
Dissertation

Information-Theoretic Analysis of
Noncoherent Block-Fading Channels

and Singular Random Variables

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von
Ao. Univ.-Prof. Dr. Franz Hlawatsch

Institute of Telecommunications

von
Dipl.-Ing. Günther Koliander

Landgutgasse 36/6/13, 1100 Wien, Österreich
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Abstract

Characterizing the capacity, i.e., the maximally possible throughput, of a given communication

channel is an important problem in information theory. In this dissertation, we study the capacity

of block-fading channels in the noncoherent setting where neither the transmitter nor the receiver

has a priori channel state information but both are aware of the channel statistics. We show that

the number of degrees of freedom—which characterizes the channel capacity at high signal-

to-noise ratio—conforms to an intuitive “dimension counting” argument based on the noiseless

receive vectors, and we analyze two special settings in more detail.

First, extending the well-established constant block-fading model, we consider the class of

generic multiple-input multiple-output (MIMO) Rayleigh block-fading channels. In these chan-

nels, we allow the fading to vary within each block with a temporal correlation that is “generic”

in the sense used in the interference-alignment literature. We show that the number of degrees of

freedom of a generic MIMO Rayleigh block-fading channel with T transmit antennas and block

length N is given by T (1 − 1/N) provided that T < N and the number of receive antennas

is at least T (N − 1)/(N − T ). A comparison with the constant block-fading channel (where

the fading is constant within each block) shows that, for large block lengths, generic correlation

increases the number of degrees of freedom by a factor of up to four.

Furthermore, we consider an oversampled continuous-time, time-selective, Rayleigh block-

fading channel. Here, we show that sampling the filtered channel output at twice the symbol rate

results in a significant increase in the number of degrees of freedom.

The noiseless receive vectors of noncoherent block-fading channels and certain random vari-

ables arising in other applications are singular random variables, i.e., neither discrete nor con-

tinuous. This fact motivates the consideration of information-theoretic properties of integer-di-

mensional singular random variables in the second part of the thesis. For these random variables,

no satisfactory definition of entropy is available. We provide a definition of entropy and show

that it is a promising and useful extension of the established concepts of entropy and differential

entropy. As possible applications of the proposed entropy definition, we present two new results

in source coding. We show that the minimal expected binary codeword length of a quantized

integer-dimensional singular random variable can be characterized by the proposed entropy to

within an accuracy of one bit. Furthermore, we present a lower bound on the rate-distortion

function of an integer-dimensional singular source; this bound depends on the source only via

the entropy of the source.

iii



iv ABSTRACT



Acknowledgments

First of all, I want to thank my advisers Prof. Franz Hlawatsch and Dr. Erwin Riegler. The two

of them turned out to be the perfect mix for supporting me in my research activities. Erwin

pointed me to mathematically challenging problems and always provided new ideas when I had

a question. Franz found weak spots in my proofs and played devil’s advocate against my argu-

ments, and thus helped me to improve my work significantly and to think about completely new

approaches.

I also want to thank my coauthors for their collaboration, in particular Prof. Giuseppe Durisi.

Giuseppe had as much influence on my work as Franz and Erwin, and made my visits to

Chalmers not only a productive but also a pleasant experience.

Even with great supervisors my work at the institute would not have been enjoyable without

my fellow PhD students. I will always remember the party discussions with Andreas, the mathe-

matical discussions with Georg, the weird discussions with Gregor, the gossip (with cake) from

Veronika, and the discussions with Florian about our shared burden.

Finally, I am indebted to four people making all this possible: My parents who brought me up

to be a researcher and always support me. My brother who showed me the beauty of mathematics

and teaches me innumerable pieces of wisdom. Stephi who endures my flaws and ensures that

my life will be perfect no matter where I go from here.

v



vi ACKKNOWLEDGMENTS



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I DEGREES OF FREEDOM OF NONCOHERENT BLOCK-FADING CHANNELS

2 Noncoherent Block-Fading Channel 13
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Dimension Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Capacity and Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Bounding I(x; y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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Chapter 1

Introduction

1.1 Background and Motivation

Information theory is a fundamental mathematical framework for describing and analyzing tele-

communication scenarios. For a specific channel model, i.e., a mathematical description of the

relation between transmit signal and receive signal, we can use information-theoretic tools to

design optimal transmission schemes or calculate the maximally possible throughputs (as char-

acterized by the channel capacity). However, the “specific channel model” we consider is always

a compromise between realistic assumptions on the one hand and a tractable mathematical model

on the other hand. An example of this dilemma is the question whether channel state information

(CSI) is assumed to be available. Under the assumption of perfect CSI, a classical result in infor-

mation theory states that the throughput achievable in multiple-input multiple-output (MIMO)

wireless systems grows linearly in the number of antennas [Telatar, 1999]. In practice, though,

the assumption of perfect CSI is a strong simplification, and the actually achievable through-

put is decreased by the need to acquire CSI [Marzetta and Hochwald, 1999, Zheng and Tse,

2002, Liang and Veeravalli, 2004, Schuster et al., 2009, Moser, 2009, Adhikary et al., 2013]. Es-

pecially in large networks or large-MIMO settings, the rate penalty due to channel estimation is

an important factor. A fundamental way to assess this rate penalty is to study capacity in the non-

coherent setting where neither the transmitter nor the receiver has a priori CSI but both are aware

of the channel statistics. Unfortunately, in this more realistic setting, the mathematical analysis

becomes much more difficult or even intractable. Thus, in most cases, a closed-form expression

of the capacity in the noncoherent setting is unavailable. However, the capacity at high signal-

to-noise ratio (SNR) has been characterized for several different noncoherent channel models, as

summarized in what follows.

Stationary Channel Models

One of the most prominent settings is a Rayleigh fading channel model where the fading gains

are modeled as a discrete-time stationary process. Focusing on this scenario, [Lapidoth and

Moser, 2003] proved that capacity grows double-logarithmically with the SNR if the fading

1



2 CHAPTER 1. INTRODUCTION

process is regular, i.e., if the present fading state cannot be inferred exactly from the past fading

states. To obtain a more detailed understanding of the high-SNR capacity for the case of regular

fading, one has to study the second-order term in the high-SNR capacity expansion, the so-

called fading number. Recently, the fading number has been characterized for several stationary

discrete-time channel models [Lapidoth and Moser, 2003, Lapidoth and Moser, 2006, Moser,

2009, Koch, 2009]. For the case of nonregular Rayleigh fading, where the present fading state

can be inferred exactly from the past fading states, the high-SNR capacity behavior depends

on the total bandwidth of the fading process, i.e., on the support of its power spectral density.

Specifically, the number of degrees of freedom (i.e., the first-order term in the high-SNR capacity

expansion, or equivalently the asymptotic ratio between capacity and the logarithm of the SNR

as the SNR grows large, also referred to as capacity pre-log) is given by the measure of the set

of frequencies at which the power spectral density vanishes [Lapidoth, 2005]. Moreover, it is

shown in [Koch, 2009] that Rayleigh fading yields the smallest number of degrees of freedom

among all stationary and ergodic fading processes whose distribution has no mass point at zero.

Continuous-Time Channel Models

The setting of continuous-time channels was recently analyzed in [Durisi et al., 2012] and [Gho-

zlan and Kramer, 2013]. In [Durisi et al., 2012], the capacity of continuous-time Rayleigh-fading

time-frequency selective channels was considered. More specifically, upper and lower bounds on

the high-SNR capacity were derived, which imply that the high-SNR capacity of a continuous-

time fading channel is close to that of a nonfading channel with the same SNR and bandwidth.

In [Ghozlan and Kramer, 2013], a continuous-time channel model with very specific assump-

tions on the channel statistics was considered, namely the phase-noise channel model. Rather

than using a matched filter and sampling its output at the symbol rate, the effect of using a dif-

ferent filter whose output is sampled multiple times per symbol period was studied. Specifically,

for the case of Wiener phase noise, it is shown that, by sampling the filter output signal a num-

ber of times per symbol period that grows with the square-root of the SNR, one can achieve

data rates that grow logarithmically with the SNR and a number of degrees of freedom of at

least 1/2. In contrast, using a matched filter whose output is sampled at the symbol rate yields

only a double-logarithmic growth of capacity with the SNR.

Block-Fading Channel Models

Another prominent setting of Rayleigh fading channels are MIMO block-fading channels. Here,

the statistics of the fading gains are defined for blocks of N channel inputs. Between blocks, the

fading changes to independent realizations, i.e., the channel is block-memoryless. The simplest

model conforming to these assumptions is the MIMO Rayleigh-fading constant block-fading

channel model [Marzetta and Hochwald, 1999]. In this model, the fading process takes on inde-

pendent realizations across blocks of N channel uses, and within each block the fading coeffi-

cients stay constant. Thus, the N -dimensional vector of channel gains between transmit antenna
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t ∈ {1, . . . , T} and receive antenna r ∈ {1, . . . , R} within a block of length N is

hr,t = sr,t1N×1 . (1.1)

Here, 1N×1 denotes the N -dimensional all-one vector and sr,t are CN (0, 1) random variables

that are independent across the receive antennas r and the transmit antennas t. This results in the

input-output relation

yr =

T∑
t=1

sr,txt + wr, r ∈ {1, . . . , R} (1.2)

where yr ∈ RN is the channel output at receiver r, xt is the channel input at transmitter t, and wr

is additive white Gaussian noise. Once again, only a high-SNR characterization of the capacity

is available. [Zheng and Tse, 2002] proved that the number of degrees of freedom for the MIMO

constant block-fading model with T transmit antennas and R receive antennas is given by

χconst = M

(
1− M

N

)
, with M = min

{
T,R,

⌊
N

2

⌋}
. (1.3)

For the case R + T ≤ N , they also provided a high-SNR capacity expansion that is accurate

up to a o(1) term (i.e., a term that vanishes as the SNR grows). This expansion was recently

extended in [Yang et al., 2013] to the “large-MIMO” setting R+ T > N .

In [Liang and Veeravalli, 2004], the high-SNR capacity of a continuous-time, time-selective,

frequency-flat, Rayleigh block-fading channel is studied. The corresponding discrete-time chan-

nel model, which is sometimes referred to as correlated block-fading model [Morgenshtern et al.,

2013], is a generalization of the standard block-fading model as it allows the fading process to

change within each block. In [Liang and Veeravalli, 2004], a lower bound on the number of

degrees of freedom was derived. However, this lower bound is tight only for the single-antenna

case: In a single-input multiple-output (SIMO) setting, the number of degrees of freedom can

be increased [Morgenshtern et al., 2010, Riegler et al., 2011, Morgenshtern et al., 2013]. This is

in contrast to the coherent setting, where increasing the number of receive antennas beyond the

number of transmit antennas does not provide a degrees-of-freedom gain. So far, no result on the

number of degrees of freedom in the correlated block-fading MIMO setting has been available.

The results reviewed above suggest that in block-fading channels, the number of degrees

of freedom characterizes the channel capacity in a regime where the noise can “effectively” be

ignored. The intuitive argumentation in [Morgenshtern et al., 2013, Section III] suggests that the

number of degrees of freedom can be obtained as the number of entries of the transmitted vector

x that can be deduced from the corresponding receive vector y in the absence of noise, divided

by the block length N .

Beyond Degrees of Freedom

Although the number of degrees of freedom is a first step towards characterizing the high-SNR

capacity of a channel, it only provides a rough estimate and is very sensitive to the fine details
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of the channel model. Thus, a high-SNR expansion of the channel capacity up to a constant

term (similar to the one available for the constant block-fading channel model [Zheng and Tse,

2002, Yang et al., 2013]) would be valuable. Whereas the number of degrees of freedom can

be determined by counting the entries of the transmitted vector x that can be deduced from

the noiseless receive vector, we expect that a more detailed information-theoretic analysis of

the relation between x and the noiseless receive vector will result in a more precise high-SNR

expansion of the channel capacity. An analysis of the information-theoretic properties of the

noiseless receive vectors appears to be a promising first step towards understanding this relation.

Entropy for Singular Random Variables

The most basic information-theoretic quantity that characterizes a random variable is entropy.

The classical definition of entropy for discrete random variables and its interpretation as informa-

tion content go back to [Shannon, 1948] and were analyzed thoroughly from axiomatic [Csiszár,

2008] and operational [Shannon, 1948] viewpoints. A similar definition for continuous random

variables, differential entropy, was also introduced by Shannon [Shannon, 1948], but its inter-

pretation as information content is controversial [Kolmogorov, 1956]. Nonetheless, information-

theoretic derivations involving undisputed quantities like Kullback-Leibler divergence or mutual

information between continuous random variables can often be simplified using differential en-

tropy. Furthermore, differential entropy arises in asymptotic expansions of the entropy of ever

finer quantizations of a continuous random variable [Kolmogorov, 1956, Sec. IV]. Thus, (dif-

ferential) entropy seems to be an appealing starting-point for our analysis of noiseless receive

vectors.

Unfortunately, in many interesting cases, the noiseless receive vectors are neither discrete

nor continuous and classical (differential) entropy cannot be used to characterize them. Such

singular random variables arise not only in the study of noiseless receive vectors. Indeed, two

other information-theoretic problems involving singular random variables have been described

recently: For the vector interference channel, a singular input distribution has to be used to

achieve full degrees of freedom [Stotz and Bölcskei, 2012]; and in a probabilistic formulation of

compressed sensing, the underlying source distribution is singular [Wu and Verdú, 2010]. Thus,

a suitable generalization of (differential) entropy to singular random variables has the potential

to simplify theoretical work in these areas and to provide valuable insights.

Another field where singular random variables appear is source coding. In many high-

dimensional problems, deterministic dependencies reduce the intrinsic dimension of a source.

Thus, the random variable describing the source cannot be continuous but often is not discrete

either. A basic example is a random variable x ∈ R2 supported on the unit circle, i.e., exhibiting

the deterministic dependence x21 + x22 = 1. Although x is defined on R2 and both components

x1, x2 are continuous random variables, x itself is intrinsically only one-dimensional. The dif-

ferential entropy of x is not defined and, in fact, classical information theory does not provide a

rigorous definition of entropy for this random variable.

The case of arbitrary probability distributions is very hard to handle, and due to its generality
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even the mere definition of a meaningful entropy seems impossible. The two existing approaches

to defining (differential) entropy for more general distributions are based on quantizations of the

random variable in question. Usually, the entropy of these discretizations converges to infinity

and, thus, a normalization has to be employed to obtain a useful result. In [Rényi, 1959], this

approach is adopted for very specific quantizations of a random variable. Unfortunately, this

does not always result in a well-defined entropy and sometimes even fails for continuous ran-

dom variables of finite differential entropy [Rényi, 1959, pp. 197f]. Moreover, the quantization

process seems analytically difficult to deal with and no theory was built based on this definition

of entropy.1 A similar approach is to consider arbitrary quantizations that are constrained by

some measure of fineness to enable a limit operation. In [Kolmogorov, 1956] and [Posner and

Rodemich, 1971], the authors introduce ε-entropy as the minimal entropy of all quantizations

consisting of sets of diameter less than ε. However, to specify a diameter, they have to define

a distortion function. Since all basic information-theoretic quantities (e.g., mutual information

or Kullback-Leibler divergence) do not depend on a specific distortion, it is hardly possible to

embed ε-entropy into a general information-theoretic framework. Furthermore, once again the

quantization process seems to be difficult to deal with analytically.

1.2 Contributions

Extending the MIMO Constant Block-Fading Model (Chapter 2)

We extend the constant block-fading model to a much broader class of block-based input-output

relations. More specifically, we only keep the assumptions that (i) in one block of length N , the

fading is Gaussian and (ii) the channel outputs yi are bilinear combinations of the channel inputs

xk and the fading coefficients sl plus additive noise, i.e.,

yi =
∑
k,l

zi,k,lxksl + wi . (1.4)

Here, the deterministic coefficients zi,k,l determine the specific channel model and are known

to transmitter and receiver. The index sets of i, k, and l can vary depending on the specific

application, e.g., in a model with R receive antennas the index i will take on Ny = RN different

values. We prove a lower bound on the number of degrees of freedom that is in agreement with

the intuitive “dimension-counting” idea described in Section 1.1.

Generic MIMO Block-Fading Channel (Chapter 3)

We consider two specific versions of the channel model (1.4) in more detail. The first is a

generic MIMO Rayleigh-fading block-fading system with T transmit and R receive antennas.

As in the constant block-fading model (1.1), we assume that the fading vectors hr,t are Gaussian

1This entropy should not be confused with the information dimension defined in the same paper [Rényi, 1959],
which is indeed a very useful and widely used tool.
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random vectors that are independent across the receive antennas r ∈ {1, . . . , R} and the transmit

antennas t ∈ {1, . . . , T}. However, we consider a more general correlation in time. More

specifically, we assume that in each block the correlation is described by Q ≥ 1 independent

Gaussian random variables according to

hr,t = Zr,tsr,t (1.5)

where Zr,t ∈ CN×Q with Q ≤ N is a deterministic matrix and sr,t ∈ CQ contains independent

CN (0, 1) entries, which are also independent across the receive antennas r and the transmit

antennas t.

By applying our degrees-of-freedom lower bound to MIMO block-fading channels modeled

according to (1.5), we show that when the deterministic matrices Zr,t are generic, the number

of degrees of freedom can be larger than in the constant block-fading case as given in (1.3).

Coarsely speaking, we can think of generic Zr,t as being generated from an underlying joint

probability density function.2 We shall refer to (1.5) with generic Zr,t as generic block-fading

model. Our specific contribution is as follows: we show that for almost all matrices Zr,t, the

number of degrees of freedom is given by

χgen = T

(
1− 1

N

)
(1.6)

provided that T < N/Q and R ≥ T (N − 1)/(N − TQ). We note that this result does not

encompass the case where all matrices Zr,t are exactly equal, and thus we do not know whether

(1.6) holds in that case. Therefore, the specific setting where all matrices Zr,t are exactly equal

remains an open problem. We also provide an upper bound and a lower bound on χgen for the

complementary case R < T (N −1)/(N −TQ).

The results of Chapter 3 have been published in [Koliander et al., 2014].

Oversampled Block-Fading Channel (Chapter 4)

As a second example of the channel model (1.4), we consider a continuous-time, time-selective,

frequency-flat, Rayleigh block-fading single-input single-output (SISO) channel. Focusing on

the channel model introduced in [Liang and Veeravalli, 2004], we investigate whether using a

matched filter whose output is sampled at the symbol rate is optimal from a degrees-of-freedom

point of view or using a different filter and more frequent sampling yields a higher throughput at

high SNR. We show that the latter is true. Specifically, we prove that the discrete-time channel

obtained by sampling the appropriately filtered channel output signal at twice the symbol rate

has at least 1−1/N degrees of freedom provided that 2M+1 < N . Here, M reflects the “band-

width” of the channel fading process (note that the fading process cannot be strictly bandlimited

as we consider only finite-duration processes). In contrast, the discrete-time channel obtained

with symbol-rate sampling has only 1 − (2M + 1)/N degrees of freedom [Liang and Veer-

2We use the term “generic” in the same sense as it is used in the interference-alignment literature [Jafar, 2011].
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avalli, 2004, Th. 1]. Hence, we conclude that the underlying continuous-time, time-selective,

frequency-flat, Rayleigh block-fading channel has at least 1− 1/N degrees of freedom, and that

matched filtering and symbol-rate sampling is not capacity-achieving at high SNR.

The results of Chapter 4 have been published in [Dörpinghaus et al., 2014].

Entropy of Integer-Dimensional Random Variables (Chapter 6)

Motivated by the fact that the number of degrees of freedom can be obtained via a heuristic

“dimension-counting” analysis of the noiseless input-output relation, we want to investigate the

information-theoretic properties of the noiseless receive vectors ȳ, whose components are given

by (cf. (1.4))

ȳi =
∑
k,l

zi,k,lxksl . (1.7)

Because in many interesting cases ȳ is singular, i.e., neither a discrete nor a continuous random

variable, even the definition of an entropy turns out to be a demanding task. As mentioned in

Section 1.1, the existing approaches to generalizing (differential) entropy are not true generaliza-

tions and depend on arbitrary assumptions, e.g., a specific distortion function. Thus, we propose

a generalization of entropy and differential entropy to a broader class of random variables. In

our approach, we first consider the probability mass functions of quantizations of the random

variable and define a density function as a normalized limit of these probability mass functions.

(In the special case of a continuous random variable, this results precisely in the probability den-

sity function due to Lebesgue’s differentiation theorem.) Then we take the expectation of the

logarithm of the resulting density function. Due to a fundamental result in geometric measure

theory, this approach can be used only for a specific class of random variables, since other-

wise the density function does not exist [De Lellis, 2008, Th. 3.1]. In fact, the existence of the

density function implies that the random variable is distributed according to a rectifiable mea-

sure [De Lellis, 2008, Th. 1.1]. Thus, the random variables considered in the second part of

this thesis are rectifiable random variables on Euclidean space. Coarsely speaking, these random

variables are “integer-dimensional,” i.e., they are concentrated on a subset of lower (integer) di-

mension. Although this is still far from the generality of arbitrary probability distributions, it

covers numerous interesting cases and gives valuable insights.

In addition to proposing a definition of entropy for integer-dimensional random variables,

we demonstrate connections to classical entropy and differential entropy and we prove a trans-

formation property and invariance under unitary transformations.

The results of Chapter 6 will be submitted for publication [Koliander et al., 2015].

Joint and Conditional Integer-Dimensional Entropy (Chapter 7)

Whereas the definition of joint (differential) entropy for discrete or continuous random variables

is straightforward, care has to be exercised in extending this concept to the case of integer-

dimensional random variables. In particular, even the question whether a component x of a
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rectifiable random variable (x, y) is again rectifiable is not trivial. We introduce joint entropy for

integer-dimensional random variables and discuss the connections between the entropy of the

components and the entropy of the joint random variable for various settings.

Extending the concept of conditional entropy is even more challenging. Based on the defini-

tion of a regular conditional probability, we present a rigorous definition of conditional entropy

for integer-dimensional random variables. Our analysis of the fine properties of conditional

entropy results in a generalization of the classical chain rule for entropy and shows interesting

connections between entropy and geometric properties of the random variables. Furthermore, we

demonstrate relations of our entropy with the mutual information of integer-dimensional random

variables. Finally, we show that our entropy satisfies an asymptotic equipartition property.

The results of Chapter 7 will be submitted for publication [Koliander et al., 2015].

Integer-Dimensional Source Coding (Chapter 8)

Based on the results obtained in Chapters 6 and 7, we demonstrate two applications of our en-

tropy definition to source coding. First, we study the minimal expected codeword length of

quantized integer-dimensional sources. More specifically, we consider partitions of the integer-

dimensional support set of the source random variable such that each set in the partition has

a Hausdorff measure not exceeding a predefined fineness, and we show that the minimal ex-

pected binary codeword length of the quantized random variable defined by these partitions can

be characterized by our entropy to within an accuracy of one bit.

The second application concerns the rate-distortion (RD) function of integer-dimensional

random sources. Based on the characterization of the RD function in [Csiszár, 1974], we prove

a lower bound on the RD function that depends on the source only via the entropy of the source.

We apply our lower bound to the specific setting of a uniform distribution on the unit circle in

R2 and provide an upper bound that is within 0.2 nats of the lower bound.

The results of Chapter 8 will be submitted for publication [Koliander et al., 2015].

1.3 Notation

Sets are denoted by calligraphic letters (e.g., I), and |I| denotes the cardinality of the set I.

The indicator function of a set I is denoted by 1I . Sets of sets are denoted by fraktur letters

(e.g., M). The set of natural numbers (including zero) {0, 1, 2, . . . } is denoted as N. We use

the notation [M : N ] to indicate the set {n ∈ N : M ≤ n ≤ N} for M,N ∈ N. The open

sphere with center x ∈ RM and radius r > 0 is denoted by Br(x), i.e., Br(x) , {y ∈ RM :

‖y − x‖ < r}. The constant ω(M) denotes the volume of the M -dimensional unit sphere,

i.e., ω(M) = πM/2/Γ(1 + M/2) where Γ is the Gamma function. Boldface uppercase and

lowercase letters denote matrices and vectors, respectively. Sans serif letters denote random

quantities, e.g., A is a random matrix, x is a random vector, and s is a random scalar (A,x,

and s denote the deterministic counterparts). For a continuous random variable x, h(x) denotes

differential entropy [Cover and Thomas, 2006, Ch. 8]. Similarly, for a discrete random variable
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x, H(x) denotes entropy [Cover and Thomas, 2006, Ch. 2]. The superscripts T and H stand

for transposition and Hermitian transposition, respectively. The all-zero matrix of size N ×M
is written as 0N×M , and the M ×M identity matrix as IM . The entry in the ith row and jth

column of a matrix A is denoted by Ai,j , and the ith entry of a vector x by xi. For an M × N
matrix A, we denote by [A]JI , where I ⊆ [1 : M ] and J ⊆ [1 : N ], the |I| × |J | submatrix

of A containing the entries Ai,j with i∈I and j ∈J ; furthermore, we let [A]I , [A]
[1:N ]
I and

[A]J , [A]J[1:M ]. We indicate by [x]I ∈ C|I| the subvector of x containing the entries xi with

i ∈ I. The diagonal matrix with the entries of x in its main diagonal is denoted by diag(x).

We let diag(A1, . . . ,AK) be the block-diagonal matrix having the matricesA1, . . . ,AK on the

main block diagonal. By det(A), we denote the determinant of A, and by |A|, we denote the

absolute value of det(A). For x ∈ R, we define bxc , max{m ∈ Z : m ≤ x} and dxe ,

min{m ∈ Z : m≥ x}. We write Ex[·] for the expectation operator with respect to the random

variable x. If the random variable x is clear from the context, we simply write E[·]. Pr{x ∈ A}
denotes the probability that x ∈ A, and x ∼ CN (0,Σ) indicates that x is a circularly symmetric

complex Gaussian random vector with covariance matrix Σ. The Jacobian matrix of a Lipschitz

function3 φ is written as Jφ, and the Jacobian determinant is denoted Jφ. For a function φ with

domain D and a subset D̃ ⊆ D, we denote by φ
∣∣
D̃ the restriction of φ to the domain D̃. We use

the Landau notation f(ρ) = O(g(ρ)) to indicate that there exist constants c1, c2 > 0 such that

|f(ρ)| ≤ c1 |g(ρ)| for ρ > c2. Similarly, we use f(ρ) = o(g(ρ)) to indicate that for every ε > 0

there exists a constant c3 > 0 such that |f(ρ)| ≤ ε |g(ρ)| for ρ > c3. The function sinc(·) is

defined as

sinc(x) =

sin(πx)/(πx), if x 6= 0

1, if x = 0.
(1.8)

For x ∈ RM1 and y ∈ RM2 , we denote by px : RM1+M2 → RM1 , px(x,y) = x, the projec-

tion of RM1+M2 to the first M1 components. Similarly, py : RM1+M2 → RM2 , py(x,y) = y,

denotes the projection of RM1+M2 to the last M2 components. H m denotes the m-dimensional

Hausdorff measure.4 LM denotes the M -dimensional Lebesgue measure, and BM denotes the

Borel σ-algebra on RM . For a measure µ and a measurable function f , the induced measure is

given as µf−1(A) , µ(f−1(A)). For two measures µ and ν on the same measurable space, we

indicate by µ� ν that µ is absolutely continuous with respect to ν (i.e., for any measurable set

A, ν(A) = 0 implies µ(A) = 0). For a measure µ and a measurable set E , the measure µ|E is

the restriction of µ to E , i.e., µ|E(A) = µ(A ∩ E). The logarithm to the base e is denoted log,

and the logarithm to the base 2 is denoted ld.

3By Rademacher’s theorem [Ambrosio et al., 2000, Th. 2.14], a Lipschitz function is differentiable almost every-
where and, thus, the Jacobian matrix and determinant are well defined almost everywhere.

4Readers unfamiliar with this concept may think of it as a measure of an m-dimensional area in a higher-
dimensional space (e.g., surfaces in R3).
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Part I

Degrees of Freedom of Noncoherent
Block-Fading Channels

11





Chapter 2

Noncoherent Block-Fading Channel

The channel model considered in this chapter can be seen as a blueprint for various different

settings. Thus, at this point, we do not provide an interpretation in terms of antennas or time

slots. We give an input-output relation for a block of length N that obtains a physical meaning

only when narrowed down to a specific setting (as we will do in the subsequent Chapters 3 and 4).

For the proposed channel model, we prove a lower bound on the number of degrees of free-

dom that conforms to the intuitive “dimension counting” argument in [Morgenshtern et al., 2013,

Section III]. According to this argument, the number of degrees of freedom can be obtained as

the number of entries of the transmitted vector x that can be deduced from the corresponding

receive vector y in the absence of noise, divided by the block length N .

2.1 System Model

For a channel input vector x ∈ CNx , a channel output vector y ∈ CNy , a fading vector s ∼
CN (0, INs), and an additive noise vector w ∼ CN (0, INy), the input-output relation in one

block of block length N is given by

yi =
√
ρ xTZis + wi (2.1)

for all i ∈ [1 : Ny]. Here Zi ∈ CNx×Ns specifies which entries of x and s contribute to yi. In

many models, the matrices Zi will be sparse (e.g., if y1 depends only on x1 and not on [x][2:Nx]

then all rows of Z1 but the first one are zero). The vectors s and w are assumed to be mutually

independent and to change in an independent fashion from block to block (“block-memoryless”

assumption). The block length N depends on the specific physical interpretation of the input-

output relation (2.1). In a single antenna system, N will be the number of input symbols Nx

that we can transmit in one block. However, in multiple antenna systems, the number of input

symbols can be larger than the block length, e.g., if we use T transmit antennas then the number

of transmitted symbols per block will satisfy Nx = TN .

13
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We can rewrite (2.1) in vector notation as

y =
√
ρ ȳ + w (2.2)

where ȳ = Bs with

B ,


xTZ1

xTZ2

...

xTZNy

 . (2.3)

2.2 Dimension Counting

The most convenient way to analyze the structure of the matrices Zi is to consider the mapping

φ : CNx+Ns → CNy defined by φ(s,x) = ȳ. More specifically, the rank of the Jacobian matrix

Jφ(s,x) =


∂φ1
∂s1

· · · ∂φ1
∂sNs

∂φ1
∂x1

· · · ∂φ1
∂xNx

...
...

...
...

∂φNy

∂s1
· · ·

∂φNy

∂sNs

∂φNy

∂x1
· · ·

∂φNy

∂xNx

 ∈ CNy×(Nx+Ns) (2.4)

plays a pivotal role in our capacity analysis. We first provide an intuitive “dimension counting”

argument which results in the same number of degrees of freedom as the rigorous lower bound

established in the subsequent sections. Assume that Jφ(s,x) has rank ` at some fixed point

(s,x), i.e., there exist ` linearly independent columns. For simplicity, we assume that

[Jφ(s,x)][1:`] =


∂φ1
∂s1

· · · ∂φ1
∂sNs

∂φ1
∂x1

· · · ∂φ1
∂x`−Ns

...
...

...
...

∂φNy

∂s1
· · ·

∂φNy

∂sNs

∂φNy

∂x1
· · ·

∂φNy

∂x`−Ns

 ∈ CNy×`

has full rank `. The matrix [Jφ(s,x)][1:`] is the Jacobian matrix of the function φ when con-

sidered as a function of (s, x1, . . . , x`−Ns) and the remaining variables (x`−Ns+1, . . . , xNx) are

treated as fixed parameters. From a communication viewpoint, we can interpret the variables

(x`−Ns+1, . . . , xNx) as pilot symbols that are known to transmitter and receiver. By the inverse

function theorem, φ is one-to-one in a neighborhood of (s, x1, . . . , x`−Ns). Thus, from the obser-

vations φ and the parameters (x`−Ns+1, . . . , xNx), we can reconstruct (s, x1, . . . , x`−Ns) locally,

i.e., we can use ` −Ns dimensions to transmit information. In the subsequent sections, we will

show that `−Ns degrees of freedom can indeed be achieved.

Note that in general also the number of rows Ny is larger than the rank ` of the matrix. This

implies that the noiseless receive vector ȳ belongs to an ` dimensional subset and the random

variable ȳ is not continuous. Hence, in our proof, we will reduce the receive vector to exactly
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` entries, such that Jφ(s,x) contains only ` linearly independent rows. We expect that this

does not reduce the number of degrees of freedom but a more detailed capacity analysis should

consider the entire vector ȳ.

2.3 Capacity and Degrees of Freedom

We want to characterize the capacity of the channel (2.1) as ρ goes to infinity. Usually we are

interested in a normalized capacity and not a capacity per block. Thus, we will divide the capacity

per block by the block length N to obtain normalized values. Because of the block-memoryless

assumption, the coding theorem in [Gallager, 1968, Sec. 7.3] implies that the capacity of the

channel (2.1) is given by

C(ρ) =
1

N
sup I(x; y) . (2.5)

Here, I(·; ·) denotes mutual information [Cover and Thomas, 2006, p. 251] and the supremum is

taken over all probability distributions of x that satisfy the average-power constraint

E
[
‖x‖2

]
≤ N . (2.6)

The number of degrees of freedom χ is defined as

χ , lim
ρ→∞

C(ρ)

log ρ
(2.7)

which corresponds to the expansion

C(ρ) = χ log ρ+ o(log ρ) . (2.8)

Our main result is stated in the following theorem.

Theorem 2.1 The number of degrees of freedom χ of the channel (2.1) is lower bounded by

χ ≥ 1

N
(`−Ns) (2.9)

if there exist s ∈ CNs and x ∈ CNx such that the rank of the Jacobian matrix Jφ(s,x) (see (2.4))

is larger than or equal to `.

The remainder of this chapter is a structured proof of Theorem 2.1. Because Theorem 2.1

is only of interest for ` > Ns (otherwise the lower bound is trivial), we will tacitly assume that

` > Ns in what follows.

2.4 Bounding I(x; y)

By (2.5), the capacity C(ρ) and, hence, χ (cf. (2.7)) can be lower-bounded by evaluating I(x; y)

for any specific input distribution that satisfies the power constraint (2.6). In particular, in what
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follows, we will assume x ∼ CN (0, INx). As

I(x; y) = h(y)− h(y |x) (2.10)

we can lower-bound I(x; y) by upper-bounding h(y |x) and lower-bounding h(y).

Upper Bound on h(y|x)

It follows from (2.2) and (2.3) together with s ∼ CN (0, INs) and wr ∼ CN (0, INy) that y

is conditionally Gaussian given x, with conditional covariance matrix ρBBH + INy (note that

B = B(x)). Hence, h(y |x) = Ex

[
log
(
(πe)Ny

∣∣ρBBH + INy

∣∣)] according to [Neeser and

Massey, 1993, Th. 2]. By [Horn and Johnson, 1985, Th. 1.3.20],
∣∣ρBBH+INy

∣∣ =
∣∣ρBHB+INs

∣∣.
Furthermore, assuming without loss of generality that ρ > 1 (note that we are only interested in

the asymptotic regime ρ→∞), we have
∣∣ρBHB+ INs

∣∣ ≤ ∣∣ρ(BHB+INs

)∣∣ = ρNs
∣∣BHB+INs

∣∣.
Thus,

h(y |x) ≤ Ex

[
log
(
(πe)NyρNs

∣∣BHB + INs

∣∣)]
= Ns log ρ+ Ex

[
log
∣∣BHB + INs

∣∣]+O(1). (2.11)

By using Jensen’s inequality for the concave function log(·), we obtain

Ex

[
log
∣∣BHB + INs

∣∣] ≤ logEx

[∣∣BHB + INs

∣∣] . (2.12)

The right-hand side in (2.12) is independent of ρ and the determinant
∣∣BHB + INs

∣∣ is some

polynomial in the entries of x and xH (cf. (2.3)). Since x ∼ CN (0, INx), all moments of x, and,

hence, the expectation Ex

[∣∣BHB+ INs

∣∣], are finite. Thus, the right-hand side in (2.12) is a finite

constant with respect to ρ. Hence, (2.11) together with (2.12) implies

h(y |x) ≤ Ns log ρ+ O(1) . (2.13)

Lower Bound on h(y)

By assumption, we know that there exist s ∈ CNs and x ∈ CNx such that Jφ(x, s) has a

nonsingular `× ` submatrix. We denote by I the set of row indices and by D the set of column

indices specifying the nonsingular submatrix, i.e.,

det
(
[Jφ(x, s)]DI

)
6= 0 (2.14)

with |I| = |D| = `. The sets Ic , [1 : Nx + Ns] \ I and Dc , [1 : Ny] \ D give the

remaining indices. The main idea behind the proof of the lower bound is that we only have to

take care of the observations indicated by I and the ones in Ic can be ignored. To do so, it is

convenient to separate the Ny receive variables into a “useful” part, which is represented by [y]I

and a “redundant” part [y]Ic .
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We can now lower-bound h(y) as follows:

h(y) = h([y]I , [y]Ic)

(a)
= h([y]I) + h

(
[y]Ic

∣∣[y]I
)

(b)

≥ h
(√
ρ [ȳ]I + [w]I

∣∣[w]I
)

+ h
(
[y]Ic

∣∣s, x, [y]I
)

(c)
= h

(√
ρ [ȳ]I

)
+O(1)

(d)
= log

(√
ρ
)2`

+ h([ȳ]I) +O(1)

= ` log ρ+ h([ȳ]I) +O(1) . (2.15)

Here, (a) holds by the chain rule for differential entropy [Cover and Thomas, 2006, Th. 8.6.2],

in (b) we used (2.2) and the fact that conditioning reduces differential entropy, (c) holds since

h
(
[y]Ic

∣∣s, x, [y]I
)

= h
(
[w]Ic

)
is a finite constant, and (d) holds by the transformation property

of differential entropy [Cover and Thomas, 2006, eq. (8.71)]. Using (2.13) and (2.15) in (2.10),

we obtain

I(x; y) ≥ (`−Ns) log ρ+ h([ȳ]I) + O(1) . (2.16)

The degrees of freedom lower bound (2.9) follows by inserting (2.16) into (2.5):

C(ρ) ≥ 1

N
I(x; y) ≥ 1

N
(`−Ns) log ρ+

h([ȳ]I)

N
+O(1)

whence, by (2.7) and because h([ȳ]I) does not depend on ρ,

χ ≥ lim
ρ→∞

1
N (`−Ns) log ρ+O(1)

log ρ
=

1

N
(`−Ns)

provided that h([ȳ]I) > −∞. To conclude the proof, we will next show that h([ȳ]I) > −∞.

This is the most technical part of the proof.

2.5 Proof that h([ȳ]I) >−∞

As [ȳ]I is a function of s and x (see (2.2) and (2.3)), the idea behind our proof is to relate

h([ȳ]I), which we are not able to calculate directly, to h(s, x), which can be calculated trivially.

The underlying intuition is that the image of a random variable of finite differential entropy,

such as (s, x), under a “well-behaved” mapping, such as (s, x) 7→ [ȳ]I , cannot have an infinite

differential entropy. At the heart of the proof is the bounding of differential entropy under finite-

to-one mappings, to be established in Lemma 2.3 below.

To simplify notation we introduce the shorthand sx , (sT xT)T. We first need to characterize

the mapping between sx and [ȳ]I . To equalize the dimensions—note that [ȳ]I ∈ C` and sx ∈
CNs+Nx—we condition on Ns + Nx − ` entries of sx, defined by Dc (recall that D was defined
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in (2.14)). This results in

h([ȳ]I) ≥ h([ȳ]I |[sx]Dc) . (2.17)

The remaining entries are given by [sx]D.

Because of (2.17), it suffices to show that

h([ȳ]I
∣∣[sx]Dc) > −∞ . (2.18)

This will be done by relating h([ȳ]I
∣∣[sx]Dc) to h([sx]D). Before doing so, we have to understand

the connection between the variables [ȳ]I and [sx]D. This leads us to the following program:

(i) Define the polynomial mapping φ[sx]Dc relating [sx]D and [ȳ]I .

(ii) Prove that φ[sx]Dc satisfies the following two properties:

a) Its Jacobian matrix is nonsingular almost everywhere (a.e.) for almost all (a.a.) [sx]Dc .

b) It is finite-to-one1 a.e. for a.a. [sx]Dc .

(iii) Apply a novel result on the change in differential entropy that occurs when a random

variable undergoes a finite-to-one mapping to relate h([ȳ]I
∣∣[sx]Dc) to h(s, [sx]D).

(iv) Bound the terms resulting from this change in differential entropy.

Step (i): We consider the [sx]Dc-parametrized mapping

φ[sx]Dc : C` → C`; [sx]D 7→ [φ(sx)]I (2.19)

where φ(sx) = ȳ is defined in (2.2) and (2.3), i.e., φ[sx]Dc is the mapping φ defined in Section 2.2

projected to the indices given by I and with fixed values [sx]Dc . The components of the vector-

valued mapping φ[sx]Dc are multivariate polynomials of degree 2 in the entries of [sx]D. The

Jacobian matrix Jφ[sx]Dc
of φ[sx]Dc is equal to the submatrix specified by I andD of the Jacobian

Jφ given in (2.4) with fixed variables [sx]Dc , i.e., Jφ[sx]Dc
([sx]D) =

[
Jφ(sx)

]D
I .

Step (ii-a): We have to show that Jφ[sx]Dc
is nonsingular (i.e., |Jφ[sx]Dc

| 6=0) a.e. for a.a. [sx]Dc .

