WIENER MITTEILUNGEN

WASSER • ABWASSER • GEWÄSSER

Anaerobe Abwasserreinigung

Beeinflussende Faktoren der Versäuerung eines Zitronensäurefabrikabwassers

Dietmar Moser

WIENER MITTEILUNGEN

WASSER • ABWASSER • GEWÄSSER

Band 173

Anaerobe Abwasserreinigung

Beeinflussende Faktoren der Versäuerung eines Zitronensäurefabrikabwassers

Dietmar Moser

Herausgeber Prof. Dipl.Ing. Dr. H. Kroiß Technische Universität Wien Institut für Wassergüte und Abfallwirtschaft Dissertationsschrift zur Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

Institut für Wassergüte und Abfallwirtschaft TU- Wien

Karlsplatz 13 / 226 1040 Wien

Institut für Wassergüte und Abfallwirtschaft Karlsplatz 13/226; 1040 Wien Tel: + 43 1 58801 - 22611

> Fax: + 43 1 58801 - 22699 Mail: iwag@iwag.tuwien.ac.at

Alle Rechte vorbehalten.

Ohne Genehmigung der Herausgeber ist es nicht gestattet,
das Buch oder Teile daraus zu veröffentlichen

© Institut für Wassergüte und Abfallwirtschaft TU-Wien, 1999

Druck: Riegelnik 1080, Piaristengasse 19

ISSN 0279 - 5349 ISBN 3 - 85234 - 064 - 0

KURZFASSUNG

Nach Ausführung der biochemischen Grundlagen werden Entscheidungskriterien für die Verfahrenswahl inklusive der wichtigsten Problemkreise bei der Abwasserversäuerung kurz dargestellt. Eine wichtige Rolle für die Überwachung und Steuerung anaerober Prozesse spielt die Analytik - Erfahrungen zur Aussagekraft verschiedener Parameter gekoppelt mit ihrer Eignung zur Überwachung und Früherkennung von Störungen sind Gegenstand eines eigenen Kapitels. Im nächsten Kapitel wird die spezielle Abwassersituation eines Zitronensäureproduzenten beleuchtet, der Weg zur Problemlösung und Verfahrenswahl beschrieben, die ausgeführte Anlage vorgestellt und einige Betriebsdaten im Untersuchungszeitraum aufgelistet und kommentiert.

Die Wirkung der wichtigsten die Versäuerung beeinflußenden Parameter ist Gegenstand der beiden folgenden Kapitel, in die sowohl Erfahrungen mit der Großanlage als auch Ergebnisse einer Reihe von Versuchsanlagen im Labormaßstab einflossen. Untersucht wurde der Einfluß von Temperatur, pH-Wert, Belastung, Abwasserzusammensetzung und Biomassezugabe in Form von Faul- und Belebtschlamm auf die Vorversäuerung. Vor der Diskussion der Ergebnisse im Vergleich mit Literaturerfahrungen wird ein mathematisches Modell zur Berechnung und Darstellung der wichtigsten pH-abhängigen Gleichgewichtskonzentrationen im Versäuerungsbehälter ausgehend von einem Rechenmodell für den Methanbehälter (SVARDAL 1991-1) entwickelt, vorgestellt und sein möglicher Einsatz beispielhaft skizziert.

SUMMARY

Based on the biochemical background of anaerobic waste water treatment processes the problems of acid formation in one and two stage fermentations are discussed. Chemical analytics play an important role on the controll of anaerobic processes. Therefore in a separate chapter the significance of different parameters and their application for the controll of acidification processes is dealt with. Of special importance is an early information on process disturbances and conciderations concerning the balancing of the relevant processes.

The practical experience with the large scale wastewater treatment plant, where the described procedures were applied, are the main purpose of the thesis. The main influencing parameters on both the lab scale and large scale processes are compared and the influence of important process variables like temperature, pH, load, waste water composition and addition of aerobic and anaerobic sludges on the acid formation is investigated. The results of the work are discussed and compared with results from the literature. In addition a mathematical modell dealing with the main pH-dependend equilibrium conditiones for acidification reactions was developed on basis of existing modells for anaerobic waste water treatment processes. It was found that the modell is applicable to the investigated plant.

II

DANKSAGUNG

Allen, die am Gelingen dieser Arbeit beteiligt waren, möchte ich an dieser Stelle herzlich danken.

Dazu gehören an erster Stellt die beiden Anaerobexperten an unserem Institut, Herr Prof. Dipl.Ing. Dr. Helmut Kroiss und Herr Dipl.-Ing. Dr. Karl Svardal, die mir vor allem während des dreijährigen Betriebes der Anlage unter meiner Leitung nicht nur in fachlicher Hinsicht wertvollen
Beistand geleistet haben.

Die Firma, von der ich im Rahmen meiner Arbeit volle Unterstützung bei den zur Optimierung der Abwasserreinigungsanlage erforderlichen Untersuchungen erhielt, werde ich nie vergessen.

Neben der Werksleitung danke ich Herm Dr. Westermayer für sein Verständnis und den ausgezeichneten und interessierten Klärwärtern Herm Böck, Herm Binder, Herm Harrer, Herm Remes und Herm Jahn für ihren unermüdlichen Einsatz und ihre Genauigkeit bei der Durchführung der erforderlichen Analytik.

Hier erwähnen möchte ich weiters Herm Ing. Dittinger, der während meiner Abwesenheiten in Zusammenarbeit mit den Klärwärtem für eine klaglose Funktion der Anlage sorgte und mir damit oftmals einen ungestörten Urlaub ermöglichte.

Besonderer Dank gebührt auch meinem Freund und Mentor, Doz. Dipl.-Ing. Dr. Norbert Matsché, der mir bei der Fertigstellung mehr als ein wertvoller Diskussionspartner war.

Schließlich seien meine Eltern, die geduldig das zehnjährige Reifen dieser Arbeit beobachteten, in dieser Reihe genannt.

Oh Schnecke, erklettere den Fujiyama - aber langsam, langsam!

(Issa)

INHALTSVERZEICHNIS

1.	Einleitung		1
2.	Grundlage	en der anaeroben Abwasserreinigung	3
	2.1. Biod 2.1.1. 2.1.2. 2.1.3.	chemische Grundlagen	3 3 4
	2.2. Mikr	oorganismen in der Abwasserreinigung	5
	2.2.1. 2.2.2.	AllgemeinesAnaerober Abbau	5 6
	2.3. Wad	chstum von Mikroorganismen	7
	2.3.1. 2.3.2. 2.3.3. 2.3.4. 2.3.5.	Allgemeines	7 7 8 9 10
		ahrenswahl (ein- oder zweistufig ?)	12
			14
		rersäuerung	
	2.6.1. 2.6.2.	Allgemeines Auswirkungen auf den Methanbehälter	14 15
	2.6.2.1. 2.6.2.2. 2.6.2.3.	Versäuerungsgrad	15 15 16
	2.6.3.	Definition des Versäuerungsgrades	16
3.	Chemisch	/physikalische Analytik	21
	3.1. Allge	emeines	21
	1.70 to 1.70 t	eutung und Bestimmung relevanter Parameter	21
	3.2.1.	CSB (Chemischer Sauerstoffbedarf)	21
	3.2.2.	BSB ₅ (Biochemischer Sauerstoffbedarf)	22
	3.2.3.	TOC (total organic carbon), TC (total carbon)	23
	3.2.4.	Feststoffe	23
	3.2.5.	Stickstoff	23
	3.2.6.	Schwefel	24
	3.2.7.	Alkalität (Säurekapazität)	24
	3.2.8.	Organische Säuren und TOS (titrierbare organische Säuren)	24
	3.2.9.	Erdalkali-, Alkali- und sonstige Metalle	25
	3.2.10.	Gaskomponenten	25
	3.2.11.	Temperatur	25
	3.2.12.	pH-Wert	26
4.	Die ARA F	Pemhofen	27
	4.1. Das	Produktionsverfahren	27

	4.2.	Das A	bwasser	27
	4.3.		erfahrenswahl	28
	4.4.		nreibung der Anlage	29
	4.5.	Betrie	bswerte	30
	4.5.1		Einfahrbetrieb	30
	4,5.2		Betriebswerte Oktober 1986 bis Dezember 1988	31
	4.	5.2.1.	Abwasserkonzentration	31
	4.	5.2,2.	Abwasserfracht	32
	4.	5.2.3.	Gasproduktion	33
5.	Vers	äuerur	gsbehälter Pernhofen	35
	5.1.	Allger	meines	35
	5.2.		eratur	35
	5.3.		ert	38
	(CECCECE CEC			
	5.4.	Belas	tung, Aufenthaltszeit und Abwasserkonzentration	. 39
6.	Vers	uchsar	nlagen zur Versäuerung	41
	6.1.	Aufga	benstellung	41
	6.2.	Versu	che im Durchlaufreaktor (Chemostat)	41
	6.2.1 6.2.2	•	Material und Methoden Untersuchung der maximalen Belastungskapazit	41
			(+ Einfluß des pH-Wertes)	42
	6.2.3		Versuchsphasen mit konstantem pH-Wert	43
	6.2.4	¥	Darstellung der Ergebnisse	46
		2.4.1.	Temperatur	46
		2.4.2.	Versäuerungsgrad	46
	(=)/(C)	2.4.3. 2.4.4.	Stabilität der Versäuerung	48 49
			Gaszusammensetzung	49
	6.3.		versuche zur Versäuerung	5,670
	6.3.1	•	Versäuerungsversuche mit Schlammzugabe	49
		3.1.1.	Versuchseinstellung bei 40° C	49
	6.3	3.1.2.	Versuchseinstellung bei 50° C	50
	6.3.2	•	Versäuerungsversuche mit Glucosemonohydrat	51
7.	Bered	chnung	der Gleichgewichtskonzentrationen	53
	7.1.	Allger	neines	53
à	7.2.	Gültig	keit des Modells	53
	7.3.	Chem	ische Gleichgewichte	54
	7.3.1		Kohlensäure	54
	7.3.2		Organische Säuren	55
	7.3.3 7.3.4		Ammonium	56 56
			Wasser	56
	7.4.		beparameter für die Modellberechnungen	
	741		Temperatur	56

7.4.: 7.4.: 7.4.:		3. Organische Säuren	56 57 58
	7.5.	Berechnungsmöglichkeiten	58
	7.6.	Anwendung des Modells auf das Abwasser von Pernhofen	60
8.	Litera	aturerfahrungen	63
	8.1.	Versäuerung von Glucose	63
	8.1.1 8.1.2 8.1.3	Konstante Temperatur (30° C)	63 64 64
	8.2.	Versäuerung von Saccharose	64
	8.2.1 8.2.2	The state of the s	64 65
	8.3.	Versäuerung anderer Substrate	65
	8.3.1		65
	8.3.2 8.3.3		65 66
	8.3.4		66
	8.3.5		66
	8.3.6		67
	8.3.7	. Hefeabwässer	67
	8.4.	Sonstiges	67
	8.4.1 8.4.2 8.4.3	Bildung und Umsetzung von Milchsäure	67 68 68
9.	Zusa	mmenstellung der Ergebnisse	69
4	9.1.	Temperatur	70
	9.2.	pH-Wert	71
3	9.3.	Abwasserzusammensetzung, Belastung und Aufenthaltszeit	71
:	9.4.	Schlammrückführung	73
3	9.5,	Vergleich der Untersuchungsergebnisse mit den Literaturerfahrungen	73
9	9.6.	Schlußfolgerungen	74
	9.6.1. 9.6.2.	를 가는 그렇게 되었다면 그런	74 75
10.	Zusar	mmenfassung	77.
11.	Litera	turverzeichnis	81
12.	Anha	ng	A-1
		verzeichnis	VI
Tat	pellenve	rzeichnis	VIII
SVI	nholver	reichnis	IX

ABBILDUNGSVERZEICHNIS

Abbildung 2.1.: Verlauf und Produkte der wichtigsten Gärungen (SCHLEGEL 1992)	4
Abbildung 2.2.: Schematische Darstellung des anaeroben Stoffumsatzes mit den Haupt- (I-III) und Untergruppen (①-⑧) der beteiligten Mikroorganismen (SAAKE 1986)	6
Abbildung 2.3.: Beziehung zwischen Bakteriendichte, Substratkonzentration, Verdoppelungszeit und Bakterienertrag im Fließgleichgewicht in Abhängigkeit von der hydraulischen Belastung im Durchlaufreaktor (nach HERBERT et al. 1956).	10
Abbildung 2.4.: Generationszeiten aerober und anaerober Mikroorganismen (SAAKE 1986)	12
Abbildung 2.5.: Produktverteilung bei vollständigem Umsatz von Glucose (nach ZOETEMEYER et al. 1982-2)	19
Abbildung 3.1.: CSB-Bilanz Versäuerungsbehälter	21
Abbildung 4.1.: Schema der Zitronensäurefermentation	27
Abbildung 4.2.: Schema der Kläranlage Pernhofen bis zur 135sten Woche (Okt'86 - Feb'89)	29
Abbildung 4.3.: CSB-Konzentration Kläranlage Pernhofen: Zu- und Ablauf VB roh sowie Ablauf MB filtr	31
Abbildung 4.4.: CSB-Konzentration (Wochenmittelwerte) Ablauf Anaerobie bzw. Gesamtanlage n Abhängigkeit von der Zulaufkonzentration VB	32
Abbildung 4.5.: CSB-Fracht Kläranlage Pernhofen: Zu- und Ablauf VB roh sowie Ablauf MB filt	32
Abbildung 4.6.: Spezifische Gasproduktion Kläranlage Pernhofen: VB-Gas in m ³ /t CSB-VB _{zu} ozw. MB-Gas in m ³ /t CSB-MB _{abgeb.}	33
Abbildung 5.1.: Essig- zu Buttersäureverhältnis Perioden VB (jeweils als CSB) in Abhängigkeit von der Temperatur	36
Abbildung 5.2.: Essig- zu Buttersäureverhältnis Perioden VB (jeweils als CSB) in Abhängigkeit vom H ₂ - und CH ₄ -Gehalt des VB-Gases und der Temperatur	36
Abbildung 5.3.: Anteil organischer Säuren VB (jeweils als CSB) in Abhängigkeit	

von der Temperatur	36
Abbildung 5.4.: CSB-Anteil im Versäuerungsbehältergas bezogen auf die CSB Zulaufkonzentration.	37
Abbildung 5.5.: Versäuerungsgrad Perioden VB in Abhängigkeit von pH-Wert und Temperatur	38
Abbildung 5.6.; pH-Wert Perioden VB in Abhängigkeit von der Aufenthaltszeit	38
Abbildung 5.7.: Versäuerungsgrad Perioden VB in Abhängigkeit von CSB-Zulaufkonzentration und Temperatur.	39
Abbildung 5.8.: Versäuerungsgrad Perioden VB in Abhängigkeit von CSB-Raumbelastung und Temperatur.	40
Abbildung 5.9.: Versäuerungsgrad Perioden VB in Abhängigkeit von Aufenthaltszeit und Temperatur.	40
Abbildung 6.1.: Skizze einer Versuchsanlage zur Versäuerung für Durchlaufbetrieb (VD)	42
Abbildung 6.2.: Essig- zu Buttersäureverhältnis VD (jeweils als CSB) in Abhängigkeit vom H ₂ - und CH ₄ -Gehalt des Gases bei 40° und 47° bzw. 50° C	46
Abbildung 6.3.: Versäuerungsgrad VD in Abhängigkeit von Aufenthaltszeit, CSB-Zulaufkonzentration und Temperatur.	47
Abbildung 6.4.: Versäuerungsgrad VD in Abhängigkeit von Raumbelastung, CSB-Zulaufkonzentration und Temperatur.	47
Abbildung 6.5.: Versäuerungsgrad VD in Abhängigkeit von CSB-Zulaufkonzentration und Art der gewählten Schlammzugabe bzw. ohne Schlammzugabe (Blindwert)	48
Abbildung 6.6.: Säurespektrum VS mit Faul- und Belebtschlamm bei 40° C und pH = 5,6	49
Abbildung 6.7.: Säurespektrum VS mit Faul- und Belebtschlamm bei 50° C und pH = 5,6	50
Abbildung 6.8.: Versäuerungsgrad in Abhängigkeit von der Glucosekonzentration - Literaturangaben (ZOETEMEYER et al. 1982-3) und eigene Messungen	51
Abbildung 7.1.: Gleichgewichtsverteilung von CO ₂ und HCO ₃ ⁻ in Abhängigkeit von pH-Wert und Temperatur.	57

Abbildung 7.2 :	
Abbildung 7.2.: Anteil dissoziierter organischer Säuren in Abhängigkeit vom pH-Wert bei 40° C	58
Abbildung 7.3.: Konzentration an Anionen in Abhängigkeit vom pH-Wert	59
Abbildung 7.4.: Konzentration an Ammonium als i.w. einziges Kation in Abhängigkeit vom pH-Wert	60
Abbildung 7.5.: Konzentration an Essigsäureäquivalente in Abhängigkeit von der NH ₄ -N-Konz	60
Abbildung 7.6.: Konzentration an [Kationen-Anionen] zu organischen Säuren und Ammonium bei verschiedenen Betriebszuständen des Versäuerungsbehälters Pernhofen	61
Abbildung 8.1.:	63
TABELLENVERZEICHNIS	
Tabelle 2.1.: Wachstumskennwerte der anaeroben Bakteriengruppen (SAAKE 1986)	11
Tabelle 2.2.: Wachstumskennwerte und Substratabbaurate bei der anaeroben Abwasser- reinigung (nach SAAKE 1986)	11
Tabelle 2.3.: Molekulargewicht, CSB und TC verschiedener Fermentationsprodukte	18
Tabelle 2.4.: Produkte bei einem Versäuerungsversuch nach ZOETEMEYER et al. (1982-2)	18
Tabelle 4.1.: Abwassercharakteristische Kenndaten der Schlempe (SVARDAL et al. 1993)	28
Tab. 6.1.: Versuchsergebnisse der Versäuerung von Glucosemonohydrat im Batchversuch	51
Tab. 7.1.: Essigsäureäquivalente einzelner organischer Säuren	57
Tab. 7.2.: Datensätze aus dem Betrieb des Versäuerungsbehälters	61
Гаb, 9.1,: Variation der Einflußgrößen	69
Tabellen im Anhang:	
Tabelle 1.: Wochenmittelwerte ARA Pernhofen; Abwasserkonzentrationen und C-Abbaugrad Methanbehälter	A-1

Tabelle 2.: Berechnung der CSB-Konzentrationen ohne Verdünnungswasser	A-3
Tabelle 3.: Wochenmittelwerte ARA Pernhofen; Q, Frachten, Belastung und TS/oTS	A-5
Tabelle 4.: Wochenmittelwerte ARA Pemhofen - Biogas; Spezifische Gasproduktion	A-7
Tabelle 5.: Wochenmittelwerte ARA Pernhofen - Biogas; Gaszusammensetzung	A-9
Tabelle 6.: Perioden Versäuerungsbehälter Pernhofen	A-11
Tabelle 7.: Perioden Versäuerungsbehälter Pernhofen mit Gasanalysen (H ₂)	A-12
Tabelle 8.: Säurespektrum Versäuerungsbehälter Pernhofen als Funktion der Temperatur	A-12
Tabelle 9.: CSB-Gehalt des Gases aus dem Versäuerungsbehälter Pemhofen	A-13
Tabelle 10.: Versuchsanlagen Versäuerungsbehälter im Durchlaufbetrieb (VD)	A-14
Tabelle 11.: Versäuerungsversuche mit Schlammzugabe (VS)	A-15
Tabelle 12.: Arbeitsblatt zur Berechnung der Gleichgewichtskonzentrationen im VB	A-16
Tabelle 13.: Auswertung der 10 Datensätze aus dem Betrieb Versäuerungsbehälter	A-17

SYMBOLVERZEICHNIS

Zeichen	Dimension	Bedeutung
ARA Pernhofen:		Abwasserreinigungsanlage Zitronensäurefabrik
		Pemhofen
VB	•	Versäuerungsbehälter
N	-	Neutralisationsbehälter
MB		Methanbehälter
VE		Vakuumentgaser
iNB		internes Nachklärbecken im Methanbehälter
NMB1/2	(=)	externe Nachklärbecken des Methanbehälters
BB		Belebungsbecken
NBB 1/2		Nachklärbecken der Belebungsbecken
WT		Wärmetauscher
GB	-	Gasbehälter
"A" -	-	dissoziierte Anionen
AAS		Atomabsorptionsspektroskop
Abl.	-	Ablauf

abgeb	V.	abgebaut
Ac/-	•	Acetat/Acetation
Ac-Âqu.	•	Acetat-Aquivalente
ADP	7	Adenosindiphosphat
ATP	•	Adenosintriphosphat
BaCl ₂ BS	•	Bariumchlorid
BSB ₅	•	Belebtschlamm
BSB ₂₀	1	biochemischer Sauerstoffbedarf (5 Tage)
	kg CSB/m ³ .d	biochemischer Sauerstoffbedarf (20 Tage)
B _R	kg CSB/kg TS.d	CSB-Raumbelastung
B _{TS} B _{oTS}	kg CSB/kg oTS.d	CSB-Schlammbelastung organische CSB-Schlammbelastung
Butt/	ng COD/ng 015.d	Buttersäure/Butyration
Ca	_	Calcium
Ca ₃ (C ₆ H ₈ O ₇) ₂	-	Citronensäure
CaCO ₃	-	Calciumcarbonat, Kalk
Ca(OH) ₂	-	Kalkmilch
CaSO ₄	-	Gips
CH ₄	-	Methan
Cl	#1	Chlorid
CoA	.	Coenzym A
CO ₂	-	Kohlendioxid
CO ₂ [aq]	-	CO ₂ -Gleichgewichtskonzentration in der Lösung
CO ₃ 2-		Carbonat
CSB	-	chemischer Sauerstoffbedarf
CSB _{abgeb} .	(4) ,	abgebauter CSB
CSB _{vers} .	-	versäuerter CSB
d		Tag
D	h-1	Verdünnungsrate
D _C DOC	h-1	Auswaschpunkt
	•	gelöste organische Kohlenstoffkonzentration
E _o ´ EMP-Weg		Normalpotential
LIVIF-VVeg	•	Embden-Meyerhof-Parnas-Weg = Fructosebiphosphat-Weg = Glycolyse
EKJ	_	Emde/Kroiss/Jungbunzlauer
	kg CSB/kg oTS.d	spezifische CSB Schlammabbauleistung oder -
η BoTS	ng COD/ng 010.u	abbaugeschwindigkeit; bezogen auf oTS
ηCSB	%	CSB-Abbau, Wirkungsgrad
EtOH		Ethanol
fį	4	relativer Anteil der Komponente i
\dot{f}_{i}	2	Aktivitätskoeffizient der Komponente i
FAD	•	Flavinadenindinucleotid
FBP-Weg	•	Fructosebiphosphat-Weg
Fd	-	Ferrodoxin
filt., ff.		faltenfiltriert
Form/	-	Ameisensäure/Formiation
FS	-	Faulschlamm
ΔG		Standardpotential
g Cos\/al	h	Generationszeit
GesVol H ⁺	(# <u>*</u>	Gesamtvolumen Abwasser Wasserstoffion
H ₂	•	Wasserstoff
h	-	Stunde
HAc	1537 1.**0	Essigsäure
HAc-Äqu.	-	Essigsäureäquivalent
		The state of the s

56 1933/6556759		
HCI	-	Salzsäure
HCO ₃ -	5 	Hydrogencarbonat
HgCl ₂	7 €	Quecksilberchlorid
HMP-Weg		Hexosemonophosphat-Weg = Pentosephosphat-
		Weg = Warburg-Dickens-Horeckerschema
H ₂ O		Wasser
HPB	<u></u>	
		Essig-, Propion- und Buttersäure
HPLC	-	high pressure liquid chromatography
HRT	(-)	hydraulic retention time (Aufenthaltszeit)
H ₂ S	•	Schwefelwasserstoff
H ₂ SO ₄		Schwefelsäure
H _W	32	(maximale) Höhe des Wasserspiegels
HWD	-	hot wire detector (Wärmeleitfähigkeitsdetektor)
IC		anorganischer Kohlenstoff (inorganic carbon)
	•	
ICP		inductively coupled plasma
K		Kalium
"K"+	101	dissoziierte Kationen
K(-Strategen)	•	<u>Kapazitätsgrenze</u>
KDPG-Weg		2-Keto-3-desoxy-6-phospho-gluconat-Weg
K _H (i)	12	Henry-Konstante (der Verbindung i)
K _m , K _s	mg/l	Michaelis- bzw. Halbsättigungskonstante
	53	
K _S		Gleichgewichts-(Dissoziations-)konstante
Lac/-		Milchsäure/Lactation
μ(max) N	d-1	spezifische (maximale) Wachstumsrate
	•	Zellzahl (auch: Stickstoff)
No	•	Zellzahl am Beginn der Betrachtung
n		Zahl der Zellteilungen
Na	2	Natrium
NAD	457	Nicotinamidadenindinucleotid
NADH ₂		Nicotinamidadenindinucleotid in reduzierter Form
NADP	(#) (#)	
NADE	-	Nicotinamidadenindinucleotid in energiereicher
		Form
NaOH	-	Natronlauge
$NH_3/NH_4(-N)$	(#C)	Ammoniak/Ammonium(-Stickstoff)
NO ₃ -N	5.20	Nitrat(-Stickstoff)
n-Val		n-Valeriansäure
ν	h-1	Teilungsrate
	13	Sauerstoff
02	•	
OH-		Hydroxidion
oTS	%	organische Trockenmasse
Р		Phosphor
p(i)	92	Partialdruck (der Verbindung i)
pH-Wert	•	pondus Hydrogenii - negativer dekadischer
•		Logarithmus der Wasserstoffionenkonzentration
pK	820	negativer dekadischer Logarithmus der
prq	-	Gleichgewichtskonzentrationskonstante der
3		Komponente i
PO ₄ -P		ortho-Phosphat-Phosphor
Prop/-	•	Propionsäure/Propionation
Pt	-	Platin
Q	I/d, m ³ /d,	Menge
9R	m ³ /m ³ .h	hydraulische Raumbelastung
r(-Strategen)	AND POST ALL	hohe Wachstumsrate
S	ma/l	Substrat (auch: Schwefel)
60.6	mg/l	
SO ₄ -S S ² -		Sulfat-Schwefel
25		Sulfid

1. EINLEITUNG

Der anaerobe Abbauprozeß ist - im Unterschied zu aeroben Umsetzungen - ein stufenweise ablaufender Prozess, an dem verschiedene Gruppen von Mikroorganismen mit teilweise unterschiedlichen Milieuansprüchen beteiligt sind. Die potentielle Hemmwirkung sich anhäufender Zwischenprodukte auf die jeweils nachfolgende Biozönose bewirkt, daß es sich bei der anaeroben Abwasserreinigung um keinen "stabilen Prozeß" handelt, der nach Störungen ohne Eingriffe von außen wieder in den alten Zustand zurückkehrt (KROISS 1985-1). Oft erweist es sich daher als günstig, die ersten Abbauschritte (Hydrolyse und Versäuerung) baulich getrennt dem eigentlichen Methanbehälter in Form eines Versäuerungs- bzw. Ausgleichsbehälters vorzustellen

Aus der Literatur ist bekannt, daß nicht nur die Substratart sondem auch Schwankungen in der Zusammensetzung des Zulaufs eine wichtige Rolle für die Stabilität eines Methanbehälters spielen. Den Anstoß zu dieser Arbeit gaben nun die Schwierigkeiten bei der Aufrechterhaltung einer stabilen Versäuerung mit gleichbleibendem Produktspektrum in einem vorgeschalteten Reaktor bei einer großtechnischen anaeroben Industrieabwasserreinigungsanlage. Aus der Vielzahl der die Versäuerung bestimmenden Faktoren wurden die für die beobachtete Anlage relevanten herangezogen (Temperatur, pH-Wert, Belastung, Aufenthaltszeit, Abwasserzusammensetzung sowie die Zugabe von Faul- oder Belebtschlamm) und deren Einfluß untersucht.

In einer ersten Phase wurden die Betriebsergebnisse der Großanlage über 120 Wochen ausgewertet, um Zusammenhänge zwischen den oben aufgezählten Variablen und der Ablaufcharakteristik des Versäuerungsbehälters zu finden. Parallel dazu fand eine Überprüfung der hier gefundenen Gesetzmäßigkeiten in Versuchsanlagen statt, die über einen längeren Zeitraum bei gleichbleibenden definierten Bedingungen gefahren werden konnten. Weitere Betrachtungen beschäftigten sich mit dem zeitlichen Verlauf der Versäuerung sowie der Umsetzung eines Reinsubstrats. Die so erhaltenen Ergebnisse wurden zusammengefaßt, Literaturerfahrungen gegenübergestellt und diskutiert.

Ausgehend von einem mathematischen Modell zur Berechnung und Darstellung der massgebenden chemischen Parameter für den Methanbehälter (SVARDAL 1991-1) wurde aufgrund
der Gleichgewichtskonzentrationen der den pH-Wert beeinflußenden Verbindungen ein
Rechenblatt entwickelt, mit dem bei vorgegebener Temperatur und CO₂-Konzentration des Versäuerungsgases wahlweise die den pH-Wert beeinflußenden Kat- oder Anionen - im
wesentlichen die Konzentration an Ammonium oder an organischen Säuren - oder der pH-Wert
ermittelt werden kann. Dieses Modell wurde für den Einsatz auf der Großanlage adaptiert.

2. GRUNDLAGEN DER ANAEROBEN ABWASSERREINIGUNG

2.1. BIOCHEMISCHE GRUNDLAGEN

2.1.1. Allgemeines

In der Natur gibt es prinzipiell für jeden biologisch gebildeten Stoff auch verwertende Organismen (meist Pilze oder Bakterien), die diesen wieder abbauen. Beim Ab- bzw. Umbau der Stoffe, die den Organismenzellen zugeführt bzw. in ihnen gebildet werden (Stoffwechsel; Meta-bolismus), handelt es sich in der Regel um vielstufige, durch Enzyme katalysierte Reaktionsketten. Zwischen den zugeführten Stoffen (Substrate) und den zerlegten Stoffen (Ausscheidungsprodukte) besteht ein Unterschied im Energiegehalt, der in chemischer Form (vor allem als energiereiche Verbindung ATP) zwischengespeichert und für die unterschiedlichsten Syntheseleistungen sowie für die Unterhaltung der Mobilität, der inneren Organisation und der osmotische Barrieren verbraucht wird (SCHLEGEL 1992). Zu dessen Regeneration greifen Organismen auf anaerobe (Gärung) und aerobe (Atmung, Photosynthese) Prozesse zurück.

Die mengenmäßig überwiegenden Naturstoffe sind die Polysaccharide Cellulose und Stärke - der monomere Baustein dieser Verbindungen (Glucose) wird bei der Photosynthese direkt gebildet und ist der allgemeine Nahrungsstoff für die größte Zahl der Mikroorganismen (WARTENBERG 1989). Die sogenannte Glycolyse (EMP bzw. FBP-Weg) mit dem Abbau zu Pyruvat ist ein nahezu universeller Abbauweg der Glucose. Unterschiede bestehen bei den verschiedenen Organismen nur in der Art der Regulation sowie in der Verwertung des gebildeten Pyruvats - in Abhängigkeit vom Sauerstoffangebot und/oder Organismus erfolgt hier eine Trennung des Abbauweges zu verschiedenen Endprodukten. Andere Umsetzungen der Glucose (Pentosephosphatweg [HMP- oder Entner-Doudoroff-Weg] und KDPG-Weg) dienen weniger dem Energiegewinn als der Synthese speziell von der Zelle benötigter Produkte.

Wie auch andere Nährstoffe werden Cellulose und Stärke zunächst in kleine Bruchstücke zerlegt (Abbau = <u>Katabolismus</u>) und in den Reaktionen des Intermediärstoffwechsels (Umbau bzw. <u>Amphibolismus</u>) zu einer Reihe von Verbindungen umgesetzt (KLEBER et al. 1991). Die Vielfalt dieser niedermolekularen Substanzen stellt wiederum das Substrat dar, aus dem die Bausteine der Zelle und in weiterer Folge die polymeren Makromoleküle synthetisiert werden, aus denen sich der Organismus zusammensetzt (Aufbau oder <u>Anabolismus</u>).

2.1.2. Gärung/Versäuerung

Da die ersten Lebewesen in einer sauerstofffreien Atmosphäre entstanden sind, stellt der anaerobe Glucoseabbau (Gärung) den ältesten Typ eines biochemischen Mechanismus zur Energiegewinnung aus Kohlehydraten dar. Dabei dienen die Spaltprodukte des organischen

Substrats bei Abwesenheit von Sauerstoff zugleich als Wasserstoffdonatoren und als Wasserstoffacceptoren. Ein Teil des Substrates wird oxidiert und die dabei freigewordene Energie zur ATP-Bildung (Substratkettenphosphorylierung) genutzt. Des oxydierten Kohlenstoffs entledigt sich die Zelle in Form von CO₂. Die beim Abbau der aufgenommenen Nahrungsstoffe durch Oxidation entstehenden Reduktionsäqivalente (Wasserstoff) werden auf Pyridin- (NAD) und Flavinnucleotide (FAD) übertragen. Zur Regeneration der Wasserstoffträger wird oft der Rest des Substrats verwendet, der mit den Reduktionsäquivalenten in die Umgebung abgegeben wird und somit als für andere Organismen weiterverwertbares energiereiches Stoffwechselendprodukt anfällt - eine geringere Energieausbeute der Gärer ist die Folge. Manche Bakterien sind auch in der Lage, NAD zu regenerieren, indem sie den Wasserstoff (bzw. die Elektronen) über Ferrodoxin (Fd) als elementaren H₂ freisetzen und damit ihren Energiegewinn auf bis zu 4 mol ATP/mol Glucose steigern.

Die <u>Einteilung</u> der gärenden Organismen erfolgt nach den mengenmäßig vorherrschenden oder besonders charakteristischen Ausscheidungsprodukten - als solche treten neben CO₂ und H₂ Lactat, Acetat, Propionat, Butyrat, Capronat, Succinat, Ethanol, Propanol, *n*-Butanol, 2,3-Butandiol und Aceton auf (*Abb. 2.1*):

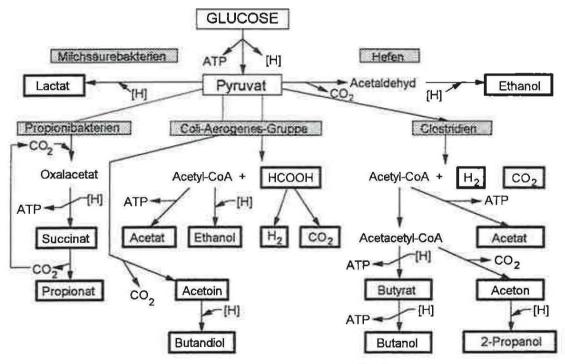


Abb. 2.1.: Verlauf und Produkte der wichtigsten Gärungen (SCHLEGEL 1992)

2.1.3. Atmung

Während die Gärer zur ATP-Regeneration nur auf die Substratkettenphosphorylierung zurückgreifen können, verfügen die <u>atmenden Organismen</u> über den ungleich wirksameren Apparat
der Atmungs- oder Elektronentransportkette. Ohne auf die Atmungskette näher einzugehen sei
hier angemerkt, daß sich als Gesamtbilanz des aeroben Glucoseabbaus ein Energiegewinn von

bis zu 38 ATP pro Molekül Glucose ergibt. Bei der sogenannten "anaeroben Atmung" kann der vom organischen Substrat abgespaltene Wasserstoff auf andere Elektronen-Acceptoren (wie Nitrat-, Sulfat-, Schwefel, Carbonat- Fumarat- oder Eisenionen) übertragen werden - diese Verbindungen werden dabei reduziert und - z.B. als Methan von den autotrophen Methanbakterien - wieder ausgeschieden; der Energiegewinn ist dabei geringer als bei aeroben Umsetzungen (THAUER et al. 1977).

2.2. MIKROORGANISMEN IN DER ABWASSERREINIGUNG

2.2.1. Allgemeines

Da in Fließgewässem in der Regel Sauerstoff vorhanden ist, wird die Mineralisierung gelöster oder fein suspendierter Stoffe in der Natur hauptsächlich von aeroben Mikroorganismen durchgeführt (z.B. Selbstreinigungsprozesse in den Fließgewässem). Unter sauerstoffreien Bedingungen, wie sie vor allem in Sedimenten auftreten, werden hingegen anaerobe Abbauwege beschritten. Sowohl die natürlichen aeroben als auch die anaeroben Vorgänge kommen bei der technischen Realisierung von biologischen Reinigungssystemen zum Einsatz, wobei anaerobe Verfahren (z.B. Abwasserbehandlung in Babylon) als Urform der Abwasserbeseitigung bezeichnet werden können. In der Neuzeit (19/20. Jhdt.) boten sich aerobe Behandlungsverfahren hauptsächlich für Abwässer (gelöste/suspendierte Stoffe) an, während anaerobe Methoden vorerst nur zum Abbau (Stabilisierung) von organischen Feststoffen herangezogen wurden - die befriedigende Entsorgung der bei der Abwasserreinigung anfallenden "festen" Rückstände (Überschußschlamm) war erst durch die Entwicklung der einstufigen anaeroben Schlammfaulung möglich. Wesentlich später setzte sich die Erkenntnis durch, daß die Anaerobtechnik auch zur Behandlung von Industrieabwässern eingesetzt werden kann, wobei einige grundlegende Unterschiede zu aeroben Verfahren beachtet werden müssen:

Aerob

Aerobe Umsetzungen laufen nebeneinander ab - sie werden in der Regel direkt von einer einzigen Bakteriengruppe vollständig (ohne Abgabe von Zwischenprodukten) bis zum Endprodukt CO₂ und H₂O durchgeführt. Der dabei anfallende hohe Gewinn an nutzbarer Energie bietet denkbar gute Voraussetzungen für den Baustoffwechsel, d.h. ein erheblicher Teil der verwertbaren Energie wird in neue Zellsubstanz (aerobe Biomasse) umgesetzt. Durch das somit gewährleistete rasche Wachstum der für die Substratverwertung am besten geeigneten Bakteriengruppen ergibt sich die große Stabilität und rasche Anpassungsfähigkeit bei Belastungs- und Nährstoffschwankungen eines konventionellen aeroben Systems. Der hohe Stoffumsatz geht allerdings mit einer starken Biomasseproduktion und erheblichen Energiekosten für die Belüftung einher.

Anaerob

Beim Abbau hochmolekularer Substanzen im anaeroben Milieu zu CH4 und CO2 sind mehrere,

von verschiedenen Bakteriengruppen <u>nacheinander</u> ausgeführte Abbauschritte erforderlich, die deren ausgewogene Kooperation erfordern. Anaerobe Umsetzungen ermöglichen den beteiligten Mikroorganismen nur einen relativ geringen Energiegewinn, da als Endprodukt energiereiches Faulgas anfällt. Damit erfolgt bei gleichem Stoffumsatz durch die Energielimitierung nur ein geringes Wachstum anaerob aktiver Biomasse, woraus ein geringer Nährstoffbedarf, ein niedriger Überschußschlammanfall - aber auch eine große Empfindlichkeit gegenüber Störungen sowie eine geringere Flexibilität resultieren.

Die Empfindlichkeit gegenüber Störungen mit oft wochenlangen Einbrüchen der Reinigungsleistung - im Extremfall sogar mit einer Stillegung des Reaktors und neuerlicher Beimpfung verbunden - rücken damit den <u>Zulauf</u> eines Faulbehälters und seine allfällige Vorbehandlung (Ausgleich, Versäuerung) in den Blickpunkt des Interesses.

2.2.2. Anaerober Abbau

Stark vereinfacht sind beim mehrstufigen komplexen anaeroben Abbauprozeß 3 Haupt- und 8 Untergruppen anaerober Mikroorganismen beteiligt, die im wesentlichen CH₄, CO₂, H₂O und (wenig) Biomasse bilden (SAHM 1981, GUJER et al. 1983, MOSEY 1983). Der gesamte Abbau kann entweder in einem Reaktor nebeneinander ablaufen oder räumlich getrennt in zwei Stufen erfolgen (Abb. 2.2):

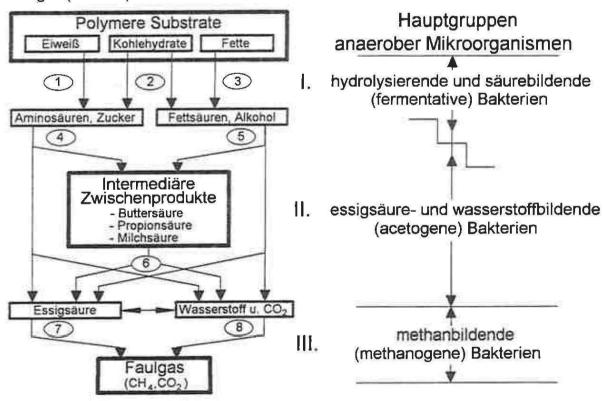


Abb. 2.2.: Schematische Darstellung des anaeroben Stoffumsatzes mit den Haupt- (I-III) und Untergruppen (①-⑧) der beteiligten Mikroorganismen (SAAKE 1986, p 24)

Zuerst werden die im Abwasser enthaltenen, hochmolekularen Verbindungen (von eiweiß- ①, kohlehydrat- ② und fettabbauenden ③ Mikroorganismen) - hauptsächlich durch bakterielle Exo-

enzyme - zu Monomeren hydrolysiert und diese anschließend mit den bereits im Abwasser vorliegenden gelösten niedermolekularen Substanzen auf verschiedenen Stoffwechselwegen (durch aminosäure- und zuckerabbauende @ bzw. langkettige fettsäure- und alkoholabbauende Bakterien ©) unter Freisetzung von CO₂ und Wasserstoff zu niederkettigen organischen Säuren und Alkoholen fermentiert (SCHLEGEL 1992). Gekennzeichnet ist der Abbauschritt der Hydrolyse/Versäuerung dadurch, daß sich der Energieinhalt (CSB) des Abwassers (meist) nur wenig ändert, zufolge der Säureproduktion der pH-Wert sinkt und geruchsintensive Metaboliten entstehen (KROISS 1985-1).

In der folgenden, der acetogenen Stufe, werden die in der 1. Abbauphase gebildeten, nicht methanogenen Substrate (niedere Fettsäuren, Alkohole, Aldehyde und Lactat) von Bakterien der Gruppe © zu methanogenen Substanzen (CO₂, H₂ und Essigsäure) umgesetzt und so in eine für die Methanbakterien verwertbare Form gebracht. Die letzte Abbaustufe des anaeroben Prozesses ist die Methanisierung der bei der Versäuerung anfallenden Produkte, von denen nur Essigsäure, Ameisensäure, Methanol, CO₂ und H₂ von den Methanbakterien (MB) direkt zu CH₄ und CO₂ umgesetzt werden können. Von den zwei Arten der zu den Archaebakterien zählenden Bakterien (MOSEY 1983) bildet die Gruppe ② das Methan aus Essigsäure (acetoclastische MB), während die Gruppe ® unter Verwertung von H₂, CO₂, Ameisensäure und Methanol zu Methan umsetzt.

2.3. WACHSTUM VON MIKROORGANISMEN

2.3.1. Aligemeines

Der biologische Abbau von Abwasserinhaltsstoffen durch Mikroorganismen ist eng mit dem Wachstum dieser Lebewesen verbunden. Die in einem Reaktor zur Verfügung stehende Biomasse hängt neben dessen Wachstumseigenschaften auch wesentlich davon ab, ob eine Schlammrückführung aus einer nachgeschalteten Absetzeinheit erfolgt (Entkoppelung des Schlammalters von der hydraulischen Aufenthaltszeit) oder ob - wie bei den meisten Versäuerungsbehältem - ein Durchlaufsystem (Chemostat) vorliegt.

2.3.2. Grundlagen

Bei der biologischen Abwasserreinigung kommen überwiegend einzellige Organismen zur Entwicklung, die sich durch Zell(zwei)teilung in einer geometrischen Progression vermehren (MATSCHÉ 1990):

$$(2.1) n = \frac{\ln N - \ln N_o}{\ln 2}$$

Die nach n Teilungen vorliegende Zellzahl N wird dabei nach der Zeit t (in Stunden) erreicht. Die Anzahl der Teilungen pro Zeiteinheit (Stunde) wird <u>Teilungsrate</u> v [h-1] genannt und berechnet sich aus:

$$(2.2) v = \frac{n}{t} = \frac{\ln N - \ln N_o}{t \cdot \ln 2}$$

Der Reziprokwert - also die Zeit pro Verdoppelung der Zellzahl - heißt <u>Generationszeit g</u> [h]. Die Zellzahl spielt in der Praxis der Mikrobiologie allerdings eine untergeordnete Rolle. In der Regel wird die <u>Bakterienmasse</u> (X) als Maß für das Wachstum verwendet, da sie durch Trockengewichtsbestimmung einfach gemessen werden kann. Solange die Geschwindigkeit der Veränderung der Bakteriendichte der vorhandenen Bakteriendichte proportional ist, folgt sie ohne Substratlimitierung der Kinetik einer Reaktion 1. Ordnung (Proportionalitätsfaktor = µ):

$$\frac{dX}{dt} = \mu \bullet X$$

Integrierung von (2.3) führt zur Gleichung 2.4 (exponentielles Wachstum):

$$(2.4) X = X_0 \cdot e^{\mu t}$$

Durch Logarithmieren erhält man daraus die Gleichung:

(2.5)
$$\ln X = \ln X_0 + \mu \cdot t$$

Da das exponentielle Wachstum durch eine lineare Beziehung zwischen der Zeit und dem Logarithmus der Zellmasse gekennzeichnet ist, spricht man auch von logarithmischem Wachstum. Trägt man die Zeit auf der Abszisse und den Logarithmus der Masse auf der Ordinate auf, erhält man unter diesen Bedingungen eine Gerade, deren Steilheit der spezifischen Wachstumsrate entspricht. Löst man die Gleichung 2.5 nach µ auf, kommt man parallel zur Darstellung der Teilungsrate (2.2) zur Gleichung für die spezifische Wachstumsrate µ:

$$\mu = \frac{\ln X - \ln X_{\mathcal{O}}}{t}$$

 μ und ν können unter der Annahme, daß Zellzahl und Zellmasse einer Kultur in konstantem Verhältnis zueinander stehen, ineinander umgerechnet werden ($\mu = \nu \cdot \ln 2$). Bei gleichbleibender spezifischer Wachstumsrate ergibt sich die <u>Verdoppelungszeit der Zellmasse</u> t_d aus:

(2.7)
$$\mu = \frac{\ln 2X_o - \ln X_o}{t_d} = \frac{\ln 2}{t_d}$$

zu

(2.8)
$$t_{d} = \frac{\ln 2}{\mu} = \frac{1}{\nu}$$

2.3.3. Wachstum in statischer Kultur (Batchreaktor)

Werden Bakterien in eine Nährlösung gegeben, kann ihre Vermehrung in verschiedene Wachstumsphasen eingeteilt werden (BERGERT 1983). Während der Anlauf(lag)phase tritt eine Gewöhnung der Organismen (Adaption) an das Milieu ein. Die Wachstumsrate beginnt langsam zu

steigen, bis sie in der <u>exponentiellen (log) Phase</u> ihren unter den gegebenen Umweltbedingungen maximalen Wert erreicht (µ_{max}) - nur hier gelten die oben abgeleiteten Zusammenhänge. Durch Verbrauch der Nährstoffe bzw. Anhäufung von hemmenden Stoffwechselprodukten kommt es zur Verzögerung und Beendigung des Wachstums (Übergang in die <u>stationäre Phase</u>), die von der <u>Absterbephase</u> (Abnahme der Zellzahl/-masse) gefolgt wird. Für die <u>Geschwindigkeit (v)</u> einer einzelnen Enzymreaktionen vom Michaelis-Menten-Typ (Überführung eines Substrats S in ein Produkt) gilt allgemein:

$$v = v_{\text{max}} \cdot \frac{S}{K_m + S}$$

wobei K_{m} die Michaelis- bzw. Halbsättigungskonstante ist (K_{m} = Substratkonzentration, bei der gilt: $v = v_{\text{max}/2}$). Betrachtet man für das Wachstum vereinfacht nur das limitierende Substrat (Minimumfaktor) und die daraus gebildete Biomasse, ergibt sich analog dazu nach MONOD für die in Abhängigkeit von der limitierenden Substratkonzentration erreichte spezifische Wachstumsrate die Beziehung

$$\mu = \mu_{\text{max}} \cdot \frac{S}{Ks + S}$$

K_S als Maß für die Substratspezifität kann bei verschiedenen Organismen stark variieren. Die Gruppe der bei Substrat im Überschuß rasch wachsender Organismen wird r-Strategen genannt, während K-Strategen auch bei niedriger Substratkonzentration relativ hohe Wachstumsraten aufweisen. μ ist aber nicht nur organismen- und substratspezifisch; auch andere Milieufaktoren wie pH und Temperatur haben einen oft bedeutenden Einfluß.

Die in der stationären Phase erreichte Biomasse (X-X₀) bezeichnet man als <u>Ertrag</u>, wobei die Ausbeute (Y) auf das verbrauchte Substrat bezogen wird. Wachstumsrate und Ertrag sind die beiden wichtigsten Charakterisitika des Wachstums und prägen daher entscheidend die sich jeweils einstellende Biozönose.

2.3.4. Wachstum in kontinuierlicher Kultur (Chemostat)

Während in der statischen Kultur die Substratkonzentration sinkt und die Biomasse zunimmt, werden in der Abwasserreinigung kontinuierlich Nährstoffe zugeführt und gleichzeitig die gewachsenen Zellen mit dem noch nicht verbrauchten bzw. umgewandelten Substrat abgeführt. Beträgt das Volumen des Reaktors V und fließt das Abwasser mit der Menge Q zu, berechnet sich die <u>Verdünnungsrate D</u> als Volumenwechsel pro Stunde aus dem Quotient Q/V und die damit ausgewaschene Bakterienmenge folgt einer logarithmischen Funktion:

$$\frac{dX}{dt} = -D \cdot X$$

Die Veränderung der Biomasse ergibt sich aus dem Zuwachs (Gleichung 2.3) vermindert um die

Organismendichte im Ablauf (2.11) zu:

$$\frac{dX}{dt} = \mu \cdot X - D \cdot X$$

Im Gleichgewichtszustand tritt keine Veränderung der Organismenkonzentration (X) mehr ein d.h. es werden gleichviele Bakterien ausgespült wie zuwachsen (dX/dt wird 0). In diesem Fall gilt $\mu = D$ (Fließgleichgewicht).

