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Abstract

This thesis discusses curved creases from a theoretic and an applied point
of view:

On the one hand, we utilize differential geometry to describe curved creases
between developable surfaces by five quantities. We conclude that defining
three of them appropriately determines the remaining two except in some
special cases. Apart from degenerated folds, we also address two special
types of folds: the planar crease, i.e. the rulings of the corresponding devel-
opable surfaces are reflected on a plane, and creases of constant angle. The
latter crease curves are known as pseudo-geodesics in classical differential
geometry. By combining these classical results with our approaches, we ex-
amine pseudo-geodesics on cylinders and cones. Furthermore, a connection
between bi-cylindrical, bi-concial and cylindro-conical creases of constant
angle and geodesics on quadrics can be established.

The applied approach is based on the work made by Tang et al. on the inter-
active design of curved creases. We utilize their proposed guided projection
algorithm to solve an optimization problem for B-spline representations of
developable surfaces with creases, and discuss the needed variables and con-
straints. Finally, we present some examples obtained from the author’s
implementation.
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Chapter 0

Introduction

This thesis investigates the geometry of the behaviour of planar sheets when
folded along curves without stretching or tearing, i.e. developable surface
patches joined at curved creases.

Developable surfaces, often also referred to as single curved surfaces, have
various applications, particularly in architecture, the manufacturing indus-
try, e.g. the construction of ship hulls, in art and design. The materials
used for the production of those objects are glass, metal, paper and wood.

Figure 1: Frank Gehry’s Walt Disney Concert Hall in Los Angeles (left),
ship hull made of metal panels by EvoluteTools DLoft (middle) and A4
Chair by Chris Kim (right)

As smooth developable surfaces are just combinations of parts of cones,
cylinders and tangent surfaces, the resulting shapes are limited. Permitting
also folding of the processed material in the design process, i.e. the gener-
alization to developables with creases, yields a broader variety of possible
composite surfaces, in case of paper also referred to as curved origami. The
full extent of the possible shapes has not been exhausted yet.
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Figure 2: curved origami: Ron Resch’s Kissing Cones (left) and Richard
Sweeney’s Embrace (right)

Figure 3: curved creases manufactured through bending sheets of metal:
Haresh Lalvani with his metal columns (left) and Gregory Epps’ Bentley
and Kyungeun KO (right)

Curved creases are also used for production purposes, e.g. when it comes
to packing objects such as candy. There, a surface, also called a shoulder,
leads the packing material, usually paper or plastic, from a horizontal roll
to a vertical cylinder. After sealing the material on the vertical side and on
the bottom, the resulting cylinder can be filled with content. Pulling the
bag downward, sealing it at the top and cutting it off yields the starting
configuration and the process can repeat itself. For high speed packaging,
the material should be guided without disturbances, i.e. without tearing or
stretching. Not surprisingly, the shoulder is therefore often chosen to be a
curved crease.

2



Figure 4: schematic drawing of a packaging machine1 and a round shoulder
manufactured by TOSS

0.1 Related Work

Due to the various applications mentioned above, there are different ap-
proaches to treating curved folds. An overview is given in [5].

The first fundamental mathematical treatment was done by Huffman in [8].
Apart from his theoretic results, he is also known for his designs, e.g. the
Hexagonal Column, see Fig. 5. An insight to his work is given in [4] and [10].

Figure 5: Richard Huffman with his Hexagonal Column

1from http://unionkehlibar.com/imgs/vffs-forming-tube.gif, 8.5.2017
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Further differential geometric approaches were published by Fuchs and Taba-
schnikov in [7] and new characterizations and special cases are discussed by
Demaine et al. in [2] and [3]. Moreover, theoretic results on shoulders
for packaging machines were obtained by Boersma and Molenaar in [1].
Furthermore, Röschel investigates curved creases of constant angle between
cylinders in [16]. As curved creases of constant angles are special cases of
pseudo-geodesics of two surfaces, some information is contained in Wunder-
lich’s results from 1950 in [19], [20], [21] and [22] as special cases.

The differential geometric theory gives a deeper understanding of the re-
sulting shapes. For example, folds obtained by reflection on a plane are
discussed in [14]. Another prominent example, the folding of an annular
circular strip along a central circular curve, is described by Dias et al. in [6].
Nevertheless, the surfaces and creases encountered in practice are in gen-
eral not convenient for mathematical treatment. Therefore, the flexibility of
approximating approaches is better suited for applications.

Kilian et al. discuss curved creases from a discrete differential perspective
in [9]. They introduce an optimization algorithm, which allows to compute
discrete developables with curved folds that are isometric to a given planar
sheet. In [17], Tachi and Epps present their tool to fold discrete approxima-
tions for prescribed rulings.

Finally, a smooth approximation with B-splines for the interactive design of
curved creases is proposed by Tang et al. in [18]. The second part of this
thesis is based on their approach through powerful optimization.

0.2 Overview

This work is organized in two parts. The first three chapters investigate the
differential geometry. The second part consists of the remaining chapters
and is dedicated to the algorithmic treatment of curved creases.

In the first chapter, we introduce the necessary notation and investigate for-
mulations of the developable and curved crease conditions. In particular, we
collect five quantities defining a crease and conclude, that choosing three of
them appropriately yields the other two. Then, the second chapter discusses
two special cases of curved creases, namely degenerated and planar folds.
The remaining special case of creases of constant angle is investigated in
the third chapter. Based on Wunderlich’s results, we are able to describe
creases of constant angle, where one of the surfaces is either a cylinder or a
cone. We obtain explicit parametrizations for the corresponding rotational
surfaces. The resulting curves can be compared with catenaries. Further-
more, we establish a connection between geodesics on rotational quadrics
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and bi-cylindrical, bi-conical and cylindro-conical creases of constant angle.

The second part starts in chapter four with the description of the guided
projection algorithm used for the optimization in the implementation of
a Rhinoceros3D plug-in for the interactive design of developable surfaces.
The variables and constraints used in this optimization setup are discussed
in chapter five. Finally, we present some examples of optimized developables
with curved creases in the last chapter.

0.3 Acknowledgements

First, I would like to thank Professor Helmut Pottmann for his supervi-
sion and instructive suggestions, and Dr. Simon Flöry, who gave me the
opportunity to implement the presented plug-in during my employment at
his company Rechenraum, and supported me with his valuable insights in
optimization.

Furthermore, I am grateful for the valuable discussions with colleagues and
friends, especially Dr. Martin Peternell, Andreas Fuchs and Alexander
Palmrich.
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Part I

Differential Geometry of
Curved Creases
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Chapter 1

Analytic description of
curved creases

We want to study the geometrical behaviour of a surface, that can be ob-
tained by folding a sheet of paper along a curve without stretching or tearing
the paper. Therefore, we consider only surfaces that are composed of two
developable surface patches, which, unrolled into the plane, have the same
curvature along the developed crease curve.

In the following geometric approach, we will refer to a curved crease, to avoid
lengthy formulations, as a pair of (globally defined) developable surfaces σ1
and σ2, which intersect under certain conditions. Cutting these surfaces
along the intersecting curve c yields four surface patches σ+1 , σ

−
1 , σ

+
2 and σ−2 .

The resulting surface pairs (σ+1 , σ
−
2 ) and (σ−1 , σ

+
2 ) simulate the behaviour of

folding a paper along the given curve, see fig. 1.1 and fig. 1.2.

By examining three frames along the intersection curve c of these surfaces,
we will introduce five quantities that describe a curved crease. Furthermore,
the investigation of their interdependence obtained from the curved crease
and developability conditions will yield information about the specification
of a curved crease.

Let (t, ni, bi) denote the Darboux frames of c as curves on σi with the com-
mon tangent vector t. The Frenet-Serret formulas for the resp. normal
curvatures κni , geodesic curvatures κgi and geodesic torsions τi read:

1
|c′| t
′ = κnini −κgibi

1
|c′|n

′
i = −κnit τibi

1
|c′|b
′
i = κgit −τini

If the developable surfaces σi are assumed to be envelopes of one-parameter
families of planes spanned by t and bi, the curvature of the curve c developed
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σ1

σ2

σ−
1

σ−
2

σ+
1

σ+
2

c

c

c

Figure 1.1: two developable surfaces σ1 and σ2 intersecting along a crease
curve c

σ̄−
2

σ̄+
1

σ̄−
1

σ̄+
2

Figure 1.2: the corresponding development combinations (σ̄+1 , σ̄
−
2 ) and

(σ̄−1 , σ̄
+
2 )
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b1

b2

n1 n2

b

n ϕ

ϕ t

σ−
2 σ+

1

c

Figure 1.3: illustration of the three frames (t, n1, b1), (t, n2, b2) and (t, n, b)
of a crease curve c

w.r.t. σi is the corresponding geodesic curvature

κgi = − 1

|c′|
t′bi.

Since we, at least locally, demand two “components” of the developed sur-
faces, we exclude striction curves of σ1 and σ2 from our considerations. As
the curves developed w.r.t. the two surfaces must coincide, the curved crease
condition for not singular curves reads κg1 = κg2 and we denote

κd := κg1 = κg2 .

The subscript d should reflect that κd is the curvature of the developed
crease curve c̄ w.r.t. either one of the surfaces σi.

In order to unite the terms of the two frames, we will also consider the
Frenet-frame of c, whose equations for the curvature κ and torsion τ read:

1
|c′| t
′ = κn

1
|c′|n

′ = −κt +τb
1
|c′|b
′ = −τn

Inserting the first relation into the curved crease condition yields nb1 = nb2.
Thus the (non-trivial) curved-fold condition holds, iff the osculating plane of
the curve is the bisector of the corresponding surface tangent planes. Hence,
we define the enclosing angle ϕ ∈ [−π, π] by

cosϕ = nb1 = nb2,

see fig. 1.3.

The Darboux frames can be expressed in terms of (n, b) by

n1 = − sinϕ n− cosϕ b
b1 = cosϕ n− sinϕ b
n2 = sinϕ n− cosϕ b
b2 = cosϕ n+ sinϕ b
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and it can be observed that changing the sign of ϕ corresponds to exchanging
the subscript of the frames (t, ni, bi).

The curvatures and torsions in terms of the Frenet frame and the angle ϕ
read

κn1 = 1
|c′| t
′n1 = −κ sinϕ

κn2 = 1
|c′| t
′n2 = κ sinϕ

κd = − 1
|c′| t
′bi = −κ cosϕ

τ1 = 1
|c′|n

′
1b1 = τ − ϕ′

τ2 = 1
|c′|n

′
2b2 = τ + ϕ′

from which we conclude the relations

κn1 = −κn2 , τ =
τ1 + τ2

2
and ϕ′ =

τ2 − τ1
2

.

Furthermore, the above equations yield

|κd| ≤ |κ|,

which, interpreted in our setting, tell us that the crease is more strongly
curved than its development.

