
New Sensor-Based Methods for
Clinical and In-Home Assessment

of Fall Risk in Older People

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

by

Andreas Ejupi
Registration Number 0626078

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Dr. Kim Delbaere, Prof. Stephen Lord, Prof. Wolfgang Zagler

The dissertation has been reviewed by:

Prof. Stephen Lord (University
of New South Wales, Australia)

Prof. Wolfgang Zagler (Vienna
University of Technology,

Austria)

Vienna, 30th November, 2015
Andreas Ejupi

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





New Sensor-Based Methods for
Clinical and In-Home Assessment

of Fall Risk in Older People

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Andreas Ejupi
Matrikelnummer 0626078

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr. Kim Delbaere, Prof. Stephen Lord, Prof. Wolfgang Zagler

Diese Dissertation haben begutachtet:

Prof. Stephen Lord (University
of New South Wales, Australia)

Prof. Wolfgang Zagler (Vienna
University of Technology,

Austria)

Wien, 30. November 2015
Andreas Ejupi

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Declaration of Authorship

Andreas Ejupi
Stuttgarterstrasse 12-22/16/5
2380 Perchtoldsdorf

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 30th November, 2015
Andreas Ejupi

v





The research presented in this thesis was supported by the European Union’s Seventh
Framework Programme for research, technological development, and demonstration
grant (#287361) as well as Australian National Health and Medical Research Council

EU collaboration grant (#1038210) .





Acknowledgements

I wish to express a sincere thank to my supervisors Dr. Kim Delbaere, Prof. Stephen
Lord and Prof. Wolfgang Zagler for their support during the last years. A special word
of thanks goes to Kim for being a great mentor. She always generously shared her
time, knowledge and expertise. Further, I would like to thank Kim and Steve for the
opportunity to work with them at Neuroscience Research Australia in Sydney.

I also would like to thank the Austrian Institute of Technology (AIT), especially my
colleagues at the Assistive Healthcare Information Technology group. The AIT provided
me the flexibility and financial support for carrying out my research and enabled me to
share and discuss the results with researchers around the world.

I would like to thank all of the partners of the iStoppFalls consortium. A special thank
goes to Yves Gschwind and Konstantin Aal who I worked closely together with and who
also became good friends. Further, I would like to take the opportunity to thank the
participants of the studies for their time and interest.

Special thanks go to my parents and my sister for their continuous support and encour-
agement during my entire life. Without them, the completion of this thesis would not
have been possible. I am grateful for my girlfriend Kathi and her support and especially
her patience during the end phase of my thesis.

I would like to dedicate this thesis to my grandparents. They always emphasized the
importance of education and I know they would be very proud. Seeing them ageing
affected my motivation and it might be because of them that I have chosen this topic.

Finally, I would like to thank everyone I did not mention explicitly yet, but who supported
me or I collaborated with during the last years.

ix





Publications

This thesis is partially based on the following publications:

Chapter 2:

A. Ejupi, S. R. Lord, and K. Delbaere, “New methods for fall risk prediction.” Current
Opinion in Clinical Nutrition and Metabolic Care, vol. 17, no. 5, pp. 407–411, 2014

Chapter 4:

A. Ejupi, M. Brodie, Y. J. Gschwind, S. R. Lord, W. L. Zagler, and K. Delbaere, “Kinect-
Based Five-Times-Sit-to-Stand Test for Clinical and In-Home Assessment of Fall Risk in
Older People.” Gerontology, vol. 62, no. 1, 2016

Chapter 5:

A. Ejupi, M. Brodie, Y. J. Gschwind, S. R. Lord, and K. Delbaere, “Kinect-based choice
reaching and stepping reaction time tests for clinical and in-home assessment of fall risk
in older people: a prospective study,” European Review of Aging and Physical Activitiy,
2015, in press

Chapter 6:

A. Ejupi, M. Brodie, Y. J. Gschwind, D. Schoene, S. R. Lord, and K. Delbaere, “Choice
Stepping Reaction Time test using Exergame technology for fall risk assessment in older
people,” in Conference Proceedings IEEE Engineering in Medicine and Biology, 2014, pp.
6957–6960

Chapter 7:

A. Ejupi, M. Brodie, S. R. Lord, J. Annegarn, S. J. Redmond, and K. Delbaere, “Wavelet-
Based Sit-To-Stand Detection and Assessment of Fall Risk in Older People Using a Wear-
able Pendant Device,” IEEE Transactions on Biomedical Engineering, 2015, manuscript
submitted for publication

Chapter 8:

A. Ejupi, Y. J. Gschwind, T. Valenzuela, S. R. Lord, and K. Delbaere, “A Kinect and
inertial sensor-based system for the self-assessment of fall risk: a home-based study in
older people,” Human Computer Interaction, 2015, advance online publication

xi



Other publications by the author of this thesis related to the topic:

A. Ejupi, J. Oberzaucher, F. Werner, and W. Zagler, “Development of a fall detec-
tion model for an instrumented insole,” in International Conference on Information
Communication Technologies in Health, 2012

K. Kreiner, H. De Rosario, C. Gossy, A. Ejupi, and M. Drobics, “Play Up! a Smart
Knowledge-Based System using Games for Preventing Falls in Elderly People,” in Pro-
ceedings of the eHealth Conference, 2013, pp. 243–248

Y. J. Gschwind, S. Eichberg, H. R. Marston, A. Ejupi, H. de Rosario, M. Kroll, M. Drobics,
J. Annegarn, R. Wieching, S. R. Lord, K. Aal, and K. Delbaere, “ICT-based system to
predict and prevent falls (iStoppFalls): study protocol for an international multicenter
randomized controlled trial.” BMC Geriatrics, vol. 14, no. 91, 2014

H. R. Marston, A. Woodbury, Y. J. Gschwind, M. Kroll, D. Fink, S. Eichberg, K. Kreiner,
A. Ejupi, J. Annegarn, H. D. Rosario, A. Wienholtz, R. Wieching, and K. Delbaere, “The
design of a purpose-built exergame for fall prediction and prevention for older people,”
European Review of Aging and Physical Activitiy, 2015, in press

Y. J. Gschwind, S. Eichberg, A. Ejupi, H. de Rosario, M. Kroll, H. R. Marston, M. Drobics,
J. Annegarn, R. Wieching, S. R. Lord, K. Aal, D. Vaziri, A. Woodbury, D. Fink, and
K. Delbaere, “ICT-based system to predict and prevent falls (iStoppFalls): results from
an international multicenter randomized controlled trial,” European Review of Aging and
Physical Activitiy, 2015, in press

Y. J. Gschwind, D. Schoene, S. R. Lord, A. Ejupi, T. Valenzuela Artaega, K. Aal,
A. Woodbury, and K. Delbaere, “The effect of sensor-based exercise at home on functional
performance associated with fall risk in older people - a comparison of two exergame
interventions,” European Review of Aging and Physical Activitiy, 2015, in press

For a full list of publications see http://www.ejupi.at/publications.

http://www.ejupi.at/publications


Abstract

Background. Falls are common in older people and are becoming an increasing burden
on society as the population ages. An accurate assessment of fall risk could assist to
identify individuals at increased risk and would enable appropriate intervention before
a fall occurs. To date, the methods used to assess fall risk often lack accuracy and
objectivity, require expensive equipment and specialized knowledge, and are limited to
the clinical setting.

Objective. The main objectives of this thesis were the development and evaluation of
new sensor-based methods to accurately assess fall risk in both clinical and home settings.
These new methods included the Microsoft Kinect, a low-cost consumer depth camera,
and a pendant-style wearable sensor (Philips Research), comprising of an accelerometer
and barometric air pressure sensor.

Methods. A Kinect-based system (also referred to as the iStoppFalls assessment) for the
assessment of balance, strength and reaction time through a program on the television
was developed. The feasibility and validity of the Kinect-based system and wearable
sensor to assess fall risk in community-living older people was investigated across three
studies:

In the first study, 94 older people were assessed on a Kinect-based five-times-sit-to-
stand, choice stepping and choice reaching reaction time test in a clinical setting. Signal
processing algorithms were developed to quantify performance on these tests by extracting
temporal and spatial measurements from the Kinect skeleton data. The convergent validity
of these measurements was established against traditional clinical tests and the ability to
differentiate between people who are at risk for falls from people who are not at risk was
investigated.

In the second study, 119 older people were asked to perform typical daily activities,
including postural transitions (an indicator for fall risk), while wearing the pendant device.
A signal processing algorithm, based on wavelet transformations of the accelerometer and
barometric air pressure sensor data, was developed to automatically detect and assess
sit-to-stand movements during daily activities.

In the third study, the long-term use of the Kinect-based system and wearable sensor was
investigated in the homes of 62 older people over a four months study period. Participants
were asked to independently perform at least one assessment session each month and
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to wear the pendant during the day. Interviews were conducted to investigate user
experience and design guidelines for future home-based assessments were developed.

Results. The Kinect-based system and the wearable sensor could be used to assess fall
risk in older people in a clinical setting. Further, it was feasible to use both methods in
an unsupervised home setting.

Fallers performed significantly worse than non-fallers on the Kinect-based tests (p < 0.05).
The proposed algorithms accurately detected these performance differences in the sensor
data, supporting good discriminant validity of this new method.

The wearable sensor based on the proposed algorithm accurately detected sit-to-stand
movements through the monitoring of activities of daily life (sensitivity: 93.1 - 98.9%,
false positive rate: 0 - 2.9%) and differentiated significantly between the fallers and
non-fallers (p < 0.05).

In total, 241 Kinect-based assessments were independently performed by the participants
at home. The wearable sensor was worn for a total of 39,803 hours. Most participants felt
positive about their experience and could see themselves continuing with the Kinect-based
assessment or to wear the pendant device on a regular basis to monitor their fall risk.

Conclusion. The findings of this thesis suggest the feasibility of these new sensor-based
methods in both clinical and home settings. In future, these methods could be used as
an accurate, objective, easy to administer and inexpensive alternative or complement to
traditional clinical fall risk tests, and could also provide health care professionals more
detailed information about their patient’s daily risk of falling at home.



Kurzfassung

Problemstellung. Stürze sind die häufigsten Unfälle älterer Menschen. Deren Folgen
stellen eine große Herausforderung für das Gesundheitswesen dar. Aufgrund des demogra-
fischen Wandels und der damit verbundenen alternden Gesellschaft gewinnt die Thematik
zunehmend an Bedeutung. Eine exakte Sturzrisikoerfassung zur Identifikation älterer Per-
sonen mit erhöhtem Sturzrisiko würde rechtzeitige Präventionsmaßnahmen ermöglichen.
Derzeitige Verfahren zur Bestimmung des Sturzrisikos sind oftmals unpräzise, abhängig
von subjektiven Interpretationen, benötigen spezielle Apparaturen (und Expertenwissen)
und sind auf einen Einsatz im Labor oder in speziellen geriatrischen Kliniken beschränkt.

Zielsetzung. Ziel dieser Arbeit war die Entwicklung und Evaluierung neuer sensorba-
sierter Verfahren zur Sturzrisikobestimmung, die in Zukunft sowohl in klinischen als auch
in häuslichen Settings eingesetzt werden können. Zum Einsatz kamen Microsoft Kinect,
ein kostengünstiger visueller Tiefensensor, und ein tragbares Gerät (Philips Research),
bestehend aus einem Beschleunigungssensor und Luftdrucksensor.

Methoden. Ein sensorbasiertes Assessment-Werkzeug zur Ermittlung der körperlichen
Leistungsfähigkeit wurde entwickelt. Die Tests konnten mithilfe eines herkömmlichen
Fernsehers und dem Kinect-Sensor in einer virtuellen Testumgebung durchgeführt wer-
den. Das Kinect-basierte Testsystem und der tragbare Sensor wurden in drei Studien
hinsichtlich des Einsatzes zur Ermittlung des Sturzrisikos älterer Personen untersucht.

In der ersten Studie wurden 94 Probanden mit dem Kinect-basierten System in einem
klinischen Setting getestet. Dabei absolvierten die Probanden Tests zur Messung des
Kraft-, Balance- und Reflexverhaltens. Algorithmen wurden entwickelt um aus den
Sensordaten der Microsoft Kinect Performanz-Indikatoren zu erstellen. Die Konvergenzva-
lidität dieser Messergebnisse wurde mithilfe von Referenztests (Goldstandard) überprüft.
Zusätzlich wurde untersucht, ob man mithilfe der sensorbasierten Messwerte zwischen
Personen mit erhöhtem Sturzrisiko und weniger gefährdeten Personen unterscheiden kann
(Diskriminanzvalidität).

In der zweiten Studie wurden alltägliche Aktivitäten von 119 Probanden mit dem
tragbaren Sensor aufgezeichnet. Ein Beispiel für eine solche Alltagsbewegung ist das
Aufstehen von einem Stuhl, das einen Rückschluss auf das Sturzrisiko einer Person erlaubt.
Dazu wurde ein Algorithmus entwickelt, der basierend auf Wavelet-Transformationen der
Beschleunigungs- und Luftdrucksensordaten das Aufstehen von einem Stuhl erkennen
und die Bewegungsausführung bewerten kann.
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In der dritten Studie wurde der mögliche Langzeiteinsatz (über vier Monate) des Kinect-
basierten Systems und des tragbaren Sensors in der häuslichen Umgebung getestet. An der
Studie beteiligten sich insgesamt 62 Probanden, die sich dazu bereit erklärten zumindest
einmal pro Monat ein Kinect-basiertes Assessment selbständig durchzuführen, sowie
den tragbaren Sensor täglich während der gesamten Studiendauer zu verwenden. Die
Erfahrungen und Erzählungen der Probanden wurden mithilfe von Interviews am Ende der
Studie festgehalten. Darauf aufbauend wurden Guidelines für zukünftige sensorbasierte
Verfahren zur Sturzrisikoerfassung im häuslichen Setting erarbeitet.

Ergebnisse. Diese Arbeit zeigt, dass es möglich ist mithilfe des Kinect-basierten Systems
zwischen sturzgefährdeten und weniger sturzgefährdeten Personen zu unterscheiden. Die
auf Basis der entwickelten Algorithmen extrahierten Messwerte zeigten eine ausgezeichnete
Konvergenzvalidität und waren signifikant unterschiedlich zwischen den sturzgefährdeten
und weniger sturzgefährdeten Personen (p < 0.05).

Ein weiteres Resultat dieser Arbeit ist die Möglichkeit Aufstehbewegungen (während
alltäglicher Bewegungen) mithilfe des entwickelten Algorithmus und tragbaren Sensors zu
detektieren (Sensitivität: 93.1 – 98.9%, Falsch-Positiv-Rate: 0 – 2.9%). Das entwickelte
Verfahren konnte erfolgreich zwischen sturzgefährdeten und weniger sturzgefährdeten
Personen unterscheiden (p < 0.05).

Die Ergebnisse der Langzeitstudie zeigen, dass sowohl das Kinect-basierte System als auch
der tragbare Sensor im häuslichen Setting verwendet werden können. Insgesamt wurde
das Kinect-basierte Assessment 241-mal zur Ermittlung des individuellen Sturzrisikos
durchgeführt. Der tragbare Sensor wurde für eine Gesamtdauer von 39.803 Stunden
verwendet. Die meisten Teilnehmer äußerten sich positiv über die verwendeten Geräte und
könnten sich vorstellen, diese auch zukünftig über die Studiendauer hinaus regelmäßig zu
verwenden.

Schlussfolgerung. Zusammengefasst kann festgehalten werden, dass die entwickelten
sensorbasierten Verfahren zur Sturzrisikoerfassung älterer Personen im klinischen als
auch im häuslichen Setting verwendet werden können. Zukünftig könnten diese Verfahren
als exakte, objektive, einfach anwendbare und kostengünstige Alternativen zu bisherigen
klinischen Tests zum Einsatz kommen. Besonders die sensorbasierte Sturzrisikoerfassung
außerhalb des klinischen Settings ist vielversprechend und kann Ärzten, Therapeuten
und den betroffenen Personen selbst helfen, das individuelle Sturzrisiko regelmäßig
festzustellen.
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CHAPTER 1
Introduction

Age is an issue of mind over
matter. If you don’t mind, it
doesn’t matter.

Mark Twain

1



1. Introduction

1.1 Falls in Older People

Falls remain an important problem in older people and are becoming an increasing burden
on society as the population ages. A fall is commonly defined as “an unexpected event in
which the person comes to rest on the ground, floor, or lower level” [13]. Yearly fall rates
vary between 30% for those aged 65+ years to 50% for those aged 85+ years.

Because of demographic changes the issue with falls will be even more important in
future. In 2000, 605 million people were 60+ years old. The World Health Organization
estimates that by 2050, two billion people will be 60+ years and predicts a substantial
change in the population profile, where this cohort will be the fastest growing group in
the next decades (Figure 1.1) [14]. Figure 1.2 illustrates a projection of the estimated
population by country in 2050.

Falls are the leading cause of injury-related hospitalization in old age [17]. About 37.3
million falls require medical attention and 424,000 people die from fall-related injuries
every year worldwide [14]. The major causes for injury-related hospitalization are hip
fractures, head and upper limb injuries [18]. The mean duration of a hospital stay because
of a fall varies from four to 20 days [18]. A fall often initiates a vicious cycle which is
difficult to break and may lead to a post-fall syndrome that includes loss of autonomy,
confusion, immobility, depression and a restriction of daily activities [18].

Falls are the most expensive injury among older people. Costs related to falls can be
categorized in direct and indirect costs. Direct costs include expenses for treatment and
rehabilitation (e.g. doctor visits, diagnostic tests, medication, hospital care) and indirect
costs are quantified as societal productivity losses (e.g. loss of income) of caregivers
and patients [18, 19]. In a recent review, the total economic costs related to falls were
estimated with US $23.3 billion annually in the United States [20]. The mean costs of a

(a) (b)

Figure 1.1: Population pyramids of more developed regions in (a) 1970 and (b) 2050 [15].
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1.2. Risk Factors for Falls

Figure 1.2: Proportion of population aged 60 years or older, by country, 2050 projec-
tions [16].

fall ranged from US $3,476 per faller to US $10,749 per injurious fall, and US $26,483 per
fall requiring hospitalization [20]. In New South Wales, Australia, the lifetime treatment
and care costs of fall-related injuries were estimated at AU $558.5 million annually [21].
In Europe, annually costs related to falls were estimated with US $1.6 billion in the
United Kingdom [20].

About 50% of the falls in community-living older people occur within their homes or
surrounding areas [22, 23], and people of advanced age and people with limited mobility
are particularly more likely to fall at home [24]. The majority of falls occur on a level
surface and in situations where people undertake their normal daily activities [19]. It has
recently been reported that in frail older people the top three activities associated with
falls are forward walking, standing quietly and sitting down [25].

1.2 Risk Factors for Falls

Falls are complex and most falls occur as a result of a combination of multiple risk
factors. In general, the literature distinguishes between intrinsic (e.g. functional and
health related) and extrinsic (e.g. environmental) risk factors [26]. Falls are related to a
variety of physiological risk factors with physical inactivity [27, 28], poor balance [29, 30],
impaired gait [31,32], muscle weakness [27,33] and slow reaction times [34–36] consistently
reported. Neuropsychological risk factors include depression [37,38], fear of falling [39]
and poor executive functions [38,40]. Examples for environmental risk factors are dim
lighting, slippery surfaces, obstacles and tripping hazards.

3



1. Introduction

Figure 1.3: Systems involved in the maintenance of postural stability [19].

Balance

Figure 1.3 illustrates the factors involved in the maintenance of human stability. Several
studies have shown that postural control declines with age [41, 42]. Maintaining upright
posture (i.e. static balance) and stability during the execution of movements (i.e. dynamic
balance) are important functions of the postural control system [43]. Therefore, poor
static and dynamic balance have been identified as risk factors of falls [29, 30].

Strength

Skeletal muscle mass and quality decline with age leading to a deficit in muscle function
[44]. Muscle strength (i.e. the ability to generate force) and muscle power (i.e. the ability
to generate this force rapidly) have been associated with falls [33] [45]. Furthermore, there
is evidence for the contribution of muscle strength and power to balance performance in
older people [44].

Reaction time

Quick protective reactions that involve reaching or stepping movements are also important
to avoid falls [46] and to reduce the risk of injuries [47,48]. It has been reported, that
fallers have slower reaction times than non-fallers [34–36].
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1.3. Prevention of Falls

Figure 1.4: Decrease of functional capacity over lifetime [18].

1.3 Prevention of Falls

There is evidence that falls in older people can be prevented [49,50]. Figure 1.4 illustrates
the decrease of functional capacity over lifetime. The goal of active and healthy ageing
is to slow down this degenerative process and in consequence reduce the risk of falling.
Recent findings indicate that multiple-component exercise programs, usually containing
balance and strength training exercises, and multifactorial interventions integrating
assessment with individualized treatment are effective in preventing falls [49].

Studies have shown that a reduced intake of inappropriate medications and a gradual
withdrawal of psychotropic medications are effective methods in fall prevention [49,51].
Improving home safety (i.e. the assessment and elimination of environmental hazards)
has shown to be effective when carried out by occupational therapists [49,52]. Further,
vitamin D supplementation in people with lower vitamin D levels, insertion of pacemakers
in people with carotid sinus hypersensitivity and anti-slip shoe devices worn in icy
conditions have been demonstrated to reduce falls [49].

1.4 Fall Risk Assessments

Fall risk assessments have been developed to determine the individual likelihood to fall.
An accurate identification can increase the chance of selecting an appropriate prevention
or treatment strategy, targeted to meet the needs of the individual older person [18].
Furthermore, regularly repeated fall risk assessments can guide and help to measure the
success of fall intervention programs.

Fall risk tests should be simple, valid, reliable, inexpensive, short to administer and
provide quantitative outcome measurements [35]. Numerous tests of balance, strength,
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reaction time and mobility have been developed in the past and found to be associated
with an increased risk of falling.

Balance

In clinical settings, balance assessments are widely used to assess fall risk. In most of
these tests participants are asked to maintain their balance for a specific duration (e.g.
10 seconds) in various stance positions (e.g. semi-tandem, near-tandem, full tandem) [29].
The main outcome measurement is a success or failure with respect to whether the
participant is able to hold the stance without moving the feet or requiring additional
support. More sophisticated methods measure the amount of sway during these tests
with a sway meter [35] or a force platform [52]. The Timed Up and Go [53] is another
widely used test to assess functional mobility. The outcome of this test, the stop-watch
measured time that a participant takes to rise from a chair, walk three meters, turn
around, walk back to the chair, and sit down, has been associated with falls [54].

