
1

D I S S E R T A T I O N

State Event Modelling and State Event Handling

in System Simulation –

Alternative Methods,

Comparison and Benchmarks

ausgef�hrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Felix Breitenecker
E101

Institute f�r Analysis und Scientific Computing

eingereicht an der Technischen Universit�t Wien
Fakult�t f�r Mathematik und Geoinformation

von

Dipl.-Ing. Rouzbeh Karim
Matrikelnummer: 9427229

W�hringerstrasse 202/4; 1180 Wien

Wien, am 04 Mai 2016 _____________________

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

2

In memory of my father

George Karim.

3

Abstract

This thesis deals with analysis, comparison and some further developments of methods for

state event determination in hybrid and variable-structure systems – from view of

mathematics, and from view of case studies in mechatronics.

The thesis first reviews ‘classical’ methods for state event location, where a zero search for

the event superimposes the ODE solver.

In the following the author concentrates on generic methods for state event location,

which integrate the zero search into the ODE solver algorithm. Here, the approximation of the

state vector at an event is based on the step-size calculation until the event, using a

reformulation of the ODE solver. A ‘direct’ approach reformulates an explicit ODE solver by

integration of the zero search for the step-size until the event, resulting in an ‘extended’ zero

search, an implicit algorithm. The thesis therefore concentrates on an ‘implicit’ generic

approach, which integrates the zero search onto an implicit ODE solver. This strategy

modifies the zero search for the implicit solver algorithm appropriately by integration the zero

search for the step-size until the event.

The theoretical part of the thesis continues with event location in DAE systems. For

hybrid systems, described by semi-explicit DAEs, the author presents an extended strategy:

the zero search for the step-size until the event is implemented into the multidimensional zero

search for the algebraic states and for the system states. This method can also be used for

fully-implicit systems, after index reduction of the system.

The last part of the theoretical part of the thesis analyses an alternative method for

state event location, the Henon method. There, independent variable and one dependent

variable are ‘exchanged’, so that no zero search for the event location is necessary, but the

system becomes (much) more complicated.

The practical part of the theses analyses the compared and developed strategies for

event location with three case studies from mechatronics: bouncing ball (hybrid ODE system),

filament pendulum (DAE system with variable structure), and rotor – stator dynamics (hybrid

DAE system).

4

Kurzfassung

Die Dissertation befasst sich mit Analyse, Vergleich und teilweiser Weiterentwicklung von

Methoden zur Bestimmung von Zustandsvektoren bei Zustandsereignissen in einem hybriden

System bzw. in einem System mit variabler Struktur – aus mathematisch-numerischer Sicht,

und aus Sicht von mechatronischen Fallstudien.

Die Arbeit diskutiert zun�chst einige „klassische“ Methoden zur Approximation des

Zustandsvektors bei einem Ereignis: ein dem ODE/DAE – Solver �bergelagertes Nullstellen-

verfahren versucht die Schrittweite bis zum Ereignis zu approximieren.

Diese klassischen Methoden, bei fast allen Systemsimulatoren im Einsatz, sind an sich

nicht generisch und teilweise ineffizient. Daher entwickelt, analysiert und diskutiert der Autor

„generische“ Methoden, die die Nullstellensuche zur Ereignisbestimmung mit dem ODE –

Solver verbinden. Die Approximation eines Zustandsvektors bei einem Zustandsereignis

basiert dabei auf der Berechnung der Schrittweite bis zum Ereignis aus einem reformulierten

ODE Solver. Ein erster Ansatz ist eine Reformulierung eines expliziten Solvers durch

Integration der Nullstellensuche, was zum einem „erweiterten“ Nullstellenproblem und damit

zu einem impliziten Algorithmus f�hrt.

In der Folge besch�ftigt sich die Arbeit daher auch mit der Reformulierung eines

impliziten Solvers durch Integration der Nullstellensuche. Diese Vorgangsweise beh�lt die

numerischen Vorteile des impliziten Solvers bei, und die Nullstellensuche des impliziten

Solvers braucht nur „geeignet“ modifiziert zu werden. Die Arbeit entwickelt und vergleicht

f�r diese Strategie verschiedene Vorgangsweisen f�r die Approximation von Schrittweite und

Zustandsvektor.

Der theoretische Teil der Arbeit schlie�t dann die Betrachtung von DAE-Systemen mit

Zustandsereignissen an. F�r hybride Systeme, die von semi-expliziten DAEs beschrieben

werden, kann die Strategie der Erweiterung eines impliziten ODE - Solvers erfolgreich

fortgesetzt werden. Bei voll-impliziten DAE-Systemen kann nach Indexreduktion dieselbe

Strategie verwendet werden.

Der theoretische Teil der Arbeit schlie�t mit der Analyse und Bewertung einer

alternativen Methode ab. Diese nach dem Enwickler Henon - Methode genannte

Vorgangsweise vertauscht die unabh�ngige mit der das Zustandsereignis bestimmenden

abh�ngigen Variablen und ben�tigt damit kein Nullstellenverfahren zur Bestimmung des

Zustandsvektors bei einem Ereignis, sie arbeitet aber mit einem �blicherweise (wesentlich)

komplizierterem ODE-System..

5

Der praktische Teil der Arbeit untersucht die verglichenen und weiterentwickelten

Methoden an drei mechtronischen Fallstudien: Bouncing Ball (hybride ODE-Beschreibung),

Filament Pendulum (DAE-System mit variabler Struktur), und Rotor-Stator – Dynamik

(hybride DAE-Beschreibung) und versucht einen Vergleich und eine Bewertung der

Methoden aus Anwendungssicht.

6

Acknowledgments

Many thanks to my mother Ahue my sister Maryam and brother Behzad Karim who have

motivated and supported me.

Many thanks to my supervisor Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Felix Breitenecker for his

mentoring, advice and management, consultancy and his frankness, Ao. Univ. Prof. Dipl.-Ing.

Dr. techn. Horst Ecker for his supervision, Stefanie Winkler for the additional proofreading

and recommendations as well as, Dipl.-Ing. Dipl.-Ing Dr.techn. BSc. Andreas K�rner, Dipl.-

Ing. BSc. Irene Hafner and colleagues.

7

Table of Contents
1 Introduction ..8

1.1 Hybrid and Variable Structure Systems ..8
1.2 Events in Hybrid Systems...16
1.3 Approximation Procedure of Event Location in Hybrid System ..19

2 State Event Handling in System of ODEs ...21
2.1 Event Location Approximation via Reformulation of Solver Formula...............................21

2.1.1 Reformulation of Explicit Solver Formula ...21
2.1.2 Reformulation of Implicit Solver Formula ...24

2.2 Event Location Approximation via Reformulation of Solver Formula for Root-Finding
Methods ...26

2.2.1 Reformulation of Explicit Solver Formula for Root-Finding Methods26
2.2.2 Reformulation of Implicit Solver Formula for Root-Finding Methods27

3 State Event Handling in System of DAEs ...31
3.1 Index-Reduction...31
3.2 Event Location Approximation in DAEs Transformed to System of ODEs33
3.3 Event Location Approximation in System of Semi-Explicit DAEs....................................34

3.3.1 Event Location of Algebraic Variable..34
3.3.2 Event Location of State Variable ...37

4 Henon’s Method ...40
4.1 Henon’s Method in System of ODEs ..40
4.2 Henon’s Method in System of Semi-Explicit DAEs..44

5 Implementations of Event Location Approximation Methods in Hybrid Systems of ODEs
and DAEs...49

5.1 Bouncing Ball with Hybrid System of ODEs ..49
5.1.1 Model Description...49
5.1.2 Reformulation of Explicit Euler’s Formula..52
5.1.3 Reformulation of Implicit Trapezodial Formula for Newton’s Method53
5.1.4 Henon’s Method..53
5.1.5 Simulation Comparisions ..54

5.2 Filament Pendulum with Variable Structure System of DAEs...58
5.2.1 Model Description...58
5.2.2 Reformulation of Explicit Euler’s Formula..66
5.2.3 Reformulation of Implicit Trapezodial Formula for Newton’s Method68
5.2.4 Henon’s Method..69
5.2.5 Simulation Comparisions ..71

5.3 Rotor and Stator with Hybrid System of DAEs...75
5.3.1 Model Description...75
5.3.2 Reformulation of Explicit Euler’s Formula..94
5.3.3 Reformulation of Implicit Trapezodial Formula for Newton’s Method97
5.3.4 Henon’s Method..98
5.3.5 Simulation Comparisions ..102

6 Conclusion..108
7 Appendices ...110
8 List of Figures...118
9 Nomenclature ...119
10 References ..125
11 Curriculum Vitae ..136

8

1 Introduction

This chapter introduces a basic concept of variable structure systems, hybrid systems, state

events and approximation procedure of an event location in hybrid or variable structure

systems.

1.1 Hybrid and Variable Structure Systems

A variable structure system1 contains of different sub systems with particular mapping,

behaviours, characteristics and/or dimensions. The sub systems are activated or deactivated

via time or state events. A variable structure system can be considered as a composite system

comprising continuous-time combined with the discrete-time systems which are known as

“hybrid systems”. The switching system, which triggers the structure transitions, is considered

as a discrete time system whereas the selectable systems are regarded as continuous time

systems. A switching system can be defined by conditional expressions2 demonstrated as

discontinuity in system behaviour or it is established as an event indicator to control the

system modification and system properties. Figure 1 shows a variable structure system with

different selectable discrete and continuous time systems of ODEs and DAEs with event

detection- and handling units and with its endogenous and exogenous components for

connecting to other systems.

1 The change in behavior of a function can be determined via change in function mapping yx:f DD  . The
mapping of the various functions of systems of ODEs or DAEs may be defined by the alteration of function
relationship, dimensions and spaces. These are defined as “variable structure system”.
2 Constraint, algebraic equations or inequalities can be specified by conditional expressions.

9

Figure 1: A Variable Structure System with Switching System and Interfaces

A variable structure system can be modelled by a hybrid automaton. A hybrid

automaton [JEK02] [RAH01] H is a collection of different sets as follows

  C,R,Q,P,F,,XZ,Y,X,E,D,L,H 0

(1)

in which,

 L is a finite set of discrete states, modes, locations or nodes. A state is activated or

deactivated according to the appropriate conditional expressions, which is shown on

an arrow of the appropriate automaton diagram.

 D contains the domains of various state spaces on various discrete states or modes.

 E is a collection of arrows, whereas in a hybrid automata, the arrows can be

considered as discrete transitions.

 X presents a finite set of continuous-time state variables.

 Y presents a finite set of algebraic variables.

10

 Z presents a finite set of discrete-time state variables.

 0X shows a set of initial states.

 F is a set of vector functions.

 P indicates a set of modification parameter vectors.

 R is a reset map. This is a map, which describes the actions at state transitions. These

actions are the initialization of the state variables, activation of the other systems,

changing the parameters etc.

 C is a set of conditions or guards. They can be shown on the edges between the

different nodes of the automaton graph of the hybrid model.

 Q is defined as a set of switching variables. The validity of the conditional functions

and equations is defined by the elements of the set C . They can be quantified e.g. by

logical, integer or Boolean variables which can be considered as switching variables.

The disabling or enabling of the state transitions can be defined by the switching

variables Q or directly by guards C .

  is finite set of variable flags, logical variables or signals related to the parallel

switching of hybrid systems. They can also be interpreted as the events of the

synchronous or asynchronous transitions on a parallel hybrid automata.

In a network of the hybrid systems, a system may interact with other hybrid systems and

vice versa. The interactions of sub-systems and components of different blocks require input

and output connections or ports. The inputs of the system in Figure 1 are sets of the

continuous-time variables xU , discrete-time variables zU and event variables qU . These can

be also collected in a hybrid automata as follows

  C,R,Q,P,F,,XZ,Y,X,E,D,L,,U,U,UH 0qzx .

(2)

The output variables can be affected the external systems. These variables are the sets of

output continuous-, discrete time- and/or output event variables xV , zV and qV . With these

sets, the model collection can be expanded as follows:

 qzx0qzx V,V,V,C,R,Q,P,F,,XZ,Y,X,E,D,L,,U,U,UH  .

(3)

11

The state graph is a graphical representation of an automaton describing variable

structure systems. In the state graph, the arrows or edges can be denoted as events. In

addition, certain graph outputs and other actions, such as triggers, initialization or resets, can

be shown using arrows. Each system of ODEs or DAEs can be marked out with the

corresponding node. A transition from one node to another can be interpreted as a sign of a

system switching and change in system definition, properties, and structure.

The following forms show a system of DAEs of a variable structure system

            tp,tz,tu,ty,txt,ftx 
 

(4)

           0tp,tz,tu,ty,txt,g




(5)

where x represents a continuous time state vector and x is its derivative, y is an algebraic

variable vector, u is an input or control vector and t stands for the time3. f


demonstrates a

system vector function, g


shows an algebraic vector equation and z is a discrete time state

vector. Vector p


indicates the system parameters. The event function is represented by h as

follows:

          tp,tz,tu,ty,txh


.

(6)

Figure 2 shows an example of a state graph with discrete states 1s and 2s . The state

transition can be controlled by an event function. The system transitions in Figure 2 can be

described by a logical variable

  
   0txh

0txh
:








 



F
T

q

3 The variable t is the independent variable. Hence the dependent variables are shown with the independent
variable t . The structure of system can be changed and it depends on magnitudes of the outputs of the switching
system in time t . The other interpretation of using index t in system indicates that the variables, systems or
initial values may be valid in particular time slot and there is a mechanism, which causes a change in system, e.g.
change in system structure, initial values and activating or deactivating systems etc.

12

and the discrete states can be described by the following logical expression:

                           .txftxtxftxtxftxtxftx 22111122






  ssqssq

In Figure 2, the event indicator q is true then a transition to discrete state 2s is done and if q

is false a transition to 1s occurs. The arrows serve the system transitions when the transition

conditions are fulfilled. The transitions described by a reset map can be simplified and

optimized by a transient truth table and Karnaugh map4. The event function in Figure 2 is

defined as RD:h ,   n
21x R DDD , Nn and it is coupled with the systems

    txftx i


  with mapping n
ii :f RD


,  2,1i and solution DI  R:x t

 , tt I .

1s 2s
    txftx 1


      txftx 2


 

   0txh 


   0txh 


0x:x 


Figure 2: State Graph of Hybrid System

Figure 3 depicts an example of a hybrid automaton. This model can be considered as a

hybrid system with finite or infinite system transition sequences. The system transition

depends on the definitions of the conditional expression of the event function   p,txh
 as

well as definitions of state spaces, mapping of system functions and simulation time. In

Figure 3, the system parameter vector  21120 p,p,pPp


 can be changed in each transition.

The modifications of the system parameters in Figure 3 affect the structures of the differential

equations and event function.

4 A transient truth table gives a different point of view e.g. for building a state machine with logical structure
transitions. A transient truth table contains all combinations of conditional expressions, input and output
variables, including the variable values of the former step. Also, the labels of present and past nodes can be
given in the tables.

13

0p:p 
 12p:p 



21p:p 


0x:x 


1s 2s

    p,txftx 
      p,txftx 

 

   0p,txh 


   0p,txh 


Figure 3: Parameter Modifications in Hybrid System

In Figure 4 the algebraic vector equation5     ty,txg i


is coupled with differential

equation       ty,txftx i


  in which n
yiii :f RDD


, y

i

n
yii :g RDD

,  1,2i . Here

  n
21x R DDD is defined as a state vector and   y

21

n
yyyy R DDD as a

vector of algebraic variables with constant dimensions Nynn, whereas the solutions are

DI t:x and yt:y DI 
 ,  RtI . In this figure, the vector functions and the algebraic

vector equations change in each transition. The event function     ty,txh  with mapping

R y:h DD is coupled with appropriate differential equations and is defined on each

arrow by a conditional expression.

The event function     ty,txh  in Figure 4 can be expressed by a topological space

 h,TR with topology

                      0ty,txh|ty,txh,0ty,txh|ty,txh,,h 
RT

(7)

on R . The zero-locus of an event function     ty,txh  in time domain is defined by a set eD .

            0ty,txh|y,xt,:y,x,t:y,x,t
TTT

e
TT

e
T
ee

TT
e

T
ee 

 D

(8)

5 It is assumed that the algebraic vector equation contains yn components. Each component has many solutions.

The graph of an equation can be shown by its solutions in ynn RR  coordinate system. An algebraic equation
is represented implicitly by mapping

iyi DD  into R and it may transform in explicit form.

14

An event vector  TT
e

T
ee y,x,t  shows a point in space ynn RRR  and it is an element of

zero-locus set eD .

Zero location of an event function can be considered as an event. The event function at

zero location can be seen as an equation called event equation. The root of an event equation

     0ty,txh 
 is demonstrated in vector form by

      Te
T

e
TTT

e
T
e ty,tx:y,x 

 .

The vector  TT
e

T
e y,x  which shows the magnitudes of dependent variables at an event is named

transient vector6.

0x:x 


1s 2s

     0ty,txh 


      ty,txftx 1


        ty,txftx 2


 

     0ty,txg1


      0ty,txg2




     0ty,txh 


Figure 4: Modifications of DAEs in Hybrid System

Figure 5 is another illustration of a hybrid system. The state graph for this hybrid

automaton is given for intervals  Rtt I for DAE solutions

iti :x DI 
 ,

iyti :y DI 


6
ex is transient state vector and ey is transient algebraic variable vector. A transient vector is considered as an

initial vector for the initialization of the next system of ODEs or DAEs at the switching event in hybrid or
variable structure systems.

15

with different dimensions N
ii pyi n,n,n , different state vectors in

iix RD , different

algebraic variable vectors iy

i

n
yiy RD different parameter vectors ip

i

n
pip RD

different mapping of the system vector functions

      iiiii p,ty,txftx


 , i

ii

n
pyii :f R DDD



and algebraic vector equations

     0p,ty,txg iiii

  , iy

ii

n
pyii :g R DDD

in each node as well as different event functions

    iiii p,ty,txh
 , R

ii pyii :h DDD

on each edge. For auxiliary index j with   ji,1,2ji,  there are as well different

initialization state vectors

    jjjjii p,ty,txf:x




and different initialization parameter vectors

    ty,txθ:p jjjii


 .

Each transition is accomplished at a different point of time and the hybrid system is initialized

with a different initialization vector with different dimensions. Hence, this model is

considered as a variable structure system with a total structure change in each transition. The

magnitudes of the different state functions can vary and influence the system structure and

therefore determine the dynamic of the system.

16

      11111 p,ty,txftx


 

      22222 p,ty,txftx 
 

01 x:x 


    222211 p,ty,txf:x 


    111122 p,ty,txf:x




     0p,ty,txg 1111




     0p,ty,txh 1111 


     0p,ty,txg 2222




     0p,ty,txh 2222 


    ty,txθ:p 22211




    ty,txθ:p 11122




1s

2s

01 p:p 


Figure 5: Total Structure Modification in Hybrid System

The designed state spaces of the hybrid system can run as sequential states or XOR

decomposition. In this case, only one state space can be activated at any time. If the switching

conditions of the hybrid system in a XOR mode are triggered to pass to several nodes at the

same time, the hybrid system can lead into an undefined state. Then the system could not

make a decision which transition structure should be used.

In some cases, hybrid automata may be treated as parallel or AND decomposition e.g.

in a multithread system.

1.2 Events in Hybrid Systems

In a hybrid system, an event indicates a transition to a system with the various characteristics

and behaviours as previous system. An event may be associated with change in mapping and

structures of the system of vector function, equations, constraints, inputs, outputs, dimensions,

variables, initial values and parameters.

An event can be classified as a state event or a time event. The events can be divided into two

categories which are random and deterministic events7. An event can be modelled via system

signals, magnitudes, specifications and characteristics which are associated with the event.

For the definition of limitations of an event, conditional operators can be applied. In the

variable structure system, an event expression can contain a time condition. Also a system

7 The simulation models in chapter 5 indicate the deterministic state events.

17

switching by a conditional expression dependent on time can be defined. This dependency

indicates a time event. An event condition with a time variable comparison points to a time

event. For example in ODEs     txftx i ,   N m,0,1,i  a time event in serial

consecutive systems can be expressed by

                   txftxtttxftxtt:εtε,-tt1i ie1-ietee iiii
 I

(9)

and in a parallel systems by

                  txftxtttxftxtt:εtε,-tt1i ie1-ietee iiii
 I

in which the ODE solution DI t:x is defined on interval


m

0i
tt i



 II with   


R
1iii eet t,tI

and the ODE mapping function is

iii :f RD  , R


m

0i
ix DD , R



m

0i
iRR .

Hence, a time event happens if the time variable t crosses the time limit

   
i1-iii eeee tt:0it:t  tI .

If a system switching is defined by an event expression dependent on state variables,

then the switching occurrence can be interpreted as a state event. For specification of a state

event, the appropriate function can be expressed with logical, relational, conditional and

arithmetical operators (e.g. and, or, not, greater than, less than, equal, if, else) or combinations

of these operators. The output of the switching system can be demonstrated by mapping the

18

switching expression onto other auxiliary variable e.g. in form of a logical, integer or Boolean

variable which is named here switching variable8.

In a consecutive switching system with Nm switched ODEs

    txftx i , 
m

1i
ix



 D

a state event

 
 ee atx  ,  m,1,2,

is specified as intersection of threshold value

eax  ,   ieeee m21
a,,a,aa D 



with state variable  tx at
ett 

    
m210m21 eeeeteeeee ttttt,,t,tt:t  


I

described by sum of the  integrals.

              
















1i

t

t
i0

t

t

t

t
2

t

t
10e

ie

1-ie

e

1e

2e

1e

1e

0e

dttxfxdttxfdttxfdttxfxtx

(10)

8 An event function   txh 
can be associated with an additional variable as a state event indicator. E.g. the

logical expressions in page 12 quantify the state event occurrences using logical variable.

19

1.3 Approximation Procedure of Event Location in Hybrid System

In all the examples shown in Figures 2, 3, 4, 5, before a transition from discrete state 1s to 2s

and vice versa, the transient state vector has to be computed. The transition vector is used to

avoid imprecise interruption of current data processing at the moment of state transition.

Figure 6 shows a flowchart of a computer program for computing the state vector of a

hybrid model using an ODE solver system with fixed step-size. The algorithm contains an

approximation system of the transient state vector at the state event in one direction from the

first system of ODEs to the second ODEs. In this flowchart, the procedures are shown in the

rectangles and the decisions are shown in parallelograms. Top of the flowchart shows the first

procedure for variable initializations. In each iteration, the first parallelogram checks, whether

the event happens or not. At first, if the event is not captured, then the right branch of

algorithm runs, thus the first solver algorithm runs. In each repetition loop, the iteration index

and the simulation time increase. Then the simulation time is checked each time passing the

last decision block whether it has reached its limit or not. If the simulation time is not finished

then it proceeds one more time and the algorithm repeats the computation of the

approximation of the state vector of the first system. Hence, this process continues until an

event is detected by the first decision block. If an event is captured, then the last step-size

before the state event is predicted in the middle block using an iterative algorithm. With this

prediction, it is possible to approximate the transient state vector. Now, the ODE solver of the

second model can be initialized with the approximated transient state vector. After this

initialization, the algorithm runs approximations of the state vector of the next system using

appropriate ODE solver. The flowchart shows a transition in one direction. Hence, the

simulation of the second system continues until the simulation time is up.