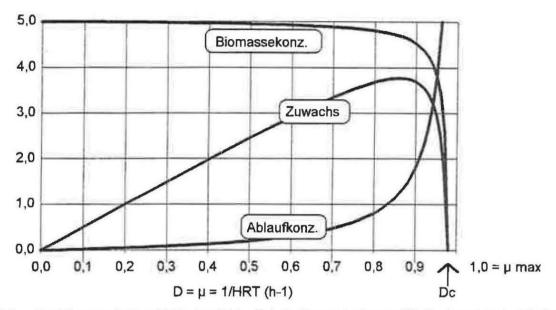


Abb. 2.3.: Beziehung zwischen Bakteriendichte, Substratkonzentration und Bakterienertrag im Fließgleichgewicht in Abhängigkeit von der hydraulischen Belastung im Durchlaufreaktor (nach HERBERT et al. 1956)

Nach Gleichung 2.10 ist die Kultur im Chemostaten substratkontrolliert - solange die Verdünnungsrate D (bzw. die hydraulische Raumbelastung q_R) < μ_{max} ist (D < D_C = Auswaschpunkt), variiert die Wachstumsrate der Mikroorganismen bei Substratlimitierung entsprechend der Raumbelastung in einem weiten Bereich (selbstregulierendes System). Die Bakterien reagieren in einem weiten Bereich bei einer Steigerung der Belastung mit einer Zunahme der Wachstumsrate. Die Substratkonzentration im Reaktor ist gleichmäßig niedrig und die Bakteriendichte nahezu konstant - nur der mit dem Ablauf ausgetragene Bakterienertrag nimmt zu. Erst wenn sich die Verdünnungsrate der maximalen Wachstumsrate nähert, wird ein Teil des Substrats mitausgewaschen - im Extremfall erreicht der Ablauf beim Auswaschpunkt die Zulaufkonzentration (*Abb. 2.3*).

2.3.5. Wachstum mit Biomasseanreicherung

Erfolgt eine Abscheidung und Rückführung der Bakterien, spricht man vom sogenannten Belebungsverfahren. Mit diesem ist die Einstellung eines Gleichgewichtes auch dann möglich, wenn μ wesentlich kleiner ist als D bzw. q_R (hydraulische Raumbelastung). Entscheidend für die Anwesenheit von Organismen mit unterschiedlicher Wachstumsrate ist in diesem Fall nicht mehr die hydraulische Aufenthaltszeit sondern das sogenannte Schlammalter (SRT).

2.4. KINETISCHE PARAMETER

Die wichtigsten mikrobiologischen Parameter der am anaeroben Abbau beteiligten Organismen wurden bereits mehrfach bestimmt. Eine Zusammenstellung der zum Teil stark differierenden Literaturwerte für die maximalen Wachstumsraten sowie die Zellerträge findet sich in SAAKE (1986) und sei hier auszugsweise wiedergegeben (*Tab. 2.1 und 2.2*):

Tab. 2.1.: VI	Vachstumskennwerte de	er anaeroben	Bakteriengruppen	(SAAKE 1986)
---------------	-----------------------	--------------	------------------	--------------

Untergruppe	Nr.	μ _{max} (35°C)	YBSmax
	Abb. 2.2	d−1	kg oTS/kg CSB
eiweiß- und kohlenhydrathydrolysierende B.	1-2	2-8	0,15
fetthydrolysierende Bakterien	3	0,25	0,04
aminosäure- und monosaccharideabbauende B.	4	7,2	0,1
fettsäureabbauende Bakterien	5	0,1-0,8	0,11
acetogene Bakterien	6	0,15-0,4	0,02-0,05
acetoclastische Methanbakterien	7	0,08-0,09	0,02
H ₂ + CO ₂ verwertende Methanbakterien	8	1,2	

Tab. 2.2.: Wachstumskennwerte und Substratabbaurate bei der anaeroben Abwasserreinigung; Grundlagenuntersuchungen (G) und unter Abwasserbedingungen erhaltene Werte (A) nach SAAKE (1986)

Gruppe	Nr.	μ _{max} (35°C)	Y _{BSmax}	max B _{oTS} (35°C) kg CSB/kg oTS.d		
		d ⁻¹	kg oTS/kg CSB			
		G	G+A	G	Α	
Erste Stufe Versäuerung	1	2,0	0,15	13	7,2	
Zweite Stufe Methanisierung	11+111	0,4	0,03-0,09	13	0,5-1,5	
Einstufige Methanisierung	1-111	0,4	0,05-0,23	2	0,4-1,2	

Aus diesen Werten wird ersichtlich, daß nur in einigen Fällen (hoher Feststoff- bzw Fettanteil; SEYFRIED et al. 1986-2, KUNST et al. 1985, SPIES 1985) die Hydrolyse- und Versäuerungsstufe zum geschwindigkeitsbestimmenden Schritt des anaeroben Abbaus werden kann. Die Versäuerung von eiweiß- und kohlehydrathaltigen Substraten zu organischen Säuren verläuft hingegen rasch, sodaß in der Regel die Methanisierung oder die acetogene Stufe den geschwindigkeitslimitierenden Schritt des anaeroben Abbaus darstellt. Soll hingegen der CSB-Abbau z.B. auf 50% begrenzt werden, kann durch hohe Belastung das Wachstum acetogener Methanbakterien verhindert werden, da hiezu die CO₂ und H₂-verwertenden Methanbakterien ausreichen. In diesem Fall können die acetogenen Bakterien in Abhängigkeit vom H₂-Partial-druck limitierend werden.

Nach anderen Literaturstellen liegt die maximale Schlammabbauleistung bei zweistufigen Anlagen im Methanreaktor bei über 2 kg CSB/kg oTS.d (HEIJNEN 1984), der Zellertrag der

acetoclastischen Methanbakterien bei 0,03 g oTS/g CSB_{abgeb}. (WIESMANN 1988) und die maximale Wachstumsrate beträgt ca. 0,017 h⁻¹ (↔ aerob-heterotrophe Bakterien ≈ 0,30 h⁻¹). Dabei muß jedoch auch berücksichtigt werden, daß die oTS qualitativ unterschiedlich sein kann. In einer weiteren Literaturübersicht (HICKEY et al. 1991, DERYCKE et al. 1993) finden sich Abbauleistungen von 0,65 - 2,2 kg CSB/kg oTS.d, wobei einzelne Autoren in Laborversuchen mit einer Mischung organischer Säuren als Substrat Werte von bis zu 8 kg CSB/kg oTS.d finden (WU 1991, THIELE et al. 1990). Dies unterstreicht die Bedeutung einer weitgehenden Vorversäuerung für die nachfolgende Methanisierung.

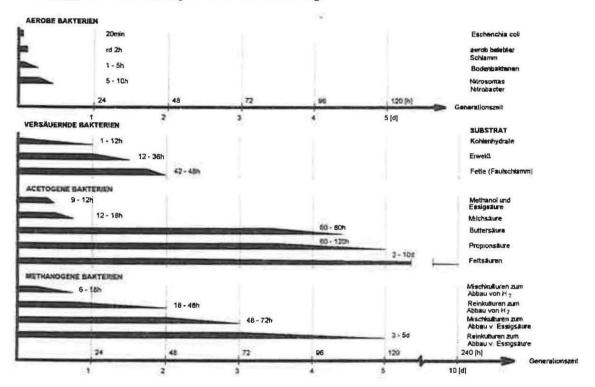


Abb. 2.4.: Generationszeiten aerober und anaerober Mikroorganismen (SAAKE 1986, p 34)

Die Gegenüberstellung von Generationszeiten aerober und anerober Mikroorganismen in Abb. 2.4 zeigt anschaulich die großen Unterschiede der zum Abbau verschiedener Substanzen jeweils einzuhaltenden Mindestschlammalter bei 35° C. Es handelt sich dabei um Anhaltswerte, die stark von der Art des Substrates und den Milieubedingungen abhängig sind.

2.5. VERFAHRENSWAHL (EIN- ODER ZWEISTUFIG ?)

Die optimalen Bedingungen für die Bakterienstämme der Hydrolyse- und Versäuerungsstufe liegen im schwach sauren Bereich, während die Methanbildner im schwach alkalischen Milieu ihre stabilste Abbauleistung erbringen. Weiters stellen die beiden Bakteriengruppen teilweise unterschiedliche Anforderungen an Temperatur, Prozeß- und Verfahrenstechnik und sind empfindlich gegenüber den beim Abbau entstehenden <u>organischen Säuren</u> (SEYFRIED et al. 1984, 1986-1, KROISS 1985-1, KROISS et al. 1982). Ein mangelnder Abbau dieser Metabolite durch die Methanbakterien führt je nach Puffervermögen zu einer mehr oder weniger weit-

gehenden pH-Absenkung und damit zu einer Verschlechterung der Milieubedingungen für die Methanbildner, sodaß die Säureproduktion überhand nehmen kann und der pH-Wert weiter absinkt. In der Folge verlangsamt sich die Methanbildung aus Essigsäure bzw. die acetogene Stufe. Dies mündet in eine Propionsäureakkumulierung, wodurch die Methanbildung bis zum Kippen des Faulprozesses weiter gehemmt werden kann. Die <u>Abwasserkonzentration</u> hat -besonders bei einstufigen Anlagen - einen starken Einfluß auf die Stabilität bzw. den pH-Wert für einen stabilen Abbau. Bei stark konzentrierten Abwässern muß ein derartiger Reaktor wegen der kurzfristig auftretenden hohen Propionsäurekonzentrationen in der Regel mit pH-Werten knapp über 7 gefahren werden, während bei schwach konzentrierten Abwässern auch unter pH 7 eine stabile Versäuerung und Methanisierung in einem Reaktor möglich ist.

Bei der Anwesenheit von Abwasserinhaltsstoffen, die zu Schwierigkeiten im Methanbehälter führen können (z.B. Schwimmschlamm- bzw. Schaumbildung durch hohe Fett-, Eiweiß- oder Aminosäurekonzentrationen oder Blähschlamm durch hohe Kohlenhydratkonzentration), ist ein Vorabbau in einem vorgeschalteten Reaktor vorteilhaft (HICKEY et al. 1991, LETTINGA et al. 1991). Auch die Produktion von H₂S oder der Umbau toxischer Komponenten bzw. Ausfällung von Schwermetallen (KENNEDY et al. 1988) wären - neben den in Kap. 2.7.2 ausgeführten positiven Auswirkungen einer Vorversäuerung auf den Methanbehälter - weitere Punkte, die für eine Trennung der anaeroben Biozönosen sprechen (HENZE et al. 1983).

Weiters gilt, daß für die Abbauleistung sowohl die Schlammmenge im System als auch der Anteil aktiver, Essigsäure-nutzender Methanbakterien ausschlaggebend ist. Die in der Praxis gefundene maximale Schlammabbauleistung BoTS liegt bei einstufigen Systemen maximal um 1,0 kg CSB/kg oTS und Tag, da wegen der deutlich höheren Wachstumsraten der Säurebakterien nur mit 10 - 15% Methanbakterien - bezogen auf die gesamte organische Trockensubstanz - zu rechnen ist (KROISS 1985-1). In zweistufigen Anlagen mit getrenntem Versäuerungs- und Methanreaktor ist der Anteil der Methanbakterien an der gesamten organischen Biomasse dann signifikant höher, wenn die organische Feststoffbelastung des Zulaufs relativ gering ist und eine Abscheidung der Säurebakterien erfolgt. LETTINGA et al. (1991) geben eine um 30 - 50% höhere Belastbarkeit von Methanbehältem bei versäuertem Abwasser im Vergleich mit nicht versäuertem Abwasser an.

Zur Behandlung von Abwässem, bei denen Acetogenese oder Methanisierung der geschwindigkeitsbestimmende Schritt ist, sprechen mikrobiologische Gründe und Aspekte der Betriebssicherheit oft für zweistufige Verfahren mit getrennter Steuerung der Umweltbedingungen in beiden Reaktoren, während von technischer Seite gesehen einstufige Varianten günstiger wären - die Abwägung ist oft erst nach Voruntersuchungen im Einzelfall zu treffen (KROISS 1981). Wenn ein Ausgleich des Abwassers aus Gründen einer stabilen Betriebsführung ohnehin erforderlich ist, kann man die Aufgaben Ausgleich und Vorversäuerung verbinden - der gewünschte Ausgleich bestimmt oft das Volumen des zu errichtenden Reaktors.

2.6. VORVERSÄUERUNG

2.6.1. Allgemeines

Wesentliche Aufgabe eines vorgeschaltenen Versäuerungsbehälters ist neben dem Mengenund Konzentrationsausgleich die Aufbereitung von hochmolekularen Inhaltsstoffen in leicht methanisierbare Metabolite. Auf der einen Seite entstehen hydrolysierte, organische Stickstoffverbindungen und Ammonium, auf der anderen Seite die unterschiedlichsten Gärungsprodukte. Verschiedene Autoren (KUNST 1982, McINERNEY et al. 1979, WIEGANT et al. 1986) zeigen auf, daß der weitere Abbau dieser Metabolite im Methanreaktor mit deutlich unterschiedlicher Geschwindigkeit abläuft - die Bedeutung der Art der im Versäuerungsbehälter gebildeten Stoffe ist somit augenscheinlich, wenn auch bei stark substratlimitierten Methanbehältem mit kaum merklichen Einfluß auf die Reinigungsleistung. Je nach Eigenschaft und Beschaffenheit des Abwassers und den Umweltbedingungen stellt sich eine Mischbiozönose verschiedener, fermentativ tätiger Mikroorganismen ein. Abhängig von der Zusammensetzung dieser Mischpopulation bilden sich unterschiedliche Abbauprodukte in verschiedener Mengenverteilung.

Ohne Schlammrückführung handelt es sich bei der Vorversäuerung um einen kontinuierlichen Fermentationsprozeß (Chemostat), bei dem sich über einen weiten Belastungsbereich ein Fließgleichgewicht mit nahezu gleichem Abbaugrad einstellen sollte. Kommt die Verdünnungsrate in die Nähe der von den jeweiligen Milieubedingungen geprägten, substratspezifischen maximalen Wachstumsrate der Mischpopulation, ist mit einem deutlichen Rückgang des Umwandlungswirkungsgrades zu rechnen. Bei Faul- oder Belebtschlammzugabe wird die Schlammkonzentration von der Verdünnungsrate abgekoppelt und damit ein gleichbleibender Abbau auch bei über den Auswaschpunkt eines Chemostaten hinausgehender hydraulischer Belastung möglich. Eine Abscheidung und Rückführung des im allgemeinen nur schlecht absetzbaren Versäuerungsschlammes zur Erhöhung der Belastbarkeit des Versäuerungs- oder Methanbehälters lohnt nur bei hohem Feststoffgehalt des Abwassers den zusätzlichen Aufwand und führt darüberhinaus zu einem neuen Schlammbehandlungsproblem.

Die gebildete Produktpalette ist abhängig von den Milieubedingungen, die sowohl die Zusammensetzung der Biozönose als auch die Abbauwege, die die Mikroorganismen einschlagen, bestimmen. Zu den wichtigsten <u>Einflußgrößen</u> zählen Temperatur, pH-Wert (der sich bei unbeeinflußten Systemen je nach Abwasserzusammensetzung einstellt), H₂-Partialdruck, die Substratart-, -konzentration und -fracht (Raumbelastung. Aufenthaltszeit) sowie die Tatsache, ob durch Schlammrückführung das Schlammalter von der hydraulischen Belastung entkoppelt ist oder nicht. Der Einfluß der hier aufgezählten Größen bestimmte auch weitgehend das Untersuchungsprogramm im Rahmen dieser Arbeit.

Durch <u>Sulfatreduktion und Ammonium</u>freisetzung wird Substrat verbraucht, das Redoxpotential und der H₂-Partialdruck verändert und der pH-Wert angehoben - all diese Vorgänge beeinflussen den Hydrolyse- und Versäuerungsprozess teilweise ebenfalls erheblich. Da die Kon-

zentration dieser Substanzen (vor allem Stickstoff und Schwefelverbindungen) im Abwasser der in dieser Arbeit untersuchten Anlage (⇒ Kap. 4) relativ konstant und teilweise mit der CSB-Konzentration gekoppelt war, war ihr Einfluß ein gleichbleibender - eine Untersuchung des Einflußes dieser Parameter auf das Säurespektrum unterblieb daher.

2.6.2. Auswirkungen auf den Methanbehälter

Der Abbau im Methanbehälter wird durch die Art der bei der Versäuerung gebildeten Produkte, den Versäuerungsgrad und die Stabilität der Versäuerung beeinflußt:

2.6.2.1. Art der gebildeten Produkte

Die kurzkettigen Versäuerungsprodukte stellen eine leicht zu nutzende Kohlenstoffquelle dar (ALEXIOU et al. 1994). Vor allem die organischen Säuren sind es, die bei der Methanfaulung eine entscheidende Rolle spielen (MARCHAIM et al. 1993, VAN LIER et al. 1993). Buttersäure kann besser und Propion- und Valeriansäure schlechter als Essigsäure und Methanol bzw. Ethanol verwertet werden (MAHR 1969, ZOETEMEYER et al. 1982-1) - bei einer Überlastung des Methanbehälters kann es zur zusätzlichen Bildung von Valeriansäure kommen (KUNST 1982). Vor allem Propionsäure als Vertreter der Produkte mit ungerader C-Zahl ist schwierig abzubauen (McELROY 1964, KASPAR et al. 1978, KUNST 1982, WIEGANT et al. 1986,...).

Bei hohen Abwasserkonzentrationen spielt die Art der im Versäuerungsbehälter gebildeten Produkte eine nicht unwesentliche Rolle. Die <u>Hemmwirkung verschiedener Vorversäuerungsprodukte</u> (i.w. NH₃, H₂S und org. Säuren) auf die Methanbakterien ist in zahlreichen Veröffentlichungen dargestellt (u.a. KROISS 1985, WITTY et al. 1985, ATV-FA 7.5 1990, MÄRKL et al. 1992). Da diese Verbindungen ihre schädigende Wirkung in der undissoziierten Form entfalten (DUARTE et al. 1982), ist ihr Einfluß auf die Methanisierung vom pH-Wert abhängig, wobei die Hemmwirkung der organischen Säuren und von H₂S mit sinkendem pH und die von Ammonium mit steigendem pH-Wert zunimmt. Die Hemmwirkung von Propionsäure ist dabei noch um zumindest eine Zehnerpotenz über die von Essigsäure zu stellen.

2.6.2.2. Versäuerungsgrad

Prinzipiell gilt, daß im Versäuerungsbehälter nicht umgesetzte Substanzen zum Großteil im Methanreaktor selbst hydrolysiert und weiter umgesetzt werden, wobei unter den dort herrschenden Bedingungen (pH-Wert) wesentlich mehr Propionsäure entsteht. Da diese einerseits schlechter abgebaut und andererseits bereits in geringen Konzentrationen hemmend auf die Methanbakterien wirkt, kann eine möglichst weitgehende Vorversäuerung angestrebt werden, um die maximale Belastbarkeit eines Methanbehälters zu erhöhen (eine Adaption der Methanbakterien an höhere Essigsäurekonzentrationen ist nach heutigem Stand des Wissens nachgewiesen und eine Anpassung an erhöhte Ammoniumkonzentrationen wahrscheinlich, während eine Propionsäureadaption kaum zu erwarten ist). Für granulierten Faulschlamm wird

hingegen eine Vorversäuerung von max. 20 - 40 % empfohlen (LETTINGA et al. 1991), da insbesonders hohe Essig- und Propionsäurekonzentration das Wachstum von pelletiertem Schlamm behindern (PALINS et al. 1987, THIELE et al. 1990) und diese bei guter Versäuerung im Einlaufbereich des Methanbehälters auftreten kann.

2.6.2.3. Stabilität der Versäuerung

Mit Milieu- bzw. Belastungsschwankungen im Versäuerungsreaktor geht oft auch eine Verschiebung im gebildeten Säurespektrum einher. Die Ursache dieser Produktverschiebung kann in einer Änderung der Stoffwechselwege und/oder der beteiligten Mikroorganismen liegen, Die langsam wachsenden acetogenen und methanproduzierenden Bakterien der zweiten Stufe sind nun oft nicht in der Lage, sich an rasch wechselnde Substrate anzupassen. Die Stabilität der Methanisierung kann dann optimal durch eine Vorversäuerung unterstützt werden, wenn diese vor allem bei höherer Belastungen - ein Substrat mit möglichst gleichmäßiger Zusammensetzung liefert (KUNST 1982). Aus diesem Grund sollten Schwankungen im Säurespektrum genauso vermieden werden wie Einbrüche des Versäuerungsgrades.

2.6.3. Definition des Versäuerungsgrades

Der Schritt der Versäuerung ist durch einen geringen Biomassezuwachs, einen Kohlenstoffaustrag (CO₂), der im allgemeinen wesentlich höher ist als die Verminderung des Energieinhaltes (und damit zu einer Verschiebung des TOC/CSB-Verhältnis führt) sowie durch einen
Umbau komplexer Moleküle zu niedermolekularen Verbindungen gekennzeichnet. Den Großteil
dieser Metabolite bilden in der Regel kurzkettige organische Säuren. Ihr Anteil an den im
Vorversäuerungsbehälter gebildeten Produkten kann somit als Gradmesser für die <u>Güte der</u>
<u>Vorversäuerung im Hinblick auf den nachfolgenden Methanreaktor</u> angesehen werden - sie
stellen in Form der flüchtigen Fettsäuren (volatile fatty acids = VFA bzw. total VFA = TVFA) den
am weitesten verbreitete Parameter für die <u>Beurteilung des Versäuerungsgrades</u> dar (ALEXIOU
et al. 1994, VAN DER MERWE et al. 1994). Beachtet werden muß bei der Verwendung als
Summenparameter:

- Von verschiedenen Forschern werden verschieden organische Säuren gemessen, sodaß die Vergleichbarkeit der Ergebnisse oft schwierig ist
- Nicht nur die Konzentration an organischen Säuren sondem auch die Art der gebildeten Metabolite beeinflußt die Qualität der Versäuerung im Hinblick auf die Methanbakterien
- Organische Säuren stellen nur einen Teil der bei der Versäuerung gebildeten Produkte dar

Als Maß für die verschiedenen organischen Fraktionen kommen im wesentlichen <u>TOC</u> und <u>CSB</u> in Betracht - beide werden in der Literatur auch dazu herangezogen. Die beim weiteren Abbau der gelösten Vorversäuerungsprodukte im Methanbehälter gewinnbare <u>Energie</u> (und damit in der Folge das Wachstum der Methanbakterien) hängt hauptsächlich vom Energieinhalt dieser Produkte ab. Für den CSB als wichtigsten Kennwert des Energieinhaltes muß die CSB-Fracht,

die in den Reaktor gelangt, bei stationären Verhältnissen gleich der CSB-Fracht sein, die den Reaktor als Restverschmutzung, Gas und Überschußschlamm verläßt (KROISS 1981). Eine Bilanzierung des Kohlenstoffs ist nicht über den TOC sondern nur über den TC möglich, da beim Abbauprozeß organische in anorganische Verbindungen (TIC) umgewandelt werden.

Betrachtet man das Verhältnis der gebildeten organischen Säuren zur Gesamtheit der organischen Verbindungen, erhält man den sogenannten <u>Versäuerungsgrad</u>. ALEXIOU et al. (1994) schlagen dafür zwei Definitionen vor:

(1)
$$Versäuerungsgrad = \frac{[TOC \ der \ VFA]}{[TOC]}$$

Nicht klar dabei ist, ob sich der TOC der organischen Säuren auf den TOC des Rohabwassers oder den TOC des Abwassers im Ablauf Versäuerungsbehälter bezieht. Eine zweite Art des Versäuerungsgrades wird von ALEXIOU et al. aus dem CSB wie folgt hergeleitet:

Diese Definition legt nahe, daß der CSB-Gehalt der organischen Säuren mit dem gesamten CSB-Gehalt der im Abwasser gelösten organischen Verbindungen Ablauf Versäuerungsbehälter verglichen wird - der Versäuerungsgrad sich somit nicht auf das Rohabwasser bezieht. Andemfalls würden bei einem hohen Grad an im Versäuerungsbehälter hydrolysierbaren Feststoffen keine sinnvollen Werte erhalten.

Bezieht sich der Versäuerungsgrad hingegen auf das Rohabwasser, ist damit eine Aussage möglich, wieviele der organischen Verbindungen im Zulauf einer Kläranlage nach Passieren des Vorversäuerungsbehälters als organische Säuren vorliegen. Da bei dieser Festlegung nur ein Teil der im Reaktor gebildeten Produkte Berücksichtigung findet, erreicht ein so definierter Versäuerungsgrad auch bei praktisch vollständigem Umsatz aller Abwasserinhaltsstoffe nur Werte zwischen 50 und 70% (je nach Yield und Gasproduktion), wie auch das weiter unten angeführte Beispiel von ZOETEMEYER et al. (1982) zeigt. Bezieht man den Anteil der organischen Säuren auf die Konzentration organischer Stoffe im Ablauf des Vorversäuerungsbehälters, findet der gasseitig ausgeschleuste Output keine Berücksichtigung.

Je nach Betrachtung der Reduktionsäquivalente (CSB) oder Bilanzierung über den Kohlenstoff (TC) erfahren die einzelnen Versäuerungsprodukte unterschiedliche Gewichtung. Wie aus *Tab.* 2.3 ersichtlich, ist für Essigsäure und Biomasse die Betrachtung bei der CSB- und TC bzw. TOC-Bilanz identisch, Propionsäure wird in der CSB-Bilanz 1,17 • so viel gewertet wie in der Kohlenstoffbilanz, Buttersäure 1,25 mal und Ethanol wird als am weitesten reduziertes Produkt bei der CSB-Bilanz 1,5 • so viel gewichtet wie bei der TC-Bilanz. Ameisensäure hingegen als weitgehend oxidiertes Substrat erfährt bei der CSB-Bilanz nur eine halb so große Gewichtung wie bei der TC-Bilanz:

Verbindung	Konz.	MG	CSB	TC	CSB-Gewichtung im Vergleich zur TC-Gewichtung
			g/l		
Glucose	1 mol	180	192	72	1,0 : 1,0
Milchsäure	1 mol	90	96	36	1,0 : 1,0
Ameisensäure	1 mol	46	16	12	1,0 : 2,0
Essigsäure	1 mol	60	64	24	1,0 : 1,0
Propionsäure	1 mol	74	112	36	1,17 : 1,0
Buttersäure	1 mol	88	160	48	1,25 : 1,0
Valeriansäure	1 mol	102	208	60	1.30 : 1.0

Tab. 2.3.: Molekulargewicht, CSB und TC verschiedener Fermentationsprodukte

46

113

1 mol

1 mol

Während vor allem die weiter reduzierten Säuren in der TC-Bilanz geringeren Niederschlag finden als in einer CSB-Bilanz, wird der Austrag über die <u>Gasseite</u> beim TC stärker betont als beim CSB. Entstehen zum Beispiel bei der Versäuerung von 1 Mol Glucose (CSB = 2,67 • TOC) bei 30° C 50 l Gas mit 75 % CO₂ und 25 % H₂, so entspricht dieser Austrag über die Gasseite:

96

160

24

60

1,50:1,0

1,0:1,0

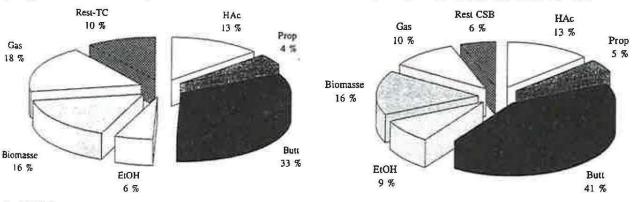
(2.13)
$$\frac{50 \cdot 0.75}{22.4} \cdot \frac{273}{303} \cdot 12 = 18.1 \text{ g TC} = \frac{18.1}{72} \cdot 100 = \underline{25.1 \% \text{ des Zulauf-TC's}}$$

und

Ethanol

Biomasse

(2.14)
$$\frac{50 \cdot 0.25}{22.4} \cdot \frac{273}{303} \cdot 16 = 8.0 \text{ g CSB} = \frac{8.0}{180} \cdot 100 = 4.5 \% \text{ des Zulauf-CSB's}.$$


In diesem Beispiel werden bei der Versäuerung ca. 1/4 des Kohlenstoffs über die Gasseite entfernt, während sich der Energieinhalt des Abwassers nur unwesentlich (< 5%) ändert. In der Regel (Hohe CO₂ Konzentration im Versäuerungsbehältergas) ist der TC-Austrag über die Gasseite also wesentlich höher als der CSB-Anteil im Gas.

Diese Überlegungen sollen an einem weiteren Beispiele illustriert werden. Für Glucose (CSB = 9697 mg/l; TC = 3636 mg/l) fanden ZOETEMEYER et al. bei 30° C und pH = 5,7 folgende Verteilung (Gasproduktion = 2,9 l/l):

Tab. 2.4.: Produkte bei einem Versäuerungsversuch nach ZOETEMEYER et al. (1982-2)

	HAc		Prop		Butt		EtOH		Biomasse		CO ₂ bzw H ₂		Rest	
	1225	mg/l	/l 309 mg		2200 mg/l		403 mg/l		1064 mg/l		46 : 54			
	mg/l	%	mg/l	%	mg/l	%	mg/l	%	mg/l	%	mg/l	%	mg/l	%
TC	490	13	150	4	1200	33	210	6	580	16	644	18	362	10
CSB	1307	13	467	5	4000	41	840	9	1547	16	1008	10	528	6

Bei quasi vollständigem Umsatz von Glucose (die unter Rest angeführten Verbindungen waren Aminosäuren, Proteine und Vitamine) betrug der Versäuerungsgrad 60% bezogen auf den CSB und 50% bezüglich TC (*Abb. 2.5*). Die Unterschiede wurden in diesem Fall vor allem durch die hohe Buttersäurekonzentration verursacht. Trotz des relativ niedrigen CO₂-Anteils im VB-Gas von 46 % ist die durch das Gas ausgetragene TC-Fracht fast doppelt so hoch wie der durch die (vergleichsweise hohe) Wasserstoffkonzentration verursachte Gasanteil bei der CSB-Bilanz:

Auf TC bezogen Auf CSB bezogen

Abb. 2.5.: Produktverteilung bei vollständigem Umsatz von Glucose (nach ZOETEMEYER et al. 1982-2)

Schlußfolgerung

Wesentlich für die Ausbeute der Methanbakterien ist weniger die Konzentration an Kohlenstoff als der Energieinhalt der organischen Verbindungen. Sollte der <u>Versäuerungsgrad</u> als Maß für die "<u>Methanbildungskapazität</u>" (= Güte der Versäuerung im Hinblick auf die nachfolgende anaerobe Mineralisierung) verstanden werden, erscheint es zielführend, den Energieinhalt (<u>CSB</u>) der im Vorversäuerungsbehälter gebildeten, in den Methanreaktor überführten leicht methanisierbaren Metabolite dazu heranzuziehen. Da die organischen Säuren in der Regel den Hauptanteil an diesen Produkten darstellen, ist es vor allem aus analytischen Gründen einfach, als leicht methanisierbare Versäuerungsprodukte die Summe der niederen organischen Säuren umgerechnet in CSB - zu ermitteln. Um das Ausmaß der Versäuerung auf das Rohabwasser zu beziehen, kann man den so erhaltenen Wert in Relation zur CSB-Konzentration des Zulaufs setzen und damit den <u>Versäuerungsgrad</u> berechnen. Mit dem so definierten Versäuerungsgrad erhält man einen Anhaltspunkt, welcher Anteil des im Rohabwasser vorhandenen Energieinhaltes nach einer Vorversäuerung als leicht methanisierbares Substrat vorliegt. In der weiteren Arbeit wird diese Definition des Versäuerungsgrades verwendet.

3. CHEMISCH - PHYSIKALISCHE ANALYTIK

3.1. ALLGEMEINES

Nachdem bei der anaeroben Reinigung alle Vorgänge in geschlossenen Behältern ablaufen und bei Störungen rasch und richtig eingegriffen werden muß, kommt der Überwachung des Prozesses durch chemische Analytik eine <u>besonders große Bedeutung</u> zu. Aussagekräftige Analysenparameter sollen eine beginnende Störung oder Labilität der Versäuerung bzw. der Methanisierung rasch erkennbar machen, Aufschlüsse über die Abbauvorgänge zulassen und die Kontrolle und Steuerung des anaeroben Abbaus ermöglichen.

Im einfachsten Fali ist es der pH-Wert, der die Stabilität der Versäuerung des Abwassers in einer vorgeschalteten Stufe anzeigt. Neben einer pH-Wert-Änderung kann ein Rückgang der NH4-Konzentration bei gleichbleibender Gesamtstickstoffkonzentration auf eine Verminderung des Hydrolysegrades hinweisen. Den Versäuerungsgrad kann man relativ einfach durch Summenparameter (CSB, TOS, wasserdampfflüchtige Säuren) bestimmen. Der Methangehalt im Gas eines Versäuerungsbehälters erlaubt Rückschlüsse auf das Vorhandensein (autotropher) Methanbakterien. Das Säurespektrum schließlich in Verbindung mit dem CSB ist der aussagekräftigste (aber auch aufwendigste) Analysenparameter zur Beurteilung der Ab- und Umbauvorgänge in der ersten Stufe.

3.2 BEDEUTUNG UND BESTIMMUNG RELEVANTER PARAMETER

3.2.1. CSB (Chemischer Sauerstoffbedarf)

Der CSB stellt den wichtigsten Parameter zur praktisch vollständigen Quantifizierung der

organischen Verschmutzung dar. Man kann damit die Raum- bzw. Schlammbelastung beschreiben. Der im Versäuerungsbehälter abgebaute CSB wird in Form von Wasserstoff und Methan sowie als Biomasse freigesetzt. Da die Differenz zwischen rohem Zu- und Ablauf nur gering ist, ist eine Berechnung der Abbauleistung und eine Bilanzierung über den CSB unter Berücksichtigung der durch die Probenahme und das Analysenverfahren be-

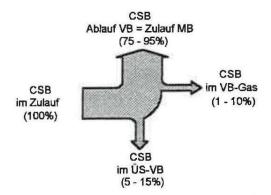


Abb. 3.1.; CSB-Bilanz Versäuerungsbehälter

bedingten Fehlermöglichkeiten mit Unsicherheiten behaftet. Zur genaueren Erfassung des CSB-Abbaus bietet sich die Messung der energiehältigen Gasinhaltsstoffe, der Gasmenge und der gebildeten Biomasse an. Die <u>Bestimmung</u> des CSB erfolgte von den entsprechend vorbereiteten Proben (homogenisiert, falten- oder membranfiltriert) nach DEV H 41 (DEV 1995). Zur

Verminderung der Umweltbelastung durch Quecksilber (zur Maskierung von Chloridionen in der Norm vorgeschrieben) wurden bei den untersuchten Proben anfangs Parallelbestimmungen mit und ohne HgCl₂-Zugabe durchgeführt. Da beide Analysenverfahren aufgrund der niedrigen Chloridkonzentrationen in der Probe vergleichbare Werte lieferten, wurde in der Folge auf eine HgCl₂-Zugabe verzichtet.

Im Abwasser enthaltenes Ammonium sowie <u>Betain</u> wird bei der Oxidation nach DEV nicht erfasst. Während bei der Versäuerung auch bei einer Verweilzeit von mehreren Tagen (pH 5 - 6) keine erkennbare Umsetzung von Betain erfolgt (FIEBIG et al. 1989), wird es im Methanreaktor weitgehend abgebaut und trägt somit dort sowohl zur Biogas- als auch zur Ammonium- und Überschußschlammbildung bei. Sehr wohl mitbestimmt wird beim Dichromataufschluß das <u>Sulfid</u>, das vor allem im Methanreaktorablauf in erheblichen Konzentrationen vorliegen kann und den CSB erhöht. Allerdings verändert sich die Sulfidkonzentration sehr rasch, sobald eine Probe aus der Biogasatmosphäre an die Luft gebracht wird (z.B. beim Filtrieren), sodaß über die Größenordnung der CSB-Aufhöhung keine genaue Angabe möglich ist, ohne die Sulfidkonzentration mitzubestimmen. In Summe wird jedenfalls durch quaternäre Ammoniumverbindungen im Zulauf und durch gelöstes Sulfid im Ablauf ein niedrigerer <u>CSB-Wirkungsgrad</u> der Anaerobie vorgetäuscht als tatsächlich bezogen auf organische Verbindungen erreicht wird.

Ein in einen vorgeschalteten Versäuerungsbehälter aus nachfolgenden aeroben bzw. anaeroben Stufen zugegebener Schlamm führt bei der CSB-Analytik der rohen Ablaufproben zu
einem erheblichen Mehrbefund gegenüber einer filtriert analysierten Probe. Da der CSB aus der
Biomasse im Methanbehälter nur teilweise umgesetzt wird, darf dieser Anteil bei der Berechnung der Zulauffracht für die zweite Stufe nur bedingt mitberücksichtigt werden.

3.2.2. BSB₅ (Biochemischer Sauerstoffbedarf)

Trotz der Probleme bei seiner Bestimmung in Industrieabwässem (geeignetes Inokulum!) und seiner langen Analysendauer ist der BSB5 ein wichtiger Parameter für die <u>Beurteilung der Abbaubarkeit</u> organischer Abwasserinhaltsstoffe. Er ist zwar ein "aerober" Parameter, doch kann man in den meisten Fällen annehmen, daß die aerob abbaubaren Substanzen auch anaerob abbaubar sind. Ist das Verhältnis CSB/BSB5 kleiner 2, kann mit einer guten Abbaubarkeit gerechnet werden. Bei Werten um 1,5 kommt es darüberhinaus meist zu einer raschen Versäuerung (ATV-FA 7.5 1993). Bei CSB/BSB5-Verhältnissen > 2 sollte der BSB20 gemessen werden, da ein hohes CSB/BSB5-Verhältnis oft nur durch einen verzögerten Abbau verursacht wird und der BSB5 dann kein quantitatives Maß mehr für die abbaubaren Stoffe darstellt. Wertvolle Hinweise bezüglich Abbaubarkeit bzw. Toxizität gibt auch der zeitliche Verlauf des Sauerstoffverbrauchs. Eine Bilanzierung über den BSB5 ist nicht möglich.

Zur quantitativen <u>Bestimmung</u> wurde das Verdünnungsverfahren (mit Nitrifikationshemmer) nach DEV H 51 ausgewählt. Vor allem bei hochkonzentrierten Abwässern werden dabei allerdings

mögliche Hemmstoffe mitverdünnt, sodaß keine Aussage über die tatsächliche Abbaubarkeit oder sogar eventuelle Toxizitäten dieser Verbindungen im Reaktor möglich ist. Der Vorteil dieser Methodik liegt darin, daß durch diese Verdünnung ein ungestörterer Abbau als bei Vorliegen der konzentrierten Probe (bei manometrischen Bestimmungsmethoden) erfolgen kann. Darüberhinaus wird durch die Zugabe des ausgezehrten Verdünnungswassers eine gesicherte Animpfung sowie ausreichende Nährstoff- und Spurenlementeversorgung gewährleistet. Hohe Sulfidkonzentrationen verursachen eine zusätzliche O₂-Zehrung (⇔ CSB) und müssen bei der Berechnung der Abbauleistung berücksichtigt werden.

3.2.3. TOC (total organic carbon), TC (total carbon)

Hauptsächlich aus den in Kapitel 2.7.3 angeführten Gründen wurde im vorliegenden Fall auf eine regelmäßige Bestimmung der organischen Verbindungen mittels TOC bzw. TC verzichtet. Von SVARDAL (1991-1) wurde für eine Reihe von Industrieabwässem vorwiegend aus der Lebensmittelbranche ein CSB/TOC-Verhältnis von ca 3,2 - sowohl im Zu- als auch im Ablauf der anaeroben Reaktoren - beobachtet. In derselben Arbeit finden sich auch genaue Instruktionen zur Durchführung einer CSB bzw. TC-Bilanzierung.

3.2.4. Feststoffe

Wegen des im Rahmen dieser Arbeit vorliegenden praktisch schwebstofffreien Abwassers wurde für die Betrachtung des Versäuerungsbehälters nur die <u>Gesamt-</u> und <u>organische Trockensubstanz</u> der rückgeführten Schlämme analysiert und mit dem CSB in Verbindung gebracht (CSB ≈ 1,4 • oTS). Die Bestimmung erfolgte nach den entsprechenden Normverfahren DEV S 2 bzw S 3. Da die Inhaltsstoffe des Rohabwassers bzw. des versäuerten Abwassers die Poren der Membranfilter rasch verklebten, wurde die analytische Erfassung der <u>abfiltrierbaren Stoffe</u> (Schwebstoffe) routinemäßig nicht durchgeführt.

3.2.5. Stickstoff

Neben seiner Bedeutung als Nährstoff auch für die anaeroben Bakterien (ca. 6 kg N pro Tonne CSB_{abgeb}) haben hohe Stickstoffkonzentrationen in Form von <u>Ammonium</u> einen wesentlichen Einfluß auf die Alkalität und damit auf den pH-Wert. Da NH₄ häufig erst durch Hydrolyse organischer Stickstoffverbindungen gebildet wird, muß zur analytischen Erfassung der Stickstofffracht der <u>organisch gebundenen Stickstoff</u> aufgeschlossen werden.

Die maßanalytische <u>Bestimmung</u> des Gesamtstickstoffs erfolgte nach DEV H 11 (TKN) bzw. - nach dem Aufschluß - photometrisch als Ammonium. Einige aromatische und heterocyclische Verbindungen mit ringständigen Stickstoffatomen (z.B. Betain) werden dabei nicht bzw. nicht vollständig hydrolysiert. Die (zahlreichen) Probleme bei der Bestimmung sind in SVARDAL 1992 und MOSER et al. 1994 angeführt. <u>Ammonium</u> wurde colorimetrisch nach DEV E 5-1 analysiert. Beim untersuchten, versäuerten Abwasser ergaben sich dabei gute Übereinstimmungen mit den

mittels des Autoanalyzers II (ebenfalls in Anlehnung an DEV E 5) der Firma Technicon gemessenen Konzentrationen in den dialysierten Proben.

3.2.6. Schwefel

Sulfat wird im Lauf der anaeroben Umsetzungen - meist erst im Methanreaktor - von Sulfatreduzenten in der Regel zu über 90% zu Sulfid reduziert und spielt sowohl als Nähr- als auch als
Hemmstoff eine Rolle. Bewährt hat sich die photometrische Bestimmung des <u>Sulfats</u> durch
Trübungsmessung nach Fällung als Bariumsulfat (REGNET et al. 1981). Die gewählte Methode
war trotz einer Streuung von einigen Prozent ausreichend genau. Die analytische Bestimmung
des gelösten <u>Schwefelwasserstoffs</u> ist relativ aufwendig; besonders auf die hohe Flüchtigkeit ist
dabei Bedacht zu nehmen. Die Konzentration des gelösten, undissoziierten (und damit
toxischen) Schwefelwasserstoffs in der flüssigen Phase läßt sich rasch und einfach aus dem
H₂S-Gehalt des Gases unter Berücksichtigung des pH-Wertes berechnen (HENRY'sches
Gesetz) oder wird durch sofortige Fixierung des H₂S durch z.B. Zink der Analytik zugänglich.

3.2.7. Alkalität (Säurekapazität)

Die Säurekapazität S_{K 4,3} beschreibt definitionsgemäß die Konzentration schwacher Säuren und ist damit ein Maß für das <u>Puffervermögen</u>. Streng genommen gilt sie nur dann, wenn alle schwachen Säuren beim Endpunkt der Titration (pH = 4,3) fast vollständig dissoziiert sind - und damit nicht für Abwasser, das z.B. organische Säuren enthält. SVARDAL (1991-1) schlägt daher vor, im Abwasserbereich den Begriff <u>Alkalität</u> zu verwenden, die neben H⁺ und OH⁻ nicht nur HCO₃⁻ und CO₃²- erfasst sondem auch die organischen Säuren berücksichtigt (GRAN 1952). Danach ist die Alkalität der Säureverbrauch bis zu dem pH-Wert, bei dem dieser nur mehr von der H⁺-Konzentration abhängt. Dieser sogenannte Äquivalenzpunkt läßt sich relativ einfach aus der Titrationskurve bestimmen.

Die Definition der Alkalität als Differenz aller vollständig dissoziierten Kat- und Anionen führt dazu, daß die Alkalität eine von der Abwasserzusammensetzung abhängige Größe ist. Durch eine Veränderung der Konzentration einer schwachen Säure (Kohlensäure, organische Säure) ändert sich nur der pH-Wert, nicht aber die Alkalität. Weiters wird der Anteil, der durch Kationen abgedeckt wird, die mit den auftretenden Säuren keine schwer löslichen Verbindungen eingehen (K⁺, Na⁺, NH₄⁺), als "Soda-Alkalität" definiert. Ca²⁺ als häufigstes zweiwertiges Kation bildet bei pH-Werten um den Neutralpunkt in Verbindung mit der Kohlensäure ein schwer lösliches Salz (Kalk) und steht nur mehr in dem Ausmaß zur Verfügung, wie es das Löslichkeitsprodukt erlaubt (SVARDAL 1991-1).

3.2.8. Organische Säuren und TOS (Titrierbare organische Säuren)

In einer vorgeschalteten <u>Versäuerungsstufe</u> ist die Konzentration an organischen Säuren (in Relation zur Gesamtkonzentration) ein Maß für den Versäuerungsgrad des Abwassers. Die Art

der gebildeten Metabolite läßt Rückschlüsse auf die beteiligten Organismengruppen zu. Die Bestimmung der organischen Säuren (unter Auftrennung nach den verschiedenen Retentionszeiten) erfolgt am einfachsten mit chromatographischen Methoden - im vorliegenden Fall mittels HPLC (Säule: Aminex HPX-87H; Laufmittel: 0,01 n H₂SO₄; UV-Detektor) und Messung bei 210 nm. Diese Bestimmung hat im Gegensatz zur gaschromatographischen Erfassung den Vorteil einer einfachen automatischen Probenaufgabe und den Nachteil der relativ langen Analysenzeit. Um Ablagerungen an der Säule durch Ausfällungen zu verhindem, sollten die Proben filtriert, durch einen Kationentauscher vorgereinigt und möglichst kurz vor der Analyse durch ein 0,2 μ-Filter gepreßt werden.

Entfernt man die Kohlensäure durch Ansäuern der Probe auf pH 2 mit anschließendem Stehenlassen (ca. 15') unter ständigem Rühren, wird der Natronlaugebedarf zur Neutralisation im Bereich zwischen pH 4 und 5 hauptsächlich durch den Gehalt an organischen Säuren bestimmt. Damit kann eine rasche Abschätzung der Summe der organischen Säuren (Titrierbare organische Säuren = TOS) durch einfache Titration erfolgen (GÖTZENDORFER 1989).

3.2.9. Erdalkali-, Alkali und sonstige Metalle

Alle wesentlichen Kationen lassen sich am einfachsten direkt aus der Lösung oder nach einem Königswasseraufschluß mittels AAS (DEV E 7 etc.) bzw. ICP (DEV E 22) erfassen.

3.2.10. Gaskomponenten

Beim Versäuerungsprozess steht die Gaszusammensetzung (vor allem Wasserstoff) und das Säurespektrum in enger Wechselwirkung. Bei der Erstellung einer genauen CSB-Bilanz muß CH₄, H₂ und evtl. durch Denitrifikation freigesetzter Stickstoff mitberücksichtigt werden. Die Beurteilung des Anaerobprozesses anhand der Gaszusammensetzung wird wesentlich verbessert, wenn auch die zugehörigen Gasmengen bekannt sind und mit der CSB-Fracht in Korrelation gebracht werden können.

Sowohl H₂S als auch CO₂ (bis 60%) lassen sich rasch, einfach und genau mit Drägerröhrchen, die Summe dieser Gase ebenso rasch und einfach durch Absorbtion in Lauge bestimmen. H₂ und CH₄ (sowie auch CO₂ in Konzentrationen über 60%) können auch gaschromatographisch (z.B. Säule: Poropak Q, 80-100 mesh; Trägergas: Argon; HWD-Detektor) analysiert werden. Für die Gasprobenahme genügen einfache Ballons, wenn die Analyse unmittelbar nach der Probenahme erfolgt (H₂S lagert sich rasch an Oberflächen an).

3.2.11. Temperatur

Die Temperatur im Versäuerungsbehälter beeinflußt ebenfalls die sich einstellende Biozönose und damit die gebildeten Versäuerungsprodukte. Ihre Messung kann einfach und genau mit einem Brunnenschöpfthermometer (Quecksilber, Skalenteilung 0,5° C) nach DEV C 4 durchge-

führt werden. In den Reaktoren bzw. Leitungen werden häufig kontinuierliche und registrierende Systeme (Pt 100) eingesetzt.

3.2.12. pH-Wert

Ohne die Angabe der Abwasserzusammensetzung sind pH-Werte im Zulauf nur von geringer Aussagekraft. Entscheidend ist z.B., ob der pH-Wert von organischen oder anorganischen Stoffen verursacht wird. Auch die Beurteilung der Wirkung von organischen Säuren, Ammonium oder H₂S ist nur in Verbindung mit dem pH-Wert möglich. In einem vorgeschalteten <u>Versäuerungsbehälter</u> kann ein pH-Abfall eine Verminderung der Ammonifikation und damit die Gefahr eines Rückgangs des Versäuerungsgrades ankündigen - die kontinuierliche Messung und Registrierung dieses Wertes ist somit eine wertvolle Hilfe, eine stabile Versäuerung aufrecht zu erhalten.

Die Auswahl geeigneter und standfester Betriebssonden muß vor allem bei Anaerobstufen sorgfältig erfolgen. Kontinuierliche pH-Elektroden haben im allgemeinen keine sehr langen Standzeiten, beginnen nach kurzer Zeit zu driften und lassen sich oft nicht mehr kalibrieren (Übersteilheit). Dies hängt zum einem mit dem tiefen Redoxpotential und zum anderen mit der häufig hohen Ammoniumkonzentration zusammen, die zu einer Zerstörung der Referenzelektrode führen kann (SVARDAL 1991-2). Eine tägliche händische Kontrolle (z.B. pH-Meter 632 von Metrohm bzw. pH-Meter 530 von WTW) ist bei großen Puffervermögen jedoch ausreichend, um diesen Wert zu überwachen. Berücksichtigt werden muß bei der händischen Messung, daß durch das Ausgasen von CO₂ bei der Probenahme nur eine sofortige Bestimmung (vor Ort) eine Aussage über den pH-Wert im Reaktor erlaubt.

4. DIE ARA PERNHOFEN

In diesem Kapitel wird die zweistufige anaerobe Großanlage zur Reinigung des konzentrierten Abwassers einer Zitronensäurefabrik in Pernhofen (NÖ) kurz beschrieben.

