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Long title of the thesis 

Graph algorithms, combinatorics, GWAS, dimension reduction and classification in 
populations of full genome sequenced data, full genome microarrays and quite 
comprehensive metabolic profiles. 

 

Summary 

Already a few years ago reports appeared in popular computer science magazines that 
molecular biology data is exponentially growing [1]. More recently, there have been concerns 
that NGS/sequencing data is growing faster than computer storage capacities, despite the 
exponential growth of this storage [2, 3]. This thesis deals with these large amounts of data, 
therefore this work is clearly located in the field of bioinformatics. 

Additionally, the classic paradigm of 'one gene/protein – one function or phenotype' has 
shifted from being the main approach to just one of several options, with most of these 
combining large amounts of information to arrive at a conclusion [4-7]. Several terms exist for 
this: systems biology, the –omics field, integrative analysis, and a few more. 

The present work makes a broad sweep of the field, from whole genome microarrays, 
through metabolomics, to sequencing data, with sidetracks into the complexities of a 
combinatorial problem, dimension reduction, and transposons. The steady goal is to gain 
general insights into the full data collection and/or to indicate other promising procedures. 

The work on differentially expressed genes in tumors started with the diploma thesis of the 
applicant and was continued in a later article. The main result is that, although the overlaps 
of differential expressed genes in tumors from the same tumor type seem random, these 
gene lists share elements on a protein interaction network level. 

The observation of metabolite levels from tissues is still an immature field; currently, several 
100 different metabolites can be distinguished. At the time of the dataset for my analysis, 
about 100 metabolites had been safely identified. In comparison to the p>>n (i.e., many more 
variables than data records) problems in bioinformatics, this is rather a standard problem and 
a classification can be made with known machine learning methods. We were thus able to 
create classification models by which we could identify key metabolites in renal cell 
carcinoma. 

NGS data is basically a paragon for p>>n data, and this situation will not change for a while 
since several million variations can be found in a population with feasible levels of effort but 
far fewer than a million individuals are usually sequenced. In some cases, more variations 
may be found than individuals that even exist for the sequenced species. These datasets 
present certain issues, which can be summarized by the curse of dimensionality and 
potential population structure. Since I have been working for the last few years on the 1001 
Genomes Project [8], my main data source was the largest collection of sequenced 
Arabidopsis thaliana. As a model species, A. thaliana offers several advantages: it is fast 
growing; recombinant inbred lines are possible; the genome is quite small; and there are no 
ethical concerns. On the other hand, it is a ‘mere weed'.  
For such p>>n data, a subfield of machine learning, dimension reduction, is very helpful. We 
combined these fields for visualization and added a new measure of the ‘quality’ of the 
visualizations. 
For the transposons hidden in the 1001 genomes data, we developed a new transposon 
caller tool, which leverages our data in a better way. 
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Additional challenges in a project of this scale are data collection, organization, development 
of other calling pipelines, a final consistency check, and of course selling it reasonable high 
as paper(s). Apart from the last point, where I was just one in a group of people involved, the 
remaining points were headed up by me for a longer phase in the project. 

Another result that arose within the above mentioned data sets is the solution of the 
combinatorial problem of getting an exact p-value when putative regulations are inferred and 
the unbiased validation is a set of proven transcription factors (TRANSFAC database [9]). 
The outcome is that an exact solution is possible with a computational complexity of O(n^3). 

This work resulted in some publications and several useful insights, which are unfortunately 
not enough for full papers. These latter are also described here. 
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Vollständige Überschrift dieser Arbeit 

Graphenalgorithmen, Kombinatorik, GWAS, Dimensionsreduktion und Klassifikation in 
Populationen von komplett sequenzierten Genomdaten, vollständigen Microarrays und relativ 
umfassenden Metabolitdaten. 

 

Kurzfassung 

Bereits vor etlichen Jahren wurden in Computerzeitschriften molekularbiologische Daten als 
exponentiell wachsend aufgezählt [1]. In jüngerer Zeit wird dieses Wachstum bei 
Sequenzierungsdaten mit Sorge betrachtet, weil sie schneller wachsen als die 
Datenspeicher, obwohl deren Wachstum exponentiell ist [2, 3]. In dieser Arbeit werden diese 
riesigen Datenmengen behandelt und analysiert, damit fällt diese Arbeit eindeutig in das 
Forschungsgebiet Bioinformatik. 

Zusätzlich hat sich der klassische Ansatz 'ein Gen/Protein – eine Funktion/Phänotyp' vom 
Hauptansatz zu einem Ansatz unter mehreren entwickelt, die meisten ([4-7]) davon 
kombinieren eine Menge Informationen für das Ergebnis. Für diese gibt es die Begriffe: 
Systembiologie, den Bereich der –omiks, integrative Analyse und einige mehr. 

Diese Arbeit spannt einen großen Bogen von vollständigen Microarrays über Metabolitdaten 
zu Sequenzdaten, mit Seitensträngen in die Tiefe eines kombinatorischen Problems, 
Dimensionsreduktion und Transposons. Das Ziel ist dabei immer in der gesamten 
Datensammlung generelle Eigenschaften zu finden, bzw. aussichtsreiche weitere Verfahren. 

Die Arbeit an differentiell exprimierten Genen von Tumoren fing mit meiner Diplomarbeit an 
und setzte sich zu einem Artikel nach Ende fort. Das Hauptergebnis darin: Obwohl die 
Schnittmengen von differentiell exprimierten Genen in Tumoren, von verschiedenen Artikeln 
zum gleichen Tumortyp, wie zufällig sind, haben diese Genlisten etwas im 
Proteininteraktionsnetzwerk gemeinsam. 

Die Extraktion von Metabolitkonzentrationen von Geweben ist nach wie vor ein junges Feld, 
aktuell können einige 100 verschiedene Metaboliten unterschieden werden. Zur Zeit der 
Daten für meine Analyse waren es etwa 100. Im Vergleich zu den p>>n (das heißt einiges 
mehr an Variablen als Datensätze) Problemen in der Bioinformatik ist das eher ein 
Standardproblem und eine Klassifikation kann mit bekannten machine learning Methoden 
gemacht werden. Damit waren wir in der Lage Klassifikationsmodelle zu erzeugen mit denen 
wir Schlüsselmetabolite in Nierenkarzinome finden konnten. 

NGS Daten sind mehr oder weniger ein Paradebeispiel für p>>n Daten und werden es noch 
einige Zeit bleiben, da in einer Population einige Millionen von Variationen mit vertretbaren 
Aufwand gefunden werden können, aber für gewöhnlich weit weniger als eine Million 
Individuen sequenziert werden. In einigen Fällen können mehr Variationen gefunden werden, 
als von der untersuchten Spezies überhaupt Individuen existieren. Mit diesen Daten gehen 
einige Probleme einher, welche folgendermaßen zusammengefasst werden können: Der 
Fluch der Dimensionalität und Populationsstruktur. Da ich in den letzten Jahren im 1001 
Genomes Project gearbeitet habe ist meine Hauptdatenquelle die größte Sammlung von 
sequenzierten Arabidopsis thaliana. A. thaliana als Modellorganismus hat einige Vorteile: 
Wächst schnell, Inzuchtlinien sind einfach machbar, das Genom ist relativ klein und es gibt 
für diese Spezies keine ethischen Bedenken. Auf der anderen Seite könnte man zu 
Arabidopsis thaliana auch Unkraut sagen. 
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Für solche p>>n Daten ist eine Teildisziplin von machine learning, Dimensionsreduktion, 
sehr hilfreich. Wir kombinierten diese Disziplinen für Visualisierung und fanden eine neue 
Maßzahl für die Güte die Visualisierung. 

Für die Transposons, die sich in den Sequenzdaten des 1001 Genomes Project verborgen 
hielten, entwickelten wir eine neue Methode die vorhandenen Daten besser nützt. 

Auch eine Herausforderung in einem Projekt dieser Größe sind die Sammlung der Daten, die 
Organisation, die Entwicklung zusätzlicher Analysemodule, die Endprüfung der Konsistenz 
und das möglichst gute Verkaufen als Artikel(n). Abgesehen vom letzten Punkt an dem ich 
als einer unter einigen Leuten beteiligt war/bin, liefen/laufen die anderen Punkte über längere 
Phasen des Projekts hauptsächlich zu mir. 

Eine weitere abgeschlossene Nebengeschichte ergab sich aus dem kombinatorischen 
Problem einen exakten p-Wert zu bekommen, wenn mögliche Regulationen generiert 
werden und die unverzerrte Validierung eine Liste von Transkriptionsfaktoren sind 
(TRANSFAC Datenbank [9]). Das Ergebnis ist dass eine Lösung in O(n^3) möglich ist. 

Diese Arbeit führte zu einigen Artikeln und noch zu einigen mehr an Erkenntnissen die leider 
keine ganzen Artikel wert sind; hier wird auch letzteres präsentiert. 
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1. Introduction 

Although this is an interdisciplinary thesis, I would locate it precisely in the field of 
bioinformatics. Of course, bioinformatics is seen as a broad area, consisting of anything that 
combines biology and computer science, and the field is always is in the area of tension 
between chemistry, biology, computer science, mathematics, and parts of other fields, 
besides these major ones. An older name for computer science is 'electronic data 
processing'1, which was and is, literally, computer science. If we imagine some biological 
data in a small table where a simple function of standard statistics provides a yes or no 
answer to a question, this is also bioinformatics, only on a tiny scale. The relatively tiny scale 
is especially true when the generation of the biological data took months or years, while in 
this case the analysis takes only minutes. 

However, as biological data grows due to standard high-throughput methods, when the 
underlying source is complex, as most biological systems are, and the questions aim at 
complex models because these can be inferred with the high resolution gained by a huge 
amount of data, then the electronic data processing aspect becomes the major effort. 

A scientific field usually matures from the simple to the complex questions; for example, it 
seems quite difficult nowadays to find a new physical principle with just simple experiments 
and a sheet of paper. 'Complex' in 'complex questions' does not necessarily refer to a long 
question or one which is difficult to understand, but rather to the answer. A question like 'How 
do all genes regulate each other?' is short and simple to understand as a question, yet the 
answer is complex. A question like 'What is the result of this mutation in a gene for which we 
know already that it is for eye color?' is also not hard to understand and the answer will very 
likely be as simple. 'Complex' and 'simple' are not necessarily related to the effort of finding 
an answer. In biology, the simple open questions and the complex questions still exist 
alongside one another (for an arbitrary example of a solved simple question see [10], for a 
complex question see [11]). However, there has been a shift in the last years towards the 
complex questions. 

The focus of this work is on the complex questions, that is, on data-intensive questions for 
which require large amounts of electronic data processing. 

 

1.1 Data sources 

Engineering, miniaturization and efficiency are also advancing in biology, resulting in a 
growing amount of data. While this at first only led to more interesting developments, 
combinations, and the field of bioinformatics, now a data flood threatens. The 
NGS/sequencing data amount is growing faster than the computer storage capacities [12], 
which results in the need of ever-larger computer clusters. If the trend continues, limitations 
will also arise from excess data, whereas in the past the main bottleneck was from 
insufficient sampling. Apart from that, noisy 2  data was, and remains, an issue. Fehler! 
Hyperlink-Referenz ungültig. 

                                                
1 'Electronic data processing' also refers to analysis, algorithms, or everything done electronically with data. 
2 The term 'noise' comes here from signal processing, where it is referred as 'signal-to-noise ratio' [13]. The 

idea is that there is a signal in the data (=the information we want to know), and there is the (background) 

noise, which is overlapping the signal. 
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1.1.1 Microarrays 
DNA Microarrays exist for different aims, but they all have in common the use of many 
specific DNA sequences which are used as probes and may hybridize to the complementary 
of the sample DNA [14]. The outcome of a microarray is the absolute amount of 
complementary sequences, the relative amount, or the simple existence as binary 
information. In our case, the microarrays were for differential gene expression. The main 
method used here is the two-color microarray, which follows these main steps: 

• isolating the mRNA from two given samples, for example one cell pool from malign 
tissue, one cell pool from healthy tissue. 

• translating  the mRNA in cDNA and selective marking of the two samples; the 
fluorophores Cy3 (green) and Cy5 (red) are usually used. 

• applying a mixture of both differently marked samples to the microarrays; this results 
in a sequence-dependent hybridization to the probes of the array (for cDNA arrays 
these probes are sequences of lengths ~200-300).  

• reading the fluorescent signal and calculating the ratio red/green; these ratios give 
the relative concentration of the mRNA of sample A in comparison to sample B. 

Several other protocols exist, each with slightly different strengths and weaknesses. For an 
overview see [15]. 

One of the main issues with microarrays is - and has always been - the normalization of the 
values. In the case of two sample comparisons, the standard normalization is simply global: 
the values are scaled so that the average ratio is 1. 

A newer method, RNAseq [16], exists for the same purpose. Broadly speaking, the method is 
to sequence all mRNA of a sample and map it back to the genes. The coverage of the genes 
by sequences gives the concentration of mRNA. As the sources for differentially expressed 
genes in this work are exclusively from microarrays, RNAseq remains a side note here. 

1.1.2 Protein–protein interaction 
Protein-protein interactions, short PPI, are the core information for how the protein circuit in a 
cell functions. These interactions can be of relevance and are studied on several levels [17]: 
signal transduction, modifications, fold changes, formation of protein complexes, transport, 
and so on. Unfortunately, most levels of investigation cannot be done in high-throughput, 
which entails that the amount of knowledge is biased to the apparently most interesting PPIs 
[18]. The information, which is most likely unbiased for popular parts, is the binary 
information whether two proteins interact or not. This was done exhaustively with the yeast 
two-hybrid [19] and curated with certain other sources collected, for example, in the 
Interologous Interaction Database, formerly called OPHID [20]. All this binary PPI information 
forms the hopefully complete protein interaction network. 

1.1.3 Chromatin-Immunoprecipitation Chip 
The method, in brief, is to acquire the information on proteins and associated 
DNA/chromatin, which are temporarily bonded [21]. The starting point are living cells. 

The particular methods of the chromatin immunoprecipitation (short: ChIP) differ in the 
amount and type of information gained from the fixed protein-DNA interaction (overview at 
[22]). 

In this work, ChIP-based data is only used for a very specific problem, and only a specific 
kind of information is used: at the time of the analysis at least, the most likely unbiased 
complete information of this source was whether a protein interacts with DNA or not. The 
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used source was the TRANSFAC [9] database's manually curated database of eukaryotic 
transcription factors. 

Chromatin-Immunoprecipitation Chip is sometimes abbreviated to 'ChIP-chip' and is seen as 
belonging to epigenetics, because it can extract information which does not rely on the DNA 
sequence. 

1.1.4 Metabolite profiling 
For analyzing metabolites of cells, the full range of analytical chemistry can be used. For an 
overview of past and current large projects see [23-26]. For our samples, we used GC-TOF-
MS (Gas Chromatography Time-Of-Flight Mass Spectrometry), specifically a Leco Pegasus 
3 time-of-flight mass spectrometer (Leco, St. Joseph, MI, USA; see more in section 5.3). 

Figures 1 and 2 show schematically how this method works in general. 

 

Figure 1. Diagram of a gas chromatograph. The column in the diagram can be anything suitable for a 
stationary phase. For a GC-TOF-MS the detector resembles that in Figure 2. Figure 1 is from [27] 

 

Figure 2. A TOF-MS detector. The minimum requirement for the sample inlet is to provide a continuous 
~low flow of sample material; the sample can already be separated at the inlet. The sample molecules are 
ionized to enable the acceleration with a constant homogeneous electrostatic field. After acceleration, the 
time to the ion-detector and the amount of ions is measured. The time corresponds to the m/z ratio of the 
ion (m=mass, z=charge). Figure is from [28]. 
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The resulting spectra is then compared with a database or classified as new. The main error 
source here is not the concentration of the metabolites, but the mixing-up of different 
metabolites, especially those with a very similar m/z ratio. At the time when our data was 
gathered, a few hundred metabolites could be safely distinguished. 

 

1.1.5 NGS / sequencing data 
Since 2000, when one human genome was sequenced [29], the amount of sequencing data 
has grossly increased. The vast majority of this data generation follows the shotgun 
sequencing [30] idea. An overview of current technologies for NGS/sequencing data 
generation is in Table 1. 

In our case, the data of this type was generated with Illumina machines [31]. Beside the 
features in Table 1, several Illumina platforms, including that in our mostly contracted 
sequencing center, have the specific characteristic of producing read-pairs. The Illumina 
method is briefly shown in Figure 3. 

Method 

Single-

molecule 

real-time 

sequencing 

(Pacific Bio) 

Ion 

semiconductor 

(Ion Torrent 

sequencing) 

Pyro-

sequencing 

(454) 

Sequencing 

by synthesis 

(Illumina) 

Sequencing 

by ligation 

(SOLiD 

sequencing) 

Chain 

termination 

(Sanger 

sequencing) 

Read length 

(bp) 

5,500 - 

8,500 
up to 400 700 50 - 300 

50+35 or 

50+50 
400 - 900 

Accuracy 

(%) 

87, single-

read 

accuracy 

98 99.90 98 99.90 99.90 

Reads per 

run 
50,000 up to 80 million 1 million up to 3 billion 

1.2 to 1.4 

billion 
N/A 

Time per 

run 

30 minutes 

to 2 hours 
2 hours 24 hours 1 to 10 days 1 to 2 weeks 

20 minutes to 

3 hours 

Cost per 1 

million bp 

(US$) 

0.33-1.00 1 10 0.05 to 0.15 0.13 2400 

pros 

Longest 

read length. 

Fast 

Less expensive 

equipment.  

Fast 

Long read 

size. Fast 
Cheapest Cheap 

Long 

individual 

reads 

cons 

Moderate 

throughput. 

Expensive 

equipment 

Homopolymer 

errors 

Runs are 

expensive. 

Homopolymer 

errors 

Expensive 

equipment. 

Requires high 

concentrations 

Slower. 

Palindromic 

sequence 

errors 

Expensive 

Table 1. Overview of DNA sequencing technologies. The table is modified from Wikipedia [32]. 
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Figure 3. Illumina NGS method. The source for the pairs of reads are the two bound termini (here in blue 
and red). The given base of each round is determined from its fluorescence color. Figure from Illumina. 

A fragment of DNA used for read-pair sequencing consists of several differently named 

segments. Their definitions are shown in Figure 4. 

 

Figure 4. Segments of DNA, resp. their names in a fragment for read-pair sequencing. At the end, the 'raw 
data' of the sequencing are the two paired reads, here marked with the vertical curly brackets. 
Unfortunately, the term 'insert size' is inconsistently used in the literature. 
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Millions of sequence reads can be produced with reasonable effort today, and the effort per 
read is further decreasing [2]. Consequently, this leads to an enormous increase in the 
available data [3]. As shown in Figure 5, the increase is even more pronounced than the 
increase in data storage availability [12], which may lead to new challenges. Currently, the 
quantity of data is large enough to make full analysis impossible on a single computer; 
computer clusters are needed. Another implication is that efficient tools and implementations 
will grow in importance, which may cause a shift in the current ranking of programming 
languages used in bioinformatics (observed with colleagues as well as in a poll in [33]). A 
comparison of programming language in standard bioinformatic algorithms can be found at 
[34]. 

The optimum for sequencing a genome would likely be to sequence the full chromosomes 
just once without any noticeable error, but this is far from possible. The current sequencing 
situation (year 2014) is given by the fact that the generation of many short sequences is 
much cheaper than the generation of the same combined sequence length by longer 
sequences [32]. Moreover, there is always a noticeable error rate, which usually increases 
with the length of the sequence ([35] and is also visible in all of our data samples, see below 
in chapter 6). Therefore, it is always a trade-off between number of reads, lengths of reads, 
and error rates. A random error rate is, in some sense, treatable, though a fraction of the 
error is always systematic. 

Special error sources from DNA sequencing reads: 

• Duplicated sequences during library preparation: as there is often a PCR-step in the 
library preparation, it is possible that some fragments are amplified much more often 
than others (the goal is an even amplification), which can confuse the calling of 
events. For that reason, for a while it was recommended to remove reads that are 
aligned at exactly the same coordinates. On the other hand, the removal may mask 
the information of real sequence duplicates (as in [36], Supplementary Figure 23). 

• The (error) noise is not evenly distributed (as an example see the GC bias in 
sequencing, as reported in [37]). 

• The Q-values indicated from the sequencing are on average higher than the empirical 
Q-values (at least we saw this in our data): one reason is that several statistical 
models assume evenly distributed errors; another is that there is a kind of drift when 
longer sequences are produced, which explains why Q-value-recalibration has a 
positive effect [38]. One source of errors are alignment errors, which are difficult to 
tackle. 

• Most sequencing is based on polymerases, which is also the case in 'independent' 
data sources for comparison, validations and replicas. That means that any bias is 
also present in different data sources (if a polymerase has a certain error pattern and 
the same polymerase is used), which lets the validation and comparison appear 
better than it actually is. 
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Figure 5. The amount of sequencing. Figure is from [39] 

The current quantity of sequencing data with all its peculiarities makes the long-term 
discipline of alignments even more important; every little advantage in accuracy from noisy 
data and/or efficiency in processing has some impact. For a recent overview of alignment 
algorithms, see [40]. 

Given the trade-offs between number of reads, lengths of reads, error rates and algorithms 
there are some combinations of sources with certain gains: 

• read-pairs with different insert sizes: as the two mates of a read-pair serve as an 
anchor, different but roughly known distances of these can tackle different sizes of 
structural variations between them [41]. 

• longer reads with a higher error rate on a sequence level are used as a skeleton, 
whereas shorter, more reliable reads are used to reduce the errors of the longer ones 
[42]. 

• regions of interest are improved with some single, quite costly additional efforts, for 
example, longer PCR-fragments. 

• information of close samples and/or the population is used, like a consensus 
alignment within a set of close individuals or as a filter for very suspicious regions 
(which act very 'un-biologically', but always with the danger of filtering new patterns) 
[43, 44]. 

Besides the options on the data generating side, there is a lot of room left for algorithm 
improvement. More of this will be discussed further in section 1.3. 
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1.2 General definitions 

In this section, the definitions of terms that are essential for the work below are presented; or, 
from another perspective, for definitions of terms that are precisely defined in their chapters, 
these are short versions. The relevant area is given in short brackets after the defined term, 
as some terms may be used differently depending on the area. IT denotes information 
technology. 

Epigenetics: briefly, 'Epigenetics is genetics without genome(-sequence)', or, as in this 
lengthier quote, 'stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence' [45]. 

RIL: Recombinant Inbred Line or Recombinant Inbred Strain indicates a strain which, due to 
long-term inbreeding, has an essentially permanent set of recombination events. It 
often also refers to homozygous lines for organisms that have more than one set of 
chromosomes. Where the organism is capable of selfing, as in Arabidopsis thaliana, 
the generation of RILs requires less effort and is less complex. For theoretical 
background in the complex case, see [46]. 

NGS data: The abbreviation stands for Next Generation Sequencing. Also referred to as 
'post-Sanger sequencing methods', it is an umbrella term for the newer sequencing 
methods that are producing ever-increasing quantities of data. The source of the 
data in Figure 5. In the text it is often written as 'NGS/sequencing', although the 'S' 
in 'NGS' already stands for sequencing; the '/sequencing' is because the general 
term, 'NGS', is just the current term for the methods which generate this large 
amount of data. A new term will likely arise for the next technological leap. 

Library preparation (for NGS): the preparation of a biological sample for its sequencing. At 
the end of the preparation, the library consists of the reads in solution. 

Coverage (NGS): when reads are aligned to a reference, coverage stands for the number of 
reads aligned to a locus. . It can also be intended as the average reads per bp of a 
region. 

Genome coverage: The ratio of a reference genome covered with aligned reads or coverage 
with more reads than an arbitrary threshold. 

Calling/calls/called events (NGS): the term 'call' is regularly used in various contexts; in the 
context of NGS, it signifies an event that is inferred from data. 

phred scores: see [47] 

Nucleotide ambiguity code: see [48] 

SNP: Single-Nucleotide Polymorphism, pronounced ‘snip’, also SNV for single nucleotide 
variant, it signifies a single nucleotide present as more than one allele. It is 
somewhat confusing that, on the one hand, many tools have a 'variant-only' option 
to output only the non-reference calls and, on the other, that a SNP is not only the 
non-reference side, it is both the reference base and the alternative allele. 

indel: a combination of the words INsertion and DELetion, indel is defined from the calling 
side, that is, relative to the reference; it is not meant in an evolutionary sense. In 
comparison to SVs, indels are shorter, usually just up to 50bps; the main distinction 
derives from their source: a linear alignment of a single read. Consequently, the 
coordinates of indels are accurate to single bps, but, due to gap costs, not larger 
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than 50bps. Most tools follow this notation: the coordinate of an indel is the base 
before the event; if there are several equivalent possibilities (i.e.: an A inserted in 
AAAA) the leftmost is chosen. 

SV: Structural Variation is a 'long indel' or any other variation of a chromosome, which is not 
a chromosome abnormality. The main distinction from indels is the manner of calling 
it: a SV is not called from a single read with a simple linear alignment. If the type of 
event is not SNP, insertion or deletion, such as inversions or translocations, it is 
denoted as SV. 

Calling (NGS): the process of finding events (= SNPs, indels, SVs) in a genome. The word 
‘calling’ also reflects the less than 100% certainty, as NGS methods always imply a 
certain noise level and also systematic errors [49-51]. 

Scale-free: a distribution is called scale-free when it follows a power law. The term derives 
from the unchanging shape when zoomed in (and assuming axes are rescaled). 
Mostly, it is used with the distribution of the degree of vertices in graphs. A more 
precise "scale-free metric" is described at [52] 

Percent correctly classified (PCC): 100 * correctly classified instances / all instances, the 
simplest key figure for a classification model. 

Lower border / zeroR: the ratio of the most frequent class. A classifier should always perform 
better than this. 

Information entropy: the amount of information which is encoded in a certain sequence, see 
[53]. 

Information gain: the decrease of information entropy, which can be also negative. The term 
is used and better defined at 5.2 Machine learning for classification. 

Masking (sequencing): a sequence is filtered by a binary array of the same length. This is the 
same as RepeatMasker [54] does, when replacing repetitive sequences with 'X'. 

Masking (classification models): in trees, or other hierarchical models variables chosen first, 
make correlated variables much less likely to be chosen later. This term can be 
better understood in the context in 5.2 Machine learning for classification. 

Cross-validation [55]: The given data is divided into n parts, n-1 parts are used for training a 
model, the remainder is used for testing. It is usually written as '10-fold cross-
validation' when n = 10. 

Transparent (IT): invisible from the user's perspective. For example, most users are entirely 
unaware of the existence and functioning of routing in the internet, a complicated 
topic that is not visible in the browser. 

Job (IT): a limited process to be executed in the background. The background can be a 
single machine or a larger computer cluster. 

Walltime (IT): a restriction for a job. 

Ad hoc code: a ~neutral way of saying that code is in bad shape and likely not reusable, 
which could be either because it makes no difference at the level required for a 
journal, because it is being done for the first time, and/or it is simply not user-
friendly. 
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Explorative data analysis: looking into data without much prior expectation or hypotheses. It 
can be positive in the sense of avoiding a bias in analysis, but it can be also 
translated to 'we have a lot of data, what are we going to do now?'. It should be 
followed by better defined analyses. 

 

1.3 Fields of the methods 

As data processing is a broad field whose analyses proceed in various directions, many 
scientific fields are touched on or even heavily used. This section gives short overviews of 
these fields. 

 

1.3.1 Computational complexity 
The computational complexity theory is a core field in computer science. 'Computational 
complexity' is the umbrella term covering many useful concepts for the amount of resources 
needed for a method given a certain amount of data. The short formula for this is  

t = f(n), where t is time and n is the amount of data. Usually only the highest exponent to n is 
noted, the rest is ignored. The idea here is that only the highest exponent to n remains when 
n goes to infinity. This is quite often noted in the Big O notation [56]; see Figure 6 for 
common cases. 

 

Figure 6. Computational complexity - Big O notation - Common cases 

For the sake of completeness, it is important to mention that the O(n) as shown in Figure 6 is 
only one option to note computational complexity, where f(n) e O(g(n)) is defined as 'f is 
bounded above by g (up to a constant factor) asymptotically'. See Table 2 for differently 
defined notations. In methodological papers, as in this work also, the Big O is mainly used. 
For cases with more than one input dimension, more variables than n can be used, for 
instance if there are n reads (see section 1.1.5) of length z, then n and z are part of the 
function O. 
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Table 2. Family of Bachmann–Landau notations / asymptotic notations. Table is modified from [56] 

 

1.3.2 Graph theory 
Graph theory is the study of graphs, where graphs are defined as vertices and edges. This 
sounds simple, but some of the most complex problems occur in this area ([57] section '6 
Problems in graph theory'). A graph can represent all types of networks, interactions, paths, 
flows, dependencies, etc. and is often the starting point for an optimization problem. 

Definitions used in this work: 

graph 
consists of a vertex set and an edge set; the edges must connect two 
vertices in the vertex set; vertices on the other hand can be isolated.  

simple graph 
a graph which contains no multiple edges (=edges with the same 
start- and endpoint) and no loops. 

vertex 
is drawn as a node or a dot; is denoted as v for a single vertex and V 
for a vertex set. 

edge 
is an undirected connection between two vertices; when the two end-
vertices/endpoints are the same, it is called a loop; is denoted as e for 
a single edge and E for an edge set. 

arc 
like an edge, but directed; is denoted as a for a single edge and A for 
an edge set. 

subgraph 
a subset of vertices of a graph and all edges between them within the 
graph 

path a path1 between two vertices, where no vertices are repeated 

                                                
1 The term 'path' on the right side is used as it is commonly used outside graph theory. The path does 
not need to be the shortest possible path. 
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Figure 7. Example of a small graph 

 

Figure 8. Example of a large graph. It represents a putative regulatory network. 

Figures 7 and 8 show examples of a small graph and a large graph. Note that although both 
graphs are simple graphs (as per the definitions: there are no multiple edges and no loops), 
they seem different in multiple senses: whereas the small graph was manually drawn, the 
large one is directed, color-coded and generated with a layout algorithm. It was created with 
GUESS [58] with the layout algorithm spring embedder [59]. 

This will be further discussed in section 3. 
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1.3.3 Combinatorics 
Combinatorics is the study of finite or countable discrete structures. For such a large field, 
Wikipedia is an appropriate starting point [60]. In this work, this field is explicitly named for 
calculating an exact p-value. However, graph theory and, in another sense, pattern search 
are subfields of combinatorics. 

1.3.4 Machine learning 
Machine learning is a large field which is in some areas difficult to strictly differentiate from 
neighboring areas. Its methods consist mainly of sophisticated heuristics to solve problems, 
where no analytical solution usually exists. Two other definitions are: 

'A computer program is said to learn from experience E with respect to some class of tasks T 
and performance measure P, if its performance at tasks in T, as measured by P, improves 
with experience E.' [61] 

'The core objective of a learner is to generalize from its experience. The training examples 
from its experience come from some generally unknown probability distribution and the 
learner has to extract from them something more general, something about that distribution, 
that allows it to produce useful answers in new cases.' [62] 

The sources of the two quotes above are quite extensive bodies of knowledge for this field; a 
compact source is the material of a course I gave in 2012 [63]. 

1.3.5 String searching and sequence alignment 
String searching is an older problem in computer science, older in the sense of having long 
been resolved for exact matching. For non-exact matching, the problem is now called (string) 
alignment and remains a major part in bioinformatics. 

For string searching in the classical sense, see [64, 65]; for alignment algorithms a good 
overview is at [40]. 

1.3.6 Efficient programming 
Efficient programming is a core area in computer science [66], which has been somewhat 
neglected in bioinformatics until now, perhaps because of a differentiation of the fields. 

Efficiency can exist on various levels here: lower resources requirement including time, faster 
development, and simplicity of use and/or greater stability. These goals can be achieved by 
various means: algorithmic efficiency (see section 1.3.1); choosing a more efficient 
programming language; parallelization; and/or hardware. Unfortunately, at some point 
efficiency might result in a trade-off, which means that increasing efficiency in one sense 
entails decreasing efficiency in another. 

As long as a problem is solved 'well enough', for example, when the data is not too much and 
it is not a combinatory problem, no more efficiency is needed. Nevertheless, since very large 
data volumes already exist in molecular biology and there is no end in sight for data 
generation, efficiency in this regard is growing in importance. 

A traditional overview of programming efficiency in the sense of algorithmic efficiency can be 
found at [67], for parallelization see [68], for parallelization with graphic cards [69] and for 
comparisons of programming languages in usage and efficiency see [34, 70-73]. 
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1.4 Organizational aspects of large, data-intensive projects 

All data analyses need a certain level of organization, but when more data is involved than a 
single computer can handle and many people are involved in one way or another in trying to 
optimize the gain from a population of data records/close samples, then a higher level of 
organization and project management is needed. This section is not exceedingly complex, 
but its influence on the efficiency of science is often more significant than the science itself. 
Put another way, a lack of organization can waste more time than dead ends in science 
(assuming dead ends are published fast enough). 

Computer science as 'electronic data processing' has a longer history of dealing with data-
intensive issues than biology, and this led, besides the processing called 'software project 
management' (e.g. [74]), to the field of databases [75]. On the other hand Information 
Technology is also infamous for failed projects on small and large scales [76], from which 
may be concluded that enough was happening to learn from! 

Several recent sources exist for bioinformatics, including a comprehensive recent review at 
[77]. 

For most scientists project management may sound uninteresting and of minor relevance for 
their actual work. But its major impact can be expressed as follows: in theory a paper with n 
authors should take 1/n time, which would result in more papers for each author, but in the 
real world this is not the case [78]. The cited source comes to a quite different conclusion 
from its extensive extracted data: if papers are counted 1/n for each author and given the 
clear trend over years to more authors per paper, 'the actual productivity per person has 
decreased significantly'. Seen from another perspective: with more authors per paper and 
given that scientists nowadays are not lazier on average than in the past, the necessary work 
for a paper is significantly higher than 1/n for each author. Alternatively: the work is not 
organized optimally. 

A non-exhaustive list of issues follows which were, or could have been, harmful to projects. It 
is divided into broad areas: 

People: 

• no more than 10 people can efficiently interact on one topic in an ad-hoc manner (see 
[79, 80]). 

• when a common resource is developed, such as a common data repository or a 
sample list, some form of hierarchical organization is required for at least this part, 
and a single person must be the 'owner' of the common resource; if this is not a 
single person or if it is not clear to everyone in the project who this ‘owner’ is, it will 
likely result in either the resource not being used much or the emergence of diverging 
versions. 

• the 'owner' of something (from the previous point) indicates someone able to solely 
decide on and be responsible for it; more people who are now and then able to 
decide on the same thing all become 'owners', with confusion being the likely result. 

• meetings should always have a previously decided agenda, and a single organizer 
holding a list of people who must/should/can attend and an action list should refer to 
it. 

• sometimes a poorly organized meeting can be replaced by one or two well-formulated 
emails. 
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• in a larger project there should be a list of tasks and preferably also names written by 
the participants themselves; one person should keep track of it and this person is 
formally or informally the project leader. 

 

Logical: 

• the importance of versioning for software, and therefore also algorithm development, 
has already been known for a while (though not always done), but some adaptions 
must be made in case of expensive data analysis. Ideally, all data analysis is 
repeated whenever a change is made in any of the analyzing modules; practically this 

is only rarely done because of limitations -> the version of code and of course the 
data used for an analysis must always be keep with it; in this manner the code can 
change, the data can change and the analysis can change, but for any single analysis 
all required elements must be present in one unit, in the simplest case in one folder, 
which is not touched again unless the analysis is redone. 

• if directories or files are located in one place and have a naming scheme, they should 
be named so that the sorting makes sense: for example, if a folder name contains the 
date, it should start with the year and not with the day. 

 

Technology: 

• operating systems allow for permissions and permissions should be used. 
• when more than one individual is working on a single file, collaborative tools like 

google docs have advantages over tools for single workstations. 
• while data-intense projects might give rise to a storage explosion, it is usually 

indifferent if some megabytes of modules are present in 100s of slightly different 
copies; on the other hand the storage amount can be considerable in case of large 
data. For this, a concept called 'hard links' exists [81]. 

• backups are important and should be occasionally checked. 
• there are several levels of good software development, the basic level is that 

developed modules run outside their initial setup. If this is not the case, these 
modules will vanish when development ends. 

• files should always have a unique name, especially data files, to make it possible to 
find all their usages. 

• IDs should be numbers and maybe additionally a name to know if it is the right list; in 
a list of worldwide items, the ID should not be a name since places and names with 
'ö', 'ä', 'â', etc. exist. 
 

Project planning: 

• late changes of early decisions are very expensive [82]. 
• if the use case is not exactly defined and more than one person is expected to use it, 

it is too early to start with the implementation. 
• 'milestones' are a useful concept in project management as certain things depend on 

others, and ignoring these dependencies or interweaving them, such as analyzing 
data before it is finished without enforcing a full repetition later, results in a mess 
and/or a waste of time. 

• open issues usually remain open issues if no one solves them fully or at least until 
reliable conclusions can be made. 
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1.5 Ethics 

Ethics is a general issue for personalized data, in genetics, and of course even more in a 
combination of these two. For this work, the main data sources are plants, which are treated 
harshly but are not genetically modified. For the protein-interaction networks in tumors 
human data is used, but only metabolite profiles of the samples are used, without 
sequencing or other information. The author of this work has not seen any names or any 
other labels than the tissue sample ID and tumor stage. The preprocessing, so to say, was 
done by physicians at the hospital. 

Other data of ethical relevance were used, but only as far as they are published and freely 
available. One of the most apparently sensitive data was of openSNP [83], but this was not 
used as it turned out during analysis that this data is very noisy. 

2. Aims of the thesis 

As outlined at the beginning of the introduction and in section 1.1, the amount of data in 
biology is rapidly increasing. There are different levels with regard to the amount of data, that 
is, they are separated into: to keep and solve mentally; with a large table; with various tools 
on a computer or on a cluster with an abundance of storage and many cores. 

This study aims to investigate the gains of these massive data piles, and also their 

challenges and issues. 

To accomplish the goal of the thesis a self-contained and publishable analysis is done for 
each large data source. As the data sources are increasing in amount and number, it is not 
an exhaustive enumeration, but the majority is covered in terms of data volume. 

