
i
i

“master” — 2017/5/23 — 11:16 — page i — #1 i
i

i
i

i
i

Doctoral Thesis

E�cient Large-Scale Real-World Flood
Simulations using the Shallow Water

Equations on GPUs

A thesis submitted in fulfilment of the academic degree of

Doctor of Natural Sciences

under the supervision of

Prof. Dr. Günter Blöschl
Institute of Hydrology and Water Resource Management

Research conducted at TU Wien and VRVis Research Center

by

Ing. Zsolt Horváth
Student number 1327906

Mierová 1447/27
92401, Galanta

Slovakia

Vienna, June 1, 2017 .

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

i
i

“master” — 2017/5/23 — 11:16 — page ii — #2 i
i

i
i

i
i

Examiner: Prof. Dr. Günter Blöschl
Inst. of Hydrology and Water Resource Management
TU Wien
Karlsplatz 13/222, A-1040 Vienna, Austria .

Examiner: Prof. Dr. Christian Bucher
Inst. of Building Construction and Technology
TU Wien
Karlsplatz 13/206, A-1040 Vienna, Austria .

Examiner: Prof. Dr. Reinhard Hinkelmann
Chair of Water Resources Management and Modeling of
Hydrosystems
Inst. of Civil Engineering
TU Berlin
Gustav-Meyer-Allee 25, 13355 Berlin, Germany .

Co- Dr. Jürgen Waser
Supervisor: Integrated Simulations Research Group

VRVis Research Center
Donau-City-Straße 11, A-1220, Vienna, Austria .

i
i

“master” — 2017/5/23 — 11:16 — page iii — #3 i
i

i
i

i
i

Parts of the present work have been accepted or published in peer-reviewed journals:

Zsolt Horváth, Jürgen Waser, Rui A.P. Perdigão, Artem Konev, Günter Blöschl. A Two-
Dimensional Numerical Scheme of Dry/Wet Fronts for the Saint-Venant System of Shallow Water
Equations. International Journal for Numerical Methods in Fluids 77(3), pages 159-182, 2015.

Zsolt Horváth, Rui A.P. Perdigão, Jürgen Waser, Daniel Cornel, Artem Konev, Günter Blöschl.
Kepler Shuffle for Real-World Flood Simulations on GPUs. International Journal of High Performance
Computing Applications, 30(4), pages 379-395, 2016.

Zsolt Horváth, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Artem Konev, Jürgen Komma,
Sebastian Noelle, Günter Blöschl, Jürgen Waser. Comparison and Validation of Three Shallow
Water Schemes on Analytic, Laboratory and Real-World Cases. International Journal for Numerical
Methods in Fluids, Submitted.

During the PhD I contributed to the following papers which were published in peer-reviewed
journals and conference proceedings but are not included in this thesis:

Jürgen Waser, Artem Konev, Bernhard Sadransky, Zsolt Horváth, Hrvoje Ribičić, Robert Car-
necky, Patrick Kluding, Benjamin Schindler. Many Plans: Multidimensional Ensembles for Visual
Decision Support in Flood Management. Computer Graphics Forum (Proceedings EuroVis 2014), 33(3),
pages 281-290, 2014.

Artem Konev, Jürgen Waser, Bernhard Sadransky, Daniel Cornel, Rui A.P. Perdigão, Zsolt
Horváth, M. Eduard Gröller. Run Watchers: Automatic Simulation-Based Decision Support in
Flood Management. IEEE Transactions on Visualization and Computer Graphics, 20(12), pages 1873-
1882 (Proceedings IEEE VAST), 2014.

Günter Blöschl, Zsolt Horváth, Andrea Kiss, Jürgen Komma, Thomas Nester, Rui A.P. Perdigão,
Alberto Viglione, Jürgen Waser. New Methods for Flood Risk Management. Österreichische
Ingenieur- und Architekten-Zeitschrift (ÖIAZ) Jg.160, pages 1-12, 2015.

Daniel Cornel, Artem Konev, Bernhard Sadransky, Zsolt Horváth, Eduard Gröller, Jürgen
Waser. Visualization of Object-Centered Vulnerability to Possible Flood Hazards. Computer Graph-
ics Forum (Proceedings EuroVis 2015), 34(3), pages 331-341, 2015.

Daniel Cornel, Artem Konev, Bernhard Sadransky, Zsolt Horváth, Andrea Brambilla, Ivan Vi-
ola, Jürgen Waser. Composite Flow Maps. Computer Graphics Forum (Proceedings EuroVis 2016),
35(3), pages 461-470, 2016.

Daniel Cornel, Florian Schober, Artem Konev, Zsolt Horváth, Michael Wimmer, Jürgen Waser.
Interactive Visualization of Adaptive Shallow Water Height Fields. IEEE SciVis 2017, Submitted.

This work has been conducted as part of the following research projects:

• Austrian Science Fund (FWF) project number W1219-N22 (Vienna Doctoral Programme on
Water Resource Systems),

• European Research Council (ERC) Advanced Grant ”FloodChange”, project number 291152,

• Vienna Science and Technology Fund (WWTF) project number ICT12-009 (Scenario Pool),

• Austrian Funding Agency (FFG) within the scope of the COMET K1 program, project num-
ber 854174.

i
i

“master” — 2017/5/23 — 11:16 — page iv — #4 i
i

i
i

i
i

i
i

“master” — 2017/5/23 — 11:16 — page v — #5 i
i

i
i

i
i

Author’s Statement

I hereby declare that I independently drafted this manuscript, that all sources and references
are correctly cited, and that the respective parts of this manuscript - including tables, maps, and
figures - which were included from other manuscripts or the internet either semantically or syn-
tactically are made clearly evident in the text and all respective sources are correctly cited.

Zsolt Horváth
Mierová 1447/27

92401, Galanta
Slovakia

. .

i
i

“master” — 2017/5/23 — 11:16 — page vi — #6 i
i

i
i

i
i

i
i

“master” — 2017/5/23 — 11:16 — page vii — #7 i
i

i
i

i
i

Acknowledgements

Many people deserve thanks for supporting me during my PhD and making it so enjoyable. First
of all, my special gratitude goes to my supervisor Prof. Günter Blöschl, for his guidance, support
and inspiration. I would also like to thank to all my colleagues from the Institute of Hydrologic
Engineering at the TU Wien, especially Jürgen Komma and Rui Perdigaõ. I also want to thank all
DK colleagues for the great time I had during my PhD. I enjoyed the symposia, courses and social
activities.

Many thanks to all my colleagues at the VRVis Center, especially Andreas Buttinger-Kreuzhuber,
Artem Konev, Daniel Cornel and of course my co-supervisor Dr. Jürgen Waser for his support and
guidance.

I would like to thank to everyone who contributed to this work. I am grateful to Prof. Christian
Bucher and Prof. Reinhard Hinkelmann for accepting the responsibility of evaluating my thesis.

I always had a lot of support from my friends who have persistently listened to all my problems
I faced during this work. Special thanks go to Gabriel and Tunyó who where always there when I
needed them.

Last but not least, I would like to thank to my parents Ildikó and József, my brother Balázs
and of course to my wonderful and loving wife Zsuzsi for everything. I am very grateful to have
such an amazing family and great friends.

vii

i
i

“master” — 2017/5/23 — 11:16 — page viii — #8 i
i

i
i

i
i

i
i

“master” — 2017/5/23 — 11:16 — page ix — #9 i
i

i
i

i
i

Abstract

Climate change is one of the largest challenges humanity has to cope with today. Earth-orbiting
satellites and other technological advances have enabled scientists to see the big picture, col-
lecting many different types of information about our planet and its climate on a global scale.
Data collected over many years reveals the signals of a changing climate. Europe and the northern
hemisphere are warming at faster pace than the global average. Europe’s Atlantic-facing countries
are predicted to suffer heavier rainfalls, greater flood risk, more severe storm damage, according
to the most comprehensive study of Europe’s vulnerability to climate change. National Aeronau-
tics and Space Administration (NASA) and National Oceanic and Atmospheric Administration
(NOAA) confirmed that 2016 had broken the record for the hottest year ever previously held by
2015, which had itself broken the record that had been held by 2014. According to a climate
change report from 2014, global sea level rose about 20 centimetres in the last century. The rate
in the last two decades, however, is nearly double that of the last century. Moreover, in the last
years a surprisingly large number of major floods happened around the world, which suggests
that floods may have increased and will continue to increase in the near future.

Modern science in combination with the latest simulation technologies can help to understand
the cause and the impact of the adverse phenomena related to climate change. Moreover, we can
exploit our knowledge and simulation tools to prepare response measures which aim at reducing
the risk associated with flood events. Today, a lot of effort is put into making flood simulations
faster and more accurate to increase both computational efficiency and fidelity of the results. The
aim of this thesis is to provide an efficient and robust simulation tool for large-scale flood simu-
lations that can be used to support decision making. This goal is addressed by developing a new
scheme for the shallow water equations (SWE), implementing it efficiently for graphics processing
units (GPUs) and validating it on analytic, laboratory and real-world cases in comparison with
other schemes.

Chapter I starts with a motivation for this thesis. This is followed by a general overview
on fluid and flood simulations including the introduction of the SWE along with discretization
methods for them. The next section gives a short insight into GPUs architectures and justifies the
suitability of the SWE for parallel computations on these devices. In the last section of the chapter
the main goals of this thesis are explained.

In Chapter II, we propose a new two-dimensional numerical scheme named HWP, to solve the
SWE. The HWP scheme is an enhanced version of a scheme by Kurganov and Petrova (KP), which
aims to improve the solution in the presence of partially flooded cells. The presented scheme
is well-balanced, positivity preserving, and handles dry states. Mass conservation is ensured by
using the draining time step (DTS) technique in the time integration process, which guarantees
non-negative water depths. Unlike the KP scheme, our technique does not generate high velocities
at the dry/wet boundaries, which are responsible for small time step sizes and slow simulation
runs. We prove that the new scheme preserves “lake at rest” steady states and guarantees the
positivity of the computed fluid depth in the partially flooded cells. We compare the new scheme,
along with the KP scheme, against the analytical solution for a parabolic basin and show the
improved simulation performance of the new scheme for two real-world scenarios.

ix

i
i

“master” — 2017/5/23 — 11:16 — page x — #10 i
i

i
i

i
i

Chapter III presents a new GPU implementation for the HWP and KP schemes on Cartesian
grids. Previous implementations are not fast enough to evaluate multiple scenarios for a robust,
uncertainty-aware decision support. To tackle this, we exploit the capabilities of the NVIDIA
Kepler architecture and the new shuffle instructions. The KP scheme is simpler but suffers from
incorrect high velocities along the wet/dry boundaries, resulting in small time steps and long
simulation run-times. The HWP scheme resolves this problem but comprises a more complex
algorithm, that represents an extra burden on the GPU. Here, an efficient and novel shuffle-based
implementation is presented for both schemes. Moreover, a performance comparison is provided,
in which we compare shuffle-based implementations with pure shared memory versions. The
correctness and performance is validated on real-world scenarios.

In Chapter IV an exhaustive comparison and validation is performed and presented, which
contains important use cases essential for developers and practitioners working with flood sim-
ulation tools. We discuss three state-of-the-art shallow water schemes, one by Kurganov and
Petrova (KP), its successor by Horváth et al. (HWP), and our two-dimensional extension of the
scheme by Chen and Noelle (CN). We analyse the advantages and disadvantages of each scheme
on an extensive list of scenarios including several analytical and laboratory cases as well as a
representative set of three historical floods. To enable the real-world studies, we address the im-
plementation of the required boundary conditions (BCs), such as wall BCs, discharge BCs and
water level BCs.

Chapter V contains a summary and the findings presented in this thesis, which advance the
knowledge in simulating floods using the SWE on GPUs. The new HWP scheme tackles the
non-physical velocities that appear along the dry/wet boundaries. This not only improves the
numerical accuracy, but allows for faster simulation since there are no high velocity spots that
act as a limiting factor on the time step sizes. Furthermore, an efficient GPU implementation
is presented with focus on the reduction of the computational burden introduced by the HWP
scheme. Finally, the validation cases give a comprehensive overview of three SWE schemes and
reveal their strengths and weaknesses under various conditions. We observe that the KP and HWP
schemes are more accurate than the CN scheme in some cases, however, in other cases they suffer
from non-physical oscillations. Overall, good agreement is observed for all case studies rendering
the presented shallow water schemes suitable for flood management applications.

i
i

“master” — 2017/5/23 — 11:16 — page xi — #11 i
i

i
i

i
i

Contents

Acknowledgements vii

Abstract ix

List of Figures xiii

List of Tables xix

List of Acronyms xxi

I Introduction 1
1 Flood Simulations . 4
2 Parallel Computing on GPUs . 5
3 Aim of the thesis . 7

II A Two-Dimensional Numerical Scheme of
Dry/Wet Fronts for the Saint-Venant System of Shallow Water Equations 9
1 Introduction . 11
2 Related Work . 13
3 Two–Dimensional Central–Upwind Scheme . 14
4 Reconstruction at Partially Flooded Cells . 19
5 Positivity Preserving in Time Integration . 23
6 Evaluation . 27

6.1 Wave Run-Up on a Slope . 27
6.2 Parabolic Basin Benchmark . 27
6.3 Real-World Performance Benchmark in Cologne 29
6.4 Real-World Performance Benchmark in Lobau 30

7 Summary . 31

III Kepler Shuffle for Real-World Flood Simulations on GPUs 33
1 Introduction . 35
2 Related Work . 36
3 Numerical Schemes . 37

3.1 Kurganov-Petrova Scheme (KP) . 37
3.2 Horváth-Waser-Perdigão Scheme (HWP) . 38
3.3 Spatial Discretization . 38
3.4 Temporal Discretization . 40

4 Graphics Processing Units and the CUDA Platform 40
4.1 Memory Usage . 41
4.2 Block Size and Occupancy . 42

5 Implementation . 43
5.1 Domain Partitioning . 44
5.2 Simulation Steps . 44

6 Evaluation . 48
6.1 Validation: Malpasset Dam Break . 49
6.2 Performance Measurements . 50

7 Conclusion . 54

IV Comparison and Validation of Shallow Water Schemes on Analytic, Laboratory and
Real-World Cases 57

xi

i
i

“master” — 2017/5/23 — 11:16 — page xii — #12 i
i

i
i

i
i

Contents

1 Introduction . 59
2 Related Work . 60
3 Numerical Schemes . 61

3.1 Discretization . 62
3.2 The KP and HWP Scheme . 62
3.3 The CN Scheme . 64
3.4 Differences Between the Three Schemes . 66
3.5 Time Integration . 66
3.6 Additional Source Terms . 66
3.7 Boundary Treatment . 66

4 Validation . 69
4.1 Analytical Test Cases . 69
4.2 Laboratory Test Cases . 73
4.3 Real-World Test Cases . 79

5 Conclusion and Future Work . 85

V Conclusions and Outlook 87
1 Summary . 89
2 Future Works . 90

Bibliography 91

xii

i
i

“master” — 2017/5/23 — 11:16 — page xiii — #13 i
i

i
i

i
i

List of Figures

I.1 Large-scale simulation of the 2013 June Danube flood in the Wachau valley in Aus-
tria, computed and visualized using the Visdom framework. 3

I.2 Schematics of the CUDA thread execution model for a conceptual 2D problem. . . 6

II.1 Real-world large-scale simulations of a breach in an urban area in Cologne, Ger-
many. (a) Distant view of the city. (b) Closer view of the flooded area. 12

II.2 Two-dimensional grid-based representation of average water elevations w̄, discharges
h̄u, h̄v, and bathymetry B. For a bilinear reconstruction, the cell averages coincide
with the values at the cell centers. The bathymetry is approximated by its values at
the cell vertices. In this figure, the middle cell is fully flooded in the y-dimension,
while only partially flooded in the x-dimension. Waterlines are represented by the
blue lines, red dashed lines mark the bathymetry slopes in both dimensions. 16

II.3 Continuous bathymetry function B(x, y) (green) and its piecewise linear approxi-
mation B̃(x, y) (brown dots). The approximated function values equal to the contin-
uous ones at the cell vertices (green dots). The cell average value (blue dot) equals
both to the average value of the vertex values (green dots) and to the average value
of the values at the cell interface midpoints (brown dots). 16

II.4 (a) Schematic view of a shallow water flow at a dry/wet boundary and definition
of the variables. (b) Conserved variables U are discretized as cell averages Ūj,k. The
bathymetry function B is computed at cell interface midpoints. (c) Slopes Ux are
reconstructed using the minmod flux limiter. (d) Left- and right-sided point values
are computed at cell interface midpoints. (e) At the almost dry cells the slope is
modified to avoid negative water heights, and a separation point is generated. (f)
Fluxes are computed using the central-upwind flux function at each cell interface. . 18

II.5 Approximations of the wet/dry front reconstruction. The blue dashed line rep-
resents the waterline of the fully flooded cell. (a) Wrong approximation by the
piecewise linear reconstruction, which produces a negative water value. (b) Pos-
itivity preserving, but unbalanced piecewise linear reconstruction. (c) Positivity
preserving, well-balanced, piecewise linear reconstruction. 19

II.6 Waterline wx
j,k computation using the conservation of the average water height h̄j,k,

where ∆x · h̄j,k equals to the amount of water in the cell. (a) In the fully flooded cell,
the waterline does not intersect the bathymetry. (b) In the partially flooded cell, xw
marks the intersection point between the waterline and the bathymetry. 20

II.7 Illustrations of reconstruction cases for the wet/dry fronts. The upper row shows
the average water levels in the cells, the row in the middle shows the reconstructed
point values, and the bottom row shows the modified point values. (a) The amount
of water is enough to fill the cell, the reconstruction is correct. (b) The amount of
water is enough to fill the cell, but a negative point value was produced, therefore
we set it to zero, and the value on the right side requires correction due to the
conservation criterion. (c) The cell is partially flooded, and after equalizing the
water height between the current and the next fully flooded cell, both values become
positive. (d) The cell is partially flooded, and there is not enough water to fill it after
the equalization. 22

xiii

i
i

“master” — 2017/5/23 — 11:16 — page xiv — #14 i
i

i
i

i
i

List of Figures

II.8 Comparison of drying of the KP and the HWP schemes. We simulate a wave run-up
on a slope and visualize the solution after 1000 seconds. (a) Initial condition. (b)
Solution of the KP scheme, where the upper part of the simulation domain is wet.
There is a thin layer of water, which is incorrect. (c) Solution of the HWP scheme,
the upper part of the domain is dry. 28

II.9 Simulation of oscillating water in a parabolic basin, compared to the analytical solu-
tion after (a) 300 seconds and (b) 400 seconds. Values are plotted at the cell centers.
Blue dots in the inlay windows represent positions of the cell centers. 28

II.10 Real-world case studies. (a) Simulation of a levee breach caused by a failure of
the mobile protection walls in the city of Cologne, Germany. The green line along
the riverside represents the mobile protection wall. We removed a short section
of the wall to simulate a breach (indicated in blue). The buildings are colored
according to the damage, where red denotes high damage and grey no damage. (b)
Results of a 5 days long hydrograph-based flood simulation in Lobau, Austria. The
bathymetry is colored according to the elevation values. Red color represents higher
altitudes, green color represents lower altitudes. Wet areas are shown in blue. The
hydrograph is supplied for the short section at the bottom right corner. 29

II.11 Real-world performance benchmark of a breach flood in the city of Cologne, Ger-
many. We compare the time step performance of the KP and the HWP schemes. The
figure shows the number of time steps as a function of the simulated time. Lower
numbers corresponds to longer time step sizes in the simulation and thus to in-
creased performance. (a) Average number of time steps per minute. (b) Cumulative
number of time steps during the simulated 60 minutes. 30

II.12 Velocity profile of the real-world simulation in Lobau. The bathymetry is colored
according to the velocity magnitude. (a) Simulation results of the KP scheme. High
velocity spots (red) appear at the dry/wet boundaries. (b) Simulation results of the
HWP scheme. No high velocity spots, the velocity profile is consistent. 30

II.13 Real-world performance benchmark of a flood event in the Danube-Auen National
Park, in Lobau, Austria. The figure shows the number of time steps as a function
of the simulated time. Lower numbers correspond to longer time steps in the sim-
ulation and thus to increased performance. (a) Average number of time steps per
minute. (b) Total number of time steps during the simulated 12 hours. 31

III.1 Schematic view of a shallow water flow, definition of the variables, and flux com-
putation. a) Continuous variables. b) The conserved variables U are discretized as
cell averages Ūj,k. The bathymetry function B is approximated at cell interface mid-
points. c) Slopes of the water surface (Ux)j,k are reconstructed using the minmod
flux limiter. d) Left- and right-sided point values are computed at cell interface
midpoints. The red circle indicates that a negative water height is computed. Since
water heights cannot be negative, they are corrected before the flux computation.
e) Fluxes are computed using the central-upwind flux function at the cell center
interfaces. 37

III.2 Two-dimensional grid-based representation of the discretized variables of the shal-
low water equations. Cell averages Ūj,k are defined at cell centers (blue dots). Green
dots indicate the sampling points of the bathymetry function B. Brown dots indicate
the approximated values of the bathymetry function at the cell interface midpoints [1]. 39

III.3 Illustration of the Kepler shuffle up instruction of width 16, used in the flux kernel
of block size 16× 16. The shuffle up instruction is applied to a single warp executed
on two rows of a block. We use it to shift data from cell Cj,k to the next cell Cj+1,k. 41

III.4 Data flow of the simulation system and steps of the simulation loop. Green boxes
1 - 4 are the main steps of the simulation. Boxes 5 - 6 are optional. Box 5 is

activated if there is a hydrograph attached. Box 6 is an optional optimization that
skips dry cells. 42

xiv

i
i

“master” — 2017/5/23 — 11:16 — page xv — #15 i
i

i
i

i
i

List of Figures

III.5 Domain partitioning and the computational stencil of the flux kernel. a) Domain
decomposition into blocks processed independently on the GPU. Fluxes are com-
puted for inner block cells only. The number of ghost cells differs for the KP and
HWP schemes. b) Computation stencils for the pink cells. KP requires two cells in
each direction, HWP needs three. Blue dots are variables at the cell center, i.e., Ūj,k
and Bj,k, brown dots are values at the cell interface midpoints Uj± 1

2 ,k and Uj,k± 1
2
,

and the bathymetry values Bj± 1
2 ,k± 1

2
are defined at the green dots. 43

III.6 Simulation steps for the first and second-order time integrations. 1 Flux computa-
tion, 2 Time step reduction, 3 Time integration, 4 Global boundary conditions,
5 Local boundary conditions, 6 Sparse computation. In the first iteration, all

computations are active, in the second, some steps are skipped (desatured circles). . 43
III.7 Overview of the flux kernel code from the perspective of shared memory (SM) and

register (REG) spaces of the block. Orange squares show the memory occupation
for the current warp. Shuffle instructions operate on registers only in x-dimension.
To exploit them for the computation of the fluxes in both directions, we require data
transpositions via the shared memory. Explicit thread synchronization barriers are
shown in purple. 44

III.8 Overview of the flux kernel code. 45
III.9 Subroutine calcFlux to evaluate the flux in any direction. The function assumes that

the stencil is organized in x-direction, no matter if invoked for the computation
of the y-flux. HWP requires additional work for the correct treatment of partially
flooded cells (red parts). 47

III.10Simulated dam break of Malpasset. The water extent at the time step 4000 s is shown
(blue). The simulation results are verified with the experimental data obtained from
laboratory models at the displayed locations (green labels). 49

III.11Verification of the maximum water elevations during the Malpasset dam break event
at nine gauge locations (S6-S14) for two roughness values (0.025 and 0.033). 50

III.12Verification of the wave arrival times during the Malpasset dam break event at nine
gauge locations (S6-S14) for two roughness values (0.025 and 0.033). 50

III.13Estimated solver performance, measured in gigacells per second, for the Malpasset
dam break scenario (solid lines). The dashed lines show the percentage of dry
blocks within the simulation domain, which is different for KP and HWP. 51

III.14Overall GPU runtime of the implemented solvers for the simulation of 4000 seconds
of the Malpasset dam break event, including the time distribution over five phases
of a single computation iteration. 51

III.15Computation time of the two shuffle-based solvers for the simulation of 10000 sec-
onds of the Malpasset dam break event. The red dot shows the intersection of the
simulated and the computation time of the solvers. 52

III.16Average number of time steps per second required by the two shuffle-based solvers
for the simulation of 10000 seconds of the Malpasset dam break event. 52

III.17Uncertainty-aware prediction of mobile flood protection wall overtopping in Cologne.
(a) Input hydrographs forming an ensemble of 10 different scenarios with varying
peak levels. (b,c) Visualization of ensemble results. Buildings are colored according
to the expected damage. The terrain is colored according to the average water depth. 53

III.18Runtimes and number of time steps for the first 2 hours of model time for each
overtopping scenario of the simulated ensemble for Cologne. 54

IV.1 Schematic view of a shallow water flow, definition of the variables, and flux com-
putation. a) Continuous variables. b) The conserved variables U are discretized
as cell averages Ūj,k. The bathymetry function B is reconstructed at cell interface
midpoints. c) Left- and right-sided point values are computed at cell interface mid-
points. The red circle indicates that a negative water height is computed. Since
water heights cannot be negative, they are corrected before the flux computation.
d) Fluxes are computed using the HLL flux function at the cell interfaces. 61

xv

i
i

“master” — 2017/5/23 — 11:16 — page xvi — #16 i
i

i
i

i
i

List of Figures

IV.2 Water level and velocity profiles of the parabolic basin with a high resolution of
80 m at a) 2788 s and b) 5556 s. a) All three schemes accumulate errors along the
wet/dry boundary. b) The CN scheme performs rather poorly at this later stage
due to the diffusive nature of first-order schemes, as can be seen by the overall loss
of kinetic energy in the velocity. 70

IV.3 Water level and velocity profiles of the parabolic basin with a high resolution of 20
m at a) 2788 s and b) 5556 s. b) The zoom shows that the HWP scheme produces
flickering water levels and velocities. The CN scheme improves notably for the
smaller cell size. 71

IV.4 A schematic view of the parabolic bump shows its geometrical parameters. 71
IV.5 Water level and velocity profiles of the parabolic bump. a) Subcritical flow case. b)

Transcritical flow. c) Transcritical flow with a jump case. All schemes can detect the
correct jump location. The CN scheme overestimates the water level at the discharge
inflow. The CN scheme produces a small water level overshoot at the beginning of
the bump. 72

IV.6 A schematic view of the U-shaped flume with its geometrical parameters and the
selected cross sections C6, C12, C18. 73

IV.7 Water level and velocity profiles for the U-shaped flume at different cross sections.
The x-axis corresponds to the cross-sectional position from the inner bank to the
outer bank. The second-order schemes KP and HWP are oscillating and are not
reaching a steady state, in contrast to the CN scheme. 74

IV.8 A schematic view of the sine-generated flume and selected cross sections: 51, 52, 53. 75
IV.9 Water level and velocity profiles for the sine-generated flume at cross sections

51, 52, 53. The x-axis corresponds to the cross-sectional position from the inner bank
to the outer bank as marked in the schematic view. The second-order schemes KP
and HWP resolve the boundary layer better than the CN scheme. 76

IV.10A schematic view of the triangular hump. 77
IV.11Water level (left) and velocity (right) time series for the triangular hump at gauging

locations a) G4, b) G10, c) G13, and d) G20. All three schemes capture the data well,
except for gauging point G20. 78

IV.12Malpasset Dam Break, France. Water extent 4000 seconds after the dam break.
Labels show the nine gauge locations (S6-S14) of the laboratory experiments and
the three voltage transformers (A-C) in the real world. 79

IV.13Malpasset Dam Break, France. a) Maximum water elevations at the gauge locations
(S6-S14). b) Wave arrival times at the gauge locations (S6-S14). c) Wave front arrival
times at the three voltage transformers (1-3). 80

IV.14Lobau, Donau-Auen National Park, Austria. The colored labels show the location
of the inflow at the Schönauer Schlitz (lower right) and the three gauging locations
PD.LP1, PD.LP16 and PD.LP18. a) Initial state. b) Water extent at the peak discharge
after 2 days simulated by the CN scheme. c) Simulated water extent after 4 days
simulated by the CN scheme. 81

IV.15Lobau, Donau-Auen National Park, Austria. a) Prescribed inflow boundary condi-
tions data at the Schönauer Schlitz. b-d) Water level time series for the Lobau at
different gauging locations. 82

IV.16Wachau, Austria. The colored labels show the upstream (Kienstock/grey) and the
downstream (Stein Krems/orange) boundary locations and the 2 gauging loca-
tions (Dürnstein/blue, Loiben/red). a) Initial state. b) Water extent at the peak
discharge after 6.5 days simulated by the CN scheme. c) Water extent after 14 days
simulated by the CN scheme. 83

xvi

i
i

“master” — 2017/5/23 — 11:16 — page xvii — #17 i
i

i
i

i
i

List of Figures

IV.17Wachau, Austria. a) Water level (W) and discharge (D) data for the upstream (Kien-
stock) and downstream (Stein Krems) boundary conditions. b,c) Measured and sim-
ulated water level time series at the gauging locations using 12× 12 m2 cells. The
second-order schemes KP and HWP match the measured water level time series
quite well, although all of the schemes overestimate the water levels, particularly
the CN scheme. d,e) Measured and simulated water level time series at the gauging
locations using 3× 3 m2 cells. The second-order schemes KP and HWP produce
spurious oscillations at these small cell sizes. The CN scheme benefits from the
small cell size and simulates water levels close to the measurements. 84

xvii

i
i

“master” — 2017/5/23 — 11:16 — page xviii — #18 i
i

i
i

i
i

List of Figures

xviii

i
i

“master” — 2017/5/23 — 11:16 — page xix — #19 i
i

i
i

i
i

List of Tables

II.1 Notations for the numerical scheme . 15

III.1 NVCC flags used to compile CUDA source files. 49

xix

i
i

“master” — 2017/5/23 — 11:16 — page xx — #20 i
i

i
i

i
i

List of Tables

xx

i
i

“master” — 2017/5/23 — 11:16 — page xxi — #21 i
i

i
i

i
i

List of Acronyms

AMR Adaptive mesh refinement

AoS Array of structures

API Application programming interface

BC Boundary condition

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Lewy

CPU Central processing unit

DSP Digital signal processor

DTS Draining time step

FDM Finite difference method

FEM Finite element method

FPGA Field-programmable gate arrays

FV Finite volume

FVM Finite volume method

GPU Graphics processing unit

GTS Global time step

HLL Harten-Lax-van Leer

HPC High performance computing

HR Hydrostatic reconstruction

NSE Navier-Stokes equations

ODE Ordinary differential equation

PDE Partial differential equation

SB Shuffle–based

SM Streaming multiprocessor

SMO Shared–memory–only

SoA Structure of arrays

SPH Smoothed particle hydrodynamics

SV Saint–Venant

SWE Shallow water equations

xxi

i
i

“master” — 2017/5/23 — 11:16 — page xxii — #22 i
i

i
i

i
i

List of Acronyms

xxii

i
i

“master” — 2017/5/23 — 11:16 — page 1 — #23 i
i

i
i

i
i

Chapter I

Introduction

1

i
i

“master” — 2017/5/23 — 11:16 — page 2 — #24 i
i

i
i

i
i

2

i
i

“master” — 2017/5/23 — 11:16 — page 3 — #25 i
i

i
i

i
i

Floods are one of the main natural disasters responsible for human life losses and economic
damages worldwide. There has been a surprisingly large number of major floods in the last years
around the world [2], which suggests that floods may have increased and will continue to increase
in the next decades [3]. The impacts of large-scale floods are rising mainly due to socio-economic
development. Their frequency and intensity are showing signs of increase also due to climate
change, as seen in the pan-European floods of 2002 and 2013 [4]. The European Community
(EC) countries estimated that in the 1970-2006 period the average annual flood loss was about
4 billion dollars [5]. The ClimateCost project [6] estimates that, without improving the existing
flood defense systems, the expected damages in 2050 will be worth 46 billion Euro/year (for the
27 countries of the European Union) with about 170,000 people being involved each year.

Flood risk assessment is of key importance in minimizing damages and economical losses
caused by flood events. Studies on the impact of the climate change show that some regions in
Europe are prone to rise in flood frequency. Northern and north-eastern parts of Europe [7] are
highly affected areas and at a continental level 18.7 % of the territory is exposed to high flood
hazard [8]. The first step in flood risk studies is the identification of flood prone areas [9]. This
requires the implementation of hydrodynamic models that enable one to quantify the evolution
of a flood and its hydraulic representative variables, e.g., water level and velocity [10]. Results
of these models provide information to derive hazard maps which usually show potential flood
extent, water height and sometimes velocity for predefined low, medium and high probability
levels.

Figure I.1: Large-scale simulation of the 2013 June Danube flood in the Wachau valley in Austria, computed and visualized

using the Visdom framework.

Floods differ by the processes that produce them [3]. One can distinguish between several
types of floods, such as, coastal floods, river floods, dam breaks, flash floods, just to name a few.
Here we focus mainly on river floods (see Figure I.1), which occur along small or big rivers and
are usually triggered by rainfalls, sometimes in combination with snow-melt. Modern science
in combination with the latest simulation technologies can help to understand the cause and the
impact of these phenomena. Moreover, we can exploit our knowledge and simulation tools to
prepare response measures which aim at reducing the risk associated with flood events. Today,
a lot of effort is put into making flood simulations faster and more accurate to increase both
computational efficiency and fidelity of the results.

