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Abstract

The users of space-based applications are decoupled from each other in time and space because
they interact with each other by writing and reading/taking objects to/from the space. This
property of space-based applications is useful for modern applications.

The Peer Model is currently the highest abstraction of the space-based paradigm and facili-
tates the creation of reusable coordination patterns with the embedding of decoupled application
logic. The Peer Model’s implementation in .Net is called PeerSpace.NET. Currently there exists
no security mechanism for the PeerSpace.NET, which is important for its practical employment.

This thesis discusses the creation and implementation of a security model for the Peer-
Space.NET. Due to the present P2P architecture, where no centralized server exists and no
mutual trust can be assumed, several challenges arise for the creation of the security model.

The here presented security model protects the PeerSpace.NET against unauthorized access
by means of a fine-grained policy. The access control is based on authenticated security attributes
which identify the sender of entries. To facilitate access control for entries which are sent on
behalf of other peers, indirect senders are also identified by their security attributes.

Access control decisions, i.e. granting or denying an operation, involves information about
the content of sent entries and may depend on environmental context data. Further a peer’s
security policy can be dynamically changed by the peer owner but the security administration
can also be delegated to other users.

In a nutshell, a security model with a dynamic, content- and context-aware access con-
trol, which can also involve indirect senders for its security decision, is created and presented
throughout this thesis.
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Kurzfassung

Space-basierte Computersysteme entkoppeln ihre Nutzer bezüglich Ort und Zeit, da diese nicht
direkt miteinander interagieren, sondern indem sie Objekte in den Space schreiben, respektive
von diesem lesen oder nehmen. Aufgrund dieser Eigenschaft der Entkoppelung sind moderne
Applikationen oft space-basiert.

Das Peer Model ist gegenwärtig die höchste Abstraktion des space-basierten Programmier-
musters. Es ermöglicht die Erstellung von wiederverwendbaren Koordinationsvorlagen und da-
von entkoppelten Serviceaufrufen. Für die .NET-Implementierung des Peer Models (PeerSpace-
.NET) gibt es momentan keine Security-Mechanismen, die aber für den praktischen Einsatz
wichtig wären.

Diese Arbeit beschäftigt sich mit der Erstellung und Implementierung eines Security Mo-
dels für den PeerSpace.NET. Dieses Security Model schützt den PeerSpace.NET vor unbefugten
Zugriffen mithilfe von präzise definierbaren Regeln. Diese Zugriffsregelung basiert auf authen-
tifizierten Security-Attributen, mit denen die Sender von Entries identifiziert werden. Es ist auch
möglich Regeln für den Fall zu definieren, dass Entries im Auftrag eines anderen Users gesendet
wurden. Diese Regeln benutzen dann die Identität des Auftraggebers (indirekter Sender) und die
des direkten Senders, um Zugriffsrechte zu definieren.

Regeln können auch Eigenschaften von Entries, deren Zugriff sie regeln, in die Definition
der Zugriffsrechte miteinbeziehen. Weiteres kann auch der Zustand des PeerSpace.NET in die
Entscheidung, ob ein Zugriff für Entries gewährt wird oder nicht, miteinbezogen werden.

Die Zugriffsrechte zu einem Peer werden von dessen Eigentümer verwaltet. Der Eigentümer
kann aber auch einen anderer Benutzer mit der Verwaltung der Zugriffsrechte beauftragen.

Zusammengefasst wird in dieser Arbeit ein Security Model für den PeerSpace.NET entwi-
ckelt und implementiert, das inhalts- und zustandsabhängige Zugriffsentscheidungen definieren
kann und auch die Identität von direkten und indirekten Sendern miteinbezieht.
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CHAPTER 1
Introduction

Distributed computer systems, providing various services and data, play an essential role in
the business community, as well as in the technical and the private field, since they enable the
cooperation of multiple users possibly resident around the world. Users may join and/or exit a
distributed computer system frequently at any time and thus the system may change its size in a
highly dynamic way. Further the users may join the computer system with different devices and
are naturally not permanently online.

Thus the requirements for modern distributed computer systems have heavily increased com-
pared to former times. Modern distributed computer systems must be capable to integrate hetero-
geneous devices in a highly dynamic way. Further these systems must be reliable and scalable.

While the client-server architecture was mainly deployed in earlier days, this approach does
not meet the requirements of modern systems as a dedicated server depicts a bottleneck and
thus scalability is affected. Further one dedicated server constitutes a single point of failure and
consequently the reliability of such a system is not high.

In the space-based paradigm, the application is built in terms of autonomous units which
interact by reading, taking and writing objects from/to a space. This decouples the participants
from each other in time and place, which facilitates an asynchronous communication and avoids
the necessity that attendees must know each other’s addresses. Furthermore, this paradigm sup-
ports the collaboration of heterogeneous units. Thus the space-based paradigm satisfies some of
the requirements of modern distributed computer systems.

The Linda Tuple Space [1] is a programming model according to the space-based paradigm,
where the units read, take and write so-called tuples from/to a space. Thereby read and take
operations are conducted with the aid of template matching, whereby objects are selected from
the space by means of templates. A template defines values for specified fields of an object and
every object from the space that possesses the same number of fields with the same types and
the same values as the template is potentially selected. A defined count of matching objects is
read or taken. The original Linda Tuple Space programming model follows the client-server
approach, where the server hosts the space and the clients are the autonomously interacting with
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each other via the space. Accordingly the original Linda Tuple Space model does not satisfy
reliability and scalability due to the client-server architecture.

The decentralized peer-to-peer (P2P) architecture satisfies reliability and scalability, as every
entity of the network can be a client and/or a server. There is no bottleneck and thus scalability
is given and there is no single point of failure and thus reliability is given.

The concepts of the Linda Tuple Space and the P2P architecture have been merged. The
result is the distributed space architecture which combines the advantages of both concepts. Thus
distributed space architecture models satisfy the requirements of modern distributed computer
systems.

The implementation of the coordination logic in P2P architectures is a very complex task, as
no dedicated server is available and the network may change in a highly dynamic way. Further,
(distributed) transactions in such dynamic architectures are not trivial and error-prone.

There exist several frameworks that implement the P2P architecture. Such middlewares
serve as basis for the implementation of distributed systems and solve recurrent issues like syn-
chronization and transactions and thus the programmer can focus on the actual implementation
and may reuse proven mechanisms.

The eXtensible Virtual Shared Memory (XVSM) [2] is a space-based framework devel-
oped at the Institute of Computer Languages of the Vienna University of Technology and is
an enhancement to the Linda Tuple Space. XVSM structures the space into sub-spaces called
containers and provides multiple coordinators which define how entries are written and queried.

The Peer Model [3], which has also been developed at the very same institute, is currently
the highest abstraction of the space-based paradigm. It allows to build diverse and even complex
data flow patterns, regardless of the application logic, which is realized with arbitrary service
methods. This model strictly encapsulates the application and the coordination logic which
results in a good maintainability, reusability, extensibility and scalability.

The Peer Model is composed of Peers, Containers, Wirings and Entries. A peer possesses
one input container (PIC), one output container (POC) and an arbitrary number of wirings, which
are the centerpiece of a peer. A wiring states a query for certain entries against a source container
and performs arbitrary service methods when the query is fulfilled. After all methods have
been processed, the wiring writes a defined subset of entries to stated destination containers.
The choice of the containers for the source and the destination are strictly encapsulated from
the service methods which facilitates the already mentioned encapsulation of coordination and
application logic.

There exists an implementation of the Peer Model in C# for the .NET platform, which is
called PeerSpace.NET [4]. Due to the P2P-like architecture of the PeerSpace.NET, several se-
curity threats occur, which are eavesdropping, traffic analysis, spoofing, man-in-the-middle and
replay attacks [5, 6]. For the practical employment of the PeerSpace.NET an appropriate mech-
anism in order to secure the PeerSpace.NET against different forms of attacks is needed. The
design and implementation of a security model which protects the PeerSpace.NET forms the
goal of this thesis.

There exist diverse access control models, but they are not designed for distributed systems
and thus they are not expressive enough for the PeerSpace.NET. Thus, an appropriate security
model will be designed and implemented into the already existing PeerSpace.NET. Since the
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users do not reside within a trusted domain where authentication and authorization is achieved
by a dedicated server and mutual trust cannot be assumed, designing the security model for the
PeerSpace.NET is more challenging than for a classical client-server environment. The basic
requirements for the security model do not differ from those of other computer systems and
are as follows: authentication, authorization, confidentiality, integrity and non-repudiation. As
the PeerSpace.NET is a distributed middleware in the style of P2P networks, where no trusted
server exists, an appropriate mechanism for authenticating the users must be found and deployed.
Unauthorized sending of entries and thus illegal service invocations will be prohibited with the
aid of appropriate access control. As the Peer Model allows to forward entries from peer to
peer, the security model must be capable to express access control rules that involve the identity
of all senders of a forwarded entry. Fine-grained rules are important to meet the principle of
least privilege, whereby entities obtain exactly the privileges they need to conduct their task and
not more [7]. As the security requirements may change dynamically it is useful to facilitate
users the self-administration of their security policy [8]. Further the possibility to delegate the
administration of the security policy to certain users is handy, as an expert may conduct this task.

The basis for the security model for the PeerSpace.NET builds the Secure Peer Model in-
troduced in [9] which is a sophisticated security model for the Peer Model. The Secure Peer
Model is adapted to the PeerSpace.NET and simplified due to practicability but it is still capable
to express fine-grained rules.

The research question is whether the implementation of such a security model for the Peer-
Space.NET is feasible and which grade of usability can be achieved for the application of the
security model. Further, the performance overhead will be evaluated in order to verify the prac-
ticability of the developed security model.

1.1 Methodology

After defining the goal of this thesis, literature researches concerning authentication, autho-
rization and middlewares are conducted. Further, the Peer Model, the PeerSpace.NET and the
Secure Peer Model are examined and the requirements for the security model for the PeerSpace-
.NET are compiled. With aid of the knowledge gained from the literature research, appropriate
concepts and mechanisms are adapted for the PeerSpace.NET and the design is created. After the
design has been evaluated concerning the requirements it is implemented in the PeerSpace.NET.
Finally, the implementation is evaluated by means of a theoretical inspection of the fulfilled re-
quirements, a use case which demonstrates most of the functionality of the security model, a
benchmark test to evaluate the performance and a comparison to the security models of other
middlewares.

1.2 Structure of this Thesis

The introduction is followed by chapter 2 which represents the literature review. Chapter 3 gives
an insight into the Peer Model, its implementation in .NET and the Secure Peer Space. Further,
the used technologies are briefly discussed there. All requirements for the security model for
the PeerSpace.NET are listed in chapter 4. Chapter 5 explains the architecture of the security
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model as well as the used mechanisms. Chapter 6 presents the implementation of the security
model and explains how it interacts with the mechanisms of the PeerSpace.NET. The evaluation
is outlined in chapter 7 and contains the use case, a benchmark test and the comparison to the
security features of the middlewares from the related work. Chapter 8 presents the future work
and suggests possible enhancements of the developed security model. This thesis concludes with
chapter 9.
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CHAPTER 2
Related Work

This section is thought to give an overview about the topic of this thesis and analyze existing
systems and mechanisms concerning authentication and authorization. Further several systems
for distributed computing are analyzed concerning their security functionalities, which are sub-
sequently compared. Finally, the Peer Model, the PeerSpace.NET and the Secured Peer Space
are examined. With aid of the gathered knowledge sound decisions for the design of the security
model can be made.

2.1 Authentication and Authorization Systems and Protocols

In the context of distributed computer systems, authentication is the verification of the identity of
the interacting opposite entity [10]. In order to obtain an overview of the state-of-the-art authen-
tication and/or authorization mechanisms, the following systems and protocols are analyzed.

2.1.1 OAuth

OAuth [11] is a token-based standardized open protocol for authorization delegation from web,
mobile and desktop applications. A typical scenario for achieving an authorization delegation
through OAuth is as follows:

Assume a person wants to give a social network website access rights to his/her email ac-
count to find friends by means of known email addresses. From a security perspective it would
be dire if the person exposed its email credential to the social network website. OAuth facilitates
that the social network gains access to the contacts from the email account without passing the
credentials.

In order to discuss the functionality of OAuth some definitions of terms, used in the context
with OAuth, are useful. The OAuth provider is a server where the protected resource is located,
which is the mail server in this case. The OAuth client is a user, a web service or an application,
that wants to gain access to the protected resource. In this case the OAuth client is the social
network website and the protected resources are the email addresses. First the client has to be
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registered at the provider. It receives through the registration process a client id token and a
client secret token. This procedure cannot be automated and must be executed only once.

Let us consider the example wherein the user is logged in at the social network website,
which is the OAuth client and wants to permit that site to gain access to the mail server repre-
senting the OAuth provider. Therefore the user is sent to the mail server along with the client id
token and a client URL for response. At the mail server the locally authenticated user is asked
if he/she wants the social network site to gain access to the mail server. When the user agrees,
he/she will be redirected back to the client along with a temporary token. The client takes that
token, issues a token that contains the temporary token, the client id token and the client secret
token and sends it back to the provider. This handshake is to ensure that the user wants that
client to be permitted to gain access to the provider. Then the mail server sends back an access
token to the social network site, whereby it gains access to the mail server.

2.1.2 OpenID

OpenID is a standardized decentralized protocol for authentication, which facilitates the user to
authenticate him/her at a website with the aid of an OpenID. This has the advantage that the user
must only administrate one account at the OpenID provider and may use it for the authentication
at diverse websites which support OpenID.

Therefore the user must once create an account at an OpenID provider of his/her choice.
When the user wants to log in at a website via OpenID, he/she enters his/her OpenID there.
Thereafter the user is redirected to the corresponding OpenID provider where the identity is
validated, e.g. by means of a password. The user is also asked whether he/she trusts the original
website. If that is the case the user is redirected back to the original website along with the
identity data offered by the OpenID provider. The standard identity data are the nick name,
email address, full name, date of birth, gender, postcode, country, language and time zone and
the OpenID user can select which of these attributes is sent to a website during the authentication
process. Now the user is logged in at the original website with his/her OpenID [12].

There is also the possibility to exchange arbitrary identity data. Indeed the OpenID provider
and the website using OpenID must both have implemented the OpenID Attribute Exchange

Protocol [13].
Due to the functionality of OpenID, whereat the user is redirected from the accessed website

to an OpenID provider, phishing-attacks are feasible. Thereby an malicious website redirects
the user to a tampered OpenID provider to obtain the user’s password surreptitiously [14].

2.1.3 Security Assertion Markup Language (SAML)

SAML [15] is an XML-based open standard data format for authentication and authorization.
It supports among others single sign-on (SSO) and the centralized user- and authorization man-
agement for distributed services. The SAML protocol can be explained as follows:

A subject logs in at an identity provider (IdP), which issues an assertion containing security
information about the principal. This security information covers security attributes from the
principal and/or permissions to gain access to defined resources or services, respectively.

6



After the principal has successfully logged in at the IdP, he/she and the respective assertion
are redirected to the service provider (SP). In order to ensure the assertion is issued by the trusted
IdP, a trusted relationship between IdP and SP, typically based on a public key infrastructure
(PKI, see Section 2.1.5) is used. After the assertion has been inspected, the SP knows the
identity or security attributes of the principal and can make authorization decisions based on it.
The SP can also use the permissions for defined resources, which are contained in the assertion,
to grant access to a certain resource.

When a user is authenticated with the aid of an assertion, authorization can be applied to
him/her for the current and subsequent operations. Thus SSO is supported by SAML. Further,
as the centrally organized assertions may hold permissions for defined services, a centralized
authorization management for distributed services is enabled. Indeed the permissions cannot be
expressed in a very fine-grained way.