The specific questions to the respective data: 

We observe that the lists of genes expressed differently in tumors and healthy tissue from 
different publications for the same tumor type overlap like random gene lists. Can we find 
something significant in common in these published gene lists if we consider the complete 
protein interaction network? (Chapter 3) 

If we have a putative regulatory network and a true transcription factor list as validation, what 
is the exact p-value for finding a certain amount of the transcription factors in the putative 
network? (Chapter 4 contains a more formal and clearer definition) 

We have metabolite levels of cancer tissue and healthy tissue. How can we derive a simple 
and general model from that? (Chapter 5) 

How can we obtain, deal with, and organize more than 1000 fully sequenced Arabidopsis 
thaliana samples? Moreover, what can we infer from them? (Chapter 6) 

What can the field of dimension reduction contribute to SNP data? How can structuredness 
of transformed data be measured? (Chapter 7) 

How can transposons be called from paired-end NGS data? What can be inferred from the 
calls? (Chapter 8)  
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3. Graph theory and protein interaction networks 

3.1 Starting point 

An initial observation was made by us (and also by [84, 85]) that lists exist of genes 
expressed differently in tumors and healthy tissue which are assumed causative or at least 
closely related, but that the overlap of lists in different publications for the same tumor types 
is not far from random. The idea was that even if one list of genes is not always responsible 
for this tumor, it might be that the genes in the lists have some common properties in the 
protein interaction network. At the time this analysis began, it was becoming fashionable to 
analyze networks according to their distribution class. Since then a common term has been 
'scale-free' (such as in Figure 9), for example in the articles [86-90]. We followed another 
route: since the full interaction network is known, at least as binary information, we based 
everything on that, without assumptions of the distribution type. To have the properties of a 
random subgraph of a certain size, we simply generated many random subgraphs, instead of 
inferring the properties of an idealized distribution. The underlying rationale is that there is 
exactly one interaction network and we want to know how the genes there are – and not how 
they may be in a network of a certain ideal distribution. 

For results not presented in the manuscript (section 3.3), see the master thesis of the 
applicant [91]. 

3.2 Alternative and newer data sources 

In the following manuscript, the main source for differentially expressed genes are microarray 
data in www.oncomine.org [92]. Oncomine is the database of oncogenomic research that is 
still one of the largest collections for gene expression in tumors, including RNA-seq data. 

 

Figure 9. Example scale-free network. From [93]. 
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3.3 Article: Characterization of protein-interaction networks in 
tumors 

Alexander Platzer, Paul Perco, Arno Lukas and Bernd Mayer., Characterization of protein-
interaction networks in tumors. BMC Bioinformatics, 2007. 8: p. 224. 

 

This manuscript is, with some minor additions and the revision, the follow-up of the master 
thesis performed by the applicant. It offers a solid template for the analysis of similar data 
and modifications of graph measures, which is likely why it has often been cited. 

 

OWN CONTRIBUTION IN [94] 

(see page 35) 
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Abstract
Background: Analyzing differential-gene-expression data in the context of protein-interaction
networks (PINs) yields information on the functional cellular status. PINs can be formally
represented as graphs, and approximating PINs as undirected graphs allows the network properties
to be characterized using well-established graph measures.

This paper outlines features of PINs derived from 29 studies on differential gene expression in
cancer. For each study the number of differentially regulated genes was determined and used as a
basis for PIN construction utilizing the Online Predicted Human Interaction Database.

Results: Graph measures calculated for the largest subgraph of a PIN for a given differential-gene-
expression data set comprised properties reflecting the size, distribution, biological relevance,
density, modularity, and cycles. The values of a distinct set of graph measures, namely Closeness
Centrality, Graph Diameter, Index of Aggregation, Assortative Mixing Coefficient, Connectivity, Sum of the
Wiener Number, modified Vertex Distance Number, and Eigenvalues differed clearly between PINs
derived on the basis of differential gene expression data sets characterizing malignant tissue and
PINs derived on the basis of randomly selected protein lists.

Conclusion: Cancer PINs representing differentially regulated genes are larger than those of
randomly selected protein lists, indicating functional dependencies among protein lists that can be
identified on the basis of transcriptomics experiments. However, the prevalence of hub proteins
was not increased in the presence of cancer. Interpretation of such graphs in the context of
robustness may yield novel therapies based on synthetic lethality that are more effective than
focusing on single-action drugs for cancer treatment.

Background
The "omics" revolution has dramatically increased the
amount of data available for characterizing intracellular
events at the cellular level. The main experimental meth-
odologies responsible for this development have included
differential gene expression analysis for recording mRNA
concentration profiles, and proteomics for providing data

on protein abundance [1,2]. Each technique generates
data related to a defined intracellular aspect, such as dif-
ferential-gene-expression profiles at the transcriptional
level, and currently the main focus is on interlinking the
various data sources generated by high-throughput
screening and array technologies. The concept of systems
biology is grounded on such heterogeneous data sources,
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and also includes the use of homolog information from
other systems [3]. Methodologies following the frame-
work of systems biology have increasingly been used to
study complex diseases. For example, Hornberg and col-
leagues discussed the importance of the network topology
of protein interactions to selecting drug targets for
improving cancer therapy [4].

We have recently outlined a computational analysis work-
flow aimed at characterizing cellular events at a functional
level, which includes the use of differential gene expres-
sion and proteomics data, analysis of transcriptional con-
trol, and coregulation via joint transcription factor
modules, further complemented by protein interaction
and functional pathway data [5]. A major goal of such
analysis workflows is to decipher biological functioning at
the level of protein interactions [6,7]; that is, to elucidate
concerted processes by integrating diverse data sources
that by themselves do not provide a functional context.

There are several experimental techniques for directly
addressing protein-protein interactions, with the yeast
two-hybrid system being the most commonly used [8].
The yeast two-hybrid approach can be used to identify
protein interactions in vivo, with other techniques such as
surface plasmon resonance being performed in a nonbio-
logical environment, but still being useful for providing
binding constants [9]. Other technologies involve protein
arrays for parallel screening of protein interactions [10]. A
recent review has discussed the different methodological
approaches [11].

Public-domain databases have been established for mak-
ing protein-protein-interaction data readily accessible.
The Online Predicted Human Interaction Database
(OPHID) is a collection of human protein-protein inter-
actions assembled from other databases and comple-
mented by homolog interactions identified in other
organisms [12]. The OPHID database used in the present
study (as at February 2006) included 41,785 interactions
covering 8487 unique proteins of the human proteome.
Unfortunately, the database contains only about 20% of
the human proteome (presently representing about
39,000 sequences with a unique GI number). Generally, a
literature bias is inherent in such interaction data due to
disease associated genes and proteins being subject to
more detailed analysis, also with respect to protein inter-
actions.

Information on pairwise protein interactions as provided
by the OPHID can be used to delineate protein interaction
networks (PINs), which are usually represented as undi-
rected graphs. Routines have been published for automat-
ically generating and visualizing such interaction graphs
[13,14], where the nearest-neighbor expansion as pro-

posed by Chen and colleagues [15] is a useful approxima-
tion for extended graph construction when dealing with
the sparse data sets typical of biological systems. Such rou-
tines can be used to directly extract PINs utilizing a list of
proteins assembled on the basis of differentially expressed
genes. If the functional context at the level of protein
interactions is represented by the differential gene expres-
sion data, this should also be reflected by the characteris-
tics of resulting PINs. Characteristics in this context
include both quantitative measures (e.g., the number of
nodes found for the largest subgraph) as well as qualita-
tive measures in the biological context (e.g., the identifica-
tion of hub proteins).

Like many real-world networks, biological networks are
scale-free in nature, with the majority of nodes showing a
low degree of connectivity, complemented by some
highly connected nodes serving as hubs [16,17]. The con-
nectivity, size, and topology of individual PINs are mas-
sively influenced by the number of hub proteins involved
[18]. However, Lu and colleagues found in a murine
asthma model that gene expression of the hub proteins
tend to be less affected by disease [19]. The next-most-
important factor to determining the overall PIN topology
are the simple building blocks – such as a three-node
"feedforward loop" motif or a four-node "bi-fan" motif –
that have been detected more frequently in transcriptional
gene regulatory networks than in networks generated
from randomly selected genes [20]. PINs have been
recently reviewed by Barabasi and Oltvai [21].

Various groups have applied network analysis to gene
data sets associated with cancer. Jonsson and Bates
reported very recently that proteins associated with cancer
show an increased number of interacting partners in the
interactome, reflecting their increased centrality in the
PIN [22]. Wachi et al. specifically investigated the role of
the interactome of genes differentially regulated in lung
cancer [23]. That group found increased connectivity for
these genes, in agreement with the findings of Jonsson
and Bates. Tuck and colleagues analyzed transcriptional
regulatory networks consisting of transcription factors
and their target proteins [24]. Genes differentially regu-
lated between acute myeloid leukemia and acute lym-
phoblastic leukemia were significantly closer in the
network as compared to randomly generated gene lists.
The analogous result was observed for genes differentially
regulated in breast cancer patients. On a more general
level, Xu and Li showed that disease-associated genes as
listed in the OMIM database [25] tend to interact with
other disease-associated genes [26].

The present paper provides a systematic analysis of prop-
erties computed for PINs represented as graphs, as exem-
plified by an extensive set of differential gene expression
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profiles covering various tumors. The primary hypothesis
was that differential gene expression analysis provides sys-
tematic data on concerted events in malignant tissue [27],
and these systematic data should also be present at the
level of protein interactions, in contrast to network prop-
erties computed on the basis of randomly generated pro-
tein lists.

The formal representation of PINs as undirected graphs
makes it possible to utilize a variety of well-established
graph measures. Junker and colleagues recently presented
a tool for exploring centralities in biological networks,
named CentiBiN [28]. CentiBiN can calculate various
graph measures, including closeness, betweenness, and
eccentricity in protein networks. Jonsson and Bates dem-
onstrated that proteins mutated in cancer showed an
increased number of interactions [22]. Another study ana-
lyzed protein communities in PINs that were reported as
being involved in metastatic processes [29]. Also, Jeong
and colleagues were able to identify hub proteins in the
PIN that are centrally linked to cell survival [30].

We have computed 22 individual graph measures for 29
tumor-associated differential gene expression data sets
that reflect the following graph properties: size, distribu-
tion, relevance, density, modularity, and cycles. These
graph measures provide a detailed characterization of the
differential gene-expression data represented at the level
of protein interactions.

Results
A mean of 90 genes (SD = 74 genes, range = 13–300
genes) were identified as significantly differentially regu-
lated for each transcriptomics experiment, and these genes
were selected for constructing the entire graph for each
given data set. Table 1 lists the number of differentially
regulated genes (N), the number of nodes in graph (G), as
well as the number of nodes in the largest subgraph (G')
for the 29 studies. Furthermore, the characteristics of the
individual studies as included in the Oncomine database
[31] are listed, including study author, tumor type, class
comparison, and number of samples analyzed.

The mean number of nodes in G (after performing the
nearest-neighbor expansion) was 140 (SD = 120 nodes,
range = 14–469 nodes) for the 29 studies, with a mean of
109 nodes for the largest subgraph G' (SD = 110 nodes,
range = 3–409 nodes). For seven of the studies there were
less than 30 nodes in the largest subgraph. Measures
related to size, distribution, biological relevance, density,
modularity, and cycles were computed for each subgraph
G'.

Size measures
We used three measures to characterize the graph size as
reflected by the number of vertices, the graph expansion,
and the length of the shortest path. All three measures –
Closeness Centrality, Graph Diameter, and Index of Aggrega-
tion – were different for networks generated from gene
lists derived from Oncomine than for randomly generated
protein lists (Figure 1A,B and 1C), with networks derived
on the basis of Oncomine data sets tending to be larger
than networks derived on the basis of randomly generated
protein sets.

Distribution measures
We used two distribution measures in our analysis: the
Assortative Mixing Coefficient and the entropy of the distribu-
tion of edges. The Assortative Mixing Coefficient uses the
edge-to-edge distribution, whereas the entropy of the distri-
bution of edges uses an entropic term reflecting the distinct
number of edges per node. We found that the Assortative
Mixing Coefficient was significantly higher in Oncomine
networks than in random networks (Figure 1D).

Biological-relevance measures
Three of the 22 computed measures focused on vertices in
the network that were biologically relevant. All of the
measures took the shortest path between two vertices in a
given network into account. Highly connected proteins,
frequently called hub proteins, usually show high
Betweenness. Joy et al. demonstrated the importance of ver-
tices with high Betweenness but low connectivity in the
yeast PIN [32]. Interestingly, none of the three computed
biological-relevance measures differed significantly
between Oncomine networks and randomly generated
networks.

Density measures
Eight of the 22 measures utilized in this study addressed
aspects of graph density, including Connectivity, Graph
Centrality, Community, and Sum of the Wiener Number. The
numbers of edges and vertices, lengths of shortest paths,
and walks on edges were key elements in calculating these
measures. Two of the eight measures (Connectivity and the
Sum of the Wiener Number) differed between Oncomine
and random data sets (Figure 1E and 1F), and these are
influenced by the size of the graph. Oncomine networks
are generally larger but less dense than randomly gener-
ated networks.

Modularity measures
We calculated three measures reflecting modularity,
mainly associated with the number of edges, dilation, and
shortest path lengths. One of the computed measures,
namely the modified Vertex Distance Number, differed
between Oncomine networks and randomly generated
networks (Figure 1G). This measure is highly correlated to
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Table 1: Gene-expression studies and graph measures

Study no. Study author cancer type class I class II No. of 
Samples

N G G' Size 
(3)

distribution 
(2)

relevance 
(3)

density 
(8)

modularity 
(3)

circles 
(3)

total 
(22)

1 Rosenwald et al. Leukemia Blood B cell, Blood T cells, Cell 
Line, Cord Blood B cells, Cord 
Blood T cells, Diffuse Large Cell, 
Follicular Lymphoma, Nonblastic 
Cell Line, Thymic T cells, Tonsil 
GC B

Chronic Lymphocytic Leukemia 118 264 426 384 3 2 3 6 3 1 18

2 Segal et al. Soft Tissue Cancer Cell Line Tumor 81 156 252 209 3 2 1 6 3 2 17
3 Rosenwald et al. Diffuse Large B- Cell 

Lymphoma – Dlbcl 
Subgroup

Activated B-Cell-like DLBCL, 
Type III B-Cell-like DLBCL

Germinal-Center B- Cell-like 240 115 189 165 3 2 2 6 1 2 16

4 Rosenwald et al. Diffuse Large B- Cell 
Lymphoma – Dlbcl 
Subgroup

Activated B-Cell-like DLBCL, 
Germinal-Center B-Cell-like

Type III B-Cell-like DLBCL 240 129 208 182 3 2 1 6 2 2 16

5 Welsh et al. Ovary – Type Normal Ovary Ovarian Adenocarcinoma 32 96 153 128 3 2 1 6 1 1 14
6 Beer et al. Lung – Type Non-neoplastic Lung Lung Adenocarcinoma 96 158 267 247 3 1 0 6 3 1 14
7 Notterman et al. Colon – Type Normal Colon Ovarian Adenocarcinoma 36 41 62 44 3 1 1 5 1 2 13
8 Higgins et al. Kidney – Type Normal Kidney Clear Renal Cell Carcinoma 29 62 96 76 3 1 2 5 1 1 13
9 Khan et al. Small Round Blue Cell 

Tumor/Cell Line
Cell Line Tumor Sample 86 126 196 155 3 0 1 5 2 1 12

10 Lancaster et al. Ovary – Type Ovary Ovarian Adenocarcinoma 34 106 169 135 3 1 1 5 1 1 12
11 Welsh et al. Prostate – Type Normal Prostate Prostate Cancer 34 50 77 58 3 1 0 4 1 2 11
12 Singh et al. Prostate – Type Prostate Prostate Carcinoma 102 300 469 409 2 1 1 3 2 2 11
13 Liang et al. Brain – Type Normal Brain Glioblastoma Multiforme 33 53 86 70 3 1 0 5 1 1 11
14 Higgins et al. Kidney – Type Angiomyolipoma, Chromophobe 

Renal Cell Carcinoma, Granular 
Renal Cell Carcinoma, 
Oncocytoma, Papillary Renal Cell 
Carcinoma

Normal Kidney 44 55 87 64 3 1 0 4 1 1 10

15 Sperger et al. Germ Cell – Type Normal Testis Seminoma 37 219 342 279 3 1 0 4 1 1 10
16 Shai et al. Brain – Type Normal White Matter Glioblastoma Multiforme 32 56 84 63 3 1 0 4 1 1 10
17 Rickman et al. Brain – Type Normal Neocortex of Temporal 

Lobe
Glioma 51 46 67 42 3 0 0 3 1 1 8

18 Rosenwald et al. Lymphoid – Type Normal Blood CD19+ B-Cells, 
Normal Germinal Center B-Cells

Diffuse Large B-Cell Lymphoma 284 37 60 32 2 0 0 4 1 0 7

19 Frierson et al. Salivary Gland – Type Normal Salivary Gland Adenoid Cystic Carcinoma of 
Salivary Gland

22 70 104 72 1 1 0 2 1 1 6

20 Bhattacharjee et 
al.

Lung – Type Normal Lung Lung Adenocarcinoma 156 128 195 149 2 0 0 1 1 1 5

21 Bhattacharjee et 
al.

Lung – Type Normal Lung Squamous Cell Lung Carcinoma 38 111 167 123 0 1 0 0 1 1 3

22 Lenburg et al. Kidney – Type Normal Kidney Renal Clear Cell Carcinoma 18 13 14 3 0 0 0 1 0 0 1
23 Garber et al. Lung – Type Normal Lung Squamous Cell Carcinoma 19 26 34 5 0 0 0 0 1 0 1
24 Alon et al. Colon – Type Colon Colon Adenocarcinoma 62 13 16 3 0 0 0 0 0 0 0
25 LaTulippe et al. Prostate – Type Non-neoplastic Prostate Prostate Carcinoma 26 24 29 9 0 0 0 0 0 0 0
26 Iacobuzio- 

Donahue et al.
Pancreas – Type Normal pancreas Pancreatic Adenocarcinoma 17 80 106 35 0 0 0 0 0 0 0

27 Mutter et al. Uterus – Type Normal Endometrium Endometrioid Adenocarcinoma 14 16 18 5 0 0 0 0 0 0 0
28 Bhattacharjee et 

al.
Lung – Type Normal Lung Small Cell Lung Cancer 23 17 20 7 0 0 0 0 0 0 0

29 Garber et al. Lung – Type Normal Lung Lung Adenocarcinoma 46 45 58 9 0 0 0 0 0 0 0

Study number, study author, cancer type, class comparison, and number of samples for data from the Oncomine database. The number of differentially regulated genes (N), the number of nodes in graph G, the number of nodes in largest subgraph 
G', and the number of measures per category outside the 2.5% lower and upper confidence limits as derived on the basis of randomly generated gene lists, and the total number of graph measures per study that fell outside the defined significance 
limits are also listed.
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Graph measuresFigure 1
Graph measures. Graph measures (black dots) computed for the given differential gene expression data sets from 29 individ-
ual studies with between 10 and 300 genes. The following graph measures are presented: Closeness Centrality (A), Graph Diame-
ter (B), Index of Aggregation (C), Assortative Mixing Coefficient (D), Connectivity (E), Sum of the Wiener Number (F), modified Vertex 
Distance Number (G) and Eigenvalues (H). The mean value (black curve) and the 2.5% lower and upper confidence limits (fitted 
graphs) based on randomly generated data sets are given for each graph measure.
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Table 2: Formal representation of graph measures

Name Class Definition Description Ref.

Closeness Centrality size
d(i,j) is the length of the shortest path between vertices i and j. 
The sum of CCi over all vertices gives the total Closeness Centrality 
of a given subgraph.

[42]

Graph Diameter size
d(i,j) is the length of the shortest path between vertices i and j. GD 
is computed for all pairs (i,j), and reflects the longest path 
identified.

[43]

Index of Aggregation size A is the total number of vertices in the subgraph, and B is the total 
number of all given vertices in the graph. [15]

Assortative Mixing 
Coefficient distribution

k1 and k2 are the counts of edges of two vertices connected by a 
given edge. This measure reflects the edge-to-edge distribution 
over all edges of a graph.

[44]

Entropy of the distribution 
of edges distribution k is the count of edges of one vertex, and p(k) is the ratio of 

vertices that have k edges. [45]

Betweenness biological relevance

σ(j,i,k) is the total number of shortest connections between 
vertices j and k, where each shortest connection has to pass 
vertex i, and σ(j,k) is the total number of shortest connections 
between j and k. We computed σ(j,i,k) and σ(j,k) for the entire 
OPHID graph, but then only used vertices also present in the 
subgraph generated on the basis of a given gene-expression data 
set.

[42]

Betweenness of all selected 
Vertices biological relevance As for Betweenness, but considering all selected vertices. [42]

Stress Centrality biological Relevance
σ(j,i,k) is the total number of shortest connections between 
vertices j and k, where each shortest connection has to pass 
vertex i.

[42]

Connectivity density A is the total number of edges realized in a given graph, and B is 
the maximum number of edges possible. [43]

Clustering Coefficient density

A is the total number of edges between the nearest neighbors of 
vertex i, and B is the maximum number of possible edges between 
the nearest neighbors of vertex i. The sum of CLUSTi over all 
vertices gives the total Clustering Coefficient of a given subgraph.

[46]

Number of edges divided by 
the number of vertices density A is the total number of edges in a given graph, and B is the 

number of selected vertices in a given graph. -

Community density

A is the total number of edges, where both connected vertices 
are in the given subgraph, and B is the total number of edges, 
where one connected vertex is in the subgraph and the other 
vertex is outside it.

[47]

Entropy density where |E| is the total number of edges, |V| is the total number of 
vertices, and i(v) is the number of edges of vertex v. [48]
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Graph Centrality density max(d(i,j)) is the length of the shortest path between vertices i 
and j for a given vertex i. [42]

Number of walks of length n density NWi is one walk with a length of n edges in the subgraph. [43]

Sum of the Wiener Number density d(i,j) is the length of the shortest path between vertices i and j. 
We computed the Sum of the Wiener Number for each vertex. [43]

Total number of triangles of 
a subgraph and its dilation Modularity

Given a subgraph g of graph G, the complement of g, denoted as 
g, is the subgraph implied by the set of vertices
N(g) = N(G)\N(g)
The dilation of g is the subgraph δ(g) implied by the vertices in g 
plus the vertices directly connected to a vertex in g. The coat of 
nearest neighbors of the subgraph is defined as
DN(g) = δ(g)\N(g)
The set of all valid triangles for g is defined as
VT(g) = {x,y,z | (x,y,z ∈ N(δ(g)) ^ (x,y),(y,z),(z,x) ∈ E(δ(g))) ∩ (x ∈ 
N(g) ^ z ∈ DN(g))}
where N is the number of vertices and E is the number of edges in 
the graph. The result for a subgraph g is the total number of 
elements in VT(g).

[42]

Localized Modularity modularity where |E| is the total number of edges. [49]

modified Vertex Distance 
Number modularity d(i,j) is the length of the shortest path between vertices i and j. 

For this measure, i and j are all selected from V. -

Eigenvalues cycles ERj is the real part of the j-th Eigenvalue for the adjacency matrix 
of the given subgraph. [50]

Subgraph Centrality cycles A is the adjacency matrix. We computed SC for k [1,99]. [42]

Cyclic Coefficient cycles
Si is the smallest possible cycle of vertex i and two of its 
neighboring vertices k. The total Cyclic Coefficient for all vertices N 
is then given as θ

[42]

Name, formal representation, and short description of graph measures computed for the categories of size, distribution, biological relevance, density, modularity, and cycles.

Table 2: Formal representation of graph measures (Continued)
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Closeness Centrality, which is also based on the sum of
shortest paths between two vertices.

Cycles measures
The three measures implemented related to graph cycles
were the Cyclic Coefficient, Subgraph Centrality, and Eigen-
values. The Eigenvalues, calculated from the adjacency
matrix of the graph, differed between randomly generated
data sets and Oncomine (Figure 1H). Eigenvalues, like Sub-
graph Centrality, mainly depend on all cycles of the graph,
but the two methods differ in the scaling of cycle sizes.
The Cyclic Coefficient mainly depends on local short cycles.

To study the data sets at the level of the graph-measure cat-
egories, the 22 graph properties of each data set were
checked for measures that significantly deviated from
those of random graphs. Results of this evaluation are
listed in Table 1, where the individual studies are sorted
by the total number of graph measures that deviated sig-
nificantly from those derived from random gene selec-
tions. The study that deviated the most from random
selections related to leukemia, in which 18 of the 22 graph
measures were different. On the other hand, in six studies
none of the graph measures differed significantly from
random selections. Tests of the correlation between the
number of graph measures deviating from their respective
values for random selections and the total number of
genes differentially regulated (r2 = 0.34, p < 0.05), the total
number of nodes in graph G (r2 = 0.38, p < 0.05), and the
total number of nodes in the largest subgraph G' (r2 =
0.43, p < 0.05) revealed the dependence on number of
nodes selected and the degree of deviation from random
selections. This correlation was significantly affected by
the small graphs analyzed, since studies resulting in sub-
graph sizes of less than 10 do not provide conclusive
graph measures.

Interestingly, the number of samples analyzed for differ-
ential gene expression was not significantly correlated
with the number of statistically significant differentially
regulated genes found (r2 = 0.09, p = 0.12), nor with the
number of graph measures deviating from the randomly
generated reference sets (r2 = 0.11, p > 0.05).

Discussion
We characterized PINs derived from 29 gene-expression
profiles of various tumors (as listed in Table 1) by com-
puting 22 graph measures (as listed in Table 2). In gen-
eral, the values of the graph measures did not depend on
the type of microarray used in the analysis (cDNA arrays
or Affymetrix Gene Chips). The small number of individ-
ual data sets per cancer type made it impossible to deline-
ate a correlation between graph measures and tissue type.
Interestingly, the number of samples used was not corre-
lated with the number of statistically significant differen-

tially expressed genes, and also not with the number of
graph measures deviating from random selections. Under
the assumption of comparable sample processing, expres-
sion results are strongly affected by the tissue and cancer
type, and to a lesser extent on the number of samples per
group.

We assigned the graph measures to the following catego-
ries: size, distribution, biological relevance, density, mod-
ularity, and cycles. The individual graph measures that
showed significant differences (defined as identifying at
least 50% of gene-expression experiments outside the
2.5% lower and upper confidence limits computed on the
basis of randomly generated data sets) between cancer
networks and networks based on randomly generated
data sets were Closeness Centrality, Graph Diameter, Index of
Aggregation, Assortative Mixing Coefficient, Connectivity,
Sum of the Wiener Number, modified Vertex Distance
Number, and Eigenvalues.

All three measures associated with the size of the graph
differed significantly between tumor networks and ran-
domly generated networks. The Index of Aggregation was
on average higher in tumor networks, indicating depend-
encies between proteins involved in cancer, as also pro-
posed by Chen et al. in the context of Alzheimer disease
[15]. This increased connectivity is also consistent with
data obtained by Jonsson et al. [22]. However, it is likely
that the bias in OPHID interactions toward disease-asso-
ciated genes contributes to these findings. The values of
both Graph Diameter and Closeness Centrality were signifi-
cantly lower in tumor networks. This finding was also
reported by Yu and colleagues for networks solely includ-
ing highly expressed genes in the yeast interactome [33].
Low Closeness Centrality values for tumor networks may
initially appear surprising, but relative large size of the
largest subgraphs in tumor networks (on average close to
80% of all nodes of G are also part of G') makes higher
Closeness Centrality values harder to obtain. The largest
subgraph of tumor networks also more elongated shortest
paths between nodes.

One measure of the distribution category, the Assortative
Mixing Coefficient, differed significantly in tumor net-
works. This coefficient is influenced by both the number
of hub proteins and the number of edges, and a large
number of hub proteins is correlated with an unequal dis-
tribution in the number of edges. The Assortative Mixing
Coefficient is directly proportional to the number of edges
and inversly proportional to the number of hub proteins.
According to Jonsson and colleagues, tumor networks
contain numerous hub proteins [22]. However, our data
generally indicate the presence of a small number of edges
per node, and no evidence for a large number of hub pro-
teins.
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The Sum of the Wiener Number characterizes the density of
the graph. The significantly higher values of this measure
in tumor networks indicate larger graphs, which is consist-
ent with the observed Index of Aggregation. We found that
the Connectivity was lower in the largest subgraphs of
tumor networks. This may be also due to the largest sub-
graphs of tumor networks being on average larger than the
subgraphs of randomly generated gene lists, correspond-
ing to low values of Closeness Centrality.

The modified Vertex Distance Number is also influenced by
the sum of shortest paths between two vertices, but in con-
trast to Closeness Centrality, all vertices in the OPHID net-
work are considered. A higher modified Vertex Distance
Number in tumor networks indicates higher connectivity
and modularity in Oncomine networks. Finally, higher
Eigenvalues values indicate the presence of fewer cycles in
tumor networks.

Our analysis of 29 studies on differential gene expression
in cancer has revealed a general tendency toward large
subgraphs without the presence of explicit hubs. Compar-
ing the graph measures between the individual gene
expression studies and randomly selected genes provided
a heterogeneous picture. Gene-expression studies result-
ing in a low number of statistically significant differen-
tially regulated sequences (and consequently small
subgraphs) do not support an interpretation at the level of
PINs (see expression studies 22–29 in Table 1) as per-
formed in this study: for small subgraphs the variance of
graph measures determined for randomly selected gene
lists is high, which prevents identification of significant
differences of small subgraphs derived on the basis of dif-
ferential gene-expression data.

Conclusion
The usefulness of analyzing topological characteristics of
cancer networks for supporting drug targeting was
recently highlighted by Hornberg and colleagues [4]. We
based our study on a diverse set of cancer types, and have
identified characteristics of cancer networks from differen-
tial-gene-expression data. In particular, measures of graph
size deviated significantly from those for graphs con-
structed from random gene selections. Genes showing sig-
nificant differential expressions in cancer appear to be
interlinked also at the level of PINs. However, we were not
able to identify hub proteins from the given data, or nodes
exhibiting high Betweenness. Such nodes have been con-
sidered as primary targets for therapeutic interventions.

Extended graphs with a low density may indicate a net-
work with high robustness – in contrast to networks con-
taining hub proteins. This points to a different approach
for identifying therapeutic intervention, namely synthetic
lethality. This concept originates in classical genetics,

where only the combination of two specific mutations
leads to cell death. In metabolic networks a single node
deletion can often be bypassed by different routes in the
pathway. Combining this with a second deletion in that
alternative pathway may only then result in lethality [34].
Analysis of the given PINs with respect to functional path-
ways and their potential bypass routes has the potential to
identify synhetically lethal protein target combinations,
as has been shown experimentally in yeast [35].

Methods
Databases
We used the OPHID [12] to derive information on human
protein-protein interactions. This database contains infor-
mation on protein-interaction pairs, where each protein is
given by its Swiss-Prot identifier. We mapped the Swiss-
Prot identifiers on the corresponding Gene Symbols so as
to link gene-expression data sets, which mapped 8487
Swiss-Prot entries to 6033 different Gene Symbols.
Among the protein-interaction sources used by the
OPHID, we included HPRD (Human Protein Reference
Database) [36], MINT (Molecular Interaction Database)
[37], RikenBIND and RikenDIP [38], BIND (Biomolecu-
lar Interaction Network Database, [39], and MIPS
(Munich Information Center for Protein Sequences) [40].
These data sets are mostly based on experimental evi-
dence, which is further supported by expert reviews based
on the scientific literature. We did not include interactions
from other sources of low-to-medium quality that are also
listed and indicated as such in the OPHID.

The OPHID provides interaction information in the form
of object A interacting with object B. This information can
be used to derive interaction graphs when providing an
identifier list (A, B, ..., N), as resulting from the analysis of
differential-gene-expression data.

We used Oncomine as a central repository for differential-
gene-expression data [31]. This database provides an
extensive collection of gene expression data on cancer,
and compares various types and subgroups. A total of 962
raw data sets were identified in Oncomine (as at April
2006). We manually selected all gene expression studies
where the malignant tissue was compared to a reference
(either healthy tissue or a cell line). We initially selected
40 individual experiments covering tumors of 17 different
tissues (4 B-cell, 1 bladder, 2 colon, 2 endometrium, 2
ovary, 5 brain, 1 liver, 1 leukemia, 9 lung, 1 multicancer,
3 kidney, 1 pancreas, 4 prostate, 1 salivary gland, 1 testis,
1 thyroid, and 1 soft-tissue tumor), of which 17 used
cDNA arrays and 23 used Affymetrix Gene Chips. The
mean number of available features per study was 11459
(range = 1988–44928 features).
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We extracted each file and processed the raw data accord-
ing to the following scheme: The two groups per study
were analyzed at the level of individual genes by comput-
ing a probability value for the differential expression of a
particular gene in that given experiment. Multiple testing
was accounted for by using the Holm-Sidak step-down
test and setting the significance level to 0.05 [41]. This
procedure yield a mean of 278 genes from each study
(range = 2–1838 genes). From the initial 40 gene expres-
sion data sets, 29 showed between 10 and 300 differen-
tially expressed genes (mean = 90 genes), and these
studies were included in subsequent analyses.

Each of the 29 selected differential gene expression studies
was represented by a list of genes exhibiting significant
differential regulation when comparing expression values
for the group of tumor samples and the group of reference
samples. Each gene on these lists was represented by its
Gene Symbol, allowing a direct match with the protein
interaction data as derived from the OPHID.

Graph construction
Protein interaction graphs (G) were constructed for each
gene list of the 29 selected gene-expression studies based
on OPHID interaction data utilizing the nearest-neighbor
expansion. This procedure built edges between the nodes
of entries A and B of a given gene list if the interaction
between A and B was directly encoded in the OPHID, or if
one element X was identified in the OPHID, allowing the
construction of an interaction of the type A - X - B, where
X was not listed in the gene expression data set [15].

For each gene list, entire graph G comprising n subgraphs
G' was constructed on the basis of genes in the initial list
and their nearest neighbors in the PIN. G' is defined as a
graph whose vertices and edges form subsets of the verti-
ces and edges of G.

Gene lists derived from analyzing differential gene expres-
sion might be linked on the level of coregulation and pro-
tein interactions. To quantitatively assess such
dependencies, the graph properties of PINs derived on the
basis of randomly selected gene lists were computed as
follows: Proteins encoded by randomly selected gene lists
exhibit a background level of protein interactions, and we
analyzed graph measures characterizing gene expression
data sets with respect to random data sets. One thousand
random gene sets containing between 10 and 300 genes
were picked in steps of 10. For each of these gene sets, the
largest subgraph G' was generated again following the
nearest-neighbor expansion as outlined above, and the
graph measures were computed for each G'. This proce-
dure yielded the mean value and 2.5% lower and upper
confidence limits for each graph measure for each data set
size represented by the 1000 individual data sets.

Graph measures and data evaluation
The graph measures for each largest subgraph G' were
then determined for each Oncomine data set as well as for
random data sets. Table 2 lists all of the applied graph
measures. (Software for computing these properties on
the basis of given Gene Symbol lists is available from the
authors upon request.) The graph measures derived for
Oncomine data sets were then interpreted in the context
of the measure scales based on random data sets. A graph
measure was considered as interesting in the context of
cancer associated networks if at least 50% of the 29
Oncomine experiments showed this measure to be out-
side the 2.5% lower and upper confidence limits as com-
puted on the basis of the randomly generated data sets.
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4. Combinatorics in regulatory networks  

4.1 The general problem 

This problem started with a few putative regulatory networks (like the network in Figure 8), 
which we wanted to compare and thus looked for validation. Unbiased experimental data is 
preferable here, but, unfortunately, the information on regulatory genes is likely rather 
biased: regulations of 'interesting' genes are known in detail, whereas other genes are rather 
neglected. 'Negative' information is less safe: a regulation observed in several experiments is 
quite reliable, but the opposite case, where the information that two genes definitely do not 
regulate each other, is less reliable. In fact, it is likely that two genes do not regulate each 
other, as it is a solid assumption that the regulatory network is quite sparse [95], that is, that 
most genes do not regulate each other, which also implies that any experiment cannot add 
much certainty here. The most reliable unbiased information is whether a gene is a 
transcription factor or not, because this is usually performed in a complete manner, for 
example with ChIP-on-Chip (see section1.1.3). A newer method for the same purpose is 
ChIP-sequencing [96]. Both methods have in common that they already result in gene-gene-
regulation, and/or protein-DNA interaction, and that both have weaknesses which bias the 
results: common motifs, repetitive regions, non-specific nature of DNA binding proteins [97] 
and specific weaknesses of each respective method. Additionally, most compiled data 
sources of such experiments have additional prior knowledge of regulations, which is often 
called 'confirmation of functional relevancy' and the information about functional relevancy 
are likely biased in the same way as, for example, gene ontologies [98]. Nevertheless, 
whether a gene is a transcription factor or not is much less biased from these error sources. 
One good source here is TRANScription FACtor database (TRANSFAC [9]). 

We also looked for validation key figures with the known gene-gene-regulation, even when 
they were biased, but the present chapter focus on the validation key figures with the 
transcription factor information of genes, because it turned out that this combinatorial 
problem was not so far resolved. 

 

4.2 The specific side problem 

From the description in the section before, we have on the one side putative regulations 
selected from n genes, that is, a subset of the full set of possible regulations of n * n – 1 
elements (autoregulation of genes is excluded). From this set with elements in the form 'gene 
a regulates gene b', we have a set of regulating genes A. On the other hand, we have a set 
of validated transcription factors or regulating genes. These two sets should naturally 
overlap. Given an overlap, we want to know its p-value. One major use of this p-value is to 
compare it to p-values of other overlaps in case different putative regulations are inferred. 
Since all of the inferred sets of regulating genes should be highly significant, we would like to 
have an exact p-value for comparing them. 
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4.3 The general side problem definition 

The specific side problem arising from the biological case can be defined generally:  

SN ... a set of N different elements 
SNN ... a tuple of N different elements occurring N-1 times 
Sx ... a subtuple of SNN 
Sy ... a subset of SN 

We have N different elements occurring N-1 times. From this tuple we take x elements. We 
have a subset of set SN with the number of y elements. It is searched in Sx elements for the 
Sy elements and z elements well be found. How likely is it to find z or more elements of 
 y in x? 
(from [99], the paper of this chapter) 

It was not difficult to get an approximate solution for this, at least sufficient to judge if the 
given set is significant, and it was not difficult to formulate an exact formula needing factorial 
time to compute2, but it was quite a challenge to get a formula for an exact solution and of a 
polynomial complexity class. The computational complexity of the final formula in the 
following paper is O(x^3). 

 

4.4 Article: The Occurrence-in-subtuple problem 

Alexander Platzer. The Occurrence-in-subtuple problem. Arxiv, 2008. arXiv:0811.4192 
[math.CO]. 

 

This manuscript was not put in an attractive location, inter alia because the 
solution/derivation is for a very specific problem, with limited use for other questions. On the 
other hand, the way to the problem and surrounding of this specific problem was never 
published, in part because this method prevented the completion of another paper showing 
that one putative regulatory network is not as solid as first thought.  Nevertheless, this would 
be a poor reason for not publishing this method at all. 

In retrospect, I realized that it is not only less common to cite Arxiv – although there are 
famous examples such as Grigori Perelman, a winner of the Fields Medal in 2006 – but also 
rather more inconvenient as there is no direct interface to EndNoteTM, for example. 

