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Abstract

In the age of big data with ever-growing data volumes, data-processing applications face con-
siderable performance challenges. If they do not fulfill their performance requirements, they
do not deliver their intended benefit to their organization. Therefore, performance testing and
monitoring is crucial for organizations as it enables them to test, analyze and assess the perfor-
mance of their data-processing applications. Since single machines have not kept up with the
growing data volumes, data-processing applications have to scale across clusters, grids or other
distributed infrastructures. Whereas distribution allows such applications to meet their perfor-
mance requirements, it comes at a cost. Besides the design and manageability challenges that
emerge, performance testing and monitoring become more difficult to conduct. This especially
applies to data-processing applications, where monitoring has not been considered at design
time. There are existing testing and monitoring solutions for distributed systems. Unfortunately
these tools are often limited in their scope: Either they are focused on certain metrics, such as a
server’s resource metrics, or bound to a particular environment or data-processing engine.
The goal of this work is to investigate how the performance of distributed JVM-based data-
processing applications can be tested and monitored independently from a particular environ-
ment or data-processing engine. The different challenges when monitoring a JVM-based dis-
tributed data-processing application are analyzed step by step, from defining proper metrics,
dealing with data acquisition and publication, to measurement data analysis. Based on the result
of the analysis, a design for a framework that allows to monitor and test any JVM-based dis-
tributed data-processing application is proposed. To demonstrate the feasibility of our design,
a proof-of-concept implementation of the framework is developed. Finally, in order to evaluate
the framework and to show that it serves its purpose, it is applied to a demonstration scenario
implemented based on both, Apache Spark Streaming and Apache Storm, where the resulting
measurement data is analyzed and the results are discussed.
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Kurzfassung

In Zeiten von Big Data, mit ständig-wachsenden Datenmengen, sind Datenverarbeitungspro-
gramme mit beachtlichen Performance-Herausforderungen konfrontiert. Da Datenverarbeitungs-
programme, welche ihren Performance-Anforderungen nicht gerecht werden, nicht ihren eigent-
lich angedachten Mehrwert liefern, sind Performance-Überwachung und Tests daher wichti-
ge und nicht zu vernachlässigende Teile beim Einsatz solcher Programme, da sie es erlauben,
Performance zu analysieren, zu beurteilen und Grenzen auszuloten. Weil Datenverarbeitungs-
programme, die nur auf einzelnen Computern laufen, in der Verarbeitung nicht mehr mit den
entstehenden Datenmengen zurecht kommen, werden häufig verteilte Systeme eingesetzt. Un-
glücklicherweise hat der Einsatz solcher verteilter Systeme seine Nachteile: Abgesehen davon,
dass es viel schwieriger ist solche Systeme zu entwerfen und zu verwalten, ist das Überwachen
und Testen wesentlich schwieriger als bei einfachen Programmen. Das trifft insbesondere auf
Datenverarbeitungsprogramme zu, bei denen die Überwachung nicht zum Zeitpunkt des Ent-
wurfs berücksichtigt wurde, da es sehr viel schwieriger ist die Überwachungslogik im Nachhin-
ein einzubauen. Es gibt zwar fertige Lösungen und Produkte zur Überwachung und zum Testen
verteilter Systeme, diese haben aber häufig einen eingeschränkten Fokus: Entweder, sie sind
limitiert auf bestimmte Metriken, wie zum Beispiel Ressource-Metriken eines Servers, oder er-
fordern auf den Einsatz bestimmter Software-Umgebungen oder Software-Engines.
Das Ziel dieser Arbeit ist es, eine Lösung zu finden, wie man JVM-basierte verteilte Daten-
verarbeitungsprogramme überwachen und testen kann, ohne dabei an eine bestimmte Software-
Umgebungen oder Software-Engine gebunden zu sein. Die dafür notwendigen Anforderungen
werden Schritt für Schritt, von der Definition geeigneter Metriken, über die Erfassung und Ver-
teilung von Messdaten bis hin zur Analyse, diskutiert. Auf Basis dieser Anforderungen, wird
ein Entwurf für ein Framework zur Überwachung und Durchführung von Tests JVM-basierter
verteilter Datenverarbeitungsprogramme vorgestellt. Um die Plausibilität des Entwurfs zu über-
prüfen, wird eine Proof-of-Concept Implementierung entwickelt. Abschließend wird das Fra-
mework auf zwei Implementierungen eines Demonstrationszenarios, eine basierend auf Apache
Spark Streaming und eine basierend Apache Storm, angewandt und die resultierenden Mess-
daten analysiert, um die Anwendbarkeit und den Mehrwert dieser Arbeit zu im praktischen
Anwendungsfall zu zeigen.
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CHAPTER 1
Introduction

1.1 Problem Statement

Applications that do not fulfill their performance requirements generally do not deliver their in-
tended benefit to their organization [50]. In the age of big-data with ever-growing data volumes,
this is especially demanding for data-processing applications, which have to perform well in
order to be able to process accruing amounts of data. Hence, performance testing and moni-
toring is crucial as it enables organizations to analyze, assess and test the performance of their
data-processing applications. As the processing capabilities of single machines have not kept
up with these growing data volumes, data-processing applications have to scale their computa-
tions across clusters, grids or other forms of distributed infrastructures [75]. Besides the design
and manageability challenges of such distributed applications, both, performance testing and
monitoring are becoming more complex and difficult to conduct as performance measurements
of multiple computers (we call them workers in this thesis) have to be considered. Addition-
ally, proper metrics are more difficult to identify and to analyze once recorded. Acquiring the
measurement data, especially of applications where monitoring has not been considered from
the beginning, is not always straightforward. Furthermore, certain requirements for centralizing
monitoring data should be satisfied in order to maximize the benefit of monitoring [69].
There are existing solutions [22] [47] [70] [42] for both, measuring purely technical metrics,
such as CPU utilization, memory usage, etc. of single workers, and collecting measurement
data of distributed applications centrally. However, these solutions are lacking certain features,
which would make performance monitoring even more targeted and effective. Monitoring so-
lutions that simply collect technical metrics often do not provide enough insights on how an
application performs, since runtime performance of an application’s processes is not measured
and can not be analyzed. Also, solutions that can collect measurement data of a distributed ap-
plication centrally usually do not provide any functionality to acquire measurements.
Hybrid solutions, such as Ganglia [22], which can acquire technical metrics of a distributed
application’s workers out-of-the-box and centralize them, can be extended to collect arbitrary
measurements, but do not provide any functionality to acquire performance measurements of
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existing applications [43]. Acquiring measurements, if not considered in advance at design
time, requires additional code and often changes in existing applications. Even distributed data-
processing engines such as Apache Storm [64] or Apache Spark [62], that provide monitoring
functionality for their workers, have limitations as their monitoring capabilities are strictly bound
to their engines’ processing model.
The goal of this thesis is to investigate how the performance of distributed JVM-based data-
processing applications can be tested and monitored independent from a particular processing
model or data-processing engine, and to propose a framework design that meets the resulting re-
quirements. The main focus of this thesis work is how measurement functionality can be added
to existing applications without making changes to their code and having to rebuild them.

1.2 Aim of the Work

The goal of this thesis is to analyze and discuss the challenges of monitoring and testing JVM-
based distributed data-processing applications. Furthermore, solutions and approaches that ad-
dress these challenges are examined and a design for a monitoring and testing framework is
proposed. To demonstrate the feasibility and applicability of the proposed framework, a proof-
of-concept implementation will be developed. To leverage the frameworks applicability, mod-
ules for a simple integration with the data-processing engines Apache Storm and Apache Spark
are provided. To demonstrate the framework’s usage, a problem that suits the requirements for
a distributed data-processing application will be selected and implementations for both, Apache
Storm and Apache Spark will be developed. The developed framework will then be applied to
the implementations and tests be executed in order to create measurement data. Finally, acquired
measurement data will be analyzed and the results of the analysis are discussed.

1.3 Methodological Approach

First, the main issues when monitoring and testing distributed applications are analyzed. Metrics
and methods to measure them will be defined, existing practices for collecting and centralizing
data will be put in context for performance monitoring. Non-functional requirements that must
be satisfied for monitoring performance of distributed applications will be identified. Addition-
ally, in order to meet the specific demands of the particular scope of this thesis, methods for
extending existing applications will be investigated and analyzed. Second, technologies and
frameworks that help to meet the defined requirements are evaluated. Third, a design for a per-
formance testing and monitoring framework will be proposed. Next, to prove the feasibility of
the proposed design, a proof-of-concept framework will be developed and it will be shown how
existing data-processing engines can be integrated. In order to demonstrate the applicability of
the framework and to generate data that can be analyzed, a test scenario will be defined and ex-
ecuted. Finally, an analysis of the test scenario’s data will be conducted and the analysis’ results
will be discussed.
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1.4 Organization

The remainder of this thesis is structured as follows:

• Chapter 2 defines what JVM-based distributed data-processing application are, what per-
formance testing and monitoring is and how that can be done.

• Chapter 3 discusses available testing and monitoring solutions for distributed systems,
and how this thesis work differentiates from them. Furthermore, this chapter discusses
relevant research that has been conducted in that particular field.

• Chapter 4 selects features and requirements for monitoring and testing JVM-based dis-
tributed data-processing applications, and proposes a design that meets these require-
ments.

• Chapter 5 describes implementation details of a proof-of-concept framework developed
in the course of this thesis work.

• Chapter 6 defines requirements for a proper demonstration use case, proposes a use case
that meets these requirements, presents implementations of the selected use case and dis-
cusses the demonstration results.

• Chapter 7 recapitulates the findings of this thesis and gives an outlook on future research.
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CHAPTER 2
Background & Analysis

In this chapter, we discuss the requirements and challenges when monitoring and testing the
performance of distributed data-processing applications, which are relevant to the research pre-
sented in this thesis. First, proper metrics for measuring an application’s performance are iden-
tified. Second, different approaches of how to acquire measurement data based on the identified
metrics are explored. As this thesis focuses on JVM-based distributed data-processing applica-
tions, Apache Spark and Apache Storm, two data-processing / streaming engines that run on a
JVM, will be taken into closer consideration. Third, methods to modify and/or extend existing
applications in order to acquire measurement data without having to make code changes or re-
building are discussed. Fourth, to enable analysis of the acquired measurement data, concepts
for centralizing the measurement data are debated. Finally, we discuss data analytics approaches,
where a differentiation between post-test or post-execution analysis, and real-time analysis will
be made.

2.1 JVM-based Distributed Data-Processing Applications

Definition & Goals

Unfortunately, there exists no unique definition of what a distributed data-processing applica-
tion is. Even worse, there aren’t any unique definitions of the terms distribution (in relation to
computing), application or system (in relation to software) either.
When it comes to distributed computing, a term that is quite commonly used is distributed sys-
tems. However, there are various definitions for that common term too [66]. Tanenbaum et
al. define a distributed system as “A distributed system is a collection of independent comput-
ers that appears to its users as a single coherent system“ [66]. The fact that this collection of
independent computers (we also call them workers in this thesis) appears to its users as a sin-
gle system means, that these computers need to communicate. Thus, the computers need to be
interconnected, and a computer network must be established. Since virtualization has become
common over the past years, a computer may not actually be a physical device, it could also
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be a virtual machine connected to other virtual or physical computers through both, virtual and
physical networks.

Computer 1

OS

SW

Computer 2

OS

SW

Computer 3

OS

SW

Network

Figure 2.1: Computer network example

Figure 2.1 shows an example of computers connected by a network. The computers shown
in this figures are a simplified model where a computer consists of an operating system (OS) and
additional software (SW).

Now that we have defined what a distributed system is, we will differentiate between system
and application. In this thesis, we define an application as “a program designed to perform a
specific function directly for the user or, in some cases, for another application program“ [4] and
a system as “operating systems and any program that supports application software“ [61].

Data-processing is the work that is done on data to extract and/or create information [58].

Data Processing Information

<<Input>> <<Output>>

Figure 2.2: Data processing

Figure 2.2 shows an overview of what data-processing is. The central element, the Process-
ing step, often consists of various activities such as:

• Validation

• Transformation

• Aggregation

• Analysis
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In summary, a data-processing application is a software that performs a specific function
directly for the user or for another application, where the specific function is to process data
in order to extract and/or create information. A distributed data-processing application is a
data-processing application, where the processing work is done by multiple, through a network
interconnected, computers.
The goal of a data-processing application, therefore, is to create value from data. Subsequently,
the goal of a distributed data-processing application is to create value from ever growing amounts
of data, which can not be processed by single computers anymore, by scaling out to distributed
computers.

Java Virtual Machine (JVM)

“The Java virtual machine is an abstract computer“ [72]. Its specification [63] defines features
and functionalities each JVM implementation must have, and the class file format that must be
processable [72]. Every Java virtual machine implementation must be able to load class files
using a class loader and execute the byte code it contains [72] [63].

Java virtual machine

class loader

execution 
engine

Host operating system
Windows / Linux / Mac / etc.

native method invocations

class files

bytecodes

Figure 2.3: Java virtual machine

Figure 2.3 shows an overview the Java virtual machine architecture on top of a host operat-
ing system.
Initially developed for running Java applications platform-independently, thus for running a
compiled class file on any operating system, the Java virtual machine has evolved to a platform
for many other programming languages that can be translated to class files. Three prominent
other examples are Scala [60] (a functional programming language), Groovy [26] (a dynamic
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object-oriented programming language that is often used for scripting) and Clojure [12] (a Lisp
dialect).

Java file
*.java

Groovy file
*.groovy

Clojure file
*.clj

Class file
*.class

Java 
compiler

Groovy 
compiler

Clojure 
compiler

Java Virtual 
Machine

Class 
loader

Execution 
engine

Scala file
*.scala

Scala 
compiler

Figure 2.4: Different programming languages for the JVM

Figure 2.4 illustrates how different programming languages can be used for developing
JVM-based software.

Given that, we consider a JVM-based application as software, that consists of class files contain-
ing byte code, which can be executed on any Java virtual machine implementation that follows
the specification defined in [63].

Distributed Data-Processing Frameworks & Systems

When building a distributed data-processing application, there are, as for all kind of distributed
systems / applications, certain non-functional domain-independent requirements and goals that
must be taken into account.

• Scalability: It must be easy to add or remove resources when required. Besides that, a
system must still be manageable, even if it has grown considerably [66].

• Fault-Tolerance: As hardware components in a distributed system can fail, distributed
systems must be designed to be fault-tolerant and continue processing with minimal im-
pact in such a case [70].

• Resource Sharing: It should be possible to dynamically share resources in a distributed
system.

• Efficiency: Since distributed systems are often used to scale out and increase perfor-
mance, they must have good performance characteristics. Distributing load must be effi-
cient in order do maximize performance increases.

8



• Extensibility: As functional requirements can change over time, a distributed system must
be extensible to meet newly emerging challenges.

• Management and Administration: As distributed systems are often used for business
critical processes, operation and maintenance teams need to be warned early and must be
able to trace errors. Thus, administration is a critical requirement.

Building a distributed data-processing application, where all these requirements are consid-
ered, from scratch is rather impractical. First, it is expensive, since the efforts that emerge with
the fulfillment of these requirements must not be underestimated. Developing such features takes
in many cases at least as much effort as developing the functional features. Besides development
efforts, testing complexity increases considerably. Second, due to extra efforts that emerge with
fulfilling these requirements, it takes more time to develop an application. As many software
projects are time-critical nowadays, building everything from scratch is therefore not a viable
option. Third, it requires special skills, knowledge, and experience. Engineers that posses these
skills and knowledge and are experienced in this field are hard to find and in constant demand,
thus hiring can take months.
As a result, frameworks and systems that provide features to fulfill these requirements are often
used. Since this thesis approach for monitoring and testing distributed data-processing applica-
tions is designed for arbitrary JVM-based applications, we will take two prominent JVM-based
frameworks/engines, Apache Spark and Apache Storm, into closer consideration.

Apache Spark

In general, Apache Spark [62] is a cluster computing platform, which is designed for large-
scale distributed data-processing [39]. Its programming abstraction, called resilient distributed
datasets (RDDs), is based on the MapReduce model [16], but allows efficient data sharing across
parallel computation stages [75]. A resilient distributed dataset is a read-only set of records that
can be partitioned, and therefore manipulated in parallel. RDDs can be created out of data in
storage or be derived from other RDDs. Since all of these operations must be deterministic,
Spark has enough information to derive RDDs from other datasets at all times and does not need
to have RDDs permanently materialized [75]. The Spark API provides functions for working
with RDDs. These functions can be categorized in transformations, such as map, flat map,
reduce or filter functions, and actions to actually do something with a data set (e.g., storing to a
database). Additionally, Spark provides features for stream processing, an SQL-like model for
processing data, a machine learning and a graph computing component.

Figure 2.5 shows Spark’s components. The Spark Core is basically a computational engine
that is responsible for scheduling tasks, distributing load, managing memory and monitoring
applications across workers in a cluster [39]. It also contains the API for working with RDDs
programmatically.
The Spark SQL package provides functionality to work with structured data by allowing devel-
opers to express queries in SQL and HiveQL in combination with programmatic data manipula-
tion functionality provided by Spark’s RDD API [39].
MLib is a library that contains common machine learning functionalities such as classification,
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Standalone 
Scheduler YARN

Spark Core

Spark
SQL

Spark
Streaming MLib GraphX

Mesos

Figure 2.5: Apache Spark components [39]

clustering and collaboration filter algorithms [39].
GraphX is a library that extends Spark RDD API with functionality for working with graphs. It
allows to create a directed graph with arbitrary properties attached to vertices and edges, which
can be processed using common graph algorithms (e.g., PageRank) [39].
Since Spark is designed to scale up to many workers, it must provide functionality to manage
resources in a cluster or to be integrable in a cluster manager. Spark provides a simple stan-
dalone scheduler for cluster resource management, but can also be integrated into an Apache
YARN [38] or Apache Mesos [38] cluster.

Spark Streaming Spark Streaming is a component of Spark that allows developing streaming
applications by using an API similar to Spark’s RDD API. It is based on an abstraction named
discretized streams. A discretized stream is a sequence of data arriving over time, which is is
represented as a sequence of RDDs, where data is combined in RDDs in a certain interval within
Spark [75]. In other words, Spark forms micro-batches out of a sequence of arriving data, as
illustrated in Figure 2.6.

Figure 2.6: Apache Spark data flow [18]

Spark Streaming Programming Model The Spark Streaming programming model is similar
to the normal Spark programming model. It can be separated into three different parts:

10



• Input Sources: Receiver functions that receive data from a data source (e.g., a database
or socket and emit data to a discretized stream).

• Transformations: As Spark, Spark Streaming allows to transform RDDs of a discretized
stream. However, the main difference to Spark is that each transformation results in a
new discretized stream, thus a sequence of RDDs. An example of this process is shown
in Figure 2.7, where each block represents an RDD. There are two different types of
transformations that Spark Streaming supports:

Stateless Transformations: Simple, RDD to RDD transformations such as map, flat
map, reduce and filter.

Stateful Transformations: Transformations on a stream that track data across time.

• Output Operations: Operations for doing something with the processed data (e.g., stor-
ing it in a database).

Figure 2.7: Spark Streaming example [62]

Apache Storm

Apache Storm is a real-time distributed data-processing engine, which has been developed at
Twitter [70]. It is designed to be scalable, resilient, extensible and efficient. Whereas its under-
lying concept is completely different, Apache Storm is an alternative to Apache Spark Streaming
from a functional point of view. At its core, Apache Storm is based on streams of tuples flowing
through topologies. A topology is a directed graph where vertices can be considered as com-
putation nodes and edges as the data flow between the nodes. There are two different types of
nodes:

• Spouts are sources of tuples.

• Bolts process tuples. A bolt can be both, a consumer and a producer of tuples, thus one
bolt can be linked with another bolt within a topology.
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An exemplary Twitter topology is shown in Figure 2.8. The TweetSpout emits tuples (tweets)
into the topology. The ParseTweetBolt processes tweets and separates them into words, and the
WordCountBolt counts the number of words in a tweet [70]. 

