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Abstract

Abstract. This thesis deals with the problem of analysing the struc-

ture of the austrian mechanical and plant engineering industry, especially

with the problem of calibrating a cost function and setting up time series

models for an industry analysis. The �rst part is based on the previous

work of [Ivaz, 2014] where a cost function, based on a Leontief produc-

tion function was calibrated. By considering a CES-production function,

a more general approach is given. It is proven that other common pro-

duction functions as for example the Leontief, Cobb-Douglas or linear

production functions are special cases of the CES-production function.

Based on this CES-production function the analytic expression of the

cost function C is derived, by minimizing the aggregate costs subject to

a certain amount of outcome, modelled by the CES-production function.

Given the data, the parameters of the cost function are estimated by

�tting the cost function using an ordinary least squares model.

Since this method is very unstable, from a numerical point of view, an-

other more application oriented approach based on [Kmenta, 1967] is

given. More precisely, a Taylor approximation of second order around an

initial point is performed and then �tted to the data points in order to

estimate these parameters.

The second part of this thesis deals with the problem of performing an

industry analysis. Therefore time series models of the di�erent data

are used, in order to give a prediction about the future. The statistics

xv



Abstract

program R is used to give a compact method of selecting and estimat-

ing ARIMA(p,d,q) and VAR(p) models, on which the prediction of the

future is based. Moreover this vector autoregressive model is used to in-

vestigate the dynamic of the system, using an impulse response functions.

This theory allows us to model di�erent price shocks in one variable and

simulating the model to study the in�uence on the other variables.
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Zusammenfassung

Zusammenfassung. Die vorliegende Diplomarbeit befasst sich mit dem

Thema, den Sektor der Maschinenbau und Anlagenbranche zu unter-

suchen und analysieren um eine Kostenfunktion aufzustellen. Weiters

wird eine Zeitreihenanalyse verschiedener Komponenten durchgeführt.

Der erste Teil basiert auf der Arbeit von [Ivaz, 2014], in welcher eine

lineare Kostenfunktion basierend auf einer Leontief Produktionsfunktion

kalibriert wurde. In dieser Arbeit, wird ein allgemeinerer Ansatz un-

tersucht, indem die Kostenfunktion basierend auf einer CES Produk-

tionsfunktion kalibriert wird. Weiters wird gezeigt, dass einige bekannte

Produktionsfunktionen, wie die Lenotief, Cobb-Douglas oder die lineare

Produktionsfunktion als Spezialfälle der CES Produktionsfunktion gese-

hen werden können.

Basierend auf dieser CES Produktionsfunktion, wird der analytische Aus-

druck der Kostenfunktion C über das Problem die aggregierten Kosten

unter der Nebenbedingung einer bestimmten Ausbringungsmenge, welche

über die CES Produktionsfunktion modelliert wird, zu minimieren, berech-

net. Die Parameter dieser bestimmten Funktion werden dann über die

Methode der Kleinsten-Quadrate-Schätzer bestimmt.

Aufgrund der Tatsache, dass diese Methode, von einem numerischen

Standpunkt gesehen, sehr instabil ist, wird eine weiterer, anwendung-

sorientierter Ansatz beschriebn, der auf die Arbeit von [Kmenta, 1967]

basiert. Dabei wird die Kostenfunktion durch ein Taylorpolynom zweiter

xvii



Zusammenfassung

Ordnung um einem bestimmten Punkt angenährt. Unter Verwendung

dieses Funktionstypen werden dann die Parameter, basierend auf den

historischen Daten bestimmt.

Der zweite Teil dieser Arbeit befasst sich mit dem Problem einer Branchen-

analyse des Maschinenbausektors. Dazu wurden verschiedne Zeitreihen-

modelle relevanter Gröÿen aufgestellt. Um eine kompakte Methode darzule-

gen, wird die Statistik Software R verwendet. Hierbei wird ein ARIMA(p,d,q)

oder VAR(p) Model ausgewählt und deren Parameter geschätzt. Auf-

bauend auf diesem Modell werden dann die Zukünftigen Werte geschätzt.

Weiters wird diese Vektor autoregressives Modell verwendet, um die Dy-

namik des Systems zu untersuchen. Dabei wird die Theorie der Im-

pulse Response functions benützt um unterschiedliche Preisschocks in

einer Variable zu modellieren. Ab diesem Zeitpunkt wird das System

dann simuliert, um die Auswirkung dieser Schocks, im Vergleich zum

ungeschockten Modell, zu untersuchen.

xviii



Part I.

Constructing the cost function
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CHAPTER 1

Fundamentals of production theory

In the �rst chapter we will give an introduction to the theoretical back-

ground of production functions, in the context of an input and output

oriented point of view. Therefore di�erent terms and methods are de-

�ned, where the concept of elasticity will play a major role. A general

class of production functions is generated by the property of a constant

elasticity of substitution, for all input vectors. We will proof that this

class of functions include other common production functions as for ex-

ample the Cobb-Douglas, Leontief or linear production functions and is

therefore very useful in the theory of �exible modelling of production

functions.

1.1. Introduction

To describe the technical boundaries of the production of certain goods in a manufac-

ture or a certain sector, we will make use of the commonly known production func-

tion. To do this, we will �rst of all de�ne production in a general way, as the process

of transforming inputs into outputs [Geo�rey et al., 2001, p.126]. We will therefore

choose a process oriented approach, where the production function maps the amount

3



1. Fundamentals of production theory

of input factors of the manufacture to its output [Wied-Nebbeling and Schott, 2006,

p.104].

According the notation, the amount of the i-th input factors will be denoted with

xi. Of course we want the input factors, as well as the output factors, to be posi-

tive real numbers, which restricts the domain, as well as the possible values of the

production function.

1.1 Definition. [Geoffrey et al., 2001, p.127] Let (xi, . . . , xn) = x be the amount
of input factors. The function f : Rn+ → R+, (x1, . . . , xn) 7→ f(x1, . . . , xn) = f(x),
mapping the amount of input factors to the amount of output that can be produced,
is called a production function.

With this de�nition given above, we are now able to describe and classify produc-

tion functions, according to their mathematical properties. Doing so, we additionally

require further characteristics.

1.2 Assumption. [Geoffrey et al., 2001, p.127] Let f : Rn+ → R+ be a production
function. Then f is continuous, strictly increasing, strictly quasiconcave and f(0) =
0 holds .

Continuity of f ensures that small changes in the amount of input factors result

in a small change of the amount of output. We don't want that small changes of

the amount of input factors result in a 'dramatic' change of the amount of output,

as it is in case of discontinuity at a certain point. According to the mathematical

de�nition of continuity it is true that limx→x0 f(x) = f(x0) [Geo�rey et al., 2001,

p.127].

Because of the logic argument that more amount of input can't e�ect a smaller

amount of output we furthermore require f to generate strictly more output when

strictly increasing the amount of input, [Geo�rey et al., 2001, p.127]. Thus it is

always true, that for all x,y ∈ Rn+ with x > y, which means that xi > yi for all

i = 1, . . . , n, it follows that also f(x) > f(y) holds.
Considering the assumption of a strict quasiconcave production function, we will

�rst take a look at the de�nition. A function f : D ⊆ Rn → R is strictly quasiconcave

if and only if, for all x,y ∈ D, x 6= y: f(λx + (1 − λ)y) > min{f(x), f(y)}, for all
t ∈ (0, 1) [Geo�rey et al., 2001, p.541]. To economically interpret this situation,

consider the special case of only two input factors, e.g. capital and work and two

4



1.1. Introduction

input combinations x,y. This input combinations are chosen, such that x has an

extremely high amount of work and an extremely low amount of capital. The other

input combination y is chosen such that it has an extremely high amount of capital

and an extremely low amount of work, respectively. In this situation, one is always

able to form an input factor z = λx + (1 − λ)y, for some t1 ∈ (0, 1). Choosing

t1 = 1/2 for example, results in an equally weighted combination of x and y. In case

of a strictly quasiconcave function we therefore �nd that choosing the input vector

z, di�ering from the extreme case, yields a higher output than one of the extreme

cases f(λx + (1 − λ)y) > min{f(x), f(y)} [Geo�rey et al., 2001, p.127]. Summing

up, this assumption demands some sort of economic rationality.

The assumption f(0) = 0 is just stated to make clear, that outputs can't be

created using no inputs, which is obvious anyway.

Additionally, the production function is sometimes also considered to be di�eren-

tiable. Thus we can compute its partial derivative with respect to a certain variable

xi and interpret this number as the rate at which output changes per additional unit

of input i employed, which also motivates the following de�nition.

1.3 Definition. [Geoffrey et al., 2001, p.127], [Wied-Nebbeling and Schott, 2006,
p.108] Let f : Rn+ → R+ be a production function. The marginal product of the i-th
input is defined as

MPi(x) = ∂f(x)
∂xi

(1.1)

and the average productivity of the i-th input factor as

APi(x) = f(x)
xi

. (1.2)

Now consider any �xed level of output represented by a positive real number,

c ∈ R+. Obviously, the case might occur, that there are many di�erent combinations

of inputs, creating the same amount of output. This is the case, when one can easily

substitute some of the input factors by others available. All possible combinations

of input vectors leading to this amount of outcome, are given by the set {x ∈ Rn+ :
f(x) = c} [Schmidt, 2013, p.369]. In most cases this set is going to be a curve,

de�ned in the space Rn+, such that we can state that this set can be represented

by a curve, showing all possible combinations of inputs that yield the same output

5



1. Fundamentals of production theory
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Figure 1.1.: Different c-level-isoquants for the production function f(x1, x2) =√
x1
√
x2 with c1 = 1, c2 =

√
5 and c3 =

√
10.

[Pindyck and Rubinfeld, 2013, p.216].

1.4 Definition. Let f : Rn+ → R+ be a production function and c ∈ R+. The
c-level-isoquant is defined as the set {x ∈ R+ : f(x) = c}.

An illustrative example of di�erent level-isoquants is given in Figure 1.1, where

we can see that one is free to choose the input combination, to get a certain amount

of output.

1.5 Definition. [Uebe, 2013, p.21] Let f : Rn+ → R+ be a differentiable production
function and c ∈ R+. Consider a certain c-level-isoquant, choose two input factors
i, j = 1, . . . , n and fix every component xk of the input vector, where k = 1, . . . , n,
k 6= i and k 6= j except for the two xi and xj . The marginal rate of substitution of
the factors i and j is defined as

MRSij(x) =
∂f(x)
∂xi
∂f(x)
∂xj

.

Trying to give meaning to the de�nition stated above, we �rst note that we only

consider a certain isoquant and only two variable factors xi and xj . Thus we �nd

6



1.2. Homogeneous production functions

that f(x1, . . . , xn) = f(xi, xj) = c, since these are the only variables left. Taking the

total di�erential of both sides of this equation yields

df =
n∑
k=1

∂f

∂xk
dxk = ∂f

∂xi
dxi + ∂f

∂xj
dxj = 0. (1.3)

Reformulating (1.3) yields

MRSij =
∂f(x)
∂xi
∂f(x)
∂xj

= −dxj
dxi

,

which can be precisely explained with the help of the theorem of implicit functions

and simply represents the negative slope of the c-level-isoquant. This is due to

the fact that one can �nd an expression of the form xj(xi) based on the equation

f(x1, x2) = c, under certain conditions.

A further remark may be added to the fact, that the slope of the c-level-isoquant

does not depend on the chosen constant c itself, as it can be seen from (1.3) and

Figure 1.1.

1.2. Homogeneous production functions

1.6 Definition. [Schmidt, 2013, p.367] A function f : Rn+ → R+ is called homo-
geneous of degree α ∈ R if for all λ ∈ R+ \ {0} and x ∈ Rn+ : f(λx) = λαf(x)
holds.

Homogeneous production functions show a very pleasant characteristic, commonly

used to describe some economic features of a production function in a very elegant

way. Increasing the amount of input by a factor λ yields an increase of the amount

of output by a factor λα. Thus, knowing the degree of homogenity makes it possible

to determine the change of output, only with the help of the change of the input.

1.7 Example. [Schmidt, 2013, p.368] Consider production functions of the form
f(x) =

(∑n
i=1 αix

−ρ
i

)− ν
ρ and g(x) =

∏n
i=1 x

αi
i . Since

f(λx) =
(

n∑
i=1

αi(λxi)−ρ
)− ν

ρ

= λν
n∑
i=1

(
αix
−ρ
i

)− ν
ρ = λνf(x)

7



1. Fundamentals of production theory

and

g(λx) =
m∏
i=1

(λxi)αi =
m∏
i=1

λαi
m∏
i=1

xαii = λ
∑m

i=1 αi
m∏
i=1

xαii = λ
∑m

i=1 αi
m∏
i=1

g(x)

holds, f is homogeneous of degree ν and g is homogeneous of degree
∑m
i=1 αi.

1.8 Definition. [Schmidt, 2013, p.368] Let f : Rn+ → R+ be a production function
and γ ∈ (1,∞). If the following condition holds for all x ∈ Rn+ we say that f has

(i) increasing returns of scale if f(γx) > γf(x),

(ii) constant returns of scale if f(γx) = γf(x) and

(iii) decreasing returns of scale if f(γx) < γf(x).

To describe the concept of returns of scale using homogeneous production func-

tions, we want f to be a homogeneous production function of degree α. According

to de�nition 1.6, f has increasing returns of scale, if α > 1, constant returns of scale,
if α = 1 and decreasing returns of scale, if α < 1.

1.3. The concept of elasticity

Following the standard characteristics to describe productionfunctions thoroughly,

we now come to the point of considering di�erent elasticities in a general setup,

as well as in the context of production functions. To introduce a general concept,

assume that we have two economic quantities u and w that are related to each other,

w = w(u). Later on the concept will be expanded for general production functions.

1.9 Definition. [Uebe, 2013, p.24] Let u,w be two economic quantities. The elas-
ticity between u and w is defined as

ε = u

w

dw
du = dw/w

du/u ≈
∆w/w
∆u/u .

It is scarcely necessary to point out that, no matter what dimension u and w

have, its according elasticity is in any case a dimensionless number. Regarding the

de�nition above, we can give an interpretation. Changing the amount of u by 1%,

which means that ∆u
u = 1%, is going to lead to a ε%-change of w. This general way

8



1.3. The concept of elasticity

of considering elasticities can be assigned to various type of variables u and w, as it

will be done concerning production functions.

A further remark may be added, that the elasticity may also be de�ned as the

logarithmic derivative ε = d lnw
d lnu . Using the chain rule yields

ε = d lnw
d ln u = d lnw

dw
dw
du

du
d ln u

= d lnw
dw

dw
du

1
d ln u/du

= 1
w

dw
du

1
1/u

= u

w

dw
du ,

showing that both ways to de�ne elasticity are equivalent [Uebe, 2013, p.24].

1.10 Example. Consider an economic relation via the formula w(u) = αuβ, where
α, β ∈ R. Applying definition 1.14 yields

ε = u

w

dw
du = 1

αuβ−1αβu
β−1 = β.

It may also be added, that we could also use the logarithmic definition of the elas-
ticity, since both are equivalent. According to the logarithmic definition, we find

ε = d lnw
d ln u = d

d ln uβ (ln u+ lnα) = β,

resulting in the same conclusion as seen above.

Consequently, the next step is to extend the concept of elasticity into the setting

of production functions. Doing so, we will de�ne three di�erent terms, namely the

elasticity of production, the elasticity of scales and the elasticity of substitution.

1.3.1. Elasticitiy of production

1.11 Definition. [Schmidt, 2013, p.374] Let f : Rn+ → R+ be a differentiable
production function. The partial elasticity of the i-th input factor of f is defined as

9



1. Fundamentals of production theory

εi(x) =
xi
∂f(x)
∂xi

f(x) =
∂f(x)
∂xi
f(x)
xi

. (1.4)

At a very �rst sight, this de�nition seems rather complicated but can easily made

plausible by considering de�nition 1.3. Hence we conclude that the elasticity of the

production function is equal to

εi(x) = MPi(x)
APi(x) .

So the elasticity gives information about the ratio of marginal product and the

marginal productivity.

Analysing the elasticity of production, we may also conclude that a 1%-change of

the amount of the i-th input factor yields a εi%-change of the expected amount of

outcome [Uebe, 2013, p.25].

Again, we can connect the concept of the elasticity of a production function with

the concept of homogeneous functions. This yields a quite remarkable result which

is also known as the 'Eulersche Homogenitätsrelation'.

1.12 Theorem. [Schmidt, 2013, p.378] Let f : Rn+ → R+ be a differentiable pro-
duction function and homogeneous of degree α ∈ (0,∞). Then

α = 〈x|gradf(x)〉
f(x) =

n∑
i=1

εi(x)

holds true for any arbitrary fixed input vector x ∈ Rn+.

Proof. Let x be a fixed input vector in Rn+ and define the functions ξ : R+ → R+,
ξ(c) = f(cx) and η : R+ → Rn+, ηi(c) = cxi for all i = 1, . . . , n. It can easily be seen,
that we can write the function ξ as the composition of both functions f and η, which
yields ξ(c) = f(η(c)) = (f ◦ η)(c). Since both functions f and η are differentiable,
we can also differentiate its composition with respect to its variable c. Applying the
chain rule yields

dξ
dc = ξ′(c) = (f ◦ η)′(c) =

n∑
i=1

∂f

∂ηi
(η1(c), . . . , ηn(c)) ∂ηi

∂c

10



1.3. The concept of elasticity

=
n∑
i=1

∂f

∂ηi
(cx1, . . . , cxn)xi (1.5)

On the other side, we required the production function f to be homogeneous of
degree α. This yields that

ξ(c) = f(cx) = cαf(x). (1.6)

Differentiating (1.6)with respect to c therefore yields

ξ′(c) = αcα−1f(x). (1.7)

According to both representations of the derivative of ξ in(1.8) and(1.7), which have
both to be true for all c, we find for c = 1

αf(x) =
n∑
i=1

∂f

∂xi
(x1, . . . , xn)xi.

Thus it follows that

α =
n∑
i=1

xi
∂f(x)
∂xi

f(x) = 〈gradf(x)|x〉
f(x) =

n∑
i=1

εi(x).

For the sake of an example, we now want this illustrate this theorem using the

production functions of example 1.7.