4.1. DAS PRODUKTIONSVERFAHREN

Die meisten Zitronensäurehersteller - gleichgültig, ob sie nach dem Oberflächenverfahren oder dem Submersverfahren arbeiten - verwenden Kohlehydrate als Rohstoffe und bestimmte Stämme des Schimmelpilzes Aspergillus niger als Mikroorganismen (SCHULZ et al. 1975). Das gewünschte Produkt wird vor der Umwandlung in die Aconitsäure aus dem Krebs-Cyclus ausgeschieden, wobei der Zusatz von z.B. Hexacyanoferrat-Ionen oder anderer Hemmstoffe die Ausbeute erhöht. Als Rohstoff können im Prinzip alle Hexosen und vorzugsweise Glucose und/oder Fructose enthaltende Disaccharide verwendet werden - aus Kostengründen hat sich in den meisten Fällen Melasse bzw. Stärkehydrolysat als bevorzugter Rohstoff durchgesetzt. Bei der Verwendung von Zucker oder Stärkehydrolysat als Kohlenstoffquelle ist die Zugabe von Nähr- und Wuchsstoffen erforderlich.

Zweckmäßigerweise nach Abtrennung des Mycels wird die mit den Waschwässem vereinigte

Gärlösung in Rührkesseln vorgelegt, auf mindestens 90° C aufgeheizt (geringere Löslichkeit des Calciumcitrats) und die Zitronensäure mit Kalkmilch gefällt. Die Calciumcitrat-Suspension wird über Vakuumdrehfilter heiß filtriert und gewaschen, die Zitronensäure anschließend durch Zugabe von Schwefelsäure wieder in Lösung gebracht (wobei Gips als Abfallprodukt anfällt) und weiteren Reinigungsschritten unterzogen (Abb. 4.1):

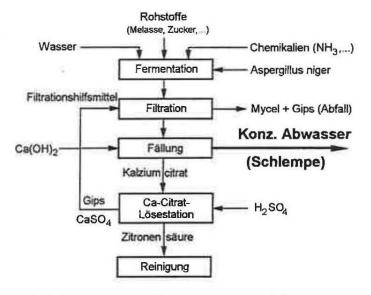


Abb. 4.1.: Schema der Zitronensäurefermentation

4.2. DAS ABWASSER

Die aus der Fermentationsstufe gewonnene Lösung enthält neben dem Hauptprodukt Zitronensäure alle Verunreinigungen, die mit den Rohstoffen, Nährsalzen und anderen Zusätzen in den Prozeß eingebracht wurden sowie unerwünschte, aber auch unvermeidbare Stoffwechselprodukte des Pilzes einschließlich durch Autolyse in Lösung gegangene Zellsubstanzen. Speziell bei der Verwendung von Melasse liegt die Menge aller Nebenprodukte oder unveränderter Rohstoffbestandteile in der gleichen Größenordnung vor wie die Zitronensäure selbst. Die bei der Abtrennung der Zitronensäure durch Kalkfällung entstehende Ablauge - die sogenannte "Schlempe" - beinhaltet im wesentlichen die aus der Zuckerfabrikation und damit aus der Zuckerrübe stammenden organischen Bestandteile neben nicht vergorenem Zucker. Sie weist eine hohe Konzentration an organischen Verunreinigungen (CSB, BSB₅) und einen beträchtlichen Anteil an gebundenem Stickstoff sowie einen geringen Feststoff- und Phosphatgehalt auf, fällt mit Temperaturen zwischen 50° und 65° C an und liegt praktisch als gesättigte CaSO₄-Lösung vor (*Tab. 4.1*). Mit einem Anteil von 10 - 20% im Hinblick auf die Gesamtabwassermenge trägt sie 80 - 90% zur Gesamtverschmutzung bei (SVARDAL et al. 1993).

Tab. 4.1.: Abwassercharakteristische Kenndaten der Schlempe (SVARDAL et al. 1993)

Parameter	Dim.	Schlempe
Q	m ³ /d	2.000
CSB	mg/l	30.000
TKN	mg/l	1.500
Ca	mg/l	1.000
SO ₄	mg/l	4.500

4.3. DIE VERFAHRENSWAHL

Da speziell bei stark verschmutzten, mit hohen Temperaturen anfallenden Abwässern der Nahrungs- und Genußmittelindustrie die anaerobe Abwasserreinigung eine Fülle von Vorteilen gegenüber den konventionellen aeroben Verfahren aufweist, wurde sie bei diesem Abwasser eingesetzt. Die wichtigsten Vorteile sind:

- wesentlich geringere Energiekosten (Keine Belüftungsenergie und hoher Biogasgewinn)
- weniger N\u00e4hrstoff- und Spurenelementebedarf (Industrieabw\u00e4sser weisen in der Regel Phosphormangel auf)
- ein Bruchteil des bei rein aerober Reinigung anfallenden Überschußschlammes, der darüberhinaus stabilisiert vorliegt
- verringertes Blähschlammrisiko in der (aeroben) Nachreinigungsstufe

Im Fall des Abwassers der Zitronensäurefabrik wurden mehrjährige Versuche in verschiedenem Maßstab (4 I bis 30 m³) durchgeführt, bei denen mehrere Problemkreise ersichtlich wurden (KROISS [et al.] 1982, 1985, 1986, 1988, 1990, 1991, SVARDAL et al. 1993). Trotz des relativ gleichmäßigen Abwasseranfalls werden aufgrund der erheblich schwankender CSB-Konzentrationen (zwischen 15.000 und 50.000 mg/l) entsprechende <u>Frachtschwankungen</u> verursacht. Bei hoher <u>Abwasserkonzentration</u> kann, wie in Kap. 2.6 beschrieben, die im Methanbehälter erfolgende Hydrolyse und Versäuerung im neutralen bzw. leicht alkalischen Milieu zu hohen Konzentrationen an Propionsäure führen. Weitere Probleme sind die hohen <u>Sulfat-</u> und <u>Stickstoffkonzentrationen</u>, die (in Abhängigkeit vom pH-Wert) die acetoclastischen Methanbakterien hemmen können, der <u>geringe Phosphorgehalt</u> des Abwassers (P-Dosierung erforderlich) und die zu erwartende erhebliche <u>Kalkausfällung</u> im Ausmaß der 2 - 3 fachen Über-

schußschlammmenge. Die hohe Stickstoffkonzentration ist auch positiv, da sie auf den pH-Wert stark stabilisierend wirkt.

4.4. BESCHREIBUNG DER BETRIEBLICHEN ABWASSER-REINGUNGSANLAGE

Ausgeführt wurde eine zweistufige anaerobe Anlage mit nachgeschalteter aerober Reinigungsstufe, wobei der erste Reaktor neben seiner Ausgleichsfunktion (Zwischenspeicherung von bis zu einer Tagesfracht durch variable Füllhöhe) die Vorversäuerung des Abwassers vornimmt (Abb. 4.2). Aufgrund der während des Versuchsbetriebes aufgetretenen Probleme wurde als Methanbehälter ein aufwärtsdurchströmter Schlammbettreaktor (EKJ-Reaktor) mit Drehverteiler und interner Abtrennung und Rückführung der Biomasse entwickelt (v.d.EMDE et al. 1984), der u.a. in KROISS et al. (1988) ausführlich beschrieben wird. Die nachgeschaltete, aerobe Belebung hatte im wesentlichen die Aufgabe, den Ablauf der Anaerobanlage geruchfrei zu machen bzw. bei Störungen der Anaerobanlage den Rest-CSB weitgehend abzubauen und dient seit der Kläranlagenerweiterung als Zwischenreinigungsstufe. Sie wurde als Hochlastbiologie ausgelegt, deren Belüftungskapazität auch bei einem Teilausfall der anaeroben Reinigungsstufe zum aeroben Kohlenstoffabbau der Schlempe ausreichen sollte.

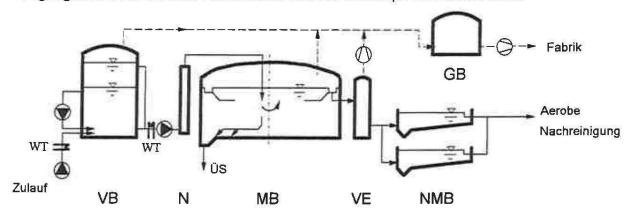


Abb. 4.2.: Schema der anaeroben Stufe Kläranlage Pernhofen bis zur 135sten Woche (Okt '86 - Feb '89)

WT: Wärmetauscher

VB: Versäuerungsbehälter mit variablem Füllstand

Durchmesser	16	m
H _W	17,5	m
Volumen	3.500	m ³
Höhe Ablauf 1	5,4	m
Höhe Ablauf 2	10,9	m
Variables Volumen	2.400	m ³

N: Neutralisationsbehälter (Kühlwasser- und Laugenzugabemöglichkeit)

MB: Methanbehälter: EKJ-Reaktor mit innenliegendem Nachklärbecken (iNB). Das Methanbehältergas verläßt den Reaktor über einen Gasdom am Behälterdach, wird mit dem in

gleicher Weise abgezogenen Gas aus dem Versäuerungsbehälter vereinigt (⇔ Faulgas) und zu einem Gasbehälter (GB) geleitet.

Durchmesser 36 m H_W 10,8 m Volumen 10.000 m³

VE: Vakuumentgaser

NMB: Die Nachklärbecken sind als abgedeckte Rechteckbecken mit Bandräumern ausgeführt. Die Abluft geht über ein Gebläse ins Belebungsbecken, der Schlamm gemeinsam mit dem Zulauf aus dem Versäuerungsbehälter in den Methanreaktor und der Ablauf über ein zentrales Pumpwerk in die

BB: Belebungsstufe, die als Dreierkaskade mit zwei

NBB: Nachklärbecken gleicher Bauart wie im anaeroben Teil - nur ohne Abdeckung und mit Zahnschwellen statt Lochschwellen - angelegt ist.

Der gesamte anfallende Überschußschlamm gelangt über den belüftbaren Schlammspeicher zu den Siebbandpressen und wird nach einer Trocknungsstufe auf die betriebseigene Deponie verbracht. Das Faulgas wird vom Gasbehälter zu zwei Gasverdichtem geleitet, die es einer Verwertung durch gemeinsames Verbrennen mit Erdgas in einem Dampfkessel zuführen. Die inzwischen erweiterte Anlage der aeroben Nachreinigung mit simultaner Nitrifikation/-Denitrifikation wird u.a. in SVARDAL et al. (1993) vorgestellt.

4.5. BETRIEBSWERTE

4.5.1. Einfahrbetrieb

Nach der Füllung aller Behälter mit Reinwasser (Dichtheitsprüfung) wurden im Versäuerungsbehälter 1.600 m³ Wasser durch Schlempe ersetzt und ab diesem Zeitpunkt 200 - 250 m³/d Abwasser durch den VB in die Belebungsanlage geleitet. Der dort anfallende, aerobe Überschußschlamm ging nach 4 Wochen über den Versäuerungsbehälter in den Methanbehälter. Bis zu dieser Schlammzugabe konnte im Versäuerungsbehälter nur eine geringe Umsetzung der Abwasserinhaltsstoffe beobachtet werden. Das entstehende Gas wurde in den Methanbehältergasraum geleitet, um die darin befindliche Luft zu verdrängen. Gleichzeitig mit der Aufheizung des MB-Inhalts auf 35° C wurde dieser mit 3.000 m³ Faulschlamm aus einer kommunalen Kläranlage befüllt und soviel versäuertes Abwasser eingeleitet, daß die CSB-Konzentration zwischen 500 und 1.000 mg/l blieb.

Um bei der anfangs geringen Zulaufmenge (Aufenthaltszeit im Methanbehälter ca. 35 Tagen) die für den mesophilen Abbauprozeß im MB notwendige, hohe Temperatur zu halten, wurde der Zulauf unverdünnt mit im Mittel 48° C über den Versäuerungsbehälter eingestellt. Nach langsamer Frachtsteigerung (1%/Tag) ging 28 Wochen später die gesamte anfallende Schlempe durch den anaeroben Teil der Anlage; leichte Frachtschwankungen im Zulauf wurden ohne erkennbare Reaktion auf die Abbauleistung abgefangen.

4.5.2. Betriebswerte Oktober 1986 bis Dezember 1988

Die nun folgenden Abbildungen der Betriebswerte der Kläranlage Pemhofen umfassen den Zeitraum 1 - 120ste Woche, in der auch ein Großteil der Untersuchungen im Rahmen dieser Arbeit gemacht wurden. Bei den Werten handelt es sich - wenn nicht anders angegeben - um Wochenmittelwerte aus zumindest täglichen Untersuchungen.

4.5.2.1. Abwasserkonzentration:

Hauptsächlich abhängig vom Rohstoffmix und damit vom Melasseanteil im Ansatz der Zitronensäurefermentationen bewegte sich die CSB-Zulaufkonzentration zwischen 10 und 55 g/l in den Tagesmischproben bzw. 14 - 38 g/l im Wochenmittel. Das CSB/BSB₅-Verhältnis lag bei 1,4 - 1,6

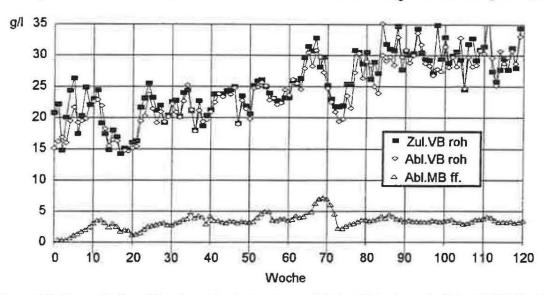


Abb. 4.3.: CSB-Konzentration Kläranlage Pernhofen: Zu- und Ablauf VB roh sowie Ablauf MB faltenfiltriert

Die Absolutkonzentration des CSB Ablauf Methanbehälter ist bei weitgehendem Abbau der organischen Verbindungen (ablesbar an der geringen Konzentration an organischen Säuren) vor allem ein Maß für den Melasseanteil im Abwasser - wobei der jeweilige Anteil an Kühl- bzw. Verdünnungswasser (*Tab. 1* und 2 im Anhang) beachtet werden muß. Untersuchungen an reiner Melasseschlempe aus der Zuckerherstellung ergaben einen maximalen CSB-Abbaugrad von um die 80% (FIEBIG et al. 1989). Zur Ermittlung des abbaubaren CSB's wurden die Ablaufkonzentrationen Methanbehälter und Belebungsanlage (abzüglich Verdünnungswasser) der Zulaufkonzentration gegenübergestellt.

Aus Abb. 4.4 (Tab. 2 im Anhang) ist ersichtlich, daß etwa 85% der Schlempeinhaltsstoffe anaerob und knapp 90% des Zulauf-CSB's in der Gesamtanlage (inklusive nitrifizierenderdenitrifizierender Belebungsstufe) eliminierbar sind. Die relativ großen Schwankungen erklären sich u.a. aus der hydraulischen Aufenthaltszeit (anfangs tw. mehrere Wochen), sodaß auch bei der Betrachtung von Wochenmittel keine streng korrespondierenden Werte entstanden. Im Mittel konnte ein CSB-Gesamtwirkungsgrad von ca. 90% und ein BSB5-Abbaugrad von über

96% erreicht werden. Da der geringe Einfluß des Betains nicht berücksichtigt wurde, ist der tatsächliche Abbau etwas höher

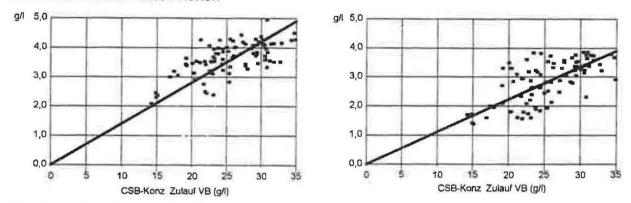


Abb. 4.4.: CSB-Konzentration (Wochenmittelwerte) Ablauf Anaerobie bzw. Gesamtanlage in Abhängigkeit von der Zulaufkonzentration VB

4.5.2.2. Abwasserfracht:

In den ersten 8 Wochen nach Betriebsbeginn wurde ein Teil der in den Versäuerungsbehälter genommenen Schlempe direkt in die Aerobie umgeleitet, in der 26. Woche der VB umfahren. Ansonsten weisen Zu- und Ablauf VB nur einen geringfügigen Unterschied in der CSB-Fracht auf - der geringe CSB-Abbaugrad des Versäuerungsbehälters ist in der Abb. 4.5 deutlich erkennbar. Mit steigender Zitronensäureproduktion nahm die CSB-Fracht der Schlempe ebenfalls zu und erreichte gegen Ende des Betrachtungszeitraumes knapp vor Inbetriebnahme des zweiten Methanbehälters den Bemessungswert von 6 kg CSB pro m³ Methanbehältervolumen und Tag (*Tab. 3* im Anhang). Von der 70sten bis zur 80sten Woche stieg die CSB-Fracht stark an ohne zu einem Rückgang der Reinigungsleistung zu führen (*Abb. 4.5*).

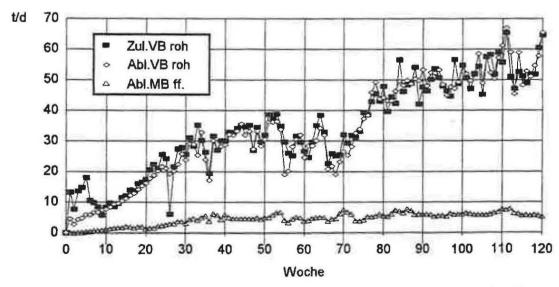


Abb. 4.5.: CSB-Fracht Kläranlage Pernhofen: Zu- und Ablauf VB roh sowie Ablauf MB faltenfiltriert

Auf die <u>CSB-Schlammbelastung</u> im Versäuerungsbehälter wird im Kapitel 5 näher eingegangen. Im Methanbehälter wurde die von HEIJNEN (1984) beobachtete noch stabile Obergrenze von ca. 2 kg CSB/kg oTS.d (⇔ Kap. 2) mit bis zu maximal 0,4 kg CSB/kg oTS.d deutlich unter-

schritten, sodaß trotz latenter Sulfidhemmung letztlich keine Aussage über die Grenze der Belastbarkeit dieses Reaktors (auch in Abhängigkeit von der Betriebsweise der Versäuerungsstufe) möglich war. Über die Bestimmung der oTS und des Glühverlustes in allen wichtigen Bereichen (inklusive Ablauf Nachklärbecken und Überschußschlamm) wurde bei der Erstellung der Schlammbilanz ein anaerober Biomassezuwachs im MB von etwa 50 kg CSB pro Tonne abgebautem CSB ermittelt (*Tab. 3* im Anhang).

4.5.2.3. Gasproduktion

Die mittlere spezifische Gasmenge über den Beobachtungszeitraum von 120 Wochen betrug 145 m³ VB-Gas pro Tonne CSB bezogen auf die CSB Zulauffracht der ersten Stufe sowie 510 m³ MB-Gas pro Tonne im Methanbehälter abgebautem CSB (*Abb. 4.6* und *Tab. 4* im Anhang). Der Anteil des Methanbehältergases an der Gesamtbiogasproduktion lag relativ stabil zwischen 70 und 80% (*Tab. 5* im Anhang). Die maximal mögliche (theoretische) Faulgasausbeute bei der Methanisierung erreichte 350 Nm³/Tonne CSB_{abgeb.}, wenn man den Überschußschlammanfall vernachlässigt. Die tatsächlich beobachteten 330 m³/t CSB_{abgeb.} bestätigen die Annahme von ca. 5% Biomassezuwachs/t CSB_{abgeb.} im Methanbehälter sowie den relativ geringen Anteil des Betains in diesem Abwasser (COLLERAN et al. 1994).

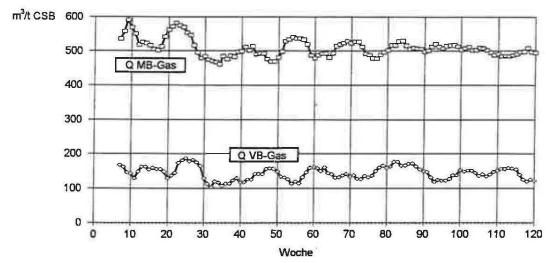


Abb. 4.6.: Spezifische Gasproduktion Kläranlage Pernhofen; VB-Gas in m³/t CSB-VB_{ZU} bzw. MB-Gas in m³/t CSB-MB_{aboeb}.

Das VB-Gas schwankte in seiner Zusammensetzung und Menge stark. Bei Methanisierung auch in der Versäuerungsstufe wurden CH₄-Konzentrationen von bis zu 20% erreicht. Ansonsten konnten teilweise hohe H₂-Konzentrationen (bis zu 40%) beobachtet werden. Während des Großteils der Versuche dominierte CO₂ mit einem Anteil von bis zu über 80%. Der - wegen der großen Schwankungen in der Zusammensetzung wenig aussagekräftige - Gesamtmittelwert über 120 Wochen betrug 73% CO₂, 13% H₂, 8% CH₄ und Spuren (0,2%) von H₂S. Die mittlere Gaszusammensetzung des MB-Gases war hingegen relativ konstant und lag bei 60 - 70% CH₄, 30 - 40% CO₂ und 3,1% H₂S.

5. VERSÄUERUNGSBEHÄLTER PERNHOFEN

5.1 ALLGEMEINES

Beim Betrieb der Großanlage gab es mit der Zulaufkonzentration, -art, -fracht, -temperatur, Menge und dem pH-Wert sowie mit der Biomasserückführung aus dem aeroben und anaeroben Nachklärbecken eine Vielzahl von Einflußgrößen auf den Versäuerungsbehälter, die in einem mehr oder minder großen Ausmaß und oft unabhängig voneinander schwankten bzw. verändert werden konnten. Aus den vorliegenden 450 Einzelwerten (zumindest jeden zweiten Tag Messung des organischen Säurespektrums) konnten insgesamt 38 Perioden mit ähnlichen und mehr oder weniger gleichbleibenden Randbedingungen sowie 6 Tage mit pH-Werten unter 5,0 zusammengefaßt und ausgewertet werden (*Tab. 6* im Anhang). Herangezogen wurden die in den jeweiligen Perioden beobachteten, charakteristischen Werte. Diese Perioden mit den sich dabei einstellenden Konzentrationen und Verhältnissen an organischen Säuren (als CSB) bildeten die Basis für die Betrachtung der Versäuerung im Versäuerungsbehälter.

Im untersuchten Fall der Schlempeversäuerung stellten von den analysierten <u>Gärungsprodukten</u> Essig- Butter und Propionsäure sowie (erst im letzten Jahr mitbestimmt) n-Valeriansäure den Hauptanteil. Daneben fielen fallweise geringe Mengen von Ameisensäure (2 - 800 mg/l) an, deren Auftreten keiner Gesetzmäßigkeit zugeordnet werden konnte. Milchsäure wurde manchmal, aber immer nur kurzzeitig bei raschen Milieuänderungen beobachtet - die maximal beobachtet Konzentration betrug dabei immerhin über 6 g CSB/l. Auch weil über die Abbaubarkeit bzw. Hemmwirkung der drei erstgenannten Metaboliten auf die Methanbakterien am meisten bekannt ist, wurde in der Folge die Summe aus HAc, Prop und Butt (bei den Versuchsanlagen + n-Val) als Summe der Säureprodukte definiert.

5.2. TEMPERATUR

Die Abwassertemperatur von ca. 60° C ermöglichte es, durch verschieden weitgehende Abkühlung die Temperaturabhängigkeit der Schlempeversäuerung in einem Bereich von 39 - 60° C zu untersuchen. Wie auch die Ergebnisse der Versuchsanlagen (⇔ Kap. 6) ergaben, spielte die Temperatur für den Grad der Versäuerung offensichtlich keine entscheidende Rolle. Stark beeinflußt wurde hingegen das Essig- zu Buttersäureverhältnis (*Abb. 5.1*). Unter 45° C ("mesophil") überwog die Essigsäure, während über 45° C ("thermophil") die Buttersäure das Hauptprodukt darstellte. Auffällig ist dabei die große Streuung der Produktverteilung im mesophilen Bereich.

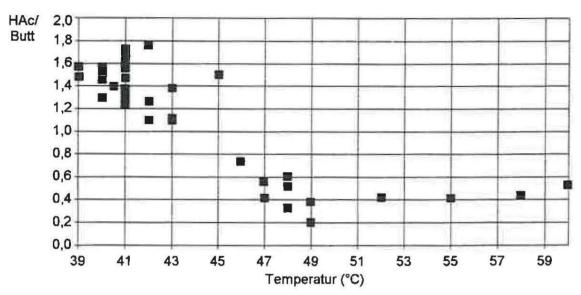


Abb. 5.1.: Essig- zu Buttersäureverhältnis Perioden VB (als CSB) in Abhängigkeit von der Temperatur

Die Annahme, daß bei höheren Wasserstoffpartialdrücken vermehrt Buttersäure gebildet wird, war in diesem Temperaturbereich nicht gültig - auch bei mehrtägigen H₂-Konzentrationen von knapp 20% lag das Essig-/Buttersäureverhältnis deutlich auf Seiten der Essigsäure (*Abb. 5.2* und *Tab. 7* im Anhang). Über 45° C ist ebenfalls keine Wechselwirkung zwischen dem Verhältnis dieser beiden Metabolite und der Gaszusammensetzung erkennbar.

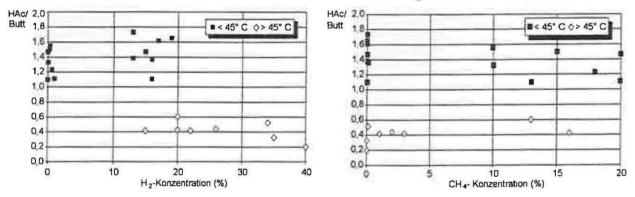


Abb. 5.2.: Essig- zu Buttersäureverhältnis (jeweils als CSB) Perioden VB in Abhängigkeit vom H₂- und CH₄-Gehalt des VB-Gases und der Temperatur

Der Anteil der Propionsäure erwies sich als praktisch unabhängig von der Temperatur und lag relativ konstant bei 12 - 18% (Abb. 5.3 und Tab. 8 im Anhang). Die anderen Versäuerungsprodukte Ameisensäure und Ethanol traten nur selten auf und konnten keiner Temperaturabhängigkeit zugeordnet werden.

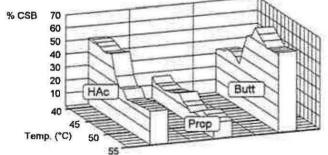


Abb. 5.3.: Anteil organischer Säuren VB (jeweils als CSB) in Abhängigkeit von der Temperatur

Nicht nur das Säurespektrum sondem auch die <u>autotrophen Methanbakterien</u> und damit die <u>Gaszusammensetzung</u> wiesen eine Temperaturabhängigkeit auf. <u>Unter 45° C</u> wurde im Durchlaufbetrieb (ohne Schlammrückführung) über einen relativ weiten Belastungsbereich (HRT > 4 d)

CH₄-Produktion beobachtet. Bei ca. 10 - 15% CH₄-Anteil traten im VB-Gas nur mehr Spuren von Wasserstoff auf. Bei niedrigeren CH₄-Konzentrationen erreichte der H₂-Gehalt kurzfristig bis zu 20%. Im <u>höheren Temperaturbereich</u> gelang die Methanbildung nur bei sehr geringen Belastungen (HRT > 5 d) <u>und</u> gleichzeitiger Schlammrückführung aus dem anaeroben Nachklärbecken. Da auch bei Methanbildung über 45° C die Wasserstoffkonzentration meist deutlich über 20% lag, kann vermutet werden, daß die autotrophen Methanbakterien unter diesen Bedingungen nur durch ständige Animpfung im System gehalten werden konnten. GÖTZENDORFER (1989) stellte in seinen Versuchen bereits fest, daß auch die widerstandsfähigen autotrophen Methanbakterien ab ca. 45° C stark gehemmt bis abgetötet werden.

Die gesamte anfallende und im Werk in einem Biogaskessel genutzte <u>Gasmenge</u> konnte über den Gasverdichter relativ genau ermittelt werden. Vor allem bei höherer Gasproduktion mußte jedoch ein Teil des Biogases abgefackelt werden und erlaubte nur mehr eine grobe Abschätzung der tatsächlich anfallenden Gesamtgasmenge. Aus der Brenndauer der Fackel sowie mit Hilfe der Konzentrationen an H₂S, CO₂, CH₄ und H₂ im VB-, MB- und Mischgas zurückgerechnet war es jedoch möglich, die Gasmengen beider Behälter ungefähr zu bestimmen und damit die in *Abb 5.4* dargestellte, <u>spezifische CSB-Fracht</u> des <u>Versäuerungsbehältergases</u> zu ermitteln (*Tab. 9* im Anhang). Von der 30sten bis zur 67sten Woche fehlen Analysendaten über die Gaskomponenten.

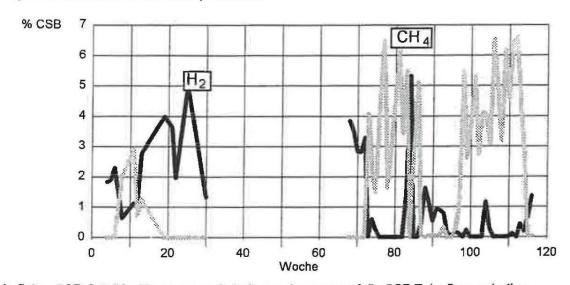


Abb. 5.4.: CSB-Anteil im Versäuerungsbehältergas bezogen auf die CSB Zulaufkonzentration

Im thermophilen Bereich (0 - 73ste und 83/84ste Woche) wurden zwischen 1% und 5% mit im Mittel 2,6% des Zulauf-CSB im Gas - vorwiegend in Form von H₂ - wiedergefunden. Der mesophile Bereich ist im überwiegenden Teil durch eine CH₄-Konzentration gekennzeichnet, deren mittlerer CSB höher liegt als in der Hochtemperaturphase (4,5%). Bei fehlender Methanbildung fiel auch der CSB-Gehalt des Versäuerungsgases (87 - 97ste Woche). Weder in der Differenz der CSB-Konzentrationen Zu- und Ablauf Versäuerungsbehälter noch im Versäuerungsgrad konnten entsprechende Unterschiede zwischen den Betriebsweisen über und unter 45° C beobachtet werden. Allerdings wurden während eines Großteils des Betriebes

stark schwankende Mengen an Überschußschlamm aus der Aerobie bzw. Impfschlamm aus der Anaerobie in den Versäuerungsbehälter rückgeführt, die beim CSB Ablauf VB miterfasst wurden. Weiters ist unbekannt, welcher Anteil des Betain in den jeweiligen Betriebsphasen aufgeschlossen und damit der CSB-Analytik zugänglich gemacht wurde. Beide Tatsachen führten zu einer Unschärfe bei der Bestimmung des CSB-Abbaugrades im Versäuerungsbehälter, die in der Größenordnung der oben bemerkten Differenz zwischen CSB-Inhalt VB-Gas im mesophilen und im thermophilen Bereich liegen. Ob im niedrigeren Temperaturbereich bei der Anwesenheit von aus CO₂ und H₂ Methan bildende Mikroorganismen tatsächlich mehr Substrat "vergast" wird, konnte daher in dieser Arbeit nicht geklärt werden.

5.3. pH-WERT

Die Auswertung des Versäuerungsgrades in Abhängigkeit vom pH-Wert in den 38 Perioden des Untersuchungszeitraumes zeigte eine leichte Zunahme zwischen den pH-Werten 5,1 und 6,1:

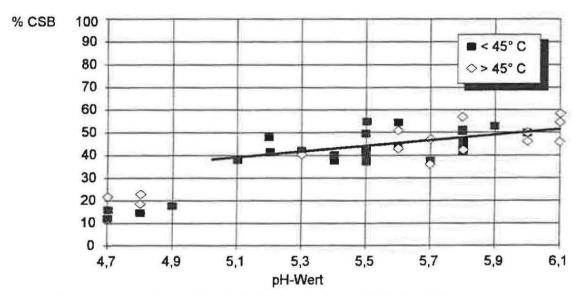


Abb. 5.5.: Versäuerungsgrad Perioden VB in Abhängigkeit von pH-Wert und Temperatur

Nähere Betrachtungen zeigen, daß mit steigender Belastung (sinkender Aufenthaltszeit) die

Ammonifikation zurückgeht und damit der pH-Wert (Abb. sinkt 5.6). Der Rückgang des Versäuerungsgrades mit fallendem pH-Wert könnte daher auch mit der damit verbundenen kürzeren Aufenthaltszeit begründet werden. Allgemein hat die Ammoniumkonzentration

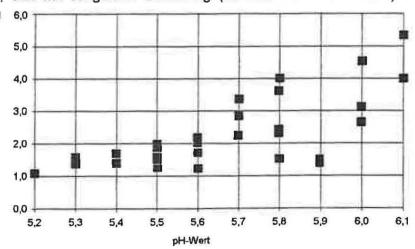


Abb. 5.6.: pH-Wert Perioden VB in Abhängigkeit von der Aufenthaltszeit

einen stärkeren Einfluß auf den pH-Wert als die Konzentration an organischen Säuren. Der Zusammenhang zwischen pH-Wert, Ammonifizierung, Versäuerung und CO₂-Produktion wird in Kapitel 9 ausführlich dargelegt.

Das Säurespektrum selbst wurde im pH-Bereich > 5,1 nicht merklich von diesem beeinflußt. An 6 Tagen wurde dieser pH-Bereich unterschritten, was mit einem nahezu schlagartigen Rückgang der Propion- und vor allem der Buttersäureproduktion verbunden war. Diese Beobachtung war unabhängig von der Temperatur. Wieweit der Versäuerungsgrad und der pH-Wert fallen würden, konnte in der Großanlage nicht untersucht werden, da in diesen Fällen rasch Gegenmaßnahmen getroffen wurden. Mit der Rückführung von Faul- oder Belebtschlamm (2 - 10% des Versäuerungsbehältervolumens) gelang es innerhalb weniger Stunden, die Umsetzungen wieder auf dem vorherigen Niveau zu stabilisieren.

5.4. BELASTUNG, AUFENTHALTSZEIT UND ABWASSER-KONZENTRATION

Bei stabilen pH- und Temperaturverhältnissen schien der Versäuerungsgrad geringfügig von der <u>CSB-Zulaufkonzentration</u> abhängig zu sein. Im Bereich von 15 bis 20 g CSB/I wurden etwa 50% der CSB-Fracht in die drei Hauptprodukte Essig-, Propion- und Buttersäure umgesetzt, bei ca. 35 bis 40 g CSB/I lag der Mittelwert des Versäuerungsgrades knapp über 40% (*Abb. 5.7*):

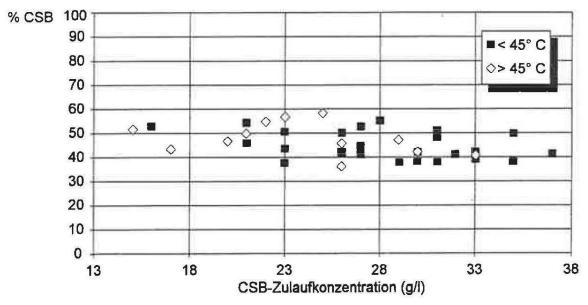


Abb. 5.7.: Versäuerungsgrad Perioden VB in Abhängigkeit von CSB-Zulaufkonzentration und Temperatur Bei der Betrachtung des Versäuerungsgrades in Abhängigkeit von der <u>CSB-Raumbelastung</u> ergab sich ein ähnliches Bild (Abb. 5.8):

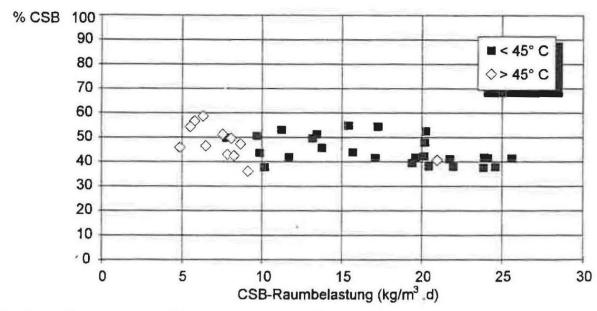


Abb. 5.8.: Versäuerungsgrad Perioden VB in Abhängigkeit von CSB-Raumbelastung und Temperatur

Für einen Durchlaufreaktor am plausibelsten ist jedoch die Abhängigkeit des Umsetzungsgrades von der Aufenthaltszeit vor allem in der Nähe des Auswaschpunktes. *Abb. 5.9* zeigt keine deutliche Abnahme des Versäuerungsgrades mit fallender HRT, sodaß die Grenze der Belastbarkeit bei der beobachteten, minimalen Verdünnungsrate von 0,9 d⁻¹ (0,04 h⁻¹) noch nicht erreicht war. Ein unter 5,0 fallender pH-Wert aufgrund verminderter Ammonifikation wurde bei Auftenthaltszeiten unter 2 - 3 Tagen beobachtet.

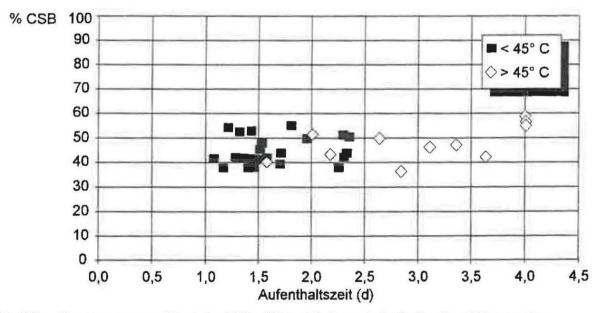


Abb. 5.9.: Versäuerungsgrad Perioden VB in Abhängigkeit von Aufenthaltszeit und Temperatur

Da in der Großanlagen hohe CSB-Zulaufkonzentrationen auch meist mit hohen Raumbelastungen bzw. kurzer Aufenthaltszeit einhergingen, konnte aus den Meßergebnissen nicht eindeutig geklärt werden, welche der drei Parameter den jeweiligen leichten Rückgang des Versäuerungsgrades verursachten. Dies wurde daher im Labormaßstab weiter untersucht.

6. VERSUCHSANLAGEN ZUR VERSÄUERUNG

6.1. AUFGABENSTELLUNG

Eine vorbeugende Stabilisierung der Versäuerung kann außer durch Chemikalienzugabe (z.B. Natronlauge) mit Faul- oder Belebtschlamm durchgeführt werden. Als willkommener Nebeneffekt ist es damit möglich, den aeroben Überschußschlamm auf diese Weise nutzbringend zu stabilisieren. Mit den Versuchsanlagen sollten nun die beim großtechnischen Reaktor gewonnenen Erkenntnisse überprüft und insbesonders die Auswirkung der Rückführung von Faulund Belebtschlamm auf die gebildeten Metabolite aufgezeigt werden. Weiters dienten sie zur näheren Untersuchung der bei der Großanlage vermutete Abhängigkeit des Versäuerungsgrades von CSB-Zulaufkonzentration, Raumbelastung oder Aufenthaltszeit. Im Labormaßstab war es möglich, Schlempe mit außergewöhnlich hoher und niedriger CSB-Konzentration über einen längeren Zeitraum bei verschiedener Einstellung der Belastung als Substrat einzusetzen. Einige weitere Versuchseinstellungen untermauerten die Veränderung des Säurespektrums in den beiden Temperaturbereichen sowie den Zusammenbruch vor allem der Butter- und Propionsäurebildung bei pH-Werten unter 5,0.

Bei allen Versuchsanlagen wurde für die Berechnung des Versäuerungsgrades die in einer Größenordnung von 1 - 3 g CSB/l auftretende n-Valeriansäure mitberücksichtigt, woraus ein um ca. 5% höherer Versäuerungsgrad als bei der Großanlage resultiert. Die Summe an Essig-, Propion-, Butter- und Valeriansäure wird mit HPBV abgekürzt. Die starken Schwankungen der spezifischen Gasmenge zwischen 90 und 440 ml/g CSB_{ZU} sind auf Schwierigkeiten zurückzuführen, in diesem kleinen Maßstab genaue Gasmengenmessungen durchzuführen - aus diesem Grund wurde der CSB-Inhalt im gebildeten Gas nicht angeführt.

6.2. VERSUCHE IM DURCHLAUFREAKTOR (CHEMOSTAT)

6.2.1. Material und Methoden

Bei den Versuchen im Durchlaufbetrieb wurde zwar auf eine Schlammrückführung verzichtet, aber aerober oder anaerober Impfschlamm in verschiedenen Mengen- und Zeitintervallen zugegeben. Die 5 Reaktoren (VD) bestanden aus 1,5 Liter fassenden Woulffschen Flaschen mit einer Bohrung als Ablauf, einem Magnetrührstäbchen zur ständigen Durchmischung, einem nach unten geführten Rohr, über das kontinuierlich mit Hilfe einer Schlauchquetschpumpe aus jeweils getrennten Vorlagezylindem täglich frischaufgetaute Schlempe (eine gleichbleibende Charge pro Versuchsabschnitt) zugeführt wurde und einer mit dem Gasraum in Verbindung stehenden Gassperre (Meßkolben, der in eine Flüssigkeit eintaucht). Die beiden Versuchsanlagen VD 1 und 2 wurden mit aerobem Belebtschlamm (BS) in den in den folgenden Tabellen jeweils angegebenen Mengen und Zeitintervallen versetzt - die Schlammkonzentration betrug

dabei ca. 20 g oTS/I. Analog dazu erfolgte eine <u>Faulschlammzugabe</u> (FS) zu den Versuchsanlagen <u>VD 3</u> und <u>4</u> mit ebenfalls ca. 20 g oTS/I. <u>VD 5</u> wurde als reiner Chemostat ohne
Schlammzugabe betrieben und diente als <u>Referenzanlage</u> - bei Absinken des pH-Wertes wurde
sie mit NaOH stabilisiert. Einmal täglich erfolgte bei allen Anlagen die Ablesung der Zulauf- und
der Gasmenge, falls erforderlich, die Einstellung des pH-Wertes auf ca. 5,5 und jeden zweiten
Tag die vollständige Analyse des Gases und der organischen Säuren.

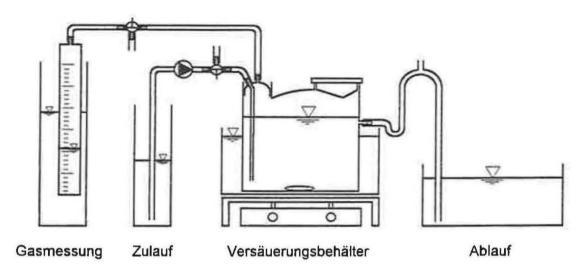


Abb. 6.1.: Skizze einer Versuchsanlage zur Versäuerung für Durchlaufbetrieb (VD)

CSB-Konzentration und Menge des Zulaufs, die Temperatur sowie die jeweils gewählte Schlammzugabeart und -menge blieben so lange konstant, bis über etwa drei Aufenthaltszeiten ein Gleichgewichtszustand (gleichbleibendes Säurespektrum) erreicht war. Die <u>CSB-Zulaufkonzentration</u> variierte von 20 bis 47 g/l, die <u>CSB- Raumbelastung</u> von ca. 5 bis 50 g CSB/l.d, die <u>Aufenthaltszeit</u> von 0,85 bis 10 Tagen und die <u>Impfschlammenge</u> von einer einmaligen Zugabe zu Beginn des Versuches bis zu quasi kontinuierlicher Beschickung. Die <u>Temperatur</u> bei dem Großteil der Versuchszeiträume betrug 40° C, bei vier Versuchsanordnungen 47° C und während ebenfalls vier Phasen 50° C.

6.2.2. Untersuchung der maximale Belastungskapazität (+ Einfluß des pH-Wertes)

Zu Beginn wurden alle Versuchsanlagen mit konzentriertem Abwasser (CSB = 46 g/l) beschickt. Bis zu einer Raumbelastung von 20 g CSB/l.d (HRT = 2,3 Tage) verlief die Versäuerung ohne Neutralisation bei einem pH-Wert von etwa 5,6 stabil. Bei der Steigerung der Belastung auf 32 g CSB/l.d (1,4 d) wurden nur mehr 30% des CSB in die organischen Säuren HPBV umgesetzt; der pH-Wert blieb dabei nur knapp über 5,1. Eine mehrmals pro Tag erfolgende Einstellung des pH-Wertes auf 5,6 verbesserte den Versäuerungsgrad auf den Wert, der auch bei niedrigerer Belastung gefunden wurde. Eine Steigerung der Raumbelastung auf 43 (1,05 d) und später auf 53 g CSB/l.d (0,85 d) verstärkte die Geschwindigkeit des pH-Abfalls erwartungsgemäß. Da keine pH-Regelung möglich war, wurde auf die diskontinuierliche Zugabe eines Neutralisations-

mittels verzichtet, worauf der pH-Wert rasch abfiel und sich bei 4,2 stabilisierte. Sobald der pH-Wert unter 5,0 fiel, ging die Butter- und Valeriansäureproduktion nahezu schlagartig zurück. Das Hauptprodukt Essigsäure konnte bis zu Versuchsende in einer gleichbleibenden Konzentration von knapp 5 g/l beobachtet werden. Die Propionsäurekonzentration lag bei 500 mg/l, die Werte für die Buttersäure schwankten im Bereich zwischen 50 und 400 mg/l und Valeriansäure wurde nicht mehr gefunden. Der Versäuerungsgrad betrug knapp über 10%.

6.2.3. Versuchsphasen mit konstantem pH-Wert

Bei den nun folgenden Versuchsabschnitten erfolgt die Angabe der Abwasserkonzentration und der Raumbelastung, der Aufenthaltszeit, der Gaszusammensetzung, und der zugeführten Schlammengen (in Prozent Versuchsanlagenvolumen) in Tabellenform; die <u>organischen Säuren</u> werden ebenfalls als <u>CSB</u> gerechnet. Alle Gleichgewichtsdaten finden sich im Anhang (*Tab. 10*).

In der ersten Versuchseinstellung (I) wurden <u>alle 5 Tage 33%</u> des Inhalts der Versuchsanlagen 1,2,3 und 4 mit <u>Schlamm</u> (wie in 6.2.1 beschrieben) ausgetauscht. Die Raumbelastung betrug 14 g/l.d bei einer Aufenthaltszeit von 3 Tagen. Während VD 1 und 2 mit frischen Ablauf Versäuerungsbehälter der Großanlage gefüllt wurden, wurden die Anlagen VD 3 und 4 aus der vorigen Versuchsphasen nach Anhebung des pH-Wertes von 4,2 auf 5,6 direkt übernommen. Sie wiesen erst nach 2 Wochen dieselben Ergebnisse wie die frisch gefüllten Referenzanlagen VD 1 und 2 auf. Die Annäherung erfolgte dabei nach einer massiven Buttersäureproduktion (bis 11 g/l), die von keiner hohen Wasserstoffkonzentration begleitet war. Die als reiner Chemostat betriebene Anlage entwickelte kaum Wasserstoff und Methan - die Buttersäuerkonzentration war am Ende dieser Einstellung geringfügig niedriger als in den Vergleichsreaktoren mit periodischer Schlammimpfung:

Nr.	CSB	BR	HRT	Schlar	nmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH₄
	g/l	g/l.d	d	Art	Vol%VD		g CS	SB/I		-	%CSB	%	%
			-	+ BS	33%/5d	9,3	2,2	7.6	1,6	1,22	50	1,4	1,7
1	42	14,0	3,0	+FS	33%/5d	10,4	2,2	7,4	1,4	1,40	51	3,0	1,5
	_				0	9.2	2.5	5,9	1,0	1,57	44	0,2	0,4

Beim nächsten Ansatz (II) erfolgte eine <u>einmalige Animpfung</u> der Biozönose mit 17% Schlamm. Trotz der niedrigen Belastung von knapp 10 g CSB/l.d (HRT \approx 5d) bildeten sich im Untersuchungszeitraum keine Methanproduzenten - auch in den mit Faulschlamm angereicherten Versuchsanlagen sank die CH₄-Konzentration innerhalb von 9 Tagen langsam ab:

Nr.	CSB	BR	HRT	Schlar	nmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH₄	
	g/l	g/l.d	d	Art	Vol%VD	·					%CSB	%	%	
					+BS	17%anf.	9,7	2,7	6,8	1,0	1,44	43	0,2	0,0
11	47	9,7	4,8	+FS	17%anf.	10,4	2,3	7,0	1,2	1,49	44	1,1	0,1	
		(*)			0	10,1	3,3	6,5	1,2	1,55	45	0,2	0,2	

Neuerliche Zugaben von <u>Schlamm (250 ml einmal pro Woche)</u> und eine <u>Halbierung der</u> <u>Belastung</u> leitete die nächste Versuchsphase (III) ein. Diesmal konnte in beiden mit Schlamm beimpften Anlagen eine leichte Methanproduktion aufrechterhalten werden. Trotz einer relativ

niedrigen Wasserstoffkonzentration (1 - 5%)	wurde in allen Versuchsanlagen das Säure-
spektrum in Richtung stärker reduzierter Säurer	n (Butter- und Valeriansäure) verschoben:

Nr.	CSB	BR	HRT	Schlar	nmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH₄
	g/l	g/l.d	d	Art	Vol%VD	g/l	g/l	g/l	g/l		%CSB	%	%
	47			+FS	17%/7d	6,4	2,2	8,5	2,4	0,75	42	4,0	2,0
III		4,7	10	+ BS	17%/7d	6,8	2,4	10,0	2,9	0,68	47	1,2	5,0
					0	6,9	3,6	11,6	2,7	0,60	53	6,0	0,2

In den nächsten 1½ Monaten (Phasen IV und V) wurde von 170 ml/d ausgehend die Zulaufmenge (und damit die <u>Belastung</u>) auf 450 ml/d (B_R = 14,1 g/l.d; HRT = 3,3 d) <u>gesteigert</u>. Auch diesmal erfolgte <u>nur zu Beginn</u> eine <u>Impfung</u> der Anlagen VD 1 und 2 mit 17% BS bzw. 17% FS für VD 3 und 4. Die schon vorher beobachtete Verschiebung des Säurespektrums erreichte in allen 5 Anlagen nach 3 Wochen ihren Höhepunkt (IV) und ging dann langsam Richtung Essigsäure (V) - eine Erklärung für diesen Vorfall konnte nicht gefunden werden. Der p<u>H-Wert</u> wurde diesmal nicht korrigiert und sank auf <u>5,2</u> ab. Der dabei beobachtete Versäuerungsgrad war der niedrigste bei allen durchgeführten Versuchen:

Nr.	CSB	BR	HRT	Schlar	mmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH₄
	g/l	g/l.d	d	Art	Vol%VD		g CS	8B/I		-	%CSB	%	%
				+ BS	17%anf.	6,4	0,4	10,9	0,4	0,59	38	10	0,0
IV	47	9,4	5,0	+FS	17%anf.	7,0	2,7	10,0	1,0	0,70	44	0,5	0,3
			0		0	7,4	2,7	9,8	1,0	0,76	45	5	0,5
				+ BS	0	5,6	1,8	7,0	0,8	0,81	32	10	0,0
V	47	14,1	3,3	+FS	0	5,8	2,0	7.6	3,7	0,75	41	10	0,0
•					0	5,6	1,8	5,2	3,3	1,08	34	8	0,0

Mit einer massiven Schlammzugabe (2 • je 33% in den ersten drei Tagen) und frischem Ablauf Versäuerungsbehälter der Großanlage wurde eine <u>Hochlastphase</u> mit konstantem pH-Wert eingestellt (VI). Auffällig war dabei - mit Ausnahme von VD 1 und 2 (BS) - eine außergewöhnlich hohes HAc/Butt-Verhältnis; der Versäuerungsgrad konnte jedoch ohne Schwierigkeiten stabil gehalten werden. Die <u>Rücknahme der Belastung</u> brachte eine langsame Annäherung der Buttersäureproduktion (VII) an in der Großanlage übliche Werte bei stabiler Versäuerung.

