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Z U S A M M E N FA S S U N G

Das Interesse an der Verwendung der Elektroenzephalographie (EEG) in der Di-
agnostik hat im vergangenen Jahrzent stark zugenommen. Gründe dafür sind
ein tieferes Verständnis über die Signalentstehung sowie neue Möglichkeiten
in der Artifaktbereiningung von Biosignalen. Dies öffnete auch die Tür für neue
mathematische Methoden zur Signalanalyse, darunter nichtlineare Maße für diskrete
Zeit Serien (siehe Stam (2005)). Aus einer Reihe von Studien, welche die EEG Sig-
nale von Alzheimer Patienten untersuchten, gingen bisher 3 konsistente Trends
hervor: demnach haben Alzheimer Patienten ein zu-niedrigeren-Frequenzen ver-
schobenes Spektrum, eine geringere Komplexität der Wellenform, sowie Dif-
ferenzen in der Synchronität zwischen den Signalen der verschiedenen Elektro-
den (siehe Review Paper: Jeong (2004) sowie Dauwels et al. (2010)).
Diese Arbeit untersucht den zweiten Trend, nämlich die Komplexität von EEG

Signalen. Die Auswahl der verwendeten Methoden erfolgte auf Basis einer Meta-
Analyse kürzlich erschienener wissenschaftlicher Arbeiten welche Komplexitäts-
maße an Alzheimer Patienten untersuchten. Es kristallisierten sich jene Maße
heraus, welche auf dem informationstheoretischen Prinzip von Entropie basieren
(Shannon, 1948), und welche die Signale auf mehreren Zeit-Skalen untersuchen
(Costa et al., 2005). The Grundidee ist dabei folgende: Das Gehirn wird als
Blackbox betrachtet, die zu jedem abgetasteten Zeitpunkt einen messbaren Out-
put (nämlich die elektrische Spannung an den Elektroden) produziert. Dieser
wird wiederum maßgeblich durch die interne funktionelle- sowie anatomische
Gehirnstruktur des Patienten beeinflusst und sollte somit sensibel auf dessen Än-
derungen reagieren. Zur Analyse wird die EEG Aufnahme artefaktbereinigt und
in 4s lange Epochen geteilt. Die Maße werden dann auf die einzelnen Epochen
angewandt, anschließend gemittelt und zwischen den 19 Elektroden und allen
116 probable AD2 Patienten der PRODEM Datenbank verglichen. Mehrere Biomarker
wurden extrahiert und dessen diagnostischer Nutzen in Form von Korrelation-
skoeffizienten ausgedrückt, welche durch ein lineares bzw. quadratisches Regres-
sionsmodell zwischen Marker und MMSE3 Wert der Patienten ermittelt wurden.
Die Resultate der verwendeten Methoden sind konsistent und bestätigen alle-
samt den oben genannten Trend: konkret haben Patienten mit niedrigerem MMSE,
also höherem Alzheimer Schweregrad, tendentiell eine geringere Komplexität.
Jedoch gilt dieser Trend nur für die Komplexität von Datenpunktreihen welche
sich über einen Zeitbereich der Inversen Abtastfrequenz (ca. 4ms) erstrecken.
Da nur ein schwacher Trend erkennbar ist, und aufgrund der vergleichsweise

2 probable AD ist der medizinischen Terminus, der zur Klassifikation von Morbus Alzheimer ver-
wendet wird, siehe Kapitel 3

3 neuropsychologischer Test, der den Schweregrad der Demenz und somit der Alzheimerkrankheit
reflektiert Folstein et al. (1975)
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großen Kohorte zeigen die Ergebnisse eindeutig die Grenzen komplexitätsbasierter
Methoden auf. Der Hauptgrund dafür liegt in der starken Varianz der Maße,
selbst innerhalb eines einzelnen Patienten.
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A B S T R A C T

The measurement of electric-potential differences on the human scalp, also known
as EEG, has regained a lot of interest in the scientific community throughout
the last decade. Improved understanding of the origin of brain-oscillations and
rapid progress in the fields of artifact removal and Discrete Time-Series (DTS)
analysis have yielded new possibilities to use nonlinear methods in search of
diagnostic biomarkers from EEG signals (see Stam (2005)). For people suffering
from Alzheimer’s Disease (AD) three common trends concerning the nature of
EEG signals have been identified by a wide amount of research groups: a shift of
the power spectrum to lower frequencies, a decreased complexity of the signal
waveforms and altered synchrony between the EEG records (see Jeong (2004) and
Dauwels et al. (2010) for reviews).
This thesis investigates the second trend, i. e. the irregularity or complexity of
the EEG signals. The choice of methods reflects a selection of the most promis-
ing markers according to recent articles and reviews that used complexity based
measures. The final implemented algorithms are based on the information theo-
retic concept of entropy (Shannon, 1948) and analyze the signals across multiple
temporal scales (Costa et al., 2005). The main idea behind the approach is to
consider the brain as a black box which - for each sampled timepoint - produces
measurable outputs (electric voltages on the scalp). The form of these outputs
should be therefore sensible to changes in the internal functional- and anatomi-
cal structure. Each EEG record is preprocessed to remove artifacts and split into 4s
segments called epochs. The methods were applied to- and averaged over the re-
sulting DTS of all epochs, and compared between 19 electrodes of all 116 subjects
from the PRODEM database classified as probable AD. Several biomarkers were
extracted and their predictive strength evaluated by the correlation coefficient
(coefficient of determination) of a linear (quadratic) regression model between
marker values and the patients’ Mini-Mental-State-Examination (MMSE)4 scores.
The results of different methods are consistent and confirm the observed trends
mentioned above: patients with lower MMSE score and hence more severe AD

tend to have less complex waveforms in their EEG records. However this trend
is only observable when looking at the regularity of datapoint-successions which
span over a time in the order of the inverse sampling frequency (4ms). Since only
a weak trend can be observed, but a comparatively big study cohort was used,
this thesis clearly demonstrates the limits of complexity based measures. The
main reason for their shortcoming is the high variability of the measure between
epochs of a single patient.

4 a neuropsychological test reflecting the severity of dementia and therefore the disease, see Folstein
et al. (1975)
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

The first part of this thesis starts with the motivation and the basic
physiological background, hence the origin of EEG signals (chapers
1 and 2). This is followed by a short overview about Alzheimer’s
Disease (chapter 3). Finally we summarize empirical findings of how
the disease affects EEG signals (chapter 4).





1
I N T R O D U C T I O N

Recent advancements in signal processing and a new generation of biosensor
devices have led to the emergence of a new fascinating field of biomarker anal-
ysis from biosignals. The human body, from an engineering point of view, is a
true masterpiece concerning efficiency and variety of various signaling pathways
and information transport. A good example for a very accessible (i. e.easily mea-
surable) biosignal is body temperature, which has been used for ages in order
to make diagnostic conclusions about the human well-being (such as fever de-
tection through a medical thermometer). However, the human body, as a highly
complex dynamic system, inherits far more physically measurable quantities that
can help us to understand its current physical state. Due to the rapid progress
in electrical engineering and other disciplines producing new sensor devices, a
big palette of bodysignals has now become available to be measured and inves-
tigated. Among them are those signals, that are based on the measurement of
electrical activity or to be more precise, differences in electrical potential at dif-
ferent locations of the body. Electric signaling pathways play a significant func-
tional role in our body, since the regulation and functioning of many body-parts
is coordinated by the central nervous system, which consists of the spinal cord
and the brain. Thus our body produces electrical fields of varying strength at a
variety of different locations, non-stop.

An example for a biosignal based on electrical activity is the well known
Electrocardiogram (ECG), which became established as a valuable tool for inves-
tigation of the functional state of the heart due to the simplicity and low cost of
measurement. The signal is recorded by placing electrodes (i.e. electrically con-
ductive tips that are connected to a voltage difference amplifier) directly on the
skin of different body-parts. During various phases of heart contraction, strong
electric currents arise1 which change not only in magnitude but also direction.
These currents produce electrical fields, which are (although strongly weakened)
still present at the most outer layer of the human body, the skin. Thus comparing
the electrical field strength at different locations on the body-skin via electrodes
yields patterns that rhythmically change over time in accordance with the heart-
beat. The result of this measurement is the famous QRS complex which, when
compared with other body parameters, can give astonishingly rich information
on possible malfunctioning of the heart.
EEG signals are recorded in a very similar way, hence the method exists already

1 A unique property of muscular tissue of the heart is that it is electrically conductive. Thus, the elec-
trical currents going through this tissue trigger its own contraction and produce strong electrical
fields that are well measurable as potential differences on the skin

3



4 introduction

for quite a while, but does not enjoy the same popularity and clinical relevance
as the ECG. To be more precise, Hans Berger was able to detect rhythmic brain
activity as early as 1924 by placing electrodes on different locations on the scalp
of his son. He observed a clear, rhythmic electrical pattern that changed with the
current state of mind of the subject, a typical feature that is nowadays known
as alpha activity. The principle of measurement here is the same, but the origin
of the signals is different: the voltages arise due to many, many small electrical
currents in the most outer layer of the brain (the neocortex). However one has
to keep in mind, that even on the human skull there are small electrical field
differences between nearby electrodes, which are produced by heart contraction
current and thus "contaminate" the purely neuronal signal. In addition, various
nerve fibres stimulating skeletal muscles in the head can also produce electri-
cal activity that is added to the signals. This leads us to a very important point
in biosignal processing. A biosignal always contains a lot of noise, which arises
due to many other simultaneous processes which happen in the body during the
time of recording. Thus in order to get a "clean" signal, it is desirable to identify
and remove influences of other sources as much as possible.

Biosignals give us live feedback on the current state of a patient’s bodypart
or body and represent an essential part of modern clinical diagnosis. With new
tools in signal processing & artifact removal and due to a better understanding
of the mechanisms that lead to the origin of the signals, the human EEG - a com-
plex, multivariate type of biosignal - has regained popularity and is nowadays
again widely used in the Neurosciences with the aim to possibly detect global
alterations of the brain on a functional level. Some people hope that this might
enable us to detect certain types of diseases that affect the whole brain such as
AD.

This thesis aims to contribute to this vision by exploiting biomarkers2 that
reflect the cognitive decline due to AD. This is a challenging task, since it is
known that strong individual differences between EEG records of patients make
it generally hard to find robust biomarkers that retain its validity when being
compared to a big number of other individuals.

2 a biomarker is a single number or quantity that is deduced from an individual physiological
record and hence can be compared among various patients using statistical analysis.



2
F R O M N E U R O N S T O E E G S I G N A L S

2.1 tiny potentials with big potential

It is of fundamental importance to understand the origin of the EEG signals.
However, before we go into detail, let’s first take a look at the magnitude of the
signals we are actually measuring. EEG signals are electrical potential differences,
between different spots on the human scalp, each measured by an electrode. But
these potential differences are tiny, in fact they are in the range of just a few
micro Volts! When compared to other biosignals, such as the ECG 1 (which also
reflects electric potential differences on the human skin, but now produced by
cardiac contraction rather than neuronal activity), it becomes clear that the mea-
sured EEG signals are by far smaller in magnitude (approximately by a factor of
1000). Hence noise becomes a major issue in EEG analysis. However, due recent
advances in signal processing, artifact removal and also more sensitive and ro-
bust electronic equipment, EEG has regained a lot of popularity during the last
decade. New open source software and hardware make EEG analysis available
for everyone showing interest and a decent amount of computational knowl-
edge. Thus EEG sensors are becoming part of the new generation of personal,
affordable, wearable biosensors.

