
DIPLOMARBEIT

Finding loop invariants
using tree grammars

Ausgeführt am Institut für
Diskrete Mathematik und Geometrie

der Technischen Universität Wien

unter der Anleitung von
Privatdoz. Dr. techn. Stefan Hetzl

durch
Gabriel Ebner

Hütteldorfer Straße 202/14
1140 Wien

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Introduction

Herbrand’s theorem was first proved by its namesake Jacques Herbrand in [Her30]: a
special case of it says that a formula ∃xϕ[x] with ϕ[x] quantifier-free is valid if and only
if there are terms t1, . . . , tn such that ϕ[t1] ∨ · · · ∨ ϕ[tn] is a tautology.

In [Gen35], Gentzen introduced the sequent calculus LK, together with a procedure to
eliminate cut inferences in this calculus. Using this result, we can obtain an easy proof
of Herbrand’s theorem: after applying cut-elimination, the terms t1, . . . , tn are explicit in
the inferences of the proof.

However, even if the proof contains cut inferences, we can still extract an explicit
description of the terms t1, . . . , tn—at least if the cut formulas in the cut inferences are
simple enough. If they are all of the form ∀y ψ[y], i.e. prenex formulas with a single
universal quantifier, then we can extract a totally rigid tree grammar generating these
terms t1, . . . , tn as proved in [Het12]. In this grammar, each non-terminal corresponds to
a cut in the proof. This extraction then suggests a method to introduce cut inferences:
starting from a Herbrand sequent, we find a grammar generating it, and can then choose
a cut formula for each non-terminal, giving a proof with cuts; this procedure has been
successful in experiments on a large proof database, see [Het+14b] for details.

Conceptually we can view an inductive proof of ϕ[0] ` ∀z ∈ Nϕ[z] as a proof containing
infinitely many similar cuts, each with the cut formula ϕ[i] → ϕ[i + 1]. And we can
again extract a grammar where the non-terminals correspond to these cuts—but due
to the similarity of these infinitely many cuts, it suffices to consider one schematic non-
terminal. A procedure analogous to cut-introduction was proposed in [EH15]; starting
from Herbrand sequents, we can find a grammar generating them, and again (with a bit
more work) choose suitable cut formulas—and for an inductive proof, these cut formulas
are inductive invariants. These invariants are the crucial and difficult part in an inductive
proof; given an inductive invariant, it is relatively easy to complete it into a full inductive
proof. So this procedure gives a method for automated inductive theorem proving.

Similar invariants are also studied by a different community. In program verification,
loop invariants take a similar place as induction formulas: a loop invariant is a formula
that is true at every iteration of a loop; they have been used for the verification of loops
since the early efforts of Hoare [Hoa69] and Floyd [Flo67]. Again, finding these invariants
is the difficult part; completing the proof usually just requires verifying the validity of
quantifier-free formulas.

In this thesis, we will apply and adapt the method for inductive theorem proving using
grammars to the verification of loop programs.

i

Contents

Introduction i

Contents iii

1 Term languages 1
1.1 Tree grammars . 2

1.2 Normal forms . 3

1.2.1 Reduction to propositional logic 11

1.2.2 Computing normal forms . 13

1.3 Minimizing grammars . 16

1.4 Finding a minimal grammar . 17

2 Simple proofs 19
2.1 Sequent calculus . 19

2.2 Extended Herbrand sequents . 21

2.3 Grammars . 27

3 Inductive proofs 29
3.1 Schematic sips . 32

3.2 Finding minimal sip grammars . 35

3.3 Finding induction formulas . 38

4 While programs 41
4.1 Operational semantics . 41

4.2 Hoare logic . 43

5 Loop verification 47
5.1 Finding slp grammars . 50

5.2 Finding loop invariants . 51

5.3 Overview . 52

5.4 Examples . 52

5.4.1 Addition . 53

5.4.2 Array initialization . 54

5.4.3 Bubble sort . 57

Conclusion 61

iii

CONTENTS

Bibliography 63

iv

1 Term languages

The following are standard definitions as found in [Com+07] or [BN98].

Definition 1.1. A signature Σ is a set of function symbols, where each f ∈ Σ is
associated with a non-negative integer n, the arity of f .

Elements f ∈ Σ with arity 0 are called constant symbols.

Definition 1.2. Let Σ be a signature and X be a set of variables such that Σ ∩X = ∅.
The set T (Σ, X) of all terms is inductively defined as:

• X ⊆ T (Σ, X).

• For any f ∈ Σ with arity n: if t1, . . . , tn ∈ T (Σ, X), then f(t1, . . . , tn) ∈ T (Σ, X).

Definition 1.3. Let Σ be a signature and X a set of variables such that Σ ∩X = ∅. A
substitution is a map σ : X → T (Σ, X) from variables to terms.

This map homomorphically extends to a map σ : T (Σ, X)→ T (Σ, X):

σ(x) := σ(x) for x ∈ X
σ(f(t1, . . . , tn)) := f(σ(t1), . . . , σ(tn))

We will write σ for σ if no confusion arises, and often write the application of a
substitution σ to a term t in postfix notation, i.e. tσ = σ(t).

Definition 1.4. Let X be a set. The set X∗ denotes the finite sequences of elements in
X, including the empty sequence ε.

For sequences a, b ∈ X∗, the sequence ab denotes their concatenation.

Definition 1.5. Let s ∈ T (Σ, X) be a term.
The set of positions Pos(s) ⊆ N∗ is defined recursively as:

• Pos(x) = {ε} for x ∈ X where ε is the empty sequence.

• Pos(f(t1, . . . , tn)) = {ε} ∪ 1 Pos(t1) ∪ · · · ∪ nPos(tn) for f ∈ Σ with arity n.

The size |s| of a term s is the number |Pos(s)| of its positions.
For p ∈ Pos(s), the subterm of s at position p, written s|p is defined recursively as:

• t|ε = t.

• f(t1, . . . , tn)|iq = ti|q.

1

1 Term languages

For p ∈ Pos(s) and a term t ∈ T (Σ, X), replacing the subterm at position p by t in s
gives the term s[t]p:

• s[t]ε = t.

• f(s1, . . . , sn)[t]iq = f(s1, . . . , si[t]q, . . . , sn).

Definition 1.6. Let s, t ∈ T (Σ, X) be terms. The term t is a subterm of s, written
t E s, if there exists a position p ∈ Pos(s) such that t = s|p. The set st(s) = {t ∈
T (Σ, X) : t E s} consists of all subterms of s.

The term t is a strict subterm of s, written t C s, if t E s and t 6= s.
The set of variables in s is the set Var(s) := {v ∈ X : v E s} of variables which are

subterms of s.

Definition 1.7. Terms t ∈ T (Σ, ∅) are called ground terms. We abbreviate T (Σ) =
T (Σ, ∅) as the set of ground terms over the signature Σ.

1.1 Tree grammars

Tree grammars and automata are tools from formal language theory to describe families
of trees or in our case, terms. For a general introduction to the topic, see [Com+07].
Rigid tree automata were introduced in [JKV11], their recognized languages correspond
to those of rigid tree grammars as introduced in [Het12], where they naturally arise as
grammars generating Herbrand sequents for simple proofs with cut.

Definition 1.8. A regular tree grammar G = (τ,N,Σ, P) over a signature Σ is composed
of a finite set of non-terminals N such that Σ ∩N = ∅, an axiom τ ∈ N , and a finite set
of productions P where each production α→ t is a pair of a non-terminal α ∈ N and a
term t ∈ T (Σ, N).

Definition 1.9. A totally rigid acyclic tree grammar, short trat grammar, is a tree
grammar G = (τ,N,Σ, P) that is acyclic, i.e.:

There exists a partial order < on the set N of non-terminals such that α < Var(t) for
any production α→ t ∈ P .

Definition 1.10. Let G = (τ,N,Σ, P) be a trat grammar.
A single-step derivation s →1 t is a pair of terms s, t ∈ T (Σ, N) together with a

position p ∈ Pos(s) and a production α→ k ∈ P such that s|p = α and t = s[k]p.
A derivation of a term t ∈ T (Σ) is a sequence of single-step derivations τ = t1 →1

· · · →1 tn = t that is rigid: if a non-terminal occurs more than once in the derivation, i.e.
ti|p = tj|q = α ∈ N , then t|p = t|q.

Definition 1.11. Let G be a trat grammar. The language L(G) generated by G is the
set of all terms derivable in G.

Lemma 1.12. Let G = (τ,N,Σ, P) be a trat grammar. Then L(G) is finite, and

|L(G)| ≤ |N ||P |+1.

2

1.2 Normal forms

Proof. Let t ∈ L(G) be a term, and d a derivation of t. We can define a partial function
pt : N → P that assigns to each non-terminal α the first production pt(α) = α → . . .
starting with α that occurs in d, if the non-terminal α does occur at all.

We can recover t from pt. Use acyclicity to order the non-terminals as τ = α0 < · · · <
αn, and define ti recursively as ti = k[αi+1\ti+1, . . . , αn\tn] if pt(αi) = αi → k exists, and
ti = c for an arbitrary constant c otherwise.

Each ti is now a ground term equal to the rigid value of the non-terminal αi
1; i.e. if αi

occurs in the derivation at a given position then ti will be the ground term at the same
position in t. Since t0 = t, the mapping t 7→ pt is injective.

1.2 Normal forms

Definition 1.13. A finite set of terms is called a language.

Definition 1.14. Let G be a trat grammar, and L a language. The grammar G covers
the language L, if L(G) ⊇ L.

For brevity, we will usually just write “grammar” instead of “trat grammar”.

Definition 1.15. Let G = (τ,N,Σ, P) be a grammar. Its size |G| is the number of its
productions |P |.

Given a language L, we want to find a small grammar G covering this language as
that gives a concise description of L. (The language L will correspond to a Herbrand
sequent, and the grammar G to a proof with cuts—a smaller grammar will correspond
to a better proof.)

Our approach to this problem will be to take a suitable large grammar and make it
smaller in the following sense:

Definition 1.16. Let G = (τ,N,Σ, P) and G′ = (τ,N,Σ, P ′) be trat grammars in the
same signature and with the same non-terminals.

We say that G′ is a sub-grammar of G, and write G′ ⊆ G, if the productions are
subsets: P ′ ⊆ P .

It is always possible to find a grammar covering L, by simply including the productions
τ → t for all t ∈ L. But this grammar is fairly large; and more importantly, we
cannot hope to simplify this naive grammar by taking sub-grammars, i.e. removing
productions—each production is clearly necessary.

Fix a set of non-terminals N = {α0, . . . , αn}. Another easy (although infinite) “gram-
mar” that covers L is the maximal grammar: Simply take all productions.2 Clearly, this
grammar contains any possible grammar with those non-terminals as a sub-grammar.

1We will encounter this again in Lemma 1.31, where this will this rigid value will be δd(αi)
2The “grammar” obtained this way is infinite—but for the purpose of the example, it would be

enough to consider the finite grammar consisting only of those productions that are smaller than the
maximum size of a term in L.

3

1 Term languages

As an example consider the following language:

Σ = {f/2, c/0, d/0}
L = {f(c, c), f(d, d)}

The maximal grammar would then contain the following productions:

P =
⋃

0≤i<n

{αi → t : t ∈ T (Σ, {αi+1, . . . , αn})}

However, minimizing this huge list of productions is computationally infeasible, and it
would be nice if we could find our small grammar as a subset of a more manageable set
of productions.

Observe that some of the productions are unnecessarily general if we are only interested
in covering L. For example, consider the production α0 → f(α3, α8). If we start a
derivation with this production, and then apply a production for α3, we will always have
to apply the corresponding production for α8 if we want to get a term in L:

α0 →1 f(α3, α8)→1 f(c, α8)→1 f(c, c)

· · · →1 f(c, α20)→1 f(c, c)

Maybe we apply α8 → c; or maybe α8 → α20 and then α20 → c, but we will always
end up with f(c, c) after we apply α3 → c.

Instead of α0 → f(α3, α8), we could have always started with α0 → f(α3, α3).

Why is this the case? If we take a look at L, the terms have a particular pattern: the
two arguments of the function symbol f are always the same. We will formalize this by
saying that f(α3, α8) satisfies the equation α3 = α8 in L.

Eberhard and Hetzl showed in [EH14] that we only need productions whose right side
does not satisfy any non-trivial equations for the grammar of minimal size covering L.

Let us assume that the signature Σ is infinite. We will formalize normal forms using
the theory of free term algebras. These algebras, also called Herbrand universes or finite
tree algebras, are widely studied in computer science because they describe inductive
data types [Mah88; Opp78].

In this work we are interested in applying term algebras to productions in trat grammars,
where non-terminals have a similar purpose as variables—and for this reason we will call
variables “non-terminals”.

Definition 1.17 (Logic of term algebras). Formulas are constructed from equations
q = r of terms possibly containing non-terminals, using the propositional connectives ⊥,
>, ¬, ∧, ∨, and →.

Models of this logic are substitutions, and a substitution σ satisfies an equation q = r,

4

1.2 Normal forms

in symbols σ |= q = r, if qσ = rσ. Truth is defined as usual, i.e.:

σ |= ⊥ ⇔ ⊥
σ |= > ⇔ >
σ |= ¬ϕ ⇔ ¬ σ |= ϕ

σ |= ϕ ∧ ψ ⇔ σ |= ϕ ∧ σ |= ψ

σ |= ϕ ∨ ψ ⇔ σ |= ϕ ∨ σ |= ψ

σ |= ϕ→ ψ ⇔ σ |= ϕ → σ |= ψ

A formula ϕ entails a formula ψ, in symbols ϕ |= ψ, if σ |= ϕ implies σ |= ψ for all
substitutions σ; ϕ is valid, in symbols |= ϕ, if σ |= ϕ for all σ.

For a term t and finite sets of terms L and L′, we introduce the following abbreviations:

t ∈ L ≡
∨
s∈L

t = s

L ⊆ L′ ≡
∧
t∈L

t ∈ L′

For a term t and a language L, we say that t satisfies the equation q = r in L, if
t ∈ L |= q = r.

Example 1.18. The following are valid formulas in the logic of term algebras:

|= f(c) = f(c)

|= f(c) 6= f(d)

|= f(α) = f(β)→ α = β

|= f(α) 6= α

|= c ∈ {c, d}
|= f(α) 6∈ {c, d}
|= f(α) ∈ {c, d, f(c)} → f(α) = f(c)

Lemma 1.19. Let q = r be a satisfiable equation, then there exist non-terminals
α1, . . . , αn and terms t1, . . . , tn such that |= q = r ↔ α1 = t1 ∧ · · · ∧ αn = tn.

The non-terminals can be chosen to be pairwise distinct and to occur in q = r, and the
terms ti can be chosen such that either ti does not contain the non-terminals α1, . . . , αn,
or that all ti occur as subterms in q = r.

Proof. Break down q = r recursively: if q = f(q1, . . . , qm) and r = f(r1, . . . , rm), then
|= q = r ↔ q1 = r1 ∧ q2 = r2 ∧ · · · ∧ qm = rm; repeat this process recursively for each
smaller equation qi = ri. Otherwise, q or r needs to be a non-terminal, or q = r would
have been unsatisfiable—here, q = r is already in the required form (we might need to
reorder the equation though).

By construction, each of the non-terminals αi was a subterm of q = r.

5

1 Term languages

If we have two conjuncts αi = ti and αj = tj with the same non-terminal αi = αj and
ti, tj 6∈ N , then we can replace αi = ti ∧ αj = tj by the equivalent αi = ti ∧ ti = tj and
break down the second equation ti = tj recursively again. This terminates, since we
remove at least one function symbol per reduction step.

This works if we do not have equations between two non-terminals. If we have those,
then we need to “regularize” the equations: take the reflexive transitive closure ≈ of
the relation “αi = αj is a conjunct” between non-terminals. Order the non-terminals in
each equivalence class {β1, . . . , βl}, replace β2, . . . , βl by β1 in the other conjuncts, and
replace the non-terminal equations by βl = βl−1 ∧ · · · ∧ β2 = β1. Doing this after every
reduction ensures that the non-terminals αi are distinct at the end.

To finish the proof, we only need to remove occurrences of the non-terminals αi on the
right-hand side of the equations. Substitute α1 by t1 in all equations except α1 = t1—if
α1 occurred in t1, the original equation would have already been unsatisfiable. Continue
with the other non-terminals.

Example 1.20. |= f(α, γ) = f(β, c)↔ α = β ∧ γ = c

Remark 1.21. The construction in Lemma 1.19 is reminiscent of the construction of a
most general unifier. And indeed, if we view the resulting equations α1 = t1∧· · ·∧αn = tn
as a substitution σ = [α1\t1, . . . , αn\tn], then σ is a most general unifier.

However, in general, most general unifiers may rename variables—and such substitutions
would not give equivalent formulas. For example, consider the equation f(α) = f(β):
The substitution σ = [α\γ, β\γ] is clearly a most general unifier, but 6|= f(α) = f(β)↔
α = γ ∧ β = γ.

Definition 1.22. An equation of the form s = s is called trivial.

Definition 1.23. A term k is in normal form relative to a language L, if k ∈ L |= q = r
and q, r E k implies that q = r is trivial.

Example 1.24. The term f(α, c) is not in normal form relative to L = {f(c, c), f(d, d)},
since f(α, c) ∈ L |= α = c.

If we consider the language L = {f(f(f(c)))}, then all of the following terms are in
normal form relative to L: α, f(α), f(f(α)), f(f(f(α))), and f(f(f(c))).

Lemma 1.25. For a term k and a language L, the following are equivalent:

1. k is in normal form relative to L

2. If k ∈ L |= α = r and α, r E k, then α = r is trivial.

Proof. Apply Lemma 1.19.

The choice of how to define normal forms allows a bit of freedom in specifying what
equations are disallowed:

(a) Any equation.

(b) Any equation of subterms or ground terms.

6

1.2 Normal forms

(c) Any equation of subterms.

Each of these choices defines a progressively larger class of normal forms. To illustrate,
consider the following language:

L = {f(g(c), h(c)), f(g(d), h(d))}

For example the term f(α, h(β)) satisfies essentially only the equation α = g(β), hence
it is not in normal form relative to L according to definition (a), but it is in normal form
according to definitions (b) and (c) since g(β) is neither a subterm of f(α, h(β)) nor
ground.

The term f(α, h(c)) satisfies essentially only the equation α = g(c); it is not in normal
form according to definitions (a) or (b), but still in normal form according to definition (c).

Many of the following lemmas are true for each of these definitions (with minor changes),
in particular Theorems 1.27 and 1.48 and Lemma 1.28, which guarantee that the set of
normal forms can be computed in polynomial time.

Definition (b) is the one originally presented in [EH14]; we are using definition (c)
because it allows for more normal forms, which will become necessary for slp grammars.