 

OWN CONTRIBUTION IN [99] 

Everything

                                                
2 A computational complexity class higher than polynomial according to n, which means no computer 
can solve this in a lifetime for n > 1000. The naive formula already needed one day of a single 
computer for n = 5. 



 
 
 

 
The Occurrence-in-subtuple problem 

 

Alexander Platzer 
 

November 25, 2008 
 
 

Abstract 
 

As we go along with a bioinformatics analysis, we stumbled over a new combinatorial question. 
Although the problem is a very special one, there are maybe more applications than only this one we 
have. This text is mainly about the general combinatorial problem, the exact solution and its derivation. 
An outline of a real problem of this type is in the discussion. 
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1.  The problem 
 
 

Definitions: 

 
Given are: 
SN ... a set of N different elements 
SNN ... a tuple of N different elements occurring N-1 times 
Sx ... a subtuple of SNN 
Sy ... a subset of SN 
 
Derived is: 
Sz ... the subset of Sy of all elements of Sy occurring in Sx 
 
With the variables: 
N ... the number of different elements in SN 
N-1 ... the count of occurrences of every different element in SNN |SNN| = N*(N-1) 
|Sx| = x 
|Sy| = y 
|Sz| = z 
 
 
The question: 
We have N different elements occurring N-1 times. From this tuple we take x elements. We have a 
subset of set SN with the number of y elements. It is searched in Sx elements for the Sy elements and 
there will be z elements found. How likely is it to find z or more elements of y in x? 
(an illustration of this question is in figure 1) 
 
Or with the general declarations: 
What is the ratio of permutations of SNN, which results in an equal or higher z as given, to all possible 
permutations of SNN? 

 N distinct * (N-1) times 

x 

y ..  a subset of N 

z 

p-value ?

 
Figure 1. The combinatorial problem illustrated  
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2.  Derivation 
 
 
First of all it is important that the result should be a p-value, so we need the ratio of permutations 
fulfilling the condition (z or more elements of Sy are in Sx), not the combinations. To get permutations 
of combinations in Sx and the rest the factor x!*(N*(N-1)-x)! is needed. And at the end we divide by all 
permutations possible ( (N*(N-1))! , the factor becomes  

))!1(*(

)!)1(*!*(

−

−−

NN

xNNx
 which is  








 −

x

NN )1(*

1
 (1) 

 
if x=1, y=z=1 then this number of combinations is N-1 (because N-1 elements of one type exist) if x=2, 
y=z=1 for 2 times one element of Sz in Sx the number of combinations is (N-1)*(N-2) / 2 ;  (N-1) 
possibilities to choose the first and (N-2) possibilities to choose the second, but the two chosen 
elements cannot be distinguished so divide by two) and so on -> 





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
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elementonetimesmanyhow

N 1
 and for the question, how many combinations exist with one or 

more times one element of Sz in Sx (still x=2, y=z=1) it is the sum of N-1 and (N-1)*(N-2) , but notice 
that this are only the combinations of the elements of Sx which occur in Sz, each of this combination 
has another side (for the elements of Sx which are not occurring in Sz). 
For a number of w elements equal to one element in Sz in Sx, it can be seen as 2 times k-
combinations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
so the count of combinations of w elements in SNN element in Sz in Sx, still y=z=1, is 

 
, for different w’s just summing up. 

N distinct * (N-1) times; the tuple SNN 

Sx w: w ε Sx, 
     w ε Sy (SNN \ Sx) ε Sz 








 −

w

N 1










−

−−

wx

NN )1(*)1(










−

−−







 −

wx

NN

w

N )1(*)1(
*

1

PhD thesis, page 41 



If we change to more than one z, but still y=z then w is changed to a vector containing the count of 
every element of Sz in Sx. Moreover, there must be two constraints, first the sum of w must not be 
larger than x and no component of w may be larger than n-1 (plus as before every component of w 
must be 1 or larger). If we have k=z and sum up all combinations (of possible values for each 
component of w): 
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for the case y>=z it is to include that a combination of z or more elements are chosen from Sy: 
(vector w is renamed to vector i) 
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and with the factor for make permutations out of combinations (1) : 
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we have now a formula for the problem, but it can be seen easily that it will need large computing 
power to solve it with large parameter values. The order of this formula is O(min(x;y)*(n-1)^ min(x;y) ), 
so we have only changed one combinatorial problem into another (faster, but still incalculable in terms 
of time). 
Therefore, the next task is to transform this formula into one with a lower order. 
The bad thing in it is the second sum, there the power to min(x;y) occurs. 
 
First, we expand to: 
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One thing to remark is that the restriction i1...k <= n-1 is only there for information, it is fulfilled of the 

formula alone because the binomial coefficient of 
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If the vector components would not start with 1 but with 0 it would look a trifle better:  
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(Caution: In the next steps in between, the variable names are not always the same as before) 
 
This we can transform with a generalization of the Vandermonde's identity. 
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Generalization: 
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(generalization of Vandermonde's identity is made similar to its algebraic proof (2008), only with k+1 
polynomials instead of 2) 
 
Here is to see that the conditions 

• The sum of all lower parts of the binomial coefficients must be x (because of the last term with 
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• if a lower part of the binomial coefficients is larger than n or lower than zero then the factor is 
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With that we can transform (7) into 
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formula and subtract the difference to the second.  
The difference is somehow a similar problem because the lower part of the last binomial-coefficient ik 
is zero if the sum of i1...k-1 is s (important in (9)). This is the same problem as before but this time with 
k-1. 
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because some combinations will then be counted more than once. 
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To illustrate this: 
 
We have the sum for every combination of i (the components of vector i are every combination of one 
value per column): 
 
 
 
 
 
but we need only: 
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Then we count every combination of two times 0 more than once, so we have add again these 
combinations: 
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(11) combined with (5) results in: 
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with the order O(min(x,y)*x^2) and because the numbers are growing larger (but still needed to be 
computed as full integers) with a little term to the power of 4. 
 
Because of the long drawn out derivation, the formula (12) was tested against (4) in a not too time-
consuming parameter range (N < 20 and y < 20). The formula (4) again was tested against the full 
amount of permutations, but only N < 5 was feasible. 
 
For the author of this derivation it seems remarkable that the constraints (which are indirect time-

consuming) e.g. s

k

j

jinki =

=

∧≤ ∑−

1

)())...(1( 1  can be led back to the constraint of factorial(lower than 0) = 

0. 
 
 
 

3. Discussion 

 
Even though the order of O(x^3) does not look so bad, there should be a faster approximate formula 
with a guaranteed bound of error. However, here the motivation was 'let us try to see if it is possible to 
solve it exactly'. 
The first occurrence/use of this type of problem was in gene expression data (as far as we know). 
Assume we have n elements which are somehow (but unknown) regulating each other. So there are 
n*n possible regulations or n*(n-1) regulations without elements regulating itself. Of this n*(n-1) 
possible regulations we could take x regulations for some reason (e.g. it is the result of a method to 
filter all possible regulations). Additionally given is a list of y elements, which are known as regulators. 
(if we annotate the regulations as lines of 'A -> B' then the regulators are just the elements on the left 
side). 
So we can search in (the first column of) the x chosen regulations for this y elements and we will find a 
count of z elements. 
Now the question arises, how likely is this? Alternatively, the other way round, is it just by chance to 
get z of y elements in our filtered regulations? 
 
Such a scenario is not quite frequent and it sounds strange to know that something is a regulator 
without knowing what is exactly regulated by it. Nevertheless, it is possible to know that a gene very 
likely is a transcription factor, even if it is not quite sure which other genes are exactly regulated of it. 
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5. Classification methods and metabolomics 

As mentioned in the introduction, one major challenge in biological data is their frequent 
p>>n shape, which means that more variables exist than samples. The classical data 
analysis is built on p < n problems and assumes that it should always be simpler to make the 
same measurement more times than to measure something different. While biology followed 
a different path with various multiple test chips like microarrays, with metabolites the 
variables are in most cases not more than the samples: only a few hundred can be 
distinguished and a few hundred samples are feasible. This makes this data source treatable 
by standard methods. Of course, standard methods were also further developed and today 
machine learning also falls into this category. The paper discussed in this chapter uses 
machine learning to infer models for kidney tumors. 

5.1 Classical classification 

The more classical approach for finding classes is to look at the distributions of the variables 
of the different classes, find and define the distribution type and select the threshold between 
the classes. If a linear combination is found to separate two classes, this leads to the Linear 
Discriminant Analysis [100], which is closely related to the simple machine learning method 
perceptron [101]. The two methods are not the identical due to their slightly different error 
function [102], but both result in a linear discriminant function. If the data records are 
sufficient for an exhaustive search of all variable combinations and the assumption of 
linearity is feasible, these classical approaches will find the optimum. The next section looks 
at a more elaborate search in the combinatorial space. 

5.2 Machine learning for classification 

Although machine learning is a diversified field, it contains the largest collection of 
classification methods, as machine learning is focused on known properties learned from 
training data. Neighboring areas are data mining, which focuses on discovery of (previously) 
unknown properties, analytics when an analytical solution is feasible, and a few others (for a 
general broad view see [103]). 

The simplest case for classification is when numeric variables and two target classes are 
given; here most methods are available [63]. A few concepts for this type of problem are 
described in the following paragraphs. 

Percent correctly classified (PCC): 100 * correctly classified instances / all instances. This is 
the simplest key figure for a classification model. 

Lower border / zeroR: this is not a standard term, likely because it is too trivial. In the 
manuscript below it is termed 'lower border', in other literature and in one of the main 
machine learning tools WEKA [104] it is called 'zeroR' (for zero ratio). It is the ratio of 
the most frequent class, following the idea that a model can achieve this merely by 
always predicting this class. Therefore, the PCC rate of the model should exceed the 
lower border in order to be considered better than this overly simplistic prediction. 

Information entropy: the amount of information which is encoded in a certain sequence, see 
[53]. 
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Information gain: the change in information entropy, usually the difference of two models in 
this respect. When the model is build stepwise, the model before and after one step is 
compared. 

Masking: whenever a classifier is built stepwise, there is the characteristic that variables 
chosen first make the later choice of correlated variables much less likely, because 
they are usually chosen for their information gain to the model to that point. 

Cross-validation [55]: typically it is not only how well a model describes the data that is 
interesting but, because of possible overfitting, it is also interesting how well the model 
performs on independent test data. The simplest way to obtain this information is to 
divide the data into two parts: a training set and a test set. The training set is used to 
construct the model, the test set to validate its performance. With few samples, the size 
of the test set can be set smaller, but this would increase the noise level. In this case, it 
is done multiple times: the samples are divided into n parts, n-1 are used to construct a 
model, and the remainder is used for validation. This is done n times. In theory, the 
average PCC should increase with an increasing n, following the idea that more data 
should make the model more general and more likely to be correct on new data. In the 
usual case, and apart from the noise, the PCC approaches a certain value 
asymptotically, which is said to be the maximum possible achievable with the full data. 
It is a generally accepted carelessness in machine learning/classification that a model 
is constructed with all data, but the PCC is from 10-fold cross-validation. The paper 
below follows this standard procedure. The PCC of n-fold cross-validation, where n is 
variable, also allows us to see if the amount of data is enough. A steep curve until the 
maximal n (maximal = number of samples) indicates that the data is not enough for the 
best model. The curves need not be the same in absolute values, slope and bend for 
different methods. 

 

5.3 Article: Metabolic profiling reveals key metabolic features of 
renal cell carcinoma 

Gareth Catchpole*, Alexander Platzer*, Cornelia Weikert, Carsten Kempkensteffen, 
Manfred Johannsen, Hans Krause, Klaus Jung, Kurt Miller, Lothar Willmitzer, Joachim 
Selbig, Steffen Weikert. Metabolic profiling reveals key metabolic features of renal cell 
carcinoma. J. Cell. Mol. Med. Vol 15, No 1, 2011 pp. 109-118 

 

This manuscript is a relatively straightforward analysis, including standard statistics and 
machine learning. This was not common in medicine at time of publication and might not be 
standard today; nevertheless, this manuscript can be used as a template for similar analysis 
in the future. 
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Introduction

The metabolite pool of cells and tissues represents the end result

of metabolism determined by genetic, environmental and nutritional

factors. The metabolic profile of biological systems is closely

related to the individual phenotype and reflects the biological end-

point of a multitude of pathways and their interaction with any

confounding stimuli. Cancer cells exhibit activation of specific

metabolic pathways to compensate for their extremely high energy

demands. Indeed increased glucose uptake and lactate production

and decreased respiration are key phenomena of tumour cell

metabolism. In particular, the generation of an acidic microenvi-

ronment through increased lactate production, even under aerobic

conditions, may confer extracellular matrix degeneration and exert

toxic effects on surrounding cell populations, while being harm-

less for the cancer cell itself [1]. Thus, the metabolic adaptations

may indeed be critical for the development of accelerated prolifer-

ation and the invasive growth of tumour cell populations [1, 2].

The molecular mechanisms underlying the metabolic hallmarks of

cancer are still poorly understood, although genetic, epigenetic

and environmental factors driving cancer development and pro-

gression will interact to determine the metabolic phenotype of

tumour cells. Recent studies suggest that metabolic changes play

a pivotal role in the biology of renal cell carcinoma (RCC) – a

tumour entity that is largely resistant to conventional chemo- and

radiotherapy. The metabolic profile of renal tumours may thus

serve as a reliable biomarker of malignant transformation and 

biological behaviour.
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Abstract

Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC).

Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced

decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The

findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phos-

phate metabolism determined the metabolic profile of RCC. a-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-

1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The

identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metas-

tasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricar-

boxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated

data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds,

hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.
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Recent advances in metabolic profiling technologies by pro-

viding quantitative measures of metabolite profiles from gas

chromatography time-of-flight mass spectrometry (GC-TOF-MS)

based technology present the opportunity to apply this technique

in human specimens [3–5]. Global metabolic profiling has

emerged as a promising approach to characterize the metabolite

pool within a cell, tissue or bodily fluid under certain conditions,

such as health or disease status [4, 6, 7]. Metabolic profiling is

applied to monitor the health to disease continuum and has the

potential of increasing our understanding of the mechanisms of

disease [8]. Thus the characterization of the metabolic features

in tumours is expected to provide a better understanding of the

mechanisms of malignant transformation and progression and

may lead to the identification of metabolic biomarkers for cancer

detection and prognostication. However, comparative profiling of

low molecular weight compounds, such as sugars, lipids and

amino acids, in cancer as compared to the corresponding 

normal tissue is a rather unexplored area. The objective of this

study was to characterize the key metabolic features of RCC

using GC-TOF-MS and mutual information as well as decision

tree-based data analysis.

Material and methods

Study population and sample collection

Tumour tissue and specimens of normal renal cortex tissue were collected

from patients undergoing surgical treatment for primary RCC at the

Department of Urology, Charité-University Medicine Berlin between

November 1995 and November 2005. They included 29 female and 67 male

patients with a mean age of 62 years (range 36–87). Their use was

approved by the Ethics Committee of the Free University of Berlin, and all

patients gave their informed consent prior to surgery. Tissue samples were

obtained during radical nephrectomy following a standard operating pro-

cedure. All RCC specimens were derived from primary tumours. Tissue

specimens were dissected in the operating room immediately after removal

of the kidney, snap-frozen in liquid nitrogen and stored at 2808C until use.

RCC samples were serially sectioned before further processing. Additional

sections were stained with haematoxylin–eosin for histopathological eval-

uation. The histopathological classification and staging was based on the

1997 World Health Organization and TNM classification guidelines

(International Union Against Cancer, 1997): pT1 (n 5 53), pT2 (n 5 13),

pT3 (n 5 30); M0 (n 5 87), M1 (n 5 9). Primary tumour tissue samples

and normal tissue samples from 57 patients (39 male; 18 female) were

chosen for the first round of metabolic analyses. Tumour characteristics

for these RCC patients were: pT1 (n 5 30), pT2 (n 5 12), pT3 (n 5 15),

G1 or 2 (n 5 36) and G3 (n 5 21). Of these, 36 patients had localized

tumours and 21 had or developed metastasized RCC. Later, a second set

of samples was put together from 39 patients (29 male; 10 female; RCC: 

n 5 39; normal tissue: n 5 27) for validation purposes. Tumour character-

istics were: pT1 (n 5 16), pT2 (n 5 8), pT3 (n 5 15), G1 or 2 (n 5 22),

G3 (n 5 17), localized RCC (n 5 32) and metastasized RCC (n 5 7). Most

of the tumour samples analysed belonged to the clear cell subtype of RCC

(n 5 54 in the first set; n 5 34 in the second set).

Sample preparation and GC-TOF-MS analysis

Frozen biopsy tissue was processed under standard operating procedures.

Samples were serially sectioned in a cryostat microtome to prevent thaw-

ing. A defined amount (30 mg) of sectioned tissue was then transferred to

a 2 ml centrifuge tube and homogenized. Samples were centrifuged at

14,000 rpm for 2 min. and the supernatant taken and dried to complete

dryness in a rotary evaporator in the glass vials used for GC-MS analysis.

GC-TOF-MS metabolite profiling was performed on a Leco Pegasus 3

time-of-flight mass spectrometer (Leco, St. Joseph, MI, USA) equipped

with a Direct Thermal Desorption injector (ATAS GL International, The

Netherlands) coupled to an HP 5890 gas chromatograph and a dual-arm

autosampler with automatic derivatization and liner exchange. This elimi-

nates both the impact of potential degradation/synthesis artefacts and

sample carry-over and means that no phase separation of samples is nec-

essary, thereby broadening the coverage of the profiling technique to non-

polar compounds. The method allows relative quantification of metabolites

which cover a large part of primary metabolism such as sugars, organic

acids, amino acids and alcohols in addition to sterols and free lipids.

Samples were derivatized in 10 ml methoxyamine hydrochloride in N, N-

dimethylformamide diethyl acetal (40 mg/ml) at 428C for 180 min. followed

by 90 ml N-methyl-N-trimethylsilyltrifluoroacetamide at 378C for 30 min.

A total of 1.5 ml samples were injected in splitless mode at 858C, ramp-

ing to 2908C at 48C/sec. The GC used a constant flow of 2 ml/min. helium

as carrier gas and a 30 m 320 mm ID MDN35 column. The column temper-

ature gradient was held at 858C for 210 sec., followed by a linear gradient

of 158C/min. reaching a target temperature of 3608C. A 230-sec. acquisition

delay was used and spectra subsequently acquired at the rate of 20/sec.

Chromatograms were processed using Leco ChromaTOF software

(version 3.25) and peaks with a signal to noise ratio .10 were exported

before using an algorithm developed in-house for dealing with the out-

put.txt files [9]. Mass spectra were compared to an in-house mass spec-

tral library for metabolite identification and peak heights expressed relative

to an internal standard (
13

C sorbitol-D).

Statistical analysis

In a univariate approach the non-parametric Mann-Whitney U-test was

applied to search for significant differences in relative concentrations of

metabolites between RCC and normal tissue samples, and between local-

ized and metastasized primary tumours. For key metabolites associations

of relative concentrations with tumour stage or grade were explored.

Metabolite profile data were normalized to an internal standard, log

transformed and scaled according to [9]. Metabolites with more than 20%

missing values were excluded and remaining missing values were esti-

mated via BPCA using the R package pcaMethods [10]. Differences were

expressed as median fold change and P-values Bonferroni corrected to

address the problem of multiple testing. These pairwise comparisons were

restricted to all metabolites that could be identified based on comparison

to the mass spectral library.

For multivariate supervised classification, all metabolites, irrespective

of their identified/non-identified status, were initially included. Data were

normalized to the internal standard and any variables containing missing

values were excluded. As an initial step the first dataset was used to deter-

mine metabolic signature differences in a two-group scenario between

tumour present/absent groups. Subsequently this was expanded to a

three-group scenario, in which tumour presence was further sub-divided

into metastasized/non-metastasized.

© 2011 The Author

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Q2

PhD thesis, page 49 



J. Cell. Mol. Med. Vol 15, No 1, 2011

111

A number of different mainly decision tree classification algorithms,

available in the WEKA platform [11], was used (random forest, random

tree, alternating decision tree (ADTree), sequential minimal optimization,

simple logistic and C4.5).

Data were segregated into learning (50%) and testing (50%) subsets

and models were validated using 10-fold cross-validation. As a second

step, the most promising model was then further validated using the fully

independent second dataset. In a further exploratory analysis, metabolites

that contributed most to the classification of localized versus metastasized

were tested as predictors of recurrence-free survival in Cox regression

analyses. For further information the maximal information gains for a deci-

sion in the classification of tumour presence/absence and metasta-

sized/non-metastasized were calculated for each single metabolite using

mutual information. As decision tree methods generate minimal classifica-

tion models metabolites with a high informational gain are not necessarily

all contained in the decision tree models.

Results

Comparative metabolic profiling of RCC 
and normal renal tissue

In the first round of analyses, RCC tissue samples and control cor-

tex specimens from 57 patients with RCC were investigated. The

cohort consisted of 36 patients with localized disease and 21 patients

with metastatic tumours either at time of diagnosis or who devel-

oped metastasis during follow-up. The mean follow-up was 

41 months (range 2–113 months). Data matrices consisted of 

188 metabolites, of which 74 could be identified, 25 putatively

identified, 37 which could be assigned a possible metabolite class

and 52 whose chemical structure remained unassigned.

All generated classification models describing tumour pres-

ence/absence performed satisfactorily on the first dataset.

Alternating decision trees (ADTree) are preferred due to the fewer

variables being necessary to yield the high prediction power of

95% correct assignment (Table 1, Fig. 1). Thus this model was

selected for validation using the second dataset, where it resulted

in 77% correct classification. This is less than the 95% observed

for the first dataset, but is however, very similar to the classifica-

tion reached within the second dataset itself (75% with the ADTree

with 10-fold cross-validation).

Tree-based learning algorithms in particular, are designed to

the selection of the single best classifier at each decision step

and therefore occasionally prone to the exclusion of others

which could themselves carry potentially meaningful information 

(Fig. 2). We therefore tested for differences between normal und

RCC specimens by pairwise comparison of the relative concen-

tration of all identifiable metabolites. These analyses were con-

fined to all metabolites detected in .80% of samples.

Metabolites with differences in relative concentrations are shown

in Table 2. These include metabolites which may not have been

detected in all samples and thus may not be contained in the

decision tree models, which are intolerant of missing values.

These compounds were subsequently assigned to common

© 2011 The Author
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Table 1 Performance of the decision tree models for the discrimination between normal and RCC tumour samples

All metabolites Identified metabolites only

First dataset Validation dataset First dataset Validation dataset

Method* 50% crossfold10 50% crossfold10 50% crossfold10 50% crossfold10

Random Forest 86% 94% 74% 71% 91% 91% 50% 78%

Random Tree 52% 71% 82% 65% 71% 70% 56% 66%

ADTree 95% 95% 68% 75% 89% 92% 47% 73%

SMO 92% 97% 85% 88% 95% 92% 59% 81%

Simple Logistic 95% 95% 91% 84% 94% 85% 56% 85%

lower border**

most frequent class/total 66/132 40/68 65/130 39/67

float of lower border 50% 59% 50% 58%

*The correct classification returned by each of the five different classification methods used (random forest, random tree, ADTree, SMO and simple

logistic) upon treating the two-class problem (tumour yes/no) is shown as percentage. Results are shown having divided the dataset into 50% train-

ing and 50% testing sub-groups and having used 10-fold cross-validation.

**The lower border is the percentage of the total sample number represented by the most numerous class. This percentage correct classification

could therefore be achieved simply by always classifying unknown samples as belonging to this class. Therefore the success rate of the models

should exceed the lower border in order to be considered better than this overly simplistic selection method.
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Fig. 1 Decision Tree Model (ADTree) generated for the two-class problem of discriminating RCC and normal renal tissue samples (A), and localized

RCC and metastatic disease (B). Key metabolites are shown with the corresponding normalized relative peak intensity cut-offs. Each metabolite resem-

bles a decision node that is linked to two prediction nodes with the corresponding prediction values. Classification of a hypothetical sample would be

based on the sum of final attained prediction node values that are determined by applying the peak intensity cut-offs for all metabolites of the deci-

sion tree on the sample-specific data record. Any result , 0 means a class prediction of 0 (A: normal tissue; B: localized tumour), any result . 0 a

class prediction of 1 (A: RCC, B: metastatic tumour). The model was trained with the first dataset and used all metabolites irrespective of identified

status.
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pathways according to the Kyoto Encyclopedia of Genes and

Genomes. The data indicate that the metabolic signature of RCC

tends to be characterized by metabolites associated with glucose

metabolism, such as glucose-1-phosphate, markers of fatty acid

and phospholipids metabolism, such as palmitate, arachidonic

acid and glycerol, and myoinositol belonging to the inositol

polyphosphate family of cell signalling molecules. Interestingly,

and consistent with the decision tree models, the metabolites

revealing the largest relative RCC versus control differences

were a-tocopherol and hippuric acid. Elevated levels of a-toco-

pherol were detected in RCC thereby pointing to a potential acti-

vation of vitamin E metabolism in tumour cells. When a-toco-

pherol was considered alone in a ROC analysis, correct classifi-

cation of 84.8% of RCC samples and 92.4% of normal tissue

samples was achieved (data not shown). Although similar accu-

racy could be achieved using hippuric acid as a marker, the rel-

evance of the greatly decreased concentration of this metabolite

in RCC is unknown. The descriptive statistics for selected

metabolites are shown in Fig. 3. In further data exploration we

tried to see whether or not metastasizing tumours could be

© 2011 The Author
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Fig. 2 The information

gain for the two class

discrimination between

RCC and normal tissue

by key metabolites.

Metabolites with the

highest gain contribute

most to the correct 

discrimination. The 

theoretical maximum

gain 5 1. The black bars

indicate metabolites that

were not detectable in all

samples and were there-

fore unable to be incor-

porated into the ADTree

model, but all of these

metabolites were detected

in over 90% of samples,

except for 6-phospho-

gluconic acid (88%).
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Table 2 Metabolites displaying relative concentration differences in RCC and control renal tissue samples

Compound
Median fold

change* 
P-value** Pathway

Training

set

Validation

set

Combined

set

a-tocopherol 5.2 <0.0007 <0.0007 <0.0007 Vitamin E metabolism

a-tocopherol acetate 4.0 <0.0007 n.s. <0.0007

b-tocopherol 3.1 <0.0007 0.004 <0.0007

Arachidonic acid –2.6 <0.0007 <0.0007 <0.0007
Arachidonic acid metabolism (involved in VEGF signalling

pathway and angiogenesis)

Palmitate –1.5 <0.0007 0.02 <0.0007 Fatty acid metabolism

Tridecanoic acid –1.4 <0.0007 n.s. 0.0032

Glycerol –2.2 <0.0007 0.0008 <0.0007 Glycerolipid metabolism

Citric acid 1.6 0.001 n.s. <0.0007 TCA cycle

Fumaric acid –1.9 0.01 <0.0007 <0.0007

Succinic acid –3.4 <0.0007 0.003 <0.0007

Malic acid –1.7 <0.0007 0.01 <0.0007

Glucose 5.0 <0.0007 n.s. 0.0008 Glycolysis, Pentose phosphate pathway

Glucose (minor peak) 4.8 <0.0007 n.s. <0.0007

Glucose-1-phosphate 3.0 <0.0007 n.s. <0.0007
Glycolysis, Pentose phosphate pathway, Nucleotide sugars

metabolism, 

6-phosphogluconic acid 6.3 <0.0007 n.s. <0.0007
Glycolysis, Pentose phosphate pathway, byproduct of tyro-

sine kinase acticity

Fructose 2.0 <0.0007 n.s. <0.0007 Fructose and mannose metabolism

Fructose-1-phosphate 8.3 <0.0007 n.s. <0.0007

myo-Inositol –1.5 <0.0007 <0.0007 <0.0007
Phosphatidylinositol signalling system, Inositol phosphate

metabolism

Saccharic acid –2.6 <0.0007 n.s. <0.0007 Ascorbate and aldarate metabolism (linked to glycolysis)

N-Acetyl-D-glucosamine –1.7 0.034 <0.0007 <0.0007 Glutamate metabolism, Aminosugars metabolism

b-alanine 2.5 <0.0007 n.s. <0.0007 Pyrimidine metabolism

Uracil –2.0 <0.0007 0.004 <0.0007

Uracil (second peak) –3.7 <0.0007 0.002 <0.0007

Hippuric acid –35.2 <0.0007 <0.0007 <0.0007 Phenylalanine metabolism

Oxoproline 1.4 <0.0007 n.s. 0.0037 Gluthathion metabolism (radical detoxification)

*Negative fold change indicates decreased relative concentration in RCC versus normal tissue.

**A P-value of <0.0007 indicates a significant difference upon Bonferroni correction for multiple testing.

 differentiated from localized ones. Applying an ADTree model did

not yield satisfactory results, largely due to the restrictive sam-

ple number, however a direct pairwise comparison of the relative

metabolite concentrations in both tumour phenotypes suggested

a number of differences (Table 3).

Independent validation of the RCC metabolic 
signature

Despite the reduced statistical power in this smaller second dataset,

we repeated pairwise comparisons of relative concentrations of
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known and interpretable metabolites to validate the findings of the

first dataset (Table 2). As expected due to the smaller sample size,

significant differences were seen in fewer metabolites in the sec-

ond dataset. However, all differences observed in the first dataset

were confirmed when the tests were repeated in the combined first

and second dataset (Table 2). Key metabolites in both datasets

were a-tocopherol, hippuric acid and myoinositol thus underlining

the notion that these are of importance for the metabolic signature

of RCC. The comparatively low number of metastasized samples

(n 5 7) in the second dataset hampered the validation of meta-

bolic differences between these and non-metastasized tumours.

Pairwise comparisons in the combined dataset however, con-

firmed uracil as a key metabolite in distinguishing metastasized

and localized tumours. This metabolite is of relevance for the syn-

thesis of nucleic acids and may indicate a metabolic adaptation to

the increased transcriptional activity in aggressive, potentially

lethal tumours. The increased fatty acid content adds weight to the

theory that fatty acid degradation is reduced in tumour cells, but

this may be particularly pronounced in aggressive metastasized

tumours. The exploratory analysis revealed some other putative

metabolites which characterize metastasized disease, such as

myoinositol, arachidonic acid and several amino acids (isoleucine,

© 2011 The Author
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Fig. 3 Descriptive statistics

of relative metabolite con-

centrations in tumour versus

normal tissue. Select key

metabolites are chosen

based on their high infor-

mational gain for the

tumour/normal discrimina-

tion and/or their identifica-

tion in the decision tree

analysis. Boxplots show

median, 25
th

and 75
th

per-

centiles, range, and extreme

values. For better illustra-

tion a logarithmic scale was

chosen for the relative con-

centration; absolute con-

centrations cannot be cal-

culated and therefore no

precise scale is given.

Table 3 Metabolites with relative concentration differences in localized and metastasized RCC samples

Compound Median fold change P-value Pathway

Uracil 1.9 ,0.0007 Pyrimidine metabolism

Arachidonic acid 1.9 0.007 Arachidonic acid metabolism (involved in VEGF signalling pathway and angiogenesis)

Erythritol 1.7 0.002 Glycerolipid metabolism

3-Phospho-glycerate 1.9 0.005

Heptadecanoic acid 1.5 0.001 Fatty acid metabolism

Hexadecanoic acid 1.3 0.008

Tetradecanoic acid 1.4 0.01

Isoleucine 2.9 0.008 Valine, leucine and isoleucine meatbolism

Phenylalanine 2.4 0.003 Phenylalanine metabolism

Proline 2.5 0.006 Arginine and Proline metabolism

*A P-value of <0.0007 indicates a significant difference upon Bonferroni correction for multiple testing.
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phenylalanine and proline), but these findings require confirma-

tion in independent datasets as false positive test results cannot

be fully excluded. When differences in relative concentrations for

key metabolites, i.e. a-tocopherol, hippuric acid, glucose-1-phos-

phate, myoinositol and succinic acid, by tumour stage (pT1–2

versus pT3) were explored a-tocopherol was increased in pT3

tumours (P , 0.05). No differences were observed by tumour

grade (G1–2 versus G3). The ADTree models performed insuffi-

ciently when tumour stage and grade were studied as classifiers.

The results were indicative of a-tocopherol, free fatty acids and

uracil contributing to the metabolic signature of advanced (pT3)

as compared to smaller tumours (pT1–2).

In addition we tested whether metabolites of the ADTree classify-

ing metastasized tumours were associated with the outcome of RCC

patients using univariate and multivariate Cox models. Only citric

acid was independently related to recurrence-free survival (data not

shown). Decreased citric acid concentrations could conceivably indi-

cate a deteriorating prognosis and although this finding is in line with

a switch towards increased glycolysis even under aerobic conditions

and therefore seems plausible, the data are purely exploratory and,

in view of the multiple testing problem, require confirmation.

Discussion

This study characterizes the metabolite pool of RCC as compared

to control renal cortex tissue using non-targeted metabolic profil-

ing and permitted the assignment of a specific metabolic signature

to RCC. This signature was not only validated with common test

procedures, but was also confirmed in an independent, subse-

quently compiled validation dataset. Thus a set of key metabolites

representing relevant metabolic pathways of RCC was established.

Our data together with a previous study [12] substantially extend

the knowledge on the small molecule component of RCC tissue.

These findings complement earlier studies on biomarker discov-

ery in RCC using ‘omics’ platforms [13–15].

As the metabolomics methodology used in this study captures

a large part of primary metabolism, our study for the first time

gives a comprehensive overview of the metabolic phenotype of

RCC tissue. This phenotype confirms presumed metabolic features

of cancer cells in general and RCC in particular. The marked differ-

ential concentration of glucose 1-phosphate and metabolites of the

tricarboxylic acid (TCA) cycle, such as succinate and malate, points

to a pivotal role of altered glucose and energy metabolism in RCC.

Remarkably, most substrates of the TCA cycle seemed to be

notably down-regulated in RCC compared to control tissue. Since

the TCA pathway is a catabolic pathway of aerobic respiration our

findings may reflect the shift towards an anaerobic energy metab-

olism and reduced respiration even in the presence of oxygen, also

referred to as aerobic glycolysis or as the Warburg effect [16].

Indeed, recent studies suggest that the up-regulation of hypoxia-

inducible factors (HIF) mediates the reprogramming of glucose and

energy metabolism including increased glycolysis and lactate pro-

duction in renal cancer cells [17, 18]. Using a combination of tran-

scriptomics and proteomics it has been recently confirmed that

genes and proteins involved in cellular metabolism play a crucial

part in the development and progression of RCC making them

promising candidates for biomarker identification [15].

To compensate for their high energy demands, cancer cells are

likely to exploit a multitude of energy sources including fatty acid

oxidation and other non-glycolytic pathways [19, 20]. According

to our findings, metabolites of fatty acid metabolism seem to play

a key part in RCC metabolism. A number of fatty acids were found

to be differentially concentrated, but uniformly down-regulated in

RCC. This finding may be the consequence of increased fatty acid

oxidation, which has also been described in other cancer types, in

particular prostate cancer [21, 22]. Studies identifying fatty acid

binding proteins (FABP) [23, 24] and fatty acid synthase [25] as

tumour markers of RCC underline the importance of fatty acid

metabolism in the biology of RCC. Interestingly, in our study up-

regulation of fatty acid concentration seemed to be specifically

associated with metastatic disease. This fact may indicate that an

increase in de-novo fatty acid synthesis or increased fatty acid

uptake and reduced mitochondrial b-oxidation of fatty acids may

be rather late events in the progression of RCC to an invasive and

metastasized phenotype. Indeed, the lipogenic phenotype has

been linked to advanced and metastatic cancers [26], and the full

pattern of metabolic reprogramming may be associated with

advanced tumour progression. Our findings in metastasizing RCC,

in particular the accumulation of fatty acids, glycerolipid com-

pounds and TCA cycle intermediates such as succinate, are in line

with the hypothesis that mitochondrial dysfunction has a role in

tumour cell metastasis [27, 28].

Another remarkable finding was the profound up-regulation of

a-tocopherol concentration in RCC and despite previous allusions

to such an elevated vitamin E concentration [29, 30] this finding

has as yet not received particular attention. Among all metabolites

investigated in our study, a-tocopherol emerged as the most

important classifier of normal versus tumorous tissue and there-

fore underlines the putative importance of vitamin E in RCC biol-

ogy. The elevated concentration of vitamin E in RCC cells may just

be an epiphenomenon und indicate an increased uptake of lipids

and fatty acids through the up-regulation of rather unspecific

transfer proteins, lipases or lipoprotein receptors [31]. The

increased concentration of a-tocopherol has previously been

observed in ovarian carcinomas by using similar metabolomics

methodology and interpreted as an unspecific stress response [4].

As a potential alternative explanation, elevated vitamin E may

indeed play a functional role and render the tumour cell resistant

to increased oxidative stress toxic to surrounding normal cell pop-

ulations. Vitamin E and a-tocopherol in particular, is a potent,

lipid-soluble, chain-breaking antioxidant and additional vitamin E

has been shown to prevent mitochondrial dysfunction in the pres-

ence of severe oxidative stress [32]. However, the specific role of

vitamin E is likely not limited to its antioxidant function, but can

rather be extended to a-tocopherol serving as a transcriptional

regulator of gene expression [33]. Results which point to the

importance of a-tocopherol would seem to indicate that further
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studies are justified to clarify the phenomenon of tocopherol ele-

vation in RCC, which may ultimately be exploited for establishing

novel therapeutic targeting strategies [19]. Differentially regulated

metabolites may also include intracellular signalling molecules, as

indicated by the fact that myoinositol was one of the key metabo-

lites identified in our study. This compound belongs to the inosi-

tol polyphosphate family of small cytosolic molecules involved in

the control of a wide range of cellular processes [34]. Its down-

regulation has also been described in prostate cancer [35].

In our exploratory analysis of the metabolic signature of

metastatic tumours, intermediates of glucose metabolism, such

as succinate and glucose, proved to be key classifiers. These

findings are in line with the recent observation that the metasta-

tic progression of RCC is associated with a shift toward non-

oxidative glucose metabolism through the pentose phosphate

pathway [36]. In our study, the metabolic profile of metastasized

tumours could not be thoroughly validated as the number of

metastasized tumours was restrictive in the test dataset.

Nonetheless, it is worth mentioning that the concentration of

arachidonic acid was elevated in metastasized tumours, whereas

the concentration in RCC in general was lower than in normal

renal tissue. The increase of arachidonic acid in aggressive

metastasized tumours seems plausible, as this pro-inflammatory

fatty acid has been linked to the VEGF-signalling pathway and

tumour angiogenesis. Further, the activation of the inflammatory

cascade may indeed increase the metastatic potential of RCC

through dysregulation of the immune response in the tumour

microenvironment. In this context, the observed elevation of pro-

line levels in tumour tissue can be explained by the degradation

of collagen in the microenvironmental extracellular matrix pro-

moting invasive tumour growth [37]. The reduced proline oxidase

expression, as described in RCC cell lines [38], would be an alter-

native explanation. Altogether, the findings in metastatic RCC

merit further studies.

