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Abstract Based on the principle of virtual power, equilibrium conditions are established for the forces within
a cross section of a tunnel top heading driven according the New Austrian Tunneling Method (NATM).
External forces, namely impost actions and ground pressure distributions following a third-order polynomial,
are analytically linked with internal forces, such as axial forces and bending moments, arising as integrals
over the shell thickness, of circumferential normal stresses. The latter are related, via an aging viscoelastic
shotcretematerialmodel, to circumferential normal strains, aswell as to radial and circumferential displacement
components. This allows for analytical transformation of displacementmeasurement data collected at the crown
and the footings of the shell segment, into ground pressure and impost action evolutions, together with all the
associated force and stress quantities. For the Sieberg tunnel, driven in Miocene clay marl, our data-driven
analytical mechanics model evidences virtually uniform ground pressure distributions, leading to a first rapidly
increasing, and then mildly decreasing utilization degree of the shotcrete shell.

List of symbols

a/c (Initial) aggregate-to-cement mass ratio
A Cross-sectional area
Ai Cubic shape functions (with i = 1, 2, 3, 4)
chyd Cohesion of hydrates
C Cross-sectional contour
Ci Constants for the uniaxial compressive strength of the cement paste and shotcrete (with i =

1, 2, 3, 4)
d̂ Virtual Eulerian strain rate tensor
d̂i j i j-th Component of the virtual Eulerian strain rate tensor
er , eϕ, ez Unit base vectors of moving arch-like (cylindrical) coordinate system
ex , ey, ez Unit base vectors of fixed Cartesian coordinate system
E Young’s modulus
E28d 28-day value of Young’s modulus of shotcrete
Ec Creep modulus
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Ec,28d 28-day value of creep modulus of shotcrete
f Volume forces
f conagg Shotcrete-related aggregate volume fraction
fb Biaxial compressive strength of shotcrete
fc Uniaxial compressive strength of shotcrete
fc,28d Uniaxial compressive strength of shotcrete reached 28 days after production
f cpclin Cement paste-related clinker volume fraction
f hfhyd Hydrate foam-related hydrate volume fraction
Gp Ground pressure
Gp,i Ground pressure at a specific point (with i = 1, 2, 3, 4)
h Thickness of the tunnel shell segment
J Creep function
JNL Nonlinear creep function
kDP Strength-like quantity in Drucker-Prager failure criterion
mϕ Bending moments (per length)
n Outward normal onto a surface element dC
nϕ Circumferential normal force (per length)
nz Longitudinal normal force (per length)
Np Impost forces
Np,b, Np,e Axial forces at the beginning and at the end of the tunnel segment
p Complex variable in Laplace-Carson domain
r Location vectors
r Radial polar coordinate
R Radius of the undeformed midsurface of a tunnel shell segment
Rshell
ax Relaxation function in axial direction

Rshell
lat Relaxation function in lateral direction

s Arc length of the tunnel shell segment
sE Dimensionless strength and Young’s modulus evolution parameter
sEc Dimensionless creep modulus evolution parameter
t Time variable
t0 Reference time
T Traction forces
Tr Radial component of the traction vector acting onto the outer surface of the tunnel shell
Tϕ Circumferential component of the traction vector acting onto the cross section at the beginning

and end of the tunnel shell
uCr , uCϕ Radial and circumferential displacements of the gravitational center of the cross section

uCr,b, u
C
ϕ,b Radial and circumferential displacements of the center surface at the beginning of the tunnel

shell segment
v̂ Virtual velocity field
v̂r , v̂ϕ, v̂z Radial, circumferential and longitudinal component of the virtual velocity
v̂Cr , v̂Cϕ Radial and circumferential component of the virtual velocity of the gravitational center of the

cross section
w/c (Initial) water-to-cement mass ratio
(w/c)ef f Effective water-to-cement mass ratio
x Position vector
z Longitudinal coordinate
α Dimensionless parameter for the stiffness of the aggregates
αDP Dimensionless parameter of Drucker–Prager failure criterion
β Power-law exponent
Γ Gamma function
�ϕ Opening angle of the tunnel shell
�t Time increment
εi i Normal strain in ei -direction (with i = ϕ, r, z)
η Affinity factor
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θCz Rotational angle of the shell generator line, around an axis oriented in ez-direction and positioned
in the shell center

θCz,b, θ
C
z,e Rotational angle of the shell generator line, around an axis oriented in ez-direction and positioned

in the shell center, at the beginning and at the end of the tunnel shell segment
κ Ratio of biaxial to uniaxial compressive strength of shotcrete
ν Poisson’s ratio
ξ Hydration degree of shotcrete
ρi Mass densities of aggregates, clinker, and water (with i = agg, clin,H2O)
σ Symmetric second-order Cauchy stress tensor
σi i Normal stress in ei -direction (with i = ϕ, r, z)
Σ

uni, ult
i Uniaxial compressive strength of the hydrate phase, hydrate foam, cement paste, and concrete

(with i = hyd, h f, cp, con)
τ Time instant of load application
ϕ Circumferential polar coordinate
ϕ̄ Circumferential polar coordinate starting from the beginning of the tunnel section
ϕ̄∗ Position of maximum degree of utilization
ϕb, ϕe Polar angle at the beginning and at the end of the tunnel segment
ϕhyd Angle of internal friction of hydrates
ω̂C
z Virtual angular velocity component

I Time-invariant influence functions
L Level of loading associated with the strength of the material
P int Virtual power of internal forces
Pext Virtual power of external forces
× Exterior product (cross-product) of two vectors in 3D Euclidean space
· Inner product of two vectors in 3D Euclidean space
: Second-order tensor contraction
⊗ Dyadic product of two vectors
∇ Nabla operator
∂ Symbol used to denote partial derivatives
d Symbol used for differentials

1 Introduction

As a rule, engineering structures are designed for a priori known, standardized external loads they have to
withstand. This design strategy is heavily challenged in tunnel engineering where the loads acting on the
tunnel shells are not known a priori: Since these loads are tightly linked to the interplay of the tunnel shell
and the surrounding soil or rock, they heavily depend on geological details which remain unknown until the
very construction phase. During the latter, the aforementioned interplay is standardly monitored in terms of
displacement measurements, traditionally in terms of convergences [5,23]; and more recently in terms of laser-
optical geodesy [29,30]. Hence, as a rule, both the loads acting on the tunnel shell and the stress states in the
latter, need to be estimated from the aforementioned displacement measurements. This is very often done in
the context of the so-called convergence-confinement method [3,5,22,24,31,32]. It reduces the ground-shell
interactions to a plane-strain axisymmetric problem, with the tunnel radius change (“convergence”) and the
radial pressure acting at the shell-ground interface (“ground pressure”) as the key physical properties. While
this problem is particularly helpful for closed circular tunnel shells, its use for the construction phase where
only part of the tunnel shell is installed, and where, consequently, the “ring closure” is not realized yet, is more
questionable; and extensions for non-symmetric cases are desirable.

This is the very focus of the present contribution, dealing with (non-closed) top headings made of hydrating
shotcrete in the framework of the New Austrian Tunneling Method (NATM), and monitored by means of
geodetic displacement measurements of selected points on the inner surface of the tunnel shell. Rather than
coming up with a mechanical model for the ground around the tunnel, we will explicitly incorporate the latter
measurements into a “hybrid analysis” in the line of [2,11,12,19]. In this context, we will explicitly introduce
the outer surface of the tunnel shell onto which normal traction forces (“ground pressure”) will be imposed.
Equilibrium of forces within each cross-sectional plane of the tunnel shell will be maintained by normal
tractions acting on the footings of the tunnel shell segments.
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The corresponding extension of the convergence-confinement methods is developed on the basis of key
theoretical ingredients of continuum mechanics: (i) the principle of virtual power [6–10,35,40] applied to thin
cylindrical shell segments (with the virtual motions being restricted to the cross-sectional plane of the tunnel
shell), and (ii) multiscale aging viscoelasticity [28] quantifying the constitutive behavior of shotcrete.

Accordingly, the paper is organized as follows: We first recall the principle of virtual power, so as to
develop an analytical circular arch theory governing the equilibrium of forces within the cross-sectional planes
(Sect. 2). Thereafter, we transform power-law creep functions associated with uniaxial stress experiments, into
shell-specific relaxation functions considering free inner shell surfaces and plane strain conditions (Sect. 3).
Corresponding mathematical relationships are then combined in order to come up with elaborate analytical
formulae linking displacement measurements at three geodetic laser-optical targets, with traction forces acting
on a circular NATM tunnel heading (Sect. 4). These analytical tools are applied to themeasurements performed
at the Sieberg tunnel - a benchmark example having undergone various assessment strategies [12,37], before
the results are discussed, so as to conclude the paper (Sect. 5).

2 Cross-sectional equilibrium within an arch-like tunnel cross section, derived from the principle of
virtual power

2.1 Starting point—equilibrium of forces within tunnel cross section

According to the principle of virtual power [6–10,35] a mechanical system is in equilibrium (i.e., it fulfills the
momentum and angular momentum conservation laws for the special case of negligibly small accelerations),
if the power performed by the external and internal forces on an arbitrary virtual velocity field vanishes. We
note that a mathematically identical principle is sometimes called principle of (rates of) virtual work; then the
virtual velocities are called virtual motions [26,27].

We specify the principle of virtual power for the forces being equilibrated within a particular cross section
of the tunnel, with a cross-sectional area A and a contour (boundary) C , see Fig. 1. All positions within such
a cross section are labeled by vectors x, and any continuous and differentiable velocity field v̂(x) with vectors
lying within the cross-sectional plane qualifies as admissible virtual velocity field. Then, the power density of
external forces, per unit length measured along the tunnel axis, reads as

Pext =
∫
C

T(x, n) · v̂(x) ds +
∫
A

f(x) · v̂(x) dA (1)

with the volume forces f , and traction forces T, and n as the outward normal onto a surface element dC . The
power density of internal forces is constructed on the simplest velocity-derived quantity which is objective,

Fig. 1 Illustration of slender arch-like tunnel cross section with radius R and thickness h, global Cartesian base frame ex , ey , ez ,
and local polar base frame er (ϕ), eϕ(ϕ), ez ; the latter is indicated at the beginning and the end of the segment, labeled by polar
angles ϕb and ϕe
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i.e., observer-independent. This is the Eulerian strain rate tensor

d̂ = ∇S v̂ = 1

2

[
∂ v̂
∂x

+
(

∂ v̂
∂x

)T]
. (2)

Accordingly, we have [9]

P int = −
∫
A

σ : d̂ dA (3)

whereby σ is the symmetric second-order Cauchy stress tensor - any non-symmetric tensor portion would not
perform any power on d̂.

Mathematically, the principle of virtual power then reads as

Pext
(
v̂
)+ P int

(
d̂
) = 0 ∀v̂. (4)

Application of the chain rule and of the divergence theorem to (4), together with (1) and (2), then readily yields
[9]

∀x ∈ A : divσ + f = 0, (5)

∀x ∈ C : σ · n − T = 0 (6)

whereby all vectors occurring in (5) and (6) are restricted to the cross-sectional plane.

