section 5.3). When the
algorithms are applied to real data sets, we can estimate how similar they are to
uniform SISG models and to which extent they expose a spatial structure. This
approach provides the possibility to characterize real data sets by their (spatial or
non-spatial) structure (section 5.4).

5.1 The Problem

Thequestion of whether a data set has a spatial structure is, as simple as itmay seem,
not trivial: it is not clear, how to detect a spatial structure and which properties of
a spatial structure, e. g. the dimension of the space, can be detected at all. When
a SISG model is considered as an abstract graph, it is not self-evident which
dimension, which embedding of the generating set in space and which density
parameter were used to generate the model.

We argue, in this section, that the comparison of a data set with SISG models
can, at least in parts, answer the question of whether the data set has a spatial
structure (section 5.1.1). All possible values of the parameters that were used
to generate a uniform SISG model can, in principle, be determined analytically
(section 5.1.2). This approach is, however, not applicable for testing graphs for
their spatial structure. Statistical approaches are better suited for this purpose and
can be shown to successfully estimate the density parameter and the (minimal)
dimension (section 5.1.3).

5.1.1 Testing Whether Data Has a Spatial Structure

Things, in particular objects, processes, events, etc., are in many cases related to
the structure of space and to locations in space. A representation of these things
can explicitly contain descriptions of these relations, e. g. by describing an object’s
location by the use of coordinates. The representation is, in this case, by definition
to at least some extent spatial. When a representation does not contain such explicit
references to space, it is much harder to decide whether it is spatial.

We discuss, in this section, how to decide whether a data set is spatial and which
restrictions for a possible answer exist. Only graph representations are considered
as examples of data sets, because the following discussion is based on things and
relations.

Structures of Data Sets. When the nodes of a graph representation are related
to locations in space, e. g. by a natural embedding, the graph typically1 has to
some extent the properties that were discussed in section 3.2. Data sets are usually
influenced by several aspects, and space is only one of them. Spatial structure
occurs only in very rare cases isolated, and real data sets are practically never
identical to some SISG model.
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Examples of structures are manifold: the structure of a town, in particular the
configuration of rivers and bridges, has an impact on timetable information; the
importance of controlling a number of persons with clear responsibilities leads in
many organizations to hierarchical structures, even if the organizations are spatially
organized, e. g. by affiliates; and the preference of nodes with a large number of
edges during the growth of a network can lead to a power law distribution of the
nodes’ edge degrees, e. g. in case of social networks.

Central place theory provides an example of a graph representation that has more
than one structure (Christaller 1933). Relations for marketing, transport and ad-
ministration are described by dividing space into hexagons and placing towns in
a regular pattern in and around these hexagons. The town in the centre of each
hexagon is larger and fulfills marketing, transportation and administrative func-
tions in respect to its neighboured towns. In case of marketing, the neighboured
towns are placed at the corners of the hexagon (cf. figure 5.1a). Christaller de-
scribes this arrangement at several scales by subdividing space in smaller hexagons
and applying the same arrangement for these smaller hexagons (cf. figure 5.1b).
The procedure of subdividing space and introducing towns and relations can be
repeated, and the towns that are introduced in each step are smaller than the ones
before. The resulting graph is called the graph of the marketing principle.

Figure 5.1
Graph of the marketing
principle (K = 3) according
to the central place theory;
(a) one hierarchical level,
and (b) two hierarchical
levels, with only one
hexagon in the higher level

(a) One hierarchical level (b) Two hierarchical levels, with only one
hexagon in the higher level

The graph that is produced by a finite number of repetitions of this process has a
spatial structure. Tobler’s law, for example, is met for most relations: there exist
seven times as many shorter than longer relations for two hierarchical levels, as can
be seen in figure 5.1b. In addition, the graph is scale-invariant by its construction,
and the outdegree is bound for each node.

The spatial structure is however not the only one that determines the graph of
the marketing principle. The dependencies that occur at several levels, due to the
different sizes of towns, lead to a hierarchical structure. A large number of edges
of the graph of the marketing principle, namely the ones that incorporate towns of
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2 The identity of
indiscernibles is a principle
of analytic ontology. It
claims that two things are
identical if they have exactly
the same properties. This
principle is true in some
contexts but wrong in
others.
3 In case of vehicles and line
numbers, there exists no
bijection between the
vehicles and the identifiers,
but each vehicle is assigned
to a line number which
makes it possible to
conclude, by the use of a
timetable, to conclude the
route of the vehicle.

the smallest level, also occur in a SISG model that uses all towns, independent of
their size, as generating set. Many edges however occur only in the SISG model or
in the graph of central place theory, and the difference can easily be explained by
the hierarchy that is described by central place theory.

The example of central place theory illustrates that the structure of a data set can
be determined by many aspects, e. g. by space and hierarchy. It is thus meaningful
to ask how important the aspect of space is for the structure of a data set. The
question of whether a data set has a spatial structure is hence a gradual one.

Spatial Structure is a Question of Representation. Representations are build to
examine reality: they represent things and their interrelations by a system of formal
symbols, with the aim that the system of formal symbols inherits some properties
of the things and their interrelations. We can therefore conclude some of the
properties of the things and their interrelations by examining a representation.
Which properties can be concluded depends on the chosen representation, in
particular on which things and which interrelations are and which are not repres-
ented, and on which things and relations are identified with each other because
the representation maps them to the same symbol.

When it shall be concluded whether a system of things and its interrelations are
related to space, usually representations of the system, e. g. timetables or mental
representations in case of public transport, are examined. As representations of the
same system can be very different, it is important to be aware of that we, in the first
instance, examine the representation and not the represented system of things and
interrelations itself, and that we can only indirectly conclude whether the system
is spatial. When a representation is spatial to some extent, we can conclude that
the system is, too. The reverse can however not be concluded by implication.

An analysis of the Spanish social network Tuenti showed that social relationships
only weakly correlate to geographical distance (Kaltenbrunner et al. 2012). A
representation of only the social relationships will thus not reveal a spatial structure,
but the representation of the members of the network and their geographical
locations would, by definition, have a spatial structure.

TheIdentity of Indiscernibles2 isWrong for Representations. A representation
consists of symbols, and a mapping of objects and interrelations to these symbols.
When a representation only implicitly contains the mapping, we gain an abstract
representation which does not explicitly contain information of how it is related
to the objects and interrelations. Data sets include, in many cases, only abstract
representations, even if we have additional knowledge of the mapping, which is
not included in the data set. Timetables contain, for example, no information on
which vehicle is represented by which symbol, but as the vehicles are labelled with
identifiers, e. g. line numbers, we can use this additional knowledge to establish a
relation3 between the vehicles and the timetable.
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We can test whether an abstract representation has a spatial structure and could,
in consequence, be related to space, because we know which structure relations
to space typically induce. Space and time as physical concepts both have the
structure of a real vector space, a three-dimensional and a one-dimensional one.
Other concepts have the same structure, and we hence cannot distinguish between
the concepts just by their structure. Even if we consider space and time as more
complex concepts, as we did in section 3.2, it is not clear whether an abstract graph
is related to space, if it has a structure identical to a spatial structure.

Abstract representations can be identical but yet represent different things and
interrelations. The positions of a light switch, up and down, and the transitions
between them are, for example, spatial because they describe locations in space.
The representation of the same situation by the states of either emitting light or
not is not spatial but yet, as an abstract representation, identical to the previous
representation.

The more extensive an abstract representation is, the more reasonable it is to con-
clude by the existence of a spatial structure, in particular properties 3.3, that the
representation is related to space, because the probability that this happens by
chance is smaller. The comparison of an abstract representation with a spatial struc-
ture cannot determine with absolute certainty whether an abstract representation
or a data set is related to space, but it can determine whether this is probable.

Comparing Graph Representations to the Uniform SISGModel. The question
of whether a graph representation is spatial can be approached by comparing its
structure to a typical structure of spatial information, i. e. to the uniform SISG
model. Such a comparison can be conducted in several ways. A nearby possibility
is to compare the properties of the graph representation to the ones of the uniform
SISG model, i. e. the properties shared by all uniform SISG models. A more
adjusted possibility is to find a uniform SISGmodel that ismost similar to the graph
representation by comparing the representation to different models. The issue lies
with how to determine this uniform SISG model, i. e. the density parameter and
the dimension of the model and how to compare it to the graph representation.

We necessarily have to restrict the examination of the SISG model and the graph
representation to a finite number of properties. We discussed in sections 4.4
and 4.5 how the model’s properties are correlated to the density parameter and the
dimension. We can, due to the correlation, estimate the density parameter and the
dimension that were used to generate the model, by the computation of suitable
properties of a uniform SISG model. The same strategy can also be applied for
graph representations: we can, by computing the same properties, in the same way
as before try to estimate which density parameter and which dimension can be
used to generate a uniform SISG model that is similar to the graph representation.

We discussed principle considerations of how to test data sets for spatial structures
and which answers can be expected. Methods and algorithms for this purpose are
discussed in subsequent sections.
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5.1.2 Reconstruction of the Parameters of a SISG Model

Abstract unlabelled graphs consist of nodes and edges but neither the nodes nor
the edges have labels or locations. It is not self-evident whether an abstract graph
is a SISG model, i. e. whether there exist a dimension, a generating set of points
embedded in space and a density parameter such that the SISG model generated
with these parameters equals the abstract graph, and it is not self-evident how to
conclude these parameters.

We introduce, in this section, the notion of a minimal dimension in order to state
the question of these parameters more precisely. An approach of how to conclude
these parameters is introduced.

The Problem of Reconstruction. Nodes of an abstract graph have no location in
space, and it is not straightforward to check whether the graph is a SISG model:

Question 5.1. Can we conclude whether a given abstract graph G is a SISG
model?

When an abstract graph equals a SISG model, we may be able to find a dimension,
a generating set of points embedded in space and a density parameter that generate
the abstract graph as a SISG model. The dimension, the generating set and the
density parameter are in many cases not unique, because different combinations
generate the same SISG model.

The embedding of the generating set and the density parameter are never unique:
a set of nodes N embedded in space and a density parameter ρ generate the same
SISG model as the set τ(N) and the density parameter σ ⋅ ρ for a transformation
τ of relative scale σ > 0. The density parameter is, for a fixed embedding of the
nodes in space, almost never unique if the number of nodes is finite, because the
set of distances between points is finite: the distances of a node to the other nodes
define an interval of possible values of the density parameter. Such an interval of
possible values is defined for every node, and as the number of nodes is finite, the
intersection of all these values has almost always positive length, i. e. there exist
infinitely many possible density parameters, which all generate the same model.

The dimension is never unique, because a vector space can always be embedded in
a vector space of higher dimension such that the distances between points do not
change. In particular, there always exists, for a given SISG model of dimension m
and for every number n > m, a SISG model of dimension n that is (as an abstract
graph) identical to the original SISG model. As the dimension has 0 as a lower
bound, there exists for every SISG model a minimal dimension m such that the
model can be generated with the generating set embedded in the m-dimensional
space. We formally define:

Definition 5.2. The minimal dimension of a SISG model ℳρ(S, V) is the min-
imum of all dim W such that ℳρ(S, V) = ℳρ(S′, W). We even denote ℳm

ρ (S, V),
where m = dim ℳρ(S, V) is the minimal dimension.



THE PROBLEM 89

The minimal dimension is unique, because it exists and is per definition the lowest
integer that meets the criteria. We can now formally raise the question of all
possible combinations of parameters that were used to generate a SISG model:

Question 5.3. A set of points S ⊂ V and a density parameter ρ > 1 defines a
model ℳρ(S). Can we discover the minimal dimension dim ℳρ(S), the set of
points S and the density parameter ρ knowing only the abstract graph ℳρ(S)?

We discuss, in the following, whether and how an exact answer to this question
could be found. This discussion is however of theoretical and not of practical
nature, because the considerations include infinite sets.

Exact Reconstruction. We can compute the minimal dimension, all possible
choices of generating sets and all possible values of the density parameter by
inductively reconstructing the parameters for subgraphs. After having enumerated
the nodes by p0, … , ps−1, we can consecutively reconstruct the parameters for the
subgraphs induced by the nodes {p0, … , pk} for k = 0, … , s − 1, as is discussed in
the following.