3

i
i

“master” — 2017/5/23 — 11:16 — page 4 — #26 i
i

i
i

i
i

Chapter I. Introduction

1 Flood Simulations

We start with a brief overview of the techniques dealing with fluid simulations in general. In
order to calculate the temporal evolution of fluids one has to solve the Navier-Stokes equations
(NSE), which describe the motion of fluid substances. In flood simulations, where the water is
in liquid form, NSE for incompressible flows are used [11]. Due to their complexity, the NSE
are usually transformed into simpler forms by neglecting some properties, e.q., viscosity, vertical
velocity, that are not important for the given problem. In order to solve the NSE, one has to use
computational fluid dynamics (CFD). CFD provide a qualitative and quantitative prediction of
fluid flows by means of mathematical modelling, numerical methods (discretization techniques),
software tools (solvers, pre- and post-processing utilities). CFD enable scientists and engineers
to perform numerical experiments by doing computer simulations. Traditionally, engineers use
various techniques, like finite volume methods (FVMs), finite difference methods (FDMs), or finite
element methods (FEMs) to solve the involved partial differential equations (PDEs).

Shallow Water Equations

In this work, we focus on the shallow water equations (SWE) and their numerical models, dis-
cretized on structured uniform grids, which serve as a basis for all simulations. The SWE, also
called the Saint–Venant (SV) equations, are a set of hyperbolic PDEs if viscous and turbulent terms
are neglected, which describe the flow of a fluid under certain assumptions. They were first in-
troduced in 1871 by the French engineer Adhémar Jean Claude Barré de Saint Venant [12]. The
underlying assumption is that the fluid flow is shallow, i. e., the horizontal length scale is greater
than the vertical depth. The SWE can be derived by depth averaging the NSE and the continuity
equation [11]. The flow is driven by a gravity-induced acceleration due to the slope of the free
surface and the bathymetry. This criteria applies to many situations in hydrology and fluid dy-
namics, where the SWE are widely used. They can model various physical phenomena accurately,
such as tsunamis, dam breaks, levee breaches or inundation, and provide also satisfactorily results
for flood simulations regarding wave arrival times and flows velocities. For hyperbolic PDEs, the
domain of dependence is always a bounded set, which means we can solve the system using an
explicit scheme, since the waves travel at a finite speed. In addition, these properties make the
explicit schemes particularly well suited for parallel architectures, such as modern graphics pro-
cessing units (GPUs), which is also one of the key points of this work. For the sake of brevity, we
refer the reader to Chapter II for a more comprehensive description of the SWE.

Lagrangian and Eulerian Discretization Methods

The most common techniques used to numerically approximate the solutions of the given equa-
tions are grid-based (Eulerian) simulations [13] and particle-based (Lagrangian) simulations.

First, we discuss the Eulerian or grid-based (mesh-based) description of the fluid flow for
FVMs, which divides the domain into a number of control volumes. Each control volume is repre-
sented by a cell of the grid of the discretized domain. All flow properties are evaluated at specific
points of the underlying simulation grid [14, 15, 16, 17, 18]. Cell-centered methods evaluate the
physical quantities at the cell midpoints as cell averages, while in node-centered methods the
physical quantities are evaluated as exact values at the grid point or cell vertices [19]. When dis-
cretizing the SWE other methods might be used as well, e. g.., FEM or FDM. A typical work out
of the FEM involves dividing the domain of the problem into a collection of sub-domains, with
each sub-domain represented by a set of element equations to the original problem, followed by
systematically recombining all sets of element equations into a global system of equations for the
final calculation [20]. The FDM works by approximating the differential equations with difference

4

i
i

“master” — 2017/5/23 — 11:16 — page 5 — #27 i
i

i
i

i
i

2. Parallel Computing on GPUs

equations, where the finite difference is like a differential quotient, except that it uses finite quan-
tities instead of infinitesimal ones [21]. There are two main types of grids that are used in this
representation, structured (regular) and unstructured (irregular). Both grid types have their ben-
efits and drawbacks. Models defined on unstructured grid are more flexible when there is a need
to follow a curve or structures, like buildings and walls [22]. Another important feature is that
adaptive mesh refinement (AMR) comes implicitly for unstructured grids. Nevertheless, quad-tree
based approaches exist also for the regular grids [23, 41], where each cell can be recursively sub-
divided or refined into four smaller ones - according to refinement criteria (velocity, bathymetry
steepness variance, etc.) - until the desired resolution is reached. Even though irregular grids are
very powerful because of the aforementioned features, they are not as suitable for parallel compu-
tations as grids with regular layout. The unstructured property of the simulation grid introduces
some overhead that limits the computational performance due to multiple reasons, i.e., evaluation
of trigonometric functions, higher branch divergency, uncoalesed memory reading and writing,
and more burden on the memory bandwidth due to the structural information. When structured
grids are used, parallel implementation becomes simpler and they have the advantage of lacking a
time-consuming mesh generation. However, proper modelling of buildings and walls might need
a special treatment, e. g., AMR [23, 24] or cut-cells methods [25, 26], if they are not aligned with
with the main axes of the simulation grid.

Now, we shortly describe the particle based-simulations. A commonly used representative
for the particle-based approach is the smoothed particle hydrodynamics (SPH) method. SPH is
a Lagrangian mesh-free (mesh-less) method, where the coordinates move with the fluid. It was
developed and introduced by Gingold and Monaghan [27] and Lucy [28] initially for astrophysical
problems, but it has been heavily used in many fields of research, including fluid simulations. The
SPH method works by dividing the fluid into a set of discrete elements, referred to as particles.
The SPH method is extensively used in fluid simulations in general, and it is getting more attention
lately also in flood simulations using the SWE [29, 30]. One major benefit of the SPH methods is
that they provide more accurate solutions to moving and deforming boundaries compared to grid-
based methods. However, there are multiple reasons that restrict their wider application. Most
of the existing models have problems to fulfil the well-balanced property [31]. To overcome this
problem, [32] recently reported a corrected SPH SWE model to provide well-balanced solutions for
simulating complex shallow flows. Furthermore, they are too slow for time-critical applications
as they require many-many particles, especially in urban environments with buildings, walls and
other hydraulic structures that need high resolution. Computations of such simulations take
between days and weeks, even more so if multiple scenarios are involved. Therefore, accurate
prediction of urban inundations is still beyond the capability of most of the existing SPH models.
For more information about SPH related methods and techniques we refer the reader to other
works [33, 34, 35].

2 Parallel Computing on GPUs

GPUs were initially designed to accelerate computer graphics, namely updating the color of each
pixel on the computer screen many times per second. This is an embarrassingly parallel task,
which maps very well to stencil computations. GPUs went through an extensive evolution over
the past decade. Nowadays, they are known as a very powerful tool which is used in the fastest
supercomputers. These GPUs are widely used by the scientific computing community to solve
various problem, e.g., to simulate blood flow, forming of the galaxies, climate models, or as in our
case simulate floods. Today, GPUs are found in nearly every desktop and laptop computer, and
they are used in supercomputers to accelerate computations.

One can pick from many frameworks, languages and standards when it comes to parallel
programming on GPUs. The most common ones are CUDA, OpenCL, C++ AMP, OpenMP, and
OpenACC. CUDA is a parallel computing platform and application programming interface (API)

5

i
i

“master” — 2017/5/23 — 11:16 — page 6 — #28 i
i

i
i

i
i

Chapter I. Introduction

model created by NVidia. It allows software developers and software engineers to use a CUDA-
enabled GPUs for general purpose computing. The CUDA platform is a software layer that gives
direct access to the GPU’s virtual instruction set and parallel computational elements, for the ex-
ecution of compute kernels. Open Computing Language (OpenCL) is a more general framework
for writing programs that execute across heterogeneous platforms consisting of central processing
units (CPUs), GPUs, digital signal processors (DSPs), field-programmable gate arrayss (FPGAs)
and other processors or hardware accelerators. C++ Accelerated Massive Parallelism (C++ AMP)
is a native programming model that contains elements that span the C++ programming language
and its runtime library. It provides an easy way to write programs that compile and execute on
data-parallel hardware, such as GPUs. C++ AMP is a library implemented on DirectX 11 and an
open specification from Microsoft for implementing data parallelism directly in C++. OpenMP
(Open Multi-Processing) is an API that supports multi-platform shared memory multiprocessing
programming in C, C++, and Fortran. It consists of a set of compiler directives, library routines,
and environment variables that influence run-time behaviour. OpenACC (for open accelerators)
is a programming standard for parallel computing. The standard is designed to simplify paral-
lel programming of heterogeneous CPU/GPU systems. Like in OpenMP, the programmer can
annotate C, C++ and Fortran source code to identify the areas that should be accelerated using
compiler directives and additional functions.

From this point on, we refer to NVidia GPUs and CUDA if not explicitly stated otherwise. The
major difference between the CPUs and GPUs is that, GPUs have a parallel architecture that em-
phasizes executing many concurrent tasks slowly, rather than executing a single one very quickly.
On a GPU, parallel tasks are called threads. These are scheduled and executed simultaneously
in groups referred to as warps. One warp contains 32 threads, which is the number of threads
effectively processed in parallel by one CUDA streaming multiprocessor (SM). GPUs have many
SMs running in parallel to increase the effective parallelism. Each SM has its own resources, such
as, cores, shared memory, registers, LD/ST units, warp schedulers, etc. SMs execute multiple
groups of warps by switching between. Furthermore, threads are organized into larger structures
called blocks, and blocks are organized into grids [36, 37]. Figure I.2 shows a schematics of the
CUDA thread execution model of a conceptual 2D grid. In order to achieve peak performance on
a GPU one should always strive maximizing the occupancy by optimizing the resource usage and
hiding various sources of latencies by feeding the device with enough work.

Grid Block

Warp

Thread

Figure I.2: Schematics of the CUDA thread execution model for a conceptual 2D problem.

As mentioned above, our primary interest lies in flood simulation using SWE, which are a set
of hyperbolic PDEs, thus have a bounded set as a domain of dependence and they can be solved
by explicit numerical schemes. Due to this property, explicit schemes typically rely on stencil
computations, making them inherently parallel, and therefore a near perfect match for GPUs. Such
schemes have an obvious and natural parallelism in the sense that each grid cell can be processed
independently of its neighbours. In these schemes very little global communication is needed in
the computational domain to advance the solution forward in time. Therefore, they are ideal to
exploit the GPU’s parallel nature and to be solved efficiently on it [38, 39, 40, 41, 42]. Unfortunately,
a thorough introduction into high performance computing (HPC), GPU architectures and parallel
computing on GPUs is beyond the scope of this work. Hence we refer the reader to the scientific
literature [43, 36, 44, 45, 37]. More about the implementation of shallow water schemes on GPUs
can be found in Chapter III.

6

i
i

“master” — 2017/5/23 — 11:16 — page 7 — #29 i
i

i
i

i
i

3. Aim of the thesis

3 Aim of the thesis

The aim of this thesis is to develop a robust and integrated flood simulation system capable
of simulating real-world large-scale floods in real-time to support flood managers in decision
making. An emphasis is put on the numerical stability of the delivered solutions, which is crucial
for the users. Flood simulation systems often suffer from stability issues, that can significantly
prolong the decision making process. Users have to adjust and tune the simulation parameters
until a stable set-up is found, for which multiple simulation runs are needed. Another drawback
of these systems is that they are not fast enough to deal with multi-dimensional (multi-parameter)
ensembles of high resolution meshes where large-scale scenarios are simulated [46]. Ensemble
simulations are of key importance in designing uncertainty-aware protection plans for various
flood scenarios. In this work, our goal is to develop and implement a scheme for the SWE that is
numerically stable, not only from the simulation point of view, but also from the physical point of
view. This means, it should be possible to perform long run simulations (weeks, months) without
a slow down due to numerical issues and the scheme should not produce non-physical states,
like high velocities along the dry/wet boundaries. Moreover, the implemented solver has to be
fast enough to deal with multi-dimensional ensembles for decision making in a reasonable time.
All schemes in this work are implemented and optimized for parallel execution on NVidia GPUs
using the CUDA toolkit and integrated into the simulation and visualization framework called
Visdom [47].

The thesis consists of five chapters of which three chapters are based on manuscripts that
have been published in or submitted to scientific peer-reviewed journals. Chapter I provides the
motivation of this work along with a general introduction into flood simulations and parallel
computations on GPUs. In Chapter II, a new two-dimensional numerical scheme, named HWP, is
presented. The HWP scheme aims to solve the SWE in the presence of dry/wet boundaries. This
is achieved, by applying a new reconstruction technique and using the draining time step tech-
nique in the time integration process, which guarantees non-negative water depths, and tackles
the non-physical high velocities of its former scheme. In Chapter III, a new implementation of
two second-order numerical schemes of the SWE for GPUs is discussed. We focus on the schemes
of Kurganov and Petrova (KP) and Horváth et al. (HWP). This chapter provides detailed infor-
mation on how to optimize the KP and HWP schemes for peak performance using the Kepler
shuffle instructions. In addition, we discuss performance and memory considerations of the most
time-consuming and resource-intensive computational steps in our algorithm. In Chapter IV, a
comprehensive comparison and validation is presented for three state-of-the-art shallow water
schemes, one by Kurganov and Petrova (KP), its successor by Horváth et al. (HWP), and our
two-dimensional extension of the scheme by Chen and Noelle (CN). Various validation cases are
investigated, such as analytic, laboratory and real-world, where we address the implementation
of the required boundary conditions (BCs), such as wall BCs, discharge BCs and water level BCs.
Finally, Chapter V presents the main conclusions of this thesis and possible future works.

7

i
i

“master” — 2017/5/23 — 11:16 — page 8 — #30 i
i

i
i

i
i

8

i
i

“master” — 2017/5/23 — 11:16 — page 9 — #31 i
i

i
i

i
i

Chapter II

A Two-Dimensional Numerical Scheme of

Dry/Wet Fronts for the Saint-Venant System of

Shallow Water Equations

Zsolt Horváth, Jürgen Waser, Rui A. P. Perdigão, Artem Konev, Günter Blöschl

This chapter is based on a paper which is published in

International Journal for Numerical Methods in Fluids 77(3), pages 159-182, 2015.

9

i
i

“master” — 2017/5/23 — 11:16 — page 10 — #32 i
i

i
i

i
i

10

i
i

“master” — 2017/5/23 — 11:16 — page 11 — #33 i
i

i
i

i
i

1. Introduction

Abstract

We propose a new two-dimensional numerical scheme to solve the Saint-Venant system of shallow water
equations in the presence of partially flooded cells. Our method is well-balanced, positivity preserving, and
handles dry states. The latter is ensured by using the draining time step technique in the time integration
process, which guarantees non-negative water depths. Unlike previous schemes, our technique does not
generate high velocities at the dry/wet boundaries, which are responsible for small time step sizes and slow
simulation runs. We prove that the new scheme preserves “lake at rest” steady states and guarantees the
positivity of the computed fluid depth in the partially flooded cells. We test the new scheme, along with
another recent scheme from the literature, against the analytical solution for a parabolic basin and show the
improved simulation performance of the new scheme for two real-world scenarios.

1 Introduction

The shallow water equations are of great importance in many application areas, such as flood
[38], or tsunami simulations [48] in urban and rural areas, in which waves propagate with a
horizontal length scale much greater than the vertical length scale (“shallow waves”). Floods may
produce enormous economic damage and human casualties, which have been recently reported
to increase due to a number of reasons [49, 2]. In order to minimize the adverse effects of floods,
flood mitigation measures are needed, such as adjusting regional planning, constructing levees
and polders, establishing evacuation plans, and issuing timely flood warnings once the flood is
imminent. All of these tasks rely on accurate and fast simulations of the flood wave propagation
based on the shallow water equations. In this paper, we are mainly interested in large-scale flood
simulations, for which the main challenge is the simulation time (see Figure. II.1).

In recent times, flood events have been reported to occur more frequently [2]. Moreover, their
relation to climate change has been seen to embody emerging spatio-temporal features stemming
from nonlinear landscape-climate dynamics [50]. These floods can contaminate the soil and our
water sources, not to mention the human casualties and the financial costs of the caused damages.
For this reason, we have to be well prepared and be able to act in time to minimize damages and
losses. The shallow water equations serve as a fundamental and efficient tool for simulating floods
and creating protection plans for such catastrophic events. Waser et al. [46] present an integrated
solution based on the shallow water equations and on multidimensional, time-dependent ensem-
ble simulations of incident scenarios and protective measures. They provide scalable interfaces
which facilitate and accelerate setting up multiple time-varying parameters for generating a pool
of pre-cooked scenarios.

Shallow water waves are described by the Saint–Venant (SV) system [51, 17], in which the mo-
tion of the fluid is introduced by the gravity. The equations are derived from depth-integrating the
Navier-Stokes and the continuity equations [52, 11]. This leads to a vertically lumped description
of the wave propagation, which assumes invariance in fluid properties with depth. If the fluid is
stratified, i.e. features vertical layers with different properties (e.g. temperature, density), a system
of multiple level shallow water equations (e.g. [53, 54]) can be used, with as many levels as there
are the layers in the stratified fluid. In this paper, we focus on single-layer shallow waves. Note
that the framework can be applied to multiple-level systems.

We are interested in a robust and fast numerical method for the SV system of the shallow water
equations (SWE). We begin with a brief overview, and discuss the most important details, which
are essential to completely understand the system and the proposed numerical scheme.

11

i
i

“master” — 2017/5/23 — 11:16 — page 12 — #34 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

The two-dimensional shallow water waves can be described by the following SV system [55]: h

hu

hv


t︸ ︷︷ ︸

conserved variables

+

 hu

hu2 + 1
2 gh2

huv


x

+

 hv

huv

hv2 + 1
2 gh2


y︸ ︷︷ ︸

flux functions

=

 0

−ghBx

−ghBy


︸ ︷︷ ︸
source terms

, (II.1)

where h represents the water height, hu is the discharge along the x-axis, hv is the discharge along
the y-axis, u and v are the average flow velocities, g is the gravitational constant, and B is the
bathymetry (see Figure II.4a). Subscripts represent partial derivatives, i.e., Ut stands for ∂U

∂t . In
vector form the system can be written down as:

Ut + F(U, B)x + G(U, B)y = S(U, B), (II.2)

where U = [h, hu, hv] is the vector of conserved variables, F and G are flux functions, and S
represents the source term function.

a b

Figure II.1: Real-world large-scale simulations of a breach in an urban area in Cologne, Germany. (a) Distant view of the

city. (b) Closer view of the flooded area.

The method should be accurate on smooth parts of the solution and should not create spuri-
ous oscillations near discontinuities, i.e., at the dry/wet boundaries. These equations accurately
capture both steady-states and quasi-steady flows [17, 56] in which the flux gradients are balanced
by the source terms. Well-balanced numerical schemes have to be capable of exactly balancing the
source terms and numerical fluxes, so that the “lake at rest” steady states are preserved:

u = 0, v = 0, w := h + B = Const., (II.3)

where w is the total elevation of the water surface. When h = 0, the previous state can be reduced
to the “dry lake” steady state:

hu = 0, hv = 0, h = 0, (II.4)

which means that no water is present, and the discharges are also zero. A good numerical scheme
should be able to exactly preserve both “lake at rest” and “dry lake” steady states as well as their
combinations. The methods that exactly preserve these solutions are termed “well-balanced” [16,
57, 58, 59, 60, 61, 62, 63]. Therefore, an ideal method should be well balanced in the sense that
fluxes and source terms balance exactly and they result in zero velocities for “lake at rest” cases.

The simulation of water waves is particularly challenging near dry areas. Standard numerical
methods may fail at the dry/wet fronts and produce negative water heights. If the water height
becomes negative after the time integration, the whole computation breaks down. All computed
water heights must be non-negative. To accomplish this, various positivity preserving methods
are available [14, 16, 17, 18, 64]. The last major requirement is the stability of the scheme. In
general, to fulfill this requirement, the Courant-Friedrichs-Lewy (CFL) condition [65, 66, 18] is
applied. In case of a second order scheme the CFL condition allows for each wave to travel at

12

i
i

“master” — 2017/5/23 — 11:16 — page 13 — #35 i
i

i
i

i
i

2. Related Work

most one quarter of a grid cell per time step (CLF = 0.25), thus limiting the propagation of the
information by limiting the time step.

In this paper, we present a new grid-based, central-upwind scheme that satisfies the criteria
above. Following a new reconstruction of the water surface and the draining time step tech-
nique [67], we develop a well-balanced, positivity-preserving scheme for the dry/wet fronts. The
new method is two-dimensional, which makes it suitable for real-world flood simulations by over-
coming limitations of one-dimensional schemes. Furthermore, the scheme is well-balanced at the
partially flooded cells. This allows for longer time steps which results in shorter simulation run
time. We point out that our new two-dimensional scheme is not a direct dimension-by-dimension
extension of the one-dimensional scheme presented by Bollerman et al. [16], since the latter does
not contain some terms which appear only in the two-dimensional scheme. Our two-dimensional
scheme is more than a juxtaposition of two one-dimensional schemes.

The paper is structured as follows. In Section 2, we discuss the existing solutions and their
drawbacks. In Section 3, we show how to discretize the SWE on a regular grid. In Section 4,
we describe the water surface reconstruction at partially flooded cells. In Section 5, we prove the
positivity preserving property of the scheme with the new reconstruction and demonstrate the
application of the draining time step technique. In Section 6, we present the evaluation of the
proposed scheme. The scientific contributions of the proposed scheme span from fundamental
numerical developments to an added practical value to engineering, environmental and hazard
prevention applications. The paper thus contributes with the following key points:

• a physically consistent solution;

• no numerical artifacts at the boundaries;

• 2-10 times faster than previous schemes;

• evaluation on two large-scale, real-world scenarios relevant for society (urban and rural
flooding);

• an improved numerical scheme for the SWE, based on the two-dimensional reconstruction
at the dry/wet boundaries;

• well-balanced states at the dry/wet boundaries in partially flooded cells;

• application of the draining time step technique to preserve non-negative water heights while
advancing the solution in time;

• avoiding spurious high velocities at the dry/wet boundaries;

• validation against an analytical solution.

2 Related Work

There are many schemes available in the literature that satisfy some of the criteria listed in the
previous section. For other types of problems (including smooth phenomena, i.e., the formation
of eddies [68, 69]), higher order schemes [61, 63] may be required. We are interested in urban and
rural flood simulations, hence, we focus on the second-order schemes that produce sufficiently
accurate results for these problems.

In the numerical treatment of the SWE, the spatial domain is discretized. For this purpose,
one can use a structured or an unstructured mesh. Most of the numerical schemes developed for
the SV system are based on the Eulerian approach [57]. This approach uses fixed points in space
(grid points) where the fluid properties are evaluated. In general a uniform rectangular mesh or

13

i
i

“master” — 2017/5/23 — 11:16 — page 14 — #36 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

a triangular mesh is used for this purpose [18]. The second approach is called Lagrangian, where
the fluid is being tracked as it flows through space. This is a particle-based approximation of
the fluid flow, where each fluid element or particle stores its own properties (e.g., mass, velocity,
position).

We are interested in a two-dimensional, well-balanced, positivity preserving scheme discretized
on a regular rectangular mesh, which is often referred to as regular grid. The scheme has to be
able to handle dry and near dry states and solve accurately and efficiently problems characterized
by strong discontinuities (e.g., dam breaks, flood breaches).

Kurganov and Levy [17] introduce a second-order scheme using discretization on a regular
grid. They propose to use a different reconstruction of the water surface in near dry areas than
in the wet zones. The resulting scheme is not well-balanced and violates mass conservation.
Furthermore, spurious waves may emerge in the shoal zones. The technique assumes a continuous
bathymetry, but a straightforward sampling of a discontinuous bathymetry can result in steep
gradients of the bathymetry approximation. This will affect the CFL number [65], restricting the
time steps toward very small values.

Kurganov and Petrova [18] improve the previous work by supporting a discontinuous bathymetry.
They describe a reconstruction adjustment for the partially flooded cells, where values of the water
depth become negative at the integration points. If the reconstructed water slope creates negative
values at the integration points, they adjust the steepness of the slope so that the negative values
become zero. Their correction solves the positivity problem by raising and lowering the water
level at the left and right side of the cell according to the bathymetry function. This guarantees
that all water heights are non-negative. However, at the partially flooded cells this can lead to
large errors for small water heights and the flow velocity will grow smoothly in these formerly
dry areas. Another issue related to this modification, i.e., the water climbs up on the shores at the
dry/wet boundaries. Finally, if a cell becomes wet, it will almost never be completely dry again.

Bollermann [16] extends the Kurganov and Petrova [18] scheme and achieves well-balanced
states in the partially flooded cells by constructing an alternative correction procedure, which is
similar to the reconstruction used by Tai [70]. However, this modification works only for one di-
mension and can lead to infinitely small time steps. To overcome this, time step limitation, Boller-
mann uses the draining time technique introduced in [67]. This scheme is only one-dimensional
and it is not sufficient for our simulations.

Apart from the regular grid-based schemes, various techniques exist for structured and un-
structured meshes. For instance, Bryson [71] develops a well-balanced positivity preserving nu-
merical scheme for triangular grids. This scheme can be applied to models with discontinuous
bathymetry and irregular channel widths. Even though the method can be well adopted to irreg-
ular topographies, its implementation is more complex, and it has higher computational require-
ments than the scheme we introduce in this paper.

3 Two–Dimensional Central–Upwind Scheme

Our work is based on the two-dimensional, central-upwind scheme of Kurganov and Petrova [18].
In this section, we describe this technique for solving the SV system of shallow water equations
on uniform grids. Table II.1 explains the notations used throughout the text.

We introduce a uniform grid xα := α∆x and yβ := β∆y, where ∆x and ∆y are small spa-
tial scales (see Figure II.2), and we denote by Cj,k the finite volume cells Cj,k := [xj− 1

2
, xj+ 1

2
] ×

[yk− 1
2
, yk+ 1

2
]. The central-upwind semi-discretization (discretized only in space, while time re-

mains continuous) of (II.2) can be written down as the following system of time-dependent, ordi-

14

i
i

“master” — 2017/5/23 — 11:16 — page 15 — #37 i
i

i
i

i
i

3. Two–Dimensional Central–Upwind Scheme

Table II.1: Notations for the numerical scheme

V , vector (e.g., U = [h, hu, hv])

Ū , cell average values

Ũ , approximated values

Uj,k , vector at position [j, k]

U± , left- and right-sided point values

Un , vector at time tn (Un = U(tn))

Hx , central-upwind flux function in x-dimension

H(1) , 1st element of vector H = [H(1), H(2), H(3)]

v , variable

v∗ , special variable

Bj,k , value at position [j, k]

nary differential equations (ODE) [72, 17]:

d
dt

Ūj,k(t) = −
Hx

j+ 1
2 ,k
(t)−Hx

j− 1
2 ,k
(t)

∆x
−

Hy
j,k+ 1

2
(t)−Hy

j,k− 1
2
(t)

∆y
+ S̄j,k(t), (II.5)

where Hx
j∓ 1

2 ,k
and Hy

j,k∓ 1
2

are the central-upwind fluxes and S̄j,k is an appropriate discretization of

the cell averages of the source term:

S̄j,k(t) ≈
1

∆x∆y

∫∫
Cj,k

S(U(x, y, t), B(x, y))dxdy, (II.6)

which in our case only contains the bed source term. The friction term is omitted for simplification
purposes without loss of generality.

We start by replacing the bathymetry function B(x, y) with its continuous, piecewise bilin-
ear approximation B̃(x, y), which at each cell Cj,k is given by a bilinear form. The vertex values
Bj± 1

2 ,k± 1
2

of the cell Cj,k are computed based on the continuous bathymetry function (see Fig-
ure II.3).

The average value of B̃ over the cell Cj,k is equal to its value Bj,k at the center of this cell.
Furthermore, it is equal to the average value of the values at cell interface midpoints:

Bj,k =
1
4

(
Bj+ 1

2 ,k + Bj− 1
2 ,k + Bj,k+ 1

2
+ Bj,k− 1

2

)
. (II.7)

Further details on the piecewise bilinear approximation of the bathymetry can be found in [18].

Using the approximated bathymetry values at cell interface midpoints (see Figure II.4a-b) we
have the discretized source terms in the following form [17, 18]:

S̄(1)
j,k (t) := 0, (II.8)

S̄(2)
j,k (t) := −gh̄j,k

B
j+ 1

2 ,k
−B

j− 1
2 ,k

∆x , (II.9)

S̄(3)
j,k (t) := −gh̄j,k

B
j,k+ 1

2
−B

j,k− 1
2

∆y , (II.10)

where we omit the time dependence t on the right hand side for simplification reasons without
loss of generality, as we do in the following equations.

15

i
i

“master” — 2017/5/23 — 11:16 — page 16 — #38 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

hv

hu

y

x

j k+ 1
2
,

j k− 1
2
,

j k, + 1
2

j k, + 1
2

j k,

LEGEND
hu discharge in x-dimension
hv discharge in y-dimension
∆x cell width in x-dimension
∆y cell width in y-dimension
 cell interface midpoints
 cell vertices
 cell center (cell average)

Figure II.2: Two-dimensional grid-based representation of average water elevations w̄, discharges h̄u, h̄v, and bathymetry

B. For a bilinear reconstruction, the cell averages coincide with the values at the cell centers. The bathymetry is approx-

imated by its values at the cell vertices. In this figure, the middle cell is fully flooded in the y-dimension, while only

partially flooded in the x-dimension. Waterlines are represented by the blue lines, red dashed lines mark the bathymetry

slopes in both dimensions.

Bj k,

B
j k+ +
1

2

1

2
,

B
j k+ −
1

2

1

2
,

B
j k− +
1

2

1

2
,

B
j k− −
1

2

1

2
,

B x y(,)

B x y(,)

j k+ 1
2
,

j k− 1
2
,

j k, + 1
2

j k, − 1
2

LEGEND
 continuous function
 approximated function
 cell interface midpoints
 cell vertices
 cell center (cell average)

B x y(,)
B x y(,)

j k,

Figure II.3: Continuous bathymetry function B(x, y) (green) and its piecewise linear approximation B̃(x, y) (brown dots).

The approximated function values equal to the continuous ones at the cell vertices (green dots). The cell average value

(blue dot) equals both to the average value of the vertex values (green dots) and to the average value of the values at the

cell interface midpoints (brown dots).

16

i
i

“master” — 2017/5/23 — 11:16 — page 17 — #39 i
i

i
i

i
i

3. Two–Dimensional Central–Upwind Scheme

On the next step we reconstruct the slope of the water surface in the cells (see Figure II.4c). The
reconstruction of the left- and right-sided point values (see Figure II.4d) is second-order accurate if
the approximate values of the derivatives (Ux)j,k and (Uy)j,k are at least first-order componentwise
approximations of Ux(xj, yk) and Uy(xj, yk). To preserve second-order accuracy, these values are
computed using a non-linear limiter. In addition, to ensure non-oscillatory reconstruction and to
avoid oscillation artifacts in the numerical solution, we use the generalized minmod limiter [73,
72, 74, 75, 76]:

(Ux)j,k = minmod

(
θ

Ūj,k − Ūj−1,k

∆x
,

Ūj+1,k − Ūj−1,k

2∆x
, θ

Ūj+1,k − Ūj,k

∆x

)
,

(
Uy
)

j,k = minmod

(
θ

Ūj,k − Ūj,k−1

∆y
,

Ūj,k+1 − Ūj,k−1

2∆y
, θ

Ūj,k+1 − Ūj,k

∆y

)
,

(II.11)

where θ ∈ [1, 2] is a parameter used to affect the numerical viscosity of the scheme. As suggested
in [17], we set θ = 1.3, which is close to the optimal value. The minmod function is defined as

minmod(z1, z2, z3) :=


minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise,

(II.12)

and is applied in a componentwise manner to all three elements
[
w̄, h̄u, h̄v

]
of vector Ū, where we

reconstruct water levels w̄ instead of water heights h̄. Other non-linear limiters can be found in
the literature [77, 78, 73, 74, 79, 75, 76].

The values U±
j+ 1

2 ,k
=

(
w±

j+ 1
2 ,k

, hu±
j+ 1

2 ,k
, hv±

j+ 1
2 ,k

)
and U±

j,k+ 1
2
=

(
w±

j,k+ 1
2
, hu±

j,k+ 1
2
, hv±

j,k+ 1
2

)
are

referred to as the left- and right-sided point values (see Figure II.4d). They are obtained by the
piecewise linear reconstruction Ũ ≡ (w̃, h̃u, h̃v) for U at cell interface midpoints [xj+ 1

2
, yk] and

[xj, yk+ 1
2
] ,

Ũ(x, y) := Ūj,k + (Ux)j,k(x− xj) + (Uy)j,k(y− yk), (x, y) ∈ Cj,k. (II.13)

For cell Cj,k we get the following four vectors describing the reconstructed point values:

U−
j+ 1

2 ,k
=Uj,k +

∆x
2
(Ux)j,k, U+

j− 1
2 ,k

=Uj,k −
∆x
2
(Ux)j,k,

U−
j,k+ 1

2
=Uj,k +

∆y
2
(Uy)j,k, U+

j,k− 1
2
= Uj,k −

∆y
2
(Uy)j,k.

We note that the reconstruction procedure (II.11)–(II.13) might produce negative water heights
in the partially flooded cells [16, 18] (see Figure II.4d). Therefore, we need to correct them (see
Figure II.4e). The correction technique proposed in [18] violates the well-balanced property of the
scheme, and causes high velocities in these areas. Hence, we use a modified correction that has
been first derived for the one-dimensional case [16]. Ensuring both well-balanced and positivity
preserving properties for the two-dimensional version is not straightforward. Our new recon-
struction affects only the partially flooded cells while maintaining the well-balanced property of
the scheme. The derivation of the two-dimensional version is presented in Section 4.