The last describing quantities introduced are the angles ψi ∈ [0, π) between
the tangent t and the rulings ri of the developable surface patches σi, defined
by

ri = cosψit+ sinψibi. (1.1)

b1

τ1

t

r1

r2

b2

ψ1

ψ2
τ2

σ+
1

σ−
2

c

Figure 1.4: illustration of the angles ψ1 and ψ2

Since we forbid c to be the striction curve of σ1 or σ2, ψ1 6= 0 except for
isolated points.

Denoting the tangent and normal of the developed crease curve c̄ by t̄ and
n̄, the developed rulings r̄i read

r̄i = cosψit̄+ sinψin̄.
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b̄1 = b̄2
r̄1

t̄
ψ2

ψ1

r̄2

σ̄+
1

σ̄−
2

Figure 1.5: development of the surfaces in Fig. 1.4

The surface patches mentioned in the introduction can be parametrized by

σ±i (u, v) = c(u)± vri(u) for v ∈ [0,∞).

Again, changing the sign of ϕ results in exchanging the roles of the surface
pairs (σ+1 , σ

−
2 ) and (σ−1 , σ

+
2 ).

The surfaces σi are developable, iff r′i lies in the tangent plane of σi along
the ruling, that is iff r′ini = 0. We therefore compute

r′i = sinψi(κd − ψ′i)t+ (κni cosψi − τi sinψi)ni + cosψi(ψ
′
i − κd)bi

and conclude the developability condition

κni cosψi = τi sinψi. (1.2)

The following special degenerate cases for values of ϕ can occur:

• trivial fold : iff ϕ ≡ 0 mod π, the three frames coincide and thus the
surfaces do not fold.

• complete fold : iff ϕ ≡ π
2 mod π, the directions of the rulings of the

combined surface patches lie in the same plane spanned by t and bi
and the same halfspace, that is bounded by the plane orthogonal to
either b1 or b2.

These special cases will be discussed later in greater detail. In order to
avoid them in the computations to follow, let us assume ϕ 6= 0 mod π and
ϕ 6= ±π

2 , thus κd 6= 0 and κni 6= 0 except for isolated points whenever
necessary.

Hence, equation (1.2) can be written as

cotψi =
τi
κni
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bi

ni

t

b1

n1

t

b2

n2

Figure 1.6: illustrations of a trivial (left) and complete fold (right)

and inserting the equations from above and utilizing κd = −κ cosϕ yields

cotψ1 =
τ − ϕ′

κd
cotϕ and cotψ2 =

−τ − ϕ′

κd
cotϕ. (1.3)

Adding and subtracting equation (1.3) for i = 1, 2 results in

κd(cotψ1 + cotψ2) = −2ϕ′ cotϕ (1.4)

and
κd(cotψ1 − cotψ2) = 2τ cotϕ. (1.5)

In particular, it can be observed that if ϕ is a solution of equation (1.4),
−ϕ is a solution as well. This corresponds to the two surface pairs obtained
from a curved crease.

From the equations above, the following two special cases of a curved crease
can be detected:

• crease of constant angle: The enclosing angle between the surfaces
is constant iff ϕ′ ≡ 0. It follows from equation (1.4) that cotψ1 ≡
− cotψ2 and thus

ψ1 ≡ π − ψ2,

that is, the developed rulings are reflected at the tangents of the de-
veloped curve.

• planar crease: The crease curve is planar iff τ vanishes. Equation (1.5)
yields cotψ1 ≡ cotψ2 and thus

ψ1 ≡ ψ2,

that is, the developed directions of two corresponding rulings are
collinear.
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c̄

σ̄+
1

σ̄−
2

ψ2

ψ1

b̄i r̄1

r̄2

t̄

c̄

σ̄+
1

σ̄−
2

ψi

b̄i

r̄i

t̄

Figure 1.7: developed rulings of a crease of constant angle (left) and planar
fold (right)

These cases will be discussed in greater detail in chapters 2 and 3. Let us
hence for now also assume ψ1 6= ψ2 and ψ1 6= π − ψ2 except for isolated
points. We will refer to non-planar folds enclosing an angle that is not
constant and not 0 mod π

2 as generic folds.

Eliminating κd from the equations (1.4) and (1.5) yields

τ(cotψ1 + cotψ2) = ϕ′(cotψ2 − cotψ1). (1.6)

We have therefore established a connection between five defining functions
of a curved crease. These are:

• κd, the curvature of the curve developed w.r.t. the surfaces σi,

• τ , the torsion of the spatial crease curve,

• ϕ, the angle enclosed by the osculating planes of the crease and the
corresponding tangent planes of the surfaces,

• ψ1 and ψ2, the angles enclosed by the tangent vector of the curve and
the respective rulings of the developable surfaces σi.

If κd, τ, ϕ, ψ1 and ψ2 are five sufficiently smooth function that satisfy the
system of equations (1.3) - (1.5), they (locally) define a curved crease up to
Euclidean displacement: the curve is determined by its curvature κ = − κd

cosϕ
and torsion τ . The two Darboux frames (t, ni, bi) of c are related to its Frenet
frame by a normal rotation by the angle ϕ. Moreover, the directions of the
corresponding rulings ri are determined by ψi through (1.1). The resulting
adjacent ruled surfaces c(u) + vri are developable since equation (1.3) holds
and enclose a curved crease due to this construction.

The following table illustrates the algebraic (a) resp. differential (d) appear-
ances of the functions in the equations (1.3) - (1.5) and (1.6):
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κd τ ϕ cotψ1 cotψ2

eq (1.3) a a d a
eq (1.3) a a d a
eq (1.4) a d a a
eq (1.6) a d a a
eq (1.5) a a a a a

Since the origin of this system of (differential) equations are the developabil-
ity conditions of the surfaces, it actually consists of two independent equa-
tions from which the others were obtained: the two equations in (1.3) are
equivalent to (1.4) and (1.5), since these equations result from adding and
subtracting the equations in (1.3). The additional, convenient equation (1.6)
holds apart of the cases of a planar fold, i.e.

τ ≡ 0 ⇐⇒ cotψ1 ≡ cotψ2 (1.7)

and crease of constant angle, i.e.

ϕ′ ≡ 0 ⇐⇒ cotψ1 ≡ − cotψ2. (1.8)

Therefore, the developability conditions from equation (1.3) are equivalent
to the combination of equation (1.3) or (1.4) with (1.5). Apart from the
special cases (1.7) and (1.8), this also holds for the combination of (1.6)
with (1.5).

Furthermore, equations (1.3), (1.4) and (1.5) establish a relation between
four of the defining functions and are linear in κd, τ , cotψ1 and cotψ2.
Therefore, the specification of any three of them yields the fourth if

κd 6≡ 0,
ψi 6≡ 0 mod π

2 ,
ϕ 6≡ 0 mod π

2 ,
(1.9)

with the restriction, that in case of a planar fold or crease of constant angle,
just one of the ψi can be defined.

Moreover, equations (1.4) and (1.5) can also be solved for ϕ, since equation
(1.6) is separable and writing equation (1.5) in form of

a(t) = ϕ′(t) cotϕ(t) yields ϕ(t) = arcsin(e
∫
a(ξ)dξ+c).

These solutions are unique for given initial values ϕ0 = ϕ(t0) ∈ (−π, π).

In case of a generic fold, equation (1.5) yields a relation between all five
functions κd, τ , ϕ, cotψ1 and cotψ2 and is also linear in all of them.

Furthermore, arccotx is defined for all x ∈ R, cotψi yields knowledge of ψi.

We therefore conclude:
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Theorem 1.1. Planar folds (τ ≡ 0) and creases of constant angle (ϕ =
const) are uniquely specified (up to initial values) by three of the four func-
tions κd, τ , ϕ and ψ1 satisfying (1.9).

Generic folds, i.e. non-planar folds enclosing an angle that is not constant,
are specified by three of the five functions κd, τ 6≡ 0, ϕ 6= const, cotψ1 and
cotψ2 6≡ ± cotψ1 satisfying (1.9), except for the two triples (κd, τ, cotψi).

It follows, that prescribing the development, i.e. the functions (κd, ψ1, ψ2)
yields a one-parameter family of folds, where the parameter corresponds to
an initial value for ϕ.

Another sufficient specification is obtained from the definition of the curve
trough κ and τ together with the angular function ϕ, since this information
is equivalent to the triple (κd = −κ cosϕ,ϕ, τ).

Furthermore, it is also possible to construct the crease from the specification
of one side, i.e. κd and ψ1, together with ϕ.

17



Chapter 2

Degenerate and planar folds

2.1 Complete folds

If ϕ ≡ ±π
2 , the curvature κd of the developed crease vanishes. That is, the

only possibility for a papter to fold along a curve so that both sides overlap
is just along a straight line in the development. This is supported in a more
illustrative way in [7]: If γ is an arc with non-vanishing curvature and γ+
and γ− are two ε offsets to the concave resp. convex side, then γ+ is strictly
longer than γ, which is strictly longer than γ−. Since folding is an isometry
which preserves lengths, this is a contradiction. Not surprisingly, it follows
from the equations above that κ = ∓κni , τ = τ1 = τ2 and thus

κ(cotψ1 − cotψ2) = 0.

Therefore, if κ does not vanish, the developed rulings are reflected on the
developed curve and thus r1 = −r2.

2.2 Trivial folds

In this case, each two associate rulings are collinear. From the formulas it
follows that κn1 ≡ κn2 ≡ 0 and thus

τi sinψi = τ sinψi ≡ 0 for i = 1, 2.

Since ψi 6≡ 0, the torsion vanishes. In this case of a planar crease, it seems
that there is no relation between the angles ψ1 and ψ2. This corresponds
with the observation, that the rulings in a plane are not uniquely defined.

18



2.3 Planar folds

The angles of the developed rulings are equal iff the torsion vanishes, which
means that the curve c is planar. The following two examples were computed
as follows: Firstly, we prescribe κd and chose the angles ψi to be either (a)
parallel to the y-axis or (b) orthogonal to the curve, i.e. ψi ≡ π

2 .

In order to obtain the function ϕ, the differential equation (1.4) is solved
and thus the actual folding depends on an initial value. The second example
is also a crease of constant angle, since cotψi ≡ 0.

Figure 2.1: planar folds of example (a) with initial values ϕ(0) =
{0, 0.2π, 0.3π, 0.45π, 0.48π, 0.49π}
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Figure 2.2: planar folds of example (b) with initial values ϕ(0) =
{0, 0.2π, 0.3π, 0.4π, 0.45π, 0.48π}

20



Chapter 3

Curved creases of constant
angle

Surface curves, whose osculating planes enclose a constant angle with the
corresponding tangential planes of a surface are called pseudo-geodesics.

Since a curve between two surfaces σ1 and σ2 is a curved crease, iff its
osculating plane is a bisector of the resp. tangent planes, the investigation
of curved creases of constant angle is equivalent to the search for a common
pseudo-geodesic of two surfaces w.r.t. the same angle (up to sign).