References

1. Gillies RJ, Gatenby RA. Hypoxia and

adaptive landscapes in the evolution of

carcinogenesis. Cancer Metastasis Rev.

2007; 26: 311–7.

2. Pelicano H, Martin DS, Xu RH, et al.

Glycolysis inhibition for anticancer treat-

ment. Oncogene. 2006; 25: 4633–46.

3. Barba I, Fernandez-Montesinos R,

Garcia-Dorado D, et al. Alzheimer’s dis-

ease beyond the genomic era: nuclear

magnetic resonance (NMR) spectroscopy-

based metabolomics. J Cell Mol Med.

2008; 12: 1477–85.

4. Denkert C, Budczies J, Kind T, et al. Mass

spectrometry-based metabolic profiling

reveals different metabolite patterns in

invasive ovarian carcinomas and ovarian

borderline tumors. Cancer Res. 2006; 66:

10795–804.

5. Fiehn O, Kind T. Metabolite profiling in

blood plasma. Methods Mol Biol. 2007;

358: 3–17.

6. Schlotterbeck G, Ross A, Dieterle F, et al.

Metabolic profiling technologies for bio-

marker discovery in biomedicine and drug

development. Pharmacogenomics. 2006;

7: 1055–75.

7. Wikoff WR, Pendyala G, Siuzdak G, et al.

Metabolomic analysis of the cerebrospinal

fluid reveals changes in phospholipase

expression in the CNS of SIV-infected

macaques. J Clin Invest. 2008; 118:

2661–9.

8. Schnackenberg LK, Beger RD. Monitoring

the health to disease continuum with global

metabolic profiling and systems biology.

Pharmacogenomics. 2006; 7: 1077–86.

9. Lisec J, Schauer N, Kopka J, et al. Gas

chromatography mass spectrometry-

based metabolite profiling in plants. Nat

Protoc. 2006; 1: 387–96.

10. Stacklies W, Redestig H, Scholz M, et al.

pcaMethods–a bioconductor package pro-

viding PCA methods for incomplete data.

Bioinformatics. 2007; 23: 1164–7.

11. Witten IH, Eibe F. Data mining: practical

machine learning tools and techniques.

2nd ed. San Francisco: Morgan Kaufmann;

2005.

12. Jung M, Mollenkopf HJ, Grimm C, et al.

MicroRNA profiling of clear cell renal cell

cancer identifies a robust signature to

define renal malignancy. J Cell Mol Med.

2009.

13. Gao H, Dong B, Liu X, et al. Metabonomic

profiling of renal cell carcinoma: high-

resolution proton nuclear magnetic reso-

nance spectroscopy of human serum with

multivariate data analysis. Anal Chim Acta.

2008; 624: 269–77.

14. Kim K, Aronov P, Zakharkin SO, et al.

Urine metabolomics analysis for kidney

cancer detection and biomarker discovery.

Mol Cell Proteomics. 2009; 8: 558–70.

15. Seliger B, Dressler SP, Wang E, et al.

Combined analysis of transcriptome 

|and proteome data as a tool for the 

identification of candidate biomarkers in

renal cell carcinoma. Proteomics. 2009; 9:

1567–81.

16. Kim JW, Dang CV. Cancer’s molecular

sweet tooth and the Warburg effect.

Cancer Res. 2006; 66: 8927–30.

17. Semenza GL. HIF-1 mediates the Warburg

effect in clear cell renal carcinoma. J

Bioenerg Biomembr. 2007; 39: 231–4.

18. Zhang H, Gao P, Fukuda R, et al. HIF-1

inhibits mitochondrial biogenesis and 

cellular respiration in VHL-deficient renal cell

carcinoma by repression of C-MYC activity.

Cancer Cell. 2007; 11: 407–20.

19. Pan JG, Mak TW. Metabolic targeting as

an anticancer strategy: dawn of a new era?

Sci STKE. 2007; 2007: pe14.

20. Buzzai M, Bauer DE, Jones RG, et al. The

glucose dependence of Akt-transformed

cells can be reversed by pharmacologic

activation of fatty acid beta-oxidation.

Oncogene. 2005; 24: 4165–73.

21. Liu Y. Fatty acid oxidation is a dominant

bioenergetic pathway in prostate cancer.

Prostate Cancer Prostatic Dis. 2006; 9:

230–4.

22. Zha S, Ferdinandusse S, Hicks JL, et al.

Peroxisomal branched chain fatty acid beta-

oxidation pathway is upregulated in prostate

cancer. Prostate. 2005; 63: 316–23.

23. Seliger B, Lichtenfels R, Atkins D, et al.

Identification of fatty acid binding proteins

as markers associated with the initiation

and/or progression of renal cell carcinoma.

Proteomics. 2005; 5: 2631–40.

24. Teratani T, Domoto T, Kuriki K, et al.

Detection of transcript for brain-type fatty

Acid-binding protein in tumor and urine of

PhD thesis, page 56 



118

patients with renal cell carcinoma.

Urology. 2007; 69: 236–40.

25. Horiguchi A, Asano T, Ito K, et al. Fatty

acid synthase over expression is an indica-

tor of tumor aggressiveness and poor

prognosis in renal cell carcinoma. J Urol.

2008; 180: 1137–40.

26. Menendez JA, Lupu R. Fatty acid synthase

and the lipogenic phenotype in cancer

pathogenesis. Nat Rev Cancer. 2007; 7:

763–77.

27. Ishikawa K, Takenaga K, Akimoto M, 

et al. ROS-generating mitochondrial DNA

mutations can regulate tumor cell metasta-

sis. Science. 2008; 320: 661–4.

28. Lopez-Rios F, Sanchez-Arago M, Garcia-

Garcia E, et al. Loss of the mitochondrial

bioenergetic capacity underlies the glu-

cose avidity of carcinomas. Cancer Res.

2007; 67: 9013–7.

29. Tosi MR, Rodriguez-Estrada MT, 

Lercker G, et al. Magnetic resonance

spectroscopy and chromatographic meth-

ods identify altered lipid composition in

human renal neoplasms. Int J Mol Med.

2004; 14: 93–100.

30. Nikiforova NV, Kirpatovsky VI, Darenkov

AF, et al. Liposoluble vitamins E and A in

human renal cortex and renal cell carcino-

mas. Nephron. 1995; 69: 449–53.

31. Mardones P, Rigotti A. Cellular mecha-

nisms of vitamin E uptake: relevance in

alpha-tocopherol metabolism and potential

implications for disease. J Nutr Biochem.

2004; 15: 252–60.

32. Ham AJ, Liebler DC. Antioxidant reactions

of vitamin E in the perfused rat liver: prod-

uct distribution and effect of dietary vita-

min E supplementation. Arch Biochem

Biophys. 1997; 339: 157–64.

33. Azzi A, Gysin R, Kempna P, et al.

Regulation of gene expression by alpha-

tocopherol. Biol Chem. 2004; 385:

585–91.

34. Burton A, Hu X, Saiardi A. Are inositol

pyrophosphates signalling molecules? 

J Cell Physiol. 2009; 220: 8–15.

35. Serkova NJ, Gamito EJ, Jones RH, et al. The

metabolites citrate, myo-inositol, and sper-

mine are potential age-independent markers

of prostate cancer in human expressed pro-

static secretions. Prostate. 2008; 68: 620–8.

36. Langbein S, Frederiks WM, zur Hausen

A, et al. Metastasis is promoted by a

bioenergetic switch: new targets for pro-

gressive renal cell cancer. Int J Cancer.

2008; 122: 2422–8.

37. Phang JM, Donald SP, Pandhare J, et al.

The metabolism of proline, a stress sub-

strate, modulates carcinogenic pathways.

Amino Acids. 2008; 35: 681–90.

38. Maxwell SA, Rivera A. Proline oxidase

induces apoptosis in tumor cells, and its

expression is frequently absent or reduced

in renal carcinomas. J Biol Chem. 2003;

278: 9784–9.

© 2011 The Author

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

PhD thesis, page 57 



 

PhD thesis, page 58 

5.4 Results - Addendum 

The models of choice here are alternating decision trees. The choice has two reasons: firstly, 
the ADTrees [106] perform well on this problem; secondly, trees are simple to interpret. The 
interpretation is simpler because trees can be nicely visualized and provide a not too high 
number of predictive variables. For SVMs the result are weights for each variable, which is 
much more difficult to sum up. 

From the n-fold cross-validation, in the paper just 2-fold (= split in half; see Table 1 therein) 
and 10-fold, it can be seen that the first dataset is abundant enough because the PCC does 
not increase much from 2-fold to 10-fold cross-validation, at least for ADTrees. Using the 
same argument, the second dataset has too little data due to the larger differences between 
2-fold and 10-fold cross-validation and the varying algebraic sign of the differences. 

One property of ADTrees is that they can summarize a set of trees in one tree. This means 
they can hold the same split as a forest in a single tree notation. The text representation of 
the tree in the paper Figure 1A is: 

: 0 
|  (1)vitamineE < 0.346: -0.678 
|  |  (2)y_100 < 1.712: 0.883 
|  |  (2)y_100 >= 1.712: -1.691 
|  (1)vitamineE >= 0.346: 1.619 
|  (3)glucose_1_phosphate < 0.145: -0.433 
|  |  (4)ribonicacid2incorrectassignment < 0.059: -0.873 
|  |  (4)ribonicacid2incorrectassignment >= 0.059: 1.169 
|  |  (5)inositolput_49 < 8.363: 0.869 
|  |  (5)inositolput_49 >= 8.363: -0.736 
|  |  (9)y_41 < 5.401: 0.429 
|  |  (9)y_41 >= 5.401: -0.479 
|  (3)glucose_1_phosphate >= 0.145: 1.252 
|  (6)y_103 < 0.029: -0.207 
|  (6)y_103 >= 0.029: 0.66 
|  (7)y_44 < 0.614: 0.621 
|  (7)y_44 >= 0.614: -0.343 
|  (8)y_1020 < 0.096: -0.362 
|  (8)y_1020 >= 0.096: 0.472 
|  |  (10)cho_alcohol_98 < 0.303: 0.57 
|  |  (10)cho_alcohol_98 >= 0.303: -0.207  
 

The direct representation of this in a diagram is shown in Figure 10. The corresponding 
binary tree can have up to the squared number of decision nodes. 

All machine learning models are constructed with one of the standard tools in this area called 
WEKA [104]. 
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Figure 10. Decision Tree Model (ADTree) for RCC. It is generated for the two-class problem of 
discriminating RCC and normal renal tissue samples for the text representation in this section. Some 
labels are different from the paper's Figure 1A as alpha-tocopherol is vitamin E and we were less 
optimistic in safe metabolite identification in the paper (e.g. 'cho_alcohol_98' is just mentioned as 
'Unknown sugar/alcohol' in the paper) 

For Figure 1B it is only mentioned in the paper that its performance is not satisfactory. 10-
fold cross-validation PCC is 73% for the model in Figure 1B, which is not remarkable with a 
lower limit of 64%. Since it is a 3-class problem (healthy tissue, non-metastasized and 
metastasized tumor), we also tried to build models for three classes at once. Again, several 
methods to build models were tried, but there the range of suitable methods was smaller, 
that is, ADTrees can only deal with 2-class problems. One similar method is the standard 
decision tree generator C4.5, which performs slightly worse than ADTrees on our data in the 
2-class fashion. Its result for the 3-class problem is: 

vitamineE <= 0.285613 
|   glucose_1_phosphate <= 0.153917 
|   |   ribonicacid2incorrectassignment <= 0.094326: 0 
|   |   ribonicacid2incorrectassignment > 0.094326: 1 
|   glucose_1_phosphate > 0.153917 
|   |   124_trihydroxybutane <= 0.060255: 1 
|   |   124_trihydroxybutane > 0.060255: 2 
vitamineE > 0.285613 
|   erythritolput <= 0.057747: 1 
|   erythritolput > 0.057747 
|   |   glycericacid_3_phosphate <= 0.03226 
|   |   |   124_trihydroxybutane <= 0.067844: 1 
|   |   |   124_trihydroxybutane > 0.067844: 0 
|   |   glycericacid_3_phosphate > 0.03226 
|   |   |   malicacid <= 0.870674: 2 
|   |   |   malicacid > 0.870674: 1 
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With a 10-fold cross-validation PCC of 79% with a lower limit of 55%. This result lies between 
the two 2-class formulations and shows that a) non-metastasized vs metastasized tumor is a 
tougher problem with this data, where the small amount of data is also an issue, and b) that 
most methods are optimized for 2-class problems. What becomes clear here is that if you 
have a problem falling into a general problem class and there are methods designed for this 
class, these methods will likely perform well. A broader overview of problem classes in 
machine learning is published by the applicant in Platzer, A. Machine Learning - Overview. 
2012; Available from: http://sourceforge.net/projects/machine-learning2012/files/ [63]. 
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6. Classical data processing and massive DNA sequencing 

6.1 The massive data source from sequencing 

As mentioned in section 1.1.5, NGS/sequencing is now one of the largest data sources, and 
its rate is also increasing. It has changed or replaced several methods where the focus was 
on specific sequence features since the full sequence can now be captured with not much 
more effort and the costs are still decreasing (see Figure 5). As computer hard disks are not 
advancing as rapidly, the major efforts for gaining insights from this data are increasingly the 
analysis and the storage, resp. the IT-environment. Naturally, biology was not the first data-
intensive research area that needed more effective and sophisticated data processing, but as 
it is a specific data source, it also has specific demands, in comparison with physics and 
astronomy for instance. 

Computer clusters are needed to process and analyze these large amounts of data. This 
pressure for more hardware can in part also be addressed with more efficiently programmed 
modules (see section 1.3.6). 

One quite expensive step which is almost always needed for NGS data is alignment. Most of 
the recent aligners are heuristics, which result in some inaccuracy but make the amount of 
NGS data treatable. For an overview of NGS aligners see [40]. There even exist recent 
approaches to avoid the alignment step in the analysis (see [107, 108]). Although it is of 
course always good to know which computationally expensive steps are really needed and/or 
what effect they have, skipping alignments in sequence analysis appears a bit like 
surrendering in the face of the required computational effort. On the other hand, there are 
also advantages in the standard full alignment, as in [109]. A rough estimate was that one 
sample could be processed in a few days with the library of this paper using our full current 
computer cluster. We have not tried this, but it is at least not out of scope. 

6.2 Computer cluster architecture 

Computer clusters are a long-term core topic in computer science. This topic is even older 
than personal computers, which appeared on the scene in larger quantities about 20 years 
after mainframe computers. Today’s personal computers have more computational power 
than the mainframes of several years ago, but as still more speed, processing power and 
storage are required, mainframes have not disappeared. There are several, not very clearly 
delineated terms for 'larger' computers, such as mainframe, computer cluster, server farm, 
and so on. For definitions see [110, 111]. 

Primarily, computer clusters are classified according to their main purpose. This can be: 

• High-Availability: The services of the machine shall not fail at any time. To archive 
this, the components are redundant. 

• Load balancing: The machine should handle processes in parallel, which should be 
served with equal performance. Usually this is done with several units, where a load 
balancer distributes the requests. 

• High Performance Computing: This type should primarily have high computational 
power. The demands may be different: high-throughput for single jobs and/or many 
jobs in parallel. 

• Storage: more storage is needed at once than a single hard disk has. The focus can 
be on throughput, size and/or data safety. 
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NGS data is moving towards more than one of these possible design goals of a computer 
cluster: a large storage to store all the data, with high performance computing for processing. 
For the latter both are useful: many jobs in parallel because the data is already divided in 
samples, which is perfect parallelization; and high-throughput for single jobs for methods like 
de novo assembly. 

In the best case, the execution of programs on a cluster is done just as on the development 
machine, which is possible when the following conditions are met: the operating system is 
the same and the setup for the computational nodes, the distribution and job scheduling is 
done transparently. From the other perspective: a single job can be done on the 
development machine. This latter is a problem if a demonstration job already needs more 
resources than the development machine has; in this case, new modules must developed 
directly on the cluster. 

Although the various clusters are quite different, for some design issues there is a kind of 
common agreement: 

• The nodes are divided in computational nodes, management nodes and 'invisible' 
administration nodes; computational nodes are only accessed with the job scheduler 

• The storage is an own entity and can be mounted from multiple computational 
entities. 

• The storage is divided for projects and users. This can be done as quota or 
dedicated. 

• One login node would be a single point of failure, so if a larger cluster is involved it is 
made redundant in a load-balancing way. 

• The IO can be a bottleneck on several levels, so the cluster backbone, network, 
caching and general speed should be in tune with each other. 

• Only the very basic software is available at login, software needed is loaded and 
unloaded with a module system. This is to make different versions of a software 
available. 

• Jobs after submission are organized in queues, where it make sense that different 
queues exist, for example a debug queue for short jobs with high priority and queues 
for different types of machines. 

• Generally, all computational nodes should be identical; if they are not, they are 
divided into classes with different job queues. 

• Jobs get only a precisely defined amount of resources, if the job module requests or 
simply takes more, only the job will crash and not the computational node. 

• On the one hand, the jobs should be spread across the computational nodes, 
because a node usually only gets a certain amount of IO; on the other hand, there 
should also be free nodes if a single job needs more resources at one node. This 
usually results in a bias to one side, depending on the other setup constraints. 

• Moving a running job from one node to another is complicated for arbitrary types of 
programs, so this only exists as potential option. 

• The job scheduler should distribute the computational resources fairly between the 
jobs and users and should use all computational resources. 

It may not be immediately clear that this last point always involves a trade-off: that a perfect 
schedule, a fair share per user and no computational resources wasted by computational 
nodes being idle when jobs are waiting cannot all be optimally done at the same time for all 
combinations of jobs. Here is one simple example to visualize the competing demands: the 
memory is organized in slots of 4GB (with at least one core for it), user1 submits many jobs 
which need 4GB, user2 submits a single job for 8GB when the cluster is already filled with 
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jobs of the user1; when one job of user1 is finished and 4GB are available, should the job 
scheduler wait for another job to finish for providing something for user2 (which would leave 
one slot idle), or should it use the free slot for a suitable job of user1 (so that user2 would 
have to wait until all single-slot jobs are complete)? 

It should additionally be mentioned that finding the optimal job schedule is itself a 
computationally difficult problem (NP-hard, see [98]). This means that a cluster which is 
trying to find the optimal schedule will be only able to update the job queues once every few 
minutes. 

 

The following computer clusters were available and used for the project of this section: 

• The GMI cluster (Gregor Mendel Institute) until 2013: This cluster had no special 
name; identification was mainly by its login node with a generic name. It had a 
storage of 100TB and ~300 cores divided into 3 classes. Job scheduling was 
performed by the Sun Grid Engine. I had not seen this cluster from its beginning, so I 
likely missed its starting issues and saw it only in the mature state. 

o advantages:  

� a simple setup compared with other clusters 

� although we were warned that the main file system could crash and 
fail, there was no outage of the storage and almost none of the 
computational resources 

� job scheduling was a combination of not wasting computational 
resources and having a sophisticated priority value for sharing 
between users 

o disadvantages:  

� no direct connection to the other storages, which meant copying files 
from or to other storages flowed through the user machines 

� the storage/file system was not safer than expected; a few times a 
flipped bit was visible 

� the setup of a few nodes was sometimes changed for cluster 
experiments without taking this node out of the general computational 
nodes pool, resulting in jobs with strange behavior, for example jobs 
which were vastly slowed down 

• The bios and the tarbell cluster of the Kenwood Data Center on the University of 
Chicago campus, short UC cluster: 100TB backed-up storage were dedicated for the 
institute where I work. The bios cluster was the first cluster there with ~1000 cores; it 
was transitioned into the tarbell cluster with ~2500 cores in 2014. It was a quite 
smooth transition as the computational cores only were introduced at one end and 
removed at the other; the storage remained identical. In sum, after several iterations, 
this cluster is quite mature now. 

o advantages:  

� from the storage aspect it is quite simple, and, since the full storage is 
backed up, it is the safest storage concept possible (likely with some 
overhead for hardware and administration which is not visible for 
users) 
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� since the organization changed from a single part-time person 
managing large parts of it to a full team of people, the support and the 
possibilities have become very professional 

� there are almost no limits for jobs, neither in time or requested 
resources; queues for every demand are handled in a transparent way 
unless otherwise specified 

o disadvantages: 

� the cluster belongs to a larger university with all the usual bureaucracy; 
when there was just one part-time person some organizational tasks 
were rather Kafkaesque 

� the computational jobs were and still are somewhat too unrestricted: it 
periodically happens that indirect resource requests of jobs lead to 
crashing computational nodes 

� the job scheduling system attempts to find the optimal solution, which 
means that the job status is only updated once every few minutes: this 
also implies that it takes minutes to delete a job and up to half an hour 
to start or delete a group of jobs 

� as it is an external cluster at a distance, the network speed from or to it 
is less than would be the case in-house 

• the Mendel cluster [112] of the GMI: This cluster is the successor of the unnamed 
GMI cluster which operated until 2013. The transition was a direct hand-over with the 
data copied from one cluster to the other. Initially it had ~340TB storage divided into 
two parts: a scratch storage for working (which is planned to be purged automatically; 
on the other hand it is the only storage visible to computational nodes); and a project 
storage for the results. There are ~2000 cores, 2 login nodes and 2 data mover nodes 
(and of course a certain amount of administration nodes). This cluster has a portal 
page, serving as an organizational overlay. It serves as a formalized system of 
resource management, makes it simple to look up which projects are running with 
which people; on the other hand it is an additional layer of bureaucracy beyond the 
cluster itself. As it is currently the newest cluster, its setup iterations are quite fresh in 
memory: half a year of iterations has led to a reasonably mature state now. This 
period is rather long for this, though not particularly long for a larger cluster. 

o advantages:  

� very solid, almost no jobs failed through the cluster 

� scalable, it should be able to grow ~8x, almost transparently 

o disadvantages:  

� it has a scheduled downtime of ~half a day each month 

� it is rather complex. The required cluster training of half a day before 
first use is a good idea and is also needed for this cluster 

� the need for staging (the term for the interplay of the project storage 
and the purged working storage for the jobs) 

� the behavior of the job scheduler, which intentionally prefers job arrays 
(i.e., does not lead to a fair share between users). This will likely be 
iterated further when the cluster is under high loads for a longer time 
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� several elements which could work transparently need special 
treatment/attention here: copying larger amount of data, queue 
selection, walltime limitations 

One may ask why this issue is detailed to such extend in the thesis, as it is more recognized 
as a helping area and/or engineering and not as science. Firstly, some aspects of it are 
science, for example job shop scheduling for which about 60 papers can be found from IEEE 
(http://ieeexplore.ieee.org) since 2013; also computational clusters are the applied side of 
computability, a core field in computer science. Secondly, it creates the difference between 
smooth and fast analyses or long workarounds, where a workaround can range from small 
adaptions for a non-transparently working cluster to different architectures, modules and 
algorithms to make something computable. Occasionally, analyses are simply not done due 
to of the expected larger effort in a given setup. 

 

6.3 Project management 

The project of this chapter is the part of the 1001 Genomes Project - A Catalog of 
Arabidopsis thaliana Genetic Variation, http://1001genomes.org/ [8]. The manuscript of this 
chapter is only one paper of several in this project. 

First, samples are collected and RILs generated. In our case, these are plants (mainly 
Arabidopsis thaliana) from all over the world. The samples received a name and a unique 
numerical ID. At least two IDs are intentionally created: one ID for the strain, which is called 
ecotypeid, and one for the ~individual. The strains are all RILs (= ~8 generations self-
pollinating), nevertheless the second ID exists for the reason that a strain can change in 
generations, or to distinguish the samples if there were problems in self-pollination. 

As this project is a collaboration between several groups, the plan was that all involved 
groups first collect samples, sequence and analyze a part of them, and then combine all into 
one resource. The GMI, where the applicant is currently employed, mainly collected samples 
from Sweden. These samples are the basis of the manuscript in section 6.6. 

Later the sample data of the project were collected at the UC cluster (see page 63) and the 
additional data in one combined table. This will result subsequently in one manuscript 
combining all data. 

6.4 Pipelines for calling events 

See the course materials [113], where the applicant was one of 3 lecturers and had the part 
of calling events when a reference is available. For other overviews see [114-116]. [117] is 
better focused on de novo assembly. 

As we worked with model organisms, a reference is always available; in these cases de novo 
assembly is merely an extension, when larger sequence changes are expected in certain 
strains. 

The specific main pipeline used in section 6.6 is partly specified in the supplementary 
command listing 1 therein. The remainder is not fully specified therein, partly because of 
space limitations and partly because it honors the term 'ad hoc pipeline', which basically 
means it was not in good shape from a computer science angle. This other half is shown in 
Figure 10 from a preliminary version of the supplement. After a reviewer's comment, we 
decided to skip it. 
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The reason in this case for the non-optimal shape of the pipeline was not that the people 
making it were unable to do better (and I make this statement not merely because these 
people were two colleagues and myself); it was more a case of 'spending more time on it 
doesn't matter and isn't honored, especially if something is done the first time' (to cite a 
colleague, who will very likely forgive me if I do not mention his name here). 

 

Figure 11.  Pipeline for the full population of samples in section 6.6. The figure here is more a 
demonstration for the term 'ad hoc pipeline'. 

6.5 The effect of filtering and other biases 

It seems somehow ironic that the analyses of collections of samples, resp. populations, are 
affected by population structure [118-120]; however, on the whole population analyses are 
mainly affected by different filtering and other biases [121]. 

Generally, all measures depending on the full genome sequence are biased by filtering; for 
example, when calling with a reference sequence, the reference allele is always called more 
safely than a non-reference allele. It is also quite common that more events lie in filtered 
regions, but it is difficult to say where the noise starts. Examples for measures depending on 
the full genome sequence are polymorphisms in terms of pair-wise difference π, fixation 
index Fst, estimation of split times and dendrograms, and so on. It must be said that these 
measures within a set of samples, which are generated and filtered similarly, are quite 
correct and meaningful, but comparisons between sets of different quality, data amount 
and/or filtering often give arbitrary results. In this regard, samples sequenced with a large 
difference in coverage are also not similar as data source, since the sequence difference is 
biased if a reference genome is covered to 10% on one side and to 90% on the other: when 
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taking the difference from a much smaller fraction it is either biased in the absolute number 
or it is biased in noise. 

On the other hand, analyses like causal inference or associations are less dependent on 
having a full genome: either the source/causal/associated event is in the set or it is not. In the 
latter case, when the interesting information is filtered, there should be a negative result, not 
a biased one. 

There are often clear improvements in processing and filtering NGS data, but usually a trade-
off remains between calling safely and calling as much as possible. Non-population analyses 
require more the safe data and are biased by population structure, whereas population 
analyses would need both, safe and complete data. 

An example of the effects of filtering is in supplementary Figure 6 in the paper of the next 
section. As mentioned there, 'Very conservative criteria were used to polarize the 
polymorphisms in order to avoid inflation at the right end of the plots.', which is indeed the 
case; yet it is hard to say where the noise, resp. the inflation starts. If the reference used for 
calling were the perfect ancestor sequence (assuming such a perfect ancestor exists for the 
samples), then the allele frequencies would monotonically drop to the right and inflation 
would more likely occur on the left side. If the reference is not close to the ancestor, the allele 
frequency might also rise to the right end and there is more likely to be inflation. In our case 
the species is Arabidopsis thaliana, the reference is Col-0 and the ancestor is Arabidopsis 
lyrata. As mentioned in the text, the divergence should also not be too large for determining 
the ancestral state. In any case, the ratio between low and high derived allele frequency 
should not be taken as strong argument. 

One good hint on filtering from this paper is to remove duplicates: in the past, it was a 
standard step during library preparation to get rid of likely much amplified PCR products. 
Here it is shown that at least some of these duplications are real biology (for rDNA, see 
Supplementary Figure 23). 

6.6 Article: Massive genomic variation and strong selection in 
Arabidopsis thaliana lines from Sweden 

Quan Long, Fernando A Rabanal, Dazhe Meng, Christian D Huber, Ashley Farlow, 
Alexander Platzer, Qingrun Zhang, Bjarni J Vilhjálmsson, Arthur Korte, Viktoria Nizhynska, 
Viktor Voronin, Pamela Korte, Laura Sedman, Terezie Mandáková, Martin A Lysak, Ümit 
Seren, Ines Hellmann & Magnus Nordborg. Massive genomic variation and strong selection 
in Arabidopsis thaliana lines from Sweden. Nat Genet, 2013. 45(8): p. 884-90. 

 

Although it might frequently be cited because of its data, this paper does not only present 
data. It also contains many analyses, which might be somewhat squeezed together, at least 
near the end when we were compressing things, even the supplemental. The paper also 
provides several starting points for the next paper in the 1001 Genomes Project - besides the 
fact that the 1001 Genomes Project regards the complete project data set, while this paper 
regards only the Swedish subset. 

 

OWN CONTRIBUTION IN [36] 

Q.L., D.M. and A.P. performed primary analysis of the sequencing data, including all 
polymorphism detection and quality control. 
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The common weed A. thaliana is highly selfing and naturally exists 
as inbred lines that can be grown in replicate under controlled con-
ditions. The species is widely distributed throughout the northern  
hemisphere and shows strong evidence of local adaptation1,2. The 
pattern of genetic polymorphism is compatible with isolation 
by distance on every scale3. Taken together, these features make  
A. thaliana an excellent model for studying the genetics of natural 
variation, and, indeed, shared inbred lines have been a resource for 
the Arabidopsis community since its inception4. More recently, over 
1,300 lines have been genotyped for 250,000 SNPs using a custom 
Affymetrix SNP tiling array (AtSNPtile1) to facilitate genome-wide 
association studies (GWAS)5,6, and efforts are underway to sequence  
over 1,000 lines7–11.

Here we report the sequencing of 180 lines from Sweden. We con-
tribute the largest sample by far from a single geographic region, 
which allows us to look for evidence of selection and to carry out 
GWAS in local populations for the first time. Our analysis empha-
sizes structural variation, which we show to be a major component 
of genetic variation.

RESULTS
Sequencing and polymorphism detection
The analyzed lines were selected on the basis of low-density SNP data3 
to obtain samples with distinct genotypes from both northern and 
southern Sweden (52 versus 128 lines, respectively; Supplementary 
Fig. 1). Using 76- or 100-bp Illumina paired-end reads and fragments 
of roughly 300 bp in size, we obtained an average of 39-fold coverage 

per line. We identified differences from the A. thaliana reference 
genome, including short insertion-deletion polymorphisms (indels) 
and other structural variants, using an ad hoc pipeline (Online 
Methods). This approach generated 4.5 million SNPs and almost  
0.6 million structural variants, over 90% of which are indels 
shorter than 10 bp in length. The data had low error rates overall 
(Supplementary Table 1), but it is important to realize that the 
genome sequences are far from complete. Several important biases 
exist. First, we are only able to detect polymorphisms reliably in the 
roughly 85% of the genome that can be uniquely aligned to the refer-
ence genome (Fig. 1a). Second, some kinds of variants are easier to 
detect than others. For example, we estimated that false positive and 
false negative rates when detecting short indels (shorter than 15 bp) 
were roughly twice as high as when detecting SNPs (Supplementary 
Table 1), and these rates rose markedly with increasing length of the 
indel. Third, there are biases with respect to the reference genome. 
For example, we found more indels with the variant allele shorter 
than the reference genome than with the variant allele longer than the 
reference genome. These differences are unlikely to be real (as there 
is no evidence that the reference genome is unusually large) but can 
readily be explained by noting that alignment algorithms handle gaps 
better than inserted sequence. Consistent with this interpretation, 
such discrepancies were almost absent for polymorphisms of ≤4 bp 
but increased with the length of the indel (Fig. 1b).

The overlap between the SNPs identified here and by two previous 
resequencing efforts9,10 is shown in Figure 1c. Whereas the majority of 
SNPs were present in all data sets, there was also a very large number 

Massive genomic variation and strong selection in 
Arabidopsis thaliana lines from Sweden
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Viktor Voronin1, Pamela Korte1, Laura Sedman1, Terezie Mandáková4, Martin A Lysak4, Ümit Seren1,  
Ines Hellmann3 & Magnus Nordborg1,2

Despite advances in sequencing, the goal of obtaining a comprehensive view of genetic variation in populations is still far from 
reached. We sequenced 180 lines of A. thaliana from Sweden to obtain as complete a picture as possible of variation in a single 
region. Whereas simple polymorphisms in the unique portion of the genome are readily identified, other polymorphisms are not. 
The massive variation in genome size identified by flow cytometry seems largely to be due to 45S rDNA copy number variation, 
with lines from northern Sweden having particularly large numbers of copies. Strong selection is evident in the form of long-range 
linkage disequilibrium (LD), as well as in LD between nearby compensatory mutations. Many footprints of selective sweeps were 
found in lines from northern Sweden, and a massive global sweep was shown to have involved a 700-kb transposition.
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of new SNPs, as expected given that previous studies were smaller 
and did not include lines from Sweden. The total number identified 
was smaller than the number previously identified in 80 lines10 (4.54 
versus 4.90 million, respectively), reflecting a combination of differ-
ences in SNP calling and real differences between the samples (mostly 
in population structure, as the average number of pairwise differences 
per site between individuals did not differ greatly: 0.49% for the 180 
lines sequenced here, 0.53% for the 80 previously sequenced lines; 
based on regions with high alignment scores in our data). A rigorous 
analysis of the nature of these differences will require reprocessing 
the raw sequence data using a common pipeline.

Detection and characterization of new sequence
The biases that arise from aligning to a reference genome apply to 
all resequencing studies, but there is reason to believe them to be 
more serious for A. thaliana, which has a genome half the size of its 
nearest relative, Arabidopsis lyrata, apparently owing to deletions 
in the A. thaliana lineage12. If this reduction in genome size is still 
ongoing, individual A. thaliana genomes will harbor many ancestral 
chromosomal segments not present in the reference genome (and 
will lack equally many that are). With this in mind, we assembled 

all our lines individually, de novo, identifying 1.3–3.3 Mb of new 
sequence per line (compared to 181 kb for Col-0, the line corre-
sponding to the reference genome), largely in segments shorter than 
10 kb. Most of this new sequence seemed to be genuine A. thaliana 
genomic sequence: 96.5% of the new sequence was either anchored 
by a sequence that aligned well with the reference genome or was 
shared by at least five of the Swedish lines (Fig. 1d). Furthermore, 
21% of the sequence showed similarity to sequence from other plant 
genomes, usually A. lyrata (Supplementary Note), and thus likely 
represents retained ancestral fragments; however, closer examination 
often identified complex polymorphisms, making the precise muta-
tional events difficult to infer (Fig. 1e). The genomic distribution of 
the new sequence is similar to that of regions of missing coverage, as 
would be expected if the latter reflect segregating longer deletions 
of ancestral sequence (that we largely did not detect). Both distri-
butions resembled that of SNPs, suggesting that all three types of 
polymorphism are influenced by similar evolutionary forces (Fig. 1f 
and Supplementary Fig. 2). On the basis of available annotation and 
preliminary mRNA sequencing data, the identified new sequence 
seems to contain around 200–300 genes or gene fragments per line, 
in agreement with previous estimates9. One might expect rapidly 
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evolving gene families, such as F-box and NB-LRR genes12, to be 
overrepresented, but no evidence for this was found.

Massive variation in genome size
The above analyses suggest that, despite the recent marked decrease 
in the size of the A. thaliana genome, variation between lines is only 
on the order of 1%. Yet, flow cytometry analysis has suggested that 
there is up to 10% variation worldwide13. Using the same technique, 
we found that our lines varied by well over 10%, ranging from 161 Mb  
to 184 Mb in length. The estimate for the reference line, Col-0, was 
166 Mb, making it one of the smallest, whereas the largest values 
were found exclusively in lines from northern Sweden. Extending the 
study by including 36 lines selected from the worldwide distribution 
of the species confirmed this impression: the variation in lines from 
southern Sweden was similar to that found worldwide, whereas the 
estimates in lines from northern Sweden were substantially greater 
(Supplementary Fig. 3).

Given the analyses above, it seemed unlikely that the cause of this 
variation would lie in the unique portion of the genome. To investigate 
the role of repetitive sequence, we used sequence coverage to esti-
mate copy number variation for 45S rDNA, 5S rDNA and centromeric 
repeats, as well as for transposable elements, and used the results 
to predict the flow cytometry–based estimates of genome size using 
linear regression. In a multiple regression, all four classes of repeats 
were significantly positively correlated with the flow cytometry–based  
estimates; however, 45S rDNA made the largest contribution by far 
(Table 1). Notably, both the flow cytometry–based estimates and the 
45S rDNA copy number estimates showed a strong geographic pat-
tern, with larger estimates being more prevalent and the correlation 
between the estimates being much stronger (R2 = 0.73) in lines from 
northern Sweden (Fig. 2a).

These results confirm that there is considerable natural variation 
in nuclear DNA content and demonstrate that this variation is mainly 
due to 45S rDNA, in agreement with findings from previous studies14. 
Because the flow cytometry and genome sequencing experiments used 
different plants as well as tissues (leaves and roots, respectively), it is 
clear that the variation is heritable. To investigate the genetics of this 
variation, we carried out a GWAS for the flow cytometry–based esti-
mates of genome size. Unexpectedly, this analysis identified neither 
of the two known 45S rDNA clusters15. Instead, the scan identified 
a major locus in a euchromatic region of chromosome 1 that appar-
ently explained 26% of the variation in genome size (Fig. 2b). Neither 
sequence analysis nor FISH found any evidence for new 45S rDNA 
clusters (Supplementary Fig. 4).

It would thus seem that the identified locus regulates DNA content 
in trans rather than in cis, and this, in turn, implies that the pre-
sumed ‘genome size variation’ should, at least partially, be regarded as 
a phenotype rather than a genotype. There is evidence of regulation of 
rDNA copy number in several organisms16–18, including A. thaliana19. 
Notably, mapping of variation in cytosine methylation of 45S rDNA 
repeat arrays, which is strongly correlated with copy number20, in a 
cross between two inbred lines has previously identified both cis and 
trans quantitative trait loci (QTLs)21. The two strongest QTLs cor-
responded to the 45S rDNA clusters, but the third strongest contained 
the GWAS peak reported here. These results are consistent with ours if 
the repeat number changes too rapidly to be mapped using GWAS but 
is inherited stably enough to be mapped in crosses. The trans-acting  
loci might modify the replication process, with different alleles effec-
tively predisposing lines to large or small numbers of repeats. The 
peak of association contained at least three candidates that might 
affect replication (Fig. 2c)22–25.

However, it must be emphasized that the association may simply be 
spurious. GWAS on subsets of the lines showed that the chromosome 
1 association was due to a relatively small number of lines from north-
ern Sweden with very large genome size estimates (Supplementary 
Fig. 5). Although our analysis takes confounding from genome-wide 
population structure into account, it does not necessarily handle 
confounding caused by a small number of genes of large effect26,27.  
A spurious correlation could arise due to LD with the true causal loci, 
for example, the 45S rDNA clusters themselves, which we think we 
are unable to map owing to allelic heterogeneity. In other words, the 
peak on chromosome 1 could be a so-called synthetic association26,28.  
To resolve this, multigeneration experiments will be required.