1.13 Example. [Schmidt, 2013, p.379] Consider two production functions of the
form f(x) =

(∑n
i=1 αix

−ρ
i

)− ν
ρ and g(x) =

∏n
i=1 x

αi
i . First of all we consider the

production function g. According to the definition, we have to compute its partial
elasticity for an arbitrary i ∈ {1, . . . , n}

εg,i(x) = xi∂f(x)/∂xi
f(x) = xi(xα1

1 · . . . · αix
αi−1
i · . . . · xαnn )

xα1
1 · . . . · x

αn
n

= αi
∏n
i=1 x

αi
i∏n

i=1 x
αi
i

= αi. (1.8)

Considering theorem 1.12, we have tu sum up all partial elasticities for i = 1, . . . , n.

11



1. Fundamentals of production theory

Thus (1.8) yields

n∑
i=1

εg,i(x) =
n∑
i=1

αi,

which is precisely the degree of homogenity for this class of production functions,
we considered in example 1.7, so the theorem holds.
Now we want to compute the sum of partial elasticities of the production function

f in an analogous way, according to the procedure shown above. Thus we again
calculate its partial elasticity for an arbitrary i ∈ {1, . . . , n}

εf,i(x) =
xi
∂f(x)
∂xi

f(x) = xi

(
∑n
i=1 αix

−ρ
i )−

ν
ρ

(
−ν
ρ

(
α1x

−ρ
1 + . . .+ αnx

−ρ
n

)− ν
ρ
−1

(−ρ)αix−ρ−1
i

)

= ν
αix
−ρ
i

(
∑n
i=1 αix

−ρ
i )

(1.9)

Again, summing up all partial elasticities in (1.9) for i = 1, . . . , n and concidering the
fact that the sum in the denominator is a constant and can therefore be multiplied
with the sum, yields

n∑
i=1

εf,i(x) = ν∑n
j=1 αjx

−ρ
j

(
n∑
i=1

αix
−ρ
i

)
= ν,

which again equals the degree of homogenity of the production function in example
1.7, according to theorem 1.12.

1.3.2. Elasticity of scale

1.14 Definition. [Uebe, 2013, p.25] Let f : Rn+ → R+ be a production function.
The number

ζ(x) = lim
λ→1

∂f(λx)
∂λ

λ

f(λx)

is called the elasticity of scale.

This de�nition can be seen as an extension of the de�nition of the elasticity of

production. The analogue interpretation would be, that a proportional change of

12



1.3. The concept of elasticity

every input factor of 1% leads to a change of amount of the outcome of ζ%. Naturally

the question arouses, if we can �nd a connection between the elasticity of scale and

the elasticity of production [Uebe, 2013, p.24]. This connection is given by the

theorem of Wicksell- Johnsonn.

1.15 Theorem. [Uebe, 2013, p.24] Let f : Rn+ → R+ be a continuously differen-
tiable production function, and let ζ, εi be its corresponding elasticity of scale and
elasticity of production for the i-th input factor. Then

ζ(x) =
n∑
i=1

εi(x)

holds for every input combination x ∈ Rn+.

Proof. Let x ∈ Rn+ be a fixed input vector. By definition we know, that f(λx) =
f(λx1, . . . , λxn). Thus we can again consider its derivation with respect to λ. Define
the functions ξ : R+ → R+, ξ(λ) = f(λx) and η : R+ → Rn+, ηi(λ) = λxi for all
i = 1, . . . , n. Thus we can rewrite ξ(λ) = f(η(λ)) = (f ◦ η)(λ). Using the chain rule
yields

dξ
dλ = ξ′(λ) = (f ◦ η)′(λ) =

n∑
i=1

∂f

∂ηi
(η1(λ), . . . , ηn(λ))∂ηi

∂λ

=
n∑
i=1

∂f

∂ηi
(λx1, . . . , λx2)xi. (1.10)

According to the definition of the elasticity of scale and (1.10), we compute

∂f(λx)
∂λ

λ

f(λx) =
n∑
i=1

∂f

∂ηi
(λx1, . . . , λx2) λxi

f(λx) .

Taking the limit λ→ 1 results in the elasticity of scale:

ζ(x) = lim
λ→1

∂f(λx)
∂λ

λ

f(λx) =
n∑
i=1

∂f

∂xi
(x1, . . . , x2) xi

f(x) =
n∑
i=1

εi(x),

which completes the proof.
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1. Fundamentals of production theory

1.3.3. Elasticity of substitution

1.16 Definition. [Uebe, 2013, p.26] Let f : Rn+ → R+ be a differentiable pro-
duction function and c ∈ R+. Consider a certain c-level-isoquant, choose two in-
put factors i, j = 1, . . . , n and fix every component xk of the input vector, where
k = 1, . . . , n, k 6= i and k 6= j except for the two xi and xj . Thus xi and xj are the
only variables left. The elasticity of substitution between the input factor xi and xj
is defined as

σij =
d ln

(
xi
xj

)
d ln(MRSji)

.

Thus we can state, that the definition of σij is only true, given ∂f
∂xi

dxi+ ∂f
∂xj

dxj = 0,
which is the mathematical way to describe that the input combinations lie on the
same isoquant.

Due to the fact that this formula turns out to be much more easier, an equivalent

de�nition, reformulated in terms of logarithmic derivations would also be possible:

σij =
d
(
xi
xj

)
d(MRSji)

MRSji
xi
xj

=

d(MRSji)
d
(
xi
xj

)
−1

MRSji
xi
xj

.

Thus the elasticity of substitution describes the change of the marginal rate of sub-

stitution along an isoquant while changing the ratio xi/xj .

1.4. The Constant elasticity of substitution function

In this section we want to introduce a special production function, which is in some

sense more general, than the well known Leontief, Cobb-Douglas or linear production

function. The most remarkable feature of this function is, that it's elasticity of

substitution between any two arbitrary input factors is constant.

1.17 Definition. [Sydsæter et al., 2008, p.72] Let β ∈ [0,∞), ρ ∈ [−1,∞) \ {0},
ν ∈ (0,∞) and δi > 0 for all i = 1, . . . , n with

∑n
i=1 δi = 1. A production function

14



1.4. The Constant elasticity of substitution function

of the form f : Rn+ → R+,

f(x) = β

(
n∑
i=1

δix
−ρ
i

)− ν
ρ

is calld a CES-function.

For a production function of this form, we can interpret the four di�erent types of

coe�cients as follows

(i) The coe�cient β determines the productivity of the whole process,

(ii) the parameters δ1, . . . , δn can be seen as some sort of share factor since they

add up to 100 % and are weighted with the input factors.

(iii) The parameter ρ is closely connected with the elasticity of substitution, via

the relation σij = 1
1+ρ , for all i, j = 1, . . . , n, i 6= j.

(iv) The last parameter ν simply represents the degree of homogenity and thus also

equals the elasticity of scale.

It is a straightforward calculation to compute all the di�erent characteristic numbers

for production functions, introduced in this chapter. The result is listed in Table

1.1. At this point it may be added, that a general CES-production function has also

a constant elasticity of scale.

In [Yasui, 1965], it was proven for the special case of n = 2, that every function

that has a constant elasticity of substitution has to be of the form

f(x1, x2) = F

[(
δx−ρ1 + (1− δ)x−ρ2

)− 1
ρ

]
,

where F : R → R is an arbitrary di�erentiable function. We get the general form

of the CES-production function we de�ned in de�nition 1.17, when we additionally

require the production function to be homogeneous of degree ν, using Theorem 1.12

[Yasui, 1965].

As already stated above, the CES-function is a more general way to describe pro-

duction functions. This is due to the fact, that a special choice of certain parameters

of the CES-function involves other common production functions. This circumstance

is discussed and explained thoroughly in theorem 1.18.
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1. Fundamentals of production theory

Table 1.1.: Characteristic numbers of the CES-production function, where λ is
the degree of homogenity, MPi the marginal product of the i-th input
factor, MRSij the marginal rate of substitution of the factors i and j,
σij the elasticity of substitution of the factors i and j, as well as the
elasticity of scale ζ.
λ MPi MRSij σij ζ

ν β
(
νδix

−ρ−1
i

∑n
i=1 αix

−ρ
i

)
αi
αj

(
xi
xj

)−ρ−1 1
1+ρ ν

1.18 Theorem. [Böhm, 2013, p.38] Let f : Rn+ → R+, f(x) = β
(∑n

i=1 δix
−ρ
i

)− ν
ρ

be a CES-production function. Then the following holds true:

(i) Taking the Limit ρ → 0 results in a general Cobb-Douglas function, with the
degree of homogenity of ν.

(ii) Taking the limit ρ → ∞ results in a general Leontief function, with a degree
of homogenity of ν.

(iii) Taking the limit ρ→ −1, with ν = 1 results in a linear production function.

Proof. First if all consider (i). As it follows from the statement of the theorem we
calculate the limit of the CES-function straightforwardly. Therefore we use a little
trick, taking the exponential function of the logarithmic of the function itself. This
yields

lim
ρ→0

f(x) = lim
ρ→0

exp ln

β ( n∑
i=1

δix
−ρ
i

)− ν
ρ


= lim

ρ→0
β exp

(
−ν
ρ

ln
(

n∑
i=1

δix
−ρ
i

))

= β exp
(

lim
ρ→0
−ν
ρ

ln
(

n∑
i=1

δix
−ρ
i

))
.

Thus we only need to compute the argument of the exponential function, which
can be analysed by using L’Hospitals rule, since we find an expression of the form
0/0 as ρ → 0. Using the rule of derivation with respect to ρ: dx−ρ

dρ = −x−ρ ln x,
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1.4. The Constant elasticity of substitution function

differentiating both nominator and denominator yields,

lim
ρ→0
−ν
ρ

ln
(

n∑
i=1

δix
−ρ
i

)
= lim

ρ→0

ν
∑n
i=1 δi ln(xi)x−ρi∑n
i=1 δix

−ρ
i

= ν
n∑
i=1

δi ln xi,

since all the share factors δi add up to one, according to the definition of the CES-
production function. Summing up we found, that the limit

lim
ρ→0

f(x) = β exp
(
ν

n∑
i=1

δi ln xi

)

= β
n∏
i=1

xνδii ,

which represents a general Cobb-Douglas function with degree of homogenity of ν,
as it is the case of the CES-production function. In fact this result is also reasonable,
since choosing the coefficient ρ = 0 yields an elasticity of substitution of one, as it
is the case concerning the Cobb-Douglas production function.

Secondly, to proof (ii) we would first of all guess, that ρ → ∞ would probably
result in a Leontief production function, since the elasticity of substitution converges
to zero. To see this we take a closer look at

lim
ρ→∞

β

(
n∑
i=1

δix
−ρ
i

)− ν
ρ

= lim
ρ→∞

β
(
δ1x
−ρ
1 + . . .+ δnx

−ρ
n

)− ν
ρ

= β lim
ρ→∞

 1
ρ

√
δ1x
−ρ
1 + . . .+ δnx

−ρ
n

ν .
Since the input parameters x1, . . . , xn are fixed, we can find the smallest of them,
denoted by xM = mini=1,...,n xi and its associated share parameter δM , respectively.
This yields

lim
ρ→∞

β

(
n∑
i=1

δix
−ρ
i

)− ν
ρ

= β lim
ρ→∞

 1

ρ

√( 1
xM

)ρ
ρ

√
δ1(xMx1

)ρ + . . .+ δM + . . .+ δn(xMxn )ρ


ν

17
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= β lim
ρ→∞

 xM
ρ

√
δ1(xMx1

)ρ + . . .+ δM + . . .+ δn(xMxn )ρ

ν .
Since we chosen xM to be the minimum of all the input factors, each and every ratio
xM/xi is smaller or even one, for i = 1, . . . , n. Therefore the root in the denominator
converges to one. Summing up, we found that

lim
ρ→∞

β

(
n∑
i=1

δix
−ρ
i

)− ν
ρ

= β

(
min

i=1,...,n
xi

)ν
,

which represents a general Leontief function, again with the degree of homogenity
equal to ν, as the CES- production function.
Concerning (iii), we can simply calculate the limit, setting ν = 1

lim
ρ→−1

β

(
n∑
i=1

δix
−ρ
i

)− ν
ρ

= β (δ1x1 + . . .+ δnxn) ,

resulting in a linear production function.

If we de�ne the sets

(i) COB = {f(x) : Rn+ → R+ : f(x) = β
∏n
i=1 x

αi
i : β > 0, αi > 0 for all i =

1, . . . , n}

(ii) LEON = {f(x) : Rn+ → R+ : f(x) = β(mini=1,...,n xi) : β > 0}

(iii) LIN = {f(x) : Rn+ → R+ : f(x) =
∑n
i=1 αixi : αi > 0 for all i = 1, . . . , n}

and

(iv) CES = {f(x) : Rn+ → R+ : f(x) = β
(∑n

i=1 δix
−ρ
i

)− ν
ρ : β > 0, ρ ∈ [0,∞) \

{0}, ν > 0 and δi > 0 with
∑n
i=1 δi = 1 for all i = 1, . . . , n} ∪ {f̂1(x, f̂2(x)},

where f̂1(x) = limρ→∞ β
(∑n

i=1 δix
−ρ
i

)− ν
ρ and f̂2(x) = limρ→0 β

(∑n
i=1 δix

−ρ
i

)− ν
ρ .

We immediately conclude from theorem 1.18 that COB ⊆ CES, LEON ⊆ CES and

LIN ⊆ CES holds true.

Thus we can choose an arbitrary element of the set COB, LEON or LIN , which

represents a Cobb- Douglas, Leontief or linear production function and see that it

18



1.4. The Constant elasticity of substitution function

is also included in the set CES. Therefore each of these production function can be

written using special parameters of the CES production function.

Having this result in mind, we will model the cost function of a certain sector based

on a CES-function, since this is obviously the most general way to describe certain

properties. This is due to the fact that all other common production functions are

only special cases of the more general CES-function.
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CHAPTER 2

Basic results of previous works

In this chapter we shortly summarize and give an overview about the

previous work done in this �eld, based on [Ivaz, 2014]. Following this

ideas, the producer price index is introduced and a �rst approximation of

the cost function, based on separate linear regression models, for di�erent

input variables, is given.

2.1. The producer price index

To get rid of the e�ect of in�ation, we renormalise all data by using the producer price

index (PPI )of the mechanical engineering branch published by statistics austria.

According to [Ivaz, 2014, p.44] the PPI is calculated, choosing the basis year 2011,

because it was the latest year providing the data. Based on this data, a factor pt,

where t = 2008, . . . , 2011 denotes the year, has to be construed to normalize given

values of di�erent years, such that multiplying this factor results in in�ation-adjusted

values that can be compared.

In Table 2.1 the characteristic numbers to compute the price adjustment are given.

21



2. Basic results of previous works

Table 2.1.: The values vt of the years 2008-2011, on which the calculation of the
correction factor pt is based, as well as the annual change rate ∆t.

Year 2008 2009 2010 2011

Annual change ∆t -0,753 % 3,507% 1,500% /
Value with basis year 2011 vt 95,9057 95,1840 98,5222 100
Correction factor pt 1,0427 1,0506 1,0150 1

Given the values vt, we can compute the annual change rate via the formula

∆t = vt+1 − vt
vt

for the years 2008, 2009, 2010.

Having this annual change rate ∆t, we can now calculate the values vt for t < 2011
with the basis year of 2011, given the annual change rate. This can be done by using

the following formula

vt = v2011∏2010
k=t (1 + ∆k)

= 100∏2010
k=t (1 + ∆k)

.

The correction factor for a certain year pt can then be calculated by

pt = v2011
vt

= 100
vt

=
2010∏
k=t

(1 + ∆k).

According to the statistics of the WKO, we �nd the data for the whole expenditures

Et for the years 2008,2009,2010 and 2011, given in Table 2.2. This data will then be

multiplied with the factor pt according to the considerations stated above, to �nd

the re-assessed expenditures Ẽt = Etpt for each year. The result of this approach is

also given in Table 2.2.
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2.2. Computation of the Cost function as a function of working hours

Table 2.2.: This table shows the accumulated entire expenditures Et for the years
2008-2010, as well as the re-assessed accumulated entire expenditures
Ẽt and the working hours x.

Year 2008 2009 2010 2011

Entire expenditures Et 15.977.799.00013.186.539.00012.844.611.00015.485.238.000
Re-assessed Entire
expenditures Ẽt 16.660.051.01713.853.777.87313.037.280.16515.485.238.000
Working hours x 98558670 91024723 85718242 94131837

2.2. Computation of the Cost function as a function of
working hours

According to the given data of the WKO, we are able to use the data points to

construct a linear cost function C(x) with the working hours x as the variable. Ac-

cording to the considerations above we will use the expenditures Et as well as the

re-assessed expenditures Ẽt. This values are given in Table 2.2. The plot of the cost

function using the normal expenditures is given in Figure 2.1 and the plot using the

re-assessed expenditures is given in Figure 2.2. Concerning the accuracy of the linear

regression model we used, we �nd that R2 = 0, 69441 for the normal expenditures.

Another linear regression with the re-assessed data Ẽt yields a better accuracy with

R2 = 0, 7557.
At this point the idea of modelling the cost function, with the working hours as the

depended variable is rejected, since the working hours does not show the su�cient

�exibility to regulate certain scenarios in an accurate manner.

2.3. Computation of the Cost function as a function of the
production value

Since the accuracy of the �t wasn't satisfactory, the next idea was to create an own

variable, corresponding to the production value xPV of the branch. According to the

production statistics of Statistic Austria this calculated production values xPV , as

well as the re-assessed ones x̃PV , using the method of the PPI, are given in Table
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Figure 2.1.: The linear approximated cost function C(x) as a function of the work-
ing hours x, using the normal expenditures for the years 2008-2011.
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Figure 2.2.: The linear approximated cost function C(x) as a function of the work-
ing hours x, using the re-assessed expenditures for the years 2008-
2011.
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2.4. Construction of an output orientated cost function

Table 2.3.: The production value PV , the re-assesed production value P̃ V , the
variable xPV and the re-assessed variable x̃PV used for the computation
of the cost function dependend of the variable of the production value.