In this chapter, curved creases of constant angle between cylinders or cones,
i.e. the pseudo-geodesics on cylinders and cones, will be studied. On the
one hand, they will be characterized in a geometric way as in [20] and [19].
On the other, an analytical approach will prepare parametrizations that
are convenient for development. If such a pseudo-geodesic on a cylinder
or cone σ is found, the second surface of the crease is the envelope of the
tangential planes of σ1 reflected at the osculating planes of the crease curve.
Especially curved creases on cylinders and cones of revolution admit a nice
interpretation in terms of catenaries on those surfaces.

In particular, a characterization of curved creases between the surface combi-
nations (cylinder, cylinder), (cylinder, cone) and (cone, cone), also referred
to as bi-cylindrical, cylindro-conical resp. bi-conical creases, in terms of
geodesics on planes and quadrics can be obtained as a special case of Wun-
derlich’s results in [21] and [22] .

The preparations in the first section yield that a curve c on σ1 is a pseudo-
geodesic with enclosing angle ϕ, iff the Darboux frame of c w.r.t. σ1 with
the curvatures κd = κg1 , κn1 and geodesic torsion τ1, is related to the main
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frame of c with curvature κ and torsion τ by

κd = −κ cosϕ,

κn1 = −κ sinϕ,

τ1 = τ.

Hence, the pseudo-geodesic condition for ϕ = const 6= 0 reads

κd = κn1 cotϕ. (3.1)

The special case of ϕ = π
2 yields the well known condition for geodesic

curves, i.e. vanishing geodesic curvature.

In the following sections, we will therefore study curves on cylinders and
cones that satisfy (3.1) for ϕ = const 6= 0 mod π

2 .

3.1 Curved creases of constant angle on cylinders

3.1.1 Geometric approach

The constant angle between the osculating and tangent planes is reflected
in the behaviour of the tangents of c, as described in [21], in the following
way:

Let σ be a cylinder with z-parallel rulings and tangent planes τ , and c a
pseudo-geodesic w.r.t. the angle ϕ on σ with osculating planes ω. Denote
τ o resp. ωo the set of planes that are parallel to τ resp. ω and contain the
origin o. Then ωo envelop a cone Λ with vertex o, whose tangent planes
ωo enclose constant angle ϕ with the corresponding planes from the pencil
τ o of planes containing the z-axis. Therefore, the intersection of Λ with a
sphere with center o is a loxodrome. Since the tangents of c are τ ∩ ω and
thus parallel to the rulings τ o ∩ ωo of Λ, we conclude the following

Theorem 3.1. The spherical tangential image of a pseudo-geodesic w.r.t.
the angle ϕ on a cylinder is a spherical loxodrome. The constant angle
between the arcs of longitude and the loxodrome is ϕ.

3.1.2 Analytic approach

Let σ1 be a cylinder parametrized with

σ1(u, v) = p(u) + v(0, 0, 1)t (3.2)

with p = (p1(u), p2(u), 0)t ∈ (0, 0, 1)⊥ and, w.l.o.g., |p′|2 = p′21 + p′22 = 1.
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Then, σ1 can be developed into the plane parametrized by σ̄1 = (u, v, 0)t

since the first fundamental forms I and Ī of σ1 resp. σ̄1 read

I = Ī =

(
1 0
0 1

)
.

Denoting e3 = (0, 0, 1)t, let

c(u) = p(u) + h(u)e3 = (p1(u), p2(u), h(u))t

be a parametrization of the crease curve and

c̄(u) = (u, h(u))

its development in σ̄.

The curvature κp of the planar curve p reads

κp = p′1p
′′
2 − p′′1p′2.

The tangent t of c reads

t =
c′

|c′|
=

1√
1 + h′2

(p′ + h′e3).

and the remaining vectors of the Darboux frame of c w.r.t. n1 are

n1 =
(σ1)u × (σ1)v
|(σ1)u × (σ1)v|

= p′ × e3 = (p′2,−p′1, 0)t

and

b1 = t× n1 =
1√

1 + h′2
(h′p′ − e3).

The derivatives of t and n1,

t′ =
1

√
1 + h′2

3 (−h′h′′p′ + (1 + h′2)p′′ + h′′e3)

and
n′1 = p′′ × e3 = (p′′2,−p′′1, 0)t,

yield the curvatures and torsion of the frame

κn1 = 1
|c′| t
′n1 = − 1

1+h′2κp

κd = − 1
|c′| t
′b1 = h′′√

1+h′2
3

τ1 = 1
|c′|n

′
1b1 = h′

1+h′2κp.

Hence, the pseudo-geodesic condition (3.1) reads

κp = − h′′√
1 + h′2

tanϕ. (3.3)
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Denoting α = −
∫
κp dt, integration yields for constant ϕ

arcsinhh′ = α cotϕ =⇒ h′ = sinh(α cotϕ). (3.4)

Since c′ = (p′1, p
′
2, h
′)t with |c′| = cosh(α cotϕ), the normalized tangent reads

t =
c′

|c′|
=

1

cosh(α cotϕ)

 sinα
cosα

sinh(α cotϕ)

 ,

which is a parametrization of a spherical loxodrome. This confirms Thm.
3.1.

We note, that h can be obtained from a given p by

h =

∫
sinh(α cotϕ) ds.

On the other hand, the profile curve p is determined by h through

p =

∫
(sinα, cosα) ds with α = tanϕ arcsinhh′ = −

∫
κp dt

up to Euclidean displacement in the xy-plane.

Unfortunately, the required arc-length parametrization of p in the first case
is not satisfactory for applied purposes.

3.1.3 Curved creases of constant angle on cylinders of revo-
lution

In case of a rotational cylinder with radius 1 and the z-axis as axis of revo-
lution, α(u) = u and therefore integration of (3.4) yields

h(u) = tanϕ cosh(u cotϕ).

Since the development of the curve is a parametrization of a catenary, it is
not surprising that these curves describe the behaviour of chains, i.e. one-
dimensional, flexible, inductile objects with an even distribution of mass,
when wound around a cylinder, see fig. 3.1.

3.2 Curved creases of constant angle on cones

3.2.1 Geometric approach

Like in the geometric characterization of pseudo-geodesics on cylinders, it is
not surprising that we can establish a relation between pseudo-geodesics on
cones and loxodromes as well:
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Figure 3.1: cylindrical catenaries and their development

Let σ be a cone with vertex o, c a pseudo-geodesic w.r.t. the angle ϕ on σ
and ρ the polarity of a sphere with center o. Let furthermore τ denote the
tangent planes of σ, and ω the osculating planes of c, see fig. 3.2. Then the
dual curve of c w.r.t. ρ is traced out by the points ωρ and has the tangents
tρ = (ω ∩ τ)ρ = ωρτρ. Since oωρ ⊥ ω and oτρ ⊥ τ , it follows that

ϕ = ∠(ω, τ) = ∠(oωρ, oτρ) = ∠(oωρ, ωρτρ) = ∠(oωρ, tρ).

Thus the tangents tρ enclose a constant angle with the rulings of the cone
oωρ and the dual curve of c is therefore a loxodrome on oωρ.

τ

ϕ

τρ

τρ ϕ

ωρ

o

ω

Figure 3.2: illustration of the polarity of Thm. 3.2

Since the argumentation above can be reversed, it follows:
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Theorem 3.2. [19, Thm. 3] Let c denote a curve on a cone σ with vertex
o and ρ the polarity of a sphere with center o. Then c is a pseudo-geodesic
on σ iff the dual curve of c w.r.t. ρ is a loxodrome on a cone with vertex o.

3.2.2 Analytic approach

Let σ1 be a cone parametrized by

σ1(u, v) = vr(u)

with r = (r1(u), r2(u), r3(u))t and, w.l.o.g., |r| = 1 and |r′| = 1.

Then, σ1 can be developed in the plane parametrized by σ̄1 = v(cos(u), sin(u), 0)t

since the first fundamental forms I and Ī of σ1 resp. σ̄1 read

I = Ī =

(
v2 0
0 1

)
.

Let
c(u) = h(u)r(u)

be a parametrization of the crease curve and

c̄(u) = h(u)r̄(u)

with r̄(u) = (cos(u), sin(u))t its development in σ̄. Then the tangent t of c
reads

t =
c′

|c′|
=

1√
h2 + h′2

(h′r + hr′).

The frame of c w.r.t. σ1 is completed with the normal vector

n1 =
(σ1)u × (σ1)v
|(σ1)u × (σ1)v|

= −r × r′

and the bi-normal vector

b1 = t× n1 =
1√

h2 + h′2
(−hr + h′r′).

Let furthermore κ
(r)
g , κ

(r)
n and τ (r) denote the quantities of the Frenet frame

of r w.r.t. S2, that is (t(r), n(r), b(r)) = (r′, r, r′ × r). They read

κ
(r)
n = r′′r = −1

κ
(r)
g = −r′′(r′ × r) = r′′(r × r)
τ (r) = 0

(3.5)

Computation of the derivatives

t′ =
1

√
h2 + h′2

3

(
(h2 − hh′′ + 2h′2)(−rh+ r′h′) + h(h2 + h′2)κ(r)g (r × r′)

)
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and
n′1 = r′′ × r.

yields the curvatures and torsion of the frame

κn1 = 1
|c′| t
′n1 = − h

h2+h′2κ
(r)
g

κd = − 1
|c′| t
′b1 = − 1√

h2+h′2
3 (h2 − hh′′ + 2h′2)

τ1 = 1
|c′|n

′
1b1 = h′

h2+h′2κ
(r)
g .

Hence, the pseudo-geodesic condition (3.1) reads

κ(r)g =
h2 − hh′′ + 2h′2

h
√
h2 + h′2

tanϕ. (3.6)

If r is parametrized with the angular functions η(u) and θ(u) by

r(u) =

cos η cos θ
sin η cos θ

sin θ


the condition |r′|2 = 1 reads

η′2 =
1− θ′2

cos2 θ
for θ 6= π

2 mod π

since

r′ = η′

− sin η cos θ
cos η cos θ

0

+ θ′

− cos η sin θ
− sin η sin θ

cos θ

 .

Then, the geodesic curvature simplifies to

κ(r)g = r′′(r × r′) =
(1− θ′2) tan θ + θ′′√

1− θ′2
.

3.2.3 Curved creases of constant angle on cones of revolution

Specializing the considerations from section 3.2.1 to cones of revolution
yields a classification and explicit parametrizations:

Since t ⊂ ω, it follows that the tangents of the dual curve tρ contain the ideal
points ωρ. If σ is a cone of revolution with opening angle 2α and w.l.o.g.
axis z, then the dual surface of σ is the ideal curve of the orthogonal cone
of σ. Thus, tρ have constant inclination α w.r.t. horizontal planes. If c is a
pseudo-geodesic, it follows from Thm. 3.2 that the dual tangents tρ enclose
constant angle ϕ with the rulings of the cone oωρ. Hence we conclude, that
the distance hρ from the origin and height zρ of the points of the dual curve
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of c depend linearly on an arc-length s. We therefore make the following
ansatz:

hρ = s cosϕ and zρ = s sinα+ d.

