
DIPLOMARBEIT

Classical Boundary Layer Behavior in

the Vicinity of a Curvature Jump of the

Wall Contour

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Braun
E322 - Institut für Strömungsmechanik und Wärmeübertragung

eingereicht an der Technischen Universität Wien
Fakultät für Maschinenwesen und Betriebswissenschaften

von

Jarmila Vodinská
0426167

Döblinger Hauptstraÿe 20/1/11
1190 Wien

Wien, November 2014
..................................

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



This work is dedicated to the memory of my father.



Abstract

Laminar �ow past a parametrized family of semi-in�nite thin bodies with ad-
justable curvature jump in their contour is investigated according to Prandtl's
classical (�rst order) boundary layer theory. Accounting for the slenderness a per-
turbation ansatz is used to derive a potential �ow solution as an approximation
for the part of the surrounding �ow, where viscosity e�ects can be neglected. The
assumption of a slightly perturbed oncoming �ow is violated in close vicinity of the
leading edge stagnation point, where a local solution is found in an appropriately
stretched coordinate system. Both solutions are combined in the spirit of matched
asymptotic expansions using Van Dyke's matching rule to receive a uniformly
valid approximation (compound solution) for the velocity distribution at the sur-
face, which de�nes the prescribed pressure distribution along the viscous boundary
layer in the immediate neighborhood of the solid wall. Finally, the boundary layer
equations are derived and numerically solved for increasing strength of the curva-
ture discontinuity at the surface. The break-down of the classical boundary layer
theory is indicated by the occurrence of a Goldstein-singularity at the location of
the curvature jump independent of its magnitude. This outcome suggests the ap-
plication of advanced asymptotic concepts to the presented problem to account for
the interaction between the boundary layer and the external �ow (i. e. triple-deck
theory).
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Preface

When once you have tasted �ight, you will forever walk the Earth with your eyes
turned skyward, for there you have been, and there you will always long to return.

(Leonardo Da Vinci)

My specialization in the �eld of �uid mechanics is a consequence of my great pas-
sion for airplanes and interest in physics. I have �rst experienced piloting during
a summer school for students of aviation and engineering in Italy organized by a
small group of young, enthusiastic and passionate assistants around Prof. Andrea
Alaimo1, which has de�nitely ignited the spark.

New technologies in the air-vehicle industry such as morphing aircraft struc-
tures (in-�ight shape-adjustments) require a re�ective understanding of the �uid-
mechanic phenomena responding to discontinuities of surface curvature (e. g. sep-
aration of �ow, laminar-turbulent transition).

This initial study provides an access to the theory of matched asymptotic ex-
pansions and thus to the theoretical understanding of �ow behavior whereas fur-
ther studies may be concerned with the accordance or the complementarity of the
theoretical �ndings and the solutions provided by modern CFD-solvers in which
engineers often trust without the competence of a theoretical interpretation.

1Kore University of Enna, Italy
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1 Introduction

In this academic work a two-dimensional laminar �ow of a viscous �uid past
a smooth surface showing a curvature discontinuity is studied. Assuming high
Reynolds numbers Prandtl's classical (�rst order) boundary layer theory is applied
and thus the �ow is split into two regions: a very thin layer in proximity of the
surface (boundary layer), where viscosity of the �ow plays an important role, and
the surrounding region (outside of the boundary layer), where viscous forces can
be neglected compared to inertia forces, the potential �ow. The latter de�nes
the pressure along the main stream direction in the thin viscous layer and hence
represents a boundary condition at the interface, where the two velocity distribu-
tions must match. The derivation of an adequate approximation for the inviscid
velocity- and thus the pressure-distribution for di�erent regions of the �ow sur-
rounding the boundary layer was the objective of a preliminary project study and
is also included in this work.

A detailed investigation is done for a family of thin half-bodies represented by
a monotonically growing parametrized function τT (x; ε(k)) with a thickness-to-
ramp-length ratio τ � 1 within a unity square with T (x = 0) = 0, T (x = 1) = 1
and with T ′(x = 1) = 0. The curvature parameter ε(k) de�nes the curvature k of
T (x) at x = 1 and thus creates a family of thickness-functions

y(x; τ, k) = τT (x; ε(k)) (1.1)

with an adjustable magnitude of the curvature jump at x = 1, if we assume that
these curves are joined to a straight horizontal line at this point to create the top
side of a symmetrical half-body, Figure 2.1.

Dimensional and non-dimensional quantities are strictly distinguished through-
out the entire study. Therefore all dimensional variables are denoted with a tilde.
The de�nitions of dimensionless quantities and the characteristic dimensions of
the present problem the are summarized in chapter 2.

According to potential theory, the motion of a steady, incompressible, and irro-
tational planar �ow is governed by the Laplace equation. Even though it is the
simplest linear elliptic partial di�erential equation, it may be di�cult to �nd an
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1 Introduction

accurate solution for the given boundary conditions. In the present case, accord-
ing to thin airfoil theory, we can approximate the solution through asymptotic
expansion in powers of the thickness parameter, τ . As τ tends to zero, the lim-
iting solution is the unperturbed parallel �ow. This approach is only valid, if we
assume small disturbances of the unperturbed �ow. It is obvious that this assump-
tion is violated at the leading edge at x = 0, where the velocity is zero (stagnation
point). Therefore one has to �nd a local solution near the leading edge to obtain
a uniformly valid �ow �eld description by means ofmatched asymptotic expansions.

In this study we concentrate on the leading order e�ects of τ , but it is described
how to proceed to higher order approximations. Furthermore, all calculations refer
to the top side of the symmetrical half-body. One can obtain the results for the
bottom side simply by setting T (x)→ −T (x).

The non-linear, partial di�erential equations describing the viscous layer (bound-
ary layer equations) are solved numerically and the shear stress distributions at
the surface are derived for the de�ned half-body to study the e�ects of a curvature
jump of the contour on the viscous layer. Moreover the displacement thickness
of the boundary layer for the di�erent curves is computed. A particular aim lies
on the observation of the Goldstein-singularity at x = 1 as the curvature jump is
slightly increased starting from zero.

2



2 De�nitions

2.1 Dimensionless quantities and governing

equations

Considering semi-in�nite bodies, �rst of all, we have to decide how to de�ne a char-
acteristic length. In the present case we investigate the behavior of the surrounding
�ow especially in the vicinity of a curvature jump and therefore it is convenient
to locate it at x = 1. As the analyzed half-bodies are set up of a non-linear ramp,
which is merged with a strait horizontal line to provoke the discontinuity, we use
the ramp-length, L̃, as shown in Figure 2.1, as a reference and scale the x− and
y�variables according to

x =
x̃

L̃
, y =

ỹ

L̃
. (2.1)

U¥
�

, p
�

¥, Ρ� , Ν�

L
� x

�

H
�

y
�

Figure 2.1: Geometrical set up of the �ow: characteristic dimensions and
quantities.
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2 De�nitions

Assuming a thin half-body, we de�ne the thickness-to-ramp-length ratio, τ , as

τ =
H̃

L̃
� 1. (2.2)

The unperturbed free-stream velocity Ũ∞ is used as reference velocity1, i. e.

~q =

(
u
v

)
=

~̃q

Ũ∞
=

1

Ũ∞

(
ũ
ṽ

)
. (2.3)

We obtain the dimensionless form of the governing Navier-Stokes equations, as

Continuity equation: ~∇~q = 0, (2.4a)

Equation of motion:
(
~q · ~∇

)
~q = −~∇p+

1

Re
∆~q, (2.4b)

if we assume a steady, incompressible, Newtonian �uid with the constant viscosity
ν̃ and the constant density ρ̃. Furthermore, Re denotes the Reynolds number

Re =
Ũ∞L̃

ν̃
� 1, (2.5)

assumed to be high and p the scalar pressure, non-dimensionalized by

p =
p̃− p̃∞
ρ̃Ũ2
∞

. (2.6)

It is shown in chapter 4, how to derive the boundary layer equations from the
Navier-Stokes equations. Obviously, assuming an irrotational �ow and Re → ∞
we obtain the potential �ow equations for the approximation of the external �ow
as

Continuity equation: ~∇~q = 0, (2.7a)

Vorticity of the �ow �eld: ~∇× ~q = 0, (2.7b)

whereby (2.4b) turns into the Euler equation for the present case, written as(
~q · ~∇

)
~q = −~∇p, (2.8)

which is valid within the whole potential �ow �eld (see e. g. [3]).