Lemma 1.26. Let k be a term and L ⊆ L′ languages.

• k ∈ L′ |= k ∈ L.

• Larger sets satisfy fewer equations: If k ∈ L′ |= q = r, then k ∈ L |= q = r for any
equation q = r.

• Larger sets have more normal forms: If k is in normal form relative to L, then k
is in normal form relative to L′.

Proof. To show that k ∈ L′ |= k ∈ L, we only need to expand the definitions:

k ∈ L′ ↔
∨
t∈L′

k = t

↔
∨
t∈L

k = t ∨
∨

t∈L′\L

k = t

→ k ∈ L

If now k ∈ L′ |= q = r and σ |= k ∈ L, then σ |= k ∈ L′ by the above argument and
σ |= q = r by assumption.

We need to show that any equation q = r such that k ∈ L′ |= q = r and q, r E k is
trivial. But if k ∈ L′ |= q = r, then k ∈ L |= q = r as well, and the equation q = r is
trivial since k is in normal form relative to L.

Theorem 1.27. Let k be a term in normal form relative to L with n non-terminals, then
there is a subset L′ ⊆ L with |L′| ≤ n such that k is still in normal form relative to L.

7

1 Term languages

Proof. We will construct a sequence of languages L0 ⊆ L1 ⊆ · · · ⊆ Ln ⊆ L such that
|Li| ≤ i+ 1 for all 0 ≤ i ≤ n with the aim that L′ = Ln.

Choose L0 = {t0} such that σ |= k ∈ L0 for some σ. Now order the non-terminals
occurring in k by a total order < such that α < β if σ(α) is a strict subterm of σ(β).

This order has the useful property that if k ∈ Li |= α = t, then any non-terminal β
that is a strict subterm of t satisfies β < α, since σ(β) is then a strict subterm of σ(α).
Hence we only need to consider two possibilities: The term t only contains non-terminals
β < α; or t = β such that σ(α) = σ(β).

Let the non-terminals be α1 < α2 < · · · < αn.
We will now choose the Li in such a way that k ∈ Li 6|= αj = q for any non-trivial

equation αj = q with j ≤ i and q E k such that q 6∈ {αi+1, . . . , αn}. For L0, this is
vacuously true.

For the other Li, we only need to falsify equations of the form αi = q. Assume that
k ∈ Li−1 |= αi = q.

First, consider the case that the equation is of the form αi = αj for j < i. Choose a
term t ∈ L such that k = t |= αi 6= αj and set Li = Li−1 ∪ {t}. This rules out any other
equations as well, since if k ∈ Li |= αi = αk, then already k ∈ Li−1 |= αj = αk, contrary
to assumption. If k ∈ Li |= αi = q, then k ∈ Li−1 |= αj = q since k ∈ L0 |= αi = αj.

In the other case, the equation is of the form αi = q where q E k is not a non-terminal.
Again, choose a term t such that k = t |= αi 6= q. Now, any non-terminal αj occurring in
q has the property that j < i, since σ(αj) is a strict subterm of σ(αi). If we have any
other equation such that k ∈ Li−1 |= αi = r, then k ∈ Li−1 |= q = r, and by Lemma 1.19,
there exists an l < i such that k ∈ Li−1 |= αl = s where s E q = r E k only contains
non-terminals less than αi (since both q and r only contained non-terminals less than
αi).

If neither of these cases apply, set Li = Li−1.

Lemma 1.28. Let k be a term and L a language. Then there is a term k′ in normal
form relative to L such that k ∈ L |= k = k′.

Any such term k′ contains no other non-terminals than k. In particular there exists
a sequence of equations k ∈ L |= αi = ti such that αi, ti E k for all i, and k′ =
k[α1\t1] · · · [αn\tn].

The proof of this lemma also explains the name “normal form”: The term k′ can
be seen as the result of applying the rewrite rules αi → ti induced by the equations
k ∈ L |= αi = ti.

Proof. Let us first define an order where we need to apply each substitution [αi\ti] only
once: For non-terminals α, β E k set α < β if there exists a subterm t E k such that
k ∈ L |= α = t and β C t. The relation < does not contain any cycles as otherwise k ∈ L
would be unsatisfiable; we can therefore extend < to a total order.

Let α1 < · · · < αn be the list of all non-terminals αi for which there is a non-trivial
equation αi = ti with k ∈ L |= αi = ti such that ti E k, and if ti is a non-terminal,
αi < ti.

8

1.2 Normal forms

Define ki := k[α1\t1] · · · [αi\ti]. Since ki ∈ L |= αj = tj for each i < j, we have
ki ∈ L |= ki = kj for all i < j and in particular k ∈ L |= k = k′.

Assume now towards a contradiction that kn ∈ L |= α = kn|p for a non-trivial equation
α = kn|p. Since k ∈ L |= k = kn, we clearly have k ∈ L |= α = kn|p. We now want to
find a t E k such that k ∈ L |= α = t and α = t is non-trivial.

Take the first i such that p ∈ Pos(ki) and α = ki|p is non-trivial. If i = 0, then we
are done. Otherwise ki|p = ti|q for a position q, and ti|q E ti E k. We also still have
k ∈ L |= α = ti|q.

If a non-terminal occurs in a derivation of a term in a trat grammar, then it always
ends up as the same ground term. This is to say, that given a derivation d of a term t in
a trat grammar G = (τ,N,Σ, P), the mapping δd : α = ti|p 7→ t|p is actually a function
that sends each non-terminal to its eventual ground term. Note that this function can
be partial, if a non-terminal α ∈ N does not occur in the derivation.

This mapping δd is a model in the sense of this chapter. In a way, its theory says
which productions were used in the derivation: if a production α→ s ∈ P occurred in
the derivation, then clearly δd |= α = s.

But what about a non-terminal β that did not occur in the derivation? It will only
satisfy the vacuous equality δd |= β = β.

In the end, we would like to characterise the theory of all derivations of a grammar,
i.e. find a formula ϕG such that δd |= ϕG for all derivations d, and hopefully be able to
obtain a derivation from any model σ |= ϕG.

To this end, ϕG should say that a derivation picks one production for each non-terminal,
i.e. δd |=

∨
α→t∈P α = t—but this is not true, and if we add α = α to this disjunction, it

becomes valid.
Hence we will need to treat unused non-terminals specially; for this propose introduce

a new constant symbol Ω, call this extended signature Σ = Σ∪ {Ω}. We can now extend
δd to δd such that δd(β) = Ω for unused non-terminals β, and δd(α) = δd(α) for α that
occur in the derivation.

Definition 1.29. Let G = (τ,N,Σ, P) be a trat grammar, its characteristic formula is
the following formula ϕG in the signature Σ:∧

α∈N

(
α = Ω ∨

∨
α→t∈P

α = t

)
Example 1.30. Consider the trat grammar G with the non-terminals τ < α < β and the
following productions:

τ → f(α) | g(β)

α→ h(β)

β → a | b

This is its characteristic formula:

ϕG ≡ (τ = f(α)∨ τ = g(β)∨ τ = Ω)∧ (α = h(β)∨α = Ω)∧ (β = a∨β = b∨β = Ω)

9

1 Term languages

We can now construct a model from a derivation d of g(a):

d = τ →1 g(β)→1 g(a)

δd |= τ = g(a) ∧ β = a ∧ α = Ω

Lemma 1.31. Let G = (τ,N,Σ, P) be a trat grammar. Then δd |= ϕG for any derivation
d.

Proof. Let the derivation d be the sequence τ = t1, . . . , tn where tn is a ground term.
We will prove first of all that δd |= ti|p = tn|p for any term ti and position p. If ti|p is
a non-terminal, then δd(ti|p) = tn|p by definition. Otherwise, ti|p = f(r1, . . . , rm) and
assume δd |= ti|pj = tn|pj for any 1 ≤ j ≤ m. But by congruence of equality this implies
δd |= ti|p = tn|p as well.

For any non-terminal α, if δd(α) 6= Ω, then α occurs in the derivation and there exist ti
and p such that ti|p = α and ti+1|p = s for a production α→ s. By the previous remark,
δd |= α = ti|p = tn|p = ti+1|p = s.

Lemma 1.32. Let G = (τ,N,Σ, P) be a trat grammar, and σ a model of ϕG such that
σ(τ) is a ground term in the signature Σ, i.e. not containing Ω. Then there is a derivation
of σ(τ) in G.

Proof. Assume the non-terminals N are ordered as τ = α0 < α1 < · · · < αn such that
αi < Var(s) for any production αi → s ∈ P .

We will iteratively construct derivations δi = (α0 →1 · · · →1 ti) such that ti only
contains non-terminals αj with j ≥ i, and σ |= r = τ for any term in the sequence δi.
Start with the (empty) derivation δ0 = α0.

For δi+1, consider the derivation δi = (α0 →1 · · · →1 ti). If ti does not contain any
occurrences of αi, then do nothing and set δi+1 = δi.

Otherwise, σ(αi) 6= Ω and we can pick a production pi = αi → si ∈ P such that
σ |= αi = si. Apply the production pi to all occurrences of αi in ti. This results in a
derivation δi+1 = (δi →1 · · · →1 ti →1 . . . ti+1).

At the end we have the derivation δn+1 = (α0 →1 · · · →1 tn+1). The term tn+1 at the
end is ground since it only contains non-terminals αi with i ≥ n+ 1, and it is equal to
σ(τ) since σ |= tn+1 = τ . Furthermore the derivation is rigid, since σ |= r = r′ = σ(τ)
for any terms r and r′ in δn+1. Hence δn+1 is a derivation of σ(τ).

Corollary 1.33. Let G = (τ,N,Σ, P) be a trat grammar, and t ∈ T (Σ) a term, then
the following are equivalent:

1. t ∈ L(G)

2. τ = t ∧ ϕG is satisfiable

3. τ = t ∧ ϕG ∧N ⊆ st(t) ∪ {Ω} is satisfiable

10

1.2 Normal forms

Lemma 1.34. Let G be a trat grammar, α → k one of its productions, L a language,
and k′ a term such that k ∈ st(L) |= k = k′.

Then L(G) ∩ L ⊆ L(G′) ∩ L for the trat grammar G′ which is obtained from G by
replacing the production α→ k by α→ k′.

Proof. We have ϕG∧α ∈ st(L)∪{Ω} |= ϕG′ by case distinction on α 6= k∨α = Ω∨ (α =
k ∧ α ∈ st(L)). Applying Corollary 1.33 finishes the proof.

Definition 1.35. Let L be a language and α1 < · · · < αn an ordered set of non-terminals.
A production αi → k is in trat-normal form relative to L if k is in normal form relative
to st(L) and does not contain any non-terminals αj with j < i.

Theorem 1.36. Let L a language and G = (τ,N,Σ, P) a trat grammar that covers L.
Then there is a grammar G′ = (τ,N,Σ, P ′) with |P ′| ≤ |P | where all productions are in
trat-normal form relative to L that still covers L.

Proof. For each production p = α → k ∈ P apply Lemma 1.28 to get a production
p′ = α→ k′ in trat-normal form such that k ∈ st(L) |= k = k′, and let P ′ be the set of
such productions α→ k′.

Successively applying Lemma 1.34 shows that L(G) ∩ L ⊆ L(G′) ∩ L and hence
L ⊆ L(G′).

1.2.1 Reduction to propositional logic

A classical result for first-order logic is that we can reduce first-order logic with equality
to first-order logic without equality in the sense that there is a formula Th= (for a fixed
finite language) such that the following are equivalent for any ϕ, see e.g. [TS00]:

• ϕ is valid in first-order logic with equality.

• Th= → ϕ is valid in first-order logic without equality, i.e. where = is just a binary
relation symbol.

The formula Th= is a conjunction of Π1-axioms for equality, such as ∀x∀y x = y →
f(x) = f(y), etc.

A similar reduction can be used to handle uninterpreted function symbols in SMT solv-
ing, but here it is essential that the added axioms for equality are quantifier-free, as quanti-
fied formulas are difficult to handle using SMT techniques. One of the reductions that can
be used to remove uninterpreted function symbols here is due to Ackermann [Ack62], which
reduces quantifier-free formulas with uninterpreted function symbols to equality logic.
This is done by adding an axiom t1 = s1 ∧ · · · ∧ tn = sn → f(t1, . . . , tn) = f(s1, . . . , sn)
for any subterms f(t1, . . . , tn) and f(s1, . . . , sn) occurring in the formula.

In the following, we will develop a similar reduction from the logic of term algebras to
propositional logic.

11

1 Term languages

Definition 1.37. Let ϕ be a formula in the language of terms. For a term t, write t E ϕ
if t is a subterm of ϕ, i.e. if it is the subterm of the left or right hand side of an equation
in ϕ.

Define the formula ThϕT as the conjunction of the following formulas, where C is a new
binary relation symbol:

• f(t) = f(s)↔ t = s for any f(t), f(s) E ϕ,

• f(t) 6= g(s) for any f(t), g(s) E ϕ with different function symbols f 6= g,

• t = t ∧ (t = s↔ s = t) ∧ (t = s ∧ s = r → t = r) for any t, s, r E ϕ,

• t = t′ ∧ s = s′ ∧ t C s→ t′ C s′ for any t, t′, s, s′ E ϕ,

• t 6 t ∧ (t C s ∧ s C r → t C r) for any t, s, r E ϕ,

• ti C f(t1, . . . , tn) for any f(t1, . . . , tn) E ϕ and 1 ≤ i ≤ n.

The atoms t 6 s and t 6= s are abbreviations of ¬(t C s) and ¬(t = s), respectively.

Remark 1.38. The relation C is included here to prevent the propositional model from
accidentally talking about infinite terms. For example the assignment I |= α = f(β)∧β =
g(γ) ∧ γ = h(α) would produce the infinite term α = f(g(h(f(g(h(. . .)))))) without the
axioms for C.

Another way to prevent this situation without introducing a new relation symbol would
be to include the following axioms:

• t1 6= s1∨ · · ·∨ tn 6= sn for any ti, si E ϕ such that s1 C t2∧ · · ·∧ sn−1 C tn∧ sn C t1.

But unfortunately, there might be exponentially many axioms of this form, while the
version of ThϕT in Definition 1.37 is always of polynomial size.

Lemma 1.39. Let ϕ be a formula, then (σ,C) |=T ThϕT for any substitution σ where C
is interpreted as the real subterm relation.

Lemma 1.40. Let ϕ be a formula, then for any propositional model I |=prop ThϕT , there
exists a substitution σ such that σ |=T t = s if and only if I |=prop t = s for any t = s
occurring in ϕ.

Proof. The formula ThϕT ensures that CI is a partial order on the equivalence classes
induced by =I . Extend this order to a total order < on all subterms of ϕ such that the
=I-equivalence classes are ordered by inverse term size. That means the following: if
I |= s C t, then s < t; and if I |= α = f(t), then f(t) < α.

We say that a non-terminal α is defined by the term t if t < α and I |= α = t.
Now define a map σ : st(ϕ)→ T (Σ, X) by recursion on (st(ϕ), <):

• σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)),

• σ(α) = t if α is definable by t,

12

1.2 Normal forms

• σ(α) = α if α is not definable.

This map σ is a homomorphism and coincides with the substitution defined by the
values σ(α) for the non-terminals, hence we will identify σ with this substitution.

Let us now prove by <-induction that I and σ agree on the truth value of all equations
r = s with r, s E ϕ:

1. If r = s is a trivial equation, then both I and σ satisfy it.

2. If r is definable and we picked the definition t, then both I and σ satisfy r = t, and
the equation r = s is equivalent to the (smaller) equation t = s in both I and σ. If
s is definable, a symmetric argument applies.

3. If r = f(. . .) and s = g(. . .) for different function symbols f 6= g, then neither I
and σ satisfy r = s.

4. If r = f(r1, . . . , rn) and s = f(s1, . . . , sn), then the equation r = s is equivalent to
the conjunction of the (smaller) equations r1 = s1 ∧ · · · ∧ rn = sn in both I and σ.

5. If r and s are non-terminals and neither is definable, then I |= r 6= s, and also
σ |= r 6= s since σ(r) = r 6= s = σ(s).

6. If r is a non-terminal and not definable, but s = f(. . .), then I |= r 6= s and also
σ |= r 6= s since σ(r) is a non-terminal but σ(s) is not. Up to symmetry, this is the
last case.

Theorem 1.41. Let ϕ be a formula, then ϕ ∧ ThϕT is a polynomial-time computable
formula such that the following are equivalent:

• ϕ is satisfiable by a substitution.

• ϕ ∧ ThϕT is satisfiable by a propositional assignment to the atoms t = s and t E s
for any t, s E ϕ.

Proof. The formula ThϕT is clearly polynomial-time computable.
If ϕ is satisfiable by a substitution σ, then (σ,C) |= ThϕT by Lemma 1.39. The

propositional assignment I given by I |= t = s⇔ σ |= t = s and I |= t C s⇔ (σ,C) |=
t C s then satisfies ϕ ∧ ThϕT .

On the other hand, if I |= ϕ∧ThϕT , then σ |= ϕ as well for the σ given by Lemma 1.40.

1.2.2 Computing normal forms

Definition 1.42. A term t subsumes a term s, written t � s, if there exists a substitution
σ such that tσ = s.

13

1 Term languages

Lemma 1.43. Any two terms t and s have a minimum t×s in the subsumption pre-order.
This minimum t× s is explicitly given by the following recursive definition where αt,s

is a distinct non-terminal for each pair of terms t and s:

f(t1, . . . , tn)× f(s1, . . . , sn) = f(t1 × s1, . . . , tn × sn)

t× s = αt,s otherwise

Proof. Define the substitutions π1 and π2 by π1(αt,s) := t and π2(αt,s) := s. Clearly
(t× s)π1 = t and (t× s)π2 = s; this proves that t× s is a lower bound for t and s.

It remains to prove that any other lower bound of t and s is below t× s as well; to this
end assume that r is another lower bound as well, with rσ1 = t and rσ2 = s. Consider
now the substitution 〈σ1, σ2〉 defined by 〈σ1, σ2〉(α) := ασ1 × ασ2, we will show that
r〈σ1, σ2〉 = t× s:

t s

t× s

r

π1 π2

σ1 σ2
〈σ1,σ2〉

If r is a non-terminal, then this is true by definition. Otherwise, r = f(r1, . . . , rn) is
a function application; since r � t, the term t needs to be of the form t = f(t1, . . . , tn)
as well, and similarly s = f(s1, . . . , sn). Now t × s = f(t1 × s1, . . . , tn × sn) =
f(r1〈σ1, σ2〉, . . . , rn〈σ1, σ2〉) = r〈σ1, σ2〉 by the induction hypothesis.