The resulting relation

hρ
zρ − d

=
cosϕ

sinα
= ε = const (3.7)

characterizes a second-order surface of revolution ∆ as the set of points,
whose distances between a focal point o and the director plane z = d have
constant ratio, namely the numerical eccentricity ε. Hence the dual curve
of c is a curve of constant slope α on ∆.

x, y

z

zρ
hρ

z = d

∆

Figure 3.3: illustration of the geometric relation (3.7)

Since the argumentation can be reversed, it follows:

Theorem 3.3. [19, Thm. 4] Let ∆ denote a second-order surface of rev-
olution with vertical axis and real valued numerical eccentricity ε and ρ the
polarity on a sphere with a focal point of ∆ as center. Applying ρ to a curve
of constant slope α on ∆ yields a pseudo-geodesic c on a cone of revolution
σ with opening angle 2α. The angle ϕ, that is enclosed by the osculating
planes of c and the tangent planes of σ, is determined by

cosϕ = ε sinα.

Conversely, every pseudo-geodesic on a cone of revolution can be obtained
from such a construction.

We therefore distinguish between the following cases:

• ε < 1 (α+ ϕ > π
2 ): “elliptic type” – ∆ is a prolate ellipsoid,
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• ε = 1 (α+ϕ = π
2 ): “parabolic type” – ∆ is an paraboloid of revolution,

• ε > 1 (α+ ϕ < π
2 ),{

d 6= 0 : “hyperbolic type” – ∆ is a two-sheeted hyperboloid,

d = 0 : “conic type” – ∆ is a cone of revolution.

Returning to the parametrization, equation (3.3) for a rotational cone with
θ = π

2 − α = const reads

h2 − hh′′ + 2h′2

h
√
h2 + h′2

=
tan θ

tanϕ
. (3.8)

Let w.l.o.g. ϕ ∈ (0, π) and θ ∈ (0, π2 ). This yields

1 R ε ⇐⇒ α+ γ R
π

2
⇐⇒ ϕ R β ⇐⇒ 1 R

tan θ

tanϕ
.

With the abbreviations p = tanϕ and q = tan θ, the corresponding solutions
of (3.8) finally read

h(u) =



√
p2−q2

p cos(u
√
p2−q2/p)+q

for ϕ > θ ... elliptic type,

2q
u2−1 for ϕ = θ ... parabolic type,

−p2+q2

p cosh(u
√
−p2+q2/p)+q

for ϕ < θ ... hyperbolic type (h′(0) = 0),

h0e
u
√
q2/p2−1 for ϕ < θ ... conic type (h′(0) 6= 0).

Furthermore, the solutions of the initial value problem (3.8) with h(t0) =
h0 > 0 and h′(t0) = h1 are unique:

Utilizing the substitutions f1 = h and f2 = h′ yields the equivalent system
of differential equations

f ′1 = g1(f1, f2) = f2
f ′2 = g2(f1, f2) = 1

f1
(f21 + 2f22 − f1

√
f21 + f22

tanβ
tanϕ)

with initial values (f1(t0), f2(t0)) = (h(t0), h
′(t0)). Since g = (g1, g2) is

Lipschitz-continuous for f1 > 0, the uniqueness of the solution of this initial
value problem for h(t0) > 0 follows by Picard-Lindelöf.

As in the case of the cylinder, these curves depict the behaviour of chains
wound around a cone of revolution, see fig. 3.4 - 3.7.
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Figure 3.4: conical catenaries of elliptic type and their development

Figure 3.5: a conical catenary of parabolic type and its development

Figure 3.6: conical catenaries of hyperbolic type and their development
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Figure 3.7: conical catenaries of conic type and their development

3.3 Curved creases of constant angle between cylin-
ders and cones

3.3.1 Geometric description

Since the condition for a curved crease of constant angle reads ψ1 = π−ψ2,
the developed crease between two families of developed rulings is the curve,
for which this reflection property holds. We therefore conclude:

The developed crease between


two cylinders is a straight line.

a cylinder and a cone is a parabola.

two cones is an ellipse or a hyperbola.

.

ψ1b̄i
ψ2 t̄

r̄1

r̄2

ψ1

b̄i

ψ2

t̄

r̄1

r̄2
ψ1

t̄

ψ2
b̄i

r̄1

r̄2

Figure 3.8: illustrations of the developments of crease curves of constant
angle between a cylinder and a cone (left) and two cones (middle, right)

Because of the isometry between the spatial configuration and the developed
crease, it follows that the curve c must lie on a rotational quadric with one
or two real foci. In order to assure the curved crease property, the tangent
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planes must be interchanged by the reflection on the osculating planes of c.
This yields the following

Theorem 3.4. A curve c is a curved crease of constant angle between

1. two different cylinders, iff c is a geodesic in the plane,

2. a cylinder and a cone, iff c is a geodesic on a rotational quadric with
one real focal point, i.e. a paraboloid,

3. two different cones, iff c is a geodesic on a rotational quadric with two
real foci, i.e. a prolate ellipsoid or two-sheeted hyperboloid.

The real foci of the quadrics are vertices of the resp. cones. In case of the
paraboloid, the direction of the axis of rotation corresponds to the direction
of the rulings of the cylinder.

Proof. The case of two cylinders is clear from the considerations above.

Let c be a curve on a rotational quadric Ψ with one or two real foci. The
tangent t and principal normal n in a curve point p span the osculating
plane ω. Furthermore, let ri denote the normalized vectors from p to the
foci of Ψ and n⊥ = span{t, t × n}. Then ε = r1 ∪ r2 is a plane containing
the axis of rotation of Ψ. Let bi denote the vectors obtained by rotation of
t by π

2 in the planes t ∪ ri, so that they lie in the same halfspace bounded
by TpΨ, see fig. 3.9.

ψ1
ψ2

ϕ1

ϕ2

t

b1

b2

r1

r2

τ1

τ2

ω

ε
n

Figure 3.9: the angles and planes used in the proof of Thm. 3.4
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Let further the angles ψi and ϕi be defined by

ri = cosψit+ sinψibi and bi = cosϕin+ sinϕi(t× n).

If t ∈ ε, then the reflection property of the conic section in ε ∩ Ψ yields
ψ1 = π − ψ2. Since b1 = b2, ϕ1 = −ϕ2 = 0 if and only if n is perpendicular
to TpΨ.

If t /∈ ε, then c is a geodesic on Ψ if and only if ε ∩ n⊥ = ε ∩ TpΨ since
t ∈ n⊥ ∩ TpΨ. Because of the reflection property of the conic section ε ∩Ψ,
this holds if and only if the reflection on n⊥ maps r1 7→ −r2. This is the
case if and only if ϕ1 = −ϕ2 and ψ1 = π − ψ2. Thus the two sets of rulings
r1 and r2 define a bi-conical resp. cylindro-conical crease of constant angle.

If on the other hand c is a bi-conical resp. cylindro-conical crease of constant
angle, the developed crease curve is a conic section. Due to the isometry
between the development and the spatial configuration, c must lie on a
rotational quadric Ψ with two foci, which correspond to the vertices of the
cones or directions of the rulings resp.

In particular, we obtain families of cylindro-conical and bi-conical creases
that enclose a constant angle ϕ, this angle parametrizing the family. The
relation between ϕ and the quantities of the corresponding quadric Ψ can
be visualized in the following way:

In case of two real foci, the main axis length of Ψ must equal the main axis
length of the corresponding conic section due to the isometry between the
spatial configuration and its development. Imagine two pencils of lines in
the plane, which are paired so that the reflection property holds, i.e. along
an ellipse or a hyperbola, and each two rulings are connected with a joint
at their intersection. The family of curved creases of constant angle ϕ can
be generated from this planar configuration, i.e. ϕ = 0, by increasing ϕ in
the following way:

In the case of an ellipse, we move the cone vertices apart from each other
to induce folds with increasing ϕ. By increasing distance, i.e. increasing
eccentricity of Ψ, the minor axis length decreases.

In case of a hyperbola, we move the cone vertices towards each other to
induce folds with increasing ϕ. As the eccentricity of Ψ decreases, the minor
axis length decreases as well.

This behaviour is illustrated in fig. 3.10, fig. 3.15 and fig. 3.16.

Similar considerations can also be done for the case of a paraboloid. We start
with two bundles of lines, such that one vertex is at infinity and one a real
point. We imagine them again to be paired, so that the reflection property
holds, i.e. along a parabola, and connected with a joint at their intersec-
tion. Inducing the fold by moving the vertex of the cone, we obtain a one-
parameter family of cylindro-conical crease curves on rotational paraboloids.
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As ϕ increases, the focal length of the corresponding paraboloids decreases,
see fig. 3.11 and fig. 3.14.

Figure 3.10: rulings of bi-conical creases of constant angle on pro-
late ellipsoids (left) and two-sheeted hyperboloids (right) with ϕ ∈
{0, 0.2π, 0.3π, 0.4π}
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Figure 3.11: rulings of a cylindro-conical crease of constant angle on a
paraboloid with ϕ ∈ {0, 0.1π, 0.2π, 0.3π}

3.3.2 Other interpretations

Thm. 3.4 is actually a special case of Wunderlichs results in [21] and [22],
where he characterizes cylindro-conical and bi-conical pseudo-geodesics. In
this section, we give an insight to his geometric approaches.

Pseudo-geodesics between two cylinders

Since the spherical image of the tangents of a pseudo-geodesic on a cylinder
is a loxodrome and the direction of the rulings is determined by the pole of
the supporting sphere, there are no pseudo-geodesic curves on two different
curved cylinders.

Pseudo-geodesics between a cylinder and a cone

If given a cone Γ with vertex o, Wunderlich refers to the cone with vertex
o and rulings perpendicular to the tangent planes of Γ as the polar cone Λ
of Γ. If c is a curve on Λ and ρ the polarity of a sphere with center o, then
the tangents of the dual curve of c are parallel to the corresponding rulings
of Γ. Together with Thm. 3.1 and Thm. 3.2, we deduce the following
construction of cylindro-conical pseudo-geodesics w.r.t. the angles ϕ1 and
ϕ2:
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• start with a spherical loxodrome k with inclination angle ϕ1

• determine the polar cone Λ of the cone connecting the origin o with k

• draw a loxodrome l with inclination angle ϕ2 on Λ

Then, the dual curve of l w.r.t. a polarity of a sphere with center o is the
common pseudo-geodesic.