Strength

The sit-to-stand test with five repetitions is commonly used in clinical settings to assess
functional lower extremity muscle strength, which has been related to falls [55–57].
Further, poor performance on the five-times-sit-to-stand-test is associated with impaired
balance [58,59], reduced reaction time and other factors such as pain and vitality [58].
Performance is measured in seconds, as the total time from the initial seated position to
the final seated position after completing five stands, with a stop-watch. Other widely
used strength indicators are isometric knee extension strength measured with spring or
strain gauges and handgrip strength [35,60].

Reaction time

Many studies have reported that reaction time increases significantly with age [43,46,61]
and that a slower reaction time is related to a higher risk of falling [34, 36]. Simple
and choice reaction times with finger- or foot-press responses have been measured with
electronic timers and switches in the laboratory [34,35]. Studies have examined voluntary
reaction times and the responses to balance perturbations in older people [34,43,62].

Fall risk assessment tools aim to predict the individual fall probability by combining single
measurements. The Physiological Profile Assessment (PPA) estimates the likelihood
to fall based on tests which assess sensorimotor abilities: 1) sway when standing on
medium-density foam with eyes open, 2) knee extension strength, 3) hand reaction time,
4) contrast sensitivity and 5) peripheral sensation [35]. The Berg Balance Scale [63],
Tinetti Performance Oriented Mobility Assessment [64], Balance Evaluation Systems
Test [65] and the Short Physical Performance Battery [66] are other examples of fall risk
assessment tools.
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1.5 Aim of the Thesis

To date, the methods used to assess fall risk are often described as subjective and
inaccurate [67]. Because of limited health care resources, objective test equipment (e.g.
force platforms or electronic walkways) and expertise to perform these assessments are not
always available. It is possible that clinical tests are only moderately predictive of falls
because such assessments are a one-time snapshot performed under ideal circumstances
dissimilar to those that would lead to falls in an older person’s daily environment.
Accurate, objective, inexpensive and easy to administer tests which can be undertaken
regularly to assess fall risk are required.

Recent technological advances in low-cost and portable measurement instruments hold
promise for improved assessments in both supervised clinical and unsupervised home
settings. An assessment conducted at home has several advantages over a clinical
assessment. It is more convenient and provides easy access for people living in rural and
remote areas with limited access to proper health care. The assessment is conducted in
a person’s natural environment which might lead to more accurate and representative
results of a person’s performance.

The main aim of this thesis was to develop and evaluate new sensor-based methods
to accurately assess fall risk in both clinical and home settings. The feasibility of the
Microsoft Kinect (a low cost consumer depth camera) and a wearable sensor (Philips
Research) were investigated in this regard. The main research questions of this thesis as
summarized as follows:

1. Can physical tests of balance, strength and reaction time measured using a Kinect-
based system assess fall risk in older people?

2. Can the monitoring of activities of daily life using a wearable sensor assess fall risk
in older people?

3. Can assessments of fall risk be undertaken with the Kinect-based system and
wearable sensors by older people unsupervised at home?

1.6 Thesis Outline

This thesis describes a series of studies on the development and evaluation of new
sensor-based methods to assess fall risk. The present work is organized in the following
chapters:

Chapter 1 provides an introduction to the problem of falls in older people. The demo-
graphic change, injuries and costs related to falls, risk factors for falls, intervention
strategies, and examples of traditional fall risk tests are discussed.
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Chapter 2 collates the findings of recent studies that have developed and evaluated
sensor-based methods to assess fall risk. Research gaps were identified which this
thesis attempts to address.

Chapter 3 presents a Kinect-based system (also referred to as the iStoppFalls assess-
ment) for directed routine assessments and a wearable sensor for monitoring daily
activities. This chapter describes the details of three studies to investigate the
feasibility and validity of these new sensor-based methods to assess fall risk in older
people.

Chapter 4 describes a study on the development and evaluation of a Kinect-based five-
times-sit-to-stand test. A signal processing algorithm was proposed to automatically
quantify performance on the test based on the skeleton data from the Kinect sensor.
The validity of the extracted sensor-based measurements to differentiate between
people who are at risk for falls from people who are not at risk for falls, the
convergent validity compared to traditional clinical fall risk measurements, and the
preliminary feasibility to administer the test in the home setting were investigated
in 94 community-living older people.

Chapter 5 describes the development and evaluation of Kinect-based choice stepping
and reaching reaction time tests. Signal processing algorithms were presented
to automatically extract temporal and spatial measurements. The discriminant
and convergent validity of these measurements and the preliminary feasibility to
administer the tests in the home setting were investigated.

Chapter 6 describes the feasibility to complement the Kinect measurements with data
derived from a body-worn inertial sensor in the choice stepping reaction time test.

Chapter 7 describes a study on the accuracy of a wearable sensor to detect and assess sit-
to-stand movements during activities of daily living. A signal processing algorithm
was proposed using wavelet transformations of accelerometer and barometric air
pressure sensor data. The detection accuracy and discriminant validity of the
algorithm was evaluated in 94 older people performing sit-to-stand movements as
part of a clinical assessment and 25 older people performing typical daily activities
in a free-living assessment.

Chapter 8 describes a four-month study on the long-term use of the Kinect-based system
and the wearable pendant device in the homes of 62 older people. Participants
were asked to perform at least one assessment session each month and to wear the
pendant during the day. Interviews were conducted with participants to investigate
user experience and design guidelines for future home-based assessments were
developed.

Chapter 9 summarizes and concludes the findings of this thesis, presents potential
applications for these new sensor-based methods and makes recommendations for
future topics of research.
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2. State of the Art (Sensor-Based Methods)

Summary
Background. An accurate identification of fall risk can assist in the selection of an
appropriate prevention or treatment strategy. Because of limited health care resources,
regular and objective fall risk assessments are not practical in a clinical setting on a large
scale.

Objective. Recent research explored technological methods for the accurate and ob-
jective assessment of fall risk. This review collates the findings of recent studies that
have used sensor-based methods to assess fall risk and identifies research gaps which this
thesis attempts to address.

Methods. Databases were searched for literature published between January 2012 and
December 2014. Articles were included based on the following criteria: 1) a technology-
based method was used to assess fall risk, 2) the paper reported results on the comparison
of fallers and non-fallers, 3) the total sample size was 30 or more, 4) participants were
healthy community-dwelling older people, 5) the average age of participants was 60 years
or over and 6) the paper was published in English.

Results. Sixteen studies met the inclusion criteria. Wearable and stationary sensor
devices have been used to assess balance, stepping reaction time, functional mobility,
gait and physical activity. Sensor-based parameters could be identified and research has
provided preliminary evidence that these measurements can discriminate between fallers
and non-fallers. However, studies used varying definitions of fallers and time frames
with only one study using the gold standard prospective method of recording falls. The
sample sizes of the majority of studies were too small to provide any definitive conclusion
regarding accuracy of using these new methods for classifying fallers and non-fallers. All
but four studies were conducted in a laboratory setting and therefore, do not provide any
information regarding the feasibility of using these new technologies outside this setting
(e.g. in daily life settings).

Conclusion. The findings indicate a need to develop and evaluate objective, less
expensive and easy to administer assessment tests for clinical and home settings to
enable the accurate identification of fall risk. Two sensor-based methods were identified
as valuable to investigate within this thesis: 1) directed routine assessments (e.g. by
using the Microsoft Kinect) and 2) monitoring of daily activities (e.g. by using wearable
sensors).
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2.1 Introduction

Fall risk assessments have been developed to determine the individual likelihood to fall.
An accurate identification can increase the chance of selecting an appropriate prevention
or treatment strategy, targeted to meet the needs of the individual older person. Fall
risk is generally assessed in a clinical setting. The assessments are often described as
subjective, variable in administration and therefore only weakly associated with falls.
Because of limited health care resources, objective test equipment and expertise to
perform these assessments are not always available. Additionally, assessments have been
described as one-time snapshots under ideal circumstances dissimilar to those that would
lead to falls in an older person’s daily environment.

Technological advances have enabled less expensive, easy to administer and accurate
ways to quantify physical fall risk in clinical practice and in the homes of older people.
Furthermore, technology might enable more continuous monitoring while people are
performing unsupervised directed routines or simply undertaking their daily activities
at home. This review collates the findings of recent studies that have used such new
technological approaches for fall risk assessment.

2.2 Literature Search and Selection Criteria

The literature was searched using “Pubmed”, “Scopus” and “IEEE Xplore” databases.
The following primary search terms were entered: “falls”, “assessment”, “sensor-based
assessment”, “accelerometer”, “gyroscope” and “inertial sensor”. Articles were included
based on the following criteria: 1) a new technology-based method was used to assess
fall risk, 2) the paper reported results on the comparison of fallers and non-fallers, 3)
the total sample size was 30 or more, 4) participants were healthy community-dwelling
older people, 5) the average age of participants was 60 years or over and 6) the paper
was published in English between January 2012 and December 2014 (Figure 2.1).

Figure 2.1: Study selection process.
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2.3 Search Results
A total of 16 studies were identified [28,68–82]. Study populations, description of the fall
discrimination measure and main findings are summarized in Table 2.1. The sample sizes
ranged from 39 [73] to 1680 [28]. Mean age of the participants varied from 62 [74] to 88
years [83]. The outcome measure of falls was measured differently across studies, with one
study stratifying for fall risk using the Tinetti scale [75], 11 studies used a retrospective
recall over 12 months [28,70,71,73,74,76,78–81,83], one study used a retrospective recall
over two years [72], two studies used a retrospective recall over five years [68,69], and one
study used prospective fall diaries over 12 months [77]. Fallers were defined as having at
least one fall in the study period in 10 studies [68,70–72,74,76,77,80,81,83] and as at
least two falls in five studies [28,69,73,78,79].

Two studies examined postural sway [68, 69], two studies examined choice stepping
reaction time [70, 71], two studies examined functional mobility [72, 73], eight studies
examined gait [74–81], one study examined physical activity [28], and one study examined
physical activity in combination with sleep patterns [83].

Twelve studies reported on laboratory assessments [68–77, 79, 80] and four on home-
based assessments [28, 78, 81, 83]. Thirteen studies used inertial sensors to acquire the
data [28,68,72–81,83], two studies used pressure sensors [69,71] and one study used a
laser infrared sensor [70].
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Table 2.1: Summary of included studies with more than 30 older participants (mean age > 60 years).

Study Study design
and population

Study period and
falls measure

Fall prediction measure Main finding of the study

Doheny et al.,
2012 [68]

Community-
dwelling, n=110,
mean age 73
years (SD=6), 56
fallers

Retrospective recall
over 5 years
Fallers: at least one
fall

Overall measure: postural sway
Device: inertial sensor, attached to
lower back
Assessment: Centre of Mass
displacement in comfortable and
semi-tandem stance position with
eyes open, for 35 and 40 seconds
Setting: laboratory

Significant (p<.05) difference
between fallers and non-fallers on
sway range, length, velocity and
Root Mean Square acceleration

McGrath et al.,
2012 [69]

Community-
dwelling, n=120,
mean age 74
years (SD=6), 65
fallers

Retrospective recall
over 5 years
Fallers: at least two
falls, or one fall with
specific criteria

Overall measure: postural sway
Device: portable pressure sensor
matrix
Assessment: Centre of Pressure
excursions in semi-tandem and
narrow stance, with eyes open and
eyes closed, for 30 seconds
Setting: laboratory

Significant (p<.05) difference
between fallers and non-fallers on
sway length, velocity and frequency,
especially in eyes closed condition

Nishiguchi et al.,
2013 [70]

Community-
dwelling, n=152,
mean age 74
years (SD=5), 41
fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: stepping
Device: infrared laser sensor,
positioned in front of the
participant
Assessment: temporal and spatial
parameters in four-square choice
stepping test
Setting: laboratory

Significant (p<.05) difference
between fallers and non-fallers in
reaction time and step time

Schoene et al.,
2013 [71]

Community-
dwelling, n=103,
mean age 80
years (SD=5), 29
fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: stepping
Device: sensor-based dance pad
Assessment: stepping performance
in stepping test with high attention
component
Setting: laboratory

Significant (p<.05) difference
between fallers and non-fallers in
total step time and number of step
errors
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Study Study design
and population

Study period and
falls measure

Fall prediction measure Main finding of the study

Greene et al.,
2012 [72]

Community-
dwelling, n=226,
mean age 72
years (SD=7), 83
fallers

Retrospective recall
over 24 months
Fallers: at least one
fall

Overall measure: functional
mobility
Device: two inertial sensors,
attached to the left and right
shanks
Assessment: accelerations and
angular velocities in Timed Up and
Go test
Setting: laboratory

Model using accelerometer- and
gyroscope-derived parameters
classified fallers from non-fallers
with 79% accuracy (mean 95% CI:
77.09–82.34)

Doheny et al.,
2013 [73]

Community-
dwelling, n=39,
age range 61-88,
19 fallers

Retrospective recall
over 12 months
Fallers: at least two
falls, or one fall
requiring medical
attention

Overall measure: functional
mobility
Device: two inertial sensors, one
attached to thigh, other positioned
above sternum
Assessment: accelerations in
Five-Times-Sit-to-Stand test,
intraday test-retest reliability
Setting: laboratory

Model using statistically reliable
(ICC>0.7) accelerometer-derived
parameters classified fallers from
non-fallers with 74% accuracy, 80%
specificity and 69% sensitivity

Toebes et al.,
2012 [74]

Community-
dwelling, n=134,
mean age 62
years (SD=6), 44
fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: gait
Device: inertial sensor, attached to
trunk
Assessment: 12-17 minutes
treadmill walking
Setting: laboratory

Significant (p<.05) associations
between gait variability and
short-term local dynamic stability
with fall history

Senden et al.,
2012 [75]

Community-
dwelling, n=100,
mean age 77
years (SD=6), 50
fallers

Stratified for fall risk
using the Tinetti
scale
Fallers: Tinetti score
≤ 24

Overall measure: gait
Device: inertial sensor, attached to
lower back
Assessment: 20 meter walks
Setting: laboratory

Significant (p<.05) difference
between participants with high risk
and low risk of falling on walking
speed, step length and RMS
vertical accelerations
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Study Study design
and population

Study period and
falls measure

Fall prediction measure Main finding of the study

Riva et al.,
2013 [76]

n=131, mean age
62 years (SD=6),
42 fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: gait
Device: inertial sensor, located on
trunk below shoulder blades
Assessment: nonlinear stability
measurements, not dependent on
step detection, when walking on a
treadmill
Setting: laboratory

Significant (p<.05) associations
between multi-scale entropy
(indicator of complexity of gait
kinematics), and recurrence
quantification analysis measures
with fall history

Doi et al.,
2013 [77]

Community-
dwelling, n=73,
mean age 81
years (SD=7), 16
fallers

Prospective study
over 12 months
Fallers: at least one
fall

Overall measure: gait
Device: two inertial sensors,
attached to lower and upper trunk
Assessment: stability
measurements, in 10 m walk
Setting: laboratory

Significant (p<.05) difference
between fallers and non-fallers on
harmonic ratio measurement
(indicator for smoothness and
stability of trunk movements)

Weiss et al.,
2013 [78]

Community-
dwelling, n=71,
mean age 78
years (SD=5), 32
fallers

Retrospective recall
over 12 months
Fallers: at least two
falls

Overall measure: gait
Device: inertial sensor, attached to
lower back
Assessment: three days of
unsupervised activities of daily
living
Setting: continuous, in-home

Significant (p<.05) difference
between fallers and non-fallers in
step-to-step variability, measured as
amplitude of dominant frequency in
power spectral density

Cui et al.,
2014 [79]

Community-
dwelling, n=81,
age range 65-90,
39 fallers

Retrospective recall
over 12 months
Fallers: at least two
falls

Overall measure: gait
Device: inertial sensor, attached to
lower back
Assessment: one minute walking
under different conditions, 1)
normal walking, 2) normal walking
with a harness and 3) walking
through an obstacle course with a
harness
Setting: laboratory

Significant (p<.05) difference
between fallers and non-fallers in
step stability, measured as a ratio
of intrinsic mode functions using
the empirical mode decomposition
method
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Brodie et al.,
2014 [80]

Community-
dwelling, n=96,
mean age 80
years (SD=4), 35
fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: gait
Device: inertial sensor
Assessment: 20 meter walks
Setting: laboratory

Fallers walked slower and had less
lateral harmonic stability, measured
by the 8-step medio-lateral
harmonic ratio, than non-fallers
(RR: 0.19, 95% CI: 0.06-0.57)

Rispens et al.,
2014 [81]

Community-
dwelling, n=110,
mean age 78
years (SD=8), 58
(est.) fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: gait
Device: inertial sensor, attached to
lower back
Assessment: 14 days of
unsupervised activities of daily
living
Setting: continuous, in-home

Significant (p<.05) associations
between the spectral power, local
dynamic stability, local dynamic
stability per stride, gait smoothness
(index of harmonicity), amplitude
and slope of the dominant
frequency with fall history

Jefferis et al.,
2014 [28]

Community-
dwelling, n=1680
(men), age range
71-92, 185 fallers

Retrospective recall
over 12 months
Fallers: at least two
falls

Overall measure: physical activity
Device: inertial sensor, attached to
hip
Assessment: seven days of
unsupervised activities of daily
living
Setting: continuous, in-home

Fallers were less active than
non-fallers, measured in steps per
day, minutes spent in light
activities, minutes spent in
moderate to vigorous activities and
minutes of sedentary behaviour
than non-fallers

Anderson et al.,
2014 [83]

Community-
dwelling, n=421
(men), age range
87-89, 156 fallers

Retrospective recall
over 12 months
Fallers: at least one
fall

Overall measure: physical activity
and sleep
Device: inertial sensor, attached to
wrist
Assessment: five to seven days of
unsupervised activities of daily
living
Setting: continuous, in-home

Significant (p<.05) association
between impaired sleep-wake cycles,
measured as the differences
between the least and most active
periods, with fall history
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2.4 Findings and Discussion
This literature review examined new technological advances in the area of fall risk
assessment in older people. Large epidemiological studies have identified a range of
important risk factors for falling, with impairments in balance, strength, mobility and
slow reactions showing strong associations with falls. The identified studies give an
insight into which technologies are feasible for use in older people and how measurement
outcomes derived from these technology-based assessments are likely to assist in the
assessment of fall risk in the future.

2.4.1 Assessment of Physiological Fall Risk Measurements

Balance

The ability to maintain postural stability and an increased postural sway has been
associated with falls [29, 30]. Objective balance measurements using gold standard
measures such as force platforms are expensive, require expertise to administer and are
therefore not always practicable in clinical settings. The availability of low-cost and
commercially-available sensors (e.g. inertial sensors, Wii Balance Board) make it more
feasible to conduct regular balance assessment in clinical practice or in people’s homes.
Within the review period, one study was published measuring static balance with an
inertial sensor [68] and one using a pressure sensor matrix [69] during different stances.
Both systems were feasible for use in older adults, and indicated postural sway during
quiet stance was significantly increased in fallers compared to non-fallers [68,69].

However, these tests were conducted in a supervised laboratory setting. Future work is
required to develop easy to administer, accurate and safe tests of static and dynamic
balance which can be conducted in a clinical setting and in the homes of older people on
a regular basis.

Reactions

Quick protective reactions that involve reaching or stepping movements are important
to avoid falls [46] and to reduce the risk of injuries [47, 48]. In the reviewed papers, one
study assessed stepping performance using an infrared laser sensor in combination with a
step mat [70] and one using a pressure sensor-based mat [71]. Both studies confirmed that
fallers had slower reaction times and total step times when compared to non-fallers [70,71].
The pressure sensor-based system further demonstrated to be an effective home-based
method for improving stepping ability and balance in older people [84]. The requirement
of a physical mat in both studies could be seen as an advantage as it provides real targets
during stepping.

However, step mats also pose a potential trip hazard, require time to set up and limit
movements to the pre-defined fields. In addition to stepping movements, upper-limb
responses are important to prevent a fall and to reduce risk of injuries [46, 47]. No
research exists on upper-limb reaction time tests using low-cost sensor-based approaches.
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Future work should investigate the potential of novel reaction time tests for lower- and
upper-limb movements and their associations to falls.

Functional Mobility

The Five-Times-Sit-to-Stand test is often used as a proxy measure for functional mobility
and lower limb strength [55, 56]. In clinical practice, a measure of total time required
to complete this test is used as a marker for fall risk, with a slower time indicative of a
higher risk of falling. The use of inertial sensors makes it possible to further quantify
the smoothness of the sit-to-stand transitions [73,85,86]. A small study suggested that
this method can classify fallers and non-fallers with good accuracy [73]. The Timed Up
and Go (TUG) test is a measurement of balance, gait speed and functional abilities [53].
In the test participants are asked to rise from a chair, walk three meters, turn around,
walk back and sit down on the chair. Within the review period, one study used inertial
sensors to derive temporal gait, spatial gait, angular velocity and turn parameters from
the participant’s movements during the test [72]. The findings indicated good accuracy
in classifying fallers from non-fallers.

The results of these traditional fall risk tests conducted in the laboratory were promising.
Future work should focus on novel ways to transfer these clinical tests from the laboratory
into the homes of older people by using a directed routine approach or by monitoring
movements (e.g. sit-to-stand transitions) during daily life activities.

Gait

Slower gait speed and reduced gait stability have been associated with falls in older
people [19, 31]. Research is increasingly exploring the use of inertial sensors to assess
gait [74–81], eliminating the need for more expensive electronic walkways or camera-based
systems. However, a remaining challenge in the measurement of spatio-temporal and
stability gait measures using inertial sensors is the accurate detection of steps [76]. Within
the review period, several papers focused on nonlinear analysis techniques that do not
require step detection, i.e. using harmonic ratios as an indicator for smoothness and
stability of trunk movements [74,77,80,81], or using multiscale entropy as an indicator
of gait complexity [76]. Preliminary results suggested that these new gait measures can
detect differences between fallers and non-fallers [74–81]; findings that will facilitate
assessment of gait data during daily life.

