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Abstract

This thesis deals with analysis, comparison and some further developments of methods for
state event determination in hybrid and variable-structure systems — from view of
mathematics, and from view of case studies in mechatronics.

The thesis first reviews ‘classical’ methods for state event location, where a zero search for
the event superimposes the ODE solver.

In the following the author concentrates on generic methods for state event location,
which integrate the zero search into the ODE solver algorithm. Here, the approximation of the
state vector at an event is based on the step-size calculation until the event, using a
reformulation of the ODE solver. A ‘direct’ approach reformulates an explicit ODE solver by
integration of the zero search for the step-size until the event, resulting in an ‘extended’ zero
search, an implicit algorithm. The thesis therefore concentrates on an ‘implicit’ generic
approach, which integrates the zero search onto an implicit ODE solver. This strategy
modifies the zero search for the implicit solver algorithm appropriately by integration the zero
search for the step-size until the event.

The theoretical part of the thesis continues with event location in DAE systems. For
hybrid systems, described by semi-explicit DAEs, the author presents an extended strategy:
the zero search for the step-size until the event is implemented into the multidimensional zero
search for the algebraic states and for the system states. This method can also be used for
fully-implicit systems, after index reduction of the system.

The last part of the theoretical part of the thesis analyses an alternative method for
state event location, the Henon method. There, independent variable and one dependent
variable are ‘exchanged’, so that no zero search for the event location is necessary, but the
system becomes (much) more complicated.

The practical part of the theses analyses the compared and developed strategies for
event location with three case studies from mechatronics: bouncing ball (hybrid ODE system),
filament pendulum (DAE system with variable structure), and rotor — stator dynamics (hybrid

DAE system).



Kurzfassung

Die Dissertation befasst sich mit Analyse, Vergleich und teilweiser Weiterentwicklung von
Methoden zur Bestimmung von Zustandsvektoren bei Zustandsereignissen in einem hybriden
System bzw. in einem System mit variabler Struktur — aus mathematisch-numerischer Sicht,
und aus Sicht von mechatronischen Fallstudien.

Die Arbeit diskutiert zunéchst einige ,,klassische® Methoden zur Approximation des
Zustandsvektors bei einem Ereignis: ein dem ODE/DAE — Solver {ibergelagertes Nullstellen-
verfahren versucht die Schrittweite bis zum Ereignis zu approximieren.

Diese klassischen Methoden, bei fast allen Systemsimulatoren im Einsatz, sind an sich
nicht generisch und teilweise ineffizient. Daher entwickelt, analysiert und diskutiert der Autor
,»generische® Methoden, die die Nullstellensuche zur Ereignisbestimmung mit dem ODE —
Solver verbinden. Die Approximation eines Zustandsvektors bei einem Zustandsereignis
basiert dabei auf der Berechnung der Schrittweite bis zum Ereignis aus einem reformulierten
ODE Solver. Ein erster Ansatz ist eine Reformulierung eines expliziten Solvers durch
Integration der Nullstellensuche, was zum einem ,,erweiterten Nullstellenproblem und damit
zu einem impliziten Algorithmus fiihrt.

In der Folge beschiftigt sich die Arbeit daher auch mit der Reformulierung eines
impliziten Solvers durch Integration der Nullstellensuche. Diese Vorgangsweise behélt die
numerischen Vorteile des impliziten Solvers bei, und die Nullstellensuche des impliziten
Solvers braucht nur ,,geeignet™ modifiziert zu werden. Die Arbeit entwickelt und vergleicht
fiir diese Strategie verschiedene Vorgangsweisen fiir die Approximation von Schrittweite und
Zustandsvektor.

Der theoretische Teil der Arbeit schliet dann die Betrachtung von DAE-Systemen mit
Zustandsereignissen an. Fiir hybride Systeme, die von semi-expliziten DAEs beschrieben
werden, kann die Strategie der Erweiterung eines impliziten ODE - Solvers erfolgreich
fortgesetzt werden. Bei voll-impliziten DAE-Systemen kann nach Indexreduktion dieselbe
Strategie verwendet werden.

Der theoretische Teil der Arbeit schlieBt mit der Analyse und Bewertung einer
alternativen Methode ab. Diese nach dem Enwickler Henon - Methode genannte
Vorgangsweise vertauscht die unabhidngige mit der das Zustandsereignis bestimmenden
abhéngigen Variablen und bendtigt damit kein Nullstellenverfahren zur Bestimmung des
Zustandsvektors bei einem Ereignis, sie arbeitet aber mit einem iiblicherweise (wesentlich)

komplizierterem ODE-System..



Der praktische Teil der Arbeit untersucht die verglichenen und weiterentwickelten
Methoden an drei mechtronischen Fallstudien: Bouncing Ball (hybride ODE-Beschreibung),
Filament Pendulum (DAE-System mit variabler Struktur), und Rotor-Stator — Dynamik
(hybride DAE-Beschreibung) und versucht einen Vergleich und eine Bewertung der

Methoden aus Anwendungssicht.
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1 Introduction

This chapter introduces a basic concept of variable structure systems, hybrid systems, state
events and approximation procedure of an event location in hybrid or variable structure

systems.

1.1 Hybrid and Variable Structure Systems

A variable structure system' contains of different sub systems with particular mapping,
behaviours, characteristics and/or dimensions. The sub systems are activated or deactivated
via time or state events. A variable structure system can be considered as a composite system
comprising continuous-time combined with the discrete-time systems which are known as
“hybrid systems”. The switching system, which triggers the structure transitions, is considered
as a discrete time system whereas the selectable systems are regarded as continuous time
systems. A switching system can be defined by conditional expressions® demonstrated as
discontinuity in system behaviour or it is established as an event indicator to control the
system modification and system properties. Figure 1 shows a variable structure system with
different selectable discrete and continuous time systems of ODEs and DAEs with event
detection- and handling units and with its endogenous and exogenous components for

connecting to other systems.

' The change in behavior of a function can be determined via change in function mapping f : D, — Dy . The

mapping of the various functions of systems of ODEs or DAEs may be defined by the alteration of function
relationship, dimensions and spaces. These are defined as “variable structure system”.
* Constraint, algebraic equations or inequalities can be specified by conditional expressions.
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Figure 1: A Variable Structure System with Switching System and Interfaces

A variable structure system can be modelled by a hybrid automaton. A hybrid
automaton [JEKO2] [RAHO1] H is a collection of different sets as follows

H=(L,D,E,X,Y,ZX,,F,P,Q,R,C,¥)
(1)

in which,

e L is a finite set of discrete states, modes, locations or nodes. A state is activated or
deactivated according to the appropriate conditional expressions, which is shown on
an arrow of the appropriate automaton diagram.

e D contains the domains of various state spaces on various discrete states or modes.

e E is a collection of arrows, whereas in a hybrid automata, the arrows can be
considered as discrete transitions.

e X presents a finite set of continuous-time state variables.

e Y presents a finite set of algebraic variables.



Z presents a finite set of discrete-time state variables.

X, shows a set of initial states.

F is a set of vector functions.

P indicates a set of modification parameter vectors.

R is a reset map. This is a map, which describes the actions at state transitions. These
actions are the initialization of the state variables, activation of the other systems,
changing the parameters etc.

C is a set of conditions or guards. They can be shown on the edges between the
different nodes of the automaton graph of the hybrid model.

Q is defined as a set of switching variables. The validity of the conditional functions
and equations is defined by the elements of the set C. They can be quantified e.g. by
logical, integer or Boolean variables which can be considered as switching variables.
The disabling or enabling of the state transitions can be defined by the switching
variables Q or directly by guards C.

Y is finite set of variable flags, logical variables or signals related to the parallel
switching of hybrid systems. They can also be interpreted as the events of the

synchronous or asynchronous transitions on a parallel hybrid automata.

In a network of the hybrid systems, a system may interact with other hybrid systems and

vice versa. The interactions of sub-systems and components of different blocks require input

and output connections or ports. The inputs of the system in Figure 1 are sets of the

continuous-time variables U, discrete-time variables U, and event variables U, . These can

be also collected in a hybrid automata as follows

H=(U,U,,U,,L,D,EX,Y,ZX,FP,QR,C¥).

@)

The output variables can be affected the external systems. These variables are the sets of

output continuous-, discrete time- and/or output event variables V., V, and V_ . With these

sets, the model collection can be expanded as follows:

H :( xaUz aUq ,L,D,E,X,Y,Z,XO,F,P,Q,R,C,lP,VX ’Vz qu)'

3
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The state graph is a graphical representation of an automaton describing variable
structure systems. In the state graph, the arrows or edges can be denoted as events. In
addition, certain graph outputs and other actions, such as triggers, initialization or resets, can
be shown using arrows. Each system of ODEs or DAEs can be marked out with the
corresponding node. A transition from one node to another can be interpreted as a sign of a
system switching and change in system definition, properties, and structure.

The following forms show a system of DAEs of a variable structure system

X()=£(e.%(t) 9(e) 6(t). 2(1). (1))

“

S

where X represents a continuous time state vector and X is its derivative, y is an algebraic
variable vector, i is an input or control vector and t stands for the time”. f demonstrates a
system vector function, g shows an algebraic vector equation and Z is a discrete time state
vector. Vector p indicates the system parameters. The event function is represented by h as

follows:

(6)

Figure 2 shows an example of a state graph with discrete states s, and s, . The state

transition can be controlled by an event function. The system transitions in Figure 2 can be

described by a logical variable

® The variable t is the independent variable. Hence the dependent variables are shown with the independent
variable t . The structure of system can be changed and it depends on magnitudes of the outputs of the switching
system in time t. The other interpretation of using index t in system indicates that the variables, systems or
initial values may be valid in particular time slot and there is a mechanism, which causes a change in system, e.g.
change in system structure, initial values and activating or deactivating systems etc.

11



and the discrete states can be described by the following logical expression:

lgAlss o RO=BEO) s, A =F ROV g als, o FKO=FEEDA—ss A0 =F ()

In Figure 2, the event indicator ¢ is true then a transition to discrete state s, is done and if ¢
is false a transition to s, occurs. The arrows serve the system transitions when the transition

conditions are fulfilled. The transitions described by a reset map can be simplified and

optimized by a transient truth table and Karnaugh map®. The event function in Figure 2 is

defined as h:D—>R, XeD={D,UD,}cR", neN and it is coupled with the systems

x(t)= f (x(t)) with mapping f:D >R", ic {1,2} and solution X:/, cR* > D, tel,.

h(x(t))<0

Figure 2: State Graph of Hybrid System

Figure 3 depicts an example of a hybrid automaton. This model can be considered as a
hybrid system with finite or infinite system transition sequences. The system transition
depends on the definitions of the conditional expression of the event function h(i(t),f)) as
well as definitions of state spaces, mapping of system functions and simulation time. In
Figure 3, the system parameter vector pe P = {130,1312,1321} can be changed in each transition.
The modifications of the system parameters in Figure 3 affect the structures of the differential

equations and event function.

* A transient truth table gives a different point of view e.g. for building a state machine with logical structure
transitions. A transient truth table contains all combinations of conditional expressions, input and output
variables, including the variable values of the former step. Also, the labels of present and past nodes can be
given in the tables.

12
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Figure 3: Parameter Modifications in Hybrid System

In Figure 4 the algebraic vector equation’ gi(i(t), y(t)) is coupled with differential
equation X(t)=f,(%(t),§(t)) in which f:D, xD;, >R", g :D,;xD, »>R", ie {1,2}. Here
XeD={D,UD,}cR" is defined as a state vector and e D, = {Dyl uD, }g R"™ as a
vector of algebraic variables with constant dimensions n,n, € N whereas the solutions are
X:/,—>D and y:I, > D,, I, cR". In this figure, the vector functions and the algebraic

vector equations change in each transition. The event function h(i(t), y(t)) with mapping
h:DxD,— R is coupled with appropriate differential equations and is defined on each

arrow by a conditional expression.
The event function h(X(t),y(t)) in Figure 4 can be expressed by a topological space

(R, T h) with topology

T, = R, th(x(t).9(t)) [ h(=(). 5(t)) > 0}, th(x(e). (1))  1(%(t). 5(t) < O}y

(M

on R. The zero-locus of an event function h(i(t), y(t)) in time domain is defined by a set D, .

31 ek r) e = sy ) InE)s()=o0)

@®)

> It is assumed that the algebraic vector equation contains n, components. Each component has many solutions.

The graph of an equation can be shown by its solutions in R" x R"™ coordinate system. An algebraic equation
is represented implicitly by mapping D, x D into R and it may transform in explicit form.

13



An event vector (t ,§/Z)T shows a point in space R* xR"xR"™ and it is an element of

e

zero-locus set D, .

Zero location of an event function can be considered as an event. The event function at
zero location can be seen as an equation called event equation. The root of an event equation

h(%(t),5(t)) = 0 is demonstrated in vector form by

The vector (i: .y, )T which shows the magnitudes of dependent variables at an event is named

transient vector®.

Figure 4: Modifications of DAEs in Hybrid System

Figure 5 is another illustration of a hybrid system. The state graph for this hybrid

automaton is given for intervals t € /, c R" for DAE solutions

X;:I, > D, y:1, > D,

¢ X, is transient state vector and Yy, is transient algebraic variable vector. A transient vector is considered as an

initial vector for the initialization of the next system of ODEs or DAEs at the switching event in hybrid or
variable structure systems.

14



with different dimensions n;,n, ,n €N, different state vectors X; €D, < R", different

algebraic variable vectors y, €D < R™ different parameter vectors p; €D, R™

different mapping of the system vector functions
%,(t)="1(%,(t)5,(t)5;), f.: D, xD, xD, —R™
and algebraic vector equations
g.(%,(t).,(t)p;)=0, g :D,xD, xD, —R™
in each node as well as different event functions
h,(%,(t)¥;(t)5;), h;:D,xD, xD, >R

on each edge. For auxiliary index j with {i, je{l,2},i¢ J} there are as well different

initialization state vectors

and different initialization parameter vectors
P = éji (;(j(t)a S;_](t))

Each transition is accomplished at a different point of time and the hybrid system is initialized
with a different initialization vector with different dimensions. Hence, this model is
considered as a variable structure system with a total structure change in each transition. The
magnitudes of the different state functions can vary and influence the system structure and

therefore determine the dynamic of the system.

15



Figure 5: Total Structure Modification in Hybrid System

The designed state spaces of the hybrid system can run as sequential states or XOR
decomposition. In this case, only one state space can be activated at any time. If the switching
conditions of the hybrid system in a XOR mode are triggered to pass to several nodes at the
same time, the hybrid system can lead into an undefined state. Then the system could not
make a decision which transition structure should be used.

In some cases, hybrid automata may be treated as parallel or AND decomposition e.g.

in a multithread system.

1.2 Events in Hybrid Systems

In a hybrid system, an event indicates a transition to a system with the various characteristics
and behaviours as previous system. An event may be associated with change in mapping and
structures of the system of vector function, equations, constraints, inputs, outputs, dimensions,
variables, initial values and parameters.

An event can be classified as a state event or a time event. The events can be divided into two
categories which are random and deterministic events’. An event can be modelled via system
signals, magnitudes, specifications and characteristics which are associated with the event.
For the definition of limitations of an event, conditional operators can be applied. In the

variable structure system, an event expression can contain a time condition. Also a system

7 The simulation models in chapter 5 indicate the deterministic state events.

16



switching by a conditional expression dependent on time can be defined. This dependency
indicates a time event. An event condition with a time variable comparison points to a time
event. For example in ODEs X(t): f, (x(t)), 1e {0,1,...,m}c N a time event in serial

consecutive systems can be expressed by

visBtel, -et, +ecl:(t<t, )&t =f, x)Vv(t, <t)e(x(t)=1£(x({)
)

and in a parallel systems by
vi>1tel, -et, +e{cl (<t ) &E)=f, xO)v (¢, <t)> x(1)=1£(x(t)

in which the ODE solution x :/, = D is defined on interval

1, =\J1, with 7, =|t,.t, |[cR’
i=0
and the ODE mapping function is

f:D, >R, xeDszJDigR,RszJRigR.

i=0 i=0
Hence, a time event happens if the time variable t crosses the time limit
t, :(t, e, )alvi>0:t, <t ).

If a system switching is defined by an event expression dependent on state variables,
then the switching occurrence can be interpreted as a state event. For specification of a state
event, the appropriate function can be expressed with logical, relational, conditional and
arithmetical operators (e.g. and, or, not, greater than, less than, equal, if, else) or combinations

of these operators. The output of the switching system can be demonstrated by mapping the

17



switching expression onto other auxiliary variable e.g. in form of a logical, integer or Boolean

variable which is named here switching variable®.

In a consecutive switching system with m € N switched ODEs

a state event

x(t, )=a, , £e{1,2,...,m}

is specified as intersection of threshold value

}c D,

1

Xx=a,,a, € {ael,aez,...,ae

m

with state variable x(t) at t = t.,

t, :(t, efte st nte jeL)Alt, <t <t -<t, )

€ te,? s

described by sum of the ¢ integrals.

i, )=+ [Nt [ Gehs s o (Oht=x,+ 3 okt

te i=1 ¢

er-1 ¢i-1

(10)

¥ An event function h(i(t)) can be associated with an additional variable as a state event indicator. E.g. the

logical expressions in page 12 quantify the state event occurrences using logical variable.