Year 2008 2009 2010 2011

PV 15.891.633.000 12.980.208.000 12.920.163.000 15.842.013.000
xPV 158.916.330 129.802.080 129.201.630 158.420.130
P̃ V 16.570.205.729 13.637.006.525 13.113.965.445 15.842.013.000
x̃PV 165.702.057 136.370.065 131.139.654 158.420.130

2.3. Given the data of Statistics Austria we compute the variable xPV based on the

given production values via the formula

xPV = PV

100 ,

such that this variable has the unit of monetary units divided by a factor 100 for the

sake of convenience. Again we can compute a linear cost function C(x̃PV ) but this
time with the self created variable x̃PV , which should lead to more accurate results.

A linear regression model yields an accuracy of R2 = 0, 97854 and is shown in Figure

2.3. Thus we found a much more accurate model but since the �xed costs of this

model are about 4% of the whole expenditures,this approach was also rejected.

2.4. Construction of an output orientated cost function

At this point, the expenditures are separated into costs of materials, costs of labour

and costs of technology. A further remark may be added, that we add any costs,

that are not possible to allocate to any of this three cost categories, to the third one.

Based on a Leontief production function we assume the corresponding cost function

C(x̃PV , x) to be linear, whereas we want to consider the two variables: re-assessed

production value x̃PV and the working hours x. Having this in mind, we split the

cost function in three parts,

C(xPV , x) = CM + CL + CT
= cvM x̃PV + CfM + cvLx+ CfL + cvT x̃PV + CfT , (2.1)
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Figure 2.3.: This plot shows the linear approximated cost function C(x̃PV ) as a
function of the re-assessed production value x̃PV using the re-assessed
expenditures for the years 2008-2011.

where the indexM stands for material, L for labour and T for technology, according

to the three di�erent types of cost categories. In the next step, we have to determine

the variable costs for all three di�erent cost categories. Again this is done by a linear

regression. Analysing the linear regression model yields the variable as well as the

�xed costs for every cost category listed above. Thus we �nd cvM = 36, 75761, cvL =
28, 06162, cvT = 47, 25623 as well as CfM = 1.027.323.254, CfL = 641.949.365, CfT =
−1.908.392.250. According to the fact that the �xed costs of the technology category
is negative this basic approach is replaced by a polynom of second order with pre

de�ned �xed costs of CfT = 3.500.000.000, which is a plausible value. Thus we �nd

for the cost function of technology

CT (xPV ) = 0, 0000002635x2
PV + 28, 63538xPV + 3.500.000.000.

Summing up all single parts according to (2.1) with the estimated variable and �xed

costs, yields the total cost function

C(xPV , x) = 0, 0000002635x2
PV + 65, 39299xPV + 28, 06162x+ 5.169.272.619,
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2.4. Construction of an output orientated cost function

Table 2.4.: The costs of material MC, the costs of labour LC, the costs of tech-
nology TC, the working hours x as well as the production value x̃PV
for the years 2008-2011.

Year 2008 2009 2010 2011

MC 6.980.529.000 6.061.653.000 5.520.656.000 6.731.340.000
L̃C 3.370.819.706 3.197.549.428 3.027.476.025 3.338.854.000
TC 5.764.490.000 4.081.340.000 4.341.220.000 5.415.044.000
xPV 158.916.330 129.802.080 129.201.630 158.420.130
x 98.558.670 91.024.723 85.718.242 94.131.837

which is plotted in Figure 2.4.
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Figure 2.4.: The cost function C(xPV , x) as a function of the production value xPV
and the working hours x.

28



CHAPTER 3

Constructing the Cost function on the basis of a CES

production function

In this chapter we will derive the mathematical form of the cost function

based on a general CES-production function, by solving a minimization

problem using the method of Lagrange multipliers. Further more the

factor prices and the �xed costs associated with the cost function are

estimated, again based on the work [Ivaz, 2014]. In the last part of

this chapter, another method of estimating the parameter of the CES-

production function, following the idea of [Kmenta, 1967], is introduced

and analysed, showing the advantages and disadvantages of this proce-

dure.

3.1. Deriving the cost function

Since we �nd ourselves in the situation of having only information about the cost

structure available, we have to determine the cost function, based on its produc-

tion function. With the determination of the production function, we are able to

discuss the technical possibilities of a certain sector, whereas the cost function char-

acterises its economic features [Wied-Nebbeling and Schott, 2006, p.132]. Doing so,
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3. Constructing the Cost function on the basis of a CES production function

we are confronted with the problem of computing the cost function, given a certain

production function.

3.1.1. The general case of n input factors

Lets assume that we have given an arbitrary production function f : Rn+ → R+

mapping n input variables to a certain amount of outcome. The task is to �nd the

minimal cost combination of the amount of input factors x1, . . . , xn, knowing the

factor prices qi for one unit of amount of xi, for all i = 1, . . . , n and calculate its

costs C(x) =
∑n
i=1 qixi +FC, where FC denotes the �xed costs. The cost function is

restrained by a certain amount of outcome due to economic reasons. Summing up,

we have to solve the minimisation problem

min
xi∈R+,
i=1,...,n

(q1x1 + . . .+ qnxn + FC) = min
xi∈R+,
i=1,...,n

C(x),

given the constraint of a certain production level c̄, with c̄ ∈ R+

f(x) = c̄.

Note, that we can ignore the �xed costs in the minimization problem, since it repre-

sents a constant factor and does not change the position of the minimum, but only

the value itself. Thus we ignore the �xed costs, solve the minimization problem and

add them to the cost function afterwards.

One can interpret this problem as follows: Assume we have given a certain c̄-level-

isoquant. This means that we have a set of input variables available, namely all

input combinations, referring to that c̄-level-isoquant. We then have to look for the

combination of input factors of this set, having the characteristic feature of being

the input combination, referring to minimal costs.

This is a classical problem to be solved with the method of Lagrange multipliers

[Uebe, 2013, p.38]. Thus we set up the Lagrangian function L(x, λ) = C(x) + λ(c̄−
f(x)) and set its partial derivatives with respect to xi, for i = 1, . . . , n and λ to zero,

to �nd the minimum of the cost function. Doing so, we generally get n+1 non linear
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3.1. Deriving the cost function

equations of the form

∂L
∂x1

= ∂C
∂x1
− λ ∂f

∂x1
= 0,

...

∂L
∂xn

= ∂C
∂xn

− λ ∂f
∂xn

= 0,

∂L
∂λ

= c̄− f(x) = 0. (3.1)

Since we know that ∂C
∂xi

= qi for all i = 1, . . . , n and additionally ∂f
∂xi

= MPi(x) (see
de�nition 1.3) holds, we can reformulate (3.1) to a system of equations of the form

q1 = λMP1(x)
...

qn = λMPn(x)

c̄ = f(x). (3.2)

Thus we have to look for the combinations of amount of input factors where

qi
qj

= MPi(x)
MPj(x) = MRSij(x) (3.3)

holds, for all i, j = 1, . . . , n, i 6= j, given a certain c̄-level-isoquant c̄ = f(x)
[Uebe, 2013, p.39]. Remarkably we �nd the result, that the optimal combination

of amount of input factors is to be found, when the ratio of factor prices equals the

marginal rate of substitution. At this point we are not able to simplify the result

further on, since the marginal rate of substitution depends on the given production

function.

3.1.2. The special case of two input factors for the CES function

In many situations we �nd ourself confronted with the problematic of two input

factors, commonly labour and capital. This motivates the special case to compute

the cost function only for two input factors x1 and x2 with given factor prices q1, q2

and a certain amount of outcome c̄ = f(x1, x2). Due to the fact, that the CES
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3. Constructing the Cost function on the basis of a CES production function

production function is more general, we want to consider a function of the form

f(x1, x2) : R2
+ → R+, f(x1, x2) = β

(
δ1x
−ρ
1 + δ2x

−ρ
2

)− ν
ρ , where δ1 + δ2 = 1, with

only two input factors. From (3.3) and Table 1.1, we know that

q1x1
q2x2

= δ1
δ2

(
x1
x2

)−ρ
holds. Adding one to both sides of the equations yields

q1x1 + q2x2
q2x2

= δ1x
−ρ
1 + δ2x

−ρ
2

δ2x
−ρ
2

= C(x1, x2)
q2x2

. (3.4)

Since we consider a c̄- isoquant we can transform c̄ = f(x1, x2) = β
(
δ1x
−ρ
1 + δ2x

−ρ
2

)− ν
ρ

to get

δ1x
−ρ
1 + δ2x

−ρ
2 =

(
c̄

β

)− ρ
ν

. (3.5)

Thus we can combine (3.4) and (3.5) resulting in

C(x1, x2)
q2x2

=

(
c̄
β

)− ρ
ν

δ2x
−ρ
2

,

or equivalently

xρ+1
2 =

C(x1, x2)
(
c̄
β

) ρ
ν δ2

q2
, (3.6)

q2x2 = C(x1, x2)
1

1+ρ

(
c̄

β

) ρ
ν(ρ+1)

δ
1

1+ρ
2 q

ρ
ρ+1
2 . (3.7)

A similar argument, in fact on has only to change 2 7→ 1, yields

q1x1 = C(x1, x2)
1

1+ρ

(
c̄

β

) ρ
ν(ρ+1)

δ
1

1+ρ
1 q

ρ
ρ+1
1 . (3.8)

Since adding up (3.6) and (3.8) yields the total costs C(x1, x2) we get

q1x1 + q2x2 = C(x1, x2) = C(x1, x2)
1

1+ρ

(
c̄

β

) ρ
ν(ρ+1)

(
δ

1
1+ρ
1 q

ρ
ρ+1
1 + δ

1
1+ρ
2 q

ρ
ρ+1
2

)
.
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3.1. Deriving the cost function

From this it follows that

C(x1, x2) =
(
c̄

β

) 1
ν
(
δ

1
1+ρ
1 q

ρ
1+ρ
1 + δ

1
1+ρ
2 q

ρ
1+ρ
2

) 1+ρ
ρ

. (3.9)

A further remark may be added, that setting σ = 1
1+ρ , which is the elasticity of

substitution for a general CES-production function according to Table 1.1 yields

C(q1, q2) =
(
c̄

β

) 1
ν (
δσ1 q

1−σ
1 + δσ2 q

1−σ
2

) 1
1−σ . (3.10)

Note, that (3.9) has a very similar mathematical structure to the generalised CES-

production function. Rewriting (3.10) in an input oriented form, by using
(
c̄
β

) 1
ν =(

δ1x
−ρ
1 + δ2x

−ρ
2

)− 1
ρ from (3.5) yields

C(x1, x2) =
(
δ1x
−ρ
1 + δ2x

−ρ
2

)− 1
ρ

(
δ

1
1+ρ
1 q

ρ
1+ρ
1 + δ

1
1+ρ
2 q

ρ
1+ρ
2

) 1+ρ
ρ

.

Considering the �xed costs we simply add them to the cost function, which we ignored

in the beginning of the problem. Thus we �nd

C(x1, x2) =
(
δ1x
−ρ
1 + δ2x

−ρ
2

)− 1
ρ

(
δ

1
1+ρ
1 q

ρ
1+ρ
1 + δ

1
1+ρ
2 q

ρ
1+ρ
2

) 1+ρ
ρ

+ FC.

In the last step, we use the fact that both share parameters δ1 and δ2 should add

up to one, according to the de�nition of a general CES-production function. With

δ1 = δ and δ2 = 1− δ we therefore �nd

C(x1, x2) =
(
δx−ρ1 + (1− δ)x−ρ2

)− 1
ρ

(
δ

1
1+ρ q

ρ
1+ρ
1 + (1− δ)

1
1+ρ q

ρ
1+ρ
2

) 1+ρ
ρ

+ FC, (3.11)

which is the �nal form of the cost function we will use further on. What we

can see from (3.11), is that the �rst part of the cost function is in fact a CES

production function with a special choice of parameters ν = β = 1. De�ning(
δx−ρ1 + (1− δ)x−ρ2

)− 1
ρ = f∗x1,x2(δ, ρ) and Ψ(δ, ρ) =

(
δ

1
1+ρ q

ρ
1+ρ
1 + (1− δ)

1
1+ρ q

ρ
1+ρ
2

)

33



3. Constructing the Cost function on the basis of a CES production function

allows us to rewrite the cost function in a more compact form

C(x1, x2) = f∗x1,x2(δ, ρ)Ψ(δ, ρ)
1+ρ
ρ + FC. (3.12)

The only parameters left, are the share parameter δ and the parameter ρ, referring

to the elasticity of substitution. To calibrate the cost function based on a CES-

production function, we therefore have to estimate only two parameters that refer

to the occurring costs.

3.2. Calibration of the Cost function for a general
CES-production-function

3.2.1. Estimation of the factor prices

Before starting the calibration of the parameter of the cost function C(x1, x2) we have
to estimate the factor prices q1, q2 of both of the input variables x1 and x2, which are

chosen the following way. The input variable x2 represents the amount of working

hours and the input variable x1 = xRMC refers to the remaining manufacturing costs,

computed via the formula xRMC = 1
100(100xPV −x2q2). Again this input variable is

given in units of 100 to get smaller numbers.

The factor prices are computed by dividing the given accumulated variable costs

through the amount of input according to the three di�erent cost categories costs

of material, costs of labour and costs of technology over the years 2008-2011 and

then this numbers are averaged over the years. The �xed costs are estimated by the

approximation of linear cost functions, see [Ivaz, 2014]. The result is given in Table

3.1. Finally we can compute the average factor prices over the years, which yields

q′1 = 36, 757, q2 = 27, 874 and q′3 = 9, 332 [Ivaz, 2014].

Concerning the depended variables, we have only chosen x1 = xRMC and x2 = x.

Thus we can sum up q′1 + q′3 = q1 to get the variable costs for the input variable

x1, representing the remaining manufacturing costs of the sector. This yields the

variable costs of q1 = 56, 139 and q2 = 27, 874, respectively.
Yet another transformation has to be performed, namely dividing all costs by a

factor of 108. This is done due to the fact that we have to �t the function to the given

data points in the best way, by using a nonlinear least squares �t. This is a numeric
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3.2. Calibration of the Cost function for a general CES-production-function

Table 3.1.: The total costs of materialMC, the total re-assesed costs of labour L̃C,
the total costs of technology TC as well as its total variable costs,with
its associated fixed costs Cfi , where i = M,L,T. Additionally the
input variables xRMC = x1, x = x2 (as well as xPV ), its estimated
factor prices q̄1

′, q̄2 and q̄3
′ are given, for every year and cost category

where the index 1 refers to costs of material, 2 to re-assessed costs of
labour and 3 to costs of technology, respectively.

Year 2008 2009 2010 2011

MC 6.980.529.000 6.061.653.000 5.520.656.000 6.731.340.000
L̃C 3.370.819.706 3.197.549.428 3.027.476.025 3.338.854.000
TC 5.764.490.000 4.081.340.000 4.341.220.000 5.415.044.000
MC− CfM 5.953.205.746 5.034.329.746 4.493.332.746 5.704.016.746
L̃C− CfL 2.701.459.103 2.523.117.425 2.375.897.420 2.696.904.635
TC− CfT 2.264.490.000 581.340.000 841.220.000 1.915.044.000
xPV 158.916.330 129.802.080 129.201.630 158.420.130
x1 = xRMC 131.901.739 104.570.906 105.442.656 131.451.084
x2 = x 98.558.670 91.024.723 85.718.242 94.131.837

q̄1
′ 45,13 48,14 42,61 43,39

q̄2 27,41 27,719 27,718 28,65
q̄3
′ 17,17 5,56 7,98 14,57

35



3. Constructing the Cost function on the basis of a CES production function

Table 3.2.: The result of rescaling the total variable costs MC − CfM , L̃C − CfL
and TC − CfT , respectively. Additionally the rescaled input variables
xRMC = x1, x = x2 are given.

Year 2008 2009 2010 2011

MC− CfM 59,53205746 50,34329746 44,93332746 57,04016746
L̃C− CfL 27,01459103 25,23117425 23,75897420 26,96904635
TC− CfT 22,64490000 5,81340000 8,41220000 19,15044000
x1 = xRMC 1,31901739 1,04570906 1,05442656 1,31451084
x2 = x 0,98558670 0,91024723 0,85718242 0,94131837

method and since this method can fail, when using high numbers, dividing by a

factor 108 makes the process much more stable. Thus we divide the total variable

costs and its variables x1 and x2 by this rescaling factor. The result is given in Table

3.2.

Note that the variable costs remain the same, only the interpretation of the variable

has changed. The values given in Table 3.2 are used for �tting the parameters of the

cost function.

Given these factor prices q1, q2, the cost function C(x1, x2) according to (3.11) has
the form

C(x1, x2) =
(
δx−ρ1 + (1− δ)x−ρ2

)− 1
ρ
(
δ

1
1+ρ 56, 139

ρ
1+ρ + (1− δ)

1
1+ρ 27, 874

ρ
1+ρ
) 1+ρ

ρ + 51, 69272
(3.13)

Having this important results for the factor prices as well as the �xed costs, we

can now start calibrating the cost function.

3.2.2. Calibration of the CES-based cost function based on the given
data

At this point we are confronted with the problem of �tting the cost function based

on the given data points by a nonlinear least square �t. This procedure is done using

the program Mathematica. The function used is FindFit, which approximates the

parameter of a de�ned model which is in our case the cost function, according to

given data points. The code for this procedure is given in listing B.1.
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3.2. Calibration of the Cost function for a general CES-production-function

As a result we get a list with the parameters �tting the function the best. We

�nd for the values of the parameters, that δ = 0, 738711 and ρ = 0, 100836. A

further remark may be added, that is just the best approximation the program did

�nd. Furthermore it is also very sensitive to changes in the model. Thus a very

small change of given model parameters can end up in a signi�cant di�erent result.

According to the calibrated results, the cost function in (3.13) has the form

C(x1, x2) = 51, 69272 + 83, 1225(
0,738711
x0,100836

1
+ 0,261289

x0,100836
2

)9,91714 . (3.14)

3.2.3. Interpretation of the result

One of the most important aspect in analysing the result of the cost function may be

the interpretation of the parameter ρ, since we know that it is closely related to the

elasticity of substitution σ via the formula σ = 1
1+ρ . This yields that the elasticity

of substitution is σ = 0, 908401. According to theorem 1.18 a ρ value close to zero

results in a Cobb-Douglas production function, which has a linear cost function. A

plot of the cost function in (3.14) is given in Figure 3.1. One can clearly see, that this

function is in an approximation linear. Thus assuming a linear function produces an

error.

