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A Primer of Geodesy 
0 Preface 

I n recent years Geodesy has become an essential part of the background of GIS. It 
originated in attempts to justify rigorously certain operational rules. The fol lowing essay 
is designed for use as a supplement to textbooks on GIS. To use geodetic ideas and 
techniques, the user must know what he is doing and why, not merely how. The authors 
thought the best approach to be a mixture of algebraic, graphical , and numerical 
presentation of the topics d iscussed. A set of solved problems serves to i l lustrate the 
theory. It is recommended to work them out independently on a PC or by hand 
computation with a pocket calculator. We hope the text is appropriate for a general 
aud ience. 

All geodetic data are affected by errors, ideally by random errors only. General ly, the 
data are the result of an adjustment process based on the theory of probability. The 
fol lowing treatise does not deal with data quality but endeavours to give some 
mathematical background for the correct handling of geodetic data in geoinformation 
systems. The free accessibil ity to automatically recording instruments and to relevant 
software animated people of d ifferent background to work in G IS ,  many of them without 
even a basic knowledge of geodesy. The worst consequence often is the total absence 
of any statement on data quality, and about what is called 'geodetic datum', i .e. the 
coordinate and height system in use. Problems also occur, when data have to be l inked 
which are based on d ifferent geodetic datums or d ifferent map projections. It is 
essential always to check the quality of data, and which system they are referred to. 
The fol lowing essay is meant to help avoiding loss of information and accuracy between 
the acquisition of data and their processing in GISs. 

Geodesy strictly works within the SI-system of physical units [m-kg-s]. Though modern 
techniques of position fixing with the Global Positioning System (GPS) have to account 
for relativistic effects, the geometrical and physical structure of our world of cognition is 
represented sufficiently accurate by Euclidian geometry and Newtonian mechanics. The 
reader is asked always to remember that truth can only be approximated, sometimes 
more, sometimes less, and that bad data can't be improved in G IS. 

1 Geodesy in General 

Geodesy is a natural as well as a technical science. It is that branch of applied 
mathematics and physics which determines, by observations and measurements, the 
size and shape of the Earth, its gravity field , and the coordinates of points in special 
coordinate systems. Concerning geoinformatics we might say: Geodesy col lects and 
administrates al l data necessary for the description of the geometrical and physical 
structure of the Earth's surface and of near-earth space, and provides these data in 
analogous or digital form to potential users. The definition and realization of coordinate 
systems and their interrelations are basic problems of geodesy [1 ] ,  [2] , [3] , [4]. 
Geodesy deals with no less than nine d ifferent surfaces (Figure 1.1): The solid Earth 
surface {lithosphere), the sea surface (hydrosphere), the surface of the ice caps 
(cryosphere), the manifold of equipotential surfaces (level surfaces), the geoid , the 
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telluroid , the quasi-geoid , several individual reference ell ipsoids ,  and the Mean Earth 
Ell ipsoid (MEE). 

Level Surface 

· ...... ·· 

Mean Earth Ellipsoid 

Figure 1.1 

At least five of these surfaces are of relevance for GISs, i .e. the physical Earth surface, 
the MEE and individual ell ipsoids as reference surfaces for position , the geoid and the 
quasi-geoid as reference surfaces for heights. Monitoring of the sea surface and the 
surface of the ice caps becomes increasingly important in view of a possible climate 
change, a real challenge for satell ite altimetry. 

1.1 Methodical Setup of Geodesy 

The methodical setup of geodesy is demonstrated in a simple d iagram. 

GEODESY 

Mathematical Geodesy 
(including map projections) 

Physical Geodesy 
(gravity field research) 

Cosmic Geodesy 
(including satell ite 

positioning) 

National Surveys 
(including geoinformation systems) 

Plane Surveying 
(including civil engineering) 

Each of these partial d isciplines defines and uses special coordinate systems and runs 
its own data banks. Note! Contrary to surveying and because of the connection with 
time angles in geodesy are reckoned in degrees (24 h = 360° , 1 °  = 4 min). 

Depending on various demands the results of geodetic operations are represented in 
d ifferent models. There is a fundamental distinction between geodesy and surveying. 
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Whereas geodesy aims to determine the gravity field, surveying tries to abstract from its 
effects. I n  terms of information theory we can say: A signal for geodesy, is noise for 
surveying. We have to d istinguish between three stages of approximation for the figure 
of the Earth: The sphere, the el l ipsoid , and the geoid. A sphere of rad ius R = 6371  .0 km 
might suffice for many purposes. If it is used as a basis of a data bank this fact has to 
be made clear explicitly. As it is, the Earth's departure from a sphere is too great for 
geodesy. The next best approximation is the oblate ell ipsoid of revolution, occasional ly
but not qu ite correctly also named 'spheroid'. The ell ipsoid is simple enough so that 
computations are not overly difficult. 

Of great significance in geodesy are the level surfaces, i.e. surfaces of equal 
gravitational potential .  Geometrical ly they are defined as surfaces being everywhere 
normal to the direction of the plumb line. The consequence is that between two points 
on one and the same level surface water cannot flow, or put in other words, the surface 
of any l iquid in rest is part of a level surface. There is a particular one out of the infin ite 
manifold of level surfaces surrounding the Earth which nearly coincides with mean sea 
level , and that is named the 'Geoid' (the term was coined in the 1 9th century by the 
German mathematician Listing). 

On the continents the geoid runs inside the Earth's 
crust and it serves as a reference surface for a 
special height system. Because of visible and 
invisible mass irregularities the geoid is a very 
complicated surface which cannot be represented 
by an analytical equation but only by its d iscrete 
distances (the geoid undulations N) from a well Mean Earth Ellipsoid defined ellipsoid (Figure 1.2). Like the physical Earth 
surface the geoid is unsuitable as a mathematical 
model for computations. Yet, the detailed 
determination of the geoid is one of the most 
pressing and painstaking problems of geodesy. In 
the near future the global geoid may be known to 1 -Figure 1.2: Sketch of the MEE 2 cm with wave length of about 1 00 km. and the geoid, exaggerated 

As the geoid is warped, geodesy had to find an ell ipsoid which most nearly 
approximates the geoid with the least departure therefrom. The MEE (also called 'level 
el l ipsoid' ) is the closest reasonable approximation to the figure of the Earth , 
geometrical ly as wel l  as physically. It is a mathematically created artificial body, 
rigorously defined by only four parameters whose numerical valus are taken from the 
real Earth body: The semi-major axis a, the product of gravitational constant times 
mass of the Earth GE, the socalled dynamic flattening J2, and the angular velocity of 
the Earth rotation ro. All other parameters can rigorously be derived from these four 
quantities, l ike the geometric flattening f, the excentricity e2, the semi-minor axis b, the 
potential U0 and the gravity values at the equator and the poles. 

By historical and practical reasons every country uses its own regional 'reference 
ell ipsoid' . These reference ell ipsoids d iffer considerably from the MEE in d imension and 
in position with respect to the Earth body. While the MEE is a representative for the 
whole Earth, the reference el l ipsoids were only meant to approximate a particular 
region. Consequently, the d istances of the geoid from a reference el l ipsoid are called 
relative undulations, and those from the MEE absolute ones. The relative undulations 
usually amount to only a few meters, but the absolute undulations reach up to ± 1 00 m. 
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Nowadays the detai led knowledge of the geoid becomes increasingly important for 
large technical constructions l ike long tu nnels under mountain  ranges or for particle 
accelerators. 

...,..()Q:' 

7.:¥Qo;. 
0 

-::10:0 

l'SO: :2.40 

Figure 1.3: Global Geoid - EGM96 

... : ·-

lOO:.::r.n. 

1.2 Geodetic Models for GIS 

We have to d istinguish between several models as bases of geoinformation systems: 

G lobal geodetic 30-model 
(30-cartesian coordinates) 

30-hybrid model = 

= global or regional 20-geometric model (ell ipsoida l  coord inates) 
plus physical ly defined height model 

20-models obtained by conformal mapping onto the plane 

Classical geodesy frequently was cal led 'two-d imensional' because determinations of 
position and of height have been separate operations on principle. GPS now made the 
simultaneous determination of all three cartesian spatia l  coord inates possible. Yet, sti l l  
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20-surface ( i .e.  e l l ipsoidal)  coordinates have to be interposed as 30-cartesian 
coordinates can neither be d irectly converted into plane coordinates nor is it possible to 
derive techn ical ly useful heights from them. It is quite easy to derive heights above the 
MEE from GPS data .  But what you want, especial ly in navigation ,  are heights above 
sea level .  Those can only be obtained by a combination with the geoidal undulationes N 
(cf. Chapter 6). 

2 Coordinates and their Transformation 

Our world of cogn ition can be objectified as a sequence of events in  time and space. 
The term 'time' may be taken as an appropriate name for the world-wide connection of 
all events. Time is one-dimensiona l ,  space is three-dimensiona l ,  in order to pinpoint a 
location we need a triple of numbers cal led coordinates. Al l  material points are subject 
to motion, hence, coordinates are time-dependent on principle. The d istinction of time 
and position is fu ndamental :  A material body may occu py the same position at different 
times but never d ifferent positions at the same time, which fact sometimes is ignored. 

The laws of Newtonian mechanics are simple, however, on ly in  non-accelerated 
coordinate systems, soca lled ' inertia l  systems'. I n  order to talk  about terrestria l  systems 
we have to know how they are embedded in an inertial system. We recognize a 
hierarchy of coordinate systems with geodesy as regulating d iscipl ine. The su preme 
inertial system is real ized in good approximation in two ways: 

• By a conventional kinematic system fixed to a number of extra-galactic radio sources 
(quasars) ,  and to fu ndamental stars. This system presently is represented by a l ist of 
positions of more than 200 quasars at standard epoch 2000 .0 ,  and by the positions 
and proper motions of 1 1  8 21  8 stars of the Hipparcos Catalogue at epoch 1 991 .25. 
The precise positions of those extragalactic objects material ize the soca lled 
I nternational Celestial Reference Frame ( ICRF). The Hipparcos Catalogue provides 
only an optical reference l inked to the ICRF. 

• By a conventional dynamic system based on the dynamical properties of the motion 
of bodies of the solar system, i .e .  planets , the Moon ,  and artificial satel l ites. This 
system is real ized by the orbital ephemerides of the relevant object. 

Earth-fixed coord inate systems are not inertial because they are rotating. Rotating 
systems are characterized by the phenomenon of virtua l  forces (Coriol is and centrifugal 
force). 

I n  everyday l ife it is hard to d iscern between 
motion in an Earth-fixed and in  an inertial frame. 
However, the significant d istinction between inertial 
and terrestria l  systems can be demonstrated by 
the orbital motion of one of the NAVST AR 
satel l ites. Figure 2. 1 a shows the orbit of a GPS
satel l ite as seen in  the inertial system with the 
Earth rotating in the orbital plane. Figure 2. 1 b 
shows the identical orbit now seen from an Earth
fixed point of view. 

Any method which uses a set of numbers to fix a point or an object in space is cal led a 
coordinate system. We have to d istinguish between the ideal concept of such a system 
and its real ization in the physical world .  The first notion actual ly means the 'coord inate 

Figure 2.1a Figure 2.1b 
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(2. 1 )  

system', the second the 'coordinate frame'. The latter is represented by a set of 
fixpoints. The relative positions of fixpoints, however, is unknown unless the metric of 
the space extended by the coordinate system is given . This becomes obvious with the 
'natural coord inates' , which are the parameters of the gravity field: astronomical latitude 
and longitude, and potential d ifference. Without detailed knowledge of the metric of the 
gravity field one cannot calculate the d istance or the direction between two points. Even 
if the metric were known, calculations would be extremely d ifficult and not very 
accurate. 

I n  order to meet al l demands of potential users several coord inate systems are defined 
with preference of orthogonal systems. Not every coord inate system suits every 
demand. The definition of a coordinate system for a special purpose results from a 
convention of its users. Hence, we talk about 'conventional coord inate systems' . The 
simplest and widest used coordinate system is the orthogonal cartesian system. A point 
in its space is given by the position vector: 

{o if h= jwhere e · · = o ·· =e .· .I J I} 1 "f I I= J. 
As can be seen, the metric is that of Euclid ian space. It might be useful to mention that 
in problems connected with deformation analysis orthogonal systems are not best 
suited . Here, generalized systems should be used. The appropriate mathematical tool 
is tensor calculus [5] which is outside the scope of this treatise. 