The determinant of Jφ[sx]Dc
is a polynomial p(sx). By assumption, we know that p(sx) does

not vanish identically. Since a polynomial vanishes either identically or on a set of measure

zero [Gunning and Rossi, 1965, Cor. 10], we conclude that p(sx) does not vanish a.e. In other

words, the matrix Jφ[sx]Dc
is nonsingular a.e. for a.a. [sx]Dc .

Step (ii-b): We will invoke Bézout’s theorem [van den Essen, 2000, Prop. B.2.7] to show that

the mapping φ[sx]Dc is finite-to-one a.e. for a.a. [sx]Dc . In what follows, note that for a given

[ȳ]I in the codomain of φ[sx]Dc , the quantity φ−1[sx]Dc
([ȳ]I) is the preimage

φ−1[sx]Dc
([ȳ]I) = {[sx]D : φ[sx]Dc ([sx]D) = [ȳ]I}

1A mapping is called finite-to-one if every element in the codomain has a preimage of finite cardinality.
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and not the function value of the inverse function (which does not exist in most cases). Further-

more, for a given [sx]Dc , we denote by M̃ ⊆ C` the set of all [sx]D for which Jφ[sx]Dc
([sx]D) is

nonsingular, i.e.,

M̃ ,
{

[sx]D ∈ C` : |Jφ[sx]Dc
([sx]D)| 6= 0

}
. (2.20)

Lemma 2.2 For a given [sx]Dc , let M̃ be defined as above. Then for all [ȳ]I ∈ φ[sx]Dc (M̃),

∣∣φ−1[sx]Dc
([ȳ]I) ∩ M̃

∣∣ ≤ m̃ , 2` .

Proof. Let [ȳ]I ∈ φ[sx]Dc(M̃). The set φ−1[sx]Dc
([ȳ]I) contains all points [sx]D ∈ C` such that

φ[sx]Dc ([sx]D) = [ȳ]I . Thus, these points are the zeros of the vector-valued mapping

[sx]D 7→ φ[sx]Dc ([sx]D)− [ȳ]I . (2.21)

It follows from (2.19) that each component of the vector-valued mapping (2.21) is a polynomial

of degree 2. Hence, the zeros of the mapping (2.21) are the common zeros of ` polynomials

of degree 2. By a weak version of Bézout’s theorem [van den Essen, 2000, Prop. B.2.7], the

number of isolated zeros (i.e., with no other zeros in some neighborhood) cannot exceed m̃ = 2`.

Since Jφ[sx]Dc
is nonsingular on M̃, the function φ[sx]Dc restricted to M̃ is locally one-to-one

[Rudin, 1976, Th. 9.24] and, hence, each zero of φ[sx]Dc − [ȳ]I on M̃ has to be an isolated zero.

Therefore, the number of points [sx]D ∈ M̃ such that φ[sx]Dc ([sx]D) = [ȳ]I cannot exceed

m̃.

By Lemma 2.2, the function φ[sx]Dc for a given [sx]Dc is finite-to-one on the set M̃. Because

by Step (ii-a) the matrix Jφ[sx]Dc
([sx]D) is nonsingular a.e. for a.a. [sx]Dc , and because M̃ ⊆ C`

is the set of all [sx]D for which Jφ[sx]Dc
([sx]D) is nonsingular, we conclude that φ[sx]Dc is finite-

to-one a.e. for a.a. [sx]Dc .

Step (iii): We will use the following novel result bounding the change in differential entropy

that occurs when a random variable undergoes a finite-to-one mapping.

Lemma 2.3 Let u ∈ Cn be a random vector with probability density function fu. Consider

a continuously differentiable mapping κ : Cn→ Cn with Jacobian matrix Jκ. Assume that Jκ is

nonsingular a.e. and letM , {u ∈ Cn : |Jκ(u)| 6= 0} (thus, Cn \M has Lebesgue measure

zero). Furthermore, let v , κ(u), and assume that for all v ∈ Cn, the cardinality of the set

κ−1(v) ∩M satisfies |κ−1(v) ∩M| ≤ m < ∞, for some m ∈ N (i.e., κ
∣∣
M is finite-to-one).

Then:

1. There exist disjoint measurable sets {Uk}k∈[1:m] such that κ
∣∣
Uk

is one-to-one for each

k ∈ [1 :m] and
⋃
k∈[1:m] Uk covers almost all ofM.

2. For every choice of such sets {Uk}k∈[1:m],

h(v) ≥ h(u) +

∫
Cn
fu(u) log(|Jκ(u)|2) du−H(k) (2.22)
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where k is a discrete random variable that takes on the value k when u ∈ Uk andH denotes

entropy.

Proof. See Appendix A.1.

Since, by Step (ii-b), the mappings φ[sx]Dc
∣∣
M̃ are finite-to-one for a.a. [sx]Dc , we can use

Lemma 2.3 with u = [sx]D, κ = φ[sx]Dc , n = `, m = m̃, andM = M̃ and obtain

h
(
φ[sx]Dc ([sx]D)

)
≥ h([sx]D) +

∫
C`
f[sx]D([sx]D) log

(
|Jφ[sx]Dc

([sx]D)|2
)
d([sx]D)−H(k[sx]Dc ) (2.23)

where k[sx]Dc corresponds to the random variable k from Lemma 2.3 (since κ = φ[sx]Dc , we

have a different k for each [sx]Dc). Because of [ȳ]I = φ[sx]Dc ([sx]D), we have h
(
[ȳ]I

∣∣[sx]Dc =

[sx]Dc
)

= h
(
φ[sx]Dc ([sx]D)

)
. Thus, (2.23) entails

h
(
[ȳ]I

∣∣[sx]Dc
)

= E[sx]Dc

[
h
(
φ[sx]Dc ([sx]D)

)]
≥ h([sx]D) + E[sx]Dc

[∫
C`
f[sx]D([sx]D) log

(∣∣Jφ[sx]Dc([sx]D)
∣∣2)d([sx]D)−H

(
k[sx]Dc

)]
.

(2.24)

Step (iv): We show now that the right-hand side of (2.24) is lower-bounded by a finite constant.

The differential entropy h([sx]D) is the differential entropy of a standard multivariate Gaussian

random vector and thus a finite constant. The entropy H
(
k[sx]Dc

)
for a.a. [sx]Dc does not exceed

log(m̃), where m̃ = 2`. Hence, it remains to lower-bound

E[sx]Dc

[ ∫
C`
f[sx]D([sx]D) log

(
|Jφ[sx]Dc([sx]D)|2

)
d([sx]D)

]
=

∫
CNs+Nx−`

∫
C`
f[sx]Dc ([sx]Dc) f[sx]D([sx]D) log

(
|Jφ[sx]Dc

([sx]D)|2
)
d([sx]D) d([sx]Dc)

(a)
=

∫
CNs+Nx

fsx(sx) log
(
|Jφ[sx]Dc

([sx]D)|2
)
d(sx) (2.25)

where (a) holds because [sx]D and [sx]Dc are independent. A similar problem was solved in

[Morgenshtern et al., 2013] using Hironaka’s theorem on the resolution of singularities. Here,

we take a much simpler approach, which relies on the fact that det
(
Jφ[sx]Dc

)
in (2.25) is an

analytic function [Rudin, 1987, Ch. 10] that does not vanish identically, and on a property of

subharmonic functions2 (see [Azarin, 2009, Th. 2.6.2.1]).

Lemma 2.4 Let f be an analytic function on Cn that is not identically zero. Then

I1 ,
∫
Cn

exp(−‖ξ‖2) log(|f(ξ)|) dξ > −∞ . (2.26)

2See [Azarin, 2009, Ch. 2.6] for a definition of subharmonic functions.
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Proof. See Appendix A.2.

The function fsx is the probability density function of a standard multivariate Gaussian ran-

dom vector. Furthermore, since the function det(Jφ[sx]Dc
([sx]D)) is a complex polynomial that

is nonzero a.e. (see Step (ii-a)), it is an analytic function that is not identically zero. Hence, by

Lemma 2.4, the integral in (2.25) is finite. Thus, with (2.24), we obtain h
(
[ȳ]I

∣∣[sx]Dc
)
> −∞

and, because of (2.17), that h([ȳ]I) > −∞. This concludes the proof.
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Chapter 3

Generic MIMO Block-Fading Channel

As a special setting of the general model (2.1), we consider a MIMO block-fading channel with

T transmit antennas, R receive antennas, and block length N . We assume that the fading of dif-

ferent transmit-receive antenna pairs is independent and that the fading vector for each transmit-

receive antenna pair depends only on Q < N independent random variables. Furthermore, the

statistics of the fading coefficients are assumed to be “generic,” i.e., they can be thought of as

being generated from an underlying continuous probability distribution.

In this setting, we can use the lower bound on the number of degrees of freedom in Theo-

rem 2.1. In addition, we prove an upper bound that matches our lower bound for a wide range of

choices of T , R, Q, and N .

3.1 System Model

The discrete-time fading process associated with each transmit-receive antenna pair conforms to

the following channel input-output relations within a given block of N channel uses:

yr =
√
ρ
∑
t∈[1:T ]

diag(hr,t) xt + wr , r ∈ [1 :R] . (3.1)

Here, xt ∈ CN is the signal vector originating from the tth transmit antenna; yr ∈ CN is

the signal vector at the rth receive antenna; hr,t ∼ CN (0,Σr,t) is the vector of N channel

coefficients between the tth transmit antenna and the rth receive antenna; wr ∼ CN (0, IN ) is

the noise vector at the rth receive antenna; and ρ ∈ R+ is the SNR. The vectors hr,t and wr

are assumed to be mutually independent and independent across r ∈ [1 : R] and t ∈ [1 : T ],

and to change in an independent fashion from block to block (“block-memoryless” assumption).

The transmitted signal vectors xt are assumed to be independent of the vectors hr,t and wr. We

consider the noncoherent setting, where transmitter and receiver know the covariance matrix Σr,t

of hr,t but have no a priori knowledge of the realization of hr,t.

Because the covariance matrix Σr,t is positive-semidefinite, it can be factorized as Σr,t =

Zr,tZ
H
r,t withZr,t ∈ CN×Q andQ = rank(Σr,t) = rank(Zr,t). We can then rewrite the channel

23
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coefficient vectors hr,t in terms of Zr,t, i.e.,

hr,t = Zr,tsr,t (3.2)

where sr,t ∈ CQ, sr,t ∼ CN (0, IQ). Using (3.2), the R input-output relations (3.1) can be

rewritten as

yr =
√
ρ
∑
t∈[1:T ]

diag(Zr,tsr,t) xt + wr , r ∈ [1 :R] (3.3)

or in stacked form as

y =
√
ρ ȳ + w, with ȳ , Bs (3.4)

where y , (yT1 · · · yTR)T ∈ CRN, w , (wT
1 · · ·wT

R)T ∈ CRN , s , (sT1 · · · sTR)T ∈ CRTQ with

sr , (sTr,1 · · · sTr,T )T ∈ CTQ, and

B ,

B1
. . .

BR

 ∈ CRN×RTQ, with Br , (X1Zr,1 · · ·XTZr,T ) ∈ CN×TQ (3.5)

where Xt , diag(xt) ∈ CN×N . For later use, we also define x , (xT1 · · · xTT )T ∈ CTN and

Z ,

Z1,1 · · · Z1,T
...

...
ZR,1 · · · ZR,T

∈ CRN×TQ.

The matrixZ contains all information about the correlation of the channel coefficients hr,t (recall

that Σr,t = Zr,tZ
H
r,t). We will refer to Z as coloring matrix and use the phrase “for a generic

coloring matrix Z” to indicate that a property holds for almost every matrix Z. Here, “almost

every” is understood in the precise mathematical sense that the set of all matrices Z for which

the property does not hold has Lebesgue measure zero.

In the special (nongeneric) case where Q = 1 and each Zr,t ∈ CN×1 is the all-one vec-

tor, (3.3) reduces to the input-output relation of the MIMO constant block-fading model given

by (cf. (1.1))

yr =

√
ρ

T

∑
t∈[1:T ]

sr,t xt + wr , r ∈ [1 :R] . (3.6)

Comparing (3.3) and (2.1), we see that the generic MIMO block-fading model is a special

case of (2.1). More precisely, we can rewrite (3.3) for each receive symbol yr,i as

yr,i =
√
ρ
∑
t∈[1:T ]

[Zr,t]{i}sr,t xt,i + wr,i

=
√
ρ (x1,i · · · xT,i)

[Zr,1]{i}
. . .

[Zr,T ]{i}


sr,1

...
sr,T

+ wr,i (3.7)
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for r ∈ [1 :R] and i ∈ [1 :N ]. Note that yr,i does not depend on all values of x and s. Thus, a

representation conforming to (2.1) would include many columns and rows containing only zeros.

In the representation (3.7) all these rows and columns are omitted and only the relevant entries

are stated.

3.2 Characterization of the Number of Degrees of Freedom

3.2.1 Main Result

Recall (see (2.5)) that the capacity of the channel (3.3) is given by

C(ρ) =
1

N
sup I(x; y) (3.8)

where, the supremum is taken over all probability distributions of x that satisfy the average-power

constraint

E[‖x‖2] ≤ N . (3.9)

The number of degrees of freedom is given by

χ = lim
ρ→∞

C(ρ)

log ρ
. (3.10)

Our main result is stated in the following theorem.

Theorem 3.1 Let T <N/Q andR ≥ T (N−1)/(N−TQ). For a channel conforming to the

generic block-fading model, i.e., the channel (3.3) with generic coloring matrix Z, the number

of degrees of freedom is given by

χgen = T

(
1− 1

N

)
. (3.11)

Proof. In Section 3.3, we will show that χgen is upper-bounded by T (1−1/N) for all choices of

T,R,N,Q, and Z. In Section 3.4, we will apply Theorem 2.1 and show that this upper bound is

achievable when T <N/Q,R ≥ T (N−1)/(N−TQ), andZ is generic (see Corollary 3.5).

3.2.2 Comparison with the Constant Block-Fading Model

Recall that the number of degrees of freedom in the constant block-fading model (3.6) is given

by

χconst = M

(
1− M

N

)
, with M = min

{
T,R,

⌊
N

2

⌋}
. (3.12)

Let us compare the maximal values of χconst and χgen for a fixed N , which are obtained for

optimal choices of T and R. For the constant block-fading model with block length N , it can

be easily verified that the number of degrees of freedom χconst given in (3.12) is maximized for
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Figure 3.1: Ratio between the maximal value of χgen (for Q = 1) and the maximal value of
χconst as a function of N , with and without a constraint on the maximal number of antennas. The
shaded areas indicate the regions of χgen/χconst delimited by the upper bound (3.13) and lower
bound (3.22) on χgen.

M = bN/2c. Setting T = R = bN/2c to obtain M = bN/2c, we conclude that the maximal

χconst is given by

χconst,max =

⌊
N

2

⌋(
1−

⌊
N
2

⌋
N

)
.

This can be easily shown to be upper-bounded by N/4. For the generic block-fading model with

Q = 1 and T < N , it follows from (3.11) that the number of degrees of freedom is maximized

for T = N −1 and R = (N −1)2, which results in

χgen,max =
(N − 1)2

N
.

Fig. 3.1 shows the ratio between the maximal value of χgen (for the case Q = 1) and the

maximal value of χconst as a function of N . Because for the generic block-fading model the op-

timal number of receive antennas grows quadratically with N , which may yield an unreasonably

large number of antennas for practically relevant values of N (e.g., 1000 symbols or more), in

Fig. 3.1 we also show the ratio between the maximal values of χgen and χconst under a constraint

on the maximal number of antennas. For the case R < T (N − 1)/(N − T ), which is relevant

in the constrained setting, our upper and lower bounds on χgen (see (3.13) and (3.22) below)

do not match. The degrees-of-freedom region delimited by the two bounds is represented in

Fig. 3.1 by shaded areas. One can see from Fig. 3.1 that χgen, max is about four times χconst, max

when N grows large. However, when the maximal number of transmit and receive antennas is

constrained, the ratio χgen/χconst converges to 1.

We emphasize that the only difference between the channel models (3.3) forQ = 1 and (3.6)

is that the generic (but deterministic) vectors Zr,t of (3.3) are replaced by the all-one vector

in (3.6). It is important to note that the generic vectors Zr,t for which (3.11) holds include
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vectors that are arbitrarily close to the all-one vector. Hence, arbitrarily small perturbations of

the constant block-fading model may result in a significant increase in the number of degrees

of freedom. As we will demonstrate, the potential increase in the number of the degrees of

freedom obtained when going from (3.6) to (3.3) is due to the fact that, under the generic block-

fading model (3.3), the receive signal vectors in the absence of noise span a subspace of higher

dimension than under the constant block-fading model (3.6). We conclude that the commonly

used constant block-fading model results in largely pessimistic capacity estimates at high SNR.

3.2.3 Degrees of Freedom Gain

As discussed in Section 3.2.2, (3.11) implies that the maximal achieveable number of degrees

of freedom in the generic block-fading model can be about four times as large as the number

of degrees of freedom in the constant block-fading model (3.12). We will now provide some

intuition regarding this gain. For concreteness, we consider the case T = 2, R= 3, Q= 1, N = 4.

In this case, (3.12) and (3.11) give χconst = 1 and χgen = 3/2, respectively.

The number of degrees of freedom characterizes the channel capacity in a regime where the

noise can “effectively” be ignored. Thus, according to the intuitive argumentation in [Morgen-

shtern et al., 2013, Sec. III], the number of degrees of freedom should be equal to the number

of entries of x ∈ C8 that can be deduced from the corresponding receive vector y ∈ C12 in the

absence of noise, divided by the block length N= 4.

In the constant block-fading model (3.6), the noiseless receive vectors ȳr = sr,1x1 + sr,2x2,

r = 1, 2, 3 belong to the two-dimensional subspace spanned by {x1, x2}. Hence, the receive

vectors ȳ1, ȳ2, ȳ3 are linearly dependent, and two of them contain all the information available

about x. From two of the receive vectors, we obtain 2 ·4 scalar equations in 8+4 scalar variables

(x, s1,1, s1,2, s2,1, s2,2). Since we do not have control of the variables sr,t, one way to reconstruct

x is to fix four of its entries (or, equivalently, to transmit four pilot symbols) to obtain eight

equations in eight variables. By solving this system of equations, we obtain the remaining four

entries of x. Hence, we can deduce four entries of x from ȳ. We conclude that the number of

degrees of freedom is 4/4 = 1, which is in agreement with (3.12).

In the generic block-fading model (3.3), on the other hand, the receive vectors without noise

ȳr = diag(Zr,1sr,1)x1 + diag(Zr,2sr,2)x2, r= 1, 2, 3

span a three-dimensional subspace almost surely. Hence, we obtain a system of 3 · 4 equations

in 8 + 6 variables (x, s1,1, s1,2, s2,1, s2,2, s3,1, s3,2). Fixing two entries of x, we are able to recover

the remaining six entries. Hence, the number of degrees of freedom is 6/4 = 3/2, which is in

agreement with (3.11).

This argument suggests that the reason why the generic block-fading model yields a larger

number of degrees of freedom than the constant block-fading model is that the noiseless receive

vectors span a subset of CN of higher dimension.
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3.3 Upper Bound

The results in this section provide the first part of the proof of Theorem 3.11. However, the

following upper bound on the number of degrees of freedom of the channel (3.3) holds for every

T , R, Q, N , and Z. The assumption of a generic coloring matrix Z required in Theorem 3.11 is

not necessary.

Theorem 3.2 The number of degrees of freedom of the channel (3.3) satisfies

χgen ≤ T

(
1− 1

N

)
. (3.13)

Proof. We will show that the number of degrees of freedom is upper-bounded by T times the

number of degrees of freedom of a constant block-fading SIMO channel; the result then follows

from (3.12). To this end, we will rewrite each output vector yr as the sum of the output vectors of

T SIMO systems with RQ receive antennas each. This will be achieved by splitting the additive

noise variables appropriately.

From (3.3), the ith entry of the receive vector yr is given by

[yr]i =
√
ρ
∑
t∈[1:T ]

∑
q∈[1:Q]

[Zr,t]
q
i [sr,t]q [xt]i + [wr]i (3.14)

for r ∈ [1 :R]. We first decompose the noise variables according to

[wr]i =
∑
t∈[1:T ]

∑
q∈[1:Q]

[Zr,t]i,q√
K

[w̃q,r,t]i + [w′r]i . (3.15)

Here, all [w̃q,r,t]i and [w′r]i are mutually independent and independent of all xt and sr,t. Further-

more, [w̃q,r,t]i ∼ CN (0, 1),

[w′r]i ∼ CN
(

0, 1−
∑
t∈[1:T ]

∑
q∈[1:Q]

|[Zr,t]i,q|2

K

)
,

and K is a finite constant satisfying1

K > max
r∈[1:R], i∈[1:N ]

∑
t∈[1:T ]

∑
q∈[1:Q]

|[Zr,t]i,q|2 .

We next define T “virtual” constant block-fading SIMO channels with RQ receive antennas

each:

[ỹq,r,t]i =
√
Kρ [sr,t]q [xt]i + [w̃q,r,t]i , with i∈ [1 :N ], r∈ [1 :R], q ∈ [1 :Q] (3.16)

for t∈ [1 : T ]. Inserting (3.15) into (3.14) and using (3.16), it can be verified that (3.14) can be
1This condition on K is required to ensure that the variance of all random variables [w′r]i is positive.
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rewritten as

[yr]i =
1√
K

∑
t∈[1:T ]

∑
q∈[1:Q]

[Zr,t]i,q [ỹq,r,t]i + [w′r]i . (3.17)

Let ỹt , (ỹT1,1,t · · · ỹTQ,R,t)T ∈ CQRN. By (3.17), the random variable y depends on x only

via the random variables {ỹt}t∈[1:T ]. Hence, the data-processing inequality [Gallager, 1968,

eq. (2.3.19)] yields

I(x; y) ≤ I(x; ỹ1, . . . , ỹT ) . (3.18)

The right-hand side of (3.18) can be upper-bounded as follows:

I(x; ỹ1, . . . , ỹT ) = h(ỹ1, . . . , ỹT ) − h(ỹ1, . . . , ỹT |x)

(a)
= h(ỹ1, . . . , ỹT ) −

∑
t∈[1:T ]

h(ỹt|xt)

(b)

≤
∑
t∈[1:T ]

[
h(ỹt)− h(ỹt|xt)

]
=
∑
t∈[1:T ]

I(xt ; ỹt) . (3.19)

Here, (a) holds because ỹ1, . . . , ỹT are conditionally independent given x, and (b) follows from

the chain rule for differential entropy and because conditioning does not increase differential en-

tropy. Since (by assumption) the input vector x satisfies the power constraint (3.9), we conclude

that, trivially, also each subvector xt satisfies the individual power constraint E[‖xt‖2] ≤ N .

Thus, the SNR (i.e., the expected power of the noiseless receive signal divided by the noise

power) of each “virtual” constant block-fading SIMO channel (3.16) is given by

E[‖
√
Kρ [sr,t]qxt‖2]

E[‖w̃q,r,t‖2]
=
KρE[|[sr,t]q|2]E[‖xt‖2]

E[‖w̃q,r,t‖2]
≤ KρN

N
= Kρ .

By (3.12) and (2.8), the capacity of a constant block-fading SIMO channel of SNR Kρ is of the

form2 (1−1/N) log(Kρ)+o(log ρ). Since, by (3.8), the capacity is the supremum of the mutual

information divided by the block length, we can upper-bound each mutual information I(xt ; ỹt),

t ∈ [1 :T ] by N times the capacity. This results in

I(xt ; ỹt) ≤ N
((

1− 1

N

)
log(Kρ) + o(log ρ)

)
= (N − 1) log(Kρ) + o(log ρ) .

Hence, continuing (3.18) and (3.19), we obtain

I(x; y) ≤
∑
t∈[1:T ]

I(xt ; ỹt)

≤ T (N −1) log(Kρ) + o(log ρ)

2Since the number of transmit antennas is one for a SIMO channel, we have M = 1 in (1.3).
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(a)
= T (N −1) log ρ + o(log ρ) (3.20)

where (a) holds because log(Kρ) = log ρ + logK. Thus, the mutual information I(x; y) with

x satisfying the power constraint (3.9) is upper-bounded by (3.20). Inserting (3.20) into (3.8)

yields

C(ρ) ≤ T N−1

N
log ρ + o(log ρ)

from which (3.13) follows via (3.10).

3.4 Lower Bound

A special case of the lower bound presented in this section concludes the proof of Theorem 3.11

(see Property (ii) in Corollary 3.5).

We first derive a lower bound on χgen assuming that T̃ ≤ min{T,R} transmit antennas are

effectively used (i.e., x
T̃+1

, . . . , xT are set to zero). Then we maximize the lower bound by

identifying the optimal number T̃ of transmit antennas to use.

Proposition 3.3 The number of degrees of freedom of the channel (3.3) for a generic color-

ing matrix Z is lower-bounded by

χgen ≥ χlow(T̃ ) , min

{
T̃

(
1− 1

N

)
, R

(
1− T̃Q

N

)}
(3.21)

for all T̃ ≤ min{T,R}.

Proof. The proof is an application of the general lower bound Theorem 2.1. The details will be

presented in Section 3.5.

The minimum in (3.21) is given by χlow(T̃ ) = T̃ (1 − 1/N) when the number R of receive

antennas is large enough (i.e.,R ≥ T̃ (N−1)/(N−T̃Q)). In contrast, χlow(T̃ ) = R(1−T̃Q/N)

when the number of degrees of freedom is constrained by the limited number of receive antennas

(i.e., R < T̃ (N − 1)/(N − T̃Q)).

The main result of this section is stated in the following theorem.

Theorem 3.4 The number of degrees of freedom of the channel (3.3) for a generic coloring

matrix Z is lower-bounded by

χgen ≥ χ∗low , max
T̃≤min{T,R}

χlow(T̃ ) =

T
(

1− 1

N

)
, if T ≤ Topt

η, if T > Topt

(3.22)

where

Topt ,
RN

N +RQ− 1
(3.23)
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and

η , max

{
R

(
1−
dTopteQ
N

)
, bToptc

(
1− 1

N

)}
. (3.24)

Proof. The idea behind the bound χ∗low in (3.22) is to obtain the tightest (i.e., largest) of the

lower bounds χlow(T̃ ) in (3.21) for T transmit antennas by maximizing χlow(T̃ ) with respect to

the number of effectively used transmit antennas T̃ ≤ min{T,R}. According to (3.21), χlow(T̃ )

is the minimum of two quantities where the first, T̃ (1 − 1/N), is monotonically increasing in

T̃ and the second, R(1 − T̃Q/N), is monotonically decreasing in T̃. Hence, χlow(T̃ ) attains

its maximum at the intersection point Topt defined in (3.23). If T ≤ Topt, we are for all T̃ ≤
min{T,R} in the regime where χlow(T̃ ) is monotonically increasing, and thus the best choice is

to use T̃ = T transmit antennas (note that because T ≤ Topt
(3.23)
≤ RN/N = R, the choice T̃ = T

in Proposition 3.3 is possible). Thus, in this case we have χ∗low = χlow(T ) = T (1 − 1/N),

which yields the first case in (3.22). If T > Topt, we would like to use Topt transmit antennas,

but we have to take into account that Topt may be noninteger. Thus, we take the maximum of the

bounds χlow(T̃ ) resulting from the closest integers, χlow(bToptc) and χlow(dTopte), which yields

η in (3.24). This concludes the proof.

Remark 3.1 For N ≥ 2, the optimal number of transmit antennas Topt is upper-bounded as

follows:

Topt <
N

Q
. (3.25)

In fact, Topt = RN/(N +RQ− 1) < RN/(RQ) = N/Q.

Remark 3.2 For N = Q ≥ 2, we have by (3.25) that Topt < 1. Hence, T > Topt and thus,

by (3.22) and (3.24), χ∗low = η = max
{
R(1 −Q/N), 0

}
= 0. Similarly, we obtain for N = 1

that χlow(T̃ ) ≤ 0 for all T̃ , which yields χ∗low ≤ 0. Hence, our lower bound χ∗low is trivial. In

these scenarios, the capacity grows double-logarithmically in the SNR ρ [Lapidoth and Moser,

2003, Durisi and Bölcskei, 2011].

Remark 3.3 The lower bound χ∗low in (3.22) can be equivalently expressed as

χ∗low = min

{
T

(
1− 1

N

)
, η

}
.

Corollary 3.5 Let N ≥ 2. For the lower bound χ∗low in Theorem 3.4, the following proper-

ties hold:

(i) For T ≥ N/Q, we have T > Topt and χ∗low = η.

(ii) For T < N/Q andR ≥ T (N−1)/(N−TQ), we have T ≤ Topt and χ∗low = T (1−1/N).

(iii) For T < N/Q and R < T (N − 1)/(N − TQ), we have T > Topt and χ∗low = η.

(iv) For fixed N and Q, the lower bound χ∗low attains its maximal value for T = b(N − 1)/Qc
transmit antennas and R = d(N − 1)2/Qe receive antennas; this maximal value of χ∗low

equals b(N − 1)/Qc(1− 1/N).
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Proof. By (3.25), the inequality T ≥ N/Q implies T > Topt, from which Property (i) follows

by (3.22). For T < N/Q, the following equivalence holds:

T ≤ Topt
(3.23)
=

RN

N +RQ− 1
⇔ T

N − 1

N − TQ
≤ R . (3.26)

Thus, the conditions in Properties (ii) and (iii) imply T ≤ Topt and T > Topt, respectively,

and the expressions of χ∗low given in Properties (ii) and (iii) follow immediately from the case

distinction in (3.22).

To prove Property (iv), we first show that χ∗low ≤ b(N −1)/Qc(1−1/N) for arbitrary T and

R. Subsequently, we will show that this upper bound is achievable for the proposed number of

antennas. We first note that for each T̃ ≤ N/Q, the lower bound χlow(T̃ ) in (3.21) is monoton-

ically nondecreasing in R. Furthermore, for T̃ > N/Q, χlow(T̃ ) is negative and can be ignored

in the maximization process, i.e., we have χ∗low = max
T̃≤min{T,R,N/Q} χlow(T̃ ). This implies

that χ∗low is—as a maximum of nondecreasing functions—also monotonically nondecreasing in

R. Hence, to obtain an upper bound on χ∗low, we can assume R arbitrarily large without loss of

generality. We choose R > (N − 1)2/Q. Simple algebraic manipulations yield the equivalence

R >
(N − 1)2

Q
⇔ Topt =

RN

N +RQ− 1
>
N − 1

Q
. (3.27)

This implies dTopteQ ≥ N−1 and further, because both sides of this strict inequality are integers,

that dTopteQ > N . Thus, the first argument of the maximum defining η in (3.24) satisfies

R

(
1−
dTopteQ
N

)
≤ R(1− 1) = 0

and, hence, η reduces to η = bToptc(1 − 1/N). By (3.22), we have that χ∗low is either equal

to T (1 − 1/N) (for T ≤ Topt) or equal to η = bToptc(1 − 1/N) (for T > Topt). In both

cases we have χ∗low ≤ bToptc(1 − 1/N). Since bToptc ≤ b(N − 1)/Qc by3 (3.25), this implies

χ∗low ≤ b(N − 1)/Qc(1− 1/N).

It remains to be shown that this upper bound is achievable. For R = d(N − 1)2/Qe ≥
(N − 1)2/Q, we obtain (see (3.27) with “>” replaced by “≥”) that Topt ≥ (N − 1)/Q. Hence,

for T = b(N − 1)/Qc ≤ Topt, the lower bound (3.22) simplifies to χ∗low = T (1 − 1/N) =

b(N − 1)/Qc(1 − 1/N). Thus, we have shown that χ∗low is maximized for T = b(N − 1)/Qc
and R = d(N − 1)2/Qe and its maximum equals b(N − 1)/Qc(1− 1/N).

Remark 3.4 Property (ii) in Corollary 3.5 shows that for a fixed T <N/Q, we can achieve

χ∗low = T (1− 1/N) by using a sufficiently large number of receive antennas R. This coincides

with the upper bound presented in Section 3.3. Thus, in this regime, the number of degrees of

freedom grows linearly in the number of transmit antennas.

3By (3.25), bToptc < N/Q and thus QbToptc < N . Since both sides of this strict inequality are integers, we have
QbToptc ≤ N − 1 and hence bToptc ≤ (N − 1)/Q, which in turn implies bToptc ≤ b(N − 1)/Qc.
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3.5 Proof of Proposition 3.3

In this section, we establish the lower bound (3.21). For N ≤ T̃Q, the inequality in (3.21) is

trivially true, because in this case R(1− T̃Q/N) ≤ 0 and hence χlow ≤ 0. Therefore, we focus

on the case

N > T̃Q

which will thus be assumed in the remainder of this section. Furthermore, recall that we assumed

in Proposition 3.3 that T̃ ≤ min{T,R}. Thus, setting x
T̃+1

, . . . , xT to zero, we can replace T

by T̃ in the input-output relation (3.4). Finally, we shall assume that

R ≤
⌈
T̃ (N − 1)

N − T̃Q

⌉
.

If more receive antennas are available, we simply turn them off. The following dimension count-

ing argument provides some intuition on why the use of more than dT̃ (N − 1)/(N − T̃Q)e
receive antennas is not beneficial.

3.5.1 Dimension Counting

The noiseless receive vector ȳ = Bs ∈ CRN in (3.4) corresponds to RN polynomial equations.

The unknown variables of these equations are the entries of the vectors sr,t ∈ CQ, r ∈ [1 :R],

t ∈ [1 : T̃ ] (RT̃Q unknown variables) and of the transmitted signal vectors xt ∈ CN , t ∈ [1 : T̃ ]

(T̃N unknown variables). Consider now a pair (xt, sr,t), consisting of a transmitted signal vector

xt and a fading vector sr,t that is a solution of ȳ = Bs. Then the pair (ctxt, sr,t/ct), where ct
is an arbitrary nonzero constant, is also a solution of ȳ = Bs. This implies that each xt can

be recovered from ȳ only up to a scaling factor. To resolve this ambiguity, we fix one entry in

each xt. Hence, the total number of unknown variables becomes RT̃Q + T̃N − T̃ . As long

as the number of equations is larger than or equal to the number of unknown variables, i.e.,

RN ≥ RT̃Q + T̃N − T̃ , we are able to recover4 the N − 1 unknown entries of each xt. The

above condition is equivalent to R ≥ T̃ (N − 1)/(N − T̃Q). Hence, it is reasonable to consider

only the case R ≤ dT̃ (N − 1)/(N − T̃Q)e, as the receive vectors resulting from the use of

additional receive antennas would not help us gain more information about the transmit vectors

{xt}t∈[1:T̃ ].

3.5.2 Application of Theorem 2.1

Our proof is based on the general lower bound Theorem 2.1. In order to apply Theorem 2.1,

we have to show that the Jacobian matrix of the polynomial mapping φ : CRT̃Q+T̃N → CRN

defined by φ(s,x) = ȳ has a nonsingular submatrix for a specific choice of s and x.

4Strictly speaking, this argument is true for linear equations. In our case, because we have polynomial rather than
linear equations, we obtain in general a finite number of solutions for the variables x and not a unique solution.
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A nonsingular submatrix of rank ` gives us the lower bound χgen ≥ (`−RT̃Q)/N because

the dimension of the vector s is Ns = RT̃Q. Thus, to obtain the lower bound presented in

Proposition 3.3 we have to choose

` , min{RN,RT̃Q+ T̃N − T̃} . (3.28)

If ` = RN we have to find a full rank submatrix of Jφ, i.e., we only reduce the number of

columns, but keep all rows. Otherwise, i.e., if ` = RT̃Q + T̃N − T̃ we can get rid of RN −
(RT̃Q + T̃N − T̃ ) rows and find a smaller nonsingular submatrix. Since we assumed that

R ≤ dT̃ (N − 1)/(N − T̃Q)e and N > T̃Q,

RN − (RT̃Q+ T̃N − T̃ ) = R(N − T̃Q)− T̃ (N − 1)

≤
⌈
T̃ (N − 1)

N − T̃Q

⌉
(N − T̃Q)− T̃ (N − 1)

=

(⌈
T̃ (N − 1)

N − T̃Q

⌉
− T̃ (N − 1)

N − T̃Q

)
︸ ︷︷ ︸

<1

(N − T̃Q)

< N − T̃Q . (3.29)

we remove at most N − T̃Q− 1 rows. We specify the rows we keep by I , [1 : `].

Our goal is to show that there exists a set of indices D, and vectors s ∈ CRT̃Q and x ∈ CT̃N

such that the submatrix [Jφ(s,x)]DI is nonsingular for almost all coloring matrices Z. To this

end, we first look at the matrix [Jφ(s,x)]DI in more detail. Recall that

φ(s,x) = ȳ = Bs, withB =

B1
. . .

BR

 (3.30)

where

Br = (X1Zr,1 · · ·XT̃
Z
r,T̃

), withXt = diag(xt) . (3.31)

The Jacobian matrix [Jφ(s,x)]DI is equal to

[Jφ(s,x)]DI = [(B A)]DI ∈ C`×`, withA =

A1,1 · · · A1,T̃...
...

AR,1 · · · AR,T̃

 ∈ CRN×T̃N (3.32)

where
Ar,t , diag(ar,t), t ∈ [1 : T̃ ], r ∈ [1 :R] , with ar,t , Zr,tsr,t . (3.33)

We have to find (s,x) such that [Jφ(s,x)]DI is nonsingular (i.e., |[Jφ(s,x)]DI | 6= 0) for a

generic coloring matrix Z. For fixed values (s,x), the determinant of [Jφ(s,x)]DI is a polyno-

mial p(Z) (i.e., a polynomial in all the entries ofZ). We will show that p(Z) does not vanish at a
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specific point (Z̃), i.e., p(Z̃) 6= 0. This implies that p(Z) is not identically zero. Since a polyno-

mial vanishes either identically or on a set of measure zero [Gunning and Rossi, 1965, Cor. 10],

we conclude that p(Z) 6= 0 forZ ∈ Z , whereZ is a set with a complement of Lebesgue measure

zero. In other words, for a generic coloring matrix Z, the matrix [Jφ(s,x)]DI is nonsingular.

It remains to find values (s,x) and a realization Z̃ such that p(Z̃) 6= 0. This, in turn, requires

to find a specific set D. This is done in the proof of the following lemma.

Lemma 3.6 Let R ≥ T̃ , N > T̃Q, and R ≤ dT̃ (N − 1)/(N − T̃Q)e. Then there exists a

triple (Z, s,x) and a choice of D for which the determinant of the Jacobian matrix [Jφ(s,x)]DI
in (3.32) is nonzero.

Proof. See Appendix A.3.

This concludes the proof of Proposition 3.3.
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Chapter 4

Oversampled SISO Block-Fading
Channel

We consider the continuous-time, time-selective, frequency-flat, Rayleigh block-fading single-

input single-output (SISO) channel introduced in [Liang and Veeravalli, 2004]. A discretization

of the channel using a matched filter and sampling at the symbol rate results in a well-known

discrete-time block-fading channel with a known number of degrees of freedom. To investigate

whether this approach is optimal, we consider a different filter and a higher sampling rate. This

results in a discrete-time block-fading channel that can be interpreted as a special case of the

general model (2.1). Thus, we can use Theorem 2.1 to obtain a lower bound on the number of

degrees of freedom. This bound shows that the number of degrees of freedom is higher than for

the standard matched-filter symbol-rate-sampling approach.

4.1 System Model

We consider the continuous-time, time-selective, Rayleigh-fading channel

y(t) = h(t)x(t) + w(t). (4.1)

Here, h(t) is the channel fading process, x(t) is the transmit signal, w(t) is additive white Gaus-

sian noise, and y(t) denotes the channel output. All these random quantities are complex.

We restrict ourselves to transmit signals of the form

x(t) =

∞∑
i=1

√
ρ xi p(t− (i− 1)TS) (4.2)

where in (4.2) the pulse p(t) has unit energy and p(t) = 0 if t /∈ (0, TS), with TS being the

symbol duration. For simplicity, in the following we will assume that p(t) is a rectangular pulse,

i.e.,

p(t) =
1√
TS

1[0,TS)(t).

37
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Recall that our aim is to establish an achievability result, i.e., a lower bound on the number of

degrees of freedom. Hence, we are allowed to select a specific pulse shape. The choice of a

rectangular pulse is convenient because it yields simpler mathematical expressions. In practice,

pulses with lower side lobes in frequency are preferable. Although our proof can be generalized

to a larger family of pulse shapes, we decided to omit this extension because it is rather technical

and may obfuscate the actual contribution.

We assume that the additive noise process w(t) is white zero-mean proper complex Gaus-

sian. The channel fading process h(t) is also assumed zero-mean proper complex Gaussian.

Furthermore, we consider a block-fading setting, i.e., we assume that the fading changes in-

dependently between blocks of a time duration T = NTS . On each block (for simplicity we

consider t ∈ [0, T ]) we can decompose the fading process according to

h(t) =
∞∑

m=−∞
hme

j2πm t
T , t ∈ [0, T ]

with zero mean complex Gaussian coefficients hm. We assume that only a finite number of coef-

ficients hm is random and all others vanish identically. This corresponds to a “band-limitation”

of the fading process.1 Thus, we obtain

h(t) =
M∑

m=−M
hme

j2πm t
T , t ∈ [0, T ] .