2.2 Virtual velocity field characterizing a slender circular tunnel shell segment

The principle of virtual power is particularly suitable tool for deriving theories for structural components, such
as beams, arches, or plates [13,16,34,40]. In this context, the virtual velocity field governing the equilibrium
conditions is further restricted; and this yields differential equations of lower dimensions than those of (5) and
(6). In the case of circular cylindrical shell segments, the following characteristics are considered: The circular
arch is geometrically defined by a segment of a circle with radius R (the arch line) and by the thickness h, see
Fig. 1. The latter coincides with the length of straight generator lines lying perpendicular to the arch line. h
needs to be scale separated from R, i.e., h � R. Positions which are relevant for the distribution of physical
quantities throughout the circular segment defining the arch are given by location vectors r,

r = r er (ϕ), for r ∈ [R − h/2; R + h/2
]

(7)

with r and ϕ standing for the radial and circumferential polar coordinate, respectively; er (ϕ), eϕ(ϕ), and ez are
the unit vectors spanning a corresponding orthonormal frame.More precisely, ϕ is the angle which is measured
counterclockwisely from the base vector ex of a Cartesian base frame made up by the base frame ex , ey , and
ez and the origin O, see Fig. 1. The radius R and the polar angle ϕ give access to the arc length s,

s = Rϕ. (8)

Each generator line of the circular slender arch is characterized by the following rigid bodymotions, see Fig. 2:

– it undergoes a translational motion orthogonal to the circle within the plane of the circle, quantified by a
virtual velocity er v̂Cr , with v̂Cr being the radial component of the virtual velocity of the gravitational center
of the generator line;

– it undergoes a rotational motion around the center of the circle (i.e., around a vector directed in ez and
positioned in the origin “O” of the coordinate system seen in Fig. 1), quantified by a virtual velocity
eϕv̂Cϕ r/R, with v̂Cϕ being the circumferential component of the virtual velocity of the gravitational center
of the generator line;

– it undergoes a rotational motion around a vector directed in ez and positioned in the gravitational center
of the generator line, quantified by a virtual velocity eϕω̂C

z (r − R), with the virtual angular velocity
component denoted as ω̂C

z . The latter is chosen such that the cross-section remains orthogonal to the
(virtually deformed) center surface of the shell segment, i.e.,

dv̂Cr
ds

= dv̂Cr
dϕ

dϕ

ds
= 1

R

dv̂Cr
dϕ

= −ω̂C
z (9)
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Fig. 2 Illustration of the virtual rigid body motions associated with an arbitrary generator of the circular segment: a translational
motion orthogonal to the circle within the plane of the circle, b ez-associated rotational motion around the center of the circle
as a superposition of a tangential translation of the gravitational center of the generator and a rotation around the latter center, c
ez-associated rotational motion around the gravitational center of the generator of the circular arch

where we also made use of (8). Conclusively, the virtual velocity field governing the equilibrium of the circular
arch segment reads as

v̂ = er v̂Cr + eϕ

[
v̂Cϕ

r

R
− 1

R

dv̂Cr
dϕ

(
r − R

)]
. (10)

However, for the development of structural theories of stretching and bending members, it is advisable to
introduce ez-related rotations around the gravitational center of the generator (associated with bending) and
translations in tangential direction (associated with stretching). Accordingly, we consider the rotation around
the center of the circle as a superposition of a tangential translation of the gravitational center of the generator
and a rotation around the latter center; mathematically, this reads as

v̂Cϕ
r

R
= v̂Cϕ + v̂Cϕ

r − R

R
; (11)

see the sketches at the right handside of Fig. 2.

2.3 Virtual power of internal forces—axial forces and bending moments in the tunnel shell

The components of the Eulerian strain rate tensor in a polar base frame read as, see e.g., [26, p. 747]

d̂rr = ∂v̂r

∂r
, d̂rϕ = 1

2

(
1

r

∂v̂r

∂ϕ
+ ∂v̂ϕ

∂r
− v̂ϕ

r

)
(12.1)

d̂ϕϕ = 1

r

∂v̂ϕ

∂ϕ
+ v̂r

r
, d̂r z = 1

2

(
∂v̂z

∂r
+ ∂v̂r

∂z

)
(12.2)

d̂zz = ∂v̂z

∂z
, d̂ϕz = 1

2

(
∂v̂ϕ

∂z
+ 1

r

∂v̂z

∂ϕ

)
(12.3)

and insertion of (10) and (11) into (12.2) yields

d̂ϕϕ = 1

r

[
v̂Cr + dv̂Cϕ

dϕ

]
− r − R

r R

[
d2v̂Cr
dϕ2 − dv̂Cϕ

dϕ

]
(13)

while

d̂rr = d̂rϕ = d̂r z = d̂ϕz = d̂zz = 0. (14)

Specification of the internal power expression (3) for the shell-specific virtual strain rates (13) and (14) yields

P int = −
ϕe∫

ϕb

R+h/2∫

R−h/2

σϕϕ(r, ϕ)

{
v̂Cr (ϕ)

r
+ 1

r

dv̂Cϕ (ϕ)

dϕ
−r − R

r R

[
d2v̂Cr (ϕ)

dϕ2 − dv̂Cϕ (ϕ)

dϕ

]}
r dr dϕ (15)
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whereby ϕb and ϕe are the values of the polar angle at the beginning and at the end of the tunnel segment,
respectively. Taking all terms independent of r out of the respective integral, expression (15) for the virtual
power of the internal forces can be transformed to

P int = −
ϕe∫

ϕb

[
v̂Cr + dv̂Cϕ

dϕ

] R+h/2∫

R−h/2

σϕϕ dr dϕ + 1

R

ϕe∫

ϕb

[
d2v̂Cr
dϕ2 − dv̂Cϕ

dϕ

] R+h/2∫

R−h/2

σϕϕ(r − R) dr dϕ

= −
ϕe∫

ϕb

[
v̂Cr + dv̂Cϕ

dϕ

]
nϕ dϕ + 1

R

ϕe∫

ϕb

[
d2v̂Cr
dϕ2 − dv̂Cϕ

dϕ

]
mϕ dϕ

(16)

whereby the separate integration over r has induced the new, shell-specific internal forces called axial forces
(per length)

nϕ(ϕ) =
R+h/2∫

R−h/2

σϕϕ(r, ϕ) dr (17)

and bending moments (per length)

mϕ(ϕ) =
R+h/2∫

R−h/2

σϕϕ(r, ϕ) × (r − R) dr. (18)

It becomes obvious from (13) and (16)–(18) that axial forces perform power on strain rates stemming from
virtual translational motions of the cross sections in the tangential direction, while the bending moments
perform power on strain rates stemming from virtual rotational motions around the gravitational centers of the
generator lines.

2.4 Virtual power of external forces—ground pressure and impost forces

In tunnel shells, the external forces due to dead load (gravitational forces) are typically negligible with respect
to the tractions forces stemming from the action of the surrounding ground, at radial coordinate r = R + h/2,
so that |T| � h |f | in expression (1) for the virtual power of the external forces. Furthermore, relevant traction
forces occur only at surfaces with normals +er (ϕ), −eϕ(ϕb), and +eϕ(ϕe). Considering these specifications,
the insertion of the shell-specific virtual velocities (10) into expression (1) for the external forces acting in an
arch-like tunnel cross section yields

Pext = +
ϕe∫

ϕb

Tr
[
r = R + h/2, ϕ; n = +er (ϕ)

] {
v̂Cr (ϕ)

}
(R + h/2) dϕ

+
R+h/2∫

R−h/2

Tϕ

[
r, ϕ; n = ±eϕ(ϕ)

]
dr
{
v̂Cϕ (ϕ)

} ∣∣∣∣
ϕe

ϕb

.

(19)

Considering h � R, (19) can be simplified to

Pext = +
ϕe∫

ϕb

−Gp(ϕ)
{
v̂Cr (ϕ)R

}
dϕ − Np(ϕ)

{
v̂Cϕ (ϕ)

} ∣∣∣∣
ϕe

ϕb

(20)

whereby we introduced the tunnel engineering-specific notions of ground pressure, reading as

Gp(ϕ) = −Tr
[
r = R + h/2, ϕ; n = er (ϕ)

]
(21)
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and axial forces Np,b = Np(ϕb) and Np,e = Np(ϕe) at the beginning and at the end of the tunnel segment.
Resorting to architectural terms, the latter may be called impost forces. Defining them, somewhat analogously
to the ground pressure (21), as compressive forces, they read mathematically as

Np,b =
R+h/2∫

R−h/2

Tϕ

[
r, ϕb; n = −eϕ(ϕb)

]
dr = −

R+h/2∫

R−h/2

σϕϕ(r, ϕb) dr = −nϕ(ϕb) (22)

and

Np,e = −
R+h/2∫

R−h/2

Tϕ

[
r, ϕe; n = +eϕ(ϕe)

]
dr = −

R+h/2∫

R−h/2

σϕϕ(r, ϕe) dr = −nϕ(ϕe) (23)

whereby use of (17) and (6) with n = −ex and n = ex , respectively, was made.

2.5 Principle of virtual power—differential equilibrium conditions

In order to obtain differential equations quantifying the equilibrium in the tunnel shell segment, expression
(4) for the principle of virtual power is considered to hold for the virtual velocity format (10) with arbitrary
shell-specific virtual velocity fields v̂Cr and v̂Cϕ . Therefore, Eq. (4) needs to be combined with the shell-specific
expressions (16) and (20) for the power of the internal and the external forces, respectively; and the latter need
to undergo partial integration. For the internal forces, we get

P int = +
ϕe∫

ϕb

[
−nϕ + 1

R

d2mϕ

dϕ2

]
v̂Cr dϕ −

[
1

R

dmϕ

dϕ

]
v̂Cr

∣∣∣∣
ϕe

ϕb

+
ϕe∫

ϕb

[
dnϕ

dϕ
+ 1

R

dmϕ

dϕ

]
v̂Cϕ dϕ − [

nϕ

]
v̂Cϕ

∣∣∣ϕe
ϕb

(24)

whereby we considered vanishing bending moments at the surfaces with ϕ = ϕb and ϕ = ϕe,

mϕ(ϕb) = 0; mϕ(ϕe) = 0, (25.1,2)

Insertion of (24) and (20) into Eq. (4), and requiring the result to hold for arbitrary values of v̂Cr and v̂Cϕ yields
the differential equilibrium conditions valid along the entire arch segment,

− nϕ + 1

R

d2mϕ

dϕ2 − RGp = 0, (26.1)

for ϕb ≤ ϕ ≤ ϕe :
dnϕ

dϕ
+ 1

R

dmϕ

dϕ
= 0 (26.2)

as well as the natural boundary conditions valid at the beginning and the end of the tunnel segment,

for ϕ = ϕb and ϕ = ϕe : − 1

R

dmϕ

dϕ
= 0. (27)
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2.6 Ground pressure-induced distributions of internal axial forces and bending moments in tunnel shell
segment

As a first step to obtain mathematical solutions for the differential equations (26.1), (26.2) is differentiated
with respect to ϕ, and the corresponding result is solved for (1/R)(d2mϕ/dϕ2), yielding

1

R

d2mϕ

dϕ2 = −d2nϕ

dϕ2 , (28)

This equation is then re-inserted into (26.1), yielding a differential equation for n(ϕ) only. The latter reads as

nϕ + d2nϕ

dϕ2 + RGp = 0. (29)

This differential equation can be readily integrated for given functions quantifying the ground pressure distri-
bution along the circumferential coordinate ϕ. In the following, we are interested in simple functional forms
which eventually allow for conversion of displacement components from three geodetic measurement points
into ground pressure values defined at four points along the circumferential coordinate ϕ. In more detail, we
consider the weighted superposition of four cubic shape functions, the values of which are either one or zero at
equi-distant points along the coordinate ϕ̄ = ϕ −ϕb. In the case of cubic polynomials, we have for the ground
pressure

Gp = A1(ϕ̄)Gp,1 + A2(ϕ̄)Gp,2 + A3(ϕ̄)Gp,3 + A4(ϕ̄)Gp,4. (30)

Thereby, the cubic polynomials Ai , i = 1, 2, 3, 4, read as

A1(ϕ̄) = 1 − 11ϕ̄

2�ϕ
+ 9ϕ̄2

(�ϕ)2
− 9ϕ̄3

2(�ϕ)3
,

A2(ϕ̄) = 9ϕ̄

�ϕ
− 45ϕ̄2

2(�ϕ)2
+ 27ϕ̄3

2(�ϕ)3
,

A3(ϕ̄) = − 9ϕ̄

2�ϕ
+ 18ϕ̄2

(�ϕ)2
− 27ϕ̄3

2(�ϕ)3
,

A4(ϕ̄) = ϕ̄

�ϕ
− 9ϕ̄2

2(�ϕ)2
+ 9ϕ̄3

2(�ϕ)3

(31)

with �ϕ = ϕe − ϕb the opening angle of the tunnel shell. In (30), Gp,1 is the pressure at position ϕ̄ = 0, Gp,2
is the pressure at position ϕ̄ = �ϕ/3, Gp,3 is the pressure at position ϕ̄ = 2�ϕ/3, and Gp,4 is the pressure at
position ϕ̄ = �ϕ.