Concerning the quality of the �t, we can compute the relative error of the data

points and the calibrated cost function, which gives information about the existing

deviations. By averaging all absolute values of the relative errors over the years, we

�nd an average relative error of approximately 1
4
∑4
i=1

C(x1ti
,x2ti

)−Ẽti
Ẽti

≈ 4%, which

is, compared to the average relative error of approximately 60% made in the �rs

attempt [Ivaz, 2014], a very good result.

To sum up it may be said that this procedure has both advantages and disad-

vantages. On the one hand using a numerical nonlinear least square �t, is a very

unstable procedure which may also fail. This is obviously the worst case scenario in

using this model, making it very unreliable. On the other hand, as we just concluded

the model is much more accurate.

Consequently, the next step is to give an approximation of the cost function, such

that the nonlinear least square �t, using this special type of function, isn't necessary

any more. This would result in a less accurate �t, but a more stable procedure,
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Figure 3.1.: The calibrated cost function C(x1, x2) as a function of the production
value x1 and the working hours x2.

which is needed, to achieve a much more application-oriented method.

3.3. Approximation of the Cost function

In order to �nd a more stable procedure, we now calibrate the parameters of the

cost function, based on an approximative method, using a Taylor expansion. We

can, under certain circumstances (see [Königsberger, 2013, p.66]), approximate a

function f : Rn → R around a point a ∈ Rn via the formula

f(x) ≈ f(a) +
n∑
i=1

∂f(a)
∂xi

(xi − ai) + 1
2

n∑
i,j=1

∂f2

∂xi∂xj
(xi − ai)(xj − aj),

or equivalently

f(x) ≈ f(a) + gradf(a)(x− a) + 1
2(x− a)ᵀHf (a)(x− a), (3.15)

where (Hf )ij = ∂2f
∂xi∂xj

denotes the hessian matrix of the function f [Königsberger, 2013,

p.60].
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3.3. Approximation of the Cost function

Having this in mind, we can �x the two input variables x1, x2 and consider the cost

function Cx1,x2(δ, ρ) as a function of its parameters δ and ρ, C[0, 1]× [−1,∞)\{0} →
R+, (δ, ρ) 7→ Cx1,x2(δ, ρ). Thus we can choose a point (δm, ρm) and use Taylors

expansion to approximate the Cost function, using a constant term Cx1,x2(δm, ρm),
a linear function Lx1,x2(δ, ρ) and a quadratic deviation Dx1,x2(δ, ρ), such that

Cx1,x2(δ, ρ) ≈ Cx1,x2(δm, ρm) + Lx1,x2(δ, ρ) + Dx1,x2(δ, ρ)

holds. According to Talyor's expansion, we �nd

Lx1,x2(δ, ρ) = ∂Cx1,x2(δm, ρm)
∂δ

(δ − δm) + ∂Cx1,x2(δm, ρm)
∂ρ

(ρ− ρm) (3.16)

Dx1,x2(δ, ρ) = 1
2

(
∂2Cx1,x2(δm, ρm)

∂δ2 (δ − δm)2 + 2∂
2Cx1,x2(δm, ρm)

∂δ∂ρ
(δ − δm)(ρ− ρm)

+∂2Cx1,x2(δm, ρm)
∂ρ2 (ρ− ρm)2

)
(3.17)

At this point, it may also be stated, that this idea follows closely [Kmenta, 1967],

where a Taylor approximation of the production function with the initial value ρ = 0
is performed, also known as Kmenta's approximation. From this linearised form, the

parameters are amenable to estimation by a linear regression analysis, which are then

the parameters of the CES-production function. Due to its simplicity, the Kmenta

approximation has received a wide acceptance [Mishra, 2006, p.2].

3.3.1. Calculation of the linear term Lx1,x2(δ, ρ) of Taylors expansion for
the cost function

We now have to compute the partial derivatives of Cx1,x2(δ, ρ) with respect to δ and

ρ. Doing this we �rst of all de�ne Cx1,x2(δ, ρ)− FC = Cx1,x2(δ, ρ) and �nd that both

partial derivatives are the same, since

∂Cx1,x2(δ, ρ)
∂ρ

= ∂(Cx1,x2(δ, ρ)− FC)
∂ρ

= ∂Cx1,x2(δ, ρ)
∂ρ
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3. Constructing the Cost function on the basis of a CES production function

holds true. Due to the fact, that the calculation gets more clearly laid out we rewrite

the derivation with the help of Cx1,x2(δ, ρ). Considering the chain rule yields

∂Cx1,x2(δ, ρ)
∂ρ

= ∂Cx1,x2(δ, ρ)
∂ lnCx1,x2(δ, ρ)

∂ lnCx1,x2(δ, ρ)
∂ρ

= 1
∂ lnCx1,x2(δ, ρ)
∂Cx1,x2(δ, ρ)

∂ lnCx1,x2(δ, ρ)
∂ρ

= Cx1,x2(δ, ρ)∂ lnCx1,x2(δ, ρ)
∂ρ

(3.18)

and

∂Cx1,x2(δ, ρ)
∂δ

= Cx1,x2(δ, ρ)∂ lnCx1,x2(δ, ρ)
∂δ

, (3.19)

respectively. With the form of the cost function, given in (3.12), we �nd

lnCx1,x2(δ, ρ) = ln f∗(δ, ρ) + 1 + ρ

ρ
ln Ψ(δ, ρ).

With (3.18), we �nd

∂Cx1,x2(δ, ρ)
∂ρ

= Cx1,x2(δ, ρ) ∂
∂ρ

(
ln f∗(δ, ρ) + 1 + ρ

ρ
ln Ψ(δ, ρ)

)
.

Thus we conclude

∂Cx1,x2(δ, ρ)
∂ρ

= Cx1,x2(δ, ρ)
( 1
f∗(δ, ρ)

∂f∗(δ, ρ)
∂ρ

+ ln Ψ(δ, ρ) 1
ρ2 + (1 + ρ)

ρ

∂ ln Ψ(δ, ρ)
∂ρ

)
= Cx1,x2(δ, ρ)

( 1
f∗(δ, ρ)

∂f∗(δ, ρ)
∂ρ

+ ln Ψ(δ, ρ) 1
ρ2 + (1 + ρ)

ρ

1
Ψ(δ, ρ)

∂Ψ(δ, ρ)
∂ρ

)
,

as well as

∂Cx1,x2(δ, ρ)
∂δ

= Cx1,x2(δ, ρ)
( 1
f∗(δ, ρ)

∂f∗(δ, ρ)
∂δ

+ (1 + ρ)
ρ

1
Ψ(δ, ρ)

∂Ψ(δ, ρ)
∂δ

)
.
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3.3. Approximation of the Cost function

All in all, we �nd for the �rst partial derivatives, with respect to δ and ρ

∂Cx1,x2(δ, ρ)
∂δ

=

(
δ

1
1+ρ q

ρ
1+ρ
1 + (1− δ)

1
1+ρ q

ρ
1+ρ
2

) 1
ρ (
δx−ρ1 + (1− δ)x−ρ2

)− 1
ρ

(δ − 1)δρ ((δ − 1)xρ1 − δx
ρ
2)(

(δ − 1)δ
1

1+ρ q
ρ

1+ρ
1 xρ1 + (1− δ)

1
1+ρ δq

ρ
1+ρ
2 xρ2

)
(δ − 1)δρ ((δ − 1)xρ1 − δx

ρ
2) ,

∂Cx1,x2(δ, ρ)
∂δ

= 1
ρ2

(
δ

1
1+ρ q

ρ
1+ρ
1 + (1− δ)

1
1+ρ q

ρ
1+ρ
2

)1+ 1
ρ (
δx−ρ1 + (1− δ)x−ρ2

)− 1
ρ

[
ρ

1 + ρ

− ln(1− δ) + ln q2 + δ
1

1+ρ q
ρ

1+ρ
1 (2 arctan(1− 2δ) + ln q1 − ln q2)(
δ

1
1+ρ q

ρ
1+ρ
1 + (1− δ)

1
1+ρ q

ρ
1+ρ
2

)


− ln
(
δ

1
1+ρ q

ρ
1+ρ
1 + (1− δ)

1
1+ρ q

ρ
1+ρ
2

)
+ ρ (−δxρ2 ln x1 + (δ − 1)xρ1 ln x2)

(δ − 1)xρ1 − δx
ρ
2

+ ln
(
δx−ρ1 + (1− δ)x−ρ2

) ]
.

(3.20)

3.3.2. Calculation of the quadratic Deviation Dx1,x2(δ, ρ) of Taylors
expansion for the cost function

Consequently, for computing the term Dx1,x2(δ, ρ) describing the quadratic deviation
according to the Taylor expansion in (3.17), we also need the partial derivatives of

second order. Since this calculation is very complex, only the �nal results of the

partial derivatives via the program Mathematica are given in the appendix in listing

A.1, A.2 and A.3.

3.3.3. Computation of the initial value for Taylors expansion

Now it comes to choosing the right initial values of (δm, ρm) for the Taylor expansion,
which is estimated, by using the given data points of the form (x1j , x2j , Ẽj), where j
denotes the year. Doing this we �nd a certain x1, x2 and cost level, for every given

year. It does make sense, to choose the initial value as close as possible to the real

values, due to the fact that the Taylor approximation is more accurate.

Consider the case where we have n di�erent data points of the form (x1j , x2j , Ẽj),
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3. Constructing the Cost function on the basis of a CES production function

where j = t1, . . . , tn denotes the points of time. So we are able to plot this informa-

tions in a δ − ρ diagram, for every data set j, by a contour plot of this cost level,

given by Cx1j ,x2j
(δ, ρ) = Ẽj .

Consequently we can do this for every set of data points, and have to �nd a certain

(δm, ρm) value, �tting the best in all contour plots.

Doing this, we have to analyse every data set on its own. Therefore we consider

every data set i, where i ∈ {t1, . . . , tn}. Naturally we can distinguish between three

di�erent cases:

(i) max(δ,ρ)∈[0,1]×[−1,∞)\{0}{Cx1i ,x2i
(δ, ρ)} < Ẽi,

(ii) max(δ,ρ)∈[0,1]×[−1,∞)\{0}{Cx1i ,x2i
(δ, ρ)} = Ẽi, and

(iii) max(δ,ρ)∈[0,1]×[−1,∞)\{0}{Cx1i ,x2i
(δ, ρ)} > Ẽi, respectively.

This means that the given re-assessed expenditures, computed on the basis of his-

torical data by using the producer price index, can be greater, less or equal to

the maximum of the cost function. The next step in analysing the data, is to or-

der them according to the cases (i)-(iii), given above. We de�ne the set of indices

F = {tm, . . . , tk} to be representatives of the �rst case (i), S = {tk+1, . . . , tl} of the
second case (ii) and T = {tl+1, . . . , tn} of the third case (iii), respectively.

Concerning (i) and (ii), we will obviously choose

(δmj , ρmj ) = argmax
(δ,ρ)∈[0,1]×[−1,∞)\{0}

{Cx1j ,x2j
(δ, ρ)},

referring to the maximum itself as the best estimation, for all j ∈ F and j ∈ S .

Averaging them over the associated years yields a �rst approximation

(δ̄mI , ρ̄mI ) = 1
#F

∑
j∈F

argmax
(δ,ρ)∈[0,1]×[−1,∞)\{0}

{Cx1j ,x2j
(δ, ρ)}, (3.21)

where #F is called the cardinality of the set and denotes the number of elements

included. In the same way, we �nd for the second case

(δ̄mII , ρ̄mII ) = 1
#S

∑
j∈S

argmax
(δ,ρ)∈[0,1]×[−1,∞)\{0}

{Cx1j ,x2j
(δ, ρ)},
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3.3. Approximation of the Cost function

Table 3.3.: The maximum of the cost function Cx1,x2(δ, ρ), with the restrictions
0 ≤ δ ≤ 1 and −1 ≤ ρ, ρ 6= 0, as well as its position.

Year 2008 2009 2010 2011

max(δ,ρ)∈[0,1]×[−1,∞)\{0} Cx1,x2(δ, ρ) 153,213 135,77 134,78 151,726

argmax(δ,ρ)∈[0,1]×[−1,∞)\{0} Cx1,x2(δ, ρ)
(

0, 740706
0, 199386

)ᵀ(
0, 70766
0, 325618

)ᵀ(
0, 727565
0, 362457

)ᵀ(
0, 761577
0, 381116

)ᵀ

Ad (iii) the contour plot of a certain data set i ∈ {tl+1, . . . , tn} will be a curve in the

δ − ρ plane. Consequently, we can do this for every data set referring to case (iii).

Thus we �nd n − l di�erent curves, which might or might not intersect with each

other and we choose the point (δ̄mIII , ρ̄mIII ), �tting the best.
Averaging these values with equal weights refers to the �nal initial value for the

Taylor approximation (δm, ρm).

3.3.4. Computing the Taylor expansion based on the given data

Having this theoretical foundation, we can now start computing the Taylor approx-

imation according to the given data used in the previous chapter. Here the index i

can take values from the set {t1, t2, t3, t4} = {2008, 2009, 2010, 2011}, corresponding
to the years of the data set. First of all we have to allocate the years to the di�erent

cases occurring, described in chapter 3.3.3. To verify this, a plot of the corresponding

costs for the concerning years is given in Figure 3.2.

Therefore we �nd that {2008, 2009, 2011} = {t1, t2, t4} refer to case (i) and {2010} =
{t3} refers to case (iii). A numerical analysis of the cost function according to its

maximum yields the maximum value and its position, given in Table 3.3. Addi-

tionally the code for �nding these maximums using Mathematica, is given in listing

B.2.

According to (3.21), we �nd

(δ̄mI , ρ̄mI ) = (0, 736648, 0, 30204).

Analysing the year 2010, we �nd that it refers to case (iii). To illustrate this

situation, we make a contour plot of Cx1t3
,x2t3

(δ, ρ) for the contour level of Ẽt3 , which
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(d) t4 = 2011, case (i)

Figure 3.2.: The cost function Cx1,x2(δ, ρ) for the different years 2008-2011 in (A)-
(D). Additionally the assignment to its associated cases is given.

is given in Figure 3.3. All points on the dotted line refer to the same costs. Since

we have have only one candidate refering to case (iii), we just round the primary

estimation such that it �ts the values of the dotted curve better. Thus we just round

(δ̄mI , ρ̄mI ), to get

(δm, ρm) = (0.7, 0.3),

which is the �nal initial value for the Taylor approximation.

We now want to �t the model of the form CI(δ, ρ) = C(δ̄m, ρ̄m) + L(δ, ρ) + D(δ, ρ)
using the given data. According to the partial derivatives given in (3.20) and the

appendix, we �nd the best approximation for the parameters to be

(δ, ρ) = (0, 714658,−0, 999998),
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Figure 3.3.: Contour plot of the cost function Cx1t3
,x2t3

(δ, ρ) = Ẽt3 in the year 2010
in the δ − ρ plane.

which is again done by using the Mathematica implemented method FindFit, given

in listing B.3.

We �nd that the best approximation is ρ ≈ −1. Thus, we get

CI(x1, x2) = 51, 6927 + 78, 5537(0, 714658x0,999998
1 + 0, 285342x0.999998

2 )1,0000018688167596.

3.3.5. Interpretation of the result

Comparing this result CI(x1, x2) with the cost function C(x1, x2) we can take a closer
look at the associated deviations Σ(x1, x2) = CI(x1, x2) − C(x1, x2). Both plots of

CI(x1, x2) and Σ(x1, x2) are given in Figure 3.4(A) and Figure 3.4(B), respectively.

In the region, where almost all data points x1ti and x2ti are located, this is around

its mean value x̄1 =
∑t4
j=t1 x1j = 1, 18342 and x̄2 =

∑t4
j=t1 x2j = 0, 923584, the

deviations become smaller, as it can be seen from Figure 3.5. In fact, the deviation

at the center of the data points, which is the mean value, is Σ(x̄1, x̄2) ≈ −5.
All in all we can state, that we found a way to give a good estimation of the param-

eters δ and ρ for the CES cost function CI(x1, x2). The main advantage concerning

this method is, the reduced complexity of the model, due to a Taylor expansion
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Figure 3.4.: (A) Cost function CI(x1, x2) based on the estimation of the parameters
δ and ρ from a regression model. (B) Deviations Σ(x1, x2) of the cost
function CI(x1, x2) and the fitted cost function C(x1, x2)

of second order. Hence �tting the function to the according data points becomes

much more stable than performing the �t with the original form of the cost function

C(x1, x2). It is also necessary to point out that the quality of the �t, speaking in

terms of deviations to the given data points, reduces in order to make the model

more application-oriented.

One should also be aware of the fact, that we have only four data points available,

to preform the �t of the function C(x1, x2). But this method will certainly work

better in the future, when the analyst has more data points available.
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Figure 3.5.: Figure (A) shows the deviations Σ(x1, x̄2) for a constant x2-level,
namely the mean value x̄2 of all data points. Figure (B) shows the
deviations Σ(x̄1, x2) for a constant x1-level, which is the mean value
x̄1 of all data points.
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Time series analysis
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CHAPTER 4

Theoretical foundations of Time Series Analysis

This chapter introduces the method of time series analysis to predict

certain values in the future based on an ARIMA(p,d,q) model. Therefore,

all necessary basic ideas and de�nitions are given and explained. Further

more a step by step instruction in setting up a general ARIMA(p,d,q)

model including model selection and parameter estimation based on a

maximum likelihood estimation, is given.

4.1. Introduction

The �rst step in performing a time series analysis is to select a certain model for

the given data. Considering the unpredictable nature of future, it is reasonable to

construct this models with the help of random variables Xt, where t denotes the

point of time, with a certain realisation (also denoted with Xt) which represents the

actual data points [Brockwell and Davis, 2013, p.8].

4.1 Definition. [Neusser, 2009, p.8] A stochastic process is a sequence of random
variables {Xt}t∈T , where T ⊆ Z.

Generally, a random variable describes the realisation of a certain outcome whereas

the set T is used to indicate the time period in which this outcome was measured.
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4. Theoretical foundations of Time Series Analysis

Since this point of times are discrete, we want the set to be a subset of Integers.

From here on we will always choose T = Z, since it allows a more elegant way to

work out di�erent concepts. It is straightforward to de�ne every method used, on a

certain subset of Z. A time series is then simply a certain realisation {Xt}t∈Z of this

stochastic process [Neusser, 2009, p.9].