1In this study we have to distinguish between the velocity �eld of the potential �ow and the
one within the boundary layer, which is denoted with the index b, but the scaling presented in
this chapter remains valid for both.

4



2 De�nitions

2.2 The thickness-function

We consider symmetrical semi-in�nite bodies, Figure 2.2, described by y = ±τT (x; ε(k)),
where T (x; ε(k)) is the parametrized thickness-function of order unity, τ the thickness-
to-ramp-length ratio according to (2.2) and ε(k) a curvature parameter.

y = Τ T(x)

y = -Τ T(x)

1
x

Τ

-Τ

y

Figure 2.2: Semi-in�nite thin body.

The thickness-function T (x; ε), shown in Figure 2.3, is de�ned within the unity
square as

T (x; ε) = ε
[
1− (1− x)3

]
+

(1− ε)x [2ε− (ε+ 1)x+ 1]

ε− x+ 1
, 0 < ε < 1. (2.9)

The curvature parameter ε = ε(k) gives the possibility to de�ne the curvature k of
the ramp-function T (x) at x = 1 and thus to vary the magnitude of the curvature
discontinuity at the point, where the ramp-function meets the horizontal line. It
is given by

ε(k) =
1

4
(k +

√
16 + k2), (2.10)

since k is de�ned as
T ′′(x = 1) =: k. (2.11)

As ε(k) does not depend on x, we can treat it here as a constant, keeping in mind,
that 0 < ε < 1 with ε(0) = 1 and limk→−∞ ε(k) = 0.
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2 De�nitions

k  = -¥

k = 0
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¶
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Figure 2.3: Ramp-functions according to (2.9) for di�erent curvatures k at x = 1.
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3 Potential �ow past thin airfoil

3.1 Potential theory

Potential theory is applicable, if we assume (incompressible and) irrotational �ow
and exclude thermal e�ects. In such a case, there exists a scalar function called
velocity potential φ, which satis�es ~q = ~∇φ, where ~q denotes the velocity �eld. In
combination with (2.4a) we obtain the Laplace equation

∆φ = 0. (3.1)

In the present case of the semi-in�nite body the full problem consists of the Laplace
equation and two boundary conditions, the unperturbed free-stream condition in
the far �eld and the tangency condition at the surface of the half-body. Hence we
have

Laplace equation: φxx + φyy = 0, (3.2)

unperturbed free-stream condition: φ ∼ x+ o(1) as x2 + y2 →∞, (3.3)

tangency condition:
φy
φx

= τT ′(x) as y = ±τT (x). (3.4)

3.2 Thin airfoil expansion

The slenderness of the half-body causes only small perturbations to the free stream
and therefore allows for an expansion of the potential about the undisturbed �ow
state. Hence we interpret the solution of the problem given in (3.2)-(3.4) as a linear
combination of the potential of the uniform parallel �ow plus some perturbation
potential. With τ as the perturbation parameter and ϕj(x, y), with j = 1, 2, ...,
as the j-th order perturbation potential of order O(1) the asymptotic expansion
is given by

φ(x, y) = x+ τφ1(x, y) + τ 2φ2(x, y) + . . . , (3.5)

7



3 Potential �ow past thin airfoil

with the partial derivatives

u = φx(x, y) ∼ 1 + τφ1x(x, y) + τ 2φ2x(x, y) + . . . , (3.6)

v = φy(x, y) ∼ τφ1y(x, y) + τ 2φ2y(x, y) + . . . . (3.7)

We need to apply this ansatz to the tangency condition at the half-body surface.
Still the slenderness of the body gives occasion to a simpli�cation. The thinness
implies that the surface, where the tangency condition is given, is in close vicinity
to the x-axis. Therefore, we Taylor expand (3.4) to obtain an approximation of
the boundary condition on the surface. Of course we have to be aware of the
nonuniformities as a consequence of these expansions.
Expanding φy for y = τT (x)� 1 we get

φy(x, τT (x)) ∼ τ

[
φ1y(x, 0) + φ1yy(x, 0)τT (x) +

1

2
φ1yyy(x, 0)(τT (x))2 + . . .

]
+ τ 2

[
φ2y(x, 0) + φ2yy(x, 0)τT (x) +

1

2
φ2yyy(x, 0)(τT (x))2 + . . .

]
+ . . . ,

(3.8)

which, after rearranging in powers of τ yields

φy(x, τT (x)) ∼ τφ1y(x, 0) + τ 2 [φ1yy(x, 0)T (x) + φ2y(x, 0)] + . . . . (3.9)

Analogously, expanding φx for y = τT (x)� 1, we obtain

φx(x, τT (x)) ∼ 1 + τ

[
φ1x(x, 0) + φ1xy(x, 0)τT (x) +

1

2
φ1xyy(x, 0)(τT (x))2 + . . .

]
+ τ 2

[
φ2x(x, 0) + φ2xy(x, 0)τT (x) +

1

2
φ2xyy(x, 0)(τT (x))2 + . . .

]
+ . . . ,

(3.10)

and

φx(x, τT (x)) ∼ 1 + τφ1x(x, 0) + τ 2 [φ1xy(x, 0)T (x) + φ2x(x, 0)] + . . . . (3.11)

We insert (3.9) and (3.11) into the tangency condition (3.4) to get

T ′(x) =
φ1y(x, 0) + τ [φ1yy(x, 0)T (x) + φ2y(x, 0)] + . . .

1 + τφ1x(x, 0) + τ 2 [φ1xy(x, 0)T (x) + φ2x(x, 0)] + . . .
. (3.12)

Thus, for small τ the Taylor series expansion of (3.12) yields

T ′(x) =
[
φ1y(x, 0) + τ(φ1yy(x, 0)T (x) + φ2y(x, 0)) +O(τ 2)

] [
1− τφ1x(x, 0) +O(τ 2)

]
= φ1y(x, 0) + τ [φ1yy(x, 0)T (x) + φ2y(x, 0)− φ1y(x, 0)φ1x(x, 0)] +O(τ 2).

(3.13)
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3 Potential �ow past thin airfoil

Equating coe�cients in equal powers of τ leads to a sequence of problems com-
prising the Laplace equation and two boundary conditions (1. tangency condition,
which is now linear and 2. the unperturbed free-stream condition) for each order
of τ :

Order τ 0:

Laplace equation: φ1xx + φ1yy = 0 (3.14a)

1. x2 + y2 →∞: φ1 → 0 (3.14b)

2. y = 0: φ1y(x, 0) = T ′(x) ≡ T ′1(x) (3.14c)

Order τ 1:

Laplace equation: φ2xx + φ2yy = 0 (3.15a)

1. x2 + y2 →∞: φ2 → 0 (3.15b)

2. y = 0, using (3.14c):
φ1yy(x, 0)T (x) + φ2y(x, 0)

φ1x(x, 0)
= T ′(x)

φ2y(x, 0) = T ′(x)φ1x(x, 0)− T (x)φ1yy(x, 0)

. . . we use (3.14a) to get

φ2y(x, 0) = T ′(x)φ1x(x, 0) + T (x)φ1xx(x, 0)

φ2y(x, 0) = [T (x)φ1x(x, 0)]′ ≡ T ′2(x) (3.15c)

We can proceed in the same way to any higher order of τ and using the di�erential
equations as well as the tangency conditions from previous order problems, we
will always receive the �rst order problem with the only di�erence, that instead of
the original thickness-function T (x) the new problem will contain some modi�ed
thickness-function Tn(x). The derivation of the next order problem (O(τ 2)) can
be found in e. g. [10].