18



1.3 Approximation Procedure of Event Location in Hybrid System

In all the examples shown in Figures 2, 3, 4, 5, before a transition from discrete state s, to s,

and vice versa, the transient state vector has to be computed. The transition vector is used to
avoid imprecise interruption of current data processing at the moment of state transition.
Figure 6 shows a flowchart of a computer program for computing the state vector of a
hybrid model using an ODE solver system with fixed step-size. The algorithm contains an
approximation system of the transient state vector at the state event in one direction from the
first system of ODEs to the second ODEs. In this flowchart, the procedures are shown in the
rectangles and the decisions are shown in parallelograms. Top of the flowchart shows the first
procedure for variable initializations. In each iteration, the first parallelogram checks, whether
the event happens or not. At first, if the event is not captured, then the right branch of
algorithm runs, thus the first solver algorithm runs. In each repetition loop, the iteration index
and the simulation time increase. Then the simulation time is checked each time passing the
last decision block whether it has reached its limit or not. If the simulation time is not finished
then it proceeds one more time and the algorithm repeats the computation of the
approximation of the state vector of the first system. Hence, this process continues until an
event is detected by the first decision block. If an event is captured, then the last step-size
before the state event is predicted in the middle block using an iterative algorithm. With this
prediction, it is possible to approximate the transient state vector. Now, the ODE solver of the
second model can be initialized with the approximated transient state vector. After this
initialization, the algorithm runs approximations of the state vector of the next system using
appropriate ODE solver. The flowchart shows a transition in one direction. Hence, the

simulation of the second system continues until the simulation time is up.

19
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2 State Event Handling in System of ODEs

This chapter presents the state event handling via solving reformulated ODE solver equation
regarding the event step-size. First, the magnitude of the independent variable at the state
event is computed. Then the transient initial conditions’ can be approximated by
recompilation of the computed magnitudes in the solver algorithm at the state event.
Subchapter 2.1 provides a solution by reformulation solver equations and 2.2 achieves a
solution via applying the root-finding methods on nonlinear systems of equations to the

system of reformulated solver formulas for approximation of transient initial conditions.

2.1 Event Location Approximation via Reformulation of Solver

Formula

Subchapters 2.1.1 and 2.1.2 present the approximation methods of transient states using

reformulated explicit and implicit solver formulas.

2.1.1 Reformulation of Explicit Solver Formula

The idea behind this method is to solve the reformulated explicit solver equation'®, which
includes computing the step-size at the state event using the old approximated values and the
computed step-size to approximate the transient state vector.

The system of ODEs is considered as a non-autonomous continuous system''
i(t):f(t,i(t)) with the state vector x € D — R". The system of ODEs i(t):f(t,i(t)) is
defined by the function f:7,xD—R" with solution X:/, —D. There is an ODE
component Xi(t):fi(t,i(t)) involved in state events in which x, eUi:(UicR)cD,

1e {1,2,...,n}, n e N exists. The differential equation Xi(t): fi(t,i(t)) contains the mapping

’ Transient magnitudes and/or transient state vector can be considered as transient initial conditions in a hybrid
system. These magnitudes are computed after event detection and applied at the event location for initialization
the next switched system.

' After determination of an event in hybrid or variable structure systems, the solver system switches to a system
of “event location approximation” (Figure 6). The approximation system considers the reformulated solver
formula as an equation and handles it as such equation. The equation is solved for the event step-size and then
the computed event step-size is used to approximate transient state vector. Hence, the term “solver equation” is
given for the approximation system of transient state vector at switching event.

" For simplification of system description, an input vector is not given in system definition. The methodology of
state event handling with an input vector is the same, but the input variables and their magnitudes should be
considered in der calculation.
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f.:/,xD—R with the differentiable solution x,:/, > U, for the finite interval

I =[t,,t,]cR", tel,.

The Euler’s solver with step-size At for approximation of the state variable is shown

in the following formula

X=X + At fi(tjfl,xjfl).

an
By setting At =t; —t; | the formula (11) changes to
X=X+ (tj - tj—l)fi (tj—l’;‘j—l)'
12)

For plotting of the approximated state variable X, ;, each computed value X;; in t; can

be connected to the neighbouring values graphically. If the curve of the discrete time state

variable X;; crosses the event threshold value x; =a_, then the last value before the event
crossing point can be used to find the location time t_ . It is assumed that the magnitude of the
discrete time state variable hits exactly the event threshold line x;, =a_ at step j. Hence,
define x;;:=a, and consider it as an initial value. On the other hand, the value of the
independent variable at the state event is presented by t; := t,. Hence, the zero crossing of the

event function can be determined by quantifier t, using the reformulated initial value

problem as follows

({6, 2(0) =2, +x,(1)=0):> | T, :-a, +x,,, + [ x(O)de=0].

i

(13)

It is assumed, that the event function h(t,i(t)) is bijective on a small interval [t i1 tng I, and

there t_ exist, which points to the zero location

0=h(t..X(t.))
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thus

t. «>0."”

Hence, according to the reformulated initial value problem in (13), the reformulated explicit

Euler’s formula for threshold X, ;:=a, is

h(i)=-a, +%,, +(% —tj,l)fi(tj,l,ij,l)z 0.

1

(14)

The demanded value is t, and the other past values t i1 and x;;, are known, hence, ?613 is

computable from the event expression (14) as follows

(15)

if

1s valid.

"> The preposition t, <> 0 is a minimalistic local expression of zero location in a hybrid system with

consideration of an event function with a transition between two systems. For a system with domain D, it is

assumed, that the viewpoint of an observer is restricted to its own system. If the observer stands out of 1 and
observes the universe (big picture), which contains the various parallel systems, with synchronous and/or

asynchronous state events, then instead of t, <> 0 the preposition It_ :t, — 0 is considered.
" Approximating event time t, is carried out by preceding explicit solver magnitudes; therefor approximated

value ?e is relative to magnitude t i1 and errors of preceding values affect t. . In this dissertation, it is assumed
that the local and global errors of solver solutions have infinitesimal magnitudes and the solver solutions track
the exact solutions and do not exceed the fault margin and the computation methods of t_ are applied to such

systems.

23



After computing of t, by formula (15), the transient initial conditions for the system of ODE
solver at the state event can be computed. The approximation of the transient state vector is

given for step-size At, =t —t i1 using explicit Euler’s solver (16).

(16)

Hence )i(e is an approximated initial vector at the system-switching event. If the approximated

state vector component X_; shows a small deviation from the threshold value at the state

event which indicates

X, —a,

e,i

<¢, then the threshold value x; =a_ instead of X_; can be

applied as initial value for the next system.

2.1.2 Reformulation of Implicit Solver Formula
This part presents an event location approximation concept for an implicit solver of an
autonomous continuous ODE in the form X(t):f (x(t)) with a single variable x e D c R,
mapping f: D — R and differentiable solution x:/, cR" — D.

In this subchapter, an implicit Euler’s solver is used for the approximation of the state

variable. The solver formula is given by (17), at which j is the index of the state variable.

%, =%, +AtfX)

]

17

The solver computations and approximations of the state variable x(t) continue until the
event threshold magnitude x =a_ is crossed.
An event function for an autonomous ODE for threshold value x =a, and t_ is given

using a reformulated initial value problem as follows

((x(0) =a, + x(0)=0): | 3t, --a, +x,, + [ F(x()dt=0 |.

i

(18)
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Hence, the solver formula (17) should be established according to the reformulated initial

value problem (18), which is represented by (19). For computation of the independent

variable t at the state event, the step-size at the state event can be given by At =t —t,.
The known previous values X, , and t;, are considered as constant values. In addition, the
current approximated value X; and the predicted state value X; are set equal to the threshold

value x = a_. Thus the resulting equation for implicit Euler’s solver for computing t, is
h(t)=-a,+%,, +(T-t,,)f(@.)=0.
19)

If f (ae) is not zero and if the solver shows a small error, then the equation (19) can be solved

for t, as follows

(20)

Hence, the event location for the implicit Euler’s method on t-axis is computed using formula
(20).
For non-autonomous systems, the functional part of implicit Euler’s solver (17) is

contains the independent variable t; e.g. X; =X, +Atf (t i X j). In this case the variable t; is

replaced with t and reformulated implicit Euler’s equation can be solved for t . The

equation
—a,+X;, +(Te —tjfl)f(?e,ae):o

may not be solved analytically. In such cases, the root-finding methods can be applied.
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2.2 Event Location Approximation via Reformulation of Solver

Formula for Root-Finding Methods

Subchapters 2.2.1 and 2.2.2 introduce the approximation of the transient state vector by
applying the root-finding methods. The reformulation of the explicit solver formula to use the
root-finding method is shown in subchapter 2.2.1. The usage of this method on high order
explicit solvers makes sense regarding system simulations. Subchapter 2.2.2 focuses on the
approximation of the transient state vector via reformulating implicit solver systems using

root-finding methods.

2.2.1 Reformulation of Explicit Solver Formula for Root-Finding
Methods

This subchapter presents a method for approximation of the transient state vector at the state
event for the non-autonomous ODE system )?(‘[)z f(t,i(t)). In the following, the same ODE
system as described in 2.1.1 is used.

The root-finding methods'* compute approximately the magnitude of the independent
variable at the state event by appropriate reformulated explicit solver formula e.g.

reformulated explicit Euler’s method. For a root-finding method, it is assumed, that at the

state event, all past values e.g. Xt ;1 are known as constant values and the present value

i1
X;; is assumed to be approximately equal to the threshold value X;;=~a,, which then set

L)

A

X;;:=a,. The computed value of location t, is given by the last step-size At at the state

event which is defined as t, = At +t i1+ The event function is defined by the reformulation of
the initial value problem as in axiom (13). The reformulated solver method is considered as an
event function ﬁ(Ate) defined by

FATE %),

1

h(ATe):: —-a, +X

ij-1

(e3y

For some ODE solver, the event function ﬁ(ATe) can be a nonlinear function. The equation

(22) shows the event function (21) at zero-crossing location, where it may be solved using the

root-finding methods.

'* These are e.g. bisection, fixed-point iteration, Illinois, Newton, Pegasus, regula falsi, secant etc.
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(22)

Hence, the event equation (22) can be solved approximately by the root-finding methods to

compute the event step-size' A?e. For finding of the root location, the iterative Newton’s

method with the iteration indicator'® k can be applied as follows

-1
ATe,k :A?e,k—l _[ d ﬁ(AYe,k—l )j (ﬁ(ATe,k—l ))

dAt

(23)

In each iteration the magnitudes of fl(A?ek) and %ﬁ(A?ek) are evaluated using the current

value A?e,k . The transient state vector )i(e in the system of explicit Euler’s solver (16) can be

approximated using the known previous ODE solver values e.g. t; |, X ;1 and the computed

event step-size Af, = AT, .

2.2.2 Reformulation of Implicit Solver Formula for Root-Finding
Methods

In this subchapter, a non-autonomous continuous system of the differential equation
)?(t): f(t,i(t)) is given with xe DcR", neN, the mapping f:[t xD —R" and the
solution X:/, >D for a finite interval I, =[t,,t,]JcR*. The state variable
x,eU. : (Ui c R)c D,ie {1,2,...n} is assumed as a variable which is part of the state event.

The ODE of x i(‘[) is considered as the last'’ ODE of )?(t): f(t,i(t)). Hence it is assumed that

1=n, thus a vector

"> An event step-size is a solver step-size. By means of an event step-size, concerned initial magnitudes and
using solver algorithm, the event location can be approximated.

' In this dissertation, the iterations of solver algorithms are specified by the index variable j and the iterations

of the root-finding methods are specified by index k .

'7 The state variable, which is involved in state event, can have an arbitrary position in state vector and it may be
handled with methods in chapters 2, 3 and 4. In addition, a change of system axes to an applicable order can be
realized in the rectangular Cartesian coordinate system in cyclic or in anti-cyclic form. Hence, the influence of a
coordinate change on signs of the resulted system should be contemplated.
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xR, q(t)= {x(0) 1 %(0)\x, ()

with n —1 state variables is defined.

Therefore

X(t)= 0t (02 (0) s (0

and the event function
h, (t,%(t))=-a, +x,(t)=0

are defined with the state variable that is involved in the state event'®. It is demonstrated as
the last equation of the reformulated initial value problem in (24).
In axiom (24) the event location is conditioned upon intersection of the state variable

X, (t) with x  =a_ att, insystem of equations by the reformulated initial value problem.

(R %()=0):c | 21, ;(‘ ’"‘(te)j v%,,+ [T x(0)at=0

tiy

(24)

The discrete time solver algorithm in this section is the implicit trapezoidal solver and

can be given by the following formula

(25)

The solver approximation works in two stages. First, the initial vector ij is predicted'” and
then the implicit solver algorithm is computed to approximate the state vector X ; based on the

predicted vector X;.

'® An occurrence can be characterized by intersection of a threshold value line with a state variable curve. This
occurrence can be defined as a “state event” and the state variable, which is participated in the occurrence, is
named the state variable that is “involved in state event”.
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Formula (26) presents the event vector function for the trapezoidal solver (25) fitting
to the reformulated initial value problem in definition (24). In the event vector function (26),

for computation of the state event coordinates, the state variable X, ; is approximately set

equal to the appropriate threshold value X, ;:=a,. After this setting, the number of state

variables of the state vector ik is reduced to n—1. In addition, the step-size At,, in (26) at
the state event is considered as an unknown variable and is included into the set of variables.
Thus, the n—1 state variables symbolized with ik together with the unknown step-size ATe,k
result in n unknown variables. Then the event vector function (26) has n variables and n

functions therefore the root-finding method can be applied. It is assumed, that the variable t;

in (26) is equal to its appropriate predicted event value t;

= Te,k = ATe,k +t;, . In the root-
finding process, At is updated in every iteration loop regarding index k., in which (for a

root-finding algorithm) t; , is a constant value. The event vector function is given by (26)

15X 0,8 }and Xox =a,.

j12%e e

using the variable set {Aik , ik }, the set of constant values {t

fi(ATe,k > ik ):: {_ ik j ’ )%H * A?e,k (f(A?ek + tj—l ’):Ck 28 )+ F(‘[H > )%H ))

—-a, 2
(26)
Vector function (26) can be summarized as following system of equations
h(AT,, %, )=0.
27

After the detection of the crossing of the threshold value x =a_, with x;, the step-
size magnitude and the state vector )Z(te) can be computed by a root-finding methods of

nonlinear systems of equations. The Newton’s method for predicting At, and )Z(te) at the

state event for equations (27) is applied as follows

" The prediction stage is accomplished using root-finding methods for nonlinear systems of equations applied on
system of reformulated implicit solver formulas.
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(28)

In Newton’s method (28)

~

Jh (A?e,k—l Ak )¢ 0

is the appropriate Jacobian matrix. After the prediction phase, the event magnitudes are the

event step-size At, = At, = ATe,k and the transient state vector

G x () =%, =(ra.)

The predicted transient state vector ie and the predicted step-size At, are used in the implicit

solver formula (25). Thus, the approximated transient state vector )i(e is computed as shown in

(29).

% +A?e (f(A?eH' §)+f(tj,l,>i(j,l))

12 e

o
o
N
\S)

(29)
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3 State Event Handling in System of DAEs

DAESs can be classified by its characteristics. The general classification can be divided into
two main categories, linear and nonlinear systems. Another classification can be given by
means of the algebraic equations of the DAEs. There are three types of DAEs: Fully-implicit
systems with hidden algebraic equations, semi-explicit systems and transformed explicit
systems. Changing the type of DAEs may be possible. A fully-implicit system may be
transformed into a semi-explicit system or an explicit system. Another classification can be
given using the index of DAEs.
This chapter focuses on the approximation methods of transient vector for DAEs for
following cases:
e DAEs transformed into ODEs
In this case, a system of DAEs is transformed into a system of ODEs and then
the approximation methods of transient state vectors for the system of ODEs
can be applied.
e Semi-explicit DAEs
In this case, either the system of semi-explicit DAEs is transformed into a
system of ODEs as above or the transient vector in the semi-explicit DAEs is
approximated without index-reduction by reformulation of implicit solver

formula for root-finding methods of nonlinear systems of equations.

3.1 Index-Reduction

The fully-implicit DAEs can be shown as follows

F(t,x(t). %(t))=0.
(30)

The Jacobian matrix (g (t,?g(t),?c(t))} of equation (30) is singular, therefore it cannot be
X

solved for i(t) and it may contain hidden algebraic equations. The domains of the dependent

variables of (30) are X € D, X € D, with D_, D, c R". The vector function of equation (30)
indicates the mapping

F:1,xD_xD,—R"
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for a finite interval /, with te/, c R" and solution X:/, > D, .

If equation (30) transforms into an explicit system [SIC05] and if its Jacobian matrix fulfills

de{z_}f (0(0) )?(‘[))J 40

X

and is locally unique in the surroundings of the solution, then equation (30) can be solved
locally for i(t) in terms of the other variables. After transforming into an explicit system, the

ODEs X(t)=f(t,%(t)) can be handled with ODE solvers.