2.2 the origin of rhythmic brain activity

What do we actually see, when looking at brain waves of EEG signals? Interest-
ingly, the last decades of Neuroscience have shed light on the various working
mechanisms of the human brain and as it turns out, rhythmic activity or neuronal
oscillations are now believed to play a major role in information exchange (i.e.
communication) between different regions or substructures of the brain. Hence,
they seem to be of fundamental importance in order to tackle more complex phe-
nomena like directed attention, perception, memory, consciousness, and all other
essential pieces which together shape human behavior. Lets consider the brain as
a highly interconnected, dynamic network, with neurons, i. e. living cells as the
basic building blocks. Any single firing neuron (that is, an Action Potential (AP))
evokes electrical potential differences at the end of its branches (axons) through
the release of neurotransmitters. This in turn influences the probability of trig-
gering another AP in that region either by inhibiting or exciting the postsynaptic

1 ECG signals can be derived in many different ways, by placing electrodes at different body po-
sitions. Depending on the placement, voltage magnitudes differ but approximately lie in the mV
range

5



6 from neurons to eeg signals

Figure 1: a cross section revealing the six layers of the cerebral cortex as well as the
columnar structure created by pyramidal neurons. Pyramidal neurons in red;
inhibitory fibers in blue. Image credit: Blue Brain Project; http://bluebrain.
epfl.ch/

neuron. Since the postsynaptic neuron is also connected to and thus influenced
by several other neurons, there is a fine line between triggering or inhibiting an
AP. This strong dependence on the conditions2 at a certain time-instant makes
successful signal transduction (at a more global scale) a matter of precise timing
between the arrival of the signals from different regions. Successful information
exchange between different neuronal assemblies within the brain heavily relies
on the timed firing of AP. Rhythms of electrical activity emerge from the inter-
action of different regions in the brain, where the frequency of the the various
rhythms are determined by time-delays that arise due to distance between re-
gions, finite conduction speed, but also decay time of postsynaptic potentials. We
can imagine that certain frequencies naturally arise in the various networks and
sub-networks within the brain depending on those factors (which are not fixed
but rather change in different cognitive states - e.g. alertness, sleep-awake, states,
etc . . . ). Small network resonances will depend more on local synaptic proper-
ties, whereas in large-scale networks resonance depend more on the wiring itself.
This interesting topic of investigating the functional role of various rhythms in
the brain has led to a rich body of new methodological approaches that consider
the brain as a complex network architecture (see (Buzsaki, 2006)). However, al-
though EEG signals also show clear rhythmic behavior, we have to be very careful
in interpreting the functional role of these rhythms.

2 i. e.neurotransmitter concentration, synapse type (inhibitory or excitatory), membrane potential of
the branches (dendrites) of other cell-bodies,. . .

http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/


2.3 cortex structure and rhythmic scalp potentials 7

Figure 2: The brains outer layer, the cerebral cortex, consists of gray matter (depicted in
dark violet) and thus acts as a source of dynamic electrical activity which
can be measured via EEG. Image credit: http://en.wikipedia.org/wiki/

Cerebral_cortex

2.3 cortex structure and rhythmic scalp potentials

An EEG record measures scalp potentials, which show highly oscillatory behav-
ior and hence led to the emergence of the term brain waves. However, we have to
be aware of the origin of these oscillations in order to interpret them the right
way:
The central nervous system (CNS), and hence the brain, has two kinds of tissues:
gray matter, which contains the cell bodies including dendrites and its synapses;
and white matter which mainly consists of (myelinated) axons. Thus white matter
basically constitutes the (long range) connections between different cell clusters,
which are embodied in the gray matter areas (see Fig 2). Within gray matter tis-
sue, the firing of an enormous amount of nerve cells generates millions of tiny
electrical impulses (nerve AP) and graded potentials (excitatory and inhibitory
post-synaptic potentials). Since the most outer layer of the brain, the cortex, con-
sists of gray matter, we are able to detect electrical activity originating from these
regions, even through the skull. Thus a major part of electric potential differences
on the scalp is a result of the projection of electric fields from active regions in the
cortex. An illustration for a single electrically active site and its projected scalp
potential can be seen in Fig 3. But how can we explain the rhythmic, wave-forms
in EEG records?

http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Cerebral_cortex


8 from neurons to eeg signals

The cortex shows a strongly gyrificated3 structure (see Fig 2). A closer look
at the internal structure of this landscape reveals a layered architecture with dif-
ferent types of cells being dominant in the different domains. Axons from so
called pyramidal cells, are usually aligned normal to the local cortical surface and
thus lead to columnar structures (see Fig 1). Modern approaches of modeling the
sources of EEG signals consider the cortical sheet as being composed out of such
cortical columns (with sizes varying from micro-columns to macro columns).
Each column forms a small electrical dipole (perpendicular to the surface) and
thus can be considered as a microsource of electrical activity of the cortex. Conse-
quently the values for each recorded amplitude of an EEG signal are the result of
the temporal and spatial summation of all these microsources, which are eventu-
ally projected on the scalp and measured via contact electrodes. The continuous
on- and off switching of numerous microsources, combined with the fact that
each source forms a directed dipole results in very complex but smoothly vary-
ing waveform. The key is that each electrode measures the electrical potential
difference between a fixed location on the scalp and a single reference electrode
usually positioned at the right or left earlobe which is mainly composed of fatty
tissue4. One can immediately conclude that although there are strict guidelines
for the precise placement of scalp electrodes, the actual sources and thus cortical
regions that contribute to the final signal of each electrode may vary significantly
between different patients due to differences in the anatomical structure alone.
In addition, the original signals spread from the origin through the tissue until
they eventually reach the scalp (see Fig 3) This is a very important point to keep
in mind, when analyzing and comparing inter-electrode differences in the EEG

signals.

3 gyrification refers to the extent of folding of the cerebral cortex in mammals as a consequence
of brain growth during embryonic and early postnatal development. The external surface of the
brain shows various ridges and grooves, termed gyri and sulci respectively.

4 a common alternative to the single reference method is to use an average reference, that is each
potential is measured in comparision to the average of all electrodes. This distributes the
r̈esponsibilityöver all electrodes, rather than assigning it to only one of them
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Figure 3: Illustration of how a single cortical microsource influences the electrical poten-
tial landscape of the whole scalp through volume conduction. Image credit:
http://sccn.ucsd.edu/eeglab/whatiseeg.html - extracted from the anima-
tion video; see (Acar and Makeig, 2010) for the underlying methodology

http://sccn.ucsd.edu/eeglab/whatiseeg.html




3
A L Z H E I M E R ’ S D I S E A S E

3.1 characteristics

Alzheimer’s Disease is a neurodegenerative disease, i. e.the brain of patients suf-
fering from AD slowly degenerates throughout the progress of the disease. This
primarily leads to cognitive deficiencies and dementia. Cognitive deficits include
impairment of learning and memory, semantic difficulties, deficits in judgement,
abstract or logical reasoning, planning and organizing, and, in the late stage of
AD, impaired motor functions including chewing and swallowing. Dementia it-
self is a disorder of cognitive abilities that has increasing prevalence with age.
AD is estimated to account for 60-80% of all dementia cases, where hybrid forms
with other dementia types occur frequently.

The characteristics of AD are neuronal cell loss, caused by a rapid spreading of
emphneurofibrillary tangles and cortical amyloid-β plaques, often starting in the
hippocampus. Additionally, alterations in transmitter-specific markers including
forebrain cholinergic systems are prevalent in AD. The exact reasons for the on-
set of the disease are still not clarified, however the accumulated plaques and
tangles are known to be responsible for the dysfunctioning of neural networks
(see e. g. Palop and Mucke (2010)). As from AD diagnosis, the average survival
time ranges from 5 to 8 years. Figure 4 illustrates the structural cerebral changes
that occur in advanced AD.

Figure 4: Cerebral slice of a healhty brain and a brain in advanced AD: strong shrink-
age, especially in the hippocampus, can be obeserved in AD. Image credit:
©2015 Alzheimer’s Association®alz.org®All rights reserved. Illustrations by
Stacy Jannis.

11



12 alzheimer’s disease

3.2 diagnosis

It is important to note that due to the complex underlying mechanisms, there
is no definite in-vivo diagnosis of AD up to this moment. Instead, the disease
is classified either as possible AD or probable AD according to a bunch of crite-
ria (see McKhann et al. (2011)). Therefore, in clinical practice, patients have to
undergo a battery of clinical investigations prior to be classified according to
the guidelines. Those tests include the assessment of the neurological, internistic
and psychiatric status, neuropsychological tests, a complete blood count, and
cerebral magnetic resonance imaging (MRI). Additionally, clinical studies sug-
gest genotyping, liquor analysis, serology, imaging procedures such as positron
emission tomography (PET) and functional MRI. One can see that it would be
desirable to find a biomarker that is able to predict Alzheimer’s through a less
expensive procedure. This is one of the reasons why the quest of AD biomark-
ers has gained lots of attention, although up till now no scientific breakthrough
could be recorded.



4
E E G I N A D

4.1 eeg abnormalities in ad patients

As mentioned in the introduction, recent advances in signal processing resulted
in a rich body of literature that discusses EEG as a diagnostic tool. Especially in
the field of AD diagnosis, various research groups have tried to increase the sensi-
tivity and specificity of their detection algorithms. In fact, a few clear measurable
trends, i. e. detectable alterations in the EEG signals of an average AD patient in
comparison with Healthy Controls (HC), have been consistently reported by var-
ious research groups over the years (see Jeong (2004) and Dauwels et al. (2010)
for very good reviews on the field and (Takahashi, 2013) and (McBride et al.,
2014) for recent multi-marker complexity studies). In concrete terms, the most
common EEG abnormalities in AD patients are

1. a shift of the power spectrum to lower frequencies

2. a decreased complexity of the signals

3. altered synchrony between the EEG records of different electrodes.

There are several ideas about why and how AD might change EEG signals. The
most popular is the dysconnection hypothesis of dementia. The loss of neurons
in degenerative brain disease may disrupt anatomical connectivity at the level of
functional sources and functional networks. Consequently one might expect that
brain dynamics in disorders like AD, is characterized by a lower level of synchro-
nization of ongoing brain activity, and that this loss of functional connectivity
interferes with normal information processing (see Delbeuck et al. (2003)).

This thesis focuses on a nonlinear methods to measure possible changes in
signal complexity related to AD severity. This investigation was initiated by pre-
vious findings within the Austrian Institute of Technology (AIT) research group
(see Garn et al. (2014)). Their analysis revealed a high correlation between a
complexity-based marker (Auto Mutual Information (AMI)) and the scores of a
neuropsychological test most commonly used to asses the cognitive decline of
AD patients (MMSE, Folstein et al. (1975)). This thesis uses the same approach,
that is we compare the evaluation of a patient’s cognitive state with complexity
of the patients EEG record, rather than looking for significant differences between
two groups, AD patients and HCs.