Wunderlich utilizes this construction to obtain analytical representations
and concludes:

Theorem 3.5. [21, Thm. 7] Every cylindro-conical pseudo-geodesic is also
a pseudo-geodesic of a a rotational surface Ψ. The axis of Ψ contains the
vertex of the cone and its direction corresponds to the direction of the rul-
ings of the cylinder. The meridian curve is the polar curve of a Clairaut
multiplicatrix1 w.r.t. a concentric circle. Furthermore, the sum of the in-
clination angles of the three osculating planes equals π

2 (after appropriate
determination of sign).

In case of a curved crease, that is in Wunderlich’s notation a pseudo-geodesic
w.r.t. the angles γ1 and γ2 = −γ1, the meridian curve simplifies to a bundle
of circles containing the origin o,

x2 + y2 + z2 = Cz, (3.9)

that is a parabolic pencil of circles. Therefore, the application of the polarity
yields a pencil of parabolas with common focal point o and thus the surfaces
Ψ are paraboloids. Since the inclination angle of the osculating plane w.r.t.
Ψ is π

2 , the common pseudo-geodesic is a geodesic on Ψ.

Figure 3.12: the polarity of the unit circle applied to a circle from the
parabolic pencil (3.9)

1see [12], p. 369ff
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Furthermore, the intersection curves of the cylindrical surface with planes
perpendicular to its rulings are hypercycloids2 and can be parametrized by

p1(φ) = sin(2γ1)(cosh(cφ) cosφ− c sinh(cφ) sinφ)

p2(φ) = sin(2γ1)(cosh(cφ) sinφ+ c sinh(cφ) cosφ)

with c = cot γ1.

The parametrization in (3.12) differs, since the curve is arc-length parametrized
there.

Pseudo-geodesics between two cones

It follows from Thm. 3.2 that a bi-conical pseudo-geodesic c is the polar
curve of two different cone loxodromes. Polarization of an osculating plane
of c on two spheres with centers o1 resp. o2 yields two loxodromes l1 and
l2 whose rulings are parallel. Translating l2 by o1 − o2 yields a loxodrome
l′2 on the cone o1l1, which is the image of l1 w.r.t. a collineation κ. This
collineation κ is perspective, since the plane orthogonal to o1o2 through o1
is its axis and o1 its center. Therefore the question about the existence of
bi-conical pseudo-geodesics reduces itself to the determination of pairs of
loxodromes l1, l

′
2 w.r.t. a bundle in o1, so that lκ1 = l′2 for a perspective

collineation κ with center o1.

It turns out, that these loxodromes lie on one-parameter family of surfaces
of revolution. Further investigations and reversing the polarity yields:

Theorem 3.6. [19, Thm. 6] Every bi-conical pseudo-geodesic is also a
pseudo-geodesic curve of a surface of revolution Ψ. The axis connects the
vertices of the two cones and the sum of the inclination angles of the oscu-
lating plane w.r.t. the surfaces equals π

2 .

In case of a curved crease, that is in Wunderlich’s notation a pseudo-geodesic
w.r.t. the angles γ1 and γ2 = −γ1, the surfaces of revolution containing
the loxodromes are spheres of the hyperbolic sphere pencil with nullspheres
(0, 0, 0) and (0, 0, 2)

x2 + y2 + z2 = C2(z − 1). (3.10)

Applying the polarity of the unit-sphere with the origin o1 as center yields
a pencil of second order surfaces of revolution with common focal points o1
and (0, 0, 1).

2see [13], p. 121ff
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Figure 3.13: circles of the “lower” and “upper” half of a hyperbolic pencil
(3.10) polarized on the unit circle

Furthermore, Wunderlich concludes:

Theorem 3.7. [22, Thm. 10] The geodesic lines c of a second order surface
of revolution with focal points f1 and f2 are the pseudo-geodesics on the cones
f1c and f2c.

3.3.3 Analytic description

Developed rulings r̄2 of σ2 if σ1 is a cylinder

From the formulas above, the angle ψ1 between the tangent and the ruling
is determined by

cotψ1 =
τ1
κn1

= −h′.

Therefore, we write

cosψ1 =
h′√

1 + h′2
and sinψ1 = − 1√

1 + h′2
.

The tangent t̄ and normal vector n̄ of the developed curve c̄ = (u, h(u)) read

t̄ =
1

1 + h′2
(1, h′) and n̄ =

1

1 + h′2
(−h′, 1).

Since ϕ = const, iff ψ2 = π − ψ1, the rulings of σ̄2 are

r̄2 = cosψ2t̄+ sinψ2n̄ =
1

1 + h′2
(2h′, h′2 − 1). (3.11)

38



Curved creases of constant angle between two cylinders

The second surface σ2 is a cylinder, if the developed rulings are parallel,
that is, if there is a unit-vector v = (v1, v2), so that

r̄2 = (v1, v2) =⇒ h′ = ±
√

1 + v2
1− v2

.

Therefore,

h(u) = ±
√

1 + v2
1− v2

u+ c1

and thus κd ≡ 0. Therefore the curvature κ must vanish if the crease is not
a complete fold.

Curved creases of constant angle between a cylinder and a cone

The second surface σ2 is a cone, if the developed rulings r̄2 are a bundle of
lines with a real vertex. Thus the developed vertex z̄ = (z̄1, z̄2) is contained
in all rulings, iff

r̄⊥2 z̄ = r̄⊥2 c̄ ⇐⇒ (h′2 − 1)z̄1 − 2h′z̄2 = (h′2 − 1)u− 2h′h

holds for all parameter values of u.

In case of z̄1 = 0, the differential equation reads

−2h′z2 = (h′2 − 1)u− 2h′h

and is solved by the two parabolas

h1,2(u) =
1

2
(2z2 ∓

1

c
u2 ± c) with c ≥ 0,

as already proposed in the previous section. In case of z̄1 6= 0, the solution
parabola of (0, z̄2) has to be translated by (z̄1, 0), which yields the solutions

h1,2(u) =
1

2
(2z2 ∓ c(u− z1)2 ±

1

c
) with c ≥ 0.

Furthermore, the height-function h also determines the profile curve p of the
cylinder σ1. Since the developed crease can be translated to the origin, we
assume w.l.o.g. h to be

h(u) = cu2.

Equation (3.3) yields the curvature of the profile curve

κp(s) = − 2c√
1 + 4c2s2

tanϕ
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and thus angular function α = −
∫
κp reads

α(u) = − arcsinh(2cu) tanϕ.

Integration of (3.4) results in the parametrization of the profile curve

p1(u) = u cos2 ϕ cosα−
√

1 + 4c2u2 sin(2ϕ)

4c
sinα (3.12)

p2(u) = 4cu cos2 ϕ sinα+

√
1 + 4c2u2 sin(2ϕ)

4c
cosα− sin(2ϕ)

4c
. (3.13)

Solving r2 × (c− z) = 0 yields the vertex

z =
(
0,−sin(2ϕ)

4c
,
cos(2ϕ)

4c

)t
of the cone, which is also the focal point of the paraboloid, see fig. 3.14.

Developed rulings r̄2 of σ2 if σ1 is a cone

From the formulas above, the angle ψ1 between the tangent and the ruling
is determined by

cotψ1 =
τ1
κn1

= −h
′

h
.

Therefore, we write

cosψ1 = − h′√
h2 + h′2

and sinψ1 =
h√

h2 + h′2
.

Denoting r̄ = (cosu, sinu) and r̄⊥ = (− sinu, cosu), the tangent t̄ and
normal vector n̄ of the developed curve c̄ = hr̄ read

t̄ =
1√

h2 + h′2
(h′r̄ + hr̄⊥) and n̄ =

1√
h2 + h′2

(−hr̄ + h′r̄⊥),

which confirms to
r̄1 = cosψ1t̄+ sinψ1n̄ = r̄.

Since ϕ = const, iff ψ2 = π − ψ1, the rulings r2 of σ̄2 are

r̄2 = cosψ2t̄+ sinψ2n̄ =
1

h2 + h′2
((h2 − h′2)r̄ − 2hh′r̄⊥). (3.14)
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Curved creases of constant angle between two cones

Utilizing equation (3.14), the Hesse normal form of the second rulings reads

2h2h = (2hh′r̄ + (h2 − h′2)r̄⊥)

(
x
y

)
.

W.l.o.g., we assume the vertex z of the second cone to be (z1, 0), and thus
a necessary condition for h reads

2h2h′ = (2hh′ cosu− (h2 − h′2) sinu)z1.

Not surprisingly, choosing h to be the “height” for the parametrization of
an ellipse with focal points (0, 0) and (z1, 0) and minor axis length b, that is

hell(u) =
4b2(±

√
4b2 + z21 + z1 cosu)

8b2 + (1− cos(2u))z21

is a solution of the differential equation above.

Also, h being the “height” for the parametrization of an hyperbola with
focal points (0, 0) and (z1, 0) and minor axis length b, that is

hhyp(u) =
4b2(±

√
−4b2 + z21 + z1 cosu)

8b2 − (1− cos(2u))z21

solves the differential equation.

The functions hell and hhyp determine the geodesic curvature κ
(r)
g of the

direction vectors of the first cones rulings trough the relation established in
(3.6). The illustrations in fig. 3.15 and fig. 3.16 of c = hr were done with
numerical integration of the frame of r given in (3.5).
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Figure 3.14: cylindro-conical crease of constant angle on a paraboloid with
ϕ ∈ {0, 0.3π, 0.4π}
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Figure 3.15: bi-conical crease of constant angle on a prolate ellipsoid with
ϕ ∈ {0, 0.2π, 0.4π}

43



Figure 3.16: bi-conical crease of constant angle on a two-sheeted hyperboloid
with ϕ ∈ {0, 0.3π, 0.44π}
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Part II

Optimization
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Chapter 4

Algorithmic setup

During my employment at Rechenraum, a company founded by Dr. Simon
Flöry specializing in geometric data processing, I was given the opportunity
to develop the mathematical core for a Rhinoceros3D plug-in for the interac-
tive design of developables with curved creases, based on [18]. The following
chapters describe the implementation and give examples of its functionality.

4.1 Algorithm

The idea behind the algorithm proposed by Tang et al. is the following:
for a set of variables x ∈ RN , the hard constraints, e.g. the developability
condition, are expressed in at most quadratic equations

φi(x) = 0, i = 1, ...,M1.

The resulting system of equations is in general underdetermined and high-
dimensional and thus its minimization is not trivial.

The guided projection approach of Tang et al. combines an iterative Gauß-
Newton algorithm with further, at most quadratic soft constraints,

ψi(x) = 0 i = 1, ...M2,

e.g. fairness energies, which lead the interim iterations x1, x2, ... on the
solution manifold:

In every iteration xk, the linearized hard resp. soft constraints read

φi(xk) +∇φi(xk)(x− xk) = 0 and ψi(xk) +∇ψi(xk)(x− xk) = 0

and can therefore be expressed in the systems of linear equations

A
(k)
h x− b(k)h = 0 and A(k)

s x− b(k)s = 0.
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Introducing the weights ε1, ε2 and additionally imposing a Tychonoff regu-
larization, the next iterate xk+1 is computed as the minimizer of the weighted
linear least squares

‖A(k)
h x− b(k)h ‖

2 + ε21‖A(k)
s x− b(k)s ‖2 + ε22‖x− xk‖2. (4.1)

Tang et al. propose, that ε1 can be decreased in every iteration to facilitate
convergence.