2.1.4 Kerberos

Kerberos [16] is an authentication system which facilitates single sign-on (SSO) without having
to transmit passwords or keys. It is composed of an architecture and a protocol. The archi-
tecture is composed of clients, services and the Key Distribution Center (KDC) which stores
the symmetric keys of each participant. When a client wants to gain access to a service, the
communication between the parties makes use of the following protocol:

First the client sends a so-called authenticator to the KDC which happens during the login
process. The authenticator contains the user name and parts of the authenticator are encrypted
with the user’s key which is derived from the user’s password. The KDC inspects its database
for the user name, verifies the authenticator by decrypting the encrypted part with the user’s key
and issues a so-called Ticket Granting Ticket (TGT) containing the user’s name and IP address,
the KDC’s name, the client’s name and a so-called session key that has an expiry time. The TGT
is encrypted with the KDC’s key to ensure nobody can alter it. This encrypted TGT and a copy
of the session key are encrypted with the client’s private key and send back to the client. Thus
only the proper client can decrypt this package with its key and obtain the encrypted TGT and
the session key.

To gain access to a certain service the client issues an authenticator containing the client’s
name and IP address and the time and encrypts it with the session key. Then the client sends
that encrypted authenticator along with the TGT and the name of the requested service to the
KDC, which decrypts the TGT with its key. Then the KDC decrypts the authenticator with the
session key obtained from the TGT and checks the content of the TGT against the authenticator’s
content. This ensures the service request was sent from the legitimate client. Note that the KDC
does not have to store the session key, which would be a great effort when there are many users.

A service ticket is issued by the KDC that contains the client’s name and IP address, the
service’s name and a new session key. The KDC encrypts the service ticket with the service’s
key. Due to this operating mode, nobody can alter this service ticket except the KDC or the
service provider itself. The service ticket is only valid for the certain client and the particular
service and has an expiry time. The KDC encrypts the encrypted service ticket and the new
session key with the first session key and sends it back to the client. The client decrypts the
package, takes the new session key, and encrypts a new authenticator with it and sends it along
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with the encrypted service ticket to the service provider. Note that only the legitimate client is
able to decrypt the package containing the new session key and therefore only the legitimate
client is able to encrypt something with the new session key, except the KDC. Furthermore only
the KDC is able to encrypt the service ticket with the service’s key.

The service provider decrypts the service ticket with its key and next decrypts the new au-
thenticator with the new session key, which was obtained from the service ticket. It checks the
authenticator’s data against the data contained in the service ticket in order to validate the client’s
identity. Next the service sends an acknowledgment to the client which has access to the service
from now on. Their communication may be encrypted with the new session key.

2.1.5 Transport Layer Security (TLS)

TLS [17] is the successor of Secure Sockets Layer (SSL) and is a standardized protocol, which
is mostly used to authenticate a server and establish an encrypted communication between client
and server, e.g. a browser and a web server. TLS is based on private-public key pairs and the
infrastructure using TLS is called a public key infrastructure (PKI).

Generally, a message is signed by calculating a signature with a private key. The signature is
validated with the public key that is associated with the private key. When the public key can be
assigned to a certain user, it is ensured that the message signed with the corresponding private
key was sent from the certain user as the private key is only known by this user.

It is also possible to encrypt and decrypt messages by means of private-public key pairs.
Thereby the message is encrypted with the public key and decrypted with the associated private
key. Thus everyone can encrypt a message with the public key but only the intended receiver
can decrypt the message with the private key.

The TLS protocol uses public and private keys as follows: When a client connects to a server
and sends a request, the server’s response contains an X.509 certificate which has been issued
and signed by a certification authority (CA). The public key from the CA is known by the client
and thus the client can validate whether the X.509 certificate was issued by the legal CA and is
trustworthy. The X.509 certificate contains the server’s public key and its URL. With the aid of
the URL the client can authenticate the server it is connected to. The authentication of the client
is also possible and works the same way.

After the authentication has been established, the client generates a secret random number,
encrypts it with the server’s public key and sends it to the server. Only the server can decrypt
this secret number with the aid of its private key. By means of this secret number a symmetric
key is created, whereby the traffic between client and server is encrypted. Furthermore, this key
is used to calculate a Message Authentication Code (MAC) which ensures that the messages are
not tampered during transfer and are sent from the correct party.

2.1.6 eXtensible Access Control Markup Language (XACML)

XACML [18] is a framework to provide a general approach for fine-grained access control. It
consists of an architecture, an XML-based language to define policies and another XML-based
language to define requests/responses for authorization decisions. Also the mechanism to find
the appropriate policy for a request and determine the authorization decision is part of XACML.
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In XACML a rule consists of a target, an effect and a condition. The target specifies the resource,
the principal and the action. The condition refines the requirements for the applicability of the
rule, which cannot be expressed within the target, like the environmental context for example.
A rule is applicable when the entire target is equal to the target of the request and the condition
holds. An applicable rule permits or denies the action depending on the specified rule effect.

Each attempt to perform an action on a resource is intercepted by the Policy Enforcement
Point (PEP), which can be placed on each layer of the IT infrastructure, e.g. business layer or
data layer. Then the PEP forms an authorization request mainly based on attributes and sends
it to the Policy Decision Point (PDP). The PDP inspects the Policy Retrieval Point (PRP) for
the appropriate policy to determine the authorization decision and sends it back to the PEP
which acts on it. When there are conditions in the policy requiring additional information, the
PDP inspects the Policy Information Point (PIP) for the information. The Policy Administration
Point (PAP) is that point where administrators can administrate the policies.

Attributes are primarily used to determine the authorization. A principal, a resource, an ac-
tion and the environmental context are all modeled with attributes in XACML. Also a request
from PEP to PDP is mainly formed by attributes and their values. Consequently the policies con-
sist mainly of attributes and corresponding values. RBAC can be implemented as specialization
in XACML.

2.1.7 Evaluation Concerning the Applicability for the Peer Model

OAuth is a protocol to facilitate one application to access defined user resources of another
application. This approach is not suitable for the Peer Model (see 3.1). OpenID enables a
user to authenticate him/herself and provide his/her security attributes, which would be a fitting
approach. However, as OpenID is vulnerable to phishing attacks, this approach is not used.
SAML is a data format for defining and transmitting the security attributes of and permissions
for an authenticated user. This data format was not used due to its expressiveness and complexity.
Kerberos has the advantage of encrypted traffic, but it can only be used in a trusted domain and
thus it is not qualified for the deployment in a distributed and untrusted environment, wherein
the PeerSpace.NET may be used.

In contrast, TLS is designed for untrusted and distributed environments. However, if TLS
were used for authenticating users via their security attributes, they would have to install new
certificates every time their security attributes change and revocation lists would have to be
maintained. Thus the authentication for users will be achieved with a self-implemented identity
provider (see 5.1.3) and TLS will be used to authenticate the identity provider and encrypt the
traffic.

The rules of the security model base on the structure of XACML’s rules as they are expressive
and suitable for distributed systems.

2.2 Authorization Models

In the context of distributed computing, authorization is the process of permitting or denying
principals access to a certain resource in a specific way, e.g. read, write, execute or delete,
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possibly under particular circumstances. There exist several access control models which are
considered next.

2.2.1 Access Control Lists (ACL)

An ACL defines the principals who are allowed to access specific resources in a certain way.
Each resource is associated with a list which states the users together with the granted kind of
access, which may be read, write, execute or delete. A service administrator has full control
over authorization, but the administrative overhead is considerable since the permissions for
each resource and each principal have to be set explicitly. [19]

2.2.2 Discretionary Access Control (DAC)

The owner of a resource defines the principals and/or the groups that are allowed to access the
resource in a certain way. Thus this approach is similar to ACLs with the main difference that
the owner of the resources defines the authorization instead of the service administrator. [19]

2.2.3 Mandatory Access Control (MAC)

Every principal is associated with a security clearance and the resources possess security proper-
ties. It depends on these two attributes whether an access is permitted or not. A service adminis-
trator has full control over authorization through managing each association. The administrative
overhead is not as high as in ACLs, because principals and resources are abstracted. [19]

2.2.4 Role-Based Access Control (RBAC)

In this approach roles are assigned to principals and permissions are assigned to roles which is
managed by the service administrator. The mapping from principals to authorization is decou-
pled like in the MAC approach but RBAC provides a higher expressiveness for access control
since there can be more than one role assigned to users. Furthermore assigned roles can be ac-
tivated or deactivated through the usage of sessions. Each session is assigned to one principal,
but there can be more than one sessions assigned to a principal.

Role inheritance is possible which allows the creation of a role hierarchy and delegation of
authority. Roles can be mutually exclusive to provide the separation of duties [20] concept. Role
A and B are mutually exclusive: either role A or role B can be invoked for a principal, but not
both. There is a distinction between static separation of duties (SSD) and dynamic separation
of duties (DSD). Static separation of duties is achieved by defining constraints (rules) that allow
either role A or role B to be assigned to a principal. In contrast dynamic separation of duties is
achieved by defining constraints (rules) that allow either role A or role B to be activated for a
principal during a session. The principal is associated with role A and role B but only one role of
them can be activated at once. The activation of a rule may also depend on context information,
so that the rule is only applicable for a user when a certain condition is satisfied.

RBAC also supports the least privilege concept which means that a principal has only the
permissions to perform its task and not more. This is supported because only the least permis-
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sions for executing a task can be assigned to a role and only the roles, which are necessary to
perform a task, may be activated during a session.

Another strength of RBAC is the capability to model enterprise organizational structures
naturally through the deployment of roles and rules. Roles of the security model reflect roles
of the enterprise organizational structure that represent competency, authority and responsibility
and rules reflect the permissions for the roles dynamically determined depending on conditions.
It is also easy to adapt the security model to changes in the enterprise organizational structure
because of the encapsulation of permissions and principals through roles and the possibility to
define (or redefine) relations between roles, permission and roles, and principal and roles. [21]

2.2.5 Attribute Based Access Control (ABAC)

This access control model works like RBAC with the difference that security attributes of prin-
cipals instead of roles are used to define permissions. Security attributes are more generic than
roles and can be arbitrary properties of the principal, e.g. the name or the gender.

Security attributes are assigned to a principal during the authentication process. Rules define
security attributes and specify therewith for which principals they are applicable. This is the case
if all security attributes of a rule are a subset of those from the principal. So, e.g. a rule with
the security attributes Species = Human, Gender = Male is applicable for the principal with the
security attributes Species = Human, Gender = Male, Name = Lukas, but not the other way
round.

Roles can also be stated as security attributes, thus ABAC supports RBAC [22].

2.2.6 Choice of an Access Control Model

ABAC is the most expressive access control model with a moderate administrative effort among
the analyzed models. Thus it will be chosen for the security model of the Peer Space.

2.3 Security Mechanisms of Distributed Computer Systems

As authorization and authentication mechanisms have been analyzed, entire security mecha-
nisms from distributed computer systems are investigated next. As the Peer Model is a space-
based1 middleware with an underlying P2P architecture, the analyzed systems where chosen
according this criteria. So all but one of these models are space-based and/or use a P2P archi-
tecture.

2.3.1 Secured Space Services on top of XVSM

At the Vienna University of Technology a space-based system has been developed [23]. The sys-
tems itself is not distributed, because a space is hosted by a single computer. Nevertheless, P2P
applications can be implemented therewith as spaces which are hosted on different, distributed
computers can interact.

Thus the system is capable to achieve load balancing [24] [25] and replication mechanism
[26] by its nature.
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The implementation of this system is a framework called eXtensible Virtual Shared Memory
(XVSM), which has also been developed at the Vienna University of Technology [2].

In XVSM the space is organized in sub-spaces called containers, where entries can be written
to and read or taken from, whereby several entries can be handled in a single operation. Thereby
XVSM supports several mechanisms, like FIFO, LIFO, key, label etc. to write, read or take
entries from or to a container.

A query blocks until it can be satisfied or its timeout expires. Queries may have more
than one stage, which are subsequently executed, whereby the output from the previous stage
serves as input for the next one. Stages are connected with the pipe operator known from Unix
systems [27].

XVSM may be extended with the implementation of additional coordinators. It is also pos-
sible to define aspects which are performed before and/or after a space operation, e.g. write.
Aspects may use space operations themselves [28].

Clients and services can be brought together in an ad-hoc way with the aid of tuple spaces
[29, 30]. Such space-based services can also be established with XVSM by adding request
and response containers to the space. By writing a request entry to the request container, the
corresponding service is invoked, whose results can be obtained via the response container. The
service may use data from arbitrary containers to perform its task [31]. Figure 2.1 illustrates this
basic architecture.

Service 1
Request 

Container

Data A 

Container 

Data B 

Container 

Response 

Container
User A Request

Response

Figure 2.1: Basic space service architecture with XVSM

Authentication

Before clients access the space, they must authenticate themselves by sending credentials to an
external authentication provider which issues a cryptographically signed single sign-on (SSO)
token that proves the client’s identity. The authentication request and the SSO token have to
provide at least a unique user identifier. In order to support RBAC the SSO token must also
possess roles associated with the particular user. The SSO token is valid for a certain amount of
time, thus the client can use it more often than once [31].

12



Authorization

The policies for authorization are similar to the eXtensible Access Control Markup Language
(XACML) [18], which is constituted of an XML-based language for the description of access
control policies and a model for its processing. The rules state a target, a scope, a condition and
an effect. The target specifies the principal, the kind of access and the targeted resource the rule
is valid for. In the context of XVSM the kind of access is either a read, write, or take operation
and the resource is a container.

The scope states for which entries, and the condition defines under which circumstances the
rule applies. Both are realized with dynamic space queries against proper containers, whereby
the scope yields a set of entries, for which the rule is applicable and the condition returns true
or false depending whether the queries could be satisfied or not. Dynamic parameters may
be used for the definition of the scope field and/or the condition. Thus a rule can be defined
which is applicable for entries containing the ID of the sender (scope) under the condition that a
registration entry with the sender’s ID (condition) is present in a certain container, e.g.

The effect for the XVSM access control model is either permit or deny. A rule applies for an
entry when the principal, the kind of access and the container matches, the entry is covered by the
scope and the condition evaluates to true. If more than one rule applies for an entry, the resulting
effect must be evaluated with the aid of a combination algorithm, like “permit overrides”, “deny
overrides” or “first applicable”.

As in XVSM a write operation may comprise several entries. It is only permitted if access is
granted for every entry. Otherwise the whole write operation is denied. Read and take operations
may also target several entries, whereby denied entries are ignored and treated like they were
not there. Thus it is transparent to the user whether he/she has no access to particular entries or
they are not present.

In this access control model all parameters except the effect of a rule are optional, meaning
undefined fields are considered like a wild card is stated there. Consequently the creation of
general rules is feasible. [32] [28]

Security decisions must be evaluated for every space operation, i.e. when entries are written
to or read or taken from a container. Therefore the access manager which conducts this decision
is integrated in the XVSM coordination layer, which is responsible for these operations. Thereby
the access manager can perform space operations itself, as it must evaluate the scope field and
the condition.

Rules are realized as entries and stored in a dedicated space container - the policy container.
The policy can be dynamically changed, as rule entries can be written or taken from the pol-
icy peer by users with sufficient privileges. Thus the delegation of security administration can
be also easily achieved by adding permit rules for particular users, which grant them possibly
restricted access to the policy container.

The policy container holds the rules for the access to itself. To grant an user the privileges
to administrate the policy, the corresponding rules must be written to the policy container. In
order to bootstrap this, the process which starts the space has implicit access rights to the policy
container [32].

In order to secure space services against unauthorized access, the direct access to data con-
tainers is generally denied. Users are only allowed to access the request and response container

13



directly and the data containers only via the invoked services. When only access to the request
and response container is controlled, a rather coarse-grained access control is achieved. Thereby
it can be stated which user is granted to invoke certain services. In order to refine the policy
the access to the data containers, used by the services on behalf of the invoking user, can be
controlled. Thus the access control for the data containers involves the identity of the direct
sender, i.e. the services, as well as the indirect sender, i.e. the invoking user. Figure 2.2 depicts
the described interaction of the entities [31].

Figure 2.2: Secure service space architecture (taken from [31])

Evaluation and Correlation to the Peer Model

The approach with the SSO token for authentication has the disadvantage in a P2P environment
that a malicious space could impersonate a user after he/she has transmitted the token.

