
Unterschrift des Betreuers

Diplomarbeit

Monoids, Automata and Related
Constructions in Monoidal Categories

ausgeführt am

Institut für Analysis und Scientific Computing
der Technischen Universität Wien

unter Anleitung von

ao. Univ. Prof. Dr. Wolfgang Herfort

durch

Manuel Eder
Karmeliterhofgasse 2/6

1150 Wien

Datum Unterschrift (Student)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

We collect the concepts and tools necessary to describe monoids, mo-
noid acts and automata in some abstract category C.

We give the details of a proof of the coherence theorem for monoidal
categories suggested in [Mac98] and develop a visual calculus for equa-
tional reasoning in monoidal categories that simplifies calculations in com-
parison to the naïve approach, bringing them close to the ease with which
such calculations are carried out in the category Set of sets.

We sum up and give proofs of results that describe limits, colimits
and free objects in the various categories of monoids and monoid acts
internal to our abstract category C. In fact the results we get describe
these structures in any category corresponding to what would in Set be
the category of a variety of algebras for which the universally quantified
variables in the equations describing that variety are in the same order on
both sides of every equation (this restriction leads to a more “economical”
description than can be given in the general case). This description works
in terms of limits and colimits in the ambient category C.

Finally we relate the category of automata to the category of biacts
via a functor from the former to the latter and present the construction of
the tensor product of biacts over some monoid, showing that our functor
takes serial composition of automata to the tensor product of biacts.

1

Contents
1 Introduction 3

1.1 Overview . 3
1.2 On notation . 5

2 A first look at monoids and monoidal categories 8
2.1 Monoidal categories . 8
2.2 Monoids in a monoidal category 8
2.3 Left acts, right acts and biacts 9
2.4 Automata . 12

3 Coherence 13
3.1 Monoidal functors . 13
3.2 The coherence theorem for monoidal categories 19
3.3 Calculations in monoidal categories 22

4 Interlude 40
4.1 Outlook . 40
4.2 Generalized associativity for monoids 41

5 Some properties of (co)limits 47
5.1 Iterated colimits . 47
5.2 Images of colimits under multifunctors 49

6 Monads and algebraic structures 54
6.1 Limits . 55
6.2 Colimits . 56

7 Free algebras 64
7.1 A cousin of the functor category 64
7.2 The category of valid realizations 66
7.3 Free objects . 73
7.4 Putting it all together . 93

8 The tensor product over a monoid and serial composition of
automata 96
8.1 Supporting structures for acts on the level of categories 96
8.2 Acts revisited . 97

9 Where are we now? 113

2

1 Introduction
1.1 Overview
The process which lead to the creation of this paper was born from the desire
to understand the structure of limits, colimits and other categorical structures
in the various categories of monoid acts and automata — with the hope that
such an understanding might be beneficial in developing a theory of connected
automata which maneuver each other into specific states — expecting that one
might be able to say something about the effect that the (co-)limit process has
on this property of manouvering each other into some specific state. This could
have had applications in the development of algorithms which generate solvers
for pathfinding problems in automata which are (co-)limits of other automata
from solvers for these other automata.

We will not develop such a theory in this paper and it is also not clear to
the author at this point whether this is possible or not. Nonetheless, in the
process of trying to understand these categories of automata/actions (the two
are closely related in a number of possible ways) some things have come to light
which seemed worth writing down.

Monoids, acts and algebraic objects in general, although usually presented as
sets with some additional structure can be described in a more general context.
In fact very little additional structure is needed in a category to be able to
describe what for example a monoid is.

Remember that a monoid in the classical sense is a set M together with an
associative binary operation (·) : M ×M → M and a specified element 1 ∈ M
which acts as both a left and right unit of (·). That is, 〈M, (·) , 1〉 form a monoid
if

(a · b) · c = a · (b · c) and 1 · a = a · 1 = a (1)

for all a, b, c ∈ M .
These equations for a monoid can also be expressed as the commutativity of

the following diagrams

M ×M ×MM ×M

M ×MM

(·)×1M

(·)

1M×(·)(·)

M × {*}M ×M

M

{*} ×M
1M×η

ρM
(·)

η×1M

λM

(2)
Here η is the map which maps the element of the one point set {*} to the

element 1 ∈ M , and we will write 1M for the identity map on M . ρM and λM

are the isomorphisms ρM (m, *) := m and λM (*,m) := m.
As is also done in for example [Mac98] we will transport the concept of a

monoid (and of other algebraic structures) from the category Set to some other
category C by taking the diagrams in (2) and interpreting them in the category
C. One can already guess what will be required of the category C for these
diagrams to make sense — we will need some functor that takes the role of the
product and for this functor there should be an object of the category which is
a kind of “identity” (the one point set in Set). Also, it makes sense to require

3

that this functor be “associative”. (All of this will be made precise in the next
part.)

It turns out that very little about the description which is usually given of
limits and colimits in the category of monoids and other algebraic categories
actually depends on the ambient category being Set. (For a good explicit
account of the structure of limits and colimits in categories of acts in the case
where the ambient category is Set see [KKM00].)

In this paper we work out what this description looks like in an arbitrary
ambient category with the appropriate structures to support talking about al-
gebraic objects. A lot of what is familiar carries over. Still, some work has to
be done because many things — like for example associativity of the product
up to isomorphism and “in the right way” — that are so obvious (or maybe just
familiar) in the category of sets that one does not usually even mention them,
one cannot take for granted in an abstract category described only by axioms.

Sections 2 and 3 are dedicated to working out the details of what one has to
think about when describing algebraic structures in arbitrary categories.
In section 2 we give the definition of a monoidal category (taken from [Mac98])
which will be the structure inside which all other considerations in this paper
take place and we give the definitions of the various algebraic structures we will
be working with.
In section 3 we present a proof of the coherence theorem for monoidal categories
(a fleshed out version of a proof suggested in an exercise in [Mac98]) — a
theorem which essentially says that the definition of a monoidal category makes
sense and models what we were hoping it would model — and develop a visual
calculus which is useful for calculations in monoidal categories and reduces the
cognitive burden of carrying out these calculations (and allowed the author to
draw pretty pictures under the pretext of doing mathematics).

In section 4 we take a moment to lay out how the following parts 5, 6 and
7 will combine to give a picture of limits, colimits and free objects in categories
of algebras internal to monoidal categories. As an application of the calculus
developed in part 3 and also as a preliminary to and a justification for consid-
ering some of the structures we talk about in parts 6 and 7 we give a proof of
the generalized associative law for monoids in monoidal categories. This proof
— although not very surprising or complicated — is interesting because it hints
at the nature of the connection between monoids and monoidal categories. Ig-
noring some of the technical details one could even say that we reuse the same
proof that was used for the coherence theorem. We take a moment to discuss
this connection, albeit in informal terms.

In section 5 we state and prove a number of general theorems about lim-
its/colimits. These can be found elsewhere but it seemed useful to include them
here for the reader not familiar with them as we will make heavy use of them
later.

Section 6 is dedicated to monads and the structure of limits and colimits
in the category of Eilenberg-Moore algebras for some monad. A lot can be
said about this topic and we focus on what is important for us in this context.
We recount a theorem about colimits in categories of Eilenberg-Moore algebras
due to [Lin69] — a theorem which gives colimits in terms of free objects and
corresponds very closely to the usual explicit description of for example the
coproduct of groups in the category of sets.

Free objects in the categories MonC, ActC and BiActC of monoids, acts

4

and biacts respectively (and many others), which are considered internal to
some category C, are constructed in section 7. These are interesting in their
own right, but they also consitute the final piece of the puzzle in the description
of colimits in these categories.
The construction we give is inspired by and can in fact be seen as a direct
generalization of the construction of the free monoid in the general setting of an
arbitrary ambient category, as it can be found in for example [Mac98, section
VII.3]. Although the general case is a little unwieldier than the special case of
monoids (but not unreasonably so) it has the benfit of making it clearer why the
free monoid can be constructed in this manner. Remember that although free
objects in categories of algebras in Set can always be described as an appropriate
factor set of the set of all trees which can be constructed from operator symbols
and generating elements, the free monoid has a more concise description which
does not require taking any factor sets. The construction we give shares this
property of requiring only coproducts and no coequalizers (provided the product
of the ambient category gets along well enough with the coproduct of the same).

In section 8 we describe one way of representing automata as biacts. We de-
scribe a bifunctor on the category of automata which we call serial composition
and which intuitively corresponds to serial composition of automata in the cat-
egory of sets. We also construct the tensor product of biacts and show that the
functor giving the representation of automata as biacts takes the operation of
serial composition to the operation of taking the tensor product. In this section
we will again be making heavy use of the visual calculus developed in section 3.

Section 9 consists of remarks and ideas for future work. We hint at some of
the results that one would expect to hold for the operations of serial composition
and tensor product and which could probably be shown with reasonable effort.
We discuss how some of the properties of these two operations, which are starting
to come into view, suggest a reworking in more general terms of parts of the
theory that we have seen in this paper.

1.2 On notation
We use boldface to denote categories, so Set is the category of sets and C will
be the default name for an arbitrary category (often with additional structure)
relative to which our considerations take place. I and J will be used to denote
categories that conceptually play the role of index categories — for example
categories that appear as the domain of a functor whose limit we are interested
in.

We use lower case letters a, b, c, d from the beginning of the latin alphabet to
denote objects of a category and lower-case letters f, g, h, k to denote morphisms
of a category. For some categories which play a special role we will use a different
typeface for the objects and morphisms.

We write Obj(C) for the set/class of objects of the category C and Arr(C)
for the set/class of arrows of the category C. Often we will write a ∈ C to mean
a ∈ Obj(C) and f in C to mean f ∈ Arr(C).

For f in C we use s(f) to denote the source of the arrow f and t(f) to
denote the target of f .

For a, b ∈ C we write f : a → b when we mean that f is an arrow of C and
that s(f) = a and t(f) = b.

5

When f : a → b and g : b → c we write g◦f for the composite “first f then
g”.
With regard to directions this is the traditional convention which is compati-
ble with writing the argument that a function is applied to to the right of that
function. To lessen the cognitive burden when switching between reading dia-
grams and reading formulas we will usually draw arrows in diagrams from the
right to the left (and from top to bottom). This way the order of arrows in the
picture

abc
fg

is the same order that we get when writing out the composite g◦f .
We use 1a to denote the identity morphism on a.

We use homC (a, b) or hom (a, b) for the hom-set of arrows f : a → b in C.
We use upper case letters for functors (upper case letters are also used for

sets). F : C → C′ means that F is a functor from the category C to the category
C′. If additionally G : C′ → C′′ then we write G ◦ F for their composite.

We use parentheses to denote application of functors (and also of functions).
F (a) is the object of C′ which is the result of applying F to the object a ∈ C and
F (f) is the morphism of C′ which is the result of applying F to the morphism
f in C.
In addition we of course use parentheses for disambiguation.

We usually use greek letters to denote natural transformations. We write
σ : F→̇G : C → C′ when we mean that σ is a natural transformation from the
functor F to the functor G and that F and G are functors from C to C′. When
the domain and codomain of F and G are clear we may omit the second part
to write only σ : F→̇G.
We use a subscript to denote the value of the natural transformation at a cer-
tain object a ∈ C as in e.g. σa : F (a) → G(a).
If σ : F→̇G : C → C′ and τ : G→̇H : C → C′, then we write τ •σ for the vertical
composite “first σ then τ” — that is τ •σ : F→̇H : C → C′ and (τ •σ)a = τa◦σa.
We use the same symbol as for functor composition for the “horizontal” com-
posite of natural transformations — that is, if σ : F→̇G : C → C′ and
τ : F ′→̇G′ : C′ → C′′, then τ ◦ σ : F ′ ◦ F→̇G′ ◦ G : C → C′′ is defined
by

(τ ◦ σ)a = τG(a)◦ (F
′ (σa))

= (G′ (σa)) ◦τF (a) .

As is customary we will use τ ◦F as an abbreviation for τ ◦ 1F and F ′ ◦ σ as an
abbreviation for 1F ′ ◦ σ — that is

(τ ◦ F)a = τF (a)

(F ′ ◦ σ)a = F ′ (σa) .

Nat (F,G) is the set of natural transformations from F to G.
We use angle brackets to denote tuples/lists, as in 〈a, b, c〉.
We use A × B to denote the product of sets A and B. We use C × C′ to

denote the product of categories C and C′ and if F : C → D and G : D → D′
then F × G : C × C′ → D × D′ denotes the product-functor of F and G —
that is, the functor which sends an object 〈a, a′〉 ∈ C × C′ which consists of

6

objects a ∈ C and a′ ∈ C′ to the object 〈F (a) , G(a′)〉 of D × D′, and likewise
for morphisms.

We will usually silently identify the categories (C × C′) × C′′ and C ×
(C′ × C′′) — writing just C × C′ × C′′ for this category. In a similar vein,
if F : C × C′ → D then we will usually write F (a, a′) instead of F (〈a, a′〉)
for the result of applying F to the object 〈a, a′〉 ∈ C × C′ and likewise for
morphisms.

Some of the structures we describe consist of multiple levels of nested lists.
There we do try to be exact and keep e.g. 〈a, b, 〈c, d〉〉 distinct from 〈a, b, c, d〉
to avoid confusion.

For tuples we will — in addition to ellipsis-notation 〈F (a1), . . . , F (an)〉 —
use the notation 〈F (ai)〉ni=1 to mean the same thing. For space reasons we will
also sometimes omit the bounds, as in 〈F (ai)〉i. We will sometimes also have
an index run “in the other direction”, so e.g. 〈〈fi,j〉ni

j=1〉1i=k means〈
〈fk,1, . . . , fk,nk

〉,
〈
fk−1,1, . . . , fk−1,nk−1

〉
, . . . , 〈f1,1, . . . , f1,n1

〉
〉
.

〈ai,j〉ni
j=1

k
i=1 means the list

〈a1,1, a1,2, . . . , a1,n1 , a2,1, . . . , a2,n2 , . . . , ak,1, . . . , ak,nk
〉

(no nesting). A single dot “·” denotes concatenation of tuples/lists, e.g.

〈a1,j〉n1
j=1 · 〈a2,j〉

n2
j=1 = 〈ai,j〉ni

j=1
2
i=1 .

`(l) denotes the length of a tuple

`(〈a1, . . . , an〉) := n .

If ? is an associative binary operator, then we will use the notation

?ni=1 (fi) := f1 ? f2 ? · · · ? fn .

For the product (of categories or sets) we use the more traditional

n∏
i=1

Ci := C1 × · · · × Cn .

For a set X we will use X∗ to denote the set of all sequences with letters in
X, that is

X∗ := ∪̇∞i=0

(
i∏

j=1

X

)
.

7

2 A first look at monoids and monoidal cate-
gories

2.1 Monoidal categories
In this section we give the definition of a monoidal category. We will later
develop some of the theory of monoidal categories. For additional background
and context the reader can also refer to [Mac98, chapter VII].

The tuple 〈C,�, e, α, λ, ρ〉, where C is a category, � : C × C → C is a
bifunctor and αa,b,c : a � (b� c) → (a� b) � c, λa : e � a → a, ρa : a � e → a
are natural isomorphisms, is called a monoidal category if the diagrams below
commute for all a, b, c, d ∈ C.

a� (b� (c� d))(a� b)� (c� d)((a� b)� c)� d

a� ((b� c)� d)(a� (b� c))� d

αa,b,c�dαa�b,c,d

1a�αb,c,d

αa,b�c,d

αa,b,c�1d

(3)

a� (e� b)(a� e)� b

a� b

αa,e,b

1a�λbρa�1b

(4)

A monoidal category where α, λ and ρ are identities (and therefore a �
(b� c) = (a� b)� c and e� a = a� e = a) is called a strict monoidal category.
� is called the tensor product or just the product of the monoidal category and
we will call α, λ and ρ the (basic) structural transformations of the monoidal
category.

If the selection of diagrams here seems a little arbitrary that is because it
is. What we actually think of when we talk about a monoidal category is a
category where all diagrams involving only α, λ and ρ commute. We shall soon
see that the diagrams (3) and (4) imply just that.

Note that the definition of a monoidal category is symmetric. Specifically,
if we define a �′ b := b � a, α′a,b,c := α−1c,b,a, λ′a := ρa and ρ′a := λa, then
〈C,�, e, α, λ, ρ〉 is a monoidal category if and only if 〈C′,�′, e′, α′, λ′, ρ′〉 is a
monoidal category. This will often come in useful in situations where there
is a “left” and a “right” version of some structure — allowing us to treat only
one case, because the other case can be seen as the first case in the category
〈C′,�′, e′, α′, λ′, ρ′〉 as defined above, which we will call the monoidally opposite
category of 〈C,�, e, α, λ, ρ〉.

Now we have the concepts to be able to define what we mean in general by
a monoid and by other algebraic structures.

2.2 Monoids in a monoidal category
Definition 2.1. A monoid in a monoidal category 〈C,�, e, α, λ, ρ〉 is a tuple
〈m,µ, η〉 consisting of an object m ∈ C and of two morphisms µ : m�m → m

8

and η : e → m such that the two diagrams below commute.

m� (m�m)(m�m)�mm�m

m�mm

αm,m,mµ�1m

µ 1m�µ

µ

(5)

m� em�me�m

m

1m�ηη�1m

µ
λm

ρm

(6)

As is the case in Set, the diagram (5) implies a general associative law. We
will prove this fact a little later when we have developed the appropriate tools
to easily deal with calculations in monoidal categories.

Note that the definition of a monoid is also symmetric. 〈m,µ, η〉 is a mo-
noid in 〈C,�, e, α, λ, ρ〉 if and only if it is a monoid in the monoidally opposite
category.

Definition 2.2. The category Mon〈C,�,e,α,λ,ρ〉 (or MonC) of monoids in the
monoidal category 〈C,�, e, α, λ, ρ〉 has objects all monoids in 〈C,�, e, α, λ, ρ〉.
An arrow g : 〈m,µ, η〉 → 〈ṁ, µ̇, η̇〉 is an arrow g in C such that

m�m

m

ṁ� ṁ

ṁ

µµ̇

g�g

g

e

mṁ

η
η̇

g

(7)

commute.

Remark 2.3. This is not a completely formal definition. When we say that an
arrow g : 〈m,µ, η〉 → 〈ṁ, µ̇, η̇〉 is an arrow g in C with certain properties, we
mean this as a shortcut for saying that an arrow g of MonC is given by its source
〈m,µ, η〉, its target 〈ṁ, µ̇, η̇〉 and an arrow ġ : m → ṁ with those properties;
and that moreover composition of arrows of MonC is given by composition of
the underlying arrows in C and the identity arrow on 〈m,µ, η〉 is the arrow with
underlying arrow 1m in C.

We will use similar language in defining our other categories of algebraic
structures, in the conviction that the reader will be able to fill in the details of
a formal definition themselves.

2.3 Left acts, right acts and biacts
Definition 2.4. A left action of the monoid 〈m,µ, η〉 in the monoidal category
〈C,�, e, α, λ, ρ〉 on the object a ∈ C is a morphism h : m � a → a of C such

9

that the following diagrams commute.

m� (m� a)(m�m)� a

m� a

m� a

a

αm,m,aµ�1a

h 1m�h

h

e� am� a

a

η�1a

h
λa

(8)

We call the pair 〈h, a〉 a left 〈m,µ, η〉-act, or just a left (monoid) act, when
〈m,µ, η〉 is clear or not relevant. We can define a right action 〈b, k〉 (b ∈ C,
k : b�m → b) of the monoid 〈m,µ, η〉 in an analogous manner. This will amount
to the same thing as saying that a right action of 〈m,µ, η〉 in the category
〈C,�, e, α, λ, ρ〉 is a left action of 〈m,µ, η〉 in the monoidally opposite category
of 〈C,�, e, α, λ, ρ〉.

As a mnemonic device we will write the morphism of a left action on the left
hand side of the object and the morphism of a right action on the right hand
side of the object in the tuple.

Definition 2.5. The category 〈m,µ, η〉−Act of left 〈m,µ, η〉-acts has objects
all left 〈m,µ, η〉-acts and if 〈h, a〉, 〈h′, a′〉 are left 〈m,µ, η〉-acts then f : 〈h, a〉 →
〈h′, a′〉 is a morphism of left 〈m,µ, η〉-acts if f : a → a′ and

m� am� a′

aa′

hh′

1m�f

f

(9)

commutes.
The category Act−〈m,µ, η〉 of right 〈m,µ, η〉-acts is defined in an analogous

manner.

Definition 2.6. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category. The category
Act〈C,�,e,α,λ,ρ〉 (or ActC for short) of left acts in 〈C,�, e, α, λ, ρ〉 is the category
whose objects are tuples 〈 〈m,µ, η〉, 〈h, a〉〉 such that 〈m,µ, η〉 is a monoid in
〈C,�, e, α, λ, ρ〉 and 〈h, a〉 is a left 〈m,µ, η〉-act and in which a morphism 〈g, f〉 :
〈 〈m,µ, η〉, 〈h, a〉〉 → 〈 〈ṁ, µ̇, η̇〉, 〈h′, a′〉〉 consists of two arrows g : m → ṁ and
f : a → a′ such that g is a morphism of monoids and such that the following
diagram commutes.

m� a

a

ṁ� a′

a′
hh′

g�f

f
(10)

The category Act 〈C,�,e,α,λ,ρ〉 of right monoid acts in 〈C,�, e, α, λ, ρ〉 is defined
in an analogous manner.

We will also study the case where we have both a left and a right action on
an object a ∈ C. In this case some nice-to-have properties will depend on these
actions being compatible in a certain sense.

Definition 2.7. When 〈m,µ, η〉 and 〈ṁ, µ̇, η̇〉 are monoids in a monoidal cat-
egory 〈C,�, e, α, λ, ρ〉, a ∈ C, h : m � a → a and k : a � ṁ → a, then we say

10

that 〈h, a, k〉 is an 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact if 〈h, a〉 is a left 〈m,µ, η〉-act, 〈a, k〉 is
a right 〈ṁ, µ̇, η̇〉-act and the diagram

m� (a� ṁ)

(m� a)� ṁ

a� ṁ

m� a

a

αm,a,ṁ

h�1ṁ

k

1m�k

h

(11)

commutes.

Comparing (11) with (9) one might be tempted to say that an 〈m,µ, η〉-
〈ṁ, µ̇, η̇〉-biact is just a right 〈ṁ, µ̇, η̇〉-act in the category of left 〈m,µ, η〉-acts.
Or replacing (11) with the equivalent (because α is an isomorphism) diagram

(m� a)� ṁ

m� (a� ṁ)

a� ṁ

m� aa

α−1
m,a,ṁ

h�1ṁ

k

1m�k

h

that an 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact is a left 〈m,µ, η〉-act in the category of right
〈ṁ, µ̇, η̇〉-acts.

But with our current definitions this statement will not make sense in a
lot of cases because it would mean that we have a monoidal product on the
category of left 〈m,µ, η〉-acts and that 〈ṁ, µ̇, η̇〉 is itself a 〈m,µ, η〉-act. This
may not necessarily be the case and it is also not really what we mean. We
will see in section 8.2 how to adapt our definitions so that we can say that an
〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact is a left 〈m,µ, η〉-act in the category of right 〈ṁ, µ̇, η̇〉-
acts.

Definition 2.8. Let 〈m,µ, η〉 and 〈ṁ, µ̇, η̇〉 be monoids in a monoidal category
〈C,�, e, α, λ, ρ〉. The category 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 of 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-
biacts has objects all 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biacts and a morphism f : 〈h, a, k〉 →
〈h′, b, k′〉 of 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 is a morphism f : a → b of C which is
both a morphism of left acts and a morphism of right acts.

Definition 2.9. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category. The category
BiAct〈C,�,e,α,λ,ρ〉 (or BiActC) of biacts in 〈C,�, e, α, λ, ρ〉 has objects all tu-
ples 〈 〈m,µ, η〉, 〈h, a, k〉, 〈ṁ, µ̇, η̇〉〉 such that 〈m,µ, η〉, 〈ṁ, µ̇, η̇〉 are monoids and
〈h, a, k〉 is an 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact. A morphism

〈g, f, ġ〉: 〈 〈m,µ, η〉, 〈h, a, k〉, 〈ṁ, µ̇, η̇〉〉 → 〈 〈m′, µ′, η′〉, 〈h′, b, k′〉, 〈ṁ′, µ̇′, η̇′〉〉

of BiActC consists of two morphisms of monoids g : 〈m,µ, η〉 → 〈m′, µ′, η′〉,
ġ : 〈ṁ, µ̇, η̇〉 → 〈ṁ′, µ̇′, η̇′〉 and a morphism f : a → b of C which combines with

11

g and ġ to yield a morphism 〈g, f〉 : 〈 〈m,µ, η〉, 〈h, a〉〉 → 〈 〈m′, µ′, η′〉, 〈h′, b〉〉 of
ActC and a morphism 〈f, ġ〉 : 〈 〈a, k〉, 〈ṁ, µ̇, η̇〉〉 → 〈 〈b, k′〉, 〈ṁ′, µ̇′, η̇′〉〉 of Act C
respectively.

2.4 Automata
Definition 2.10. Let 〈m,µ, η〉 and 〈ṁ, µ̇, η̇〉 be monoids in a monoidal category
〈C,�, e, α, λ, ρ〉. An 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-automaton is a tuple 〈a, δ〉 where a ∈ C
and δ : m� a → a� ṁ such that the following diagrams commute.

m� (m� a)(m�m)� am� a

a� ṁ

m� (a� ṁ)

(m� a)� ṁ

(a� ṁ)� ṁa� (ṁ� ṁ)

αm,m,aµ�1a

δ

1m�δ

αm,a,ṁ

δ�1ṁ

α−1
a,ṁ,ṁ

1a�µ̇
(12)

e� a

a

a� e

m� a

a� ṁ

λa

ρa

η�1a

1a�η̇

δ

(13)

[Deu71] gives a definition of which the above definition is a generalization.

Definition 2.11. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category and let 〈m,µ, η〉
and 〈ṁ, µ̇, η̇〉 be monoids in that monoidal category. The category

〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉

of 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-Automata is the category in which the objects are the
〈m,µ, η〉-〈ṁ, µ̇, η̇〉-Automata and in which a morphism f : 〈a, δ〉 → 〈b, ϑ〉 is
a morphism f of C such that the following diagram commutes.

m� am� b

a� ṁb� ṁ

1m�f

ϑ δ

f�1ṁ
(14)

12

3 Coherence
In this section we try to develop a feeling for the algebraic properties of a mo-
noidal category. To this end we will be comparing different monoidal categories.
To do this we need the notion of a monoidal functor.

3.1 Monoidal functors
Definition 3.1. A monoidal functor is a tuple

〈R,R2, R0〉 : 〈C,�, e, α, λ, ρ〉 → 〈C′,�′, e′, α′, λ′, ρ′〉

where R : C → C′ is a functor, R0 : e′ → R(e) is a morphism in C′ and
R2;a,b : R(a) �′ R(b) → R(a� b) is a natural transformation, such that the
following diagrams commute.

R(a)�′ (R(b)�′ R(c))

R(a)�′ R(b� c)

R(a� (b� c))

(R(a)�′ R(b))�′ R(c)

R(a� b)�′ R(c)

R((a� b)� c)

1R(a)�
′R2;b,c

R2;a,b�c

R(αa,b,c)

α′R(a),R(b),R(c)

R2;a,b�
′1R(c)

R2;a�b,c

(15)

e′ �′ R(a)

R(e)�′ R(a)

R(e� a)

R(a)

R(a)

R0�
′1R(a)

R2;e,a

R(λa)

λ′R(a)

1R(a)

R(a)�′ e′

R(a)�′ R(e)

R(a� e)

R(a)

R(a)

1R(a)�
′R0

R2;a,e

R(ρa)

ρ′R(a)

1R(a)

(16)

A monoidal functor is called strong if both R0 and R2 are isomorphisms.
The composite of two monoidal functors

〈R,R2, R0〉 : C → C′ and 〈R′, R′2, R′0〉 : C′ → C′′

is defined as

〈R′, R′2, R′0〉 ◦ 〈R,R2, R0〉 :=〈
R′ ◦R,

〈
R′ (R2;a,b) ◦R

′
2;R(a),R(b)

〉
a,b∈C, R′ (R0) ◦R

′
0

〉
(17)

The reader is invited to draw the diagrams necessary to prove that this is
indeed a monoidal functor.

13

The diagrams in (15) and (16) all share a common shape. Horizontally we
use structural transformations of the monoidal categories — those of the target
category at the top and those of the source category with R applied at the
bottom, while vertically we use R0 and instances of R2 and 1 to, informally
speaking, shift all instances of the tensor product inside the functor R.

When R is a monoidal functor commutativity in fact holds for any diagram
of such type. To be able to formulate this precisely we need to be able to talk
about iterated products.

Definition 3.2. The set of tensor words is defined recursively as the (least) set
which contains

• the symbol e0,

• the symbol () and

• for any two tensor words v and w the tensor word v�w.

In short, tensor words are the free algebra generated by the two constants e0
and () and the binary operation � with no relations imposed.

We assign to e0 the length 0, to () length 1 and to v�w the sum of the
lengths of v and w. We write `(v) for the length of the tensor word v.

We introduce a family of “canonical” tensor words v(n) which are recursively
defined by

v(0) := e0

v(n+1) := ()�v(n) .

Clearly `
(
v(n)

)
= n.

Definition 3.3. For any tensor word v of length n and any monoidal category
〈C,�, e, α, λ, ρ〉 we define a functor

v〈C,�,e,α,λ,ρ〉 :

n∏
i=1

C → C

(where we identify the empty product with the category 1 with exactly one
object and one identity arrow for that object) by defining

• e0〈C,�,e,α,λ,ρ〉 : 1 → C as the functor which sends the object of 1 to e and
the arrow of 1 to 1e,

• ()〈C,�,e,α,λ,ρ〉 : C → C as the identity functor on C and

• (v�w)〈C,�,e,α,λ,ρ〉 :
∏n

i=1 C → C as the composite

� ◦
(
v〈C,�,e,α,λ,ρ〉 × w〈C,�,e,α,λ,ρ〉

)
:

n∏
i=1

C =

(
nv∏
i=1

C
)

×

(
nw∏
i=1

C
)

→ C × C → C .

14

Intuitively v〈C,�,e,α,λ,ρ〉 (a1, . . . , an) consecutively inserts a1 to an into the
blanks () in v and replaces e0 by e and � by �. When it is clear from the
context which monoidal category we are talking about, we will often abbreviate
v〈C,�,e,α,λ,ρ〉 to vC or omit the subscript completely, writing v (a1, . . . , an) for
v〈C,�,e,α,λ,ρ〉 (a1, . . . , an).

In analogy to the functor defined above we write w
(
〈vi〉`(w)

i=1

)
for the tensor

word in which we have substituted vi into the i-th blank in w.

Definition 3.4. For a monoidal functor 〈R,R2, R0〉 and a tensor word v we
recursively define the natural transformation

Rv,a1,...,an : v〈C′,�′,e′,α′,λ′,ρ′〉 (R(a1), . . . , R(an)) →
R
(
v〈C,�,e,α,λ,ρ〉 (a1, . . . , an)

)
by setting

Re0 := R0

R() := 1

Rv�w,a1,...,anv ,b1,...,bnw
:=

R2;R(v(a1,...,anv)),R(w(b1,...,bnw))◦
(
Rv,a1,...,anv

�′ Rw,b1,...,bnw

)
. (18)

The morphisms thus defined do indeed constitute natural transformations
because

1 : 1C→̇1C : C → C ,
R0 : e′→̇R(e) : 1 → C and
R2 : �′ ◦ (R×R) →̇R ◦� : C × C → C′

are all natural transformations, as is the pairing 〈σ, τ〉 : F × G→̇F ′ × G′ :
C × D → C ′ × D′ of natural transformations for σ : F→̇F ′ : C → C ′ and
τ : G→̇G′ : D → D′. The image of a natural transformation under a functor
(that is the horizontal composite of a functor and a natural transformation) and
the vertical composite of natural transformations are also natural and therefore
the last equation in (18) also defines a natural transformation.

Conceptually speaking Rv shifts all monoidal structures (that is tensor prod-
uct and unit) inside the functor application.

We now define a structure whose main purpose is to enable us to make exact
the two claims we have made informally that “any diagram of such-and-such
shape commutes”.

Definition 3.5. We define the set of formal structural transformations and at
the same time we define for any element of this set a “source” and a “target”,
both of which are tensor words. In the listing below we write β0 : v → w to
indicate that β0 is a formal structural transformation and that its source is v
and its target is w. The set of formal structural transformations is recursively
defined as the least set which contains

• for any tensor word v, the symbol 10;v : v → v (called the identity on v);

• for tensor words u, v, w, the symbol α0;u,v,w : u� (v�w) → (u�v)�w;

15

• for any tensor word v, the symbol λ0;v : e0�v → v;

• for any tensor word v, the symbol ρ0;v : v�e0 → v;

• for any formal structural transformation β0 : v → w, a formal structural
transformation β0

−1 : w → v;

• for any two formal structural transformations β0 : v → w and β̇0 : v̇ → ẇ,
a formal structural transformation β0�β̇0 : v�v̇ → w�ẇ; and

• for any two formal structural transformations β0 : u → v and β̇0 : v → w,
a formal structural transformation β̇0◦β0 : u → w.

Note that for any formal structural transformation β0 : v → w we have `(v) =
`(w). Set `(β0) := `(v) = `(w).

For any monoidal category 〈C,�, e, α, λ, ρ〉we recursively define a map which
sends any formal structural tranformation β0 : v → w to a natural isomorphism
β0;〈C,�,e,α,λ,ρ〉 : vC→̇wC :

∏n
i=1 C → C (where n = `(β0)), by setting

10;v;〈C,�,e,α,λ,ρ〉 := 1vC

α0;u,v,w;〈C,�,e,α,λ,ρ〉 := α ◦ (uC × vC × wC)

λ0;v;〈C,�,e,α,λ,ρ〉 := λ ◦ vC

ρ0;v;〈C,�,e,α,λ,ρ〉 := ρ ◦ vC(
β0
−1)
〈C,�,e,α,λ,ρ〉 := β0;〈C,�,e,α,λ,ρ〉

−1(
β0�β̇0

)
〈C,�,e,α,λ,ρ〉

:= � ◦
(
β0;〈C,�,e,α,λ,ρ〉 × β̇0;〈C,�,e,α,λ,ρ〉

)
(
β̇0◦β0

)
〈C,�,e,α,λ,ρ〉

:= β̇0;〈C,�,e,α,λ,ρ〉•β0;〈C,�,e,α,λ,ρ〉

We may abbreviate β0;〈C,�,e,α,λ,ρ〉 to β0;C. We will also write β for β0;C and
β′ for β0;C′ , etc. We call a natural isomorphism β = β0;C which is the image
of some formal structural transformation β0 : v → w under the mapping just
defined a structural transformation from v to w (in C).