9



3 Potential �ow past thin airfoil

3.3 Solution of the thin airfoil problem by

distribution of singularities

Linearity of the Laplace equation implies that any linear combination of solutions
is again a solution (superposition principle). Thus, we can describe more general
�ow �elds combining well-known solutions such as, for example, sources and sinks.
Distributing such singularities along the x-axis and interpreting the streamlines as
the surface of a solid body, the �ow �eld around any desired form can be obtained.
Therefore, if the particular source/sink strengths are chosen accordingly and dis-
tributed between x = 0 and x = 1, we can also obtain the exact form of any of the
half-bodies Tn(x), n = 1, 2, . . . derived in (3.2).

First, we consider the contribution dφn of a source at x = ξ and y = 0 with a
di�erential strength ds, given by

dφn(x, y) =
ds

2π
ln
√

(x− ξ)2 + y2. (3.16)

De�ning the source distribution function m(ξ) by

ds =
ds

dξ
dξ = m(ξ)dξ, (3.17)

and integrating over all the sources distributed along the x-axis between x = 0
and x = 1 yields

φn(x, y) =
1

2π

∫ 1

0

m(ξ) ln
√

(x− ξ)2 + y2dξ. (3.18)

The unknown source distribution function m(ξ) can be found using the tangency
condition

φny(x, 0) = T ′n(x). (3.19)

We calculate the partial derivatives of (3.18) as

φny(x, y) =
1

2π

∫ 1

0

m(ξ)
1√

(x− ξ)2 + y2

1

2
√

(x− ξ)2 + y2
2ydξ (3.20)

=
1

2π

∫ 1

0

m(ξ)
y

(x− ξ)2 + y2
dξ,

φnx(x, y) =
1

2π

∫ 1

0

m(ξ)
1√

(x− ξ)2 + y2

1

2
√

(x− ξ)2 + y2
2(x− ξ)dξ (3.21)

=
1

2π

∫ 1

0

m(ξ)
(x− ξ)

(x− ξ)2 + y2
dξ.

10



3 Potential �ow past thin airfoil

Thus, the tangency condition requires

φny(x, 0) = lim
y→0

1

2π

∫ 1

0

m(ξ)
y

(x− ξ)2 + y2
dξ = T ′n(x). (3.22)

As the function y/[(x − ξ)2 + y2] tends to zero for every ξ 6= x we can assume
that m(ξ) only contributes to the integral at ξ = x and thus we can treat it as a
constant with respect to ξ with the value m(x) and write:

φny(x, 0) = lim
y→0

1

2π
m(x)

∫ ξ=1

ξ=0

y

(x− ξ)2 + y2
dξ = T ′n(x) (3.23)

This integral can be solved, using∫
1

1 + σ2
= arctan(σ), |x| < 1 and [arctan(σ)]∞−∞ = π (3.24)

and the following transformation of (3.23):

σ =
(ξ − x)

y
,
dσ

dξ
=

1

y
. (3.25)

Whereas ξ = yσ + x and dξ = ydσ inserted in (3.23) gives

1

2π
m(x)

∫ lim
y→0

σ(ξ=1)

lim
y→0

σ(ξ=0)

1

1 + σ2
dσ =

1

2π
m(x)

∫ ∞
−∞

1

1 + σ2
dσ =

1

2
m(x) = T ′n(x).

(3.26)
Therefore, an appropriate distribution functionm(ξ) is twice the airfoil slope T ′n(x)
and thus the solution of each of the thin airfoil problems is

φny(x, y) =
1

π

∫ 1

0

yT ′n(ξ)

(x− ξ)2 + y2
dξ, (3.27)

φnx(x, y) =
1

π

∫ 1

0

(x− ξ)T ′n(ξ)

(x− ξ)2 + y2
dξ. (3.28)

We obtain the surface values by the limit of (3.28), as y tends to zero, and using
again the tangency condition to get φny(x, 0), we obtain

φnx(x, 0) =
1

π
C

∫ 1

0

T ′n(ξ)

(x− ξ)
dξ. (3.29)

For the thickness-function T (x), de�ned in (2.9), we now calculate the surface
speed1 up to the �rst order of τ as

uso(x) = 1 + τφ1x(x, 0). (3.30)

1The indexes of uso will become clearer in the following, here we anticipate that it stands for
surface velocity of 'outer' �ow

11



3 Potential �ow past thin airfoil

In the present problem we �nd the following expression for the potential φ1x(x, 0),
containing logarithms of |x| and |1− x| which are responsible for the singularities
at x = 0 and x = 1 respectively and caused by the perturbation approach:

φ1x(x, 0) =
1

2π (1− x+ ε)2 [ ε ( − (x− ε− 1) (11 + 3x (2x− 5− 2ε) + 7ε)

+ 2ε
(
ε2 − 1

)
(ln (ε)− ln (1 + ε)) ] (3.31)

+
ln |x| − ln |1− x|
π (1− x+ ε)2 [ (x− 1) ( 3x3ε− 3x2ε (3 + 2ε)

− (1 + ε) (1 + ε (4 + ε)) + x (1 + ε) (1 + ε (8 + 3ε)) ) ] .

The velocity perturbation uso(x)− 1 at the surface for di�erent curvatures k < 0
(see Figure 3.1) shows therefore vertical tangents at x = 1.

k = 0
-2

-4
-10

k = -¥

Τ = 0.1

10 0.5

0.1

-0.1

-0.2

0.2

0

10 0.5

0.1

-0.1

-0.2

0.2

0

x

u
s o

-
1

Figure 3.1: Velocity perturbation uso(x) − 1 for di�erent curvatures k at x = 1,
τ = 0.1.
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3 Potential �ow past thin airfoil

3.4 Matching with a local solution near sharp

edge

In this subsection we want to correct the non-uniformity (ln-singularity) in the
vicinity of the leading edge by introducing a local solution and matching it with
the one obtained in section 3.3. The thin airfoil solution in the present case fails
within a narrow region at the leading edge, which we call inner region in the
following. Accordingly we call the region, where the thin airfoil solution is eligible,
outer region and use the small letters 'i' and 'o' as indexes2 to distinguish between
them. The existence of an overlap region between the inner and the outer region,
according to Kaplun's extension theorem (see e. g. [2]), allows for matching of the
two corresponding solutions (local/inner solution and outer solution) in the spirit
of matched asymptotic expansions.

3.4.1 Inner variables

Studying the inner region requires appropriately magni�ed variables. Expansion
of the velocity perturbation around the sharp edge (stagnation point) at x = 0,
leads to

uso(x)− 1 ∼ τ(2 + 8ε+ 2ε2)

2π(1 + ε)
ln |x|+ τ

2π(1 + ε)
[ 11ε+ 7ε2 − 2ε2 ln (ε)

+ 2ε3 ln (ε) + 2ε2 ln (1 + ε)− 2ε3 ln (1 + ε) ] +O(x)

(3.32)

as x→ 0 and

uso(x)− 1 |ε=1 ∼
τ(18 + 12 ln |x|)

4π
+O(x), (3.33)

which shows, that the perturbation velocity at the surface behaves as τ ln (x) for
x→ 0.

The asymptotic expansion in (3.5) is only valid if we assume every function
in the sequence growing strictly slower than the preceding function. Therefore
|τ ln |x|| < 1 has to hold for the validity of the solution. So τ ln |x| is negative for
x < 1 but at the most it is allowed to be equal to −1.

2we will use the capitals 'I' and 'O' to distinguish between the two corresponding coordinate
systems later
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3 Potential �ow past thin airfoil

This consideration leads to the appropriate scaling within the inner region:

τ ln (x) = −1

eτ ln(x) = (eln(x))τ = xτ = e−1

x =
τ
√
e−1 = e

−1
τ

(3.34)

Hence, the thickness of the inner region is of the order x ∼ e−
1
τ (i. e. exponentially

small).
Now we can introduce inner coordinates xi and yi which are of order unity within
the inner region

xi = xe
1
τ , yi = ye

1
τ . (3.35)

Correspondingly we call x and y outer coordinates in the following.