 
 

represents one of the early open-source and popular stream 
processing systems that is in use today.  
Storm was initially created by Nathan Marz at BackType, and 
BackType was acquired by Twitter in 2011. At Twitter, Storm has 
been improved in several ways, including scaling to a large 
number of nodes, and reducing the dependency of Storm on 
Zookeeper. Twitter open-sourced Storm in 2012, and Storm was 
then picked up by various other organizations. More than 60 
companies are either using Storm or experimenting with Storm. 
Some of the organizations that currently use Storm are: Yahoo!, 
Groupon, The Weather Channel, Alibaba, Baidu, and Rocket 
Fuel.  

We note that stream processing systems that are in use today are 
still evolving (including Storm), and will continue to draw from 
the rich body of research in stream processing; for example, many 
of these “modern” systems do not support a declarative query 
language, such as the one proposed in [12]. Thus, the area of 
stream processing is an active and fast evolving space for research 
and advanced development.  

We also note that there are number of online tutorials for Storm 
[20, 21] that continue to be valuable resources for the Storm user 
community.  

The move to YARN [23] has also kindled interest in integrating 
Storm with the Hadoop ecosystem, and a number of resources 
related to using Storm with Hadoop are now also available (e.g. 
[21, 22]). 

The remainder of this paper is organized as follows: The 
following section, Section 2, describes the Storm data model and 
architecture. Section 3 describes how Storm is used at Twitter. 
Section 3 contains some empirical results and discusses some 
operational aspects that we have encountered while running Storm 
at Twitter. Finally, Section 4 contains our conclusions, and points 
to a few directions for future work. 

2. Data Model and Execution Architecture 
The basic Storm data processing architecture consists of streams 
of tuples flowing through topologies. A topology is a directed 
graph where the vertices represent computation and the edges 
represent the data flow between the computation components. 
Vertices are further divided into two disjoint sets – spouts and 
bolts. Spouts are tuple sources for the topology. Typical spouts 
pull data from queues, such as Kafka [13] or Kestrel [14]. On the 
other hand, bolts process the incoming tuples and pass them to the 
next set of bolts downstream. Note that a Storm topology can have 
cycles. From the database systems perspective, one can think of a 
topology as a directed graph of operators.  
Figure 1 shows a simple topology that counts the words occurring 
in a stream of Tweets and produces these counts every 5 minutes. 
This topology has one spout (TweetSpout) and two bolts 
(ParseTweetBolt and WordCountBolt). The TweetSpout may pull 
tuples from Twitter’s Firehose API, and inject new Tweets 

continuously into the topology. The ParseTweetBolt breaks the 
Tweets into words and emits 2-ary tuples (word, count), one for 
each word. The WordCountBolt receives these 2-ary tuples and 
aggregates the counts for each word, and outputs the counts every 
5 minutes. After outputting the word counts, it clears the internal 
counters. 

2.1 Storm Overview 
Storm runs on a distributed cluster, and at Twitter often on 
another abstraction such as Mesos [15]. Clients submit topologies 
to a master node, which is called the Nimbus. Nimbus is 
responsible for distributing and coordinating the execution of the 
topology. The actual work is done on worker nodes. Each worker 
node runs one or more worker processes. At any point in time a 
single machine may have more than one worker processes, but 
each worker process is mapped to a single topology. Note more 
than one worker process on the same machine may be executing 
different part of the same topology. The high level architecture of 
Storm is shown in Figure 2. 

Each worker process runs a JVM, in which it runs one or more 
executors. Executors are made of one or more tasks. The actual 
work for a bolt or a spout is done in the task. 

Thus, tasks provide intra-bolt/intra-spout parallelism, and the 
executors provide intra-topology parallelism. Worker processes 
serve as containers on the host machines to run Storm topologies. 

Note that associated with each spout or bolt is a set of tasks 
running in a set of executors across machines in a cluster. Data is 
shuffled from a producer spout/bolt to a consumer bolt (both 
producer and consumer may have multiple tasks). This shuffling 
is like the exchange operator in parallel databases [16].  
Storm supports the following types of partitioning strategies:  

1. Shuffle grouping, which randomly partitions the tuples. 

2. Fields grouping, which hashes on a subset of the tuple 
attributes/fields. 

3. All grouping, which replicates the entire stream to all the 
consumer tasks. 

4. Global grouping, which sends the entire stream to a single bolt. 

 
Figure 2: High Level Architecture of Storm  

 
Figure 1: Tweet word count topology 
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Figure 2.8: Exemplary Apache Storm topology [70]

Since Apache Storm is designed to be scalable, it runs on a distributed cluster, and/or on clus-
ters managed by a cluster manager such as Apache Mesos [70]. Hence, there might be several
instances of a bolt running on different workers in a cluster. In such cases, Storm automatically
distributes tuples from producers to consumers using different strategies [70]:

• Shuffle Grouping: Randomly distributes tuples to bolt instances.

• Field Grouping: Distributes tuples by field values.

• All: All bolts receive all tuples.

• Global: Sends all tuples of a stream to a single bolt.

• Local: All tuples are sent to the bolt running on the same worker.

Figure 2.9 shows an example of two different distribution strategies. 

 
 

5. Local grouping, which sends tuples to the consumer bolts in the 
same executor.  

The partitioning strategy is extensible and a topology can define 
and use its own partitioning strategy. 

Each worker node runs a Supervisor that communicates with 
Nimbus. The cluster state is maintained in Zookeeper [17], and 
Nimbus is responsible for scheduling the topologies on the worker 
nodes and monitoring the progress of the tuples flowing through 
the topology. More details about Nimbus is presented below in 
Section 2.2.1. 
Loosely, a topology can be considered as a logical query plan 
from a database systems perspective. As a part of the topology, 
the programmer specifies how many instances of each spout and 
bolt must be spawned. Storm creates these instances and also 
creates the interconnections for the data flow. For example, the 
physical execution plan for the Tweet word count topology is 
shown in Figure 3. 

We note that currently, the programmer has to specify the number 
of instances for each spout and bolt. Part of future work is to 
automatically pick and dynamically changes this number based on 
some higher-level objective, such as a target performance 
objective. 

2.2 Storm Internals 
In this section, we describe the key components of Storm (shown 
in Figure 2), and how these components interact with each other.  

2.2.1 Nimbus and Zookeeper 
Nimbus plays a similar role as the “JobTracker” in Hadoop, and is 
the touchpoint between the user and the Storm system. 

Nimbus is an Apache Thrift service and Storm topology 

definitions are Thrift objects. To submit a job to the Storm cluster 
(i.e. to Nimbus), the user describes the topology as a Thrift object 
and sends that object to Nimbus. With this design, any 
programming language can be used to create a Storm topology.  

A popular method for generating Storm topologies at Twitter is by 
using Summingbird [18]. Summingbird is a general stream 
processing abstraction, which provides a separate logical planner 
that can map to a variety of stream processing and batch 
processing systems. Summingbird provides a powerful Scala-
idiomatic way for programmers to express their computation and 
constraints. Since Summingbird understands types and 
relationships between data processing functions (such as 
associativity), it can perform a number of optimizations. Queries 
expressed in Summingbird can be automatically translated into 
Storm topologies. An interesting aspect of Summingbird is that it 
can also generate a MapReduce job to run on Hadoop. A common 
use case at Twitter is to use the Storm topology to compute 
approximate answers in real-time, which are later reconciled with 
accurate results from the MapReduce execution. 

As part of submitting the topology, the user also uploads the user 
code as a JAR file to Nimbus. Nimbus uses a combination of the 
local disk(s) and Zookeeper to store state about the topology. 
Currently the user code is stored on the local disk(s) of the 
Nimbus machine, and the topology Thrift objects are stored in 
Zookeeper. 

The Supervisors contact Nimbus with a periodic heartbeat 
protocol, advertising the topologies that they are currently 
running, and any vacancies that are available to run more 
topologies. Nimbus keeps track of the topologies that need 
assignment, and does the match-making between the pending 
topologies and the Supervisors.  
All coordination between Nimbus and the Supervisors is done 
using Zookeeper. Furthermore, Nimbus and the Supervisor 
daemons are fail-fast and stateless, and all their state is kept in 
Zookeeper or on the local disk(s). This design is the key to 
Storm’s resilience. If the Nimbus service fails, then the workers 
still continue to make forward progress. In addition, the 
Supervisors restart the workers if they fail.  

However, if Nimbus is down, then users cannot submit new 
topologies. Also, if running topologies experience machine 
failures, then they cannot be reassigned to different machines until 
Nimbus is revived. An interesting direction for future work is to 
address these limitations to make Storm even more resilient and 
reactive to failures. 

 

Figure 3: Physical Execution of the Tweet word count topology 

 

 

Figure 4:  Supervisor architecture Figure 5. Message flow inside a worker 
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Figure 2.9: Distribution strategies [70]

In a cluster, each worker receives tasks related to a spout or bold that can be executed from
a master worker. This means that cluster workers are not directly linked to the Storm topology
and, therefore, easier to manage and more scalable [70].
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2.2 Performance Testing & Monitoring

In this section, we will discuss what performance is, the goals and benefits of performance
testing and monitoring, and how testing and monitoring are related to each other.

Performance Definition

Molyneaux [50] argues that the matter of a well-performing application is ultimately a question
of perception: “A well-performing application is one that lets the end user carry out a given
task without undue perceived delay or irritation. Performance really is in the eye of the be-
holder“ [50]. This definition certainly applies in simple cases, where it is obvious who or what
the user is (e.g., when a person browses a website). However, since data-processing applications
often run in background, it is not obvious who the end user is and if there are any. We argue
that there are end users and that this definition applies. Given the fact that any data-processing
application serves a purpose since it wouldn’t exist otherwise, there has to be an end user, either
an active or at least a passive one. For data-processing applications, where the results are used
actively by somebody, as it is the case for data analytics applications, that person is the end user
and perceives how the application performs. For data-processing applications where the result
data is not actively used (e.g., data archives), we argue that the end user is the owner of the
data-processing application’s results. This can be organizations, cooperations, governments as
well as humans. Since organizations, cooperations or governments do not have any perceptions
themselves, an application’s performance is perceived by their agents, hence mostly employees.
For instance, when an archiving application is not capable of dealing with the amounts of accru-
ing data, a system administrator will notice that and perceive the application as not performing
well enough.
Unfortunately perception can not be measured accurately. However, there are indicators that
can be considered as proxy attributes. Proxy attributes are attributes that measure impacts indi-
rectly (e.g., if a user perceives an application as too slow, one can analyze runtime behavior).
If a system administrator reckons that an application is not capable of dealing with the accru-
ing amounts of data, one can check throughput and capacity. These indicators are discussed in
Section 2.3.

Performance Testing

In this thesis, we consider three different approaches of performance testing:

1. Testing against requirements: In this approach, performance requirements are well-
defined and quantifiable. The load that has to be simulated during a test run can be derived
from the requirements. After a test run, the performance measurement data is evaluated
and analyzed in order to conclude whether the application has passed or failed the test. For
example, if a requirement specifies that 100000 incoming messages must be processable
per second, a test where at least 100000 messages are sent per second has to be conducted.

2. Testing to evaluate limits: In this approach, there are no specified requirements. During
a test run, the load has to be increased over time. An analysis of the performance mea-
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surement data allows to draw a conclusion on an application’s performance and where the
limits are.

3. Testing for comparison: This approach is used when there are multiple implementations
of the same functionality (e.g., by different software vendors or when different frame-
works for the same application have been used). The load and input data is defined up-
front a test and does not necessarily have to be aligned with performance requirements.
A test run includes execution of all to be tested implementations using the given input
data and load configuration. The performance measurement data allows to compare the
performance of the different implementations.

All three approaches require that performance measurement data for analysis is collected.
This can only be done if an application’s performance is monitored.

Performance Monitoring

There is no unique definition of what software performance monitoring is. In this thesis, we
define performance monitoring for distributed data-processing applications as the steps required
to analyze an application’s performance behavior.

These steps consist of:

1. Monitoring Data Acquisition: The process of generating performance measurement
data.

2. Monitoring Data Publication: The process of publishing data to either a monitoring
client application for real-time analysis, or a central data repository for post-test / post-
execution analysis.

3. Monitoring Data Management: Managing and processing monitoring data if stored in a
central repository.

4. Monitoring Data Analysis: The process of extracting information and knowledge from
monitoring data.

In Section 2.1 we defined some non-functional requirements and goals that must be taken
into account when building a distributed data-processing application. When thinking about a
monitoring solution that is supposed to be capable of monitoring such an application, these
requirements must be fulfilled by the monitoring solution as well. Additionally, there are two
requirements that must be considered :

• Performance Impact: Assuming that a monitored application’s performance is a critical
issue, the impact by the monitoring process should be as low as possible.

• Overhead: Monitoring-caused additional resource usage per worker should be kept low
since performance critical applications often have high resource demands [43].
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2.3 Metrics

In this section, we discuss metrics that we use for measuring an application’s performance. In
general, we distinguish between two types of metrics:

• Runtime-Related Metrics: These metrics provide information how an application per-
forms regarding runtime behavior. They are useful as one can tell if a system has to be
scaled up if more data has to be processed.

• Resource-Related Metrics: These metrics provide information on how much resources
are used by an application. Using these metrics, it is possible to analyze if the resources
are sufficient or further resources are needed if the load increases.

Runtime, Throughput and Capacity

Runtime

When it comes to performance measurement, the first metric one will look at is response-time
or runtime per process or process step [50]. In other words, the amount of time it took a system
to run a process or just a single process step.
As there will be a lot of single runtime measurements for each process or process step when
running a performance test or monitoring a running system, looking at each runtime measure-
ment individually would be rather impractical. Therefore, aggregation of measurement data
using statistical methods is crucial when it comes to performance metrics. Some basic statistical
aggregations one would apply are:

• Maximum: The largest value of a set of values [44].

• Minimum: The smallest value of a set of values [49].

• Mean, Average: By mean or average we refer to the arithmetic mean as defined in [45].

• Median: The middle value of an ordered set as defined in [46].

• Standard Deviation: A measure of how spread values of a set are [17].

• Nth- Percentile: The value, which below N percent of values in a set fall [53].

Max Min Mean Median Std.Dev
P1 194 56 108.482759 103 42.6452314
P2 793 119 448 428 213.324033
P3 98 22 63.6551724 69 22.8055066
Overall 1003 289 620.137931 573 227.609271

Figure 2.10: Runtime data example
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Figure 2.10 provides a tabular view of an example analysis of runtime data, where runtime
measurement data of single process steps (P1, P2 and P3) has been aggregated per process and
for the overall runtime.

Throughput & Capacity

Throughput describes the number of transactions, operations or objects, or a data volume that
can be processed in a certain amount of time [50]. Common examples are bytes per seconds,
packets per second, tuples per second, or received messages per second.

Capacity describes how many transactions, operations or objects can be processed in a par-
ticular time period, thus simultaneously [50]. For instance, if the processing runtime for a trans-
action is 500ms, and no transactions can be processed in parallel, capacity would be two trans-
actions per second. If two transaction can be processed simultaneously instead, capacity would
double to 4 transactions per second.

Server & JVM Metrics

There are many different server metrics, operating system dependent and independent, that can
be observed. However, CPU load and time, and memory usage are particular important as they
give a good picture of how a server (worker) deals with increasing load [50]. When considering
memory usage, the heap space is of particularly importance for JVM applications as the heap
space is used for object allocation. If heap usage exceeds the heap maximum, the JVM throws
an out of memory error and stops processing. Therefore, heap usage has to be considered when
testing and monitoring a JVM-based application. In this thesis, we will take the following server
and JVM metrics into consideration:

System CPU Load

System CPU load describes the CPU usage of the entire system [15]. As system CPU load
is a snapshot value at a particular point in time, polling CPU load in a defined interval and
aggregating polled measurements (as for runtime measurements described on page 15) gives a
better overview of CPU usage while running an application. In this thesis, we will focus on
maximum, minimum and mean aggregations for System CPU Load.

Process CPU Load

Process CPU load describes the CPU usage for a certain process [15]. Same as system CPU
load, Process CPU Load is a snapshot value at a particular point in time, therefore applying
aggregations as described for system CPU load is required for process CPU load likewise.

Process CPU Time

Process CPU time describes the CPU time, the amount of time in nanoseconds or clock ticks the
CPU was used for processing, used by a certain process [15]. When combining CPU time with

16



runtime of a certain process, effectiveness of CPU usage can be analyzed (e.g., of different data
processing engines).

Heap Memory Usage

Heap Memory Usage describes the memory usage of the heap space of a certain JVM-process [36].
As CPU load, heap memory usage is a snapshot value at a particular point in time. Applying
aggregations as for CPU load or profiling over defined time periods, are two common ways to
observe an application’s heap memory usage behavior.

2.4 Data Acquisition

In this section we will discuss how the measurement data for the metrics discussed in Section 2.3
can be acquired or, if they can not be acquired directly, derived.

General

Runtime

Considering the JVM architecture [72], the simplest approach to obtain runtime measurements
of a process, is to measure a classes method invocation time, as illustrated in Listing 2.1 .

//Process to be measured starts here ...
someClassInstance.doSomething(..);
//and ends here.

Listing 2.1: Code sample of a single method call that could be measured

However, this approach only works if the following preconditions are met:

A classes method reflects the to be measured process This precondition should be met if
an application has a good object-oriented design. One criterion for good object-oriented design
is that each module (or class) should be logically coherent and that modules are loosely cou-
pled [73]. If this criterion is met, a facade or service classes, or any other classes method should
then reflect a certain functionality. Unfortunately, there might be cases where this is not the
case.

while(true) {
Object o = fetchSomeObject();
if(o != null) {

//Process to be measured starts here ...
b.doSomething(o);
this.doSomething(o);
SomeUtilClass.utilFunction(b);
c.doSomething(o);
//and ends here.

}
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}

Listing 2.2: Code sample where measuring a single method call is not sufficient

Listing 2.2 shows an example code block where a process is not reflected by a single method.
There are two possibilities to obtain the process runtime for such cases:

• Insert measurement logic at process start and end.

• Sum up runtimes of methods called within the process.

Synchronous Processing When all methods, which are called by the observed method, are
processed synchronously, the invocation time is equal to the process runtime. Nevertheless, as
the JVM supports concurrency, this might not always be the case.

Object A Object B

doSomething()

Object C

doSomethingAsync()

<<callback>>

Figure 2.11: Asynchronous processing example

Figure 2.11 shows an example where the method doSomething() of Object B calls a method
of Object C asynchronously. In that case, the process runtime would end, as to be seen from
the sequence diagram’s timelines, after the invocation of Object B method doSomething() has
ended. Thus the invocation time of Object B.doSomething() is not a valid proxy for the runtime
of the process. In this case the callback method of Object B must be taken into account.