Again, intuitively this operation sends formal structural transformations β0

to structural transformations β of C by replacing all placeholders by “the real
thing” — that is α0 is replaced by α, λ0 is replaced by λ, ρ0 is replaced by ρ, for-
mal inverses are replaced by real inverses, formal composites by real complosites
and the symbol � is replaced by �.

We could take a factor set of the set of formal structural transformations,
so as to make the formal composition associative, make the formal identity
an identity of composition, make the formal inverses real inverses with regard
to composition and the formal identities and turn � into a bifunctor on the
resulting category (which has as objects the tensor words). Because all of these
relations hold in a monoidal category, our operation β0;〈C,�,e,α,λ,ρ〉 would still be
well-defined as a map from the factor set — giving a functor from this category
to any monoidal category. For our considerations this is not really important
though, so we do not work out the details here.

Now we can formulate precisely what we already hinted at earlier in this
section.

16

Lemma 3.6. For any two tensor words v, w and any formal structural trans-
formation β0 : v → w between these tensor words, the diagram below commutes.

v (R(a1) , . . . , R(an))w (R(a1) , . . . , R(an))

R(v (a1, . . . , an))R(w (a1, . . . , an))

β′R(a1),...,R(an)

R
(
βa1,...,an

)
Rv,a1,...,anRw,a1,...,an

(19)

Proof. We proceed by induction over the structure of our formal structural
transformations. When β0 is α0;u,v,w, λ0;u or ρ0;u commutativity of (19) follows
from one of the diagrams in (15) or (16) with a replaced by u (a1, . . . , anu

) etc.,
combined with naturality of α′, λ′ or ρ′. For example for the case of α0 we get
the diagram in (20) (on page 18).

The case of the inverses is also clear, as is the case where β0 is an identity.
If β0 is a composite of structural transformations for which the corresponding
diagrams are already known to commute, then writing the diagrams side by side
horizontally we see that the diagram for β0 also commutes.

So the only case we still need to check is the case when β0 is a tensor product
β̇0�β̈0 of structural transformations β̇0 : v̇ → ẇ and β̈0 : v̈ → ẅ already known
to make their respective diagrams commute. In this case (19) is of a shape as
in (21).

v̇ (〈R(ai)〉i)�′ v̈ (〈R(bj)〉j)

R(v̇ (〈ai〉i))�′ R(v̈ (〈bj〉j))

R(v̇ (〈ai〉i)� v̈ (〈bj〉j))

ẇ (〈R(ai)〉i)�′ ẅ (〈R(bj)〉j)

R(ẇ (〈ai〉i))�′ R(ẅ (〈bj〉j))

R(ẇ (〈ai〉i)� ẅ (〈bj〉j))

β̇′〈R(ai)〉i�
′β̈′〈R(bj)〉j

R
(
β̇〈ai〉i

)
�′R

(
β̈〈bj〉j

)

R
(
β̇〈ai〉i�β̈〈bj〉j

)

Rv̇,〈ai〉i�
′Rv̈,〈bj〉j

Rẇ,〈ai〉i�
′Rẅ,〈bj〉j

R2;v̇(〈ai〉i),v̈(〈bj〉j)

R2;ẇ(〈ai〉i),ẅ(〈bj〉j)

(21)
In this diagram the upper square commutes because it is the image under the
bifunctor �′ of two instances of the diagram (19), one for β̇0 and one for β̈0,
which by the induction hypothesis we already know to commute. The lower
square commutes by naturality of R2.

This lemma will also form part of the proof of a theorem that we already
stated informally in section 2.1 and which we can now formulate precisely.

17

R(u (〈ai〉i))�′
(
R(v (〈bj〉j))�′ R(w (〈ck〉k))

)

R(u (〈ai〉i))�′ R
(
v (〈bj〉j)� w (〈ck〉k)

)

R
(
u (〈ai〉i)�

(
v (〈bj〉j)� w (〈ck〉k)

))

(
R(u (〈ai〉i))�′ R(v (〈bj〉j))

)
�′ R(w (〈ck〉k))

R
(
u (〈ai〉i)� v (〈bj〉j)

)
�′ R(w (〈ck〉k))

R
((

u (〈ai〉i)� v (〈bj〉j)
)
� w (〈ck〉k)

)

u (〈R(ai)〉i)�′
(
v (〈R(bj)〉j)�′ w (〈R(ck)〉k)

)

(
u (〈R(ai)〉i)�′ v (〈R(bj)〉j)

)
�′ w (〈R(ck)〉k)

1R(u(〈ai〉i))�
′R2;v(〈bj〉j),w(〈ck〉k)

R2;u(〈ai〉i),v(〈bj〉j)�w(〈ck〉k)

R
(
αu(〈ai〉i),v(〈bj〉j),w(〈ck〉k)

)

(
Ru,〈ai〉i�

′Rv,〈bj〉j
)
�′Rw,〈ck〉k

α′R(u(〈ai〉i)),R(v(〈bj〉j)),R(w(〈ck〉k))

R2;u(〈ai〉i),v(〈bj〉j)�
′1R(w(〈ck〉k))

R2;u(〈ai〉i)�v(〈bj〉j),w(〈ck〉k)

Ru,〈ai〉i�
′(Rv,〈bj〉j�

′Rw,〈ck〉k
)α′u(〈R(ai)〉i),v(〈R(bj)〉j),w(〈R(ck)〉k)

(20)

18

3.2 The coherence theorem for monoidal categories
Theorem 3.7 (coherence theorem for monoidal categories). In any monoidal
category 〈C,�, e, α, λ, ρ〉 we have that for any two tensor words v, w of the same
length n and any two formal structural transformations β0 : v → w, β̇0 : v → w
between these two tensor words

βa1,··· ,an
= β̇a1,··· ,an

.

Proof. Our proof follows the idea suggested in the exercises section of [Mac98,
section XI.3]. [Mac98, section VII] also has a more elementary proof.

We will show that any structural transformation between two tensor words
v, w of the same length n is equal to a canonical structural transformation
obtained by connecting both tensor words to a specific “simple” tensor word of
length n (namely v(n)) and then tracing one path forwards and one backwards.
Formally we will package a part of this procedure by defining a monoidal functor
comparing the base category 〈C,�, e, α, λ, ρ〉 to (a subcategory of) the category
CC of endofunctors on C and natural transformations between them and then
use the previous lemma.

Observe first that
〈
CC, ◦, 1C, 1, 1, 1

〉
forms a strict monoidal category. Now

define

S : C → CC

S (a) : C → C
(S (a))(b) = a� b

(S (a))(g) = 1a � g

S (f) : S (a) →̇S (a′) : C → C
(S (f))b = f � 1b

S2 : (◦) ◦ (S × S) →̇S ◦ (�) : C × C → CC

S2;a,b : (S (a)) ◦ (S (b)) →̇S (a� b) : C → C
(S2;a,b)c : a� (b� c) → (a� b)� c

(S2;a,b)c = αa,b,c

(22)

S0 : 1C → S (e) ,
which is a morphism of CC

S0 : 1C→̇S (e) : C → C
(S0)a : a → e� a

(S0)a = λ−1a

(for a, b, c, a′ ∈ C ; f : a → a′ and g in C)

Observation 3.8.

(S (a1) ◦ · · · ◦ S (an)) (e) = v(n) (〈ai〉ni=1)

Lemma 3.9. 〈S,S2,S0〉 as defined above is a monoidal functor.

19

Proof. The diagram (15) becomes

(S (a) ◦ S (b) ◦ S (c))(d)

(S (a) ◦ S (b� c))(d)

(S (a� (b� c)))(d)

(S (a) ◦ S (b) ◦ S (c))(d)

(S (a� b) ◦ S (c))(d)

(S ((a� b)� c))(d)

(
1S(a)◦S2;b,c

)
d

(
S2;a,b�c

)
d

(S(αa,b,c))d

1

(
S2;a,b◦1S(c)

)
d

(
S2;a�b,c

)
d

,

which turns into

a� (b� (c� d))

a� ((b� c)� d)

(a� (b� c))� d

a� (b� (c� d))

(a� b)� (c� d)

((a� b)� c)� d

1a�αb,c,d

αa,b�c,d

αa,b,c�1d

1

αa,b,c�d

αa�b,c,d

when we expand the definitions, and that is just a slightly distorted version of
diagram (3) which is commutative by the definition of a monoidal category. The
diagrams in (16) become

(1C ◦ S (a))(b)

(S (e) ◦ S (a))(b)

(S (e� a))(b)

(S (a))(b)

(S (a))(b)

(
S0◦1S(a)

)
b

(S2;e,a)b

(S(λa))b

1

1

(S (a) ◦ 1C)(b)

(S (a) ◦ S (e))(b)

(S (a� e))(b)

(S (a))(b)

(S (a))(b)

(
1S(a)◦S0

)
b

(S2;a,e)b

(S(ρa))b

1

1

where again by expanding the definitions we get

a� b

e� (a� b)

(e� a)� b

a� b

a� b

λ−1

a�b

αe,a,b

λa�1b

1

1

a� b

a� (e� b)

(a� e)� b

a� b

a� b

1a�λ−1
b

αa,e,b

ρa�1b

1

1

.

The right hand side diagram is (again a slightly distorted version of) diagram
(4) from the definition of a monoidal category. So the only diagram whose

20

commutativity we still need to prove is the left hand side diagram above, which,
if we clean it up a little bit, looks like the one below.

e� (a� b)(e� a)� b

a� b

αa,e,b

λa�bλa�1b

(23)

To see why this diagram commutes in any monoidal category consider the
drawing below.

e� (e� (a� b))(e� e)� (a� b)((e� e)� a)� b

e� ((e� a)� b)(e� (e� a))� b

e� (a� b)(e� a)� b

αe,e,a�bαe�e,a,b

1e�αe,a,b

αe,e�a,b

αe,e,a�1b

1e�λa�b

ρe�1a�b=

ρe�(1a�1b)
(ρe�1a)�1b

(1e�λa)�1b 1e�(λa�1b)

αe,a,b

The triangle on the right hand side is the same as (23), only with the functor
e�− applied; but e�− is naturally isomorphic by λ to 1C, so if we can prove
the right hand side triangle commutative we know that (23) commutes. To that
end we inspect the other parts of the diagram.

The outermost pentagon is (3) from the definition of a monoidal category.
The triangle in the upper right corner is an instance of (4) as is the triangle
on the left. The parallelogram at the top commutes because α is natural. The
same holds for the trapezium at the bottom. This concludes the proof that
〈S,S2,S0〉 is a monoidal functor..

Now we can put all this together and finish the proof of the coherence the-
orem. Have a look at the following diagram — where obeservation 3.8 shows
that the uppermost part makes sense, 3.6 shows that the middle part commutes
and naturality of ρ shows that the lower part commutes.

(v (S (a1) , . . . ,S (an)))(e)(w (S (a1) , . . . ,S (an)))(e)

v (a1, . . . , an)� ew (a1, . . . , an)� e

v (a1, . . . , an)w (a1, . . . , an)

a1 � (a2 � (a3 � . . . (an � e) . . .))

βa1,...,an�1e

(
Sv,a1,...,an

)
e

(
Sw,a1,...,an

)
e

ρv(a1,...,an)ρw(a1,...,an)

βa1,...,an

(24)

21

This means that we get that for any formal structural transformation β0 : v → w

βa1,...,an
= ρw(a1,...,an)

◦(Sw,a1,...,an
)e◦(Sv,a1,...,an

)
−1
e
◦ρ−1v(a1,...,an)

. (25)

Definition 3.10. We write can〈C,�,e,α,λ,ρ〉,w�v for the structural transforma-
tion from v to w in 〈C,�, e, α, λ, ρ〉. By the coherence theorem this is well-
defined. (Note that for example the right hand side in (25) is a structural
transformation from v to w, so such a structural transformation exists.)

Usually the monoidal category 〈C,�, e, α, λ, ρ〉will be clear from the context
and we will omit it and write only canw�v.

Observation 3.11. For any formal structural transformation β0 of length n
and any tuple 〈vi〉ni=1 of tensor words there is a formal structural transformation
β̇0;C of length

∑n
i=1 `(vi) such that β

0;C;
〈
vi;C

(
〈ai,j〉`(vi)j=1

)〉
n
i=1

= β̇
0;C;〈ai,j〉`(vi)j=1

n

i=1

for all tuples of objects ai,j ∈ C.

Proof. This is easily seen by structural induction. For example for α0;u,v,w

choose α
0;u
(
〈vi〉`(u)

i=1

)
,v
(
〈vi〉`(u)+`(v)

i=`(u)+1

)
,w
(
〈vi〉`(u)+`(v)+`(w)

i=`(u)+`(v)+1

) and for β0�β̇0 find β̈0 and
...
β0 such that

β
0;C;

〈
vi;C

(
〈ai,j〉`(vi)j=1

)〉
`(β0)
i=1

= β̈
0;C;〈ai,j〉`(vi)j=1

`(β0)

i=1

and

β̇
0;C;

〈
vi;C

(
〈ai,j〉`(vi)j=1

)〉`
(
β0�β̇0

)
i=`(β0)+1

=
...
β

0;C;〈ai,j〉`(vi)j=1

`
(
β0�β̇0

)
i=`(β0)+1

and take their product β̈0�
...
β0. For β̇0◦β0 of lenght n find β̈0 and

...
β0 such that

β
0;C;

〈
vi;C

(
〈ai,j〉`(vi)j=1

)〉
n
i=1

= β̈
0;C;〈ai,j〉`(vi)j=1

n

i=1

and

β̇
0;C;

〈
vi;C

(
〈ai,j〉`(vi)j=1

)〉
n
i=1

=
...
β

0;C;〈ai,j〉`(vi)j=1

n

i=1

and use
...
β0◦β̈0. The rest are even simpler.

This strengthens the statement of the coherence theorem a little further.

Corollary 3.12.

can
w�v;

〈
vi;C

(
〈ai,j〉`(vi)j=1

)〉
n
i=1

= can
w
(
〈vi〉ni=1

)
�v
(
〈vi〉ni=1

)
;〈ai,j〉`(vi)j=1

n

i=1

for `(v) = `(w) = n.

3.3 Calculations in monoidal categories
The coherence theorem already makes dealing with monoidal categories quite
a bit easier. In the sequel we will try to figure out some of the properties of
the structures structures presented in section 2. In part this will boild down
to deriving other equations (or the commutativity of other diagrams) from the
diagrams we have taken as axioms. Ideally when doing so we would like to be
able to just omit all structural transformations and do our equational reasoning
with these simplified diagrams — essentially working in a strict monoidal cate-
gory — knowing that the diagrams we really mean also commute. To see how
this is possible we begin by describing the prototypical strict monoidal category.

22

Definition 3.13 (Free strict monoidal category with signed arrow-atoms). Let
X and A be sets which we will call the set of object-atoms and non-trivial
arrow-atoms respectively. Call the set A∪̇X the set of arrow-atoms. Denote by
X∗ the set of sequences in letters taken from the set X (that is, the free monoid
over X).

Let s : A → X∗ and t : A → X∗ be functions. We think of s and t as the
functions giving the source and target — or the signature — of the non-trivial
arrow-atoms.

Based on these data we are going to define a category E (X,A, s, t) which
we will call the free strict monoidal category with signed arrow-atoms. All of
X,A, s, t together will be called the generators of E (X,A, s, t). When X,A, s, t
are clear from the context we will sometimes use just E to denote E (X,A, s, t).
The set of objects of E (X,A, s, t) will be X∗. The set of arrows of E (X,A, s, t)
will be a little more complex.

Define s : A∪̇X → X∗ by s
∣∣
A

:= s and s
∣∣
X
(a) := 〈a〉. Similarly define

t : A∪̇X → X∗ by t
∣∣
A
:= t and t

∣∣
X
(a) := 〈a〉.

Define a set pArr (X,A, s, t) ⊂
(
(A∪̇X)

∗)∗ (which will serve as an auxil-
liary structure for the definition of the set of arrows of E (X,A, s, t)) as follows.
The elements of pArr (X,A, s, t) are nonempty lists of (possibly empty) lists of
arrow-atoms

〈〈fi,j〉ni
j=1〉1i=k

with the property that

·ni
j=1 (t (fi,j)) = ·ni+1

j=1 (s (fi+1,j)) for all i ∈ {1, . . . , k − 1}. (26)

(Where the dot denotes concatenation.)
So, 〈〉 is not in pArr (X,A, s, t) while for example 〈 〈〉, 〈〉, 〈〉〉 is.
We call pArr (X,A, s, t) the set of pre-arrows.
Define functions s : pArr (X,A, s, t) → X∗ and t : pArr (X,A, s, t) → X∗ by

setting

s
(
〈〈fi,j〉ni

j=1〉1i=k

)
:= ·n1

j=1 (s (f1,j))

t
(
〈〈fi,j〉ni

j=1〉1i=k

)
:= ·nk

j=1 (s (fk,j)) .

We can represent this structure pictorially. For example the element

〈 〈g1, . . . , g6〉, 〈f1, . . . , f11〉〉

of pArr (X,A, s, t) would be represented in the way shown below.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

b1 b2 b3 b4 b5 b6 a7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8

f1 f2 f4f3 f5 1 f9 f10 f11

g1 g2 g3 g4 g5 g6

f7 f8

(27)

23

The picture shows not only the arrow-atoms but also their sources and targets.
In the top row we see the sources of the arrow-atoms fi ∈ A. In the place where
one would expect f6 there’s a “1” — this is the arrow-atom corresponding to
the element a7 ∈ A. The middle row gives the targets of the basic arrows fi
which are at the same time the sources of the basic arrows gj and the bottom
row gives the targets of gj .

Note that there is only one picture to represent any of the tuples

〈 〈〉〉
〈 〈〉, 〈〉〉

〈 〈〉, 〈〉, 〈〉〉
...

(namely the empty picture). This won’t pose any practical problem because in
the structure we are about to introduce we will identify all of these.

We introduce a composition ◦ and a product � on pArr (X,A, s, t) by vertical
and horizontal juxtaposition respectively. For composition to be defined the
source of the first arrow has to match the target of the second arrow. So, for
example, the composite 〈 〈h1, . . . , h4〉〉◦ 〈 〈g1, . . . , g6〉, 〈f1, . . . , f11〉〉 of

c1 c2 c3 c4 c5 c6 c7 c8

d1 d2 d3 d4 d5 d6 d7 d8 d9

h1 h2 h3 h4

(28)

and (27) is

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

b1 b2 b3 b4 b5 b6 a7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8

d1 d2 d3 d4 d5 d6 d7 d8 d9

f1 f2 f4f3 f5 1 f9 f10 f11

g1 g2 g3 g4 g5 g6

h1 h2 h3 h4

f7 f8

(29)

The product is always defined. If the heights of the two factors don’t match,
then we pad one of them with identities to get it to the same height as the other.
So for example

24

a1 a2 a3

b1 b2

c1 c2 c3 c4

f1 f2

g1 g2

�

x1 x2

y1 y2 y3 y4

h1 h2 =

a1 a2 a3

b1 b2

c1 c2 c3 c4

x1 x2

y1 y2 y3 y4

y1 y2 y3 y4

f1 f2

g1 g2

h1 h2

1 1 1 1

This structure is not yet a category, let alone a monoidal category. Clearly
the composition and the product are associative and we have an identity for the
product (the tuple containing only the empty list 〈 〈〉〉), but we do not yet have
an identity for composition. Arrows of the form

a1 a2 a3 a4

a1 a2 a3 a4

1 1 1 1

will serve that purpose. So we will be taking the factor set of pArr (X,A, s, t)
by a relation m. This relation should relate for any list h the lists h · 〈s (h)〉,
〈t (h)〉·h and h to each other. To make sure that our product is still well-defined
we have to extend this relation a little further. For any element〈

〈fk,1, . . . , fk,nk
〉, . . . , 〈fi,1, . . . , fi,ni

〉,
〈
fi−1,1, . . . , fi−1,ni−1

〉
, . . . , 〈f1,1, . . . , f1,n1

〉
〉

of pArr (X,A, s, t), if
〈
fi−1,1, . . . , fi−1,ni−1

〉
can be split into three parts

〈fi−1,1, . . . , fi−1,l〉 , 〈fi−1,l+1, . . . , fi−1,m〉 and
〈
fi−1,m+1, . . . , fi−1,ni−1

〉
such that

t (fi−1,1) · . . . · t (fi−1,l) = s (fi,1) · . . . · s (fi,j−1)
〈fi−1,l+1, . . . , fi−1,m〉= s (fi,j)

t (fi−1,m+1) · . . . · t
(
fi−1,ni−1

)
= s (fi,j+1) · . . . · s (fi,ni)

then we relate〈
〈fk,1, . . . , fk,nk

〉, . . . , 〈fi,1, . . . , fi,ni
〉,〈
fi−1,1, . . . , fi−1,ni−1

〉
, . . . , 〈f1,1, . . . , f1,n1

〉
〉

and〈
〈fk,1, . . . , fk,nk〉, . . . , 〈fi,1, . . . , fi,j−1〉 · t(fi,j) · 〈fi,j+1, . . . , fi,ni〉,〈

fi−1,1, . . . , fi−1,l, fi,j , fi−1,m+1, . . . , fi−1,ni−1

〉
, . . . , 〈f1,1, . . . , f1,n1〉

〉
.

When passing from the former to the latter or the other way round we will say
that we (vertically) shifted a component in the representation.

25

The relation m is now the reflexive, symmetric transitive closure of the basic
relations just described.

Define the set of arrows of E (X,A, s, t) by
Arr(E (X,A, s, t)) := pArr (X,A, s, t)

/
m .

Call the projection πm,X,A,s,t : pArr (X,A, s, t) → Arr(E (X,A, s, t)) or just πm,
when X,A, s, t are clear from the context.

In Arr(E (X,A, s, t)) we have that for example (27) is equal to
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6 c7 c8

c2 a5 a6 a7 b8 b9 b10

f1 f2 f4f3 1 1

f5

1 f8 f9 f10 f11

g1

g2

1 g3 g4 g5 g6

where f7 is indicated in a dashed style. Now the relation m is compatible with
the composition, the product, s and t and therefore these operations can be
defined on the set Arr(E). This makes E a category. The identity arrow for
any object a ∈ Obj(E) is just 〈a〉. � is a bifunctor on E (compatibility with
composition can be seen by vertically shifting rows of identities on one side or
the other if necessary, as allowed by m). This bifunctor is associative and has as
two-sided identity the empty list (which is equal in pArr (X,A, s, t)

/
m to any

finite list with all elements empty lists).
Remark 3.14. We will use the kind of pictures introduced above to denote pre-
arrows, elements of Arr(E) and later also equivalence classes of arrows of E —
which will themselves be arrows of another category. It should be clear from
the context which we mean.

In a similar manner to the result of the coherence theorem, the main require-
ment for composites of products of arrows in monoidal categories to behave in
the simple way we expect them to behave, is that it is clear how the sources
and targets of these arrows arise as v (〈ai〉ni=1) and which iterated products of
arrows we are taking. We will now define structures which allow us to capture
this idea more precisely.
Definition 3.15. For X,A, s, t as in definition 3.13 call a pair of functions
vs, vt from the set of non-trivial arrow-atoms A to the set of tensor words which
satisfies

`(vs (f)) = `(s(f))

`(vt (f)) = `(t(f)) (30)
a varnishing of the non-trivial arrow atoms A. We will adopt the convention
of extending vs and vt to the set A∪̇X (and using the same symbols to denote
these maps) by setting

vs (a) := ()

vt (a) := ()
for all a ∈ X. (31)

26

Definition 3.16. Let X,A, s, t be generators as in definition 3.13 and let vs, vt
be a varnishing as in definition 3.15. On the set of structures of the form〈

ve, 〈〈vi, 〈fi,j〉ni
j=1〉〉1i=k, vb

〉
(32)

where ve, vb, vi are tensor words and fi,j are arrow-atoms define a function

ptr
(〈
ve, 〈〈vi, 〈fi,j〉nk

j=1〉〉1i=k, vb
〉)

:= 〈〈fi,j〉nk
j=1〉1i=k (33)

(that is, we simply forget about the tensor words and keep only the arrow
atoms). Define a path-shape or sometimes just path to be any structure p of
the form (32) for which ptr(p) lies in pArr (X,A, s, t) and for which `(ve) =∑nk

j=1 `(t(fk,j)), `(vb) =
∑n1

j=1 `(s(f1,j)) and `(vi) = ni. That is, a path-shape
is any such structure for which the concatenated sources and targets match (as
in (26)) and for which the length of ve matches the length of the target of the
ptr and the length of vb matches the length of the source of the ptr. We call vb the
source tensor word of the path and ve the target tensor word of the path. We use
P (X,A, s, t, vs, vt) to denote the set of all path-shapes for generators X,A, s, t
and a varnishing vs, vt. Define a function tr : P (X,A, s, t, vs, vt) → E (X,A, s, t)
by

tr := πm◦ptr . (34)

Call tr(p) the trace of the path p.
An equation-shape is a pair 〈p, q〉 of path shapes — let’s say p = 〈ve, p̂, vb〉

and q = 〈we, q̂, wb〉 — which satisfies

ve = we and vb = wb . (35)

Definition 3.17. LetX be a set of object-atoms and let C be a category (in our
context C will always be a monoidal category). A realization of the object-atoms
X in the category C is any function

o : X → Obj(C)

Note that this is the same thing as a functor from X to C when we interpret
X as a discrete category and therefore also the same thing as an object of the
functor category CX . We will adopt the convention of writing the same symbol
o for the lifted functor o : Xn → Cn (for any natural number n) which sends
a tuple 〈ai〉ni=1 ∈ Xn to 〈o(ai)〉ni=1. This will shorten the notation and there
should usually be no danger of confusion as it should be clear from the context
whether something is a list of elements of X or a single element of X.

Let a monoidal category 〈C,�, e, α, λ, ρ〉, generators X,A, s, t (definition
3.13), a varnishing vs, vt (definition 3.15) and a realization o of X in C be
given. Relative to these data a valid realization of the (non-trivial) arrow-atoms
A is a function

m : A → Arr(C)

which satisfies

s(m(f)) = vs (f)(o(s(f))) and
t(m(f)) = vt (f)(o(t(f))) . (36)

27

We adopt the convention of extending any specified valid realization m of
arrow-atoms to the set A∪̇X (and again using the same symbol for that exten-
sion) by setting

m(a) := 1o(a) for all a ∈ X. (37)

With the convention set down in equation (31) of definition (3.15) we can still
say that the extended maps satisfy equation (36).

We call the pair 〈o,m〉 a (valid) realization (of X,A, s, t, vs, vt).

Definition 3.18. Let X,A, s, t be generators, vs, vt be a varnishing and 〈o,m〉
be a realization of atoms in a monoidal category 〈C,�, e, α, λ, ρ〉. For any
path-shape

p =
〈
ve, 〈〈vi, 〈fi,j〉ni

j=1〉〉1i=k, vb
〉

define the evaluation of p (in 〈C,�, e, α, λ, ρ〉) induced by 〈o,m〉 as

ev〈o,m〉 (p) := canve�vk
(
〈vt(fk,j)〉

nk
j=1

)
;o(t(tr(p))) ◦vk (〈m(fk,j)〉nk

j=1) ◦(
◦1
i=k−1

(
can

vi+1

(
〈vs(fi+1,j)〉

ni+1
j=1

)
�vi

(
〈vt(fi,j)〉ni

j=1

)
;o
(
·ni
i=1(t (fii))

)◦vi (〈m(fi,j)〉ni
j=1)

))
◦ canv1(〈vs(f1,j)〉n1

j=1

)
�vb;o(s(tr(p))) .

This is well-defined because we required that target and source of consecutive
parts of a path match and that ve and vb have the right length. The idea is
that vb and ve specify the shape of the source and target of the evaluated path
while the tensor words vi specify which of the possible iterated tensor products
to use when evaluating a row of the path. We intersperse the composite with
structural transformations to make sources and targets match.

Definition 3.19. We say that a realization of atoms 〈o,m〉 satisfies an equation-
shape 〈p, q〉 if

ev〈o,m〉 (p) = ev〈o,m〉 (q) .

Remark 3.20. Whenever we draw diagrams in monoidal categories, what we are
writing down are basically path-shapes. The reason for all these very formal
definitions is that we will now show a few facts about path-shapes in general
— basically stating that they behave as one would expect — so that we can
later forget about them and reason about diagrams without having to repeat
the same type of argument over and over again.

Lemma 3.21. Let X,A, s, t, vs, vt, 〈o,m〉, 〈C,�, e, α, λ, ρ〉 be as in definition
3.18. If p = 〈ve, p̂, vb〉 and q = 〈we, q̂, wb〉 are path-shapes such that vb = we

then

ev〈o,m〉 (p) ◦ ev〈o,m〉 (q) = 〈ve, p̂ · q̂, wb〉

Proof. This is clear from the definition of evaluation of paths and from the
coherence theorem.

Lemma 3.22. Let X,A, s, t, vs, vt, 〈o,m〉, 〈C,�, e, α, λ, ρ〉 be as in definition
3.18. If p = 〈ve, p̂, vb〉 and q = 〈we, q̂, wb〉 are path-shapes such that ptr(p) =
ptr(q) =: f then

canwe�ve;o
(

t
(

f
)) ◦ ev〈o,m〉 (p) = ev〈o,m〉 (q) ◦ canwb�vb;o

(
s
(

f
)) .

28

Proof. Formally this works by induction but the reader may find the following
informal argument more convincing. Say f = 〈〈fi,j〉ni

j=1〉1i=k and therefore

p̂ = 〈〈vi, 〈fi,j〉ni
j=1〉〉1i=k and q̂ = 〈〈wi, 〈fi,j〉ni

j=1〉〉1i=k .

Draw a diagram with the two arrows ev〈o,m〉 (p) and ev〈o,m〉 (q) and connect
the nodes in the diagram with structural transformations. At the source the
diagram looks something like this.

vb
(
o
(

s
(

f
)))

wb

(
o
(

s
(

f
)))

v1 (〈vs (f1,j)(o(s (f1,j)))〉n1
j=1)w1 (〈vs (f1,j)(o(s (f1,j)))〉n1

j=1)

canwb�vb;o
(

s
(

f
))

canw1�v1;...

v1

(
〈m(f1,j)〉

n1
j=1

)
w1

(
〈m(f1,j)〉

n1
j=1

)

A middle segment looks like

vi (〈vs (fi,j)(o(s (fi,j)))〉ni
j=1)wi (〈vs (fi,j)(o(s (fi,j)))〉ni

j=1)

vi (〈vt (fi,j)(o(t (fi,j)))〉ni
j=1)wi (〈vt (fi,j)(o(t (fi,j)))〉ni

j=1)

vi+1

(
〈vs (fi+1,j)(o(s (fi+1,j)))〉ni+1

j=1

)
wi+1

(
〈vs (fi+1,j)(o(s (fi+1,j)))〉ni+1

j=1

)

vi
(
〈m(fi,j)〉ni

j=1

)
wi

(
〈m(fi,j)〉ni

j=1

)
canwi�vi;...

canwi�vi;...

and at the target end it looks like the picture below.

ve
(
o
(

t
(

f
)))

we

(
o
(

t
(

f
)))

vk (〈vs (fk,j)(o(t (fk,j)))〉nk
j=1)wk (〈vs (fk,j)(o(t (fk,j)))〉nk

j=1)

canwe�ve;o
(

t
(

f
))

canwk�vk;...

vk
(
〈m(fk,j)〉

nk
j=1

)
wk

(
〈m(fk,j)〉

nk
j=1

)

All the unmarked arrows are structural transformations. Considering for exam-
ple the lower arrow marked with canwi�vi;... in the middle segment note that
by observation 3.11 the arrows

canwi�vi;〈vt(fi,j)(o(t (fi,j)))〉ni
j=1

and canwi

(
〈vt(fi,j)〉ni

j=1

)
�vi

(
〈vt(fi,j)〉ni

j=1

)
;t
(〈
〈fi,j〉ni

j=1

〉)
are equal. Using the first representation (and the corresponding representation
for the upper arrow marked with canwi�vi;... in the middle segment) we see
that the upper square in the middle segment commutes by naturality of the
structural transformations and using the second representation we see that the
lower square commutes by the coherence theorem. The remaining parts can be
seen to commute in an analogous manner.

Corollary 3.23. Let X,A, s, t, vs, vt, 〈o,m〉, 〈C,�, e, α, λ, ρ〉 be as in definition
3.18. If p = 〈ve, p̂, vb〉 and q = 〈we, q̂, wb〉 are path-shapes such that ve = we,
vb = wb and ptr(p) = ptr(q) then ev〈o,m〉 (p) = ev〈o,m〉 (q).

29

Corollary 3.24. If 〈o,m〉 is a realization of atoms and 〈p, q〉 and 〈ṗ, q̇〉 are
equation-shapes such that

ptr(p) = ptr(ṗ) and ptr(q) = ptr(q̇)

then 〈o,m〉 satisfies 〈p, q〉 if and only if 〈o,m〉 satisfies 〈ṗ, q̇〉.

Proof. Because ptr(p) = ptr(ṗ) and because structural transformations are iso-
morphisms we can use lemma 3.22 to express ev〈o,m〉 (p) in terms of ev〈o,m〉 (ṗ).
The same works for q and q̇. Moreover the structural transformations sandwich-
ing the evaluated paths are the same in both cases.

Definition 3.25. Let X,A, s, t be generators. We call a pair
〈

p, q
〉
of arrows of

E (X,A, s, t) with s
(

p
)
= s

(
q
)
and t

(
p
)
= t
(

q
)
an equation in E (X,A, s, t).

Define a function Tr from the set of all sets of equation-shapes to the set of
all sets of equations in E (X,A, s, t) by setting

Tr(D) := {〈 tr(p) , tr(q)〉| 〈p, q〉 ∈ D} (38)

for any set D of equation-shapes.

Let E be a set of equations in E (X,A, s, t). We will construct a new strict
monoidal category with the same objects as E (X,A, s, t) but with all pairs of
arrows

〈
p, q
〉
∈ E identified. Of course if we just identify these arrows we don’t

get a monoidal category. So we define a relation ∼E as the closure of E under
reflexivity, symmetry, transitivity, composition and product. That is ∼E is the
least (under ordering by inclusion) relation on the set Arr(E (X,A, s, t)) which
contains E and for which for any three morphisms f , g , h in E (X,A, s, t) we have

1. f ∼E f

2. f ∼E g implies g ∼E f

3. f ∼E g and g ∼E h implies f ∼E h

4. f ∼E g implies both
(

f � h
)
∼E

(
g � h

)
and

(
h � f

)
∼E

(
h � g

)
5. f ∼E g implies

(
f ◦h
)
∼E

(
g◦h
)
if both composites are defined; and f ∼E g

implies
(

h◦f
)
∼E

(
h◦g
)
if these composites are defined.