For k = 0, we can place the node p0 in a zero-dimensional space, or equivalently
at an arbitrary location in one-dimensional space because the SISG model is
translation invariant by corollary 3.13. The minimal dimension is 0 and the density
parameter can be any number ρ > 1.

For k = 1, we can place the node p1 at an arbitrary location, non-equal to the one
of p0, in the one-dimensional space, because the SISG model is invariant under
scale transformations by theorem 3.12. The minimal dimension is 1, because the
zero-dimensional space only consists of one point but two nodes have to placed in
space, and the density parameter can still be any number ρ > 1.

In each induction step, we compute possible locations for the newnode pk, resulting
in one or more regions that pk can be placed in. The location of pk itself restricts
the locations of the nodes p0, … , pk−1, and valid combinations of locations for
the nodes p0, … , pk can iteratively be computed. Each of these combinations of
locations defines combinations of a minimal dimension and intervals of possible
density parameters.

When k = s − 1, all combinations of locations of the points in the generating set,
the minimal dimension and all possible values of the density parameter for the
whole graph are found. The number of combinations can, in practice, be very high,
in most cases even infinite. An exact reconstruction is thus, in many cases, not
practical.

We discussed how to analytically conclude all possible combinations of theminimal
dimension, the density parameter and the embedding of the generating set in space
that generate a given uniform SISG model. We will discuss in the next section,
why the exact reconstruction of these parameters is only of theoretical interest,
and why statistical methods should be favoured.
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5.1.3 Finding a SISG Model Similar to a Given Graph

We have discussed, in the last section, how the parameters of a SISG model can,
in principle, be reconstructed. For the examination of real data sets, we however
need to answer the following, more general question:

Question 5.4. Can we conclude whether a given abstract graph G is similar to a
SISG model, and can we conclude which minimal dimension, which generating
set and which density parameter generate a SISG model that is similar to G?

We discuss, in this section, why statistical methods are, in contrast to analytical
ones, most suitable for answering this question and propose a statistical approach
to answer the question.

Exact Reconstruction is not Suitable for Real Data. Graph representations are
not necessarily equal to a SISG model, even if both may be very similar and may
share many statistical properties. An exact reconstruction of the parameters is
thus incapable of answering question 5.4, because the graph representation is, in
general, not a SISG model, and analytical discussions can lead to (very) wrong
conclusions if they contains contradictions.

Exact reconstruction cannot provide meaningful answers to question 5.4 for real
data sets, even if it would be generalized to meet the generalized context: the
parameters depend very sensitive to local modifications, and SISG models only
differing in some nodes or edges can have very different density parameter and
minimal dimension. When the characteristics of the data sets and its structure as
a whole is of interest, the answer to question 5.4 is expected to statistically depend
on the structure, and thus to only insensitively react to local modifications.

A connected component of minimal dimension m, for example, proves by propos-
ition 3.15 the whole SISG model to be of minimal dimension of at least m. This
shows that the properties of one connected component can have an effect on the
properties of the hole model. Proposition 3.14 suggests similar effects when edges
inside a connected component are modified, because the proposition relates the
local structure (the structure of a subgraph) to the global structure of a SISGmodel.
Local modification of edges can hence result in a change of the properties of the
whole graph.

This behaviour can be illustrated for an undirected SISG model G of dimension
1 which contains the induced subgraph of figure 5.2. If we remove the edge e,
the minimal dimension becomes greater than 1 by proposition 3.18, because the
resulting graph has a hole of size greater than 3. The minimal dimension of the
modified graph G′ would thus be greater than 1, or the modified graph would not
be a SISG model at all.

A similar consideration can be made for a directed SISG model G of dimension
2 that contains the induced subgraph of figure 5.3. If we reverse the orientation
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of the edge e, the resulting graph G′ would not any longer be a SISG model by
proposition 3.16.

An exact reconstruction of the parameters is neither suitable nor possible for real
data sets, as was discussed. Since only an approximate answer to question 5.4 that
is insensitive to local modifications of the graph is needed, we will, in the following,
propose a statistical approach to answer the question.

Figure 5.2
Example of an undirected
SISG model; (a) embedded
in the line to illustrate the
construction, and (b) as an
abstract graph

e

(a) Embedded in the line

e

(b) Abstract graph

Figure 5.3
Example of a directed SISG
model; (a) embedded in the
plane to illustrate the
construction, and (b) as an
abstract graph

e

(a) Embedded in the plane

e

(b) Abstract graph

Statistical Approach. For a reconstruction of the density parameter and the min-
imal dimension, we can compare statistical properties of the considered graph
G to statistical properties of a number of SISG models. It is not clear, without
further assumptions, how the generating set S of the model should be embedded
in space and which distribution of the generating set S in space is convenient.
There is no preferred distribution because physical space is uniform. We hence
assume the points of the generating set to be randomly distributed with a uniform
distribution. The mean value of the properties for models ℳρ(S) with several
randomly generated sets S can be used to compensate for statistical variance. We
can decide whether the parameters generate a SISG model similar to the graph G
by comparing this mean value to the properties of the graph G.

A graph is not completely determined by its statistical properties and may thus
share statistical properties with a SISG model but still be different from any SISG
model, as we can see in the example of the density: the density of a SISG model
depends on the number of nodes, the density parameter and the minimal dimen-
sion (cf. section 4.4.2). Due to this dependency, we can, in principle, conclude
(a combination of) the density parameter and the minimal dimension of a SISG
model by the computation of the density. Graphs with a given density may be
similar to the SISG model, but they may also be very different from any SISG
model. The more properties of a graph coincide with the ones of a SISG model,
the higher is the probability that the graph is similar to a SISG model.

We have examined properties of uniform SISGmodels in sections 4.4 and 4.5. Some
properties are less sensitive to local modifications of the graph than others, and are
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therefore called robust. The average shortest path length, the clustering coefficient
and the degree distribution, for example, are regarded as robust. Properties of
SISG models can however differ considerably, i. e. they can have a high variance
(cf. section 4.5.3), even for the same number of points in the generating set, the
same density parameter and the same minimal dimension. It is necessary to find
properties that are stable and exhibit a low variance for SISG models to enable a
meaningful reconstruction of the density parameter and the minimal dimension.

The number of nodes and edges, the density and the volume of spheres have turned
out to be robust and to have relatively low variance, as was discussed in sections 4.4
and 4.5. These properties expose a dependency on the density parameter and the
minimal dimension, and the number of nodes and edges as well as the density is
simple to understand and to describe. Furthermore, the dependencies of these
properties are different, which is why we can, by these dependencies, conclude
the density parameter and the minimal dimension independently, which answers
question 5.4 at least in parts; algorithms to draw these conclusions are yet needed.

We discussed the question of how to test data sets for spatial structure and argued
why statistical approaches are most suited. A statistical approach of comparing
a graph to uniform SISG models and reconstructing the parameters of the SISG
model was proposed. Algorithms for this approach will be provided in the next
section.

5.2 Algorithms
A general approach for the estimation of a density parameter ρ and a minimal
dimension m, such that a uniform SISG model ℳm

ρ (|G|) is similar to a given graph
G, was discussed in the last section. Possible values for the density parameter and
the minimal dimension can only be estimated because of the statistical nature of
the discussion.

A possible value of ρm can be estimated by the number of nodes and edges (sec-
tion 5.2.1). The algorithm can be improved by taking outer regions into account
(section 5.2.2). A value of ρm can alternatively be estimated by the density (sec-
tion 5.2.3). This algorithm can, similarly to the considerations for the first algorithm,
be improved by taking outer regions into account (section 5.2.4). We can decide
whether a graph is similar to a uniform SISG model by comparing the estimate by
the number of nodes and edges with the estimate by the density (section 5.2.5). The
parameters ρ and m can independently be estimated by comparing the estimate of
ρm to the volume of spheres of the graph (section 5.2.6).

5.2.1 Estimation of ρm by the Number of Nodes and Edges

We introduce, in this section, an algorithm to estimate, for a given graph G, the
value of ρm with ρ the density parameter and m the dimension, such that the graph



ALGORITHMS 93

G is similar to a uniform SISG model with density parameter ρ and dimension m.
This algorithm provides, at least in parts, answers to question 5.4.

For a graph ℳm
ρ (s) with e edges, we expect ρm = e/s for s → ∞ according to

proposition 4.4. Algorithm 5.1 describes this estimation. The algorithm is expected
to not only work for SISG models but also for graphs that are similar to uniform
SISG models, because the number of edges is robust and has low variance for
uniform SISG models (cf. section 4.4.1).

Algorithm 5.1
Estimate ρm by the number
of nodes and edges

Algorithm: EstimateKMnodes,edges(G)

Input: Graph G similar to a uniform SISG model ℳm
ρ (s)

Output: Estimate of ρm (only correct for s → ∞)

1 s ← NumberOfNodes(G)
2 e ← NumberOfEdges(G)
3 return e/s

The discussed algorithm is based on an analytical result that is only valid if the
number of nodes approaches infinity. The effect of the graph’s finiteness is not
considered. We will address this problem by a heuristic approach in the next
section.

5.2.2 Improved Estimation of ρm by the Number of Nodes and
Edges

We improve algorithm 5.1 in this section by heuristically addressing the problem
of the graph’s finiteness. The heuristics uses the secant method (cf. section B.1):
the deviation of ρm from the theoretical value of ρm, which describes the limit
when the number of nodes approaches infinity, is inductively used to improve the
estimate of ρm.

The expectation value of the density is only given for |G| → ∞ by proposition 4.4,
and algorithm 5.1 does hence not consider the effect of the graph’s finiteness. The
estimates of ρm are, in most cases, lower than the real value, as can be seen in
figure 5.4.

In order to compensate for this problem, we are looking for a SISGmodel ℳm
ρ (|G|)

such that

EstimateKMnodes,edges(G) ≈ EstimateKMnodes,edges(ℳm
ρ (|G|)). (5.5)

The value ρm is an improved estimate which is, for uniform SISG models G =
ℳm′

ρ′ (s), by definition correct, i. e. ρ = ρ′ and m = m′.

The computation of EstimateKMnodes,edges(ℳm
ρ (|G|)) in equation 5.5 depends on

the generating set which is randomly distributed with uniform distribution. The
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Figure 5.4
Estimation of the density
parameter and the minimal
dimension for uniform SISG
models

non-improved
(algorithm 5.1)
improved
(algorithm 5.2)
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4 This choice can cause a
slow convergence of
algorithm 5.2 when ρm is in
the neighbourhood of a
discontinuity of
BalanceKM.

mean value of the number of edges for many SISG models with the same density
parameter and minimal dimension can be used to compensate for the effect of the
choice of the generating set.

Algorithm 5.2 aims at providing a solution for equation 5.5, i. e. for finding ρ and m
such that they satisfy the equation. At the beginning of the algorithm, an estimate
of ρm for the graph G is computed by algorithm 5.1, i. e. the left side of equation 5.5.
In the following, the algorithm inductively tries to guess estimates of ρm. In each
step, it tries to improve the estimation and test whether the improved estimate
satisfies equation 5.5. If it does sufficiently well, a final estimate is found.

The new estimate is computed in each step by first computing the right side of
equation 5.5 for the current estimate of ρm, and by secondly guessing a possibly
improved estimate using the comparison of both sides of equation 5.5. For the
computation of the right side of equation 5.5, we need to compute values of ρ and
m, but only an estimate of their combination ρm is known. If more than one choice
of (ρ, m) is possible, we choose the one which satisfies ρ ≈ m best. This choice has,
however, only very little influence on the value of the right side of the equation,
as can be expected by proposition 4.4. The algorithm of choosing4 a ρ and m is
abbreviated by BalanceKM in algorithm 5.2. The possibly improved estimate is
finally guessed by the secant method (Forsythe et al. 1977, pp. 159f).

It may happen that algorithm 5.2 does not converge, because the secant method
does neither. The value ρm is, for a uniform SISG model G = ℳm′

ρ′ (s), correct,
because it is checked at the end of the algorithm that the estimate ρm satisfies
equation 5.5.

A comparison of algorithm 5.2 to algorithm 5.1 is provided by figure 5.4. The
results of the improved algorithms are better, as can be seen in the figure, and the
improvements are greater for smaller graphs.