Using the point values, we can calculate the fluxes needed for the computation of the next time
step. The central-upwind numerical fluxes Hx

j+ 1
2 ,k

and Hy
j,k+ 1

2
(see Figure II.4f) are given by:

Hx
j+ 1

2 ,k =
a+

j+ 1
2 ,k

F
(

U−
j+ 1

2 ,k
,B

j+ 1
2 ,k

)
−a−

j+ 1
2 ,k

F
(

U+

j+ 1
2 ,k

,B
j+ 1

2 ,k

)
a+

j+ 1
2 ,k
−a−

j+ 1
2 ,k

(II.14)

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

[
U+

j+ 1
2 ,k
−U−

j+ 1
2 ,k

]
,

17

i
i

“master” — 2017/5/23 — 11:16 — page 18 — #40 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

Hy
j,k+ 1

2
=

b+
j,k+ 1

2
G
(

U−
j,k+ 1

2
,B

j,k+ 1
2

)
−b−

j,k+ 1
2

G
(

U+

j,k+ 1
2

,B
j,k+ 1

2

)
b+

j,k+ 1
2
−b−

j,k+ 1
2

(II.15)

+
b+

j,k+ 1
2

b−
j,k+ 1

2
b+

j,k+ 1
2
−b−

j,k+ 1
2

[
U+

j,k+ 1
2
−U−

j,k+ 1
2

]
,

where we use the following flux notations:

F(U, B) :=
[

hu, (hu)2

w−B + 1
2 g(w− B)2, huv

]T
(II.16)

G(U, B) :=
[

hv, huv, (hv)2

w−B + 1
2 g(w− B)2

]T
. (II.17)

We note that the central-upwind flux is a direct generalization of the well-known Harten-Lax-van
Leer flux [80, 81].

hu h

B

U j k,

B
j k1
2
,

B
j k1
2
,

a b c

U
j k+

−
1

2
,

U
j k1
2
,

d w w
j k j k−

−

−

+=
3

2

3

2
, ,

x j k2,
*

e

H
j k1
2
,H

j k1
2
,

f

negative water depth separation point

point values

()
,

Ux j k

a b c

d e f

Figure II.4: (a) Schematic view of a shallow water flow at a dry/wet boundary and definition of the variables. (b)

Conserved variables U are discretized as cell averages Ūj,k . The bathymetry function B is computed at cell interface

midpoints. (c) Slopes Ux are reconstructed using the minmod flux limiter. (d) Left- and right-sided point values are

computed at cell interface midpoints. (e) At the almost dry cells the slope is modified to avoid negative water heights, and

a separation point is generated. (f) Fluxes are computed using the central-upwind flux function at each cell interface.

The speed values a±
j+ 1

2 ,k
and b±

j+ 1
2 ,k

of propagation [72] are obtained using the eigenvalues of

the Jacobian ∂F
∂U as follows:

a+
j+ 1

2 ,k
= max

{
u−

j+ 1
2 ,k

+
√

gh−
j+ 1

2 ,k
, u+

j+ 1
2 ,k

+
√

gh+
j+ 1

2 ,k
, 0
}

(II.18)

a−
j+ 1

2 ,k
= min

{
u−

j+ 1
2 ,k
−
√

gh−
j+ 1

2 ,k
, u+

j+ 1
2 ,k
−
√

gh+
j+ 1

2 ,k
, 0
}

(II.19)

b+
j,k+ 1

2
= max

{
v−

j,k+ 1
2
+
√

gh−
j,k+ 1

2
, v+

j,k+ 1
2
+
√

gh+
j,k+ 1

2
, 0
}

(II.20)

b−
j,k+ 1

2
= min

{
v−

j,k+ 1
2
−
√

gh−
j,k+ 1

2
, v+

j,k+ 1
2
−
√

gh+
j,k+ 1

2
, 0
}

(II.21)

Using the semi-discrete equation (II.5) together with the forward Euler temporal discretization
we obtain the discrete equation for the computation of the next time step as:

Ūn+1
j,k = Ūn

j,k − λ
(

Hx
j+ 1

2 ,k −Hx
j− 1

2 ,k

)
− µ

(
Hy

j,k+ 1
2
−Hy

j,k− 1
2

)
, (II.22)

18

i
i

“master” — 2017/5/23 — 11:16 — page 19 — #41 i
i

i
i

i
i

4. Reconstruction at Partially Flooded Cells

where λ := ∆t/∆x, µ := ∆t/∆y, and the numerical fluxes Hx
j± 1

2 ,k
and Hy

j,k± 1
2

are evaluated at time

t = tn. In order to keep the numerical integration stable, the time step size ∆t has to satisfy the
CFL condition:

∆t ≤ CFL min
{

∆x
a

,
∆y
b

}
, (II.23)

where CFL := 1
4 for the two-dimensional scheme, and a and b are given by

a := max
j,k

{
max{a+

j+ 1
2 ,k

,−a−
j+ 1

2 ,k
}
}

, b := max
j,k

{
max{b+

j,k+ 1
2
,−b−

j,k+ 1
2
}
}

. (II.24)

4 Reconstruction at Partially Flooded Cells

The central-upwind scheme described in the previous section may produce negative water values
in the partially flooded cells on the reconstruction step (see Figure II.5a). Even if the total amount
of water in the cell is positive (w̄j,k > Bj,k), the water level in the cell may intersect the bathymetry
(w̄j,k < Bj− 1

2 ,k) and thus the point value at the cell interface becomes negative (hj− 1
2 ,k < 0). One

could try replacing the first-order, piecewise, constant reconstruction with a higher order, piece-
wise, linear reconstruction, but it will not guarantee positive reconstructed point values at the cell
interfaces. Therefore, we need to correct these point values. The correction proposed in [18] solves
the problem of the negative point values, but violates the well-balanced property of the scheme
(see Figure II.5b). Based on the modified technique proposed in [16] for the one-dimensional
scheme (see Figure II.5c), we extend this correction for two dimensions.

We assume that at a certain time t all computed water levels are higher or equal to the
bathymetry elevation (w̄j,k ≥ Bj,k). In addition, in the piecewise linear reconstruction (II.13),
we use a non-linear limiter to compute the slopes (Ux)j,k and (Uy)j,k. We also assume that at an
arbitrary partially flooded cell Cj,k,

Bj− 1
2 ,k > w̄j,k > Bj+ 1

2 ,k or Bj,k− 1
2
> w̄j,k > Bj,k+ 1

2
(II.25)

and that the reconstructed point values of w in cell Cj+1,k and Cj,k+1 satisfy

w+
j+ 1

2 ,k
> Bj+ 1

2 ,k and w−
j+ 3

2 ,k
> Bj+ 3

2 ,k,

w+
j,k+ 1

2
> Bj,k+ 1

2
and w−

j,k+ 3
2

> Bj,k+ 3
2
. (II.26)

Symmetric cases can be treated the same way.

wj k,

wj k1,

xw

wj k,

wj k1,

xw x j k,
*

wj k,

wj k1,

xw

a b ca b c

Figure II.5: Approximations of the wet/dry front reconstruction. The blue dashed line represents the waterline of the fully

flooded cell. (a) Wrong approximation by the piecewise linear reconstruction, which produces a negative water value. (b)

Positivity preserving, but unbalanced piecewise linear reconstruction. (c) Positivity preserving, well-balanced, piecewise

linear reconstruction.

19

i
i

“master” — 2017/5/23 — 11:16 — page 20 — #42 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

We start with computing the water surface wj,k in cell Cj,k. In order to distinguish between the
two dimensions, wx

j,k marks the waterline for the x- and wy
j,k for the y-dimension. The water level

is the average elevation of the water surface in a cell. The waterline is a horizontal line which
represents the real water surface in a cell computed from the amount of water present in that
cell, which means it can differ from the average water elevation. If the cell is fully flooded, we
can represent the line by a linear function (see Figure II.6a). Otherwise, it has to be represented
by a piecewise linear function, with a separation point x∗j,k, which defines the location where the
water height becomes zero (see Figure II.5c). We choose a water height in a way that the volume
enclosed between the surface and the bathymetry equals to the amount of water in that cell (see
Figure II.6b). The amount of water in cell Cj,k is defined by ∆x · h̄j,k and ∆y · h̄j,k for each direction
respectively, where h̄j,k := w̄j,k − Bj,k. These areas can be represented by trapezoids, if the cell is
fully filled, or by triangular shapes, if the cell is partially flooded (see Figure II.6). We note that a
cell can be fully flooded in one dimension, while only partially flooded in the other. If cell Cj,k is
fully flooded, the following conditions hold:

h̄j,k ≥
∆x
2
|(Bx)j,k|, h̄j,k ≥

∆y
2
|(By)j,k|, (II.27)

where h̄j,k is the average water height of the cell, (Bx)j,k and (By)j,k are the batrymetry slopes in x
and y directions. In this case, functions sx

j,k(x, y) and sy
j,k(x, y) represent the water surface for both

dimensions:
sx

j,k(x, y) = w̄j,k, sy
j,k(x, y) = w̄j,k,

otherwise the free surface is a continuous piecewise linear function given by

sx
j,k(x, y) =

{
Bj,k(x, y), if x < x∗w,
wx

j,k, otherwise, sy
j,k(x, y) =

{
Bj,k(x, y), if y < y∗w,
wy

j,k, otherwise, (II.28)

where x∗w and y∗w are the boundary points separating the dry and wet parts in the cell Cj,k, and
Bj,k(x, y) is a two-dimensional plane representing the bathymetry approximation in the cell. The
boundary separation points can be determined by the following equations:

∆x∗w =

√
2∆xh̄j,k

|(Bx)j,k|
∆y∗w =

√
2∆yh̄j,k

|(By)j,k|
(II.29)

where ∆x∗w = xj+ 1
2
− x∗w and ∆y∗w = yj+ 1

2
− y∗w. More details on deriving this equation can be

found in [16, 82]. The average total elevation of the water surface for the wet/dry cell is then
computed as

wx
j,k = Bj,k +

(
∆x∗w −

∆x
2

)
|(Bx)j,k|

wy
j,k = Bj,k +

(
∆y∗w −

∆y
2

)
|(By)j,k|

(II.30)

a b
wj k
x
,

x h j k, wj k
x
,

x h j k,

xw

a b

Figure II.6: Waterline wx
j,k computation using the conservation of the average water height h̄j,k , where ∆x · h̄j,k equals to

the amount of water in the cell. (a) In the fully flooded cell, the waterline does not intersect the bathymetry. (b) In the

partially flooded cell, xw marks the intersection point between the waterline and the bathymetry.

20

i
i

“master” — 2017/5/23 — 11:16 — page 21 — #43 i
i

i
i

i
i

4. Reconstruction at Partially Flooded Cells

Note that if a cell satisfies at least one condition of (II.27), then it is a partially flooded cell with
∆x∗w < ∆x or ∆y∗w < ∆y.

In the following, we discuss the reconstruction of the waterline for the x dimension. It can
be computed analogously for the y dimension. At this point we know which cells are partially
flooded. For these cells we modify the reconstruction of the water height h to ensure the well-
balanced property. We assign the value of the reconstructed water height of the next fully flooded
cell Cj+1,k to the value of the same interface at the partially flooded cell Cj,k, w−

j+ 1
2 ,k

:= w+
j+ 1

2 ,k
.

Using this value and the conservation of the average water height h̄j,k, we determine the waterline
wx

j,k in cell Cj,k. This assignment implies that h−
j+ 1

2 ,k
:= w−

j+ 1
2 ,k
− Bj+ 1

2 ,k = w+
j+ 1

2 ,k
− Bj+ 1

2 ,k =: h+
j+ 1

2 ,k
.

If the amount of water in cell Cj,k is sufficiently large, then h+
j− 1

2 ,k
≥ 0 and satisfies

h̄j,k =
1
2

(
h−

j+ 1
2 ,k

+ h+
j− 1

2 ,k

)
, (II.31)

from which we obtain the total water level w+
j− 1

2 ,k
= h+

j− 1
2 ,k

+ Bj− 1
2 ,k, and thus the well-balanced

reconstruction for cell Cj,k is completed.

If the value of h+
j− 1

2 ,k
at the other interface computed from the conservation requirement (II.31)

is negative, we replace the waterline wx
j,k in cell Cj,k with two linear pieces. The breaking point

between the “wet” and “dry” pieces is marked by x∗j,k and is determined by the conservation
requirement, which in this case reads

∆x · h̄j,k =
∆x∗j,k

2
h−

j+ 1
2 ,k

, (II.32)

where
∆x∗j,k = |xj+ 1

2 ,k − x∗j,k|.

Using the idea from [16] and combining the above two cases, we obtain the reconstructed value

h+
j− 1

2 ,k
= max

{
0, 2h̄j,k − h−

j+ 1
2 ,k

}
. (II.33)

As in [16], we also generalize the definition of ∆x∗j,k and set

∆x∗j,k = ∆x ·min

 2h̄j,k

h−
j+ 1

2 ,k

, 1

 . (II.34)

The well-balanced reconstruction for the x dimension is completed. Following this technique, one
can easily derive it for the second dimension.

We mentioned that the piecewise linear reconstuction (II.12)–(II.13) does not guarantee the
positivity of the point values at the dry/wet fronts, thus they have to be corrected. This approach
only modifies the reconstructed water values w̃±

j± 1
2 ,k

. Next, as in [16] we summarize the possible

cases of the modified reconstruction, where w̄j,k is the average water level in the cell, w̃±
j± 1

2 ,k
are

the point values reconstructed using the minmod flux limiter (II.11), and w±
j± 1

2 ,k
are the corrected

values:

Case 1. If w̄j,k > Bj− 1
2 ,k and w̄j,k > Bj+ 1

2 ,k then cell Cj,k is fully flooded.

1A. If w̃+
j− 1

2 ,k
≥ Bj− 1

2 ,k and w̃−
j+ 1

2 ,k
≥ Bj+ 1

2 ,k the cell is flooded and we set w±
j+ 1

2 ,k
:− w̃±

j+ 1
2 ,k

(see Figure II.7a).

21

i
i

“master” — 2017/5/23 — 11:16 — page 22 — #44 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

U j k,

B
j k1
2
,

B
j k1
2
,

U j k,

B
j k1
2
, B

j k1
2
,

U j k,

B
j k1
2
, B

j k1
2
,

U j k,B
j k1
2
, B

j k1
2
,

a b c d

w
j k+

−
1

2
,

~

w
j k−

+
1

2
,

~
w
j k−

+
1

2
,

~ w
j k−

+
1

2
,

~
w
j k−

+
1

2
,

~

w
j k+

−
1

2
,

~w
j k+

−
1

2
,

~
w
j k+

−
1

2
,

~
h j k,

h j k,

w
j k−

+
1

2
, w

j k−

+
1

2
,

w
j k−

+
1

2
,w

j k−

+
1

2
,

w
j k+

−
1

2
, w

j k+

−
1

2
,

w
j k+

−
1

2
, w

j k+

−
1

2
,

x j k,
*

a b c d

Figure II.7: Illustrations of reconstruction cases for the wet/dry fronts. The upper row shows the average water levels

in the cells, the row in the middle shows the reconstructed point values, and the bottom row shows the modified point

values. (a) The amount of water is enough to fill the cell, the reconstruction is correct. (b) The amount of water is enough

to fill the cell, but a negative point value was produced, therefore we set it to zero, and the value on the right side requires

correction due to the conservation criterion. (c) The cell is partially flooded, and after equalizing the water height between

the current and the next fully flooded cell, both values become positive. (d) The cell is partially flooded, and there is not

enough water to fill it after the equalization.

22

i
i

“master” — 2017/5/23 — 11:16 — page 23 — #45 i
i

i
i

i
i

5. Positivity Preserving in Time Integration

1B. Otherwise, as in [18], we redistribute the water (see Figure II.7b) in the following way:

If w̃+
j− 1

2 ,k
< Bj− 1

2 ,k, then set (wx)j,k :=
w̄j,k − Bj− 1

2 ,k

∆x/2
,

=⇒ w−
j+ 1

2 ,k
= 2w̄j,k − Bj− 1

2 ,k, w+
j− 1

2 ,k
= Bj− 1

2 ,k.

and symmetrically

If w̃−
j+ 1

2 ,k
< Bj+ 1

2 ,k, then set (wx)j,k :=
Bj+ 1

2 ,k − w̄j,k

∆x/2
,

=⇒ w−
j+ 1

2 ,k
= Bj+ 1

2 ,k, w+
j− 1

2 ,k
= 2w̄j,k − Bj+ 1

2 ,k,

Case 2. If Bj− 1
2 ,k > w̄j,k > Bj+ 1

2 ,k, then cell Cj,k is possibly partially flooded.

2A. If w̃+
j+ 1

2 ,k
> Bj+ 1

2 ,k and w̃−
j+ 3

2 ,k
> Bj+ 3

2 ,k, then cell Cj+1,k is fully flooded and w+
j+ 1

2 ,k
=

w̃+
j+ 1

2 ,k
. We set w−

j+ 1
2 ,k

:= w+
j+ 1

2 ,k
and h−

j+ 1
2 ,k

:= w−
j+ 1

2 ,k
− Bj+ 1

2 ,k.

2A1. If 2h̄j,k − h−
j+ 1

2 ,k
≥ 0, then the amount of water in cell Cj,k is sufficiently large, and

we set h+
j− 1

2 ,k
= 2h̄j,k − h−

j+ 1
2 ,k

, so w+
j− 1

2 ,k
= h+

j− 1
2 ,k

+ Bj− 1
2 ,k (see Figure II.7c).

2A2. Otherwise set h−
j+ 1

2 ,k
= 0, w+

j− 1
2 ,k

= Bj− 1
2 ,k and ∆x∗j,k as in (II.34) (see Figure II.7d).

2B. Otherwise set h−
j+ 1

2 ,k
:= wj,k − Bj+ 1

2 ,k and ∆x∗j,k := ∆x∗w. This situation is not generic and

may occur only in the under-resolved computations [16].

Case 3. Bj− 1
2 ,k < w̄j,k < Bj+ 1

2 ,k is analogous to Case 2.

The correction cases for the second dimension can be derived analogously by changing indices
from j− 1

2 , k and j + 1
2 , k to j, k− 1

2 and j, k− 1
2 .

At this point, the corrected water heights of the reconstructed point values are non-negative.
However, they may be very small or even zero. Since u = hu

h and v = hv
h , these computations

may lead to large errors in the partially flooded cells for small water heights and they have a
singularity at zero water height (h = 0). To deal with this problem, we use the desingularization
suggested in [18]:

u =

√
2h(hu)√

h4 + max(h4, ε)
, v =

√
2h(hv)√

h4 + max(h4, ε)
, (II.35)

where ε is a small apriori chosen positive number. This has a dampening effect on the velocities
as the water height approaches zero. Determining a proper value for ε is very difficult. High
values lead to large errors in the simulation results, while low values give small time steps. In our
simulation, we used the suggestion of Brodtkorb [39]:

ε = E0 max (1, min (∆x, ∆y)) , (II.36)

with E0 = 10−2 m.

5 Positivity Preserving in Time Integration

In the previous section, we have discussed the well-balanced spatial reconstruction of the point
values for partially flooded cells. In this section, we continue with the time-quadrature for the
fluxes at partially flooded cells. This means the discretization of the semi-discrete scheme in time,
and advancing by ∆t. We follow the technique used in [16] and start with modifying the time
integration of the water height so that it remains positive after its computation. Assuming that

23

i
i

“master” — 2017/5/23 — 11:16 — page 24 — #46 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

the water height is positive for all h̄n
j,k at time step n, it has to remain positive for the next time

step n + 1:

h̄n+1
j,k = h̄n

j,k − ∆t
(Hx)

(1)
j+ 1

2 ,k
− (Hx)

(1)
j− 1

2 ,k

∆x
− ∆t

(Hy)
(1)
j,k+ 1

2
− (Hy)

(1)
j,k− 1

2

∆y
≥ 0, (II.37)

where we use (II.22) and subtract Bj,k from both sides, since w̄j,k = h̄j,k + Bj,k.

Using (II.37) we introduce the draining time step [67] for the two-dimensional scheme:

∆tdrain
j,k =

∆x∆yh̄n
j,k

∆y
(
(Hx)

(1)
j+ 1

2 ,k
+ (Hx)

(1)
j+ 1

2 ,k

)
+ ∆x

(
(Hy)

(1)
j,k+ 1

2
+ (Hy)

(1)
j,k+ 1

2

) , (II.38)

which describes how long it takes for cell Cj,k to become dry due to the outflow fluxes. Now we
modify the evolution step (II.22) using the draining time step:

h̄n+1
j,k = h̄n

j,k − ∆tj,k

(Hx)
(1)
j+ 1

2 ,k
− (Hx)

(1)
j− 1

2 ,k

∆x
− ∆tj,k

(Hy)
(1)
j,k+ 1

2
− (Hy)

(1)
j,k− 1

2

∆y
, (II.39)

where the time steps at the cell interfaces are computed by:

∆tj,k =

{
min(∆t, ∆tdrain

j,k), if ∇ ·Hj,k > 0,

∆t, if ∇ ·Hj,k ≤ 0,
(II.40)

which means that the draining time step is only used if the water height decreases during the
integration and the cell is at risk of drying out. If the flux divergence ∇ · Hj,k > 0 for a fully
flooded cell Cj,k, then the draining time can have higher values than the global time step and we
select the smallest of the two. If ∇ ·Hj,k ≤ 0, i.e., there is more water entering than leaving the
cell, then we use the global time step. This means that the draining time step is applied only to
the partially flooded cell in case of the positive divergence. Hence, the time evolution of the fully
flooded cells remains as in [18].

Since we use the global time step ∆t for the source terms S̄(2)
j,k and S̄(3)

j,k in the time evolution

step, we have to split the momentum fluxes F(2)(U, B) and G(3)(U, B) into advection (a) and
gravity (g) driven parts to ensure the well-balanced property:

F(2),a(U, B) := (hu)2

w−B and F(2),g(U, B) :=
g
2
(w− B)2

G(3),a(U, B) := (hv)2

w−B and G(3),g(U, B) :=
g
2
(w− B)2

Due to this modification, the source terms exactly balance the gravity-driven part of the flux.
Using the split fluxes, the modified central-upwind fluxes read:

H(3),g
j,k+ 1

2
(t) =

a+
j,k+ 1

2
G(3),g

(
U−

j,k+ 1
2

)
− a−

j,k+ 1
2
G(3),g

(
U+

j,k+ 1
2

)
a+

j,k+ 1
2
− a−

j,k+ 1
2

(II.41)

+
a+

j,k+ 1
2
a−

j,k+ 1
2

a+
j,k+ 1

2
− a−

j,k+ 1
2

[
U(2),+

j,k+ 1
2
−U(2),−

j,k+ 1
2

]
,

and

H(3),a
j,k+ 1

2
(t) =

a+
j,k+ 1

2
G(3),a

(
U−

j,k+ 1
2

)
− a−

j,k+ 1
2
G(3),a

(
U+

j,k+ 1
2

)
a+

j,k+ 1
2
− a−

j,k+ 1
2

. (II.42)

24

i
i

“master” — 2017/5/23 — 11:16 — page 25 — #47 i
i

i
i

i
i

5. Positivity Preserving in Time Integration

The modified central-upwind fluxes H(2),a
j+ 1

2 ,k
(t) and H(2),g

j+ 1
2 ,k
(t) can be derived analogously, and their

one-dimensional forms can be found in [16], which are very similar to the two-dimensional ones.

Using the new fluxes, we get the new update of discharges hu and hv:

h̄un+1
j,k = h̄un

j,k − ∆tS̄(2),n
j,k − ∆t

(Hx)
(2),g
j+ 1

2 ,k
− (Hx)

(2),g
j− 1

2 ,k

∆x

− ∆tj,k

 (Hy)
(2)
j,k+ 1

2
− (Hy)

(2)
j,k− 1

2

∆y
−

(Hx)
(2),a
j+ 1

2 ,k
− (Hx)

(2),a
j− 1

2 ,k

∆x

 (II.43)

h̄vn+1
j,k = h̄vn

j,k − ∆tS̄(3),n
j,k − ∆t

(Hy)
(3),g
j,k+ 1

2
− (Hy)

(3),g
j,k− 1

2

∆y

− ∆tj,k

 (Hx)
(3)
j+ 1

2 ,k
− (Hx)

(3)
j− 1

2 ,k

∆x
−

(Hy)
(3),a
j,k+ 1

2
− (Hy)

(3),a
j,k− 1

2

∆y


(II.44)

This new finite volume scheme consisting of (II.39), (II.43) and (II.44) is both well-balanced and
positivity preserving even in the presence of partially flooded cells.

As in [16] for the one-dimensional scheme, we prove that the new two-dimensional central-

upwind finite volume scheme remains well-balanced for both “lake at rest” and “dry lake” states.

Theorem 5.1. Consider the system (II.1) and the fully discrete central-upwind scheme (II.39), (II.43)

and (II.44). Assume that the numerical solution U(tn) corresponds to the steady state which is a combina-

tion of the “lake at rest” (II.3) and “dry lake” (II.4) states in the sense that wj,k = Const. and u = 0, v = 0

whenever hj,k > 0. Then U(tn+1) = U(tn), that is, the scheme is well-balanced.

Proof. We have to show that in all cells the fluxes and the source term discretization cancel exactly.

First, we mention the fact that the reconstruction procedure derived in Section 4 preserves both the

“lake at rest” and “dry lake” steady states and their combinations. For all cells where the original

reconstruction is not corrected, the resulting slopes are zero and therefore the reconstructed point

values equal to the average water level there, w∓
j± 1

2
= wj,k. As hu = 0 and hv = 0 in all cells,

the reconstructions for hu and hv reproduce the constant point values (hu)∓
j± 1

2 ,k
= (hu)∓

j,k± 1
2
=

(hv)∓
j± 1

2 ,k
= (hv)∓

j,k± 1
2
= 0, ∀j, k. Thus, the draining time is equal to the global time step, i.e.,

∆tdrain
j,k = ∆t.

First, we show that the update of the water levels satisfy the criteria above:

H(1),x
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
(hu)−

j+ 1
2 ,k
− a−

j+ 1
2 ,k
(hu)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(h + B)+

j+ 1
2 ,k
− (h + B)−

j+ 1
2 ,k

]
= 0

as B+
j+ 1

2 ,k
= B−

j+ 1
2 ,k

, h+
j+ 1

2 ,k
= h−

j+ 1
2 ,k

and (hu)+
j+ 1

2
= (hu)−

j+ 1
2 ,k

= 0. The same holds for H(1),y
j,k+ 1

2
with

hv. From this we get:

w̄n+1
j,k = h̄n+1

j,k + Bj,k = h̄n
j,k + Bj,k = w̄n

j,k.

25

i
i

“master” — 2017/5/23 — 11:16 — page 26 — #48 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

Second, we analyze the update of the discharge using (II.43) and (II.44). Using the same argument

and setting u±
j+ 1

2 ,k
= u±

j,k+ 1
2
= v±

j+ 1
2 ,k

= v±
j,k+ 1

2
= 0 at the points px = pj+ 1

2 ,k and py = pj,k+ 1
2

where

h+
j+ 1

2 ,k
= h−

j+ 1
2 ,k

= h+
j,k+ 1

2
= h−

j,k+ 1
2
= 0, for the second and third component we obtain:

H(2),a,x
j+ 1

2 ,k
+ H(2),g,x

j+ 1
2 ,k

=
a+

j+ 1
2 ,k
(hu)−

j+ 1
2 ,k
− a−

j+ 1
2 ,k
(hu)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k
(g

2 h2)−
j+ 1

2 ,k
− a−

j+ 1
2 ,k
(g

2 h2)+
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(hu)+

j+ 1
2 ,k
− (hu)−

j+ 1
2 ,k

]

=

(
uj+ 1

2 ,k +
√

ghj+ 1
2 ,k

) (g
2 h2)−

j+ 1
2 ,k −

(
uj+ 1

2 ,k −
√

ghj+ 1
2 ,k

) (g
2 h2)+

j+ 1
2 ,k(

uj+ 1
2 ,k +

√
ghj+ 1

2 ,k

)
−
(

uj+ 1
2 ,k −

√
ghj+ 1

2 ,k

)
=

g
2

h2
j+ 1

2 ,k (II.45)

H(2),y
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
(huv)−

j+ 1
2 ,k
− a−

j+ 1
2 ,k
(huv)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(huv)+

j+ 1
2 ,k
− (huv)−

j+ 1
2 ,k

]
= 0, (II.46)

where

hj+ 1
2 ,k := h+

j+ 1
2 ,k

= h−
j+ 1

2 ,k
and hj,k+ 1

2
:= h+

j,k+ 1
2
= h−

j,k+ 1
2
,

uj+ 1
2 ,k := u+

j+ 1
2 ,k

= u−
j+ 1

2 ,k
and uj,k+ 1

2
:= u+

j,k+ 1
2
= u−

j,k+ 1
2
.

Following the same rules, it can straightforwardly be proven that H(3),a,y
j,k+ 1

2
+ H(3),g,y

j,k+ 1
2

= g
2 h2

j,k+ 1
2

and H(3),x
j,k+ 1

2
= 0. Therefore, the finite update (II.43) and (II.44) for the studied steady state after

substituting the source quadrature (II.9)–(II.10) reads as,

(h̄u)n+1
j,k = (h̄u)n

j,k −
∆t
∆x

[
g
2

(
hj+ 1

2 ,k

)2
− g

2

(
hj− 1

2 ,k

)2
]
+ ∆t S̄(2),n

j,k

= (h̄u)n
j,k −

∆t
∆x

[
g
2

(
hj+ 1

2 ,k

)2
− g

2

(
hj− 1

2 ,k

)2
]
+

∆t
∆x

gh̄j,k

(
Bj+ 1

2 ,k − Bj+ 1
2 ,k

)
= (h̄u)n

j,k

where we have used (
hj+ 1

2 ,k

)2
−
(

hj− 1
2 ,k

)2

2
= −h̄n

j,k

(
Bj+ 1

2 ,k − Bj− 1
2 ,k

)
, (II.47)(

hj,k+ 1
2

)2
−
(

hj,k− 1
2

)2

2
= −h̄n

j,k

(
Bj,k+ 1

2
− Bj,k− 1

2

)
. (II.48)

We have to verify (II.47) and (II.48). In the fully flooded cells, where wj,k > Bj± 1
2 ,k, we have

(
hj+ 1

2 ,k

)2
−
(

hj− 1
2 ,k

)2

2
=

hj+ 1
2 ,k + hj− 1

2 ,k

2

(
hj+ 1

2 ,k − hj− 1
2 ,k

)
(II.49)

= h̄n
j,k

(
wj,k − Bj+ 1

2 ,k − wj,k − Bj− 1
2 ,k

)
= −h̄n

j,k

(
Bj+ 1

2 ,k − Bj− 1
2 ,k

)
26

i
i

“master” — 2017/5/23 — 11:16 — page 27 — #49 i
i

i
i

i
i

6. Evaluation

and thus (II.47) is satisfied. One can easily prove the same for (II.48). It remains to verify the

solution for

(h̄v)n+1
j,k = (h̄v)n

j,k −
∆t
∆y

[
g
2

(
hj,k+ 1

2

)2
− g

2

(
hj,k− 1

2

)2
]
+ ∆t S̄(3),n

j,k

= (h̄v)n
j,k −

∆t
∆y

[
g
2

(
hj,k+ 1

2

)2
− g

2

(
hj,k− 1

2

)2
]
+

∆t
∆y

gh̄j,k

(
Bj,k+ 1

2
− Bj,k+ 1

2

)
= (h̄v)n

j,k

which can be satisfied by using (II.48). In the partially flooded cells, where wj,k < Bj− 1
2 ,k, we have

hj− 1
2 ,k = 0, and thus using (II.32) and (II.47) yields(

hj+ 1
2 ,k

)2

2
=

∆x∗j,khj+ 1
2 ,k

2∆x

(
Bj+ 1

2 ,k − Bj+ 1
2 ,k

)
= −

hj+ 1
2 ,k

2
∆x∗j,k(Bx)j,k, (II.50)

which is true since at the studied-steady situation, x∗j,k = x∗w, which implies that ∆x∗j,k = ∆x∗w, and

hence, −∆x∗j,k(Bx)j,k = hj+ 1
2 ,k. Finally, we show the same for wj,k < Bj,k− 1

2
, hj,k− 1

2
= 0 using (II.48):(

hj,k+ 1
2

)2

2
=

∆y∗j,khj,k+ 1
2

2∆y

(
Bj,k+ 1

2
− Bj,k+ 1

2

)
= −

hj,k+ 1
2

2
∆y∗j,k(By)j,k, (II.51)

which is also true since y∗j,k = y∗w. This implies that ∆y∗j,k = ∆y∗w, and hence, −∆y∗j,k(By)j,k = hj,k+ 1
2
.

This concludes the proof of the theorem.

6 Evaluation

The new scheme proposed in this paper is denoted as HWP scheme. In order to test the scheme
and compare it with an existing scheme, we implemented the HWP and KP [18] schemes for
computation on graphics processing units (GPUs). We then performed a number of numerical
experiments. As a first step, we analyzed a wave run-up on a slope. This simulation is followed
by a verification against a two-dimensional parabolic basin benchmark for which an analytical
solution exists. To demonstrate the stability and to measure the performance of the schemes, we
created two real-world scenarios. The first is a breach-initiated flood in an urban area, and the
second is a flood event in a rural area.

6.1 Wave Run-Up on a Slope

In this comparison, we compare the schemes on a small domain, where we simulate a wave run-
up on a slope. We let the water oscillate for 1000 seconds and visualize the results (see Figure II.8).
For the KP scheme, the upper part of the domain does not dry out. If a cell becomes wet, it will
always contain a very thin layer of water, and will never dry out again. For the HWP scheme, the
upper part of the slope dries out due to the new reconstruction and draining time step technique.