The organization of the authorization mechanism is bootstrapped with XVSM mechanisms
and the overhead is manageable. Furthermore the administration of the authorization can be
delegated to any user and the service’s access to a data container can be controlled on the ba-
sis of the invoking user. These two attributes leads to a good scalability of this authorization
model. It is possible to express fine-grained rules, which may involve attributes from the entries
that are access-controlled as well as environmental context information. The access control is
transparent to the user, as no difference is revealed whether an operation is not possible or not
granted.

The XVSM model with the request and response containers and the service invocations,
triggered through sent entries to the request container, is similar to the Peer Model. The request
and response containers in the XVSM model are analogous to the Peer Model’s PIC and POC,
which are more lightweight and do not possess the query capabilities of XVSM containers. In
this XVSM model as well as in the Peer Model services are triggered through sending entries to
the request container or PIC, respectively. In both models the services may use data from defined
containers. In the previous XVSM explanation these containers were called data containers and
in the Peer Model they are sub-peers. As in both models the services request data from containers
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on behalf of a user, delegation is given. In the XVSM model the delegation chain is two elements
long: a service acts on behalf of a user. As in the Peer Model entries may be forwarded from
peers or services to other peers and services, the delegation chain may be infinitely long.

As the security model for the XVSM supports authorization for delegation, content-aware
rules and the involvement of context information, it fits fairly well to the Peer Model and builds
the basis for the Secure Peer Model [9]. This security model supports a sophisticated and highly
expressive authorization mechanism which involves, besides content and context information,
the identity of the users of a delegation chain as well as information about the authenticating
entities. To avoid the disadvantage of SSO tokens in a P2P environment, the authentication
mechanism is bootstrapped on an identity provider which verifies the sender’s signature and
provides his/her security attributes to the receiver for every operation. Thus the sender cannot
be impersonated.

The Secure Peer Model [9] is simplified and adapted for the PeerSpace.NET which results
in the security model designed and implemented throughout this thesis.

2.3.2 Hermes with RBAC

Hermes is scalable event-based publish/subscribe middleware [33]. Publish/subscribe systems
decouple sender and receiver from each other as publishers send data to the middleware and
those who subscribed to this kind of data receive it.

The published event is routed to the corresponding subscribers, whereby in Hermes the
granularity of subscriptions can be based on event types only or on event types and attributes of
the event. The suitable route from a publisher to a subscriber is established as subscribers send a
subscription to the middleware and publishers dispatch an advertisement of the event type they
are going to post. Subscriptions and advertisements meet at rendezvous nodes and proper routes
are established.

Event types are organized in an inheritance hierarchy, so that every published event is an
instance of an event type, which possesses an event type name, typed event attributes and an
event type owner.

The Hermes network is constituted of event brokers and event clients, whereby event bro-
kers features the publish/subscribe functionality and are connected in the style of P2P among
themselves. Clients use the provided functionality and are publisher and/or subscriber. They
must be connected to an event broker which is called local event broker. The brokers which
are only connected among themselves and not to clients are called intermediate event brokers.
When a client connects to an intermediate event broker it becomes an local event broker. Figure
2.3 illustrates the interaction of clients, local and intermediate brokers [34].

Hermes does not provide access control by its own. However, [34] introduces an approach
for authorization in Hermes by means of role-based access control rules as described in [35].

Authentication

The clients authenticate themselves by sending credentials to their local event broker and the
broker network is trustworthy through the deployment of certificates.
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Figure 2.3: Example of a Hermes network

Authorization

The role-based access control is achieved with the aid of different kind of policies. One kind of
policies specifies whether a client is allowed to basically connect to its local broker. Another kind
of policies defines who is allowed to create, modify and remove a specific event type and the third
kind of policies defines the clients who are granted to advertise and subscribe to, respectively,
certain event types.

Through restrictions of advertisements and subscriptions for event types, access control con-
cerning sending and receiving events on the granularity of their types is achieved. The restric-
tions are defined in policies which are located in and enforced by the event brokers. Therefore
users send their credentials along with the advertisements and/or subscriptions.

The policy for an event type is created by the event type owner and its distribution is boot-
strapped with Hermes. This happens when the event type owner posts a policy evolution event
which causes the distribution of the particular policy to the event brokers but not to the clients.
Consequently the policies are transparent for the user.

Advertisements and subscriptions can be either be fully granted, partially granted or denied.
When they are partially granted restrictions are exerted, which cause in the simplest case, that a
sub-type of the desired entry type is advertised or subscribed. The particular sub-type is stated
in the event type’s policy, each for publisher and subscriber. More fine-grained restrictions op-
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erate on the attributes of events. The used attributes are either typed event attributes or arbitrary
attributes. Restrictions using the type event attributes have the advantage that the Hermes coordi-
nation mechanisms support these kind of attributes and thus Hermes is able to filter events close
to the publisher which leads to save traffic and computation in the network. Restrictions using
arbitrary attributes of events have the advantage of flexibility but the disadvantage of causing
more overhead in the network.

Evaluation

As the policies are created by the particular event type owner, the scalability regarding the secu-
rity administration is not affected. The traffic overhead depends on the quantity of policies with
restrictions using arbitrary attributes. These kind of restrictions are very flexible concerning the
used data for access control decisions. The policies as well as restrictions are transparent to the
user which is a desirable security approach.

2.3.3 SMEPP Implementation with SecureLime

The Secure middleware for Embedded Peer-To-Peer Systems (SMEPP) [36–38] is a service-
oriented P2P model with access control capabilities. The model is constituted of peers that
interact among themselves. They are service provider and/or service consumer. Thereby syn-
chronous, asynchronous and event-based admissions to services are supported. For a syn-
chronous service operation the invoker blocks until the particular operation has terminated. In
contrast the invoker of an asynchronous service operation waits only until it has started. It is
also possible to participate in a service operation by means of events, whereby the invoker of an
event does not block until the particular operation has been posted, but it is invoked as soon as it
is available. Thus events can be seen as non-blocking invocations of service operations.

The access control is achieved with the aid of groups, which are logical associations of
peers. Only peers within a group can host and consume service operations and events from each
other. Therefore a peer can join a group, whereby a peer sends its credentials along with the
join request. When the credentials are valid for the group, the peer is allowed to join the group.
When a peer is a member of a group it can host services for this group, which can be accessed
by all group members.

A peer may join several groups in order to provide or consume services to/from particular
groups. Services may consume other services, but they are not granted to join groups on their
own. A service can be invoked via the group they are posted in or by means of the hosting
peer, but the peer providing and consuming the operation must reside in the same group anyhow.
Figure 2.4 illustrates an example where Peer A and B provide their services in Group 1 and Peer
E hosts its service in Group 2. Only peers that are members from the particular group can access
the hosted services. So Peer D does not provide any service, but it may access Service 6, which
is provided by Peer E, and Peer C’s Service 4. Peer C also hosts Service 5 in Group 1. Since
Peer C is member of both groups it is allowed to access all depicted services [37].

The paper [36] introduces an implementation of SMEPP with SecureLime [39], which ex-
tends the federated tuple space language Lime [40] with security features.
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Figure 2.4: Example of groups and hosted services in the SMEPP model

Authentication and Access Control

According to the SMEPP model peers possesses an AppKey and passwords for groups. A peer
with a valid AppKey is permitted to join the SMEPP application and must provide a valid group
password to get access to the particular group.

The SMEPP primitives of group and service discovery are realized with SecureLime via two
tuple spaces holding the group and service descriptions, respectively. They can be discovered
by reading the particular tuple space. A peer creates a group and registers it by creating such a
group description tuple space and writing the particular group description to it.

The group description tuple spaces of all peers providing the valid group password are
merged and thus only legal group members can communicate and perform the SMEPP prim-
itives via this space. The group description spaces from peers with invalid passwords are not
merged and thus these users cannot join the group. The password validation and the merging is
performed by SecureLime and the traffic is encrypted using the passwords [36].

Evaluation

The authentication is achieved via passwords which grant access to groups. Thus authentication
is restricted to groups, which limits the granularity for access control as it does not involve any
content or context information. As groups can be autonomously created and joined by peers the
scalability is not affected by the access control mechanism. As peers can not see groups and
services they are not allowed to join and access, the access control is transparent to the user.

2.3.4 Tuple Centers Spread over the Network

The Tuple Centers Spread over the Network (TuCSoN) [41] model is a multi-agent system for
the coordination of distributed processes, as well as autonomous and mobile agents. The basis

18



of TuCSoN are tuple centers which are the well-known tuple spaces [42] with the enhancement
of programmable reactions to space operations. Thus when an agent writes, reads or takes a
tuple to/from a tuple center via Linda primitives, a reaction of the tuple center is triggered. Such
a reaction can be calculations and further space operations, so services as well as dynamic coor-
dination logic can be realized therewith. A reaction is carried out transactionally, meaning either
all operations and calculations, directly and indirectly triggered, are successfully conducted or
none.

Tuple centers are collected in nodes, which in turn are composed in domains. A domain
possesses a gateway node which holds administration tuple centers. The place nodes, which
contains the application tuple centers, are accessible from outside the domain via the gateway
node. A place node may by a gateway node itself which leads to nested domains, whereby
hierarchies can be established [43].

Figure 2.5 depicts the correlation between tuple centers, place nodes, administration tuple
centers, gateway nodes and domains by an example.

Authentication

The authentication mechanism depends on the particular implementation of the TuCSoN model.
The gateway node may execute the authentication.

Authorization

A gateway node controls the visibility and the authorization of the nodes and sub-domains which
reside in its domain. Thus the enforcement of policies from place nodes and sub-domains must
be delegated to the parent gateway node. The mechanism used by the gateway node is boot-
strapped with the concept of tuple centers. Thus the security administrative tasks can be con-
ducted with the tuple centers.

The paper [44] introduces a role-based access control model for TuCSoN which is naturally
adaptable to the concept of agents and the agent coordination context (ACC) by which the agent
interacts with the system. The authors argue that an agent in TuCSoN is similar to a principal
in the RBAC model. The agent negotiates an ACC, whereby it gains access to the particular
domain. The ACC is dynamically negotiated and depends on the identity of the agent or its role
affiliation and the domain that is going to be accessed. The ACC may depend on the context of
the agent itself, e.g. whether another particular ACC is active for the agent. So separation of
duties can be achieved and the ACC is similar to a session in the RBAC model.

In the introduced access control model for TuCSoN the role policies are stored in tuple
centers which leads to the possibility of viewing and changing them dynamically. The policies
consist of permit rules specifying a role, a previous role state, a later role state and a condition.
In this model a role can have several role states. A rule applies when its previous role state
matches the role state of the user who triggered the operation. After the operations has been
executed the user’s role state changes to the later role state which is specified in the rule granting
the operation. This concept facilitates the enforcement of workflows [44].
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Figure 2.5: Example of a domain in the TuCSoN model

Evaluation

The access control is bootstrapped with the TuCSoN model itself and thus the overhead is minor.
Further it is possible to change the policy dynamically with mechanisms featured by the model,
as rules reside in an administration tuple center. Since the coordination and the access control
are achieved in the same place, namely the gateway node, the authorization is transparent to the
user or agent, respectively. For him/her there is no difference whether a certain place node is not
there or not granted for access, because in both cases it is invisible for the user.

There is one disadvantage concerning scalability, as the gateway node enforces all policies
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for the entire domain. Therefore the paper [43] mentions an optimization approach, namely
the gateway node should only enforce the policies of its sub-domains on rather coarse-grained
access control lists (ACL) and the more fine-grained access control is conducted by the particular
sub-domain gateway node.

Fine-grained rules can be established, which state roles, conditions and even role states.
These possibilities are supported by the coordination capabilities of TuCSoN’s tuple centers.

2.3.5 Windows Communication Foundation (WCF)

The WCF [45] is no P2P-like coordination middleware like the previously analyzed systems, but
it is comparable to them since it also uses messages as described below. Besides, it has a very
broad and flexible field of application.

It is a framework shipped with .NET to build and employ remote services and thus to cre-
ate programs corresponding to the service-oriented architecture (SOA) paradigm. Thereby the
invocation and response of services are conducted by means of message exchanges, which may
occur according to several patterns. For a synchronous service invocation, whereby the calling
program blocks until it receives an answer, the request/response pattern is established. Asyn-
chronous service invocations, where no reply is expected, are performed with the aid of one-way
messages.

Generally service, client and provider are loosely coupled and thus interoperability is given,
as long as the service contract holds. This contract determines the parameters and the return
type of the service, which must be known in order to invoke it. For this reason WCF derives the
service meta data from the contract and provides it to the client, which uses this data to create a
proxy object. Then the client calls the service method on the proxy object and thus invokes the
service.

In WCF the application logic of the service is decoupled from its hosting and the way it is
accessed. Therefore WCF follows the ABC principal, which stands for address, binding and
contract. The address is an URI that specifies where the particular service can be accessed
and the binding defines how data is exchanged, i.e. the communication protocols and message
encoding. Address and binding constitute the endpoint of a WCF service. Data in form of mes-
sages is sent to endpoints and thus the particular service is invoked. Analogously the returned
value is sent as message to the client’s endpoint.

Services are either hosted by the internet information services (IIS) platform [46] or an
application. The binding comprises SOAP, text and binary format encoding and protocols like
HTTP, TCP Named Pipes and MSMQ. Thus WCF is capable to establish a reliable and durable
message exchange. Furthermore WCF supports several security features, like authentication,
authorization as well as transport and message encryption [45, 47].

Authentication

WCF provides authentication via certificates or user/password pairs and supports the Windows
authentication.

21



The supported Windows authentication mechanisms are the Kerberos protocol [16] and the
NT Lan Manager (NTLM) [48]. For authentication via certificates the standardized X.509 cer-
tificates [49] are deployed.

The user/password approach bases on ASP.NET [50] which associates users with roles and
thus supports RBAC. The Identity Model allows to define security attributes additional to roles,
thus ABAC is supported.

In WCF services can also be authenticated in order to ensure the service is not spoofed
[51–53].

Authorization

The invocation of service methods can be controlled by means of the membership in Windows
Groups, ASP.NET roles or X.509 Certificates. Further security attributes from the invoker may
be used to evaluate a security decision.

Access to resources is granted by means of claims, which are dynamically assigned to users
based on their identity and the security policy specified for the resource. Thereby it is possible
to state a dependency between the assignment of claims and the presence and/or absence of
other claims. Thus separation of duties can be achieved. When a service requires access to a
certain resource, access control concerning the invoking user and this resource can be defined
via so-called claims. The Authorization Manager [54] conducts the assembling of the applicable
claims, which results in the authorization context, which in turn is used to perform access control
to resources. The authorization manager also facilitates access control to specified operations,
which are summarized in tasks.

When a client calls a service, which needs to invoke another service for its execution, the
latter one is also called on behalf of the client. In order to perform sufficient access control on
the indirectly called service, the identity of the original invoker must be forwarded. For that
reason the service-calling service impersonates the original client. [51–53]

Evaluation

The security features in WCF are not bootstrapped with the framework itself, but instead proven
solutions may be established for the particular field of application. The caused overhead depends
on the deployed modules, but is manageable since they are dedicated solutions. When access
to a service is not granted, an access denied error message is returned. Thus the access control
is not transparent to the user. Generally the scalability of WCF services depends on diverse
settings and used patterns.