3.4.2 Inner solution

Within the narrow inner region, the sharp edge of the half-body at x = 0, can be
approximated by a wedge (see Figure 3.2) with the slope given by

τα(ε) = τT ′(x = 0; ε) = τ

(
3ε+

(1− ε)(1 + 2ε)

1 + ε

)
, 0 < ε < 1. (3.36)

The description of a potential �ow past a wedge can easily be found by transfor-
mation of the Laplace equation in polar coordinates (see Figure 3.3) and separation
of variables or alternatively by conformal mapping. The �rst being the more uni-
versal method, which can be extended to three-dimensional problems, is shown
in the following subsections. The method of conformal mapping can be found for
example in [6].

3.4.2.1 Transformation of the Laplace equation

First, we have to transform the Laplace equation in polar coordinates through
φ(xi, yi)→ φ(r, ϑ) with

r :=
√
x2
i + y2

i ,

ϑ := arctan

(
yi
xi

)
.

(3.37)
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Figure 3.2: Slope of the leading edge, α(ε)xi, for di�erent curvatures, k, at x = 1.
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Figure 3.3: Notation in polar coordinates; νϑ, νr -velocity components.
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3 Potential �ow past thin airfoil

The respective derivatives are

φxi =
∂φ

∂r

∂r

∂xi
+
∂φ

∂ϑ

∂ϑ

∂xi
,

φxixi =
∂φxi
∂r

∂r

∂xi
+
∂φxi
∂ϑ

∂ϑ

∂xi
,

φyi =
∂φ

∂r

∂r

∂yi
+
∂φ

∂ϑ

∂ϑ

∂yi
,

φyiyi =
∂φyi
∂r

∂r

∂yi
+
∂φyi
∂ϑ

∂ϑ

∂yi
,

(3.38)

where considering xi = r cosϑ, yi = r sinϑ the partial derivatives are

∂r

∂xi
=
∂((x2

i + y2
i )

1
2 )

∂xi
=

xi√
x2
i + y2

i

=
r cosϑ

r
= cosϑ,

∂ϑ

∂xi
=

1

1 +
(
yi
xi

)2 (−yi)
1

x2
i

= − yi
x2
i + y2

i

= −r sinϑ

r2
= −sinϑ

r
,

∂ϑ

∂yi
=

1

1 +
(
yi
xi

)2

1

xi
=

xi
x2
i + y2

i

=
xi cosϑ

r2
=

cosϑ

r
,

∂r

∂yi
=
∂((x2

i + y2
i )

1
2 )

∂yi
=

yi√
x2
i + y2

i

=
r sinϑ

r
= sinϑ.

(3.39)

Substituting (3.38) and (3.39) into (3.2) we obtain the Laplace equation in polar
coordinates as

φrr + φϑϑ
1

r2
+ φr

1

r
= 0. (3.40)

Whereas the respective gradient in polar coordinates is de�ned by

∇φ =
∂φ

∂r
~er +

1

r

∂φ

∂ϑ
~eϑ = νr~er + νϑ~eϑ, (3.41)

where νr and νϑ are the tangential and normal velocities with respect to the surface
of the investigated wedge, respectively.
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3 Potential �ow past thin airfoil

3.4.2.2 Separation of variables

To solve (3.40) we use the ansatz:

φ = R(r)θ(ϑ), (3.42)

and thus the method of separation of variables. In other words, we rewrite the
equation so that each of the two variables, r and ϑ, occur on a di�erent side of
the equation. Such an equation can only be satis�ed, if both sides are equal to the
same constant, say λ2. In the present case this approach results in two ordinary
di�erential equations for the two variables, which can be easily solved separately
and than combined according to (3.42).

The ansatz (3.42) inserted into (3.40) gives

R′′θ + θ′′R
1

r2
+R′θ

1

r
= 0. (3.43)

Multiplying both sides by r2/(Rθ) to separate the variables we get

R′′r2

R
+
θ′′

θ
+
R′r

R
= 0, (3.44)

and rearranged
r2

R
R′′ +

r

R
R′ = −1

θ
θ′′. (3.45)

Setting both sides λ2 we obtain the two equations for r and ϑ as

λ2 =
r2

R
R′′ +

r

R
R′ ⇒ r2R′′ + rR′ − λ2R = 0, (3.46)

λ2 = −1

θ
θ′′ ⇒ θ′′ + λ2θ = 0, (3.47)

the �rst being an ordinary Cauchy-Euler di�erential equation and the second being
an ordinary di�erential equation with constant coe�cients with the solutions (see
e. g. [4])

R(r) = C1r
λ + C2r

−λ and (3.48)

θ(ϑ) = D1 cos (λϑ) +D2 sin (λϑ) , (3.49)

where C1, C2, D1 and D2 denote integration constants.
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3 Potential �ow past thin airfoil

3.4.2.3 Solution and boundary conditions

According to (3.42) the solution of (3.40) is found to be:

φ(r, ϑ) = [C1r
λ + C2r

−λ][D1 cos (λϑ) +D2 sin (λϑ)] (3.50)

Assuming λ > 0 and to avoid a singularity at r = 0, we have to set C2 = 0.
The problem now contains two remaining integration constants, E1 = C1D1 and
E2 = C1D2, which can be found using the tangency conditions at the surface.
Thus we have

φ(r, ϑ) = rλ(E1 cos(λϑ) + E2 sin(λϑ)), (3.51)

and the partial derivatives with respect to ϑ and r are

φϑ(r, ϑ) = rλλ(E2 cos(λϑ)− E1 sin(λϑ)), (3.52)

φr(r, ϑ) = λrλ−1(E1 cos(λϑ) + E2 sin(λϑ)). (3.53)

Additionally the boundary conditions for the normal component of the velocity νϑ

(see Figure 3.3) are

νϑ(ϑ = π) =
1

r
φϑ(ϑ = π) = 0 and

νϑ(ϑ = arctan(τα)) =
1

r
φϑ(ϑ = arctan(τα)) = 0

and therefore

λrλ−1(E2 cos(λπ)− E1 sin(λπ)) = 0, (3.54)

λrλ−1(E2 cos(λ arctan(τα))− E1 sin(λ arctan(τα))) = 0. (3.55)

Considering the two equations (3.54) and (3.55), we can calculate the separation
constant λ as

cos(λ arctan(τα))

cos(λπ)
− sin(λ arctan(τα))

sin(λπ)
= 0

=⇒ sin(λπ) cos(λ arctan(τα))− cos(λπ) sin(λ arctan(τα)) = 0

=⇒ sin(λ(π − arctan(τα))) = 0

=⇒ λ(π − arctan(τα) = jπ, j = 1, 2, . . .

=⇒ λj =
jπ

π − arctan(τα)
.

(3.56)
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3 Potential �ow past thin airfoil

Thus, we obtain the solution as a sum over all integers j by

φ(r, ϑ) =
∞∑
j=1

rλj(E1 cos(λjϑ) + E2 sin(λjϑ)). (3.57)

Considering the immediate neighborhood of the stagnation point, where r � 1,
we will only preserve the �rst term of (3.57).
Now we can de�ne one of the constants E1 and E2 by using again (3.54),(3.55),
and the abbreviation β := arctan(τα)) as

E2 = E1
sin(λπ)

cos(λπ)
= E1

sin(λβ)

cos(λβ)
, (3.58)

and obtain the surface speed at ϑ = π and ϑ = β by

νr(r, ϑ = π) = λrλ−1E1[cos(λπ) +
sin(λπ)

cos(λπ)
sin(λπ)] = λrλ−1E1

1

cos(λπ)
,

νr(r, ϑ = β) = λrλ−1E1[cos(λβ) +
sin(λπ)

cos(λπ)
sin(λβ)] = λrλ−1E1

1

cos(λπ)
.︸ ︷︷ ︸

:=Ui

(3.59)

The result contains still an unknown constant Ui, which has to be found by match-
ing this inner solution with the outer solution. For a small angle β and small y we
can approximate

λ =
π

π − β
∼ 1 and r ∼ xi. (3.60)

Consequently, the inner solution for the surface speed is described by

usi ∼ Uix
arctan(τα(ε))

π−arctan(τα(ε))

i , (3.61)

where Ui can be interpreted as the free-stream speed at xi = 1 (see [10]). The fact
that this solution diverges at in�nity, is not a problem since this solution is only
used within the inner region close to x = 0.