The solution of the differential equation (29) for the ground pressure according to (30) and (31) yields

nϕ(ϕ̄) = +Np,b

{
cos(ϕ̄) − sin(ϕ̄)

tan(�ϕ)

}
+Np,e

{
sin(ϕ̄)

sin(�ϕ)

}

−RGp,1

{
1 + 27ϕ̄

(�ϕ)3
− 9ϕ̄3

2(�ϕ)3
− 18

(�ϕ)2
+ 9ϕ̄2

(�ϕ)2
− 11ϕ̄

2�ϕ
− cos(ϕ̄)

+18 cos(ϕ̄)

(�ϕ)2
+ sin(ϕ̄)

tan(�ϕ)
− 18 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 9 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}

−RGp,2

{
− 81ϕ̄

(�ϕ)3
+ 27ϕ̄3

2(�ϕ)3
+ 45

(�ϕ)2
− 45ϕ̄2

2(�ϕ)2
+ 9ϕ̄

�ϕ

−45 cos(ϕ̄)

(�ϕ)2
+ 45 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 36 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}

−RGp,3

{
81ϕ̄

(�ϕ)3
− 27ϕ̄3

2(�ϕ)3
− 36

(�ϕ)2
+ 18ϕ̄2

(�ϕ)2
− 9ϕ̄

2�ϕ

+36 cos(ϕ̄)

(�ϕ)2
− 36 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 45 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}
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−RGp,4

{
− 27ϕ̄

(�ϕ)3
+ 9ϕ̄3

2(�ϕ)3
+ 9

(�ϕ)2
− 9ϕ̄2

2(�ϕ)2
+ ϕ̄

�ϕ

−9 cos(ϕ̄)

(�ϕ)2
+ 9 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
− sin(ϕ̄)

sin(�ϕ)
+ 18 sin(ϕ̄)

(�ϕ2) sin(�ϕ)

}
(32)

where we considered Eqs. (22) and (23) to label the forces Np,b and Np,e pressing from the outside onto the
imposts of the considered tunnel shell segment. The solution of the differential equation (26.1) for the ground
pressure according to Eqs. (30) and (31), and for the axial forces according Eq. (32) yields

mϕ(ϕ̄) = +RNp,b

{
1 − cos(ϕ̄) + sin(ϕ̄)

tan(�ϕ)

}
−RNp,e

{
sin(ϕ̄)

sin(�ϕ)

}

−R2Gp,1

{
−1 − 27ϕ̄

(�ϕ)3
+ 9ϕ̄3

2(�ϕ)3
+ 18

(�ϕ)2
− 9ϕ̄2

(�ϕ)2
+ 11ϕ̄

2�ϕ
+ cos(ϕ̄)

−18 cos(ϕ̄)

(�ϕ)2
− sin(ϕ̄)

tan(�ϕ)
+ 18 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 9 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}

−R2Gp,2

{
81ϕ̄

(�ϕ)3
− 27ϕ̄3

2(�ϕ)3
− 45

(�ϕ)2
+ 45ϕ̄2

2(�ϕ)2
− 9ϕ̄

�ϕ

+45 cos(ϕ̄)

(�ϕ)2
− 45 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 36 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}

−R2Gp,3

{
− 81ϕ̄

(�ϕ)3
+ 27ϕ̄3

2(�ϕ)3
+ 36

(�ϕ)2
− 18ϕ̄2

(�ϕ)2
+ 9ϕ̄

2�ϕ

−36 cos(ϕ̄)

(�ϕ)2
+ 36 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}

−R2Gp,4

{
27ϕ̄

(�ϕ)3
− 9ϕ̄3

2(�ϕ)3
− 9

(�ϕ)2
+ 9ϕ̄2

2(�ϕ)2
− ϕ̄

�ϕ

+9 cos(ϕ̄)

(�ϕ)2
− 9 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ sin(ϕ̄)

sin(�ϕ)
− 18 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

}
(33)

whereby we considered vanishing bending moment at the beginning of the tunnel shell segment, see (25.1).
Specification of (33) for mϕ(ϕe) = mϕ(ϕ̄ = �ϕ) = 0 yields the remarkable result

Np,bR − Np,e R = 0 → Np,b = Np,e. (34)

In other words, independent of the actual ground pressure distribution, the impost forces at the beginning and
the end of the tunnel segment are equal.

3 Strength, elasticity, and creep of shotcrete tunnel shells

3.1 Strength, elasticity, and creep properties of concrete—Laplace Carson transform into inverse time domain

For the purposes of practical concrete engineering, it is customary to approximate the temporal evolution of
the uniaxial strength of concrete under isothermal conditions at 20 centigrades by a suitable fitting function,
such as the one given in [4],

fc(t) = fc,28d exp

[
sE

(
1 −

√
28 days

t

)]
, (35)

with the dimensionless strength evolution parameter sE , and with the time t being given in the unit of measure-
ment ”days” and being resolved down to tens of minutes. Typical values relevant for shotcrete tunneling are
given in Table 1 and illustrated in Fig. 3a. Analogous relationships are employed for the elasticity development,

E(t) = E28d

{
exp

[
sE

(
1 −

√
28 days

t

)]}0.5

, (36)
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Table 1 Optimal dimensionless parameters sE , sEc for three typical cement types [1]

Cement type sE sEc

CEM II/A-M(S-L) 42.5N 0.22 0.62
CEM II/A-S 42.5R 0.18 0.61
CEM I 52.5R 0.09 0.50

(a) (b) (c)

Fig. 3 Temporal evolution of material properties of shotcrete with the uniaxial 28-day compressive strength fc,28d = 60 MPa
[38], and the different cement types given in Table 1: a uniaxial compressive strength, b Young’s modulus, c creep modulus

with

E28d = 21.5GPa × α

(
fc,28d

10MPa

)0.3̇
; (37)

see again Table 1 and Fig. 3b for typical values concerning shotcrete, and the parameter α amounts to one for
quartz- and limestone-based concretes [1].

Both the uniaxial strength and Young’s modulus are driven by the hydration reaction leading to changes in
the material’s microstructure, and this can be quantified bymultiscale micromechanical models such as the one
proposed in [18] and employed in [39]. Inmore detail, the uniaxial strength is governed by the hydration degree,
the (initial) water-to-cement ratio, and the aggregate volume fraction in an RVE of concrete (see Appendix A),
which allows one to reconstruct the evolution of the hydration degree associated with property developments
(35) and (36) as

ξ(t) = ξ
[
fc(t), w/c, f conagg

]
, (38)

see Fig. 4. The degree of hydration also governs the (ultra-)short term creep of concrete, as evidenced by
three-minute creep tests [1,14,33], which give access to power-law type creep functions describing creep over
time spans during which the hydration degree is virtually constant (i.e., from minutes in early-age concrete,
to weeks in decade-old concrete [17]),

J (ξ, t) = 1

E(ξ)
+ 1

Ec(ξ)

[
t

t0

]β

, (39)

with t being resolved down to the time regime of seconds, with the power-law exponent amounting typically
to 0.25 [17], with the creep modulus Ec and Young’s modulus E depending on the degree of hydration ξ , and
with t0 = 1 d = 86 400 s as a reference time. Ec is also available from isothermal creep tests performed at a
temperature of 20 centigrades [1], namely in the format

Ec(t) = Ec,28d

{
exp

[
sEc

(
1 −

√
28 days

t

)]}0.5

(40)
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(a) (b) (c)

Fig. 4 Temporal evolution of the hydration degree according to (38), in combination with (35) and (90)–(98), with the aggre-
gate volume fraction amounting to f conagg = 0.70, the effective water-to-cement mass ratios taken from the set (w/c)ef f ∈
{0.450, 0.475, 0.500, 0.525}, the strength evolution parameter sE = 0.18, and three different strength values reached at an age
of 28 days: a fc,28d = 50MPa, b fc,28d = 55MPa, c fc,28d = 60MPa

(a) (b) (c)

Fig. 5 Reconstruction of maturity-property relations E(ξ) and Ec(ξ) for uniaxial 28-day compressive strength fc,28d = 60 MPa
and cement type 42.5R (see Table 1): a data pair identification from temporal evolutions of Young’s modulus and degree of
hydration; b Young’s modulus as function of degree of hydration; c creep modulus as function of degree of hydration

with

Ec,28d = 51.9GPa

(
α

fc,28d
10MPa

)2/3

, (41)

Accordingly, evaluation of (36) and (40) at the same time instants, and forming corresponding data pairs of
hydration degree and (Young’s or creep) modulus, gives access to the material functions E(ξ), Ec(ξ), see
Fig. 5.

J (ξ, t) describes the behavior of a material sample with (constant) degree of hydration ξ , under uniaxial
stress σ = σϕϕ eϕ ⊗ eϕ , according to a hereditary integral of the Boltzmann type [3,20],

εϕϕ(ξ, t) =
t∫

−∞
J (ξ, t − τ) σ̇ϕϕ(τ ) dτ, (42)

which, after Laplace-Carson transformation

f (p) = p

∞∫

0

f (t) exp(−pt) dt (43)

reads as

εϕϕ(ξ, p) = J (ξ, p) σϕϕ(p) (44)
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with the transformed function J (ξ, p) exhibiting the format

J (ξ, p) = 1

E(ξ)
+ Γ

(
1 + β

)
Ec(ξ)pβ

[
1

t0

]β

. (45)

Lateral normal strains are customarily considered by a constant Poisson’s ratio of ν = 0.2, in the form

εrr (ξ, p) = εzz(ξ, p) = −ν εϕϕ(ξ, p), (46)

and in a fully 3D isotropic setting, (44) reads as
⎡
⎣ εϕϕ(ξ, p)

εrr (ξ, p)
εzz(ξ, p)

⎤
⎦ =

⎡
⎣ J (ξ, p) −ν J (ξ, p) −ν J (ξ, p)

−ν J (ξ, p) J (ξ, p) −ν J (ξ, p)
−ν J (ξ, p) −ν J (ξ, p) J (ξ, p)

⎤
⎦ ·
⎡
⎣σϕϕ(p)

σrr (p)
σzz(p)

⎤
⎦ . (47)

However, tunnel shells, as a rule, do not undergo uniaxial stresses; in fact, as a first approximation, they are
rather characterized by εzz(p) ≈ 0. Corresponding specification of (47) and solution for the unknowns σϕϕ(p)
and σzz(p) yields

σϕϕ(ξ, p) = Rshell
ax (ξ, p) εϕϕ(p), (48.1)

σzz(ξ, p) = Rshell
lat (ξ, p) εϕϕ(p) (48.2)

with

Rshell
ax (ξ, p) = 1

(1 − ν2)J (ξ, p)
, (49.1)

Rshell
lat (ξ, p) = ν

(1 + ν)J (ξ, p)
. (49.2)

We note that Eqs. (48) and (49) describe the stress reaction of a piece of shotcrete with hydration degree ξ ,
situated within the tunnel shell, to normal strain εϕϕ evolving with the inverse time variable p.