The majority of reviewed papers focussed on gait in relation to falls in older people. This
is reasonable as forward walking has been identified as the main activity associated with
falls [25]. However, only two studies assessed gait outside of the laboratory [78,81]. These
studies monitored gait continuously for three [78] to 14 [81] days during daily life using a
body worn inertial sensor attached to the lower back. Future work should focus on the
assessment of gait characteristics in daily life gait.
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Physical Activity

Limited mobility and reduced physical activity have been associated with increased risk
of falls [60, 87]. Within the review period, two studies focused on the measurement of
physical activity levels of up to seven days during daily life [28, 83]. One large study
analysed the time spent in light, moderate, vigorous activities and minutes of sedentary
behaviour [28]. The other study focussed on sleep-wake cycles [83]. The findings indicate
that fallers were less active and were more likely to have impaired sleep-wake cycles than
non-fallers [28, 83]. However, a recent review concluded that the methods used to assess
physical activity are still at an early stage of development and emphasized the need for
standardized activity monitoring protocols [88].

2.4.2 Use of Technology

In the review period, body-worn and stationary devices were used to assess fall risk in the
laboratory and home setting. Thirteen studies used wearable inertial sensors to quantify
participant’s movements [28, 68, 72–81, 83]. Wearable technology holds great promise
for its applications in fall prevention, because it allows continuous monitoring of daily
activities. Within the review period, two studies assessed gait characteristics [78, 81] and
two studies assessed physical activity levels [28,83] with wearable inertial sensors in a
home setting. Future work should further explore the feasibility of wearable devices to
assess fall risk outside of the laboratory.

Microsoft Kinect

The Microsoft Kinect, a low-cost three-dimensional depth sensor, was not used in any
study matching the review criteria. The Kinect has gained popularity in recent years and
has been used in various fields, for example in rehabilitation [89,90] or robotics [91]. The
advantages of a Kinect-based system can be summarized as 1) easy to set up - no further
physical equipment is needed, 2) safe - no additional trip hazards, 3) inexpensive - the
Microsoft Kinect is a widely available consumer device and 4) fairly accurate [92,93] -
enables whole body tracking of participants’ movements.

Nine studies were identified, mainly pilot and feasibility studies, using the Kinect in a
broader context of fall prevention over the last three years [94–102]. The sample sizes
were small; only two studies evaluated the developed Kinect-based tests with more than
30 participants [94,95]. Discriminative validity to identify fallers was only assessed in one
study, based on retrospective fall data [95]. No study used the gold standard prospective
method of recording falls and all but one study were conducted in the laboratory.

One study showed that a test based on Tai Chi exercises and solving Sudoku puzzles [94]
was able to assess dual task abilities which have been associated with falls in older
people [103]. Another study used the Kinect in combination with a Wii balance board
and two Wii motion controllers to assess performance during standing tasks in a cohort
of Tango club dancers and hospitalized people [95]. The developed model classified fall
risk with an accuracy of 89%. The Kinect has been used to assess gait characteristics
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in the laboratory [96]. The study showed that the Kinect is accurate compared to an
electronic walkway system [96]. Another study demonstrated the feasibility of the Kinect
to continuously assess gait at home. In this study, the Kinect was mounted to the wall
below the ceiling [97,98]. Further, the Kinect has been used for the automatic analysis of
the TUG test [99,100] and to quantify static and dynamic balance performance [101,102].

Future research is warranted to examine the feasibility of the Kinect to assess fall risk
in clinical and home settings. The sensitivity of measurements derived from the Kinect
sensor data to differ between older fallers and non-fallers should be investigated

2.4.3 Laboratory vs. Home-Based

An assessment conducted at home has several advantages over a clinical assessment: 1)
it provides a convenient and easy accessible solution for people living in remote areas,
2) it might lead to more representative results, 3) it helps to monitor changes of fall
risk over time and 4) it empowers people to take an active role in their own health
management [104–106]. A recent report of expert opinions encourage the development of
home-based assessments [107]. However, sociological and technological challenges emerge
when using health technology in private homes, affecting the acceptance of technology,
especially with users in older age [105,108,109]. It has been reported, that older people
had difficulty in recognizing the advantages of home-based health systems before they
used them [105,110]. In order to increase user acceptance, there has to be a clear benefit
for older people to use a home-based technology [111]. The technology has to fit the
routines of daily life and has to allow people to continue with the activities they like [112].
In addition, it is important to consider the available space, purpose of rooms, use of
existing technology (e.g. television), and individual preferences when deploying health
technology in private homes [113].

The technology has to be simple to use and reliable. Not only the reliability of the
technology itself, but also the reliability of measurements taken by the people in their
homes is important. The accuracy of the measures can be compromised because people
do not adhere to the rules required for a particular measurement or because of the
lack of contextual information [114]. Education is important to ensure that people can
interpret and understand the meaning of the measurements [114]. Visualizations can
help to enhance the understanding and support self-reflection. Some examples supported
by older people include icons (e.g. smiley faces), bar charts, line charts, speedometer
and text. Ian Li et al. [115] found that people were interested in data that revealed the
current status, the current status compared to the individual goal and the history of
data over time.

Another challenge is to motivate people to use home-based health technology regularly.
Grönvall et al. [114] identified three different sources of motivation. First, people want to
enhance their independence. Second, people have a general interest in their own health.
Third, people are motivated to stay healthy and independent in their activities of daily
life.
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Figure 2.2: Application areas of sensor-based fall risk assessments and requirements for
in-home self-assessments.

However, the majority of studies in the review period were conducted in a laboratory
setting and therefore, do not provide any information regarding the feasibility of using
these new technologies in daily life settings. Future research should focus on the de-
velopment of novel approaches to measure fall risk at home under consideration of the
necessary design requirements, through use of a directed routine assessment or by means
of monitoring daily life activities (Figure 2.2).

2.4.4 Methodological Limitations

The included studies used different approaches to discriminate between fallers and non-
fallers – i.e. varying definitions of fallers and time frames – with only one study using a
prospective method of recording falls. The sample sizes of the majority of studies were
too small to provide any definitive conclusion regarding accuracy of using these new
methods for classifying fallers and non-fallers.

2.5 Conclusion

Recently, sensor-based fall risk assessments have been developed and research has provided
preliminary evidence that these assessments can discriminate fallers from non-fallers.
The applied sensors are inexpensive, fairly accurate and portable which would enable
their use in a laboratory and home settings. Assessments conducted at home have several
advantages over assessments conducted in the clinics. Two approaches to assess fall
risk in both clinical and home settings were identified as valuable to further investigate.
First, preliminary studies have used wearable sensors (e.g. inertial sensors) to monitor
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activities that people might perform in their daily life. Another approach would be to
monitor fall risk through regularly repeated (e.g. monthly) directed routine assessments.
The Microsoft Kinect, a low-cost consumer device, has been identified as particularly
suitable for such an application. However, no high quality studies using the Kinect could
be identified within the review period.

Further studies are required to validate these findings and to assess fall risk through
use of a directed routine using the Kinect or by means of continuous monitoring using
a wearable sensor, so as to enable the accurate identification of fall risk and use this
information to target interventions accordingly. The feasibility of these new methods
should be investigated in both clinical and home settings in older people.

22



CHAPTER 3
Materials and Study Protocol

23



3. Materials and Study Protocol

Summary
Background. The literature review revealed that there is a need for accurate, objective,
low-cost and easy to administer fall risk assessment tests, which can be used in both
clinical and home settings. Two methods have been identified as suitable in this regard:
1) sensor-based directed routine assessments and 2) sensor-based monitoring of normal
daily activities.

Objective. This chapter presents the details of a Kinect-based system for directed
routine assessments and a wearable sensor for the monitoring of daily activities. The
protocol of three studies conducted to explore the feasibility and validity of these new
sensor-based methods are described in this chapter.

Results. The Kinect-based system (also referred to as the iStoppFalls assessment) com-
prised of 1) the Microsoft Kinect, 2) a Personal Computer, 3) an assessment software and
4) a TV set-top-box as the main components. The assessment software, developed in C++
using Microsoft DirectX for game programming and the Microsoft Kinect SDK, included
physical tests for the assessment of balance, strength and reaction time. The wearable
pendant device (Philips Research) comprised of a three-dimensional accelerometer and
a barometric air pressure sensor. The pendant was attached to a lanyard and could be
freely worn around the neck during the day.

In a first study, older people were assessed on a Kinect-based five-times-sit-to-stand,
choice stepping and choice reaching reaction time test. In a second study, older people
were asked to perform typical daily activities, including postural transitions, while wearing
the pendant device. In a third study, the long-term use of the Kinect-based system and
the wearable sensor was investigated in the homes of older people.
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3.1 Introduction

The literature review indicated that stationary (e.g. Microsoft Kinect) and wearable
(e.g. inertial sensors) devices are suitable for directed routine assessments and for the
monitoring of normal daily activities. This chapter presents the details of a Kinect-based
system (also referred to as the iStoppFalls assessment) and a wearable sensor, as well
as the details of three studies which have been conducted to explore the feasibility and
validity of these new sensor-based methods.

3.2 Kinect-Based System

A screening tool which relies on motion capture technology to assess fall risk was developed
in collaboration with content experts from Neuroscience Research Australia and German
Sport University Cologne, as well as digital game experts from Kaasa Health and other
partners from the iStoppFalls consortium [116]. Within this thesis the focus was on the
development of signal processing algorithms and evaluation of the Kinect-based system
to assess fall risk in community-living older people.

The system guided the participants through the assessment tests by means of a directed
routine and measured participants’ performance with an optical sensor (i.e. Microsoft
Kinect). The assessment tests were based on traditional clinical tests for the measurement
of balance, strength and reaction time and were designed using a exergame approach (i.e.
full-body interaction).

Recent research and development focused on exergames to promote physical fitness among
younger [117,118] and older people [82,119–122]. Exergames have been investigated for
improving balance [121,123], strength [119] and stepping [84,119] performance. Further,
exergames have been used for rehabilitation after a stroke [124], in children with cerebral
palsy [125], in people with Parkinson’s disease [126], and as a tool to measure general
physical health [127]. It has been suggested that exergames are fun and motivating [82]
and a convenient solution to exercise at home for older people [122]. Exergaming has
shown a positive effect on emotional and physical well-being [128,129] and people tend to
forget that they are doing something physically challenging while playing [82]. However,
authors of several studies argued that commercially available games can put older people
at risk because they are not designed for their level of physical abilities [119,130]. The
functional limitations (e.g. range of motion) and lack of technological experience should
be considered when designing digital assessment tests for older people [131].

During the iStoppFalls assessment tests participants saw themselves represented as
an avatar in a virtual test environment (Figure 3.1). Previous studies have shown
that people’s behaviour in virtual environments is significantly related to their visual
representations [132] and that avatars improve the interaction between older people and
computers [133].
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(a) (b)

(c) (d)

Figure 3.1: The (a) balance test, (b) reaching reaction time test, (c) stepping reaction
time test and (d) five-times-sit-to-stand test.
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(a) (b) (c)

Figure 3.2: Base of support during balance tests for (a) semi-tandem stance, (b) near-
tandem stance and (c) full tandem stance. Adapted from [9].

3.2.1 Kinect-Based Static Balance Tests

The balance test required participants to stand for up to 30 seconds without holding on to
a support or moving their feet while standing in three different feet positions (Figure 3.2):
1) semi-tandem stance, with the side of the heel of one foot touching the great toe of the
other, 2) near-tandem stance, with the great toe of the back foot about 2.5 cm behind
and 2.5 cm to the side of the heel of the front foot and 3) full-tandem stance, with
the heel of one foot in front of and touching the toes of the other foot (Figure 3.1a).
Previous studies have reported that poor performances in these tests are associated with
an increased risk of falling.

3.2.2 Kinect-Based Five-Times-Sit-To-Stand Test

Studies have reported that reduced lower extremity muscle strength is associated with an
increased risk of falling and therefore a test based on the five-times-sit-to-stand-test was
developed (Figure 3.1d). For this test participants were asked to stand up and sit down
from a standard height chair five times as quickly as possible with their arms folded
across the chest.

3.2.3 Kinect-Based Choice Reaching and Stepping Reaction Time
Tests

Previous studies have reported that slow reaction times are a significant predictor of
falls. Two choice reaction time tests were developed: 1) a stepping reaction time
test (Figure 3.1c) and 2) a reaching reaction time test (Figure 3.1b). For these tests
participants saw two lights (one to the left and one to the right side of the avatar), which
flashed in random order (20 repetitions). In the stepping reaction time test, participants
were instructed to take a step onto the flashing light as quickly as possible (left leg to the
left light or right leg to the right light). In the reaching reaction time test, participants
were asked to lift their arm to the flashing light (left arm to the left light or right arm to
the right light).
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TV
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Microsoft Kinect

Set-top-box

Data management 
platform

Figure 3.3: Architecture of the Kinect-based system.

3.2.4 Questionnaires

The 10-item iconographical Falls Efficacy Scale [134] was used to assess concern about
falling using pictures. In addition, questions about general medical health were included:

• “Have you had one or more falls in the previous 12 months?”

• “How many medications do you take each day?”

• “Do you currently take any medications to help you sleep?”

• “Do you wear multifocal glasses outside your home?”

• “Do you have painful feet?”

Participants were allowed to skip the questionnaires if nothing had changed since the
last time they completed them.

3.2.5 Hardware and Software

The main components of the iStoppFalls assessment were: 1) the Microsoft Kinect sensor
for Windows, 2) a Personal Computer, 3) an assessment software and 4) a TV set-top-box
(Figure 3.3). Optionally, the system could be connected to a web-based data management
platform which stored the test results and automatically generated performance reports
for the participants and their carers.

The PC was responsible for the execution of the assessment software and the data
exchange with the Microsoft Kinect. The set-top-box, which was connected to the TV,
served as a gateway and user-friendly remote control for the assessment software.
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Microsoft Kinect

In recent years, interactive game devices such as the Nintendo Wii, PlayStation Move and
the Microsoft Xbox Kinect have become increasingly popular and have made low-cost
motion capture technology available for private use. In 2012, Microsoft released its version
of the Xbox Kinect sensor for Windows. The Kinect is a consumer device which can
measure three-dimensional motion of a person (Figure 3.4). Skeletal data of anatomical
landmarks (in world coordinates) can be recorded using the Microsoft Kinect Software
Development Kit for Windows with a frequency of 30 Hz. Therefore, it generates a depth
map and estimates the position and posture of human body parts (Figure 3.5). For
generating the depth map it uses the principle of structured light [135]. The Microsoft
Kinect has a spatial resolution of 0.3 cm and depth resolution of 1 cm at 2 m distance
from the sensor [92]. The Kinect projects a known pattern (i.e. speckle pattern) to the
scene using infrared laser light (Figure 3.6). The depth of an object is estimated from
the deformation of that pattern. Based on the depth map the human pose is predicted
by using a machine learning algorithm [136]. For the assessment system skeletal data of
anatomical landmarks (in world coordinates) were recorded using the Microsoft Kinect
Software Development Kit for Windows.

PC and Software

The assessment software runs on a computer (Model: Shuttle XPC-XG41 [140]) with
the Microsoft Windows 7 (64bit) operating system. The software program rendered the
real-time avatar movements, stored the raw Kinect sensor data to the PC, displayed
the test instructions, provided a start countdown and presented instant performance
feedback (Figure 3.7). The program was developed in C++ using Microsoft DirectX for
game programming and the Microsoft Kinect SDK [141] for the communication with the
Kinect sensor.

TV Set-Top-Box

The set-top-box (Model: Sony NSZ-GS [142]) was connected to the PC and TV. On
the set-top-box an android-based application was used to start the assessment tests and
access the performance reports (Figure 3.8). Users could navigate using the set-top-box
remote control (Figure 3.9).

Data Management Platform

The data management platform provided data storage and produced the reports based
on the transmitted assessment data from the PC. Further, it provided a web-based
interface for researchers/relatives/physicians/other carers to monitor the participant’s
progress (Figure 3.10). The platform was developed based on the open-source framework
Django [143] because of its simplicity and support for rapid prototyping of applications.
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Infrared projector 
and sensor

VGA camera

(a) (b)

Figure 3.4: Details of the Microsoft Kinect (a) with enclosure and (b) without enclo-
sure [137].

Figure 3.5: Skeleton information on twenty joints of the user’s body tracked with the
Microsoft Kinect [138].

(a) (b)

Figure 3.6: (a) Infrared image of the pattern of speckles projected on a sample scene and
(b) the corresponding depth image [139].
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Figure 3.7: The assessment software with the reaching reaction time test.

Figure 3.8: Android-based application running on the set-top-box. Participants were
able to start the assessment tests and to look at their performance reports within the
application.

Figure 3.9: Participants used this remote control to interact with the system and start
the assessment tests [142].
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Figure 3.10: Web interface of the data management platform to access test statistics by
relatives, physicians or other carers.

3.2.6 User Feedback

In a semi- or unsupervised setting clear and simple test instructions are important. The
assessment software provided on-screen instructions, using a combination of text, pictures
and videos at the beginning of each test (Figure 3.11).

Constant feedback about physical performance and improvements have been identified as
important for keeping participants engaged into fall prevention programs [144–146]. The
iStoppFalls assessment provided immediate feedback during the tests, the option to review
the last test score (Figure 3.12a) and graphics using line charts of a long-term progress
(Figure 3.13). The user feedback from the physical tests included the average reaction
time, five-times-sit-to-stand time and an overview of the balance abilities in the different
stance positions. In addition, the individual fall risk was estimated based on a scoring
system (Quickscreen c©; Neuroscience Research Australia) which combined the results of
the questionnaires and physical tests measured with the Kinect (Figure 3.12b). All user
reports were HTML-based documents generated by the data management platform using
the JavaScript library Highcharts [147]. Participants were able to access the reports on
their TV screens at any time.

Reaching reaction time test

The two lights flash up in random 

order. Lift your arm to the flashing 

light as quickly as possible.

Back Next Start

Figure 3.11: Test instructions for the reaching reaction time test.
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Balance time

Performance overview

Fall risk assessment: 20. Aug. 2014

Sit-to-stand time

Reaching time Stepping time

Milliseconds Milliseconds

SecondsSeconds

(a) (b)

Figure 3.12: (a) Performance report of the last assessment session and (b) fall risk score
based on the Kinect-based tests and questionnaires.

Balance time

Figure 3.13: Long-term performance over the last two months on the balance test.

3.3 Wearable Sensor

Within the iStoppFalls project, an inertial pendant device (Figure 3.14) was developed
by Philips Research. The matchbox-sized (dimension: 6.5 x 4.0 x 1.2 cm, weight: 40
g) device comprised of a three-dimensional accelerometer (Analog Devices ADXL362,
range of ± 8G, sampling rate 50Hz) and a barometric air pressure sensor (Measurement
Specialties MS5611, range of 10 to 1200 hPa, altitude resolution 10 cm, sampling rate
25Hz). The participants were asked to wear the pendant device attached to a lanyard
around their necks during the experiments (Figure 3.15). The pendant device was able
to record data for 2.5 days without battery recharging. Data were stored locally on a
MicroSD card or were streamed to a nearby computer via Bluetooth.
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(a) (b)

Figure 3.14: (a) Rendering of the wearable inertial pendant device [148] and (b) compari-
son of the size of the pendant device to a two euro coin.

Figure 3.15: The pendant device worn above clothing.

3.4 Study Protocol
Three studies were conducted to evaluate the feasibility of the Kinect-based system and
the wearable pendant device to assess fall risk in the clinical and home settings.

3.4.1 Evaluation of Kinect-Based System

Participants

Ninety-four community-dwelling older people, living in retirement villages in the area
of Sydney, Australia, participated in this study. The inclusion criteria were: living in
the community, aged 65 years or older and being ambulant with or without the use of
a walking aid. The exclusion criteria were: being medically unstable, suffering from
major cognitive impairment (Mini-Cog <3), neurodegenerative disease or colour blindness.
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Written informed consent was obtained from all participants prior to data collection.
The study was approved by the University of New South Wales Human Studies Ethics
Committee.

Protocol

Participants were assessed on the Kinect-based tests in the following order (Figure 3.16):

1. Static balance tests

2. Reaching reaction time test

3. Stepping reaction time test

4. Five-times-sit-to-stand test

The balance tests measured the ability of a person to stand for 30 seconds during different
tests conditions (Figure 3.16a). Participants were asked to face the TV, keep their arms
by their sides and try not shift their feet. Participants put either foot in front, whichever
was more comfortable for them. All tests were performed without shoes to avoid any
bias because of different types of shoes. The instructions were as following:

1. "These tests will help us to assess your balance during standing."

2. "First, I will show you the movements then I want you to perform it."

a) Comfortable stand:
• "We will start with the comfortable stand."
• "I would like you to stand as it is comfortable for you for 30 seconds."

b) Semi-tandem:
• "I would like you to stand with the side of the heel of one foot touching
the big toe of the other foot for 30 seconds."

• »Demonstrate correct position«
c) Near-tandem:

• "I would like you to stand with the great toe of the back foot about 2.5 cm
behind and 2.5 cm to the side of the heel of the front foot for 30 seconds."

• »Demonstrate correct position«
d) Tandem:

• "I would like you to stand with the heel of one foot in front of and touching
the toes of the other foot for 30 seconds."

• »Demonstrate correct position«
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(a) (b)

(c) (d)

Figure 3.16: Female participant performing (a) balance test, (b) reaching reaction time
test, (c) stepping reaction time test and (d) five-times-sit-to-stand test.
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3. "Before the test starts there will be a countdown of five seconds."

4. "You should hold on the chair until the countdown is over."

5. "After the countdown: release the chair, keep your arms by your sides and try not
to shift your feet for 30 seconds."

The choice reaching reaction time test involved two buttons shown in the virtual test
environment (Figure 3.16b). The buttons flashed up in random order and participants
had to turn them off by moving the hand over it as quickly as possible. Participants were
instructed as following:

1. "This test will help us to assess your reaction time."

2. "You will see two buttons on a virtual table on the TV screen. The left or right
button will flash up and you have to move your arm to the side of the active button.
After you moved your arm keep it by your side again."

3. "First, I will show you the movement then I want you to perform it."

4. »Demonstrate correct movement«

5. "There will be a countdown of five seconds again."

6. "After the countdown try to be as quickly as possible."