13



14 eeg in ad

4.2 linking the mmse score to ad severity

Although becoming of age, the MMSE score, is still commonly used to refer to
the cognitive decline of AD patients. However, drawing a link between the actual
progress of a disease and a psychological test score is dangerous. Furthermore,
the MMSE test received criticism due to a possible lack of sensitivity to discrim-
inate mild AD patients from HCs as well as insensitivity to progressive changes
occurring with severe AD. On top of that MMSE scores can be strongly affected
by demographic factors like age and education (for a review see Tombaugh and
McIntyre (1992)). This thesis, being based on the findings of (Garn et al., 2014),
tries to exploit biomarkers that correlate to the MMSE values of AD patients. A
direct translation from biomarkers of this type to biomarkers being valid for AD

classification would therefore intrinsically assume a strong correlation between
MMSE and AD severity. Due to an approximate correlation between the two in
conjunction with a big study cohort, the results of this thesis can be still placed
in the context of AD diagnosis. Hence we expect our findings to be in accordance
to the above mentioned EEG hallmarks, but should keep in mind that we have a
psychological assessment as a basis for our results.

4.3 group studies - normalizing the brain

Individual differences in brain anatomy inevitably lead to different types of
biosignals, and in the case of EEG, already the shape of the underlying cortex
has a strong influence on the electric potential of an accurately placed electrode.
In addition, since electric activity reflects the functional state of the brain, dif-
ferences in the functional connectivity1 also determine the time-course of the mea-
sured scalp potentials. The modern neuroscientific way to perform group studies
usually includes a so-called normalization step of the individual records. Hence
the individual records are transformed into a reference space that is made up
by a template brain. This process is already well-established for various imag-
ing methods such as fMRI, PET, SPECT,.. studies. However, EEG based studies,
including this work, lack a normalization procedure due to the complex genesis
of its signals.

To conclude, both anatomical and functional structure of the brain contribute
to EEG biosignals. This, on the one hand leads to strong individual differences
despite accurate electrode placement. On the other hand, it shows that the full
potential of EEG can only be achieved when being combined with records of
different modalities.

1 functional connectivity refers to the functionally integrated relationship between spatially sep-
arated brain regions, unlike structural connectivity which reflects the anatomical connections
(neuron-synapse-neuron network) within the brain.



Part II

M E T H O T O D O L O G Y

The second part starts with a presentation of the study design, includ-
ing detailed information about the database, the recording and the
preprocessing procedure of the signals (chapter 5). Then an introduc-
tion into discrete time series analysis and the information-theoretic
concept of entropy is given, followed by a detailed mathematical de-
scription of the measures used in this thesis (chapter 6). The last part
quickly reviews the concept of linear regression models for biomarker
analysis (chapter 7).





5
A B O U T T H I S S T U D Y - D ATA B A S E I N F O & O R I G I N O F E E G
S I G N A L S

5.1 eeg recordings

EEG data were recorded from 19 gold cup electrodes placed according to the
International 10-20 system (Jasper, 1958). Fig 5 illustrates this unifying approach
for electrode placement on the scalp. Electrodes at both mastoids were used
as reference electrodes and the ground electrode was located between chan-
nels FZ and CZ. Additionally, both horizontal and vertical electro-oculogram
Electrooculogram (EOG) channels were recorded by electrodes placed above/be-
low the left eye and at the outer corners of both eyes. A wrist clip electrode
acquired an ECG signal. The signals were amplified, band-pass (0.3-70 Hz), and
notch (50 Hz) filtered by an AlphaEEG amplifier (alpha trace medical systems)
and digitized at 256 Hz with a resolution of 16 bits. Impedances were kept below
10 k.

All EEG recordings were conducted according to a strict clinically predefined
paradigm consisting of two phases. Initially, the subjects were positioned upright
in armchairs with integrated neck support in a resting but awake condition with
closed eyes (180 seconds). This was followed by a cognitive task with open eyes
(130 seconds). Throughout this work, the two recording stages are referred to
as resting phase and active phase respectively. However, the active phase records
were not analyzed in this work.

Figure 5: Schematics with the placement and labeling of the 19 electrodes on the scalp,
as seen from above (acc. to 10-20 system).

17
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Figure 6: Illustration of the workflow to analyze the 19 channel-EEG records. Each
recorded signal is first preprocessed and then segmented into epochs of 4s
length (1024 datapoints), with an overlap of 1s (256 datapoints). All complex-
ity measures are applied to all available epochs and then averaged to obtain
the final estimate.

5.1.1 EEG preprocessing

The original EEG recordings are usually still corrupted by electrical signals of
non-neuronal origin. These artifacts arise from either physiological or technical
sources. Physiological sources include eye movements and blinking, muscular
tension, movement, transpiration, cardiac activity, and talking. Technical artifacts
are caused by spurious noise from electronic devices, induction from the mains
supply (at 50 Hz), or poor electrode contacts. EEG preprocessing aims at remov-
ing these artifacts and obtaining purely neuronal signals. The following prepro-
cessing steps were applied prior to complexity analysis in order to achieve this
goal:

pre-selection At first, EEG segments corrupted by non-removable artifacts,
e.g. from poor electrode contacts, were visually identified and excluded from
further analysis. This led to a reduced, patient-dependent length of the original
180s long resting phase records.

segmentation into epochs The methods used in this study can only
be applied to stationary1 time-series. However, EEG signals are in general non-

1 a stationary process is a stochastic process whose joint probability distribution does not change
when shifted in time. In other words, the mean does not drift over time.
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stationary. This is why for each patient, quasi-stationary 4-second segments with
a 1-second overlap were extracted from the resting phase record. All methods
were applied to these epochs. (see Fig 6)

high-pass filtering The remaining EEG, EOG and ECG signals were then
digitally high-pass filtered using a stable, direct-form finite impulse response
(FIR) filter with linear phase and a border frequency of 2 Hz. Here, any non-
neuronal trends and low-frequency artifacts - e.g. from transpiration - were re-
moved from the signals.

removing cardiac artifacts Next, artifacts originating from cardiac ac-
tivity were approached. These artifacts appear mostly in multiple EEG channels
as near-periodic spikes, affecting the EEG signals in a broad frequency range due
to their non- sinusoidal waveform and the resulting harmonics. The cardiac arti-
facts were removed by applying the so-called modified Pan-Tompkins algorithm
that makes use of the ECG signal for detecting the locations of the cardiac spikes
(Waser and Garn, 2013).

removing ocular artifacts Eye-induced artifacts result from blinking
and ocular movements and affect mostly the signals of frontal and fronto-temporal
EEG channels. The eye-induced artifacts were removed by utilizing the EOG chan-
nels that captured blinking and ocular movements.

low-pass filtering Finally, the EEG signals were digitally low-pass fil-
tered using a stable, direct-form FIR filter with linear phase and border fre-
quency 15 Hz. In this way, high-frequency artifacts, e.g. from muscle tension,
were removed from the EEG. The border frequency of 15 Hz was determined due
to the observation that muscular induced artifacts altered the EEG signals from
15 Hz upwards.

5.2 study subjects

All patients in the database were participants in the multi-centric cohort study
Prospective Dementia Registry Austria (PRODEM-Austria) of the Austrian Alzheimer
Society. Enrollment criteria included the availability of a caregiver, written in-
formed consent of each participant and caregiver, as well as the absence of co-
morbidities affecting the conduction of the study. Clinical assessments including
EEG recordings were conducted at the Medical Universities of Graz, Innsbruck,
Vienna, and the General Hospital Linz, each of them complying with a homoge-
neous study protocol.

The methods used in this study were applied to all patients from the PRODEM
database who were were diagnosed with probable AD according to NINCDS-
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Figure 7: Study subject Information. The group shows all patients from the PRODEM
database, that were classified as probable AD with a resting phase EEG record
available. This resulted in a total of 116 patients used throughout the analysis.

ADRDA criteria (McKhann et al., 2011) and who had an artifact free2 resting
phase EEG record available. This resulted in a total of 116 patients (65 female, 51

male). The subjects were aged between 52 and 89 years (Mean:73.8, SD:8.6) with
a duration of probable AD ranging from 2 to 192 months (Mean=27.4, SD=26.1).
Additionally, each subject’s highest completed level of education was classified
on a scale of 1 (primary school) to 6 (tertiary institution). Cognitive deficits were
evaluated by MMSE on a scale of 0 to 30 with lower scores indicating more severe
cognitive impairment (Folstein et al., 1975). The study subjects reached MMSE

scores between 12 and 30 (Mean = 22.7, SD = 4.0). Fig 7 shows a graphical
presentation with more details about the study cohort.

2 artifact free in the sense that all preprocessing steps have been applied to the original signals
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C O M P L E X I T Y O F D I S C R E T E T I M E - S E R I E S

6.1 eeg signal as discrete time-series - fingerprints of a complex

system?

A full EEG record contains the signals from all electrodes, which were recorded
for a certain time Trec with a certain sampling rate fsamp. The original records
of each channel are non-stationary time series, with finite-length and high level
of noise, since they a are biological signals. After preprocessing those signals,
as described in the previous chapter, we obtain so called EEG epochs of length
NT = Tepoch · fsamp, which are - mathematically speaking - discrete sets of data-
points:

z = (z1, z2, . . . , zk, . . . , zNT )

, hence DTS. It is obvious that all measures that intend to analyze these epochs
as representatives of the original EEG signal, will intrinsically depend on Tepoch

and fsamp.
The idea behind trying to quantify the complexity of those signals is that they

originate from the same complex common system: the brain, or to be more pre-
cise the neocortex (i. e.the most outer layer of the brain). The cortical network
can be regarded as a stochastic, nonlinear system (Stam, 2005) with an enor-
mous number of interacting units, neurons. It can take on various states, which
(now looking at it from a statistical physics point of view) could be theoreti-
cally described by a point in m-dimensional phase space. Of course there is no
way to determine the value of those m variables apart from the fact that a prior
characterization of what those variables actually are would be necessary.

However, several methods have been specifically developed for DTS analysis
of complex systems, which can be applied without having any knowledge about
the actual m-variables. These methods allow to infer information about the sys-
tem by considering the measured signals (which are DTS) as a set of fingerprints.
In other words, we consider the system (i. e.the brain) as a black-box, with mea-
surable outputs that might give us clues of what is actually happening inside. In
this work we wish to infer possible signs of cognitive dysfunctions of the brain
related to the severity of Alzheimer’s Disease.
A lot of progress has been made in the field of nonlinear time series analysis
and a big toolbox has emerged, with several new methods that focus especially
on analysis of biological signals. The following sections introduce the concepts
of different measures that have already been applied by various research groups
to investigate possible alterations in the complexity of EEG records for patients
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with AD. The methods presented here were chosen after performing an in-depth
meta-study about recent research results concerning the use of nonlinear- and
complexity-based measures in AD related studies. Interestingly the final choice of
methods are all based on the concept of entropy from information theory1. Thus
the following section comprises a short, intuitive introduction to this concept.