3.4.3 Van Dyke's matching rule

Van Dyke's matching rule adjusted to the present problem is formulated in (3.62).
The indexes I and O denote for inner and outer coordinates, whereas m and
n indicate the number of terms to be considered. Detailed instruction about
the usage of this and other matching procedures including a discussion of their
respective scope can be found in [8]. According to the matching rule

[fnO]mI = [fmI ]nO , (3.62)
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3 Potential �ow past thin airfoil

we need to equate the n-term outer solution fnO rewritten in inner coordinates
[fnO]I and expanded in Taylor series up to the mth-term [fnO]mI to the m-term inner
solution fmI rewritten in outer coordinates [fmI ]O expanded in Taylor series up
to the nth-term [fmI ]nO. The matching procedure usually follows a step by step
scheme starting with n = 1, m = 1 and then checking possible secondary e�ects
by setting n = 2, m = 1 before proceeding with n = 2, m = 2 and so on. In this
case, (3.61) shows the approximation of the inner solution to any order, because
it was not obtained by an asymptotic expansion. Hence, we can treat any desired
approximation at once. In (3.3), we calculated the surface speed up to the �rst
order of τ , which represents a 2-term outer solution (see (3.31)). For n = 2, m = 2
the matching steps are presented in the following:

• 2-term outer solution in outer coordinates

uso
2
O ∼ 1 + τ

(
1

2π (1− x+ ε)2 [ ε ( (1− x+ ε) ( 11 + 3x ( 2x

− 5− 2ε ) + 7ε ) + 2ε
(
ε2 − 1

)
(ln (ε)− ln (1 + ε)) ] (3.63)

+
ln |x| − ln |1− x|
π (1− x+ ε)2 [ (x− 1) ( 3x3ε− 3x2ε (3 + 2ε)

− (1 + ε) (1 + ε (4 + ε)) + x (1 + ε) (1 + ε (8 + 3ε)) ) ]

)
,

• rewritten in inner coordinates:

[
uso

2
O

]
I
∼ 1 + τ

(
1

2π (1− e−1/τxi + ε)
2 [ ε (

(
1− e−1/τxi + ε

)
( 11

+ 3e−1/τxi
(
2e−1/τxi − 5− 2ε

)
+ 7ε ) + 2ε ( ε2

− 1 ) (ln (ε)− ln (1 + ε)) ] (3.64)

+
ln
(
e−1/τ |x|

)
− ln

∣∣1− e−1/τxi
∣∣

π (1− e−1/τxi + ε)
2 [

(
e−1/τxi − 1

)
( 3e−3/τx3

i ε

− 3e−2/τx2
i ε (3 + 2ε)− (1 + ε) (1 + ε (4 + ε))

+ e−1/τxi (1 + ε) (1 + ε (8 + 3ε)) ) ]

)
,
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3 Potential �ow past thin airfoil

• expanded in Taylor series and truncated after the 2nd term (�rst order of τ):

[
uso

2
O

]2
I
∼
(

1− 2 + 8ε+ 2ε2

2π(1 + ε)

)
+

τ

2π(1 + ε)
[ 2(1 + ε(4 + ε)) ln |xi|+ ε ( 11 + 7ε (3.65)

+ 2(ε− 1)ε(ln(ε)− ln(1 + ε)) ) ] ,

. . . once more we need to rewrite this result in outer coordinates because the
�nal comparison of the two results according to (3.62) can only be done in
one coordinate system! Thus we �nd:[[

uso
2
O

]2
I

]
O
∼ 1 +

τ

2π(1 + ε)
[ 2(1 + ε(4 + ε)) ln |x|+ ε(11 + 7ε)

+ 2(ε− 1)ε2(ln(ε)− ln(1 + ε)) ] , (3.66)

• inner solution in inner coordinates:

usi
2
I ∼ Uix

arctan(τ(3ε
(1−ε)(1+2ε)

1+ε ))
π−arctan(τ(3ε

(1−ε)(1+2ε)
1+ε ))

i , (3.67)

• rewritten in outer coordinates:

[
usi

2
I

]
O
∼ Ui(e

1/τx)

arctan(τ(3ε
(1−ε)(1+2ε)

1+ε ))
π−arctan(τ(3ε

(1−ε)(1+2ε)
1+ε )) , (3.68)

• expanded in Taylor series and truncated after the 2nd term (�rst order of τ):

[
usi

2
I

]2
O
∼ Uie

1+4ε+ε2

π+πε

(
1 + τ

(1 + 4ε+ ε2)2 + (π(1 + ε)(1 + 4ε+ ε2)) ln |x|
π2(1 + ε)2

)
.

(3.69)

Now we need to equate (3.66) and (3.69) to obtain the unknown constant Ui (up
to the �rst order of τ , because we only matched with n = 2, m = 2 and therefore
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in higher order, Ui still contains the outer variable x):

Ui ∼ e−
1+4ε+ε2

π+πε

(
1 +

τ

2π(1 + ε)
[ ε(11 + 7ε) + 2(1 + ε(4 + ε)) ln |x|

+ 2(ε− 1)ε2(ln(ε)− ln(1 + ε)) ]

)(
1− τ

π2(1 + ε)2
[ ( 1

+ 4ε+ ε2 )2 + (π(1 + ε)(1 + 4ε+ ε2)) ln |x| ]
)

∼ e−
1+4ε+ε2

π+πε

(
1 +

τ

2π2(1 + ε)2
[ ε(π(1 + ε)(11 + 7ε)− 2(4 + ε)(2 + ε(4 + ε)))

+ 2πε2(ε2 − 1)(ln(ε)− ln(1 + ε))− 2 ]

)
+O(τ 2).

(3.70)

3.5 Compound solution

At this point the inner and the outer solution are both determined. However, for
a numerical evaluation of the obtained functions, as required for the investigation
of the boundary layer in the following, we need to combine them into a composite
approximation (compound solution) of the surface speed, which is uniformly valid
in the whole x-range [0, 1] of the half-body. This is possible, if we assume that the
ranges of validity of the outer and inner solution overlap in an intermediate range
according to Kaplun's extension theorem, where both solutions tend to the same
function for τ → 0 (overlap region).

There are several methods to obtain a compound solution, which cannot be con-
sidered to be distinct. Nevertheless each such uniformly valid solution, no matter
how it was obtained, must be equivalent to the inner solution within the inner
region and to the outer solution within the outer region. Widely used are the mul-
tiplicative and the additive method (see e. g. [8]). Using the notation explained in
3.4.3 we can formulate them by

additive method: f (n,m) = fnO + fmI − [fmI ]nO , (3.71)

multiplicative method: f (n,m) =
fnOf

m
I

[fmI ]nO
(3.72)
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where [fmI ]nO represents the common part of the outer and inner solution (in the
overlap region).

Both can be justi�ed expanding the right hand side with �xed outer coordinates
reproducing the outer solution and similarly using (3.62) with �xed inner coordi-
nates reproducing the inner solution except of higher order terms (h.o.t.). Doing
so, we get

additive method: fnO + [fmI ]nO + h.o.t.− [fmI ]nO = fnO + h.o.t., (3.73)

[fnO]mI + h.o.t.+ fmI − [fmI ]nO = fmI + h.o.t.,

multiplicative method:
fnO ([fmI ]nO + h.o.t.)

[fmI ]nO
= fnO, (3.74)

([fnO]mI + h.o.t.) fmI
[fmI ]nO

= fmI .