That such a relation exists can be seen by either of the two standard argu-
ments, that is either “from the outside” by observing that the properties 1-5 are
preserved by intersection of relations and taking the intersection of all relations
containing E and satisfying these properties or “from the inside” by construct-
ing the relation ∼E as a union ∪∞i=0∼Ei with index set the natural numbers
where ∼E0 = E and for each n ∈ N the relation ∼En arises from ∼En−1 by
adding all pairs of arrows generated from the pairs in ∼En−1 by one of the rules
1-5. Because all rules only talk about a finite number of arrows the resulting re-
lation is really closed under properties 1-5 and clearly any relation closed under
properties 1-5 has to relate at least the arrows related by ∪∞i=1∼Ei.

Note that the conditions 1-5 are equivalent to conditions 1-3 together with

4a. f ∼E g and h ∼E k implies both
(

f � h
)
∼E

(
g � k

)
and

(
h � f

)
∼E(

k � g
)

30

5a. f ∼E g and h ∼E k implies
(

f ◦h
)
∼E

(
g◦k
)
if both composites are defined;

f ∼E g and h ∼E k implies
(

h◦f
)
∼E

(
k ◦g
)
if these composites are defined.

Lemma 3.26. f ∼E g implies s
(

f
)
= s

(
g
)

and t
(

f
)
= t
(

g
)
.

Proof. This is true for the generating set E by the definition 3.25 of an equation
in E (X,A, s, t) and clearly this property is preserved under 1-5 above.

Remark 3.27. This also means that modifying 5 above to only require one of
the composites to be defined does not change anything.

We will need the following later.

Lemma 3.28 (explicit description of ∼E). Let

E′ := E ∪
{〈

q , p
〉∣∣ 〈p, q

〉
∈ E

}
.

Then f ∼E g if and only if there exists a natural number n and sequences〈
p1, q1

〉
,. . .,

〈
pn, qn

〉
, h1,. . .,hn , ḣ1,. . .,ḣn , k1,. . .,kn , k̇1,. . .,k̇n

with
〈

pi, qi
〉
∈ E′ and hi, ḣi, ki, k̇i ∈ Arr(E (X,A, s, t)) for all i ∈ {1,. . .,n} such

that

f = k1◦
(

h1 � p1 � ḣ1
)
◦k̇1

ki◦
(

hi � qi � ḣi
)
◦k̇i = ki+1◦

(
hi+1 � pi+1 � ḣi+1

)
◦k̇i+1

for all i ∈ {1,. . .,n− 1}

kn◦
(

hn � qn � ḣn
)
◦k̇n = g . (39)

We also allow n to be zero and interpret this case to mean that f = g .

Proof. Clearly if such a sequence exists then∼E relates f and g . Call the relation
which relates f and g if and only if these sequences satisfying (39) exist ∼′E . We
need to show that ∼′E contains E and is closed under 1-5 above. If

〈
f , g
〉
∈ E

then choose n = 1, p1 = f , q1 = g , h1 = ḣ1 = πm (〈 〈〉〉), k1 = 1t
(

f
) = 1t

(
g
) and

k̇1 = 1s
(

f
) = 1s

(
g
) (these are equal by the previous lemma). Closure:

1, reflexivity: Empty chain.

2, symmetry: Reverse the direction of the chain.

3, transitivity: Concatenate the chains.

4, closure under product: Assume f , g , h are arrows of E (X,A, s, t) and

f , g ,
〈

p1, q1
〉
,. . .,

〈
pn, qn

〉
, h1,. . .,hn , ḣ1,. . .,ḣn , k1,. . .,kn , k̇1,. . .,k̇n

satisfy equation (39). Then

h � f = h �
(

k1◦
(

h1 � p1 � ḣ1
)
◦k̇1
)
=(

1t(h) � k1
)
◦

(
(h � h1)� p1 � ḣ1

)
◦
(
1s(h) � k1

)
31

(
1t(h) � ki

)
◦

(
(h � hi)� qi � ḣi

)
◦
(
1s(h) � ki

)
=

h �
(

ki◦
(

hi � qi � ḣi
)
◦k̇i
)
=

h �
(

ki+1◦

(
hi+1 � pi+1 � ḣi+1

)
◦k̇i+1

)
=(

1t(h) � ki+1

)
◦

(
(h � hi+1)� pi+1 � ḣi+1

)
◦
(
1s(h) � ki+1

)
for all i ∈ {1,. . .,n− 1}

(
1t(h) � kn

)
◦

(
(h � hn)� qn � ḣn

)
◦
(
1s(h) � kn

)
=

h �
(

kn◦
(

hn � qn � ḣn
)
◦k̇n
)
= h � g .

Multiplication on the right works in the same way.

5, closure under composition: If f , g are connected by a chain as before and
s(k) = t

(
f
)
= t
(

g
)
, then by lemma 3.26 we can compose k with each of

the ki. This new sequence connects k ◦f and k ◦g . The same works on the
other side.

Definition 3.29. Let X,A, s, t be generators and let E be a set of equations in
E (X,A, s, t). The strict monoidal category

〈
ẼE (X,A, s, t) ,�, 〈〉

〉
and the strict

monoidal functor �̃E,X,A,s,t are defined by

• Obj
(
ẼE (X,A, s, t)

)
= Obj(E (X,A, s, t)), �̃E,X,A,s,t (a) = a for all a ∈

E (X,A, s, t).

• Arr
(
ẼE (X,A, s, t)

)
= Arr(E (X,A, s, t))

/
∼E where ∼E is the relation

discussed in detail above. For all morphisms f of E (X,A, s, t) the arrow
�̃E,X,A,s,t

(
f
)
of ẼE (X,A, s, t) is the equivalence class of f under ∼E .

• 1a in ẼE (X,A, s, t) is the equivalence class of 1a in E (X,A, s, t).

• s
(
�̃E,X,A,s,t

(
f
))

:= s
(

f
)
and t

(
�̃E,X,A,s,t

(
f
))

:= t
(

f
)

• The composite of two arrows �̃E,X,A,s,t

(
f
)
and �̃E,X,A,s,t

(
g
)
is

�̃E,X,A,s,t

(
f
)
◦�̃E,X,A,s,t

(
g
)
:= �̃E,X,A,s,t

(
f ◦g
)
.

• �̃E,X,A,s,t

(
f
)
� �̃E,X,A,s,t

(
g
)
:= �̃E,X,A,s,t

(
f � g

)
.

When X,A, s, t are clear from the context we will abbreviate ẼE (X,A, s, t) to
ẼE and �̃E,X,A,s,t to �̃E . We also define �̃′E := �̃E◦πm.

Lemma 3.30.
〈
ẼE (X,A, s, t) ,�, 〈〉

〉
and �̃E,X,A,s,t are well-defined. The struc-

ture
〈
ẼE (X,A, s, t) ,�, 〈〉

〉
is really a strict monoidal category and the maps

denoted by �̃E,X,A,s,t really constitute a strict monoidal functor.

32

Proof. Source and target are well-defined by lemma 3.26. Composition is well-
defined by property 5a. of the relation ∼E . The bifunctor � is well-defined by
property 4a. of the relation ∼E . Properties such as s(1a) = a and associativ-
ity of composition and � are inherited from E (X,A, s, t). �̃E,X,A,s,t is a strict
monoidal functor by the very definition of the operations on ẼE (X,A, s, t).

Lemma 3.31. Let X,A, s, t be generators and let E be a set of equations in
E (X,A, s, t). If 〈H,H2,H0〉 : 〈E (X,A, s, t) ,�, 〈〉〉 → 〈C,�, e, α, λ, ρ〉 is a strong
monoidal functor and H

(
p
)
= H

(
q
)

for all
〈

p, q
〉
∈ E then there is a unique

strong monoidal functor 〈L,L2, L0〉 :
〈
ẼE (X,A, s, t) ,�, 〈〉

〉
→ 〈C,�, e, α, λ, ρ〉

such that

〈L,L2, L0〉 ◦ �̃E,X,A,s,t = 〈H,H2,H0〉 . (40)

Proof. By the definition 3.1 of composition of monoidal functors and because
�̃E,X,A,s,t is a strict monoidal functor equation (40) above implies that L2;a,b =
L(1) ◦L2;�̃E(a),�̃E(b) = H2;a,b and L0 = L(1) ◦L0 = H0. It also implies

L
(
�̃E

(
f
))

= H
(

f
)
. (41)

So for any equivalence-class �̃E,X,A,s,t

(
f
)
of arrows of E (X,A, s, t) (which is

the same thing as an arrow of ẼE (X,A, s, t)) there is at most one possible
value for L. We still have to show that using (41) as the definition of L is
well-defined, that is we have to show that f ∼E g implies H

(
f
)
= H

(
g
)
. This

is true by hypothesis for any pair
〈

p, q
〉
∈ E. We need to check that the relation

“images of f and g under H are equal and f ∼E g” satisfies closure properties
1-5 which define the relation ∼E . 1-3 are obvious. 5 is satisfied because H is a
functor. It remains to check 4. So let f , g , h be morphisms of E (X,A, s, t) such
that H

(
f
)
= H

(
g
)
and f ∼E g . By lemma 3.26 we have s

(
f
)
= s

(
g
)
=: a and

t
(

f
)
= t
(

g
)
=: b.

H (a � s(h))

H (b � t(h))

H (a)�H (s(h))

H (b)�H (t(h))

H (a � s(h))

H (b � t(h))

H2;a,s(h)H2;a,s(h)

H2;b,t(h)H2;b,t(h)

H
(

f
)
�H(h) =H

(
g
)
�H(h)H

(
f �h

)
H
(

g�h
)

H2 is an isomorphism because 〈H,H2,H0〉 is strong and therefore

H
(

f � h
)
= H

(
g � h

)
.

Closure under product from the left is shown in the exact same way.

Remark 3.32. This means that
〈
ẼE (X,A, s, t) , �̃E,X,A,s,t

〉
is the coequalizer of

a suitable pair of strict monoidal functors in the category of strong monoidal
functors.

For any realization of atoms we will now construct a specific strong monoidal
functor whose value on any arrow f of E (X,A, s, t) is given by evaluating a spe-
cific path whose trace is f . In conjunction with what we already know this will

33

make it clear that if 〈o,m〉 is a realization of atoms which satisfies some set of
equation-shapes D and we set E := Tr(D) then for any two paths p = 〈ve, p̂, vb〉
and q = 〈we, q̂, wb〉 we have that in generalisation of lemma 3.22 the equal-
ity �̃E,X,A,s,t(tr(p)) = �̃E,X,A,s,t(tr(p)) implies canwe�ve;o

(
t
(

f
)) ◦ ev〈o,m〉 (p) =

ev〈o,m〉 (q) ◦ canwb�vb;o
(

s
(

f
)).

Let X,A, s, t, vs, vt, 〈C,�, e, α, λ, ρ〉 be as in definition 3.18.
We will define a function KX,A,s,t,vs,vt,C which sends realizations 〈o,m〉 to

monoidal functors KX,A,s,t,vs,vt,C (〈o,m〉).
Write 〈H,H2,H0〉= KX,A,s,t,vs,vt,C (〈o,m〉).
We define

H (〈ai〉ni=1) := v(n) (〈o(ai)〉ni=1) . (42)

On single-row arrows πm (〈 〈fi〉ni=1〉) of E (X,A, s, t) with s (fi) = 〈ai,j〉lij=1 and
t (fi) = 〈bi,j〉lij=1 we define H as the composite(

S (o(a1,1)) ◦ . . . ◦ S (o(a1,l1)) ◦ . . . ◦ S (o(an,1)) ◦ · · · ◦ S (o(an,ln))
)
(e)

(
S
(
vs (f1)(o(a1,1) , . . . , o(a1,l1))

)
◦ . . . ◦ S

(
vs (fn)(o(an,1) , . . . , o(an,ln))

))
(e)

(
S
(
vt (f1)(o(b1,1) , . . . , o(b1,m1

))
)
◦ . . . ◦ S

(
vt (fn)(o(bn,1) , . . . , o(bn,mn

))
))

(e)

(
S (o(b1,1)) ◦ . . . ◦ S (o(b1,m1

)) ◦ · · · ◦ S (o(bn,1)) ◦ . . . ◦ S (o(an,mn
))
)
(e)

(
Svs(f1),o(s(f1))◦···◦Svs(fn),o(s(fn))

)
e

(
S(m(f1))◦...◦S(m(fn))

)
e

(
Svt(f1),o(t (f1))◦···◦Svt(fn),o(t (fn))

)
e

H(〈〈f1,...,fn〉〉)

(43)
The upper and lower arrows are the (unique by the coherence theorem) struc-
tural transformations.

For any arrow πm (〈 〈fn,1, . . . , fn,kn
〉, . . . , 〈f1,1, . . . , f1,k1

〉〉) of E (X,A, s, t) we
define

H (πm (〈 〈fn,1, . . . , fn,kn
〉, . . . , 〈f1,1, . . . , f1,k1

〉〉)) :=
H (πm (〈fn,1, . . . , fn,kn

〉)) ◦ · · · ◦H (πm (〈f1,1, . . . , f1,k1
〉)) . (44)

Observation 3.33. If f =
〈
〈fi,j〉ki

j=1

〉
1
i=n then

KX,A,s,t,vs,vt,C (〈o,m〉)
(

f
)
=

ev〈o,m〉
(〈

v
(
`
(

t
(

f
)))

,
〈〈

v(ki), 〈fi,j〉ki
j=1

〉〉
1
i=n, v

(
`
(

s
(

f
)))〉)

. (45)

By its very definition H preserves composition. If all of the fi in (43) are
identities (that is, elements of X), then the middle arrow is an identity and
by the convention set down in definition 3.15 we have that vs (fi) = vt (fi).

34

Therefore the composite in (44) is an identity. Now we still need to show
that H is well-defined — that is, that the definition given is compatible with
the vertical shifting of components of representations of arrows of E . Because
of the way in which we have defined H, it suffices to consider an arrow with
two rows. So let

〈 〈
g1, . . . , gng

〉
,
〈
f1, . . . , fnf

〉〉
be an element of pArr (X,A, s, t).

When vertical shifting is allowed we can partition each of the lists〈
f1, . . . , fnf

〉
,
〈
g1, . . . , gng

〉
, s
(〈 〈

f1, . . . , fnf

〉〉)
,

t
(〈 〈

f1, . . . , fnf

〉〉)
= s
(〈 〈

g1, . . . , gng

〉〉)
and t

(〈 〈
g1, . . . , gng

〉〉)
into three parts, such that the sources and targets of arrows in the first parts
are in the first parts of the object lists, and analogously for the second and
third parts. Because the horizontal composition of natural transformations is
an associative bifunctor we can under these circumstances write the composite(

S−1vt(g1)
◦ · · · ◦ S−1

vt
(
gng

))•(S (m(g1)) ◦ . . . ◦ S
(
m
(
gng

)))
•(

Svs(g1) ◦ · · · ◦ Svs
(
gng

))•(S−1vt(f1)
◦ · · · ◦ S−1

vt
(
fnf

))•(
S (m(f1)) ◦ . . . ◦ S

(
m
(
fnf

)))
•

(
Svs(f1) ◦ · · · ◦ Svs

(
fnf

)) (46)

(which is just two chained instances of (43) with evaluation at e omitted) as((
S−1vt(g1)

◦ · · · ◦ S−1vt(gk)

)
•

(
S (m(g1)) ◦ . . . ◦ S (m(gk))

)
•(

Svs(g1) ◦ · · · ◦ Svs(gk)

)
•

(
S−1vt(f1)

◦ · · · ◦ S−1vt(fi)

)
•(

S (m(f1)) ◦ . . . ◦ S (m(fi))
)
•

(
Svs(f1) ◦ · · · ◦ Svs(fi)

))
◦((

S−1vt(gk+1)
◦ · · · ◦ S−1vt(gl)

)
•

(
S (m(gk+1)) ◦ . . . ◦ S (m(gl))

)
•(

Svs(gk+1) ◦ · · · ◦ Svs(gl)

)
•

(
S−1vt(fi+1)

◦ · · · ◦ S−1vt(fj)

)
•(

S (m(fi+1)) ◦ . . . ◦ S (m(fj))
)
•

(
Svs(fi+1) ◦ · · · ◦ Svs(fj)

))
◦((

S−1vt(gl+1)
◦ · · · ◦ S−1

vt
(
gng

))•(S (m(gl+1)) ◦ . . . ◦ S
(
m
(
gng

)))
•(

Svs(gl+1) ◦ · · · ◦ Svs
(
gng

))•(S−1vt(fj+1)
◦ · · · ◦ S−1

vt
(
fnf

))•
(
S (m(fj+1)) ◦ . . . ◦ S

(
m
(
fnf

)))
•

(
Svs(fj+1) ◦ · · · ◦ Svs

(
fnf

))) (47)

where i is the first splitting point for the f’s, j is the second splitting point for
the f’s, k is the first splitting point for the g’s and l is the second splitting point

35

for the g’s. When all of

fi+1, . . . , fj

are identities (that is, elements of X), then(
S (m(fi+1)) ◦ . . . ◦ S (m(fj))

)
is also an identity and by convention

() = vs (fi+1) = vt (fi+1) , vs (fi+2) = vt (fi+2) , . . . , vs (fj) = vt (fj) .

Therefore(
S−1vt(fi+1)

◦ · · · ◦ S−1vt(fj)

)
•(

S (m(fi+1)) ◦ . . . ◦ S (m(fj))
)
•

(
Svs(fi+1) ◦ · · · ◦ Svs(fj)

)
= 1 .

By adding an identity

S (m (π1 (t (gk+1)))) ◦ · · · ◦ S
(
m
(
π`(t (gk+1)) (t (gk+1))

))
◦ · · ·

· · · ◦ S (m (π1 (t (gl)))) ◦ · · · ◦ S
(
m
(
π`(t (gl)) (t (gl))

))
on the other side of the middle expression and retracing our steps backwards
with the shifted representation

〈〈
g′1, . . . , g

′
ng′

〉
,
〈
f′1, . . . , f

′
nf′

〉〉
given by

〈f′1, . . . , f′i〉= 〈f1, . . . , fi〉〈
f′i+1, . . . , f

′
i+(l−k)

〉
= 〈gk, . . . , gl〉〈

f′i+(l−k)+1, . . . , f
′
nf′

〉
=
〈
fj+1, . . . , fnf

〉
〈g′1, . . . , g′k〉= 〈g1, . . . , gk〉〈

g′k+1, . . . , g
′
k+`(t(〈〈gk+1,...,gl〉〉))

〉
= t (〈 〈gk+1, . . . , gl〉〉)〈

g′k+`(t(〈〈gk+1,...,gl〉〉))+1, . . . , g
′
ng′

〉
=
〈
gl+1, . . . , gng

〉
we can bring (47) back into a form of type (46) and we see that H is compatible
with the relation m. This concludes our proof that H is a functor.

It is also a strong monoidal functor with H0 = 1e and H2;〈a1,...,am〉,〈b1,...,bn〉 :
H (〈a1, . . . , am〉)�H (〈b1, . . . , bn〉) → H (〈a1, . . . , am, b1, . . . , bn〉) the structural
transformation canv(m+n)�v(m)�v(n);o

(
〈ai〉mi=1·〈bj〉nj=1

). Naturality of H2 follows
from lemma 3.22 because — using bifunctoriality of � — we see that both
H
(

f
)
� H

(
g
)
and H

(
f � g

)
are the result of evaluating a path, the ptr of

which is given by some representation of f � g in both cases (and we can choose
the same representation in both cases).

The equations that must hold for a monoidal functor hold by the coherence
theorem.

In summary we have

36

Definition 3.34. Let X,A, s, t, vs, vt, 〈C,�, e, α, λ, ρ〉 be as in definition 3.18
and let 〈o,m〉 be a realization of atoms. The strong monoidal functor

KX,A,s,t,vs,vt,C (〈o,m〉)

which in the scope of this definition we write as 〈H,H2,H0〉 is defined by

H (〈ai〉ni=1) := v(n) (〈o(ai)〉ni=1)

H
(

f
)
:= ev〈o,m〉

(〈
v
(
`
(

t
(

f
)))

,
〈〈

v(ki), 〈fi,j〉ki
j=1

〉〉
1
i=n, v

(
`
(

s
(

f
)))〉)

(where f =
〈
〈fi,j〉ki

j=1

〉
1
i=n) (48)

H0 := 1e

H2;〈ai〉mi=1,〈bj〉nj=1
:= canv(m+n)�v(m)�v(n);o

(
〈ai〉mi=1·〈bj〉nj=1

) . (49)

We use only the first equation above to define a functor KX,A,s,t,vs,vt,C : CX →
CX∗ , where we interpret both X and the set of X∗ of sequences in letters taken
from X as discrete categories. So KX,A,s,t,vs,vt,C (o) : X∗ → C.

When clear from the context we will omit (some of) the subscripts for
K. As we have already done in observation 3.33, we will sometimes write
KX,A,s,t,vs,vt,C (〈o,m〉)

(
f
)
or KX,A,s,t,vs,vt,C (〈o,m〉)(a) when we mean that we

are applying the functor component H of KX,A,s,t,vs,vt,C (〈o,m〉) to an object
or a morphism of E (X,A, s, t). It should be clear from the context when we use
such shortcut.

As promised we get a theorem which significantly simplifies calculations in
monoidal categories.

Theorem 3.35 (Don’t Worry Theorem). Let X,A, s, t, vs, vt, 〈C,�, e, α, λ, ρ〉
be as in definition 3.18, let D be a set of equation-shapes and let 〈o,m〉 be a
realization of atoms which satisfies all equation-shapes in D. Set E := Tr(D).
If p = 〈ve, p̂, vb〉 and q = 〈we, q̂, wb〉 are path-shapes and

�̃E,X,A,s,t(tr(p)) = �̃E,X,A,s,t(tr(q))

then with the notation p := tr(p), q := tr(q), a := s
(

p
)
= s
(

q
)

and b := t
(

p
)
=

t
(

q
)

we have

canwe�ve;o(b) ◦ ev〈o,m〉 (p) = ev〈o,m〉 (q) ◦ canwb�vb;o(a) .

Proof. The real work has already been done. If ptr(p) =
〈
〈pi,j〉ki

j=1

〉
1
i=n and

ptr(q) =
〈
〈qi,j〉ki

j=1

〉
1
i=n then by the coherence theorem and by lemma 3.22

canwe�ve;o(b) ◦ ev〈o,m〉 (p) = canwe�v(`(b));o(b) ◦ canv(`(b))�ve;o(b) ◦ ev〈o,m〉 (p) =
canwe�v(`(b));o(b) ◦

ev〈o,m〉
(〈

v(`(b)),
〈〈

v(ki), 〈pi,j〉ki
j=1

〉〉
1
i=n, v

(`(a))
〉)
◦ canv(`(a))�vb;o(a) =

— by definition 3.34 —

canwe�v(`(b));o(b) ◦K (〈o,m〉)
(

p
)
◦ canv(`(a))�vb;o(a) .

37

By lemma 3.31 and because 〈o,m〉 satisfies the equations in D there is a functor
L such that this is equal to

canwe�v(`(b));o(b) ◦L
(
�̃E

(
p
))
◦ canv(`(a))�vb;o(a)

which by hypothesis of this theorem is equal to

canwe�v(`(b));o(b) ◦L
(
�̃E

(
q
))
◦ canv(`(a))�vb;o(a) =

— going in the reverse direction —

canwe�v(`(b));o(b) ◦K (〈o,m〉)
(

q
)
◦ canv(`(a))�vb;o(a) =

canwe�v(`(b));o(b) ◦ ev〈o,m〉
(〈

v(`(b)),
〈〈

v(ki), 〈qi,j〉ki
j=1

〉〉
1
i=n, v

(`(a))
〉)
◦

canv(`(a))�vb;o(a) =

ev〈o,m〉 (q) ◦ canwb�v(`(a));o(a) ◦ canv(`(a))�vb;o(a) = ev〈o,m〉 (q) ◦ canwb�vb;o(a) .

Corollary 3.36. If in theorem 3.35 we have ve = we and vb = wb, then

ev〈o,m〉 (p) = ev〈o,m〉 (q) .

We will use the Don’t Worry Theorem mainly to simplify calculations. Let
us introduce at this point a kind of shorthand notation. When we are talking
about a collection of arrows f, g, . . . in C where 〈C,�, e, α, λ, ρ〉 is a monoidal
category and the domains and codomains of all these arrows have been given in
the form s(f) = vs (f) (〈ai〉mi=1), t(f) = vt (f)

(
〈a′i〉m

′

i=1

)
, s(g) = vs (g) (〈bi〉ni=1),

t(g) = vt (g)
(
〈b′i〉n

′

i=1

)
, . . . for some tensor words vs (f) , vt (f) , vs (g) , vt (g) , . . .

then we will use expressions like for example

f

((((b′1 a2) (a3
g

(a2 a3)))

f

b′1) a2) a3

g

a2 a3

(b′1

f

b′1 a2 a3

a2)(·a3)

to denote the morphism of C which we get if we define generators X,A, s, t, a
varnishing vs, vt and a realization 〈o,m〉 such that

• the set X contains all objects of ai, a
′
i, bi, b

′
i, . . . ∈ C which appear as

components in the specification of sources and targets,

• the set A contains f, g, . . .,

• vs and vt are the functions that we already implicitly alluded to when we
said that the source and target of f, g, . . . have to be given in a specific
way,

• o sends elements of X to themselves and

• m sends elements of A to themselves

38

and then evaluate some path whose trace is given by the picture and whose
source tensor word is that which is indicated by the parentheses in the top
row of the picture, while its target tensor word is indicated by the parentheses
in the bottom row (a dot “·” denotes the unit e of the tensor product) — by
corollary 3.23 (or the previous corollary) it doesn’t matter which of the possible
paths we choose.

(If the reader prefers they can also think of the elements of the set A as being
composed of not only a morphism but also the specification of source and target
in terms of a tensor word and elements of X. If we want to be very formal
this might be necessary because in theory we could have two different names,
say f and g — one name associated with a certain specification of source and
target and the other with another — such that f and g happen to coincide
as morphisms of C (and therefore somehow their source and target happen
to coincide although they are not “formally” equal). We try not to be overly
concerned with these kind of matters. The reader can also just think of the set
A as containing the names which we have chosen in the text for the arrows.)

Sometimes we will also use the more concise notation

(g � f) ◦ (f � g � f) : ((((b′1 � a2)� (a3 � (a2 � a3)))� b′1)� a2)� a3

→ (b′1 � a2)� (e� a3)

to denote the same arrow as that in the picture.
We will also use these kind of pictures to do calculations when we know

that the morphisms f, g, . . . satisfy some equations. In calculations we will only
add parentheses to the source and target when for some reason we want to be
explicit about which path we are talking about. Usually though we will omit
them because by corollary 3.24 the choice does not make any difference for the
truth or falsehood of the equations we are writing down (as long as we make the
same choice on both sides of the equation — which we always implicitly assume
that we do).

In the next part, in the proof of theorem 4.2 (the main part of which is
contained in the proof of lemma 4.3) we will see quite a few of these kind
of calculations. There the construction of the generators and the varnishing
is spelled out explicitly, so as to give one clear example of how this is done.
Usually though we will leave this part implicit and we will assume that the
reader can supply the details themselves.

39

4 Interlude
4.1 Outlook
Observation 4.1. A monoid 〈m,µ, η〉 in a monoidal category 〈C,�, e, α, λ, ρ〉
is the same thing as a valid realization of atoms for object-atoms XMon := {m},
non-trivial arrow atoms

〈AMon, sMon, tMon〉 := {µ : 〈m,m〉 → 〈m〉,η : 〈〉 → 〈m〉}

(here we deviate a little from the notation used earlier by directly specifying source
and target of arrow atoms, but it should be clear what the intended meaning in
terms of the earlier notation is) and the varnishing

vs;Mon (µ) := ()�(), vt;Mon (µ) := (), vs;Mon (η) := e0, vt;Mon (η) := ()

which satisfies the set of equation-shapes

DMon :={〈〈
(),
〈
〈(), 〈µ〉〉, 〈()�(), 〈µ,m〉〉

〉
, ()� (()�())

〉
,

〈
(),
〈
〈(), 〈µ〉〉, 〈()�(), 〈m,µ〉〉

〉
, ()� (()�())

〉〉
,〈〈

(),
〈
〈(), 〈µ〉〉, 〈()�(), 〈m,η〉〉

〉
, ()�e0

〉
, 〈

(),
〈
〈(), 〈m〉〉

〉
, ()�e0

〉〉
,〈〈

(),
〈
〈(), 〈µ〉〉, 〈()�(), 〈η,m〉〉

〉
, e0�()

〉
,

〈
(),
〈
〈(), 〈m〉〉

〉
, e0�()

〉〉}
.

The underlying object m of the monoid corresponds to the single value of o. µ
corresponds to the value of m at µ and η corresponds to the value of m at η.

The categories of algebras ActC, Act C and BiActC defined in section 2
can be described in a completely analogous fashion.

The main result of this section will be a theorem which says that a gener-
alized law of associativity holds for monoids in monoidal categories. The proof
of this theorem makes use of the characterization of monoids given above and
serves as an illustration for how one can use the visual calculus developed in
section 3.

At the same time this result gives concrete meaning to the theory we will
develop in section 7. There we will figure out how a characterization of all
the morphisms f in ẼE , for which t

(
f
)
= 〈a〉 (for some a ∈ X) leads to a

characterization of the free objects in the category of valid realizations which
satisfy some set of equation-shapes D such that Tr(D) = E. (This category is
defined (in the obvious way) in section 7.)

40

A characterization of the morphisms

f in ẼXMon
(AMon, sMon, tMon,Tr(DMon)) such that t

(
f
)
= 〈m〉

is just what the generalized law of associativity gives (see lemma 4.3 below).
We do not execute the proofs here but after seeing the proof for the generalized
law of associativity for monoids it should be an easy thing for the reader to find
similar characterizations for the categories ẼE which give rise to the categories
ActC, Act C and BiActC introduced in section 2.

Free objects in the categories 〈m,µ, η〉−Act, Act−〈m,µ, η〉 and 〈m,µ, η〉
−Act−〈ṁ, µ̇, η̇〉 are even simpler. The underlying objects of the free objects on
some object a ∈ C are given simply by m�a, a�m and m�a� ṁ respectively
and the action is given by the multiplication of the monoids. We will describe
this in a little more detail in section 6 and in section 8.

When we have free objects in some algebraic category we can think of that
category as a category of Eilenberg-Moore algebras. We describe these cate-
gories and some of their theory in section 6.

So the roadmap is as follows: In this section we prove the generalized law
of associativity for monoids in monoidal categories. In section 5 we work out
some properties of colimits that we will need later. Before the end of section 6
we will know the structure of free objects, limits and colimits in the categories
〈m,µ, η〉−Act and Act−〈m,µ, η〉. Section 7 completes the picture for MonC,
ActC, Act C and BiActC. In the beginning of section 8 we supply the details
for the remaining case of 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉. This last case is not really
that much more complicated than the case of 〈m,µ, η〉−Act and Act−〈m,µ, η〉
and if the reader wishes he may skip ahead and read (the beginning of) section
8 after section 6.

4.2 Generalized associativity for monoids
Theorem 4.2 (generalized law of associativity for monoids in monoidal cat-
egories). Let XMon, AMon, sMon, tMon, vs;Mon, vt;Mon and DMon be as in ob-
servation 4.1. Let p = 〈ve, p̂, vb〉 and q = 〈we, q̂, wb〉 be path-shapes. If
vb = wb, ve = we and `(ve) = `(we) = 1 then for any valid realization 〈o,m〉 of
XMon, AMon, sMon, tMon, vs;Mon, vt;Mon which satisfies DMon we have

ev〈o,m〉 (p) = ev〈o,m〉 (q) .

Proof. This will follow from the next lemma and corollary 3.36 of the Don’t
Worry Theorem.

Lemma 4.3. Let XMon, AMon, sMon, tMon and DMon be as in observation 4.1.
Set

EMon := Tr(DMon)

=

{〈〈
〈µ〉, 〈µ,m〉

〉
, 〈 〈µ〉, 〈m,µ〉〉

〉
,〈 〈

〈µ〉, 〈m,η〉
〉
, 〈 〈m〉〉

〉
,〈 〈

〈µ〉, 〈η,m〉
〉
, 〈 〈m〉〉

〉}
.

41

Then for any two morphisms h , ḣ in ẼXMon
(AMon, sMon, tMon, EMon) if s(h) =

s
(

ḣ
)

and t(h) = t
(

ḣ
)
= 〈m〉 then

h = ḣ .

Proof. We use this opportunity to show how one can use the visual calculus
presented in the previous chapter to do calculations in some category ẼE . Note
that even though the pictures we draw are in one-to-one correspondence to
pre-arrows and not to arrows of ẼEMon

when writing equations like we will do
below the sign “=” is of course intended to refer to the equivalence-classes of
these pre-arrows — that is to arrows of ẼEMon

.
In ẼXMon

(AMon, sMon, tMon, DMon) we have:

1

m

µ

m m

µ

m m

m

=
µ

m m

1

m

µ

m m

m

(50)

1

m

η

µ

m m

m

= 1

m

m

η 1

m

µ

m m

m

= 1

m

m

(51)

We will proceed by proving that for any h

m . . . m

m

and any f
m . . . m

m

in ẼXMon
(AMon, sMon, tMon, DMon) with `(s(h)) = n we have

h

m . . . m

f
m . . . m

µ

m m

m

= vnµ(f)
m m

m

=

1

m

. . .

. . .

1

m

f
m . . . m

1

m

. . .

. . .

µ

m m

...

m . . . m

µ

m m

m
(52)

42

where vnµ(f)
m m

m

is defined by

v0µ(f)
m m

m

:= f
m . . . m

m

(53)

vn+1
µ (f)

m m

m

:=
1

m

vnµ(f)
m m

µ

m m

m

.

From this it will follow that

h

m . . . m

m

=
h

m . . . m

1

m

m

(51)
=

h

m . . . m

1

m

η

µ

m m

m

=

h

m . . . m

η

µ

m m

m

(53)
= vnµ(η)

m m

m

. (54)

Any arrow of ẼXMon
(AMon, sMon, tMon, DMon) is the image of some pre-arrow

under �̃EMon
◦πm. To prove (52) we proceed by induction over the number of

rows in such a pre-arrow.
If there is only one row in the pre-arrow mapped to h then we have the

following cases.