We will, in the next section, discuss an alternative method of how to estimate ρm

that uses the density of the graph.

5.2.3 Estimation of ρm by the Density

We introduce, in this section, an alternative to algorithm 5.1. Both, the algorithm
introduced in this section and algorithm 5.1, estimate the same value and return
very similar results, if the considered graph is similar to a uniform SISG model.
We will use this circumstance later in section 5.2.5 to decide whether a graph is
similar to a uniform SISG model.

The expected density of a SISG model ℳm
ρ (s) is ρm/(s − 1) for s → ∞, according

to proposition 4.6. We hence expect the density of a subgraph with t nodes to
be slightly less than ρm/(t − 1) due to proposition 3.14, and in case of t → s, the
expectation value of the density converges to ρm/(t − 1). When a uniform SISG
model G is given as an abstract graph, we can compute the density for a series of
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Algorithm 5.2
Estimate ρm by the number
of nodes and edges;
improved version of
algorithm 5.1

Algorithm: EstimateKM'nodes,edges(G, η, τ)

Input: Graph G similar to a uniform SISG model ℳm
ρ (s), the number of

models μ, a maximum number of iterations η and a threshold τ
Output: Estimate of ρm

1 s ← NumberOfNodes(G)
2 κaim ← EstimateKMnodes,edges(G) // algorithm 5.1
3 κ ← κaim
4 κ′ ← 1.4 ⋅ κ
5 (ρ, m) ← BalanceKM(κ′) // find (ρ, m) with ρm = κ′ and ρ ≈ m
6 L ← {}
7 for i = 0 to μ do
8 ̃G ← ℳm

ρ (|G|) // generate a model
9 Append EstimateKMnodes,edges( ̃G) to L // algorithm 5.1

10 κ′
test ← ArithmeticMean(L) // real number

11 c ← 0
12 while c ≤ η do
13 c ← c + 1
14 if κ′ ≤ 1 then
15 error ‘parameters out of bound’
16 (ρ, m) ← BalanceKM(κ) // find (ρ, m) with ρm = κ and ρ ≈ m
17 L ← {}
18 for i = 0 to μ do
19 ̃G ← ℳm

ρ (|G|) // generate a model
20 Append EstimateKMnodes,edges( ̃G) to L // algorithm 5.1

21 κtest ← ArithmeticMean(L) // real number
22 if |κaim − κtest| < τ ⋅ κaim then
23 return κ

24 ̃κ ← κ + (κtest − κaim) ⋅ κ−κ′

κtest−κ′
test

25 κ′ ← κ
26 κ′

test ← κtest
27 κ ← ̃κ
28 error ‘no convergence’

subgraphs and estimate ρm by fitting the density values to the function ρm/(t − 1).
This computation yields good estimates for s → ∞ but not necessarily for finite
graphs.

We can compensate the effect of the graph’s finiteness on the density by using
the total density instead of the density, as was discussed in section 4.4.2. We
hence fit the function ρm/(t − 1) to the total density for a series of subgraphs. The
estimation can be statistically improved when more than one series of subgraphs
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is considered in order to minimize the variance. Algorithm 5.3 is a direct result
of these considerations. The algorithm is expected to not only work for uniform
SISG models but also for graphs that are similar to uniform SISG models, because
the total density is robust and has low variance for SISG models (cf. section 4.4.2).

Algorithm 5.3
Estimate ρm by fitting the
total density for a series of
subgraphs

Algorithm: EstimateKMdensity(G, μ)

Input: Graph G similar to a uniform SISG model ℳm
ρ (s), and the number

of series μ
Output: Estimate of ρm (only correct for s → ∞)

1 L ← {}
2 for i = 0 to μ do
3 S ← SeriesOfSubgraphs (G) // list of subgraphs
4 ̃D ← Map ctotal density to S // list of real numbers
5 Append ̃D to L
6 D ← ElementwiseArithmeticMean(L) // list of real numbers
7 κ ← FitInverse1(D) // fit by κ/(1 − d) (least square)
8 return κ

We discussed in section 4.4.2 that the total density of a subgraph compensates for
the subgraph’s finiteness as long as the subgraph is completely contained in the
inner region of the graph. In this section, we considered however all subgraphs,
because no good measure of whether a subgraph is completely contained in the
inner region is known. We will address this problem by a heuristic approach in
the next section.

5.2.4 Improved Estimation of ρm by the Density

We improve, in this section, algorithm 5.3 by heuristically addressing the problem
of the subgraph’s finiteness. The heuristics uses the secant method and is very
similar to the approach that was used in section 5.2.2.

The expectation value for the density is, in proposition 4.6, only given for |G| → ∞,
and the use of the total density compensates only in parts for the effect of the graph’s
finiteness when the subgraph is not completely contained in the inner region, as
can be seen in figure 5.5. In order to compensate for this effect, we are looking for
a SISG model ℳm

ρ (|G|) such that

EstimateKMdensity(G, μ) ≈ EstimateKMdensity(ℳm
ρ (|G|), μ). (5.6)

The value ρm is an improved estimate which is, for uniform SISG models G =
ℳm′

ρ′ (s), by definition correct, i. e. ρ = ρ′ and m = m′.

The computation of EstimateKMdensity(ℳm
ρ (|G|), μ) in equation 5.6 depends on

the generating set, which is randomly distributed with uniform distribution. The
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Figure 5.5
Estimation of the density
parameter and the minimal
dimension for uniform SISG
models
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mean value of the total density of subgraphs for many SISG models5 with the same
density parameter and minimal dimension can be used to compensate for the
effect of the choice of the generating set. The modification of algorithm 5.3, which
computes the mean value for several SISG models, is described in algorithm 5.4.
We are hence looking for ρ and m such that

EstimateKMdensity(G, μ) ≈ EstimateKMSISG
density(ρ, m, |G|, μ). (5.7)

Algorithm 5.4
Average of the result of
algorithm 5.3 for multiple
uniform SISG models

Algorithm: EstimateKMSISG
density(ρ, m, s, μ)

Input: Density parameter ρ, dimension m, a number of nodes s and the
number of models μ

Output: Average value of EstimateKMdensity(ℳm
ρ (s), μ) for μ uniform

SISG models ℳm
ρ (s)

1 L ← {}
2 for i = 0 to μ do
3 G ← ℳm

ρ (s) // generate a model
4 S ← SeriesOfSubgraphs (G) // list of subgraphs
5 ̃D ← Map ctotal density to S // list of real numbers
6 Append ̃D to L
7 D ← ElementwiseArithmeticMean(L) // list of real numbers
8 κ ← FitInverse1(D) // fit by κ/(1 − d) (least square)
9 return κ

Algorithm 5.5 is an improved version of algorithm 5.3, because it aims at providing
a solution for equation 5.7, i. e. for finding ρ and m such that they satisfy the
equation.

The improvement is gained in a very similar way to algorithm 5.2: an estimate of
ρm for a given graph G is computed by algorithm 5.3, and it is compared to the
estimate of ρm for uniform SISG models by algorithm 5.4. The parameters used to
generate the SISG models are adjusted inductively until the estimate of ρm is equal
for G and the SISG models. If both estimates approximately coincide, equation 5.7
is satisfied. The algorithm then returns the parameters that were used to generate
the SISG models.

It may happen that algorithm 5.5 does not converge, because the secant method
does neither. The value ρm is, for a uniform SISG model G = ℳm′

ρ′ (s), correct,
because it is checked at the end of the algorithm that ρm satisfies equation 5.7.

A comparison of algorithm 5.5 to algorithm 5.3 is provided by figure 5.5. The
results of the improved algorithms are better, as can be seen in the figure, and the
improvements are greater for smaller graphs.
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Algorithm 5.5
Estimate ρm by fitting the
total density for a series of
subgraphs;
improved version of
algorithm 5.3

Algorithm: EstimateKM'density(G, η, τ)

Input: Graph G similar to a uniform SISG model ℳm
ρ (s), the number of

models/series of subgraphs μ, a maximum number of iterations η
and a threshold τ

Output: Estimate of ρm

1 s ← NumberOfNodes(G)
2 κaim ← EstimateKMdensity(G, μ) // algorithm 5.3
3 κ ← κaim
4 κ′ ← 1.4 ⋅ κ
5 (ρ, m) ← BalanceKM(κ′) // find (ρ, m) with ρm = κ′ and ρ ≈ m
6 κ′

test ← EstimateKMSISG
density(ρ, m, |G|, μ) // algorithm 5.4

7 c ← 0
8 while c ≤ η do
9 c ← c + 1
10 if κ′ ≤ 1 then
11 error ‘parameters out of bound’
12 (ρ, m) ← BalanceKM(κ) // find (ρ, m) with ρm = κ and ρ ≈ m
13 κtest ← EstimateKMSISG

density(ρ, m, |G|, μ) // algorithm 5.4
14 if |κaim − κtest| < τ ⋅ κaim then
15 return κ

16 ̃κ ← κ + (κtest − κaim) ⋅ κ−κ′

κtest−κ′
test

17 κ′ ← κ
18 κ′

test ← κtest
19 κ ← ̃κ
20 error ‘no convergence’

Algorithm 5.5 provides, at least in parts, answers to question 5.4. We will, in the
next section, use this algorithm to approach the question of whether a graph has
properties similar to a uniform SISG model.

5.2.5 Deciding Whether a Graph Is Similar to a SISG Model

Algorithms 5.1 and 5.4 as well as their improved versions, algorithms 5.2 and 5.5,
assume that the examined graph is similar to a uniform SISG model. We use this
fact to discuss the question of how to decide whether a given graph is similar to a
uniform SISG model (cf. question 5.4).

It is not clear how similarity of graphs shall be measured, and the question of
whether a graph is similar to a uniform SISG model is hence vague. We regard two
(abstract) graphs as equal, if the number of nodes is the same and the edges relate
the nodes in the same way. Two graphs have the same properties if they are equal,
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and we expect them to share many properties if they are similar. We will approach
the question of how similar two graphs are by comparing their properties and
deciding how similar the properties are. It is important to choose, for this purpose,
robust properties that are characteristic for SISG models and spatial graphs. We
will exemplify the approach using the already discussed algorithms.

Algorithms 5.2 and 5.5 both provide estimates of ρm for a given graph G that is
similar to some uniform SISG model ℳm

ρ (s). This coincidence is of particular
interest, if the graph G is an abstract graph and if the density parameter and
the dimension of the SISG model are not known: we expect both algorithms to
approximately result the same estimate for ρm in case that the graph G is similar to
a uniform SISG model. When the returned values differ, the graph G cannot be
similar to a uniform SISG model.

Equality of the computed values does not necessarily imply the graph to be similar
to a uniform SISG model: we expect, for example, algorithms 5.1 and 5.3 both to
approximately return the same value even for arbitrary graphs, when the number of
edges linearly depends on the number of nodes for subgraphs, because a subgraph
with s nodes and e edges would have density κ/(s − 1) for κ = e/s. The improved
algorithms 5.2 and 5.5 may also approximately return the same value, but as the
improvements in algorithms 5.2 and 5.5 incorporate further properties of SISG
models that determine the effect of the boundary regions, they may yield different
values in some cases.

We will see in section 5.4 that the answers obtained by the comparison of the
estimates by the algorithms of this section are reasonable for the considered data
sets. Further properties could be compared in order to more precisely answer the
question of whether a graph is similar to a SISG model.

We discussed estimates for ρm in sections 5.2.1 to 5.2.4. Independent estimates of ρ
and m could be used to even more precisely approach the question of whether a
data set is spatial: when algorithms 5.1 and 5.3 (and algorithms 5.2 and 5.5) return
approximately the same estimates for a data set but the estimated values of ρ and
m are very different from the one’s that we expect for spatial data (e. g. when m is
much greater than 3), the data set may have some properties of the SISG model
but has, most probably, no spatial structure.

5.2.6 Estimation of ρ and m

We discussed, in the previous sections, how we can estimate ρm for a given graph
G that is similar to a uniform SISG model ℳm

ρ (s). We use, in this section, the
volume of the sphere (cf. section 4.5.1) to independently estimate ρ and m.