Remark 1.44. The minimum in the subsumption ordering has several names in the
literature. In [EH14], it is called “generalized delta vector”. Plotkin called it “least
general generalization” in [Plo70a; Plo71]. A more modern terminology seems to be
“anti-unification” which seems to originate from [Rey70].

Remark 1.45. While any two terms have a minimum, in general they do not need to
have a maximum. A maximum of two terms with disjoint sets of non-terminals exists
precisely when they are unifiable—in this case the maximum t+ s can be computed from
the most general unifier mgu(t, s) as t+ s = t mgu(t, s) = s mgu(t, s).

Subsumption is a pre-order and induces an equivalence relation ≈ on terms, t ≈ s if
and only if t � s and s � t. Two terms t and s are then equivalent if they only differ by
a renaming of their non-terminals—e.g. f(α, β) ≈ f(β, α).

The subsumption lattice (T (Σ∪N)/≈∪{Ω},+,×) consists of the set of such equivalence
classes, together with a new largest element Ω.

This lattice was originally investigated by Plotkin [Plo70b].

Definition 1.46. Let D ⊆ T (Σ, N) be a set of terms. A generalized substitution
σ : D → T (Σ, N) maps terms from D to terms.

14

1.2 Normal forms

We extend a generalized substitution σ to a function σ on the full set of terms in the
following way:

σ(f(t1, . . . , tn)) =

{
σ(f(t1, . . . , tn)) if f(t1, . . . , tn) ∈ D
f(σ(t1), . . . , σ(tn)) otherwise

As with substitutions, we write tσ = σ(t) if no confusion arises.

Lemma 1.47. Let k be a term in normal form relative to the language L, and σ a
substitution such that kσ subsumes every term in L.

Then the restriction σ � st(k) : st(k)→ st(k)σ to the subterms of k is injective (and
therefore bijective); its inverse is the generalized substitution σ−1 defined by σ−1(σ(α)) = α
for any non-terminal α in k.

Proof. Let p and q be positions in k such that kσ|p = kσ|q. We would like to show that
k ∈ L |= k|p = k|q which would then imply k|p = k|q.

For any substitution τ such that τ |= k ∈ L, there is a ρ such that kσρ = kτ ∈ L;
hence kτ |p = kσ|pρ = kσ|qρ = kτ |q and τ |= k|p = k|q.

Let us show tσσ−1 = t by induction on the subterm t ∈ st(k). First consider t = α, then
tσσ−1 = t by definition. Otherwise t = f(t1, . . . tn) with tiσσ

−1 = ti. Because σ is injec-
tive, tσ 6= ασ for any non-terminal α, and f(t1σ, . . . tnσ)σ−1 = f(t1σσ

−1, . . . , tnσσ
−1) =

f(t1, . . . , tn).

Theorem 1.48. Let k be a term in normal form relative to the language L in the non-
terminals α1, . . . , αn, then k can be found using the following algorithm, i.e. there exist
L′ and σ such that k = kL′,σ.

1. Pick a subset L′ ⊆ L of size |L′| ≤ n+ 1.

2. Compute the minimum
∏
L′.

3. Pick an injective partial map σ : {α1, . . . , αn} → st(
∏
L′).

4. Compute kL′,σ := (
∏
L′)σ−1, where the generalized substitution σ−1 is defined as in

Lemma 1.47.

Proof. By Theorem 1.27, there is a set L′ ⊆ L of size |L′| ≤ n + 1 such that k is still
in normal form relative to L′. We can assume that k subsumes L′, otherwise just take
L′′ = {t ∈ L′ : k � t} relative to which k is still in normal form as well.

Since k subsumes L′, there is a substitution σ such that kσ =
∏
L′. By Lemma 1.47,

we can invert σ using the generalized substitution σ−1 and get k = (
∏
L′)σ−1 = kL′,σ.

15

1 Term languages

1.3 Minimizing grammars

Now that we know how small trat grammars can look like, we can shift our focus towards
making existing trat grammars smaller.

The problem we treat in this section is the following: given a trat grammar G =
(τ,N,Σ, P) that covers a language L, we want to find a smallest (i.e. by number of
productions) sub-grammar G′ = (τ,N,Σ, P ′) that still covers L.

This problem translates straightforwardly to a Max-SAT problem which can then be
handled by a number of efficient solvers from the SAT community [Arg+08].

Definition 1.49. A partial Max-SAT problem is a propositional CNF formula where
some clauses are marked as hard and the others as soft.

A solution is an assignment to the propositional variables that satisfies all the hard
clauses, and maximizes the number of satisfied soft clauses.

We will encode L(G′) ⊇ L as hard clauses, and use the soft clauses to minimize the
number of productions.

Lemma 1.50. Let G = (τ,N,Σ, P) be a trat grammar, and t a term. There exists
a propositional formula ψG,t such that the following are equivalent for a sub-grammar
G′ = (τ,N,Σ, P ′) ⊆ G:

• There is a propositional assignment I satisfying ψG,t such that P ′ = {p ∈ P : I |=
p ∈ P ′}. (The formula p ∈ P ′ is a different atom for each production p ∈ P .)

• The term t is derivable in G′.

Proof. Define ψG,t as the following formula:

τ = t ∧
∧
α∈N

(
α = Ω ∨

∨
α→s∈P

(α→ s ∈ P ′ ∧ α = s)

)
∧ ThT

By Corollary 1.33, the assertion t ∈ L(G′) is equivalent to the satisfiability of τ = t∧ϕG′ .
For a fixed P ′ ⊆ P , this formula is equivalent to ψG,t. Theorem 1.41 then shows the
equi-satisfiability in propositional logic.

Remark 1.51. The formula ThT can be simplified considerably in this case. Since the
equations come from the productions of an acyclic grammar, we can safely drop the
axioms for the relation C which otherwise prevent infinite terms.

In general we can eliminate the definitions for equality of compound terms, and
reflexivity and symmetry of equality. This leaves us with equations of only the form
α = t and consequences of the transitivity of equality

∧
i αi = ti →

∧
j βj = sj, and∧

i αi = ti → ⊥.
For this particular problem however, we can do even better: if ψG,t is satisfiable, then

by Corollary 1.33 there is a model which only assigns subterms of t or Ω to non-terminals.
In such a model, we only need to define equality relative to ground terms—it suffices to
include the following axioms:

16

1.4 Finding a minimal grammar

• α = s→ (α = k ↔
∧
i βi = ri) and α = k∧

∧
i βi = ri → α = s, where the term s is

a subterm of t or Ω, the equations α = k occurs in ψG,t, and s = k[β1\r1, . . . , βn\rn].

• α = s → α 6= k, where the term s is a subterm of t or Ω, the equations α = k
occurs in ψG,t, and k 6� s.

• α = s→ α 6= r, where the terms r 6= s are subterms of t or Ω.

The resulting formula then has α = Ω ∨
∨
sEt α = s as a consequence for each α (this

is due to ϕG), and the substitution obtained by setting σ(α) = s if α = s is satisfied for
the unique ground term s is indeed a model.

Corollary 1.52. Let G = (τ,N,Σ, P) be a trat grammar, and L a language. There exists
a propositional formula ψG,L such that the following are equivalent for a sub-grammar
G′ = (τ,N,Σ, P) ⊆ G:

• There is an assignment I satisfying ψG,L such that P ′ = {p ∈ P : I |= p ∈ P ′}.

• G′ covers L.

Proof. Take ψG,L ≡
∧
t∈L ψG,t, where the (propositional) variables other than p ∈ P are

renamed to be different in each ψG,t.

Corollary 1.53. Let G = (τ,N,Σ, P) be a trat grammar, and L a language. There
exists a Max-SAT problem ψ̃G,L such that the following are equivalent for a sub-grammar
G′ = (τ,N,Σ, P ′) ⊆ G:

• There is a solution I to ψ̃G,L such that P ′ = {p ∈ P : I |= p ∈ P ′}.

• G′ is a smallest sub-grammar of G covering L.

Proof. Convert the formula ψG,L into CNF. The formula ψ̃G,L consists of the clauses
of ψG,L (which are hard), and for each p ∈ P a soft clause ¬(p ∈ P ′). The number of
satisfied soft clauses is equal to |P | − |P ′|, therefore a solution that satisfies the most
soft clauses corresponds to a grammar G′ with the smallest number of productions.

1.4 Finding a minimal grammar

For this section fix a language L, a signature Σ and a set of non-terminals N =
{α0, . . . , αn}. We want to find a trat grammar G = (α0, N,Σ, P) of minimal size that
covers L.

Lemma 1.54. There is a trat grammar H = (α0, N,Σ, Q) that contains a grammar of
minimal size covering L as a sub-grammar.

This grammar can be computed by an algorithm whose runtime is polynomially bounded
in |st(L)| for a fixed n. The number of productions in H and the number of subterms of
right-hand sides of productions in H is then also polynomially bounded for each n.

17

1 Term languages

Proof. First compute the set K of normal forms relative to the language st(L) using The-
orem 1.48. The number of (n+ 2)-element subsets L′ ⊆ st(L) we need to consider here
is polynomially bounded in |st(L)|; for each subset L′, the term

∏
L′ can be computed

linearly in the size of st(L′) and has size less than |st(L)|, hence the number of maps σ is
polynomially bounded by |st(L)| as well. Inverting σ is polynomial-time computable as
well.

For each non-terminal αi and k ∈ K, add the production αi → k to Q if αi < Var(k).
This is polynomial-time as well.

The grammar H consists now of all productions in trat-normal form, and contains a
grammar of minimal size covering L by Theorem 1.36.

Theorem 1.55. There is a polynomial-time computable Max-SAT problem such that any
solution I gives a grammar of minimal size covering L by setting P := {p ∈ Q : I |= p ∈
P} where p ∈ P is a different propositional variable for each p ∈ Q.

The runtime is polynomially bounded in |st(L)| for fixed n.

Proof. Compute the grammar H as in Lemma 1.54 and then use Corollary 1.53 to produce
the Max-SAT problem; Corollary 1.53 needs to convert a formula into an equisatisfiable
CNF formula—this is polynomial-time computable due to [Tse83].

18

2 Simple proofs

2.1 Sequent calculus

In [Gen35], Gentzen introduced the sequent calculus LK as a proof system for classical
first-order logic. In this section we will give basic definitions, and state classic results.
For more details, the reader is deferred to an introduction to proof theory such as [TS00].

Classical first-order logic deals with the validity of formulas, such as e.g. ∀xR(f(x)),
intuitively meaning that the relation R is true for the function f applied to any x in some
unspecified universe. We will first define which of these relation and function symbols
such as R and f may occur in a formula:

Definition 2.1. A (first-order) signature Σ = (Σr,Σt) is pair of disjoint sets Σr of
relational symbols, and Σt of function symbols, where each symbol is associated with a
non-negative integer n, its arity.

In the example above, R was a unary (i.e. 1-ary) relation symbol, f was a unary
function symbol; meaning that they each take one argument.

Let us now give a concrete description of the formulas we are considering:

Definition 2.2. Let X be a set of variables, and Σ a signature.
Atoms are equations t1 = t2, or relations R(t1, . . . , tn) for R ∈ Σr and ti ∈ T (Σt, X).
The set of formulas is the closure of the set atoms under propositional connectives and

quantifiers, and contains the following:

• ϕ for any atom ϕ,

• ϕ ∧ ψ for any formulas ϕ and ψ,

• ϕ ∨ ψ for any formulas ϕ and ψ,

• ϕ→ ψ for any formulas ϕ and ψ,

• ¬ϕ for any formula ϕ,

• ∀xϕ for any formula ϕ and variable x,

• ∃xϕ for any formula ϕ and variable x.

The proof system LK does not simply prove formulas; it proves sequents:

Definition 2.3. A sequent Γ ` ∆ is a pair of multisets of formulas Γ and ∆. We call Γ
the antecedent, and ∆ the succedent.

19

2 Simple proofs

A sequent such as ϕ1, ϕ2, ϕ3 ` ψ1, ψ2 has the intended meaning (ϕ1 ∧ ϕ2 ∧ ϕ3) →
(ψ1 ∨ ψ2); i.e. that the conjunction of the antecedent implies the disjunction of the
succedent.

Definition 2.4. Let Γ ` ∆ by a sequent. An LK-proof of Γ ` ∆ is a tree composed of
the rules in Figure 2.1 ending in Γ ` ∆, this sequent is then called the end-sequent of
the proof.

for ϕ atomic: ϕ ` ϕ Ax ⊥ ` ⊥l

Γ ` ∆ wl
ϕ,Γ ` ∆

Γ ` ∆ wr
Γ ` ∆, ϕ

ϕ, ϕ,Γ ` ∆
cl

ϕ,Γ ` ∆

Γ ` ∆, ϕ, ϕ
cr

Γ ` ∆, ϕ

ϕ, ψ,Γ ` ∆ ∧l
ϕ ∧ ψ,Γ ` ∆

Γ ` ϕ,∆ Γ ` ψ,∆ ∧r
Γ ` ∆, ϕ ∧ ψ

ϕ,Γ ` ∆ ψ,Γ ` ∆ ∨l
ϕ ∨ ψ,Γ ` ∆

Γ ` ∆, ϕ, ψ ∨r
Γ ` ∆, ϕ ∨ ψ

Γ ` ∆, ϕ ψ,Γ ` ∆ →l
ϕ→ ψ,Γ ` ∆

ϕ,Γ ` ∆, ψ →r
Γ ` ∆, ϕ→ ψ

ϕ[x\t],Γ ` ∆
∀l∀xϕ,Γ ` ∆

Γ ` ∆, ϕ[x\ξ] (∗)
∀rΓ ` ∆,∀xϕ

ϕ[x\ξ],Γ ` ∆ (∗)
∃l∃xϕ,Γ ` ∆

Γ ` ∆, ϕ[x\t]
∃rΓ ` ∆,∃xϕ

Γ ` ∆, ϕ ϕ,Γ ` ∆
Cut

Γ ` ∆

` t = t =Ax
Γ[t], s = t ` ∆[t]

=1
Γ[s], s = t ` ∆[s]

Γ[s], s = t ` ∆[s]
=2

Γ[t], s = t ` ∆[t]

Figure 2.1: The system LK, including cut and equality rules; where (∗) is the eigenvariable
condition: in the indicated two rules, ξ may not occur freely in Γ,∆ or ϕ.

If we look at these rules, all rules except the quantifier rules, cut rule, and equation
rules have one important property: All formulas occurring on the top of the rule are
subformulas of formulas on the bottom:

20

2.2 Extended Herbrand sequents

Lemma 2.5 (Subformula property). Let π be an LK-proof of Γ ` ∆, not containing the
cut, quantifier, or equation rules. Then any formula occurring in any sequent in π is a
subformula of a formula in the end-sequent.

For proofs containing quantifier or equation rules, a weaker version of the subformula
property holds: in such proofs, every formula ϕ[t] is a subformula of a formula ψ[s] in
the end-sequent or an equation, i.e. they are subformulas modulo term substitution.

Let us finally state that LK indeed proves exactly the valid formulas of classical
first-order logic:

Theorem 2.6. LK is sound and complete for classical first-order logic.

2.2 Extended Herbrand sequents

In this section we will generalize Herbrand sequents to so-called extended Herbrand
sequents; Herbrand’s theorem states that provable sequents have Herbrand sequents, to
state the special case we are interested in, we first need to give a few definitions:

Definition 2.7. Formulas of the form ∀x1 . . . ∀xi ϕ with ϕ quantifier-free are called Π1

formulas; formulas of the form ∃x1 . . . ∃xi ϕ with ϕ quantifier-free are called Σ1 formulas.
A sequent Γ ` ∆ is called Σ1 if all formulas in Γ are Π1 and all formulas in ∆ are Π1.

Definition 2.8. An instance of a Π1 formula ∀x1 . . . ∀xi ϕ with terms t1, . . . , ti is the
formula ϕ[x1\t1, . . . , xi\ti].

An instance of a Σ1 formula ∃x1 . . . ∃xi ϕ with terms t1, . . . , ti is given by the formula
ϕ[x1\t1, . . . , xi\ti].

Definition 2.9. A sequent Γ ` ∆ is called a tautology if it is provable in LK without
the equality rules, and a quasi-tautology if it is provable in LK.

Definition 2.10. Let Γ ` ∆ be a Σ1-sequent. A Herbrand-sequent for Γ ` ∆ is a
quasi-tautological sequent Γ′ ` ∆′ where Γ′ and ∆′ are sets of instances of formulas in Γ
and ∆, respectively.

Theorem 2.11 (Herbrand’s theorem). Every valid Σ1-sequent has a Herbrand sequent.

Example 2.12. The sequent P (c),∀xP (x)→ P (f(x)) ` P (f(f(c))) is Σ1. One possible
Herbrand sequent is P (c), P (c)→ P (f(c)), P (f(c))→ P (f(f(c))) ` P (f(f(c))).

Note that there are many possible Herbrand sequents. If Γ′ ` ∆′ is an Herbrand
sequent, then Γ′,Γ′′ ` ∆′,∆′′ is one as well. This is an important observation: in the
following, we will describe Herbrand sequents by grammars, and due to this fact we will
not need to find a grammar generating the exact set of formulas of a Herbrand sequent,
but only a superset of it.

The following theorem is due to Gentzen [Gen35]; it is for this theorem that he
introduced sequent calculus:

21

2 Simple proofs

proof with cuts cut-free proof

extended Herbrand sequent Herbrand disjunction

schematic extended Herbrand sequent Herbrand disjunction

trat grammar term language

cut-elimination

Theorems 2.18 and 2.19

Lemma 2.23

Lemma 2.30 Definition 2.26
generates

Figure 2.2: Simple proofs with cut and their grammars.

Theorem 2.13 (Cut-elimination). Let π be a proof in LK of the sequent Γ ` ∆. Then
there is a proof π∗ in LK without the cut-rule of this sequent.

If we have a cut-free proof of a Σ1-sequent, then we can extract an Herbrand sequent
from it by only looking at the quantifier rules in the proofs—they will provide all needed
instances. We will now extend this extraction method to a larger class of proofs including
restricted usage of the cut rule. In this case we will not directly get Herbrand sequents,
but a generalization called extended Herbrand sequents.

Definition 2.14. An LK-proof is called regular if all eigenvariables in strong quantifier
inferences are distinct.

Definition 2.15. A simple cut is a cut inference where the cut formula is of the form
∀xϕ where ϕ is quantifier-free.

A simple proof is an LK-proof where all cut inferences are simple.

Definition 2.16. Let Γ ` ∆ be a Σ1-sequent. An extended Herbrand-sequent for Γ ` ∆
is a quasi-tautological sequent Γ′,Π ` ∆′ of the following form:

Γ′, ϕ1 →
∧
j

ϕ1[α1\t1,j], . . . , ϕn →
∧
j

ϕn[αn\tn,j]︸ ︷︷ ︸
Π

` ∆′

• α1, . . . , αn are variables.