The equations in DAEs (30) may contain algebraic equations. In some cases, it is
possible to extract the algebraic equations from the fully-implicit systems by some algebraic
operations [AGI12], if possible, the result can be formulated as a semi-explicit system. The

semi-explicit DAEs including the algebraic vector equation g(t,i(t), y(t)) and the algebraic

variable vector S/(t) are given by

(€2Y

The semi-explicit DAEs (31) are defined by following mappings
f:1 xD, xD, >R", g:1,xD xD, »>R".
The algebraic variable vector is given by y € D, R" with n,n, € N and the solutions are
x:I,>D,,y:I,>D,.

The semi-explicit DAEs may be transformed to ODEs by differentiating its algebraic
equations. The smallest necessary number of differentiation steps of the constraint equation,
with respect to the independent variable t along the solution of the algebraic variable for

transformation into the ODEs, is considered as the differential index of the DAEs. An
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example is the equation 0= g( ( ) y(t)) with index 1 and algebraic variable y(t). After the

X
first differentiation of g(t,%(t), y(t)) with respect to t, the following equation is suspected

e RO x5+ SE R0 3, (0% 0 L 30+ 500 =0-

(32)

In equation (32) %y(t) can be given in from of an ODE as follows

in which %f’ (t,%(t), y(t)) should be nonsingular.

A solution of the transformed equation may not always be equivalent to the solution of
algebraic equation [AGI12]. Hence, a numerical approximation of solution of the DAEs
transformed into ODEs may not always yield the same result as a numerical approximation of

its semi-explicit system.

3.2 Event Location Approximation in DAEs Transformed to
System of ODEs

A transformation from fully-implicit DAEs to semi-explicit DAEs may be given by certain
algebraic operations and from semi-explicit DAEs to ODEs by index-reduction. After this
transformation, the ODEs can be solved using ODE solvers. Then the appropriate state event
location can be approximated applying methods explained in subchapters 2.1.1, 2.2.1 and
2.2.2. Hence, in the same manner, the last step-size before the state event can be computed. In
this way, the transient vector of a hybrid or variable structure system of DAEs transformed

into ODEs can be approximated using the initial values and computed step-size.
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3.3 Event Location Approximation in System of Semi-Explicit
DAEs

This subchapter presents root-finding method applications for approximating event locations
of systems of semi-explicit DAEs applied in following two cases:
e The subchapter 3.3.1 demonstrates the approximation for an event location
associated with an algebraic variable.
e Subchapter 3.3.2 presents the root-finding application for approximating the state

event location in case of an event defined by a state variable.

3.3.1 Event Location of Algebraic Variable

In this subchapter, an event is defined for the system of semi-explicit DAEs (31) by

intersecting of set
HP Py C{I XD XD ( {(tx ’S; |yilpyl’pyl:yi_ae:0})

with  trajectory set 37, (ty,) e T, (I,xU,), in which the algebraic variable
y, €U, :(Ui c R)c D, ie {1,2,...ny}, n, € N is involved in the event. Then the magnitude
of yi(t) atthe eventis a, = yi(te)e (Pyi NT, )

It is assumed, that the algebraic variable yi(t) and its appropriate equation establish
the last equation of the semi-explicit DAEs (31). At the state event, Y, (te) is considered as a
constant value yny(te)::ae, thus the dimension of the algebraic variable vector y(te) is

reduced to n, —1. The prediction vector of the algebraic variables is shown with

~

7:F <R Al O r v L OF = 5OV, O)).

The event function at the intersection plane is described by

h, (6.2()7(t) =g, (LX()7(t) = -a, +y, ()=0

20 Py is a set which contains all points of plane p, 1y; —a, = 0 . The plane Dy, isnormal to the y, -axis.
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and the zero crossing can be defined at t_ using following axiom
(E(t’ i(t)a g’(t)) = 6)@ Hte : B i(te )+ XJ*I + f(t’ X(t)a y(t)) dt _ 6 .

(34)

The implicit solver system consists of two stages. The first stage is a prediction of the
algebraic variable and the state vectors. The second stage is the approximation of the state

vector. Formula (35) presents an implicit numerical concept for semi-explicit DAEs, in which
the vectors X ; and §j show the predicted magnitudes whereas X ; shows the approximated

vector.

—

[)%jj _ ):{j-l + %(f(tj X "§j )+ F(tj—l”i‘j-ljj-l ))
g(tj’ij i)

(33)

The implicit trapezoidal method and algebraic equation in formula (35) are reformulated in
(36) as an event vector function. At the state event, the variables in vector function (36) are

specified by iteration index k.

R ~ 4 ek (2 A~ ~ >\ =z A
E(Aza,k’ik’§k):: =X, X+ 5 f(Ate,k+tH,xk,yk)+f(tj71,xj_l,yj_l))

g(Ate,k +tj—1a§ka_’y.k)

(36)

The event vector function (36) is presented as a system of equations in (37) according to
reformulated initial value problem (34) for predicting the event step-size, transient state vector
and transient algebraic variable vector.

Thus, after event identification, e.g. when the algebraic variable crossing its concerned
threshold value, the data processing should be switching from solver iteration algorithm to
root-finding algorithm. The root-finding methods of nonlinear systems of equations can be

applied on following equation
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ﬁ(AT,k,§k,§k):6.

(5]

37

The root location in system of (37) can be determined using the Newton’s method as shown in

~  ~eo~c YT
(38). The vector (A fior KXo Ve ) stands for the prediction vector and contains n+n, variables.

A

The set {t i1 X ,TA( i ,ae} contains known constants and J, (Aﬁ,ikﬁk) is the Jacobian matrix

of (37).

>
o
&

>

1

o
i
L

af o~ ~ ¥ V.~ ~
k-1 |~ Jﬁ (A test> Xiots Vi )h(A terts Xt Yk—l)

=211 %R
=
|
=11 XN

o~

(3%)

If the Jacobian matrix of the vector function (36) is not singular and Newton’s method (38)

approximately converged then function (37) is close to the zero vector and

ha(A?e,kfl’ Xip ?kl]jj <e

lim | max
k—+0 I<a<n+n,

for € > 0 infinitesimal. In this case, the resulting predicted transient initial variables are

At =A e,ka?e =ty +A£ ’ §e = ik’ (?(te)T’Yi(te))T z§e = GkT’ae)T'

They can be initialized in solver system (35). The transient state vector can be approximated

as follows

~

) ferr 0655

éi.5.5.)

[«)]
=1 Pl

(39

36



3.3.2 Event Location of State Variable

In this subchapter, the state event is defined by a state variable

x, €U, :(Ui cR)c D_,ie {1,2,...n}, n € N . The state event xi(te):ae is an element of the

intersection of trajectory set 37, :(‘[,xi)T el, (It X Ui) and set P, .

3P, i, xD xD, :\P, = |t,x",y" T|pX 1x,p, :x;—a,=0(A xi(te)e P.NT_ ).
i y i i i i i

The position of x i(‘[) and its equation in semi-explicit DAEs (31) is assumed to be at
the last component of the state vector. Since the state variable x_(t) crosses the threshold
value x_ =a_ at the state event, xn(t) is set equal to the appropriate threshold value
xn(te):: a, and it is considered as constant. The resulting state vector remains with n—1

variables defined as

20 R A0 (025 (0 () = HROIR() %, (D))

The event occurs at a_ = xn(te) and is specified by the reformulated initial value

problem

—ag x4 66X 3(0)di=0

-1

with quantifier t_ as part of system (40). Axiom (40) defines the zero crossing of the event
vector function for t, via system of integrations and algebraic equations conditioned by

x,(t,)-a, =0.

(A(t, (1), 3(t)) = 0):< | 3t, : ( _a,

(40)
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The event vector function (41) presents an numerical system including the
reformulated trapezoidal method for variable predictions at the state event with iteration index

k.

f.l(ANek,):(‘k,§k):: _{ij ij-l A; (f(AT JlanaYk)+f(Jl, Jl,yjl))
g(AT ]I’Xk’yk)

41)

In event vector function (41) the vectors X i yj_1 and magnitudes of t;, and X, ; are

considered as known constant values. The vectors %, , y, and variable At,, are demanded

values, therefore the prediction vector
=1 =7 |0
(A teies Xic > Y )

has dimension n+n,. The system of equations in (42) can be solved by root-finding

algorithms.

fi(ATe,k ’ik ’?’k ): 0

42)
As root-finding method, the Newton’s method can be applied as follows
AL, (AT,
~ ~ f o~ ~ = A, ~ ~ =
)NCk = )N(ak—l - Jﬁ (A teso1s k1o Vit )h(A tests Xk-15 Vi )
S;k S;k—l
43)

The predicted event values are
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Hence the step-size At , the transient state vector ie and the transient algebraic

variable vector i can be set in formula (35). Therefore the transient state vector )i(e can be

approximated as shown in (39).
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4 Henon’s Method

The Henon’s method presents the approximation of state event location using a
transformation via exchanging the independent variable with the variable involved®' in the
state event. The Henon’s method [MHOS82] presents a numerical approximation of
intersection location of dynamic system trajectories with a surface of section’”. The reference
[BEK12] points to the changing of independent variable with dependent variable for a state
event approximation by Henon’s method.

This chapter focuses on formulating the Henon’s method with transformed initial value
problem and integral intervals for approximating the transient state vector in hybrid or

variable structure systems of ODEs and/or semi-explicit DAEs using Henon’s method.

41 Henon’s Method in System of ODEs

The Henon’s method can be applied to an autonomous system i(t) = f(i(t)) with the mapping

f:DcR" > R", XeD and the solution X:/, c R" —» R". It is assumed, that a state
variable involved in the state event, is given by x, €U, :(U . C R)c D with 1€ {1,2,...n},
n e N. The ODE component %, (t)=f,(X(t)) is considered as the last ODE i=n.

In a normal case, before the crossing of the threshold value x, =a_ by x,(t), the form

(44) can be applied.

% %(0)=TT(x(1))

(44)

In this case, ' is assigned by

45)

*! The singular point of an event function can be defined as an occurrence of an event by intersection of a
threshold value or a plane as described in subchapters 2, 3.3.2 and 3.3.1.

A variable, which crosses the intersection plane or threshold value, is called here a “variable” that is “involved in
event”.

** Surface of section is presented by Henri Poincare. It is a subspace, which is used for observation of
intersection of periodic motion orbits with section of subspace. The map of the intersections is named Poincare’s
map.
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thus the system of ODEs (44) can be simplified as follows

(46)

In differential equation (46) t is the independent variable and i(t) is the dependent state

vector. It is assumed that the state vector of (46) is computed at step t; via integral (47) with

the initial values i(t j-l) and t, e/,.

x(t,)=%(t, )+ tjlf(i(t))dt
47

The intersection of the variable x,(t) with the threshold value x, =a, is defined by

an event function

h(%(t)):=—a, +x,(t)=0.

(48)

Consider the function (48) and the two solutions X, = i(t j-l) and X, := i(t j) in system (47). It
is assumed, that the continuous function (48) contains a bijective mapping for short interval

[t it ng I, . The state event

Xn(te) € uxn(tj-ll Xn(tj-11+AXnJa Ax, ::|(Xn(tj)_xn(tj-l )}

exists if and only if there isa t, € [tj_l,th with x = xn(te): a, hence x., <>t,.
The Henon’s method defines transformation (50) on ODE system via exchanging the
independent variable t with the dependent variable xn(t). In ODEs (50), the function I' is

given by
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1

£, (0%, (6 o, (x,))

=

(49)

Hence x, is considered as an independent variable and t(x,) is regarded as a dependent
variable [BEK12]. After event detection, the transformed system (50) is given via multiplying
all ODEs with T'" except for the equation of x  which is given as the last ODE. With

assumption
fn(xn’xl(xn)""’Xn-l(xn))¢ 0 2

the last ODE %xn(t) =f (%(t)) is changed into

an fn(xn’xl(xn)""’anl(xn)) '

This transformation offers a new system of ODEs as follows

d

d Xl(Xn):rfl(xn’xl(xn)""’anl(xn))
Xﬂ

d

d X2(Xn):rf2(xn’xl(x )a ’Xn—l(xn))
Xﬂ

d

— =T

i)

(30)

The transformed system (50) can be represented by system of ODEs (52), in which the

dependent state vector is defined by

in which ¥ e R", X e R™ with X := {(X | \x,)}. The independent variable x, is represented

by 1, thus t:=x_ then y_ (r):: ‘[(xn ) The functions of ODE system (50) are represented by
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(51
Thus, the system of ODE (50) is given as follows
d . =
e URCICY(0)
T
(52)

The state vector )_(:(’E) with the independent variable t is illustrated via initial values in an

integral form by (53) for computation of t_ := t(ae).

Ti +‘ I_H:.ae
xa)=7, + [O(x(t)d

T_]*l

(33)

The solver step-size of (53) is At =

Ti5Ti +|’ij1 —ae”. The integration interval® of (53) is

|

l’tjfl,’l?jfl +|’EH —-a

(5]

According to the inverse function theorem, the domain of a one-to-one continuous
function is the range of its inverse function and vice versa. Hence, if the range of the

integration of (’E) by (53) gives the domain of the integration of Xn(t) and vice versa, then

the initial values of the integration (53) results in the value of the appropriate interval

J‘_’[tj—l’te]’

lxn,j—l’xn,j—l +1X, 00 —a

n,j—

> In some applications, the numerical integrations are carried out in several steps using an adaptive step-size
system. The integration is not always satisfied if system is not bijective and has a strong nonlinearity.
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thus, the range of the appropriate function of integral of (’C) in (53) results in t_ = T(ae) as

the event location in time.

After computation of the location of the independent variable t_ =7y (ae ), using (53),
the transient state vector X, on interval [t i teJ is computed. The computation of the transient

state vector at the state event is demonstrated in the integral form as follows

(34)

4.2 Henon’s Method in System of Semi-Explicit DAEs

This subchapter introduces the Henon’s method for the autonomous semi-explicit DAEs in

form of

(35)

The ODE part of the semi-explicit DAEs (55) has the same dimension as the system of ODEs
(44).
An auxiliary state variable x__,(t) is defined equal to the rhs. of the algebraic equation

in DAEs (55). The variable x_, (t) is applied to assess the root of the algebraic equation of

(55) by the intersection of

(56)

with x, ., =a_. The function in (56) is defined with the mapping g: D - R and xe DcR".

Thus the event function is defined by
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h(X(t)=-a, +g(X(t))-

(37

The derivation of the event function (57) using the chain rule gives a transformation,
which explains its variation with consideration of all dimensions. This transformation is

illustrated by differentiation in (58).

Dh) = @0) Lx,(0+- D @0) Lk, 04+ D ®(0) L x, (1)

dt ox, o dt ox, gt ox g
(58)
The form (58) can be written as
d > T
@ ((0)= s T
(59
The derivative of h(X(t)) is assigned to f, ,(X(t)) as follows
£ (R(0) = < h(x(0)
n+ dt
(60)
thus the corresponding ODE is
d -
& 01,500
(61)

The differentiation of x,,(t) with respect to t is given by the ODE x_,(t)=f,, (X(t))

and together with )?(t): f(i(t)) it is a system of ODEs. Hence, with partial differentiation of

the algebraic equation, the system of semi-explicit DAEs (55) is transformed into a system of

ODE:s (62).
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(62)

After crossing the threshold value x, =a_ by g(i(t)) via solver algorithm, starts the

computation algorithm of the event location. Hence, the system (62) is transformed into a

system of ODEs (64) under the consideration of the independent variable t as dependent

variable and exchanging t with the dependent variable x_, (t) Thus, in (64) the variable

X

last one are multiplied by

The ODE of the state variable x,,(t) in system of ODEs (62) changes into

d t(XnJrl): 1 :
an+1 fn+l(X1(Xn+l)’X2(Xn+l)""Xn(XnH))

The whole transformation with assumption

fnJrl (Xl(XnH )’ X2(Xn+l ) °t Xn(XnH )) # 0

is represented by the following ODE system

.., 1s regarded as independent variable. In addition, all equations of ODEs (62) except the

(63)
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(64)

The system of ODEs (64) has n+1 ODEs and n+1 state variables. For clearer
description, the state vector of (64) is defined in ODE system (66) by ;Z(r) in which 3 e R™"

and the independent variable is T:=x_,. The vector %(t) is given by

(65)
Then the system of ODEs (64) is established as follows
d . ~
1) =0(x(x)
T
(66)

The integral of §,.,(t) in (66) is considered as inverse function of the function of
X, (t), which can be interpreted using the differentiation formula of the inverse functions.

Thus for computation of the location of the independent variable t,, the interval
[t i1 Tia +|’C T aeH is used for integral of (66) as follows
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(67)

After computation of the value t, = T(ae) using (67), the approximation of the transient

state vector at the state event can be done by the solver algorithm of DAEs (55) for interval

[t i1 teJ. The Henon’s method can be considered with some extensions®*.

** The Henon’s method may be extended for DAEs (55) with the algebraic equations, in which for each algebraic
equation an additional variable can be defined. Then the appropriate ODEs can be found as in (61), hence the
result is a system of ODEs and can be solved using the method of subchapter 4.2.

In case of semi-explicit DAEs as presented in (31), the definition of the new variables might not be necessary, if
the system has an algebraic variable that is involved in the state event. In this case, the index reduction method
can be applied and the system transformation to ODEs and then the Henon’s method can be used.