It is necessary to point out, that we use time series analysis to investigate the

connection and in�uence of the realisation of this random numbers in di�erent points

of time. It is for example reasonable to assume that the production costs of a certain

year somehow in�uences the production costs of the next period of time.

4.2 Definition. [Neusser, 2009, p.10] Let t, s ∈ Z and {Xt}t∈Z be a stochastic
process, with V [Xt] < ∞, for all t ∈ Z, where V [.] denotes the variance and E[.]
denotes the expected value. The function γX : Z× Z→ R, defined as

γX(t, s) = cov(Xt,Xs) = E[XsXt]− E[Xs]E[Xt],

is called autocovariancefunction of Xt.

For practical reasons further simpli�cations have to be assumed. We will therefore

de�ne a special class of stochastic processes, called stationary stochastic processes.

4.3 Definition. [Neusser, 2009, p.11] A stochastic process {Xt}t∈Z is called sta-
tionary, if for all t, s, r ∈ Z

(i) E[Xt] = µ,

(ii) V [Xt] <∞ and

(iii) γX(t, s) = γX(t+ r, s+ r)

holds true.

Roughly speaking a stationary process has the property of the same mean, variance

and autocovariance structure. It is, for example, possible to translate all points of

time, by a number r ∈ Z and the autocovariancefunction does not change at all,

since property (iii) holds.

Considering a stationary stochastic process we �nd, by choosing r = −s, that
γX(t, s) = γX(t− s, 0), again because property (iii) holds. Thus the autocovariance-

function does not depend on the absolute values of time t and s itself but on its
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4.1. Introduction

di�erence h = t− s. Thus we can ignore the second argument, since it is always zero

and de�ne the autocovariancefunction via γX(h) := γX(h, 0). It may also be pointed
out, that since γX(t, s) = γX(s, t), also γX(h) = γX(−h) holds true. Therefore it

makes sense, to de�ne the autocovariancefunction only on the set of positive integers

of Z [Neusser, 2009, p.12].

Now consider a �nite time series {Xt}t∈[1,T ] and its associated covariances. Writing

them into a matrix of the form

ΓT =


cov(X1,X1) cov(X1,X2) · · · cov(X1,XT )
cov(X2,X1) cov(X2,X2) · · · cov(X2,XT )

...
...

. . .
...

cov(XT ,X1) · · · cov(XT ,XT )

 (4.1)

de�nes the covariance matrix [Arens et al., 2008, p.1310]. Note that for stationary

processes the covariance matrix takes the form

ΓT =


γX(0) γX(1) · · · γX(1− T )
γX(1) γX(0) · · · γX(2− T )

...
...

. . .
...

γX(1− T ) · · · γX(0)

 . (4.2)

4.4 Definition. [Neusser, 2009, p.13] Let h ∈ Z. The autocorrelationfunction
(ACF) of {Xt}t∈Z is defined as

ρX(h) =
γX(h)
γX(0) .

It may also be added that the ACF of stationary time series represents just the

normal correlation coe�cient, de�ned by

%(X, Y ) = cov(X, Y )√
V [X]

√
V [Y ]

,

between the corresponding random variables. Hence all characteristics of the corre-

lation coe�cient can be transferred to the ACF.

The concept of time series analysis is to describe processes with the most easiest
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4. Theoretical foundations of Time Series Analysis

modules available. One of these easiest modules is the white noise process.

4.5 Definition. [Neusser, 2009, p.14] The process {εt}t∈Z is called white noise, if
{εt}t∈Z is stationary and

(i) E[εt] = 0, as well as

(ii) γε(h) =

σ
2 for h = 0

0 for h 6= 0,

holds true. This is denoted with εt ∼WN(0, σ2).

One of the easiest time series that can be created using white noise, is the so called

moving average process.

4.6 Definition. [Neusser, 2009, p.14] Let θ ∈ R be a parameter and εt ∼WN(0, σ2).
The process, defined by

Xt = εt + θεt−1,

is called a moving average process, denoted with MA(1).

4.7 Example. [Brockwell and Davis, 2013, p.13] For the sake of an example, we will
now compute the autocovariancefunction as well as the ACF of a MA(1)-process.
Let us start with

γX(t+ h, t) = cov(Xt+h,Xt) = cov(εt+h + θεt+h−1, εt + θεt−1)

= E [(εt+h + θεt+h−1)(εt + θεt−1)]− E[εt + θεt−1]E[εt+h + θεt+h−1]

= E[εt+hεt + θεt+hεt−1 + θεt+h−1εt + θ2εt+h−1εt−1]

− (E[εt]E[εt+h] + θE[εt]E[εt+h−1] + θ2E[εt−1]E[εt+h−1]).

Using a case-by-case analysis we find by using the linearity of the expected value
and with E[ε2

t ] = σ2, E[εt] = 0 as well as E[(εt+rεt+s)] = 0, r, s ∈ Z, r 6= s

γX(t+ h, t) =


σ2(1 + θ2), for h = 0

θσ2, for h = ±1

0, else.

(4.3)
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By using, that γX(0) = γX(t, t) = σ2(1 + θ2), we can also compute the ACF of a
MA(1) process:

ρX(h) =


1, for h = 0

θ
(1+θ2) , for h = ±1

0, else.

4.2. Models for stationary time series analysis

One of the most important models, with which a wide class of problems can be

described is the autoregressive moving average model, denoted with ARMA(p,q).

4.8 Definition. [Brockwell and Davis, 2013, p.78] Let {Xt}t∈Z be a stochastic pro-
cess. The process {Xt}t∈Z is said to be an ARMA(p,q) process, if {Xt}t∈Z is sta-
tionary and if for every t ∈ Z

Xt − φ1Xt−1 − . . .− φpXt−p = εt + θ1εt−1 + . . .+ θqεt−q, (4.4)

with εt ∼WN(0, σ2) holds true.

It may also be added, that sometimes a constant c ∈ R is added to the model

given in (4.4). For the sake of a compact notation, we further more de�ne a certain

operator, called the lag operator, to rewrite (4.4) in a more convenient form.

4.9 Definition. [Neusser, 2009, p.21] The lag operator, or back shift operator L
has the following properties:

(i) for c ∈ R, using the lag operator yields L(c) = c,

(ii) for a stochastic process {Xt}t∈Z, using the lag operator yields L(Xt) = Xt−1,

(iii) using the lag operator n-times yields (L ◦ . . . ◦ L)(Xt) = Ln(Xt) = Xt−n,

(iv) for m,n ∈ Z, using the lag operator yields (Lm ◦ Ln)(Xt) = Lm+n(Xt) =
Xt−m−n,

(v) for a, b ∈ R and another stochastic process {Yt}t∈Z, using the lag operator
yields L(aXt + b Yt) = aXt−1 + b Yt−1.
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To rewrite (4.4) in a more compact form, we de�ne the polynomials Φ(L) =
1−

∑p
i=1 φiL

i and Θ(L) = 1 +
∑q
i=1 θiL

i. Hence we can write a general ARMA(p,q)

process in a more compact notation:

Φ(L)(Xt) = Θ(L)(εt).

Therefore it is possible to determine the properties of a model for a time series

analysis, using this polynomials given above.

Some very useful special cases which can be construct out of a general ARMA(p,q)

process are given by a certain choice of p and q, respectively. Choosing p = 0, yields a
moving average process of order q, denoted with MA(q)=ARMA(0,q). On the other

hand, setting q = 0 yields a so called autoregressive process of order p, denoted with

AR(p)=ARMA(p,0) [Neusser, 2009, p.23].

It turns out, that many economic time series aren't stationary. Thus we have to

apply a transformation �rst, such that the time series becomes stationary. In many

applications di�erencing the values, by a certain degree d, or taking the logarithm,

yields the necessary properties. Hence the transformation has the form

Yt = (1− L)dXt.

With this new time series {Yt}t∈Z we can set up the ARMA(p,q) model as described

above. This model is then called an ARIMA(p,d,q) model.

4.10 Definition. [Neusser, 2009, p.83] Let {Xt}t∈Z be a stochastic process. The
process {Xt}t∈Z is said to be an ARIMA(p,d,q) process, if {(1 − L)dXt}t∈Z is sta-
tionary and if for every t ∈ Z

Φ(L)((1− L)dXt) = Θ(L)(εt)

holds true.

4.3. Estimation of the autocovariancefunction

From this point on all methods described will make use of the autocovariancefunc-

tion γX(h) of stationary processes. Since we have only T data points of the form
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4.4. Estimating time series models

{Xt}t∈[1,T ] available and have no information according the probability distributions,

we have to estimate the autocovariance function based on this data points. With

X̄T = 1
T

∑T
j=1 Xj the estimation for the autocavariance function we will use is

γ̂X(h) = 1
T

T−h∑
j=1

(Xt+h − X̄T )(Xt − X̄T ), (4.5)

where γ̂X(h) = 0 for h > T , see [Kreiÿ and Neuhaus, 2006, p.32].

4.4. Estimating time series models

In practice, we are often confronted with the problem of estimating the parameters

of a certain model, given a set of observables {X}t∈[1,T ], which are already corrected

by its mean value, by applying the transformation {Xt}t∈[1,T ] 7→ {Xt − X̄T }t∈[1,T ].

In fact there exist very good methods to determine the parameters φ1, . . . , φp and

θ1, . . . , θq of special ARMA(p,q) models, namely the Yule-Walker estimation and an

OLS estimation. Both methods turn out to work really well considering a general

AR(p) process, which is a special choice of an ARMA(p,q) model, but fail, when it

comes to estimate the parameters of a general ARMA(p,q) model. Then in most

cases, a maximum-likelihood estimation is performed [Neusser, 2009, p.71].

4.4.1. The maximum Likelihood method

Since we are using the maximum likelihood method to estimate the parameters, a

short introduction of this technique is given. This section follows closely the book of

[Fahrmeir et al., 2013].

Given the case of {Xi}i∈[1,n] identical and independent replications of an experi-

ment and assuming a certain probability distribution fi(Xi|θi) for each Xi, where θi

describes the parameters of the distribution, the probability density function of all

n experiments is given by

f(X1, . . . ,Xn|θ) =
n∏
j=1

fj(Xj |θj). (4.6)

Considering the actual realisation of those n experiments it is obvious, that the pa-
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4. Theoretical foundations of Time Series Analysis

rameters θi in (4.6) are the only variables left. We will denote L(θ) = f(X1, . . . ,Xn|θ)
as the likelihood function, and interpret it as the probability density function of the

parameters θi of the probability distributions, where i = 1, . . . , n.

The maximum likelihood principle implies that the best estimation for the param-

eter θ, which is a vector containing all θi, denoted by θ̂ is found, where the likelihood

function has its maximum,

L(θ̂) = max
θ
L(θ).

For practical reasons, working with the ln-likelihood function is easier, since the

position of the optimal value θ̂ does not change using a ln-transformation.

4.11 Example. In many theoretical and practical settings, we find ourselves in the
situation of each Xj being normally distributed with mean µ and variance σ2, where
j = 1, . . . , n. This is denoted with Xj ∼ N (µ, σ2). With θ = (µ, σ) we find for the
likelihood function

L(µ, σ) = 1
(
√

2πσ)n
exp

(
(X1 − µ)2

2σ2

)
· . . . · exp

(
(Xn − µ)2

2σ2

)
. (4.7)

As already stated above, using a ln-transformation yields

lnL(µ, σ) =
n∑
i=1

(
− ln(

√
2π)− ln σ − (Xi − µ)2

2σ2

)
.

We are now looking for a maximum, thus we have to solve the equations

∂ lnL(µ̂, σ̂)
∂µ

∣∣∣∣
(µ̂ML,σ̂ML)

=
n∑
i=1

(Xi − µ̂ML)
σ̂2 = 0

∂ lnL(µ̂, σ̂)
∂σ

=
n∑
i=1

(
1

σ̂ML
+ (Xi − µ̂ML)2

σ̂3
ML

)
= 0.

The solution of this system yields the maximum likelihood estimations of both pa-
rameters, µ̂ML = 1

n

∑n
i=1 Xi = X̄, which is simply the mean value of the data set

and σ̂ML =
√

1
n

∑n
i=1(Xi − X̄).
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4.4. Estimating time series models

4.4.2. Estimation of a ARMA(p,q) process based on a maximum
likelihood estimation

Considering a general ARMA(p,q) process, given by Φ(L)(Xt) = Θ(L)(εt), estimat-
ing the parameters φi, θj , i = 1, . . . , p and j = 1, . . . , q of the model becomes more
di�cult. We now make the assumption that the white noise {εt}t∈Z ∼WN(0, σ2) is
additionally independently and identically distributed and the polynomials Φ(z) and
Θ(z) don't have the same zeros, for theoretical reasons. Summing up, the parameters
of the model are given by

β = (φ1, . . . , φp, θ1, . . . ,θq)T and σ2,

respectively. Other theoretical considerations [Neusser, 2009, p.77] require that pos-

sible values for β are elements of the set P

P = {β ∈ Rp+q : Φ(z)Θ(z) 6= 0 for |z| 6 1, φpθq 6= 0

and Φ(z),Θ(z) don't have same zeros}.

According to the maximum likelihood method the parameters β and σ are chosen,

such that the probability that the actual data points XT = (X1, . . . ,XT ) occur is

maximized under the assumption of a joint distribution of the random variables

X1, . . . ,XT . The most important case is represented by the random variables Xi

being multivariate normally distributed with zero mean. Setting GT (β)σ2 = ΓT ,
where ΓT denotes the covariance matrix (4.1), the likelihood function is

L(β, σ2|X) = 1
(2πσ2)

T
2

1√
detGT (β)

exp
(
− 1

2σ2X
ᵀ
TG
−1
T (β)XT

)
, (4.8)

see [Neusser, 2009, p.77]. Again, it is easier to work with the log likelihood function.

Hence taking the logarithm of (4.8) yields

lnL(β, σ2|X) = −T2 ln(2πσ2)− 1
2 ln(detGT (β))− 1

2σ2X
ᵀ
TG
−1
T (β)XT . (4.9)
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According to the maximum likelihood method we now have to di�erentiate (4.9) with

respect to σ and set the term to zero. Thus we �nd

∂ lnLt(β, σ2|X)
∂σ

∣∣∣∣
(σ̂2
ML,β̂ML)

= − T

σ̂ML
+ 1
σ̂3
ML

Xᵀ
TG
−1
T (β̂ML)XT = 0,

concluding that

σ̂2
ML = 1

T
Xᵀ
TG
−1
T (β̂ML)XT . (4.10)

Since we now found an expression for the maximum value of the maximum likelihood

estimation of σ2, we can simply maximize (4.9) using relation (4.10). Thus we have

to solve the optimisation problem

max
β∈P

[
− ln(2π)− T

2 ln
( 1
T
Xᵀ
TGT (β)−1XT

)
− 1

2 ln detGT (β)− T

2

]
,

which is equivalent to minimise the same function multiplied with a factor of minus

one and leaving the constant terms out. Hence we have to minimise

min
β∈P

[
T

2 ln
( 1
T
Xᵀ
TGT (β)−1XT

)
+ 1

2 lnGT (β)
]
, (4.11)

which can be done numerically and refers to the maximum likelihood estimator β̂ML.

As a matter of fact there exist many di�erent ways of estimating the parameters

but in theory the most common method is the maximum likelihood estimation. In

practical applications however, the minimisation problem is transferred via a certain

algorithm (see [Neusser, 2009, p.78]) to another minimisation problem, being more

stable from a numerical point of view.

4.4.3. Estimating the order (p,q) of an ARMA(p,q) model

The �rst step in estimating the parameters of an ARMA(p, q) model, based on a set

of observables {Xt}t∈[1,T ], is to �nd the orders p and q of the model. Concerning

this procedure, generally two possible mistakes may occur. The �rst one is called

over �tting, when both parameters p and q are too high than the actual value. On

the other hand either p or q can be chosen too small, which is called under �tting

[Neusser, 2009, p.80].
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4.4. Estimating time series models

All in all one can estimate the order of the parameters by analysing the autocorre-

lation function, but nowadays automatic selection processes are performed, where a

certain function, called the information criterion, is minimised. The most important

minimisation problems of this information criterion have the form

min
(p,q)∈N×N

[
ln σ̂2

p,q + (p+ q)C(T )
T

]
, (4.12)

where σ̂2
p,q denotes the estimated variance of the residuals, given by the estimation

of σ of the maximum of the likelihood function [Hannan, 1980]. In practice three

di�erent forms of the function C(T ) in (4.12) are used:

(i) C(T ) = 2 is called the Akaike information criterion AIC,

(ii) C(T ) = ln(T ) is called the Bayesian information criterion BIC and

(iii) C(T ) = 2 ln(lnT ) is called the Hannan-Quinn information criterion,

see [Neusser, 2009, p.82].

It may also be stated, that in most cases the AIC number is used, where AIC is a

numerical value, by which to rank competing models in terms of information loss in

approximating the unknowable truth. It derives meaning from comparison with the

AIC values of other models with the model having the lowest AIC value representing

the best approximating model [Symonds and Moussalli, 2011, p.14].

Concerning di�erent approaches in the literature [Kreiÿ and Neuhaus, 2006, p.288],

the AIC function may also be de�ned with the help of the likelihood function itself

as

AIC(p, q) = − 2
n
LT

(
β̂ML, σ̂

2
ML|X

)
+ 2(1 + p+ q)

T
,

or with the help of a linear prediction using σ̂2
p,q = RSS

T−p−q ,

AIC(p, q) = T ln RSS

T − p− q
+ 2(p+ q), (4.13)

see [Maddala and Lahiri, 1992, p.540], where RSS denotes the regression sum of
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squares. This is given by the formula

RSS =
T∑
i=1

(Xi − (a+ bti))2 , (4.14)

where the coe�cients a and b are given by

a = X̄− bt̄ and b =
∑T
j=1(Xi − X̄)(ti − t̄)∑T

k=1(Xk − X̄)
, (4.15)

respectively.

4.4.4. Summary of setting up an ARMA(p,q) model

Having all individual steps in setting up an ARMA(p,q) model, we are now ready to

combine them to give a short guidance of performing a time series analysis, which is

illustrated in Figure 4.1.