Throughput

In comparison to runtime, throughput can not be obtained directly. Instead, throughput is a
metric that can be derived from runtime measurement data. In this thesis we define throughput
as in Equation 2.1.

throughput =
count(R)∑

r∈R duration(r)
(2.1)

• R is the set of runtime measurement records as defined in Equation 2.2
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• count(..) returns the number of elements in a set

• duration(..) returns the duration of a runtime measurement record by subtracting the start
time from the end time

runtime measurement record = (starttime, endtime) (2.2)

• runtime measurement record is a tuple

• starttime is a unix timestamp

• endtime is a unix timestamp

Capacity

Capacity, as throughput, can not be obtained directly. As for throughput, it is a metric that can be
derived from runtime measurement data and using throughput. In this thesis we define capacity,
as it is defined in queueing theory [2], in Equation 2.3.

capacity = arrivalRate/throughput (2.3)

• throughput is defined in Equation 2.1

• arrivalRate is defined in Equation 2.4

arrivalRate =
count(R)

maxStarttime−mod(maxStarttime, interval) + interval
(2.4)

• R is the set of runtime measurement records as defined in Equation 2.2

• count(..) returns the number of elements in a set

• maxStarttime is defined in Equation 2.5

• mod(..) is the modulo operator

• interval is the interval in milliseconds

maxStarttime = max
r∈R

(r.starttime) (2.5)

• R is the set of runtime measurement records as defined in Equation 2.2

• max(..) maximum function

Note: The interval must correspond to the throughput’s interval.
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Server & JVM Metrics

Server metrics can be acquired using native operating system specific interfaces or interfaces
provided by the Java virtual machine. In this thesis, we will only consider JVM-provided inter-
faces.

java.lang.management Package The java.lang.management package, “provides the manage-
ment interfaces for monitoring and management of the Java virtual machine and other compo-
nents in the Java runtime“ [35]. The classes defined in this package are independent from the
virtual machine implementation. For this thesis work, we use the class MemoryMXBean [36]
provided in this package in order to get the heap memory usage of the JVM.

gc(): void
getHeapMemoryUsage(): MemoryUsage
getNonHeapMemoryUsage(): MemoryUsage
getObjectPendingFinalizationCount(): int
isVerbose(): boolean
setVerbose(value): void

 
MemoryMXBean

getComitted(): long
getInit(): long
getMax(): long
getUsed(): long

 
MemoryUsage

Figure 2.12: java.lang.management.MemoryMXBean

Figure 2.12 shows that the MemoryMXBean class provides a method to get the heap memory
usage. The getHeapMemoryUsage() method returns a MemoryUsage object, which contains the
maximum amount of heap memory in bytes that can be used and the amount of heap memory in
bytes, that is currently used.

com.sun.management Package The com.sun.management package “contains Oracle Corpo-
ration’s platform extension to the implementation of the java.lang.management API and also
defines the management interface for some other components for the platform“ [14]. This ex-
tension contains classes that provide additional server and JVM metrics. Since we are interested
in system and process CPU load and process time for this thesis work, and these metrics are not
provided by classes in the java.lang.management package, we use this package in order to get
these metrics.

getCommittedVirtualMemorySize(): long
getFreePhysicalMemorySize(): long
getFreeSwapSpaceSize(): long
getProcessCpuLoad(): double
getProcessCpuTime(): long
getSystemCpuLoad(): double
getTotalPhysicalMemorySize(): long
getTotalSwapSpaceSize(): long

 
OperatingSystemMXBean

Figure 2.13: com.sun.management.OperatingSystemMXBean
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Figure 2.13 shows the measures provided by the OperatingSystemMXBean [15].

Aggregation As discussed in Section 2.3, system CPU load, process CPU load and heap mem-
ory usage are snapshot values and should be aggregated for practical reasons. This requires two
steps:

• Polling: Snapshot values must be polled in a defined interval. The polled value must be
stored in memory.

• Aggregation: In a longer interval the polled values must be aggregated. The polled values
must be cleared to start a new aggregation period.

Profiler Poller

Memory
MXBean

Operating
System
MXBean

[every x]
aggregate()

aggregated
measures

[every y]
poll()

[every y] poll()

snapshot values

snapshot values

Figure 2.14: Aggregation

Figure 2.14 illustrates this aggregation process. The first interval x defines the aggregation
interval. In this period, snapshot values are stored in memory and aggregated when the period
is over. The second interval y defines how often both, the OperatingSystemMXBean and Mem-
oryMXBean are polled. The amount of memory used by Poller is defined by the difference
between the aggregation and polling interval, and how many metrics are observed.

Apache Spark Streaming

In Section 2.1 we discussed Apache Spark Streaming’s programming model, which consists of
transformations, input sources and output operations. The Spark API provides Java interfaces
for these elements that contain methods, which can be monitored.

Input Sources To receive data from an input source, Apache Spark Streaming provides an
abstract Receiver class. A definition with the basic methods for sending data to Spark is shown
in Figure 2.15. To measure the time, how long it takes Spark to store the data to Spark Streaming,
it would be sufficient to measure the invocation time of the store method. Since this does not
reflect how long it actually takes to obtain the data that is transferred to Spark Streaming, it
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might make more sense to measure time at a different point in the control flow. This has to be
analyzed for each Receiver implementation individually.

store(i: T)
store(it: Iteratory<T>)
store(bf: ArrayBuffer<T>)

 
Receiver<T>

Figure 2.15: Apache Spark Receiver interface

Transformations

Stateless Transformations: Stateless transformations transform RDDs of a discretized
stream one-by-one resulting in a new discretized stream of transformed RDDs. An overview
of this process is shown in Figure 2.7. The four base stateless transformations are map, flat
map, reduce and filter. The main API element for working with discretized streams in Java, the
JavaDStream class provides methods for these transformations, which expect the transformation
functions as arguments.

map(f: Function<T, R>): JavaDStream<R>
flatMap(f: FlatMapFunction<T, R>): JavaDStream<R>
reduce(f: Function2<T, T, R>): JavaDStream<R>

 
JavaDStream<T>

call(t: T): R
 

Function<T,R>

call(t: T): Iterable<R>
 

FlatMapFunction<T,R>

call(t1: T, t2: T): R
 

Function2<T, T, R>

Figure 2.16: Apache Spark API for stateless transformations

To measure the runtime of these transformations, it is sufficient to measure the method invo-
cation time of the transformation function implementations passed to Spark Streaming.

Stateful Transformations: As mentioned earlier in this chapter, stateful transformations
track data in a discretized stream across time in order to combine data of RDDs that have been re-
ceived/processed earlier. Spark’s API provides a window method for computing new discretized
streams based on RDDs of the source stream and given time window. However, since data is
simply aggregated within Spark Streaming, we do not consider these operations as relevant for
a data-processing application’s performance.

Output Operations Output operations serve the purpose of actually doing something with the
transformed data in discretized streams. The JavaDStream class of Spark Streaming’s API pro-
vides a foreachRDD method, which takes a function, as shown in Figure 2.16, as argument. In
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order to measure the output operation’s runtime it is, as for stateless transformations, sufficient
to measure the function’s method invocation time.

Additionally, since start and stop timestamps, not just invocation times, are obtained, Spark’s
latency, the time between computation start and end of an input source or transformation and a
transformation, or between a transformation and an output operation, can be calculated.

Apache Storm

Considering Apache Storm’s architecture, as described in Section 2.1, runtime performance of
a Storm-based application can be measured by observing spouts and bolts, where each spout or
bolt can be considered as a single process step. Since the Storm API provides Java interfaces for
both, spouts and bolts, the runtime of a spout or bolt can be measured by measuring the method
invocation time of their main methods.

prepare (Map, TopologyContext, OutputCollector)
execute(Tuple)

 
IBolt

open(Map, TopologyContext, SpoutOutputCollector)
nextTuple()

 
ISpout

getFields(): List<Fields>
getValues(): List<Object>
getValue(i: int): Object

 
Tuple

emit(List<Integer>): List<Object>
 

SpoutOutputCollector

emit(List<Integer>): List<Object>
 

OutputCollector

Figure 2.17: Apache Storm API

Figure 2.17 shows the interfaces defined by the Storm API. A spout emits tuples via its next-
Tuple method, which is called by Storm’s engine, and is responsible for creating/obtaining as
well as emitting processing data using the SpoutOutputCollector. The SpoutOutputCollector is
set by Storm via a spout’s open method. When a bolt receives a tuple, Storm invokes its exe-
cute(Tuple) method. If a bolt has to emit tuples, it can do that via an OutputCollector, which
set by Storm using a bolt’s prepare method. Measuring invocation time of a spout’s nextTuple
and a bolt’s execute method is a suitable approach for measuring the application’s runtime per-
formance. Additionally, since start and stop timestamps, not just invocation times, are obtained,
Storm’s topology latency, the time between computation start and end of two bolts or a receiver
and a bolt, can be calculated.
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2.5 Data Publication

In this section, we will discuss how acquired measurement data can be published. By publishing,
we mean to make measurement data available to users and/or other applications. In general, we
distinguish three different forms of publication: Logging, persistence and data distribution.

Logging

Many applications, especially server applications that run in the background and do not have
a graphical user interface, use logging for providing information about their state in a human-
readable fashion [27]. Logging is used for various purposes, such as problem diagnosis, quick
debugging or monitoring applications [27]. Since performance measurements can be used for
problem diagnosis if there are performance-related problems, and logging is used for monitoring
applications in general, we have identified logging as one measurement data publication form
that is important for performance measurement data.

Persistence

In general, persistence means that data created by a process outlives the processes lifetime. For
this thesis work, it means that acquired performance measurement data, once published and
persisted, can still be analyzed long after a test has been conducted or data-processing has been
finished. Persistence can be achieved by storing created data on a persistent storage medium such
as hard disk drives. There are two major concepts used for persisting data: Files and databases.

Files

As robust as the notion of a file has been over the past decades, the term is ambiguous and
can, even within the domain of computing, be understood differently [30]. We define a file as
an objected identified by a name, located in a file system where the location can be identified
by a path, that contains data and is stored on any persistent storage medium, either locally or
remotely. The content’s structure, or format, depends on the file’s content type and originator.

For this thesis work, where we use files for persisting performance measurement data, we
will take two text-based file formats into consideration: CSV and XML.

CSV Comma-separated values (CSV) is a file format where each record is written to a single
line and attributes are separated by a symbol, in many cases a comma or semicolon.

XML The Extensible Markup Language (XML) [10] was designed to store and transport data,
and to be both, human- and machine-readable.

Databases

A database is a collection of data that is managed by a database management system. A database
management system is a software that is able to manage large amounts of persistent data in an
efficient and reliable way [6]. Depending on the database type, data can be stored in different
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structures. In this thesis, we focus on relational databases, thus databases where data is organized
based on a relational model that consists of tables with rows and columns.

Data Distribution

In this thesis, we consider data distribution as mechanisms for transferring data from an appli-
cation running on a worker in a distributed system, where performance measurement data is
acquired, to other applications or different computers where performance measurement data is
processed.

JMX

Java Management Extensions (JMX) is one part of the Java technology stack, which was de-
signed for managing and monitoring Java applications [65]. It provides an API where resources
can be presented as objects, called managed beans (MBeans) in JMX. These managed beans can
either be accessed by clients or push notifications to a client. JMX supports remoting by de-
fault [65], which makes it suitable for monitoring workers in a distributed system. Since JMX is
part of the Java technology stack and supported by many tools and various monitoring systems,
we consider it as an important distribution mechanism for performance measurement data.

JMS

Java Messaging Service (JMS) is an API for accessing enterprise messaging systems [29]. Enter-
prise messaging systems, are systems where messages, asynchronous requests, reports or events,
are sent from a producer to a consuming enterprise application [29]. JMS supports two different
communication models [29]:

• Point-to-Point Model: In this model, messages are exchanged from one point to just one
other point using queues.

• Publish/Subscribe Model: In this model messages are consumed by many consumers
using so-called topics.

As JMS implementations are often used as reliable and scalable data exchange mechanisms
in organizations, and messages are exchanged asynchronously, we consider it as an important
technology for distributing performance measurement data.

Synchronous versus Asynchronous Data Publication

When publishing performance measurement data of a distributed data-processing application,
one must consider whether to publish data synchronously or asynchronously. Publishing data
synchronously might have a considerable impact on the application’s runtime for a variety of
reasons:

• Persisting data to files on hard disk drives consumes time.
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• Persisting data to a database can, depending on the database management system, its data
structures and transaction isolation, be very slow.

• When publishing data to a remotely located resource, network latency can cause signifi-
cant slow downs.

Publishing data asynchronously can reduce the impact. However, when measurement data
is produced faster than it can be published, depending on the pattern used for asynchronous
processing, can cause severe issues such as memory overflows.

Asynchronous Processing Patterns

Thread-per-Task The thread-per-task pattern is the simplest way for performing tasks asyn-
chronously. For each task, a new thread that performs the task will be created. For publishing
performance measurement data, this would mean that a new thread is created for each measure-
ment data record published. This approach has some disadvantages [24]:

• Thread Lifecycle Overhead: Thread creation and teardown consume significant comput-
ing resources.

• Resource Consumption: Threads consume resources, especially memory. If there are
more created threads than processors, the threads sit idle.

• Stability: The number of threads that can be created is not infinite. If the data that has to
be published is created faster than it can be processed, at some point the system will crash.

Thread Pools The goal of thread pools is to reuse and manage threads efficiently. Usually, a
thread is bound to a work queue where tasks to be executed are held. Whenever a thread in the
thread pool has completed a task, it queries the work queue for another task and waits for the next
task [24]. Thread pools have the following advantages over the Thread-per-task pattern. First,
the thread lifecycle overhead is reduced, which provides better responsiveness as threads do not
have to be created first. Second, since thread pool implementations are often configurable [24],
resources are better managed, which ensures better stability.

Producer-Consumer Pattern One could also overcome the stated disadvantages of the Thread-
per-task by manually implementing a producer-consumer behavior using queue data structures.
Whereas this approach is similar to Thread pools in behavior, the main difference is that mes-
sages, in the case of this thesis work performance measurements, are queued instead of tasks.

2.6 Integration

The monitoring features described in the previous two sections (Section 2.4 and Section 2.5)
must somehow be integrated with the application to be monitored. There are several different
ways how monitoring logic can be included, which will be discussed in this section.
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Code Tangling

The most straight-forward approach for integrating monitoring logic is simply to include the
required measuring code in the functional code directly. A practice that is called code tan-
gling [20].

class SomeClass {
public void someMethod() {

// Monitoring start
long t = System.currentTimeMillis();

// the actual method functionality is implemented
here

// ...
someOtherClassObject.doSomething();
// ...

// Monitoring end
long d = System.currentTimeMillis() - t;
// save method runtime duration using some monitoring

classes
}

}

Listing 2.3: Code sample

Listing 2.3 illustrates a code block where monitoring logic is added directly. However, code
tangling has some drawbacks. First, if monitoring is not considered from the beginning, the
functional code blocks must be modified afterwards. If not done carefully, the original code
could be damaged, thus the functionality has to be tested again. Second, adding non-functional
code directly to the functional code, weakens cohesion. The code blocks and classes become
more confusing, which ultimately reduces maintainability and reusability and increases testing
complexity [73] [20]. Third, since the monitoring logic has to be added for each monitored
target separately, there is a lot of repetition of the same functionality, which violates the DRY
(don’t repeat yourself) principle [28]. Fourth, code tangling requires that the source code of the
to be monitored application can be modified. Finally, the application has to be compiled and
built again.

Object-Oriented Decomposition

When developing an application, there are many things that have to be considered. There are
functional requirements, non-functional requirements, such as monitoring, and specified imple-
mentation details. All together, these are called concerns [20]. The design principle that should
be followed to untangle these concerns and improve application design is called separation of
concerns. A typical approach in object-oriented design to separate concerns and increase class
cohesion is decomposition, to break down classes into multiple classes, where each class has a
certain functional or non-functional responsibility. For adding functionality to a class, one might
create a subclass that inherits a classes methods and attributes in order to extend it, as shown in
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Listing 2.4, or wrap another class around it. Two defined design patterns [21] are commonly
used for wrapping classes, the Decorator and Proxy pattern.

class A {
public void doSomething() {

//do something
}

}

class B extends A {
@Override
public void doSomething() {

//do something before A.doSomething()
super.dosSomething();
//do something after A.doSomething()

}
}

Listing 2.4: Subtyping

Decorator & Proxy Pattern

Both, the decorator and proxy pattern allow to add functionally to a class. As shown in Fig-
ure 2.18, the decorator and the concrete class share a super type, typically an interface. The
decorator instance has a reference to a delegate object, an instance of the concrete class.

+ doSomething()
 

Component

+ doSomething()
 
MonitoringDecorator

+ doSomething()
 
ConcreteComponent

 
 

Client

delegate

Figure 2.18: Proxy pattern

When a client calls the method of the decorator, the additional functionality is wrapped
around the delegate object’s method call, as shown in Figure 2.19

A proxy is similar to a decorator from an implementation point of view. However, there is a
difference in their purpose and when they should be used. A proxy is supposed to control access
to an object, whereas a decorator adds functionality [21].
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Figure 2.19: Proxy sequence

Object-oriented decomposition has advantages over code tangling. As it increases cohesion
of single classes, the code is clearer, better maintainable and reusable. When adding additional
functionality using one of these patterns, the original code does not have to be modified and
can not be damaged accidentally. The disadvantage of this approach is less flexibility. Only
method invocations can be extended for monitoring, which, as discussed in Section 2.4, might
not be sufficient for monitoring certain processes. What object-oriented decomposition and code
tangling have in common is, that it is required that the application source code can be modified,
that the application has to be compiled and rebuilt, and that the DRY principle is violated to
some extent.

Aspect-Oriented Programming

In traditional software engineering, software is usually decomposed into modules or objects by
functionality. Other concerns, such as non-functional requirements or more detailed implemen-
tations issues, are recognized, but it is often left to developers to address these concerns in a
program wherever appropriate [20]. In the worst case, this results in code tangling. More skilled
programmers would follow the design principle of separation of concerns, where concerns are
separated into separate modules or objects. However, object-oriented design techniques for ad-
dressing this issue, such as the decorator pattern, as discussed in the previous section, have
their limits. Many concerns (e.g., measuring method invocation time), even if implemented only
once, must be added at different places throughout an entire application. Implementing these
so-called crosscutting concerns [20] purely based on object-oriented design techniques (e.g., by
creating decorators for all affected components) results in code scattering and repetition, which
ultimately reduces maintainability and evolvability.
In aspect-oriented programming (AOP), the issue of separating crosscutting concerns is ad-
dressed by introducing aspects.
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Aspects

An aspect is “a modular unit designed to implement a concern“ [20]. It consists of advices, join
points and pointcuts.
An advice is a piece of code that is executed at a join point (e.g., the code required to measure a
method’s invocation runtime would be an advice). Depending on the platform used for aspect-
oriented programming, an advice can be executed before, after or around join points.
A join point is a defined place in the structure or control flow of a program, where an advice
can be added [20]. The join point model depends on the used aspect-oriented programming
platform. However, common join points are method calls, method executions or exceptions.
Some platforms, such as AspectJ [5] additionally support more sophisticated join points [41].
A pointcut, or as often called pointcut designator [20], is a selecting mechanism for join points.
Since there might be many places (join points) in a program where the same advice should be
applied, and explicitly stating each join point is rather impractical, pointcuts are required to
apply advices. Additionally, depending on the aspect-oriented programming platform, pointcuts
might add a context, such as method execution or method call, to join points [41].

Application

Crosscutting 
concerns

Aspects

Core 
Concerns

Figure 2.20: Application structure at development time

As shown in Figure 2.20, at development time an application’s structure can be split up into
two major blocks. One block that deals with an application’s core concerns, which address its
main functionalities, and one block that deals with crosscutting concerns, which are defined as
aspects. As mentioned, this view only applies at development time. After compilation or at
runtime, depending on how aspects are woven into the core concerns, aspects might not exist as
structural blocks on their own anymore.

Weaving

Weaving is the process of composing core concerns and crosscutting concerns, which have been
implemented as advices. Depending on the aspect-oriented programming platform, weaving
can be done either statically, at compile-time where advices are compiled with the core code, or
dynamically at load-time.

Figure 2.21 illustrates the process of compile-time weaving.
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Figure 2.21: Compile-time weaving

AspectJ

AspectJ [5] is one of the most complete aspect-oriented programming implementations [41]. As
all other AOP implementations, it consists of two parts:

• The language definition, where the grammar and semantics of the AspectJ language is
defined.

• The actual implementation that consists of the compiler and weavers.

The AspectJ compiler produces Java byte code, which means that AspectJ can be used with
any programming language that can be compiled to Java byte code and runs on any valid Java
virtual machine implementation. In the beginning, AspectJ was an extension to the Java pro-
gramming language, which introduced new keywords to write aspects. However, by now there
also exists an alternative Java annotation-based syntax, which allows to write aspects in pure
Java code.

public aspect LoggingAspect {
pointcut loggedMethodCall() :

call (public * *.*(..));

before(): loggedMethodCall() {
System.out.println("Calling some method");

}
}

Listing 2.5: Aspect sample

Listing 2.5 shows a basic aspect written in the AspectJ language. An aspect is declared
similarly to a class in Java. The pointcut keyword indicates a pointcut declaration, which is
followed by the pointcut name. The pointcut name is followed by braces and then a colon.
After the colon, a context (such as call for method calls or execution for method invocations) is
followed by the join point selector. A full description of valid pointcut expressions can be found
on the AspectJ website [5]. The advice is declared by the advice type followed by a colon and
the pointcut name. AspectJ supports several different kinds of advice types. However, the most
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common types are: before, after, and around [41]. Listing 2.6 shows the same aspect declared
in a Java annotation-based syntax.