In some cases both of the methods can lead to an incorrect solution (see [8]). We
have to assure that the higher order terms in (3.73) and (3.74), which we neglect,
would not become in�nite and thus crucial for any value of the independent vari-
able. Furthermore, the multiplicative method cannot be used, if the common part
of the solutions shows a root for one or more values of the independent variable,
because in that case the higher order terms cannot be neglected and thus the com-
mon part does not cancel out of the equation (3.74). Obviously, in this situation,
we would not obtain fmI and fnO, respectively. Moreover, the zero in the denomi-
nator would result in a singularity.

In the present case the logarithm in the common part of the solutions causes
the multiplicative method to be inappropriate in the sense outlined above and
therefore we have to use the additive method (3.71) to formulate the compound
solution. We need to sum up (3.63) and (3.68) and subtract the common part
stated in (3.69) after substituting Ui according to (3.70). Here we have to keep
in mind, that we formulate a �rst order approximation (O(τ)) and so we have to
leave out higher order terms arriving from substituting Ui in (3.69), which is also
indicated by the n in the common part [fmI ]nO.
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Here the compound solution u
(n,m)
s with n = 2 and m = 2 is found to be:

u(2,2)
s (x) = 1 + e−

1+4ε+ε2

π+πε

(
e

1
τ x
) arctan(τ(3ε

(1−ε)(1+2ε)
1+ε ))

π−arctan(τ(3ε
(1−ε)(1+2ε)

1+ε ))
(

1

+
τ

2π2(1 + ε)2
[ ε(π(1 + ε)(11 + 7ε)− 2(4 + ε)(2 + ε(4 + ε)))

+ 2πε2(ε2 − 1)(ln(ε)− ln(1 + ε))− 2 ]

)

− ln |1− x|
(π(1 + ε)(1− x+ ε)2)

[ τ(x− 1)(1 + ε) ( 3x3ε− 3x2ε(3 + 2ε)

− (1 + ε)(1 + ε(4 + ε)) + x(1 + ε)(1 + ε(8 + 3ε)) ) ] (3.75)

+
x ln |x|

(π(1 + ε)(1− x+ ε)2)
[ τε ( 3x3(1 + ε)− 6x2(1 + ε)(2 + ε)

− 2(1 + ε)(3 + ε)(1 + 2ε) + x(5 + 3ε)(3 + ε(5 + ε)) ) ]

− 1

(π(1 + ε)(1− x+ ε)2)
[ π(1 + ε)(1− x+ ε)2 + x ( x

− ε− 1 ) ε(3x(1 + ε)− (2 + ε)(1 + 3ε))τ + x(ε− 1)ε2 ( x

− 2(1 + ε) ) τ (ln (ε)− ln (1 + ε)) ] .

Evidently the singularity at the leading edge disappeared, compared to (3.63). All
terms containing ln |x| are multiplied by some power of x bigger than one and

limx→0 u
(2,2)
s (x) = 0 (see Figure 3.4)3, which we can see even clearer setting ε = 1

or k = 0, whereby we obtain the simpler expression

3Note, that throughout this chapter a uniform color code is used for di�erent k to facilitate
comparison of the various solutions. A new independent color code will be used in chapter 4 for
the presentation of the boundary layer behavior.
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u(2,2)
s (x) |ε=1 = U

(
e−3/π

(
e1/τx

) arctan(3τ)
π−arctan(3τ)

(
1 +

(−72 + 36π)τ

8π2

)
(3.76)

− τ(3x− 3(x− 1)2 ln |1− x|+ 3(x− 2)x ln |x|)
π

)
.

Furthermore, with ε→ 0 or k → −∞ we get

u(2,2)
s (x) |ε→0 =

e
−πτ+(π+τ) arctan(τ)
πτ(π−arctan(τ)) x

arctan(τ)
π−arctan(τ) (π2 − τ)− πτ ln |x− 1|

π2
. (3.77)

Whereas the presented compound solution is very accurate within the inner region
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Figure 3.4: Velocity perturbation, compound solution lim
x→0

(us(x) − 1) = −1,

τ = 0.1.

(see Figure 3.5), in outer region the accuracy is a bit lower improving as k → −∞.
This may be due to the fact that we approximated the sharp edge at x = 0 with
the slope of the tangent at that point, τT ′(0, ε), and in the limit of k → −∞ the
ramp function T (x) degenerates to a linear function showing exactly the assumed
slope. However, it can be seen in Figure 3.6 that the inaccuracy does not exceed
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the magnitude of τ , which means that up to the �rst order of τ , the approximation
is satisfactory also for the outer region. Moreover Figures 3.7(a) and 3.7(b) are
showing the dependence of the accuracy of the compound solution on the thickness
parameter τ . It increases as τ → 0.

k = 0

-2
-4

-10
k = -¥

Τ = 0.1

10.5 1.50 2

-0.5

-0.25

-0.75

-1

-1.1

0

10.5 1.50 2

-0.5

-0.25

-0.75

-1

-1.1

0

10
-4 x

u
s
-

1
,
u

s i
-

1

Figure 3.5: Velocity perturbation, compound solution (solid line) compared to the
inner solution (dashed line),τ = 0.1.
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Figure 3.7: Improving accuracy of the compound solution with decreasing thick-
ness parameter τ .
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4 Behavior of the boundary layer

4.1 First order boundary layer theory

Until now, we assumed a potential �ow to �nd an approximation for the velocity
distribution along the given family of half-bodies. In vicinity of the boundaries of
a �ow �eld, such as solid walls, this approximation is not longer valid. This is due
to the no-slip condition at the wall which causes high velocity gradients normal to
the wall ∂u/∂y. On the other hand in some distance of the wall, depending on the
Reynolds number, the velocity distribution has to match with the external �ow,
which is only slightly di�erent to the undisturbed oncoming �ow (we obtained the
results by asymptotic expansion assuming very small disturbances in chapter 3).

The area between the solid surface of the half-body and the surrounding, ap-
proximately frictionless �ow is called boundary layer and the concept to divide a
�ow �eld into these two regions to account for friction only in the immediate neigh-
borhood of a solid wall or, more generally, of an interface between two di�erent
�ow �elds1 was �rst introduced by Ludwig Prandtl in 1904 and led to a signi�cant
simpli�cation of the governing equations. This is possible due to an estimate of
the magnitude of each term of the Navier-Stokes equations, assuming very large
Reynolds numbers, which allows for dropping terms which are considered small
compared to others. A short description of the derivation of the partial di�eren-
tial equation, which was �nally solved numerically, is shown in section 4.2 for a
better understanding of the whole strategy and a justi�cation for the application
of this theory. A more detailed presentation of the whole theory (including the
second order) can be found in [3] or [7].

4.2 Derivation of the Prandtl equation

We start with the dimensionless Navier-Stokes equations for a steady �ow, shown
in (2.4a) to (2.4b), using a coordinate system, where the x-axis is parallel to the

1Such an interface occurs for example also between two frictionless �ow �elds with di�erent
velocities. [3]
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4 Behavior of the boundary layer

oncoming �ow and the y-axis is perpendicular to the surface. Hence, we have
a nonlinear system of equations for the three unknown functions ub = ub(x, y),
vb = vb(x, y), and p = p(x, y), which are

Continuity equation:
∂ub
∂x

+
∂vb
∂y

= 0, (4.1a)

Equation of motion:

x-direction: ub
∂ub
∂x

+ vb
∂ub
∂y

= −∂p
∂x

+
1

Re

(
∂2ub
∂x2

+
∂2ub
∂y2

)
, (4.1b)

y-direction: ub
∂vb
∂x

+ vb
∂vb
∂y

= −∂p
∂y

+
1

Re

(
∂2vb
∂x2

+
∂2vb
∂y2

)
, (4.1c)

where the index 'b' is used to distinguish between the velocity �eld and compo-
nents within the potential �ow and the boundary layer.