Another consideration is the application of the implicit solver algorithm for approximation of the event location
and transient state vector in Henon’s method.
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5 Implementations of Event Location Approximation
Methods in Hybrid Systems of ODEs and DAEs

This chapter presents algorithms, simulations and results of the approximation of the transient
vector at the state event for the variable structure filament pendulum and hybrid systems of a
bouncing ball and a rotor-stator-system.

In this chapter, the simulations and results of the three subjects of the previous chapters are
illustrated. These are the algorithms of the state event handling by reformulating solver

formula, reformulating solver formula for the root-finding method and the Henon’s method.

5.1 Bouncing Ball with Hybrid System of ODEs

The hybrid model of bouncing ball is known from [MMTO04]. The following subchapter
contains the presentation and description of the development and results of the simulation
algorithms of the bouncing ball hybrid system including approximation algorithms of the

transient state vector at the state event.

5.1.1 Model Description

The first part of the simulation algorithm describes the kinematic relations of a falling ball.
The two important differential equations are velocity and acceleration. If the ball falls from a

height y(0) then the velocity v(t) can be defined as

¥(t)=v(t).
(68)
The state of the ball acceleration a(t) can be given as:
v(t)=a(t).
(69)

The second part of the simulation algorithm is concerned with the gravitational force without

drag force for falling objects, which is given by Newton’s second law
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ma(t) =-mg.

(70)

If a ball falls and hits the ground, then a mass spring damper model can be used to describe

the dynamic behaviour of the ball. The contact force of the ball is given by

£.(t)=—k(y(t)-r)+£,(t)

(71)

where k is the spring constant of the ball model and r is the radius of the ball. The damping

force term is f (t):—cv(t) , in which ¢ is the damping constant. In order to compare

simulations of the bouncing ball including system of event location approximations, the
bouncing ball model is simplified and the damping characteristic of the ball is eliminated™.

The simplified contact model of the ball is given by

ma(t) = —k(y(t)— r)— mg .

(72)

The hybrid model is elaborated by conditional ODEs in (73). It is associated with transient

conditional relations. The transient conditional relations y(t) >1 and y(t)é r are presented
by event function h(t):: y(t)—r in (73). The first differential equation in (73) is a model for

the free-falling ball. The second differential equation is the contact model of the ball.

m\'/(t) —mg h(t) >0
m\'/(t) = —k(y(t) - r) —mg h(t) <0

(73)
The state transition depends on the altitude of the centre of the ball. If the altitude of the

centre of the ball is lower than the radius of the ball, then the system switches into the spring

mass term of the contact model. If the altitude of the ball is larger than the radius of the ball,

** The simulation of hybrid bouncing ball system with eliminated damping force term results in non-converged
periodic solutions. The aim of eliminating the damping force term in the hybrid bouncing ball system is to verify
the approximation methods of event locations in quasi-marginal stable state.

The response of each system of the modified hybrid bouncing ball system is diverged if no switching system is
used. The convergence of the system responses depends on the simulation model, solver algorithm, solver and
system parameters as well as initial values.
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then only gravity acts on the ball. Table 1 presents a reset map for the hybrid system of the

bouncing ball.

Transition
Active States s
Conditions
h(t) >0 Free-Falling (Disjunction of Spring Component)
h(t) <0 Contacting with the Ground (Junction of Spring Mass Components)

Table 1: Reset Map of Bouncing Ball System

Figure 7 shows a state graph of the hybrid system of the bouncing ball.

Figure 7: State Graph of Bouncing Ball System

The simulation model of the bouncing ball is represented with the state vector

%(t):= (y(t), v(t))" as follows:

;(t) =8 h(t)>0
Xl(t): Xz(t)
xz(t)=i(—k(xl(t)—r)—mg) h(t)<0

(74)
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5.1.2 Reformulation of Explicit Euler’s Formula

The simulation of the bouncing ball model is realized by implementing the Euler’s solver for

the hybrid system (74) as follows

X=X+ A‘[xz,f1

- . hit)>0
Xyi = X2 +At(_ g) ( )

X, ;=X TAK,

A 1 A h(t)<o0.
=R+ (i 1))

(75)

The nominal ball radius r is considered as the threshold value a_ :=r. An event is

defined by event function h(t j):: —-r+X,; =0 as intersection of the approximated ball

altitude X, with x, =ratt, =1 ~t,.

I~

h(? ): TR+ (te —t Ry, =0

(5]

(76)

The computation of the location of t, in the time domain is determined by h(?e ): 0

according to formula (15) for a transition from falling to bouncing and vice versa.

(77

After computation of formula (77), the approximation of the transient state vector is

evaluated according to explicit Euler’s solver (16) by means of At =T, —t;, applied to

numerical hybrid system (75).
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5.1.3 Reformulation of Implicit Trapezodial Formula for Newton’s
Method
The simulation algorithm in this part is implemented according to the subjects of subchapter
2.2.2. For simulation, the trapezoidal solver is implemented with two prediction and
approximation steps. The prediction step is developed via Newton’s method applied on
reformulated trapezoidal solver formula. The approximation step of the state vector is realized
by initializing of the solver algorithm with the predicted state vector.

The computation of prediction and approximation steps of the state vector continues
until detection of a state event. Then the simulation algorithm switches to the approximation
algorithm of the transient state vector at state event. The prediction of the transient state
vector at state event is accomplished by Newton’s method with iteration index k. In event

A

vector functions (78), the state variable x; is set to the threshold value x =a_:=r, x,; =7

and the variables At,, and X,, are demanded variables.

A PR, (%, 4R, )
Watg -2 h(t)> 0
Xok — 2,71 2e’k (_2g)
ATek ~
R r=X4 - (X2,k+X2J71)
h(AT,.%,, )= 2 h(t)<0
’ ’ At
§2k —X, — zevk |:(_ g)+(;1(— k(f(lr1 1') m g)j}
(78)

After computation of the prediction values according to Newton’s method (28), the

trapezoidal solver (29), which is realized for bouncing ball model, is reinitialized with

ie = (r,iz,k )T and At = A?e,k and runs for one step calculation to approximate the transient

state vector )i(e at the state event.
5.1.4 Henon’s Method

In order to simulate Henon’s transformation, the function I' is defined as I' =

Henon’s transformation for this simulation is shown as follows:
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dzl Xz(xl) h(t)>0
_Xz(xl)_ S
dx, XZ(XI)
d 1
el

: 2 h(t)<o0
i _i _k(xl —r)—mg)

Xz(xl)
dx, m XZ(XI)

79

Via setting %(t):=(t(t),x,(r))" and t:=x,, the systems of ODEs in (79) can be
represented via a system of ODEs (52). The computation of t_ is achieved for the selected
system using ODE45 according to formula (53) on the interval l% Tt |% = r”

Then the solver algorithm is reinitialized according to the initial values of (54). The

approximation of the transient state vector )i((?e) is realized by ODE45 solver.

5.1.5 Simulation Comparisions

The hypothetical simulation parameters are chosen in SI units as demonstrated in Table 2.

Parameter Description

h, =5m initial ball position

v, =-2.5m/s initial velocity

m = 200kg mass of ball

r:=2.5m radius of ball

k:=1.0e +4N/m spring constant

g :=9.80665m/s> acceleration of gravity of earth’s surface

Table 2: Bouncing Ball Simulation Parameters

The approximated solutions and trajectory of the modified bouncing ball hybrid system are

demonstrated in Figures 8 and 9.
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Solutions of Bouncing Ball Hybrid System
T T T

Trajectory of State Variables x1 and x2
T T T T

x1,x2
x2
o

Figure 8: Approximated Solutions of Modified Figure 9: Trajectory of State Variables of

Bouncing Ball Hybrid System Modified Bouncing Ball Hybrid System

Table 3 illustrates the simulation results approximating of the ball location at the state
event using reformulation of explicit Euler’s formula, reformulation of implicit trapezoidal
formula for Newton’s root-finding, Henon and Matlab adaptive methods®’.

The modified hybrid bouncing ball system without damping force term and without
approximation methods of event location is simulated via Euler’s solver with different
simulators. These simulations show that using Euler’s solver produces an instability in system

responses with increasing the peaks of ball altitude h(t), if the damping term is eliminated

from bouncing ball model.

In spite of the fact that instability produces in response of system, the approximation
method “reformulation of Euler’s solver formula” in Table 4 shows a relative small
magnitude for the local error of the approximated state variable at the switching event.

An additional application is programmed based on Simulink without zero-crossing

algorithm.

** The adaptive zero-crossing reduces the step-size of solver iterations, until the setting values of the
Matlab/Simulink configuration parameters are exceeded [MHV10].
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Reformulation of Implicit
Reformulation of Explicit Henon
Methods Trapezoidal Formula for
Euler’s Formula
Newton’s Method
Solver Algorithm Implemented Implemented Trapezoidal Programmed Henon
Euler’s Solver Solver Mixed Newton Method Using Matlab ODE45
Type Explicit Implicit Explicit
Programming Environment Matlab Matlab Matlab
Threshold Value 4 2.5 2.5 2.5
X, (Te ) 2.500000 2.500000 2.499999
Local Error: )21 (te )— I" 0 0 5.394569e-10
Fixed Step-Size le-05 le-05 1e-05

AT@ 8.710344¢-07 7.552201e-06 7.416839¢-06

Te 5.032600e-01 5.032575e-01 5.032574e-01

Methods Simulink Adaptive (Matlab)
Solver Algorithm Simulink ODE4 Matlab ODE45
Type Explicit Explicit
Programming Environment Simulink Matlab
Threshold Value 4 2.5 2.5
X, (Te ) [2.499981, 2.500056] 2.499999

8.215650e-14

ﬁl(i)—r‘ -

Local Error:

Fixed Step-Size le-05 1e-05
AT - 7.552201¢-06
T [5.0325¢-01, 5.0326¢-01] 5.032575¢-01

(5]

Table 3: First Event Comparisons of Bouncing Ball Simulations at a Transition from Free-Fall to

Bouncing State

The approximated values of the state event x,(t,) in Table 3 show that the reformulation of

implicit trapezoidal formula for root-finding method has an accurate magnitude regarding the

event threshold value a, =2.5.

56



The simulation via reformulation of solver formula is coded according to the contents of
subchapters 2.1.1 and 5.1.2. The root-finding method is programmed according to the
developed method in subchapters 2.2.2 and 5.1.3. The Henon’s method is programmed in
Matlab, matches Matlab ODE45 and is implemented according to subchapters 4.1 and 5.1.4.
Two other simulations are realized, one in Simulink without zero-crossing setting and the

other in Matlab using ODE45 with adaptive method.

Table 4 demonstrates the state event approximations of xl(Te) for different methods at
the various events.

Henon’s method is realized using ODE45 feature in Matlab environment. The system
response in this implementation shows a difficulty’’ evaluating the eleventh state event and
the magnitudes of %(t) show an unstable behavior.

The reformulation of implicit trapezoidal formula for Newton’s root-finding method has

a stable procedure and shows low local errors.

Methods
- Reformulation of Reformulation of
Error |X, (‘[e )— r| Explicit Euler’s Implicit Trapezoidal Henon Adaptive Matlab
Formula for

Formula Newton’s Method
Error at First Event 0 0 5.394569¢-10 8.215650e-14
Error at Fifth Event 3.108624e-15 0 3.033617e-10 4.138911e-13
Error at Tenth Event 8.881784e-16 0 1.524347e-08 9.099387e-13
Error at Twentieth Event 1.199040e-14 0 - 1.498801e-12

Table 4: Errors of Approximated Magnitudes of State Variable X, (t) at Various State Events in
Hybrid System of the Bouncing Ball

*7 At the eleventh state event, the approximated magnitudes of %a (T) = XZ(XI) become close to zero where the
1

—— increase periodically and cause the instability in system responses and
(1)

consequently in system simulation.

, d
magnitudes of —, (T ) =
dr
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5.2 Filament Pendulum with Variable Structure System of DAEs

The model of filament pendulum is inspired by [BECO08] and [CGNO07]. Two models establish
the variable structure pendulum: one is the mathematical pendulum and the other is the free-
fall model.

This subchapter deals with modelling of event handling of the variable structure system of
the filament pendulum as well as development and implementation of the simulation

algorithms for approximation of the transient vector.

5.2.1 Model Description

The structure of the filament pendulum system may be changed from a filament pendulum to
a free-fall system and vice versa, if certain conditions are fulfilled. A pendulum changes its
position if it is not at its equilibrium state. The motion conditions of a pendulum can be
fulfilled by choosing certain initial values, which can cause the pendulum to launch out of its
equilibrium state.

The angular velocity of the pendulum is expressed by

d
OJp(t) = a(pp (t)
(80)

The length of the arc of the angle ¢, (t) is defined as

s(t): L-(pp (t)

(C2Y

The tangential velocity can be found from the derivative of the arc of the angle with respect to

time:
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d d
v (t)=—slt)=L—e¢ (t)=Lo_(t
0=250=20,)=10,0)
(82)
The tangential acceleration of the pendulum is defined by
d’ d’
a,(t)= Fs(t)= Ldt—zfpp(t)~
83)
The state of the angular acceleration without damping component is
, d’ :
mL F(pp (t) =mgLsin(g, (t)) .
(84)
The inertia moment for a filament pendulum is
J=mL’
(85)
and using differential equation (84) substituting mL* with J one gets
d2
JF(pp (t)- mgLsin(¢, (th=0.
(86)
The moment relation including the damping term can be amended in the following form:
d’ ) d B
JF(pp (t)— mgLsin(¢, (t)) +c, —t(pp (t) =0.
87
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f, (to) = mgsin( p;(‘;o ) f (to ) = —mgcos( A (to ))

Figure 10: Forces in Free-Fall and Mathematical Pendulum Systems

To leave the pendulum state and switch to the free-fall state, a tension force condition
of the filament must be fulfilled. Hence, if the filament loses its tension and the pendulum
leaves its track, then the simulation process must be switched from the pendulum structure to

the free-fall structure. The tension force of the filament F,(t) can be obtained from the radial

force. The radial acceleration is given as:

ar(t) = Loo]z3 (t) .

(88)

The radial force of the circular motion is

F, (t) = —Wcos((pp (t)) +ma, (t) ,

(89)
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thus, a criterion of the model switching is defined by the tension of filament E, (t) which can

be calculated using (90).

E (t) = —mgCcosQ, (t) + mei (t)

a

90)

If the filament pendulum aborts its harmonic oscillation, then three cases can be

assumed. Either the pendulum leaves its orbit in an outward™ direction, stays within its

pendulum radius®® or reaches its equilibrium state.

If the tension of filament F,(t) is vanished, then the path of the pendulum motion has

to change to the free-fall path. This means that the ODEs of free-fall motion are valid,

therefore the velocity along the x-axis in free-fall system is defined by:

x(t) =V, (t) .

The force equation can be given with the mass acceleration and damping model:

mv_ (t) = max(t) =—C,V, (t)

The velocity along the y-axis is represented by

y(t)=v, ().

The force equation in y-direction is explained by

mvy(t) = may(t) =-W —cyvy(t)z —-mg — cyvy(t).

oD

92)

93)

%4

** This case can be occurred if the pendulum starts to move with high magnitude of radial acceleration, which

induces a high magnitude of centrifugal force and the filament is ripped.

* A transition from free-fall to pendulum state can occur with a bouncing characteristic. The bouncing behavior
is not considered in the simulation model and in a transition from free-fall to pendulum state, an inelastic

behavior of filament pendulum is assumed.
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The damping force cyvy(t) in differential equation (94) has a negative sign. Another term is

the weight force mg, which also has a negative sign.

A criterion for a transition of the simulation data processing from the free-fall to the

pendulum algorithm can be given by the distance between pendulum and centre.

r(t)=x*(0)+y’(t)

95)

An automated event handling® is controlled by a switching system. The switching

possibilities are shown in Table 5. The state transitions are defined by the states of E, (t) and
r(t). In each system, the appropriate condition triggers the system transition. Table 5 shows

the events using two logical variables ¢, (t) and q,, (t) The logical variables are defined as

and

Table 5 describes that for a transition from the pendulum to the free-fall state, only condition
h,, (t) =F (t) = —mgcos g, (t) + mei (t) =0

has to be valid and for a transition from the free-fall to the pendulum state, only the condition

has to be true.

" Appendix Al shows the non-automated event-handling modus. In this case, separate simulations run
consecutively.
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. . Logical Variables State Transition
Transition Conditions
q.(t) Dep (t) Previous State | Active State
hef (t) =0 T Not Used Pendulum System Free-Fall System
h ep (t) =0 Not Used T Free-Fall System Pendulum System

Table 5: Reset Map of Variable Structure Filament Pendulum

The rhs. of Figure 11 shows the free-fall coordinate system. The system transition

from pendulum to free-fall occurs, if ¢ (t) is true for
to: (tef < (hef (t) = -mgcosg, (t)+ mLoo]z3 (t) = 0)),

then the initial values at the free-fall event are defined as

x(, (¢, )):= Lsing, (t,.)
Y((Pp (tef )) = Lcosg, (tef )

)= gl a)= 20,00 3 (00) = Lo (1 o )
vy (tef ) = % Y((Pp (tef )) = %( p(tef ))% ?, (tef) =-Lo, (tef )Sin(/)p (tef)'

(96)

The left part of Figure 11 shows the pendulum system. When g, (t) becomes true then the

pendulum differential equations should be initialized at

with the following initial values:
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)= x(tep)
ylty)
?, (t o ) =T+ atan(k(tep ))

0 O
, (tep ) = a(/;p (tep )a_x (tep )

YA

d
dt

)+

o, d

O\
o (tep )_

0y

rit

€p

Computation of Initial Position for
Free-Fall System via Pendulum
Angle ‘/’p(tcf) .