Table 1  Multiple regression of flow cytometry–based estimates
Feature DF SS MS F P value R2

45S rDNA 1 739 739 94 7.7 × 10−17 0.39

5S rDNA 1 42 42 5 0.023 0.022

Centromeres 1 114 114 14 2.3 × 10−4 0.059

TEs 1 56 56 7 8.8 × 10−3 0.029

Error 123 968 8

Total 127 1,918

DF, degrees of freedom; SS, sum of squares; MS, mean square; TEs, novel transposable 
element insertions. Total R2 = 0.50; adjusted R2 = 0.48.

Figure 2  Genome size variation. (a) Joint 
distribution of nuclear DNA content (estimated 
using flow cytometry) and total amount of  
45S rDNA (estimated using sequencing coverage).  
Marginal distributions are shown along the  
axes. (b) Manhattan plot of genome-wide  
association results for the flow cytometry–based 
estimates of genome size. The dotted horizontal 
line marks a significance level of 0.05 after 
Bonferroni correction for 4 million tests. The 
two known 45S rDNA clusters are close to the 
left ends of chromosomes 2 and 4 (ref. 15).  
(c) Magnified view of the chromosome 1 peak in b  
including a roughly 100-kb region of extensive 
LD. Colors indicate the extent of LD with the 
most significant SNP at position 25,313,734. 
The positions of three replication-related candidate genes are shown: POLA2 (At1g67630), which encodes the B subunit of DNA polymerase α; REV3 
(At1g67500), which encodes recovery protein 3, the catalytic subunit of DNA polymerase ζ; and MCM2/3/5 (At1g67460), which is related to the 
minichromosome maintenance family of proteins. Sequence analysis of these candidates identified no obvious candidate polymorphisms (multiple 
alignments are available on the project download site).
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Selection and LD
We searched for evidence that some of this 
genomic variation is adaptively important. 
With regard to the variation in nuclear DNA 
content, its marked geographic distribution 
(Fig. 2a) was suggestive of local adaptation, 
as the overall genetic divergence was much 
smaller. Less than 0.6% of SNPs showed a 
stronger correlation with location in north-
ern versus southern Sweden than the flow cytometry–based estimates 
of genome size. However, if the variation is due to a very small number 
of genetic loci, then it might have been possible for genetic drift to  
cause the observed divergence in size. Resolving this will require  
further studies.

Given the apparent recent shrinkage of the A. thaliana genome, it 
is also natural to consider selection at indels. Previous work, using a 
small number of indels, has suggested that deletions are selectively 
favored relative to insertions, perhaps because of selection for a more 
compact genome12. Unfortunately, this kind of analysis is very sensi-
tive to the kinds of biases we saw in our data and, even worse, depends 
on accurate inference of the ancestral state (that is, whether an indel is 
the result of a deletion or an insertion). Indels are often complex (see 
Fig. 1e for an example). For the 18% of indels we were able to classify 
unambiguously, there was no evidence of selection favoring deletions, 
in contradiction to previous results (Supplementary Fig. 6). However, 
it is dangerous to extrapolate from a biased minority of events, 
and our conclusion is that the divergence between A. thaliana and  
A. lyrata is probably too great for analyses that rely on the determina-
tion of the ancestral state of indels to be reliable.

However, we found several other clear signals of strong selection. 
Recent resequencing efforts have notably identified many new pro-
tein-coding alleles involving apparently disruptive frameshift muta-
tions and closely linked compensatory changes8–10. With our larger 
sample size, we were able to show that selection has a role in creating 
this diversity. Closely linked alleles that restored the reading frame 
were greatly overrepresented compared to those that did not, and 
positive LD between such alleles ensures that aberrant proteins occur 
at a lower frequency than expected from the marginal allele frequen-
cies (Fig. 3). How these kinds of variant haplotypes arise is far from 
clear, as the evolution of compensatory changes involves crossing an 
adaptive valley29. One possibility is that the population structure of  
A. thaliana leads to local fixation of weakly deleterious mutations dur-
ing colonization of new patches, which is followed by compensatory 
evolution as the local population size increases.

Strong selection can also cause LD between unlinked loci, espe-
cially in conjunction with local adaptation (in which case, there is no 
requirement for epistatic interactions between the loci). In agreement 
with previous results6,10,30–32, average LD in our sample decayed rela-
tively quickly (on roughly the same scale as in humans) to high back-
ground levels that were largely determined by population structure 
(Supplementary Fig. 7). However, even after taking this structure 

into account, considerable long-range LD remained, including over 
300,000 pairs of loci for which r2 was >0.8, even though the loci 
were separated by more than 1 Mb (Fig. 4a). Especially notable was 
the prevalent LD between all centromeres. Because it is difficult to 
imagine selection maintaining LD between all centromeres, it seemed 
likely that most of these patterns must be artifactual, perhaps because 
the SNP loci, in fact, map to multiple regions. Indeed, strict filtering 
for uniqueness resulted in the elimination of all but around 70,000 
pairs with long-range LD (corresponding to 7,973 loci). From these, 
we selected 4 centromeric and 2 non-centromeric sets of SNPs for 
genotyping in informative crosses (Supplementary Table 2). Of the 
centromeric pairs, one showed complete linkage, despite the SNPs 
supposedly being located on different chromosomes, and the other 
three failed PCR, perhaps because they are associated with repetitive 
regions. These results illustrate the danger inherent in assuming that 
SNPs are located where they are supposed to be located and show that 
population genetics analysis may assist in identifying unreliable ones. 
However, both non-centromeric pairs segregated independently in 
crosses, showing that at least some of the long-range LD we observed 
must be due to normal population genetics forces, whether chance 
or natural selection. In support of the latter explanation, there was 
a significant enrichment of the remaining loci among SNPs exhibit-
ing signs of having been involved in local adaptation (Fig. 4b and 
Supplementary Table 3).

Global and local selective sweeps
Population structure in A. thaliana is generally characterized by vary-
ing degrees of isolation by distance3. In previous studies, samples  
from southern Sweden have seemed to be part of a European con-
tinuum, whereas those from northern Sweden were quite distinct6,31. 
Our data confirmed this distribution (Supplementary Figs. 7 and 8)33  
and further suggest that the divergence is due to changing allele 
frequencies rather than the accumulation of mutations (as would 
accompany ancient separation with little gene flow), as we found 
fewer private alleles in lines from northern Sweden than in lines from 
southern Sweden (18% versus 67%) and because pairwise sequence 
divergence was commensurate with the distance between the regions 
(Supplementary Fig. 9). However, within each region, the divergence 
increased more rapidly in lines from northern Sweden, consistent 
with previously reported greater population structure there3,6,31, 
as well as with field observations: whereas A. thaliana is a com-
mon weed in southern Sweden, its distribution in northern Sweden 
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is often restricted to eroded south-facing slopes and is much more 
patchy (M.N., unpublished observation). Whereas most of the diver-
gence between lines from northern and southern Sweden is likely 
due to genetic drift, there are clear differences in many traits that 
are likely to be adaptive, such as seed dormancy and flowering time  
(M.N., unpublished observation), and we thus decided to search our 
data for evidence of selective sweeps.

The results for lines from northern and southern Sweden were 
markedly different. SweepFinder34, an algorithm that uses the dis-
tribution of SNP allele frequencies to detect sweeps close to fixa-
tion, returned 22 strong signals in lines from northern Sweden 
and only a single signal in lines from southern Sweden (Fig. 5a, 
Supplementary Figs. 10–14 and Supplementary Note). The signals 
were extremely strong: the SweepFinder composite likelihood ratio 
for the strongest selective sweep was 178 times that correspond-
ing to background, and those for the other sweeps were 30 times 
stronger on average. Most selective sweeps exhibited strong popula-
tion subdivision, quantifed using FST (Fig. 5a), and were found by the 
FST-like cross-population statistic XP-CLR35, in agreement with the 

notion that they are due to local adaptation. The identified regions 
were also over-represented among SNPs that showed long-range LD 
as well as among SNPs that have previously been associated with  
environmental variables (Fig. 4b and Supplementary Note).

The reason for the much greater number of sweep signals in lines 
from northern Sweden is not clear. Distinguishing between real sig-
nals of selection and artifactual ones due to demography is, as always, 
very difficult. However, at least one of the identified selective sweeps is 
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almost certainly real. The single signal in lines from southern Sweden 
corresponded to the strongest signal in lines from northern Sweden 
(Fig. 5a), and the pattern of haplotype sharing showed that the selec-
tive sweep in lines from northern Sweden was simply more extensive 
(Fig. 5b). If the sweep signals in lines from northern Sweden were 
simply due to complicated demographics (for example, colonization 
bottlenecks and concomitant differences in local effective population 
size (Supplementary Figs. 7 and 15)), there would be no reason to 
expect them to overlap with sweep signals in lines from southern 
Sweden. Furthermore, the signal corresponded to a presumed global 
selective sweep, previously identified in a chip-based resequencing 
study of 20 lines, in which 18 of the 20 lines were found to share a 
haplotype of several hundred kilobases in length, with the remaining 
2 lines hailing from Cape Verde and northern Sweden, at the southern 
and northern edges of the species range, respectively36. The simplest 
explanation for the observed pattern is thus that this is an ongoing 
global selective sweep and that the sweep is more recent in lines from 
northern Sweden than in those from southern Sweden. And, if this is 
true, then it seems likely that some of the other strong signals in lines 
from northern Sweden also represent genuine selective sweeps rather 
than artifacts due to demographic factors.

A curious feature of the previously reported selective sweep was 
that the shared haplotype appeared identical in all carriers36, which is 
inconsistent with the random action of recombination. Furthermore, 
the extent of haplotype sharing seemed far too great given the average 
decay of LD in global samples of A. thaliana. An obvious explanation 
was that the selective sweep was associated with some kind of large-
scale structural variant that suppressed recombination locally. With 
this in mind, we examined the region more closely and discovered that 
the swept haplotype was associated with an intrachromosomal con-
servative transposition of 278 kb containing 72 genes to a new position 
486 kb away (Fig. 5c and Supplementary Note). The A. thaliana refer-
ence line Col-0 carried the swept haplotype, as did most members of 
the species: using genome-wide SNP data6, we estimated that only 45 
of 1,306 lines (3.4%) had escaped the selective sweep (Supplementary 
Note). Contrary to previous results, the ancestral haplotype was not 
just found at the extremes of the range but was also found at low 
frequency worldwide. Recombination in heterozygotes is likely to be 
effectively suppressed by selection against recombinants, given that 
crossing over within the region would lead to either duplication or 
deletion of the 72 transposed genes. The pattern of LD across the 
region was suggestive of the suppression of recombination (Fig. 5d). 
It should be noted that the strong signal of selection was not simply 
due to lack of recombination: it remained present even if we treated the 
entire transposed region as a single locus (SweepFinder scores based 
solely on SNPs outside the rearrangement decreases from 178 to 165 
times the background).

The breakpoints of the identified transposition are consistent with 
the action of non-homologous end joining. Resealing at the donor 
site seems to have been facilitated by 5 bp of microhomology, lead-
ing to a 5-bp deletion, whereas a 9-bp target site deletion occurred 
at the receptor site (Supplementary Fig. 16). Although we do not 
know the selective agent, the transposition seems to contain a rela-
tively small number of derived variants that tag the sweep globally, 
including roughly 30 SNPs and 2 helitron insertions. Attempts to 
date the selective sweep on the basis of polymorphism among the 
swept haplotypes yielded estimates of 43,000 years for lines from 
southern Sweden and 17,000 years for lines from northern Sweden 
(Supplementary Note), which predate the end of the last glaciation in 
Sweden and are consistent with the lack of geographic structuring of  
the sweep3.

DISCUSSION
We have used next-generation sequencing to generate a high-quality 
polymorphism data set for a Swedish sample of A. thaliana. We provide  
a reasonable estimate of variation for SNPs and very short indels in 
the fraction of the genome that is accessible using these methods10, 
and, although biases complicate many kinds of evolutionary analyses, 
the data comprise an important resource, in particular for GWAS. At 
the same time, our findings highlight how much we may be missing 
by simply employing standard pipelines for polymorphism detection. 
Perhaps most notably, we discovered massive variation in nuclear 
DNA content and showed that it may be possible to map genes regu-
lating this variation, suggesting that what we had assumed to be part 
of the genotype should partly be viewed as a phenotype. It is also clear 
that we have very little idea of how many large structural variants 
(especially inversions and transpositions) exist. By combining popula-
tion genetics analysis with manual searches for putative breakpoints 
in the sequencing data, we uncovered a very large structural variant 
that seems to have undergone extremely strong selection. Our attempt 
to search for such variants systematically, using a novel method based 
on de novo assembly, identified several other noteworthy examples, 
including the 1.17-Mb inversion that gave rise to a heterochromatic 
knob on chromosome 4 (Supplementary Fig. 17) (ref. 37). However, 
there is every reason to believe that there is more to be found. Of the 
roughly 13 million SNPs that distinguish the A. thaliana and A. lyrata 
reference genomes, roughly 4.4% are polymorphic in our sample of  
A. thaliana genomes. The corresponding percentage for short indels 
is of the same magnitude. If similar selection pressures affect large 
structural variants, a similar proportion of the very large number of 
structural rearrangements between these two genomes11 should still 
be segregating. Many of these polymorphisms may be complex and 
very difficult to resolve using short-read sequencing data. Finally, 
our analyses found signs of selection at every level, from compensa-
tory changes within single genes to local adaptation (giving rise to 
long-range LD and footprints of selective sweeps) and global selec-
tive sweeps. Even in an organism as well studied as A. thaliana, the 
genome is full of surprises.

URLs. 1001 Genomes Project, http://1001genomes.org/; interactive 
map of the lines used, http://goo.gl/2n6wp; download site for data 
from this paper, http://downloads.gmi.oeaw.ac.at; NCBI Sequence 
Read Archive (SRA), http://www.ncbi.nlm.nih.gov/Traces/sra/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Flat files of all polymorphism data as well as various 
lists and tables can be downloaded from the project website. Raw data 
have been deposited in the NCBI SRA under accession SRP012869. 
Seeds of all 180 lines have been submitted to the Arabidopsis 
Biological Resources Center stock center and will be available under  
accession CS78885.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Sequencing and polymorphism detection. Genomic DNA was fragmented, 
size selected to between 450 and 800 bp and subjected to paired-end Illumina 
sequencing with read length of 76 or 100 bp. Reads were mapped with Burrows-
Wheeler aligner (BWA)38 to the TAIR 10 reference genome, allowing 4% mis-
match and one indel. SNPs and short indels were called with SAMtools39 and 
the Genome Analysis Toolkit (GATK)40. Larger structural variants were called 
using a variety of tools. For further details, see the Supplementary Note. 
Tables summarizing the results are available on the project download site.

Error estimates and quality control. Considerable effort was devoted to qual-
ity control. Notably, we were not simply trying to ensure that identified SNPs 
were called correctly but also tried to estimate the underlying sequence, paying 
as much attention to what was missed as to what was found. We compared 
our data to 4 different kinds of data to estimate error rates for SNPs and short 
indels: (i) the reference line was resequenced using our pipeline, and all vari-
ants called were assumed to be false positives; (ii) our results were compared 
with previously published SNP chip data6 to provide estimates of the false 
negative rate (the rate at which we did not discover SNPs) and the genotyping 
error rate (the rate at which we made the wrong call for the ones we did detect); 
(iii) our results were directly compared with an old data set of close to 1,500 
manually curated multiple alignments of PCR amplicons from Sanger sequenc-
ing of 95 lines31; and (iv) our results were directly compared with ~250 kb  
of sequence from a single accession that we generated by Sanger sequencing 
random shotgun clones. The results are summarized in Supplementary Table 1  
(for details, see the Supplementary Note). In general, error rates were higher 
close to centromeres and decreased markedly as the quality of the mapping 
(alignment Q value) increased (Supplementary Figs. 18–20).

Detection and characterization of new sequence. Each line was assembled 
de novo using SOAPdenovo to identify fragments longer than 100 bp that 
were absent from the reference genome (see the Supplementary Note for 
details). The majority of such fragments could either be anchored to the ref-
erence genome by flanking sequence or were shared by more than five lines 
(Fig. 1d and Supplementary Fig. 21). Summaries are available on the project 
download site.

Variation in genome size. Flow cytometry was carried out on 128 of the 
Swedish lines, the reference line (Col-0) and 36 randomly chosen world-
wide lines using 2-week-old leaves. Copy number variation for 45S rDNA 
and 5S rDNA and centromeric repeat number were estimated via normal-
ized read coverage across the appropriate region of the reference genome. 
In simple single-factor analysis, only 45S and 5S rDNA contributed signifi-
cantly to the flow cytometry–based estimates (Fig. 2a, Supplementary Fig. 22  
and Supplementary Table 4). Estimates for 45S rDNA were validated via 
quantitative PCR (Supplementary Fig. 23). Further details are given in the 
Supplementary Note.

GWAS on genome size estimates were carried out with imputed SNP data 
from this study, accounting for population structure using a mixed model. 
The genome was scanned for new rDNA clusters bioinformatically (by using 
an algorithm that searches for read pairs with one read matching the relevant 
repeat and the other read anchored in unique sequence41), as well as by using 
FISH (Supplementary Note).

Selection on indels. Where alignment was possible, the ancestral state of each 
SNP and indel was defined using the A. lyrata genome as the outgroup. The 
criteria used are detailed in the Supplementary Note.

To test for selection on compensatory mutations (Fig. 3), the proportion 
of high-confidence indel pairs (no missing data, confirmed by GATK local 
realignment and less than three SNPs within 20 bp) within coding regions was 
normalized to the genome-wide count of indel pairs and binned for distance 
between the events. The count and LD for events that disrupted an ORF were 
compared with those for events that did not.

LD in structured populations. LD can be thought of as having three different 
sources: ‘true’ LD, population structure and chance or error42. The first source 
encompasses both short-range LD due to cosegregation of alleles (linkage) 

and LD (at any range) due to locus-specific deterministic forces (for example, 
selection). The other two sources act across the genome and are typically of 
no direct interest. However, if the sample is heavily structured, the second 
source will have a massive influence, making it difficult to draw conclusions 
about the first source. Two related methods for correcting LD estimates for 
population structure have been proposed43,44; however, the approach adopted 
in ref. 44 has the advantage that it results in symmetric r2 values. Our approach 
(Supplementary Note) is similar to the one in ref. 44 (it is also superficially 
related to the mixed-model correction we used in GWAS), although the under-
lying assumptions necessary for the derivation are different. In particular, 
we make no assumptions about the existence of discrete subpopulations, 
something that would be inappropriate for an organism in which the pattern 
of variation is characterized by isolation by distance3. The transformed LD 
estimates were generally lower than the original ones, as the inflation caused 
by population structure had been removed (Supplementary Fig. 24); however, 
large numbers of pairs with long-range LD remained (Fig. 4a). Indeed, the 
presence of strong long-range LD, within as well as between chromosomes, 
between about 8,000 loci was robust to (i) correction for population struc-
ture; (ii) subdivision of our sample into northern and southern populations;  
(iii) SNP imputation and (iv) read mapping quality (Supplementary Fig. 25).

Global and local selective sweeps. Standard methods were used to describe 
the pattern of polymorphism within and between populations (Supplementary 
Note) and to confirm previously published results concerning popula-
tion structure and the distinctiveness of the northern Swedish population 
(Supplementary Figs. 7–9, 15 and Supplementary Table 5). Two lines were 
identified as likely contaminants (Supplementary Note). We scanned the 
genome for signs of selective sweeps using five different statistics: (i) CLR, the 
composite likelihood ratio calculated by SweepFinder34, which is sensitive to 
perturbations of the allele frequency distribution, was run separately for lines 
from northern and southern Sweden; (ii) FST, which simply measures diver-
gence between populations (for example, due to fixation of locally adaptive 
alleles), was calculated in non-overlapping 100-kb windows; (iii) nucleotide 
diversity, which is expected to be reduced following a selective sweep, was simi-
larly estimated in windows (but separately for lines from northern and southern 
Sweden); (iv) XP-CLR35, which uses one population as a reference and searches 
for selective sweeps in the other, was used to look for sweeps in both lines from 
northern and southern Sweden; and (v) XP-EHH45, which looks for extended 
haplotype sharing, was used search for evidence of selective sweeps in either 
population. Detailed results can be found on the project download site.

The chromosome 1 transposition was discovered via manual inspection 
of split reads in unswept lines. Distantly mapping read pairs were consistent 
with the transposition arrangement depicted in Supplementary Figure 16. 
PCR and Sanger sequencing of 5 unswept and 15 swept lines (including Col-0)  
confirmed the expected breakpoint arrangements. De novo assembly also 
correctly identified transposed breakpoint 4 (chromosome 1: 20,270,307 to 
20,548,624) in five of six unswept accessions, breakpoint 5 (chromosome 1: 
20,270,429 to 21,034,717) in five of six unswept accessions and breakpoint 
6 (chromosome 1: 20,548,624 to 21,034,773) in two of six unswept acces-
sions. The selective sweep was dated on the basis of divergence between swept  
haplotypes (Supplementary Note).

38.	Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25, 1754–1760 (2009).

39.	Li, H. et al. The Sequence Alignment/Map format and SAM-tools. Bioinformatics 
25, 2078–2079 (2009).

40.	DePristo, M.A. et al. A framework for variation discovery and genotyping using 
next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

41.	Platzer, A., Nizhynska, V. & Long, Q. TE-Locate: a tool to locate and group 
transposable element occurrences using paired-end next-generation sequencing 
data. Biology 1, 395–410 (2012).
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Supplementary Figure 1 Map of sampling locations. For a list of lines used, see project download site.
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Supplementary Figure 2 Chromosomal distribution of positive (blue) and negative (green) indels, compared with SNP polymorphism
levels (black). From top to bottom, chromosomes 2–5. Results for chromosome 1 are in the main text (Fig. 1f).
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Supplementary Figure 3 The distribution of flow cytometry estimates for the global (36), southern (90), and northern (38) lines. The
mean DNA content for the three samples are 166, 167, and 170, respectively. The northern measurements are significantly larger than
those in the other two samples (Mann-Whitney p-value < 10−4), whereas are southern sample is not significantly different from the
world-wide sample.
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Supplementary Figure 4 FISH results for three lines with large estimated 45S rDNA copy number: 6244 (TRÄ 01); 6043 (Löv-1), and;
5856 (Dör-10). The known 45S rDNA clusters on chromosome 2 and 4 are highlighted (in yellow), as is chromosome 1 (green) and the
region on chromosome 1 that contains the main association peak (red). There is no evidence for any novel 45S rDNA clusters.
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Supplementary Figure 5 Comparison of GWAS results for genome size using different samples and phenotypes. (a) GWAS using flow
cytometry estimates for 128 lines (same as Fig. 2b). (b) GWAS using flow cytometry estimates for 38 northern lines. (c) GWAS using
flow cytometry estimates for 90 southern lines. (d) GWAS using 45S coverage estimates for the 128 lines for which flow cytometry esti-
mates are available. (e) GWAS using 45S coverage estimates for the full sample of 180 lines. The association peak discussed in the text is
marked by the horizontal orange bar. It is clearly present in a, b, and d, but not in c and e.
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Supplementary Figure 6 Derived allele frequency distributions for different parts of the genome. The distributions were estimated by
dividing the frequency into 100 bins, correcting the estimates using the hypergeometric distribution1, and averaging across bins to cre-
ate bins for the plot. Very conservative criteria were used to polarize the polymorphisms in order to avoid inflation at the right end of
the plots. (a) Intergenic regions. (b) Genic regions. (c) Introns. (d) Exons. (e) CDS. (f) Whole genome. There is no evidence for high-
frequency deletions in any category.
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Supplementary Figure 7 Decay of LD for different sub-populations (cf. Fig. 1 in reference [2] and Fig. 3 in reference [3]). Sub-sampling
was used to ensure equal sample sizes in all sub-populations.

8Nature Genetics: doi:10.1038/ng.2678

PhD thesis, page 83 



0.000 0.005 0.010 0.015 0.020

9321 N−Sweden
9323 N−Sweden
6169 N−Sweden
6171 N−Sweden
6172 N−Sweden
6174 N−Sweden
6173 N−Sweden
9427 N−Sweden
9434 N−Sweden
9388 N−Sweden
6016 N−Sweden
6017 N−Sweden
5856 N−Sweden
6070 N−Sweden
6071 N−Sweden
6238 N−Sweden
6240 N−Sweden
6241 N−Sweden
6244 N−Sweden
9433 N−Sweden
6231 N−Sweden
6064 N−Sweden
6069 N−Sweden
6009 N−Sweden
6209 N−Sweden
6210 N−Sweden
6013 N−Sweden
6913 N−Sweden
6012 N−Sweden
6917 N−Sweden
6918 N−Sweden
6217 N−Sweden
6216 N−Sweden
9371 N−Sweden
6218 N−Sweden
6900 N−Sweden
6901 N−Sweden
6043 N−Sweden
6046 N−Sweden
9386 N−Sweden
8376 N−Sweden
6177 N−Sweden
6184 N−Sweden
6030 N−Sweden
6220 N−Sweden
6025 N−Sweden
6154 N−Sweden
6163 N−Sweden
6166 N−Sweden

992 S−Sweden
1002 S−Sweden
997 S−Sweden

6098 S−Sweden
9399 S−Sweden
6284 S−Sweden
9481 S−Sweden
6099 S−Sweden
8422 S−Sweden
6126 S−Sweden
6128 S−Sweden
8237 S−Sweden
6106 S−Sweden
6107 S−Sweden
6114 S−Sweden
6085 S−Sweden
6112 S−Sweden
6113 S−Sweden
6092 S−Sweden
6100 S−Sweden
6102 S−Sweden
6111 S−Sweden
8240 S−Sweden
6097 S−Sweden
6242 S−Sweden
9408 S−Sweden
6076 S−Sweden
6090 S−Sweden
5867 S−Sweden
6202 S−Sweden
6201 S−Sweden
6194 S−Sweden
6019 S−Sweden
6021 S−Sweden
9409 S−Sweden
6020 S−Sweden
9421 S−Sweden
6974 S−Sweden
8241 S−Sweden
5831 S−Sweden
5832 S−Sweden
9395 S−Sweden
9450 S−Sweden
9451 S−Sweden
9452 S−Sweden
9453 S−Sweden
9454 S−Sweden
9455 S−Sweden
6036 S−Sweden
6038 S−Sweden
8306 S−Sweden
8230 S−Sweden
9402 S−Sweden
9412 S−Sweden
8222 S−Sweden
8249 S−Sweden
5830 S−Sweden
6964 S−Sweden
8242 S−Sweden
6073 S−Sweden
7518 S−Sweden
6088 S−Sweden
8231 S−Sweden
6965 S−Sweden
6150 S−Sweden
9470 S−Sweden
6042 S−Sweden
8386 S−Sweden
6243 S−Sweden
8334 S−Sweden
1435 N−Sweden
6180 N−Sweden
8387 S−Sweden
6108 S−Sweden
6973 S−Sweden
1066 S−Sweden
6189 S−Sweden
9057 S−Sweden
6193 S−Sweden
6039 S−Sweden
6041 S−Sweden
9437 S−Sweden
8283 S−Sweden
6195 S−Sweden
6198 S−Sweden
6188 S−Sweden
9390 S−Sweden
9391 S−Sweden
8256 S−Sweden
8258 S−Sweden
8259 S−Sweden
9382 S−Sweden
9394 S−Sweden
6074 S−Sweden
9058 S−Sweden
9416 S−Sweden
6258 S−Sweden
6086 S−Sweden
6023 S−Sweden
9471 S−Sweden
6024 S−Sweden
8335 S−Sweden
6104 S−Sweden
6040 S−Sweden
6125 S−Sweden
6136 S−Sweden
6142 S−Sweden
6140 S−Sweden
6148 S−Sweden
8369 S−Sweden
6137 S−Sweden
6138 S−Sweden
8247 S−Sweden
6131 S−Sweden
6133 S−Sweden
6145 S−Sweden
6132 S−Sweden
6151 S−Sweden
9404 S−Sweden
9405 S−Sweden
9407 S−Sweden
6035 S−Sweden
6034 S−Sweden
9442 S−Sweden
9476 S−Sweden
6268 S−Sweden
6276 S−Sweden
6255 S−Sweden
7517 S−Sweden
7516 S−Sweden

Supplementary Figure 8 UPGMA clustering of the Swedish lines based on all SNPs. Northern lines are labeled blue and southern red.
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Supplementary Figure 9 Isolation by distance. Sequence divergence (proportion of sites that differ) between all pairs of Swedish lines
as a function of the distance between the sample locations. Lines are fitted using least squares regression. The geographic distance be-
tween pairs was calculated from the geodesic distance using the Vincenty inverse formula for ellipsoids (function gdist of the R-package
lmap).
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Supplementary Figure 10 Sweep statistics for chromosome 1. Blue curves are for northern Sweden, red for southern Sweden. For CLR,
dashed lines indicate statistical cut-offs from simulations. XP-CLR and CLR were calculated for grid points with 1 kb spacing, XP-EHH
was calculated for each SNP, and FST (between north and south) and nucleotide diversity were calculated in non-overlapping 100 kb win-
dows.

Supplementary Figure 11 Sweep statistics for chromosome 2. See Supplementary Fig. 10 for details.

11Nature Genetics: doi:10.1038/ng.2678

PhD thesis, page 86 



Supplementary Figure 12 Sweep statistics for chromosome 3. See Supplementary Fig. 10 for details.

Supplementary Figure 13 Sweep statistics for chromosome 4. See Supplementary Fig. 10 for details.
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Supplementary Figure 14 Sweep statistics for chromosome 5. See Supplementary Fig. 10 for details.

a b c

Supplementary Figure 15 Summaries of the pattern of polymorphism in north and south, in 100 kb windows across the genome. (a)
Nucleotide diversity, π. (b) Watterson’s θ. (c) Tajima’s D. Only non-coding sites were used for these plots.
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>Breakpoint 1, derived/ref. Chr1:20270340..20270440 
gaattacttagcctcaaaatcctcacaacaactcttctcttgtagctacatctactttgctcttccctctctgttgtctcgcgtttcctctgctgtctcgt 
>Breakpoint 2, derived/ref. Chr1:20548574..20548674 
agttgggtatagtcttagagcttacaatgataaatttaaagtgaaatacaacattttcccgtagcacagataaagtctgtcgccctttacgtggactggtt 
>Breakpoint 3, derived/ref. Chr1:21034721..21034821 
tgttgatgaggtatatcgtctactttgctcaattctctctgtttctactccataatatgaagtattccgaaatttgtttttttcaaaatcccatcaattta 
>Breakpoint 4 ancestral, unswept sequence from lov_5. ~9bp underlined was likely deleted during the translocation. 
Palindrome/repeat flanking BP(blue/green). 
GAGGCTCTTTTTCACCTTGGAATTTCGAGAAAAGCTCTACCTAGCCTCAAAATCCTCACAACAACTCTTCTCTTGTAGCTACACTTCATCACACATTTTCC
CGTAGCACAGATAAAGTCTGTCGCCCTTTACGTGGACTGGTTTGTCATCCATTTTTAG 
>Breakpoint 5 ancestral unswept sequence 
AAGGAATCTCCAGGTGGCGGCGACCATAACAGATTTGTTGATGAGGGATATCGGCTACTTTGCTCAATCTCTCTGTTCTACTTTGCTCTTCCCTCTCTGTT
GTCTCGCGGTTCCTCTGGCTGTCTCGGGCGCTCTTTTCGGTCTGTTTTGG 
>breakpoint 6 ancestral 
AGACCTCGGATTTGTGAGTTGGGTATAGTCTTAGAGCTTACAATGATAAATTAAAAGTGAAATACAAATCTTTCCTGACTACTCCATAAATATGAAGTATT
CCGAAATTTGTTTTTTTCAAATTCCCATCAATTTACCTAAAATTGATAG 
 
 
Alignment showing how BP5 and BP6 joined to generated BP3. 5bp of micro-homology (green) may have facilitated NHEJ, leading to 
a ~5bp deletion. Other repeat structures shown in red and yellow.  
 
                                               /TTGCTCTTCCCTCTCTGTTGTCTCGCGGTTCCTCTG 
BP5. TGAGGGATATCGGCTACTTTGCTCAA-TCTCTCTGTT-CTACT 
BP3. TGAGGTATATCGTCTACTTTGCTCAATTCTCTCTGTTTCTACTCCATAA-TATGAAGTATTCCGAAATTTGTTTTTTTCAAAA 
BP6.                                       CTACTCCATAAATATGAAGTATTCCGAAATTTGTTTTTTTCAAAT 
        GATAAATTAAAAGTGAAATACAAATCTTTCCT-GA/ 
 
 
Alignment between the ancestral BP4 with the ends of the translocation ‘insertion’ (BP1 & BP2) showing the 9bp deletion (bold). 
 
                                            /TCTACTTTGCTCTTCCCTCTCTGTTGTCTCGCGTTTCCTC 
BP1. GCCTCAAAATCCTCACAACAACTCTTCTCTTGTAGCTACA 
BP4. GCCTCAAAATCCTCACAACAACTCTTCTCTTGTAGCTACACTTCATCACACATTTTCCCGTAGCACAGATAAAGTCTGTCGC 
BP2.                                                  ACATTTTCCCGTAGCACAGATAAAGTCTGTCGC 
                      AGCTTACAATGATAAATTTAAAGTGAAATACA/ 
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Supplementary Figure 16 Validation of transposition. (a) PCR primers used to confirm breakpoints. (b) PCR from lines 6124 (swept)
and 6046 (unswept) showing products of expected length consistent with the predicted arrangement. Results were consistent in 15 swept
and 5 unswept lines (not shown). (c) Likely mutational events that generated this transposition. Removal of the 278 kb and rejoining at
breakpoint 3 was likely facilitated by 5 bp of microhomology, leading to the deletion of one copy. Insertion/capture of the 273 kb be-
tween breakpoint 1 and 2 lead to the deletion of 9 bp. (d) Sequence flanking all 6 breakpoints (1–3 from Col-0; 4–6 Sanger sequenced
from 6046), and alignments in support of the predicted arrangement (with identity underlined and repeat structures in color).
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Supplementary Figure 17 LD surrounding putative major rearrangements identified by de novo assembly. (a) The 1170kb region be-
tween chr4:1612606 and chr4:2782618 appears to be inverted in 171 of our 180 Swedish lines, and comparison with A. lyrata shows that
it is the A. thaliana reference genome that carries the inversion. (b) The 28 kb region between chr3:16039026 and chr3:16067070 appears
to be missing with frequency of 106/180. The region contains several annotated transposable elements but also At3g44400, a possible
resistance protein. (c) The 14–15 kb region between chr5:19412000 and chr5:19426000/19427000 appears to be inverted in 140/180 lines.
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Supplementary Figure 18 False positive rates in reference re-sequencing as a function of Q-value cut-off. (a) SNPs. (b) Indels.
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Supplementary Figure 19 The distribution of putative false positives from reference re-sequencing (for which all polymorphisms are
assumed to be false) as a function of chromosomal position and alignment quality. (a) SNPs. (b) Indels. Colors indicate mapping quality
(Q value: red is high, yellow low). For SNPs (but not indels), false positives are clustered near centromeres and tend to have low Q values.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q ≥ 0 Q ≥ 10 Q ≥ 20 Q ≥ 30 Q ≥ 40 Q ≥ 50
Q-value cutoff

ge
no

ty
pi

ng
 e

rro
r r

at
e

fa
ls

e 
ne

ga
tiv

e 
ra

te

Supplementary Figure 20 Error rates from comparison with SNP data as function of Q-value.

16Nature Genetics: doi:10.1038/ng.2678

PhD thesis, page 91 



Lines

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Le
n
g
th

 i
n
 M

b

Mapped to lyrata

Mapped to other plant

Anchored/Shared

Total

Supplementary Figure 21 Characterization of novel sequence. Note that the light/dark green bars are independent of the olive green
bars. See Supplementary Note for details.
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Supplementary Figure 22 Correlation between flow cytometry and repeat copy number estimates. For 45S rDNA, see Fig. 2a. Note that
the TE count refers to the number of novel insertions detected.
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Supplementary Figure 23 Correlation of flow cytometry and 45S rDNA. (a) Correlation between flow cytometry and 45S rDNA copy
number estimates before removal (a) and after removal (b) of duplicated reads. Correlation between 45S rDNA copy number and 18S
rDNA qPCR estimates (c) before and (d) after removal of duplicated reads.
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Supplementary Figure 24 Effect of LD transformation. (a) The plot shows 16 million pairs of SNPs, selected at random from pairs with
r2 > 0.05 in the original data. (b) Average decay of LD.

Supplementary Figure 25 The robustness of long-range LD. The correction for population structure described in section 5.2.1 was used
throughout. ( a) LD in Northern Swedish population only. Due to smaller sample size, a higher minor allele frequency cutoff of 0.12 was
used. (b) LD in Southern Swedish population only (minor allele frequency cutoff of 0.10). (c) LD in unimputed data, illustrating similar-
ity to plot for imputed data (Fig. 4a in main text). (d) LD calculated from imputed data, but removing all high LD pairs from the previous
plot. This “subtracted” LD plot, shows that imputation creates few additional high LD pairs.
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Supplementary Table 1 Estimated error rates (%) for SNPs and short indels. In the case of indels, separate estimates are given for vari-
ants that are longer/shorter than the reference genome whenever enough polymorphisms were observed. For SNPs, all comparisons are
with the data from the Q30 regions.

False positives False negatives Genotyping
Quality control data SNPs Indels +/- SNPs Indels +/- SNPs Indels +/-
Reference re-sequencing 0.21 2.5/1.4 NA NA NA NA
SNP-chip NA NA 4.6 NA 3.5 NA
Sanger-sequenced PCR amplicons 1.8 0.8/1.6 3.7 8.3/5.1 0.64 3.9/1.8
Sanger-sequenced random clones 1.8 2.4 1.4 16.3 NA NA

Supplementary Table 2 Validation of long-range LD. Six different sets of SNPs exhibiting long-range LD were tested in crosses: the
number give r2 in the natural as well as the F2 population (where r2 = 0 is expected under independent segregation). “ND” means that
PCR amplification failed so that genotyping was not possible.

r2

SNP 1 SNP 2 SNP 3 1 vs 2 1 vs 3 2 vs 3
centromeric chr position chr position chr position Sweden F2 Sweden F2 Sweden F2

N 1 724,571 2 8,985,116 2 9,210,944 1 0.01 1 0.01 1 1
N 4 958,430 5 7,723,187 5 7,737,565 1 0.08 1 0.08 1 1
Y 3 13,649,143 1 13,341,722 1 13,359,206 0.94 1 0.94 1 1 1
Y 1 14,168,125 2 3,086,551 NA NA 1 ND NA NA NA NA
Y 4 4,738,528 1 12,831,211 NA NA 1 ND NA NA NA NA
Y 1 12,964,602 5 14,083,994 5 14,088,003 1 ND 1 ND 1 ND

Supplementary Table 3 p-Values for enrichment of long-range LD SNPs among SNPs associated with climate.