6.2 Parabolic Basin Benchmark

The analytical solution of the parabolic basin case was first introduced by Thacker [83]. It describes
time-dependent oscillations of planar water surface in a parabolic basin. It serves as a good basis to

27

i
i

“master” — 2017/5/23 — 11:16 — page 28 — #50 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

a b

Water wave

c

Wet area Dry area

a b c

Figure II.8: Comparison of drying of the KP and the HWP schemes. We simulate a wave run-up on a slope and visualize

the solution after 1000 seconds. (a) Initial condition. (b) Solution of the KP scheme, where the upper part of the simulation

domain is wet. There is a thin layer of water, which is incorrect. (c) Solution of the HWP scheme, the upper part of the

domain is dry.

compare different numerical schemes [14, 84, 85, 86, 87]. Recently, Sampson et al. [87] extended the
solution of Thacker to support bed friction. However, their solution is limited to one dimension.
In this two-dimensional case, we use the same setup as Holdahl et al. [88]. The bathymetry of the
two-dimensional parabolic basin is given by:

B(x, y) = D0

(
x2 + y2

L2 − 1
)

. (II.52)

The water surface elevation and the velocities are given by:

w(x, y) = 2AD0 (x cos ωt± y sin ωt + LB0)

u(x, y) = −A cos ωt

u(x, y) = ±A sin ωt

∣∣∣∣∣∣∣ ω =

√
2D0

L2 , (II.53)

where we set D0 = 1, L = 2500, A = L
2 , B0 = − A

2L , the gravitational constant g = 1, the
desingularization ε = 0.01, and use 100 × 100 grid cells with a second-order accurate Runge-
Kutta time integrator. Figure II.9 shows our simulation results for two snapshots in time, where
we compare the solutions of the numerical solvers to the analytical one. We visualize a one-
dimensional slice in x-dimension in the middle of the computation domain. We plot values wj,k
at cell centers, which are the average values. Both the KP and the HWP schemes capture well the
water levels of the analytical solution. However, there is an error accumulating for the velocities
along the wet/dry boundaries. This can be found in many schemes [88, 17, 18], and it is difficult
to avoid. We can reduce the error by setting the desingularization ε to a higher value. However,
higher ε values cause spurious oscillations in the KP scheme, which were not observed in the
HWP scheme. Furthermore, for small water heights, numerical errors can be introduced when
calculating the velocity u = hu/h. This is related to a limited floating-point precision [89].

a b
-800

-600

-400

-200

0

200

400

600

800

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

el
ev

at
io

n
[m

]

position [m]

Basin
Analytic

KP07
HWP14

-800

-600

-400

-200

0

200

400

600

800

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

el
ev

at
io

n
[m

]

position [m]

Basin
Analytic

KP07
HWP14 HWP

 KP
 HWP

 KP

a b

 HWP
 KP

 HWP
 KP

a b

 HWP
 KP

 HWP
 KP

a b

Figure II.9: Simulation of oscillating water in a parabolic basin, compared to the analytical solution after (a) 300 seconds

and (b) 400 seconds. Values are plotted at the cell centers. Blue dots in the inlay windows represent positions of the cell

centers.

28

i
i

“master” — 2017/5/23 — 11:16 — page 29 — #51 i
i

i
i

i
i

6. Evaluation

Breach position

Mobile wall
Damaged buildings

River

a b

Hydrograph

1km

Invalid area

a b

Figure II.10: Real-world case studies. (a) Simulation of a levee breach caused by a failure of the mobile protection walls

in the city of Cologne, Germany. The green line along the riverside represents the mobile protection wall. We removed

a short section of the wall to simulate a breach (indicated in blue). The buildings are colored according to the damage,

where red denotes high damage and grey no damage. (b) Results of a 5 days long hydrograph-based flood simulation in

Lobau, Austria. The bathymetry is colored according to the elevation values. Red color represents higher altitudes, green

color represents lower altitudes. Wet areas are shown in blue. The hydrograph is supplied for the short section at the

bottom right corner.

6.3 Real-World Performance Benchmark in Cologne

In the first real-world scenario, we simulate a levee breach in the city of Cologne, Germany. This
scenario models a failure of the mobile flood protection walls, which are installed along the river to
protect the city. If the mobile wall collapses or the water height becomes high enough to overtop
the walls, the city gets flooded. These two cases can happen in real-world situations, and it is
important to understand their impacts.

In our case study, we simulate a one hour long levee breach. We simulate the breach by opening
a short section of the mobile walls and letting the water flow into the city (see Figure II.10a). The
buildings are colored based on the computed damage, where grey represents no damage, yellow
is the middle damage, and red is the highest damage [90].

To assess the performance of our numerical scheme, we carried out a benchmark and compared
the number of executed time steps (iterations) of the two schemes. A longer time step size requires
fewer iterations to simulate the same duration and thus increases the performance. Figure II.11
shows our performance results for a 60 minute long simulation run. The size of the simulation
domain is 1.4× 1.6 kilometers, it contains 277× 329 cells, where each cell is 5× 5 meters large. In
this case study the KP scheme executes ≈ 4× more time steps than the HWP scheme. The average
time step per second is 0.08678 for the HWP scheme and 0.02253 for the KP scheme. The reason
for this is that the KP scheme is not well-balanced at the dry/wet boundaries, thus high velocities
appear at these locations. To keep the scheme stable, the CFL condition is applied. This means
that the size of the actual time step is computed based on the highest velocity in the computation
domain. Therefore, it acts as a limiting factor for the time step size. The HWP scheme does
not suffer from this problem and can perform longer jumps in time while preserving numerical
stability. We show both the instantaneous and cumulative number of time steps. Figure II.11a
shows the average number of time steps per minute. Figure II.11b shows the total number of time
steps for the 60 minutes long simulation run. During the first five minutes, the number of time
steps is increasing, as the water starts to flow into the city. After five minutes, as the flow starts
to stabilize, the number of time steps in the HWP scheme is stabilizing, too. In the KP scheme,
the number of time steps continues to increase. Compared to the KP scheme, the HWP scheme is
more stable with respect to the number of time steps.

29

i
i

“master” — 2017/5/23 — 11:16 — page 30 — #52 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

a ba b

 KP
 HWP

 KP
 HWP

Figure II.11: Real-world performance benchmark of a breach flood in the city of Cologne, Germany. We compare the

time step performance of the KP and the HWP schemes. The figure shows the number of time steps as a function of the

simulated time. Lower numbers corresponds to longer time step sizes in the simulation and thus to increased performance.

(a) Average number of time steps per minute. (b) Cumulative number of time steps during the simulated 60 minutes.

6.4 Real-World Performance Benchmark in Lobau

The second case study involves the Lobau area, which is the alluvial backwater and floodplain
of the Danube-Auen National Park. It extends on the left bank of the river Danube from river
kilometer (rkm) 1918 to rkm 1908 downstream of the city of Vienna (see Figure II.10b). If the
water level in the Danube rises, water flows from the river into the floodplain, causing regular
flooding events. The size of the area is 1474 ha and it consists of floodplain forests and surface
water bodies.

a b

High

Low

High

Low

a b

High

Low

High

Low

a b

Figure II.12: Velocity profile of the real-world simulation in Lobau. The bathymetry is colored according to the velocity

magnitude. (a) Simulation results of the KP scheme. High velocity spots (red) appear at the dry/wet boundaries. (b)

Simulation results of the HWP scheme. No high velocity spots, the velocity profile is consistent.

In this case study, we use a hydrograph from 13.01.2011 and simulate a 12 hours long flooding.
The size of the simulation domain is 7.5× 5 kilometers, it contains 2508× 1682 cells, where each
cell is 3× 3 meters large. We simulate a period on 13.01.2011 for which we prescribe the hydro-
graph in the bottom right corner of the domain as a boundary condition. Both water level and
discharge are prescribed. Discharge values describe the inflow from the Danube into the Lobau.
Even though this is a rural area and does not contain any buildings, it is challenging to perform
simulations for this region, since it has a very complex bathymetry (lots of small channels and
steep slopes). Here, we present only the first 12 hours of the simulation, since the KP scheme
slows down dramatically after 12 hours and 50 minutes. At this point, the actual time step size
is 0.000156 seconds and continues to decrease. The reason for this is that the velocities are ac-
cumulating and abnormally rising at the steep dry/wet boundaries limiting the time step size.

30

i
i

“master” — 2017/5/23 — 11:16 — page 31 — #53 i
i

i
i

i
i

7. Summary

Figure II.12 shows the high velocity spots, which are responsible for the simulation slow down. In
the HWP scheme, the velocity profile is more consistent. For this special case, the HWP scheme
was ≈ 8× faster compared to the KP scheme during the 12 hours long simulation. This difference
gets higher as the time advances. Using the HWP scheme, we have successfully performed a 168
hours long simulation, where the solver remained stable.

a ba b

 KP
 HWP

 KP
 HWP

Figure II.13: Real-world performance benchmark of a flood event in the Danube-Auen National Park, in Lobau, Austria.

The figure shows the number of time steps as a function of the simulated time. Lower numbers correspond to longer time

steps in the simulation and thus to increased performance. (a) Average number of time steps per minute. (b) Total number

of time steps during the simulated 12 hours.

Our new HWP scheme executes approximately the same number of time steps in both case
studies, which is below 1000 time steps per minute. The KP scheme is not as stable regarding
the number of time steps. For the first case study, the average number of time steps is between
1000− 4000 time steps per minute, while for the second case study, it is continuously increasing
(see Figure II.13).

7 Summary

We presented a two-dimensional numerical scheme for the SV system of the shallow water equa-
tions. We used a new two-dimensional reconstruction and a special correction procedure to ensure
positive water heights and well-balanced states at partially flooded cells. The positivity of the wa-
ter height is guaranteed by the draining time step, which is activated in the partially flooded cells
if the divergence is positive. We proved that the scheme is well-balanced and positivity preserving
in the presence of partially flooded cells. Furthermore, it preserves “lake-at-rest” and “dry lake”
steady states, as well as their combinations. The scheme was verified against the analytical solu-
tion of the parabolic basin benchmark. We measured and compared the time step performance
of the KP and HWP schemes for two real-world scenarios. The first scenario was a flood event
caused by a breach in the flood protection walls of the city of Cologne. The second scenario con-
sidered a flooding in the national park of Lobau near Vienna, where we used a hydrograph as
a boundary condition to simulate the incoming flood from the Danube river. The new scheme
proved its stability and it also proved to be faster than the KP scheme, as it needs fewer time steps
to simulate the same time span due to the removal of spurious high velocities at the wet/dry
boundaries.

31

i
i

“master” — 2017/5/23 — 11:16 — page 32 — #54 i
i

i
i

i
i

Chapter II. A Two-Dimensional Numerical Scheme of Dry/Wet Fronts

Acknowledgements

This work was supported by grants from the Austrian Science Fund (FWF) project number W1219-
N22 (Vienna Doctoral Programme on Water Resource Systems) and from the Vienna Science and
Technology Fund (WWTF) project number ICT12-009 (Scenario Pool), and from the European
Research Council (ERC) Advanced Grant ”FloodChange”, project number 291152. We thank the
flood protection centre of Steb Cologne, AöR and the ViaDonau, Vienna for supplying the terrain
data.

32

i
i

“master” — 2017/5/23 — 11:16 — page 33 — #55 i
i

i
i

i
i

Chapter III

Kepler Shu�e forReal-World FloodSimulations

on GPUs

Zsolt Horváth, Rui A. P. Perdigão, Jürgen Waser, Daniel Cornel, Artem Konev,

Günter Blöschl

This chapter is based on a paper which is published in

International Journal of High Performance Computing, 30(4), pages 379-395, 2016.

33

i
i

“master” — 2017/5/23 — 11:16 — page 34 — #56 i
i

i
i

i
i

34

i
i

“master” — 2017/5/23 — 11:16 — page 35 — #57 i
i

i
i

i
i

1. Introduction

Abstract

We present a new GPU implementation of two second-order numerical schemes of the shallow water equa-
tions on Cartesian grids. Previous implementations are not fast enough to evaluate multiple scenarios for a
robust, uncertainty-aware decision support. To tackle this, we exploit the capabilities of the NVIDIA Kepler
architecture. We implement a scheme developed by Kurganov and Petrova (KP), and a newer, improved
version by Horváth et al. (HWP). The KP scheme is simpler but suffers from incorrect high velocities along
the wet/dry boundaries, resulting in small time steps and long simulation runtimes. The HWP scheme
resolves this problem but comprises a more complex algorithm. Previous work has shown that HWP has
the potential to outperform KP, but no practical implementation has been provided. The novel shuffle-based
implementation of HWP presented here takes advantage of its accuracy and performance capabilities for
real-world usage. The correctness and performance is validated on real-world scenarios.

1 Introduction

Flood risk assessment is of key importance in minimizing damages and economical losses caused
by flood events. These are challenging to predict due to nonlinear interactions between driving
processes [50]. The first step in flood risk studies is the identification of flood prone areas [9]. This
requires the implementation of hydrodynamic models that enable one to quantify the evolution
of a flood and its hydraulic representative variables, e.g., water level and velocity.

The shallow water equations (SWE) are capable of modeling many flood phenomena such
as levee breaches, flood plain inundations, tsunamis, dam breaks, or river flows in both rural
and urban areas. Our primary interest is in decision making systems, where we evaluate many
scenarios and select the solution with the best outcome [46]. Modern approaches allow the user to
evaluate the uncertainties of the parameters considered in the simulation, requiring the simulation
of many different scenarios, which is usually computationally expensive. Therefore, simulation
runs have to be as fast as possible to reduce the overall time of finding the best solution.

The equations are

The SWE are a set of hyperbolic partial differential equations, described by the Saint–Venant
(SV) system, where the fluid motion is introduced by the gravitational acceleration. They are
derived from depth-integrating the Navier-Stokes and the continuity equations, and represent
wave propagation with a horizontal length scale much greater than the vertical length scale.

In this paper, we focus on schemes which are defined on Cartesian grids and present a new
implementation of two shallow water schemes which are both able to handle “dry lake” and “lake
at rest” steady state solutions. We discuss how to exploit the capabilities of modern graphics
processing units (GPUs) using the CUDA programming model. We focus on the NVIDIA Kepler
architecture and its newest features to achieve peak performance. We build upon the scheme of
Kurganov and Petrova [18] (KP), and Horváth et al. [1] (HWP), which improves the former by
avoiding spurious high velocities at the dry/wet boundaries. The HWP scheme is more complex,
and hence it requires more GPU resources. Nevertheless, previous work has shown that the HWP
scheme has the potential to outperform KP, since it can use longer time step sizes [1]. Until now, no
implementation has been given to exploit this potential in practice. To accomplish this, we present
a new implementation based on recent advancements in the GPU technology. In summary, this
paper contributes the following:

• a new implementation of the HWP scheme which outperforms the less accurate KP scheme,

• exploitation of the Kepler shuffle instructions, which allows for an increased GPU occupancy

35

i
i

“master” — 2017/5/23 — 11:16 — page 36 — #58 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

and speed-up by requiring less shared memory and less explicit block synchronizations,

• extensive performance benchmarks of the implemented schemes and validation against real-
world scenarios.

2 Related Work

In the numerical treatment of the SWE, the spatial domain is discretized. For this purpose, one can
use an unstructured mesh or a structured mesh (Cartesian). Unstructured meshes have demon-
strated good properties for the simulation of rainfall/runoff events [91]. Since cells do not establish
preferential directions, this type reduces the mesh influence on the numerical results. Also, it is
easy to adapt unstructured cells to capture local structures. The disadvantage of using unstruc-
tured meshes on the GPU is related to the mesh disorder, which makes it expensive to load and
share data between threads [92]. Structured meshes have proved to be suitable for GPU compu-
tations [39]. Indeed, the GPUs have been optimized for memory access when Cartesian grids are
used. The main advantage of structured meshes is the inherent order existent in their creation.
On Cartesian grids, every cell knows its neighbors implicitly, no information on the topography
is needed to maintain data dependencies. To overcome the limitation regarding capturing local
structures, adaptive mesh refinement (AMR) [42] or the cut-cell approach [93] can be used.

Explicit numerical schemes are well suited for parallel execution on the GPU to solve hy-
perbolic partial differential equations [94, 58, 95, 96]. Hagen et al. [51] were among the first to
deliver a GPU solver for the shallow water equations based on the first-order Lax-Friedrichs and
the second-order central-upwind schemes. They achieve a 15-30 times speedup compared to an
equivalently tuned central processing unit (CPU) version. Lastra et al. [60] implement a first-order
well-balanced finite volume solver for one-layer SWE using OpenGL and Cg languages. Acuña
and Aoki [48] propose a multi-GPU solution for tsunami simulations. They use overlapping ker-
nels to compute the solution for x and y directions concurrently. Liang et al. [97] add a friction
slope to the conservation of momentum to simulate tsunami inundation by using the MacCor-
mack method. De la Asunción et al. [53, 59] demonstrate solvers for one-dimensional and two-
dimensional SWE using the CUDA Toolkit. They show that an optimized CUDA solver is faster
than a GPU version which is based on a graphics-specific language. Brodtkorb et al. [38] imple-
ment three second-order schemes on the GPU. They discuss how single- and double-precision
arithmetics affect accuracy, efficiency, scalability, and resource utilization. They show that double
precision is not necessary for the second-order SWE [38]. Their implementation demonstrates that
all three schemes map very well to the GPU hardware. Simulating real-world dam-break scenar-
ios, de la Asunción et al. [84] and Brodtkorb et al. [39] report relevant computational speed-ups
in comparison to sequential codes. Moreover, Sætra and Brodtkorb use a multiple GPU solver
to tackle large-domain simulations and reduce both the memory footprint and the computational
burden by using sparse computation and sparse memory approaches. Sætra et al. [42] are able to
increase the grid resolution locally for capturing complicated structures or steep gradients in the
solution. They employ adaptive mesh refinement which recursively refines the grid in parts of
the domain. Vacondio et al. [98] implement an implicit local ghost cell approach, that enables the
discretization of a broad spectrum of boundary conditions. They also present an efficient block
deactivation procedure in order to increase the efficiency of the numerical scheme in the presence
of wetting-drying fronts.

36

i
i

“master” — 2017/5/23 — 11:16 — page 37 — #59 i
i

i
i

i
i

3. Numerical Schemes

3 Numerical Schemes

In this section we summarize the underlying numerical theory of the implemented schemes. The
hyperbolic conservation law described by the two-dimensional shallow water equations of the SV
system can be written as: h

hu

hv


t

+

 hu

hu2 + 1
2 gh2

huv


x

+

 hv

huv

hv2 + 1
2 gh2


y

=

 0

−ghBx

−ghBy

+

 0

−gu
√

u2 + v2/C2

−gv
√

u2 + v2/C2

 , (III.1)

where h represents the water height, hu is the discharge along the x-axis, hv is the discharge
along the y-axis (Figure III.1a), u and v are the average flow velocities, g is the gravitational
constant, B is the bathymetry, and C is the Chézy friction coefficient. We use the relation C =
1
n h1/6, where n is Manning’s roughness coefficient. Subscripts represent partial derivatives, i.e.,
Ut stands for ∂U

∂t .

hu h

B

U j k,

B
j k−
1

2
,

B
j k+
1

2
,

U
j k+

−
1

2
,

U
j k+

+
1

2
,

F
j k+
1

2
,

F
j k−
1

2
,

()
,

Ux j k

a b c d e

Figure III.1: Schematic view of a shallow water flow, definition of the variables, and flux computation. a) Continuous

variables. b) The conserved variables U are discretized as cell averages Ūj,k . The bathymetry function B is approximated

at cell interface midpoints. c) Slopes of the water surface (Ux)j,k are reconstructed using the minmod flux limiter. d)

Left- and right-sided point values are computed at cell interface midpoints. The red circle indicates that a negative water

height is computed. Since water heights cannot be negative, they are corrected before the flux computation. e) Fluxes are

computed using the central-upwind flux function at the cell center interfaces.

In vector form the system can be written as:

Ut + F (U, B)x + G (U, B)y = SB (U, B) + S f (U) , (III.2)

where U = [h, hu, hv] is the vector of conserved variables, F and G are flux functions, SB and S f
represent the bed slope and bed friction source terms respectively.

Herein, we focus on two numerical schemes, the first one developed by Kurganov and Petrova
[18] and its improved version developed by Horváth et al. [1]. A good numerical scheme should
be able to exactly preserve both ”lake at rest“ and ”dry lake“ steady states as well as their com-
binations. The methods that exactly preserve these solutions are termed ”well-balanced“ [99, 100,
101, 16, 61, 62, 63].

3.1 Kurganov-Petrova Scheme (KP)

The KP scheme is based on a two-dimensional central-upwind second-order numerical scheme
developed by Kurganov and Petrova [18]. It allows for a discontinuous bathymetry and is more
suitable for GPU implementation than its predecessor [17]. To avoid negative water heights h and
preserve well-balancedness, the KP scheme changes from the variables [h, hu, hv] to [w, hu, hv],
where w = h + B represents the water surface (Figure III.1a). Kurganov and Levy use a non-
oscillatory conservative piecewise linear reconstruction of w, which is properly corrected near
dry areas, without switching to a reconstruction of h there. The correction relies on the fact that

37

i
i

“master” — 2017/5/23 — 11:16 — page 38 — #60 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

the original bottom function B is replaced with its continuous piecewise linear approximation.
However, near dry areas and at the dry-wet boundaries the scheme can still create large errors in
the flux calculations, since the water height can become very small or even zero. Due to u = hu

h
and v = hv

h , these computations may lead to large errors in the partially flooded cells for small
water heights and they have a singularity at zero water height (h = 0). To deal with this problem,
Kurganov and Levy use the desingularization:

u =

√
2h (hu)√

h4 + max (h4, ε)
v =

√
2h (hv)√

h4 + max (h4, ε)
, (III.3)

where ε is a small apriori chosen positive number. This has a dampening effect on the velocities
as the water height approaches zero. Determining a proper value for ε is a difficult task. High
values lead to large errors in the simulation results, while low values give small time steps. There
is one more problem related to the partially flooded cells. A correction to the reconstruction has
to be applied. This correction solves the positivity problem and guarantees that all water heights
are non-negative. However, at the partially flooded cells, it can lead to large errors for small
water heights and the flow velocity will grow smoothly in these formerly dry areas, since the
correction is not well-balanced there. High velocities in the domain cause small time steps, thus
poor performance of the scheme and slower simulation. Another issue related to this correction is
that the water climbs up on the shores at the dry/wet boundaries. Finally, if a cell becomes wet,
it will almost never be completely dry again.

3.2 Horváth-Waser-Perdigão Scheme (HWP)

The HWP scheme is an improved version of the KP scheme. It introduces a new reconstruction and
the draining time step (DTS) technique to restore the well-balancedness for the partially flooded
cells. This scheme is well-balanced, positivity preserving, and handles dry states. The latter
is ensured by using the DTS technique in the time integration process, which guarantees non-
negative water depths. Unlike the KP scheme, the new technique does not generate high velocities
at the dry/wet boundaries, which are responsible for small time step sizes and slow simulation
runs. The new scheme preserves ”lake at rest“ steady states and guarantees the positivity of the
computed fluid depth in the partially flooded cells. Due to the new reconstruction procedure, this
scheme has some additional computations compared to the KP, and thus it is computationally
more expensive. It detects partially flooded cells and computes a new waterline for them. This
information is used to reconstruct proper point values at the cell interfaces and to ensure well-
balancedness. It reduces the non-physical high velocities at the dry-wet boundaries and allows
for longer time steps which results in shorter simulation runtimes.

3.3 Spatial Discretization

The same spatial discretization is applied to both schemes on a uniform grid (Figure III.2), where
the conserved variables U are defined as cell averages (Figure III.1b). The bathymetry is given as
a piecewise bilinear surface defined by the values at the cell vertices. The fluxes are computed
at the integration points, i.e., at the midpoints of the cell interfaces. The central-upwind semi-
discretization of (III.1) can be written down as the following system of time-dependent, ordinary
differential equations (ODE):

d
dt

Ūj,k =−
[
F
(

Uj+ 1
2 ,k

)
− F

(
Uj− 1

2 ,k

)]
−
[
G
(

Uj,k+ 1
2

)
−G

(
Uj,k− 1

2

)]
+ SB

(
Ūj,k, Bj,k

)
+ S f

(
Ūj,k

)
=RF+G (Ū)j,k + SB+ f

(
Ūj,k, Bj,k

)
(III.4)

38

i
i

“master” — 2017/5/23 — 11:16 — page 39 — #61 i
i

i
i

i
i

3. Numerical Schemes

where Uj± 1
2 ,k and Uj,k± 1

2
are the reconstructed point values at the cell interface midpoints.

hv

hu

y

x

j k+ 1
2
,

j k− 1
2
,

j k, + 1
2

j k, + 1
2

j k,

Figure III.2: Two-dimensional grid-based representation of the discretized variables of the shallow water equations. Cell

averages Ūj,k are defined at cell centers (blue dots). Green dots indicate the sampling points of the bathymetry function B.

Brown dots indicate the approximated values of the bathymetry function at the cell interface midpoints [1].

In order to compute the fluxes F and G across the cell interfaces, we start with reconstructing
the water surface. A planar surface is computed for each cell using the cell averages Ū and a piece-
wise bilinear approximation, which determines the slope of the water in the cells (Figure III.1c).
This slope reconstruction is performed using the generalized minmod flux limiter:

(Ud)j,k = minmod (θb, c, θ f) , (III.5)

where (Ud)j,k are the derivatives of the conserved variables in x or y direction, b, c, f are the
backward, central, and forward difference approximations of the derivative, that is the slope of
the water surface within cell Cj,k. The parameter θ ∈ [1, 2] is used to control the numerical viscosity
of the scheme. Here we use θ = 1.3 as suggested by Kurganov and Levy [17]. The index symbol d
indicates the direction of the derivation, which can be x or y in our case. The minmod flux limiter
is defined as:

minmod(z1, z2, z3) :=


minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise,

(III.6)

and is applied in a componentwise manner to all three elements [w̄, h̄u, h̄v] of the vector Ū.

In general, the slope reconstruction produces negative water heights h at the integration points
in the partially flooded cells. If the water height becomes negative, the computation breaks down
since the eigenvalues of the system are u ±

√
gh and v ±

√
gh. Hence, these values have to be

corrected while maintaining mass conservation. The KP correction solves the positivity problem
by raising and lowering the water level at the left and right side of the cell according to the
bathymetry function. This guarantees that all water heights are non-negative. However, this
violates the well-balancedness of the scheme at the dry/wet boundary causing high velocities to
appear. The HWP scheme uses a more complex correction, which preserves the well-balancedness
and reduces the spurious velocities. The slope reconstruction is followed by the point value

39

i
i

“master” — 2017/5/23 — 11:16 — page 40 — #62 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

computation. For every cell interface at the integration points, point values are reconstructed
(Figure III.1d). Each cell interface has two point values, one from the cell on the left and one
from the right. Based on these point values, we compute the fluxes using the central-upwind flux
function (Figure III.1e). In order to do so, we need to calculate the local speed values u = hu/h
and v = hv/h at the integration points. This leads to large errors as the water height h approaches
zero and can produce high velocities and instabilities. Since the time step size is calculated using
the maximum velocity component in the domain (III.8), it is also affected by this problem. To
reduce the effect of these high velocities, we have to apply the desingularization (III.3). Finally, we
compute the bed slope source term SB and the friction source term S f .

3.4 Temporal Discretization

We have discussed the spatial reconstruction of the point values and the flux computation. In
the following, we continue with the time-quadrature for the fluxes applied to both schemes. We
discretize the semi-discrete scheme (III.1) in time, and advance by ∆t using a standard second-
order accurate total variation diminishing (TVD) Runge-Kutta scheme [102, 103]:

Ū∗j,k = Ūn
j,k + ∆t

(
RF+G (Ūn)j,k + SB+ f

(
Ūn

j,k, Bj,k

))
,

Ūn+1
j,k =

1
2

Ūn
j,k +

1
2

[
Ū∗j,k + ∆t

(
RF+G (Ū∗)j,k + SB+ f

(
Ū∗j,k, Bj,k

))]
, (III.7)

where ∆t is the time step. In order to keep the numerical integration stable, the time step size is
limited by the Courant-Friedrichs-Lewy (CFL) condition [18, 65, 66]:

∆t ≤ 1
4

min

(
∆x

maxΩ
(
u±

√
gh
) ,

∆y
maxΩ

(
v±

√
gh
)) , (III.8)

where Ω represents the whole simulation domain.

Replacing the second-order Runge-Kutta scheme with the first-order Euler scheme, the time
integration (III.6) reduces to:

Ūn+1
j,k = Ūn

j,k + ∆t
[
RF+G (Ūn)j,k + SB+ f

(
Ūn

j,k, Bj,k

)]
(III.9)

We note that the HWP scheme applies a different time step computation for the partially flooded
cells. It is based on the flux divergence of these cells. For more details on the draining time step
computation we refer the reader to the related work [1].

4 Graphics Processing Units and the CUDA Platform

In this section, we introduce the concepts of the CUDA programming model which are most
relevant for our implementation of the aforementioned schemes. We discuss performance and
memory considerations from the perspective of our flux computation kernel, which is by far the
most time-consuming and resource-intensive computational step in our algorithm.

On a GPU, parallel tasks are called threads. These are scheduled and executed simultaneously
in groups referred to as warps. One warp contains 32 threads, which is the number of threads
effectively processed in parallel by one CUDA streaming multiprocessor (SM). GPUs have many
SMs, e.g., a GeForce Titan has 14 SMs running in parallel to increase the effective parallelism.
Furthermore, threads are organized into larger structures called blocks, and blocks are organized
into grids [37].

40

i
i

“master” — 2017/5/23 — 11:16 — page 41 — #63 i
i

i
i

i
i

4. Graphics Processing Units and the CUDA Platform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure III.3: Illustration of the Kepler shuffle up instruction of width 16, used in the flux kernel of block size 16× 16. The

shuffle up instruction is applied to a single warp executed on two rows of a block. We use it to shift data from cell Cj,k to

the next cell Cj+1,k .

4.1 Memory Usage

Understanding the CUDA memory model is often the key to achieving high performance on
an NVIDIA GPU. The model consists of different regions with varying scopes, latencies and
bandwidths. All threads have access to the same global memory. Shared memory is visible to all
threads within a block with the same life time as the block. Each thread has its private registers
and local memory.

Global memory resides in the device memory, which is the slowest, but the largest one. It is
allocated and freed by the programmer. The device memory is accessed via 32, 64, or 128 byte
memory transactions. These memory transactions must be aligned. Only the 32, 64 or 128 byte
segments of device memory, all of them of the same size, can be read or written by memory
transactions. In our implementation, we use a structure of arrays (SoA) to store elements of a
vector, instead of using an array of structures (AoS), since performance is significantly affected by
memory access patterns [37, 36, 45]. Therefore, when using SoA, all threads in a warp access the
same relative address when loading and storing the same element of a vector.

Local memory is often mentioned as virtual memory. It is allocated by the compiler, e.g., if one
uses large structures or an array that would consume too much register space. It resides in the
global memory, and it is cached in L1 and L2 caches. If done right, one can use local memory
to avoid costly memory transfers, but if the caches are overused and data are often evicted, the
memory traffic and instruction count will be increased with a negative effect on the performance.
Therefore, it is always necessary to profile the application. The best practice is to avoid the usage
of the local memory whenever possible.

In this work, we focus on the on-chip memory, that is, registers and shared memory. Shared
memory has much higher bandwidth and much lower latency than the local or the global memory.
To achieve high bandwidth, it is divided into equally-sized memory modules, called banks, which
can be accessed simultaneously by the threads. On the Kepler architecture, the shared memory
has 48KB and it is organized into 32 banks. However, if two threads in a warp access different
memory from the same bank, a bank conflict occurs, and the access is serialized. To get maximum
performance we have to minimize these bank conflicts. In our flux kernel, we store temporal
variables in shared memory using 2D-arrays. Bank conflicts can happen when accessing elements
in the y direction, but not in the x direction. To circumvent this, we allocate arrays of blocksize ∗
(blocksize + 1). By adding a padding element of 1, we avoid the bank conflicts.

With the introduction of the Kepler shuffle instructions, programmers have been provided with
a new memory feature to increase performance. As a faster alternative to shared memory, the
Kepler shuffle can be used to efficiently share values between threads in a warp-synchronous
manner. On earlier hardware, this could only be done by using shared memory. This involved
writing data to the shared memory, synchronizing threads, and then reading the data back from
the shared memory. The Kepler shuffle enables a thread to directly read a register from another
thread in the same warp. This allows threads in a warp to collectively exchange or broadcast
data. In our case, every warp is split into two rows of 16 grid cells (Figure III.3). The shuffle up
instruction sends a value of a cell to the next cell on the right. Since the right most cell does not

41

i
i

“master” — 2017/5/23 — 11:16 — page 42 — #64 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

Initial conditions Shallow water
simulation

Analysis,
rendering

Global boundary
conditions

Time
integration

Local boundary
conditions

ExitInit

3

4

5

 Flux
computation

Time step
reduction

1

2

Sparse
computation

6

Figure III.4: Data flow of the simulation system and steps of the simulation loop. Green boxes 1 - 4 are the main steps

of the simulation. Boxes 5 - 6 are optional. Box 5 is activated if there is a hydrograph attached. Box 6 is an optional

optimization that skips dry cells.

have any cell on the right, it will send its values to the first one, indicated by the dashed lines in
Figure III.3. By applying the shuffle down instruction, we can shift data in the opposite direction.