Nr.	CSB	BR	HRT	Schla	nmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH ₄
	g/l	g/l.d	d	Art	Vol%VD		g CS	B/I			%CSB	%	%
				+ BS	2 • 33%	8,7	2,2	6,3	0,8	1,38	48	4,0	0,0
VI	41	32,8	1,3	+FS	2 • 33%	9,7	3,6	3,7	3,7	2,62	45	0,5	1,0
					0	8,2	3,6	3,3	3,3	2,50	39	0,5	2,0
				+ BS	33%anf.	6,4	2,4	5,9	2,4	1,09	46	5,0	0,1
VII	36	4,8	7,5	+FS	33%anf.	8,6	2,2	7,4	1,4	1,16	56	1,4	5,0
					0	8,2	3,6	7,2	1,0	1,14	56	2,0	0,5

Die nächsten Versuchsphasen (VIII und IX) wurden mit <u>feinerer Schlammdosierung</u> (20 ml alle 2 Tage bei einer Zulaufmenge von 175 ml/d und 46 g CSB/l; dann 30 ml Schlamm täglich bei 250 ml/d und 43 g CSB/l) und niedriger Belastung ($B_R = 5 - 7$ g/l.d, HRT = 6 - 9 d) gefahren. Auffällig war hier die hohe Wasserstoffkonzentration bei den mit Belebtschlamm versetzten Versäuerungsbehältem, der stabile Methananteil im Gas der mit Faulschlamm beimpften Anlagen

und der ger	inge Energiein	halt des Gase	s im reinen (Chemostaten:
-------------	----------------	---------------	---------------	--------------

Nr.	CSB	BR	HRT	Schla	nmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	Ho	CH₄
	g/l	g/l.d	d	Art	Vol%VD		g/				%CSB	%	%
VIII 46			+ BS	0,7%/2d	7,2	0,4	7,9	0,2	0,91	34	10	5	
VIII	46	5,4	8,6	+FS	0,7%/2d	10,6	1,8	7,9	1,4	1,35	47	0,0	12
		1			0	9,2	2,2	8,3	2,0	1,11	47	0,4	0,3
				+ BS	2%/d	7,9	1,6	8,1	1,0	0,98	43	10	0,3
IX	43	7,2	6,0	+FS	2%/d	9,2	2,0	7,2	1,0	1,28	45	0,5	10
			0,0		0	8,2	2.4	7,9	1,2	1,04	46	1,0	0,1

Bei gleichbleibender Raumbelastung diente im letzten Versuchsabschnitt (X) bei 40° C eine niedrig konzentrierte Schlempe (20 g CSB/l, $B_R \approx 6$ g/l.d, HRT = 3,2 d) als Substrat:

Nr.	CSB	BR	HRT	Schlar	mmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	Ho	CH₄
	g/l	g/l.d	d	Art	Vol%VD		g CSB/I				%CSB	%	%
				+ BS	3,3%/2d	4,6	1,5	3,5	1,4	1,32	55	0,0	15
X	20	6,3	3,2	+FS	3,3%/2d	5,1	1,6	4,7	1,4	1,07	57	0,0	15
					0	3,6	0,9	4,1	1,4	0,86	50	0,0	11

Die geringfügig bessere Versäuerung der mit Faulschlamm versetzten Versuchsanlagen gegenüber den mit Belebtschlamm beimpften setzte sich auch im nächsten Versuchsabschnitt fort, bei dem die <u>Temperatur</u> auf <u>47° C</u> eingestellt wurde. Die Belastung stieg vorerst auf 9 (XI) und dann auf 14 g CSB/l.d (XII) bzw. 2,4 und 1,5 d HRT - die Schlammzugabe blieb unverändert. Innerhalb von 5 - 10 Tagen sank die Valeriansäureproduktion langsam auf 0 ab. Der Gesamtversäuerungsgrad war geringfügig niedriger als bei den Versuchsanlagen im mesophilen Bereich.

Nr.	CSB	Bp	HRT	Schlar	mmzugabe	HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH ₄
	g/l	g/l.d	d	Art	Vol%VD		g CS	B/I		-	%CSB	%	%
				+ BS	3,3%/2d	1,7	0,4	8,5	0,0	0,20	50	40	0,0
XI	21	8,8	2,4	+FS	3,3%/2d	2,0	0,4	8,9	0,0	0,23	54	35 25	0,0
					0	2,2	0,9	8,7	0,0	0,25	56		0,0
				+ BS	3,3%/2d	1,8	0,4	7,9	0,0	0,23	48	35	0,0
XII	21	14,0	1,5	+FS	3,3%/2d	2,0	0,5	9,2	0,0	0,22	56	30	0,0
7.11	21				0	2,2	0,5	8,9	0,0	0,24	56	30	0,0

Abgeschlossen wurden die Versuche durch die Versäuerung von konzentriertem Abwasser bei 50° C und derselben (XIII) bzw. bei doppelter Belastung im zweiten Versuchsabschnitt (XIV). Hier war die Versäuerung der mit Faulschlamm betriebenen Anlagen deutlich höher:

Nr.	CSB	BR	HRT	Schlammzugabe		HAc	Prop	Butt	Val	H/B	Vers.	H ₂	CH₄
	g/I	g/l.d	d	Art	Vol%VD		g CS	SB/I		-	%CSB	%	%
- XIII	44	6,7	6,5	+ BS	1,3%/2d	3,1	0,8	10,9	0,0	0,28	34	40	0,0
				+FS	1,3%/2d	4,1	0,7	13,7	0,0	0,30	42	40	0,0
					0	3,2	0,7	11,1	0,0	0,29	34	40	0,0
XIV	47	14,7	,7 3,2	+ BS	3,3%/2d	2,8	0,9	12,4	0,0	0,23	34	35	0,0
				+FS	3,3%/2d	4,0	0,8	15,3	0,0	0,26	43	40	0,0
					0	3,2	0,9	11,3	0,0	0,28	33	40	0,0

6.2.4. Darstellung der Ergebnisse

Die in den folgenden Grafiken gezeigten linearen Regressionsgeraden sind durch die vergleichsweise große Streuung der Ergebnisse, die Vielzahl der variierten Größen und die daraus resultierende relativ geringe Zahl der Versuche unter jeweils vergleichbaren Bedingungen statistisch nicht abgesichert. Neben der Unterstreichung der bei der Großanlage vermuteten Zusammenhänge erbrachten die Ergebnisse der Versuchsanlagen dennoch durchaus plausible Erkenntnisse über den Abbauverlauf und das Verhalten der Versäuerung.

6.2.4.1. Temperatur

Der Einfluß der Temperatur auf das Essigsäure- zu Buttersäureverhältnis konnte in den Versuchsanlagen bedingt bestätigt werden. Im mesophilen Bereich unterschieden sich die HAc/Butt-Relationen teilweise deutlich von denen der Großanlage - die Streuung der Werte dabei war allerdings beträchtlich. Im thermophilen Bereich (47 bzw. 50° C) bei gleichzeitig hohen Wasserstoffpartialdrücken (> 20%) wurde immer vermehrt Buttersäure beobachtet - eine Methanbildung in diesen Versuchen (Aufenthaltszeiten < 7 Tage) trat auch bei Faulschlammzugabe nicht auf (Abb. 6.2). Die stark unterschiedliche Essig- zu Buttersäureverhältnisse bei 40° C korrelierten nicht merkbar mit der Methankonzentration. Bei höherem Wasserstoffpartialdruck konnte eine tendentiell höherer Anteil an Buttersäure festgestellt werden.

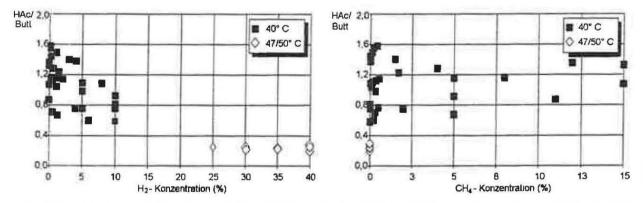


Abb. 6.2.: Essig- zu Buttersäuerverhältnis VD (jeweils als CSB) in Abhängigkeit vom H₂- und CH₄-Gehalt des Gases bei 40° und 47° bzw. 50° C

Eine Abhängigkeit des <u>Versäuerunggrades</u> von der Temperatur konnte in den Versuchsanlagen nicht gesichert nachgewiesen werden (siehe auch Kap. 6.2.4.2). Die geringfügig niedrigeren Werte bei > 47° C könnten auf die Abwesenheit der Valeriansäure zurückgeführt werden.

6.2.4.2. Versäuerungsgrad

In den folgenden Betrachtungen wird der Einfluß der Abwasserkonzentration, der Raumbelastung, der Aufenthaltszeit und der Schlammrückführung auf den <u>Versäuerungsgrad</u> in unterschiedlichen Kombinationen untersucht.

In den Versuchsanlagen konnte kein deutlicher Zusammenhang zwischen Aufenthaltszeit und

Versäuerungsgrad gefunden werden (*Abb. 6.3*). Auffällig war allerdings die große Schwankung der Werte bei etwa 3 Tagen Aufenthaltszeit (Versäuerungsgrade zwischen 32 und 57%). Mit und ohne Kombination mit der Abwasserkonzentration (6 Versuchsanlagenphasen wurden mit hohen (46 - 47 g/l), 3 mit niedrigen (20 - 21 g/l) und die restlichen mit mittleren (36 - 43 g/l) CSB-Konzentrationen betrieben) ergaben sich folgende Bilder:

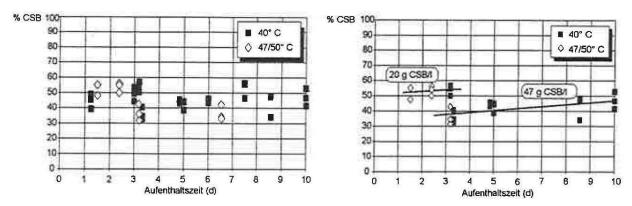


Abb. 6.3: Versäuerungsgrad VD in Abhängigkeit von Aufenthaltszeit, CSB-Zulaufkonzentration und Temperatur

Während der Versäuerungsgrad in den 5 Versuchsphasen mit 36 - 43 g/l praktisch gleich blieb (und aus Übersichtlichkeitsgünden nicht im zweiten Teil der Abbildung aufgenommen wurde), konnte bei der hohen und niedrigen CSB-Konzentration eine geringfügige Abhängigkeit von der Aufenthaltszeit (Belastung) beobachtet werden. Ein ähnliches Bild ergab sich bei der Auswertung des Zusammenhangs zwischen Versäuerungsgrad und Raumbelastung mit und ohne Berücksichtigung der Abwasserkonzentration (Abb. 6.4):

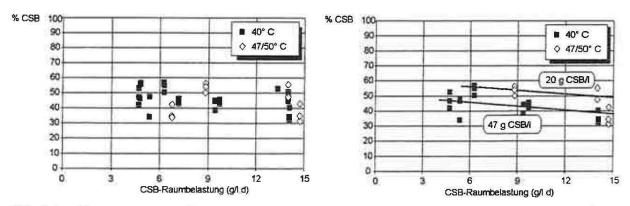


Abb. 6.4: Versäuerungsgrad VD in Abhängigkeit von Raumbelastung, CSB-Zulaufkonzentration und Temperatur

Differenziert nach der Art der <u>Schlammzugabe</u> zeigte sich, daß der Versäuerungsgrad durch die Faulschlammrückführung (vor allem durch die höhere Essigsäureproduktion) geringfügig verbessert werden konnte (*Abb. 6.5*). Deutlich zu sehen ist in dieser Abbildung die Abnahme des Versäuerungsgrades mit zunehmender <u>Abwasserkonzentration</u>. Bei den Versuchsanlagen mit Faulschlammzugabe wurde bei 20 g CSB/I eine organische Säurekonzentration von ca. 12 g CSB/I erreicht, bei 50 g CSB/I konnten etwa 22 g CSB/I gefunden werden. Verursacht wird der hohe CSB vomehmlich durch einen höheren Melasseanteil und damit einen größeren Anteil an

schwer abbaubaren Verbindungen. Berücksichtigt man diese schwer versäuerbaren Melasseanteile bei der Berechnung des Versäuerungsgrades, würde sich eine geringere Abhängigkeit des Versäuerungsgrades von der um diesen Anteil verminderten Abwasserkonzentration ergeben.

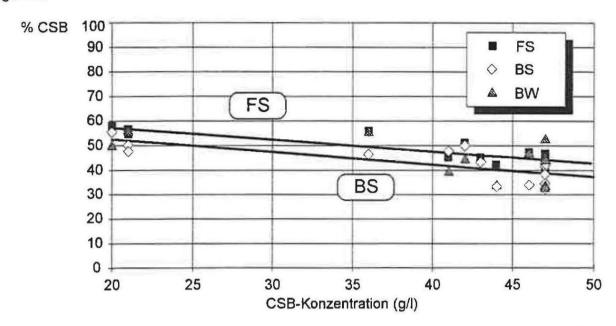


Abb. 6.5.: Versäuerungsgrad VD in Abhängigkeit von CSB-Zulaufkonzentration und Art der gewählten Schlammzugabe bzw. ohne Schlammzugabe (Blindwert)

Im Faulbehälter selbst ist bei zunehmenden Zulaufkonzentrationen keine Verminderung des CSB-Wirkungsgrades festzustellen (⇒ Abb. 4.4), sodaß die schwer abbaubaren Melasseanteile in der Schlempe zwar kaum versäuerbar, aber jedenfalls teilweise methanisierbar sind. Aus diesem Grund ist es schwierig, einen "schwer versäuerbaren, aber methanisierbaren" Anteil zu ermitteln und bei der Berechnung des Versäuerungsgrades die organischen Säuren auf eine "leicht versäuerbare" Fraktion zu beziehen (siehe auch Kap. 2.7.3).

6.2.4.3. Stabilität der Versäuerung

Bis zu einer Raumbelastung von 7 - 10 g CSB/l.d bzw. einer Aufenthaltszeit von 5 - 6 Tagen ergab sich eine stabile Versäuerung ohne äußeren Eingriff. Eine Steigerung der Belastung führte primär zu einer Verminderung der Hydrolyse der organischen Stickstoffverbindungen und damit zu einem Absinken des pH-Wertes, falls keine Gegenmaßnahmen getroffen wurden. Ab Aufenthaltszeiten unter 4 - 5 Tagen war in den Versuchsanlagen ohne Schlammzugabe eine pH-Korrektur erforderlich, um den pH-Wert bei 5,5 zu halten.

Unter einem pH-Wert von 5,0 trat mit Ausnahme der Essigsäuregärer eine deutliche Hemmung der säureproduzierenden Mikroorganismen auf. Bei extrem hohen Belastungen von über 50 g CSB/l.d (HRT = 0,85 d) stabilisierte sich die Versäuerung auf einem niedrigeren pH-Niveau (ca. 4,2) - von den organischen Säuren wurde praktisch nur mehr Essigsäure (im Ausmaß von ca. 10% der CSB-Zulaufkonzentration) gebildet.

6.2.4.4. Gaszusammensetzung

Ohne Schlammzugabe wurden im Mittel 2,5% H₂ und 1,5% CH₄ beobachtet, mit Belebtschlamm beimpft etwa 5% H₂ und 2,5% CH₄ und bei den mit Faulschlamm versetzten Anlagen konnte der größte CH₄-Anteil des Gases mit im Schnitt 4,5% bei 2% H₂ erzielt werden. Das deutlichste Beispiel für diesen Trend zeigen die Versuchsanlagen in der Phase IX: Angesetzt mit Ablauf Versäuerungsbehälter (bei stabiler Versäuerung mit einer Spur Wasserstoff im Gas) blieb dieser Zustand bei der VD ohne Schlammzugabe nahezu unverändert - bei der Zugabe von 2% Belebtschlamm/d entstanden 10% H₂ und bei den Versuchsanlagen mit Faulschlamm etwa 5% CH₄. Dazu kommt auch ein unterschiedliches Essig- zu Buttersäureverhältnis, da vermutlich ein Teil der gebildeten Metabolite bei hohen Wasserstoffkonzentrationen durch Reoxidation der H₂-übertragenden Coenzyme in (vor allem) Buttersäure umgewandelt werden.

6.3. BATCHVERSUCHE ZUR VERSÄUERUNG

Um den Verlauf der Versäuerung in Abhängigkeit von der Zeit zu erkennen, wurden in denselben Gefäßen durch Mischung von Abwasser und Schlamm Standversuche (ohne Zulauf) zur Schlempeversäuerung durchgeführt (VS).

6.3.1. Versäuerungsversuche mit Schlammzugabe

Jeweils bei 40° und 50° C wurde Belebt- bzw. Faulschlamm im Verhältnis von 1:1 mit frischem Abwasser (CSB ≈ 40 g/l) versetzt und die Versäuerung über die Zeit beobachtet (*Tab. 11* im Anhang). Das rohe Abwasser enthielt bereits Spuren von Essig- (100 - 300 mg/l) und Milchsäure (bis zu 700 mg/l), was auf die sehr rasche Bildung der dafür verantwortlichen Mikroorganismen in der Schlempe hindeutet. Nach wenigen Stunden waren bereits über 50% des nach einer Woche versäuerten CSB's umgesetzt und lagen in Form von Lactat vor.

6.3.1.1. Versuchseinstellung bei 40 °C

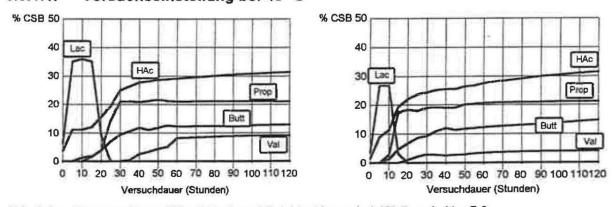


Abb. 6.6.: Säurespektrum VS mit Faul- und Belebtschlamm bei 40° C und pH = 5,6

Nach 10 - 15 Stunden begann der Rückgang der Milchsäurekonzentration, begleitet von einem Anstieg der Essig- und Propionsäuremenge - offensichtlich wird Milchsäure von der sich umstellenden Mischbiozönose im Versäuerungsbehälter weiter umgesetzt (Abb. 6.6). Die Butter-

säurebildung setzte nur langsam ein - anders als in der Großanlage und in den Versuchsanlagen blieb sie deutlich hinter der Propionsäureproduktion zurück. Valeriansäure wurde vor
allem in der mit Belebtschlamm beschickten Versuchsanlage (in einer Größenordnung von
maximal 10%) beobachtet. Innerhalb von 30 - 40 Stunden waren die wesentlichen Umsetzungsvorgänge abgeschlossen - die Konzentration der einzelnen Komponenten veränderte
sich nur mehr geringfügig.

Bei der mit Belebtschlamm versetzten Schlempe wurde zu Beginn H₂ in einer Konzentration von 5 - 15 Vol% gemessen. Die Methanbildung begann erst nach 3 Tagen und erreichte nach 120 Stunden schließlich den Wert von 1,3% (bei 3% H₂). In dem mit Faulschlamm gemischtem Abwasser ging die Methankonzentration von anfangs ca. 3% auf 0,5% zurück und stieg nach 2 Tagen langsam auf bis zu 11% an. Wasserstoff wurde hier nur in Spuren gefunden.

6.3.1.2. Versuchseinstellung bei 50 °C

Auch bei 50° C begann die Versäuerung mit der raschen Bildung von Milchsäure - wiederum bei den mit Faulschlamm versetztem Abwasser in geringerem Ausmaß (Abb. 6.7). Die Buttersäure-produktion setzte innerhalb weniger Stunden ein und erreichte nach 20 - 40 Stunden bereits (praktisch) den Endwert. Die Essigsäure verschwand nach einem leichten Anstieg zu Beginn und nahm nach 1 Tag langsam wieder zu. Die Propionsäure spielte bei dieser Temperatur ebenso wie die Valeriansäure nur eine geringe Rolle.

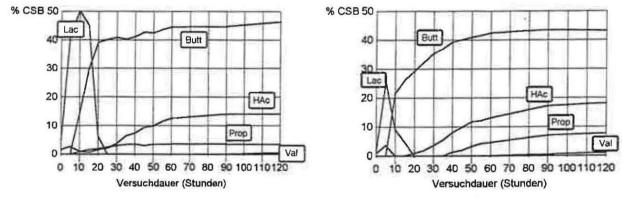


Abb. 6.7.: Säurespektrum VS mit Faul- und Belebtschlamm bei 50° C und pH = 5,6

Auffällig war, daß in der mit Faulschlamm gemischten Schlempe die Wasserstoffkonzentration von 40% nach 10 Stunden innerhalb der nächsten 2 Tage kontinuierlich auf 4% absank, während gleichzeitig der Methangehalt langsam auf bis zu 15% anstieg. Nach 4 Tagen war allerdings die Methanproduktion wieder zum Stillstand gekommen. Die korrespondierende leichte Zunahme der Essigsäure und die ebenso leichte Abnahme der Buttersäure im selben Zeitraum könnte daher auf die durch die massive Animpfung verursachte Anwesenheit von Wasserstoff verwertenden Methanbakterien zurückgeführt werden, die jedoch auf Dauer den hohen Temperaturen nicht standhalten konnten.

6.3.2. Versäuerungsversuche mit Glucosemonohydrat

Zur weiteren Untersuchung der Abhängigkeit des Versäuerungsgrades von der Substratkonzentration wurden - in Analogie zu den Ergebnissen von ZOETEMEYER et al. (1981) -Standversuche zur Versäuerung von Glucosemonohydrat durchgeführt.

In 1 I Wasser wurden verschiedene Konzentrationen an Glucosemonohydrat (3,8, 10, 28, 40 und 48 g/l) vorgelegt und bei 38° C temperiert. Zur Spurenelementversorgung wurde die von ZOETEMEYER modifizierte Nährlösung von EVANS et al. (1970) in der jeweils erforderlichen Menge zugesetzt. Als Impfschlamm dienten 30 ml aus den vorangegangenen Versuchen bzw. zu Beginn 10 ml Versäuerungsbehälterinhalt der Abwasserreinigungsanlage der Zitronensäurefabrik. Während der Versäuerung wurde der pH-Wert durch regelmäßige Kontrolle und fallweise Zugabe von Natronlauge zwischen 5,5 und 6,0 gehalten. Analysiert wurden im Abständen von 1 bis 3 Tagen das Säurespektrum mittels HPLC. Traten über einen Zeitraum von ca. 1 Woche keine wesentliche Änderungen auf, wurde der Versuch abgebrochen. Die Ergebnisse können wie folgt dargestellt werden:

Tab. 6.1.: Versuchsergebnisse der Versäuerung von Glucosemonohydrat im Batchversuch

Glucosemonohydrat	Versäuerungsgrad		Lac	Form	HAc	Prop	Butt	Val		
mg/l	% CSB	% TOC	mg CSB/l							
3.800	62	59	0	0	1.630	70	530	60		
10.000	55	51	20	20	3.210	150	1.600	320		
28.000	65	55	10	0	2.950	800	14.000	0		
40.000	60	49	10	10	1.300	1.800	20.000	0		
48.000	64	54	10	10	4.300	1.500	24.200	0		

Der Versäuerungsgrad auf CSB bezogen schwankte zwischen 55 und 65%, wobei keinerlei Abhängigkeit von der Substratkonzentration festgestellt werden konnte. Trotz starker Variation

des Säurespektrums blieb % Vers 100 die Summe der Versäuerungsprodukte relativ konstant. Je mehr Buttersäure gebildet wurde, desto größer wurde die Differenz Versäuerungsgrades zwischen CSB und TOC. Die SO erhaltenen Ergebnisse fügen sich gut in die Literaturangaben von ZOETEMEYER ein:

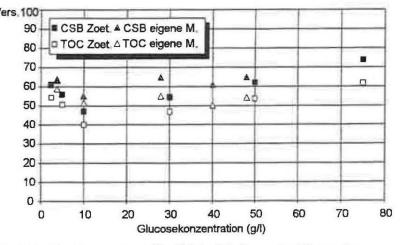


Abb. 6.8.: Versäuerungsgrad in Abhängigkeit von der Glucosekon zentration - Literaturangaben (ZOETEMEYER et al. 1981) und eigene Messungen

7. BERECHUNG DER GLEICHGEWICHTS-KONZENTRATIONEN

7.1. ALLGEMEINES

Basierend auf den Massen- und Ionenbilanzen sowie den maßgebenden chemischen Gleichgewichten entwickelte SVARDAL (1991-1) ein Modell, mit dem Aussagen über den zu erwartenden pH-Wert im <u>Methanreaktor</u>, die Konzentration verschiedener den Anaerobprozeß beeinflussender Stoffe, der erforderliche Neutralisationsmittelbedarf und die Faulgasmenge und -zusammensetzung getroffen werden können. Im wesentlichen werden dabei nur Meßgrößen verwendet, die in der Abwassertechnik seit langem bekannt und gebräuchlich sind (CSB, TOC, TIC, Alkalität, TKN, NH₄-N, Sulfat, Gasdruck, Temperatur und organische Säurekonzentration).

Ausgehend von den von SVARDAL durchgeführten Überlegungen wurde ein einfaches Rechenmodell für den <u>Versäuerungsbehälter</u> entwickelt, mit dem durch Eingabe bestimmter chemischer Parameter die Konzentrationsverteilung der wichtigsten, pH-beeinflußenden Verbindungen im Reaktor berechnet werden kann. Eine Vereinfachung ergibt sich vor allem daraus, daß die im Methanreaktor (pH > 7) oft bedeutenden Ausfällungsprozesse (im wesentlichen CaCO₃ und Schwermetallsulfide) im Versäuerungsbehälter bei pH-Werten unter 6,5 vernachlässigt werden können. Ausgehend von Temperatur, CO₂-Konzentration im Versäuerungsgas, Gasdruck, Konzentration an organischen Säuren und Ammonium sowie sonstiger An- und Kationen aus Salzen schwacher Säuren und Laugen wird unter Zuhilfenahme der chemischen Gleichgewichte der pH-Wert im Versäuerungsbehälter ermittelt. Bei bekanntem pH-Wert kann eine der Eingangsgrößen berechnet werden (*Tab. 12* im Anhang).

7.2. GÜLTIGKEIT DES MODELLS

Das Modell, das auf Bilanzen und physikalisch/chemischen Gleichgewichten beruht, ist dann anwendbar, wenn folgende Annahmen zutreffen:

"Idealer" Rührkessel

Der Versäuerungsbehälter muß bezüglich der flüssigen Phase einem "idealen" Rührkessel entsprechen. Da eine gute Durchmischung vor allem aufgrund der Aufgabe des Abwasserausgleiches meist ohnehin im Vordergrund steht, ist diese Forderung in der Regel erfüllt.

Stationärer Zustand

Der Versäuerungsprozeß muß sich bezüglich der physikalisch/chemischen Gleichgewichte im stationären Zustand befinden. Bei den betrachteten relevanten Reaktionen (Dissoziation in der Flüssigkeit und Verteilung zwischen Flüssigkeit und Gasphase) ist bei intensiver Durchmischung mit einer Gleichgewichtseinstellung in wenigen Minuten zu rechnen, sodaß auch diese Bedingung als gegeben betrachtet werden kann.

7.3. CHEMISCHE GLEICHGEWICHTE

7.3.1. Kohlensäure

SVARDAL ermittelte die CO₂-Konzentration im Faulgas und in der Folge im Methanreaktorinhalt im wesentlichen aus der (abgebauten) CSB-Konzentration und dem CSB/TOC-Verhältnis des Zulaufs (mittlere Oxidationszahl des Kohlenstoffs), die die spezifische Menge an produziertem Methan und Kohlendioxid vorgibt (GUJER et al. 1983). Beim untersuchten Versäuerungsbehälter ergaben die Meßergebnisse keine verwertbaren gesicherten Korrelation der Gaskomponenten - weder mit dem CSB-Abbau noch mit dem Versäuerungsgrad - sodaß die CO₂-Konzentration im Versäuerungsgas als Eingangsgröße eingegeben werden muß.

Prinzipiell ist die Löslichkeit eines Gases abhängig von der Art des Gases, der Temperatur und dem Partialdruck. Für CO₂ ergibt sich die Konzentration im Wasser nach HENRY-DALTON in erster Näherung mit:

(7.1)
$$[CO_2]_{aq} = 1000 \cdot K_H(CO_2) \cdot p(CO_2)$$

[CO₂]_{aq}.....Konzentration von CO₂ im Wasser in mol/m³

K_H(CO₂)... HENRY-Konstante in mol/(I•bar) in Abhängigkeit von der Temperatur

lg K_H (CO₂) = 2385,73/T - 14,0184 + 0,01526 • T mit T in Kelvin (HELGESON 1967)

p(CO₂)..... Partialdruck von CO₂ in der Gasphase in bar

Kohlendioxid dissoziiert in wäßriger Lösung zu Hydrogencarbonat und Carbonat, wobei bei pH-Werten < 6,5 die Bildung von Carbonationen vernachlässigbar gering ist:

(7.2)
$$CO_2 + H_2O \Leftrightarrow HCO_3^- + H^+ (\Leftrightarrow CO_3^{2-} + 2 H^+)$$

Das Massenwirkungsgesetz für die erste Reaktion lautet:

(7.3)
$$K_{C_1} = \frac{\left[H^+\right] \bullet \left[HCO_3^-\right]}{\left[CO_2\right]}$$

K_{C1}....... Thermodynamische Dissoziationskonstante der ersten Stufe der Dissoziation pK_{C1} = 3404,7/T - 14,8435 + 0,03279 • T mit T in Kelvin (HELGESON 1967)

Die Dissoziationskonstanten sind in realen Lösungen nicht nur vom Druck und der Temperatur sondern auch von der Ionenstärke abhängig, sodaß für das Gleichgewicht nicht die Konzentration sondern die Aktivität der Ionen maßgebend ist:

(7.4)
$$\{CO_2\} = f_{CO_2} \cdot [CO_2]_{aq}$$

 $\{CO_2\}$ Aktivität von CO_2 f_{CO2}Aktivitätskoeffizient von CO_2

Für die praktische Anwendung werden "gemischte" Dissoziationskonstanten (z.B. K_{C1}) ermittelt, bei denen H⁺ (durch potentiometrische Messung) als Aktivität und alle anderen Ionen als Konzentration eingehen. Die Gleichung (7.3) kann daher wie folgt formuliert werden:

(7.5)
$$\mathsf{K}_{\mathsf{C}_{1}} = \frac{f_{\mathsf{H}^{+}} \bullet \left[H^{+}\right] \bullet \left[HCO_{3}^{-}\right]}{\left[CO_{2}\right]} = \frac{\left\{\mathsf{H}^{+}\right\} \bullet \left[\mathsf{HCO}_{3}^{-}\right]}{\left[\mathsf{CO}_{2}\right]} = \frac{K_{C_{1}}}{f_{\mathsf{HCO}_{3}}^{-}}$$

Die jeweiligen Aktivitätskoeffizienten in komplexen Lösungen lassen sich aufgrund der Theorie von DEBEY-HÜCKEL mit der Beziehung nach DAVIES für ein- und mehrwertige Ionen näherungsweise aus der Ionenstärke (abgeschätzt nach KEMP 1971 aus der elektrischen Leitfähigkeit) und der Ladungszahl unter Berücksichtigung der Temperatur berechnen (SVARDAL 1991-1). Aus dem Massenwirkungsgesetz für beide Dissoziationsstufen und der Massenbilanz für den anorganischen Kohlenstoff (TIC = $[CO_2]+[HCO_3^-]+[CO_3^2-]$ ergeben sich die relativen Anteile $f_{(i)}$ der einzelnen Dissoziationsprodukte, wobei K_{C2} die Gleichgewichtskonstante für die Reaktion $HCO_3^- + H^+ \Leftrightarrow CO_3^{2-} + 2H^+$ darstellt:

(7.6)
$$f_{CO_2} = \left[1 + \frac{K_{C_1}'}{\{H^+\}} + \frac{K_{C_1}' \bullet K_{C_2}'}{\{H^+\}^2} \right]^{-1}$$

(7.7)
$$f_{HCO_3} = \frac{Kc_1}{\{H^+\}} \cdot f_{CO_2}$$

Aus dem Anteil multipliziert mit dem im Wasser gelösten Anteil an CO₂ erhält man schließlich die Konzentration der verschiedenen Dissoziationsformen der Kohlensäure, wobei beim relevanten pH-Bereich des Versäuerungsbehälters nur die Hydrogencarbonatkonzentration für den pH-Wert bedeutend ist:

(7.8)
$$\{HCO_3^-\} = f_{HCO_3}^- \cdot [CO_2]aq$$

7.3.2. Organische Säuren

Die bei der Versäuerung gebildeten organischen Säuren (im wesentlichen Essig-, Butter- und Propionsäure) dissoziieren als schwache Säuren im pH-Bereich des Versäuerungsbehälters. Da ihre pK_S-Werte in einem sehr engen Bereich (zwischen 4,7 und 4,9) liegen, können sie in erster Näherung als Essigsäureäquivalente ausgedrückt werden. Für Essigsäure gilt:

(7.9)
$$HAc \Leftrightarrow H^+ + Ac^-$$

Der jeweilige Anteil an dissoziierter freier Säure berechnet sich analog zur Kohlensäure:

(7.10)
$$K_{Ac^-} = \frac{\left\{H^+\right\} \bullet \left[Ac^-\right]}{\left[HAc\right]}$$

K_{AC}······ Thermodynamische Dissoziationskonstante der Essigsäure pK_{AC}····· Thermodynamische Dissoziationskonstante der Essigsäure

(7.11)
$$f_{Ac} = \frac{K_{Ac}}{K_{Ac} + \{H^+\}}$$

und damit zu

(7.12)
$${Ac^-} = f_{Ac^-} \cdot [HAc] bzw. {Ac-Äqu.^-} \approx f_{Ac^-} \cdot [HAc-Äqu.]$$

7.3.3. Ammonium

Bei der Betrachtung von Ammonium als schwache Säure (NH₄⁺ ⇔ NH₃ + H⁺) gilt:

(7.13)
$$K_{N'} = \frac{\left\{H^{+}\right\} \bullet \left[NH_{3}\right]}{\left[NH_{4}^{+}\right]}$$

K_N.......Thermodynamische Dissoziationskonstante von Ammonium pK_N. = 2835,8/T - 0,6322 + 0,00123 • T mit T in Kelvin (HELGESON 1967)

(7.14)
$$f_{NH_4}^+ = \frac{\left\{H^+\right\}}{K_{N'} + \left\{H^+\right\}}$$

Die pH-relevante Ammoniumkonzentration errechnet sich daraus mit:

(7.15)
$$\{NH_4^+\} = f_{NH_4}^+ \cdot [NH_4^+]$$

7.3.4. Wasser

Bei Berücksichtigung der Eigendissoziation des Wassers ($H_2O \Leftrightarrow H^+ + OH^-$) mit dem Ionenprodukt $K_W' = \{H^+\} \cdot [OH^-]$ ergibt sich die Konzentration an Hydroxidionen mit

(7.16)
$$\{OH^-\} = \frac{Kw'}{\{H^+\}}$$

K_W'......Thermodynamische Dissoziationskonstante von Wasser pK_W' = 4470,99/T - 6,0875 + 0,01706 • T mit T in Kelvin (HELGESON 1967)

7.4. EINGABEPARAMETER FÜR DIE MODELL-BERECHNUNG

7.4.1. Temperatur

Da die Gleichgewichtskonstanten temperaturabhängig sind, muß die jeweilige Betriebstemperatur des Versäuerungsbehälters berücksichtigt werden.

7.4.2. CO₂ - Gasanteil und Gasdruck

Die Kohlendioxidkonzentration im Gas bestimmt im Verein mit dem Druck die im Wasser gelöste CO₂-Konzentration nach Gleichung 7.1. Im Modell von SVARDAL wird dazu der mittlere Druck bei halber Höhe herangezogen - bei größeren Wassertiefen kann auch ein entsprechend geringerer Anteil (z.B. 1/3 der Höhe) angenommen werden. Auch bei der Berechnung des Sauerstoffeintrags bei Belebungsbecken wird diese Vorgangsweise gewählt (KAYSER 1986). Der Überdruck des Systems selbst ist im Vergleich dazu in der Regel gering. Im Fall des untersuchten Versäuerungsbehälters kann für den Gasdruck aufgrund der Wassertiefe (zwischen 8 und 16 m) mit im Mittel 1,0 + 1/3 • 1,2 = 1,4 bar gerechnet werden. Der Überdruck des Systems selbst (300 mm Wassersäule) erhöht diesen Wert auf 1,43 bar. Bei z.B. 80% CO₂ und einer Temperatur von 40° C berechnet sich eine CO₂-Konzentration in der Lösung von

$$[CO_2]_{aq} = 1000 \cdot 0.024 \cdot 0.8 \cdot 1.43 = 27.5 \text{ mol/m}^3$$

Bei einem pH-Wert von 5,0 (⇔ Anteil f_{HCO3}⁻ = 0,05 nach Gleichung 7.6 und 7.7) errechnet sich daraus die zugehörige HCO3⁻-Konzentration (Gleichung 7.8) zu 1,3 mol/m³, während beim pH-Wert von 6,5 bereits 61% der Kohlensäure (= 16,9 mol/m³) als HCO3⁻ vorliegen (*Tab. 12* im Anhang) - die Temperatur spielt dabei nur eine untergeordnete Rolle (*Abb. 7.1*):

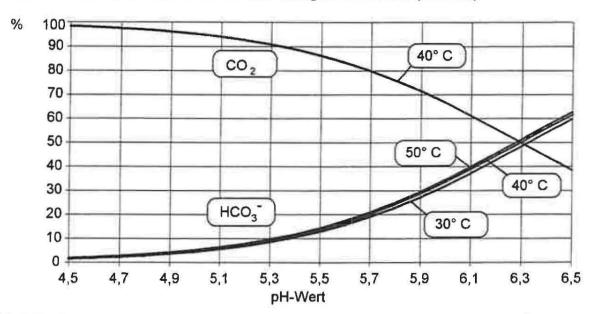


Abb. 7.1.: Gleichgewichtsverteilung von CO₂ und HCO₃ in Abhängigkeit von pH-Wert und Temperatur

7.4.3. Organische Säuren

Beim Modell können die organischen Säuren wahlweise als Essigsäureäquivalent oder - bei Analyse des Säurespektrums - als Einzelkomponenten eingegeben werden. Die Angabe von Ameisen- und Milchsäure muß jedenfalls direkt erfolgen - sie liegen bereits bei pH-Werten von 4,0 zu über 50% dissoziiert vor (pK_S = 3,76 bzw. 3,88 bei 40° C) und können daher nicht als Essigsäureäquivalent gerechnet werden. Ist eine höhere (rechnerische) Genauigkeit erwünscht, sind neben der Gleichgewichtskonstanten der Essigsäure die Gleichgewichtskonstanten der Propion-, Butter- und Valeriansäure hinzuzufügen. Die Umrechnung der einzelnen Säuren in Essigsäureäquivalente erfolgt durch Multiplikation mit dem jeweiligen Molverhältnis:

Tab. 7.1.: Essigsäureäquivalente einzelner organischer Säuren

Organische Säure	Molgewicht	Essigsäureäquivalent (Molverhältnis)
Essigsäure	60,05	1,000
Propionsaure	74,08	0,811
Buttersäure	88,11	0,682
Valeriansäure	102,13	0,588

Aus der Dissoziationskonstante für Essigsäure wird nach Gleichung 7.11 der Ionenanteil für den jeweiligen pH-Wert ermittelt und daraus die Konzentration an dissoziierten Essigsäureäquivalenten berechnet (Gleichung 7.12). Die gleiche Vorgangsweise führt bei Ameisen- und Milchsäure (mit den zugehörigen Dissoziationskonstanten) zum Ziel (Abb. 7.2):

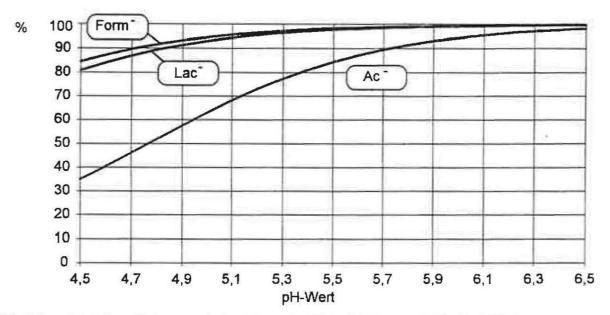


Abb. 7.2.: Anteil dissoziierter organischer Säuren in Abhängigkeit vom pH-Wert bei 40° C

7.4.4. Ammonium und sonstige Kat- und Anionen

Zur Berechnung des pH-Wertes müssen neben Ammonium auch im Abwasser vorhanden Salze schwacher Säuren (z.B. Carbonate) als pH-relevante Kat- und Anionen berücksichtigt werden. Als relevante Anionen treten meist nur HCO3⁻ und die organische Säuren auf. Auf der Seite der Kationen ist es vor allem der Stickstoff in Form von Ammonium - er ist z.B. bei der Schlammfaulung im wesentlichen das einzige Kation, das mit dem Hydrogencarbonat im Gleichgewicht steht (KAPP 1984). Bei Anwesenheit von CaSO4 ist bei Reduktion von SO4²⁻ zu S²⁻ durch die Umwandlung einer starken in eine schwache Säure das entsprechende Konzentration an Ca²⁺ als Kation einzurechnen (zur Ermittlung dieser Parameter siehe Kap. 7.6). In *Tab. 12* im Anhang wird die Differenz sonstiger Kat- und Anionen gleich Ø gesetzt und die den Eingabewerten entsprechenden Ammoniumkonzentrationen berechnet. In *Tab. 13* im Anhang ergibt sich aus einer eingegebenen NH4-N-Konzentration die fehlende Alkalität als ("K"+ - "A"-).

7.5. BERECHNUNGSMÖGLICHKEITEN

Aus den dem jeweiligen pH-Wert entsprechenden Konzentrationen an HCO₃⁻ und dissoziierten organischen Säuren wird die Alkalität im Versäuerungsbehälter vereinfacht wie folgt berechnet:

(7.17) Alkalität =
$$[HCO_3^-] + [org.Sr^-] - [H^+]$$

Der Term "+ 2 • $[CO_3^2]$ + $[OH^-]$ " ist im pH-Bereich < 6,5 vernachlässigbar. Weiters muß im Abwasser als System verschiedener z.T. schwacher Säuren und Basen ("K" = diss. Kationen, "A" = diss. Anionen) unter Anwendung der Ladungsbilanz gelten:

(7.18)
$$[NH_4^+] + [H^+] + ["K"^+] = [HCO_3^-] + [o.S^-] + ["A"^-]$$

Setzt man die vollständige Gleichung 7.17 in die Gleichung 7.18 ein, ergibt sich die Alkalität vereinfacht ausgedrückt zu:

(7.19) Alkalität =
$$NH_4^+ + ("K"^+ - "A"^-)$$

Die leicht messbaren Größen NH_4^+ und Alkalität ermöglichen eine Summenbestimmung des Ausdrucks ("K" $^+$ - "A" $^-$). Wird dieser Term = Ø gesetzt, errechnet sich die den Bedingungen entsprechende Ammoniumkonzentration (Bei pH-Werten < 6,5 kann der Aktivitätskoeffizient $f_{NH_4}^+$ gleich 1 gesetzt werden) aus der Alkalität nach Gleichung 7.17 mit:

$$(7.20) [NH4+] = Alkalität$$

Im Verein mit der Konzentration an organischen Säuren ist der Hydrolysegrad organischer Stickstoffverbindungen für den sich einstellenden pH-Wert und damit für die Stabilität der Versäuerung oft entscheidend. Für die folgenden <u>Betrachtungen</u> wurden für die Eingabewerte eine Reaktortemperatur von 40° C, eine CO₂-Konzentration von 80% im Gas VB bei 1,43 bar und ein Säurespektrum mit je 50 mg/l Milch- und Ameisensäure, 3.000 mg/l Essigsäure, 700 mg/l Propionsäure, 1.280 mg/l Buttersäure und 100 mg/l Valeriansäure angenommen, wie sie auch der Tabelle 12 im Anhang zugrundeliegen. Unter diesen Bedingungen ergeben sich die in *Abb*. 7.3 dargestellten Konzentrationen an pH-relevanten Anionen:

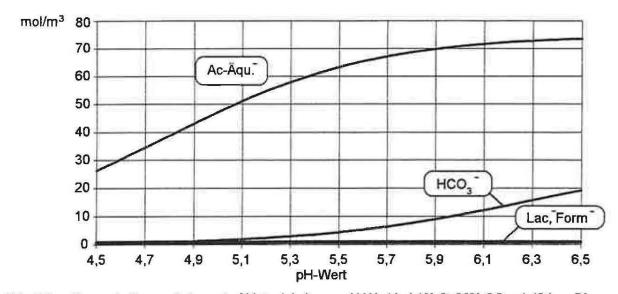


Abb. 7.3.: Konzentration an Anionen in Abhängigkeit vom pH-Wert bei 40° C, 80% CO₂, 1,43 bar, 50 mg Form bzw. Lac/l und 4.500 mg HAc-Äquivalente/l

Die zugehörige Ammoniumkonzentration errechnet sich - je nach pH-Wert - zu 392 bis 1.289 mg/l (*Tab. 7.2*); der Kurvenverlauf kann aus *Abb. 7.4* ersehen werden. Stehen neben Ammonium andere pH-Wert-beeinflußenden Kationen zur Verfügung, verringert sich die Ammoniumkonzentration um deren Beitrag. Diese meist abwasserspezifisch bedingte Kationenkonzentration kann - wie im Fall des Abwassers der Kläranlage Pemhofen - oft aus Abwasserparametern (z.B. CSB-Konzentration) bestimmt und bei der Berechnung der Ammoniumkonzentration entsprechend berücksichtigt werden (⇔ Kap. 7.6).

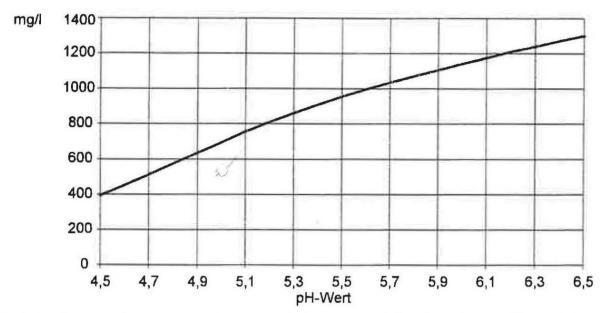


Abb. 7.4.: Konzentration an Ammonium als i.w. einziges Kation in Abhängigkeit vom pH-Wert bei 40° C, 80% CO₂, 1,43 bar, 50 mg Form bzw. Lac/l und 4.500 mg HAc-Äquivalente/l

Analog können bei bekanntem pH-Wert und Ammoniumkonzentration die Summe an organischen Säuren, die CO₂-Konzentration oder die sonstigen An- und Kationen ermittelt werden. Die *Abb.* 7.5 gilt nur für "K" - "A" = Ø mol/m³:

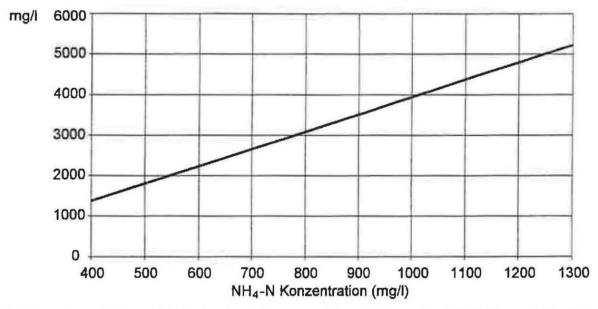


Abb. 7.5.: Konzentration an Essigsäureäquivalenten in Abhängigkeit von der NH₄-N Konzentration bei pH= 5,5, 40° C, 80% CO₂ und 1,43 bar

7.6. ANWENDUNG DES MODELLS AUF DAS ABWASSER VON PERNHOFEN

Ausgehend von 10 Datensätzen des Versäuerungsbehälters bestehend aus pH-Wert, Ammoniumkonzentration und Konzentration an organischen Säuren bzw. CSB des Abwassers wurde versucht, die Differenz des Modells beim Ansatz "K+" - "A-" = Ø zu den gemessenen Werten zu bestimmen. Die ausgewählten Daten weisen einen weiten Bereich des pH-Wertes,

der Versäuerung und der CSB-Konzentration auf und sind in *Tab. 7,2* dargestellt. In der Spalte "K+" - "A-" sind die Beträge eingetragen, die sich bei Eingabe der Werte als Differenz von der gemessenen zur theoretischen Ammoniumkonzentration bei "K+" - "A-" = Ø errechnen (*Tab. 13* im Anhang).

CSB	pН	NH ₄ -N	Lac	HAc	Prop	Butt	Val	"K+" -"A-"
g/l	*	mg/l	g/l	g/l	g/l	g/l	g/l	mol/m3
11,2	5,3	85	0,04	2,22	0,79	0,98	0,49	46
13,4	5,2	78	0,04	2,53	0,87	1,12	0,62	50
17,3	5,3	258	0,05	3,34	0,93	1,63	0,53	55
19,5	5,0	150	0,00	3,66	1,18	1,45	0,59	57
19,5	5,2	258	0,32	3,55	1,12	1,63	0,41	53
23,0	5,5	408	0,15	4,37	1,50	1,32	0,54	60
24,2	5,4	435	0,09	3,80	1,19	1,92	0,66	71
35,3	5,6	77	1,89	5,01	1,62	1,52	0,55	115
36,8	5,5	105	1,99	5,10	1,60	1,58	0,59	131
38,4	5,7	388	0,12	6,04	1,29	2,57	0,53	128

Tab. 7.2.: Datensätze aus dem Betrieb des Versäuerungsbehälter

Der Betrag "K+" - "A-" stellt die Gegenionen zu den organischen Säuren dar, die neben der Ammoniumkonzentration den pH-Wert anheben. Im Fall des Abwassers von Pernhofen zeigt sich, daß sie als abwasserspezifische Größe angenommen werden können und gut mit der CSB-Konzentration des Abwassers korrelieren (Abb. 7.6):

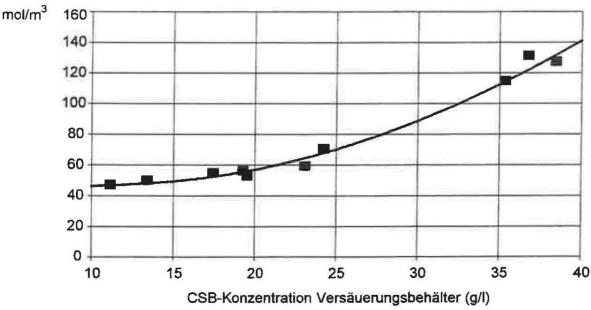


Abb. 7.6.: Konzentration an [Kationen-Anionen] zu organischen Säuren und Ammonium bei verschiedenen Betriebszuständen des Versäuerungsbehälters Pemhofen

Die empirisch bestimmte Funktion, mittels der im Fall von Pernhofen die Konzentrationen von "K+" - "A-" abgeschätzt werden kann, errechnet sich aus der Regressionsfunktion zu

(7.20)
$$"K^{+"} - "A^{-"} = 25 \cdot e^{(0,052 \cdot CSBzu)}$$

Mit steigender Abwasserkonzentration nimmt auch die Konzentration an pH-Wert be-

einflußenden Kationen zu, die im wesentlichen aus dem Melasseanteil bei der Gärung stammen. Beachtet werden muß, daß ein derartiger Zusammenhang nur dann besteht, wenn die Güte der Gärungen bei der Produktion im Betrieb bzw. die Abwasserzusammensetzung gleich bleibt, da ansonsten eine durch nicht vollständigen Umsatz der Rohstoffe bzw. durch organische Nebenprodukte verursachte erhöhte CSB-Konzentration bei Anwendung der Gleichung (7.20) einen höheren Anteil an Kationen vortäuschen würde. Eine höhere Konzentration an Kationen kann im wesentlichen nur durch einen erhöhten Melasseanteil ins Abwasser gelangen.