The number of nodes and edges as well as the density depend only on the com-
bination ρm of the density parameter ρ and the minimal dimension m. We thus
cannot independently estimate ρ and m by these properties. When we examine
a property that depends on ρ and m in a different way, i. e. not solely on ρm, we
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Figure 5.6
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can independently estimate ρ and m. We require the property, in addition, to be
robust and to have little variance for SISG models to reliable estimate ρ and m. A
property that meets these requirements is, for example, the volume of the sphere
and σ3 (cf. section 4.5.1).

An analytical computation of how σ3 depends on ρ and m is complicated, but the
dependency can be fitted and heuristically be used. The dependency of σ3 on ρ is,
with some deviations, linear in the range that is relevant for our considerations (cf.
figure 5.6). The dependency of σ3 on m is almost polynomially (cf. figure 5.7). It is
hence reasonable to fit the dependency of σ3 on ρ and m by

f (ρ, m) = ∑
i∈{0,1}, j∈{0,1,2}

αijρ
imj.

Algorithm 5.6 uses σ3 to estimate ρ and m for a given graph G that is similar to
a uniform SISG model. In a first step, σ3 is computed for uniform SISG models
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Algorithm 5.6
Estimate ρ and m by fitting
the total density and σ3 for a
series of subgraphs

Algorithm: EstimateKAndM(G, μ, η, τ, R, M)

Input: Graph G similar to a uniform SISG model ℳm
ρ (s), the number of

models/series of subgraphs μ, the maximum number of iterations η,
a threshold τ, a list of density parameters R in a relevant range and
a list of minimal dimensions M in a relevant range

Output: Estimates of ρ and m

1 F ← {}
2 foreach ̃ρ ∈ R, m̃ ∈ M do
3 L ← {}
4 for i = 0 to μ do
5 ̃G ← ℳ ̃m

̃ρ (|G|) // generate a model
6 ̃p ← 2dSweep( ̃G) // centre node, cf. algorithm B.4
7 Append σ3( ̃G, p̃) to L
8 V ← ArithmeticMean(L)
9 Append ( ̃ρ, m̃, V) to F
10 f ← Fit(F) // fit by f (ρ, m) = ∑

i∈{0,1}, j∈{0,1,2}
αijρ

imj (least square)

11 p ← 2dSweep(G) // centre node, cf. algorithm B.4
12 κ ← EstimateKM'density(G, η, τ) // algorithm 5.5
13 VG ← σ3(G, p)
14 m ← NewtonMethod(x ↦ f (κ1/x, x), VG) // solve f (κ1/m, m) = VG
15 return (κ1/m, m)

ℳ ̃m
̃ρ (|G|) with several values of ̃ρ and ̃m. The computed values are fitted, in a

second step, by f (ρ, m). The fit describes the approximate value of σ3 of uniform
SISG models with density parameters and dimensions in the relevant range. The
uniform SISG model ℳm

ρ (|G|) similar to the graph G is hence expected to satisfy

f (ρ, m) ≈ σ3(G). (5.8)

In a third step, an estimate of ρm, denoted by κ, is computed by algorithm 5.5.
When an estimate of the dimension m is known, the estimate κ also defines an
estimate of the density parameter ρ, namely κ1/m. The estimate of the dimension is,
due to equation 5.8, expected to satisfy

f (κ1/m, m) = σ3(G). (5.9)

An estimate of m can be determined by solving the equation, e. g. by Newton’s
method (Forsythe et al. 1977, pp. 157ff). When an estimate for m is determined,
the value κ1/m can serve as an estimate of ρ.

We introduced algorithms for estimating ρm, ρ and m for a given graph G which
is similar to a uniform SISG model. It remains to evaluate these algorithms by
checking whether they result reasonable estimates for uniform SISG models and
for other graphs.
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6 The variance of σ3 is
higher than the one of the
density but still small
compared to the variance of
other properties.

5.3 Evaluation for Uniform SISG Models

Several algorithms to estimate ρm, as well as ρ and m independently, for a given
graph G which is similar to a uniform SISG model ℳm

ρ (|G|), were introduced. We
argued that the algorithms return the correct expectation value for uniform SISG
models G = ℳm

ρ (|G|) for |G| → ∞, but we cannot prove the algorithms to be
correct for finite graphs.

We evaluate, in this section, the algorithms by testing whether they return reason-
able estimates for finite graphs, and we examine the estimates’ variance.

Algorithms 5.1 and 5.3 estimate ρm for a given graph model G that is similar to
a uniform SISG model. Improved versions of these algorithms have been intro-
duced, namely algorithms 5.2 and 5.5. The improved versions yield better estimates
compared to the non-improved versions, as can be seen in figures 5.4 and 5.5.

A comparison of algorithms 5.2 and 5.5 can be found in figure 5.9. The figure
shows that the results of both algorithms are approximately equal for uniform
SISG models, and that the variance is higher for smaller generating sets.

The results of the reconstruction of the parameters by algorithm 5.6 is depicted in
figure 5.8. The figure shows that the estimates with the same ρm = κ are located
on the graph of the function m(ρ) = log κ/ log ρ, which is expected because the
reconstruction of ρm has been demonstrated to be reasonable well (cf. figure 5.9).
The independent estimates of ρ and m are worse: a higher6 variance of σ3 for
different SISG models causes a higher variance of the estimates of the density
parameter and the minimal dimension. The estimates for SISG models with the
same ρm but different m ∈ ℕ are however located in mostly disjunct regions. This
fact proves that the reconstruction of the parameters is, in principle, possible. This
answers question 5.3.

Figure 5.8
Estimation of the density
parameter and the minimal
dimension for uniform SISG
models by algorithm 5.6
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Figure 5.9
Estimation of the density
parameter and the minimal
dimension for uniform SISG
models
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7 The deviation from the
analytical results is expected
to be larger for smaller data
sets than for more extensive
ones (cf. section 5.3).

We evaluated algorithms 5.1 to 5.6 on uniform SISG models. The algorithms have
been shown to return meaningful estimates for ρm, ρ and m. The estimates of
ρm have been shown to have much smaller variance than the one of ρ and m. It
remains to evaluate the algorithms on real data sets.

5.4 Evaluation on Real Data Sets
Wediscussed in section 5.1 the question of how to check whether a data set is spatial.
The algorithms that were developed in section 5.2 can be used as a basis of decision
making to approach this question: based on analytical results, for the number of
nodes approaching infinity, estimates of ρm can be computed. When a data set
has a spatial structure, i. e. when it is similar to a uniform SISG model, we expect
both estimates to coincide. Since data sets are finite, improved versions for finite
graphs, which are expected to serve for the same purpose, were introduced. The
estimates of the density parameter ρ and the minimal dimension m are expected
to be additional indicators of whether the data set has a spatial structure. The
estimates of ρ, m, and ρm can slightly differ for each computation step, because they
depend on the random choice of the generating sets and on the random choice of
subgraphs.

We approach, in this section, the question of whether the proposed algorithms
yield reasonable results for real data sets. We evaluate, in particular, whether
the improved algorithms yield reasonable results for small data sets7; whether
the results are reasonable in spite of the influence of the random choices during
the computation of the estimates; and whether spatial information has a spatial
structure according to the conclusions that can be drawn by the algorithms. We can,
yet, only evaluate these questions for a restricted number of data sets; a statistical
evaluation on a much larger number of data sets would be required for conclusions
that apply to other data sets than the examined ones.

Data Sets. The evaluation is conducted for SISG models as well as for real data
sets with spatial and non-spatial structures:

SISG Models. We evaluate the hypotheses on SISGmodels with several parameters.

Graph Representations of Public Transport. We use several public transport net-
works in Sweden as examples of public transport (cf. sections 2.1.3 and 2.3.1).
The data includes different modes of transport for different regions, e. g.
nation-wide transport by the Swedish national railway provider (SJ) as well as
by bus (Swebus); region-wide transport by bus, train and boat (Länstrafiken
Sörmland, Östgötatrafiken, Blekingetrafiken, Hallandstrafiken, Värmland-
strafiken, Västmanlands Lokaltrafik, Dalatrafik); and local transport by bus
in a town (Karlstadsbuss, Luleå Lokaltrafik, Stadsbussarna Östersund).

Power Grid in the USA. The graph representation of the high-voltage power grid
in the Western States of the USA represents transmission lines by undirec-
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8 http://snap.stanford.edu,
accessed at 2015-02-09

9 http://www3.nd.edu
/~networks/resources
/cellular,
accessed at 2015-02-11

10 http://snap.stanford.edu,
accessed at 2015-02-09

ted edges and the places where transmission lines start, end or meet, e. g.
transformers, substations and generators, by nodes (Watts et al. 1998).

Network of Airports in the USA. The graph representation of a network of air-
ports in the USA represents airports by nodes, and an edge exists between
two nodes if a flight was scheduled between the corresponding airports in
2002 (Colizza et al. 2007).

Water Distribution Networks. These networks consist of one ormore sources and a
number of sinks. The network has a flow direction, because the network aims
to distribute water. Pipes are thus represented by directed edges. In addition
to the directed graphs, the associated ‘undirected’ graphs are examined:
algorithms 5.3 and 5.5 are applied to the directed graphs that are gained
from the associated undirected graphs by adding directed edges (p, q) and
(q, p) for each undirected edge (p, q). Walski et al. (1987) introduced the
hypothetical water distribution network of Anytown, which has been used
as a prototypical example in many studies. Another example is the water
distribution network of the Wolf-Cordera Ranch, which distributes water to
about 370,000 persons (Lippai 2005).

Graph Representation of the Recipe of Pizza Napoletana. Graph representations of
recipes have been discussed in section 2.3.2.

Graph Representations of Games. For a given number of moves or rotations and
a given size of the board or cube, we can represent a game by a graph (cf.
section 2.3.3).

A Peer-To-Peer Gnutella Network. This network is a computer network whose
nodes are located in space (Ripeanu et al. 2002)8.

Metabolic Networks. Chemical transformations inside the cells of a living organ-
ism are, amongst others, important for the growth and the reproduction
of cells. These transformations can be represented by edges and the cor-
responding states of the cells, by nodes. Such metabolic networks will be
examined for Archaeoglobus fulgidus (single celled microorganism; in the
domain of archaea), Caenorhabditis elegans (roundworm; in the domain
of eukaryotes) and Escherichia coli (occurs in the human large intestine; in
the domain of bacteria) (Jeong et al. 2000)9.

Graph of Wikipedia Votes. The Wikipedia community votes on the promotion to
administratorships. The corresponding graph represents users by nodes and
votes, by edges (Leskovec et al. 2010a, b)10.

Directed Gilbert Model. The directed Gilbert model u�Gilbert, directed(n, p) is a simple
directed graph consisting of n nodes and an edge between two nodes with
probability p (cf. section 3.3).

Complete Graph. A directed complete graph of size n consists of n nodes and
directed edges between any pair of nodes.
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A Visual Comparison. The graph representations of public transport are expec-
ted to have a spatial structure which plays a decisive role. A SISG model and a
Gilbert model can be build with the same nodes as the ones in a graph representa-
tion. The visual comparison of the graph representation of the data set, the SISG
model and the Gilbert model shows that the SISG model is much more similar
to the graph representation than the Gilbert model is (cf. figures 5.10 and 5.11).
The visual similarity suggests that SISG models are, as expected, not very different
from these examples of spatial data.

Figure 5.10
Graphs whose nodes S are
the stops of the data set SJ
(cf. table 5.1 on page 110);
(a) graph representation of
the data set, (b) SISG model,
and (c) a Gilbert model;
the parameters are chosen
such that the similarities
and dissimilarities visually
stand out

(a) graph representation (b) ℳ1.9(S) (c) u�Gilbert(S, 6 ⋅ 10−3)

Figure 5.11
Graphs whose nodes S are
the stops of the data set
Länstrafiken Sörmland
(cf. table 5.1 on page 110);
(a) graph representation of
the data set, (b) SISG model,
and (c) a Gilbert model;
the parameters are chosen
such that the similarities
and dissimilarities visually
stand out (a) graph representation (b) ℳ1.9(S) (c) u�Gilbert(S, 6 ⋅ 10−5)

A Computational Comparison. Some algorithms that were discussed in sec-
tion 5.2 are nondeterministic. They include uniform SISG models whose generat-
ing set is randomly generated according to a given distribution. These algorithms
return different results each time they are executed, but the results have only relat-
ively low variance. This effect has been been evaluated for uniform SISG models
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11 Formally, we include
estimates of ρ and m if the
estimates of ρm differ less
than a factor of 1/2. The
choice of the factor is
arbitrary and has no
relevance to the fact that the
question of how similar the
data sets are to the diagonal
is a gradual one. In the
corresponding figures, we
even display the area
corresponding to this choice
to visually illustrate how
near data sets are depicted
to the diagonal.