@Aspect
public class LoggingAspect {

@Pointcut("call (public * *.*(..))")
public void loggedMethodCall() {}

@Before("loggedMethodCall()")
public void logMethodCall() {

System.out.println("Calling some method");
}

}

Listing 2.6: Annotation-based aspect sample

The aspect shown in Listing 2.5 and Listing 2.6 is a dynamic crosscutting construct. Dy-
namic crosscutting means to add additional behavior to a program. AspectJ also supports static
crosscutting, which means to alter the static structure of classes or interfaces by adding methods
or fields.

AspectJ Weaving We already stated that weaving can be done statically or dynamically. As-
pectJ supports both weaving approaches [41]. Static weaving in AspectJ can be separated into
two basic weaving types:

• Source Weaving: In this case, the AspectJ compiler compiles the original Java program
source code and the added AspectJ source code together. The result is Java byte code,
where advices have been woven into the original source code.

• Binary Weaving: Binary weaving requires both, the original program code and aspects
to be compiled to Java byte code in advance. The binary weaver then takes class files or
JAR archives as input and weaves the advices into the original program code.

In AspectJ, load-time weaving is a special form of binary weaving. The class files of a
program are instrumented at load-time by a Java agent [9] that is provided by the AspectJ frame-
work. The Java agent, which is responsible for weaving at load-time, is configured via an XML
file named META-INF/aop.xml located in the Java class path.

<aspectj>
<aspects>

<aspect name="sample.SampleAspect"/>
</aspects>

</aspectj>

Listing 2.7: aop.xml sample

Listing 2.7 shows a basic example META-INF/aop.xml, where a single aspect is declared.
Considering these weaving options, it is obvious that AspectJ itself causes little overhead and
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performance losses. Once weaved, an advice is no different than a usual Java method call [41].
When it comes to load-times weaving, the only thing that has to be considered is that startup
time increases. However, since this thesis is focussed on data-processing applications, which
are, as defined, mostly applications that run in background once started, the increased startup
time is not a critical issue.

2.7 Analysis

Depending on the data publication method, as described in Section 2.5, performance measure-
ment data can, in general, be analyzed in two different ways. If the data has been persisted,
either directly or indirectly via a publication interface client, the data can be analyzed after a test
has been conducted or a program / process has been finished. If a publication method has been
chosen, where data can be consumed in real-time, it can also be analyzed in real-time. In this
section, we discuss the different approaches.

Real-Time Analysis

Real-time analysis is basically waiting and watching for something to happen [50]. One can
observe collected measurement data as it is acquired. Using a visualization tool, it can be made
easy to detect changes and keep track of recent history in order to observe trends and perfor-
mance behavior. Considering the metrics described in Section 2.3, real-time analysis is useful
for monitoring server (worker) resource usage while an application is running. Measurements
received could be reduced to states (e.g., in order to warn system administrators). Summarized,
real-time analysis can be used to detect and forecast potential failures in order to take appropriate
actions.

Post-Test & Post-Execution Analysis

Post-test or post-execution analysis is more powerful than real-time analysis. Once data is per-
sisted, it can be analyzed differently by applying different analysis methods. Often, statistical
methods and visualization tools are used to extract information from the collected data. In the
case of applications that are running over a long period of time, one could use forecasting meth-
ods to check if resources are sufficient in the future or create stochastic models to estimate failure
probability. Post-test analysis supports the different types of performance tests we described in
Section 2.2, since it allows to:

1. Analyze if an application has satisfied defined performance requirements.

2. Analyze when an application reached its limits.

3. Compare results of different test runs.
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2.8 Performance Test Execution

We identified two major challenges for executing performance tests of distributed data-processing
applications:

1. Running Scenarios: In order to test a data-processing application, data that can be pro-
cessed has to be created. For non-real-time data processing applications, this is simple
since data that can be used for testing has to be created only once. The application reads
test data and processes it; this process can be repeated many times. In contrast, real-time
data-processing applications usually expect data to be pushed or emitted from an external
source, where the behavior or creation pattern is often unknown. In order to test real-time
data-processing applications, a testing framework must be capable of running scenarios,
where test data is created and pushed to the tested application.

2. Data Volume: Distributed systems are designed to be scalable. In order to test whether
a system scales or not, the load that can be created by a single machine might not be
sufficient. Hence, a performance testing framework or application for testing distributed
systems must allow to create load on different machines. Since managing and coordi-
nating this process is hard to do manually, a performance testing solution must allow to
coordinate machines that create test data automatically.
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CHAPTER 3
State of the Art & Related Work

In this chapter we present the state of the art for the functional scope of our work, and approaches
that are related to our work. In the first section, we discuss available monitoring and testing
solutions for distributed systems and how our work differentiates from them, as well as relevant
research that has been conducted in that particular field. In the second section, we describe work
that is related to our work.

3.1 State of the Art

The Ganglia distributed monitoring system: design, implementation and
experience

Ganglia [43] is an open-source distributed monitoring system for distributed systems, such as
grids and clusters. It centrally collects certain metrics, such as CPU usage, memory and process
information of workers in a distributed system and allows visualizing collected data. Ganglia
is based on a hierarchical design and relies on a multicast-based listen/announce protocol. Fig-
ure 3.1 shows Ganglia’s basic architecture, which consists of three main components:

• gmetad is responsible for federating single monitored workers as well as collecting and
aggregating data via a multicast channel.

• gmond is responsible for monitoring single workers. It pushes pre-defined monitoring
data to a multicast channel observed by gmetad instances.

• gmetric is an additional command-line tool for pushing application-specific monitoring
data to the multicast channel observed by gmetad instances.

Additionally, there is a client-side library that provides an API for accessing some of Gan-
glia’s features.
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Ganglia federates multiple clusters together using a tree of point-to-point connec-

tions. Each leaf node specifies a node in a specific cluster being federated, while

nodes higher up in the tree specify aggregation points. Since each cluster node con-

tains a complete copy of its cluster’s monitoring data, each leaf node logically rep-
resents a distinct cluster while each non-leaf node logically represents a set of

clusters. (We specify multiple cluster nodes for each leaf to handle failures.) Aggre-

gation at each point in the tree is done by polling child nodes at periodic intervals.

Monitoring data from both leaf nodes and aggregation points is then exported using

the same mechanism, namely a TCP connection to the node being polled followed by

a read of all its monitoring data.

4. Implementation

The implementation consists of two daemons, gmond and gmetad, a command-

line program gmetric, and a client side library. The Ganglia monitoring daemon

(gmond) provides monitoring on a single cluster by implementing the listen/

announce protocol and responding to client requests by returning an XML represen-

tation of its monitoring data. gmond runs on every node of a cluster. The Ganglia

Meta Daemon (gmetad), on the other hand, provides federation of multiple clus-
ters. A tree of TCP connections between multiple gmetad daemons allows monitor-

ing information for multiple clusters to be aggregated. Finally, gmetric is a

command-line program that applications can use to publish application-specific

metrics, while the client side library provides programmatic access to a subset of

Ganglia’s features.

4.1. Monitoring on a single cluster

Monitoring on a single cluster is implemented by the Ganglia monitoring daemon

(gmond). gmond is organized as a collection of threads, each assigned a specific task.
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Fig. 1. Ganglia architecture.
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Figure 3.1: Ganglia Architecture [43]

Even though originally designed for collecting operating system related metrics, Ganglia is ca-
pable of collecting and processing JVM metrics using JMX via an extension that has been de-
veloped for the system [37]. However, Ganglia has its limitations as it is strictly bound to certain
metrics, which means that additional metrics, such as the runtime of single process steps in a
distributed data-processing application, can not be monitored. Furthermore, Ganglia does not
provide the functionality to extend existing applications in order to acquire measurements.

Nagios

Nagios is an open source monitoring software solution, which is mainly built for monitoring
network services with the purpose of failure detection [32]. A service can be a host, a network
or a service metric, such as process runtime. Nagios consists of the Nagios server and sensors.
The Nagios server itself consists of the Nagios core logic component, where all of Nagios main
functionality is located, and plugins. A plugin is basically the interface to a sensor, where the
data collected by a sensor, is processed to evaluate a state (OK, WARNING, CRITICAL or UN-
KNOWN), which serves Nagios main purpose of failure detection [8].

Figure 3.2 illustrates the Nagios architecture. Given that, since the goal of performance
monitoring is to evaluate if a system’s or application’s performance is appropriate for achiev-
ing its functional goals, Nagios can be used for performance monitoring as states derived from
performance measurements can indicate whether an application’s goals can be achieved or not.
However, there is a main difference in how performance monitoring can be achieved using Na-
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Figure 3.2: Nagios architecture overview [32]

gios. Whereas our work is focussed on collecting and analyzing performance measurements,
Nagios is focussed on states, which means that any performance measurement acquired, must
be reduced to a state by defining thresholds for metrics. Additionally, even though it is possible
to develop custom sensors and additional plugins, a main difference to our work is, that Nagios
does not provide any mechanism for extending applications that do not measure any perfor-
mance metrics by default. However, theoretically it is possible to use measurements obtained by
the framework that we will propose later in this thesis, for Nagios by developing a sensor based
on the framework, and adding a plugin to Nagios that translated measurements into states.

Monitoring Capabilities of Distributed Data-Processing Frameworks & Systems

Apache Storm

Data-processing engines often provide monitoring functionalities. Apache Storm [64] uses met-
rics bolts to collect logs and publish metrics [70]. Certain pre-defined built-in metrics can be cat-
egorized into system metrics, which consist of measurements such as CPU utilization, memory
usage, etc., and topology metrics, which provide some topology statistics such as tuples emitted
per minute, tuple acknowledgments, etc. Even though Storm provides an API for adding cus-
tom metrics [48], the functionality for acquiring custom metrics would require changes in the
application code or alternative ways for adding the measurement functionality as discussed in
this thesis. Furthermore, Storm does only log measurements and does not provide any additional
distribution or publishing feature for the acquired measurement data.

Apache Spark

Apache Spark [62] uses Metrics [47] for providing performance data of its components. Com-
pared to Apache Storm, Metrics provides features [51] for distributing measured data to various
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storage mediums such as files, databases or even Ganglia. However, Spark’s monitoring capabil-
ities are bound to its engine’s components and there is no way of adding additional monitoring
functionality to existing applications.

Monitoring Grid Resources: JMX In Action

Balos [7] presents a monitoring solution named JIMS, where JMX resources are integrated in
a monitoring architecture based on a service-oriented architecture (SOA) [56]. A three layered
architecture as shown in Figure 3.3 is presented.

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Agent
gateway (DS)

Agent
gateway (DS)

Agent
gateway (DS)

Main Agent

Interoperability Layer

Instrumentation Layer

Integration Layer

Figure 3.3: JIMS architecture

The instrumentation layer’s main responsibility is to acquire monitoring information and
manage resources (e.g., by reading and writing attributes of a resource’s JMX MBean or obtain-
ing information from a locally running SNMP agent). Monitoring Agents expose their resources
via JMX-RMI to Agent Gateways in the interoperability layer.
The interoperability layer consists of Agent Gateways that have two major functions. First, an
Agent Gateway provides access to a Monitoring Agent’s resources to clients (illustrated as Main
Agent) via web services. This serves the solution’s main goal of integrating JMX resources in
a SOA-based environment. The second responsibility of an Agent Gateway is auto-discovery
of Monitoring Agents. In order to achieve that, an Agent Gateway sends multicast messages.
If a Monitoring Agent receives such a message, it will respond with its RMI addresses of JMX
connectors. Since the author states that auto-discovery is a key focus, Agent Gateways them-
selves are registered in a UDDI registry for discovery by clients. Additionally, a data warehouse
concept with a generic and extensible data model for monitoring data is presented.
Besides the fact, that the focus of the presented solution is the integration of JMX-based moni-
toring in a SOA environment, there are other major differences to our framework that we want
to mention:
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1. Transportation Technologies: Depending on the layer, the work presented is strictly bound
to JMX or web serves respectively. In our work, we focus on transportation technology
independence and show that different transportation technologies can be used.

2. Data Model: The presented data model is generic in order to be extensible. In our work,
we define a data model specific to the metrics defined in Section 2.3. Both approaches
have their advantages and disadvantages. A generic data model is dynamically extensible,
but its attributes do have less semantics. In contrast, a specific data model has to be
extended to add new types of measurements, but is easier to analyze since each attribute
has a unique semantic.

3. Data Acquisition: The presented work is limited to resource data with pre-defined data
sources. Acquiring runtime measurements or adding monitoring functionality to existing
applications is not covered by that solution.

A Grid Monitoring Architecture

Tierney et al. [69] describe an exemplary architecture for performance monitoring of computer
grids. The architecture consists of three components: A producer, a consumer and a directory
service.

• The discovery service is responsible for discovery.

• A producer makes performance data available.

• A consumer receives performance data from a producer.
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Systems that collect and distribute performance information should satisfy certain requirements: 
 

o Low latency. As previously stated, performance data is typically relevant for only a short 
period of time.  Therefore, it must be transmitted from where it is measured to where it is 
needed with low latency. 

o High data rate . Performance data can be generated at high data rates. The performance 
monitoring system should be able to handle such operating conditions. In addition, 
performance data may be very bursty, so average and burst data rates should be 
specified in advance so as to not overwhelm the consumer. 

o Minimal measurement overhead. If measurements are taken often, the measurement 
itself must not be intrusive. Further, there must be a way for monitoring facilities to limit 
their intrusiveness to an acceptable fraction of the available resources. If no mechanism 
for managing performance monitors is provided, performance measurements may simply 
measure the load introduced by other performance monitors. 

o Secure. Typical user actions will include queries to the directory service concerning 
event data availability, subscriptions for event data, and requests to instantiate new event 
monitors or to adjust collection parameters on existing monitors. The data gathered by 
the system may itself have access restrictions placed upon it by the owners of the 
monitors. The monitoring system must be able to ensure its own integrity and to preserve 
the access control policies imposed by the ultimate owners of the data. 

o Scalable . Because there are potentially thousands of resources, services, and 
applications to monitor and thousands of potential entities that would like to receive this 
information, it is important that a performance monitoring system provide scalable 
measurement, transmission of information, and security. 

 
In order to meet these requirements, a monitoring system must have precise local control of the 
overhead and latency associated with gathering and delivering the data. We believe that data 
discovery needs to be separated from data transfer if this level of control is to be achieved.   
 
In the Grid, the amount of available performance information will be very large, and searches of 
this space will have unpredictable latencies. These potentially large latencies must not impact 
every request for performance information. Instead, searches should be used only to locate an 
appropriate information source or sink, whereas operations with a more predictable latency 
should be used to transfer the actual performance information. In this way, individual 
producer/consumer pairs can do “impedance matching” based on negotiated requirements, and 
the amount of data flowing through the system can be controlled in a precise and distributed 
fashion based on current local load considerations. 
 
In order to separate data discovery from data transfer, metadata must be abstracted and placed 
in a universally accessible location, called here a “directory service,” along with enough 
information to bootstrap the communication between the data source and sink. Scalability results 
from restricting and organizing the metadata so that the directory service itself may be distributed 
and so that the rate of communication between 
distributed nodes increases slowly relative to the 
total amount of data transferred. This model differs 
from the “event channel” model of the CORBA 
Event Service [1], which combines the mechanism 
for finding the data that should be transferred with 
the actual transfer into a single “searchable” 
channel of information. In contrast, in our design 
performance event data, which makes up the 
majority of the communication traffic, travels directly 
from the producers of the data to the consumers of 
the data. 
  

Figure 3.4: Grid Monitoring Architecture [69]

The basic architecture is illustrated in Figure 3.4. The paper focuses on the following re-
quirements a performance monitoring system must satisfy:

• High Data Rate: Performance measurement data might be created at a high rate. The
monitoring system must be capable of processing performance measurement data created
in high volume and velocity.
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• Minimal Measurement Overhead: Measurement-caused impact on monitored application-
s/systems should be kept minimal.

• Scalable: Since resources in a distributed systems can scale up, the monitoring solution
itself must be scalable in order to be able to deal with emerging loads.

The requirements we defined in Section 2.2 coincide with these requirements. Nevertheless,
the work presented in this thesis differs to the work discussed in this section. First, the main
scope of this thesis work is on the producer. We focus on how to acquire measurement data and
integrate measurement functionality in arbitrary existing JVM-based applications. Second, in
this thesis we analyze different concepts for satisfying the stated requirements.

MODAClouds Monitoring Platform

Casale [11] presents a platform for monitoring, which goal is to automatically improve quality
of service attributes of cloud-based services. The overall solution presented consists of a mon-
itoring platform, a self-adaption platform and an execution platform. A solution overview is
shown in Figure 3.5. The monitoring platform is the solution’s basis, as it collects and analyzes
data required for taking actions to improve quality of service attributes. Since data analytics is
not the major scope of this thesis, we will focus on the Data Collector component presented in
the MODAClouds monitoring platform.

A Data Collector (DC) is responsible for collecting monitoring data. In contrast to what we
define as data acquisition, a Data Collector, as described, does usually not create measurement
data, it collects data that has already been created by some other component, application or
system. Therefore the solution provides collectors for consuming JMX data, reading databases
or reading log files. Considering that, a Data Collector could theoretically be an interface to
a Publication component of this thesis framework. However, the author states that there could
also be embedded DCs for obtaining metrics, which are injected at application level using code
injection or aspect-oriented programming. Albeit this approach follows the same principle as
this thesis work, the author does not discuss any details on how measurements can be obtained
or how the impact of distributing measurement data can be minimized.

A Remote Tracing Facility for Distributed Systems

Ehm et al. [19] describe an architecture for a remote tracing solution. The centerpiece of the
solution, named CMW, is a log server that processes logs of observed clients (control servers).
The log server forwards and archives log messages from an ActiveMQ [1] JMS message queue.
The data sources for the described solution could be either C++ or Java applications running on
control servers. Converters collect logs and publish them to the ActiveMQ JMS queue. The
architecture is illustrated in Figure 3.6.

The authors argue that monitoring-caused operation overhead on clients (control servers)
should be kept as low as possible and therefore decided use ActiveMQ, a JMS broker imple-
mentation, for distributing data collected by Converters asynchronously. As we named JMS as
a distribution technology in Section 2.5 and include a JMS publication component in our frame-
work’s design, as described in Section 4.3, we follow a similar approach. However, besides the
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MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D6.3.1

The goal of this document is to describe the main features of the first release of the MODAClouds
Monitoring platform. As envisioned in deliverable D6.2, the focus of this initial release is centered
around collecting infrastructure-level metrics (IaaS), whereas the final release will focus on application-
level metrics (applications deployed either on IaaS or PaaS). In spite of these initial goals, the present
release already includes several application-level metrics.

The main features offered in this first release of the monitoring platform are overviewed in the next
subsection. The initial release of the monitoring platform can be obtained through the MODAClouds
website: http://www.modaclouds.eu/software/public-deliverables/.

1.1.1 Monitoring architecture

Figure 2 details the monitoring platform architecture. The main features of the components prototyped
in this release are summarised below.
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Figure 2: Monitoring Platform Architecture

Data Collectors (DCs). DCs are responsible for collecting monitoring data from cloud resources and
applications and to associate semantic information to the data. The data can be collected periodically
and the monitoring period is defined by the users via configuration files. Semantic information qualifies
the data using the same ontology that QoS designers use in the MODAClouds IDE to specify monitoring
rules. The collected metrics are sent to the data analysers, which may reside on a cloud different from
the one of the monitored application.