Here, we assume h , (h−M · · · hM )T ∼ CN (0,Σ) with a nonsingular covariance matrix

Σ ∈ C(2M+1)×(2M+1). We can rewrite h = Zs with s = (s−M · · · sM )T ∼ CN (0, I2M+1)

and a nonsingular matrix Z. Consequentially,

h(t) = f(t)Zs, t ∈ [0, T ] (4.3)

where f(t) , (e−j2πM
t
T · · · ej2πM

t
T ). Inserting (4.2) and (4.3) into (4.1), we thus obtain

y(t) =

√
ρ

√
TS
f(t)Zs

N∑
i=1

xi1[(i−1)TS ,iTS)(t) + w(t), t ∈ [0, T ] .

4.2 Matched Filter Approach

Filtering the receive signal y(t) in (4.1) with p∗(−t) and then sampling at symbol rate 1/TS

yields for each fading block the following discrete-time input-output relation:

yi =

∫ ∞
−∞

y(τ)p∗(τ − (i− 1)TS) dτ

1Note that the process cannot be strictly band-limited because it has only a finite time duration.
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=
1√
TS

∫ iTS

(i−1)TS
y(τ) dτ

=

√
ρ

TS

∫ iTS

(i−1)TS
f(τ)Zs xi + w(τ) dτ

=
√
ρ xiriZs + wi (4.4)

where

ri ,

(
sinc

(
− M

N

)
e−j2π

M(i−1)
N · · · sinc

(
M

N

)
ej2π

M(i−1)
N

)
∈ C1×(2M+1)

and

wi =
1√
TS

∫ iTS

(i−1)TS
w(τ) dτ .

The additive noise random variables {wi} are i.i.d. zero-mean proper complex Gaussian. To

keep the notation simple and without loss of generality, we assume that the input-output relation

is normalized and that the {wi} have unit variance. Then ρ in (4.4) can be thought of as the SNR.

We can stack (4.4) for i ∈ {1, . . . , N} and obtain the vector input-output relation

y =
√
ρdiag(x)RZs + w (4.5)

where y , (y1 · · · yN )T, x , (x1 · · · xN )T,R , (rT1 · · · rTN )T, and w , (w1 · · · wN )T.

Recall that the capacity of the discrete-time channel (4.5) is given byC(ρ)=1/N sup I(x; y)

where the supremum is over all probability measures on x that satisfy the average-power con-

straint E[‖x‖2] ≤ N . No closed-form expressions for C(ρ) are known for the case N > 1.

Recall that the number of degrees of freedom χ is defined as

χ = lim
ρ→∞

C(ρ)

log ρ
. (4.6)

It follows from [Liang and Veeravalli, 2004, Th. 1] that

χ = 1− 2M + 1

N
(4.7)

provided that 2M + 1 < N . The intuition behind this result is as follows [Durisi and Bölcskei,

2011]: 2M + 1 out of the N available symbols per block need to be sacrificed to learn the

channels. This can be done for example by transmitting 2M + 1 pilot symbols per block. The

remaining N − 2M − 1 symbols can be used to communicate information. Hence, the number

of degrees of freedom, which can be thought of as the number of “dimensions” per channel use

available for communication is (N − 2M − 1)/N = 1− (2M + 1)/N .

Note that (4.7) provides a lower bound on the number of degrees of freedom of the underlying

continuous-time channel (4.1) because (4.7) is obtained i) by constraining the input signal to be

of the form (4.2) and ii) by using a matched filter and sampling at the symbol rate at the receiver

side. Both choices may be suboptimal.
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4.3 The Oversampled Input-Output Relation

We show in this section that the matched filter approach reviewed in Section 4.2 is suboptimal.

Specifically, we prove that by oversampling the filter output by a factor of two, 1− 1/N degrees

of freedom can be achieved.

Our oversampled, discrete-time, input-output relation is obtained as follows: The receive

signal y(t) is filtered using a rectangular pulse whose width is half the symbol time (i.e., half the

width of the transmit pulse p(t)). The resulting filtered output signal is then sampled at twice the

symbol rate. Thus, we obtain

yi =

√
2

TS

∫ i
TS
2

(i−1)TS
2

y(τ) dτ

for i ∈ {1, . . . , 2N}. It is convenient to separately calculate yi for even and odd i, hence, we

define y(o) = (y1 y3 · · · y2N−1)T and y(e) = (y2 y4 · · · y2N )T. For y(o) we obtain

y
(o)
i =

√
2

TS

∫ (i− 1
2
)TS

(i−1)TS
y(τ) dτ

=

√
ρ

TS

∫ (i− 1
2
)TS

(i−1)TS
f(τ)Zs xi + w(τ) dτ

=
√
ρ xir

(o)
i Zs + w

(o)
i (4.8)

where

r
(o)
i ,

(
sinc

(
− M

2N

)
e−jπ

M
N

(2i− 3
2
) · · · sinc

(
M

2N

)
ejπ

M
N

(2i− 3
2
)

)
∈ C1×(2M+1) (4.9)

and

w
(o)
i =

√
2

TS

∫ (i− 1
2
)TS

(i−1)TS
w(τ) dτ .

Similarly, we obtain for y(e)

y
(e)
i =

√
2

TS

∫ iTS

(i− 1
2
)TS

y(τ) dτ

=
√
ρ xir

(e)
i Zs + w

(e)
i (4.10)

where

r
(e)
i ,

(
sinc

(
− M

2N

)
e−jπ

M
N

(2i− 1
2
) · · · sinc

(
M

2N

)
ejπ

M
N

(2i− 1
2
)

)
∈ C1×(2M+1) (4.11)

and

w
(e)
i =

√
2

TS

∫ iTS

(i− 1
2
)TS

w(τ) dτ .
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Combining (4.8) and (4.10), the vector input-output relation in the oversampled case is given by(
y(o)

y(e)

)
=
√
ρ

(
diag(x)R(o)

diag(x)R(e)

)
Zs +

(
w(o)

w(e)

)
(4.12)

where x , (x1 · · · xN )T, w(e) ,
(
w
(e)
1 · · · w(e)

N

)T, w(o) ,
(
w
(o)
1 · · · w(o)

N

)T, and

R(e) ,


r
(e)
1
...

r
(e)
N

 , R(o) ,


r
(o)
1
...

r
(o)
N

 .

Note that the input-output relations (4.8) and (4.10) are a special case of the channel model

(2.1). As in (3.7) we again omit all rows and columns with zero entries and we see that the vector

xT reduces to a single variable xi for all receive symbols y(e)i and y
(o)
i .

4.4 Degrees-of-Freedom Analysis

The capacity of the oversampled discrete-time channel (4.12) is given by

C(ρ) =
1

N
sup I(x; y(e), y(o))

where the supremum is taken over all input distributions that satisfy the average power constraint

E[‖x‖2] ≤ N . The number of degrees of freedom is defined as in (4.6). Our main result is given

in the following theorem.

Theorem 4.1 The number of degrees of freedom of the channel (4.12) is lower-bounded as

χ ≥ 1− 1

N
.

In order to apply Theorem 2.1, we have to consider the function φ : C2M+1+N → C2N

which maps x and s onto the noiseless receive vector, i.e.,

φ(s,x) =

(
diag(x)R(o)

diag(x)R(e)

)
Zs .

More specifically, if we can show that the Jacobian determinant of φ has rank ` for some choice

of s and x, then the number of degrees of freedom is lower-bounded as

χ ≥ 1

N
(`− (2M + 1)) . (4.13)

The Jacobian matrix Jφ(s,x) is given by

Jφ(s,x) =

(
diag(x)R(o)Z diag(R(o)Zs)

diag(x)R(e)Z diag(R(e)Zs)

)
∈ C2N×(2M+1+N) .
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We choose x = (1 · · · 1)T, i.e., diag(x) = IN . Furthermore, we choose s 6= 0 such that

Zs is orthogonal to the first 2M rows of R(o). This is possible because we assumed that Z is

nonsingular and s ∈ C2M+1. By the following result, Zs is not orthogonal to all other rows of

R(o) and all rows ofR(e).

Lemma 4.2 The matrix
(
R(o)T R(e)T

)T
is full spark [Alexeev et al., 2012, Def. 1], i.e.,

every set of 2M + 1 rows is linearly independent.

Proof. By (4.9), we can rewrite

r
(o)
i = e−jπ

M
N

1
2
(
e−jπ

M
N

(2i−2) · · · ejπ
M
N

(2i−2))
sinc

(
− M

2N

)
. . .

sinc
(
M
2N

)


for i ∈ {1, . . . , N}. Similarly, by (4.11), we obtain

r
(e)
i = e−jπ

M
N

1
2
(
e−jπ

M
N

(2i−1) · · · ejπ
M
N

(2i−1))
sinc

(
− M

2N

)
. . .

sinc
(
M
2N

)


for i ∈ {1, . . . , N}. Thus, stacking the rows r(e)i and r(o)i alternately, we obtain

r
(o)
1

r
(e)
1
...

r
(o)
N

r
(e)
N


= e−jπ

M
N

1
2 V

sinc
(
− M

2N

)
. . .

sinc
(
M
2N

)
 (4.14)

where

V ,


e−jπ

M
N

0 · · · ejπ
M
N

0

e−jπ
M
N

1 · · · ejπ
M
N

1
...

...

e−jπ
M
N

(2N−1) · · · ejπ
M
N

(2N−1)

 .

The matrix V is full spark because it is a Vandermonde matrix with nonequal columns [Alexeev

et al., 2012, Lem. 2]. Thus, also the matrix in (4.14) is full spark and interchanging the columns

we finally obtain that
(
R(o)T R(e)T

)T
is full spark.

By Lemma 4.2, all elements in R(e)Zs are nonzero (otherwise Zs would be orthogonal to

2M + 1 linearly independent vectors and thus be zero). Hence, we can rewrite Jφ(s,x) for our

choice of s and x as

Jφ(s,x) =

 [R(o)Z][1:2M ] 02M×N

[R(o)Z][2M+1:N ] [diag(R(o)Zs)][2M+1:N ]

R(e)Z diag(R(e)Zs)


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where diag(R(e)Zs) is a nonsingular diagonal matrix. To show that Jφ(s,x) has rank 2M+N ,

we consider the square submatrix consisting of the rows in I , [1 : 2M ]∪ [N + 1 : 2N ] and the

columns in D , [1 : 2M + 1] ∪ [2M + 3 : 2M + 1 +N ]. We obtain the submatrix

[Jφ(s,x)]DI =

[R(o)Z][1:2M ] 02M×(N−1)

[R(e)Z]{1} 01×(N−1)

[R(e)Z][2:N ] [diag(R(e)Zs)]
[2:N ]
[2:N ]

 (4.15)

The matrix [Jφ(s,x)]DI in (4.15) is nonsingular if and only if the two matrices
(

[R(o)Z][1:2M ]

[R(e)Z]{1}

)
and [diag(R(e)Zs)]

[2:N ]
[2:N ] are nonsingular. We already saw that diag(R(e)Zs) is nonsingular and,

by Lemma 4.2,
(

[R(o)Z][1:2M ]

[R(e)Z]{1}

)
is also nonsingular. Therefore, the rank of Jφ(s,x) is at least

2M +N . Inserting into (4.13) results in

χ ≥ 1

N
(N − 1)

which concludes the proof.
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Chapter 5

Conclusion of Part I

We characterized the number of degrees of freedom of block-fading channels in the noncoherent

setting. In particular, we proved a lower bound on the number of degrees of freedom that con-

forms to an intuitive “dimension-counting” argument. Our channel model encompasses corre-

lated block-fading MIMO channels as special cases, and it also allows the analysis of continuous-

time channels.

We considered two channel models in more detail. The first was a generic block-fading

MIMO channel model. Although this model seems to be just a minor variation of the classically

used constant block-fading model, our result shows that the assumption of generic correlation

may strongly affect the number of degrees of freedom. In fact, we showed that the (potentially

small) perturbation in the channel model that results from making the coloring matrix Z generic

may yield a significant increase in the number of degrees of freedom. This suggests once more

(see also [Lapidoth and Moser, 2003, Durisi et al., 2012]) that care must be exercised in using

this asymptotic quantity as a performance measure.

The highest gain in terms of the number of degrees of freedom is obtained for a sufficiently

large number of receive antennas. In this case, the number of degrees of freedom is equal to T

times the number of degrees of freedom in the SIMO case, as long as the number T of transmit

antennas satisfies T < N/Q. This may be of interest for the uplink of massive-MIMO systems

[Rusek et al., 2013].

It may appear questionable to assume that the coloring matrix Z is generic—an assumption

that is needed for our result to hold. In particular, the special case where all matrices Zr,t are

exactly equal is nongeneric, and thus still an open problem. However, it should be noted that

any nonzero perturbation of the model with exactly equal Zr,t—be it arbitrarily small—yields

the generic model we considered. One may then argue that the assumption of exactly equal

Zr,t is an idealization that may be convenient in theoretical analyses but will not be satisfied in

practical systems. An important conclusion to be drawn from our analysis is the fact that, as far

as the number of degrees of freedom is concerned, the model with exactly equal Zr,t is highly

nonrobust, since arbitrarily small perturbations yield a potentially large change in the number of

degrees of freedom.

45
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An open problem is a characterization of the capacity of generic block-fading MIMO chan-

nels beyond the number of degrees of freedom. Such a characterization would help understand

whether the sensitivity of the number of degrees of freedom discussed above is an indication of a

similar sensitivity of the capacity that occurs already at moderate SNR, or merely an asymptotic

peculiarity. Furthermore, it would be interesting to develop a capacity characterization that is

nonasymptotic in the SNR for asymptotic block length. This might enable a capacity analysis

of, e.g., stationary channel models.

The second model we considered was a continuous-time, time-selective, Rayleigh block-

fading channel. We showed that in this scenario the number of degrees of freedom is lower-

bounded by 1− 1/N . This number, which can be achieved by using a nonstandard receive filter

and sampling the filter output signal at twice the symbol rate, is independent of the rank 2M + 1

of the covariance matrix characterizing the temporal correlation of the fading inside each block.

In contrast, the standard approach of matched filtering and sampling at the symbol rate leads to

the looser lower bound 1− (2M + 1)/N .

Coarsely speaking, oversampling yields an increase of the dimension of the output space

spanned by the receive samples. This increased dimension can be used to acquire knowledge

about the fading channel at the receiver. Indeed, as demonstrated in Section 4.4, one pilot symbol

per fading block is sufficient for the case of oversampling, whereas 2M + 1 pilot symbols are

required for the case of matched filtering and sampling at the symbol rate. This explains the

degrees-of-freedom gain resulting from oversampling. The processing needed to acquire this

additional channel knowledge is nonlinear, which is the reason why certain parts of the proof are

somewhat technical.

A generalization of our results to more general (nonrectangular) pulse shapes and different

fading statistics seems possible and constitutes an interesting line of future research. Further-

more, the combination of multiple antennas and oversampling could be analyzed using similar

techniques.



Part II

Information Theory of
Integer-Dimensional Singular

Distributions
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Chapter 6

Integer-Dimensional Entropy

Motivated by the fact that the number of degrees of freedom can be obtained via a heuristic

“dimension-counting” analysis of the noiseless input-output relation, we want to investigate the

information-theoretic properties of random variables whose distribution is similar to that of the

noiseless receive vectors ȳ in Section 2.1. As mentioned in Section 2.2, in many interesting

cases, ȳ is a singular random variable, i.e., neither discrete nor continuous. Up to now, even

(differential) entropy—the most basic information-theoretic description of a random variable—

has not been available for singular random variables.

In this chapter, we extend the concept of (differential) entropy to a broad class of singular ran-

dom variables. More precisely, we consider integer-dimensional random variables and provide

a definition of entropy that encompasses the classical entropy and differential entropy as special

cases. Although the proofs are partly technical, the final results conform to intuition and have

the potential to simplify information-theoretic analyses involving singular random variables. We

show that the proposed entropy transforms in a natural manner under Lipschitz mappings, and

we derive a transformation property that relates our entropy to differential entropy.

6.1 Previous Work and Motivation

We first recall the definitions of entropy for discrete random variables [Cover and Thomas,

2006, Ch. 2] and differential entropy for continuous random variables [Cover and Thomas, 2006,

Ch. 8]. Let x be a discrete random variable with probability mass function px(xi) = Pr{x = xi},
i ∈ I, where I is the finite or countably infinite set specifying all possible realizations xi of x.

The entropy of x is

H(x) , −Ex[log px(x)] = −
∑
i∈I

px(xi) log px(xi) . (6.1)

For a continuous random variable x on RM with probability density function fx, the differential

entropy is

h(x) , −Ex[log fx(x)] = −
∫
RM

fx(x) log fx(x) dLM (x) . (6.2)

49



50 CHAPTER 6. INTEGER-DIMENSIONAL ENTROPY

6.1.1 Rényi Entropy and ε Entropy

There exist two previously proposed generalizations of (differential) entropy to a larger set of

probability distributions. The first generalization is based on quantizations of the random vari-

able to ever finer cubes [Rényi, 1959]. More specifically, for a (possibly singular) random vari-

able x ∈ RM , the Rényi information dimension of x is

d(x) , lim
n→∞

H
( bnxc

n

)
log n

(6.3)

and the Rényi entropy of dimension d(x) of x is defined as

hR
d(x)(x) , lim

n→∞

(
H

(
bnxc
n

)
− d(x) log n

)
(6.4)

provided the limits in (6.3) and (6.4) exist.

The definition of Rényi entropy corresponds to the following procedure:

1. Quantize the random variable x, by partitioning RM into the cubes
∏M
i=1

[
ki
n ,

ki+1
n

)
, where

k , (k1 · · · kM )T ∈ ZM , i.e., consider the discrete random variable with probabilities

pk = Pr
{
x ∈

∏M
i=1

[
ki
n ,

ki+1
n

)}
.

2. Calculate the entropy of the quantized random variable, i.e., calculate the negative expec-

tation of the logarithm of the probability mass function pk.

3. Add the correction term −d(x) log n to account for the dimension of the random variable

x.

4. Take the limit n→∞.

Although this approach seems reasonable, there are several issues. First, the definition of hR
d(x)(x)

seems to be difficult to handle analytically, and connections to major information-theoretic

concepts such as mutual information are not available. Furthermore, the quantization used is

just one of many possible—we might, e.g., also consider a shifted version of the set of cubes∏M
i=1

[
ki
n ,

ki+1
n

)
.

An approach that overcomes the latter issue is the concept of ε entropy [Kolmogorov, 1956,

Posner and Rodemich, 1971]. The definition of ε entropy does not use a specific quantization but

takes the infimum of the entropy over all possible (countable) quantizations under a constraint

on the diameter of the quantization sets. This is motivated by data compression: the quantization

should be such that an error of maximally ε is made (thus, the quantization sets have maximal

diameter ε) and at the same time the minimal possible number of bits should be used to encode

the data (thus, the entropy is minimized over all possible quantizations). More specifically, for a

random variable x ∈ RM , let Pε denote the set of all countable partitions of RM into mutually

disjoint, measurable sets of diameter at most ε. Furthermore, for a partition Q = {Ai : i ∈
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N} ∈ Pε, the quantization [x]Q is the discrete random variable defined by pi = Pr{[x]Q = i} =

Pr{x ∈ Ai} for i ∈ N. Then the ε entropy of x is defined as

Hε(x) , inf
Q∈Pε

H([x]Q) . (6.5)

Here, a problem is that Hε(x) is only defined for a fixed ε > 0 and the limit ε→ 0 converges to

∞ for nondiscrete distributions. However, as in the case of Rényi entropy, a correction term can

be obtained using the following seemingly new definition of information dimension:

d∗(x) , lim
ε→0

Hε(x)

log 1
ε

.

By [Kawabata and Dembo, 1994, Prop. 3.3], the definitions of information dimension using

Rényi’s approach and the ε entropy approach coincide, i.e., d∗(x) = d(x). This suggests the

following new definition of a d(x)-dimensional entropy.

Definition 6.1 Let x ∈ RM be a random variable with existing information dimension d(x).

Then the asymptotic ε entropy of dimension d(x) is defined as

h∗d(x)(x) , lim
ε→0

(
Hε(x) + d(x) log ε

)
.

This definition corresponds to the following procedure:

1. Quantize the random variable x using an entropy-minimizing quantization1 Q given a

diameter constraint ε, i.e., consider the discrete random variable [x]Q with probabilities

pi = Pr{[x]Q = i} = Pr{x ∈ Ai} for Ai ∈ Q, where the diameter of each Ai is upper

bounded by ε.

2. Calculate the entropy of the quantized random variable [x]Q, i.e., calculate the negative

expectation of the logarithm of the probability mass function pi.

3. Add the correction term d(x) log ε to account for the dimension of the random variable x.

4. Take the limit ε→ 0.

Although this entropy is more general than Rényi entropy, the fundamental problems persist:

we are still restricted to the choice of specific sets of small diameter (this is of course useful if

we consider maximal distance as a measure of distortion but can yield unnecessarily many quan-

tization points for areas of almost zero probability), and the definition still seems to be difficult

to handle analytically and lacks connections to established information-theoretic quantities such

as mutual information.

1We assume for simplicity that an entropy-minimizing quantization exists although in general the infimum in (6.5)
may not be attained.
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6.1.2 An Alternative Approach

Here, we propose a different approach, which is motivated by the definition of differential en-

tropy. The basic idea is to perform the entropy calculation at the end. Assuming x ∈ RM , this

results in the following procedure:

1. For some x ∈ RM , divide the probability Pr{x ∈ Bε(x)} by the correction factor

ω(d(x)) εd(x) (recall that ω(d(x)) is the volume of the d(x)-dimensional unit sphere).2

2. Take the limit ε→ 0.

3. Calculate the entropy as the negative expectation of the logarithm of the resulting density

function.

More specifically, steps 1–2 yield the density function3

θx(x) , lim
ε→0

Pr{x ∈ Bε(x)}
ω(d(x)) εd(x)

(6.6)

and the entropy in step 3 is thus given by

hd(x)(x) , −Ex[log θx(x)] . (6.7)

We will show that this definition of entropy will lead to definitions of joint and conditional

entropy, various useful relations, connections to mutual information, an asymptotic equipartition

property, and bounds relevant to source coding. However, it does have one limitation: as pointed

out in [Wu and Verdú, 2010, Sec. VII-A], the existence of the limit in (6.6) for almost every

x ∈ RM is a much stronger assumption than the existence of the Rényi information dimension

(6.3). Loosely speaking, the existence of the limit in (6.6) requires that the random variable x is

almost everywhere d(x)-dimensional whereas the existence of the Rényi information dimension

merely requires that the random variable is “on average” of dimension d(x). By Preiss’ Theorem

[Preiss, 1987, Th. 5.6], convergence in (6.6) even implies that the probability measure induced by

the random variable x is rectifiable (see Definition 6.4 below), which means that our definition

does not apply to, e.g., self-similar fractal distributions. However, we are not aware of any

application or calculation of Rényi entropy (or the asymptotic version of ε entropy) for fractal

distributions, and it does not seem clear whether Rényi entropy is well defined in that case

(although the information dimension (6.3) exists). An extension of our theory to mixtures of

rectifiable measures of different dimensions may provide an interesting direction for future work.

Motivated by the entropy expression in (6.7), a formal definition of the entropy of an integer-

dimensional random variable will be given in Section 6.3.1, based on the mathematical theory of

rectifiable measures discussed next.
2The constant factor ω(d(x)) is used to obtain equality with differential entropy in the special case d(x) =M . A

different factor would result in an additive constant in the entropy definition.
3A mathematically rigorous definition will be provided in Section 6.2.2.
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6.2 Rectifiable Random Variables

As mentioned in Section 6.1.2, the existence of a d(x)-dimensional density implies that the

random variable x is rectifiable. In this section, we recall the definitions of rectifiable sets and

measures and introduce rectifiable random variables as a straightforward extension. Furthermore,

we present some basic properties that will be used in subsequent sections. For the convenience

of readers who prefer to skip the mathematical details, we summarize the most important facts

in Corollary 6.10.

6.2.1 Rectifiable Sets

Our basic geometric objects of interest are rectifiable sets [Federer, 1969, Sec. 3.2.14]. As the

definition of rectifiable sets is not consistent in the literature, we provide the definition most

convenient for our purpose. We recall that H m denotes the m-dimensional Hausdorff measure.

Definition 6.2 ( [Ambrosio et al., 2000, Def. 2.57]) For m ∈ N, an H m-measurable set

E ⊆ RM (m ≤ M ) is called m-rectifiable4 if there exist bounded sets Ak ⊆ Rm and Lipschitz

functions fk : Ak → RM , both for5 k ∈ N, such that H m
(
E \
⋃
k∈N fk(Ak)

)
= 0. A set

E ⊆ RM is called 0-rectifiable if it is finite or countably infinite.

Remark 6.1 Hereafter, we will often consider the setting of m-rectifiable sets in RM and

tacitly assume m ∈ N and m ≤M .

Rectifiable sets satisfy the following basic properties.

Lemma 6.3 Let E be an m-rectifiable subset of RM .

1. Any subset D ⊆ E is also m-rectifiable.

2. The measure H m|E is σ-finite.

3. Let φ : RM → RN with N ≥ m be a Lipschitz function. If φ(E) is H m-measurable then

it is m-rectifiable.

4. For n > m, we have H n(E) = 0.

5. Let Ei for i ∈ N be m-rectifiable sets. Then
⋃
i∈N Ei is m-rectifiable.

6. Rm is m-rectifiable.

Proof. Properties 1–6 are well known; however, their proofs are not always provided in the

literature. Therefore, for the reader’s convenience, we provide proofs in Appendix B.1.

Examples of rectifiable sets include affine subspaces, algebraic varieties, differentiable man-

ifolds, and graphs of Lipschitz functions. As the countable union of rectifiable sets is again

rectifiable, further examples are countable unions of any of the aforementioned sets.
4In [Ambrosio et al., 2000, Def. 2.57] these sets are called countably H m-rectifiable.
5Note that this definition also encompasses finite index sets k ∈ {1, . . . ,K}; it suffices to setAk = ∅ for k > K.
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6.2.2 Rectifiable Measures

Loosely speaking, rectifiable measures are measures that are concentrated on a rectifiable set.

The most convenient way to define “concentrated on” mathematically is in terms of absolute

continuity with respect to a specific Hausdorff measure.

Definition 6.4 ( [Ambrosio et al., 2000, Def. 2.59]) A Borel measure µ on RM is called

m-rectifiable if there exists an m-rectifiable set E ⊆ RM such that µ�H m|E .

Remark 6.2 Let µ be an m-rectifiable measure, i.e., µ � H m|E for an m-rectifiable set

E ⊆ RM . By Property 2 in Lemma 6.3, H m|E is σ-finite, and thus, by the Radon-Nikodym

theorem [Ambrosio et al., 2000, Th. 1.28], dµ = f dH m|E with f being the Radon-Nikodym

derivative dµ
dH m|E .

To avoid the nuisance of taking care whether dµ
dH m|E = 0, we construct a rectifiable set Ẽ

such that dµ
dH m|Ẽ

> 0 almost everywhere.

Lemma 6.5 Let µ be anm-rectifiable measure on RM , i.e., µ�H m|E for anm-rectifiable

set E ⊆ RM . Then there exists an m-rectifiable set Ẽ ⊆ E such that

1. µ�H m|Ẽ ,

2. dµ
dH m|Ẽ

= dµ
dH m|E H m|Ẽ -almost everywhere,

3. dµ
dH m|Ẽ

> 0 H m|Ẽ -almost everywhere.

Proof. See Appendix B.2.

Definition 6.6 For an m-rectifiable measure µ, an m-rectifiable set E is called a support of

µ if µ�H m|E and dµ
dH m|E > 0 H m|E -almost everywhere.

Note that, by Lemma 6.5, a support exists for every m-rectifiable measure. However, a

support is not unique and only defined up to a set of H m-measure zero.

For m-rectifiable measures, it is possible to interpret the Radon-Nikodym derivative as a

measure of “local probability per area.” This interpretation is based on the definition of the

Hausdorff density.

Definition 6.7 ( [Ambrosio et al., 2000, Def. 2.55]) Let µ be a Borel measure. The m-

dimensional Hausdorff density of µ is defined as

θmµ (x) , lim
r→0

µ(Br(x))

ω(m)rm

provided the limit exists.

If µ is an m-rectifiable measure with µ�H m|E , then the following result shows that θmµ is

indeed the Radon-Nikodym derivative dµ
dH m|E and vanishes for H m-almost all points not in E .
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Lemma 6.8 ( [Ambrosio et al., 2000, Th. 2.83 and eq. (2.42)]) Let µ be an m-rectifiable

measure, i.e., µ�H m|E for anm-rectifiable set E . Then them-dimensional Hausdorff density

θmµ exists and coincides with the Radon-Nikodym derivative dµ
dH m|E H m|E -almost everywhere.

Furthermore, θmµ is zero H m-almost everywhere on Ec.

6.2.3 Rectifiable Random Variables

As we are only interested in probability measures and because information theory is often for-

mulated for random variables, we define m-rectifiable random variables. In what follows, we

consider a random variable x : (Ω,S)→ (RM ,BM ) on a probability space (Ω,S, µ), i.e., Ω is

a set, S is a σ-algebra on Ω, and µ is a probability measure on (Ω,S). The probability mea-

sure induced by the random variable x is denoted by µx−1. For A ∈ BM , µx−1(A) equals the

probability that x ∈ A, i.e.,

µx−1(A) = µ(x−1(A)) = Pr{x ∈ A} . (6.8)

Definition 6.9 A random variable x : (Ω,S)→ (RM ,BM ) on a probability space (Ω,S, µ)

is calledm-rectifiable if the induced probability measure µx−1 on RM ism-rectifiable, i.e., there

exists an m-rectifiable set E ⊆ RM such that µx−1 � H m|E . The m-dimensional Hausdorff

density of an m-rectifiable random variable x is defined as

θmx (x) , θmµx−1(x) = lim
r→0

Pr{x ∈ Br(x)}
ω(m)rm

. (6.9)

Furthermore, a support of the measure µx−1 is called a support of x, i.e., E is a support of x if

µx−1 �H m|E and dµx−1

dH m|E (x) > 0 H m|E -almost everywhere.

One can think of θmx as anm-dimensional probability density function of the random variable

x.

Based on the results of Section 6.2.2, we can find a characterization of m-rectifiable random

variables that resembles well-known properties of continuous random variables. This characteri-

zation is stated in the next corollary. Note, however, that although everything seems to be similar

to the continuous case, Hausdorff measures lack substantial properties of the Lebesgue measure,

e.g., the product measure will not always be again a Hausdorff measure.

Corollary 6.10 Let x be an m-rectifiable random variable on RM , i.e., µx−1 � H m|E for

an m-rectifiable set E ⊆ RM . Then there exists the m-dimensional Hausdorff density θmx and

the following properties hold.

1. The m-dimensional Hausdorff density θmx coincides with the Radon-Nikodym derivative
dµx−1

dH m|E H m|E -almost everywhere, i.e.,

θmx (x) =
dµx−1

dH m|E
(x) H m|E -almost everywhere. (6.10)
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2. The probability Pr{x ∈ A} for a measurable setA ⊆ RM can be calculated as the integral

of θmx over A with respect to the m-dimensional Hausdorff measure restricted to E , i.e.,

Pr{x ∈ A} = µx−1(A) =

∫
A
θmx (x) dH m|E(x) . (6.11)

3. The expectation of a measurable function f : RM → R with respect to the random variable

x can be expressed as

Ex[f(x)] =

∫
RM

f(x) θmx (x) dH m|E(x) . (6.12)

4. The Hausdorff density θmx is zero H m-almost everywhere on Ec.

5. The random variable x is in E with probability one, i.e.,

Pr{x ∈ E} = µx−1(E) =

∫
E
θmx (x) dH m|E(x) = 1 . (6.13)

6. There exists a support Ẽ ⊆ E of x.

7. E is a support of x if and only if the Hausdorff density θmx is positive H m-almost every-

where on E .

Proof. By Definition 6.9, θmx = θmµx−1 and, by Lemma 6.8, θmµx−1 exists and is equal to the

Radon-Nikodym derivative dµx−1

dH m|E H m|E -almost everywhere. Thus, we obtain (6.10).

Furthermore, we have for any measurable set A ⊆ RM

Pr{x ∈ A} (6.8)
= µx−1(A)

=

∫
A

dµx−1(x)

=

∫
A

dµx−1

dH m|E
(x) dH m|E(x)

(6.10)
=

∫
A
θmx (x) dH m|E(x)

i.e., (6.11) holds.

For a measurable function f : RM → R, we have

Ex[f(x)] =

∫
RM

f(x) dµx−1(x)

=

∫
RM

f(x)
dµx−1

dH m|E
(x) dH m|E(x)

(6.10)
=

∫
RM

f(x) θmx (x) dH m|E(x) (6.14)
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i.e., (6.12) holds.

By Lemma 6.8, θmµx−1 = 0 H m-almost everywhere on Ec. Thus, since θmx = θmµx−1 , Prop-

erty 4 holds.

We have

Pr{x ∈ E} (6.8)
= µx−1(E)

(a)
= µx−1(E) + µx−1(Ec)︸ ︷︷ ︸

=0

(b)
= µx−1(E ∪ Ec)

= µx−1(RM ) = µ(x−1(RM ))
(c)
= µ(Ω) = 1

where (a) holds because H m|E(Ec) = 0 and µx−1 �H m|E , (b) holds because of the additiv-

ity of the measure µx−1, and (c) holds because x−1(RM ) = Ω. Thus, (6.13) holds.

Because µx−1 �H m|E and by Lemma 6.5, there exists a support Ẽ ⊆ E . Thus, Property 6

holds.

By Definition 6.9, a set E satisfying µx−1 �H m|E is a support of x if and only if dµx−1

dH m|E >

0 H m-almost everywhere on E . By (6.10), this is equivalent to θmx > 0 H m-almost everywhere

on E . Thus, Property 7 holds.

A trivial but noteworthy fact is that the special cases m = 0 and m = M reduce to well-

known concepts.

Theorem 6.11 Let x be a random variable on RM . Then:

1. x is 0-rectifiable if and only if it is a discrete random variable, i.e., there exists a probability

mass function px(xi) = Pr{x = xi} > 0, i ∈ I, where I is a finite or countably infinite

index set specifying all possible different realizations xi of x. In this case, θ0x = px and

E = {xi : i ∈ I} is a support of x.

2. x is M -rectifiable if and only if it is a continuous random variable, i.e., there exists a

probability density function fx such that Pr{x ∈ A} =
∫
A fx(x) dLM (x). In this case,

θMx = fx LM -almost everywhere.

Proof. See Appendix B.3.

The following theorem introduces a nontrivial class of m-rectifiable random variables.

Theorem 6.12 Let x be a continuous random variable on Rm. Furthermore, let φ : Rm →
RM with M > m be a Lipschitz mapping whose m-dimensional Jacobian determinant6 Jφ(x)

is nonzero Lm-almost everywhere and assume that φ(Rm) is H m-measurable. Then y , φ(x)

is an m-rectifiable random variable on RM .

Proof. According to Definition 6.9, we have to show that µy−1 � H m|E for an m-rectifiable

set E ⊆ RM . By Properties 3 and 6 in Lemma 6.3, the set E , φ(Rm) is m-rectifiable. Thus,

6The m-dimensional Jacobian determinant is defined as Jφ(x) =
√

det(DφT(x)Dφ(x)), where Dφ(x) ∈
RM×m denotes the (almost everywhere existing) Jacobian matrix of φ. Note in particular that Jφ(x) is nonnegative.
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it suffices to show that µy−1 � H m|φ(Rm), i.e., that for any H m-measurable set A ⊆ RM ,

H m|φ(Rm)(A) = 0 implies µy−1(A) = 0. To this end, assume that H m|φ(Rm)(A) = 0 for

an H m-measurable set A ⊆ RM . Let f denote the probability density function of x. By the

generalized change of variables formula [Ambrosio et al., 2000, eq. (2.47)], we have∫
φ−1(A)

f(x)Jφ(x) dLm(x) =

∫
φ(φ−1(A))

∑
x∈φ−1(A)∩φ−1({y})

f(x) dH m(y)

=

∫
A∩φ(Rm)

∑
x∈φ−1(A)∩φ−1({y})

f(x) dH m(y)

(a)
= 0 (6.15)

where (a) holds because H m(A ∩ φ(Rm)) = H m|φ(Rm)(A) = 0. Because Jφ(x) > 0

Lm-almost everywhere, (6.15) implies
∫
φ−1(A) f(x) dLm(x) = 0. Thus, we have

µy−1(A) = µx−1(φ−1(A)) =

∫
φ−1(A)

f(x) dLm(x) = 0

6.3 Entropy of Rectifiable Random Variables

6.3.1 Definition

The m-rectifiable random variables introduced in Definition 6.9 will be the objects considered

in our entropy definition. Due to the existence of the m-dimensional Hausdorff density θmx for

these random variables (see (6.9)), the heuristic approach described in Section 6.1.2 (see (6.6)

and (6.7)) can be made rigorous.

Definition 6.13 Let x be an m-rectifiable random variable on RM . The m-dimensional

entropy of x is defined as

hm(x) , −Ex

[
log θmx (x)

]
= −

∫
RM

log θmx (x) dµx−1(x) . (6.16)

By (6.12), we obtain

hm(x) = −
∫
RM

θmx (x) log θmx (x) dH m|E(x) = −
∫
E
θmx (x) log θmx (x) dH m(x) (6.17)

where E ⊆ RM is an arbitrary m-rectifiable set satisfying µx−1 �H m|E .

6.3.2 Relation to Entropy and Differential Entropy

In the special cases m = 0 and m = M , our entropy definition reduces to classical entropy (6.1)

and differential entropy (6.2), respectively.
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Theorem 6.14 Let x be a random variable on RM . If x is a 0-rectifiable (i.e., discrete)

random variable, then the 0-dimensional entropy of x coincides with the classical entropy, i.e.,

h0(x) = H(x). If x is an M -rectifiable (i.e., continuous) random variable, then the M -dimen-

sional entropy of x coincides with the differential entropy, i.e., hM (x) = h(x).

Proof. Let x be a 0-rectifiable random variable. By Theorem 6.11, x is a discrete random variable

with possible realizations xi, i ∈ I, the 0-dimensional Hausdorff density θ0x is the probability

mass function of x, and a support is given by E = {xi : i ∈ I}. Thus, (6.17) yields

h0(x) = −
∫
E
θ0x(x) log θ0x(x) dH 0(x)

(a)
= −

∑
i∈I

Pr{x = xi} log Pr{x = xi} = H(x)

where (a) holds because H 0 is the counting measure.

Let x be an M -rectifiable random variable. By Theorem 6.11, x is a continuous random vari-

able and the M -dimensional Hausdorff density θMx is equal to the probability density function

fx. Thus, (6.16) yields

hM (x) = −Ex

[
log θMx (x)

]
= −Ex[log fx(x)]

(6.2)
= h(x) .

To get an idea of the m-dimensional entropy of random variables in between the discrete and

continuous cases, we can use Theorem 6.12 to construct m-rectifiable random variables. More

specifically, we consider a continuous random variable x on Rm and a one-to-one Lipschitz

mapping φ : Rm → RM (M ≥ m) whose Jacobian determinant Jφ is nonzero Lm-almost

everywhere. Intuitively, we should see a connection between the differential entropy of x and the

m-dimensional entropy of y , φ(x). By Theorem 6.12, the random variable y is m-rectifiable

and, because φ is one-to-one, we can indeed calculate the m-dimensional entropy.

Corollary 6.15 Let x be a continuous random variable on Rm with finite differential entropy

h(x) and probability density function f . Furthermore, let φ : Rm → RM (M ≥ m) be a one-to-

one Lipschitz mapping with Jφ nonzero Lm-almost everywhere and such that Ex[log Jφ(x)]

exists and is finite. Then the m-dimensional entropy of the m-rectifiable random variable y ,

φ(x) is

hm(y) = h(x) + Ex[log Jφ(x)] .

For the special case of an embedding φ : Rm → RM , φ(x1, . . . , xm) = (x1 · · · xm 0 · · · 0)T,

this results in

hm(x1, . . . , xm, 0, . . . , 0) = h(x) . (6.18)

Proof. The first part is the special case N = m and E = Rm of the more general result in

Theorem 6.16, which will be proved in Appendix B.4. The result (6.18) then follows from the

fact that, for the considered embedding, Jφ(x) is identically 1.



60 CHAPTER 6. INTEGER-DIMENSIONAL ENTROPY

6.3.3 Transformation Property

One important property of differential entropy is its invariance under unitary transformations.

A similar result holds for m-dimensional entropy. We can even give a more general result for

arbitrary one-to-one Lipschitz mappings.

Theorem 6.16 Let x be anm-rectifiable random variable on RN with 1 ≤ m ≤ N , finitem-

dimensional entropy hm(x), support E , and m-dimensional Hausdorff density θmx . Furthermore,

let φ : RN → RM with M ≥ m be a Lipschitz mapping with7 J E
φ 6= 0 H m|E -almost every-

where, φ(E) H m-measurable, and such that Ex[log J E
φ (x)] exists and is finite. If the restriction

of φ to E is one-to-one, then y , φ(x) is anm-rectifiable random variable and itsm-dimensional

entropy is

hm(y) = hm(x) + Ex[log J E
φ (x)] .

Proof. See Appendix B.4.

Remark 6.3 Theorem 6.16 shows that for the special case of a unitary transformation φ

(e.g., a translation),

hm(φ(x)) = hm(x)

because J E
φ (x) is identically one in that case.