Distance to peak
Climate variable 5 kb 10 kb
consecutive frost free days 0.3476 0.2751
daylength 0.7466 0.6952
maximum temperature 0.0995 0.1151
minimum temperature 0.3534 0.4414
length of growing season 0.3224 0.3682
consecutive cold days 0.3467 0.4693
relative humidity 0.0034 0.0033
photosynthetically active radiation 0.4332 0.2992
temperature seasonality 0.5397 0.4812
maximum precipitation 0.4922 0.4503
precipitation seasonality 0.0924 0.0968
minimum precipitation 0.0002 0.0011
aridity 0.3373 0.3855
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Supplementary Table 4 Summary of simple regressions of flow cytometry estimates.

R R2 P-value
45S rDNA 0.62 0.39 5.6 × 10−15

5S rDNA 0.28 0.078 1.4 × 10−3

Centromeres 0.14 0.019 0.12
TEs 0.15 0.023 0.086

Supplementary Table 5 Genetic and geographic distance between world-wide populations. The distance between the population (in km)
is above the diagonal, and FST is below.

N. Sweden S. Sweden Spain S. Italy Tübingen S. Tyrol E. Europe Caucasus Russia C. Asia
N. Sweden — 796 3072 2589 1701 1884 2118 3129 2355 4046
S. Sweden 0.118 — 2361 1828 914 1092 1538 2907 2585 4352
Spain 0.110 0.038 — 1822 1546 1571 2582 4302 4705 6409
S. Italy 0.171 0.056 0.048 — 1113 836 985 2554 3291 4879
Tübingen 0.161 0.036 0.040 0.044 — 280 1337 3035 3187 4930
S. Tyrol 0.152 0.045 0.048 0.067 0.051 — 1139 2861 3152 4873
E. Europe 0.130 0.027 0.029 0.030 0.029 0.027 — 1801 2369 3979
Caucasus 0.158 0.057 0.039 0.043 0.055 0.064 0.029 — 1657 2601
Russia 0.185 0.104 0.079 0.116 0.120 0.087 0.049 0.101 — 1883
C. Asia 0.236 0.145 0.112 0.148 0.161 0.133 0.087 0.131 0.068 —
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Supplementary note

Q. Long, F. A. Rabanal, D. Meng, C. D. Huber, A. Farlow et al.

May 31, 2013

1 Genome sequencing
Genomic DNA was extracted from the roots of young Arabidop-
sis seedlings (5-8 plants for each line were pooled) grown on
sterile 1/2 MS plates with 1% sugar at room temperature. Roots
were ground to a fine powder in liquid nitrogen and mixed with
2X CTAB DNA extraction buffer (100 mM Tris-HC1 pH 8, 1.4
M NaCl, 20 mM EDTA pH 8.0, 2% CTAB). After incubation at
65°C for 30 minutes, DNA was extracted with equal volume of
chloroform and precipitated with 0.8 volume of isopropanol.

Libraries were prepared using slightly modified Illumina Ge-
nomic DNA Sample Prep protocol. Briefly, DNA was frag-
mented by sonication with Bioruptor (Diagenode); the peak of
fragment sizes was about 400 bp. End-repair of sheared DNA
fragments, A-tailing and adapter ligation were carried out with
NEBNext DNA Sample Prep Reagent Set 1 (BioLabs). Adaptor-
modified DNA was resolved on 2% low melt agarose (Peqlabs)
gel (including SybrGold nucleic acid gel strain, Invitrogen), run
for 90 minutes at 100 V. Library DNA was size-selected to 450–
800 bp via gel extraction with a MinElute Gel Extraction Kit
(Qiagen). The paired-end DNA libraries were amplified by PCR
for 14–18 cycles with Illumina supplied PCR primers 1.1 and
1.2. Libraries were sequenced on Illumina GAII and HiSeq An-
alyzers using manufacturer’s standard cluster generation and se-
quencing protocols, with either 76 or 100 bases read length.

2 Polymorphism detection
2.1 Initial read mapping

2.1.1 Read mapping and SNP discovery

We first mapped all reads to the TAIR10 reference genome us-
ing BWA (version 0.5.9)4, allowing up to 4% mismatches and 1
gap. We tried trimming reads using different parameters before
finally choosing the default parameters of BWA. After that, we
used the rmdup function of Samtools (version 0.1.6)5 to remove
reads that are duplicated in library preparations or sequencing.
Since it turned out that not removing duplicated reads in highly
duplicated regions, i.e., ribosome repeats and centromere re-
peats, improved the quality of coverage estimates (see Supple-
mentary Fig. 23), we retained the reads that are potentially li-
brary duplications in those regions.

SNPs and indels were initially called using GATK6 with the
default parameters of UnifiedGenotyper and IndelGenotyperV2,
respectively. With these variants called, we run the GATK local
realignment (function IndelRealigner) to refine the reads map-
ping in the presence of the variants. After that, we call SNPs
using the pileup function of Samtools and run the varFilter func-
tion provided by samtools.pl in the Samtools package to filter
low-quality calls. We found that the version of Samtools we

were using had a small bug when setting heterozygosity to 0 (as
is necessary for inbred lines). We worked around this by taking
the SNP file provided by samtools (in pileup format) and count-
ing the coverage of both alleles, then calling heterozygote when
the minor allele count was at least 40% of the total. We do not
make use of mpileup since we have our own population based
pipeline (see below). Commands and detailed parameters used
are listed in Supplementary Command Listing 1.

2.1.2 Quality calculations and filtering

The mapping quality (Q-value) calculated by BWA is intended
to capture repetitiveness more than mismatches. For each base
in the reference genome, we average the quality of all reads in
all lines covering this position, resulting in a quality map. We
then provide two versions of data: (i) the original version with
Q-values attached; (ii) a filtered version where only Q ≥ 30 is
retained (see Section 6 for details). The fraction of the genome
retained in the filtered version is 87% and the fraction of SNPs
and indels retained is 86% and 85%, respectively.

2.2 Reference-based structural variant discovery

We used several different reference-based methods to call indels
and other structural variants (SVs), and we made use of popula-
tion sharing to call variants in low-coverage regions. The differ-
ent methods cover different sizes. We divide the indel/SV call-
ing procedure into two phases: discovery and genotyping. The
former is described in this section, and the latter in Section 2.3.

2.2.1 Short indels through local realignment

GATK calls short indels using local realignment. First-pass
mapping will map different reads independently, which means
that the same indel can be called in different ways for different
reads within the same individual due to the mapper’s local opti-
mization. Re-alignment based on the first-pass information can
alleviate this problem6. Thus, after running BWA, Samtools,
and GATK, we use Samtools pileup and varFilter functions to
call indels. Commands and detailed parameters are in Supple-
mentary Command Listing 1.

It should be noted that we did not attempt to realign indels
across lines. Instead, we simply filtered out with indels with
more than two alleles.

2.2.2 Large SVs through paired-end reads

This method calls the big size structural variants based on ab-
normal read pairs. We ran BreakDancer7 version 0.0.1r81 with
default settings (Supplementary Command Listing 1).

2.2.3 All sizes of SVs through split reads

This method calls SVs of all lengths by re-mapping the reads
that cross the breakpoints of the events. We applied Pindel8
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BWA, Samtools and GATK (for each line)
% bwa aln -I -o 1 $ref $name.1.fastq > $name.1.sai
% bwa aln -I -o 1 $ref $name.2.fastq > $name.2.sai
% bwa sampe -a $insert -r $tag $ref $name.1.sai $name.2.sai $name.1.fastq $name.2.fastq
-f $name.sam

% samtools view -bh -t $reflist -o $name.bam $name.sam
% samtools sort $name.bam $name.sort
% samtools index $name.sort.bam
% samtools rmdup $name.sort.bam $name.rmdup.bam
% samtools index $name.rmdup.bam
% java -Xmx4g -jar /path/to/GATK/GenomeAnalysisTK.jar -R $ref -T UnifiedGenotyper
-I $name.rmdup.bam -o $name.gatk.snp.vcf

% java -Xmx4g -jar /path/to/GATK/GenomeAnalysisTK.jar -R $ref -T IndelGenotyperV2
-I $name.rmdup.bam -o $name.gatk.indel.vcf

% java -Xmx4g -jar /path/to/GATK/GenomeAnalysisTK.jar -R $ref -I $name.rmdup.bam
-T RealignerTargetCreator -o $name.intervals -B:snps,VCF $name.gatk.snp.vcf
-B:indels,VCF $name.gatk.indel.vcf

% java -Xmx2g -jar /path/to/GATK/GenomeAnalysisTK.jar -R $ref -I $name.rmdup.bam
-T IndelRealigner -o $name.realigned.bam -targetIntervals $name.intervals

% samtools sort $name.realigned.bam $name.realigned.sort
% samtools index $name.realigned.sort.bam
% java -Xmx4g -jar /path/to/GATK/GenomeAnalysisTK.jar -R $ref -T UnifiedGenotyper
-I $name.realigned.sort.bam -o $name.gatk.realigned.snp.vcf

% java -Xmx4g -jar /path/to/GATK/GenomeAnalysisTK.jar -R $ref -T IndelGenotyperV2
-I $name.realigned.sort.bam -o $name.gatk.realigned.indel.vcf

% samtools pileup -c -s -r $r -f $ref $name.realigned.sort.bam > $name.realigned.pileup
% samtools.pl varFilter $name.realigned.pileup > $name.$r.realigned.var
% java -Xmx4g -jar correct single samtools snp.jar $name.0.realigned.snp $name.0c.realigned.snp

Pindel (run for each chromosome separately)
% pindel -f $ref -i realigned bam config files -c Chr$i -w 0.5 -u 0.1 -e 0.1 -b breakDancer output
-o output Chr$i -Q confirm Chr$i.txt

BreakDancer (for each individual)
% perl /path/to/breakdancer/bam2cfg.pl $name.sort.bam > $out folder/bkdancer/$name.cfg
% perl /path/to/breakdancer/BreakDancerMax.pl $out folder/bkdancer/$name.cfg
> $out folder/bkdancer/$name.bkd

TE-Locate
% perl TE hierarchy.pl TAIR/TAIR10 GFF3 transposable element.gff TAIR/family2superfamily.dat Alias
% perl TE locate.pl 9 SAM/ TAIR/TAIR10 GFF3 transposable element HL.gff ref/at.fa TE 1000 5 1
> temp.out 2 >&1

LAE-finder
for all BAM files:

% LAE-finder nothing SVs 02.dat data-folder/$name.realigned.sort.bam
% LAE-finder filterAndSVcall SVs 02.dat data-folder/$name.realigned.sort.bam

followed by:
% perl groupINVs.pl
% perl groupTLs.pl

Mach
Run through a custom file reformatting and submission script that is available online.

Supplementary Command Listing 1 Command lines used in sequencing pipeline.

to the BAM files that resulted from GATK local realignment.
Given the nature of our data, i.e., high coverage and inbred
lines, we can call the events rather aggressively, and we adjusted
the default parameters accordingly (Supplementary Command
Listing 1). In addition, we used the output from BreakDancer
as prior knowledge to help Pindel to find more breakpoints.

2.2.4 Copy number variants through coverage

We called CNVs by calculating the coverage directly after the
BWA reads mapping and Samtools pileup. To avoid bias by fac-
tors like GC content9, the coverage was normalized. Coverage
was estimated by summing the coverage in 1 kb windows and
then normalizing them using the total coverage in the surround-
ing 3 Mb window. Regions with extremely high coverage, e.g.,
centromeric or rDNA repeats were not used in the normalization.
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Windows were classified as have more copies than the reference
genome if the estimated coverage was at least two-fold higher
than background in at least 5 individuals.

Regions with zero coverage (i.e., no copies, where the refer-
ence genome has one) were also called from coverage, but we
also required paired-end reads spanning the putative breakpoint,
or sharing in at least 5 individuals. Software is available upon
request.

2.2.5 Segregating deletions

Given the apparent shrinkage of the A. thaliana genome10, it
made sense to focus on finding segregating deletions. If the
deleted sequence is present in the reference genome, then the
polymorphism should be found using the method in the previ-
ous section, but if the deleted sequence is not in the reference
genome, then we are looking for additional sequence present in
some of the other A. thaliana lines, and perhaps also in the out-
group species A. lyrata.

With this in mind, we took reads that could not be mapped
to the A. thaliana reference genome, and mapped them onto the
A. lyrata genome. Once we found a contiguous region this way,
we mapped the start and end coordinates back to the A. thaliana
genome. If they mapped to a homologous region, we concluded
that this is a genuine segregating deletion. Software is available
on request.

2.2.6 TE polymorphism

Additional TEs copies not present in the reference genome were
identified by looking for paired-end reads with one end in an
existing TE, the other in a unique sequence. The software used
is described elsewhere11. Copy number variation was analyzed
at the level of superfamily (using the nomenclature in The Gypsy
Database (GyDB) of Mobile Genetic Elements).

2.2.7 Large ancestral events

Very large structural rearrangements can be quite difficult to dis-
cover. However, we took advantage of the fact that many struc-
tural rearrangements separating the A. thaliana and A. lyrata
reference genomes are segregating in the former species, and
focused on finding these. An tool, LAE-finder, was developed
for this purpose, in particular for finding inversions and translo-
cations. The program, which is available for download, collects
breakpoint information from the divergence data, and checks for
presence-absence of these using paired-end reads.

2.3 Population-based SNP/indel genotyping

There is a general trade-off when calling SNPs and indels using
short reads. If we call the variants aggressively, there will be
many false positives; on the other hand, conservative parame-
ters lead to unnecessary false negatives. The default setting of
Samtools is quite conservative, at least for our data where the
density of variants is high. In this project, we try to minimize
the trade-off by separating the pipeline into two phases: discov-
ery and genotyping. During the discovery phase, we discover
events based on the individuals that have good coverage and read
mapping quality, and during genotyping, we call the discovered
variants with less conservative thresholds.

2.3.1 Recovering low coverage regions

We composed a list of relatively high-quality SNPs discovered
by GATK and Samtools as described above, and then revisited
the pileup files and genotype SNPs that were filtered out or not
called due to local low coverage. Our criterion for calling a SNP
was that it was supported by one read, and that the allele was
present in at least 5 other individuals. For indels, we also geno-
typed alternative (i.e., non-reference) alleles from the consensus
sequences that have at least only one read, but added the restric-
tion that the number of reads supporting this event should be
greater than the number of reads that did not. The results after
this step comprise the original of SNPs/indels used in imputa-
tion.

2.3.2 Imputation of SNPs and short indels

In addition to allele sharing, we also leveraged LD across mark-
ers. We used MaCH12 version 1.0 to impute SNP and short indel
sites without sequence coverage. The result is the imputed ver-
sion of released data (see Section 6, which is primarily intended
for GWAS. Before imputation, all heterozygous calls were con-
verted into missing calls, and only SNPs with exactly 2 alleles
were kept. The latter step resulted in the removal of 281,942
SNPs.

As input to MaCH, we encoded each line as a homozygous
diploid individual in the Merlin format. We then carried out im-
putation in windows of 20,000 markers, with an overlap of 2,000
markers between consecutive windows. 30 iterations of MCMC
were used for each window, and the resulting probabilistic geno-
types were converted into homozygous calls at each position.

2.3.3 Large SVs

Large (> 200 bp) SVs were called using several different meth-
ods (section 2.2). Since methods have different resolution, we
tolerated a 10% shift of breakpoints when combining events
called from different individuals or methods. In the final dataset,
an event was accepted if it is: (i) called by multiple pipelines, or;
(ii) supported by at least 5% of the individuals (using a single
method).

Given the inaccuracies inherent in calling large SVs, we did
not try to impute them.

2.4 Error estimates and quality control

2.4.1 Re-sequencing the reference genome

The reference line, Col-0, was re-sequenced using the same
methods as for our Swedish sample. Under the assumption that
all variants called are errors, and restricting ourselves to regions
with Q-value ≥ 30, we estimate false-positive rates of 0.21%
and 1.9% for SNPs and indels, respectively. The estimated rates
decrease dramatically as the quality of the mapping increases
(Supplementary Fig. 18). Putatively false positive SNPs are
aggregated near the centromeres (Supplementary Fig. 19), and
tend to have low Q-values.

2.4.2 Array-based SNP genotyping

In contrast to reference re-sequencing, SNP-chip data provides
estimates of the false negative rate (i.e., the rate at which we fail
to discover SNPs), and the genotyping error rate (i.e., the rate
at which me make the wrong call for the ones we did detect).
The overlap between the previously published SNP data13 and
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our data was 173 lines. As expected, both rates decreased with
the alignment Q-value (Supplementary Fig. 20). Restricting
ourselves to regions with Q-value≥ 30, we found that we failed
to discover 4.6% of SNPs, and made the wrong call for 3.5% of
discovered SNPs. These estimates are conservative in that we
ignore errors in the SNP data14.

2.4.3 Sanger sequencing of PCR products

A subset of 45 of our lines overlapped an old data set of
close to 1,500 manually curated multiple-alignments of Sanger-
sequenced PCR-amplicons from 95 lines15. Since these regions
were PCR-amplified, they do not represent a random sample for
the genome, but they are useful nonetheless in that the quality of
the data is extremely high. After eliminating complex regions
with overlapping SNPs and indels, we estimated false positive
and false negative rates for SNPs to be 1.8% and 3.7%, respec-
tively, and the overall genotyping error rate (conditional on dis-
covery) to be 0.64%. For indels, corresponding rates were 1.3%,
6.9%, and 2.7%.

2.4.4 Sanger sequencing of random clones

To avoid the biases mentioned on the previous section, we also
sequenced randomly generated shotgun clones from a randomly
chosen accession. Genomic DNA from the roots of Arabidopsis
seedlings (DNeasy Plant Mini Kit, Qiagen) was sonicated (size
range 300–1200 bp), gel-extracted (size range 700–800 bp), ran-
domly cloned into the pJET1.2/blunt cloning vector (CloneJet
PCR Cloning Kit, Fermentas) and transformed into competent
E. coli cells. Plasmid DNA was isolated from overnight cul-
tures. Inserts were amplified with T7 Promoter Sequencing
primer and pJET1.2 Reverse Sequencing, and sequenced in both
directions (Applied Biosystems 3130xL Genetic). The resulting
chromatogram files were pre-processed as follows:

1. Remove vector sequence.

2. Apply sequence quality filter with a threshold of 0.0001
using Richard Mott’s trimming algorithm (as implemented
in CLC).

3. Eliminate reads shorter than 150 bp.

4. Align reads from complementary strands using SMALT
(http://www.sanger.ac.uk/resources/software/smalt/).

All sequences were then aligned to the reference with BWA4.
The mapping properties of the data types are consistent, the
main difference being that Sanger reads that could not be aligned
uniquely, could more often be anchored, due to their greater
length (cf. Fig. 1a). Only sequences with a unique hit were
used to calculate error rates. SNPs and indels were called us-
ing Samtools5 in the same way as for the main data (except that
there is no threshold for minimal coverage, i.e., a single Sanger
sequence is always sufficient).

The above procedure generated ∼250 kb of overlapping
Sanger and Illumina data. After trimming a further 5 bp from
the ends of each alignment to avoid artificial mismatches due
to alignment problems, error rates were calculated for the Q30
data, assuming that the Sanger result were perfect. This analysis

quickly revealed that two further steps of data filtering were re-
quired to obtain reasonable error rates. First, we eliminated pu-
tatively heterozygous polymorphisms. Although some tracts of
genuine heterozygosity were observed in the data, the vast ma-
jority of heterozygous calls were shared between lines, which
is extremely unlikely in a highly selfing species. Thus, most of
these calls are dubious. Second, for indels, we eliminated mono-
or di-nucleotide repeats, as these are very difficult to sequence
(and are at least as likely to be called incorrectly in the Sanger
data). After these filtering steps (released with the data, see Sec-
tion 6), the error rates were comparable to the ones described
above, except for the indel false negative rate (Supplementary
Table 1). Note that we defined this rate as fraction of indels ob-
served using the Sanger data that had not been observed using
the Illumina data in any other line (if it had been observed in
lines other than the right one, it would be a genotyping error).
The indels we fail to call are thus most likely singletons.

3 De novo assembly

3.1 Assembly pipeline

We performed de novo assembly of the lines using two sets
of tools: SOAPDenovo16 v1.05 and clc novo assemble in the
4.0.1beta version of CLC Assembly Cell, the command-line
backend to the CLCGenomics Workbench. For both tools, we
used the raw fastq files from each line as input. For SOAPDen-
ovo, we first tested a variety of different parameter options on 3
lines. Based on these results, we decided to carry out assembly
of all lines at three different k-mer size setting: 27, 33 and 41.
For other options, we used map len=32, pair num cutoff=2, and
avg ins (average insert size for paired end reads) estimated from
BreakDancer7 in the configuration file. We enabled all optional
procedures, including using reads to solve small repeats, remove
low-frequency K-mers, remove low frequency edges and intra-
scaffold gap closure. We used the defaults for all other options
and precompiled parameters. See also Supplementary Com-
mand Listing 2.

In order to choose the best k-mer setting for each line, the re-
sulting scaffolds were mapped back to the reference genome us-
ing BLAST, and the alignment results parsed to eliminate mul-
tiple hits. We used several criteria for this step: first, we only
considered blast hits at above 85% similarity; second, if the
same part of the contig aligned to multiple locations, we picked
the highest scoring one (which in BLAST usually corresponds
to the longest alignment); third, if two contigs mapped to the
same location, we picked the longer alignment. We then evalu-
ated the assemblies based on several criteria, the most important
ones being: the proportion of the reference genome covered; the
minimum length of scaffold to cover 50% of the genome (N50);
and whether (based on manual inspection) the total length of
the scaffolds differed too much from the population average. Fi-
nally, we chose the best among the three sets of scaffolds created
using different k-mer settings as the assembly for that line.

For CLC assembly cell, we used the command line shown in
Supplementary Command Listing 2, with insert sizes again
estimated from BreakDancer. The results were comparable to
those from SOAPDenovo, and we will not discuss them further.
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SOAPdenovo
% SOAPdenovo63mer all -p 8 -K $kmersize -a 30 -R -d -D -F -s $configfile -o $outputfile

CLC Assembler
% clc novo assemble all -q -p fb ee $min insert size $max insert size -i $fastqfiles

-o $outputfile --cpus 24

mafft
% mafft --thread 8 --localpair --maxiterate 20 --inputorder INPUTFILE > OUTPUTFILE

Supplementary Command Listing 2 Command lines used in de novo assembly.

3.2 Detection of structural variants

To complement the read-pair and split-read approaches to struc-
tural variant detection, we used a novel method based on our
de novo assembly. Our method is similar in spirit to soapsv17,
based on alignment between scaffold and the reference genome,
however, we focus on large events (>200 bp), which are poorly
captured by standard read alignment algorithms.

3.2.1 Brief outline of algorithm

Our method detects structural variant breakpoints from irregu-
larities in the alignment of scaffolds to the reference genome.
For a region harboring a larger structural variant, we would ex-
pect to see the scaffolds covering the breakpoints to contain frag-
ments from different regions on the reference genome, or differ-
ent strands in the case of an inversion. Identifying such patterns,
however, is complicated by the fact that, even in the absence of
structural variation, a scaffold will sometimes map to multiple
locations due to repetitiveness and small polymorphisms.

Our algorithm utilizes dynamic programming to search all
possible alignments to identify scaffolds that contains genuine
breakpoints, and further tries to discern the nature of each break-
point, including where the flanking regions came from. The
algorithm is still under development, and will be described in
detail in a separate publication, however, the software imple-
mentation used here is available on request.

3.2.2 Quality of calls

When applied naively, our algorithm identified over 200,000 pu-
tative distinct breakpoints. However, when applied to our refer-
ence re-sequencing data, we obtained around 1/4 the average
number of events for a line, indicating a false positive rate of
at least 25%, and a rough analysis of the number of “missing”
breakpoints in pair suggests a false negative rate of at least 20%.
Thus, the results from this algorithm should be interpreted with
care, and we include only small subset of the ones judged most
reliable (most notably positive length variants) in the data re-
lease. All other types of events are released separately in the
form of putative breakpoints (see Section 6). Although error
rates are high, we note that our algorithm identifies several in-
teresting examples of large structural variation that are readily
validated by local patterns of LD, as illustrated in Supplemen-
tary Fig. 17.

3.3 Detection of novel sequence

Scaffolds and singleton contigs were first filtered by read cov-
erage (those showing coverage less than 20% of average were
eliminated) and then aligned to the reference using BLAST with
the set of parameters described in previous section. All scaf-

folds, contigs, and sufficiently long (≥100bp) parts thereof that
aligned poorly (or not at all: the criterion was 80% similarity
and a minimum BLAST score of 200) to the reference genome
were extracted.

The resulting sequences were aligned to genomic sequences
from the Refseq-genomic database in order to identify their ori-
gin. Any sequence that was found to map to non-plant genomes
was considered to be the result of contamination.

15 lines exhibited an aberrantly high amount of putative novel
sequences. In some cases, this appeared to be due to contamina-
tion; in others it was probably due to a lower sequencing qual-
ity. After these lines were removed, the rest showed little sign
of contamination. We assessed whether the remaining novel se-
quence was likely to be real A. thaliana sequence in two ways.
First, we asked whether a given segment was part of a scaffold
or contig that also contained sequence that clearly did match
the reference genome (using the BLAST criteria given above).
Second, we aligned novel sequences from different lines against
each other, and looked for sharing between lines (as would be
expected for a segregating indel polymorphism). Supplemen-
tary Fig. 21 summarizes the results of these analyses across all
lines. We found 1.5–2.5 Mb of novel sequence per line, almost
of which was either anchored in the reference genome or shared
among at least 5 lines. As for the origin of the novel sequence,
about 250 kb per line was clearly of plant origin (total combined
BLAST score for the best linear alignment >400). In general,
the greatest similarity was to A. lyrata.

Overall, our attempts to identify large indels, identified many
more positive (w.r.t. the reference genome) than negative length
variants. If this difference were real, then it would imply that
the reference genome comes from a line with unusually small
genome. The alternative explanation is that it is simply due to
bias: from a statistical point of view, it is easier to detect pres-
ence (i.e., novel sequence) than absence (missing reads, which
could be due to chance). This explanation is supported by the
observation that the spatial distribution of novel sequence along
the chromosomes closely mirrors that of missing coverage (Fig.
1f and Supplementary Fig. 2).

We examined some polymorphisms in detail by aligning the
scaffolds spanning the region with the homologous regions from
the A. thaliana and A. lyrata reference genomes using mafft18

(Supplementary Command Listing 2). An example can be
seen in Fig. 1e in the main text.

We tested the hypothesis that NB-LRR and F-box proteins,
two gene families with high birth and death rates, contribute
disproportionally to the novel sequences. First, we used Hm-
mer (v3.0)19 to create hmm profiles using multiple alignments
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of the NBS and F-box domains in Arabidopsis thaliana with
assistance of previously published sequence of the domains10.
Then, we searched in the novel sequences for the motifs (hmm-
search). We detected similar motif/length of sequence ratio us-
ing the reference genome as using either gene family (no signif-
icant enrichment). One caveat is that sequences containing the
motifs could potentially have been removed due to similarity to
the reference genome in the filtering steps for identifying novel
sequence.

4 Variation in nuclear DNA content
4.1 Flow cytometry

Flow cytometry was carried out on 129 lines (128 Swedish plus
Col-0) split into two sets with 11 overlapping lines. Each set
was further divided into three blocks of replicates that were mea-
sured on a different days with 1–2 biological replicates per line
within each block. In addition, a set of 36 world-wide lines (plus
a single line overlapping the set of 129) divided into three blocks
of replicates (no replication within blocks) were measured on
different days.

Seeds were stratified directly on soil for 5 days. Plants were
grown under long day conditions (16 h light at 21°C, and 8 h
dark at 16°C), watered twice a week, and rotated within trays
daily. At 2 weeks the first two true leaves of each plant were
finely chopped with a razor blade together with an approxi-
mately 0.125cm2 piece of leaf of the internal standard, Solanum
lycopersicum cv. Stupicke (2C = 1.96 pg DNA20), in 250 µl of
extraction buffer (kit PARTEC CyStain PI Absolute P no. 05-
5022). 1 ml of staining solution (with 6 µl of propidium iodine
(PI) and 3 µl of RNase [3.33 mg/ml]) was added, and the result-
ing suspension was passed through a 30-micron filter (Partec
CellTrics no. 04-0042-2316). Samples were stored for 2–4 h at
4°C in the dark prior to DNA content evaluation.

Genome size was measured with a LSRFortessa special or-
der research product equipped with a 561 nm yellow-green
laser (110 mW) and a 488 nm blue laser (100 mW), for PI
(610/20 nm) and side scattering (SSC; 488/10 nm) detection,
respectively. Events representing debris were excluded by se-
lecting only the major cluster when plotting the PI-area versus
SSC-area for 10,000 events. Data was analyzed with the flow-
Clust R package21. The mean position of the 2C peak for each
sample was normalized to the 2C peak of the internal standard
and converted into base pairs22.

Simple linear regression models were fitted for each set in
order to account for the block effect and obtain a single flow
cytometry estimate for each line. The mean and standard de-
viation of these estimates are available online (see Section 6).
The results were generally highly reproducible, with the stan-
dard deviation being on the order of a percent of the mean. The
distribution of estimates is shown in Supplementary Fig. 3.

4.2 Repeat-number estimation through coverage

Sequence coverage for each individual was calculated by sum-
ming normalized read coverage in 1 kb windows (as described
in Section 2.2.4) across the entire genome. Note that, for this
analysis, we did not remove reads that were supposedly due to
library duplication, as this seemed to removed actual repeats
(leading to poorer agreement with flow cytometry estimates,

see Supplementary Fig. 23). The contribution to genome size
by 45S rDNA, 5S rDNA and centromeric repeat elements was
estimated by summing read coverage across the appropriate
regions of the reference sequence. For 45S rDNA, the two
∼10 Kb 45S rDNA loci, in the beginning of chromosome 2
and at 14.2 Mb of chromosome 3, respectively, were consid-
ered. For 5S rDNA, the locations were determined by BLAST-
ing the transcribed region consensus sequences identified for
the major and minor loci on chromosomes 4 and 5, as well as
loci 1, 2 and 3 on chromosome 323. Similarly, centromeric re-
gions were located via BLAST with two centromeric variants,
clones 22 At178 (GenBank: EU359499.124) and AS1 (Gen-
Bank: X04320.125). For TEs, the total count of novel TEs was
used (see Section 2.2.6). All estimates are available online (see
Section 6). The correlation between the flow cytometry and re-
peat copy number estimates was analyzed using standard regres-
sion methods as described in the text. The results are presented
in Table 1, Supplementary Table 4, Fig. 2a, and Supplemen-
tary Fig. 22.

4.3 Estimating rDNA copy number through qPCR

45S rDNA copy number can also be estimated through quantita-
tive PCR (qPCR) of either the 18S or 25S subunit26. We carried
out qPCR in technical triplicate and biological replicate for each
of five A. thaliana lines (ids: 5856, 6099, 6136, 6244, 8386)
in a 25 µl total reaction volume using 2X SensiMix SYBR &
Fluorescein Kit (Bioline No. QT615-05).

An iQ5 light cycler (Bio-Rad) was employed with the follow-
ing thermal profile: 95°C for 600 seconds; 40 cycles at 95°C for
10 seconds, 60°C for 30 seconds and 72°C for 30 seconds; and a
final cycle at 72°C for 60 seconds. One standard curve based on
serial 10-fold dilutions was made for each sample. No primer
dimmers were detected in the melting curve.

45S ribosomal DNA (rDNA) abundance was estimated by
comparing 18S rDNA to two single copy genes (At3g18780,
At4g38740; see relevant file in Section 6 for a list of primers)
according to:

rDNA abundance = 2Ct(single copy gene)−Ct(18S rDNA)

where Ct(x) stands for the threshold cycle for x. Estimates
for all lines were then normalized to the line with the low-
est estimated copy number of 18S rDNA. The qPCR results
showed excellent agreement with the coverage-based estimates
(Supplementary Fig. 23c–d).

4.4 Genome-wide association mapping

Genome-wide association mapping was carried out using the
imputed SNP data (Section 6) using an approximation of the
kinship model27. Minor alleles below 5% MAF were filtered
out prior to the analysis, leaving around 1.8M SNPs. Both flow
cytometry and 45S copy numbers estimates were used as phe-
notype, and we tried different subsamples of the lines in order
to evaluate the robustness of the association (Supplementary
Fig. 5). Analysis of the northern and southern lines separately
demonstrated that the association is due to variation among the
northern lines: the association is not present in the southern sam-
ple (Supplementary Fig. 5a–c). Association mapping using
45S copy number directly as a phenotype revealed that, while
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the peak is still present, it is much less distinct (Supplementary
Fig. 5d). Furthermore, when we increase the sample size to
the full sample for which we have sequence data, the peak van-
ishes (Supplementary Fig. 5e), which is troubling. However,
the 45S-rDNA coverage data vary greatly between lines and
replicates, and may be strongly affected by both alignment and
sequencing artifacts. Thus, counter-intuitively, the flow cytom-
etry data may actually be a better estimate of the true number of
45S-rDNA repeat copies.

4.5 FISH

An obvious explanation for putatively trans GWAS peaks re-
lated to 45S copy number is that they are linked to novel 45S
rDNA clusters (i.e., they are, in fact, cis). Thus, although the
100 kb region on chromosome 1 that contains the most signifi-
cant associations does not show any evidence for large structural
variants, we decided to look genome wide. First, TE-Locate was
used with the standard settings to map novel 45S rDNA repeat
insertions, and none were found. Second, we used Fluorescence
In Situ Hybridization (FISH) to look for clusters directly.

Actively growing, young roots were pretreated with ice-cold
water for 12 hrs, fixed in ethanol:acetic acid (3:1) at 4°C for
24 hrs. Selected root tips were rinsed in distilled water and cit-
rate buffer (10 mM sodium citrate, pH 4.8), and digested by
0.3% cellulase, cytohelicase and pectolyase (all Sigma-Aldrich)
in citrate buffer at 37°C for 90 min. Individual root tips were
dissected in ca. 10 µl of acetic acid on a microscopic slide. The
cell material was covered with a cover slip, evenly spread by
tapping, and the slide gently heated over a flame. Then the slide
was frozen in liquid nitrogen, cover slip flicked off, fixed in
ethanol:acetic acid (3:1) and air-dried. A. thaliana BAC clone
T15P10 (AF167571) containing 45S rRNA genes was used to
identify 45S rDNA loci. BAC clones F5A8, F1N21, F12A21,
T23K23, and F12B7 were used to paint chromosome 1, and lo-
calize the candidate region. All DNA probes were labeled ei-
ther with biotin-dUTP, digoxigenin-dUTP, or Cy3-dUTP by nick
translation, pooled, ethanol precipitated and pipeted on ready-
to-use slides. The slides were heated to 80°C for 2 min and
incubated at 37°C overnight. Hybridized DNA probes were vi-
sualised either as the direct fluorescence of Cy3-dUTP (yellow)
or through fluorescently labeled antibodies against biotin-dUTP
(red) and digoxigenin-dUTP (green). DNA labeling and flu-
orescence signal detection was carried out using a previously
published step-by-step protocol28. Chromosomes were coun-
terstained with 4,6-diamidino-2-phenylindole (2 µg/ml) in Vec-
tashield (Vector Laboratories). Fluorescence signals were an-
alyzed and photographed using a Zeiss Axioimager epifluores-
cence microscope and a CoolCube camera (MetaSystems), and
pseudocolored/inverted using Adobe Photoshop CS2 software
(Adobe Systems).

Results for three accessions with large estimated 45S rDNA
copy number are shown in Supplementary Fig. 4. The known
clusters on chromosomes 2 and 4 are clearly visible, and there
is no evidence for any other clusters.

5 Population genetic analyses

5.1 Selection on indels

All polymorphisms were annotated with respect to function, us-
ing the reference genome. As expected under the assumption
that most mutations disrupt function, structural variants are rel-
atively more common outside genes, and relatively rare in exons.

In order to test whether selection is driving deletions to fix-
ation, as has been suggested10, we used the global alignment
between A. thaliana and A. lyrata10 to determine the ancestral
state of SNPs and indels. The derived allele frequency distri-
bution can be a powerful tool when looking for signal of se-
lection, essentially because it makes it possible to identify the
high-frequency derived allele that are expected to be rare un-
less selectively favored. Very conservative criteria were used in
the polarization, the reason being that the conclusions may be
severely biased if alleles are misclassified with respect to an-
cestral status. Because derived alleles are almost always rare,
misclassification of them as ancestral will cause a large infla-
tion of supposedly high-frequency derived alleles29. With this
in mind, a polarization was accepted only if the identify of sur-
rounding region passed stringent criteria. For SNPs, we required
that the identity of the surrounding 30 bp window should be at
least 90%. Short indels (≤ 200 bp) were classified as deletions if
A. lyrata had what appeared to be the longer allele, and the addi-
tional sequence was identical in all carriers (including A. lyrata).
Indels were classified as insertions if A. lyrata had the shorter
allele and the additional, putatively inserted sequence was iden-
tical in all carriers. We did not try to polarize other structural
variants.

Given that the overall divergence between the two reference
genomes is greater than 10%, the above criteria are very strin-
gent. The estimated allele frequency distribution for SNPs,
deletions, and insertions is shown in Supplementary Figure 6.
Contrary to previously observations10, there is no evidence for
an excess of high-frequency deletions. It is not clear what to
conclude from this. While our analysis is based on many more
events, it is worrisome that we polarize only 18% of all (ob-
served) events. Experimenting with less conservative criteria
demonstrated that the allele frequency distribution is extremely
sensitive to the procedure used, however, in no cases did we get
results consistent with strong selection favoring deletions (not
shown).

For the SNP-based selective sweep analysis in Section 5.4,
we employed no filtering when estimating ancestral state. Both
polarizations, as well as the function annotation, are part of the
released data (Section 6).

5.2 Long-range LD

5.2.1 LD in structured populations

Let n denote the number of individuals and m the number of
SNPs. Given a genotype matrix in which each of the SNP vec-
tors, Si, i = 1, . . . ,m, is coded numerically, i.e., 0, 1, or 2
for each of the n diploid individuals, we can obtain normalized
SNPs Xi = (Si − Si)/

√
Var(Si) with mean 0 and variance 1.