The choice stepping reaction time test was similar designed to the reaching reaction time
test, but the two flashing buttons were placed on a virtual floor and participants had to
take a step to the side to turn them off (Figure 3.16c). Participants were instructed as
following:

1. "This test will help us to assess your reaction time."

2. "You will see two buttons on a virtual floor on the TV screen. The left or right
button will flash up and you have to step on the side of the active button. After
you move step back again."

3. "Make sure to take a full step to the side (with some weight shifting)."

4. »Demonstrate correct movement«

5. "There will be a countdown of five seconds again."

6. "After the countdown try to be as quickly as possible."
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The five-times-sit-to-stand test measured the ability of a person to rise from a chair
repeatedly (Figure 3.16d). Participants were asked to stand up and sit down from a chair
five times as quickly as possible with their arms folded across their chest. Participants
were instructed as following:

1. "This test will help us to assess your strength abilities during chair rises."

2. "I would like you to sit on the chair, keeping your arms folded across your chest."

3. "There will be a countdown of five seconds. Wait for the countdown."

4. "After the countdown stand up and sit down as quickly as possible five times in a
row."

5. »Demonstrate correct movement«

6. "Do not forget to keep your arms folded across your chest and try to be as quickly
as possible."

7. "The test will end automatically after five times when you sit on the chair again."

In addition, participants were assessed on the Physiological Profile Assessment (PPA) [35]
as a gold standard reference to the Kinect-based assessments. The PPA is based on tests
which assess sensorimotor abilities: balance (sway when standing on a medium-density
foam with eyes open; Figure 3.17a), lower-extremity muscle strength (knee extension;
Figure 3.17b), hand reaction time (Figure 3.17c), contrast sensitivity (Melbourne Edge
Test) and peripheral sensation (proprioception). Additionally, the Attention Network Test
(ANT) [149] to measure choice reaction time was conducted. The ANT is a computer-
based test where participants had to determine whether a central arrow point to the left
or right and to press the corresponding button on a PC-keyboard as quickly as possible.

During a face-to-face interview the number of self-reported falls in the past 12 months was
recorded. In addition, participants were followed-up for six months and asked to report
their falls with monthly falls calendars. Follow-up telephone interviews were conducted if
participants failed to return their calendars. A fall was defined as an “unexpected event
in which the person comes to rest on the ground, floor, or lower level” [13].

Test Setup

The Figures 3.18 and 3.19 illustrate the test setup. The Kinect sensor was placed in front
of the TV screen at a height of 80 cm and a distance of 2 m from the participants. A
standard height chair was used in the five-times-sit-to-stand test (Figure 3.19a) and as a
support to hold on in the other tests (Figure 3.19b). All assessments were video recorded
with two video cameras (i.e. front and side view) to assist with the interpretation of any
unusual patterns in the data during the data analysis process.
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(a) (b)

(c)

Figure 3.17: (a) Postural sway test standing on a foam rubber mat, (b) Muscle force test
(knee extension) and (c) Hand reaction time test [35].

Figure 3.18: Test setup in the Kinect-based system evaluation study.
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(a) (b)

Figure 3.19: Chair placement during the (a) five-times-sit-to-stand test and b) balance,
reaching and stepping tests.

3.4.2 Evaluation of Wearable Sensor

Participants

A total of 119 community-dwelling older people living in Sydney, Australia participated
in this study. Participants took part in a free-living (n=25) or clinical assessment (n=94).
The inclusion and exclusion criteria were the same as in the Kinect-based study. Written
informed consent was obtained from all participants and the study was approved by
the University of New South Wales Human Studies Ethics Committee. This study
was performed in collaboration with researchers of the Graduate School of Biomedical
Engineering, University of New South Wales, who conducted the free-living assessments.

Protocol

The free-living assessment comprised 30 minutes of daily activities that people might
perform in their home environment while wearing the pendant device around their necks
without further restrictions. Free-living activities were semi-structured; participants
performed several tasks (including eight sit-to-stand movements) in a given order, but
were not given specific instructions about how to complete each task. Tasks included:
sitting down on soft and hard chairs, lying down on a sofa, switching power outlets at
floor level and light switches at shoulder level. In one of the tasks, participants were
asked to go to a kitchen bench, pour themselves a cup of water, carry the cup to a table,
pull a chair out, sit down, drink from the cup, return to the kitchen bench, and wash
their cup in a sink. Other tasks included bending to put rubbish in the bin, walking
through corridors, walking between rooms, moving about within a room, taking the
elevator and walking up and down stairs.

In the clinical assessment, participants were asked to follow a standardized protocol
while wearing the pendant device at the height of their chest and under their clothes.
Participants performed the following routine in which they had to stand up from a chair
(height: 45 cm), walk 10 m and sit down again at their normal comfortable speed. During
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Figure 3.20: Installation of the Kinect-based system in a private home.

a face-to-face interview the number of self-reported falls in the past 12 months was
recorded.

3.4.3 Home Study

Participants

A total of 62 community-dwelling older people participated in this study. Participants
were distributed across three study sites in Cologne (n=22), Valencia (n=21) and Sydney
(n=19). The study was conducted in collaboration with researchers from the Institute of
Sport Gerontology, German Sport University Cologne and the Biomechanics Institute of
Valencia, who were responsible for the data collection in Cologne and Valencia respectively.
The inclusion and exclusion criteria were the same as in the Kinect-based study. Ethical
approval was authorized by the ethics committees of the German Sport University Cologne,
the Polytechnic University of Valencia, and the Human Research Ethics Committee of
the University of New South Wales.

Protocol

The Kinect-based system and the wearable sensor were deployed into the homes of the
participants (Figure 3.20). Participants were instructed on how to perform the Kinect-
based tests, completed an assessment (i.e. standing balance, sit-to-stand and reaction
time tests) semi-supervised during the initial installation and were asked to perform the
tests at least once per month on their own. In addition, participants were asked to wear
the pendant device as often as possible during the day.
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4. Kinect-Based Five-Times-Sit-To-Stand Assessment

Summary
Background. Studies have reported that reduced lower extremity muscle strength is
associated with an increased risk of falling and therefore a test based on the traditional
five-times-sit-to-stand test was developed. For this test participants were asked to stand
up and sit down from a standard height chair five times as quickly as possible with their
arms folded across the chest.

Objective. The main objectives of this study were to 1) develop an algorithm to quantify
performance on the new Kinect-based five-times-sit-to-stand test and 2) examine the
feasibility of this test to differentiate between people who are at risk for falls from people
who are not at risk. Further, it has been preliminary explored whether this test can be
used for supervised and unsupervised in-home fall risk assessments.

Methods. A total of 94 community-dwelling older adults were assessed on the Kinect-
based five-times-sit-to-stand test in a clinical setting and 20 participants were tested in
their own homes. A signal processing algorithm was developed to extract timing and
speed related measurements from the Kinect-based sensor data to discriminate between
fallers and non-fallers. The associations of these measurements to traditional clinical
fall risk tests and the results of supervised and unsupervised in-home assessments were
examined.

Results. Fallers were significantly slower than non-fallers on the developed Kinect-based
measures. The mean velocity of the sit-to-stand transitions discriminated well between
the fallers and non-fallers based on 12 months retrospective fall data. The Kinect-based
measures collected in the laboratory correlated strongly with those collected in the
supervised (r = 0.704 – 0.832) and unsupervised (r = 0.775 – 0.931) in-home assessments.

Conclusion. The Kinect-based five-times-sit-to-stand test was feasible to administer
in older people. The proposed algorithm successfully differentiated between fallers and
non-fallers based on the extracted performance measures. The strong correlations between
the clinical and in-home assessments suggest the validity of the test to assess fall risk in
the home setting.
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4.1 Introduction

The sit-to-stand test with five repetitions (5STS) is a functional test that is commonly
used in clinical settings to assess fall risk [55,56]. In the test, the person is asked to stand
up and sit down from a chair five times as quickly as possible with their arms folded.
Previous studies have shown that performance on the 5STS is associated with reduced
lower extremity muscle strength [58], impaired balance [58,59,150], reduced reaction time
and psychological factors such as pain and vitality [58]. Studies have shown that the
5STS performance is slower in frailer populations and people with balance disorders [59].
Performance is usually measured in seconds, as the total stop-watch measured 5STS time
from the initial seated position to the final seated position after completing five stands.
A 5STS time longer than 12s-15s has been associated with a higher risk of falling [55,57],
but there is no general agreement on the threshold that should be used to identify fallers.

Recent research has used inertial sensors, especially accelerometer and gyroscopes to
quantify sit-to-stand performance in the laboratory [73,85,151]. The new generation of
sensors is small, portable and inexpensive, and may be used also outside of the laboratory.

In this study, the feasibility of the Microsoft Kinect a low-cost, portable and marker-free
computer vision sensor in a directed routine 5STS test (“Kinect-based 5STS”) was
examined. Previously, the Kinect has demonstrated good accuracy compared to a gold
standard Vicon motion analysis system for the five-times-sit-to-stand test [92]. It has
been hypothesized that a detailed analysis of the participants’ movements during the
Kinect-based 5STS discriminates well between fallers and non-fallers and will show
stronger associations with established clinical fall risk measures when compared to the
standard stop-watch measured 5STS time. Secondly, it has been investigated whether the
Kinect-based 5STS can be used for supervised and unsupervised in-home assessments.

4.2 Methods

4.2.1 Participants

A total of 94 community-dwelling older adults living in retirement villages in Sydney,
Australia participated in this study. The sample was recruited from two randomized
controlled trials, 41 people were control group participants in the SureStep interactive step
training trial and 53 were control or intervention group participants in the iStoppFalls
trial [9]. The in-home assessments were conducted with the iStoppFalls intervention
participants as part of the larger iStoppFalls trial. The inclusion and exclusion criteria
are described in Chapter 3.

4.2.2 Kinect-Based 5STS

The Kinect-based 5STS relies on motion capture technology to assess performance on
the 5STS. When conducting the test, participants saw themselves represented as an
avatar in a virtual test environment on a television screen, and their movements were
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4. Kinect-Based Five-Times-Sit-To-Stand Assessment

Figure 4.1: The Kinect-based five-times-sit-to-stand test.

synchronously reflected by the avatar movements (Figure 4.1). The system consists
of a personal computer, the Microsoft Kinect sensor for Windows and the assessment
software. The software program supports the test procedure by providing visual test
instructions and a test start countdown. Furthermore, it displays the avatar in the virtual
test environment during the test and stores the Kinect data to the personal computer.

4.2.3 Laboratory Assessment

Participants were asked to stand up and sit down from a standard height chair (45 cm)
five times as quickly as possible with their arms folded across their chest. Movements
during the 5STS were recorded with the Microsoft Kinect sensor; the total stop-watch
measured 5STS time was documented for comparison. The assessments were video
recorded with two standard video cameras (i.e. front and side view) to assist with the
interpretation of any unusual patterns in the data during the data analysis process. The
Physiological Profile Assessment (PPA) was used to estimate the overall fall risk based
on tests which assess sensorimotor abilities: balance (sway when standing on medium-
density foam with eyes open), lower extremity muscle strength (knee extension), hand
reaction time, contrast sensitivity (Melbourne edge test (MET) and peripheral sensation
(proprioception) [35]. A medical history was recorded during a face-to-face interview,
including medications, the presence of medical conditions and number of self-reported
falls in the past 12 months. Participants were followed-up for six months and asked to
report their falls with monthly falls calendars. Telephone interviews were conducted if
participants failed to return their calendars. A fall was defined as ‘an unexpected event
in which the person comes to rest on the ground, floor, or lower level’ [13].
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4.2. Methods

Figure 4.2: Detailed analysis of the 5STS phases (head tracking point) recorded with the
Microsoft Kinect.

4.2.4 In-Home Assessment

The Kinect-based 5STS was conducted in the homes of a subsample of 20 participants
(eight fallers, 12 non-fallers) by a trained researcher (i.e. supervised assessment). The
time between baseline (laboratory) testing and the in-home supervised assessment was
on average 40 (± 20) days. Participants were asked to perform the 5STS unsupervised
within the first 30 days after installing the system. For this study, the correlations
between 1) the laboratory and supervised in-home assessment and 2) the laboratory and
first unsupervised in-home assessment were analysed.

4.2.5 Data Acquisition and Analysis

Skeleton data of anatomical landmarks in world coordinates were recorded using the
Kinect Software Development Kit for Windows with a frequency of 30 Hz and a resolution
of 640 x 480 pixels. Microsoft Kinect data from the vertical displacement of the head
movement were used to quantify sit-to-stand performance (Figure 4.2). The offset of
the data was corrected by using the coordinates of the head tracking point during the
start of the test as the initial position. The global start and end point of the 5STS
was detected as the first vertical increase above the empirically found threshold 5 cm,
respectively last decrease below 5 cm. A sit-to-stand cycle was split up into four phases:
sitting, sit-to-stand transition, standing and stand-to-sit transition phase. A similar
threshold-based method to that described by Doheny et al. [152] for accelerometer signals
was used to detect the phases of the linear displacement data of the 5STS.

The developed algorithm used three steps to automatically quantify 5STS performance
(Figure 4.2):
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1. Identification of the mid-standing and mid-sitting points: The signal (head position)
was low-pass filtered using a 4th order Butterworth filter with a cut-off frequency of
2 Hz. Mid-standing and mid-sitting positions were defined by the peak and trough
respectively.

2. Identification of the start and end points of sitting and standing phases: The
standing phase started when the signal amplitude first crossed a threshold 5 cm
below the mid-standing point and ended with the second crossing. The sitting
phase was similarly defined by a head position within 5 cm of the mid-sitting point.

3. Feature extraction: A set of timing and speed related measurements were derived
from the sensor signal. Total time of the Kinect-based 5STS, mean duration of the
sitting and standing phases and the mean vertical velocity of the sit-to-stand and
stand-to-sit transitions were calculated.

4.2.6 Statistical Analysis

Analysis of covariance (ANCOVA) was used to evaluate differences between the faller
and non-faller groups adjusted for participants’ height. Cohen’s d values were calculated
to obtain measures of effect size. Pearson’s correlation coefficients were calculated to
quantify the association between the supervised laboratory, supervised and unsupervised
in-home assessments, and between the 5STS and clinical fall risk measures. Correlation
results were categorized as weak (0.1 – 0.3), moderate (0.4 – 0.6), and strong (0.7 – 0.9)
after the schema from Dancey and Reidy [153]. The paired t-test was used to test for
significant differences between the laboratory and in-home assessments. P-values less of
0.05 (*) were considered to be statistically significant. Signal processing and statistical
data analysis were performed in MATLAB 8.2 (R2013b).

4.3 Results
Participants (n=94) aged 79.7 ± 6.4 years old; 66 (70%) women participated in this
study. 29 (31%) people were classified as fallers with one or more falls in the past 12
months. There were no significant differences in age, weight and Body-Mass-Index (BMI)
between the fallers and non-fallers. The differences in height were close to significance
(Table 4.1).

Table 4.1: Characteristics of fallers and non-fallers.

Parameter Fallers (n=29) Non-fallers (n=65) P-value
Age (years) 80.6 ± 6.7 79.3 ± 6.3 0.369
Height (cm) 159.2 ± 8.1 163.1 ± 9.1 0.055
Weight (kg) 67.2 ± 10.8 71.6 ± 13.7 0.135
BMI (kg/m2) 26.5 ± 3.2 26.9 ± 4.6 0.680
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4.3.1 Laboratory Assessment

Fallers were significantly slower than non-fallers on Kinect-based measures and the total
stop-watch measured 5STS time (Table 4.2). The mean velocity of the sit-to-stand
transitions was the best discriminator between the fallers and non-fallers with an effect
(d) of 0.67. This effect size was comparable to the one of the PPA (d = 0.65); a
multi-component clinical fall risk assessment.

The correlations between the Kinect-based measures and the strength (i.e. knee exten-
sion), balance (i.e. sway when standing on medium-density foam with eyes open) and
reaction time (i.e. hand reaction time) components of the PPA were weak to moderate
(Table 4.3). The mean velocity of the sit-to-stand transitions was the only measure that
was significantly correlated to all three PPA-measures, with a stronger correlation to the
knee extension strength compared to the other performance indicators of the 5STS.

4.3.2 Association with Future Falls

Further analyses confirmed similar associations with future falls. Fourteen participants
reported one or more falls during the six-month follow-up period. Participants who fell
were significantly slower than non-fallers on the Kinect-based total time (p = 0.042) and
sit-to-stand velocity (p = 0.021) measurements. Furthermore, the mean sit time was
longer compared to the group of non-fallers (p = 0.02).
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Table 4.2: Test scores for the clinical and Kinect-based 5STS assessments for the fallers and non-fallers.

Measurement Fallers (n=29) Non-fallers (n=65) P-value |d|
Clinical fall risk measures
Stop-watch measured 5STS time (s) 16.80 ± 5.68 14.33 ± 4.53 0.028* 0.50
PPA (score) 1.73 ± 0.87 1.18 ± 0.83 0.014* 0.65
Kinect-based 5STS measures
Total time (s) 15.33 ± 5.45 13.12 ± 4.06 0.034* 0.49
Mean sit time (s) 1.75 ± 0.88 1.46 ± 0.59 0.071 0.42
Mean stand time (s) 1.02 ± 0.38 0.85 ± 0.31 0.063 0.51
Mean sit-to-stand velocity (m/s) 0.78 ± 0.20 0.94 ± 0.24 0.019* 0.67
Mean stand-to-sit velocity (m/s) 0.65 ± 0.20 0.76 ± 0.22 0.151 0.48
* P < 0.05; 5STS, Five-times-sit-to-stand; PPA, Physiological Profile Assessment

Table 4.3: Correlations between the Kinect-based 5STS measures and the strength, balance and reaction
time components of the Physiological Profile Assessment.

Measurement Stop-watch 5STS Strength Balance Reaction time
Clinical fall risk measures
Stop-watch measured 5STS time (s) - -0.317** 0.255* 0.188
Kinect-based 5STS measures
Total time (s) 0.994** -0.316** 0.234* 0.167
Mean sit time (s) 0.904** -0.304** 0.252* 0.055
Mean stand time (s) 0.874** -0.326** 0.161 0.285**
Mean sit-to-stand velocity (m/s) -0.586** 0.533** -0.246* -0.321**
Mean stand-to-sit velocity (m/s) -0.517** 0.432** -0.078 -0.274**
* P < 0.05, ** P < 0.01; 5STS, Five-times-sit-to-stand
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(a) (b)

Figure 4.3: Correlations between the (a) laboratory and supervised respectively (b)
laboratory and unsupervised home assessments for the mean sit-to-stand velocity.

4.3.3 In-Home Assessment

The supervised in-home assessment (i.e. Kinect-based 5STS) was conducted by 20
participants. One person was not able to perform the 5STS with arms folded and one
recording had to be excluded because of technical issues. On average, the 18 participants
completed the test in 11.01s ± 2.79s in their homes compared with 13.42s ± 5.30s in the
laboratory (p = 0.008). The correlations between the Kinect-based 5STS assessments
in the laboratory and the supervised in-home assessments for the total time (r = 0.832,
p < 0.001), sit time (r = 0.824, p < 0.001), stand time (r = 0.758, p < 0.001), sit-to-stand
velocity (r = 0.704, p = 0.001), and stand-to-sit velocity (r = 0.777, p < 0.001) were
strong. Figure 4.3a illustrates the comparison of the mean sit-to-stand velocity for the
two assessments.

Thirteen participants (six fallers, seven non-fallers) performed the unsupervised 5STS
on their own. Three participants had to be excluded from further data analysis because
of data recording issues. Two participants performed four instead of five repetitions
and therefore only their mean sit-to-stand velocity measurements were included into the
analysis. Participants completed the 5STS in 11.82 s ± 2.04 s in the laboratory and
in 9.70 s ± 1.39 s independently in their homes (p < 0.001). The correlations between
the laboratory and the unsupervised in-home assessments for the total time (r = 0.922,
p = 0.001), sit time (r = 0.845, p = 0.008), stand time (r = 0.775, p = 0.024), sit-to-stand
velocity (r = 0.931, p = 0.002), and stand-to-sit velocity (r = 0.820, p = 0.013) were
strong. Figure 4.3b shows this relationship for the mean sit-to-stand velocity. Participants
reported no falls or other adverse events in relation to undertaking the Kinect-based
5STS test.
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4.4 Discussion

In this study, the feasibility of the Kinect-based 5STS for fall risk assessment in community-
living older people was examined. For the first time, the Kinect sensor has been used to
assess 5STS performance in the laboratory and home setting in older people.

The present findings showed that an automated and more detailed analysis of the 5STS is
feasible. The presented algorithm was able to correctly identify each phase and to extract
time and speed related measures from the sensor signals of all successfully completed tests.
The mean sit-to-stand velocity classified fallers and non-fallers well based on 12 months
retrospective fall data. Further, it had stronger associations to clinical tests for balance,
strength and reaction time than the stop-watch measured 5STS time. Noteworthy, the
correlation between the sit-to-stand velocity and the stop-watch measured 5STS time
itself was only moderate which supports the hypothesis that the sit-to-stand velocity, as
a performance indicator for muscle power, is more than just an alternate measurement
of total STS time. The findings are in accordance with the study from Doheny et
al. [152] who used accelerometers and concluded that a more detailed analysis of the
5STS phases provides an improved discrimination of fallers from non-fallers compared to
the stop-watch measured 5STS time. In addition, the findings demonstrate good criterion
validity indicated by good correlations between the in-home and laboratory Kinect-based
5STS measures.

The study had certain limitations most of which relate to the pioneering use of a new
technology. First, the assessments were not standardized for time of day or attire. Second,
the avatar-based approach might have influenced participants’ timing of the 5STS. In the
supervised settings, participants were instructed to focus on the task rather than on the
movements of the avatar. While it was feasible to administer the Kinect-based 5STS in a
supervised home setting, only 56% of the participants performed the Kinect-based 5STS
unsupervised within 30 days. Participants reported technical issues with the system,
especially at the beginning of the study which might have prevented them from turning
the Kinect-based 5STS on. The Microsoft Kinect is also sensitive to different light
conditions and sometimes fails to locate and isolate the participant if objects (e.g. a
chair) are in close proximity. Further studies are warranted to assess the feasibility of
the unsupervised Kinect-based 5STS. Based on informal user feedback it appears that
unsupervised assessments would be improved by 1) less complex system designs, 2) clearer
test instructions, 3) more reliable equipment and 4) more engaging test assessments (e.g.
gamification). Lastly, it has to be acknowledged that an unsupervised Kinect-based
assessment might not be feasible in people with higher levels of frailty.