12 We say that an estimate is
within a reasonable range or
reasonable, if the difference
between the estimate and
the expected value can, in
principle, be reasoned. In
this case, the variance of the
results due to random
effects and the presence of
other structures in the data
set are possible reasons.

in section 5.3, and the variance is hence not evaluated in this section. The results
of the algorithms are yet affected by the effect of the variance.

Table 5.1 contains the estimates for the data sets. Estimates of ρm are included
whenever the algorithms converged. Estimates of ρ and m are only included if the
comparison of the estimates of ρm approximately coincide11, i. e. if the estimations
suggest that the data set may be similar to a SISG model.

A comparison of the estimates of ρm by algorithms 5.1 and 5.3 is depicted in fig-
ure 5.12 and a comparison of the estimates by the improved algorithms 5.2 and 5.5,
in figure 5.13. The positions of the data sets in the diagrams are very similar, apart
from the data set about the peer-to-peer network. The similarity demonstrates
that the influence of the variance is relatively low for the estimation of ρm. The
estimates of the density parameter ρ and the minimal dimension m are depicted
in figure 5.14.

The density for the series of subgraphs can be fitted with relatively low residual
for all considered graphs. The low residual demonstrates that the use of series of
subgraphs can yield meaningful results.

The estimates of ρm are approximately equal for the considered SISG models due
to the spatial structure of the models. The density parameters and minimal di-
mensions of the SISG models could approximatively be reconstructed, which was
expected due to the results of section 5.3.

For the graph representation of public transport and the power grid in the USA,
the estimates of ρm approximately coincide, as was expected due to their spatial
structure. We expect the minimal dimension to be between 2 and 3, because the
spatial data sets are embedded in a two- or three-dimensional space, and as time
is relevant for public transport, the minimal dimension may even be between 3
and 4. The estimates of the minimal dimensions for the graph representations of
public transport are between 2.33 and 4.40 and thus within a reasonable range12.
The estimate of the minimal dimension for the power grid in the USA is 4.24 and
thus higher than expected but still within a reasonable range.

The estimates of ρm for the water distribution networks using the non-improved
algorithms approximately coincide, which was expected because the network has
a temporal structure. The improved algorithm to estimate ρm by the number of
nodes and edges does not converge. The reason for the divergence in case of the
water distribution network of Anytown is the very low number of nodes and edges
that leads to a high variance of the number of edges of the random SISG models
generated during the computation, according to algorithm 5.2. In case of the water
distribution network of the Wolf-Cordera Ranch, the divergence is due to the very
low ratio of the edges to the nodes. The algorithm converges for the associated
simple ‘undirected’ graphs that contains, for each edge (p, q), also the directed
edge (q, p), because the number of edges is about twice as high as in the directed
graph. The estimates of the minimal dimension are within a reasonable range.
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Table 5.1
Estimations of the density
parameter and the minimal
dimension for several data
sets

|N| number of nodes

|E| number of edges

ρ̂mN estimate by the number
of nodes and edges
(algorithm 5.1)

ρ̂mN′
estimate by the

number of nodes and edges
(algorithm 5.2 with μ = 10,
η = 1000 and τ = 0.003,
using only the first 50
densities in the series of
subgraphs for the fitting)

ρ̂mD estimate by density
(algorithm 5.3 with μ = 10,
using only the first 50
densities in the series of
subgraphs for fitting)

ρ̂mD′
estimate by density

(algorithm 5.5 with μ = 10,
η = 1000 and τ = 0.003,
using only the first 50
densities in the series of
subgraphs for fitting)

χ2 residuals for ρ̂mD

m̂ and ρ̂ estimates
(algorithm 5.6 with μ = 10,
η = 100, τ = 0.003,
R = [1.1, 1.2, 1.4, 1.6, 1.8, 2]
and M = [1, 2, 3], using only
the first 50 densities in the
series of subgraphs for
fitting)

graphs marked by * are
timetable-packed

graphs marked by † are the
associated undirected
graphs

the following types of data
sets are examined: SISG
models, transport
networks, other spatial
graphs, recipes, games,

other data sets, existing
graphs models
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Figure 5.12
Estimation of ρm for several
data sets (cf. table 5.1);
if a data set has typical
properties of spatial
information, both estimates
coincide;
for the grey area, the
estimates differ less than
a factor of 1/2;
graphs marked by * are
timetable-packed;
graphs marked by † are the
associated undirected
graphs
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13 The fact that the
transition between most
states are irreversible
induces an ordering relation
on the set of states. We can,
for example, mix flour and
water, but can hardly
separate them.

14 The rotations can be
proven to have the structure
of a group with six
generators, which is much
more complex than the
structure of time.

The network of airports in the USA can be embedded in space by the natural
location of the airports, but both estimates are, nevertheless, very different. This
effect is caused by the large number of non-spatial aspects which are influencing
the network: the importance of a low average number of connections separating
two airports, cultural aspects leading to more connections, legal restrictions (night
flight restrictions, ban on unsafe airlines, taxes), etc. These aspects cause a number
of structural properties that SISG models do not have, because these properties are
not typical for spatial data in general: a non-uniform distribution of the airports
in space, a large number of long-distance connections, a large number of hubs, a
strong hierarchical organization (domestic and intercontinental), communities of
strongly related airports, etc. (Barthélemy 2003).

The recipe of Pizza Napoletana has a temporal structure due to the partial temporal
order13 of the states. The estimates of ρm, accordingly, approximately coincide
for the recipe. They are much lower than the ones of the spatial data sets, which
was expected, because time is one-dimensional and thus of lower dimension than
space. The estimate of the minimal dimension is 7.95, which seems not to be within
a reasonable range. A possible reason is the lower precision of the estimation of the
minimal dimension, compared with the one of ρm, as was discussed in section 5.3.

The game Tic-tac-toe is expected to have a temporal structure, because there exists
a partial order in the state space: a mark is added in each step, and there exists
no possibility to go back to a state with less marks. There are, however, many
more aspects which are influencing the structure of the graph representation,
and they become more important for a larger board. The two estimations of ρm

accordingly suggest such a temporal structure in case of a 2x2 board. For a larger
board, however, the temporal order is outbalanced by the fact that many states
can occur in two or more different courses of the game. The estimates of ρm differ,
hence, by a factor of 1.34 for the non-improved and a factor of 1.82 for the improved
algorithms. The estimation of the minimal dimension is not within a reasonable
range.

The Rubik’s Cube has a temporal aspect, too. The interrelations between the cube’s
states are, however, determined by the arrangement of the small cubes and the ways
they can be rotated14. The temporal structure of the representation is outbalanced
by other aspects, because our representation reflects only the colours showing up
on each face of the cube and not the point in time when the state is gained. The
estimates of ρm accordingly differ.

The peer-to-peer network has spatial aspects, because the computers are placed
in space, but other aspects may be much more important. The estimates of ρm

accordingly donot coincide but are not very different either. Themetabolic networks
and the graph of Wikipedia votes do not have any decisive spatial or temporal
structure. The estimates of ρm accordingly differ.

The estimates of ρm for the directed Gilbert model (by the non-improved and
improved algorithms) and the complete graph (by the non-improved algorithm)
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Figure 5.13
Estimation of ρm for several
data sets (cf. table 5.1);
if a data set has typical
properties of spatial
information, both estimates
coincide;
for the grey area, the
estimates differ less than
a factor of 1/2;
graphs marked by * are
timetable-packed;
graphs marked by † are the
associated undirected
graphs
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15 When the complete
graph is enlarged by an
additional node, the density
of each subgraph changes.

approximately coincide but are much higher than expected for spatial data. As
can be seen in figure 5.15, the estimates by the non-improved and the improved
algorithms are, in case of the complete graph, very different, by an order of mag-
nitude 4 to 5, which indicates that it has no spatial structure. The complete graph
is in fact a SISG model with very high density parameter and minimal dimension
1, and the difference between the estimates by the non-improved and the improved
algorithms is due to the fact that all parts of the complete graph are outer regions15
(cf. section 4.2). The complete graph has, in spite of being a SISG model, no spatial
structure, because the absolute values of the estimates of ρm are meaningless in the
context of spatial information.

The evaluation shows that the examined data sets can be characterized by the use
of the algorithms. The estimates of ρm coincide, in particular, for the examined
spatial and temporal data sets, and they differ for the examined non-spatial and
non-temporal data sets. The difference between the estimates turned out to be
much smaller for spatial data than was expected, considering that data sets are
usually characterized by more than a spatial structure. A detailed comparison of
the estimates is able to characterize each of the examined data sets by its spatial
and temporal structure, showing the characterization of spatial information (cf.
section 3.2), the concept of spatial structure (cf. section 1.1) and the SISG model
(cf. section 3) to be meaningful in the context of the examined data sets.

Figure 5.14
Estimation of ρ and m for
several data sets (cf.
table 5.1);
graphs marked by * are
timetable-packed;
graphs marked by † are the
associated undirected
graphs
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Figure 5.15
Estimation of ρm for several
data sets (cf. table 5.1);
if a data set has typical
properties of spatial
information, both estimates
coincide;
for the grey area, the
estimates differ less than
a factor of 1/2;
graphs marked by * are
timetable-packed;
graphs marked by † are the
associated undirected
graphs
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The results of the evaluation seem to be meaningful in spite of the random effects
and the small size of the graphs. Only for a very small data set, the water distribu-
tion network of Anytown, one of the algorithms did not converge. The absolute
size of the estimates of the density parameter and the minimal dimension seem not
to be meaningful. The high variance of these estimates has already been discussed
in section 5.3 and may be one reason for the unexpected absolute sizes of these
estimates. Data sets from the same domain however have similar estimates of
the density parameter and the minimal dimension, which demonstrates that the
results are not random.

The evaluation of the algorithms on real data sets showed that the results match,
by and large, our expectations. We were able to characterize data sets in respect
to their spatial structure, and similar data sets were characterized similarly. The
dimension of space could, in principle, be estimated, but the precision was not
high enough to provide meaningful absolute values.

Conclusion
Spatial structure can be modelled by uniform SISG models. A data set can, thus, be
tested for a spatial structure by comparing it to uniform SISG models. We argued
how such a comparison can be executed by statistical methods, and provided
algorithms for the comparison. Evaluations were executed on uniform SISG
models and on real data sets. More specifically, the main contributions of this
chapter are as follows:

(1) Theoretical foundations to discuss the spatial structure of data sets were laid.

(2) Algorithms were introduced to test data sets for spatial structures, and al-
gorithms to estimate the parameters that generate uniform SISG models similar to
a given data set.

(3) The provided algorithms were evaluated and empirically evidenced to be
correct for uniform SISG models. The evaluation provides detailed information
about the quality of the results.

(4) The concept of spatial structure was proven to be meaningful: the algorithms
were able to detect a spatial structure in the data sets which describe spatial in-
formation; and similar data sets were characterized similarly in respect to their
spatial structure.

(5) We showed that spatial structure reflects the dimension of space, because it is,
in principle, possible to reconstruct the dimension of a uniform SISG model.

The results of this chapter demonstrate that the hypotheses of the introduction (cf.
section 1.4) are valid. Besides this major result, a characterization of existing data
sets was provided.



6
Conclusion

Fremtiden kommer af sig selv,
det gør fremskridtet ikke.

—Paul Henningsen
danish designer, architect and author

(1894–1967)

6.1 Summary and Hypotheses
Spatial and temporal aspects of information are central to numerous tasks, because
most things exist and happen in space and time. Examples of such spatial tasks are
navigation tasks, placement tasks for cell sites or branches of a company, all kinds
of spatial analyses, personal planning tasks for activities in space, etc. Solutions to
spatial tasks can be found, if we comprehend the role of space and time, and we
thus strive for a systematic understanding of space and time.