• Γ′ consists of instances of formulas in Γ, possibly containing the new variables αi.

• Each ϕi is a quantifier-free formula containing only variables αk for k ≥ i.

• Each term ti,j only contains variables αk for k > i.

• ∆′ consists of instances of formulas in ∆, possibly containing the new variables αi.

22

2.2 Extended Herbrand sequents

Example 2.17. Consider the following proof π of P (c),∀xP (x) → P (f(x)) ` P (f 4(c))
(where the subproofs ψ and ψ′ are cut-free):

[ψ]

P (α)→ P (f(α)), P (f(α))→ P (f 2(α)) ` P (f 2(α))

∀xP (x)→ P (f(x)) ` P (f 2(α))

∀xP (x)→ P (f(x)) ` ∀xP (x)→ P (f 2(x))

[ψ′]

P (c), P (c)→ P (f 2(c)), P (f 2(c))→ P (f 4(c)) ` P (f 4(c))

P (c),∀xP (x)→ P (f 2(x)) ` P (f 4(c))

P (c),∀xP (x)→ P (f(x)) ` P (f 4(c))

We will assign to this proof the following extended Herbrand sequent:

P (c), P (α1)→ P (f(α1)), P (f(α1))→ P (f 2(α1)),

(P (α1)→ P (f 2(α1)))→ (P (c)→ P (f 2(c))) ∧ (P (f 2(c))→ P (f 4(c))) ` P (f 4(c))

With the notation from Definition 2.16, we have:

Γ′ = {P (c), P (α1)→ P (f(α1)), P (f(α1))→ P (f 2(α1))}
∆′ = {P (f 4(c))}
ϕ1 = P (α1)→ P (f 2(α1))

t1,1 = c

t1,2 = f 2(c)

Theorem 2.18. There is mapping Φ that transforms simple proofs of Σ1-sequents into
cut-free proofs of an extended Herbrand sequent of those Σ1-sequents.

Proof. We will recursively define this mapping Φ:

Φ

(
[π]

Γ ` ∆

)
=

[Φπ]

Γ′,Π ` ∆′

Note that due to the sub-formula property, all occurring formulas are in prenex form
without quantifier alternations. Axioms already end in extended Herbrand sequents.
Weakenings, contractions, and quantifier rules are absorbed into the extended Herbrand
sequent:

Φ

 [π]

Γ ` ∆ wl
ϕ,Γ ` ∆

 =
[Φπ]

Γ′,Π ` ∆′

Φ

 [π]

ϕ, ϕ,Γ ` ∆
cl

ϕ,Γ ` ∆

 =
[Φπ]

ϕ′1, . . . , ϕ
′
i,Γ
′,Π ` ∆′

Φ

 [π]

∀x2 . . . ∀xj ϕ[x1\t],Γ ` ∆
∀l∀x1 . . . ∀xj ϕ,Γ ` ∆

 =
[Φπ]

ϕ′1, . . . , ϕ
′
i,Γ
′,Π ` ∆′

23

2 Simple proofs

In these three cases, the resulting sequent of the transformed subproof is already an
extended Herbrand sequent and we are done. The same is true for wr, cr, ∀r, ∃l, and ∃r.

For the propositional rules remember that all formulas are in prenex form and hence
subformulas of conjunctions, disjunctions, and implications are always quantifier-free.
Hence we only need to introduce contractions or weakening to make sure these subformulas
occur exactly once:

Φ

 [π]

ϕ, ψ,Γ ` ∆ ∧l
ϕ ∧ ψ,Γ ` ∆

 =

[Φπ]

ϕ, . . . , ϕ, ψ, . . . , ψ,Γ′,Π ` ∆′
cl, wl

ϕ, ψ,Γ′,Π ` ∆′ ∧l
ϕ ∧ ψ,Γ′ ` ∆′

Φ

 [π1]

Γ ` ∆, ϕ

[π2]

Γ ` ∆, ψ ∧r
Γ ` ∆, ϕ ∧ ψ

 =

[Φπ1]

Γ′1,Π1 ` ∆′1, ϕ, . . . , ϕ w, c
Γ′1,Γ

′
2,Π1,Π2 ` ∆′1,∆

′
2, ϕ

[Φπ2]

Γ′2,Π2 ` ∆′2, ψ, . . . , ψ w, c
Γ′1,Γ

′
2,Π1,Π2 ` ∆′1,∆

′
2, ψ ∧r

Γ′1,Γ
′
2,Π1,Π2 ` ∆′1,∆

′
2, ϕ ∧ ψ

The other connectives can be handled similarly. For the equality rules we might again
need to reintroduce the equality via weakening:

Φ

 [π]

Γ[t], s = t ` ∆[t]
=1

Γ[s], s = t ` ∆[s]

 =

[Φπ]

Γ′[t], s = t, . . . , s = t,Π ` ∆′[t]
cl, wl

Γ′[t], s = t,Π ` ∆′[t]
=1

Γ′[s], s = t,Π ` ∆′[s]

Cuts are the only rules for which we add formulas to Π, each formula in Π will describe
the cut formula and its instances in the proof. Consider now a simple cut:

π =
[π1]

Γ ` ∆,∀xϕ[x]

[π2]

∀xϕ[x],Γ ` ∆
Cut

Γ ` ∆

In general, the transformation of the left subproof can end in multiple instances of
∀xϕ[x], but these are always instantiated by an eigenvariable; say these instances are
ϕ[α1], . . . , ϕ[αk]. We can then use the substitution σ = [α1\α, . . . , αk\α]for a fresh
variable α to unify these instances, and then contract away the extra instances. So if
Φπ1 ends with the sequent Γ′1,Π

′
1 ` ∆′1, ϕ[α1], . . . , ϕ[αk], then Φπ is given by:

Φπ =

[(Φπ1)σ]

Γ′1,Π
′
1 ` ∆′1, ϕ[α], . . . , ϕ[α]

cr, wr
Γ′1,Π

′
1 ` ∆′1, ϕ[α]

[Φπ2]

ϕ[t1], . . . , ϕ[tn],Γ′2,Π
′
2 ` ∆′2 ∧l∧

j ϕ[tj],Γ
′
2,Π

′
2 ` ∆′2 →l

Γ′1,Γ
′
2,Π

′
1,Π

′
2, ϕ[α]→

∧
j ϕ[tj] ` ∆′1,∆

′
2

It remains to verify that the end-sequents produced this way are indeed extended
Herbrand sequents. In each case we only introduced instances that can occur in an
extended Herbrand sequent; in the cut rule we introduced a formula in Π—we have to

24

2.2 Extended Herbrand sequents

verify that the eigenvariables can be ordered in such a way as to satisfy the free variable
restrictions in the definition of an extended Herbrand sequent.

For an eigenvariable α in the end-sequent of Φπ, let C(α) be the corresponding cut
inference in π. Order now two eigenvariables α ≤ β if and only if C(α) occurs before
C(β) in an in-order traversal of the proof tree π, i.e. where recursively for each inference
we process first the left (or only) subproof (if it exists), then the inference itself, and
then the right subproof (again, if it exists). Visually this means that α < β if we draw
C(α) to the left of C(β).

For convenience, we will identify eigenvariables in the original proof π with the
eigenvariables that replaced them in the end-sequent of Φπ. Eigenvariables are then only
introduced by strong quantifier rules on the left side of their corresponding cuts, i.e.ḟor
any occurrence of an eigenvariable α, the cut C(α) is to the right.

Put differently, a formula can only contain eigenvariables whose cut is to the right;
in particular a cut formula ∀xϕ[x] for the cut with eigenvariable α can only contain
variables β with β > α. Hence for ϕ[α] →

∧
j ϕ[tj] ∈ Π, the formula ϕ[α] can only

contain the eigenvariable α or any variable β with β > α.
A term tj can only be introduced in a weak quantifier inference on the right side of

C(α), and since it can only contain variables β whose cut is even further right, we have
β > α again.

Theorem 2.19. Let H = Γ′, ϕ1 →
∧
j ϕ1[α1\t1,j], . . . , ϕn →

∧
j ϕn[αn\tn,j] ` ∆′ be an

extended Herbrand sequent of the Σ1-sequent Γ ` ∆.
Then there is a simple proof π of Γ ` ∆ with n cuts and the same quantifier instantia-

tions as given in H.

Proof. We cannot directly invert the construction in Theorem 2.18, since a cut-free proof
π∗ of H might not have a linear structure, i.e. it could be the case that the →l rule is
applied twice to the same implication ϕi →

∧
j ϕi[αi\ti,j] in different subtrees, giving two

cuts.
Using Craig’s interpolation theorem it is possible to find stronger formulas ϕ′i for which

such a cut-free proof with linear structure exists. The details are given in [Het+14b].

One application of extended Herbrand sequents is cut-introduction: given a cut-free
proof, we would like to find a proof of the same end-sequent, but with cuts. By Theo-
rem 2.19 we can reduce this problem to finding an extended Herbrand sequent. We will
accomplish this by extracting the Herbrand sequent of the cut-free proof and then finding
a grammar (of a suitable form) that covers this Herbrand sequent. But this will only
tell us about the variables αi (corresponding to the non-terminals), and the terms ti,j
(corresponding to the productions); there will be no information about the cut-formulas
ϕi in this grammar. Hence we will define the notion of a schematic extended Herbrand
sequent, which is basically an extended Herbrand sequent without cut-formulas, and
then prove that we can always find such cut-formulas.

Definition 2.20. Let Γ ` ∆ be a Σ1-sequent. A schematic extended Herbrand-sequent
for Γ ` ∆ is a sequent Γ′,Π ` ∆′ of the following form:

25

2 Simple proofs

Γ′, X1(α1)→
∧
j

X1(t1,j), . . . , Xn(αn)→
∧
j

Xn(tn,j)︸ ︷︷ ︸
Π

` ∆′

• α0, . . . , αn−1 are variables.

• Γ′ consists of instances of formulas in Γ, possibly containing the new variables αi.

• Each Xi is a unary second order predicate variable.

• Each term ti,j only contains variables αk for k > i.

• ∆′ consists of instances of formulas in ∆, possibly containing the new variables αi.

• The sequent
∧
j1,...,jn

(Γ′ ∧ ¬∆′)[α1\t1,j1] . . . [αn\tn,jn] ` is a quasi-tautology.

The last condition implies that the following sequent is a Herbrand sequent for Γ ` ∆:⋃
j1,...,jn

Γ′[α1\t1,j1] . . . [αn\tn,jn] `
⋃

j1,...,jn

∆′[α1\t1,j1] . . . [αn\tn,jn]

Theorem 2.21. Let Γ′, ϕ1 →
∧
j ϕ1[α1\t1,j], . . . , ϕn →

∧
j ϕn[αn\tn,j] ` ∆′ be an ex-

tended Herbrand sequent for Γ ` ∆, then Γ′, X1(α1) →
∧
j X1(t1,j), . . . , Xn(αn) →∧

j Xn(tn,j) ` ∆′ is a schematic extended Herbrand sequent.

Proof. The crucial part of this proof is to show that
⋃
j1,...,jn

Γ′[α1\t1,j1] . . . [αn\tn,jn] `⋃
j1,...,jn

∆′[α1\t1,j1] . . . [αn\tn,jn] is a Herbrand sequent for Γ ` ∆. This can be shown by
following the cut-elimination process, for details see [Het12].

Definition 2.22. A solution for a schematic extended Herbrand sequent H is a substi-
tution σ that assigns to each Xi(αi) a quantifier-free formula in such a way that only the
variables αi+1, . . . , αn may occur free in σ(Xi), and Hσ is a quasi-tautological sequent.

These two conditions imply that whenever σ is a solution of a schematic extended
Herbrand sequent H, then Hσ is an extended Herbrand sequent.

Lemma 2.23. Let H = Γ′, ϕ1 →
∧
j ϕ1[α1\t1,j], . . . , ϕn →

∧
j ϕn[αn\tn,j] ` ∆′ be an

extended Herbrand sequent of the Σ1-sequent Γ ` ∆.

Then σ : Xi(αi) 7→ ϕi is a solution of the schematic extended Herbrand sequent H ′ =
Γ′, X1(α1)→

∧
j X1(t1,j), . . . , Xn(αn)→

∧
j Xn(tn,j) ` ∆′ of Γ ` ∆, and H ′σ = H.

Proof. The sequent H ′ is indeed a schematic extended Herbrand sequent, and valid since
clearly H ′σ = H.

26

2.3 Grammars

Definition 2.24. Let H = Γ′, X1(α1)→
∧
j X1(t1,j), . . . Xn(αn)→

∧
j Xn(tn,j) ` ∆′ be

a schematic extended Herbrand sequent for Γ ` ∆.
The canonical solution for H is the substitution given by Xi(αi) 7→ Ci where Ci is

given recursively as:

C1 = Γ′ ∧ ¬∆′

Ci+1 =
∧
j

Ci[αi\ti,j]

Theorem 2.25. Let H be a schematic extended Herbrand sequent. Then the canonical
solution for H is indeed a solution.

Proof. Let σ be the canonical solution for H. Consider the formula Ci →
∧
j Ci[αi\ti,j]

in Hσ. By the definition of the canonical solution, this formula is equal to Ci → Ci+1.
Then Hσ simplifies to the following sequent:

Γ′,Γ′ ∧ ¬∆′ → C1, C1 → C2, . . . , Cn → Cn+1 ` ∆′

By Definition 2.20 of the schematic extended Herbrand sequent, Cn+1 is a quasi-
tautology, and hence Hσ is one as well.

2.3 Grammars

For this section we will always consider the following fixed Σ1 sequent Γ ` ∆:

∀x1 . . . ∀xk1 ϕ1, . . . ,∀x1 . . . ∀xkl ϕl ` ∃x1 . . . ∃xkl+1
ϕl+1, . . . ,∃x1 . . . ∃xkp ϕp

Herbrand sequents capture the instances of the formulas in the end-sequent that are
contained in a proof. In addition of viewing them as a sequent, we can collect them in
a term language in an extended signature Σ′ ∪ {r1/k1, . . . , rp/kp} that includes a new
ki-ary function symbol ri for each formula ∀xϕi. For example, the Herbrand sequent
ϕ3[x1\c, x2\f(d), x3\g(f(d))] ` corresponds to the term language {r3(c, f(d), g(f(d))}.

Definition 2.26. Let ϕi[x\t] be an instance of ∀xϕi, then the corresponding term is
ri(t).

Vice versa, let ri(t) be a term, then its corresponding instance is ϕi[x\t].

Definition 2.27. A proof grammar G is a trat grammar G = (τ,N,Σ ∪ {r1, . . . , rp}, P)
such that:

• All productions starting with the axiom τ are of the form τ → ri(s), where
s ∈ T (Σ).

• There are no other occurrences of the symbols ri.

27

2 Simple proofs

Under this correspondence, schematic extended Herbrand sequents directly correspond
to proof grammars:

Definition 2.28. Let H = Γ′, ϕ1 →
∧
j ϕ1[α1\t1,j], . . . , ϕn →

∧
j ϕn[αn\tn,j] ` ∆′ be

a schematic extended Herbrand sequent of Γ ` ∆, then the proof grammar G(H) =
(α1, N,Σ

′, P) of H is given by:

• N = {α1, . . . , αn}.

• P = {τ → ri(t) : ϕi[x\t] ∈ Γ′ ∪∆′} ∪ {αi → ti,j}.

Definition 2.29. Let G = (τ,N,Σ′, P) be a proof grammar. Its schematic extended
sequent H(G) is given by:

H(G) =


ϕi[x\t], for every τ → ri(t) ∈ P and i ≤ l

Xα(α)→
∧
α→t∈P Xα(t) for every α ∈ N

`
ϕi[x\t] for every τ → ri(t) ∈ P and i > l

Depending on the grammar G, the schematic extended sequent H(G) may not be a
schematic extended Herbrand sequent; this is the case if the language generated by the
grammar does not correspond to a Herbrand sequent, i.e. if it is not a quasi-tautology.

Lemma 2.30. Let G be a proof grammar, then G(H(G)) = G (up to a renaming of the
non-terminals).

Let H be a schematic extended Herbrand sequent, then H(G(H)) = H (up to a
renaming of the second-order variables Xi, and as sets of formulas, i.e. ignoring duplicate
instances).

Definition 2.31. The proof grammar G(π) of a proof π is the proof grammar of its
extended Herbrand sequent H:

G(π) := G(H)

Theorem 2.32. Let π be a simple proof of Γ ` ∆, and G(π) its proof grammar.
Then {ϕi[x\t] : ri(t) ∈ L(G(π)), i ≤ l} ` {ϕi[x\t] : ri(t) ∈ L(G(π)), i > l} is an

Herbrand sequent for Γ ` ∆.

Proof. See [Het+14b].

28

3 Inductive proofs

In this section we look at proofs in LK with the following additional rule allowing
induction:

Γ ` ϕ[0],∆ Γ, ϕ[ν] ` ϕ[s(ν)],∆
Ind

Γ ` ϕ[t],∆

Here, t is an arbitrary term, ν is the eigenvariable of the inference, and must not occur
in Γ and ∆.

The constant symbol 0 and the unary function symbol s denote zero and successor,
respectively. Numerals are defined by iterated application of the successor, i.e. k = s(k−1)
and 0 = 0 (we identify numbers and numerals for ease of readability).

Definition 3.1. An sip (short for simple induction proof) is an LK-proof with induction
π of the following form:

[πbase]

Γ0[α, β] ` F [α, 0, β]

Γ[α] ` ∀y F [α, 0, y]

[πstep]

Γ1[α, ν, γ],
∧
i F [α, ν, ti[α, ν, γ]] ` F [α, s(ν), γ]

Γ[α], ∀y F [α, ν, y] ` ∀y F [α, s(ν), y]

Γ[α] ` ∀y F [α, α, y]

[πend]

Γ2[α],
∧
i F [α, α, ui[α]] ` B[α]

Γ[α],∀y F [α, α, y] ` B[α]

Γ[α] ` B[α]

• The background theory Γ[α] is a set of Π1 formulas in prenex form, i.e. each formula
is of the form ∀x1 . . . ∀xki ϕi[α, x1, . . . , xki] where only the indicated variables may
occur as free variables and i is an index identifying the formula.

• Γ0[α, β], Γ1[α, ν, γ] and Γ2[α] are sets of instances of formulas in Γ[α] that may
only contain the indicated variables as free variables; e.g. an instance in Γ0[α, β] is
of the form ϕi[α, s1[α, β], s2[α, β], . . . , ski [α, β]].

• ti[α, ν, γ] and ui[α] are terms containing only the indicated free variables.

• The subproofs πbase, πstep, and πend are cut-free and do not contain induction rules.