We begin by an observation of the given data, denoted by {Xt}t∈[1,T ]. Assuming

that this time series is stationary, we now have to estimate the model based on this

data. We can rearrange the data, by subtracting its mean value µ = 1
T

∑T
i=1 Xi from

all data points. Having this centered data, which we will also denote with Xi form

here on, we need to estimate the autocovariance function γX(h) and its covariance

matrix ΓT , respectively. This is done by using the formulas (4.5) and (4.2). Form

this point on, we have two ways of preceding, based on di�erent ways of estimating

the order of the model.

The �rst one is illustrated on the left side of Figure 4.1. In this case we have to

choose P,Q ∈ N and set up the likelihood function L(β, σ2|X) given in (4.8) in order

to be able to solve the maximisation problem

max
(β,σ2)∈P×R+

[
LT (β, σ2|X)

]
,

for every p ∈ [1, P ] and q ∈ [1, Q]. This maximum value of the likelihood function

refers to the optimal choice (p̂, q̂) of the order of the model, by using the AIC number

discussed in section 4.4.3.

Another, di�erent way to �nd the order of the model is based on a di�erent de�-

nition of the AIC number using the regression sum of squares, given in (4.13), (4.14)
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4.4. Estimating time series models

and (4.15).

Since we now know the order of the model we come to the point of estimating its

parameters, which is done by the maximum likelihood method, given in (4.11) and

(4.10).
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{Xt}t∈[1,T ]

{Xt}t∈[1,T ] 7→ {Xt − µ}t∈[1,T ]

Estimate γ̂X(h) and Γ̂T

Choose P,Q ∈ N and set up LT (β, σ2|X)

Solve max(β,σ2)∈P×R+

[
LT (β, σ2|X)

]
for every p ∈ [1, P ] and q ∈ [1, Q]

Solve min(p,q)∈[1,P ]×[1,Q]
[
ln σ̂2

p,q + (p+ q)2/T
]

7→ (p̂, q̂)

Compute RSS by a linear prediction
based on the data 7→ (p̂, q̂)

Estimate the parameters β and σ2

using the maximum likelihood method

Interpret the result

Figure 4.1.: Actions to be taken in setting up an ARMA(p,q) model based on
historic data.
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CHAPTER 5

Multivariate time series analysis

This chapter expands the concept of univariate to simple multivariate

time series. Therefore we introduce a concept to describe higher dimen-

sional time series. Further more, an introduction to impulse response

functions, describing the dynamic properties of a model is given and il-

lustrated in an example.

5.1. Introduction

In many problems concerning time series analysis, the data may be available on

several variables of interest. Sometimes this data show a certain dynamic relationship

among each other. It is for example possible that one series leads another one, or

there may be a feedback relationship. This is a reason to analyse such multivariate

time series jointly [Peña et al., 2011, p.365].

5.1 Definition. [Neusser, 2009, p.165] A n-dimensional stochastic process is a fam-
ily of random variables {Xt}t∈Z, where Xt ∈ Rn.

This de�nition is very similar to the de�nition according to the univariate case.

In fact, we expand the whole concept of univariate time series to a vector model.
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5. Multivariate time series analysis

Therefore we now consider the case, where the time series is represented by a vector

of dimension n, where every component represents a univariate time series. We

therefore adopt the notation

Xt =


X1t

X2t
...

Xnt

 ,

and interpret each component Xit as a one-dimensional time series with the possi-

bility of each component being connected to several others.

Again, we characterise this multivariate time series by its mean value µit = E[Xit]
and autocovariance function γij(t, s) = Cov(Xit, Xjs) for i, j = 1, . . . , n and a point

of time t, s ∈ Z. For the sake of a convenient notation we can write this quantities

in matrix form and get

E[Xt] =


E[X1t]
E[X2t]

...

E[Xnt]

 , Γ(t, s) =


γ11(t, s) γ12(t, s) . . . γ1n1(t, s)

γ21(t, s) . . .
...

...
. . .

...

γn1(t, s) . . . γnn(t, s)

 .

A n dimensional stochastic process is called stationary, if de�nition 4.3 holds for every

component. It is because of this equivalent de�nition in terms of components of a

multivariate time series, that all properties of the autocovariance function transfer to

the matrix Γ(t, s). Thus we can characterise this matrix just by the time di�erence

h = t− s, such that the only variable left, is the time di�erence h.

To give information about the interdependencies between the n di�erent time

series, we de�ne the correlationfunction

ρij(h) = γij(h)√
γii(0)γjj(0)

,

for i, j = 1, . . . , n, see [Neusser, 2009, p.166]. For i 6= j, this function investigates

the cross correlation between di�erent time series. Again, we can construct a higher

dimensional white noise process using the univariate de�nition.
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5.2. Vector Autoregressive moving average processes

5.2 Definition. [Neusser, 2009, p.167] The process {εt}t∈Z is called white noise, if
{εt}t∈Z is stationary and

(i) E[εt] = 0, as well as

(ii) Γ(h) =

Σ for h = 0

0 for h 6= 0,

holds true. This is denoted with εt ∼WN(0,Σ).

5.1.1. Estimating the mean and the autocavariances

In many applications, we are confronted with the problem of estimating the mean

and the autocavariance function by using a certain realisation {Xt}t∈[1,T ] of the time

series. This estimations are given by

ŜT = S̄T = 1
T

T∑
i=1

Xi,

Γ̂(h) =


∑T−h
i=1 (Xt+h − X̄T )(Xt − X̄T )T , 0 6 h 6 T − 1

Γ̂T (−h) −T + 1 6 h < 0,

see [Neusser, 2009, p.172].

5.2. Vector Autoregressive moving average processes

5.3 Definition. [Neusser, 2009, p.179] Let {Xt}t∈Z be a stochastic process. The
process {Xt}t∈Z is said to be an VARMA(p,q) process, if {Xt}t∈Z is stationary and
if for every t ∈ Z

Xt − φ1Xt−1 − . . .− φpXt−p = εt + θ1εt−1 + . . .+ θqεt−q, (5.1)

with εt ∼WN(0,Σ) holds true.

In the de�nition given above, the parameters φi and θj are n× n matrices whose

entries determine the characteristics of the model. Using the Lag operator who acts

on the components of a time series and has the same properties as in de�nition 4.9,
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makes it able to rewrite (5.1) in a more convenient form

Φ(L)(Xt) = Θ(L)(Xt),

with Φ(L) = I−
∑p
i=1φiL

i and Θ(L) = I +
∑q
i=1 θiL

i, respectively.

5.3. Vector Autoregressive Processes

It is due to its relative simple estimation of the parameters of a VAR(p) model, that

it can be used in various applications. As in the case of univariate time models, we

well de�ne a vector autoregressive process of order p using the equation

Xt = φ1Xt−1 + . . .+ φpXt−p + εt, (5.2)

where Wt ∼WN(0,Σ) holds true. Sometimes a constant c ∈ Rn is also included in

the model.

If we denote φ
(k)
ij as the (i, j) the element of the matrix φk, we can rewrite (5.2)us-

ing the matrix notation


X1t

X2t
...

Xnt

 =


φ

(1)
11 φ

(1)
12 . . . φ

(1)
1n

φ
(1)
21 . . .

...
...

. . .
...

φ
(1)
n1 . . . φ

(1)
nn




X1,t−1

X2,t−1
...

Xn,t−1

+


φ

(p)
11 φ

(p)
12 . . . φ

(p)
1n

φ
(p)
21 . . .

...
...

. . .
...

φ
(p)
n1 . . . φ

(p)
nn




X1,t−p

X2,t−p
...

Xn,t−p

+ . . .

+


ε1t

ε2t
...

εnt

 .

Interpreting the components of this matrix equation, we �nd that this is equivalent

to the system of n di�erent equations, given by

X1t = φ
(1)
11 X1,t−1 + φ

(1)
12 X2,t−1 + . . .+ φ

(1)
1nXn,t−1

+ φ
(2)
11 X1,t−1 + φ

(2)
12 X2,t−1 + . . .+ φ

(2)
1nXn,t−1

+ . . .
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+ φ
(p)
11 X1,t−1 + φ

(p)
12 X2,t−1 + . . .+ φ

(p)
1nXn,t−1

+W1t

...

Xnt = φ
(1)
n1X1,t−1 + φ

(1)
n2X2,t−1 + . . .+ φ(1)

nnXn,t−1

+ φ
(2)
n1X1,t−1 + φ

(2)
n2X2,t−1 + . . .+ φ(2)

nnXn,t−1

+ . . .

+ φ
(p)
n1X1,t−1 + φ

(p)
n2X2,t−1 + . . .+ φ(p)

nnXn,t−1

+Wnt. (5.3)

We can see from (5.3) that each component of the n dimensional time series in�u-

ences the future values. Hence this model also includes the interdependencies of the

di�erent time series. Concerning the number of variables of the model, we have to

estimate n2p di�erent parameters. These parameters are then estimated using an

ordinary least squares approximation.

5.3.1. OLS estimation of the coefficients of a VAR(p) model

We now have to estimate the coe�cients of the VAR(p) model, using the information

of T + p observations, where the points of time these observations have been recog-

nized, range from t = −p+ 1,−p+ 2, . . . , 0, 1, . . . , T . We can then use the points of

time t = 1, . . . , T and write all regression variables from (5.3) into a (T ×np) matrix,
denoted with X̃ and obtain

X̃ =


X1,0 · · · Xn,0 X1,1 · · · Xn,1 · · · X1,−p+1 · · · Xn,−p+1
... · · ·

...

X1,T−1 · · · Xn,T−1 X1,T · · · Xn,T · · · X1,−p+T · · · Xn,−p+T

 .

According to [Neusser, 2009, p.193], we �nd for the OLS-estimation for the parame-

ters of the VAR(p) model, give by the vector β = (Coe�cients of the �rst equation, . . . ,
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Coe�cients of the n-th equation)ᵀ, to be

β̂OLS =


(X̃ᵀ

X̃)−1X̃
ᵀ 0 · · · 0

0 (X̃ᵀ
X̃)−1X̃

ᵀ · · · 0
...

. . .

0 · · · (X̃ᵀ
X̃)−1X̃

ᵀ

Y,

where Y = (X1,1, X1,2, . . . , X1,T , X2,1, . . . , X2,T , . . . , Xn,1, . . . , Xn,T )ᵀ is a vector of

observations.

5.3.2. Impulse Response function

Since a general VAR(p) involves many di�erent parameters, it is in many cases very

di�cult to investigate the dynamic interactions between every variable. A possible

way to gain information about the dynamic of the model, is provided by the method

of impulse response functions. The impulse response function gives information

about the dynamic e�ects of a structural interference, called a shock, of a certain

variable [Neusser, 2009, p.206].

5.4 Example. 1 Given a VAR(1) model Xt = φ1Xt−1 +εt we want to compute the
change of the time series at a point of time t+ h, ∆Xt+h when the j-th component
is shocked by ∆εj,t = 1. Thus we find

∆Xt+h = ∆Xt+h
∆εj,t

= ∂Xt+h
∂εj,t

. (5.4)

To compute (5.4), we make multiple use of the recursion of the VAR(1) process and
observe that Xt+h = φ1Xt+h−1 + εt+h holds true. Thus we find

∂

∂εj,t
(Xt+h) = ∂

∂εj,t
(φ1Xt+h−1 + εt+h) . (5.5)

Again, using the recursion, we find Xt+h−1 = φ1Xt+h−2 + εt+h−1. Hence we can

1see http://stats.stackexchange.com/questions/143214/how-to-calculate-the-impulse-response-
function-of-a-var1-with-example, accessed:2015-12-08
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insert this information into (5.5) and get

∂

∂εj,t
(φ1Xt+h−1 + εt+h) = ∂

∂εj,t
(φ1 (φ1Xt+h−2 + εt+h−1) + εt+h)

= φ2
1Xt+h−2 + φ1εt+h−1 + εt+h.

By induction, we conclude that

∂

∂εj,t
(Xt+h) = ∂

∂wj,t

(
φh+1

1 Xt−1 +
h∑
i=0
φi1εt+h−i

)
.

= ∂

∂εj,t

(
φh1εt

)
= φh1ej ,

where ej = (0, . . . , 1, . . . , 0)ᵀ, with a 1 in the j-th component, denotes the j-th unit
vector. By taking a closer look at the expression φh1ej , we obtain, that this is simply
the j-th column of the matrix φh1 . This recursive method can then be expanded to
a general VAR(p) process.

In many applications the impulse response function is computed by simulating the

VAR(p) process as follows: To implement the simulation, we have to setXt−1, . . . ,Xt−p =
0. Further more we set εj,t = 1 and all other elements of εt to zero and compute the

future values t, t+1, . . .. The value of the vector Xt+h corresponds to the coe�cients

of the impulse response functions [Hamilton, 1994, p.319].
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CHAPTER 6

Industry analysis of the engineering sector

This chapter deals with the problem of performing an industry analysis

of the engineering industry by applying the theory of time series analysis

using the data of the Austrian chambers of economics. Furthermore

a prediction of all time series is given, as well as an impulse response

analysis of the vector-autoregressive model of the cost components.

6.1. Introduction

A �rm competing in a certain industry usually has a competitive strategy in or-

der to be present at the market. This competitive strategy links the company to its

associated environment. The relevant environment is naturally very broad but never-

theless the key aspect of the �rm's environment is the industry in which it competes.

The structure of this industry in�uences the choice of the di�erent strategies taken

[Porter, 1998, p.3]. It is therefore very important to analyse the industry thoroughly.

The content of this industry analysis can di�er in certain cases but according to the

key aspects of the industry, it includes in many cases an analysis of

(i) the cost structure

(ii) the factor of success and
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6. Industry analysis of the engineering sector

(iii) the growth of the industry,

see [Aaker, 2013, p.92]. According to [Aaker, 2013, p.101], analysing the cost struc-

ture includes, besides the investigation of the distribution of the main cost factors,

also the study of the value added. In the case of the mechanical engineering in-

dustry the factor of success is chosen to be the sales volume of the whole industry.

According to [Blaschke, 2008, p.29] the costs of investment play a major role of the

development of the industry. Many companies react on di�erent circumstances by

investing a certain amount of money, which changes the position of power, as well

as the barrier of entrance in a sector. Thus analysing the costs of investment of the

mechanical engineering industry makes it possible to predict possible future trends.

6.2. Time series analysis with R

When performing a time series analysis using the statistics program R, we have to

distinguish between the case of a univariate time series {Xt}t∈T and a multivariate

time series {Xt}t∈T .

First of all, we want to consider the case of a univariate time series. Generally

the code for estimating a univariate time series model is given in listing C.1. The

�rst step is to load the package forecast and the data as a .csv �le (denoted with

A) into the program. This data will then be transformed into a time series such

that the program can perform all methods described in the previous chapters. The

name of the row therefore has to be inserted in B. Concerning the time structure,

the frequency is denoted with C and the �rst year with D.

To start with the actual ARIMA(p,d,q) model we have to declare the maximal p

and q values that are allowed in the model estimation and write these numbers into

position E and F, respectively. The last information we have to give is the number

of time periods for the forecast, represented by the number G.

A time series analysis of a multivariate model is performed in a similar way, using

the package vars, see listing C.2. Thus we have to load this package, with the

command library(vars) and follow the protocol in the same way as in the univariate

case.
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6.3. Time series analysis of the mechanical engineering industry

6.3. Time series analysis of the mechanical engineering
industry

Concerning the structure of the data, the sales Volume, the costs of investment, the

value added, the costs of material, the costs of labour, the costs of energy and the

residual costs are given in the years T = {1997, . . . , 2013} are given in Table 6.1.

All this values are given in units if 1000e throughout this chapter.
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Table 6.1.: The values of the realisations of the time series.
Year St [1000e] It [1000e] V At [1000e] Mt [1000e] Lt [1000e] Et [1000e] Rt [1000e]

1997 4157231,53 145646,90 1462495,44 2786607,41 1178423,14 43163,52 135770,73
1998 4655229,76 167015,04 1674943,93 3035432,22 1245053,89 41290,89 130722,66
1999 4714592,85 172322,77 1670641,70 3071602,94 1279798,84 41234,28 136791,35
2000 5198114,00 194975,00 1823325,00 3427617,00 1346445,00 42538,00 167973,00
2001 5630818,00 204352,00 1999148,00 3791271,00 1395484,00 42892,00 173414,00
2002 5795127,00 182087,00 1988010,00 3777899,00 1420317,00 41538,00 174498,00
2003 5902390,00 180009,00 2025265,00 4028743,00 1500512,00 43600,00 176273,00
2004 6533261,00 204691,00 2136658,00 4697114,00 1571650,00 47391,00 171467,00
2005 7371482,00 181218,00 2457459,00 5150754,00 1640265,00 52365,00 173010,00
2006 8301750,00 218813,00 2718800,00 6026979,00 1757768,00 62505,00 175566,00
2007 9720147,00 253768,00 3139504,00 7126837,00 1915223,00 68441,00 190060,00
2008 10888973,00 386989,00 3374732,00 7918153,00 2078720,00 75502,00 233617,00
2009 8958063,00 249536,00 2859751,00 6232248,00 2008390,00 71129,00 227087,00
2010 8953702,00 160765,00 2869962,00 6034471,00 2006814,00 75317,00 221280,00
2011 10192998,00 232582,00 3566400,00 7507848,00 2217971,00 79646,00 209558,00
2012 10957192,00 300316,00 3490774,00 8286481,00 2401151,00 81883,00 207635,00
2013 11294417,00 268705,00 3691630,00 8304521,00 2570634,00 85145,00 224949,00
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Figure 6.1.: The centred time series of the sales volume in the years 1997-2013.

Since we are interested in the cost structure of the mechanical engineering industry,

we the relative percentage of the cost components are given in Table 6.2.