Under the assumption that these SNPs are independently sam-
pled from a distribution with covariance matrix V, we can ob-
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tain an unbiased estimate of this covariance matrix as

Covest(Xi) = V̂ =
1

m− 1

m∑
i=1

(Xi −X)(Xi −X)> . (1)

If we assume that the average allele value for each accession is
equal (i.e. alleles are labeled so that all accessions have roughly
equal numbers of 0 and 1 alleles), then this covariance matrix
estimate is exactly Fisher’s correlation kinship matrix30. Like
Mangin et al., we then obtain pseudo-SNPs, Ti = V̂−

1
2Xi, with

values that are expected to be independent across individuals.
Now we can proceed to obtain r2 values that have been corrected
for genetic correlations between individuals, or, in other words,
population structure. The correlation becomes strikingly simple
when written out as

Corest(Ti, Tj) =
Covest(Ti, Tj)√

Varest(Ti)Varest(Tj)
, (2)

where

Varest(Ti) =
1

m
(Ti −

1

m

∑
k

Tik)
>(Ti −

1

m

∑
k

Tik) , (3)

and

Covest(Ti) =
1

m
(Ti −

1

m

∑
k

Tik)
>(Tj −

1

m

∑
k

Tjk) . (4)

If the genotype data does not contain any missing values then
we can speed up the calculation for the adjusted correlation by
calculating the pseudo-SNPs and normalizing them beforehand.
Consider the normalized pseudo-SNP

Wi =
Ti − 1

m

∑
k Tik

Varest(Ti)
. (5)

We can now obtain the correlation estimate by simple vector
multiplication

Corest(Ti, Tj) =W>i Wj , (6)

and hence r2(Ti, Tj) = Corest(Ti, Tj)
2. For data with no miss-

ing values (or with missing data imputed), the time complexity
for estimating r2 for all SNP pairs is O(mn3 +m2n). An ob-
vious extension to this would be to use some of the approxima-
tions proposed by Lippert et al.31, to obtain an approximate r2

in sub-cubic n time.
The transformed LD estimates are generally lower than the

original ones, since the inflation caused by population structure
is removed (Supplementary Fig. 24), however, large numbers
of long-range LD pairs remain (Fig. 4a).

5.2.2 Potential causes of long-range LD

Major population subdivision Since the divergence be-
tween north and south in our sample is substantial (see Sec-
tion 5.3), we evaluated its effect on LD separately, by applying
the relatedness correction separately to the northern and south-
ern subsamples. The LD pattern in the north contain many more
high r2 pairs (Supplementary Fig. 25a), a result of smaller
sample size as well as higher relatedness, whereas the LD pat-
tern in the South looks very similar to that of the full sample
(Supplementary Fig. 25b). Thus we conclude that the vast ex-
cess of long-range LD is not simply due to the north-south divi-
sion.

Imputation We used imputed data for the LD calculation,
primarily to speed up computation, but also to make sample size
even across all pairs. To ensure that this did not cause the pat-
tern observed, we re-calculated r2 for all high-LD pairs in the
unimputed data. The results show that imputation is clearly not
a source of long-range LD (Supplementary Fig. 25c–d).

Other artifacts Long-range LD might also various kinds of
mapping and genotyping artifacts, i.e., the SNP loci do not seg-
regate normally. To try to eliminate these problems, we applied
several stringent filtering steps. To begin with, all analysis was
based on the high-quality Q30 SNPs. To be even more stringent,
we aligned 75 bp surrounding each SNP to the reference genome
using BLAST, using a less stringent criterion (90% similarity)
than was used in the original read mapping. Any SNP that could
be aligned to more than one region on the reference genome was
filtered out. This should remove simple mapping artifacts.

After transforming and filtering, we were still left with
over 70,000 SNP pairs exhibiting strong long-range LD, es-
pecially between centromeric regions (Fig. 4a). To test
whether they segregated normally, 4 centromeric and 2 non-
centromeric set of SNPs were genotyped in informative F2
crosses (Supplementary Table 2). Two informative crosses
(6035 × 9433 and 6136 × 6064) were carried out, with 10 F2
seedlings genotyped using PCR and dideoxy-sequencing. Of
the four centromeric pairs, only one yielded reliable PCR frag-
ments for both SNPs (Supplementary Table 2). In summary,
2 out of 2 between-chromosome, non-centromeric comparisons
segregated normally, and 1 out of 1 between-chromosome, cen-
tromeric comparison did not.

Based on these results, we conservatively decided to remove
all centromeric SNPs, leaving only 2509 pairs. To further test
whether some of these might also be closely linked, we aligned
short sequences (both 75 and 150 bp was tried) surrounding
each SNP to the scaffolds generated by de novo assembly. If
sequences flanking both SNP in a pair mapped near each other
one the same scaffold, we considered them linked in that line.
Out of the 2509 pairs tested, we found 17 that could be due to
this kind of structural variation (Fig. 4b).

Selection For the remaining long-range LD pairs, we first
tested whether the corresponding pairs of loci were overrepre-
sented in published protein interaction data32. No significant
overrepresentation was found. Next, we looked for overrep-
resentation of individual loci among those identified as having
signals of local adaptation33. We asked whether SNPs involved
in long-range LD were close to the peak SNPs (those with p
< 0.001) for 13 climatic traits, and calculated the p-value us-
ing a permutation scheme that maintain the LD structure in the
data15. We detected significant (Bonferroni-corrected p <0.05)
enrichment in two of the traits, relative humidity and minimum
precipitation (Supplementary Table 3). The same method was
used to test for overlap with SNPs implicated in selective sweeps
(Section 5.4). In northern Sweden, there is a significant overrep-
resentation of long-range LD SNPs and SNPs within 1 kb of a
SNP with a Sweepfinder CLR above 50 (p = 0.0336).
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5.3 Population structure

5.3.1 Analysis

Global population structure in A. thaliana has been described
several times13,15,34. We compared our Swedish sample (which
we divided into a northern and a southern population based on
latitude 60◦ N, see Supplementary Fig. 1) with other samples
for which whole-genome sequencing data are available, namely
the 8 smaller populations (10 individuals in each) sequenced by
Cao et al.3. Three different statistics were calculated: PCA, t-
SNE, and FST . The results confirmed the distinctiveness of the
northern Swedish sample (Supplementary Table 5)35. Clus-
tering based on the 250k SNP data13 identified two likely con-
taminants among the northern lines: 6180 and 1435. These
two lines clearly cluster with southern (or even other European)
lines, and were excluded from further analysis. These conclu-
sions are supported by standard hierarchical clustering analysis
as well (Supplementary Fig. 8).

To further characterize the pattern of variation in Sweden, we
plotted the sequence divergence between all pairs of lines in
our samples as a function of the distance separating the origi-
nal sampling locations (Supplementary Fig. 9), and tested for
isolation by distance using the Mantel test (function mantel of
the R-package vegan). We found a significant correlation within
both the northern and the southern sample, although the corre-
lation within northern Sweden was much stronger (Spearman’s
r=0.6109, p<0.001 and r=0.4525, p<0.001, respectively). The
95% bootstrap confidence interval for the difference in Spear-
man’s r between north and south was (0.115, 0.173). The
north also has lower levels of polymorphism and higher Tajima’s
D36 (Supplementary Fig. 15), as well as more extensive LD
(Supplementary Fig. 7). Taken together, these results are con-
sistent with the observation that the north seem to have a much
more patchy population structure, with quite small local popu-
lations.

5.3.2 Methods

FST We used only bi-allelic SNPs for which we had complete
information for all 260 (180+80) lines. Each SNP was coded as
0 for the major allele, and 1 for the minor allele. The standard
method was used37. In addition to genome-wide averages, we
also calculated FST between northern and southern Sweden in
non-overlapping windows of 100 kb.

θ, π, and D We calculated three standard statistics describ-
ing aspects of nucleotide diversity, separately for north and
south, and in 100 kb windows across the genome: Watterson’s
θ; nucleotide diversity, π; and Tajima’s D. All three statistics
are intended for complete sequence data rather than SNPs, and
we therefore used BamTable38, which essentially tries to inte-
grate over the uncertainty in polymorphism detection, generat-
ing probabilistic calls. We ran BamTable on sorted BAM files to
call SNPs, using the standard options. The most common base
was called at each site and each line. Bases that were supported
by less than 5 reads were excluded. If two different bases were
supported with more than 4 reads for a certain site, then this site
was excluded as potentially due to incorrect alignment or gen-
uine heterozygosity site.

In order to accommodate missing data, we calculated the sum-

mary statistics separately for all sample sizes, then carried out
weighted averaging similar to what has previously been sug-
gested for Watterson’s θ39. For the other two statistics, we use

π =
n∑

i=2

Li

LT
πi (7)

and

D =

∑n
i=2 LiaiDi∑n
i=2 Liai

, (8)

where πi and Di, i = {2, ..., 180}, are the values of the sample-
size specific statistics, Li is the sequence length of sites with
sample size i, and ai is the ith harmonic number. These esti-
mates turned out to be superior in terms of bias and root mean
squared error when compared to alternative formulas in neutral
simulations with random missing data added in a way that re-
flects the observed data (results not shown).

5.4 Selective sweeps and local adaptation

5.4.1 Genome scans

CLR Sweepfinder40 is intended for polarized SNPs, but can
handle missing data. SNPs were polarized as described in Sec-
tion 5.1, but without the conservative filtering. The 46% of
SNPs that could not be polarized were nonetheless used in the
analysis. The output of Sweepfinder is a CLR (composite like-
lihood ratio) statistic for a grid of positions with distance of
1,000 bp between successive positions. To arrive at a signifi-
cance threshold, we use the coalescent simulator msms41, which
also allows selection.

We used standard neutral simulations to determine the critical
CLR values (Supplementary Command Listing 3). The pop-
ulation mutation rate was set to 0.005/bp, which corresponds to
the average observed diversity. An average recombination rate
of 4.6 cM/Mb2 was assumed, and a selfing rate of 97%34. There
is no evidence that recombination rates in the sweep regions de-
viate strongly from this value, and Sweepfinder has been shown
to be relatively robust to deviations from the true recombina-
tion rate40. Recombination and diversity were scaled to corre-
spond to a sequence length of 1Mb. The sample size was set to
the mean northern and southern sample size (averaged over all
SNPs): 43 and 111, respectively. The total number of simula-
tions was 12,000, corresponding to the simulation of about 100
whole genomes. The cut-off was then calculated for a family-
wise error rate of 5% per genome, so that a false positive signal
only occurs in one out of 20 whole genome analyses on average.

Simulations with selection at a single locus showed that a sin-
gle selective sweep leads to multiple significant peaks in the
CLR in about 80% of cases. In those cases, significant regions
span an average of 170 kb, with a 99% quantile of 430 kb. The
95% confidence interval of the true position of the selected site
is 160 kb centered around the largest peak. Thus, it is not un-
likely that multiple significant peaks created by a single sweep
are relatively far apart from each other, although the largest peak
is almost always nearer to the true selected locus than smaller
peaks. Therefore, we treat multiple peaks within a region of 430
kb as single events in our analyses, and designate the peak with
the largest CLR as the center of the sweep.
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msms (neutral model)
% msms -ms 111 12000 -t 5000 -r 994

msms (with selection)
% msms -ms 50 1000 -t 5000 -r 800 -SAA 1000 -SaA 500 -N 100000 -SF 0 -Sp .5

XP-CLR (repeat for chromosomes 2–5)
% XPCLR -xpclr SouthChr1.geno NorthChr1.geno Chr1.map Chr1.xpclr -w1 0.005 200 1000 1 -p1 0.95
% XPCLR -xpclr NorthChr1.geno SouthChr1.geno Chr1.map Chr1.xpclr -w1 0.005 200 1000 1 -p1 0.95

XP-EHH (repeat for chromosomes 2–5)
% xpehh -m Chr1.map -h SouthChr1.hap NorthChr1.hap > Chr1.xpehh

Supplementary Command Listing 3 Command lines used in sweep finding.

In total there were 22 significant sweep locations in the north-
ern and 1 in the southern Swedish sample. The single significant
southern Swedish signal overlaps with the strongest signal in the
north. For each location, 160 kb large regions centered on the
largest CLR peak were selected, and subjected to further analy-
sis (see below).

The sweep haplotype corresponding to the shared sweep sig-
nal on chromosome 1 turned out to be associated with an intra-
chromosomal transposition of 278 kb to a new position 486 kb
away. During the selective sweep, this configuration likely pre-
vented any recombination event between the ancestral and re-
arranged haplotypes in 764 kb region. To ensure that the sweep
signal was not simply due to repression of recombination, we re-
ran Sweepfinder on a data set where the entire 764 kb region was
replaced by a single base pair. The sweep signal from this analy-
sis was still the strongest in both northern Sweden and southern
Sweden, and Sweepfinders CLR value for northern Sweden was
still 165 fold larger than the average CLR value in the rest of the
genome.

XP-CLR and XP-EHH XP-CLR42 was calculated between
the northern and the southern populations, looking for sweeps in
the north with the south as reference, as well as vice versa. XP-
EHH43 (downloaded from http://hgdp.uchicago.edu/Software/)
just returns a single value for the comparison of the two popula-
tions. Since it cannot handle missing data, all SNPs with missing
individuals were removed.

5.4.2 Environmental correlations and GO terms

A file available online (see Section 6) summarizes the 22 signif-
icant sweep regions. For each region, GO terms were collected,
and a test for GO category enrichment was carried out using
func44. Terms that reached reached a significance threshold of
p < 0.01 and had at least three genes in the category are re-
ported. Only biological process (GO:0008150) sub-categories
were used.

The data from Hancock et al.33 were used to look for enrich-
ment of significant SNP-environment correlations in the swept
regions. For each environmental variable (aridity, consecutive
cold days, consecutive frost-free days, day-length, length of
growing season, maximum precipitation, maximum tempera-
ture, minimum precipitation, minimum temperature, PAR, pre-
cipitation seasonality, relative humidity and temperature season-
ality), the 1% tail of largest correlation coefficients was selected
and tested for enrichment in each sweep region. The p-value was
calculated by deriving an empirical null distribution of the pro-

portion of tail signals (number of SNPs that are in the tail of the
correlation coefficient distribution, divided by all the SNPs in
that interval) for a randomly placed interval. The p-value is the
probability of having an as high or higher proportion of tail sig-
nals in a randomly placed interval compared to the actual sweep
region.

5.4.3 Dating the sweep

The sweep was dated utilizing the average amount of polymor-
phism separating two swept haplotypes. To do this we utilized
sequence data from a segment within the transposition (20.35-
20.45Mb). To account for the fact that we only use SNPs with-
out missing data for the age estimation, we reduce the sequence
length by the ratio of the number of SNPs without missing data
(1158) and the total number (2221), leading to an effective se-
quence length of 100000 × 1158/2221 = 52139 bp. The SNPs
for which there were no missing individuals, and which were are
also monomorphic in the six lines with the ancestral (unswept)
configuration were then used to calculate the average number of
differences for a randomly selected pair of northern and south-
ern lines, respectively. These numbers were 12.7 and 31.6.

Assuming an approximately star-like tree, we estimate the age
of the sweep by calculating the average divergence time of two
sweep haplotypes. We do this by dividing the average number
of differences with a factor of 2 × 52139 × 7 × 10−9, where
7× 10−9 is the estimated mutation rate per bp and generation45.
This resulted in an average divergence time of 17,390 years for
northern Sweden, and 43,282 years for southern Sweden.

6 Data release
The raw data has been deposit to NCBI trace SRA with acces-
sion number SRP012869. Processed data are available through
the project download site.

6.1 Genotype files

In total we identified around 4.5M SNPs, 576k short indels, 23k
transposable elements, 7.7k CNVs, as well as 3.8k other struc-
tural variants (larger than 200 bp). The following files are avail-
able:

• SNPs (Original and imputed)

• SNP mapping information

• SNP annotations

• Small indels (Original and imputed)
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• Small indel annotations

• Large structural variants (several files from multiple
pipelines)

6.2 Other files

The following files are also available from the website:

• list of lines used in this study (an interactive version is
available).

• alignment and assembly statistics for all sequenced lines.

• flow cytometry and repeat copy number estimates for the
180 lines.

• flow cytometry estimates for 36 worldwide lines.

• multiple alignments for the candidate genes from Fig. 2.

• summaries of putative sweep regions.

• all PCR primers used in this study.

• predicted genotype for 1306 lines with respect to the trans-
position on chromosome 1, and the large inversion on chro-
mosome 4 (Supplementary Fig. 17).

• all genes in the swept transposition on chromosome 1.
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6.7 Results – addendum 

6.7.1 LAE-finder 
The Large-Ancestral-Events-finder is a tool for confirming known events. On its own, 
'confirming known events' sounds a little meaningless; intended is gaining certainty about 
events in an individual which are either called in a rather unsafe way or which are known to 
occur in a population. The specific goals of this tool are to get all possible information out of 
read-pairs for and against specific events. The latter comprises its difference from most other 
tools, where only presence is called. The tool name contains 'Ancestral' because the 
comparisons between the reference sequence and ancestral references are the likeliest 
sources for safe large variations (see also section 6.7.4 SVs). Initially the main motivation 
was the existence of a lot of tools and methods to call SVs but all with incredibly high error 
rate. 

In the paper, the tool is mentioned in the supplement at '2.2.7 Large ancestral events'. Only 
in one sentence is it mentioned in a misleading, where it is not clear that the events must 
come from elsewhere, but need not to be safe in any manner. The function of the LAE-finder 
is to make things safer. The event finding was done here by a colleague in a partly manual 
way, which was never fully automatized. The lack of automatization and some hints of biases 
in the event finding explain why this did not go into an own methods paper. 

Figures 12 to 16 describe what the tool is designed for. 

The read-pair information, resp. the coordinates, are used in three different ways. Firstly, to 
call the presence of the event (see Figure 12 and 14), which is what most other tools also do. 
Secondly, to call the absence of the event with a concept called 'continuous coverage': if 
trimmed reads or read-pairs span breakpoint coordinates it is a sign of absence (see Figures 
13 and 16). The read-pairs must not have a breakpoint between them to count as continuous 
coverage. Thirdly, one mate of the read-pairs can be used at the first breakpoint in 
translocations ('BP' in Figure 15) to get a precise coordinate and/or to know if different 
possibilities exist for it. 

 

Figure 12. LAE-finder – Inversion – Event support. 
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Figure 13. LAE-finder - Inversion – Negative support. 

 

 

 

Figure 14. LAE-finder - Translocation – Event support. The arrows in the upper part are for the linear 
sequence: the sequence starts on the left and then jumps from BP to From, continues to the right and 
jumps back from To to BP, and so on. The lower part shows two example read-pairs for each jump. 
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Figure 15. LAE-finder – Translocation – Finding the best breakpoint. The colors correspond to Figure 14. 
There are four stacks of endpoints from the read-pairs. The best breakpoint for the event is chosen from 
the count, being non-overlapping and the ratio of orientations. With perfect alignment, there can be only 
two stacks. 

 

 

Figure 16. LAE-finder – Translocation – Negative support. The numbers at the bottom are the negative 
support for the corresponding breakpoints. 

The output format of the tool is documented in the readme file at its location [122]. Primarily it 
counts all signals for presence and absence. This means that there could also be signals for 
presence and absence at the same time, which would be a strong hint for a suspicious 
region and/or alignment problems. 

For this paper, the major effect was the limitation of the over 200000 putative breakpoints 
(mentioned in '3.2.2 Quality of calls' in the supplement) to a small fraction of safe calls, 
reporting 2/3 as wrong and the hint that the linkage disequilibrium is a better guide to large 
events. 

The tool is available at (http://downloads.gmi.oeaw.ac.at/downloads/nordborg/data-release-
swedish-lines/programs [122]). 
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6.7.2 Imputation vs. masking 
This topic is mainly applicable when the samples share regions; in other words, it is not 
applicable for regions which are simply not present in a sample. 

Missing data is quite frequent due to the properties of the genome together with the manner 
of sequencing. Missing data in this respect means unknown; in the case of reference calling 
it corresponds to 'N' (= it is known that a base is there, but it is not known which one). The 
sources for it are alignment problems, low coverage, uneven distribution of reads, and so on. 
Random missing data throughout all loci and all samples would perhaps have minor effects 
on analyses, but some sources for missing data are systematic, as for example coverage. 
Several methods would be biased by systematically missing data and some are simply not 
designed for any missing data, so a general way of dealing with that is needed. The two main 
directions taken here are: filtering for the parts of the matrix where no data is missing, or 
imputing the missing data. 

The first option, filtering, is also called masking, because parts of genomes are masked in a 
binary way. Usually, thresholds are defined for where it was possible to call something. It 
should be noted that many tools only call presence, resp. non-reference, but do not 
distinguish between reference and unknown. A workaround is then to define thresholds for 
coverage and quality where it was possible to call something. To use a method which cannot 
deal with missing data, the resulting masks can be intersected and only the resulting part of 
the genome used (Figure 17). The advantage of this is that only real data is used, at the cost 
of using only a fraction of the genome and, of course, removing much data, where the 
amount of removal is mainly given by the 'weakest' sample. 

 

Figure 17. Combining masks of samples. A threshold of coverage >= 20 is defined and only regions of the 
genome are taken where this is the case for all three samples. The purple bars above the reference in 
green are the remaining regions. It can be seen that it is mainly the 'weakest' sample (=sample 3) which 
reduces the remaining genome. 

The second option, imputation, approaches the problem from the other side: the missing data 
is somehow generated. Methods working on sequences build on the fact that events nearby 
are not independent but in strong linkage disequilibrium. For every missing locus, the 
methods look for the next present data on both sides and look for the most similar other 
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sample with present data there. The data is then taken for the sample with missing data. The 
effort and the differences of the imputation methods lies in the fine-tuning, for instance the 
number of events on both sides, how many close samples, estimate and take error rates and 
recombination rates into account, and so on. In the paper we used MaCH [123] for this.  

 

6.7.3 Uniqueness / mapping issues 
All calling and later analyses are dependent on the alignments. This means that all problems 
of alignment can affect later analyses. A major property of a small read aligned to a 
reference is if it is aligned unambiguously or not. If it is unambiguously aligned then it is 
called unique mapping. There is usually more than one number/flag for this from the aligner, 
e.g. bwa [124] has a quality score and a flag. The quality score should be zero for ambiguous 
alignments and larger for unique ones. The flag is a binary information based on the 
alignment heuristic. If events should be called in a safer manner, it is usually filtered for 
uniqueness. 

Here we present an extension of this concept: the full uniqueness property. It follows the 
simple idea that one bp can be hit by a certain amount of different reads without sequence 
errors by exactly n different reads. Each of the reads can be unique for the reference or not, 
from which a factor of uniqueness can be calculated. The concept is shown in Figure 18. 

 

Figure 18. Full-uniqueness property. All possible reads are extracted from the reference. In the upper 
part, they are just shown as extracted, in the lower part they are filtered for being mapped uniquely. It can 
clearly be seen that the bp of the dashed line in the middle is hit by more uniquely mapped reads than the 
bp of the left and the right dashed line. The factor of uniqueness is the number of (perfect) unique reads / 
all reads. 

Another issue is different but equivalent combinations of indels and SNPs. Some of these 
combinations can be resolved by looking at several reads at once and changing their 
alignment slightly, a process called realignment. An example of it from the tool  
GATK [115] is shown in Figure 19. We did this with all of our samples. 



 

PhD thesis, page 114 

 

Figure 19. Sequence realignment. On the left, the mapped reads are shown before realignment, on the 
right after it. The diagram is from [115]. 

 

6.7.4 SVs 

As defined in 1.2 General definitions, a SV is an event involving usually a longer sequence, 

which is not called with a linear alignment from a single read. The following types of SV 

events exist: 

• (long) Insertion 

• (long) Deletion 

• Duplication 

• Copy-number variant 

• Inversion 

• Translocation 

The simplest way of calling SVs with read-pairs is to derive breakpoints from the mates 

mapping distantly. In case of indels, this can appear as in Figure 20, for inversions see 

Figure 12.  

In case of duplications, the coverage can be used as shown in Figure 21.  
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Figure 20. Using read-pairs for inferring insertions or deletions. 

 

 

Figure 21. Example coverage for a likely duplication in the middle. 
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A fuzzy issue, in terms of definitions, are split reads. An example is shown in Figure 22. The 
difference to ‘normal’ alignments with gap costs is that the gap between the first and the 
second part can be very large and need not even be linear. Non-linear in this context means 
one part of the read can be inverted, in the ‘wrong’ order, or on another chromosome. A 
complete alignment with gap extension cost zero would overlap in the result with the heuristic 
calling with exact matching of short fragments. This would also mean that the differentiation 
between indels and SVs is not very precise in general. 

 

Figure 22. Split reads. The distance between the first and the second part of a read can be large or on 
different chromosomes. 

In the manuscript in section 6.6 [36] all of the mentioned approaches are used. 
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7. Dimension reduction and Single Nucleotide 

Polymorphisms 

7.1 The curse of dimensionality 

The more dimensions the more complex the problem usually appears. This starts with the 
lack of visualization: more than 3 dimensions are difficult to show in a diagram. An example 
in this work is in the manuscript of section 8.4 [125], at Figure 3, where 5 dimensions are 
visible in one diagram; however, this is rather an exception and only possible because 3 
dimensions have only discrete values. 

Another issue is the observation that the difference between largest and smallest distance in 
comparison to the smallest distance gets smaller with more dimensions  [126], formalized as 

lim
�→�

������� − �������

�������

→ 0 

This is more of an empiric statement than a law. More recently, this argument was partly 
limited for additional dimensions which do not add information; for dimensions with new 
information the case is otherwise [127]. 

The issues for analyzing in more dimensions can be various: loss of generalizability, non-
converging results, much larger search space for nominal variables, exploding number of 
hypercubes to divide the space, more complex manifolds, and so on. One weakness is, of 
course, also the visualization, the content of the paper of this chapter. 

The scientific area dealing with this problem is called ‘dimension reduction’ [128]. 

Quite in line with this, NGS is one of the largest sources of such data. In this regard, NGS 
data is not only large with respect to the amount of data, but also in the degree of p larger n: 
there are easily several millions of variables (e.g. SNPs) and only some 100s of samples. 

 

7.2 Measures for dimension reduction 

The task of dimension reduction is, as the term says, the transformation into a space of fewer 
dimensions. This is also called feature extraction. 

Clearly, this cannot be done perfectly in every case as some information must be lost with a 
reduction in the number of dimensions and not all topological features may be possible in 
fewer dimensions. Several methods exist for this problem [129]. The surrounding problem for 
these methods is to judge different transformations. This can be done internally or with 
external information. Without external information, it is mainly about preserving measuring 
distance. As the distances cannot be the same in low-dimensional space (unless the data 
used only a hyperplane), the similarity in distance ranks or the distribution is measured. 
Examples for this are the Kullback–Leibler divergence [130] and other cases of the f-
divergence [131], rank preservation [132], and differential entropy [133]. 

When external data is available more can be done on judging the dimension reduction. This 
external information must be one of the largest effects, because it is usually demanded that 
the reduction in dimensions should preserve the most important effects/information in the 
data. This can be seen as a similar problem to cluster validation. The difference is in the 
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source of the data, that is, the labels for the data records are not given by a clustering 
method but are given by external data. Examples for cluster validation methods are Dunn’s 
Validity Index [134] and Silhouette Validation Method [135], as used in the paper in the next 
section. 

More generally, the reduction should preserve the data structure according to the ability to 
build classification models on that, which is the topic of the next section. 

 

 

7.3 Article: Visualization of SNPs with t-SNE 

Platzer, A., Visualization of SNPs with t-SNE. PLoS One, 2013. 8(2): p. e56883. 

 

This paper regards the general but small task of visualizing high dimensional data.  
t-SNE [136] was chosen as one new method, where the main contribution of this paper is the 
combination of data, a new but known method, and new validation measure.  It will likely not 
convince most biologists to replace their favorite method PCA with anything else, yet the 
topic is conceptually rich in terms of presentation esthetics and simple application to different 
data. 

 

OWN CONTRIBUTION IN [137] 

Everything. 



Visualization of SNPs with t-SNE
Alexander Platzer*

Gregor Mendel Institute, Vienna, Austria

Abstract

Background: Single Nucleotide Polymorphisms (SNPs) are one of the largest sources of new data in biology. In most papers,
SNPs between individuals are visualized with Principal Component Analysis (PCA), an older method for this purpose.

Principal Findings: We compare PCA, an aging method for this purpose, with a newer method, t-Distributed Stochastic
Neighbor Embedding (t-SNE) for the visualization of large SNP datasets. We also propose a set of key figures for evaluating
these visualizations; in all of these t-SNE performs better.

Significance: To transform data PCA remains a reasonably good method, but for visualization it should be replaced by a
method from the subfield of dimension reduction. To evaluate the performance of visualization, we propose key figures of
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Introduction

SNPs are a major part of the extracted information from

individual genomes. With the vast amount of NGS data, 100.000 s

of SNPs can be found in a population today; naturally these are

somewhat difficult to visualize. The most traditional method is

PCA [1], which is still used in the majority of biology articles (e.g.

[2–4]). PCA is designed for an orthogonal transformation,

resulting in a number of components equal than or less to the

number of original variables. These components are usually sorted

for their explained variance.

At that point the assignment of a causing effect to the first

components is attempted (e.g. [5–7]). For a correct assignment

several constraints should be fulfilled [8].

Another usage is to plot the data with 2–3 higher components

with primarily the first two or three principal components being

plotted [2–4]. Due to the occasionally somewhat unsightly

diagrams, several approaches to improve visualization with PCA

have been developed (e.g. [9]).

In another field, that of machine learning, this problem of data

reduction, often especially for visualization, has developed into its

own subfield, ‘dimension reduction’, which was first outlined with

the introduction of the term ‘the curse of dimensionality’ [10]. In

this field several other methods have been developed since PCA,

such as Sammon mapping [11], Isomap [12], Locally Linear

Embedding [13], Classical multidimensional scaling [14], Lapla-

cian Eigenmap [15], m-SNE [16], t-SNE [17], and others.

In this article we will focus on t-SNE as one of these newer

methods and compare it with PCA in several ways.

The first step in comparing visualizing methods is of course to

take several complex data sets, make diagrams, and discuss them.

Decisions on aesthetic or artistic value may be made, but naturally

more or less solid key figures for contrasting would be desirable.

The question of the quality of a visualization can be split in two

parts: how well is the data structured; and how much (correct)

insight can be obtained from it?

For biological data, the second question can often get out of

hand; we will rather focus here on the first question.

Regarding the question of the structuredness of data, there exist

long-known indices of cluster validity, such as Dunn’s Validity

Index [18], Silhouette Validation Method [19], and others (for an

overview see [20]). But the property of structure can also be

approached from another perspective: How easily may a model be

built for the transformed data?

This question can be answered with splitting the data in two

parts, use one part for constructing a model and the other to test it.

The easier the structure of the data, the higher should be the

validation key figure, assuming the model learning method makes

an equal effort. We choose several machine learning methods for

this purpose and compare their results for the different

transformed data.

Here we show a comparison between the common PCA and the

newer t-SNE on several large SNP datasets with a number of

evaluating key figures.

Results

In Figure 1 and Figure 2 we show the visual results of our

chosen large SNP data sources transformed with PCA and with t-

SNE. In light of the good separation, we should repeat here that

both methods are unsupervised, that is, neither methods received

labels and the colors were added after transformation. Visually,

the t-SNE transformed data looks ‘nicer’ (our opinion and that of

nearly all colleagues). The only mentioned drawback is that no

extra biological information can be seen from the diagrams on the

right. Here we will leave for discussion a final conclusion on the
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amount of biological impact and focus on the structuredness of the

data. For this purpose, Table 1 contains the respective cluster

validity indices for all diagrams, the values of Dunn’s Validity

Index, and the Silhouette Validation Method. The higher these

values, the better the cluster separation, which corresponds to the

structuredness. Both methods rely on the pairwise distances of the

data points. Dunn’s index can be used in different ways: We took

the average function (the diameter of a cluster and the distance of

clusters are defined generically at this method; for both we choose

the average of pairwise distances). It is to mention that a Silhouette

value lower than zero makes not much sense in terms of validation,

as it means a random label assignment would be ‘better’. This

occurs for the rice data (Figure 2b) because several clusters appear

to consist of more than one real cluster, which are surrounding

other clusters. Either the label ( = country) is a too low resolution

or the location is not one of the largest effects in this data.

As a more general measure of the structuredness of the

transformed data, we formulate it as a supervised classification

problem. The underlying rationale is that, if the data is well-

structured, it should be easier for any method to construct a good

model for it. We choose here C4.5, PART, Neural Networks, and

naı̈ve Bayes [21–24]. To judge a method’s performance on a

dataset we use the percent correctly classified of the 10-fold cross-

validation. These results are presented in Table 2. Here, the

difference in this key figure between PCA and t-SNE transformed

data of the same source using the same learner should express the

difference in structuredness of the two transformations. Mean

values and standard deviations are only there per population as

these populations are not fully comparable.

For our large SNP data sources we selected the 1001 genomes

project [25], the RegMap panel [26], hapmap3 release 2/3 [27]

and the Rice Haplotype Map Project [28]. We picked a subset

from the 1001 genomes project, firstly because it seemed at the

time of analyzing that the data would not be fully complete in the

near future, and secondly, for the equal class sizes. With very

unequal class sizes, both PCA and t-SNE suffer, as we could see

with different unequal subsampling (not shown), and as also stated

by [29,30]. Class is here and later referring to the labels of the data

records, which are geographic locations in this paper. The next

three datasets are taken as they were released, whereas the last

dataset (Rice) was filtered for wild rice and for available labels

( = country).

The species of the first two datasets is Arabidopsis thaliana, the

species of the next two is human (they are just different releases of

the same effort). The last dataset is from a collection of rice. For all

species a solid assumption seems to be that a large effect in the

genomes is linked with their geographic location [31,32].

As can be seen, all key figures to measure the structuredness of

the transformed data point in the same direction (except for the

RegMap data, where the Dunn Index is the same). A clear answer

to the question of which transformation leads to better structured

data thus materializes: there needs to be a movement away from

PCA.

Discussion

The main purpose of this paper is to show an approach for

testing possible transformations of SNP/biological data to 2

dimensions for visualization. Many more methods exist than t-

SNE and PCA [33], though some do seem theoretically and

practically outperformed by others.

SNPs are one of the largest sources of new data in biology, but

until now none of this data has been in main machine learning

repositories (e.g. [34]). This will change in the future as certain

SNP data generating projects finalize.

We made two attempts to measure structuredness, which

strongly correlates to what most consider the better scatter plot.

The sources here are, on the one hand, merely much discussion

with no exhaustive survey. But our intention, on the other hand,

was to express this in numbers from the start. Our first approach

uses cluster validity key figures, despite their known weaknesses

[35]. Our second approach uses machine learning methods,

following the rationale: if a moderately complex algorithm can

more easily gain some ‘understanding’, and/or build a relatively

better internally validated model, possible human insight should

correlate to that. As measure for the machine learning methods we

use the percent correctly classified.

For machine learning methods themselves, there is of course

only little gain, since other approaches [33] exist to deal with (too)

many dimensions than to transform them to exactly two. Newer

methods of this type are usually able to perform better with the full

data, or with data not more than sufficiently reduced [36].

By performance we mean the result, not the computational

effort, which can sometimes overload the frame. In the context of

machine learning method performance, transformation of the data

to two dimensions can be seen as a loss of information, which

could be described by how much these methods lose in

constructing models. The measure here could again be the

percent correctly classified of the 10-fold cross-validation. The

transformation that lets to the smallest decrease for all methods

eligible for this classification problem should be judged better.

The four machine learning methods were not the only tested

methods; we choose these four because of their high performance.

As mentioned above the structuredness of the transformed data

is merely the first part of the various biological questions, the

second always regarding the biological impact. There are several

systematic attempts to directly translate it into biological informa-

tion [2,5–7]. Some appear quite convincing, while others seem

more tweaks of the transformation. Nonetheless, with these

attempts some insights have been obtained in this manner (e.g.

[5–7]).

There may be other constraints that a dimension reduction

method should fulfill to gain biological insight in other than

standard classification problems. Like clustering in general this

may simply remain ill-defined [37,38].

Materials and Methods

PCA
For PCA, the build-in R function prcomp() is used.

t-SNE
This method is presented in [17].

Beside the pseudocode of the simple version (Figure algorithm 1

in [17]), several ‘tricks’ and heuristics are used to make the results

more attractive and/or the computation faster. All parameters for

these ‘tricks’ are set within the method.

In the article ([17]), several other methods are compared and

likely reasons for their worse performance are discussed. Some

weaknesses also remain for t-SNE:

Dimension reduction for more than 3 dimensions: This

was not a topic in designing t-SNE or in first testing, as it is

irrelevant for visualization.

Curse of intrinsic dimensionality: Besides the general

issue that dimension reduction always means that some informa-

tion is lost, this targets the local linearity assumption of the

method.
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Figure 1. SNP data transformed with PCA and t-SNE 1/2. On the left is a PCA-plot with the first two components, on the right a t-SNE-plot of
the very same data from each data source. Data sources: Panel (a) is from the 1001 genomes project, (b) from the RegMap panel and (c) from
hapmap3 r2.
doi:10.1371/journal.pone.0056883.g001
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Non-convexity of the t-SNE cost function: This is one

reason for the need for heuristics and tricks in the computation

and the risk of not ending in the global optimum.

For t-SNE the matlab reference implementation is used [39].

There are two parameters for this implementation: init_dims and

perplexity. init_dims is a preprocessing reduction with PCA to

eliminate the most likely noise with skipping components with

virtually no variance; it makes the computation faster. perplexity is

used as defined in information theory, for example in [40].

Perplexity can be interpreted in this method as a smooth measure

of the effective number of neighbors.

Unfortunately this version is restricted to 32bit, which entails a

2GB memory limit. There are other reference implementations,

but all are restricted in memory usage at the moment.

Our chosen data sources would have required more total

memory; to still allow the analysis, the data was downsampled to

fit in 2GB memory. The same downsampled data was used also for

the PCA.

Figure 2. SNP data transformed with PCA and t-SNE 2/2. On the left is a PCA-plot with the first two components, on the right a t-SNE-plot of
the very same data from each data source. Data sources: Panel (a) from hapmap3 r3 (compare with Fig. 1c) and (b) from the Rice Haplotype Map
Project (only wild type where the label information was available).
doi:10.1371/journal.pone.0056883.g002

Table 1. Dunn’s Validity Index and Silhouette Validation
Method of the transformed SNP data.