This algorithm terminates if either the maximum number of iterations is
exceeded or the maximum relative change of the residual falls below a given
threshold.

4.2 Weighted linear least squares

The sum of the linear squares in (4.1) can be written as

‖W (Ax− b)‖2 with W = diag(1, ...1, ε1, ...ε1, ε2, ..., ε2), (4.2)

and expanded to

‖W (Ax− b)‖2 = (W (Ax− b))t(W (Ax− b))
= (Ax− b)tW 2(Ax− b)
= (Ax)tW 2Ax− (Ax)tW 2b− btW 2Ax+ btW 2b

= xtAtW 2Ax− 2btW 2Ax+ btW 2b.

Therefore, minimization of (4.2) results in solving the so-called normal equa-
tions

AtW 2Ax−AtW 2b = 0,

which are obtained from differentiation with respect to x.

4.3 Interactive design

We will see that this iterative algorithm will, if the initialization is good
enough, in general reduce the residual strongly in the first iterations, yield-
ing feasible results. The implementation therefore calls a small number of
iterations, e.g. 10-20, per intermediate position of a mouse move to give
immediate visual feedback to the user. When the mouse is released at the
final position, the number of iterations can be increased, e.g. to 100, taking
longer computation time into account. In both cases, the second termina-
tion condition is set to a low value, e.g. 10−7. As we will see, this condition
unfortunately will not be active very often.
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Chapter 5

Computational setup

5.1 Theoretical background

We refer to surfaces parametrized by

σ(u, v) = (1− v)a(u) + vb(u) with v ∈ [0, 1] (5.1)

with boundary B-spline curves a and b as ruled surfaces patches. We assume
a and b to be of the same degree d and defined by the control point sequences
ai and bj over the same interval [u0, uend].

The ruled surface patch σ is developable, iff

p(u) = det(b(u)− a(u), a′(u), b′(u)) = 0 (5.2)

holds for parameters u ∈ [u0, uend].

Denoting the four boundaries of a ruled surface patch by s in case of a
spline, r in case of a ruling and p, if the corresponding boundary (s or r)
degenerates to a point, developables are composed of the following types of
developable surfaces:

• srsr: a regular developable surface patch,

• srsp: a developable surface with one boundary ruling degenerated to
a point,

• spsp: a developable surface with both boundary rulings degenerated
to points,

• srpr: a cone,

• r...r: a planar polygon.
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Although a combination of an infinite number of them is theoretically pos-
sible, we consider just finite combinations for modelling purposes.

As seen in previous sections, the transition curve a of two surfaces is a curved
crease, iff the osculating plane span{t, n} bisects the corresponding tangent
planes span{t, bi}. The angle ϕ of the crease is defined by

cosϕ = nb1 = nb2 and sinϕ = nn1 = −nn2, (5.3)

and thus the osculating plane is orthogonal to n1 + n2.

Furthermore, we will introduce a constraint to preserve an approximated
isometry between the spatial configuration and a given development.

In conclusion, our computational approach is as follows:

We store the combinatorial information of a composite surface in a mesh,
whose faces correspond to surface patches and edges to curved creases or
boundaries. We optimize the control points of those curves and auxiliary
variables with constraints imposing

• developability on faces,

• the curved crease condition on edges,

• isometry on the whole mesh.

As soft constraints, we will smooth the curves with a fairness energy. In
addition to the overall Tychonoff-regularization, we impose further regular-
izations in order to prevent trivial results.

5.2 Detailed discussion of variables and constraints

When it comes to implementation details, we will denote either of the at
most quadratic constraints φi and ψi by F{cond}, where {cond} stands for
an abbreviation of the constraint. Therefore, our objective function reads∑

ε2{cond}‖F{cond}‖
2.

We will also give simplified examples for the gradients ∇F{cond}.
Furthermore, we write

a = (a01, a02, a03, a11, a12, a13, . . . , an1, an2, an3)
t

for the vector consisting of triples of coordinates (ai1, ai2, ai3) of the control
points ai.
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5.2.1 Developability constraint

Since the boundary curves of a patch are of degree d in the resp. parameter
sub-intervals defined by their knot-sequence, we can restrict the developa-
bility condition (5.2) to a finite number of evaluation parameters. For a
simplified counting of the number of evaluation points, we postulate that a
and b have the same number of control points m+ 1.

If that is the case, p in equation (5.2) is a polynomial of degree at most
3d − 2 in the corresponding parameter sub-intervals [ui, ui+1]. Since a and
b admit the representation

a(u) =

d∑
k=0

ca,ku
k and b(u) =

d∑
k=0

cb,ku
k for u ∈ [ui, ui+1],

p simplifies to

p(u) =
d∑

k=0

d−1∑
l=0

d−1∑
j=0

uk+l+j det(cb,k − ca,k, ca,l+1, cb,j+1).

The determinant vanishes for k = d and d − 1 = l = j, and thus the
polynomial p is of degree at most 3d − 3. Hence it is sufficient to enforce
developability in 3d− 2 parameter values of each sub-interval.

In order to avoid lengthy formulations, we furthermore assume the two
boundary curves of a patch to be defined over the same (uniform) knot-
vector. We denote the set of parameters obtained by equidistant division of
each sub-interval into 3d− 2 parameters by P1.

Since p is a cubic constraint in the unknown control points, we rewrite the
developability condition

0 = (b− a)n = a′n = b′n,

introducing normals n, which are constant along a ruling exactly in case of
a developable surface. By adding new variables for the normals n, we turn
the cubic constraint into a quadratic one.

5.2.2 Normals as variables

Tang et al. propose two ways how normals can be added to the optimization
problem as variables:

Either, the normals are introduced at every evaluation parameter of the
developability condition, in the following referred to as normal vectors.

Alternatively, it is possible to approximate the spline a′× b′ of degree 2n−2
by a normal spline of (user-defined) lower degree dns with a certain number
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of control points mns, which are used as variables. This can reduce the
number of variables for normals.

Example: In case of a uniform knot sequence of a spline of degree d withm+1
control points, we have m + 1 − d parameter sub-intervals. Therefore, the
number of used normal vectors would be (m+ 1− d)(3d− 2). Therefore, we
reduce the dimension of variables of the optimization problem by choosing
mns lower than this value.

Implementation

A B-spline a of degree d can be represented as a linear combination of its
control points ai with the basis functions as coefficients

a(u) =
m∑
i=0

Nd
i (u)ai.

The l-th derivative w.r.t. the curve parameter u can be then written as

a(l)(u) =

m∑
i=0

N
d(l)
i (u)ai.

Unlike Tang et al., we found it more convenient to use these basis functions
for the evaluation of the B-spline curves and its derivatives instead of their
de Boor points.

Denoting

N
d,m(l)
k =

(
N
d(l)
0 (uk)I3 N

d(l)
1 (uk)I3 · · · N

d(l)
m (uk)I3

)
with I3 = diag(1, 1, 1), the evaluation of a(l) a parameter uk ∈ P1 can then
be written as

a(l)(uk) = N
d,m(l)
k a.

Furthermore, the evaluation of a(l) in all parameter values u0, u1, . . . ∈ P1

can be done in a single matrix-vector multiplicationa
(l)(u0)

a(l)(u1)
...

 =

N
d,m(l)
0

N
d,m(l)
1
...

a.

The matrices N
d,m(l)
k can be precomputed as soon as the number of control

points and the degree of the B-spline are known and are independent from
the positions of the control points. Therefore, they do not change in the
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course of the actual optimization, where the B-spline curves need to be
evaluated.

The same holds also for the evaluation of the normals with matrices N
dns,mns(l)
k

if the normal-spline is used.

If the simplified extraction of the vector of variables of our optimization
problem reads

x =

a
b
n

 ,

the developability condition for a face with boundary curves a, b and normals
n can be written as

‖Fdev(x)‖2 =

|P1|∑
k=0

‖Fdev,k(x)‖2

with

Fdev,k =

(b(uk)− a(uk))n(uk)
a′(uk)n(uk)
b′(uk)n(uk)

 =

nk · (Nd,m
k (b− a))

nk · (Nd,m′
k a)

nk · (Nd,m′
k b)

 for uk ∈ P1,

where

nk =

{
(nk1, nk2, nk3)

t normal vectors,

Ndns,mns
k n normal spline.

The corresponding gradient reads

∇Fdev,k =

−nk ·N
d,m
k nk ·Nd,m

k (Nd,m
k (b− a)) · E

nk ·Nd,m′
k (Nd,m′

k a) · E
nk ·Nd,m′

k (Nd,m′
k b) · E

 ,

with

E =

{
I3 normal vectors,

Ndns,mns
k normal spline,

Of course, this representation holds just in case of one patch with unified
orientations. As the combinatorics of the problem grow, and if furthermore,
control points are multiple or fixed, the indices of the variables are not
successive any more and thus attention needs to be paid when it comes to
the location of the entries in the Jacobian of the whole problem.

Using derivatives of the curves instead of the de Boor points has the disad-
vantage of possible high variations of the entries in the Jacobian. In order
to avoid big outliers, we therefore scale the three rows of Fdev,k and ∇Fdev,k
with the constant factors 1

|b(uk)−a(uk)| ,
1

|a′(uk)| and 1
|b′(uk)| resp.
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5.2.3 Unit-length constraint for normals

Since the developability condition is trivially fulfilled if the normals become
zero-vectors, an additional constraint for unit-length is needed and reads∑

(n · n− 1)2.

In case of normal vectors, we demand this unit length in every evaluation
parameter as a soft constraint with weight εnvunit. In case of the normal spline,
we require unit-length for certain control points of the normal spline, e.g.
the first and the last one, as a hard constraint and the other control points
to be of unit length as soft constraints with lower weight εnsunit.

This condition is important since disappearing normals usually go hand in
hand with the loss of developablility (and the curved crease condition).

Implementation

For x = n, we write

‖Funit(x)‖2 =

|P1|∑
k=0

‖Funit,k(x)‖2

with
Funit,k(x) = (n2k1 + n2k2 + n2k3 − 1).

Therefore
∇Funit,k(x) = 2(nk1, nk2, nk3).

5.2.4 Curved crease condition

Since the osculating plane is in general spanned by a′ and a′′, we rewrite
(5.3) to obtain the curved crease condition for our implementation purposes

0 = a′(n1 + n2) = a′′(n1 + n2).