Laws are a common tool to formalize such a systematic understanding. They aim
at hiding context as much as possible and, ideally, at focusing on very few simple
relations between very few things. The absence of context and the clear focus on
single aspects is advantageous for two reasons: first, it is easy to check whether
the preconditions of a law are met and the law applies. Second, we can better
understand how laws interact and combine them to theories. Even when laws
seem to be advantageous, only very few laws are currently known for geographical
space. Tobler’s first law of geography is one of the exceptions.

Formal structures are a key issue for laws, because structures capture patterns and
configurations of things and describe them formally. A system can be described
by different structures. The choice of a convenient structure is crucial for the
formulation of laws, and laws assume a simple form in this case, in particular
when contextual dependencies are, by and large, eliminated. Euclidean space, for
example, is such a convenient structure for the physical concept of spacetime in
Newtonian mechanics, and pseudo-Riemannian manifolds, in Einstein’s general
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theory of relativity. The structure of spacetime had however not been discussed
with the geographical concept of space in mind. We thus tried, in this thesis, to
capture spatial and temporal aspects of information by suitable structures, with
the hope to promote the formulation of laws and the development of theories in
geographical information science.

Summary. Information about human activities is, in many cases, of spatial nature
(chapter 2). Examples are timetable information for public transport; usage in-
formation collected by mobile phones, including the position; observation data
about movements in space, e. g. walking, cycling, driving; etc. Human activities
can strongly influence and constrain each other. We have thus introduced the
notion of a human activity system, which denotes a set of related human activities.
Such a system can be represented as a graph: states are represented by nodes, and
activities, i. e. transitions between these states, by edges. Graph representations of
human activity systems provide a basis for the formal discussion of the systems’
structures, and structural aspects of such representations can be emphasized by
equivalence relations on the node set.

Many spatial data sets share some typical properties, e. g. Tobler’s law and scale
invariance (chapter 3). These properties lead to a predominance of certain constel-
lations of edges, when data sets are represented by graphs. These constellations give
rise to the concept of a spatial structure, which is exposed by many spatial data sets.
We introduced a scale-invariant spatial graph (SISG) model of the spatial structure:
for a given set of nodes which are embedded in space, edges are introduced such
that the resulting graph satisfies Tobler’s law, is scale-invariant and has other typical
properties of spatial information.

When no assumptions on the nodes’ distribution in space are made, it is reasonable
to examine uniform SISG models, which assume randomly distributed nodes with
a uniform distribution (chapter 4). The examination of the uniform SISG model’s
properties showed that the number of nodes and edges, the density of the graph
and the volume of spheres are statistically characteristic of such a model, and that
these properties fundamentally depend on the dimension. The dimension of space
and the density parameter of an abstract uniform SISG model can, in principle, be
reconstructed, when the number of nodes and edges, the density and the volume
of spheres are known for the SISG model and its subgraphs. This is unexpected,
because a high dimension of space leads to a larger number of edges, and the
dimension could thus be confused with the density of the graph.

The SISG model was evaluated by a comparison to real data sets, which proved the
model to be meaningful (chapter 5). This comparison considered the SISG model
as an abstract graph, but ignored the properties that it gains by its embedding in
space. We showed that all considered spatial data sets are similar to a SISG model
and thus expose a spatial structure, and that all considered non-spatial data sets
are not. We were moreover able to distinguish spatial and temporal data by the
dimension that is reflected by its structure. The results are, interpreted with the
semantic knowledge about the data sets in mind, more than reasonable.
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Hypotheses. We raised two hypotheses in the introduction: first, the hypothesis
that the concept of spatial structure is meaningful; and second, the hypothesis that
the spatial structure implicitly reflects the dimension of space. These hypotheses
could, by and large, be argued to be valid.

(1) The concept of spatial structure is meaningful, because most spatial data
sets share structural properties.

Data sets can be characterized by its structure. Many properties of a data set
influence the structure, but some do not. In particular, the same structure can
appear for very different data sets. We thus cannot infer from the structure which
properties a data set has, e. g. whether the data set exposes references to space. A
structure can however suggest the data set to have a certain property, because it
statistically occurs more often than other structures for data sets which expose this
certain property. The hypothesis claims the existence of a structure that suggests a
data set to be spatial, i. e. to expose references to space.

We compared the structure of several spatial and non-spatial data sets in chapter 5.
The structures of the considered spatial data sets were shown to be very similar to
SISG models, and the structures of the considered non-spatial data sets to be not.
This corroborates the hypothesis for the considered data sets.

(2) Spatial structure implicitly reflects the dimension of space.

The uniform SISG model depends on the dimension of the space in which the
nodes are placed. We expect the spatial structure to depend on the dimension of
space in a similar way. The volume of a sphere is larger for higher dimensions,
and as Tobler’s law assumes nodes in the neighbourhood to be statistically more
often adjacent than others, a uniform SISG model of higher dimension is expected
to have more more edges. The hypothesis claims, amongst others, that the effect
of a higher dimension is different from the effect of a higher density parameter
which influences the number of edges in the graph, and that different dimensions
statistically lead to different spatial structures.

We proved that the dimension of space can statistically be reconstructed from an
abstract graph representation. This shows that a higher dimension of space does
not only cause a larger number of edges but has further effects on the structure of
a uniform SISG model, which can be measured by the volume of spheres.

We have, in this thesis, successfully argued that the concept of spatial structure
is meaningful and that the spatial structure implicitly reflects the dimension of
space. In addition, the thesis sheds light on how to model spatial structure, on the
properties of spatial structure and on why spatial structures have these properties.
We will discuss in the next section, which questions stay open and point out how
answers could be found.
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6.2 Future Work
This thesis examines the structure of spatial information. Many issues arise when
the formal concept of spatial structure meets real data: possible improvements and
modifications of the SISG model become apparent; the role of the parameters in
the generation of the SISG model may be explored in more detail; the SISG model
may be compared to a larger number of data sets; additional aspects, including
non-spatial ones, may be modelled and compared to spatial structure; and possible
applications of the SISG model may be examined. We discuss, in the following,
these open questions and ideas that were not explored yet.

Improving the SISG Model. Uniform and non-uniform SISG models are not
necessarily connected, and the size of the largest connected component grows
much slower than the number of nodes, if the model has relatively few edges as in
the case of small density parameters and minimal dimensions. Several examples
of spatial graph representations, e. g. graph representations of public transport,
have however large connected components. It remains an open question whether
the connectedness is a property of spatial structure, and in case it is, how to create
connected models which are otherwise similar to SISG models.

An undirected SISGmodel was introduced, but neither were its properties analysed
nor were the provided algorithms systematically evaluated for undirected models.
The systematic treatment of undirected SISG models makes it possible to address
a much larger family of graphs, because many data sets can only be represented by
undirected graphs.

Some data sets can be represented by weighted graphs, which is e. g. important to
describe the distance between places. The SISG model is not able to capture this
aspect. A generalization of SISG models to weighted graphs is yet to be introduced.

Specializations. This thesis, in particular the SISG model and the comparison of
real data with the model, aims at discussing spatial structure in general. It does not
aim at discussing and characterizing certain types of spatial or temporal data, e. g.
public transport or recipes. Models of specific types of spatial data are however
needed for different applications. It remains to discuss how the SISG model can
be modified, by paying attention to the characteristics of a certain type of data, in
order to serve for such a purpose.

Graph representations of public transport, for example, exhibit properties that SISG
models do not share: (1) every node usually has at least two edges, (2) the indegree
equals the outdegree for most nodes, and (3) the graph has only few connected
components, in most cases only one. These properties are not necessarily met
by every graph representation of public transport but are actually valid for the
data used in this thesis. Future research may discuss how the SISG model can be
modified in order to exhibit these three properties.

Discussion of the Role of theDimension. Data that exhibits the same properties
and patterns at any scale is called fractal data. When such data is embedded in
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space, wemay try to compute its fractal dimension by determining to which degree
it fills the space. This method of determining the dimension returns, unlike in the
case of geometric objects, not necessarily integer values. Two definitions of such a
fractal dimension are provided by Song et al. (2005). It remains to discuss whether
the minimal dimension of a SISG model and the fractal dimension are related.

The minimal dimension was, for the data sets of the evaluation, systematically
higher than expected by the dimension of the space in which the data sets are
embedded. The same holds, at least for some data sets, for the fractal dimen-
sion (Daqing et al. 2001). It remains to understand this discrepancies and whether
both discrepancies share a common reason. An analysis of the density parameter’s
meaning and the parameter’s relation to theminimal dimensionmay be convenient
in this context.

MoreExtensive Evaluation. TheSISGmodel has been evaluated by a comparison
to several data sets. A high number of data sets from different domains, spatial
as well as non-spatial ones, has to be considered in order to render the statistical
argumentations meaningful. A more extensive evaluation may thus increase the
significance of the results. Applications of the SISG model may support the results
of the evaluation and provide further insights into the concept of spatial structures.

ComparisonwithPlanarGraphs. Planar graphs are embedded in space and thus
have some properties with SISG models in common. In particular, the diameter
and the average shortest path lengths of planar graphs are in a similar way related
to the number of nodes than the ones of SISG models. It remains to examine
whether planar graphs have a spatial structure, and in which aspects they differ.

Modelling Causality and Interdependencies. In this thesis, spatial structure has
been modelled without paying attention to relations of higher order, i. e. to how
relations relate. A graph representation of public transport activities does, for
example, not contain any information about how activities, which are represented
by edges, can be concatenated, i. e. how they can be combined to compound
activities. In particular, it cannot be modelled that an activity renders another
activity possible or even causes another activity to be performed. Without relations
of higher order, causality cannot be modelled.

A model of spatial structure presumes relations of higher order, if we assume a
more complex understanding of Tobler’s law: different kinds of relations exist, for
example left of, right of, etc., and everything is related to (virtually) everything
else. In particular, feedback loops arise: one thing relates to another one which
itself relates to the former one. In such a feedback loop, the former thing has an
indirect effect on itself. It can be argued that a relation of second order is needed
to describe a feedback loop formally, because the feedback, i. e. the effect of the
loop, cannot be encoded in the representation.

The SISG model does not explicitly reflect the aspects of causality and feedback
loops, because relations of higher order are not included in the model; it models
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spatial structure in a much simpler but yet effective way. A deeper understanding
of spatial information can be gained by modelling spatial structure with the use of
algebraic methods, in particular by algebraic structures and monoidal homology,
because these methods are more suitable to model higher order relations, and thus
feedback loops and causality.

Modelling Additional Aspects. The temporal evolution of spatial information is
not captures by SISG models. When things move in space, spatial and temporal as-
pects are inevitably related, and processes alter things and their configurations over
time. Future research may model this temporal evolution of spatial information.

Spatial structures can appear in hierarchies. As an example, local, regional and
nation-wide transport coexist, all three expose a spatial structure, and they can be
interpreted as different levels of the transport system’s hierarchy. These different
types of transport are related by the stops that they share, and their graph repres-
entations can thus be combined to one more extensive graph representation. It
has not yet been examined how this compound graph representation relates to
the SISG model. Conversely, future research may, for a given compound graph,
identify subgraphs that are similar to a SISG model. Such an identification of
subgraphs would, for example, provide the possibility to identify and characterize
different types of public transport, e. g. local, regional or nation-wide transport.

Modelling Temporal Evolution. An important class of networks evolves over
time: users sign up to social networks and add other users as friends, mobile
devices steadily move around and connect to different cell sites, new streets are
built, and new stops and lines are introduced in public transport networks. Roth
et al. (2012) showed that the world’s largest metro networks evolve, despite their
geographical and economic differences, in a very similar way and thus share some
characteristics, e. g. the structure of a core and several branches. It is yet an open
question whether the evolution of spatial networks is, at large part, influenced
by the properties of space. Future research may model the evolution of spatial
networks by iteratively adding nodes to a SISG model, much like in case of other
graph models, e. g. the Barabási-Albert model.

Modelling Non-Spatial Structures. Spatial structure is the structure that char-
acterizes spatial information. There is no obvious reason for why there should not
exist structures that characterize other types of information, e. g. social, technical
or legal information. When structures for such non-spatial types of information
have been discovered, a comparison of spatial structure to other ones may provide
further insights in how spatial and non-spatial information is structured, and why
it is structured the way it is. Knowledge about different structures would even
offer the possibility to characterize information more precise, which would render
numerous applications possible.