6.2 the concept of shannon entropy

Entropy is a central quantity in physics and information theory. In information
theory, the concept was introduced by Shannon (Shannon, 1948), defining en-
tropy as a measure of the uncertainty associated with a random variable. The
concept goes deep and the interested reader should consult the above paper or
start with the article on Wikipedia for a more detailed presentation of this topic.
To get a rough idea imagine a fictitious machine (i. e.a black box) that automati-
cally shuffles a previously inserted coin, resulting in two different final outcomes:
heads or tails. We don’t know anything about the underlying architecture, but we
can analyze the outcome itself concerning its information content: Each output
constitutes an event. Each event has different outcomes with different probabili-
ties. If an outcome has high probability, it is very likely to observe it more often
than an outcome that is less probable. Let’s define a random variable X as the
amount of observed heads outcomes. Moreover, let’s assume that we don’t know
if the machine is fair or not, thus it has a certain probability p(x1) = p for heads
and p(x2) = 1− p for tails (p could take on any value between 0 and 1). If we
define the information content of the event i as I(xi) = ln

(
1
pi

)
, then the average

information content can be written as

H =
∑
i

p(xi) · I(xi) =
∑
i

p(xi) · ln
(

1

p(xi)

)
= −

∑
i

p(xi) · ln (p(xi)) (1)

also known as Shannon Entropy, denoted by H. Depending on the base of the
logarithm used in equation (1), the unit of this quantity can be measured in bits
or shannon (base 2), nat (base e) or hartley (base 10). In the simple example from
above, we have only 2 outcomes x1 (heads) or x2 (tails). Now, depending on the
type of machine (i. e.for different values of p), H will vary according to

H(p) = −
(
p · ln(p) + (1− p) · ln(1− p)

)
(2)

. Plotting H for all possible values of p (see Fig. 8), we can see that the entropy is
maximized when the machine is a fair coin tosser (p=0.5 reflects equal probabili-
ties for heads and tails), and minimized for an unfair system, hence if one of the
two outcomes becomes very small. This example gives a nice intuitive picture to
understand the information theoretic concept of entropy. It can be understood

1 The concept of entropy actually originates from statistical physics, where it is used to describe the
behavior of thermodynamical systems via the entropy-maximization principle. It can be seen as a
fundamental scalar quantity, just like energy.
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Figure 8: Shannon Entropy H(p) for different probabilities p of heads, reflecting the un-
predictability for different types of machines characterized by p.

Figure 9: Illustration of how DTS analysis can give information about the function of an
unknown underlying system. Here system A and B reflect a fair and unfair
coin tossing machine (see text). In the case of EEG analysis, we hope to infer
information about the well-being of the patient, i. e.patient A and B reflect
patients with and without AD

as a measure of uncertainty or unpredictability. A machine with perfectly equal
probabilities is completely unpredictable (high entropy), whereas a machine that
favors a certain outcome over the other leaves room to predict the outcome (low
entropy).

In the framework of DTS, we can use the same concept. The unpredictability,
or randomness of a system’s output (i. e.a signal which can be measured as a
DTS), is often associated with the underlying system complexity. In other words,
if a simple system gives predictable outputs, whereas a complex system is very
unpredictable. Although this association is not entirely correct, it is the reason
why the two terms are often used interchangeably and the terminology complex-
ity analysis was used by various research groups investigating EEG signals with
entropy-based measures.
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6.3 methods for estimating the unpredictability of dts

6.3.1 Shannon entropy ShEn

To calculate ShEn of a given DTS of finite length, we need to know the proba-
bilities of the certain outcomes. In the case of a single channel EEG signal, we
consider the observed voltage amplitudes zi as the random variable, which can
take Nbit possible values (depending on the digitization rate, in our case 16bit,
thus Nbit = 216 = 65536). Thus at each each sampling-point the system puts
out a certain voltage z with a certain probability p(z). However, since we do not
know the actual probabilities, we have to estimate them from the observed data.
A straightforward possibility is to simply determine the relative occurrence of
each possible zi. Of course, the longer the DTS, the better the estimation. Addi-
tionally it is important to make sure that the DTS is stationary, i. e. doesn’t contain
any drifts where the mean amplitude changes slowly over time. This would lead
to a bad estimation of the probabilities and thus a bad estimate for the entropy
H. For this reason, the EEG is split up into quasi-stationary epochs, i. e. short
time segments of the original record. The length of these sections should be
short enough to make sure they are stationary, but also long enough in order to
guarantee decent probability estimates. Since our random variable can take on
Nbit = 216 different possible values/voltages, but the number of observations
is relatively short (1024 6 65536)2 it is unlikely to get good probability estimates
via a counting procedure. The reason lies in the fact that most of the possible
outcomes might not occur at all or only very few times due to the compara-
bly small number of observations within an epoch. Thus in order to increase
the relative number of observations, it is aswell possible to reduce the number
of possible outcomes via another discretization of the measured voltage ampli-
tudes. A straightforward approach is to partition the range of observed voltage
amplitudes into a discrete number of equally spaced bins i = (1 . . .Nbin), with
Nbin << Nbit. Then the probabilities p(zi) of each outcome i is just the relative
occurrence within the observation z, or the height of the normalized histogram
(see Fig 10). Thus, given a certain EEG epoch, its corresponding ShEn can be
calculated via the following algorithm:

shen algorithm

1. Choose a number of bins Nbin to create a discrete histogram of ob-
served voltages zi during an EEG epoch (compare with Fig 10. The
p(zi) are then estimated by the relative height of the i-th bin in the
histogram.

2 In our case the epochlength was chosen to be 4s. Given a fsampling = 256Hz, 4s correspond to
1024 observation
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Figure 10: Illustration of the histogram counting procedure. The (quasi) continuous volt-
ages of the DTS are partitioned into Nbin discrete regions and their relative
occurrence estimates the probabilities p(zi). (the figure servers just as an il-
lustration, hence the length of the signal and the created histogram do not
match)

2. Calculate Shannon Entropy as

H = −

Nbin∑
i=1

p(zi) · ln(p(zi)) (3)

6.3.2 Mutual Information MI

Mutual Information (MI) provides a measure of both the linear and non-linear
statistical dependencies between two DTS (Jeong et al., 2001). The MI between
observations of the two random variables z(1)i and z(2)j , is the amount of infor-
mation that the former provides about the latter. This can be expressed formally
using the concept of entropy. Since entropy reflects the unpredictability of a sig-
nal, we can calculate how much information one signal provides about the other
via

MI = H
(
z(1))−H(z(1) | z(2)) = H(z(2))−H(z(2) | z(1)) (4)

where H
(
z(1) | z(2)

)
is a conditional entropy, hence the entropy of signal z(1) given

z(2). Using the definition of entropy from eq 1 and using the shorthand notation
pi = p(z

(1)
i ), pj = p(z

(2)
j ) and pij = p(z

(1)
i , z(2)j ) eq 4 can be expressed as

MI =

N∑
i

N∑
j

pij · ln
( pij

pi · pj

)
(5)

, where N is the number of possible outcomes of the random variables z(1)i and
z
(2)
j

3. If there is no relationship between the compared DTS, the joint probability

3 Again, in the case of EEG signals, zi is the measured voltage. But due to high digitization rate
Nbit = 216, zi should be restricted to N possible outcomes by counting all outcomes within a
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of observing a pair of random variables pij = p(z(1), z(2)) will be just the prod-
uct of both single variable distributions pij = p(z

(1)
i ) · p(z(2)j ) = pi · pj. In this

case the argument of the logarithm becomes 1 and the expression in the sum
yields 0, hence the 2 signals are completely independent. However, any linear
or nonlinear correlations between an observed variable pair leads to a positive
expression in the sum and thus adds up to the total MI.

In addition one can calculate the time-resolved MI of signal pairs in order to
see how the MI changes over time. This way one can estimate, on average, the
degree to which the delayed series can be predicted from the original series.
Mathematically speaking, this can be achieved by calculating the MI between an
EEG epoch z(1) = (z1, z2, .., zk, ..) and the time series obtained by shifting z(2)

by τ sampling points z(2) = (z1+τ, z2+τ, .., zk+τ, ..). This way we obtain a MI

value for each time-shift τ, leading to the MI function MI(τ). In the case of EEG

signal analysis, there are basically two different ways to apply this measure. If
z(1) and z(2) are simultaneously recorded epochs from different electrodes, one
obtains the so-called Cross Mutual Information (CMI), whereas the term AMI is
used to describe the MI between epochs from the same electrode. This leads to
the following interpretation of the two measures:

ami measures the predictability of the time-course in a given signal. In a very
regular signal that shows the same patterns over and over, it is easy to predict
how the signal will look like in the future. Thus when calculating the the AMI

between the original and time-shifted signal, the mutual information stays high
for a large number timeshifts τ, since the two versions of the signal still share the
same characteristics and the same patterns for a big time-window. In contrast,
for a signal that quickly changes its characteristics over time, it is very hard
to predict the upcoming signal shape even for a few timepoints, and therefore
the AMI function values drop quickly for increasing τ. AMI is a tool to estimate
how fast a signal loses its linear and nonlinear correlations with the time-shifted
versions of itself. The main characteristics of the AMI function is the strength
of decrease which tells us how fast mutual information within a single DTS is
lost. Hence it contains valuable information about the dynamics of the signal-
generating system.

cmi measures the change of correlations between a signal pair of different
origin. In the case of EEG the CMI function describes how the linear and nonlin-
ear correlation between signals of different electrodes changes over time. Thus
the shape can be more complex than the AMI function. The time-course of this
function can contain valuable information about characteristic time-delays and
synchronous activity (see A).

certain range as a single outcome. A proper choice of N allows decent probability estimations
from the observation
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ami/cmi algorithm

1. Separately determine the probability densities p(z(1)i ) and p(z(2)j ) from

the observed occurrences of random variables z(1)i and z
(2)
i via his-

togram counting (like in 6.3.1).

2. Determine the joint probability density pij = p(z
(1)
i , z(2)j ) from the ob-

served occurrences of variable pairs via histogram counting.

3. Calculate the current AMI/CMI value via

AMI/CMI =

Nbin∑
i

Nbin∑
j

pij · ln(
pij

pi · pj
)

4. Repeat the above steps with a time-shifted version of z(2) for all desired
τ

6.4 approximate entropy (apen)

A (ApEn) is a technique for DTS used to quantify the amount of regularity and the
unpredictability of fluctuations over time. It reflects the likelihood that patterns
in a given signal will not be followed by similar patterns, thus also describes
(un)predictability of the signal time-course. In contrast to the above measures, it
is based on comparing patterns between discrete datapoints so it avoids proba-
bility estimation. To understand the idea behind ApEn, it is best to go through
the algorithm steps listed below:

apen algorithm

1. Given a DTS z = (z1, z2, .., zi, .., zNT ), construct a m-dimensional vec-
tor u = (zi, zi+1, .., zi+m) for each sequence of m successive points
zi, zi+1, .., zi+m. Depending on the choice of pattern-length m, one
ends up with NT −m+ 1 vectors ui, which represent all the patterns
of length m within the signal.