The orientation of the normals in this equation is crucial, since a change of
sign corresponds to the geodesic crease condition

0 = a′(n1 − n2) = a′′(n1 − n2),

where the curves developed w.r.t. the two surfaces are reflected.

Given a polynomial crease curve on a polynomial surface, the second in-
volved surface is in general not polynomial, see [15]. Therefore, this con-
dition is only an approximation. Another drawback is that this condition
performs correctly only if ‖n1‖ = ‖n2‖, which also is not guaranteed.
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Nevertheless, it turns out that we achieve an accuracy that is high enough for
our purposes since the used materials are usually forgiving when it comes to
small “imperfections”. We therefore enforce the two curved crease conditions
at the same parameter values as the developability condition, i.e. P1.

Implementation

We illustrate the quadratic constraint Fcc(x) for two given patches with
boundary curves (a, b) and (a, c) with normals n1 and n2. The extracted
necessary variables are

x =


a
b
c
n1

n2

 .

Then

‖Fcc(x)‖2 =

|P1|∑
k=0

‖Fcc,k(x)‖2

with

Fcc,k =

(
a′(uk)(n1(uk) + n2(uk))
a′′(uk)(n1(uk) + n2(uk))

)
=

(
(n1,k + n2,k) · (Nd,m′

k a)

(n1,k + n2,k) · (Nd,m′′
k a)

)

where

ni,k =

{
(nik1

, nik2
, nik3

)t normal vectors,

Ndns,mns
k ni normal spline.

Thus the gradient reads

∇Fcc,k =

(
(n1,k + n2,k) ·Nd,m′

k 0 0 (Nd,m′
k a) · E (Nd,m′′

k a) · E
(n1,k + n2,k) ·Nd,m′′

k 0 0 (Nd,m′
k a) · E (Nd,m′′

k a) · E

)
.

Again, this simple representation holds just in case of two patches with
appropriate orientations of the curves and normals. As mentioned above,
the combinatorics will in general not allow such closed representations.

Analogous to the developability condition, we normalize the rows in order to
prevent outliers by multiplication with a constant factor, in this case 1

|a′(uk)|
resp. 1

|a′′(uk)| .
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5.2.5 Isometry constraints

The developability and curve crease constraint ensure local developability in
surfaces joined along common curves1. Since we want to mimic curved crease
origami, we want to specify the development as an additional constraint.

Given a polynomial developable surface, the developed surface is in general
not polynomial. Therefore this condition is again just an approximation.
Nevertheless, as in the case of the curved crease constraint, we are able to
achieve sufficient accuracy with an approach which is based on ideas in [11]:

Sampling the boundary curves of a developable surface patch appropriately
yields a quad-dominant mesh with almost planar faces. The mesh obtained
by successively “unrolling” the faces in the plane therefore approximates the
development.

In order to avoid computing the development in every iteration, we add the
vertices of the unrolled sampled mesh as two-dimensional variables v̄ and
preserve the development through the additional isometry constraint∑

(i,j)

(‖vi − vj‖2 − ‖v̄i − v̄j‖2)2,

where vi, vj are the evaluated points of the spatial curves and v̄i, v̄j the
corresponding vertices in the plane, paired such that v̄i and v̄j are either
neighbours or diagonals of a face of the sampled mesh.

We furthermore want to restrict the movement of the developed mesh ver-
tices to a set of prescribed planar curves c̄. Hence we add a (planar) tangent
distance minimization constraint for curve closeness∑

((v̄i − f̄i) · n̄i)2,

where the f̄i denote the footpoints of v̄i on c̄ and n̄i the normals of c̄ in those
points. The footpoints and normals are updated in every iteration.

We furthermore keep the corners of the sampled mesh fixed, i.e. we do
not add them as variables. In order to prevent overfoldings, we apply the
fairness energy term described in the following section.

Implementation

Let P2 denote the set of parameter values of a curve obtained by equidis-
tant sampling of the sub-parameter intervals by a (user-defined) number,
that specifies the density of the sampling for the development. Since we

1Tang et al. introduce an additional developability term for vertices. We do not support
this (yet)
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will evaluate the curves at these parameters in every iteration, we also com-
pute the basis functions for the parameters P2 in the initialization process,
enabling faster evaluation later on.

Let us now schematically consider, disregarding fixed and multiple vertices,
the constraint for four different lengths of a sampled face

F faceisom(x) =


‖Nd,m

i a−Nd,m
i b‖2 − ‖āi − b̄i‖2

‖Nd,m
i+1a−Nd,m

i a‖2 − ‖āi+1 − āi‖2

‖Nd,m
i+1a−Nd,m

i b‖2 − ‖āi+1 − b̄i‖2

‖Nd,m
i a−Nd,m

i+1b‖2 − ‖āi − b̄i+1‖2

 with ui, ui+1 ∈ P2

for the simplified variables vector x = (a,b, āi, āi+1, b̄i, b̄i+1)
t. Thus the

gradient ∇F face
isom = 2(F1, F2) consists of

F1 =


(Nd,m

i a−Nd,m
i b)Nd,m

i −(Nd,m
i a−Nd,m

i b)Nd,m
i

(Nd,m
i+1a−Nd,m

i a)Nd,m
i+1 −(Nd,m

i+1a−Nd,m
i a)Nd,m

i

(Nd,m
i+1a−Nd,m

i b)Nd,m
i+1 −(Nd,m

i+1a−Nd,m
i b)Nd,m

i

(Nd,m
i a−Nd,m

i+1b)Nd,m
i −(Nd,m

i a−Nd,m
i+1b)Nd,m

i+1


and

F2 =


−(āi − b̄i)

t (āi − b̄i)
t

(āi+1 − āi)
t −(āi+1 − āi)

t

−(āi+1 − b̄i)
t (āi+1 − b̄i)

t

−(āi − b̄i+1)
t (āi − b̄i+1)

t

 .

Secondly, given a vertex v̄i, the linear tangent distance minimization, short
TDM, reads

FTDM(v̄i) = (v̄i − f̄i)n̄i,

and thus the gradient is simply

∇FTDM(v̄i) = n̄ti.

These isometry-facilitating constraints also act as additional regularization:
when looking at the first equation of the developability condition, the opti-
mization could work towards minimizing the distance of the curves. These
constraints will in general antagonize that effect.

5.2.6 Fairness energy constraint

It may seem unnecessary to use additional fairness constraints for B-splines,
but nevertheless a supplementary smoothing of the control point structure
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yields more appealing surfaces in practice. We therefore minimize the fol-
lowing fairness energy

m−1∑
i=1

‖ai−1 − 2ai + ai+1‖2 (5.4)

for the control points ai with i = 0, . . . ,m of every curve.

We also use this constraint in a (two-dimensional) analogous way for the
sampled polylines of the developed mesh.

Implementation

Assuming all vertices to be different and variable for compact notation, the
corresponding linear function reads

Ffair(a) =

 a0 − 2a1 + a2
...

am−2 − 2am−1 + am

 = F a

with

F =


I3 −2I3 I3

I3 −2I3 I3
...
I3 −2I3 I3

I3 −2I3 I3

 .

Obviously,
∇Ffair = F.

Since F is constant, it can be precomputed during the initialization.

Remark: Also in case of fixed or multiple control points, the fairness energy
can be expressed in a sum of linear squares of the entries of Ffair = F a+b,
with a constant vector b.

5.2.7 Regularization constraint

In order to prevent big variations from the input, we use the additional
Tychonoff constraint

‖x− xk‖2, (5.5)

where xk stands for the last iterate.
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Implementation

Denoting the identity matrix by I, the corresponding linear function for the
vector of variables x reads

Freg(x) = x− xk,

and thus
∇Freg = I.

5.3 Combinatorial consistency

As mentioned in the introduction, the combinatorial information of the com-
posite developables is stored in a mesh, where every face corresponds to one
of the five types of surface patches, and the edges correspond to the bound-
ary curves, labeled accordingly with either s, r or p.

In our approach, this underlying mesh serves just for combinatorial pur-
poses, i.e. the positions of the vertices do not matter. For efficient data
management between the mesh structure and optimization algorithm, the
(current) geometric information is stored in external arrays, which are linked
to the mesh via vertex, (half-)edge and face properties. We will skip a de-
tailed description of the implementation here. Nevertheless, it should be
pointed out that because of the assumptions made in the previous section,
the underlying data must be consistent in the following ways:

• face: A face has at least four boundary edges. If a face has four
boundary edges, at most 2 of them are labeled with s. In case of
higher valence, the adjacent edges must be rulings.

• edge-face: If a face is bounded by two splines, the number of control
points and the degree must be the same. Furthermore, we assume
them to be parametrized over the same knot sequence.

• edge-edge: The splines/rulings meeting in a vertex must have the same
first resp. last control point, since just one variable will be initialized
for them.

Since we use the second consistency assumption only to count the number
of needed evaluation parameters, we can generalize our constraints for sur-
faces with different numbers of control points and degree by choosing P1

accordingly.
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5.4 Accompanying program

The “core program” using the optimization discussed above consists of five
phases:

• Phase 1: We start by defining the combinatorics of the underlying
mesh.

• Phase 2: We prescribe the development, i.e. curves, whose control
points will be dragged. By the end of this phase, we can prepare the
B-spline basis functions of the curves for P1.

• Phase 3: Now, further properties can be set, e.g. the development
settings, weights, usage of normal spline, solver settings,... Finalizing
this phase enables computation of basis functions, i.e. normal spline
and for P2, if necessary. We also set up the optimization problem,
since the dimensions of the variables are known at this point.

• Phase 4: We define the spatial curves (by movement of vertices). End-
ing this phase runs the optimization.

• Phase 5: The optimized results can be retrieved.

This process is implemented in the interface of the plug-in RRDevelopable
in the following way:

• Firstly, the user prescribes the developed curves, implicitly finalizing
phase 2.

• After that, further properties can be set. By choosing a curve for
control point dragging, the user finalizes phase 3.

• By selecting a control point, the user defines the updated variables.
By dragging this control point, phase 4 is called with a low number of
iterations to give immediate visual feedback in every mouse position
with phase 5. By releasing the mouse, phase 4 is called with a higher
number of iterations and the final optimizations results are retrieved
with phase 5.

• Unless the user exits the plug-in, we return to the start of phase 4.

5.5 Further implementation features

Additionally, we would like to mention further implementation details, that
eventually yield better results:

60



• Data preprocessing: In order to prevent loss of significance in our
computations, we move the input data to the origin and scale it before
running the computations. The output is transformed back again.

• Scaling of weights: To make the weights comparable between different
examples, we scale them accordingly, i.e. we take the sampling factors
into account in the case of the normal spline and development.