4.2 Block Size and Occupancy

Choosing a good block size is essential for achieving high performance. The number of threads
in the block should be a multiple of the warp size, which is currently 32. Blocks should contain
at least 192 threads to hide arithmetic latency [37]. One of the keys to good performance is to
keep the multiprocessors on the device as busy as possible. The occupancy value is the ratio of
the number of active warps per multiprocessor to the maximum number of possible active warps.
Higher occupancy does not always imply higher performance. Above a certain level, additional
occupancy does not improve performance. Factors that determine occupancy are the number of
registers used per thread and the amount of shared memory used per block. Excess consumption
of these resources limits the number of blocks and warps per multiprocessor. Low occupancy
always interferes with the ability to hide memory latency, resulting in performance degradation.
In our flux kernel, we use 16× 16 threads per block. On devices with compute capability 3.5, each
multiprocessor is able to schedule 2048 threads simultaneously, i.e., 8 blocks per multiprocessor
in our case. Furthermore, we require 32 registers per thread and, consequently, 8096 registers
per block. Since devices with compute capability 3.5 have 65536 registers per multiprocessor, 8
blocks could be scheduled in a single multiprocessor. Regarding shared memory, when using the
shuffle instructions the flux kernel requires 4 temporary floating-point variables, which leads to
a total of 16× 17× 4× 4 = 4352 bytes of shared memory per block (the factor 17 stems from the
padding of 1 to avoid bank conflicts). This means, we can achieve nearly 100% occupancy as we
are limited neither by shared memory nor by register usage. However, if we do not use the shuffle
instructions, we need 18 temporary floating-point variables to store in the shared memory, which
results in 16× 17× 18× 4 = 19584 bytes, and the occupancy drops to 25%.

42

i
i

“master” — 2017/5/23 — 11:16 — page 43 — #65 i
i

i
i

i
i

5. Implementation

Outer block
width

O
uter block
height

Inner block
width

Inner block
height

G
host cells

Cell center
Cell vertex
Cell interface midpoint

KP HWP

a

b

Figure III.5: Domain partitioning and the computational stencil of the flux kernel. a) Domain decomposition into blocks

processed independently on the GPU. Fluxes are computed for inner block cells only. The number of ghost cells differs for

the KP and HWP schemes. b) Computation stencils for the pink cells. KP requires two cells in each direction, HWP needs

three. Blue dots are variables at the cell center, i.e., Ūj,k and Bj,k , brown dots are values at the cell interface midpoints

Uj± 1
2 ,k and Uj,k± 1

2
, and the bathymetry values Bj± 1

2 ,k± 1
2

are defined at the green dots.

5 Implementation

We implemented a shallow water simulator as a plugin node for the Visdom framework [47].
Visdom is a software framework that integrates simulation, visualization and analysis to assist
decision making. The simulator was implemented with C++ and the NVIDIA CUDA Toolkit
6.5. The framework comprises multiple modules responsible for processing various tasks. Each
module can be a node of a generic data-flow network [104]. Nodes can directly import data or
access the results produced by other nodes. In our case, the bathymetry node loads and samples
the terrain for the shallow water node. The shallow water node simulates the fluid flow, and the
simulation results are visualized using the OpenGL-based view node.

1 2 3 4 5 6

32 5 61 4

Iteration 1

Iteration 2

1st order
Euler

2nd order
Runge-Kutta

Figure III.6: Simulation steps for the first and second-order time integrations. 1 Flux computation, 2 Time step

reduction, 3 Time integration, 4 Global boundary conditions, 5 Local boundary conditions, 6 Sparse computation.

In the first iteration, all computations are active, in the second, some steps are skipped (desatured circles).

43

i
i

“master” — 2017/5/23 — 11:16 — page 44 — #66 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

RE
G

RE
G

SM RE
G

SM RE
G

Load input Compute x �ux Transpose Compute y �ux Transpose Combine �uxes

Sy
nc

Sy
nc

a b c d e f

Figure III.7: Overview of the flux kernel code from the perspective of shared memory (SM) and register (REG) spaces of

the block. Orange squares show the memory occupation for the current warp. Shuffle instructions operate on registers

only in x-dimension. To exploit them for the computation of the fluxes in both directions, we require data transpositions

via the shared memory. Explicit thread synchronization barriers are shown in purple.

Our simulation node comprises several classes and uses C++ templates on both CPU and GPU
sides to achieve the highest runtime performance. Being supplied with all the inputs, the node
computes the required amount of memory needed for the simulation and allocates the buffers.
The simulation parameters such as the domain and cell size are uploaded to the constant memory
of the GPU, where all kernels can access them. Our simulator supports dynamic modification of
the input parameters, e.g., to simulate the effects of barriers that can be placed into the scene.
For the shallow water simulation, we need 11 buffers of the size of the simulation domain, 2 to
hold the bathymetry values, 3 + 3 to hold the values of Ūj,k and Ū∗j,k, and 3 to hold the flux
values combined with the source terms. We need one more floating-point value per block to
hold the maximum speed value of a block. In addition, smaller buffers are used to provide other
features, but their sizes are insignificant compared to the domain size. The shallow water node
supports hydrograph-based simulations. A hydrograph is a function describing the development
of local water level and discharges over time, often used for specifying time-dependent boundary
conditions. The hydrographs are stored as indices of the affected cells, along with time-varying
data of the water elevations and velocities.

5.1 Domain Partitioning

We coarsely decompose the problem into sub-problems that can be solved independently in par-
allel by blocks of threads. Each sub-problem is then split into finer pieces that can be solved
cooperatively in parallel by all threads within a block. In case of our flux kernel, each block con-
tains 16× 16 threads or cells. The flux kernel loads data for all cells, but produces fluxes only
for the inner cells (inner block), as shown in Figure III.5. The inner block size is defined by the
computational stencil which is the number of neighboring cells needed to compute the fluxes at
a particular cell. The computation of the flux for the inner block requires data from more cells
than it contains. Additional cells from adjacent inner blocks, called ghost or halo cells, are needed.
Therefore, the outer blocks must be bigger and overlap each other. The stencil differs for the KP
and HWP schemes. In case of KP, the flux kernel outputs fluxes for the inner 12× 12 cells. When
using the HWP scheme, the inner block is smaller and contains 10× 10 cells, since it requires one
more ghost cell in every direction.

5.2 Simulation Steps

Figure III.4 shows the main computation steps of our simulation process. The computation starts
by calculating the fluxes 1 for all cells in the domain. The time step 2 is computed next. The
maximum speed value in the domain is used in order to compute the time step size according
to (III.8). After computing the fluxes and the maximum time step size, the time integration 3
follows. In addition, each block containing wet cells is marked as active. The last of the four main
simulation steps is the application of the boundary conditions 4 . At this point, the process can

44

i
i

“master” — 2017/5/23 — 11:16 — page 45 — #67 i
i

i
i

i
i

5. Implementation

// Allocate shared memory for temporary variables
// A padding of 1 avoids bank con�icts
__shared__ �oat smWaterLevels [blockSize][blockSize + 1];
__shared__ �oat smBathY [blockSize][blockSize + 1];
…

// (a) Load input. Store conserved variables and bathymetry in variables (registers)
�oat waterLevel = waterLevels[globalIdx];
…
�oat bathRightInterfaceY = bathymetriesY [globalIdx];
�oat bathRightInterfaceX = bathymetriesX [globalIdx];

// (b) Compute x �ux. No need for prior thread synchronization because we only
// require data loaded within the same warp
�oat3 �uxX = calcFlux (waterLevel, dischargeX, dischargeY, bathRightInterfaceX);

// (c) Transpose. Store conserved variables and bathymetry (in y-direction only)
// inside shared memory in a transposed way
smWaterLevels [threadIdx.x][threadIdx.y] = waterLevel;
…
smBathY [threadIdx.x][threadIdx.y] = bathRightInterfaceY;

// Make sure that all transposed data is available from other threads
__syncthreads();

// Load data from shared memory
waterLevel = smWaterLevels [threadIdx.y][threadIdx.x];
…
bathRightInterfaceY = smBathY [threadIdx.y][threadIdx.x];

// (d) Compute y �ux. The previous transposition allows us to use the same
// shu�e-based technique
�oat3 �uxY = calcFlux (waterLevel, dischargeX, dischargeY, bathRightInterfaceY);

// (e) Transpose. Store �uxes in y-direction at the correct cells in shared memory
// (we re-use the previous bu�ers which are no longer needed)
smWaterLevels [threadIdx.x][threadIdx.y] = �uxY.x;
…

// Synchronize after transposing back to shared memory
__syncthreads();

// (f) Combine �uxes. Write the results into global memory

B j k+
1
2

,

B +
1
2

,j k

w ,j k

Figure III.8: Overview of the flux kernel code.

exit the simulation loop if the desired simulation time is reached. Otherwise, the computation
proceeds. If no hydrograph is supplied to the simulation node and the sparse computation is dis-
abled, the simulation skips the steps 5 - 6 and jumps to the flux computation 1 again. However,
if the hydrograph input is present, its properties are computed for the current time step 5 . An-
other feature of the simulation node is the sparse block computation, adopted from [41]. Initially,
all blocks are marked as wet. After evolving the solution in time, the integration kernel checks
if there is at least one wet cell in the block and stores the information in the global memory. If a
hydrograph is supplied and the sparse computation is enabled, the blocks containing hydrograph
cells should be activated as well. If a block is active, its neighbors could be flooded in the next
time step, thus, all adjacent blocks are activated, too. Indices of active blocks are compacted 6
and used by the flux and time integration kernels to process only wet blocks.

The system can perform the first-order Euler or second-order Runge-Kutta time integrations.
For the second-order accuracy, we make two simulation iterations, whilst for the first-order Euler
method, only the first iteration is needed. The first iteration follows all computation steps of the
simulation loop. The second iteration requires only three computation steps (Figure III.6).

45

i
i

“master” — 2017/5/23 — 11:16 — page 46 — #68 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

1 Flux computation The flux kernel is computationally the most expensive of our parallel rou-
tines. It is responsible for computing the source terms and the fluxes over all four interfaces of
each cell. We have identified the six most important steps in the code and labeled them from (a)
to (f) in Figure III.7 and Figure III.8. Figure III.8 provides an overview of the code. Figure III.7
illustrates the role of the register and shared memory spaces of a block while the kernel is being
executed. Our code design is guided by the principle of achieving a maximum amount of warp-
synchronous computations. On the GPU, each warp processes 2× 16 cells, i.e., two rows of a block
at once. Due to this, threads of different columns are able to share data with each other without
any performance loss. In contrast, the communication between threads across different rows is
slower since it requires explicit warp synchronizations. Whenever possible, threads should ex-
change data across columns only. We suggest a method of data transposition to layout the required
data in x-direction before the actual computations are done.

The kernel starts by allocating in shared memory four 2D-arrays required to hold the tempo-
rary variables. (a) The conserved variables Ūj,k and the bathymetry values at the right cell interface
midpoints Bj,k+ 1

2
, Bj+ 1

2 ,k are loaded from global memory into registers, totalling to five floating-
point numbers per cell. (b) At this stage, we can directly proceed with the warp-synchronuous
computation of the fluxes in x-direction without waiting for thread synchronization, since all
required data has been loaded by the same warp. The computation exploits multiple shuffle in-
structions, factored out into the re-usable calcFlux subroutine (details follow later). (c) Next, we
copy the bathymetry value in y-direction and the conserved variables to the shared memory. No-
tice, that they are assigned to the 2D-array element by swapping the x and y indices associated
with the thread (transposition). Now we have to wait until this process has been completed by
all threads from all warps within the block. An explicit synchronization barrier assures that all
data is available for computing the flux in y-direction. Then we simply load the data from shared
memory without swapping indices. (d) The stencil for the y-flux is now arranged in x-direction
of the block, and we can re-use our efficient shuffle-based calcFlux function. One might argue that
the necessary data in y-direction could be loaded from global memory again. However, this would
significantly lower the performance, not only because the same values have to be loaded twice, but
also due to coalescing rules. Parallel threads running the same access instruction to consecutive
locations in global memory achieve the most efficient memory transfer. Since the data in global
memory is organized row after row in a linear array, the access in y-direction is not favorable. The
flux kernel proceeds with (e) transposing the computed y-fluxes. This way, the y-fluxes are now
stored at the correct cell locations in shared memory. Next, we need to synchronize the threads to
ensure that all threads have finished flux computations. (f) The kernel concludes by loading these
values without swapping indices, and combines them with the x-flux and the source terms. The
result is stored as a three-element vector in global memory.

In the calcFlux subroutine, the differences between KP and HWP become apparent (Figure III.9).
HWP exhibits a more elaborate behavior from the GPU perspective. The relevant code sections
are marked in red. HWP has to detect the partially flooded cells and treat them differently ac-
cording to a set of rules. This results in a more complex branching pattern that slows down the
process. For the computation of the point values at the cell interfaces (Figure III.1d), the subrou-
tine acquires all the necessary data from the neighboring cells through shuffling the input values
by one index, and in case of HWP, also by two indices. In KP, point values are reconstructed in the
same way at all cells. HWP makes a distinction between partially flooded cells and fully wet cells.
Moreover, the treatment of the partially flooded cells depends on the local bathymetry steepness
and the amount of water contained in the neighboring cells. Consequently, the execution path
divergence is greatly influenced by the current simulation status. There are multiple if-else blocks
where we cannot guarantee that half-warps take the same execution path. This breaks the parallel
execution of the warp and introduces some overhead compared to KP. After the reconstruction
of all point values, the subroutine proceeds with computing the flux at the right cell interface
(Figure III.1e). Here, the two schemes exhibit slight differences which are not crucial from the
implementation point of view. The subroutine continues by acquiring the flux at the left interface
through shuffling. The use of the shuffle instruction avoids to compute the same flux twice, first
time for cell Ci,j and second time for cell Ci+1,k. Finally, the fluxes at both interfaces are used to
evaluate the flux at the current cell according to the central upwind flux function.

46

i
i

“master” — 2017/5/23 — 11:16 — page 47 — #69 i
i

i
i

i
i

5. Implementation

// Allocate shared memory for temporary variables
// A padding of 1 avoids bank con�icts
__shared__ �oat smWaterLevels [blockSize][blockSize + 1];
__shared__ �oat smBathY [blockSize][blockSize + 1];
…

// (a) Load input. Store conserved variables and bathymetry in variables (registers)
�oat waterLevel = waterLevels[globalIdx];
�oat bathRightInterfaceY = bathymetriesY [globalIdx];
�oat bathRightInterfaceX = bathymetriesX [globalIdx];
…

// (b) Compute x �ux. No need for prior thread synchronization because we only
// require data loaded within the same warp
�oat3 �uxX = calcFlux (waterLevel, dischargeX, dischargeY, bathRightInterfaceX);

// (c) Transpose. Store conserved variables and bathymetry (in y-direction only)
// inside shared memory in a transposed way
smWaterLevels [threadIdx.x][threadIdx.y] = waterLevel;
…
smBathY [threadIdx.x][threadIdx.y] = bathRightInterfaceY;

// Make sure that all transposed data is available from other threads
__syncthreads();

// Load data from shared memory
waterLevel = smWaterLevels [threadIdx.y][threadIdx.x];
…
bathRightInterfaceY = smBathY [threadIdx.y][threadIdx.x];

// (d) Compute y �ux. The previous transposition allows us to use the same
// shu�e-based technique
�oat3 �uxY = calcFlux (waterLevel, dischargeX, dischargeY, bathRightInterfaceY);

// Synchronize before transposing back to shared memory as we re-use the bu�ers
__syncthreads();

// (e) Transpose. Store �uxes in y-direction at the correct cells in shared memory
// (we re-use the previous bu�ers which are no longer needed)
smWaterLevels [threadIdx.x][threadIdx.y] = �uxY.x;
…

__syncthreads();

// (f) Combine �uxes. Write the results into global memory

w ,j−1 k
w ,j+1 k

w ,j−2 k
w ,j+2 k

SUB: �oat3 calcFlux (w = waterLevel, dischargeX, dischargeY, bathRightInterfaceX)

// Fetch bathymetry at left interface by shu�ing
�oat bathLeftInterfaceX = __sh�_up(bathRightInterfaceX , 1, blockSize);

// Calculate average water level and determine whether the cell is partially �ooded
// HWP speci�c
bool isPartiallyFlooded = waterDepth < (cellSize * 0.5f) *
 abs(bathLeftInterfaceX - bathRightInterfaceX) / cellSize;

// Reconstruct water levels and discharges at cell interfaces

// Use shu�e to fetch water levels needed for minmod reconstruction
�oat wCellLeft = __sh�_up(w, 1, blockSize);
�oat wCellRight = __sh�_down(w, 1, blockSize);
…

// Variables at left-left / right-right cells could be needed and shu�ing must be
// done outside the following if-blocks to make sure that all data is available
�oat wCellLeftLeft = __sh�_up(w, 2, blockSize);
�oat wCellRightRight = __sh�_down(w, 2, blockSize);
…

if (! isPartiallyFlooded)
{
 // Compute point values for the conserved variables at the inner cell interfaces
 �oat2 wPointVal = reconstruct (wCellLeft , w, wCellRight);
 …
}
else // HWP speci�c
{
 // Bathymetry steepness needed for cases below
 �oat bathSteepness = (bathRightInterfaceX - bathLeftInterfaceX) / cellSize;

 // At the partially �ooded cells, branching occurs
 if (isFullyFlooded(leftCell) && bathSteepness > 0)
 {
 �oat2 wPointVal = reconstructAtPartial
 (wCellLeftLeft, wCellLeft , w, bathLeftInterfaceX);
 }
 else if (isPartiallyFlooded(leftCell) && bathSteepness > 0)
 …
 … // For the logic of all cases
}

// Equivalent reconstruction for point values of discharges
�oat dischargeXPointVal, dischargeYPointVal = … ;

// Compute �ux at right interface using the point values
// KP and HWP di�er slightly here
�oat �uxRightInterfaceX = interfaceFlux
 (wPointVal.y, wPointValCellRight.x, dischargeXPointVal.y, …);

�oat �uxLeftInterfaceX = __sh�_up(�uxRightInterfaceX, 1, blockSize);

// Conclude by computing the �ux at the current cell
return centralUpwind (�uxLeftInterfaceX, �uxRightInterfaceX);

B j k−
1
2

,

Figure III.9: Subroutine calcFlux to evaluate the flux in any direction. The function assumes that the stencil is organized in

x-direction, no matter if invoked for the computation of the y-flux. HWP requires additional work for the correct treatment

of partially flooded cells (red parts).

As a side effect, the flux kernel evaluates the maximum speed value inside a block. This value
is later needed to compute the time step size for the time integration. Our calculation of the

47

i
i

“master” — 2017/5/23 — 11:16 — page 48 — #70 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

maximum speed value is based on the commonly used butterfly-reduction pattern. We exploit the
exclusive-or shuffle instructions to accelerate this process.

2 Time step reduction The time step reduction kernel is responsible for finding the highest
speed value within the whole domain. Based on the values obtained for each block, this kernel
employs a similar butterfly reduction to evaluate the maximum speed value for the entire grid.
The maximum allowed time step size is then calculated according to the CFL condition (III.8).

3 Time integration The time integration kernel advances the solution in time and performs one
sub-step of the Runge-Kutta integrator. Since the kernel does not require any ghost cells, its block
size has the same dimensions as the inner block of the flux kernel. The kernel starts by reading the
conserved variables Ūj,k, the average bathymetry value Bj,k at the cell center, and the combined
fluxes RF+G (Ū)j,k. After this, the solution advances in time. In addition, one has to ensure that
no negative water heights are produced due to floating-point round-off errors.

4 Global boundary conditions Our global boundary condition kernel implements four types of
boundary conditions using global ghost cells. The supported types are reflective or wall bound-
aries, inlet discharge, free outlet, and fixed water elevation. To implement these boundaries, we
have to manually set both the cell averages and the reconstructed point values at the cell interface
midpoints. Similarly to Brodtkorb et al. [39], we exploit the property of the minmod limiter. We
recall that the minmod limiter uses the forward, central and backward difference approximations
to the derivative, and always selects the least steep slope, or zero if any of them have opposite
signs. We are allowed to set the reconstructed point values to arbitrary values as long as we ensure
that the least steep slope is zero. To fulfill this condition, we need two ghost cells in each direction
at the boundaries of the domain. Global ghost cells are updated at every step and thus they do
not need any special treatment different from the handling of the interior cells.

The wall boundary condition is implemented by mirroring the last two interior cells at the
boundary and changing the sign of the velocity component perpendicular to the boundary. The
input discharge and fixed water elevations are implemented similarly. For the former, we set a
fixed discharge value, whereas for the latter, a fixed water elevation. The free outlet is imple-
mented by copying the values of the cell averages of the last interior cell to the two ghost cells.

5 Local boundary conditions Inside the domain, we support local boundary conditions to sim-
ulate phenomena such as sewer overflow scenarios or to apply a hydrograph. A hydrograph,
describing a local water level and discharge over time, can be attached to multiple cells to impose
time-varying inlet boundaries. At every time step, we compute the water level and velocity vectors
for each affected cell by interpolating the hydrograph function values.

6 Sparse computation The sparse computation is used to exclude blocks that do not contain
water. The time integration kernel marks the active blocks that contain wet cells or have cells
with non-zero discharges. After this, we compact the indices of the active blocks. On the next
iteration, these indices are loaded by the flux and integration kernels to find the offsets of the
active blocks. If the sparse block computation is enabled, we have to activate blocks which contain
hydrograph cells, since the hydrograph water depths could start at zero and increase later during
the simulation. Therefore, it is necessary to track if the hydrograph cells become active. If they
become inactive again, they will be excluded from the computation.

6 Evaluation

In this section, we provide a performance analysis of our latest, shuffle–based (SB) implementa-
tions of HWP and KP compared to previous, shared–memory–only (SMO) versions. The compar-
ison is done using real-world scenarios. Our benchmarks run on a desktop PC equipped with a
3.4 GHz quad core Intel Xeon CPU and 16 GB RAM. We use an NVIDIA GeForce Titan graphics
card which has 6 GB GDDR5 memory. GPU sources are compiled with CUDA v6.5 using the
compiler flags shown in Table III.1.

48

i
i

“master” — 2017/5/23 — 11:16 — page 49 — #71 i
i

i
i

i
i

6. Evaluation

-arch=sm_35 NVIDIA GPU architecture to generate.

-maxrregcount=32 Max. amount of registers per thread.

-ftz=true Flush denormals to 0.

-fmad=true Force fused multiply-add operations.

-prec-div=false Faster, but less accurate division.

-prec-sqrt=false Faster, but less accurate square root.

-Xptxas -dlcm=ca Increases the L1 cache to 48KB.

Table III.1: NVCC flags used to compile CUDA source files.

1km

Figure III.10: Simulated dam break of Malpasset. The water extent at the time step 4000 s is shown (blue). The simulation

results are verified with the experimental data obtained from laboratory models at the displayed locations (green labels).

6.1 Validation: Malpasset Dam Break

Before testing the simulation speed, we evaluate the correctness of our new solver using the well-
known historical Malpasset dam break event. Our validation is based on the dataset available
from the [105] samples. The original dataset consists of 104 000 unstructured points. The corre-
sponding simulation grid contains 1149× 612 cells, each cell of the size of 15× 15 m. We set the
desingularization constant ε = 0.40 m and use two Manning coefficients n = 0.025 m1/3/s, and
n = 0.033 m1/3/s. We use CFL = 0.25 in all our simulations and simulate the first 4000 seconds
after the actual breach.

We employ the outcome of laboratory experiments on a 1:400 scale model to verify the cor-
rectness of our numerical results. In these experiments, researchers have recorded wave front
arrival times [106] and maximum water elevations [107] at 14 wave gauge locations (S1-S14). Our
verification uses only locations S6-S14, since no data is available for the other gauge locations. Fig-
ure III.10 displays the measurement points and the water extent after 4000 seconds of simulated
model time.

Figures III.11-III.12 show our simulation results compared to the physical data acquired by the
laboratory model. Overall, there is good agreement with the measurements. Small discrepancies
between the scale model and the numerical results were also reported by others [39, 108, 101], and
our results are consistent with these. We simulated two different roughness values for the terrain

49

i
i

“master” — 2017/5/23 — 11:16 — page 50 — #72 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

0

20

40

60

80

100

6 7 8 9 10 11 12 13 14

M
ax

im
um

 e
le

va
tio

n
[m

]

Gauge number

Measured
 KP (0.025)

 HWP (0.025)
 KP (0.033)

 HWP (0.033)

Figure III.11: Verification of the maximum water elevations during the Malpasset dam break event at nine gauge locations

(S6-S14) for two roughness values (0.025 and 0.033).

0

200

400

600

800

1000

1200

1400

6 7 8 9 10 11 12 13 14

Ar
riv

al
 ti

m
e

[s
]

Gauge number

Measured
KP (0.025)
HWP (0.025)
KP (0.033)
HWP (0.033)

Figure III.12: Verification of the wave arrival times during the Malpasset dam break event at nine gauge locations (S6-S14)

for two roughness values (0.025 and 0.033).

and compared the maximum water elevations and wave arrival times. The roughness value 0.025
is associated with gravelly earth channels, and the roughness value 0.033 corresponds to weedy,
stony earth channels and floodplains with pasture and farmland. The higher the roughness value,
the slower the flow velocity, which causes the water level to increase for the same discharge. This
effect is visible in Figure III.11, where the elevation values are slightly increased when using the
higher roughness value. The wave arrival times are more affected by the roughness value than
the water elevations. A higher roughness value results in slower wave propagation. We note that,
with a uniform roughness value across the whole domain, we can approximate the real-world
process to a certain extent only. Usually, the roughness values vary spatially across the domain.

6.2 Performance Measurements

To evaluate the performance of the implemented solvers, we first examine the number of gigacells
that can be processed per second. This quantity is computed by counting the number of wet cells
that have been processed in one second of computational time. Thus, the quantity is independent
of the actual number of time steps needed and provides a measure for the kernel performance.
Figure III.13 shows how the performance decreases over time as the water spreads through the
domain and the number of dry blocks decreases. The dashed lines show the percentage of the
dry cells during the simulation. The HWP solver has smaller blocks, hence, it needs more blocks

50

i
i

“master” — 2017/5/23 — 11:16 — page 51 — #73 i
i

i
i

i
i

6. Evaluation

0

1

2

3

4

5

6

7

8

0 800 1600 2400 3200 4000
0

20

40

60

80

100

G
ig

ac
el

ls
 /

s

D
ry

 c
el

ls
 [%

]

Simulated time [s]

 HWP (SMO)
 KP (SMO)
 HWP (SB)

 KP (SB)KP dry cells

HWP dry cells

Figure III.13: Estimated solver performance, measured in gigacells per second, for the Malpasset dam break scenario

(solid lines). The dashed lines show the percentage of dry blocks within the simulation domain, which is different for KP

and HWP.

than the KP solver to cover the same domain. This explains the difference in the percentage of dry
cells in the graph. One can notice that, due to simpler computations, the KP solver can process
more cells per second than the HWP solver. Later in the text, we will show that the KP solver has
to process much more cells for real-world scenario modeling, since it requires more time steps to
simulate the same duration in long simulation runs. In the end, this fact makes the HWP solver
significantly more efficient.

0

5

10

15

20

25

30

35

40

KP (SB) KP (SMO) HWP (SB) HWP (SMO)

C
om

pu
ta

tio
n

tim
e

[s
] Flux

Time step
Integration
Boundary
Sparse c.

Figure III.14: Overall GPU runtime of the implemented solvers for the simulation of 4000 seconds of the Malpasset dam

break event, including the time distribution over five phases of a single computation iteration.

Figure III.14 displays the absolute GPU runtime of the solvers required to simulate the first
4000 seconds of the Malpasset dam break event. While the previous SMO implementation of
the HWP scheme is obviously slower, the new shuffle-based approach for HWP exhibits clear
improvements. Its running times are similar to those of the KP implementations. Even though
the newly implemented SB solver for KP completes the 4000 seconds simulation slightly faster,
the situation changes in real-world scenarios, where hours or days of flooding have to be simu-
lated. The difference becomes dramatic when ensembles of such scenarios are used for uncertainty
treatment.

In Figure III.14 we see that the computation times for the two KP solvers are only slightly
different, while there is a significant difference for the HWP solvers. For the KP (SB) solver we
cannot further improve the GPU utilization by reducing the shared memory footprint, since we
are already limited by the number of registers per block, i.e., the GPU cannot launch more blocks

51

i
i

“master” — 2017/5/23 — 11:16 — page 52 — #74 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

on a multiprocessor. However, the HWP (SMO) solver requires more shared memory than KP
(SMO), and more synchronization barriers, which are responsible for the performance loss. The
use of the shuffle instructions (SB) avoids the need for some of the synchronization barriers, since
threads in the same warp are always executed in a synchronous way. Moreover, this leads to
a reduced shared memory footprint, thus to improved GPU utilization and a high performance
gain.

Figures III.15-III.16 show the computation time and the average number of time steps per
second for the first 10000 seconds of the Malpasset dam break event. In Figure III.15, we see that
the KP solver is faster for the first 5600 seconds. However, over time, it has to perform more
and more time steps (Figure III.16). Thus, it requires more computation time than HWP as the
simulation progresses.

0

6

12

18

24

30

36

42

48

54

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
om

pu
ta

tio
n

tim
e

[s
]

Simulated time [s]

 KP
 HWP

Figure III.15: Computation time of the two shuffle-based solvers for the simulation of 10000 seconds of the Malpasset dam

break event. The red dot shows the intersection of the simulated and the computation time of the solvers.

0

3

6

9

12

15

18

21

24

27

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Av
er

ag
e

nu
m

be
r o

f t
im

e
st

ep
s

/ s

Simulated time [s]

 KP
 HWP

Figure III.16: Average number of time steps per second required by the two shuffle-based solvers for the simulation of

10000 seconds of the Malpasset dam break event.

We now show that for real-world simulations, our shuffle-based implementation of HWP out-
performs KP, since it actually requires considerably fewer time steps to solve the same problem.
As a test case, we use the overtopping of mobile flood protection walls in Cologne, Germany (Fig-
ure III.17b). Such overtopping happens when the water in the Rhine river raises above the level
of 11.9 m, marked with a red line in Figure III.17a. A standard way to use uncertain overtopping
predictions for action planning is to simulate ensembles of overtopping events. In our test case,
we simulate an ensemble of 10 overtopping events corresponding to water levels from 11.95 m to
12.95 m, displayed by a set of hydrographs in Figure III.17a. The simulation domain of approxi-
mately 3.1× 7.5 km is shown in Figure III.17c. The corresponding grid contained approximately

52

i
i

“master” — 2017/5/23 — 11:16 — page 53 — #75 i
i

i
i

i
i

6. Evaluation

Wall Protection
Level

Ensemble scenarios

c

ba

0m Low High>2mWater depth

Mobile Walls

Building damage

W
at

er
 L

ev
el

 [m
]

00:00 05:00
11.8

12.8

Time [hh:mm]

Figure III.17: Uncertainty-aware prediction of mobile flood protection wall overtopping in Cologne. (a) Input hydrographs

forming an ensemble of 10 different scenarios with varying peak levels. (b,c) Visualization of ensemble results. Buildings

are colored according to the expected damage. The terrain is colored according to the average water depth.

2.6 million cells of 3× 3 m. For each ensemble member, we decided to simulate only the first 2
hours of overtopping, since the KP solver was too slow. In Figure III.17b,c, the expected building
damage and water depths, aggregated over the whole ensemble, are displayed with colors. Fig-
ure III.18a shows the computation runtimes for each simulated scenario. These are measured for
the SMO and SB implementations of the KP and HWP schemes. Clearly, the shuffle-based im-
plementation of HWP exhibits the best performance, closely followed by the shared-memory-only
implementation of the same scheme. Both implementations of KP turn out to be considerably
slower. This is due to high velocities eventually generated at dry/wet boundaries and, conse-
quently, smaller time step sizes. In turn, a larger number of smaller time steps imply more
computation effort to advance the simulation up to the required model time. This computation
overhead multiplies with the size of the ensemble. For illustration, we compare the number of
time steps required by both schemes to simulate every scenario (Figure III.18b). Note that the
number of time steps depends solely on the scheme and not on the implementation (SB or SMO),
hence two groups of bar charts instead of four. As one can see in Figure III.18b, there is a large,
sometimes up to an order of magnitude, difference between the numbers of time steps required
by the two schemes, which proves our assertion.

To sum up, we discuss the main factors responsible for the differences in the number of time
steps between the presented case studies. The first factor is the flow velocity. In case of the
Malpasset dam break, the flow velocity is very high due to the high water level at the dam.
At the beginning of the simulation, the error in the velocities along the dry/wet boundaries is
negligible compared to the high flow velocity in the middle of the stream. As time advances, the
reservoir is draining and the flow velocity decreases. This allows for a smaller number of time
steps (see the first 1000 seconds in Figure III.16). However, for KP, the error is growing along
the boundaries, causing an increase in the number of time steps again. In the Cologne case, the
water depth is very shallow with low flow velocities, which means that the effects of the error

53

i
i

“master” — 2017/5/23 — 11:16 — page 54 — #76 i
i

i
i

i
i

Chapter III. Kepler Shu�e for Real-World Flood Simulations on GPUs

0

10

20

30

40

50

60

70

 KPSB KPSMO HWPSB HWPSMO

C
om

pu
ta

tio
n

tim
e

[m
in

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 KP HWP

N
um

be
r o

f t
im

e
st

ep
s

(x
10

6)

a b11.95 m

12.95 m

11.95 m

12.95 m

Figure III.18: Runtimes and number of time steps for the first 2 hours of model time for each overtopping scenario of the

simulated ensemble for Cologne.

accumulation along the dry/wet boundaries occurs sooner. The second factor is the resolution
of the bathymetry. It is 3× 3 meters in Cologne, which is 5× higher than in the Malpasset case,
where we use a cell size of 15× 15 meters. This increases the rate of the accumulation of the error,
since the computation of the time step size depends not only on the maximum velocity but also
on the grid resolution (III.8).

7 Conclusion

In recent years, a lot of effort has been made towards efficient GPU-based solvers for shallow
water equations on Cartesian grids. However, their application to real-world scenarios is often
plagued with significant slow-downs. This happens due to spurious high velocities generated by
the corresponding numerical schemes at dry/wet boundaries. These high velocities sometimes
lead to time steps so small that the simulation barely advances in time. Such slow-downs are
unacceptable for real-world decision making in flood management, where large ensembles of
flood scenarios have to be simulated to handle the prediction uncertainty. Keeping this problem
in mind, we developed the HWP scheme [1] that stabilizes the velocities and increases the time
step size but requires a more complex algorithm. It should also be noted that, even in shorter run
times where KP outperforms HWP in runtime efficiency, the HWP scheme has a crucial advantage
over KP: it produces simulations that are more physically consistent. For instance, it avoids the
buildup of unrealistically high velocities close to boundaries, which actually ends up contributing
to the loss of efficiency of KP for longer runs.