Data Dunn’s Validity Index
Silhouette Validation
Method

PCA t-SNE Diff PCA t-SNE Diff

1001
genomes

0.52 (0.09) 0.61 (0.07) 0.09 0.07 (0.04) 0.22 (0.04) 0.15

RegMap 0.50 (0.06) 0.50 (0.04) 0.00 0.08 (0.02) 0.15 (0.02) 0.07

Hapmap3R2 0.16 (0.01) 0.25 (0.02) 0.09 0.27 (0.02) 0.31 (0.02) 0.04

Hapmap3R3 0.16 (0.01) 0.35 (0.01) 0.19 0.26 (0.02) 0.32 (0.02) 0.06

Rice 0.06 (0.07) 0.10 (0.10) 0.04 20.54 (0.04) 20.46 (0.04) 0.08

The values of two indices of cluster validity as a measure for structuredness of
the different transformed data. As a comparison between PCA and t-SNE the
diff(erence) column is expressive. The number in brackets is the standard
deviation of the index with 1000 permutations of the labels.
doi:10.1371/journal.pone.0056883.t001
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PCA vs. t-SNE
The most notable differences between the methods PCA [1] and

t-SNE [17]:

N PCA splits the data into n components, sorted for variance

(where n is the number of variables), whereas t-SNE squeezes

all information in m components (where m is freely to choose,

in case of plots m = 2)

N PCA is a static transformation: with one input there is always

exactly one output (conditions for ambiguous cases are also

precisely defined) t-SNE is a non-static transformation: with

the same input there are different outputs possible, especially

as the method is till now only feasible as more or less stepwise

optimization; but also if the best value in terms of the cost

function is always found, there will be several results because

the method/optimization-criteria is rotation and scale-invari-

ant

N PCA has several constraints [8], which are tackled in t-SNE

N PCA is an orthogonal linear transformation, whereas t-SNE is

a nonlinear reduction, which ‘components’ are not constrained

to be orthogonal.

The first of these points is the main convincing reason why PCA

should not be the only plot in case of high dimensional data. As

long as the number of dimensions is not too high, it is more likely

that the first few (for a plot = 2 or 3) PCA components explain a lot

of the data variance. If the first few components explain only little

variance, then there is a big gain if a method integrates the rest of

the data well, or put it in a different way: in a PCA plot there is

always the information of n-2 components left out, where in t-SNE

all information is tried to be combined.

Of course, if one of the largest effects in the data is perfectly

correlating with the first two PCA components, then this

transformation would be ‘better’ in terms of this effect. In SNP

data this is usually not the case, otherwise a lot of published plots

would look different and also the conclusion of this paper would be

the opposite.

Data sources
The 1001 genomes project [25] is one of the largest sources of

SNP/genomic data for Arabidopsis thaliana, even though the data

generation of this project is not finished. We used a subset of 99

individuals, selected for equal class sizes.

The Regional Mapping Project is another source for Arabidopsis

thaliana. Though it has a lower resolution of SNPs, it is already

finished. We have taken the same 1090 individuals as in the

article’s [26] PCA-plot.

The HapMap Project [27] is a large source of human genetic

variation. We used the data from the second release of phase III,

988 individuals’ sets of SNPs. We used also the third release of

phase III as own dataset, because it was not sure at last if all issues

were already resolved within (1198 individuals, should be a

superset of the second release).

The Rice Haplotype Map Project [28] is the largest source of

SNP/genomic data for rice. We have filtered here for the wild rice

(species Oryza rufipogon) where the country of origin was

available in the database (305 individuals).

Indices of cluster validity
The transformed and labeled data can be seen as a result of a

clustering method, although it is not gained in that manner: As

result from clustering the labels would be assigned through the

clustering method, whereas in our case the labels are the true

(external) classes and the values of the variables are ‘generated’

( = transformed original values). That means that the problem of

judging the structuredness of our transformed data with the true

classes is similar to judging the result of a clustering. For this

reason we are able to use internal evaluation methods, although it

is an external validation.

We choose Dunn’s Validity Index [18] and the Silhouette

Validation Method [19] for this purpose.

Dunn’s Validity Index and Silhouette Validation Method
A good short description of both methods can be found in

Wikipedia ([41,42]). Both methods rely on the pairwise distances

of the data points within a cluster in comparison with distances

within different clusters. Beside the chosen distance/dissimilarity,

the main difference is that the Dunn Index looks for the worst

combination (the maximal intra-cluster distance to the minimal

inter-cluster distance), whereas the Silhouette Validation Method

is taking the average of all cluster combinations (more precisely,

the Silhouette Validation Method is originally defined for two

clusters and we (/our chosen implementation) took the arithmetic

mean of all combinations).

For Dunn’s Validity Index we used the R package ‘clv’ [43] and

for the Silhouette Validation Method we used the R package

‘cluster’ [44].

Classification methods
For constructing models for classification we use four standard

machine learning methods:

Table 2. Percent correctly classified with various machine learning methods acting on transformed SNP data.

1001 genomes project RegMap hapmap3 r2 hapmap3 r3 Rice

% PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE

C4.5 55.6 72.7 79.2 89.7 72.9 90.5 72.9 87.5 41.3 66.6

PART 60.6 76.8 77.6 89.1 72.7 90.9 73.3 87.6 39.7 64.9

Perceptron 67.7 76.8 80.7 85.8 70.3 85.1 72.2 84.8 50.5 56.4

Naive Bayes 62.6 75.8 75.2 80.3 74.6 87.2 71.8 84.1 40.7 42.3

Mean diff. 13.9 8.1 15.8 13.5 14.5

St.dev. 3.6 3.4 2.6 1.2 12.5

The percent correctly classified as a measure how easy a model can be learned. As comparison between PCA and t-SNE, the respectively difference between these two
columns is expressive. All models are better than random.
doi:10.1371/journal.pone.0056883.t002
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N The well-known tree learner C4.5 [21] and the not very widely

used method PART [23] relying on C4.5.

N A Neural Network [22] with one hidden layer (5–7 hidden

nodes).

N Naı̈ve Bayes [24]

The analysis with these classification methods was performed

with WEKA [45].
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7.4 Results – addendum  

The contribution of this chapter’s manuscript was the combination of biological data with a 
newer dimension reduction method (t-SNE) and the introduction of a new measurement for 
structuredness. As the chosen method is designed explicitly for a reduction to not more than 
3 dimensions, it is entirely concerned with visualization. Although the amount of datasets 
appears small, it was all the reliable data of this kind we were able to find within the time. 
One reviewer, clearly competent in analysis but not familiar with this kind of data, requested 
more datasets. Only the datasets of Figure 1 were in the paper at the first submissions; after 
a great effort looking for more data, Figure 2 was the result. This was not strikingly more as 
hapmap r3 and r2 are closely related (some colleagues told me that r3 is later, but slightly 
less reliable), and the rice data itself appeared not very solid as there is much less structure 
in the data and more then 1/3 was removed because the label was not available. The 
reasons for the few datasets to date are the demands of the analysis: the raw calls of a 
larger population sequenced in the same way and a label of one of the largest effects 
available for them. A large proportion of sequenced data is of humans, but often there are no 
raw calls freely available because of privacy concerns. One exception besides the hapmap 
project is openSNP [83], which is extensive and free but unfortunately unreliable. We 
observed the latter weakness when looking for the labels of the data records: there are data 
records with extensive information, some with almost no additional information, and some 
seem to be almost comical entries. We looked also into data collections from corn (Zea mays 
subsp. mays; data unpublished) and fruit fly - Drosophila simulans [138], but both sources 
were unsuitable for our purpose. Nevertheless, if sequencing continues as now, there will 
soon be much more and also more reliable data sets. 

The measurements for structuredness in the paper are rather sufficient as there are not 
many. On the other hand, there are many more dimension reduction methods than just pca 
and t-SNE. In only one more extensive (Matlab) Toolbox for Dimensionality Reduction  [129] 
34 methods are implemented. For a poster for an event during a course at the TU Vienna we 
extended the paper’s main findings for 2 more methods: Isomap [139] and LLE [140]. As 
expected from their design, the two methods performed worse than t-SNE, but surprisingly 
PCA performed similar well as Isomap and LLE. The poster is available at [141]. 
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8. GWAS and calling transposons from paired-end reads 

8.1 The challenge of transposons in current sequencing technologies 

As described in section 1.1.5, the huge current amount of sequencing data is in the form of 
plenty of short reads. All later analyses depend either on the correct alignment of these reads 
to a reference sequence or to the correct de novo assembly. Both approaches suffer from 
duplicated and highly similar regions. Some TEs are present in more than one copy and 
several TEs are quite similar in sequence. We focus here on the reference-based-assembly, 
because the de novo assembly with highly similar and duplicated regions is even more 
difficult. 

To get a translocation (a jumping TE is either a translocation or a duplication), a linearly 
sequenced piece of DNA must be aligned to more than one location on the reference. In the 
case of a single read, this is called ‘split read alignment’ (see Figure 22). In the case of a 
read-pair, the sequence is already split into two mates, which are usually aligned individually. 
This can be used to call events as for example shown for an inversion in Figure 12. During 
our search for tools for our quantity of read-pair data, we were surprised that no tool existed 
that use the read-pair information to call TEs. For this reason and because it is/was not much 
algorithmic effort, we created such a tool (-> TE-locate, section 8.4). 

8.2 Roles of transposons 

From the manuscript of this chapter: 

‘Transposable elements (TEs) have made themselves a great career, from being junk DNA 
[142] when first discovered [143], to having important roles in development [144], evolution 
[145, 146], and disease [147] through direct genome rejoining [148], epigenetic control [149, 
150], or other known [151] or to-be-tested mechanisms [152].’ 

8.3 GWAS 

Nowadays, genome-wide association studies are standard, although the term is a generic 
one for doing just what the name says: finding associations in all events called in a set of 
genomes. Usually the attempt is made to associate these events with a phenotype, or the 
opposite, the label or value to be associated with is called phenotype. This may include, for 
instance, expression, metabolite levels, and environmental states; the major overall 
constraint is that it is not the sequence itself or at least does not overlap with the information 
for calling events. Grey areas are for example copy numbers. The phenotype, resp. the 
variable to associate with can only be one value per individual; in the case of more variables 
of interest, as for example in gene expression, there is a GWAS for each variable. 

In the simplest case, the phenotype is divided into 2 classes, the events are given binary (= 
not more than two alleles), and the GWAS is the result of one statistical test per event to 
phenotype combination. As the numbers of the combinations are contingency tables, the test 
can be Fisher's exact test or chi-square test, as examples. The main assumption, which is 
violated in this simple approach, is that the variables (= the events) are independent. This 
was already mentioned in one of the first GWAS papers [153], with ‘One criticism of case-
control association studies such as ours is that population stratification can result in false-
positive results.’ Today the most common way to deal with population structure are mixed 
models [154, 155]. For overviews of GWAS, reviews and recommendations see [156-159]. 
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Extending beyond the simple case, mixed models can deal with numerical phenotypes but 
most implementations cannot deal with more than two alleles per event. 

In general, GWAS remains an open field for at least two reasons. Firstly, the problem is a 
prime example of p>>n, i.e. the number of variables is much larger than the number of 
samples, which makes this problem ill-posed and frequently unstable. Secondly, GWAS is 
often used by biologists in this manner: the GWAS is made, the results are plotted and the 
peaks or the significant p-values are taken. Genes which seem interesting are looked for in 
the extended region of the peaks. These genes are then reported for the phenotype. Since 
these peaks are often quite broad, the genes considered interesting are decided by the GO-
terms and these genes are also accepted if they are somehow nearby; it is thus difficult to 
estimate the significance of the finding as there are many interesting genes around. It is 
rather the exception that a GWAS finds precisely the causal variants and not much more 
[156]. 

 

8.4 Article: TE-Locate 

Platzer, A., V. Nizhynska, and Q. Long, TE-Locate: A Tool to Locate and Group 
Transposable Element Occurrences Using Paired-End Next-Generation Sequencing Data. 
Biology (Basel), 2012. 1(2): p. 395-410. 

 

The tool for this manuscript was made in the course of the research presented in section 6.6. 
As no other tool was available for read-pairs and because we were invited to submit to a 
special Issue "Next Generation Sequencing Approaches in Biology", we extended this 
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Abstract: Transposable elements (TEs) are common mobile DNA elements present in 
nearly all genomes. Since the movement of TEs within a genome can sometimes have 
phenotypic consequences, an accurate report of TE actions is desirable. To this end, we 
developed TE-Locate, a computational tool that uses paired-end reads to identify the novel 
locations of known TEs. TE-Locate can utilize either a database of TE sequences, or 
annotated TEs within the reference sequence of interest. This makes TE-Locate useful in 
the search for any mobile sequence, including retrotransposed gene copies. One major 
concern is to act on the correct hierarchy level, thereby avoiding an incorrect calling of a 
single insertion as multiple events of TEs with high sequence similarity. We used the 
(super)family level, but TE-Locate can also use any other level, right down to the 
individual transposable element. As an example of analysis with TE-Locate, we used the 
Swedish population in the 1,001 Arabidopsis genomes project, and presented the biological 
insights gained from the novel TEs, inducing the association between different TE 
superfamilies. The program is freely available, and the URL is provided in the end of  
the paper. 

Keywords: transposable element; NGS data; calling TEs; paired-end reads; structural 
variation discovery; GWAS 
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1. Introduction 

Transposable elements (TEs) have made themselves a great career, from being junk DNA [1] when 
first discovered [2], to having important roles in development [3], evolution [4,5], and disease [6] 
through direct genome rejoining [7], epigenetic control [8,9], or other known [10] or to-be-tested 
mechanisms [11]. 

The new quantity of next generation sequencing (NGS) data allows the discovery of structural 
variations (SVs) per individual and even intra-individual [12]. As TEs are an important source of SVs, 
their exact movements and copy number are of interest (e.g., studies [13 16]). One pitfall of TEs is 
their high sequence similarity, which causes alignment difficulties, especially for the short reads of 
most NGS platforms. This issue runs like a common thread beside the main method and analysis in 
this paper. 

Given the difficulties of discovering TEs in general, we restricted ourselves to TEs with given 
sequences. Assuming the availability of a reference genome and the annotation of existing TEs in this 
reference genome, we developed TE-Locate, a computational tool that can call the newly-inserted copy 
of known TEs in sequenced individuals. 

Two important insights into how TE-Locate functions should be noted. The first rationale 
underlying TE-Locate is the use of paired-end information. Although sequences of different TEs may 
be quite similar, the newly inserted regions should still somehow be divergent. Therefore, if a pair of 
reads is mapped across the breakpoint, we could observe one end of the mate-pair mapped onto the 
flanking sequences of the newly-inserted region with reasonably good quality, with the other end on 
the jumping TE (Figure 1). 

Figure 1. How TE-Locate makes the callings with read pairs. In this scenario one element 
of TE1 has vanished from one locus (while the other is retained), one TE2 was inserted, 
and TE3 has moved to another nearby locus (i.e., cut and paste). 
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However, although we can assume the read mapped to the flanking sequence of the new regions is 
uniquely mapped, we may ask if the read mapped to TE itself still suffers from repetitiveness. This 
would result in many different mistaken TE callings in the same spot due to their similarity in 
sequence content. In fact, this is true, and leads to the second insight underlying TE-Locate: although 
different TEs from a similar template may not be easily distinguishable, one can look at the level of 
difference within TE families or even superfamilies (Figure 2). For example, we may be able to 
conclude a new TE from a particular TE family that is inserted into a certain region, without specifying 
what exactly the TE gene is. The level of detailed information is thereby somewhat reduced, but a 
more reliable result is produced. In TE-Locate, we provide different levels of abstraction so that users 
can balance the trade-off between specificity and reliability.  

Figure 2. TE hierarchies in The Gypsy Database (GyDB) of Mobile Genetic Elements. 

 
 
In addition to locating new copies of TEs, TE-Locate can also be used for calling insertions of other 

known sequences that are not TEs. In the general case, as long as a list of known to-be-likely inserted 
sequences is present as a template, TE-Locate can locate their new copies in the genome of the 
focal individual(s). A straightforward example is positioning the insertions of a virus to the host 
genome [17]; a less obvious application could be to chase the known ribosomal cluster sequences in 
the genome [18], which is what we are attempting using Arabidopsis data.  

2. Results 

2.1. Validation/Simulation 

The outcome of TE-Locate is highly dependent on the aligner and the chosen hierarchy 
level (Figure 2). Nevertheless, we make an attempt at validation with simulated data. Firstly, a 
virtual reference genome is constructed starting from the Arabidopsis thaliana reference and its TE 
annotation [19]: the annotated TE regions are extracted and taken as additional sequences beside the 
(TE-free) chromosomes. This new reference is used later for analysis. For generation of the samples, 
the TE sequences are inserted back into the (TE-free) reference chromosomes, but at random locations. 
500,000 SNPs (Single Nucleotide Polymorphism) (=0.4% of the whole genome) are mutated in this 
virtual individual genome. Based on that artificial sample, read pairs are generated with wgsim (part of 
Samtools [20]) for all combinations of coverages of 2×, 5×, 10× and 20×, insert sizes of 200, 300 and 
600 bp (±100 bp standard deviation), and read lengths of 50, 76, 100 and 150 bp. The parameters for the 
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real population data [21,22] which we later used for demonstrating analyses (insert size = 300 bp, read 
length = 76/100 bp, #SNP = 494,000, coverage = 20×) fit well to the simulations. The generated read 
pairs of the virtual individual genome are then aligned with BWA [23] to the virtual reference genome. 
The results with respect to error rates of TE-Locate with this data are shown in Figure 3. We choose 
superfamily as the hierarchic level. The calls are counted as correct if the right superfamily is called 
within 3-fold of the standard  are divided into 
chromosomal arms and pericentromeric regions (there are nearly no calls in the centromeres). Only the 
arms regions are depicted in Figure 3; the other diagram for pericentromeric regions, which shows 
slightly higher error rates, is the Supplementary Figure S1. One can see several trends in Figure 3: the 
False Positives (FP) decrease and the False Negatives (FN) increase with higher read lengths. This is 
expected, since very small TEs are missing when the read length decreases, at least with our chosen 
aligner. An efficient aligner that is able to deal with split reads would be helpful. There is an opposite 
effect with larger insert sizes and higher coverage (if the thresholds of calling the variants are fixed for 
any coverage). We also tried the same simulated data with BreakDancer [24], and depicted results in the 
Supplementary Figures S2 and S3. TE-Locate clearly outperforms BreakDancer at calling TEs. 
However, we do acknowledge that TE-Locate leverages TE annotations and uses hierarchy levels that 
general SV tools such as BreakDancer do not. 

Figure 3. Results of TE-Locate with a virtual genome with known TEs. The X-axis 
denotes different insert sizes; the Y-axis denotes different read length; the concentric 
circles denote different coverage: from inner to outer circles, the coverages are 2×, 5×, 10× 
and 20× respectively. The red, orange, and green colors denote the proportion of false 
positives, false negatives and the rest. Here the false positive is defined as the ratio between 
false calls and all calls, the false negative is defined as the ratio between missing calls and 
all TEs inserted.  
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2.2. Real Data 

To demonstrate the tool and some subsequent analysis, we applied it to NGS data of ~200 Swedish 
Arabidopsis thaliana lines sequenced in our group [25], which is part of the 1,001 genomes  
project [21,22]. , ,  
this source. 

In total, we called about 40,000 TEs in the population on the superfamily level (on other 
hierarchical levels, it called other quantities of events). By contrasting the number of TE events called 
and that are annotated in the reference, -

-  (see Figure 4).  

Figure 4. The event counts per TE superfamily annotated in the reference (blue) and newly 
discovered from the population. An event for the population is counted if it occurs in any 

- -  

 
 

For comparative purposes, the distribution of polymorphism in terms of pair-wise difference, , is 
shown in Figure 5 for TEs and for SNPs. We found that the polymorphism of SNPs is correlated to the 
density of new TEs (Figure 5b) in both chromosomal arms and pericentromeric regions, which might 
indicate an interesting mutation or selection mechanism, if not simply an effect of a deeper 
coalescence time.  
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Figure 5. Distribution of polymorphism in terms of pair-wise difference  (in terms of the 
number of events without being weighted by the lengths) of the TE calls in the population 
against  of SNPs. Both  are computed with a window size of 20 Kb and normalized to  
1 bp. (a) The  distribution in the chromosomes. We use red and orange bars to indicate the 
centeromeric and pericentromeric regions. (b) The correlation between TE and SNP 
both chromosomal arms and pericentromeric regions. If there is not even a single event in 
one of both windows (TE or SNP), this locus is skipped. Both correlations are highly 
significant (p-value = 0 due to machine precision).  
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We also looked for the distribution of the copy numbers to the geographic location. The sequenced 
samples were divided up between the north and south of Sweden (Figure 6). The question here is 
whether this classification could be replicated by observing the TE variations. Based on TE-Locate 
results, we tried several machine learning techniques (with Weka [26]). On the superfamily level there 
was no result better than chance at 10× cross-fold validation. On the TE-family level, there are good 
classifications with a true prediction rate of 92% 98% and a lower limit i.e., zero ratio of 71% (zero 
ratio = the ratio of the more frequent class). The result of the C4.5 algorithm [27] is shown in Figure 7. 
With respect to the true prediction rate, this is not the best model, but trees are easier to interpret than, 
for example, the weights of SVMs (Support Vector Machine) [28]. As one can see in this tree, 
although all TE-families were used as variables, only Copia families are enough to sufficiently split 
the classes. We did not go into detail on why the copy numbers of Copia families are clearly different 
between north and south; the simplest explanation could be merely a temperature dependency in them 
(see the related, but not so recent [29,30]). 

Figure 6. The geographic distribution of the Arabidopsis thaliana lines used for our 
analysis. The red line indicates the border between the later-used north and the south class.  
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Figure 7. Result of the C4.5 algorithm for a classification of north versus south individuals 
with respect to their TE-family copy number. 92.5% of the individuals are correctly 
classified at the 10× cross-validation. 

 
 
We performed genome-wide association studies (GWAS) using the 4 million SNPs from the 

sequences as genotype, and each of the 18 TE superfamilies copy number as phenotype. The question 
for this analysis is, how much of the variation in TE copy numbers could be explained by the 
genotype. We used a mixed model [31] to control population structure and Bonferroni correction to 
control an inflated significance level due to multiple-test issues. Two of these GWAS with many 
significant SNPs are shown in Figure 8. As expected, there are many significant SNPs located in TEs 
themselves and unfortunately nearly none in (well-annotated) genes. An exception is one significant 
SNP in the auxin response factor-12 gene (AT1G34310) for the copy number of RathE3.  

It is remarkable that most of the significant SNPs for a superfamily are located in another 
superfamily. It is not clear whether this could be a problem of a too-high similarity between the 
superfamilies or a non-optimal separation. However, if one of these issues is causing the effect, we 
should have observed a symmetrical relationship between the pair of superfamilies: if SNPs associated 
with superfamily A are located in superfamily B, then we should also observe SNPs associated with 
superfamily B located in superfamily A. However, what we observed is an asymmetric hierarchy 
(Figure 9): it is never the case that if one superfamily has significant SNPs in another, that this is also 
present in the reverse case. It would be interesting to investigate the biology of this observation. 
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Figure 8. Manhattan plot of logged p-values of association between the SNPs and the TE copy number. The chromosomes are sequential in 
different colors. The upper plot uses the DNA TE-superfamily as phenotype, the lower the TE-superfamily SADHU. The Bonferroni threshold 
is 2.5 × 10 . 
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Figure 9. The SNP to copy number hierarchy from GWAS. The arrows indicate that the 
SNPs located in the superfamily on the blunt side of the arrow are significantly associated 
with the copy number of the superfamily on the side of the arrowhead. The number within 
the arrow is the number of SNPs normalized by the total length of TEs in the 
corresponding superfamily. There were no cases of arrows traveling in both directions. 

 

3. Methods 

TE-Locate assumes that the user has paired-end reads. Before running TE-Locate, the read pairs are 
aligned with any aligner producing a BAM/SAM file (e.g., BWA [23], Smalt [32], or Segemehl [33]). 
With the previously prepared annotation, TE-Locate calls the TE as shown in Figure 1. TE-Locate will 
identify and collect all mate-pairs that have one end mapped inside a TE and the other end mapped 
with good quality to any region outside all TEs. By clustering all the evidential reads, the new copy of 
TE will then be reported. To leverage the population sharing that is crucial for structural variant 
callings [34], the tool is written to act on all individuals in the population at once. In this manner, 
individuals with very low coverage at a particular region can take advantage of other individuals when 
there is a genuine event also called by other good coverage individuals.  

The results are reported in two files: one is a CSV file in which the have-or-have-not information 
for all individuals and all events is provided. In a separate information file, TE-Locate also provides a 
summary of more detailed event information (features of the TE, the number of supporting reads, etc.) 
An example output is shown in Table 1; the columns are explained in detail in Table 2. 
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Table 1. Example output of TE-Locate. 

chr loc len event_type_ref non_ref_counts anc_status read_pair_support <unused>... call_method Orientation #pPairs #iPairs new/old 

1 5421 7679 TE+DNA/MuDR/DNA/MuDR 5 N 15 | PairEndTE inverse 4 11 new 

1 16726 3890 TE+RC/Helitron/RC/Helitron 171 N 900 | PairEndTE uncertain   old 

1 20843 1292 TE+RC/Helitron/RC/Helitron 3 N 63 | PairEndTE inverse 20 43 new 

1 11897 79 TE+LTR/Copia/LTR/Copia 55 N 69 | PairEndTE uncertain   old 

1 22277 1736 TE+DNA/MuDR/DNA/MuDR 7 N 15 | PairEndTE inverse 6 9 new 

1 42355 10046 TE+RC/Helitron/RC/Helitron 4 N 11 | PairEndTE parallel 10 1 new 

1 42210 4671 TE+DNA/MuDR/DNA/MuDR 5 N 11 | PairEndTE inverse 1 10 new 

1 50968 651 TE+LTR/Gypsy/LTR/Gypsy 6 N 10 | PairEndTE parallel 9 1 new 

1 52425 382 TE+LTR/Copia/LTR/Copia 2 N 26 | PairEndTE inverse 1 25 new 

1 70064 4814 TE+LTR/Copia/LTR/Copia 1 N 19 | PairEndTE inverse 0 19 new 

1 71152 799 TE+LTR/Copia/LTR/Copia 1 N 31 | PairEndTE parallel 31 0 new 

1 55676 900 TE+DNA/HAT/DNA/HAT 174 N 2133 | PairEndTE uncertain   old 

1 77569 831 TE+RC/Helitron/RC/Helitron 178 N 1661 | PairEndTE uncertain   old 

1 76844 656 TE+LINE/L1/LINE/L1 75 N 753 | PairEndTE uncertain   old 

1 84679 12225 TE+LTR/Gypsy/LTR/Gypsy 7 N 12 | PairEndTE parallel 10 2 new 

1 91443 7263 TE+LTR/Gypsy/LTR/Gypsy 6 N 13 | PairEndTE parallel 11 2 new 

1 116237 2941 TE+LTR/Copia/LTR/Copia 1 N 57 | PairEndTE parallel 47 10 new 

1 129878 5185 TE+LTR/Copia/LTR/Copia 4 N 23 | PairEndTE parallel 23 0 new 

1 154331 87 TE+LINE/L1/LINE/L1 89 N 138 | PairEndTE uncertain   old 

1 192934 593 TE+RC/Helitron/RC/Helitron 177 N 1915 | PairEndTE uncertain   old 
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Table 2. Description of the TE-Locate output. 

Column Description  
chr 

Locus loc 
len The length of the corresponding reference event. 

event_type_ref The class of this event annotated (resp. the item/TE) 
non_ref_counts The number of individuals sharing this event. 

anc_status Unused 

read_pair_support The total number of all supporting read pairs of all 
individuals. 

bp_range1 

Unused... bp_range2 
four_gamete_left 

four_gamete_right 

call_method For TE-Locate, 
merged with other data in this format. 

Orientation , 
according to the reference sequence. 

#pPairs The number of read pairs supporting parallel orientation. 
Not used  

#iPairs The number of read pairs supporting inverse orientation. 
 

new/old 
reference; 
hierarchical levels, all locations of this item are meant, 
e.g., any Copia called at a Copia locus in the reference is 

 
 
In the real data analysis presented in this paper, the reference sequence and the TE annotations are 

taken from TAIR [19] in .fasta and .gff formats respectively. The Arabidopsis thaliana lines are 
sequenced by Illumina GAII as well as by HiSeq 2000 with paired-end reads 2 × 76 bp or 2 × 100 bp. 
The coverage ranges from 10× to 70×. More details of the dataset will be published soon and can be 
downloaded from the 1,001 genomes project public website [22]. 

The hierarchical levels of TE families are from the Gypsy Database GyDB [35] (Figure 2). The 
hierarchical level should be high enough to ensure that no very similar sequences are present at 
different items, but low enough to have a good resolution. Most of the demonstration analysis uses the 
superfamily and family level.  

4. Discussion and Conclusions 

TE-Locate is a flexible tool to call known sequences of a reference in new individuals. This is 
particularly interesting for TEs. The theoretical computational complexity is O(n*log(n)), where n is 
the number of reads. In practice, we observed that the implementation is sufficiently efficient, at least 
for our deeply-sequenced Arabidopsis lines. In our real data, TE-Locate needed much less 
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computational time than the initial preprocessing of the data (mapping reads, etc.). Although the 
implementation is not parallelized, no GPGPU (General-purpose computing on graphics processing 
units) is used and the code is written in Perl and Java. 

The current initial release of TE-Locate runs fast and its algorithm is rather straightforward. Many 
extensions are possible. One immediate extension is to include indel callings from various sources, 
perhaps also combined with graphs from de-novo assembly. We could also count negative support 
(=contradicting read pairs) and evaluate the optimal set in contradictory cases. Finally, it may be 
beneficial to combine with split read alignments [36] and/or develop an efficient aligner for this [37]. 

Not all the possible extensions will necessarily have a positive effect, at least if the thresholds for 
trade-offs are not chosen carefully. An example would be the trade-off between negative and positive 
support and the weight of split-reads against read pairs. The computational complexity will likely 
increase, especially if it is to find an optimal set or combination. 

TE-Locate is a nice complement to other tools [38] for a similar purpose. T-lex [39] uses single split 
reads and only checks whether the reference loci are present or not; REPET [40], RECON [41], and 
TESeeker [42] call new TE sequences without leveraging existing annotations; TE-HMM [43] 
analyzes genomes itself to discover TEs without using read-level information. Also, all above-mentioned 
tools do not take advantage of paired-end information, which is not ideal for most ongoing NGS 
projects in which the paired-end reads will be generated. Various indel calling tools [44] are also 
beneficial to TE analysis, since TEs can also be considered merely as ordinary indels. The program is 
freely available online [45]. 
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8.5 Results – Discussion 

One conclusion for the method in the manuscript of the last section is that the method is 
mainly dependent on the aligner. If the alignment is perfect, the TE-locate calls are perfect. 
The validation/simulation is therefore more a test of the aligner than of the calling method. 

The tool itself was programmed at the time when the paper of section 6.6 was written, which 
is why the data for demonstration therein is the data of the paper on the Swedish samples 
[36]. 

Because the tool’s paper is an application paper, it contains several good starting points for 
analyses, but unfortunately, at least at our place, these are not followed, as functional 
validations would require a great deal of wet lab work. 
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9. Conclusions & future directions 

9.1 5of biological big data in general 

The conclusions of this thesis will be as broad as the sweep it has made of the field. From 
the point of view of data: the amount of data will continue to increase. Due to increasing 
masses of data, the ratio between those in the wet lab and those analyzing will change 
further. My rough guess would be an equilibrium of 1:1, as it is already in some labs. 

The high-throughput data sources will increase in amount and number, and with new 
superlatives. However, it is difficult to guess the comparative to ‘high-throughput’ and ‘next-
generation DNA sequencing’. More and more different data sources make it to a high-
throughput version, like bisulfite sequencing [161] and proteome data [162]. As these 
sources are not independent from each other and have likely more interplay than is currently 
known, combined analyses make sense; but they will provide new challenges, as missing 
data on different levels, different biases from different sources, different and larger p >> n 
and of course simply by the sheer amount of data. This also leads to the temptation to linger 
longer in explorative data analysis, as only few people can counterproof, and naturally more 
effort is put into new things than into validation. 

When data is increasing more rapidly than it is being analyzed or even controlled in any 
sense, and for other reasons too, new ideas remain cheap in biology [163, 164]. The positive 
aspects of having many ideas are that it is easy to find topics without stepping on other's 
toes, that there is no danger that the field is running out of work, and that there is always 
enough material to produce a new paper. The negative aspects of an abundance of ideas 
are that the temptation exists to jump to the next topic before the present one is done or at 
least resulted in a paper, that ideas are discarded regardless of their quality, and that topics 
which are, or would be, the basis for other ideas are not addressed if they seem boring. The 
latter sounds rather unscientific, but often the temptation is too strong to make something 
very new, even if it is known (but hopefully not proven) that the underlying source has certain 
weaknesses which are not analyzed. 

The organization of people in data generation and data analysis will remain tricky: these two 
areas have a quite different profile, so that almost none can be up-to-date, even in a 
specialized topic, in both fields. For years, a considerable effort has been spent on closing 
the gap between the wet lab and data analysis. This is done with far more statistics and 
bioinformatics for the 'normal' study of biology, especially in Vienna, where bioinformatics 
institutes are located in several universities related to biology instead of bioinformatics 
concentrated at one university. Certainly the gap is smaller now than during the race for the 
first human genome [165]; yet it is moving slowly compared with the possibilities, and there 
are several pitfalls: 

• Who is leading? - If data generation and data analysis are in the same group, one 
side usually leads, which drives often to the following situations: if the data generating 
side leads, the data is supposed to prove or provide a certain result -> until the raw 
data becomes freely available and analyzed further, it might be highly biased; if the 
data analyzing side leads, they tend to make imaginary constructions. 

• When data generation and analysis are done at the same place and there is no 
leading issue, it comes usually to more iterations; in this case two dangers are likely: 
the hand-over of data is not clean, and when a considerable effort has gone into data 
generation, the analysis is much less likely to judge stringently. 
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• The problems, tasks and questions fall under several different categories at the same 
time, but, as always in academia, every area, field and institute has its claim and 
usually avoids going into other areas. The following example areas are presented in 
this thesis, which almost never exist together in one group: very new wet lab 
methods, data analysis, algorithm development, implementation, and efficient 
programming. A group having more than two of these areas together usually splits or 
works quite inefficiently. 

• When projects are larger, a professional project management is needed, but 
unfortunately, the level of project management in biology is quite low. 

• Although the current masses of data did not arrive yesterday, it has only quite 
recently dawned on some minds that large amounts of data also need a certain effort 
in terms of IT-infrastructure, organization and manpower to deal with it. 

• Outsourcing - What is sometimes effective in the economy might be effective for 
science: recently, a few more 'areas', services and tasks have been outsourced 
directly or indirectly to companies or service facilities. This certainly makes sense if a 
method has become more or less standard and simply needs to be scaled up or 
made more efficient, but there is also the temptation to outsource everything that is 
not in the main focus of the group: data analyzing groups order data and data 
generating groups try to 'buy' the analysis. The question then arises: if all the parts 
are somehow given away, what is then left for (academic) science? 

 

From the economic perspective, molecular biology/genetics is still highly dependent on public 
spending. For certain reasons, there is no real 'killer application' [166] in this area. In a literal 
sense, killer application sounds alarming here, but in the defined sense it perhaps needs to 
grow in importance and become less dependent on public funding, as computer science is 
now. 

 

9.2 5of the work presented in the thesis 

Because of the increase of data, new methods and general progress, the content of this work 
corresponds rather to steps forward than to final answers to the big questions. The outlook 
and future directions for the papers presented in the thesis: 

 

9.2.1  Article: Characterization of protein-interaction networks in tumors 

(section 3.3) 

This paper is quite extensive and self-contained. The number and the implementation of the 
graph measures are comprehensive. More graph measures were implemented and tried than 
mentioned in the paper, but no results came from them. Of course, more methods can be 
implemented, as was done later, and it certainly makes sense to redo this analysis with new 
combinations of gene lists and protein interaction networks. Nevertheless, the idea itself - the 
use of graph measures to obtain properties of gene lists, where no simpler properties are 
known for these genes - is sold well. 
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9.2.2  Article: The Occurrence-in-subtuple problem (section 4.4) 

This paper is even more closed than the previous paper, as it is exactly one full derivation for 
a specific problem. No other usage than the one described in the paper has arisen since the 
publication. One effect was that this method partly prevented another paper be written; 
showing that one putative regulatory network is not as solid as first thought. 

 

 

9.2.3  Article: Metabolic profiling reveals key metabolic features of renal cell 

carcinoma (section 5.3) 

Since the time of this paper, machine learning is today a little more present in medicine. 
Nevertheless, this paper can continue to act as a template for similar analysis in the future. 
The following changes can occur: 

• if many more metabolites can be safely distinguished, it may fall into the p>>n class 
of problems and the type of methods have to change to something similar as for 
microarrays and/or full genome data 

• if many more samples and more classes/labels of them arrive, these might be 
suitable for more sophisticated machine learning methods; there likely already exist 
methods in another scientific field designed for such data combinations 

• if the number of samples grow extensively and are available as raw data (we intend 
human data here), it might be possible to solve the classification problems analytically 

One related challenge here is the distribution of data as the largest source is from humans. 
This kind of data is mainly generated in hospitals, but is usually not shared freely. It is not 
trivial to find a trade-off between making all analyses possible and privacy. 

 

 

9.2.4  Article: Massive genomic variation and strong selection in Arabidopsis 

thaliana lines from Sweden (section 6.6) 

The future directions of this scientific thread are quite clear, because this paper is one of the 
1001 Genomes Project and this project is to date not completed. This paper is only about the 
Swedish subset, the full data of the project is being collected and at least one paper will be 
written for the full set. Recently generated related data sets also lurk around, for instance 
expression data at different temperatures, bisulfite sequencing data, additional phenotypes, 
and some others. All these data are more or less the prototype of big data piles waiting for a 
great deal of analyses time. Possible future directions: extensive GWASes, causality 
analysis, functional validation of findings, pattern search in several variations, focusing on 
subsets as for example TEs, certain genes, specific regulatory patterns, comparisons with 
lab generated data, more dimension reduction, using as standard data set for new methods, 
and so on. Unfortunately, ~more validation is also still on the list, which means validation is 
rather lagging behind. 
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9.2.5  Article: Visualization of SNPs with t-SNE (section 7.3) 

As mentioned in section 7.4 many more dimension reduction methods remain to be 
compared. Another open question is whether specific properties exist in NGS data with 
respect to dimension reduction compared with other high-dimensional data sources, or if the 
dimension reduction methods are general enough for all data sources. 

 

9.2.6  Article: TE-Locate (section 8.4) 

There are three tracks for follow-ups. Firstly, as in the last paragraph of the paper, there are 
several tools for calling TEs which focus on different aspects of calling. Only a few of these 
different aspects are mutually exclusive, so combining as many as possible in one tool would 
outperform each of the individual tools. 

Secondly, as the task is highly dependent on the aligner, it would make sense to start there. 
Split-read-alignment is not finally resolved, and the focus on the highly similar sequences of 
TEs is an additional challenge. 

Thirdly, functional validation would be helpful to develop some of the initiated storylines into 
full stories, for example for Figure 9 in the paper. One hypothesis for Figure 9 is, that this is 
the functional hierarchy of TE superfamilies, that the arrows indicating superfamilies needing 
others to be functional. 
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