The equations of motion show the singular character of this theory. In case
of Re → ∞, the terms containing the second derivative of the velocity tend to
zero and thus we should choose an asymptotic expansion as an ansatz for the
quantities similar to the thin airfoil expansion in section 3.2 with an appropriate
perturbation parameter. However, in the present study we consider only the �rst
order, which means, that we just need to 'scale the normal coordinate' to account
for the slenderness of the boundary layer. Thus, we have to make an estimate of
the thickness of the boundary layer, which we denote with ∆. Considering the
continuity equation (4.1a) we can conclude that, if ∂ub/∂x is of order unity and
y of order O(∆), also vb is of O(∆). If we want to account for friction in the
boundary layer, the viscous forces must be of the same order as the inertia forces.
Due to (4.1b), this only holds if ∆ ∼ 1/

√
Re, because all terms on the left as well

as ∂p/∂x are of order unity. Consequently, the quantities in the normal direction
have to be scaled accordingly, which we do by setting

ȳ = y
√
Re and v̄b = vb

√
Re. (4.2)

Still accounting for the order of magnitude of the terms, we can see that the viscous
term in x-direction in (4.1b) can be neglected with respect to one in y-direction.
Integrating equation (4.1c) with respect to y reveals, that the pressure increase
p across the thin layer is of order O(∆2). Hence, in leading order it is negligible
and we can therefore assume that the pressure doesn't change in this direction. It
remains nearly the same from the outer edge of the boundary layer, where it must
match with the pressure of the external potential �ow, down to the surface and
must therefore be de�ned through (3.76). Obviously (4.1b) at the interface to the
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4 Behavior of the boundary layer

potential �ow, where viscous forces are neglected and the tangential condition is
satis�ed, becomes

us
∂us
∂x

= −∂p
∂x
, (4.3)

which in integrated form corresponds to the Bernoulli equation, shown in (2.8). If
we consider p(x) to be a known function in the sense outlined above, it means that
a third equation is not needed any more and that the system of three equations
(4.1a) to (4.1c) reduces to a system of just two equations for ub and v̄b. Moreover,
we changed the type of the equation in x-direction, (4.1b), to parabolic by drop-
ping one viscous term, which is very convenient for a numerical evaluation.

The remaining system of equations to be solved, using the scaled coordinates, is
therefore (Prandtl equation)

Continuity equation:
∂ub
∂x

+
∂v̄b
∂ȳ

= 0, (4.4a)

Equation of motion in x-direction: ub
∂ub
∂x

+ v̄b
∂ub
∂ȳ

= −∂p
∂x

+
∂2ub
∂ȳ2

, (4.4b)

whereby we have to keep in mind that ∂p/∂ȳ = 0 (equation of motion in y-
direction).

Now we introduce the dimensionless stream-function ψ, scaled with
√
Re/L̃Ũ∞,

which satis�es the continuity equation identically due to its de�nition by

∂ψ

∂x
= −v̄b and

∂ψ

∂ȳ
= ub. (4.5)

Out of (4.4a) and (4.4b) using ψ we obtain2

ububx + v̄bubȳ = ususx + ubȳȳ. (4.6)

The last step is to bring the scaling function of the thickness-growth of the bound-
ary layer, δ(x),into this equation by de�ning a new variable in y-direction repre-
senting a 'pseudo-similarity'3 variable η = ȳ/δ(x) and setting

ψ = us(x)δ(x)f(x, η). (4.7)

2please note that to improve readability now the lower indexes 'x' and 'y' (and in the following
also 'η') indicate the direction of the respective derivative

3'pseudo' because f(x, η) 6= f(η), see also [1]
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4 Behavior of the boundary layer

Finally, using the product rule to obtain the respective derivatives, we obtain a
parabolic (in the stream-wise direction) partial di�erential equation to be solved
for the boundary layer,

fηηη + (usδδx + usxδ
2)ffηη + usxδ

2(1− f 2
η ) + usδ

2(fxfηη − fηfxη) = 0, (4.8)

with the boundary conditions

η = 0: f = fη = 0, η →∞: fη → 1. (4.9)

From setting (usδδx + usxδ
2) = 1 in (4.8) we get

δ(x) =
1

us(x)

√
2

∫ x

0

us(s)ds, (4.10)

as a de�nition of the scaling function δ(x).

Thus we can de�ne the quantities of interest, the wall shear stress and the dis-
placement thickness, which are characteristic for the investigated boundary layer
as

σ(x) =
us(x)

δ(x)
fηη(x, 0), (4.11)

and

δ∗(x) =

∫ ∞
0

(
1− ub(x, ȳ)

us(x)

)
dȳ = δ(x) lim

η→∞
(η − f). (4.12)

4.2.1 Falkner-Skan equation

Solving the boundary layer equation numerically, requires beside the boundary
conditions also an initial condition. In the present case such an initial condition
represents the solution of the Falkner-Skan equation, which is a similar solution
and one of the very few, known exact solutions of the boundary layer equation.
A short discussion of its derivation is presented in this subsection to justify its
suitability.

A similar solution requires f(x, η) ≡ f(η), with η as the similarity variable.
Thus, to �nd such a solution we need to transfer the partial di�erential equation
given in (4.8) into an ordinary di�erential equation. This is achieved if we assume,
that

usxδ
2 = β, (4.13)

where β is a constant, because only in this case there exist solutions, f(η), which
are independent of x and which therefore cause the terms containing mixed partial
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4 Behavior of the boundary layer

derivatives of f to disappear. Considering (4.13) and (4.10) in (4.8) we obtain the
Falkner-Skan equation

fηηη + ffηη + β(1− f 2
η ) = 0, (4.14)

which was �rst deduced by V. M. Falkner and S. W. Skan (see [7]).

A suitable potential �ow, which satis�es the assumption (4.13) is obtained if the
velocity can be expressed through a power-law as

us = axm, (4.15)

where a andm are constant. It can be found in the neighborhood of the stagnation
point on a wedge with the aperture angle βπ, where

β =
2m

m+ 1
. (4.16)

One can easily proof it using the de�nition of δ in (4.10). Thus, in the present
case, as for the approximation of the sharp leading edge we used a wedge with
the aperture angle, arctan(α(τε)), we have to set β = arctan(α(τε))/π to obtain
an appropriate initial condition solving (4.14) in the �rst step of the algorithm.
Moreover, we can estimate the initial value of the wall shear stress at x = 0 by
using the approximation outlined. Substituting (4.15) into (4.10) and (4.11) we
obtain

δFS(x) = x
1−m

2

√
2

a(m+ 1)
, (4.17)

and

σFS(x) = x
3m−1

2

√
1 +m

2
a3, (4.18)

for the scaling function and the wall shear stress, respectively. Obviously as x
tends to zero the wall shear stress tends to in�nity for all m < 1

3
.

Particular cases of the solution of the Falkner-Skan equation are found by setting
β = 1 (m = 1) or β = 0 (m = 0), the former representing a two-dimensional stag-
nation �ow, the letter describing a �ow along a �at plate where the corresponding
equation is the well known Blasius equation

fηηη + ffηη = 0. (4.19)

For the �at plate the displacement thickness is found to be

δ∗p(x) = δ(x)

∫ ∞
0

(1− fη)dη =
√

2x lim
η→∞

(η − f). (4.20)
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4 Behavior of the boundary layer

4.3 Numerical solution of the Prandtl equation

Simplifying the Navier-Stokes equations, we have obtained the less complicated
equation (4.8) in the previous section. Nevertheless, the non-linearity of the orig-
inal system of equations has been preserved, which excludes the possibility of an
analytical solution due to the complexity of the potential solution in the present
case. In fact the Prandtl equation can be solved analytically only for very few
speci�c examples including e. g. the �ow along a �at plate or a semi-in�nite wedge
(with the corresponding equations (4.19) and (4.14), respectively). The favorable
type of the Prandtl equation, however, makes it easy to solve it numerically, be-
cause a parabolic character in stream-wise direction means that the information
is carried downstream only. Thus, to solve it, an initial condition is necessary
(a distribution of velocity for the cross-stream plane at x = 0) and we can then
'march' downstream to calculate the new pro�le in each step and take it as initial
condition for the next step.