There is a broad field of authentication mechanisms and thus RBAC and ABAC are sup-
ported. The granularity of authorization can be considered as fine-grained, since the invocation
of services as well as the access to resources can be controlled. Further dynamic permissions can
be established with the aid of claims and delegation is also possible via impersonation, although
the services must be trusted therefore. Policies can be defined and changed dynamically in the
authorization manager.
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2.3.6 Comparison of the Security Features

We conclude the related work section with Table 2.1, which compares important security fea-
tures of the analyzed systems. Content-aware rules use data from the transmitted message (for
write operations) or information about the queried data (for read/take operations) to specify
whether the rule is applicable. The context-aware rules incorporate context information from
the middleware. When a service calls another service on behalf of a user, access control that
depends on the participants from this delegation chain may be useful. As the service invocations
are conducted by means of sent messages, the concerning security feature is called authorization
for indirect sender. The wildcard support for indirect sender defines the capability of specifying
wildcards which are valid for one or arbitrary elements of the delegation chain. Dynamic poli-
cies means that access control rules can be added or removed during runtime. Administration
delegation is provided when selected users can be authorized for the security administration.
Bootstrapped architecture implies that the security mechanisms are bootstrapped with those of
the protected system. Transparency means that the authorization system does not divulge any
information, e.g. about denied operations.

It turned out that the realizable and useful security features heavily depend on the middle-
ware they are applied to.

XVSM Hermes SMEPP TuCSoN WCF

RBAC + + − + +

ABAC + − − − +

Content-aware rules + + − + ∼

Context-aware rules + + − + ∼

Authorization for indirect sender ∼ − − ≃ ≃

Wildcard support for indirect sender − − − − −

Dynamic policies + + − + +

Remote policy changes + + − + +

Administration delegation + + − + +

Bootstrapped architecture + + ∼ + −

Transparency + + + + −

Scalability ∼ + ∼ ∼ +

Table 2.1: Comparison of the security features from the analyzed systems

+: supported
∼: supported with limitations
≃: supported with major limitations
−: not supported

Explanation to Some Ratings

For WCF’s field “Content-Aware Rules” the rating is stated with “∼” because on the one hand
the Authorization Manager supports no rules which depend on the arguments with which a user
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calls a service, but on the other hand the Authorization Manager supports rules that specify the
methods a certain user is allowed to call. Thus access to the returned data types and values
can be controlled. “Context-Aware Rules” is rated with “∼” at WCF because context can only
be involved in the access control by means of claims which rather state a user context than
environmental context.

When the gateway nodes in TuCSoN have to enforce the access control for a huge domain,
they may also be a bottleneck. At XVSM there is no bottleneck concerning the security and thus
the rating for scalability is “+” likewise in Hermes. As the synchronization in LIME does not
scale well and SMEPP is built on LIME, the scalability rating for SMEPP is “∼”.

“Authorization for Indirect Sender” is supported by XVSM, but only for one indirect sender
(i.e. service for user). Thus the respective rating is “∼”. The TuCSoN model has no concrete
mechanism for authorizing indirect senders. However, due to TuCSoN’s coordination capabil-
ity, authorization for indirect senders could be implemented in this model and thus the rating
for “Authorization for Indirect Sender” is “≃”. The corresponding rating for WCF is “≃” as
impersonating the indirect sender is not expressive.

Findings for the Design of the Security Model

As analyzed in section 2.2.5, ABAC is an very expressive access control model and thus it is
chosen for the PeerSpace.NET’s security model. Context- and content-aware rules are useful,
since a fine-grained policy can be established therewith. Authorization for indirect Sender is a
logical consequence due to the PeerSpace.NET’s capability to forward entries. The ability to
change the policy dynamically is beneficial, as it is annoying and may be expensive to restart
a running system when the policy is adapted. For the sake of practicability the potential to
administrate the policy remotely via the middleware and possibly delegate someone with the
policy administration is handy.

To bootstrap the security model with the protected coordination system itself is a natural
choice since the distribution of rules is a coordinative task. Further the dynamic transmission of
entries and rules supports dynamic policies. Transparency is desirable because no information
about the policy should be exposed. As one of the main goals of P2P systems is scalability, the
security must not affect this property. Scalability is supported due to the fact that the security
is bootstrapped with the scalable system itself and no extra entity is introduced which may be a
bottleneck when the system scales.

Every security feature from the table will be included in the design for the developed security
model.
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CHAPTER 3
Background

While the related work serves for orientation and decision guidance, the background section’s
use is to familiarize with the Peer Model, the PeerSpace.NET and the sophisticated Secure Peer
Model which serves as basis for the security model designed and implemented throughout this
thesis. The used technologies are also summarized in this chapter.

3.1 Peer Model

The Peer Model, explained in [3, 9], is a space-based data-driven coordination middleware for
distributed environments. It strictly separates the coordination from the application logic, which
results in a good maintainability as well as the possibility to reuse proven coordination patterns.

The Peer Model is composed of loosely coupled peers, which represent addressable au-
tonomous units. Data is wrapped into entries and asynchronously transmitted between peers
in the style of asynchronous message queues or tuple spaces. Subsequently arbitrarily defined
services are invoked by means of the transmitted entries [3].

3.1.1 Interaction of Peers, Wirings, Entries, Containers and Services

A peer consists of two containers, which are similar to those of XVSM but more lightweight as
described in Section 2.3.1. A peer’s containers serve for input and output and are consequently
called Peer Input Container (PIC) and Peer Output Container (POC). Further peers possess
Wirings which read or take entries via their guard links from a source container, call services and
write entries via their action links to a destination container. Figure 3.1 depicts the interaction of
peers, wirings, entries, containers and services. Thereby Wiring A moves two entries from Peer
A’s POC to Peer B’s PIC. The Wiring B takes one entry from Peer B’s PIC and hands it to the
Service B which performs some calculations on the entry and finally Wiring B writes this entry
to Peer B’s POC.
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Figure 3.1: Interaction of peers, wirings, entries, containers and services

Peers

There are several kind of peers performing different tasks. Peers may be nested which leads to a
hierarchy of arbitrary depth.

Application Peer (APP)

The application logic realized as service methods is processed in an APP, so the applica-
tion peer is a peer in the classical meaning of this model like the Peer B depicted in figure
3.1.

Space Peer (SPA)

The SPA is like a container and its only task is to store entries. This may support commu-
nication and synchronization of concurrent threads.

Coordination Peer (COP)

The COP performs only coordination logic like lookup, routing, filtering, etc.

Runtime Peer (RTP)

The environment for all hosted peers are bootstrapped with the enclosing RTP, whose
name corresponds to the local site.

Containers

Containers constitute the spaces in the Peer Model and represent a peer’s input and output. They
provide a put operation for writing entries into it and a get operation to read or take entries from
it. All operations are transactional.

Entries

Requests, responses and sent data are encapsulated in entries which consist of a payload and
meta information, called application and coordination data, respectively. While the application
data represents the actual data, the coordination data is constituted of labeled properties which
serve for coordination purpose, i.e. are used by the queries from action and guard links. Users
can also add coordination data, i.e. labeled properties, to an entry.
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Entry type

The entry type is explicitly set by the user and does not have to be the type of the wrapped
application data. The entry’s type is an essential part of a query against a container and is
mandatory. All other listed coordination data is optional.

Time-to-start (TTS)

With the aid of the TTS the start of an entry’s life can be delayed. Wirings ignore entries
which have not started their life time yet.

Time-to-live (TTL)

With the aid of the TTL an entry’s life time can be limited. When it is expired, it will be
ignored by the wirings.

Flow identifier (FlowID)

By means of the FlowID, the Peer Model has the ability to correlate associated entries
belonging to the same (work)flow, so that wirings take only entries which belong together
by means of the FlowID.

Destination property (DEST)

A service can set an entry’s DEST and thus it is sent to the desired destination, i.e. peer.
This is conducted by the Peer Model and no wiring to the targeted peer needs to exist.

Wirings

A wiring reads or takes Entries via specified Guard Links from a source container, writes them
into an internal container (Entry Collection), performs Services on the entries and writes them, or
newly generated entries, to destination containers via defined Action Links. Thereby the source
and the destination containers are the peer’s or a sub-peer’s PIC or POC and the entry collection
resides in the wiring. The guard links are an aggregation of queries against a specified container.
The action links are an aggregation of queries against the entry collection and possess specified
target container.

A query specifies the entry’s coordination data, e.g. the type and the FlowID, an amount,
the relational operator and the operation type (i.e. read or take). A query is defined against a
container and executed when the query can be satisfied. For example, a container includes seven
entries of the type string with the FlowID “123” and is queried with a take operation which
states entry type = string, FlowID = 123, amount = 2, relational operator = more than. The
query is satisfied as more than two entries of type string with the FlowID “123” reside in the
container and thus the take operation is executed and all seven entries of type string with the
FlowID “123” are taken as the semantics is to read/take as many entries as possible.

The guard links are blocking queries against the specified container. When every guard link
can be fulfilled the queries are executed and the wiring fires. Thereby all queried entries are
written to the entry collection. In order to prohibit that the wiring fires infinitely, at least one of
the guard links must be a take operation.

After the wiring has fired, all services specified by the wiring, are subsequently called. Ser-
vices are optional and are realized as arbitrary methods. They can use entries from the entry
collection as arguments and may emit new entries to the entry collection.
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After all services are executed, the optional action links write entries from the entry col-
lection to a specified destination. The action links are queries against the entry collection. In
contrast to the guard links the action links are non-blocking queries which means that infeasible
action links are skipped. Finally all remaining entries from the entry collection are dropped.

The guard and action links represent the coordination logic and the called services constitute
the application logic. They are completely decoupled from each other and are brought together
by the wiring. Peers are also connected via wirings among themselves. The same wiring can be
run several times in parallel, which allows concurrent executions of the same service.

3.2 PeerSpace.NET

The PeerSpace.NET is a Peer Model implementation which has been made in the context of
a master thesis at the Vienna University of Technology [4]. Some restrictions apply for the
PeerSpace.NET which are summarized in the subsection 3.2.1.

In the PeerSpace.NET peers are entirely implemented as Application Peers, which may act as
Runtime Peer or as Sub-Peers. Coordination and space peers are not specifically implemented as
they can be realized with application peers: a coordination peer is an application peer possessing
wirings without services and an application peer’s PIC can be used as space peer.

Runtime peers possess an I/O component in order to transmit entries to other runtime peers,
which are possibly located remotely. The I/O component is implemented via the XcoAppSpaceCom-

municationLayer and is bootstrapped with the XcoAppSpace [55].
Sub-peers do not have their own I/O component, must reside in a runtime peer and cannot

own other sub-peers. They cannot directly send entries to an exterior runtime peer. Thus a
runtime peer’s wirings must convey the entries from sub-peers to its PIC or POC in order to sent
them to a remote destination. Sub-peers also cannot be addressed remotely, so entries can only
be sent to the encasing runtime peer, which forwards the entries to its sub-peers according to the
stated wirings.

There are three kinds of wirings, namely intra-peer, inter-peer and dynamic wirings. Intra-
peer wirings connect the containers within a runtime peer, i.e. its PIC, POC and sub-peers.
Inter-peer wirings connect runtime peers among themselves, whereby the destination container
is always the PIC of the receiving runtime peer. Dynamic wirings can be intra- or inter-peer
wirings which are added during runtime. It is subsequently checked whether the corresponding
guard links can be satisfied. Wirings can only be added or removed with a reference to the
corresponding peer object, i.e. not remotely.

The transfer of entries between runtime peers is realized via inter-peer wirings which reside
on the sender side. Thus entries cannot be taken or read by means of a remote peer or wiring.
Rather the wiring from that peer, where the entries reside, takes or reads them and sends them
to another runtime peer.

Every entry possesses in its coordination data a destination property (DEST), which can be
set by services. When the DEST property is set in an entry, it is sent to the destination according
to the DEST property before the wiring’s action is executed. The DEST can only be set by a
service that belongs to a runtime peer’s wiring and the specified destination can also be only a
runtime peer. Thus, with the DEST property entries can only be sent between runtime peers.
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A runtime peer is instantiated by one process and sub-peers and wirings can only be added
with a reference to the particular runtime peer. Consequently there is only one user per runtime
(peer).

3.2.1 Restrictions of the PeerSpace.NET

No nested sub-peers

In the PeerSpace.NET sub-peers cannot possess sub-peers which leads to a maximum of
two hierarchy levels.

DEST property restriction

The DEST property can only be used to sent entries between runtime peers. Sending to
sub-peers with the aid of the DEST property is not supported.

No FlowID support

The concept of a flow is not implemented in the PeerSpace.NET.

One runtime user

There is only one user per runtime (peer).

Inter-peer wirings

Inter-peer wirings always reside on the side of the sending runtime peer and can only be
added by the corresponding user.

3.3 Secure Peer Model

The Secure Peer Model [9] is a very expressive security model for the Peer Model. The main fea-
tures of the Secure Peer Model are fine-grained rules and a sophisticated attribute-based access
control for (meta) operations in the Peer Model as well as the capability to involve the identity of
indirect senders for access control decisions. The Secure Peer Model is based on XVSM access
control as described in Section 2.3.1.

The fine-grained rules may define criteria for which entries the rule is applicable in the
specified containers. These criteria are defined in the scope field which specifies the entry type
and values for fields of the entry. These values can either be static, e.g. ID=123 or dynamic,e.g.
ID=ID of the sender.

Context information, which is modeled with arbitrary entries in defined containers within
the local peer, can also be stated in a rule. This rule is applicable if the condition, which is a
query against the containers holding the context information, is fulfilled. The condition may
also use dynamic values similar to the scope field.

In the Peer Model it is possible to forward entries, or emit entries on behalf of other users.
Thus for entries there are direct and possibly indirect senders. The Secure Peer Space is capable
to perform access control on direct and optionally indirect sender. When an entry is sent from
user A’s peer to user B’s peer and subsequently forwarded to user C’s peer, access control at user
C’s peer can be enforced which involves the identities of user A (indirect sender) and of user B
(direct sender). The according delegation chain is (User B for User A).
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In this example user C’s peer authenticates user B’s peer and user B’s peer authenticates
user A’s peer. Thus user A is authenticated at user B and user B is authenticated at user C. The
associated authentication chain is (User A @ User B @ User C). When user C performs access
control including the identities of user A, user C must trust user B to have correctly authenticated
user A. In this case the authentication chain is like the delegation chain in reverse order. This is
not necessarily the case.

A meta model of the Peer Model was introduced where wirings and sub-peers are organized
with special entries in meta containers which leads to the possibility of adding or removing
wirings or sub-peers to/from a peer. Thus it is possible that user A adds a sub-peer to user B’s
runtime peer. When user A’s sub-peer sends an entry to user C’s peer via the DEST property,
the delegation chain is (User A) as user A sent the entry directly to user C. As user B’s runtime
peer performs the sending, user B’s peer authenticates at user C’s peer and claims that user A’s
sub-peer is authenticated at user B’s peer. Thus the authentication chain is (User A @ User B

@ User C), which is different from the delegation chain. Thus an authentication chain has to
be specified for every principal separate from the delegation chain. The resulting data structure
is called subject tree. With the aid of the subject tree trust for senders and the corresponding
authenticators can be expressed. A rule defines subject templates which are matched against
the subject tree. The senders in the subject template are specified with security attributes and
respective values. A sender of the subject tree matches a sender of the subject template when
the security attributes and values from the subject template’s sender are a subset of the security
attributes and values from the subject tree’s sender. A subject tree matches a subject template
when all senders match in the correct order and the corresponding authentication chains match
too. The subject template supports wildcards for senders and authentication nodes.

In the Secure Peer Model rule can be expressed for write, read and take operations to peers.
Further the Secure Peer Model facilitates to define rules on meta container which enables to
control who is allowed to add or remove specified sub-peers or wirings. The same applies to the
policy container resulting that the access to the policy is secured by the policy itself.

The Secured Peer Model builds the basis for the developed security model for the Peer-
Space.NET.

3.4 Used Technologies

As the Peer Model and PeerSpace.NET have already been studied, the next step is to depict the
used technologies which are the .NET Framework [56], C# [57], Visual Studio with ReSharper
[58] and Log4Net [59]. WCF has also been used to employ the identity provider as described in
Section 6.2.7.

.NET is a software framework developed by Microsoft which consists of the class library
and the common language runtime CLR, which constitutes an intermediate layer between .NET
programs and the executing computer.

C# is a object-oriented programing language, made by Microsoft in order to develop .NET
programs.