20

Figure 6: Approximation Procedure of Event Location in Hybrid System

21

2 State Event Handling in System of ODEs
This chapter presents the state event handling via solving reformulated ODE solver equation

regarding the event step-size. First, the magnitude of the independent variable at the state

event is computed. Then the transient initial conditions9 can be approximated by

recompilation of the computed magnitudes in the solver algorithm at the state event.

Subchapter 2.1 provides a solution by reformulation solver equations and 2.2 achieves a

solution via applying the root-finding methods on nonlinear systems of equations to the

system of reformulated solver formulas for approximation of transient initial conditions.

2.1 Event Location Approximation via Reformulation of Solver
Formula

Subchapters 2.1.1 and 2.1.2 present the approximation methods of transient states using

reformulated explicit and implicit solver formulas.

2.1.1 Reformulation of Explicit Solver Formula

The idea behind this method is to solve the reformulated explicit solver equation10, which

includes computing the step-size at the state event using the old approximated values and the

computed step-size to approximate the transient state vector.

The system of ODEs is considered as a non-autonomous continuous system11

    txt,ftx 
  with the state vector nx RD

. The system of ODEs     txt,ftx 
  is

defined by the function n
t:f RDI


with solution DI t:x . There is an ODE

component     txt,ftx ii


  involved in state events in which   DUU  Riii :x ,

 n,1,2,i  , Nn exists. The differential equation     txt,ftx ii


  contains the mapping

9 Transient magnitudes and/or transient state vector can be considered as transient initial conditions in a hybrid
system. These magnitudes are computed after event detection and applied at the event location for initialization
the next switched system.
10 After determination of an event in hybrid or variable structure systems, the solver system switches to a system
of “event location approximation” (Figure 6). The approximation system considers the reformulated solver
formula as an equation and handles it as such equation. The equation is solved for the event step-size and then
the computed event step-size is used to approximate transient state vector. Hence, the term “solver equation” is
given for the approximation system of transient state vector at switching event.
11 For simplification of system description, an input vector is not given in system definition. The methodology of
state event handling with an input vector is the same, but the input variables and their magnitudes should be
considered in der calculation.

22

RDI ti :f with the differentiable solution iti :x UI  for the finite interval

   Rt,t0tI , tt I .

The Euler’s solver with step-size t for approximation of the state variable is shown

in the following formula

 1j1ji1ji,ji, x̂,tfΔt x̂x̂  


.

(11)

By setting 1jj ttt  the formula (11) changes to

   1j1ji1jj1ji,ji, x̂,tfttx̂x̂  


.

(12)

For plotting of the approximated state variable ji,x̂ , each computed value ji,x̂ in jt can

be connected to the neighbouring values graphically. If the curve of the discrete time state

variable ji,x̂ crosses the event threshold value ei ax  , then the last value before the event

crossing point can be used to find the location time et . It is assumed that the magnitude of the

discrete time state variable hits exactly the event threshold line ei ax  at step j . Hence,

define eji, a:x  and consider it as an initial value. On the other hand, the value of the

independent variable at the state event is presented by ej t:t  . Hence, the zero crossing of the

event function can be determined by quantifier et using the reformulated initial value

problem as follows

       :0txa:txt,h ie
   














 



 0dttxt,fxa:t
e

1j

t

t
i1ji,ee


.

(13)

It is assumed, that the event function   txt,h  is bijective on a small interval   te1j t,t I and

there et exist, which points to the zero location

  ee tx,th0 


23

thus

0t e  .12

Hence, according to the reformulated initial value problem in (13), the reformulated explicit

Euler’s formula for threshold eji, a:x̂  is

      0x̂,tftt~x̂at~h 1j1ji1je1ji,ee  


.

(14)

The demanded value is et
~ and the other past values 1jt  and 1ji,x  are known, hence, et

~ 13 is

computable from the event expression (14) as follows

 1j1ji

1ji,e
1je x̂,tf

x̂a
tt~







 

(15)

if

  0x̂,tf 1j1ji 


is valid.

12 The preposition 0t e  is a minimalistic local expression of zero location in a hybrid system with

consideration of an event function with a transition between two systems. For a system with domain D , it is
assumed, that the viewpoint of an observer is restricted to its own system. If the observer stands out of D and
observes the universe (big picture), which contains the various parallel systems, with synchronous and/or
asynchronous state events, then instead of 0t e  the preposition 0t:t ee  is considered.
13 Approximating event time et is carried out by preceding explicit solver magnitudes; therefor approximated

value et
~ is relative to magnitude 1jt  and errors of preceding values affect et

~ . In this dissertation, it is assumed
that the local and global errors of solver solutions have infinitesimal magnitudes and the solver solutions track
the exact solutions and do not exceed the fault margin and the computation methods of et

~ are applied to such
systems.

24

After computing of et
~ by formula (15), the transient initial conditions for the system of ODE

solver at the state event can be computed. The approximation of the transient state vector is

given for step-size 1jee tt~t~Δ  using explicit Euler’s solver (16).

 1j1je1je x̂,tft~Δx̂x̂  


(16)

Hence ex̂ is an approximated initial vector at the system-switching event. If the approximated

state vector component ie,x̂ shows a small deviation from the threshold value at the state

event which indicates εax̂ eie,  , then the threshold value ei ax  instead of ie,x̂ can be

applied as initial value for the next system.

2.1.2 Reformulation of Implicit Solver Formula

This part presents an event location approximation concept for an implicit solver of an

autonomous continuous ODE in the form     txftx  with a single variable RDx ,

mapping RD:f and differentiable solution DI  R:x t .

In this subchapter, an implicit Euler’s solver is used for the approximation of the state

variable. The solver formula is given by (17), at which j is the index of the state variable.

 j1jj x~fΔt x̂x̂  

(17)

The solver computations and approximations of the state variable  tx continue until the

event threshold magnitude eax  is crossed.

An event function for an autonomous ODE for threshold value eax  and et is given

using a reformulated initial value problem as follows

       :0txa:txh e   













 



 0dttxfxa:t
e

1j

t

t
1jee .

(18)

25

Hence, the solver formula (17) should be established according to the reformulated initial

value problem (18), which is represented by (19). For computation of the independent

variable t at the state event, the step-size at the state event can be given by 1jee tt~:t~  .

The known previous values 1jx̂  and 1jt  are considered as constant values. In addition, the

current approximated value jx̂ and the predicted state value jx~ are set equal to the threshold

value eax  . Thus the resulting equation for implicit Euler’s solver for computing et is

      0aftt~x̂at~h e1je1jee   .

(19)

If  eaf is not zero and if the solver shows a small error, then the equation (19) can be solved

for et
~ as follows

 e

1je
1je af

x̂a
tt~ 



 .

(20)

Hence, the event location for the implicit Euler’s method on t-axis is computed using formula

(20).

For non-autonomous systems, the functional part of implicit Euler’s solver (17) is

contains the independent variable jt e.g.  jj1jj x~,tfΔt x̂x̂   . In this case the variable jt is

replaced with et
~ and reformulated implicit Euler’s equation can be solved for et

~ . The

equation

    0a,t~ftt~x̂a ee1je1je  

may not be solved analytically. In such cases, the root-finding methods can be applied.

26

2.2 Event Location Approximation via Reformulation of Solver

Formula for Root-Finding Methods

Subchapters 2.2.1 and 2.2.2 introduce the approximation of the transient state vector by

applying the root-finding methods. The reformulation of the explicit solver formula to use the

root-finding method is shown in subchapter 2.2.1. The usage of this method on high order

explicit solvers makes sense regarding system simulations. Subchapter 2.2.2 focuses on the

approximation of the transient state vector via reformulating implicit solver systems using

root-finding methods.

2.2.1 Reformulation of Explicit Solver Formula for Root-Finding
Methods

This subchapter presents a method for approximation of the transient state vector at the state

event for the non-autonomous ODE system     txt,ftx 
  . In the following, the same ODE

system as described in 2.1.1 is used.

The root-finding methods14 compute approximately the magnitude of the independent

variable at the state event by appropriate reformulated explicit solver formula e.g.

reformulated explicit Euler’s method. For a root-finding method, it is assumed, that at the

state event, all past values e.g. 1jx̂ 
 , 1jt  are known as constant values and the present value

ji,x̂ is assumed to be approximately equal to the threshold value eji, ax̂  , which then set

eji, a:x̂  . The computed value of location et is given by the last step-size et
~ at the state

event which is defined as 1jee tt~Δt~  . The event function is defined by the reformulation of

the initial value problem as in axiom (13). The reformulated solver method is considered as an

event function  etĥ  defined by

   1j1jie1ji,ee x̂,tft~Δx̂a:t~Δĥ  


.

(21)

For some ODE solver, the event function  et
~Δĥ can be a nonlinear function. The equation

(22) shows the event function (21) at zero-crossing location, where it may be solved using the

root-finding methods.

14 These are e.g. bisection, fixed-point iteration, Illinois, Newton, Pegasus, regula falsi, secant etc.

27

  0t~Δĥ e 

(22)

Hence, the event equation (22) can be solved approximately by the root-finding methods to

compute the event step-size15
et

~Δ . For finding of the root location, the iterative Newton’s

method with the iteration indicator16 k can be applied as follows

    1ke,

1

1ke,1ke,ke, t~Δĥt~Δĥ
td

dt~Δt~Δ 



 








 .

(23)

In each iteration the magnitudes of  ke,t~Δĥ and  ke,t~Δĥ
td

d


are evaluated using the current

value ke,t~Δ . The transient state vector ex̂ in the system of explicit Euler’s solver (16) can be

approximated using the known previous ODE solver values e.g. 1jt  , 1jx̂ 
 and the computed

event step-size ke,e t~Δ:t~Δ  .

2.2.2 Reformulation of Implicit Solver Formula for Root-Finding

Methods

In this subchapter, a non-autonomous continuous system of the differential equation

    txt,ftx 
  is given with nx RD

, Nn , the mapping n
t:f RDI


and the

solution DI t:x for a finite interval    Rt,t0tI . The state variable

  DUU  Riii :x ,  n1,2,i  is assumed as a variable which is part of the state event.

The ODE of  tx i is considered as the last17 ODE of     txt,ftx 
  . Hence it is assumed that

ni  , thus a vector

15 An event step-size is a solver step-size. By means of an event step-size, concerned initial magnitudes and
using solver algorithm, the event location can be approximated.
16 In this dissertation, the iterations of solver algorithms are specified by the index variable j and the iterations
of the root-finding methods are specified by index k .
17 The state variable, which is involved in state event, can have an arbitrary position in state vector and it may be
handled with methods in chapters 2, 3 and 4. In addition, a change of system axes to an applicable order can be
realized in the rectangular Cartesian coordinate system in cyclic or in anti-cyclic form. Hence, the influence of a
coordinate change on signs of the resulted system should be contemplated.

28

1)-(nχ R
 ,          tx\tx|txtχ n




with 1n  state variables is defined.

Therefore

        T1n21 tχ,,tχ,tχtχ  


and the event function

     0txa:txt,h nen 


are defined with the state variable that is involved in the state event18. It is demonstrated as

the last equation of the reformulated initial value problem in (24).

In axiom (24) the event location is conditioned upon intersection of the state variable

 tx n with en ax  at et in system of equations by the reformulated initial value problem.

    :0txt,h
     


























 


 0dttxt,fx
a
tχ

:t
e

1j

t

t
1j

e

e
e




(24)

The discrete time solver algorithm in this section is the implicit trapezoidal solver and

can be given by the following formula

    1j1jjj1jj x̂,tfx
~

,tf
2
Δtx̂x̂  


.

(25)

The solver approximation works in two stages. First, the initial vector jx
~ is predicted19 and

then the implicit solver algorithm is computed to approximate the state vector jx̂ based on the

predicted vector jx
~ .

18 An occurrence can be characterized by intersection of a threshold value line with a state variable curve. This
occurrence can be defined as a “state event” and the state variable, which is participated in the occurrence, is
named the state variable that is “involved in state event”.

29

Formula (26) presents the event vector function for the trapezoidal solver (25) fitting

to the reformulated initial value problem in definition (24). In the event vector function (26),

for computation of the state event coordinates, the state variable jn,x~ is approximately set

equal to the appropriate threshold value ejn, a:x~  . After this setting, the number of state

variables of the state vector kx
~ is reduced to 1n  . In addition, the step-size ke,t~ in (26) at

the state event is considered as an unknown variable and is included into the set of variables.

Thus, the 1n  state variables symbolized with kχ
~ together with the unknown step-size ke,t~

result in n unknown variables. Then the event vector function (26) has n variables and n

functions therefore the root-finding method can be applied. It is assumed, that the variable jt

in (26) is equal to its appropriate predicted event value 1jke,ke,j tt~Δt~:t  . In the root-

finding process, et
~ is updated in every iteration loop regarding index k , in which (for a

root-finding algorithm) 1jt  is a constant value. The event vector function is given by (26)

using the variable set  kke, χ
~

,t~Δ


, the set of constant values  e1j1-j a,x̂,t 
 and ekn, a:x~  .

      1j1jek1jke,
ke,

1j
e

k
kke, x̂,tfa,χ

~
,tt~Δf

2
t~Δ

x̂
a
χ
~

:χ
~

,t~Δĥ  



















(26)

Vector function (26) can be summarized as following system of equations

  0χ
~

,t~Δĥ kke,


 .

(27)

After the detection of the crossing of the threshold value en ax  with jn,x , the step-

size magnitude and the state vector  etχ can be computed by a root-finding methods of

nonlinear systems of equations. The Newton’s method for predicting eΔt and  etχ at the

state event for equations (27) is applied as follows

19 The prediction stage is accomplished using root-finding methods for nonlinear systems of equations applied on
system of reformulated implicit solver formulas.

30

    
























1k1ke,

1

1k1ke,ĥ
1k

1ke,

k

ke, χ~,t~Δĥχ~,t~ΔJ
χ~
t~Δ

χ~
t~Δ 

  .

(28)

In Newton’s method (28)

  0χ
~

,t~ΔJ 1k1ke,h 



is the appropriate Jacobian matrix. After the prediction phase, the event magnitudes are the

event step-size ke,ee t~Δ:t~ΔΔt  and the transient state vector

      Te
T
ke

T

ei
T

e a,χ
~

:x
~

tx,tχ 
 .

The predicted transient state vector ex~ and the predicted step-size et
~Δ are used in the implicit

solver formula (25). Thus, the approximated transient state vector ex̂ is computed as shown in

(29).

    1j1je1je
e

1je x̂,tfx
~

,tt~Δf
2
t~Δx̂x̂  



(29)

31

3 State Event Handling in System of DAEs
DAEs can be classified by its characteristics. The general classification can be divided into

two main categories, linear and nonlinear systems. Another classification can be given by

means of the algebraic equations of the DAEs. There are three types of DAEs: Fully-implicit

systems with hidden algebraic equations, semi-explicit systems and transformed explicit

systems. Changing the type of DAEs may be possible. A fully-implicit system may be

transformed into a semi-explicit system or an explicit system. Another classification can be

given using the index of DAEs.

This chapter focuses on the approximation methods of transient vector for DAEs for

following cases:

 DAEs transformed into ODEs

In this case, a system of DAEs is transformed into a system of ODEs and then

the approximation methods of transient state vectors for the system of ODEs

can be applied.

 Semi-explicit DAEs

In this case, either the system of semi-explicit DAEs is transformed into a

system of ODEs as above or the transient vector in the semi-explicit DAEs is

approximated without index-reduction by reformulation of implicit solver

formula for root-finding methods of nonlinear systems of equations.

3.1 Index-Reduction

The fully-implicit DAEs can be shown as follows

     0tx,txt,F



 .

(30)

The Jacobian matrix     








 tx,txt,
x
F 




of equation (30) is singular, therefore it cannot be

solved for  tx and it may contain hidden algebraic equations. The domains of the dependent

variables of (30) are xx D
 , xx 

 D with n
xx , RDD . The vector function of equation (30)

indicates the mapping
n

xxt:F R 


DDI

32

for a finite interval tI with  Rtt I and solution xt: DI x .

If equation (30) transforms into an explicit system [SIC05] and if its Jacobian matrix fulfills

     0tx,txt,
x
Fdet 









 




and is locally unique in the surroundings of the solution, then equation (30) can be solved

locally for  tx in terms of the other variables. After transforming into an explicit system, the

ODEs     txt,ftx 
  can be handled with ODE solvers.

The equations in DAEs (30) may contain algebraic equations. In some cases, it is

possible to extract the algebraic equations from the fully-implicit systems by some algebraic

operations [AGI12], if possible, the result can be formulated as a semi-explicit system. The

semi-explicit DAEs including the algebraic vector equation     ty,txt,g 
and the algebraic

variable vector  ty are given by

      ty,txt,ftx 
 

    ty,txt,g0 
 .

(31)

The semi-explicit DAEs (31) are defined by following mappings

n
yxt:f R DDI


, yn

yxt:g R DDI
.

The algebraic variable vector is given by yn
yy RD

with Nynn, and the solutions are

xt:x DI 
 , yt:y DI 

 .

The semi-explicit DAEs may be transformed to ODEs by differentiating its algebraic

equations. The smallest necessary number of differentiation steps of the constraint equation,

with respect to the independent variable t along the solution of the algebraic variable for

transformation into the ODEs, is considered as the differential index of the DAEs. An

33

example is the equation     ty,txt,g0 
 with index 1 and algebraic variable  ty . After the

first differentiation of     ty,txt,g  with respect to t , the following equation is suspected

                          0ty,txt,g
dt
dty

dt
dty,txt,

y
gtx

dt
dty,txt,

x
gtx

dt
dty,txt,

x
g

n
n

1
1











 


 .

(32)

In equation (32)  ty
dt
d can be given in from of an ODE as follows

                               






























ty,txt,g
dt
dty,txt,fty,txt,

x
gty,txt,fty,txt,

x
gty,txt,

y
gty n

n
1

1

1







(33)

in which     ty,txt,
y
g 


 should be nonsingular.

A solution of the transformed equation may not always be equivalent to the solution of

algebraic equation [AGI12]. Hence, a numerical approximation of solution of the DAEs

transformed into ODEs may not always yield the same result as a numerical approximation of

its semi-explicit system.

3.2 Event Location Approximation in DAEs Transformed to
System of ODEs

A transformation from fully-implicit DAEs to semi-explicit DAEs may be given by certain

algebraic operations and from semi-explicit DAEs to ODEs by index-reduction. After this

transformation, the ODEs can be solved using ODE solvers. Then the appropriate state event

location can be approximated applying methods explained in subchapters 2.1.1, 2.2.1 and

2.2.2. Hence, in the same manner, the last step-size before the state event can be computed. In

this way, the transient vector of a hybrid or variable structure system of DAEs transformed

into ODEs can be approximated using the initial values and computed step-size.

34

3.3 Event Location Approximation in System of Semi-Explicit

DAEs

This subchapter presents root-finding method applications for approximating event locations

of systems of semi-explicit DAEs applied in following two cases:

 The subchapter 3.3.1 demonstrates the approximation for an event location

associated with an algebraic variable.

 Subchapter 3.3.2 presents the root-finding application for approximating the state

event location in case of an event defined by a state variable.

3.3.1 Event Location of Algebraic Variable

In this subchapter, an event is defined for the system of semi-explicit DAEs (31) by

intersecting of set

iyΡ 20,      0ay:,y|y,xt,:: eiyyi
TTT

iyyxtiy ii
 ppΡDDIΡ 

with trajectory set    ity
T

iy ii
yt,: UITT  , in which the algebraic variable

  yiii :y DUU  R ,  yn1,2,i  , Nyn is involved in the event. Then the magnitude

of  tyi at the event is    
iyiyeie tya TΡ  .

It is assumed, that the algebraic variable  tyi and its appropriate equation establish

the last equation of the semi-explicit DAEs (31). At the state event,  en ty
y

is considered as a

constant value   een a:ty
y

 , thus the dimension of the algebraic variable vector  ety is

reduced to 1ny  . The prediction vector of the algebraic variables is shown with

                ty\ty|tytγ,,tγ,tγγ
~

:γ
~

yy

y
n

T
1n21

1n 



 

R .

The event function at the intersection plane is described by

            0tyatγ,txt,g:tγ,txt,h
ynenn 



20
iyΡ is a set which contains all points of plane 0ay: eiyi

p . The plane
iyp is normal to the iy -axis.

35

and the zero crossing can be defined at et using following axiom

      :0ty,txt,h
       

     

































 


 0
tγ,tx,tg

dtty,txt,fxtx
:t

eee

t

t
1je

e

e

1j







.

(34)

The implicit solver system consists of two stages. The first stage is a prediction of the

algebraic variable and the state vectors. The second stage is the approximation of the state

vector. Formula (35) presents an implicit numerical concept for semi-explicit DAEs, in which

the vectors jx
~

and jy
~

show the predicted magnitudes whereas jx̂ shows the approximated

vector.

    
  














 









 

jjj

1-j1-j1jjjj1-jj

y
~

,x
~

,tg

y
~

,x̂,tfy
~

,x
~

,tf
2

Δtx̂
0
x̂









(35)

The implicit trapezoidal method and algebraic equation in formula (35) are reformulated in

(36) as an event vector function. At the state event, the variables in vector function (36) are

specified by iteration index k .

      
  
























kk1jke,

1-j1-j1jkk1jke,
ke,

1jk
kkke,

γ~,x~,tt~Δg

y
~

,x̂,tfγ
~

,x
~

,tt~Δf
2
t~Δ

x̂x
~

:γ
~

,x
~

,t~Δĥ





(36)

The event vector function (36) is presented as a system of equations in (37) according to

reformulated initial value problem (34) for predicting the event step-size, transient state vector

and transient algebraic variable vector.

Thus, after event identification, e.g. when the algebraic variable crossing its concerned

threshold value, the data processing should be switching from solver iteration algorithm to

root-finding algorithm. The root-finding methods of nonlinear systems of equations can be

applied on following equation

36

  0γ
~

,x
~

,t~Δĥ kkke,


 .

(37)

The root location in system of (37) can be determined using the Newton’s method as shown in

(38). The vector  TT
k

T
kke, γ

~
,x

~
,t~Δ  stands for the prediction vector and contains ynn  variables.

The set  e1-j1-j1j a,γ̂,x̂,t 
 contains known constants and  kkkh γ

~
,x

~
,t~ΔJ  is the Jacobian matrix

of (37).

   1k1k1ke,1k1k1ke,
1

ĥ

1k

1k

1ke,

k

k

ke,

γ
~

,x
~

,t~Δĥγ
~

,x
~

,t~ΔJ
γ
~
x
~
t~Δ

γ
~
x
~
t~Δ






















































(38)

If the Jacobian matrix of the vector function (36) is not singular and Newton’s method (38)

approximately converged then function (37) is close to the zero vector and

  εγ
~

,x
~

,t~Δĥmaxlim 1k1k1ke,αnnα1k y






















for 0ε  infinitesimal. In this case, the resulting predicted transient initial variables are

ke,e t~Δ:t~Δ  , e1-je t~Δt:t~  , ke x
~

:x
~ 

 ,       Te
T
ke

T

ei
T

e a,γ
~

:y
~

ty,tγ 
 .