• h = 1m:

v1µ(f)
m m

m

=
1

m

f
m . . . m

µ

m m

m

by definition of v1µ(f).

43

• h = η:

η
f

m . . . m

µ

m m

m

shift
=

f
m . . . m

η 1

m

µ

m m

m

(51)
= f

m . . . m

m

• h = µ:

µ

m m

f
m . . . m

µ

m m

m

shift
=

1

m

1

m

f
m . . . m

µ

m m

1

m

µ

m m

m

(50)
=

1

m

1

m

f
m . . . m

1

m

µ

m m

µ

m m

m

(53)
=

1

m

v1µ(f)
m m

µ

m m

m

(53)
= v2µ(f)

m m

m

Now assume the statement is true for pre-arrows with n ≥ 1 rows. Because the
target has to be a single m and because nothing can precede a lone η, the last
row has to be either a single 1m or a single µ. Clearly for the first case the
statement is true by the induction hypothesis because we can simply omit 1m.
In the second case we have

h =
h ′

m . . . m

h ′′
m . . . m

µ

m m

m

(55)

where by induction hypothesis (52) is true for h ′ and h ′′. Call `(h ′) = n′ and

44

`(h ′′) = n′′. We calculate

h ′
m . . . m

h ′′
m . . . m

f
m . . . m

µ

m m

1

m

µ

m m

m

(50)
=

h ′
m . . . m

h ′′
m . . . m

f
m . . . m

1

m

µ

m m

µ

m m

m

ind. hyp.
=

h ′
m . . . m

vn
′′

µ (f)
m m

µ

m m

m

ind. hyp.
= vn

′

µ (vn
′′

µ (f))

m m

m

(56)

It remains to show that vmµ (vnµ(f)) = vm+n
µ (f). This is done by induction

on m. For m = 0 the statement is true by the definition of v0µ(−). Assume the
statement is true for m = k. For m = k + 1 we get

vk+1
µ (vnµ(f))

m m

m

def.
=

1

m

vkµ(v
n
µ(f))

m m

µ

m m

m

ind. hyp.
=

1

m

vk+n
µ (f)

m m

µ

m m

m

def.
= vk+1+n

µ (f)
m m

m

.

If the reader experienced a feeling of déjà-vu while looking at the proof above
this is not surprising. The proof draws on the same ideas that we used to prove
the coherence theorem for monoidal categories. If we specialize (21) (part of the
proof of lemma 3.6 about monoidal functors) to the case which we used in the
proof of the coherence theorem, then we can recognize that Rẅ (which is Sẅ in
this specific case) stands as a token for the idea (which is an induction hypothesis

45

there) that for any tensor word v the functors
(
◦n′′i=1 (S (−))

)
(v(−, . . . ,−)) =

−� (· · ·� (−� (−� v(−, . . . ,−)))) and ẅ(−, . . . ,−)� v(−, . . . ,−) are closely
related. A similar idea is also an induction hypothesis in the preceding proof
and we use this induction hypothesis in the second step in (56). Similarly Sẇ

represents the idea that for any v the functors
(
◦n′i=1 (S (−))

)
(v(−, . . . ,−)) =

−� (· · ·� (−� (−� v(−, . . . ,−)))) and ẇ(−, . . . ,−)�w(−, . . . ,−) are closely
related. A similar idea is used in the last step in (56). S2 — which is an instance
of α — is a testament to associativity. The corresponding idea is used in the first
step of (56). An analogue to the final step in the coherence theorem (which is
recorded in diagram 24) appeared as (54) in the proof of the previous theorem.

Of course the proofs differ when it comes to the details. Much of the com-
plexity we had to deal with in the coherence theorem is not present here because
we are only concerned with equality and not “a compatible kind of natural
isomorphism”. On the other hand in our proof of the coherence theorem the
placeholder which is called f in the proof above was never explicit because we
were free to use an exponential object — the functor category — there. This
was not possible here and so instead of the point-free style used in the proof of
the coherence theorem we were forced to name the placeholder.

This comparison should make it clear though that our use of the functor cat-
egory was purely a matter of convenience. The proof could have been executed
equally well without ever using an exponential object by making the placeholder
explicit as we did here. This leads at least the author to expect that substitut-
ing an arbitrary bicategory in place of the bicategory of categories would allow
one to derive results about monoidal objects in such a bicategory that are very
similar to the results we got for monoidal categories. At this point we run into
a kind of regress though because in this setting 1-cells of this bicategory take
the role of functors and to talk about an analogon for monoidal categories we
need an analogon for bifunctors — that would be 1-cells whose source is some-
how composed of two objects — this seems to boil down to requiring a monoidal
product on this bicategory. So we would need to develop a theory of monoidal
bicategories. The author is not versed enough in higher order category theory
to be able to easily tell whether there is a natural end to what looks like it will
lead to an explosion of levels and concepts.

46

5 Some properties of (co)limits
When figuring out the structure of colimits and free objects in the category
of monoids internal to some category and the category of monoid actions we
will need a few facts about iterated colimits and preservation of colimits under
multifunctors that we state and prove here. The corresponding statements for
limits are of course also true because we will only be using general properties
of (sometimes monoidal) categories and functors. (Note that 〈C,�, e, α, λ, ρ〉 is
a monoidal category if and only if

〈
Cop,�op, e,

(
α−1

)op
,
(
λ−1

)op
,
(
ρ−1

)op〉 —
where Cop is the (normal) opposite category — is a monoidal category.) We
will primarily be needing the versions for colimits and therefore we state them
in that form.

5.1 Iterated colimits
The statements of the first two lemmata can (with a little loss of detail) be
summarized as

Colim〈i,j〉∈I×J (L(i, j)) = Colimi∈I (Colimj∈J (L(i, j))) .

We give an elementary proof. [Mac98, section IX.8] has a more sophisticated
proof.
Lemma 5.1 (iterated colimit to colimit of bifunctor). Let L : I × J → C be
a functor and let

〈
L′ (i) , 〈τi;j : L(i, j) → L′ (i)〉j∈J

〉
be a colimit of the functor

L(i,−) for all i ∈ I. For all u : i → i′ in I let L′ (u) be such that the diagram
below commutes for all j ∈ J.

L(i, j)

L(i′, j)

L′ (i)

L′ (i′)

τi;j

τi′;j

L(u,1j)L′(u)

(57)

By the colimit property of each τi and because L is a functor this implies that
L′ : I → C is a functor. (If this does not seem clear see for example [Mac98,
section V.3.] for some elaboration.) Moreover the arrow function of this functor
is uniquely determined once L′ (i) and τi have been fixed for all i ∈ I. If
〈l′, τ ′ : L′→̇∆(l′)〉 is a colimit of L′, then〈

l′, 〈τ ′i ◦τi;j : L(i, j) → l′〉〈i,j〉∈I×J

〉
is a colimit of L.
Proof. First of all we have to show that 〈τ ′i ◦τi;j〉〈i,j〉∈I×J form a natural trans-
formation.

l′

L′ (i)

L′ (i′)

L(i, j)

L(i′, j)

L(i′, j′)

τi;j

τ ′i

τi′,j

τi′,j′

τ ′
i′

L(u,1j)

L(1i′ ,v)

L(u,v)L′(u)

47

The parallelogram commutes by hypothesis of the theorem and the two small
triangles commute by naturality of τi′ and τ ′.

Now assume τ̇ : L→̇∆(a) : I × J → C is a cone to some object a ∈ C.
Because L′ (i) are colimits we get for every i ∈ I a unique τ̇ ′i : L′ (i) → a
such that τ̇i,j = τ̇ ′i ◦τi;j . Have another look at the diagram above, replacing
τ ′ by τ̇ ′ and l′ by a. Then by assumption the big outer triangle commutes.
In the right part of the diagram nothing has changed and so it still commutes.
This implies τ̇ ′i ◦τi;j = τ̇ ′i′ ◦L

′ (u) ◦τi;j , which by the colimit property of τi means
that τ̇ ′i = τ̇ ′i′ ◦L

′ (u) and therefore τ̇ ′ : L′→̇∆(a) is natural. By assumption τ ′

is a colimit and therefore we get a unique f : l′ → a such that τ̇ ′i = f◦τ ′i and
therefore τ̇i,j = τ̇ ′i ◦τi;j = f◦τ ′i ◦τi;j .

Assume g : l′ → a is another morphism such that τ̇ ′i ◦τi;j = τ̇i,j = g◦τ ′i ◦τi;j .
Then because τi is a colimiting cone we get τ̇ ′i = g◦τ ′i for each i ∈ I. By the
colimit property of τ ′ this means g = f .

Lemma 5.2 (colimit of bifunctor to iterated colimit). Let

L : I × J → C
L′ : I → C

be functors and for all i ∈ I let

τi : L(i,−) →̇∆(L′ (i)) : J → C

be a natural transformation such that 〈L′ (i) , τi〉 is a colimit of L(i,−) and such
that for all morphisms u : i → i′ of I and for all j ∈ J the diagram (57)
commutes.

Moreover let
〈l, τ̇ : L→̇∆(l)〉

be a colimit of L. Then for each i ∈ I the natural transformation

τ̇i : L(i,−) →̇∆(l) : J → C

is a cone from L(i,−) and therefore by the colimit property of τi we get a unique
morphism τ̇ ′i : L

′ (i) → l such that τ̇i,j = τ̇ ′i ◦τi,j.
These morphisms form a colmiting cone. That is,

〈l, 〈τ̇ ′i〉i∈I〉

is a colimit of L′.

Proof. We need to show 〈τ̇ ′i〉i∈I natural.

L(i, j)

L(i′, j)

L′ (i)

L′ (i′)

l

τi,j

τi′,j

L(u,1j)L′(u)

τ̇ ′i

τ̇ ′
i′

τ̇i,j

τ̇i′,j

(58)

48

The outer triangle commutes by naturality of τ̇ and the square is just (57).
Therefore we get τ̇ ′i ◦τi,j = τ̇ ′i′ ◦L

′ (u) ◦τi,j which by the colmit property of τi
implies τ̇ ′i = τ̇ ′i′ ◦L

′ (u).
Let σ′ : L′→̇∆(a) : I → C be another cone from L′. Note that the require-

ments for τ stated above mean that it is a natural transformation

τ : L→̇L′ ◦ P : I × J → C

where P : I × J → I is the projection. Set

σ := (σ′ ◦ P) •τ : L→̇∆(a) : I × J → C ,

and therefore σi,j = σ′i◦τi,j . By the colimit property of τ̇ we get a unique
f : l → a such that σi,j = f◦τ̇i,j . This gives

σ′i◦τi,j = σi,j = f◦τ̇i,j = f◦τ̇ ′i ◦τi,j ,

which by the colimit property of τ implies σ′i = f◦τ̇ ′i . If for g : l → a we also
have σ′i = g◦τ̇ ′i , then

g◦τ̇i,j = g◦τ̇ ′i ◦τi,j = σ′i◦τi,j = f◦τ̇ ′i ◦τi,j = f◦τ̇i,j ,

and by the colimit property of τ̇ this implies f = g.

5.2 Images of colimits under multifunctors
Lemma 5.3. If F :

∏n
k=1 Ck → C is a multifunctor and Lk : Ik → Ck are

functors such that for every k ∈ {1, . . . , n} and for every tuple 〈ak′〉nk′=1
k′ 6=k

with

ak′ ∈ Ck′ the functor

F (a1, . . . , ak−1,−, ak+1, . . . , an) : Ck → C

preserves colimits of Lk (we will also say that F preserves colimits of Lk in the
k-th variable) and moreover 〈lk, σk : Lk→̇∆(lk) : Ik → Ck〉 is a colimit of Lk

for every k ∈ {1, . . . , n}, then〈
F (〈lk〉nk=1) , 〈F (〈σk;ik〉nk=1) : F (〈Lk (ik)〉nk=1) →̇F (〈lk〉nk=1)〉〈ik〉nk=1∈

∏n
k=1 Ik

〉
is a colimit of

F ◦

(
n∏

k=1

Lk

)
:

n∏
k=1

Ik →
n∏

k=1

Ck → C .

Proof. We proceed by induction over the number of categories n.
The case n = 1 is trivial.
Assume the statement of the theorem is true for n = m−1. We apply lemma

49

5.1 with

I = I1

J =

m∏
k=2

Ik

L = F ◦

(
m∏

k=1

Lk

)
:

m∏
k=1

Ik →
m∏

k=1

Ck → C

L′ = F (L1 (−) , 〈lk〉mk=2) : I1 → C1 → C
τi1;〈ik〉mk=2

= F
(
1L1(i1), 〈σk;ik〉mk=2

)
τ ′i1 = F (σ1;i1 , 〈1lk〉mk=2) .

Indeed, by the induction hypothesis applied to the functor F (L1 (i1) ,−, . . . ,−)
of m− 1 variables, 〈L′ (i1) , τi1〉 is a colimit of L(i1,−). The diagram (57) turns
into

F (L1 (i1) , 〈Lk (ik)〉mk=2)

F (L1 (i
′
1) , 〈Lk (ik)〉mk=2)

F (L1 (i1) , 〈lk〉mk=2)

F (L1 (i
′
1) , 〈lk〉mk=2)

F
(
L1(u1),

〈
Lk

(
1ik
)〉

m
k=2

)
F
(
L1(u1),

〈
1lk
〉
m
k=2

)

F
(
1L1(i1),

〈
σk;ik

〉
m
k=2

)

F

(
1
L1

(
i′1
),〈σk;ik

〉
m
k=2

)

,

which commutes because F is a multifunctor. Because F preserves colimits in
the first variable, 〈F (l1, 〈lk〉mk=2) , τ

′〉 is a colimit of L′. By lemma 5.1〈
F (〈lk〉mk=1) ,〈

F (σ1;i1 , 〈1lk〉mk=2) ◦F
(
1L1(i1), 〈σk;ik〉mk=2

)〉〈
i1,〈ik〉mk=2

〉
∈I1×

∏m
k=2 Ik =

〈F (〈σk;ik〉mk=1)〉〈ik〉mk=1∈
∏m

k=1 Ik

〉
is a colimit of F ◦ (

∏m
k=1 Lk).

The author first learned about the following concept and it’s uses from the
article [ReflCoeq] on the nLab.
Definition 5.4. A reflexive pair is a pair f, g : a → b of morphisms which
has a common right inverse; that is, there is an arrow h : b → a such that
f◦h = g◦h = 1b.

A reflexive coequalizer is a coequalizer of a reflexive pair.
Definition 5.5. Call the category depicted below Jr.

ab

b

b

f

g

h

1b

1b

(59)

50

That is, we mean the category generated by the arrows f, g, h where h is a
common right inverse for f and g. Call the subcategory of Jr which has only
the arrows f and g (and of course the identities) Jc, and call the inclusion
Kr : Jc → Jr.

Lemma 5.6. A reflexive coequalizer is the same thing as a colimit of a functor
from the category Jr.

Proof. Note first that a cone τ : L→̇∆(a) : Jr → C from a functor from Jr is
the same thing as a cone τ ′ : L ◦Kr→̇∆(a) : Jc → C. Obviously the restriction
of a cone τ to the category Jc is still a cone. If on the other hand we have
a cone τ ′ : L ◦ Kr→̇∆(a) : Jc → C, then what we have to show is that τ ′

also commutes with L(h), that is we have to show that τ ′a◦L(h) = τ ′b. But this
follows from the commutativity with f (or g for that matter) and because h is
a right inverse for f .

τ ′a◦L(h) = τ ′b◦L(f) ◦L(h) = τ ′b◦L(1b) = τ ′b

Now if we have a colimit 〈l, τ : L→̇∆(l)〉 of a functor L : Jr → C then obviously
L(f) ◦L(h) = L(f) ◦L(h) = 1L(b) and therefore L(f) and L(g) form a reflexive
pair. A cone from L ◦Kr (which is the same thing as an arrow k from L(b)) is
also a cone from L and therefore factors uniquely through τ . Therefore τb is a
coequalizer of L(f) and L(g).

Now assume we have a coequalizer of a reflexive pair L′ (f) , L′ (g). Then
because L′ (f) , L′ (g) have a common right inverse h′ we can extend L′ to Jr by
setting L′ (h) = h′. By the above argument the coequalizer also forms a cone
from the extended functor. Any other cone from Jr is also a cone from Jc and
therefore factors through the coequalizer. Therefore the coequalizer also gives
a colimit of the extended functor.

Definition 5.7. Let ∆Jr : Jr →
∏n

i=1 Jr be the functor with

∆Jr (j) := 〈j〉ni=1 for objects j ∈ Jr

∆Jr (u) := 〈u〉ni=1 for morphisms u of Jr.

That is, ∆Jr is just the usual diagonal functor when we regard
∏n

i=1 Jr as a
functor category Jr

{1,...,n}.

Lemma 5.8. If Li : Jr → Ci, i ∈ {1, . . . , n} are functors with colimits
〈li, τi : Li→̇∆(li)〉 (that is, for each i ∈ {1, . . . , n} the arrow τi;b is the re-
flexive coequalizer of Li (f) and Li (g)) and F :

∏n
i=1 Ci → C is a multifunctor

that preserves colimits of Li in the i-th variable for all i ∈ {1, . . . , n} (as defined
in lemma 5.3), then〈

F (〈li〉ni=1) , 〈F (〈τi;j〉ni=1) : F (〈Li (j)〉ni=1) → F (〈li〉ni=1)〉j∈Jr

〉
is a colimit of F ◦ (

∏n
i=1 Li) ◦∆Jr .

In other words F (〈τi;b〉ni=1) is a reflexive coequalizer of the pair

〈F (〈Li (f)〉ni=1) , F (〈Li (g)〉ni=1)〉

(whose common right inverse is the arrow F (〈Li (h)〉ni=1)).

51

Proof. We will first show, that for any functor F ′ :
∏n

i=1 Jr → C and any c ∈ C
the map −◦∆Jr : Nat (F ′,∆(c)) → Nat (F ′ ◦∆Jr ,∆(c)) (note that the symbol
∆ is used in two different meanings here — first as the diagonl functor from∏n

i=1 Jr and then as the diagonal functor from Jr) is a bijection. We do this by
constructing the inverse map. (We assume that the reader is familiar with the
simpler fact that a coequalizer can be thought of as either a single arrow which
yields equal results when composed with either one of a pair of arrows or as a
cone from the category Jc.)

So assume τ ′ : F ′ ◦ ∆Jr→̇∆(c) : Jr → C. Let P : Jr × Jr → Jr be the
projection on the first component and Q : Jr×Jr → Jr be the projection on the
second component. For any two tuples 〈Pi〉ni=1, 〈Qi〉ni=1 where Pi, Qi ∈ {P,Q}
by the structure of Jr and because

τ ′b◦F
′ (〈f〉ni=1) = τ ′a = τ ′b◦F

′ (〈g〉ni=1)

(by naturality of τ ′) we get that

τ ′b◦F
′ (〈Pi (Qi (f, g) , 1b)〉ni=1) =

τ ′b◦F
′ (〈Pi (Qi (f, f◦h◦g) , f◦h)〉ni=1) =

τ ′b◦F
′ (〈f◦Pi (Qi (1a, h◦g) , h)〉ni=1) =

τ ′b◦F
′ (〈f〉ni=1) ◦F

′ (〈Pi (Qi (1a, h◦g) , h)〉ni=1) =

τ ′b◦F
′ (〈g〉ni=1) ◦F

′ (〈Pi (Qi (1a, h◦g) , h)〉ni=1) =

τ ′b◦F
′ (〈g◦Pi (Qi (1a, h◦g) , h)〉ni=1) =

τ ′b◦F
′ (〈Pi (Qi (g, g◦h◦g) , g◦h)〉ni=1) =

τ ′b◦F
′ (〈Pi (g, 1b)〉ni=1)

Knowing this we can define τ̇ ′ : F ′→̇∆(c) :
∏n

i=1 Jr → C by

τ̇ ′〈Pi(a,b)〉ni=1
:= τ ′b◦F

′ (〈Pi (Qi (f, g) , 1b)〉ni=1) (60)

where by the above calculation the choice of Qi does not make any difference for
the result. For any arrow 〈Pi (Q

′
i (h, 1a) , Q

′′
i (Qi (f, g) , 1b))〉ni=1 (again let each

Q′i and each Q′′i be either one of the projections) of
∏n

i=1 Jr (note that every
arrow of

∏n
i=1 Jr can be written in this way) we calculate

τ̇ ′〈Pi(a,b)〉ni=1

◦F ′ (〈Pi (Q
′
i (h, 1a) , Q

′′
i (Qi (f, g) , 1b))〉ni=1) =

τ ′b◦F
′ (〈Pi (Qi (f, g) , 1b)〉ni=1) ◦F

′ (〈Pi (Q
′
i (h, 1a) , Q

′′
i (Qi (f, g) , 1b))〉ni=1) =

τ ′b◦F
′ (〈Pi (Qi (f, g) ◦Q

′
i (h, 1a) , Q

′′
i (Qi (f, g) , 1b))〉ni=1) =

τ ′b◦F
′ (〈Pi (Q

′
i (1b, Qi (f, g)), Q

′′
i (Qi (f, g) , 1b))〉ni=1) =

τ ′b◦F
′ (〈P ′i (Qi (f, g) , 1b)〉ni=1) = τ̇ ′〈P ′i (a,b)〉ni=1

where

P ′i :=

{
P if (Pi = P ∧Q′i = Q) ∨ (Pi = Q ∧Q′′i = P) ,
Q otherwise.

(61)

Therefore τ̇ ′ is a cone from F ′. The assignment τ ′ 7→ τ̇ ′ is clearly a right inverse
for − ◦Kr and it is left inverse for − ◦Kr because for any cone τ̈ ′ from F ′ we
must have

τ̈ ′〈Pi(a,b)〉ni=1
:= τ̈ ′〈b〉ni=1

◦F ′ (〈Pi (Qi (f, g) , 1b)〉ni=1)

52

and therefore the image of τ̈ ′ ◦Kr under the assignment just described is τ̈ ′.
Now we prove the lemma. Let τ ′ : F ◦ (

∏n
i=1 Li) ◦∆Jr→̇∆(c) : Jr → C be

a cone. Setting F ′ := F ◦ (
∏n

i=1 Li) in the above argument we get that τ ′ can
be extended to a cone τ̇ ′ : F ◦ (

∏n
i=1 Li) →̇∆(c) :

∏n
i=1 Jr → C. By lemma 5.3〈

F (〈li〉ni=1) , 〈F (〈τi;ji〉ni=1) : F (〈Li (ji)〉ni=1) → F (〈li〉ni=1)〉〈ji〉ni=1∈
∏n

i=1 Jr

〉
is a colimit of F ◦ (

∏n
i=1 Li) and therefore τ̇ ′ uniquely factors through

〈F (〈τi;ji〉ni=1)〉〈ji〉ni=1∈
∏n

i=1 Jr
.

Among other things this means that there is an arrow k : F (〈li〉ni=1) → c such
that

τ ′b = τ̇ ′〈b〉ni=1
= k◦F (〈τi;b〉ni=1)

If for k′ we also have

τ ′b = k′◦F (〈τi;b〉ni=1)

then by the above description of the cone 〈F (〈τi;ji〉ni=1)〉〈ji〉ni=1∈
∏n

i=1 Jr
from F ′ =

F ◦
∏n

i=1 Li in terms of F (〈τi;b〉ni=1) we get that

k′◦F (〈τi;ji〉ni=1) = k◦F (〈τi;ji〉ni=1)

for any tuple 〈ji〉ni=1 ∈
∏n

i=1 Jr. By the colimit property of

〈F (〈τi;ji〉ni=1)〉〈ji〉ni=1∈
∏n

i=1 Jr

this means that k = k′ and therefore F (〈τi;b〉ni=1) is a coequalizer of the pair

〈F (〈Li (f)〉ni=1) , F (〈Li (g)〉ni=1)〉 .

53

6 Monads and algebraic structures
A monoid in the strict monoidal category CC of endofunctors on a category C
and natural transformations between them has a special name — it is called
a monad. Such monads are interesting in their own right because they can
be constructed from adjoint pairs and in many cases a lot of the structure
of the underlying categories can be reconstructed from the monad. For more
information see [Mac98, chapter VI]. We mention them here because monoid
actions and in many cases also monoids themselves can be viewed as so-called
Eilenberg-Moore algebras of a suitable monad.

Definition 6.1. The category CT of Eilenberg-Moore algebras of a monad
〈T, µ, η〉 (where T : C → C, µ : T ◦ T→̇T : C → C, η : 1C→̇T : C → C) has as
objects pairs 〈a, f〉 where a ∈ Obj(C) and f : T (a) → a such that

(T ◦ T)(a)T (a)

T (a)a

µa

f T (f)

f

aT (a)

a

ηa

f
1a

(62)

commute. If 〈a, f〉, 〈b, g〉 ∈ Obj
(
CT
)
then a morphism h : 〈a, f〉 → 〈b, g〉 of

these Eilenberg-Moore algebras is an arrow h : a → b of C such that

T (a)T (b)

ab

fg

T (h)

h

(63)

commutes.

The category of monoid acts is the canonical example of a category of
Eilenberg-Moore algebras. For some monoid 〈m,µ, η〉 in 〈C,�, e, α, λ, ρ〉 set
Ṫ := S (m) = m � − (here 〈S,S2,S0〉 is the monoidal functor defined in (22)).
We can turn Ṫ into a monad by setting µ̇ := S (µ) •S2;m,m and η̇ := S (η) •S0,
explicitly

µ̇ : Ṫ ◦ Ṫ→̇Ṫ : C → C
µ̇a : m� (m� a) → m� a

µ̇a = (µ� 1a) ◦αm,m,a

η̇ : 1C→̇Ṫ : C → C
η̇a : a → m� a

η̇a = (η � 1a) ◦λ
−1
a .

Substituting in the definitions it becomes clear that

Observation 6.2. A left action of the monoid 〈m,µ, η〉 is just an Eilenberg-
Moore algebra for the monad

〈
Ṫ , µ̇, η̇

〉
. The category of left 〈m,µ, η〉-acts is the

category of these Eilenberg-Moore algebras.

54

This justifies spending some effort on figuring out the structure of limits and
colimits in categories of Eilenberg-Moore algebras.
Definition 6.3. The functor GT : CT → C which sends 〈a, f〉 ∈ Obj

(
CT
)
to

a ∈ C and h : 〈a, f〉 → 〈b, g〉 to h : a → b is called the forgetful functor of the
Eilenberg-Moore category of 〈T, µ, η〉.
Lemma 6.4. GT has a left adjoint FT : C → CT which sends an object a ∈ C
to 〈T (a) , µa〉 and h : a → b to T (h) : 〈T (a) , µa〉 → 〈T (b) , µb〉. The unit ηT of
this adjunction is η, while the counit εT : FT ◦ GT →̇1CT : CT → CT is given
by εT〈a,f〉 = f .

Proof. The condition (63) that T (h) be a morphism of Eilenberg-Moore algebras
is satisfied by naturality of µ. The condition that εT〈a,f〉 be a morphism of
algebras is just the left hand square in (62) and naturality of εT is (63). One
way of saying that 〈F,G, η, ε〉 is an adjunction is to say that the identities
(ε ◦ F) • (F ◦ η) = 1F and (G ◦ ε) • (η ◦G) = 1G hold. (For a detailed account
of different ways of characterizing adjunctions see for example [Mac98, chapter
IV].) In our case the first of these identities is one of the identities (6) satisfied
by the monoid 〈T, µ, η〉 and the second is just the right hand triangle in (62).

The following results about limits and colimits in categories of Eilenberg-
Moore algebras are either stated or hinted at in [Mac98, chapter VI]. See
specifically section VI.2 and VI.7.

6.1 Limits
Lemma 6.5. GT creates limits.
Proof. Let L : I → CT be a functor and

〈
l, τ : ∆(l) →̇GT ◦ L : I → C

〉
be a

limit of GT ◦ L. We want to find an arrow f : T (l) → l which turns l into an
object of CT such that the components τi of τ are algebra morphisms. This
means that

∆(T (l)) = T ◦ (∆(l))

∆(l)

T ◦GT ◦ L

GT ◦ L

T◦τ

τ

∆(f)GT ◦ε◦L

(64)

commutes. But by the limit property of 〈l, τ〉 there is a unique f fulfilling this
requirement. We need to check that f turns 〈l, f〉 into an algebra.

∆(T (T (l)))∆(T (l))

∆(T (l))∆(l)

T ◦ T ◦GT ◦ LT ◦GT ◦ L

T ◦GT ◦ LGT ◦ L

∆(µl)

=µ◦(∆(l))

∆(T (f))∆(f)

∆(f)

T◦T◦τT◦τ

T◦ττ

µ◦L

T◦GT ◦ε◦LGT ◦ε◦L

GT ◦ε◦L

55

In the diagram above the outermost quadrilateral commutes because L(i) are
algebras, the left, right, and lower quadrilateral commute by the definition
of f and the upper quadrilateral commutes by naturality of µ. This implies
τ •∆(f) •∆(µl) = τ •∆(f) •∆(T (f)). By the limit property we get that f◦µl =
f◦T (f).

∆(l)

∆(l)

∆(T (l))

GT ◦ L

GT ◦ L

T ◦GT ◦ L

1
1

∆(ηl)

=η◦∆(l)

η◦GT ◦L

∆(f)GT ◦ε◦L

τ
T◦τ

τ

Again, the outermost triangle commutes because L(i) are algebras, while the
outer quadrilaterals commute either trivially, by the definition of f or by nat-
urality of η. This implies τ •∆(f) •∆(ηl) = τ •1, which by the limit property
implies f◦ηl = 1l.

6.2 Colimits
Lemma 6.6. If L : I → CT is a functor and both T and T ◦T preserve colimits
of GT ◦ L : I → C, then GT creates colimits for L.

Proof. The proof is very similar to the previous one. We are given a col-
imit

〈
l, τ : GT ◦ L→̇∆(l) : I → C

〉
of GT ◦ L and want to find a unique arrow

h : T (l) → l that turns 〈l, h〉 into an algebra and the components of τ into mor-
phisms of algebras, that is we want the diagram below to commute.

∆(T (l)) = T ◦ (∆(l))

∆(l)

T ◦GT ◦ L

GT ◦ L

T◦τ

τ

∆(h) GT ◦ε◦L

By hypothesis of the lemma T preserves colimits of GT ◦ L and therefore there
is a unique h satisfying this requirement. We need to check that 〈l, h〉 is an

56

algebra. Consider the diagram below.

∆(T (T (l)))∆(T (l))

∆(T (l))∆(l)

T ◦ T ◦GT ◦ LT ◦GT ◦ L

T ◦GT ◦ LGT ◦ L

∆(µl)

=µ◦(∆(l))

∆(T (h))∆(h)

∆(h)

T◦T◦τT◦τ

T◦ττ

µ◦L

T◦GT ◦ε◦LGT ◦ε◦L

GT ◦ε◦L

Again the topmost quadrilateral commutes by naturality of µ and all other
flanking quadrilaterals commute by the definition of h. The outer square com-
mutes because L(i) are algebras. This implies that ∆(h◦µl) • (T ◦ T ◦ τ) =
∆(h◦T (h)) • (T ◦ T ◦ τ). Because T ◦T preserves colimits of GT ◦L we get that
T ◦ T ◦ τ is a colimiting cone and therefore h◦µl = h◦T (h).

∆(l)

∆(l)

∆(T (l))

GT ◦ L

GT ◦ L

T ◦GT ◦ L

1
1

∆(ηl)

=η◦∆(l)

η◦GT ◦L

∆(h)GT ◦ε◦L

τT◦τ

τ

Again, from commutativity of the outer triangle, naturality of η, the definition of
h and the colimit property of τ one derives commutativity of the inner triangle.

Remark 6.7. Note that if a functor F preserves any one colimit of a functor L
then it preserves all colimits of L. This is because all colimits are isomorphic,
the colimiting cones are mapped onto each other under composition with the
isomorphisms, images of isomorphic objects under a functor remain isomorphic
and if any one object from a class of isomorphic objects is a colimit of a functor
then all other objects are colimits as well — with the colimiting cones again
given by composition with the isomorphisms.

Therefore even though the above lemma could have been stated in such a way
as to only require T and T ◦ T to preserve a specific colimit of GT ◦L and only
claim creation of a specific colimit (the proof would have remained the same)
this extra precision is not really required as something more general than this
can easily be recovered from the seemingly weaker version of the lemma given
above.

57

Lemma 6.5 resolves the question about the structure of limits in Eilenberg-
Moore categories and lemma 6.6 gives a corresponding result for colimits — but
only in some cases. These cases include the case of the category 〈m,µ, η〉−Act
(and of course also Act−〈m,µ, η〉) whenm�− (or −�m for the category Act−
〈m,µ, η〉) preserves colimits. This seems like a reasonable enough assumption
because this is the case in many categories which are relevant in practice. For
example, any monoidal category which has an internal hom-functor — that is,
a right adjoint of the functor − � m — satisfies this condition (see the next
lemma) (strictly speaking this only works for the case of Act−〈m,µ, η〉 but in
many cases the monoidal product is also symmetric and then it also works for
〈m,µ, η〉−Act).

On the other hand, in many practical situations T does not preserve all
colimits. For example we will see in section 7 that the category of monoids
in some monoidal category 〈C,�, e, α, λ, ρ〉 can also be viewed as a category of
Eilenberg-Moore algebras under relatively mild assumptions about the structure
of 〈C,�, e, α, λ, ρ〉 — but the monad in question does not preserve colimits
in any of the typical examples. In some of these cases (which, as we will see,
include the cases we are interested in in the various categories of monoids and
monoid actions) one can still describe colimits in CT in terms of colimits in C.

This is what we set out to do now. The strategy will be — roughly — to
describe general colimits as iterated colimits of two distinct specific kinds, both
of which exist and can be described under relatively general assumptions.

First of all remember that

Lemma 6.8. Any functor F : X → A which is left adjoint to some functor
G : A → X preserves colimits.

Proof. This fact and various ways of proving it can be found in [Mac98, sec-
tion V.5]. We give another slight variation.