Remark 3.2. This definition of simple induction proof is slightly more general than the
one presented in [EH15]. There, in the end-sequent α is only allowed to occur in B[α],
and not in the background theory Γ. The reason we include it here is because it will
simplify the encoding of simple loop problems into sips. This generalization does not
incur any significant changes to the theory; the notions of sip grammars, schematic sips
and their solutions stay the same.

29

3 Inductive proofs

Substituting a concrete number n for the eigenvariable α in the end-sequent allows us
to produce a proof with n cuts instead of the induction rule:

Definition 3.3. The instance proof πn of an sip π for n is an LK-proof without induction
of the following form:

[πbase]

Γ0[n, γ0] ` F [n, 0, γ0]

Γ[n] ` ∀y F [n, 0, y]

[πstep]

Γ1[n, 0, γ1],
∧
i F [n, 0, ti[n, 0, γ1]] ` F [n, 1, γ1]

Γ[n],∀y F [n, 0, y] ` ∀y F [n, 1, y]

Γ[n] ` ∀y F [n, 1, y]

Γ[n] ` ∀y F [n, n, y]

[πend]

Γ2[n],
∧
i F [n, n, ui[n]] ` B[n]

Γ[n],∀y F [n, n, y] ` B[n]

Γ[n] ` B[n]

The grammar G(πn) of the instance proof πn produces a language that corresponds to
an Herbrand sequent H of the end-sequent Γ[n] ` B[n]. We encode the instances in H
as terms in L(G(πn)) as follows:

• The term ri(s1, . . . , ski) corresponds to the instance ϕi[α, s1, . . . , ski].

• The constant rB corresponds to the “instance” of B[α]. (rB is nullary because B[α]
has zero quantifiers)

We can now read off the productions of G(πn) from the instance proof πn:

• τ → rB.

• τ → rj(s) for every instance ϕj[n, s] ∈ Γ0[n, γ0].

• τ → rj(s) for every instance ϕj[n, s] ∈ Γ1[n, i, γj] and every i < n.

• γi → tj[n, i, γi+1] for every term tj[n, i, γi+1] and every i < n.

• τ → rj(s) for every instance ϕj[n, s] ∈ Γ2[n].

• γn → uj[n] for every term uj[n].

For different n, these grammars follow a clear pattern, since the proofs follow a similar
pattern as well; a sip grammar captures this pattern—the productions in the grammar
of an instance proof will be (suitable) substitution instances of productions of the sip
grammar.

Definition 3.4. A sip grammar G = (Σ, P) is a tree grammar with non-terminals τ , β,
γ, γend, α, and ν where only the following forms of productions are allowed:

• τ → ri(s[α, β])

30

• τ → ri(s[α, ν, γ])

• γ → s[α, ν, γ]

• γend → s[α]

The terms s are arbitrary terms in the language Σ only containing the indicated non-
terminals.

Definition 3.5. The sip grammar for the sip π contains the following productions:

• τ → rB

• τ → rj(s) for every instance ϕj[α, s] ∈ Γ0[α, β].

• τ → rj(s) for every instance ϕj[α, s] ∈ Γ1[α, ν, γ].

• γ → tj[α, ν, γ] for every term tj.

• τ → rj(s) for every instance ϕj[α, s] ∈ Γ2[α].

• γend → uj[α] for every term uj.

Definition 3.6. Let n be a natural number and p a production of a sip grammar. A
production p′ is an n-instantiation of p, written p

n
 p′, if it is obtained in one of the

following ways:

τ → r[α, β]
n
 τ → r[n, γ0]

τ → r[α, ν, γ]
n
 τ → r[n, i, γi+1] for any 0 ≤ i < n

γ → r[α, ν, γ]
n
 γi → r[n, i, γi+1] for any 0 ≤ i < n

γend → r[α]
n
 γn → r[n]

Definition 3.7. Let n be a natural number. The n-th instance grammar Gn =
(τ,Nn,Σ, Pn) of a sip grammar G = (Σ, P) is a trat grammar with non-terminals
Nn = {τ} ∪ {γi : 0 ≤ i ≤ n}, and all n-instantiations of P as productions:

Pn = {p′ : ∃p ∈ P p
n
 p′}

Lemma 3.8. The grammar of an instance proof is the same as the instance grammar of
the sip grammar:

G(πn) = G(π)n

Proof. Both grammars have the same non-terminals, τ, γ0, γ1, . . . , γn—we only have to
check that the productions are the same as well.

Each of the productions in G(πn) is a production of G(π)n as well—we just have to go
through the list of productions in G(πn) and check that each is an n-instantiation of a
production in G(π).

31

3 Inductive proofs

The other direction is a bit more complicated; while Definition 3.5 and Definition 3.6
have corresponding cases, a production starting from the non-terminal τ can arise in one
case in Definition 3.5, but be n-instantiated in a different case in Definition 3.6—we have
to verify all combinations.

For example, let p = τ → rj(s) be a production in G(π) because ϕj[α, s] is in Γ0[α, β].
Depending on whether rj(s) actually contains the non-terminals α and β or not, an
n-instantiation can be obtained in different ways:

• Without any restrictions on the non-terminals in p, we can have p
n
 p′ = τ →

rj(s[α\n, β\n]). This is the corresponding case, and we clearly have p′ ∈ G(πn).

• If β does not occur in p, then p
n
 p′ = τ → rj(s[α\n, ν\i, γ\γi+1]) is possible. But

since ν and γ did not occur either, this produces the same production p as above
and is again in G(πn).

3.1 Schematic sips

Definition 3.9. For an end-sequent Γ[α] ` B[α], sets of instances Γ0[α, β], Γ1[α, ν, γ],
and Γ2[α] of Γ, and finite sets of terms ti[α, ν, γ] and ui[α], the schematic sip S is the
triple of the following sequents, where X is a ternary second-order predicate variable:

Γ0[α, β] ` X[α, 0, β]

Γ1[α, ν, γ],
∧
i

X[α, ν, ti[α, ν, γ]] ` X[α, s(ν), γ]

Γ2[α],
∧
i

X[α, α, ui[α]] ` B[α]

Definition 3.10. Let G be a sip grammar for the end-sequent Γ[α] ` B[α] with set of
productions P . Its schematic sip is then given as follows:

• Γ0[α, β] = {ϕj[α, s[α, β]] : τ → rj(s[α, β]) ∈ P, j 6= B}

• Γ1[α, ν, γ] = {ϕj[α, s[α, ν, γ]] : τ → rj(s[α, ν, γ]) ∈ P, j 6= B}

• Γ2[α] = {ϕj[α, s[α]] : τ → rj(s[α]) ∈ P, j 6= B}

• The terms ti[α, ν, γ] are all right sides of productions starting with the non-terminal
γ; if there are no such productions, the term t1 = 0 is included instead.

• The terms ui[α] are all right sides of productions starting with the non-terminal
γend, if there are no such productions, the term u1 = 0 is included instead.

(The sets of instances Γ0, Γ1, and Γ2 are in general not disjoint.)

Definition 3.11. A solution for the schematic sip S is given by a quantifier-free formula
F [α, ν, γ] such that each of the sequents in S is a quasi-tautology in S[X\F].

32

3.1 Schematic sips

Lemma 3.12. Let π be a sip and S its schematic sip. The induction formula F from π
is then a solution for the schematic sip.

Proof. Note that the sets of instances Γi in S are supersets of the respective sets in π.
The cut-free proofs πbase, πstep, and πend are proofs of the sequents in S[X\F]. Hence

S[X\F] is quasi-tautological and F a solution of S.

Lemma 3.13. Let S be a schematic sip with solution F , then there is a sip π which has
S as schematic sip and F as induction formula.

Proof. Let πbase, πstep, and πend be cut-free proofs of the respective sequents in S[X\F].
These exist since S[X\F] is a quasi-tautology.

The sets of instances Γi and step-terms tj and uj together with the proofs πbase, πstep,
and πend then give the desired sip π.

The schematic sip gives conditions for an induction formula F ; in an instance proof
this induction formula turns into n cut formulas. The corresponding condition for the
cut formulas is the schematic extended Herbrand sequent H; for an instance proof πn
this is given as follows:

Γ0[n, γ0],Γ1[n, 0, γ1], . . . ,Γ1[n, n− 1, γn],Γ2[n]

X0(γ0)→
∧
i

X0(ti[n, 0, γ1]),

...

Xn−1(γn1)→
∧
i

Xn−1(ti[n, 0, γn]),

Xn(γn)→
∧
i

Xn(ui[n]) ` B[n]

(3.1)

If we have a sip and its induction formula F , then the (instantiated) cut formulas
Fi := F [n, i, γi] of the instance proof πn give a solution of the schematic extended
Herbrand sequent. However, for fixed n, we can explicitly give a solution without
a sip, the canonical substitution of its schematic extended Herbrand sequent as in
Definition 2.24:

C0 =
∧

Γ0[n, γ0] ∧
∧

Γ1[n, 0, γ1] ∧ · · · ∧
∧

Γ1[n, n− 1, γn] ∧
∧

Γ2[n] ∧ ¬B[n]

C1 =
∧
i

C0[γ0\ti[n, 0, γ1]]

...

Cn =
∧
i

Cn−1[γn−1\ti[n, n− 1, γn]]

This canonical substitution σ is different for each n, not only because the numeral n can
occur in C0 (this is something we cannot avoid), but also because even the propositional

33

3 Inductive proofs

structure of C0 depends on the value of n: If ϕj[α, s] ∈ Γ1 contains ν, then C0 will
contain n different instances of ϕj.

But for sips, we can give a more regular solution:

Definition 3.14. The canonical solution of a schematic sip S is given by the collection
of formulas C ′i[α, γ] for i ≥ 0:

C ′0[α, γ] =
∧

Γ0[α, γ]

C ′i+1[α, γ] =
∧

Γ1[α, i, γ] ∧
∧
j

C ′i[α, tj[α, i, γ]]

The canonical solution C ′i of a sip will induce a solution of the schematic extended
Herbrand sequent by substituting Xi(γi) 7→ C ′i[n, γi]. This solution differs from the
generic canonical solution only by the index at which the formulas first appear.

Lemma 3.15. Let H = Γ′, X1(α1) →
∧
j X1(t1,j), . . . Xn(αn) →

∧
j Xn(tn,j) ` ∆′ be a

schematic extended Herbrand sequent for Γ ` ∆, and let f : Γ′ ∪∆′ → {1, . . . , n+ 1} be
a function such that f(ϕj[x\t]) ≤ i if αi occurs in t for any i.

The f -modified canonical solution for H given by Xi(γi) 7→ Di then solves H, where
Di is given recursively as:

D1 =
∧

f−1(1)

Di+1 =
∧

f−1(i+ 1) ∧
∧
j

Ci[αi\ti,j]

Proof. Let us first show by induction on i that ` Di+1 ↔
∧
j1,...,ji

f−1({1, . . . , i +
1})[α1\t1,j1] · · · [αi\ti,ji]. For D1 this is immediate; for Di+1 we use the fact that
f−1(i + 1) = f−1[α1\t1,j1] · · · [αi\ti,ji] since f−1(i + 1) does not contain any of the
non-terminals α1, . . . , αi by assumption.

We can now proceed in a similar manner as in Theorem 2.25, and prove that the
following sequent is quasi-tautological:

Γ′, D1 →
∧
j

D1[α1\t1,j], . . . , Dn →
∧
j

Dn[αn\tn,j]→ ∆′

But Γ′,¬∆′ `
(∧

j Di[α1\t1,j]
)
→ Di+1 for all i, and Dn+1 is again a quasi-tautology.

Corollary 3.16. For a schematic sip S and schematic extended Herbrand sequent H for
n, the assignment σ′ : Xi(γi) 7→ C ′i[n, γi] is a solution of the schematic extended Herbrand
sequent.

34

3.2 Finding minimal sip grammars

Proof. The sequence C ′i[n, γi] is an f -modified canonical solution, given by the following
f :

f(ϕ) = 0 for ϕ ∈ Γ0[n, γ0]

f(ϕ) = i+ 1 for ϕ ∈ Γ1[n, i, γi+1] and 0 ≤ i < n

f(ϕ) = n+ 1 for ϕ ∈ Γ2[n]

f(B[n]) = n+ 1

3.2 Finding minimal sip grammars

First of all, we need to adapt some definitions from trat grammars for sip grammars:

Definition 3.17. Let G = (Σ, P) be a sip grammar. Its size |G| is the number |P | of
its productions.

Definition 3.18. Let G′ = (Σ, P ′) and G = (Σ, P) be sip grammars in the same
signature. G′ is a sub-grammar of G if P ′ ⊆ P .

Definition 3.19. Let G be a sip grammar, and (Li) a family of languages. The sip
grammar G covers the languages (Li) if L(Gi) ⊇ Li for all i.

Given a finite family of languages (Li)i∈I , we want to find a sip grammar G that covers
them. This task poses two new problems compared to the case for trat grammars:

• There are several different languages, not just a single one.

• The productions in the generated grammar need to satisfy certain restrictions, in
particular the right-hand sides may only contain some non-terminals.

But as with trat grammars, this task can again be divided into two problems:

1. Find a polynomially-sized sip grammar H containing a sip grammar of minimal
size covering (Li).

2. Find a sip grammar G ⊆ H covering (Li) of minimal size.

The following definitions and theorems closely follow the approach taken for the case of
trat grammars; they are natural generalizations of Definition 1.35, Lemmas 1.34 and 1.54,
Theorem 1.36, and Corollary 1.53 for sip grammars.

In order to construct the grammar H, we first have to define normal forms for sip
grammars.

Definition 3.20. A production δ → k of is in sip-normal form relative to the family of
languages (Li) if it is of one of the forms in Definition 3.4 and δ → k is in trat-normal
form relative to the language

⋃
i Li.

35

3 Inductive proofs

Remark 3.21. The normal forms here are much less restrictive than those in [EH15];
however, this does not change the main result of this section: that finding a sip grammar
covering (Li) of minimal size is polynomial-time reducible to Max-SAT.

Lemma 3.22. Let G be a sip grammar, δ → k one of its productions, Li an instance
language for the number i, and k′ a term such that k ∈ st(Li) |= k = k′.

Then L(Gi) ∩ Li ⊆ L(G′i) ∩ Li for the sip grammar G′ which is obtained from G by
replacing the production δ → k by δ → k′.

Note that k′ has at most the non-terminals occurring in k, hence G′ is indeed a sip
grammar.

Proof. Consider the changes between Gi and G′i; these are replacements of n-instantiations
of a production δ → k by n-instantiations of δ → k′. We will handle replacing each of
these n-instantiations one by one using Lemma 1.34.

The crucial property of these n-instantiations is that they are substitution instances of
δ → k, i.e. there is a substitution σ that does not depend on k such that ε→ kσ ∈ Pi is
the n-instantiation (for some non-terminal ε ∈ Ni which does not interest us as we do
not change it).

For example consider the n-instantiations of γ → k: these are precisely γj →
k[α\i, ν\j, γ\γj+1] for j < i—the substitution σ is given by σ = [α\i, ν\j, γ\γj+1],
and ε = γj.

Let us now prove that we can replace ε→ kσ with ε→ k′σ in Gi. We only need to verify
that kσ ∈ Li |= kσ = k′σ—but this is true since k ∈ Li |= k = k′ by assumption.

Theorem 3.23. Let (Li) be a family of languages, and G = (Σ, P) a sip grammar
covering (Li). Then there is a sip grammar G′ = (Σ, P ′) with |P ′| ≤ |P | where all
productions are in sip-normal form relative to (Li) that still covers (Li).

Proof. For each production p = δ → k ∈ P take a k′ in normal form relative to st(
⋃
Li)

such that k ∈ st(
⋃
Li) |= k = k′. The production p′ = δ → k′ is then in sip-normal form,

let P ′ be the set of such productions δ → k′.

Successively applying Lemma 3.22 shows that L(Gi) ∩ Li ⊆ L(G′i) ∩ Li and hence
Li ⊆ L(G′i).

Lemma 3.24. Every finite family of languages (Li) can be covered by a sip grammar.

Proof. Take the sip grammar with the productions P = {τ → t : t ∈
⋃
i Li}.

Lemma 3.25. There exists an infinite family of languages (Li) such that there is no sip
grammar covering it.

Proof by asymptotics. By Lemma 1.12, |L(Gn)| ≤ |Pn||Nn|+1 ≤ (n|P |)n+3, and any (Li)
whose size grows sufficiently fast is a counterexample.

36

3.2 Finding minimal sip grammars

Proof by concrete counterexample. Take the family of languages Ln = {r(i, j, k) : i, j, k ≤
n} and assume there is a sip grammar G covering (Ln).

Let us first show that there is a CG that only depends on the sip grammar G such that
for all numbers i, j, k, if r(i, j, k) ∈ L(Gn), then min{|a − b| : a, b ∈ {0, i, j, k, n} ∧ a 6=
b} ≤ CG.

For each production p = δ → r(p1, p2, p3) in G, we define a number Cp such that
min{|a− b| : a, b ∈ {0, p1σ, p2σ, p3σ, n} ∧ a 6= b} ≤ Cp if σ |= ϕGn ∧ δ = r(p1, p2, p3).

• If any pi contains a function symbol other than s or 0, then set Cp = 0.

• If a pi is ground (i.e. a numeral), then set Cp = pi.

• If a pi contains the non-terminal α, i.e. pi = sk(α), then set Cp = k.

• If at least two arguments contain the non-terminal ν, i.e. pi = sk(ν) and pj = sl(ν)
with i 6= j, then set Cp = |k − l|.

• If none of the above applies, there are at least two arguments containing γ, i.e.
pi = sk(γ) and pj = sl(γ) with i 6= j, and we can set Cp = |k − l| again.

Now we can define CG = maxpCp; using CG we can give a concrete term that is
not generated by Gn: namely r(n − CG − 1, n − 2CG − 2, n − 3CG − 3) 6∈ L(Gn) if
n ≥ 4CG + 4.

Lemma 3.26. Let (Li) be a family of languages. There is a sip grammar H = (Σ, Q)
that contains a grammar covering (Li) of minimal size as a sub-grammar.

This grammar can be computed by an algorithm whose runtime is polynomially bounded
in |st(

⋃
Li)|. The number of productions in H and the number of subterms of right-hand

sides of productions in H is then also polynomially bounded.

Proof. First compute the set K of normal forms with non-terminals α, ν, γ relative to
the language st(

⋃
Li) using Theorem 1.48. This is polynomial-time computable as

in Lemma 1.54.
We need to handle productions of different forms separately:

• To get productions of the form τ → s[α, β], add for each k ∈ K with Var(k) ⊆ {α, γ}
the production τ → k[γ\β] to P .

• To get productions of the form τ → s[α, ν, γ], add for each k ∈ K with Var(k) ⊆
{α, ν, γ} the production τ → k to P .