Durch dieses Instrument ist es möglich, bei bekannten Rahmenbedingungen (Temperatur, CO₂-Konzentration, Höhe Wasserstand im Versäuerungsbehälter) aus der Messung der CSB- (zur Ermittlung des Faktors "K+" - "A-") und NH₄-N Konzentration im Verein mit dem pH-Wert die Konzentration an organischen Säuren als Summe zu ermitteln. Damit kann mit im Rahmen der Eigenüberwachung oft vorhandenen Daten und relativ einfachen Analysen (CSB, NH₄-N und pH-Wert) die Größe des Versäuerungsgrades abgeschätzt werden - eine zusätzliche Bestimmung der Alkalität ist hier nicht erforderlich.

Beispiel:

Meßwerte:

NH₄-N = 100 mg/l, pH-Wert = 5,5, CSB-Konzentration = 35 g/l; 40° C, 80% CO₂, 1,43 bar

Berechnung:

"K+" - "A-" = $25 \cdot e^{(0,052 \cdot 35)} = 114 \text{ mol/m}^3$;

Damit ergibt sich nach Einsetzen der Parameter aus dem Rechenblatt eine Konzentration von ca. 8.400 mg/l Essigsäureäquivalente:

pН	H+	OH-	fCO ₂	fHCO ₃	CO2	HCO3-	fAc ⁻	Ac-Aqu	Alk-NH ₄ -N	"K"-"A"	HAc-Äqu
-	mol/l	moVI	-		mol/m ³	mol/m ³		mol/m ³	mol/m ³	mol/m ³	mg/l
5,5	3,16E-06	9,19E-09	0,86	0,14	23,68	3,77	0,84	117,98	121,7	114	8400

Für jedes Abwasser muß der Faktor "K+" - "A-" anhand einer vollständigen Datenreihe wie oben beschrieben bestimmt werden. Es ist einsichtig, daß brauchbare Ergebnisse nur erreicht werden, falls eine annehmbare Korrelation dieses Faktors mit der CSB-Konzentration des Abwassers gefunden wird. Ist dies nicht der Fall, kann versucht werden, die Abhängigkeit von "K+" - "A-" von anderen leicht zu bestimmenden Parametern (wie z.B. Leitfähigkeit) zu untersuchen und anstelle des CSB eine andere Größe zu ihrer Ermittlung heranzuziehen.

8. LITERATURERFAHRUNGEN

In den folgenden Zusammenstellungen werden Literaturergebnisse der Versäuerung verschiedener Substrate angeführt. Um Vergleiche anstellen zu können, wurden alle in den Literaturstellen angeführten Substrate und Anteile der Versäuerungsprodukte in CSB umgerechnet sowie der Versäuerungsgrad, falls möglich, wie in Kap. 2.6.3. ausgeführt berechnet.

8.1. VERSÄUERUNG VON GLUCOSE:

ZOETEMEYER et al. (1982) führten intensive Studien über die Versäuerung von Glucose in einem weiten pH- und Temperaturbereich durch. Die optimale Wachstumsrate der Versäuerungsbakterien fanden sie bei einem pH-Wert von 5,7 - 6,0 und einer Reaktortemperatur von 35 - 39° C. Untersucht wurden Produktverteilung, Yield, Gasausbeute, D_{max} und Versäuerungsgrad einer Lösung von 10 g/l Glucosemonohydrat (9,96 g CSB/l) in einem Chemostaten (angeimpft mit Belebtschlamm) - einmal bei konstantem pH-Wert und Variation der Temperatur (20 - 60° C) und einmal bei konstanter Temperatur und Variation des pH-Wertes (4,5 - 7,9). Auch die Auswirkung einer Belastungssteigerung bis D_{max} (definiert als 20% Glucose im Ablauf) wurde in den Versuchsanlagen (Reaktorvolumen = 650 ml) betrachtet.

8.1.1. Konstanter pH-Wert (5,8)

Hier ergab sich ein breites mesophiles Optimum um 35 - 39° C bei B_{TS}-max = 77 kg CSB/kg TS.d und ein schmales thermophiles Optimum zwischen 51° und 53° C mit einer höheren maximalen Schlammbelastung von 112 kg/kg TS.d, wobei der Yield mit steigender Belastung tendentiell leicht zunahm (von 14 auf 18%). Der Versäuerungsgrad bei nahezu vollständigem Glucoseumsatz lag zwischen 50 und 60% und der CSB-Gehalt des Gases um die 10%. Die

maximale Verdünnungsrate erhöhte sich von 0,32 h⁻¹ bei 30° C auf bis zu 0,51 h⁻¹ bei 37,7° C, und betrug bei 39,9° C 0,45 h⁻¹. Mit zunehmender Belastung wurde im mesophilen Temperaturbereich eine höhere Buttersäurekonzentration beobachtet (ab 30% der B_{TSmax} dominant), während Essig- und Propionsäure eben so rasch abnahmen (Hauptprodukte unter 25% B_{TSmax}). Die Variationen der jeweiligen Hauptprodukte im thermophilen Bereich war noch ausgeprägter hier dominierten generell stärker reduzierte Produkte wie Butyrat, Lactat und EtOH (ZOETEMEYER et al. 1982-2).

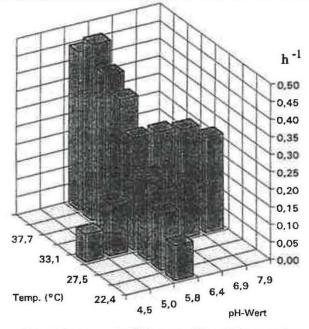


Abb. 8.1.: µmax in Abh. von pH und Temperatur

8.1.2. Konstante Temperatur (30° C)

In dieser Versuchsreihe fanden ZOETEMEYER et al. (1982-1), daß mit steigendem pH-Wert der Anteil von Wasserstoff am Gesamtgas anstieg, während die CO₂-Konzentration relativ kontinuierlich von 60 auf 5% absank. Der Yield betrug zwischen 12 und 14%. Die kritische Verdünnungsrate der versäuernden Mikroorganismen mit 0,32 h⁻¹ wurde ab etwa pH 5,7 erreicht und lag bei pH 5,0 erst bei 0,15 h⁻¹ (D_{krit} bei pH 4,5 nur 0,08 h⁻¹) - die maximalen Wachstumsraten sind in *Abb. 8.1* zusammengefaßt. Bei pH 5,7 verschwand mit steigender Zulauffracht die Propionsäure, die von Anfang an dominierende Buttersäure sowie der Wasserstoffanteil im Gas stiegen dagegen an. Bei pH 6,3 wurde nie Propionsäure gefunden, die (auch hier als Hauptprodukt vorliegende) Buttersäure ging anteilsmäßig langsam zurück, während vor allem die Milch- und Ameisensäurekonzentration zunahm. Die Konzentrationen der übrigen Versäuerungsprodukte blieben im wesentlichen konstant.

8.1.3. Abhängigkeit der Versäuerung von der Glucosekonzentration

Bei der Versäuerung von Glucose (2,5 - 75 g Glucosemonohydrat/l = 2,49 - 74,7 g CSB/l) wurden Versäuerungsgrade von 47 bis 74% für die organischen Säuren ohne klaren Zusammenhang mit der CSB-Konzentration gefunden (⇒ *Abb. 6.8*).

8.2. VERSÄUERUNG VON SACCHAROSE

JOUBERT et al. (1986) untersuchten die Versäuerung von Saccharose (9,6 g CSB/l, konstante $B_R = 26 \text{ kg CSB/m}^3$.d, $CSB_{abgeb} \approx 5\%$) in einem Festbettversuchsreaktor (Volumen = 770 ml) in Abhängigkeit von pH und Temperatur - als Impfmaterial verwendeten sie eine Mischung aus Faul- und Belebtschlamm.

8.2.1. Konstanter pH-Wert (5,9)

Der Hydrolysegrad der Saccharose stieg bei den bei konstantem pH-Wert (5,9) durchgeführten Versuchen und dieser Belastung von 60% bei 29° C auf 90% bei 33° C - ab 34° C wurde keine Saccharose im Ablauf mehr gefunden. Bis 29° C überwog die Buttersäure, ab 29° C Propionsäure, ab 32° C stieg die Ethanolkonzentration rasch an, der mit zunehmender Temperatur beständig wachsende Essigsäureanteil erreichte bei 35° C sein Maximum und wurde wieder von der Buttersäure als Hauptprodukt abgelöst, die schließlich bei 40° C fast 70% der Versäuerungsprodukte darstellte. Der Versäuerungsgrad betrug ca. 60%. Bei 30 kg CSB/m³.d bzw. HRT ≈ 0,3 d und damit bei etwa einem Fünftel der von ZOETEMEYER gefundenen maximalen Raumbelastung sank der pH-Wert rasch auf unter 3,1 und als Folge davon der Versäuerungsgrad beträchtlich - eine Stabilisierung des pH-Wertes hätte nach Ansicht des Autors durchaus höhere Belastungen ermöglicht.

8.2.2. Konstante Temperatur (27° bzw. 35° C)

Der Hydrolysegrad der Saccharose stieg bei <u>27° C</u> von 55% bei pH 5,7 auf 77% bei pH 6,5 bis zu 85% bei pH 7,5 an. In Abhängigkeit vom pH gebildete Produkte waren dabei das Hauptprodukt Buttersäure (mit ständig zunehmender Tendenz), Essigsäure als anfängliches Nebenprodukt bis zur gleichen Konzentration ansteigend (ab pH 6,9) und Ameisensäure ab pH 6,5 mit rasch steigender Tendenz (bis zur Hälfte der Konzentration der beiden Hauptprodukte Essigund Buttersäure bei pH 7,5). Die Propionsäure stellte mit etwa 10% der versäuerten Produkte einen in etwa gleichbleibenden Teil dar.

Bei 35° C war die Hydrolyse auch bei niedrigen pH-Werten (5,7) praktisch vollständig. Die Buttersäure stellte ab pH 6,0 mit stark steigender Tendenz das Hauptprodukt dar. Die Essigsäurekonzentration nahm über den pH-Verlauf ständig leicht ab, während die Ameisensäurekonzentration in etwa demselben Ausmaß langsam anstieg. Die Propionsäurekonzentration fiel von ihrem Maximum bei einem pH-Wert von 5,9 (10% der Versäuerungsprodukte), bei dem die Essigsäure der Konzentration nach noch den Hauptbestandteil der Metaboliten darstellte.

Aus diesen Versuchen schloß JOUBERT, daß bei pH-Werten im leicht sauren Bereich und bei Temperaturen ab 35° C die für die nachfolgende Methanisierung energetisch bevorzugten Produkte gebildet werden.

8.3. VERSÄUERUNG ANDERER SUBSTRATE

8.3.1. Rübenpreßschnitzel

Im Gegensatz zu den Ergebnissen von ZOETEMEYER fanden BUCHHOLZ et al. (1986) bei der Versäuerung von <u>Rübenpreßschnitzel</u> im Chemostaten eine Zunahme der Propionsäurebildung mit steigender Belastung der Anlage. Bei dem sich einstellenden pH-Wert zwischen 6,2 und 6,8 konnte hier kaum Buttersäure sondern nur Essig- und eben Propionsäure gefunden werden.

8.3.2. Polymere Kohlehydrate

Als charakteristische Produktsäure beim Abbau von Stärke (die teilweise nur sehr langsam hydrolysiert wird) erkannte KUNST (et al., 1982, 1983) bei Versäuerungsversuchen (B_R = 3,0, 5,8 und 7,3 kg CSB/m³.d, Reaktorvolumen = 15 l) mit Schlammrückführung im stark sauren Bereich (3,0 - 3,7) die Buttersäure. Zwischen pH = 5 - 6 entstanden durch die stark reduzierenden Bedingungen (aufgrund des H⁺/H₂ Gleichgewicht ist viel Wasserstoff vorhanden) verstärkt reduzierte Säuren wie Butter- und Valeriansäure. Im neutralen Bereich verlief die Versäuerung eher in Richtung Propionsäure - auch KUNST beobachtete eine drastische Änderung der Produktpalette bei einem pH-Sprung von 6,0 auf 7,3. Die Stärkehydrolyse war praktisch vollständig, der CSB-Abbaugrad lag zwischen 40 und 50%. Eine höhere Belastung (7,3 g CSB/l.d) hob sich im wesentlichen durch das Auftreten von Capronsäure und einen hohen Essigsäureanteil ab.

KUNST schloß, daß die Essigsäure überwiegt, falls der bei der Hydrolyse und Versäuerung freigesetzte Wasserstoff sofort von methanogenen oder sulfatreduzierenden Partnerorganismen unter CO₂-Verbrauch verwertet werden kann. Ansonsten muß durch die notwendige Reoxidation der H₂-übertragenden Coenzyme ein Teil der entstandenen Essigsäure wieder in Buttersäure, Propionsäure, Alkohole etc. umgewandelt werden.

8.3.3. Melasseschlempe

FIEBIG et al. (1989) untersuchten die zweistufige Methanisierung von Melasseschlempe mit einem Rührreaktor im Labormaßstab ohne Schlammrückführung (HRT = 3 Tage) als Versäuerungsstufe - Betain wurde dabei erst ab pH-Werten über 7,0 merkbar angegriffen. Bei pH 7,5 erreichte die Versäuerung und speziell die Essig- und Buttersäureproduktion mit jeweils ca. 22% Anteil am CSBges ihr Maximum. Bei pH = 5,5 stellte die Buttersäure (65%) und bei pH = 6,0 und 6,5 die Essigsäure (50%) das Hauptprodukt dar - die beiden anderen Säuren bildeten jeweils zur Hälfte den Rest der Versäuerungsprodukte. Die Propionsäurebildung stieg bis pH 6,0 langsam an und hielt zwischen pH 6,0 und 6,5 einen Anteil von knapp über 30% des versäuerten CSB's.

8.3.4. Blanchierabwässer

Die bei Obst- und Gemüseverarbeitungsbetrieben anfallenden Blanchierabwässer erreichen Konzentrationen von bis zu deutlich über 100 g CSB/l. Bei einem pH-Wert von 4,8 (N_{ges} = 0,2 g/l) war die Versäuerung in einer Versuchsanordnung mit Schlammrückführung (HRT = 4 - 6 d) bis zu 10 g CSB/l vollständig; bei einem pH-Wert von 6,8 bis zu etwa 18 g CSB/l. Hochkonzentriertes Abwasser (CSB = 100 g/l) wurde bei pH 4,8 nur mehr zu 20% und bei pH 6,8 zu ca. 30% versäuert. Das Säurespektrum war in beiden Fällen vergleichbar, wobei das eindeutige Hauptprodukt Essigsäure bei pH = 6,8 deutlicher ausgeprägt ist als beim pH-Wert von 4,8. Höhere Gesamtstickstoffkonzentrationen veränderten das Säurespektrum dahingehend, daß bevorzugt höheren Säuren gebildet wurden (KRAUSE et al. 1991, 1992).

8.3.5. Kaffeeproduktionsabwässer

ALEXIOU et al. (1994) fanden bei der Untersuchung von <u>Kaffeeproduktionsabwässem</u> (CSB = 10 g/l) in Versuchsanlagen eine starke Abhängigkeit des Versäuerungsgrades vom pH-Wert und der Temperatur. So wurde bei pH = 6, HRT = 12 h und T = 37° C eine mehr als doppelt so weitgehende Versäuerung gemessen als bei 45° C. Dieselben Versuche bei pH = 5,0 zeigten hingegen einen praktisch gleichbleibenden niedrigen Versäuerungsgrad auch bei steigender Temperatur. Auch die Verkürzung der Aufenthaltszeit auf 6 Stunden hatte kaum Auswirkungen auf den Versäuerungsgrad. Deutlich wirkte sich wiederum ein pH-Abfall auf 4,5 im Verein mit einem Temperaturanstieg aus - der Versäuerungsgrad sank vorerst rapide, um ab 55° C wieder leicht zuzunehmen.

8.3.6. Molkerei- und Brauereiabwässer

McDOUGALL et al. (1994) untersuchten neben der Versäuerung von Kaffeeproduktionsabwässern die Versäuerung von Molkerei- (2 - 6 g CSB/l) und Brauereiabwässern (3,5 - 4 g
CSB/l). Die weitestgehende Versäuerung wurde bei 37° C und pH = 6,0 (Brauerei) bzw. pH 5,5
(Molkerei) gefunden - die Unterschiede waren beträchtlich (Brauereiabwasser: 1,8 g VFA bei pH
5,5 und 1,3 g VFA bei pH = 6,0). Auffällig war, daß bei den Molkereiabwässern Propionsäure
dominierte, was durch die Anwesenheit von *Propionibakterien* in allen Milchprodukten und damit
auch in den Abwässern der Produktionsanlagen erklärt werden konnte. Ansonsten wurden
überwiegend Essigsäure neben Butter- und Valeriansäure gefunden. Der nach ALEXIOU
definierte Versäuerungsgrad lag beim Brauereiabwasser bei HRT = 12 h bei 40% und konnte
durch Steigerung der Aufenthaltszeit auf bis zu 100% angehoben werden - eine Umrechnung
auf den Versäurerungsgrad nach Kap. 2.7.3 war aufgrund der Literaturdaten nicht möglich.

8.3.7. Hefeabwässer

Die Versäuerung des Abwassers einer Hefefabrik untersuchten VAN DER MERWE et al. (1994) in Batchversuchen im Labormaßstab. Da das Abwasser viele schwer aufschließbare Verbindungen enthielt, wurden als Impfmaterial 5 verschiedene, vorher als bestversäuerndste im Abwasser gefundene, selektionierte Bakterienstämme eingesetzt. Variiert wurde der pH-Wert (5,0,5,5 und 6,0), die Abwasserkonzentration (10, 20 und 30 g/l) sowie die Temperatur (20, 25, 30 und 35° C). Diese Parameter umspannen die meist in der anaeroben Industrieabwasserreinigung gefundenen Bedingungen (JOUBERT et al. 1986, THOMAS et al. 1993). Der Abbaugrad wurde durch Analyse von T(otal)VFA, EtOH, 2,3-Butandiol und Acetoin sowie der Gasprodukte erfaßt, wobei die TVFA den Hauptanteil stellten. Der Versäuerungsgrad erwies sich nicht nur als stark abhängig von Temperatur, pH-Wert, CSB-Konzentration und HRT sondern wurde auch von der Art des eingesetzten Bakterienstammes beeinflußt. Im Mittel die beste TVFA-Produktion wurde bei CSB = 30 g/l, pH = 5,5 - 6,0, HRT = 24 - 48 h und hoher Temperatur (35° C) gefunden.

8.4. SONSTIGES

8.4.1. Auslegung

Bisher wurden noch keine allgemeingültigen Bernessungsregeln für Versäuerungsbehälter entwickelt (ALEXIOU et al. 1994). Der Bogen der Litereraturanmerkungen beginnt bei den Fällen, in denen von einer Vorversäuerung überhaupt abgesehen werden kann (⇒ Versäuerung geschwindigkeitsbestimmend; KUNST et al. 1985, SPIES 1985, SEYFRIED et al. 1986). Begrenzt werden sollte nach Erfahrungen von LETTINGA et al. (1991) die Vorversäuerung vor allem bei Methanbehältem mit pelletiertem Schlamm. Einen prinzipiell stabileren CSB-Abbau bei guter Vorversäuerung von Industrieabwässem finden HOWERTON et al. (1987) und WU et al.

(1988). Eine mehr oder weniger weitgehende Vorversäuerung wird auch bei blähschlammfördernden Abwasserinhaltstoffen angeraten (ENDO et al. 1988). Ist neben einer Versäuerung eine Bildung und damit Entfernung von Schwefelwasserstoff bzw. Schwermetallen oder toxischen Substanzen gewünscht, müssen Aufenthaltszeit bzw. Betriebsbedingungen (pH < 6) an die Bedingungen der Sulfatreduzenten etc. angepaßt werden (COLLERAN et al. 1994, HICKEY et al. 1991...).

8.4.2. Bildung und Umsetzung von Milchsäure

Bei Über- oder Unterschreitung des optimalen Temperaturbereichs sowie bei sonstigen Veränderungen und damit erforderlicher Adaption der Bakterien wurde bei den Versuchen von ZOETEMEYER et al. (1982-2) die massive Bildung von Milchsäure beobachtet, die allerdings rasch wieder abgebaut wurde. NÄHLE (1984) stellte in einem Batchversuch bei 35° C und einem pH-Wert von 6,0 eine rasche Umsetzung von milchsäurehältigem Substrat (vorversäuertes Schlammtransport- oder Flüssigzuckerabwasser) zu vorwiegend Butter- und Propionsäure fest. Auch MAHR (1969) fand eine rasche Umsetzung der innerhalb kurzer Zeit gebildeten Milchsäure nach bereits 6 Stunden bei einer Stoßbelastung eines Faulschlammreaktors mit Glucose.

8.4.3. Optimale Umweltbedingungen

Weitgehend unabhängig von der Abwasserart wird für die Versäuerung in zahlreichen Literaturstellen ein pH-Optimum bei ca. 6,0 angeführt (ALEXIOU et al. 1994, KUNST 1982, VAN DER MERWE et al. 1994, ZOETEMEYER et al. 1982,...). Darüber ist eine erhebliche Änderung des Produktspektrums zu gewärtigen (u.a. KUNST 1982). Aber auch Fälle von höherer Versäuerung bei pH = 5,5 sind bekannt (McDOUGALL et al. 1994). Unter pH-Werten von 5,0 fällt der Versäuerungsgrad meist rapide ab (LETTINGA et al. 1991,...) - nur die Essigsäurebildung ist auch bei tieferen pH-Bereichen einigermaßen stabil. Bei der Temperatur scheint der optimale Bereich im mesophilen Bereich um 37° C zu liegen (JOUBERT et al. 1986, VAN DER MERWE et al. 1994, ZOETEMEYER et al. 1982,...). Im thermophilen Bereich gibt es aus der Literatur keine so eindeutige Aussagen - 55° C scheinen noch am ehesten einem Optimum zu entsprechen (ALEXIOU et al. 1994).

9. ZUSAMMENSTELLUNG DER ERGEBNISSE

In einem klassisch/naturwissenschaftlichen Experiment werden vereinfacht alle denkbaren Ursachen bis auf eine konstantgehalten, um die Wirkung der Veränderung dieses einen Parameters studieren zu können:

"Ursachen:"

Bei der Fülle der Einflußgrößen auf die Zusammensetzung der Biozönose, die die Versäuerung durchführt, war es selbst bei Versuchsanlagen nur möglich, einige ausgewählte <u>"Haupteinflußgrößen"</u> zu definieren und bis auf jeweils eine festzuhalten - im untersuchten Fall waren dies die Temperatur, der pH-Wert, die Abwasserzusammensetzung, die Belastung, die Aufenthaltszeit und eine periodische Impfung mit Faul- bzw. Belebtschlamm.

Tab. 9.1.: Variation der Einflußgrößen

Parameter	Einheit	Großanlage	Versuchsanlagen im Durchlaufbetrieb (VD)
Temperatur	°C	39° - 60°	40°, 47° und 50°
pH-Wert		5,1 - 6,1; 3 4,7	ca. 5,5; ↓ 4,2
CSB-Konzentration	g/l	15 - 37	20 - 47
CSB-B _R	g/l.d	5 - 26	5 - 50
Aufenthaltszeit HRT	d	1,1 - 5	0,85 - 10
Schlammzugabe	% GesVol	fallweise bis zu 10%	bis zu 2%/d bzw. 33%/5d

Bei der Großanlage konnte aufgrund der häufig wechselnden Betriebsbedingungen nur auf Perioden mit ähnlichen bzw. mehr oder weniger gleichbleibenden Randbedingungen zurückgegriffen werden. Darüberhinaus waren einige Parameter (wie z.B. Abwasserkonzentration, Raumbelastung und Aufenthaltszeit) eng miteinander verknüpft und aus diesem Grund deren Einfluß (Rückgang des Versäuerungsgrades) nur schwer eindeutig zuzuordnen.

"Wirkung:"

Von den freigesetzten Metaboliten wurden neben den gasförmigen Stoffen CO₂, CH₄ und H₂ die Hauptprodukte Essig-, Propion- und Buttersäure sowie bei den Versuchsanlagen auch Valerian- und Milchsäure - <u>alle als CSB</u> - betrachtet, mit der Zulaufkonzentration verglichen und ihr Verteilungsspektrum bewertet.

Die Stärken der Ergebnisse aus den Perioden des <u>Großreaktors</u> liegen in der großen Aussagekraft technischer Anlagen unter Praxisbedingungen. Bei den <u>Versuchsanlagen</u> wiederum konnten interessierende Einstellungen beliebig lange untersucht und die Versäuerung in extremen Situationen beobachtet werden. Bei den folgenden Ausführungen sollte nicht darauf vergessen werden, daß von der Vielzahl der gebildeten Produkte nur die (wesentlichen) organischen Säuren Berücksichtigung fanden.

9.1. TEMPERATUR

Bei der <u>Großanlage</u> kristallisierten sich im wesentlichen zwei Temperaturbereiche über und unter 45° C heraus, die sich durch das <u>Essig- zu Buttersäureverhältnis</u> sowie in der <u>Stabilität der Methanbildung</u> und damit in der Gaszusammensetzung unterschieden. Der Temperaturbereich von 39° bis 45° C ("mesophiler" Bereich) war durch einen Essigsäureanteil von um die 50% und einem HAc zu Butt - Verhältnis von 1,1 bis 1,8 (Mittelwert = 1,4) geprägt. Im "thermophilen" Bereich (45° - 60° C) überwog die Buttersäure klar. Sie stellte knapp über 60% der Versäuerungsprodukte und lag um den Faktor 1,5 bis 5,1 (Mittelwert = 2,3) über der Essigsäurekonzentration - Valeriansäure wurde hier nicht mehr beobachtet. Der Anteil der Propionsäure an den organischen Säuren erwies sich als weitgehend unbeeinflußt von der Temperatur und war mengenmäßig von untergeordneter Bedeutung (12 - 18%).

Bei den vergleichenden <u>Versuchsanlagen</u> dominierte im oberen Temperaturbereich die Buttersäuregärung eindrucksvoll auf Kosten der Acetatbildner - ein HAc/Butt-Verhältnis von 0,2 war hier keine Seltenheit. Im Unterschied zur Großanlage traten hier jedoch auch bei 40° C teilweise HAc/Butt-Verhältnisse von bis zu < 0,6 bzw. bis zu > 2,5 auf. Während im Labormaßstab immer wieder stärkere Schwankungen im <u>Säurespektrum</u> zu finden waren, konnten entsprechende Instabilitäten im bisher 9jährigen Betrieb der Großanlage nicht beobachtet werden. Auch die <u>Gaszusammensetzung</u> variierte stärker als im Großreaktor. Dieser Vergleich legt die Vermutung nahe, daß in Versuchsanlagen beobachtete Schwankungen - wie in diesem Fall z.B. das HAc/Butt-Verhältnis im mesophilen Bereich - im realen Betrieb einer Großanlage nicht auftreten müssen. Bei den Versuchsanlagen konnte darüberhinaus ein tendentiell höherer Anteil an Buttersäure bei höherem Wasserstoffpartialdruck festgestellt werden.

<u>Unter 45° C</u> wurde im Großreaktor auch ohne Schlammzugabe über einen weiten Belastungsbereich (HRT > 4d) Methanproduktion beobachtet. Ab ca. 10 - 15% CH₄ traten nur mehr Spuren von Wasserstoff im VB-Gas auf, was einen vollständigen Umsatz des produzierten Wasserstoffs anzeigt. Bei niedrigeren CH₄-Konzentrationen erreichte der H₂-Gehalt kurzfristig bis zu 15%, ohne dabei das Säurespektrum merkbar zu beeinflußen. In den Versuchsanlagen wurde bei Aufenthaltszeiten unter 3 Tagen und 40° C ohne Faulschlammbeschickung keine stabile Methanisierung gefunden. <u>Über 45° C</u> war es bei der Großanlage nur bei sehr geringer Belastung (HRT > 5 d) und ständigem massiven Animpfen möglich, autotrophe Methanproduzenten im Versäuerungsbehälter zu halten. Die Wasserstoffkonzentration sank in diesem Temperaturbereich auch bei Anwesenheit von Methan nie unter 10%. In den entsprechenden Versuchsanlagen konnte auch bei Aufenthaltszeiten von ca. 6,5 Tagen und täglicher Animpfung mit Faulschlamm (0,7% VD-Volumen/d) keine Methanisierung sichergestellt werden.

Die Anwesenheit <u>autotropher Methanproduzenten</u> hatte keinen erkennbaren Einfluß auf das Säurespektrum, könnte aber zu einem höheren CSB-Abbau im Versäuerungsbehälter beitragen. Als Mittelwerte während des betrachteten 120-wöchigen Betriebes der Großanlage

wurden im thermophilen Bereich 2,5% CSB im Gas beobachtet, während der Anteil im mesophilen Bereich bei Anwesenheit von Methan mit 4,5% CSB fast doppelt so hoch war. Eine Verifikation dieser Aussage über die CSB-Analytik allein war nicht möglich (Betain, Schlamm, Unschärfe der Methode;

Kap. 3.2.1, p 22). Auch die Gasmengenmessung bei den Versuchsanlagen war zu ungenau, um diesen Sachverhalt näher zu untersuchen.

9.2. pH-WERT

In den Phasen ohne Schlammzugabe - also bei unbeeinflußter Versäuerung des Abwassers - stellte sich bei stabiler Versäuerung ein pH-Wert zwischen 5,1 und 6,1 (abhängig vom Grad der Hydrolyse der organischen Stickstoffverbindungen und damit der Ammoniumkonzentration) ein (

□ Kap. 8). Mit zunehmendem pH-Wert konnte ein leichter Anstieg des <u>Versäuerungsgrades</u> beobachtet werden, der aber auch mit der diesen verursachenden höheren Aufenthaltszeit in Zusammenhang stehen könnte. Erst bei Aufenthaltszeiten unter 2 - 3 Tagen sank der pH-Wert unter 5,0, worauf die Versäuerung (und dabei vor allem die Propion- und Buttersäureproduktion) rasch und erheblich (aber reversibel) zurückging. Eine vorbeugende Schlammzugabe bei höherer Belastung ermöglichte es, auch bei 1 - 1½ Tagen Aufenthaltszeit stabile Ammonifikation und damit einen pH-Wert deutlich über 5,0 bei guter Versäuerung zu erhalten.

Da in der Großanlage im Fall eines pH-Abfalls sofort Maßnahmen zur Neutralisation durchgeführt wurden, war es erst in den Versuchsanlagen möglich, längerfristige Konsequenzen eines durch Überlastung verursachten Rückgangs der Ammonifikation und damit in Folge der Versäuerung zu beobachten. Bei Aufenthaltszeiten unter 5 - 6 Tagen sank der pH-Wert bei den Anlagen ohne Schlammzugabe unter 5,5 bei praktisch gleichbleibendem Versäuerungsgrad. Begleitet von einer pH-Korrektur konnte die Versäuerung selbst bis zu einer Aufenthaltszeit von 0,85 Tagen stabilisiert werden. Ohne Neutralisation bzw. Schlammzugabe fiel der pH-Wert bei dieser Belastung rasch auf knapp über 4,0, wo sich die Versäuerung auf einem niedrigeren Niveau neu stabilisierte. Bei Unterschreitung eines pH-Wertes von 5,0 ging die Buttersäureproduktion schlagartig, die Propionsäurebildung etwas langsamer zurück. Bei pH = 4,2 wurde nur mehr Essigsäure in nennenswertem Ausmaß gefunden (über 80% der Versäuerungsprodukte bei einem Gesamtversäuerungsgrad von unter < 13%).

Da in der Großanlage praktisch nie ein pH-Wert von > 6,0 auftrat, wurde von der Untersuchung eines höheren pH-Bereiches abgesehen.

9.3. ABWASSERZUSAMMENSETZUNG, BELASTUNG UND AUFENTHALTSZEIT

Bei der Großanlage waren Belastung und Aufenthaltszeit mit der CSB-Konzentration eng verknüpft und beeinflußten - wenn auch nur in geringem Ausmaß - den <u>Versäuerungsgrad</u>. Da hohe Abwasserkonzentrationen mit hohen Raumbelastungen und kurzen Aufenthaltszeiten einhergingen, konnte die Ursache der leichten Abnahme des Versäuerungsgrades in diesen Fällen nicht eindeutig einem Parameter zugeordnet werden. Eine ebenso leichte Zunahme des Versäuerungsgrades mit abnehmender Raumbelastung bzw. steigender Aufenthaltszeit ergab sich bei der Auswertung der Daten aus den Versuchsanlagen.

Für einen Durchlaufreaktor typisch ist der Einfluß der Aufenthaltszeit auf die Umsetzungen, der bei Unterschreitung des kritischen Punktes das Auswaschen der betreffenden Bakterienart bedingt (µmax < D). Dies betraf im untersuchten Fall einerseits die autotrophen Methanbakterien und andererseits die ammonifizierenden Organismen, die ab einer Aufenthaltszeit von < 4 (Versuchsanlage) bzw. < 2 - 3 Tagen (Großanlage) nur durch Schlammzugabe im System gehalten werden konnten. Beim Rückgang der Ammonifikation bei Aufenthaltszeiten unter 2 - 3 Tagen sank zuerst der pH-Wert, da die Versäuerung ungehemmt weiterlief. Sobald ein pH-Wert von 5,0 unterschritten wurde, kippte der Prozeß der N-Hydrolyse irreversibel, wodurch in der Folge eine Hemmung der Versäuerungsbakterien verbunden mit einer Reduktion des Versäuerungsgrades und einer Verschiebung des Säurespektrums im in Kapitel 9.2 beschriebenen Ausmaß auftrat.

Batchversuche mit Schlamm/Abwassergemischen unterstrichen die vermutete Abhängigkeit des Versäuerungsgrades von der Reaktionszeit, auch wenn die Ergebnisse nicht direkt mit Durchlaufreaktoren vergleichbar sind. Sie zeigten, daß in wenigen Stunden bereits > 50% des nach einer Woche versäuerten Substrats umgesetzt waren und als Milchsäure vorlagen. Nach weiteren 15 - 20 Stunden wurden nur mehr die wesentlichen organischen Säuren (Essig-, Propion-Butter- und Valeriansäure) gefunden. In den nächsten Tagen kam es zu einer weiteren - wenn auch nur mehr geringfügigen - Zunahme des Versäuerungsgrades.

Die Abnahme des auf den Zulauf-CSB bezogenen Versäuerungsgrades bei höheren Abwasserkonzentrationen kann teilweise durch den diesen verursachenden, höheren Anteil nicht versäuerbarer Abwasserinhaltsstoffe (i.w. Melasse) zurückgeführt werden (⇔ Kap. 6.2.4.2). Versuche mit einem Reinsubstrat (Glucose) zeigten keine Abhängigkeit des Versäuerungsgrades
von der Substratkonzentration (⇔ Kap. 6.3.2). In den Versuchsanlagen im Durchlaufbetrieb
wurde bei konstanter Abwasserkonzentration eine leichte Abnahme des Versäuerungsgrades
von der Belastung/Aufenthaltszeit bestätigt.

Das Säurespektrum selbst erwies sich als weitgehend unabhängig von der Belastung - auch bei der minimalen Aufenthaltszeit von ca. 1 d wurde (bei entsprechender Stützung des pH-Wertes) in der Großanlage dasselbe <u>Säurespektrum</u> wie im sonstigen Betrieb erhalten. Die Grenze der Belastbarkeit der stabilen Versäuerung konnte durch Schwierigkeiten bei den Versuchsanlagen (keine kontinuierliche pH-Kontrolle) nicht ausgetestet werden - bis zu einer Aufenthaltszeit von 0,85 d⁻¹ wurde jedoch kein Einfluß der Belastung auf das Säurespektrum festgestellt - der Auswaschpunkt D_C der Säurebakterien im untersuchten Fall lag daher deutlich über 0,05 h⁻¹.

9.4. SCHLAMMRÜCKFÜHRUNG

Bei sinkender Aufenthaltszeit (< 2 - 3 Tage) konnte durch einfache Schlammrückführung (Fauloder Belebtschlamm) die <u>Ammonfikation</u> erhalten und damit ein pH-Wert über 5,0 eingehalten werden, wodurch die Versäuerung sichergestellt wurde. Eine vorbeugende periodische Schlammzugabe bewirkte, daß die N-Verbindungen auch bei extrem niedrigen Aufenthaltszeiten (< 0,8 d⁻¹) ammonifiziert wurden und damit ein pH-Abfall mit der Folge einer Versäuerungshemmung vermieden werden konnte.

In der Großanlage legte, wie bereits angeführt, der unterschiedliche CSB-Gehalt des im Versäuerungsbehälter entstandenen Gases die Vermutung nahe, daß die Anwesenheit <u>autotropher Methanbakterien</u> den <u>Umsetzungsgrad</u> verbesserte. Ein kurzfristiger Rückgang der CH₄-Konzentration begleitet von einer Erhöhung des H₂-Anteils zog zumindest bei der Großanlage keine erkennbare Verschiebung im Säurespektrum nach sich. Da hier keine längerdauemden vergleichbaren Perioden mit reiner Faul- bzw. Belebtschlammrückführung beobachtet werden konnten, blieben Untersuchungen über den Einfluß der Schlammzugabe den Versuchsanlagen vorbehalten. Durch regelmäßige Faulschlammrückführung konnte dort der Versäuerungsgrad geringfügig verbessert werden, was aufgrund der Anwesenheit versäuernder Bakterien im Faulbehälter auch zu erwarten war. Generell wurden bei diesen Versuchsanlagen die höchsten Methankonzentrationen beobachtet. Die mit Belebtschlamm beimpften Anlagen neigten vermehrt zur Wasserstoffbildung und in Folge auch zu höheren Butter- und niedrigeren Essigsäurekonzentrationen. Neben dem Versäuerungs- bzw. Umsetzgrad sowie der Gaszusammensetzung wurde also auch das <u>HAc/Butt-Verhältnis</u> teilweise davon beeinflußt, ob sich die autotrophen Methanbakterien im Versäuerungsbehälter halten konnten oder nicht.

9.5. VERGLEICH DER UNTERSUCHUNGSERGEBNISSE MIT DEN LITERATURERFAHRUNGEN

Als wesentlichste Erkenntnis aus der Literatur kann geschlossen werden, daß die Belastbarkeit der Versäuerung, die Sensibilität der versäuernden Organismen auf Umwelteinflüsse (pH-Wert, Temperatur, Abwasserkonzentration,...) und der Umsetzungsgrad im wesentlichen durch die Abwasserart bestimmt werden. Aus diesem Grund sind die erheblichen Differenzen der Aussagen über die Wirkung verschiedener Parameter auf die Versäuerung in der Literatur selbst sowie auch im Vergleich mit den hier gefundenen Zusammenhänge verständlich.

Der wichtigste generelle Unterschied im Vergleich zu zahllosen Beobachtungen in der Literatur ist die <u>stabile, gleichbleibende Versäuerung</u> des Zitronensäureabwassers. Vor allem in der Großanlage wurde das Säurespektrum von der Belastung, der Temperatur (innerhalb der beiden Temperaturbereiche) und dem pH-Wert (> 5,0) nicht merklich beeinflußt, während verschiedene Autoren erhebliche Produktverschiebungen bei minimaler Änderung der Umweltbedingungen fanden (z.B. Änderung des HAc/Butt-Verhältnisses von 1,4 bei 35° C auf 0,25 bei

37° C; JOUBERT et al. 1986). Die Propionsäureproduktion war unter allen aufgetretenen Bedingungen (pH > 5,0) praktisch gleichbleibend. Buttersäure war erst ab 45° C Hauptprodukt, ansonsten (auch im sauren Bereich und bei höher Belastung) dominierte durchgehend die Essigsäure. Beim Versäuerungsgrad zeigten sich ebenfalls nur vergleichsweise geringfügige Schwankungen. Auch sonstige Literaturerfahrungen wie z.B. eine sich in Abhängigkeit vom pH-Wert ändernde Gaszusammensetzung wurden bei diesem Abwasser nicht gefunden. Aus den Analysenergebnissen der CSB-Konzentration der rohen und filtrierten Proben Zu- und Ablauf VB in den Phasen ohne Schlammrückführung konnte die Biomasseproduktion mit ca. 5% abgeschätzt werden - der Yield war damit deutlich niedriger als bei der Versäuerung von Reinsubstraten nach Literaturangaben.

Bestätigt hingegen wurde z.B. die Beobachtung, daß bei erheblichen Veränderungen und damit einhergehender erforderlicher Adaption der Bakterien häufig eine massive, aber kurzfristige Milchsäurebildung (bis zu 6 g CSB/I) auftrat (PIPYN et al. 1981). Weiters wurde übereinstimmend mit Literaturangaben eine CSB-Abnahme von etwa 5 - 10%, die generelle Dominanz von Buttersäure bei höheren Temperaturen, der starke Rückgang der Säureproduktion bei einem pH-Abfall < 5 sowie eine bessere Versäuerung mit steigendem pH-Wert (allerdings mit Fragezeichen) gefunden. Nicht erkennbar war etwa ein signifikanter Zusammenhang zwischen hoher Wasserstoffkonzentration im Versäuerungsbehältergas und der Bildung stärker reduzierter Säuren zumindest im Großreaktor.

9.6. SCHLUSSFOLGERUNGEN

9.6.1. Auslegung von Vorversäuerungsbehältern

Die Frage, ob eine Vorversäuerung zur Verbesserung der Prozeßstabilität (Entgiftung, Vergleichmäßigung, Vorabbau,...) überhaupt oder nur in begrenztem Ausmaß erforderlich ist, wird im wesentlichen durch die Abwasserart sowie - in geringerem Ausmaß - durch die Art des gewählten Anaerobprozesses (z.B. UASB mit pelletiertem Schlamm) bestimmt. Eine begrenzte Vorversäuerung kann je nach Abwasserzusammensetzung nach Literaturerfahrungen mit Aufenthaltszeiten zwischen 6 und 24 Stunden erreicht werden. Einige Abwässer (z.B. Kaffeproduktionsabwasser) weisen allerdings auch bei niedrigeren Aufenthaltszeiten (6 h) noch einen hohen Versäuerungsgrad (80%) auf (ALEXIOU et al. 1994).

Die eigenen Untersuchungen zeigten, daß beim Zitronensäureabwasser eine Begrenzung der Versäuerung durch Verringerung der HRT im mesophilen Bereich zuerst die <u>Methanbildung</u> (< 3 - 4 d) und unter 2 Tagen unabhängig von der Temperatur auch die <u>Ammonifikation</u> praktisch zum Stillstand brachte (= die entsprechenden Organismen ausgewaschen werden). Eine stabile und weitgehende Versäuerung konnte bei daraufhin erfolgender Neutralisation bzw. Schlammzugabe bis zu einer Aufenthaltszeit von 0,85 Tagen nachgewiesen werden, ohne dabei die Grenze der Stabiliät schon erreicht zu haben. Bei Betriebstemperaturen über 45° C war es nur

mehr bei sehr langen Aufenthaltszeiten (> 5 - 7 d) und ständiger Faulschlammzugabe möglich, autotrophe Methanbakterien im System zu halten, ohne dadurch das Säurespektrum oder den Versäuerungsgrad wesentlich beeinflußen zu können.

Die erforderliche Größe des Versäuerungsbehälters hängt hauptsächlich von der Geschwindigkeit ab, mit der der gewünschte Versäuerungsgrad erreicht wird und ist damit im wesentlichen eine abwassergegebene Größe. Vor allem Erfahrungen aus der Literatur (stärkere Schwankungen der Versäuerung im Grenzbereich der möglichen Belastung) lassen es angeraten erscheinen, im Hinblick auf eine möglichst gleichmäßig belastete Methanisierung tw. deutlich über der minimal erforderlichen Aufenthaltszeit zur Sicherung einer stabilen Versäuerung zu bleiben. Oft legt die Funktion des Vorversäuerungsbehälters als Ausgleichtank das Volumen fest, andernfalls sind ohne entprechende Literaturangaben jedenfalls Vorversuche empfehlenswert.

9.6.2. Beeinflußungsfaktoren der Versäuerung

Im Prinzip beeinflußten bei der untersuchten Anlage nur wenige Parameter die Versäuerung. Der Versäuerungsgrad der Schlempe wurde im stabilen Bereich (µ « µ_{max}) geringfügig von der <u>Aufenthaltszeit</u> bzw. Abwasserkonzentration und das gebildete Säurespektrum im wesentlichen von der <u>Temperatur</u> bzw. von der <u>Schlammrückführung</u> bestimmt, die über die durch sie verursachte An- bzw. Abwesenheit der <u>autotrophen Methanbakterien</u> wirkten. Der pH-Wert stellte sich durch das Gleichgewicht Ammonifikation/Säurebildung ein. Entscheidend war daher bei höherer Belastung der Einfluß der Schlammrückführung über die Stabilisierung der <u>Ammonifikation</u> für den pH-Wert, womit auch bei Aufenthaltszeiten < 2- 3 Tagen pH-Werte über 5,0 gehalten und damit stabil versäuert werden konnte. Die beobachtete etwa bessere Versäuerung bei steigendem pH-Wert (5 ⇒ 6) konnte nicht schlüssig nachgewiesen werden.

Aufenthaltszeit

Bei <u>Aufenthaltszeiten</u> über 3 - 4 Tagen waren in der Regel keine Steuerungsmaßnahmen erforderlich. Unter 3 - 4 Tagen Aufenthaltszeit konnte die CH₄-Bildung im Versäuerungsbehälter über den Auswaschpunkt der Methanbakterien hinaus durch Rückführung von <u>Faulschlamm</u> stabilisiert werden. Bei Aufenthaltszeiten unter 2 Tagen mußte darüberhinaus Schlamm zugegeben werden, um die Ammonifizierung und damit den pH-Wert stabil halten zu können. Mit abnehmender Aufenthaltszeit wurden also zuerst die Methanbakterien ausgewaschen, anschließend sank die Ammonifikation und damit der pH-Wert, was ab einem pH-Wert von unter 5,0 einen raschen Rückgang des Versäuerungsgrades, eine fast vollständige Hemmung der Propion- und Buttersäurebildner und einen Stabilisierung einer deutlich geringeren Versäuerung bei einem pH-Wert von 4,2 zur Folge hatte.

Die bisherigen Betriebserfahrungen der Großanlage bestätigen im Prinzip die hier beschriebenen Gesetzmäßigkeiten - der Versäuerungsbehälter zeigt bei Aufenthaltszeiten über 1 - 2 Tagen, unregelmäßiger Rückführung von Faulschlamm und einem pH-Wert von 5,3 - 6,0 eine stabile Versäuerung (Hauptprodukt Essigsäure) - im mesophilen Bereich (< 45° C) auch begleitet von einer stabilen Methanbildung (GÖTZENDORFER mündliche Mitteilung 1995).

pH - Wert/Temperatur

Zahlreiche Erfahrungen aus der Literatur weisen darauf hin, daß bei vielen Abwässem im neutralen Bereich (zwischen pH 6 und 8) eine drastische Änderung der gebildeten Stoffwechselendprodukte auftritt (ZOETEMEYER et al. 1982-1, JOUBERT et al. 1986, KUNST 1982) und eine stabile Versäuerung mit gleichbleibenden Endprodukten vermutlich mit Schwierigkeiten verbunden ist. Darüberhinaus erreichte die die acetoclastischen Methanbakterien am meisten hemmende Säure (Propionsäure) bei der Versäuerung von Melasseschlempe im pH-Bereich von 6,0 bis 6,5 ihr Maximum (FIEBIG et al. 1989) - auch nach KUNST et al. (1983) sind die im neutralen Bereich auftretenden Metabolite schlechter abbaubar als die zwischen pH = 4 und 6 anfallenden Verbindungen. Da andererseits die maximale Wachstumsrate ab pH 5,7 erreicht wird, dürfte der optimale pH-Bereich für die Versäuerung im Bereich zwischen 5,5 und 6,0 liegen. Für die Temperatur werden zwei Optima angegeben, wobei das mesophile im Bereich 35 - 40° C breiter und damit auch leichter einhaltbar zu sein scheint und darüberhinaus teilweise Methanisierung erlaubt.

Belastbarkeit

Falls ein pH-Wert von über 5,0 gehalten wird, läßt sich in Übereinstimmung mit den Versuchsergebnissen nach Literaturwerten über die maximalen Wachstumsraten versäuernder Bakterien (D_{krit} ≈ 0,3 d⁻¹) eine weitgehende Versäuerung auch bei wesentlich höheren Belastungen als bei den durchgeführten Untersuchungen (D_{min} = 0,85 d⁻¹) erwarten. Der Rückgang der Versäuerung ohne Stabilisierungsmaßnahmen bei Aufenthaltszeiten unter 2 Tagen war nicht auf eine Begrenzung der Versäuerung in diesem Belastungsbereich sondern auf einen <u>Rückgang der Ammonifikation</u> und damit auf den Enfluß der pH-Wert-Verschiebung zurückzuführen. Dem konnte durch eine vorbeugende Schlammzugabe bei pH-Werten unter 5,2 - 5,5 einfach begegnet werden.

Der relativ frühe Verlust der autotrophen Methanbakterien steht im Gegensatz zu Literaturangaben, die eine maximale Wachstumsraten dieser Organismengruppe von ca. 1,2 d⁻¹ angeben - eine Hemmung der Methanbildner (durch Propionsäure?) kann im untersuchten Fall vermutet werden.