They can be initialized in solver system (35). The transient state vector can be approximated

as follows

    
  




























eee

1-j1-j1jeee
e

1-je

y
~

,x
~

,t~g

y
~

,x̂,tfy
~

,x
~

,t~f
2
t~Δx̂

0
x̂







.

(39)

37

3.3.2 Event Location of State Variable

In this subchapter, the state event is defined by a state variable

  xiii :x DUU  R ,  n1,2,i  , Nn . The state event   eei atx  is an element of the

intersection of trajectory set    itx
T

ix ii
xt,: UITT  and set

ixΡ .

          
iiiiii xxeieixix

TTT
xyxtx tx0ax:,x|y,xt,:: TΡppΡDDIΡ 

 .

The position of  tx i and its equation in semi-explicit DAEs (31) is assumed to be at

the last component of the state vector. Since the state variable  tx n crosses the threshold

value en ax  at the state event,  tx n is set equal to the appropriate threshold value

  een a:tx  and it is considered as constant. The resulting state vector remains with 1n 

variables defined as

                tx\tx|txtχ,,tχ,tχχ:χ n
T

1n21
1-n 




 R .

The event occurs at  ene txa  and is specified by the reformulated initial value

problem

     0dtty,txt,fxa
e

1j

t

t
n1jn,e  







with quantifier et as part of system (40). Axiom (40) defines the zero crossing of the event

vector function for et via system of integrations and algebraic equations conditioned by

  0atx eei  .

      :0ty,txt,h


      

     











































 


 0
ty,tχ,tg

dtty,txt,fx
a
tχ

:t

eee

t

t
1j

e

e

e

e

1j








(40)

38

The event vector function (41) presents an numerical system including the

reformulated trapezoidal method for variable predictions at the state event with iteration index

k .

      
  




































kk1jke,

1-j1-j1jkk1jke,
ke,

1-j
e

k

kkke,

y
~

,χ
~

,tt~Δg

y
~

,x̂,tfy
~

,χ
~

,tt~Δf
2
t~Δ

x̂
a
χ
~

:y
~

,χ
~

,t~Δĥ







(41)

In event vector function (41) the vectors 1-jx̂ , 1-jy
~

and magnitudes of 1jt  and jn,x̂ are

considered as known constant values. The vectors kχ
~ , ky

~ and variable ke,t~ are demanded

values, therefore the prediction vector

 TT
k

T
kke, y

~
,χ

~
,t~Δ 

has dimension ynn  . The system of equations in (42) can be solved by root-finding

algorithms.

  0y
~

,χ
~

,t~Δĥ kkke,




(42)

As root-finding method, the Newton’s method can be applied as follows

   1k1k1ke,1k1k1ke,
1

ĥ

1k

1k

1ke,

k

k

ke,

y
~

,χ
~

,t~Δĥy
~

,χ
~

,t~ΔJ
y
~
χ
~
t~Δ

y
~
χ
~
t~Δ




















































 .

(43)

The predicted event values are

ke,e t~Δ:t~Δ  , ke,1je t~Δt:t~   ,   kee y
~

:y
~

ty 
 ,       Te

T
ke

T

ei
T

e a,χ
~

:x
~

tx,tχ 
 .

39

Hence the step-size et
~ , the transient state vector ex~ and the transient algebraic

variable vector ey~ can be set in formula (35). Therefore the transient state vector ex̂ can be

approximated as shown in (39).

40

4 Henon’s Method

The Henon’s method presents the approximation of state event location using a

transformation via exchanging the independent variable with the variable involved21 in the

state event. The Henon’s method [MHO82] presents a numerical approximation of

intersection location of dynamic system trajectories with a surface of section22. The reference

[BEK12] points to the changing of independent variable with dependent variable for a state

event approximation by Henon’s method.

This chapter focuses on formulating the Henon’s method with transformed initial value

problem and integral intervals for approximating the transient state vector in hybrid or

variable structure systems of ODEs and/or semi-explicit DAEs using Henon’s method.

4.1 Henon’s Method in System of ODEs

The Henon’s method can be applied to an autonomous system     txftx 
  with the mapping

nn:f RR D


, Dx and the solution n
t:x RR  I . It is assumed, that a state

variable involved in the state event, is given by   DUU  Riii :x with  n1,2,i  ,

Nn . The ODE component     txftx ii


  is considered as the last ODE ni  .

In a normal case, before the crossing of the threshold value en ax  by  tx n , the form

(44) can be applied.

    txfΓtx
dτ
d 



(44)

In this case,  is assigned by

dτ
dt:Γ 

(45)

21 The singular point of an event function can be defined as an occurrence of an event by intersection of a
threshold value or a plane as described in subchapters 2, 3.3.2 and 3.3.1.
A variable, which crosses the intersection plane or threshold value, is called here a “variable” that is “involved in
event”.
22 Surface of section is presented by Henri Poincare. It is a subspace, which is used for observation of
intersection of periodic motion orbits with section of subspace. The map of the intersections is named Poincare’s
map.

41

thus the system of ODEs (44) can be simplified as follows

    txftx
dt
d 

 .

(46)

In differential equation (46) t is the independent variable and  tx is the dependent state

vector. It is assumed that the state vector of (46) is computed at step jt via integral (47) with

the initial values  1-jtx and t1-jt I .

      
j

1-j

t

t
1-jj dttxftxtx 

(47)

The intersection of the variable  tx n with the threshold value en ax  is defined by

an event function

     0txa:txh ne 


.

(48)

Consider the function (48) and the two solutions  1-j1-j tx:x 
 and  jj tx:x 

 in system (47). It

is assumed, that the continuous function (48) contains a bijective mapping for short interval

  tj1-j t,t I . The state event

      n1-jn1-jnen xtx,txtx  ,     1-jnjnn txtx:Δx 

exists if and only if there is a  j1-je t,tt  with   eenne, atx:x  hence ene, tx  .

The Henon’s method defines transformation (50) on ODE system via exchanging the

independent variable t with the dependent variable  tx n . In ODEs (50), the function Γ is

given by

42

    n1-nn1nn xx,,xx,xf
1


 .

(49)

Hence nx is considered as an independent variable and  nxt is regarded as a dependent

variable [BEK12]. After event detection, the transformed system (50) is given via multiplying

all ODEs with  except for the equation of nx which is given as the last ODE. With

assumption

     0xx,,xx,xf n1-nn1nn  ,

the last ODE     txftx
dt
d

nn


 is changed into

      n1nn1nn
n

n xx,,xx,xf
1xt

dx
d






.

This transformation offers a new system of ODEs as follows

      

      

  Γ.xt
dx
d

xx,,xx,xfΓxx
dx
d

xx,,xx,xfΓxx
dx
d

n
n

n1nn1n2n2
n

n1nn1n1n1
n

















(50)

The transformed system (50) can be represented by system of ODEs (52), in which the

dependent state vector is defined by

      Tn
T

nn xt,xΧ:xχ




in which nχ R
 , 1-nX R


with   nx\x|x: 

 . The independent variable nx is represented

by τ , thus nx:τ  then    nn xt:τχ  . The functions of ODE system (50) are represented by

43

     
     

   .:τχτ,Θ

τχτ,f:τχτ,Θ
τχτ,f:τχτ,Θ

n

22

11













(51)

Thus, the system of ODE (50) is given as follows

    τχτ,Θτχ
dτ
d 

 .

(52)

The state vector  τχ with the independent variable τ is illustrated via initial values in an

integral form by (53) for computation of  ee at:t  .

    
 






e1j1j

1j

1j

aττ

τ
e dττχτ,Θχaχ 

(53)

The solver step-size of (53) is e1j1j1j aττ,τΔτ   . The integration interval23 of (53) is

 e1j1j1j aττ,τ   .

According to the inverse function theorem, the domain of a one-to-one continuous

function is the range of its inverse function and vice versa. Hence, if the range of the

integration of  τχ n by (53) gives the domain of the integration of  tx n and vice versa, then

the initial values of the integration (53) results in the value of the appropriate interval

   e1je1jn,1jn,1jn, t,taxx,x   ,

23 In some applications, the numerical integrations are carried out in several steps using an adaptive step-size
system. The integration is not always satisfied if system is not bijective and has a strong nonlinearity.

44

thus, the range of the appropriate function of integral of  τχ n in (53) results in  ee at~:t  as

the event location in time.

After computation of the location of the independent variable  ene aχ:t  , using (53),

the transient state vector ex on interval  e1j t,t  is computed. The computation of the transient

state vector at the state event is demonstrated in the integral form as follows

    


 

e

1j

t

1je dttxfxtx 
.

(54)

4.2 Henon’s Method in System of Semi-Explicit DAEs

This subchapter introduces the Henon’s method for the autonomous semi-explicit DAEs in

form of

    txftx
dt
d 



  txg0 
 .

(55)

The ODE part of the semi-explicit DAEs (55) has the same dimension as the system of ODEs

(44).

An auxiliary state variable  tx 1n is defined equal to the rhs. of the algebraic equation

in DAEs (55). The variable  tx 1n is applied to assess the root of the algebraic equation of

(55) by the intersection of

    txgtx 1n




(56)

with e1n ax  . The function in (56) is defined with the mapping RD:g and nx RD
.

Thus the event function is defined by

45

     txga:txh e


 .

(57)

The derivation of the event function (57) using the chain rule gives a transformation,

which explains its variation with consideration of all dimensions. This transformation is

illustrated by differentiation in (58).

                 tx
dt
dtx

x
htx

dt
dtx

x
htx

dt
dtx

x
htxh

dt
d

n
n

2
2

1
1















(58)

The form (58) can be written as

         txftxhgradtxh
dt
d T











.

(59)

The derivative of   txh  is assigned to   txf 1n


 as follows

     txh
dt
d:txf 1n




(60)

thus the corresponding ODE is

    txftx
dt
d

1n1n


  .

(61)

The differentiation of  tx 1n with respect to t is given by the ODE     txftx 1n1n


  

and together with     txftx 
  it is a system of ODEs. Hence, with partial differentiation of

the algebraic equation, the system of semi-explicit DAEs (55) is transformed into a system of

ODEs (62).

46

    

    

    

    txftx
dt
d

txftx
dt
d

txftx
dt
d

txftx
dt
d

1n1n

nn

22

11











 







(62)

After crossing the threshold value en ax  by   txg  via solver algorithm, starts the

computation algorithm of the event location. Hence, the system (62) is transformed into a

system of ODEs (64) under the consideration of the independent variable t as dependent

variable and exchanging t with the dependent variable  tx 1n . Thus, in (64) the variable

1nx  is regarded as independent variable. In addition, all equations of ODEs (62) except the

last one are multiplied by

      1nn1n21n11n xx,xx,xxf
1Γ






.

(63)

The ODE of the state variable  tx 1n in system of ODEs (62) changes into

        1nn1n21n11n
1n

1n xx,xx,xxf
1xt

dx
d









.

The whole transformation with assumption

       0xx,xx,xxf 1nn1n21n11n  

is represented by the following ODE system

47

        

        

        

  Γ.xt
dx

d

xx,xx,xxfΓxx
dx

d

xx,xx,xxfΓxx
dx

d

xx,xx,xxfΓxx
dx

d

1n
1n

1nn1n21n1n1nn
1n

1nn1n21n121n2
1n

1nn1n21n111n1
1n





























(64)

The system of ODEs (64) has 1n  ODEs and 1n  state variables. For clearer

description, the state vector of (64) is defined in ODE system (66) by  τχ in which 1nχ R

and the independent variable is 1nx:τ  . The vector  τχ is given by

      T1n
T

1n xt,xx:τχ 


in which,    1n1n xt:τχ   . The vector function of (64) can be given by   τχτ,Θ 
.

     
     

   Γ:τχΘ

τχfΓ:τχΘ
τχfΓ:τχΘ

1n

22

11















(65)

Then the system of ODEs (64) is established as follows

    τχτ,Θτχ
dτ
d 

 .

(66)

The integral of  τχ 1n in (66) is considered as inverse function of the function of

 tx 1n , which can be interpreted using the differentiation formula of the inverse functions.

Thus for computation of the location of the independent variable et , the interval

 e1j1j1j aττ,τ   is used for integral of (66) as follows

48

    
 






e1j1j

1j

1j

aττ

τ
e dττχτ,Θχaχ 

.

(67)

After computation of the value  ee at~:t  using (67), the approximation of the transient

state vector at the state event can be done by the solver algorithm of DAEs (55) for interval

 e1j t,t  . The Henon’s method can be considered with some extensions24.

24 The Henon’s method may be extended for DAEs (55) with the algebraic equations, in which for each algebraic
equation an additional variable can be defined. Then the appropriate ODEs can be found as in (61), hence the
result is a system of ODEs and can be solved using the method of subchapter 4.2.
In case of semi-explicit DAEs as presented in (31), the definition of the new variables might not be necessary, if
the system has an algebraic variable that is involved in the state event. In this case, the index reduction method
can be applied and the system transformation to ODEs and then the Henon’s method can be used.
Another consideration is the application of the implicit solver algorithm for approximation of the event location
and transient state vector in Henon’s method.

49

5 Implementations of Event Location Approximation
Methods in Hybrid Systems of ODEs and DAEs

This chapter presents algorithms, simulations and results of the approximation of the transient

vector at the state event for the variable structure filament pendulum and hybrid systems of a

bouncing ball and a rotor-stator-system.

In this chapter, the simulations and results of the three subjects of the previous chapters are

illustrated. These are the algorithms of the state event handling by reformulating solver

formula, reformulating solver formula for the root-finding method and the Henon’s method.

5.1 Bouncing Ball with Hybrid System of ODEs

The hybrid model of bouncing ball is known from [MMT04]. The following subchapter

contains the presentation and description of the development and results of the simulation

algorithms of the bouncing ball hybrid system including approximation algorithms of the

transient state vector at the state event.

5.1.1 Model Description

The first part of the simulation algorithm describes the kinematic relations of a falling ball.

The two important differential equations are velocity and acceleration. If the ball falls from a

height  0y then the velocity  tv can be defined as

   tvty  .

(68)

The state of the ball acceleration  ta can be given as:

   tatv  .

(69)

The second part of the simulation algorithm is concerned with the gravitational force without

drag force for falling objects, which is given by Newton’s second law

50

  mgtma  .

(70)

If a ball falls and hits the ground, then a mass spring damper model can be used to describe

the dynamic behaviour of the ball. The contact force of the ball is given by

      tfrtyktf de 

(71)

where k is the spring constant of the ball model and r is the radius of the ball. The damping

force term is    tcvtf d  , in which c is the damping constant. In order to compare

simulations of the bouncing ball including system of event location approximations, the

bouncing ball model is simplified and the damping characteristic of the ball is eliminated25.

The simplified contact model of the ball is given by

     mgrtyktma  .

(72)

The hybrid model is elaborated by conditional ODEs in (73). It is associated with transient

conditional relations. The transient conditional relations   rty  and   rty  are presented

by event function     rty:th  in (73). The first differential equation in (73) is a model for

the free-falling ball. The second differential equation is the contact model of the ball.

   
       0thmgrtyktvm

0thmgtvm







(73)

The state transition depends on the altitude of the centre of the ball. If the altitude of the

centre of the ball is lower than the radius of the ball, then the system switches into the spring

mass term of the contact model. If the altitude of the ball is larger than the radius of the ball,

25 The simulation of hybrid bouncing ball system with eliminated damping force term results in non-converged
periodic solutions. The aim of eliminating the damping force term in the hybrid bouncing ball system is to verify
the approximation methods of event locations in quasi-marginal stable state.
The response of each system of the modified hybrid bouncing ball system is diverged if no switching system is
used. The convergence of the system responses depends on the simulation model, solver algorithm, solver and
system parameters as well as initial values.

51

then only gravity acts on the ball. Table 1 presents a reset map for the hybrid system of the

bouncing ball.

Transition

Conditions
Active States s

  0th  Free-Falling (Disjunction of Spring Component)

  0th  Contacting with the Ground (Junction of Spring Mass Components)

Table 1: Reset Map of Bouncing Ball System

Figure 7 shows a state graph of the hybrid system of the bouncing ball.

  0th 

  0th 

   
  gtv

tvty





    

     mgrtyk
m
1tv

tvty









flys

contacts

Figure 7: State Graph of Bouncing Ball System

The simulation model of the bouncing ball is represented with the state vector

      Ttv,ty:tx 
 as follows:

   
  gtx

txtx

2

21






   0th 

   

     mgrtxk
m
1tx

txtx

12

21









  0th  .

(74)

52

5.1.2 Reformulation of Explicit Euler’s Formula

The simulation of the bouncing ball model is realized by implementing the Euler’s solver for

the hybrid system (74) as follows

 gΔtx̂x̂
x̂Δtx̂x̂

1j2,j2,

1j2,1j1,j1,







   0th 

  





 







mgrx̂k
m
1Δtx̂x̂

x̂Δtx̂x̂

1j1,1j2,j2,

1j2,1j1,j1,

  0th  .

(75)

The nominal ball radius r is considered as the threshold value r:a e  . An event is

defined by event function   0x̂r:th j1,j  as intersection of the approximated ball

altitude j1,x̂ with rx1  at eej tt~:t  .

    0x̂tt~x̂rt~h 1j2,1je1j1,e  

(76)

The computation of the location of et in the time domain is determined by   0t~h e 

according to formula (15) for a transition from falling to bouncing and vice versa.

1j2

1j1
1je x̂

x̂r
tt~









(77)

After computation of formula (77), the approximation of the transient state vector is

evaluated according to explicit Euler’s solver (16) by means of 1jee tt~t~Δ  applied to

numerical hybrid system (75).

53

5.1.3 Reformulation of Implicit Trapezodial Formula for Newton’s
Method

The simulation algorithm in this part is implemented according to the subjects of subchapter

2.2.2. For simulation, the trapezoidal solver is implemented with two prediction and

approximation steps. The prediction step is developed via Newton’s method applied on

reformulated trapezoidal solver formula. The approximation step of the state vector is realized

by initializing of the solver algorithm with the predicted state vector.

The computation of prediction and approximation steps of the state vector continues

until detection of a state event. Then the simulation algorithm switches to the approximation

algorithm of the transient state vector at state event. The prediction of the transient state

vector at state event is accomplished by Newton’s method with iteration index k . In event

vector functions (78), the state variable j1,x is set to the threshold value r:ax e  , rx̂ j1, 

and the variables ke,t~Δ and k2,x~ are demanded variables.

 
 

  


























2g
2
t~Δ

x̂x~

x̂x~
2
t~Δ

x̂r
x~,t~Δĥ

ke,
1j2,k2,

1j2,k2,
ke,

1j1,

k2,ke,

   0th 

 
 

     

































 








gmrx̂k
m
1

2

t~Δ
x̂x~

x̂x~
2
t~Δ

x̂r
x~,t~Δĥ

1j1,
ke,

1j2,k2,

1j2,k2,
ke,

1j1,

k2,ke,

g

   0th 

(78)

After computation of the prediction values according to Newton’s method (28), the

trapezoidal solver (29), which is realized for bouncing ball model, is reinitialized with

 Tk2,e x~r,:x
~




and ke,e t~Δ:t~Δ  and runs for one step calculation to approximate the transient

state vector ex̂ at the state event.

5.1.4 Henon’s Method

In order to simulate Henon’s transformation, the function Γ is defined as  12 xx
1Γ  . The

Henon’s transformation for this simulation is shown as follows:

54

   

   12
12

1

12
1

1

xx
gxx

dx
d

xx
1xt

dx
d






  0th 

   

    
 12

1
12

1

12
1

1

xx
mgrxk

m
1xx

dx
d

xx
1xt

dx
d






  0th  .

(79)

Via setting       T2 τx,τt:τχ 
 and 1x:τ  , the systems of ODEs in (79) can be

represented via a system of ODEs (52). The computation of et
~ is achieved for the selected

system using ODE45 according to formula (53) on the interval  rτ̂τ̂,τ̂ 1j1j1j   .

Then the solver algorithm is reinitialized according to the initial values of (54). The

approximation of the transient state vector  et
~x̂ is realized by ODE45 solver.

5.1.5 Simulation Comparisions

The hypothetical simulation parameters are chosen in SI units as demonstrated in Table 2.

Parameter Description

5m:h0  initial ball position

sm2.5:v0  initial velocity

200kg:m  mass of ball

2.5m:r  radius of ball

mN41.0e:k  spring constant
2sm9.80665:g  acceleration of gravity of earth’s surface

Table 2: Bouncing Ball Simulation Parameters

The approximated solutions and trajectory of the modified bouncing ball hybrid system are

demonstrated in Figures 8 and 9.

55

0 1 2 3 4 5 6
-8

-6

-4

-2

0

2

4

6

8
Solutions of Bouncing Ball Hybrid System

t

x1
,x

2

Figure 8: Approximated Solutions of Modified

Bouncing Ball Hybrid System

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-8

-6

-4

-2

0

2

4

6

8
Trajectory of State Variables x1 and x2

x1

x2

Figure 9: Trajectory of State Variables of

Modified Bouncing Ball Hybrid System

Table 3 illustrates the simulation results approximating of the ball location at the state

event using reformulation of explicit Euler’s formula, reformulation of implicit trapezoidal

formula for Newton’s root-finding, Henon and Matlab adaptive methods26.

The modified hybrid bouncing ball system without damping force term and without

approximation methods of event location is simulated via Euler’s solver with different

simulators. These simulations show that using Euler’s solver produces an instability in system

responses with increasing the peaks of ball altitude  th , if the damping term is eliminated

from bouncing ball model.

In spite of the fact that instability produces in response of system, the approximation

method “reformulation of Euler’s solver formula” in Table 4 shows a relative small

magnitude for the local error of the approximated state variable at the switching event.

An additional application is programmed based on Simulink without zero-crossing

algorithm.

26 The adaptive zero-crossing reduces the step-size of solver iterations, until the setting values of the
Matlab/Simulink configuration parameters are exceeded [MHV10].

56

Methods Simulink Adaptive (Matlab)

Solver Algorithm Simulink ODE4 Matlab ODE45

Type Explicit Explicit

Programming Environment Simulink Matlab

Threshold Value ea 2.5 2.5

 e1 t~x [2.499981, 2.500056] 2.499999

Local Error:   rt~x̂ e1  - 8.215650e-14

Fixed Step-Size 1e-05 1e-05

eι
~Δ - 7.552201e-06

et
~ [5.0325e-01, 5.0326e-01] 5.032575e-01

Table 3: First Event Comparisons of Bouncing Ball Simulations at a Transition from Free-Fall to

Bouncing State

The approximated values of the state event  e1 tx in Table 3 show that the reformulation of

implicit trapezoidal formula for root-finding method has an accurate magnitude regarding the

event threshold value 2.5ae  .