{x(tef) = Lsirlg, (t..))
y(tef) = LCOS(‘Pp(tef ))

Pendulum

Transition to Free-Fall State

(530 = e o )= (e I, (4,

Transition to Pendulum State

N

97
YA}
)
Qu

Computation of Initial Angle for
Pendulum System via Free-Fall
Positions (x(tcp),y(tm)) .

fpp(tep)=n+ata,{x(

Free Fall

Figure 11: Initializations at State Transitions for Free-Fall and Pendulum Systems®'

The initial values of the state vector at an event should be prepared automatically before

starting data processing of the next system. The simulation model of the filament pendulum is

completed with the initialization terms. The supplemented variables of structure filament

pendulum are shown in Figure 12.

*! The system transitions are given by two different transformations. The position of an event for a transition
from free-fall to pendulum is in the low-half part of the coordinate system and for a transition from pendulum to
free-fall it is in the high half part of the coordinate system.
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Pendulum Model

o, (t) = } (rngLsin( ®, (t)) —C,0, (t))

F,(t)= —mgcos( , (t))+ mLw’ (t)

Figure 12: State Graph of Variable Structure System of Semi-Explicit DAEs for Filament Pendulum

For simplification, the state vector for free-fall is defined by

and the algebraic variable is defined by y,(t):=r(t). For the pendulum model the state vector
is defined by
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So, the variable structure system of semi-explicit DAEs can be given as follows

I
(e

()= (meLsin(x, (1) -, (1) hiy (1)
3,(t) = -mgeos(x, (1) + mLx3(0)

9%)

5.2.2 Reformulation of Explicit Euler’s Formula

The state event handling of a variable structure system of semi-explicit DAEs requires an
index-reduction procedure for transformation DAEs into systems of ODEs. This
transformation is explained in subchapter 3.1. Hence, the radius of the pendulum (95) and the
tension of filament (90) are differentiated by the chain rule with respect to the independent

variable t. The differentiation of yl(t) for the free-fall system with respect to t is

represented by

M = %(xl(t),)(}(t))m + %(Xl(t)

dt  ox, dt  ox, 7 dt Jx2(t)+x2(1)
99
and the differentiation of y,(t) for pendulum system with respect to t is
)20 ()2 2, 0, () 5
= mgsin () 0)+ 2725 gt i, (1) ¢, ).
(100)
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The semi-explicit systems of DAEs (98) are transformed to the systems of ODEs as follows:

£(1)=x,(0)
i (1) = (meLsin(x, ()~ . (1) hiy (1)

5= masin s, )0+ 22 il i, (0) -, 3.0)

I
(e

(101)

The computation of the location t, for a transition from free-fall to pendulum state is
realized using y,; =a,:=L by solving the reformulated explicit Euler’s equation of ODE
(99) according to formula (15).

A ) A2
~ ‘(L_th )\/XI,j—l + X350

Xy iaXo i T X5 X,

(102)

The computation of event location t, along t for a state transition from pendulum to

free-fall is done by solving the reformulated explicit Euler’s equation of ODE (100) with

respectto a, =0 and y,; =a, as follows

Yija ‘
2mlx, ;|

(mgLsin ()2 L )— ¢, Xy )

mgsin (X Ll )" 21

(103)
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The transient state vector can be approximated via Euler’s method with the computed

event step-size Af, = T,

(5]

—t;, and the appropriate initial values.

5.2.3 Reformulation of Implicit Trapezodial Formula for Newton’s
Method

In this subchapter, the trapezoidal solver with prediction and approximation phases is used as
an implicit solver. The variable structure system of semi-explicit DAEs (98) is taken in its
original form without index-reduction. The root-finding method is applied two times for each
system, once for computing the state vectors in prediction correction routine in the implicit
trapezoidal solver algorithm until an event is detected, and once to predict the transient vector
at the state event in the event location approximation algorithm after the event detection.

For the prediction of the state event location by the root-finding method, it is assumed that
the variable y,; reaches its appropriate threshold values at step j. Hence, at state event Y, ;
is considered either as constant value L for free-fall to pendulum transition or as zero in case
of pendulum to free-fall transition. The unknown state variables at step j are predicted by the

Newton’s method with iteration index k at the event location environment. In the root-

finding iteration algorithm, the other variables with index j—1 are considered as constant

known values. The hybrid event vector functions for the variable structure filament pendulum

are shown as follows
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Xk — X ja X T Xok

~ . Atc, (A ~ )

Xok ~ Xyt Xoj1 T Xk
2m

l

=t
Il
[e)]
=
e
—
—
N—"
Il
()

(AN ~ ) ~ N At, (A ~ )
Lo Xy )= | Xax = X550 — 2 Xy T Xy

h(ATe,k,i): iz,k—fiz,jI—Az—;k(mgL(sin(ﬁLj1)+sin(§1,k))—cp(§<2,j1+§2,k)) =0 hep(t)zo.

mgcos(il,k )— mLX7,

(104)

The step-size and variable predictions at the state event are realized for each domain
according to Newton’s method for nonlinear systems of equations (38) using event vector
function (104). The transient vectors are approximated by the system of implicit trapezoidal

solvers (39).

5.2.4 Henon’s Method

The Henon transformation is realized via systems of ODEs (105) according to Henon’s

transformation (64).
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Y1

d +x

xR
)
+<><>>

AN
() +x
(v x?
()

d —C.X

oIl ey (g

d x4 N _

)= b ha(1)=0
X4( 1)_—(mg+cyx )\/ yl +X

d_yl L (o v e <yl>x4<yl>>

d _ \/Xlz(Y1)+X§(Y1)
d_}’lt(YI)_ Xl(Yl)Xz(Y1)+ X3 (Y1)X4(Y1)

in(Yl): X2(YI)
dy, mgsm<x1<yl>>x2<yl>+”“L’;*yl)(mgum( )-ex(5)
d ~ (mgLsin( ) =
d_}llxz(YI)_ngsm(Xl(Y1)) (Y1)+2mLX Y1)(mgLsm(Xl(Y1))_Cpxz(YI)) hep(t)_o
it( 1): :
B0 g, 5 () 22 gt i 3, ), ()

(105)

For a transition from free-fall to pendulum, the state event handling is given for the state

vector

X(T) = ( 1(T)a X2 (T)a X3 (T)a X4 (T)a Xs (T))T = (Xl (Y1 )a X, (Y1 )a X3 (Y1 )a X4(Y1 )’ t(Yl ))T

for the interval

J: [Tj—lafj—l +‘TJ—1 - LH

l’l?jfl,’l?jfl +"EH —-a

(5]

in which y, :=r is the independent variable 1. In case of a transition from pendulum to free-

fall state, the state vector of transformation system is defined by

X(1) = 00 (0 1 () s (1) o= (s oo () 3, )
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and y, =F, is defined as independent variable t. The numerical computation is applied for

the interval

|

J: [Tj—l’ Tia ¥t |Tj—1 -0

[rjfl,rjfl +|rj71 —-a

(5]

hence the step-size at the state event At, is computed using systems of ODEs (105) with
ODEA45 and then for approximation of the transient state vector at the state event, ODE45 is

applied on the interval [t i 1 ]

5.2.5 Simulation Comparisions

The simulation comparisons are given for hypothetical system parameters, which are shown

in Table 6.

Parameter Description
X, :=09m initial position along x-axis
Yo =-0.43m initial position along y-axis

@, =n+atan(x,/y,) | pendulum initial angle

®, =8rad/s initial angular velocity
L=Im filament length
g :=9.80665m/s> acceleration of gravity of earth’s surface

¢, =0.97N-m-s/rad | damping coefficient of pendulum system

¢, =0.95N-s/m damping coefficient of free-fall system along x-axis
¢, =095N-s/m damping coefficient of free-fall system along y-axis
J:=0.75kg - m’ mass moment of inertia

m:=0.75kg pendulum mass

Table 6: Filament Pendulum Simulation Parameters
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The results of the computer simulations are illustrated on Figures 13 and 14. These figures

show the approximation of the positions and the trajectory of the pendulum.

Pendulum Trajectory
T T T

0.5

State Variables x and y
T T T

Figure 14: Simulation of Filament Pendulum

Figure 13: Simulation of Filament Pendulum Trajectory

Positions

The following table shows the comparison of the results of the simulations for

different approximation methods of the transient magnitudes of the variable y, (‘[e ) =F (te) at

a

the first transition from pendulum state to free-fall state.
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Reformulation of Explicit

Reformulation of Implicit

Trapezoidal Formula for

Henon

Methods
Euler’s Formula
Newton’s Method Application
Implemented Implemented Trapezoidal Programmed Henon
Solver Algorithm
Euler’s Solver Solver Mixed Newton Method Using Matlab ODE45
Type Explicit Implicit Explicit
Programming
Matlab Matlab Matlab
Environment
0 0 0

Threshold Value d el

v, (%)

-5.456111e-016

-4.440892¢-016

3.057221e-08

Local Error of y1 (te )

5.456111e-016

4.440892e-016

3.057221e-08

Fixed Step-Size

le-05

le-05

le-05

1.363987e-06

1.628527e-06

9.522046e-06

5.600113e-01

5.600216e-01

5.600195e-01

Threshold Value d e

Methods Simulink Adaptive (Matlab)
Solver Algorithm ODE4 ODE45
Type Explicit Explicit
Programming Environment Simulink Matlab
0 0

v, (%)

[-2.041575e-04,2.036859¢-04]

-1.443289¢-13

Local Error of y1 (te )

1.443289¢-13

Fixed Step-Size

le-05

le-05

At

9.522518e-06

[5.60130e-01, 5.60140e-01]

5.600195e-01

Table 7: First Event Comparisons of Filament Pendulum Simulation at the Transition from Pendulum to

Free-Fall State
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An approximation of the event location by “reformulation of solver formula” in DAEs
demands a transformation of the DAEs to appropriate ODEs using an index-reduction
method. The solver algorithm of DAEs transformed into ODEs has not always the same
results as semi-explicit DAEs. This is known as the drift-off effect. In Table 7, the local error
of algebraic variable yl(te) at the state event using Euler’s solver in system of DAEs

transformed in ODEs (101) is 5.456111e-16. That is the difference of the threshold value

a, =0 to the approximated value 91(Te). This result can be verified directly by computing

the constraint equation (90) using the approximated values ([)(?ep) and &(Tep). In this case, the
error is 1.265872¢-04. This verification shows a larger error value™.

The prediction of yl(te) is developed using reformulation of implicit trapezoidal
formula (104) in root-finding method (38). Table 7 shows the magnitude of the variable
Y, (Te) at the first state event, in which the value of y, (Te) using root-finding algorithm has the
lowest deviation from the threshold value a, =0. The local error in this manner is
4.440892e-16. An implicit solver with the root-finding prediction stage has additional costs
for developing and programming the root-finding algorithm. Further, the simulation result

depends on convergence location of the prediction variables and the iterations may take

higher run time if the roots of the algorithm converge very slowly.

Table 8 shows the errors of the approximated magnitudes of |Fa (t] and |r(t] at the first

and the second events.

Methods
Reformulation of
Reformulation of Implicit
Explicit Euler’s Trapezoidal Henon Adaptive Matlab
Formula Formula for

Newton’s Method
Error Fa (te 1 at First Event 5.456111e-16 4.440892¢-016 3.057221e-08 1.443289e-13
Error I'(te )— L| at Second Event 0 0 2.869926¢-12 1.709743e-14

Table 8: Errors of Approximated Magnitudes of Algebraic Variables at the State Events in Variable
Structure System of ODEs for Filament Pendulum

**> The index reduction method is applied in DAEs for two methods “reformulation of solver formula” and
“Henon’s method”. Hence, the using of index reduction method may result in a drift-off effect and higher error
magnitudes. The verifications of approximated magnitudes in constraint equations show relative greater local

errors of approximated magnitudes of variable Yy, (te) at first event in variable structure systems of DAEs than

“reformulation of implicit solver system for root-finding methods” in filament pendulum simulations.
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5.3 Rotor and Stator with Hybrid System of DAEs

The non-dimensional rotor-stator contact model is described by [SPE07]. The fundamental
design of the rotor model consists of a Jeffcott rotor equation [EKD93]. The subject of this
section refers to the simulation of a non-dimensional rotor-stator hybrid system and the

approximation of the locations of the transient vector’> at the state event.

5.3.1 Model Description

The main difference between a rotor-stator contact model and a Jeffcott rotor model lays in
the impact force terms and the stator model. The model, which is simulated in this section,
describes both deflection behaviour and force interactions including impact force of the rotor-
stator before and after collision.

The precise construction of a rotor is very difficult in practice. Faults during machining or
construction can create an eccentricity radius of the rotor axis. The rotor axis must be centred
on its disc, and an eccentricity distance from the centre of its disc can produce a centrifugal
force. This force deflects the rotor from its central position, and it can lead to large deflections
at the critical speed. The rotor deflection depends on the rotor speed and its mass, and on the
parameters of the rotor-stator spring damper deflection model.

The rotor model is given by nonhomogeneous differential equations (106). The left
bracket presents the motion properties with damping stiffness components. The middle

bracket defines the non-balance excitation. This term includes the angular velocity ®, mass of

rotor m_ and the eccentricity radius e. The bracket on the rhs. of (106) contains the impact
force terms, which are projected with the coordinate transformation matrix with angle (p(t) on

the x- and y-axes:

m,eo’sin(ot) | | —sin(p(t)) —cos(p(t))] f.(t)]

(106)

{mrewzcos(wt)} . {— cos(p(t))  sin(p(t)) }{f (t)}

The variables x,(t) and y,(t) are the rotor position variables, which can be depicted on the x-

and y-axes, m_ is the rotor mass, and the parameters ¢, and k_ are the approximated rotor

** A transient vector contains state vector and algebraic variable vector. Transient vector is computed at a
switching event for initialization of transition systems or states in hybrid or variable structure systems of DAEs.
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damper and stiffness coefficients. The stator equations of motion in x and y directions are

specified by:

(107)

The parameters ¢, and k_ are stator damping and stiffness coefficients whereas m_ is the

stator mass. The impact force in the stator equation is similar to the impact force in the rotor
equation but in opposite direction. The system structure can be changed, in which the impact

forces f, (t) and f,(t) in the rotor-stator equations can be coupled or decoupled according to

states of switching variables. The contact force consists of two forces f_ (t) and f,(t) in the

radial and tangential directions.

YA

Figure 15: Tangential and Radial Forces of Rotor-Stator in Contact Location

The rotor-stator system has algebraic equations which control the activation of the two

switching variables qc(t) and qt(t). The radial force
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£, (t)=k,d(t) +c,d(t)

represents a stiffness damping characteristic which is defined by the switching model via

as follows:

(108)

The variable d(t) is the radial indentation and the parameters k, and c, are the stiffness and

damping coefficients in the radial force model.

The switching variable q, (t) gives the direction of the tangential force f, (t) as follows

£(0)= .04t ) 0 ()=

—
—_ |

—
< <
- e
N N
= T
~— —

(109)
in which p is the friction coefficient and v, (t) is the tangential velocity.
The radial and tangential velocity equations presented in [SPE07] are
{d(t)} 1Y { cos(p(t)) sin(fp(t))}{xm(t)}
vi(t)] |5 Losinle(t)) coslp(t)] . (t)
(110)

where the parameter D, is the rotor diameter, ® is the angular velocity, and Vt(t) the

tangential impact velocity.
The rotor-stator system may show two manufacturing problems: The first problem is the

eccentricity radius e, which was mentioned at the beginning of this chapter. The other one is
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the position of the rotor centre in relation to the stator centre, where the rotor centre has an

offset from the stator. In Figure 16 this offset is illustrated with x, and y,.

yrA YSA

|
//\“ »
(it -~

[

S~—

Figure 16: Rotor and Stator Offsets

If the stator is in a deflected position, then it should be considered in the computation of

xs(t) and ys(t). Figure 17 shows the new position of xs(t) and ys(t) as well as the offset

between the stator and rotor.
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Figure 17: Stator Deflection

The positions of the rotor xr(t) and yr(t) , the eccentricity radius e as well as the stator

centre are shown in Figure 18.

Figure 18: Rotor Eccentricity Radius and Rotor-Stator Deflections

The relative deflections x_(t) and y _(t) between the rotor and stator are given by
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(111)

(112)
whereas x, and y, are the rotor-stator offsets. The radial distance between rotor and stator is
2 2 2
o (t)=x; )+ v ()
(113)

and the radial indentation or intrusion depth [SPEO7] is obtained from the radial distance

between rotor and stator

(114)

Parameter ¢ is the rotor-stator radial clearance.