Remark 6.4 In general, no result resembling Theorem 6.16 holds for Lipschitz functions

φ : Rm → RM (M ≥ m) that are not one-to-one on E . We can argue as in the proof of Theo-

rem 6.16 and obtain that y = φ(x) ism-rectifiable and that them-dimensional Hausdorff density

is

θmy (y) =
∑

x∈φ−1({y})

θmx (x)

J E
φ (x)

H m|φ(E)-almost everywhere. We then obtain for the m-dimensional entropy

hm(y) = −
∫
φ(E)

( ∑
x∈φ−1({y})

θmx (x)

J E
φ (x)

)
log

( ∑
x∈φ−1({y})

θmx (x)

J E
φ (x)

)
dH m(y)

(a)
= −

∫
E
θmx (x) log

( ∑
x′∈φ−1({φ(x)})

θmx (x′)

J E
φ (x′)

)
dH m(x)

where (a) holds because of the generalized area formula [Ambrosio et al., 2000, Th. 2.91].

However, this cannot be easily expressed in terms of a differential entropy due to the sum in the

logarithm.

7Here J E
φ denotes the Jacobian determinant of the tangential differential of φ in E . For details see [Ambrosio

et al., 2000, Def. 2.89].



Chapter 7

Joint and Conditional
Integer-Dimensional Entropy

An important concept in information theory is the amount of information that two random vari-

ables share. This concept is formalized by the mutual information, which constitutes the basis

for many fundamental information-theoretic results. To find connections between the mutual

information of integer-dimensional random variables and their entropy, we first define and study

joint and conditional entropy for integer-dimensional singular random variables. We then derive

expressions of the mutual information between integer-dimensional singular random variables

in terms of joint and conditional entropy. We also extend several classical results for joint (dif-

ferential) entropy, such as the chain rule and the asymptotic equipartition property. Finally, we

show that the classical rule that conditioning does not increase entropy may be violated if the

dimensions of the involved random variables do not match in a specific sense.

7.1 Joint Entropy

Joint entropy is a widely used concept although it can in fact be covered by the general concept

of higher-dimensional entropy, because a pair of random variables (x, y) with x ∈ RM1 and

y ∈ RM2 can also be interpreted as a single random variable on RM1+M2 . Thus, our concept of

entropy automatically generalizes to more than one random variable. Using this interpretation,

we obtain from (6.16) for an m-rectifiable pair of random variables (x, y) (i.e., µ(x, y)−1 �
H m|E for an m-rectifiable set E)

hm(x, y) , −E(x,y)

[
log θm(x,y)(x, y)

]
(7.1)

= −
∫
RM

log θm(x,y)(x,y) dµ(x, y)−1(x,y)

= −
∫
RM

θm(x,y)(x,y) log θm(x,y)(x,y) dH m|E(x,y) (7.2)

with M = M1 +M2. However, there are still some questions to answer:

61
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• Suppose we have an m1-rectifiable random variable x and an m2-rectifiable random vari-

able y on the same probability space. Can we conclude that (x, y) is (m1+m2)-rectifiable?

• Conversely, suppose we have an m-rectifiable random variable (x, y). Can we conclude

that x and y are rectifiable?

• Assuming that x, y, and (x, y) are m1-, m2-, and m-rectifiable, respectively, is there a

relationship between the quantities hm1(x), hm2(y), and hm(x, y) provided they exist?

Whereas no answers to these questions exist in complete generality, we will provide answers

under appropriate conditions on the involved random variables.

7.1.1 Product-Compatible Sets

One important shortcoming of Hausdorff measures (in contrast to, e.g., the Lebesgue measure)

is that the product of two Hausdorff measures is in general not again a Hausdorff measure.

However, restricting the Hausdorff measures to specific rectifiable sets will guarantee that the

product is again a Hausdorff measure (see Lemma 7.2 below). As this property will be used

throughout this section, we provide the following definition.

Definition 7.1 Let E1 ⊆ RM1 be anm1-rectifiable set and let E2 ⊆ RM2 be anm2-rectifiable

set. We call E1 and E2 product-compatible if

H m1+m2 |E1×E2 = H m1 |E1 ×H m2 |E2 . (7.3)

The equality of measures in (7.3) is understood on the product σ-algebra of the σ-algebra of

all H m1-measurable sets in RM1 and the σ-algebra of all H m2-measurable sets in RM2 . Thus,

(7.3) is equivalent to

H m1+m2(B1 × B2) = H m1(B1)H m2(B2) (7.4)

for all B1 ⊆ E1 H m1-measurable and all B2 ⊆ E2 H m2-measurable.

We can give some sufficient conditions for product compatibility. The result under Condi-

tion 1 is due to [Federer, 1969, Th. 3.2.23].

Lemma 7.2 Let E1 ⊆ RM1 be an m1-rectifiable Borel set, and let E2 ⊆ RM2 be an m2-

rectifiable Borel set. Each of the following conditions implies that E1 and E2 are product-

compatible.

1. The set E1 satisfies H m1(E1) < ∞. Furthermore, E2 = φ(A) with some Lipschitz

function φ : Rm2 → RM2 and some bounded set A ⊆ Rm2 .

2. The sets E1 and E2 can be decomposed as E1 =
⋃
k∈N E

(k)
1 and E2 =

⋃
`∈N E

(`)
2 , where

E(k)1 and E(`)2 are Borel sets such that H m1(E(k)1 ) <∞ and E(`)2 = φ`(A`) with Lipschitz

functions φ` : Rm2 → RM2 and bounded sets A` ⊆ Rm2 .
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3. We have E1 =
⋃
k∈N E

(k)
1 , where E(k)1 are Borel sets such that H m1(E(k)1 ) <∞. Further-

more, m2 = M2.

4. We have m1 = 0, i.e., the set E1 is countable.

Proof. See Appendix B.5.

One important property of product-compatible sets is that rectifiability of the sets implies

that the product is again rectifiable.

Lemma 7.3 Let E1 ⊆ RM1 be m1-rectifiable, E2 ⊆ RM2 be m2-rectifiable, and E1 and E2
be product-compatible. Then E1 × E2 is (m1 +m2)-rectifiable.

Proof. See Appendix B.6.

7.1.2 Joint Entropy for Independent Random Variables

We start our investigation of joint entropy with independent random variables on product-com-

patible supports. In this case, it turns out that the m-dimensional entropy is additive.

Theorem 7.4 Let x : Ω → RM1 and y : Ω → RM2 be independent random variables on a

probability space (Ω,S, µ). Furthermore, let x be m1-rectifiable with support E1 and let y be

m2-rectifiable with support E2, where E1 and E2 are product-compatible. Then the following

properties hold:

1. The random variable (x, y) : Ω→ RM1+M2 is (m1 +m2)-rectifiable.

2. The (m1 +m2)-dimensional Hausdorff density of (x, y) satisfies

θm1+m2

(x,y) (x,y) = θm1
x (x) θm2

y (y) (7.5)

H m1+m2-almost everywhere.

3. E1 × E2 is a support of (x, y).

4. If hm1(x) and hm2(y) are finite, then the (m1 + m2)-dimensional entropy of the random

variable (x, y) is given by

hm1+m2(x, y) = hm1(x) + hm2(y) .

Proof. See Appendix B.7.

A corollary of Theorem 7.4 is a result for sequences of independent random variables. This

setting will be important for our discussion of typical sets in Section 7.4.
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Corollary 7.5 Let x1:n , (x1, . . . , xn) be a sequence of independent random variables,

where xi ∈ RMi , i ∈ {1, . . . , n} ismi-rectifiable with support Ei andmi-dimensional Hausdorff

density θmixi . Furthermore, let E1 × E2 × · · · × Ei−1 and Ei be product-compatible for all i ∈
{2, . . . , n}. Then x1:n is an m-rectifiable random variable on RM , where m =

∑n
i=1mi and

M =
∑n

i=1Mi, and a support of x1:n is given by E = E1 × E2 × · · · × En. Moreover, the

m-dimensional Hausdorff density of x1:n is given by

θmx1:n(x1:n) =
n∏
i=1

θmixi (xi) . (7.6)

Finally, if hmi(xi) is finite for i ∈ {1, . . . , n}, then

hm(x1:n) =

n∑
i=1

hmi(xi) . (7.7)

Proof. The corollary follows by inductively applying Theorem 7.4 to the two random variables

(x1, . . . , xi−1) and xi.

7.1.3 Dependent Random Variables

The case of dependent random variables is more involved. The rectifiability of x and y does not

necessarily imply the rectifiability of (x, y) (which is expected, since the marginal distributions

carry only a small part of the information carried by the joint distribution). In general, even for

continuous random variables x and y, we cannot calculate the joint differential entropy h(x, y)

from the knowledge of the differential entropies h(x) and h(y). However, it is always possible

to bound the differential entropy according to [Cover and Thomas, 2006, eq. (8.63)]

h(x, y) ≤ h(x) + h(y) . (7.8)

In general, no bound resembling (7.8) holds for our entropy definition. Indeed, the following

simple setting provides a counterexample.

Example 7.1 Let (x, y) ∈ R2 be distributed according to a uniform distribution on the unit

circle S1, i.e., for any Borel set A ⊆ R2

µ(x, y)−1(A) = Pr{(x, y) ∈ A} =

∫
A

1

H 1(S1)
dH 1|S1(x, y)

=

∫
A

1

2π
dH 1|S1(x, y) =

1

2π
H 1|S1(A) . (7.9)

Choosing f1 : [−π, π] → R2, f1(t) = (cos t sin t)T results in S1 \ f1([−π, π]) = ∅. Thus,

according to Definition 6.2, the set S1 is 1-rectifiable. By (7.9), we have µ(x, y)−1 � H 1|S1 ,

which implies that the random variable (x, y) is 1-rectifiable (see Definition 6.9). Again by (7.9),
dµ(x,y)−1

dH 1|S1
(x, y) = 1/(2π). By (6.10), θ1(x,y)(x, y) = dµ(x,y)−1

dH 1|S1
(x, y) and thus the 1-dimensional
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Hausdorff density of (x, y) is given by

θ1(x,y)(x, y) =
1

2π

H 1-almost everywhere on S1. Using (7.2), we obtain

h1(x, y) = −
∫
S1
θ1(x,y)(x, y) log θ1(x,y)(x, y) dH 1(x, y)

= −
∫
S1

1

2π
log

(
1

2π

)
dH 1(x, y)

=
log(2π)

2π
H 1(S1)

= log(2π) . (7.10)

One can easily see that x is a continuous random variable and its probability density func-

tion is given by fx(x) = 1/(π
√

1− x2). By symmetry, the same holds for y, i.e., fy(y) =

1/(π
√

1− y2). Basic calculus then yields for the differential entropy of x and y

h(x) = h(y) = log

(
π

2

)
. (7.11)

Since x and y are continuous random variables, it follows from Theorem 6.14 that, h1(x) = h(x)

and h1(y) = h(y). Thus,

h1(x) + h1(y) = 2 log

(
π

2

)
< log(2π) .

Comparing with (7.10), we see that h1(x, y) > h1(x) + h1(y).

The reason for this seemingly unintuitive behavior of our entropy are the geometric properties

of the projection py : RM1+M2 → RM2 , py(x,y) = y, i.e., the projection of RM1+M2 to the

last M2 components. Although py is linear and has a classical Jacobian determinant Jpy of 1

everywhere on RM1+M2 , things get more involved once we consider py as a mapping between

rectifiable sets and want to calculate the Jacobian determinant J E
py of the tangential differential

of py which maps an m-rectifiable set E ⊆ RM1+M2 to an m2-rectifiable set E2 ⊆ RM2 . In this

setting, J E
py is not necessarily constant and may also become zero. Thus, the marginalization of

anm-dimensional Hausdorff density is not as easy as the marginalization of a probability density

function. The following theorem shows how to marginalize Hausdorff densities and describes

the implications on m-dimensional entropy.

Theorem 7.6 Let (x, y) ∈ RM1+M2 be anm-rectifiable random variable withm-dimension-

al Hausdorff density θm(x,y) and support E . Furthermore, let Ẽ2 , py(E) ⊆ RM2 be m2-rectifiable

(m2 ≤ m), H m2(Ẽ2) < ∞, and J E
py 6= 0 H m|E -almost everywhere. Then the following

properties hold:



66 CHAPTER 7. JOINT AND CONDITIONAL ENTROPY

1. The random variable y is m2-rectifiable.

2. There exists a support E2 ⊆ Ẽ2 of y.

3. The m2-dimensional Hausdorff density of y is given by

θm2
y (y) =

∫
E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x) (7.12)

H m2-almost everywhere, where E(y) , {x ∈ RM1 : (x,y) ∈ E}.

4. An expression of the m2-dimensional entropy of y is

hm2(y) = −
∫
E
θm(x,y)(x,y) log

(∫
E(y)

θm(x,y)(x̃,y)

J E
py(x̃,y)

dH m−m2(x̃)

)
dH m(x,y) (7.13)

provided the integral on the right-hand side exists and is finite.

Under the assumptions that Ẽ1 , px(E) is m1-rectifiable (m1 ≤ m), H m1(Ẽ1) < ∞, and

J E
px 6= 0 H m|E -almost everywhere, a symmetric result holds for x.

Proof. See Appendix B.8.

Remark 7.1 Some assumptions we made in Theorem 7.6 might not be necessary. In partic-

ular, we need the assumption H m2(E2) <∞ only to be able to apply a modified version of the

coarea formula (see Theorem B.1 in Appendix B.8).

We will illustrate the main findings of Theorem 7.6 in the setting of Example 7.1.

Example 7.2 As in Example 7.1, we consider (x, y) ∈ R2 uniformly distributed on the unit

circle S1, i.e., θ1(x,y)(x, y) = 1/(2π) H 1-almost everywhere on S1. In Example 7.1, we already

obtained h1(y) = log(π/2) (there, we used the fact that y is a continuous random variable

and that, by Theorem 6.14, h1(y) = h(y)). Let us now calculate h1(y) using Theorem 7.6.

Note first that py(S1) = [−1, 1] which is 1-rectifiable and satisfies H 1([−1, 1]) = 2 < ∞.

Next, we calculate the Jacobian determinant J S1
py (x, y). Consider a point on the unit circle,(

±
√

1− y2,±y
)

with y ∈ [0, 1]. At that point, the projection py restricted to the tangent

space of S1 can be shown to amount to a multiplication by the factor
√

1− y2. Thus, J S1
py

(
±√

1− y2,±y
)

=
√

1− y2. Hence, we obtain from (7.13)

h1(y) = −
∫
S1
θ1(x,y)(x, y) log

(∫
S(y)1

θ1(x,y)(x̃, y)

J S1
py (x̃, y)

dH 1−1(x̃)

)
dH 1(x, y)

= −
∫
S1

1

2π
log

(∫
S(y)1

1
2π√

1− y2
dH 0(x̃)

)
dH 1(x, y)

(a)
= − 1

2π

∫
S1

log

( ∑
x̃∈S(y)1

1
2π√

1− y2

)
dH 1(x, y)
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(b)
= − 1

2π

∫
S1

log

(
2

1
2π√

1− y2

)
dH 1(x, y)

= − 1

2π

∫
S1

log

(
1

π
√

1− y2

)
dH 1(x, y)

= − 1

2π

∫ 2π

0
log

(
1

π|cos(φ)|

)
dφ

= log

(
π

2

)
(7.14)

where (a) holds because H 0 is the counting measure and (b) holds because S(y)1 = {x ∈ R :

(x, y) ∈ S1} =
{√

1− y2,−
√

1− y2
}

contains two points for all y ∈ (−1, 1). Note that our

above result for h1(y) coincides with the result previously obtained in Example 7.1.

7.1.4 Product-Compatible Random Variables

There are special settings in which m-dimensional entropy more closely matches the behavior

we know from (differential) entropy. In these cases, the three random variables x, y, and (x, y)

are rectifiable with “matching” dimensions, and we will see that, an inequality similar to (7.8)

holds.

Definition 7.7 Let x be an m1-rectifiable random variable on RM1 with support E1, and let

y be an m2-rectifiable random variable on RM2 with support E2. The random variables x and y

are called product-compatible if E1 and E2 are product-compatible and (x, y) is an (m1 + m2)-

rectifiable random variable on RM1+M2 with support E ⊆ E1 × E2.

The most important part of Definition 7.7 is that the dimensions of x and y add up to the joint

dimension of (x, y). Note that this was not the case in Example 7.2, where x and y “shared” the

dimension m = 1 of (x, y). A simple example of product-compatible random variables is the

case of an m1-rectifiable random variable x and an independent m2-rectifiable random variable

y with product-compatible supports E1 and E2. Indeed, by Theorem 7.4, (x, y) is m1 + m2-

rectifiable with support E1 × E2.

Another example of product-compatible random variables can be deduced from Theorem 7.6:

Let (x, y) be (m1 + m2)-rectifiable. Assume that Ẽ2 , py(E) ⊆ RM2 is m2-rectifiable,

H m2(Ẽ2) < ∞, and J E
py 6= 0 H m|E -almost everywhere. Furthermore, assume that Ẽ1 ,

px(E) is m1-rectifiable, H m1(Ẽ1) < ∞, and J E
px 6= 0 H m|E -almost everywhere. By Theo-

rem 7.6, x is m1-rectifiable and y is m2-rectifiable. Thus, if in addition Ẽ1 and Ẽ2 are product-

compatible then x and y are product-compatible.

The setting of product-compatible random variables will be especially important for our

discussion of mutual information in Section 7.3. However, already for joint entropy, we obtain

some useful results.

Theorem 7.8 Let x be an m1-rectifiable random variable on RM1 with support E1, and let

y be an m2-rectifiable random variable on RM2 with support E2. Furthermore, let x and y be
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product-compatible. Denote by θm1+m2

(x,y) the (m1 +m2)-dimensional Hausdorff density of (x, y)

and by E ⊆ E1 × E2 a support of (x, y). Then the following properties hold:

1. The m2-dimensional Hausdorff density of y is given by

θm2
y (y) =

∫
E1
θm1+m2

(x,y) (x,y) dH m1(x) (7.15)

H m2-almost everywhere.

2. An expression of the m2-dimensional entropy of y is

hm2(y) = −
∫
E
θm1+m2

(x,y) (x,y) log

(∫
E1
θm1+m2

(x,y) (x̃,y) dH m1(x̃)

)
dH m1+m2(x,y)

(7.16)

provided the integral on the right-hand side exists and is finite.

3. The inequality

hm1+m2(x, y) ≤ hm1(x) + hm2(y) (7.17)

holds, provided hm1+m2(x, y) exists and is finite.

Due to symmetry, equivalent properties hold for θm1
x and hm1(x).

Proof. We present a proof of Properties 1 and 2 in Appendix B.9. Although a direct proof

of inequality (7.17) is possible, this task will be much easier once we considered the mutual

information between rectifiable random variables. Thus, we postpone the proof of Property 3 to

Corollary 7.19 in Section 7.3.

7.2 Conditional Entropy

In contrast to joint entropy, conditional entropy is a nontrivial extension of entropy. We would

like to define the entropy for a random variable x on RM1 under the condition that a dependent

variable y on RM2 takes on a specific value y. This “conditional” random variable is usually

denoted as (x | y = y). For discrete and—under appropriate assumptions—for continuous ran-

dom variables, the random variable (x | y = y) is well defined and so is the associated entropy

H(x | y = y) or differential entropy h(x | y = y). Averaging over all y results in the well-

known definitions of conditional entropy H(x | y), involving only the probability mass functions

p(x,y) and py, or of conditional differential entropy h(x | y), involving only the probability density

functions f(x,y) and fy. Indeed, if x and y are discrete random variables, we have

H(x | y) =
∑
j∈N

py(yj)H(x | y = yj) (7.18)

= −
∑
i,j∈N

p(x,y)(xi,yj) log

(
p(x,y)(xi,yj)

py(yj)

)
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= −E(x,y)

[
log

(
p(x,y)(x, y)

py(y)

)]
(7.19)

and, if x and y are continuous random variables, we have

h(x | y) =

∫
RM2

fy(y)h(x | y = y) dy (7.20)

= −
∫
RM1+M2

f(x,y)(x,y) log

(
f(x,y)(x,y)

fy(y)

)
d(x,y)

= −E(x,y)

[
log

(
f(x,y)(x, y)

fy(y)

)]
. (7.21)

A straightforward generalization to rectifiable measures would be to mimic the right-hand sides

in (7.19) and (7.21) using Hausdorff densities. However, it will turn out that this naive approach

is only partly correct: due to the geometric subtleties of the projection discussed in Section 7.1.3,

we have to include a correction term that reflects the geometry of the conditioning process.

7.2.1 Conditional Probability

For general random variables x and y, a unique definition of a random variable (x | y = y)

is not possible and we have to resort to the concept of conditional probabilities, which can be

summarized as follows (a detailed account can be found in [Gray, 2010, Ch. 5]): For a pair

of random variables (x, y) on RM1+M2 , there exists a regular conditional probability Pr{x ∈
A | y = y}, i.e., for each measurable set A, the function y 7→ Pr{x ∈ A | y = y} is measurable

and Pr{x ∈ A | y = y} defines a probability measure for each y ∈ RM2 . Furthermore, the

regular conditional probability Pr{x ∈ A | y = y} satisfies

Pr{(x, y) ∈ A1 ×A2} =

∫
A2

Pr{x ∈ A1 | y = y} dµy−1(y) . (7.22)

However, the regular conditional probability Pr{x ∈ A | y = y} involved in (7.22) is not unique.

Nevertheless, we can still use (7.22) for a definition of conditional entropy because any version of

the regular conditional probability satisfies (7.22). For the remainder of this section, we consider

a fixed version of the regular conditional probability and denote a random variable distributed

according to Pr{x ∈ A | y = y} as (x | y = y).

7.2.2 Definition of Conditional Entropy

In order to be able to calculate the entropy of a random variable (x | y = y), we first have to

show that (x | y = y) is rectifiable. The next theorem establishes sufficient conditions such that

(x | y = y) is rectifiable for almost every y. As before, we denote by py : RM1+M2 → RM2 the

projection of RM1+M2 to the last M2 components, i.e., py(x,y) = y

Theorem 7.9 Let (x, y) be anm-rectifiable random variable on RM1+M2 withm-dimension-

al Hausdorff density θm(x,y) and support E . Furthermore, let Ẽ2 , py(E) ⊆ RM2 be m2-rectifiable
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(m2 ≤ m), H m2(Ẽ2) < ∞, and J E
py 6= 0 H m|E -almost everywhere. Then the following

properties hold:

1. The random variable (x | y = y) is (m −m2)-rectifiable for H m2 |E2-almost every y ∈
RM2 , where E2 ⊆ Ẽ2 is a support1 of y.

2. The (m−m2)-dimensional Hausdorff density of (x | y = y) is given by

θm−m2

(x | y=y)(x) =
θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)
(7.23)

H m−m2 |E(y)-almost everywhere, for H m2 |E2-almost every y ∈ RM2 . Here, as before,

E(y) , {x ∈ RM1 : (x,y) ∈ E}.

3. For H m2 |E2-almost every y ∈ RM2 , the (m−m2)-dimensional entropy of (x | y = y) is

given by

hm−m2(x | y = y) = −
∫
E(y)

θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)
log

( θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)

)
dH m−m2(x) .

(7.24)

Proof. See Appendix B.10.

As for joint entropy, the case of product-compatible random variables (see Definition 7.7) is

of special interest and results in a more intuitive characterization of the entropy of (x | y = y).

Theorem 7.10 Let x be an m1-rectifiable random variable on RM1 with support E1, and let

y be an m2-rectifiable random variable on RM2 with support E2. Furthermore, let x and y be

product-compatible. Then the following properties hold:

1. The random variable (x | y = y) is m1-rectifiable for H m2 |E2-almost every y ∈ RM2 .

2. The m1-dimensional Hausdorff density of (x | y = y) is given by

θm1

(x | y=y)(x) =
θm1+m2

(x,y) (x,y)

θm2
y (y)

(7.25)

H m1 |E1-almost everywhere, for H m2 |E2-almost every y ∈ RM2 .

3. For H m2 |E2-almost every y ∈ RM2 , the m1-dimensional entropy of (x | y = y) is given

by

hm1(x | y = y) = −
∫
E1

θm1+m2

(x,y) (x,y)

θm2
y (y)

log

(θm1+m2

(x,y) (x,y)

θm2
y (y)

)
dH m1(x) . (7.26)

1By Theorem 7.6, the random variable y is m2-rectifiable with Hausdorff density θm2
y (given by (7.12)) and some

support E2 ⊆ Ẽ2.
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Proof. See Appendix B.11.

Note that Theorems 7.9 and 7.10 hold for any version of the regular conditional probability

Pr{x ∈ A | y = y}. However, for different versions, the statement “for H m2 |E2-almost every

y ∈ RM2” may refer to different sets of H m2 |E2-measure zero, e.g., (7.23) may hold for different

y ∈ RM2 . Thus, results that are independent of the version of the regular conditional probability

can only be obtained if we can avoid these “almost everywhere”-statements. To this end, we will

calculate the expectation of hm−m2(x | y = y). The resulting expression will no longer depend

on the specific version of the regular conditional probability. Anticipating this independence (cf.

Theorem 7.12) and motivated by (7.18) and (7.20), we define conditional entropy for rectifiable

random variables.

Definition 7.11 Let (x, y) be an m-rectifiable random variable on RM1+M2 and let y be m2-

rectifiable with m2-dimensional Hausdorff density θm2
y and support E2. The conditional entropy

of (x | y) is defined as

hm−m2(x | y) ,
∫
E2
θm2
y (y) hm−m2(x | y = y) dH m2(y) (7.27)

provided the right-hand side in (7.27) exists and coincides for all versions of the regular condi-

tional probability Pr{x ∈ A | y = y}.

The following theorem gives a characterization of conditional entropy and sufficient condi-

tions for (7.27) to be well-defined in the sense that the right-hand side in (7.27) coincides for all

versions of the regular conditional probability Pr{x ∈ A | y = y}.

Theorem 7.12 Let (x, y) be an m-rectifiable random variable on RM1+M2 with m-dimen-

sional Hausdorff density θm(x,y) and support E . Furthermore, let E2 , py(E) be m2-rectifiable,

H m2(E2) <∞, and J E
py 6= 0 H m|E -almost everywhere. Then

hm−m2(x | y) = −E(x,y)

[
log

(θm(x,y)(x, y)

θm2
y (y)

)]
+ E(x,y)

[
log J E

py(x, y)
]

(7.28)

provided the right-hand side in (7.28) exists and is finite.

Proof. See Appendix B.12.

Note the difference between (7.28) and the expressions (7.19) and (7.21) of H(x | y) and

h(x | y), respectively: in the case of rectifiable random variables, we have to take the geometric

correction term E(x,y)

[
log J E

py(x, y)
]

into account. However, in the case of product-compatible

rectifiable random variables, this correction term does not appear.

Theorem 7.13 Let the m1-rectifiable random variable x on RM1 and the m2-rectifiable ran-

dom variable y on RM2 be product-compatible. Then

hm1(x | y) = −E(x,y)

[
log

(θm1+m2

(x,y) (x, y)

θm2
y (y)

)]
(7.29)
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provided the right-hand side in (7.29) exists and is finite.

Proof. See Appendix B.13.

7.2.3 Chain Rule for Rectifiable Random Variables

As in the case of entropy and differential entropy, we can give a chain rule for m-dimensional

entropy.

Theorem 7.14 Let (x, y) be an m-rectifiable random variable on RM1+M2 with m-dimen-

sional Hausdorff density θm(x,y) and support E . Furthermore, let E2 , py(E) be m2-rectifiable,

H m2(E2) <∞, and J E
py 6= 0 H m|E -almost everywhere. Then

hm(x, y) = hm2(y) + hm−m2(x | y)− E(x,y)

[
log J E

py(x, y)
]

(7.30)

provided the corresponding integrals exist and are finite.

Proof. By the definition of hm(x, y) in (7.1) and the definition of hm2(y) in (6.16), we have

hm(x, y)− hm2(y) + E(x,y)

[
log J E

py(x, y)
]

= −E(x,y)

[
log θm(x,y)(x, y)

]
+ Ey

[
log θm2

y (y)
]

+ E(x,y)

[
log J E

py(x, y)
]

= −E(x,y)

[
log

(θm(x,y)(x, y)

θm2
y (y)

)]
+ E(x,y)

[
log J E

py(x, y)
]
. (7.31)

Because we assumed in the theorem that the integrals corresponding to the terms on the left-hand

side in (7.31) are finite, the right-hand side in (7.31) is also finite. By (7.28), the right-hand side

in (7.31) equals hm−m2(x | y). Thus, (7.30) holds.

Next, we continue Examples 7.1 and 7.2 from Section 7.1 where we will see that the geo-

metric correction term in the chain rule, E(x,y)

[
log J E

py(x, y)
]
, is indeed necessary.

Example 7.3 As in Examples 7.1 and 7.2, we consider (x, y) ∈ R2 uniformly distributed on

the unit circle S1, i.e., θ1(x,y)(x, y) = 1/(2π) H 1-almost everywhere on S1. According to (7.14),

h1(y) = log

(
π

2

)
(7.32)

and, according to (7.10),

h1(x, y) = log(2π) . (7.33)

To calculate the conditional entropy h0(x | y) (note that m−m2 = 1− 1 = 0), we consider the

regular conditional probability Pr{x ∈ A | y = y}. It is easy to see that one possible version

of Pr{x ∈ A | y = y} is the following: for y ∈ (−1, 1), the random variable (x | y = y) is a

binary random variable taking on the values ±
√

1− y2 with equal probability 1/2. The random
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variables (x | y = y) for |y| ≥ 1 are irrelevant because Pr{y /∈ (−1, 1)} = 0. Hence, the entropy

h0(x | y = y) is the binary entropy function at 1/2, i.e., log 2, for all y ∈ (−1, 1). Thus, also the

expectation with respect to y is the same, i.e.,

h0(x | y) = log 2 . (7.34)

This is different from h1(x, y) − h1(y) = log(2π) − log(π/2), and therefore the conjecture

that a chain rule holds without a correction term is wrong. To calculate the correction term,

which is given by E(x,y)

[
log J S1

py (x, y)
]

according to (7.30), we recall from Example 7.2 that

J S1
py

(
±
√

1− y2,±y
)

=
√

1− y2 or, more conveniently, J S1
py (cosφ, sinφ) = |cosφ|. Thus,

we obtain

E(x,y)

[
log J S1

py (x, y)
]

=

∫
S1

1

2π
log J S1

py (x, y) dH 1(x, y)

=

∫ 2π

0

1

2π
log|cosφ| dφ

= − log 2 . (7.35)

We finally verify that (7.35) is consistent with the chain rule (7.30). Starting from (7.33), we

obtain

h1(x, y) = log(2π)

= log

(
π

2

)
+ log 2− (− log 2)

= h1(y) + h0(x | y)− E(x,y)

[
log J S1

py (x, y)
]

where the final expansion is obtained by using (7.32), (7.34), and (7.35).

Example 7.3 also provides a counterexample to the rule “conditioning does not increase en-

tropy,” which holds for the entropy of discrete random variables and the differential entropy of

continuous random variables. Indeed, comparing (7.11) and (7.34), we see that for the compo-

nents of a uniform distribution on the unit circle, we have h1(x) < h0(x | y). However, as we

will see in Corollary 7.19 below, this is only due to a “reduction of dimensions”: if x and y

are product-compatible, which implies that hm1(x) and hm−m2(x | y) have the same dimension

m1 = m−m2, conditioning will indeed reduce entropy, i.e., hm1(x | y) ≤ hm1(x) (see (7.48) be-

low). Also the chain rule (7.30) reduces to its traditional form in the case of product-compatible

random variables, as stated next.

Theorem 7.15 Let the m1-rectifiable random variable x on RM1 and the m2-rectifiable ran-

dom variable y on RM2 be product-compatible. Then

hm1+m2(x, y) = hm2(y) + hm1(x | y) (7.36)
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provided the entropies hm1+m2(x, y) and hm2(y) exist and are finite.

Proof. By the definition of hm1+m2(x, y) in (7.1) and the definition of hm2(y) in (6.16), we have

hm1+m2(x, y)− hm2(y) = −E(x,y)

[
log θm1+m2

(x,y) (x, y)
]

+ Ey

[
log θm2

y (y)
]

= −E(x,y)

[
log

(θm1+m2

(x,y) (x, y)

θm2
y (y)

)]
. (7.37)

By (7.29), the right-hand side in (7.37) coincides with hm1(x | y). Thus, (7.36) holds.

We can extend the chain rule (7.36) to a sequence of random variables.

Corollary 7.16 Let x1:n , (x1, . . . , xn) be a sequence of random variables where each

xi ∈ RMi ismi-rectifiable. Assume that x1:i−1 and xi are product-compatible for i ∈ {2, . . . , n}.
Then

hm(x1:n) = hm1(x1) +
n∑
i=2

hmi(xi | x1:i−1) (7.38)

with m ,
∑n

i=1mi, provided the corresponding integrals exist and are finite.

Proof. We prove (7.38) by induction. For n = 2, (7.38) reduces to (7.36). Thus, we only have

to show the inductive step. Assume that (7.38) holds for n− 1 random variables, i.e.,

hm̃(x̃1:n−1) = hm̃1(x̃1) +
n−1∑
i=2

hm̃i(x̃i | x̃1:i−1) (7.39)

for x̃1:n−1 such that each x̃i ∈ RM̃i is m̃i-rectifiable, and x̃1:i−1 and x̃i are product-compatible

for i ∈ {2, . . . , n}. Choosing x̃1 , (x1, x2) and x̃i , xi+1 for i ∈ {2, . . . , n− 1}, (7.39) implies

hm(x1:n) = hm1+m2(x1, x2) +

n∑
i=3

hmi(xi | x1:i−1) . (7.40)

By (7.36), we also have

hm1+m2(x1, x2) = hm1(x1) + hm2(x2 | x1) . (7.41)

Combining (7.40) and (7.41), we obtain (7.38).

7.3 Mutual Information

The basic definition of mutual information is for discrete random variables x and y with prob-

ability mass functions px(xi) and py(yj), and joint probability mass function px,y(xi,yj). The

mutual information between x and y is given by [Cover and Thomas, 2006, eq. (2.28)]

I(x; y) ,
∑
i,j

px,y(xi,yj) log

(
px,y(xi,yj)

px(xi)py(yj)

)
. (7.42)
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However, mutual information is also defined between arbitrary random variables x and y on a

common probability space. This definition is based on (7.42) and quantizations [x]Q and [y]R

[Cover and Thomas, 2006, eq. (8.54)]. We recall from Section 6.1.1 that for a measurable, finite

partition Q = {A1, . . . ,AN} of RM1 (i.e., RM1 =
⋃N
i=1Ai with Ai ∈ Q mutually disjoint and

measurable), the quantization [x]Q is defined as the discrete random variable with probability

distribution Pr{[x]Q = i} = Pr{x ∈ Ai} for i ∈ {1, . . . , N}.

Definition 7.17 ( [Cover and Thomas, 2006, eq. (8.54)]) Let x : Ω → RM1 and y : Ω →
RM2 be random variables on a common probability space (Ω,S, µ). The mutual information

between x and y is defined as

I(x; y) , sup
Q,R

I([x]Q; [y]R)

where the supremum is taken over all measurable, finite partitions Q of RM1 and R of RM2 .

By the Gelfand-Yaglom-Perez theorem [Gray, 1990, Lem. 5.2.3], mutual information can

also be expressed in terms of Radon-Nikodym derivatives: For random variables x : Ω → RM1

and y : Ω→ RM2 on a common probability space (Ω,S, µ),

I(x; y) =



∫
RM1+M2

log

(
dµ(x, y)−1

d
(
µx−1 × µy−1

)(x,y)

)
dµ(x, y)−1(x,y)

if µ(x, y)−1 � µx−1 × µy−1

∞ else.
(7.43)

For the special cases of discrete and continuous random variables, there exists an expression

of mutual information in terms of entropy and differential entropy, respectively. We will extend

this expression to the case of rectifiable random variables. The resulting generalization will

involve the entropies hm1(x), hm2(y), and hm(x, y).

Theorem 7.18 Let x be an m1-rectifiable random variable with support E1 ⊆ RM1 , let y

be an m2-rectifiable random variable with support E2 ⊆ RM2 , let (x, y) be m-rectifiable with

support E ⊆ E1×E2, and assume that E1 and E2 are product-compatible. The mutual information

satisfies:

1. If x and y are product-compatible (i.e., m = m1 +m2),

I(x; y) =

∫
E
θm(x,y)(x,y) log

( θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)
dH m(x,y) . (7.44)

Furthermore,

I(x; y) = hm1(x) + hm2(y)− hm(x, y) (7.45)
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and

I(x; y) = hm1(x)− hm1(x | y) = hm2(y)− hm2(y | x) (7.46)

provided the entropies hm1(x), hm2(y), and hm(x, y) exist and are finite.

2. If m < m1 +m2 then I(x; y) =∞.

Proof. See Appendix B.14.

In Theorem 7.18, the case m < m1 + m2 can be interpreted as x and y “sharing” at least

one dimension. In a communication scenario, this would imply that it is possible to recon-

struct an at least one-dimensional component of x from y (and, also, to reconstruct an at least

one-dimensional component of y from x). Thus, an infinite amount of information could be

transmitted over a channel x −→ y (or y −→ x). This fits our result that I(x; y) =∞ in the case

m < m1 +m2.

A corollary of Theorem 7.18 is that for product-compatible random variables, we can upper-

bound the joint entropy by the sum of the single entropies and prove that conditioning does not

increase entropy.

Corollary 7.19 Let the m1-rectifiable random variable x on RM1 and the m2-rectifiable

random variable y on RM2 be product-compatible. Then

hm1+m2(x, y) ≤ hm1(x) + hm2(y) (7.47)

and

hm1(x | y) ≤ hm1(x) (7.48)

provided the entropies hm1(x), hm2(y), and hm1+m2(x, y) exist and are finite.

Proof. The inequality (7.47) follows from (7.45) and the nonnegativity of mutual information.

Similarly, (7.48) follows from (7.46) and the nonnegativity of mutual information.

7.4 Asymptotic Equipartition Property

Similar to classical entropy and differential entropy, the m-dimensional entropy hm(x) satisfies

an asymptotic equipartition property (AEP). Let us consider a sequence x1:n , (x1, . . . , xn) of

independent and identically distributed (i.i.d.) random variables xi. Our main findings are similar

to the discrete and continuous cases: based on hm(x), we define sets A(n)
ε of typical sequences

x1:n and show that, for sufficiently large n, a random sequence x1:n belongs to A(n)
ε with prob-

ability arbitrarily close to one. Furthermore, we obtain upper and lower bounds on the size of

A(n)
ε given by en(h

m(x)+ε) and (1 − δ)en(hm(x)−ε), respectively. In the case of classical entropy

and differential entropy these properties are useful in the proof of various coding theorems as

they allow us to consider only typical sequences.
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Our analysis follows the steps in [Cover and Thomas, 2006, Ch. 8.2]. However, whereas

in the discrete case the size of a set of sequences x1:n is measured by its cardinality and in the

continuous case by its Lebesgue measure, in the present case of m-rectifiable random variables

xi, we resort to the Hausdorff measure.

Lemma 7.20 Let x1:n = (x1, . . . , xn) be a sequence of i.i.d. m-rectifiable random variables

xi on RM , where each xi has the same m-dimensional Hausdorff density θmx and m-dimensional

entropy hm(x). Then the random variable −(1/n)
∑n

i=1 log θmx (xi) converges to hm(x) in prob-

ability, i.e., for any ε > 0

lim
n→∞

Pr

{∣∣∣∣− 1

n

n∑
i=1

log θmx (xi)− hm(x)

∣∣∣∣ > ε

}
= 0 . (7.49)

Proof. By (6.16), we have hm(x) = −Ex

[
log θmx (x)

]
, and by the weak law of large numbers, the

sample mean −(1/n)
∑n

i=1 log θmx (xi) converges to the expectation −Ex

[
log θmx (x)

]
in proba-

bility.

We can define typical sets in the usual way [Cover and Thomas, 2006, Ch. 8.2].

Definition 7.21 Let x be an m-rectifiable random variable on RM with support E and m-

dimensional Hausdorff density θmx . For ε > 0 and n ∈ N, the ε-typical set A(n)
ε ⊆ RnM is

defined as

A(n)
ε ,

{
x1:n ∈ En :

∣∣∣∣− 1

n

n∑
i=1

log θmx (xi)− hm(x)

∣∣∣∣ ≤ ε} . (7.50)

Note thatA(n)
ε ⊆ En. The assumption x1:n ∈ En simplifies working withA(n)

ε . This is not a

strong restriction because, by Property 4 in Corollary 6.10, θmx (x) = 0 H m-almost everywhere

on Ec.
The AEP for sequences of m-rectifiable random variables is expressed by the following

central result.

Theorem 7.22 Let x1:n = (x1, . . . , xn) be a sequence of i.i.d.m-rectifiable random variables

xi on RM , where each xi has the same m-dimensional Hausdorff density θmx , support E , and m-

dimensional entropy hm(x). Furthermore, let En and E be product-compatible for all n ∈ N.

Then the typical set A(n)
ε satisfies the following properties.

1. For δ > 0 and n sufficiently large,

Pr{x1:n ∈ A(n)
ε } > 1− δ .

2. For all n ∈ N,

H nm(A(n)
ε ) ≤ en(hm(x)+ε) . (7.51)
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3. For δ > 0 and n sufficiently large,

H nm(A(n)
ε ) > (1− δ)en(hm(x)−ε) . (7.52)

Proof. See Appendix B.15.