In future, the Kinect-based 5STS could be used in clinical settings as an objective,
inexpensive and quick test to identify older people at increased risk of falls. With
further development in-home assessments could be conducted by the following means
1) test administered in regularly home visits by trained personnel or 2) test performed
independently and unsupervised as a self-assessment. Both in-home methods would
provide measurements of fall risk over time and could be used to provide feedback
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regarding physical benefits (e.g. of a fall prevention exercise program). This feedback
could be in written or visual form and accessible through the television for older people.
Further, the Kinect-based 5STS system could be connected to the internet. This would
enable clinicians to access the results remotely and the system could automatically
generate alerts regarding significant improvements or declines.

In summary, the findings indicate that the Kinect-based 5STS discriminated well between
fallers and non-fallers and was feasible to administer in clinical and supervised in-home
settings. This study represents an important step towards the development of home-based
fall risk assessments. With further research, especially under unsupervised conditions, the
assessments may prove useful as a fall risk screen and home-based assessment measure
of functional mobility for monitoring changes over time as well as the effects of fall
prevention interventions.
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Summary
Background. Quick protective reactions such as reaching or stepping are important
to avoid a fall or minimize injuries. Two Kinect-based reaction time tests, a stepping
reaction time and a reaching reaction time test were developed in this regard.

Objective. The main objectives of this study were to 1) develop algorithms to quantify
performance on the new Kinect-based choice reaching and stepping reaction time tests
(Kinect-based CRTs) and 2) investigate their ability to differentiate between people who
are at risk for falls from people who are not at risk. Further, it has been preliminary
explored whether these tests can be used for in-home fall risk assessments.

Methods. A total of 94 community-dwelling older people were assessed on the Kinect-
based CRTs in a clinical setting and were followed-up for falls for six months. Additionally,
a subgroup (n=20) conducted the Kinect-based CRTs at home. Signal processing
algorithms were developed to extract features for reaction, movement and the total time
from the Microsoft Kinect skeleton data.

Results. Nineteen participants (20.2%) reported a fall in the six months following the
assessment. The reaction time (fallers: 797 ± 136 ms, non-fallers: 714 ± 89 ms), movement
time (fallers: 392 ± 50 ms, non-fallers: 358 ± 51 ms) and total time (fallers: 1189 ± 170
ms, non-fallers: 1072 ± 109 ms) of the reaching reaction time test discriminated well
between the fallers and non-fallers. The stepping reaction time test did not significantly
differentiate between the groups in the prospective study. The correlations between the
clinical and in-home assessments were 0.689 for the reaching reaction time and 0.860 for
the stepping reaction time.

Conclusion. The developed algorithms successfully measured performance on the
Kinect-based CRT tests. The findings indicate that the tests are feasible to administer
in clinical and in-home settings, and thus represents an important step towards the
development of sensor-based in-home fall risk assessments.
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5.1 Introduction

Quick protective reactions that involve reaching or stepping movements are important
to avoid falls [46] or to reduce the risk of injuries [47, 48]. Tests that reveal deficits
in upper- or lower-limb responses may help identify older people at risk of falls or
increased risk of fall injury because of poor protective responses after a loss of balance
has occurred [46,154].

Previously, simple and choice reaction times with finger- or foot-press responses have
been measured with electronic timers and switches in the laboratory [34,35]. However,
to date, only a few studies have focussed on the development of a home-based reaction
time test for fall risk assessment. In one study a choice reaction time test using an
infrared laser in combination with a plus-shaped mat was developed to measure stepping
responses to optical cues [70]. Another stepping study evaluated a mat-based system
with pressure sensors to assess and improve stepping responses [71,84]. No research exists
on home-based upper-limb reaction time tests.

The aim of this study was to examine the potential of Kinect-based, portable and low-cost
assessment tests of choice reaching and stepping reaction time (referred as Kinect-based
CRTs) to assess fall risk. The aims of the study were to: 1) develop algorithms to quantify
performance on the Kinect-based CRTs, 2) determine whether these tests could identify
people at increased risk of falls and 3) examine the feasibility of conducting the CRT
tests in a home setting.

5.2 Methods

5.2.1 Participants

A total of 94 community-dwelling older people living in retirement villages in Sydney,
Australia participated in this study. The sample was drawn from two trials: 1) iStoppFalls
trial [9] and 2) SureStep trial. The inclusion and exclusion criteria are described in
Chapter 3.

5.2.2 Kinect-Based Choice Reaction Time Tests

The Kinect-based CRTs are tests which rely on video-based motion capture technology (i.e.
Microsoft Kinect). They comprise 1) a choice reaching reaction time test (Figure 5.1a) and
2) a choice stepping reaction time test (Figure 5.1b). When conducting the Kinect-based
CRT tests participants saw themselves represented as an avatar in a virtual environment
on a TV screen. The participants saw two lights, one to the left and one to the right
side of the avatar, which flashed in random order. In the reaching reaction time test,
participants were asked to lift their corresponding arm to the flashing light as fast as
possible. In the stepping reaction time test, participants were instructed to take a step
onto the flashing light, using the left foot when the left light flashed and the right foot
when the right light flashed, as quickly as possible.
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(a) (b)

Figure 5.1: Schematic representations of Kinect-based CRT tests: (a) reaching reaction
time test and (b) stepping reaction time test.

5.2.3 Protocol

The study protocol included the following parts:

1. Laboratory assessment: All participants were assessed on the Kinect-based CRTs
and on clinical tests for reaction time and fall risk.

2. Association with future falls: Participants were followed up for falls for six months
and the ability of the Kinect-based CRT tests to discriminate between the fallers
and non-fallers was determined.

3. In-home assessment: Following the laboratory assessment the Kinect-based CRTs
were conducted with a subgroup of participants at home and the relationships
between the laboratory and in-home assessments were analysed.

5.2.4 Laboratory Assessment

All participants were initially assessed with the Kinect-based CRT tests in the laboratory.
For each participant 40 reaching and stepping responses were recorded with a short
break of less than a minute after 20 responses. The first 5 trials were practice trials
and excluded from data analysis. The assessments were video recorded with two video
cameras (i.e. front and side view) to support the researchers during the data analysis
process. The Physiological Profile Assessment (PPA) was conducted as an estimate of the
overall fall risk of the participants. The PPA is based on tests which assess sensorimotor
abilities: balance (sway when standing on medium-density foam with eyes open), lower
extremity muscle strength (knee extension), contrast sensitivity (Melbourne edge test
(MET), peripheral sensation (proprioception) and single hand (i.e. finger-press) reaction
time [35].
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The convergent validity of the Kinect-based CRT tests in relation to the simple reaction
time of the PPA and choice reaction time of the Attention Network Test (ANT) were
examined. The ANT is a computer-based test where participants had to determine
whether a central arrow points to the left or right and to press the corresponding button
on a PC-keyboard as quickly as possible [149].

5.2.5 Association with Future Falls

Participants were followed-up for six months and asked to report their falls with monthly
falls calendars. Follow-up telephone interviews were conducted if participants failed to
return their calendars. Participants were classified as fallers if they experienced at least
one fall in the six months follow-up period. A fall was defined as ‘an unexpected event in
which the person comes to rest on the ground, floor, or lower level’ [13].

5.2.6 In-Home Assessment

The feasibility to administer the Kinect-based CRTs at home was examined in a subsample
of 20 participants. The system was installed in the participants’ homes and the CRT
tests were conducted under supervision of a trained researcher. The time gap between
the laboratory assessment and the in-home assessment was on average 40 (± 20) days.

5.2.7 Data Acquisition and Analysis

For the Kinect-based CRTs the horizontal displacement data (i.e. coordinates in the
x-axis) of the Microsoft Kinect sensor were used for the algorithms. In detail, the skeleton
data of the left and right hand tracking were obtained for the reaching reaction time test
and the tracking data of the feet for the stepping reaction time test. The signals were
low-pass filtered using a 4th order Butterworth filter with a cut-off frequency of 2 Hz to
reduce noise. The following features were automatically extracted from each recording
(Figure 5.2):

1. Reaction time: The reaction time was defined as the time from the cue signal until
the first movement of the hand or foot. The movement initiation was detected as a
change in position of at least 5 cm (i.e. to the left or right) compared to the rest
position. The mean across all reaction times was calculated.

2. Movement time: The movement time was defined as the time from the movement
initiation until the corresponding target was hit by the hand or foot. Incorrect
movements for example in the opposite direction of the cue signal were excluded.
The mean across all movement times was calculated.

3. Total time: The total time was defined as the sum of the reaction and movement
time.
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(a)

(b)

Figure 5.2: Skeleton data of (a) hand tracking (reaching reaction time test) and (b) foot
tracking (stepping reaction time test) of the Microsoft Kinect. The figures illustrate three
responses of the hand (a) and foot (b) to cue signals.
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5.2.8 Statistical Analysis

One-way ANOVA was used to evaluate mean differences in the test measures between
the fallers and non-fallers. Pearson’s correlation coefficients were calculated to quantify
convergent validity and the relationship between the laboratory and in-home assessments.
Correlation results were categorized as weak (0.1 – 0.3), moderate (0.4 – 0.6), and strong
(0.7 – 0.9) [153]. P-values less of 0.05 were considered to be statistically significant.
Signal processing, data analysis and statistical analysis were performed in MATLAB 8.2
(R2013b).

5.3 Results
Ninety-four (62 women) aged 80.6 ± 6.9 years participated in the study. On average,
participants were 163.7 ± 9.8 cm tall, weighed 72 ± 15.2 kg, had a Body-Mass-Index
(BMI) of 26.8 ± 4.7 and PPA fall risk score of 1.48 ± 0.88 indicating a moderate risk of
falls [35].

5.3.1 Convergent Validity

The Kinect-based reaching reaction time was significantly correlated with the simple
reaction time of the PPA (r = 0.338, p < 0.001) and choice reaction time of the ANT
(r = 0.593, p < 0.001). Similarly, the Kinect-based stepping reaction time measurement
was significantly correlated to the PPA reaction time (r = 0.403, p < 0.001) and ANT
reaction time (r = 0.576, p < 0.001) tests.

5.3.2 Association with Future Falls

Nineteen participants reported one or more falls in the six months following the assessment.
There was no significant difference in age, height, weight or BMI between the fallers and
non-fallers. Fallers were significantly slower than non-fallers on the reaching reaction time
test measurements (Table 5.1). The stepping reaction time test, the simple reaction time
of the PPA assessment and ANT choice reaction time did not significantly discriminate
between the groups.
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Table 5.1: Test scores of the Kinect-based CRT tests and clinical reaction time measurements for the fallers
and non-fallers.

Measurement Fallers (n=19) Non-fallers (n=75) P-value
Choice Reaching reaction time test
Reaction time (ms) 797 ± 136 714 ± 89 0.002**
Movement time (ms) 392 ± 50 358 ± 51 0.010*
Total time (ms) 1189 ± 170 1072 ± 109 < 0.001**
Choice Stepping reaction time test
Reaction time (ms) 894 ± 168 849 ± 150 0.257
Movement time (ms) 360 ± 55 342 ± 44 0.125
Total time (ms) 1254 ± 189 1190 ± 158 0.132
Clinical measurements
ANT choice reaction time (ms) 827 ± 118 785 ± 141 0.232
PPA simple reaction time (ms) 243 ± 32 235 ± 42 0.398
* P < 0.05, ** P < 0.01; ANT, Attention Network Test; PPA, Physiological Profile Assessment
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(a) (b)

Figure 5.3: Correlations between the results from the laboratory and in-home assessments
of the (a) reaching reaction time test (r = 0.689) and (b) stepping reaction time test
(r = 0.860).

5.3.3 In-Home Assessment

The in-home assessments were conducted with 20 participants. Figure 5.3 illustrates the
linear relationships between the laboratory and in-home assessments. On average, the
Kinect-based reaching reaction time was 772 ms ± 85 ms at home compared with 771
ms ± 139 ms in the laboratory (p = 0.987). The correlations were moderate to strong
for the reaction time (r = 0.689, p < 0.001), movement time (r = 0.505, p = 0.023)
and total time (r = 0.737, p < 0.001). Similarly, there was no significant difference
between the Kinect-based stepping reaction time at home with 862 ms ± 144 ms and in
the laboratory with 876 ms ± 215 ms (p = 0.594). The correlations were strong for the
reaction time (r = 0.860, p < 0.001) and total time (r = 0.814, p < 0.001). Movement
time was moderately correlated (r = 0.609, p = 0.004).

5.4 Discussion

In this study, the feasibility of Kinect-based reaching and stepping reaction time tests
were examined and in relation to falls evaluated. For the first time, a Kinect-based
approach was used to assess upper- and lower-limb reaction time conducted in both the
laboratory and home in community-dwelling older people.

It has been found that fallers were slower than non-fallers on the reaching reaction time
test measurements. The finding is consistent with the results of previous studies showing
that slow reactions are associated with an increased risk of falling [46,155]. Use of the
upper-limbs is a common response to prevent a fall and to reduce risk of injuries [46, 47].
It has recently been reported that in frail older people the protective responses are often
ineffective because of lack of strength and movement speed [154]. The Kinect-based CRT
may help to reveal deficits in upper-limb responses for targeted improvement.

In a previous study, a test of stepping reaction time was shown to discriminate well
between older fallers and non-fallers based on 12 month fall history [4], but this could
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not be verified in this prospective study, possibly because of the short follow-up period. I
believe the Kinect-based stepping reaction time test has some benefits when compared
to other approaches. Other systems require a step mat placed on the floor. This could
be seen as an advantage as it provides physical targets during stepping. However, step
mats also pose a potential trip hazard, require more time to set up and limit movements
to the pre-defined fields.

The advantages of a Kinect-based system are 1) easy to set up - no further physical
equipment is needed, 2) safe - no additional trip hazards, 3) inexpensive - the Microsoft
Kinect is a widely available consumer device and 4) fairly accurate [92, 93] - enables
whole body tracking of participants’ movements. These characteristics enable its use in
a clinical setting or even in the homes of the older people as an assessment or training
tool. Currently, regular repeated assessments are not feasible in clinical practice and,
therefore, the assessments are often only weakly associated with falls. The correlations
between the Kinect-based CRT laboratory and in-home assessments were moderate to
strong which suggests the conduct of the Kinect-based CRT tests at home are feasible.

This study had certain study limitations. The in-home assessment was conducted with a
relatively small subgroup of participants and that might limits the generalizability of
the results. The sample size was only moderate for a fall risk study and the prospective
follow-up period relatively short for capturing sufficient fall events. Larger-scale studies
are therefore necessary to confirm the presented results. However, the findings suggest
the Kinect-based CRTs could be conducted by the following means 1) tests performed in
a clinical setting, 2) tests administered in regular home visits by trained personnel or 3)
tests performed independently and unsupervised as a self-assessment.

In summary, the findings indicate the Kinect-based CRT tests are feasible to administer
in clinical and in-home settings, and thus represents an important step towards the
development of sensor-based fall risk self-assessments. With further validation, the
assessments may prove useful as a fall risk screen and home-based assessment measures
of upper- and lower-limb movements for monitoring changes over time as well as the
effects of fall prevention interventions.
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Summary
Background. In a previous study (Chapter 5), the Kinect-based choice stepping reaction
time test could not differentiate between people who are at risk for falls from people who
are not at risk.

Objective. The main objectives of this study were to 1) develop a new algorithm to
quantify performance on the stepping reaction time test using both Kinect and inertial
sensor data and 2) examine if the new measurements can successfully discriminate older
fallers from non-fallers.

Methods. The stepping test was conducted in a cohort of 104 community-dwelling older
people (mean age: 80.7 ± 7.0 years). Spatial and temporal measurements of the lower
body were extracted from the Kinect skeleton data and measurements of the upper body
were derived from the data of an accelerometer (i.e. wearable pendant device).

Results. Fallers had a slower stepping reaction time (970 ± 228 ms vs. 858 ± 123 ms,
P = 0.001) and a slower reaction of their upper body (719 ± 289 ms vs. 631 ± 166 ms,
P = 0.052) compared to non-fallers. It took fallers significantly longer than non-fallers
to recover their balance after initiating the step (2147 ± 800 ms vs. 1841 ± 591 ms,
P = 0.029).

Conclusion. This study demonstrated that sensor-based measurements derived from two
low-cost sensors were able to identify significant differences between performances by fallers
and non-fallers. The findings indicate that an inertial sensor provides complementary
information regarding the quality of movements to that provided by the Kinect.
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6.1 Introduction
In real-life situations stepping is the most effective way to avoid a fall [43]. The selection
of an appropriate response and its execution are important to maintain balance [34].
Studies have demonstrated that impaired stepping is prevalent in older people, especially
in people with a higher risk of falls and balance impairments [34,43,71].

The Kinect has demonstrated to be accurate in measuring temporal and gross spatial
movements, but less accurate in measuring fine motor movements [92]. Recent research
investigated the fusion of the Microsoft Kinect sensor with inertial sensors for human
body tracking [156] and its application in rehabilitation tasks [157]

In this study, the feasibility of the Microsoft Kinect in combination with an accelerometer
(i.e. wearable pendant device) to measure temporal and spatial stepping parameters in
a choice stepping reaction time test was examined. The test was conducted with 104
community-dwelling older people. With the long-term goal to use this stepping test in
an unsupervised home assessment and to predict falls more accurate the performance
differences in fallers and non-fallers has been analysed.

6.2 Methods

6.2.1 Participants

In total, 104 community-dwelling older adults (mean age: 80.7 ± 7.0 years, 67% women)
living in retirement villages in Sydney, Australia participated in this study. The people
were recruited from two randomized controlled trials, 71 people took part in the SureStep
interactive step training trial and 33 took part in the iStoppFalls [9] trial. Participants in
the SureStep trial undertook the assessments at the four-month retest, while participants
in the iStoppFalls trial underwent the assessments at baseline. The inclusion and exclusion
criteria are described in Chapter 3.

A medical history was recorded during a face-to-face interview, including the presence of
medical conditions and self-reported history of falls in the past 12 months. A fall was
defined as ‘an unexpected event in which the person comes to rest on the ground, floor,
or lower level’ [13].

6.2.2 Protocol

Participants were asked to perform the choice stepping reaction test (Figure 6.1). In
the test, the left or right light flashed up in random order using the same time interval.
Participants were instructed to take a step “on the light” to turn it off as fast as possible
using the left foot when the left light flashed and the right foot when the right light
flashed. Participants were also instructed to transfer weight while taking a step. In total
40 steps were assessed in two trials with a short break of less than a minute after 20
repetitions. The first five repetitions were classified as practice steps and excluded from
further data analysis. The complete test took about 15 minutes including instructions.
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Accelerometer

Microsoft Kinect

Figure 6.1: Schematic representation of the sensor-based Choice Stepping Reaction Time
Test. Participants were asked to step laterally as quickly as possible after a light stimulus,
indicated by the system, appeared on the TV screen.

6.2.3 Data Acquisition

Skeleton data of anatomical landmarks were recorded using the Microsoft Kinect Soft-
ware Development Kit with a sampling rate of 30 Hz. In addition, three-dimensional
accelerometer (ADXL362, ± 8 g) data were acquired in 50 Hz with a custom-made and
wearable device. Participants were asked to wear the sensor attached to a cord around
their neck. The sensor was placed at the height of the sternum. Participants were asked
to wear the device beneath their clothes touching the skin.

6.2.4 Data Analysis

Temporal and spatial parameters were examined to quantify performance differences in
fallers and non-fallers. Parameters from the lower and upper body were measured with
the Microsoft Kinect and the body-worn accelerometer.

From the Microsoft Kinect signals the medial-lateral skeleton data of the left and right
feet were analysed. A step task was divided into two parts: response and execution.
All parameters are representing the average value of all steps across all trials. The
reaction time, defined as the time from the cue signal to the movement initiation has been
calculated (Figure 6.2). The movement time was defined as the time from the initiation
to the first foot-contact. The overall time from the cue signal to the first foot-contact
was defined as the total step time. In addition, the step length and the variability of the
step length were examined.
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Figure 6.2: Leg movement of a step to the side recorded with the Microsoft Kinect from
an example faller and non-faller. Fallers showed a slower reaction time compared to
non-fallers.

From the accelerometer signal the vector sum (SVM) of all three directions was calculated
as shown in (6.1). Reaction time was defined as the time from the cue signal to the first
movement of the trunk. The movement initiation was detected as a significant increase
in the acceleration measure compared to the mean value. During the test participants
were asked to step sideways and back to the initial position. The stability time was
determined as the time from the movement initiation until the participants regained their
balance, i.e. reached a similar level of acceleration prior to the step, compared to the
mean value. In addition the RMS acceleration was analysed for the SVM, media-lateral
(ML) and anterior-posterior (AP) signals.

SVM =
√
x2 + y2 + z2 (6.1)

6.2.5 Statistical Analysis

A two-sided Student’s t-test for independent measures was used to evaluate differences
between the faller and non-faller groups. P-values less of 0.05 (*) were considered to be
statistically significant. Data and statistical analysis were performed in MATLAB 8.2
(R2013b).
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Table 6.1: Characteristics of fallers and non-fallers.

Parameter Fallers (n=36) Non-fallers (n=68) P-value
Age (years) 81.7 ± 8.3 80.1 ± 6.2 0.271
Female, n (%) 27 (75.0) 43 (63.2) 0.319
Height (cm) 161.3 ± 9.3 164. ± 4 9 0.102

Table 6.2: Group differences fallers vs. non-fallers.

Measurement Fallers (n=36) Non-fallers (n=68) P-value
Kinect (Lower Limb)
Reaction time (ms) 970 ± 228 858 ± 123 0.001**
Movement time (ms) 261 ± 67 255 ± 76 0.678
Total step time (ms) 1231 ± 242 1113 ± 151 0.003**
Step length (mm) 270 ± 46 276 ± 62 0.612
Step length variability (mm) 32 ± 12 31 ± 11 0.864
Accelerometer (Trunk)
Reaction time (ms) 719 ± 289 631 ± 166 0.052ˆ
Stability time (ms) 2147 ± 800 1841 ± 591 0.029*
Total stability time (ms) 2866 ± 888 2472 ± 636 0.010*
RMS Acc VS (m/s2) 0.644 ± 0.356 0.696 ± 0.334 0.465
RMS Acc ML (m/s2) 0.940 ± 0.237 0.921 ± 0.203 0.675
RMS Acc AP (m/s2) 0.566 ± 0.221 0.562 ± 0.201 0.927
ˆ P < 0.10, * P < 0.05, ** P < 0.01

6.3 Results

Participants were classified as 36 fallers, who had one or more falls within the past 12
months, and 68 non-fallers. There was no significant difference in age, gender and height
between fallers and non-fallers in this study (Table 6.1).