Methods
Reformulation of Explicit

Euler’s Formula

Reformulation of Implicit

Trapezoidal Formula for

Newton’s Method

Henon

Solver Algorithm Implemented

Euler’s Solver

Implemented Trapezoidal

Solver Mixed Newton Method

Programmed Henon

Using Matlab ODE45

Type Explicit Implicit Explicit

Programming Environment Matlab Matlab Matlab

Threshold Value ea 2.5 2.5 2.5

 e1 t~x 2.500000 2.500000 2.499999

Local Error:   rt~x̂ e1  0 0 5.394569e-10

Fixed Step-Size 1e-05 1e-05 1e-05

eι
~Δ 8.710344e-07 7.552201e-06 7.416839e-06

et
~ 5.032600e-01 5.032575e-01 5.032574e-01

57

The simulation via reformulation of solver formula is coded according to the contents of

subchapters 2.1.1 and 5.1.2. The root-finding method is programmed according to the

developed method in subchapters 2.2.2 and 5.1.3. The Henon’s method is programmed in

Matlab, matches Matlab ODE45 and is implemented according to subchapters 4.1 and 5.1.4.

Two other simulations are realized, one in Simulink without zero-crossing setting and the

other in Matlab using ODE45 with adaptive method.

Table 4 demonstrates the state event approximations of  e1 t~x for different methods at

the various events.

Henon’s method is realized using ODE45 feature in Matlab environment. The system

response in this implementation shows a difficulty27 evaluating the eleventh state event and

the magnitudes of  τχ show an unstable behavior.

The reformulation of implicit trapezoidal formula for Newton’s root-finding method has

a stable procedure and shows low local errors.

27 At the eleventh state event, the approximated magnitudes of    122 xx:τχ  become close to zero where the

magnitudes of    τχ
1τχ

dτ
d

2
1  increase periodically and cause the instability in system responses and

consequently in system simulation.

Methods

Error   rt~x e1 
Reformulation of

Explicit Euler’s

Formula

Reformulation of
Implicit Trapezoidal

Formula for
Newton’s Method

Henon Adaptive Matlab

Error at First Event 0 0 5.394569e-10 8.215650e-14
Error at Fifth Event 3.108624e-15 0 3.033617e-10 4.138911e-13
Error at Tenth Event 8.881784e-16 0 1.524347e-08 9.099387e-13

Error at Twentieth Event 1.199040e-14 0 - 1.498801e-12

Table 4: Errors of Approximated Magnitudes of State Variable  tx1 at Various State Events in
Hybrid System of the Bouncing Ball

58

5.2 Filament Pendulum with Variable Structure System of DAEs

The model of filament pendulum is inspired by [BEC08] and [CGN07]. Two models establish

the variable structure pendulum: one is the mathematical pendulum and the other is the free-

fall model.

This subchapter deals with modelling of event handling of the variable structure system of

the filament pendulum as well as development and implementation of the simulation

algorithms for approximation of the transient vector.

5.2.1 Model Description

The structure of the filament pendulum system may be changed from a filament pendulum to

a free-fall system and vice versa, if certain conditions are fulfilled. A pendulum changes its

position if it is not at its equilibrium state. The motion conditions of a pendulum can be

fulfilled by choosing certain initial values, which can cause the pendulum to launch out of its

equilibrium state.

The angular velocity of the pendulum is expressed by

   t
dt
dtω pp  .

(80)

The length of the arc of the angle  tp is defined as

   tLts p .

(81)

The tangential velocity can be found from the derivative of the arc of the angle with respect to

time:

59

       tLωt
dt
dLts

dt
dtv ppt   .

(82)

The tangential acceleration of the pendulum is defined by

     t
dt
dLts

dt
dta p2

2

2

2

t  .

(83)

The state of the angular acceleration without damping component is

   )tmgLsin(t
dt
dmL pp2

2
2   .

(84)

The inertia moment for a filament pendulum is

2mLJ 
(85)

and using differential equation (84) substituting 2mL with J one gets

    0)tmgLsin(t
dt
dJ pp2

2

  .

(86)

The moment relation including the damping term can be amended in the following form:

      0t
dt
dc)tmgLsin(t

dt
dJ pppp2

2

  .

(87)

60

    0p0t tmgsintf      0p0n tmgcostf 

mg

LL

x

 efyy tvc

 efxx tvc

mg

y

  









0

0
0p y

x
tanπt a

Figure 10: Forces in Free-Fall and Mathematical Pendulum Systems

To leave the pendulum state and switch to the free-fall state, a tension force condition

of the filament must be fulfilled. Hence, if the filament loses its tension and the pendulum

leaves its track, then the simulation process must be switched from the pendulum structure to

the free-fall structure. The tension force of the filament  tFa can be obtained from the radial

force. The radial acceleration is given as:

   tLωta 2
pr  .

(88)

The radial force of the circular motion is

     tma)tWcos(tF rpa   ,

(89)

61

thus, a criterion of the model switching is defined by the tension of filament  tFa which can

be calculated using (90).

     tmLωtmgcostF 2
ppa  

(90)

If the filament pendulum aborts its harmonic oscillation, then three cases can be

assumed. Either the pendulum leaves its orbit in an outward28 direction, stays within its

pendulum radius29 or reaches its equilibrium state.

If the tension of filament  tFa is vanished, then the path of the pendulum motion has

to change to the free-fall path. This means that the ODEs of free-fall motion are valid,

therefore the velocity along the x-axis in free-fall system is defined by:

   tνtx x .

(91)

The force equation can be given with the mass acceleration and damping model:

     tvctmatvm xxxx  .

(92)

The velocity along the y-axis is represented by

   tvty y .

(93)

The force equation in y-direction is explained by

       tvcmgtvcWtmatvm yyyyyy  .

(94)

28 This case can be occurred if the pendulum starts to move with high magnitude of radial acceleration, which
induces a high magnitude of centrifugal force and the filament is ripped.
29 A transition from free-fall to pendulum state can occur with a bouncing characteristic. The bouncing behavior
is not considered in the simulation model and in a transition from free-fall to pendulum state, an inelastic
behavior of filament pendulum is assumed.

62

The damping force  tvc yy in differential equation (94) has a negative sign. Another term is

the weight force mg , which also has a negative sign.

A criterion for a transition of the simulation data processing from the free-fall to the

pendulum algorithm can be given by the distance between pendulum and centre.

     tytxtr 22 

(95)

An automated event handling30 is controlled by a switching system. The switching

possibilities are shown in Table 5. The state transitions are defined by the states of  tFa and

 tr . In each system, the appropriate condition triggers the system transition. Table 5 shows

the events using two logical variables  tqef and  tqep . The logical variables are defined as

   
  Ltr

Ltr
:tep 








F
T

q

and

   
  .0tF

0tF
:t

a

a
ef 








F
T

q

Table 5 describes that for a transition from the pendulum to the free-fall state, only condition

        0tmLωtmgcostF:th 2
ppaef  

has to be valid and for a transition from the free-fall to the pendulum state, only the condition

        0LtytxLtr:th 22
ep 

has to be true.

30 Appendix A1 shows the non-automated event-handling modus. In this case, separate simulations run
consecutively.

63

Transition Conditions
Logical Variables State Transition

 tefq  tepq Previous State Active State

  0th ef  T Not Used Pendulum System Free-Fall System

  0th ep  Not Used T Free-Fall System Pendulum System

Table 5: Reset Map of Variable Structure Filament Pendulum

The rhs. of Figure 11 shows the free-fall coordinate system. The system transition

from pendulum to free-fall occurs, if  tefq is true for

       0tmLωt-mgcostht:t 2
ppefefef   ,

then the initial values at the free-fall event are defined as

    
    

             

             .tsintLωt
dt
dtyty

dt
d:tv

tcostLωt
dt
dtxtx

dt
d:tv

tLcos:ty
tLsin:tx

efpefpefpefpefpefy

efpefpefpefpefpefx

efpefp

efpefp































(96)

The left part of Figure 11 shows the pendulum system. When  tepq becomes true then the

pendulum differential equations should be initialized at

   0Ltrt:t epep 

with the following initial values:

64

   
 

    
                        .tvtxtvty

tr
1ty

dt
dt

y
λt

λ
tx

dt
dt

x
λt

λ
:tω

tλatanπ:t
ty
tx

:tλ

epyepepxep2
ep

epepep
p

epepep
p

epp

epepp

ep

ep
ep

























(97)

x

y
    
    









efpef

efpef

tLcosty

tLsintx





o

   
 









ep

ep
epp ty

tx
atanπt

 epty

 eptx

y

xo  efp t
 epp t

 eftx

 efty

 efp t

    epep ty,tx

Figure 11: Initializations at State Transitions for Free-Fall and Pendulum Systems31

The initial values of the state vector at an event should be prepared automatically before

starting data processing of the next system. The simulation model of the filament pendulum is

completed with the initialization terms. The supplemented variables of structure filament

pendulum are shown in Figure 12.

31 The system transitions are given by two different transformations. The position of an event for a transition
from free-fall to pendulum is in the low-half part of the coordinate system and for a transition from pendulum to
free-fall it is in the high half part of the coordinate system.

65

     tytxtr 22 
      tmLωtmgcostF 2

ppa  

   tvtx x

    tvc
m
1tv xxx 

    tvcmg
m
1tv yyy 

      tωc)tmgLsin(
J
1tω pppp  

   tωt pp 
   tvty y

  0th ep 

  0thef 

  tLsin:x p
  tLcos:y p

    tsintLω:v ppy 

 
  








ty
txatanπ:p

          tvtxtvty
tr

1:ω yx2p 

    tcostLω:v ppx 

fs
ps

Figure 12: State Graph of Variable Structure System of Semi-Explicit DAEs for Filament Pendulum

For simplification, the state vector for free-fall is defined by

                   Tyx
T

4321 tv,ty,tv,tx:tx,tx,tx,txtx 


and the algebraic variable is defined by    tr:ty1  . For the pendulum model the state vector

is defined by

           Tpp
T

21 tω,t:tx,txtx 


and the algebraic variable is    tF:ty a1  .

66

So, the variable structure system of semi-explicit DAEs can be given as follows

   

    
   

    
     txtxty

txcmg
m
1tx

txtx

txc
m
1tx

txtx

2
3

2
11

4y4

43

2x2

21



















  0th ef 

   

       
      tmLxtxmgcosty

txctxmgLsin
J
1tx

txtx

2
211

2
'

p12

21











  0th ep  .

(98)

5.2.2 Reformulation of Explicit Euler’s Formula

The state event handling of a variable structure system of semi-explicit DAEs requires an

index-reduction procedure for transformation DAEs into systems of ODEs. This

transformation is explained in subchapter 3.1. Hence, the radius of the pendulum (95) and the

tension of filament (90) are differentiated by the chain rule with respect to the independent

variable t . The differentiation of  ty1 for the free-fall system with respect to t is

represented by

                        
   txtx

txtxtxtx
dt

tdxtx,tx
x
y

dt
tdxtx,tx

x
y

dt
tdy

2
3

2
1

43213
31

3

11
31

1

11















(99)

and the differentiation of  ty1 for pendulum system with respect to t is

               

            .txctxmgLsin
J

t2mLxtxtxmgsin

dt
tdxtx,tx

x
y

dt
tdxtx,tx

x
y

dt
tdy

2p1
2

21

2
21

2

11
21

1

11












(100)

67

The semi-explicit systems of DAEs (98) are transformed to the systems of ODEs as follows:

   

    
   

    

         
   txtx

txtxtxtxty

txcmg
m
1tx

txtx

txc
m
1tx

txtx

2
3

2
1

4321
1

4y4

43

2x2

21
























  0th ef 

   

       

              txctxmgLsin
J

t2mLxtxtxmgsinty

txctxmgLsin
J
1tx

txtx

2p1
2

211

2p12

21













  0th ep  .

(101)

The computation of the location et for a transition from free-fall to pendulum state is

realized using L:aŷ ej1,  by solving the reformulated explicit Euler’s equation of ODE

(99) according to formula (15).

 
1j4,1j3,1j2,1j1,

2
1j3,

2
1j1,1j1

1je x̂x̂x̂x̂
x̂x̂ŷL

tt~



 




(102)

The computation of event location et along t for a state transition from pendulum to

free-fall is done by solving the reformulated explicit Euler’s equation of ODE (100) with

respect to 0:a e  and ej1, aŷ  as follows

    1j2,p1j1,
1j2,

1j2,1j1,

1j1
1je

x̂cx̂mgLsin
J
x̂2mL

x̂x̂mgsin

ŷ
tt~










 .

(103)

68

The transient state vector can be approximated via Euler’s method with the computed

event step-size 1jee tt~:t~Δ  and the appropriate initial values.

5.2.3 Reformulation of Implicit Trapezodial Formula for Newton’s
Method

In this subchapter, the trapezoidal solver with prediction and approximation phases is used as

an implicit solver. The variable structure system of semi-explicit DAEs (98) is taken in its

original form without index-reduction. The root-finding method is applied two times for each

system, once for computing the state vectors in prediction correction routine in the implicit

trapezoidal solver algorithm until an event is detected, and once to predict the transient vector

at the state event in the event location approximation algorithm after the event detection.

For the prediction of the state event location by the root-finding method, it is assumed that

the variable j1,y~ reaches its appropriate threshold values at step j . Hence, at state event j1,y~

is considered either as constant value L for free-fall to pendulum transition or as zero in case

of pendulum to free-fall transition. The unknown state variables at step j are predicted by the

Newton’s method with iteration index k at the event location environment. In the root-

finding iteration algorithm, the other variables with index 1j are considered as constant

known values. The hybrid event vector functions for the variable structure filament pendulum

are shown as follows

69

 

 

 

 

  

  0th0

x~x~L

x~x̂c2mg
2m

t~Δx̂x~

x~x̂
2
t~Δx̂x~

x~x̂
2m

ct~Δx̂x~

x~x̂
2
t~Δx̂x~

x~,t~Δĥ ef

2
k3,

2
k1,

k4,1j4,y
k

1j4,k4,

k4,1j4,
k

1j3,k3,

k2,1j2,
xk

1j2,k2,

k2,1j2,
k

1j1,k1,

kke, 



























































 

 

       
 

  .0th0

x~mLx~mgcos

x~x̂cx~sinx̂sinmgL
2J
t~Δx̂x~

x~x̂
2
t~Δx̂x~

x~,t~Δĥ ep

2
k2,k1,

k2,1j2,pk1,1j1,
k

1j2,k2,

k2,1j2,
k

1j1,k1,

kke, 































 





(104)

The step-size and variable predictions at the state event are realized for each domain

according to Newton’s method for nonlinear systems of equations (38) using event vector

function (104). The transient vectors are approximated by the system of implicit trapezoidal

solvers (39).

5.2.4 Henon’s Method

The Henon transformation is realized via systems of ODEs (105) according to Henon’s

transformation (64).

70

       
       

       
        

       
       

        
        

     
       14131211

1
2
31

2
1

1
1

1413121

1
2
31

2
114y

14
1

14131211

1
2
31

2
114

13
1

14131211

1
2
31

2
112x

12
1

14131211

1
2
31

2
112

11
1

yxyxyxyx
yxyx

yt
dy
d

yxyxyxym
yxyxyxcmg

yx
dy
d

yxyxyxyx
yxyxyx

yx
dy
d

yxyxyxymx
yxyxyxc

yx
dy
d

yxyxyxyx
yxyxyx

yx
dy
d


























  0th ef 

   
            

       
            

 
            12p11

12
1211

1
1

12p11121211

12p11
12

1

12p11
12

1211

12
11

1

yxcyxmgLsin
J

y2mLxyxyxmgsin

1yt
dy
d

yxcyxmgLsiny2mLxyxyxJmgsin
yxcyxmgLsin

yx
dy
d

yxcyxmgLsin
J

y2mLxyxyxmgsin

yxyx
dy
d












  0th ep 

(105)

For a transition from free-fall to pendulum, the state event handling is given for the state

vector

                       T114131211
T

54321 yt,yx,yx,yx,yx:τχ,τχ,τχ,τχ,τχτχ 


for the interval

   Lττ,τaττ,τ 1j1j1je1j1j1j  

in which r:y1  is the independent variable τ . In case of a transition from pendulum to free-

fall state, the state vector of transformation system is defined by

               T11211
T

321 yt,yx,yx:τχ,τχ,τχτχ 


71

and a1 F:y  is defined as independent variable τ . The numerical computation is applied for

the interval

   0ττ,τaττ,τ 1j1j1je1j1j1j   ,

hence the step-size at the state event et
~Δ is computed using systems of ODEs (105) with

ODE45 and then for approximation of the transient state vector at the state event, ODE45 is

applied on the interval  e1j t~,t  .

5.2.5 Simulation Comparisions

The simulation comparisons are given for hypothetical system parameters, which are shown

in Table 6.

Parameter Description

0.9m:x 0  initial position along x-axis

-0.43m:y0  initial position along y-axis

 000 yxatanπ:  pendulum initial angle

srad8:ω0  initial angular velocity

1m:L  filament length
2sm9.80665:g  acceleration of gravity of earth’s surface

radsmN0.97:cp  damping coefficient of pendulum system

msN0.95:cx  damping coefficient of free-fall system along x-axis

msN0.95:cy  damping coefficient of free-fall system along y-axis

2m0.75kg:J  mass moment of inertia

0.75kg:m  pendulum mass

Table 6: Filament Pendulum Simulation Parameters

72

The results of the computer simulations are illustrated on Figures 13 and 14. These figures

show the approximation of the positions and the trajectory of the pendulum.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
State Variables x and y

t

x,
y

x
y

Figure 13: Simulation of Filament Pendulum

Positions

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5
Pendulum Trajectory

x

y
Figure 14: Simulation of Filament Pendulum

Trajectory

The following table shows the comparison of the results of the simulations for

different approximation methods of the transient magnitudes of the variable    eae1 tF:ty  at

the first transition from pendulum state to free-fall state.

73

Methods Simulink Adaptive (Matlab)

Solver Algorithm ODE4 ODE45

Type Explicit Explicit

Programming Environment Simulink Matlab

Threshold Value
1ea 0 0

 e1 t~y [-2.041575e-04, 2.036859e-04] -1.443289e-13

Local Error of  e1 t~y - 1.443289e-13

Fixed Step-Size 1e-05 1e-05

et
~Δ - 9.522518e-06

et
~

[5.60130e-01, 5.60140e-01] 5.600195e-01

Table 7: First Event Comparisons of Filament Pendulum Simulation at the Transition from Pendulum to

Free-Fall State

Methods
Reformulation of Explicit

Euler’s Formula

Reformulation of Implicit

Trapezoidal Formula for

Newton’s Method Application

(Implicit Trapezoidal) Solver)

Henon

Solver Algorithm
Implemented

Euler’s Solver

Implemented Trapezoidal

Solver Mixed Newton Method

Programmed Henon

Using Matlab ODE45

Type Explicit Implicit Explicit

Programming

Environment
Matlab Matlab Matlab

Threshold Value 1ea 0 0 0

 e1 t~y -5.456111e-016 -4.440892e-016 3.057221e-08

Local Error of  e1 t~y 5.456111e-016 4.440892e-016 3.057221e-08

Fixed Step-Size 1e-05 1e-05 1e-05

et
~Δ 1.363987e-06 1.628527e-06 9.522046e-06

et
~

5.600113e-01 5.600216e-01 5.600195e-01

74

An approximation of the event location by “reformulation of solver formula” in DAEs

demands a transformation of the DAEs to appropriate ODEs using an index-reduction

method. The solver algorithm of DAEs transformed into ODEs has not always the same

results as semi-explicit DAEs. This is known as the drift-off effect. In Table 7, the local error

of algebraic variable  e1 ty at the state event using Euler’s solver in system of DAEs

transformed in ODEs (101) is 5.456111e-16. That is the difference of the threshold value

0:a
1e  to the approximated value  e1 t~ŷ . This result can be verified directly by computing

the constraint equation (90) using the approximated values  ept~̂ and  ept~ω̂ . In this case, the

error is 1.265872e-04. This verification shows a larger error value32.

The prediction of  e1 ty is developed using reformulation of implicit trapezoidal

formula (104) in root-finding method (38). Table 7 shows the magnitude of the variable

 e1 t~y at the first state event, in which the value of  e1 t~y using root-finding algorithm has the

lowest deviation from the threshold value 0a
1e  . The local error in this manner is

4.440892e-16. An implicit solver with the root-finding prediction stage has additional costs

for developing and programming the root-finding algorithm. Further, the simulation result

depends on convergence location of the prediction variables and the iterations may take

higher run time if the roots of the algorithm converge very slowly.

Table 8 shows the errors of the approximated magnitudes of  tFa and  tr at the first

and the second events.

Methods

Reformulation of
Explicit Euler’s

Formula

Reformulation of
Implicit

Trapezoidal
Formula for

Newton’s Method

Henon Adaptive Matlab

Error  ea t~F at First Event 5.456111e-16 4.440892e-016 3.057221e-08 1.443289e-13

Error   Lt~r e  at Second Event 0 0 2.869926e-12 1.709743e-14

Table 8: Errors of Approximated Magnitudes of Algebraic Variables at the State Events in Variable
Structure System of ODEs for Filament Pendulum

32 The index reduction method is applied in DAEs for two methods “reformulation of solver formula” and
“Henon’s method”. Hence, the using of index reduction method may result in a drift-off effect and higher error
magnitudes. The verifications of approximated magnitudes in constraint equations show relative greater local
errors of approximated magnitudes of variable  e1 t~y at first event in variable structure systems of DAEs than
“reformulation of implicit solver system for root-finding methods” in filament pendulum simulations.

75

5.3 Rotor and Stator with Hybrid System of DAEs

The non-dimensional rotor-stator contact model is described by [SPE07]. The fundamental

design of the rotor model consists of a Jeffcott rotor equation [EKD93]. The subject of this

section refers to the simulation of a non-dimensional rotor-stator hybrid system and the

approximation of the locations of the transient vector33 at the state event.

5.3.1 Model Description

The main difference between a rotor-stator contact model and a Jeffcott rotor model lays in

the impact force terms and the stator model. The model, which is simulated in this section,

describes both deflection behaviour and force interactions including impact force of the rotor-

stator before and after collision.

The precise construction of a rotor is very difficult in practice. Faults during machining or

construction can create an eccentricity radius of the rotor axis. The rotor axis must be centred

on its disc, and an eccentricity distance from the centre of its disc can produce a centrifugal

force. This force deflects the rotor from its central position, and it can lead to large deflections

at the critical speed. The rotor deflection depends on the rotor speed and its mass, and on the

parameters of the rotor-stator spring damper deflection model.

The rotor model is given by nonhomogeneous differential equations (106). The left

bracket presents the motion properties with damping stiffness components. The middle

bracket defines the non-balance excitation. This term includes the angular velocity ω , mass of

rotor rm and the eccentricity radius e . The bracket on the rhs. of (106) contains the impact

force terms, which are projected with the coordinate transformation matrix with angle  t on

the x- and y-axes:

     
     

 
 

     
     

 
 





































tf
tf

tcostsin
tsintcos

ωtsineωm
ωtcoseωm

tyktyctym
txktxctxm

ct

cn
2

r

2
r

rrrrrr

rrrrrr







.

(106)

The variables  tx r and  ty r are the rotor position variables, which can be depicted on the x-

and y-axes, rm is the rotor mass, and the parameters rc and rk are the approximated rotor

33 A transient vector contains state vector and algebraic variable vector. Transient vector is computed at a
switching event for initialization of transition systems or states in hybrid or variable structure systems of DAEs.