2.1 Transformation of Cartesian Coordinate Systems 

Many problems in geodesy are nothing else than transformations of coordinate 
systems. Transformations of cartesian systems are generally composed of a translation 
of the origin , of one or more rotations, and of at least one scale factor. Such 
transformations are subject to certain conditions, l ike: conservation of stra ight lines, of 
parallelism, and of proportions. The most general transformation is a l inear mapping 
called affine transformation. It satisfies the above conditions, but the scale depends on 
the orientation of a l ine, i .e. parallel l ines have the same scale. Angles and thus the 
form of a figure, however, are changed . Mathematically the affine transformation is 
g iven by 1 2  parameters, for whose unique (minimal) determination four common points 
in both systems must be known. For each point we have the equations: 

transformations are not much used in geodesy where conformal transformations are 

(2.2) (;:]= (!;J + (::8 ::9 :::] . (;J.
z oz 833 z83 1 832 

t t 
translation vector rotation matrix 

The rotation matrix implicitly contains three scale factors. Therefore, affine 

preferred . Yet, (2.2) is very useful for determining approximate values of the 



8 

[* 

8 

-X
X1 -X2 + X3 

X1 

f 4 

Bretterbauer, Weber: A Primer of Geodesy 

parameters of the simil itude transformation , and of course, (2.2) should be used in 
deformation analysis. 

The constraint on the transformation can be tightend by demanding a conformal 
mapping , which conserves angles. Recently, Grafarend [6] gave a simple robust, 
conformal 1 0-parameter transformation near identity which leaves angles and d istance 
ratios locally unchanged. It is useful in special cases where only small rotation angles 
occur. Note that this method should only be applied in small areas and that it does not 
contain a change in scale. Let X= (x1,X2,X3]T, y = [y1.Y2.Y3f be the coord inates of the 
two systems to be transformed and t= [t1,t2,t3,t4,t5,t6,t7,t8,t9,t10]T the vector of the 
transformation-parameters. Then the following equation holds: 

(2.2a) 
t1 
t2 
f3] 

z 

f512 +X22 +X32 
-2X1X2 

-2X1X2 -2X12 2 2 -2X2X3
2 2 

z 

0 0 -X2 -X3 0 X1X3 

2X2X3 
X2 
X3 

1 0 X1 0 -X3 = y-x.. f5+ X2 -X32-2X1X30 1 0 X1 X2 - f7 
ta 
tg 
t10 

The transformation generally used in 
geodesy is the '?-parameter similitude 
transformation'. Here, as with the affine 
transformation, rotation angles of any size 
are permitted. There is only one scale 
factor, the transformation is conformal. 
First, we d iscuss only the rotations 
abstracting from the shift of the origin 
(Figure 2.2). 

For checking computations it is useful to 
remember that the rotation matrix is 
orthogonal, i .e.: 

(2.3) Figure 2.2 

A rotation is marked positive when executed counter-clockwise looking a long the axis 
towards the origin . A single rotation about the x-, or the y-, or the z-axis is 
mathematically expressed by one of the following matrices (abbreviating, 'c' stands for 
cosine and ' s' for sine). 
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If two orthogonal matrices are multiplied the product is an orthogonal matrix too, i .e .  the 
combination of two or three rotations again is a rotation . Note that in a succession of 
rotations the next rotation always is about the new axes. Generally, three rotations are 
performed. Principally, there are six possible successions of rotations, namely: 

When the first rotation is about the x-axis, the next about the new y-axis, and the third 
about the new z-axis then the total rotation matrix reads: 

(2 .5) 
SroxSroyCroz + CroxSroz - CroxSroyCroz + SroxSroz ]

-SroxSroySroz + CroxCroz cro xSro ySroz + sro xCroz . 
- sro x cro y CroxCroy 

Note! Different successions of rotations lead to different results as can be 
demonstrated by a simple example. A dice may be rotated by go0 about the y-axis (in 
the first plot perpendicular to the paper), and then again by go0 about the new z-axis 
(Figure 2.3a). I n  a second trial we swap the successions of rotations, the result being 
quite different (Figure 2.3b). 

z y z z 

• • • • • • • • • • 

oy oy ox oy • 0 • ozx z z x • x • y • • y• • • • • • 

x x 

Figur 2.3a Figur 2.3b 

By the way, three successive rotations about three axes can be substituted by one 
single rotation about one single axis which fact is of significance in robotics. This axis is 
found by asking for the manifold of points which by the original three rotations are 
mapped upon themselves. 

In  star-astronomy (not in satellite geodesy) only rotations occur, but in geodesy we also 
have to deal with a translation of the origin and with a scale factor m. Hence a complete 
7-parameter transformation reads: 
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©z
(2.7) 1 

'(2.6) [() [:�)+(1 +m)·R ·m or for short x = 8x +(1 +m)-R ·X. 

The scale factor m is to be introduced in ppm, i.e. mm per km. Equation (2.6) 

= 

represents what in geodesy is called the 'spatial Helmert-transformation'. In the 
geodetic literature it is also termed the 'Bursa-Wolf model'. When converting a local 
network into the geocentric system the rotations are strongly correlated with the 
components of the shift vector, because over the long distance to the geocenter a 
rotation nearly is identical with a translation. The socalled 'Molodensky-Badekas model'
avoids this trouble by reducing the coordinates to their barycenters, which corresponds 
to a shift. 

When converting a regional geodetic system into a global geocentric one the rotational 
angles generally are quite small (a few seconds of arc). In that case the total rotation 
matrix (2.5) reduces to the simple form (the angles, of course, have to be introduced in 
radians): 

However, one should make sure that the demanded accuracy is maintained by this 
simplification.

Sometimes a change in orientation of one or the other axis becomes necessary. This is 
achieved by 'mirror matrices': 

0
1 
OJ
0 , Sy= (0

1 51 7). sz = () 6 7 ).(2.8) 
0 1 0 0 1 0 0 -1 

2.2 Determination of Transformation Parameters 

The determination of the seven transformation parameters requires at least three 
identical points in both coordinate systems. The one set of coordinates may come from 
a classical triangulation net, the other one from GPS-observations. This gives nine 
linear equation for the seven unknowns, and we are confronted with a problem of least 
squares adjustment. We only consider the simplified case with small rotation angles 
(otherwise we had to introduce approximate values for the rotation angles). The set of 
equations reads: 

(2.9a) 
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First we have to linearize the product (1 + m)R neglecting terms small of second order: 

Now we apply the Molodensky-Badekas model by reducing the coordinates of both 
systems to their barycenters which fact is characterized by the subscript 's'. Then
equations (2.9a), fully developed, read: 

[ 1 COz
(1 + m ) -co2 1 

COy -COx 

Y» =mys + COxZs-rozXs + Ys·(2.9b) 
z» = mzs-COxY s + coyXs + Zs· 

The vector of corrections then is: 

1 0 0 Xs 0 -Zs Ys 
0 1 0 Ys Zs 0 -Xs TV= 
0 · (o, o, o, m,rox,coy,roz)0 1 Zs -Ys Xs 0 

-
x»-Xs 
Y»-Ys 
z»-Zs 

• 

=Au-f.(2.10) 

(2.1 1 ) 

The dots indicate that the matrix and the vector have to be extended accordingly 
depending on the number of identical points. For three identical points A is a 9 7x
matrix and f a 9-element vector, in case of four identical points we have a 12 x 7-matrix
and a 1 2-element vector, a.s.o. The rotation angles and the scale factor then follow 
from the relation: 

The shift vector finally results from the difference: barycenter of the target system minus 
barycenter of the original one (i.e. primed system minus unprimed). 

2.3 Homogeneous Coordinates 

By introducing socalled 'homogeneous coordinates' the three operations: rotation, 
translation, and scaling can be put into a consistent form quite convenient for 
programming. A point in 30-space can be represented by a quadrupel of numbers 
which
between cartesian and homogeneous coordinates are then given by: 

are determined only up to a common factor: x, y, z � r, s, t, u. The interrelation 

(2.1 2) x=s/r , y=t/r , z=u/r . 

The new coordinates are termed 'homogeneous' because all algebraic relations in 
cartesian coordinates when converted to homogeneous coordinates become 
homogeneous. The simplest form is obtained if we put r 1 . Then a point in 30-space = 
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is represented by the vector x x(1 , x, y z) . The idea of this measure is to put the?
parameter transformation in a very concise form where only products of 4 x 4-matrices
occur. The matrices for rotation 

= 

Rx, Ry, 

, 

Rz and those for shift T and scale M then
become: 

1 0 0 0 
0
1 

Croy -Sroy Rz= 
0 1 0 0Rx= ' Ry= '0 0 Crox Srox 0 0 0 0

0 Sroy Croy0 0 -Srox Crox 0 0 0 

1 0 0 0 0 

1 0 0 0
0

0 0 0
0
1
0 

1 0 0
0 +m 01 0 0 0 

T= M=B 
ox 
y 0 1 o' 0 0 +m 0 

oz 0 0 1 0 0 0 1+m 

The total transformation now reads: 

(2.1 3a) x' = T ·M·Rz ·Ry ·Rx ·X. 

3 The Hierarchy of Coordinate Systems 

Modern geodesy works in an Earth-fixed geocentric cartesian coordinate system. The 
geocenter can be determined only indirectly but quite accurately by dynamic methods of 
satellite geodesy. As the rotational axis of the Earth body is subject to complicated 
motions we have to distinguish between several coordinate systems: 

The Conventional Inertial System (CIS). The origin is in the geocenter, its zO-axis • 

coincides with the axis of angular momentum at the standard epoch J2000.0 (2000, 
January 1 , 12h UT), the x°-axis points to the vernal equinox as represented by the 
positions of the fundamental quasars. These celestial fixpoints form the Conventional 
Inertial Reference Frame (IRF). 

The Conventional Terrestrial System (CTS). The origin is in the geocenter, its Z• 

axis points to the mean pole of the years 1900 - 1 905 (called Conventional 
International Origin CIO), the X,Z-plane lies in the mean meridian of Greenwich.The 
realization of that system is called International Terrestrial Reference Frame (ITRF) 
and is defined by a number of fundamental stations equipped with Satellite Laser 
Ranging, GPS-receivers, and some with radio telescopes. The phenomenon of plate 
tectonics causes variations of the coordinates of these stations so that the ITRF has 
to be redefined periodicly. A two-digit annex tells about the year of the update, e.g. 
ITRF 96. 

Transformation between these two systems is performed by several rotation matrices 
considering precession and nutation of the rotational axis, phase of Earth rotation 
(sidereal time), and polar motion. Data necessary for this transformation are provided 

1(2.1 3) 
1
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by the International Earth Rotation Service (IERS). More details are beyond the scope 
of this treatise (cf. [7]). 

World Geodetic System 84 (WGS84 ). This is the system GPS is working in since • 

1 987. It combines the cartesian system CTS with the MEE of the Geodetic 
Reference System 1980 (GRS80) and a representation of the Earth's gravitational 
potential in form of a harmonic expansion up to order and degree 180 (with 32 755 
coefficients).

• Parametry Zemli 1 990 (PZ90). PZ90 (Earth Parameter System 1990) is the 
designation of the coordinate system of the Russian satellite navigation system 
GLONASS. Similar to the WGS84 the PZ90 acts since 1993 as reference system for 
GLONASS broadcast orbit information. PZ90 is of a quality comparable to the 
WGS84 but it is realized by a very small number of reference station, all of them 
located in the territory of the Russian Federation. Upcoming realizations of the PZ90 
will be based on a real global network of monitoring sites. 
Regional Surveying Systems. Many countries still work with regional coordinate • 

systems and reference ellipsoids which are rotated and translated with respect to the 
ITRF (Figure 3. 1). A regional geodetic datum uses an ellipsoid which best 
approximates the geoid in that particular region. This ellipsoid is fixed in some 
manner to the Earth body at some fundamental point in the region. The conversion 
to the ITRF or vice versa is done by the ?-parameter transformation. When such a 
regional geodetic datum was established it was tried to bring the minor axis of the 
ellipsoid as close as possible to the rotational axis of the Earth, and the x,y-plane 
parallel to the Greenwich meridian. Hence, the rotation angles are generally rather 
small. The shift vector .D.x however usually amounts to several hundred meters. 

Since about 1850 many different ellipsoids 
have been defined, e.g. the ellipsoids of 
Everest, Bessel, Clarke, Hayford, Krassov
skij, to name only a few. Many of them are 

't° still in use, like the ellipsoid of 
Austria, Germany, Switzerland and some 

Bessel in 
other countries, like in parts of Asia. 

Just to give an idea about typical transY 

formation parameters those for the trans
formation of ITRF into the Austrian Datum 
MGI (Military Geographical Institute) may 
be stated: 

2.5 ppm.m = -Figure 3.1: Reference ellipsoid and ITRF Scale factor: 
strongly exaggerated 

ox=-575m rox=5.1 " 
shift vector: rotation angles:oy = -93 m , roy= 1 .6", 

DZ=-466 m ©z= 5.2" 

Warning! In most cases such parameters are averaged values representative for a 
large area, giving an accuracy of only a few meters. That's why the above shift vector is 
given only to full meters. Never let you be deceived by the number of digits behind the 
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decimal point. It is no definit sign of precision. When working on the centimeter level
individual parameters for smaller areas have to be determined which might differ
considerably from the averaged ones. The neglect of this fact often becomes the
source of a loss of information and accuracy. 