2. For each ui, count the relative occurrence of similar patterns within the
signal z using

Cmi (r) =
1

N−m+ 1

N−m+1∑
j=1

Θ
(
r− d(ui − uj)

)
where
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• d(ui−uj) = maxk=1,2,..m(ui+k−1−uj+k−1) is just the maximum
distance between two corresponding amplitudes within the two
different patterns

• r is the tolerance, i.e. the maximum allowed difference for count-
ing two sequences to be similar

• Θ(·) is the Heaviside theta function that will yield 0 if r < d(·) and
1 if r > d, i.e. add one count to the sum if the patterns are similar.

3. Calculate the average logarithm of all previously determined Cmi (r) via

φm(r) =
1

N−m+ 1

N−m+1∑
i=1

ln (Cmi (r))

4. Repeat the above steps for m+ 1

5. Finally calculate the ApEn via

ApEn(m, r) = φm(r) −φm+1(r)

Thus ApEn is proportional to the difference between repetitive occurrences of
patterns of length m and length m+ 1. The measure depends on 2 parameters,
pattern length m and tolerance level r.

6.5 sample entropy (saen)

Sample entropy is based on the same concept of ApEn but excludes self matches.
This improvement makes Sample Entropy (SaEn) largely independent of the sig-
nal length and relatively consistent under circumstances where ApEn is not.

saen algorithm

1. Given a DTS z = (z1, z2, .., zi, .., zNT ), construct a m-dimensional vec-
tor u = (zi, zi+1, .., zi+m) for each sequence of m successive points
zi, zi+1, .., zi+m. Depending on the choice of pattern-length m, one
ends up with NT −m+ 1 vectors ui, which represent all the patterns
of length m within the signal.

2. For each ui, count the relative occurrence of similar patterns within the
signal z using

Cmi (r) =
1

N−m+ 1

N−m+1∑
j=1

Θ
(
r− d(ui − uj)

)
, j 6= i
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where j 6= i excludes self matches and

• d(ui−uj) = maxk=1,2,..m(ui+k−1−uj+k−1) is just the maximum
distance between two corresponding amplitudes within the two
different patterns

• r is the tolerance, i.e. the maximum allowed difference for count-
ing two sequences to be similar

• Θ(·) is the Heaviside theta function that will yield 0 if r < d(·) and
1 if r > d, i.e. add one count to the sum if the patterns are similar.

3. Calculate the average logarithm of all previously determined Cmi (r) via

φm(r) =
1

N−m+ 1

N−m+1∑
i=1

ln (Cmi (r))

4. Repeat the above steps for m+ 1

5. Finally calculate the SaEn via

SaEn(m, r) = −ln

(
φm+1(r)

φm(r)

)

6.6 multiscale entropy (me)

The tools ApEn and SaEn both compare neighboring or sequential datapoints of
DTS and therefore automatically inherit a strong dependence on the sampling
frequency of the original signal. Of course, since people have been working
on biosignal processing for a while now, this fundamental issue is well known
within the community and was issued by (Costa et al., 2005), where the con-
cept of multiple scales was introduced. The scale of a DTS can be imagined as the
inverse discretization detail of the signal. Given a DTS recorded with a certain
fsampling, we can easily increase the scale of a given signal via resampling the
existing one and end up with a new DTS, that looks like a signal we would have
obtained using a lower sampling frequency in the first place. A signal of scale 1

represents the original DTS, whereas the same signal of higher scale represents
a coarse-grained version of the signal. Mathematically speaking, at scale 2 each
point of the new signal is the average of 2 neighboring points of the original
signal, at scale 3 each point is the average of 3 neighboring points,. . . . This pro-
cedure does not only remove the strong influence of the sampling frequencies,
but it also provides new insights since biological signals usually contain infor-
mation across various scales (Costa et al., 2005).
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mse algorithm

1. Create multiple coarse-grained (time-scaled) versions z(τ) =

(z
(τ)
1 , z(τ)2 , .., z(τ)i , .., z(τ)

N/τ
) from the original series z = z(1), by gradu-

ally increasing the scale parameter τ

z
(τ)
i =

1

τ

iτ∑
j=(i−1)τ+1

z
(1)
i , 1 6 i 6

N

τ

2. For each z(τ), calculate the desired Entropy measure (e.g. SaEn) to ob-
tain the Multi Scale Entropy (MSE) function

MSE(τ) = SaEn(z(τ))

The actual implementation of the code, was modified slightly in order to in-
crease the length of the upscaled signals, as suggested by (Wu et al., 2013). This
allows better and more robust MSE estimation at higher scales.

Figure 11: (left): illustration of scaling process from the original DTS; (right): MSE func-
tions of white and 1/f noise for multiple scales; from (Costa et al., 2005)
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S TAT I S T I C A L A N A LY S I S

Diagnostic biomarkers try to predict the current state of a patient. Mathemat-
ically speaking, a biomarker is a numeric quantitity, from which a prediction
model can be formulated. But often in biomarker research, there is no underly-
ing theoretic model which can be used to fit the empiric data. This is because
biological systems are very complex due to the enormous number of factors that
come into play for biosignal genesis. Therefore to exploit possible correlations
between a marker and another quantity that reflects the physical state of the
biological system, it is common to simply assume a linear or quadratic relation.
This relation can be tested via a regression analysis. Of course this simplifying
procedure is more than questionable from a scientific point of view, but given a
certain biomarker that - for whatever reason - has a very high correlation with
the variable of interest, and this result is even confirmed by other studies, then
we have actually found what we were looking for. Thus the predictive value of
a biomarker is its most important feature, despite a possible lack of a theoretical
foundation.

7.1 predictive strength via linear regression

Lets denote the biomarker value of patient i by xi and the corresponding MMSE

values by yi (the respective means shall be denoted by x̄ or ȳ respectively). Then
the linear or quadratic model y(x) is obtained from the dataset via minimizing
the sum of all prediction errors1. Given the resulting model one can first quantify
the quality of this fit via calculation of the coefficient of determination R2, where

R =
Σ(xi − x̄)(yi − ȳ)√
Σ(xi − x̄)2Σ(yi − ȳ)2

(6)

. R2 describes how much of the observed data variance can be explained by
the model, thus a high R2 is necessary for a good biomarker. Given a linear pre-
diction model for a patient’s MMSE value, the sensitivity of the model can be
quantitatively described by the slope of the model, hence the magnitude a of the
model y(xi) = a ·xi+b describes how sensitive the biomarker x is to small MMSE

score differences δy. The quadratic model extends the model by allowing differ-
ent sensitivity across different marker ranges, for example a marker following a
quadratic MMSE prediction model might be very sensitive between patients with

1 the prediction error or residuum is the difference between the value being predicted according to
the model y(xi) and the observed value yi, therefore ei = (yi − y(xi))

31
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generally low MMSE (i. e. moderate to severe AD patients), but at the same time
not able to discriminate between patients with high MMSE scores (less severely
diseased patients).

Speaking in terms of our biomarker model, a high R2 but a small slope is as
useless as having a high a along with a small R2. In this thesis, I will therefore
present the main results via comparison of different R2 values, since a high R2

is the basic requirement for a diagnostic biomarker. However, it is important
to keep in mind that the quality and sensitivity of a biomarker are not solely
described by this quantity.



Part III

R E S U LT S A N D I N T E R P R E TAT I O N

This part contains the results and the interpretation for each selected
method onto the PRODEM database, thus the MSE (chapter 8) and
the AMI (chapter 9) method. Each chapter starts with a short review
of previous findings concerning that method. Then the selection of
biomarkers deduced from the measure together with the statistical
results are presented. Afterwards, an in-depth analysis about the
method is given by going through several key points which can ex-
plain the outcome of the observed results.
Finally, the last chapter (10) contains conclusions and final remarks
about this study.
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M S E R E S U LT S

8.1 previous research results

(Escudero et al., 2006) looked at 5s epoch MSE at scales 1-12, observing different
type of MSE profiles for the 2 patient groups (8AD vs 8 HC). At scales 1-9, AD

patients have lower SaEn, but exhibit higher entropy for scales >10, hence there is
a crossing point at around scale 10. To put this into numbers, the authors decided
to compare the average slope between scales 6-12, and observed a significantly
higher slope in AD patients (positive slope), than in HC patients, (negative slope)
at the very frontal (Fp1,Fp2), and occipito-parietal electrodes (P3,P4,O1,O2).

(Park et al., 2007) compared 3 different groups (38HC vs 22Mild Cognitive
Impairment (MCI) vs 26AD), and also observed different MSE profiles for the 3

different groups. Again AD patients had lower SaEn for scales 1-8, and exhibited
higher SaEn for scales 10 and higher. Interestingly MCI patients showed signifi-
cantly lower SaEn than HC for scales 2-4, and show a very similarly shaped MSE

curve as HC patients, but shifted in scale. The authors did not use single elec-
trode profiles for comparison, so differences reflect the averaged values from all
electrodes.

(Mizuno et al., 2010) investigated MSE profiles 2 groups (18HC and 15AD pa-
tients with mild and moderate disease severity and observed similar MSE profiles
as previous groups (AD have lower SaEn at small temporal scales, but higher SaEn

at higher temporal scales beyond croissing point around scales 6-7). Significant
differences at small scales (2-4) between all AD and HC were found in fronto-
central region (F3,F4,Fz, C3), and all channels except F7,F8 showed significantly
lower SaEn at scales 9-20. Additionally a strong (negative) correlation between
MMSE and SaEn at large scales (11-20) was found in the central region (C3,C4,Fz).

(Labate et al., 2013) investigated MSE differences among 3 different groups
(4HC vs 4MCI vs 4AD) in 3 different regions (frontal, occipital, mixed) for scales
1-5. However he had a very small patient cohort. The biggest observable differ-
ences between AD vs HC were found in the occipital region at scales 4-5, where
SaEn was around 40-45% higher for HC than AD .

(Yang et al., 2013) investigated MSE profiles for 4 different groups (15HC 15 very
mild AD 25moderate/severeAD), divided the MSE profile into 2 parts: MSE-short
(scales 1-6) and MSE-long (scales 16-20), and categorized by their Clinical Demen-
tia Rating (CDR) (HC vs CDR=0.5 vs CDR=1 vs CDR=2+). They observed a signif-
icant trend that for increasing CDR, MSE-short decreases and MSE-long increases,
with highest significance in occipito-parietal region, but couldn’t differentiate
between HC and very-mild AD (CDR=0.5) group. MSE-short is significantly cor-
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Figure 12: average MSE profle for 3 different groups (from (Park et al., 2007) ). All
groups reportet the same characteristic shape of the MSE curve, as well as
a crossing point between HC and AD. All groups reported the same trend:
MSE of AD is lower for small scales, and higher for large scales. They also
used fsampling ≈ 200− 250Hz, thus the given scales are comparable to ours
(256Hz)

related to MMSE at temporal (T5,T6), parietal (P3,P4) and occipital(O1,O2) elec-
trodes, whereas MSE-long is significantly negatively correlated to MMSE at the
same electrodes except T6,P4.

8.2 main results

Since the MSE curve defines unpredictability across various scales, we should
take into account the MSE values of as many scales as possible. In addition the
previous results show that the MSE curves tends to change shape between dif-
ferent groups. Thus we introduce biomarkers that try to quantify information
given by the shape of the function by a single numeric value. The final selection
of biomarkers is the following:

biomarkers

1. AUCfull (area under the curve) takes into account the regularity of the
signal across various scales, thus should represent the complexity.