76

damper and stiffness coefficients. The stator equations of motion in x and y directions are

specified by:

     
     

     
     

 
 





























tf
tf

tcostsin
tsintcos

tyktyctym
txktxctxm

ct

cn

ssssss

ssssss







.

(107)

The parameters sc and sk are stator damping and stiffness coefficients whereas sm is the

stator mass. The impact force in the stator equation is similar to the impact force in the rotor

equation but in opposite direction. The system structure can be changed, in which the impact

forces  tfcn and  tfct in the rotor-stator equations can be coupled or decoupled according to

states of switching variables. The contact force consists of two forces  tf cn and  tfct in the

radial and tangential directions.

 tfcn

 tfct

x

y

R
S

sc

sc

rc

rc

sk
sk

rk
rk

Figure 15: Tangential and Radial Forces of Rotor-Stator in Contact Location

The rotor-stator system has algebraic equations which control the activation of the two

switching variables  tq c and  tq t . The radial force

77

     tdctdktf hhn


represents a stiffness damping characteristic which is defined by the switching model via

     tftqtf nccn 

as follows:

            
 








0.tf1
0td0

:tqtdctdktqtf
n

chhccn


(108)

The variable  td is the radial indentation and the parameters hk and hc are the stiffness and

damping coefficients in the radial force model.

The switching variable  tq t gives the direction of the tangential force  tf t as follows

         
  0tv

0tv
1
1

:tqtμftqtf
t

t
tcntt 









(109)

in which μ is the friction coefficient and  tv t is the tangential velocity.

The radial and tangential velocity equations presented in [SPE07] are

 
 

     
     

 
 





































ty
tx

tcostsin
tsintcos

2
Dω
0

tv
td

rs

rs
r

t 






(110)

where the parameter rD is the rotor diameter, ω is the angular velocity, and  tv t the

tangential impact velocity.

The rotor-stator system may show two manufacturing problems: The first problem is the

eccentricity radius e , which was mentioned at the beginning of this chapter. The other one is

78

the position of the rotor centre in relation to the stator centre, where the rotor centre has an

offset from the stator. In Figure 16 this offset is illustrated with 0x and 0y .

so
ro 0x
0y

rx

ry

sx

sy

Figure 16: Rotor and Stator Offsets

If the stator is in a deflected position, then it should be considered in the computation of

 tx s and  tys . Figure 17 shows the new position of  tx s and  tys as well as the offset

between the stator and rotor.

79

so
ro 0x
0y

rx

ry

sx

sy

 txs

 tys S

Figure 17: Stator Deflection

The positions of the rotor  tx r and  ty r , the eccentricity radius e as well as the stator

centre are shown in Figure 18.

so
ro 0x

0y

rx

ry

sx

sy

 txs

 tys S

R

 tx r

 tyr

e

Figure 18: Rotor Eccentricity Radius and Rotor-Stator Deflections

The relative deflections  tx rs and  ty rs between the rotor and stator are given by

80

      0srrs xtxtxtx 

(111)

      0srrs ytytyty 

(112)

whereas 0x and 0y are the rotor-stator offsets. The radial distance between rotor and stator is

     tytxtr 2
rs

2
rs

2
rs 

(113)

and the radial indentation or intrusion depth [SPE07] is obtained from the radial distance

between rotor and stator

    ctrtd rs  .

(114)

Parameter c is the rotor-stator radial clearance.

x

y
c

o

Figure 19: Radial Rotor to Stator Clearance

The contact angle can be computed by

81

   
 








tx
tyatant

rs

rs .

(115)

The rotor-stator contact model, which is introduced by the differential equations (106) and

(107), is a hybrid system. In order to avoid numerical problem, a dimensionless34 hybrid

system should be applied. Hence, in the next step, the transformation from a dimensional

system to a dimensionless system is demonstrated. The construction of a dimensionless model

is given by replacing the derivative terms. It starts with the angular velocity 2πωttπ2 f

of the rotor. The derivation πdι2ωdt  with respect to time and the assumption of constant

frequency f leads to the norming factor
ω
2π as follows

dι
ω
2πdt  .

(116)

Variable t is the independent variable of the initial system and ι is the independent variable

of the dimensionless system. The first and second derivation operators for the transformations

of the dimensional derivative terms into the dimensionless derivative terms with respect to ι

are

     







dt
d

ω
2π

dι
d

(117)

and

       













































td
d

ω
2π

dt
d

ω
2π

dt
d

ω
2π

dι
d

dι
d

2

22

.

(118)

34 In a dimensionless system, all variables should be changed into scalar variables. A simulation of the
dimensionless system can be used for interpretations of the system behaviors, effects of parameter modifications,
results and measured values.

82

The following two operators can perform the transformations of the first and second order

dimensionless derivative terms into dimensional derivative terms. The first order derivative

operator can be obtained from (117)

       









2π
ω

dι
d

2π
ω

dt
d

(119)

and the second order derivative operator from (118)

       






























 2

2

2

2π
ω

dι
d

2π
ω

dι
d

2π
ω

td
d

.

(120)

The different variables and constants are converted into dimensionless variables or constants

by dividing these magnitudes by the length of clearance.

   
c

ιxιX r
r  ,    

c
ιyιY r

r  ,    
c

ιxιX s
s  ,    

c
ιyιY s

s  ,    
c

ιxιX rs
rs  ,    

c
ιyιY rs

rs  ,

   
c
ιrιR rs

rs  ,    
c
ιdιD  ,

c
xX 0

0  ,
c
yY 0

0  ,
c
eE  .

(121)

The operators (117), (118) and the relations in (121) are used to transform the dimensional

terms in the rotor-stator hybrid system into the dimensionless terms. After the substitutions

the rotor system is presented by

     

     

 
 

     
     

 
 











































































ιf
ιf

ιcosιsin
ιsinιcos

πι2sicEωm
πι2coscEωm

ιcYkιYc
2π
ωcιYc

2π
ωm

ιcXkιXc
2π
ωcιXc

2π
ωm

ct

cn
2

r

2
r

rrrrr

2

r

rrrrr

2

r




n

(122)

and the stator system is

83

     

     

     
     

 
 



































































ιf
ιf

ιcosιsin
ιsinιcos

ιcYkιYc
2π
ωcιYc

2π
ωm

ιcXkιXc
2π
ωcιXc

2π
ωm

ct

cn

sssss

2

s

sssss

2

s




.

(123)

The radial and tangential forces35 are obtained in the same way:

           






 





 ιD

2π
ωccιDckιqιfιqιf hhcnccn ,

(124)

     ιμfιqιf cntct  .

(125)

The parameters of the dimensionless differential equations of rotor-stator are defined as

follows:

r

r2
r m

kΩ  ,
s

s2
s m

kΩ  ,
m
kΩ h2

h  ,
rΩ

ωη 
η
2πA r  ,

r

s
s Ω

Ω
η
2πA  ,

r

h
h Ω

Ω
η

2πA  ,
rr

r
r mk2

c
ζ  ,

ss

s
s mk2

c
ζ  ,

mk2
c

ζ
h

h
h  ,

sr

sr
_

mm
mmm


 .

(126)

The dimensionless equations of motion can be given by the substitution of the parameters in

(126) into the rotor-stator hybrid systems (122) and (123). After these replacements, the

dimensionless differential equations of the rotor-stator system can be given as follows:

35 The variable D is dimensionless radial intrusion depth. The coefficients hc , hk , μ and c are explained in
pages 77 and 80.

84

     
     

   
   

           
           

































ιμcosqιsinιDA2ζιDAq
ιμsinqιcosιDA2ζιDAq

πι2Esin2π
πι2Ecos2π

ιYAιYA2ζιY
ιXAιXA2ζιX

thh
2
hc

thh
2
hc

2

2

r
2
rrrrr

r
2
rrrrr




(127)

     
     

           
           






















ιμcosqιsinιDA2ζιDAq
ιμsinqιcosιDA2ζιDAq

ιYAιYA2ζιY
ιXAιXA2ζιX

thh
2
hc

thh
2
hc

s
2
sssss

s
2
sssss




.

(128)

The computations of further quantities are necessary to complete the simulation

model. The dimensionless relative deflection between the rotor and the stator along the x- and

y-axes can be computed from the updated position values of the rotor-stator dimensionless

differential equations:

      0srrs XιXιXιX 

(129)

      0srrs YιYιYιY  .

(130)

The dimensionless relative radial deflection is described by

     ιYιXιR 2
rs

2
rsrs 

(131)

and the angle of deflection is presented as follows

   
 








ιX
ιYatanι

rs

rs .

(132)

The model simulation is put together by the dimensionless differential equations and

the dimensional algebraic equations. For this purpose, the position coordinates of the rotor

85

and stator  ιx r ,  ιy r ,  ιx s ,  ιys are computed from the dimensionless values  ιX r ,

 ιYr ,  ιXs ,  ιYs , hence

   ιcXιx rr  ,    ιcYιy rr  ,    ιcXιx ss  ,    ιcYιy ss  ,    ιcRιr rsrs  ,

so the intrusion depth can be given by

    1ιRcιd rs 

(133)

and the velocities by

 
 

     
     

 
 








































ιY
ιX

ιcosιsin
ιsinιcos

2π
ωc

2
Dω
0

ιv
ιd

rs

rs
r

t 


.

(134)

The contact force in radial direction is given by

            ιdcιdkιqιfιqιf hhcnccn


(135)

and in tangential direction by

     ιμfιqιf cntct  .

(136)

The conditional expressions (137) and (138) form the switching system.

       
  0ιf

0ιf0ιd
0
1

:ιq
n

n
c 









(137)

86

   
 








0ιv
0ιv

1
1

:ιq
t

t
t

(138)

The dimensionless switching variables are converted to dimensional variables of  ιd ,  ιfn ,

and  ιv t and then appropriate switching variables  ιq c and/or  ιq t are evaluated in order

to control the switching process. Figure 20 shows an abstract simulation concept for the

hybrid system of DAEs with dimensional and dimensionless variables.

Figure 20: Simulation Concept36 Based on Dimensional and Dimensionless Variables

State graphs can be used for the analysis and development of the switching process.

First, the state graphs of the switching variables and then the state graphs of the system

transitions are demonstrated. The state graphs of the switching variable  ιq c and its

switching conditions are depicted in the following figure.

36 Applying dimensionless model and nonlinear transformation between dimensionless and dimensional
switching variables result in non-qualitative simulation approach.

87

  0:ιqc 

  1:ιqc 

  0ιd 

  0ιfn 

Figure 21: State Graph of Rotor-Stator Contact by Switching Variable  ιq c

The switching conditions of the radial force structure are presented in [BEK10] as follows:

                    
  








.0ιf0

0ιd0ιf1
:ιqιdcιdkιqιfιqιf

n

n
chhcnccn



(139)

The switching variable  ιq c in (139) is determined by two conditional expressions with two

variables  ιd and  ιfn . The state graph of  ιq c is illustrated in Figure 22.

  0:ιq c 

  1:ιq c 

     0ιd0ιfn 

  0ιfn 

Figure 22: Extended Form of State Graph of Switching Variable  ιq c

The rhs. of the rotor-stator differential equations have the interrelated terms of the radial force

 ιfn and the radial intrusion depth  ιd . The radial force structure is valid if the radial force

is greater than zero and simultaneously the radial impact depth is greater or equal to zero.

88

The condition for disconnecting of the rotor from the stator is modified according to the

logical negation37 of the condition

     0ιd0ιfn 

by

                  0ιd0ιf0ιd0ιf0ιd0ιf nnn  .

The reset map of the state transitions is illustrated in Table 9:

Conditions
Corresponding

Logical Values

Connecting

Transition

Condition

     0ιd0ιfn 

Disconnecting

Transition

Condition

     0ιd0ιfn 

 ιq c

Active

State ιf n  ιd  ιL
fn

q  ιL
dq

  0ιfn    0ιd  F F F T 0 Disjunction

  0ιfn    0ιd  F T F T 0 Disjunction

  0ιfn    0ιd  T F F T 0 Disjunction

  0ιfn    0ιd  T T T F 1 Contact

Table 9: Reset Map of Structure Switching of Rotor-Stator System using Logical Variables  ιL
fq and

 ιL
dq

According to the previous table, the contact between rotor and stator can take place if both

corresponding logical auxiliary variables  ιL
fn

q and  ιL
dq are true, so the disconnection of the

rotor and the stator is valid if either  ιL
fn

q ,  ιL
dq or both of them are false. In this

dissertation, the disconnecting conditions of the radial force are defined and developed as

follows

37 The rotor stator contact model is simulated for two first events and the constraint equations (140) and (139)
have the same outcomes.
The logical negation of a switching expression is not valid in all applications. E.g. in filament pendulum system
the negation rule cannot given because the switching system has two separate switching conditions and each
condition is concerned to its own system.

89

                    
     








0ιd0ιf0
0ιd0ιf1

:ιqιdcιdkιqιfιqιf
n

n
chhcnccn



(140)

in which the logical compliment of the transition condition      0ιd0ιfn  is given by

the separation condition      0ιd0ιfn  .

  0:ιqc 

  1:ιqc 

     0ιd0ιf n 

     0ιd0ιf n 

     0ιd0ιf n 

     0ιd0ιf n 

Figure 23: State Graph of Rotor-Stator Contact by Switching Variable  ιq c According to Table 7

The state graph of the switching variable  ιq t is illustrated in Figure 24.

  1:ιq t 

  1:ιq t   0ιv t 

  1ιv t 

Figure 24: State Graph of Tangential Force by Switching Variable  ιq t

It is assumed that both the static and kinetic friction are described approximately by formula

(125) with friction coefficient μ , then the transient conditions of the switching variable

   1,1ιq t  can be developed by conditional expressions in (141) as follows:

90

       
 
 

   












0ιvιq
0ιv1
0ιv1

:ιqιμfιqιf

t
-

t

t

t

tcntt

(141)

whereas  ιfcn and  ιf t show the radial and tangential forces. For the tangential velocity

 ιv t three different values are possible   0ιv t  ,   0ιv t  and   0ιv t  . The tangential

force depends on the radial force, the switching variable  ιq t and the friction coefficient.

Here it is assumed that the switching variable  ιq t holds its previous value     ιq:ιq tt , if

the tangential impact velocity is equal to zero and the conditional relation

     0ιd0ιfn  is valid. The modified state graph is shown in Figure 25.

  1:ιq t 

  1:ιq t   0ιv t 

  1ιv t 

  0ιv t 

  0ιv t 

Figure 25: Modified State Graph of Switching Variable  ιq t

The system structure switches if a change in the variables  ιq c and  ιq t occurs. The

switching variable  ιq c defines the contact state, and the variable  ιq t defines the changing

direction of the friction force state. The state graph of the rotor-stator system is demonstrated

with the conditional expressions (141) and (140) in Figure 26.

91

  0ιqc 

     1ιq1ιq tc 

     





  ιD

2π
ωccιDckιf hhn

 
 

     
     

 
 









































ιY
ιX

ιcosιsin
ιsinιcos

2π
ωc

2
Dω
0

ιv
ιd

rs

rs
r

t 


   
 










ιX
ιYatanι

rs

rs

      0srrs XιXιXιX 
      0srrs YιYιYιY 

     ιYιXιR 2
rs

2
rsrs 

    1ιRιD rs 
       

     








0ιd0ιf0
0ιd0ιf1

:ιq
n

n
c   ιcDιd 

 
 

 
 
  0ιv

0ιv
0ιv

ιq
1
1

:ιq

t

t

t

-
t

t












 



     1ιq1ιq tc 

  0ιqc 

     
     

   
   

           
           

0






































ιμcosιsinιDA2ζιDA
ιμsinιcosιDA2ζιDA

πι2Esin2π
πι2Ecos2π

ιYAιYA2ζιY
ιXAιXA2ζιX

hh
2
h

hh
2
h

2

2

r
2
rrrrr

r
2
rrrrr




     
     

   
   

           
           

0








































ιμcosιsinιDA2ζιDA
ιμsinιcosιDA2ζιDA

πι2Esin2π
πι2Ecos2π

ιYAιYA2ζιY
ιXAιXA2ζιX

hh
2
h

hh
2
h

2

2

r
2
rrrrr

r
2
rrrrr




     
     

           
           

0






























ιμcosιsinιDA2ζιDA
ιμsinιcosιDA2ζιDA

ιYAιYA2ζιY
ιXAιXA2ζιX

hh
2
h

hh
2
h

s
2
sssss

s
2
sssss




     
     

           
           

0































ιμcosιsinιDA2ζιDA
ιμsinιcosιDA2ζιDA

ιYAιYA2ζιY
ιXAιXA2ζιX

hh
2
h

hh
2
h

s
2
sssss

s
2
sssss




     
     

0














ιYAιYA2ζιY
ιXAιXA2ζιX

s
2
sssss

s
2
sssss

     
     

   
   

0























πι2Esin2π
πι2Ecos2π

ιYAιYA2ζιY
ιXAιXA2ζιX

2

2

r
2
rrrrr

r
2
rrrrr

  0ιq c 

Figure 26: Rotor-Stator State Graph

In the simplified simulation system, the direction of  ιv t does not change. By setting

convenient initial values, the variable  ιv t stays greater than zero, so the simplified

automaton is modified as follows

92

  0ιq c 

  1ιq c 

            ιsinιYιcosιX
2π
ω

cιd rsrs  

   
 










ιX
ιYatanι

rs

rs

      0srrs XιXιXιX 
      0srrs YιYιYιY 

     ιYιXιR 2
rs

2
rsrs 

       
     









0ιd0ιf0
0ιd0ιf1

:ιq
n

n
c

     
     

   
   

           
           

0







































ιμcosιsinιDA2ζιDA
ιμsinιcosιDA2ζιDA

πι2Esin2π
πι2Ecos2π

ιYAιYA2ζιY
ιXAιXA2ζιX

hh
2
h

hh
2
h

2

2

r
2
rrrrr

r
2
rrrrr




     
     

           
           

0































ιμcosιsinιDA2ζιDA
ιμsinιcosιDA2ζιDA

ιYAιYA2ζιY
ιXAιXA2ζιX

hh
2
h

hh
2
h

s
2
sssss

s
2
sssss




     
     

0














ιYAιYA2ζιY
ιXAιXA2ζιX

s
2
sssss

s
2
sssss

     
     

   
   

0























πι2Esin2π
πι2Ecos2π

ιYAιYA2ζιY
ιXAιXA2ζιX

2

2

r
2
rrrrr

r
2
rrrrr

     ιXιXιX srrs 

     ιYιYιY srrs 

  1ιq c 

  0ιq c 

     





  ιD

2π
ωccιDckιf hhn

   ιcDιd 

    1ιRιD rs 

Figure 27: Rotor-Stator State Graph for   0ιv t 

The state vector is defined by

                  Tssssrrrr ιΥ,ιΥ,ιΧ,ιΧ,ιΥ,ιΥ,ιΧ,ιΧ:ιx 
 .

The algebraic variable vector is defined by

      Tn ιf,ιd:ιy 
 .

The extended variable vector is

      Text ι,ιD,ιD:x 
 .

Thus, the system of differential equations of the noncontact case is established for   0ιq c 

by (142).

93

   
          
   
          
   
      
   
      ιxAιxA2ζιx

ιxιx
ιxAιxA2ζιx

ιxιx
πι2Esin2πιxAιxA2ζιx

ιxιx
πι2Ecos2πιxAιxA2ζιx

ιxιx

7
2
s8ss8

87

5
2
s6ss6

65

2
3

2
r4rr4

43

2
1

2
r2rr2

21































(142)

The system of ODEs (143) is defined for the contact simulation of rotor with stator in case of

  1ιq c  .

   
                      
   
                      
   
                  
   
                  ιxμcosιxsinιxA2ζιxAιxAιxA2ζιx

ιxιx

ιxμsinιxcosιxA2ζιxAιxAιxA2ζιx

ιxιx

ιxμcosιxsinιxA2ζιxAπι2Esin2πιxAιxA2ζιx

ιxιx

ιxμsinιxcosιxA2ζιxAπι2Ecos2πιxAιxA2ζιx

ιxιx

3321

3321

3321

3321

extextexthhext
2
h7

2
s8ss8

87

extextexthhext
2
h5

2
s6ss6

65

extextexthhext
2
h

2
3

2
r4rr4

43

extextexthhext
2
h

2
1

2
r2rr2

21

































(143)

The switching of systems depends on the magnitudes of the constraint equations. The

radial intrusion is given by

   ιcxιy
1ext1 

(144)

and the radial force38 is

     ιx
2π
ωccιxckιy

21 exthexth2  .

(145)

38 The dimensional radial force (124) is rewritten in formula (145) for   1ιqc  .

94

Hence,  ιy1 and  ιy2 are part of the switching conditions and represent the variables  ιd

and  ιfn . The variables  ιx
1ext ,  ιx

2ext and  ιx
3ext are auxiliary variables.

              1yιxιxxιxιxιx 2
073

2
051ext1



(146)

                  ιxsinιxιxιxcosιxιxιx
332 ext84ext62ext 

(147)

      
     










051

073
ext xιxιx

yιxιxatanιx
3

(148)

The rhs. of dimensionless intrusion depth (146) can be inserted into (144). Hence the

dimensional intrusion depth (144) can be written as

              




  1yιxιxxιxιxcιy 2

073
2

0511 .

(149)

The contact angle  ιx
3ext in equation (147) can be substituted with its equivalent in (148).

Then the dimensionless intrusion depth
1extx and radial impact velocity

2extx in (145) can be

substituted with their equivalents in (146) and (147), which results in

           
              

     .
xιxιx
yιxιx

atansinιxιx
xιxιx
yιxιx

atancosιxιx
2π
ωccxckιy

051

073
84

051

073
62hexth2 1 






















































(150)

5.3.2 Reformulation of Explicit Euler’s Formula

For approximation of the event location for a transition from the noncontact case to the

contact case, the transient condition      0ιy0ιy 12  has to be valid. Thus, the

derivative of the radial indentation (149) is established by the chain rule, which is

demonstrated in appendix A2.1. This transformation is shown as follows

95

                       
            





 




2
073

2
051

8407362051
1

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιxcιy .

(151)

The transformation of radial force (150) to an ODE is demonstrated by (152). This

transformation is illustrated in A2.2.

                       
           

                    
    

                    
    

                     
          

    

         
              

     
































































































































 




051

073
84

051

073
62

2

051

073

2
051

0736205184

051

073
7

2
s8ss

2
3

2
r4rr

051

073
5

2
s6ss

2
1

2
r2rrh

2
073

2
051

8407362051
h2

xιxιx
yιxιx

atancosιxιx
xιxιx
yιxιx

atansinιxιx

1
xιxιx
yιxιx

1
xιxιx

yιxιxιxιxxιxιxιxιx

xιxιx
yιxιxatansinιxAιxA2ζπι2Esin2πιxAιxA2ζ

xιxιx
yιxιxatancosιxAιxA2ζπι2Ecos2πιxAιxA2ζ

2π
ωcc

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιxckιy

(152)

The radial force  ιy2 and the radial distance  ιy1 whereas      0ιy0ιy 12  do not

cross their threshold values synchronously. In the simulation, the variable  ιy2 triggers after

 ιy1 . Thus at the first switching the transient condition      0ιy0ιy 12  is sensitive on

condition   0ιy2  if   0ιy1  is fulfilled. Then the event location on t-axis for the first

transition is given via the discrete form of ODE (152) according to formula (15) as follows

 1j1jy

1j2,
1je x̂,ιf

ŷ
ιι~

2 





  .