3.1 Ellipsoidal Coordinates 

An oblate ellipsoid of revolution is
generated by rotating an ellipse about its
minor axis. Hence, it is sufficient to
examine a meridian curve of the ellipsoid
to understand its geometry (Figure 3.2).
The ellipse, and the ellipsoid also, is
defined by two parameters i.e. the major
axis a and the minor axis b. The equation
of an ellipsoid in a cartesian system with
origin in the center and z-axis in the minor
axis is given by: 

Figure 3.2: Geometry of the Ellipsoid 
(3 . 1 )  

of
For practical computations several auxiliary parameters have been defined as functions 

a and b: f = flattening, e = first excentricity, e' = second eccentricity, c radius of=
polar curvature. 

a-b 82
f= -- , b= a(1-f), C= 

a b' 
(3.2) 

e2 = 

A point in space is given in terms of the ellipsoidal coordinates: 'geodetic latitude' <!>,
'geodetic longitude' A, and 'ellipsoidal height' H. <I> is the between the normal to
the ellipsoid and the x,y-plane (equatorial plane), A the

angle
angle between the relevant

meridian plane and the x,z-plane (usually in the Greenwich mean meridian), and His
the normal distance from the ellipsoid. The geodetic or ellipsoidal latitude and longitude
resp. must not be mixed up with the astronomical latitude and longitude which give the
direction of the natural plumb line. The difference between both types of parameters is
the 'deflection of the vertical'. It depends on the irregularities of the gravity field and on
the ellipsoid chosen, and can amount up to 30 seconds of arc or more. 

+ e'2 cos2 <I> the transformation ofWith the aid of another auxiliary quantity V =

ellipsoidal coordinates to the cartesian system (3. 1 )  is given by the formulae: 

a2-b2 
2 ' a 



# 
y=(ń 

)# 

:;  x2 

2 3 
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} p= + y2 , 

x= ( +H)

+H)

z = [(1 - e2 +H

cos<I> cos A, 

(3.3) cos<l>sinA, 

Jsin<I>. 

The inverse transformation is not quite so easy. A follows directly from 

(3.4) A= arctan(y/x} 

Solving equations (3.3) for <D and His theoretically possible but very complicated. In 
practice it is done by iteration starting with H = 0, or by an approximate solution which 
nevertheless is very accurate (cf. [7], p. 258). With the auxiliary terms e and p defined
by:
(3.5) e= arctan (

latitude and height result from 

(3.6) <D= arctan (
p- e acos e 
z+e'2 bsin3e , H= --c

J cos<l> 
p 

V 

Note that two normals of the ellipsoid subtending the tiny angle of 1 " intersect the 
ellipsoid in two points 30 m apart. In order to keep millimeter accuracy, latitude and 
longitude thus have to be given to 0.0001 " or to (3·1 0-8)0• 

For many computations in a limited area the ellipsoid can be substituted by an 
'osculating sphere' which is assumed tangent to the ellipsoid in a central point of the 
region. The radius of this sphere is equal to the geometric mean of the principal radii of 
the ellipsoid: 

R=(3.7) c/v2 . 

V has to be calculated for the latitude of the tangent point. 

3.2 Local Geodetic System 

Such systems may become relevant when terrestrially observed data must be handled 
in GISs. The origin of such a system is some fixpoint on the Earth's surface P (Figure
3.3). The w-axis is assumed to be the normal of the reference ellipsoid, the u-axis 
pointing to geodetic north, and the v-axis to the east. This system is also termed 
'horizon system'. 
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z 

Figure 3.3 

A point Q can be fixed relative to P by
observing the distance s, the geodetic 
azimuth a, and the zenith angle l;. 
Attention! These parameters only then 
refer to the cartesian system as defined 
above, if the actually observed values of a 
and l; have been corrected for deflection of 
the vertical. Let s be the north-south com
ponent of the deflection , ri the west-east 
component and s = scosa + risina the 
component in the direction of a. Then the 
reduction of the actually observed values 
of the zenith angle s* and azimuth a* to the 
geodetic values reads: 

S = s* ± S, a =  a* - ri·tan<D. 

With s, a, l; given, the vector PQ =sis known: 

i
(3.9) s= ('] = s (:3::;2iJ. 

w cosl; 

Now vector s has to be transferred into the d ifference vector S of the cartesian system 
of the reference ell ipsoid . As Figure 3.3 shows, both cartesian systems have d ifferent 
orientation, so one of the mirror matrices (2.8) has to be applied. The transformation 
then reads: 

S = (.M,L\y, L\zf = Rw(1 80° -A) ·Rv(90° - <D)· Sv · s= R · s, 
(3. 1 0) 

- sin <Dcos A - sin A cos <Dcos A
with R = - sin <D sin A cos A cos <D sin A . 

cos <D O sin <D 

Sometimes the inverse transformation may be asked for. With the d ifference vector 

( J 
S=(.M,L\y,L\z) T g iven , we get: 

s = + L\y2 + L\z2 '
( - sinA·M+COS A ·L\y )a= arc an (3. 1  1 )  t ,- sin <Dcos A · .M - sin <DsinA · L\y + cos <D · L\z 

l; = arcco{ (cos <Dcos A · .M + cos<DsinA · L\y + sin <D · L\z)J 
I n  surveying procedures terrestrial observation usually are processed not in 30-space 
but in the plane of a conformal map projection (see Chapter 5). A directly measured 
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slope d istances s then first has to be reduced to the surface of the reference ell ipsoid. 
Let be Hp and Ho the heights above the ell ipsoid (Figure 3.3). The corresponding 
distance on the el l ipsoid is given by: 

(3. 1 2) d= 

with R being the radius of an osculating sphere which may be put to R = 6 380 000 m 
for mid-latitudes. I n  fact, d should be a curve, but its curvature is so small that its 
neglection amounts only to 5 mm for d = 1 7  km. 

Of course, areas on the Earth surface also have to be reduced to the el l ipsoid. This is 
especially important for cadastral documents. The reduction is negative on principle, i .e. 
terrestrial areas A always are d iminished by: 

s2-(Hp-Ho$( Hp) ( Ho
J 

' 1 +R 
. 1 + R 

with Hm = mean height of A above the ell ipsoid. (3. 1 3) 

For Hm = 250 m, oA = - 0.8 m2, for Hm = 2000 m, oA = - 6.3 m2 . 

4 Geodetic Datum {GD) 

The term 'Geodetic Datum' includes everything necessary for the definition of a 
geodetic system, i .e. the d imensions of the reference ell ipsoid used, its position with 
respect to the Earth's body expressed by the seven parameters for transformation into 
the ITRF, and the height reference. All in al l ten parameters are necessary for the 
definition of a GD. There are many different GDs in use al l over the world. GPS 
navigation receivers have stored more than one hundred GDs in their memory. Some 
wel l  known GDs are: The WGS84, the North American Datum 83, the Australian Datum 
84, the European Referance Frame (EUREF), a.o. 

4.1 The World Geodetic System 1984 (WGS84) 

As mentioned before, the WGS84 consists of the cartesian system of the CTS, the 
level ell ipsoid (MEE), and a harmonic expansion of the gravity field. Its dimensions are 
such that the sum of all geoidal undulations van ishes: 'LN=0 ,  i .e . the geoid partly 

Earth 

runs below the ell ipsoid, partly above it so that the MEE and the geoid encompass 
equal volumes. The numerical values of the dimensions of the level el l ipsoid are: 

semi axis 
a =  6 378 1 37.000 m f =  1 I 298.257 222 1 = 0.003 352 81 068 

Sti l l no un ique global height reference exists. Its definition is quite a tricky problem and 
not yet clear or internationally agreed upon. 
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4.2 The European Reference Frame (EUREF) 

All European countries, apart from Russia ,  the former states of Yugoslavia, Albania, 
and Malta, are combined in a precise geocentric reference frame. The system is very 
close to WGS 84 and is meant to ensure uniform d igital cartographic data for al l of 
Europe [8]. It also serves for investigations of geodynamical processes. I n  the 
beginning, this system was based on 35 SLR- and VLSI-stations resp. (SLR: satel l ite 
laser ranging, VLSI :  very long base line interferometry). Now, there is a rather dense 
net of permanent GPS-stations all over Europe. Because of plate tecton ics these 
stations are subject to motions of about 1 .3 cm/year so that the transformation 
parameters between EUREF and ITRF have to be updated periodically. Hence, it is 
important always to state the epoch of the coordinates used in a G IS-file. The EUREF
commission also recommended the introduction of a uniform height system for all of 
Europe (cf. Chapter 6). 

4.3 The Geodetic Systems of some European Countries 

I nfluenced by the former Soviet Union the East European countries had adopted the 
ell ipsoid of Krassovskij as a reference el l ipsoid . The height system is based on socal led 
»Normal Heights« (cf. Chapter 6) with reference to the tide gauge in Kronstadt (Baltic 
Sea, near St. Petersburg). The dimensions of the Krassovskij-el l ipsoid are: 

a =  6 378 245.0 m, f= 1 I 298.3. 

The Austrian, German, and the Swiss Geodetic Systems (and those of some other 
countries) are based on the ell ipsoid of Bessel. The obligatory values of the two 
parameters of the Bessel-Ell ipsoid were fixed in 1 886 by the German Geodetic I nstitute 
in Potsdam by the logarithms of the semi-major axis a and of the first eccentricity e2 . 
The position of the el l ipsoid with respect to the ITRF of course d iffers in the three 
countries, they also have different height systems and d ifferent transformation 
parameters. The dimensions of the Bessel-ell ipsoid now in use are: 

a =  6 377 397. 1 55 m, f =  1 I 299. 1 52 8 1 2  8. 

4.4 The Austrian Datum MGI 

The datum of the ord inary Austrian geodetic system was establ ished at the end of the 
1 9th century by the Mi l itary Geographical Institute (MGI) . Its Fundamental Point is the 
Habsburg-tower on mount Hermannskogel near Vienna. The positioning of the 
reference ell ipsoid of Bessel with respect to the Earth body was achieved by 
interpreting the astronomical latitude and longitude of the fundamental point and the 
astronomical azimuth to mount Hundsheim as ell ipsoidal values (i .e. the deflection of 
the vertical was put to zero and the semi-minor axis of the el l ipsoid thus made to 
become parallel to the Earth rotational axis). I n  addition ,  the relative geoidal undulation N of mount Hermannskoge/ also was equal led to zero, i .e. the reference ell ipsoid and 
the geoid intersect along a l ine through the fundamental point. Hence, the relative 
geoidal undulations in Austria vary between about - 2m and + 3m; the absolute ones 
with reference to the MEE amount to about + 45 m. I n  the last decades the Austrian 
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triangulation net was part of the European ReTrig . Several satell ite campaignes 
(DODOC, AGREF, AREF-1 ) since gave the basis for a consolidation of the Austrian 
system and its conversion to EUREF now is in progress. Approximate transformation 
parameters have already been given in Chapter 3. Austrian maps are based on the 
Transverse Mercator Projection ( Gau/3-Kruger) and on Lambert's Conformal Conic 
Projection with two Isometric Parallels (see Chapter 5). It is important to note that for 
practical an h istorical reasons in the ordinary Austrian system MGI geodetic longitude is 
reckoned not from Greenwich but from Ferro (span. Hierro, i .e . the westernmost of the 
Canarian Islands). On the island itself there is no fixpoint marking the zero meridian, 
Ferro serves only as the ideal concept of a meridian exactly 20° west of the 
Astronomical Observatory of Paris. In order to convert Ferro-longitudes to Greenwich 
the relation holds: 

AGr = AF 1 7° 40' 00" exactly. -

The Austrian common height system also originated in the 1 9th century. Its reference 
point is a benchmark on the customs bureau on the Mola Sartorio in Trieste. The 
system can be called ,,quasi-orthometric" (see Chapter 6 on height systems). Austria 
has a modern geopotential levell ing net (i .e. in combination with gravity measurements) 
as part of the European levell ing system but not yet in common usage. The conversion 
of the ordinary heights to strictly orthometric ones with reference to the European 
horizon (see Chapter 6) is in progress. 

4.5 The German System 

The common German geodetic system was established in a similar way as the Austrian 
one but with the Fundamental Point Rauenberg near Potsdam and the astronomical 
azimuth Rauenberg � Marienkirche (Berl in). It is represented by the ,,Deutsches 
Hauptdreiecksnetz" DHDN (German Primary Triangulation Net). The transformation 
parameters DHDN � ITRF are (no warrant given): 

Translation vector rotation angles scale factor 

ox= 583 m, ffix = O", m = 1 1  . 1  ppm (mm per km). 
oy= 68 m, roy = O", 
oz= 395 m, - 3 4" ffiz - • , 

As in Austria, satell ite campaigns furnished ITRF-coordinates for many fixpoints. The 
German maps are based on the Transverse Mercator Projection ( Gau/3-Kriiger). 

Til l some years ago the German height system was represented by the ,,Deutsches 
Haupthohennetz DHHN (German First Order Levell ing Net). Since 1 879 the height 
reference was per definition the benchmark on the old Berl in Astronomical Observatory 
with an assumed height of 37.000 m above sealevel . This reference was called , ,Normal 
Null" NN (normal nu ll ). Since recently the German height system as part of the 
European levell ing net has been converted to Normal Heights (see Chapter 6). 