2. AUCcrit (area under the curve of the MSE function until scale 8) Taking
only acMSE values below scale 8 guarantees that no power-spectral
influences come into play, and thus should reflect the complexity with
less emphasis on power spectral properties (see section 8.3).
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3. slopecrit (the fitted linear slope of the function at scale 8 ± 1) This
value is a very simple way to characterize the approximate function
shape.

4. MSEmax (maximum MSE value) The maximum MSE value reflects the
maximum irregularity of the signal. Since each EEG signal differs in
frequency architecture, we can analyze each signal across various scales
and then determine the unpredictability of the signal independent of
scale and thus probably reducing the impact of individual differences.

5. MSE(τ) One can also simply compare the entropy values of each scale
between patients. This way we can discriminate between high R2 values
that randomly pop up at a single scale (and thus might result from a
non-physiological origin) and those R2 which are consistent across a
certain range of scales.

Fig 13 and Fig 14 summarize the main results from statistical analysis of MSE

functions for all patients and all electrodes, averaged over all epochs. Similar
Figures were calculated for various electrode groupings but did not give novel
insights and thus are not presented in this thesis. From Fig 13 (which represents
the results from analyzing only signals from electrode P7) we can see that pa-
tients with low MMSE scores tend to have lower entropy (positive correlation)
and hence their signals tend to be less complex than the ones of patients with
high MMSE scores. This is in accordance with the previous research findings cited
above. However, in contrast to previous results, the MSE function doesn’t flip its
characteristics for large scales. This is also true for all other channels (not shown
here). Severe AD patients tend to have a lower entropy than mild AD across all
scales as can be seen by the maintenance of the positive correlation across all
scales. The reason for this lies in the fact that we restricted our signals to con-
tain only spectral content below 15Hz (for a detailed explanation, see in-depth
analysis below 8.3).

Although certain trends are visible, the predictive strength as measured by
the coefficient of determination R2 is rather low and even fails to discriminate
between patients with severe and mild form of AD. This can be clearly seen by
visual inspection of the scatter plots (Fig 13), where several patients with a low
MMSE score have a high biomarker values (in contradiction with the proposed
model). Results from all other electrodes along with P7 are summarized in Fig
14. Here, each column represents the results of all scatter diagrams of a single
electrode (like Fig 13), where color coding was used to visually represent the
R2 values from the linear and quadratic prediction models. One can see that
those regions with similar R2 values are neighbouring electrodes. The reason for
this is the big effect of volume conduction, as discussed in part 1 of this thesis.
The AUCfull and the MSEmax marker confirm the trends observed for other
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Figure 13: Scatter plots for MSE biomarkers vs MMSE and the linear and quadratic predic-
tion model obtained by regression analysis; for a single channel (P7).
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Figure 14: Predictive strength of MSE depicted biomarkers and MSE function measured
by the coefficient of determination (R2): linear (left) and quadratic (right) fit to
model a possible correlation between MMSE and MSE biomarkers for all scales
and channels.
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Figure 15: Comparision of the average MSE function (averaged over all epochs, all chan-
nels and each patient) between patients with lowest and highest MMSE re-
spectively. The error bar reflects the standard deviation between the scores of
individual patients with respect to the mean.

markers, where the AUCfull marker is believed to be the most robust marker
containing most information from the MSE function. Interestingly, although the
MSE(1) marker exhibits the highest correlations, the results from MSE(2) and
MSE(3) cannot support this trend. Given a physiological basis for this obser-
vation, we would expect this trend to be stable across various scales since the
marker values change according to a smooth transition depicted by the shape of
the MSE curve. This transition can also be observed in Fig 13 where the shape
of the scatter plots gradually change for increasing τ. Even more interesting is
the observed increase of R2 values for MSE(τ > 8). This is the scale where the
patients high frequency spectral power content starts to be washed-out and thus
individual differences in the EEG spectra for f < 15Hz start to come into play (for
a detailed explanation, see in-depth analysis below 8.3).

Altogether, MSE confirms the trends from previous findings, but fails to dis-
criminate well across the dataset.

8.3 in-depth analysis

parameters The MSE method, as presented in chapter 6, was applied to the
study sample, such that the average MSE function was calculated for each elec-
trode of each patient. The final choice of parameters m = 2, and r = 0.15 was
chosen according to the research literature, and its validity rechecked via consis-
tency analysis on a test sample. The MSE was calulated until scale 20, then the
predictive strength of the MSE function of each channel and selected biomarkers
was quantified via the coefficient of determination R2.
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understanding mse at higher scale The multiscale approach extends
the complexity analysis by creating an additional dimension which in theory
leaves a lot of room for improved classification and discrimination between dif-
ferent severity levels of AD. All groups reported similar MSE profiles for AD and
HC patients, where AD patients usually have an MSE profile with a less steep
increase, therefore a lower absolute maximum, and a more flat profile at high
scales which leads to higher values at higher scales (see Fig 12). It is notewor-
thy, that despite different recording and preprocessing techniques, the groups
achieved somewhat consistent results. Still, there was no consensus about how
to interpret this observation.
There is, however a very important point to consider which explains this char-
acteristic behavior. According to the upscaling procedure, when reaching higher
scales, the new value is calculated by averaging over such a big number of points
that one start to lose the ability to properly represent higher frequencies whose
oscillation period is in the same range as the number of points one is averag-
ing over. This means upscaled versions of the original DTS start to wash out high
frequency contributions from the EEG signal. To represent a frequency of f0 Hz,
one needs a sampling frequency that is at least as high as fsampling = 2f0

(Nynquist theorem). Going up the scale reduces the effective sampling frequency
and therefore one also cuts down the frequency spectrum of the signal. For
fsampling = 256 Hz, scales 3-5 already start to neglect γ-band contributions.
Hence applying MSE to a non-bandpass filtered signal, the unpredictability of the
signal atuomatically decreases at certain scale since the high-frequency content
is neglected. Given the fact that there is a general trend for AD patients to have
slower EEG spectra (i. e.more spectral power in low frequency band) than HCs, the
characteristic flip between the MSE profiles of AD and HC becomes fully under-
standable. The drop in the average MSE in AD patients at higher scales can thus be
attributed to a frequency spectrum that is is on average shifted to lower frequen-
cies. The tight relationship between complexity based measures and methods
that directly analyze the frequency spectrum of EEG records is nicely reviewed
in (Dauwels et al., 2011).

What does this mean for our analysis? First, we need to check for the maxi-
mum frequencies that are present in our signal in order to determine at which
scales the frequencies of the original signal are washed out. As mentioned in part
2, since we are only interested in analyzing EEG contributions that originate from
resting-state brain-activity, each EEG signal was bandpass filtered between 2 and
15Hz in addition to ECG and EOG artifact removal. We exclude any frequencies
above 15Hz, thus most of the high frequency activity (commonly termed as β
and γ activity) of the patient is neglected since they cannot be distinguished
from muscular artifacts. A maximum frequency of 15Hz means that we do not
only make sure that the original signal originates from cortical activations, we
furthermore eliminate the influence of each patients high-frequency spectrum in
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Figure 16: Examples for single-patient, single-channel MSE functions (averaged over all
epochs) for 9 random patients and 2 random electrodes. The error bar reflects
the corresponding standard deviation between individual epochs

the complexity analysis when looking at scales up to 8
1. Let’s look at a simple

diagram to illustrate the keypoints mentioned above. We use 2-15 Hz signals,
thus in constrast to the other groups, we expect a different behavior for large
scales, since the high frequency content doesn’t play any role here. Fig 15 com-
pares the average MSE plots between the group with the lowest and highest 12

MMSE scores (12 reflects 10% of the dataset; chosen arbitratily for demonstration
purposes only). As one can immediatley see, no crossing point is observed! This
result confirms the above considerations which provides a nice interpretation of
MSE at high scales.

single-subject variances Figure 16 shows how much (on average) MSE

values can deviate between electrodes within a single subject, shown for 9 differ-
ent patients. In addition the inter-epoch variability is shown in terms of stan-
dard deviation from the mean. This observation shows 2 things: first, the unpre-
dictability or complexity of different epochs, even within a channel, change in a
dynamic way resulting in a high inter-epoch variance. Second, inter-channel devia-

1 given fsampling = 256, fmax = 128 Hz according to the Nynquist theorem. Scale 1 can contain
frequencies up to 128Hz. Therefore scale τ can only represent frequencies up to 128τ Hz, and scale
of 8 is the highest scale that still contains all of the frequency content of the EEG records (which is
between 2 and 15 Hz)
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tions tend to be of the same magnitude as inter-subject or inter-group differences.
One can see that MSE exhibits high inter-electrode and inter-epoch changes that
are of the same magnitude as inter-subject differences. Thus although MSE is
able to reveal certain trends, the high variability between epochs and electrodes
of a single subject make the method a non-robust measure and thus MSE fails to
predict functional changes in the brain.
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A M I R E S U LT S

9.1 previous research results

(Jeong et al., 2001) investigated AMI differences between AD and HC as well as
correlation to MMSE scores of patients. For comparision, they also calculated the
rate of decrease and observed significantly lower values in AD patients than
in HCs at all electrodes except O2, with best discrimination in the frontal and
temporal region. They also found that the AMI rate of decrease was strongly
correlated with MMSE scores of the patients in those 2 regions.

(Abásolo et al., 2008) showed that AMI has a strong negative correlation with
ApEn and SaEn. They investigated the rate of decrease for AMI and observed a
significantly smaller rate of decrease for severe AD patients in comparison with
HCs, especially in the parietal (P3,P4 showed on average 32-35% smaller rates)
and occipital (O1,O2)-temporal (T5,T6) regions. Although the group used just
histogram counting in order to determine the probabilities forAMI, the severity
level of AD patients was large enough to observe meaningful differences.

(Garn et al., 2014) is the basis for the topic of this thesis. They investigated the
correlation of MMSE scores to AMI, Shannon Entropy (ShEn) and Tsallis Entropy in
79 patients with probable AD (hence a subgroup of the PRODEM dataset). The
predictive strength of these measures was expressed via coefficients of determi-
nation (R2) values from linear and quadratic regression models respectively. Cer-
tain values of the AMI function explained up 43% / 48%, ShEn up to 37% / 48% of
the variations in MMSE scores, all at left temporal (T7) electrode site. The steepest
slope of the linear regression was found for the same AMI value. Comparing to
traditional slowing measures, complexity measures yielded higher coefficients
of determination.

9.2 main results

The decrease of AMI function reflects the unpredictability of the signal itself. The
papers cited above all modeled the rate of decrease by fitting a linear function
through the first datapoints of the AMI-function (some took a certain maximum
time-delay; some fitted a line until the first minimum). However, it becomes
clear from just looking at the AMI function that the decrease is far from being
linear, which is why this estimation is not very precise and therefore the esti-
mate itself inherits a certain degree of randomness. A bad model produces an
additional error source, which is costly in the search of robust biomarkers. We
should therefore rely on features that reflect the AMI curve in better way.
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biomarkers

1. AUC Instead of the rate of decrease, one can as-well avoid the problem
of defining an endpoint for the regression model by calculating the
area under the curve (AUC) of the normalized AMI. A small area re-
flects a strong decrease (high complexity), whereas a large area reflects
a slowly decreasing function (low complexity). The AUC was calcu-
lated until time-shift 8 since time-shifts below this value do not contain
contributions from dominant frequencies from the individual spectra
(see in-depth analysis below 9.3).