As the .NET framework with the language C# has been used, we decided to program with
Microsoft’s integrated development environment (IDE) Visual Studio. In order to support a good
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programming style and usability, ReSharper from JetBrains has been deployed.
Log4Net is a logging library by Apache for .NET. It facilitates the logging with different log

levels and several outputs, like the console, a text file, a database and many more. The logging
is important for debugging purposes on the one hand and for recording unauthorized access
attempts on the other hand.
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CHAPTER 4
Requirements

Before illustrating the design of the security model, it is very useful and a good approach to
define its requirements. They derive partly from other P2P-like middlewares considered in the
related work section and from the Peer Model, discussed in the background chapter. As the
developed security model is designed for and implemented in the PeerSpace.NET, its restric-
tions affect the requirements. Some requirements are derived from the security model for the
eXtensible Virtual Shared Memory (XVSM) and from the Secure Peer Model.

Following all gathered requirements are listed and briefly described in the context of the
PeerSpace.NET. They are classified in functional and non-functional requirements to provide a
clear representation.

4.1 Functional Requirements

Functional requirements specify a certain behavior of the system.

Usage of attribute-based access control (ABAC)

When the system enlarges, privileges of users or rules changes, the security policy should
still be administrable. Therefore rules will not be directly mapped to users, instead security
attributes will be mapped to users and rules will be linked to security attributes. This
mechanism is called ABAC and commonly used as described in section 2.2.5.

Trusted user administration

The Peer Space is a distributed, P2P-like coordination middleware, where no centralized
server for e.g. user administration exists. Peers have to know and rely on the sender’s
security attributes in order to enforce access control, but no mutual trust can be assumed.
External trusted entities which administrate and verify users must be introduced. It is
assumed that these entities are handled by one organization.

33



Access-controlled resources

Rules will constrain the access to the containers within the Peer Space, i.e. the PICs and
POCs.

Expressive rules

Rules shall be fine-grained and expressive. Thus they will be content- and context-aware
with the ability to also specify dynamic content restrictions.

Wildcard support

In order to facilitate the expression of generally applicable rules, wildcards for specific
rule sections will be supported. Thereby it is possible to define general rules which are
valid for e.g. all entry types.

Permit rules only

Most use cases are realizable with the aid of permit rules. In order to keep the readability
of policies high and the evaluation of rules simple, the access control model shall get along
with permit rules only.

Support for delegation

In the Peer Model it is a common scenario that entries are sent on behalf of other peers.
Therefore the introduced security model has the ability to identify delegated entries by
means of all of its senders, rather than to enable the impersonation of the original sender,
as no mutual trust can be assumed.

Every peer possesses its own security policy

As the PeerSpace.NET is a coordination middleware in the style of P2P networks, whereby
no centralized server exists, every peer enforces its own security policy.

Management of rules is bootstrapped

In order to manage the rules no additional mechanism should be introduced, rather the
Peer Space’s own functions will be used for this purpose.

The security policy can be changed during run time

When a peer’s security policy changes, it should not be necessary to restart the particular
peer in order to enforce the new policy.

Setting the security policy remotely

This requirement is useful when the administration of the security is delegated to another
user or when someone wants to change his/her security remotely without using a separate
remoting tool.

Enforcement of access control is optional

It shall be possible to program a Peer Space successively, i.e. without access control in
the first step. Thus the functionality of the Peer Space can be set up and tested without the
distraction of security mechanisms. Afterwards the Peer Space can be programmed with
enabled security by changing a little setting in the peers’ configurations.
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4.2 Non-Functional Requirements

These requirements refer to characteristics rather than a special behavior and do not differ
from (security) requirements of other computer systems.

Integrity and authenticity

In order to hamper the possibility to inject malicious entries, the integrity and authenticity
of the transferred entries must be ensured.

Confidentiality

As the PeerSpace.NET can be deployed in an open environment, e.g. the internet, and the
transferred data may be sensitive, confidentiality must be ensured.

Scalability

As it is in the nature of P2P-like systems to grow, the security mechanisms of the PeerSpace.NET
must fulfill this requirement.

Usability

As the most sophisticated system is worthless if it is not employable due to bad usability,
this requirement is also important for security systems.

Maintainability

When policies change or users are added/removed the effort to adapt the security model
should not be major.

Performance

In order not to hamper the practicability of the secured PeerSpace.NET, its security mech-
anism must not slow down the Peer Space drastically.
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CHAPTER 5
Design

The Secure Peer Model [9] is a sophisticated security model for the Peer Model. The Peer-
Space.NET is an implementation of the Peer Model. Thus the Secure Peer Model [9] builds the
basis for the security model of the PeerSpace.NET. Due to the restrictions of the PeerSpace.NET,
its security model differs in some points from the Secure Peer Model [9] as described in the
following.

As in the PeerSpace.NET no nested sub-peers are feasible, the developed security model
does not have to deal with hierarchies. Further the PeerSpace.NET does not support the Peer
Model’s concept of a FlowId. Thus, the security model does not have to consider FlowIds.

There is only one user per runtime peer in the PeerSpace.NET, i.e. all wirings, services and
sub-peers within a runtime peer belong to one user. So this user is responsible when entries
are sent from the runtime peer for whatever reason. When these entries are received from an-
other runtime peer, it must only authenticate the user of the sending runtime peer for security
reasons. When these entries are forwarded to a third runtime peer, this runtime peer must only
authenticate the second runtime peer and so forth.

For example, user A’s runtime peer sends entries to user B’s runtime peer, which forwards
them to user C’s runtime peer. The corresponding delegation chain is (User B for User A), which
means user C’s runtime peer receives entries from user B’s runtime peer, which in turn sent the
entries on behalf of user A’s runtime peer.

The authentication chain in this example is as follows: (User A @ User B). User C can be
omitted in the authentication chain for access control as the last element in this chain is always
the own runtime user. Thus the authentication chain is like the delegation chain in reverse order.
As the PeerSpace.NET does not support a meta model and thus only one user per runtime peer
is possible, the delegation chain is always the authentication chain in reverse order in the secure
PeerSpace.NET. Thus, in the security model for the PeerSpace.NET, specifying a delegation
chain is sufficient to perform access control on direct and indirect senders. There is no need to
extra specify by whom the user has been authenticated.

In contrast, the Secure Peer Model [9] introduces a subject tree, which defines the authen-
tication chain for each principal of the delegation chain. This is necessary because the Secure
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Peer Model is designed for a Peer Model where a runtime peer may possess sub-peers or wirings
which belong to another user than the runtime user as explained in Section (see 3.3).

For the secure PeerSpace.NET we assume that all runtime peer users are administrated by
one organization.

In the PeerSpace.NET wirings cannot be added from remote and wirings between runtime
peers reside always on the sender side. Thus when entries are transmitted from runtime peer
A to runtime peer B, the entries are written by runtime peer A to the PIC of runtime peer B.
The entries are not read or taken by runtime peer B. Thus, only write operations need to be
access-controlled in the developed security model.

In the PeerSpace.NET entries can only be sent between runtime peers with the aid of the
DEST property. As the transmission of entries between runtime peers is anyway access-controlled
by the security model, the DEST property does not need to be considered concerning the secu-
rity. The concept of the FlowId also does not need to be considered as it is not implemented in
the PeerSpace.NET.

The requirements and the differences to the Secure Peer Model are clear now. Let us turn our
attention to the design of the security model for the PeerSpace.NET. This chapter is divided into
an architecture section and a part which addresses the operating principle of the rules which form
the centerpiece of the access control. It concludes with the validation of the design concerning
the requirements.

5.1 Security Architecture

The entire architecture for the security model is composed of an inter- and an intra-peer archi-
tecture and will be explained in this structure.

5.1.1 Inter-Peer Security Architecture

In the Peer Model, peers send entries to each other as described in section 3.1. They use an I/O
component for the remote transfer of entries as depicted in Figure 5.1.
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Figure 5.1: Transfer of entries between peers
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The participants in the developed security model are the runtime peers, the users and the
identity provider. When a user starts a security-enabled runtime peer, he/she must provide user
id and the corresponding private key. The identity provider stores sets of user id, the corre-
sponding public key and the user’s security attributes. The identity provider’s task is to validate
whether a message was sent from the stated user and provide his/her security attributes in order
to authenticate the message. The administration of users and their security attributes is centrally
managed at the identity provider by one administrator. A general explanation about a public key
infrastructure (PKI) can be found in section 2.1.5.

In order to prove the identity of the sending user and to verify that the entries have not been
tampered during transfer, the entries are signed by the sender’s private key and his/her id is
also sent. The receiving peer contacts an identity provider which verifies the correctness of the
obtained data and answers with the sender’s security attributes if everything is alright. Then the
receiving peer links these security attributes to the obtained entries, thus they get authenticated.
Entries which cannot be authenticated are dropped. Before the entries are written to the peer’s
PIC, they are intercepted by the Access Manager, which decides according to the peer’s policy
whether the received entries are granted or denied to access the peer’s container. The access is
granted either for all entries or for none. Figure 5.2 illustrates the inter-peer architecture.

In order to ensure the intended receiving peer is not spoofed and provide confidentiality,
peers transmit entries among themselves also by means of a TLS encryption, established with
the aid of a certificate issued by a trusted authority. In this way computer-to-computer identity
and confidentiality are ensured. Although the user’s security attributes could be provided by the
user’s certificate, an identity provider is useful due to the following reasons anyway.

With the aid of the identity provider different users can run their runtime peers on the same
computer and possess their own user accounts. If the security attributes were stored in a certifi-
cate which is valid for the entire computer, different users with different user accounts on one
computer would not be feasible.

Further, changes of a user’s security attributes can be managed centrally at the identity
provider with no need of the user’s cooperation. If the security attributes were stored in a cer-
tificate the user would have to install the new certificate holding the changed security attributes.
Besides, the expired certificate would have to be specified on a revocation list.

The runtime peers are also connected to the identity provider via TLS in order to ensure
the identity provider is not spoofed. When runtime peer B receives entries from runtime peer
A, runtime peer B sends a request for the security attributes of runtime peer A’s user. With the
request runtime peer B sends the hash of the received entries, runtime peer A’s signature and id.
Thus the identity provider can validate the identity of runtime peer A by means of the received
data. A more detailed description can be found in section 5.1.3.

5.1.2 Intra-Peer Security Architecture

After the inter-peer architecture has been depicted to get a rough overview of the functioning of
the introduced security model, the security structure inside a peer is discussed next.
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Figure 5.2: Transfer of entries between secured peers

Security Architecture in Sending Peer

Every peer holds security-relevant objects, which are among others the peer user private key and
id. Before entries are sent to another peer, they are packed into a message which is hashed with
a secure hash algorithm and then signed with the user’s private key. This procedure happens in
the peer’s I/O component. The outgoing message contains the message holding the entries that
are intended to be sent, the entry which holds the signature and an entry containing the user id.
Figure 5.3 depicts this set of facts.

Security Architecture in Receiving Peer

Beside the user’s private key and id a peer also holds an access manager, a policy peer and a TLS
connection to an identity provider. These items are used for authentication and authorization of
the received entries. First the receiving peer calculates the secure hash of the inner message
(without the id and the signature entries). Afterwards it sends this hash, the received signature
and the id to the identity provider which verifies the signature by means of the hash and the id.
This assures that the entries have not been tampered during transfer and the sender possesses
the claimed id. When signature, hash and id fit together, the identity provider sends back the
sender’s security attributes. These are attached to the received entries and thus the entries get
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authenticated. After the entries are authenticated they are handed to the access manager, which
evaluates a security decision. It grants or denies the whole write operation, i.e. all entries are
written to the peer’s container or none. In order to make the security decision the access manager
uses the security attributes attached to the entries, rules gathered from the policy peer, additional
context information obtained from arbitrary (sub-) peers, the targeted container and the entries
themselves. Figure 5.4 illustrates the whole procedure for receiving entries.

As peers can send and receive entries, a peer possesses both mechanisms: the one for sending
and the one for receiving entries.

5.1.3 Security Components

As the architecture has been explained, we can focus on its components now.

Identity Provider

The whole access control is built upon the security attributes offered by the identity provider.
Thus it must be ensured that the identity provider is not spoofed and its sent data has not been
tampered. For this reason the identity provider holds a certificate issued from a trusted authority
by which a TLS connection is established. The functioning of the identity provider is as follows:
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Figure 5.4: Security mechanism at receiver side

A peer sends the hash of its received entries along with the signature and id obtained from the
sender, as mentioned before. The identity provider looks up the sender’s public key by means
of the received id. Therewith it verifies the signature against the hash, which represents the
transmitted entries. If all data is correct, it is ensured that the sender is the one who he/she
claims to be and the entries have not been tampered during transfer. When this is the case, the
identity provider sends back the security attributes linked to the sender’s id. Thereby the traffic
to the identity provider is kept small, since only the hash is transmitted instead of all entries.
Sending the hash also retains privacy.

Brute force attacks with the aim to gain security attributes and/or user ids from the identity
provider are hampered as security attributes are not only queried by means of the user id. The
security attributes and users are centrally managed by an administrator who has access to the
identity provider.

Access Manager

The Access Manager is responsible to intercept entries, make an access decision and forward
them to the desired target, when granted. To be more precise: the access manager intercepts
entries that are intended to be written to a (sub-) peer’s container, namely PIC or POC. In order
to make the security decision, the access manager uses the security attributes attached to the
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entries and the entries themselves. Further it needs the rules obtained from the policy peer and
environmental context information gathered from arbitrary (sub-) peers. That way the access
manager has direct access to all containers of the (sub-) peers. The targeted container is also
needed in order to make a security decision. An operation is either granted or denied as a whole.
When the access is denied, the respective entries are dropped and the action is logged. When the
operation is granted the entries are written to the desired container.

As the access manager intercepts the entries and makes a security decision, it represents the
Policy Enforcement Point (PEP) and Policy Decision Point (PDP) in one.

Policy Peer

The policy peer holds all the rules that build the security policy affecting the surrounding peer
and its sub-peers. As the policy peer is a sub-peer too, it rules the access to itself with the same
mechanisms used to rule the actual (sub-) peers, i.e. the access control bootstraps itself. Rule
entries and remove rule entries, discussed in section 5.2, get from the parent peer’s PIC to the
policy peer via the security wiring. This wiring takes all rule and remove rule entries from a
runtime peer’s PIC and writes them to the policy peer’s PIC. In this manner rules can be added
and removed locally as well as remotely, if sufficient permissions are given.

As the rules are administrated in and retrieved from the policy peer, it represents the Policy
Administration Point (PAP) and the Policy Retrieval Point (PRP).

5.2 Rules

Rules specify which entries are permitted to be written to specific containers under particular
circumstances and build thereby the centerpiece of the access control model. They are realized
as special entries in order to add them to a peer’s policy peer during runtime possibly from
remote, as long as sufficient permissions are granted. As most use cases can be modeled without
deny rules, this access control model only uses permit rules in order to provide a good readability,
comprehensibility and maintainability of the security policies and keep the evaluation algorithm
as plain as possible. A write operation is only permitted if it is granted for every single involved
entry, i.e. the operation is granted or denied as a whole. Thereby more than one rule could be
necessary to grant an operation. That is the case, if one rule can only grant the operation for a
part of the involved entries, and another rule can grant it for the remaining entries. None of the
rules could permit the whole operation, but together they do.

5.2.1 Structure of Rules

A Rule is constituted of the following parts:

• Id: clear identification

• Subject Property Template: direct and indirect senders via security attributes

• Resources: peers and containers
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• Operation: write (always)

• Condition: context condition (optional)

• Scope Field: content restrictions (optional)

• Effect: permit (always)

The purpose of the Id is to uniquely identify the rule, which is necessary when it is intended
to get removed. The Subject Property Template defines the direct and indirect senders for which
the rule is valid. They are identified by means of security attributes, as described in section
5.2.2. The Resource specifies for which (sub-) peers and containers targeted by the operation
the rule applies. The Operation indicates which kind of access is ruled. As this access control
model only needs to rule write operations, as described in the beginning of this chapter, the
value of Operation is always Write. Due to readability, comprehension and expandability of the
developed security model, it is specified nevertheless. The same applies to the Effect, which
is always permit. The environmental context under which the respective rule is valid can be
queried by the Condition. The scope field restricts the entries for which the rule is valid. A rule
is applicable for a write operation, when the targeted container matches, the Subject Property
Template is completely covered, as described in section 5.2.2, the particular entry type and the
entry attributes fulfill the scope field and the condition evaluates to true. As several of the listed
parts need a more accurate description, they are explained separately below.