• Softening of the constraints at the boundaries: The edges labeled
as rulings remain rulings throughout the optimization process. Since
this is in some cases a huge restriction when it comes to the freedom
of movement of the neighbouring rulings, we either suggest inscribing
the face into a lense, i.e. a face with labels spsp, or we provide the
possibility to additionally lower the weights of the developability and
crease conditions by multiplication with a piecewise linear function w
with user-defined breaking points 0 ≤ ξ1 ≤ ξ2 ≤ ξ3 ≤ ξ4 ≤ 1, see
fig. 5.1. This usually yields better results in the middle parts of the
surface patches. An obvious drawback is the additional trimming of
the surfaces.

ξ1 ξ2 ξ3 ξ4 1

1

w

Figure 5.1: multiplicative weight function for the developability and curved
crease condition

5.6 Parameters

This setup offers many possibilities to adjust the optimization to a given
problem since there are many parameters one can choose from. An overview
of the constraints and corresponding parameters is given in the following
table:
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control points
normal

sampled mesh
vectors spline

Fdev 1 1 1(s1)

Ffold 1 1 1(s1)

Funit ε3 ε
(s1)
3

Fisom 1(s2)

FTDM 1(s2)

Ffair ε1 ε
(s2)
1

Freg ε2 ε2 ε2 ε2

The superscript (si) stands for the scaling with the appropriate sampling
factor, as referred to in section 5.5.

It is of course possible to differentiate further between the weights for the
different types of variables. Moreover, we collected the following parameters:

• reduction factor for ε2: We decrease the weight of the fairness con-
straints by multiplication by a factor fε1 with fε1 < 1, i.e. the actual
weight in the i-th iteration reads ε1f

i
ε1 .

• number of intermediate and final iterations: The proximity of the
initial values to a plausible result has an impact on the number of
iterations needed to achieve a good approximation. As the changes
in the control points are not huge in the interactive design approach,
we usually do 20 iterations per intermediate and 100 iterations in the
final mouse position. However, for larger mouse moves like in the
following examples, more intermediate iterations are necessary since
the “errors” from the previous results seem to accumulate.

• sampling of the developed mesh: Experiments yield, that a sampling
factor of 3 is in some cases already sufficient and the results do not
differ much from those obtained from tests with a higher sampling, see
fig. 5.2.

• normal spline settings: The user can also define the number of control
points and the degree of the approximating normal spline. We still
need to do some tests to see how this impacts the resulting shapes.

• parameters of the piecewise linear function for softening weights: The
user can define the breaking points of the piecewise linear function for
softening of the weights at boundaries.

• regularization weight for moving points: By the value of the weight
for the regularization of the moving point, it is possible to express the
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Figure 5.2: Developed boundary curves of the optimized surfaces (blue) and
sampled meshes (black) for the sampling factors 1, 2, 3 and 4. The settings
are those of the example below, the developed surfaces correspond to the
final position.

importance of the positions of the moving points. We usually assign
100ε2.

In the following example, we would like to illustrate the robustness of the
solver w.r.t. the choice of parameters ε1, ε2 and ε3.

5.6.1 Robustness

The underlying geometry consists of two surface patches meeting at a com-
mon boundary curve with an inflection point. The cubic curves have seven
control points. We will move one control point via three intermediate posi-
tions to its final position.

General settings

The secondary parameters mentioned above are in this case the follow-
ing: We choose fε1 = 0.8. As the mouse movements are rather big, we
choose the number of intermediate iterations to be 50. In the final posi-
tion we compute 100 iterations. The sampling factor of the developed mesh
is 3. Although we scale the weights accordingly, we find that the qual-
ity of our results achieved for fixed parameters εi varies with the sampling
factor for the developed mesh. In order to reduce further parameters, we
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Figure 5.3: input curves and mouse positions

choose to represent our normals through normal vectors in this example.
We also utilize the relaxation of the weights at the boundary with break-
points (b0, b1, b2, b3) = (0, 0.05, 0.95, 1) of the linear function. Finally, the
Tychonoff regularization weight of the moving control point is chosen to be
100ε2.

Statistics

This problem has therefore in total 285 variables, i.e. the input dimension,
and 822 constraints, i.e. the output dimension.

Those are partitioned as follows:

variable type dim

control points 51

normal vectors 168

sampled mesh (2D) 66

constraint type dim

Tychonoff 285

fairness 111

developability 168

fold 56

isometry 110

TDM 33

moving point 3
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Results

We run the optimization for weights of the fairness energy ε1 = 10−k,
the Tychonoff regularization ε2 = 10−l0.8i and unit length ε3 = 10−m for
(k, l,m) ∈ {4, . . . , 7} × {0, . . . , 7} × {0, . . . , 7}. The resulting final surfaces
are displayed in fig. 5.4 in a grid. The values of the corresponding weights
decrease along the coordinate axes.

decre
asing ε2

−→

d
ec

re
as

in
g
ε 3
−→

←− decreasing ε1

Figure 5.4: results for different combinations of the weights (ε1, ε2, ε3)

The color-encoding should represent the following rough analysis of the sur-
faces:

• pink: Encodes surfaces with “higher” Gaussian curvature, and there-
fore those who are “less” developable. This may be the result of van-
ishing normals, due to a low weight for unit length.

• light purple: Encodes surfaces with a “high” residual of the isometry
constraint, i.e. whose developments do not match the starting curves
so well. This may be the result of an insufficient number of iterations
or unsuitable combination of weights.

• blue: These are the surfaces that have sufficiently low residual values.

In conclusion, we obtain overall good results for (k, l,m) ∈ {5, 6, 7, 8} ×
{1, . . . , 8} × {1, 2} for the above stated general settings.
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5.6.2 Detailed discussion of a good result

In the following, we examine the resulting surfaces of the optimization pro-
cess for the weights (ε1, ε2, ε3) = (10−5, 10−2, 10−2). The intermediate and
final surfaces and their developments are displayed in fig. 5.5 and fig. 5.6.

Figure 5.5: evolution of the optimized surfaces for the weights (ε1, ε2, ε3) =
(10−5, 10−2, 10−2).

Figure 5.6: optimized sampled meshes of the surfaces in fig. 5.5 (left) and
the development of the surfaces after the final optimization (right).

Residuals

We illustrate the behaviour of the weighted L2-residuals εcond‖Fcond‖2 of the
iterations in the optimization problem for the first and last mouse move in
fig. 5.7 and 5.8 and observe the following:

Since we initialize the normals in every mouse move, we have a zero unit
length residual in both first iterations. The sampled mesh also has a zero
curve closeness residual in the first iteration of the first mouse move, but
as the optimized sampled mesh is used for the initialization in the mouse
moves to follow, the residual in general will not be 0.
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As we approximate with splines and demand slightly incompatible con-
straints, we only get an approximation of a developable with a crease. Thus,
we witness a huge drop of the residuals in the first iterations and little
changes afterwards.

Figure 5.7: weighted residuals of the iterations after the first mouse move

Figure 5.8: weighted residuals of the iterations after the last mouse move

67



Computation times

The following times (in sec.) for the evaluation of curves during the opti-
mization process, preparation of the normal equations and solving of the
resulting linear system of equations refer to a intel-core i5-4210u processor.

number of
iterations

evaluation normal
equations

solve

position 1 50 0.447 0.063 0.06

position 2 50 0.744 0.54 0.67

position 3 50 0.821 0.047 0.069

position 4 100 2.085 0.066 0.12

5.7 Convergence

The main idea of the solver in the guided projection algorithm is to describe
a given problem through at most quadratic, zero-residual hard-constraints.
Since this setting would be insufficient to determine a satisfying solution, ad-
ditional fairness constraints, whose weights decrease to zero as the iterations
progress, are added as soft energies.

Although some of our constraints, e.g. the curved crease and the isometry
related conditions, are not zero-residual and are partially incoherent because
of our approximations, we nevertheless use this approach. Not surprisingly,
we therefore encounter a steep decrease of the residuals in the first iterations,
but little changes afterwards. The tables in fig. 5.9 and fig. 5.10 show
the residuals of the iterations after the first mouse move with with 1000
resp. more than 3600 iterations. Anyway, the result obtained after the first
iterations is usually sufficient for our approximations of developables with
curved creases.

If we just enforce zero-residual hard-constraints, i.e. the developability con-
dition (and thus unit length), with the Tychonoff-regularization, our algo-
rithm terminates after one iteration since this geometric constraint is ful-
filled. Nevertheless, the output will not be visually appealing very often.
Fig. 5.11 shows the weighted residuals of this reduced problem after adding
the fairness curve constraint. It can be observed, that the only non-zero
residual corresponds to the fairness constraint.
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Figure 5.9: weighted residuals of the iterations after the first mouse move

Figure 5.10: weighted residuals of the iterations after the first mouse move,
stopping at a change in the objective function less than 10−5
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Figure 5.11: weighted residuals of a reduced problem
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Chapter 6

Further examples

6.1 Moebius strip

As an example, we simulate the bending of a planar surface patch to a
Moebius strip. Fig. 6.1 shows the given input curves, i.e. (straight) cubic
splines with 15 control points, and the mouse positions of the first and last
control points.

Figure 6.1: input curves and mouse positions

To facilitate continuous closure, we impose further conditions to the bound-
ary normals and second and next to last control points in the final mouse
move.

The resulting optimized surfaces, their developments and sampled meshes
are displayed in fig. 6.2 and 6.3.
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Figure 6.2: intermediate and final optimization results

Figure 6.3: sampled meshes

6.2 Composite developable

Let us assume that we want to fold a sheet of paper along a set of prescribed
creases, as in fig. 6.4.

Since the rulings will in general not be aligned to the boundaries, we extend
the curves. For efficient computation, we use the combinatorics shown in
fig. 6.5. Thus our mesh consists of twelve srsp- and three srsr-patches.
The triangle in the middle is kept open.

We initialize a fold by moving one point downwards and applying stronger
Tychonoff regularization on the three vertices of the triangle, see fig. 6.6. We
also impose further constraints to the normals to preserve smooth transitions
between the patches.

By moving the point downwards, we initiate a so-called “valley” crease be-
tween the two neighbouring patches. Since, given the geometry of one sur-
face involving a curved crease defines the other surface uniquely, the type,
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Figure 6.4: desired crease pattern

Figure 6.5: underlying combinatorics of the extended unfolding of the de-
velopable

i.e. “mountain” or “valley”, of the other creases is predetermined. We
therefore do not need to and cannot prescribe the type of the crease in our
approach. Nevertheless, we can achieve the desired result by initializing the
movement of the control points accordingly.

For fabrication purposes, we finally trim the surfaces with a box, see fig.
6.7. Unrolling the surfaces and labeling them accordingly as mountains and
valleys we obtain the fold-pattern shown in fig. 6.8, which can be used to
build a model, see fig. 6.9.
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Figure 6.6: optimized surfaces for the final mouse position

Figure 6.7: final CAD-model of the optimized surfaces

Figure 6.8: fold-pattern (the transitions between the walls of the box and
the surfaces cannot be obtained by folding)
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Figure 6.9: final model made out of paper and polypropylene
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