Let

homA (F (x) , a)
ϕ

	 homX (x,G(a))

be an adjunction. When τ : L→̇∆(l) : I → X is a cone, then saying that
〈l, τ : L→̇∆(l) : I → X〉 is a colimit is the same thing as saying that the map

ϕ′x : homX (l, x) → homXI (L,∆(x))

ϕ′x (f) = ∆(f) •τ

is a bijection for all x ∈ X. So to show that F preserves colimits we want to
deduce from this that

ϕ̇′a : homA (F (l) , a) → homX (F ◦ L,∆(a))

ϕ̇′a(g) = ∆(g) • (F ◦ τ)

is a bijection for all a ∈ A. By naturality of ϕ we have〈
ϕL(i),a (g◦F (τi))

〉
i∈I = 〈ϕx,a (g) ◦τi〉i∈I = ∆(ϕ(g)) •τ = ϕ′G(a) (ϕ(g))

and therefore

ϕ̇′a(g) =
〈
ϕ−1L(i),a

〉
i∈I

(
ϕ′G(a) (ϕ(g))

)

58

(
〈
ϕ−1L(i),a

〉
i∈I : homXI (L,G ◦ (∆(a))) → homAI (F ◦ L,∆(a)) is the map which

sends cones to cones by applying ϕ−1L(i),a to the individual components (to be
strict, we did not show that this map really takes cones to cones but we also
do not need this property — we only need to know that it is bijective)) which
makes it plainly visible that ϕ̇′a as a composite of bijections is also bijective.

This means that we know the structure of colimits in CT of functors which
factor as FT ◦ L.

To show that in any category CT of Eilenberg-Moore algebras we definitely
have one more type of coequalizer we need the concept of a split fork/split co-
equalizer (this is different from the concept of a reflexive coequalizer introduced
earlier). For more on these see [Mac98, VI.6 and VI.7].

Definition 6.9. A split fork consists of five arrows 〈f, g, e, h, k〉 with sources
and targets related as shown below and such that the diagram below commutes.

bab

cbc

kf

he

ege

1b

1c

(65)

Definition 6.10. We call a limit or colimit absolute if it is preserved by every
functor.

Lemma 6.11. In every split fork (65) the arrow e is an absolute coequalizer of
f and g.

Proof. Note first that if 〈f, g, e, h, k〉 is a split fork and F is any functor, then
〈F (f) , F (g) , F (e) , F (h) , F (k)〉 is also a split fork. So we just need to show
that in any split fork (65) the arrow e is a coequalizer of f and g.

Let r : b → d be such that r◦f = r◦g. Combining this with what we know
for the other arrows we get the diagram below.

bab

cbd

kf

hr

egr

1b

r′

As indicated set r′ := r◦h. In the diagram we can see that

r′◦e = r◦h◦e = r◦g◦k = r◦f◦k = r◦1b = r .

If for r′′ we also have r′′◦e = r then

r′′ = r′′◦e◦h = r◦h = r′

59

Lemma 6.12. In any category CT of Eilenberg-Moore algebras for every object
a = 〈a′, h′〉 ∈ CT the arrow εTa is the coequalizer of the reflexive pair εT(FT ◦GT)(a)

and FT
(
GT
(
εTa
))

, whose common right inverse is FT
(
ηTGT (a)

)
.

Proof. First we show that FT
(
ηTGT (a)

)
is a common right inverse for εT(FT ◦GT)(a)

and FT
(
GT
(
εTa
))
. Because GT is faithful we can calculate in C.

GT
(
FT
(
ηTGT (a)

))
= T (ηa′)

GT
(
εT(FT ◦GT)(a)

)
= µa′

GT
(
FT
(
GT
(
εTa
)))

= T (h′)

µa′ ◦T (ηa′) = 1T (a′) because 〈T, µ, η〉 is a monad and T (h′) ◦T (ηa′) = 1T (a′)

because a is an Eilenberg-Moore algebra. Next we will show that εTa , εT(FT ◦GT)(a)

and FT
(
GT
(
εTa
))

become part of a split fork when GT is applied to them. With
the notation of definition 6.9 we set

e = GT
(
εTa
)
= h′

f = GT
(
εT(FT ◦GT)(a)

)
= µa′

g = GT
(
FT
(
GT
(
εTa
)))

= T (h′)

k = ηTT (a′)

h = ηTa′

The diagram in (65) now looks like the one below.

T (a′)T(T(a′))T (a′)

a′T (a′)a′

ηT
T
(
a′
)µa′

ηT
a′h′

h′T
(
h′
)

h′

1T
(
a′
)

1a′

The left hand square and the squished bottom “triangle” commute because a
is an algebra, the right hand square commutes by naturality of ηT and the
upper squished “triangle” commutes because 〈T, µ, η〉 is a monad. Therefore h′

is an absolute coequalizer of µa′ and T (h′). By lemma 6.6 and remark 6.7 this
means that GT creates coequalizers for the pair

〈
εT(FT ◦GT)(a), F

T
(
GT
(
εTa
))〉

.
But GT

(
εTa
)
= h′ which in turn is a coequalizer of〈

GT
(
εT(FT ◦GT)(a)

)
, GT

(
FT
(
GT
(
εTa
)))〉

and therefore εTa is a coequalizer of
〈
εT(FT ◦GT)(a), F

T
(
GT
(
εTa
))〉

.

60

The author learned about the following theorem from the nLab which at-
tributes it to [Lin69].
Theorem 6.13. Assume that CT is the category of Eilenberg-Moore algebras
of some monad 〈T, µ, η〉, that L : I → CT is a functor and that the colimits of

FT ◦GT ◦ L and FT ◦GT ◦ FT ◦GT ◦ L

exist in CT .
By lemma 6.8 this is definitely the case if the colimits of GT ◦ L and GT ◦

FT ◦GT ◦ L exist in C.
Assume further that CT has coequalizers of reflexive pairs (it will become

evident in the proof, that for every colimit that we are interested in, only the
coequalizer of one specific pair is required).

By lemma 6.6 this is the case if C has reflexive coequalizers which are
preserved by T . Under these assumptions a colimit 〈l, τ〉 of L exists in CT .

This colimit is related to the colimits 〈lb, σb〉 of FT ◦GT ◦ L and 〈la, σa〉 of
FT ◦ GT ◦ FT ◦ GT ◦ L in the way depicted below. In this diagram e is the
coequalizer of F ′ (f) and F ′ (g). The arrows F ′ (f), F ′ (g) and τi are uniquely
determined by the requirement that the diagram below commute for all i ∈ I.

FT
(
GT(L(i))

)

lb

lb

FT
(
GT(L(i))

)

la FT
(
GT
(
FT
(
GT(L(i))

)))
lL(i)

εT
FT

(
GT (L(i))

)

FT
(
GT
(
εTL(i)

))

F ′(f)

F ′(g)

εTL(i)

εTL(i)

e

e

τi
σa;i

σb;i

σb;i

(66)

Proof. This may be obvious to the reader but — justifying the sideclaim in the
theorem — note first that if T preserves reflexive coequalizers, then any power
of T also preserves reflexive coequalizers, because T maps a reflexive coequalizer
to a reflexive coequalizer which is then again mapped to a reflexive coequalizer
under T , etc.

From lemma 6.12 we know that the colimit we are hoping to find can be seen
as an iterated colimit. Our plan is to use our knowledge from both lemma 5.1
and lemma 5.2 about iterated colimits to reverse the order of taking colimits so
that we end up only with colimits that we know to exist.

Define a functor G : Jr →
(
CT
)(CT

)
by setting

G(b) := FT ◦GT

G(a) := FT ◦GT ◦ FT ◦GT

G(f) := εT ◦ FT ◦GT

G(g) := FT ◦GT ◦ εT

G(h) := FT ◦ ηT ◦GT

61

and by extending to composites in Jr by composition of the images of the
generating arrows specified here. To show that G is indeed a functor we need
to check that G(f) •G(h) = G(g) •G(h) = 1G(b). This is true by lemma 6.12.
Now define a functor F : Jr × I → CT as the composite

Jr × I(
CT
)(CT

)
× CTCT

G×LE

where E is the “evaluation functor” — that is, the counit of the adjunction be-
tween product and exponential in the (meta-)category of categories. Explicitly
this means that for objects i ∈ I and morphisms u : i → i′ in I the functor F is
defined by

F (b, i) = FT
(
GT(L(i))

)
F (1b, u) = FT

(
GT(L(u))

)
F (a, i) = FT

(
GT
(
FT
(
GT(L(i))

)))
F (1a, u) = FT

(
GT
(
FT
(
GT(L(u))

)))
F (f, u) = εTFT (GT (L(i′)))

◦FT
(
GT
(
FT
(
GT(L(u))

)))
= FT

(
GT(L(u))

)
◦εTFT (GT (L(i)))

F (g, u) = FT
(
GT
(
εTL(i′)

))
◦FT

(
GT
(
FT
(
GT(L(u))

)))
= FT

(
GT(L(u))

)
◦FT

(
GT
(
εTL(i)

))
F (h, u) = FT

(
ηTGT (L(i′))

)
◦FT

(
GT(L(u))

)
= FT

(
GT
(
FT
(
GT(L(u))

)))
◦FT

(
ηTGT (L(i))

)
.

By hypothesis of the theorem the colimits
〈
lb, σb : F (b,−) →̇∆(lb) : I → CT

〉
of

F (b,−) = FT ◦ GT ◦ L and
〈
la, σa : F (a,−) →̇∆(la) : I → CT

〉
of F (a,−) =

FT ◦GT ◦ FT ◦GT ◦ L exist.
By the remark in lemma 5.1 there is a unique functor F ′ : Jr → CT such

that F ′ (b) = lb, F ′ (a) = la and that a diagram of the shape as in (57) commutes
for all arrows v : j → j′ in Jr and all objects i ∈ I (in our case u is replaced
by v, i and j are reversed, L is replaced by F , L′ is replaced by F ′ and τ is
replaced by σ). This is equivalent to requiring commutativity of these kind of
diagrams for a set of arrows which generate the index category, so in our case it
means that the upper right and the lower right quadrilaterals in (66) commute
for all i ∈ I, and that the diagram below commutes for all i ∈ I.

FT
(
GT(L(i))

)

lb

FT
(
GT
(
FT
(
GT(L(i))

)))

la

FT
(
ηT
GT (L(i))

)

F ′(h)

σa;iσb;i

By hypothesis of the theorem a colimit
〈
l, σ′ : F ′→̇∆(l) : Jr → CT

〉
of F ′

(that is a reflexive coequalizer e = σ′b : lb → l of F ′ (f) and F ′ (g)) exists and by

62

lemma 5.1 this means that F has a colimit〈
l,
〈
σ′j◦σj;i

〉
〈j,i〉∈Jr×I

〉
Now we reverse the roles of I and Jr and apply lemma 5.2. That is for

the functor L in that lemma we use F ; for the category I from the lemma
we use our I; for J from the lemma we use Jr. The reader may have no-
ticed that the arguments for F are in reverse order to that in the lemma. A
moments reflection will make it clear that this does not change anything about
the validity of the lemma. For L′ in the lemma we use our L and τi;b (or per-
haps we should more appropriately say τb;i, because of the reversal of argument
order) in the lemma is given by our εTL(i). The second component τi;a (or τa;i)

is given by εTL(i)
◦εTFT (GT (L(i))) = εTL(i)

◦FT
(
GT
(
εTL(i)

))
. The commutativity

condition (57) is satisfied because εT ◦ L and
(
εT ◦ L

)
•
(
εT ◦ FT ◦GT ◦ L

)
=(

εT ◦ L
)
•
(
FT ◦GT ◦ εT ◦ L

)
are natural. The condition that our L(i) be the

required colimit is what is stated in lemma 6.12.
We see that all conditions of lemma 5.2 are met and therefore the arrows τi

shown in (66) which are uniquely determined by the requirement that the outer
left quadrilaterals in that diagram commute (τi◦εTL(i) = e◦σb;i) form a colimiting
cone for the functor L.

63

7 Free algebras
7.1 A cousin of the functor category
We are now going to describe a category which is closely related to the the func-
tor category CI. This category is interesting to us because it in turn is closely
related (although in a different way) to many of the categories of algebras we
are discussing. The objects are going to be monoidal functors. The morphisms
will be natural transformations which are compatible with the relevant struc-
tures. These definitions can also be found in [Mac98, p. XI.2].

Definition 7.1. Let
〈

I,�, ė, α̇, λ̇, ρ̇
〉

and 〈C,�, e, α, λ, ρ〉 be monoidal cate-

gories and let 〈R,R2, R0〉, 〈R′, R′2, R′0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉 be

monoidal functors. A monoidal natural transformation

τ : 〈R,R2, R0〉→̇ 〈R′, R′2, R′0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉

is a natural transformation

τ : R→̇R′ : I → C

such that the diagrams (67) and (68) commute for all a, b ∈ I.

R(a)�R(b)R′ (a)�R′ (b)

R(a�b)R′ (a�b)

R2;a,bR′2;a,b

τa�τb

τa�b

(67)

ee

R(ė)R′ (ė)

1e

R0R′0

τė

(68)

Lemma 7.2. For any monoidal natural transformation

τ : 〈R,R2, R0〉→̇ 〈R′, R′2, R′0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉 ,

any tensor word v and any ai ∈ I the diagram (69) commutes.

vC

(
〈R(ai)〉`(v)i=1

)

R
(
vI

(
〈ai〉`(v)i=1

))
vC

(
〈R′ (ai)〉`(v)i=1

)

R′
(
vI

(
〈ai〉`(v)i=1

))
R

v,〈ai〉
`(v)
i=1

R′
v,〈ai〉

`(v)
i=1

vC

(
〈τai 〉

`(v)
i=1

)

τ
vI

(
〈ai〉

`(v)
i=1

)

(69)

Proof. Again we proceed by induction over the structure of the tensor word v.
The case v = () is obvious. The case v = e0 is (68). For v�w we get the

64

diagram below.

v
(
〈R(ai)〉`(v)i=1

)
� w

(
〈R(bj)〉`(w)

j=1

)

v
(
〈R′ (ai)〉`(v)i=1

)
� w

(
〈R′ (bj)〉`(w)

j=1

)
R
(
v
(
〈ai〉`(v)i=1

))
�R

(
w
(
〈bj〉`(w)

j=1

))

R′
(
v
(
〈ai〉`(v)i=1

))
�R′

(
w
(
〈bj〉`(w)

j=1

))
R
(
v
(
〈ai〉`(v)i=1

)
�w

(
〈bj〉`(w)

j=1

))

R′
(
v
(
〈ai〉`(v)i=1

)
�w

(
〈bj〉`(w)

j=1

))

R
v,〈ai〉

`(v)
i=1

�R
w,〈bj〉

`(w)
j=1

R′
v,〈ai〉

`(v)
i=1

�R′
w,〈bj〉

`(w)
j=1

R
2;v

(
〈ai〉

`(v)
i=1

)
,w

(
〈bj〉

`(w)
j=1

)

R′
2;v

(
〈ai〉

`(v)
i=1

)
,w

(
〈bj〉

`(w)
j=1

)

v
(
〈τai 〉

`(v)
i=1

)
�w
(
〈τbj 〉

`(w)
j=1

)

τ
v

(
〈ai〉

`(v)
i=1

)�τ
w

(
〈bj〉

`(w)
j=1

)

τ
v

(
〈ai〉

`(v)
i=1

)
�w

(
〈bj〉

`(w)
j=1

)

The upper square commutes by induction hypothesis for v and w and because
� is a bifunctor. The lower square is (67) for v

(
〈ai〉`(v)i=1

)
and w

(
〈bj〉`(w)

j=1

)
.

Lemma 7.3. The vertical composite σ•τ of monoidal natural transformations

τ : 〈R,R2, R0〉→̇ 〈R′, R′2, R′0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉

and

σ : 〈R′, R′2, R′0〉→̇ 〈R′′, R′′2 , R′′0 〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉

is a monoidal natural transformation

σ•τ : 〈R,R2, R0〉→̇ 〈R′′, R′′2 , R′′0 〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉 .

The identity natural transformation 1R is a monoidal natural transformation

1〈R,R2,R0〉 : 〈R,R2, R0〉→̇ 〈R,R2, R0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉 .

Proof. Write the instances of (67) for σ and τ side by side. Do the same for
(68). The second claim is obvious.

This justifies the following

Definition 7.4. The category

MFun
(〈

I,�, ė, α̇, λ̇, ρ̇
〉
, 〈C,�, e, α, λ, ρ〉

)

65

(or MFun(I,C) for short when the monoidal structures on I and C are clear
from the context) is the category which has objects monoidal functors

〈R,R2, R0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉

and morphisms monoidal natural transformations

τ : 〈R,R2, R0〉→̇ 〈R′, R′2, R′0〉 :
〈

I,�, ė, α̇, λ̇, ρ̇
〉
→ 〈C,�, e, α, λ, ρ〉 .

Composition of morphisms if given by vertical composition • of natural trans-
formations. 1〈R,R2,R0〉 is given by 1R.

The category

StrgMFun
(〈

I,�, ė, α̇, λ̇, ρ̇
〉
, 〈C,�, e, α, λ, ρ〉

)
is the full subcategory of MFun

(〈
I,�, ė, α̇, λ̇, ρ̇

〉
, 〈C,�, e, α, λ, ρ〉

)
which has

objects all strong monoidal functors.

7.2 The category of valid realizations
Definition 7.5. Let X,A, s, t be generators (definition 3.13) and let vs, vt be a
varnishing (definition 3.15). Further letD be a set of equation-shapes (definition
3.16) and let 〈C,�, e, α, λ, ρ〉 be a monoidal category. The category

Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉)

(which we will abbreviate to Real (D,C) when the rest is clear from the context)
has as objects all valid realizations 〈o,m〉 of the above atoms with the above var-
nishing which satisfy all equation-shapes inD. In this context we also call the set
D the set of axioms for the category Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉).
An arrow � : 〈o,m〉→̇ 〈o′,m′〉 of Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉) is a
natural transformation � : o→̇o′ : X → C (where we regard o and o′ as functors
from the discrete category X to the category C) which satisfies

vs (o(s (f)))

vt (o(t (f)))

vs (o′ (s (f)))

vt (o′ (t (f)))

m(f)m′(f)

vs
(〈

�πi(s(f))

〉`(s(f))
i=1

)

vs
(〈

�πi(t(f))

〉`(t(f))
i=1

) . (70)

(πi (s (f)) is the i-th component of s (f).) The composition of arrows is given by
vertical composition of natural transformations and the identity natural trans-
formation is the identity morphism.

Observation 7.6. The category of monoids in 〈C,�, e, α, λ, ρ〉 is the category

Real (XMon, AMon, sMon, tMon, vs;Mon, vt;Mon, DMon, 〈C,�, e, α, λ, ρ〉) .

Observation 7.7. If D ⊆ D′ then

Real (X,A, s, t, vs, vt, D
′, 〈C,�, e, α, λ, ρ〉)

is a full subcategory of

Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉) .

66

Definition 7.8. Again, let X,A, s, t, vs, vt, 〈C,�, e, α, λ, ρ〉 be as above. In
addition to the function

KX,A,s,t,vs,vt,C : Obj(Real (X,A, s, t, vs, vt, ∅, 〈C,�, e, α, λ, ρ〉)) →
Obj(MFun(E (X,A, s, t) , 〈C,�, e, α, λ, ρ〉))

defined in 3.34 we define for any two o, o′ ∈ CX a function

KX,A,s,t,vs,vt,C : homCX (o, o′) → homC(X∗) (K (o) ,K (o′))

of the same name by setting

(KX,A,s,t,vs,vt,C (�))〈ai〉ni=1
:= v(n) (〈�ai

〉ni=1) (71)

for any � : o→̇o′ : X → C.

Lemma 7.9. A valid realization 〈o,m〉 (which is the same thing as an object of

Real (X,A, s, t, vs, vt, ∅, 〈C,�, e, α, λ, ρ〉))

satisfies a set of equations-shapes D (which means the same thing as saying that
〈o,m〉 is also an object of

Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉))

if and only if KX,A,s,t,vs,vt,C (〈o,m〉) factors through �̃E,X,A,s,t (with

E = {〈 tr(p) , tr(q)〉| 〈p, q〉 ∈ D}).

If
〈o,m〉, 〈o′,m′〉 ∈ Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉)

then a natural transformation � : o→̇o′ : X → C is a morphism

� : 〈o,m〉→̇ 〈o′,m′〉

of
Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉)

if and only if KX,A,s,t,vs,vt,C (�) defined in (71) is a monoidal natural transfor-
mation

KX,A,s,t,vs,vt,C (�) : K (〈o,m〉) →̇K (〈o′,m′〉) : E (X,A, s, t) → 〈C,�, e, α, λ, ρ〉.

Proof. If K (〈o,m〉) factors through �̃E then

K (〈o,m〉)(tr(p)) = K (〈o,m〉)(tr(q)) for all 〈p, q〉 ∈ D .

By observation 3.33 the arrow K (〈o,m〉)(tr(p)) is the result of the evaluation of
a path whose ptr is equal to that of p, and similarly for q. By corallary 3.24 this
implies ev〈o,m〉 (p) = ev〈o,m〉 (q). If on the other hand 〈o,m〉 satisfies the set of
equation-shapes D then for any 〈p, q〉 ∈ D we have ev〈o,m〉 (p) = ev〈o,m〉 (q). By
the same argument as before this implies K (〈o,m〉)(tr(p)) = K (〈o,m〉)(tr(q))
for all 〈p, q〉 ∈ D. By lemma 3.31 this implies that K (〈o,m〉) factors through
�̃E .

67

For the second part note first that by interpreting the arrows in the diagram
(69) (the monoidality-condition for natural transformations) as evaluations of
paths with equal traces (for appropriate generators, varnishings, etc.) we see
that this diagram commutes in any case. So we only need to think about
naturality. We also do this by choosing appropriate generators and varnishings.
More explicitly, consider

• the set of object-atoms Ẋ := ({0} ×X) ∪̇ ({1} ×X),

• the set of non-trivial arrow-atoms Ȧ := ({0} ×A) ∪̇ ({1} ×A) ∪̇X (so
there will be three copies of X (with different meaning) in the set of
arrow-atoms),

• the signature ṡ, ṫ : Ȧ → Ẋ∗ given by

ṡ(〈0, f〉) := 〈〈0, πi (s (f))〉〉`(s(f))i=1 ṫ(〈0, f〉) := 〈〈0, πi (t (f))〉〉`(t(f))i=1

ṡ(〈1, f〉) := 〈〈1, πi (s (f))〉〉`(s(f))i=1 ṫ(〈1, f〉) := 〈〈1, πi (t (f))〉〉`(t(f))i=1

for f ∈ A

ṡ(a) := 〈 〈 〈0, a〉〉〉 ṫ(a) := 〈 〈 〈1, a〉〉〉

for a ∈ X ,

• the varnishing v̇s, v̇t given by

v̇s (〈0, f〉) = v̇s (〈1, f〉) = vs (f)

v̇t (〈0, f〉) = v̇t (〈1, f〉) = vt (f) for f ∈ A

v̇s (a) = v̇t (a) = () for a ∈ X ,

• the realization 〈ȯ, ṁ〉 given by

ȯ(〈0, a〉) := o(a)

ȯ(〈1, a〉) := o′ (a) for a ∈ X

ṁ(〈0, f〉) := m(f)

ṁ(〈1, f〉) := m′ (f) for f ∈ A

ṁ(a) := �a for a ∈ X ,

• the set of equation-shapes

Ḋ :=

{〈〈
vt (f) ,

〈 〈
vt (f) , t (f)

〉
,
〈
(), 〈 〈0, f〉〉

〉〉
, vs (f)

〉
,

〈
vt (f) ,

〈 〈
(), 〈 〈1, f〉〉

〉
,
〈
vs (f) , s (f)

〉〉
, vs (f)

〉〉∣∣∣∣∣f ∈ A

}
and

• the trace-set

Ė :=
{
〈 tr(p) , tr(q)〉

∣∣∣ 〈p, q〉 ∈ Ḋ
}

.

68

Define functors

S : E (X,A, s, t) → E
(
Ẋ, Ȧ, ṡ, ṫ

)
S (〈ai〉ni=1) := 〈〈0, ai〉〉ni=1

S
(
πm,X,A,s,t

(
〈〈fi,j〉nk

j=1〉1i=k

))
:= πm,Ẋ,Ȧ,ṡ,ṫ

(
〈〈〈0, fi,j〉〉nk

j=1〉1i=k

)
T : E (X,A, s, t) → E

(
Ẋ, Ȧ, ṡ, ṫ

)
T (〈ai〉ni=1) := 〈〈1, ai〉〉ni=1

T
(
πm,X,A,s,t

(
〈〈fi,j〉nk

j=1〉1i=k

))
:= πm,Ẋ,Ȧ,ṡ,ṫ

(
〈〈〈1, fi,j〉〉nk

j=1〉1i=k

)
(where ai ∈ X, fi,j ∈ A∪̇X).

Using the closure properties of the relation ∼Ė we get that

�̃Ẋ,Ȧ,ṡ,ṫ,Ė

(
πm,Ẋ,Ȧ,ṡ,ṫ

(〈
t
(

f
)〉)
◦S
(

f
))

= �̃Ẋ,Ȧ,ṡ,ṫ,Ė

(
T
(

f
)
◦πm,Ẋ,Ȧ,ṡ,ṫ

(〈
s
(

f
)〉))

.

(The elements in Ė are exactly those that stand for the above equation where
f is an arrow consisting of a single non-trivial arrow-atom.) Now note that

KX,A,s,t,vs,vt,C (�)a = KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)
(
πm,Ẋ,Ȧ,ṡ,ṫ (〈a〉)

)
KX,A,s,t,vs,vt,C (〈o,m〉)

(
f
)
= KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)

(
S
(

f
))

KX,A,s,t,vs,vt,C (〈o′,m′〉)
(

f
)
= KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)

(
T
(

f
))

and therefore

KX,A,s,t,vs,vt,C (�)t
(

f
)◦KX,A,s,t,vs,vt,C (〈o,m〉)

(
f
)
=

KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)
(
πm,Ẋ,Ȧ,ṡ,ṫ

(〈
t
(

f
)〉)

◦S
(

f
))

and

KX,A,s,t,vs,vt,C (〈o′,m′〉)
(

f
)
◦KX,A,s,t,vs,vt,C (�)s

(
f
) =

KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)
(
T
(

f
)
◦πm,Ẋ,Ȧ,ṡ,ṫ

(〈
s
(

f
)〉))

.

This reduces the second part of the theorem to what we have already proved in
the first part. Indeed KX,A,s,t,vs,vt,C (�) is natural if and only if

KX,A,s,t,vs,vt,C (�)t
(

f
)◦KX,A,s,t,vs,vt,C (〈o,m〉)

(
f
)
=

KX,A,s,t,vs,vt,C (〈o′,m′〉)
(

f
)
◦KX,A,s,t,vs,vt,C (�)s

(
f
)

which is the case if and only if

KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)
(
πm,Ẋ,Ȧ,ṡ,ṫ

(〈
t
(

f
)〉)

◦S
(

f
))

=

KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉)
(
T
(

f
)
◦πm,Ẋ,Ȧ,ṡ,ṫ

(〈
s
(

f
)〉))

which in turn is the case if and only if KẊ,Ȧ,ṡ,ṫ,v̇s,v̇t,C (〈ȯ, ṁ〉) factors through
�̃Ẋ,Ȧ,ṡ,ṫ,Ė . By the first part of the theorem this is equivalent to 〈ȯ, ṁ〉 satisfying
the equations in Ḋ, which by the construction of 〈ȯ, ṁ〉 and Ḋ is equivalent to
� being a morphism � : 〈o,m〉→̇ 〈o′,m′〉.

69

The previous lemma allows us to define a functor mapping realizations sat-
isfying a set of axioms to monoidal functors from a category ẼE (X,A, s, t).

Definition 7.10. Let X,A, s, t, vs, vt, 〈C,�, e, α, λ, ρ〉 be as before. For any set
D of equation-shapes we define a functor

KX,A,s,t,vs,vt,D,C : Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉) →

StrgMFun
(
ẼTr(D) (X,A, s, t) , 〈C,�, e, α, λ, ρ〉

)
which sends any realization 〈o,m〉 to the unique strong monoidal functor

〈L,L2, L0〉

for which

KX,A,s,t,vs,vt,C (〈o,m〉) = 〈L,L2, L0〉 ◦ �̃E,X,A,s,t

and which sends � : 〈o,m〉→̇ 〈o′,m′〉 to the monoidal natural transformation

KX,A,s,t,vs,vt,C (�) .

Lemma 7.11. KX,A,s,t,vs,vt,D,C is an equivalence of categories.

Proof. Again, set E := Tr(D). We show that KX,A,s,t,vs,vt,D,C is full and
faithful and that every strong monoidal functor

〈L,L2, L0〉 ∈ StrgMFun
(
ẼTr(D) (X,A, s, t) , 〈C,�, e, α, λ, ρ〉

)
is isomorphic to KX,A,s,t,vs,vt,D,C (〈o,m〉) for some

〈o,m〉 ∈ Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉) .

For more information on the different ways of expressing that a functor is an
equivalence of categories see [Mac98, section IV.4].

To see that KX,A,s,t,vs,vt,D,C is full consider any

τ : KX,A,s,t,vs,vt,D,C (〈o,m〉) →̇KX,A,s,t,vs,vt,D,C (〈o′,m′〉) .

By lemma 7.2 we get that τ〈ai〉ni=1
can be expressed as

v(n)
(〈
v(1) (o (ai))

〉
n
i=1

)

KD (〈o,m〉)(〈ai〉ni=1)

v(n)
(〈
v(1) (o′ (ai))

〉
n
i=1

)

KD (〈o′,m′〉)(〈ai〉ni=1)

can
v(n)

(〈
v(1)

〉
n
i=1

)
�v(n);〈o(ai)〉ni=1

can
v(n)�v(n)

(〈
v(1)

〉
n
i=1

)
;
〈
o′(ai)

〉n
i=1

v(n)
(〈

τ〈ai〉
〉
n
i=1

)

τ〈ai〉ni=1

which again by an equality-of-traces style argument means that

τ〈ai〉ni=1
= v(n)

(〈
can()�v(1);o′(ai)

◦τ〈ai〉◦ canv(1)�();o(ai)

〉
n
i=1

)
= KX,A,s,t,vs,vt,D,C

(〈
can()�v(1);o′(a) ◦τ〈a〉◦ canv(1)�();o(a)

〉
a∈ẼE(X,A,s,t)

)

70

(where we can write theD in the subscript ofK because of lemma 7.9). Similarly
we see that KX,A,s,t,vs,vt,D,C is faithful because for any

� : 〈o,m〉→̇ 〈o′,m′〉

and any a ∈ X we have

v(1) (o (a))v(1) (o′ (a))

o (a)o′ (a)

KD(�)〈a〉

�a

can
v(1)�();o(a)

can
()�v(1);o′(a)

.

Now let 〈L,L2, L0〉 ∈ StrgMFun
(
ẼE (X,A, s, t) , 〈C,�, e, α, λ, ρ〉

)
. Define

o (a) := L(〈a〉)

for all a ∈ ẼE (X,A, s, t) and define m (f) by

vs (f)

(〈
L
(〈

πi

(
s (f)

)〉)〉`(s(f))
i=1

)
vt (f)

(〈
L
(〈

πi

(
t (f)

)〉)〉`(t(f))
i=1

)

L(s (f))L(s (f))

m(f)

L
(
�̃′E(〈〈f〉〉)

)

L
vs(f),〈〈πi(s(f))〉〉

`(vs(f))
i=1

L
vt(f),〈〈πi(t(f))〉〉

`(vt(f))
i=1

for any f in A. The diagram above uniquely determines m(f) because 〈L,L2, L0〉
is strong.

Now consider diagram (72), in which f = πm (〈 〈fi〉ni=1〉). The upper quadri-
lateral commutes by the definition of KX,A,s,t,vs,vt,C (〈o,m〉), the right and left
quadrilaterals commute by lemma 3.6, the middle square commutes by the defi-
nition of m (fi) just given and the lower quadrilateral commutes by naturality
of Lv(n) . Therefore the outer square — which generalizes the defining square
for m (f) — commutes. By placing these kind of squares next to each other it
becomes clear that for any f in E (X,A, s, t) the following square commutes.

K (〈o,m〉)
(
s
(

f
))

K (〈o,m〉)
(
t
(

f
))

L
(
s
(

f
))

L
(
t
(

f
))

K(〈o,m〉)
(

f
)

L
(
�̃E

(
f
))

L
v

(
`
(
s
(

f
)))

,
〈〈

πi
(
s
(

f
))〉〉`(s(f

))
i=1

L
v

(
`
(
t
(

f
)))

,
〈〈

πi
(
t
(

f
))〉〉`(t(f

))
i=1

From this we see that KX,A,s,t,vs,vt,C factors through �̃E,X,A,s,t and by lemma
7.9 this implies that 〈o,m〉 satisfies the set of equations D. We still have to
show that

〈
L
v(`(a)),〈〈πi(a)〉〉`(a)

i=1

〉
a∈ẼE(X,A,s,t)

is a monoidal natural isomorphism.

71

v(n)

(〈
vs (fi)

(〈
L
(〈

πj

(
s (fi)

)〉)〉`(s(fi))
j=1

)〉
n
i=1

)
v(n)

(〈
vt (fi)

(〈
L
(〈

πj

(
t (fi)

)〉)〉`(t (fi))
j=1

)〉
n
i=1

)

v(n) (〈L(s (fi))〉ni=1)v(n) (〈L(t (fi))〉ni=1)

v
(
`
(
s
(

f
)))(〈

L
(
〈πj (s (fi))〉

)〉`(s(fi))
j=1

n

i=1

)K (〈o,m〉)
(
s
(

f
))

v
(
`
(
t
(

f
)))(〈

L
(
〈πj (t (fi))〉

)〉`(t (fi))
j=1

n

i=1

)K (〈o,m〉)
(
t
(

f
))

L
(
s
(

f
))

L
(
t
(

f
))

v(n)(〈m(fi)〉ni=1)

v(n)
(〈

L
(
�̃′E(〈〈fi〉〉)

)〉
n
i=1

)
v(n)

(〈
L

vs(fi),〈〈πj(s(fi))〉〉
`(s(fi))
j=1

〉
n
i=1

)
v(n)

(〈
L

vt(fi),〈〈πj(t (fi))〉〉
`(t (fi))
j=1

〉
n
i=1

)
L

v

(
`
(
s
(

f
)))

,
〈〈

πj
(
s
(

f
))〉〉`(s(f

))
j=1

L
v

(
`
(
t
(

f
)))

,
〈〈

πj
(
t
(

f
))〉〉`(t(f

))
j=1

L
v(n),〈s(fi)〉ni=1L

v(n),〈t (fi)〉ni=1

L
(
�̃E

(
f
))

K(〈o,m〉)
(

f
)

can
v(n)

(
〈vs(fi)〉ni=1

)
�v

(
`
(
s
(

f
)))

;
〈
L
(
〈πj(s(fi))〉

)〉
`(s(fi))
j=1

n

i=1

can
v(n)

(
〈vt(fi)〉ni=1

)
�v

(
`
(
t
(

f
)))

;
〈
L
(
〈πj(t (fi))〉

)〉
`(t (fi))
j=1

n

i=1

(72)

72

Naturality is just the previous diagram. It is also clearly invertible because
〈L,L2, L0〉 is strong. It remains to check monoidality. We will do this directly
by showing that (69) commutes because that’s just as easy in this case. So let
ai,j ∈ ẼE (X,A, s, t) and call 〈ai,j〉ki

j=1 =: ai.

v (〈K (〈o,m〉) (ai)〉ni=1)v (〈L (ai)〉ni=1)

K (〈o,m〉)
(
〈ai,j〉ki

j=1

n

i=1

)
L
(
〈ai,j〉ki

j=1

n

i=1

)

v

(〈
L

v(ki),
〈〈

ai,j
〉〉ki

j=1

〉
n
i=1

)

L
v

(∑n
i=1 ki

)
,
〈〈

ai,j
〉〉ki

j=1
n

i=1

can
v

(∑n
i=1 ki

)
�v

(〈
v(ki)

〉
n
i=1

)
;
〈
L
(〈

ai,j
〉)〉ki

j=1
n

i=1
Lv,〈ai〉ni=1

(73)
In diagram (73) we see what diagram (69) looks like in our case. This again
commutes by lemma 3.6.