3.2 Creep upscaling from material to shell level—backtransformation into the time domain

In order to relate the stress resultants nϕ and mϕ , see Eqs. (17) and (18), to the strains they provoke, (48.1) is
inserted into (17) and (18), respectively, yielding

nϕ(ξ, ϕ, p) =
R+h/2∫

R−h/2

Rshell
ax (ξ, p) × εϕϕ(r, ϕ, p) dr (50.1)

mϕ(ξ, ϕ, p) =
R+h/2∫

R−h/2

(r − R) × Rshell
ax (ξ, p) × εϕϕ(r, ϕ, p) dr (50.2)

where we consider, for the sake of simplicity, homogeneous viscoelastic properties within the tunnel shell seg-
ment; these properties being still associatedwith a constant degree of hydration ξ . The tangential normal strains
εϕϕ and the corresponding tangential and radial displacements are introduced in a linearized fashion, by tem-
poral integration over constant strain rates which are formally identical with (13); this results straightforwardly
in

εϕϕ = 1

r
uCr + 1

R

duCϕ
dϕ

− r − R

r R

d2uCr
dϕ2

= 1

r

[
uCr + duCϕ

dϕ

]
− r − R

r R

[
d2uCr
dϕ2 − duCϕ

dϕ

] (51)
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whereby the term proportional to (1/r) is related to stretching, while the bending-related term is proportional
to (r − R). Insertion of (51) into (50.1) yields

nϕ(ξ, ϕ, p) = Rshell
ax (ξ, p)

⎧⎪⎨
⎪⎩u

C
r (ϕ, p)

R+h/2∫

R−h/2

1

r
dr + duCϕ (ϕ, p)

dϕ

R+h/2∫

R−h/2

1

R
dr

−d2uCr (ϕ, p)

dϕ2

R+h/2∫

R−h/2

r − R

r R
dr

⎫⎪⎬
⎪⎭

≈ Rshell
ax (ξ, p)

h

R

[
uCr (ϕ, p) + duCϕ (ϕ, p)

dϕ

]
(52)

whereby the last term holds for (h/R) � 1, in particular because

R+h/2∫

R−h/2

1

r
dr = ln

(
R + h

2

)
− ln

(
R − h

2

)

= h

R
+ 1

12

[
h

R

]3
+ 1

80

[
h

R

]5
+ ... ≈ h

R
R+h/2∫

R−h/2

r − R

r R
dr =

R+h/2∫

R−h/2

1

R
dr −

R+h/2∫

R−h/2

1

r
dr

= h

R
− h

R
− 1

12

[
h

R

]3
− R

80

[
h

R

]5
+ ... ≈ 0.

(53)

Insertion of (51) into (50.2) yields

mϕ(ξ, ϕ, p) = Rshell
ax (ξ, p)

⎧⎪⎨
⎪⎩
[
uCr (ϕ, p) + duCϕ (ϕ, p)

dϕ

] R+h/2∫

R−h/2

r − R

r
dr

−
[
d2uCr (ϕ, p)

dϕ2 − duCϕ (ϕ, p)

dϕ

] R+h/2∫

R−h/2

(r − R)2

r R
dr

⎫⎪⎬
⎪⎭

≈ Rshell
ax (ξ, p)

1

12

h3

R2

[
duCϕ (ϕ, p)

dϕ
− d2uCr (ϕ, p)

dϕ2

]
.

(54)

The last term in (54) holds for (h/R) � 1, because of the following considerations: Firstly, the integrals
occurring in (54) can be evaluated as follows:

R+ h
2∫

R− h
2

(
r − R

)2
r R

dr = −h + R ln

[
R + h/2

R − h/2

]

= +R

{
1

12

[
h

R

]3
+ 1

80

[
h

R

]5
+ ...

}
≈ + 1

12

h3

R2 ,

R+h/2∫

R−h/2

r − R

r
dr =

R+h/2∫

R−h/2

1 dr −
R+h/2∫

R−h/2

R

r
dr

= h − R

{
h

R
+ 1

12

[
h

R

]3
+ R

80

[
h

R

]5
+ ....

}
≈ − 1

12

h3

R2 .

(55)
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Secondly, the bending-related portions of the circumferential normal strains on the outer shell surfaces, where
r = (R + h/2), need to be of the same size as the stretching-related portions of these strains; mathematically,
this can be expressed, when considering (51), as

1

R + h/2

[
uCr (ϕ, p) + duCϕ (ϕ, p)

dϕ

]
≈ − h/2

R2 + Rh/2

[
d2uCr (ϕ, p)

dϕ2 − duCϕ (ϕ, p)

dϕ

]
. (56)

Given in addition that

∣∣∣∣ 1

R + h/2

∣∣∣∣�
∣∣∣∣ h/2

R2 + Rh/2

∣∣∣∣ , (57)

(56) readily implies that

∣∣∣∣∣uCr (ϕ, p) + duCϕ (ϕ, p)

dϕ

∣∣∣∣∣�
∣∣∣∣∣
d2uCr (ϕ, p)

dϕ2 − duCϕ (ϕ, p)

dϕ

∣∣∣∣∣ (58)

so that only the terms d2uCr /dϕ2 and duCϕ /dϕ are not negligible in the expression for the bending moment
according to the last line of (54).

As a first step to obtain mathematical solutions for the differential equations (52) and (54), (52) is solved
for duCϕ /dϕ, yielding

duCϕ (ϕ, p)

dϕ
= nϕ(ϕ, p)

Rshell
ax (ξ, p)

R

h
− uCr (ϕ, p). (59)

This equation is then re-inserted into (54), yielding a differential equation for uCr only. The latter reads as

uCr (ϕ, p) + d2uCr (ϕ, p)

dϕ2 − nϕ(ϕ, p)

Rshell
ax (ξ, p)

R

h
+ mϕ(ϕ, p)

Rshell
ax (ξ, p)

12R2

h3
= 0. (60)

Finally, an expression for the angular rotation angle θCz along the circumferential coordinate ϕ̄ is derived.
Given the small actual deformations, this rotational angle can be approximated by temporal integration over
constant angular velocities which are formally identical to the virtual angular velocities introduced in Eq. (9)
and right above this equation. They fall into rotational portions associated with the origin and the shell center
surface, reading as v̂Cϕ /R and (d v̂Cr /dϕ)/R, so that the rotational angle of the shell generator line positioned
at coordinate ϕ can be expressed in terms of radial and circumferential displacement components as

θCz = 1

R

duCr
dϕ

− uCϕ
R

. (61)

The solution of the differential equations (59) and (60) for the axial forces (32) and the bending moments (33),
as well of Eq. (61) yields an expression for the radial and circumferential displacements of the center surface
and the rotational angle of the shell generator. The determination of the three integration constants is done
with uCr,b = uCr (ϕ̄ = 0) and uCϕ,b = uCϕ (ϕ̄ = 0); which denotes the radial and circumferential displacements of

the center surface at the beginning of the tunnel shell segment, and with θCz,b = θCz (ϕ̄ = 0); which denotes the
rotational angle of the shell generator line around an axis oriented in ez-direction and positioned in the shell
center, at the beginning of the tunnel shell segment.
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The solution of the differential equation (60) for the axial forces (32) and the bending moments (33), and
with the considered integration constants yields

uCr (ξ, ϕ̄, p) = +uCr,b(p) cos(ϕ̄) + uCϕ,b(p) sin(ϕ̄) + RθCz,b(p) sin(ϕ̄)

+ Np(p)

Rshell
ax (ξ, p)

{
12R3

h3

[
cos(ϕ̄) − 1

]
+
[
R

2h
+ 6R3

h3

][
ϕ̄ cos(ϕ̄)

tan(�ϕ)

+ϕ̄ sin(ϕ̄) − sin(ϕ̄)

tan(�ϕ)
+ sin(ϕ̄)

sin(�ϕ)
− ϕ̄ cos(ϕ̄)

sin(�ϕ)

]}

+ Gp,1(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
−1 − 54ϕ̄

(�ϕ)3
+ 9ϕ̄3

2(�ϕ)3
+ 36

(�ϕ)2

− 9ϕ̄2

(�ϕ)2
+ 11ϕ̄

2�ϕ
+ cos(ϕ̄) − 36 cos(ϕ̄)

(�ϕ)2

+ ϕ̄ cos(ϕ̄)

2 tan(�ϕ)
− 9ϕ̄ cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 9ϕ̄ cos(ϕ̄)

2(�ϕ)2 sin(�ϕ)

+ ϕ̄ sin(ϕ̄)

2
+ 54 sin(ϕ̄)

(�ϕ)3
− 9ϕ̄ sin(ϕ̄)

(�ϕ)2
− 11 sin(ϕ̄)

2�ϕ

− sin(ϕ̄)

2 tan(�ϕ)
+ 9 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 9 sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]}

+ Gp,2(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
162ϕ̄

(�ϕ)3
− 27ϕ̄3

2(�ϕ)3
− 90

(�ϕ)2

+ 45ϕ̄2

2(�ϕ)2
− 9ϕ̄

�ϕ
+ 90 cos(ϕ̄)

(�ϕ)2
+ 45ϕ̄ cos(ϕ̄)

2(�ϕ)2 tan(�ϕ)

+ 18ϕ̄ cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
− 162 sin(ϕ̄)

(�ϕ)3
+ 45ϕ̄ sin(ϕ̄)

2(�ϕ)2

+9 sin(ϕ̄)

�ϕ
− 45 sin(ϕ̄)

2(�ϕ)2 tan(�ϕ)
− 18 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}

+ Gp,3(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
− 162ϕ̄

(�ϕ)3
+ 27ϕ̄3

2(�ϕ)3
+ 72

(�ϕ)2

− 18ϕ̄2

(�ϕ)2
+ 9ϕ̄

2�ϕ
− 72 cos(ϕ̄)

(�ϕ)2
− 18ϕ̄ cos(ϕ̄)

(�ϕ)2 tan(�ϕ)

− 45ϕ̄ cos(ϕ̄)

2(�ϕ)2 sin(�ϕ)
+ 162 sin(ϕ̄)

(�ϕ)3
− 18ϕ̄ sin(ϕ̄)

(�ϕ)2

−9 sin(ϕ̄)

2�ϕ
+ 18 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45 sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]}

+ Gp,4(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
54ϕ̄

(�ϕ)3
− 9ϕ̄3

2(�ϕ)3
− 18

(�ϕ)2

+ 9ϕ̄2

2(�ϕ)2
− ϕ̄

�ϕ
+ 18 cos(ϕ̄)

(�ϕ)2
+ 9ϕ̄ cos(ϕ̄)

2(�ϕ)2 tan(�ϕ)

+ 9ϕ̄ cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
− 54 sin(ϕ̄)

(�ϕ)3
+ 9ϕ̄ sin(ϕ̄)

2(�ϕ)2
− ϕ̄ cos(ϕ̄)

2 sin(�ϕ)

+ sin(ϕ̄)

�ϕ
− 9 sin(ϕ̄)

2(�ϕ)2 tan(�ϕ)
+ sin(ϕ̄)

2 sin(�ϕ)
− 9 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}
.