RDF & C-SPARQL. The monitoring data is encoded in RDF format. RDF organizes data into a
subject-predicate-object triple. One such triple encodes the data source, the monitoring metric and the
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Figure 3.5: MODAClouds Monitoring Architecture [11]
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fact that this thesis focuses on performance measurement data and not log data in general, there
are some differences to our work:

1. We propose a universally applicable framework for JVM-based applications that provides
interfaces for several persistence and distribution technologies, but does not manage mea-
surement data or provide a user interface. The paper discussed in this section proposes a
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fully fledged solution focussed on a certain environment.

2. The framework proposed in this thesis is designed to be integrated in any JVM-based
application in order to create monitoring data. CMW Collectors only collect data and can
only connect with Java applications that use Log4J [27].

Test Architectures for Testing Distributed Systems

Ulrich at el. [71] focus on issues arising when testing distributed systems. The tool that is
described in this paper follows a similar approach as the framework proposed in this thesis.
However, this paper’s tool is constrained at certain points. A library to acquire measurement
data for the tool is provided, but it does not provide any functionality to extend systems or
applications that are tested. Second, this tool logs monitoring data to local files and does not
support additional ways of recording data. Data publication is neither supported by the tool nor
discussed in the paper.

3.2 Related Work

A Comparison of AOP based Monitoring Tools

Cojocar [13] compared different available aspect-oriented programming based monitoring tools.
He selected InfraRED [33], Glassbox [23], Perf4J [54] and SpringSource AMS [3] and com-
pared them based on several subjects. Some of the selected subjects are directly related to our
research:

• Language Dependency: As the work presented in this thesis, all discussed monitoring
tools are developed for JVM-based applications and use AspectJ.

• Weaving: Due to the fact, that all tools use AspectJ, they support both, compile-time and
load-time weaving. The author states that load-time weaving is the preferred option for
monitoring tools, as it does not require to rebuild monitored applications.

• Source Code Modification: As we do in this thesis, the author considers source code
modification as an important criteria. The only compared tool that requires source code
modifications is Perf4J, as it uses annotations for configuration.

• Performance Metrics: It is stated, that all tools support method invocation count and av-
erage execution time for method invocations. Some tools support additional performance
statistics.

We decided not to use any of the named tools for two reasons. First, all tools focus on
aggregated performance measurement data. They apply different aggregation methods within
the monitoring components. For our work, we consider aggregations as a step conducted in the
analysis phase and do not require such functionality within the monitoring component. Sec-
ond, more important, none of these tools supports to add sequence identifier and evaluation of
sequences, a critical requirement we define in Section 4.1.

42



JMangler – A Framework for Load-Time Transformation of Java Class Files

In Section 2.6 we concluded that aspect-oriented programming is the best-suited approach for
integrating monitoring functionality for two reasons:

1. Aspects, that implement crosscutting concerns, form cohesive modules or classes, and
monitoring logic needs not to be repetitive.

2. Depending on the weaving mechanism, monitoring logic can be added at load-time with-
out having to modify the monitored applications sources.

Whereas the first advantage is a unique feature of aspect-oriented programming, the second
is more related to the Java platform and could be achieved without using an AOP framework.

Kniesel et al. [40] present JMangler, a Java framework for class loader and JVM independent
load-time transformation of Java classes. It supports various transformations, such as adding
methods or fields to classes or changing throws clauses. In contrast to AspectJ, JMangler does
not use Java instrumentation agents [34] [9], but provides a modified class loader, which replaces
the default system class loader and performs class file transformations [40].

JMangler-FrameworkJava Platform

Execution
Engine

Class Loader
System

Composition
Algorithm

...

Java
Class Files

Interface
Transformers

Code
Transformers

fixpoint
iteration

sequential
execution

Figure 4. JMangler’s Transformation Process

3.4. The Transformation Process

The transformation process is performed on each class
that is loaded. When the transformation is complete, the
transformed version of the class is passed to the execution
engine of the JVM. It is also stored in a buffer of JMan-
gler in order to be available for analysis by transformers of
classes loaded later.

Multi-class transformers either find additional classes
that they need to process in this buffer or they initiate load-
ing of the yet unavailable classes. Thus JMangler always
acts on two sets of classes: the classes that are (waiting for)
being processed and the classes whose transformation has
already been completed.

The distinction between interface and code transforma-
tions is reflected in the transformation process which is par-
titioned into two phases (see Figure 4). In the first phase,
interface transformers are activated. Each interface trans-
former analyzes the classes under consideration, decides
which transformations are to be carried out and requests
these transformations from JMangler. The framework col-
lects the transformation requests of all interface transform-
ers, checks the validity of the requested transformations
(with respect to binary compatibility), chooses the order in
which legal transformations are to be applied, and performs
the transformations. This process is repeated until no fur-
ther interface modification requests are issued. If an illegal
transformation is detected the process is aborted.

In the second phase, only code transformers are acti-
vated. They are executed exactly in the order indicated in
the configuration file. If repetition is needed, it must be
specified explicitly. Each code transformer analyzes the
classes under consideration, decides which transformations
are to be carried out and performs these transformations.
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Figure 5. Three ways to hook into Java’s Class
Loader Architecture

3.5. Integration into Java’s Class Loading Architec-
ture

One of the main aims in the design of JMangler was to
hook into the class loading system in a way independent of
the class loader and the JVM.

Java’s class loading mechanism is partitioned be-
tween the JVM and the Java APIs (Figure 5). On
one hand, each platform-specific implementation of the

Figure 3.7: JMangler in the Java class loader architecture [40]

Figure 3.7 shows where JMangler is located in the Java class loading architecture.
Given that, most requirements stated in Section 4.1 could theoretically also be implemented
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using decorators and JMangler. However, since we consider cohesion as an important criteria
for our framework’s software design, we concluded that implementing crosscutting concerns
using AspectJ serves our purpose better than a decorator/JMangler implementation.
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CHAPTER 4
Design

In Chapter 2 we discussed what performance is, how it can be measured, how monitoring logic
can be integrated in applications and how monitoring data of a distributed system can be per-
sisted or distributed. In this chapter we will define requirements for a monitoring and testing
framework, and propose a design using the information discussed in Chapter 2. First, we de-
fine the features and requirements the framework has to fulfill and provide. Second, a domain
model that describes entities and their attributes for measuring an application’s performance is
described. Third, the architecture that describes the required components and their interactions
will be discussed. Fourth, to meet a requirement this thesis deals with, a design proposal for
integrating or plugging measurement logic into an existing application is made. Finally, an ap-
proach for running easily definable scenarios based on an introduced domain-specific language
will be discussed.

4.1 Features & Requirements

The features and requirements described in this section are the drivers for the design. The
metrics defined in Section 2.3 are the basis for the functional features, whereas the concepts
for data acquisition, data publication and integration are incorporated in the proposed design
corresponding to the requirements defined in this section.

Runtime Performance Measurement

The first feature is to measure the runtime of a process or a process step. We want to know when
(timestamp) processing has been started and finished. The runtime (duration) can be calculated
by subtracting the start time from the end time, capacity and throughput can be be calculated if
the number of records, start and end date are known (see Section 2.3). Additionally, by acquiring
and storing the processing start and end time, it is possible to check network and framework
latency between two processing steps or workers, and to compute the overall processing duration
by checking the start time of the first step and the end time of the last step. The process step
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must be identifiable (e.g., by assigning a process step description). Since we are monitoring
distributed systems, the worker on which a process is running on, must also be identifiable.
As there might be multiple workers for the same process step, we want to be able to identify
sequences, in other words the relations between runtime measurements of process steps and
nodes.

JVM Profiling

The second feature is to measure a worker’s resource utilization. We want to observe the server
and JVM metrics discussed in Section 2.3 over time, which means that we want to record these
measurements in a configurable interval. Since snapshot values (as system cpu load) are not
expressive, we want to collect maximum, minimum and average aggregations for snapshot val-
ues in the given interval. Thus, there must be a configurable polling interval, in which snapshot
values are obtained that get, at the measurement interval, aggregated.

Process Execution Profiling

The third feature is to profile a worker’s resource utilization during the runtime of a particular
process. We want to observe the server and JVM metrics discussed in Section 2.3 during the run-
time of a process. The resource measurements should be obtained and recorded in a configurable
interval.

Data Acquisition & Integration Requirements

In Section 2.4 and Section 2.6 we have discussed how monitoring data can be acquired, how
monitoring functionality can be integrated and what the challenges are. However, we have not
yet defined any requirements for the framework proposed in this thesis work.
We want that monitoring functionality can be integrated as flexible as possible. Simply measur-
ing method invocation time is not sufficient for the reasons discussed in Section 2.4.
As discussed in Chapter 3, existing monitoring solutions are lacking the capability of adding
monitoring functionality post-build time, and in most cases monitoring is not independent from
the monitored application or used framework. The monitoring functionality should be entirely
independent and it should be possible to add it to any application, without having to modify the
application itself.

Data Publication Requirements

In Section 2.2 we discussed that monitoring solutions must be scalable and that the performance
impact of the added functionality should affect the origin application as least as possible. Since
persisting or distributing performance measurement data might consume a considerable amount
of time, it must be possible to store or send data asynchronously. Since we propose a framework,
not a fully-fledged monitoring solution, it should provide different persistence and distribution
technologies and approaches so that it can be integrated in any environment. There should be
interfaces that allow both, post-test and post-execution analysis, and real-time analysis. Given
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these requirements, we want to support the technologies discussed in Section 2.5 for transferring
or storing data:

• File: It should be possible to export performance measurement data to CSV files.

• JDBC: It should be possible to store performance measurement data to a database directly
using JDBC.

• JMS: It should be possible to publish performance measurement data to JMS queues or
topics.

• JMX: It should be possible to monitor performance measurement data via JMX.

• Log4J: It should be possible to log performance measurement data using Log4J.

Framework Integration

As discussed in Section 2.1, there are good reasons for building distributed data-processing ap-
plications by using frameworks such as Apache Spark Streaming and Apache Storm. This thesis
monitoring functionality should be integrable with such frameworks. For the two discussed
frameworks, pre-defined integration concepts should be provided.

Performance Test Execution

In Section 2.2 we discussed different approaches for performance testing and certain require-
ments that must be met when executing performance tests. Considering that, we want that the
framework provides an efficient way of running such scenarios. Furthermore, a mechanism for
simulating random behavior in order to test unexpected load fluctuations should be available.
Since we propose a framework design, we want the scenario mechanism to be flexible and that
it can be integrated easily in any environment.

4.2 Domain Model

The domain model shown in Figure 4.1 is the starting point for the design we propose in this
thesis.

Node

The central data element is a Node. A Node is a representation of a worker performing a specific
task in a distributed data-processing application. It is identified by the nodeId attribute, which is
a string. The nodePurpose attribute relates to what the node is doing. This allows to group nodes
by functionality, but distinguish single nodes. For example, if there is an aggregation operation,
which is intense in computation, there might be multiple instances for that operation. In such
a case, there will be two or more nodes, which share a common purpose, but have different
identifiers.
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Figure 4.1: Domain model

Runtime Performance

Runtime measurements are modeled as RuntimePerformance entities. This entity consists of five
attributes:

• starttime: The time when execution of the monitored code block started. Stored as unix
timestamp.

• endtime: The time when execution of the monitored code block finished. Stored as unix
timestamp.

• duration: Execution duration in nanoseconds.

• sequence: If a process consists of multiple steps, a set of RuntimePerformance records
(linked to different nodes) represents the process. The sequence attribute is used to link
these single records.

• executionResult: For analysis it might be interesting to filter runtime measurements by
result (e.g., success or failed).
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Jvm Profile

The JvmProfile element is used to monitor Java virtual machine resource statistics. Despite the
fact, that the element has a single timestamp attribute, it provides aggregated information of the
JVMs resources usage over a configured time period.

• timestamp: Time at the end of the observed period.

• systemCpuLoadMax, systemCpuLoadMin, systemCpuLoadAvg: Aggregated system CPU
load.

• processCpuLoadMax, processCpuLoadMin, processCpuLoadAvg: Aggregated process CPU
load.

• processCpuTime: CPU time consumed by the process in the observed time period.

• heapMax: Maximum heap space available.

• heapUsageMax, heapUsageMin, heapUsageAvg: Aggregated heap space usage.

Execution Profile

An ExecutionProfile is an extended RuntimePerformance entity, which is related to ResourceS-
napshot elements. It is used to observe JVM resource usage for the runtime time of a particular
monitored code block (the block, which runtime is indicated by the RuntimePerformance entity’s
attributes). ResourceSnapshots are captured in a configurable interval and represent a snapshot
at observation time.

Resource Snapshot

A ResourceSnapshot provides information of the JVM’s resource usage at a point in time:

• timestamp: Time when the snapshot has been taken.

• systemCpuLoad: System CPU load at snapshot time.

• processCpuLoad: Process CPU load at snapshot time.

• processCpuTime: CPU time consumed by the process since the last snapshot has been
taken.

• threadCpuTime: CPU time consumed by the thread since the last snapshot has been taken.

• heapMax: Maximum heap space available.

• heapUsage: Heap usage at snapshot time.
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Figure 4.2: Component overview

4.3 Architecture

Component View

Figure 4.2 shows the framework’s components. The Core component is the centerpiece of the
framework’s monitoring functionality and is referenced by any other monitoring related com-
ponent. It contains the domain model’s classes, a factory to instantiate Node objects, the basic
runtime performance measurement functionality, the interface definition for the PublicationSer-
vice, an abstraction for transferring or storing Measurements, a default implementation of the
PublicationService that writes measurements to System.out, and provides implementations of
different parallelization patterns.
The JVM component contains all classes for monitoring the JVM’s resources. If JVM monitor-
ing is not required, the framework can be deployed without the JVM component.
The Profiling component’s responsibility is to provide the functionality required for profiling
JVM resources for a particular code block, thus to create ExecutionProfiles.
The Spark and Storm components provide an out-of-the-box integration with Apache Spark and
Apache Storm respectively, that we decided to develop for this thesis. However, additional
blocks for other frameworks, processing engines, platforms or applications can be added easily
by using the provided features of the Core component, as we did for the Spark and Storm com-
ponents.
There exists no Publication component as shown in Figure 4.2. The block simply groups all pub-
lication components by way of illustration. The single components within that group provide
functionality to log, persist or distribute Measurements according to their names (File, JDBC,
JMS, JMX, Log4J). The Scenario component provides testing functionality. It contains interface
definitions to run testing scenarios. In order to define scenarios in a simple and effective way,
this component also provides an interpreter for a domain-specific language designed for running
scenarios.

50



Target Application Interaction

Earlier in this chapter, we defined the requirements for data acquisition and integration. There
is one requirement that must be considered when thinking about how the framework should in-
teract with the monitored target application. It is stated that integration must be as flexible as
possible and that simply measuring method invocation is not sufficient. Considering the analysis
of how data can be acquired and options for integration discussed in Section 2.6, only the last
option, aspect-oriented programming, is a viable option for meeting this requirement.
In general, aspects that acquire performance measurements are woven into the target applica-
tion. These aspects use functionality provided by the framework’s core package and publish the
measurement data using one or multiple publication components.

JVM

Aspects
Target

Application

Publication
file jdbc jms jmx log4j

Core

Figure 4.3: Architecture overview

Figure 4.3 illustrates how the framework interacts with the target application. Once an as-
pect has been woven into the target application, the advised code then interacts with the frame-
work’s provided functionality when executed. In Figure 4.4 the interaction is illustrated in de-
tail. A class called RuntimeAspect is woven around a target’s method. When a caller supposedly
calls the target’s method, the call is intercepted by the RuntimeAspect and the advised runtime
measurement code can be executed before and after the target code is executed. The obtained
measurement is then published by using the PublicationService interface provided by the frame-
work’s core component.

Integration

In Section 4.1 we defined the requirements that monitoring functionality should be independent
from the application itself, and that it should be possible to add the functionality without having
to modify the application.
The first requirement is fulfilled by the decision to use aspect-oriented programming techniques,
as the advices that acquire the monitoring data are independent code blocks that can be applied
to any pointcut. The second requirement is also fulfilled by using aspect-oriented programming
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call
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Figure 4.4: Aspect and Publication service overview

techniques, but there are additional issues that must be considered. Using compile-time source
code weaving does not require to modify an application’s source code, however, that requires to
posses the source code and being able to build the application. The fact, that this is often not the
case, leaves two options for integrating the monitoring functionality:

• Compile-Time Binary Weaving

• Load-Time Weaving.

Compile-time binary weaving is done only once and does not slow down application starting
time. Load-time weaving, on the other hand, is more flexible as it is simple to remove single or
all aspects by restarting the application.

Measurement Acquisition

Measurement data is acquired by aspects, or to be more precise, by the advised code. Depending
on the measurement to be acquired, data acquisition is executed differently.

Runtime Measurements

For RuntimeMeasurement records, the basic process to obtain measurement data consists of
three steps: Start timing before the monitored code block, stop timing after the monitored code
block and publish the data. Considering aspect-oriented programming design principles, there
are two different approaches of how this can be done:

1. Using Around advices: In this case an entire method is wrapped around a pointcut. This
process is shown in Figure 4.4. This approach only works if the measured process is
reflected by a single method.
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2. Using Before and After advices: In the second case there are two advised methods that are
invoked. Figure 4.5 illustrates this approach. The starting time taken in the Before advised
code, must be made available for After advised code. Since a join point can be reached by
multiple threads simultaneously, concurrency must be considered for this approach.

Caller Runtime
Aspect

Target Publication
Service

start timing

call target

end timing

publish measurement

invoked before
the target is called

invoked after
the target has been

called

Figure 4.5: Before/After sequence

Execution Profiles

ExecutionProfile records are taken in background while the monitored code block is executed.
The advised code must start a separate profiling thread for obtaining resource snapshots and stop
the thread after the code block’s execution has finished. Finally, the advised code has to publish
the measurement containing the resource snapshots. The process is illustrated in Figure 4.6

Caller Profiling
Aspect

Target Publication
Service

call

call target

publish measurement

Profiling
Thread

take snapshot[repeat]

start

stop

snapshots

Figure 4.6: Process Profiling
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JVM Profiles

JvmProfile records are taken in a configurable interval in background once JVM profiling has
been started. Hence, the aspect’s responsibility is to start profiling. A join point that is only
triggered once at application start should be selected.

Node Assignment

The domain model described in Section 4.2 shows that each taken measurement is associated
with a Node. In order to create a Node instance for an aspect that acquires measurements, the
framework provides a node factory. This Node factory contains three different methods to create
nodes:

• getNode(): This method returns a Node configured for the running application.

• getNode(id): This method returns a Node for a certain identifier. The identifier can be any
string (e.g., the name of an aspect).

• getNode(object): This methods returns a Node using the given object’s canonical class
name as identifier. This method allows that measurement aspects, which are used for
different join points, can still be related to different Nodes (e.g., by using the aspect’s
target object as argument for getNode(object).

Measurement Publication

In Section 2.5 we discussed different data publication forms. Earlier in this chapter, we stated
that the framework proposed in this thesis, must support these different forms since it is not
a closed fully-fledged monitoring solution since topics as data visualization and analysis fea-
tures are not covered by the framework. An interface PublicationService that defines a publish
method, which accepts any Measurement is part of the framework’s core component. A publi-
cation component must have an implementation of this interface so that it can be used by the
framework. For the required publication forms, components that contain a PublicationService
implementation are provided. An overview of the publication components and their Publica-
tionService implementation is shown in Figure 4.7.

In order to use a publication component, the binaries must be added to the class path and the
framework configured to integrate the PublicationService implementation. Multiple implemen-
tations can be combined through a provided PublicationService implementation that forwards
measurements to all configured concrete PublicationService instances.

By default, publication is done synchronously. As a result of our analysis discussed in
Section 2.5, we know that synchronous publication can have a considerable impact on an appli-
cation’s performance. Since we stated that the performance impact should be kept minimal in
Section 4.1, the framework supports different asynchronous publication modes.
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Figure 4.7: Publication Services

Asynchronous Publication Modes

Publication modes are implemented as proxies, as described Section 2.6. There is a Publication-
Service implementation for each mode, which has its own implementation of the publish method
where the mode’s behavior is added before delegating the origin publish method call.