• Similarly for productions of the form γ → s[α, ν, γ], and γend → s[α].

The resulting grammar H consists of all sip-normal forms and contains a grammar
covering (Li) of minimal size by Theorem 3.23.

Lemma 3.27. Let G be a sip grammar, and (Li) a finite family of languages. There exists
a propositional formula ψG,(Li) such that the following are equivalent for a sub-grammar
G′ ⊆ G:

37

3 Inductive proofs

• There is an assignment I satisfying ψG,(Li) such that P ′ = {p ∈ P : I |= δ → k ∈
P ′}.

• G′ covers (Li).

Proof.

ψG,(Li) ≡
∧
i

ψGi,Li
∧
∧
p

i
 pi

pi ∈ P ′i → p ∈ P ′

Corollary 3.28. Let G be a sip grammar, and (Li) a family of languages. There exists
a CNF formula ψ̃G,(Li) with hard and soft clauses such that the following are equivalent
for a sub-grammar G′ ⊆ G:

• There is a solution I to the Max-SAT problem given by ψ̃G,(Li) such that P ′ = {p ∈
P : I |= “δ → k ∈ P ′”}.

• G′ is a sub-grammar of G covering (Li) of minimal size.

Proof. Convert the formula ψG,(Li) into CNF. The formula ψ̃G,(Li) consists of the clauses
of ψG,(Li) (which are hard), and the soft clauses ¬δ → k ∈ P ′ for each δ → k ∈ P .

Theorem 3.29. Let (Li) be a finite family of languages. There is a polynomial-time
computable Max-SAT problem such that any solution I gives a sip grammar G = (Σ, P)
of minimal size covering (Li) by setting P := {p ∈ Q : I |= “p ∈ P”} where “p ∈ P” is a
different propositional variable for each p ∈ Q.

The runtime is polynomially bounded in |st(L)| for fixed n.

Proof. Compute the grammar H as in Lemma 3.26 and then use Corollary 3.28 to
produce the Max-SAT problem.

3.3 Finding induction formulas

Having found a sip grammar, we have almost all data needed for a sip. What is still
missing, however, is an induction formula, and the sub-proofs ensuring that it is indeed
an induction formula.

By Lemmas 3.12 and 3.13, this amounts to finding a solution of the schematic sip. We
will now give a further condition for such a solution that will constrain the search.

Intuitively, the canonical solution C ′i[n, γi] of a schematic sip captures the information
available in the instance proof of a sip at step i because it includes all instances of the
background theory used up to that point. A possible induction formula for this sip needs
to be provable from these instances as well, so we can conjecture that it is a consequence
of this canonical solution, which indeed it is:

Lemma 3.30. Let S be a schematic sip and F [α, ν, γ] a solution, then C ′i[α, γ] ` F [α, i, γ]
for all i.

38

3.3 Finding induction formulas

Proof. If F is a solution, then by Definition 3.11 the following sequents are quasi-
tautologies:

Γ0[α, γ] ` F [α, 0, γ]

Γ1[α, i, γ],
∧
j

F [α, i, tj[α, i, γ]] ` F [α, i+ 1, γ]

Proceed by induction on i:
The sequent Γ0[α, γ] ` F [α, 0, γ] just states that C ′0[α, γ] ` F [α, 0, γ].
Consider now C ′i+1[α, γ] =

∧
Γ1[α, i] ∧

∧
j C
′
i[α, tj[α, i, γ]]; by applying substitution

instances of the induction hypothesis, we get C ′i+1[α, γ] `
∧

Γ1[α, i]∧
∧
j F [α, i, tj [α, i, γ]].

Using the solution definition again, this yields C ′i+1[α, γ] ` F [α, i+ 1, γ].

Therefore the task of finding an induction formula amounts to finding a particular
consequence D of C ′i[α, γ], and then viewing it is a substitution instance D = F [α, i, γ],
i.e. replacing some occurrences of i by ν.

Definition 3.31. Propositional resolution is the following inference rule on clauses:

Γ, ϕ ∆,¬ϕ
Γ,∆

Propositional paramodulation is the following inference rule on clauses:

Γ, t1 = t2 ∆[ti]

Γ,∆[tj]

Forgetful propositional resolution is an operation on clause sets and replaces two
clauses Γ, ϕ and Γ,¬ϕ in a clause set by the clause Γ. Forgetful paramodulation similarly
replaces two clauses by their paramodulant.

Eberhard and Hetzl give two algorithms for the problem of finding an induction formula
in [EH15]:

Complete algorithm: Enumerate all logical consequences of C ′0[α.γ]. For each conse-
quence D, enumerate all possible F that yields D as a substitution instance—these
only depend on which occurrences of 0 are replaced with ν or remain a numeral.
Since all formulas are quantifier-free, we can efficiently check that an F is indeed a
solution for the schematic form, and if so, return it as a solution.

Heuristic algorithm: Given a number n, convert the formula C ′n[α, γ] into its CNF
A[α, γ]. Generate consequences D[α, γ] of this CNF recursively using the following
two operations:

1. Forgetful resolution.

2. Forgetful propositional paramodulation.

39

3 Inductive proofs

Note that each consequence D[α, γ] needs to satisfy Γ2[n],
∧
D[n, ui[n]] ` B[n] in

order to be the substitution instance of a solution; we prune all other D[α, γ] from
the search tree.

For each generated consequence D[α, γ], again check for each possible F whether it
is a solution, and if so return it.

40

4 While programs

We will consider a simple programming language containing loops, conditionals and
assignments, with standard operational semantics and Hoare calculus, as presented
in [ABO10]. The programs are generated by the following grammar:

p ::= skip | x := t | p1; p2 | if ϕ then p1 else p2 fi |while ϕ do p od

Here, t is a term and ϕ a quantifier-free formula. These may contain function and
relation symbols from a signature Σ.

4.1 Operational semantics

The language is untyped; semantically we will consider all values as natural numbers.

Definition 4.1. A state σ is a map from program variables to values.

σ |= ϕ means that the state σ satisfies a formula ϕ, σ(t) is the value of the term t in
the state σ. The state σ[y 7→ a] is the state σ where the variable y is updated by the
value a.

The small-step semantics are given by the following transition rules; pairs 〈p, σ〉 of a
program p or the empty program e and a state σ are called configurations; the transition
〈p, σ〉 → 〈q, τ〉 means that running the program p in state σ yields the state τ after a
single step with the remaining program q.

1. 〈skip, σ〉 → 〈e, σ〉

2. 〈x := t, σ〉 → 〈e, σ[x 7→ σ(t)]〉

3.
〈p1, σ〉 → 〈p2, τ〉

〈p1; q, σ〉 → 〈p2; q, τ〉
(We need to be careful in the case that p2 = e: we identify e; q with q, so that
〈p2; q, τ〉 is a valid state.)

4. 〈if ϕ then p else q fi, σ〉 → 〈p, σ〉, where σ |= ϕ

5. 〈if ϕ then p else q fi, σ〉 → 〈q, σ〉, where σ |= ¬ϕ

6. 〈while ϕ do p od, σ〉 → 〈p; while ϕ do p od, σ〉, where σ |= ϕ

7. 〈while ϕ do p od, σ〉 → 〈e, σ〉, where σ |= ¬ϕ

41

4 While programs

Definition 4.2. Let p be a program and σ a state.

1. A transition sequence is a (finite or infinite) sequence of configurations 〈pi, σi〉 such
that:

〈p, σ〉 = 〈p0, σ0〉 → 〈p1, σ1〉 → . . .

2. A computation is a maximal transition sequence.

Lemma 4.3 (Determinism). For any program p and state σ, there is exactly one com-
putation starting with the configuration 〈p, σ〉.
Lemma 4.4 (Progress). For a program p 6= e and state σ, there is always a program p′

and state σ′ such that
〈p, σ〉 → 〈p′, σ′〉

The (partial correctness) semantics MJpK of a program p is now given by the map
assigning to each program the set of its final states:

Definition 4.5. MJpK(σ) = {τ : 〈p, σ〉 →∗ 〈e, τ〉}
For any p and σ, the semantics MJpK(σ) is either the empty set, if p does not halt on

σ; or the singleton set containing the unique output state otherwise.

Lemma 4.6 (Input/Output). The single step reductions extend to M:

1. MJskipK(X) = X

2. MJp; qK(X) =MJqK(MJpK(X))

3. MJif ϕ then p else q fiK(X) =
MJpK({σ ∈ X : σ |= ϕ}) ∪MJqK({σ ∈ X : σ |= ¬ϕ})

4. MJwhile ϕ do p odK(X) =
MJwhile ϕ do p odK(MJpK({σ ∈ X : σ |= ϕ})) ∪ {σ ∈ X : σ |= ¬ϕ}

Definition 4.7. The weakest liberal precondition wlp(p, ϕ) of a formula ϕ (maybe
containing program variables) under a program p is a formula such that for any state σ:

σ |= wlp(p, ϕ) ↔ ∀τ ∈MJpK(σ) : τ |= ϕ

Lemma 4.8. The weakest liberal precondition exists.

Proof. For loop-free programs, we can easily give a canonical weakest liberal precondition:

wlp(skip, ϕ) ≡ ϕ

wlp(p; q, ϕ) ≡ wlp(p,wlp(q, ϕ))

wlp(x := t, ϕ) ≡ ϕ[x\t]
wlp(if ψ then p else q fi, ϕ) ≡ (ψ → wlp(p, ϕ)) ∧ (¬ψ → wlp(q, ϕ))

That this is indeed a weakest liberal precondition is seen by induction on the program
and applying Lemma 4.6. The general case for programs with loops requires encoding
the finite sequences of program states at each iteration of the loop into a number, for
details see [ABO10].

42

4.2 Hoare logic

Note that this translation does not introduce quantifiers; this allows us to write the
program semantics (for loop-free programs) as a quantifier-free formula:

τ ∈MJpK(σ) ≡ wlp(p, x = τ)[x\σ]

Let x1, . . . , xn be the program variables, then σ1, . . . , σn and τ1, . . . , τn are constant
symbols and the formula above is short for:

wlp(p, x1 = τ1 ∧ · · · ∧ xn = τn)[x1\σ1, . . . , xn\σn]

Example 4.9. τ ∈MJx := f(x)K(σ) ≡ τ = f(σ)

4.2 Hoare logic

The expression {ϕ} p {ψ} is called a triple; intuitively this expresses the notion that
if ϕ is true before running the program p, then ψ will be true after the program p has
finished.

We write ` {ϕ} p {ψ} if this triple is derivable using the rules in Section 4.2 and
|= {ϕ} p {ψ} if it is true in the sense of Definition 4.11.

{ϕ} skip {ϕ} skip

{ϕ[x\t]} x := t {ϕ} assignment

{ϕ} p {ψ} {ψ} q {θ}
composition

{ϕ} p; q {θ}

{ϕ ∧ θ} p {ψ} {ϕ ∧ ¬θ} q {ψ}
conditional{ϕ} if θ then p else q fi {ψ}

{ϕ ∧ ψ} p {ϕ}
loop

{ϕ} while ψ do p od {ϕ ∧ ¬ψ}

|= ϕ→ ϕ′ {ϕ′} p {ψ′} |= ψ′ → ψ
consequence

{ϕ} p {ψ}

Figure 4.1: Hoare logic for while programs

In Section 4.2 there is one rule for each program construct, and a general consequence
rule. The proofs composed of these rules are almost completely determined by the
program structure—given a triple {ϕ} p {ψ}, there are only two rules that can be
applied: either the rule for the outermost program construct in p, or the consequence
rule.

43

4 While programs

If we rewrite a proof using Figure 4.2, then we can even get more regular proofs. For
example, if p is a conditional or sequence, then the proof will never apply the consequence
rule, just the conditional or sequence rule, respectively.

Lemma 4.10. The rewrite system in Figure 4.2 is terminating, and preserves validity
of proofs.

Definition 4.11. A triple is true, written |= {ϕ} p {ψ}, if σ |= ϕ and τ ∈ MJpK(σ)
implies τ |= ψ for any σ.

Theorem 4.12 (Soundness). ` {ϕ} p {ψ} implies |= {ϕ} p {ψ}.

Proof. By induction on the proof of ` {ϕ} p {ψ}:
Skip: If σ |= ϕ and τ ∈MJskipK(σ) = {σ}, then clearly τ |= ϕ as well.
Assignment: MJx := tK(σ) = {σ[x 7→ σ(t)]}, and σ[x 7→ σ(t)] |= ϕ if σ |= ϕ[x\t].
And similarly for the other rules.

Theorem 4.13 (Loop-free completeness). Let p be a program not containing the while
statement, then |= {ϕ} p {ψ} implies ` {ϕ} p {ψ}.

Definition 4.14. For a loop p = while ϕ do p1 od, consider the extended loop
px = x := 0; while ϕ do p1; x := x + 1 od that counts the number of iterations (where
x is a variable not occurring in p).

If σ is a state such that px (or equivalently, p) terminates, i.e. MJpxK(σ) = {τ}, then
we define iter(p, σ) = τ(x) to be the number of its iterations starting from state σ.

Definition 4.15. A language Σ is called expressive if for every loop p there is a term t
such that iter(p, σ) = σ(t) whenever defined.

Theorem 4.16 (Completeness). If Σ is expressive, then |= {ϕ} p {ψ} implies `
{ϕ} p {ψ} for all programs p.

Proof. See [ABO10].

44

4.2 Hoare logic

|=
ϕ
→

ϕ
′

|=
ϕ
′
→

ϕ
′′

{ϕ
′′ }
p
{ψ
′′ }

|=
ψ
′′
→

ψ
′

{ϕ
′ }
p
{ψ
′ }

|=
ψ
′
→

ψ

{ϕ
}
p
{ψ
}

|=
ϕ
→

ϕ
′′

{ϕ
′′ }
p
{ψ
′′ }

|=
ψ
′′
→

ψ

{ϕ
}
p
{ψ
}

|=
ϕ
→

ϕ
′

{ϕ
′
∧
θ}
p
{ψ
′ }

{ϕ
′
∧
¬θ
}
q
{ψ
′ }

{ϕ
′ }

if
θ

th
e
n
p

e
ls

e
q

fi
{ψ
′ }

|=
ψ
′
→

ψ

{ϕ
}

if
θ

th
e
n
p

e
ls

e
q

fi
{ψ
}

|=
ϕ
∧
θ
→

ϕ
′
∧
θ

{ϕ
′
∧
θ}
p
{ψ
′ }

|=
ψ
′
→

ψ

{ϕ
∧
θ}
p
{ψ
}

··
·

{ϕ
∧
¬θ
}
q
{ψ
}

{ϕ
}

if
θ

th
e
n
p

e
ls

e
q

fi
{ψ
}

|=
ϕ
→

ϕ
′

{ϕ
′ }
p
{ψ
}

{ψ
}
q
{θ
′ }

{ϕ
}
p;
q
{θ
}

|=
θ′
→

θ

{ϕ
}
p;
q
{θ
}

|=
ϕ
→

ϕ
′

{ϕ
′ }
p
{ψ
}

{ϕ
}
p
{ψ
}

{ψ
}
q
{θ
′ }

|=
θ′
→

θ

{ψ
}
q
{θ
}

{ϕ
}
p;
q
{θ
}

{ϕ
[x
\t

]}
x

:=
t
{ϕ
}

|=
ϕ
→

ψ

{ϕ
[x
\t

]}
x

:=
t
{ψ
}

|=
ϕ

[x
\t

]
→

ψ
[x
\t

]
{ψ

[x
\t

]}
x

:=
t
{ψ
}

{ϕ
[x
\t

]}
x

:=
t
{ψ
}

{ϕ
}
p
{ψ
}

|=
ψ
→

ψ
′

{ψ
′ }
q
{θ
}

{ψ
}
q
{θ
}

{ϕ
}
p;
q
{θ
}

{ϕ
}
p
{ψ
}

|=
ψ
→

ψ
′

{ϕ
}
p
{ψ
′ }

{ψ
′ }
q
{θ
}

{ϕ
}
p;
q
{θ
}

F
ig

u
re

4.
2:

H
oa

re
p
ro

of
n
or

m
al

iz
at

io
n

45

5 Loop verification

From now on, we will always consider a fixed simple program with l variables x1, . . . , xl
(in addition to the variables n and i for the for-loop) containing a single loop with a
loop-free body S that does not contain assignments to i or n, but only to x.

for i < n do S od

For loops are just an abbreviation for a while loop:

for i < n do S od ≡ i := 0; while i 6= n do S; i := s(i) od

We will not impose any condition on the signature Σ except that we assume Σ to
include a constant symbol 0 for zero and a unary function symbol s for successor. But
this condition is enough to guarantee expressivity for the class of loops we are interested
in, since iter(for i < n do . . . od, σ) = σ(n).

Definition 5.1. Let Γ be a finite Π1 theory. A simple loop proof π, short slp, is a proof
of the following form, together with p, Γi, ti, and ui as described below:

|= A[x, n]→ ∀y p[n, 0, x, y]

{A[x, n]} i := 0 {∀y p[n, i, x, y]}

{
∧
j p[n, i, x, tj]} S {p[n, s(i), x, γ]}

{∀y p[n, i, x, y] ∧ i 6= n} S {∀y p[n, s(i), x, y]}
{∀y p[n, i, x, y]} . . . {∀y p[n, i, x, y] ∧ i = n}

|=
∧
j p[n, n, x, uj]→ B[x, n]

|= · · · → B[x, n]

{∀y p[n, i, x, y]} . . . {B[x, n]}
{A[x, n]} for i < n do S od {B[x, n]}

• p[n, i, x, γ] is a quantifier-free formula with only the indicated variables (and
program variables).

• Γ0 = Γ0[x, n, β], Γ1 = Γ1[n, i, x, γ] and Γ2 = Γ2[n, x] are sets of quantifier-free
instances of the background theory Γ restricting the deductions in the consequence
rules of the proof:

– The deduction |= A[x, n]→ ∀y p[n, 0, x, y] only requires assumptions from Γ0,
i.e. the following sequent is quasi-tautological:

Γ0, A[x, n] ` p[n, 0, x, β]

– The proof of the triple {
∧
j p[n, i, x, tj]} S {p[n, s(i), x, γ]} only requires as-

sumptions from Γ1, i.e. the following sequent is quasi-tautological:

Γ1,
∧
j

p[n, i, x, tj] ` wlp(S, p[n, s(i), x, γ])

47

5 Loop verification

– The deduction |=
∧
j p[n, i, x, uj] → B[x, n] only requires assumptions from

Γ2, i.e. the following sequent is quasi-tautological:

Γ2,
∧
j

p[n, i, x, uj] ` B[x, n]

• tj = tj[n, i, x, γ] and uj = uj[n, x] are terms in only the indicated variables.