Here, some exemplary calculations may be helpfu l .  Just to demonstrate the calculating 
procedures the data are assumed to be exact which in reality is not the case. 
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Example #1 . Given: fictitious cartesian coordinates in the ITRF. Wanted: • 

ellipsoidal coordinates for WGS84. (;] 
= (
4 +:, -:.:/01 &] 

(Ex 1 .1 ) 
4 642349.872m Z ITRF ITRF 

Applying formulae (3.4, 3.5, 3.6) we get: 

<l> 47°00'00. 0000"
( J (1 1 °00'00.0000" J (Ex 1 .2) 
H 
A 

WGS 

= 

800. 000m 
WGS 

Inverse transformation with (3.3) leads exactly to (Ex 1 .1 ).

Example #2. 7-parameter transformation into another geodetic datum. We take • 

the values of the parameters as stated above (ITRF -+ MGI). Just to give the 
reader the opportunity to check his own calculations the shift vector is assumed to 
be exact to the millimeter. Evaluation of (2.6) results in: 

4 277 559.545 m
(Ex 2.1 )(

X
J ( 831 501 .971 m ]y = 

4 641 884.89 0 m MGIZ MGI 

Two facts need special attention. First, we assumed the transformation parameters to 
be exact just for the demonstration. But in reality they were good only for an accuracy 
of 2 - 3 m. Now suppose the ITRF-coordinates (Ex 1 .1 ) had cm-accuracy (obtained 
from a GPS-campaigne), then this accuracy would be lost by the transformation. 
Second, the inverse transformation (by inverting the signs of the transformation 
parameters) is incorrect by 3 mm in x, 4 mm in y and by 1 mm in z. That's due to the ,
use of the simplified rotation matrix (2. 7) . 

Example #3. Given point P in datum ITRF by (Ex 1 .1 .) and terrestrial • 

measurements of s, a, s to point Q. Wanted: the difference vector and the 
coordinates of Q in ITRF. 

S 

S
J(a = (
650.000 m]
55°00'00" .
83°00'00"s 

528.480m . 
79.21 5m 

V 

w 

=S =Using (3.8) we get: 
0 0 

The transformation matrix, with <l>, A taken from (Ex 1 .2), becomes: 



l n [tan( <1>) · ( 1 - e s!n <l>)e/2]· 
' \ 
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- 0 .  7 1  791 667 4 - 0 . 1  90808995 0 .669468000
R = - 0. 1  39548865 0.981 6271 83 0 . 1 30 13 1422 . (Ex 3.3) 
( ]

0.681 998360 0 0.731 35370 

A good check of the calculation is to test for det I R  I =  -1 (negative sign because of the 
mirror matrix). Multiplication of R and (Ex 3.2) g ives the difference vector S and the 
coord inates of point Q in the ITRF: 

- 31 3 .469 m 4 277 846.8 1  8 m(!!:.xJ ( J (XJ (XJ (/;:.)(] (
Ay = 477.439 m , y = y + Ay = 832 067.558 m . (Ex 3.4) 
l:!.z 3 1  0.304 m Z Q Z p AZ 4 642 660. 1 76 m QJ 

I nverse solution , i.e. calculation of s, a, s from u, v, renders the original values w 
exactly. 

5 Isothermal Coordinates and Conformal Mapping (Grid 
Systems) 

Surveying, cartography, and GIS require plane coordinates. Thus, the ell ipsoid has to 
be mapped onto the plane. This can be done in many d ifferent ways. It is not possible 
to map the el l ipsoid or the sphere onto the plane without d istortions of d istances [9] . But 
there are map projections which either give a correct representation of areas (equal 
area, or equivalent also authalic or homalographic projections) or of angles (conformal
or orthomorphic projections) in the plane. There is a great variety of small-scale world 
maps by projections of the sphere [1 O], many of them being equivalent. I n  geodesy and 
surveying conformal maps are preferred . Not that the preservation of angles is of such 
importance nowadays, but as distortions cannot be avoided, at least they should be 
independent of directions. 

A conformal mapping between two surfaces is achieved if an ' isothermal' net of 
parameter lines of one surface is brought into a one-to-one correspondance to an 
isothermal net of the other one. ' Isothermal' means that the parameter l ines are 
orthogonal and isometric (of same scale). In other words, the nets have to consist of 
infinitesimal squares. The plane cartesian coord inate system is isothermal , the net of 
meridians (A = canst. ) and parallels {<1> = const.) of the el lipsoid is not. It is orthogonal, 
but not isometric (cf. Figure 5. 1a). In order to obtain an isothermal net, al l we have to do 
is to change the density of parallels so that the net becomes isometric (Figure 5. 1 b; of 
course, the nets of parameter l ines extend up to the pole but for graphical reasons the 
polar regions are omitted). 

The isothermal net is achieved by introducing the ' isometric latitude' q as function of the 
ell ipsoidal latitude <l> (Mercator-function): 

(5. 1 )  q 4
7t += 

2 1 + e sm <l> 
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Figure 5. 1 a: Geodetic net of Figure 5. 1 b: Isothermal net 
meridians and parallels 

Note that e is the first excentricity of the ell ipsoid and not the base of the natural 
logarithm! The inversion of (5. 1 )  is done by iteration : 

( 1 + e sin<I>)e/2(5. 1 a) <I> == 2arctan k [ exp(q)]- n/2 ,  where k == . •· 
1 e sm <I>-

With k = 1 as starting value, <I> results correctly after a few iterations. Now, al l possible 
conformal mappings onto the xy-plane result from the solution of the Cauchy-Riemann 
differential equations in form of a complex analytical (holomorphic) fu nction :  

(5.2) x + i · y == f(q + i · A) ,  i == ..J-1. 

The x-coord inate of the plane system is the real part of (5.2), the y-coord inate the 
imaginary part. Here it is important to note that the geodetic plane coordinate system is 
mathematically negative, i .e. the x-axis points to north , the y-axis to east. 

There is no best projection. But some are better suited for geodetic purposes than 
others. From the variety of conformal maps of the ell ipoid only the most important ones 
are dealt with here. 

5.1 The Meridian Strip Projection (Transverse Mercator Projection) 

This projection originally was derived by Gauss. The formulae for practical calculations 
were developed by various geodesists in d ifferent countries. Hence, this projection is 
known under several names: In Central Europe as 'Gauss-Kruger-Projection' ,  in Italy as 
' Gauss-Boaga-Projection , etc. The internationally accepted name is 'Transverse ' 

Mercator-Projection' (TMP). A particular meridian of the el l ipsoid with longitude Ao is 
adopted as central meridian (CM) of the projection. Principally this could be any 
meridian, but usually only those are taken with longitudes divisible by 3, l ike 6°, 9°, 1 2° , 
a.s.o. A small zone ± J}.A east and west of the CM then is mapped by equation (5.2) in 
such a way that the CM is represented on the plane without d istortion, i .e . in its true 



x 
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length. The projection of the CM becomes the x-axis, that of the equator the y-axis 
(Figure 5.2a). 

The origin of the plane coordinate system thus is the intersection of the CM with the 
equator of the reference ell ipsoid in its special position . Note that in Cartography and 
Photogrammetry the plane coord inate system frequently is defined with the x-axis 
pointing to the East, the y-axis to North . The total extension in longitude is 3° {M= ± 
1 .5°), in some countries l ike the Asian parts of the former USSR or China, it is 6°. Areas 
of the el l ipsoid adjacent to the 3°-zone must be mapped on the next strip with a new 
CM. It should be stressed that it is impossible to obtain rigorous formulae for the TMP, 
but only approximate ones. Contrary to widespread opinions the TMP is not restricted to 
small zones and it can even be extended across the poles. However, this needs 
advanced mathematics beyond the scope of this treatise. The d istortions increase 
rapidly with the d istance from the CM as can be seen in Figure 5.3 which shows a large 
part of the world in the TMP with CM through Greenwich (look at South America). 

y 

Figure 5.2a Figure 5.2b 

Figure 5. 3 
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When TMP is applied to small zones simple but cumbersome formulae can be obtained 
by a Tay/or-expansion of (5.2). These practical formulae cannot be extended beyond a 
6°-zone without loss of accuracy, and they also fail near the poles. For 3°-zones more 
compact formulae exist which are given below [1 1]. Up to ± 1 .5° distance from the CM 
these formulae are correct to 1 2 mm. The following equations are generally valid, but 
the numerical values of the coefficients depend on the reference ellipsoid used. First 
compute the constants: 

-

(5.3) 

a= 7t +45 e4 + 1 75 e6 + 1 1 0254 64 256 1 6384 
+1.§.e4 +525 e6 +2205 ea )

2 1 6 51 2 204a ' 
Y= _ e4 + 1 05 e6 +2205 ea )4 256 4096 ' 

e6 + 31 5 ea )6 204a . 

I 

In most of the formulas use is made of a particular point on the central meridian, the 
foot-point F (Fgure 5.2b). It is the intersection of the CM with the geodetic line through i
point
a point P perpenticular to the CM. Its latitude always is somewhat higher than that of 

Q an the parallel circle. The peculiarities of the TMP are such that P and F have
different latitudes but equal x-coordinates. 

Given a point P(<f:>, 

+e'2 cos2 <f:>, <f:>p = arctan [ tan <f:> cos(M ·V)

cos2 <f:>F , p VF 

M=A-A0). Now compute <f:>p and the auxiliary quantitiy Vp: 

].
(5.4) 

V 

Vp 

= 

= 

The plane coordinates x, y then are: 

The coefficient a has the dimension meters per degree (ml°), so that in the first term of 
x, <f:>p has to be introduced in degrees. All other coefficients are in meters. Up to ± 1 .5° 
distance from the CM these formulae are correct to 1 - 2 millimeters. The plane 
orthogonal x,y-net forms what is called the 'grid system'. 

The inverse problem is the computation of <f:>, A from x, y. First we compute some 
coefficients in function of the flattening: 

(5.5) 

c;;= TJ = 945n2, a= 2265n3 
2 - f n 1 6 4n Bn 

Now the latitude of point F can be computed from the given coordinate x by: 



[exp(A.) - exp(-A.)]l . sGN(y), 4 

Eº 

B 
y 

p 
11 
s 
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(5.7) 

M and <I> then result from: 

y"- = l l· M = arctan{c 2 
VF 

cos <l>F 
(5.8) 

<I> = arctan [tan <I>F cos(VF M)] , A = Ao + M.· 

We give the numerical values of the coefficients for two el l ipsoids, for that of the 
WGS84 and for the Bessel-el l ipsoid . 

Parameter Bessel-el l ipsoid WGS 84-el l ipsoid 

a 6 377 397. 1 55 m 6 378 1 37.000 m 
f 0.003 342 773 1 8  0.003 352 8 1 0  68 

0.006 674 372 2 0 .006 694 380 0 
c 6 398 786.848 m 6 399 593.626 m 
a 1 1 1  1 20.6 1 9  6 ml° 1 1 1  1 32.952 5 ml° 

1 5  988.638 5 m 1 6  038.508 6 m 
1 6.729 9 m 1 6.832 6 m 

() 0.021 8 m 0,022 0 m 
0 . 143 885 358° 0 . 144 31 8 1 33° 
0.000 2 1 0  780° 0.000 2 12  050° 
0.000 000 423° 0.000 000 427° 

Note! In many countries a constant factor is added to the y-coord inate in order to avoid 
negative signs and to indicate the zone. Frequently, these coordinates are then termed 
'Righf for y, and 'High' for x. As an example the Austrian system may be explained . 
The Austrian territory is covered by three Gauss-Kruger strips each of 3° width and the 
CMs in 28°, 31 ° ,  34° east of Ferro. In order to support environmental planning and 
rescue actions the socalled "Federal Alert System" (Bundesmeldentz) was introduced in 
1 983. To avoid negative signs of the y-coord inates and to characterize the strip a 
constant number is added to the relevant y-coordinate. The new coord inate then is 
cal led Right: 

for CM 28°: R = y +  1 50 000 m,
for CM 31 ° :  R = y + 450 000 m, 
for CM 34°: R = y + 750 000 m. 

As the whole of the Austrian territory l ies within the range of s ix mil l ion meters d istance 
from the equator, the d igit 6 in the x-coordinate is omitted and the new coord inate 
cal led High: E.g. a point in the strip CM 3 1  ° with the coord inates x = 6 377 849.351 m, 
y = - 43 088.4 1 7  m thus becomes R = 406 91 1 .583 m, H = 377 849.351 m. 
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For higher demands on accuracy and for greater d istances from the CM the best 
practical formulas are those given by Kruger [1 2] . They are simple enough so that they 
may be evaluated on a good pocket computer, but nevertheless are accurate to the 
mill imeter even for large distances from the CM. These formulas are remarcable 
because of their symmetrical construction . The fact that Kruger made extensive use of 
hyperbolic functions handicapped the widespread usage before the advent of personal 
computer. To emphasize the hyperbolic functions, in the fol lowing they are written in 
capital letters. E.g. ATANH stands for area tan hyp, i .e. the inverse function of TANH. 