Thread-per-Task A thread-per-task approach, as described in Section 2.5 is supported. Fig-
ure 4.8 shows that when the PublicationService is called, the method call is intercepted by a
proxy, which creates a new thread that calls the delegate object’s method.

ThreadPerTask
PublicationService

Publication
Thread

delegate
PublicationService

Caller

publish(m) createNewThread(m)
start

publish(m)

Figure 4.8: Thread-per-task publication

Thread Pool A PublicationService implementation for thread pools, which uses the Java
ThreadPoolExecutor [68] implementation is illustrated in Figure 4.9. The publish method call
is intercepted by a proxy PublicationService, which creates a task and queues the task using
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the ThreadPoolExecutor. The ThreadPoolExecutor’s threads poll the task queue and execute the
tasks.

ThreadPool
PublicationService

Caller

publish(m)

Publication
Thread

delegate
PublicationService

publish(m)

ThreadPool
Executor

createRunnable(m)
execute(Runnable)

poll task queue()

Figure 4.9: Thread pool publication

Producer/Consumer A PublicationService for publishing measurements asynchronously fol-
lowing a producer/consumer pattern is shown in Figure 4.10. The main difference to the thread
pool implementation is, that measurements instead of tasks are enqueued.

Queue
PublicationService

Caller

publish(m)

Publication
Thread

delegate
PublicationService

publish(m)

enqueue(m) poll queue()

Figure 4.10: Producer/Consumer publication

4.4 Framework Configuration

Since the framework’s functionality has to be independent from the target application, it must
also be independently configurable. Therefore the framework provides a Configuration class,
which has a static getProperty(String propertyName) method. When invoked for the first time,
a lookup for a properties file in the Java class path is performed. If a properties file is found, the
properties will be loaded and kept in memory. After loading the properties from the properties
file, a check if a property with the given name has been loaded will be conducted. If found, the
property value will be returned. If no property has been found with the given name, a check if a
Java system property with the given name exists, will be performed. If a system property exists,
the value of the system property will be returned, if there is no such system property, the method
will return null. The methods general process steps are illustrated in Figure 4.11.
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Figure 4.11: Configuration loading process

4.5 Scenarios & DSL

In Section 4.1 we stated that the framework should provide a mechanism for running perfor-
mance tests in an efficient and flexible way. In this section, we present such a mechanism that
allows to create and run testing scenarios. We separate it into two different blocks:

1. The functionality required for running and integrating scenarios.

2. A domain-specific language to define scenarios efficiently.

The centerpiece of the mechanism, as shown in Figure 4.12, is the Scenario interface, which
defines a run, method where two arguments are expected: a Factory and a PopulationService.
The Factory is the source for generating test data objects. There are no limitations of what a
factory might do (e.g., querying test data from a database or simply generate random data). The
PopulationService acts as the interface to the data-processing application to be tested. A Sce-
nario implementation uses the factory to create test data and the population service to populate
the created test data to the application. This process is illustrated in Figure 4.13

The framework provides four basic Scenario implementations out of the box:

• RunOnceScenario: A run once scenario is the simplest case. The sequence illustrated in
Figure 4.13 is executed exactly once.

• ListScenario: A list scenario takes a list of scenario instances as constructor argument.
When executed, all scenarios in the given list will be executed in the list order.

• LoopScenario: A loop scenario can be initialized in four different ways:
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Figure 4.12: Scenario classes

1. Only with a loop count: The scenario’s run method will be invoked loop count times.

2. With a loop count and a pause time: The scenario’s run method will be invoked loop
count times, where execution is paused for the given time after each invocation.

3. With a loop count and a scenario: The given scenario’s run method will be invoked
loop count times.

4. With a loop count, a pause time and a scenario: The given scenario’s run method
will be invoked loop count times, where execution is paused for the given time after
each invocation.

• RandomScenario: A random scenario takes a list of scenarios instances as constructor
argument and when its run method is called, a random scenario instance of the given list
will be chosen and executed.

Scenario Factory Population
Service

create()

object

populate(object)

Figure 4.13: Scenario sequence

Domain-Specific Language

For initializing scenarios easily, we specified a domain-specific language for creating scenarios.
A parser that accepts the DSL’s expression is provided. It receives expressions as input and
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evaluates them. The parser’s evaluation result is a Scenario instance that can then be used to run
scenarios. This process is illustrated in Figure 4.14.

ScenarioCaller ScenarioDsl

evaluate(expression)

scenario

run(factory, populationService)

Figure 4.14: Scenario DSL sequence

Listing 4.1 shows an EBNF [74] definition of the expressions that are accepted by the pro-
vided parser.

loop statement = "loop" ;
once statement = "once" ;
list statement = "list" ;
random statement = "random" ;

braceleft = "(" ;
braceright= ")" ;
comma = "," ;

number = digit, { digit } ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

once = once statement, braceleft, braceright ;

list = list statement, braceleft, expression, {comma, expression},
braceright ;

random = random statement, braceleft, expression, {comma, expression
}, braceright ;

loop = ( loop statement, braceleft, number, braceright ) |
( loop statement, braceleft, number, comma, number,

braceright ) |
( loop statement, braceleft, expression, comma,

number, braceright ) |
( loop statement, braceleft, expression, comma,

number, comma, number, braceright ) ;
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expression = once | list | random | loop ;

Listing 4.1: DSL Definition in EBNF

There are four basic statements that can form an expression: once, list, random and loop,
which return a Scenario implementation as described earlier correspondingly. loop, list and
random take arguments corresponding to their classes constructors for initialization. The once
statement is followed by an opening and closing brace, thus does not take any arguments.
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CHAPTER 5
Implementation

In this chapter we will discuss the implementation specifics of our proof-of-concept framework
that shows the feasibility of the design proposed in Chapter 4. First, some general implemen-
tation specifics are defined. Second and third, the details of the proof-of-concept framework
integration with Apache Spark and Storm respectively are discussed. Finally, the implementa-
tion specifics of the proposed publication services are presented.

5.1 General

Aspect-Oriented Programming

The first thing we had to decide for the implementation was which aspect-oriented programming
framework to use. In Section 2.6 we discussed AspectJ, the most advanced aspect-oriented
programming implementation. Related to AspectJ, we made the following decisions for the
proof-of-concept implementation:

1. Weaving: We decided to use load-time weaving using the AspectJ Java agent. This means,
that applications start scripts have to add the Java agent as argument and that an aop.xml
file has to be added to META-INF directory of the class path.

2. Programming Style: For our implementation, we used the annotation based AspectJ pro-
gramming style. In combination with load-time weaving, this is the more appealing pro-
gramming style since the AspectJ compiler is not required, and compiling the framework
is more simple as it is only a one step process.

Pre-Defined Aspects

The framework implementation not only contains modules that support measurement acquisi-
tion as described in Section 4.3, but also abstract aspects that can be used by defining concrete
pointcuts.
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Runtime Performance

We implemented two different abstract aspects for measuring runtime performance. The first
implementation is using around advices, where one pointcut has to be defined. The invocation
time of the join point’s target is measured. A stub of this aspect is shown in Listing 5.1. An
abstract pointcut, which has to be defined when using this abstract aspect, is used for advising
the monitoring code. The advice continues the execution at the given join point and measures
invocation time. The advice around method’s second argument, the object where the advice is
weaved into, is used for creating a Node instance as described in Section 4.3.

@Aspect
public abstract class AbstractRuntimePerformanceAspect {

@Pointcut
public abstract void scope();

@Around("scope() && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo) throws

Throwable {
...

}
}

Listing 5.1: Runtime Performance Aspect

The abstract aspect can be used in an aop.xml AspectJ load-time weaving configuration file,
where the pointcut for the aspect is defined. Listing 5.2 shows an aop.xml example where this
abstract aspect is used.

<aspectj>
<aspects>

<concrete-aspect name="at.ac.tuwien.infosys.rosebery.storm.
aspect.BoltRuntimePerformanceAspect" extends="at.ac.tuwien
.infosys.rosebery.common.aspect.
AbstractRuntimePerformanceAspect">
<pointcut name="scope" expression="execution(* backtype.

storm.topology.IRichBolt.execute(..))" />
</concrete-aspect>

</aspects>
</aspectj>

Listing 5.2: aop.xml example

A concrete-aspect element defines a new aspect. A new name must be given to the aspect
and the extends attribute defines the abstract aspect. The abstract aspect’s expected pointcuts can
be set using the pointcut element.
The second implementation of the Runtime Performance aspect is using before and after advices.
This aspect expects two pointcuts, one for defining the start of a code block to be monitored, and
one that defines the end of that code block. Runtime measurement starts before the first and ends
after the second pointcut.

@Aspect
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public abstract class AbstractStartStopRuntimePerformanceAspect {

@Pointcut
public abstract void startScope(Object jpo);

@Pointcut
public abstract void stopScope();

@Before("startScope(jpo)")
public void start(Object jpo) {

...
}

@AfterReturning(pointcut = "stopScope()", returning = "result")
public void stop(Object result) {

...
}

@AfterThrowing(pointcut = "stopScope()", throwing = "throwable")
public void stop(Throwable throwable) {

...
}

}

Listing 5.3: Before/After Runtime Performance Aspect

Listing 5.3 shows the abstract aspect implemented for measuring runtime using before and
after advices. For using this implementation, we have to consider how the before and after
advices are joined. By default, aspects are instantiated as singletons [41]. This means, that
simply storing the start timestamp in a local member variable of the aspect class could result
in wrong measurement data if there are multiple threads. We decided to join the advices using
variables, which are bound to threads. This results in the precondition for the usage of this
aspect, that the monitored code block has to start and end within the same thread.

Sequencing In Section 4.1 we defined the requirement that it should be possible to relate
runtime measurements of single process steps. In other words, to establish a sequence of mea-
surements. To enable that, there must be an identifier for a sequence, which must be passed
on from process step to process step. Since we can not assume that data passed on within a
data-processing application does carry such a sequence identifier, and if, that there is no gen-
erally applicable approach for extracting it, we developed a feature for adding and passing on
sequence identifiers within an application. This feature consists of two parts:

• A static crosscutting advice to add a sequence identifiers to data objects used by the data-
processing applications.

• Two dynamic crosscutting aspects that create and pass on sequences.
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Static Crosscutting Listing 5.4 shows the interface definition for sequenced objects. This
interface declares a getter and setter method for a sequence attribute. Using AspectJ’s func-
tionality for static crosscutting, to change an object’s structure, we can add this interface to
any object. Since this also requires an implementation of the interface, we provided a default
implementation as shown in Listing 5.5.

public interface SequencedObject extends Serializable {
public String getSequence();
public void setSequence(String sequence);

}

Listing 5.4: SequencedObject interface

public class SequencedObjectImpl implements SequencedObject {
private String sequence;

@Override
public String getSequence() {

return sequence;
}

@Override
public void setSequence(String sequence) {

this.sequence = sequence;
}

}

Listing 5.5: SequencedObject implementation

Using AspectJ’s @DeclareMixin annotation we can add this interface to any Java object [41].
Listing 5.6 shows an example of how the interface and the default implementation can be added
to an object using @DeclareMixin.

@Aspect
public class SequencedTupleAspect{

@DeclareMixin("at.ac.tuwien.thesis.Tuple")
public static SequencedObject createSequencedTuple() {

return new SequencedObjectImpl();
}

}

Listing 5.6: Aspect for adding a sequence to an object

Dynamic Crosscutting Adding a sequence attribute to objects passed on within an appli-
cation is only the prerequisite for the actual sequencing functionality. Sequences must be created
and passed on automatically. We implemented two abstract aspects, one for creating sequences,
one for passing on sequences. Listing 5.7 shows the abstract aspect for creating a sequence. It
should be given a pointcut that reflects the beginning of a data-processing application’s process-
ing steps before the first runtime measurement is taken.
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@Aspect
public abstract class CreateSequenceAspect {

@Pointcut
public abstract void created(Object o);

public void createSequence(Object o) {
if (o instanceof SequencedObject) {

((SequencedObject)o).setSequence(UUID.randomUUID().
toString());

}
}

}

Listing 5.7: Aspect for creating sequences

Once a sequence is created, it must be passed on by each processing step. Since the moni-
tored application is not aware of sequences, this has to be done by an aspect. Listing 5.8 shows
an abstract aspect for passing sequences on. Since we can not tell upfront how the code for
passing sequences on has to be advised, we have not declared the assignSequence method as an
advice, because this has to be done case by case.

@Aspect
public abstract class SequencePassOnAspect {

@Pointcut
public abstract void finished(Object in, Object out);

public void assignSequence(Object in, Object out) {
if (in instanceof SequencedObject) {

if (out instanceof SequencedObject) {
((SequencedObject)out).setSequence(((SequencedObject)

in).getSequence());
}

}
}

}

Listing 5.8: Aspect for passing sequences on

However, we implemented another abstract aspect for the common case, where an object
given as argument is the input carrying the sequence and the object returned by a method is the
result, where the sequence has to be set. This abstract aspect is shown in Listing 5.9.

@Aspect
public abstract class AfterReturningSequencePassOnAspect extends

SequencePassOnAspect {

@AfterReturning(value = "finished(in, tmp)", returning = "out")
public void assignSequence(Object in, Object tmp, Object out) {

super.assignSequence(in, out);
}
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}

Listing 5.9: Aspect for passing sequences on after a result has been returned

This approach with static and dynamic crosscutting has one major limitation. Where as it
works well for non-standard Java objects, it can not be used for adding sequences to standard
Java data types (e.g., String, Double, List, etc.) used within an application, since these classes
can not be modified by AspectJ.

JVM Profiling

For JVM profiling, we implemented an abstract aspect, which requires a pointcut for profiling
start. As described in Section 4.3, the pointcut should ideally refer to a join point that is invoked
only once. Listing 5.10 shows the abstract aspect.

@Aspect
public abstract class JvmProfilingAspect {

@Pointcut
public abstract void scope();

@Before("scope()")
public void beforeScope() {

try {
Class.forName("at.ac.tuwien.infosys.rosebery.jvm.

profiling.ProfilingThread");
} catch(ClassNotFoundException e) {

throw new RuntimeException(e);
}

}
}

Listing 5.10: Aspect JVM profiling

The advised code only loads a class that is responsible for acquiring JVM measurements.
The loaded class is a Runnable, which holds a static reference to an instance of itself, which is
initialized when the class is loaded. In its constructor, a new thread for polling resource data and
a thread for data aggregation, as described in Section 2.4, are started. This ensures that, even if
the advised code is executed more than once, only one profiling thread is started. Listing 5.11
shows a class stub with the major parts as described in this paragraph.

public class ProfilingThread implements Runnable {

private static final ProfilingThread instance = new
ProfilingThread();

...

public ProfilingThread() {
...
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pollingRunnable = new PollingRunnable(pollingInterval);
Thread pollingThread = new Thread(pollingRunnable);
pollingThread.setDaemon(true);
pollingThread.start();

...

Thread thread = new Thread(this);
thread.setDaemon(true);
thread.start();

}

...
}

Listing 5.11: JVM profiling thread

Execution Profiling

Execution profiling works similarly to runtime performance measurement. The only difference
is that a profiling thread, which acquires resource snapshots for the observed time has to be
started and stopped.

@Aspect
public abstract class AbstractProfilingAspect {

...

@Pointcut
public abstract void scope();

@Around("scope() && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo) throws

Throwable {
ProfilingRunnable profilingThread = startProfiling(Thread.

currentThread().getId(), interval);

ExecutionProfile ep = new ExecutionProfile();

...

ep.setSnapshots(stopProfiling(profilingThread));

...
}

67



private ProfilingRunnable startProfiling(long threadId, long
interval) {
ProfilingRunnable runnable = new ProfilingRunnable();
runnable.setThreadId(threadId);
runnable.setInterval(interval);
executor.execute(runnable);
return runnable;

}

private Set<ResourceSnapshot> stopProfiling(ProfilingRunnable
runnable) {
runnable.interrupt();
return runnable.getResult();

}
}

Listing 5.12: Execution Profiling Aspect

Listing 5.12 shows the aspect for profiling resources during the execution of a process. Com-
pared to runtime measurement, as shown in Listing 5.1, there is additional functionality, which
starts and stops a profiling thread.

5.2 Apache Spark

In Section 2.4 we discussed the API of Apache Spark Streaming’s programming model and how
performance measurement data can be acquired in Spark Streaming in general. In this section,
we present aspects for creating and passing on sequences and for measuring runtime in Spark
Streaming’s programming model.

Sequencing

Sequence Creation

To enable sequencing, sequence identifiers have to be created. In Section 2.4 we described that
Spark Streaming provides a Receiver class, which contains methods for sending data to Spark
Streaming’s engine. To create a sequence, we apply the CreateSequenceAspect as described in
Section 5.1 to Receivers.

@Aspect
public class ReceiverCreateSequenceAspect extends

CreateSequenceAspect {

@Override
@Pointcut("call(* org.apache.spark.streaming.receiver.Receiver.

store(java.lang.Object)) && args(o)")
public void created(Object o) {}

@Before("created(o)")
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public void createSequence(Object o) {
super.createSequence(o);

}
}

Listing 5.13: CreateSequenceAspect for Spark Streaming Receivers

Listing 5.13 shows the implementation of a CreateSequenceAspect for Spark Streaming. A
pointcut for a Receiver’s store method is defined, and the sequence identifier is assigned before
the store method is called.
What has to be considered is, as described in Section 5.1, that the object sent to Spark by the
store method, must be an implementation of the described SequencedObject interface. Hence,
the static crosscutting aspect using the @DeclareMixin annotation, as for the tuple example in
Section 5.1, must be applied.

Passing Sequences On

For passing sequence identifiers on, we must distinguish between Functions, used for map func-
tions and output operations, FlatMapFunctions used for flat map functions, and Function2 im-
plementations, used for reduce functions.

Functions Functions are used for map functions and output operations. Sequence identifiers
can only passed on when Functions are used for mapping, where one object is transformed into
another. When a Function is used as output operation, the return type is typically java.lang.Void,
and thus no sequence is passed on, since java.lang.Void objects are not instances of Sequence-
dObject. As a Function’s call method takes one object as argument and simply returns a result
object, no specifics have to be considered and we simply implemented the abstract AfterReturn-
ingSequencePassOnAspect for Functions.

@Aspect
public class FunctionSequencePassOnAspect extends

AfterReturningSequencePassOnAspect {

@Override
@Pointcut("execution(* org.apache.spark.api.java.function.

Function.call(java.lang.Object)) && args(in) && this(out)")
public void finished(Object in, Object out) {}

@Override
@AfterReturning(value = "finished(in, tmp)", returning = "out")
public void assignSequence(Object in, Object tmp, Object out) {

super.assignSequence(in, out);
}

}

Listing 5.14: AfterReturningSequencePassOnAspect for Spark Streaming Functions

Listing 5.14 shows an AfterReturningSequencePassOnAspect implementation used for Func-
tions.
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FlatMapFunctions FlatMapFunctions must be treated different to normal Functions, since
the result of their call method is not a single object, but an iterable collection of objects, where
the sequence identifier has to be assigned to each object in the collection, which can be seen in
Listing 5.15.

@Aspect
public class FlatMapFunctionSequencePassOnAspect extends

SequencePassOnAspect {

@Override
@Pointcut("execution(* org.apache.spark.api.java.function.

Function2.call(java.lang.Object,java.lang.Object)) && args(in)
&& this(out)")

public void finished(Object in, Object out) {}

@AfterReturning(value = "finished(in, tmp)", returning = "out")
public void assignSequence(Object in, Object tmp, Object out) {

Iterable it = (Iterable)out;

for(Object o : it) {
super.assignSequence(in, o);

}
}

}

Listing 5.15: FlatMapFunctionSequencePassOnAspect for Spark Streaming FlatMapFunctions

Function2 Function2 implementations are used for reduce functions. A reduce function takes
two objects as input and evaluates them to a single result object. Whether to check if both input
objects carry sequence identifiers and which one to choose depends on the application. We
implemented an example, where the sequence identifiers of both input objects have to be equal
so that the sequence identifier is passed on.