10. ZUSAMMENFASSUNG

Aus der Literatur ist bekannt, daß eine Vorversäuerung von Abwasser sowie eine Trennung der anaeroben Biozönosen positive Auswirkungen auf die Stabilität des Abbaus haben kann, sodaß vor allem mikrobiologische Gründe und Aspekte der Betriebssicherheit für zweistufige Verfahren sprechen. In einem derartigen, meist als Durchlaufreaktor ausgebildeten Versäuerungsbehälter wird die Produktpalette durch die sich einstellende Biozönose und verschiedene Einflußgrößen bestimmt, deren wichtigste Temperatur, pH-Wert, Abwasserart und Belastung sind. Im Hinblick auf die Methanbakterien bedeutend ist neben der Art der gebildeten Produkte (unterschiedliche Abbaubarkeit bzw. Hemmwirkung) und des Versäuerungsgrades die Stabilität des Prozesses.

Das Ausmaß der Versäuerung wird durch den (in der Literatur unterschiedlich berechneten) Versäuerungsgrad ermittelt. Will man diesen als Maß für die "Methanbildungskapazität" (= Güte der Versäuerung im Hinblick auf die nachfolgende Methanisierung) definieren, kann man die im Versäuerungsbehälter gebildeten, leicht methanisierbaren Substrate (in der Regel hauptsächlich niedere organische Säuren) in Relation zum Gesamtsubstrat setzen. Da für die Ausbeute der Methanbakterien weniger die Konzentration an Kohlenstoff als der Energieinhalt der organischen Verbindungen bestimmend ist, erscheint es zielführend, dazu den CSB heranzuziehen. Mit dem so definierten Versäuerungsgrad erhält man einen Anhaltspunkt, welcher Anteil des im Rohabwasser vorhandenen Energieinhaltes nach einer Vorversäuerung als leicht methanisierbares Substrat vorliegt.

In der vorliegenden Arbeit wurde nun die Versäuerung des Abwassers einer Zitronensäurefabrik in großtechnischem Maßstab (3.000 m³), in kleinen Durchlaufanlagen und in Batchversuchen (jeweils 1,5 l) untersucht. Hauptprodukte der Versäuerung waren Essig- bzw. Buttersäure; als Nebenprodukte traten Propion- und Valeriansäure auf. Als gute Kontrollparameter zur Überwachung dieses Prozesses erwies sich der pH-Wert, die Ammoniumkonzentration, Summenoder Einzelparameter für die organischen Säuren sowie regelmäßige Gasanalysen. Ein Auftreten von Milchsäure wies auf Störungen oder erhebliche Milieuänderungen hin.

Das Gegenspiel "Bildung organischer Säuren" und "Ammonifikation organischer Stickstoffverbindungen" bestimmte maßgeblich den sich einstellenden pH-Wert. Durch den wesentlich stärkeren Einfluß des durch Hydrolyse gebildeten NH₄-N (starke Base) im Vergleich zu den organischen (=schwachen) Säuren stieg hier der pH-Wert mit zunehmender Versäuerung und Ammonifikation an. Auf der anderen Seite wurde beim Rückgang der Ammonfikation der pH-Bereich unterschritten (> 5,0), in dem eine ungehemmte Versäuerung stattfand.

Für die betrachtete Großanlage wurde nun in einem weiten Belastungsbereich (HRT > 3 - 4 Tage) ein gleichmäßiger Versäuerungsgrad mit stabiler Methanbildung im Versäuerungsbehälter bei Temperaturen unter 45° C gefunden. Über 45° C bzw. bei Aufenthaltszeiten zwischen 2 - 4 Tagen erfolgte die Versäuerung ebenso gleichmäßig - allerdings ohne Methanbildung, obwohl

das ungehemmte µmax dieser Bakteriengruppe bei 1,2 d-1 liegt (SAAKE 1986).

Als begrenzender Faktor für eine stabile Versäuerung erwies sich der Rückgang der Ammonifikation mit abnehmender Aufenthaltszeit, sodaß bei HRT < 2 - 3 Tagen durch den damit verbundenen Abfall des pH-Wertes unter 5,0 vor allem die Butter- und Propionsäure-bakterien gehemmt und der Versäuerungsgrad drastisch zurückging.

Insgesamt wurde bis auf den Sprung im Säurespektrum bei Temperaturen > 45° C vom Hauptprodukt Essigsäure zu Buttersäure begleitet vom Verlust der autotrophen Methanbakterien und der Hemmung der Säurebakterien unter pH = 5,0 (durch Rückgang der Ammonfikation) die Versäuerung im Unterschied zu Literaturerfahrungen durch die untersuchten Größen kaum beeinflußt und verlief über einen weiten Temperatur- und Belastungsbereich gleichbleibend stabil.

Durch Enkoppelung von SRT und HRT (regelmäßige Zugabe von Faul- oder Belebtschlamm in den Versäuerungsbehälter) konnte die erforderliche Aufenthaltszeit unter dem Aspekt einer stabilen Versäuerung durch Sicherstellung der Ammonfikation wesentlich verringert werden. Allerdings mußte diese Schlammrückführung bei der Aufenthaltszeiten < 1 d bereits mehrmals pro Tag (bzw. kontinuierlich) erfolgen, um einen pH-Abfall durch unzureichende Ammonifikation und damit in Folge einen Rückgang der Versäuerung hintanzuhalten. In diesem Fall konnte auch bei Aufenthaltszeiten von unter 0,85 Tagen eine stabile Versäuerung erzielt werden.

Allgemein ging der Versäuerungsgrad mit sinkender Aufenthaltszeit geringfügig zurück. Eine ebenso leichte Abnahme des Versäuerungsgrades mit steigender Abwasserkonzentration wurde vornehmlich durch den damit verbundenen, höheren schwer versäuerbaren organischen Anteil verursacht - Versuche mit leicht abbaubaren Reinsubstraten ergaben keine Korrelation zwischen Substratkonzentration und Versäuerungsgrad. Ein geringfügig besserer CSB-Abbau bei der Anwesenheit von Methanbakterien (mesophiler Bereich) sowie eine leichte Zunahme des Versäuerungsgrades mit steigendem pH-Wert konnte zwar beobachtet, aber nicht gesichert nachgewiesen werden. Beim Vergleich mit Ergebnissen aus der Literatur wurde klar, daß die gefundenen Gesetzmäßigkeiten nicht ohne weiteres auf andere Versäuerungsbehälter mit anderen Abwässern übertragbar sind.

Beim untersuchten Versäuerungsbehälter, der neben dem Vorabbau auch die Funktion eines Mengenausgleichsbehälters erfüllen mußte, konnte im Betrieb durch das einfache Mittel der vorbeugenden Schlammzugabe der Füllstand weitestgehend variabel gestaltet werden, ohne die Versäuerung wesentlich zu beeinflußen.

Weiters wurde ein Rechenblatt entwickelt und für den Großreaktors adaptiert, mit dem die Berechnung der Gleichgewichtskonzentration der den pH-Wert beeinflußenden Verbindungen möglich ist. Davon ausgehend können bei gegebener Temperatur und CO₂-Gaskonzentration wahlweise die Konzentration an pH-relevanten Kat- und Anionen - im wesentlichen Ammonium oder sonstige Kationen und die Summe an organischen Säuren als Essigsäureäquivalent - oder

der pH-Wert abgeschätzt werden. Bei gleichbleibender Abwasserzusammensetzung ist es damit möglich, aus pH-Wert, Temperatur, CO₂- und NH₄-Konzentration sowie einer Hilfsgröße für die sonstigen Kat- und Anionen (z.B. die CSB-Konzentration des Abwassers) bei geringem analytischen Aufwand den Versäuerungsgrad zu berechnen.

Als Forschungsbedarf wird eine kritische Betrachtung der Vergleichbarkeit von Versuchs- mit Großanlagen sowie eine systematischere Untersuchung über die Voraussetzungen für eine stabile Versäuerung als in dieser Arbeit gesehen. Wichtig erscheint auch die Klärung der Frage, ob Methanbildung im Versäuerungsbehälter zu einem besseren Vorabbau führt und ob sie überhaupt angestrebt werden soll, da sie in der Regel größere Versäuerungsbehälter bedingen würde. Die einfache Möglichkeit der Stabilisierung der Versäuerung durch Schlammrückführung und damit die Möglichkeit einer optimalen Ausnutzung eines Versäuerungsbehälters für den Mengenausgleich wäre auch bei anderen Abwässem nachzuweisen.

11. LITERATURVERZEICHNIS

- Alexiou, I.E., Anderson, G.K. und Evison L.M. (1994). Design of pre-acidification reactors for the anaerobic treatment of industrial wastewaters. Wat. Sci. Tech. Vol. 29, No. 9: 199-204
- ATV-Fachausschuß 7.5. (1990). Anaerobe Verfahren zur Behandlung von Industrieabwässern. 1ster Arbeitsbericht des Fachausschusses "Anaerobe Verfahren zur Behandlung von Industrieabwässern". Korrespondenz Abwasser 10 (37. Jahrgang): 1247-1251.
- ATV-Fachausschuß 7.5. (1993). Technologische Beurteilungskriterien zur anaeroben Abwasserbehandlung. 2ter Arbeitsbericht des Fachausschusses "Anaerobe Verfahren zur Behandlung von Industrieabwässern". Korrespondenz Abwasser 2 (40. Jahrgang): 217-223.
- Bergert, F. (1983). Wachsturn von Mikroorganismen. 2. Aufl., G. Fischer, Jena.
- Buchholz, K., Arntz, H.J., Pellegrini, A. und Stoppok, E. (1986). Untersuchungen zur Bildung von Biogas aus Rübenpreßschnitzeln. Zuckerind. 111, Nr. 9: 837-845.
- Colleran, E., Finnegan, S. und O'Keefe, R.B. (1994). Anaerobic digestion of high-sulphate-content wastewater from the industrial production of citric acid. *Wat. Sci. Tech.* Vol 30, No. 12: 263-273.
- Derycke, D., O'Keefe, R.B., Leahy, B. und Pipyn, P. (1993). Anaerobic treatment of the sulphate rich wastewater of a citric acid factory. In: Are complex wastes anaerobically digestable? Paper presented to Conference of Flemish Institute of Engineers, Breda, Holland, 27th April, 1993
- DEV (1995). Deutsche Einheitsverfahren zur Wasser- Abwasser- und Schlammuntersuchung. Verlag Chemie.
- Duarte, A. C., Anderson, G. K. (1982). Inhibition modelling in anaerobic digestion. Wat. Sci. Tech. Vol. 14, No. 6/7: 749-763.
- v.d. Emde, W. und Kroiss, H. (1984). Austr. patent Nr. 378168
- Endo, G. und Tohay, Y. (1988). Ecological study on anaerobic sludge bulking caused by filamentous bacteria growth in an anaerobic contact process. *Wat. Sci. Tech. Vol. 20 (11/12)*: 205-211
- Evans, C.G.T., Herbert, D. und Tempest, D.W. (1970). The continuous cultivation of micro-organismes 2. Construction of a chemostat. *Methods in Microbiology* (Edited by Norris, J.R. & Ribbons D.W.), *Vol. II:* 277-327. Academic Press, London.
- Fiebig, R. und Dellweg, H. (1989). Anaerobe Behandlung von Abläufen der Melassebrennerei. gwf wasser/abwasser 130 Nr. 9: 28-34.
- Götzendorfer, K. (1989). Versuche zur anaeroben Vorreinigung von Papierfabriksabwässern am Beispiel der Fa. Hamburger in Pitten. Diplomarbeit am Institut für Wassergüte und Abfallwirtschaft (IWAG), TU Wien.
- Gran, G. (1952). Determination of the equivalence point in potentiometric titrations. Part II, Analyst, 77: 661-671.
- Gujer, W. und Zehnder, A.J.B. (1983). Conversion processes in anaerobic digestion. Wat. Sci. Tech. Vol. 15, 8/9: 127-167.
- Henze, M. und Harremoes, P. (1983) Review paper: Anaerobic Treatment in fixed film Reactors. Wat. Sci. Tech. Vol. 15 (8/9): 1-90
- Heijnen, J.J. (1984). Technik der anaeroben Abwasserreinigung. Chem.-Ing.-Techn. 56, Nr. 7: 526-532.
- Helgeson, H.C. (1967). Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. The Journal of Physical Chemistry, 71, 10, 3123-3136.
- Herbert, D., Elsworth, R. und Telling, R.C. (1956). J. gen. Microbiol. 14: 601ff
- Hickey, R.F., Wu, W.-M., Veiga, M.C. und Jones, R. (1991). Start-up, operation, monitoring and control of highrate anaerobic treatment systems. *Wat. Sci. Tech. Vol. 24, No. 8*: 207-255.
- Howerton, D.E. und Young, J.D. (1987). Two-stage cyclic operation of anaerobic filters. J. WPCF, 59: 788-794.
- Joubert, W.A. und Britz, T. J. (1986). The effect of pH and temperature manipulation on metabolite composition

- during acidogenesis in a hybrid anaerobic digester, Appl. Microbiol. Biotechnol. 24: 253-258.
- Kapp, H. (1984). Schlammfaulung mit hohem Feststoffgehalt. Stuttgarter Berichte zur Siedlungswasserwirtschaft, Bd. 86, Oldenbourg Verlag, München.
- Kaspar, H.F. und Wuhrmann, K. (1978). Kinetic parameters and relativ turnovers of some important catabolic reactions in digesting sewage sludge. Applied Environmental Microbiology, Vol. 36: 1-7.
- Kayser, R. (1986). Möglichkeiten und Grenzen der Bestimmung der Sauerstoffzufuhr in Reinwasser und unter Betriebsbedingungen, in: Wiener Mitteilungen Bd. 64 (Belüftungssysteme beim Belebungsverfahren), IWAG; TU Wien: 1-28.
- Kemp, P.H. (1971). Chemistry of natural waters-V. Wat. Res., 5: 933-941.
- Kennedy, K.J., Hamoda, M.F. und Guijot, S.G. (1988). Anaerobic treatment of leachate using fixed film and sludge bed systems. J.WPCR, 60: 1675-1683
- Kleber, H.P. und Schlee, D. (1991 bzw. 1992). Biochemie 1 und 2, jeweils 2.te Auflage. Gustav Fischer Verlag Jena, ISBN-Nr. 3-334-00358-2 bzw. 3-334-00395-7.
- Krause, T. und Püttker, E. (1991). Anaerobe Abwasserbehandlung organisch hochbelasteter Abwässer der Obst- und Gemüseverarbeitung. Wasserwirtschaft Wassertechnik 7: 279-283.
- Krause, T. und Püttker, E. (1992-1). Die Versäuerungsstufe als Bestandteil der zweistufigen anaeroben Abwasserreinigung. Wasserwirtschaft Wassertechnik 1: 21-22.
- Krause, T. und Püttker, E. (1992-2). Die Stoffwechselprozesse in der Vorversäuerungsstufe unter besonderer Berücksichtigung des entstehenden Hydrolysegases. Wasserwirtschaft Wassertechnik 2: 79-81.
- Kroiss, H. (1981). Anaerobe Abwasserreinigung. Österreichische Wasserwirtschaft, Jahrgang 33, Heft 3/4: 56-64.
- Kroiss, H. und Plahl-Wabnegg, F. (1982). Das Problem der Sulfatreduktion bei der anaeroben Reinigung sulfatreicher Industrieabwässer. in: Wiener Mitteilungen Bd. 49 (Beiträge zu Wasserversorgung, Abwasserreinigung, Gewässerschutz und Abfallwirtschaft), IWAG, TU Wien: 189-218.
- Kroiss, H. (1985-1). Anaerobe Abwasserreinigung. Wiener Mitteilungen Bd. 62 (Habilitationsschrift), IWAG, TU Wien.
- Kroiss, H. (1985-2). Toxizitätsprobleme bei der anaeroben Abwasserreinigung. Vortrag Nr. 12, 3. Hannover'sche Industrieabwassertagung Institut für Siedlungswasserwirtschaft und Abfalltechnik, Universität Hannover, 3. und 4. Okt. 1985.
- Kroiss, H. (1986). Besondere Probleme der anaeroben Reinigung von Industrieabwasser, in: Wiener Mitteilungen Bd. 65 (21. ÖWWV-Seminars Ottenstein über Planung und Betrieb von Behandlungsanlagen für Industrieabwasser), IWAG, TU Wien: B 1-25.
- Kroiss, H. und Svardal, K. (1988). Aufwärtsdurchströmter Schlammbettreaktor mit Drehverteiler (EKJ Reaktor). in: Wiener Mitteilungen Bd. 73 (Fortbildungskurs des ÖWWV, Anaerobe Abwasserreinigung Grundlagen und großtechnische Erfahrung) IWAG, TU Wien: 59-78.
- Kroiss, H. (1990). Anaerobic treatment of a citric acid wastewater From labscale to full scale investigations at an Austrian citric acid factory. Vortrag beim Anaerobsymposium in Stirin unter Leitung von Prof. Grau, unveröffentlicht.
- Kroiss, H. und Svardal, K. (1991). Anwendung anaerober Verfahren und die Auswirkung auf eine weitgehende aerobe Nachbehandlung. in: Veröffentlichungen des Instituts für Siedlungswasserwirtschaft der Universität Hannover Heft 80 (4. Hannoversche Industrieabwassertagung; Industrieabwasserbehandlung im Hinblick auf die N- und P-Problematik): 31-45.
- Kunst, S. (1982). Untersuchungen zum aneraoben Abbau polymerer Kohlenhydrate zur Optimierung der Versäuerungsstufe bei Abwasserreinigungsanlagen. Veröffentlichungen des Instituts für Siedlungswasserwirtschaft der Universität Hannover Heft 54.
- Kunst, S. und Mudrack, K. (1983). Untersuchungen zum anaeroben Abbau von Stärke unter besonderer Berücksichtigung einer Optimierung der Hydrolyse- und Versäuerungsstufe. gwf wasser/abwasser 124, H.2: 77-85.

- Kunst, S., Koenemann, W. und Mudrack, K. (1985). Untersuchungen über die anaerobe Abbaubarkeit von fettund eiweißhältigen Abwässern in Festreaktoren, gwf-wasser/abwasser 126, Heft 2: 65-75.
- Lettinga, G. und Hulshoff Pol, L.W. (1991). UASB-process design for various types of wastewaters. Wat. Sci. Tech. Vol. 24, No. 8: 87-107.
- Mahr, I. (1969). Untersuchungen über die Rolle der niederen Fettsäuren beim anaeroben Faulprozess und Einblicke in seine Biozönose. Wat. Res., 3: 507-517.
- Marchaim, U. und Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Biores. Technol., 43: 195-203.
- Märkl, H., Friedmann, H. und Wilderer, P.A. (1992). Anaerobe Abwasserreinigungsanlagen für die Lebensmittelindustrie. VDI Berichte, Nr. 979: 143-156.
- Matsché, N. (1990). Mikrobiologie beim Belebungsverfahren. in: Wiener Mitteilungen Bd. 81/2 (Fortbildungskurs biologische Abwasserreinigung), IWAG, TU Wien: F 1-39.
- McDougall, F.R., Anderson, G.K., Evison, L.M., Kasapgil, B. und Papagiannopoulos, I. (1994). The effect of wastewater characteristics on pre-acidification. Proceedings of the IAWQ conference on Pre-treatment of Industrial Wastewaters, October 193, Athens, Greece.
- McElroy, W. (1964), Biochemie und Physiologie der Zelle, Kosmos-Frankh'sche Verlagsbuchhandlung Stuttgart: 22
- McInerney, M.J., Bryant, M.P. und Pfennig, N. (1979). Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. *Arch. Microbiol.*, 122: 129-135.
- Moser, D. und Thonhauser, C. (1994). Analysenverfahren für die Eigenüberwachung. Wiener Mittelungen Bd. 116 (Eigenüberwachung von Abwasserreinigungsanlagen für den Gewässerschutz), ISBN-Nr. 3-85234-002-0. IWAG, TU Wien: E 1-46.
- Mosey, F.H. (1983). Mathematic modelling of the anaerobic digestion process: Regulatory mechanism for the formation of short-chain volatile acids from glucose. Wat. Sci. Tech. Vol. 15, 8/9: 209-232.
- Nähle, C. (1984). Chemische und mikrobiologische Vorgänge bei dem anaeroben Abwasserabbau, insbesondere von Zuckerfabriaktionsabwässern. Zuckerind. 109, Nr.1: 19-27.
- Palins, S.S., Loewentahl, R.E., Dold, P.L. und Marais, GvR. (1987). Hypothesis for pelletisation in the upflow anaerobic sludge bed reactor. Water SA Vol. 13. No. 2: 69-80
- Pipyn, P. und Verstraete W. (1981): Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol. Bioeng. 23: 1145-1154.
- Regnet, W. und Quentin, K.E. (1981). Nephelometrische Bestimmung geringer Sulfatmengen im Trinkwasser, Z. Wasser Abwasser Forsch, 14, Nr. 3: 106-108
- Saake, M. (1986). Abscheidung und Rückhalt der Biomasse beim anaeoben Belebungsverfahren und in Festbettreaktoren. Veröffentlichung des Instituts für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, Heft 68.
- Sahm, H. (1981). Biologie der Methanbildung, Chem. Ing. Techn. 53, Nr. 11: 854-863.
- Schlegel, H.G. (1992). Allgemeine Mikrobiologie. Georg Thieme Verlag Stuttgart, 7. Auflage.
- Schulz, G. und Rauch J. (1975). Zitronensäure. Ullmann, Bd. 9, 4 te Auflage.
- Seyfried, C.F. (1984). Anaerobe biologische Verfahren. ATV Fortbildungskurs Teil D/4, Essen Heidhausen, 17.19. Oktober 1984: 14.1-14.39.
- Seyfried, C.F. und Saake, M. (1986-1). Verfahren der anaeroben Reinigung von Industrieabwässern. Korrespondenz Abwasser 10 (33. Jahrgang): 877-893.
- Seyfried, C.F. und Saake, M. (1986-2). Technik der anaeroben Behandlung von industrieabwasser. Wiener Mitteilungen Bd. 65 (21. ÖWWV-Seminar Ottenstein über Planung und Betrieb von Behandlungsanlagen für Industrieabwasser), IWAG, TU Wien: C 1-74.
- Spies, P. (1985). Anaerobe Behandlung fetthaltigen Abwassers am Beispiel einer Wollwäscherei, Institut für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover (Dissertation).

- Svardal, K. (1991-1). Anaerobe Abwasserreinigung ein Modell zur Berechnung und Darstellung der massgebenden chemischen Parameter. Wiener Mitteilungen Bd. 95, IWAG, TU Wien (Dissertation).
- Svardal, K. (1991-2). Probleme der Meßwerterfassung. Wiener Mitteilungen Bd. 96 (EDV-Einsatz auf Abwasserreinigungsanlagen), IWAG - TU Wien: C 1-21.
- Svardal, K. (1992). Probleme bei der Stickstoff- und Phosphoranalytik, Wiener Mitteilungen Bd. 108 (Chemische Analytik für einen zeitgemässen Gewässerschutz) ISBN-Nr. 3-85234-008-X, IWAG, TU Wien: G 1-12.
- Svardal, K., Kroiss, H., Nowak, O. und Götzendorfer, K. (1993). Treatment of citric acid wastewater for high quality effluent on the the anaerobic-aerobic route. *Wat. Sci. Tech. Vol. 28*; No. 2: 177-186.
- Thauer, R.K., Jungermann, K. und Decker, K. (1977). Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriological Reviews, Vol. 41, No. 1: 100-180.
- Thiele, J.H., Wu, W.-M., Jain, M.K. und Zeikus, J.G. (1990). Ecoengineering high rate biomethanation systems: design of improved syntrophic biomethanation catalysts. *Biotechnol. and Bioneng.*, 35: 990-999
- Thimann, K. V. (1964). Das Leben der Bakterien Wachstum, Stoffwechsel und Verwandtschaftsbeziehungen. VEB Gustav Fischer Verlag Jena, Liz.-Nr.: 261 215/44/64.
- Thomas, L.V. und Wimpenny, J.W.T. (1993). Method for investigation of competition between bacteria as a function of three environmental factors varied simultaneously. *Appl. Environ. Microbiol.*, 59: 1991-1997
- Van der Merwe, M. und Britz, T.J. (1994). The individual and combined influence of temperature, time, pH, and COD-concentration on the biodegradition activities of selected bacterial strains grown on raw baker's yeast effluent. Wat. Sci. Tech. Vol. 30, 12: 97-106.
- Van Lier, J.B., Grolle, K.C.F., Frijters, C.T.M.J., Stams, A.J.M. und Lettinga, G. (1993). Effects of acetate, propionate and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol., 59: 1003-1011.
- Wartenberg, A. (1989). Einführung in die Biotechnologie. Gustav Fischer Verlag Stuttgart ISBN-Nr. 3-437-20430-0.
- Wiegant; W.M.; Hennink, M. und Lettinga, G. (1986). Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified waste waters. *Wat. Res., 20, 4*: 517-524.
- Wiesmann, U. (1988). Kinetik und Reaktionstechnik der anaeroben Abwasserreinigung. Chem.-Ing.-Tech. 60, Nr. 6: 464-474.
- Witty, W. und Märkl, H. (1985). Reaktionstechnische Aspekte der Methangärung am Beispiel der Vergärung von Penicillin-Mycel. Chem.-Ing.-Tech. 57, Nr. 9: 802-803.
- Wu, Y.C., Hau, O.J., Ou, K.C. und Scholze, R.J. (1988). Treatment of lechate from a solid waste landfill site using a two-stage anaerobic filter. *Biotechnol. Bioeng.*, 31: 257-266.
- Wu, W.-M. (1991). Technological and microbiological aspects of anaerobic granules. Ph.D.Dissertation.

 Michigan State University, E. Lansing, MI, U.S.A.
- Zoetemeyer, R.J., Matthijsen, A.J.C.M., Cohen, A. und Boelhouwer, C. (1981). Product inhibition in the acid forming stage of the anaerobic digestion process. Wat. Res. Vol 16: 633-639.
- Zoetemeyer, R.J., van den Heuvel, J.C. und Cohen, A. (1982-1). pH influence on acidogenic dissimilation of glucose in an anerobic digestor. Wat. Res. Vol 16: 303-311.
- Zoetemeyer, R.J., Arnoldy, P., Cohen, A. und Boelhouwer, C. (1982-2). Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two stage digestion process. *Wal. Res. Vol* 16: 313-321.

ANHANG

Tab.1.: Wochenmittelwerte ARA Pemhofen; Abwasserkonzentration und C-Abbaugrad MB

M	W	Datum	CSB	CSB	CSB	CSB	CSB	CSB	BSB	BSB	BSB	BSB	BSB
			Slp	VBab	MBzu	MBabf	NMB	etaMB	Slp	VBab	MBzu	MBabf	etaMB
	-		g/l	g/l	g/l	g/ī	g/l	%	g/l	g/l	g/l	g/i	%
Okt	0	29-05 X	20,8	15,2				100					100
	1	06-12 X	22.2	16.2	16,0	0,48	0,35	97	13,6	9,2	9,2	0,12	99
	2	13-19 X	14,8	16,9	17,2	0,40	0,35	98	8,9	8,8	8,8	0,08	99
	3	20-26 X	20,1	16,0	16,0	0.42	0.42	97	12,2	8,7	8,7	0,05	99
	4	27-02 XI	24,4	19,5	19,3	0,75	0,64	96	15,6	11,0	11,0	0,13	99
Nov	5	03-09 XI	26,3	21,7	21,4	1,15	1,05	95	17,2	12,0	12,0	0,18	98
	6	10-16 XI	17,4	19,2	19,8	1,40	1,40	93	11,0	10,0	10,0	0,25	98
	7	17-23 XI	20,3	19.5	19,3	1,78	1,81	91	11,8	11,3	11,3	0,36	97
	8	24-30 XI	24,9	19,8	19,7	2,04	2,10	90	12,8	10,3	10,3	0,43	96
Dez	9	01-07 XII	22,1	22,1	21,7	2,45	2,32	89	13,7	14,2	14,2	0,51	96
	10	08-14 XII	23,0	22,6	22,9	3,11	2,99	86	13,4	13,5	13,5	0,84	94
	11	15-21 XII	24,4	22,8	22,8	3,61	3,68	84	16,1	12,8	12,8	0,92	93
	12	22-28 XII	19,2	21,9	22,2	3,64	3,78	84	9,1	13,4	13,4	1,02	92
Jän	13	29-04	17,5	18,2	18,3	3,19	3,80	83	9,1	9,1	9,1	0,73	92
87	14	05-11 I	14,9	15,5	15,7	2,46	3,20	84	8,9	9,0	9,0	0,45	95
	15	12-181	18,0	16,5	16,6	3,05	3,27	82	10,7	7,8	7,8	0.97	88
	16	19-25	16,9	16,3	14.1	2.59	2,99	82	8,3	9,6	8,3	1,34	84
	17	26-01 II	14,2	14.2	12,0	1,74	2,29	85	7,5	8,5	7,1	0,70	90
eb	18	02-08 II	15.1	14.8	12,8	2,02	2,91	84	7.7	8,9	7,6	0,82	89 95
_	19	09-15	14,9	14,5	12,1	1,89	3,77	84	6,2	7,9	6,4	0,32	97
		16-22 II	16,1	15.1	14,2	1,19	2,28	92	7,3	6,7	6,3	0,19	
AAr	21	23-01 III 02-08 III	16,3	15,4	15,2	1,34	1,91	91	8.7	6,2	6,2 10,8	0,24	96 97
viar	23	09-15 III	23,1	19,5	18,7	1,56	2,02	88	11,9	11,3	11,6	0,28	96
_	24	16-22 III	25,5	23,7	18,2	2,13	2,54	86	14,9	12,9	11,4	0,46	96
_	25	23-29	23,2	21.4	16,8	2,71	3,26	84	14,2	14,3	10,9	0,60	95
pr	26	30-05 IV	21,1	19,2	16,2	2,89	3,44	82	10,6	12,9	10,7	0,53	95
101	27	06-12 IV	22,0	20,9	17,8	3,07	3,56	83	10,6	10,5	9,4	0,65	93
	28	13-19 IV	19,2	19,4	18,9	3,21	3,74	83	10,4	10,8	10,2	0,63	94
	29	20-26 IV	20,4	20,2	19,4	2,87	3,52	85	11,0	11,2	11,0	0,57	95
//ai	30	27-03 V	22,5	22,2	19,7	2,82	3,63	86	12,1	11.7	10,3	0,57	94
	31	04-10 V	22.8	20,9	20,7	3,11	3,71	85	9,4	12,3	12,2	0,66	95
	32	11-17 V	20,1	20,1	19,0	3,29	3,66	83	11,2	11,9	11,3	0,60	95
	33	18-24 V	24,0	22,6	19.6	3,71	4.29	81	15,8	14,7	12,8	1,54	88
	34	25-31 V	24,4	25,3	24,8	3,86	4,66	84		14,4	14,1	0,89	94
un	35	01-07 VI	21,2	21,3	21,5	4,86	5,44	77	10,8	9,8	9,8	2,11	78
	36	08-14 VI	18,0	17,9	17,8	3,94	4,66	78	8,5	10,5	10,3	1,46	86
	37	15-21 VI	22,7	21,1	18,4	4,36	4,86	76	11,6	12,1	10,7	1,26	88
	38	22-28 VI	18,7	19,4	19,6	4,08	4.83	79	10,1	10,5	10,4	1,11	89
ul	39	29-05 VII	20,3	19,7	19,0	3,02	3,61	84	11,0	9,9	9,5	0,96	90
	40	06-12 VII	21,2	20,9	20,9	4,25	4,63	80	12,1	13,2	13,1	1,41	89
		13-19 VII	23,8	22,5	19,9	3,54	4,15	82	15,7	17,0	15,1	1,32	91
		20-26 VII	23,8	23,8	21,1	3,53	4,33	83	17,1	16,5	14.6	1,09	93
		27-02 VIII	23,8	23,3	20,4	3,31	4,32	84	17,0	15,9	13,9	0,99	93
ug		03-09 VIII	24,3	24,2	22,4	3,19	4,45	86	17,4	16,1	14,9	0,96	94
		10-16 VIII	24,5	23,7	21,4	3,50	4,68	84	14,8	17,8	16,2	0,98	94
		17-23 VIII	25,0	24,8	21,5	3,45	4,63	84	15,1	18,6	16.0	1,07	93
	47	24-30 VIII	19,1	19,0	17.5	3,16	4,28	82 j	14.7	16,8	15,4	0,82	95
ер		31-06 IX	23,5	22,8	20,7	3,43	4,45	83	14,5	15,0	13.5	0,82	94
		07-13 IX	21.8	21,4	20,2	3,32	3,20	84	15,1	11,7	17.0	0,80	93
		14-20 IX	20,6	19,8	18,3	3,26	4,16	82	12,9	12,9	11,8	0,91	92
		21-27 IX	25,2	24,7	21,5	3,38	4.60	84	15,7	17,3	15,1	0,81	95
kt		28-04 X	25,9	24,9	23,7	4,02	5,33	83	16,2	16,2	15,4	1,39	91
		05-11 X 12-18 X	26,1	25,7 25,2	24,9	4,64 5,05	5,83	81 j	16,3 15,6	16,7	16,2 17,1	3,26	87

М	W	Datum	CSB	CSB	CSB	CSB	CSB	CSB	BSB	BSB	BSB	BSB	BSB
			Sip	VBab	MBzu	MBabf	NMB	etaMB	Slp	VBab	MBzu	MBabf	etaMB
*		1	g/l	g/l	g/l	g/l	g/l	%	g/l	g/l	g/I	g/l	%
	55	19-25 X	23,9	22,8	22,0	4,97	6,45	77	15,0	14,8	14,2	1,78	87
	56	26-01 XI	23,1	23,1	23,1	3,67	5,20	84	16,0	15,0	15,0	1,04	93
Nov	57	02-08 XI	22,7	22,1	22,1	3,53	4,69	84	17,2	13,7	13,7	0,99	93
	58	09-15 XI	22,5	22,3	21,0	3,85	4,91	82	16,7	15,4	14,6	1,41	90
	59	16-22 XI	23,2	24,5	23,9	3,85	5,02	84	16,9	17,6	17,1	1,41	92
	60	23-29 XI	23,2	23,6	23,5	3,61	4,73	85	17.7	16,8	16,7	2,57	85
Dez	61	30-06 XII	26.0	26.1	26,1	3,71	4.74	86	21,0	20,4	20,4	1,12	95
	62	07-13 XII 14-20 XII	25,5	25,5	25,5	4,29	5.92	83	18,2	19,3	19,3	0,97	95
	64	21-27 XII	26.3 29.6	24.6 27.9	24.6	4,03	5,68 5,89	84	20,7	19,1	19,1	1,16	94 94
	65	28-03 I	31,4	30.4	29,1	4.83	6,63	83	25,7	23,6	22,5	1,57	93
Jän	66	04-10	30.7	28.2	26,3	4,95	6,19	81	23,7	19,8	18,4	1,38	93
'88	67	11-17	32,7	30,8	29,4	6,30	8,35	79	27,0	25,9	24.7	2,38	90
	68	18-24	28,1	29,7	25,9	7,03	7,76	73	24,0	26,3	22,5	4,02	82
	69	25-31 I	29,7	27,2	22,1	7,22	8,12	67	25,8	19,6	15,9	4,10	74
Feb	70	01-07	25,2	24.7	19,3	7,02	7,86	64	16,2	19,4	15,1	4,18	72
	71	08-14 11	23.0	22,5	18,3	6.06	6,34	67	15,1	16,7	13,5	3,32	75
_	72	15-21 II	21_8	20.9	17,3	4,56	5,68	74	17,3	10,9	9,0	2,34	74
Mar	73	22-29 II 29-06 III	21,7	19,4	16,2	2,29	3,08	86	13,4	12,0	10,0	0,65	94 95
Mar	75	07-13 III	21,9 25,4	19,8	17.7 21.8	2,25	4,13 3,69	87	14,5	13,3 15,9	12,0	0,54	95
	76	14-20 III	25,4	21,5	20,1	2,92	4,05	85	16,9	13,2	12,3	0,80	94
	77	21-27 III	30,8	27.2	25.0	3,06	3,78	88	22,0	19,7	18,1	0,55	97
Apr	78	28-03 IV	30,5	30,3	27,3	3,34	4,82	88	21,4	20,8	18.7	0,90	95
	79	04-10 IV	28,6	26,3	24,0	3,64	4,55	85	20,0	15,6	14,3	0,99	93
	80	11-17 IV	30,5	29.0	25,9	3,65	4.44	86	23,5	21,8	19,4	0,73	96
	81	18-24 IV	26,2	28,4	24,6	3,48	4.27	86	20,9	20,3	17,6	0,72	96
Mai	82	25-01 V	28,9	25,0	23,5	3,57	4,39	85	19,5	16,6	15,6	0,69	96
	83	02-08 V	27.1	23,9	23,9	3,80	4,73	84	17,8	13,8	13,8	0,69	95
	84	09-15 V	35,5	30,0	27,1	4,26	5,44	84	24,6	23,0	20,3	0,91	96 95
	85	16-22 V 23-29 V	31,8	29,1	27,7 25,9	3,90 4,53	5,00	86	22,3	17,1	16.1 18.7	0,83	96
Jun	87	30-05 VI	30,8	28,4	24,2	4,20	4,65	83	19,6	18,8	15,9	0,70	96
Dui!	88	06-12 VI	34,7	32,9	27,4	3.79	4,60	86	25,7	23,5	19,7	0,72	96
	59	13-19 VI	27.7	29.7	26.4	3,68	4,98	86	18,4	19,0	16,9	0,67	96
	90	20-26 VI	30,7	30,8	26,4	3,41	4,46	87	17.2	19,5	16,7	0,67	96
Jul	91	27-03 VII	30,1	28.8	24,5	3,64	4,78	85	20,5	18,5	15,8	0,54	97
	92	04-10 VII	30,3	30,0	24,8	3,42	4,59	86	22,6	23,1	19,1	0,69	96
	93	11-17 VII	34,3	33,6	27,0	3,42	4,34	87	25,1	25,5	20,5	0,56	97
	94	18-24 VII	30.4	31,7	26,1	3,34	4,46	87	24,2	21,4	17,5	0,58	97
A	95	25-31 VII	29,4	28.7	23.5	3,35	4.37	86	22,2	22,6	18,5	0.52	97 95
Aug	96	01-07 VIII 08-14 VIII	29,2	28,3	22,1	3,35	3,69	85	21,8	20,4 18,7	15,9 15,2	1,23	92
	98	15-21 VIII	34,9	27,8	22,7	3,50	3,91	85	20,7	21,4	17,5	0,99	94
	99	22-28 VIII	29,4	27.4	23,9	3,36	3,85	86	21,7	24.9	21,8	0,57	97
Sep	100	29-04 IX	32,9	31,4	26,5	3,51	4,08	87	24,6	24,2	20,4	0.74	96
	101	05-11 IX	28,8	28.1	24,5	3,55	4.49	86	23,9	21,6	18,8	0,71	96
	102	12-18 IX	30,0	29,7	25,2	3,73	4,46	85	21,1	22,8	19,4	0,59	97
01:	103	19-25 IX	30,6	28,2	25,3	3,23	4,24	87	23,3	19,4	17,4	0,67	96
Okt	104	26-02 X	29,3	32,8	28,2	3,28	4,54	+88	19,5	21,2	18,3	0,55	97
	105	03-09 X	24,5	24,7	22,6	2,95	3,91	- 87	14,4	16,6	15,2	0,52	97 96
	106	10-16 X 17-23 X	31,8	29,7	25,7 26,8	3,04	4,21	88	23,4	21,2	20,0	0,71	96
	108	24-30 X	29,2	28.4	28,2	3,70	4,35	87	23.8	21,8	21,7	1,10	95
Nov	109	31-06 XI	30.9	30,8	29,9	3,70	4,53	88	23.1	21.0	20,2	1,17	94
	110	07-13 XI	31,4	30,3	28,0	3,83	4,99	86	24,2	20,6	19,1	0,68	96
	111	14-20 XI	37,8	37.7	34,4	4,21	6,20	88	29,4	26,9	24,4	1,09	96
	112	21-27 XI	27.4	29,6	28,2	3,99	5,10	86	24,4	18,6	17,7	0,65	96
Dez	113	28-04 XII	25,8	25,2	24,5	3,55	4,32	86	22,8	17,7	17,2	0,69	96
	114	05-11 XII	27,7	30,7	29,0	3,24	4,61	89	29.8	27,7	26,1	0,62	98
	115	12-18 XII	29,5	28,7	27,6	3,35	4,42	88	17,2	16,4	15,8	0,40	97
	116	19-25 XII	27,7	29,7	28,6	3,26	4,25	89	25,1	20,8	20,0	0,99	95
Jän	117	26-01 I 02-08 I	31,2 28,0	30,7 28,7	29,2	3,38	4,32	88	27.4	23,0	21,8	1,16	95 95
89	119	09-15	34,4	33,1	31,1	3,11	4,16	90	23,6	25,7	24,2	0,86	96
	1 110	- I V I	J7,7	201	91,1	3,48	5,28	91	29,5	30,7	28,1	0,90	97

Tab. 2.: Berechnung der CSB-Konzentration ohne Verdünnungswasser (Wochenmittelwerte)

M	W	Datum	Q	Q	Q	Q	Q	CSB	CSB	CSB	CSB	CSB	CSB	CSB
-	-	-	V=>M	V=>B	T=>M	T=>B	W=>B	Sip	MBzu	MBabf	BBabf	MBzu	MBabi	BBabl
*			m3/d	m3/d	m3/d	m3/d	m3/d	g/l	g/l	g/I	9/1	9/1	g/i	g/i
												korr.	korr.	korr
Dez	9	01-07 XII	338	0	0	0	1137	22,1	21,7	2,5	0,5	21,7	2,5	1.8
	10	08-14 XII	342	0	0	0	1711	23,0	22,9	3,1	0.4	22,9	3,1	2,2
	11	15-21 XII	368	0	0	0	1126	24,4	22,8	3,6	0,5	22,8	3,6	1,8
	12	22-28 XII	424	0	0	0	1340	19,2	22,2	3,6	0,5	22,2	3,6	2,1
Jän	13	29-04 I 05-11 I	529 674	0	0	0	885 1314	17,5	18,3	3,2 2,5	0,8	18,3	3,2	2,0
'87	15	12-18	680	0	0	0	1022	18.0	15,7 16,6	3,1	0,8	15,7 16,6	2,5	1,7
	16	19-251	749	0	116	0	791	16,9	14,1	2,6	0,8	16,3	3.0	1,6
	17	26-01 II	904	0	179	0	0	14,2	12.0	1,7	1,4	14.4	2,1	1,7
Feb	18	02-08 11	960	0	162	0	0	15,1	12,8	2,0	1,2	14.9	2.4	1,4
	19	09-15 H	1056	0	234	0	0	14,9	12,1	1,9	1,2	14,8	2,3	1,4
	23	09-15	994	0	119	0	0	23,1	18,2	2,1	1.4	20,4	2,4	1,6
	24	16-22 111	911	0	264	0	0	25,5	18,1	2,6	2,0	23,4	3,3	2,5
	25	23-29 111	981	0	299	0	0	23,2	16,8	2,7	2,0	21,9	3,5	2,6
Apr	26	30-05 IV	1005	0	208	0	0	21,1	16.2	2,9	2,6	19,5	3,5	3,1
_	27	06-12 IV	966	0	110	0	0	22,0	17,8	3,1	2,7	19,9	3,4	3,0
	28	13-19 IV 20-26 IV	1154	0	64 19	0	510 1864	19,2	18,9	3,2	1,8	19,9	2,9	3,3
Mai	30	27-03 V	1074	0	145	0	2217	22,5	19,7	2,8	1,2	22,3	3,2	3.6
IVICII	31	04-10 V	1397	0	13	0	705	22.8	20,7	3,1	2,1	20,8	3,1	3.2
_	32	11-17 V	1443	0	78	0	863	20,1	19,0	3,3	2,1	20,0	3,5	3,5
	33	18-24 V	1122	0	167	0	892	24.0	19,6	3,7	1.7	22,5	4,3	3,2
	34	25-31 V	1299	0	31	90	931	24,4	24,8	3,9	1,7	25,4	4.0	3,1
Jul	39	29-05 VII	1439	0	53	0	423	20,3	19.0	3,0	1,4	19,7	3,1	1,8
	40	06-12 VII	1369	0	6	50	465	21,2	20,9	4,3	1,2	20,9	4,3	1,6
	41	13-19 VII	1428	0	181	50	455	23,8	19,9	3,5	1,3	22,4	4,0	2,0
	42	20-26 VII	1340	0	174	30	477	23,8	21,1	3,5	1,3	23,8	4,0	1,9
Δ	43	27-02 VIII	1424	0	208 117	300	2180	23,8	20,4	3,3	1,8	23,3	3,8	3,2
Aug	44	03-09 VIII 10-16 VIII	1348	0	138	0	2027	24,5	22,4	3,2	1,1	24,2	3,4	2,6
_	45	17-23 VIII	1335	0	219	0	1631	25,0	21,5	3,5	1,1	25,1	4.0	2,1
	47	24-30 VIII	1443	0	125	0	1263	19,1	17,5	3,2	1,4	19,0	3.4	2,7
Sep	48	31-06 IX	1459	0	154	0	2060	23,5	20,7	3,4	1,6	22,9	3.8	3,8
_	49	07-13 IX	1324	0	82	0	2703	21,8	20,2	3,3	1,0	21.4	3,5	2,9
	50	14-20 IX	1539	0	133	0	2420	20,5	18,3	3,3	1,1	19.8	3,5	2,8
	51	21-27 IX	1461	0	217	0	2576	25,2	21,5	3,4	1.0	24,7	3,9	2,8
Okt	52	28-04 X	1452	0	78	0	2252	25,9	23,7	4,0	1,1	25,0	4,2	2,8
	56	26-01 XI	873	296	3	0	1820	23,1	23,1	3,7	1,2	23,2	3,7	2,9
Nov	57	02-08 XI	1278	234	0	0	2407	22,7	22,1	3,5	0,7	22,1	3,5	1,7
_	58	09-15 XI	1366	14	79	0	2927	22,5	21,0	3,9	0,7	22,2	4,1	2,1
_	59 60	16-22 XI 23-29 XI	1044	0	6	0	2724	23,2	23,9	3,9	0.9	24,5	3,6	2,6
Dez	61	30-06 XII	1087	0	1	0	2621	26,0	26,1	3.7	0,7	26,1	3,7	2,1
Die	62	07-13 XII	1116	0	0	0	1995	25,5	25,5	4,3	1,3	25,5	4,3	3,5
	63	14-20 XII	1226	35	0	0	1033	26,3	24.6	4,0	1,9	24,8	4,0	3,5
	64	21-27 XII	1226	101	11	0	500	29,6	27,7	4,2	2.6	27,9	4,2	3,5
	73	22-28 II	1681	2	336	0	1805	21,7	16,2	2,3	1,1	19,4	2,7	2,3
Mar	74	29-06 111	1710	0	191	0	2890	21,9	17,7	2,3	0,6	19,7	2,5	1,6
	75	07-13 III	1584	0	124	0	2939	25,4	21,8	2,6	0.7	23,5	2,8	1,9
	76	14-20 111	1784	0	123	0	2009	25,4	20,1	2,9	0,9	21,5	3,1	1,9
	77	21-27	1684	0	151	0	2520	30,8	25,0	3,1	0,9	27,2	3,3	2,3
Apr	78	28-03 IV	1625	0	183	670	2789 1843	30,5	27,3	3,3	1,1	30.4	3,7	3,1
	79 80	04-10 IV	1662 1521	0	154	670	1956	28,6	24,0	3,6	1,1	26,2	4,0	2,8
_	81	18-24 IV	1518	0	233	500	1800	26,2	24,6	3,7	1,1	28,4	4,1	3,3
Mai	82	25-01 V	1723	0	113	685	1689	28,9	23,5	3,6	1,2	25,0	3,8	2,8
	83	02-08 V	1935	0	1	330	1735	27:1	23,9	3,8	1,2	23,9	3,8	2.5
	84	09-15 V	1651	0	216	900	1648	35,5	27,1	4,3	1,3	30,6	4,8	3.3
	85	16-22 V	1656	0	103	700	1926	31,8	27,7	3,9	1,4	29,4	4,1	3,6
	86	23-29 V	1676	0	250	370	1576	31,0	25,9	4,5	1.7	29.8	5,2	3.9

M	W	Datum	Q	Q	Q	Q	Q	CSB						
	-		V=>M	V=>B	T=>M	T=>B	W=>B	Sip	MBzu	MBabf	BBabf	MBzu	MBabf	BBabl
	-	-	m3/d	m3/d	m3/d	m3/d	m3/d	g/I	g/1	g/I	g/I	g/l	g/l	gΛ
							- AUGUSTANIEN		100			korr.	korr.	korr.
Jun	87	30-05 VI	1714	0	310	479	1541	30,8	24.2	4,2	1,6	28,6	5,0	3,8
	88	06-12 VI	1528	0	291	451	1835	34,7	27.4	3,8	1,4	32,6	4,5	3,7
	89	13-19 VI	1672	0	205	250	1565	27,7	26,4	3.7	1,6	29,6	4.1	3,6
	90	20-26 VI	1729	0	284	150	2011	30.7	26,4	3.4	1,4	30,7	4,0	3,4
Jul	91	27-03 VII	1667	0	287	100	2146	30,1	24,5	3,6	1,3	28,7	4,3	3,3
	92	04-10 VII	1744	0	386	250	1729.5	30,3	24,8	3,4	1,5	30,0	4,1	3,4
	93	11-17 VII	1551	0	378	307	1933,7	34,3	27.0	3,4	1,4	33,6	4,3	3,8
	94	18-24 VII	1674	0	370	593	2017,5	30,4	26,1	3,3	1,4	31,9	4.1	3,9
	95	25-31 VII	1684	0	376	597	1800,1	29,4	23,5	3,4	1,4	28,7	4.1	3,5
Aug	96	01-07 VIII	1592	0	446	200	1632	29,2	22,1	3,4	1,4	28,3	4,3	3,2
	97	08-14 VIII	1778	0	414	190	1921	27,1	21,7	3,6	1,2	26,8	4,4	2,9
	98	15-21 VIII	1697	0	377	377	2020	34,9	22,7	3,5	1,1	27,7	4,3	2,9
	99	22-28 VIII	1795	0	259	500	2009	29,4	23,9	3,4	1,2	27,3	3,8	3,0
Sep	100	29-04 IX	1743	0	324	200	2068	32,9	26,5	3,5	1,3	31,4	4,2	3,2
	101	05-11 IX	1848	0	275	415	2609	28,8	24,5	3,6	1,3	28,1	4.1	3,7
	102	12-18 IX	1673	0	294	200	3132	30,0	25,2	3,7	1,1	29,6	4.4	3,3
	103	19-25 IX	1840	0	209	1037	3019	30,6	25,3	3,2	1,0	28,2	3,6	3,2
Okt	104	26-02 X	1785	0	281	551	2571	29,3	28,2	3,3	1,3	32,6	3,8	3,8
	105	03-09 X	1977	0	187	257	3534	24,5	22,6	3,0	1,3	24,7	3,2	3,8
	106	10-16 X	1930	0	298	497	3887	31,8	25,7	3,0	1,1	29,7	3.5	3,7
	107	17-23 X	1856	0	116	300	4244	32,7	26.8	3,3	1,0	28,5	3,5	3,4
	108	24-30 X	1772	0	12	450	4195	29.2	28,2	3,7	1,0	28,4	3,7	3,4
Nov	109	31-06 XI	1855	0	69	600	4100	30,9	29,9	3,7	1,1	31,0	3,8	3,6
	110	07-13 XI	2020	0	162	700	3477	31,4	28,0	3,8	1,2	30,2	4,1	3,8
	112	21-27 XI	1993	0	102	200	4017	27,4	28,2	4,0	1,4	29,6	4,2	3,3
Dez	113	28-04 XII	1800	0	57	500	3993	25,8	24.5	3,6	1.1	25,3	3,7	3,7
- XIII - X	114	05-11 XII	1919	0	118	500	3832	27.7	29,0	3,2	1,1	30.8	3.4	3,5
	115	12-18 XII	1680	0	62	497	3464	29,5	27,6	3,4	1,0	28,6	3,5	3,4
	116	19-25 XII	1777	0	72	248	3370	27,7	28,6	3,3	1,0	29,8	3,4	3,1
	117	26-01 I	1662	0	88	574	3287	31,2	29,2	3,4	1,0	30,7	3,6	3,4
Jän	118	02-08 (1903	0	100	400	3569	28,0	27,3	3,1	1.0	28,7	3,3	3,1
ittohwo	-		1375	7	147	101	1842	24 86	21.04	324	1 21	23.86	3.52	2,75
ittelwe	1		1375	7	147	191	1842	24,86	21,94	3,24	1,21	23,86	3,52	
Kegress Konstan Std. Fel	ite	ob abgebaut	0,00		Konstan	te	b abgebau	L						
R im Qu			0,54		Std. Fel									
					R im Qu									
	ntungen		92		Beobach									
Tolerana		v /	91		Toleranz									
	zient(en	The second secon	0,14		X Koeffiz									
itd. Feb	ıler Koa	M.	0,002		Std. Feh	ler Koef	ř.							