(62)
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Weexplicitly note the interesting structure of the force-driven portion of the solution for the radial displacements
(62), which, when remembering (49.1), can be written as the product of the uniaxial creep function J (ξ, p)
with the ground/impost pressure-weighted sum of time-invariant influence functions I, depending on ν, R, h,
and ϕ̄; according to

uCr (ξ, ϕ̄, p) − uCr,b(p) cos(ϕ̄) − uCϕ,b(p) sin(ϕ̄) − RθCz,b(p) sin(ϕ̄)

= J (ξ, p)

{
Np(p) IN→r (ϕ̄) +

4∑
i=1

[
Gp,i (p) Ii→r (ϕ̄)

]}
(63)

with the traction-to-displacement influence functions I given as Eqs. (99)–(103) in Appendix B. Back-
transformation of (63) to the time domain according to

f (t) = 1

2π i

γ+i∞∫

γ−i∞
f (p) exp(pt) dp (64)

yields

uCr (ξ, ϕ̄, t) − uCr,b(t) cos(ϕ̄) − uCϕ,b(t) sin(ϕ̄) − RθCz,b(t) sin(ϕ̄)

= + IN→r (ϕ̄)

∫ t

0
J (t − τ)Ṅp(τ ) dτ +

4∑
i=1

[
Ii→r (ϕ̄)

∫ t

0
J (t − τ)Ġ p,i (τ ) dτ

]
. (65)

The solution of the differential equation (59) for the axial forces (32) and the radial displacements (62), and
with the considered integration constants yields

uCϕ (ξ, ϕ̄, p) = −uCr,b(p) sin(ϕ̄) + uCϕ,b(p) cos(ϕ̄) + RθCz,b(p){cos(ϕ̄) − 1}

+ Np(p)

Rshell
ax (ξ, p)

{[
R

2h
+ 6R3

h3

][
+ϕ̄ cos(ϕ̄) − 3 sin(ϕ̄)

− ϕ̄ sin(ϕ̄)

tan(�ϕ)
+ ϕ̄ sin(ϕ̄)

sin(�ϕ)

]
+ R

h

[
+2 sin(ϕ̄)

]

+12R3

h3

[
+ϕ̄ − cos(ϕ̄) − 1

tan(�ϕ)
+ cos(ϕ̄) − 1

sin(�ϕ)

]}

+ Gp,1(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
−54 − 54 cos(ϕ̄)

(�ϕ)3
+ 11 − 11 cos(ϕ̄)

2�ϕ

+ ϕ̄ cos(ϕ̄)

2
− 9ϕ̄ cos(ϕ̄)

(�ϕ)2
− ϕ̄ sin(ϕ̄)

2 tan(�ϕ)
+ 9ϕ̄ sin(ϕ̄)

(�ϕ)2 tan(�ϕ)

+ 9ϕ̄ sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]
+ R2

h

[
+ 27ϕ̄2

2(�ϕ)3
− 18ϕ̄

(�ϕ)2
− sin(ϕ̄)

2

+27 sin(ϕ̄)

(�ϕ)2

]
+12R4

h3

[
3ϕ̄3

(�ϕ)2
− 9ϕ̄4

8(�ϕ)3
− 11ϕ̄2

4�ϕ

+ 27ϕ̄2

(�ϕ)3
− 36ϕ̄

(�ϕ)2
− 3 sin(ϕ̄)

2
+ 45 sin(ϕ̄)

(�ϕ)2

− 9 − 9 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 1 − cos(ϕ̄)

tan(�ϕ)
− 18 − 18 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ ϕ̄

]}

+ Gp,2(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
+162 − 162 cos(ϕ̄)

(�ϕ)3
− 9 − 9 cos(ϕ̄)

�ϕ

− 45ϕ̄ sin(ϕ̄)

2(�ϕ)2 tan(�ϕ)
− 18ϕ̄ sin(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 45ϕ̄ cos(ϕ̄)

2(�ϕ)2

]
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+12R4

h3

[
− 81ϕ̄2

(�ϕ)3
+ 27ϕ̄4

8(�ϕ)3
+ 90ϕ̄

(�ϕ)2
− 15ϕ̄3

2(�ϕ)2

+ 9ϕ̄2

2�ϕ
+ 45 − 45 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 36 − 36 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

−225 sin(ϕ̄)

2(�ϕ)2

]
+ R2

h

[
− 81ϕ̄2

2(�ϕ)3
+ 45ϕ̄

(�ϕ)2
− 135 sin(ϕ̄)

2(�ϕ)2

]}

+ Gp,3(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
−162 − 162 cos(ϕ̄)

(�ϕ)3
+ 9 − 9 cos(ϕ̄)

2�ϕ

−18ϕ̄ cos(ϕ̄)

(�ϕ)2
+ 18ϕ̄ sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45ϕ̄ sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]

+12R4

h3

[
81ϕ̄2

(�ϕ)3
− 27ϕ̄4

8(�ϕ)3
− 72ϕ̄

(�ϕ)2
+ 6ϕ̄3

(�ϕ)2

− 9ϕ̄2

4�ϕ
− 36 − 36 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 45 − 45 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

+90 sin(ϕ̄)

(�ϕ)2

]
+ R2

h

[
81ϕ̄2

2(�ϕ)3
− 36ϕ̄

(�ϕ)2
+ 54 sin(ϕ̄)

(�ϕ)2

]}

+ Gp,4(p)

Rshell
ax (ξ, p)

{[
R2

h
+ 12R4

h3

][
− 1

�ϕ
+ 54 − 54 cos(ϕ̄)

�ϕ3 + 9ϕ̄ cos(ϕ̄)

2�ϕ2

− 9ϕ̄ sin(ϕ̄)

2�ϕ2 tan(�ϕ)
+ ϕ̄ sin(ϕ̄)

2 sin(�ϕ)
− 9ϕ̄ sin(ϕ̄)

�ϕ2 sin(�ϕ)

+cos(ϕ̄)

�ϕ

]
+12R4

h3

[
−27ϕ̄2

�ϕ3 + 9ϕ̄4

8�ϕ3 + 18ϕ̄

�ϕ2 − 3ϕ̄3

2�ϕ2

+ ϕ̄2

2�ϕ
− 45 sin(ϕ̄)

2�ϕ2 + 9 − 9 cos(ϕ̄)

�ϕ2 tan(�ϕ)
− 1 − cos(ϕ̄)

sin(�ϕ)

+18 − 18 cos(ϕ̄)

�ϕ2 sin(�ϕ)

]
+ R2

h

[
+ 9ϕ̄

�ϕ2 − 27ϕ̄2

2�ϕ3 − 27 sin(ϕ̄)

2�ϕ2

]}
. (66)

In analogy to (63), this expression can be written in terms of polar angle-specific influence functions, resulting
in the following relation after transformation into the time domain:

uCϕ (ξ, ϕ̄, t) + uCr,b(t) sin(ϕ̄) − uCϕ,b(t) cos(ϕ̄) − RθCz,b(t) {cos(ϕ̄) − 1}
= + IN→ϕ(ϕ̄)

∫ t

0
J (t − τ)Ṅp(τ ) dτ

+
4∑

i=1

[
Ii→ϕ(ϕ̄)

∫ t

0
J (t − τ)Ġ p,i (τ ) dτ

] (67)

with the influence functions I given as Eqs. (104)–(108) in Appendix B. The final mathematical solution for
the rotational angle of the shell generator yields

θCz (ξ, ϕ̄, p) = +θCz,b(p) + Gp,1(p)

Rshell
ax (ξ, p)

{
12R3

h3

[
−ϕ̄ − 27ϕ̄2

2(�ϕ)3
+ 9ϕ̄4

8(�ϕ)3
+ 18ϕ̄

(�ϕ)2

− 3ϕ̄3

(�ϕ)2
+ 11ϕ̄2

4�ϕ
− 1 − cos(ϕ̄)

tan(�ϕ)
+ sin(ϕ̄)

−18 sin(ϕ̄)

(�ϕ)2
+ 18 − 18 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 9 − 9 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}

+ Gp,2(p)

Rshell
ax (ξ, p)

{
12R3

h3

[
+ 81ϕ̄2

2(�ϕ)3
− 27ϕ̄4

8(�ϕ)3
− 45ϕ̄

(�ϕ)2
+ 15ϕ̄3

2(�ϕ)2
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− 9ϕ̄2

2�ϕ
+ 45 sin(ϕ̄)

(�ϕ)2
− 45 − 45 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 36 − 36 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}

+ Gp,3(p)

Rshell
ax (ξ, p)

{
12R3

h3

[
− 81ϕ̄2

2(�ϕ)3
+ 27ϕ̄4

8(�ϕ)3
+ 36ϕ̄

(�ϕ)2
− 6ϕ̄3

(�ϕ)2

+ 9ϕ̄2

4�ϕ
− 36 sin(ϕ̄)

(�ϕ)2
+ 36 − 36 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45 − 45 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}

+ Gp,4(p)

Rshell
ax (ξ, p)

{
12R3

h3

[
+ 27ϕ̄2

2(�ϕ)3
− 9ϕ̄4

8(�ϕ)3
− 9ϕ̄

(�ϕ)2

+ 3ϕ̄3

2(�ϕ)2
− ϕ̄2

2�ϕ
+ 9 sin(ϕ̄)

(�ϕ)2

− 9 − 9 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 18 − 18 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 1 − cos(ϕ̄)

sin(�ϕ)

]}

+ Np(p)

Rshell
ax (ξ, p)

{
12R2

h3

[
cos(ϕ̄) − 1

tan(�ϕ)
+ 1 − cos(ϕ̄)

sin(�ϕ)
+ sin(ϕ̄) − ϕ̄

]}
. (68)

In analogy to (63), this expression can be written in terms of polar angle-specific influence functions, resulting
in the following relation after transformation into the time domain:

θCz (ξ, ϕ̄, t) − θCz,b(t) = + IN→z(ϕ̄)

∫ t

0
J (t − τ)Ṅp(τ ) dτ

+
4∑

i=1

[
Ii→z(ϕ̄)

∫ t

0
J (t − τ)Ġ p,i (τ ) dτ

] (69)

with the influence functions I given as Eqs. (109)–(113) in Appendix B.