@Aspect
public class Function2SequencePassOnAspect {

@Pointcut("execution(* org.apache.spark.api.java.function.
Function2.call(java.lang.Object,java.lang.Object)) && args(in1
, in2)")

public void finished(Object in1, Object in2) {}

@AfterReturning(value = "finished(in1, in2)", returning = "out")
public void assignSequence(Object in1, Object in2, Object out) {

if (in1 instanceof SequencedObject && in2 instanceof
SequencedObject) {
if (((SequencedObject)in1).getSequence().equals(((

SequencedObject)in2).getSequence())) {
if (out instanceof SequencedObject) {
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((SequencedObject) out).setSequence(((
SequencedObject) in1).getSequence());

}
}

}
}

}

Listing 5.16: Function2SequencePassOnAspect for Spark Streaming Function2
implementations

Listing 5.16 shows an aspect for Function2 implementations, where both input objects must
carry the same sequence identifier.

Runtime Performance Measurement

For measuring the runtime of a Spark Streaming application we implemented three aspects. One
for Receivers, one for Functions and FlatMapFunctions, and one for Function2 implementa-
tions. There is only one aspect for Functions and FlatMapFunctions, since there is no difference
in measuring their runtime and obtaining their sequence identifiers.

Receivers

As stated in Section 2.4, a Receiver’s store method’s invocation time only reflects the time it
took Spark to store the data to its cluster, but not how long it actually took to obtain the data.
Since it is not possible to define a generally applicable pointcut for measuring the time it took
to obtain the data, Receivers must be treated individually. However, we implemented an aspect
that measures the invocation time of a Receiver’s store method.

@Aspect
public class ReceiverRuntimePerformanceAspect extends

SequencedRuntimePerformanceAspect {
@Override
@Pointcut("call(* org.apache.spark.streaming.receiver.Receiver.

store(java.lang.Object)) && args(o)")
public void scope(Object o) {}

@Override
@Around("scope(o) && target(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo, Object

o) throws Throwable {
return super.around(pjp, jpo, o);

}
}

Listing 5.17: ReceiverRuntimePerformanceAspect for Spark Streaming
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Listing 5.17 shows an aspect for measuring a Receiver’s store method’s invocation time.
A SequencedRuntimePerformanceAspect is similar to a AbstractRuntimePerformanceAspect de-
scribed in Section 5.1, which takes sequence identifiers into consideration.

Functions and FlatMapFunctions

Functions and FlatMapFunctions can be measured using only one aspect, since in both cases
a method that takes one argument, which carries a sequence identifier, as input and returns one
object, must be measured.

@Aspect
public class FunctionSequencedRuntimePerformanceAspect extends

SequencedRuntimePerformanceAspect {

@Override
@Pointcut("(execution(* org.apache.spark.api.java.function.

Function.call(java.lang.Object)) ||" +
" execution(* org.apache.spark.api.java.function.

FlatMapFunction.call(java.lang.Object))) && args(o)")
public void scope(Object o) { }

@Around("scope(o) && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo, Object

o) throws Throwable {
return super.around(pjp, jpo, o);

}
}

Listing 5.18: FunctionRuntimePerformanceAspect for Spark Streaming

Listing 5.18 shows an aspect for measuring a Function’s or FlatMapFunction’s call method’s
invocation time.

Function2

A Function2 is slightly different to a Function as it takes two arguments as input. It must be
treated differently since it can not be generally determined, which sequence identifier for a mea-
surement has to be chosen. We implemented an aspect for measuring a Function2 implemen-
tation’s runtime performance, where a sequence identifier is only assigned if both input objects
share the same sequence identifier.

@Aspect
public class Function2SequencedRuntimePerformanceAspect extends

SequencedRuntimePerformanceAspect {
public void scope(Object o) { }

@Pointcut("execution(* org.apache.spark.api.java.function.
Function2.call(java.lang.Object, java.lang.Object)) && args(o1
, o2)")
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public void scope(Object o1, Object o2) { }

@Around("scope(o1, o2) && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo, Object

o1, Object o2) throws Throwable {
String sequence = null;
if (o1 instanceof SequencedObject && o2 instanceof

SequencedObject) {
if (((SequencedObject) o1).getSequence().equals(((

SequencedObject) o1).getSequence())) {
sequence = ((SequencedObject) o1).getSequence();

}
}

return super.around(pjp, jpo, sequence);
}

}

Listing 5.19: Function2RuntimePerformanceAspect for Spark Streaming

Listing 5.19 shows an aspect for measuring a Function2’s call method’s invocation time as
described.

5.3 Apache Storm

In Section 2.4 we discussed the API of Apache Spark Storm’s programming model and how
performance measurement data can be acquired in Storm in general. In this section we present
aspects for creating and passing on sequences and for measuring runtime in Storm’s program-
ming model.

Sequencing

Adding and passing on sequences is less straight forward for Storm as for Spark. Consider-
ing Storm’s API, as described in Section 2.4, OutputCollectors don’t take tuples as arguments.
However, Storm takes any object, or a list of objects, as argument, automatically wraps Tuple in-
stances around the object and then sends tuples to the next element in the topology. This means
that the target for sequence identifiers must be tuples, which are created in Storm internally. To
add sequence identifiers we decided to create aspects using pointcuts that check entire control
flows of an application. Whenever a Tuple instance is created when an OutputCollector’s emit
method called by a spout or bolt, we add or pass a sequence identifier on respectively.

Sequence Creation

Listing 5.20 shows an aspect for creating sequences for Storm spouts by defining four point-
cuts. The first one targets the TupleImpl classes constructor, a second one a spout’s nextTuple
method, a third one an OutputCollector’s emit method. The last pointcut combines the first three
pointcuts, where the application’s control flow is checked. This means, that the advised code is
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invoked after a new tuple instance has been created when an OutpoutCollector’s emit method is
called by a spout’s nextTuple method.

@Aspect
public class SpoutCreateSequenceAspect extends CreateSequenceAspect {

@Pointcut("execution(*backtype.storm.tuple.TupleImpl.new(..)) &&
this(o)")

public void created(Object o) {}

@Pointcut("execution(* backtype.storm.spout.ISpout.nextTuple(..))
")

public void spoutNextTuple() {}

@Pointcut("execution(* backtype.storm.spout.ISpoutOutputCollector
.emit(..))")

public void spoutCollectorEmit() {}

@Pointcut("cflow(spoutNextTuple()) && cflow(spoutCollectorEmit())
&& created(o)")

public void createdInFlow(Object o) {}

@After("createdInFlow(o)")
public void createSequence(Object o) {

super.createSequence(o);
}

}

Listing 5.20: CreateSequenceAspect for Storm

Passing Sequences On

Listing 5.21 shows an aspect for passing sequences on for Storm bolts. As for creating se-
quences, the aspect consists of four pointcuts. The first pointcut targets the TupleImpl classes
constructor, a second one a bolt’s execute method, where the incoming tuple is taken into con-
sideration, and a third one, which targets the OutputCollector’s emit method. The last pointcut
combines the first three pointcuts, where the application’s control flow is checked. The ad-
vised code is called when a new tuple instance has been created and an OutpoutCollector’s emit
method is called by a bolt’s execute method. The sequence identifier is passed on from the bolt’s
input tuple to the tuple emitted via the OutpoutCollector.

@Aspect
public class BoltSequencePassOnAspect extends SequencePassOnAspect {

@Pointcut("execution(*backtype.storm.tuple.TupleImpl.new(..))")
public void newTuple() {}

@Pointcut("execution(* backtype.storm.topology.IBasicBolt.execute
(backtype.storm.tuple.Tuple, ..)) && args(in, *)")

public void boltExecute(Tuple in) {}
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@Pointcut("execution(* backtype.storm.topology.
IBasicOutputCollector.emit(..))")

public void outCollectorEmit() {}

@Override
@Pointcut("cflow(boltExecute(in)) && cflow(outCollectorEmit()) &&

newTuple() && this(out)")
public void finished(Object in, Object out) {}

@Override
@After("finished(in, out)")
public void assignSequence(Object in, Object out) {

super.assignSequence(in, out);
}

}

Listing 5.21: SequencePassOnAspect for Storm

Runtime Performance Measurement

Measuring runtime performance for Storm’s spouts and bolts is done by measuring their main
method’s invocation time.

Spouts

Listing 5.22 shows an aspect implementation of a RuntimePerformanceAspect for spouts, where
the invocation time of a spout’s nextTuple method is measured.

@Aspect
public class SpoutRuntimePerformanceAspect extends

AbstractRuntimePerformanceAspect {

@Override
@Pointcut("execution(* backtype.storm.spout.ISpout.nextTuple(..))

")
public void scope() {}

@Around("scope() && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo) throws

Throwable {
return super.around(pjp, jpo);

}
}

Listing 5.22: RuntimePerformanceAspect for Storm spouts
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Bolts

Listing 5.23 shows an aspect implementation of a RuntimePerformanceAspect for bolts, where
the invocation time of a bolt’s execute method is measured.

@Aspect
public class BoltSequencedRuntimePerformanceAspect extends

SequencedRuntimePerformanceAspect {

@Override
@Pointcut("execution(* backtype.storm.topology.IBasicBolt.execute

(backtype.storm.tuple.Tuple, ..)) && args(o, *)")
public void scope(Object o) {}

@Around("scope(o) && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo, Object

o) throws Throwable {
return super.around(pjp, jpo, o);

}
}

Listing 5.23: RuntimePerformanceAspect for Storm bolts

5.4 Publication

In this section we will discuss the implementation specifics of the different publication technolo-
gies described in Section 4.3.

File

The file publication service implementation allows to export measurement data to a comma-
separated file format. Different types of measurement data are exported into separate files per
measurement type. The format within a measurement type follows the same principle, where
each objects attributes are separated by a semicolon.

RuntimePerformance

The file for runtime performance measurement records consists of seven columns:
Node.nodeId;Node.nodePurpose;sequence;starttime;endtime;duration;executionResult

ExecutionProfile

The file for execution profile measurements can contain two different types of rows: A row for
an execution profile measurement record, which is followed by its associated resource snap-
shot records. A row that contains an execution profile measurement consists of seven columns:
Node.nodeId;Node.nodePurpose;sequence;starttime;endtime;duration;executionResult
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If there are associated resource snapshot records for that execution profile, the row is fol-
lowed by rows for resource snapshots, which consist of seven columns:

timestamp;systemCpuLoad;processCpuLoad;processCpuTime;threadCpuTime;heapMax;heapUsage

JvmProfiles

The rows in a file for JVM profile measurement records consist of 14 columns:
Node.nodeId;Node.nodePurpose;timestamp;systemCpuLoadMax;systemCpuLoadMin;

systemCpuLoadAvg;processCpuTime;processCpuLoadMax;processCpuLoadMin;processCpuLoadAvg;
heapMax;heapUsageMax;heapUsageMin;heapUsageAvg

JDBC

We implemented a JDBC publication service that inserts measurement data in a relational struc-
ture that suits the domain model defined in Section 4.2. Figure 5.1 illustrates the structure with
its tables and references.

id: BIGINTEGER
node_id: VARCHAR(50)
node_purpose:VARCHAR(50)

node

id: BIGINTEGER
node_id: BIGINT
seq: VARCHAR(100)
starttime: BIGINT
endtime: BIGINT
duration: BIGINT
result: VARCHAR(15)

runtime_performance
rtp_id: BIGINT

execution_profile

ep_id: BIGINT
timestamp: BIGINT
system_cpu_load: DOUBLE
process_cpu_load: DOUBLE
process_cpu_time: BIGINT
thread_cpu_time: BIGINT
heap_max: BIGINT
heap_usage: BIGINT

resource_snapshot

id: BIGINT
node_id: BIGINT
timestamp: BIGINT
process_cpu_time: BIGINT,
process_cpu_load_max: DOUBLE
process_cpu_load_avg: DOUBLE
process_cpu_load_min: DOUBLE
system_cpu_load_max: DOUBLE
system_cpu_load_avg: DOUBLE
system_cpu_load_min: DOUBLE
heap_max: BIGINT
heap_usage_max: DOUBLE
heap_usage_avg: DOUBLE
heap_usage_min: DOUBLE

jvm_profile

Figure 5.1: Table structure for the implemented JDBC publication service

SQL scripts for creating the defined table structure differ from database system to database
system. Listing 5.24 shows a script for creating the table structure for a PostgreSQL database [57].

CREATE TABLE node (
id BIGSERIAL PRIMARY KEY,
node_id VARCHAR(50),
node_purpose VARCHAR(50),
CONSTRAINT node_unique_ct UNIQUE (node_id, node_purpose)

);
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CREATE TABLE runtime_performance (
id BIGSERIAL PRIMARY KEY,
node_id BIGINT,
seq VARCHAR(100),
starttime BIGINT,
endtime BIGINT,
duration BIGINT,
result VARCHAR(15),
CONSTRAINT rtp_unique UNIQUE (node_id, starttime, endtime),
CONSTRAINT rtp_node_fk FOREIGN KEY (node_id) REFERENCES node(id)

);

CREATE TABLE execution_profile (
rtp_id BIGINT PRIMARY KEY,
CONSTRAINT rtp_ep_fk FOREIGN KEY (rtp_id) REFERENCES

runtime_performance(id)
);

CREATE TABLE resource_snapshot (
ep_id BIGINT,
timestamp BIGINT,
system_cpu_load DOUBLE PRECISION,
process_cpu_load DOUBLE PRECISION,
process_cpu_time BIGINT,
thread_cpu_time BIGINT,
heap_max BIGINT,
heap_usage BIGINT,
CONSTRAINT rs_pk PRIMARY KEY (ep_id, timestamp),
CONSTRAINT rs_ep_fk FOREIGN KEY (ep_id) REFERENCES

execution_profile(rtp_id)
);

CREATE TABLE jvm_profile (
id BIGSERIAL PRIMARY KEY,
node_id BIGINT,
timestamp BIGINT,
process_cpu_time BIGINT,
process_cpu_load_max DOUBLE PRECISION,
process_cpu_load_avg DOUBLE PRECISION,
process_cpu_load_min DOUBLE PRECISION,
system_cpu_load_max DOUBLE PRECISION,
system_cpu_load_avg DOUBLE PRECISION,
system_cpu_load_min DOUBLE PRECISION,
heap_max BIGINT,
heap_usage_max DOUBLE PRECISION,
heap_usage_avg DOUBLE PRECISION,
heap_usage_min DOUBLE PRECISION,
CONSTRAINT jvmp_unique UNIQUE (node_id, timestamp)
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);

Listing 5.24: Script for table creating for a PostgreSQL database

JMS

We implemented a JMS publication service that publishes JMS object messages to any config-
ured JMS destination (e.g., a queue or topic). Since we did not want to bind the JMS publication
service to a specific JMS implementation, the connection factory used for creating JMS con-
nections can also be configured. The implemented JMS publication service looks up both, the
destination and the connection factory, in the JVM’s local JNDI [52] directory using defined
resource names.

public class JmsPublicationService implements PublicationService {

...

public JmsPublicationService() {
try {

Context context = new InitialContext();

ConnectionFactory connectionFactory = (ConnectionFactory)
context.lookup(Configuration.getProperty(

CONNECTION_FACTORY_RESOURCE_SYSTEM_PROPERTY));
connection = connectionFactory.createConnection();
destination = (Destination) context.lookup(Configuration.

getProperty(DESTINATION_RESOURCE_SYSTEM_PROPERTY));
} catch(NamingException | JMSException e) {

throw new RuntimeException(e);
}

}

private <T extends Measurement> void sendMessage(T t) throws
JMSException{
Session session = connection.createSession(true, 0);
MessageProducer producer = session.createProducer(destination

);
producer.send(destination, session.createObjectMessage(t));
session.commit();
producer.close();
session.close();

}
}

Listing 5.25: JMS publication service implementation

Listing 5.25 shows a snippet of the JMS publication service implementation, which shows
how the JMS connection is initialized and how messages are sent.
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JMX

We implemented a publication service that sends JMX notifications [65] for measurement data
to registered receivers. For each measurement type, an MBean [65] with an associated object
name will be created. A notification’s notification type is set to ”Measurement Notification”.
The notification user data attribute will be set to the measurement data object. This means, that
a receiver, which consumes these notifications, must have the domain model implementation
classes in its class path. Listing 5.26 shows how MBeans are initialized and messages are sent.

public class MeasurementNotificationSender extends
NotificationBroadcasterSupport implements
MeasurementNotificationSenderMBean {
public MeasurementNotificationSender(Class<? extends Measurement>

clazz) {
MBeanServer server = ManagementFactory.getPlatformMBeanServer

();
ObjectName objectName = null;
message = MESSAGE_PREFIX + clazz.getName();

try {
objectName = new ObjectName(OBJECT_NAME_PREFIX + clazz.

getSimpleName());
server.registerMBean(this, objectName);

} catch (Exception e) {
throw new RuntimeException(e);

}
}

public <T extends Measurement> void sendNotification(T t) {
Notification n = new Notification(NOTIFICATION_TYPE,

MeasurementNotificationSender.class.getName(),
sequenceNumber++, message);

n.setUserData(t);
sendNotification(n);

}
}

Listing 5.26: JMX MBean implementation

Log4J

The Log4J publication service is a simple implementation that logs measurement data in Log4J’s
INFO level. Each log entry has the prefix ”Published measurement ” followed by a string, which
results from the measurement object’s toString method.
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CHAPTER 6
Demonstration

In this chapter, the evaluation of the proof-of-concept framework presented in Chapter 5 is de-
scribed. First, the requirements for a proper demonstration use case are discussed. Second, a use
case that meets these requirements is described. Third, the implementation details for the use
case are discussed. Fourth, scenarios to run the use case are defined. Finally, once the scenar-
ios have been executed, to demonstrate the value of this thesis framework, data analysis of the
measured data will be conducted and the results will be discussed.

6.1 Scenario

Requirements

To create data that can be analyzed, we have identified four requirements that a demonstration
scenario has to meet:

• High Complexity: In order to test the performance and scalability of a distributed appli-
cation, it should be easy to increase computation load of the scenario. High complexity
ensures that minor changes of the input data will increase the computation load signifi-
cantly.

• Horizontally Divisible: The scenario should be horizontally divisible. By that, we mean
that it should be able to split the scenario up into multiple process steps, where each step
is responsible for a certain functionality. Only such a scenario, with multiple computation
steps that can be executed on different workers in a distributed system, where data has to
be transferred, is suitable for testing a distributed data-processing application for two rea-
sons. First, the steps will be different in complexity and thus have different execution run-
times. Parallelization of more complex steps should decrease the overall execution time
of a scenario if the load is distributed properly, which is one major subject of investiga-
tion. Second, as data has to be transferred, using different serialization or communication
technologies as well as network performance will affect the results. A scenario, where
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these factors are not considered, does not properly reflect real-world usage of distributed
systems.

• Vertically Divisible: By vertically divisible we mean that it should be able to divide pro-
cessing data and execute computation steps in parallel. The fact that serial processing on
single machines is not able to cope with ever increasing amounts of data is a major rea-
son for using distributed systems, where data is processed in parallel to reduce processing
time. Thus, a test scenario should fulfill this requirement so that parallelization and its
effects can be tested and evaluated.

• High Data Volume: The data volume that has to be processed and transferred should be
high since we want to investigate heap memory usage behavior of our different applica-
tions. If no significant amounts of data are transferred or processed and there are no major
changes in the JVM’s heap memory usage, we will not be able to investigate how our ap-
plications perform regarding memory usage, or if framework internals do affect memory
usage.