5.2.2 Subject Property Template

The subject property template is the matching part to the subject property chain which in turn
is derived from the delegation chain but defined with security attributes. Let us consider the
following example: Runtime peer A sends an entry to runtime peer B which forwards the entry
to runtime peer C which finally forwards the entry to runtime peer D. So the delegation chain is
(C for B for A).

Assume that the user of runtime peer A is associated with the security attributes a1 and a2,
the user of runtime peer B is associated with the security attributes b1 and b2 and the user of
runtime peer C is associated with the security attributes c1 and c2. Note that a security attribute is
a key:value pair. The subject property chain ([c1:c1val, c2:c2val] for [b1:b1val, b2:b2val] for

[a1:a1val, a2:a2val]) corresponds to the delegation chain (C for B for A). The subject property
chain is stored in the entry’s coordination data and created when the entry is forwarded from a
peer to another, as described later in this section. The security attributes are obtained from the
identity provider which stores the user and the associated security attributes.

The subject property template is specified in the rule. A rule is applicable due to the subject
property template when each element of the template is fully covered by the corresponding
element of an entry’s subject property chain. Thus a rule with the subject property template
([c1:c1val] for [b1:b1val] for [a1:a1val, a2:a2val]) is applicable for an entry with the subject
property chain ([c1:c1val, c2:c2val] for [b1:b1val, b2:b2val] for [a1:a1val, a2:a2val]). Note
that all security attributes of the first element of the subject property template must be a subset
of the security attributes of the first element of the subject property chain. The same applies
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to every element of the subject property template. Security attributes match when their keys
and their values match. When only one security attribute of one element of the subject property
template does not match the corresponding security attribute of the corresponding element of
the subject property chain, the rule is not applicable for the respective entry.

Demand for the Subject Property Template

The subject property template is needed to specify rules for entries which are sent on behalf of
other peers or users, respectively. This could also be achieved by impersonating the original
sender. However, as no mutual trust can be assumed, this approach is not suitable.

Beside this, the subject property template is required to define rules for receiving entries that
have been sent out by the own peer. Assume user Y is associated with the security attribute
y1:y1val and sends an entry to a peer belonging to user S who is associated with the security
attribute s1:s1val. Then a rule with the subject property template ([s1:s1val] for [y1:y1val]) at
user Y’s peer is applicable to the entry which was originally emitted by user Y’s peer and is sent
back by user S’ peer.

Genesis of the Subject Property Chain

The subject property chain is created when entries are forwarded from a peer to another. Thereby
the security attributes of the last sender are added to the subject property chain as first element.
Let’s consider the genesis of a subject property chain on an example illustrated in Figure 5.5.

Peer A sends entries to Peer B, which attaches Peer A’s security attributes to the entries,
specifically as first element in the entries’ subject property chain. Therefore, Peer B queries the
identity provider, as described in section 5.1.3. When the same entries are forwarded to Peer
C, it inserts Peer B’s security attributes as first element in the subject property chain and the
security attributes from Peer A are moved to the second position. Finally when the entries have
arrived at Peer D, their subject property chain is as follows:

Subject Property Chain [0] = c1:c1val, c2:c2val

Subject Property Chain [1] = b1:b1val, b2:b2val

Subject Property Chain [2] = a1:a1val, a2:a2val

The order of the security attribute chain is reverse to the sending order, whereby the direct
sender is always on the first position. Note that all users in the subject property template are
implicitly trusted, as their peers could manipulate the elements of the subject property chain.
This manipulation would not be recognized as only the last sender is authenticated every time
entries are received. Thus it is not sufficient to state only the original sender of entries, rather all
trusted participants from the delegation chain should be specified.
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Wildcard Support in the Subject Property Template

For the case that it does not matter who is the sender on a certain position in the subject property
chain, wildcards are supported in the subject property template. For Peer D from the previous
example the following subject property template would also be satisfied:

Subject Property Chain [0] = c1:c1val, c2:c2val

Subject Property Chain [1] = * (wildcard for one element)

Subject Property Chain [2] = a1:a1val, a2:a2val

As an element of the subject property template must be a subset of the sender’s security attributes
in order to be satisfied, a wildcard for one element of the subject property template is realized
by stating no security attributes in the respective element.

When an arbitrary number of senders from the delegation chain are irrelevant, e.g. only the
original sender is relevant of access control, another wildcard can be employed. Considering the
same example again, the following subject property template applies for Peer D:

Subject Property Chain [0] = ** (wildcard for an arbitrary number of elements)

Subject Property Chain [1] = a1:a1val, a2:a2val

Subject Property Chain for Locally Written Entries

As entries that cannot be authenticated, i.e. that have no subject property chain, are dropped or
rather no rules with a specified subject property template will grant access to them, a solution
for entries that are written locally to a peer has to be found. “Locally written” means that the
entries are not obtained from another peer, rather the peer owner writes them directly to the peer.

Locally written entries will obtain a subject property chain with an element which grants
these entries access to the local peer and its sub-peers. This access is implicitly granted and does
not have to be defined in rules. When these entries are sent to another peer, the element which
grants local access is removed from the subject property chain. These entries are authenticated
at the receiving peer, using the identity of the local runtime user, whereby a new element of the
subject property chain is added.

Subject Property Chain of Entries Emitted by Services

Services may not and cannot make changes to the subject property chain of entries. When a
service emits an entry, it is necessary to assign the entry a subject property chain due to the same
reason depicted in the previous paragraph. It can be chosen whether the emitted entry obtains the
same subject property chain as if the entry was locally written to the peer or the emitted entry’s
subject property chain is derived from the entry that was the first argument of the service. This
means for future access control that the entry is either emitted by the peer itself or on behalf of
the subjects from the first argument of the service.

46



Identity Provider

Peer A Peer B Peer C
E E E E

authenticate authenticate

Peer D
E E

authenticate

Figure 5.5: Delegation chain in the peer space

5.2.3 Condition

The environmental context under which a rule applies can be modeled with arbitrary entries
in any local containers of (sub-) peers. With the aid of the optional condition this context is
evaluated by means of the conjunction of condition predicates. These are specific queries against
defined containers, which yield true when they are satisfiable and otherwise false. Condition
predicates are bootstrapped with the query mechanism provided by the PeerSpace.NET for the
action and guard links. Such a query is constituted of an entry type, an additional predicate,
a count with a relation operator and the operation, which can be read, write and take. As the
condition (predicate) may not change anything, its query operation is always read. A condition
predicate also specifies the targeted container and its boolean outcome may be negated.

Assume a peer possesses sub-peer A and sub-peer B. For the peer a rule can be defined
which is, e.g., only applicable if sub-peer A’s POC contains at least two entries of type string

and no entries of type int or sub-peer B’s PIC contains at most three entries of type bool.
A condition predicate which shall evaluate to true when no entries of a certain type are

present can be realized by defining a negated condition predicate that queries one entry of the
particular type. Thus when one or more entries of the particular type are present, the negated
condition predicate evaluates to false. Otherwise, i.e. when no entries of this type are available,
the negated condition predicate evaluates to true. The same principle can be used to specify a
condition predicate that evaluates true when e.g. at most three certain entries are present.

A condition predicate’s query may also use dynamic values which are received from the
entry whose access control decision is evaluated. Thus, e.g. a rule can be specified which grants
entry A access, only when a registration entry B is available that possesses the same id like entry
A.

5.2.4 Scope Field

With the aid of the optional scope field a rule can be restricted to be valid only for entries of
specific types and with certain attributes. Static scope fields specify with the aid of static values
whether the rule is applicable to an entry or not. A static scope field may define: id = 123

e.g. The according rule is applicable for entries with the id of “123”. Dynamic scope fields
define dynamic values obtained from the entry’s subject property chain to restrict the rule for
certain entries. For example a dynamic scope field may define id = $id. The according rule is
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applicable for all entries where the id matches the id of the sender. Thus rules can be stated
that are applicable for entries that were sent by their owner. A more detailed description can be
found in section 6.3.1.

5.2.5 Remove Rules

Rules are realized as special entries and thereby distributed via the PeerSpace.NET transport
mechanism, i.e. its wirings. As wirings are located at sender side and cannot be added to peers
from remote, as discussed in section 3.2, it is not possible to remove rules via a dynamic take
wiring from outside the peer. This approach would be preferable because it is bootstrapped by
the PeerSpace.NET. However, another mechanism for removing rules will be introduced. This
mechanism uses Remove Rules which are special entries like rules and likewise distributed.
When a remove rule is sent to a peer and forwarded to the peer’s policy peer, the remove rule
causes the elimination of the respective rule identified via the id. Sufficient privileges must
be given to the sender in order to remove a rule. The access manager has direct access to all
containers of the (sub-) peers and thus to the policy peer’s PIC, where the rules are located.
Thus the access manager executes the deletion of rules. It would also be possible to delete rules
with the aid of dynamic wirings. However, an own dynamic wiring would have to be created
and deleted for each removal of a rule.

5.3 Rule Evaluation

An operation is either granted or denied as a whole. Thus access must be granted to every entry
involved in an operation to grant that operation. Access to a group of entries cannot be granted
at once, because the dynamic scope field and the dynamic condition of a rule must be evaluated
for every single entry. To avoid that n*m rules are evaluated for n rules and m entries, all rules
which are not applicable due to the peer and the container are dropped first. Then the remaining
rules are ordered concerning the probability that they are applicable. For each entry the rules
are evaluated in this order and as soon as one rule grants access to the entry, the remaining rules
are skipped for that entry and the rule evaluation continues with the next entry. A more detailed
description of this mechanism can be found in section 6.3.2.

5.4 Parallels to XACML

The access manager represents the Policy Enforcement Point (PEP) and the Policy Decision
Point (PDP) like mentioned in section 6.3.2. The policy peer represents the Policy Administra-
tion Point (PAP) and the Policy Retrieval Point (PRP), as already noted in section 5.1.3. As a
rule’s condition queries the (sub-) peers’ containers, they represent the Policy Information Point
(PIP).
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5.5 Fulfilled Requirements

In order to show that the design of the security model is suitable, the previously set up require-
ments from section 4.1 are verified for fulfillment.

Usage of attribute-based access control (ABAC)

Security attributes are attached to the transmitted entries with the aid of the identity
provider. Rules are selected to be employed by means of these security attributes (be-
side other things).

Trusted user administration

The identity provider, whose identity is proven by means of a certificate issued by a trusted
authority, is the entity where users and their security attributes are administrated.

Access-controlled resources

The access to the containers within the Peer Space, i.e. the PICs and POCs, is controlled.
The containers can be accessed through read, write and take operations, but due to the
characteristics of the PeerSpace.NET, discussed in section 3.2, only write operations are
ruled.

Expressive rules

A rule can specify the entry’s type and additional attributes by means of the scope field,
described in section 5.2.4, and may only be valid under a certain environmental context,
queried by the condition, discussed in section 5.2.3.

Wildcard support

Wildcards are supported for the scope field, the condition and the Subject Property Tem-
plate in order to facilitate the creation of general rules.

Permit rules only

The designed access control model uses permit rules only.

Support for delegation

With aid of the subject property template rules can be defined for delegated entries by
means of all of their senders.

Every peer possesses its own security policy

Every peer holds its own policy peer which in turn holds the rules valid for the particular
peer and its sub-peers.

Management of rules is bootstrapped

As the policy peer is a sub-peer and the rules are realized as special entries, the manage-
ment of rules is bootstrapped with the Peer Space itself.

The security policy can be changed during run time

This requirement is satisfied, as the policy peer is a sub-peer and rules and remove rules
are implemented as special entries, which are sent during run time.
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Setting the security policy remotely

As rule and remove rule entries are transmitted like conventional entries, i.e. remotely,
this issue is also fulfilled.

Enforcement of access control is optional

Within a peer’s configuration, which acts as a blue print in order to produce multiple peer
instances, access control can be enabled or disabled. By default it is enabled. When access
control is enabled for a runtime peer, it is automatically activated also for its sub-peers.

Integrity and authenticity

This is achieved through a public key infrastructure, whereby the sending peer uses its
private key to sign the entries and the identity provider verifies the signature with aid of
the respective public key.

Confidentiality

Confidentiality is given though the deployment of an TLS encrypted connection between
peers, as well as between peers and the identity provider.

Scalability

Every runtime peer holds its own policy peer and every user can administrate its own rules
or delegate this task. Attribute-based access control is used in order to decouple rules from
users, which is convenient when new users are added. Further the traffic to the identity
provider is kept small by only transmitting the secure hash instead of the whole message,
in order to a verify the signature.

Usability

To employ the introduced access control model, the TLS connections must be established
and rules must be created. Besides, the acting users must be registered at the identity
provider. All these procedures are not to complicated and thereby practicable. Finally the
employment of permit rules only increases the comprehensibility.

Maintainability

When new users are added, rules need not necessarily be adapted, since attribute-based
access control is deployed. Every user can maintain the policy of his/her own peer, but
this task can also be delegated to a certain user.

Performance

The performance impact caused by the introduced security model will be evaluated by
means of a benchmark test (see Section 7.2).
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CHAPTER 6
Implementation

The design of the security model is now established and theoretically validated, so it can be
implemented.

Therefore we analyze the implementation of the existing Application Peer and explain its re-
quired security adaptions. Next the implementation of the necessary authentication mechanisms
are examined, followed by an explanation about the realized authorization with its required ele-
ments, like the access manager, the policy peer and rules.

6.1 Application Peer

As the security mechanisms reside in the Application Peers, they are studied next.

6.1.1 The Functioning of the Application Peer in the PeerSpace.NET

Within the PeerSpace.NET there are currently only Application Peers, which represents the ac-
tual peers. When an application peer’s run method is executed, the peer is converted to a Runtime

Peer. Thereby it obtains an XcoAppSpace for remote communication with other runtime peers
and the sub-peers, which are specified in a list, are annexed.

Sub-peers are also application peers, but in contrast to the runtime peer, the run method has
not been executed. An application peer can either be run or annexed to a runtime peer, which
converts it to a sub-peer. So sub-peers cannot be run and thus no nested sub-peers are possible.

An application peer has methods in order to write entries locally into its PIC or POC. These
methods are either called by the user, by a local wiring’s action, or by the communication layer
when entries have been received from remote.

However, all these methods converge to the EmitRespectingTimeProperties method, which
basically writes the entries to the desired container taking into consideration the entries’ TTS
and TTL properties. Subsequently the corresponding wirings are run, if possible.

When a wiring is run, it reads or takes specified entries from a source container and writes
them into an wiring-intern container called Entry Collection. Afterwards, services which are
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specified in the wiring are called. These services may use entries from the entry collection as
arguments and may emit newly generated entries to the entry collection. Next the wiring reads
or takes specified entries from the entry collection and writes them to a defined target, which is
a (sub-) peer’s container.

Figure 6.1 depicts the architecture of runtime peers and sub-peers and the transfer of entries.
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Figure 6.1: Functioning of the PeerSpace.NET

6.1.2 Security Adaptions in the Application Peer

Application peers are instantiated by means of a peer configuration, which acts as a blue print.
This peer configuration also specifies whether the particular peer will be secured or not when it
is converted to a runtime peer. When a runtime peer is secured, its sub-peers are automatically
also secured, no matter what is defined in their peer configuration.

A secured runtime peer needs the user’s id and private key in order to properly communicate
with other secured runtime peers. Therefore a file path is stated in the peer configuration which
locates a configuration file containing the user’s id as string and his/her private key as XML
string, which is a convenient way to import the cryptographic key.