(153)

96

In formula (153)  1j1jy x̂,ιf
2 

 is the discrete form of the rhs. of the derivative (152) given by

Euler’s algorithm, which is shown as follows

         
     

           
 

           
 

         
    

 

    
 
      

 
  .

xx̂x̂
yx̂x̂

atancosιxιx
xx̂x̂
yx̂x̂

atansinιxιx

1
xx̂x̂
yx̂x̂

1
xx̂x̂

yx̂x̂x̂x̂xx̂x̂x̂x̂

xx̂x̂
yx̂x̂

atansinx̂Ax̂A2ζπι2Esin2πx̂Ax̂A2ζ

xx̂x̂
yx̂x̂

atancosx̂Ax̂A2ζπι2Ecos2πx̂Ax̂A2ζ
2π
ωcc

yx̂x̂xx̂x̂

x̂x̂yx̂x̂x̂x̂xx̂x̂
ckx̂,ιf

01j5,1j1,

01j7,1j3,
84

01j5,1j1,

01j7,1j3,
62

2

01j5,1j1,

01j7,1j3,
2

01j5,1j1,

01j7,1j3,1j6,1j2,01j5,1j1,1j8,1j4,

01j5,1j1,

01j7,1j3,
1j7,

2
s1j8,ss1-j

2
1j3,

2
r1j4,rr

01j5,1j1,

01j7,1j3,
1j5,

2
s1j6,ss1-j

2
1j1,

2
r1j2,rrh

2
01j7,1j3,

2
01j5,1j1,

1j8,1j4,01j7,1j3,1j6,1j2,01j5,1j1,
h1j1jy2


























































































































































 



































(154)

For the second event, a state transition from the contact case to the noncontact case,

depends on the disjunction condition      0ιy0ιy 12  . In this case, an event occurs if

the variables  ιy2 or  ιy1 crosses the threshold value of zero. These are also not

synchronous events. Here, the variable  ιy1 intersects with the threshold value before  ιy2 .

Hence, et in this case is computed according to the formula (15) for ODE (151) as follows

     
        1j8,1j4,01j7,1j3,1j6,1j2,01j5,1j1,

2
01j7,1j3,

2
01j5,1j1,1j1,

1je x̂x̂yx̂x̂x̂x̂xx̂x̂c

yx̂x̂xx̂x̂ŷ
ιι~





 






 

 .

(155)

Thus, at the second event the variable  ιy2 does not trigger the system transition.

However the transformation of constraint equation (150) to its appropriate ODE, for

determination of  ιy2 regarding a state transition from contact case to the noncontact case, is

demonstrated in A2.2 by ODE (168).

97

5.3.3 Reformulation of Implicit Trapezodial Formula for Newton’s
Method

An approximation of the transient vector for a transition from the noncontact state to the

contact state is processed after the crossing of the threshold value. Thus, at state event, the

event variable is set equal to its threshold value 0a:y~ ej2,  . The system of event equations39

is established according to system (37) for reformulated trapezoidal formula by event vector

function (156). In order to compute the prediction values, Newton’s method40 is used as

shown in (38).

 

 

               

 

               

 

    

 

    

     

                




































































 






 



































k,extk8,k4,k,extk6,k2,h
2

0k7,k3,
2

0k5,k1,he

2
0k7,k3,

2
0k5,k1,k1,

k7,
2
sk8,ss1j7,

2
s1j8,ss

ke,
1j8,k8,

k8,1j8,
ke,

1j7,k7,

k5,
2
sk6,ss1j5,

2
s1j6,ss

ke,
1j6,k6,

k6,1j6,
ke,

1j5,k5,

ke,1j
2

k3,
2
rk4,rr1j

2
1j3,

2
r1j4,rr

ke,
1j4,k4,

k4,1j4,
ke,

1j3,j3,

ke,1j
2

k1,
2
rk2,rr1j

2
1j1,

2
r1j2,rr

ke,
1j2,k2,

k2,1j2,
ke,

1j1,k1,

1kke,

33
x~atansinx~x~x~atancosx~x~

2π
ω

cc1yx~x~xx~x~cka

1yx~x~xx~x~cy~

x~Ax~A2ζx̂Ax̂A2ζ
2
ι~Δ

x̂x~

x~x̂
2
ι~Δ

x̂x~

x~Ax~A2ζx̂Ax̂A2ζ
2
ι~Δ

x̂x~

x~x̂
2
ι~Δ

x̂x~

t~Δι2Esin2πx~Ax~A2ζι2Esin2πx̂Ax̂A2ζ
2
ι~Δ

x̂x~

x~x̂
2
ι~Δ

x̂x~

t~Δι2Ecos2πx~Ax~A2ζι2Ecos2πx̂Ax̂A2ζ
2
ι~Δ

x̂x~

x~x̂
2
ι~Δ

x̂x~

y~,x
~

,ι~Δĥ







(156)

Afterwards the transient vector is approximated using the components of the prediction vector

   Tek1,
T
kk1j

TT
e

T
ee a,y~,x

~
,t~Δt:y

~
,x

~
,t~ 

 

according to formula (39).

39 For computation of event location at the state event, the event vector function is reformulated as a system of
equation.
40 System (156) is written in short forms with variable k,ext3

x~ , hence for numerical processing of (156) this

variable must be replaced with its equivalent
 
 















0k5,k1,

0k7,k3,
k,ext xx~x~

yx~x~
atan:x~

3
.

98

For a state vector prediction of a transition from the contact case to the noncontact

case, the system of equation (157) is applied.

             0y~,x~,ι~Δĥ,y~,x~,ι~Δĥ,y~,x~,ι~Δĥ,.,y~,x~,ι~Δĥ,y~,x~,ι~Δĥy~,x~,ι~Δĥ
T

k2,kkyk2,kkyk2,kk8k2,kk2k2,kk1k2,kk 21







(157)

The variable j1,y~ in (157) is replaced with its threshold value 0a:y~ ej1,  . The prediction of

root location of the system of equations (157) is done with the Newton’s method (38). The

elements of (157) are defined in A2.3.

After the prediction phase, the approximation of the transient vector is realized by

computing trapezoidal method (39) using the predicted magnitudes.

5.3.4 Henon’s Method

The semi-explicit DAEs of the rotor-stator are transformed to ODEs via the derivatives of

both algebraic equations (149) and (150). These transformations are demonstrated by ODEs

(151), (152) and (168).

According to the transition condition explained in 5.3.2, the variable  ιy2 influences the

structure transition from the first noncontact case to the contact case. Hence, the variable 2y

is set as an independent variable and the independent variable  2yι as dependent. The

Henon’s transformation is given according to the presented method in subchapter 4.2 for the

rotor-stator noncontact to contact case with

    22y2 yx,yιf
1Γ 

as follows

99

   
    

           
    

   
    

           
    

   
    

      
    

   
    

      
    

    
    

       .yx,yιf
1yι

dy
d

yx,yιf
yxf

yy
dy
d

yx,yιf
yxAyxA2ζyx

dy
d

yx,yιf
yxyx

dy
d

yx,yιf
yxAyxA2ζyx

dy
d

yx,yιf
yxyx

dy
d

yx,yιf
y2Esin2πyxAyxA2ζyx

dy
d

yx,yιf
yxyx

dy
d

yx,yιf
y2Ecos2πyxAyxA2ζyx

dy
d

yx,yιf
yxyx

dy
d

22y2
2

2

22y2

2y
21

2

22y2

27
2
s28ss

28
2

22y2

28
27

2

22y2

25
2
s26ss

26
2

22y2

26
25

2

22y2

2
2

23
2
r24rr

24
2

22y2

24
23

2

22y2

2
2

21
2
r22rr

22
2

22y2

22
21

2

1



















































(158)

In system of ODEs (158),     22y2 yx,yιf  stands for the rhs. of ODE (152) with independent

variable 2y . This term is shown as follows

                          
           

                    
    

                    
    

                     
          

    

         
              

     .
xyxyx
yyxyx

atancosyxyx
xyxyx
yyxyx

atansinyxyx

1
xyxyx
yyxyx

1
xyxyx

yyxyxyxyxxyxyxyxyx

xyxyx
yyxyx

atansinyxAyxA2ζπι2Esin2πyxAyxA2ζ

xyxyx
yyxyx

atancosyxAyxA2ζπι2Ecos2πyxAyxA2ζ
2π
ωcc

yyxyxxyxyx

yxyxyyxyxyxyxxyxyx
ckyx,yιf

02521

02723
2824

02521

02723
2622

2

02521

02723
2

02521

027232622025212824

02521

02723
27

2
s28ss

2
23

2
r24rr

02521

02723
25

2
s26ss

2
21

2
r22rrh

2
02723

2
02521

282402723262202521
h22y2




































































































































 






(159)

100

The rhs. of ODE (151) is defined by formula (160) for ODE system (158) as follows

                        
           

.
yyxyxxyxyx

yxyxyyxyxyxyxxyxyxcyxf
2

02723
2

02521

282402723262202521
2y1






 






(160)

The independent variable of the ODE system (158) is 2y:τ  and the dependent variable is

defined by    τι:τχ10  , hence the state vector in Henon’s transformed system is

                      T187654321 τι,τy,τx,τx,τx,τx,τx,τx,τx,τx:τχ 


.

The computation of eι
~ is given according to formula (67) with 0:a e  by ODE45 applied on

system of ODEs in (158). In the next stage, the approximated transient state vector is

computed on interval  e1-j ι~,ι using solver algorithm ODE45.

At the second event, a transition from the contact case to the noncontact case depends

on the event variable 1y . Hence, the rhs. of the ODE (151) is applied for setting

  1y yxf
1

1

 .

In this case, the variable 1y is realized as independent variable and the variable  1yι as

dependent variable. The second event is triggered by the disjunction condition

     0ιy0ιy 12  and the variable  ιy1 fulfilled its conditional relation earlier than

 ιy2 . The Henon’s transformation is given according to the method described in subchapter

4.2 as follows

101

   
  

                       
  

   
  

                       
  

   
  

                  
  

   
  

                  
  

    

      
   .
yxf

yx,yιf
yy

dy
d

yxf
1yι

dy
d

yxf
yxμcosyxsinyxA2ζyxAyxAyxA2ζ

yx
dy
d

yxf
yx

yx
dy
d

yxf
yxμsinyxcosyxA2ζyxAyxAyxA2ζ

yx
dy
d

yxf
yxyx

dy
d

yxf
yxμcosyxsinyxA2ζyxAy2Esin2πyxAyxA2ζ

yx
dy
d

yxf
yxyx

dy
d

yxf
yxμsinyxcosyxA2ζyxAy2Ecos2πyxAyxA2ζ

yx
dy
d

yxf
yxyx

dy
d

1y

11y2
12

1

1y
1

1

1y

1ext1ext1exthh1ext
2
h17

2
s18ss

18
1

1y

18
17

1

1y

1ext1ext1exthh1ext
2
h15

2
s16ss

16
1

1y

16
15

1

1y

1ext1ext1exthh1ext
2
h1

2
13

2
r14rr

14
1

1y

14
13

1

1y

1ext1ext1exthh1ext
2
h1

2
11

2
r12rr

12
1

1y

12
11

1

1

1

1

3321

1

1

3321

1

1

3321

1

1

3321

1



















































(161)

The structure of     112y yxyιf  is the same as the rhs. of the ODE (168) (appendix A2.2). The

computation process of ODEs (161) is given for interval  e1j1j1-j aτ̂τ̂,τ̂   with 0a e  and

1j1j ŷ:τ̂   . The system of ODEs (161) is treated by ODE45 according to initial values of (67)

with the independent variable 1y:τ  by state vector

                      T287654321 τy,τι,τx,τx,τx,τx,τx,τx,τx,τx:τχ 


.

In the next stage, the approximation of the transient state vector regarding the interval

 e1j1j1-j ιιι,ι   is carried out by the solver ODE45.

102

5.3.5 Simulation Comparisions

For simulations, the hypothetical parameters of the rotor-stator contact model are

defined in Table 10.

Parameter Description

0.0239m:x0  offset between rotor and stator in x-direction

0.0000001m:y0  offset between rotor and stator in y-direction

2m:D r  rotor diameter

0.00999m:e  eccentricity radial offset of rotor

0.024m:c  radial clearance between rotor and stator

8kg:m r  mass of rotor

20kg:ms  mass of stator

msN150:cr  rotor damping coefficient

mN800000:k r  rotor stiffness coefficient

msN20000:cs  stator damping coefficient

mN700000:ks  stator stiffness coefficient

msN7:ch  contact damping coefficient

mN100000:kh  contact stiffness coefficient

srad101:ω  angular velocity

0.002:μ  friction coefficient

Table 10: Rotor-Stator Simulation Parameters

The simulation of the rotor-stator model provides the following results, which are

shown in Figures 28, 29, 30, 31.

103

0 0.05 0.1 0.15 0.2 0.25
-8

-6

-4

-2

0

2

4

6

8
x 10-3

t

x1
,x

3

Rotor Position

x1
x3

Figure 28: Simulation of Rotor Position

0 0.05 0.1 0.15 0.2 0.25
-0.5

0

0.5

1

1.5

2

2.5
x 10-6

t

x5
,x

7

Stator Position

x5
x7

Figure 29: Simulation of Stator Position

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-3

-8

-6

-4

-2

0

2

4

6

8
x 10-3

x1

x3

Rotor Trajectories

Figure 30: Simulation of Rotor Trajectory

-0.5 0 0.5 1 1.5 2 2.5

x 10
-6

-2

0

2

4

6

8

10
x 10-9

x5

x7

Stator Trajectories

Figure 31: Simulation of Stator Trajectory

Figures 28 and 29 show the rotor and stator positions along x- and y-axes and Figure

30 and 31 show the rotor and stator trajectories.

The simulation comparisons are demonstrated in Table 11.

104

Methods Simulink Adaptive (Matlab)

Solver Algorithm
Simulink

ODE4

Matlab

ODE45

Type Explicit Explicit

Programming

Environment
Simulink Matlab

Threshold Value ea 0 0

 e2 t~y [-5.340435e-002, 1.085920e-002] 6.505906e-014

Local Error of  e2 t~y - 6.505906e-014

Fixed Step-Size 1e-005 1e-005

eι
~Δ - 7.896551e-006

eι
~ [5.459e-002, 5.46e-002] 5.459789e-002

Table 11: First Event Comparisons of Rotor-Stator Simulations at the Transition from Noncontact

Operating to Contact State

Methods
Reformulation of Explicit

Euler’s Formula

Reformulation of Implicit

Trapezoidal Formula for

Newton’s Method

Henon

Solver Algorithm
Implemented

Euler’s Solver

Implemented Trapezoidal

Solver Mixed Newton Method

Programmed Henon

Using Matlab ODE45

Type Explicit Implicit Explicit

Programming

Environment
Matlab Matlab Matlab

Threshold Value ea 0 0 0

 e2 t~y 0 7.216449e-016 -8.816886e-009

Local Error of

 e2 t~y 0 7.216449e-016 8.816886e-009

Fixed Step-Size 1e-005 1e-005 1e-005

eι
~Δ 5.455252e-006 1.894331e-006 7.897663e-006

eι
~ 5.459545e-002 5.460189e-002 5.459789e-002

105

The simulation results in Table 12 show local errors for approximated variables

involved in first and second events.

Methods
Reformulation of

Explicit Euler’s

Formula

Reformulation of
Implicit

Trapezoidal
Formula for

Newton’s Method

Henon Adaptive Matlab

Error  e2 t~y at First Event 0 7.216449e-16 8.816886e-09 6.505906e-14

Error  e1 t~y at Second Event 2.346380e-20 0 5.918564e-12 0

Table 12: Errors of Computed Algebraic Variables  e1 t~y and  e1 t~y Involved in the First and Second
Events in Hybrid System of Rotor-Stator

Table 13 shows the summary of simulations, which are implemented related to different

types of systems.

Table 13: Summary of Different Simulations Related to System Types

41 Reformulation of the implicit solver for root-finding method is applied on the semi-explicit DAEs without an
index reduction procedure. In this method, the root-finding system outputs should be converged in root location.

Systems
Reformulation of

(Explicit Euler) Solver Formula

Reformulation of

(Implicit Trapezoidal) Solver

Formula for

Newton’s Method

Henon

(Using ODE45)

Autonomous

ODEs
Bouncing Ball with ODEs Bouncing Ball with ODEs Bouncing Ball with ODEs

Non-Autonomous

ODEs

Rotor-Stator with DAEs

transformed in ODEs
-

Rotor-Stator with DAEs

transformed in ODEs

Semi-Explicit

Autonomous DAEs

Filament Pendulum using Index-

Reduction

Filament Pendulum Directly on

Semi-Explicit DAEs41

Filament Pendulum using Index-

Reduction

Semi-Explicit

Non-Autonomous

DAEs

Rotor-Stator using Index-

Reduction

Rotor-Stator Directly on Semi-

Explicit DAEs

Rotor-Stator using Index-

Reduction

106

Table 14 shows the programming cost of the different algorithms. The root-finding

method contains the solver algorithm, Newton’s method with Jacobian matrix and shows

higher implementation cost than other algorithms.

Table 14: Implementation Costs of Different Event Location Approximation Methods

Table 15 demonstrates the approximated execution times of different simulations from

start until the end of the approximation procedures of the transient vectors at the first events.

Table 16 shows certain system benchmarks of different approximation methods of

transient vectors.

Subjects

Reformulation of

(Explicit Euler)

Solver Formula

Reformulation of

(Implicit Trapezoidal)

Solver Formula for

Newton’s Method

Henon’s Method Adaptive
Without Zero-

Crossing

Programming Cost
Low for simple

models.
High - - Low

Simulations

Methods Bouncing Ball Filament Pendulum Rotor-Stator

Reformulation of Explicit Euler’s

Formula

1.936829e-01 8.841572e+01 2.873217

Reformulation of Implicit Trapezoidal

Formula for Newton’s Method

3.065886 1.225275e+02 5.889020

Henon (ODE45 Matlab) 1.080181e+01 1.189660e+01 1.531918

Adaptive (ODE45 Matlab) 8.599733 1.142153e+01 1.095217

Without Zero-Crossing (ODE4 Simulink) 4.399873e+01 2.122344e+01 4.391379

Table 15: Comparisons of Approximated Execution Time for First Event

107

42 If the range of the integration of the ODE in Henon’s transformation is not equivalent to the domain of
appropriate ODE involved in state event, then the Henon’s method shows an inaccurate result. This may be
given for non-autonomous systems. The behavior of the function of the event location approximation procedure
at the event environment should be one to one and onto and it should be continuous on the approximation
interval.

Methods Advantage Disadvantage

Reformulation of Solver Formula
 Low Local Error.
 Simple Implementation for

Simple Solver.

 Simple Solver Induce often High
Global Error Magnitudes.

 Index-Reduction Procedure for
DAEs Is Inevitable.

 Instability if Functional Part of
the Solver in Reformulated
Formula Is Singular.

Reformulation of Solver Formula for
Root-Finding Methods

 Low Local Error.
 Handling of Semi-Explicit DAEs

without Index-Reduction.

 High Implementation Cost.
 Root-Finding Method May not

Converge.
 Instability of Newton’s Method

if Jacobian Matrix Is Singular.
 High Execution Time for some

Applications


Henon (ODE45 Matlab) Applicable on Embedded Solvers.

 Instability if Denominator of 
Is Singular.

 Restricted Application for Non-
autonomous System42.

 Index-Reduction Procedure for
DAEs Should be Given.

Table 16: Advantages and Disadvantages of Various Methods

108

6 Conclusion

A problem of hybrid and variable structure dynamic systems is the precise approximation of

the transient state vector, algebraic variables and event location at the system-switching event.

This dissertation seeks to find answers to the problem of approximation of transient state

vectors, algebraic vectors and event locations of the hybrid and variable structure systems of

ODEs and/or DAEs at the state events or system switching. The main aims of this thesis are

research and development of methods and algorithms, which are characterized as approximate

solutions of hybrid or variable structure systems at the surface of crossing sections. The

approximated solutions can be used for reduction of local errors in hybrid and variable

structure systems at the switching event.

The results of this research can be classified in two categories, “reformulation of solver

formula” and “reformulation of solver formula for root-finding methods”. Another focus is on

the “Henon’s method”. These methods are developed on certain explicit or implicit solver

algorithms.

The main outcome of this thesis is as follows:

 The “reformulation of solver formula” is developed for the approximation of a

transient state vector. This method consists of solving the reformulated solver

equation regarding the event step-size at the state event and approximation of a

transient state vector by using the solver formula. This method can be applied on

certain explicit solver for variable structure systems of ODEs and DAEs

transformed into ODEs.

 Another result has been obtained for variable structure systems of ODEs and

DAEs transformed into ODEs using the root-finding method on a reformulated

explicit solver formula for approximation of transient state vector.

 Another conclusion is the Method development for approximating the transient

state vector via application of the root-finding method of nonlinear systems of

equations on reformulated implicit solver system equations. This method is

specified for implicit solver and implemented with two-procedure prediction and

approximation stages for variable structure systems of ODEs or DAEs

transformed into ODEs.

109

 The Method for approximation of a transient vector in hybrid system of semi-

explicit DAEs has been developed in two prediction and approximation

procedures. This method handles hybrid system of semi-explicit DAEs without

index-reduction via application of the root-finding method of nonlinear systems of

equations with reformulated system of implicit solver.

 Henon’s method is an important part of this dissertation. The research on Henon’s

method includes implementations of approximation of the transient state vector of

variable structure systems of ODEs and DAEs transformed into ODEs for

embedded solver systems.

In this dissertation, altogether fifteen simulation programs were developed. Nine

simulation programs were implemented for verification of three methods: “Reformulation of

solver formula, reformulation of solver formula for root-finding method and Henon’s

methods. Six additional simulations were implemented for comparisons with developed

methods in which three of them were realized with Matlab adaptive method and three further

simulations without event location approximations.

The simulation models are “bouncing ball”, “filament pendulum” and “rotor-stator

contact” models. The bouncing ball is a hybrid system of ODEs. The rotor-stator contact

model is a hybrid system of semi-explicit DAEs and the filament pendulum is a variable

structure system of semi-explicit DAEs.

The simulations via two methods reformulation of solver formula and reformulation of

solver formula for root-finding method were realized by algorithm developments and coding

of the entire solver systems; whereas Henon’s method was realized by developing the

algorithms on embedded ODE45 of Matlab.

The simulation results show that the root-finding method composed with implicit

trapezoidal solver has a relatively low local error for approximated magnitude of event

location in hybrid semi-explicit DAEs. The root-finding Method has higher programming

costs.

Henon’s method is one with certain flexibility regarding coupling for embedded solver

systems.

The simulation results and relative local errors of approximated event variables are listed

in various tables. The results are comparable with the results given by Matlab using adaptive

zero-crossing and without zero-crossing.