Figure 19: Radial Rotor to Stator Clearance

The contact angle can be computed by
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(p(t):atan@:g;j.
11s)

The rotor-stator contact model, which is introduced by the differential equations (106) and
(107), is a hybrid system. In order to avoid numerical problem, a dimensionless** hybrid
system should be applied. Hence, in the next step, the transformation from a dimensional
system to a dimensionless system is demonstrated. The construction of a dimensionless model

is given by replacing the derivative terms. It starts with the angular velocity 2mnft = ot = 2m:

of the rotor. The derivation wdt=2ndt with respect to time and the assumption of constant

frequency f leads to the norming factor 2n as follows

(116)

Variable t is the independent variable of the initial system and 1 is the independent variable
of the dimensionless system. The first and second derivation operators for the transformations

of the dimensional derivative terms into the dimensionless derivative terms with respect to 1

(V-40-2(£0)]
(117)
and
TGO EEEI)-EIR)
(118)

** In a dimensionless system, all variables should be changed into scalar variables. A simulation of the
dimensionless system can be used for interpretations of the system behaviors, effects of parameter modifications,
results and measured values.
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The following two operators can perform the transformations of the first and second order
dimensionless derivative terms into dimensional derivative terms. The first order derivative

operator can be obtained from (117)

()=40-2(50)-20)

“dt ) 2ald ) 2
(119)
and the second order derivative operator from (118)
o d? o[d{o(d o), Vv
O-50-24[2(L0))-(2) 0
(120)

The different variables and constants are converted into dimensionless variables or constants

by dividing these magnitudes by the length of clearance.

C C C C C C
R()=50, b=t x, 22y Yo g
C C C C C

(121)

The operators (117), (118) and the relations in (121) are used to transform the dimensional
terms in the rotor-stator hybrid system into the dimensionless terms. After the substitutions

the rotor system is presented by

m cEw’sin(2m)

mf[z(’l)zcx“‘)*Cf%’l)cx“‘”kfcxf“) [mskuoion)), [l i) T()

(122)

and the stator system is
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2n 2n
(123)
The radial and tangential forces are obtained in the same way:
=0 0500 ek, e 2 o0
n
(124)
fct (l) = qt (l)l"’fcn (l) °
(125)

The parameters of the dimensionless differential equations of rotor-stator are defined as

follows:
Q= k, , Q2 = k, ,Qi:k__h,nzﬂ AIZE’
m, m, m Q. n
N ety L
n Q n Q 2,k .m, 2,/k m, 2,k m m, +m,

(126)

The dimensionless equations of motion can be given by the substitution of the parameters in
(126) into the rotor-stator hybrid systems (122) and (123). After these replacements, the

dimensionless differential equations of the rotor-stator system can be given as follows:

** The variable D is dimensionless radial intrusion depth. The coefficients Cp» kh , L and ¢ are explained in

pages 77 and 80.
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{X:(1)+ 20.A X (1)+ Afxr(l)} _ {(27:)2 Ecos(2m)}
Y/(1)+2C,A, Y (1)+A%Y. (1) (2n)* Esin(2m)
. {qc (AID(1)+2¢, A, D'(1))- cos(p(1)+ qtusin(fp(l)))}

q.(AZD()+28, A, D' ()N sin(p(1)) - g,ucos(p(1)))

(127)

A2
Y/(1)+20,A Y/ (1)+A?

S S S

{Xg(m 20A X (1)+

X, (t)} _ _{qc (A2D(1)+ 2¢,A,D/(1))~ cos(e(1))+ qtusin(rp(t)))}
Y

q,(AZD(1)+2¢,A,D'(1))-sin(p(1))- g ucos(p())) |

(128)

The computations of further quantities are necessary to complete the simulation
model. The dimensionless relative deflection between the rotor and the stator along the x- and
y-axes can be computed from the updated position values of the rotor-stator dimensionless

differential equations:

(129)
Y, (1)=Y.()-(Y,()+Y,)
(130)
The dimensionless relative radial deflection is described by
R, ()=vXL()+Ya()
(131)
and the angle of deflection is presented as follows
(p(l) = atan( ;‘Z ((ll))j .
(132)

The model simulation is put together by the dimensionless differential equations and

the dimensional algebraic equations. For this purpose, the position coordinates of the rotor

84



and stator x_ (1), y,(1), x,(1), y,(1) are computed from the dimensionless values X (1),

Y, (l), X, (1) , Y, (l), hence

Xr(l) = ch(t), yr(l) =cY, (1), Xs(l) =cX, (l), ys(l) =cY, (1), I, (1) =cR | (l),

so the intrusion depth can be given by

d(1)=c(R(1)-1)

and the velocities by

The contact force in radial direction is given by

£ (V= 0. (0, (0= 0. (D, d(1)+ ,d(1)

and in tangential direction by

£, (1)=q, (uf,, (V).

The conditional expressions (137) and (138) form the switching system.

(133)

(134)

(135)

(136)

(137)
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(138)

The dimensionless switching variables are converted to dimensional variables of d(l), f (1),
and Vt(l) and then appropriate switching variables qc(t) and/or qt(t) are evaluated in order

to control the switching process. Figure 20 shows an abstract simulation concept for the

hybrid system of DAEs with dimensional and dimensionless variables.

Evaluating Switching
Conditions and Identifying
Event by Dimensional
Algebraic Variables

Rotor-Stator
Contact Model
(Hybrid DAE System)

Is an Event
Identified?

v

Computing Initial Values
<4— and Switch to Another
System of DAEs

Figure 20: Simulation Concept’® Based on Dimensional and Dimensionless Variables

State graphs can be used for the analysis and development of the switching process.
First, the state graphs of the switching variables and then the state graphs of the system

transitions are demonstrated. The state graphs of the switching variable qc(t) and its

switching conditions are depicted in the following figure.

** Applying dimensionless model and nonlinear transformation between dimensionless and dimensional
switching variables result in non-qualitative simulation approach.
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d(1)>0

f (1)<0

Figure 21: State Graph of Rotor-Stator Contact by Switching Variable (1)
The switching conditions of the radial force structure are presented in [BEK10] as follows:

£, (1)=q. (0, () =q. Nk, d(1)+c,d(1)) 0()= {1 (f,(1)>0)A(d(1)>0)

0 (f.(1)=0).

(139)

The switching variable qc(t) in (139) is determined by two conditional expressions with two

variables d(l) and f_ (l) The state graph of qc(t) is illustrated in Figure 22.

(f,(1)>0)A(d(1)>0)

f (1)<0

Figure 22: Extended Form of State Graph of Switching Variable (1)

The rhs. of the rotor-stator differential equations have the interrelated terms of the radial force
f (1) and the radial intrusion depth d(l). The radial force structure is valid if the radial force

is greater than zero and simultaneously the radial impact depth is greater or equal to zero.
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The condition for disconnecting of the rotor from the stator is modified according to the

logical negation’’ of the condition

~((£.()>0)A(d(1)>0))

(f. (1)>0)A(d(t)>0)

—(f,(1)>0)v—(d(1)>0)=(f,(1)<0)v (d()<0).

The reset map of the state transitions is illustrated in Table 9:

Corresponding Connecting Disconnecting
Conditions
Logical Values Transition Transition Active
Condition Condition State
f d L L
0 O el | b (£.()>0)A(d()20) | (£.()<0)v (d()<0)
<0 | d@)<o0 F F F T Disjunction
<0 d(l) >0 F T F T Disjunction
1)>0 | d(1)<0 T F F T Disjunction
1)>0 | d(1)>0 T T T F Contact

Table 9: Reset Map of Structure Switching of Rotor-Stator System using Logical Variables qu (l) and

q: (1)

According to the previous table, the contact between rotor and stator can take place if both

corresponding logical auxiliary variables qun (l) and g (1) are true, so the disconnection of the

rotor and the stator is valid if either qun (1), q5 (1) or both of them are false. In this

dissertation, the disconnecting conditions of the radial force are defined and developed as

follows

*" The rotor stator contact model is simulated for two first events and the constraint equations (140) and (139)

have the same outcomes.

The logical negation of a switching expression is not valid in all applications. E.g. in filament pendulum system
the negation rule cannot given because the switching system has two separate switching conditions and each

condition is concerned to its own system.
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£ 0= a0, ()= 0. 0k, e, d6) o T R

(140)

in which the logical compliment of the transition condition (fn (1)> 0)/\ (d(t)z 0) is given by

the separation condition (f, (1)< 0)v (d(1)<0).

(£,(1)>0)A(d()20) (£,(1)>0)A (d(1)> 0)

(f,(1)<0)v(d(1)<0)

Figure 23: State Graph of Rotor-Stator Contact by Switching Variable (1) According to Table 7

The state graph of the switching variable q, (l) is illustrated in Figure 24.

Figure 24: State Graph of Tangential Force by Switching Variable ¢, (l)

It is assumed that both the static and kinetic friction are described approximately by formula

(125) with friction coefficient p, then the transient conditions of the switching variable

q, (1) € {—1,1} can be developed by conditional expressions in (141) as follows:

&9



<0
£,(1)=q,(uf,, (1) q()=1 1 v(1)>0

(141)

whereas f_ (1) and f, (1) show the radial and tangential forces. For the tangential velocity
v,(1) three different values are possible v (1)>0, v,(1)<0 and v (1)=0. The tangential
force depends on the radial force, the switching variable qt(t) and the friction coefficient.
Here it is assumed that the switching variable qt(L) holds its previous value qt(t):z qt(f ), if

the tangential impact velocity is equal to zero and the conditional relation

(fn (1) > 0)/\ (d(l) > 0) is valid. The modified state graph is shown in Figure 25.

Figure 25: Modified State Graph of Switching Variable ¢, (1)

The system structure switches if a change in the variables q_(1) and q,(1) occurs. The
switching variable qc(t) defines the contact state, and the variable q, (1) defines the changing

direction of the friction force state. The state graph of the rotor-stator system is demonstrated

with the conditional expressions (141) and (140) in Figure 26.
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X(0)+26,A X (1)+ A2, (1)]_[(2n) Ecos(2m)] [(A2D(1)+28,A,D())~cos(@(1)+ usin ((1))
Y(1)+2¢,A Y( )+A Y. (1 (2 ) sin (271) (AgD(l)+2chAhD(l )(—sin(<p(1

X"(1)+20 A X (1)+AZX (1 ]{( *D(1)+2¢,A D(I)X cos(p(1))+ usin(q)(t)))} i

Y1)+ 20A, Y/ (1) + AZY,(1) | | (AD()+2¢,A, D)) sin (p(1)) - peos(p(1)))

"(1)+20 A X (1)+ A }_ {(21:)z Ecos(2m)
")+2CA,Y! (1)+A Y. (1) (2n)’ Esin(2m)
(1) + 20 A X (1) + AZX, ‘)}6

M1)+2¢,A Y/ (1)+ ALY,

er("):Xr ")_(Xs ")+X0) -1 V((")<O
T a0 [ 8] of ool oD gl 1
o(0) = atan( Y, ?)) v, (1) 0" 21| —sin(p(1)) cos(p(1)) | Y. (1) a, (1) v.()=0

X, D(1)=R_(1)-1 ® ., 1 (f (1)>0)A(d(1)>0)
RO dgoenly 0[P e 0] 0= {0 (£.() < 0)v (d(1) < )

Figure 26: Rotor-Stator State Graph

In the simplified simulation system, the direction of Vt(l) does not change. By setting

convenient initial values, the variable Vt(l) stays greater than zero, so the simplified

automaton is modified as follows
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(27)’ Ecos(2m1)
(27 Esin(2m)

X"(1)+20A X (1)+A’X, ﬂ (2n) Ecos(2m) P AZD(1)+2¢,A,D())- ws¢0+wm¢ﬁm
Y/(1)+20 A Y/(0)+A%Y,(1) | | 2z Esin(2m)| | (A2D( WMQAD (L= sin (p(1))- p
X7(0)+ 20 A X (1)+ AX, ()] [(AZD(1)+2¢,A,D())- cos(p(1)) + psin (p(1))) 5
&’0+2§AY(O+AY%1}+&A§ (1)+2¢,A, D))= sin (p uwﬂdﬁi

X 1)=Xr(l) . .

Y. (0=Y,0-(V.0+Y,) X.0=X0-X() ()= e (X, (eos(p(1) + Y (hsin(o(0))

(1) = atan] Yot v:()=Y/0)- Y!() N
) e o) -,
R.()=\X:()+Yi()  d()=eD(s (1)<

Figure 27: Rotor-Stator State Graph for v, (l) >>0

The state vector is defined by

The extended variable vector is

Thus, the system of differential equations of the noncontact case is established for q,(1)=0

by (142).
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%,(1)=x,0)

)= —(2(; A x4(1)+Afx3(t))+ (2n)’ Esin(2m)
:6 l :_(2CSASX6(1)+A§X5(1))

%(1) = —(26,Ax, (1) + A%x, (1))

(142)

The system of ODEs (143) is defined for the contact simulation of rotor with stator in case of

q.()=1.

1) = 20,4 %, (1) + A2, 1)+ (2 Beos(2m) + (A3x. () 26,85, () cosf 1)+ psinlxe, (1)
(1) = ~(28,A %, () + A2, (1) + (20) Bsin(2m) + (Afx o, (1)+ 28,4, x o, (D) sin(x o (1)) - peos(x o, (1)
(1) = (28,4 360+ A2 ()~ (A2 () + 28,8, x o, (D) coslx o, (1)) + msin(x o, (1)
(1) = ~(28,A () + A% (1)) = (A2, (0 + 28,8, x o, (D) sinfx o, (1)) - ncos(x i, (1)

(143)

The switching of systems depends on the magnitudes of the constraint equations. The

radial intrusion is given by

Y (1) = CXext, (l)

(144)

and the radial force™® is

y2(l) = Ckhxextl (l)+ Cch % Xext2 (l)’

(145)

** The dimensional radial force (124) is rewritten in formula (145) for q. (l) =1.
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Hence, yl(t) and yz(t) are part of the switching conditions and represent the variables d(l)

and f (1) The variables X (1), Xext, (1) and X, (1) are auxiliary variables.

Xew, (1) =406, ()= G )+ )F + ()= G, () + v )F -1

(146)
o (0= (6 )=, (eoston, (0) (a0 x, binkx., ()
(147)
(- v0)
e )= (xl<l>—<x5<l>+xo>j
(148)

The rhs. of dimensionless intrusion depth (146) can be inserted into (144). Hence the

dimensional intrusion depth (144) can be written as

3 0=l s 05 )F 6=, v, )F 1)
(149)

The contact angle X, (1) in equation (147) can be substituted with its equivalent in (148).

Then the dimensionless intrusion depth X, and radial impact velocity x,, in (145) can be

substituted with their equivalents in (146) and (147), which results in

= + a0, | (x,(1) =% (1))cos| atan % ()= (60 +y,) +(x,(1)—x4(1)sin| atan| %)= (x5 () + )
e (X L o e )| ORI b o

5.3.2 Reformulation of Explicit Euler’s Formula
For approximation of the event location for a transition from the noncontact case to the
contact case, the transient condition (y,(1)>0)A(y,(1)>0) has to be valid. Thus, the

derivative of the radial indentation (149) is established by the chain rule, which is

demonstrated in appendix A2.1. This transformation is shown as follows
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()= s )+ X Mo )= 0 5 0)= s 1)+ v ()= x4 (1)
(Vo= G50+ x, )7+ (s (06, 6 3)F )

}"1(1):C

(151)

The transformation of radial force (150) to an ODE is demonstrated by (152). This

transformation is illustrated in A2.2.

(5 G ) 0 0) =340+ )= O, ) 3, s (), 0)
(Vo 0= (s 0+ %) + (550 (6, 0+ 5 )7 )

+cch2";{((— (zcrArx2<1>+Afxl<l>)+<zn>2Ecos<2m>)+(2CSASX6<‘)+Ai"s(‘))*‘){a”“ml)_fw))i

S"2 (1) = Ckh

+ ((— (2CrArx4 ()+ AZx, (1))+ (2n)’ Esin(2m))+ (2CSASX8 (1)+AZx, (1)))sin(atan );

(x4 (1) = % ()%, (1) = (x5 (1) + %)) = (5 (1) = % (W)Nxs () = (%5 (1) + ) !
(3, (1) = (x5 () + % ))°

+

e (0= 5N o 1 o (o (500 34)
[(2“ ) {t (xm)—(xs(l)mo)B (u0-x0) (t (xlﬁ)_(xsﬁ)ﬂo)m
(152)

The radial force y,(t) and the radial distance y,(1) whereas (y,(t)>0)A(y,(1)>0) do not
cross their threshold values synchronously. In the simulation, the variable vy, (l) triggers after
yl(t). Thus at the first switching the transient condition (y2(1)> 0)/\ (yl(l)z 0) is sensitive on
condition y, (l)> 0 if yl(l)z 0 is fulfilled. Then the event location on t-axis for the first

transition is given via the discrete form of ODE (152) according to formula (15) as follows

(153)
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A

In formula (153) f (lH, X jfl) is the discrete form of the rhs. of the derivative (152) given by

Euler’s algorithm, which is shown as follows

(ﬁl,j—l _(),\(S,j—l +X0)X§(2,j—l _5\(6,j—1 )"' (5\(3,j—1 _(ﬁlj—l +YO)X)A(4,J>1 _ﬁx,j—l)

(\/(X Lt (X si1 T %o ))2 + (’23,1‘—1 - (X 71T Yo ))2 )
+cc,, 22 [((— (ZCrArf( a1 TAIR )+ (2n)* Ecos(ij_1 ))+ (ZCSAS)A(QJ;1 +AIX )}:o{atan({%’jl - E):( 1 Yo DJ
(& .