Modelling Interaction Between Several Structures. Several spatial and non-
spatial structures can interact. Transport networks for several modes of transport,
for example, are in many cases coupled. This coupling leads, in case of the London
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Underground, to the existence of an optimal speed to minimize the congestion;
an increase of the metro network’s speed would even lead to an increase of the
congestion (Strano et al. 2015).

Multimodal and multi-layered transport networks often expose similarities, inde-
pendent of the city in which the transport takes place (Strano et al. 2015). These
similarities cannot originate from the specific needs and features of the town, as
the needs and features differ for each town but the similarities do not. Future
research may show whether these similarities can be explained in terms of the
structure of the single layers, and how structures, in general, can interact and lead
to new structures.

Improving Algorithms on Spatial Data. When the input data of an algorithm
exposes a spatial structure and the algorithm is adapted to this structure, the
algorithm can efficiently compute the desired information. If an algorithm does
not perform well, it is nearby to ask whether we can improve the adaption of the
algorithm to the structure of the data. An algorithm cannot be adapted to the
data’s structure, if the question to be answered by the algorithm is ill-posed. It is
hence important to pose the right question to find well-performing algorithms.
Future research can lead to new insights of how algorithms can be designed and
optimized in order to take advantage of the spatial structure.

Algorithms can be very slow in the worst case but still perform fast on data with a
suitable structure. A depth-first search in a simple graph, for example, considers
in the worst case the whole set of edges, which grows quadratically in the number
of nodes. The number of edges incident to an edge however can, for graphs with
a spatial structure, be expected to be statistically independent of the size of the
graph. A depth-first search can hence under certain circumstances be expected
to execute much faster, possibly even in linear time. Similar considerations could
argue other algorithms to be fast for spatial information.

When data exposes a structure only statistically, algorithms can be improved by
heuristics. Dijkstra’s algorithm, for example, systematically searches a shortest
path in a weighted graph, and the A* algorithm, which is an extension of Dijkstra’s
algorithm, searches the same path by the use of a heuristic. If the heuristic estimate
function for the distance between two nodes is not exact but overestimates the
costs in rare cases, the resulting path of the A* algorithm is not necessarily a
shortest path, but it is in most cases close to. As Tobler’s law, for example, is only
statistically true for real data sets, it can only be used for heuristic improvements.
Future research may identify suitable aspects of the spatial structure that can be
used to heuristically improve algorithms.

Parallelization of Algorithms. The structure of spatial information facilitates
the parallelization of algorithms. The problem of parallelization becomes, due
to the multicore architecture of current processors, increasingly important. An
algorithm can be successfully parallelized by the MapReduce principle, if it can
be divided into subproblems. The spatial structure renders a division of the data
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set and, in consequence, a division of a problem into subproblems possible: first,
Tobler’s law predicts the existence of neighbourhoods, and the partition of space
into neighbourhoods can lead to a partition of the spatial data set. Second, the
scale-invariance of data leads to similar structures at different scales, and prob-
lems can under certain circumstances be solved at several scales in parallel. A
preliminary discussion of the MapReduce principle in respect to Tobler’s law and
neighbourhoods has been published (Mocnik 2014) but more practical require-
ments need to be formulated, and scale-invariance needs to be discussed in the
context of parallelization.

New Indices for Spatial Data. Indices provide a quick way of accessing data,
when the data has a known structure. R-trees (Guttman 1984) and R* trees (Beck-
mann et al. 1990), for example, require explicit references to space, and as the
concept of a neighbourhood is meaningful for space, the data can be indexed by
such neighbourhoods. When data does not expose explicit references to space,
these indices cannot be used. Data with a spatial structure is however expected to
reflect the concept of neighbourhoods, independent of whether the data exposes
explicit references to space. Future research may introduce concepts to index
spatial data by its spatial structure, even when explicit references to space are
missing.

Theory Building. Geographical information science has evolved over the years
from the technical science of GIS systems into a more complex science. This
more complex science focusses on the information aspect of geography, amongst
others on algorithms and computational aspects, spatial statistics, ontological
aspects, linked data, volunteered geographic information, the field of cognitive
science, etc. Contemporary geographical information science addresses many of
the global challenges as well as every-day challenges, which are both complex and
multifaceted. This diversity of aspects and challenges leads to a very active and
interdisciplinary field of research, but a comprehensive theory which covers these
different aspects of spatial information is yet missing.

Goodchild (2003) formulated the long-term goal of finding universal laws to
describe how things exist and happen in space and time. Tobler’s first law of
geography is one of the few known laws and the only one which has gained broad
reputation. One possible reasonmay be that the principles behind space and spatial
information, which at bottom apply to most problems of geographical information
science, are yet only explored in parts. A promising approach to this long-term
goal of finding universal laws is the exploration of the structure of geographical
information scientific topics.

Future research may build comprehensive theories about spatial information by
continuing the thesis’ discussion at a structural level. The concept of graph rep-
resentations and of spatial structure are fundamental for such a theory building,
because the theory is expected to capture general aspects of spatial information.
The structural understanding of spatial information and related algorithms can,
for example, provide insights into which meaningful transformations of spatial
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data sets exist and which invariants they have. Such invariants may be unexpected
and may not correspond to any intuitive concept, but history has proven many
invariants to be extremely useful, for example energy and momenta in physics.
The discussion of spatial information at a structural level facilitates the even more
general reuse of mathematical and physical theories and thus to find new answers
to geographical information scientific questions.

Using The Model Instead Of Real Data. Hypotheses are often evaluated on data
sets in order to corroborate them. In many cases, there are not sufficiently many
suitable data sets available: data can be hard to collect; unsuitable assumptions
may have been made during the data collection; the data may be of poor quality;
data sets may be not extensive enough; etc. When a hypothesis is to be tested on
spatial data sets and not enough spatial data sets are available or the provision of
suitable data sets is to extensive, the SISG model may be used for the evaluation.
An evaluation on SISG models is advantageous, because arbitrarily many models
with the desired density parameter and minimal dimension can be generated. The
evaluation on SISG models cannot substitute evaluations on real data sets, but
it can render statistical evaluations on a large number of data sets with a spatial
structure possible.

Application: ToWhichDegree Is Information Spatial? It is widely claimed that
information is of spatial nature in large part (Franklin 1992), but evidence is very
rare (Hahmann et al. 2011). Attempts to prove or disprove this claim suffer from
the fact that one tried to count information, which is not possible. This problem
could be circumvented by counting the number of spatial and non-spatial data
sets (Hahmann et al. 2011, 2013). A more sophisticated solution would be to
measure how spatial data sets are, because the question of whether a data set is
spatial by interpretation is a gradual one. This approach of measuring to which
degree a data set is spatial may be used to put the attempts to verify the claim on a
firm statistical footing.

Application: Improving Search Engines. When data sets are used to solve tasks,
they usually need to be equipped with semantic information. If too little semantic
information is available, we may try to use data sets with incomplete or missing
semantics. The possibility to guess whether data is spatial, to reconstruct the
dimension and to compute other properties related to the spatial structure can
contribute to this goal of using data with incomplete or missing semantics. Com-
plex search engines1, for example, require extensive semantics and can yet only
access small parts of the world wide web, whilst more simple search engines, which
only match for strings, need only very restricted semantics but can access large
parts of the world wide web. If data with incomplete or missing semantics can be
used to answer complex questions because the semantics can, at least in parts, be
guessed, complex search engines can access larger parts of the world wide web.
Future research may identify further structural properties that can be used to guess
semantic properties.
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The quality of theories and models can, amongst others, be judged by the veri-
fiability of its predictions, its explanatory power, its simplicity and its elegance.
The evaluation of our considerations showed that the statistical predictions are
applicable, at least for the considered data sets, and the high number of questions
raised by the considerations of this thesis demonstrates the considerations to have
a broad scope and a high explanatory power. The argumentation is, at the same
time, very simple: the SISG model can be defined in a nutshell; the model can be
explained in terms of space, objects and relations, i. e. in terms of the entities which
constitute spatial information; and no statistical considerations had to be made
unless the intended conclusions were of statistical nature. These factors suggest
that the proposed concept of spatial structure and the SISG model are viable. The
real value of the considerations remains though to be demonstrated in applications
and in further theoretical use.



A
Mathematics

We provide, in this appendix, a résumé on the mathematical fundament that this
thesis is based on. We present all necessary definitions and some propositions but
omit their proofs. The provided résumémay help the reader to agree on definitions,
even if more than one definition of a notation may be found in literature. This
chapter is however not intended to provide an introduction to the reader who
is unfamiliar with the topic. The interested reader may, for such purposes, be
referred to the books written by Lang (2002) and Dieudonné (1969) for further
details on algebra and metric spaces as well as to the book written by Diestel (2005)
for details on graph theory.

A.1 Linear Algebra

Linear algebra is the area of mathematics that focuses on vector spaces and lin-
ear transformations between them. Vector spaces have been shown to capture
fundamental concepts of the space and time.

Basic Algebraic Structures. A monoid (M, ⊙) is a set M equipped with an associ-
ative operation ⊙∶M × M → M, such that M is closed under the operation ⊙ and
an identity element exists. A group (G, ⊙) is a monoid such that inverse elements
exist. A group is called abelian or commutative, if the operation is commutative. A
ring (R, ⊕, ⊙) is a setR equippedwith two operations, such that (R, ⊕) is an abelian
group, (R, ⊙) is a monoid and distributivity laws in respect to the operations ⊕
and ⊙ hold. A ring is called field, if (R, ⊙) is an abelian group.

A vector space (V , ⊕, ⊙) over a field F is an abelian group (V , ⊕) equipped with an
operation ⊙∶ F ×V → V , called scalar multiplication, such that the scalar multiplic-
ation is compatible with the field multiplication, there exists an identity element
of the scalar multiplication and distributivity laws in respect to the operations
⊕ and ⊙ hold. The scalar multiplication can alternatively be regarded as a ring
homomorphism from the field F into the endomorphism ring of (V , ⊕). A vector
space over ℂ or ℝ is called complex or real, respectively.
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Affine Transformations, Eigenvectors and Eigenvalues. A linear transforma-
tion f ∶ (V , ⊕, ⊙) → (V ′, ⊕′, ⊙′) is a homogeneous and additive map f ∶V → V ′.
Amap g ∶ (V , ⊕, ⊙) → (V ′, ⊕′, ⊙′) is called an affine transformation, if there exists
a linear transformation f and a vector v′ ∈ V ′, such that g(v) = v′ ⊕′ f (v) for
every v ∈ V .

An eigenvector of a linear transformation f ∶ (V , ⊕, ⊙) → (V , ⊕, ⊙) is a vector
v ∈ V , such that an eigenvalue λ ∈ F exists and f (v) = λ ⋅ v.

Metric Spaces and Normed Vector Spaces. A metric space is a set M equipped
with a non-negative and symmetric operation d∶M × M → ℝ, such that the
identity of indiscernibles and the triangle equality hold. A common example of
metric spaces are metric vector spaces, e. g. real vector spaces equipped with the
Euclidean metric or the french railway metric. The french railway metric dx(v, w)
equals the Euclidean metric in case that v and w define a line through the origin,
and d(v, x) + d(x, w) for d the Euclidean metric and a fixed point x otherwise.

A normed vector space is a vector space (V , ⊕, ⊙) equipped with an absolut homo-
geneous, subadditive and definite operation ‖ ⋅ ‖∶V → ℝ. Every norm induces
a metric by m(v, w) = ‖w ⊖ v‖. An example of normed vector spaces is a real
vector spaces equipped with a p-norm (for given p > 0)

‖v‖p = (

n

∑
i=1

|xi|p)

1/p

,

where (xi) are the components of the vector x for some basis. The norm ‖ ⋅ ‖1 is
called the Manhattan norm, ‖ ⋅ ‖2 the Euclidean norm and the limit of p → ∞ the
maximum norm or Chebyshev norm.

Euclidean Vector Space. An inner, dot or scalar product on a complex or real
vector space is a positive definite symmetric sesquilinear form. A Euclidean vector
space is a real vector space equipped with an inner product. An inner product
⟨⋅, ⋅⟩ defines a norm by ‖x‖ = √⟨x, x⟩.