First compute and store the ell ipsoidal constants: 

2 4a ( n n(5.9a) n = A =  (1 + n) 1 +4
+ 64 J 

(5.9b) 

1 7  3 37 4-n - -n .
480 840 

n 2 2 5 3 4 1  4Y1 = - --n +-n +-n
2 3 16  1 80 ' 

(5.9c) 

'Y3 = 

2 2 1 1  6 4 01 = 2n - -n - 2n 3 +-n '3 45 
7 2 8 3 227 4-n --n --n(5.9d) '3 5 45 

56 3 1 36 4 -n --n .
1 5  35 

5.1 .1  Transformation (<I>, A) -+ (x, y). 

Given are the ell ipsoidal latitude <I> and the distance to the CM M. Compute 

(n <l> ) ( 1 - e sin <l> )9'2(5. 1 Oa) k = tan 4 +2 · ' 

with e being the root of the first excentricity and not the base of the natural logarithm. 

(5. 1 0b) b =  2arctan (k ) - n/2 , 



72· 1 0-4 25· 1 0-4 

Y3 
1 0-4 68· 1 0-4 

rh 
3.346 491 641 · 1 0-;j 486· 1 0-;j 

27 Bretterbauer, Weber: A Primer of Geodesy 

(5. 1 Oc) s = arctan (tan b sec ill), 11 = AT ANH{sinill cos b} . 

Now the desired conformal coordinates fol low from 

x = A { s + 'Y1 sin(2s) COSH(211 ) + 'Y2 sin(4s)COSH(411) + 'Y3 sin(6s) COSH(611}},
(5. 1  1 )  y = A { 11 + 'Y1 cos(2s)SINH(211 )+ 'Y2 cos(4s)S INH (411) + 'Y3 cos(6s)S INH (611)}. 

5.1 .2 Inverse transformation (x, y) Ū (<I>, A). 

Compute the auxil iary quantities: 

(5. 1 2a) s = x/A , 11 = y/A . 

and from that: 

s* = s - P1 sin(2s) COSH(211)- P2 sin(4s) COSH(411) - p3 sin(6s) COSH(611) , (5. 1 2b) 11* = 11 - P1 cos(2s)S INH(211) - P2 cos(4s)SI NH(4ri) - p3 cos(6s)S INH(611) . 

The final result then is obtained by (a numerical example will be given later): 

sin(s*) (5. 1 3a) b = arcsin( ) 'COSH(11*) 

(5. 1 3b) <I> =  b + 81 sin(2b) + 82 sin( 4b) + 83 sin(6b) , 

S INH(ri*)(5. 1 3c) M = arctan( ) .cos(s*) 

The following table g ives the necessary numerical values of the constants for the 
el l ipsoids of Bessel and for that of the GRS 80. Using formulas (5.9a) to (5.9d ) we get: 

Term Bessel GRS 80 

A 
e2 
n 
A 

6 377 397. 1  550 m 
6.674 372 231 . 1 0-3 
1 .674 1 84 801 · 1 0-3 
6 366 7 42.5202 m 

6 378 1 37.0000 m 
6.694 380 023. 1 0-3 
1 .679 220 395· 1 0-3 
6 367 449. 1  458 m 

'Y1
'Y2 

8.352 252 
7.563 05· 1 0-7 

1 .  1 87· 1 0-9 
8.377 3 18  

7.608 53· 1 0-7 
1 .  1 98· 1 0-9 

P1
P2 

8.352 256 1 3· 
5.870 4· 1 0-8 

1 .66· 1 0-10 
8.377 321 

5.905 9· 1 0-8 
1 .67· 1 0-10 

81 
82 
83 

6.532 540·1 0_6 
1 .748 8· 1 0-8 

3.356 551 
6.571 873·1 0_6 

1 .764 7. 1 o-8 



m" 244 m" m" 
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dS = s'- S 0.031 m 0.123 m 0.276 m 
M = A '- A  61 550 

Bretterbauer, Weber: A Primer of Geodesy 

5.2 Distortions of Distances and Areas 

The conformal mapping leaves angles unchanged but distances and areas are 
distorted, the more so the farther from the CM. Distances and areas are enlarged by 
the TMP on principle. The length of a geodetic line on the ellipsoid be s, the
corresponding length in the plane s', the areas be A on the ellipsoid and A'  in the 
plane. It suffices to use an osculating sphere of radius Rm for calculating the distortions 

question). Then the formulae hold: 
(the subscript m indicates that Rm has to be taken for mid-latitude of the region in 

Y1 and Y2 are the y-coordinates of the endpoints of a line or of the nearest and farthest 
point of an area with respect to the CM. 

The following table gives an idea on the amounts of distortions based on the Besse/
ellipsoid and computed for a length of 1 000 m and an area of 1 00 hectar in 48° latitude 
and for different distances from the CM. 

1 50 km Distance from CM 50 km 1 00 km 

(5. 14) 

Note that when converting from Gauss-Kruger projection to UTM or when changing the 
central meridian the ds andM also change . 

5.2.1 20-Transformations 

The transformation between two geodetic systems can be simplified by means of the 
TMP. Lets think of the conversion of the ITRF into some regional system (RS). First the 
common points in both systems are converted to conformal plane coordinates using 
identical CMs. Now the transformation can be performed in the plane with only four 
parameters necessary [7]. For their unique (minimum) determination two common 
points are sufficient. The transformation formula then reads: 

(5. 1 5) (XJ = (SxJ+(1 +m) ·( 1 (J)J · (XJ . 
()y 1y RS - ro y ITRF 

This transformation can be recommended only if points within a small region have to be 
converted. The reason to be careful is that (5.1 0) contains a constant scale factor 
whereas the scale (distortion) actual ly varies with distance from the CM. 
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5.3 The Universal Transverse Mercator System (UTM) 

For the I nternational World Map the Earth is d ivided into 60 zones, each having a 
longitudinal extension of 6° (± 3°). The zones are numbered from 1 to 60 beginning with 
the zone between 1 80° and 1 74° w.o.Gr. progressing eastward . The CMs thus are: 
1 77°, 1 71 ° , 1 65° w.o.Gr. ,  a.s.f. The formulae for computing the plane coordinates are 
the same as for 3° -zones. It must be emphasized that formulae (5.5) when used for 
points in 3° d istance from the CM may be fuzzy in the x- and the y-coordinates by a few 
mil l imeters. Therefore, formulae (5.9) to (5. 1 3) have to be used. Other formulas based 
on Tay/or-expansions of (5.2) can be found in [2] , [9] or in text books on geodesy or 
cartography. 

UTM-coordinates have an important pecul iarity. For keeping d istortions small, x and y 
are multiplied by the scale factor m = 0.9996. These new coordinates get special 
names: 

(5. 1 6) Grid Northing: N = 0.9996·x, Grid Easting: E = 0.9996·y. 

By use of this scale factor isometry in the CM is lost, but occurs now in two curves 
parallel to the CM in a d istance of about ± 1 80 km. Note that within these two curves 
d istortions are negative, outside of them positive. 

Again in order to avoid negative coordinates the constant of 1 0  000 000 m is added to 
N on the southern hemisphere, and 500 000 m to all E-values. These new coord inates 
get the adjective 'False' : 

(5. 1 7) False Northing: FN = N + 1 0  000 000 m (for the southern hemisphere only) 
False Easting: FE = E + 500 000 m. 

The NATO uses UTM based on the WGS84-ell ipsoid for its military maps since several 
years and the member states of the European Union have decided to convert their 
national surveying systems and maps to EUREF-datum and to UTM-projection. 

• Example #4. Convert the WGS84-coordinates of point P (Ex 1 .2) into UTM with Ao 
= 9° as central meridian. Formulae (5.3, 5.4, 5.5) give 

(x) (5 209 1 89.002 m)
= , (Ex 4. 1 )  

1 52 1  09.881 m UTMy UTM 

and the reduced UTM-coord inates 

(N) (5 207 1 05.326 m)
= . (Ex 4.2) 1 52 049.039 m UTME UTM 

• Example #5. As a demonstration for Kruger's formulas that example was chosen 
which Kruger himself solved in [1 2] by logarithmic computation. G iven :  Cl> = 48°, 
M = 8°; wanted x, y on basis of the Bessel-ell ipsoid. For i l lustrating purposes the 
intermediary results also are given: 
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from (5. 1 Oa) k = 2.5921 839 1 69 ,  
from (5. 1 Ob) b = 47° .8092551 995, 
from (5. 1 Oc) s = 48° .0879361 926, (Ex 5 . 1  ) 

11 = 0.0937 4241  1 8, 
from (5. 1  1 )  x = 5 348 940. 1 46 m, 

= 596724. 1 1 1  m, y
in complete agreement with Kruger's result and accurate to the mil l imeter. For the 
inverse problem the above values of x and are taken as in itial ones: y
from (5. 1 2a) s = 48° . 1  36341 9735, 

11 = 0.0937251 833, 
from (5. 1 2b) s* = 48°.0819361 929, 

11* = 0.09374241  1 8, (Ex 5.2) 
from (5. 1  3a) b = 47°.8092551 999, 
from (5. 1 3b) <I>= 48°00'00".0000, 
from (5. 1 3c) M = 8°00'00".0000. 

5.4 The Polar Stereographic Projection (PSP) 

UTM is not extended into polar regions. There it is supplemented by the PSP which 
also is conformal . This is a projection onto a plane tangent to the el l ipsoid in one of the 
poles. The origin of the plane system is the pole, the images of the meridians then are 
straight lines through the pole, and the parallels are concentric circles. As x-axis any of 
the meridians may be chosen ,  in Figure 5. 4a it is the meridian Ao = 1 80°. The projection 
equations are rigorous: 

x = pcos(A0 -A) , = p sin(A0 -A) , withy(5. 1 8) 
e/2 . e/2 a2( ) ( <I>) ( 1 + e <I>)

P = 2c 1 + e . tan 450 - . C = - .' 1 - e  2 1 - e  sm <l> b 

For the inversion of the problem (x, Ū <I>, A) we first get easily: y
arctan - , =( ) x 

=(5. 1 9) A A0 yyx - p = 

1 + esin <l> 

cos(A0 - A) sin(Ao - A) 

k = 
1 - e sin<I> e/2 

. 

1 - e  
for the iterative computa-Then we put const 2c= and 

tion of <I>: 

( )
P · k(5.20) <I> = 90° - 2 . arctan . with k = 1 as starting value. con st 



3 1  

P = 2 520 283. 1 04 m, (xJ = (1 620 006. 752 mJ . 
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Figure 5. 4a Figur 5.4b 

• Example #6. Given a point in Siberia P(<I> = 68° exactly, A = 1 30° E.o.Gr. exactly). 
With Ao = 1 80° and on basis of the WGS-ell ipsoid we get from (5. 1 3): 

y PSP 1 930 648.867 m PSP 

(Ex 6. 1 )  

Again the inverse transformation is correct. 

5.5 Lambert's Conformal Conic Projection (LCC) 

This extremely useful projection is the basis of the I nternational Aeronautical Charts 
(Low and High Altitude Enroute Charts) and is employed in several countries (e.g. the 
Austrian map 1 :500 000). Imagine a circular cone with its axis coincid ing with the minor 
axis of the ell ipsoid . The cone may be tangent along a parallel circle of the ell ipsoid or 
may intersect it in two circles. These circles, of course, are mapped isometrical ly. When 
the cone is cut open along one of its generating l ines and developed into the plane, the 
images of the meridians again are straight lines through the apex S of the cone (= 
image of the pole), and the images of the parallel circles are concentric circles. The 
PSP of chapter 5.4 is only a special case of the general LCC. Let the apex of the cone 
approach the el l ipsoid until it coincides with the pole. Then the cone degenerates to a 
circular plane and you got the PSP. 

The LCC permits to map a rather wide latitudinal zone around the whole Earth with 
small d istortions. For conic projections it is of advantage to use polar coordinates. 
Figure 5. 5 shows the developed cone and the arrangement of the plane coord inates r, 
a and x, y. <1>1 and <1>2 are the two intersecting parallels. The intersection of some CM 
(Ao) with the parallel <1>1 may serve as origin 0 of the rectangular coord inates. 

The formulae are rigorous. First compute the auxiliary quantities n and A (q is the 
isometric latitude of equation 5. 1 )  from: 



In() cos <P1) - 1n( * cos <P2) 
n = --o-'-ĔȕȖĔ"'--ĔĔ-'-

_
c
_cos <D2 

A = !arctan(-y
-) - A0 ,  
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(5.21 ) s 

q2 - q1 

A =  _£__cos <D1 exp(n · q1 ) = exp(n · q2 ) . 
nVj nV2 

The plane coordinates then are (5.22) 

r =  A exp(- n · q) , S = n  · (A - A0} 
x = B - r cos S, y = r sin S, B = _£__cos <D1 . 

nV1 Figure 5. 5 

I n  Figure 5. 6 the zone of the world between 0° and 75° latitude is shown in LCC
projection with <D1 = 25° and <D2 = 50°. 