Theorem 5.2. Let π′ be a proof of {A} for i < n do S od {B} such that:

• Any deduction in π′ requires only assumptions from Γ, i.e. whenever |= ψ occurs in
the proof, then we actually have Γ ` ψ.

• The loop rule is only used once ending in {ϕ} while i 6= n do S; i := s(i) od {ϕ∧
i = n} where ϕ is a Π1 formula.

Then there is a slp π of {A} for i < n do S od {B}.
Proof. Normalize π′ using the rules in Figure 4.2, and then apply Herbrand’s theorem to
obtain the sets of terms ti and ui.

Because of the completeness of Hoare logic (as our language is expressive), Theorem 5.2
implies a certain form of completeness for slps as well. If |= {A} for i < n do S od {B}, Γ
is large enough, and contains enough Skolem symbols, then both conditions in Theorem 5.2
are satisfied and there will be a slp of this triple.

Similar to the case of induction proofs, where we instantiated the proof for a concrete
value of α, we now want to consider proofs for concrete values of n. With that goal
in mind, we will first adapt the notion of instantiation of formulas to loop unrolling of
programs:

Definition 5.3. For any natural number n, the loop unrolling (for i < n do p od)n of
for i < n do p od is the program p[i\0, n\n]; . . . ; p[i\n, n\n]; i := n.

Lemma 5.4. Let p be a program that does not assign to i or n, then

MJ(for i < n do p od)σ(n)K(σ) =MJfor i < n do p odK(σ)

Proof. Define the program state σ(i) after i iterations of the loop as follows (p; i := s(i)
is the loop body of the abbreviated while loop of for i < n do p od):

σ(0) = σ[i 7→ 0]

σ(i+ 1) =MJp; i := s(i)K(σ(i))

Because p does not assign to i or n, we get σ(i)(i) = i and σ(i)(n) = σ(n) for any
“time” i ≤ n and hence for any i < n:

σ(i+ 1) = (MJpK(σ(i)))[i 7→ i] = (MJp[i\0, n\σ(n)]K(σ(i)))[i 7→ i]

Since at every “time” i < n the loop condition holds, i.e. σ(i) |= i 6= n, and fails at
the end, i.e. σ(n) |= i = n, we have that MJfor i < n do p odK(σ) = σ(n).

The state update [i 7→ i] commutes with the program semantics of p[i\0, n\σ(n)],
therefore MJ(for i < n do p od)σ(n)K(σ) = σ(n) =MJfor i < n do p odK(σ).

48

By extending the language of our theory by symbols for the state σ(i) of the loop after
i iterations, we can encode the triple we are interested in into a sequent.

Definition 5.5. The extended language Σσ = Σ ∪ {σx1/1, . . . , σxl/1} consists of the
language Σ and new unary function symbols σxj such that σxj (i) denotes the state of the
program variable xj after i iterations.

Definition 5.6. Given a background theory Γ and a triple {A} for i < n do S od {B}
with program variables {i, n, x1, . . . , xl} where the loop body S does not assign to i or
n, the associated end-sequent of {A} for i < n do S od {B} is the following sequent in
the extended language Σσ:

Γ,Π[α], A[α, σ(0)]︸ ︷︷ ︸
∀Γ̃[α]

` B[α, σ(α)]︸ ︷︷ ︸
B̃[α]

where Π[α] ≡ ∀z π[α, z], and π[α, z] ≡ σ(s(z)) =MJS[i\z, n\α]K(σ(z)).

Definition 5.7. Let π be a slp; its associated sip π̃ is the LK-proof with induction of
its associated end-sequent with the induction formula F [α, ν, γ] ≡ p[α, ν, σ(ν), γ].

Not all sips arise from slps, as not all end-sequents arise from Hoare triples in the sense
of Definition 5.6. Not even all sips of an associated end-sequent arise from slps, as those
that are associated sips of an slp have the following restrictions:

Lemma 5.8. Let π be any sip of the associated end-sequent of the triple {A} p {B}. If
π satisfies the following properties, then it is the associated sip of some slp ψ, i.e. π = ψ̃.

• There is only one instance of Π[α], and it is π[α, ν] ∈ Γ1.

• The arguments of the function symbols σxi in the instance terms are restricted:

– In Γ0 they are always 0.

– In Γ1 \ {π[α, ν]} and the terms ti they are always ν.

– In the induction formula, they are always ν.

– In Γ2 and the terms ui they are always α.

• The formula A[α, σ(0)] occurs in Γ0, but not in Γ1 or Γ2.

These restrictions will matter when we will try to find slps of a given triple, i.e. invert
the following the following constructions. However the “forward” case is identical to the
case of sips:

Definition 5.9. The instance proof of an slp π for a number n is the instance proof π̃n
the sip π̃.

Definition 5.10. An slp grammar is an sip grammar in the language Σσ where each
production is additionally required to be in one of the following forms (where t is an
arbitrary term in just Σ):

49

5 Loop verification

• τ → t[α, β, σ(0)]

• τ → t[α, ν, γ, σ(ν)]

• τ → t[α, σ(α)]

• γ → t[α, ν, γ, σ(ν)]

• γend → t[α, σ(α)]

The instance grammar of an slp grammar is just the instance grammar of an sip
grammar.

Definition 5.11. The slp grammar G(π) of an slp π is the sip grammar grammar G(π̃)
of its associated sip, i.e. G(π) = G(π̃).

Lemma 5.12. Let π be an slp, then G(π) is an slp grammar.

Theorem 5.13. Let π be an slp, then G(πn) = G(π)n

Proof. This is a special case of Lemma 3.8.

5.1 Finding slp grammars

Note that per Definition 5.10, an slp grammar is just a sip grammar in the signature
Σσ where the arguments of the function symbols σk are further restricted—hence we
can find minimal slp grammars in essentially the same way as sip grammars; we take a
polynomially-sized slp grammar H and minimize it.

Definition 5.14. A production δ → k[α, ν, β, γ, σ(s)] is in slp-normal form relative to a
family of languages (Li) if it is of one of the forms in Definition 5.10 and there is a term
r such that δ → k[α, ν, β, γ, σ(r)] is in sip-normal form relative to (Li).

Lemma 5.15. Let G be a slp grammar, δ → k one of its productions, Li an instance
language for the number i.

Then there exists a production δ → k′′ in slp-normal form such that L(Gi) ∩ Li ⊆
L(G′i) ∩ Li for the slp grammar G′ which is obtained from G by replacing the production
δ → k by δ → k′′.

Proof. Assume for the moment that k contains an occurrence of a σ(ν); and let k′ be
as in Lemma 1.28. Then in k′, all of these occurrences still have the same argument,
call it tν . Then we can apply Lemma 3.22 to the term k′′ = k′[σ(tν)\σ(ν)] where all
occurrences of tν as arguments of σ have been replaced by ν.

The same argument also works if k contains σ(0), σ(α), or no σ at all.

50

5.2 Finding loop invariants

Lemma 5.16. Let (Li) be a family of languages, such that there is slp grammar covering
it. Then there is a slp grammar H = (Σ, Q) that contains a slp grammar covering (Li)
of minimal size as a sub-grammar.

This grammar can be computed by an algorithm whose runtime is polynomially bounded
in |st(

⋃
Li)|. The number of productions in H and the number of subterms of right-hand

sides of productions in H is then also polynomially bounded.

Proof. The slp grammar H̃ consists of all productions in slp-normal form.
If G is a slp grammar of minimal size covering (Li), then by iteratively applying

Lemma 5.15 there is a grammar G′ with |G′| ≤ |G| where all productions are in slp-
normal form, i.e. a sub-grammar of H, and which still covers (Li).

However, here it can be the case that there is no slp grammar covering a given finite
family of languages (Li); in this case the algorithm fails—for example, there is no slp
grammar that covers L2 = {r1(σ1(0), σ1(1), σ1(2))}:

Lemma 5.17. There is no slp grammar G such that r1(σ1(0), σ1(1), σ1(2)) ∈ G2.

This result is not too astonishing—it corresponds to a proof referencing the program
variables at three different points in time.

Proof. Let G be a slp grammar, and d a derivation of r1(σ1(0), σ1(1), σ1(2)) in G2.
Consider the first step in d which is not a non-terminal—this is either τ →1 r1(t1, t2, t3)

or γi →1 r1(t1, t2, t3) for some terms t1, t2, t3. Clearly each tj subsumes σ1(j) and by case
analysis on the possible productions in an instance grammar of a slp grammar, either
tj is a non-terminal or equal to σ(i). The terms tj cannot be any non-terminal either,
they have to be γ, as the other non-terminals are instantiated with numerals. Due to the
rigidity of G2, there are now only two possible values for the arguments of r1, which is a
contradiction.

5.2 Finding loop invariants

If we look at how we encoded slps as sips in Definition 5.7, the loop invariant p turned
into the induction formula.

Definition 5.18. A schematic slp S is a schematic sip with the same restrictions as in
Lemma 5.8.

Definition 5.19. A formula F is a solution for the schematic slp S if:

• F is solution for the schematic sip S.

• F does not contain any occurrences of the function symbols σx, except for σx(ν),
i.e. F is of the form F [α, ν, σ(ν), γ].

Lemma 5.20. Let π be a slp and S its schematic slp. The loop invariant ∀y p[n, i, x, y]
then gives the solution p[α, ν, σ(ν), γ] for the schematic slp.

51

5 Loop verification

slp sip LK-proof cf proof

solved schem. slp solved schem. sip eHs Herbrand disj.

schem. slp schem. sip seHs Herbrand disj.

slp g. sip g. trat g. term l.

Def. 5.7

Def. 5.11

Def. 3.6

Def. 3.5

cut-elim

Eq. 3.1

Def. 3.7 generates

Figure 5.1: Relation of slps and their grammars to sips, proofs with cut and cut-free
proofs.

Proof. This directly follows from the analogous result for sips, Lemma 3.12.

Lemma 5.21. Let S be a schematic slp with solution F [α, ν, σ(ν), γ], then there is a slp
π which has S as schematic slp and ∀y F [n, i, x, y] as loop invariant.

Proof. Use Lemma 3.13 to obtain a sip for the associated end-sequent, and then convert
it into a slp with Lemma 5.8.

We can then use the same algorithm that we used to find loop invariants for loop
invariants of slps; it is however necessary to filter out generated solutions which do not
satisfy the restriction in Definition 5.19.

5.3 Overview

Given a triple {A} for i < n do S od {B}, our algorithm tries to find a simple loop
proof using the following steps:

1. For a suitable set of values for n, automatically generate proofs of the sequents
Γ,Π[n], A[x\σ(0), i\0, n\n] ` B[x\σ(n), i\n, n\n], and extract the Herbrand lan-
guage Ln.

2. Find a slp grammar G with such that L(Gn) ⊇ Ln for each of the languages Ln.

3. Find a solution F for the schematic form using one of the algorithms presented
above.

4. This gives a slp.

5.4 Examples

In the following, we will present a few examples illustrating the theory of slps.

52

5.4 Examples

5.4.1 Addition

As a very simple first example, consider the following program which implements addition
using only the successor operation:

{x = x0} for i < n do x := s(x) od {x = x0 + n}
The background theory necessary to prove the correctness of this loop is as basic as

the loop itself; we only need two axioms describing the relation between addition and
successor:

Γ = {∀x x+ 0 = x, (p0)

∀xy x+ s(y) = s(x+ y)} (ps)

The labels on the right hand side are the indices we will use in the corresponding term
languages, e.g. the instance c+ 0 = c of the formula ϕp0 corresponds to the term rp0(c).

The associated end-sequent of the triple is the following:

σ(0) = x0,∀i σ(s(i)) = s(σ(i)),∀xϕp0,∀xy ϕps ` σ(α) = x0 + α

What we are now interested in are languages of instance proofs, these are just another
way to look at the Herbrand sequents of the above associated end-sequent. We can easily
guess a few of those:

L0 = {rp0(x0), rA, rB}
L1 = {rp0(x0), rps(x0, 0), rA, rB, rπ(0)}
L2 = {rp0(x0), rps(x0, 0), rps(x0, 1), rA, rB, rπ(0), rπ(1)}

...

Li+1 = {rp0(x0), rps(x0, 0), . . . , rps(x0, i), rA, rB, rπ(0), . . . , rπ(i)}
...

For example for L2, this intuitively means that in order to prove {x = x0} x :=
s(x); x := s(x) {x = x0 + 2} we do not need the full theory Γ, we can prove this triple
just from x0 + 0 = x0 and x0 + s(0) = s(x0 + 0).

In this case, we can easily give a nice and uniform description of Li; but in practice we
only need a few finite languages.

The following slp grammar covers all of the languages Li, since we can obtain any term
in those languages as the right hand side of a τ -production (after substituting i for ν):

τ → rp0(x0)

τ → rps(x0, ν)

τ → rA | rB | rπ(ν)

If this slp grammar was extracted from a slp, then we would immediately know
what instances were in Γ0, Γ1, and Γ2 in the slp—that would be Γ0 = {x0 + 0 = x0},

53

5 Loop verification

Γ1 = {x0 + 0 = x0, x0 + s(ν) = s(x0 + ν)}, and Γ2 = {x0 + 0 = x0}. We could also
recover the sets of terms ti and ui; but in this case there are none, since we have no γ- or
γend-productions (this implies that the loop invariant is quantifier-free). Putting all this
information together, we can give the schematic slp for this problem:

x0 + 0 = x0, σ(0) = x0 ` X[α, 0, σ(0), β]

X[α, ν, σ(ν), 0],

x0 + 0 = x0, x0 + s(ν) = s(x0 + ν),

σ(s(ν)) = s(σ(ν)) ` X[α, s(ν), σ(s(ν))γ]

X[α, α, σ(α), 0], x0 + 0 = x0 ` σ(α) = x0 + α

The only missing piece in order to reconstruct a slp is now a valid substitution for X,
i.e. a solution for the schematic slp, which is nothing more than a loop invariant.

As we have seen in Lemma 3.30, any loop invariant is a generalization of a consequence
of the canonical solution, which is given as follows:

C ′0 = x0 + 0 = x0 ∧ σ(0) = x0

C ′1 = x0 + 0 = x0 ∧ σ(0) = x0 ∧ x0 + s(0) = s(x0 + 0) ∧ σ(1) = s(σ(0))

C ′2 = x0 + 0 = x0 ∧ σ(0) = x0 ∧ x0 + s(0) = s(x0 + 0) ∧ σ(1) = s(σ(0))

∧ x0 + s(1) = s(x0 + 1) ∧ σ(2) = s(σ(1))

Luckily, these formulas are already in CNF. Paramodulating the two clauses of C ′0, we
can obtain the formula x0 + 0 = σ(0); if we replace some occurrences of 0 by ν, we get a
candidate for a loop invariant:

X[α, ν, σ(ν), γ] 7→ x0 + ν = σ(ν)

Applying this substitution in the schematic slp, we can verify that it is indeed a loop
invariant:

x0 + 0 = x0, σ(0) = x0 ` x0 + 0 = σ(0)

x0 + ν = σ(ν), x0 + s(ν) = s(x0 + ν),

σ(s(ν)) = s(σ(ν)) ` x0 + s(ν) = σ(s(ν))

x0 + α = σ(α) ` σ(α) = x0 + α

5.4.2 Array initialization

This problem is the Shift example from [HKV11].

{>} for i < n do x := set(x, s(i), get(x, i)) od {∀y y ≤ n→ get(x, y) = get(x, 0)}

We cannot handle this problem directly, as the postcondition is quantified; we can
handle this by Skolemization:

{>} for i < n do x := set(x, s(i), get(x, i)) od {k ≤ n→ get(x, k) = get(x, 0)}

54

5.4 Examples

This loop initializes an array by setting each element in turn to its predecessor, and
we want to verify that the array is then constant, and all elements equal to the first one.

We formalize arrays as individuals in our first order language, and add suitable axioms
for two basic array operations:

• get(x, y) retrieves the element at index y in the array x.

• set(x, y, z) returns the array x where the element at index y is replaced with the
value z.

The background theory also includes some basic axioms for the natural numbers and
their ordering ≤.

Γ = {∀x s(x) 6= 0, (s0)

∀x x ≤ x, (lr)

∀x 0 ≤ x, (0l)

∀x x ≤ 0→ x = 0, (l0)

∀x∀y x ≤ y → x ≤ s(y), (sl)

∀x∀y x ≤ s(y)→ x ≤ y ∨ x = s(y), (ls)

∀x∀y∀z get(set(x, y, z), y) = z, (ge)

∀x∀y∀z∀w y 6= w → get(set(x, y, z), w) = get(x,w)} (gn)

We can find possible languages for instance proofs:

L0 = {rl0(k), rA, rB}
L2 = {rl0(k), rls(k, 0), rls(k, 1), rgn(σ(0), 1, get(σ(0), 0), 0),

rgn(σ(1), 2, get(σ(1), 0), 0), rgn(σ(1), 2, get(σ(1), 0), k),

rge(σ(0), 1, get(σ(0), 0)), rge(σ(1), 2, get(σ(1), 0)),

rπ(0), rπ(1), rA, rB}

And then guess a slp grammar covering these instance languages:

τ → rl0(k)

τ → rls(k, ν)

τ → rge(σ(ν), s(ν), get(σ(ν), ν))

τ → rgn(σ(ν), s(ν), get(σ(ν), ν), 0)

τ → rgn(σ(ν), s(ν), get(σ(ν), ν), k)

τ → rπ(ν)

τ → rA

τ → rB

55

5 Loop verification

As in the last example, the absence of a γ-production implies that the loop invariant
will be quantifier-free. From the slp grammar, we can read off the schematic slp–making
sure to insert 0 as a “dummy” step-term for the quantifier-free invariant:

>, k ≤ 0→ k = 0 ` X[α, 0, σ(0), γ]

σ(sν) = set(σ(ν), sν, get(σ(ν), ν)),

k ≤ s(ν)→ k ≤ ν ∨ k = s(ν),

get(set(σ(ν), s(ν), get(σ(ν), ν)), s(ν)) = get(σ(ν), ν),

s(ν) 6= k → get(set(σ(ν), s(ν), get(σ(ν), 0)), k) = get(σ(ν), k),

s(ν) 6= 0→ get(set(σ(ν), s(ν), get(σ(ν), 0)), 0) = get(σ(ν), 0),

σ(s(ν)) = set(σ(ν), s(ν), get(σ(ν), ν)),

X[α, ν, σ(ν), 0] ` X[α, s(ν), σ(sν), γ]

X[α, α, σ(α), k] ` k ≤ α→
get(σ(α), k) = get(σ(α), 0)

And compute the canonical solutions; these are already converted into CNF and the
clauses are labelled so that we can refer to them later on:

C ′0[α, γ] = k 6≤ 0 ∨ k = 0

C ′1[α, γ] = (σ(1) = set(σ(0), 1, get(σ(0), 0))) (0)

∧ (k 6≤ 1 ∨ k ≤ 0 ∨ k = 1) (1)

∧ (1 = 0 ∨ get(set(σ(0), 1, get(σ(0), 0)), 0) = get(σ(0), 0)) (2)

∧ (1 = k ∨ get(set(σ(0), 1, get(σ(0), 0)), k) = get(σ(0), k)) (3)

∧ get(set(σ(0), 1, get(σ(0), 0)), 1) = get(σ(0), 0) (4)

∧ (k 6≤ 0 ∨ k = 0) (5)

A solution F for the schematic slp needs to satisfy C ′1[α, γ] ` F [α, 1, σ(1), γ]. We will
now try to apply the heuristic search algorithm using paramodulation and resolution to
find such a consequence D[α, γ] of C ′1. The quasi-tautology criterion for pruning branches
in this search algorithm is D[1, γ] ` k ≤ 1→ get(σ(1), k) = get(σ(1), 0)

k 6≤ 1 ∨ k = 0 ∨ k = 1 (6, res(1,5))

k 6≤ 1 ∨ k = 1 ∨ get(set(σ(0), 1, get(σ(0), 0)), 0) = get(σ(0), k) (7, param(6,2))

k 6≤ 1 ∨ k = 1 ∨ get(set(σ(0), 1, get(σ(0), 0)), k) = get(set(σ(0), 1, get(σ(0), 0)), 0)
(8, param(7,3))

1 = 0 ∨ get(set(σ(0), 1, get(σ(0), 0)), 1) = get(set(σ(0), 1, get(σ(0), 0)), 0)
(9, param(4,2))

k 6≤ 1 ∨ k = 1 ∨ get(σ(1), k) = get(σ(1), 0) (10, param(0,8))

1 = 0 ∨ get(σ(1), 1) = get(σ(1), 0) (11, param(0,9))

Taking the conjunction of clauses 10 and 11 gives the following consequence of C ′1[α, γ]:

(k ≤ 1 ∧ k 6= 1→ get(σ(1), k) = get(σ(1), 0)) ∧ (0 6= 1→ get(σ(1), 1) = get(σ(1), 0)

56

5.4 Examples

Generalizing this formula gives a candidate for a loop invariant:

(k ≤ i ∧ k 6= i→ get(x, k) = get(x, 0)) ∧ (0 6= i→ get(x, i) = get(x, 0)

Which is indeed a loop invariant as can be checked by substituting it for X in the
schematic slp. We did not quite follow the algorithm though, we did not forget the clauses
we paramodulated—we used clauses 2 and 0 twice in order to generate the consequence. It
is not immediately apparent how to do this with forgetful paramodulation and resolution.