In this paper, we present a novel GPU-based implementation that fully reveals the potential
of the HWP scheme. The implementation is optimized for the Kepler GPU architecture. In or-
der to achieve high utilization, we exploit the capabilities of the shuffle instructions. Due to their
warp-synchronous nature, we can share data between the threads and thus avoid explicit synchro-
nizations. However, we have to re-organize data using the shared memory to be able to use them
for the second dimension efficiently. As demonstrated by the evaluation, our shuffle-based imple-
mentation of HWP outperforms the existing alternatives significantly when applied to real-world
scenarios. This allows for the use of the presented GPU solver for real-world decision making,
where, for instance, imminent floods can be modeled and analyzed in time-critical situations.
Moreover, it can be efficiently used for planning purposes where a large number of scenarios need

54

i
i

“master” — 2017/5/23 — 11:16 — page 55 — #77 i
i

i
i

i
i

7. Conclusion

to be explored prior to any flood events.

Nevertheless, open questions remain, motivating further improvements. Reconstruction cases
in the presented solver lead to a conditional branch divergence in the code. To avoid performance
loss, these need to be carefully optimized. Furthermore, with the new Thrust library v1.8, which
will support CUDA streams, we will be able to increase the GPU utilization. This will further
reduce the overall simulation time. Another interesting direction for future work is to provide the
solver with the support for adaptive grids for handling even larger simulation domains.

Acknowledgments

This work was supported by grants from the Austrian Science Fund (FWF) project number W1219-
N22 (Vienna Doctoral Programme on Water Resource Systems) and from the Vienna Science and
Technology Fund (WWTF) project number ICT12-009 (Scenario Pool), and from the European
Research Council (ERC) Advanced Grant ”FloodChange”, project number 291152. We thank the
flood protection centre of Steb Cologne, AöR.

55

i
i

“master” — 2017/5/23 — 11:16 — page 56 — #78 i
i

i
i

i
i

56

i
i

“master” — 2017/5/23 — 11:16 — page 57 — #79 i
i

i
i

i
i

Chapter IV

Comparison and Validation of Shallow Water

SchemesonAnalytic, Laboratory andReal-World

Cases

Zsolt Horváth, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Artem Konev, Jürgen

Komma, Günter Blöschl, Sebastian Noelle, Jürgen Waser

This chapter is based on a paper which is submitted to the

International Journal for Numerical Methods in Fluids.

57

i
i

“master” — 2017/5/23 — 11:16 — page 58 — #80 i
i

i
i

i
i

58

i
i

“master” — 2017/5/23 — 11:16 — page 59 — #81 i
i

i
i

i
i

1. Introduction

Abstract

Two-dimensional shallow water schemes on Cartesian grids are amendable for graphics processing units

and thus a convenient choice for fast flood simulations. A comparison of recent schemes and an exhaustive

validation on important use cases is essential for developers and practitioners working with flood simulation

tools. In this paper, we discuss three state-of-the-art shallow water schemes, one by Kurganov and Petrova

(KP), its successor by Horváth et al. (HWP), and our two-dimensional extension of the scheme by Chen and

Noelle (CN). We analyse the advantages and disadvantages of each scheme on an extensive list of scenarios

including several analytical and laboratory cases as well as a representative set of three historical floods.

To enable the real-world studies, we address the implementation of the required boundary conditions (BCs),

such as wall BCs, discharge BCs and water level BCs. We observe that the KP and HWP schemes are more

accurate than the CN scheme in low-resolution real-world cases. However, at higher resolution and at labo-

ratory cases with curved walls they suffer from unphysical oscillations. Overall, good agreement is observed

for all case studies rendering these shallow water schemes suitable for flood management applications.

1 Introduction

There is a high demand for appropriate simulation tools that are capable of providing accurate and
fast predictions for flood management. In most flood simulation tools, such as HEC-RAS [109],
TELEMAC [110] and Visdom [47, 111], the shallow water equationss (SWEs) are the underlying
model equations. They provide plausible and reliable results of water levels for events, such as
river floods, dam breaks, levee breaches [14, 39, 112, 107, 86, 62]. The SWEs are based on the
assumption that the horizontal length scale is large compared to the vertical length scale and they
can be derived by depth-averaging the Navier-Stokes and the continuity equations [11].

A common numerical method for solving hyperbolic partial differential equations (PDEs), such
as the homogeneous SWEs, is the finite volume method (FVM). A computational grid has to be
chosen as a basis for the spatial discretization of the SWEs. Unstructured triangular meshes are
able to incorporate complex geometries, however they require time-consuming mesh generation.
In contrast, rectangular grids lack this pre-processing step at the expense of poor resolution of
topographic features not aligned with the grid. However, one can improve cartesian grids by
incroporating additional techniques such as cut-cells [25, 113]. Still, the striking advantage of
cartesian grids is their suitability for straightforward parallelization on GPUs due to their simplic-
ity [39, 114, 115]. The advent of GPU computing has reduced computation times by a factor of up
to 100 compared to conventional models [116, 114, 115]. This speed-up in computation time does
not only allow to increase the number of cells, it also decreases model uncertainties, as ensemble
simulation becomes a viable option. Fast shallow water schemes can be proficiently applied to
interactively study the effects of protection measures to prevent flood damages [46].

Three state-of-the-art shallow water schemes, the scheme of Kurganov and Petrova (KP) [18],
the scheme of Horváth et al. (HWP) [1], and the scheme of Chen and Noelle (CN) [117] are com-
pared in this paper. The HWP scheme is a successor of the KP scheme, improving it at wet/dry
fronts. The CN scheme is based on the hydrostatic reconstruction (HR) method introduced in [14].
An extension of the CN scheme to two dimensions is presented here. The advantages and disad-
vantages of the schemes are shown by simulating a comprehensive list of scenarios. We validate
two analytic cases, a parabolic basin and a parabolic bump, and three laboratory cases, a U-shaped
flume, a sine-generated flume, and a triangular hump. The first two laboratory cases mimic me-

59

i
i

“master” — 2017/5/23 — 11:16 — page 60 — #82 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

andering rivers. The real-world validation cases used here have different terrain features, ranging
from relatively flat lowlands to river valleys with highly varying bottom topography. We include
the following real-world case studies: the Malpasset dam break in France from 1959, the 2011
Danube river flooding in the Lobau national park, and the 2013 Danube river flooding in the
Wachau valley, both in Austria.

This paper goes beyond the existing literature by the following key points:

• Extension of the recent CN shallow-water scheme to two dimensions.

• Comparison of the KP, HWP and CN scheme regarding quality of simulation results and
performance on real-world scenarios.

• Validation of the simulator on analytical and real-world (large-scale) cases including differ-
ent boundary conditions.

• Practical implementation of flux boundaries in the case of walls, free outlets, and prescribed
hydrographs, which do not need ghost cells in the numerical boundary treatment.

2 Related Work

Modern flood management tools require sufficiently accurate results while still being performant.
We focus on schemes that combine accuracy, stability and efficiency at the same time. In order
to satisfy these needs, the scheme should be able to handle dry and near dry states, and solve
problems characterized by strong discontinuities, e. g., dam breaks. To simulate real-world floods
over time periods of days, it is important for the solution to remain stable, e. g. the scheme should
not produce spurious oscillations of the velocities. The scheme should be positivity-preserving,
i. e., it should guarantee the non-negativity of the water depth. It should also be well-balanced,
i. e., it should capture equilibria [16, 118, 119, 100, 61, 62, 63]. One simple steady state is the lake-
at-rest equilibrium, which is a combination of still water and wet/dry boundaries. It is satisfied
by most of the recently developed schemes [14, 120, 1, 18]. There exist also schemes that are even
capable of preserving subsonic steady states [121] or achieving exact well-balancedness [122].

The basis for the KP and HWP schemes is a second-order scheme developed by Kurganov and
Levy [17] on a regular grid. The scheme assumes a continuous bathymetry and uses a different
reconstruction of the water surface in near dry areas than in the wet zones. The resulting scheme
is not well-balanced and violates mass conservation. Furthermore, spurious waves may emerge in
the shoal zones affecting the Courant-Friedrichs-Lewy (CFL) number [65] and finally restricting
the time steps toward very small values. Kurganov and Petrova [18] improve the previous work
by supporting a discontinuous bathymetry. They describe a reconstruction adjustment for the
partially flooded cells, where values of the water depth become negative at the integration points.
If the reconstructed water slope creates negative values at the integration points, they adjust
the steepness of the slope so that the negative values become zero. Their correction solves the
positivity problem by raising and lowering the water level at the left and right side of the cell
according to the bathymetry function. This guarantees that all water heights are non-negative.
However, at partially flooded cells, this can lead to large errors for small water heights, and
the flow velocity will grow smoothly in these formerly dry areas. Another issue related to this
modification is that the water climbs up on the shores at the dry/wet boundaries. Moreover, if a
cell gets wet, it will almost never get completely dry again.

Bollermann [16] extends the Kurganov and Petrova [18] scheme and achieves well-balanced
states in the partially flooded cells by constructing an alternative correction procedure, which is
similar to the reconstruction used by Tai [70] to track fronts for granular avalanches. However,
this modification is only introduced in one dimension and can lead to infinitely small time steps.

60

i
i

“master” — 2017/5/23 — 11:16 — page 61 — #83 i
i

i
i

i
i

3. Numerical Schemes

To overcome this time step limitation, Bollermann introduces a constraint on the time step, the
so-called draining time technique [67]. This scheme is extended to two dimensions by Horváth et
al. [1] and proved to be superior regarding performance than the original KP scheme [18]. This is
achieved by removing the aforementioned defects at partially flooded cells.

The CN scheme [117], is based on the HR scheme of Audusse [14]. It uses a piecewise-constant
bathymetry which leads to the known difficulty of discontinuous measures. The original HR
scheme does not properly account for the acceleration of shallow water downhill flow [123].
Morales et al. [124] improve the existing HR scheme in the case of partially wet interfaces. In
[117] a way to investigate and derive the two existing HR schemes by means of subcell reconstruc-
tions is presented. There exists also a second-order extension to the original HR scheme which is
presented by Audusse and Bristeau [15].

3 Numerical Schemes

In this section we summarize the underlying numerical theory of the shallow water schemes that
we compare and validate. The hyperbolic conservation law described by the two-dimensional
shallow water equations of the Saint–Venant (SV) system can be written as:

 h

hu

hv


t

+

 hu

hu2 + 1
2 gh2

huv


x

+

 hv

huv

hv2 + 1
2 gh2


y

=

 0

−ghBx

−ghBy

+

 0

−gu
√

u2 + v2/C2

−gv
√

u2 + v2/C2

 , (IV.1)

where h represents the water height, hu is the discharge along the x-axis, hv is the discharge
along the y-axis (Figure IV.1a), u and v are the average flow velocities, g is the gravitational
constant, B is the bathymetry (assumed to be time-independent), and C is the Chézy friction
coefficient. Subscripts represent partial derivatives, i.e., Ut stands for ∂U

∂t .

hu h

B

U j k,

B
j k−
1

2
,

B
j k+
1

2
,

U
j k+

−
1

2
,

U
j k+

+
1

2
,

F
j k+
1

2
,

F
j k−
1

2
,

a b c d

Figure IV.1: Schematic view of a shallow water flow, definition of the variables, and flux computation. a) Continuous

variables. b) The conserved variables U are discretized as cell averages Ūj,k . The bathymetry function B is reconstructed

at cell interface midpoints. c) Left- and right-sided point values are computed at cell interface midpoints. The red circle

indicates that a negative water height is computed. Since water heights cannot be negative, they are corrected before the

flux computation. d) Fluxes are computed using the HLL flux function at the cell interfaces.

In vector form the system can be written as:

Ut + F (U, B)x + G (U, B)y = SB (U, B) + S f (U) , (IV.2)

where U = [h, hu, hv] is the vector of conserved variables, F and G are flux functions. SB stands
for the bed slope term and models the fluid’s acceleration due to the gravitational forces. S f rep-
resents the bed friction source terms. To provide realistic water flow, a friction term is introduced
in the laboratory and real-world scenarios.

61

i
i

“master” — 2017/5/23 — 11:16 — page 62 — #84 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

Following [117], there are two important steady-state equilibria. First, the still-water equilib-
rium, i. e.,

u, v = 0 and wx, wy = 0, (IV.3)

where w denotes the water level w = h + B. Second, the lake at rest equilibrium, which includes
dry shores, i. e.,

hu, hv = 0 and h ∂xw, h ∂yw = 0. (IV.4)

If a numerical scheme is capable of balancing source and numerical flux terms for stationary
solutions it is called well-balanced. All of the three presented schemes are well-balanced in the
one-dimensional case, in the two-dimensional case only the HWP and the CN scheme are well-
balanced.

3.1 Discretization

We choose a uniform grid xα := α∆x and yβ := β∆y, where ∆x and ∆y are the cell sizes. We denote
by Cj,k the cell Cj,k := [xj− 1

2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
]. The SWE are discretized by the method of lines.

For clarity of presentation we omit additional source terms besides the topography for now. The
FVM is chosen for the spatial discretization on top of the uniform grid. An FVM discretizes the
conserved variables Ū as cell averages, e. g., Ūj,k for the finite volume Cj,k. This yields a system of
ordinary differential equations for the cell averages

d
dt

Ūj,k(t) = −
Fj+ 1

2 ,k(t)− Fj− 1
2 ,k(t)

∆x
−

Gj,k+ 1
2
(t)−Gj,k− 1

2
(t)

∆y
+ Sj,k(t), (IV.5)

where Fj∓ 1
2 ,k and Gj,k∓ 1

2
are the discretized fluxes and Sj,k is an appropriate source term dis-

cretization. The interface fluxes are computed by the Harten-Lax-van Leer (HLL) flux [76]. The
following steps are executed in an FVM:

Step 1: Initialization/Update of the cell averages Ūj,k for all interior cells by an ODE solver,
see Figure IV.1b

Step 2: Reconstruction of the interface values, see Figure IV.1c

• For partially wet cells a special reconstruction might be used

Step 3: Computation of the interface fluxes with the HLL flux, see Figure IV.1d

• At boundary interfaces the fluxes are computed according to the boundary type

Step 4: Computation of the source terms

Not all of the sub-steps are required in each scheme. Step 1 is the same for all schemes and is
either given by the initial condition or by the common time integration, as explained in detail
after the spatial discretizations in Section 3.5. Steps 2-4 will guide us through the upcoming
sections, as they are organized in sub-sections describing bathymetry reconstruction, point value
reconstruction, special point value reconstruction in the case of wet/dry fronts, numerical fluxes
and source terms.

3.2 The KP and HWP Scheme

Bathymetry Reconstruction

For the second-order schemes KP and HWP the original bathymetry B̂ is replaced with a piecewise
bilinear approximation BKP(x, y), which is the same for the KP and HWP scheme, i. e. BKP(x, y) =

62

i
i

“master” — 2017/5/23 — 11:16 — page 63 — #85 i
i

i
i

i
i

3. Numerical Schemes

BHWP(x, y). The original bathymetry values B̂(x, y) are sampled at the cell vertices j ± 1
2 , k ± 1

2
to set up the continuous, piecewise bilinear approximation BKP(x, y). Thus, the vertex values
BKP

j± 1
2 ,k± 1

2
= B̂j± 1

2 ,k± 1
2

of the cell Cj,k are then used to derive the reconstructed bathymetry values

at the cell center:
B̄KP

j,k =
1
4

(
BKP

j+ 1
2 ,k + BKP

j− 1
2 ,k + BKP

j,k+ 1
2
+ BKP

j,k− 1
2

)
, (IV.6)

which is also equal to the average value of BKP(x, y) in the cell Cj,k. The bathymetry BKP(x, y) of
each cell Cj,k is given by a bilinear form. For details see [18].

Point Value Reconstruction

For second-order accuracy, left- and right-sided point values have to be computed at the cell
interface midpoints through slopes taking into account the neighbouring values. The left- and
right-sided point values are given by U±

j∓ 1
2 ,k

= Ūj,k ∓ ∆x
2 (Ux)j,k and U±

j,k∓ 1
2
= Ūj,k ∓

∆y
2 (Uy)j,k. To

suppress unphysical oscillations, a minmod-limiter is applied to the slopes [76]

(Ux)j,k = minmod

(
θ

Ūj,k − Ūj−1,k

∆x
,

Ūj+1,k − Ūj−1,k

2∆x
, θ

Ūj+1,k − Ūj,k

∆x

)
,

(
Uy
)

j,k = minmod

(
θ

Ūj,k − Ūj,k−1

∆y
,

Ūj,k+1 − Ūj,k−1

2∆y
, θ

Ūj,k+1 − Ūj,k

∆y

)
,

(IV.7)

where θ is a predefined parameter, set to 1.3 in our simulations.

Special Reconstruction at Wet/Dry Fronts

Special reconstruction methods are introduced to keep the scheme positivity-preserving and well-
balanced in the case of wet/dry fronts in the KP and HWP scheme. The KP scheme violates
the well-balancedness for partially wet cells. In the KP scheme, the velocities of “nearly dry”
cells are reconstructed in a special way to avoid high velocities. Specifically, the velocities are
desingularized according to

u =

√
2h(hu)√

h4 + max(h4, ε)
, v =

√
2h(hv)√

h4 + max(h4, ε)
, (IV.8)

where ε is a small apriori chosen positive number. This reconstruction has to be used cautiously
and consistently in the code since the correction factor is below one for h4 < ε. Thus, discharges
computed by a reconstruction of the desingularized velocities u = uε(h, hu) and subsequent mul-
tiplication by h do not recover the original discharges, that is, h · u 6= hu. In our simulations we
do not use the specified desingularization but a cut-off for the velocities in nearly dry regions.

Horváth et al. [1] propose a correction for partially wet cells to obtain a well-balanced recon-
struction. In the HWP scheme, the slope is modified to avoid negative water heights at the almost
dry cells, and a separation point is generated. The separation point is deduced from the inter-
section of intermediate horizontal water lines and the bathymetry. Another improvement of the
HWP scheme is the positivity preserving time integration at partially flooded cells. This so-called
draining time step technique is presented in [16] for the one-dimensional case and is extended
to two dimensions in [1]. By considering the outgoing mass flux it is possible to determine a
time step that keeps the cell dry after applying the time integration for this time step. To ensure
well-balancedness, a splitting of the fluxes into gravitational and advective parts is necessary and
a specialized time integration in the nearly dry cells is needed. Effectively, a slope hit by a wave
can dry out if the source terms force the water back. In previous schemes, a small amount of
water has to remain to avoid high velocities, which in turn may lead to slow simulations.

63

i
i

“master” — 2017/5/23 — 11:16 — page 64 — #86 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

Numerical Fluxes

The discretized fluxes are obtained through an approximate Riemann solver, namely the HLL flux.
The central-upwind flux function is a direct generalization of the HLL flux [1]. The interface point
values are then used as Riemann states for the numerical fluxes

Fj+ 1
2 ,k =

a+
j+ 1

2 ,k
F
(

U−
j+ 1

2 ,k
, Bj+ 1

2 ,k

)
− a−

j+ 1
2 ,k

F
(

U+
j+ 1

2 ,k
, Bj+ 1

2 ,k

)
a+

j+ 1
2 ,k
− a−

j+ 1
2 ,k

(IV.9)

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
U+

j+ 1
2 ,k
−U−

j+ 1
2 ,k

]
, (IV.10)

Gj,k+ 1
2
=

b+
j,k+ 1

2
G
(

U−
j,k+ 1

2
, Bj,k+ 1

2

)
− b−

j,k+ 1
2
G
(

U+
j,k+ 1

2
, Bj,k+ 1

2

)
b+

j,k+ 1
2
− b−

j,k+ 1
2

(IV.11)

+
b+

j,k+ 1
2
b−

j,k+ 1
2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[
U+

j,k+ 1
2
−U−

j,k+ 1
2

]
, (IV.12)

at the interface j+ 1
2 , k. The speed values a and b are functions of the eigenvalues λ of the Jacobian,

i. e.

a+
j+ 1

2 ,k
= max

{
λ−

j+ 1
2 ,k

, λ+
j+ 1

2 ,k
, 0
}

= max
{

u−
j+ 1

2 ,k
+
√

gh−
j+ 1

2 ,k
, u+

j+ 1
2 ,k

+
√

gh+
j+ 1

2 ,k
, 0
}

.

a−
j+ 1

2 ,k
= min

{
u−

j+ 1
2 ,k
−
√

gh−
j+ 1

2 ,k
, u+

j+ 1
2 ,k
−
√

gh+
j+ 1

2 ,k
, 0
}

and analogously for b±
j+ 1

2 ,k
.

Source Terms

For the KP and the HWP schemes the discretized source terms are [17, 18]

SKP,(1)
j,k := 0, (IV.13)

SKP,(2)
j,k := −gh̄j,k

BKP
j+ 1

2 ,k
− BKP

j− 1
2 ,k

∆x
, (IV.14)

SKP,(3)
j,k := −gh̄j,k

BKP
j,k+ 1

2
− BKP

j,k− 1
2

∆y
, (IV.15)

where we use the approximated bathymetry values at cell interface midpoints.

3.3 The CN Scheme

Bathymetry Reconstruction

In the CN scheme [117], the bathymetry is given at the cell center BCN
j,k = B̂(xj, yk). The interface

bathymetry values are reconstructed from the bathymetry and the water levels of the adjacent

64

i
i

“master” — 2017/5/23 — 11:16 — page 65 — #87 i
i

i
i

i
i

3. Numerical Schemes

cells as
BCN

j±1/2,k = min(max(B̄CN
j±1,k, B̄CN

j,k), min(w̄j±1,k, w̄j,k)). (IV.16)

This reconstruction is an extension of the original hydrostatic reconstruction, which featured
only an upwind evaluation of the bottom [14]. Here we omit the time dependence of the water
level w, as we do in the following equations. Only the first maximum in (IV.16) can be precom-
puted for the whole simulation, the bathymetry interface values have to be reconstructed at each
time step. The reconstructed bathymetry values are the same at the left and the right side of an
interface.

Point Value Reconstruction

To achieve well-balancedness it is necessary to introduce a special reconstruction for the Riemann
states which are fed into the approximate Riemann solver. The CN scheme defines the interface
heights as

hCN
j+ 1

2−,k
= min(w̄j,k − BCN

j+ 1
2 ,k

, h̄j,k),

hCN
j+ 1

2+,k
= min(w̄j+1,k − BCN

j+ 1
2 ,k

, h̄j+1,k),
(IV.17)

in x-direction and analogously in y-direction.

Special Reconstruction at Wet/Dry Fronts

No extra treatment for partially wet cells is needed for the CN scheme, since it is already included
in the definition of the interface depths and the source term, see (IV.17) and (IV.19)-(IV.20).

Numerical Fluxes

The same flux as for the KP and HWP scheme is used, namely the HLL flux, see (IV.9).

Source Terms

The source terms in the CN scheme are given as

SCN,(1)
j,k := 0, (IV.18)

SCN,(2)
j,k := SCN,(2)

j− 1
2+,k

+ SCN,(2)
j+ 1

2−,k

:= −g
hj,k + hCN

j− 1
2+,k

2

BCN
j,k − BCN

j− 1
2 ,k

∆x
− g

hj,k + hCN
j+ 1

2−,k

2

BCN
j+ 1

2 ,k
− BCN

j,k

∆x
, (IV.19)

SCN,(3)
j,k := SCN,(3)

j,k− 1
2+

+ SCN,(3)
j,k+ 1

2−

:= −g
hj,k + hCN

j,k− 1
2+

2

BCN
j,k − BCN

j,k− 1
2

∆y
− g

hj,k + hCN
j,k+ 1

2−
2

BCN
j,k+ 1

2
− BCN

j,k

∆y
. (IV.20)

65

i
i

“master” — 2017/5/23 — 11:16 — page 66 — #88 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

3.4 Di�erences Between the Three Schemes

We provide a quick summary about the differences regarding reconstruction, source terms, drying
and order. We remark once more that there are essential differences in the three schemes regarding
the reconstruction of the bathymetry and the interface values, and the source term treatment. The
HWP and the KP scheme differ in the vicinity of nearly dry cells, as highlighted in the special
reconstruction paragraph in Section 3.2. Equations (IV.16) to (IV.20) are the core of the differences
between the CN and the KP and HWP schemes, besides the second-order accuracy.

The HWP scheme is capable of drying cells by limiting the time step of nearly dry cells. In the
two other schemes, a thin water layer remains. The CN scheme has order 1, while the other two
schemes have order 2. A second-order extension of the CN scheme would render the simulation
results more comparable, but this is beyond the scope of this paper.

3.5 Time Integration

For all three schemes, an explicit Euler time integrator is used

Ūn+1
j,k = Ūn

j,k − ∆t
Fn

j+ 1
2 ,k
− Fn

j− 1
2 ,k

∆x
− ∆t

Gn
j,k+ 1

2
−Gn

j,k− 1
2

∆y
+ ∆t Sn

j,k,

where quantities denoted by a superscript n depend on the last state Ūn. The CFL condition
restricts the time step ∆t = tn+1 − tn and is given by

∆t ≤ CFL ·min
{

∆x
a

,
∆y
b

}
, (IV.21)

where a and b represent the wave speeds at the interfaces parallel to the x- and y-axis. To ensure
stability of a second-order (first-order) finite volume (FV) scheme, the CFL constant is not allowed
to be greater than 0.25 (0.5) in the two-dimensional case.

3.6 Additional Source Terms

The friction term is included via an additional source term

S f (U) = − g
C2

 0
u
√

u2 + v2

v
√

u2 + v2

 . (IV.22)

For the Chézy friction C, we use the relationship C = 1
n h1/6, where n is Manning’s roughness

coefficient. It is evaluated in a semi-implicit manner described in [39]

S f (Ūn+1
j,k) ≈ Ūn+1

j,k S̃ f (Ūn
j,k), S̃ f (U) = − g

C2

 0
1/h
√

u2 + v2

1/h
√

u2 + v2

 , (IV.23)

when integrating from time tn to tn+1.

3.7 Boundary Treatment

For simulating floods, hydrograph data have to be prescribed at the inlets and outlets. Typically,
hydrograph data consists of a time series of water levels and discharges, which are then prescribed

66

i
i

“master” — 2017/5/23 — 11:16 — page 67 — #89 i
i

i
i

i
i

3. Numerical Schemes

as discharge boundary conditions (BCs) and water level BCs. In urban regions, buildings and
other structures can completely block water flow. Wall BCs are used to incorporate these fluid-
solid interfaces. At the boundary of the computational domain, where the water flow has to be
truncated artificially, free outflow BCs are prescribed. Thus, there are four important types of BCs
needed in a simulation environment:

• Discharge

• Water level

• Walls

• Free outflow

Usually, hydrograph data are only available on one-dimensional lines, so there is a scalar value
for the total discharge Q and/or a water level w for a cross-section. Thus, these lines have to be
mapped onto the nearest connected path of grid interfaces. For discharge hydrographs some
additional pre-processing is needed to compute the discharges at the rasterized interfaces of a
specified cross-sectional hydrograph line. In this case, we assume a velocity vector ū = (ū, v̄)T ,
that is normal to the cross-section and constant throughout this line. Then the normal interface
discharges qI are given by qI = Q pI where pI is the percentage of the total discharge per interface.
The percentage pI depends on the cross-sectional area covered by water at this interface. In the
simple case of a hydrograph line parallel to the y-axis

pI = AI/A := hI∆y/A, (IV.24)

where A is the total cross-sectional area of water flow, since

Q = ∑
I

ūAI = ū ∑
I

hI∆y =: ūA.

If a hydrograph contains both discharge and water level, the water level is used to improve the
percentages in the discharge hydrograph. The derived interface discharge qI is then prescribed
locally at each hydrograph interface.

In order to incorporate interface boundary data into the finite volume framework, we specify
the flux at boundary interfaces, as required by (IV.5). Typically, the flux across an interface is
computed by using the reconstructed point values from the left and right sides of the cell inter-
face. Usually, this is done by extending the interior solution to derive conserved variables for the
exterior cells of the domain according to the type of the BC.

This approach is termed the ghost cell method, since these cells only contribute via their
reconstructed point values to the boundary flux, but are otherwise excluded from the regular
solution update. If the ghost cell values are stored as conserved variables, an implementational
issue arises if the cell is surrounded by regular cells. In this case, one has to store four different
ghost states per cell accounting for each interface, therefore one is obliged to store these values in
a special way. In our implementation, boundary data, such as affected interfaces, prescribed BC
type and given values, is stored in a special datastructure.

Most BCs have a physical meaning regarding the boundary fluxes, thus in the FVM it seems
natural to apply the BCs directly on the fluxes. Ghidaglia and Pascal [125] develop flux BCs to
directly compute the normal flux at boundaries. In our simulations, the more flexible flux-based
approach is employed. Summarizing, flux BCs are weakly prescribed BCs acting on the fluxes of
boundary interfaces.

Care has to be taken to ensure well-posedness for the SWE boundary value problem. This can
be understood through a linearized version of the SWE on a flat bottom, see [126, 125]. We are
only allowed to set as many physical boundary conditions as there are incoming waves. A wave is

67

i
i

“master” — 2017/5/23 — 11:16 — page 68 — #90 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

called incoming if the associated eigenvalue of the Jacobian is smaller than zero. If the flow is in a
subcritical state, two boundary conditions have to be applied at the upstream boundary and one
at the downstream boundary. In this case, we prescribe the discharge in normal and tangential
direction at the upstream and the water level at the downstream boundary.

For inflow boundaries with prescribed discharges we follow the approach of Pankratz et
al. [69]. For brevity we only present derivations for an eastern interface with outer unit normal
n = (1, 0)T , thus Φ := F(UI)nx + G(UI)ny = F(UI). Fluxes for other interfaces can be derived
analogously. To guarantee that the mass influx equals the prescribed discharge, the inflow bound-
ary flux should satisfy F(1) = qg. The approach is based on the solution of a linearized Riemann
problem with prescribed interface discharges (hu)I = qg and (hv)I = (hv). Since the tangential
discharge is extended continuously and not set to zero, this type of BC is called free-slip. The
linearization is chosen around the interior state. In this case, the boundary flux Φ is given by

Φ = F(UI) =

 qg
1
2 gh2

I +
q2

g
hI

qgvI

 ,

where the interface state UI = (hI , huI , hvI) is given by

hI = h +
qg − (hu)
u−

√
gh

,

(hu)I = qg,

(hv)I = (hv).

We use the procedure of Ghidaglia and Pascal [125] to derive the boundary fluxes for specified
water levels and walls and we explicitly state the fluxes applied at the boundary. The essential
idea is to find a boundary flux Φ := F(UI) whose interface state UI satisfies certain BCs based on
numerical and physical grounds.

At a wall boundary, there is no discharge through the boundary interface, so the normal
velocity vanishes at the interface, huI = 0. Thus, the boundary flux is given by

Φ =

 0
chu + g

2 h2

0

 .

This way mass conservation is ensured.

In a similar way, a boundary flux is deduced for a prescribed water depth hI = hg. In this case
the boundary flux is given by [126]

Φ =

 hguI
hgu2

I +
g
2 h2

g
hguIv

 , (IV.25)

where

hguI = hu +
g
2c

(h2 − h2
g).

Here, a free-slip condition is imposed on the tangential velocity vI = v coming either from a
physical condition if u > 0 or from a numerical condition if u ≤ 0.

The above BCs are derived for subcritical inflow. If an inflow is supercritical, all waves are
incoming and we set Φ = F(UI) = F(Ug), where Ug is a given state vector. If an outflow is
supercritical, we set Φ = F(UI) = F(U), where U are the conserved variables from the interior
cell.

68

i
i

“master” — 2017/5/23 — 11:16 — page 69 — #91 i
i

i
i

i
i

4. Validation

At the outflows where usually no data are available, so we use an extension by continuity. The
boundary flux is Φ = F(UI) = F(U), where UI is the zero-order extension of the interior state U.
This yields the same BC as if the outflow was supercritical. These BCs are also called open BCs,
since these boundaries do not generate any incoming waves.

4 Validation

In this section, we present multiple analytical, laboratory and real-world validation cases. For all
three numerical schemes, the simulated results are compared against analytic or measured data.
In the following plots, we abbreviate the analytical solution as AN and measured data as ME.

4.1 Analytical Test Cases

First, we discuss the two analytical cases for which no friction is assumed.

Parabolic Basin

The parabolic basin is a classical test case for validation. There is an analytical solution of Thacker
[83]. It describes time-dependent oscillations of a planar water surface in a parabolic basin.

It is widely used for comparing different numerical schemes [112, 85, 86, 87]. Recently, Samp-
son et al. [87] extended the solution of Thacker to support bed friction. However, their solution
is limited to one dimension. In this two-dimensional case, we use the same setup as Holdahl et
al. [88], where the bathymetry is given by:

B(x, y) = D0

(
x2 + y2

L2 − 1
)

, (IV.26)

where L = 2500 m, D0 = 1 m. The water surface elevation and the velocities are given by:

w(x, y) =
2AD0

L2 (x cos ωt + y sin ωt + LB0) , (IV.27)

u(x, y) = −Aω sin ωt, (IV.28)

v(x, y) = Aω cos ωt, (IV.29)

ω =

√
2D0

L2 , (IV.30)

where we choose A = L/2, B0 = −A/2L, and the gravitational constant g = 1 m/s2 for our
simulations. Then we have:

w(x, y) =
D0

L
(x cos ωt + y sin ωt + LB0) (IV.31)

and ω2 = 3.2× 10−6 s−2.