For the inverse problem with x, y, <D1 , <D2 given,  first compute n, A and B according to 
(5.21 ) and (5.22). Then continue with S, r and q from 

(5.23) r =  
B - x  

= _r_ q =  
n 

1 
1n(A 

r 
)· 

n B - x  cos S sin s ' 

Figure 5. 6 

Latitude <D then is gained by the iterating procedure (5. 1 a). 



. 
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• Example #7. Convert point P('1> = 47°, A =  1 1 °  E.o.Gr. )  of Example #1 to LCC on 
basis of the WGS-ell ipsoid with Ao = 9° as central meridian (A - Ao = 2°), and <1>1 
= 25°, '1>2 = 50°. We give all relevant values as resulting from (5. 1 6  and 5. 1 7). 

n = 0.61 3 798 6271 , A = 1 2  406 1 92.284 m, B = 9 423 308.980 m,  
= 0.926 729 7990, r = 7 024 262.640 m, Ù = 1 ° 1 3'39.350 1  ", 

2 400 658.547 m

q

(XJ ( J= (Ex 7 . 1  ) .1 50 487.625 m LCCy LCC 

5.6 Conformal Double Projection (CDP) 

This projection was invented by Gauss. The projection equations are compact and 
rigorous, the distortions generally quite small. The term 'double projection' means that 
the ellipsoid is conformally mapped onto a sphere ,  and from there onto the plane by 
use of the Mercator-function. The sphere can be defined in  d ifferent ways, either 
circumscribing the ell ipsoid along the equator (for world maps), or as an osculating 
sphere tangent to the ell ipsoid in a well-chosen point. 

The best known example for appl ication of the CDP is Switzerland. It was introduces by 
Rosenmund in 1 905, and revised by Odermatt 1 960. First the Bessel-el lipsoid is 
conformally mapped onto the osculating sphere tangent to the ell ipsoid in the 
astronomical observatory Bern. Then this sphere an oblique cyl inder is circumscribed , 
contacting the sphere along the great circle perpend icular to the meridian of Bern. Now 
the sphere is mapped onto the cyl inder (= the plane) by the simple Mercator-projection. 
The necessary formulae are the following [14]. 

The adopted ell ipsoidal Coodinates of the fundamental point Bern are: 

'1>o = 46°57'08".6600, Ao = 0°. 

Let the coord inates of the osculating sphere be cp and 'A and its radius according to equ. 
(3.7) R = cN02. The conformal projection of the Bessel-el l ipsoid onto the sphere is done 

e/2 
by: (n cp) (n '1> )( 1 - e sin  '1> )(5.24) tan - + - = tan - + - , !J.'A = M ,

4 2 4 2 1 + e sm '1> 

with /J.'A = longitude d ifference to Bern. Now the sphere is circumscribed by a cylinder 
which is tangent ot the sphere along the great circle perpendicular to the meridian in 
Bern. The axis of the cylinder intersects the sphere in a "new" pole with its relevant 
sperical coordinates b, R. The transformation cp � b, !J./.., � R is done by the sine and 
cosine laws of trigonometry: 

cos b sinR  = cos cp sin /J./.., , 

(5.25) cos b cos R = sin cp0 sin cp + cos cp0 cos cp cos !J."A. ,  
sin b = cos cp0 sin cp - sin cp0 cos cp cos !J./.., . 
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CA= W0 -WA = Jg · dh i:::: Lg · oh .  
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With these new coordinates the conformal mapping of the sphere onto the cylinder and 
thus onto the plane is gained by the simple Mercator-projection :  

(5.26) x = + y=R £ .  

6 The Problem of Heights in Geodesy 

The term 'height' can be interpreted in d ifferent ways. Even experts do not agree which 
height is best. Ell ipsoidal heights are defined in a purely geometric way and cannot be 
used for technical purposes. In geodesy heights are not measured in meters but in 
potential d ifferences. The potential d ifference Wa - WA of two points is the work do be 
done in order to transport the unit mass ( 1  kg) from A to B. This work is independent of 
the way taken from A to B. Such potential d ifferences are measured by a combination 
of geometric leveling and gravity measurements (= geopotential leveling). The physical 

2d imensions of a potential d ifference are [m2 s- 1 but anybody wants to reckon heights in 
meters. That is the height problem in a nutshel l .  There are three requirements for a 
good height system:  

• The heights of points are to be determined un iquely and independently of  the way 
the measurements have taken . 

• The heights should possibly be free of hypothetical assumptions. 
• The corrections of measured height d ifferences (= geometric leveling) to the system 

adopted should be sufficiently small .  

With dW = increment of potential ,  g = g ravity, dh = single height increment (backsight 
minus foresight) the fundamental relation  for determining a potential d ifference is: 
dW = -g .  dh. I ntegrating g ives: 

B B
(6. 1 )  WA-W8 = Jg · dh i:::: Lg · oh . 

A A 
Because equ ipotential surfaces are not parallel to each other the result of a geometric 
leveling alone (without gravity) depends on the way the leveling had taken. For the 
construction of a leveling system a zero level has to be defined . The geoid serves this 
purpose, and when potential d ifferences are referred to the geoid they are called 

2 -2'geopotential numbers' C. C usually is given in un its of 1 00 m s (= kGal ·m) because 
then the geopotential number d iffers only by about 2% from the pertinent height. Thus, 
the geopotential number of point A in  Figure 6. 1 is g iven by: 

A A 
(6.2) P0 P0 
When performing a geopotential level ing around a closed circuit it is evident from (6. 1 )  

A 
that Lg . oh = O apart from measuring errors. As in practical surveying no gravity 

A 



H 
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(6.3) 
A A 

s = L:g · oh = -L: g -gA oh . 
A A gA 

Quaslgeold 
. ........ · - · - ·  ....... • --. .  

Figure 6. 1, N and c; exaggerated 

. ........ . ....... . ... 

observations are taken it is often recommended in manuals on  surveying to test the 
A 

measuring errors in closed loops by checking for Loh = 0 . This holds only for small 
A 

loops. I n  large ones (e.g. first order levell ing circuits) there is a theoretical closing error 
g iven by: 

Actually, national or international height systems are referred to mean sea level as 
observed at some coasts by tide gauges. E.  g .  the height reference for the East 
European countries is the mean sea level of the Baltic Sea measured at the tide gauge 
in Kronstadt near St. Petersburg .  The socalled 'European Horizon' is the mean sea 
level of the North Sea of the years 1 940 to 1 958 determined by observations of the tide 
gauge in Amsterdam (New Amsterdam Peil NAP). However, though it was 
recommended that all European states should refer their  height systems to the 
European Horizon stil l  some countries use older systems with rather weakly defined 
zero levels, e.g. Austria. 

6.1 Dynamic Heights (DH} 

A geopotential number immediately can be converted to a quantity in meters by d ivision 
2through any arbitrary gravity value [m s- 1 .  In Europe usually the theoretical gravity in 
245° latitude is taken : y45 = 9.806 1 99 m s- • The dynamic height of a point or  a dynamic 

height d ifference then is given by: 
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CA WA - Wa 1(6.4) hA = - , ha - hA = 
Y45 Y45 Y45 A 

I n  practical surveying nobody performs gravity measurements, so we have to convert 
geometric leveling results into dynamic height d ifferences. This is achieved by the 
'dynamic correction' :  

B B 
(6.5) ha -hA = L:oh +L 

A A Y45 

DHs are theoretically sound and can be determined with h igh  accuracy without any 
hypothetical assumption. Between two points of equal DH no water can flow. Thus DHs 
meet the first two requirements mentioned above but not the third one. The dynamic 
correction can become quite large in mountain areas. Moreover, DHs cannot be 
interpreted geometrically because there is no definite zero level.  Hence, they cannot be 
combined with ell ipsoidal heights obtained from GPS observations. 

6.2 Orthometric Heights (OH) 

The OH is the length of the slightly curved plumb l ine from the geoid to the Earth 
surface (cf. Figure 6. 1) . Thats why in German they often are called ,,Meereshohen". Let 
a fictitious geopotential leveling be executed along the plumb l ine from Ao to A g iving 
the geopotential number CA. But the same value results from a geopotential leveling 
along the Earth's surface as CA is independent of path . If al l quantities referring to the 
plumb l ine are characterized by an asterisk the relation holds: 

(6.6) 

gA is an integral mean of the gravity along the plumb line. Because we cannot 

measure gravity within  the Earth's crust, gA has to be computed from gravity values 

measured at the Earth 's surface. This is where hypothetical assumptions enter (density 
of the crust). Therefore it is hardly possible to get OHs with mil l imeter accuracy, and in 
mountain areas even the centimeters are fuzzy. From the three requirements for a good 
height system the first is met, the second is not, and the third much better than by 
dynamic heights. However, there is a drawback: Between two points with equal OH 
water can flow. But the most important advantage of OHs is that they can be combined 
with ell ipsoidal heights: The d ifference of ell ipsoidal heights equals the d ifference of 
orthometric heights plus the d ifference of geoidal undulations (Theorem of Villarceau). 

This can readily be taken from Figure 6. 1 if the very slight plumb l ine curvature is 
neglected . 
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6.3 Normal Heights {NH) 

Proposed by the Russian geodesist Molodenskij NHs are standard in the East 
European countries and , since recently, also in Germany. The EUREF-commission has 
recommended the use of NHs for all of Europe. NHs meet all three demands for a good 
system. The theory is quite simple. The MEE is equipped with a theoretical gravity field. 
Its potential Uo by definition is equal to the potential Wo of the geoid. I n  Figure 6. 1 
consider the normal to the ell ipsoid through point A. I n  that normal a point Q must be 
found whose potential d ifference with respect to U0 in the theoretical gravity field is 
equal to the potential d ifference of A with respect to W0 in the real field . According to 
(6.2) we have: 

The NH of point A now is the d istance of Q from the ell ipsoid and is defined by: 

(6.9) HA = 
YQ 

YQ is the integral mean of the theoretical gravity from the ell ipsoid to point Q and can 

be computet from the gravity formula though only in an iterative way. If many points Q 
are determined in the manner d iscribed , their manifold forms a surface called 'telluroid' 
according to Hirvonen. The d istance between the Earth 's surface and the tel luroid c; is 
termed 'height anomaly'. It is not very satisfactory to measure the height of a point by a 
length which does not end in that point. Therefore, Molodenskij counted the height 
anomalies from the ell ipsoid thus getting a new surface, the 'quasi-geoid' .  The NH now 
is the d istance of a point on the Earth's surface from the quasi-geoid . Note the analogy: 
What the geoid is for orthometric heights is the quasi-geoid for normal heights. There is 
also an analogous relation to the Theorem of Villarceau: 

(6. 1 0) 

The quasi-geoid is not a level surface. On the oceans it coincides per definiton with the 
geoid , on the continents it runs slightly above it. I n  the Alps the height anomalies may 
run up to 40 - 50 cm. The computation of height anomalies as well as of geoid 
undulations is a very ambitious problem. The importance of orthometric and of normal 
heights l ies in the fact that as soon as we know the detailed geoid (or the quasi-geoid) 
the costly leveling operations can be substituted by GPS observations. 

Finally, a comparison of the values of d ifferent heights m ight be instructive. They are 
taken from points of the Austrian first order leveling net ranging from the lowlands to the 
Alps. The geoid undulations N and the ell ipsoidal heights H are reckond with reference 
to the ell ipsoid of the Austrian datum MGI ,  not to EU REF. 



Geodesy ������������--���--------�--�������- 38 Bretterbauer, Weber: A Primer of 

Geo potent. 
Number C 
[kGal·m] 

Dynamic 
Height 

[m] 

Orthometric 
Height 

[m] 

Normal 
Height 

[m] 

(s - N) 

[m] 

Geo id 
Und.  
N [m] 

Ell ipsoid . 
Height 

[m] 

1 40.0704 1 42.839 1 42.801 1 42.800 + 0.001 + 0.60 1 43.40 
694.0876 707.805 707.81 0  707.721 + 0.089 + 1 . 1 8  708.99 

1 090. 1 256 1 1 1 1 .670 1 1 1 1 .797 1 1  1 1 .645 + 0. 1 52 + 2.35 1 1  1 4. 1 5  
1420.8730 1 448.954 1449.340 1 449.037 + 0.303 + 2.77 1 452. 1 1  

7 Satel lite Navigation Systems 

Chapter 7 . 1  will provide a brief overview about the concept and the operation of the 
satell ite navigation systems, focusing on the well known Global  Positioning .§ystem. 
Subsequently chapter 7.2 informs about the Russian satell ite navigation system 
GLONASS. Moreover, the concepts of satell ite based augmentation systems l ike 
WAAS and EGNOS are touched in chapter 7.3. Finally, a look forward at the upcoming 
European satel l ite navigation system GALI LEO concludes chapter 7. For a more 
detailed i nformation ,  especially concerning GPS, the reader is referred to the extensive 
l iterature in this field e.g. [7] , [1 5] .  