Problem Description

The scenario we have defined for our demonstration use case is a slightly modified version of
the well-known Traveling salesman problem. Since there are many formulations and variations
of the Traveling salesman problem [59] we use the following formulation:

A TSP graph G is a complete weighted undirected graph specified by a pair (N, d) where N
is a set of nodes and d is a function that translates the distance between two nodes to numerical
values. d satisfies two conditions:

1. Symmetry: d(i, j) = d(j, i) for all i and j in N.

2. d(i, j) >= 0 for all i and j in N.

A path of the TSP graph G is a set of edges that describes a path containing each node exactly
once (i.e., a Hamiltonian graph [25]). The path distance is the sum of all edges distances.
The solution for our modified traveling salesman problem is a path with the minimal possible
path distance.
The nature of the Traveling salesman problem fulfills two of the requirements described in Sec-
tion 6.1:

• High Complexity: The problem is known to be NP-hard [31].

• Horizontally Divisible: A program for the path can be divided into several steps. One
example would be:

1. Find paths

2. Calculate path distances

3. Find minimal solution
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Whether a program is vertically divisible is implementation specific, the data volume de-
pends on the implementation (e.g., how the program is divided) and actual input size.

Data Source & Domain

The Traveling salesman problem itself is domain independent. Since we focus on performance
measurements in our work and do not consider the actual problem solution as relevant, we
have not applied the problem to a particular domain and used randomly generated input data.
Graph vertices are created by generating two random numbers, where the two generated numbers
describe the coordinates in a two-dimensional space.

6.2 Implementation

A solution for the described problem has been implemented for both, Apache Spark and Apache
Storm. However, the implementations are designed so that they share as much features as possi-
ble in order to make the results comparable.

Architecture

We have decided to split the problem up into five process steps.

Data 
generation

Node 
extraction

Path 
creation

Distance 
calculationSummary

input
string

node
list

path
list

min
distance

Distance 
calculation

Distance 
calculation

Figure 6.1: Architecture overview

Figure 6.1 shows how we split up the problem. It also shows that one step, Distance calcu-
lation, can be executed in parallel.

1. Data Generation: In this first step input data is created. We’ve defined that processable
input data is a random string containing vertices in the following format: “a[“+number+
“, “+number+“]“ where number is a positive integer. There can be random characters
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before and after a vertex. In our implementation we used UUID strings. The first number
is the x-coordinate and the second the y-coordinate in a two-dimensional space.

fbbca05f-caf3-410b-b831-c48baa8e7bff40836da0-df5d-4f73-8649-
a4fb0fe2818b5b58bcc7-a67c-45f6-b161-b445a258cf85a[29,70]
c386a926-f95a-4e30-bdb6-c4723675bdc24c5cb53c-7350-45d4-8f84-
d03dfe9fdcf8056a600c-3af6-4e0c-b5e7-0a6c365ddf0ba[3,52]10
f6c44b-33af-4f24-9c70-11e84d605f9b7e5a72f2-a501-4e94-8021-
f92d343515e2a[88,27]67c61aef-4407-422d-b3c8-550084
b05669d7adfb84

Listing 6.1: Input example

Listing 6.1 shows a generated input data example that contains three vertices: a[29,70],
a[3,52] and a[88,27].

2. Extraction: The second step is to extract vertices from the string. The result of this step
is a list of Node objects. A Node has an id, x and y attribute. The id is a number to identify
the node, x and y are the node’s coordinates. Figure 6.2 shows the Node class.

id: int
x: int
y: int

Node

Figure 6.2: Node class

3. Path Creation: In this step all paths are created. Since a path is a permutation [55] of
nodes, the number of all paths is defined by the number of node permutations (n! where
n is the number of nodes [55]). As stated, any implementation based on our proposed
architecture must allow that distance calculations can be executed in parallel. It must be
possible to split up paths into subsets and pass them on to workers responsible for distance
calculation asynchronously. That means that a path calculation worker does not wait for
a distance calculation worker’s subset result, before passing the next subset on to another
distance calculation worker.

4. Distance Calculation: The distance between two nodes in a two-dimensional space can
be calculated by using the Pythagorean theorem [67]. The length of the two required edges
is the difference between the greater and lesser x and y coordinates. The distance between
the nodes is then defined by the Pythagorean theorem.

Figure 6.3 illustrates the distance and equation 6.1 shows how the distance is calculated.

distance =

√√√√ ((max(A.x,B.x)−min(A.x,B.x))2+

((max(A.y,B.y)−min(A.y,B.y))2
(6.1)

In the last step, the minimal distance of the received set of paths is calculated.
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A

B

x

y

distance

Figure 6.3: Distance calculation

5. Summary: The summary step is responsible for summarizing the partial results of the
distance step. Here, the final result, thus the minimal distance of all paths, is detected.

Both implementations share the basic architecture from a component and sequence point of
view.

Test Data Generation

We already specified how the structure of an input string has to look like and that we use UUIDs
in between vertices. It is not specified how many UUIDs there are in between two vertices
and how many vertices an input string has to contain. For our evaluation, we define that each
input string has to contain exactly ten vertices. In order to simulate random behavior, both, the
coordinates of vertices and the number of UUIDs in between vertices are uniformly distributed
random integers from zero to a defined upper bound. The upper bound for a vertices coordinates
is 99 and the upper bound for the number of UUIDs is 99999. Given that, and the fact that each
character of a string on the described platform has a size of one byte, the expected input string
size is as follows: ((
0.9 (probability of a 2-character coordinate) * 2 (size of a 2-character coordinate) +
0.1 (probability of a 1-character coordinate) * 1 (size of a 1-character coordinate)
) * 2 (2 coordinates per vertex) + 4 (remaining vertex characters) +
36 (length of a UUID string) * 50000 (expected value of the number of UUIDs)
) * 10 (number of vertices) = 18000078 bytes = 17.166 mega bytes

Scenario

In order to create a sufficient amount of measurement data, we defined two scenarios that we ran
for both implementations. We executed 25 test runs two times, once with a break of 1 second
in between each run and a second time with a break of only 10 milliseconds between each run.
Considering the domain-specific language described in Section 4.5, we declared our scenarios
as follows: loop(25,1000) or loop(25,10) respectively. For each of the four scenario executions
(two times with the Spark implementation with both breaks, two times the Storm implementation
with both breaks), we selected different node identifiers for each step, so that we can distinguish
the recorded measurement data.

85



Apache Spark Streaming Implementation

We implemented the described problem solution according to the application architecture de-
scription using Apache Spark Streaming. First, we implemented a Receiver, which creates data.
For all other steps we implemented Functions, which are used by map or flat map transforma-
tions and one output operation.
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Figure 6.4: Spark Implementation

Figure 6.4 shows an overview of our Apache Spark Streaming application. The Receiver
creates data, which are stored in Spark RDDs over time. We decided to use a time window of
seven seconds because the amount of data that will accrue within seven seconds will be consid-
erably different for the two scenarios we decided to run, and thus lead to different performance
results. This means every seven seconds an RDD is created, which contains all data records
stored to Spark Streaming within the past seven seconds. The second step, extraction is done
via a map function, where lists of nodes are extracted from the input strings in an RDD. Paths
are created in the course of a flat map transformation. A path list contains no more than 200000
elements. If there are more paths for a node list, there will be multiple path lists created for that
node list. There are two reasons why we decided to use a limit of 200000 paths per list. First,
the size of the message that has to be transferred. A single path contains ten Node elements, that
contain two four-byte integers, which means that the size of a single path is around 80 bytes.
Since there are ten factorial (around 3.6 million) paths, one single message containing all paths
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would be huge in size (around 290 megabytes), where as a list containing 200000 paths has
a size of around 16 megabytes, which we consider as appropriate for our evaluation. Second,
since we want to evaluate the implementation’s parallelization and task scheduling behavior,
splitting a path list up by 200000 leads to 19 distance calculation tasks per input message, which
we consider as an amount big enough for creating a sufficient amount of analysis data. Using
an identifier, each path list can be associated to its source node list. The path creation step is
followed by a map transformation, which calculates distances for each path list and determines
the minimal distance. The summary function determines the absolute minimum distance for an
input string by aggregating received minimum distances using the set identifier.

Apache Storm Implementation

As for Spark Streaming, we implemented the described problem solution according to the archi-
tecture description by using Apache Storm. For each step described, we implemented a Storm
component. The first step, data creation is implemented as a spout that creates and emits data
to the topology. All other steps are implemented as bolts, linked together using Storm’s shuffle
grouping method as described in Section 2.1. Path bolts are different to other bolts since they
might emit multiple tuples, where each tuple contains a set of paths with a maximum size of
200000 (for the same reasons as for the Spark implementation). If there are less than 200000
paths for the given input data, only one tuple containing all paths is emitted, if there are multiple
tuples for an input node list, path lists can be associated with their source, and thus with each
other, using an identifier.
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Distance 
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String

Node list
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Figure 6.5: Storm implementation

Figure 6.5 shows an overview of our Storm implementation and its data flow. Since calculat-
ing and comparing the distance of all paths can take a considerable amount of time when done
time-serially, we decided to split up the set of paths and parallelize distance calculation.
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6.3 Execution

To create analyzable data, we executed both described problem solutions. Since the main focus
of this thesis is the engineering perspective of how performance can be tested and monitored,
and not a performance analysis itself, we executed the implementations just on a single machine
instead on a cluster. However, this still demonstrates the applicability of the described concepts
and the proof-of-concept implementation.

Test Machine Specification

• Model: MacBook Pro (Retina, 13-inch, Late 2013)

• Operating System: OS X 10.10.5

• CPU: Intel Core i5 2.4 GHz Dual Core, 3 MB L2 Cache

• Memory: 8 GB 1600 MHz DDR3

• Java: Java(TM) SE Runtime Environment (build 1.8.0_40-b27)

• JVM: Java HotSpot(TM) 64-Bit Server VM (build 25.40-b25, mixed mode)

6.4 Data Analysis

In this section, we analyze the measurement data created by the test runs. By comparing the
results of both implementations, we will show a huge benefit of the framework proposed in this
thesis: A common data model for measurement data of different data-processing applications,
implemented using different frameworks, that allows a direct comparison by visualizing data.

Figure 6.6 shows an overview of runtime measurements. The durations (end time - start
time) are aggregated by node purpose and node identifier. The node identifier allows to associate
a record with the particular run or implementation (10ms or 1 second break, Spark or Storm).
The different columns show different node purposes (which reflect process steps), whereas the
rows are different aggregations (maximum, minimum, average, sum). There are a few findings
in this overview we want to discuss:

• Spark/Storm difference at creation: In Section 2.4 we stated that measuring the invocation
time of a Spark Receiver’s store method will not reflect the time consumed for actually
creating, reading or receiving the data. Only the time used for transferring the data to
Spark is measured. This explains the huge gap when comparing Spark and Storm results
of the first step (creation).

• Spark/Storm difference at summary: There is a huge gap between Spark and Storm for the
last process step. The explanation for this gap is as follows: Spark immediately starts the
invocation of output operations for each time slot, even when no data is received within a
time slots period. However, when no data is received, Spark blocks the output operation’s
function invocation and waits for a considerable amount of time. This behavior distorts
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Figure 6.6: Comparison of durations. The y-axes are scaled differently for each aggregation to
highlight the differences between the steps, load configurations, and implementations.

the results for the last process step, since for the first few time slots no data has been
passed to the output operation as the calculations have not been finished. These records
have a considerable impact on the aggregated data.

• A third finding is that the Spark implementation performs better regarding runtime mea-
surements at path and distance. Figure 6.7 shows a more detailed chart of durations sums
that makes this finding more visible. The color indicates the number of records (count)
that have been summed up. Light green means that there have been few records that have
been aggregated (at minimum 25 since we created 25 input strings for each implementa-
tion and load configuration), dark green mean that there have been more records (e.g, for
the distance step, because the lists of all paths have been split up).

When summing up the sums of all records, except creation and summary, where framework
differences distort the results, for each run and implementation, the gap is even more visible.
Figure 6.8 shows these running sums of all records per implementation and scenario.
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Figure 6.7: Detailed comparison of duration sums

Figure 6.8: Running sum of durations

Considering these results, it might appear that Spark performs significantly better. However,
simply looking at runtimes of single process steps does not include the time that has been con-
sumed by the framework or for transferring data from step to step. Using sequences, runtime
measurement records of different process steps can be related to each other and the time between
a step’s end time and the followed step’s start time be determined. Figure 6.9 shows the latency
between the single steps.

Figure 6.9: Latency
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These results suggest that Spark performs poorly regarding latency, but the huge gaps can be
explained by the differences between Spark and Storms processing model. First, in Section 2.1
we mentioned that Spark creates micro batches over time and in Section 6.2 we decided to
choose a time window of seven seconds. This means that after the store method of our Receiver
has been invoked, it can take up to seven seconds until Spark passed the created data record
to the extraction function. Second, since Spark combines data records in RDDs within a seven
second period, the amount of data that has to be transferred from the receiver to the first mapping
function can be considerable in size, this especially applies to the scenario with a data creation
delay of only 10 milliseconds. Storm, in comparison to Spark, emits a tuple at arrival time to
its topology. And third, Figure 6.9 reflects the differences between Spark’s and Storm’s task
scheduling model. Both, Spark and Storm have a fixed amount of task executors when running
in local mode. However, the difference is that Spark reserves task executors for Receivers, which
means that a Receiver is running at all times, whereas functions are scheduled and executed when
a task executor becomes available. In Storm, Spout tasks are treated equally to Bolt tasks, which
means that their executions are also paused when there are no task executors available. For
Spark this means that extraction tasks are only executed when a task executor is available, thus
tasks may be paused for a while, whereas a Receiver is running all the time, which, additionally
to the time consumed by the batch window, adds a delay between these two processing steps. In
Storm’s processing model, where Spout tasks are scheduled as well, the bottleneck is the longest
running processing step, which is the path step in our application. After an extraction task
has been executed, it might take some time until a task executor becomes available for running
the path task of the preceded extraction task’s result, as the task executors might be busy with
running other queued path tasks. When all task executors are busy with executing path tasks,
no more tuples are emitted by Spouts, thus there is no huge latency between the Spout and the
extraction-Bolt.
Given that differences in runtime of single process steps and latency, we need to take a look at
total runtime in order to draw a conclusion on whether Spark or Storm performed better.

Figure 6.10: Average total runtime (endtime - starttime)

Figure 6.10 shows the average cumulated (by process step) total runtime of all created data
records. By average cumulated total runtime we mean the time between the first measurement
record (the start time of the creation step) for a created data record and a followed step’s end
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time. As for latency, single measurement records are related to each other by sequence identi-
fiers. The first column shows the implementation and scenario (combined), the second column
the process step of which the start time is used (creation, since it is the first step), the third col-
umn the process step of which the end time is used for calculation and the last column the actual
total runtime. This figure reflects the long latency and process step runtimes we discussed ear-
lier. Given that, one could argue that, overall, the Storm implementation performed significantly
better than the Spark implementation. However, what this chart does not show, is the processing
timeline. If many records have huge latency between processing steps, since they are combined
in a batch and not transferred immediately, but processed quickly after the batch (RDD) that
contains all records has been transferred, it might be the case, that, even if total processing run-
time time per record has been higher on average, an implementation might have been faster to
process all records.

Figure 6.11: Absolute total duration (max(endtime) - min(starttime))

Figure 6.11 shows the time between the absolute minimum start time that has been recorded
for the creation processing step and the absolute maximum end time of the summary processing
step that has been recorded. Considering this chart, the Spark implementation performed better
for the test run with a 10 millisecond delay between data creation, and the Storm implementation
better for the test run with a 1 second delay between data creation.
Given that, we argue that the performance measurement data created by our framework reflect
the differences between Storm’s continuous operator processing model and Spark’s discretized
stream processing model discussed in [75]. Less overhead for fault-tolerance, task scheduling,
etc. when combining single records in RDDs reduces processing complexity, thus requires less
CPU time in general, which explains faster processing times of single process steps. On the other
side, time windows to combine data records prevent immediate results for single records and lead
to high latency between data reception and the first processing steps. Whereas the advantages
and disadvantages of these processing models are not subject of this thesis, the analysis of our
framework’s data proves the applicability, purpose and benefits of the work presented in this
thesis.
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CHAPTER 7
Conclusion & Future Work

7.1 Conclusion

Application performance is crucial as applications, which do not fulfill their performance re-
quirements, do not serve their intended purpose. In the age of big data with ever-growing
amounts of data, this is particularly true for data processing applications. Due to this grow-
ing amounts of data, applications must be scaled since single machines can not keep up with
the amounts of data to be processed. In order to scale appropriately and provide sufficient re-
sources for such distributed data-processing applications, their performance must be monitored
and tested. As monitoring and testing distributed applications is more sophisticated than mon-
itoring non-distributed applications, we analyzed and discussed a series of arising challenges,
proposed a design for a testing and monitoring framework, developed a proof-of-concept frame-
work, demonstrated its applicability by monitoring and testing two different solution implemen-
tations for a defined problem, and analyzed the results. We started by defining what performance
actually is and which metrics can be used for determining it. After that, we analyzed how these
measurements can be acquired from a JVM-based application. In the course of that, we par-
ticularly focussed on how performance data acquisition can be integrated in applications that
already exist, where monitoring has not be considered from the beginning. Since the main focus
of this thesis are distributed applications, we discussed how performance measurement data can
be published (e.g., persisted) so that it can be analyzed easily. Based on the results of these dis-
cussions, we proposed a design for a framework that enables monitoring of any distributed JVM-
based application. To show the design’s feasibility, we developed a proof-of-concept framework
and applied to a demonstration scenario implemented based on both, Apache Spark Streaming
and Apache Storm. Finally, we analyzed and discussed the data created by our framework for
these applications and showed that it serves its purpose and provides beneficial insights on an
application’s performance behavior.
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7.2 Future Work

Further Analysis

The data analysis discussed in Section 6.4 for the demonstration use-case is very simple. More
sophisticated statistical methods and visualization techniques could provide deeper insights and
help to draw better conclusions. Furthermore, forecasts can be made for resource planning
and stochastic models could be derived to evaluate a system’s behavior under uncertain load
characteristics.

Deeper Integration of Spark & Storm

The integration of this thesis framework with Apache Spark and Apache Storm can be extended.
The current integration is focussed on Spark and Storm’s main programming models. Integrating
the framework deeper into Spark and Storm could provide additional, engine internal and/or
more detailed processing, data for deeper and more accurate analysis.

Virtual Machine Independence

As described in Section 2.4, this thesis work relies on the com.sun.management package pro-
vided by the Oracle implementation of the Java virtual machine. This means that other JVM
implementations, such as the OpenJDK implementation, are not supported by the framework
described in this thesis. Virtual machine independence could be achieved by introducing an
additional abstraction layer, which checks the JVM implementation, for acquiring the measure-
ments currently acquired using this package.

Out-of-the-box Integration with Monitoring Tools

Many organizations and cooperations use monitoring tools such as Ganglia, Nagios and Splunk
for monitoring their applications and IT systems. These tools often provide interfaces for collect-
ing data in their repositories. Additionally to the communication technologies already supported,
interfaces for established systems could be implemented in order to reduce systems integration
efforts when introducing our framework.

Automated Distributed Testing

The testing capabilities of this thesis work are limited in its current state. The framework, as
described, does not support automated distributed testing, which means that test load can only
be created by a single machine, which might not be sufficient for testing a large-scale distributed
data-processing application, or, when using multiple machines, must be coordinated manually.
There exist concepts for distributed testing (e.g., where a master coordinates multiple test-agents
in order to generate load), which could be adapted and integrated in this thesis work.
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Result Validation

The testing capabilities of this thesis framework are simple and are only suited for generating
performance measurement data. Typically, when testing an application’s functionality, the ap-
plication results are validated to check if it works properly. Since increased load can cause
misbehavior, validating application results additionally would be a useful extension to the cur-
rent work.

Network Monitoring

A distributed data-processing application performance depends on the network performance. If
the network is not able to cope with the load, latency will increase and slow down the entire
data-processing process. To get a holistic view of the data-processing performance, measuring
network performance is required. Network measurement data could be integrated in the data
model proposed in this thesis. This would allow deeper performance analysis in general and
support root-cause analysis in the case of performance issues.
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