Chapter 8

Source Coding for Integer-Dimensional
Singular Random Variables

Based on the definitions and results provided in the preceding Chapters 6 and 7, we present two

applications of integer-dimensional entropy to the field of source coding. First, we extend the

classical result that the entropy of a discrete random variable provides a bound on the expected

codeword length to the much wider class of integer-dimensional random variables. Second, we

present a lower bound on the rate-distortion function of integer-dimensional sources. This bound

provides an extension of the continuous Shannon lower bound.

8.1 Entropy Bounds on Expected Codeword Length

A well-known result for discrete random variables is a connection between the minimal expected

codeword length of a lossless source code and the entropy of the random variable [Cover and

Thomas, 2006, Th. 5.4.1]. More specifically, let x be a discrete random variable on RM with

possible realizations {xi : i ∈ I}. In variable-length lossless source coding, a one-to-one

function f : {xi : i ∈ I} → {0, 1}∗, where {0, 1}∗ denotes the set of all finite-length binary

sequences, is used to represent each realization xi by a finite-length binary sequence si = f(xi).

The expected codeword length is defined as

Lf (x) , Ex[`(f(x))]

where `(s) denotes the length of a binary sequence s ∈ {0, 1}∗. The minimal expected binary

codeword lengthL∗(x) is defined as the minimum ofLf (x) over the set of all possible one-to-one

functions f . By [Cover and Thomas, 2006, Th. 5.4.1], L∗(x) satisfies1

H(x) ld e ≤ L∗(x) < H(x) ld e+ 1 . (8.1)

1The factor ld e appears because we defined entropy using the natural logarithm.

79
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For a nondiscrete m-rectifiable random variable x (i.e., m ≥ 1), a lossless code of finite

codeword length does not exist. However, quantizations of x can be encoded using finite-length

binary sequences. We will present results for the minimal expected codeword length of con-

strained quantizations of x.

Definition 8.1 Let E ⊆ RM be an m-rectifiable set. Furthermore, let Q = {A1, . . . ,AN}
be a finite H m-measurable partition of E , i.e., all sets Ai are mutually disjoint and H m-mea-

surable, and
⋃N
i=1Ai = E . The partition Q is said to be an (m, δ)-partition of E if H m(Ai) ≤ δ

for all i ∈ {1, . . . , N}. The set of all (m, δ)-partitions of E is denoted P
(E)
m,δ.

Note that the definition of an (m, δ)-partition of an m-rectifiable set E does not involve a

distortion function. On the one hand, this is convenient because we do not have to argue about a

good distortion measure. On the other hand, the points in a setAi of a partition Q ∈ P
(E)
m,δ are not

necessarily “close” to each other; in fact, Ai is not even necessarily connected. Thus, although

the partitions in P
(E)
m,δ contain measure-theoretically small sets, these sets might be considered

large in terms of specific distortion measures.

In what follows, we will consider the quantized random variable [x]Q for Q ∈ P
(E)
m,δ. We

recall that [x]Q is the discrete random variable such that Pr{[x]Q = i} = Pr{x ∈ Ai} for

i ∈ {1, . . . , N}. We first prove an expression of the m-dimensional entropy of an m-rectifiable

random variable x as the infimum of the entropy of quantizations [x]Q. This expression will be

used in the proof of Theorem 8.3.

Lemma 8.2 Let x be an m-rectifiable random variable with m ≥ 1 and support E satisfying

H m(E) <∞. Let P(E)
m,∞ denote the set of all finite, measurable partitions of E . Then

hm(x) = inf
Q∈P(E)

m,∞

(
−
∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

))
(8.2)

= inf
Q∈P(E)

m,∞

(
H([x]Q) +

∑
A∈Q

µx−1(A) log H m|E(A)

)
. (8.3)

Proof. See Appendix B.16.

The terms in (8.3) give an interesting interpretation of m-dimensional entropy. Looking for

a quantization that minimizes H([x]Q) corresponds to minimizing the amount of data required

to represent this quantization. Of course, the minimum is simply obtained with the partition

Q = {E}, which gives H([x]Q) = 0. But in (8.3), we also have a term that penalizes a bad

“resolution” of the quantization: If the quantized random variable [x]Q is with high probability—

corresponding to µx−1(A) being large—in a large quantization set A, then this is penalized

by the term µx−1(A) log H m|E(A). Thus, (8.3) shows that m-dimensional entropy can be

interpreted in terms of a tradeoff between fine resolution and efficient representation.

We now turn to a generalization of (8.1) to rectifiable random variables.
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Theorem 8.3 Let x be an m-rectifiable random variable with m ≥ 1 and support E satis-

fying H m(E) < ∞. For any Q ∈ P
(E)
m,δ, the minimal expected binary codeword length of the

quantized random variable [x]Q satisfies

L∗([x]Q) ≥ hm(x) ld e− ld δ . (8.4)

Furthermore, for each ε > 0, there exists δε > 0 such that the following holds: for each δ ∈
(0, δε), there exists a partition Qδ ∈ P

(E)
m,δ such that

L∗([x]Qδ) < hm(x) ld e− ld δ + 1 + ε . (8.5)

Proof. See Appendix B.17. We note that the proof is based on (8.1) and the representation of

hm(x) given in Lemma 8.2.

The bound (8.4) shows the following: if we want a quantization Q of x with good resolution

(in the sense that H m(A) ≤ δ for allA ∈ Q), then we have to use at least hm(x) ld e− ld δ bits

to represent this quantized random variable. However, by (8.5), we know that for a sufficiently

fine resolution (i.e., δ < δε), we have to use at most 1 +ε additional bits (in addition to the lower

bound hm(x) ld e− ld δ) to achieve the desired resolution.

We will now apply Theorem 8.3 to sequences of i.i.d. random variables. To this end, we

consider quantizations of an entire sequence, [x1:n]Q = [(x1, . . . , xn)]Q with Q ∈ P
(En)
nm,δn .

We denote by L∗n([x1:n]Q) , L∗([x1:n]Q)/n the minimal expected binary codeword length per

source symbol.

Corollary 8.4 Let x1:n = (x1, . . . , xn) be a sequence of i.i.d.m-rectifiable random variables

(m ≥ 1) on RM with m-dimensional entropy hm(x) and support E satisfying H m(E) < ∞.

Furthermore, assume that E i and E are product-compatible for i ∈ {1, . . . , n − 1}. Then, for

each ε > 0, there exists δε > 0 such that the following holds: for each δ ∈ (0, δε), there exists a

partition Q ∈ P
(En)
nm,δn such that the minimal expected binary codeword length per source symbol

satisfies

hm(x) ld e− ld δ ≤ L∗n([x1:n]Q) ≤ hm(x) ld e− ld δ +
1 + ε

n
. (8.6)

Proof. By Corollary 7.5, the random variable x1:n is nm-rectifiable with support En and nm-di-

mensional entropy hnm(x1:n) = nhm(x). Thus, by Theorem 8.3, there exists δ̂ε > 0 such that

the following holds:

(∗) For all δ̂ ∈ (0, δ̂ε) there exists a partition Q ∈ P
(En)
nm,δ̂

satisfying

nhm(x) ld e− ld δ̂ ≤ L∗([x1:n]Q) < nhm(x) ld e− ld δ̂ + 1 + ε .

Choosing δε , δ̂
1/n
ε , we have for δ ∈ (0, δε) that δn ∈ (0, δ̂ε). Thus, by (∗), there exists a
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partition Q ∈ P
(En)
nm,δn satisfying

nhm(x) ld e− ld δn ≤ L∗([x1:n]Q) < nhm(x) ld e− ld δn + 1 + ε .

Dividing by n gives (8.6).

Corollary 8.4 shows that the upper bound on the expected codeword length per source symbol

becomes closer to the lower bound hm(x) ld e− ld δ if we are allowed to quantize and code entire

sequences. However, note that using the quantization Q ∈ P
(En)
nm,δn of the joint random variable

x1:n, we cannot always reconstruct each xi to within a set Ai satisfying H m(Ai) ≤ δ. All we

know is that each A ∈ Q satisfies H nm(A) ≤ δn, i.e., the overall resolution of the sequence is

good, but the resolution of each individual source symbol is not guaranteed to be also good.

8.2 Shannon Lower Bound for Integer-Dimensional Sources

The problem considered in rate-distortion (RD) theory is to represent a given random variable

x using as few values as possible while keeping the expected distortion below some thresh-

old [Gray, 1990, Ch. 4]. We will consider throughout this section a distance distortion function

d(·, ·) on RM × RM , i.e., d(x,y) = d(x − y,0). Furthermore, we assume that d(·, ·) sat-

isfies infy∈RM d(x,y) = 0 for each x ∈ RM . The RD function is then defined as [Gray,

1990, eq. (4.1.3)]

R(D) , inf
E(x,y)[d(x,y)]≤D

I(x; y)

for D ≥ 0. Here, the above constrained infimum is taken over all joint probability distributions

(x, y) with the fixed probability distribution of x as the first marginal. We assume that there exist

D ≥ 0 such that R(D) is finite, and we denote by D0 the infimum of these D. Furthermore, we

assume that there exists a finite set B ⊆ RM such that

Ex

[
min
y∈B

d(x,y)
]
<∞ .

This assumption guarantees that there exists a finite quantization of x with bounded expected

distortion. Under these standard assumptions, we have the following characterization of the RD

function [Csiszár, 1974, Th. 2.3]: For each D > D0,

R(D) = max
s≥0

max
αs(x)

(
− sD + Ex[logαs(x)]

)
(8.7)

where the second maximization is with respect to all functions2 αs : RM → (0,∞) satisfying

for each y ∈ RM

Ex

[
αs(x)e−sd(x,y)

]
≤ 1 . (8.8)

2Although in [Csiszár, 1974, Th. 2.3] αs(x) ≥ 1 is assumed, (8.7) also holds for αs(x) > 0 because of [Csiszár,
1974, Lem. 1.2 and Lem. 1.4].
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8.2.1 Shannon Lower Bound

The most common form of the traditional Shannon lower bound [Gray, 1990, Ch. 4.3] for a

discrete source x is the following inequality

R(D) ≥ H(x)−maxH(w) (8.9)

where the maximum is taken over all random variables w whose expected distortion relative to 0

is equal to D, i.e., Ew

[
d(w,0)

]
= D. An important part of the bound (8.9) is that the contribu-

tion of the source x and the contribution of the distortionD and distortion function d(·, ·) become

separated. For a fixed distortion function and a given distortion, we can calculate maxH(w) and

then use the bound (8.9) for different sources x simply by calculating their entropy H(x).

For a continuous random variable x on RM , a bound similar to (8.9) can also be derived

under certain assumptions. However, it is more convenient to state the continuous Shannon

lower bound in the following parametric form [Gray, 1990, Ch. 4.6]

R(D) ≥ h(x)− sD − log γ̃(s) (8.10)

where

γ̃(s) ,
∫
RM

e−sd(x,0) dLM (x) (8.11)

and (8.10) holds for all s ≥ 0. The right-hand side of (8.10) can be maximized with respect to s

and it turns out that [Gray, 1990, Lem. 4.6.2]

min
s≥0

(
sD + log γ̃(s)

)
= maxh(w)

where the maximum is taken over all continuous random variables w whose expected distortion

relative to 0 is equal to D, i.e., Ew

[
d(w,0)

]
= D. This results again in the simple formula

(cf. (8.9))

R(D) ≥ h(x)−maxh(w) .

Because the parametric bound (8.10) is more convenient in most cases and already allows us

to separate the source from the distortion, we will concentrate on a generalization of (8.10) to

rectifiable random variables. To this end, we will use the characterization of the RD function in

(8.7) with a specific choice of the function αs.

Theorem 8.5 Let x be an m-rectifiable random variable with support E , and let

γ(s) , sup
y∈RM

∫
E
e−sd(x,y) dH m(x), for s ≥ 0 . (8.12)

Then for each s ≥ 0 the RD function is lower bounded by

R(D) ≥ RSLB(D, s) , hm(x)− sD − log γ(s) . (8.13)
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Proof. We start by noting that (8.12) implies∫
E
e−sd(x,y) dH m(x) ≤ γ(s) (8.14)

for all y ∈ RM . Let s ≥ 0 be fixed. By (8.7),

R(D) ≥ −sD + Ex[logαs(x)] (8.15)

for every function αs satisfying (8.8). We have

Ex

[
1

θmx (x)γ(s)
e−sd(x,y)

]
=

∫
E
θmx (x)

1

θmx (x)γ(s)
e−sd(x,y) dH m(x)

=
1

γ(s)

∫
E
e−sd(x,y) dH m(x)

(8.14)
≤ γ(s)

γ(s)

= 1

for all y ∈ RM . Therefore, the choice αs(x) , 1
θmx (x)γ(s) satisfies (8.8). Inserting αs(x) =

1
θmx (x)γ(s) into (8.15), we obtain

R(D) ≥ −sD + Ex

[
log

1

θmx (x)γ(s)

]
= −Ex[log θmx (x)]− sD − Ex[log γ(s)]

= hm(x)− sD − log γ(s) .

Note that for continuous random variables with positive probability density function almost

everywhere (i.e., M -rectifiable with support RM ), the definitions of γ̃(s) in (8.11) and γ(s) in

(8.12) coincide. Indeed, because d(x,y) = d(x− y,0) and a translation by y does not change

the value of the integral over RM , (8.11) becomes (recall that H M = LM )∫
RM

e−sd(x,0) dLM (x) =

∫
RM

e−sd(x,y) dH M (x) (8.16)

for any y ∈ RM . Because the left-hand side in (8.16) does not depend on y, taking the supremum

over y ∈ RM in (8.16) results in∫
RM

e−sd(x,0) dLM (x) = sup
y∈RM

∫
RM

e−sd(x,y) dH M (x)

which is (8.12). Thus, in this case, the Shannon lower bounds (8.10) and (8.13) coincide. How-

ever, for continuous random variables with a smaller support E ⊆ RM , the Shannon lower bound
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(8.13) is tighter (i.e., larger) than (8.10). This is due to the fact that (8.13) incorporates the addi-

tional information that the random variable is restricted to E .

The optimal choice of s in (8.13) depends on D and is in general hard to find. In fact, we do

not even know whether the optimal (i.e., largest) lower bound RSLB(D, s) is achieved for a finite

s or RSLB(D, s) increases as s goes to∞. The following lemma shows that the latter alternative

is not possible.

Lemma 8.6 Let x be an m-rectifiable random variable with support E and finite m-dimen-

sional entropy hm(x). Then for D > D0 the lower bound RSLB(D, s) in (8.13) satisfies

lim
s→∞

RSLB(D, s) = −∞ . (8.17)

Proof. See Appendix B.18.

IfRSLB(D, s) is continuous, Lemma 8.6 implies that the global maximum ofRSLB(D, s) for

a fixed D > D0 exists and is either a local maximum or the boundary point s = 0. If γ(s) is

differentiable with respect to s, we can specify the local maxima of RSLB(D, s).

Corollary 8.7 Let x be an m-rectifiable random variable with support E , and let γ(s) (see

(8.12)) be differentiable with respect to s. Then for D > D0 the lower bound RSLB(D, s) in

(8.13) is maximized either for s = 0 or for some s > 0 satisfying

D = D̃(s) , −γ
′(s)

γ(s)
. (8.18)

Proof. Because γ(s) is differentiable, we can differentiateRSLB(D, s) with respect to s and then

set the result to zero to obtain a necessary condition for a local maximum. Solving the resulting

equation for D yields (8.18). Thus, for a given D > D0, RSLB(D, s) can only have a local

maximum s ∈ (0,∞) for s satisfying (8.18). By Lemma 8.6, the global maximum can either be

a local maximum or is achieved for s = 0, which concludes the proof.

If γ(s) is differentiable, Corollary 8.7 provides a “parametrization” of the graph of the largest

bound RSLB(D, s), i.e., we can characterize all pairs (D, sups≥0RSLB(D, s)) for D > D0.

Corollary 8.8 Let x be an m-rectifiable random variable with support E , and let γ(s) (see

(8.12)) be differentiable with respect to s. Then{(
D, sup

s≥0
RSLB(D, s)

)
∈ R2 : D > D0

}
⊆
{(
D̃(s), RSLB(D̃(s), s)

)
: s > 0

}
∪
{(
D, hm(x)− log H m(E)

)
: D > D0

}
.

(8.19)

Proof. Let (D,RSLB(D, s)) belong to the set on the left-hand side in (8.19). By Corollary 8.7,

this implies s = 0 or D = D̃(s).
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Case s = 0: In this case, we have

(D,RSLB(D, s)) = (D,RSLB(D, 0))

(8.13)
= (D, hm(x)− log γ(0))

(a)
= (D, hm(x)− log H m(E)) (8.20)

where (a) holds because γ(0)
(8.12)
=

∫
E 1 dH m(x) = H m(E). By (8.20), (D,RSLB(D, s))

belongs to the second set on the right-hand side in (8.19).

Case D = D̃(s): We have (D,RSLB(D, s)) =
(
D̃(s), RSLB(D̃(s), s)

)
, which belongs to

the first set on the right-hand side in (8.19).

In either case (D,RSLB(D, s)) belongs to the right-hand side in (8.19), which concludes the

proof.

Corollary 8.8 implies that we can construct the graph of the best Shannon lower bound

by constructing the pairs
(
D̃(s), RSLB(D̃(s), s)

)
for all s > 0 and the pairs (D, hm(x) −

log H m(E)) for all D > D0 and taking the upper envelope of the resulting set. This idea

results in the following program:

(P1) For s > 0, calculate D̃(s).

(P2) Plot the s-parametrized curve
(
D̃(s), RSLB(D̃(s), s)

)
.

(P3) Plot the horizontal line
(
D, hm(x)− log H m(E)

)
for D > D0.

(P4) The upper envelope of the resulting curve is the best Shannon lower bound.

Remark 8.1 One can show that, under certain smoothness conditions, the supremum in

(8.12) is in fact a maximum, and D̃(s) can be rewritten as

D̃(s) = D∗(s) ,
1

γ(s)

∫
E
d(x, ỹ(s))e−sd(x,ỹ(s)) dH m(x)

where ỹ(s) is the maximizing value in the definition of γ(s) (see (8.12)):

ỹ(s) , arg max
y∈RM

∫
E
e−sd(x,y) dH m(x) . (8.21)

(Thus, γ(s) =
∫
E e
−sd(x,ỹ(s)) dH m(x).) Therefore, we can also apply the program (P1)–(P4)

with D∗(s) in place of D̃(s). In fact, even if γ(s) is not differentiable, we can use the program

(P1)–(P4) withD∗(s) to obtain a lower bound on the RD function (although, we do not know the

optimality of the resulting bound). Indeed, by Theorem 8.5, the points calculated in steps (P2)

and (P3) indicate lower bounds on the RD function.
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8.2.2 Shannon Lower Bound on the Unit Circle

To demonstrate the practical relevance of Theorem 8.5, we apply it to the simple example

given by E = S1, i.e., the unit circle in R2, and squared error distortion, i.e., d(x,y) =

‖x − y‖2. In order to calculate γ(s), we first show that ỹ(s) in (8.21) exists, i.e., that γ(s) =

maxy∈R2

∫
S1 e
−s‖x−y‖2 dH 1(x) for all s > 0. Let s > 0 be arbitrary but fixed. Note that we

can restrict to y = (y1 0)T, with y1 ≥ 0, because the problem is invariant under rotations. Thus,∫
S1
e−s‖x−y‖

2
dH 1(x) =

∫
S1
e−s((x1−y1)

2+x22) dH 1(x)

and therefore we have to maximize the function

fs(y1) ,
∫
S1
e−s((x1−y1)

2+x22) dH 1(x)

on [0,∞). To this end, we consider the derivative f ′s. Because H 1|S1 is a finite measure and

e−s((x1−y1)
2+x22) ≤ 1 for (x1 x2)

T ∈ S1, we can change the order of differentiation and integra-

tion. This results in the expression

f ′s(y1) =

∫
S1

2s(x1 − y1) e−s((x1−y1)
2+x22) dH 1(x) . (8.22)

Because x1 ≤ 1 for x ∈ S1, we have f ′s(y1) < 0 for y1 > 1, i.e., fs is monotonically decreasing

on (1,∞). Thus, the function fs can only attain its maximum in the compact interval [0, 1].

Because fs is a continuous function, we conclude that γ(s) = maxy∈R2

∫
S1 e
−s‖x−y‖2 dH 1(x)

exists for each s > 0.

To characterize γ(s) in more detail, we consider the equation f ′s(y1) = 0 to find local max-

ima. By (8.22) and because x21 + x22 = 1 for x ∈ S1, f ′s(y1) = 0 is equivalent to

2se−s(1+y
2
1)

∫
S1

(x1 − y1) e2sx1y1 dH 1(x) = 0 . (8.23)

Furthermore, because 2se−s(1+y
2
1) > 0 and using the transformation x1 = cosφ, x2 = sinφ, we

obtain that (8.23) is equivalent to∫ 2π

0
(cosφ− y1) e2sy1 cosφ dφ = 0 . (8.24)

Because we know that the function f ′s can only have zeros on [0, 1], we can solve (8.24) numeri-

cally for any fixed s > 0 and compare the values of fs at the different solutions and at the bound-

ary points 0 and 1 to find γ(s). In Fig. 8.1, the values of γ(s) are depicted for s ∈ [0.01, 5000].

We now have all the ingredients to calculate the parametric lower bound RSLB(D, s) in (8.13)

for any given distortion D and an arbitrary source x on S1. In particular, let us consider the case

of a uniform distribution of x on S1, in which h1(x) = log(2π) (see (7.10)). In Fig. 8.2, we show
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Figure 8.1: Graph of γ(s) for different values of s.
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Figure 8.2: Shannon lower bound RSLB(10−2, s) for s ∈ [1, 94].

the lower bound RSLB(D, s) for s ∈ [1, 94] and distortion D = 10−2. It can be seen that the

maximal lower boundRSLB(10−2, s) is obtained for s ≈ 50. To plot Fig. 8.2, we had to calculate

γ(s) for many different values of s. We also used “trial and error” to find the region of s where

the maximal lower boundRSLB(10−2, s) arises. To avoid this tedious optimization procedure for

all values of D under consideration, we can simply use the program (P1)–(P4). In Fig. 8.3, we

show the resulting graph for s ∈ [1, 105] corresponding to bounds onR(D) forD ∈ [5 ·10−4, 1].

We also show in Fig. 8.3 an upper bound using the following result.

Theorem 8.9 Let the random variable x on R2 be uniformly distributed on the unit circle.

For any n ∈ N,

R(D̄(n)) ≤ log n (8.25)

where

D̄(n) = 1−
(
n

π
sin

π

n

)2

. (8.26)

Proof. See Appendix B.19.
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Figure 8.3: Parametrized Shannon lower bound constructed by (P1)–(P4) and upper bound (8.25)
on the RD function for a source x on R2 uniformly distributed on the unit circle and squared error
distortion.

The upper bound depicted in Fig. 8.3 was obtained by linearly interpolating the upper bounds

(8.25) corresponding to different values of n (and, hence, D̄(n)). This is justified by the convex-

ity of the RD function [Cover and Thomas, 2006, Lem, 10.4.1].
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Chapter 9

Conclusion of Part II

We presented a generalization of entropy to singular random variables supported on integer-

dimensional subsets of Euclidean space. More specifically, we considered random variables

distributed according to a rectifiable measure. Similar to continuous random variables, these

rectifiable random variables can be described by a density. However, in contrast to continuous

random variables, the density is nonzero only on a lower-dimensional subset and has to be in-

tegrated with respect to a Hausdorff measure to calculate probabilities. Our entropy definition

is based on this Hausdorff density but otherwise resembles the usual definition of differential

entropy. However, this formal similarity has to be interpreted with caution because Hausdorff

measures and projections of the rectifiable sets do not always conform to intuition. We thus

emphasized mathematical rigor and carefully stated all the assumptions underlying our results.

We showed that for the special cases of rectifiable random variables given by discrete and

continuous random variables, our entropy definition reduces to the classical entropy and the

differential entropy, respectively. Furthermore, we established a connection between our entropy

and differential entropy for a rectifiable random variable that is obtained from a continuous

random variable through a one-to-one transformation. For joint and conditional entropy, our

analysis showed that the geometry of the support sets of the random variables plays an important

role. This role is evidenced by the facts that the chain rule may contain a geometric correction

term and conditioning may increase entropy.

Random variables that are neither discrete nor continuous are not only of theoretical inter-

est. Continuity of a random variable cannot be assumed if there are deterministic dependencies

reducing the intrinsic dimension of the random variable, which is especially likely to occur in

higher-dimensional problems. As a basic example, we considered a random variable x ∈ R2

supported on the unit circle, which is intrinsically only one-dimensional. Here, the differential

entropy of x is not defined and, in fact, classical information theory does not provide a rigorous

definition of entropy for this random variable.

As an application of our entropy definition to source coding, we provided a characterization

of the minimal codeword length of quantizations of integer-dimensional sources. Furthermore,

we presented a result in rate-distortion theory that generalizes the Shannon lower bound for

91
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discrete and continuous random variables to the larger class of rectifiable random variables. The

usefulness of this bound was demonstrated by the example of a uniform source on the unit circle.

The resulting bound appears to be the first rigorous lower bound on the rate-distortion function

for that distribution.

Possible directions for future work include the extension of our entropy definition to dis-

tributions mixing different dimensions (e.g., discrete-continuous mixtures). The extension to

noninteger-dimensional singular distributions seems to be possible only in terms of upper and

lower entropies, which could be defined based on the upper and lower Hausdorff densities1 [Am-

brosio et al., 2000, Def. 2.55]. Furthermore, our entropy can be extended to infinite-length

sequences of rectifiable random variables, which leads to the definition of an entropy rate gener-

alizing the (differential) entropy rate of a sequence of discrete or continuous random variables.

Finally, applications of our entropy to source coding and channel coding problems involving

integer-dimensional singular random variables are largely unexplored.

1The upper and lower Hausdorff densities exist for arbitrary distributions, whereas, by Preiss’ Theorem [Preiss,
1987, Th. 5.6], the existence of the Hausdorff density implies that the measure is rectifiable.
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Appendix A

Proofs of Part I

A.1 Proof of Lemma 2.3

A.1.1 Proof of Statement 1

To prove that almost all ofM can be covered by the union of disjoint measurable subsets Uk,

we will use the following lemma, which is an application of the result reported in [Federer,

1969, Cor. 3.2.4].

Lemma A.1 Let A ⊆ Cn be a Lebesgue measurable set and κ : Cn→ Cn a continuously

differentiable mapping (e.g., the mapping in Lemma 2.3). Then there exists a Lebesgue measur-

able set B⊆A ∩ {u ∈ Cn : |Jκ(u)| 6= 0} such that κ
∣∣
B is one-to-one and κ(A) \ κ(B) =N ,

where N is a set of Lebesgue measure zero.

We will use Lemma A.1 repeatedly to construct the disjoint sets {Uj}j∈[1:m].

Lemma A.2 Let κ andM be as in Lemma 2.3, i.e., κ : Cn→ Cn is a continuously differ-

entiable mapping with Jacobian matrix Jκ such that Jκ(u) is nonsingular a.e. andM , {u ∈
Cn : |Jκ(u)| 6= 0}. Assume that for all v ∈ Cn, the cardinality of the set κ−1(v) ∩M satisfies

|κ−1(v) ∩M| ≤ m < ∞, for some m ∈ N (i.e., κ
∣∣
M is finite-to-one). Then, for k ∈ [1 :m],

there exist disjoint Lebesgue measurable sets {Uj}j∈[1:k] with Uj ⊆M such that κ
∣∣
Uj

is one-to-

one for j ∈ [1 :k]. Furthermore, there exists a set Nk of Lebesgue measure zero such that∣∣∣∣κ−1(v) ∩
(
M\

⋃
j∈[1:k]

Uj
)∣∣∣∣ ≤ m− k , for all v ∈ κ

(
M\

⋃
j∈[1:k−1]

Uj
)
\ Nk . (A.1)

Proof. We prove Lemma A.2 by induction over k.

Base case (proof for k = 1): By Lemma A.1 with A =M, we obtain a set B ⊆ M (recall

thatM = {u ∈ Cn : |Jκ(u)| 6= 0} and thusM∩ {u ∈ Cn : |Jκ(u)| 6= 0} = M) such that

κ
∣∣
B is one-to-one. Furthermore, κ(M) \ κ(B) = N1 for a set N1 of Lebesgue measure zero.

Because κ(B) ⊆ κ(M), this implies κ(M) \N1 = κ(B). Thus, for each v ∈ κ(M) \N1, there
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exists u ∈ B such that κ(u) = v. Equivalently, κ−1(v) ∩ B 6= ∅. Hence, for v ∈ κ(M) \ N1,

|κ−1(v) ∩ (M\B)| = |(κ−1(v) ∩M) \ (κ−1(v) ∩ B)|
(a)
= |κ−1(v) ∩M| − |κ−1(v) ∩ B|
(b)
= |κ−1(v) ∩M| − 1

(c)

≤ m−1 (A.2)

where (a) holds because κ−1(v)∩B ⊆ κ−1(v)∩M, (b) holds because κ−1(v)∩B is nonempty

and contains at most one element since κ
∣∣
B is one-to-one, and (c) holds because we assumed

that |κ−1(v) ∩M| ≤ m. We set U1 , B and, by (A.2), the property (A.1) is satisfied for k = 1.

Furthermore, κ
∣∣
U1 = κ

∣∣
B is one-to-one, which concludes the proof for the base case.

Inductive step (transition from k to k + 1): Suppose we already constructed the k disjoint

measureable sets {Uj}j∈[1:k] and the set Nk satisfying (A.1). To simplify notation, define

U [k] ,
⋃

j∈[1:k]

Uj .

Note that (A.1) can now be written as

∣∣κ−1(v) ∩
(
M\ U [k]

)∣∣ ≤ m− k , for all v ∈ κ
(
M\ U [k−1]) \ Nk . (A.3)

By Lemma A.1 with A =M\ U [k], we obtain a set B such that κ
∣∣
B is one-to-one and

B ⊆M \ U [k] . (A.4)

Furthermore, κ
(
M\ U [k]

)
\ κ(B) = Ñk+1 for a set Ñk+1 of Lebesgue measure zero. Because

κ(B) ⊆ κ
(
M\U [k]

)
, this implies κ

(
M\U [k]

)
\ Ñk+1 = κ(B). Hence, for v ∈ κ

(
M\U [k]

)
\

Ñk+1, there exists u ∈ B such that κ(u) = v, or equivalently, κ−1(v) ∩ B 6= ∅. Thus, similarly

to (A.2), we obtain for v ∈ κ
(
M\ U [k]

)
\
(
Ñk+1 ∪Nk

)
∣∣κ−1(v) ∩

((
M\ U [k]

)
\ B
)∣∣ =

∣∣(κ−1(v) ∩
(
M\ U [k]

))
\ (κ−1(v) ∩ B)

∣∣
(a)
=
∣∣κ−1(v) ∩

(
M\ U [k]

)∣∣− |κ−1(v) ∩ B|
(b)
=
∣∣κ−1(v) ∩

(
M\ U [k]

)∣∣− 1

(c)

≤ m− k − 1 (A.5)

where (a) holds because κ−1(v) ∩ B ⊆ κ−1(v) ∩
(
M\ U [k]

)
, (b) holds because κ−1(v) ∩ B

is nonempty and contains at most one element since κ
∣∣
B is one-to-one, and (c) holds because

of our induction hypothesis (A.3). Setting Uk+1 , B, the left-hand side in (A.5) is equal to∣∣κ−1(v)∩
((
M\U [k]

)
\ Uk+1

)∣∣ =
∣∣κ−1(v)∩

(
M\U [k+1]

)∣∣, so that (A.5) becomes
∣∣κ−1(v)∩(

M \ U [k+1]
)∣∣ ≤ m − k − 1 for all v ∈ κ

(
M \ U [k]

)
\
(
Ñk+1 ∪ Nk

)
. This is exactly the
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property (A.3) with k replaced by k + 1 andNk replaced byNk+1 , Ñk+1 ∪Nk. Furthermore,

we have by (A.4) that Uk+1 = B ⊆ M \ U [k] and thus Uk+1 ∩ Uj = ∅ for j ∈ [1 : k]. Finally,

κ
∣∣
Uk+1

= κ
∣∣
B is one-to-one, which concludes the proof.

The sets {Uj}j∈[1:m] constructed in Lemma A.2 are disjoint and κ
∣∣
Uj

is one-to-one for all j ∈
[1 :m]. It remains to be shown that U [m] =

⋃
j∈[1:m] Uj covers almost all ofM. To this end, we

first show that κ
(
M\U [m]

)
\Nm is empty. Assume by contradiction that v ∈ κ

(
M\U [m]

)
\Nm.

By (A.1) with k = m, we have that for all v ∈ κ
(
M\ U [m−1]) \ Nm∣∣κ−1(v) ∩

(
M\ U [m]

)∣∣ ≤ m−m = 0

i.e., there exists no u ∈M\U [m] such that κ(u) = v. This is a contradiction to the assumption

v ∈ κ
(
M \ U [m]

)
\ Nm, and thus we conclude that there is no v ∈ κ

(
M \ U [m]

)
\ Nm, i.e.,

κ
(
M\ U [m]

)
\ Nm = ∅. Hence, we have

κ
(
M\ U [m]

)
⊆ Nm . (A.6)

We next use the integral transformation reported in [Federer, 1969, Th. 3.2.3] to obtain∫
M\U [m]

|Jκ(u)|2 du ≤ m
∫
κ(M\U [m])

dv
(A.6)
≤ m

∫
Nm

dv = 0 .

Because the function |Jκ(u)| is positive onM, it follows that the Lebesgue measure of the set

M\ U [m] has to be zero, i.e., U [m] covers almost all ofM. This concludes the proof of part 1.

A.1.2 Proof of Statement 2

To establish statement 2, i.e., the bound (2.22), we first note that

h(v) ≥ h(v |k) =
∑

k∈[1:m]

h(v |k=k) pk (A.7)

where k is the discrete random variable that takes on the value k when u ∈ Uk, and pk , Pr{u ∈
Uk} =

∫
Uk fu(u)du. We assume without loss of generality1 that pk 6=0, k∈ [1 :m]. Since κ

∣∣
Uk

is

one-to-one, we can use the transformation rule for one-to-one mappings (see, e.g., [Morgenshtern

et al., 2013, Lemma 3]) to relate h(v |k=k) to h(u|k=k):

h(v |k=k) = h(u|k=k) +

∫
Cn
fu|k=k(u) log(|Jκ(u)|2) du. (A.8)

1If pk=0 for some k, we simply omit the corresponding term in (A.7).
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The conditional probability density function of u given k= k is fu|k=k(u) = 1Uk(u)fu(u)/pk.

Thus, h(u|k=k) = −
∫
Uk

(
fu(u)/pk

)
log
(
fu(u)/pk

)
du, and (A.8) becomes

h(v |k=k) =
1

pk

(
−
∫
Uk
fu(u) log

(
fu(u)

pk

)
du+

∫
Uk
fu(u) log(|Jκ(u)|2) du

)
=

1

pk

(
−
∫
Uk
fu(u) log fu(u) du+

∫
Uk
fu(u) log(|Jκ(u)|2) du+ pk log pk

)
.

Inserting this expression into (A.7), and recalling that the sets Uk are disjoint, that U [m] =⋃
k∈[1:m] Uk covers almost all ofM, and that Cn \M has Lebesgue measure zero, we obtain

h(v) ≥
∑

k∈[1:m]

(
−
∫
Uk
fu(u) log fu(u) du+

∫
Uk
fu(u) log(|Jκ(u)|2) du+ pk log pk

)

= −
∫
U [m]

fu(u) log fu(u) du+

∫
U [m]

fu(u) log(|Jκ(u)|2) du +
∑

k∈[1:m]

pk log pk︸ ︷︷ ︸
−H(k)

= −
∫
Cn
fu(u) log fu(u) du+

∫
Cn
fu(u) log(|Jκ(u)|2) du − H(k)

= h(u) +

∫
Cn
fu(u) log(|Jκ(u)|2) du − H(k) .

A.2 Proof of Lemma 2.4

Since f is not identically zero, there exists a ξ0 ∈ Cn such that f(ξ0) 6= 0. The function

g(ξ) , f(ξ + ξ0) is an analytic function that satisfies g(0) 6= 0. By performing the change of

variables ξ 7→ ξ + ξ0, we can rewrite I1 in (2.26) in the following more convenient form:

I1 =

∫
Cn

exp(−‖ξ + ξ0‖2) log(|g(ξ)|) dξ .

We have

‖ξ + ξ0‖2 ≤ (‖ξ‖+ ‖ξ0‖)2

= ‖ξ‖2 + 2‖ξ‖‖ξ0‖+ ‖ξ0‖2

≤ ‖ξ‖2 + 2 max{‖ξ‖2, ‖ξ0‖2}+ ‖ξ0‖2

≤ 3‖ξ‖2 + 3‖ξ0‖2 . (A.9)

Using (A.9), we lower-bound I1 as follows:

I1 ≥ c

∫
Cn

exp(−3‖ξ‖2) log(|g(ξ)|) dξ , I2 (A.10)
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where c , exp(−3‖ξ0‖2). We next define the mapping ϕ : R2n→ Cn; x 7→
(
[x][1:n] +

i[x][n+1:2n]

)
, and rewrite I2 in (A.10) as

I2 = c

∫
R2n

exp(−3‖x‖2)u(x) dx (A.11)

with u(x) , log(|g(ϕ(x))|). Since g(0) 6=0, we have that u(0) > −∞. By [Azarin, 2009, Ex-

ample 2.6.1.3], u(x) is a subharmonic function. We shall use the following property of subhar-

monic functions, which is a special case of the more general result reported in [Azarin, 2009,

Th. 2.6.2.1].

Lemma A.3 Let u be a subharmonic function onW ⊆ R2n. If {x ∈ R2n : ‖x‖ ≤ r}⊆W
for some r>0, then

u(0) ≤ 1

ω(2n) r2n−1

∫
Sr
u(x) dH 2n−1(x)

where Sr , {x ∈ R2n : ‖x‖= r} and the constant ω(2n) denotes the area of the unit sphere in

R2n.

Using a well-known measure-theoretic result (see, e.g., [Federer, 1969, Th. 3.2.12]), we have

for u(x) = log(|g(ϕ(x))|)∫
R2n

exp(−3‖x‖2)u(x) dx =

∫ ∞
0

(∫
Sr
u(x) ds(x)

)
exp(−3r2) dr . (A.12)

Inserting (A.12) in (A.11), we obtain

I2 = c

∫ ∞
0

(∫
Sr
u(x) ds(x)

)
exp(−3r2) dr

(a)

≥ c σ2n u(0)

∫ ∞
0

exp(−3r2) r2n−1 dr

(b)
> −∞ .

Here, (a) is due to Lemma A.3 and (b) holds because u(0)>−∞ and

0 <

∫ ∞
0

exp(−3r2) r2n−1 dr <∞ .

Using (A.10), we conclude that I1 > −∞.

A.3 Proof of Lemma 3.6

Since the proof of Lemma 3.6 is quite technical, we shall first (in Section A.3.1) illustrate its key

steps by focusing on the special case T̃ = 2, R = 3, N = 4, and Q = 1. The proof for arbitrary

T̃ , R,N, and Q will be provided in Section A.3.2.
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A.3.1 Special Case T̃ = 2, R = 3, N = 4, Q = 1

By (3.28), we have ` = 12 and, thus, I = [1 : 12]. Furthermore, we choose Dc = {7, 12}.
Hence, recalling that sx = (s1,1 s2,1 s3,1 s1,2 s2,2 s3,2 x

T
1 x

T
2 )T, we have

[sx]Dc = ([x1]1 [x2]2)
T

and

[sx]D = (s1,1 s2,1 s3,1 s1,2 s2,2 s3,2 [x1]2 [x1]3 [x1]4 [x2]1 [x2]3 [x2]4)
T .

We also choose x as the all-one vector. For these choices, the Jacobian [Jφ(s,x)]DI in (3.32) is

equal to the following matrix

[Z1,1]1 [Z1,2]1 0 [Z1,2]1s1,2

[Z1,1]2 [Z1,2]2 [Z1,1]2s1,1 0

[Z1,1]3 [Z1,2]3 [Z1,1]3s1,1 [Z1,2]3s1,2

[Z1,1]4 [Z1,2]4 [Z1,1]4s1,1 [Z1,2]4s1,2

[Z2,1]1 [Z2,2]1 0 [Z2,2]1s2,2

[Z2,1]2 [Z2,2]2 [Z2,1]2s2,1 0

[Z2,1]3 [Z2,2]3 [Z2,1]3s2,1 [Z2,2]3s2,2

[Z2,1]4 [Z2,2]4 [Z2,1]4s2,1 [Z2,2]4s2,2

[Z3,1]1 [Z3,2]1 0 [Z3,2]1s3,2

[Z3,1]2 [Z3,2]2 [Z3,1]2s3,1 0

[Z3,1]3 [Z3,2]3 [Z3,1]3s3,1 [Z3,2]3s3,2

[Z3,1]4 [Z3,2]4 [Z3,1]4s3,1 [Z3,2]4s3,2


.