7.1 Global Positioning System (GPS) 

GPS, formally known as the NAVSTAR Global Positioning System, was initiated in 
1 973 to reduce the proliferation of navigation aids. By creating a system that overcame 
the l imitations of many existing navigation systems, GPS became attractive to a broad 
spectrum of users worldwide. GPS has been successful in virtually all navigation 
applications, and because its capabilities are accessible to everybody using small, 
inexpensive equipment, G PS is being utilized in a wide variety of applications all over 
the globe. GPS is operated and maintained by the Department of Defense (DoD) of the 
U.S. Army. 

The Global Positioning System (GPS) is a space-based radio-navigation system 
consisting of a constellation of satel l ites and a network of ground stations used for 
monitoring and control. A minimum of 24 GPS satel l ites revolve round the Earth i n  
circular orbits at an altitude of approximately 20200 km (with a period of 12 hours 
sideral time, circling the earth twice a day, cf. Fig . 2. 1b) providing users with accurate 
i nformation on position, velocity, and time anywhere in the world and in all weather 
conditions. Currently (May 2003) 28 active GPS satell ites are ava ilable. The orbital 
planes are tilted to the earth's equator by 55° to ensure coverage of polar regions. 
Powered by solar cells, the satell ites continuously orient themselves to point their solar 
panels toward the sun and their antenna toward the Earth. 

The satell ites are composed of: 

• Solar Panels. Each satell ite is equ ipped with solar array panels. These panels 
capture energy from the sun providing power for the satel l ite throughout its l ife time. 
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• Internal components such as atomic clocks and radio transmitters. Each satel l ite 
contains four atomic clocks. These clocks are accurate to a nanosecond. 

• External components such as antennas. The exterior of the GPS satell ite has a 
variety of antennas. The signals generated by the rad io transmitter are sent to GPS 
receivers via the L-band antennas. Another component is the rad io transmitter, which 
generates the signal. Each satell ite transmits two carrier waves L 1 and L2 at the center 
frequencies 

L1 : 1 54 x 1 0,23 MHz = 1 575,42 MHz (11 = 1 9,05cm) 
L2: 1 20 x 1 0,23 MHz = 1 227,60 MHz (12 = 24,45cm) 

In order to forward information the carriers are modulated with code sequences 
(Pseudo Random Noise-Codes; C/A- and P-Code; see 7.2. 1 ). An additional modulation 
provides the navigation message. 

Currently three types of GPS satell ites are in orbit: 3 Block II, 1 8  Block 1 1/A (Advanced) 
and 7 Block 1 1/R (Beplenishment) satell ites. The satell ite categories d iffer mainly in 
functionality, state of the art electronics and last but not least in design l ife time which 
usually is l imited by the l ife time of the on-board Rubid ium and Cesium clocks as well 
as by the operation of the solar panels. Two satell ites (PRN05, PRN06) are equipped 
with retroreflectors and can be tracked by Satell ite Laser Ranging.Two more Block 1 1/R 
satell ites are scheduled for launch at the end of 2003. 

I n  July 2004 the first Block 1 1/RM (Mil itary) is scheduled for launch. Block I I/RM 
satell ites wil l emit another Code signal (M-Code) at L 1 which access is l imited to military 
users. The M-Code is a substitute for SA and should ensure military advantages in 
accessing the GPS-system. The first Block 11/F (Eollow on) satell ites should be 
launched in 2005, but the final schedule is not yet clear. They wil l offer another civil 
Code on L2, very similar to the current CIA-Code on L 1 .  Another civil frequency 
commonly referred as L5 ( 1  1 76,45 MHz) should be provided by a subsequent 
generation of satell ites, the so-cal led Block Ill satel l ites. L5 will provide significant 
benefits above and beyond the capabilities of the current GPS constellation, even after 
the p lanned second civil frequency (L2) becomes available. Benefits include precision 
approach navigation worldwide, increased availabil ity of precision navigation operations 
in certain areas of the world, and interference mitigation .  Table 7. 1 below summarizes 
operation issues and techn ical features of the GPS satel l ite categories. 

Sat.-Type Number Launch Design Life Functionality 
Time 

Block I 1 0  1 978-1 985 5 years keine AS, SA 

Block I I  9 1 989-1 990 7.5 years AS , SA 
mutual communication 

Block 1 1/A 1 9  1 990-1 997 7.5 years capabil ity 
Block I I/RM 1 8  1 997-2006 1 0  years M-Code 
Block 1 1/F 1 2-1 8 after 2005 1 5  years civil code at L2 
Block I l l  after 2009 civil code at L5 

Table 7. 1: GPS-satellite categories 
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GPS Control System 

The operational tasks of the Control System comprise tracking of satell ites in orbit, time 
synchronisation of the satel l ites to GPS time, and to calculate and upload broadcast 
orbit and clock information. The Control System consists of the main master control 
station at Colorado Springs (USA) and 5 monitor stations located at Hawaii , Kwajalein, 
Diego Garcia, Ascension and again Colorado Springs. It is of importance to mention 
again that WGS84 OO[orld Geodetic .§ystem, Version G873) is used as reference 
system for GPS. The system is realized by the coord inates of the monitor stations and 
subsequently by the broadcast ephemeris of the GPS satel l ites. 

7 . 1 . 1 GPS Poi nt Positioning 

GPS Point Position ing techniques are based on two observation types of varying 
quality. We have to d istinguish between so-called Code- and Phase-measurements. 

7 . 1 . 1 . 1 Code-Measu rements 

GPS satel l ites transmit modulations of the GPS carrier waves, the so-called CIA-Code 
(wavelength 300m) and the more precise P-Code (wavelength 30m). A un ique code is 
assigned to each satel l ite. The CIA-Code repeats itself every mil l isecond while the P
Code covers a time span of 266 days. I nd ividual weekly P-code-segments are assigned 
to each satell ite. The P-Code may be encrypted. The receiver establishes replica of this 
codes and correlates the incoming satell ite signal with the internal realization. The time 
interval necessary to shift the code replica to achieve maximum correlation between 
both code-segments allows for the calculation of the range between satel l ite and 
receiver. 

Le . .  . .  . .  . .  . .  . pseudorange Tt .. .. .. .. .. . epoch of code emmission in the satel l ites time frame 
t, . . . . . . . . .  . . . reception time of Code in the receivers time frame 
c . . . .  . . . .  . . . speed of l ight 

The Code-observation is obviously the signal 's travel time (t, -Tt ) multiplied by c, 

which is usually superimposed by clock offsets to GPS time and therefore called 
'pseudorange' . One range observation defines a sphere around the relevant satell ite. 
As there are four unknowns, i .e. the three receiver coord inates and the clock offset, 
four pseudorange measurements to four d ifferent GPS satell ites in view are sufficient to 
determine the unknowns. The satel l ite clock offset is part of the navigation message. 
Moreover, the pseudorange is affected by atmospheric delays. Thus a more extended 
observation equation reads: 

·(7.2) Le = p + C • Atu + C • M8 + C • Atr + C At1 + BR 
p . . . . . .  . . . .  . real geometric d istance between receiver and satel l ite 
Afu receiver clock offset to GPS-time 
Af8 . . . . . . . . . satel l ite clock offset to GPS-time 
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D.tr 

D.f1 
time delay due to tropospheric refraction 
time delay due to ionospheric refraction 
code noise 

State of the art receiver equipment al lows to correlate the code segments with a 
resolution of 1 /200 of the code wavelength or better. Thus, the noise of P-Code 
observations is at the ± 1 5  cm level, the code noise of CIA-observations is around 
± 1  m. 

7 .1  .1 .2 Phase Measu rements 

A phase observation represents the d ifference in phase between the emitted carrier 
phase fcR at epoch Tt in the satell ites time frame and the phase Fo of a reference signal 
generated in the receiver at reception epoch tr in the receiver time frame. This phase 
difference determines the remaining fractional part of the phase pseudorange but gives 
no information about the number of ful l wave cycles (ambiguities N) between satell ite 
and receiver. To solve for these ambiguities asks for adequate measurement and 
processing strategies e.g. the observation duration has to be increased according to an 
increased baseline length. Apriori knowledge of accurate approximative coordinates 
also improves the abil ity to solve for the ambiguities. 

The phase observation equation reads: 

(7.3) 

with 
. . . . . . . . . . . . . . . . . . . . . . . . pseudorangeLP N 

c · - = N A.cR . . . . . . . . .  ambiguity times carrier wavelength 
fcR 

· 

When solving correctly for the initial ambiguity N the phase observation represents a 
pseudorange measurement with extremely low measurement noise of about ± 1 .5 mm 
or better. Because the ionosphere is a dispersive medium for the GPS radio signals 
here the ionospheric delay in (7.3) enters with an opposite sign .  Signal propagation of 
the carrier is governed by the phase refractive index while code propagation is delayed 
according to the group refractive index. 

7.1 .1 .3 Accuracy in Positioning 

In general the accuracy of point determination with GPS depends on two factors. These 
are the accuracy of the pseudorange measurement and the geometry of the satell ite 
configuration at the instant of observation .  The geometry is usually described by the 
DOP (Qilution Qf Precision) number. A low number stands for a good geometry (mixture 
of a few h igh elevation with a couple of low elevation satel l ites) while a large DOP 
implies a bad geometry (e.g. urban canyon). The standard deviation of a pseudorange 
measurement cr, and the standard deviation of the derived receiver position cr are 
l inked by: 



 (POOP)2 

¢qxx 
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(7.4) cr = OOP · crr 

According to the coordinate component of interest we may d istinguish between various 
formulations of the OOP (HOOP, VOOP, POOP, TOOP, GOOP): 

crH = HOOP · cr, . . . .  represents the standard deviation of the horizontal component 
crv = VOOP · cr, . . . .  represents the standard deviation of the vertical component 
crP = POOP · cr, . . . .  represents the standard deviation of the 30-position 
crr = TOOP · cr, . .  . . represents the standard deviation of time coordinate 

The GOOP = + (TOOP)2 (represents the standard deviation of the 30
position + time) and the POOP are most popular indicators offered by almost all 
planning tools of GPS standard software. The OOP numbers can be calculated by a 
simple approximation or rigorously from the components of the covariance matrix of a 
code single point positiong applying the rule of error propagation. With 

qxx 
qyx 
qzx 

qxy qxz qxt 
qyy qyz qyt and cr,(7.5) Cxx = cr¡ .  qzy qzz qzt 
qty qtz qttqtx 

we obtain the standard deviation of a 30-position by means of 

<Jp = crr + qYY + qzz which is equal to crp = cr, 

Code- and phase observations are affected by systematic as well as random errors. 
Table 7. 2 summarizes well known error sources and gives a realistic estimate how they 
contribute to the standard deviation of a C/A Code pseudorange measurement cr, . The 
sources are grouped according to their origin . SA is assumed to be turned off. 

Space segment 
Error source 

Satellite Clock 
Orbital Perturbation 

GPS [m]
2.0 
1 .0 

other 0.5 
Control segment Ephemeris Errors 2.5 

other 1 .0 
Atmosphere 

Site 

Ionosphere 
Troposphere 

Multipath 
Receiver Noise 

3.5 
1 .5 
2.5 
1 .0 

(7.6) 

other 
Sum cr, 

Table 7. 2: CIA-Code Pseudorange Errors 
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GPS was designed to offer Precise Code Users (PPS; Precise Positioning Service) 
positions in real time of 22 m in the plane and 27. 7 m in height at the 95% probability 
level (2 drms). Besides , the velocity of any moving receiver can be determined with an 
accuracy of at least ± 0,2 mis [1 5] .  The common user, on the other hand , is allowed to 
use only the basic S PS (Standard Positioning Service) which prohibits the use of the 
encryted P-Code. Before May 2000 SPS positions in addition suffered severly from 
Selective Availabil ity (SA). After May 2000 the SPS accuracy approaches the PPS 
level .  Nevertheless SPS users are still restricted to the C/A Code which is currently 
offered only on L 1 .  The upcoming civil Code on L2 will al low for a proper elimination of 
the ionospheric delay and therefore will lead to a remarkable improvement of the SPS. 

7.2 Global Navigation Sate l l ite System (GLONASS) 

GLONASS, a Satell ite Navigation System developed by the Russian Federation, 
provides a fu nctional ity very similar to the GPS. The user is able to obtain position, 
velocity and timing by tracking the ranging signals of the GLONASS satellites. Both , 
GPS as well as GLONASS,  were primarily designed as mil itary systems which also 
provide civil ian services with sl ightly degraded accu racy. 

The completely deployed space segment is composed of 24 satel l ites regularly located 
in 3 orbital planes with an inclination of about 64.8 degree. The orbits of these MEO 
(Medium Earth Orbiter) satell ites are almost circular. An orb ital height of 1 91 OOkm 
yields to a rotation period of about 1 1  h 1 5m . The first GLO NASS satell ite has been 
launched in October 1 982 but it took more than 1 3  years to achieve "Full Operational 
Capabil ity" (FOG) in January 1 996. A major problem is the short design l ife time of the 
satellites of 3.5 years . Although each launch can del iver 3 space vehicles together into 
their intended space location, the number of active GLONASS satellites has decreased 
from about 1 8  in 1 996 to less than 8 in 200 1  . Currently more frequent launches, an 
obviously more stable fu nding and an upcoming new generation of space vehicles 
should fully restore the system in the next 5 years. 