3.3 Aging and nonlinear creep—degree of utilization

Equations (65), (67), and (69) quantify the creep behavior of the entire shotcrete tunnel shell, in terms of
displacements and cross-sectional rotations as functions of ground and impost pressures, for a constant degree
of hydration. However, the latter itself evolves with time as well. Hence, the aforementioned relations, strictly
speaking, are only valid for a very short time interval during which the hydration degree is actually constant.
Accordingly, adopting the experimentally validated conceptual reasoning outlined in [28], we apply these
creep relations in rate form, for each and every time instant and the then prevailing degree of hydration.
Differentiation of the corresponding parameter integrals results in

u̇Cr (ξ, ϕ̄, t) − u̇Cr,b(t) cos(ϕ̄) − u̇Cϕ,b(t) sin(ϕ̄) − Rθ̇Cz,b(t) sin(ϕ̄)

= + IN→r (ϕ̄)

[
Ṅp(t)

E
(
ξ(t)

) +
∫ t

0

∂ J

∂t

(
ξ(t), t − τ

)
Ṅp(τ ) dτ

]

+
4∑

i=1

{
Ii→r (ϕ̄)

[
Ġ p,i (t)

E
(
ξ(t)

) +
∫ t

0

∂ J

∂t

(
ξ(t), t − τ

)
Ġ p,i (τ ) dτ

]} (70)

whereby we made use of J
(
ξ(t), 0

) = 1/E
(
ξ(t)

)
according to Eq. (39). In analogy to (70), the rate forms for

the circumferential displacements and the rotational angles around ez read as

u̇Cϕ (ξ, ϕ̄, t) + u̇Cr,b(t) sin(ϕ̄) − u̇Cϕ,b(t) cos(ϕ̄) − Rθ̇Cz,b(t) {cos(ϕ̄) − 1}
= + IN→ϕ(ϕ̄)

[
Ṅp(t)

E
(
ξ(t)

) +
∫ t

0

∂ J

∂t

(
ξ(t), t − τ

)
Ṅp(τ ) dτ

]

+
4∑

i=1

{
Ii→ϕ(ϕ̄)

[
Ġ p,i (t)

E
(
ξ(t)

) +
∫ t

0

∂ J

∂t

(
ξ(t), t − τ

)
Ġ p,i (τ ) dτ

]} (71)
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and

θ̇Cz (ξ, ϕ̄, t) − θ̇Cz,b(t)

= + IN→z(ϕ̄)

[
Ṅp(t)

E
(
ξ(t)

) +
∫ t

0

∂ J

∂t

(
ξ(t), t − τ

)
Ṅp(τ ) dτ

]

+
4∑

i=1

{
Ii→z(ϕ̄)

[
Ġ p,i (t)

E
(
ξ(t)

) +
∫ t

0

∂ J

∂t

(
ξ(t), t − τ

)
Ġ p,i (τ ) dτ

]}
.

(72)

Finally, it is known that the creep compliance increases nonlinearly with the stress once a critical load level is
exceeded. This is elegantly quantified in terms of the affinity concept of Ruiz et al [25], according to which
the rate of the creep function (39) needs to be multiplied by a factor η,

∂ JNL

∂t
= η

∂ J

∂t
, (73)

with the affinity factor reading as

η = 1 + 2L4 for L > 0 (74)

wherebyL is the level of loading associated with the strength of the material. In the line of [38],L is associated
with a Drucker-Prager strength criterion applied to the stresses at the center line of the tunnel shell, so that

L(ϕ̄, t) = +αDP

kDP

[
σϕϕ(r = R, ϕ̄, t) + σzz(r = R, ϕ̄, t)

]

+ 1

kDP

{[
+2

3
σϕϕ(r = R, ϕ̄, t) − 1

3
σzz(r = R, ϕ̄, t)

]2

+
[
−1

3
σϕϕ(r = R, ϕ̄, t) − 1

3
σzz(r = R, ϕ̄, t)

]2

+
[
−1

3
σϕϕ(r = R, ϕ̄, t) + 2

3
σzz(r = R, ϕ̄, t)

]2}0.5
(75)

with parameters αDP and kDP being related to the uniaxial and biaxial compressive strengths fc and fb of
shotcrete,

αDP =
√
2

3

κ − 1

2κ − 1
; kDP =

√
2

3

[
1 − κ − 1

2κ − 1

]
fc; κ = fb

fc
(76)

where κ = 1.15 follows from standard tests [15], and fc follows the evolution given by Eq. (35). We note that
the format of (74) maintains the consideration of homogeneous creep properties, as introduced in Eq. (50.2).

4 Application to a benchmark example: Sieberg tunnel

4.1 Geometrical and material properties

The analytical mechanics model for an aging viscoelastic cylindrical shell segment, as developed in Sects. 2
and 3, is eventually applied to a benchmark example in NATM tunneling, which has been analyzed by various
types of “hybrid methods” combining geodetic measurements with material and structural mechanics tools
[11,12,36–38]: This benchmark example is built on cross section MC1452 of the Sieberg tunnel, a tunnel
constructed in the 1990s as part of the high-speed railway line connecting Vienna and Salzburg. In terms of the
geometrical properties introduced in Sects. 2 and 3, it is characterized by radius R = 6.20m, a thickness h = 0.30
m, and an opening angle�ϕ = 2.92 rad = 167.30◦, see Fig. 6. During the top heading excavation and installation
stage, it was equippedwith three optical reflectors delivering displacement vectors in threemeasurement points
(MPs),MP1,MP2, andMP3, see Fig. 6; andwe here consider the correspondingmeasurements over the first 28
days of the lifetime of the Sieberg tunnel, see Table 2. Moreover, we consider a typical shotcrete mixture with
the cement type CEM II/A-S 42.5R, effective water-to-cement mass ratio (w/c)ef f = 0.5, aggregate-to-cement
mass ratio a/c = 4.48, and volume fractions of aggregates f conagg = 0.70. For such a composition, Figures 13
and 3 of [38] suggest the following values for the degree of hydration and uniaxial strength after 28 days of
shotcrete age: ξ = 0.8762 and fc,28d = 58.14 MPa.
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Fig. 6 Top heading of the Sieberg tunnel: definition of ex -ey and er (ϕ̄)-eϕ(ϕ̄) coordinate frames, geometric properties, and
locations of measurement points MP1, MP2, and MP3

Table 2 Radial and circumferential displacement components measured (in meters) at three geodetic reflectors installed within
cross section MC1452 of the Sieberg tunnel; as seen in Fig. 6

viewing time Measurement point MP1 Measurement point MP2 Measurement point MP3

uCr,a = uMP1
r uCϕ,a = uMP1

ϕ uCr,e = uMP2
r uCϕ,e = uMP2

ϕ uCr,b = uMP3
r uCϕ,b = uMP3

ϕ

t0 = 0.000 d ±0.00000 ±0.00000 ±0.00000 ±0.00000 ±0.00000 ±0.00000
t1 = 0.052 d −0.00081 +0.00001 −0.00023 +0.00025 −0.00020 −0.00015
t2 = 0.120 d −0.00185 +0.00002 −0.00054 +0.00056 −0.00047 −0.00034
t3 = 0.252 d −0.00387 +0.00004 −0.00112 +0.00118 −0.00102 −0.00073
t4 = 0.464 d −0.00715 +0.00007 −0.00204 +0.00214 −0.00195 −0.00136
t5 = 0.792 d −0.01177 +0.00013 −0.00346 +0.00374 −0.00359 −0.00241
t6 = 1.264 d −0.01621 −0.00010 −0.00490 +0.00521 −0.00505 −0.00385
t7 = 1.928 d −0.01834 −0.00072 −0.00632 +0.00631 −0.00585 −0.00536
t8 = 2.824 d −0.01989 −0.00017 −0.00768 +0.00740 −0.00471 −0.00662
t9 = 4.000 d −0.02055 +0.00081 −0.00851 +0.00795 −0.00421 −0.00743
t10 = 5.600 d −0.02086 −0.00052 −0.00933 +0.00812 −0.00465 −0.00911
t11 = 6.690 d −0.02076 −0.00087 −0.00955 +0.00818 −0.00473 −0.00814
t12 = 7.795 d −0.02056 −0.00080 −0.01015 +0.00842 −0.00434 −0.00830
t13 = 10.806 d −0.02050 −0.00086 −0.01121 +0.00846 −0.00444 −0.00816
t14 = 14.928 d −0.02050 −0.00094 −0.01212 +0.00831 −0.00459 −0.00793
t15 = 20.599 d −0.01993 −0.00112 −0.01135 +0.00808 −0.00447 −0.00821
t16 = 24.000 d −0.02032 −0.00122 −0.01096 +0.00801 −0.00424 −0.00840
t17 = 25.000 d −0.02049 −0.00073 −0.01166 +0.00894 −0.00466 −0.00869
t18 = 26.000 d −0.02068 −0.00173 −0.01183 +0.00918 −0.00500 −0.00908
t19 = 27.000 d −0.02044 −0.00014 −0.01191 +0.00913 −0.00560 −0.00924
t20 = 28.000 d −0.02002 −0.00101 −0.01139 +0.00890 −0.00633 −0.00897

4.2 Displacement-to-force conversion

The conversion of displacements measured in MP1, MP2, andMP3, into compressive traction forces acting on
the other shell surfaces and on the imposts is based on a temporally discretized version of Eqs. (70)–(72), along
with Eqs. (99)–(113) of Appendix B. Between chosen time instants since the installation of the top heading,
see Table 2, the temporal evolutions of the displacements and rotational angles are approximated linearly, so
that the corresponding rates become constants during the time intervals [ti , ti+1], according to

u̇r (�tn+1) = ur (tn+1) − ur (tn)

�tn+1
for t ∈ [tn, tn+1], (77)

u̇ϕ(�tn+1) = uϕ(tn+1) − uϕ(tn)

�tn+1
for t ∈ [tn, tn+1], (78)

θ̇z(�tn+1) = θz(tn+1) − θz(tn)

�tn+1
for t ∈ [tn, tn+1] (79)

whereby

�tn+1 = tn+1 − tn . (80)
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The same temporal approximation type is used for the ground and impost pressure values Np and Gp,i , with
i = 1, 2, 3, 4, according to

Ṅp(�tn+1) = Np(tn+1) − Np(tn)

�tn+1
for t ∈ [tn, tn+1], (81)

Ġ p,i (�tn+1) = Gp,i (tn+1) − Gp,i (tn)

�tn+1
with i = 1, 2, 3, 4 for t ∈ [tn, tn+1]. (82)

Finally, also the material properties are considered to evolve linearly with time between any two of the instants
given in Table 2, so that

E(t) = E
(
ξ(tn)

)+ t − tn
�tn+1

[
E
(
ξ(tn+1)

)− E
(
ξ(tn)

)]
for t ∈ [tn, tn+1], (83)

∂ JNL

∂t
(t) = ∂ JNL

∂t

(
ξ(tn), t − tn

)+ t − tn
�tn+1

[
∂ JNL

∂t

(
ξ(tn+1), t − tn

)

−∂ JNL

∂t

(
ξ(tn), t − tn

)]

= η

{
1

Ec
(
ξ(tn)

) + t − tn
�tn+1

[
1

Ec
(
ξ(tn+1)

) − 1

Ec
(
ξ(tn)

)
]}

β

t0

[
t

t0

]β−1

.