(A.13)

We have to find Z and s such that the determinant of this matrix is nonzero. Setting [Z3,2]1 =

[Z3,1]2= [Z3,2]3 = [Z3,1]4 = 0, the entries highlighted in gray in (A.13) become zero. Further-

more, choosing nonzero [Z3,1]1, [Z3,1]3, [Z3,2]2, [Z3,2]4, s3,1, and s3,2 and operating a Laplace

expansion on the last four rows in (A.13), it is seen that the determinant of the matrix in (A.13)

is nonzero if and only if the determinant of the following matrix is nonzero:

[Z1,1]1 [Z1,2]1 0 [Z1,2]1s1,2

[Z1,1]2 [Z1,2]2 [Z1,1]2s1,1 0

[Z1,1]3 [Z1,2]3 0 [Z1,2]3s1,2

[Z1,1]4 [Z1,2]4 [Z1,1]4s1,1 0

[Z2,1]1 [Z2,2]1 0 [Z2,2]1s2,2

[Z2,1]2 [Z2,2]2 [Z2,1]2s2,1 0

[Z2,1]3 [Z2,2]3 0 [Z2,2]3s2,2

[Z2,1]4 [Z2,2]4 [Z2,1]4s2,1 0


. (A.14)

The matrix in (A.14) is the Jacobian matrix corresponding to the case T̃ = 2, R = 2, N = 4,

and Q = 1. In other words, by performing the matrix manipulations just described, we reduced

the case R = 3 to the case R = 2. A similar idea will be used in the proof for the general

case provided in Section A.3.2, where we will reduce R inductively until R = T̃ . Setting

s1,2 = s2,1 = 0, the entries highlighted in gray in (A.14) become zero. By choosing nonzero

[Z1,1]2, [Z1,1]4, [Z2,2]1, [Z2,2]3, s1,1, and s2,2 and operating a Laplace expansion on the last four
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Figure A.1: Construction of the sets Pt for T̃ = 4, N = 6, and ϑR = 14.

columns, it is seen that it is sufficient to show that the determinant of the following matrix is

nonzero: 
[Z1,1]1 [Z1,2]1
[Z1,1]3 [Z1,2]3

[Z2,1]2 [Z2,2]2
[Z2,1]4 [Z2,2]4

 .

This can be achieved, e.g., by setting all off-diagonal entries (i.e., [Z1,1]3, [Z1,2]1, [Z2,1]4, and

[Z2,2]2) to zero and choosing all diagonal entries (i.e., [Z1,1]1, [Z1,2]3, [Z2,1]2, and [Z2,2]4)

nonzero.

A.3.2 Proof for the General Case

We have to find Z, s, x, and D such that
∣∣[Jφ(s,x)]DI

∣∣ 6= 0.

Construction of D

We start by constructing the set D. As in the special case above the set D includes all indices

pointing to variables in s (i.e., [1 : RT̃Q] ⊆ D). For the indices of x we will define sets

Pt ⊆ [1 : N ] that specify the indices of every xt not belonging to D (we can think of Pt as

specifying the positions of the pilot symbols at transmit antenna t), i.e.,

Dc = {RT̃Q+ i+ (t− 1)N : i ∈ Pt, t ∈ [1 : T̃ ]} . (A.15)

Because we need |D| = `, the sets {Pt}t∈[1:T̃ ] have to satisfy

∑
t∈[1:T̃ ]

|Pt| = |Dc|

= RT̃Q+ T̃N − `
(3.28)
= RT̃Q+ T̃N −min{RN,RT̃Q+ T̃N − T̃}

= max{T̃ , RT̃Q− (R− T̃ )N}

, ϑR . (A.16)
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(We use the subscript R in ϑR because the dependence on R will be important later.) To provide

intuition about our choice of the sets Pt, we use a card game metaphor. Consider a deck of

T̃N cards showing numbers from 1 to N sorted as follows: 1, 2, . . . , N, . . . , 1, 2, . . . , N (i.e.,

the sequence 1, 2, . . . , N repeated T̃ times). The idea is to choose the ϑR positions of the pilot

symbols by assigning the indices i ∈ [1 :N ] to the sets Pt in the same way as the first ϑR cards

are distributed to T̃ players (in Fig. A.1, we give an example of the algorithm for ϑR = 14,

N = 6, and T̃ = 4): The first card shows 1 and goes to P1, i.e., 1 ∈ P1, and in the same way

we proceed with 2 ∈ P2, . . . , T̃ ∈ PT̃ (this corresponds to the 1st to 4th card in Fig. A.1). When

we run out of sets (players), we start with the first set (player) again: T̃ + 1 ∈ P1, T̃ + 2 ∈ P2,

etc. After the card showing index N (recall that Pt ⊆ [1 :N ]), the next card starts with index 1

again (in Fig. A.1, the 6th card shows N = 6 and goes to P2 and the 7th card shows 1 and goes

to P3). This scheme works as long as we avoid assigning an index to a set Pt to which that index

was already assigned in a previous round. (In Fig. A.1, this would happen after the 12th card.

The 13th card shows 1 and the algorithm would set 1 ∈ P1, which was already assigned to P1
in the first round.) To avoid this issue, we introduce an offset and skip one set (resulting in the

13th card going to P2 in Fig. A.1) and proceed as before. The algorithm stops when ϑR indices

(cards) have been assigned to the sets (players) Pt.
We now present a mathematical formulation of the algorithm we just outlined. Let the func-

tion β : [1 : T̃N ]→ [1 : T̃ ]× [1 :N ] be defined as

β(j) =

(
β1(j)

β2(j)

)
,

(j +
⌊

j−1
lcm(T̃ ,N)

⌋)
mod∗ T̃

jmod∗N

 , j ∈ [1 : T̃N ] . (A.17)

Here lcm(·, ·) denotes the least common multiple and amod∗ b , a − bb(a − 1)/bc denotes

the residuum of a divided by b in [1 : b] (and not in [0 : b − 1] as commonly done). We use the

function β to assign up to T̃N elements (note that ϑR ≤ T̃N ) to the sets Pt as follows: for

j ∈ [1 :ϑR], the function β1(j) specifies t ∈ [1 : T̃ ] (equivalently, one of the sets Pt, t ∈ [1 : T̃ ]),

and the function β2(j) specifies the index i ∈ [1 :N ] that is assigned to Pt (again invoking our

card game metaphor, the jth card shows the index β2(j) and is assigned to player Pβ1(j)). Using

β1(j) and β2(j), we can compactly describe each set Pt as follows:

Pt , β2
(
β−11 (t) ∩ [1 :ϑR]

)
, t ∈ [1 : T̃ ]. (A.18)

Here, the set β−11 (t) consists of all values j ∈ [1 : T̃N ] that correspond to an assignment of an

index i to the set Pt. Since we only want to assign a total of ϑR indices, we take the intersection

with [1 :ϑR]. For each j ∈ β−11 (t) ∩ [1 :ϑR], the function β2 now chooses an index i ∈ [1 :N ],

and we obtain the definition (A.18).

The sets Pt in (A.18) satisfy the properties listed in the following lemma.

Lemma A.4 Suppose that R ≥ T̃ , N > T̃Q, and R ≤ dT̃ (N − 1)/(N − T̃Q)e. Let the

sets {Pt}t∈[1:T̃ ] be defined as in (A.18). Then the following properties hold:
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(i)
∑

t∈[1:T̃ ]|Pt| = ϑR;

(ii) |Pt| ≤ T̃Q;

If R > T̃ , let {P̃t}t∈[1:T̃ ] be the corresponding sets for the case of R− 1 receive antennas, i.e.,

P̃t , β2
(
β−11 (t) ∩ [1 :ϑR−1]

)
. (A.19)

Furthermore, we set

Lt , P̃t \ Pt (A.20)

and

L̃ ,
⋃

t∈[1:T̃ ]

Lt . (A.21)

Then the following properties hold:

(iii) Lt ∩ Lt′ = ∅ for t 6= t′;

(iv) Lt ⊆ [1 :N − γ], where

γ , RN − ` ; (A.22)

(v) There exist sets Gt ⊆ [1 :N − γ], t ∈ [1 : T̃ ] satisfying

a) |Gt| = Q,

b) Gt ∩ Gt′ = ∅ for t 6= t′,

c) Gt ∩ Pt 6= ∅,
d)
⋃
t∈[1:T̃ ] Gt = G , [1 :N − γ] \ L̃.

Proof. See Appendix A.4.

Remark A.1 Property (i) states that the sets Pt have the correct size (see (A.16)). Proper-

ties (iii), (iv), and (v) state that we can partition the set [1 :N − γ] into 2T̃ disjoint sets Lt and

Gt′ , t, t′ ∈ [1 : T̃ ] (i.e., Gt ∩ Gt′ = ∅, Gt ∩ Lt′ = ∅, and Lt ∩ Lt′ = ∅ for t 6= t′) such that in each

Gt′ there is a point gt′ ∈ Pt′ .

Construction of Z, s, and x

It remains to find a triple (Z, s,x) such that det
(
[Jφ(s,x)]DI

)
is nonzero (with the choice of D

described above). This will be done by an induction argument over R ≥ T̃ . For this purpose, it

is convenient to define the sets

Dt , [1 :N ] \ Pt . (A.23)

Note that by (A.15) and because D = [1:RT̃Q+ T̃N ] \ Dc, we have that

D = [1:RT̃Q+ T̃N ] \ Dc

= [1:RT̃Q+ T̃N ] \ {RT̃Q+ i+ (t− 1)N : i ∈ Pt, t ∈ [1 : T̃ ]}
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= [1:RT̃Q] ∪ {RT̃Q+ i+ (t− 1)N : i ∈ Dt, t ∈ [1 : T̃ ]} (A.24)

i.e., Dt ⊆ [1 :N ] specifies the positions of the symbols in the vector xt specified by D. We will

make repeated use of the next result, which follows from [Horn and Johnson, 1985, Sec. 0.8.5].

Lemma A.5 Let M ∈ Cn×n, and let E ,F ⊆ [1 : n] with |E| = |F|. If [M ]F[1:n]\E = 0 or

[M ]
[1:n]\F
E = 0, and if [M ]FE is nonsingular, then det(M) 6= 0 if and only if det

(
[M ]

[1:n]\F
[1:n]\E

)
6=

0.

Remark A.2 Lemma A.5 is just an abstract way to describe a situation where given a matrix

M , one is able to perform row and column interchanges that yield a new matrix of the form(
A B
0 C

)
, where A and C are square matrices. In this case, a basic result in linear algebra states

that the determinant of M equals the product of the determinants of A and C, and hence,

assuming that C is nonsingular, det(M) 6= 0 if and only if det(A) 6= 0.

We will now present the inductive construction of Z, s, and x.

Induction hypothesis: For T̃ ≤ R ≤ dT̃ (N − 1)/(N − T̃Q)e, T̃Q < N (as assumed

throughout the proof), and {Pt}t∈[1:T̃ ] as in (A.18), there exists a triple (Z, s,x) with x =

(1 · · · 1)T such that det
(
[Jφ(s,x)]DI

)
is nonzero.

Base case (proof for R= T̃ ): When R= T̃ , (A.16) reduces to
∑

t∈[1:T̃ ]|Pt| = T̃ 2Q. Using

Property (ii) in Lemma A.4, this implies that |Pt| = T̃Q. Furthermore, ` = RN (see (3.28)),

resulting in I = [1 :RN ]. To establish the desired result, we first choose sr,t = 0 for r 6= t.

With this choice, the matrix [Jφ(s,x)]DI in (3.32) looks as follows:

[Jφ(s,x)]DI =


B

A1,1 · · · A1,T̃...
...

A
T̃ ,1
· · · A

T̃ ,T̃




D

I

=

B1 [A1,1]
D1

. . . . . .
B
T̃

[A
T̃ ,T̃

]DT̃


(A.25)

where we used the sets {Dt}t∈[1:T̃ ] given in (A.23), and where (cf. (3.31))Br = (Zr,1 · · ·Zr,T̃ ),

for r ∈ [1 : T̃ ] and (cf. (3.33))

At,t = diag(at,t), t ∈ [1 : T̃ ], with at,t , Zt,tst,t . (A.26)

We choose2 [Zr,t]Pr ∈ CT̃Q×Q such that the square matrices [Br]Pr =
[(
Zr,1 · · · Zr,T̃

)]
Pr ∈

CT̃Q×T̃Q are nonsingular. Furthermore, we have that [At,t]
Dt
Pt = 0 (by (A.26),At,t is a diagonal

matrix, and because Pt∩Dt = ∅, the matrix [At,t]
Dt
Pt contains only off-diagonal entries). We will

use Lemma A.5 withM = [Jφ(s,x)]DI given by (A.25), n = T̃ 2Q+ |D|, E = P (i.e., the rows

where [At,t]
Dt is zero), and F = [1 : T̃ 2Q] (i.e., the columns of allBr, r ∈ [1 : T̃ ]). This choice

yields [M ]FE = diag
(
[B1]P1

, . . . , [B
T̃

]P
T̃

)
, which is nonsingular because it is a block diagonal

2Note that so far we used the index t in the sets Pt. Now we consider the matrix [Br]Pt
for t = r. Thus, it is

convenient to use only the index r.
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matrix where each block on the diagonal, [Br]Pr , was chosen nonsingular. Furthermore, we have

that [M ]
[1:n]\F
E = diag

(
[A1,1]

D1
P1
, . . . , [A

T̃ ,T̃
]
D
T̃
P
T̃

)
= 0. Thus, the requirements of Lemma A.5

are met and, hence, det(M) = det
(
[Jφ(s,x)]DI

)
6= 0 if and only if the determinant of the

following matrix is nonzero:

[M ]
[1:n]\F
[1:n]\E =

[A1,1]
D1

D1. . .
[A

T̃ ,T̃
]DT̃
D
T̃

 . (A.27)

Because of (A.26), we have [At,t]
Dt
Dt = [diag(at,t)]

Dt
Dt . Hence, the matrix in (A.27) is a diagonal

matrix and can be chosen to have nonzero diagonal entries by choosing [Zt,t]Dt and st,t such

that [at,t]i = [Zt,t]{i}st,t 6= 0 for all i ∈ Dt (again see (A.26)). Thus, its determinant is nonzero

and, in turn, det(M) 6= 0.

Inductive step (transition from R − 1 to R): Assuming that Zr,t and sr,t for t ∈ [1 : T̃ ],

r ∈ [1 : R − 1] have already been chosen such that the determinant of [Jφ(s,x)]DI is nonzero

in the R − 1 setting, we want to show that there exist ZR,t and sR,t, t ∈ [1 : T̃ ] for which

the determinant of the matrix [Jφ(s,x)]DI in (3.32) is nonzero. To facilitate the exposition, we

rewrite the matrices involved in a more convenient form. For the case of R receive antennas,

denoted by the superscript [R], we rewrite the Jacobian matrix [Jφ(s,x)]DI in (3.32) as

[J
[R]
φ (s,x)]DI =


B1 [A1,1]

D1 · · · [A
1,T̃

]DT̃

. . .
...

...

BR−1 [AR−1,1]
D1 · · · [A

R−1,T̃ ]DT̃

[BR][1:N−γ] [AR,1]
D1

[1:N−γ] · · · [A
R,T̃

]
D
T̃

[1:N−γ]

 (A.28)

where we used (A.24) and that I = [1 : RN − γ]. For the R − 1 case, the Jacobian matrix is

given by

[J
[R−1]
φ (s,x)]D̃Ĩ =


B1 [A1,1]

D̃1 · · · [A
1,T̃

]D̃T̃

. . .
...

...

BR−1 [AR−1,1]
D̃1 · · · [A

R−1,T̃ ]D̃T̃

 (A.29)

where

D̃t , [1 :N ] \ P̃t (A.30)

with the sets P̃t introduced in Lemma A.4. Note that in (A.29), we do not need to truncate

the matrix when selecting the rows in the set Ĩ as required by (3.32). This follows because ` =

(R−1)N forR−1 ≤ T̃ (N−1)/(N−T̃Q) (which holds becauseR ≤ dT̃ (N−1)/(N−T̃Q)e)
and, hence, Ĩ = [1:(R− 1)N ].

Let G, Gt, and Lt be defined as in Lemma A.4. Set [ZR,t]G\Gt = 0 for all t ∈ [1 : T̃ ], and

choose [ZR,t]Gt ∈ CQ×Q nonsingular for all t ∈ [1 : T̃ ]. With these choices, and recalling that
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we set x = (1 · · · 1)T in the induction hypothesis (whence Xt = IN ), it follows from (3.31)

that [BR]G =
(
[ZR,1]G · · · [Z

R,T̃
]G
)

is nonsingular. Next, for each t ∈ [1 : T̃ ], select an index

gt in the set Gt ∩ Pt (note that this set is non-empty due to Property (v-c) in Lemma A.4).

Furthermore, choose sR,t to be orthogonal to the rows of [ZR,t]Gt\{gt} ∈ C(Q−1)×Q and to

satisfy [ZR,t]{gt}sR,t 6= 0 (note that since sr,t ∈ CQ, it is always possible to choose sr,t such

that it is orthogonal toQ−1 vectors of a set ofQ linearly independent vectors and not orthogonal

to the last one). Recalling (3.33), we have

[AR,t]G =
[

diag(aR,t)
]
G , t ∈ [1 : T̃ ]

where [aR,t]i = [ZR,t]{i}sR,t = 0 for i ∈ G \ Gt by our choice [ZR,t]G\Gt = 0, and for i ∈
Gt \ {gt} because we chose sR,t to be orthogonal to the rows of [ZR,t]Gt\{gt}. Thus, [AR,t]G has

only one nonzero entry [aR,t]gt , which is in the gtth column. But since gt ∈ Pt and Pt∩Dt = ∅,
taking only the columns indexed by Dt results in [AR,t]

Dt
G = 0. We will use Lemma A.5 with

M = [J
[R]
φ (s,x)]DI given in (A.28), n = |D|, E = {i + (R − 1)N : i ∈ G} (i.e., the rows of

[BR][1:N−γ] specified by G), andF = [(R−1)T̃Q+1 : RT̃Q] (i.e., the columns of [BR][1:N−γ]).

This choice yields

[M ]FE = [BR]G =
(
[ZR,1]G · · · [Z

R,T̃
]G
)

which is nonsingular as noted above. Furthermore, we have

[M ]
[1:n]\F
E = (0 [AR,1]

D1
G · · · [A

R,T̃
]
D
T̃
G ) = 0 .

Hence, the requirements of Lemma A.5 are satisfied. We obtain that the determinant of M =

[J
[R]
φ (s,x)]DI in (A.28) is nonzero if and only if the determinant of the following matrix is

nonzero:

K , [M ]
[1:n]\F
[1:n]\E =


B1 [A1,1]

D1 . . . [A
1,T̃

]DT̃

. . .
...

...

BR−1 [AR−1,1]
D1 . . . [A

R−1,T̃ ]DT̃

0 [AR,1]
D1

L̃
· · · [A

R,T̃
]
D
T̃

L̃

 . (A.31)

Here, we used Property (v-d) in Lemma A.4, i.e., that [1 : N − γ] \ G = L̃.

So far, we specified only the rows [ZR,t]G . Because G ∩ L̃ = ∅ by Property (v-d) in

Lemma A.4, we can still freely choose the remaining rows [ZR,t]L̃
. We first choose the rows

indexed by Lt such that [ZR,t]LtsR,t does not have zero entries (e.g., [ZR,t]{i} = sHR,t for

i ∈ Lt, resulting in [ZR,t]{i}sR,t = ‖sR,t‖2 6= 0). Next, we choose the remaining rows, indexed

by L̃ \ Lt, to be zero, i.e., [ZR,t]L̃\Lt
= 0. With these choices and using (3.33), we obtain

[AR,t]
Dt
L̃\Lt

= 0 and det
(
[AR,t]

Lt
Lt
)
6= 0. We apply Lemma A.5 once again, with M = K given

in (A.31), n = (R− 1)T̃Q+ |D|, E = [(R− 1)N + 1 : (R− 1)T̃Q+ |D|] (i.e., all rows below
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BR−1), and

F =
⋃

t∈[1:T̃ ]

{
i+ (R− 1)T̃Q+

∑
t′∈[1:t−1]

|Dt′ | : i ∈ Lt
}

(i.e., the columns of [AR,t]
Dt
Lt for all t ∈ [1 : T̃ ]). This choice results in

[M ]FE = diag
(
[AR,1]

L1
L1 , . . . , [AR,T̃

]
L
T̃
L
T̃

)
which is nonsingular because det

(
[AR,t]

Lt
Lt
)
6= 0. Furthermore, we have

[M ]
[1:n]\F
E =

(
0 [AR,1]

D1 \L1
L̃

· · · [A
R,T̃

]
D
T̃
\L

T̃

L̃

)
= 0 .

Thus, the requirements of Lemma A.5 are satisfied. We obtain that the determinant of K

in (A.31) is nonzero if and only if the determinant of the following matrix is nonzero:

[M ]
[1:n]\F
[1:n]\E =


B1 [A1,1]

D1\L1 . . . [A
1,T̃

]DT̃ \LT̃

. . .
...

...

BR−1 [AR−1,1]
D1\L1 . . . [A

R−1,T̃ ]DT̃ \LT̃

 . (A.32)

By the definitions Lt = P̃t \ Pt, Dt = [1 :N ] \ Pt, and D̃t = [1 :N ] \ P̃t (see (A.20), (A.23),

and (A.30)), we obtain Dt \Lt = ([1:N ] \Pt) \ (P̃t \Pt)
(a)
= [1:N ] \ P̃t = D̃t for all t ∈ [1 : T̃ ],

where (a) holds because Pt ⊆ P̃t. Thus, [M ]
[1:n]\F
[1:n]\E in (A.32) is equal to [J

[R−1]
φ (s,x)]D̃

Ĩ
in (A.29). Altogether, we obtain that the determinant of [J

[R]
φ (s,x)]DI in (A.28) is nonzero if

and only if the determinant of [M ]
[1:n]\F
[1:n]\E = [J

[R−1]
φ (s,x)]D̃

Ĩ
in (A.29) is nonzero. But the

determinant of [J
[R−1]
φ (s,x)]D̃

Ĩ
is nonzero by the induction hypothesis.

A.4 Proof of Lemma A.4

A.4.1 Bijectivity of β

In order to prove Lemma A.4, we will use the following property of the function β in (A.17).

Lemma A.6 The function β defined in (A.17) is bijective.

Proof. To facilitate the exposition, we introduce the notation

L , lcm(T̃ , N) .

Recall that β(j) =
(
β1(j) β2(j)

)T with β1(j) =
(
j + b(j − 1)/Lc

)
mod∗ T̃ ∈ [1 : T̃ ] and

β2(j) = jmod∗N ∈ [1 :N ], for j ∈ [1 : T̃N ]. We start by proving that β is one-to-one. Assume

that there exist j1, j2 ∈ [1 : T̃N ] with j1 ≤ j2 such that β(j1) = β(j2). From β2(j1) = β2(j2),
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it follows that j1 mod∗N = j2 mod∗N and, hence,3 j2 = j1 + nN for some n ∈ [0 : T̃ − 1].

Similarly, β1(j1) = β1(j2) implies that

j1 +

⌊
j1−1

L

⌋
= j2 +

⌊
j2−1

L

⌋
−mT̃

for some m ∈ N, and thus

j1 +

⌊
j1−1

L

⌋
= j1 + nN +

⌊
j1 + nN−1

L

⌋
−mT̃

or, equivalently,

mT̃ − nN =

⌊
j1 + nN−1

L

⌋
−
⌊
j1−1

L

⌋
. (A.33)

We can write j1 = kL+ ̃1 with some k ∈ N and ̃1 ∈ [1 :L] and simplify (A.33) as follows:

mT̃ − nN =

⌊
kL+ ̃1 + nN−1

L

⌋
−
⌊
kL+ ̃1−1

L

⌋
= k +

⌊
̃1 + nN−1

L

⌋
− k −

⌊
̃1−1

L

⌋
(a)
=

⌊
̃1 + nN−1

L

⌋
. (A.34)

Here, (a) holds because ̃1−1 < L and thus b(̃1−1)/Lc = 0. We will next show that the

right-hand side of (A.34) is zero, by establishing the following chain of inequalities:

0 ≤
⌊
̃1 + nN−1

L

⌋
(a)

≤
⌊
j1 + nN−1

L

⌋
(b)

≤
⌊
T̃N−1

L

⌋
(c)
=

⌊
gcd(T̃ , N)− 1

L

⌋
= gcd(T̃ , N)− 1 .

(A.35)

Here, (a) holds because ̃1 ≤ j1, (b) holds because j1 + nN = j2 ≤ T̃N, and (c) holds

because T̃N = gcd(T̃ , N)L [Hardy and Wright, 1975, Th. 52] (here, gcd(·, ·) denotes the

greatest common divisor). Note now that gcd(T̃ , N) divides the left-hand side of (A.34) and,

hence, also the right-hand side. But by (A.35), the right-hand side of (A.34) is an element of

[0 :gcd(T̃ , N)− 1]. Hence, it must be zero, and thus (A.34) becomes

mT̃ − nN =

⌊
̃1 + nN−1

L

⌋
= 0 . (A.36)

Therefore, ̃1 + nN−1 < L. Since nN ≤ ̃1 + nN−1, we obtain nN < L. Furthermore,

by (A.36), we have that mT̃ = nN . Thus, nN is a common multiple of T̃ and N that is less

than the least (positive) common multiple. Therefore, n = 0 and, hence, j1 = j1 + nN = j2.

We have thus shown that β(j1) = β(j2) implies j1 = j2, which means that β is one-to-one.

Since the domain of β, [1 : T̃N ], and its codomain, [1 : T̃ ] × [1 :N ], are finite and of the same

3Recall that we defined amod∗ b , a − bb(a − 1)/bc to be the residuum of a divided by b in [1 : b] (and not in
[0 :b− 1] as commonly done).
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cardinality (namely, T̃N ), we conclude that β is also bijective.

We will now prove the individual properties stated in Lemma A.4.

A.4.2 Proof of Property (i)

We first show that β2
∣∣
β−1
1 (t)

is one-to-one, i.e., if β2(j1) = β2(j2) for j1, j2 ∈ β−11 (t) then

j1 = j2. To this end, let j1, j2 ∈ β−11 (t) (i.e., β1(j1) = β1(j2) = t) and assume that β2(j1) =

β2(j2) = i. Then β(j1) = β(j2) = (t i)T. Since β is one-to-one by Lemma A.6, we conclude

that j1 = j2. Hence, β2
∣∣
β−1
1 (t)

is one-to-one. Furthermore, since β−11 (t) ∩ [1 :ϑR] ⊆ β−11 (t), we

have (cf. (A.18))

|Pt| =
∣∣β2(β−11 (t) ∩ [1 :ϑR]

)∣∣ =
∣∣β−11 (t) ∩ [1 :ϑR]

∣∣ (A.37)

for t ∈ [1 : T̃ ]. To conclude the proof, we will use the following basic lemma.

Lemma A.7 The sets {β−11 (t)}
t∈[1:T̃ ] form a partition of the domain [1 : T̃N ] of β1, i.e.,

β−11 (t) ∩ β−11 (t′) = ∅, for t, t′ ∈ [1 : T̃ ] with t 6= t′ (A.38)

and ⋃
t∈[1:T̃ ]

β−11 (t) = [1: T̃N ] . (A.39)

Proof. This lemma follows from the definition of a function, i.e., the fact that β1 maps every

element in the domain to exactly one element in the codomain.

By Lemma A.7, we obtain∑
t∈[1:T̃ ]

|Pt|
(A.37)

=
∑
t∈[1:T̃ ]

∣∣β−11 (t) ∩ [1 :ϑR]
∣∣

(A.38)
=

∣∣∣∣∣
( ⋃
t∈[1:T̃ ]

β−11 (t)

)
∩ [1 :ϑR]

∣∣∣∣∣
(A.39)

=
∣∣[1 : T̃N ] ∩ [1 :ϑR]

∣∣
= min{T̃N, ϑR} . (A.40)

Since N > T̃Q, we have that ϑR = max{T̃ , RT̃Q − (R− T̃ )N} = max{T̃ , T̃N − R(N −
T̃Q)} < T̃N . Combining this with (A.40), we conclude that∑

t∈[1:T̃ ]

|Pt| = ϑR .

A.4.3 Proof of Property (ii)

We will make use of the following lemma.
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Lemma A.8 Let p, q ∈ N with p < q. Then

∣∣{j ∈ [p+ 1:q] : (j + a) mod∗ b = c
}∣∣ ≤ ⌈q − p

b

⌉
for all a, b, c ∈ N with b ≥ 2, c ≥ 1, and c ≤ b.

Proof. We prove Lemma A.8 by contradiction. Assume

∣∣{j ∈ [p+ 1:q] : (j + a) mod∗ b = c
}∣∣ > ⌈q − p

b

⌉
, d .

Thus, the set
{
j ∈ [p+1:q] : (j+a) mod∗ b = c

}
contains at least d+1 elements {ji}i∈[1:d+1],

i.e., there exist at least d + 1 distinct elements ji ∈ [p + 1 : q] satisfying (ji + a) mod∗ b = c.

Hence, there exist distinct ki ∈ N, i ∈ [1 :d+ 1] such that

ji + a = c+ kib ∈ [p+ 1:q] . (A.41)

Assume, without loss of generality, that ki < ki+1 for i ∈ [1 : d]. Because ki ∈ N, we obtain

ki ≤ ki+1 − 1 and thus, iteratively, k1 ≤ k2 − 1 ≤ k3 − 2 ≤ · · · , and finally

k1 ≤ kd+1 − d . (A.42)

Hence,

jd+1 − j1
(A.41)

= kd+1b− k1b = (kd+1 − k1)b
(A.42)
≥ d b =

⌈
q − p
b

⌉
b ≥ q − p

which contradicts j1, jd+1 ∈ [p+ 1:q].

To prove Property (ii), we first establish an upper bound on ϑR. We have that

RT̃Q− (R− T̃ )N = (R− T̃ )T̃Q− (R− T̃ )N + T̃ 2Q

= (R− T̃ )︸ ︷︷ ︸
≥0

(T̃Q−N)︸ ︷︷ ︸
<0

+ T̃ 2Q

≤ T̃ 2Q

and, hence,

ϑR = max{T̃ , RT̃Q− (R− T̃ )N} ≤ T̃ 2Q . (A.43)

To bound the size of the sets Pt, we use (A.37) and the definition of β1 to conclude that

|Pt| =
∣∣{j ∈ [1 :ϑR] : β1(j) = t}

∣∣
=

∣∣∣∣{j ∈ [1 :ϑR] :

(
j +

⌊
j − 1

L

⌋)
mod∗ T̃ = t

}∣∣∣∣ . (A.44)
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Choose m ∈ N such that (m− 1)L < ϑR ≤ mL. We can partition the set [1 :ϑR] as follows:

[1 :ϑR] =

( ⋃
n∈[0:m−2]

[
nL+ 1 : (n+ 1)L

])
∪
[
(m− 1)L+ 1 : ϑR

]
. (A.45)

Note that the intervals
[
nL+ 1 : (n+ 1)L

]
, n ∈ [0 :m− 2] and

[
(m− 1)L+ 1 : ϑR

]
in (A.45)

are disjoint and satisfy

⌊
j − 1

L

⌋
=

n, for j ∈
[
nL+ 1 : (n+ 1)L

]
m− 1, for j ∈

[
(m− 1)L+ 1 : ϑR

]
.

(A.46)

Thus, using (A.45) and (A.46) in (A.44), we obtain

|Pt| =
∑

n∈[0:m−2]

∣∣{j ∈ [nL+ 1 : (n+ 1)L
]

: (j + n) mod∗ T̃ = t
}∣∣

+
∣∣{j ∈ [(m− 1)L+ 1 : ϑR

]
: (j +m− 1) mod∗ T̃ = t

}∣∣ . (A.47)

By Lemma A.8, we have

∣∣{j ∈ [nL+ 1 : (n+ 1)L
]

: (j + n) mod∗ T̃ = t
}∣∣ ≤ ⌈L

T̃

⌉
=
L

T̃
(A.48)

and

∣∣{j ∈ [(m− 1)L+ 1 : ϑR
]
: (j +m− 1) mod∗ T̃ = t

}∣∣ ≤ ⌈ϑR − (m− 1)L

T̃

⌉
. (A.49)

Thus, inserting (A.48) and (A.49) into (A.47), we obtain

|Pt| ≤ (m− 1)
L

T̃
+

⌈
ϑR − (m− 1)L

T̃

⌉
(a)
= (m− 1)

L

T̃
+

⌈
ϑR

T̃

⌉
− (m− 1)

L

T̃

=

⌈
ϑR

T̃

⌉
(A.43)
≤
⌈
T̃ 2Q

T̃

⌉
= T̃Q

where (a) holds because L/T̃ ∈ N (recall that L = lcm(T̃ , N)).

A.4.4 Proof of Property (iii)

To prove Properties (iii)–(v), we calculate the difference ϑR−1 − ϑR. Because we assumed that

R ≤ dT̃ (N − 1)/(N − T̃Q)e, we have R − 1 < T̃ (N − 1)/(N − T̃Q). This is easily verified
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to be equivalent to (R− 1)T̃Q− (R− 1− T̃ )N > T̃ . Hence, using (A.16),

ϑR−1 = max{T̃ , (R− 1)T̃Q− (R− 1− T̃ )N}

= (R− 1)T̃Q− (R− 1− T̃ )N . (A.50)

Thus, we have

ϑR−1 − ϑR = (R− 1)T̃Q− (R− 1− T̃ )N −max{T̃ , RT̃Q− (R− T̃ )N}

= RT̃Q− (R− T̃ )N +N − T̃Q−max{T̃ , RT̃Q− (R− T̃ )N}

= N − T̃Q−max
{
T̃ −

(
RT̃Q− (R− T̃ )N

)
, 0
}

= N − T̃Q− γ (A.51)

where γ was defined in (A.22). Furthermore, by (3.29), γ < N − T̃Q and thus (A.51) implies

ϑR−1 − ϑR > 0 . (A.52)

We are now ready to prove Property (iii). From the definitions Pt , β2
(
β−11 (t) ∩ [1 : ϑR]

)
in (A.18) and P̃t , β2

(
β−11 (t)∩ [1 :ϑR−1]

)
in (A.19), it follows that Lt = P̃t \Pt (recall (A.20))

can be written as

Lt = β2
(
β−11 (t) ∩ [1 :ϑR−1]

)
\ β2

(
β−11 (t) ∩ [1 :ϑR]

)
(a)
= β2

(
(β−11 (t) ∩ [1 :ϑR−1]) \ (β−11 (t) ∩ [1 :ϑR])

)
= β2

(
β−11 (t) ∩ [ϑR + 1:ϑR−1]

)
(A.53)

where (a) holds because β2
∣∣
β−1
1 (t)

is one-to-one (see Section A.4.2). Since β2(j) = jmod∗N ,

the function β2 is one-to-one on every set consisting of up to N consecutive integers. In partic-

ular, (A.52) and (A.51) imply that
∣∣[ϑR + 1 :ϑR−1]

∣∣ = ϑR−1 − ϑR = N − T̃Q − γ and hence

β2
∣∣
[ϑR+1:ϑR−1]

is one-to-one. Because by Lemma A.7 the sets β−11 (t), t ∈ [1 : T̃ ] are pairwise

disjoint, we conclude that the sets β−11 (t) ∩ [ϑR + 1:ϑR−1], t ∈ [1 : T̃ ] are pairwise disjoint too.

Hence, by (A.53) and because β2
∣∣
[ϑR+1:ϑR−1]

is one-to-one, the sets Lt are pairwise disjoint.

A.4.5 Proof of Property (iv)

By (A.53), we have

Lt = β2
(
β−11 (t) ∩ [ϑR + 1:ϑR−1]

)
⊆ β2([1 :ϑR−1]) . (A.54)

Hence, it remains to prove that

β2([1 :ϑR−1]) ⊆ [1 :N − γ] . (A.55)
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Recall that we assumed R ≤ dT̃ (N − 1)/(N − T̃Q)e. If R < dT̃ (N − 1)/(N − T̃Q)e, then

R < T̃ (N−1)/(N−T̃Q) (becauseR ∈ N), which impliesRN−(RT̃Q+T̃N−T̃ ) < 0; hence,

it follows from the definition of γ in (A.22) that γ = 0. In this case, it follows from the definition

of β2 in (A.17), i.e., β2(j) = jmod∗N for j ∈ [1 : T̃N ], that (A.55) is trivially true. For the

complementary case R = dT̃ (N − 1)/(N − T̃Q)e, we note that RN − (RT̃Q+ T̃N − T̃ ) ≥ 0

and hence, using the definition of γ in (A.22),

N − γ = N − (RN −RT̃Q− T̃N + T̃ )

= RT̃Q− (R− 1− T̃ )N − T̃

≥ (R− 1)T̃Q− (R− 1− T̃ )N

(A.50)
= ϑR−1 .

Thus, [1 : ϑR−1] ⊆ [1 :N − γ] and, further, β2([1 : ϑR−1]) ⊆ β2([1 :N − γ]) = [1 :N − γ],

i.e., (A.55) is again true. Combining (A.54) and (A.55) concludes the proof that Lt ⊆ [1 :N−γ].

A.4.6 Proof of Property (v)

We have

L̃ (A.21)
=

⋃
t∈[1:T̃ ]

Lt

(A.53)
=

⋃
t∈[1:T̃ ]

β2
(
β−11 (t) ∩ [ϑR + 1:ϑR−1]

)
(a)
= β2

( ⋃
t∈[1:T̃ ]

(
β−11 (t) ∩ [ϑR + 1:ϑR−1]

))

= β2

(( ⋃
t∈[1:T̃ ]

β−11 (t)

)
∩ [ϑR + 1:ϑR−1]

)
(A.39)

= β2([ϑR + 1:ϑR−1]) (A.56)

where (a) holds because β2 is one-to-one on every set consisting of up toN consecutive integers.

Thus,
∣∣L̃∣∣ =

∣∣β2([ϑR + 1:ϑR−1])
∣∣ = ϑR−1−ϑR

(A.51)
= N − T̃Q−γ. Furthermore, Property (iv)

implies that the set L̃ is a subset of [1 : N − γ], and hence we obtain for the size of G = [1 :

N − γ] \ L̃
|G| =

∣∣[1 :N − γ] \ L̃
∣∣ = N − γ − (N − T̃Q− γ) = T̃Q .

Thus, we can partition G as G =
⋃
t∈[1:T̃ ] Gt, with disjoint Gt of sizeQ each. We have thus shown

the existence of sets Gt satisfying (v-a), (v-b), and (v-d).

It remains to show (v-c), i.e., that we can choose {Gt}t∈[1:T̃ ] such that each Gt has a nonempty
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intersection with Pt. Because β2 is one-to-one on sets of up to N consecutive integers and

ϑR−1 − (ϑR − T̃ )
(A.51)

= N − T̃Q− γ + T̃ = N − γ − T̃ (Q− 1) ≤ N − γ

we obtain that β2
∣∣
[ϑR−T̃+1:ϑR−1]

is one-to-one. Thus,

β2([ϑR − T̃ + 1:ϑR]) ∩ β2([ϑR + 1:ϑR−1]) = β2([ϑR − T̃ + 1:ϑR] ∩ [ϑR + 1:ϑR−1])

= β2(∅)

= ∅ . (A.57)

Inserting (A.56) into (A.57), we obtain

β2([ϑR − T̃ + 1:ϑR]) ∩ L̃ = ∅ . (A.58)

By the fact that [ϑR− T̃ + 1:ϑR] ⊆ [1 :ϑR−1] and (A.55), we have that β2([ϑR− T̃ + 1:ϑR]) ⊆
β2([1 :ϑR−1]) ⊆ [1 :N − γ]. Hence, (A.58) implies that

β2([ϑR − T̃ + 1:ϑR]) ⊆ [1 :N − γ] \ L̃ = G .

Thus, we identified T̃ elements β2(ϑR− T̃ +1), β2(ϑR− T̃ +2), . . . , β2(ϑR) in the set G, which

will now be used to construct the sets Gt. We will show that we can assign a different index

t ∈ [1 : T̃ ] to each of these T̃ elements such that the element with index t belongs to Pt, i.e.,

β2([ϑR − T̃ + 1:ϑR]) = {g1, . . . , gT̃ }, with gt ∈ Pt, t ∈ [1 : T̃ ] . (A.59)

The desired sets Gt are then obtained by assigning gt to Gt, for t ∈ [1 : T̃ ]. Thus, recalling that

|Gt| = Q, Gt consists of gt ∈ Pt and Q− 1 additional elements taken from the set G \ β2([ϑR −
T̃ + 1:ϑR]).

In order to prove (A.59), we distinguish two cases.

Case nL /∈ [ϑR − T̃ + 1:ϑR − 1] for all n ∈ N

In this case, there exists m ∈ N such that mL ≤ ϑR − T̃ and (m + 1)L ≥ ϑR. Thus, for all

j ∈ [ϑR − T̃ + 1:ϑR], we have⌊
j − 1

L

⌋
≥
⌊
ϑR − T̃
L

⌋
≥
⌊
mL

L

⌋
= m (A.60)

and ⌊
j − 1

L

⌋
<

⌊
ϑR
L

⌋
≤
⌊

(m+ 1)L

L

⌋
= m+ 1 . (A.61)

Combining (A.60) and (A.61), we obtain that the offset in (A.17) satisfies b(j − 1)/Lc = m for

all j ∈ [ϑR − T̃ + 1:ϑR]. Thus, we have β1
∣∣
[ϑR−T̃+1:ϑR]

(j) = (j +m) mod∗ T̃ , which implies
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that β1([ϑR − T̃ + 1:ϑR]) = [1 : T̃ ]. Hence, we can write

[ϑR − T̃ + 1:ϑR] = {̃1, . . . , ̃T̃ }, where ̃t ∈ β−11 (t) for t ∈ [1 : T̃ ] .