Figure 7. 1: GL ONA SS Sa tellite 

GLONASS-satellites transmit signals at two carriers within  the L-band.  But in contrast to 
the GPS system slightly d ifferent frequencies are assigned to the individual GLONASS 
satellites to d iscriminate between the space veh icles (Frequency Division Multiple 
Access). The individual center frequencies can be calculated by means of 

L 1 = 1 602.0 + 0.5625 Z [MHz] bzw. L2 = 1 246.0 + 0 .4375 Z [MHz] 
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where Z denotes an integer number ranging from 1 to 1 2  (from -7 to 6 beyond 2005). 
GLONASS satel l ites provide two types of navigation signals (modulations of the 
carriers) which are the standard code at 0 .51  1 MHz with a repeat cycle of 1 mi l l isecond 
and the h igh accuracy code at 5 . 1  1 MHz with a repeat cycle of 1 second . 

The GLONASS broadcast ephemeris provide positions in the PZ-90 (Parametry Zemli 
1 990) earth-centered earth fixed reference frame. Derived geodetic coordinates refer to 
an ellipsoid described by the semi-major axis a= 6 378 1 36m and the flattening 
f= 1 /298.257839303. The qual ity of the PZ-90 is comparable to the WGS84 a lthough the 
monitor station network is currently restricted to stations located in the Russian territory. 
GLONASS system time is the Russian realization of UTC (UTC(SU)) plus exactly 3 
hours. The GLONASS time scale is periodically corrected for leap seconds announced 
by the I nternational Earth Rotation and Reference Systems Service ( I ERS). 

The tables below should emphasize d ifferences and simi larities between the GLONASS 
and the GPS system. 

Reference 

GPS 

US DoD 
WGS-84 

G LONASS 

CIS VKS 
PZ-90 

Time GPS -Time I Seconds 
Selective No 

No 
FOG 1 7, 1 995 1 8, 1 996 

Table 7.3a: Control Segment 

GPS G LONASS 
Active Satel l ites as of 2003 28 9 
Orbital Planes 6 3 
Satell ite Distribution within Plane not 
I nclination of Planes 55° 64.8° 
Orbital 20200 km 1 91 00 km 
Rotation Period 

1 Sideral 8 Sidera l  

Table 7. 3b: Space Segment 

Division 
GPS 

CDMA 
G LONASS 

FDMA 
Nominal 1 0.23 MHz 5.0 MHz 
Carrier L 1 1 575.42 MHz 1 602.0+0.5625*Z MHz 
Carrier L2 1 227.60 MHz 1 246.0+0.4375*Z MHz 
Standard Pos. Code 1 .023 MHz 0 .51  1 MHz 
Precise Code 1 0.23 MHz 5 . 1  1 MHz 
Broadcast Elements Position and 
Almanach 2 Hours 30 Minutes 

Table 7. 3c: Signal Structure 



NaviQation (CIA-Code) (S-Code) 
Mi l itary NaviQation (Y-Code) (P-Code) 

Designation 
Ephemeris yes yes 

Ranging basical ly yes 
many 
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GPS GLONASS 

Civil Service SPS CSA 
Service PPS CHA 

Satel l ite PRN-Number Slot-Number 
Precise ava ilable 
Laser not 
Nr. of Receiver Manufacturers few 

Table 7.3d: Further Characteristics 

7 .3 Satel l ite Based Augmentation Systems (SBAS) 

Satell ite based augmentation systems were implemented to provide a level of accu racy, 
performance and integrity that cannot be offered by GPS or G LONASS alone. One of 
the major driving communities to set up SBAS was of course civil aviation but also land 
and maritime users require augmentations to su pport the performance in real time 
positioning. SBAS usually broadcast GPS- (GLO NASS-) l ike navigation signals 
containing integrity and differential correction information by means of geostationary 
satellites. Up to now a few of these overlay systems are plan ned or will become 
operational in the very near future. Figure 7.2 below shows the service areas of the US
Wide Area Augmentation System (WMS), the Canadian WMS , the European 
Geostationary Navigation Overlay System (EGNOS) and the Japanese MSASystem. 

Figure 7. 2: SBAS service areas 

7.3.1 Wide Area Augmentation System (WAAS) 

The US WMS provides a Signal-In-Space (S IS) by means of three geostationary 
lnmarsat satellites (GEOs), namely the POR (Pacific Ocean Region), AOR-W (Atlantic 
Ocean Region-West) und AOR-E (Atlantic Ocean Region-East) satel l ites. These 
satellites broadcast at the GPS-L 1 frequency primari ly 

1 .  Current integrity of GPS based positions as wel l  as integrity of signals of the 

remaining GEO satel l  ites 

2. Differential range corrections derived in first place from ionospheric models (more 

precisely from ionospheric refraction grids) and orbital error modell ing 
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3. GEO-Ranging data to augment the nu mber of navigation satellites available to the 

user. 

To establish the integrity information and the range corrections WAAS uses a ground 
infrastructu re of Wide-area Reference Stations covering the whole service area. The 
reference stations mon itor the signals of the GPS satellites and forward the tracking 
data to so-called Wide-area Master Stations (WMS). At the WMS the corrections per 
GPS-satell ite are calcu lated and uploaded to the GEO along with the GEO-Navigation 
information. 

Basically WAAS should reach FOC in 200 1 but due to financial and technical reasons 
the implemention has been delayed several times. Cu rrent estimates expect In itial 
Operational Capabil ity ( IOC) within the second half of year 2003. Figure 7.3 below 
shows the 'footprints' (areas of augmention service) of the various active geostationary 
satellites . 

Figure 7. 3: SBA S GEO footprin ts 

Future WAAS GEOs (scheduled for lau nch in 2005 or later) will also provide 
augmentation signals at another civil frequency, namely L5. This obviously requires that 
L5 signals provided by a modernized GPS space segment will also become available in 
time. The availabil ity of L5 will encourage developments that either can use GPS 
signals on both L 1 and L5 to el iminate ionospheric errors or broadcasted WAAS 
ionospheric corrections. 

7.3.2 EGNOS 

Similar to WAAS the EGNOS space segment consists of three geostationary satellites 
comprising two ln  marsat satellites lau nched in 1 996 and the ESA satell ite ARTEMIS 
(Advanced Relay and Technology M ission Satellite) which was lau nched in 2000. From 
Fig ure 7. 3 we can deduce the service area and the fact that AOR-E (Atlantic Ocean 
Region - East), the most westerly GEO of EGNOS, is part of WAAS too.  I n  the eastern 
region the IOR ( Indian Ocean Region) satell ite completes the EGNOS constellation .  

Figure 7. 4 shows the position of the GEOs as well as  the covered service areas. The 
area overlaps should ensure that each user in Europe and Africa has at least two 
satell ites simultaneously in view (in case of no local obstructions). 



Geodesy GHJHHHHHHHHH__,.;;...._HHIIHHHHHHHHJJJHH-

·.• £ � - I '•� ·- ,6, 
x J  _J 

(http://www . sapos.de/) 
(http://ascos . ru h rgas. d e/) 

Bretterbauer, Weber: A Primer of 47 

40 

20 . ., 

0 

-20 

-40 

-60 

·BO 

-150 - 1 00 

" '"' ' ... 

) ' 
""-

l . . ×· ·  

AOR 1= ':. IOR ._. ,  • ·  " 
(1 S 5 W) (65 5 E) 

. ,· 

� · ,�-

-50 0 

Artemis 
( 1  5 E) 

50 1 00 1 50  

Figure 7. 4: EGNOS Core Area 

A complex and redu ndant wide area network of 34 ground reference stations and up to 
four control stations support EGNOS. The EGNOS messages a re primarily the same as 
in WMS, namely Differential Range Corrections for G PS and GLONASS,  integrity 
information for both systems as well as for the GEOs, almanach data of the GEOs and 
last but not least GEO ranging data . Cu rrently the signals are broadcasted at L 1 but 
similar to the WMS , future implementations may use L 1 and L5. 

Position ing by means of EGNOS or WMS corrections is comparable to typical DGPS 
methods.  The SBAS user may expect a probabil ity of 95% that the obtained position is 
close to the correct position with in 1 .5m in the plane and within 5.0m in the vertical . 
These numbers might be too optimistic in case of local obstructions or additional error 
sources l ike e.g. multi-path . 

The geodetic user should be aware that SBAS support typical navigation activities 
(aviation, car-positioning , .  . .  ) by means of code ra nge correction data and integrity 
information but offer no special su pport for precise position ing with dm or even cm 
accuracy. Thus h igh precision surveying still rel ies on resolving correctly the carrier 
phase ambiguities. Local or regional services provide the necessary phase reference 
data for d ifferencing tech niques or at least local ionospheric and tropospheric model 
parameters for high precision single point positioning. 

In Germany a cooperation of the federal SAPOS-Service and 
the private ASCOS-Service offers Realtime Code and Carrier 
Phase Correction Data for both the GPS and the GLONASS Satel l ite System. The data 
is based on a network of about 260 Reference Stations coveri ng the whole territory of 
Germany. The correction data can be obtained bei means of a GSM or via the I nternet. 

In Switzerland the Federal Office of Topography in Berne operates a multi-purpose 
reference station network 'AG NES' comprising 29 reference stations. The offered 
services Swipos-Nav and Swipos-G IS/G EO discriminate by the targeted user groups. 
Swipos-Nav is a typical DGPS Service providing Code-Correction data . Swipos
G IS/G EO aims at the high-accu racy market offering reference data by means of the 
virtual reference station approach for all post-processing and RTK-appl ications. 

In Austria several regions are covered by private real-time GPS/G LONASS reference 
station networks offering Correction Data fo r RTK appl ications via GSM or radio station.  
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These are :  

BEWAG: 4 stations in the Burgenland 
KELAG : 8 stations in Carinth ia 

- Wienstrom: 4 stations in the vincin ity of Vienna 

The Federal office for Metrology and Surveying offers for the 
whole Austrian territory reference station data for point determination in post-processing 
(see [1 6]). 

7.4 GALILEO 

GALILEO, the upcoming European Satel l ite Navigation System, is plan ned to provide 
worldwide navigation and timing services, search and rescue services, and moreover 
commercial data dissemination services. The system wil l  be to a great extent under 
civi l ian control .  Cu rrently the European Co mmission and the European Space Agency 
are close to complete the GALILEO System Definition Phase. Early in 2005 the first two 
test satel l ites should be lau nched to provid e a prel iminary signal in space. In 2006 and 
2007 the bulk of operational satel l ites wil l  be launched and FOC (Ful l  Operational 
Capabil ity) is scheduled for 2008. 

The GALI LEO space segment wil l  consist of 30 Medium Earth Orbiting (MEO) satel l  ites 
located in three orbital planes. Each plane wil l  be inclined to the earth equator by 56° 
and will contain nine system plus one spare satel l ite in almost circu lar orbits. An orbital 
height of almost 23 620 km yields to a rotation period of about 1 4h 20m. This rotation 
period is not in close resonance with Earth rotation ( l ike GPS) and therefore ensures a 
stable system over at least ten years without the need of frequent sate l l ite manoeuvres . 
The design l ife time of GALI LEO satel l ites is more than 1 0  years. 

The GALI LEO ground segment wil l  consist, in contrast to the GPS,  of more than 20 
globally distributed monitor stations. The monitoring stations provide the necessary 
tracking data to calculate precise satel l ite orbit information which is sent to satel l ites via 
at least three upl ink stations. The navigation information wil l  most l ikely be in an 
extended version of keplerian elements. The GALILEO broadcast reference frame will 
be closely tied to the ITRF within a few ems. The navigation information wil l also contain 
the cu rrent d ifference between GALILEO and GPS system time. GALILEO is designed 
to provide a horizontal accu racy of about 4.5 m and a vertical accu racy of about 7 .0 m 
(both at the 95% probabil ity level) .  In addition GALI  LEO wil l  d isseminate integrity 
information l ike EGNOS and su pport a number of services as mentioned above. 

Although GALILEO wil l  be in principal a ful ly autonomous tool for sate l l ite navigation the 
system design ensures as much as possible compatibi l ity with GPS and GLONASS. 
The interoperabi l ity concerns for example common center frequencies at L 1 and L5 or 
close ties of the used reference frames and timing systems. Therefore the use of future 
dual- or triple-system receivers wil l  not only increase the nu mber of trackable sate l l ites 
to 50 or more but wi l l  also improve the availabi l ity, rel iabi l  ity and last but not least the 
accu racy of positioning. Thus positioning using basical ly Code signals of e.g.  GPS + 
GALI LEO wil l  provide global ly a horizontal accuracy of 3.5m and a vertical accuracy of 
about 4m (both at the 95% probabil ity level). Also h igh precision positioning will 
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certainly gain from additional signals and carriers because they allow for faster and 
more d irect algorithms to resolve phase ambigu ities. 
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