6.3.1. The sales volume

Concerning the analysis of the sales volume {St}, we obtain the centred time series in
Figure 6.1. Note that the time series is centred around its mean value and therefore

some values become negative. This is the case, when they are smaller than the

mean value. Thus the time series is given by {S̄t}t∈T = {St − µS}t∈T , where

µS = 1
#T

∑
t∈T St ≈ 7601499. We obtain a small decrease in the sales volume around

the time of the economic crisis, see Figure 6.1. Beside this years the mechanical

engineering industry always increased the sales volume, which implies that this sector

is growing. According to the data, the recent growth in the years 2010-2013 tends to

get smaller. If we insert the data and realize the protocol given above, we �nd the

best model �tting the data, to be an ARIMA(1,0,0) model, which is in fact a AR(1)

model of the form

S̄t = φS̄t−1 + εt, (6.1)

77



6. Industry analysis of the engineering sector

Table 6.2.: The relative percentage of the cost data.
Year Lt [%] Mt [%] Et [%] Rt [%]

1997 28,44 67,24 1,04 3,28
1998 27,96 68,17 0,93 2,94
1999 28,26 67,81 0,91 3,02
2000 27,01 68,76 0,85 3,37
2001 25,83 70,17 0,79 3,21
2002 26,23 69,78 0,77 3,22
2003 26,10 70,08 0,76 3,07
2004 24,23 72,40 0,73 2,64
2005 23,38 73,41 0,75 2,47
2006 21,91 75,12 0,78 2,19
2007 20,59 76,63 0,74 2,04
2008 20,17 76,83 0,73 2,27
2009 23,52 72,99 0,83 2,66
2010 24,07 72,37 0,90 2,65
2011 22,15 74,97 0,80 2,09
2012 21,87 75,49 0,75 1,89
2013 22,98 74,25 0,76 2,01
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Forecasts from ARIMA(1,0,0) with zero mean    
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Figure 6.2.: The predicted values of the sales volume of the mechanical engineering
industry for the years 2014-2018 with the 80 % an 90 % confidence
interval.

where εt ∼ WN(0, σ2) is a white noise process. Due to the maximum likelihood

estimation, we �nd for the parameters φ = 0, 9616± 0, 0490 and σ = 8, 6 · 105, such

that (6.1) takes the form

S̄t = 0, 9616S̄t−1 + εt. (6.2)

A forecast of the sales volume, based on the calibrated model in (6.2), with the

standard con�dence interval, is given in Figure 6.2. According to this model, the

sales volume is going to decrease in the years 2014-2018. The actual values at this

points of time, are

S̄2014 = 3551032

S̄2015 = 3414597

S̄2016 = 3283404

S̄2017 = 3157252
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S̄2018 = 3035947.

It is scarcely necessary, to point out, that these transformed values are subtracted

by the mean value of the data series. In order to get the right values, one has to add

this mean value. Thus the �nal values are

S2014 = 11152531

S2015 = 11016096

S2016 = 10884903

S2017 = 10758751

S2018 = 10637446.

Despite the fact, that the sales volume was increasing most of the time, the pre-

dicted values in the future decrease, due to the structure break in the time of the

economic crisis which acts negatively on the prediction in the future. Here the ques-

tion arises if this structure break should be eliminated in the data set in order to

get an unin�uenced forecast. Another way of dealing with the problem is, to split

the data set into two separate sets, one before the economic crisis and the other one

afterwards, respectively. Due to the lack of data points and the most realistic de-

scription of the past, it was choose not to ignore this structure break of the economic

crisis, resulting in decreasing values of the sales volume.

6.3.2. The costs of investment

Again we centred the data of the costs of investment around the mean value µI =
1

#T

∑
t∈T It ≈ 217870. The graph of the centred time series of the costs of investment

{Īt}t∈T = {It−µI}t∈T is given in Figure 6.3. Concerning the structure of the data,

we obtain a small increase of the costs of investment in the years 1997-2005, meaning

that companies in the mechanical engineering industry were willing to invest in the

future. In the years right before the economic crisis these investments increased

rapidly by a factor of 2,1 from 181218 in 2005 up to 386989 in 2007. Naturally, in

the time of the economic crises these investments decreased quickly and dropped

to a level in 2010 comparable to the level in 1998. After the time of the crisis the

investments increased again, showing that the mechanical engineering industry is
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Figure 6.3.: The centred time series of the costs of investment in the years 1997-
2013.

growing again, except the last year the data have been recorder, where we can notice

a slight decrease again.

It is because of this unstable structure of increasing and decreasing costs of invest-

ment, that we may conclude that the best model, describing the development of the

costs of investment is a white noise process. In fact, analysing the data using the

AIC-criterion con�rms this assumption and we �nd for the time series model of the

centred costs of investment

Īt = εt, (6.3)

which is a ARIMA(0,0,0) process, where εt ∼ WN(0, σ2) is a white noise process

with σ = 5, 8 · 104. A forecast of the sales volume, based on the calibrated model

in (6.3), with the standard con�dence interval, is given in Figure 6.4. Due to the

easy structure of the model given in (6.3), also the forecast is very easy for the white

noise process. Since E[εt] = 0, the best prediction for the future values {Īt} itself is
zero. We have to keep in mind, that we have to transform this data, by adding the
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Forecasts from ARIMA(0,0,0) with zero mean    
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Figure 6.4.: The predicted values of the costs of investment of the mechanical
engineering industry for the years 2014-2018 with the 80 % an 90 %
confidence interval.
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6.3. Time series analysis of the mechanical engineering industry

mean value µI to get the real values for the prediction of {It}, which gives us

I2015 = . . . = I2018 = µI .

Finally we can conclude that the best prediction based on the given data is given by

the mean value of the data set in the years the data have been recorded.

6.3.3. The value added

In chapter one, we described the production process as the process of transforming

inputs into a certain amount of output. Due to the transformation, this created

output has a higher value than the sum of the values of the input factors. This

is also the de�nition of the value added according to Müller-Stewens and Lechner,

where the value added is described as the process of creating an additional value by

using a certain treatment [Wulfsberg and Redlich, 2011, p.21].

There are many di�erent de�nitions of the value added, summarized in [Wulfsberg and Redlich, 2011,

p.22] but the most general de�nition of the value added is given by

V A = Output− Input.

A further remark may be added, that in the data the in�uence of taxes as well as

the in�uence of subventions have been eliminated.

Again, we take a closer look at the centred time series of the value added, given by

{ ¯V At}t∈T = {V At − µV A}t∈T , where µV A = 1
#T

∑
t∈T V At ≈ 2526441. A plot of

the resulting centred time series is given in Figure 6.5. We obtain the same structural

behaviour as in the case of the time series of the sales volume, given in Figure 6.1.

The value added is increasing in the years of before the economic crisis, where we

can divide this increasing structure into two di�erent stages: In the years 1997-2001

this increase can be approximated by a linear function, whereas the increase in the

years 2002-2008 shows an exponential increase as it was in the case concerning the

sales volume. In the time of the economic crisis this numbers naturally dropped but

only by a factor of 0,8 from 3374732 in 2008 to 2859751 in 2009. After this decrease,

the value added stagnated in the next year and then increased again in the years

afterwards, except for one year.
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Figure 6.5.: The centred time series of the value added in the years 1997-2013.

The best model, describing this time series is given by an ARIMA(1,0,0) model

¯V At = φ ¯V At−1 + εt, (6.4)

where we �nd for the maximum likelihood estimation of the parameter φ = 0, 9546±
0.0570 and σ = 28 · 104, such that (6.4) takes the form

¯V At = 0, 9546 ¯V At−1 + εt. (6.5)

A forecast based on the model given in (6.5) with the standard con�dence interval,

is given in Figure 6.6. Again we �nd the same structural behaviour as in the case of

the forecast of the sales volume, showing decreasing values in the future. This future

values of the centred time series are given by

¯V A2014 = 1112347, 3
¯V A2015 = 1061902
¯V A2016 = 1013744, 5
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Forecasts from ARIMA(1,0,0) with zero mean    
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Figure 6.6.: The predicted values of the value added of the mechanical engineering
industry for the years 2014-2018 with the 80 % an 90 % confidence
interval.
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¯V A2017 = 967770, 9
¯V A2018 = 923882, 2.

Again, we have to consider the fact, that this are just the values of the centred time

series. To get the real values, we have to add the mean value to them and obtain

V A2014 = 3638788, 3

V A2015 = 3588343

V A2016 = 3540185, 5

V A2017 = 3494211, 9

V A2018 = 3450323, 2.

6.3.4. The cost components

To analyse the structure if the cost components of the mechanical engineering indus-

try, we take a closer look at the shift of the relative percentage of the costs of material

{Mt}t∈T , costs of labour {Lt}t∈T , costs of energy {Et}t∈T and the residual costs

{Rt}t∈T . To get a stationary time series we �rst of all transform the data, given

in Table 6.2 by taking the logarithm. These transformed time series are denoted

with {M̄t}t∈T , {L̄t}t∈T , {Ēt}t∈T and {R̄t}t∈T , respectively. Again we have to keep

in mind to re transform the data by using the exponential function. A plot of the

transformed time series is given in Figure 6.7. Concerning the trends in this plot,

we observe a break in the structure of the data at the years 2008-2009, due to the

economic crisis.

Concerning the costs of labour, we recognize a decrease until the point of the

economic crisis. In the year 1997 companies in the engineering industry spent 28, 4%
of the whole expenditures for personnel issues. This number drops to the minimum

of 20, 1% in the year 2008. After that there is a tendency to increase the costs of

labour by a small amount. This decrease of costs of labour can be explained by the

fact, that nowadays more and more places of employment are replaced by automatic

machines.

Both time series {Lt}t∈T and {Et}t∈T , representing the costs of labour and the

costs of energy, show very similar characteristics, in terms of the observed trend at

a �rst sight. The costs of energy dropped from a maximum of 1% to a minimum of
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Figure 6.7.: The time series of the cost components.
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0, 73% such that we can conclude, that the decrease was much smaller. Surprisingly,

we obtain the result, that the costs of energy almost stay the same. Considering the

e�ect of in�ation, we notice that the costs of energy were lowered, approximately by

this factor such that the costs of energy almost stay the same. This could be argued

by the fact, that more companies tend to outsource a part of their manufacturing,

resulting in a lower energy consumption but nevertheless this e�ect is, compared to

others relative small in the mechanical engineering industry.

Concerning the costs of material, where also costs of services have been included,

we �nd the complete opposite behaviour. While the costs of labour and energy were

decreasing over the last years, the costs of material and service increased form a

minimum of 67% to a maximum of 77%. Again, we could interpret the higher costs

of services with the e�ect of outsourcing the production. On the other hand a higher

percentage of the costs of material could also indicate the growing of the mechanical

engineering industry, as it can also be seen from the growing volume of sales.

The best vector autoregressive time series model, describing the observed data, is

a VAR(2) model, which has the form
L̄t

M̄t

Ēt

R̄t

 =


φ

(1)
11 φ

(1)
12 φ

(1)
13 φ

(1)
14

φ
(1)
21 φ

(1)
22 φ

(1)
23 φ

(1)
24

φ
(1)
31 φ

(1)
32 φ

(1)
33 φ

(1)
34

φ
(1)
41 φ

(1)
42 φ

(1)
43 φ

(1)
44




L̄t−1

M̄t−1

Ēt−1

R̄t−1

+


φ

(2)
11 φ

(2)
12 φ

(2)
13 φ

(2)
14

φ
(2)
21 φ

(2)
22 φ

(2)
23 φ

(2)
24

φ
(2)
31 φ

(2)
32 φ

(2)
33 φ

(2)
34

φ
(2)
41 φ

(2)
42 φ

(2)
43 φ

(2)
44




L̄t−2

M̄t−2

Ēt−2

R̄t−2



+


ε1t

ε2t

ε3t

ε4t

+


c1

c2

c3

c4

 .

An OLS-estimation of the matrix-coe�cients yields the result

φ1 =


φ

(1)
11 φ

(1)
12 φ

(1)
13 φ

(1)
14

φ
(1)
21 φ

(1)
22 φ

(1)
23 φ

(1)
24

φ
(1)
31 φ

(1)
32 φ

(1)
33 φ

(1)
34

φ
(1)
41 φ

(1)
42 φ

(1)
43 φ

(1)
44

 =


1.8201 2.1850 −0.7979 0.3413
−0.54301 −0.47997 0.27073 −0.12417
1.40045 2.54331 0.35015 0.11529
−1.4830 −6.0618 −1.1081 1.1358

 ,
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φ2 =


φ

(2)
11 φ

(2)
12 φ

(2)
13 φ

(2)
14

φ
(2)
21 φ

(2)
22 φ

(2)
23 φ

(2)
24

φ
(2)
31 φ

(2)
32 φ

(2)
33 φ

(2)
34

φ
(2)
41 φ

(2)
42 φ

(2)
43 φ

(2)
44

 =


−1.2844 −2.1207 0.7468 −0.2830
0.47284 0.83585 −0.26067 0.10098
−2.02538 −4.47359 0.07783 −0.26420
−2.1683 −5.6194 0.7886 −0.8908


and 

c1

c2

c3

c4

 =


−0.6887
−0.33851
−4.82683
−13.2939

 .

Thus we found a vector autoregressive model, which describes the time series of the

cost components in an adequate way. Further more it is possible to make a prediction

about future values.

The dynamic of the model is described by the matrices φ1 and φ2, respectively.

If we want to interpret the coe�cients of these matrices, we observe that the �rst

component of the model is

lnLt = φ
(1)
11 lnLt−1 + φ

(1)
12 lnMt−1 + φ

(1)
13 lnEt−1 + φ

(1)
14 lnRt−1

+ φ
(2)
11 lnLt−2 + φ

(2)
12 lnMt−2 + φ

(2)
13 lnEt−2 + φ

(2)
14 lnRt−2 + c1 + ε1t.

In order to get the re-transformed values, we apply the exponential function to get

Lt = L
φ

(1)
11
t−1M

φ
(1)
12

t−1 E
φ

(1)
13

t−1R
φ

(1)
14
t−1 · L

φ
(2)
11
t−2M

φ
(2)
12

t−2 E
φ

(2)
13

t−2R
φ

(2)
14
t−2 · e

c1eε1t .

According to the prediction, given in Figure 6.8, we �nd a tendency of the evolution

of the next periods. The predicted values for the next three periods are
L̄2014

M̄2014

Ē2014

R̄2014

 =


−1.450036
−0.3082658
−4.809315
−3.787143

 ,

L̄2015

M̄2015

Ē2015

R̄2015

 =


−1.470081
−0.3034879
−4.789557
−3.739135

 ,

L̄2016

M̄2016

Ē2016

R̄2016

 =


−1.485602
−0.2989982
−4.823437
−3.756276
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Figure 6.8.: The prediction of the cost components with a 95% confidence interval.
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For the rounded re-transformed values we �nd
L2014

M2014

E2014

R2014

 =


0, 23456
0, 73472
0, 00815
0, 02267

 ,

L2015

M2015

E2015

R2015

 =


0, 22991
0, 73824
0, 00832
0, 02377

 ,

L2016

M2016

E2016

R2016

 =


0, 22637
0, 74156
0, 00804
0, 02337


This values have to be normalised, such that the sum of all components add up to

100%. Thus we construct a normalising factor Nj for every year j = 2014, 2015, 2016,
whereNj = 1∑4

i=1 x
j
i

and xi denotes the component of the j-th vector. The �nal result

for the prediction is given by the multiplying these normalising factors:
L2014

M2014

E2014

R2014

 =


0, 23454
0, 73465
0, 00815
0, 02267

 ,

L2015

M2015

E2015

R2015

 =


0, 22984
0, 73802
0, 00832
0, 02376

 ,

L2016

M2016

E2016

R2016

 =


0, 22652
0, 74205
0, 00805
0, 02339

 .

Having this result we now analyse the dynamic of the model. Here we ask ourselves

the question: What happens if one component is shocked at a certain point of time?

We therefore want to investigate how the system responds to higher values of a certain

variable. This general treatment of the problem allows us to work out di�erent

economic problems, such as: What is going to happen if the price for a certain

amount of energy is increasing? Obviously, this will become noticeable in increasing

costs of energy in the engineering branch. But how will the other cost components

react, according to the model? The theory of impulse response functions gives an

answer to this question and simulates the VAR(2) model under a certain shock of a

variable.

The impulse response functions are given in Figure 6.9 (A),(B) and Figure 6.10,

respectively.

If the costs of labour are shocked in such a way that suddenly a higher percentage

is used for the costs of labour, then the system tends to decrease the costs of labour

and energy, while the costs of material show an increasing tendency, but remain

below the base level in the next three periods.

Concerning a shock in the costs of material, both percentages of the costs of labour

and the costs of energy are decreasing, since more money is needed for the costs of
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material.

Concerning a shock in the costs of energy, we observe that the costs of material

and the costs of labour show a contrary behaviour. While the costs of material are

increasing, the costs of labour are decreasing. After both cost components stagnate,

the costs of material are decreasing, while the costs of labour are increasing.
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(a) Costs of labour
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(b) Costs of material

Figure 6.9.: Figure (A) shows the reaction of the cost components due to a shock
of the costs of labour. Figure (B) shows the reaction of the cost
components due to a shock of the costs of material.
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Figure 6.10.: The reaction of the cost components due to a shock of the costs of
energy.
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CHAPTER 7

Conclusion

In the first chapter of this thesis we introduced the production function and

de�ned all necessary concepts in order to give a compact introduction in production

theory. Therefore we de�ned the elasticity of a production function and its related

concepts. We also introduced a special class of production functions called the CES

production function which refers to a constant elasticity of substitution and proved

that other common production functions, as for example the Leontief, Cobb-Douglas

or linear production function can be derived a special choice of parameters of the CES

production function. In that sense we want to refer the CES production function as

a more general production function.

The second chapter is a summary of the previous work of [Ivaz, 2014], which

was done concerning this topic. Basically a linear cost function, based on a Leontief

production function was calibrated by a linear regression model, using the data of

the aggregated costs of the engineering sector.

In the third chapter the approach of [Ivaz, 2014] was extended to a more general

concept. We dropped the assumption of a Leontief production function and assumed

a more general CES production function to get a better result. Further more the

input variable was changed from the production value xPV to the remaining man-

ufacturing costs xRMC in order to interpret the cost function in an input/output
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7. Conclusion

oriented context. In this input/output oriented setting, we were able to derive the

cost function C(x1, x2) by a minimization problem subject to a certain amount of

outcome f(x1, x2) = c̄. In the next step the cost function was �tted to the given

data points, in order to determine the parameters δ and ρ of the production function.

Analysing this procedure, we have to be aware of the fact, that we have only four

data points available. Therefore the result may not be very signi�cant. But with this

method, we found a useful way to calibrate the cost function for future applications,

since then there will be more data points available. Further more, we found that

�tting the complex form of the cost function to the data points is very unstable and

may also fail but is more accurate than the �rst attempt of a linear cost function.

Thus we also introduced a di�erent approach, based on the idea of [Kmenta, 1967].