2. RODexp A slightly improved model for the rate of decrease is an ex-
ponential fit, via a linear regression of the log(AMI(τ)) (fitted through
time-delays of 0-4 datapoints)

3. RODlin Although a suboptimal model, we also calculated the rate of
decrease using the classical method used in the cited literature for the
sake of completeness (linear fit through time-delays of 0-4 datapoints)

4. nAMI(τ) Of course, it is also possible to simply compare each value of
the normalized AMI function between each patient. However, a single
AMI value reflects the correlations for a distinct time shift, thus taking a
single function value as a biomarker reduces the reproducibility of this
measure since many random factors come into play and might slightly
increase/decrease its value, leading to a bad estimation accuracy and
high method-dependency. We still perform this calculation in order to
compare the results to (Garn et al., 2014), where the high correlations
were also found by using just a single AMI function value.

Fig 17 and Fig 18 summarize the main results from statistical analysis of AMI

functions for all patients and all electrodes, averaged over all epochs. From Fig
17 (which represents the results from analyzing only signals from electrode P7)
we can see that patients with low MMSE scores tend to have higher AMI values
(negative correlation). Again this is in accordance with previous research results,
hence signal complexity tends to decrease for increasing AD severity.
When looking at 17 we can see that the overall behaviour between the depicted
biomarkers AUC, RODexp and RODlin is approximately the same, where the
AUC marker is believed to be the most robust marker providing the best model
for the AMI decrease. Compared to MSE biomarkers, AMI biomarkers perform
better, hence have a higher R2 and a steeper linear model fit. However, allthough
the same trends become visible, the predictive strength is too low. This becomes
visible in Fig 18 where again the results for each channel are represented by the
color coding the R2 of the various markers. Interestingly one can also observe
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Figure 17: Scatter plots for AMI biomarkers vs MMSE and the linear and quadratic predic-
tion model obtained by linear regression for a single channel (P7).
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Figure 18: Predictive strength of AMI biomarkers measured by the coefficient of determi-
nation (R2): linear (left) and quadratic (right) fit to model a possible correla-
tion between MMSE and biomarkers for all channels.

an abrupt drop in R2 for time-shifts higher than 7. The reason for this lies in
the fact that the AMI shows significant increases for time-shifts that correspond
to dominant frequencies within a patient’s epoch (discussed in detail in the in-
depth analysis below 9.3).

To conclude, the promising results from (Garn et al., 2014) who applied the
AMI to a subset of this database, could not be confirmed since the AMI, although
revealing certain trends, is not specific enough to produce biomarkers with diag-
nostic value.

9.3 in-depth analysis

parameter selection Fig 19 shows 2 examples for the type of AMI func-
tions from individual EEG epochs. The only tunable parameter in AMI calculation
itself is the number of bins (Nbin) which are used to model the probability distri-
bution for occurrence of voltage amplitudes during an epoch. The functions are
normalized since we are interested to compare the relative decrease of mutual
information between patients and because the initial value of 0 time-delay can be
additionally extracted and reflects the Shannon Entropy (ShEn) of the signal. One
can observe how different Nbin values result in different level of detail probabil-
ity distributions (small figures on right). Each value of the AMI function (left) is
calculated directly from this 2d probability distributions. One can observe, that
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Figure 19: AMI curves for different Nbin calculated for a sample epoch from 2 ran-
domly chosen patients of the PRODEM database. The figures on the right
are the different joint-probability distributions that belong to the AMI values
of dt=192ms (=maximum calculated time-delay from the left figure).

with increasing Nbin, the MI doesn’t decrease as much for high Nbin, (a high
baseline AMI for high Nbin), but in turn seems to be more robust to oscillatory
behavior. One can observe that for Nbin higher than around 40, too many bins
are used for the discretization of the probability distribution which leads to a
AMI function that decreases slow and therefore sensitivity to detect differences
between patients diminishes. On the other hand, Nbin of 10 and less seem to
oversimplify the real probability distribution and are therefore more sensitive
to fluctuations. Consistent results were obtained for 10 < Nbin < 35. The main
results from the previous section were obtained by using Nbin = 30.

ami and iaf By scanning over all averaged AMI profiles, one can observe
that every patient exhibits bumps at certain frequencies at different time-shifts
but more importantly different magnitude. Those bumps could be considered
as random fluctuations of the AMI measurement. However, for most of the pa-
tients, prominent bumps survived even after averaging the AMI function of each
channels over all epochs. There were still noticeable differences between each
channel though. A further analysis of the most prominent, first bump in the AMI

curve revealed that this bump occurs at half of the period that corresponds to the
Individual Alpha Frequency (IAF) from the PRODEM database. The PRODEM
IAF was determined independently, that is from measurements of the occipital area
and is not available for all patients. Interestignly there is a very high accordance
between the IAF from the database and the peak position extracted from the AMI



50 ami results

Figure 20: Scatter Plot of the AMI-bump frequency and the IAF from the PRODEM
database. Notice that due to inter-channel-variability, the position of the first
peak was determined by averaging over Channels 13-19. The right figure
shows only data from patients with low inter-channel variability.

profiles of each patient, averaged over all electrodes of the occipito-parietal area
(see Fig 20).

To explain this, we have to ask ourselves how an increase of AMI at a certain
time-interval can actually arise. Let’s assume the spectrum of a patient’s EEG

exhibits a prominent peak at some frequency. If we shift our signal by exactly
the time that corresponds to the period of this frequency, we should obtain a
higher similarity to the original signal than for other time shifts (before and
after) since certain pairs of amplitudes occur more often and thus have a much
higher estimated joint probability. Now the same holds true for half a period of
this frequency, since (even though amplitudes are reversed), there is an increase
of coincidences of certain amplitude pairs as well. As a consequence, if an EEG

epoch is driven by a dominant frequency, the corresponding AMI curve will show
bumps at all time-shifts that correspond to multiples of the halved frequency.
The height of those bumps will be proportional to the amplitude in the power
spectrum. Secondly, since every EEG exhibits more bumps than the peaks that
arise due to IAF, other dominant frequencies will also lead to increases in AMI

and produce bumps at multiples of its half-period. That is, the AMI contains
information about not only one but all dominant frequencies within the EEG.
Going back to our discovery, it now also becomes clear why the first peak is the
IAF and no higher frequency, since all EEG epochs were bandpass filtered (2<
f <15Hz) and their frequency power spectrum restricts to around 2 to 15Hz (no
hard-cut-off edges, so there remains some spectral content slightly below 2Hz
and slightly above 15Hz). Therefore the frequency-spectrum related influence
on the AMI curves is restricted to time shifts bigger than a critical time-shift
that equals 2 times the maximum EEG frequency. In our case, the 30Hz limit
corresponds to a critical time-shift of 33ms i. e.a timeshift of approx. 8 datapoints.
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Interestingly, when comparing this with Fig 18, one can observe an abrupt drop
of correlation values at this predicted time-shift.

what do we actually measure If we take up the idea of the AMI being
sensitive to physiological content such as the IAF at bigger timeshifts, we arrive
at a point where we have to ask ourselves which physiological content is actually
influencing the complexity measures we apply. The decrease of the AMI function
reflects the unpredictability of a signal, but the measure itself is based on esti-
mating correlations between a signal and the time-shifted version of itself. It is
quite obvious that the AMI drops after shifting it by a few datapoints, but taking
only a few datapoints into account means that we have actually analyzed the
complexity on a very small timescale! A shift by 1 datapoint corresponds to 4ms
(256Hz), 8 datapoints to 32ms (31Hz). Thus the AMI rate of decrease, but also
measures like SaEn or ShEn look at the regularity on timescales that reflect diffuse
and tiny changes in voltage activity, with frequencies above 60Hz. Activity at
such small timescales probably reflects to some extend, the dynamics of many,
many microsources switching on and off and thus enabling such fast changes. If
this was a fact, then - according to the trend - AD patients tend to have a slower
dynamics in the microsource activation level. However, taking into concern that
noise plays a very big factor at such small timescales, it doesn’t come as a sur-
prise that no complexity-based biomarkers have made any impact up till now.
Concerning this study, given the fact that all EEG signals were bandpass filtered
(2 < f < 15Hz), the observered correlations occur at those time-scales that we
actually excluded due to several reasons in the first place.

The results of this investigation as well as previous complexity based EEG

biomarker studies found correlations by looking at irregularities on a timescale
that is of the same order as noise and muscular artifacts. Hence, even tough this
study used state-of-the-art signal preprocessing techniques, the end result makes
it hard to hide the fact that these preprocessing techniques have been basically
useless in this work and that other research groups were not aware of this fact.
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As we have seen, statistical correlations between the proposed biomarkers and
the severity of AD represented by the patient’s MMSE scores are not strong enough
to provide evidence for a possible diagnostic value and even a basis for further
investigations of this type. Considernig the full EEG record as fingerprints of
an underlying system, whose functional state can be classified according to the
unpredictability or complexity of the waveforms, is just a very oversimplified
model. In addition, most research groups analyzed the complexity of EEG sig-
nals at very small timescales (even as small as the sampling frequency). The
increased level of noise and the lack of a profound underlying physiological
model question the reasoning behind application of complexity-based markers
at such scales. However, looking at complexity at bigger timescales where noise
becomes less of a factor, the tight relationship to each patients frequency archi-
tecture comes into play, and thus strong individual differences make it hard to
obtain robust biomarkers. Our results confirmed that individual inter-electrode
and inter-epoch deviations in the waveform complexity are of the same magni-
tude as the statistical deviations between different patients. This fact, was hardly
reported in the cited literature, where the hunt for high correlation coefficients
or low p-values seemed to enjoy a much higher reputation than the correct eval-
uation and interpretation of the methods being used.
Another crucial point is the experiment design. Event-related potentials, which
are changes in cortical electrical activity as a response to a task, can provide
much more specific and less noisy data than a simple continuous observation
of the resting phase activity. The main reason is that an event related signals
can be well identified from background and automatically seperated from all
other sources. Thus one can get rid of the noise across all frequencies ranges. In
analogy to the Default Mode Network which emerged from fMRI studies, a the-
oretical model for resting state EEG activity would allow a more specific analysis
even for resting-phase records and would be the first step in order to increase
the diagnostic value of these types of records. A first approach to a more refined
resting state analysis is given in B

Still, despite the shortcomings of this and previous investigations the EEG is
a very powerful tool, with its main strength to record signals on a very fast
timescale. At the same time the fast and complex dynamics make it difficult to
interpret the physiological meaning of this biosignal. It is also the reason why
the diagnostic impact of EEG is still comparatively small. The search for EEG

biomarkers in a conservative way, that is without using a profound theoretical
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model, will, in my opinion, not contribute much to the development of new diag-
nostic possibilities concerning brain-related diseases. The approach of this work
can be compared with the attempt to analyze the waveform of a patient’s QRS
complex (from ECG) without knowing considering the physiology of heart con-
traction. Of course, a purely mathematical approach (e.g. frequency-content or
wave-form-irregularity analysis) might even reveal certain trends, but its use is
very limited due the fact that individual differences (starting with small anatom-
ical differences) lead to very high variances between biosignals from different
patients. Only after understanding the physiology of heart contraction the ECG

becomes a powerful tool since it can then be used to detect a possible malfunc-
tioning of the heart even on an individual basis.