7.3 Free objects
Definition 7.12. Define a forgetful functor

GX,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 :

Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉) → CX

from the category Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉) which sends any
realization 〈o,m〉 to o and a morphism � : 〈o,m〉→̇ 〈o′,m′〉 to � : o→̇o′ : X → C.

Define another forgetful functor

GX,A,s,t,E,〈C,�,e,α,λ,ρ〉 :

StrgMFun
(
ẼE (X,A, s, t) , 〈C,�, e, α, λ, ρ〉

)
→ CX

from StrgMFun
(
ẼE (X,A, s, t) , 〈C,�, e, α, λ, ρ〉

)
as

GX,A,s,t,E,〈C,�,e,α,λ,ρ〉 := − ◦ injX,A,s,t

where the functor injX,A,s,t : X → ẼE (X,A, s, t) is the injection from the dis-
crete category X into ẼE (X,A, s, t). More explicitly this means(

GX,A,s,t,E,〈C,�,e,α,λ,ρ〉 (〈L,L2, L0〉)
)
(a) = L(a)(

GX,A,s,t,E,〈C,�,e,α,λ,ρ〉 (τ)
)
a
= τa .

We will abbreviate

GX,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 to G

and
GX,A,s,t,E,〈C,�,e,α,λ,ρ〉 to G

when it is clear from the context what we mean.

73

Lemma 7.13. If E = Tr(D) then

GX,A,s,t,E,〈C,�,e,α,λ,ρ〉 ◦KX,A,s,t,vs,vt,C
∼= GX,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 .

Explicitly the the map which sends 〈o,m〉 to the natural transformation

can()�v(1) ◦o : v(1) ◦ o→̇o : X → C

is a natural isomorphism from G ◦K to G. We will call this natural transfor-
mation �X,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 or � for short.

Proof. Naturality of � means that

(G ◦K) (〈o,m〉)(G ◦K) (〈o′,m′〉)

G (〈o,m〉)G (〈o′,m′〉)

(G◦K)(�)

G(�)

can
()�v(1) ◦ocan

()�v(1) ◦o′

commutes for all � : 〈o,m〉→̇ 〈o′,m′〉 in Real (D,C). This means that for every
a ∈ X

v(1) (o (a))v(1) (o′ (a))

o (a)o′ (a)

v(1)(�a)

�a

can
()�v(1);o(a)

can
()�v(1);o′(a)

commutes, which is true because can()�v(1) is natural.
Because every component of � is an isomorphism � is also an isomorphism.

The next theorem will describe free objects in the categories Real (D,C)

and StrgMFun
(
ẼE ,C

)
.

Perhaps it is in order to say a few words about how we are going to construct
our free objects before we commence the more formal part. The reader may be
familiar with the construction of free objects in varieties of algebras. There one
constructs the free object on a set of generators by first forming the set of all
valid combinations of operators and letters from the set of generators and then
identifying all elements which necessarily have to be equal as a consequence
of the equations that all algebras from the variety in question are supposed
to satisfy. In category-theoretical parlance one would say that the constructed
object is a coequalizer of a coproduct of products (of different length) of the set
of generators with itself.

On the other hand there is the free monoid on a set of generators which may
of course also be constructed in the manner described above but this is not the
most “economical” way of doing it. Instead, the reader may be aware that the
underlying set of the free monoid is simply the set of all finite-length strings
in letters taken from the set of generators. In category-theoretical language we
have a coproduct of products — coequalizers are not required.

74

The construction of free objects we are going to give is close to the second
case. It can in fact be seen as a direct generalization of the construction of
the free monoid (which can be found for example in [Mac98, section VII.3]) —
one which the author thinks shines some light on why the free monoid can be
constructed in this way.

Note however that the construction we give does not cover all types of vari-
eties usually considered. More specifically, because our ambient category only
has a monoidal structure but not a symmetric monoidal structure we are not
able to express in our set D of equation-shapes equations like for example the
equation which would in the ambient category set be written as a ·b = b ·a. This
means that anything “abelian” is not covered by our construction. This will
be obvious once we have given the actual construction because for example free
abelian groups simply do not have the kind of structure which our construction
creates.

On the other hand the restriction of a single base object which is often
imposed in the classical setting will not appear in our premises because it is
simply not necessary and it would not really make the construction any simpler.

Theorem 7.14. Let X,A, s, t be generators, vs, vt a varnishing, D a set of
equations shapes, E := Tr(D) and 〈C,�, e, α, λ, ρ〉 a monoidal category.

Assume that C has coproducts of sufficiently large sets of objects of C.
More specifically we require C to have a coproduct for any family of objects of
C indexed by a set

{
f in ẼE (X,A, s, t)

∣∣∣t(f) = 〈a〉
}

for any a ∈ X. Assume
further that for any a ∈ C both of the functors a � − and − � a preserve
coproducts.

If

1. `(t (f)) = 1 for all f ∈ A and

2. `
(
t
(

p
))

= `
(
t
(

q
))

= 1 for all
〈

p, q
〉
∈ E

then GX,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 has a left adjoint

FX,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 :

CX → Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉)

and

FX,A,s,t,E,〈C,�,e,α,λ,ρ〉 :=

KX,A,s,t,vs,vt,D,C ◦ FX,A,s,t,vs,vt,D,〈C,�,e,α,λ,ρ〉 :

CX → StrgMFun
(
ẼE (X,A, s, t) , 〈C,�, e, α, λ, ρ〉

)
is left adjoint to GX,A,s,t,E,〈C,�,e,α,λ,ρ〉.

Proof. We will assume that the reader is familiar with the different possible
ways of defining an adjunction. For a general account see [Mac98, chapter IV].

Although it would suffice to find a left adjoint to either G or G (because then
the equivalence of categories would give the other) we will instead work with
both of the categories Real (D,C) and StrgMFun

(
ẼE ,C

)
because it seems

to the author that parts of the argument are more naturally executed in one

75

and others fit better in the other. More specifically we will begin by defining
the object function FO of F. Then we will chain this with K to get the object
function FO of F .

We will then define what will become the units of the two adjunctions.
The unit � of the adjunction between G and F is composed of morphisms �ȯ :
ȯ→̇G(FO(ȯ)) of the category CX and because of the way in which FO and FO

are related the unit of the adjunction between G and F is composed of maps
ηȯ : ȯ→̇G(FO(ȯ)) = G(K(FO(ȯ))). Using the natural isomorphism � from lemma
7.13 we can define ηȯ in terms of �ȯ as

ηȯ = �−1F(ȯ)
•�ȯ . (74)

We will then show that FO (ȯ) ∈ StrgMFun
(
ẼE ,C

)
together with η satis-

fies the required universal property. This means that in diagram (75) for any〈
L̇, L̇2, L̇0

〉
∈ StrgMFun

(
ẼE ,C

)
and any � : ȯ→̇G

(〈
L̇, L̇2, L̇0

〉)
there is

a unique morphism τ : K(FO(ȯ)) →̇
〈
L̇, L̇2, L̇0

〉
of StrgMFun

(
ẼE ,C

)
which

makes the outer “triangle” commute. When
〈
L̇, L̇2, L̇0

〉
= K (〈o′,m′〉) then be-

cause K is full there is a morphism � : FO (ȯ) →̇ 〈o′,m′〉 with K (�) = τ . If � and
�′ are related in the way indicated in the diagram then that means that because
� is natural �′ factors through �ȯ as �′ = G(�) •�ȯ. If �′ is another morphism of
Real (D,C) for which �′ = G(�′) •�ȯ, then again by naturality of �−1 we have
� = �−1〈o′,m′〉•�

′ = G(K(�′)) •�−1FO(ȯ)
•�ȯ = G(K(�′)) •ηȯ, which by uniqueness of τ

implies K (�′) = τ and by faithfulness of K this implies �′ = �. Therefore we
will know at this point that �ȯ is universal from ȯ to G.

ȯ

G(FO(ȯ))

G(K(FO(ȯ)))

G(〈o′,m′〉)

G(K(〈o′,m′〉))=G
(〈

L̇, L̇2, L̇0

〉)

�ȯ

�−1
FO(ȯ)

�′

�−1〈
o′,m′

〉

�

ηȯ

G(τ)

G(K(�))

G(�)
(75)

In this situation there is a unique arrow function for F such that η becomes
a natural transformation η : 1StrgMFun

(
ẼE ,C

)→̇G ◦ F and this arrow function

makes F left adjoint to G and η the unit of that adjunction. Similarly there
is a unique arrow function for F such that � becomes a natural transformation
� : 1Real(D,C)→̇G ◦ F and this arrow function makes F left adjoint to G and �
the unit of that adjunction. Looking at diagram (76) and remembering that

76

�−1 is natural we see that F = K ◦ F.

ȯȯ′

G(F(ȯ))G(F(ȯ′))

G(K(F(ȯ)))G(K(F(ȯ′)))

G(F(ȯ))G(F(ȯ′))

�̇

G(F(�̇))

G(K(F(�̇)))

G(F (�̇))

�ȯ�ȯ′

�−1
F(ȯ)

�−1

F
(
ȯ′
) ηȯηȯ′

(76)

Now we still have to define FO and �.
So let ȯ ∈ CX and call FO (ȯ) := 〈o,m〉. The realization of object-atoms o is

given by (remember the convention set down in definition 3.17 of also using the
symbol ȯ to denote the lifted functor)

o(a) :=
∐

h in ẼE
t(h)=〈a〉

v(`(s(h))) (ȯ (s(h))) . (77)

This coproduct exists by hypothesis of the theorem. For every h in ẼE we have
an injection �ȯ;h : v(`(s(h))) (ȯ (s(h))) → o(a). Usually, when ȯ is clear from the
context we will omit it in the subscript.

From our hypotheses it follows that for any tensor word v the induced func-
tor v〈C,�,e,α,λ,ρ〉 preserves coproducts in every variable seperately. Indeed any
functor v (b1, . . . , bi−1,−, bi+1, . . . , bn) can be seen as a composite of functors,
each of which has either the form a � − or − � a where a is w

(
〈bij 〉kj=1

)
for

an appropriate tensor word w and an appropriate selection of indizes i1, . . . , ik.
Using lemma 5.3 we get that〈

v (〈�hi〉ni=1) : v
(〈

v(`(s(hi))) (ȯ (s(hi)))
〉
n
i=1

)
→ v (〈o(ai)〉ni=1)

〉
〈hi〉ni=1 in

∏n
i=1 ẼE

t(hi)=〈ai〉

forms a colimiting cone for all 〈ai〉ni=1 ∈ ẼE .
We want to show now that in analogy to (77) we have

K (〈o,m〉)(a) =
∐

h in ẼE
t(h)=a

v(`(s(h))) (ȯ (s(h))) . (78)

(Remember (definition 3.34) that the object function of K (〈o,m〉) only depends
on o so we can talk about K (〈o,m〉)(a) even though we haven’t defined m yet.)
This is where the conditions on the targets of arrow-atoms and of paths in E
come into play.

Lemma 7.15. Let X,A, s, t be generators and let E be a set of equations in
E (X,A, s, t). If conditions 1 and 2 in the statement of the parent theorem are

77

met then for all 〈ai〉ni=1 ∈ ẼE the function

κ〈ai〉ni=1
:

{
〈hi〉ni=1 in

n∏
i=1

ẼE

∣∣∣∣∣t(hi) = 〈ai〉 ∀i ∈ {1, . . . , n}

}
→{

h in ẼE
∣∣∣t(h) = 〈ai〉ni=1

}
κ〈ai〉ni=1

(〈hi〉ni=1) := �n
i=1 (hi)

is a bijection.

Proof. Replacing ẼE by pArr (X,A, s, t) everywhere above we can define a func-
tion κ′′〈ai〉ni=1

which operates on tuples of pre-arrows. We will show that κ′′〈ai〉ni=1

is bijective.
Next we will show that two pre-arrows are related by m if and only if the

elements of the tuples which are the images under κ′′
−1
〈ai〉ni=1

of these two pre-
arrows are pairwise related by m. From this it will be clear that κ〈ai〉ni=1

is a
bijection when E is the empty set, that is, when we replace ẼE by E (X,A, s, t)
everywhere above. Call this function κ′〈ai〉ni=1

.
Then we show that any two arrows of E (X,A, s, t) are related by ∼E if

and only if the elements of the tuples which are the images under κ′
−1
〈ai〉ni=1

of
these two arrows of E (X,A, s, t) are pairwise related by ∼E . This will show the
statement of the lemma to be true.

So let 〈〈fi,j〉ni
j=1〉1i=k be a pre-arrow with t

(
〈〈fi,j〉ni

j=1〉1i=k

)
= 〈ai〉ni=1. From

condition 1 it is clear that nk must be equal to n. For each of the arrow-atoms
fk,1, . . . , fk,n we can find all arrow-atoms vertically preceding it by the following
procedure.

Because there are no arrow-atoms whose target has length bigger than 1,
for every index j ∈ {1, . . . , nk−1} we can find an index j′ ∈ {1, . . . , nk} such
that the section of t

(〈
〈fk−1,l〉

nk−1

l=1

〉)
= s (〈 〈fl〉nk

l=1〉) corresponding to t (fk−1,j)
is a subsection of the section corresponding to s (fk,j′). Because there are no
arrow-atoms whose target has length 0 there is exactly one index j′ with this
property. We say that we group the arrow-atom fk−1,j with the arrow-atom
fk,j′ (or really the index-pair 〈k − 1, j〉 with the index-pair 〈k, j′〉). Continuing
this strategy we can find all (index-pairs of) arrow-atoms which precede one of
the arrow-atoms (at one of the index-pairs) previously grouped with (the index-
pair of) the arrow-atom fk,j′ — thereby splitting the pre-arrow 〈〈fi,j〉ni

j=1〉1i=k

into n parts, each of which is itself a pre-arrow, in such a way that the hori-
zontal juxtaposition of these n parts gives 〈〈fi,j〉ni

j=1〉1i=k. In our visual calculus
this procedure corresponds to starting at the bottom and tracing the outlines
of the arrow-atoms until we arrive at the top — this is possible precisely be-
cause we required the length of the target of every arrow-atom to be 1. From
the description of the process by which these parts were found it is clear that
there can be no other choice of pre-arrows whose horizontal juxtaposition yields
〈〈fi,j〉ni

j=1〉1i=k. Therefore κ′′〈ai〉ni=1
is bijective.

m was defined in such a way as to be compatible with horizontal juxtaposition
— so clearly if fi, gi are pre-arrows with fi m gi and t

(
fi
)
= t

(
gi
)
= ai for all

i ∈ {1, . . . , n} then κ′′〈ai〉ni=1

(〈
fi
〉
n
i=1

)
m κ′′〈ai〉ni=1

(〈
gi
〉
n
i=1

)
.

Now let f and g be pre-arrows. If f and g differ only by a row of identities
then the same is true for their components — that is their preimages under

78

κ′′〈ai〉ni=1
. If f is the result of shifting up a (single-letter) identity in g then there

is a component of f which is the result of shifting up this same identity in the
corresponding component of g while the other components of f and g are equal.
This concludes the second part and shows that κ′〈ai〉ni=1

is a bijection.
Again, ∼E was defined in such a way as to be compatible with monoidal

product, so if fi, gi are arrows of E (X,A, s, t) with fi ∼E gi and t
(

fi
)
= t
(

gi
)
= ai

for all i ∈ {1, . . . , n} then κ′〈ai〉ni=1

(〈
fi
〉
n
i=1

)
∼E κ′〈ai〉ni=1

(〈
gi
〉
n
i=1

)
.

So let f = κ′〈aj〉nj=1

(〈
fj
〉
n
j=1

)
and g = κ′〈aj〉nj=1

(〈
gj
〉
n
j=1

)
be arrows of

E (X,A, s, t) such that f ∼E g (by lemma 3.26 any two arrows which are related
by ∼E have an equal target so f ∼E g already implies that t

(
f
)
and t

(
g
)
can

be written in the form indicated with the same tuple 〈aj〉nj=1).
By lemma 3.28 there exists a natural number l and sequences〈〈

p(i), q(i)
〉〉

l
i=1 ,

〈
h(i)
〉
l
i=1 ,

〈 .
h
(i)
〉
l
i=1 ,

〈
k (i)

〉
l
i=1 ,

〈 .
k
(i)
〉

l
i=1

with 〈
p(i), q(i)

〉
∈ E ∪

{〈
q , p
〉∣∣ 〈p , q

〉
∈ E

}
and

h(i),
.
h
(i)
, k (i),

.
k
(i)

∈ Arr(E (X,A, s, t)) for all i ∈ {1, . . . , l}

such that

f = k (1)◦

(
h(1) � p(1) �

.
h
(1)
)
◦
.

k
(1)

k (i)◦

(
h(i) � q(i) �

.
h
(i)
)
◦
.

k
(i)

= k (i+1)◦

(
h(i+1) � p(i+1) �

.
h
(i+1)

)
◦
.

k
(i+1)

for all i ∈ {1, . . . , l}

k (l)◦

(
h(l) � q(l) �

.
h
(l)
)
◦
.

k
(l)

= g . (79)

Call k (i)◦

(
h(i) � p(i) �

.
h
(i)
)
◦
.

k
(i)

=: f (i). Then f (1) = f , f (l) = g and

f (i+1) = k (i+1)◦

(
h(i+1) � p(i+1) �

.
h
(i+1)

)
◦
.

k
(i+1)

= k (i)◦

(
h(i) � q(i) �

.
h
(i)
)
◦
.

k
(i)

is obtained from f (i) by swapping out a p(i) contained somewhere in the middle
of that arrow for a q(i).

Now we can split f (i) into f (i)
1 , . . . , f (i)

n . This splitting corresponds to split-
ting each of k (i), h(i) � p(i) �

.
h
(i) and

.
k
(i)

into n parts which we call k (i)
j ,

.p(i)
j

and
.

k
(i)

j respectively. Because p(i) has a target with length 1 there is an index
ji such that

.p(i)
ji = h(i)

ji � p(i) �
.
h
(i)

ji for an h(i)
ji which forms a (possibly empty)

right hand flank of h(i) and an
.
h
(i)

ji which forms a (possibly empty) left hand
flank of

.
h
(i). For all j 6= ji the arrow p(i)j is a part of either h(i) or

.
h
(i). Split-

ting f (i+1) = k (i)◦

(
h(i) � q(i) �

.
h
(i)
)
◦
.

k
(i)

in a similar manner corresponds to

splitting each of k (i), h(i)� q(i)�
.
h
(i) and

.
k
(i)

into n parts. Because q(i) has the
same shape as p(i) the parts that k (i) and

.
k
(i)

split into are exactly the same

79

as before and we can call them by the same names as before. Call the parts of
h(i) � q(i) �

.
h
(i) by the names

.
q(i)
j . Again q(i) is completely contained in one of

these parts and because q(i) has the same shape as p(i) and everything else has
remained the same as before this part is the part

.
q(i)
ji with the same index ji as

before. For this part we have
.
q(i)
ji = h(i)

ji � q(i)�
.
h
(i)

ji with h(i)
ji and

.
h
(i)

ji as defined
above.

For all indizes j 6= ji we have
.
q(i)
j =

.p(i)
j . (80)

For each j ∈ {1, . . . , n} we can now form a chain which uses the sequences〈〈
p(ij;k), q(ij;k)

〉〉
mj
k=1,

〈
h(ij;k)
j

〉
mj
k=1,

〈 .
h
(ij;k)

j

〉
mj
k=1,

〈
k (ij;k)
j

〉
mj
k=1,

〈 .
k
(ij;k)

j

〉
mj
k=1

where ij;1, . . . , ij;mj
are those indizes i for which ji = j. By the discussion above

and because

k (ij;k)
j

◦

(
h(ij;k)
j � q(ij;k)j �

.
h
(ij;k)

j

)
◦
.

k
(ij;k)

j = k (ij;k)
j

◦
.
q(ij;k)◦

.
k
(ij;k)

j

follows from (79)
and κ′〈aj〉nj=1

bij.
=

k (ij;k+1)
j

◦
.p(ij;k+1)

◦
.

k
(ij;k+1)

j

(80)
= k (ij;k+1)

j
◦
.
q(ij;k+1)

◦
.

k
(ij;k+1)

j

(79)
=

k (ij;k+2)
j

◦
.p(ij;k+2)

◦
.

k
(ij;k+2)

j =

. . . =

k (ij;k+1−1)
j

◦
.
q(ij;k+1−1)

◦
.

k
(ij;k+1−1)
j

(79)
=

k (ij;k+1)
j

◦
.p(ij;k+1)

◦
.

k
(ij;k+1)

j = k (ij;k+1)
j

◦

(
h(ij;k+1)
j � p(ij;k+1)

j �
.
h
(ij;k+1)

j

)
◦
.

k
(ij;k+1)

j

this chain (which may be empty) connects fj to gj in the manner described in
lemma 3.28.

The reader is encouraged to draw a picture of the situation. For the author
this was very helpful in developing some intuition for what is happening here.

We have already seen that 〈v (〈�hi〉ni=1)〉〈hi〉ni=1 in
∏n

i=1 ẼE
t(hi)=〈ai〉

forms a colimiting

cone to v (〈o (ai)〉ni=1). Clearly this is still true if we prepend an isomorphism to
every one of these maps. So the maps

ιȯ;v←u〈hi〉ni=1
;〈hi〉ni=1

:=

v (〈�ȯ;hi〉ni=1) ◦ canv(〈v(`(s(hi)))
〉
n
i=1

)
�u〈hi〉ni=1

;〈ȯ(πj(s(hi)))〉`(s(hi))
j=1

n

i=1

:

u〈hi〉ni=1

(
〈ȯ (πj (s(hi)))〉`(s(hi))

j=1

n

i=1

)
→ v (〈o (ai)〉ni=1)

form a colimiting cone when 〈hi〉ni=1 ranges over{
〈h ′i〉ni=1 in

n∏
i=1

ẼE

∣∣∣∣∣t(h ′i) = 〈ai〉

}
.

u〈hi〉ni=1
is a tensor word of appropriate length.

80

By the previous lemma we can just as well let κ〈ai〉ni=1
(〈hi〉ni=1) range over{

h in ẼE
∣∣∣t(h) = 〈ai〉ni=1

}
.

Because s
(
κ〈ai〉ni=1

(〈hi〉ni=1)
)
= ·ni=1 (s(hi)) this means that if we define

ιȯ;v←uh ;h := ιȯ;v←uh ;κ
−1
t(h)(h)

then 〈
v (o (a)) , 〈ιȯ;v←uh ;h : uh (ȯ (s(h))) → v (o (a))〉h in ẼE

t(h)=a

〉
is a colimit. Specifically, if we set

ιȯ;uh ;h := ιȯ;v(`(t(h)))←uh ;h

then 〈
K (〈o,m〉) (a) , 〈ιȯ;uh ;h : uh (ȯ (s(h))) → K (〈o,m〉) (a)〉h in ẼE

t(h)=a

〉
is a colimit. Set

ιȯ;h := ιȯ;v(`(s(h)));h = ιȯ;v(`(t(h)))←v(`(s(h)));h .

Again in all of the arrows ι... we omit ȯ in the subscript when it is clear from the
context. Now we define m(f) by requiring that the diagram in (81) commutes
for all h in ẼE for which t(h) = s (f).

vs (f)(o(s (f)))

vt (f)(o(t (f)))

v(`(s(h))) (ȯ (s(h)))

v
(
`
(
s
(
�̃′E(〈〈f〉〉)◦h

)))
(ȯ (s(�̃′E (〈 〈f〉〉) ◦h)))

m(f)

ι
vs(f)←v(`(s(h)));h

ι
vt(f)←v

(
`
(
s
(

�̃′
E

(〈〈f〉〉)◦h
)))

;�̃′
E

(〈〈f〉〉)◦h

(81)
Note that this diagram also uniquely determines m(a) for any a ∈ X —moreover
it does so in a manner consistent with the convention laid down in equation (37)
from definition 3.17 (which just says that m(a) is the appropriate identity).

We will show thatK (〈o,m〉) is determined by a diagram which is very similar
to (81). Let fi ∈ A∪̇X, hi in ẼE with t(hi) = s (fi). Now set f := πm (〈 〈fi〉ni=1〉),
h := �n

i=1 (hi) and 〈H,H2,H0〉 := K (〈o,m〉). Consider the diagram in (82)
(in which all unlabelled arrows stand for the appropriate structural transfor-
mation). Commutativity of the inner square follows from the definition of
m(fi) and from functoriality of v(n)C. The right hand quadrilateral is triv-
ially commutative and for the upper and lower quadrilaterals commutativity
follows from a now already familiar equality-of-traces style argument and be-
cause κ−1t(h) (h) = ·ni=1

(
κ−1t(hi)

(hi)
)
. The left hand quadrilateral is commutative

by the definition of K (〈o,m〉). Therefore the outer quadrilateral commutes.

81

v(n) (〈vs (fi)(o(s (fi)))〉ni=1)

v(n) (〈vt (fi)(o(t (fi)))〉ni=1)

v(n)
(〈
v(`(s(hi))) (ȯ (s(hi)))

〉
n
i=1

)

v(n)
(〈
v(`(s(hi))) (ȯ (s(hi)))

〉
n
i=1

)

H
(
s
(

f
))

H
(
t
(

f
))

v(`(s(h))) (ȯ (s(h)))

v
(
`
(
s
(
�̃E

(
f
)
◦h
)))(

ȯ
(
s
(
�̃E

(
f
)
◦h
)))

v(n)(〈m(fi)〉ni=1)

v(n)
(〈

ι
vs(fi)←v(`(s(hi)));hi

〉
n
i=1

)

v(n)

(〈
ι
vt(fi)←v

(
`
(
s
(

�̃′
E

(〈〈fi〉〉)◦hi
)))

;�̃′
E

(〈〈fi〉〉)◦hi

〉
n
i=1

)

ιh

ι�̃E
(

f
)
◦h

1H
(

f
)

(82)

Define L(a) := H (a) for all a ∈ ẼE and for any f ∈ ẼE define L
(

f
)
by

requiring that the diagram in (83) commutes for all h in ẼE with t(h) = s
(

f
)
.

L
(
s
(

f
))

L
(
t
(

f
))

v(`(s(h))) (ȯ (s(h)))

v
(
`
(
s
(

f ◦h
)))(

ȯ
(
s
(

f ◦h
)))

ιh

ιf ◦h

L
(

f
) (83)

This uniquely determines f because these ιh form a colimiting cone.
To show that L = H ◦ �̃E we show that L is a functor.

L
(
s
(

g
))

=L
(
t
(

g
))

L
(
s
(

f
))

L
(
t
(

f
))

v(`(s(h))) (ȯ (s(h)))

v
(
`
(
s
(

g◦h
)))(

ȯ
(
s
(

g◦h
)))

v
(
`
(
s
(

f ◦g◦h
)))(

ȯ
(
s
(

f ◦g◦h
)))

ιh

ιg◦h

L
(

g
)

L
(

f
)

ιf ◦g◦h

(84)

For any f , g , h in �̃E with s
(

f
)
= t

(
g
)
and s

(
g
)
= t(h) the upper and lower

square in the diagram above commute by definition — therefore the outer square

82

commutes.

L
(
s
(

g
))

L
(
t
(

f
))

v(`(s(h))) (ȯ (s(h)))

v
(
`
(
s
(

f ◦g◦h
)))(

ȯ
(
s
(

f ◦g◦h
)))

ιh

L
(

f ◦g
)

ιf ◦g◦h

also commutes and because the ιhs form a colimiting cone this means that
L
(

f ◦g
)
= L

(
f
)
◦L
(

g
)
. The same type of argument shows that L applied to any

identity is an identity.
By the argument following diagram (82) we know that for single-row arrows

f in E (X,A, s, t) we have L
(
�̃E

(
f
))

= H
(

f
)
. Because both sides are functors

this implies that for any arrow f in E (X,A, s, t)

L
(
�̃E

(
f
))

= H
(

f
)
.

By lemma 7.9 we see that 〈o,m〉 satisfies the set of equation-shapes D and
the functor component L of 〈L,L2, L0〉 = KD (FO (ȯ)) =: FO (ȯ) is defined by
diagram (83) (L2;a,b = H2;a,b and L0 = H0).

Now we show that FO (ȯ) really is a free object. For any ȯ ∈ CX define the
natural transformations

�ȯ : ȯ→̇G(FO(ȯ)) : X → C
(�ȯ)a := ιȯ;()←();1〈a〉 (85)

ηȯ : ȯ→̇G(FO(ȯ)) : X → C
(ηȯ)a := ιȯ;();1〈a〉 . (86)

η will be the unit of the adjunction between F and G.
Clearly ηȯ = �−1F(ȯ)

•�ȯ.

We want to show that for any
〈
L̇, L̇2, L̇0

〉
∈ StrgMFun

(
ẼE ,C

)
and any � :

ȯ→̇G
(〈

L̇, L̇2, L̇0

〉)
: X → C there is a unique monoidal natural transformation

τ : FO (ȯ) →̇
〈
L̇, L̇2, L̇0

〉
: ẼE → 〈C,�, e, α, λ, ρ〉 such that G (τ) •ηȯ = �.

Consider the diagram in (87). In this diagram a = 〈ai〉`(a)
i=1, b ∈ ẼE and h

is a morphism of ẼE such that s(h) = a. The square marked with 	1 com-
mutes by the definition of L(h), 	2 has to commute if τ is to be natural, 	3
commutes by an equality-of-traces style argument, 	4 has to commute if τ is
to be monoidal and finally if we require that G (τ) •ηȯ = �, then 	5 also has
to commute. So in summary, if τ is to be a monoidal natural transformation
τ : FO (ȯ) →̇

〈
L̇, L̇2, L̇0

〉
: ẼE → 〈C,�, e, α, λ, ρ〉 such that G (τ) •ηȯ = �, then

necessarily the diagram in (88) (which is just the outer part of the previous dia-
gram) has to commute for any h in ẼE for which t(h) = b and s(h) = a = 〈ai〉`(a)

i=1.
But because

〈ιh〉h in ẼE
t(h)=b

83

84

v(`(s(1a))) (ȯ (s(1a)))

v(`(s(h◦1a))) (ȯ (s(h◦1a)))

L(a)

L(b)

L̇(a)

L̇(b)

v(`(a))
(
〈L(〈ai〉)〉`(a)

i=1

)
v(`(a))

(〈
L̇(〈ai〉)

〉
`(a)
i=1

)

	1	2

	4

ι1a

ιh◦1a

L(h)L̇(h)

τa

τb

v(`(a))
(〈

ι1〈ai〉

〉
`(a)
i=1

)
v(`(a))

(〈
τ〈ai〉

〉`(a)
i=1

)
L

v(`(a)),〈〈ai〉〉
`(a)
i=1

L̇
v(`(a)),〈〈ai〉〉

`(a)
i=1

v(`(a))
(
〈�ai 〉

`(a)
i=1

)
	5

	3

(87)

v(`(a)) (ȯ (a))L(b)

L̇(a)

L̇(b)

v(`(a))
(〈

L̇(〈ai〉)
〉
`(a)
i=1

)

ιh

L̇(h)

τb

L̇
v(`(a)),〈〈ai〉〉

`(a)
i=1

v(`(a))
(
〈�ai 〉

`(a)
i=1

) (88)

v(`(s(h))) (ȯ (s(h)))

v
(
`
(
s
(

f ◦h
)))(

ȯ
(
s
(

f ◦h
)))

L(b)

L(c)

L̇(a)

L̇(b)

L̇(c)

v(`(a))
(〈

L̇(〈ai〉)
〉
`(a)
i=1

)

ιh

L̇(h)

τb

L̇
v(`(a)),〈〈ai〉〉

`(a)
i=1

v(`(a))
(
〈�ai 〉

`(a)
i=1

)

ιf ◦hτc

L
(

f
)

L̇
(

f
)

L̇
(

f ◦h
)

	1

	2

	3

(89)

is a colimiting cone, this already uniquely determines a morphism τb : L(b) →
L̇(b) of C for any b ∈ ẼE . If we can show that the morphisms thus defined
form a monoidal natural transformation, then we have shown that η is indeed
universal from ȯ to G.

In diagram (89) the parts marked with 	1 and 	2 commute by definition of
L
(

f
)
and τb respectively. The two outermost paths from v(`(s(h))) (ȯ (s(h))) to

L̇(c) are also equal by definition of τc . From this it follows that

L̇
(

f
)
◦τb◦ιh = τc◦L

(
f
)
◦ιh

and because
〈ιh〉h in ẼE

t(h)=b

is a colimiting cone this implies that 	3 commutes. Therefore τ is natural.
Now we show that τ is monoidal. For b = 〈〉 it follows from the requirement

1 in the hypotheses of this theorem that the only arrow h in ẼE with t(h) = 〈〉
is the identity 1〈〉. In this case the diagram in (88) turns into

v(0) () = eL(〈〉) = e

L̇(〈〉)

L̇(〈〉)

v(0) () = e

ι1〈〉=1e

L̇
(
1〈〉
)
=1L̇(〈〉)

τ〈〉

L̇
v(0),

=L̇0

v(0)()=1e
.

This means that τ〈〉 = L̇0 and therefore the condition (68) in the definition 7.1
of a monoidal natural transformation is satisfied.