110

7 Appendices

A1: Separate Simulations of Hybrid Models in Different Frames

A1.1: Simulation of a Hybrid Model of Filament Pendlum

The different structures of a hybrid system can be simulated separately. In the following

figure, the pendulum simulation model is shown.

Pendulum Model

M

M

0.75

9.80665

g3

9.80665

g2

0.97

c

XY Graph

cos

Trigonometric
Function7

cos

Trigonometric
Function6

sin

Trigonometric
Function5

sin

Trigonometric
Function1

STOP

Stop Simulat ion1

|u|2

Math
Function2

1

L7

1

L6

1

L5

1

L2

1
s

Integrator3

1
s

Integrator2

< 0

Compare
To Zero

0.75

1/J1

0.75

,

0.75

M

1

4

w=phi_dot

w=phi_dot phi

x

F
F

Figure 32: Pendulum Simulation Model in Simulink

This model runs as long as the pendulum attraction force is greater or equal to zero. If the

tension force decreases below zero   0tFa  , then the simulation stops.

Before starting the simulation of the free-fall model, its variables have to be initialized

manually by the computed initialization variables via the pendulum model. The free-fall

model is shown as follows:

111

Fall Model

XY Graph1

atan

Trigonometric
Function

STOP

Stop Simulat ion1

Scope4

Scope3

Scope2Scope1

Scope

uv

Math
Function2

|u|2

Math
Function1

|u|2

Math
Function 1/2

M 10.46

M

1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

Divide

du/dt

Derivative

>= 1

Compare
To Constant

1/0.46

1/M

1

-k

9.8

-g2

-1

-K

x_dot

x_dot_dot

y_dot

y _dot_dot

S phi phi_dot

r

Figure 33: Free-Fall Simulation Model in Simulink

The coordinates of the pendulum position, after a completed free-fall simulation,

deflects from its equilibrium point, so the values of the last free-fall coordinates can be used

to reinitialize the pendulum model, and the pendulum simulation would restart.

Due to the automation of the event handling the two models can be simulated

automatically after each other. In this case, at the state event, the transient state vector and the

location of the independent variable are approximated and the initializations are carried out

automatically.

The following figures show the three separate simulation results of the variable structure

filament pendulum model. Figure 34 shows the pendulum trajectory from the start until the

free-fall event. Figure 35 shows the free-fall simulation when the pendulum deflects from its

orbit.

112

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

Y
p

Xp

Pendulum Trajectory until Event F<0

Figure 34: Pendulum Swinging after Start

-1 -0.8 -0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Fall Trajectory

Y
p

Xp

Figure 35: Free-Fall after Swinging

During the free-fall, when the pendulum achieves its maximum radius, then the

simulation must be stopped and the pendulum swinging simulation should be started. The

result of this simulation is illustrated in Figure 36.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.8

-0.6
Pendulum Trajectory until Equilibrium Point

Y
p

Xp

Figure 36: Pendulum Swinging after Free-Fall

113

A2: Rotor-Stator DAEs transformed into ODEs

A2.1:

The transformation of the algebraic equation (149) to an ODE is realized by the chain rule.

   

                     

                     





























ιx
dι
dιx,ιx,ιx,ιx

x
x

ιx
dι
dιx,ιx,ιx,ιx

x
x

ιx
dι
dιx,ιx,ιx,ιx

x
x

ιx
dι
dιx,ιx,ιx,ιx

x
x

c

ιx
dι
dcιy

dι
d

77531
7

ext
57531

5

ext

37531
3

ext
17531

1

ext

ext1

11

11

1

(162)

The derivative of algebraic equation (149) is shown by

                       
            





 




2
073

2
051

7307351051
1

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιxcιy




(163)

with substituting of  ιx1 ,  ιx3 ,  ιx5 and  ιx 7 with their equivalents the following ODE

results

                       
            





 




2
073

2
051

8407362051
1

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιxcιy .

(164)

114

A2.2:

The chain rule on algebraic equation (150) is demonstrated by (165).

 

                     

                     

                                     

                                     

                                     

                                     















































































ιx
dι
dιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx

x
x

ιx
dι
dιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx

x
x

ιx
dι
d

ιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx
x

x
ιx

dι
d

ιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx
x

x

ιx
dι
dιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx

x

x
ιx

dι
dιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx

x

x

ιx
dι
d

ιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx
x

x
ιx

dι
d

ιx,ιx,ιx,ιx,ιx,ιx,ιx,ιx
x

x
2π
ω

cc

ιx
dι
dιx,ιx,ιx,ιx

x

x
ιx

dι
dιx,ιx,ιx,ιx

x

x

ιx
dι
dιx,ιx,ιx,ιx

x

x
ιx

dι
dιx,ιx,ιx,ιx

x

x
ck

ιy
dι
d

887654321
8

ext
787654321

7

ext

687654321
6

ext
587654321

5

ext

487654321
4

ext
387654321

3

ext

287654321
2

ext
187654321

1

ext
h

77531
7

ext
57531

5

ext

37531
3

ext
17531

1

ext
h

2

22

22

22

22

11

11

(165)

Hence (165) can be written as follows

                       
           

         
    

         
    

                     
          

    

         
              

     .
xιxιx
yιxιxatancosιxιx

xιxιx
yιxιxatansinιxιx

1
xιxιx
yιxιx

1
xιxιx

yιxιxιxιxxιxιxιxιx

xιxιx
yιxιxatansinιxιx

xιxιx
yιxιxatancosιxιx

2π
ωcc

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιxckιy

051

073
84

051

073
62

2

051

073

2
051

0735105173

051

073
84

051

073
62h

2
073

2
051

8407362051
h2




















































































































































 










(166)

The derivatives of  ιx1 ,  ιx3 ,  ιx5 and  ιx 7 can be replaced by their equivalents

but the derivatives of  ιx 2 ,  ιx 4 ,  ιx 6 and  ιx8 have hybrid equations, thus, they are

replaced in (166) with their equivalents for two cases   0ιqc  according to ODEs (142) and

115

  1ιqc  according to ODEs (143). Therefore, the ODE (166) should be used once before

contacting for   0ιqc 

                       
           

                    
    

                    
    

                     
          

    

         
              

     






























































































































 




051

073
84

051

073
62

2

051

073

2
051

0736205184

051

073
7

2
s8ss

2
3

2
r4rr

051

073
5

2
s6ss

2
1

2
r2rrh

2
073

2
051

8407362051
h2

xιxιx
yιxιxatancosιxιx

xιxιx
yιxιxatansinιxιx

1
xιxιx
yιxιx

1
xιxιx

yιxιxιxιxxιxιxιxιx

xιxιx
yιxιxatansinιxAιxA2ζ2ππEsin2πιxAιxA2ζ

xιxιx
yιxιxatancosιxAιxA2ζ2Ecos2πιxAιxA2ζ

2π
ωcc

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιxckιy





(167)

and once more in contact case for   1ιqc  as follows

116

                       
           

                    

         
    

         
    

    
    

    
    

                

         
              

    

    
    

    
    

    
    

                    

         
    

         
    

    
    

    
    

                

         
              

    

    
    

    
    

    
    

                    
       

    

         
              

     .
xιxιx
yιxιx

atancosιxιx
xιxιx
yιxιx

atansinιxιx

1
xιxιx
yιxιx

1
xxx

yxιxιxιxxιxιxιxιx

xιxιx
yιxιx

atansin
xιxιx
yιxιx

atanμcos
xιxιx
yιxιx

atansin

xιxιx
yιxιx

atansinιxιx
xιxιx
yιxιx

atancosιxιxA2ζ

1yιxιxxιxιxAιxAιxA2ζ

xιxιx
yιxιx

atanμcos
xιxιx
yιxιx

atansin

xιxιx
yιxιx

atansinιxιx
xιxιx
yιxιx

atancosιxιxA2ζ

1yιxιxxιxιxA2cosE2πιxAιxA2ζ

xιxιx
yιxιx

atancos
xιxιx
yιxιx

atanμsin
xιxιx
yιxιx

atancos

xιxιx
yιxιx

atansinιxιx
xιxιx
yιxιx

atancosιxιxA2ζ

1yιxιxxιxιxAιxAιxA2ζ

xιxιx
yιxιx

atanμsin
xιxιx
yιxιx

atancos

xιxιx
yιxιx

atansinιxιx
xιxιx
yιxιx

atancosιxιxA2ζ

1yιxιxxιxιxA2cos2ιxAιxA2ζ
2π
ωcc

yιxιxxιxιx

ιxιxyιxιxιxιxxιxιx
ckιy

051

073
84

051

073
62

2

051

073
2

051

0736205184

051

073

051

073

051

073

051

073
84

051

073
62hh

2
073

2
051

2
h7

2
s8ss

051

073

051

073

051

073
84

051

073
62hh

2
073

2
051

2
h

2
3

2
r4rr

051

073

051

073

051

073

051

073
84

051

073
62hh

2
073

2
051

2
h5

2
s6ss

051

073

051

073

051

073
84

051

073
62hh

2
073

2
051

2
h

2
1

2
r2rrh

2
073

2
051

8407362051
h2








































































































































































































































 





 






















































































































 





 










































































































































 





 






















































































































 





 






 






 E



(168)

117

A2.3:

Form (169) gives the components of the event vector function, for a transition from rotor-

stator contact case to noncontact case. In this system, the extended variable k,ext3
x~ must be

substitute with its equivalent
 
 















0k5,k1,

0k7,k3,
k,ext xx~x~

yx~x~
atan:x~

3
. In simulation, form (169) is

used according to Newton’s root-finding method (38).

   
 

            
             
   
 

            
             
   

          
        
   

          
        
       

       

          k,extk8,k4,k,extk6,k2,h

2
0k7,k3,

2
0k5,k1,hk2,k2,kky

2
0k7,k3,

2
0k5,k1,k2,kky

k,extk,extk,exthhk,ext
2
hk7,

2
sk8,ss

1j,ext1j,ext1j,exthh1j,ext
2
h1j7,

2
s1j8,ss

ke,
1j8,k8,k2,kk8

k8,1j8,
ke,

1j7,k7,k2,kk7

k,extk,extk,exthhk,ext
2
hk5,

2
sk6,ss

1j,ext1j,ext1j,exthh1j,ext
2
h1j5,

2
s1j6,ss

ke,
1j6,k6,k2,kk6

k6,1j6,
ke,

1j5,k5,k2,kk5

k,extk,extk,exthhk,ext
2
hke,1-j

2
k3,

2
rk4,rr

1j,ext1j,ext1j,exthh1j,ext
2
h1-j

2
1j3,

2
r1j4,rr

ke,

1j4,k4,k2,kk4

k4,1j4,
ke,

1j3,k3,k2,kk3

k,extk,extk,exthhk,ext
2
hke,1j

2
k1,

2
rk2,rr

1j,ext1j,ext1j,exthh1j,ext
2
h1-j

2
1j1,

2
r1j2,rr

ke,

1j2,k2,k2,kk2

k2,1j2,
ke,

1j1,k1,k2,kk1

33

2

1

3321

3321

3321

3321

3321

3321

3321

3321

x~atansinx~x~x~atancosx~x~
2π
ω

cc

1yx~x~xx~x~cky~y~,x
~

,t~Δh

1yx~x~xx~x~cy~,x
~

,t~Δh

x~μcosx~sinx~A2ζx~Ax~Ax~A2ζ

x̂μcosx̂sinx̂A2ζx̂Ax̂Ax̂A2ζ
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ

x~x̂
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ

x~μsinx~cosx~A2ζx~Ax~Ax~A2ζ

x̂μsinx̂cosx̂A2ζx̂Ax̂Ax̂A2ζ
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ

x~x̂
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ

x~μcosx~sinx~A2ζx~At~Διπ2Esin2πx~Ax~A2ζ

x̂μcosx̂sinx̂A2ζx̂A2ππEsin2πx̂Ax̂A2ζ
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ

x~x̂
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ

x~μsinx~cosx~A2ζx~At~Δι2πEcos2πx~Ax~A2ζ

x̂μsinx̂cosx̂A2ζx̂Aπι2Ecos2πx̂Ax̂A2ζ
2
ι~Δ~

x̂x~y~,x
~

,t~Δĥ

x~x̂
2
ι~Δ

x̂x~y~,x
~

,t~Δĥ








 






 







































































(169)

118

8 List of Figures

Figure 1: A Variable Structure System with Switching System and Interfaces9
Figure 2: State Graph of Hybrid System ...12
Figure 3: Parameter Modifications in Hybrid System..13
Figure 4: Modifications of DAEs in Hybrid System..14
Figure 5: Total Structure Modification in Hybrid System..16
Figure 6: Approximation Procedure of Event Location in Hybrid System.............................20
Figure 7: State Graph of Bouncing Ball System..51
Figure 8: Approximated Solutions of Modified Bouncing Ball Hybrid System55
Figure 9: Trajectory of State Variables of Modified Bouncing Ball Hybrid System..............55
Figure 10: Forces in Free-Fall and Mathematical Pendulum Systems...................................60
Figure 11: Initializations at State Transitions for Free-Fall and Pendulum Systems...............64
Figure 12: State Graph of Variable Structure System of Semi-Explicit DAEs for Filament

Pendulum..65
Figure 13: Simulation of Filament Pendulum Positions...72
Figure 14: Simulation of Filament Pendulum Trajectory...72
Figure 15: Tangential and Radial Forces of Rotor-Stator in Contact Location.......................76
Figure 16: Rotor and Stator Offsets ..78
Figure 17: Stator Deflection..79
Figure 18: Rotor Eccentricity Radius and Rotor-Stator Deflections.......................................79
Figure 19: Radial Rotor to Stator Clearance..80
Figure 20: Simulation Concept Based on Dimensional and Dimensionless Variables............86
Figure 21: State Graph of Rotor-Stator Contact by Switching Variable  ιq c87
Figure 22: Extended Form of State Graph of Switching Variable  ιq c87
Figure 23: State Graph of Rotor-Stator Contact by Switching Variable  ιq c According to

Table 7..89
Figure 24: State Graph of Tangential Force by Switching Variable  ιq t89
Figure 25: Modified State Graph of Switching Variable  ιq t ..90
Figure 26: Rotor-Stator State Graph..91
Figure 27: Rotor-Stator State Graph for   0ιv t  ...92
Figure 28: Simulation of Rotor Position..103
Figure 29: Simulation of Stator Position ...103
Figure 30: Simulation of Rotor Trajectory ..103
Figure 31: Simulation of Stator Trajectory..103
Figure 32: Pendulum Simulation Model in Simulink...110
Figure 33: Free-Fall Simulation Model in Simulink ..111
Figure 34: Pendulum Swinging after Start ..112
Figure 35: Free-Fall after Swinging ..112
Figure 36: Pendulum Swinging after Free-Fall..112

119

9 Nomenclature

a Acceleration

ea Threshold value

na Radial acceleration

ra Radial acceleration

ta Tangential acceleration

hA Interpreted as the dimensionless abbreviation factor of the contact model

rA Interpreted as the dimensionless abbreviation factor of the rotor

sA Interpreted as the dimensionless abbreviation factor of the stator

c Radial clearance between rotor and stator

c Damping constant of ball

rc Rotor damping coefficient

sc Stator damping coefficient

hc Damping coefficient of contact system

xc Damping coefficient of free-fall equation along x-axis

yc Damping coefficient of free-fall equation along y-axis

pc Pendulum damping coefficient

C Set of conditional guards

d Radial intrusion depth

D Dimensionless radial intrusion depth

D Domain of a function

rD Rotor diameter

e Error

e Eccentricity radial offset of rotor

e Event index

E Set of arrows of transition topology

E Dimensionless value of e

f Function

f Force

120

cnf Switched radial intrusion force

ctf Switched tangential intrusion force

nf Radial intrusion force

nf Weight force in radial direction

tf Weight force in tangential direction

f


System vector function

F Set of the vector functions

F Logical value false

aF Tension force

F


Fully-implicit DAEs

g Gravity acceleration

g An algebraic equation

g


System algebraic equations (algebraic vector equation)

h Event function

h


System event function (event vector function)

H Hybrid automaton

i Index of state variable involved state event

 Interpretation

I Interval defined for independent variable

j Solver iteration index

J Moment of inertia

J Jacobian matrix

k Iteration index of root-finding method

hk Stiffness coefficient of contact model

 Index

L Set of discrete states

L Length of pendulum

m Mass of ball

m Mass of pendulum

rm Mass of rotor

sm Mass of stator

121

gM Moment of the gravitational force

dM Damping moment

n Dimension of state vector

N Field of natural number

P Set of modification parameters of hybrid automaton

Ρ Event plane, intersection plane with state variable

p


Parameter vector

q Switching variable

q Logical variable

Q Set of the switching variable

r Radius of ball

r Distance between centre of coordinate system and centre of pendulum

rsr Relative radial distance between rotor and stator

R Reset map

rsR Dimensionless value of rsr

R Field of real numbers

s Arc length of angle 

s Discrete state, node, location

Sy/Asy Set of synchronous or asynchronous variables for parallel processes

t Independent variable

t Time

T Logical value true

u Input vector

U Subset or subspace as a domain of a function

qU Set of input event variables

xU Set of the input continuous variables

zU Set of input discrete time state variables

v Ball velocity

tv Rotor-stator tangential impact velocity

yv Pendulum velocity in free-fall position along y-axis

xv Pendulum velocity in free-fall position along x-axis

122

eV Set of output event variables

xV Set of output continuous time state variables

zV Set of output discrete time state variables

W Weight

x State variable

ix State variable which is involved state event with index i

0x Offset between rotor and stator in x-direction

rx Position of rotor in x-direction

sx Position of stator in x-direction

rsx Relative deflection between rotor and stator in x-direction

x Continuous time state vector

x


Derivative of x with respect to independent variable time t

X Finite set of continuous states

0X Set of the initial states

0X Dimensionless value of offset 0x along x -axis

extx Extended variable in rotor-stator model

px Pendulum coordinate axis

rX Dimensionless value of rotor position rx along x-axis

sX Dimensionless value of stator position sx along x-axis

rsX Dimensionless value of relative deflection rsx along x-axis

y Algebraic variable

y Ball altitude

y Position on y-axis

0y Offset between rotor and stator along y-axis

ry Position of rotor along y-axis

sy Position of stator along y-axis

rsy Relative deflection between rotor and stator on y-axis

y Algebraic variable vector

Y Set of the algebraic variables

0Y Dimensionless value of offset 0y along y-axis

123

rY Dimensionless value of rotor position ry along y-axis

sY Dimensionless value of stator position sy along y-axis

rsY Dimensionless value of relative deflection rsy along y-axis

z Discrete time state vector

Z Set of the discrete state variables

β Elasticity constant of the ball

γ Auxiliary algebraic variable

γ Auxiliary algebraic variable vector

 Auxiliary function in Henon’s method

δ Auxiliary variable

Δt Step-size

eΔt Step-size at the state event (event step-size)

ε Upper tolerance value

rζ Damping ratio of dimensionless equation of rotor motion

sζ Damping ratio of dimensionless equation of stator motion

hζ Damping ratio of dimensionless contact model equation

 Auxiliary function




Auxiliary vector function

ι Independent variable in dimensionless system

 Tangent ratio

μ Friction coefficient of impact model

π Ratio of circle circumference to its diameter (pi)

τ Auxiliary independent variable

 Contact angle

p Pendulum angle

χ Auxiliary variable

χ Auxiliary state vector

ω Angular velocity

pω Pendulum angular velocity

rΩ Interpreted as dimensionless natural frequency of rotor

sΩ Interpreted as dimensionless natural frequency of stator

124

hΩ Interpreted as dimensionless natural frequency of contact model

 e Event variable, variable magnitude at an event, threshold value

 


First derivative with respect to independent variable t

 


Second derivative with respect to independent variable t

  First derivation with respect to independent variable ι

  Second derivation with respect to independent variable ι

 0 Initial value

 
~

Predicted value

 
^

Approximated value

 


Vector

125

10 References

[ACK03] A. Chutinan, B. H. Krogh. Fellow IEEE: Computational Techniques for

Hybrid System Verification. IEEE Transaction on Automatic Control, Vol. 48.

2003.

[ABT04] A. Beiset. Theory and Problems of Applied Physics. 4th Edition, Schaum’s

Outline Series, 2004.

[AGI12] A. Geletu. Inroduction to Differential Algebraic Equations. Ilmenau

University of Technology, Department of Simulation and Optimal Processes

(SOP). Slides, 2011/2012.

[AKL83] A. Kawamura. Lipschitz Continuous Initial Value Problem is Polynomal

Space Complete. (in answer to question raised in 1983).

[AOW83] A. V. Oppenheim, A. S. Willsky, I. T. Young. Signal and System. Prentice-

Hall, Inc. 1983.

[ASE02] A. V. Savkin, R. J. Evans. Hybrid Dynamical Systems: Controller and Sensor

Switching Problems. Birkh�use Boston c/o Springer-Verlag, 2002.

[AKG02] A. Kharab, R. B. Guenther. An Introduction to Numerical Methods: a Matlab

Approach. Chapman & Hall/CRC, 2002.

[ASN06] A. Steinbrecher. Numerical Solution of Quasi-Linear Differential-Algebraic

Equations and Industrial Simulation of Multibody Systems. Dissertation,

Technische Universit�t Berlin, Fakult�t II – Mathematik und

Naturwissenschaften der Technischen Universit�t Berlin, 2006.

[BDS05] B. D. Schutter. Models for Hybrid Systems. Delft Centre for Systems and

Control. Delft University of Technology. 2005.

http://www.dii.unisi.it/hybrid/school/slides/02-deschutter.pdf

http://www.dii.unisi.it/hybrid/school/slides/02

126

[BSC03] B. Sedghi. Control Design of Hybrid Systems Via Dehybridization. These

No.2859. Ecole Polytechnique Federale de Lausanna, 2003.

[CGN07] C. N. Geusen, A. Nordweg. Objektorientierte Modellierung und Simulation

technischer Systeme. Vertiefungsveranstaltung im Studiengebiet SSG. TU

Berlin Fraunhofer Institute Rechnerarchitekture und Sofrwaretechnik,

2006/2007.

[CBT99] C. Bendtsen, P. G. Thomsen. Numerical Solution of Differential Algebraic

Equations, Technical Report. Technical University of Denmark, Department of

Mathematical Modelling, Denmark IMM-REP, 1999.

[CHM80] C. J. Harris, J. F. Miller. Stability of Linear Systems, Some Aspects of

Kinematic Similarity. Academic Press Inc. 1980.

[CTI05] C. J. Tomlin, S. Islander. Hybrid Systems, Analysis, and Control, Lecture

Notes 4, Existence of Execution. Stanford University Spring Quarter.

2004/2005.

http://www.stanford.edu/class/aa278a/

[CTN08] C. Tischendorf. Numerik Differential Algebraischer Gleichungen. Skript zur

Vorlesung, , Universit�t K�ln, 2007/2008.

[CWG70] C. W. Gear. The Simultaneous Numerical Solution of Differential Algebraic

Equations. Stanford University, Computer Science Department, California,

1970.

[DHV06] Dymola Help Versions (6.0b, Dymola- Dynamic Modeling Laboratory).