Tab. 3.: Wochenmittelwerte ARA Pemhofen; Q, Frachten, Belastung und TS/oTS

		rachten und		3,									
М	W	Datum	TQ	Q	Q	1	CSB-Fr	acht		CSBBR	CSBBoTS	Faulsc	hlamn
		-	the second second	VB=)MB	TW	VBzu	MBzu	1100 3 144	MBabg.	MB	MB	Biom.	With the Person of the Person of
-			m3/d	m3/d	m3/d	1 t/d	t/d	Vd	t/d	g/l.d	g/goTS.d	t	t
											-		
Okt	0	29-05 X	0	0	0	0,0	0,0	0	0,0	0,00	0,00	50	50
	1	06-12 X	597	283	0	13,2	4,6	0,1	4.5	0,46	0,09	50	54
	2	13-19 X	521	163	0	7,7	2,8	0,1	2,7	0,28	0,05	50	56
	3	20-26 X	678	272	0	13,6	4,3	0,1	4,2	0,43	0,09	51	60
	4	27-02 XI	611	248	0	14,9	4.8	0,2	4,6	0,48	0,09	51	63
Nov	5	03-09 XI	686	272	0]	18,0	5,9	0,3	5,6	0,59	0,11	52	67
	6	10-16 XI	605	304	0	10,5	5,8	0,4	5,4	0,58	0,09	64	80
	7	17-23 XI	484	341	0	9,8	6,6	0,6	6,0	0,66	0,08	82	97
	8	24-30 XI	338	337	0	8,4	6,7	0,7	6,0	0,67	0,07	92	108
Dez	9	01-07 XII	259	338	0	5,7	7,5	0,8	6,6	0,75	0,08	92	112
	10	08-14 XII	367	342	0	8,4	7,7	1,1	6,6	0,77	0,08	93	117
	11	15-21 XII	399	368	0	9,7	8,4	1,4	7,1	0,84	0,09	94	122
	12	22-28 XII	446	424	0	8,6	9,3	1,6	7,7	0,93	0,09	100	131
Jän	13	29-04	548	529	0	9,6	9,6	1,7	7,9	0,96	0,09	103	139
87	14	05-11 1	777	674	0 [11,5	10,5	1,7	8,8	1,05	0,10	105	149
	15	12-18	675	680	0	12,1	11,2	2,1	9,1	1,12	0,10	110	163
	16	19-25 1	819	749	116	13,8	12,2	2,0	10,3	1,22	0,11	116	180
	17	26-01 II	956	904	179	13,6	12,9	1,6	11,3	1,29	0,10	123	202
Feb	18	02-08 11	1063	960	162	16,0	14,2	2,0	12,2	1,42	0,12	121	214
-	19	09-15 II	1114	1056	234	16,6	15,3	2,0	13,3	1,53	0,13	119	227
	20	16-22	1085	1075	67	17,4	16,3	1,3	15,0	1,63	0,14	119	242
I I Ma	21	23-01 111	1267	1156	0 1	20,6	17,8	1,6	16.2	1,78	0,15	119	258
Mär	22	02-08 III	1028	963	50	22,3	18,8	1,5	17,3	1,88	0,16	121	271 284
-	23	09-15 III 16-22 III	908	994	119	21,0	20,2	2,1	18,0	2,02	0,17	121	295
_	24	23-29 III	1007	911	264	25,7	21,6	2,4	19,3	2,16	0,18	122	308
Apr	26	30-05 IV	286	1005	208	24,3				1,93	0,17	121	321
- IUI	27	06-12 IV	986	966	110	21,7	19,3	3,0	16,4	2,02	0,17	122	334
	28	13-19 IV	1428	1154	64	27,4	22,4	3,7	18,6	2,24	0,18	123	349
_	29	20-26 IV	1368	1281	19	27.9	25,8	3,7	22,1	2,58	0,21	125	367
Vlai	30	27-03 V	1140	1074	145	25,7	23,9	3,0	20,8	2,39	0,19	126	381
VICE!	31	04-10 V	1364	1397	13	31,1	29,1	4,4	24,8	2,91	0,21	138	401
	32	11-17 V	1417	1443	78	28.4	29,0	4,8	24,2	2,90	0,21	137	412
	33	18-24 V	1467	1122	167	35,2	25,4	4,2	21,2	2,54	0,19	135	419
		25-31 V	1235	1299	31	30,2	32,8	5,0	27.8	3,28	0,24	138	436
Jun		01-07 VI	1247	1124	7	26,4	23,9	5,5	18,4	2,39	0,17	139	452
		08-14 VI	1081	961	16	19,4	17.2	3,8	13,4	1,72	0,12	139	465
		15-21 VI	1390	1423	191	31.6	30,1	6,2	23,9	3,01	0,22	138	476
	38	22-28 VI	1448	1400	9 [27,0	27,1	5,7	21,4	2,71	0,20	137	487
Jul	39	29-05 VII	1481	1439	53 [30,1	28,3	4,4	23,9	2,83	0,20	139	507
	40	06-12 VII	1414	1369	6	30,0	28,7	5,8	22,8	2,87	0,20	140	526
	41	13-19 VII	1382	1428	181	32,9	32,f	5,1	27,0	3,21	0,22	143	540
		20-26 VII	1377	1340	174	32,8	31,9	4,8	27,2	3,19	0,22	147	554
	43	27-02 VIII	1438	1424	208	34,2	33,2	4,7	28,5	3,32	0,22	151	569
Aug		03-09 VIII	1440	1472	117	35,0	35,6	4,7	30,8	3,56	0,23	152	582
		10-16 VIII	1411	1348	138	34,5	31,9	4,7	27,2	3,19	0,21	150	584
		17-23 VIII	1409	1335	219	35,2	33,1	4,6	28,5	3,31	0,23	145	553
		24-30 VIII	1410	1443	125	26,9	27,4	4,6	22,8	2,74	0,19	140	538
Sep	_	31-06 IX	1472	1459	154	34,5	33,2	5,0	28,2	3,32	0,24	138	520
		07-13 IX	1360	1324	82	29,7	28,3	4,4	23,9	2,83	0,20	143	540
		14-20 IX	1549	1539	133	32,0	30,5	5,0	25,5	3,05	0,21	145	562
		21-27 IX	1536	1461	217 [38,7	36,1	5,0	31,2	3,61	0,24	151	585
Okt		28-04 X	1437	1452	78	37,2	36,2	5,9	30,3	3,62	0,25	142	522
		05-11 X	1489	1416	43	38,8	36,3	6,6	29,7	3,63	0,24	149	543
		12-18 X	1392	1339	51	34,8	33,7	6,8	26,9	3,37	0,23	146	530
	55	19-25 X	1242	835	38	29,7	19,0	4,2	14,8	1,90	0,14	140	467

M	W	Datum	Q	Q	Q		CSB-Fr	acht		CSBBR	CSB8eTS	Faulsc	hlamm
			S=)VB	VB=)MB	TW	VBzu	MBzu	MBabf	MBabg.	MB	MB	Biom.	Kalk
			m3/d	m3/d	m3/d j) t/d	₩d	t/d	t/d	g/Ld	g/goTS.d	l t	t
			1										
Nov	57	02-08 XI	1110	1278	0	25,2	28,2	4,5	23,7	2,82	0,19	149	444
	58	09-15 XI	1403	1366	79 [31,6	30,5	5,3	25,2 [3,05	0,20	151	433
	59	16-22 XI	1280	1304	35	29,6	32,0	5,0	26,9	3,20	0,21	152	450
	60	23-29 XI	1150	1044	6	26,7	24,7	3,8	20,9	2,47	0,16	152	463
Dez	51	30-06 XII	950	1087	1]	24,7	28,4	4,1	24,3	2,84	0,19	150	433
	62	07-13 XII	1161	1116	0 [29,6	28,4	4,8	23,6	2,84	0,19	148	414
	63	14-20 XII	1337	1226	0	35,1	30,1	5,0	25,2	3,01	0,21	1 147	411
	64	21-27 XII	1297	1226	11	38,4	34,2	5,1	29,1	3,42	0,22	154	439
	65	28-031	1048	1048	52	32,9	31,9	5,1	26,8	3,19	0,20	159	452
Jän	66	04-101	738	740	56	22,7	20,9	3,7	17,2	2,09	0,13	161	446
*88	67	11-171	792	705	34	25,9	21,7	4,5	17,2	2,17	0,14	160	442
	68	18-241	893	642	108	25,1	19,1	4,6	14,5	1,91	0.12	160	451
	69	25-311	860	853	197	25,5	23,2	6,2	17,0]	2,32	0,15	158	461
Feb	70	01-07 11	1271	1073	306	32.0	26,5	7,6	19,0 [2,65	0,17	157	474
	71	08-14 II	1276	1125	265	29,3	25,3	6,9	18,5	2,53	0.16	154	474
	72	15-21 II	1458	1346	281	31,8	28,1	6,2	22,0	2,81	0,19	151	485
	73	22-29 II	1433	1681	336	31,1	32,6	3,9	28.7	3,26	0,22	146	496
Mar	74	29-06 III	1510	1710	191	33,1	33,9	3,9	30,0 [3,39	0,24	141	510
,	75	07-13 III	1547	1584	124	39.3	37,2	4,2	33,1	3,72	0,28	135	512
	76	14-20 III	1519	1784	123	38,6	38.4	5,2	33,1	3,84	0,30	128	507
	77	21-27 III	1392	1684	151	42,9	45,8	5.2	40,6	4,58	0,36	128	514
Apr	78	28-03 IV	1488	1625	183	45,4	49,2	5,4	43,8	4,92	0,38	130	534
PUI	79	04-10 IV	1501	1662	154	42.9	43,7	6,1	37,6	4,37	0,33	132	553
-	80	11-17 IV	1568	1521	184	47,8	44.1	5,6	38,5	4,41	0,33	134	563
_	81	18-24 IV	1510	1518	233	39,6	43,1	5,3	37.8	4,31	0,33	130	536
1401	-	25-01 V	1533	1723	113			6.2	The second second second			134	557
Mai	82					44.3	43,1		36,9	4,31	0,32		
	83	02-08 V	1563	1935	1	42.3	46,2	7.4	38,9	4,62	0,33	139	578
	84	09-15 V	1593	1651	216	56,6	49,5	7.1	42.5	4,95	0,34	144	599
_	85	16-22 V	1452	1656	103	46,2	48,2	6,5	41,7	4,82	0,32	149	614
_	86	23-29 V	1559	1676	250 [48,3	49,8	7,6	42,2	4,98	0,33	149	596
Jun	87	30-05 VI	1588	1714	310	48,9	48.7	7,2	41,5	4,87	0,32	153	619
	88	06-12 VI	1560	1528	291	54,1	50,3	5,8	44,5	5,03	0,32	158	639
	89	13-19 VI	1516	1672	205	42.0	49,7	6,2	43,5	4,97	0,31	159	620
	90	20-26 VI	1552	1729	284	47.6	53,3	5,9	47,3	5,33	0,33	161	612
Jul	91	27-03 VII	1539	1667	287	46,3	48,0	6,1	41,9	4,80	0,29	166	632
	92	04-10 VII	1654	1744	366	50,1	52,3	6,0	46,3	5,23	0,31	168	628
	93	11-17 VII	1564	1551	378	53,6	52,1	5,3	45,8	5,21	0,31	166	601
	94	18-24 VII	1666	1674	370	50,6	53,1	5,6	47.5	5,31	0,31	172	623
	95	25-31 VII	1633	1684	376 [48,0	48,3	5,7	42.7	4,83	. 0,28	172	619
Aug	96	01-07 VIII	1590	1592	446	46,4	45,1	5,4	39,7	4,51	0,28	162	562
	97	08-14 VIII	1648	1778	414	44,7	47,7	6,4	41,2	4,77	0,28	170	589
	98	15-21 VIII	1622	1697	377	56,6	47,2	6,0	41,2	4,72	0,27	176	613
	99	22-28 VIII	1656	1795	259	48,7	49,2	6,1	43,1	4,92	0,27	181	637
Sep	100	29-04 IX	1665	1743	324	54,8	54,7	6,1	48,6	5,47	0,28	193	669
	101	05-11 IX	1756	1848	275	50,6	51,9	6,6	45,3	5,19	0,26	200	697
	102	12-18 IX	1569	1673	294	47.0	49,7	6,3	43,4	4,97	0,24	208	704
	103	19-25 IX	1698	1840	209	51,9	51,9	6,0	45,9	5,19	0,24	219	737
Okt	104	26-02 X	1853	1785	281	54,3	58,5	5,9	52,7	5,85	0,26	227	750
		03-09 X	1844	1977	187	45,2	48,8	5,8	43,0	4,88	0,21	227	755
	106	10-16 X	1810	1930	298	57.6	57,3	5,9	51,4	5,73	0,24	234	781
	107	17-23 X	1780	1856	116	58,2	52,3	6,2	46,2	5,23	0,22	238	793
	108	24-30 X	1774	1772	12	51,8	50,3	6,6	43,7	5,03	0,21	236	781
Nov	109	31-06 XI	1910	1855	69	59,0	57,1	6,9	50,2	5,71	0,24	234	764
	_	07-13 XI	1774	2020	162	55.7	61,2	7,8	53,4	6,12	0,28	220	706
	111	14-20 XI	1733	1777	179	65,5	67,0	7.5	59,5	6,70	0,31	215	694
		21-27 XI	1862	1993	102	51,0	59,0	8,0	51,0	5,90	0,31	225	721
Dow.			-	1800	57		45.4	6,4			0,20	215	698
Dez		28-04 XII	1826			47,1			38,9	4,54		221	723
_		05-11 XII	1898	1919	118	52,6	58,9	6,2	52,7	5,89	0,27	214	-
		12-18 XII	1733	1680	62	51.1	48,2	5,6	42,6	4,82	0,23		699
		19-25 XII	1764	1777	72	48,9	52,8	5,8	47,0	5,28	0,24	220	723
	117	26-01 1	1660	1662	88	51,8	51,0	5,6	45,4	5,10	0,22	228	748
Jän		02-08	1850	1903	100	51,8	54,6	5,9	48.7	5,46	0,25	220	712
89		09-15 [1760	1745	111	60,5	57,8	5,7	52.1	5,78	0,25	229	737
	120	16-22	1490	1501	138	64.7	65,4	5,2	60,2	6,54	0,28	235	739

Tab.4.: Wochenmittelwerte ARA Pemhofen - Biogas; Spezifische Gasproduktion

_													
M	W	Datum	Slp	CSB	CSB-F	CSB-F	Q-Gas	Q-Gas	Q-Gas	MB-Gas	VB-Gas	MB-Gas	VB-Gas
		*	in VB	Slp	VB zu	MBabg.	Gesamt	MB	VB	CSBabg.	CSBzu	CSBabg.	CSBzu
			m3/h	g/i	t/d	t/d	m3/d	m3/d	m3/d	m3/t	m3/t	m3/t	m3/t
												GM/7	GM/7
Okt	0	29-05 X											
	1	06-12 X	597	22.2	13,2	4.5							
	2	13-19 X	521	14,8	7,7	2,7					-		
	3	20-26 X	678	20,1	13,6	4.2							
	4	27-02 XI	611	24,4	14,9	4,6	4840	1791	3049	386	205		
Nov	5	03-09 XI	686	26,3	18,0	5,6	5970	2149	3821	386	212		
	6	10-16 XI	605	17,4	10,5	5,4	5950	3927	2023	726	192		1
	7	17-23 XI	484	20,3	9,8	6,0	6100	3843	2257	637	230	535	167
	8	24-30 XI	338	24,9	8,4	6.0	4040	3596	444	601	53	557	162
Dez	9	01-07 XII	259	22,1	5,7	6,6	4100	3280	820	496	143	591	146
	10	08-14 XII	367	23.0	8.4	6,6	4560	3420	1140	515	135	589	143
	11	15-21 XII	399	24,4	9,7	7,1	5430	3801	1629	539	167	550	129
	12	22-28 XII	446	19,2	8,6	7,7	5670	4820	851	624	99	518	148
Jän	13	29-04	548	17,5	9,6	7,9	6215	4537	1678	571	175	525	162
'87	14	05-11	777	14,9	11,5	8,8	5915	4436	1479	505	128	522	162
	15	12-18	675	18,0	12,1	9,1	5700	3420	2280	376	188	516	154
	16	19-25	819	16,9	13,8	10,3	8920	5620	3300	548	238	505	158
	17	26-01 II	956	14,2	13,6	11,3	7390	5543	1848	491	136	502	155
Feb	18	02-08 11	1063	15,1	16,0	12,2	7900	6083	1817	498	113	513	155
	19	09-15 !!	1114	14,9	16,6	13,3	9440	7269	2171	545	130	541	148
	20	16-22 II	1085	16,1	17,4	15.0	10870	8261	2609	551	150	562	129
	21	23-01 III	1267	16,3	20,6	16,2	12110	9446	2664	581	129	571	136
Mär	22	02-08 111	1028	21,7	22,3	17,3	13000	9880	3120	572	140	582	144
	23	09-15 III	908	23,1	21,0	18,0	14690	12487	2204	692	105	574	173
	24	16-22 III	1007	25.5	25.7	19,3	15560	10736	4824	558	188	570	181
	25	23-29 III	1044	23,2	24,3	18,3	14625	10530	4095	575	169	553	187
Apr	26	30-05 IV	286	21,1	6,0	16,4	10000	8000	2000	489	331	547	177
	27	06-12 IV	986	22,0	21,7	17,2	13365	8955	4410	520	204	517	182
	28	13-19 IV	1428	19,2	27,4	18,6	13386	8701	4685	467	171	496	175
	29	20-26 IV	1368	20,4	27,9	22,1	13727	11668	2059	527	74	479	165
Mai	30	27-03 V	1140	22,5	25,7	20,8	13500	9990	3510	480	137	485	129
	31	04-10 V	1364	22,8	31,1	24,8	14525	10168	4358	410	140	475	113
	32	11-17 V	1417	20,1	28,4	24,2	13913	11130	2783	460	98	471	103
	33	18-24 V	1467	24.0	35,2	21,2	14017	11214	2803	529	80	468	119
	34	25-31 V	1235	24,4	30,2	27,8	15317	12560	2757	452	91	461	116
Jun	35	01-07 VI	1247	21,2	26,4	18,4	10695	8021	2674	436	101	485	108
	36	08-14 VI	1080	18.0	19,4	13,4	10390	6754	3637	506	187	476	113
	37	15-21 VI	1390	22.7	31,6	23,9	14037	10387	3650	435	116	486	113
	38	22-28 VI	1448	18,7	27.0	21,4	14544	12362	2182	578	81	484	123
Jul	39	29-05 VII	1481	20,3	30,1	23,9	13646	9552	4094	399	136	497	129
	40	06-12 VII	1414	21,2	30,0	22.8	16019	13616	2403	597	80	500	118
	41	13-19 VII	1328	23,8	31,6	27,0	16777	11744	5033	435	159	512	118
	42	20-26 VII	1377	23,8	32,8	27,2	19191.4	14393	4798	530	146	502	126
	43	27-02 VIII	1438	23,8	34,2	28,5	18624	14899	3725	523	109	514	125
Aug	44	03-09 VIII	1440	24,3	35,0	30,8	20270	16216	4054	526	116	491	142
	45	10-16 VIII	1411	24,5	34,5	27,2	18370	13778	4593	506	133	493	141
	46	17-23 VIII	1410	25,0	35,2	28,5	18190	13643	4548	479	129	492	141
	47	24-30 VIII	1410	19,1	26,9	22,8	15250	9913	5338	435	198	475	156
Sep	48	31-06 IX	1472	23,5	34,5	28,2	18250	12775	5475	453	159	469	158
	49	07-13 IX	1360	21,8	29,7	23,9	16730	12548	4183	525	141	470	156
	50	14-20 IX	1549	20,6	32,0	25,5	17060	10236	6824	402	214	481	149
	51	21-27 IX	1536	25,2	38,7	31,2	20170	15128	5043	485	130	498	134
Okt	52	28-04 X	1437	25,9	37,2	30,3	20030	15423	4607	509	124	528	131
	53	05-11 X	1489	26,1	38,8	29,7	19620	16677	2943	561	76	534	126
	54	12-18 X	1392	25.0	34,8	26,9	18110	14850	3260	552	94	540	113
	55	19-25 X	1242	23,9	29,7	14,8	14090	9863	4227	664	142	536	119
	56	26-01 XI	1131	23,1	26,1	17.0	12260	9563	2697	563	103	375	80
Vov	57	02-08 XI	1110	22,7	25,2	23,7	13660	10534	3146 5427	445	125	373 364	92 102
	58	09-15 XI	1403	22,5	31,6	25.2	16960				172		

M	W	Datum	Slp	CSB	CSB-F	CSB-F	Q-Gas	Q-Gas	Q-Gas	MB-Gas	VB-Gas	MB-Gas	VB-Gas
			in VB	Slp	VB zu	MBabg.	Gesamt	MB	VB	CSBabg.	CSBzu	CSBabg.	CSBzu
	-		m3/h	g/l	t∕d	t/d	m3/d	m3/d	m3/d	m3/t	m3/t	m3/t	m3/t
												GM/7	GM/7
	59	16-22 XI	1280	23,2	29,5	26,9	16310	13700	2610	509	88	341	111
	60	23-29 XI	1150	23.2	26,7	20,9	16700	11356	5344	544	200	336	114
Dez	61	30-06 XII	950	26,0	24,7	24,3	15730	11011	4719	453	191	341	111
	62	07-13 XII	1161	25,5	29,6	23,6	17330	10398	6932	440	234	344	105
	63	14-20 XII	1337	26,3	35,1	25,2	17330	12824	4506	510	128	360	110
	64	21-27 XII	1297	29,6	38,4	29,1	18220	14576	3644	501	95	481	144
	65	28-03 (1048	31.4	32,9	26,8	16750	13065	3685	488	112	382	113
Jän	66	04-10	738	30,7	22,7	17,2	12507	8880	3627	516	160	514	131
'88	67	11-17	792	32,7	25,9	17,2	10067	7852	2215	456	85	519	132
	68	18-24	893	28,1	25,1	14,5	12213	7938	4275	546	170	523	137
	69	25-31 I	1050	29.7	31,2	17,0	15055	9936	5119	585	164	528	141
Feb	70	01-07	1595	25,2	40,2	19.0	15826	10287	5539	543	138	523	134
1 00	71	08-14 II	1527	23.0	35,1	18,5	14430	9812	4618	532	131	527	138
_	72	15-21 II	1593	21,8	34,7	22,0	16300	11410	4890	519	141	526	128
	73	22-29 II	1433		31.1		17325	13860	3465	482	111	512	126
1160	-	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		21,7	-	28.7						492	135
Mär	74	29-06 III	1510 1547	21,9	33.1	30.0	18176	14541	3635	485	110	489	132
	-	07-13 (1)		25,4	39.3	33,1	21784	17863	3921	540	153	489	132
_	76	14-20 III	1519	25,4	38,6	33,1	21917	15999	5918	483			
Arr	77	21-27 111	1411	30,8	43,5	40,6	25030	16270	8761	400	202	478	150
Apr	78	28-03 IV	1488	30,5	45,4	43,8	27240	22337	4903	510	108	489	160
	79	04-10 IV	1501	28,6	42,9	37,6	24170	16919	7251	450	169	496	165
	80	11-17 IV	1568	30,5	47,8	38,5	28140	18291	9849	475	206	502	159
	81	18-24 IV	1510	26,2	39,6	37,8	28640	21480	7160	568	181	517	163
Mai	82	25-01 V	1533	28,9	44,3	36,9	27800	21684	6116	588	138	516	176
	83	02-08 V	1563	27.1	42,3	38,9	25050	20291	4760	522	113	528	177
	84	09-15 V	1593	35,5	56,6	42.5	34400	21672	12728	510	225	530	165
	85	16-22 V	1452	31.8	46,2	41,7	30200	20838	9362	500	203	515	166
	86	23-29 V	1559	31,0	48,3	42,2	30800	22484	8316	533	172	506	171
Jun	87	30-05 VI	1588	30,8	48,9	41,5	26320	20266	6054	489	124	509	172
	88	06-12 VI	1560	34,7	54,1	44.5	30750	20603	10148	463	187	507	163
	89	13-19 VI	1516	27.7	42.0	43,5	29950	22762	7188	523	171	506	155
	90	20-26 VI	1552	30,7	47,6	47,3	31350	25707	5643	543	118	498	150
Jul	91	27-03 VII	1539	30,1	46,3	41.9	28700	20951	7749	500	167	501	147
	92	04-10 VII	1654	30,3	50,1	46,3	30000	22800	7200	492	144	513	132
	93	11-17 VII	1564	34,3	53,6	46,8	29850	22388	7463	478	139	520	119
	94	18-24 VII	1666	30,4	50,6	47.5	29450	24149	5301	509	105	512	124
	95	25-31 VII	1633	29,4	48.0	42,7	27000	23220	3780	544	79	508	122
Aug	96	01-07 VIII	1590	29,2	46,4	39,7	26550	22833	3717	575	- 80	515	123
	97	08-14 VIII	1648	27,1	44.7	41,2	26900	19906	6994	483	157	517	127
	98	15-21 VIII	1622	34,9	56,6	41,2	28050	19635	8415	476	149	517	138
	99	22-28 VIII	1656	29,4	48.7	43,1	30500	23180	7320	537	150	513	138
Sep	100	29-04 IX	1665	32,9	54,8	48,6	33200	23904	9296	492	170	504	153
	101	05-11 IX	1756	28,8	50.6	45,3	32250	23220	9030	512	179	508	149
	102	12-18 IX	1569	30,0	47.0	43,4	26450	22483	3968	518	84	512	152
	103	19-25 IX	1698	30,6	51,9	45,9	33000	23430	9570	510	184	502	151
Okt	104	26-02 X	1853	29,3	54,3	52,7	33800	27040	6760	513	125	504	145
- mi	_	03-09 X	1844	24,5	45,2	43.0	29300	21682	7618	504	169	510	136
-	_					-		24050	8450	468	147	508	140
_	-	10-16 X	1810	31,8	57,6	51,4	32500	-		500	125	502	134
	107	17-23 X	1780	32,7	58,2	46,2	30350	23066	7284		117	495	140
	_	24-30 X	1774	29,2	51.8	43,7	30300	24240	6060	554			
Nov	109	31-06 XI	1910	30,9	59,0	50,2	32300	25517	6783	508	115	488	148
	-	07-13 XI	1774	31,4	55,7	53,4	33050	25118	7932	470	142	491	152
	111	14-20 XI	1733	37,8	65,5	59,5	38200	27504	10696	462	163	485	156
		21-27 XI	1862	27,4	51,0	51,0	34600	23182	11418	454	224	485	155
Dez	-	28-04 XII	1826	25,8	47.1	38,9	27350	19145	8205	492	174	485	158
	114	05-11 XII	1898	27,7	52,6	52,7	32300	23902	8398	454	160	487	157
	115	12-18 XII	1733	29,5	51,1	42,6	29300	23733	5567	558	109	491	154
	116	19-25 XII	1764	27,7	48,9	47,0	30250	23595	6655	502	136	497	139
-		26-01	1700	31,2	53,0	45,4	29250	22230	7020	490	132	498	125
Jän	118	02-08	1850	28,0	51,8	48,7	31250	23750	7500	488	145	509	119
89	119	09-15 (1820	34,4	62,6	52.1	32300	24871	7429		119	494	125
	120	16-22 i	1756	43,4	76,2	60,2	33900	28137	5763		76	491	122
							-				-		

Tab.5.: Wochenmittelwerte ARA Pernhofen - Biogas; Gaszusammensetzung

М	W	Datum		Gasa	zus. VE	1	(Gaszus	MB		Gaszu	s. MG		Gasa	antell N	fethant	ehälte	Te
		- 4	VB	VB	VB	VB	MB	MB	MB	MG	MG	MG	MG	CO2	H2S	CH4	H2	M
			CO2	H2S	CH4	H2	CO2	H2S	CH4	CO2	H2S	CH4	H2	%	%	%	%	94
Okt	0	29-05 X																+
	1	06-12 X																1
	2	13-19 X	37	0,3		0	35	0,5		36	0.3			50	24			40
	3	20-26 X	37	0,2			33	0,8		36	0,8			25	86			50
	4	27-02 XI	81	1,3		15	35	2,1		65	1,6			35	38			37
Νον	5	03-09 XI	81	0,1		15	39	2,0		61	0,5			48	23			36
	6	10-16 XI	59	0,7		20	34	2,8	62	42	2,0	50		68	63	81		66
	7	17-23 XI	58	0,2			34	3,5		42	2,1			67	58			63
	8	24-30 XI	50	1,1	16	20	32	3,0	72	34	2,8	70	1,0	89	89	96	95	89
Dez	9	01-07 XII	53	0,4			37	3,2		40	3,0			81	93			80
	10	08-14 XII	58				35	3,4	64	41				74				75
	11	15-21 XII	62	0,4	13	20	28	3,3	62	45	1,8	51	7,6	50	48	78	62	70
	12	22-28 XII	76	0,2	3	18	30	2,7	66	36	2,3	61	1.0	87	83	92	94	85
Jän	13	29-041	67	0,2	3	26	23	3,4	67	35	2,5	44	7.0	73	73	64	73	73
'87	14	05-111	65	0,1			37	3,3		44				75				75
_	15	12-18	48	0,1			38	3,7	59	42				60				60
	16	19-25 I	60	0,0	_	_	26	3,5		40	2,3			59	66	_	_	63
E-L	17	26-01	69	0,4	_	_	33	2,9		42	2,3			75	75			75
Feb	18	02-08	59	0,1		-00	40	3,9		45	3.2		20.0	74	80	-phy	74	77
	19	09-15 ()	14	0,0		90	35	4.4	60	30	3,7	46	23,0	76	84 71	77	74	77
	20	16-22 II 23-01 III	50 E1	0,0	-	AC	35 29	2,9	ec	38	2,1		60	80	70	92	89	76
Mär	21	02-08 III	51 65	0,3	-	46 23	The second second	3,8	66	32	2.8	61 54	5,0	74	81	77	74	78 76
IVIAI	23	09-15 III	56	0,4		23	27 33	3,0	70	37	2,5	54	6,0	83	88	- 11	14	85
_	24	16-22 III	21	0,3		35	32	3,3	70	29	2,2	56	11.0	73	65	80	69	69
	25	23-29 111	48	0.4	-	59	30	2,9	70	35	2.2	30	23,0	72	71	00	61	72
Apr	26	30-05 IV	40	0,4	_	35	30	3,7	-	33	2,2		25,0	12			01	80
- при	27	06-12 IV	40	0,5			37	3,9		38				67				67
	28	13-19 IV	71	0,4			38	3,6		48	2,1			70	54	\neg		65
	29	20-26 IV	86	0,2			39	4,0		48	3,6			81	89	\neg	_	85
Mai	30	27-03 V	80	0,1		16	35	3,1	60	45	2,3	43	4,5	78	72	71	72	74
	31	04-10 V	90	0,1		10	36	4.0		46	2,9	-	4,0	81	70			70
	32	11-17 V	85	0,0			41	4.0		46	3,2			89	81			80
	33	18-24 V	73	0,0			44	4.0		50	3.4			79	85	\neg		80
	34	25-31 V	90	0,2			39	2,6		44	2.3			89	86			82
Jun	35	01-07 VI	90	0,0			45	5.0		50	3,8			89	75			75
	36	08-14 VI	65				35			45				67				65
	37	15-21 VI	85	0,2			40	4,2		49	3,3			80	79			74
	38	22-28 VI	85	0.0			37	2,9		49	2,8			75	96			85
Jul	39	29-05 VII	90	0,0			36	3.8		45	2,5			83	66			70
	40	06-12 VII	82	0,2			45	4,1		54	3,8			76	91			85
	41	13-19 VII	90	0,0			40	3.4		50	1,7			80	49			70
	42	20-26 VII	63	0,1			38	3,4		145	2,6			72	76			75
	43	27-02 VIII	90	0,2			37	3,1		-50	2,6			75	83			80
Aug	44	03-09 VIII	65	0,5			40	3.9		46	3,1			76	78			80
	45	10-16 VIII																75
	46	17-23 VIII	90			_	35			49				75	_	_	_	75
	47	24-30 VIII	75	0.9	_		34	2,6		44	2,0		-	76	68	-	_	65
Sep	48	31-06 IX	92	0,5	_		36	3,4	_	49	2,5		_	77	71	_		70
	49	07-13 IX	90	0,1	_	_	35	2,3		51	1,8			71	75			75
	50	14-20 IX	70	1,0	-	-	36	3,1	-	47	1,9	-	-	68	45	-		60
21.4	51	21-27 IX	-	0.0	-	-	07	0.5		45			-	1904	200	-	-	75
Okt	52	28-04 X	65	0,9	_	-	35	3,0	-	42	1.4		-	77	22	-		77
	53	05-11 X	05	0,1	-	-	25	3,2	-	40	2.8	-	-	70	88			85
_	54	12-18 X	65	0,1	-	_	35	3,7	-	43	3,3	-	-	73	87			82
_	55	19-25 X	90	0,1	-	-	35	2.9	-	42	2.0	-	\rightarrow	78	70			70
les :	56 57	26-01 XI	65 65	0,1	-	-	33	2,8	-	34	2.2	-	-	89	77	-		77
vol	The second	02-08 XI 09-15 XI	90	0,1		-	28	2,8		45	1,9		-	73	67			68

59		VB CO2	VB	VB	VB	MB	MB	MB	1.1/3	MG	MG	MG	CO2	H2S	CH4	H2	
59	-	002			1.45			-	MG								M
		COZ	H2S	CH4	H2	CO2	H2S	CH4	CO2	H2S	CH4	H2	%	%	%	%	1 9
	** DD W																1
	16-22 XI	00	0.4	-	_	- 00	0.5						-	-			84
60	23-29 XI	65	0,1		_	32	2,5		40	1,8		_	76	68			68
61	30-06 XII	65	0,1			33	3,2		38	2,1			84	63			71
62	07-13 XII	75	0,1	_		32	3,4		48	2,0			63	59	_		60
63	14-20 XII													_			74
64	21-27 XII	05			_	- 00							-				80
65	28-03 1	65	0,2			32	2,8		39	2,8			79				78
_			0.0	-		-			-				W. C.				7
_		65	-			36	-		42			15.5	79				78
_						00			- 11							_	65
-	_	-	-	-	-		The second second		-	Annual Property of	-	Contract Services	- Indian				66
_				-					_				_				65
			_		_	34.5											68
-	-	-	0,0	_			3,0		-	2,4	-	diam'r.	The same of	78		-	70
_	The second secon				100			-	-								80
-	A CONTRACTOR OF THE PARTY OF TH		0,1				3,3	100	11 11 11 11 11	2,6				78	1,450,151	_	80
-				-	-			-	_		_	-	-			76	82
10000		1000000						64	-		51	-		-	73		73
a restrict reserve	The second second second		-		_				100	-		-					65
-				5	0			58	-	-	51	0,0		The second second second	87		82
			1000000						45	1,3			_				70
		-	-				The second second		-	***			100000	1477,075.5			65
-		-	-			-			43	2,1		-					75
100000		85	-			26	-		36	2,2	2000	0,0	83	- Alexander	78		78
83			0,0				2,7	-		2,1	Annual Control	0=)12		78	84		81
84											-	14.0			61	64	63
85		-	8,0					_	50	2,1	51	0,0	70				69
86	23-29 V	-	0,0			-		54	41	1,5	43	-	74				73
87	30-05 VI	64	0,3	0	6	30		61	40	2,2	47	0=)2,	71	78	77		77
88		65	0,2	0	14	33	2,6	65	43	1,9	41	5,4	69	69	63	61	67
89	13-19 VI	85	0,1	0	11	35	2,6	65	47	1,9	53	2,7	76	71	82	75	76
90	20-26 VI	80	0,1	0	7	35	2,6	66	43	2,1	54	1,6	82	81	82	78	82
91	27-03 VII	80	0,5	0	9	34	2,5	66	45	1.7	50	2,0	76	62	76	78	73
92	04-10 VII	85	0,1	0	10	38	2,6	64	50	2,0	49	2,2	74	77	76	78	76
93	11-17 VII	85	0,1		9	36	2,6		50	2,0			71	78			75
94	18-24 VII	95	0.0	0	1	38	2,6	62	48	2,1	50	0,2	82	80	81	84	82
95	25-31 VII		0,1	0	1		2,4	62		2,0	56			82	90		86
96	01-07 VIII		0,1	1	4		2,8	65		2,4	58			83	89		86
97	08-14 VIII	90	0,1	3	1	36	2,9	68	48	1,9	49	0,2	78	66	71	82	74
98	15-21 VIII	85	0,1	15	0	36	2,7	72	52	2,0	55		67	73	70		70
99	22-28 VIII		0,0	7	3		2,5	67		1.7	61	0,3		67	90	88	76
100	29-04 IX	80	0,1	9	0	38	2,8	66	48	1,9	50	0,0	76	69	72		72
101	05-11 IX		0,1	12	0		2,9	64		1,9	54	0,0		63	81		72
			0,2	13	0		2,5	64		2,1	58	0,0		83	88		85
103	19-25 IX		0,4	9	0		2,7	64		1,9	51	0,0	-	66	76		71
104	26-02 X		0,2	13	15		2,6	65		2,0	57			75	85		80
			0,1	7	3		2,5	68		1,8	55	0,8		71	79	71	74
		80	0,0	22	0	35	2,8	63	45	1,8	54	0,0	78	65	78		74
		80	0,0	16	0	36	2,6	65	48	1,9	57	0,0	73	72	84		76
		85	0,0	11	0	33	2,4	69	45	2,1	56	0,0	77	85	78		80
		76	0,0	22	0	36	2,7	64	47	2,1	58	0,0	73	77	86		79
		75	0,0	13	0	36	2,8	66	44	2.0	56		79	69	81		76
		70	0,1	19	2	39		64	48	1,9	54		71	68	78		72
		70	0,1	17	0	39	2,9	69	47	1,9	50	0,0	74	64	63		67
-	Commercial		0,0	10	4			64			47	1,2		70	69	70	70
		80	0,0	1	2	36		62	47		50	0,7	75	77	80	65	74
And in contrast of the last		85	0.0	0	_			67	_		58		79	69	87	88	81
Annual Security	and the second s	80	-	0	16			66	48		54			THE RESERVE AND ADDRESS OF	82	84	78
				1000				_			56	7,7		74	90		76
		_		-													76
_						_								-			77
			-											84			83
			-,-				-1		-	-,-							_
	85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	67	67 11-17 I 65 68 18-24 I 69 69 25-31 I 56 70 01-07 II 63 71 08-14 II 61 72 15-21 II 65 73 22-29 II 81 74 29-06 III 73 75 07-13 III 85 76 14-20 III 70 77 21-27 III 80 78 28-03 IV 80 79 04-10 IV 75 80 11-17 IV 75 81 18-24 IV 83 82 25-01 V 85 83 02-08 V 80 84 09-15 V 80 85 16-22 V 80 86 23-29 V 80 87 30-05 VI 64 88 06-12 VI 85 90 20-26 VI 80 91 27-03 VII 80 <tr< td=""><td>67 11-17 I 65 0,6 68 18-24 I 0,0 69 25-31 I 56 0,1 70 01-07 II 63 0,0 71 08-14 II 61 0,1 72 15-21 II 65 0,0 73 22-29 II 81 74 29-06 III 73 0,1 75 07-13 III 85 76 14-20 III 70 0,3 77 21-27 III 80 0,1 78 28-03 IV 80 0,1 79 04-10 IV 75 0,5 80 11-17 IV 75 0,0 81 18-24 IV 83 0,0 82 25-01 V 85 0,3 83 02-08 V 80 0,8 86 23-29 V 80 0,8 86 23-29 V 80 0,0 87 30-05 VI 64 0,3</td><td> 11-17 </td><td>67 11-17 65 0,6 68 18-24 0,0 0 0 37 69 25-31 56 0,1 0 35 70 01-07 63 0,0 0 34 71 08-14 61 0,1 0 35 72 15-21 65 0,0 0 38 73 22-29 81</td><td> 67</td><td>67 11-17 65 0,6 37 36 3,4 68 18-24 0,0 0 37 3,7 69 25-31 56 0,1 0 35 38 3,7 71 08-14 1 61 0,1 0 35 28 3,5 72 15-21 1 65 0,0 0 38 27 3,0 73 22-29 1 81 15 0 26 74 29-06 11 73 0,1 8 9 29 3,3 75 17-13 11 85 6 6 4 31 76 14-20 11 70 0,3 16 0 26 2,8 77 21-27 11 80 0,1 19 0 33 3,2 78 28-03 1 80 0,1 19 0 33 3,2 79 04-10 1 75 0,0 34 2,8 81 18-24 1 85 0,0 16 0 35 2,9 82 25-01 85 0,3 10 0 26 2,8 83 02-08 0,0 12 0 27 2,7 84 09-15 0 80 0,1 12 0 27 2,7 85 16-22 1 80 0,1 0 11 33 2,6 89 13-19 1 85 0,1 0 11 35 2,6 90 20-26 1 80 0,1 0 10 38 2,6 91 27-03 1 80 0,1 0 10 38 2,6 93 11-17 1 85 0,1 0 1 4 2,8 94 18-24 1 85 0,1 0 1 4 2,8 95 25-31 1 85 0,1 0 1 4 2,8 96 01-07 1 85 0,1 0 1 4 2,8 97 08-14 1 90 0,1 3 1 36 2,9 98 15-21 1 85 0,1 0 1 0 32 2,6 100 29-04 1 80 0,1 7 3 2,5 100 10-16 1 80 0,0 12 0 2,7 110 07-13 1 80 0,0 12 0 2,7 111 21-27 1 80 0,0 1 0 1 0 32 2,6 111 14-20 1 70 0,1 1 0 1 0 32 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,5 112 16-22 1 80 0,0 1 0 16 36 2,9 113 28-04 1 80 0,0 1 0 16 36 2,9 114 14-20 1 80 0,0 1 1 0 37 2,9 115 12-18 1 80 0,0 0 16 36 2,8 117 120 15-25 1 80 0,0 0 16 36 2,8 118 90-915 7 70 1 1 1 </td><td> 67</td><td> 67</td><td> 67</td><td> 67</td><td> 67</td><td> 68</td><td> 14-17 65</td><td> For 1-1-71 </td><td> 14-71 65</td></tr<>	67 11-17 I 65 0,6 68 18-24 I 0,0 69 25-31 I 56 0,1 70 01-07 II 63 0,0 71 08-14 II 61 0,1 72 15-21 II 65 0,0 73 22-29 II 81 74 29-06 III 73 0,1 75 07-13 III 85 76 14-20 III 70 0,3 77 21-27 III 80 0,1 78 28-03 IV 80 0,1 79 04-10 IV 75 0,5 80 11-17 IV 75 0,0 81 18-24 IV 83 0,0 82 25-01 V 85 0,3 83 02-08 V 80 0,8 86 23-29 V 80 0,8 86 23-29 V 80 0,0 87 30-05 VI 64 0,3	11-17	67 11-17 65 0,6 68 18-24 0,0 0 0 37 69 25-31 56 0,1 0 35 70 01-07 63 0,0 0 34 71 08-14 61 0,1 0 35 72 15-21 65 0,0 0 38 73 22-29 81	67	67 11-17 65 0,6 37 36 3,4 68 18-24 0,0 0 37 3,7 69 25-31 56 0,1 0 35 38 3,7 71 08-14 1 61 0,1 0 35 28 3,5 72 15-21 1 65 0,0 0 38 27 3,0 73 22-29 1 81 15 0 26 74 29-06 11 73 0,1 8 9 29 3,3 75 17-13 11 85 6 6 4 31 76 14-20 11 70 0,3 16 0 26 2,8 77 21-27 11 80 0,1 19 0 33 3,2 78 28-03 1 80 0,1 19 0 33 3,2 79 04-10 1 75 0,0 34 2,8 81 18-24 1 85 0,0 16 0 35 2,9 82 25-01 85 0,3 10 0 26 2,8 83 02-08 0,0 12 0 27 2,7 84 09-15 0 80 0,1 12 0 27 2,7 85 16-22 1 80 0,1 0 11 33 2,6 89 13-19 1 85 0,1 0 11 35 2,6 90 20-26 1 80 0,1 0 10 38 2,6 91 27-03 1 80 0,1 0 10 38 2,6 93 11-17 1 85 0,1 0 1 4 2,8 94 18-24 1 85 0,1 0 1 4 2,8 95 25-31 1 85 0,1 0 1 4 2,8 96 01-07 1 85 0,1 0 1 4 2,8 97 08-14 1 90 0,1 3 1 36 2,9 98 15-21 1 85 0,1 0 1 0 32 2,6 100 29-04 1 80 0,1 7 3 2,5 100 10-16 1 80 0,0 12 0 2,7 110 07-13 1 80 0,0 12 0 2,7 111 21-27 1 80 0,0 1 0 1 0 32 2,6 111 14-20 1 70 0,1 1 0 1 0 32 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,6 111 14-20 1 70 0,1 1 0 3 2,5 112 16-22 1 80 0,0 1 0 16 36 2,9 113 28-04 1 80 0,0 1 0 16 36 2,9 114 14-20 1 80 0,0 1 1 0 37 2,9 115 12-18 1 80 0,0 0 16 36 2,8 117 120 15-25 1 80 0,0 0 16 36 2,8 118 90-915 7 70 1 1 1	67	67	67	67	67	68	14-17 65	For 1-1-71	14-71 65

Tab. 6.: Perioden Versäuerungsbehälter Pernhofen

P.	Datum	CSE	Q-zu	CSBBR	HRT	pН	Temp	HAc	Prop	Butt	HA/Bu	Vers
Nr.	-	Slp	Slp	VB	VB	VB	VB	VB	VB	VB	VB	VB
•	-	g/l	m3/d	g/l.d	d	•	°C	gCSB/l	gCSB/I	gCSB/I	-	%CSE
1	2902.11	26	600	4,9	5,3	6,1	60	3,5	1,8	6,6	0,52	46
2	0412.11	30	600	8,3	3,6	5,8	55	3,3	1,6	7,8	0,42	42
3	18-26.11	22	600	5,5	4,0	6,1	52	3,0	1,9	7,1	0,42	55
4	2802.12	25	500	6,3	4,0	6,1	58	3,8	2,3	8,5	0,44	58
5	08,-18.12	23	400	5,8	4,0	5,8	48	4,3	1,7	7,1	0,60	57
6	24,-30.12	20	450	6,4	3,1	6,0	47	2,3	1,3	5,6	0,42	46
7	15.01	17	600	5,7	3,0	4,8	47	2,6	8,0	0,5	4,70	23
8	1725.01	17	800	7,8	2,2	5,6	47	2,3	8,0	4,2	0,56	43
9	3102.02	15	900	7,5	2,0	4,7	47	2,2	0,5	0,5	4,11	22
10	2026.02	15	1200	7,5	2,0	5,6	46	2,7	1,4	3,6	0,73	51
11	1016.03	21	950	8,0	2,6	6,0	48	3,1	1,4	6,0	0,52	50
12	1323.04	21	1400	13,7	1,5	5,8	40	5,1	1,2	3,3	1,57	46
13	2709.04	23	1200	9,9	2,3	5,8	40	5,3	1,0	3,6	1,47	44
14	1113.05	16	1400	11,2	1,4	5,9	42	4,8	0,9	2,7	1,76	53
15	2502.06	27	1300	11,7	2,3	5,8	41	5,5	1,4	4,4	1,27	42
16	07.07	21	1500	12,1	1,7	4,8	38	1,8	1,1	0,2	9,98	15
17	2409.08	27	1400	15,8	1,7	5,6	41	6,1	1,4	4,4	1,39	44
18	15.08	25	1400	13,5	1,9	4,9	39	3,4	0,3	0,7	4,70	18
19	2131.08	21	1400	17,3	1,2	5,6	40	5,7	1,4	4,4	1,30	54
20	2007.11	23	1100	9,7	2,4	5,8	39	5,7	2,2	3,8	1,48	51
21	1729.11	26	1270	13,2	2,0	5,5	40	6,4	2,2	4,4	1,47	50
22	0107.12	28	1100	15,4	1,8	5,5	39	8,0	2,3	5,1	1,57	55
23	0913.12	27	1200	20,3	1,3	5,9	40	7,5	1,8	4,9	1,52	53
24	2127.12	31	1300	13,4	2,3	5,8	41	7,8	1,8	6,2	1,26	51
25	0408.01	35	750	7,7	4,5	6,0	43	8,5	2,7	6,2	1,38	50
26	2430.01	29	1000	8,6	3,4	5,7	49	3,3	1,5	8,8	0,38	47
27	0307.02	26	1200	9,2	2,8	5,7	48	2,1	0,7	6,5	0,33	36
28	2128.02	23	1500	10,1	2,3	5,7	45	4,4	1,4	2,9	1,50	38
29	0713.03	26	1550	20,2	1,3	5,5	41	5,7	1,6	3,6	1,56	42
30	2325.03	30	1700	19,6	1,5	5,3	41	6,4	1,8	4,4	1,47	42
31	1216.04	31	1550	20,2	1,5	5,2	42	7,4	1,7	5,8	1,27	48
32	2802.05	27	1900	17,1	1,6	5,5	41	5,5	1,5	4,2	1,33	42
33	08.05	29	1500	18,1	1,6	4,8	-49	2,5	0,2	2,7	0,90	18
34	0915.05	33	1650	20,9	1,6	5,3	49	2,1	0,3	10,9	0,20	40
35	0612.06	35	1500	23,9	1,5	5,1	41	7,0	1,8	4,4	1,61	38
36	1317.06	31	1700	22,0	1,4	5,4	41	6,3	1,7	3,8	1,65	38
37	0111.07	30	1700	20,4	1,5	5,5	41	6,3	1,5	3,6	1,73	38
38	1321.07	33	1600	19,4	1,7	5,4	43	6,5	1,8	4,7	1,38	40
39	1319.09	32	1700	21,8	1,5	5,3	42	6,0	1,7	5,5	1,10	41
10	03.10	31	1500	19,4	1,6	4,7	39	3,0	0,0	0,7	4,11	12
41	2125.10	33	1800	24,0	1,4	5,3	43	6,4	1,5	5,8	1,10	42
12	1620.11	37	1800	25,6	1,4	5,5	43	7,0	1,8	6,4	1,11	41
13	2801.12	26	1800	24,1	1,1	5,2	41	5,1	1,5	4,2	1,23	42
14	05.12	24	1800	21,6	1,1	4,7	40	2,7	0,2	0,9	3,12	16
15	1923.12	29	1900	24,6	1,2	5,5	41	5,4	1,5	4,0	1,36	38