(84)

Use of (77)–(84) in the rate equations (70)–(72) yields the following discretized format for the increments of
radial and circumferential displacements and of rotational angles, respectively,

+uCr (ξ, ϕ̄, tn+1) − uCr (ξ, ϕ̄, tn)

�tn+1
− uCr,b(tn+1) − uCr,b(tn)

�tn+1

[
cos(ϕ̄)

]

−uCϕ,b(tn+1) − uCϕ,b(tn)

�tn+1

[
sin(ϕ̄)

]
− RθCz,b(tn+1) − RθCz,b(tn)

�tn+1

[
sin(ϕ̄)

]

= + IN→r (ϕ̄)

[
Np(tn+1) − Np(tn)

E
(
ξ(tn+1)

)
�tn+1

+�tn+1

2

(
∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1)

)
Np(tn+1) − Np(tn)

�tn+1

]

+
4∑

i=1

{
Ii→r (ϕ̄)

[
Gp,i (tn+1) − Gp,i (tn)

E
(
ξ(tn+1)

)
�tn+1

+�tn+1

2

(
∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1)

)
Gp,i (tn+1) − Gp,i (tn)

�tn+1

]}

(85)

+uCϕ (ξ, ϕ̄, tn+1) − uCϕ (ξ, ϕ̄, tn)

�tn+1
+ uCr,b(tn+1) − uCr,b(tn)

�tn+1

[
sin(ϕ̄)

]

−uCϕ,b(tn+1) − uCϕ,b(tn)

�tn+1

[
cos(ϕ̄)

]
− RθCz,b(tn+1) − RθCz,b(tn)

�tn+1

[
cos(ϕ̄) − 1

]

= + IN→ϕ(ϕ̄)

[
Np(tn+1) − Np(tn)

E
(
ξ(tn+1)

)
�tn+1

+�tn+1

2

(
∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1)

)
Np(tn+1) − Np(tn)

�tn+1

]

+
4∑

i=1

{
Ii→ϕ(ϕ̄)

[
Gp,i (tn+1) − Gp,i (tn)

E
(
ξ(tn+1)

)
�tn+1

+�tn+1

2

(
∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1)

)
Gp,i (tn+1) − Gp,i (tn)

�tn+1

]}

(86)
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θCz (ξ, ϕ̄, tn+1) − θCz (ξ, ϕ̄, tn)

�tn+1
− θCz,b(tn+1) − θCz,b(tn)

�tn+1

= + IN→z(ϕ̄)

[
Np(tn+1) − Np(tn)

E
(
ξ(tn+1)

)
�tn+1

+�tn+1

2

(
∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1)

)
Np(tn+1) − Np(tn)

�tn+1

]

+
4∑

i=1

{
Ii→z(ϕ̄)

[
Gp,i (tn+1) − Gp,i (tn)

E
(
ξ(tn+1)

)
�tn+1

+�tn+1

2

(
∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1)

)
Gp,i (tn+1) − Gp,i (tn)

�tn+1

]}

(87)

whereby

∂ JNL

∂t
(tn) + ∂ JNL

∂t
(tn+1) = η

Ec
(
ξ(tn)

) β

t0

[
tn
t0

]β−1

+ η

Ec
(
ξ(tn+1)

) β

t0

[
tn+1

t0

]β−1

. (88)

It is pointed out that for the affinity factor the level of loading is determined with the stresses of the pre-step.
This requires the selection of sufficiently small time increments between the chosen time instants from Table 2.

4.3 Determination of the unknowns: ground pressure, axial force, and generator rotations at the ends of the
circular segment

The preceding developments contain seven unknowns, four values for the ground pressure at different locations,
one value for the axial force, and two values for the generator rotations at the beginning and at the end of
the circular tunnel shell segment, respectively. In mathematical terms, these unknowns are: Gp,1(ti ), Gp,2(ti ),
Gp,3(ti ), Gp,4(ti ), Np(ti ), θCz,b(ti ), θ

C
z,e(ti ).

For the determination of these unknowns, seven equations are necessary. They are obtained as follows:

– Two equations result from the specification of the natural boundary condition (27) for the beginning of the
arch segment ϕ̄ = ϕb = 0 and for the end of the arch segment ϕ̄ = ϕe = �ϕ, as well as for (33) and (34).

– Two equations result from the specification of the discretized format of the radial displacements according
to (85) for uCr (ξ, ϕ̄ = �ϕ/2, ti ) = uMP1

r (ti ) and uCr (ξ, ϕ̄ = �ϕ, ti ) = uMP2
r (ti ).

– Two equations result from the specification of the discretized format of the tangential displacements (86)
for uCϕ (ξ, ϕ̄ = �ϕ/2, ti ) = uMP1

ϕ (ti ) and uCϕ (ξ, ϕ̄ = �ϕ, ti ) = uMP2
ϕ (ti ).

– One equation results from the specification of the discretized format of the rotation angle (87) for θCz (ξ, ϕ̄ =
�ϕ, ti ) = θCz,c(ti ).

For the geometrical andmaterial properties fromSect. 4.1 and the displacementmeasurements given in Table 2,
the solution of the aforementioned linear system of equations for twenty time points ti yields the following
results: (i) the ground pressure values Gp,1, Gp,2, Gp,3, and Gp,4 are almost identical, expressing a uniform
ground pressure distribution along the circumference of the tunnel segment, see Fig. 7; (ii) compressive axial
forces Np are acting on the imposts, and the use of corresponding values in (32) yields axial forces which
are again uniform along the circumferential direction of the tunnel segment, see Fig. 8a–d; (iii) the generator
rotations, θCz,b and θCz,e, differ largely from one another, and the use of θCz,b and of the aforementioned force
and pressure values in (68) and (69) yields a non-uniform distribution of generator rotations along the tunnel
segment circumference, see Fig. 9i–l.

The results are further complemented by the use of the force and pressure values, Np and Gp,i , with
i = 1, 2, 3, 4, in (33), yielding the non-uniform bending moment distribution seen in Fig. 10; these moments
are, however, very small, as can be seen from excentricities amounting to mϕ/nϕ ≈ 0.001m. Moreover, use
of the aforementioned force and pressure values, together with the measured displacements uMP3

r and uMP3
ϕ

and the computed generation rotations θCz,b, in (62)–(67), yields the displacement distributions of Fig. 9 (a–h).
Use of the latter displacement distribution in expression (51) for the circumferential normal strain, inserting
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(a) (b) (c) (d)

Fig. 7 Distribution of ground pressure along the circumference of the top heading of the Sieberg tunnel at measurement cross
section MC 1452, for different time points according to Table 2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Distribution of a–d circumferential and e–h axial normal forces along the circumference of the top heading of the Sieberg
tunnel at measurement cross section MC 1452, for different time points according to Table 2

the result into (48.2) while considering (49.2), and defining the axial normal force by replacing, in (17), “ϕ”
by “z”, yields

nz(ϕ̄, t) = ν(1 − ν) nϕ(ϕ̄, t), (89)

see Fig. 8e–h for corresponding results. From an evolutionary perspective, the normal forces and ground
pressures heavily increase during the first days in the life time of the tunnel segment installed at MC1452 of
the Sieberg tunnel, and stay nearly constant thereafter, see Fig. 11. Finally, the degree of utilization is computed
from insertion of the displacement values of Fig. 9a–h into Eq. (51), and of the corresponding result into (48.1)
while considering (48.2), see Fig. 12. As with the force and pressure evolutions, the degree of utilization
exhibits a strong increase during the first days of the life of the tunnel shell, followed by a mild decrease.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9 Distribution of radial a–d and circumferential e–h displacements, and of i–l generator rotations along the circumference
of the top heading of the Sieberg tunnel at measurement cross section MC 1452, for different time points according to Table 2

(a) (b) (c) (d)

Fig. 10 Distribution of bending moments along the circumference of the top heading of the Sieberg tunnel at measurement cross
section MC 1452, for different time points according to Table 2
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(a) (b) (c)

Fig. 11 Evolution over time of a circumferential and b axial normal force as well as c ground pressure of the top heading of the
Sieberg tunnel at measurement cross section MC 1452

(a) (b)

Fig. 12 History of degree of utilization (a) and its position (b) of the top heading of the Sieberg tunnel at measurement cross
section MC 1452

5 Conclusions

The consideration of polar components of point-wise measured displacement vectors in combination with a
tunnel-specific shell theory and the viscoelastic modeling of aging shotcrete provides analytical access to the
ground pressure distribution along the tunnel circumference, impost forces, and all quantities arising from the
action of the latter external forces: distributions of all internal normal forces and bending moments, of radial
and circumferential displacements, and of the degree of utilization.
The “white-box” nature of this approach, providing a closed-form expression for advanced mechanics-driven
data evaluation, renders it, in the opinion of the authors, as a prime source for reliable and clear rule development
in the ongoing discussion concerning artificial intelligence and “big data” in geotechnical engineering. In
particular, the presented concept can be straightforwardly extended towards more complex geometries and
construction sequences. This task is planned in close interaction with the tunnel engineering industry.
At the same time, and from a more pragmatic perspective, our approach also provides novel insights which
may support the calibration of state-of-the-art Finite Element models encompassing the tunnel shell and the
bolt-reinforced rock [21].
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A Approximation of the concrete strength—based on a micro-to-macro validated engineering
mechanics model

[18] provides a mathematical approximation for the uniaxial compressive strength of concrete, as a function of
material composition and maturity, i.e., a combination of the effective water-to-cement mass ratios (w/c)ef f ,
the aggregate-to-cement mass ratio a/c, the volume fractions of aggregates f conagg and the hydration degree ξ .
In more detail the uniaxial compressive strength of the hydrate phase results from the Mohr-Coulomb failure
criterion as

Σ
uni, ult
hyd = 2chyd cos(ϕhyd)

1 − sin(ϕhyd)
= 123.49MPa (90)

with cohesion chyd = 50MPa and friction angle ϕhyd = 12◦. The uniaxial compressive strength of the hydrate
foam can be expressed as

Σ
uni, ult
h f = Σ

uni, ult
hyd

{
−2.853 ( f hfhyd)

5 + 5.764 ( f hfhyd)
4 − 2.746 ( f hfhyd)

3

+0.7084 ( f hfhyd)
2 + 0.08728 ( f hfhyd)

} (91)

with the hydrate foam-related corresponding volume fraction f hfhyd as function of the (effective) w/c-ratio and
hydration degree ξ ,

f hfhyd = 43.15ξ

20ξ + 63(w/c)ef f
. (92)

The uniaxial compressive strength of the cement paste can be expressed as

Σuni, ult
cp = Σ

uni, ult
h f

{
1 + C1 f

cp
clin + C2 f

cp
clin

}
(93)

with the cement paste-related clinker volume fraction f cpclin

f cpclin = 20(1 − ξ)

20 + 63(w/c)ef f
(94)

and the constants C1 and C2,

C1 = +1.2789 ( f hfhyd)
4 − 2.4825 ( f hfhyd)

3 + 1.1613 ( f hfhyd)
2 − 0.2398 ( f hfhyd) + 0.7317,

C2 = −0.3409 ( f hfhyd)
4 + 0.7091 ( f hfhyd)

3 − 0.3908 ( f hfhyd)
2 + 0.0639 ( f hfhyd) − 0.1072.

(95)

Finally, the uniaxial compressive strength of the concrete yields

Σuni, ult
con = Σuni, ult

cp

{
C4

[
1 + C3( f

con
agg − 0.7)

] }
(96)

with the aggregate volume fraction as function of the (initial) aggregate-to-cement ratio (a/c), (initial) water-
to-cement ratio (w/c), and the mass densities of aggregates, clinker and water, ρagg, ρclin, and ρH2O

f conagg =
a/c
ρagg

1
ρclin

+ w/c
ρH2O

+ a/c
ρagg

, (97)

and the constants C3 and C4 are

C3 = +10.936 ( f hfhyd)
4 − 35.766 ( f hfhyd)

3 + 41.348 ( f hfhyd)
2 − 20.096 ( f hfhyd) + 3.9162,

C4 = +2.8254 ( f hfhyd)
4 − 7.5492 ( f hfhyd)

3 + 7.1044 ( f hfhyd)
2 − 2.8232 ( f hfhyd) + 1.3040.

(98)
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For a known shotcrete composition, the development over time of the uniaxial compressive strength of concrete
can be described by (96), and simultaneously bymeans of the fibModel Code according to (35). Equating these
two relations, while choosing specific model code quantities (namely, uniaxial compressive strength values
reached after 28 days, which amount to of 50, 55, and 60MPa; and a strength evolution parameter of sE = 0.18)
and compositional characteristics ((effective) water-to-cement ratios (w/c)ef f ∈ {0.450, 0.475, 0.500, 0.525}
and f conagg = 0.70 based on the concrete composition for the test campaign ULB I according to [18]), one arrives
at evolutions of the degree of hydration as shown in Figs. 4 and 5.