As an entire runtime peer is owned by one user, the access control model applies when
entries are transferred between runtime peers. The mechanism for authentication which enables
authorization has to be integrated in the procedures of sending and receiving entries.

Since the id and key are only required for secured runtime peers, they are first imported from
the configuration file when the peer’s run method is executed. Thereafter they are passed to the
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peer’s communication layer, which needs the information in order to be able to send and retrieve
entries with authentication support.

6.2 Authentication

The explanation starts with the implementation of authentication support at sender side. Before
the security mechanism for sending entries can be implemented, the procedure that occurs when
entries are sent has to be studied.

6.2.1 Preexisting Sending Mechanism

In order to get an idea of what happens in the PeerSpace.NET when entries are sent to remote
runtime peers, the mechanism is examined by means of the flowchart in Figure 6.2 first.
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Figure 6.2: Sending procedure in the PeerSpace.NET

When a wiring is run and it executes its action, entries are sent either to a local or remote
destination. Thus Execute Action forms the starting point for this flowchart. It is evaluated
whether the wiring’s destination is internal or not. If it is internal, i.e. PIC, POC or a sub-peer,
the entries are written to the particular container.

When the destination is external, the entries are going to be sent over the peer’s I/O com-
ponent. Therefore a PostContext is created containing the entries, the sending peer and the peer
address of the destination.

The next step is that it is verified that the sending peer is no sub-peer and possesses an I/O
component. If the sending peer is no sub-peer and possesses an I/O component, an URI to the
receiver is obtained with the aid of the destination’s peer address from the PostContext. Next
a Message containing the entries from the PostContext is created and finally transmitted to the
obtained receiver.

With the aid of the UML diagram in Figure 6.3, which depicts the implementation of the
peer (Application Peer) and the I/O component (XcoAppSpaceCommunicationLayer), a more
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detailed description of the involved methods follows. The methods from the UML diagram are
part of the PeerSpace.NET implementation and already exist. The developed security model is
integrated into some of these methods.

ApplicationPeer

«C# class»

Attributes

- Log : ILog

- SecurityLogger : ILog

- _communicationLayer : ICommunicationLayer

- _inWirings :  List<IWiring > 

- _outWirings :  List<IWiring > 

- _pic : IContainer

- _poc : IContainer

- _userCredentials : UserCredentials

Operations

+ AddWiring(wiring : IWiring)

+ ApplicationPeer(configuration : IPeerConfiguration, containerFactory : IContainerFactory, communicationLayerFactory : ICommunicationLayerFactory)

+ Emit(entry : Object, properties : Object)

+ Emit(entries :  IEnumerable<Object > , properties : Object)

+ EmitToPoc(entry : Object, properties : Object)

+ EmitToPoc(entries :  IEnumerable<Object > , properties : Object)

+ RemoveWiring(name : String)

+ Run()

- AssertWiringDoesNotExist(wirings :  IEnumerable<IWiring > , newWiring : IWiring)

- EmitRespectingTimeProperties(destination : IContainer, entries :  IEnumerable<Object > , properties : Object, wiringsName : String, wirings :  IEnumerable<IWiring > )

- RunWirings(wiringsName : String, container : IContainer, wirings :  IEnumerable<IWiring > )

# AddWiringsFromParent(wirings :  IEnumerable<IWiring > , destinations :  IDictionary<String , Destination > )

# CreateShutdownActionContext() : IShutdownActionContext

# CreateStartupActionContext() : IStartupActionContext

# Dispose(disposing : Boolean)

~ EmitTo(internalDestination : String, entry : Object, properties : Object)

~ EmitTo(internalDestination : String, entries :  IEnumerable<Object > , properties : Object)

~ Post(postContext : PostContext)

~ SendTo(destination : PeerAddress, entry : IEntry, successCallback : CommunicationSuccessCallback, errorCallback : CommunicationErrorCallback)

~ SendTo(destination : PeerAddress, entries :  IEnumerable<IEntry > , successCallback : CommunicationSuccessCallback, errorCallback : CommunicationErrorCallback)

XcoAppSpaceCommunicationLayer

«C# class»

Attributes

+ IsDisposed : Boolean

- Log : ILog

- secured : Boolean

- SecurityLogger : ILog

- _currentlyTransmittedMessages : Int64

- _peer : IPeer

- _resolveOrConnectLock : Object

- _space : IXcoAppSpace

- _userCredentials : UserCredentials

Operations

+ Dispose()

+ Open(peer : IPeer)

+ Post(postContext : ICommunicationLayerPostContext)

+ SetSecurityRelevantAttributes(sec : Boolean, userC : UserCredentials)

+ XcoAppSpaceCommunicationLayer()

- CreateAndPrepareMessage(postContext : ICommunicationLayerPostContext) : Message

- ObtainClientForAddress(postContext : ICommunicationLayerPostContext) : PPeerServiceContract

- OnCommunicationErrorCallback(postContext : ICommunicationLayerPostContext, exception : Exception)

- OnCommunicationSuccessCallback(postContext : ICommunicationLayerPostContext)

- ProcessMessage(message : Message)

- WaitForMessageTransmissions()

Figure 6.3: UML diagram of the application peer
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For the following explanation it is assumed that the destination is remote and that the entries
are going to be sent via the I/O component.

There are two SendTo methods, which are basically the same. The only difference is that
one of these takes one entry as argument and the other a collection of entries. Further they
demand the peer address of the destination. The two callbacks are not discussed since they have
no relation to the security.

The SentTo method creates a PostContext which includes the destination peer address, the
entries and the address of the own peer, which acts as sender. Then it calls the Post method with
the PostContext as argument, which checks that the sending peer is no sub-peer and possesses a
communication layer.

Then the PostContext is handed to the Post method of the communication layer which is
an instance of XcoAppSpaceCommunicationLayer. With the aid of the destination peer address
stated in the PostContext, the ObtainClientForAddress creates a stub for the XcoAppSpace of the
receiver.

Next the CreateAndPrepareMessage method wraps the entries from the PostContext in a
Message, which uses the XcoAppSpace for transportation. Finally the Message is sent to the
receiving XcoAppSpace.

6.2.2 Implementation of Sending with Authentication Support

In order to enable authentication on receiver side, the user’s signature and id are added to the
Message. The id and signature are each wrapped in an entry. The actual entries which are
intended to be sent are packed into a Message, called net message, which in turn is wrapped
in an entry. So the final message always contains three entries in the first tier, namely the net
message, the id and the signature.

The examined approach has already been visualized in Figure 5.3 and is explained with the
aid of the flowchart in Figure 6.4.
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Figure 6.4: Creating a message that can be authenticated

At sender side authentication is supported by the message, which has to be adapted for
that reason. So the place where the message is created is the convenient location for the
implementation of authentication support at sender side. The message is created in the Cre-

ateAndPrepareMessage method, which resides in a runtime peer’s I/O component, i.e. the
XcoAppSpaceCommunicationLayer, as depicted in Figure 6.3. The implementation of the ex-
plained security mechanism for sending is established by only changing this one method.

In the changed CreateAndPrepareMessage method the signature is created by the SignOb-

ject method from the static SignUtility class. It gets the net message and the user’s private key
as arguments and calculates the secure hash (using SHA-1 [60]) from the net message. Then

55



an instance of the RSAPKCS1SignatureFormatter is created with the private key as parameter.
This class is shipped with .NET. On the instance of the RSAPKCS1SignatureFormatter the Cre-

ateSignature method is called with the previously calculated SHA-1 hash from the net message
as parameter. The CreateSignature method returns a signature which in turn is returned by the
SignObject method.

The net message, the signature and the id are wrapped into entries by the WrapObjectIfNec-

essaryAndSetProperties method from the EntryUtilities class, which have already existed within
the PeerSpace.NET.

6.2.3 Preexisting Receiving Mechanism

When entries are received at a peer’s XcoAppSpace, the ProcessMessage method, which resides
in the XcoAppSpaceCommunicationLayer, is triggered. This method forwards the entries to the
peer’s Emit method, which in turn writes the entries to the PIC and tries to run the corresponding
wirings. The procedure of receiving is illustrated in the flowchart in Figure 6.5. Note that the
description and diagram only illustrate the relevant steps and make no claim to completeness.

Message
CL.Process 

Message
Peer.Emit

Figure 6.5: Receiving mechanism in the PeerSpace.NET

6.2.4 Implementation of Receiving with Authentication

When a message is received, the three contained entries, namely the net message, the signature
and the id are unwrapped and verified. If any of them is invalid, the message is dropped.

When all received data is correct, the secure hash of the net message is calculated and sent
along with the id and the signature to the identity provider. The identity provider in turn verifies
by means of the received data the entries and the original sender and returns his/her security
attributes, if all data is correct. If not, it returns null with the result that the action is logged and
the entries are dropped. Otherwise the security attributes are attached to the received entries,
which are thereby authenticated. The examined approach has already been visualized in Figure
5.4 and is sequentially depicted as a flowchart in Figure 6.6.
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Figure 6.6: Security mechanism for receiving
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This part of the security model takes place when entries are received, so the appropriate
location for its implementation is where retrieved messages are processed. The flowchart in
Figure 6.7 depicts the procedures for receiving entries and marks the procedure where the se-
curity takes place. This is at the method ProcessMessage, which resides in the XcoAppSpace-

CommunicationLayer. The implementation for authentication of received entries is established
by only changing this one method.

In the changed ProcessMessage method the id, the signature and the net message are un-
wrapped and the secure hash of the net message is calculated. The secure hash, the signature
and the id are handed to the identity provider and therewith the user’s security attributes are
requested. This is established by the GetSecurityAttributes method from the static Connect-

ToIdentityProvider class.
When security attributes are returned by the identity provider and thus by the GetSecurityAt-

tributes method, they are inserted into the entries’ subject property chain. In this way the entries
have been authenticated.
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Figure 6.7: Integration point of the security mechanism

6.2.5 Subject Property Chain for Locally Written Entries

When a user writes entries locally to a peer with one of the Emit methods, they do not pass the
XcoAppSpaceCommunicationLayer. Thus they are not authenticated and accordingly no access
control can be performed on them. For this purpose the SudoEmitToPic and SudoEmitToPoc

methods have been created.
Within these methods entries gain local access by adding the security attribute LocalAdmin

in their subject property chain, before they are written to the corresponding container. Thus
they are granted access to the whole runtime peer, but when they are sent to a remote peer, the
security attribute LocalAdmin is deleted from the sending peer and the entries get authenticated
at the receiving peer with the sender’s security attributes.

6.2.6 Subject Property Chain of Entries Emitted by Services

Entries which have been emitted by a service do not pass the XcoAppSpaceCommunication-

Layer, similar to entries locally written to a peer by the user. The entries have to get a subject
property chain in order to conduct authorization decisions on them. In contrast to the locally
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written entries, a subject property chain with security attributes exists, namely the one of the
entries taken from the service as argument. The approach is to either attach a copy of the sub-
ject property chain from that entry which forms the first argument of the service to the emitted
entries or to attach a subject property chain containing the security attribute LocalAdmin. The
created DerivedAuthenticationEmit method enables a service to emit entries with a copy of the
subject property chain from the entry which has been taken from the service as first argument.
The created SudoServiceEmit method emits entries with a subject property chain containing the
security attribute LocalAdmin.

6.2.7 Identity Provider

The Identity Provider’s task is to verify the sender of a message and respond with the appropriate
security attributes. Tampering of the entries during transfer would be recognized by checking
the sender’s signature. As the identity provider bootstraps the authentication and therewith the
whole security model it is very important that it cannot be spoofed, because faked security
attributes could be distributed. In order to ensure the identity provider is the one it claims to be,
it is connected via TLS with the aid of a trusted certificate.

The Identity Provider is realized as WCF service, hosted in a stand-alone console application
that holds the ids, public keys and security attributes of the registered users within a dictionary,
whereby the user’s id serves as key. The user registrations are read from a text file and copied to
the dictionary during the startup of the identity provider. A local administrator can change users
and their security attributes by modifying this file. A user interface for administrating this file
can be later implemented to increase the usability.

It would be conceptionally preferable to bootstrap the identity provider with the Peer Space
and realize it as runtime peer, but there are a couple of reasons why we decided to implement it
as WCF service.

Due to the important role of the identity provider in the security model it is indispensable
that request and responses are not lost during transfer, even if the connection is temporarily bro-
ken. With the employment of WCF services this feature can be ensured as WCF uses Message

Queuing (MSMQ) which implements a reliable message protocol [45].

WCF supports also routing, wherewith load balancing can be established. This is useful
when the Peer Space scales, as the identity provider forms a bottleneck of the security model.

The necessary TLS connection to the identity provider can be established using WCF ser-
vices. If the identity provider was implemented as runtime peer, the TLS connection would
depend on the Peer Space‘s I/O component, which would be a drawback when the communica-
tion layer is changed.

Besides, WCF hosted services are interoperable, thus the identity provider may also be de-
ployed for other implementations of the Peer Model, assuming they use a similar security con-
cept.
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6.3 Authorization

In the context of this thesis, authorization defines whether certain entries are allowed to be
written to a specific container or not. The decision depends on many factors like the security
attributes of the direct and the indirect senders, the rules, the content of the entries and the
context information.
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Figure 6.8: Point of interception for access control

6.3.1 Rules

In order to contain all required information, a rule consists of the following fields.

• Id

• Guarded Peer Containers

• Subject Property Chain

• Operations

• Scope Field

• Condition

• Rule Effect

The Guarded Peer Containers specify the peers and their containers for which the rule is
valid by the name of the particular peer and container. The Subject Property Chain is a list of
dictionaries which in turn hold the security attributes from the particular sender of the delegation
chain. The Operation is always write and is stated for clarity and extensibility, like the Rule

Effect, which is always Permit.
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Scope Field

The scope field is constituted of a hash set of types and an additional predicate and specifies for
which entries the rule is applicable. The types specify for which entry types the rule is valid and
with the aid of the additional predicate more accurate specifications can be accomplished.

The additional predicate is implemented as delegation method which takes an entry as ar-
gument and returns a boolean. Thus an arbitrary boolean function may be created, which can
access every part of the entry, i.e. the application data as well as the coordination data. Therewith
static and dynamic selection criteria can be defined as shown in the following two examples.

When an additional predicate is defined, it is recommended to specify only a single entry
type to prevent type conversation problems during the evaluation of the additional predicate.
However, when no additional predicate is stated, the possibility to define more than one type in
the scope field is useful.

Static Scope Field Example

The rule in this example shall be applicable for the Student Entry with the matriculation number
MNr 0425266. So within the scope field the following delegation method, which is implemented
as Lambda Expression, has to be stated.

entry => ((Student)entry.Data).MNr == 0425266;

Listing 6.1: Lambda expression for static scope field

With entry.Date the application data of the entry, i.e. the Student object, is accessed. In order to
address the students matriculation number MNr, the application data has to be cast to Student.

Dynamic Scope Field Example

In the next example the rule shall apply to the Student Entry which belongs to the sender. The
matching is verified by the matriculation number. Thus the matriculation number in the entry
must be that of the sender. Thereby the Lambda Expression accesses the application data and
the coordination data of the entry.

entry => ((Student)entry.Data).MNr ==

entry.SubjectPropertyChain[0][SecurityAttributes.MNr];

Listing 6.2: Lambda expression for dynamic scope field

The left part of the boolean expression is the same as in the previous example, since it will be
validated if the rule is applicable by means of the matriculation number. The difference to the
former scope field is that the matriculation number is not compared to a static number, rather it
is compared to the one of the sender. Thus the security attribute MNr of the last sender is used,
which is obtained from the entry’s subject property chain whereat the index 0 addresses the last
sender.

Due to clarity the lambda expressions shown in the previous examples do not perform any
checks for avoiding runtime exception, like cast or key-not-found exceptions.
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As the query mechanism in the PeerSpace.NET consists of type, additional predicate, count,

relational operator and operation, which constitutes a super set of the scope field, it could be
bootstrapped therewith. However, as the scope field only uses type and additional predicate, this
would be an overkill. Further, queries are performed against containers, whereby the scope field
is applied directly to entries, when ruling write operations.