£y, (H—l”i‘j—l):"kh

T

+ ((— (ZCrAr X4+ Aff(ijfl )+ (211')2 Esin(ZmJ-_1 ))+ (ZCSAS)A(&J;1 + Aff(”fl ))sin{atan );3’“ _ E: nit Yo DJ
0

(X4,j—1 —Xg 1 Xxl,j—l _(Xs,j—l +X0))_(X2,j—l —Xg,jm1 XX3,J>1 _(X7,j—1 +¥Yo )) 1

+ - - 2
(Xl,j—l _(XS,j—l +X0)) Xy~

(A

(ks
3 3 . X34 _(ﬁlj—l +YO)JJ+ B ( ()A(;jl _(5\(7,j—1 Yo )JJJ
( (x2 (1) )(6(1))sm{atan(§(u1 N ()A(S’H n Xo) (x4(1) Xg (1))005 atan )A(LH _(A ot Xo) .

(154)

For the second event, a state transition from the contact case to the noncontact case,

depends on the disjunction condition (y,(1)<0)v (y,(1)<0). In this case, an event occurs if
the variables y,(1) or y,(i) crosses the threshold value of zero. These are also not
synchronous events. Here, the variable y,(1) intersects with the threshold value before y,(1).

Hence, t_ in this case is computed according to the formula (15) for ODE (151) as follows

5’1,j1[\/()21,j1 - ()ZS,j—l + Xo))2 + (7234'71 - (7274'71 *+ Yo ))2 j ‘

+ )
C((Xl,j—l - (Xs,j—l X ))(Xz,j—l ~Xgj1 ) + (Xz,j—l - (Xu—l Yo ))(X4,j—1 ~Xgj1 »

L=

(155)

Thus, at the second event the variable yz(t) does not trigger the system transition.
However the transformation of constraint equation (150) to its appropriate ODE, for
determination of y, (l) regarding a state transition from contact case to the noncontact case, is

demonstrated in A2.2 by ODE (168).
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5.3.3 Reformulation of Implicit Trapezodial Formula for Newton’s
Method

An approximation of the transient vector for a transition from the noncontact state to the
contact state is processed after the crossing of the threshold value. Thus, at state event, the

event variable is set equal to its threshold value y,; :==a, = 0. The system of event equations™

is established according to system (37) for reformulated trapezoidal formula by event vector
function (156). In order to compute the prediction values, Newton’s method™ is used as

shown in (38).

AT,

- i1,k + ’21,_171 + T&k(’zz,rl + i2,1«)
~ Ry Ry A}k ((f (20,A%,,, + A%, )+ (21) Ecos(2m ., )) + (f (20,4 X, + A’K,, )+ (20) Ecos(2x (1, + AT, ))))
e
=Xy H X+ ;’k (%4171 +X4k)
~ Ry + R+ A}k ((f (26,4, %, + AR, )+ (2n) Esinf2m )) + (f (26,A,%,, + A%, )+ (27) Esin(2n (o, + AT, ))))
- . Ay, -
fl(ATe,k ;‘Zk P}V/l): ) XS’k i XSYJ?I +7( o i X()Yk)

le, k

] (C(20A &g + AZR ) - (20,4 Ky + ARG, )

— Xy + R+

~ N Aty ¢, ~
“Xgx Xt 5 (XS,J—I + Xx,k)

le, k

A
2 (7 (2C5Asﬁg,_,4 +A§i7,_l*1)7(2CsAsix,k +As23z7,k ))

= Vix +C(\/(§l,k *(is,k + Xo))2 +(§3,k *(27,1« +y0))2 71)

~ Xy + g +

(156)

Afterwards the transient vector is approximated using the components of the prediction vector
~ T 3T T . ~ T ~ T
(te’xe ’ye) ':(tj—l+Atk’Xk’yl,k’ae)

according to formula (39).

** For computation of event location at the state event, the event vector function is reformulated as a system of
equation.

0 System (156) is written in short forms with variable X hence for numerical processing of (156) this

exty,k 2
. o . ~ Xy — (§7,k + YO)
variable must be replaced with its equivalent X _, , = atan| — — .
N X1k _(XS,k +X0)
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For a state vector prediction of a transition from the contact case to the noncontact

case, the system of equation (157) is applied.

A
= A

h(ATk ”)_Ek”ylk )= (ﬁl (A’rk”):ék ”5;2,k )7ﬁ2 (ATkaiw?z,k )w . -ahx (ATk ”ik”ylk )7ﬁyl (ATk ”ik”ylk )7ﬁy2 (A’rk”):ék ”5;2,k ))T 26

(157)

The variable ¥, ; in (157) is replaced with its threshold value y, ;:=a, = 0. The prediction of

root location of the system of equations (157) is done with the Newton’s method (38). The
elements of (157) are defined in A2.3.
After the prediction phase, the approximation of the transient vector is realized by

computing trapezoidal method (39) using the predicted magnitudes.

5.3.4 Henon’s Method

The semi-explicit DAEs of the rotor-stator are transformed to ODEs via the derivatives of
both algebraic equations (149) and (150). These transformations are demonstrated by ODEs
(151), (152) and (168).

According to the transition condition explained in 5.3.2, the variable yz(t) influences the
structure transition from the first noncontact case to the contact case. Hence, the variable y,
is set as an independent variable and the independent variable 1(y2) as dependent. The

Henon’s transformation is given according to the presented method in subchapter 4.2 for the

rotor-stator noncontact to contact case with

as follows
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d _oxy)
LR NN
d (v.)= —(2C A x,(y,)+ AZx, yz))+(2n) Ecos(271(y, ))
dy, "7 £, (uy: ) X(y.)
ix _ X4( 2)
R WA E )
d . (y ): —(2C A x4(y2)+A2x3(y2)) (2 ) Es1n(2m(y2))
dy, e fyz(l 2 j(Yz))
X ( ) X6(Y2)
dy, T fy2(‘(Y2)’i(Y2))
ix (v.)= —(2CSASX6(y2)+Afx5(y2))
dy, £, ((y b X(y.))
ix _ Xx( )
i 07 ()
d X (y ): —(2CSASx8(y2)+Afx7(y2))
dy, "7° £, () X(y.)
) £, ((v.))
dy, £,((y, ) %(y,))
d

(158)

In system of ODEs (158), f, (1(y2),>?(y2)) stands for the rhs. of ODE (152) with independent

variable y, . This term is shown as follows

_ )= ) D ) 5 ), ()= )y o () =,,)
fy2(( 2)X( 2)) ck,,
R (Y0, )=l ), 52 ) v )2)

+Cch2(1;[((_(2CrArX2(Y2)+A3X1(Y2))+(2n)2ECOS(2m)) (2C AXs Y2 +A Xs atan i? Ej: j ZDJ
#-lra iy« Alx, (v,))+ (n) Bsin(m)s (2,4, x,(y,) + A2 (yz)))sm(atan()(} 2 (X7(yz)+YO)JJ

+

(X4(Y2)_Xx(Y2))(Xl(Y2)_(X5(Y2)+Xo))_(xz(Y2)_X6(Y2))(X3(Y2)_(X7(Y2)+YO))
)+

(x, (2 )= (x5 (y2)+ %)) x5(y2)= (x5 (y2)+yo)Y’
oty
{_((y)_(y))sn(tn(gﬂgg:ymw(y)—(y))co{tr{Exjggiynm
(159)



The rhs. of ODE (151) is defined by formula (160) for ODE system (158) as follows

£ (i(yz )) —c (Xl(Y2)_ (XS(Y2)+ Xo))(xz(Y2)_ Xs(Yz ))+ (X3(Y2)_ (X7(Y2)+ Yo ))(X4(Y2)_ XS(yz ))
' (V)= sl )+, F + (5, 32) =G, 52+ F )

(160)

The independent variable of the ODE system (158) is t7:=y, and the dependent variable is

defined by ¥,,(t):=1(t), hence the state vector in Henon’s transformed system is

X(T) = (Xl (T)» X (T)» X3 (T)» Xy (T)» Xs (T)» XG(T)ﬂ X (T)» Xg (T)» ¥ (T)» I(T))T :

The computation of T, is given according to formula (67) with a_:=0 by ODE45 applied on

system of ODEs in (158). In the next stage, the approximated transient state vector is

computed on interval [1 i TeJ using solver algorithm ODE45.

At the second event, a transition from the contact case to the noncontact case depends

on the event variable y,. Hence, the rhs. of the ODE (151) is applied for setting

In this case, the variable y, is realized as independent variable and the variable 1(y1) as
dependent variable. The second event is triggered by the disjunction condition
(yz(l)é 0)v(y1(1)< 0) and the variable yl(t) fulfilled its conditional relation earlier than
¥,(1). The Henon’s transformation is given according to the method described in subchapter

4.2 as follows
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ix _ Xz(Yl)
a7 (5l
) —(26,4,%,(y,)+ Alx,(3,))+ (2n) Ecosmly, )+ (A2x, (v,) + 20,4, %o, (7)) c0s(x,y, (v,))+ psin(x, (3,)))
dy, 2 fy1 ()—((Y1))
x,(y,)

v, YT i)
) ~ (204 x,(y,) + Alx,(3,)) + (2x) Bsin(2mily, ) + (A7 x,., (7)) + 26, A X, (7 ) sinlx, (5,)) - woos(x,,, (v,)
dy, W fyl()—((YI))

d _ x(y)
a7 )
K ):—(2CSASX(,(YI)+Afxs(yl))—(Aixml(yl)+ZChAthz(yl))(—COS(XW(YI))+ psin(x,,, (,))

dy, i fyl()—((YI))

Ay %)

ay, "= )

)T (20, A,x,(y,)+ A2x, ()~ (A2x (3 + 26, A, %o, ()N sin(x o, (v,))~ reos(x (1))
dy, fy1 ()—((YI ))

(161)

The structure of f,, (1(y1)§(y1)) is the same as the rhs. of the ODE (168) (appendix A2.2). The
computation process of ODEs (161) is given for interval l% i Ti +|% i —aeH with a, =0 and
7., =Y. The system of ODEs (161) is treated by ODE45 according to initial values of (67)

with the independent variable t:=y, by state vector

x(1)i= () (2) s (2o () () () (2o () g (e)afe). ()

In the next stage, the approximation of the transient state vector regarding the interval

J is carried out by the solver ODE45.

[lj_l,ljfl +|1j71 -1,
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5.3.5 Simulation Comparisions

For simulations, the hypothetical parameters of the rotor-stator contact model are

defined in Table 10.

Parameter Description

X, :=0.0239m offset between rotor and stator in x-direction
Y, =0.0000001m offset between rotor and stator in y-direction
D, =2m rotor diameter

e :=0.00999m eccentricity radial offset of rotor
c:=0.024m radial clearance between rotor and stator

m, =8kg mass of rotor

m, = 20kg mass of stator

c,:=150N-s/m rotor damping coefficient

k, := 800000 N/m

rotor stiffness coefficient

¢, :==20000N -s/m

stator damping coefficient

k, :=700000 N/m

stator stiffness coefficient

¢, =7N-s/m contact damping coefficient
k, :=100000N/m | contact stiffness coefficient
©®:=101rad/s angular velocity

u:=0.002 friction coefficient

Table 10: Rotor-Stator Simulation Parameters

The simulation of the rotor-stator model provides the following results, which are

shown in Figures 28, 29, 30, 31.
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Figure 28: Simulation of Rotor Position Figure 29: Simulation of Stator Position
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Figure 31: Simulation of Stator Trajectory

Figure 30: Simulation of Rotor Trajectory

Figures 28 and 29 show the rotor and stator positions along x- and y-axes and Figure

30 and 31 show the rotor and stator trajectories.

The simulation comparisons are demonstrated in Table 11.
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Reformulation of Explicit

Reformulation of Implicit

Henon

Methods Trapezoidal Formula for
Euler’s Formula
Newton’s Method
Implemented Implemented Trapezoidal Programmed Henon
Solver Algorithm ) )
Euler’s Solver Solver Mixed Newton Method Using Matlab ODE45
Type Explicit Implicit Explicit
Programming
Matlab Matlab Matlab
Environment
Threshold Value 4 0 0 0
Y, (te ) 0 7.216449¢-016 -8.816886e-009
Local Error of
(~ ) 0 7.216449¢-016 8.816886e-009
y2 te
Fixed Step-Size 1e-005 le-005 1e-005
AT@ 5.455252¢-006 1.894331e-006 7.897663e-006
Te 5.459545¢-002 5.460189¢-002 5.459789¢-002
Methods Simulink Adaptive (Matlab)
Simulink Matlab
Solver Algorithm
ODE4 ODEA45
Type Explicit Explicit
Programming o
Simulink Matlab
Environment
Threshold Value 4 0 0

yZ(Te)

[-5.340435e-002, 1.085920e-002]

6.505906e-014

Local Error of y2 (te )

6.505906e-014

Fixed Step-Size

1e-005

1e-005

AT, - 7.896551¢-006
T [5.459¢-002, 5.46¢-002] 5.459789¢-002

Operating to Contact State

Table 11: First Event Comparisons of Rotor-Stator Simulations at the Transition from Noncontact
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The simulation results in Table 12 show local errors for approximated variables

involved in first and second events.

Methods
Reformulation of Reformulation of
. R Implicit
Explicit Euler’s Trapezoidal Henon Adaptive Matlab
Formula Formula for
Newton’s Method
Error |y, (te 1 at First Event 0 7.216449¢-16 8.816886¢-09 6.505906e-14
Error |y, (te 1 at Second Event 2.346380e-20 0 5.918564e-12 0

Table 12: Errors of Computed Algebraic Variables Yy, (?e) and y, (?e) Involved in the First and Second
Events in Hybrid System of Rotor-Stator

Table 13 shows the summary of simulations, which are implemented related to different

types of systems.

Reformulation of

g Reformulation of (Implicit Trapezoidal) Solver Henon
ystems
(Explicit Euler) Solver Formula Formula for (Using ODE45)
Newton’s Method
Autonomous ) ) ) ) ) )
Bouncing Ball with ODEs Bouncing Ball with ODEs Bouncing Ball with ODEs
ODEs

Non-Autonomous

ODEs

Rotor-Stator with DAEs

transformed in ODEs

Rotor-Stator with DAEs

transformed in ODEs

Semi-Explicit

Autonomous DAEs

Filament Pendulum using Index-

Reduction

Filament Pendulum Directly on

Semi-Explicit DAEs"!

Filament Pendulum using Index-

Reduction

Semi-Explicit
Non-Autonomous

DAEs

Rotor-Stator using Index-

Reduction

Rotor-Stator Directly on Semi-

Explicit DAEs

Rotor-Stator using Index-

Reduction

Table 13: Summary of Different Simulations Related to System Types

*! Reformulation of the implicit solver for root-finding method is applied on the semi-explicit DAEs without an
index reduction procedure. In this method, the root-finding system outputs should be converged in root location.
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Table 14 shows the programming cost of the different algorithms. The root-finding

method contains the solver algorithm, Newton’s method with Jacobian matrix and shows

higher implementation cost than other algorithms.

Reformulation of

Reformulation of

(Implicit Trapezoidal) Without Zero-
Subjects (Explicit Euler) Henon’s Method Adaptive
Solver Formula for Crossing
Solver Formula
Newton’s Method
Low for simple )
Programming Cost High - - Low

models.

Table 14: Implementation Costs of Different Event Location Approximation Methods

Table 15 demonstrates the approximated execution times of different simulations from

start until the end of the approximation procedures of the transient vectors at the first events.

‘Without Zero-Crossing (ODE4 Simulink)

Simulations

Methods Bouncing Ball Filament Pendulum Rotor-Stator

Reformulation of Explicit Euler’s 1.936829¢-01 8.841572e+01 2.873217
Formula
Reformulation of Implicit Trapezoidal 3.065886 1.225275e+02 5.889020
Formula for Newton’s Method
Henon (ODE45 Matlab) 1.080181e+01 1.189660e+01 1.531918
+

Adaptive (ODE45 Matlab) 8.599733 1.142153e+01 1.095217
4.399873e+01 2.122344e+01 4.391379

Table 15: Comparisons of Approximated Execution Time for First Event

Table 16 shows certain system benchmarks of different approximation methods of

transient vectors.
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Methods Advantage Disadvantage

e  Simple Solver Induce often High

Global Error Magnitudes.
e  Low Local Error. e  Index-Reduction Procedure for
Reformulation of Solver Formula e  Simple Implementation for DAE:s Is Inevitable.
Simple Solver. e  Instability if Functional Part of

the Solver in Reformulated
Formula Is Singular.

e  High Implementation Cost.
e  Root-Finding Method May not

. . Low Local Error. Converge.
Reform;izt:?lgisgii‘)lﬁz tl;z:;;mla for e  Handling of Semi-Explicit DAEs e  Instability of Newton’s Method
£ without Index-Reduction. if Jacobian Matrix Is Singular.

e  High Execution Time for some
Applications

e Instability if Denominator of T
Is Singular.