We then obtain

β2([ϑR − T̃ + 1:ϑR]) = {β2(̃1), . . . , β2(̃T̃ )}

and assign the indices t ∈ [1 : T̃ ] according to gt = β2(̃t). By construction, we have both

gt = β2(̃t) ∈ β2(β−11 (t)) and gt = β2(̃t) ∈ β2([ϑR − T̃ + 1 :ϑR]) ⊆ β2([1 :ϑR]), so that we

also have

gt ∈ β2(β−11 (t) ∩ [1 :ϑR]) = Pt

(recall (A.18)). Thus, our choice of the gt satisfies (A.59).

Case nL ∈ [ϑR − T̃ + 1:ϑR − 1] for some n ∈ N

We first note that

β2([ϑR − T̃ + 1:ϑR]) = β2([ϑR − T̃ + 1:nL]) ∪ β2([nL+ 1: ϑR])

(a)
= β2([ϑR − T̃ + 1:nL]) ∪ β2([nL− L+ 1: ϑR − L])

= β2([ϑR − T̃ + 1:nL]) ∪ β2([(n− 1)L+ 1: ϑR − L]) (A.62)

where (a) holds because (recall that L = lcm(T̃ , N) is a multiple of N )

β2(j) = jmod∗N = (j − L) mod∗N = β2(j − L)

for j > L. We will next calculate the offset b(j−1)/Lc in (A.17) for j belonging to either of the

intervals in the arguments in (A.62), i.e., j ∈ [ϑR − T̃ + 1:nL] or j ∈ [(n− 1)L+ 1: ϑR − L].

Note that

nL ∈ [ϑR − T̃ + 1:ϑR − 1] (A.63)

and

L ≥ T̃ . (A.64)

Thus, we have

(n− 1)L = nL− L
(A.63)
< ϑR − L

(A.64)
≤ ϑR − T̃ (A.65)

and

ϑR
(A.63)
< nL+ T̃

(A.64)
≤ (n+ 1)L . (A.66)

For j ∈ [ϑR − T̃ + 1:nL], we obtain that j − 1 ≥ ϑR − T̃
(A.65)
> (n− 1)L and j − 1 ≤ nL− 1.

Hence, n− 1 < (j − 1)/L < n and further⌊
j − 1

L

⌋
= n− 1, for j ∈ [ϑR − T̃ + 1:nL] . (A.67)
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Similarly, for j ∈ [(n−1)L+1: ϑR−L], we obtain j−1 ≤ ϑR−L−1
(A.66)
< (n+1)L−L−1 =

nL− 1 and j − 1 ≥ (n− 1)L. Thus, n− 1 ≤ (j − 1)/L < n and further⌊
j − 1

L

⌋
= n− 1, for j ∈ [(n− 1)L+ 1: ϑR − L] . (A.68)

Combining (A.67) and (A.68), we conclude that the offset in (A.17) satisfies⌊
j − 1

L

⌋
= n− 1 , for j ∈ [ϑR − T̃ + 1:nL] ∪ [(n− 1)L+ 1: ϑR − L] . (A.69)

Let us next consider β1 on the sets [ϑR − T̃ + 1:nL] and [(n− 1)L+ 1: ϑR − L]. We obtain

β1([ϑR − T̃ + 1:nL])

=
{
k = β1(j) =

(
j + b(j − 1)/Lc

)
mod∗ T̃ : j ∈ [ϑR − T̃ + 1:nL]

}
(A.69)

=
{
k = β1(j) = (j + n− 1) mod∗ T̃ : j ∈ [ϑR − T̃ + 1:nL]

}
=
{
k = jmod∗ T̃ : j ∈ [ϑR− T̃ + n :nL+ n− 1]

}
(a)
=
{
k ∈ [1 : T̃ ] : ∃m ∈ N such that k +mT̃ ∈ [ϑR − T̃ + n :nL+ n− 1]

}
(A.70)

where (a) holds because k = jmod∗ T̃ is equivalent to j = k+mT̃ for somem ∈ N. Similarly,

β1([(n− 1)L+ 1: ϑR − L])

=
{
k = β1(j) =

(
j + b(j − 1)/Lc

)
mod∗ T̃ : j ∈ [(n− 1)L+ 1: ϑR − L]

}
(A.69)

=
{
k = β1(j) = (j + n− 1) mod∗ T̃ : j ∈ [(n− 1)L+ 1: ϑR − L]

}
=
{
k = jmod∗ T̃ : j ∈ [(n− 1)L+ n : ϑR − L+ n− 1]

}
=
{
k ∈ [1 : T̃ ] : ∃m ∈ N such that k +mT̃ ∈ [(n− 1)L+ n : ϑR − L+ n− 1]

}
(a)
=
{
k ∈ [1 : T̃ ] : ∃m ∈ N such that k +mT̃ ∈ [nL+ n : ϑR + n− 1]

}
(A.71)

where (a) holds because a shift of the interval byL (which is a multiple of T̃ ) can be compensated

by choosing a different m ∈ N. Combining (A.70) and (A.71), we obtain

β1
(
[ϑR − T̃ + 1:nL] ∪ [(n− 1)L+ 1: ϑR − L]

)
=
{
k ∈ [1 : T̃ ] : ∃m ∈ N such that

k +mT̃ ∈ [ϑR − T̃ + n :nL+ n− 1] ∪ [nL+ n : ϑR + n− 1]
}

=
{
k ∈ [1 : T̃ ] : ∃m ∈ N such that k +mT̃ ∈ [ϑR − T̃ + n : ϑR + n− 1]

}
(a)
= [1: T̃ ] (A.72)

where (a) holds because [ϑR − T̃ + n : ϑR + n− 1] is an interval of length T̃ and thus for every

k ∈ [1 : T̃ ] we can find an m ∈ N such that k +mT̃ ∈ [ϑR − T̃ + n : ϑR + n− 1]. Similarly to
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the previous case, (A.72) allows us to write

[ϑR − T̃ + 1:nL] ∪ [(n− 1)L+ 1: ϑR − L] = {̃1, . . . , ̃T̃ }

where ̃t ∈ β−11 (t) for t ∈ [1 : T̃ ]. By (A.62), we then obtain

β2([ϑR − T̃ + 1:ϑR]) = β2([ϑR − T̃ + 1:nL] ∪ [(n− 1)L+ 1: ϑR − L])

= {β2(̃1), . . . , β2(̃T̃ )} .

By the same arguments as in the previous case, we find that assigning gt = β2(̃t) satisfies (A.59).
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Appendix B

Proofs of Part II

B.1 Proof of Lemma 6.3

We first assume m ≥ 1; the case m = 0 will be considered separately.

B.1.1 Case m ≥ 1

By Definition 6.2, there exist Lipschitz functions fk and bounded sets Ak ⊆ Rm such that

H m

(
E \

⋃
k∈N

fk(Ak)
)

= 0 . (B.1)

Proof of Property 1: We first note thatD\
⋃
k∈N fk(Ak) ⊆ E \

⋃
k∈N fk(Ak) and thus, by the

monotonicity of measures, H m
(
D\
⋃
k∈N fk(Ak)

)
≤H m

(
E \
⋃
k∈N fk(Ak)

)
= 0. Therefore,

by Definition 6.2, D is m-rectifiable.

Proof of Property 2: We have to show that RM is the countable union of sets of finite H m|E
measure. We have

RM =
⋃
k∈N

fk(Ak) ∪
(
RM \

⋃
k∈N

fk(Ak)
)
. (B.2)

Thus, if we can show that all sets on the right-hand side of (B.2) have finite H m|E measure, we

can conclude that H m|E is σ-finite. To this end, we first consider the sets fk(Ak). We have for

all k ∈ N

H m|E(fk(Ak)) ≤H m(fk(Ak))
(a)

≤ (Lip(fk))
mLm(Ak)

(b)
< ∞ (B.3)

where (a) holds because of [Ambrosio et al., 2000, Prop. 2.49(iv)] and (b) holds because bound-

119
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ed sets have finite Lebesgue measure. Furthermore,

H m|E
(
RM \

⋃
k∈N

fk(Ak)
)

= H m

(
E \

⋃
k∈N

fk(Ak)
)

= 0 (B.4)

where (B.1) was used. Hence, by (B.3) and (B.4), all sets on the right-hand side of (B.2) have

finite H m|E measure, which concludes the proof of Property 2.

Proof of Property 3: We consider the Lipschitz functions φ ◦ fk. We have that φ(E) \⋃
k∈N φ(fk(Ak)) ⊆ φ

(
E \
⋃
k∈N fk(Ak)

)
. Thus, we obtain

H m

(
φ(E) \

⋃
k∈N

φ(fk(Ak))
)
≤H m

(
φ

(
E \

⋃
k∈N

fk(Ak)
))

(a)

≤ (Lip(φ))mH m

(
E \

⋃
k∈N

fk(Ak)
)

= 0

where (a) holds because of [Ambrosio et al., 2000, Prop. 2.49(iv)]. Thus, by Definition 6.2, with

the sets Ak and the Lipschitz functions φ ◦ fk, the set φ(E) is m-rectifiable.

Proof of Property 4: By the σ-subadditivity of H n [Ambrosio et al., 2000, Def. 1.2], we

have

H n(E) ≤H n

(
E \

⋃
k∈N

fk(Ak)
)

+
∑
k∈N

H n(fk(Ak)) . (B.5)

To prove Property 4, i.e., H n(E) = 0, it suffices to show that all the terms on the right-hand

side of (B.5) are zero. We have

H n(fk(Ak))
(a)

≤ (Lip(fk))
nH n(Ak)

(b)
= 0

where (a) holds because of [Ambrosio et al., 2000, Prop. 2.49(iv)] and (b) holds because the

Hausdorff measure H n is identically zero on Rm [Ambrosio et al., 2000, Prop. 2.49(ii)]. Fur-

thermore, by [Ambrosio et al., 2000, Prop. 2.49(iii)], H m
(
E \

⋃
k∈N fk(Ak)

)
= 0 (see (B.1))

implies H n
(
E \
⋃
k∈N fk(Ak)

)
= 0. Thus, all the terms on the right-hand side of (B.5) are zero

and Property 4 holds.

Proof of Property 5: We have to show that there exists Lipschitz functions g` and bounded

sets B` such that

H m

(⋃
i∈N
Ei \

⋃
`∈N

g`
(
B`
))

= 0 . (B.6)

Now because Ei is m-rectifiable for each i ∈ N, there exist Lipschitz functions f (i)k and bounded

sets A(i)
k ⊆ Rm such that

H m

(
Ei \

⋃
k∈N

f
(i)
k

(
A(i)
k

))
= 0
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for each i ∈ N. Thus,

H m

(⋃
i∈N
Ei \

⋃
i,k∈N

f
(i)
k

(
A(i)
k

))
≤
∑
i∈N

H m

(
Ei \

⋃
k∈N

f
(i)
k

(
A(i)
k

))
= 0 .

This implies that (B.6) is satisfied (with g` = f
(i)
k and B` = A(i)

k ), and thus
⋃
i∈N Ei is m-

rectifiable.

Proof of Property 6: We have to show that there exist Lipschitz functions fk and bounded

sets Ak such that

H m

(
Rm \

⋃
k∈N

fk
(
Ak
))

= 0 . (B.7)

We choose each fk = idRm , i.e., equal to the identity on Rm (which is obviously Lipschitz

continuous). Furthermore, we set Ak , Bk(0). We obtain⋃
k∈N

fk
(
Ak
)

=
⋃
k∈N
Bk(0) = Rm

and, hence, (B.7) holds.

B.1.2 Case m = 0

Recall that a 0-rectifiable set is countable and H 0 is the counting measure. Property 1 follows

because each subset of a countable set is countable. Property 2 holds because the counting

measure of a countable set is σ-finite. Property 3 holds because the image of a countable set

under any function is again countable. Property 4 can be shown as follows. By [Ambrosio et al.,

2000, Prop. 2.49(iii)], every finite set A has Hausdorff measure H n(A) = 0 for n > 0. By

the σ-additivity of Hausdorff measures, this also holds for countable sets. Finally, Property 5

follows because the countable union of countable sets is again countable.

B.2 Proof of Lemma 6.5

We consider an arbitrary version of the Radon-Nikodym derivative dµ
dH m|E that is H m-measur-

able. Thus, the set

D ,

(
dµ

dH m|E

)−1
({0}) =

{
s ∈ RM :

dµ

dH m|E
(s) = 0

}
is H m-measurable. We set Ẽ , E \ D = E ∩ Dc and note that Ẽ is, as the intersection of the

H m-measurable sets E and Dc, again H m-measurable. Thus, by Property 1 in Lemma 6.3, the

set Ẽ ⊆ E is m-rectifiable. We have for any µ-measurable set B

µ(B) =

∫
B

dµ

dH m|E
dH m|E
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=

∫
B∩E

dµ

dH m|E
dH m

(a)
=

∫
B∩Ẽ

dµ

dH m|E
dH m

=

∫
B

dµ

dH m|E
dH m|Ẽ (B.8)

where (a) holds because dµ
dH m|E = 0 on D and E \ Ẽ = E \ (E \ D) = E ∩ (E ∩ Dc)c =

E ∩ (Ec ∪ D) = E ∩ D ⊆ D.

Proof of Property 1: By (B.8), H m|Ẽ(B) = 0 implies µ(B) = 0, i.e., we have µ�H m|Ẽ .

Proof of Property 2: Again, by (B.8), dµ
dH m|E is a version of the Radon Nikodym derivative

dµ
dH m|Ẽ

, i.e., dµ
dH m|E = dµ

dH m|Ẽ
H m|Ẽ -almost everywhere.

Proof of Property 3: Because dµ
dH m|E > 0 on Dc and Ẽ ⊆ Dc, we also have dµ

dH m|Ẽ
> 0

H m|Ẽ -almost everywhere.

B.3 Proof of Theorem 6.11

Proof of Statement 1: Let x be 0-rectifiable with support E , i.e., µx−1 �H 0|E for a 0-rectifiable

set E . Recall that a 0-rectifiable set E is by definition countable, i.e., E = {xi : i ∈ I} for a

countable index set I. By (6.13), Pr{x ∈ E} = 1, which implies that x is a discrete random

variable. Finally,

px(xi) = Pr{x = xi}
(6.8)
= µx−1({xi})

=

∫
{xi}

dµx−1

dH 0|E
(x) dH 0|E(x)

(a)
=

dµx−1

dH 0|E
(xi)

(6.10)
= θ0x(xi)

where (a) holds because H 0 is the counting measure.

Conversely, let x be a discrete random variable taking on the values xi, i ∈ I. We set

E , {xi : i ∈ I}, which is countable and, thus, 0-rectifiable. Because E includes all possible

values of x, we have Pr{x ∈ Ec} = µx−1(Ec) = 0. ForA ⊆ RM , the measure H 0|E(A) counts

the number of points in A that also belong to E . Thus, for any set A such that H 0|E(A) = 0,

we obtain that A ∩ E = ∅ and hence A ⊆ Ec. This implies µx−1(A) ≤ µx−1(Ec) = 0. Thus,

we showed that µx−1(A) = 0 for any set A with H 0|E(A) = 0, i.e., µx−1 �H 0|E . Hence, x

is 0-rectifiable.

Proof of Statement 2: Let x be M -rectifiable on RM , i.e., µx−1 � H M |E for an M -

rectifiable set E . Because H M is equal to the Lebesgue measure LM , we obtain µx−1 �
LM |E � LM . Thus, by the Radon-Nikodym theorem, there exists the Radon-Nikodym deriva-

tive fx = dµx−1

dLM satisfying Pr{x ∈ A} =
∫
A fx(x) dLM (x) for any measurable A ⊆ RM , i.e.,

x is a continuous random variable. By (6.10), θMx = fx LM -almost everywhere.

Conversely, let x be a continuous random variable on RM with probability density function

fx. For a measurable setA ⊆ RM satisfying LM (A) = 0, we obtain µx−1(A) = Pr{x ∈ A} =
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∫
A fx(x) dLM (x) = 0. Thus, we have µx−1 � LM . Because LM = H M = H M |RM , this

is equivalent to µx−1 � H M |RM . Because, by Property 6 in Lemma 6.3 RM is M -rectifiable,

it follows from Definition 6.9 that x is an M -rectifiable random variable.

B.4 Proof of Theorem 6.16

We first note that the set φ(E) is m-rectifiable because E is m-rectifiable and because of Prop-

erty 3 in Lemma 6.3. To prove that y is m-rectifiable, we will show that µy−1 �H m|φ(E). For

a measurable set A ⊆ RM , we have

µy−1(A) = Pr{φ(x) ∈ A}

= Pr{x ∈ φ−1(A)}
(6.11)
=

∫
φ−1(A)

θmx (x) dH m|E(x)

=

∫
φ−1(A)∩E

θmx (x)

J E
φ (y)

J E
φ (x) dH m(x)

(a)
=

∫
A∩φ(E)

θmx (φ−1(y))

J E
φ (φ−1(y))

dH m(y)

=

∫
A

θmx (φ−1(y))

J E
φ (φ−1(y))

dH m|φ(E)(y) . (B.9)

Here, (a) holds because of the generalized area formula [Ambrosio et al., 2000, Th. 2.91], and

φ−1 : φ(E) → E is well defined because φ is one-to-one on E . For a measurable set A ⊆ RM

satisfying H m|φ(E)(A) = 0, (B.9) implies µy−1(A) = 0, i.e., µy−1 �H m|φ(E). Thus, y is an

m-rectifiable random variable.

By (B.9), θmx (φ−1(y))

J E
φ (φ−1(y))

coincides with the Radon-Nikodym derivative dµy−1

dH m|φ(E)
, and thus, we

obtain
θmx (φ−1(y))

J E
φ (φ−1(y))

=
dµy−1

dH m|φ(E)
(y)

(6.10)
= θmy (y) (B.10)

H m|φ(E)-almost everywhere. We conclude

hm(y) = −
∫
φ(E)

θmy (y) log θmy (y) dH m(y)

(B.10)
= −

∫
φ(E)

θmx (φ−1(y))

J E
φ (φ−1(y))

log

(
θmx (φ−1(y))

J E
φ (φ−1(y))

)
dH m(y)

(a)
= −

∫
E

θmx (x)

J E
φ (x)

log

(
θmx (x)

J E
φ (x)

)
J E

φ (x) dH m(x)

= −
∫
E
θmx (x) log θmx (x) dH m(x) +

∫
E
θmx (x) log J E

φ (x) dH m(x)

= hm(x) + Ex[log J E
φ (x)]
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where (a) holds because of the generalized area formula [Ambrosio et al., 2000, Th. 2.91].

B.5 Proof of Lemma 7.2

We first prove product-compatibility of E1 and E2 under the individual Conditions 1–3 for the

case m1,m2 ≥ 1. Subsequently, we will prove that E1 and E2 are always product-compatible if

m1 = 0, which covers all cases where at least one random variable is discrete.

By [Federer, 1969, Th. 3.2.23], Condition 1 implies that E1 and E2 are product-compatible.

To prove product-compatibility under Condition 2, we first construct a sequence of mutually

disjoint sets Ẽ(k)1 whose union equals that of the sets E(k)1 , i.e.,
⋃
k∈N Ẽ

(k)
1 =

⋃
k∈N E

(k)
1 . Let

Ẽ(1)1 , E(1)1 and define inductively Ẽ(k)1 , E(k)1 \
⋃k−1
i=1 Ẽ

(i)
1 for k ≥ 2. All sets Ẽ(k)1 are Borel

sets and H m1(Ẽ(k)1 ) ≤ H m1(E(k)1 ). Similarly, we construct a sequence of mutually disjoint

Borel sets Ẽ(`)2 by defining Ẽ(1)2 , E(1)2 and Ẽ(`)2 , E(`)2 \
⋃`−1
i=1 Ẽ

(i)
2 for ` ≥ 2. Recall that

H m1(E(k)1 ) <∞, which implies

H m1(Ẽ(k)1 ) ≤H m1(E(k)1 ) <∞ . (B.11)

Furthermore, recall that E(`)2 = φ`(A`) with Lipschitz functions φ` : Rm2 → RM2 and bounded

sets A` ⊆ Rm2 . Thus, Ẽ(`)2 ⊆ φ`(A`), which implies Ẽ(`)2 = φ`
(
A` ∩ φ−1` (Ẽ(`)2 )

)
. By (B.11)

and because the set A` ∩ φ−1` (Ẽ(`)2 ) is bounded, the sets Ẽ(k)1 and Ẽ(`)2 satisfy the assumptions in

Condition 1 and we obtain (cf. (7.3))

H m1+m2 |Ẽ(k)1 ×Ẽ
(`)
2

= H m1 |Ẽ(k)1

×H m2 |Ẽ(`)2

. (B.12)

We then have for any measurable sets B1 ⊆ RM1 and B2 ⊆ RM2

H m1+m2 |E1×E2(B1 × B2) = H m1+m2
(
(B1 × B2) ∩ (E1 × E2)

)
= H m1+m2

(
(B1 × B2) ∩

( ⋃
k∈N
E(k)1 ×

⋃
`∈N
E(`)2

))

= H m1+m2

(
(B1 × B2) ∩

( ⋃
k∈N
Ẽ(k)1 ×

⋃
`∈N
Ẽ(`)2

))

= H m1+m2

(
(B1 × B2) ∩

( ⋃
k,`∈N

(
Ẽ(k)1 × Ẽ(`)2

)))

= H m1+m2

( ⋃
k,`∈N

(
(B1 × B2) ∩

(
Ẽ(k)1 × Ẽ(`)2

)))
(a)
=

∑
k,`∈N

H m1+m2

(
(B1 × B2) ∩

(
Ẽ(k)1 × Ẽ(`)2

))
=

∑
k,`∈N

H m1+m2 |Ẽ(k)1 ×Ẽ
(`)
2

(B1 × B2)
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(B.12)
=

∑
k,`∈N

(
H m1 |Ẽ(k)1

×H m2 |Ẽ(`)2

)
(B1 × B2)

=
∑
k,`∈N

H m1
(
B1 ∩ Ẽ(k)1

)
H m2

(
B2 ∩ Ẽ(`)2

)
=

(∑
k∈N

H m1
(
B1 ∩ Ẽ(k)1

))(∑
`∈N

H m2
(
B2 ∩ Ẽ(`)2

))
= H m1

(
B1 ∩

⋃
k∈N
Ẽ(k)1

)
H m2

(
B2 ∩

⋃
`∈N
Ẽ(`)2

)
= H m1(B1 ∩ E1) H m2(B2 ∩ E2)

= H m1 |E1(B1) H m2 |E2(B2)

where (a) holds by the σ-additivity of measures and the disjointness of the sets Ẽ(k)1 × Ẽ(`)2 .

By the uniqueness of the product measure of σ-finite measures, we obtain H m1+m2 |E1×E2 =

H m1 |E1 ×H m2 |E2 . Hence, according to Definition 7.1, E1 and E2 are product-compatible.

Condition 3 is a special case of Condition 2. Because m2 = M2, we can simply choose the

φ` in Condition 2 as the identity on RM2 and A` = E2 ∩ B`(0), i.e., the intersection of E2 with

spheres of radius ` centered at 0. We then obtain E(`)2 , φ`(A`) = A` and, further,
⋃
`∈N E

(`)
2 =⋃

`∈NA` = E2. Because each A` is bounded and E(`)2 is Borel (being the intersection of the

Borel sets E2 and B`(0)), all assumptions in Condition 2 are satisfied and, thus, E1 and E2 are

product-compatible.

Finally, we turn to Condition 4, i.e., the case m1 = 0. Let B1 × B2 ⊆ RM1+M2 be a Borel

rectangle. Because for m1 = 0 the set E1 is countable (see Definition 6.2), the set B1 ∩ E1
is countable and a sum

∑
x∈B1∩E1 ax with nonnegative summands ax is always well defined.

Furthermore, (B1 × B2) ∩ (E1 × E2) =
⋃

x∈B1∩E1
(
{x} × (B2 ∩ E2)

)
. Thus,

H m2 |E1×E2(B1 × B2) = H m2
(
(B1 × B2) ∩ (E1 × E2)

)
= H m2

( ⋃
x∈B1∩E1

(
{x} × (B2 ∩ E2)

))
(a)
=

∑
x∈B1∩E1

H m2
(
{x} × (B2 ∩ E2)

)
(b)
=

∑
x∈B1∩E1

H m2(B2 ∩ E2)

=
∑

x∈B1∩E1

H m2 |E2(B2)

(c)
= H 0|E1(B1) H m2 |E2(B2)

where (a) holds by the σ-additivity of the Hausdorff measure, (b) holds because the Hausdorff

measure does not depend on the ambient space [Ambrosio et al., 2000, Remark 2.48], and (c)

holds because H 0 is the counting measure and thus H 0|E1(B1) equals the number of ele-
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ments in B1 ∩ E1. By the uniqueness of the product measure of σ-finite measures, we obtain

H m2 |E1×E2 = H 0|E1 ×H m2 |E2 , which is (7.3) for m1 = 0.

B.6 Proof of Lemma 7.3

We consider the cases m1 = m2 = 0; m1,m2 ≥ 1; and m1 = 0,m2 ≥ 1 separately (due to

symmetry, it is not necessary to consider the case m2 = 0,m1 ≥ 1).

Case m1 = m2 = 0: By Definition 6.2, the sets E1 and E2 are countable. Because the

product of countable sets is countable, the set E1 × E2 is countable, i.e., 0-rectifiable.

Case m1,m2 ≥ 1: By Definition 6.2, there exist bounded sets Ak ⊆ Rm1 and B` ⊆ Rm2

and Lipschitz functions φk : Ak → RM1 and ψ` : B` → RM2 , for k, ` ∈ N, satisfying

H m1

(
E1 \

⋃
k∈N

φk(Ak)
)

= 0 (B.13)

and

H m2

(
E2 \

⋃
`∈N

ψ`(B`)
)

= 0 (B.14)

respectively. The sets Ak ×B` ⊆ Rm1+m2 are again bounded and the functions (φk, ψ`) : Ak ×
B` → RM1+M2 are Lipschitz. Furthermore, we have

H m1+m2

(
(E1 × E2) \

⋃
k,`∈N

(φk, ψ`)(Ak × B`)
)

= H m1+m2

(
(E1 × E2) \

( ⋃
k∈N

φk(Ak)×
⋃
`∈N

ψ`(B`)
))

(a)
= H m1+m2

((
E1 ×

(
E2 \

⋃
`∈N

ψ`(B`)
))
∪

((
E1 \

⋃
k∈N

φk(Ak)
)
× E2

))

≤H m1+m2

(
E1 ×

(
E2 \

⋃
`∈N

ψ`(B`)
))

+ H m1+m2

((
E1 \

⋃
k∈N

φk(Ak)
)
× E2

)
(b)
= H m1(E1)H m2

(
E2 \

⋃
`∈N

ψ`(B`)

)
+ H m1

(
E1 \

⋃
k∈N

φk(Ak)

)
H m2(E2)

(c)
= 0

where (a) holds because for arbitrary sets F1,F2,F3,F4

(F1 ×F2) \ (F3 ×F4) =
(
F1 × (F2 \ F4)

)
∪
(
(F1 \ F3)×F2

)
(b) holds because E1 and E2 are product-compatible (see (7.4)), and (c) is obtained by inserting

(B.13) and (B.14). Thus, according to Definition 6.2, E1 × E2 is (m1 +m2)-rectifiable.

Case m1 = 0,m2 ≥ 1: Because E1 is countable, the product E1×E2 is simply the countable
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union

E1 × E2 =
⋃
x∈E1

{x} × E2 .

Here, each set {x} × E2 is, by Property 3 in Lemma 6.3, m2-rectifiable because it is the Lips-

chitz image of the m2-rectifiable set E2 under the embedding φx : RM2 → RM1+M2 , φx(y) =

(x,y). Thus, E1 × E2 is the countable union of m2-rectifiable sets and, hence, by Property 5 in

Lemma 6.3, again m2-rectifiable.

B.7 Proof of Theorem 7.4

Proof of Property 1: We first show that for any µ(x, y)−1-measurable set A ⊆ RM1+M2

µ(x, y)−1(A) = Pr{(x, y) ∈ A} =

∫
A
θm1
x (x)θm2

y (y) dH m1+m2 |E1×E2(x,y) . (B.15)

To this end, we first consider the rectangles A1 × A2 with A1 ⊆ RM1 H m1-measurable and

A2 ⊆ RM2 H m2-measurable. We have

Pr{(x, y) ∈ A1 ×A2}
(a)
= Pr{x ∈ A1} Pr{y ∈ A2}

(6.11)
=

∫
A1

θm1
x (x) dH m1 |E1(x)

∫
A2

θm2
y (y) dH m2 |E2(y)

(b)
=

∫
A1×A2

θm1
x (x)θm2

y (y) d
(
H m1 |E1 ×H m2 |E2

)
(x,y)

(c)
=

∫
A1×A2

θm1
x (x)θm2

y (y) dH m1+m2 |E1×E2(x,y) (B.16)

where (a) holds because x and y are independent, (b) holds by Fubini’s theorem, and (c) holds

because E1 and E2 are product-compatible (see (7.3)). Because the rectangles generate the

µ(x, y)−1-measurable sets, (B.16) implies (B.15). For a µ(x, y)−1-measurable setA ⊆ RM1+M2

satisfying H m1+m2 |E1×E2(A) = 0, (B.15) implies µ(x, y)−1(A) = 0, and thus, µ(x, y)−1 �
H m1+m2 |E1×E2 . Furthermore, since E1 ism1-rectifiable and E2 ism2-rectifiable, it follows from

Lemma 7.3 that E1 × E2 is (m1 +m2)-rectifiable. Thus, according to Definition 6.9, (x, y) is an

(m1 +m2)-rectifiable random variable.

Proof of Property 2: Again by (B.15), we see that θm1
x θm2

y is equal to the Radon-Nikodym

derivative dµ(x,y)−1

dH m1+m2 |E1×E2
. On the other hand, by (6.10), dµ(x,y)−1

dH m1+m2 |E1×E2
= θm1+m2

(x,y) (x,y)

H m1+m2 |E1×E2-almost everywhere. Therefore, θm1
x (x)θm2

y (y) equals the Hausdorff density

θm1+m2

(x,y) (x,y) H m1+m2 |E1×E2-almost everywhere. Moreover, by Property 4 in Corollary 6.10,

θm1
x (x)θm2

y (y) and θm1+m2

(x,y) (x,y) are both zero, and thus equal, H m1+m2-almost everywhere

on (E1 × E2)c. Hence, θm1+m2

(x,y) (x,y) = θm1
x (x)θm2

y (y) H m1+m2-almost everywhere.

Proof of Property 3: According to Property 7 in Corollary 6.10, we have to show that
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θm1+m2

(x,y) (x,y) > 0 H m1+m2-almost everywhere on E1 × E2, i.e., that the set

N , {(x,y) ∈ E1 × E2 : θm1+m2

(x,y) (x,y) = 0} (B.17)

has H m1+m2-measure zero.

Because E1 is a support of x, we have θm1
x (x) > 0 H m1-almost everywhere on E1. Thus,

the set N1 ⊆ RM1 on which θm1
x (x) = 0 must have an intersection with E1 of H m1-measure

zero, i.e.,

H m1 |E1(N1) = 0 with N1 , {x ∈ E1 : θm1
x (x) = 0} . (B.18)

Along the same lines, we obtain

H m2 |E2(N2) = 0 with N2 , {y ∈ E2 : θm2
y (y) = 0} . (B.19)

Because, by (7.5), θm1+m2

(x,y) (x,y) = θm1
x (x)θm2

y (y), each (x,y) ∈ N satisfies either θm1
x (x) =

0 or θm2
y (y) = 0, i.e., (x,y) ∈ N1×E2 or (x,y) ∈ E1×N2. Thus,N ⊆ (N1×E2)∪(E1×N2),

and we conclude

H m1+m2(N ) ≤H m1+m2
(
(N1 × E2) ∪ (E1 ×N2)

)
(a)

≤H m1+m2(N1 × E2) + H m1+m2(E1 ×N2)

(b)
= H m1 |E1(N1)H

m2 |E2(E2) + H m1 |E1(E1)H m2 |E2(N2)

(c)
= 0 (B.20)

where (a) holds by the subadditivity of measures, (b) holds because E1 and E2 are product-

compatible (see (7.4)), and (c) holds because H m1 |E1(N1) = 0 and H m2 |E2(N2) = 0.

Proof of Property 4: We have

hm1+m2(x, y)

(7.2)
= −

∫
RM1+M2

θm1+m2

(x,y) (x,y) log θm1+m2

(x,y) (x,y) dH m1+m2 |E1×E2(x,y)

(a)
= −

∫
RM1+M2

θm1
x (x)θm2

y (y) log
(
θm1
x (x)θm2

y (y)
)

dH m1+m2 |E1×E2(x,y)

(b)
= −

∫
RM1+M2

θm1
x (x)θm2

y (y) log
(
θm1
x (x)θm2

y (y)
)

d
(
H m1 |E1 ×H m2 |E2

)
(x,y)

(c)
= −

∫
RM2

∫
RM1

θm1
x (x)θm2

y (y)
(

log θm1
x (x) + log θm2

y (y)
)

dH m1 |E1(x) dH m2 |E2(y)

(d)
= −

∫
RM1

θm1
x (x) log θm1

x (x) dH m1 |E1(x)−
∫
RM2

θm2
y (y) log θm2

y (y) dH m2 |E2(y)

(6.16)
= hm1(x) + hm2(y) .

Here, (a) holds because of (7.5), (b) holds because E1 and E2 are product-compatible, (c)
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holds by Fubini’s theorem, and (d) holds because, by (6.13),
∫
RM1 θ

m1
x (x) dH m1 |E1(x) =∫

RM2 θ
m2
y (y) dH m2 |E2(y) = 1 .

B.8 Proof of Theorem 7.6

We will use the generalized coarea formula [Federer, 1969, Th. 3.2.22] several times in our

proofs. Unfortunately, the classical version only holds for sets of finite Hausdorff measure.

Thus, we first present adaptation that is suited to our setting.

Theorem B.1 Let E ⊆ RM1+M2 be an m-rectifiable set. Furthermore, let E2 , py(E) ⊆
RM2 be m2-rectifiable, H m2(E2) <∞, and J E

py 6= 0 H m|E -almost everywhere. Assume that

g : E → R is an H m-measurable function satisfying either of the following properties:

(i) g(x,y) ≥ 0 H m-almost everywhere

(ii)
∫
E |g(x,y)|dH m(x,y) <∞.

Then for all H m1-measurable sets A1 ⊆ RM1 and H m2-measurable sets A2 ⊆ RM2 ,∫
(A1×A2)∩E

g(x,y) dH m(x,y) =

∫
A2∩E2

(∫
A1∩E(y)

g(x,y)

J E
py(x,y)

dH m−m2(x)

)
dH m2(y)

(B.21)

where E(y) , {x ∈ RM1 : (x,y) ∈ E}. Furthermore, the set A1 ∩ E(y) is (m−m2)-rectifiable

for H m2-almost every y ∈ RM2 .

Proof. By Property 2 in Lemma 6.3, H m|E is σ-finite. Thus, we can partition E as E =
⋃
i∈NFi

with mutually disjoint sets Fi satisfying H m(Fi) <∞. For A1 ⊆ RM1 H m1-measurable and

A2 ⊆ RM2 H m2-measurable, we have∫
(A1×A2)∩E

g(x,y) dH m(x,y)

=
∑
i∈N

∫
(A1×A2)∩Fi

g(x,y) dH m(x,y)

(a)
=
∑
i∈N

∫
A2∩E2

(∫
(A1×A2)∩p−1

y ({y})∩Fi

g(x,y′)

J E
py(x,y

′)
dH m−m2(x,y′)

)
dH m2(y)

(B.22)

where (a) holds by the classical version of the general coarea formula [Federer, 1969, Th. 3.2.22]

(note that E2 and Fi have finite Hausdorff measure) and because J E
py 6= 0 H m|E -almost ev-

erywhere. If (i) holds, then by Fubini’s theorem, we can change the order of integration and

summation in (B.22). If (ii) holds, we will apply Lebesgue’s theorem of dominated conver-

gence [Ambrosio et al., 2000, Th. 1.21] to swap integration and summation. To this end, we
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have to show that the functions

fN (y) ,
N∑
i=1

∫
(A1×A2)∩p−1

y ({y})∩Fi

g(x,y′)

J E
py(x,y

′)
dH m−m2(x,y′)

are absolutely bounded by an H m2 |A2∩E2-integrable function. By the triangle inequality, we

obtain

|fN (y)| ≤
N∑
i=1

∫
(A1×A2)∩p−1

y ({y})∩Fi

|g(x,y′)|
J E

py(x,y
′)

dH m−m2(x,y′)

≤
∑
i∈N

∫
(A1×A2)∩p−1

y ({y})∩Fi

|g(x,y′)|
J E

py(x,y
′)

dH m−m2(x,y′) . (B.23)

We claim that the right-hand side of (B.23) is an integrable function. Indeed, we have∫
A2∩E2

(∑
i∈N

∫
(A1×A2)∩p−1

y ({y})∩Fi

|g(x,y′)|
J E

py(x,y
′)

dH m−m2(x,y′)

)
dH m2(y)

(a)
=
∑
i∈N

∫
A2∩E2

(∫
(A1×A2)∩p−1

y ({y})∩Fi

|g(x,y′)|
J E

py(x,y
′)

dH m−m2(x,y′)

)
dH m2(y)

(b)
=
∑
i∈N

∫
(A1×A2)∩Fi

|g(x,y)| dH m(x,y)

=

∫
(A1×A2)∩E

|g(x,y)| dH m(x,y)

≤
∫
E
|g(x,y)| dH m(x,y)

(c)
<∞

where (a) holds by Fubini’s theorem, (b) holds by the general coarea formula [Federer, 1969,

Th. 3.2.22], and (c) holds due to (ii).

Therefore, in either of the cases (i) or (ii), we can swap summation and integration on the

right-hand side of (B.22). We thus obtain∫
(A1×A2)∩E

g(x,y) dH m(x,y)

=

∫
A2∩E2

(∑
i∈N

∫
(A1×A2)∩p−1

y ({y})∩Fi

g(x,y′)

J E
py(x,y

′)
dH m−m2(x,y′)

)
dH m2(y)

=

∫
A2∩E2

(∫
(A1×A2)∩p−1

y ({y})∩E

g(x,y′)

J E
py(x,y

′)
dH m−m2(x,y′)

)
dH m2(y)

(a)
=

∫
A2∩E2

(∫
(A1×A2)∩p−1

y ({y})∩E

g(x,y)

J E
py(x,y)

dH m−m2(x,y′)

)
dH m2(y)

(b)
=

∫
A2∩E2

(∫
A1∩E(y)

g(x,y)

J E
py(x,y)

dH m−m2(x)

)
dH m2(y)
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where (a) holds because y′ = y for all (x,y′) ∈ p−1y ({y}), and (b) holds because the Haus-

dorff measure does not depend on the ambient space [Ambrosio et al., 2000, Remark 2.48], i.e.,

integration with respect to H m−m2 on the affine subspace p−1y ({y}) ⊆ RM1+M2 and on RM1

coincide. Thus, we have shown (B.21).

By [Federer, 1969, Th. 3.2.22], the sets p−1y ({y}) ∩ Fi are (m−m2)-rectifiable for H m2-

almost every y ∈ RM2 . By Property 5 in Lemma 6.3, also the union
⋃
i∈N p−1y ({y}) ∩ Fi =

p−1y ({y})∩E is (m−m2)-rectifiable for H m2-almost every y ∈ RM2 . The Lipschitz mapping

px : RM1+M2 → RM1 , px(x,y) = x satisfies

px
(
p−1y ({y}) ∩ E

)
= {x ∈ RM1 : (x,y′) ∈ p−1y ({y}) ∩ E}

= {x ∈ RM1 : (x,y) ∈ E}

= E(y) .

Thus, E(y) is obtained via a Lipschitz mapping from the set p−1y ({y}) ∩ E , which is (m−m2)-

rectifiable for H m2-almost every y ∈ RM2 . Therefore, by Property 3 in Lemma 6.3, E(y)

is again (m − m2)-rectifiable for H m2-almost every y ∈ RM2 . Finally, by Property 1 in

Lemma 6.3, the same is true for A1 ∩ E(y).

We now proceed to the proof of Theorem 7.6.

Proof of Property 1: We have for any H m2-measurable set A ⊆ RM2

µy−1(A) = Pr{y ∈ A}

= Pr{(x, y) ∈ RM1 ×A}

=

∫
(RM1×A)∩E

θm(x,y)(x,y) dH m(x,y)

(a)
=

∫
A∩Ẽ2

(∫
E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x)

)
dH m2(y)

=

∫
A

(∫
E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x)

)
dH m2 |Ẽ2(y) (B.24)

where in (a) we used (B.21) with g(x,y) = θm(x,y)(x,y) ≥ 0. For an H m2-measurable set

A satisfying H m2 |Ẽ2(A) = 0, (B.24) implies µy−1(A) = 0, i.e., µy−1 � H m2 |Ẽ2 . Thus,

according to Definition 6.9, y is m2-rectifiable.

Proof of Property 2: By Property 6 in Corollary 6.10 and because µy−1 � H m2 |Ẽ2 , there

exists a support E2 ⊆ Ẽ2 of the random variable y.

Proof of Property 3: Again by (B.24),
∫
E(y)

θm
(x,y)

(x,y)

J E
py (x,y)

dH m−m2(x) is the Radon-Nikodym

derivative dµy−1

dH m2 |Ẽ2
. By (6.10), dµy−1

dH m2 |Ẽ2
equals θm2

y (y). This implies (7.12).