B Time-invariant influence functions

The time-invariant influence functions I for the radial displacements can be expressed as

IN→r (ϕ̄) =
{
1 − ν2

}{
12R3

h3

[
cos(ϕ̄) − 1

]
+
[
R

2h
+ 6R3

h3

][
ϕ̄ cos(ϕ̄)

tan(�ϕ)

+ϕ̄ sin(ϕ̄) − sin(ϕ̄)

tan(�ϕ)
+ sin(ϕ̄)

sin(�ϕ)
− ϕ̄ cos(ϕ̄)

sin(�ϕ)

]}
,

(99)

I1→r (ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
−1 − 54ϕ̄

(�ϕ)3
+ 9ϕ̄3

2(�ϕ)3
+ 36

(�ϕ)2

− 9ϕ̄2

(�ϕ)2
+ 11ϕ̄

2�ϕ
− 36 cos(ϕ̄)

(�ϕ)2
+ ϕ̄ cos(ϕ̄)

2 tan(�ϕ)
− 9ϕ̄ cos(ϕ̄)

(�ϕ)2 tan(�ϕ)

+ cos(ϕ̄) − 9ϕ̄ cos(ϕ̄)

2(�ϕ)2 sin(�ϕ)
+ ϕ̄ sin(ϕ̄)

2
+ 54 sin(ϕ̄)

(�ϕ)3
− 9ϕ̄ sin(ϕ̄)

(�ϕ)2

−11 sin(ϕ̄)

2�ϕ
− sin(ϕ̄)

2 tan(�ϕ)
+ 9 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 9 sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]}
,

(100)

I2→r (ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
162ϕ̄

(�ϕ)3
− 27ϕ̄3

2(�ϕ)3
− 90

(�ϕ)2
+ 45ϕ̄2

2(�ϕ)2

− 9ϕ̄

�ϕ
+ 90 cos(ϕ̄)

(�ϕ)2
+ 45ϕ̄ cos(ϕ̄)

2(�ϕ)2 tan(�ϕ)

+ 18ϕ̄ cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
− 162 sin(ϕ̄)

(�ϕ)3
+ 45ϕ̄ sin(ϕ̄)

2(�ϕ)2

+9 sin(ϕ̄)

�ϕ
− 45 sin(ϕ̄)

2(�ϕ)2 tan(�ϕ)
− 18 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}
,

(101)

I3→r (ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
− 162ϕ̄

(�ϕ)3
+ 27ϕ̄3

2(�ϕ)3
+ 72

(�ϕ)2
− 18ϕ̄2

(�ϕ)2

+ 9ϕ̄

2�ϕ
− 72 cos(ϕ̄)

(�ϕ)2
− 18ϕ̄ cos(ϕ̄)

(�ϕ)2 tan(�ϕ)

− 45ϕ̄ cos(ϕ̄)

2(�ϕ)2 sin(�ϕ)
+ 162 sin(ϕ̄)

(�ϕ)3
− 18ϕ̄ sin(ϕ̄)

(�ϕ)2

−9 sin(ϕ̄)

2�ϕ
+ 18 sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45 sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]}
,

(102)

I4→r (ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
54ϕ̄

(�ϕ)3
− 9ϕ̄3

2(�ϕ)3
− 18

(�ϕ)2
+ 9ϕ̄2

2(�ϕ)2

− ϕ̄

�ϕ
+ 18 cos(ϕ̄)

(�ϕ)2
+ 9ϕ̄ cos(ϕ̄)

2(�ϕ)2 tan(�ϕ)
− 54 sin(ϕ̄)

(�ϕ)3

+ 9ϕ̄ cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 9ϕ̄ sin(ϕ̄)

2(�ϕ)2
− ϕ̄ cos(ϕ̄)

2 sin(�ϕ)
+ sin(ϕ̄)

�ϕ

− 9 sin(ϕ̄)

2(�ϕ)2 tan(�ϕ)
+ sin(ϕ̄)

2 sin(�ϕ)
− 9 sin(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}
.

(103)
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The time-invariant influence functions I for the tangential displacements can be expressed as

IN→ϕ(ϕ̄) =
{
1 − ν2

}{[
R

2h
+ 6R3

h3

][
+ϕ̄ cos(ϕ̄) − 3 sin(ϕ̄) − ϕ̄ sin(ϕ̄)

tan(�ϕ)
+ ϕ̄ sin(ϕ̄)

sin(�ϕ)

]

+ R

h

[
+2 sin(ϕ̄)

]
+12R3

h3

[
+ϕ̄ − cos(ϕ̄) − 1

tan(�ϕ)
+ cos(ϕ̄) − 1

sin(�ϕ)

]}
,

(104)

I1→ϕ(ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
−54 − 54 cos(ϕ̄)

(�ϕ)3
+ 11 − 11 cos(ϕ̄)

2�ϕ

+ ϕ̄ cos(ϕ̄)

2
− 9ϕ̄ cos(ϕ̄)

(�ϕ)2
− ϕ̄ sin(ϕ̄)

2 tan(�ϕ)
+ 9ϕ̄ sin(ϕ̄)

(�ϕ)2 tan(�ϕ)

+ 9ϕ̄ sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]
+ R2

h

[
+ 27ϕ̄2

2(�ϕ)3
− 18ϕ̄

(�ϕ)2
− sin(ϕ̄)

2

+27 sin(ϕ̄)

(�ϕ)2

]
+12R4

h3

[
3ϕ̄3

(�ϕ)2
− 9ϕ̄4

8(�ϕ)3
− 11ϕ̄2

4�ϕ

+ 27ϕ̄2

(�ϕ)3
− 36ϕ̄

(�ϕ)2
− 3 sin(ϕ̄)

2
+ 45 sin(ϕ̄)

(�ϕ)2

− 9 − 9 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 1 − cos(ϕ̄)

tan(�ϕ)
− 18 − 18 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ ϕ̄

]}
,

(105)

I2→ϕ(ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
+162 − 162 cos(ϕ̄)

(�ϕ)3
− 9 − 9 cos(ϕ̄)

�ϕ

− 45ϕ̄ sin(ϕ̄)

2(�ϕ)2 tan(�ϕ)
− 18ϕ̄ sin(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 45ϕ̄ cos(ϕ̄)

2(�ϕ)2

]

+12R4

h3

[
− 81ϕ̄2

(�ϕ)3
+ 27ϕ̄4

8(�ϕ)3
+ 90ϕ̄

(�ϕ)2
− 15ϕ̄3

2(�ϕ)2

+ 9ϕ̄2

2�ϕ
+ 45 − 45 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 36 − 36 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

−225 sin(ϕ̄)

2(�ϕ)2

]
+ R2

h

[
− 81ϕ̄2

2(�ϕ)3
+ 45ϕ̄

(�ϕ)2
− 135 sin(ϕ̄)

2(�ϕ)2

]}
,

(106)

I3→ϕ(ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
−162 − 162 cos(ϕ̄)

(�ϕ)3
+ 9 − 9 cos(ϕ̄)

2�ϕ

−18ϕ̄ cos(ϕ̄)

(�ϕ)2
+ 18ϕ̄ sin(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45ϕ̄ sin(ϕ̄)

2(�ϕ)2 sin(�ϕ)

]

+12R4

h3

[
81ϕ̄2

(�ϕ)3
− 27ϕ̄4

8(�ϕ)3
− 72ϕ̄

(�ϕ)2
+ 6ϕ̄3

(�ϕ)2

− 9ϕ̄2

4�ϕ
− 36 − 36 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 45 − 45 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

+90 sin(ϕ̄)

(�ϕ)2

]
+ R2

h

[
81ϕ̄2

2(�ϕ)3
− 36ϕ̄

(�ϕ)2
+ 54 sin(ϕ̄)

(�ϕ)2

]}
,

(107)

I4→ϕ(ϕ̄) =
{
1 − ν2

}{[
R2

h
+ 12R4

h3

][
− 1

�ϕ
+ 54 − 54 cos(ϕ̄)

�ϕ3 + 9ϕ̄ cos(ϕ̄)

2�ϕ2

− 9ϕ̄ sin(ϕ̄)

2�ϕ2 tan(�ϕ)
+ ϕ̄ sin(ϕ̄)

2 sin(�ϕ)
− 9ϕ̄ sin(ϕ̄)

�ϕ2 sin(�ϕ)

+cos(ϕ̄)

�ϕ

]
+12R4

h3

[
−27ϕ̄2

�ϕ3 + 9ϕ̄4

8�ϕ3 + 18ϕ̄

�ϕ2 − 3ϕ̄3

2�ϕ2

+ ϕ̄2

2�ϕ
− 45 sin(ϕ̄)

2�ϕ2 + 9 − 9 cos(ϕ̄)

�ϕ2 tan(�ϕ)
− 1 − cos(ϕ̄)

sin(�ϕ)

+18 − 18 cos(ϕ̄)

�ϕ2 sin(�ϕ)

]
+ R2

h

[
+ 9ϕ̄

�ϕ2 − 27ϕ̄2

2�ϕ3 − 27 sin(ϕ̄)

2�ϕ2

]}
.

(108)
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The time-invariant influence functions I for the cross-sectional rotation angle can be expressed as

IN→z(ϕ̄) =
{
1 − ν2

}{
12R2

h3

[
cos(ϕ̄) − 1

tan(�ϕ)
+ 1 − cos(ϕ̄)

sin(�ϕ)
+ sin(ϕ̄) − ϕ̄

]}
, (109)

I1→z(ϕ̄) =
{
1 − ν2

}{
12R3

h3

[
−ϕ̄ − 27ϕ̄2

2(�ϕ)3
+ 9ϕ̄4

8(�ϕ)3
+ 18ϕ̄

(�ϕ)2
− 3ϕ̄3

(�ϕ)2

+11ϕ̄2

4�ϕ
− 1 − cos(ϕ̄)

tan(�ϕ)
+ sin(ϕ̄)

−18 sin(ϕ̄)

(�ϕ)2
+ 18 − 18 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 9 − 9 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}
,

(110)

I2→z(ϕ̄) =
{
1 − ν2

}{
12R3

h3

[
+ 81ϕ̄2

2(�ϕ)3
− 27ϕ̄4

8(�ϕ)3
− 45ϕ̄

(�ϕ)2
+ 15ϕ̄3

2(�ϕ)2

− 9ϕ̄2

2�ϕ
+ 45 sin(ϕ̄)

(�ϕ)2
− 45 − 45 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 36 − 36 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}
,

(111)

I3→z(ϕ̄) =
{
1 − ν2

}{
12R3

h3

[
− 81ϕ̄2

2(�ϕ)3
+ 27ϕ̄4

8(�ϕ)3
+ 36ϕ̄

(�ϕ)2
− 6ϕ̄3

(�ϕ)2

+ 9ϕ̄2

4�ϕ
− 36 sin(ϕ̄)

(�ϕ)2
+ 36 − 36 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
+ 45 − 45 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)

]}
,

(112)

I4→z(ϕ̄) =
{
1 − ν2

}{
12R3

h3

[
+ 27ϕ̄2

2(�ϕ)3
− 9ϕ̄4

8(�ϕ)3
− 9ϕ̄

(�ϕ)2
+ 3ϕ̄3

2(�ϕ)2
− ϕ̄2

2�ϕ

+9 sin(ϕ̄)

(�ϕ)2
− 9 − 9 cos(ϕ̄)

(�ϕ)2 tan(�ϕ)
− 18 − 18 cos(ϕ̄)

(�ϕ)2 sin(�ϕ)
+ 1 − cos(ϕ̄)

sin(�ϕ)

]}
.

(113)
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