Henon (ODE45 Matlab) Applicable on Embedded Solvers. *  Restricted Apphcatl(gl for Non-
autonomous System™.

e  Index-Reduction Procedure for
DAESs Should be Given.

Table 16: Advantages and Disadvantages of Various Methods

*> If the range of the integration of the ODE in Henon’s transformation is not equivalent to the domain of
appropriate ODE involved in state event, then the Henon’s method shows an inaccurate result. This may be
given for non-autonomous systems. The behavior of the function of the event location approximation procedure
at the event environment should be one to one and onto and it should be continuous on the approximation
interval.
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6 Conclusion

A problem of hybrid and variable structure dynamic systems is the precise approximation of
the transient state vector, algebraic variables and event location at the system-switching event.

This dissertation seeks to find answers to the problem of approximation of transient state
vectors, algebraic vectors and event locations of the hybrid and variable structure systems of
ODEs and/or DAE:s at the state events or system switching. The main aims of this thesis are
research and development of methods and algorithms, which are characterized as approximate
solutions of hybrid or variable structure systems at the surface of crossing sections. The
approximated solutions can be used for reduction of local errors in hybrid and variable

structure systems at the switching event.

The results of this research can be classified in two categories, “reformulation of solver
formula” and “reformulation of solver formula for root-finding methods”. Another focus is on
the “Henon’s method”. These methods are developed on certain explicit or implicit solver

algorithms.

The main outcome of this thesis is as follows:

e The “reformulation of solver formula” is developed for the approximation of a
transient state vector. This method consists of solving the reformulated solver
equation regarding the event step-size at the state event and approximation of a
transient state vector by using the solver formula. This method can be applied on
certain explicit solver for variable structure systems of ODEs and DAEs
transformed into ODE:s.

e Another result has been obtained for variable structure systems of ODEs and
DAE:s transformed into ODEs using the root-finding method on a reformulated
explicit solver formula for approximation of transient state vector.

e Another conclusion is the Method development for approximating the transient
state vector via application of the root-finding method of nonlinear systems of
equations on reformulated implicit solver system equations. This method is
specified for implicit solver and implemented with two-procedure prediction and
approximation stages for variable structure systems of ODEs or DAEs

transformed into ODEs.
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e The Method for approximation of a transient vector in hybrid system of semi-
explicit DAEs has been developed in two prediction and approximation
procedures. This method handles hybrid system of semi-explicit DAEs without
index-reduction via application of the root-finding method of nonlinear systems of
equations with reformulated system of implicit solver.

e Henon’s method is an important part of this dissertation. The research on Henon’s
method includes implementations of approximation of the transient state vector of
variable structure systems of ODEs and DAEs transformed into ODEs for

embedded solver systems.

In this dissertation, altogether fifteen simulation programs were developed. Nine
simulation programs were implemented for verification of three methods: “Reformulation of
solver formula, reformulation of solver formula for root-finding method and Henon’s
methods. Six additional simulations were implemented for comparisons with developed
methods in which three of them were realized with Matlab adaptive method and three further
simulations without event location approximations.

The simulation models are “bouncing ball”, “filament pendulum” and “rotor-stator
contact” models. The bouncing ball is a hybrid system of ODEs. The rotor-stator contact
model is a hybrid system of semi-explicit DAEs and the filament pendulum is a variable
structure system of semi-explicit DAEs.

The simulations via two methods reformulation of solver formula and reformulation of
solver formula for root-finding method were realized by algorithm developments and coding
of the entire solver systems; whereas Henon’s method was realized by developing the

algorithms on embedded ODE45 of Matlab.

The simulation results show that the root-finding method composed with implicit
trapezoidal solver has a relatively low local error for approximated magnitude of event
location in hybrid semi-explicit DAEs. The root-finding Method has higher programming
costs.

Henon’s method is one with certain flexibility regarding coupling for embedded solver
systems.

The simulation results and relative local errors of approximated event variables are listed
in various tables. The results are comparable with the results given by Matlab using adaptive

zero-crossing and without zero-crossing.
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7 Appendices

A1: Separate Simulations of Hybrid Models in Different Frames

A1.1: Simulation of a Hybrid Model of Filament Pendlum

The different structures of a hybrid system can be simulated separately. In the following

figure, the pendulum simulation model is shown.

L 1 Jenigol 1 Jon >Si,14>[>_>0_75 9.80665 S » b
S S

Integrator?  Integrator3 Trigonometric L2 M 92 1/J1 4

wsz]},l_rc‘!gttIOH'I >l 007

Trigonometric L6 —}@l PendulumModel
Function5

—>
cos| > XY Graph

Trigonometric L5

Function6

| cos| 9.80665 W FF <0 -—>

Trigonometric 3 M CompareStop Simulation1

Function7 9 To Zero

L WP —p{ 0.75 >{1
Math L7
Function2 M

Figure 32: Pendulum Simulation Model in Simulink

This model runs as long as the pendulum attraction force is greater or equal to zero. If the

tension force decreases below zero F, (t)< 0, then the simulation stops.

Before starting the simulation of the free-fall model, its variables have to be initialized

manually by the computed initialization variables via the pendulum model. The free-fall

model is shown as follows:
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O]
—
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Figure 33: Free-Fall Simulation Model in Simulink

The coordinates of the pendulum position, after a completed free-fall simulation,
deflects from its equilibrium point, so the values of the last free-fall coordinates can be used
to reinitialize the pendulum model, and the pendulum simulation would restart.

Due to the automation of the event handling the two models can be simulated
automatically after each other. In this case, at the state event, the transient state vector and the
location of the independent variable are approximated and the initializations are carried out
automatically.

The following figures show the three separate simulation results of the variable structure
filament pendulum model. Figure 34 shows the pendulum trajectory from the start until the
free-fall event. Figure 35 shows the free-fall simulation when the pendulum deflects from its

orbit.
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Pendulum  Trajectory until Event F<0 Fall Trajectory
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Figure 35: Free-Fall after Swinging
Figure 34: Pendulum Swinging after Start

During the free-fall, when the pendulum achieves its maximum radius, then the
simulation must be stopped and the pendulum swinging simulation should be started. The

result of this simulation is illustrated in Figure 36.

Penduum  Trajectory  until Equilbrium  Point

08 06 04 02 0 02 04 08
%

Figure 36: Pendulum Swinging after Free-Fall
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A2: Rotor-Stator DAEs transformed into ODEs

A2.1:

The transformation of the algebraic equation (149) to an ODE is realized by the chain rule.

Sy)=e )
OX o, d O o, d
o o ) 3 0 O O ) )
OX o, d OX ey, d
O O )+ 2 o O O ) )
(162)
The derivative of algebraic equation (149) is shown by
g.(0)=c )= lxs()+x ))(X (t ) () + (63 () = (x5 (1) + yo &S ()= %, (1))
V0= (e 0) 20 + 6, ()= 6, ()3, )
(163)

with substituting of x,(1), x,(1), x,(1) and x,(1) with their equivalents the following ODE

results

(0= s )+ X Mo 0= g 0) 5 0)= s 1)+ ()= x4 (0) |
(Vo= G50+ x, )7+ (s (0= 6, () 3)F

5’1(1):C

(164)
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A2.2:

The chain rule on algebraic equation (150) is demonstrated by (165).

a}’2(1)

=t S0 O 0, 0,005 22 o, O, 0 1.0
ox d ox d

+ 8x5 (Xl(") X3(l),X5(l) X7(1))axs(l)+ 8X7 (Xl(") Xs(‘) X5(1)5X7(‘))a 7(1)]

(165)

o) et B0 05,0+, 0 (5,03, 03,0
(0 0= G0 0, (03,
+ce, | (%,(1)—%,(1))cos| atan % ()=(x: () +y,) +(%, (1)— %, (1))sin| atan %, ()= (x; () +y,)
“mi( ()= 5.00) {t (xml)—(xs(l)m)ﬁ & 0)-%0) {t (xml)—(xs(l)m)B

(166)

The derivatives of %,(1), X,(1), %,(1) and x,(1) can be replaced by their equivalents
but the derivatives of %,(1), %,(1), x,(1) and %,(1) have hybrid equations, thus, they are

replaced in (166) with their equivalents for two cases qc(t): 0 according to ODEs (142) and
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qc(L):l according to ODEs (143). Therefore, the ODE (166) should be used once before

contacting for qc(l) =0

V, (1) =ck, (Xl (1) - (Xs (1) + X ))(Xz (1) - X6(1)) + (X3 (1) - (X7 (1) +Y, ))(X4 (1) — X, (1))
(V06,0660 5, 0, ()=, ()3, ) )

VR
kel w><
==
~— | —
I I
NS
elilel

N
- =
~——
+ |+
o <
=4 =}
~——
N
N——

+ce, 2—0; {((— (2CrArx2 (1)+ A2, (1)) +(2n)° Ecos(2m))+ (2CSASX6 (1)+ A2x, (1)))cos(atan

1

)_
)_

AU

2 A x 0+ A2, () + (20 Esm(zma)+(2csAsXx<1>+Af’“(‘)))““(m“(?g

(167)

and once more in contact case for q_(1)=1 as follows
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=ck,

5’2(1)

(V66,0 G 0 )+, (0065, 0+, ) -1)

+20,A, {(x2 ()-x, (1))cos(atan( z3 8:87 8:3{’0;}} +(x, (1) x, (l))Sin(atan(): 8: E?((I)):)}(’O;JB

o e 22 |

2
h
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A2.3:

Form (169) gives the components of the event vector function, for a transition from rotor-

stator contact case to noncontact case. In this system, the extended variable X, , must be

X3k ( Xt yO)
Xk (Xs,k + Xo)

substitute with its equivalent ie —atan( j In simulation, form (169) is

used according to Newton’s root-finding method (38).

+A; [ (2@ A x2J . +A2 xlJ 1) (Zn)zEcos(Zm ) ( Al X ext, L +20,A, X, _ 1X—cos(Aexwfl)+ p.sin(f(ext}’jfl))
(2@ A X Xy tA xlk) Ecos(Zﬂ:(J )) (Azi ok +20,A,X, " kX— cos( " k)+ usin(iexthk))]

~ % L ) ~ AT,
AL xk Yok :_X3,k+x3,j—1+72 (X4’H+X4’k)

><lZ

)_ _;{4,1( + 5\(4,j—1
[ (2@ A x4J . +A2 x3J 1) (Zn)zEsin(ng_l)+( i T 20,A X 0 e X— sin(f(extpjfl)—p.cos(f(exw;1 ))

A X+ Ar;{lk )+ (Zn) Esin(21t(1j_1 + Al’k ))+ (Aﬁxext“k + 2€hAh§extz,k X— sin(iextpk )— p.cos(impk ))]

_ (2
A~ ~ - A, (. ~

h; (Atk: Xy Y2,k): X5 T X550t T(X6,j—l + X6,k)

ﬁ6(A?k > ik’ ?2,k ): _i6,k + 5\(6,j—1 + % [_ (2€5As§(6,j4 + Ajﬁs,j—l )_ (Afxiextl,ﬂ + 2ChAh§(ext2,j4 X_ Cos(ﬁextz,yl )+ ”’Sin(ﬁext;,j—l ))
- (2€5As§6,k + Aiis,k )_ (Af\iextl,k + 2ChAh;{ext2,k X_ Cos(iextg,k )+ ”’Sin(;{ext;,k ))]

f o~ o - . AT, (. -

h7(Atk, X,> Y2,k): Xt X5+ T’(x&f1 + X&k)

flx (AEU §k7 ?Z,k ): _ix,k + ),\(x,j—l + % [_ (2C5As§(x,j4 + Asi\(lj—l )_ (Afx)zextl,j—l + 2ChAh§(ext2,j4 X_ sin(f( exty,j-1 )_ l’lcos(ﬁextz,j—l ))
- (2€5As§8,k + Ajilk )_ (Akzxiextl,k + 2ChAh§extz,k X_ Sin(iextz,k )_ ”’cos(iext},k ))]

hy1 (ATk7§k7?2,k): C(\/(;{l,k - (is,k + Xo))2 + (;{3,1( - (;{7,1( +Y ))2 - 1)

hy2 (ATki gkﬂylk ): _?2,k + khc(\/(;{l,k - (is,k + Xo))2 + (;{3,1( - (;{7,k +Y, ))2 - 1)

+cc, % ((i s O )cos(atan(iextbk ))+ (i sk~ X %in(atan(iexthk )))

(169)
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9 Nomenclature

a

> P

(@)

O O O & O

(¢] (¢]

(¢]

=

-

Acceleration

Threshold value
Radial acceleration
Radial acceleration

Tangential acceleration

Interpreted as the dimensionless abbreviation factor of the contact model
Interpreted as the dimensionless abbreviation factor of the rotor

Interpreted as the dimensionless abbreviation factor of the stator

Radial clearance between rotor and stator
Damping constant of ball
Rotor damping coefficient
Stator damping coefficient
Damping coefficient of contact system
Damping coefficient of free-fall equation along x-axis

Damping coefficient of free-fall equation along y-axis
Pendulum damping coefficient

Set of conditional guards

Radial intrusion depth
Dimensionless radial intrusion depth
Domain of a function

Rotor diameter

Error

Eccentricity radial offset of rotor
Event index

Set of arrows of transition topology
Dimensionless value of e

Function

Force
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Switched radial intrusion force
Switched tangential intrusion force
Radial intrusion force

Weight force in radial direction

Weight force in tangential direction

System vector function
Set of the vector functions
Logical value false

Tension force

Fully-implicit DAEs

Gravity acceleration

An algebraic equation

System algebraic equations (algebraic vector equation)
Event function

System event function (event vector function)
Hybrid automaton

Index of state variable involved state event
Interpretation

Interval defined for independent variable
Solver iteration index

Moment of inertia

Jacobian matrix

Iteration index of root-finding method
Stiffness coefficient of contact model
Index

Set of discrete states

Length of pendulum

Mass of ball

Mass of pendulum

Mass of rotor

Mass of stator
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Moment of the gravitational force

Damping moment

Dimension of state vector

Field of natural number

Set of modification parameters of hybrid automaton
Event plane, intersection plane with state variable

Parameter vector

Switching variable

Logical variable

Set of the switching variable

Radius of ball

Distance between centre of coordinate system and centre of pendulum

Relative radial distance between rotor and stator

Reset map

Dimensionless value of

Field of real numbers

Arc length of angle ¢

Discrete state, node, location

Sy/Asy Set of synchronous or asynchronous variables for parallel processes

t

ﬂt—k

c c o Q=

<

Independent variable

Time

Logical value true

Input vector

Subset or subspace as a domain of a function

Set of input event variables

Set of the input continuous variables
Set of input discrete time state variables

Ball velocity

Rotor-stator tangential impact velocity
Pendulum velocity in free-fall position along y-axis

Pendulum velocity in free-fall position along x-axis

121



= < < <

Yo

Ye

<
7]

o>-< =< <

Set of output event variables
Set of output continuous time state variables

Set of output discrete time state variables
Weight
State variable

State variable which is involved state event with index i
Offset between rotor and stator in x-direction
Position of rotor in x-direction
Position of stator in x-direction
Relative deflection between rotor and stator in x-direction
Continuous time state vector

Derivative of X with respect to independent variable time t
Finite set of continuous states

Set of the initial states

Dimensionless value of offset x, along x -axis
Extended variable in rotor-stator model

Pendulum coordinate axis

Dimensionless value of rotor position x, along x-axis
Dimensionless value of stator position x_ along x-axis
Dimensionless value of relative deflection x  along x-axis
Algebraic variable
Ball altitude

Position on y-axis

Offset between rotor and stator along y-axis

Position of rotor along y-axis

Position of stator along y-axis

Relative deflection between rotor and stator on y-axis
Algebraic variable vector

Set of the algebraic variables

Dimensionless value of offset y, along y-axis
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Dimensionless value of rotor position y, along y-axis
Dimensionless value of stator position y, along y-axis
Dimensionless value of relative deflection y  along y-axis

Discrete time state vector
Set of the discrete state variables

Elasticity constant of the ball

Auxiliary algebraic variable

Auxiliary algebraic variable vector

Auxiliary function in Henon’s method

Auxiliary variable

Step-size

Step-size at the state event (event step-size)

Upper tolerance value

Damping ratio of dimensionless equation of rotor motion

Damping ratio of dimensionless equation of stator motion

Damping ratio of dimensionless contact model equation
Auxiliary function

Auxiliary vector function

Independent variable in dimensionless system
Tangent ratio

Friction coefficient of impact model

Ratio of circle circumference to its diameter (pi)
Auxiliary independent variable

Contact angle
Pendulum angle
Auxiliary variable
Auxiliary state vector
Angular velocity
Pendulum angular velocity
Interpreted as dimensionless natural frequency of rotor

Interpreted as dimensionless natural frequency of stator
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Q, Interpreted as dimensionless natural frequency of contact model

( )e Event variable, variable magnitude at an event, threshold value
First derivative with respect to independent variable t

Second derivative with respect to independent variable t

Second derivation with respect to independent variable

()
()
( ) First derivation with respect to independent variable 1
()
( ) Initial value

( ) Predicted value

A

( ) Approximated value

.

( ) Vector
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