We show simulation results for two resolutions and two snapshots in time for a one-dimensional
slice in x-dimension in the middle of the computational domain at times t = 2788 s (Figure IV.2a,
IV.3a) and t = 5566 s (Figure IV.2b, IV.3b). We plot water levels w̄j,k and velocity magnitudes |ū|
at cell centers, which are the average values.

Both the KP and the HWP schemes capture well the water levels of the analytical solution.
However, along the wet/dry boundaries velocity errors accumulate. This behaviour can be found

69

i
i

“master” — 2017/5/23 — 11:16 — page 70 — #92 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

Ve
lo

ci
ty

 [m
/s

]

Position [m]
AN CN HWP KP

0.7

0.75

0.8

0.85

0.9

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

W
at

er
 le

ve
l [

m
]

Position [m]
AN CN HWP KP Basin

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

W
at

er
 le

ve
l [

m
]

Position [m]
AN CN HWP KP Basin

0.5
0.55
0.6
0.65
0.7
0.75

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

Ve
lo

ci
ty

 [m
/s

]

Position [m]
AN CN HWP KP

0.6

0.65

0.7

0.75

0.8

a

b

t = 2788 s

t = 5556 s

Figure IV.2: Water level and velocity profiles of the parabolic basin with a high resolution of 80 m at a) 2788 s and b) 5556

s. a) All three schemes accumulate errors along the wet/dry boundary. b) The CN scheme performs rather poorly at this

later stage due to the diffusive nature of first-order schemes, as can be seen by the overall loss of kinetic energy in the

velocity.

in many schemes [88, 18], and is difficult to avoid. The superiority of the second-order schemes KP
and HWP at low resolutions (80 m) can be clearly seen in Figure IV.2. They capture both the water
levels and the velocities accurately away from the wet/dry boundary. The CN scheme performs
rather poorly for the low resolution at the later stage (Figure IV.2b), due to the diffusive nature of
first-order schemes. However, at a finer resolution (20 m), the CN scheme improves significantly
(Figure IV.3. At small cell sizes, the HWP scheme produces flickering water levels and velocities
as can be seen in Figure IV.3b).

Parabolic Bump

This section is devoted to multiple steady state test cases with a parabolic bump to test different
flow regimes and transitions between them in a quasi one-dimensional way. The scenario is set
up analogously to Audusse et al. [15, 127] and is originally from Goutal et al. [128]. The analytical
solutions for the steady states can be derived using the Bernoulli relation, see [129, 127]. The
bathymetry is given by:

B(x, y) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,
0 else,

for a domain of length L = 20.2 m and a width of 4 metres (Figure IV.4). Since in this setup all cells
are always flooded, the HWP and the CN schemes effectively fall back to their predecessors, the
KP and the HR schemes of Audusse, respectively. The cell size is set to 0.2 m resulting in 101 cells

70

i
i

“master” — 2017/5/23 — 11:16 — page 71 — #93 i
i

i
i

i
i

4. Validation

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

Ve
lo

ci
ty

 [m
/s

]

Position [m]
AN CN HWP KP

0.7

0.75

0.8

0.85

0.9

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

W
at

er
 le

ve
l [

m
]

Position [m]
AN CN HWP KP Basin

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

W
at

er
 le

ve
l [

m
]

Position [m]
AN CN HWP KP Basin

0.5
0.55
0.6
0.65
0.7
0.75

0

0.5

1

1.5

2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

Ve
lo

ci
ty

 [m
/s

]

Position [m]
AN CN HWP KP

0.6

0.65

0.7

0.75

0.8

a

b

t = 2788 s

t = 5556 s

Figure IV.3: Water level and velocity profiles of the parabolic basin with a high resolution of 20 m at a) 2788 s and b) 5556

s. b) The zoom shows that the HWP scheme produces flickering water levels and velocities. The CN scheme improves

notably for the smaller cell size.

in x-direction. We compare three flow regimes, subcritical flow, transcritical flow without shock,
and transcritical flow with shock.

20.2m

In�ow Out�ow0.
2m

z

x

Figure IV.4: A schematic view of the parabolic bump shows its geometrical parameters.

In the case of subcritical flow, one boundary condition has to be specified at the inflow x =
−L/2 and one at the outflow x = L/2. The water depth is given by:

h3 +

(
B− q

2ghE
− hE

)
h2 +

q2

2g
= 0, ∀(x, y) ∈ [−L/2, L/2]× [0, 2],

where hE = h(L/2, 0) = w0 = 2 m, the water depth at the east outflow boundary. The discharge
in this case is specified as qW = 4.42 m2/s at the inflow boundary. Figure IV.5a shows the results
for this case.

In the case of a transcritical flow without shock, there is a transition from a subcritical flow
regime to a supercritical flow regime. The water depth has to fulfill:

h3 +

(
B− q

2ghc
− hc − BM

)
h2 +

q2

2g
= 0, ∀(x, y) ∈ [−L/2, L/2]× [0, 2],

where BM = maxx∈[0,L] B is the maximum bathymetry elevation and hc is the corresponding water
depth. The discharge is specified as qW = 1.53 m2/s. As long as the flow is subcritical we set wE

71

i
i

“master” — 2017/5/23 — 11:16 — page 72 — #94 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

2.3

2.4

2.5

2.6

2.7

2.8

0 2 4 6 8 10 12 14 16 18 20

Ve
lo

ci
ty

 [m
/s

]

Position [m]

AN
CN
KP/HWP

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

2.04

0 2 4 6 8 10 12 14 16 18 20

W
at

er
 le

ve
l [

m
]

Position [m]

AN
CN
KP/HWP

1.99

2

2.01

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12 14 16 18 20

W
at

er
 le

ve
l [

m
]

Position [m]

AN
CN
KP/HWP 0.96

0.98
1

1.02
1.04

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

Ve
lo

ci
ty

 [m
/s

]

Position [m]

AN
CN
KP/HWP

3.5

3.6

3.7

3.8

3.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10 12 14 16 18 20

W
at

er
 le

ve
l [

m
]

Position [m]

AN
CN
KP/HWP
Bump

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Ve
lo

ci
ty

 [m
/s

]

Position [m]

AN
CN
KP/HWP

a

b

c

Subcritical �ow

Transcritical �ow without a shock

Transcritical �ow with a shock

Figure IV.5: Water level and velocity profiles of the parabolic bump. a) Subcritical flow case. b) Transcritical flow. c)

Transcritical flow with a jump case. All schemes can detect the correct jump location. The CN scheme overestimates the

water level at the discharge inflow. The CN scheme produces a small water level overshoot at the beginning of the bump.

to the initial water level w0 = h0 + B = 0.66 m. The simulation is initialized with a hydrostatic
equilibrium q0 = 0 m2/s. Figure IV.5b shows the results for this case.

In the case of a transcritical flow with shock, commonly termed hydraulic jump in hydrody-
namics, there is an abrupt rise in water levels, which occurs at the transition from a supercritical
flow regime to a subcritical flow regime. We have to divide the domain into two domains where
the solution is again regular. The water depths at the left and at the right of the jump are given by
h1 = h(xS−) and h2 = h(xS+). The jump location xS can then be determined with the help of the

72

i
i

“master” — 2017/5/23 — 11:16 — page 73 — #95 i
i

i
i

i
i

4. Validation

Rankine-Hugoniot condition [78]:

q2
(

1
h1
− 1

h2

)
+

g
2

(
h2

1 − h2
2

)
= 0.

The water depth is given by the two equations:

h3 +

(
B− q

2ghc
− hc − BM

)
h2 +

q2

2g
= 0, ∀x ∈ [0, xS],

h3 +

(
B− q

2ghE
− hE

)
h2 +

q2

2g
= 0, ∀x ∈ [xS, L],

where BM = maxx∈[0,L] B. These equations were solved numerically and plotted alongside the
solutions of the schemes in Figure IV.5c. Boundary and initial conditions are wE = hE = 0.33m at
the outflow, q = qW = 0.18 m2/s at the inflow and the initial state is q0 = 0 m2/s and w0 = 0.33m,
respectively. The schemes are able to detect the correct jump location and can resolve the regime
change. The water level at the inflow is slightly off in the case of the first-order CN scheme, as
already reported for the original HR scheme [15].

4.2 Laboratory Test Cases

In this section, we discuss three laboratory cases (U-shaped flume, sine-generated flume, dam
break over a triangular hump) and compare the simulation results against data measured in con-
trolled environments.

U-Shaped Flume

In order to test the model’s capability to simulate the flow in meandering channels, a verification
was conducted first for a U-shaped 180◦ channel. This test case is based on the laboratory exper-
iment of [130]. The layout of the physical model is shown in Figure IV.6. Experimental data are
taken from NCCHE [131], who in turn digitized the tables of de Vriend [130]. Measurements were
made at several cross sections (C3-C24) along the flume.

3.4m
1.7m

5.1m

6.
0m

C6

C12

C18

Out�ow In�ow

Figure IV.6: A schematic view of the U-shaped flume with its geometrical parameters and the selected cross sections C6,

C12, C18.

A discharge of 0.18 m3/s is prescribed at the inflow boundary and a constant water elevation
of 0.1875 m at the outflow. Wall boundary conditions are applied along the rasterized flume

73

i
i

“master” — 2017/5/23 — 11:16 — page 74 — #96 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

walls. Manning’s roughness is uniformly set to 0.0001 m1/3/s. The simulations are stopped and
visualized after 300 s, where the CN scheme reaches a steady state (Figure IV.7).

0.175
0.18

0.185
0.19

0.195
0.2

0.205
0.21

0.215
0.22

0.225

0.1 0.4 0.7 1 1.3 1.6

W
at

er
 le

ve
l [

m
]

Position [m]
ME CN HWP KP

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.1 0.4 0.7 1 1.3 1.6

Ve
lo

ci
ty

 [m
/s

]

Position [m]
ME CN HWP KP

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.1 0.4 0.7 1 1.3 1.6

W
at

er
 le

ve
l [

m
]

Position [m]
ME CN HWP KP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.4 0.7 1 1.3 1.6

Ve
lo

ci
ty

 [m
/s

]

Position [m]
ME CN HWP KP

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.1 0.4 0.7 1 1.3 1.6

W
at

er
 le

ve
l [

m
]

Position [m]
ME CN HWP KP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.4 0.7 1 1.3 1.6

Ve
lo

ci
ty

 [m
/s

]

Position [m]
ME CN HWP KP

a

b

c

Cross section C6

Cross section C12

Cross section C18

Figure IV.7: Water level and velocity profiles for the U-shaped flume at different cross sections. The x-axis corresponds to

the cross-sectional position from the inner bank to the outer bank. The second-order schemes KP and HWP are oscillating

and are not reaching a steady state, in contrast to the CN scheme.

In curved channels, the water surface elevation at the outer bank side is higher than the one
along the inner bank due to the centrifugal force. The second-order schemes KP and HWP do not
reach a steady state due to their oscillating nature. A comparison of computed and measured free
surface elevations and depth-averaged velocities for the selected cross sections C6, C12 and C18
are shown in Figure IV.7a, IV.7b and IV.7c, respectively. There are some sources of discrepancies
between the measured and the simulated data. First, we use a regular grid, where the cells are
not aligned to follow the curvature of the flume and its walls. Second, in curved channels, there
are distinctive characteristics that are completely three dimensional such as secondary currents,
which cannot be covered by a depth-averaged model.

74

i
i

“master” — 2017/5/23 — 11:16 — page 75 — #97 i
i

i
i

i
i

4. Validation

Sine-Generated Flume

Another idealized form of meandering channels are sine-generated flumes. This experiment was
conducted at the Laboratório Nacional de Engenharia Civil (LNEC), Lisbon. The data are taken
from [132]. For the 30◦ channel there is a conserved discharge of Q = 0.0021 m3/s. The discharge
is set as an inflow BC at x = 0.1 m and a constant water level of 0.3 m is maintained at the
outflow at x = 6.2 m. The flume is 40 cm wide, and the river line of one meander is 2.964 m long
(Figure IV.8). The simulation domain size is chosen to 6.4 m × 1.2 m with a uniform cell length of
0.0025 m. Manning’s roughness is uniformly set to 0.0044 m1/3/s. We compare the results after
100 s for the cross sections 51, 52, 53 in Figure IV.9.

In�ow Out�ow
51

52

53

6.4m

0.
4m

y

x

Figure IV.8: A schematic view of the sine-generated flume and selected cross sections: 51, 52, 53.

The discrepancies found for the U-shaped flume also hold in this case. Similarly, the HWP
and KP schemes do not converge to a steady state as there are unphysical oscillations. Setting
the minmod parameter to a lower value has a positive effect, however, even a minmod parameter
of 1 does not remove the oscillations completely. All schemes capture the higher velocities at
the inner banks, but the second-order schemes resolve the boundary layer more accurately (right
plots in Figure IV.9). The inner banks correspond to the origins in the plots in Figure IV.9. As in
the previous cases, the first-order scheme overestimates the water levels at the discharge inflow,
causing the water levels to decrease along the flume, see cross sections 51 and 53 in Figure IV.9a,
Figure IV.9c.

75

i
i

“master” — 2017/5/23 — 11:16 — page 76 — #98 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4
Ve

lo
ci

ty
 [m

/s
]

Position [m]
ME CN HWP KP

0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

0 0.1 0.2 0.3 0.4

W
at

er
 le

ve
l [

m
]

Position [m]
ME CN HWP KP

0.028
0.0285

0.029
0.0295

0.03
0.0305

0.031
0.0315

0.032
0.0325

0.033
0.0335

0 0.1 0.2 0.3 0.4

W
at

er
 le

ve
l [

m
]

Position [m]
ME CN HWP KP

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4

Ve
lo

ci
ty

 [m
/s

]

Position [m]
ME CN HWP KP

0.027

0.028

0.029

0.03

0.031

0.032

0.033

0 0.1 0.2 0.3 0.4

W
at

er
 le

ve
l [

m
]

Position [m]
ME CN HWP KP

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4

Ve
lo

ci
ty

 [m
/s

]

Position [m]
ME CN HWP KP

a

b

c

Cross section 51

Cross section 52

Cross section 53

Figure IV.9: Water level and velocity profiles for the sine-generated flume at cross sections 51, 52, 53. The x-axis corresponds

to the cross-sectional position from the inner bank to the outer bank as marked in the schematic view. The second-order

schemes KP and HWP resolve the boundary layer better than the CN scheme.

76

i
i

“master” — 2017/5/23 — 11:16 — page 77 — #99 i
i

i
i

i
i

4. Validation

Dam-Break over a Triangular Hump

A dam-break wave generated in a laboratory experiment conducted at the Hydraulic Research
Laboratory, Châtelet, is simulated. The schematic layout of the experiment is shown in Fig-
ure IV.10. The experimental data used for validation are from Liang [86]. The water of a reservoir
is suddenly unleashed by an instantaneous removal of the gate. This generates a dam-break wave,
which then hits a triangular hump. The water levels are collected at seven gauge points in the
downstream region.

Reservoir

Hump

15.5m 10m 6m

38m

0.
75

m

0.
4m

Outlet

2 10 20
11

8

13

4

Figure IV.10: A schematic view of the triangular hump.

A uniform Manning coefficient is used, i. e., n = 0.0125 m1/3/s [86]. The lateral boundaries are
slippy solid walls, and the down-stream boundary condition is set to free outflow. The cell length
is 0.01 m. The left plots of Figure IV.11 show the water level time series at four gauging points: G4,
G10, G13 and G20. Overall, the three schemes produce very similar results, all of them capturing
the measured data well, in particular the wave arrival times at the gauging locations. However,
the water depths are overestimated at the downstream side of the obstacle [133, 134, 135]. The
simulation results are in good agreement with the results of Singh et al. [135].

77

i
i

“master” — 2017/5/23 — 11:16 — page 78 — #100 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Ve
lo

ci
ty

 [m
/s

]

Time [s]

CN
HWP

KP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

W
at

er
 le

ve
l [

m
]

Time [s]

ME
CN

HWP
KP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35

W
at

er
 le

ve
l [

m
]

Time [s]

ME
CN

HWP
KP

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Ve
lo

ci
ty

 [m
/s

]

Time [s]

CN
HWP

KP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35

W
at

er
 le

ve
l [

m
]

Time [s]

ME
CN

HWP
KP

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35

Ve
lo

ci
ty

 [m
/s

]

Time [s]

CN
HWP

KP

-0.01
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 5 10 15 20 25 30 35

W
at

er
 le

ve
l [

m
]

Time [s]

ME
CN

HWP
KP

-0.5

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Ve
lo

ci
ty

 [m
/s

]

Time [s]

CN
HWP

KP

a

b

c

Gauge G4

Gauge G10

Gauge G13

d Gauge G20

Figure IV.11: Water level (left) and velocity (right) time series for the triangular hump at gauging locations a) G4, b) G10,

c) G13, and d) G20. All three schemes capture the data well, except for gauging point G20.

78

i
i

“master” — 2017/5/23 — 11:16 — page 79 — #101 i
i

i
i

i
i

4. Validation

4.3 Real-World Test Cases

All real-world simulations were performed on GPUs. The implementation of our simulation
system on the GPU uses the CUDA programming model on top of a NVIDIA Kepler architec-
ture [114].

Malpasset

The Malpasset dam break event of 1959 was largely investigated in the past years [39, 108, 135].
The dam failed explosively and gave rise to a 40 meters high flooding wave. Our validation is
based on the dataset available from the TELEMAC samples [105]. The original dataset consists
of 104 000 unstructured points. Our simulation grid contains 1149× 612 cells, each cell of the
size of 15 × 15 m2. We use a uniform Manning coefficient n = 0.033 m1/3/s corresponding
to weedy, stony earth channels and floodplains with pasture and farmland. We simulate the
first 4000 seconds of the dam break, and compare the results with laboratory experiments on a
1:400 scale model [106, 107]. In these experiments, researchers have recorded wave front arrival
times [106] and maximum water elevations [107] at 14 gauge locations (S1-S14). Our verification
uses only locations S6-S14, since no data are available for the other gauge locations. The surveyed
arrival times are determined based on the shut down of the voltage transformers at the historical
flood event (Figure IV.12). The exact arrival times of the flood wave front are unknown, and the
measurements are affected by uncertainties, e. g., the rupture time of the dam.

Figure IV.12: Malpasset Dam Break, France. Water extent 4000 seconds after the dam break. Labels show the nine gauge

locations (S6-S14) of the laboratory experiments and the three voltage transformers (A-C) in the real world.

Figures IV.13 show our simulation results compared to the physical data acquired by the lab-
oratory model. Overall, there is good agreement with the measurements. Small discrepancies be-
tween the scale model and the numerical results were also reported in other studies [39, 108, 119],
and our results are consistent with these. In case of the CN scheme, the wave arrivals at the 9
gauge locations are more delayed compared to the KP and HWP schemes (Figure IV.13b). The
reason for this is the first order accuracy of the CN scheme which dissipates the wave energy
faster than the second order schemes. On the other hand, the CN scheme provides better results
for the voltage transformer wave arrival times (Figure IV.13c). The KP and HWP schemes produce
quite similar results regarding arrival times and maximum water levels.

79

i
i

“master” — 2017/5/23 — 11:16 — page 80 — #102 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

0

20

40

60

80

100

6 7 8 9 10 11 12 13 14

M
ax

im
um

 w
at

er
 le

ve
l [

m
]

Gauge number

ME
CN

HWP
KP

0

200

400

600

800

1000

1200

1400

1600

6 7 8 9 10 11 12 13 14

W
av

e
ar

riv
al

 ti
m

e
[s

]

Gauge number

ME
CN
HWP
KP

0

200

400

600

800

1000

1200

1400

1600

1 2 3

W
av

e
ar

riv
al

 ti
m

e
[s

]

Transformer number

ME
CN
HWP
KP

a b

c

Figure IV.13: Malpasset Dam Break, France. a) Maximum water elevations at the gauge locations (S6-S14). b) Wave arrival

times at the gauge locations (S6-S14). c) Wave front arrival times at the three voltage transformers (1-3).

Lobau

This case study involves the Lobau area, which is the alluvial backwater and floodplain of the
Donau-Auen National Park in Austria. It extends on the left bank of the river Danube from river
kilometer (rkm) 1918 to rkm 1908 downstream of the city of Vienna. If the water level in the
Danube rises, water flows from the river into the floodplain, causing regular flooding events.
The size of the area is 1474 ha and it consists of floodplain forests and surface water bodies.
Even though this is a rural area and does not contain any buildings, it is challenging to perform
simulations for this region, since it has a very complex bathymetry (lots of small channels and
steep slopes). We reconstructed the flooding of January 2011, and simulated the first for 4 days.
The Lobau can only be flooded through a small weir, the Schönauer Schlitz. The inflow and
gauging locations are shown in Figure IV.14 along with initial state, the simulated water extent at
peak discharge and at the final time.

Water level and discharge values for the Schönauer Schlitz are visualized in Figure IV.15a,
which are used to prescribe the inflow conditions from the Danube into the Lobau. The size
of the simulation domain is approximately 7.5 × 5 km2 and the cell size was set to 4 × 4 m2.
Water level time series at three gauging locations are compared against the measured values in
Figure IV.15b-d, where day zero on the x-axis corresponds to 13 January 2011, 12 am.

We can see that all three schemes have difficulties predicting the correct arrival times at the
two inner gauging locations PD.LP16 and PD.LP18. A non-uniform distribution of the Manning
roughness coefficient is used based on the land use. These roughness values are not calibrated
and the exact initial state before the flooding is unknown, which may explain the deviations from
the observations. The water levels of the HWP and KP scheme are very similar, this might be due

80

i
i

“master” — 2017/5/23 — 11:16 — page 81 — #103 i
i

i
i

i
i

4. Validation

In�ow

PD.LD16

PD.LD18

PD.LP1

In�ow

PD.LD16

PD.LD18

PD.LP1

In�ow

PD.LD16

PD.LD18

PD.LP1

a

b

c

Figure IV.14: Lobau, Donau-Auen National Park, Austria. The colored labels show the location of the inflow at the

Schönauer Schlitz (lower right) and the three gauging locations PD.LP1, PD.LP16 and PD.LP18. a) Initial state. b) Water

extent at the peak discharge after 2 days simulated by the CN scheme. c) Simulated water extent after 4 days simulated by

the CN scheme.

81

i
i

“master” — 2017/5/23 — 11:16 — page 82 — #104 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

a b

c

In�ow water level (W) and discharge (D)

d

PD.LP1

PD.LP16 PD.LP18

147.5

148

148.5

149

149.5

150

150.5

151

151.5

152

0 1 2 3 4
-80

-60

-40

-20

0

20

40

60

80

100

120
W

at
er

 le
ve

l [
m

]

D
is

ch
ar

ge
 [m

3 /s
]

Days

W
D

147

148

149

150

151

152

0 1 2 3 4

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

149

150

151

152

0 1 2 3 4

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

149

150

151

152

0 1 2 3 4

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

Figure IV.15: Lobau, Donau-Auen National Park, Austria. a) Prescribed inflow boundary conditions data at the Schönauer

Schlitz. b-d) Water level time series for the Lobau at different gauging locations.

to the fact that the desingularization originally proposed for the KP scheme has been omitted.
Both of them produce a higher maximum water level at PD.LP16 and PD.LP18 and the flood wave
is faster than that of the CN scheme (Figure IV.15c,d).

Wachau

The Wachau valley is located in Lower Austria. It was carved out by the Danube over thousands
of years. It features a riverine landscape with a settled flood plain bounded by steep slopes. This
case study aims to reproduce the 100-year Danube river flood of 2013 [136]. The focus lies on the
correct prediction of water levels along the river. This case also emphasizes the proper setting of
in- and outflow conditions at the upstream and downstream boundaries of the simulated reach of
the Danube. Numerical difficulties may arise due to the complex topography. Measured data are
available for four gauging locations along the river, namely near Stein-Krems (rkm 2002,7), Loiben
(rkm 2005,99), Dürnstein (rkm 2009,15) and Kienstock (rkm 2015,21) (Figure IV.16).

The dataset of Kienstock and Stein-Krems is used to prescribe the upstream and the down-
stream boundary conditions, respectively. At the upstream boundary we use a discharge hy-
drograph with water level information and at the downstream we use only water levels (Fig-
ure IV.17a). Roughness values were set according to land-use data. We simulated 14 days, starting
on 30 May 2013 at 5 pm with a prefilled moving-water steady state. Simulations were performed
using two different mesh sizes, a coarse grid with a cell length of 12 m and a finer grid with a cell
length of 3 m. The simulation results for the coarse grid are presented in Figure IV.17b,c. The CN
scheme overestimates the water levels by about 1m. The second-order schemes capture the water
levels more accurately with the HWP performing better than the KP scheme. On the finer grid, the

82

i
i

“master” — 2017/5/23 — 11:16 — page 83 — #105 i
i

i
i

i
i

4. Validation

Kienstock

Dürnstein

Loiben

Stein Krems

Kienstock

Dürnstein

Loiben

Stein Krems

Kienstock

Dürnstein

Loiben

Stein Krems

a

b

c

Figure IV.16: Wachau, Austria. The colored labels show the upstream (Kienstock/grey) and the downstream (Stein

Krems/orange) boundary locations and the 2 gauging locations (Dürnstein/blue, Loiben/red). a) Initial state. b) Water

extent at the peak discharge after 6.5 days simulated by the CN scheme. c) Water extent after 14 days simulated by the CN

scheme.

83

i
i

“master” — 2017/5/23 — 11:16 — page 84 — #106 i
i

i
i

i
i

Chapter IV. Comparison and Validation of Shallow Water Schemes

194

196

198

200

202

204

206

0 2 4 6 8 10 12 14
2

4

6

8

10

12

W
at

er
 le

ve
l [

m
]

D
is

ch
ar

ge
 x

 1
03 [

m
3 /s

]

Days

Stein-K. W
Kiens. W
Kiens. D

190

192

194

196

198

200

202

204

0 2 4 6 8 10 12 14

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

192

194

196

198

200

202

204

0 2 4 6 8 10 12 14

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

190

192

194

196

198

200

202

204

0 2 4 6 8 10 12 14

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

199.6

200

200.4

200.8

192

194

196

198

200

202

204

0 2 4 6 8 10 12 14

W
at

er
 le

ve
l [

m
]

Days

ME
CN

HWP
KP

202

202.4

202.8

a

b cLoiben 12 m resolution

d

Dürnstein12 m resolution

Loiben 3 m resolution Dürnstein 3 m resolutione

Hydrograph water level (W) and discharge (D)

Figure IV.17: Wachau, Austria. a) Water level (W) and discharge (D) data for the upstream (Kienstock) and down-

stream (Stein Krems) boundary conditions. b,c) Measured and simulated water level time series at the gauging locations

using 12× 12 m2 cells. The second-order schemes KP and HWP match the measured water level time series quite well,

although all of the schemes overestimate the water levels, particularly the CN scheme. d,e) Measured and simulated water

level time series at the gauging locations using 3× 3 m2 cells. The second-order schemes KP and HWP produce spurious

oscillations at these small cell sizes. The CN scheme benefits from the small cell size and simulates water levels close to

the measurements.

second-order schemes KP and HWP produce spurious oscillations, which slow down the simula-
tions dramatically. In this case, we applied a velocity limitation to 15 m/s. The results are shown
in Figure IV.17d,e. Of course, the accuracy of the schemes need to be considered in the context of
the accuracy of the water level and discharge measurements used as boundary conditions [137].

84

i
i

“master” — 2017/5/23 — 11:16 — page 85 — #107 i
i

i
i

i
i

5. Conclusion and Future Work

5 Conclusion and Future Work

In this paper, we compare three numerical schemes for the shallow water equationss by extensive
simulations for various study cases. The three schemes (KP, HWP, and CN) are well-balanced
state-of-the-art schemes, chosen because of their suitability for fast flood simulations on GPUs.
The comparison focuses on the prediction of flood wave arrival times and water level series, since
they are especially relevant for decision makers. The simulation results revealed that each of the
schemes has its strengths and weaknesses. For large cell sizes the validation case studies showed
that the second-order schemes, the KP and HWP schemes, perform better in real-world scenar-
ios, as the water levels are closer to the measurements. For smaller cell sizes, which capture the
topography more accurately, non-physical oscillations occur in both of them. Oscillations hinder
the schemes in reaching steady states in the U-shaped and sine-generated flume case studies,
where high mesh resolutions are needed to resolve the curved wall boundaries. The oscillatory
behaviour in the real-world cases are a real drawback of the second-order schemes. In contrast,
the CN scheme provides smooth solutions without oscillations even in the case of a high mesh res-
olution. But the first-order CN scheme can not predict the water levels to the same accuracy as the
second-order schemes. This is particularly true for large cell sizes. The CN scheme overestimates
water levels in river scenarios, especially near the upstream discharge boundaries. Overall, there
is good agreement between the simulated and measured values, suggesting that the simulator can
be used for flood management purposes.

Future research should bring together the advantages of the CN scheme and the second-order
schemes. Specifically, the stability, robustness, and speed of the CN scheme should be maintained
while gaining second-order accuracy. A possible remedy in the case of curved walls might be so-
called cut-cells, which allow the inclusion of curved and non-aligned lines into regular grids, or,
improved wall boundary conditions. Furthermore, hydraulic structures, such as dikes, embank-
ments, weirs, etc. should be integrated into the simulation framework. Another active research
topic is spatio-temporal adaptivity, which facilitates fast and accurate simulations in the case of
large domains with complex geometries.

Acknowledgements

This work was supported by grants from the Austrian Science Fund (FWF) project number W1219-
N22 (Vienna Doctoral Programme on Water Resource Systems), the Austrian Research Promotion
Agency (FFG) within the scope of the COMET K1 program (Project Nr. 854174), and the European
Research Council (ERC) Advanced Grant FloodChange, project number 291152. We thank Steb
Cologne, riocom, and Prof. Guoxian Chen, Wuhan University, China.

85

i
i

“master” — 2017/5/23 — 11:16 — page 86 — #108 i
i

i
i

i
i

86

i
i

“master” — 2017/5/23 — 11:16 — page 87 — #109 i
i

i
i

i
i

Chapter V

Conclusions and Outlook

87

i
i

“master” — 2017/5/23 — 11:16 — page 88 — #110 i
i

i
i

i
i

88

i
i

“master” — 2017/5/23 — 11:16 — page 89 — #111 i
i

i
i

i
i

1. Summary

1 Summary

The overall goal of this thesis is to develop and implement a robust shallow water equations
(SWE) scheme capable to simulate large-scale real-world floods on high resolution meshes. In
order to do so, the implementation is done using the latest technologies in parallel algorithms
and graphics processing units (GPUs). Flood simulation systems are usually tailored to solve a
specific problem, scenario or they are simply too slow. These properties make them unacceptable
for real-world decision making in flood management, where large ensembles of flood scenarios
have to be simulated to handle the prediction uncertainty. The simulation system needs to be
capable of adapting to various scenarios, since real-world applications differ case-by-case. In this
work we address these issues by delivering a solution which involves the development of a new
two-dimensional SWE scheme, its parallel implementation on GPUs and validation on multiple
cases.

In recent years, a lot of effort has been made towards efficient GPU-based solvers for shal-
low water equations. However, their application to real-world scenarios is often plagued with
significant slow-downs. This happens due to numerical instabilities, like spurious high veloci-
ties generated at dry/wet boundaries. Such slow-downs are unacceptable for real-world decision
making in flood management, where large ensembles of flood scenarios have to be simulated to
handle the prediction uncertainty. Keeping this problem in mind, we developed the HWP scheme,
which is presented in Chapter II. The new scheme improves the accuracy of the solution along
the dry/wet boundaries which results in stabilized velocities and increased time step sizes. This
is achieved by applying a new reconstruction for the free surface which not only ensures well-
balanced state and positive water height, but tackles also the non-physical velocities that appear
in the partially flooded cells. To guarantee mass conservation an additional step to the global time
step (GTS) computation is needed. For each partially flooded cell’s interface which is in the state
of draining, a special time step is computed, called the draining time step (DTS). The DTS is used
to determine the time needed to completely drain a cell. When advancing the solution in time the
smallest of the GTS and DTS is taken, to make sure the mass remains conserved.

Since the new reconstruction technique requires a more complex algorithm and involves many
additional computations, it represents an extra burden on the GPU. The new technique increases
the usage of GPU resources such as shared memory and register space. Due to the extra work
load, it limits the occupancy and utilization of the device. A possible way how to tackle this is
presented in Chapter III. With the new shuffle instructions, first time introduced in GPUs based
on the Kepler architecture, one can decrease the burden on the limited resources by exchanging
data directly between threads without the need for shared memory. By using the new HWP
scheme and the shuffle instructions along with a profiler-driven development and design, we
successfully outperform the previous KP scheme in large-scale simulations. Moreover, the HWP
scheme avoids the build-up of unrealistically high velocities close to the dry/wet boundaries,
which actually end up contributing to the loss of efficiency for the KP scheme. The timings of
the presented ensemble simulations suggest that even multiple scenarios can be explored prior to
the predicted flooding event. The algorithms from Chapter III can be transferred to other parallel
platforms and architectures that allow programmers to directly share data between threads using
registers or shared (L2) memory, e. g., OpenCL has support for shuffle instructions similarly to the
CUDA API.