Figure 6.2 illustrates the lower body movement of an example faller and non-faller. From
the Kinect measurements it has been observed that the mean stepping reaction time and
total step time in the fallers group was significantly slower than in the non-fallers group
(Table 6.2). There was no difference in the step length, step length variability or the
movement time of the lower limbs.

Figure 6.3 shows the upper body acceleration of a typical faller and non-faller. Fallers
needed longer to regain their balance after movement initiation compared to non-fallers.
There was a trend for longer trunk reaction time for fallers (P = 0.052). In addition, the
total stability time was longer for fallers. There was no group difference for the RMS
acceleration.
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(a)

(b)

Figure 6.3: Acceleration trace (SVM) of the upper body movement (mean amplitude
of the signal subtracted) for an example (a) non-faller and (b) faller. Fallers showed a
slower reaction time and needed longer to stabilize after movement initiation.

6.4 Discussion

In this study, the feasibility of a sensor-based, low-cost and portable choice stepping
reaction time test to identify people at high risk of falls by analysing the group differences
between older fallers and non-fallers has been examined.

Recent technological studies have used an infrared laser sensor in a four square choice
stepping test and a custom dance-mat with pressure sensors in a test with a high attention
component [70,71]. In the present study, the Microsoft Kinect a commercially available
consumer device and a three-dimensional accelerometer have been used. With this
combination steps and large scale movements, using the Kinect, and smaller postural
adjustments, using the accelerometer were detectable. This work focused on lateral
stepping as it has been reported that fallers step more frequent laterally than non-fallers
and that the lateral falls are most likely to result in hip fractures [46].

A choice stepping reaction test is a composite measurement of cognitive function, reaction
time, strength and balance [34]. The results confirm previous study findings in that
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fallers performed this test more slowly. In addition, trunk movements with a body-worn
sensor have been analysed and a significant trend for a longer upper body reaction time
has been observed. A large body of literature exists, that demonstrates that the reaction
time increases with age [43, 61, 158] and that a longer reaction time is related to a higher
risk of falling [34,36].

Furthermore, the results suggested that fallers needed significant longer to recover their
balance after taking a step compared to non-fallers. In the literature, several studies
associated falls with poor balance [38, 159]. In addition, it has been shown that the time
to regain a stable posture after executing a step increases with age [160]. These findings
are in accordance with the results.

This study had certain study limitations. The Microsoft Kinect has been used in research
settings before and was applied for fall risk assessments in older people [161]. However,
the device was primarily developed for consumer purposes, which means a low price but
with limitations in accuracy compared to other more expensive three-dimensional motion
capture systems [139]. The resolution of the accelerometer was 4 mg with a range of ± 8
g, which was sufficient to detect reaction and stability time but might not be sufficient
to detect very small differences in the accelerations between fallers and non-fallers. The
recall of falls history might have underestimated the real number of falls. However, a
reported history of falls has been shown to be a good predictor of future falls [162]. It is
also acknowledged that as the fall surveillance period coincided with the intervention in
the SureStep trial, stepping performance in the assessments may have been influenced
by the exercises in those allocated to the intervention group. Nevertheless, this study
presents an important first step towards establishing the validity of combining Kinect
technology with inertial sensors to assess choice stepping reaction time in older people.

In summary, this study demonstrated the feasibility of a choice stepping reaction time
test. The inertial sensor provided complementary information regarding the quality
of movements to that provided by the Kinect. Using these data the test was able to
differentiate between fallers and non-fallers. Therefore, it has potential to be used in
clinical practice or regular unsupervised home assessments in future.
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7. Wearable Sensor-Based Sit-To-Stand Assessment

Summary
Background. There has been recent interest in replacing or complementing clinical fall
risk assessments with assessments undertaken at home. The sit-to-stand movement is a
common activity in daily life and advances in wearable devices may provide new ways
to continuously monitor the ability of older people to perform this important postural
transition.

Objective. The aims of this study were to 1) develop a new wavelet-based algorithm to
automatically detect and quantify sit-to-stand movements using a pendant-style wearable
sensor and 2) investigate the ability of this algorithm to differentiate between older fallers
and non-fallers.

Methods. The developed algorithm used wavelet transformations of the accelerometer
and barometric air pressure sensor data. Detection accuracy was tested in 25 older
people performing 30 minutes of typical daily activities and 94 older people performing
sit-to-stand movements as part of a clinical study. The ability to differentiate between
people who are at risk of falls from people who are not at risk was investigated by
assessing group differences of sensor-based sit-to-stand measurements in 34 fallers and 60
non-fallers.

Results. Sit-to-stand movements were detected with 93.1% sensitivity and a false
positive rate of 2.9% during activities of daily living. In the clinical study, 98.9% of the
sit-to-stand movements were detected with no false positives. The fallers had significantly
slower maximum acceleration and velocity during the sit-to-stand movement compared
to non-fallers.

Conclusion. The wearable sensor based on the new algorithm accurately detected
sit-to-stand movements in older people and differed significantly between older fallers
and non-fallers.
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7.1 Introduction

Recent studies have used inertial sensors to automatically detect [163–171] and quantify
sit-to-stand movements [85,172–174]. The majority of these studies used one or more body
fixed sensors (i.e. accelerometers and/ or gyroscopes), and only a few have investigated
the value of barometric air pressure sensors [168,169,175].

Several detection algorithms have been proposed. For example, Najafi et al. [163,164]
developed an algorithm based on trunk tilt estimation to detect sit-to-stand movements,
and reported sensitivity and specificity of 93% and 82% respectively in 11 older people
[164]. Similarly, Godfrey et al. demonstrated 83% sensitivity and 89% specificity in 10
older people using trunk tilt and vertical velocity estimations [166]. Pattern matching
methods using cross-correlation analysis [168] or dynamic time warping [167] have also
been proposed. Zhang et al. [168] reported 61% sensitivity and 89% precision in detecting
sit-to-stand movements during activities of daily living in 30 older people, while Ganea
et al. [167] reported 25-60% sensitivity and 80-98% specificity in a group of 10 healthy
people and 30 people with chronic pain.

In brief, an algorithm to detect sit-to-stand movements based on wavelet transformations
of the data of 25 older people performing 30 minutes of free-living activities and 94
older people performing a standardized clinical assessment using a pendant-style inertial
monitoring device was developed. The wavelet transform [176] is a powerful technique
which provides excellent time and frequency localization and therefore may be well-suited
for the multiresolution analysis of non-stationary sit-to-stand signals. The pendant
device is worn around the neck on a lanyard and comprises a tri-axial accelerometer
and a barometric air pressure sensor (Chapter 3). A neck-worn pendant may be good
for maximizing sensor use by older people in their daily life, as it is easy to put on,
self-adjustable and all sensors are incorporated into a single device [166,167,177]. Further,
the discriminant ability of the algorithm by exploring group differences of sensor-based
sit-to-stand measurements in relation to fall history in the larger sample was investigated.

7.2 Methods

7.2.1 Participants

A total of 119 community-dwelling older people living in Sydney, Australia, participated
in this study. Participants took part in a free-living (n=25) or clinical assessment
(n=94) and were drawn from the Sydney Memory and Ageing [178], iStoppFalls [9] and
SureStep [12] studies. The inclusion and exclusion criteria are described in Chapter 3.

7.2.2 Study Protocol

The protocol comprised two studies to investigate the accuracy and discriminant validity
of the developed sit-to-stand detection algorithm.
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Free-Living Study

The free-living study comprised 30 minutes of daily activities that people might perform
in their home environment while wearing the pendant device around their necks without
further restrictions. Free-living activities were semi-structured; participants performed
several tasks (including eight sit-to-stand movements) in a given order, but were not
given specific instructions about how to complete each task. The tasks are described in
detail in Chapter 3.

Clinical Study

In the clinical study, participants were asked to follow a standardized protocol while
wearing the pendant device at the height of their chest and under their clothes. Par-
ticipants performed the following routine in which they had to stand up from a chair
(height: 45 cm), walk 10 m and sit down again at their normal comfortable speed.

7.2.3 Detection of Sit-To-Stand Movements Using Wavelet
Transformations

Detection of Sit-To-Stand Candidates

The continuous wavelet transform (CWT) was used to detect sit-to-stand patterns in
the acceleration and barometric air pressure sensor signals. The main advantage of the
wavelet transform is that it can be used to detect shapes, which are similar to the shape
of a mother wavelet, by constructing a representation of a signal that offers excellent
time and frequency localization. Therefore, the CWT divided the sensor signals into
dilated (i.e. scaled) and translated (i.e. shifted) versions of a wavelet function (called
the mother wavelet). The scale and position of a sit-to-stand pattern in the data was
estimated by analysing the CWT coefficients. If a match was found in the acceleration
and barometric air pressure recordings a sit-to-stand candidate was identified.

First, for the detection of the sit-to-stand pattern in the acceleration signal a custom
wavelet was generated, using the MATLAB ’pat2cwav’ function, from a representative
sample sit-to-stand movement (Fig. 7.1). For comfort reasons, the pendant device was
attached to a lanyard and not directly fixed to the body. Therefore, the acceleration
signal’s vector magnitude (SVM) was calculated (7.1) which is independent of the
orientation of the device (Fig. 7.2a).

SVM =
√
x2 + y2 + z2 (7.1)

Second, the CWT over the durations (scales) of 0.5-5s was obtained using the custom
wavelet to decompose the SVM into an array of coefficients representing the energy distri-
bution (Fig. 7.2b). Third, a match was identified by computing the energy distribution
over the scales. If a value exceeded the empirically found (i.e. by perusing all of the data)
threshold of 0.3 m/s2 its temporal position was considered a match (Fig. 7.2c).
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Figure 7.1: Custom wavelet used for the continuous wavelet transform representing a
sit-to-stand pattern in the vector magnitude of the acceleration signal.

(a) (b) (c)

Figure 7.2: Wavelet-based analysis of a sit-to-stand movement and short walk using
the accelerometer data. (a) Vector magnitude of the acceleration signal. (b) Wavelet
decomposition using the custom wavelet. (c) Energy distribution computed from the
coefficients of the wavelet transform. Sit-to-stand movement identified by a peak greater
than 0.3 m/s2.

A sit-to-stand pattern is represented as a step in the barometric air pressure signal
(Fig. 7.3a). The signal was pre-processed by applying linear interpolation to up-sample
the signal to 50 Hz and converted to centimetres (of air). In the CWT, the Haar wavelet
was used as the mother wavelet, which is well-suited for step detection problems. After
obtaining the CWT (Fig. 7.3b) and computing the energy distribution a match was
considered if the value exceeded the empirically identified threshold of 10 cm similar to
the method applied for the acceleration signal (Fig. 7.3c).

Analysis of Pre- and Post-Transfer Phases

The pre-and post-transfer phases were analysed by the algorithm to eliminate candidates
that were not sit-to-stand movements. The usual pre-transfer activity is sitting and the
usual post-transfer activities are standing or walking. Therefore, features were computed
from the pre- and post-transfer phases, defined by a three second interval before and after
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(a) (b) (c)

Figure 7.3: Wavelet-based analysis of a sit-to-stand movement and short walk using
the barometric air pressure data. (a) Barometric air pressure signal. (b) Wavelet
decomposition using the Haar wavelet. (c) Energy distribution computed from the
coefficients of the wavelet transform. Sit-to-stand movement identified by a peak greater
than 10 cm.

the sit-to-stand candidate respectively, to identify the sit-to-stand movements fulfilling
all of the following requirements:

• Signal intensity
Sitting may be characterized as a low intensity activity. Activity intensity was esti-
mated by applying a low-pass 2nd order Butterworth filter with a cut-off frequency
of 3 Hz to the SVM and calculating the standard deviation. Sitting required a
signal intensity below 0.8 m/s2 during the pre-transfer phase.

• Device orientation
Sitting may be characterized by an upright trunk position. The trunk inclination θ
(i.e. angle of the z-axis relative to gravity, where the z-axis is vertical) was estimated
from the low-pass filtered acceleration data (7.2). Upper and lower limits of the
trunk inclination during the pre-transfer phase were -70◦ and 70◦.

θ = arctan
√
x2 + y2

z
· 180◦

π
(7.2)

• Positive height change
A sit-to-stand movement may be characterized by a positive change in height
that corresponds to a drop in air pressure (Fig. 7.3a). Positive height change was
estimated by subtracting the mean pressure of the post-transfer phase from the
mean pressure of pre-transfer phase.

• Maximum height change
To prevent height changes related to stair climbing or elevator use erroneously being
confused with sit-to-stand movements, the maximum height change, either during

78



7.2. Methods

pre- or post-transfer phase, was limited to 40 cm. Height change was estimated by
applying a low-pass 2nd order Butterworth filter with a cut-off frequency of 1 Hz to
the barometric pressure signal and calculating the range of the signal’s amplitude.

7.2.4 Accuracy of the Sit-To-Stand Detection Algorithm

First, the performance of the algorithm was evaluated on the free-living data to demon-
strate the detection ability under conditions similar to real-life. For validation, the
free-living activities were recorded with a hand-held video camera. Second, the perfor-
mance was evaluated on the data from the clinical study. All sit-to-stand movements
were annotated manually by an experienced researcher.

Agreement between the sit-to-stand movements detected by the algorithm and the
real transfers was measured using sensitivity (defined as the percentage of correctly
identified sit-to-stand movements) and false positive rate (defined as the percentage
of incorrectly identified sit-to-stand movements among all other activities, including
stand-to-sit, recline-to-sit, sit-to-recline, bending movements as well as walks and stair
climbs).

7.2.5 Sit-To-Stand Performance Measurements (Discriminant
Validity Analysis)

Sit-to-stand performance was compared between the fallers and non-fallers in the clinical
study. During a face-to-face interview the number of self-reported falls in the past 12
months was recorded. A fall was defined as an “unexpected event in which the person
comes to rest on the ground, floor, or lower level" [13]. For the discriminant validity
analysis, the following sensor-based measurements were extracted:

• Duration
In the CWT, the scales can be defined in terms of the dilation factor or duration
of the pattern to be detected. By incorporating the sampling period the position
and scale were translated into temporal notions of instant and duration. The
sit-to-stand duration was detected by identifying the maximum of the absolute
value of the coefficients (Fig. 7.4).

• Maximum acceleration
The maximum acceleration of the low-pass filtered (cut-off frequency 3 Hz) SVM
during the interval of the sit-to-stand movement was calculated. The start and
stop of the sit-to-stand interval were computed based on the instant and duration
detected above.

• Maximum velocity
The maximum velocity was estimated by numerical integration of the low-pass
filtered SVM. It was assumed that velocity was 0 m/s at the start of the sit-to-stand
movement.
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Figure 7.4: Percentage of energy for each wavelet coefficient. Sit-to-stand duration
estimated by the maximum of the absolute value of the coefficients.

• Forward trunk tilt

The forward trunk tilt θ was estimated from the device orientation of the sensor.

7.2.6 Statistical Analysis

Measurements were tested for normality with the Lilliefors test. For normally distributed
variables, two-sided Student’s t-test was applied to evaluate differences between the
faller and non-faller groups. For measurements which were not normally distributed, the
Mann-Whitney test was used. P-values less of 0.05 (*) were considered to be statistically
significant. Data analysis and algorithm development were performed using MATLAB
8.2 (R2013b).

7.3 Results

Participants in the free-living study (n=25) and participants in the clinical study (n=94)
were 82.8 ± 3.3 years and 79.9 ± 6.5 years old. Thirty-four participants (36%) in the
clinical study reported one or more falls in the year before assessment. Body height,
weight and body mass index of the participants are presented in Table 7.1.

7.3.1 Accuracy of the Sit-To-Stand Detection Algorithm

In the free-living study, 202 sit-to-stand movements were performed and 188 were detected
successfully (93.1% sensitivity) by the algorithm. Nineteen out of a total of 650 other
activities were misclassified as sit-to-stand movements (2.9% false positive rate). The
video recordings revealed that false positives occurred during standing up after bending
down to switch power outlets, slow stair ascents and when participants attempted to
stand up but sat back down again before standing upright.
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In the clinical study, 93 out of 94 sit-to-stand movements were detected correctly (98.9%
sensitivity). No other activities were misclassified as sit-to-stand movements. Table 7.2
summarizes the performance of the detection algorithm.

7.3.2 Discriminant Validity Analysis

Fallers (n=34) performed the sit-to-stand movement with less power than non-fallers
(n=60) in the clinical study (Table 7.3). The maximum acceleration and velocity mea-
surements showed good discriminant validity between the two groups.
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Table 7.1: Characteristics of participants in the free-Living and clinical studies.

Characteristic Free-living Clinical
Participants 25 94
Gender (F / M) 9 / 16 64 / 30
Age (years) 82.8 ± 3.3 79.9 ± 6.5
Height (cm) 167.6 ± 9.2 162.3 ± 8.9
Weight (kg) 70.7 ± 11.4 70.2 ± 12.7
BMI (kg/m2) 25.1 ± 3.3 26.6 ± 4.1

Table 7.2: Sensitivity and false positive rate for sit-to-stand movements detected in the
free-living and clinical studies.

Parameter Free-living Clinical
STS movements 202 94
STS movements detected 188 93
Other activities 650 188
False positives 19 0
Sensitivity 93.1% 98.9%
False positive rate 2.9% 0%

Table 7.3: Test scores for the sensor-based sit-to-stand assessment for the fallers and
non-fallers in the clinical study.

Measurement Fallers (n=34) Non-fallers (n=60) P-value
Duration (s) 1.6 ± 0.46 1.55 ± 0.35 0.59
Max acceleration (m/s2) 2.41 ± 1.02 2.9 ± 1.12 0.04*
Max velocity (m/s) 0.61 ± 0.25 0.73 ± 0.26 0.03*
Forward trunk tilt (◦) 15.84 ± 8.81 12.24 ± 10.17 0.09

82



7.4. Discussion

7.4 Discussion
A new algorithm that could accurately detect sit-to-stand movements by applying wavelet
transformations to sensor data from a wearable pendant device was developed. The
method proved feasible in both free-living and clinical settings. Clinical relevance was
demonstrated in that sit-to-stand velocity and acceleration measures discriminated
significantly between older fallers and non-fallers.

Previous studies have also reported good detection of sit-to-stand transitions based on
characteristic trunk tilt movements [163,164,166]. These algorithm could not be used, as
the pendant-style sensor was worn on a lanyard around the neck and not directly fixed
to the body, motivated by a desire to make the device more comfortable and easier to
use in daily life in older people.

In lieu, an algorithm incorporating acceleration and barometric air pressure data was
developed. In accordance with Masse et al. [169], the results demonstrate that a baro-
metric air pressure sensor provides complementary information to that provided by
an accelerometer and is sensitive to the height changes that occur during sit-to-stand
movements.

Similar to others [167, 168], the presented approach used pattern matching to detect
sit-to-stand movements. However, the dynamics of sit-to-stand transitions are diverse
in older people. Therefore, the continuous wavelet transform which scales and shifts
the template to find the best match for the sit-to-stand movement in the signal data
has been selected; an approach that enabled more vigorous movements in more athletic
participants and slower movements in frailer participants to be detected [179].

The accuracy of the detection algorithm was tested in both the free-living and clinical
assessment studies. In the free-living study, participants completed sit-to-stand transitions
from soft and hard chairs of various heights as well as miscellaneous activities of daily
living to reduce the likelihood of overfitting the algorithm. Compared with previous
studies [164, 166–168], the proposed method showed excellent sensitivity (93.1%) and
had a low false positive rate (2.9%); demonstrating potential for long-term monitoring in
older people.

In addition, good results for the detection of sit-to-stand movements (sensitivity 98.9%,
false positive rate 0%) in the clinical study have been achieved. The results of the
discriminant validity analysis suggest the feasibility of using this approach to identify
fallers in older cohorts. In accordance with previous work [2], sit-to-stand velocity (a
performance indicator for muscle power) discriminated significantly between fallers and
non-fallers and did so better than sit-to-stand duration, which is commonly used in
clinical evaluation.

Certain study limitations have to be acknowledged. First, although the free-living study
was designed to include miscellaneous activities of daily living, it may not have captured
the complete range of activities older people perform throughout the day. Second, without
accurate information about the pendant’s change of orientation during the sit-to-stand
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movement (e.g. by combining accelerometer and gyroscope data) it is likely that the
measurements overestimate true velocity and trunk tilt. Third, the continuous wavelet
transform has been selected due to its ability to use custom wavelets in MATLAB; an
algorithm that is more computationally expensive than a discrete wavelet transform.

Future studies could determine if the presented algorithm can detect sit-to-stand move-
ments and identify fallers in long-term monitoring of everyday life. Such an assessment
in a person’s natural environment could have advantages over a clinical assessment. It
provides scope for convenient and continuous monitoring that is more representative of
a person’s real-life performance, and also provides an easy solution for people living in
rural areas with limited access to such clinical services.

In summary, a new wavelet-based algorithm accurately detected sit-to-stand movements
during activities of daily living in older people and discriminated significantly between
fallers and non-fallers. In future, this algorithm and wearable pendant device may be
used to capture sit-to-stand movements in home settings (over days or weeks) to assess
fall risk and to monitor the success of exercise-based fall prevention interventions.
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Summary
Background. The Kinect-based system and the wearable sensor, based on the presented
algorithms, differentiated accurately between people who are at risk for falls and people
who are not at risk in the clinical setting. The derived sensor-based measurements
demonstrated good convergent validity to traditional fall risk assessments and preliminary
results suggest the validity of these measurements in the home setting.

Objective. The aims of this study were to 1) empirically examine the feasibility of
the Kinect-based system and the wearable sensor to be utilized at private homes, 2)
investigate the experience of older people with these new assessment methods and 3)
make recommendations for future home-based assessments.