After all there is still the fact that the brain is the most complex and thus
least understood organ of the human body. Rough estimates suggest that the
central nervous system of higher mammals is comprised of 1011 neurons com-
municating with each other via 1015 synapses. It doesn’t come to a surprise
that the functional aspects of global electric activity are far from being under-
stood. Concerning the future of biomarkers for precise diagnosis of Alzheimer’s
Disease, one should probably start with the question about how large-scale net-
work properties are changed by small-scale network changes (similar to Palop
and Mucke (2010)). Just as the disease itself is defined on a chemical or cellular
level, such a theory would provide a profound basis and result in a theoretical
framework, which might be the foundation for future research and hence impact
future generations.



Part IV

A P P E N D I X

The Appendix, in addition to the bibliography, contains two addi-
tional chapters. The first introduces the concept of the CMI method,
which extends the concept of AMI and thus can be used in a variety
of ways, but is strictly speaking not a method that investigates signal
complexity. The second chapter presents a method to visualize the
impact of synchronous events, termed bursts, which occur quite often
during the resting phase records of patients, and thus this approach
can be seen as a first step towards a more refined resting phase EEG

analysis.





A
C M I F O R I N T E R - C H A N N E L A N A LY S I S

The CMI method, as described in the methods section, provides an interest-
ing measure to exploit correlations between different electrodes within the EEG

record. It provides numerous possibilities and thus deserves to be mentioned in
this context, although strictly speaking cannot be seen as a complexity measure.
However, during my work I also investigated the methodology of the CMI, and
since not mentioned elsewhere, I want to briefly comment on several things that
became clear and thus allow the interested reader to use this measure for future
research.

a.1 an intuitive picture of cmi

Figure 21 shows examples for the type of CMI functions that arise from individ-
ual EEG epoch analysis. The only tunable parameter in CMI calculation itself is,
exactly like in the AMI Analysis, the number of bins (Nbin). However, instead of
time-shifting the very same epoch of a signal, the epochs of other electrodes are
time-shifted. Therefore, instead of capturing unpredictability or complexity, the
change of mutual information over time between different epochs describes the
temporal evolution of the nonlinear and linear correlations between the measure-
ments from two different electrode locations. Again, the oscillatory waveform of
each signal results from the summed electrical activity of numerous cortical re-
gions beneath the skull that are active during the recorded time. Hence it makes
sense that records from nearby electrodes contain contributions from the same
sources and hence share MI. The reason for this is the volume conduction (see Fig
3). Therefore each CMI function intrinsically contains spatial information about
cortical activity.

The CMI function of an electrode pair is obtained in the following way: when
comparing the signals of 2 different electrodes, we can either shift the signal
of the one or the other electrode in time. This is the equivalent of taking one
of the two electrodes as a reference and shifting the signal of other forward and
backward in time. Both functions (denoted by CMI-in, CMI-out) can therefore be
synthesized into a single CMI function (full CMI). It is noteworthy that only few
groups have used CMI as a discriminative measure in their analysis concerning
AD detection (e. g.Jeong et al. (2001) and Wan et al. (2008)). Those works did
not report about the properties of CMI functions. This chapter therefore presents
novel features that can be extracted from the analysis of nonlinear correlations
between electrode pairs using CMI.

57



58 cmi for inter-channel analysis

Figure 21: CMI function of a single epoch for various channel pairs

a.2 modelling the cmi function

Figures 21 and 22 show examples for the behavior of CMI-in, CMI-out func-
tions and their synthesized full CMI functions extracted from various neighbor-
ing channels. We can see in the examples that there is a trend in the CMI functions
depending on the distance to the reference electrode.

1. Nearby channels, have very similar patterns with the reference channel,
such that the MI shows a strong decrease for short time-delays, similar to
a weakened AMI function. The high similarity in patterns arises due to the
fact that both electrodes partly contain electrical activity from the same
cortical sources and therefore share an increased MI compared to MI values
at bigger time-shifts.

2. Channels that are further away do not show such a behavior in the CMI

functions. There is no observable decrease for short time-delays, since the
function stays approximately constant for all time-shifts.

Type 1 CMI signals contain an interesting feature since they show a peak in MI

which is not symmetrically centered but rather displaced in time. When scanning
through various single epoch CMI-function, one can observe that this displace-
ment (which lies in the range of 0-15ms) changes from epoch to epoch. This can
be understood through consideration of different cortical sources being active
at sampling points. The time-delay also reveals a directionality of information
flow, since it can be either positive or negative, and when comparing the delays
between all electrodes, they could be mapped as a 2d or 3d gradient field . This
map would then reveal the time-resolved spatial information about the shared
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Figure 22: Illustration of CMI-in, CMI-out, full-CMI for the original signals (top) and
time-shifted versions (bottom). Note that the time-shift correction is limited
by the time-resolution (in our case 4ms) defined by the inverse sampling fre-
quency.

sources of the EEG signals.
Type 2 CMI signals can give an estimation for the spread of volume conduction,
thus if there is no peak in the CMI function one can assume that the signals to
share no common cortical sources. Thus the electrodes of type 2 actually define
the spatial extend of cortical sources and thus, in combination with type 1 signals
give information about the location, time and spread of cortical sources.

This type of analysis, where the similarity between the signals of different
electrodes can be tracked over time, composes a first step to reconstruct those
cortical sources which produce the main contributions to the global measured
electrical potential. A variety of spatial source reconstruction models already
exist (Ramirez, 2008), and these methods also combine the spatial information
with the time resolution to maximally exploit the level of information inherent in
the full EEG record. This type of approach however goes beyond the framework
of this thesis and thus is not further exploited and in the following section I will
restrict myself to quantitative description of the CMI function.

a.3 cmi biomarkers

The following list is a suggestion of features that can be extracted from the CMI

function and could be used as a biomarker.
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biomarkers

1. BL Estimates the baseline CMI and therefore the average MI between 2

channels

2. tshift The estimated time-shift of the CMI curve [measured in sam-
pling point units] - lies between-2,1, 0,1,2 due to limited time-resolution
(4ms).

3. AUC area under the CMI-curve of increased MI in the critical range -
calculated via Trapez-formula (as an approximation to the integral)

4. RODout − exp The estimated exponential decay factor to model the
rate at which the CMI between the reference channel (fixed) and all
other electrodes (time-shifted) decreases.

5. RODin− exp The estimated exponential decay factor to model the rate
at which the CMI between all electrodes (fixed) and the reference chan-
nel (time-shifted) decreases.

6. cCMI(t) After extracting the time-shift, each CMI curve can be reposi-
tioned by (0-2) datapoints according to the time-shift value. The values
for all different time-shifts can be used as markers as-well. Each time-
shift corresponds to a certain frequency.

a.4 cmi in ad

For the sake of completeness, Fig 23 and 24 show the results obtained by using
the above biomarkers to predict the MMSE score of AD patients for electrode P7

as a reference electrode.
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Figure 23: The predictive strength of corrected CMI function values measured by the co-
efficient of determination R2 for linear (left) and quadratic (right) regression
models. This Figure represents the biomarkers obtained from the CMI func-
tion between channel P7 and all other channels for various time shifts, where
each time shift can be translated into a frequency shift (as depicted by the
xlabel unit). The row containing the P7 values corresponds to the AMI of P7.

Figure 24: The predictive strength of CMI biomarker values (see list above) measured
by the coefficient of determination R2 for linear (left) and quadratic (right)
regression models. This Figure represents the biomarkers obtained from the
CMI function between channel P7 and all other channels. The row contain-
ing the P7 values corresponds to the AMI of P7 for which no tshift can be
calculated (hence the white spot)





B
B U R S T A N A LY S I S

b.1 motivation

The main results of the complexity analysis made clear that the high variance be-
tween epochs within a single subject is the main reason for the shortcomings of
the used methods. In addition, we saw that the occurrence of IAF in resting state
EEG records of patients played a very influential role on the values of the AMI
at higher time-shifts, which reflects a measures of signal (ir)regularity. Thus pa-
tients that show an increased number of epochs with dominant frequencies over
several channels, (e. g.strong alpha activity), might be biased towards more reg-
ular signals than patients without. Therefore the idea behind this burst analysis
was to extract and identify those epochs which showed increased synchronous,
regular activity. This way one can refine the complexity based analysis by sepa-
rating epochs into two different types: burst epochs, and non-burst epochs. This
separation could eliminate the direct influence of a patients tendency for high
synchronous activity and thus reduce the inter-subject variability since occur-
rence of synchronous activity is known to be highly depended on mental state
of the subject (such as θ and δ activity changes during sleep stages, or α activity
modulation through directed attention)

b.2 implementation

To detect periods of high cortical synchronization, the following algorithm was
implemented:

1. Calculate the spectrum of each epoch (4s epoch length; 3s overlap be-
tween epochs) and determine the biggest peaks in the spectra

2. Find bursts by extracting periods of repetitive occurrence of a peak at
the same frequency in at least 5 successive epochs. Between each epoch
the peak position can vary by max. 1 datapoint (0.25Hz; which is the
resolution of the calculated spectra and is restricted by the sampling
frequency. For each channel, create a list of start-time, duration, and
peak frequency of all detected burst, called burst-matrix. After having
calculated the spectrum of all epochs, this matrix is checked for periods
of successive occurrence of peaks at the same frequency position. That
is, if the spectrum has a peak during at least 5 epochs, and the peak
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position does change by a maximum of 0.25 Hz, then the indices of
those epochs, as well as the value of the occurring peaks are stored in
the ’burst-matrix’.

b.3 application

To show an example for the implemented algorithm, Fig 25 shows how the burst
matrix can be used to determine dominant individual frequency bands from the
resting state EEG records of different patients. By comparing epoch peaks of all
channels, one can determine a patients individual frequency bands by investiga-
tion of the burst density profile which is obtained by summing over all epochs
as shown on the right in Fig 25. Scanning over all patients’ profiles, one can see
that different patients can exhibit very different burst behavior, and some pa-
tients do not contain clear burst periods in their record, whereas others do. This
leads to the conclusion that the physiological content of EEG resting state records
strongly varies between different patients, probably due to its high dependence
on the mental state during this resting period. Thus any investigation that aims
to analyze and compare resting state records between patients could probably
achieve more consistent results by differentiating between epochs of different
type.
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Figure 25: Visualization of the burst matrix (left) and determination of the IAF via the
summation over all epochs. The plots reflect the burst matrices for 3 different
patients (top-middle-bottom). The color code reflects the number of channels
with the same peak frequency, thus brighter values indicate high synchronous
activity, while dark spots are regionally restricted bursts. One can see that the
profiles differ strongly, with a clear indication of a single frequency band (top),
two distinct frequency bands (middle) and occurrence of multiple dominant
frequencies (bottom) where no IAF estimation was possible.
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