Proof of Property 4: Similar to (B.24), we obtain

hm2(y) = −
∫
E2
θm2
y (y) log θm2

y (y) dH m2(y)
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(7.12)
= −

∫
E2

(∫
E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x)

)
× log

(∫
E(y)

θm(x,y)(x̃,y)

J E
py(x̃,y)

dH m−m2(x̃)

)
dH m2(y)

= −
∫
E2

(∫
E(y)

θm(x,y)(x,y)

J E
py(x,y)

× log

(∫
E(y)

θm(x,y)(x̃,y)

J E
py(x̃,y)

dH m−m2(x̃)

)
dH m−m2(x)

)
dH m2(y)

(a)
= −

∫
E
θm(x,y)(x,y) log

(∫
E(y)

θm(x,y)(x̃,y)

J E
py(x̃,y)

dH m−m2(x̃)

)
dH m(x,y)

where in (a) we used (B.21) with A1 = RM1 , A2 = RM2 , and

g(x,y) = θm(x,y)(x,y) log

(∫
E(y)

θm(x,y)(x̃,y)

J E
py(x̃,y)

dH m−m2(x̃)

)
.

(Here, g(x,y) is H m|E -integrable by assumption, i.e., Condition (ii) in Theorem B.1 is satis-

fied.) Thus, (7.13) holds.

B.9 Proof of Theorem 7.8

Proof of Property 1: We have for any H 2-measurable set A ⊆ RM2

µy−1(A) = Pr{y ∈ A}

= Pr{(x, y) ∈ RM1 ×A}

=

∫
(RM1×A)∩E

θm1+m2

(x,y) (x,y) dH m1+m2(x,y)

(a)
=

∫
(RM1×A)∩(E1×E2)

θm1+m2

(x,y) (x,y) dH m1+m2(x,y)

=

∫
RM1×A

θm1+m2

(x,y) (x,y) dH m1+m2 |E1×E2(x,y)

(b)
=

∫
RM1×A

θm1+m2

(x,y) (x,y) d(H m1 |E1 ×H m2 |E2)(x,y)

(c)
=

∫
A

(∫
E1
θm1+m2

(x,y) (x,y) dH m1(x)

)
dH m2 |E2(y) (B.25)

where (a) holds because, by the product-compatibility of x and y, E ⊆ E1 × E2 and be-

cause, by Property 4 in Corollary 6.10, θm1+m2

(x,y) (x,y) is zero for H m1+m2-almost all (x,y) ∈
Ec, (b) holds because E1 and E2 are product-compatible, and (c) holds by Fubini’s theorem.

By (B.25),
∫
E1 θ

m1+m2

(x,y) (x,y) dH m1(x) is the Radon-Nikodym derivative dµy−1

dH m2 |E2
, which,

by (6.10), equals θm1
y (y). This implies (7.15).
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Proof of Property 2: Similar to (B.25), we obtain

hm2(y) = −
∫
E2
θm2
y (y) log θm2

y (y) dH m2(y)

(7.15)
= −

∫
E2

(∫
E1
θm1+m2

(x,y) (x,y) dH m1(x)

)
× log

(∫
E1
θm1+m2

(x,y) (x̃,y) dH m1(x̃)

)
dH m2(y)

= −
∫
E2

(∫
E1
θm1+m2

(x,y) (x,y)

× log

(∫
E1
θm1+m2

(x,y) (x̃,y) dH m1(x̃)

)
dH m1(x)

)
dH m2(y)

(a)
= −

∫
E1×E2

θm1+m2

(x,y) (x,y)

× log

(∫
E1
θm1+m2

(x,y) (x̃,y) dH m1(x̃)

)
d(H m1 |E1 ×H m2 |E2)(x,y)

(b)
= −

∫
E1×E2

θm1+m2

(x,y) (x,y) log

(∫
E1
θm1+m2

(x,y) (x̃,y) dH m1(x̃)

)
dH m1+m2(x,y)

(c)
= −

∫
E
θm1+m2

(x,y) (x,y) log

(∫
E1
θm1+m2

(x,y) (x̃,y) dH m1(x̃)

)
dH m1+m2(x,y)

where (a) holds by Fubini’s theorem, (b) holds because E1 and E2 are product-compatible, and

(c) holds because, by the product-compatibility of x and y, E ⊆ E1 × E2 and because, by Prop-

erty 4 in Corollary 6.10, θm1+m2

(x,y) (x,y) = 0 for H m1+m2-almost all (x,y) ∈ Ec. Thus, (7.16)

holds.

B.10 Proof of Theorem 7.9

Proof of Property 1: Let A1 ⊆ RM1 and A2 ⊆ RM2 be Borel sets. Then

Pr{(x, y) ∈ A1 ×A2}
(7.22)
=

∫
A2

Pr{x ∈ A1 | y = y} dµy−1(y)

(a)
=

∫
A2

Pr{x ∈ A1 | y = y} θm2
y (y) dH m2 |E2(y)

(b)
=

∫
A2

Pr{x ∈ A1 | y = y} θm2
y (y) dH m2 |Ẽ2(y) (B.26)

where (a) holds because, by (6.10), θm2
y is equal to the Radon-Nikodym derivative dµy−1

dH m2 |E2
, and

(b) holds because, by Property 4 in Corollary 6.10, θm2
y (y) = 0 for H m2-almost all y ∈ Ec2 . On

the other hand, we have

Pr{(x, y) ∈ A1 ×A2} =

∫
(A1×A2)∩E

θm(x,y)(x,y) dH m(x,y)
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(a)
=

∫
A2∩Ẽ2

(∫
A1∩E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x)

)
dH m2(y)

=

∫
A2

(∫
A1∩E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x)

)
dH m2 |Ẽ2(y) (B.27)

where in (a) we used (B.21) with g(x,y) = θm(x,y)(x,y) ≥ 0. Combining (B.26) and (B.27), we

obtain that for H m2 |Ẽ2-almost every y and every H m1-measurable set A1 ⊆ RM1

Pr{x ∈ A1 | y = y} θm2
y (y) =

∫
A1∩E(y)

θm(x,y)(x,y)

J E
py(x,y)

dH m−m2(x) . (B.28)

Because (B.28) holds for H m2 |Ẽ2-almost every y and E2 ⊆ Ẽ2, (B.28) also holds for H m2 |E2-

almost every y. Furthermore, because E2 is a support of y, we have θm2
y (y) > 0 H m2 |E2-

almost everywhere. Thus, we obtain for H m2 |E2-almost every y and every H m1-measurable

set A1 ⊆ RM1

Pr{x ∈ A1 | y = y} =

∫
A1∩E(y)

θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)
dH m−m2(x)

=

∫
A1

θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)
dH m−m2 |E(y)(x) . (B.29)

Therefore, Pr{x ∈ · | y = y} � H m−m2 |E(y) . By Theorem B.1, the set E(y) is (m − m2)-

rectifiable for H m2 |E2-almost every y. Hence, according to Definition 6.9, (x | y = y) is (m−
m2)-rectifiable for H m2 |E2-almost every y.

Proof of Property 2: By (B.29), dPr{x∈· | y=y}
dH m−m2 |E(y)

=
θm
(x,y)

(x,y)

J E
py (x,y) θ

m2
y (y)

for H m2 |E2-almost every

y. Furthermore, by (6.10), dPr{x∈· | y=y}
dH m−m2 |E(y)

= θm−m2

(x | y=y). Hence, we see that (7.23) holds.

Proof of Property 3: By (6.17), we have

hm−m2(x | y = y) = −
∫
E(y)

θm−m2

(x | y=y)(x) log θm−m2

(x | y=y)(x) dH m−m2(x) .

The result (7.24) then follows by (7.23).

B.11 Proof of Theorem 7.10

Proof of Property 1: Let A1 ⊆ RM1 and A2 ⊆ RM2 be Borel sets. Then

Pr{(x, y) ∈ A1 ×A2}
(7.22)
=

∫
A2

Pr{x ∈ A1 | y = y} dµy−1(y)

(a)
=

∫
A2

Pr{x ∈ A1 | y = y} θm2
y (y) dH m2 |E2(y) (B.30)
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where (a) holds because, by (6.10), θm2
y is equal to the Radon-Nikodym derivative dµy−1

dH m2 |E2
. On

the other hand, we have

Pr{(x, y) ∈ A1 ×A2} =

∫
(A1×A2)∩E

θm1+m2

(x,y) (x,y) dH m1+m2(x,y)

(a)
=

∫
(A1×A2)∩(E1×E2)

θm1+m2

(x,y) (x,y) dH m1+m2(x,y)

=

∫
A1×A2

θm1+m2

(x,y) (x,y) dH m1+m2 |E1×E2(x,y)

(b)
=

∫
A1×A2

θm1+m2

(x,y) (x,y) d(H m1 |E1 ×H m2 |E2)(x,y)

(c)
=

∫
A2

(∫
A1

θm1+m2

(x,y) (x,y) dH m1 |E1(x)

)
dH m2 |E2(y) (B.31)

where (a) holds because, by the product-compatibility of x and y, E ⊆ E1 × E2 and because,

by Property 4 in Corollary 6.10, θm1+m2

(x,y) (x,y) = 0 for H m1+m2-almost all (x,y) ∈ Ec, (b)

holds because E1 and E2 are product-compatible, and (c) holds by Fubini’s theorem. Combining

(B.30) and (B.31), we obtain that for H m2 |E2-almost every y and every Borel set A1 ⊆ RM1

Pr{x ∈ A1 | y = y}θm2
y (y) =

∫
A1

θm1+m2

(x,y) (x,y) dH m1 |E1(x) .

Because E2 is a support of y, we have θm2
y (y) > 0 H m2 |E2-almost everywhere. Thus, we obtain

for H m2 |E2-almost every y and every Borel set A1 ⊆ RM1

Pr{x ∈ A1 | y = y} =

∫
A1

θm1+m2

(x,y) (x,y)

θm2
y (y)

dH m1 |E1(x) . (B.32)

Therefore, Pr{x ∈ · | y = y} � H m1 |E1 . The set E1 is m1-rectifiable and thus, according to

Definition 6.9, (x | y = y) is m1-rectifiable for H m2 |E2-almost every y.

Proof of Property 2: By (B.32), dPr{x∈· | y=y}
dH m1 |E1

=
θ
m1+m2
(x,y)

(x,y)

θ
m2
y (y)

for H m2 |E2-almost every y.

Furthermore, by (6.10), dPr{x∈· | y=y}
dH m1 |E1

= θm1

(x | y=y). Hence, we see that (7.25) holds.

Proof of Property 3: By (6.17), we have

hm1(x | y = y) = −
∫
E1
θm1

(x | y=y)(x) log θm1

(x | y=y)(x) dH m1(x) .

The result (7.26) then follows by (7.25).

B.12 Proof of Theorem 7.12

Starting from (7.27), we have

hm−m2(x | y) =

∫
E2
θm2
y (y) hm−m2(x | y = y) dH m2(y)
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(7.24)
= −

∫
E2
θm2
y (y)

(∫
E(y)

θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)

× log

( θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)

)
dH m−m2(x)

)
dH m2(y)

= −
∫
E2

(∫
E(y)

θm(x,y)(x,y)

J E
py(x,y)

× log

( θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)

)
dH m−m2(x)

)
dH m2(y)

(a)
= −

∫
E
θm(x,y)(x,y) log

( θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)

)
dH m(x,y)

= −
∫
E
θm(x,y)(x,y)

(
log

(θm(x,y)(x,y)

θm2
y (y)

)
− log J E

py(x,y)

)
dH m(x,y)

(6.12)
= −E(x,y)

[
log

(θm(x,y)(x, y)

θm2
y (y)

)]
+ E(x,y)

[
log J E

py(x, y)
]

where in (a) we used (B.21) with A1 = RM1 , A2 = RM2 , and

g(x,y) = θm(x,y)(x,y) log

( θm(x,y)(x,y)

J E
py(x,y) θm2

y (y)

)
. (B.33)

(Here, g(x,y) is H m|E -integrable by assumption, i.e., Condition (ii) in Theorem B.1 is satis-

fied.) Thus, (7.28) holds.

B.13 Proof of Theorem 7.13

By the product-compatibility of x and y, we have a support E1 of x, a support E2 of y, and a

support E ⊆ E1 × E2 of (x, y) . Starting from (7.27) with m = m1 +m2, we obtain

hm1(x | y) =

∫
E2
θm2
y (y) hm1(x | y = y) dH m2(y)

(7.26)
= −

∫
E2
θm2
y (y)

(∫
E1

θm1+m2

(x,y) (x,y)

θm2
y (y)

log

(θm1+m2

(x,y) (x,y)

θm2
y (y)

)
dH m1(x)

)
dH m2(y)

= −
∫
E2

(∫
E1
θm1+m2

(x,y) (x,y) log

(θm1+m2

(x,y) (x,y)

θm2
y (y)

)
dH m1(x)

)
dH m2(y)

(a)
= −

∫
RM1+M2

θm1+m2

(x,y) (x,y) log

(θm1+m2

(x,y) (x,y)

θm2
y (y)

)
d(H m1 |E1 ×H m2 |E2)(x,y)

(b)
= −

∫
RM1+M2

θm1+m2

(x,y) (x,y) log

(θm1+m2

(x,y) (x,y)

θm2
y (y)

)
dH m1+m2 |E1×E2(x,y)

(c)
= −

∫
E
θm1+m2

(x,y) (x,y) log

(θm1+m2

(x,y) (x,y)

θm2
y (y)

)
dH m1+m2(x,y)
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(6.12)
= −E(x,y)

[
log

(θm1+m2

(x,y) (x, y)

θm2
y (y)

)]
where (a) holds by Fubini’s theorem, (b) holds because E1 and E2 are product-compatible, and

(c) holds because E ⊆ E1×E2 and because, by Property 4 in Corollary 6.10, θm1+m2

(x,y) (x,y) = 0

for H m1+m2-almost all (x,y) ∈ Ec. Thus, (7.29) holds.

B.14 Proof of Theorem 7.18

We first note that the product measure µx−1 × µy−1 can be interpreted as the joint measure of

independent random variables x̃ and ỹ, where x̃ has the same distribution as x and ỹ has the same

distribution as y. Because x is m1-rectifiable and y is m2-rectifiable, the same holds for x̃ and

ỹ, respectively. Furthermore, the Hausdorff densities satisfy θm1
x̃ (x) = θm1

x (x) and θm2
ỹ (y) =

θm2
y (y). By Properties 1–3 in Theorem 7.4, the joint random variable (x̃, ỹ) is (m1 + m2)-

rectifiable with (m1 +m2)-dimensional Hausdorff density

θm1+m2

(x̃,ỹ) (x,y) = θm1
x̃ (x)θm2

ỹ (y) = θm1
x (x)θm2

y (y) (B.34)

and support E1 × E2. The rectifiability of (x̃, ỹ) with support E1 × E2 implies that the measure

µx−1 × µy−1 is (m1 +m2)-rectifiable and

µx−1 × µy−1 �H m1+m2 |E1×E2 . (B.35)

Proof of Statement 1 (case m = m1 +m2): For any measurable set A ⊆ RM1+M2 , we have

µ(x, y)−1(A)
(6.11)
=

∫
A
θm(x,y)(x,y) dH m|E(x,y)

(a)
=

∫
A
θm(x,y)(x,y) dH m|E1×E2(x,y)

(b)
=

∫
A

θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
θm1
x (x)θm2

y (y) dH m|E1×E2(x,y)

(B.34)
=

∫
A

θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
θm(x̃,ỹ)(x,y) dH m|E1×E2(x,y)

(c)
=

∫
A

θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
d
(
µx−1 × µy−1

)
(x,y) . (B.36)

Here, (a) holds because E ⊆ E1×E2 and because, by Property 4 in Corollary 6.10, θm(x,y)(x,y) =

0 on Ec, (b) holds because θm1
x (x)θm2

y (y) > 0 on E1 × E2, and (c) holds because, by (6.10),

θm(x̃,ỹ) = d(µx−1×µy−1)
dH m|E1×E2

H m|E1×E2-almost everywhere. By (B.36), we obtain that µ(x, y)−1 �
µx−1 × µy−1 with Radon-Nikodym derivative

dµ(x, y)−1

d
(
µx−1 × µy−1

)(x,y) =
θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
. (B.37)
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Inserting (B.37) into (7.43) yields

I(x; y) =

∫
RM1+M2

log

( θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)
dµ(x, y)−1(x,y)

(6.10)
=

∫
E
θm(x,y)(x,y) log

( θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)
dH m(x,y) (B.38)

which is (7.44). Furthermore, we can rewrite (B.38) as

I(x; y)
(6.12)
= E(x,y)

[
log

( θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)]
= E(x,y)[log θm(x,y)(x, y)]− E(x,y)[log θm1

x (x)]− E(x,y)[log θm2
y (y)]

= −hm(x, y)− Ex[log θm1
x (x)]− Ey[log θm2

y (y)]

= −hm(x, y) + hm1(x) + hm2(y) (B.39)

which is (7.45).

Finally, we obtain (7.46) by inserting (7.36) into (B.39). The second expression in (7.46) is

obtained by symmetry.

Proof of Statement 2 (case m < m1 + m2): We first show that µ(x, y)−1 6� µx−1 × µy−1.

To this end, we assume that µ(x, y)−1 � µx−1 × µy−1 and will obtain a contradiction. Using

(B.35), we have µ(x, y)−1 � µx−1 × µy−1 � H m1+m2 |E1×E2 . By Property 4 in Lemma 6.3

and because m1 + m2 > m, we obtain H m1+m2(E) = 0, and thus, H m1+m2 |E1×E2(E) ≤
H m1+m2(E) = 0. On the other hand, µ(x, y)−1(E) = 1. Thus, we have a contradiction to

µ(x, y)−1 �H m1+m2 |E1×E2 . Hence, µ(x, y)−1 6� µx−1 × µy−1 and, by (7.43), I(x; y) =∞.

B.15 Proof of Theorem 7.22

Property 1 follows immediately from Lemma 7.20. Indeed, because of (7.50), equation (7.49)

can be rewritten as

lim
n→∞

Pr{x1:n /∈ A(n)
ε } = 0 .

This implies that there exists n0 ∈ N such that Pr{x1:n ∈ A(n)
ε } > 1− δ, for all n > n0.

We will next prove Property 2. For x1:n ∈ A(n)
ε , it follows from (7.50) that

− 1

n

n∑
i=1

log θmx (xi)− hm(x) ≤ ε

which implies

exp

( n∑
i=1

log θmx (xi)

)
≥ e−n(hm(x)+ε)
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or equivalently
n∏
i=1

θmx (xi) ≥ e−n(h
m(x)+ε) . (B.40)

We have

1 ≥ Pr{x1:n ∈ A(n)
ε }

=

∫
A(n)
ε

θnm(x1,...,xn)(x1, . . . ,xn) dH nm|En(x1, . . . ,xn)

(7.6)
=

∫
A(n)
ε

(
n∏
i= 1

θmx (xi)

)
dH nm|En(x1, . . . ,xn)

(B.40)
≥
∫
A(n)
ε

e−n(h
m(x)+ε) dH nm|En(x1, . . . ,xn)

= e−n(h
m(x)+ε)H nm|En(A(n)

ε )

(a)
= e−n(h

m(x)+ε)H nm(A(n)
ε ) (B.41)

where (a) holds because A(n)
ε ⊆ En. The inequality (B.41) is equivalent to (7.51).

It remains to prove Property 3. For x1:n ∈ A(n)
ε , it follows from (7.50) that

− 1

n

n∑
i=1

log θmx (xi)− hm(x) ≥ −ε

which implies
n∏
i=1

θmx (xi) ≤ e−n(h
m(x)−ε) . (B.42)

By Property 1, there exists n0 ∈ N such that Pr{x1:n ∈ A(n)
ε } > 1− δ for all n > n0. Thus, we

have for n > n0

1− δ < Pr{x1:n ∈ A(n)
ε }

=

∫
A(n)
ε

θnm(x1,...,xn)(x1, . . . ,xn) dH nm|En(x1, . . . ,xn)

(7.6)
=

∫
A(n)
ε

(
n∏
i= 1

θmx (xi)

)
dH nm|En(x1, . . . ,xn)

(B.42)
≤
∫
A(n)
ε

e−n(h
m(x)−ε) dH nm|En(x1, . . . ,xn)

= e−n(h
m(x)−ε)H nm|En(A(n)

ε )

(a)
= e−n(h

m(x)−ε)H nm(A(n)
ε ) (B.43)

where (a) holds because A(n)
ε ⊆ En. The inequality (B.43) is equivalent to (7.52).
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B.16 Proof of Lemma 8.2

We will use two alternative characterizations of the Kullback-Leibler divergence DKL(µ‖ν) be-

tween probability measures µ and ν on RM . Usually, the Kullback-Leibler divergence is defined

by [Kullback and Leibler, 1951]

DKL(µ‖ν) ,


∫
RM

log

(
dµ

dν
(x)

)
dµ(x) if µ� ν

∞ else.
(B.44)

By the Gelfand-Yaglom-Perez theorem [Gray, 1990, Lem. 5.2.3], this definition coincides with

the following: Let P denote the set of all finite, measurable partitions of RM , i.e., for Q =

{A1, . . . ,AN} ∈ P the sets Ai are mutually disjoint and measurable and satisfy
⋃N
i=1Ai =

RM . Then

DKL(µ‖ν) = sup
Q∈P

∑
A∈Q

µ(A) log

(
µ(A)

ν(A)

)
. (B.45)

For our setting, we have to generalize the equivalence of the definitions (B.44) and (B.45) to mea-

sures ν that are not necessarily probability measures. Although the Kullback-Leibler divergence

is usually defined only for probability measures, we will use (B.44) to define the Kullback-

Leibler divergence DKL(µ‖ν) for an arbitrary finite measure ν. Based on this definition, we then

obtain again the expression (B.45):

Lemma B.2 Let µ be a probability measure and ν be a finite measure on RM , i.e., ν(RM ) <

∞. Then

DKL(µ‖ν) = sup
Q∈P

∑
A∈Q

µ(A) log

(
µ(A)

ν(A)

)
. (B.46)

Proof. We consider the cases µ� ν and µ 6� ν separately.

Case µ 6� ν: In this case, there exists a set A0 such that µ(A0) > 0 and ν(A0) = 0. We

then choose the partition Q0 = {A0,Ac0} and obtain

sup
Q∈P

∑
A∈Q

µ(A) log

(
µ(A)

ν(A)

)
≥
∑
A∈Q0

µ(A) log

(
µ(A)

ν(A)

)
= µ(A0) log

(
µ(A0)

ν(A0)

)
+ µ(Ac0) log

(
µ(Ac0)
ν(Ac0)

)
=∞

which coincides with DKL(µ‖ν) according to (B.44).

Case µ � ν: We first note that ν(RM ) 6= 0. Indeed, assuming ν(RM ) = 0 would imply

µ(RM ) = 0 due to the absolute continuity µ� ν. This is a contradiction since we assumed that

µ is a probability measure, i.e., µ(RM ) = 1.
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The measure ν̂ defined by ν̂(A) , ν(A)/ν(RM ) is a probability measure and, by (B.45),

DKL(µ‖ν̂) = sup
Q∈P

∑
A∈Q

µ(A) log

(
µ(A)

ν̂(A)

)

= sup
Q∈P

∑
A∈Q

µ(A) log

(
µ(A)ν(RM )

ν(A)

)
= sup

Q∈P

(∑
A∈Q

µ(A) log ν(RM ) +
∑
A∈Q

µ(A) log

(
µ(A)

ν(A)

))
(a)
= log ν(RM ) + sup

Q∈P

∑
A∈Q

µ(A) log

(
µ(A)

ν(A)

)
(B.47)

where (a) holds because
∑
A∈Q µ(A) = µ(RM ) = 1 for all Q ∈ P. On the other hand, by

(B.44), we have

DKL(µ‖ν̂) =

∫
RM

log

(
dµ

dν̂
(x)

)
dµ(x)

(a)
=

∫
RM

log

(
ν(RM )

dµ

dν
(x)

)
dµ(x)

=

∫
RM

log ν(RM ) dµ(x) +

∫
RM

log

(
dµ

dν
(x)

)
dµ(x)

(b)
= log ν(RM ) +

∫
RM

log

(
dµ

dν
(x)

)
dµ(x)

= log ν(RM ) +DKL(µ‖ν) . (B.48)

Here, (a) holds because dµ
dν̂ = dµ

dν
dν
dν̂ and dν

dν̂ = ν(RM ), and (b) holds because
∫
RM dµ(x) =

µ(RM ) = 1. Combining (B.47) and (B.48), we obtain

log ν(RM ) + sup
Q∈P

∑
A∈Q

µ(A) log

(
µ(A)

ν(A)

)
= log ν(RM ) +DKL(µ‖ν) . (B.49)

Here, log ν(RM ) is finite because ν(RM ) is nonzero and finite. Therefore, (B.49) implies (B.46).

We now proceed to the proof of Lemma 8.2. For an m-rectifiable random variable x with

support E satisfying H m(E) < ∞, we can rewrite the m-dimensional entropy hm(x) using

(B.46). To this end, we first note that hm(x) can be interpreted as a negative Kullback-Leibler

divergence with respect to the Hausdorff measure H m|E . Starting from (6.16), we obtain

hm(x) = −
∫
RM

log θmx (x) dµx−1(x)

(6.10)
= −

∫
RM

log

(
dµx−1

dH m|E
(x)

)
dµx−1(x)

(B.44)
= −DKL

(
µx−1‖H m|E

)
.
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Here, for the last step, we used that E is a support of x, which implies µx−1 � H m|E (see

Definition 6.9). By (B.46), we thus obtain

hm(x) = − sup
Q∈P

∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
. (B.50)

Because µx−1(Ec) = 0 and H m|E(Ec) = 0, we have for all Q ∈ P

∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
=
∑
A∈Q

µx−1(A ∩ E) log

(
µx−1(A ∩ E)

H m|E(A ∩ E)

)
=
∑
A′∈Q̃

µx−1(A′) log

(
µx−1(A′)
H m|E(A′)

)

where Q̃ , {A ∩ E : A ∈ Q} ∈ P
(E)
m,∞. Hence, the supremum in (B.50) does not change if we

replace P by P
(E)
m,∞, and thus,

hm(x) = − sup
Q∈P(E)

m,∞

∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
. (B.51)

Swapping minus sign and supremum in (B.51), we obtain

hm(x) = inf
Q∈P(E)

m,∞

(
−
∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

))
(B.52)

= inf
Q∈P(E)

m,∞

(
−
∑
A∈Q

µx−1(A) logµx−1(A) +
∑
A∈Q

µx−1(A) log H m|E(A)

)
= inf

Q∈P(E)
m,∞

(
H([x]Q) +

∑
A∈Q

µx−1(A) log H m|E(A)

)
. (B.53)

Here, (B.52) is (8.2) and (B.53) is (8.3).

B.17 Proof of Theorem 8.3

B.17.1 Proof of Lower Bound (8.4)

Let Q ∈ P
(E)
m,δ be an (m, δ)-partition of E according to Definition 8.1, i.e., Q = {A1, . . . ,AN}

where H m(Ai) ≤ δ for all i ∈ {1, . . . , N} and
⋃N
i=1Ai = E . Note that Q also belongs to

P
(E)
m,∞. Then, starting from (8.3), we obtain

hm(x) = inf
Q′∈P(E)

m,∞

(
H([x]Q′) +

∑
A∈Q′

µx−1(A) log H m|E(A)

)

≤ H([x]Q) +
N∑
i=1

µx−1(Ai) log H m|E(Ai)
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(a)

≤ H([x]Q) +
N∑
i=1

µx−1(Ai) log δ

(b)
= H([x]Q) + log δ

where (a) holds because H m|E(Ai) ≤ δ and (b) holds because
∑N

i=1 µx
−1(Ai) = µx−1(E) =

1. Multiplying by ld e, we have equivalently

(hm(x)− log δ) ld e ≤ H([x]Q) ld e . (B.54)

By (8.1), we have

H([x]Q) ld e ≤ L∗([x]Q) . (B.55)

Combining (B.54) and (B.55), we obtain

(hm(x)− log δ) ld e ≤ L∗([x]Q)

which implies (8.4).

B.17.2 Proof of Upper Bound (8.5)

We first state two preliminary results.

Lemma B.3 Let x be an m-rectifiable random variable with m ≥ 1 and support E satisfying

H m(E) < ∞. Furthermore, let Q = {A1, . . . ,AN} ∈ P
(E)
m,∞ satisfy H m|E(Ai) 6= 0 for

i ∈ {1, . . . , N}. Let Ai be the disjoint union of Ai,1, . . . ,Ai,ki , i.e., Ai =
⋃ki
j=1Ai,j and

Ai,j1 ∩ Ai,j2 = ∅ for j1 6= j2. Finally, let Q̃ , {A1,1, . . . ,A1,k1 , . . . ,AN,1, . . . ,AN,kN }. Then

−
∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
≥ −

∑
A∈Q̃

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
(B.56)

Proof. The inequality (B.56) can be written as

−
N∑
i=1

µx−1(Ai) log

(
µx−1(Ai)
H m|E(Ai)

)
≥ −

N∑
i=1

ki∑
j=1

µx−1(Ai,j) log

(
µx−1(Ai,j)
H m|E(Ai,j)

)
.

Therefore, it suffices to show that

µx−1(Ai) log

(
µx−1(Ai)
H m|E(Ai)

)
≤

ki∑
j=1

µx−1(Ai,j) log

(
µx−1(Ai,j)
H m|E(Ai,j)

)

for i ∈ {1, . . . , N}. This latter inequality follows from the log sum inequality [Cover and

Thomas, 2006, Th. 2.7.1].
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Lemma B.4 Let x be an m-rectifiable random variable with m ≥ 1 and support E satisfying

H m(E) < ∞. For ε > 0 there exists a partition Q ∈ P
(E)
m,∞ such that H m|E(A) 6= 0 for

A ∈ Q and

hm(x) > −
∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε

2 ld e
. (B.57)

Proof. By (8.2), there exists a partition Q̃ = {A1, . . . ,AN} ∈ P
(E)
m,∞ such that

hm(x) > −
∑
A∈Q̃

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε

2 ld e
. (B.58)

If H m|E(Ai) 6= 0 for i ∈ {1, . . . , N}we are done. Otherwise, assume without loss of generality

that H m|E(Ai) = 0 for i ∈ {k + 1, . . . , N}, and H m|E(Ai) 6= 0 for i ∈ {1, . . . , k}. Because

µx−1 � H m|E , we also have µx−1(Ai) = 0 for i ∈ {k + 1, . . . , N}. We define Q ,{
A1 ∪

⋃N
i=k+1Ai,A2, . . . ,Ak

}
. Note that H m|E(A) > 0 for A ∈ Q. Furthermore,

−
∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)

= −µx−1
(
A1 ∪

N⋃
i=k+1

Ai
)

log

(
µx−1

(
A1 ∪

⋃N
i=k+1Ai

)
H m|E

(
A1 ∪

⋃N
i=k+1Ai

))

−
k∑
i=2

µx−1(Ai) log

(
µx−1(Ai)
H m|E(Ai)

)
(a)
= −µx−1(A1) log

(
µx−1(A1)

H m|E(A1)

)
−

k∑
i=2

µx−1(Ai) log

(
µx−1(Ai)
H m|E(Ai)

)
(b)
= −

N∑
i=1

µx−1(Ai) log

(
µx−1(Ai)
H m|E(Ai)

)
= −

∑
A∈Q̃

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
(B.59)

where (a) holds because

µx−1
(
A1 ∪

N⋃
i=k+1

Ai
)

= µx−1(A1) + µx−1
( N⋃
i=k+1

Ai \ A1

)
︸ ︷︷ ︸

=0

= µx−1(A1)

and

H m|E
(
A1 ∪

N⋃
i=k+1

Ai
)

= H m|E(A1) + H m|E
( N⋃
i=k+1

Ai \ A1

)
︸ ︷︷ ︸

=0

= H m|E(A1)
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and (b) holds because µx−1(Ai) = 0 for i ∈ {k+1, . . . , N}. Inserting (B.59) into (B.58) results

in (B.57).

We now proceed to the proof of (8.5). Let Q = {A1, . . . ,AN} ∈ P
(E)
m,∞ satisfy (B.57) and

H m|E(Ai) 6= 0 (which exists due to Lemma B.4). Furthermore, let ε′ , ε
2 ld e . We define

δε ,
(
1− e−ε′

)
min

i∈{1,...,N}
H m|E(Ai) (B.60)

which is nonzero because H m|E(Ai) 6= 0. For δ ∈ (0, δε), we partition each set Ai into⌈
H m|E(Ai)

δ

⌉
disjoint subsets Ai,j of equal Hausdorff measure, i.e.,

H m|E(Ai,j) =
H m|E(Ai)⌈
H m|E(Ai)

δ

⌉ .
Using the shorthand notation Ji,δ ,

H m|E(Ai)
δ , we obtain

H m|E(Ai,j) =
Ji,δ
dJi,δe

δ ≤ δ . (B.61)

Let us denote by Qδ the partition of E containing all sets Ai,j . Then (B.61) implies Qδ ∈ P
(E)
m,δ.

Furthermore,

H m|E(Ai,j) =
H m|E(Ai)
dJi,δe

=
Ji,δ
dJi,δe

δ

=
dJi,δe −

(
dJi,δe − Ji,δ

)
dJi,δe

δ

=

(
1−
dJi,δe − Ji,δ
dJi,δe

)
δ

(a)
>

(
1− 1

dJi,δe

)
δ (B.62)

where (a) holds because dJi,δe − Ji,δ < 1. We can bound dJi,δe as

dJi,δe ≥
H m|E(Ai)

δ
>

H m|E(Ai)
δε

(B.60)
=

H m|E(Ai)
(1− e−ε′) mini′∈{1,...,N}H m|E(Ai′)

≥ 1

1− e−ε′
.

(B.63)

Inserting (B.63) into (B.62), we obtain for all sets Ai,j ∈ Qδ

H m|E(Ai,j) >

(
1− 1

1
1−e−ε′

)
δ = e−ε

′
δ . (B.64)
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Combining our results yields

hm(x)
(B.57)
> −

∑
A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε′

(B.56)
≥ −

∑
A∈Qδ

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε′

(B.64)
> −

∑
A∈Qδ

µx−1(A) log

(
µx−1(A)

e−ε′δ

)
− ε′

= −
∑
A∈Qδ

µx−1(A) log
(
µx−1(A)

)
+ (log δ − ε′)

∑
A∈Qδ

µx−1(A)− ε′

(a)
= −

∑
A∈Qδ

µx−1(A) log
(
µx−1(A)

)
+ log δ − 2ε′

= H([x]Qδ) + log δ − 2ε′

(b)
>

L∗([x]Qδ)− 1

ld e
+ log δ − 2ε′ (B.65)

where (a) holds because
∑
A∈Qδ µx

−1(A) = µx−1(E) = 1 and (b) holds by the second inequal-

ity in (8.1). Finally, rewriting (B.65) (recall ε′ = ε
2 ld e ) gives

L∗([x]Qδ) < hm(x) ld e− log δ ld e+ 1 + ε

which is (8.5).

B.18 Proof of Lemma 8.6

Because hm(x) is finite and does not depend on s, it is sufficient to show lims→∞ sD+log γ(s) =

∞. We have

sD + log γ(s)
(8.12)
= sD + log

(
sup

y∈RM

∫
E
e−sd(x,y) dH m(x)

)
(a)
= sup

y∈RM
sD + log

(∫
E
e−sd(x,y) dH m(x)

)
= sup

y∈RM
log

(
esD

∫
E
e−sd(x,y) dH m(x)

)
= sup

y∈RM
log

(∫
E
es(D−d(x,y)) dH m(x)

)
(b)

≥ sup
y∈RM

log

(∫
E∩BD/2(y)

es(D−d(x,y)) dH m(x)

)
(c)

≥ sup
y∈RM

log

(∫
E∩BD/2(y)

es
D
2 dH m(x)

)
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= s
D

2
+ sup

y∈RM
log H m

(
E ∩ BD

2
(y)
)

(B.66)

where (a) holds because log is a monotonically increasing function, (b) holds because exp is

a positive function, and (c) holds because d(x,y)) < D/2 for all x ∈ BD
2

(y). Because

µx−1(E) = 1 (see (6.13)) the absolute continuity µx−1 � H m|E implies H m(E) > 0. Thus,

there exists a ȳ ∈ RM such that δ , H m
(
E ∩ BD

2
(ȳ)
)
> 0. Hence, by (B.66),

sD + log γ(s) ≥ s D
2

+ log δ .

This yields for any K > 0

sD + log γ(s) ≥ K .

for s > 2K
D − log δ, i.e., lims→∞ sD + log γ(s) =∞.

B.19 Proof of Theorem 8.9

Consider the source x as specified in Theorem 8.9. By the source coding theorem [Gray, 1990,

Th. 11.4.1], every code for x with expected distortionD must have a rate1 greater than or equal to

R(D). Thus, if we can find an encoding function f : R2 → {1, . . . , n} and a decoding function

g : {1, . . . , n} → R2 such that Ex

[
‖x − g(f(x)‖2

]
≤ D, then the rate, log n, must satisfy

log n ≥ R(D).

We directly design the composed function qn , g◦f . Because x has probability zero outside

S1, we only have to define qn on the unit circle. Furthermore, because f maps x to a set of at

most n distinct values, qn = g ◦ f can also attain at most n distinct values. We define qn to map

each circle segment defined by an angle interval
[
i2πn , (i+ 1)2πn

)
, i ∈ {0, . . . , n− 1}, onto one

associated “center” point, which is not constrained to lie on the unit circle. To this end, we only

have to consider the circle segment defined by {x = (cosφ sinφ)T : φ ∈ [−π/n, π/n)} since

the problem is invariant under rotations. Because of symmetry, we choose the “center” associated

with this segment to be some point (x1 0)T, i.e., qn(x) = (x1 0)T for all x = (cosφ sinφ)T

with φ ∈ [−π/n, π/n). The expected distortion is then obtained as

Ex

[
‖x− qn(x)‖2

]
=

∫ 2π

0

1

2π

∥∥∥∥(cosφ

sinφ

)
− qn

((
cosφ

sinφ

))∥∥∥∥2 dφ

=
n

2π

∫ π/n

−π/n

∥∥∥∥(cosφ

sinφ

)
−
(
x1
0

)∥∥∥∥2 dφ

=
n

2π

∫ π/n

−π/n

(
(cosφ− x1)2 + sin2 φ

)
dφ

1Because we use the natural logarithm, the rate is measured in nats, i.e., the rate is defined using the natural
logarithm. Furthermore, we do not code several symbols at once (i.e., we do not use a block code), but code only
one symbol at a time. Thus the rate, which is number of nats used per source symbol is simply the logarithm of the
number of codewords.
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=
n

2π

∫ π/n

−π/n

(
1 + x21 − 2x1 cosφ

)
dφ

= 1 + x21 −
2nx1
π

sin
π

n
. (B.67)

Minimizing the expected distortion with respect to x1 gives the optimum value of x1 as

x∗1 =
n

π
sin

π

n
. (B.68)

The corresponding quantization function will be denoted by q∗n. Inserting (B.68) into (B.67)

yields D̄(n) in (8.26):

Ex

[
‖x− q∗n(x)‖2

]
= 1 +

(
n

π
sin

π

n

)2

− 2

(
n

π
sin

π

n

)2

= 1−
(
n

π
sin

π

n

)2

= D̄(n) .

Thus, we found a code with expected distortion D̄(n). The rate of this code is log n. Hence, the

inequality (8.25) is satisfied.



List of Abbreviations

CSI channel state information

MIMO multiple-input multiple-output

SNR signal-to-noise ratio

SIMO single-input multiple-output

SISO single-input single-output

RD rate-distortion
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[Rényi, 1959] Rényi, A. (1959). On the dimension and entropy of probability distributions. Acta

Math. Hung., 10(1):193–215.

[Riegler et al., 2011] Riegler, E., Morgenshtern, V. I., Durisi, G., Lin, S., Sturmfels, B., and

Bölcskei, H. (2011). Noncoherent SIMO pre-log via resolution of singularities. In Proc.

IEEE Int. Symp. Inf. Theory (ISIT 2011), pages 2020–2024, St. Petersburg, Russia.



154 BIBLIOGRAPHY

[Rudin, 1976] Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill, New

York, NY, 3rd edition.

[Rudin, 1987] Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill, New York, NY,

3rd edition.

[Rusek et al., 2013] Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors,

O., and Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very

large arrays. IEEE Signal Processing Mag., 30(1):40–60.

[Schuster et al., 2009] Schuster, U. G., Durisi, G., Bölcskei, H., and Poor, H. V. (2009). Ca-

pacity bounds for peak-constrained multiantenna wideband channels. IEEE Trans. Commun.,

57(9):2686–2696.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst.

Tech. J., 27(3):379–423, 623–656.

[Stotz and Bölcskei, 2012] Stotz, D. and Bölcskei, H. (2012). Degrees of freedom in vector

interference channels. In Proc. Allerton Conf. Comm. Control Comput., pages 1755–1760.

[Telatar, 1999] Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. Eur. Trans.

Telecomm., 10(6):585–595.

[van den Essen, 2000] van den Essen, A. R. P. (2000). Polynomial Automorphisms and the

Jacobian Conjecture. Birkhäuser, Basel, Switzerland.
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