Methods. The Kinect-based system and the pendant device were deployed into the
homes of 62 community-living older people in Australia, Germany and Spain for the
duration of four months. Participants were asked to perform the Kinect-based tests at
least every month and to wear the pendant device during the day as often as possible.
At the end of the study, semi-structured interviews were conducted to investigate user
experience.

Results. In total, 241 assessments (one session included the static balance, five-times-sit-
to-stand, choice stepping and reaching reaction time tests) were independently performed
by the participants. The pendant device was worn for a total of 39,803 hours; on average
642 hours per participant. Through the interviews the design, usability (wearability)
and reliability of the applied technology as well as motivational aspects, user feedback
and safety and support arrangements were identified as important characteristics of a
home-based fall risk assessment method. Most participants felt positive about their
experiences with these new technologies and could see themselves continuing with the
Kinect-based tests or to wear the pendant device on a regular basis.

Conclusion. The findings demonstrate the feasibility of the Kinect-based system and
the wearable sensor in the unsupervised home setting with older people. Future research
should consider the design requirements identified by this study.
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8.1 Introduction
Fall risk assessments help to determine and monitor the individual’s likelihood of falling.
However, clinical fall risk assessments have been criticized as one-time snapshots, overly
subjective, and only moderately predictive of falls. There has been recent interest
replacing or complementing clinical fall risk assessments with assessments undertaken at
home. Therefore, the iStoppFalls assessment, including a set of Kinect-based tests for
unsupervised and regular repeated fall risk assessments, and a wearable pendant device
for continuous monitoring of daily life activities have been developed.

It has been demonstrated that the Kinect-based tests and daily life activities measured
with the wearable pendant device could discriminate well between older fallers and
non-fallers in the clinical setting. In brief, the present study complements these findings
and addresses the following research aims: 1) to examine the feasibility of the iStoppFalls
assessment and the wearable sensor at private homes, 2) to investigate user experience
and 3) to make recommendations for improved sensor-based home assessments.

8.2 Methods

8.2.1 Home-Based Study

The feasibility of the iStoppFalls assessment and the pendant device in the homes of older
people were examined for a period of four months. This study was part of the iStoppFalls
randomized control trial (RCT). The study protocol of the RCT is described in detail
elsewhere [9]. In the RCT, participants were asked to perform strength and balance
exercises delivered through the iStoppFalls system with the same technical equipment
used for the iStoppFalls assessment. For the present study, participants were asked to
conduct the iStoppFalls assessment additionally to the exercises at least once per month
and to wear the pendant during the day.

Participants

The sample was drawn from the iStoppFalls RCT intervention group with participants in
Cologne (n=22), Valencia (n=21) and Sydney (n=19). Only people who completed the
four months trial have been included. The inclusion and exclusion criteria are described
in Chapter 3.

Protocol

The participants were instructed on how to perform the assessment and completed
an assessment during the initial installation of the iStoppFalls system in their homes.
Participants were asked to perform the iStoppFalls assessment (i.e. standing balance,
sit-to-stand and reaction time tests) at least once per month and were reminded via
monthly phone calls to perform the assessment. In addition, participants were asked to
wear the pendant device during the day.
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Data Analysis

The feasibility of the iStoppFalls assessment was investigated by analysing the number of
assessments performed during the four month period. The iStoppFalls system automati-
cally recorded the start time of each session. From these recordings, the total number of
assessments and the mean number of assessments per participant for each study site were
calculated. Participants were asked to conduct the assessment at least once per month on
their own and adherence was measured for each month. The first month was defined as
the initial 30 days after the installation of the system, the second month between 30 days
and 60 days, the third month between 60 days and 90 days and the fourth month between
90 and 120 days after installation. Assessment tests that were started but not completed
(e.g. aborted), or lasted excessive longer than the usual duration, and assessments with
insufficient data captured were excluded from the analysis.

The feasibility of the wearable pendant was investigated by analysing the sensor data
stored on the devices. Based on the recordings the wearing time was estimated. Exceeded
the standard deviation of the accelerometer signal a certain threshold (within one hour)
activity and therefore wearing time were assumed.

8.2.2 Qualitative User Study

A qualitative study was carried out to examine the acceptability of the iStoppFalls
assessment and the wearable pendant device. Face-to-face semi-structured interviews
were conducted in the participant’s homes at the end of the four-month study period. A
semi-structured interview technique was chosen in order to allow the interviewer to tailor
the questions to different participants and contexts and to allow for exploration of themes.
Interview topics were chosen to enhance the understanding of the participant’s reasons
for using the iStoppFalls assessment and the wearing the pendant device; perceived
benefits and barriers to utilize them at home; their experience while using these new
technologies; and whether they thought they would like to continue using them in the
future (Table 8.1).

Each interview lasted approximately 30 minutes. To ensure correct representation of
participants’ responses, member checking was performed at the end of each interview. A
summary of the interview findings was verbally presented to the interviewee at the end of
the interview and changes were made when necessary. Participants were also encouraged
to add further information.
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Table 8.1: Interview guide, questions covered in the semi-structured interviews.

Assessment of Fall Risk
“Please try to answer the following questions independent from your experience as participant in the
study.”

“Did you ever fall in the past?"
• (Yes) “How do you feel about it?”
• (No) “How do you think a fall would have

impacted your life?”

“Can you describe me what you think about
tests which assess your risk of falling in
general?”

• “Did you ever get your fall risk tested before?”
• “Are you interested in monitoring/knowing

your fall risk?”
• “How much time would you be willing to spend
on testing your fall risk?”

• “What would be your expected benefit?”
• “How would an ideal test look like for you?”

Kinect-Based System
“I would like you to think about your experience with the Kinect-based assessment tests. You performed
the tests [#] times in the four months.” »Show pictures of the Kinect-based tests«

“Try to remember a day when you did the
fall risk assessment on your own. Can you
describe me your experience with the
tests?”

• “Can you tell me more about your motivation
to perform the tests?”

• “What were reasons that might have prevented
you from performing the tests more often?”

• “Which test did you like the most and why?”
• “Did you feel safe?”

“Would you see yourself continuing to perform the Kinect-based assessment tests (let’s say once per
month)? Can you tell me more about it?”

“Can you think of any suggestion to improve the fall risk assessment system?”
Wearable Pendant Device
“I would like you to think about your experience with the pendant.” »Show pendant device«

“Try to remember a day when you used the
pendant. Can you describe me your
experience?”

• “Can you tell me more about your motivation
to use the pendant?”

• “What were reasons that might have prevented
you from wearing it more often?”

“Would you see yourself continuing to wear the pendant device? Can you tell me more about it?”

“Can you think of any suggestion to improve the pendant?”
End of Interview
“Is there anything else you would like to tell me? I will try to summarize the main points I gathered from
your answers. I would like you to tell me if they reflect what you told me?”
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Participants

A purposive sampling strategy was used to ensure maximum variability within participants
in regards to the number of assessments conducted, wearing time of the pendant, and their
history of falls. Ten participants from Sydney were invited to participate in the qualitative
study. All agreed to be interviewed. The participants were in average 78.1 ± 6.1 years old,
seven (70%) were female. Half of the interviewees performed the iStoppFalls assessment
at least twice or more on their own and half reported a fall in the past 12 months prior to
the study. The computer literacy was high; eight (80%) participants owned a computer
and used it in average 3.0 ± 0.8 hours per week. Informed consent was attained prior to
the interview.

Data Analysis

All interviews were digitally recorded and transcribed verbatim. A thematic context
analysis was conducted. Interviews were coded using NVivo (Version 10) for Windows
and major themes were developed.

8.3 Results
Sixty-two participants aged 74.3 ± 6.7 years participated in the study; of these 33
(53%) were women (Table 8.2). Twenty-one participants (34%) experienced one or more
falls in the past 12 months. The participants from Cologne had a lower risk of falling
compared to participants from Valencia and Sydney, indicated by good performances in
the Physiological Profile Assessment and Short Physical Performance Battery.
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Table 8.2: Characteristics of the participants and information about the use of the iStoppFalls assessment
in Cologne, Valencia and Sydney.

Parameter Cologne (n=22) Valencia (n=21) Sydney (n=19)
Medical
Age (years) 73.5 ± 5.5 70.1 ± 3.8 79.9 ± 6.7
Female, n (%) 10 (45) 12 (57) 11 (58)
BMI 25.1 ± 3.6 25.9 ± 3.4 27.6 ± 3.4
Fall Risk
Previous falls, n (%) 8 (36) 5 (24) 8 (42)
Physiological Profile Assessment 0.19 ± 0.77 0.96 ± 1.04 1.12 ± 0.76
Short Physical Performance Battery 11.4 ± 1.1 9.3 ± 1.8 9.5 ± 2.9
iStoppFalls Assessment
Number of assessments (n) 125 82 34
Mean per participant (n) 5.7 ± 8.7 3.9 ± 8.5 1.8 ± 1.3
Winsorized mean (n) 4.5 ± 5.3 3.0 ± 5.1 1.8 ± 1.3
Adherence (%) 48 33 36
Wearable Sensor
Wearing time (hours) 19098 14701 6004
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Figure 8.1: Adherence to the iStoppFalls assessment for each month and study site.

8.3.1 Feasibility of iStoppFalls Assessment

In total 241 assessments were performed by 62 participants over four months (Table 8.2).
The large spread in the Cologne and Valencia group was because of two participants
in each study site performing the assessment very frequently. On average 3.2 ± 4.5
assessments were performed per participant after accounting for the spread with the
Winsorizing method [180]. There was no significant difference between participants with
a high risk of falling and low risk falling or between previous fallers and non-fallers in
the number of performed assessments.

The participants were asked to perform at least one assessment per month. The adherence
was 39% for each month across all sites (Figure 8.1). In detail, 48% performed the
assessment in Cologne, 33% in Valencia and 36% in Sydney every month.

8.3.2 Feasibility of Wearable Sensor

In total, more than 300 GB of sensor data were recorded with the pendant devices.
Participants have worn the devices for 39,803 hours; on average 642 hours per participant.
In detail, the devices were worn for 19098 hours in Cologne, 14701 hours in Valencia and
6004 hours in Sydney (Figure 8.2).

8.3.3 Motivation to Use Home-Based Health Technology

Motivation is a complex phenomenon and to motivate older people to use home-based
health technology can be a challenge. In this study, two main sources of motivation have
been observed. First, participants had a general interest in their health and fall risk. In
daily life, the individual fall risk is not always obvious and visible. “To know my fall
risk makes me feel a bit more secure”(Female, faller), commented one of the participants.
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Figure 8.2: Pendant device wearing time for each study site.

Others mentioned that they were interested in their health and fall risk to improve on
the deficits. Second, participants wanted to help and please the researchers. When they
were questioned about their motivation to use the iStoppFalls assessment and pendant
device their answer was as simple as “because we were asked to”.

Normally, fall risk assessments are conducted in a clinical environment supervised by a
health professional. The home-based assessments were perceived as more natural, less time
consuming and more convenient. One man summarized, “I don’t think normal [clinical]
assessments can give you a true result because you can have a bad day. . . when you go
there and you know it’s going to be a long period. . . and you need a lot of concentration
and whether you say to yourself, well, it doesn’t matter what the results are, you are still
nervous because you want to do as well as you can” (Man, non-faller).

8.3.4 Experience with iStoppFalls Assessment

Most of the participants considered the experience with the iStoppFalls assessment
as positive. This is shown in the comments from the open-ended questions on their
experience with the fall risk assessment (Table 8.3).

The participants who did not perform the iStoppFalls assessment explained that they
were already aware of their risk of falling and therefore careful. Further, they mentioned
that technical issues, personal reasons (i.e. health problems or home situations) or that
they did not know about that functionality of the system as the main reasons that
prevented them from performing the assessment.
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Table 8.3: Comments about the experience with the iStoppFalls assessment.

Participant Comment
Woman, non-faller “I found it [the fall risk assessment] good because it made me

remain alert and I didn’t have any problem with it.”
Woman, faller “I liked doing the fall risk tests. I think they helped me.”
Woman, faller “I felt quite happy with it [the fall risk assessment]. Yeah. I

think I was able to do it reasonably well.”
Man, non-faller “I thought it [the fall risk assessment] was quite good. It made

me to concentrate.”

Technology

When deploying health technology in private homes the available space has to be consid-
ered. For the Microsoft Kinect a space of about 2m by 2m free of obstacles in front of the
TV is recommended. In this study, those numbers were the absolute minimum and it has
been found that a space of 3m by 3m was comfortable and safe for physical movement.
It has been observed that the Microsoft Kinect was sensitive to different light conditions
which had to be considered when installing the equipment in the private homes close to
windows and doors. In the majority of households, participants preferred the system to
be placed in the living room. The participants had favorite places to sit or work in the
living room which had made furniture arrangements sometimes difficult.

The iStoppFalls assessment system used the participant’s existing TV as the central
communication device. This has been accepted and appreciated by the participants.
However, at the beginning of the study some people raised concerns that the system
could interfere with their daily TV program.

In general, when participants were asked about their experience with the iStoppFalls
assessment they mentioned technical issues, especially at the beginning of the study. It
has to be emphasized that the iStoppFalls assessment was conducted as part of an RCT
where participants were asked to exercise two to three times per week with the same
equipment and that might have influenced their experience. However, the comments
can be categorized in usability and hardware issues. One participant who experienced
hardware issues emphasized the need for reliable equipment, “It [the system] has to be
reliable because it’s frustrating to get up and be ready and. . . it doesn’t work” (Woman,
non-faller). Another participant was more vocal and said, “I felt it was sort of fruitless
doing it when it did not work properly. . . it was annoying. . . not all the time, I mean
it was really good when it worked” (Woman, faller). Participants developed their own
strategies to overcome technical issues as one male participant explained, “Sometimes
the program did not work. . . a log in problem or something that came up. . . we turned the
PC off, had a look at it the next day and started it up again and it was all right” (Man,
non-faller).
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Design of Tests

The iStoppFalls assessment comprised of a reaching reaction time test, stepping reaction
time test, a set of static balance tests and a five-time-sit-to-stand test. The majority
of the interviewed participants mentioned that they liked the reaction time tests most.
They attributed this to the facts that they were fun, challenging and “not too difficult”.
This was the case with a female participant who argued, “The reaction time tests are
better from a game point of view” (Woman, faller). Another participant commented on
the challenging aspect, “That [the stepping reaction time test] is a challenge. . . one day I
wanted to get through this without a mistake. . . I tried it about four times and I finally did
it, and I felt good” (Woman, non-faller). A third participant mentioned, “The stepping
reaction time test seemed like a really good test of not only reaction time but also of my
balance” (Woman, faller).

In this study, balance testing and in consequence balance training were perceived as very
useful to prevent falls. Participants used phrases like “the balance part was beneficial”
and “balance is very important to prevent a fall”. For example one participant said,
“Even though I don’t particularly like it [the balance test] that much I think it would be
beneficial” (Woman, faller). The static balance tests were remembered as useful but also
as challenging and uncomfortable. One participant explained the difficulty, “When I did
the balance tests with the one foot in front of the other, I found it very hard to keep my
balance” (Man, non-faller). Another participant mentioned, “I did not like the balance
tests where you had your one foot in front of the other. . . the position felt uncomfortable”
(Woman, faller).

In general, participants reported no issues with the five-time-sit-to-stand test. Only
one participant explained that she had knee problems and did not like to perform the
test. She said, “Your sit to stand [test] doesn’t worry me greatly, but I can’t afford to
damage my knees” (Woman, non-faller). Strength was perceived as an important factor
to prevent a fall. This was evident from the comment of a participant who said, “If you
are strong enough you can save yourself from a fall” (Man, non-faller).

The exergame approach with full-body interaction was considered as very interesting.
No participants had a problem in understanding the concept of controlling the avatar.
However, sometimes the avatar irritated participants with unusual poses which resulted
from problems in detecting the correct movements of participants. One woman explained
her experience, “The tests are good, they are easy to understand with the avatar. . . as
long as the avatar does what I’m doing and not decides to do its own thing” (Woman,
faller).

Frequency and Duration

The participants were asked to perform the iStoppFalls assessment at least once every
month. The technology had to fit the individual schedule and routines to be accepted by
the participants. In the case of a female participant this integration was not achievable.
She explained, “It was just a pain with my husband and the television. . . he watches it
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all day. . . it was a nuisance for him if I was doing it [the assessment] and so I tended to
do it very early in the morning, five o’clock in the morning or late at night after he had
gone to bed, which wasn’t really very convenient for me” (Woman, faller).

One session which included the balance, strength and reaction time tests took about
15 to 20 minutes. When participants were asked about their preferred frequency for a
home-based assessment the answers varied from once a week to once every three months.
One woman argued for longer intervals and said, “It just gives you a longer period to
judge how you’re going” (Woman, faller). When asked about how much time they would
be willing to spend performing the fall risk assessment their answers varied from five
minutes to 60 minutes, but most participants agreed that 30 minutes would be acceptable.

Safety and Support

No adverse events have been reported in this study. Participants were asked if they felt
safe when they performed the iStoppFalls assessment and all participants answered yes.
At the beginning of the iStoppFalls assessment study and in the instructions of each test
participants were instructed to place a chair in close proximity and to hold on the chair
if required. However, four participants admitted that they did not always use a chair. As
one man said, “When I first started yes [I used a chair], but then after a while I didn’t
need the chair” (Man, non-faller). Another man put it this way, “Not always. . . I had
no fear of falling” (Man, non-faller). One woman talked about using the chair and said,
“That was the worst thing about it. . . these chairs are heavy [to carry]” (Woman, faller).
Most participants reported using a chair at least for the balance tests.

In this study, participants were asked to perform the iStoppFalls assessment independently
on their own instead of a supervised assessment performed by a trained person. The
majority of participants said that they preferred to do the iStoppFalls assessment on
their own. One woman stated, “I think it’s better to do it [iStoppFalls assessment] on
your own, because you’re not being judged by anybody else. . . I would get embarrassed
especially if I did things wrong” (Woman, non-faller). She also told us that she might
make more mistakes if someone was watching her. Another participant told us that he
would prefer to perform the fall risk tests together with a trained person or his wife,
because it would encourage him to perform the tests better.

8.3.5 Experience with Wearable Sensor

The participants were asked about their experience with the pendant device. Most of the
participants considered their experience as positive which is evident from the comments
in the interview study (Table 8.4).

Technology

Similar to the iStoppFalls assessment, some people reported technical issues with the
pendant device especially at the beginning of the study and emphasized the need for
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Table 8.4: Comments about the experience with the wearable pendant device.

Participant Comment
Woman, faller “It was quite comfortable. You forgot that it was around your neck.”
Man, non-faller “I really had no problem with the pendant.”

reliable equipment. One participant commented, “There was no point wearing the device
while it was not working” (Woman, non-faller). Another participant argued for reliable
and unobtrusive wearable devices in general, “It should be something you just put on in
the morning and forget about it” (Woman, non-faller).

The pendant device had a LED light to signal its operating status. When the device
was turned on and ready for recording the green light flashed up every 40 seconds. The
participants did not like the flashing LED because although the device was worn under
clothing the light was sometimes visible to others. One woman said, “I didn’t like the
flashing light because people kept asking me about it” (Woman, faller). Another woman
explained, “People asked me if something is wrong with me because I’m flashing” (Woman,
faller). One man joked about the light, “It was very bright, I looked like a terrorist”
(Man, non-faller). However, participants developed their own strategies to cope with
this issue, “I put the pendant on back to front with the light towards my body” (Man,
non-faller). Other participants reported that they used tape to cover the LED light.

Design

Interviewees were asked about their opinion on the form factor of the device. It has to
be mentioned that the pendant was a research prototype and not a final product. In
general, participants argued for small, lightweight and thin wearable devices. This was
evident from the comments, “The pendant needs to be lightweight that you don’t feel a
drag” (Woman, non-faller), “The pendant would be probably nicer if it would be a bit
smaller and flatter, but that’s not the end of the world” (Man, non-faller) and “Wearables
should be not too heavy, because you want to forget that you are wearing something extra”
(Man, non-faller).

Overall, participants were satisfied with the position and attachment of the pendant
device. “The position around the neck didn’t worry me”, said one woman (faller).
Another interviewee mentioned, “It was easy to put on and off” (Woman, non-faller).
One participant explained in detail, “Wearing wasn’t any problem. I guess we were lucky
that it was mainly winter all the time and therefore you could just put the pendant under
your shirt or jumper. I’m not too sure how it would be in the middle of summer when
you are just wearing a sleeveless shirt with no collar. Then it might be much more visible.
You might think sometimes, I’m not going to wear it today because I’m going out to a
party and I don’t want people to ask about it” (Woman, faller).

Especially women were worried about the look of the pendant. One woman argued, “I
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didn’t like the pendant around my neck. A lot of times I’m attending meetings and things
like that. I have to look reasonably nice” (Woman, faller). Similar the comments from
other participants, “I prefer to wear the pendant underneath clothing. Because at our
age you don’t want to have things hanging around your neck. If I went out and dressed
up, I wanted to look my best and didn’t wear the pendant” (Woman, non-faller) and “If
you want to go out looking really lovely and have your gold chains hanging around your
neck and then you have the pendant to put on you maybe don’t think it looks too good”
(Woman, faller).

Compliance

When asked participants about the reasons which prevented them from wearing the
pedant they mentioned that they sometimes just forgot to put it on or that they did not
like to wear the device outside of their homes. One woman explained, “It was probably
forgetfulness in a lot of cases. . . I forgot that I should have been wearing it all the time”
(Woman, non-faller). Another participant described, “I had to remember every morning
to put the pendant on after charging. A couple of mornings I didn’t remember to put
it on for the first hour or so and then I remembered it” (Woman, faller). One female
participant explained that it was highly context dependent if she used the device or not,
“It depends where I was going whether I would wear it or not. I didn’t wear it when I was
going shopping or visiting someone” (Woman, faller). Another interviewee explained in
this context, “I didn’t wear it when I was going out shopping or anything like that, but
other than that I wore it” (Woman, faller).