Whereas in the x-direction the common way of using �nite di�erence equations
to approximate the derivatives seems satisfying, it was shown in [5] that in the
perpendicular direction very good results can be obtained using di�erentiation
matrices applied on Chebyshev-Gauss-Lobatto points (see [9]), with the advantage
of a less time consuming algorithm. In fact, to obtain the results, presented in
section 4.4, only minor changes have been applied to the Matlab-code presented
in [5], where also algorithms from [9] are implemented.

Considering Figure 3.4, it can be seen that the velocity of the potential �ow for
x→ 0 shows very high gradients (in fact limx→0 u

′
s(x) =∞). As we need to start

at x = 0 with an initial guess and proceed stream-wise, theoretically an in�nite
number of steps in the vicinity of x = 0 are needed. Also the calculated shear
stress at the surface according to (4.18) is theoretically in�nite at x = 0 as m is
found to be below 1/3 for all k in the present case. The fact that we cannot satisfy
this requirements in the numerical simulation, leads to an initial error, which is
noticeable through oscillations of the solution. Therefore, the computational mesh
in the x-direction was re�ned in this region using 200 steps with a step size of 10−40

on the beginning of the calculation, whereby the rest was analyzed with a step size
of 10−3. Some re�nement was also needed in vicinity of the curvature jump at
x = 1 to derive the �gures shown in section 4.4 (step size 10−4). Both re�nements
were done locally and thus the originally homogenous mesh in x-direction used for
the analysis was at least piece-wise homogeneous in the present case. However,
the re�nement in the x-direction could still be improved to increase the stability
of the algorithm.
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4 Behavior of the boundary layer

Another change in the existing code was needed to account for the sharp edge of
the ramp function at x = 0 (initial condition). The presentation of the algorithm
shown in [5] is done for a �ow within a channel4 and therefore for the initial guess
at x = 0 an approximation was done solving the Blasius-equation. However, for
the given half-bodies the Falkner-Skan equation was more accurate as described
in section 4.2.1.

Finally, to compute the di�erentiation matrices for the Chebyshev-Gauss-Lobatto
points a simpler algorithm ('cheb'-algorithm) instead of the more general 'poldif'-
algorithm was applied (both are presented in [9]).

4.4 Presentation of the results

Using the algorithm from [5], described in section 4.3 and the compound solution
of the potential �ow, shown in section 3.5, distributions of the wall shear stress,
σ(x), at the surface of the half-bodies and the displacement thickness, δ∗(x), of
the boundary layer were derived for curvature jumps k = (0 ÷ −2.8). The latter
is relevant in higher order theory and physically meaningful as it describes the
distance by which the external potential �ow is displaced outwards (see [7]).

The global behavior of the boundary layer as x → ∞ for the marginal half-
body with k = 0 (continuous curvature along the whole surface) is compared
in Figure 4.1 to the behavior of a boundary layer, which occurs in a �ow along
a �at plate δ∗p(x). Due to the fact, that beyond x = 1 the thickness-function
consists of a horizontal line, x → ∞ implies u′s(x) → 0 and therefore, it can be
seen by comparison of (4.12) and (4.20), considering (4.10), that as the present
solution must converge to the Blasius solution. The logarithmic plot shows, that
the slope corresponding to δ∗(x) is increasing slightly beyond x = 1, but to observe
an evident convergence of the solution we would have to increase the calculated
domain signi�cantly.

The results5 for di�erent k are shown in Figures 4.2 to 4.4 whereas Figure 4.5
shows the region of interest in the vicinity of the curvature jump at x = 1.

4Obviously, considering the Matlab-code shown in [5], also the input/output arguments and
the de�nition of the potential velocity were changed appropriately to the present problem.

5Note, that for a better orientation a uniform color code is used for di�erent k throughout
this section.
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Figure 4.1: Behaviour of the boundary layer for a half-body with a continuous
curvature of the surface and for a �at plate.
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Figure 4.2: Wall shear stress σ(x) and displacement thickness δ∗(x) for di�erent k,
τ = 0.1.
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Figure 4.3: Wall shear stress σ(x) and displacement thickness δ∗(x) for di�erent k,
τ = 0.1.
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Figure 4.4: Wall shear stress σ(x) and displacement thickness δ∗(x) for di�erent k,
τ = 0.1.
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Figure 4.5: Immediate vicinity of the curvature jump for di�erent k, τ = 0.1.

40



4 Behavior of the boundary layer

It can be seen by comparison of the di�erent curves that a Goldstein-singularity
occurring at x = 1, visible through a vertical tangent, is more evident as k → −∞.
Although, it seems that for a small discontinuity, the slope at x = 1 is rather mod-
est instead of in�nite, a re�nement of the mesh in x-direction shows that the
singularity occurs independently of the magnitude of the curvature discontinuity.
It can be seen by comparison of Figure 4.6(a) and Figure 4.6(b), showing the shear
stress for di�erent k, that it is more evident the smaller the step size is. Obviously,
σ(1) → 0 for an in�nitely �ne mesh. It is essential to keep in mind, that the nu-
merical values of σ(x) and δ(x) at x = 1 and in its immediate proximity cannot be
interpreted as a valid approximation for the real values any more. The occurrence
of the Goldstein-sigularity indicates a break-down of the classical boundary layer
theory. At this point the assumption of a prescribed external, frictionless �ow
independent of the boundary layer is violated. Moreover, the presented classical
theory represents a concept which is incapable of prediction of phenomena like
boundary layer separation.

The analysis of discontinuities in the surface curvature beyond k = −2.8 led to
a break-down of the algorithm due to negative values of the wall shear stress and
thus to negative 'exit�ags' of the solver, which means, that the returned values
were not trustworthy any more. In the case of k = −2.8, the algorithm terminated
beyond x = 1 only when the number of iterations was exceeded, which explains the
oscillations visible in Figure 4.7 showing this limiting case. Also the oscillations
due to the initial error increased with increasing curvature as described in section
4.3.
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x = 1, τ = 0.1.
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Figure 4.7: Immediate vicinity of the curvature jump with k = −2.8.
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5 Conclusion and outlook

This study presents a detailed description of the computation procedure to obtain
solutions for di�erent regions of a high Reynolds number �ow �eld around a thin
body. On one hand, for the nearly frictionless �ow in some distance of the wall,
incompressible potential theory in the small perturbation formulation was used
and on the other hand, a numerical solution of Prandtl's boundary layer equations
was sought in the immediate proximity of the surface. Moreover, in vicinity of the
leading edge stagnation point x = 0, where a singularity indicates the failure of
the perturbation method, the sharp edge is approximated by a wedge. It is, fur-
thermore, shown how to obtain analytically a potential solution, valid within this
small area, and how to match it to the thin airfoil solution to obtain a universally
valid approximation of the whole external �ow. Varying the curvature parameter
of the thickness-function, di�erent magnitudes of a curvature jump at the surface
of the analyzed body, beginning at zero (continuous curvature), were investigated.

The present work revealed that, independently of its magnitude, a discontinuous
curvature at the surface of a thin body leads to a break-down of the �rst order
boundary layer theory. Although this result may not be extremely surprising, it
outlines the importance of the interaction between the surrounding, inviscid �ow
and the viscous boundary layer in the case of a curvature jump. To account for
this character of the �ow further studies are needed. It will be necessary to �nd
an appropriate scaling for the region of strong viscous interaction (presumedly a
triple-deck problem) and to associate the magnitude of the curvature jump to the
Reynolds number to be able to observe phenomena like �ow separation.

Extending the study into the supersonic �ow regime and therefore accounting
for compressibility e�ects will �nally show, how to exploit the investigated e�ects
of a curvature jump to improve the design of smart structures like adaptive aircraft
wings providing high lift performance.

Moreover, through the possibility of comparison, the theoretical results will ref-
erence the accuracy of numerical simulations provided by advanced computational
�uid dynamics (CFD) algorithms.
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