Finally, in Chapter IV a comprehensive comparison and validation of multiple shallow water
schemes is presented, on analytic, laboratory and real-world cases. We compare the HWP scheme
with the KP scheme and with the first-order CN scheme. In the comparisons, we focus on the
prediction of the wave arrival times and the water levels, since they are of key importance for
decision makers. In Chapter IV, we discuss also all boundary conditions (BCs) used in the vali-
dation cases, such as, up- and downstream BCs, wall BCs used for buildings and flood protection
walls. The presented validation cases reveal both strengths and weaknesses of the investigated
schemes. The results of the real-world cases show that the second-order schemes, KP and HWP,

89

i
i

“master” — 2017/5/23 — 11:16 — page 90 — #112 i
i

i
i

i
i

Chapter V. Conclusions and Outlook

provide better estimations of the measured values. However, for smaller cell sizes non-physical
oscillations occur in both of them. The same oscillations also happen in the U-shaped and sine-
generated flume case studies, where high mesh resolutions are needed to resolve the curved wall
boundaries, preventing the schemes to reach a steady state. The exact mechanism leading to these
oscillations, as well as their dependency on the mesh size are still to be investigated. In contrast,
the CN scheme provides smooth solutions without oscillations even in the case of a high mesh
resolution. Nevertheless, the first-order CN scheme cannot predict the measured values with the
same accuracy as the KP and HWP schemes. Taking all into account, the simulation results are in
good agreement with the measured values. Hence they can provide decision makers with useful
information for real-world flood management and for creating action plans.

2 Future Works

Future studies should focus on improving the accuracy, robustness and performance of the pre-
sented solutions. Possible future works involve second-order extension of the CN scheme while
maintaining its stability and speed. In order to allow for proper modelling of rivers floods, mod-
elling of hydraulic structures, like dikes, embankments, weirs, should be integrated into the sim-
ulations. In addition, for more robust modelling of urban floods, surface water simulation with
coupled sewer simulations are needed. Another issue to be addressed is a more accurate handling
of curved and non-aligned lines, where the cut-cells method [113, 26] could provide a remedy. Fur-
thermore, spatio-temporal adaptivity is also an active research topic both from a numerical and a
GPU implementation point of view [23, 24, 42]. Incorporating anisotropic porosity [138, 139] into
the system might give an additional speed-up which would be beneficial in creation of fast esti-
mates. Anisotropic porosity accounts for sub-grid scale effects and allows for faster simulations
on coarser grids while maintaining an acceptable accuracy in comparison with higher resolution
grids. This is a useful feature to deliver less accurate but fast estimations of flood scenarios.

In summary, we foresee an exciting and challenging future for flood simulations, combined
with GPUs and hardware-adapted parallel algorithms for faster and more accurate decision mak-
ing.

90

i
i

“master” — 2017/5/23 — 11:16 — page 91 — #113 i
i

i
i

i
i

Bibliography

[1] Zsolt Horváth, Jürgen Waser, Rui AP Perdigão, Artem Konev, and Günter Blöschl. A two-
dimensional numerical scheme of dry/wet fronts for the saint-venant system of shallow
water equations. International Journal for Numerical Methods in Fluids, 77(3):159–182, 2015.

[2] J Hall, Berit Arheimer, M Borga, R Brázdil, Pierluigi Claps, A Kiss, TR Kjeldsen, J Kriauciu-
niene, ZW Kundzewicz, Michel Lang, et al. Understanding flood regime changes in europe:
A state of the art assessment. Hydrology and Earth System Sciences, 18(7):2735–2772, 2014.

[3] Günter Blöschl, Ladislav Gaál, Julia Hall, Andrea Kiss, Jürgen Komma, Thomas Nester, Juraj
Parajka, Rui AP Perdigão, Lenka Plavcová, Magdalena Rogger, et al. Increasing river floods:
fiction or reality? Wiley Interdisciplinary Reviews: Water, 2(4):329–344, 2015.

[4] Brenden Jongman, Stefan Hochrainer-Stigler, Luc Feyen, Jeroen CJH Aerts, Reinhard Mech-
ler, WJ Wouter Botzen, Laurens M Bouwer, Georg Pflug, Rodrigo Rojas, and Philip J Ward.
Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4(4):264–
268, 2014.

[5] Josè I Barredo. Normalised flood losses in europe: 1970–2006. Natural Hazards and Earth
System Sciences, 9(1):97–104, 2009.

[6] P Watkiss. The climate cost project. final report, volume 1: Europe. stockholm environmental
institute, sweden. Technical report, ISBN 978-91-86125-35-6, 2011.

[7] Bernhard Lehner, Petra Döll, Joseph Alcamo, Thomas Henrichs, and Frank Kaspar. Esti-
mating the impact of global change on flood and drought risks in europe: a continental,
integrated analysis. Climatic Change, 75(3):273–299, 2006.

[8] Nicola Lugeri, Elisabetta Genovese, Carlo Lavalle, and Ad De Roo. Flood risk in europe:
analysis of exposure in 13 countries. European Commission Directorate-General Joint Research
Centre, EUR22525 EN, 2006.

[9] EU Civel Protection. Directive 2007/60/ec of the european parliament and of the council
of 23 october 2007 on the assessment and management of flood risks. Official Journal of the
European Union, L288:27–34, 2007.

[10] R Merz, G Blöschl, and G Humer. Hochwasserabflüsse in österreich–das hora-projekt. Öster-
reichische Wasser-und Abfallwirtschaft, 60(9):129–138, 2008.

[11] Roger Temam. Navier-stokes equations, volume 2. North-Holland Amsterdam, 1984.

[12] AJC de Saint-Venant. ‘theorie du mouvement non permanent des eaux, avec application aux
crues des rivieres et a l’introduction de marees dans leurs lits.”. Comptes rendus des seances
de l’Academie des Sciences, 36:174–154, 1871.

[13] Robert Bridson. Fluid simulation for computer graphics. CRC Press, 2015.

91

i
i

“master” — 2017/5/23 — 11:16 — page 92 — #114 i
i

i
i

i
i

Bibliography

[14] Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Rupert Klein, and Benoît
Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shal-
low water flows. SIAM Journal on Scientific Computing, 25(6):2050–2065, 2004.

[15] Emmanuel Audusse and Marie-Odile Bristeau. A well-balanced positivity preserving
“second-order” scheme for shallow water flows on unstructured meshes. Journal of Com-
putational Physics, 206(1):311–333, 2005.

[16] Andreas Bollermann, Guoxian Chen, Alexander Kurganov, and Sebastian Noelle. A well-
balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput.,
56(2):267–290, August 2013.

[17] Alexander Kurganov and Doron Levy. Central-upwind schemes for the saint-venant system.
ESAIM: Mathematical Modelling and Numerical Analysis, 36(3):397–425, 2002.

[18] Alexander Kurganov and Guergana Petrova. A second-order well-balanced positivity pre-
serving central-upwind scheme for the saint-venant system. Communications in Mathematical
Sciences, 5(1):133–160, 2007.

[19] Boris Diskin and James L Thomas. Comparison of node-centered and cell-centered unstruc-
tured finite-volume discretizations: inviscid fluxes. AIAA journal, 49(4):836–854, 2011.

[20] Richard Comblen, Sébastien Legrand, Eric Deleersnijder, and Vincent Legat. A finite element
method for solving the shallow water equations on the sphere. Ocean Modelling, 28(1):12–23,
2009.

[21] Po-Wei Li and Chia-Ming Fan. Generalized finite difference method for two-dimensional
shallow water equations. Engineering Analysis with Boundary Elements, 80:58–71, 2017.

[22] Hamidreza Shirkhani, Abdolmajid Mohammadian, Ousmane Seidou, and Alexander
Kurganov. A well-balanced positivity-preserving central-upwind scheme for shallow wa-
ter equations on unstructured quadrilateral grids. Computers & Fluids, 126:25–40, 2016.

[23] Georges Kesserwani and Qiuhua Liang. Dynamically adaptive grid based discontinuous
galerkin shallow water model. Advances in Water Resources, 37:23–39, 2012.

[24] Qiuhua Liang. A simplified adaptive cartesian grid system for solving the 2d shallow water
equations. International Journal for Numerical Methods in Fluids, 69(2):442–458, 2012.

[25] David M Ingram, Derek M Causon, and Clive G Mingham. Developments in cartesian cut
cell methods. Mathematics and Computers in Simulation, 61(3):561–572, 2003.

[26] Lennart Schneiders, Daniel Hartmann, Matthias Meinke, and Wolfgang Schröder. An ac-
curate moving boundary formulation in cut-cell methods. Journal of Computational Physics,
235:786–809, 2013.

[27] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–
389, 1977.

[28] Leon B Lucy. A numerical approach to the testing of the fission hypothesis. The astronomical
journal, 82:1013–1024, 1977.

[29] Qiuhua Liang, Xilin Xia, and Jingming Hou. Efficient urban flood simulation using a gpu-
accelerated sph model. Environmental Earth Sciences, 74(11):7285–7294, 2015.

[30] Xilin Xia and Qiuhua Liang. A gpu-accelerated smoothed particle hydrodynamics (sph)
model for the shallow water equations. Environmental Modelling & Software, 75:28–43, 2016.

[31] R Vacondio, BD Rogers, and PK Stansby. Smoothed particle hydrodynamics: Approximate
zero-consistent 2-d boundary conditions and still shallow-water tests. International Journal
for Numerical Methods in Fluids, 69(1):226–253, 2012.

92

i
i

“master” — 2017/5/23 — 11:16 — page 93 — #115 i
i

i
i

i
i

Bibliography

[32] Xilin Xia, Qiuhua Liang, Manuel Pastor, Weilie Zou, and Yan-Feng Zhuang. Balancing the
source terms in a sph model for solving the shallow water equations. Advances in Water
Resources, 59:25–38, 2013.

[33] A Barreiro, AJC Crespo, JM Domínguez, and M Gómez-Gesteira. Smoothed particle hy-
drodynamics applied in fluid structure interactions. Fluid Structure Interaction VII, 129:75,
2013.

[34] Tsang-Jung Chang, Kao-Hua Chang, and Hong-Ming Kao. A new approach to model
weakly nonhydrostatic shallow water flows in open channels with smoothed particle hy-
drodynamics. Journal of Hydrology, 519:1010–1019, 2014.

[35] Damien Violeau and Benedict D Rogers. Smoothed particle hydrodynamics (sph) for free-
surface flows: past, present and future. Journal of Hydraulic Research, 54(1):1–26, 2016.

[36] Shane Cook. CUDA programming: a developer’s guide to parallel computing with GPUs. Appli-
cations of GPU Computing Series. Elsevier Science, 2012.

[37] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu programming. Pearson Educa-
tion, 2013.

[38] André R Brodtkorb, Trond R Hagen, Knut-Andreas Lie, and Jostein R Natvig. Simulation
and visualization of the saint-venant system using gpus. Computing and Visualization in
Science, 13(7):341–353, 2010.

[39] André R. Brodtkorb, Martin L. Sætra, and Mustafa Altinakar. Efficient shallow water sim-
ulations on gpus: Implementation, visualization, verification, and validation. Computers &
Fluids, 55(0):1–12, 2012.

[40] André R Brodtkorb and Martin L Sætra. Explicit shallow water simulations on gpus: Guide-
lines and best practices. In XIX International Conference on Water Resources, CMWR, pages
17–22, 2012.

[41] Martin L Sætra. Shallow water simulation on gpus for sparse domains. In Numerical Mathe-
matics and Advanced Applications 2011, pages 673–680. Springer, 2013.

[42] Martin L Sætra, André R Brodtkorb, and Knut-Andreas Lie. Efficient gpu-implementation
of adaptive mesh refinement for the shallow-water equations. Journal of Scientific Computing,
63(1):23–48, 2015.

[43] John Cheng, Max Grossman, and Ty McKercher. Professional Cuda C Programming. John
Wiley & Sons, 2014.

[44] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a hands-on
approach. Morgan Kaufmann, 2016.

[45] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programming
Guide. NVIDIA Corporation, 2017.

[46] Jürgen Waser, Artem Konev, Bernhard Sadransky, Zsolt Horváth, H Ribičić, Robert Car-
necky, P Kluding, and Benjamin Schindler. Many plans: Multidimensional ensembles for
visual decision support in flood management. In Computer Graphics Forum, volume 33, pages
281–290. Wiley Online Library, 2014.

[47] Visdom - an integrated visualization system. http://visdom.at, 2017. Last visited on 2017-
04-26.

[48] M Acuña and Takayuki Aoki. Real-time tsunami simulation on multi-node gpu cluster. In
ACM/IEEE conference on supercomputing, 2009.

[49] Giuliano Di Baldassarre, Alberto Montanari, Harry Lins, Demetris Koutsoyiannis, Luigia
Brandimarte, and Günter Blöschl. Flood fatalities in africa: from diagnosis to mitigation.
Geophysical Research Letters, 37(22), 2010.

93

http://visdom.at

i
i

“master” — 2017/5/23 — 11:16 — page 94 — #116 i
i

i
i

i
i

Bibliography

[50] Rui AP Perdigao and Günter Blöschl. Spatiotemporal flood sensitivity to annual precipita-
tion: Evidence for landscape-climate coevolution. Water Resources Research, 50(7):5492–5509,
2014.

[51] Trond Runar Hagen, Jon M Hjelmervik, K-A Lie, Jostein R Natvig, and M Ofstad Henrik-
sen. Visual simulation of shallow-water waves. Simulation Modelling Practice and Theory,
13(8):716–726, 2005.

[52] Clint Dawson and Christopher M Mirabito. The shallow water equations. Lecture slides from
the Institute for Computational Engineering and Sciences, University of Texas at Austin, USA, 2008.

[53] Marc de la Asunción, José Mantas, and Manuel Castro. Programming cuda-based gpus
to simulate two-layer shallow water flows. Euro-par 2010-parallel processing, pages 353–364,
2010.

[54] Alexander Kurganov and Guergana Petrova. Central-upwind schemes for two-layer shallow
water equations. SIAM Journal on Scientific Computing, 31(3):1742–1773, 2009.

[55] Jean A Cunge and M Wegner. Intégration numérique des équations d’écoulement de barré
de saint-venant par un schéma implicite de différences finies. La Houille Blanche, 1:33–39,
1964.

[56] Jian G Zhou, Derek M Causon, Clive G Mingham, and David M Ingram. The surface
gradient method for the treatment of source terms in the shallow-water equations. Journal
of Computational physics, 168(1):1–25, 2001.

[57] Tobias Brandvik and Graham Pullan. Acceleration of a two-dimensional euler flow solver
using commodity graphics hardware. Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 221(12):1745–1748, 2007.

[58] Tobias Brandvik and Graham Pullan. Acceleration of a 3d euler solver using commodity
graphics hardware. In 46th AIAA aerospace sciences meeting and exhibit, page 607, 2008.

[59] Marc De La Asunción, José M Mantas, and Manuel J Castro. Simulation of one-layer shallow
water systems on multicore and cuda architectures. The Journal of Supercomputing, 58(2):206–
214, 2011.

[60] Miguel Lastra, José M Mantas, Carlos Ureña, Manuel J Castro, and José A García-Rodríguez.
Simulation of shallow-water systems using graphics processing units. Mathematics and Com-
puters in Simulation, 80(3):598–618, 2009.

[61] Sebastian Noelle, Normann Pankratz, Gabriella Puppo, and Jostein R Natvig. Well-balanced
finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of
Computational Physics, 213(2):474–499, 2006.

[62] Giovanni Russo. Central schemes for conservation laws with application to shallow water
equations. In Trends and Applications of Mathematics to Mechanics, pages 225–246. Springer,
2005.

[63] Yulong Xing and Chi-Wang Shu. High order finite difference weno schemes with the exact
conservation property for the shallow water equations. Journal of Computational Physics,
208(1):206–227, 2005.

[64] Benoıt Perthame and Chiara Simeoni. A kinetic scheme for the saint-venant system¶ with a
source term. Calcolo, 38(4):201–231, 2001.

[65] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of
mathematical physics. IBM journal of Research and Development, 11(2):215–234, 1967.

[66] David Gottlieb and Eitan Tadmor. The cfl condition for spectral approximations to hyper-
bolic initial-boundary value problems. Mathematics of Computation, 56(194):565–588, 1991.

94

i
i

“master” — 2017/5/23 — 11:16 — page 95 — #117 i
i

i
i

i
i

Bibliography

[67] Andreas Bollermann, Sebastian Noelle, and Maria Lukáčová-Medvid’ová. Finite volume
evolution galerkin methods for the shallow water equations with dry beds. Communications
in Computational Physics, 10(02):371–404, 2011.

[68] C Hinterberger, J Fröhlich, and W Rodi. Three-dimensional and depth-averaged large-eddy
simulations of some shallow water flows. Journal of Hydraulic Engineering, 133(8):857–872,
2007.

[69] Normann Pankratz, Jostein R Natvig, Bjørn Gjevik, and Sebastian Noelle. High-order well-
balanced finite-volume schemes for barotropic flows: Development and numerical compar-
isons. Ocean modelling, 18(1):53–79, 2007.

[70] Yih-Chin Tai, S Noelle, JMNT Gray, and K Hutter. Shock-capturing and front-tracking meth-
ods for granular avalanches. Journal of Computational Physics, 175(1):269–301, 2002.

[71] Steve Bryson, Yekaterina Epshteyn, Alexander Kurganov, and Guergana Petrova. Well-
balanced positivity preserving central-upwind scheme on triangular grids for the saint-
venant system. ESAIM: Mathematical Modelling and Numerical Analysis, 45(3):423–446, 2011.

[72] Alexander Kurganov, Sebastian Noelle, and Guergana Petrova. Semidiscrete central-upwind
schemes for hyperbolic conservation laws and hamilton–jacobi equations. SIAM Journal on
Scientific Computing, 23(3):707–740, 2001.

[73] Knut-Andreas Lie and Sebastian Noelle. On the artificial compression method for second-
order nonoscillatory central difference schemes for systems of conservation laws. SIAM
Journal on Scientific Computing, 24(4):1157–1174, 2003.

[74] Haim Nessyahu and Eitan Tadmor. Non-oscillatory central differencing for hyperbolic con-
servation laws. Journal of computational physics, 87(2):408–463, 1990.

[75] Peter K Sweby. High resolution schemes using flux limiters for hyperbolic conservation
laws. SIAM journal on numerical analysis, 21(5):995–1011, 1984.

[76] Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order
sequel to godunov’s method. Journal of computational Physics, 32(1):101–136, 1979.

[77] Dietmar Kröner. Numerical schemes for conservation laws, volume 22. Wiley Chichester, 1997.

[78] Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge
university press, 2002.

[79] Pierre-Arnaud Raviart and E Godlewski. Numerical approximation of hyperbolic systems
of conservation laws. Appl. Math. Sci, 118, 1996.

[80] Bernd Einfeldt. On godunov-type methods for gas dynamics. SIAM Journal on Numerical
Analysis, 25(2):294–318, 1988.

[81] Amiram Harten, Peter D Lax, and Bram Van Leer. On upstream differencing and godunov-
type schemes for hyperbolic conservation laws. In Upwind and High-Resolution Schemes,
pages 53–79. Springer, 1997.

[82] Andreas Bollermann, Guoxian Chen, Alexander Kurganov, and Sebastian Noelle. A well-
balanced reconstruction for wetting/drying fronts. arXiv preprint arXiv:1412.3580, 2014.

[83] William Carlisle Thacker. Some exact solutions to the nonlinear shallow-water wave equa-
tions. Journal of Fluid Mechanics, 107:499–508, 1981.

[84] Marc de la Asunción, Manuel J Castro, ED Fernández-Nieto, José M Mantas, Sergio Ortega
Acosta, and José Manuel González-Vida. Efficient gpu implementation of a two waves tvd-
waf method for the two-dimensional one layer shallow water system on structured meshes.
Computers & Fluids, 80:441–452, 2013.

95

i
i

“master” — 2017/5/23 — 11:16 — page 96 — #118 i
i

i
i

i
i

Bibliography

[85] José M Gallardo, Carlos Parés, and Manuel Castro. On a well-balanced high-order finite
volume scheme for shallow water equations with topography and dry areas. Journal of
Computational Physics, 227(1):574–601, 2007.

[86] Q. Liang and F. Marche. Numerical resolution of well-balanced shallow water equations
with complex source terms. Advances in Water Resources, 32:873–884, June 2009.

[87] Joe Sampson, Alan Easton, and Manmohan Singh. Moving boundary shallow water flow
above parabolic bottom topography. Anziam Journal, 47:C373–C387, 2006.

[88] Runar Holdahl, Helge Holden, and Knut-Andreas Lie. Unconditionally stable splitting
methods for the shallow water equations. BIT Numerical Mathematics, 39(3):451–472, 1999.

[89] Nathan Whitehead and Alex Fit-Florea. Precision & performance: Floating point and ieee
754 compliance for nvidia gpus. rn (A+ B), 21:1–1874919424, 2011.

[90] Hrvoje Ribičić, Jürgen Waser, Raphael Fuchs, Günter Blöschl, and Eduard Gröller. Visual
analysis and steering of flooding simulations. IEEE transactions on visualization and computer
graphics, 19(6):1062–1075, 2013.

[91] Asier Lacasta, Mario Morales-Hernández, Javier Murillo, and Pilar García-Navarro. Gpu im-
plementation of the 2d shallow water equations for the simulation of rainfall/runoff events.
Environmental Earth Sciences, 74(11):7295–7305, 2015.

[92] Asier Lacasta, Mario Morales-Hernández, Javier Murillo, and Pilar García-Navarro. An op-
timized gpu implementation of a 2d free surface simulation model on unstructured meshes.
Advances in Engineering Software, 78:1–15, 2014.

[93] Derek M Causon, David M Ingram, and Clive G Mingham. A cartesian cut cell method
for shallow water flows with moving boundaries. Advances in water Resources, 24(8):899–911,
2001.

[94] Trond Runar Hagen, Knut-Andreas Lie, and Jostein R Natvig. Solving the euler equations
on graphics processing units. In International Conference on Computational Science, pages 220–
227. Springer, 2006.

[95] Andreas Klöckner, Tim Warburton, Jeff Bridge, and Jan S Hesthaven. Nodal discontinuous
galerkin methods on graphics processors. Journal of Computational Physics, 228(21):7863–7882,
2009.

[96] Peng Wang, Tom Abel, and Ralf Kaehler. Adaptive mesh fluid simulations on gpu. New
Astronomy, 15(7):581–589, 2010.

[97] Wen-Yew Liang, Tung-Ju Hsieh, Muhammad T Satria, Yang-Lang Chang, Jyh-Perng Fang,
Chih-Chia Chen, and Chin-Chuan Han. A gpu-based simulation of tsunami propagation
and inundation. In International Conference on Algorithms and Architectures for Parallel Process-
ing, pages 593–603. Springer, 2009.

[98] R Vacondio, A Dal Palù, and P Mignosa. Gpu-enhanced finite volume shallow water solver
for fast flood simulations. Environmental Modelling & Software, 57:60–75, 2014.

[99] Arnaud Duran, Q Liang, and Fabien Marche. On the well-balanced numerical discretiza-
tion of shallow water equations on unstructured meshes. Journal of Computational Physics,
235:565–586, 2013.

[100] Gang Li, Jinmei Gao, and Qiuhua Liang. A well-balanced weighted essentially non-
oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical
Methods in Fluids, 71(12):1566–1587, 2013.

[101] Jingming Hou, Qiuhua Liang, Franz Simons, and Reinhard Hinkelmann. A 2d well-balanced
shallow flow model for unstructured grids with novel slope source term treatment. Advances
in Water Resources, 52:107–131, 2013.

96

i
i

“master” — 2017/5/23 — 11:16 — page 97 — #119 i
i

i
i

i
i

Bibliography

[102] Chi-Wang Shu. Total-variation-diminishing time discretizations. SIAM Journal on Scientific
and Statistical Computing, 9(6):1073–1084, 1988.

[103] Sigal Gottlieb and Chi-Wang Shu. Total variation diminishing runge-kutta schemes. Mathe-
matics of computation of the American Mathematical Society, 67(221):73–85, 1998.

[104] Benjamin Schindler, Jürgen Waser, Hrvoje Ribičić, Raphael Fuchs, and Ronald Peikert. Mul-
tiverse data-flow control. IEEE transactions on visualization and computer graphics, 19(6):1005–
1019, 2013.

[105] Open TELEMAC-MASCARET. http://www.opentelemac.org/, 2017. Last visited on 2015-
06-24.

[106] S Soares Frazao, F Alcrudo, and N Goutal. Dam-break test cases summary. In Proceedings of
the Fourth CADAM Meeting, pages 9–25, 1999.

[107] Jean-Michel Hervouet and Alain Petitjean. Malpasset dam-break revisited with two-
dimensional computations. Journal of Hydraulic Research, 37(6):777–788, 1999.

[108] DL George. Adaptive finite volume methods with well-balanced riemann solvers for mod-
eling floods in rugged terrain: Application to the malpasset dam-break flood (france, 1959).
International Journal for Numerical Methods in Fluids, 66(8):1000–1018, 2011.

[109] Gary W Brunner. Hec-ras (river analysis system). In North American Water and Environment
Congress & Destructive Water:, pages 3782–3787. ASCE, 2010.

[110] Jean-Charles Galland, Nicole Goutal, and Jean-Michel Hervouet. Telemac: A new numerical
model for solving shallow water equations. Advances in Water Resources, 14(3):138 – 148,
1991.

[111] Daniel Cornel, Artem Konev, Berhard Sadransky, Zsolt Horvath, Meister Eduard Gröller,
and Jügen Waser. Visualization of object-centered vulnerability to possible flood hazards.
Computer Graphic Forum, 34(3):331–340, June 2015. 3rd Best Paper Award.

[112] Marc de la Asunción, Manuel J Castro, ED Fernández-Nieto, José M Mantas, Sergio Ortega
Acosta, and José Manuel González-Vida. Efficient GPU implementation of a two waves
TVD-WAF method for the two-dimensional one layer shallow water system on structured
meshes. Computers & Fluids, 80:441–452, 2013.

[113] Matthias Meinke, Lennart Schneiders, Claudia Günther, and Wolfgang Schröder. A cut-cell
method for sharp moving boundaries in cartesian grids. Computers & Fluids, 85:135–142,
2013.

[114] Zsolt Horváth, Rui AP Perdigão, Jürgen Waser, Daniel Cornel, Artem Konev, and Günter
Blöschl. Kepler shuffle for real-world flood simulations on gpus. The International Journal of
High Performance Computing Applications, 30(4):379–395, 2016.

[115] R Vacondio, A Ferrari, P Mignosa, F Aureli, and A Dal. Efficient non-uniform grid for
gpu-parallel shallow water equations models. In River Flow 2016, pages 281–288. CRC Press,
2016.

[116] Vincenzo Casulli and Guus S. Stelling. A semi-implicit numerical model for urban drainage
systems. International Journal for Numerical Methods in Fluids, 73(6):600–614, 2013.

[117] Guoxian Chen and Sebastian Noelle. A new hydrostatic reconstruction scheme based on
subcell reconstructions. SIAM Journal on Numerical Analysis, 55(2):758–784, 2017.

[118] Dale R. Durran. Numerical methods for fluid dynamics; with applications to geophysics. Texts in
applied mathematics ; 32. Springer, New York, NY [u.a.], 2. ed. edition, 2010.

[119] Jingming Hou, Qiuhua Liang, Hongbin Zhang, and Reinhard Hinkelmann. Multislope
muscl method applied to solve shallow water equations. Computers & Mathematics with
Applications, 68(12):2012–2027, 2014.

97

http://www.opentelemac.org/

i
i

“master” — 2017/5/23 — 11:16 — page 98 — #120 i
i

i
i

i
i

Bibliography

[120] Emmanuel Audusse, Christophe Chalons, and Philippe Ung. A simple well-balanced and
positive numerical scheme for the shallow-water system. Communications in Mathematical
Sciences, January 2015.

[121] François Bouchut and Tomas Morales De Luna. A subsonic-well-balanced reconstruction
scheme for shallow water flows. SIAM Journal on Numerical Analysis, 48(5):1733–1758, 2010.

[122] MJ Castro Díaz, Juan A López-García, and Carlos Parés. High order exactly well-balanced
numerical methods for shallow water systems. Journal of Computational Physics, 246:242–264,
2013.

[123] Olivier Delestre, Stéphane Cordier, Frédéric Darboux, and Francois James. A limitation
of the hydrostatic reconstruction technique for shallow water equations. Comptes Rendus
Mathematique, 350(13-14):677–681, 2012.

[124] Tomás Morales de Luna, Manuel J. Castro Díaz, and Carlos Parés. Reliability of first or-
der numerical schemes for solving shallow water system over abrupt topography. Applied
Mathematics and Computation, 219(17):9012–9032, 2013.

[125] Jean-Michel Ghidaglia and Frédéric Pascal. The normal flux method at the boundary
for multidimensional finite volume approximations in cfd. European Journal of Mechanics-
B/Fluids, 24(1):1–17, 2005.

[126] Denys Dutykh, Raphaël Poncet, and Frédéric Dias. The volna code for the numerical
modeling of tsunami waves: Generation, propagation and inundation. European Journal
of Mechanics-B/Fluids, 30(6):598–615, 2011.

[127] Olivier Delestre, Carine Lucas, Pierre-Antoine Ksinant, Frédéric Darboux, Christian La-
guerre, T-N Vo, François James, Stéphane Cordier, et al. Swashes: a compilation of shallow
water analytic solutions for hydraulic and environmental studies. International Journal for
Numerical Methods in Fluids, 72(3):269–300, 2013.

[128] N. Goutal and F. Maurel. Note technique edf, he-43/97/016/b. In Proceedings of the 2nd
Workshop on Dam-Break Simulation. Department Laboratoire National d’Hydraulique, Groupe
Hydraulique Fluviale, 1997.

[129] Fraçnois Bouchut. Chapter 4 efficient numerical finite volume schemes for shallow water
models. In V. Zeitlin, editor, Nonlinear Dynamics of Rotating Shallow Water: Methods and
Advances, volume 2 of Edited Series on Advances in Nonlinear Science and Complexity, pages 189
– 256. Elsevier Science, 2007.

[130] H. J. De Vriend. Flow measurements in a curved rectangular channel. Technical report,
Laboratory of Fluid Mechanics, Department of Civil Engineering, Delft University of Tech-
nology, 1979.

[131] NCCHE. http://www.ncche.olemiss.edu/publishing/Verification_and_Validation_

Report/, 2017. Last visited on 2017-03-07.

[132] A.M.A.F. da Silva. Turbulent Flow in Sine-generated Meandering Channels. PhD thesis, Queen’s
University, 1995.

[133] P Brufau, ME Vázquez-Cendón, and P García-Navarro. A numerical model for the flood-
ing and drying of irregular domains. International Journal for Numerical Methods in Fluids,
39(3):247–275, 2002.

[134] A. I. Delis and Th. Katsaounis. Relaxation schemes for the shallow water equations. Inter-
national Journal for Numerical Methods in Fluids, 41(7):695–719, 2003.

[135] Jaswant Singh, Mustafa S. Altinakar, and Yan Ding. Two-dimensional numerical modeling
of dam-break flows over natural terrain using a central explicit scheme. Advances in Water
Resources, 34(10):1366 – 1375, 2011.

98

http://www.ncche.olemiss.edu/publishing/Verification_and_Validation_Report/
http://www.ncche.olemiss.edu/publishing/Verification_and_Validation_Report/

i
i

“master” — 2017/5/23 — 11:16 — page 99 — #121 i
i

i
i

i
i

Bibliography

[136] G. Blöschl, T. Nester, J. Komma, J. Parajka, and R. A. P. Perdigão. The june 2013 flood in the
upper danube basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrology and
Earth System Sciences, 17(12):5197–5212, 2013.

[137] G. Di Baldassarre and A. Montanari. Uncertainty in river discharge observations: a quanti-
tative analysis. Hydrology and Earth System Sciences, 13(6):913–921, 2009.

[138] Ilhan Özgen, Dongfang Liang, and Reinhard Hinkelmann. Shallow water equations with
depth-dependent anisotropic porosity for subgrid-scale topography. Applied Mathematical
Modelling, 40(17):7447–7473, 2016.

[139] Ilhan Özgen, Jiaheng Zhao, Dongfang Liang, and Reinhard Hinkelmann. Urban flood mod-
eling using shallow water equations with depth-dependent anisotropic porosity. Journal of
Hydrology, 541:1165–1184, 2016.

99

	English Front page
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	I Introduction
	1 Flood Simulations
	2 Parallel Computing on GPUs
	3 Aim of the thesis

	II A Two-Dimensional Numerical Scheme ofDry/Wet Fronts for the Saint-Venant System of Shallow Water Equations
	1 Introduction
	2 Related Work
	3 Two–Dimensional Central–Upwind Scheme
	4 Reconstruction at Partially Flooded Cells
	5 Positivity Preserving in Time Integration
	6 Evaluation
	6.1 Wave Run-Up on a Slope
	6.2 Parabolic Basin Benchmark
	6.3 Real-World Performance Benchmark in Cologne
	6.4 Real-World Performance Benchmark in Lobau

	7 Summary

	III Kepler Shuffle for Real-World Flood Simulations on GPUs
	1 Introduction
	2 Related Work
	3 Numerical Schemes
	3.1 Kurganov-Petrova Scheme (KP)
	3.2 Horváth-Waser-Perdigão Scheme (HWP)
	3.3 Spatial Discretization
	3.4 Temporal Discretization

	4 Graphics Processing Units and the CUDA Platform
	4.1 Memory Usage
	4.2 Block Size and Occupancy

	5 Implementation
	5.1 Domain Partitioning
	5.2 Simulation Steps

	6 Evaluation
	6.1 Validation: Malpasset Dam Break
	6.2 Performance Measurements

	7 Conclusion

	IV Comparison and Validation of Shallow Water Schemes on Analytic, Laboratory and Real-World Cases
	1 Introduction
	2 Related Work
	3 Numerical Schemes
	3.1 Discretization
	3.2 The KP and HWP Scheme
	3.3 The CN Scheme
	3.4 Differences Between the Three Schemes
	3.5 Time Integration
	3.6 Additional Source Terms
	3.7 Boundary Treatment

	4 Validation
	4.1 Analytical Test Cases
	4.2 Laboratory Test Cases
	4.3 Real-World Test Cases

	5 Conclusion and Future Work

	V Conclusions and Outlook
	1 Summary
	2 Future Works

	Bibliography