5.4.3 Bubble sort

Bubble sort is a naive algorithm to sort lists, in each iteration the list is traversed from
end to beginning, and adjacent elements are swapped if they are in the wrong order:

for i < n do

for j ∈ {n− 1, . . . , i + 1} do

if get(x, j) < get(x, j− 1) then

tmp := get(x, j);

x := set(x, j, get(x, j− 1));

x := set(x, j− 1, tmp)

fi

od

od

Figure 5.2: The bubble sort algorithm

2 0 1

2 0 1

0 2 1

Figure 5.3: Inner loop of bubble sort, “bubbling down” the element 0

Note that this inner loop changes the indices of the elements (which should not
be a surprise since sorting needs to permute the list in general). But this change
of indices will make a quantified invariant necessary. By contrast, in the previous
array initialization example, we could have given a quantified invariant as well, namely
∀y y ≤ i → get(x, y) = get(x, 0), but after Skolemization we got away with a (slightly
more complicated) quantifier-free invariant by instantiating y with k.

57

5 Loop verification

Since our approach cannot handle nested loops, we will only consider the outer loop
here and axiomatize the inner loop; the inner loop is modeled as a function f(x, i, n)
operating on the array x between the indices i and n. We arrive at the following triple
for the outer loop:

{>} for i < n do x := f(x, i, n) od {k ≤ l ∧ l < n→ get(x, k) ≤ get(x, l)}

In order to keep this example short and readable, we will simplify the background
theory a bit. We will ignore the details of the axioms for s, <, etc.—in fact, we will
ignore these axioms at all. In addition, we will pack all information about the inner loop
into a single axiom:

Γ = {Π1-theory of s, <, ≤, get, and set,

∀x∀i∀n∀j (i ≤ j ∧ j < n→ get(f(x, i, n), i) ≤ get(f(x, i, n), j))

∧ (j < i ∧ i < n→ get(f(x, i, n), j) = get(x, j))

∧ (j < n→ get(f(x, i, n), j) = get(x, g(x, i, n, j)))

∧ (i ≤ j ∧ j < n→ i ≤ g(x, i, n, j) ∧ g(x, i, n, j) < n)} (f)

In order to axiomatize the fact that the inner loop permutes the elements it would
have been nice if we could say that ∀x ∃y get(f(x, i, n), j) = get(x, y). But since we can
only handle Π1 theories, the existential quantifier has been Skolemized, giving the new
function g(x, i, n, j) describing the permutation of the j-th element of the list x in the
i-th iteration.

Just as we have done in the previous two examples, we will find a few instance
languages:

L0 = { . . . }
L1 = { . . . }
L2 = {rf(σ(0), 0, 2, g(σ(1), 1, 2, 1)),

rf(σ(1), 1, 2, 0), . . . }
L3 = {rf(σ(0), 0, 3, k),

rf(σ(0), 0, 3, l),

rf(σ(0), 0, 3, g(σ(2), 2, 3, l)),

rf(σ(0), 0, 3, g(σ(1), 1, 3, l)),

rf(σ(0), 0, 3, g(σ(1), 1, 3, g(σ(2), 2, 3, l))),

rf(σ(1), 1, 3, k),

rf(σ(1), 1, 3, l),

rf(σ(1), 1, 3, g(σ(2), 2, 3, l)),

rf(σ(2), 2, 3, k),

rf(σ(2), 2, 3, l), . . . }

The dots are instances of the axioms of s, <, etc., that we are still choosing to ignore.
For L0 and L1 we did not need any information about the inner loop at all, as empty and

58

5.4 Examples

singleton lists are always sorted anyways. In L2 and L3 we can see how the Herbrand
languages keep track of the change in indices after each iteration—by iterated application
of g. This iterated application corresponds to the production γ → g(σ(ν), ν, α, γ) in the
following slp grammar which covers L0, L1, L2, . . . :

τ → rf(σ(ν), ν, α, k)

τ → rf(σ(ν), ν, α, γ)

τ → . . .

γ → γ

γ → g(σ(ν), ν, α, γ)

γend → l

Just as before, we can again read off a schematic slp:

>, . . . ` X[α, 0, σ(0), γ]

ϕf (σ(ν), ν, α, k), ϕf (σ(ν), ν, α, γ), . . . ,

σ(s(ν)) = f(σ(ν), ν, α),

X[α, ν, σ(ν), γ],

X[α, ν, σ(ν), g(σ(ν), ν, α, γ)] ` X[α, s(ν), σ(s(ν)), γ]

X[α, α, σ(α), l], . . . ` k ≤ l ∧ l < n→ get(σ(α), k) = get(σ(α), l)

Because the slp grammar contained γ-productions, we have more occurrences of X on
the antecedent of the second sequent. Each of these X corresponds to a γ-production
of the slp grammar, and the fourth argument of each X is the right hand side of the
corresponding γ-production—in the slp, these would be the terms t1 and t2 instantiating
the quantified loop invariant. The canonical solution is a bit more complicated as well
due to the γ-productions:

C ′0 = . . .

C ′1 = · · · ∧ σ(1) = f(σ(0), 0, α)∧
ϕf (σ(0), 0, α, k) ∧ ϕf (σ(0), 0, α, γ)

C ′2 = · · · ∧ σ(1) = f(σ(0), 0, α) ∧ σ(2) = f(σ(1), 1, α)∧
ϕf (σ(0), 0, α, k) ∧ ϕf (σ(0), 0, α, γ) ∧ ϕf (σ(0), 0, α, g(σ(1), 1, α, γ))∧
ϕf (σ(1), 1, α, k) ∧ ϕf (σ(1), 1, α, γ)

While in the previous two examples with quantifier-free loop invariants, we only had
to add new conjuncts in each C ′i, here we actually have to substitute γ in C ′i−1 by each
possible right hand side of a γ-production.

However there is no change in how we can find a loop invariant, we still consider (the
right) consequences of C ′i:

C ′2 ` k < γ ∧ γ < α ∧ k < 2 ∧ 2 ≤ α→ get(σ(2), k) ≤ get(σ(2), γ)

59

5 Loop verification

And then generalize them into a loop invariant:

∀y (k < y ∧ y < n ∧ k < i ∧ i ≤ n→ get(x, k) ≤ get(x, y))

That this is indeed a loop invariant can be checked by substituting it for X in the
schematic slp.

60

Conclusion

This thesis applies the method for inductive theorem proving proposed in [EH15] to
the verification of simple loop programs by encoding the verification conditions as an
inductive problem, requiring various extensions to the basic induction case covered there:

The encoding of the verification conditions as an inductive problem yields more general
end-sequents than previously considered. In particular, it was necessary to allow α in
the antecedent, i.e. allow sequents of the form Γ[α] ` B[α] instead of just Γ ` B[α].

Aside from the end-sequent, the notion of grammar corresponding to slps proved
challenging. While every slp grammar is a sip grammar, slp grammars are restricted in
two significant ways: Some productions are required to be present in every slp grammar;
this is a straightforward (although novel) restriction that requires little change in the
rest of the theory.

However, slp grammars also have a more fundamental restriction on the form of their
productions, namely that only certain terms are allowed as arguments to the function
symbols σx; this restriction had major effects:

• In contrast to sip grammars, we lose the theoretical result that every finite family
of languages can be covered by a sip grammar.

• The notion of normal forms introduced in [EH14] and used in [EH15] to efficiently
find (sip) grammars covering a finite family of languages turned out to be too strict—
using that definition, we could no longer find a covering slp grammar that consists
only of productions in normal form. This work introduces a new notion of normal
form which is more general, while still preserving polynomial-time reducibility to
Max-SAT.

While adapting this method to slp grammars, it proved convenient to reformulate
the existing work on normal forms and grammar minimization in order to elucidate the
points where changes related to slp grammars are necessary. Previously this method was
presented as a monolithic process taking a family of languages and returning a formula
whose Max-SAT solution encoded a covering grammar of minimal size.

In this work we separated this process into two steps: First we generate a covering
grammar consisting of all productions in normal form, and then we encode the mini-
mization as a Max-SAT problem. Each of these steps requires different changes for slp
grammars. The covering grammar needs to be enlarged for the restricted arguments
to the function symbols σx, and the minimization needs to be restricted in order to
guarantee the presence of certain productions.

In order to facilitate the definition of normal forms required for slp grammars, the
existing work in [EH14] was recast using the equational logic of term algebras. This

61

Conclusion

formulation gives a transparent proof of the reducibility of grammar minimization to Max-
SAT, and relates covering grammars and normal forms to the anti-unification in [Plo70a;
Rey70]. Many of the proofs follow a common pattern by ordering non-terminals by
a strict subterm relation, this proof technique could conceivably be generalized to an
induction principle for trat grammars.

While this reformulation made the exposition clearer, some details were lost: in [EH15]
a class of restricted normal forms for productions of sip grammars was defined. While both
restricted normal forms and the sip-normal forms in this work yield covering grammars
that can be generated in polynomial time, their relation still merits further investigation.

We also compared the canonical solutions and schematic sips in the work on induction
with the canonical substitutions and schematic extended Herbrand sequents in [Het+14b].
Using f -modified canonical solutions, we showed how these two are related; as a corollary
we obtain a large class of solutions that are very similar to the canonical substitutions
of [Het+14b].

In the end it proved difficult to find good examples that make full use of the theory,
i.e. which have Π1 loop invariants. While universally quantified induction formulas are
commonplace in inductive proofs; in program verification, the loop invariants can make
use of a much more expressive language containing the program variables, reducing the
need for quantified invariants. In some cases, the natural loop invariant is universally
quantified (e.g. over all indices of an array), but this quantification usually becomes
unnecessary after Skolemizing the postcondition, which is required as our approach only
handles quantifier-free postconditions.

From a practical point of view, the main restriction of the approach in this work is that
we cannot verify nested loops. It might be possible to relax this restriction by considering
more general paths through a control-flow graph than single loops; or maybe by reducing
it to nested induction, and developing a theory of nested inductive proofs. In addition,
we have also restricted the classes of formulas—but this poses only a minor problem since
many verification problems only require quantifier-free formulas: pre- and post-conditions
are required to be quantifier-free, the background theory Π1, and the loop invariant Π1

with a single quantifier. Pre- and postconditions could be trivially generalized to Π1 pre-
and Σ1 post-conditions, respectively. Allowing Π1 invariants with an arbitrary number of
quantifiers could be done as in [Het+14a], which handled the corresponding result for Π1

cut-formulas with an arbitrary number of quantifiers. Relaxing the restriction on loop
invariants to Π2 or Σ2 invariants is much harder and requires corresponding results for
proofs with Π2 or Σ2 cut formulas, which are part of ongoing research.

It is not yet clear how well the approach for loop verification presented here will perform
in practice. Automatically extracted Herbrand sequents from pathological instance proofs
might not be easily generalized to a slp grammar; we are considering to work with
grammars modulo an equational theory in this case. The algorithm we are proposing to
find loop invariants still awaits implementation in gapt1 and empirical testing as well.

1https://logic.at/gapt

62

https://logic.at/gapt

Bibliography

[ABO10] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification
of Sequential and Concurrent Programs. Texts in Computer Science. Springer,
2010.

[Ack62] Wilhelm Ackermann. Solvable cases of the decision problem. North-Holland,
1962.

[Arg+08] Josep Argelich, Chu Min Li, Felip Manya, and Jordi Planes. “The First
and Second Max-SAT Evaluations.” In: Journal on Satisfiability, Boolean
Modeling and Computation 4.2-4 (2008), pp. 251–278.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[Com+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
2007. url: http://www.grappa.univ-lille3.fr/tata.

[EH14] Sebastian Eberhard and Stefan Hetzl. “Decomposing languages by rigid
acyclic grammars”. preprint. 2014. url: http://www.logic.at/staff/
hetzl/research/zerlegung.pdf.

[EH15] Sebastian Eberhard and Stefan Hetzl. “Inductive theorem proving based
on tree grammars”. In: Annals of Pure and Applied Logic (2015). url:
http://dx.doi.org/10.1016/j.apal.2015.01.002.

[Flo67] Robert W. Floyd. “Assigning meanings to programs”. In: Proceedings of
Symposia in Applied Mathematics. Vol. 19. AMS, 1967, pp. 19–32.

[Gen35] Gerhard Gentzen. “Untersuchungen über das logische Schließen. I”. In:
Mathematische Zeitschrift 39.1 (1935), pp. 176–210.

[Her30] Jacques Herbrand. “Recherches sur la théorie de la démonstration”. PhD
thesis. 1930.

[Het+14a] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and Daniel
Weller. “Introducing Quantified Cuts in Logic with Equality”. In: Interna-
tional Joint Conference on Automated Reasoning (IJCAR). Ed. by Stéphane
Demri, Deepak Kapur, and Christoph Weidenbach. Vol. 8562. Lecture Notes
in Computer Science. Springer, 2014, pp. 240–254.

[Het+14b] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel Weller. “Algorith-
mic introduction of quantified cuts”. In: Theoretical Computer Science 549
(2014), pp. 1–16.

63

http://www.grappa.univ-lille3.fr/tata
http://www.logic.at/staff/hetzl/research/zerlegung.pdf
http://www.logic.at/staff/hetzl/research/zerlegung.pdf
http://dx.doi.org/10.1016/j.apal.2015.01.002

Bibliography

[Het12] Stefan Hetzl. “Applying Tree Languages in Proof Theory”. In: Language and
Automata Theory and Applications (LATA). Ed. by Adrian-Horia Dediu and
Carlos Mart́ın-Vide. Vol. 7183. Lecture Notes in Computer Science. Springer,
2012, pp. 301–312.

[HKV11] Krytsof Hoder, Laura Kovács, and Andrei Voronkov. “Case Studies on
Invariant Generation Using a Saturation Theorem Prover”. In: Proceedings
of the Mexican International Conference on Artificial Intelligence (MICAI).
Vol. 7094. Lecture Notes in Artificial Intelligence. 2011, pp. 1–15.

[Hoa69] Charles Antony Richard Hoare. “An axiomatic basis for computer program-
ming”. In: Communications of the ACM 12.10 (1969), pp. 576–580.

[JKV11] Florent Jacquemard, Francis Klay, and Camille Vacher. “Rigid Tree Au-
tomata and Applications”. In: Information and Computation 209.3 (2011),
pp. 486–512.

[Mah88] Michael J. Maher. “Complete axiomatizations of the algebras of finite,
rational and infinite trees”. In: Proceedings of the Third Annual Symposium
on Logic in Computer Science (LICS). IEEE. 1988, pp. 348–357.

[Opp78] Derek C. Oppen. “Reasoning about Recursively Defined Data Structures”.
In: Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages (POPL). Ed. by Alfred V. Aho, Stephen N. Zilles,
and Thomas G. Szymanski. 1978, pp. 151–157.

[Plo70a] Gordon D. Plotkin. “A note on inductive generalization”. In: Machine
Intelligence 5.1 (1970), pp. 153–163.

[Plo70b] Gordon D. Plotkin. Lattice theoretic properties of subsumption. Edinburgh
University, Department of Machine Intelligence and Perception, 1970.

[Plo71] Gordon D. Plotkin. “A further note on inductive generalization”. In: Machine
Intelligence 6 (1971), pp. 101–124.

[Rey70] John C. Reynolds. “Transformational systems and the algebraic structure of
atomic formulas”. In: Machine Intelligence 5.1 (1970), pp. 135–151.

[TS00] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
2000.

[Tse83] Grigori S. Tseitin. “On the complexity of derivation in propositional calculus”.
In: Automation of Reasoning: Classical Papers in Computational Logic. Vol. 2.
Springer, 1983, pp. 466–483.

64

	Introduction
	Contents
	Term languages
	Tree grammars
	Normal forms
	Reduction to propositional logic
	Computing normal forms

	Minimizing grammars
	Finding a minimal grammar

	Simple proofs
	Sequent calculus
	Extended Herbrand sequents
	Grammars

	Inductive proofs
	Schematic sips
	Finding minimal sip grammars
	Finding induction formulas

	While programs
	Operational semantics
	Hoare logic

	Loop verification
	Finding slp grammars
	Finding loop invariants
	Overview
	Examples
	Addition
	Array initialization
	Bubble sort

	Conclusion
	Bibliography