To see that (67) in the definition of a monoidal natural transformation also
commutes consider diagram (90). In this diagram h1, h2 are morphism of ẼE
with t(hj) = bj and s(hj) = aj = 〈aj,i〉nj

i=1; and h = h1 � h2.
	0 is the square whose commutativity we want to show. We know that

	6 and 	1 commute by the definition of τ . 	7 commutes by an equality-of-
traces style argument, 	2 commutes because L̇2 is natural, 	3 commutes by
the definition of L̇v(n1)�v(n2),〈〈aj,i〉〉nj

i=1
2
j=1

and 	4 commutes by lemma 3.6. The
outermost ovoid consisting of the two paths from v(n1) (ȯ (a1))� v(n2) (ȯ (a2)) to

v(n1+n2)

(〈
L̇(〈aj,i〉)

〉
nj
i=1

2

j=1

)
— call it	5 — commutes by an equality-of-traces

style argument. Now a diagram chase which uses 	1 to 	7 in ascending order
of their names shows that

L̇2;b1,b2◦ (τb1 � τb2) ◦ (ιh1 � ιh2) = τb1�b2◦L2;b1,b2◦ (ιh1 � ιh2) .

� takes
〈∐

i∈I ai,
∐

j∈J bj

〉
to
∐
〈i,j〉∈I×J (ai � bj) (remember that this follows

from the requirement that � preserve coproducts independently in each vari-
able) and therefore 〈ιh1 � ιh2〉〈h1,h2〉 in ẼE×ẼE

t(hi)=bi

form a colimiting cone. From this

85

v(n1) (ȯ (a1))� v(n2) (ȯ (a2))L(b1)� L(b2)

L̇(a1)� L̇(a2)

L̇(b1)� L̇(b2)

v(n1)
(〈

L̇(〈a1,i〉)
〉
n1
i=1

)
� v(n2)

(〈
L̇(〈a2,i〉)

〉
n2
i=1

)

ιh1�ιh2

L̇(h1)�L̇(h2)

τb1�τb2

L̇
v(n1),

〈〈
a1,i

〉〉n1
i=1

�L̇
v(n2),

〈〈
a2,i

〉〉n2
i=1

v(n1)
(〈

�a1,i

〉
n1
i=1

)
�v(n2)

(〈
�a2,i

〉
n2
i=1

)

v(n1+n2) (ȯ (a1 � a2))L(b1 � b2)

L̇(a1 � a2)

L̇(b1 � b2)

v(n1+n2)

(〈
L̇(〈aj,i〉)

〉
nj
i=1

2

j=1

)

ιh

L̇(h)

τb1�b2

L̇
v(n1+n2),

〈〈
aj,i

〉〉nj
i=1

2
j=1

v(n1+n2)

(〈
�aj,i

〉
nj
i=1

2

j=1

)

L̇2;a1,a2

L̇
v(n1)�v(n2),

〈〈
aj,i

〉〉nj
i=1

2
j=1

can
v(n1+n2)�v(n1)�v(n2);

〈
L̇
(〈

aj,i
〉)〉nj

i=1
2

j=1

L2;b1,b2L̇2;b1,b2
can

v(n1+n2)�v(n1)�v(n2);
〈
ȯ
(
aj,i

)〉nj
i=1

2
j=1	0 	7

	6

	1

	2

	3

	4

(90)

86

it follows that

L̇2;b1,b2◦ (τb1 � τb2) = τb1�b2◦L2;b1,b2

which concludes the proof that τ is a monoidal natural transformation and also
the proof of the theorem.

Theorem 7.16. If the requirements of theorem 7.14 are met, then

Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉)

is isomorphic to the category
(
CX

)T of Eilenberg-Moore algebras for the monad
〈T,G ◦ � ◦ F,�〉 where T := G ◦ F : CX → CX .

Proof. First note that 〈T,G ◦ � ◦ F,�〉 is indeed a monad. Associativity of G◦�◦F
follows from naturality of � while the two identity laws follow from the equations
(� ◦ F) • (F ◦ �) = 1F and (G ◦ �) • (� ◦ G) = 1G which hold for any adjunction.
All of this works for any adjunction. There is in fact a rich theory surrounding
the relationship between adjunctions and their induced monads of which we
have only seen glimpses in this paper. The interested reader who is not already
familiar with these topics is referred to [Mac98, chapter VI].

Before we dive in let us calculate a little more explicitly some of the entities
which are involved here and which we will need.

We start by giving a more explicit description of the arrow � : F(ȯ) →̇ 〈o′,m′〉
induced by a morphism �′ : ȯ→̇G(〈o′,m′〉)— that is the unique � : F(ȯ) →̇ 〈o′,m′〉
such that �′ = G(�) •�ȯ. Consider diagram (91), in which h : a = 〈ai〉`(a)

i=1 →
b in ẼE (X,A, s, t) and all unlabelled arrows denote the appropriate structural
transformations. For the lower part of the diagram we assume that b = 〈b〉 and
the outermost part of the diagram only makes sense when h = �̃′E (〈 〈h〉〉). In
this diagram the pentagon consisting of the two parts 	1 and 	2 commutes by
diagram (75) which relates the induced morphisms for η and � and by diagram
(88) which defines the induced morphism for η. All other parts of the diagram
commute because the involved arrows can be seen as evaluations of paths whose
traces are equal. From this we see that the part of the diagram with the bigger
arrows commutes. The requirement that this part commute for all h in ẼE for
which t(h) = 〈b〉 also uniquely determines �.

As �〈o′,m′〉 is the morphism induced by 1G(〈o′,m′〉) we get that the diagram in
(92) commutes (where h ∈ A∪̇X with s (h) = a and t (h) = 〈b〉)

G(F(o′)) (b)o′ (b)

vt (h)(o′(b))

vs (h)(o′(a))

(
G
(

�〈o′,m′〉
))

b
)

can()�vt(h);o′(b)

m′(h)

ιo′;()←vs(h);�̃′
E

(〈〈h〉〉)

(92)

while KD

(
�〈o′,m′〉

)
is defined by the requirement that

KD(F(o′))(b)

KD (〈o′,m′〉)(a)

KD (〈o′,m′〉)(b)
ιo′;h

KD

(〈
o′,m′

〉)
(h)

(
KD

(
�〈o′,m′〉

))
b

. (93)

87

v(`(a)) (ȯ (a))KD(F(ȯ))(b)

KD (〈o′,m′〉)(a)

KD (〈o′,m′〉)(b)

v(`(a))
(
〈KD (〈o′,m′〉)(〈ai〉)〉`(a)

i=1

)

G(F(ȯ)) (b)o′ (b)vt (h)(o′(b))

vs (h)(o′(a))

vs (h)(ȯ(a))ιȯ;h

KD

(〈
o′,m′

〉)
(h)

(KD(�))b

v (`(a))
(〈

�−1〈
o′,m′ 〉

;ai
◦� ′

ai

〉̀
(a)i=1

)v (`(a))
(〈

� ′
ai

〉̀
(a)

i=1

)

(G(�))b

ι
ȯ;()←v(`(a));h

m′(h)

ιȯ;()←vs(h);�̃′
E

(〈〈h〉〉)

v
s (h)

(〈
� ′
a
i

〉̀
(a)i=1

)

	1

	2
(91)

88

commute for all h : a → b in ẼE .
Using the above diagram for KD

(
�F(ȯ)

)
and the definition of KD (F(ȯ))

(
g
)

(given in (83)) we see that the diagram in (94) commutes for all h : a →
b, g : b → c in ẼE (by the lemma about iterated colimits the requirement that
outer part of this diagram commute for these arrows even uniquely determines
KD

(
�F(ȯ)

)
).

KD(F(G (F (ȯ))))(c)

KD (F (ȯ))(b)

KD (F (ȯ))(c)

v(`(a)) (ȯ (a))

ιG(F(ȯ));g
KD(F(ȯ))

(
g
)

(
KD

(
�F(ȯ)

))
c

ιȯ;h

ιȯ;g◦h

(94)

We calculate the defining equation for F (�̇) = KD(F(�̇)) (where �̇ : ȯ→̇ȯ′).
This is the morphism induced by ηȯ′ •�̇.

v(`(b)) (ȯ (b))v(`(b)) (ȯ′ (b))

F (ȯ) (c)F (ȯ′) (c)

v(`(b))
(
〈F (ȯ′) (〈bi〉)〉`(b)

i=1

)

F (ȯ′) (b)

v(`(b))
(
〈�̇bi 〉

`(b)
i=1

)

(F (�̇))c

ιȯ;gιȯ′;gιȯ′;g◦1b
=

v(`(b))
(〈

(ηȯ′)bi

〉
`(b)
i=1

)

can...

F
(
ȯ′
)(

g
)

ιȯ′;1b

	1

	2
	0

(95)
In diagram (95) (in which, like we do for K, we write F (ȯ) (c) and mean that
we apply the functor component of F (ȯ) to c) the triangle 	1 commutes by an
equality-of-traces style argument, 	2 commutes by the definition of F (ȯ′)

(
g
)

and the outermost part of the diagram commutes by (88) which describes the
induced morphism. From this we glean that	0 commutes (and the requirement
that it commute for all appropriate g in ẼE uniquely determines F (�̇)).

Now we define two functors

V : Real (D,C) →
(
CX

)T and W :
(
CX

)T → Real (D,C)

and show that W ◦ V = 1Real(D,C) and V ◦W = 1(CX)T .
V sends any 〈o′,m′〉 ∈ Real (D,C) to

〈
o′,G

(
�〈o′,m′〉

)
: G(F(o′)) → o′

〉
and

any �′ : 〈o′,m′〉→̇ 〈o′′,m′′〉 to �′ :
〈
o′,G

(
�〈o′,m′〉

)〉
→̇
〈
o′′,G

(
�〈o′′,m′′〉

)〉
. We have

to show that G
(
�〈o′,m′〉

)
satisfies (62) and that �′ satisfies (63) (both from defi-

nition 6.1 of Eilenberg-Moore algebras and their morphisms). Commutativity of
the left diagram in (62) follows from naturality of � and the right hand diagram is
just the equation (G ◦ �) • (� ◦ G) = 1G which holds for any adjunction. Commu-
tativity of (63) also follows from naturality of �. So V is well-defined. (Note that
we could have defined a functor like this for any adjunction — again the reader
is referred to [Mac98, chapter VI] for a more thorough discussion.)

89

W sends any 〈o′,h′〉 ∈
(
CX

)T to 〈o′,m′〉 where m′ (h) is defined as

G(F(o′)) (b)o′ (b)

vt (h)(o′(b))

vs (h)(o′(a))

h′b

canvt(h)�();o′(b)

m′(h)
ιo′;()←vs(h);�̃′

E
(〈〈h〉〉)

(96)

(s (h) = a and t (h) = b) and any �′ : 〈o′,h′〉→̇ 〈o′′,h′′〉 to �′ : 〈o′,m′〉→̇ 〈o′′,m′′〉.
To see that W is well-defined we have to show that 〈o′,m′〉 thus defined satisfies
the set of equation-shapes D and that �′ is really a morphism of realizations.

vs (h)(o′(a))

G(F(o′)) (b)

o′ (b)

vt (h)(o′(b))

h′b

canvt(h)�();o′(b)

m′(h)

ιo′;()←vs(h);�̃′
E

(〈〈h〉〉)

vs (h)(o′′(a))

G(F(o′′)) (b)

o′′ (b)

vt (h)(o′′(b))

h′′b

canvt(h)�();o′′(b)

m′′(h)

ιo′′;()←vs(h);�̃′
E

(〈〈h〉〉)

vs(h)
(〈

�′ai

〉
`(a)
i=1

)

G
(
F
(
�′
))

b

�′b

vt(h)
(
�′b
) (97)

In diagram (97) (in which h ∈ A with s (h) = a = 〈ai〉`(a)
i=1 and t (h) = 〈b〉)

the two paths in the upper square have traces that are equal to those of the
two paths that make up the square 	0 in (95) for an appropriate selection of
generators and for an appropriate choice of c and b in (95). Therefore this
square commutes. The middle square commutes because �′ is a morphism of
algebras and the bottom square commutes by naturality of canvt(h)�(). This
shows that if 〈o′,m′〉 and 〈o′′,m′′〉 turn out to satisfy the equation-shapes D,
then �′ is really a morphism of realizations.

To see that m′ as defined in (96) satisfies the equation-shapes D we will show
that K (〈o′,m′〉) = KX,A,s,t,vs,vt,C (〈o′,m′〉) is defined by a diagram which has a
similar shape as that in (96). This diagram is shown in (98).

K (〈o′,m′〉) (a)

K (F (o′)) (b)K (〈o′,m′〉) (b)

K
(〈

o′,m′
〉)

(h)
ιo′;�̃E(h)

v(`(b))
(〈

h′bi

〉
`(b)
i=1

) (98)

90

(h : a → b = 〈bi〉`(b)
i=1 in ẼE .) From this it is then obvious that K (〈o′,m′〉) (h) de-

pends only on the equivalence class �̃E (h) and therefore that K (〈o′,m′〉) factors
through �̃E and therfore by lemma 7.9 that 〈o′,m′〉 satisfies the equation-shapes
in D.

(96) is compatible with our convention of extending m′ to X by sending all
elements of X to the appropriate identities because h′ satisfies h′•�o′ = 1o′ .
By applying v(`(b)) to multiple instances of (96) we see that (98) commutes
for arrows h = πm (〈 〈hi〉ni=1〉) ∈ E (X,A, s, t) which consist of a single row of
arrow-atoms — this is shown in the diagram below, in which s (hi) = ai, t (hi) =
〈bi〉 and a = �n

i=1 (ai), b = 〈bi〉ni=1.

v(n) (〈G(F(o′)) (bi)〉ni=1)v(n) (〈o′ (bi)〉ni=1)

v(n) (〈vt (hi)(o′(bi))〉ni=1)

v(n) (〈vs (hi)(o′(ai))〉ni=1)

K (〈o′,m′〉) (a)

K (〈o′,m′〉) (b) K (F (o′)) (b)

v(n)
(〈

h′bi

〉
n
i=1

)
can...

v(n)
(〈

m′(hi)
〉
n
i=1

)
v(n)

(〈
ιo′;()←vs(hi);�̃′E(〈〈hi〉〉)

〉
n
i=1

)

can...

ιo′;�̃E(h)

K
(〈

o′,m′
〉)

(h)

Now we proceed by induction over the number of rows in a representation
of h . So assume that h and g are arrows of E (X,A, s, t) with t

(
g
)
= c = 〈ci〉`(c)

i=1,
s
(

g
)
= b = 〈bi〉`(b)

i=1 = t(h) and s(h) = a such that (98) commutes for h and g .
Have a look at the diagram in (99). In this diagram the square marked with	1
is just the image under v(`(c))

C of multiple instances of the left hand diagram
in (62) which must hold for any Eilenberg-Moore algebra, and therefore 	1
commutes. 	2 is the square	0 from (95), so also commutes and commutativity
of 	3 is what we calculated in (94). The “triangles” marked with 	i commute
by the induction hypothesis. In combination this shows that the outermost
ovoid commutes and therefore completes the inductive step.

So now we know that both V and W are well-defined.
Comparing diagrams (92) and (96) we see that W ◦V is the identity functor

on objects. Comparing (98) and (93) we see that h′ and G
(
�W (〈o′,h′〉)

)
satisfy the

same equations. These equations uniquely determine them because 〈ιo′;h〉h in ẼE
t(h)=b

forms a colimiting cone to (K (F(o′))) (b). Therefore h′ and G
(
�W (〈o′,h′〉)

)
have

to be equal. This shows that V ◦W is the identity on objects. That both W ◦V
and V ◦W are the identity on arrows is now trivially clear from the definition
of W and V .

91

v(`(c))
(
〈T(T(o′)) (ci)〉`(c)

i=1

)
v(`(c))

(
〈T(o′) (ci)〉`(c)

i=1

)

v(`(c))
(
〈T(o′) (ci)〉`(c)

i=1

)
v(`(c))

(
〈o′ (ci)〉`(c)

i=1

)
	1

v(`(c))
(〈(

G
(

�F
(
o′
)))

ci

〉
`(c)
i=1

)

v(`(c))
(〈

h′ci

〉
`(c)
i=1

)
v(`(c))

(〈(
T
(
h′
))

ci

〉
`(c)
i=1

)
=
(
K
(
F
(
h′
)))

c

v(`(c))
(〈

h′ci

〉
`(c)
i=1

)

K (F(G(F(o′)))) (c)K (F (o′)) (c)

K (F (o′)) (c)K (〈o′,m′〉) (c)

(
K
(

�F
(
o′
)))

c

K(F(o′)) (b)

K (〈o′,m′〉) (b)

	2

K (〈o′,m′〉) (a)

	i

v(`(b))
(〈

h′bi

〉
`(b)
i=1

)

ιG
(
F
(
o′
))

;�̃E
(

g
)

ιo′;�̃E
(

g
)

ιo′;�̃E(h)

ιo′;�̃E
(

g◦h
)

K
(〈

o′,m′
〉)

(h)

K
(〈

o′,m′
〉)(

g
)

K
(〈

o′,m′
〉)(

g◦h
)

	i

	3

(99)

92

7.4 Putting it all together
As remarked at the beginning of section 4, each of the categories MonC, ActC,

Act C and BiActC can be regarded as a category of realizations satisfying some
set D of equation-shapes, described by the diagrams given in section 2 as axioms
for this category.

Now we know that these categories can in turn be regarded as categories
of Eilenberg-Moore algebras (provided the necessary coproducts exist in C and
that a�− and −� a preserve coproducts).

We immediately see (lemma 6.5) that the forgetful functor creates limits.
For this we do not really need the coproducts in C though — for any spe-

cific category of realizations satisfying some set of equation-shapes it is an easy
thing to construct a proof which is very similar to the proof of lemma 6.5, which
shows that the forgetful functor creates limits — independently from whether
free objects exist or not. The only thing we really need are the conditions 1
and 2 from the statement of theorem 7.14. If we want to prove that the forget-
ful functor creates limits for an arbitrary category of realizations, then going
through the theory of Eilenberg-Moore algebras makes things a little simpler,
because it saves us from the technicality of having to deal with diagrams whose
shape is not given explicitly.

But for colimits it’s not as simple, because for example in the category of
monoids in Set the forgetful functor does not create colimits. This is where the
theory we have developed really becomes relevant.

There is one thing we still need to check though. We need to check that under
appropriate assumptions the functor T just constructed satisfies the conditions
of theorem 6.13 — specifically we want to show that

Lemma 7.17. If the requirements of theorem 7.14 are met and for all a ∈ C the
functors a�− and −�a preserve not only the coproducts required in theorem 7.14
but also reflexive coequalizers, then the functor T from theorem 7.16 preserves
reflexive coequalizers.

Note that if C has reflexive coequalizers, then the hypotheses above imply
that a�− and −� a preserve all colimits of functors from categories which are
small enough (because arbitrary colimits can be constructed from coproducts
and reflexive coequalizers).

Proof. Building on diagram (95) we see that for �̇ : ȯ→̇ȯ′ in CX the value
T(�̇) = G(F(�̇)) of the arrow function of T at �̇ is given by the requirement that
the diagram below commute for all g in ẼE with t

(
g
)
= 〈c〉 (where s

(
g
)
= b =

〈b〉`(b)
i=1).

v(`(b)) (ȯ (b))v(`(b)) (ȯ′ (b))

(G ◦ F) (ȯ) (c)(G ◦ F) (ȯ′) (c)

v(`(b))
(
〈�̇bi 〉

`(b)
i=1

)

((G◦F)(�̇))c

ι
ȯ;()←v(`(b));g

ι
ȯ′;()←v(`(b));g

(100)

This means that not only the object function of T but also the arrow function of
T is given by a coproduct. More specifically, T can be written as the composite

93

below.
CX

CI

∏
c∈X

∏
g in ẼE
t
(

g
)
=〈c〉

`
(
s
(

g
))∏

i=1

C

∏
c∈X

∏
g in ẼE
t
(

g
)
=〈c〉

C

∏
c∈X

C

CX

− ◦$

∼=

∏
c∈X

∏
g in ẼE
t
(

g
)
=〈c〉

v
(
`
(
s
(

g
)))

C

∏
c∈X

(∐
C

Ja

)
∼=

The product which appears as the third category from the top is isomorphic to
a functor category CI , where I is the discrete category

I :=
{〈

a, g , i
〉
∈ X ×Arr

(
ẼE
)
× N

∣∣∣t(g) = 〈a〉 and 1 ≤ i ≤ `
(
s
(

g
))}

.

The functor −◦$ is the functor which works on objects and morphisms of CX

(remember that these are functors and natural transformations respectively) by
prepending the functor $: I → X (which is really only a function) given by

$
(〈
a, g , i

〉)
:= πi

(
s
(

g
))

(and thereby giving a functor / natural transformation from I to C). The
functor − ◦ $ preserves colimits because colimits in functor categories can be
calculated pointwise (see for example [Mac98, section V.3]).

We know from lemma 5.8 that under our hypotheses v(n)C preserves reflexive
coequalizers. Again, because colimits in functor categories can be calculated
pointwise we get that

∏
c∈X

∏
g in ẼE
t
(

g
)
=〈c〉

v
(
`
(
s
(

g
)))

C preserves reflexive coequalizers.

The functor which we called
∐

C
J
:
∏

j∈J C → C above is the functor which
sends a collection of objects indexed by the set J to their coproduct (this func-
tor is usually not unique but any one will do). Ja (for a ∈ X) is the set{

g ∈ Arr
(
ẼE
)∣∣∣t(g) = 〈a〉

}
. Using first lemma 5.1 with I = Ja and J = Jr

and then lemma 5.2 with I = Jr and J = Ja we see that
∐

C
Ja

preserves reflex-
ive coequalizers. Using that colimits can be calculated pointwise one more time

94

we get that
∏

c∈X

∐
C

Ja
preserves reflexive coequalizers. And of course a com-

posite of functors which preserve reflexive coequalizers also preserves reflexive
coequalizers.

Corollary 7.18. If 〈C,�, e, α, λ, ρ〉 is a cocomplete monoidal category and both
a�− and −� a preserve colimits for all a ∈ C and if

1. `(t (f)) = 1 for all f ∈ A and

2. `
(
t
(

p
))

= `
(
t
(

q
))

= 1 for all
〈

p, q
〉
∈ Tr(D),

then
Real (X,A, s, t, vs, vt, D, 〈C,�, e, α, λ, ρ〉)

is cocomplete.

95

8 The tensor product over a monoid and serial
composition of automata

In this chapter we define the tensor product of biacts over a monoid and the
operation of serial composition for automata. We define a functor which encodes
automata in biacts and show that under this encoding serial composition runs
parallel to taking the tensor product over a monoid.

8.1 Supporting structures for acts on the level of cate-
gories

Earlier we mentioned that the category of biacts can be arrived at in an iter-
ated fashion by taking the category of right acts in the category of left acts in
some monoidal category, or the other way round — provided that we have used
appropriate definitions for right and left acts.

As mentioned earlier, if we want this to work out, then clearly the monoid
which acts and the object being acted on need to belong to different categories,
because the object being acted on has some additional structure — namely the
action from the other side — while the monoid generally doesn’t. This means
we need to think about bifunctors � : C×D → D where C contains the monoid
〈m,µ, η〉 and D contains the object a being acted on. To be able to say that
〈m,µ, η〉 is a monoid, C has to be a monoidal category 〈C,�, e, α, λ, ρ〉. It also
makes sense to require some kind of associativity between � and �. This leads
to the following concept.

Definition 8.1. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category, let D be a cate-
gory and let � : C × D → D be a bifunctor. Further let α̂a,b,d : a � (b � d) →
(a� b) � d and λ̂d : e � d → d (where a, b ∈ C and d ∈ D) be natural transfor-
mations such that the following diagrams commute for all a, b, c ∈ C, d ∈ D.

a � (b � (c � d))(a� b) � (c � d)((a� b)� c) � d

a � ((b� c) � d)(a� (b� c)) � d

α̂a,b,c�dα̂a�b,c,d

1a�α̂b,c,d

α̂a,b�c,d

αa,b,c�1d

(101)

a � (e � d)(a� e) � d

a � d

α̂a,e,d

1a�λ̂d
ρa�1d

(102)

Then we say that
〈
�, α̂, λ̂

〉
is a left (tensor) action of the monoidal category

〈C,�, e, α, λ, ρ〉 on D.
Again there is also the symmetric concept of a right action of a monoidal

category, which is the same thing as a left action of the monoidally opposite
category.

96

8.2 Acts revisited
We can now generalize definitions 2.4 and 2.5.

Definition 8.2. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category with an action〈
�, α̂, λ̂

〉
on a category D. Let 〈m,µ, η〉 be a monoid in 〈C,�, e, α, λ, ρ〉 and let

a ∈ D. A left action of 〈m,µ, η〉 on a is a morphism h : m � a → a of D such
that the following diagrams commute.

m � (m � a)(m�m) � a

m � a

m � a

a

α̂m,m,aµ�1a

h 1m�h

h

e � am � a

a

η�1a

h
λ̂a

(103)

Again we call the pair 〈h, a〉 a left 〈m,µ, η〉-act in D, or just a left (monoid) act.
Flipping the sides gives the definition of a right 〈m,µ, η〉-act.

Definition 8.3. The category 〈m,µ, η〉−ActD of left 〈m,µ, η〉-acts in D has
objects all left 〈m,µ, η〉-acts in D and if 〈h, a〉, 〈h′, a′〉 are left 〈m,µ, η〉-acts in
D then f : 〈h, a〉 → 〈h′, a′〉 is a morphism of left 〈m,µ, η〉-acts if f : a → a′ and

m � am � a′

aa′

hh′

1m�f

f

(104)

commutes.

Definition 8.4. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category. Let 〈m,µ, η〉,
〈ṁ, µ̇, η̇〉 be monoids in C. We extend the monoidal product � to a functor

�
mṁ

: 〈m,µ, η〉−Act × Act−〈ṁ, µ̇, η̇〉 → 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉

by the definitions

〈h, a〉 �
mṁ

〈b, k〉 :=

〈
h

m (a

a
1

b)

b

, a� b,
1

(a

a
k

b) m

b

〉

for 〈h, a〉 ∈ 〈m,µ, η〉−Act , 〈b, k〉 ∈ Act−〈ṁ, µ̇, η̇〉

f �
mṁ

g :=



f � g :

〈
h

m (a

a
1

b)

b

, a� b,
1

(a

a
k

b) ṁ

b

〉

→

〈
h′

m (a′

a′
1

b′)

b′
, a′ � b′,

1

(a′

a′
k′
b′) ṁ

b′

〉

for morphisms f : 〈h, a〉 → 〈h′, a′〉 in 〈m,µ, η〉−Act and
g : 〈b, k〉 → 〈b′, k′〉 in Act−〈ṁ, µ̇, η̇〉 .

(105)

(Remember the notation introduced at the end of chapter 3 on coherence.)

97

Lemma 8.5. This is well-defined.

For reference let us first restate the defining diagrams for our algebraic struc-
tures in the visual calculus developed in chapter 3. For monoids we have already
done this in (50) and (51) of section 4.2. Here’s the rest.
Definition 2.2. g : 〈m,µ, η〉 → 〈ṁ, µ̇, η̇〉 is a morphism of monoids if (diagram
(7)):

g

m

g

m

µ̇
ṁ ṁ

ṁ

=
µ

m m

g

m

ṁ

(106)

Definition 2.4. 〈h, a〉 is a left 〈m,µ, η〉-act if (diagram (8)):

µ
m m

1

a

h

m a

a

=
1

m

h

m a

h

m a

a

η 1

a

h

m a

a

= 1

a

a

(107)

〈b, k〉 is a right 〈m,µ, η〉-act if:

1

b
µ

m m

k

b m

b

=
k

b m

1

m

k

b m

b

1

b

η

k

b m

b

=
1

b

b

(108)

Definition 2.5. f : 〈h, a〉 → 〈h′, a′〉 is a morphism of left 〈m,µ, η〉-acts if
(diagram (9)):

1

m

f

a

h′
m a′

a′

=
h

m a

f

a

a′

(109)

g : 〈b, k〉 → 〈b′, k′〉 is a morphism of right 〈m,µ, η〉-acts if:

g

b

1

m

k′
b′ ṁ

b′

=
k

b m

g

b

b′

(110)

Definition 2.7. 〈h, a, k〉 is a 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact if 〈h, a〉 is a left 〈m,µ, η〉-
act, 〈a, k〉 is a right 〈ṁ, µ̇, η̇〉-act and if (diagram (11)):

1

m

k

a ṁ

h

m a

a

=
h

m a

1

ṁ

k

a ṁ

a

(111)

98

Definition 2.10. 〈a, δ〉 is an 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-automaton if (diagrams (12)
and (13)):

µ
m m

1

a

δ

m a

a ṁ

=

1

m

δ

m a

δ

m a

1

ṁ

1

a

a
µ̇

ṁ ṁ

ṁ

(112)

η 1

a

δ

m a

a ṁ

= 1

a

a
η̇
ṁ

(113)

Definition 2.11. f : 〈a, δ〉 → 〈b, ϑ〉 is a morphism of 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-autom-
ata if (diagram (14)):

1

m

f

a

ϑ

m b

b ṁ

=
δ

m a

f

a

b
1

ṁ

ṁ

(114)

Proof of lemma 8.5. We have to show that 〈h, a〉 �
mṁ

〈b, k〉 is a biact, that is, that

µ
m m

1

a

1

b

h

m a

a
1

b

b

=
1

m

h

m a

1

b

h

m a

a
1

b

b

and η 1

a

1

b

h

m a

a
1

b

b

=
1

a

a
1

b

b

,

— which obviously follows from (107) —, that the symmetric equations hold
for the right action — which is also clear — and that the actions commute —
which is also clear because after a shift both ways of composing the actions give
the picture

h

m a

a
k

b ṁ

b

—;

and we have to show that f � g commutes with both actions if f is a morphism
of left 〈m,µ, η〉-acts and g is a morphism of right 〈ṁ, µ̇, η̇〉-acts.

h

m a

1

b

f

a

a′
g

b

b′

=
1

m

f

a

g

b

h′
m a′

a′
1

b′

b′

(115)

by (109) and a shift. The other side is again symmetric.

99

The following will sometimes allow us to skip a few case distinctions.

Observation 8.6. Let 〈C,�, e, α, λ, ρ〉 be a monoidal category.
e := 〈e, λe = ρe, 1e〉 is a monoid and

e−Act ∼= Act−e ∼= e−Act−e ∼= C
〈m,µ, η〉−Act−e ∼= 〈m,µ, η〉−Act
e−Act−〈ṁ, µ̇, η̇〉 ∼= Act−〈ṁ, µ̇, η̇〉

where ∼= denotes isomorphism of categories.

This means that definition 8.4 also gives functors

�
ṁ

: C ×Act−〈ṁ, µ̇, η̇〉 → Act−〈ṁ, µ̇, η̇〉∼= = ∼=

�
eṁ

: e−Act ×Act−〈ṁ, µ̇, η̇〉 → e−Act−〈ṁ, µ̇, η̇〉

�
m

: Act−〈m,µ, η〉× C → 〈m,µ, η〉−Act= ∼= ∼=

�
me

: Act−〈m,µ, η〉× e−Act → 〈m,µ, η〉−Act−e

by composition with these isomorphisms in the appropriate places.

Lemma 8.7.
〈
�
ṁ

, α̂
ṁ

, λ̂
ṁ
〉

is a left tensor action of 〈C,�, e, α, λ, ρ〉 on Act−

〈ṁ, µ̇, η̇〉, where α̂
ṁ is just α regarded as a morphism of Act−〈ṁ, µ̇, η̇〉 and λ̂

ṁ

is just λ regarded as a morphism of Act−〈ṁ, µ̇, η̇〉. This means that we are
also stating that α and λ can be regarded as morphisms of Act−〈ṁ, µ̇, η̇〉.

If 〈h, a〉 ∈ 〈m,µ, η〉−Act, 〈b, k〉 ∈ Act−〈ṁ, µ̇, η̇〉, then αa,c,b can also be
regarded as a morphism

α̂
mṁ

〈h,a〉,c,〈b,k〉 : 〈h, a〉 �
mṁ
(
c�

ṁ

〈b, k〉
)
→
(
〈h, a〉 �

m

c
)

�
mṁ

〈b, k〉

of biacts. α̂
mṁ is natural.

Proof. In our calculus both composites of αa,c,b with the right action give the
left hand picture below and both composites of lambda with the right action
give the right hand picture below.

1

(a

(a
1

(c

c)
k

b))ṁ

b
k

(·b) ṁ

b

Both composites of αa,c,b with the left action give the picture below.

h

m (a

(a
1

(c

c)
1

b))

b

The forgetful functors from the categories Act−〈ṁ, µ̇, η̇〉 and 〈m,µ, η〉−Act−
〈ṁ, µ̇, η̇〉 to C are obviously faithful and therefore commutativity of the diagrams
for α and λ implies commutativity of the diagrams (101) and (102) for α̂ṁ and
λ̂
ṁ , and naturality of α and λ implies naturality of α̂ṁ , α̂mṁ and λ̂

ṁ .

100

Lemma 8.8.

〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 ∼= 〈m,µ, η〉−ActAct−〈ṁ,µ̇,η̇〉 (116)
∼= 〈m,µ,η〉−ActAct−〈ṁ, µ̇, η̇〉

If 〈C,�, e, α, λ, ρ〉 is a monoidal category and 〈m,µ, η〉, 〈ṁ, µ̇, η̇〉 are monoids
in 〈C,�, e, α, λ, ρ〉 then the category of 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biacts is isomorphic
to the category of left 〈m,µ, η〉-acts in the category of right 〈ṁ, µ̇, η̇〉-acts in C
(where the action of C on Act−〈ṁ, µ̇, η̇〉 is the one from the previous lemma)
and also to the category of right 〈ṁ, µ̇, η̇〉-acts in the category of left 〈m,µ, η〉-acts
in C.

Proof. Just expand the definitions.

In the sequel we will silently identify all of the categories in (116) and as-
sume that the reader can mentally insert the appropriate isomorphisms in the
appropriate places.

Note that observation 6.2 is still true in its essence if instead of just a monoi-
dal category we have an action

〈
�, α̂, λ̂

〉
of a monoidal category 〈C,�, e, α, λ, ρ〉

on some other category D. In this case the monad
〈
Ṫ , µ̇, η̇

〉
is given by

Ṫ : D → D
Ṫ := m �−
µ̇ : Ṫ ◦ Ṫ→̇Ṫ : D → D
µ̇d : m � (m � d) → m � d

µ̇d = (µ � 1d) ◦α̂m,m,d

η̇ : 1D→̇Ṫ : D → D
η̇d : d → m � d

η̇d = (η � 1d) ◦λ̂
−1
d .

Of course this works symmetrically for the other side.
So with the notation

mT := m�− : C → C
Ṫm := −� ṁ : C → C

mT
ṁ

:= m�
ṁ

− : Act−〈ṁ, µ̇, η̇〉 → Act−〈ṁ, µ̇, η̇〉
m

Ṫm := − �
m

ṁ : 〈m,µ, η〉−Act → 〈m,µ, η〉−Act

(117)

we can say that if 〈m,µ, η〉 and 〈ṁ, µ̇, η̇〉 are monoids in C, then for all of the
above functors there is a monad which they are a part of and

Observation 8.9.

〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 ∼=
(

C
Ṫm
)mT

ṁ

∼=
(

CmT
)m

Ṫm

.

101

Let us name the forgetful functors.

mG := GmT

: 〈m,µ, η〉−Act → C
Gṁ := G

Tṁ : Act−〈ṁ, µ̇, η̇〉 → C
m

Gṁ := G
m
Tṁ : 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 → 〈m,µ, η〉−Act

mG
ṁ

:= GmT
ṁ

: 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 → Act−〈ṁ, µ̇, η̇〉

mGṁ : 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 → C

(118)

Observation 8.10.

Gṁ ◦ mG
ṁ

= mG ◦
m

Gṁ = mGṁ

Gṁ ◦ mT
ṁ

= mT ◦Gṁ

mG ◦
m

Ṫm = Ṫm ◦ mG

Now we can combine all this with lemma 6.6.

Lemma 8.11. If L : I → 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉 is a functor, mGṁ ◦ L has a
colimit and both mT and Ṫm preserve colimits of T ◦mGṁ ◦L for all T which are a
— possibly empty — composite of mTs and Ṫms, then mG

ṁ

and
m

Gṁ create colimits
of L.

Proof. We show that mG
ṁ

creates colimits for L. The proof for
m

Gṁ is symmetric.
Lemma 6.6 shows that in this situation Gṁ creates colimits of mG

ṁ

◦ L and
therefore if mGṁ ◦L = Gṁ ◦ mG

ṁ

◦L has a colimit, then mG
ṁ

◦L has a colimit 〈l, τ〉
and this colimit is preserved by Gṁ.

Because mT preserves colimits of Gṁ ◦ mG
ṁ

◦ L and because mT ◦Gṁ = Gṁ ◦ mT
ṁ

we get that
〈(

Gṁ ◦ mT
ṁ
)
(l) , Gṁ ◦ mT

ṁ

◦ τ
〉
is a colimit of Gṁ ◦ mT

ṁ

◦ mG
ṁ

◦ L.

Because Ṫm and Ṫm ◦ Ṫm preserve colimits of Gṁ ◦mT
ṁ

◦mG
ṁ

◦L = ṁT◦Gṁ ◦mG
ṁ

◦L
we get from lemma 6.6 that Gṁ creates colimits of mT

ṁ

◦mG
ṁ

◦L and therefore there
is a unique cone 〈l′, τ ′〉 which is mapped to

〈(
Gṁ ◦ mT

ṁ
)
(l) , Gṁ ◦ mT

ṁ

◦ τ
〉
under

Gṁ and this cone is a colimit of mT
ṁ

◦ mG
ṁ

◦ L. But the cone
〈

mT
ṁ

(l) ,mT
ṁ

◦ τ
〉
is

mapped to
〈(

Gṁ ◦ mT
ṁ
)
(l) , Gṁ ◦ mT

ṁ

◦ τ
〉
under Gṁ. Therefore

〈
mT

ṁ

(l) ,mT
ṁ

◦ τ
〉

is a colimit of mT
ṁ

◦ mG
ṁ

◦ L — that is mT
ṁ

preserves the colimit 〈l, τ〉.
Substituting mT

ṁ

◦ mT
ṁ

for mT
ṁ

and mT ◦ mT for mT everywhere above we see
that mT

ṁ

◦ mT
ṁ

also preserves this colimit. (Where we use that Gṁ ◦ mT
ṁ

◦ mT
ṁ

=

mT ◦Gṁ ◦ mT
ṁ

= mT ◦ mT ◦Gṁ.)
By remark 6.7 mT

ṁ

and mT
ṁ

◦mT
ṁ

preserve all colimits of mG
ṁ

◦L and again by
lemma 6.6 we get that mG

ṁ

creates colimits of L.

Corollary 8.12. If m�− and −� ṁ preserve colimits of T ◦ mGṁ ◦ L (for all
T as in the lemma above), then mGṁ creates colimits of L.

Proof. This is just lemma 6.6 combined with the previous lemma.

We can now define the tensor product of acts over some monoid.

102

Definition 8.13. Let 〈m,µ, η〉, 〈ṁ, µ̇, η̇〉, 〈m̈, µ̈, η̈〉 be monoids in a monoidal
category 〈C,�, e, α, λ, ρ〉.

Let 〈h : m� a → a, a, k̇ : a� ṁ → a〉 be a 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact and let
〈ḣ : ṁ� b → b, b, k̈ : b� m̈ → b〉 be a 〈ṁ, µ̇, η̇〉-〈m̈, µ̈, η̈〉-biact.

The tensor product
〈h, a, k̇〉m©̇mm̈ 〈ḣ, b, k̈〉

of 〈h, a, k̇〉 and 〈ḣ, b, k̈〉 over 〈ṁ, µ̇, η̇〉 is an object of 〈m,µ, η〉−Act−〈m̈, µ̈, η̈〉
and is defined as the coequalizer of the two arrows

(
k̇ �

mm̈

1〈b,k̈〉

)
◦α̂
mm̈

〈h,a〉,ṁ,〈b,k̈〉

and 1〈h,a〉 �
mm̈

ḣ (shown in (119)), if that coequalizer exists. By corollary 8.12
this is definitely the case if the base category has coequalizers and if m�− and
−� ṁ preserve coequalizers.

〈h, a〉 �
mm̈

〈b, k̈〉 〈h, a〉 �
mm̈

〈b, k̈〉

(
〈h, a〉 �

m

ṁ
)

�
mm̈

〈b, k̈〉 〈h, a〉 �
mm̈
(
ṁ�

m̈

〈b, k̈〉
)

k̇ �
mm̈

1〈b,k̈〉 1〈h,a〉 �
mm̈

ḣ

α̂
mm̈

〈h,a〉,ṁ,〈b,k̈〉

(119)

Lemma 8.14. When the tensor product over a monoid, as defined above, exists
everywhere, then it is a functor

m©̇mm̈ : 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉 →
〈m,µ, η〉−Act−〈m̈, µ̈, η̈〉 (120)

Or, to be more exact, there is a unique way of extending the definition above to
a functor in such a way that the collection of coequalizers turns into a natural
transformation from �

mm̈

◦
(

m

Gṁ × ṁG
m̈
)

to that functor.

Proof. We show that the tensor product over a monoid as defined in 8.13 is a
limit with a parameter — that is, that there is a trifunctor

L : Jt × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉 →
〈m,µ, η〉−Act−〈m̈, µ̈, η̈〉

such that 〈h, a, k̇〉m©̇mm̈ 〈ḣ, b, k̈〉 is the colimit of L (−, 〈h, a, k̇〉, 〈ḣ, b, k̈〉). From this
the statement of the theorem follows. (As mentioned in lemma 5.1, if this last
part does not seem clear to to reader they can find this discussed in [Mac98,
section V.3.].)

Definition 8.15. The category Jt is the category depicted below.

b b

a′ a

f g

h

(121)

The category J ′t is the category depicted above sans the arrow h .

103

We define two functors

Ll : J
′
t → 〈m,µ, η〉−Act〈m,µ,η〉−Act−〈ṁ,µ̇,η̇〉

Lr : J ′t → Act−〈m̈, µ̈, η̈〉〈ṁ,µ̇,η̇〉−Act−〈m̈,µ̈,η̈〉

Ll (a) :=
m

Gṁ Lr (a) := ṁT
m̈

◦ ṁG
m̈

Ll (a
′) :=

m

Ṫm ◦
m

Gṁ Lr (a
′) := ṁG

m̈

Ll (b) :=
m

Gṁ Lr (b) := ṁG
m̈

Ll

(
f
)
:=

m

Gṁ ◦
m

ε̇m Lr

(
f
)
:= 1

ṁG
m̈

Ll

(
g
)
:= 1m

Gṁ

Lr

(
g
)
:= ṁG

m̈

◦ ṁε
m̈

(122)

where
m

ε̇m is the counit of the adjunction of which
m

Gṁ is the right component and
ṁε
m̈

is the counit of the adjunction of which ṁG
m̈

is the right component — that
is

m

Gṁ

(
m

ε̇m

)
sends any 〈m,µ, η〉-〈ṁ, µ̇, η̇〉-biact to its right action considered as a

morphism of left 〈m,µ, η〉-acts and ṁG
m̈
(

ṁε
m̈
)
sends any 〈ṁ, µ̇, η̇〉-〈m̈, µ̈, η̈〉-biact

to its left action considered as a morphism of right 〈m̈, µ̈, η̈〉-acts.
Define L′ as the composite

J ′t × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉

J ′t × J ′t × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉

J ′t × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× J ′t × 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉

〈m,µ, η〉−Act〈m,µ,η〉−Act−〈ṁ,µ̇,η̇〉 × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉×
Act−〈m̈, µ̈, η̈〉〈ṁ,µ̇,η̇〉−Act−〈m̈,µ̈,η̈〉 × 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉

〈m,µ, η〉−Act × Act−〈m̈, µ̈, η̈〉

〈m,µ, η〉−Act−〈m̈, µ̈, η̈〉

∆J′t
×1×1

shuffle

Ll×1×Lr×1

E〈m,µ,η〉−Act〈m,µ,η〉−Act−〈ṁ,µ̇,η̇〉×E〈m̈,µ̈,η̈〉−Act〈ṁ,µ̇,η̇〉−Act−〈m̈,µ̈,η̈〉

�
mm̈

(123)

where ∆J′t
: J ′t → J ′t × J ′t is the functor f 7→ 〈f, f〉; the second functor (la-

belled “shuffle”) is the obvious functor which reorders the components of its
argument and which has the specified source and target; and what we have

104

called E〈m,µ,η〉−Act〈m,µ,η〉−Act−〈ṁ,µ̇,η̇〉 and E〈m̈,µ̈,η̈〉−Act〈ṁ,µ̇,η̇〉−Act−〈m̈,µ̈,η̈〉 are the
evaluation functors.

Define

L : Jt × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉 →
〈m,µ, η〉−Act−〈m̈, µ̈, η̈〉

as the functor which is equal to L′ on

Jt × 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Act−〈m̈, µ̈, η̈〉

and which is defined on the arrows

〈h , f, g〉 : 〈a, 〈h, a, k̇〉, 〈ḣ, b, k̈〉〉 → 〈a′, 〈h′, a′, k̇′〉, 〈ḣ′, b′, k̈′〉〉

as

L (h , f, g) : 〈h, a〉 �
mm̈
(
ṁ�

m̈

〈b, k̈〉
)
→
(
〈h′, a′〉 �

m

ṁ
)

�
mm̈

〈b′, k̈′〉

L (h , f, g) :=
((

m

Gṁ (f) �
m

1ṁ

)
�

mm̈

ṁG
m̈

(g)
)
◦α̂
mm̈

〈h,a〉,ṁ,〈b,k̈〉

= α̂
mm̈

〈h′,a′〉,ṁ,〈b′,k̈′〉◦
(

m

Gṁ (f) �
mm̈
(
1ṁ �

m̈

ṁG
m̈

(g)
))

(where α̂mm̈ is the natural transformation from lemma 8.7). Because of the struc-
ture of Jt there is exactly one functor which satisfies these requirements.

Definition 8.16. Let 〈m,µ, η〉, 〈ṁ, µ̇, η̇〉, 〈m̈, µ̈, η̈〉 be monoids in some monoidal
category 〈C,�, e, α, λ, ρ〉. Define a functor

m⊃̇mm̈

: 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉× 〈ṁ, µ̇, η̇〉−Aut−〈m̈, µ̈, η̈〉 →

〈m,µ, η〉−Aut−〈m̈, µ̈, η̈〉 (124)

〈a, δ〉
m⊃̇mm̈

〈b, ϑ〉 :=

〈
a� b,

δ

m (a

1

b)

1

a

(a
ϑ

ṁ b

b) m̈

〉

f
m⊃̇mm̈

g := f � g for f : 〈a, δ〉 → 〈a′, δ′〉 and g : 〈b, ϑ〉 → 〈b′, ϑ′〉 .

We call 〈a, δ〉m⊃̇mm̈ 〈b, ϑ〉 the serial composition of 〈a, δ〉 and 〈b, ϑ〉.

Lemma 8.17. This is really a functor.

Proof. We have to check that the structure defined is an automaton and that
f�g is a morphism of automata. Compatibility with composition of morphisms

105

and with identities is then obvious from the definitions.

1

m

δ

m a

1

b

1

m

1

a

ϑ

ṁ b

δ

m a

1

b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

shift
=

1

m

δ

m a

1

b

δ

m a

1

ṁ

1

b

1

a

1

ṁ

ϑ

ṁ b

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

(112)
=

1

m

δ

m a

1

b

δ

m a

1

ṁ

1

b

1

a
µ̇

ṁ ṁ

1

b

1

a

a
ϑ

ṁ b

b m̈

(112)
=

µ
m m

1

a

1

b

δ

m a

1

b

1

a

a
ϑ

ṁ b

b m̈

η 1

a

1

b

δ

m a

1

b

1

a

a
ϑ

ṁ b

b m̈

(113)
=

1

a

η̇ 1

b

1

a

a

ϑ

ṁ b

b m̈

(113)
=

1

a

a

1

b

b

η̈

m̈

1

m

f

a

g

b

δ′
m a′

1

b′

1

a′

a′
ϑ′

ṁ b′

b′ m̈

(114)
and shift
=

δ

m a

1

b

f

a

1

ṁ

g

b

1

a′

a′
ϑ′

ṁ b′

b′ m̈

(114)
and shift
=

δ

m a

1

b

1

a

ϑ

ṁ b

f

a

a′
g

b

b′
1

m̈

m̈

We can use biacts to represent automata.

Definition 8.18. Let 〈m,µ, η〉, 〈ṁ, µ̇, η̇〉 be monoids in a monoidal category
〈C,�, e, α, λ, ρ〉. Define a functor

m

Ξ
ṁ

: 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉 → 〈m,µ, η〉−Act−〈ṁ, µ̇, η̇〉

by

m

Ξ
ṁ

(〈a, δ〉) :=

〈
δ

m (a

1

ṁ)

1

a

a
µ̇

ṁ ṁ

ṁ

, a� ṁ,
1

(a

a
µ̇

ṁ) ṁ

ṁ

〉

for 〈a, δ〉 ∈ 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉

106

m

Ξ
ṁ

(f) := f � 1ṁ :

〈
δ

m (a

1

ṁ)

1

a

a
µ̇

ṁ ṁ

ṁ

, a� ṁ,
1

(a

a
µ̇

ṁ) ṁ

ṁ

〉
→

〈
δ′

m (a′

1

ṁ)

1

a′

a′
µ̇

ṁ ṁ

ṁ

, a′ � ṁ,
1

(a′

a′
µ̇

ṁ) ṁ

ṁ

〉

for f : 〈a, δ〉 → 〈a′, δ′〉 in 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉

Lemma 8.19. This makes sense.

Proof. We need to show that
m

Ξ
ṁ

(〈a, δ〉) is a biact and that
m

Ξ
ṁ

(f) is a morphism
of biacts. Compatibility with composition and identities is again obvious from
the definitions.

Left action:

1

m

δ

m a

1

ṁ

1

m

1

a
µ̇

ṁ ṁ

δ

m a

1

ṁ

1

a

a
µ̇

ṁ ṁ

ṁ

shift
=

1

m

δ

m a

1

ṁ

δ

m a

1

ṁ

1

ṁ

1

a

1

ṁ
µ̇

ṁ ṁ

1

a

a
µ̇

ṁ ṁ

ṁ

(50)
=

1

m

δ

m a

1

ṁ

δ

m a

1

ṁ

1

ṁ

1

a
µ̇

ṁ ṁ

1

ṁ

1

a

a
µ

m m

m

(112)
=

µ
m m

1

a

1

ṁ

δ

m a

1

ṁ

1

a

a
µ̇

ṁ ṁ

ṁ

η 1

a

1

ṁ

δ

m a

1

ṁ

1

a

a
µ̇

ṁ ṁ

ṁ

(112)
=

1

a

η̇ 1

ṁ

1

a

a

µ̇

ṁ ṁ

ṁ

(51)
=

1

a

a
1

ṁ

ṁ

That (1 � µ̇) : (a� ṁ)� ṁ → a� ṁ is a right action follows directly from the
unit and associativity axioms for the monoid 〈ṁ, µ̇, η̇〉.

m

Ξ
ṁ

(f) is a morphism of
left acts:

δ

m a

1

ṁ

1

a
µ̇

ṁ ṁ

f

a

a′
1

ṁ

ṁ

shift
=

δ

m a

1

ṁ

f

a

1

ṁ

1

ṁ

1

a′

a′
µ̇

ṁ ṁ

ṁ

(114)
=

1

m

f

a

1

ṁ

δ′
m a′

1

ṁ

1

a′

a′
µ̇

ṁ ṁ

ṁ

107

m

Ξ
ṁ

(f) is a morphism of right acts:

1

a
µ̇

ṁ ṁ

f

a

a′
1

ṁ

ṁ

shift
=

f

a

1

ṁ

1

ṁ

1

a′

a′
µ̇

ṁ ṁ

ṁ

Theorem 8.20. The functors(
m

Ξ
ṁ

(−)
)

m©̇mm̈

(
ṁ

Ξ
m̈

(−)
)

and
m

Ξ
m̈
(
−

m⊃̇mm̈

−
)

are naturally isomorphic.
The tensor product

(
m

Ξ
ṁ

(〈a, δ〉)
)

m©̇mm̈

(
ṁ

Ξ
m̈

(〈b, ϑ〉)
)

over 〈ṁ, µ̇, η̇〉 exists for
all

〈a, δ〉 ∈ 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉, 〈b, ϑ〉 ∈ 〈ṁ, µ̇, η̇〉−Aut−〈m̈, µ̈, η̈〉 .

Proof. We prove this by showing that for every pair of objects

〈a, δ〉 ∈ 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉, 〈b, ϑ〉 ∈ 〈ṁ, µ̇, η̇〉−Aut−〈m̈, µ̈, η̈〉

there is a colimiting cone from L
(
−,

m

Ξ
ṁ

(〈a, δ〉) ,
ṁ

Ξ
m̈

(〈b, ϑ〉)
)
(L is defined in the

proof of lemma 8.14) to
m

Ξ
m̈
(
〈a, δ〉m⊃̇mm̈ 〈b, ϑ〉

)
and that the collection of these

colimiting cones is a natural transformation ξ′ from L to the functor

〈j, 〈a, δ〉, 〈b, ϑ〉〉 7→
m

Ξ
m̈
(
〈a, δ〉

m⊃̇mm̈

〈b, ϑ〉
)

.

By the usual type of argument making use of the universal properties, this im-
plies that the objects

(
m

Ξ
ṁ

(〈a, δ〉)
)

m©̇mm̈

(
ṁ

Ξ
m̈

(〈b, ϑ〉)
)
and

m

Ξ
m̈
(
〈a, δ〉m⊃̇mm̈ 〈b, ϑ〉

)
are isomorphic and that these isomorphisms form a natural transformation.
(And clearly the tensor product exists because we have found at least one co-
equalizer of the required kind.)

Because of the shape of the category Jt this means finding for all

〈a, δ〉 ∈ 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉, 〈b, ϑ〉 ∈ 〈ṁ, µ̇, η̇〉−Aut−〈m̈, µ̈, η̈〉

a morphism

ξ〈a,δ〉,〈b,ϑ〉 = ξ′〈a,δ〉,〈b,ϑ〉;b :
(

m

Gṁ

(
m

Ξ
ṁ

(〈a, δ〉)
))

�
mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(〈b, ϑ〉)
))

→
m

Ξ
m̈
(
〈a, δ〉

m⊃̇mm̈

〈b, ϑ〉
)

of biacts which is the coequalizer of the two paths in (119) when we substitute
the appropriate actions from definition 8.18 and for which the diagram in (125)

108

(
m

Gṁ

(
m

Ξ
ṁ

(〈a, δ〉)
))

�
mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(〈b, ϑ〉)
))

m

Ξ
m̈
(
〈a, δ〉m⊃̇mm̈ 〈b, ϑ〉

)
(

m

Gṁ

(
m

Ξ
ṁ

(〈a′, δ′〉)
))

�
mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(〈b′, ϑ′〉)
))

m

Ξ
m̈
(
〈a′, δ′〉m⊃̇mm̈ 〈b′, ϑ′〉

)

ξ〈a,δ〉,〈b,ϑ〉

ξ〈a′,δ′〉,〈b′,ϑ′〉

(
m

Gṁ

(
m

Ξ
ṁ

(f)

))
�

mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(g)

))

m

Ξ
m̈(

f
m⊃̇mm̈

g
)

(125)

commutes. Using that all the other arrows in the colimiting cone are composites

of ξ〈a,δ〉,〈b,ϑ〉 with arrows L

(
f, 1m

Ξ
ṁ

(〈a,δ〉)
, 1ṁ

Ξ
m̈

(〈b,ϑ〉)

)
(for f in Jt) and that L

is a functor, one easily sees that this implies naturality of ξ′.
To show that ξ〈a,δ〉,〈b,ϑ〉 is a coequalizer we will show that

mG̈m

(
ξ〈a,δ〉,〈b,ϑ〉

)
is a split coequalizer and therefore an absolute coequalizer. Then it follows from
corollary 8.12 that ξ〈a,δ〉,〈b,ϑ〉 is a coequalizer.

So we will need the actions on
(

m

Gṁ

(
m

Ξ
ṁ

(〈a, δ〉)
))

�
mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(〈b, ϑ〉)
))

and
m

Ξ
m̈
(
〈a, δ〉m⊃̇mm̈ 〈b, ϑ〉

)
as well as a candidate for ξ〈a,δ〉,〈b,ϑ〉.

Substituting in the definitions we get:(
m

Gṁ

(
m

Ξ
ṁ

(〈a, δ〉)
))

�
mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(〈b, ϑ〉)
))

:
m

Ξ
m̈
(
〈a, δ〉m⊃̇mm̈ 〈b, ϑ〉

)
:

left action: right action: left action: right action:

δ

m((a

1

ṁ)

1

(b

1

m̈))

1

a

(a
µ̇

ṁ ṁ

ṁ)
1

b

(b
1

m̈

m̈)

1

((a

(a
1

ṁ)

ṁ)
1

(b

(b
µ̈

m̈))m̈

m̈)

δ

m((a

1

b)

1

m̈)

1

a

ϑ

ṁ b

1

m̈

1

a

(a
1

b

b)
µ̈

m̈ m̈

m̈

1

((a

(a
1

b)

b)
µ̈

m̈) m̈

m̈

The candidate for ξ〈a,δ〉,〈b,ϑ〉 we choose is

mG̈m

(
ξ〈a,δ〉,〈b,ϑ〉

) to be seen
= ξ̂〈a,δ〉,〈b,ϑ〉 :=

1

(a

ϑ

ṁ)(b

1

m̈)

1

a

(a
1

b

b)
µ̈

m̈ m̈

m̈

. (126)

109

We need to show that ξ̂〈a,δ〉,〈b,ϑ〉 is compatible with the actions from the left.

1

m

1

a

ϑ

ṁ b

1

m̈

1

m

1

a

1

b
µ̈

m̈ m̈

δ

m a

1

b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

shift
=

δ

m a

1

ṁ

1

b

1

m̈

1

a

1

ṁ

ϑ

ṁ b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

m̈

1

a

1

b

1

m̈
µ̈

m̈ m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

(50)
=

δ

m a

1

ṁ

1

b

1

m̈

1

a

1

ṁ

ϑ

ṁ b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

m̈

1

a

1

b
µ̈

m̈ m̈

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

(112)
=

δ

m a

1

ṁ

1

b

1

m̈

1

a
µ̇

ṁ ṁ

1

b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

And that it is compatible with the actions from the right.

1

a

ϑ

ṁ b

1

m̈

1

m̈

1

a

1

b
µ̈

m̈ m̈

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

(50)
=

1

a

ϑ

ṁ b

1

m̈

1

m̈

1

a

1

b

1

m̈
µ̈

m̈ m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

shift
=

1

a

1

m

1

b
µ̈

m̈ m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

Now we show that ξ̂〈a,δ〉,〈b,ϑ〉 is part of a split fork in such a way that lemma
6.11 will show that ξ̂〈a,δ〉,〈b,ϑ〉 is an absolute coequalizer. Using the names from
definition 6.9 we have.

e = ξ̂〈a,δ〉,〈b,ϑ〉

f = mG̈m

((
m

Gṁ

(
m

ε̇mm

Ξ
ṁ

(〈a,δ〉)

)
�

mm̈

1
ṁG

m̈
(

ṁ

Ξ
m̈

(〈b,ϑ〉)
)
)
◦α̂
mm̈

m

Ξ
ṁ

(〈a,δ〉),ṁ,
ṁ

Ξ
m̈

(〈b,ϑ〉)

)

= 1

(a

(a
µ̇

ṁ)(ṁ

ṁ)
1

(b

(b
1

m̈))

m̈)

g = mG̈m

(
1m

Gṁ

(
m

Ξ
ṁ

(〈a,δ〉)
) �

mm̈

ṁG
m̈

(
ṁε
m̈

ṁ

Ξ
m̈

(〈b,ϑ〉)

))
=

1

(a

1

ṁ)

ϑ

(ṁ (b

1

m̈))

1

a

(a
1

ṁ

ṁ)
1

b

(b
µ̈

m̈ m̈

m̈)

Up to permutation of f and g it was clear what f and g had to be because we
want to show that e is a coequalizer of the two arrows above — it will turn out
that this choice of permutation is the one that works. For the remaining arrows
we choose:

h := 1

(a

(a
η̇

ṁ)

1

b)

(b

1

m̈

m̈)

k := 1

(a

(a
η̇

ṁ)

1

ṁ)

(ṁ

1

(b

(b

1

m̈)

m̈))

We need to check that all of the equations in definition 6.9 hold.

110

• e◦g = e◦f :

1

a

1

ṁ

ϑ

ṁ b

1

m̈

1

a

1

ṁ

1

b
µ̈

m̈ m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

shift
=

1

a

1

ṁ

ϑ

ṁ b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

m̈

1

a

1

b

1

m̈
µ̈

m̈ m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

(50)
=

1

a

1

ṁ

ϑ

ṁ b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

m̈

1

a

1

b
µ̈

m̈ m̈

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

(112)
=

1

a
µ̇

ṁ ṁ

1

b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b
µ̈

m̈ m̈

m̈

• h◦e = g◦k:

1

a

ϑ

ṁ b

1

m̈

1

a

1

b

µ̈

m̈ m̈

1

a

a
η̇
ṁ

1

b

b
1

m̈

m̈

shift
=

1

a

ϑ

ṁ b

1

m̈

1

a

a
η̇
ṁ

1

b

b

µ̈

m̈ m̈

m̈

shift
=

1

a

η̇ 1

ṁ

1

b

1

m̈

1

a

1

ṁ

ϑ

ṁ b

1

m̈

1

a

a
1

ṁ

ṁ
1

b

b

µ̈

m̈ m̈

m̈

• e◦h = 1:

1

a

η̇ 1

b

1

m̈

1

a

ϑ

ṁ b

1

m̈

1

a

a
1

b

b

µ̈

m̈ m̈

m̈

(113)
=

1

a

1

b

η̈ 1

m̈

1

a

a
1

b

b

µ̈

m̈ m̈

m̈

(51)
=

1

a

a
1

b

b
1

m̈

m̈

• f◦k = 1:

1

a

η̇ 1

ṁ

1

b

1

m̈

1

a

a

µ̇

ṁ ṁ

ṁ
1

b

b
1

m̈

m̈

(51)
=

1

a

a
1

ṁ

ṁ
1

b

b
1

m̈

m̈

We still have to show that (125) commutes. So let f : 〈a, δ〉 → 〈a′, δ′〉 and

111

g : 〈b, ϑ〉 → 〈b′, ϑ′〉 be morphisms of automata. We have

mG̈m

(
ξ〈a′,δ′〉,〈b′,ϑ′〉◦

((
m

Gṁ

(
m

Ξ
ṁ

(f)
))

�
mm̈
(

ṁG
m̈
(

ṁ

Ξ
m̈

(g)
))))

=

f

a

1

ṁ

g

b

1

m̈

1

a′

ϑ′
ṁ b′

1

m̈

1

a′

a′
1

b′

b′
µ̈

m̈ m̈

m̈

(114)
for g
=

f

a

ϑ

ṁ b

1

m̈

1

a′

g

b

1

m̈

1

m̈

1

a′

a′
1

b′

b′
µ̈

m̈ m̈

m̈

shift
=

1

a

ϑ

ṁ b

1

m̈

1

a

1

b
µ̈

m̈ m̈

f

a

a′
g

b

b′
1

m̈

m̈

= mG̈m

(
m

Ξ
m̈
(
f

m⊃̇mm̈

g
)
◦ξ〈a,δ〉,〈b,ϑ〉

)
.

112

9 Where are we now?
Now seems like a good time to let the narrative rest for a while, take a step
back and consider where we have come. We started out with the concept of
a monoidal category and saw how one can describe algebraic structures in a
monoidal category.

The coherence theorem for monoidal categories reassured us that the concept
of a monoidal category is not unnecessarily complex and behaves roughly like
a generalisation of what we have become used to in the category of sets. We
developed a calculus for reasoning about morphisms in monoidal categories.

With these tools in hand we were able to set out to tackle the problem of
describing limits, colimits and free objects of algebraic categories in a monoidal
category. For the act categories 〈m,µ, η〉−Act, Act−〈m,µ, η〉 and 〈m,µ, η〉
−Act−〈ṁ, µ̇, η̇〉, where we regard the monoid as fixed, this was relatively sim-
ple. In these categories both, limits and colimits, are the same as in the base
category (under the assumption that the monoidal product preserves colimits
on either side). For the other algebraic categories we found that limits are in
essence the same as in the base category and that colimits can be described
through free objects, which in turn can be constructed from coproducts of the
base category.

Now we have arrived at a point where we have constructed from the base
category 〈C,�, e, α, λ, ρ〉 two new classes of categories: the categories 〈m,µ, η〉
−Act−〈ṁ, µ̇, η̇〉 and 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉, for both of which we have bi-
functors which somehow combine two objects into one object. We even know
that these bifunctors are compatible in a way.
Now the obvious question is: “Are these bifunctors themselves products of some
monoidal category?”

Although this is the obvious question it turns out that it is not quite the
right question — for it only makes sense for the categories 〈m,µ, η〉−Act−
〈m,µ, η〉 and 〈m,µ, η〉−Aut−〈m,µ, η〉 — that is, when the monoids on both
sides are the same. This is because a monoidal product is a functor which has
the product of two categories which are the same as its source and also maps
into that same category. What we have here is more general.

The author thinks it very likely that both of the collections 〈m,µ, η〉−Act−
〈ṁ, µ̇, η̇〉 and 〈m,µ, η〉−Aut−〈ṁ, µ̇, η̇〉 (where 〈m,µ, η〉 and 〈ṁ, µ̇, η̇〉 are mo-
noids in 〈C,�, e, α, λ, ρ〉) fit the definition of a bicategory. What we would
have to show is that serial composition and tensor product are associative up
to isomporphism and that diagrams similar to the diagrams (3), (4) for mo-
noidal categories commute. For serial composition this is almost immediately
obvious; for the tensor product it is a little more complicated but the author
thinks it extremely likely that a proof which works by interchanging colimits
is possible. Some ingenuity is probably necessary because the naïve approach
of simply calculating explicitly all the necessary diagrams — albeit definitely
doable in theory — would result in very large diagrams and such a proof would
be neither pleasant to write nor read.

So provided this works out we have a situation in which we started with
a monoidal category and ended up with two new bicategories. Of course one
can now ask: “Could we have started with a bicategory?” The author thinks
that this is very likely. We would have to extend the theory of coherence and
calculations to this more general setting but at least on first inspection it seems

113

like this should be possible in a fairly straightforward way. This does add a
little extra complexity though because there are more entities that have to be
distinguished.

This puts us in a situation where we can iterate this construction. Whether
this makes any sense from an interpretation point of view and whether it has
any applications is still to be explored.

114

References
[Deu71] Peter Deussen. Halbgruppen und Automaten. Springer, 1971.
[KKM00] Mati Kilp, Ulrich Knauer, and Alexander V. Mikhalev. Monoids,

Acts And Categories. De Gruyter Expositions in Mathematics Se-
ries. Walter De Gruyter, 2000.

[Lin08] Fred E. J. Linton. “Coequalizers in categories of algebras”. In: Sem-
inar on Triples and Categorical Homology Theory. Reprints in The-
ory and Applications of Categories. Ed. by Beno Eckmann and
Myles Tierney. 18. 2008, pp. 61–72. url: www.tac.mta.ca/tac/
reprints/articles/18/tr18.pdf. Repr. of “Coequalizers in cate-
gories of algebras”. In: Seminar on Triples and Categorical Homol-
ogy Theory. Lecture Notes in Mathematics. Ed. by Beno Eckmann
and Myles Tierney. Vol. 80. 1969, pp. 75–90. Reprinted in: [Lin08].

[Lin69] Fred E. J. Linton. “Coequalizers in categories of algebras”. In: Sem-
inar on Triples and Categorical Homology Theory. Lecture Notes in
Mathematics. Ed. by Beno Eckmann and Myles Tierney. Vol. 80.
1969, pp. 75–90. Reprinted in: [Lin08].

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician.
2nd ed. Graduate Texts in Mathematics. Springer, 1998.

[ReflCoeq] Todd Trimble et al. reflexive coequalizer. Version 9. url: http:
//ncatlab.org/nlab/show/reflexive+coequalizer (visited on
02/28/2013).

115

www.tac.mta.ca/tac/reprints/articles/18/tr18.pdf
www.tac.mta.ca/tac/reprints/articles/18/tr18.pdf
http://ncatlab.org/nlab/show/reflexive+coequalizer
http://ncatlab.org/nlab/show/reflexive+coequalizer

	Introduction
	Overview
	On notation

	A first look at monoids and monoidal categories
	Monoidal categories
	Monoids in a monoidal category
	Left acts, right acts and biacts
	Automata

	Coherence
	Monoidal functors
	The coherence theorem for monoidal categories
	Calculations in monoidal categories

	Interlude
	Outlook
	Generalized associativity for monoids

	Some properties of (co)limits
	Iterated colimits
	Images of colimits under multifunctors

	Monads and algebraic structures
	Limits
	Colimits

	Free algebras
	A cousin of the functor category
	The category of valid realizations
	Free objects
	Putting it all together

	The tensor product over a monoid and serial composition of automata
	Supporting structures for acts on the level of categories
	Acts revisited

	Where are we now?