Regions and the Uniform Distribution. A region of a vector space is an open,
connected and non-empty subset of a Euclidean vector space. A set S ⊂ U of
randomly placed points is said to be randomly distributed in a region U with
uniform distribution, if the chance of a point s ∈ S to be placed at a point p is
equally high for every p ∈ U .

A.2 Graphs
A graph can be used to represent things and their relations. Graphs are, as abstract
representations, suitable for the examination of the structure of complex systems.

Graphs. An undirected graph G = (N , E) consists of a set of nodes N and a set
of undirected edges E, i. e. unordered pairs of nodes. A directed graph is a graph
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with directed edges, i. e. ordered pairs of nodes. We can associate, to every directed
graph G = (N , E), a simple undirected graph consisting of the nodes N and an
undirected edge (p, q), if either a directed edge (p, q) or a directed edge (q, p) exists
in G.

Graphs are even called networks, depending on the semantics of a graph, the
context it appears in and the author’s preferences. We will, in this thesis, not make
any distinction between both terms and use the term network only if it is part of a
widely used compound term.

Relations BetweenNodes and Edges. An undirected edge e is said to join a node
n, if the edge is of the form (n, ⋅) or (⋅, n). A directed edge (p, q) is said to start at p
and to end at q. Two nodes p and q are called adjacent in an undirected graph if
an edge (p, q) exists. Two nodes are called adjacent in a directed graph if they are
adjacent in the associated undirected graph. Adjacency is a equivalence relation.
Two edges are called incident, if they share a node. Two edges of a directed graph
are called consecutive, if one of them ends at the node that the other is starting at.

Types of Graphs. A graph is sometimes called abstract to emphasize that the
nodes and edges have no meaning apart from the fact that we can check whether
two nodes or edges are equal. A graph is called simple, if it has no loops, i. e. edges
starting and ending at the same node, and not more than one edge between each,
in case of directed graphs ordered and otherwise unordered, pair of nodes. A
graph that is not simple is called a hypergraph. A weighted graph is a graph where
a number is associated to each edge, and a named graph is a graph where an object
called name is associated to each edge.

Degree. The node degree of a node n is the number of edges which join the node n.
In a directed graph, the number of nodes ending at a node n is called the indegree
of the node n, and the number of nodes starting at a node n, the outdegree.

Subgraphs. A subgraph H of a graph G is a graph whose nodes are also nodes of
G and whose edges are also edges of G. We even write H ⊂ G, if H is a subgraph
of G. A subgraph H ⊂ G is called induced, if every edge of G which only joins
nodes of H is also an edge of H. An induced subgraph H = (N , E) ⊂ G is said to
be induced by the nodes N .

Complements. The complement of a graph G = (N , E) is a graph consisting of
the same nodes N such that an edge (p, q) with p, q ∈ N is contained in the
complement if and only if it is not in E.

CompleteGraph. Asimple graph is called complete, if there exists an edge between
each, in case of directed graphs ordered and otherwise unordered, pair of nodes.

Walks, Cycles and Holes. A walk or path of length k in an undirected or directed
graph consists of a number of nodes p0, … , pk and edges (pi, pi+1) for all 0 ≤ i < k.
The nodes p1, … , pk−1 are called inner nodes. A closed walk, where the inner nodes
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are pairwise non-equal, is called a cycle. A cycle is called a hole, if the nodes of the
cycle are only connected by edges which belong to the cycle.

Distance in a Graph. The distance δ(p, q) between two nodes p and q is defined
as the minimal length of walks between p and q, and a walk with minimal length
is called a shortest path. In a directed graph, the undirected distance is the distance
in the associated undirected graph.

Eccentricity and Centre Nodes. The eccentricity of a node p is the maximal dis-
tance from p to any other node of the graph. A node p is called a centre node, if it
is a node with minimal eccentricity.

Maximal Subgraphs. A subgraph H ⊂ G is called maximal for a property π, if
the property π is met for H but for no subgraph H′ ⊉ H.

Connected Component. An undirected graph is called connected, if there exists
a walk from each node to each other node of the graph. A directed graph is called
connected, if the associated undirected graph is. Maximal connected subgraphs
are called connected components.

Trees. An (undirected) tree is a connected graph without cycles, and a directed
tree is a graph whose associated undirected graph is an undirected tree. A rooted
tree is a directed tree, such that every node of the tree can be reached by a walk
starting at a distinguished point, called the root node. The height of a rooted tree is
the maximal distance between the root node and any other node in the graph.



B
Computational Aspects

Several algorithms were presented in the thesis, and some of them reuse exist-
ing algorithms. This chapter of the appendix provides an overview on existing
algorithms which either were used in the thesis or are of general interest in the
context of the thesis. This overview does not aim at explaining the algorithms in
detail but at providing a short and concise description and references to literature.

B.1 Root-Finding Problem
A very common mathematical problem is to find a value x such that f (x) = 0
for a function f ∶ℝn → ℝ. Such a value x is called root of the function f . Several
methods have been developed to iteratively improve a given estimation of a root,
e. g. the bisection method, Newton’s method and the secant method.

Secant Method. A simple algorithm to find a root of a function is the secant
method. The algorithm does, in contrast to Newton’s method, not assume the
function f to be differentiable but only to be continuous. In every step of the
iteration, a new estimation xn+1 is computed, based on the last estimation xn and
the last but one estimation xn−1:

xn+1 = xn −
xn − xn−1

f (xn) − f (xn−1)
⋅ f (xn).

The computation does, in general, not converge. If the function f is twice continu-
ously differentiable and has a simple root, the computation however converges.
The secant method is very old, and its historical development has been discussed
by Papakonstantinou et al. (2013).

B.2 Shortest Path Problem
The computation of a shortest path between two nodes of a graph is a common
problem. Existing algorithms that solve the shortest path problem have been
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reviewed by Delling et al. (2009) and Cherkassky et al. (1996). Both authors
characterize the algorithms, in particular, by their complexity and by the running
time of their implementations. The algorithms can also be used to heuristically
compute the average shortest path length. We only discuss one algorithm, because
the algorithm seems, at least for the considered data sets, to be much faster than
most others.

Partial Shortest Path Trees. Agarwal et al. (2012, 2013) propose the concept of
partial shortest path trees (PSPT). The PSPT of a node n is a certain subtree of
the original graph, such that it contains the node n, the PSPT of n intersects a
high number of PSPTs of other nodes, and at least one inner node of a shortest
path between n and an arbitrary node m lies in the intersection of the PSPTs of n
and m. An approximation to a shortest path between two nodes n and m can be
computed by finding a shortest path in the intersection of the PSPTs of n and m.
In some cases, the length of a shortest path between n and m in the intersection
of the PSPTs is longer than the shortest path between these nodes in the original
graph, but it has been proven by Agarwal et al. (2013) that the shortest path in the
intersection is at most one edge longer.

B.3 Centre Node
The centre node of a graph is a node with minimal eccentricity. It is of interest, in
the context of this thesis, to estimate inner and outer regions (cf. section 4.2).

2-Sweep and 2-dSweep Algorithms. It is time-consuming to compute the centre
node of a graph. Heuristic algorithms like the 2-Sweep algorithm for undirected
graphs and the 2-dSweep algorithm for directed graphs can be used to compute a
centre node much faster (Corneil et al. 2001, Crescenzi et al. 2012). They are based
on the following idea: in an undirected graph, we choose a node n0 and repeatedly
find a node ni+1 with maximal distance to ni. This approach results in a series (ni)i
of nodes, whose distance increases. The 2-Sweep algorithm stops at i = 2, and
the distance δ(n1, n2) is a lower bound for the diameter. An estimate of the centre
node is the middle node on a shortest path between n1 and n2, i. e. the node m⌊k/2⌋
for a shortest path (n1, m0, … , mk, n2).

In case of a directed graph, a similar algorithm is executed twice: the first time with
a forward search to find n1 and a backward search to find n2, and the second time
with a backward search to find n1 and a forward search to find n2. The results are
compared and the one with the higher estimate of the graph’s diameter is chosen.

B.4 Diameter
The computation of the diameter requires the computation of the distance for
each pair of nodes in a graph G = (N , E). A breadth-first search computes the
distance for one pair of nodes in O(|N| + |E|) time. As the number of edges |E|
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1 The overall result does not
depend on the choice of the
starting node, but can result
in longer running times.

varies between O(|N|) and O(|N|2) in a connected single graph, we expect the
computation of the distance for one pair of nodes to take O(|N|2) time in the worst
case, and the computation of the distance for all pairs of nodes to take O(|N|4)
time in the worst case. The algorithms discussed in the following are faster.

Floyd-Warshall Algorithm. Based on the idea that every subpath of a shortest
path is a shortest paths again, the Floyd-Warshall algorithm computes the distance
for each pairs of nodes in a graph simultaneously in O(|N|3) time (Floyd 1962,
Warshall 1962). Assume that all nodes are enumerated from 1 to |N|. We define
δ(i, j, k) to be the distance between the nodes i and j in the subgraph which is
induced by the nodes {1, … , k}, and we define δ(i, j, 0) = 1. We then compute,
recursively for k = 1, … , |N|, the distance in the subgraph induced by the nodes
{1, … , k} as

δ(i, j, k + 1) = min(δ(i, j, k), δ(i, k + 1, k) + δ(k + 1, j, k)).

As δ(i, j, |N|) is the distance in the original graph G, the distance is computed for
all pairs when k = |N|. The running time arises from the recursions in k, j and i.
The algorithm has, in this formulation, been published by Ingerman (1962).

iFub and DiFub Algorithms. The diameter of a graph can be computed much
more efficiently by heuristic algorithms, e. g. by the iFub algorithm for undirected
graphs (Crescenzi et al. 2013) and the DiFub algorithm for directed graphs (Cres-
cenzi et al. 2012). Both variants of the iFub algorithms compute the diameter in
O(|N| ⋅ |E|) time in the worst case. Crescenzi et al. (2012) proved that the diameter
can, in many cases, even be computed in O(|E|) time.

Both variants of the algorithms start with a node n0 that is considered to be central,
which can, for example, be computed by the 2-dSweep algorithm1 (cf. section B.3).
A forward and a backward breadth-first search is performed from n0. Beginning
with the nodes of largest distance to n0, the height of forward and backward
breadth-first search trees are computed for all nodes. Considerations about the
height of breadth-first search trees lead to a break condition at which the diameter
can be computed by the heights of the trees.

2-Sweep and 2-dSweep Algorithms. The 2-Sweep and the 2-dSweep algorithm
return an estimate of a centre node and a lower bound for the diameter. The
repeated execution of the algorithm for different start nodes results in a number
of lower bounds, whose maximum can be used as an estimate of the diameter.

B.5 Cliques

The concept of cliques and complete subgraphs has been used in mathematics
since the begin of the 19th century. The problem of computing maximal cliques
has been proven to be NP-complete. Algorithms thus have exponential running
time, unless they presume certain types of graphs, such as e. g. planar graphs.
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Bron-Kerbosch Algorithm. The maximal cliques in an undirected graph can be
computed by the Bron-Kerbosch algorithm. It was introduced by Bron et al. (1973)
and published in a simpler formulation by Akkoyunlu (1973). The algorithm re-
cursively collects nodes n0, … , nk such that each nodes lies in the neighbourhoods
of all their preceding nodes. The collected nodes form, by definition, a clique.
After adding a node to the collection, it is tested whether the clique is maximal.
Using recursive backtracking, all possible choices of nodes are considered, and
the cliques that are maximal are returned. The algorithm has exponential running
time.

B.6 Dominant Eigenvalue
Eigenvalues have numerous applications, because they characterize matrices and
the associated linear transformations well. Numerous algorithms for the compu-
tation of the eigenvalue with the largest absolute value exist. We discuss, in the
following, a simple algorithm that applies to general matrices. Algorithms for
specific types of matrices may have much faster convergence.

Power IterationAlgorithm. Von Mises et al. (1929) introduced an algorithm that
estimates the eigenvalue with the largest absolute value. The algorithm inductively
computes in each step an improved estimation. For an estimation of an eigenvector
bk which corresponds to the eigenvalue with largest absolute value of a matrix A,
we compute an improved estimation of the eigenvector as bk+1 = Abk /‖Abk‖ . The
iteration converges linearly, and each step can be computed in O(|N|) time.
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