Dynasim AB, 2006.

www.dynasim.se

[DKC02] D. Kincaid, W. Cheney. Numerical Analysis: Mathematics of Scientific

Computing. 3rd Edition, Integre Technical Publishing Co, 2002.

http://www.stanford.edu/class/aa278a/
www.dynasim.se

127

[DYG72] D. M. Young, R. T. Gregory. A Survey of Numerical Mathematics, Volum I.

Addison-Wesley Publishing Company, Richard S. Varga, 1972.

[DWA07] D. Wei�. Allgemeine Lineare Verfahren f�r Differential-Algebraische

Gleichungen mit Index 2. Dissertation, Hundt Druck GmbH, K�ln, 2007.

[EHL80] E. Hairer, C. Lubich, M. Roche. Lecture Notes in Mathematics. Springer-

Verlag, 1980.

[EKA79] E. Kreyszig. Advanced Engineering Mathematics. 4th Edition, 1979.

[EKD93] E. Kr�mer. Dynamic of Rotor and Foundation. Springer-Verlag, 1993.

[FBE10] F. Breitenecker, H. Ecker, A. K�rner, B. Heinzl, M. R�ssler. ARGRSIM

S280, State Events und Strukturdynamische Systeme in Modellbildung und

Simulation, Modelbildung und Simulation der Rotor-Stator-Dynamik

Strukturdynamische Modellans�tze mit Kontaktmodellen. Klassifikation und

Evaluierung von Features in Simulation in Hinsicht auf Physical Modelling,

State Events und Strukturdynamische Systeme. TU-Wien, 2010.

[FBE12] F. Breitenecker, H. Ecker, B. Heinzl, A. K�rner, M. R��ler, N. Popper.

Change of Independent Variable for State Event Detection in System

Simulation, Evaluation with Argesim Benchmarks. Vienna University of

Technology, Institute for Analysis and Scientific Computing, Austria Institute

for Computer Aided Automation, Institute for Mechanics and Mechatronics,

Austria dwh Simulation Services, Vienna Austria, 2012.

[FBH65] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill Book

Company Inc.1965.[FEC09] F. Ayres, E. Mendelson. Calculus. 5th Edition,

Schaum’s Otlines Series, Mc Graw Hill, 2009.

128

[FBM09] F. Breitenecker, F. Miksch, G. Zauner, P. Einzinger, B. Glock. S257

Modellbildung und Simulation in Gesundheits�konomie, HTA und WBM, Teil

1, Fehlerquellen im Modellierungsprozess. Veranstaltung 2009.

http://www.argesim.org/index.php?id=81&tx_ttnews[pointer]=1&tx_ttnews[tt_

news]=46&tx_ttnews[backPid]=80&cHash=aed638dccd

[FSA70] F. S. Acton. Numerical Methods That Works. Harper & Row, Publishers, Inc.

1970.

[FSN89] F. Scheid. Numerical Analysis. Schaum’s Outline Series McGraw-Hill, 1989.

[FSY78] F. Szidarovszky, S. Yakowitz. Principles and Procedures of Numerical

Analysis. Plenum Press, New York, 1978.

[GDB08] G. Dahlquist, A. Bj�rck. Numerical Methods in Scientific Computing, Volume

1. Society for Industrial and Applied Mathematics, 2008.

[DGH10] D. F. Griffiths, D. J. Higham. Numerical Methods for Ordinary Differential

Equations, Initial Values Problems. Springer-Verlag London Limited, 2010.

[GJR82] G. Jordan-Engeln, F. Reutter. Numerische Mathematik f�r Ingenieure.

Wissenschaftsverlag, Hain-Druck GmbH, dritte �berarbeitete und erweiterte

Auflage, 1982.

[GKT90] G. Keogh. The Numerical Solution of Ordinary and Algebraic Differential

Equations using One Step Methods. M. Sc. Thesis, School of Mathematical

Sciences, 1990.

[GST88] G. Sewell. The Numerical Solution of Ordinary and Partial Differential

Equations. Academic Press. 1988.

[HLS87] H. Leipholz. Stability Theory, An Introduction to the Stability of Dynamic

Systems and Rigid Bodies. 2nd Edition, John Wiley & Sons Ltd. and B. G.

Teubner, 1987.

http://www.argesim.org/index.php?id=81&tx_ttnews[pointer]=1&tx_ttnews[tt_

129

[HMA91] H. M. Anita. Numerical Methods for Scientists and Engineers. 2nd Edition,

Birkh�user-Verlag. 1991.

[HSK11] H. R. Schwarz, N. K�ckler. Numerische Mathematik. Vieweg + Teubner

Verlag, 8. Auflage, 2011.

[HSE73] H. Selder. Einf�hrung in die Numerische Mathematik f�r Ingenieure. Carl

Hanser Verlag M�nchen, 1973.

[HST07] H. St�cker. Taschenbuch der Physik. Verlag Harri Deutsch, 2007.

[IBS01] I. N. Bronstein, K. A. Semendjsjew, G. Musiol, H. M�hlig. Taschenbuch der

Mathematik. Verlag Harri Deutsch, 2001.

[IHC06] I. M. Haddad, V. S. Chellaboina, S. G. Nersesov. Impulsive and Hybrid

Dynamical Systems: Stability, Dissopativity and Control. Published by

Princeton University Press, 2006.

[IJJ87] I. Jacques, C. Judd. Numerical Analysis. Chapman and Hall. 1987.

[JBD85] J. Becker, H. Dreyes, W. Haacke, R. Nabert. Numerische Mathematik f�r

Ingenieure. B. G. Teubner Stuttgart, 2., �berarbeitete Auflage, 1985.

[JEK02] J. M. Esposito, V. Kumar. A Hybrid Systems Framework for Multi-robot

Control and Programming. GRASP Laboratory, University of Pennsylvania,

2002.

[JFE02] J. F. Epperson. An Introduction to Numerical Methods and Analysis. John

Wiley & Sons, Inc. 2002.

[JHE97] J. Herzberger. Einf�hrung in das wissenschaftliche Rechnen f�r Informatiker,

Mathematiker und Naturwissenschaftler. Addison Wesley Longman Verlag

GmbH, 1997.

130

[JHM92] J. H. Mathews. Numerical Methods for Mathematics, Science and

Engineering. Prentice Hall, Inc. A Simon and Schuster Company, 1992.

[JLW73] J. L. Willems. Stabilit�t dynamischer Systeme. R. Oldenbourg-Verlag, 1973.

[JMH09] J. M. Heinzle. Gew�hnliche Differentialgleichungen Ordinary Differential

Equations. Unterlage zur Vorlesung Mathematische Methoden der Physik I.

University of Vienna. Version, 2009.

[JOP81] J. M. Ortega, W. G. Poole. An Introduction to Numerical Methods for

Differential Equations. Pitman Publishers, 1981.

[JRA10] J. Rang. Advanced Methods for ODE and DAEs. TU Braunschweig, Institute

of Scientific Computing, Sommersemester, 2010.

[JZH00] J. Zhang, K. Henrik Johnson, J. Lygeros and S. Sastry. Zeno Hybrid

System. 2000.

http://robotics.eecs.berkeley.edu/~sastry/pubs/PDFs%20of%20Pubs2000-

2005/Publications%20of%20Postdocs/Zhang/ZhangZenoHybridSystems2001.p

df

[KBC96] K. E. Brenan, S. L. Campbell, L. R. Petzold. Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations. SIAM, Society for

Industrial and Applied Mathematics, 1996.

[KMM01] K. W. Morton, D. F. Mayers. Numerical Solution of Partial Differential

Equations. Cambridge Univ. Press, 2001.

[LPM07] L. Papula. Mathematik f�r Ingenieure und Naturwissenschaftler, Band 2.

Friedr. Vieweg & Sohn Verlag, GWV Fachverlage GmbH Wiesbaden, 2007.

http://robotics.eecs.berkeley.edu/~sastry/pubs/PDFs%20of%20Pubs2000

131

[LRP89] L. R. Petzold. Recent Developments in the Numerical Solution of

Differential/Algebraic Systems. Computing and Mathematics Research

Division, L-316, Lawrence National Laboratory, Livermore, CA 94550, USA,

1989.

[LTB99] L. T. Biegler. Differential Algebraic Equations (DAEs). Carnegie Mellon

University, Chemical Engineering Department, Pittsburgh, 1999.

[MBM04] M. Bollh�fer, V. Mehrmann. Numerische Mathematik, Eine

Projektorientierte Einf�hrung f�r Ingenieure, Mathematiker und

Naturwissenschaftler. Friedr. Vieweg & Sohn Verlag/GWV Fachverlag

GmbH, Wiesbaden, 2004.

[MEJ99] M. Egerstedt , K. Johnsson, J. Lygeros , S. Sastry. Behavior Based Robotics

Using Regulaized Hybrid Automata, Optimization and Systems Theory. Royal

Institute of Technology SE-100 44 Stockholm, Sweden. Electrical Engineering

and Computer Science, University of California at Berkeley, Berkeley, CA

94720, USA, 1999.

[MGI06] M. Gerdin. Identifikation and Estimation for Models Described by Differential

Algebraic Equations. Dissertation, Link�pings Universitet, 2006.

[MHB09] M. H. Bourgeois. Grundlagen der Numerischen Mathematik und des

Wissenschaftlichen Rechners. Vieweg + Teubner | GWV Fachverlag GmbH, 3.

Aktualisierte Auflage, Wiesbaden, 2009.

[MHN11] M. Hermann. Numerische Mathematik. Oldenbourg-Verlag M�nchen. 3.,

�berarbeitete und erweiterte Auflage, 2011.

[MHO82] M. Henon. On The Numerical Computation of Poincare Maps. North Holland

Publishing Company, C.N.R.S. Observation de Nice. France, 1982.

[MHSCH] M. Heemels. Solution Concepts and Well-Posedness of Hybrid Systems.

Department of Mechanical Engineering Technical University Eindhoven, 2005.

132

[MHV10] Matlab Help version 7.10.0., (R2010a).

[MLM98] M. D. Lemmon, K. X. He, I. Markovsky. A Tutorial Introduction to

Supervisory Hybrid Systems, Technical Report of the ISIS Group. Department

of Electrical Engineering, University of Notre Dame. 1998.

http://www.nd.edu/~isis/techreports/isis-98-004.pdf

[MMT04] D. Michael M. Tiller. Introduction to Physical Modelling with Modelica.

Kluwer Academic Publishers, Second Printing, 2004.

[MPHL2] M. Prandini. Hybrid Systems – Lecture n. 2, Execution of a hybrid automaton:

Zeno and blocking hybrid automata, 2009.

http://robotics.eecs.berkeley.edu/~sastry/pubs/PDFs%20of%20Pubs2000-

2005/Publications%20of%20Postdocs/Zhang/ZhangDynamicalSystems2000.pd

f

[MRS89] M. R. Spiegel. Allgemeine Mechanik, Theorie und Anwendung. McGraw-Hill

Company, 1989.

[LWA08] L. Wunderlich. Analysis and Numerical Solution of Structured and Switched

Differential-Algebraic Systems. Dissertation, Fakult�t II Mathematik und

Naturwissenschaften der Technischen Universit�t Berlin, 2008.

[OEC08] O. Enge-Rosenblatt, C. Clauss, P. Schwarz, F. Breitenecker, C. Nytsch-

Geusen. Comparisons of Different Modelica-Based Simulators, Using

Benchmarks Tasks. Fraunhofer Institute for Integrated Circuits Branch, Lab

Design Automation Zaunerstrsasse 38, 01069 Dresden Germany, Vienna

University of Technology, Fraunhofer Institute for Computer Architecture and

Software Technology, Berlin Germany, 2008.

[PAT94] P. A. Tipler. Physik. Spektrum Akademischer Verlag, 1994.

http://www.nd.edu/~isis/techreports/isis
http://robotics.eecs.berkeley.edu/~sastry/pubs/PDFs%20of%20Pubs2000

133

[PBH96] P. N. Brown, A. C. Hindmarsh. Consistent Initial Condition Calculation for

Differential-Algebraic Systems. Lawrence Livermore National Laboratory,

University of Minnesota, 1996.

[PFP06] P. Fritzon. Principles of Object-Oriented Modelling and Simulation with

Modelica 2.1. IEEE Press Wiley Interscience Publication, 2006.

[PHW08] P. Hamann, L. Wunderlich. Analysis and Numerical Simulation of Hybrid

Differential-Algebraic Equations. Technische Universit�t Berlin, Institut f�r

Mathematik, Outline, 2008.

[PMW96] P. M. E. J. Wijckmans. Conditioning of Differential Algebraic Equations and

Numerical Solution of Multibody Dynamics. Thesis Technische Universiteit

Eindhoven, 1996.[PHS05] H. Stachel. Skriptum zur Vorlesung

Geometrische Kinematik, f�r die Studienrichtung Maschinenbau. TU Wien,

2004/2005.

[RBF01] R. L. Burden, J. D. Faires. Numerical Analysis. 7th Edition, Brooks/Cole

Thomson Learning, 2001.

[RBG06] R. Bronson. Gabriel Costa. Differential Equations. 3rd Edition, McGraw-Hill

Companies Inc. 2006.

[RFH07] R. W. Freund, R. H. W. Hoppe. Stoer/Bulirsch: Numerische Mathematik 1.

Springer-Verlag, Berlin Heidelberg, 10., neu bearbeitete Auflage, 2007.

[RGN02] R. Gasch, R. Nordmann, H. Pf�tner. Rotordynamik. Springer-Verlag, 2.,

Auflage, 2002.

[RPN10] R. Plato. Numerische Mathematik Kompakt, Grunflagenwissen f�r Studium

und Praxis. Vieweg+Teubner, GWV Fachverlage GmbH, Wiesbaden, 2010.

[RSW05] R. Schaback, H. Wendland. Numerische Mathematik. Springer-Verlag, Berlin

Heidelberg New York, 5., vollst�ndige neu bearbeitete Auflage, 2005.

134

[RAH01] R. Atterer. Hauptseminar Design hybrider eingebetteter Systeme Teil 4:

Hybrid Automaten. Technische Universit�t M�nchen, Fakult�t f�r Informatik

2001.

[RKA13] R. Karim. Approximation of Event Coordinates of a Multifunction and

Multivariable Algebraic Model by Newton Method. Eurosim 2013, Wales,

England, 2013.

[RWT79] R. Wait. The Numerical Solution of Algebraic Equations. John Wiley & Sons,

Ltd, 1979.

[SAB04] S. A. Bruin. Seminar, Theory of Differential Algebraic Equations, Numerische

Integration of DAE’s. Technische Universiteit Eindhoven, 2004.

[SCF03] S. Schulz. Four Lectures on Differential-Algebraic Equations. Berlin, 2003.

[SIC05] S. Ilie. Computational Complixity of Numerical Solutions of Initial Value

Problems for Differential Algebraic Equations. Dissertation, University of

Western Ontario, London, Ontario, 2005.

[SLL09] S. Lopschutz, M. Lipson. Linear Algebra. 4th Edition, McGraw-Hill

Companies, Inc. 2009.

[SOF88] S. O. Fatunla. Numerical Methods for Initial Value Problems in Ordinary

Differential Equations. Academic Press Inc. 1988.

[SPE07] S. Popprath, H. Ecker. Nonlinear dynamics of a rotor contacting an

elastically suspended stator. Journal of Sound and Vibration, 2007.

[TEN06] T. Ernst, A. Nordwig. Mosilab: Mosila Modelbeschreibungssprache. 2006.

http://swt.cs.tu-berlin.de/lehre/mosim/ws0607/unterlagen/mosim-2006-11-28-

ModelicaConference05.pdf

http://swt.cs.tu

135

[TJK04] T. J. Koo. EECE 396-1 Hybrid and Embedded Systems Computation. Institute

for Software Integrated Systems, Department of Electrical Engineering and

Computer Science, Vanderbilt University, 2004.

[TPC08] T. Pulecchi, F. Casella. HyAuLib: Modelling Hybrid Automata in Modelica.

Politecnico di Milano, Dipartimento di Elettronica e Informazione Piazza

Leonardo da Vinci 32, 20133 Milano, Italy, 2008.

[TSM09] T. Stykel. Model Reduction of Differential Algebraic Equations. DFG

Research Center Matheon, Technische Universit�t Berlin, 2009.

[WBP93] W. Boehm, H. Prautzsch. Numerical Methods. Friedr. Vieweg & Sohn

Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1993.

[WBR08] W. Bahmen, A. Reusken. Numerik f�r Ingenieure und Naturwissenschaftler.

Springer-Verlag, Berlin Heidelberg, 2008.

[WGC85] W. Gander. Computermathematik. Birkh�user-Verlag, Basel, 1985.

[WGK03] W. Greiner. Klassische Mechanik I, Kinematik und Dynamik der

Punktteilchen Relativit�t. Verlag Harri Deutsch, 2003.

[WGD03] W. Greiner. Klassische Mechanik, Teilchensysteme, Lagrange-Hamiltonische

Dynamik, Nichtlineare Ph�nomene II. Verlag Harri Deutsch, 2003.

[WHS67] W. Hahn. Stability of Motion, Die Grundlehren der Mathematischen

Wissenschaften in Einzeldarstellung. Springer-Verlag, 1967.

[WMP06] W. Mack, M. Pl�chl. Stabilit�tsprobleme Bewegter Systeme.

Vorlesungsskriptum zur LVA-Nr. 309.023. TU-Wien, Studienjahr, 2005/2006.

[WPW01] W. Preuss, G. Wenisch. Lehre und �bungsbuch Numerische Mathematik mit

Softwareuntersst�tzung. Carl Hanser Verlag M�nchen Wien, 2001.

136

11 Curriculum Vitae

Personal Details

Rouzbeh Karim
Born July 22.1966, in Tehran/Iran
Address: W�hringerstr. 202/4, 1180-Vienna/Austria
rouzbeh_karim@hotmail.com
rouzbehkarim66@gmail.com

Education

2012 - 2016 Vienna University of Technology, Doctoral Study with Emphasis in field
of State Event Modelling and State Event Handling in Hybrid Systems.

2012 Vienna University of Technology, Change in Emphasis of Doctoral
Study.

2007 - 2012 Vienna University of Technology, Doctoral Study in Field of Hybrid
System Modelling and Simulation in Mechatronics.

2005-2006 Vienna University of Technology, Research in field of Numerical
Solution of Systems Including Extended Kalman Filter and Simulation
of Soccer Robots.

2005 Vienna University of Technology, Inscription in Doctoral Program.

2005 Vienna University of Technology, Completion of Studies for the
Diploma Program in Electrical Engineering with Concentration in
Computer Technology.

2004-2005 Vienna University of Technology, Diploma Thesis: Approximate In-and
Output Linearization of Nonlinear Plants by Neuronal Network and
Control Itself.

2003-2004 Vienna University of Technology, Computer Laboratory Project:
Implementation of Multithread-Socket-Programs in C Language for a
Client-Server Communication between distributed Computers.

1999-2005 Vienna University of Technology, Study Electrical Engineering with
Concentration in Computer Technology.

1998 Vienna University of Technology, Validation of Foreign Certificate
after Recognition of Graduations of Supplementary Lectures in field of
Automation and Control.

137

1995-1998 Vienna University of Technology, Study Electrical Engineering with
Concentration in Automation and Control.

1994-1995 Technische Universit�t Wien, Study Informatik.

1992 Azad University of Tehran, Diploma of Completion of Bachelor Studies
for the Electrical Engineering in the Branch of Study Electronics.

1992 Azad University of Tehran, Diploma Thesis: Circuit Analysis of Two
Type Televisions and Providing Television Labor Lecture Notes.

1989-1992 Azad University of Tehran, Bachelor Studies Electrical Engineering in
the Branch of Study Electronics.

1989 University Entrance Exam for Bachelor Studies in the field of Electrical
Engineering in the Branch of Study Electronics.

1989 Technical and Vocational College Nr.2 Teheran, Diploma of Completion
of Associate Course of Studies in Field of Electrical Engineering in the
Brach of Study Technician-Electronics.

1986-1989 Technical and Vocational College Nr.2 Teheran, Studies in Field of
Electrical Engineering in the Branch of Study Technician-Electronics.

1986 Entrance Exam for Associate Course of Studies in Field of Electrical
Engineering Technician-Electronics.

Work Experience

2014/10-2014/12 Hardware Engineer, llynx Electronic GmbH, Vienna.
Analysis of Functionality of the Switching Power Supply for LED
Circuits and Programing of Microcontroller in C Language.

2012/04-2013/06 Hardware Developer and Programmer, Sigmatek, GmbH & Co KG,
Vienna/Salzburg.
Hardware Simulating with LTSpice and Hardware Development with
PAD in Field of Industrial Computer and Software Development for TI
AM3359 PRU (DSP) with PASM Language under Code Compose
Studio 5.3 for Data Communication Between VARAN Master-Slave
Units. Analyzing and Computing Reaction Time of a Distributed System
as well as Implementing CRC Procedure for Distributed System.

2006/10-2007/09 Automation and Control Engineer, Process Control Engineering (PCE)
GesmbH, Vienna.
Drawing Automation Circuit Diagram in Pulp and Paper Industry with
WSCAD. Consulting in Field of Database and Control System.

138

2002/03-2003/06 Scientist (Freelancer), AIT GmbH (Traffic Telematics), Vienna.
Researching, Development, Simulating and Implementing Algorithms
for Kalman Filter System, Neuronal Networks as well as a Fourier
Transform GUI Using Matlab, Simulink, C and MSVC++ Tools.

2000/02-2001/09 Hardware Developer (Trainee), Siemens Wien.
Programming Graphic Mixer Unit for Fujitsu Monitor, a Reuse Round-
Robin Arbiter in VHDL and Providing Reuse Programming Style for
VHDL.

1994/03-1994/08 Automation Engineer, Tarsam, Iran/Teheran/Karaj.
Automation of Vacuum forming Packing Machine for Food Industry.
Identifying Processes, Sensors and Actuators of a Vacuum Forming
Packing Machine. Implementing Logical Plan, PLC Program to Control
Processes as well as Design an Electronic Circuit for Test of PLC Inputs
and Outputs.

1992 Electronic Technician (Freelance), Iran/Teheran.
Design and Development of a Digital Electronic Cuircuits for Speed
Measurment of Peykan Vehicle. Design and Computation of Logic and
Cuircuit of a Judo Scoreboard.

Extra-Curricular Courses

2014 Academic Centre of Vienna, Project Management, Modern Management

2013 WIFI- Wien, Object Oriented Analysis and Design with UML.

2013 WIFI-Wien, Android Application Development, Apps for Android
Development.

Papers

2012 Parameter Approximation of Multiple Inputs and Multiple Outputs of
Dynamic System Using Least Square Method. www.textfeld.ac.at.

2013 Approximation of Event Coordinates of a Multifunction and
Multivariable Algebraic Model by Newton’s Method. EUROSIM 2013.

Personal Skills

Competences Systems Analyzing, Design, Modelling, Programming, Simulating,
Developing and Implementing.

System Using Least Square Method. www.textfeld.ac.at.

139

Hobbies Music Composing, Playing Synthesizer and Keyboard, Painting,
Sculpting, Swimming and Skiing, Electronic Kits and Assembling Sets,
Live Music, Concerts etc.

Other Interest Science, Technology, Art, Diving, Climbing, Hopkido, Jugging, Yoga,
Relaxation, Nature, Fun, Silence etc.