Tab.7.: Perioden Versäuerungsbehälter Pernhofen mit Gasanalysen (H2)

P.	Datum	CSB	Q-zu	CSBBR	HRT	pН	Temp	HAc	Prop	Butt	HA/B	Vers	H2	CH4	CO2
Nr.		Slp	Slp	VB	VB	VB	VB	VB	VB	VB	VB	VB	%	%	%
•		g/l	m3/d	g/l.d	d	•	*C	gCSB/I	gCSB/I	gCSB/I	-	%CSB			
2	0412.11	30	600	8,3	3,6	5,8	55	3,3	1,6	7,8	0,42	42	15	1	82
3	18-26.11	22	600	5,5	4,0	6,1	52	3,0	1,9	7.1	0,42	55	20	16	59
4	2802.12	25	500	6,3	4.0	6,1	58	3,8	2,3	8,5	0,44	58	26	2	60
5	0818.12	23	400	5,8	4,0	5,8	48	4,3	1,7	7,1	0,60	57	20	13	62
6	2430.12	20	450	6,4	3,1	6,0	47	2,3	1,3	5,6	0.42	46	22	3	74
11	1016.03	21	950	8,0	2,6	6,0	48	3,1	1,4	6,0	0,52	50	34	0,1	65
13	27,-09.05	23	1200	9,9	2,3	5,8	40	5,3	1,0	3,6	1,47	44	15	0	80
27	03,-07.02	26	1200	9,2	2,8	5,7	48	2,1	0.7	6,5	0,33	36	35	0	57
28	21,-28,02	23	1500	10,1	2,3	5,7	45	4,4	1,4	2,9	1,50	38	0,2	15	80
29	0713.03	26	1550	20,2	1,3	5,5	41	5,7	1,6	3,6	1,56	42	0,3	10	86
30	2325.03	30	1700	19,6	1,5	5,3	41	6,4	1,8	4.4	1,47	42	0	20	75
32	28,-02.05	27	1900	17,1	1,6	5,5	41	5,5	1,5	4,2	1,33	42	0	10	85
34	0915.05	33	1650	20,9	1,6	5,3	49	2,1	0,3	10,9	0,20	40	40	0	49
35	0612.06	35	1500	23,9	1,5	5,3	41	7,0	1,8	4,4	1,61	38	17	0	70
36	1317.06	31	1700	22,0	1.4	5,4	41	6,3	1,7	3,8	1,65	38	19	0	62
37	0111.07	30	1700	20,4	1,5	5,5	41	6,3	1,5	3,6	1,73	38	13	0	80
38	1321.07	33	1600	19,4	1,7	5,4	43	6,5	1,8	4,7	1,38	40	13	0	81
39	1319.09	32	1700	21,8	1,5	5,3	42	6,0	1,7	5,5	1,10	41	0	13	82
41	2125.10	33	1800	24,0	1,4	5,3	43	6,4	1,5	5,8	1,10	42	16	0	79
42	1620.11	37	1800	25,6	1,4	5,5	43	7,0	1,8	6,4	1,11	41	1	20	74
43	2801.12	26	1800	24,1	1.1	5,2	41	5,1	1,5	4,2	1,23	42	0,6	18	76
45	19,-23.12	29	1900	24,6	1,2	5,5	41	5,4	1,5	4,0	1,36	38	16	0,1	79

Tab.8.: Säurespektrum Versäuerungsbehälter Pemhofen als Funktion der Temperatur

Temp	HAc	Prop	Butt	HAc	Prop	Butt	Summe	HAC	Prop	Butt	HaBu
*C	g/l	g/l	9/1	gCSB/I	gCSB/I	gCSB/I	gCSB	%	%	%	-
39	6,4	1,5	2,5	6,8	2,2	4,5	13,5	50,6	16,4	33,0	1,53
40	5,6	1,0	2,3	6.0	1,5	4.1	11,6	51,6	13,1	35,3	1,46
41	5,7	1,0	2,4	6,1	1,6	4,3	12,0	51,0	13,2	35,7	1,44
42	5.7	1,0	2,6	6.0	1,4	4.7	12,2	49,8	11,8	38,4	1,37
43	6,7	1,3	3,2	7,1	2,0	5,8	14,9	47,9	13,3	38,8	1,24
44	5,4	1,1	2,4	5,7	1,7	4,3	11.8	48,9	14,2	36,9	1,37
45	4,1	0,9	1,6	4.4	1,4	2,9	8,6	50,6	15,8	33,6	1,50
46	2,5	0,9	2,0	2,7	1,4	3,6	7,7	34,8	17,8	47,4	0,73
47	2,2	0,7	2,7	2,3	1,1	4,9	8,3	28,3	12,7	59,1	0,49
48	3,0	0,8	3,6	3,2	1,3	6,5	11,0	28,9	11,5	59,7	0,48
49	2,8	0,7	5,0	3,0	1,1	9,0	13,1	22,9	8,4	68,7	0,33
50	2,8	0,9	4,6	3,0	1,4	8,4	12,7	23,5	10,8	65,7	0,36
51	2,8	1,1	4,3	3,0	1,6	7,7	12,4	24,2	13,3	62,5	0,39
52	2,8	1,3	3,9	3,0	1,9	7,1	12,0	24,9	16,0	59,1	0,42
53	2,9	1,2	4,0	3,1	1,8	7,3	12,2	25,2	14,8	60,0	0,42
54	3,0	1,1	4,2	3,2	1,7	7,6	12,5	25,5	13,7	60,8	0,42
55	3,1	1,1	4.3	3,3	1,6	7,8	12,7	25,7	12,6	61,6	0,42
56	3,2	1,2	4.4	3,4	1,8	8,1	13,3	25,7	13,8	60,5	0,42
57	3,4	1,4	4,6	3,6	2,1	8,3	14,0	25,7	14,8	59,5	0,43
58	3,5	1,5	4,7	3,8	2,3	8,5	14,6	25,7	15,7	58,6	0,44
59	3,4	1,4	4,2	3,6	2,1	7,6	13,2	27,2	15,5	57,3	0,48
60	3,2	1,2	3,6	3,5	1,8	6,6	11,9	29,1	15,3	55,6	0,52

Tab.9.: CSB-Gehalt des Gases aus dem Versäuerungsbehälter Pernhofen

	-	ACC 1	0.0		2.15		74777	1-			
Noche	Temp *C	CSB-F VB zu	Q Gas VB	Sp.Q VB	H2 VB	CO2 VB	CH4 VB	Summe	H2	CH4	CSB
*	-	t/d	m3/d	m3/t	%	% %	%	Gas	%CSB	%CSB	VB-Ga %
			mord	THOIL .	-	~	_~				70
4	58	14,9	3049	205	15	81	0	96	1,8	0,0	1.
5	55	18,0	3821	212	15	81	0	96	1,9	0,0	1,
6	54	10,5	2023	192	20	59		79	2,3	0,0	2.
8	49	8.4	444	53	20	50	16	86	0,6	2,0	2,
11	48 49	9,7 8,6	900 851	167 99	20	62 76	13	95 97	1,1	2,9	4,
13	48	9,6	1678	175	26	67	3	96	1,1	1,3	1,
19	46	16,6	2171	130	50	14	-	64	4.0	0,0	4.
21	46	20,6	2664	129	46	51		97	3,6	0,0	3.
22	46	22,3	3120	140	23	65		88	2,0	0,0	2,
24	48	25,7	4824	188	35	21		56	4,0	0,0	4,
25	49	24,3	4095	169	49	48		97	5,0	0,0	5,
30	49	25,7	3510	137	16	80	_	96	1,3	0,0	1,
68	47	25,1	4275	170	37	55	0	92	3,8	0,0	3,
69	49	31,2	5119	164	35	56	0	91	3,5	0,0	3,
70	49	40,2	5539	138	34	63	0	97	2.8	0,0	2.
71	46	35,1	4618	131	35	61	0	96	2,8	0,0	2,
72	45	34,7	4890	141	38	65	0	103	3,3	0,0	3,
73	46	31,1	3465	111	0	81	15	96	0,0	4,1	4,
74	42	33,1	3635	110	9	73	8	90	0,6	2,2	2,
75	41	39,3	3921	100	4	85	6	95	0,3	1,5	1,
76	41	38,6	4500	117	0	70	16	86	0.0	4,6	4,
77 78	42 42	43.5 45.4	6000 4903	138	0	80	19	99 86	0,0	6,5	6,
81	42	39,6	6100	154	0	83	16	99	0,0	1.6 6.1	6.
82	41	44.3	6116	138	0	85	10	95	0,0	3.4	3,
83	47	42.3	4760	113	20	50	20	90	1,4	5,5	6,
84	49	56,6	12728	225	39	55	0	94	5,3	0,0	5,
85	41	46,2	9362	203	0	80	6	86	0,0	3,0	3,
86	41	48,3	8316	172	0	80	12	92	0,0	5,1	5,
87	41	48,9	6054	124	6	64	0	70	0,5	0,1	0,
88	42	54,1	10148	187	14	65	0	79	1,6	0,0	1,
89	40	42,0	7188	171	11	85 80	0	96	1,2	0.0	1,
90	41	47,6 46,3	5643 7749	118	9	80	0	88	0,5	0,1	0,0
92	42	50,1	7200	144	10	85	0	95	0,9	0,1	1.0
93	43	53,6	7463	139	9	85	1	95	0,8	0,3	1.
94	43	50,6	5301	105	1	95	0	96	0,1	0,0	0,
95	41	48,0	3780	79	1	95	0	96	0,1	0,0	0,
96	43	46,4	3717	80	4	90	1	95	0,2	0,3	0,
97	41	44,7	6994	157	1	90	3	94	0,1	1,0	1.
98	42	56,6	8415	149	0	84	15	99	0,0	5,5	5,
99	41	48,7	7320	150	3	85	7	95	0,2	2,6	2,8
100	41	54,8	9296 9030	170	0	80	9	89	0,0	3,8	3,8
101	42	50,6 47.0	3968	84	0	82	12	94	0,0	5,3	5,3 2,7
103	41	51,9	9570	184	0	83	9	92	0,0	4.1	4,1
104	41	54,3	6760	125	15	65	13	93	1,2	4.0	5,3
105	40	45,2	7618	169	3	83	7	93	0,3	3,1	3,4
106	42	57,6	8450	147	0	76	18	94	0,0	6,5	6,
107	42	58,2	7284	125	0	80	16	96	0,0	5,0	5,0
108	42	51,8	6060	117	0	85	11	96	0,0	3,2	3,2
109	44	59,0	6783	115	0	76	22	98	0,0	6,2	6,3
110	44	55,7	7932 9000	142	0	75	13	91	0,0	4,6	4,6
111	43	65,5 51,0	8000	157	0	70	17	87	0,1	6,4	6,6
113	40	47,1	8205	174	4	80	10	94	0,4	4,3	4,8
114	40	52,6	8398	160	2	80	7	89	0,2	2,8	3,0
115	40	51,1	5567	109	10	85	0	95	0,7	0,0	0,
116	40	48,9	6655	136	16	80	0	96	1.4	0,0	1,

Tab.10.: Versuchsanlagen Versäuerungsbehälter im Durchlaufbetrieb (VD)

ż	×	HAG				H/B	35	-	CSB	OZO	CSBBR	H	표	Temp	Gas	H2	CH4	Gas	FS	BS
Ξ	(-)	9CSB/I	gCS8/I	gCSB/f	9CSBN				6	p/lm	p/p	9	3	S	p/ju	3	*	mira	35	8
fesc	Mesophil																			
	VA1/4-V	9.3	2.2	7,6	1,6	1,22	8	44	42	200	14,0	3,0	5.7	40	2600	14	\perp	186	0	33756
-	VA2/5-VII	10,4	2,2	7.4	1.4	1,40	51	44	42	500	14,0	3,0	-	40	3000	3,0	1.0	214	33/5	
	VA3 -VI/1	9,2	2,5	5,9	0.1	1,57	44	44	42	200	14.0	30	-	40	2000	0,2	L	143		
	VA1/2-1X	9,7	2,7	6.8	1,0	1,44	8	42	47	310	9.7	4.8	-	8	2100	0.2		216	0	17 and
=	VA46-X	10,4	2,3	7,0	1,2	1,49	44	42	47	310	0.7	4,8	-	40	2100	-	0.1	216	17 a	
	VA3 -VI/2	101	3,3	6.5	1,2	1,55	ð	42	47	310	9.7	4.8	_	40	1800	0.2	-	1		
	VA1/2-XI	6.4	2,2	8,5	2,4	0,75	42	42	47	150	4,7	10.0	-	8	1100	40	-		0	1777d
H	VA4/5-XII	8,8	2,4	10,0	2,9	0,68	47	42	47	150	47	10.0	_	40	1100	1.2	-		17/7d	l°
	VA3 -VIII	6,9	3,6	11,6	2.7	0,60	53	42	47	150	4.7	10.0	_	40	900	6.0	-		0	
	VA1/2-XIII/1	6.4	0.4	10,9	0.4	0,59	38	42	47	300	9,4	5,0		40	1300	10.0	00		0	17 anf
≥	VA45-XIV //	7,0	2,7	10,0	1.0	0,70	44	42	47	300	8.4	5.0		40	1100	0,5	_	117	17 anf.	°
	VA3 -XV /I	7.4	2,7	9.8	1,0	0.76	ŧ\$	42	47	300	9.4	5,0	-	40	1100	5,0	_		0	0
	VA1/2-XIII/2	5,6	1.8	2,0	0.8	0,81	32	42	47	450	14,1	3,3		40	1700	10,0	-		0	0
>	VA45-XIV &	58	2,0	9"2	3,7	0,75	ē	42	47	450	14.1	3,3		40	1900	10,0	_		0	0
	VA3 -XV /2	5,6	1.8	5,2	33	1.08	34	43	47	450	14.1	3,3		9	1800	8,0	-		0	0
	VA1/2-XVI //	8.7	2,2	6,3	2,4	1.36	#	92	41	1200	32,8	1,3	-	40	5200	4.0	_	L	0	2*33/2d
5	VA4/5-XVIV1	9,7	3.6	3,7	1,4	2,62	49	45	ē	1200	32,8	e.	_	40	4000	0,5	_		2*33/2	0
1	VA3 -XVIII1	9,2	3.6	3,3	1,0	2,50	33	45	41	1200	32,8	£.		40	3000	0,2	_		0	0
	VA1/2-XVI /2	6.4	24	20	2.0	1,09	9	48	38	200	4,8	7.5	_	40	1450	5,0	- 1	302	0	33 anf
5	VA465-XVIIIZ	9 8	2,2	7.4	2.0	1,16	26	48	36	200	4,8	7,5	_	40	1800	1,4	-		33 anf.	
I	VA3 -XVIII2	82	3.6	7,2	0,1	1,14	28	48	38	200	4.8	7.5	-	6	1100	2,0	-		0	0
	VATIZATA	7.7	6.0	4.5	0,2	0.91	S	42	9	175	6.4	8,6	_	9	1200	10.0	-		0	0,7/20
•	VA415-AX	10,6	B'C	6'/	4.4	35	47	42	46	175	5.4	8.8	_	6	1500	0.0	_		0,772d	0
T	VA3 -XXI	2,0	2.2	6.3	2.0	1.11	43	8	48	176	5.4	9,6	-	9	1300	0,4	-	242	0	٥
5	VATIGATION	8',	0,0	C D	0.1	0,98	43	44	43	220	7,2	6,0	5.5	40	2100	20	-		٥	2/2d
×	VA4/5-XXIII	8.2	2,0	1,2	10	1,28	ð	ş	5	250	7,2	0.0	5.5	40	1500	0,5	-	9	2724	0
	VAS -AAIV	200	6'7	6.7	7.	1,04	48	4	9	250	7.2	0'9	20	40	1000	-	-	149	0	0
×	VAME.XXIX	0 -	0 4	0.7		1,32	8 8	8	2 8	4/0	6.0	3,2	0	8	2400	000	-	383	0	3.3/2d
	VA3 -XXX	3.6	60	. 4	1.4	0 88	5	3 8	2 6	470	0 6	9 0	0 4	3 5	2007	2 0	2 0	aan COC	2,3720	0 0
F	Thermophil											5	2		3	2	-	200		
	VA1/2-XXXI //	1.7	0.4	8,5	0'0	0,20	20	55	21	630	8,8	2.4	-	47	3000	40.0	L	340	0	3 3/26
R	VA4/5-XXXII /1	2,0	0.4	83	0'0	0,23	ž,	55	21	630	8.8	2,4	_	47	2800	35.0	_	317	3,372	0
	VA3 -XXXIII/1	2,2	6.0	8.7	0'0	0,25	26	55	21	630	8,8	2,4		47	2000	25,0		227	0	
	VA1/2-XXXI /2	1.8	0,4	2.9	0'0	0,23	48	55	21	1000	14.0		_	125	3900	35,0	0.0	279	0	3,3/2d
R	VA4/5-XXXII /2	2,0	0,5	9.2	00	0,22	95	55	7	1000	14,0	1,5		47	3500	30,0		250	3,3/2d	0
	VA3 -XXXIII/2	2,2	9'0	8.8	0.0	0,24	28	S	5	1000	14.0	1,5		47	3500	30,0		250	0	0
	VA1/2-XXV /1	m	0.8	10,9	0'0	0,28	34	43	44	230	6,7	6,5		20	2400	40,0		356	0	1.3/2d
R	VA45-XXVI /I	4	0.7	13.7	00	0,30	42	8	4	230	67	6.5	5,5	20	2800	40.0	0.0	415	1,3/2d	Ĭ
	LANA SAVIN	3,2	0,0		00	0,29	34	43	44	230	6.7	6.5	_	20	2000	40.0		298		Ĭ
210		2,8	0.0	12,4	0'0	0,23	34	42	47	470	14.7	3,2	\rightarrow	8	6000	35.0		407	0	3.3/2d
Ž	-	0 4	000	103	00	0,26	8	42	4/	470	147	3.2	-	20	6200	40.0		421	3,3/2d	0
	VA3 -XXVII/2	3,2	0.3	11,3	0.0	0,28	35	Ş	47	470	+47	6	_	50	3000	40 D		PUC.	5	

Tab.11.: Versäuerungsversuche mit Schlammzugabe (VS)

+ Faulschlamm		rop Butt n-Val	HAc Prop Butt	g/l Lac HAc Prop Butt	ra,o gri	CSB: 19,6 g/l Butt n-Val Lac HAc Prop Butt	CSB: 19,6 g/l Butt n-Val Lac HAc Prop Butt
% acsent	0 0	lers (%Vers	%Vers %Vers	// gCSB// %Vers %Vers	gCSB/I %Vers %Vers	// gCSB// gCSB// %Vers %Vers
10 0,7	-		4	4	0,0 6 4	0,0 0,0 0,0 6 4	0,0 0,0 0,0 6 4
5.4	0	1		35	0,0 35	0,0 0,0 0,0	0,0 0,0 0,0
49 5.4	0			36	0,0	96 0,0 0,0 86	96 0,0 0,0 86
51			35 12	32	32	0,4 0,3 0,0 35	0,3 0,0 35
33			16	91 0	91 6 00	0,0 8,0 9,0	0,0 8,0 9,0
2000		1		25.0	36	41 10 00 00 00 00 00 00 00 00 00 00 00 00	41 10 00 00 00 00 00 00 00 00 00 00 00 00
29 0.0	-	100	26	0 28	0.1 0 26	41 2.1 0.1 0 26	41 2.1 0.1 0 26
63 0,0	21 12			0	2,3 0,5 0	4,1 2,3 0,5 0	4,1 2,3 0,5 0
64 0,0		70.1	28	0 28	2.2 0.7 0 28	4,2 2,2 0,7 0 28	4,2 2,2 0,7 0 28
0'0 29		• 11	29	0 29	2,3 0,9 0 29	4,2 2,3 0,9 0 29	4,2 2,3 0,9 0 29
5 68 0,0	13	14		59	2,5 1,0 0 29	4,2 2,5 1,0 0 29	4,2 2,5 1,0 0 29
71 0,0		1	59	0 28	2,4 1,6 0 29	4,1 2,4 1,6 0 29	4,1 2,4 1,6 0 29
73 0.0	1		31	0 31	2.4 18 0 31	4.2 2.4 18 0 31	4.2 2.4 18 0 31
100	1	N		0 31	1,8 0 31	4,1 2,5 1,8 0 31	4,1 2,5 1,8 0 31
+ Faulschlamm				20,4 g/l	CSB: 20,4 g/l	20,4	20,4
Vers Lac	Butt	12	HAC	Lac HAc	Butt Val Lac HAc	Prop Butt Val Lac HAc	HAc Prop Butt Val Lac HAc
ers % gCSB/I gCSB/I	%Vers %Vers %Vers		%Vers	_	gCSB/I gCSB/I %Vers %Vers	gCSB/I gCSB/I gCSB/I %Vers %Vers	gCSB/I gCSB/I %Vers %Vers
6 0,4	0		2		0,0 0,0	5 00 00 00	0,3 0,0 0,0 0,0 5
5,4				42	0,0 0,0 42	0,0 0,0 42	0,5 0,0 0,0 42
0,0 0,0	14		1 20	20	2,9 0,0 50	0.2 2.9 0.0 50	2,9 0,0 50
000	1			2 00	0,00	0000	0000
45 0.0	2 40		0 2	0	8.2 0.0 0	0.5 8.2 0.0 0	0.4 0.5 82 0.0 0
48 0.0	L	1		0	8,4 0,0 0	0.6 8.4 0.0 0	0.7 0.6 8,4 0.0 0
20 0'0	L			0	8,2 0,0 0	0,7 8,2 0,0 0	1,3 0,7 8,2 0,0 0
52 0,0	4 41			0	8,4 0,0 0	0,7 8,4 0,0 0	1,5 0,7 8,4 0,0 0
55 0,0		1 1	Ц	0	8.7 0.0 0	0,6 8,7 0,0 0	0,0 0,0 8,7 0,0 0
99				0	0,0 0,0 7,8	0,7 8,7 0,0 0	2,0 0,7 8,7 0,0 0
0'0 65 0	e 44	4 1	0 12		8,9 0,0 0	0,0 0,0 8,9 7,0	2,3 0,7 8,9 0,0 0
61		4 7		0	9,1 0,0 0	0,7 9,1 0,0 0	2.6 0,7 9,1 0,0 0
62				0	9,1 0,0 0	0,7 9,1 0,0 0	0,7 9,1 0,0 0
64	Ц		0 14	0 14	9,5 0,1 0 14	0.7 9.5 0.1 0 14	29 07 95 01 0 14

Tab.12.: Arbeitsblatt zur Berechnung der Gleichgewichtskonzentrationen im Versäuerungsbehälter

Berechnung der Gleichgewichtskonzentrationen der pH-beeinflußenden Parameter im Versäuerungsbehälter

	Eingabe:		
1	Temperatur	*C	40
2	CO2-Konzentration Gas	%	80
3	Druck Versauerungsbehalter	bar	1,43
4	Ameisensaure (Form)	rng/l	50
5	Milchsaure (Lac)	mg/l	50
6	Essigsaure(HAc)	mg/l	3000
7	Propionsaure (Prop)	mg/l	700
8	Buttersaure (Butt)	mg/l	1280
9	Valeriansaure (Val)	mg/t	100
10	Spristing Kationen - Aningen	mollm3	- 0

Berechnung Kohlensäure:

11	K(H2O)	mol/l	2,91E-14	z	(10^-(4470,99/(273+X1)-6,0875+0,01706*(273+X1)))
12	KC1(CO2)	mol/I	5,04E-07	=	(10^-(3404,7/(273+X1)-14,8435+0,03279*(273+X1)))
13	KC2(CO2)	mol/f	6,01E-11		(10^-(2902,4/(273+X1)-6,498+0,02379*(273+X1)))
14	KH(CO2)	mol/l ba	2,40E-02	=	(10^(2385,73/(273+X1)-14,0184+0,01526*(273+X1)))
15	p(CO2)	bar	1,144	=	(X2/100)*X3
16	(CO2lag	mol/m3	27.5	- 2	X14°X15°1000

Berechnung organische Säuren:

17	K(HAc)	mol/l	1,70E-05	20	(10^-(1170,5/(273+X1)-3,165+0,0134*(273+X1)))
18	K(Form) (40°)	mol/I	1,73E-04	- =	1,73 E-04
19	K(Lac) (40°)	mol/l	1,33E-04	=	1,33 E-04
20	Essigsaureaquivalent (HAc-Äqu)	mg/l	4500	=	X6+X7*0,811+X8*0,682+X9*0,588
21	Essigsaureaquivalent (HAc-Áqu)	mol/m3	74,9	=	X20/60,05
22	Ameisensäure	mol/m3	1,1		X4/46,03
23	Milchsäure	mol/m3	0,6	=	X5/90,08

Berechnung der Gleichgewichtskonzentrationen:

24	pH		5,0	=	5,0
25	H+	mol/I	1,00E-05	=	10^(-X24)
26	OH-	mol/l	2,91E-09	=	X11/X25
27	fCO2	*	0,95	=	1/(1+X12/X25+(X12*X13)/X25*2)
28	THCO3		0,05	=	(X12/X25)*X27
29	CO2	mol/m3	26,13	=	X16*X27
30	HCO3-	mol/m3	1,32	=	X16*X28
31	fAc-		1,32	*	X17/(X17+X25)
32	fForm-		0,63	=	X18/(X18+X25)
33	fLac-	(*)	0,95	2	X19/(X19+X25)
34	Ac-Aqu -	mol/m3	47,21	=	X31*X20
35	Form-	mol/m3	1,03	20	X32*X21
36	Lac-	mol/m3	0,52	=	X33*X22
37	Alkalitat - NH4-N	mol/m3	50,1	-	X30+X34+X35+X36+X10
38	NH4-N	mg/l	701	=	(X37-X25*1000-X10)*14

pH -	H+ mol/l	OH- mal/l	fCO2 -	RHCO3-	CO2 mol/m3	HCO3- mol/m3	fAc-	Form-	fLac-	- upÁ-sA Emtlom	Form- mol/m3	Lac- mol/m3	Alk-NH4-N moi/m3	NH4-N mg/t
4,5	3,16E-05	9,19E-10	0,98	0,02	27,02	0,43	0,35	0,85	0,81	26,23	0,92	0,45	28,0	392
4,6	2,51E-05	1,16E-09	0,98	0,02	26,91	0,54	0,40	0,87	0,84	30,28	0,95	0,47	32,2	451
4,7	2,00E-05	1,46E-09	0,98	0,02	26,77	0,68	0,46	0,90	0,87	34,50	0,97	0,48	36,6	513
4,8	1,58E-05	1,83E-09	0,97	0,03	26,60	0,85	0,52	0,92	0,89	38,61	1,00	0,50	41,1	576
4,9	1,26E-05	2,31E-09	0,96	0,04	26,39	1,06	0,57	0,93	0,91	43,08	1,01	0,51	45,7	639
5,0	1,00E-05	2,91E-09	0,95	0,05	26,13	1,32	0,63	0,95	0,93	47,21	1,03	0,52	50,1	701
5,1	7,94E-06	3,66E-09	0,94	0,06	25,81	1,64	0,68	0,96	0,94	51,10	1,04	0,52	54,3	760
5,2	6,31E-06	4,61E-09	0,93	0,07	25,42	2,03	0,73	0,96	0,95	54,68	1,05	0,53	58,3	816
5,3	5,01E-06	5,80E-09	0,91	0,09	24,94	2,51	0,77	0,97	0,96	57,89	1,06	0,53	62,0	868
5,4	3,98E-06	7,30E-09	0,89	0,11	24,36	3,09	0,81	0,98	0,97	60,73	1,06	0,54	65,4	916
5,5	3,16E-06	9,19E-09	0,86	0,14	23,68	3,77	0,84	0,98	0,98	63,20	1,07	0,54	68,6	960
5,6	2,51E-06	1,16E-08	0,83	0,17	22,86	4,59	0,87	0,99	0,98	65,30	1.07	0,54	71,5	1001
5,7	2,00E-06	1,46E-08	0,80	0,20	21,91	5,54	0,90	0,99	0,99	67,07	1,07	0,55	74,2	1039
5,8	1,58E-06	1,83E-08	0,76	0,24	20,83	6,62	0,91	0,99	0,99	68,55	1,08	0,55	76,8	1075
5,9	1,26E-06	2,31E-08	0,71	0,29	19,60	7,85	0,93	0,99	0,99	69,78	1,08	0,55	79,3	1110
6,0	1,00E-06	2,91E-08	0,66	0,34	18,25	9,20	0,94	0,99	0,99	70,78	1,08	0,55	81,6	1143
6,1	7,94E-07	3,66E-08	0,61	0,39	16,79	10,66	0,96	1,00	0,99	71,59	1,08	0,55	93,9	1174
6,2	6,31E-07	4,61E-08	0,56	0,44	15,26	12,19	0,96	1,00	1,00	72,26	1,08	0,55	86,1	1205
6,3	5,01E-07	5,80E-08	0,50	0,50	13,68	13,77	0,97	1,00	1,00	72,79	1,08	0,55	88,2	1235
6,4	3,98E-07	7,30E-08	0,44	0,56	12,11	15,34	0,98	1,00	1,00	73,22	1,08	0,55	90,2	1263
6,5	3,16E-07	9,19E-08	0,39	0,61	10,58	16,87	0,98	1,00	1,00	73,57	1,08	0,55	92,1	1289

Tab.13.: Auswertung der 10 Datensätze aus dem Betrieb der Versäuerungsbehälters

Eingabe	1													
Temperatur		*C	40	1	Berec	hnung	Kohlens	äure:		Berech	nung ord	ganische	Săuren:	
CO2-Konzentration Gar		%	80		K(H2O)		mol/l	2.91E-14		K(HAc)	•		mol/l	1,70E-05
Druck Versäuerungsb		bar	1,4		KC1(CC	(2)	mol/I	5,04E-07		K(Form) (የ 0ግ		mol/l	1.73E-04
Ameisensaure (Form)		mg/l	0		KC2(CC	1911	mol/l	6,01E-11			(40°)		mol/l	1,33E-04
Milchsaure	(Lac)	mg/l	115		KH(CO2	2)	mol/l bar	2,40E-02			âguivalent	(HAc-Áqu)		9140
Essigsaum	(HAC)	mg/l	6040		p(CO2)		bar	1,120				(HAc-Aqu.)		152,2
Propionsa	ure (Prop)	mg/l	1285		[CO2]aq		moVm3	26,9		Ameisensi			mol/m3	0,0
Buttersäun		mg/l	2565		100					Milchsäure)		mol/m3	1,3
Valoriansa	ure (Val)	mg/l	525		CSB	12,1	24,3							91.5.50
pH-Wert		-	5,7											
Ammonium	n	mcVm3	388	1										
pH	H+	OH-	fCO2	fHCO3-	CO2	HC03-	IAc-	#Form-	flac-	Ac-Ăqu —	Form-	Lac-	Alk-NH4	Kat-Ani
5,7	mol/l 2,00E-06	mol/I 1,46E-08	0,80	0,20	mol/m3 21,45	mol/m3 5,42	0,90	0,99	0,98	mol/m3 136,25	EmVlom 0,00	mol/m3 1,28	mol/m3 142,9	mol/m3 115
Eingaba	2													
Temperatu		°C	40	1	Berec	hnung l	Kohlensa	iure:		Berechr	ung org	anische	Säuren:	
CO2-Konzentration Gas		%	80		K(H2O)		Nom	2,91E-14		K(HAc)		The second of the second	mol/I	1,70E-05
Druck Vers	averungsb	bar	1,4		KC1(CO	2)	mol/l	5,04E-07		K(Form) (4	IO°)		mol/l	1,73E-04
Ameisensi	iure (Form)	mg/l	0		KC2(CO	2)	Mol/I	6,01E-11		K(Lac) (40%		mol/i	1,33E-04
Milchsaure	(Lac)	mg/l	45		KH(CO2)	mol/l bar	2,40E-02		Essigsaure	äquivalent	(HAc-Āqu.)	mg/l	5510
Essignaure		mg/i	3340		p(CO2)		bar	1,120		Essigsaure	C	(HAC-Áqu)	mol/m3	91,8
Propionsau		mg/l	925		[COZ]aq		moVm3	26,9		Ameisens4	ure	e 11 8	mol/m3	0,0
Buttersaure		mgA	1625							Milchsäure			mol/m3	0,5
Valerianså	ute (Val)	mg/l	530		CSB	7,7	15,4							
pH-Wert Ammonium	i	mol/m3	5,3 258											
	H+	OH-	fC02	fHCO3-	CO2	HCO3-	fAc-	fForm-	fLac-	Ac-Ägu	Form-	Lac-	Alk-NH4-	Kat-Ani
pH -	mol/l	mol/t		**	mol/m3	mol/m3				mol/m3	mol/m3	mol/m3	mol/m3	mol/m3
5,3	5,01E-06	5,80E-09	0,91	0,09	24,42	2,48	0,77	0,97	0,96	70,89	0,00	0.48	73,8	55
Eingabe					Demoi	anuma k	Cohlensä	IIPD:		Darachn	ling org	anleaha	Säuren:	
Temperatur		%	80 80			mung r	mol/l				ung org	amsche		1,70E-05
	intration Gas		22.77.20		K(H2O)		moi/i	2,91E-14		K(HAc)	Δm.		mol/l	
Druck Versäuerungsb. Ameisensäure (Form)		bar	1,4		KC1(CO			5,04E-07 6,01E-11		K(Form) (4	100		mol/l	1,73E-04 1,33E-04
Milchsäure (Lac)		mg/l mg/l	315		KC2(CO	-	mol/l bar	2,40E-02		11000000	40°)	714- 5-11	mol/l	5799
Essignaure(HAc)		mg/l	3545		KH(CO2) p(CO2)		bar	1,120		Essigsaure Essigsaure			mg/l mol/m3	96,6
Propionsaure (Prop)		mg/l	1115		[COZ]aq		mol/m3	26,9		Ameisensä		(uve-vda)	mot m3	0,0
Buttersaure (Butt)		mg/l	1630		[CO2]aq		muuma	20,9		Milchsaure	ште		Em\lom	3,5
Valeriansaure (Val.)		mg/l	405		CSB	8,3	16,5			MICHAROLG			mounta	3,3
pH-West		110901	5,2		COD	0,5	10,3							
Ammonium	Ē	mol/m3	258											
рН	H+	OH-	fC02	fHCO3-	CO2	HC03-	fAc-	fForm-	flac-	Ac-Aqu -	Form-	Lac-	Alk-NH4-	Ket-Ani
	mot/l	mol/i		-	mol/m3	moVm3	-			mol/m3	mol/m3	mol/m3	mol/m3	mol/m3
5,2	6,31E-06	4,61E-09	0,93	0,07	24,89	1,99	0,73	0,96	0,95	70,48	0.00	3.34	75,8	57
Eingabe		-6	407		Rerect	nuna K	Cohlensä	ille.		Berechn	una ora:	anieche	Säuren:	
	ntration Gas	96	80		K(H2O)	midnig i	mol/l	2,91E-14		K(HAc)	ung org	MINDENIC	mol/i	1,70E-05
Druck Versi			1,4		KC1(CO2	n	mol/I	5,04E-07		K(Form) (4	191		mol/l	1,73E-04
Unuck versi Ameisensäi		bar mg/l	'0		KC2(CO2		mol/l	6,01E-11-	•		107		mol/i	1,73E-04
Milchsäure	Manufacture Control of the Control o	mg/l	90		KH(CO2)	•	mol/Lbar	2,40E-02		Essigsaure:		HAc-Águ \	rng/I	6456
Essignaure(mg/l	3800		p(CO2)		bar	1,120		Essigsaure			mol/m3	107,5
Propionsául		mg/l	1185		[CO2]aq		mol/m3	26,9		Ameisensäi	1.0		mol/m3	0,0
Buttersaure		mg/l	1920				Arama Mark			Milchsäure			mol/m3	1,0
Valeriansāu		mg/l	655		CSB	9,2	18,4						you be made the second	3.470
pH-Wert		(6)	5,4		ersed T al	(= 1 = 1	- 213							
Ammonium	The second second	mol/m3	435											
pH	H+	OH-	fCO2	rHCO3-	CO2	нсоз-	fAc-	fForm-	fLac-	Ac-Áqu	Form-	Lac-	Alk-NH4-	Kat-Ani.
5,4	mol/l 3,98E-06	mol/l 7,30E-09	0,89	0,11	mol/m3 23,85	mal/m3 3,02	0,81	0,98	0,97	mol/m3 87,13	mol/m3 0,00	mol/m3 0,97	mol/m3 91,1	mol/m3 60
Eingabe	2	and the same of								PARTIES.		one condition	,	
emperatur	To the second	°C	40			nung K	ohlensä			Berechn	ung orga	anische		200
02-Konzer	ntration Gas	%	80		K(H2O)	100	mol/I	2,91E-14		K(HAc)	neral (feral)		mol/I	1,70E-05
Druck Versäuerungsb		bar	1,4		KC1(CO2		mal/l	5,04E-07		K(Form) (40			mol/l	1,73E-04
Ameisensäure (Form)		mg/l	٥		KC2(CO2)	mol/l	6,01E-11			0%		mol/l	1,33E-04
Milchsäure (Lac)		mg/l mg/l	145		KH(CO2)		mol/l bar	2,40E-02		Essignatured			mg/l	6784
	Essigsaure(HAc)		4356		p(CO2)		bar	1,120		Essigsaurea		HAc-Aqu)	mol/m3	113,0
Essigsäure		mg/l	1500		[CO2]aq		moVm3	26,9		Ameisensät	ire		mol/m3	0,0
Essigsäure(Propionsäur	m (Prop)	7.5								Michaiura			mol/m3	1,6
ssigsäure(ropionsäure luttersäure	n (Prop) (Butt)	mg/l	1315				The second second							
ssigsäure(Propionsäur Buttersäure /aleriansäu	n (Prop) (Butt)	7.5	535		CSB	9,5	19,0							
Ssigsäure(Propionsäure Buttersäure /eleriansäu H-Wert	n (Prop) (Butt)	mg/l			CSB	9,5	19,0							
Essigsäure) Propionsäure Buttersäure Valeriansäu pH-Wert Ammonium	re (Prop) (Butt) re (Val)	mg/l Mgm Em/lom	535 5,5 408	fHCO3-		100		fForm-	fl.ac-	Ac-Āou —	Form-	Lac-	Alk-NH4-	Kat-Ani
Ssigsäure(Propionsäure Buttersäure /eleriansäu H-Wert	n (Prop) (Butt)	mg/l mg/l	535 5,5	fHCO3-	CO2 mol/m3 23,18	9,5 HCO3- mol/m3 3,70	19,0 fAc- - 0,84	fForm-	fLac- - 0,98	Ac-Āqu — mol/m3 95,28	Form- mol/m3 0,00	Lac- mol/m3 1,57	Alk-NH4- mol/m3 100,5	Kat-Ani moi/m3 71

Eingabe	1													
Temperatur "C			40	1	Bereci	hnung l	Kohlensa	iure:		Berechr	nung org	janische	Säuren:	
CO2-Konzentration Gas		%	80		K(H2O)		moVI	2,91E-14		K(HAc)			mol/l	1.70E-05
Druck Versäuerungsb		bar	1,4	1	KC1(CO	2)	mol/l	5,04E-07		K(Form) (4	100		mol/l	1,73E-04
								The state of the s						
Ameisensäure (Form)		mg/l	0		KC2(CO		mol/l	6,01E-11			40°)		mol/l	1,33E-04
Milchsäure (Lac)		mg/l	35		KH(CO2)	f i	mol/l bar	2,40E-02				(HAc-Aqu.)		3817
Essigsaure(HAc)		mg/l	2220	No.	p(CO2)		bar	1,120				(HAc-Āqu)		63,6
Propionsau	ire (Prop)	mg/l	790		[CO2]aq		mol/m3	26,9		Ameisensä	ure		mol/m3	0,0
Buttersaure	(Butt)	mg/l	980	[]]						Milchsäure			mol/m3	0,4
Valeriansau	ure (Vai)	mg/l	490	1	CSB		g/I	11,2						
pH-Wert		-	5,3											
Ammonium		Tigm.	85											
pH	H+	OH-	fCO2	fHCO3-	CO2	HC03-	fAc-	fForm-	fLac-	Ac-Áqu	Form-	Lac-	Alk-NH4-	Kat-Ani
-	mol/l	mol/l	4		mol/m3	mol/m3		4.		mol/m3	mol/m3	mol/m3	mol/m3	mol/m3
5,3	5,01E-06	5,80E-09	0,91	0,09	24,42	2,46	0,77	0,97	0,96	49,11	0,00	0,37	51,9	46
Eingabe	2													
Temperatur	ř.	·C	40		Berect	nnung k	Cohlensa	iure:		Berechn	ung org	janische	Säuren:	
CO2-Konzentration Gas		%	80		K(H2O)		mol/l	2,91E-14		K(HAc)			mol/l	1,70E-05
Druck Versäuerungsb.		bar	1,4		KC1(CO	2)	mol/l	5,04E-07		K(Form) (4	(°D)		mol/l	1,73E-04
Ameisonsäure (Form)		rng/l	0	17.	KC2(CO2		mol/l	6,01E-11			40%		mol/l	1,33E-04
Milchsaure		mg/l	40	1	KH(CO2)		mol/l bar	2,40E-02		Essigsaure	1000	(HAC-AOU)	mg/l	4352
										Essigsaure			mol/m3	72,5
Essigsaure		mg/l	2525		p(CO2)		bar	1,120		refinement and the		(HAC-Aqu.)		
Propionsău		mg/l	865		[CO2]aq		mol/m3	26,9		Ameisensä	ure		mol/m3	0,0
Buttersäure	A STORY CONTRACTOR	mg/l	1120							Milchsaure			mol/m3	0,4
Valeriansik	ure (Val)	mg/l	615		CSB		g/l	13,4						
pH-Wert			5,2											
Ammonium		mgri	78											
pН	H+	OH-	IC02	fHCO3-	CO2	нсоз-	fAc-	fForm-	fLac-	Ac-Āqu	Form-	Lac-	Alk-NH4-	Kat-Anı
-	mol/l	mol/l		5.0	mol/m3	mol/m3	* 1	- 30		mol/m3	moVm3	mol/m3	mol/m3	mal/m3
5,2	6,31E-06	4,61E-09	0,93	0,07	24,89	1,99	0,73	0,96	0,95	52,88	0,00	0,42	55,3	50
Eingabe	1990		-		D		Cablana			Donah	una a	aniech-	Causes	
Temperatur		·C	40			mung P	Cohlensa				ung org	amsche	Säuren:	01/20/20/20/20
A STATE OF	intration Gas	%	80		K(H2O)		mol/l	2,91E-14		K(HAc)			mol/l	1,70E-05
Druck Vers	äuerungsb	bar	1,4		KC1(CO2	2)	mol/l	5.04E-07		K(Form) (4	O*)		mol/l	1,73E-04
Ameisensaure (Form)		mg/l	0		KC2(CO2	2)	mol/I	6,01E-11		K(Lac) (40ግ		mol/l	1,33E-04
Milchsäure (Lac)		mg/l	45		KH(CO2)		mol/l bar	2.40E-02		Essigsäure	âquivalent	(HAc-Agu)	mg/f	5510
Essigsaure(HAc)		mg/l	3340		p(CO2)		bar	1,120		Essigsaure			mol/m3	91.8
Propionsáure (Prop)		mg/l	925		[CO2]aq		mol/m3	26.9		Ameisensa			mol/m3	0,0
Buttersaure (Butt)		mg/l	1625		loorlad		months	20,0		Milchsaure	410		mol/m3	0,5
			530		CSB		-/1	17,3		Michiganic			monno	0,0
Valenansaure (Val)		mg/l	15,40,000		CSB		g/l	17,5						
pH-Wert Ammonium		nga	5,3 258											
mt.I	H+	OH-	fCO2	fHCO3-	CO2	HCO3-	fAc-	fForm-	fLac-	Ac-Águ –	Form-	Lac-	Alk-NH4-	Kat-Ani.
pН	mol/l	mol/I	1002	1/1003-	mo!/m3	mol/m3	TAC-	Ir Oini-	ILBO-	mol/m3	mol/m3	mol/m3	moVm3	moVm3
5,3	5,01E-06	5,80E-09	0,91	0,09	24,42	2,46	0,77	0,97	0,96	70,89	0.00	D_48	73,8	55
Eingabe	4													
Temperatur		°C	401		Berech	nung K	Cohlensä	ure:		Berechn	ung org	anische	Säuren:	
CO2-Koose	ntration Gas	%	80		K(H2O)	-	mol/l	2.91E-14		K(HAc)			molif	1,70E-05
Druck Versi		bar	1,4		KC1(CO2	n.	mol/l	5.04E-07		K(Form) (4	nºn		mol/l	1,73€-04
A CONTRACTOR OF THE PARTY OF TH					11001000								moVI	1,33E-04
Ameisonsaure (Form)		mg/l	0		KU2(CO2	1	mol/l	6,01E-11		K(Lac) (4	eu j Saujentene	MAC Service		
Milchsäure		mg/l	0		KH(CO2)		mol/l bar	2,40E-02		Essigsaure			mg/l	5950
Essigniture		mg/l	3660		p(CO2)		bar	1,120		Essigsaurea		(HAC-Adr.)	mol/m3	99,1
Propionsáu	The state of the s	mg/l	1180		[CO2]aq		mol/m3	26,9		Ameisensä	ure		mol/m3	0,0
Buttersäure		mg/l	1450					100		Milchsäure			mol/m3	0,0
Valeriansáu	re (Val)	rng/f	585		CSB		g/1	19,5						
pH-Wert		200	5,0											
Ammonium		mg/l	150											
pН	H+	OH-	fCO2	FHCO3-	CO2	HC03-	fAc-	fForm-	fLac-	Ac-Aqu -	Form-	Lac-	Alk-NH4-	Kat-Ani
5,0	mol/l 1,00E-05	mal/l 2,91E-09	0,95	0,05	mol/m3 25,58	mol/m3 1,29	0,63	0,95	0,93	mol/m3 62,42	mol/m3 0,00	mol/m3 0,00	mol/m3 63,7	mol/m3 53
		2,010-03	O ₁ OO	J ₁ OD	20,00	1,40	0,00	0,00	0,00	45,45	74.00	3,00		
Temperatur		°C	40]		Berech	nuna K	Ohlensä	ure:		Berechn	una ora	anische	Säuren:	
			17,504					2.91E-14			33		mol/I	1,70E-05
Charles and the second second	ntration Gas	%	80		K(H2O)		mol/l			K(HAc)	non			
Druck Versa		bar	1,4		KC1(CO2		mol/l	5,04E-07		K(Form) (4			mol/l	1,73E-04
Ameisensaure (Form)		mg/l	0		KC2(CO2)	mol/l	6,01E-11			10°)		moVI	1,33E-04
Milchsäure (Lac)		mg/l	315		KH(CO2)		mol/Lbar	2,40E-02		Essigsaurea			mg/l	5799
Essigsaure(HAc)		mg/l	3545		p(CO2)		bar	1,120		Essigsaurea	FREE CONTRACTOR STATES	HAC-Aqu)	mol/m3	96,6
Propionsäure (Prop)		mg/l	1115		[CO2]aq		mal/m3	26,9		Ameisensa	ure		mol/m3	0,0
Buttersäure (Butt)		mg/l	1630		THE SHEET STATES			- 10		Milchsäure			moVm3	3,5
Valeriansäure (Vai)		mg/l	405		CSB		g/l	19,5						
pH-Wort			5,2				- a''							
Ammonium		mg/I	258											
pН	H+	OH-	fCO2	fHCO3-	CO2	HC03-	fAc-	fForm-	fLac-	Ac-Áqu —	Form-	Lac-	Alk-NH4-	Kat-Anr
-	MoM	mol/l	0.02	0.07	mol/m3	mol/m3	0.73	0.06	0.05	mol/m3	mol/m3 0,00	mol/m3 3,34	mol/m3 75_8	mol/m3 57
5,2	6,31E-06	4,61E-09	0,93	0,07	24,89	1,99	0,73	0,96	0,95	70,46	0,00	3,34	13.0	31

CURRICULUM VITAE

Persönliche Daten

Geboren 24. Februar 1960 in Linz, OÖ Eltem Josef und Josefine Moser

Geschwister Winfried (09.01.1959) und Helmut (10.11.1961)

Familienstand ledig Staatsbürgerschaft Österreich

Adresse Apostelg. 17/37; 1030 WIEN

Schule und Studium

1966-1970 Volksschule Haslach, OÖ

1970-1978 Naturwissenschaftliches Bundesrealgymnasium Rohrbach, OÖ

Matura (guter Erfolg) am 06.06.1978

1978-1981 Studium der Technischen Chemie

1. Diplomprüfung am 07.04.1981

1981-1985 Studienzweig Biochemie und Lebensmittelchemie

2. Diplomprüfung am 03.06.1985

Diplomarbeitsthema: Studie über die Oxidation der Stickstoffverbindungen im Abwasser am Beispiel der Hauptkläranlage Wien

Simmering

1985-1986 Bundesheer (8 Monate)

1986-1988 Betriebsleiter der Kläranlage einer Zitronensäurefabrik (NÖ)

seit 1989 Assistent am Institut für Wassergüte und Abfallwirtschaft

TU Wien