8.3.6 User Feedback

With the iStoppFalls assessment participants received instant feedback on their perfor-
mance after each test and were able to monitor how their performance and fall risk
changed over the four months. From the wearable pendant device participants received
feedback regarding their daily and weekly physical activity levels. When asked about
their thoughts on knowing their own fall risk the majority of participants stated they were
interested in that information, especially the participants who had already experienced a
fall. Participants discussed the importance of the accuracy and reliability of the informa-
tion given in the feedback and how the information had an impact on their motivation
to be more active. “I think everybody likes to see that what they are doing is worthwhile
and therefore you are more enthusiastic to continue if you see that you are improving”
(Woman, faller), explained a participant. They were satisfied with the combination of
numbers, text and graphs in the feedback. One woman commented, “Well, the result
that I got from test with the graph showing lines this way and that way, that was helpful”
(Woman, non-faller). In general, the participants preferred simple visualizations and
written text. When asked about their ideas on how to improve the feedback they used
phrases like “just written information is fine”, “it should be fairly simple” and “as long
as you can see a number or a word that you know you are improving it is fine”.
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8.3.7 Continuing with Home-based Assessments

The participants were asked if they could see themselves to continue with the iStoppFalls
assessments on a regularly basis or to wear the pendant device. Two participants answered
that they could not imagine doing so. One woman explained that at 86 years of age she
just felt too old for the program. The other participant believed that it would not be of
great benefit for her because she was already aware of her risk of falling. The other eight
interviewees said that they would like to continue.

8.4 Design Considerations for Future Fall Risk
Assessments

In order to develop an individualized care plan for preventing falls, the factors contributing
to a person’s increased risk of falling need to be systematically and comprehensively
identified. Based on the findings from the home study and interviews important aspects
for the future design of sensor-based home assessments, by means of directed routine
assessments or monitoring of daily activities, will be discussed and highlighted hereafter.

8.4.1 Directed Routine Assessments (e.g. Using the Microsoft
Kinect)

Technology

Sensors used for directed routine assessments should be accurate, low-cost and reliable.
The Microsoft Kinect is a low-cost computer vision sensor which does not require any
additional equipment (e.g. sensors on the floor) which could be a potential tripping
hazard. The Kinect has been shown to be accurate in measuring temporal and gross
spatial movements. However, it showed less accuracy for smaller movements, especially
in the anterior-posterior direction [92]. Therefore, it is recommend to focus on the
measurement of larger rather than small movements when designing virtual tests for
assessments or to complement the Kinect measurements with a body-worn sensor (as
investigated in Chapter 6).

The Kinect was sensitive to different light conditions and sometimes failed to locate and
isolate the participant if objects (e.g. a chair for safety reasons) were in close proximity.
The successor model Kinect One looks promising and might be a big step forward in
reliability. If proven, this would make it an ideal device for future sensor-based home
assessments.

Aligned with Axelrod et al. [113], the findings suggest that when deploying health
technology in private homes, the available space, purpose of rooms (e.g. living vs. bed
room) and use of existing technology (e.g. TV) should be considered. In a recent study,
higher user acceptance has been observed if the health technology was not bulky and could
be freely positioned within the homes [104]. In addition, the complexity of the technology
has to be taken into account. For the iStoppFalls assessment a TV, PC, set-top-box and
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Kinect were required. Connection issues - especially between the set-top-box and PC
- were common causes for system failures. The main advantage of the set-top-box was
that participants could start the assessment directly via the TV. However, less complex
system designs for example by combining the functionality of the PC and set-top-box
would be recommended.

Design of Virtual Tests

It is recommended that assessments should be based on clinical tests which already have
proven evidence in discriminating between fallers and non-fallers and in predicting fall
risk; preferably based on data from prospective studies. However, such tests cannot
be implemented in a virtual environment without modifications. For home-based self-
assessments tests should be engaging, safe and challenging, but not too difficult for older
people. The reaction time tests (i.e. choice stepping and reaching reaction time test)
were favored by the participants. This may be because they were more similar to a
“real” video game compared to the other tests in the iStoppFalls assessment. In order to
design future directed routine assessment tests, the concept of gamification might play
an important role to improve user experience and user engagement [181].

For example, the game aspects of the five-times-sit-to-stand test of the iStoppFalls
assessment could be improved by having participants virtually collect items by standing
up and sitting down five times as fast as possible. The Pigeon Express Game [144] is an
example of a sit-to-stand exergame which could be adapted for the assessment of fall
risk. Interviewees described the balance testing as difficult, but useful because in their
mind a fall was directly associated with losing the balance. This is consistent with the
health belief model, in that people are more likely to adhere to regular assessments if
they believe that it is associated with their risk of falling [182]. In order to make the
balance test more engaging, it could be redesigned along the following lines: Participants
see a target (e.g. dartboard) on the TV screen while they have to hold the position of
a moving object, controlled with their body movements, in the bull’s-eye of the target.
The score increases as long the participants keep their balance and the position of the
moving object in the bull’s eye.

Safety and Support

Safety is an important aspect for the design of home-based self-assessment tests. From
the home study and interviews it has been learned that some participants did not use a
chair during the tests although they were advised to do so several times. This might be
explained by the overestimation of one’s own capabilities or underestimation of the risk of
falling. This is in line with the results of a recent study investigating the use of exergames
for balance training in older people [119]. As a possible solution, assessment tests in
which a chair or support forms an integral part of the test (e.g. the five-times-sit-to-stand
test) are recommended.
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Home-based assessments like the iStoppFalls assessment can be conducted in regular
home visits by trained personnel or independently by older people as a self-assessment.
The majority of interviewees said that they would prefer to perform the assessment tests
on their own. Therefore, the level of support has to be considered for the future setting
of home-based assessments. Tests assessed by an evaluator ensure the correctness and
safety. However, an observer could have a negative influence (e.g. social anxiety) on the
test performance [183].

Frequency and Duration

In general, home-based health technology has to fit the individual routines of daily life
to be accepted by older people. Therefore, the interval, duration and rules required for a
directed routine assessment should be considered.

Regularly repeated fall risk assessments could help identify and target those people at
an increased risk of falls and predict falls with more accuracy in future. Incorporating
technology-based self-assessments provides an opportunity to gradually increase the
frequency of risk assessments. To my knowledge, there is no evidence available yet about
the optimal time interval to capture changing health conditions in old age. From the
interviewed healthy community-dwelling older volunteers w various answers regarding the
preferred frequency of a home-based directed routine assessment were received. There
was no tendency towards a specific interval, but answers varied from once a week to once
every three months. However, when using short intervals (e.g. weekly) a possible training
effect would need to be taken into account and with long intervals a prompting system to
remind participants to perform the assessments would be necessary. It is recommended
to use automatic reminders for example delivered through a smart phone or television. It
would be also recommended that an assessment lasts for 30 minutes or less.

8.4.2 Monitoring of Daily Activities (e.g. Using Wearable Sensors)

Technology

Wearable sensors should be accurate, reliable, low-cost and unobtrusive to be accepted
by their users. When designing wearable technology there is always a tradeoff between
accuracy, size, weight and power consumption. The pendant device used within this thesis
included a three-dimensional accelerometer and a barometric air pressure sensor and was
accurate in detecting sit-to-stand movements in older people. Therefore, a multi-sensory
approach using different types of sensors is recommended as it may improve accuracy,
reliability and lead to more complete information [184].

Interviewees mentioned that they stopped wearing the pendant device if they had the
impression it did not work properly. Therefore, a wearable device used for day-to-day
measurements should be reliable and operate maintenance-free for long periods [185]. A
LED light signalled the user that the pendant device was active and working. Participants
mentioned that they did not like the flashing light because it was sometimes visible through
clothes and also visible to other people. Based on these findings, it is recommended that
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wearable devices provide feedback regarding the operational status, but the feedback
should be unobtrusive and not disruptive.

User feedback on fall risk monitoring should be accessible, reliable, simple, understandable
and should include comments on possible improvements. With an appropriate feedback
people can reflect on their results and its correlation to their routines and daily activities
[112].

Interviewees mentioned that regular feedback about their physical performance was helpful
for their motivation. A wearable device used for long-term monitoring should provide a
method to unobtrusively access the data for regular evaluations. Smart algorithms could
automatically generate performance indicators from the sensor data as demonstrated in
this thesis. These algorithms could be implemented directly on the wearable devices, on
a separate device (e.g. PC or smartphone) or in the cloud depending on the required
computational resources.

Battery lifetime and power consumption are great challenges when it comes to wearable
technology [185]. In the home-based study, participants wore the device during the day
and charged it overnight. It has been decided not to integrate a gyroscope (in addition
to the accelerometer and barometric air pressure sensor) due to high power consumption.
However, in general, it is recommended that a wearable device should be designed to be
useable for at least one day without recharging.

Design of Wearable Technology

For any wearable technology it is important to consider the size, weight and shape of
the device. In agreement with previous studies, it has been found that the devices
need to be kept small, lightweight, thin and should not hinder people in their daily
movements [177, 185]. The position and form of attachment have to be considered
too [177, 186]. Figure 8.3 illustrates unobtrusive areas characterized by large surfaces
and low movement when the body is in motion to position wearable devices. Current
wearables require to be attached directly to the skin or use a form of indirect attachment
with straps or belts to provide reliable measurements. In the home study, participants
were asked to wear the pendant device attached to a self-adjustable lanyard around
the neck. Overall, participants were satisfied with this approach as it was perceived as
easy and more comfortable than attaching the device to the skin. Some participants
mentioned that they were worried about stigmatizing and preferred to hide the pendant
below clothing. Therefore, when designing future wearable technology it is recommended
to offer an alternative way of wearing the device to achieve maximum compliance.

8.5 Discussion

8.5.1 Feasibility of iStoppFalls Assessment

In previous studies the iStoppFalls assessment, including Kinect-based tests for fall risk
assessment, has been shown to discriminate well between fallers and non-fallers in the
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clinical setting. In this study, the feasibility of the iStoppFalls assessment at home was
examined. This is the first study where older adults were asked to assess their fall risk,
with a sensor-based self-assessment delivered through their television, on their own at
home.

Sixty-two older people from Australia, Germany and Spain performed 241 assessments
over a period of four months. The iStoppFalls assessment was conducted by participants
with a high or low risk of falling. There was no significant difference in the number of
assessments performed regarding the fall risk measures. The present findings suggest
that the Kinect-based assessment tests are feasible to administer in the home setting,
but also that further research is necessary to refine it.

8.5.2 Feasibility of Wearable Sensor

In a previous study the wearable pendant based on a proposed algorithm accurately
detected sit-to-stand movements during activities of daily living and successfully differen-
tiated between people who were at risk for falls from people who were not at risk. In
this study, the long-term use of the pendant device was investigated. The participants
wore the pendant for a total of 39,803 hours over a period of four months. The findings
of this study suggest the feasibility and preliminary acceptance of the pendant in daily
life, but also highlight that further work (e.g. on the design) is necessary to improve user
acceptance.

Figure 8.3: Unobtrusive areas for wearable technology: (a) collar area, (b) rear of the
upper arm, (c) forearm, (d) rear, side, and front ribcage, (e) waist and hips, (f) thigh, (g)
shin, and (h) top of the foot [177].
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8.5.3 Study Limitations

The adherence to the monthly assessments was moderate across all sites (39%). In a
recent systematic review the adherence to home-based exercise programs to prevent falls
was estimated with 21% [187]. However, an assessment is different to an exercise. This
study had certain limitations that might have prevented us from achieving a higher
adherence: 1) this study was conducted as part of an RCT and participants might have
focused on the exercises rather than on the assessments and 2) a mid-term assessment
between month two and three was conducted by a trained researcher as part of the RCT
and might have been mistaken for the monthly assessment. Participants were assessed
on the iStoppFalls assessment in the laboratory prior to the study and this might have
influenced their skill level with the technology. However, the laboratory assessment were
supervised and the system operated by a trained researcher.

8.5.4 Conclusion

In summary, this study described the feasibility of a Kinect-based system and a wearable
pendant device to be utilized at private homes. The user experience and acceptance was
investigated and considerations for future home-based assessments were elaborated. The
findings constitute an important first step towards the development of accurate, objective
and low-cost methods to assess fall risk at home.
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9.1 Summary

Accurate fall risk assessments may assist by identifying individuals at increased risk to
enable appropriate intervention before a fall occurs. To date, the methods used to assess
fall risk often lack objectivity or require expensive equipment and specialized knowledge.
Clinical tests are often only moderately predictive of falls because such assessments are a
one-time snapshot performed under ideal circumstances dissimilar to those experienced
by older people in everyday life.

As outlined in the literature review (Chapter 2) new sensor-based methods may provide
inexpensive ways to objectively assess fall risk. Two approaches were identified as suitable:
1) directed routine assessments (e.g. using the Microsoft Kinect) and 2) monitoring of
daily activities (e.g. using wearable sensors). This thesis investigated the feasibility of
these two approaches to accurately assess fall risk of older people in both clinical and
home settings.

The main research questions were:

1. Can physical tests of balance, strength and reaction time measured using a Kinect-
based system assess fall risk in older people?

2. Can the monitoring of activities of daily life using a wearable sensor assess fall risk
in older people?

3. Can assessments of fall risk be undertaken with the Kinect-based system and
wearable sensor by older people unsupervised at home?

Can physical tests of balance, strength and reaction time measured using a
Kinect-based system assess fall risk in older people?

To address this question, a Kinect-based system including physical tests of several domains
was developed (Chapter 3) and evaluated in community-living older people (Chapter 4
and 6). This included the development of algorithms to quantify performance on these
tests based on the sensor signals.

In Chapter 4, a signal processing algorithm was proposed to quantify performance on a
new Kinect-based five-times-sit-to-stand test. Timing and speed related measurements
were successfully extracted from the skeleton data of the Kinect. The measurements
differentiated well between the fallers and non-fallers in 94 community-dwelling older
people and showed good convergent validity to clinical fall risk measurements. The
findings demonstrated it is feasible to use the Kinect-based five-times-sit-to-stand test to
assess fall risk in older people.

In Chapter 5, algorithms were presented to quantify performance on new Kinect-based
choice reaching and stepping reaction time tests. Measurements were derived from the
skeleton data of the hand and feet movements in response to cue signals. The sensor-based

106



9.2. General Discussion

measurements discriminated well between the fallers and non-fallers and demonstrated
good convergent validity to traditional reaction time measurements in 94 older people.
The findings demonstrated it is feasible to use the Kinect-based reaction time tests
to measure upper and lower limb movements, which are important to avoid a fall or
minimize injuries if a fall occurs.

The Kinect has demonstrated to be accurate in measuring temporal and gross spatial
movements, but less accurate in measuring fine motor movements. Therefore, in Chapter 6,
the feasibility of complementing the Kinect measurements with data from a wearable
inertial sensor was investigated. The findings indicate that the inertial sensor provides
complementary information regarding the quality of movements (e.g. stability-related
data) to that provided by the Kinect.

Can the monitoring of activities of daily life using a wearable sensor assess
fall risk in older people?

In Chapter 7, the ability of a wearable sensor to monitor fall risk during activities of daily
life was investigated. A signal processing algorithm based on wavelet transformations
of accelerometer and barometric air pressure sensor data was developed to detect sit-
to-stand movements (i.e. an indicator of fall risk). The algorithm accurately detected
sit-to-stand transitions in 25 older people performing typical daily activities and 94 older
people performing sit-to-stand movements as part of a clinical assessment. Further, the
algorithm differentiated well between the people at risk of falls from the people not at risk,
which indicates the feasibility of the wearable sensor to assess fall risk during activities
of daily life.

Can assessments of fall risk be undertaken with the Kinect-based system
and wearable sensor by older people unsupervised at home?

Over a four month study period, the long-term use of the Kinect-based system and
pendant-style wearable sensor was investigated in the homes of 62 older people (Chapter 8).
Participants were asked to independently perform at least one assessment session each
month and to wear the pendant during the day. At the end of the study, interviews
were conducted to investigate user experience. Most participants used the Kinect-based
system and wearable sensor on a regular basis, felt positive about their experience and
could see themselves continuing using such assessment methods. Therefore, the findings
suggest that both fall risk assessment approaches can be undertaken by older people in
an unsupervised home setting.

9.2 General Discussion

There is a strong interest in new methods for fall risk assessments. Recent research has
focussed on accurate and objective technologies to enhance clinical fall risk tests and
has provided preliminary evidence that these methods can differentiate between people
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at risk of falls from people not at risk (Chapter 2). However, the sample sizes of the
majority of studies have been too small to provide any definitive conclusion regarding the
accuracy of classifying fallers from non-fallers. Most of the studies have been conducted
in a laboratory setting and therefore, do not provide any information regarding the
feasibility of using these new technologies outside of this setting.

For the first time, physical tests using the Microsoft Kinect were developed and evaluated
to assess fall risk in a large sample of community-living older people. Further, in contrast
to other studies, the long-term use of this system to assess fall risk unsupervised at home
was investigated. A Kinect-based approach has several advantages compared to other
sensor-based methods in clinical and home settings and they can be summarized as: 1)
easy to set up and administer - no further physical equipment is needed, 2) safe - no
additional trip hazards, 3) inexpensive - the Kinect is a widely available consumer device
and 4) fairly accurate - enables whole body tracking of participants’ movements.

There is an emerging interest in the use of wearable sensors for continuous monitoring
of daily activities (Chapter 2). This thesis extends the findings of previous work by:
1) providing a new method to accurately detect and assess sit-to-stand movements in
daily life using a new pendant-style inertial sensor and 2) investigating the long-term use
of such a device in older fallers and non-fallers. The proposed algorithm demonstrated
excellent detection accuracy and allowed more vigorous movements in more athletic
participants and slower movements in frailer participants to be detected. In contrast to
other wearable sensors, the pendant could be freely worn on a lanyard around the neck.
This approach presented a new challenge for developing an accurate detection algorithm,
but was motivated by a desire to make the device more comfortable and easier to use in
daily life.

9.3 Applications

In the clinical setting, these new methods could lead to accurate, objective, low-cost and
easy to administer tests to identify older people at increased risk of falls. An accurate
and objective diagnosis could assist in the selection of participants who would benefit
most from intervention programs or for tailoring interventions to the individual needs
of older people. Accurate and objective assessment systems (e.g. electronic walkways,
force plates or camera-based systems) exist, but they have not found their way into
clinical practice as they are expensive and require special expertise to administer. The
Kinect-based system and wearable sensors have the potential to overcome these barriers
and may therefore enter mainstream clinical practice.

These new methods could be also used to prevent falls in hospitals and nursing homes.
Older people who are living in such facilities fall more often than those who are living
in the community [18]. The presented approaches could be used to regularly assess and
monitor the fall risk in these residents and therefore would enable timely interventions.

In addition, such sensor-based tests could complement or replace clinical tests to provide
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older people’s health care providers and caregivers more information about the perfor-
mance of their patients at home. This would allow older people to stay in their familiar
environment for as long as possible and in consequence reduce health care costs.

For example, the Kinect-based tests could be conducted at private homes by the following
means: 1) test administered in monthly visits by trained personnel or 2) test performed
independently and unsupervised as a self-assessment or self-management program to
empower older people. The pendant device could be worn during the day to provide
an unobtrusive method to quantify the quality and duration of daily activities. Both
methods would provide measurements of fall risk over time which could be used to provide
feedback regarding physical benefits (e.g. of a fall prevention exercise program) and to
alert older people or their caregivers if fall risk increases significantly.

The sensor-based methods presented in this thesis may not be limited to fall prevention
in older people. For example, home-based assessments of motor and non-motor functions
could enhance the treatment of diseases (e.g. Parkinson disease) which are traditionally
based on periodic clinical evaluations or self-reporting of symptoms [188]. In addition,
home-based assessments could guide rehabilitation strategies (e.g. after stroke) by
providing feedback regarding the success of training programs. Another application
could be the early detection of diseases (e.g. dementia) by monitoring risk factors before
symptoms appear.

9.4 Limitations and Future Work

Guidelines for the future design of sensor-based home assessments were described in detail
in Chapter 8. Based on these recommendations and the results of this thesis important
topics of future research have emerged and are summarized below.

The algorithms introduced for the Kinect-based system and wearable sensor accurately
differentiated between the people who were at risk for falls from those who were not in
the clinical setting. The home-based study confirmed the feasibility of both approaches to
be undertaken at older people’s private homes. However, future longitudinal studies are
required to investigate the sensitivity of the Kinect-based tests and the pendant device
to track long-term changes of fall risk in daily life.

The Kinect-based system included physical tests of balance, strength and reaction time.
Within this thesis, the tests were examined separately. Future studies could investigate
the ability of the whole system to quantify fall risk. In this regard, machine learning
algorithms could be applied for decision support using the most discriminant features
identified by this thesis.

The Kinect was accurate in measuring gross spatial movements, but sensitive to different
light conditions and sometimes failed to locate and isolate the participant if objects were
in close proximity. The successor model Kinect One looks promising with regard to
significantly improved reliability.
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Another means for providing more reliable results would be to complement the measure-
ments from the Kinect with a wearable sensor as preliminary investigated in Chapter 6.
These initial results look promising, but future studies are warranted to evaluate the
advantages of this approach to quantify fall risk.

The wearable pendant device containing an accelerometer and barometric air pressure
sensor was accurate in assessing sit-to-stand movements and feasible to utilize in both
clinical and home settings. In younger people, wearable devices (e.g. smartwatches [189])
are gaining popularity and are slowly becoming mainstream. Future studies should
investigate the ability of smartwatches or other next-generation wearable devices (e.g.
e-textile sensors [190]) to assess fall risk in daily life.

In this thesis, the sit-to-stand movement was chosen because it is a common activity
in daily life and provides a salient measure of mobility status of an older person. How-
ever, future wearable sensor-based algorithms could be developed to detect and assess
different daily activities and may provide insights into the daily habits of older people by
summarizing the time per day spent undertaking motor and non-motor tasks.

Another method to unobtrusively assess fall risk during the day could be to use smart home
technologies (e.g. environmental sensors attached to house furnishings). For example,
pressure sensors installed under chair legs [191] could be used to quantify sit-to-stand
movements, smart scales could be used to unobtrusively measure day-to-day balance
abilities and motion detectors could be used to passively measure gait velocity [192].
Future studies are warranted to investigate the potential of these technologies and their
associations with fall risk in older people.

9.5 Conclusion
In summary, the findings of this thesis suggest that sensor-based methods to assess fall
risk using the Microsoft Kinect or wearable sensors are accurate, objective, low-cost and
easy to administer as well as feasible to be undertaken in both clinical and home settings.
This thesis constitutes an important step towards the development of new methods to
assess fall risk and in consequence to prevent falls in older people.
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