Following this ideas we approximated the cost function by a Taylor polynomial of

second order and then �tted the function, which is more easy to handle, to the given

data points in order to determine the parameters. We found, that for the parameter

ρ ≈ −1 holds true. Thus we can state, that using this method yields that a good

approximation for the cost function is a linear cost function. It is, however scarcely

necessary to point out, that we didn't assumed this cost function to be linear, but

proved that an estimation using this technique refers to a linear cost function.

Concerning the fourth chapter, we introduced the basic concepts and methods

to give an introduction into univariate time series models. It was shown, how to set

up and calibrate an ARIMA(p,d,q) model in order to be able to give a prediction

about future values of a time series. All this calculations are only based on the given

historical data in form of a realisation {Xt}t∈T of a time series. We provided all

methods, including the choice of the orders of an ARIMA(p,d,q) model, to be able

to understand how di�erent implemented methods of time series analysis in R work.

In the fifth chapter, we discussed multivariate time series in order to calibrate

higher dimensional time series models. Furthermore we introduced the most common

way to perform a multivariate time series analysis, by using vector autoregressive

processes of order q. To investigate the dynamics of the model the impulse response

analysis was discussed and computed for a simple VAR(1) model.

In the sixth chapter we made use of all this techniques and performed an indus-

try analysis of the engineering sector by setting up an univariate time series model

for the sales volume, the value added, the costs of investment and a multivariate time
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series models for the four cost components: costs of labour, costs of energy, costs of

material and residual costs of the engineering sector. A predication of all time series

was computed and discussed, as well as an impulse response analysis concerning the

costs components.
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APPENDIX A

Second partial derivatives for the Taylor approximation

∂2Cx1,x2

∂δ2 =

1 (1/( rho ^2))( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(

2 1 + rho ) ) q2^( rho /(1 + rho ) ) )^(1/ rho ) ( de l t a x1^−rho − (−1 + de l t a )

3 x2^−rho )^(−1/ rho ) ( ( d e l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) −
4 (1 − de l t a )^(−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) )^2/ ( ( de l t a ^(1/(1 + rho ) )

5 q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) )

6 (1 +rho ) ) + ( de l t a ^(−2 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) +

7 (1 − de l t a )^(−2 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ) rho (−1 + 1/(1 + rho ) ) −
8 (2 ( de l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) − (1 − de l t a )^

9 (−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ) ( x1^−rho − x2^−rho ) )/
10 ( d e l t a x1^−rho − (−1 + de l t a ) x2^−rho ) + ( ( de l t a ^(1/(1 + rho ) ) q1^

11 ( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) )

12 (1 + rho ) ( x1^rho − x2^rho )^2)/((−1 + de l t a ) x1^ rho − de l t a x2^rho )^2)

Listing A.1: The second partial derivative with respect to δ.
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∂2Cx1,x2

∂δ∂ρ
=

1 (1/( rho ^2))( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ))+

2 (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) )^(1/ rho ) ( de l t a x1^−rho
3 − (−1 + de l t a ) x2^−rho )^(−1/ rho ) (−de l t a ^(−1 + 1/(1 + rho ) )

4 q1^( rho /(1 + rho ))+ (1 − de l t a )^(−1 + 1/(1 + rho ) ) q2^( rho /( 1 + rho ) )

5 + (( de l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) −
6 (1 − de l t a )^(−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ) rho )/(1 + rho ) +

7 ( ( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) )

8 q2^( rho /(1 + rho ) ) ) ( x1^rho − x2^rho ))/((−1 + de l t a ) x1^rho −
9 de l t a x2^rho ) + ( rho (−de l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) )

10 (1 + rho ) + (1 − de l t a )^(−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) (1 + rho )

11 + (1 − de l t a )^(−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ 1 − de l t a ] −
12 de l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] + de l t a^

13 (−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] − (1 − de l t a )^

14 (−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] ) ) / ( 1 + rho )^2 +

15 ( ( d e l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) − (1 − de l t a )^

16 (−1 + 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ) ( ( rho (−(1 − de l t a )^

17 ( (1/ (1 + rho ) ) ) q2^( rho /(1 + rho ) )Log [ 1 − de l t a ] − de l t a ^(1/(1 + rho ) )

18 q1^( rho /(1 + rho ) ) Log [ d e l t a ] + de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) )

19 Log [ q1 ] + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )Log [ q2 ] ) ) /

20 ( ( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) )

21 q2^( rho /(1 + rho ) ) ) (1 + rho )^2) − Log [ d e l t a ^(1/(1 + rho ) )

22 q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ] ) ) /

23 rho − ( ( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) )

24 q2^( rho /(1 + rho ) ) ) ( x1^−rho − x2^−rho ) ( ( rho (−(1 − de l t a )^( (1/(1 + rho ) ) )

25 q2^( rho /(1 + rho ) ) Log [ 1 − de l t a ] − de l t a ^(1/(1 + rho ) )

26 q1^( rho /(1 + rho ) ) Log [ d e l t a ] +de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) )

27 Log [ q1 ] + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )Log [ q2 ] ) ) /

28 ( ( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) )

29 q2^( rho /(1 + rho ) ) ) (1 + rho ) ) − Log [ d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) )

30 + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ] ) ) / ( rho ( de l t a x1^−rho −
31 (−1 + de l t a ) x2^−rho ) ) +(( de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) +

32 (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) ) rho (−x2^rho Log [ x1 ] +

33 x1^rho Log [ x2 ] ) )/(( −1 + de l t a ) x1^rho −de l t a x2^rho ) +

34 ( ( d e l t a ^(−1 + 1/(1 + rho ) ) q1^( rho /(1 + rho ) ) − (1 − de l t a )^(−1 + 1/(1 + rho ) )

35 q2^( rho /(1 + rho ) ) ) (−de l t a rho x2^rho Log [ x1]+ (−1 + de l t a )

36 rho x1^ rho Log [ x2 ] + ((−1 + de l t a ) x1^rho − de l t a x2^rho )Log [ d e l t a x1^−rho
37 − (−1 + de l t a ) x2^−rho ] ) ) / ( rho ((−1 + de l t a ) x1^rho −de l t a x2^rho ) ) −
38 ( ( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) )

39 q2^( rho /(1 + rho ) ) ) ( x1^rho − x2^rho ) (−de l t a rho (1 + rho ) x2^rho Log [ x1 ]

40 + (−1 + de l t a ) rho (1 + rho ) x1^rho Log [ x2 ] + ((−1 + de l t a ) x1^rho − de l t a

41 x2^rho ) Log [ d e l t a x1^−rho − (−1 + de l t a ) x2^−rho ] ) ) / ( rho ((−1 + de l t a )
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42 x1^rho − de l t a x2^rho )^2))

Listing A.2: The mixed partial derivative.

∂2Cx1,x2

∂ρ2 =

1 (1/( rho ^4))( d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(

2 1 + rho ) ) q2^( rho /(1 + rho ) ) )^ (

3 1 + 1/ rho ) ( de l t a x1^−rho − (−1 + de l t a ) x2^−rho )^(−1/
4 rho ) ( ( rho^2 ( (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

5 Log [ 1 − de l t a ] +

6 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] −
7 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] − (1 − de l t a )^(

8 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] ) ) / ( ( d e l t a ^(1/(1 + rho ) )

9 q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(

10 1 + rho ) ) ) (1 + rho )^2) + (

11 rho^2 ( (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

12 Log [ 1 − de l t a ] +

13 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] −
14 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] − (1 − de l t a )^(

15 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] ) ) / ( ( d e l t a ^(1/(1 + rho ) )

16 q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(

17 1 + rho ) ) ) (1 + rho ) ) − (

18 rho^3 ( (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

19 Log [ 1 − de l t a ] +

20 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] −
21 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] − (1 − de l t a )^(

22 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] ) ^ 2 ) / ( ( de l t a ^(1/(

23 1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^(

24 rho /(1 + rho )))^2 (1 + rho )^3) + (

25 rho^3 (−(1 − de l t a )^( (1/(1 + rho ) ) ) q2^( rho /(1 + rho ) )

26 Log [ 1 − de l t a ] −
27 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] +

28 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] + (1 − de l t a )^(

29 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] ) ) / ( ( d e l t a ^(1/(1 + rho ) )

30 q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(

31 1 + rho ) ) ) (1 + rho )^2) + (

32 1/(( de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(

33 1 + rho ) ) q2^( rho /(1 + rho ) ) ) (1 + rho )^3))

34 rho^3 ( (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

35 Log [ 1 − de l t a ]^2 +

36 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ]^2 +

37 2 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) )

38 Log [ d e l t a ] (1 + rho − Log [ q1 ] ) −
39 2 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] −
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40 2 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) rho Log [ q1 ] +

41 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ]^2 +

42 2 (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

43 Log [ 1 − de l t a ] (1 + rho − Log [ q2 ] ) −
44 2 (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] −
45 2 (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

46 rho Log [ q2 ] + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

47 Log [ q2 ]^2) +

48 2 rho Log [

49 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(

50 1 + rho ) ) q2^( rho /(1 + rho ) ) ] + ( (

51 rho ( (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

52 Log [ 1 − de l t a ] +

53 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] −
54 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ q1 ] − (1 − de l t a )^(

55 1/(1 + rho ) ) q2^( rho /(1 + rho ) ) Log [ q2 ] ) ) / ( ( d e l t a ^(1/(

56 1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^(

57 rho /(1 + rho ) ) ) (1 + rho ) ) +

58 Log [ d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(

59 1 + rho ) ) q2^( rho /(1 + rho ) ) ] ) ^ 2 + (

60 2 rho^2 ( de l t a x2^rho Log [ x1 ] − (−1 + de l t a ) x1^rho Log [ x2 ] ) )/(( −1
61 + de l t a ) x1^rho − de l t a x2^rho ) + (

62 rho^3 ( de l t a x2^rho Log [ x1 ] − (−1 + de l t a ) x1^

63 rho Log [ x2 ])^2)/((−1 + de l t a ) x1^rho − de l t a x2^rho )^2 + (

64 rho^3 ( de l t a x2^rho Log [ x1 ]^2 − (−1 + de l t a ) x1^

65 rho Log [ x2 ]^2))/((−1 + de l t a ) x1^rho − de l t a x2^rho ) −
66 2 rho Log [ d e l t a x1^−rho − (−1 + de l t a ) x2^−rho ] + (

67 1/((−1 + de l t a ) x1^rho − de l t a x2^rho ) )

68 2 ( ( rho (−(1 − de l t a )^( (1/(1 + rho ) ) ) q2^( rho /(1 + rho ) )

69 Log [ 1 − de l t a ] −
70 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) Log [ d e l t a ] +

71 de l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) )

72 Log [ q1 ] + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(1 + rho ) )

73 Log [ q2 ] ) ) / ( ( d e l t a ^(1/(1 + rho ) ) q1^( rho /(

74 1 + rho ) ) + (1 − de l t a )^(1/(1 + rho ) ) q2^( rho /(

75 1 + rho ) ) ) (1 + rho ) ) −
76 Log [ d e l t a ^(1/(1 + rho ) ) q1^( rho /(1 + rho ) ) + (1 − de l t a )^(1/(

77 1 + rho ) ) q2^( rho /(1 + rho ) ) ] ) (−de l t a rho x2^

78 rho Log [ x1 ] + (−1 + de l t a ) rho x1^

79 rho Log [ x2 ] + ((−1 + de l t a ) x1^rho − de l t a x2^rho ) Log [

80 de l t a x1^−rho − (−1 + de l t a ) x2^−rho ] ) + (−de l t a rho x2^

81 rho Log [ x1 ] + (−1 + de l t a ) rho x1^

82 rho Log [ x2 ] + ((−1 + de l t a ) x1^rho − de l t a x2^rho ) Log [

83 de l t a x1^−rho − (−1 + de l t a ) x2^−rho ])^2/((−1 + de l t a ) x1^rho −
84 de l t a x2^rho )^2)

Listing A.3: The second partial derivative with respect to ρ.

102



APPENDIX B

Mathematica code

1 q1= 56.139

2 q2= 27.874

3 FC= 51.69272

4 data = {{1.31901739 , 0 .98558670 , 166.600510173} , {1 .04570906 ,

5 0 .91024723 , 138 .53777873} , {1 .05442656 , 0 .85718242 ,

6 130.37280165} , {1 .31451084 , 0 .94131837 , 154.85238000}}

7
8 FindFit [ data , {( de l t a ∗x1^(−rho ) + (1 − de l t a )∗ x2^(−rho ))^(−1/
9 rho )∗ ( d e l t a ^(1/( rho + 1) )∗ ( q1 )^( rho /( rho + 1) ) + (1 −

10 de l t a )^(1/( rho + 1) )∗ ( q2 )^( rho /( rho + 1) ) )^ ( ( rho + 1)/

11 rho ) + FC,

12 {0 <= de l t a <= 1 , −1 <= rho }} , { de l ta , rho } , {x1 , x2 } ]

Listing B.1: Mathematica code for finding the parameters of the model based
on a nonlinear least square fit.

1 q1= 56.139

2 q2= 27.874

3 FC= 51.69272

4 Cost [ x1_ , x2_ ] := ( de l t a ∗x1^(−rho ) + (1 − de l t a )∗ x2^(−rho ))^(−1/ rho )∗
5 ( d e l t a ^(1/( rho + 1) )∗ ( q1 )^( rho /( rho + 1) ) + (1 −de l t a )^
6 (1/( rho + 1) )∗ ( q2 )^( rho /( rho + 1) ) )^ ( ( rho + 1)/ rho ) + FC

7 NMaximize [ { Cost [ 1 . 31901739 , 0 . 98558670 ] ,

8 0 <= de l t a <= 1 , −1 <= rho } , { de l ta , rho } ]

9 NMaximize [ { Cost [ 1 . 04570906 , 0 . 91024723 ] ,
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10 0 <= de l t a <= 1 , −1 <= rho } , { de l ta , rho } ]

11 NMaximize [ { Cost [ 1 . 05442656 , 0 . 85718242 ] ,

12 0 <= de l t a <= 1 , −1 <= rho } , { de l ta , rho } ]

13 NMaximize [ { Cost [ 1 . 31451084 , 0 . 94131837 ] ,

14 0 <= de l t a <= 1 , −1 <= rho } , { de l ta , rho } ]

Listing B.2: Mathematica code for finding the maximum of the cost function.

1 q1= 56.139

2 q2= 27.874

3 FC= 51.69272

4 data = {{1.31901739 , 0 .98558670 , 166.600510173} , {1 .04570906 ,

5 0 .91024723 , 138 .53777873} , {1 .05442656 , 0 .85718242 ,

6 130.37280165} , {1 .31451084 , 0 .94131837 , 154.85238000}}

7 deltam = 0.7

8 rhom = 0.3

9 Cost1 [ x1_ , x2_ ] := ( de l t a ∗x1^(−rho ) + (1 − de l t a )∗ x2^(−rho ))^(−1/
10 rho )∗ ( d e l t a ^(1/( rho + 1) )∗ ( q1 )^( rho /( rho + 1) ) + (1 −
11 de l t a )^(1/( rho + 1) )∗ ( q2 )^( rho /( rho + 1) ) )^ ( ( rho + 1)/ rho ) +

12 FC

13 Cost2 [ delta_ , rho_ ] := ( de l t a ∗x1^(−rho ) + (1 − de l t a )∗ x2^(−rho ))^(−1/
14 rho )∗ ( d e l t a ^(1/( rho + 1) )∗ ( q1 )^( rho /( rho + 1) ) + (1 −
15 de l t a )^(1/( rho + 1) )∗ ( q2 )^( rho /( rho + 1) ) )^ ( ( rho + 1)/ rho ) +

16 FC

17 Taylorr [ delta_ , rho_ ] := Evaluate [D[ Cost2 [ de l ta , rho ] , rho ] ]

18 Taylor r r [ delta_ , rho_ ] := Evaluate [D[ Cost2 [ de l ta , rho ] , rho , rho ] ]

19 Taylord [ delta_ , rho_ ] := Evaluate [D[ Cost2 [ de l ta , rho ] , d e l t a ] ]

20 Taylordd [ delta_ , rho_ ] := Evaluate [D[ Cost2 [ de l ta , rho ] , de l ta , d e l t a ] ]

21 Taylorrd [ delta_ , rho_ ] := Evaluate [D[ Cost2 [ de l ta , rho ] , rho , d e l t a ] ]

22 App [ x1_ , x2_] := Cost2 [ deltam , rhom ] + Taylorr [ deltam , rhom ] ∗ ( rho − rhom) +

23 Taylord [ deltam , rhom ] ∗ ( d e l t a − deltam ) +

24 1/2∗( Tay lor r r [ deltam , rhom ] ∗ ( rho − rhom)^2 +

25 2∗Taylorrd [ deltam , rhom ] ∗ ( rho − rhom)∗ ( d e l t a − deltam ) +

26 Taylordd [ deltam , rhom ] ∗ ( d e l t a − deltam )^2)

27 FindFit [ data , {App [ x1 , x2 ] , {0 <= de l t a <= 1 , −1 <= rho }} , { de l ta ,

28 rho } , {x1 , x2 } ]

Listing B.3: Mathematica code for finding the parameters δ and ρ using a Tay-
lor approximation.
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R Code

1 l i b r a r y ( f o r e c a s t )

2 Daten = read . csv ( f i l e="A" , dec=" . " , sep=" , " , header=TRUE)

3 DatenZe i t re ihe<−t s (Daten$B , f r e q= C, s t a r t = D)

4 p lo t ( DatenZe i t re ihe , main=" T i t l e " )

5 summary( DatenZe i t r e ihe )

6 f i t <−auto . arima ( DatenZe i t re ihe , max . p = E, max . q = F)

7 summary( f i t )

8 p lo t ( f o r e c a s t ( f i t , h=G) )

9 f o r e c a s t ( f i t , h=G)

Listing C.1: Code to determine an ARIMA model.

1 l i b r a r y ( vars )

2 Daten = read . csv ( f i l e="A" , dec=" , " , sep=" : " , header=TRUE)

3 Cost_Components<−t s (Daten , f r e q=C, s t a r t = D)

4 VARselect (Cost_Components , l ag .max = E, type = " const " )

5 varmodel<−VAR(Cost_Components , p = P, type = " const " )

6 summary( varmodel )

7 p lo t ( p r ed i c t ( varmodel , n . ahead=5, c i =0.95))

Listing C.2: Code to determine a VAR model.
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