Condition

In contrast to the scope field the condition is bootstrapped with the PeerSpace.NET query mech-
anism. With the aid of the condition, the environmental context under which the rule applies
can be specified. The environmental context is modeled with arbitrary entries in any container
within the runtime peer. Thus the condition is the boolean result of a stated combination of
defined queries against specific containers.

Such a single query, called condition predicate is constituted of a PeerSpace.NET query, the
targeted peer and container name and an optional logical negation. The condition predicate has
a boolean outcome, whose value depends on whether the query was satisfiable and if the result
is negated. The query of the condition predicate possesses the following fields.

Operation = QueryOperation.Read

Type

Relation = QueryRelation.Exactly

Amount

AdditionalPredicate

The operation is always read as the condition must not make changes within the Peer Space.
The relation is exactly, although a query can also be satisfied when more than the stated entries
are available. So the relation could also be stated as more or exactly. If it is desired to create a
condition that evaluates to true when less than a certain count of entries are located, this can be
realized with the aid of the optional negation.

The type, amount and additional predicate relate to the queried entries and are specified by
the rule’s creator. The additional predicate is realized with a delegation method, which takes the
queried entry as input and returns a boolean. In order to enable a dynamic condition, where the
entry for which the rule is evaluated can be involved in the additional predicate, the additional
predicate is overloaded with a delegation method that takes two entries as input and returns a
boolean. One of these two entries is the entry for which the rule is evaluated and the other entry
is the same as in the other delegation method.

The condition predicates are connected with logical connectors, namely conjunctions and
disjunctions. The condition consists of a list of condition predicates and a list of logical connec-
tors, whereby the former list possesses one element more then the latter.

The condition is sequentially evaluated as follows. The result of the first condition predicate
is combined with the second one according to the first element of the logical connectors. Then
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this result is combined with the outcome of the third condition predicate corresponding the
second element of the logical connectors and so forth.

For example, the following condition evaluates to true when at least five entries of type string
with the length of ten characters are located in sub-peer A’s PIC and less than two entries of type
int are located in the sub-peer B’s POC. Note that the amount of the second condition predicate
is two, but due to the enabled negation, this predicate evaluates to true when less than two entries
are located.

Source = Sub-Peer A’s PIC
Type = string
Amount = 5
AdditionalPredicate = length=10
Negation = false

Logical Connector = AND

Source = Sub-Peer B’s POC
Type = int
Amount = 2
AdditionalPredicate = true
Negation = true

Figure 6.3 depicts a code example of an entire rule, which is valid for entries of the type
string which contain the character “u” (scope field). The rule is valid for the entries that were
sent from a supervisor on behalf of a student (subject property template). The condition for the
rule is the same as in the previous condition example.

var rule = new Rule

{

Id = "247",

SubjectPropertyTemplate = new

List<Dictionary<SecurityAttributes,

HashSet<string>>>

{

new Dictionary<SecurityAttributes,

HashSet<string>> { {

SecurityAttributes.Role, new

HashSet<string> { "Supervisor" } }

},

new Dictionary<SecurityAttributes,

HashSet<string>> { {

SecurityAttributes.Role, new

HashSet<string> { "Student" } } }
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},

Scopefield = new Scopefield(new

HashSet<Type> { typeof(string) },

e=>e.Type == typeof(string) &&

((string)e.Data).Contains("u")),

Condition = new Condition

{

ConditionPredicates = new

List<ConditionPredicate>

{

new ConditionPredicate("SubPeerA",

"PIC", typeof(string), 5,

LogicalNegation.DontNegate,

e=>e.Type == typeof(string) &&

((string)e.Data).Length == 10),

new ConditionPredicate("SubPeerB",

"POC", typeof(int), 2,

LogicalNegation.Negate, e=>true)

},

LogicalConnectors = new

List<LogicalConnector> {

LogicalConnector.And }

}

};

Listing 6.3: Example of a rule

The condition, scope field, guarded peer containers and the subject property template im-
plement wildcards as follows. If the particular field is not set, i.e. it references null, the
rule applies always concerning the respective variable. The wildcards for elements of the
subject property template are specified with the enums Wildcard.ForOneElement and Wild-

card.ForArbitraryElements.

6.3.2 Access Manager

The access control decision, whether authenticated entries are allowed to be written to a certain
container or not, is evaluated by the access manager. While Figure 5.4 illustrates the interaction
of an access manager in a runtime peer, Figure 6.8 shows where in the receiving chain the
security decision resides.

Every peer has the field AccessManager of the type IContainerHoldingAccessManager,
which offers the GetPermission method to evaluate whether entries are allowed to be written
to a certain container or not. The type is an interface due to two reasons. Firstly, it enables ex-
tensibility, e.g. allowing the integration of an access manager which acts on access control lists.
Secondly, when an application peer is instantiated and it is not set to be secured, an instance of
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the GrantAllAccessManager will be created and assigned to the field AccessManager. In this
way, every write operation is granted and no access control is performed.

There is only one instance of the actual access manager, i.e. the AbacAccessManager, in
the whole runtime peer. Thus the AbacAccessManager is instantiated when the Run method of
a secured application peer is executed because this happens only one time in the entire runtime
peer. When this method is run, also the sub-peers are annexed. In this context the reference of
the AbacAccessManager is handed over to them, so they can address it with their own Access-

Manager field.
The references of all sub-peers’ and the runtime peer’s containers are passed to the access

manager with the aid of its RegisterContainers method. This is necessary because the access
manager must be able to query all containers in the runtime peer in order to evaluate the condition

as discussed in section 6.3.1. Due to the access manager’s direct access to all containers, it can
simply obtain the rules from the policy peer’s PIC. The access manager can also remove the
rules from the policy peer‘s PIC when remove rules are received.

The access manager resides in the runtime peer, rather than in the policy peer, in order to
decouple the enforcement and execution from the storage of rules. The access control decision
is evaluated by the GetPermission method.

The GetPermission method is called by the already mentioned EmitRespectingTimeProper-

ties method, which writes entries to the desired container and tries to run the appropriate wirings.
When GetPermission returns true, the body of EmitRespectingTimeProperties is run, otherwise
not. The interception of the access manager is placed here, since EmitRespectingTimeProper-

ties can be called from several methods. Setting the point of interception one step later, namely
shortly before the entries are written to the container, renders the security model vulnerable to
DoS attacks, since it would be verified whether the wiring could be run, even if the particular
operation were denied.

The GetPermission method has the entries, the peer and the wiring name as parameters.
All parameters are forwarded parameters from the EmitRespectingTimeProperties method. The
entries and the peer can be directly used in the GetPermission method and the wiring name is
used to obtain the container involved in the operation.

The access control decision is whether the stated entries are granted to be written to the
container of the stated peer. First, all rules are obtained from the policy peer‘s PIC with the aid
of a query against this container. Then the rules are selected by the criteria that are independent
of the entries. These criteria are whether the operation’s targeted peer and container match the
peer and container stated in the rule. The remaining criteria are the subject property template,
the scope field and the condition. The entries from a single write operation can possess different
subject property chains as the sending peer may forward entries it has received from different
peers.

A rule’s applicability concerning the subject property template is verified by checking whether
the security attribute values of each security attribute of each element from the subject property
template is a subset of the corresponding security attribute values of the corresponding element
of the entry’s subject property chain.

A rule’s applicability concerning the scope field is evaluated by checking whether the entry’s
type is stated in the scope field and whether the additional predicate evaluates to true. The
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additional predicate facilitates to use nearly arbitrary data of the entry including coordination
data which leads to express dynamic scope fields as described in section 6.3.1. Indeed the
flexibility of the additional predicate has the disadvantage that the scope field must be evaluated
for every single entry. If the scope field specified only types, the entries could be grouped and
the scope field could be evaluated for groups of entries instead of single entries.

The condition evaluates to true or false depending on defined logical conjunctions/disjunc-
tions of condition predicates which are specified queries against defined containers as described
in Section 6.3.1. A condition predicate evaluates to either true or false depending on whether
the query can be satisfied or not. This depends on the query of the condition predicate and the
entries residing in the queried container. Condition predicates are sequentially evaluated and the
intermediate result of the logical conjunctions/disjunctions of condition predicates is sequen-
tially evaluated form left to right. For example the condition [cp1 AND cp2 AND cp3 OR cp4]

with the condition predicates cp1 - cp4 is evaluated by first evaluating the condition predicates
whose results are the booleans b1 - b4 and then bring them together by means of the logical
conjunctions/disjunctions. The condition’s result in this example is the result of (((b1 AND b2)
AND b3) OR b4).

The selected rules that are applicable due to the criteria except for the subject property tem-
plate, the scope field and the condition, are ordered by their application probability. This is
achieved by splitting the rules into lists by means of the number of wildcards for the remaining
criteria a rule possesses. A rule which possesses more wildcards is more probable to be appli-
cable than a rule with few or no wildcards. If there is a rule in the list with a wildcard for the
(whole) subject property template, the scope field and the condition, the operation is granted,
because this rule is applicable to all entries. Wildcards for elements of the subject property
template are not respected.

The order of inspecting the rules for evaluating an access control decision for each entry is:
First the rules with two wildcards are inspected, then the rules with one wildcard are inspected
and finally the rules without a wildcard are inspected. Therefore the rules are organized in
different lists.

A copy of the entries is stored in a temporary list and when a rule grants access to an entry,
the respective entry is deleted from the temporary list and the access control evaluation for this
particular entry is skipped. When the temporary list is empty the whole operation is granted,
i.e. the GetPermission method returns true. When all rules are inspected for an entry and none
of them can grants access to the entry, the whole operation is denied, i.e. the GetPermission

method returns false. The procedure of the GetPermission method is depicted as flowchart in
Figure 6.9.

As locally written entries have full access within the own runtime peer, the access manager
grants entries with the security attribute LocalAdmin. This is hard-coded in the GetPermission

method.

Rule entries must be written by the local user in the first step. When these rules grant rule
entries from certain remote users to the policy peer, they can add further rules. The same applies
to remove rules. As the access manager has direct access to all containers within the runtime
peer and thus to the policy peer’s PIC, the access manager executes the deletion of rules when
remove rules are received.
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6.3.3 Policy Peer

The policy peer holds the rules that are relevant for the runtime peer and its sub-peers. It is a
sub-peer itself and exists once per runtime peer. Therefore its creation is triggered by the run
method, which is only executed once within the entire runtime peer. In contrast, a peer’s startup
action is executed for the runtime peer and its sub-peers and is thereby no appropriate trigger for
the creation.

An application peer with the name ’POLICY’ is produced and inserted into the runtime
peer’s list of sub-peers. Then two wirings are created whose task is to transport rules and remove
rules, respectively, from the runtime peer’s PIC to the policy peer. The guard query for the wiring
that transfers the rules is constituted as follows:

Operation = QueryOperation.Take

Type = typeof(Rule)

Amount = 0

Relation = QueryRelation.MoreThan

The guard query from the remove rule wiring is similar with the difference that Type = typeof

(RemoveRule). These two wirings are inserted in the runtime peer’s wirings at first position in
order to give the transportation of rules and remove rules priority. With the aid of this archi-
tecture rules can be added and removed from the policy peer by writing or sending them to the
runtime peer’s PIC.

6.3.4 Conclusion of the Implementation

The only requirement that could not be satisfied was the TLS connection between runtime peers.
All other requirements are satisfied and some are even exceeded. Due to PeerSpace.NET’s
support for additional predicates the queries of this security model are more expressive than the
queries of the Secure Peer Model. This leads to very expressive scope fields and conditions.
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Figure 6.9: Procedure of the GetPermission method
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CHAPTER 7
Evaluation

The evaluation is an essential part in the methodical approach of creating software, as the func-
tionality of the result has to be proven.

In addition important insights may be gained through the evaluation, and the comparison to
other systems can be shown.

This chapter depicts a use case in order to prove the result and a benchmark test to gain in-
sights about the performance impact of the security model. For the comparison to other systems,
the features of the created security model are integrated into table 2.1 from the related work
chapter.

7.1 Academic Exercise - a Use Case

It has been already shown that the implementation theoretically satisfies the requirements. How-
ever its functionality has not been proven yet, which is conducted by means of this use case. It
cannot cover all theoretically satisfied requirements, but it demonstrates the fulfillment of several
of them.

7.1.1 Basic Setup of the Use Case

The following example depicts the administrative procedure of an academic exercise. In the first
step, the explanation is independent from the Peer Model and does not involve any security.

Students, tutors and a supervisor register themselves for the exercise at the lecture server.
Then tutors upload exercises to the lecture server which are distributed to all registered students.

After the exercises are done by the students, they send their solutions back to the lecture
server, which distributes them to the tutors. They check the solutions and send grading proposals
to the lecture server which forwards them to the supervisor of the exercise.

Based on the grading proposals, the supervisor marks the exercises and sends the gradings
to the lecture server, which forwards them to the particular students. In this example there will
be ten students, two tutors and one supervisor.
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The flowchart in Figure 7.1 illustrates the procedure for this use case.
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Figure 7.1: Basic procedure of the academic exercise

7.1.2 Academic Exercise Modeled with the PeerSpace.NET without Security

The already examined use case is realized with the PeerSpace.NET as follows. Students, tutors,
the supervisor and the lecture server are each implemented as discrete runtime peers. Their
interaction and the order of the transmitted entries is depicted in Figure 7.2.

In the following, the entry types and their fields are listed.

• SuR - Supervisor Registration Entry

– Name

– ID

• EnR - Enable Registration

• StR - Student Registration Entry

– Name

– Matriculation Number

– Exercise delivered = false (initial state)

• TuR - Tutor Registration Entry

– Name
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Figure 7.2: Academic exercise modeled with PeerSpace.NET

– Matriculation Number

– Assigned Exercises = 0 (initial state)

• DiR - Disable Registration Entry

• EnE - Enable Exercise Entry

• Exe - Exercise Entry

– Exercise Task

• Sol - Solution Entry

– Matriculation Number

– Exercise Solution

• DiE - Disable Exercise Entry

• GrP - Grading Proposal Entry

– Matriculation Number

– Grading Proposal
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– Exercise Solution

• Gra - Grading Entry

– Matriculation Number

– Grading

In this architecture all users communicate only with the lecture server, so they only need to
know its address.

The wirings which are directed to the lecture server are pretty straight forward to implement.
Thus they are not considered closer. In contrast, the wirings from the lecture server which
distribute certain entries by means of the registered users are a little more complex. Thereby the
target (address) must be obtained from the coordination data of the particular registration entry
and dynamically set in the respective entry via the DEST property. Subsequently it is sent to the
set destination.

Such a wiring in the lecture server is the one which distributes the exercises to the students.
Therefore its guard reads the exercise entry and takes a student registration where the Exercise

delivered field states false. Then the service obtains the address from the coordination data of the
registration entry and sets therewith the DEST property for the exercise, which is subsequently
sent to the desired destination, i.e. the registered student. Further the wiring’s service sets
the Exercise delivered field to true and the action writes it back to the PIC. The wiring fires
as long as there are student registration entries where the Exercise delivered field states false.
Figure 7.3 illustrates this wiring that distributes the exercises to students according to the student
registrations.

Exercise Distribution 

Wiring

Distribute Exercises 

Service

StR

Exeread

take where Exercise delivered==falseP

I

C

StR

Exe

StR ExeDEST send to studentExercise delivered==true

Figure 7.3: Wiring that distributes the exercises to the students

The solutions are forwarded from the lecture server to the a tutor in a similar way. A wiring
takes a solution and a tutor registration entry, where the count of the Assigned exercises field is
less than five. Next the according service reads the address of the tutor from the coordination
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data of his/her registration entry and sends the solution with the aid of the DEST property to the
tutor. Then the service increases the tutor registration entry’s count in the Assigned exercises

field and writes it back to the PIC. In this way five solutions are assigned to each tutor.
The forwarding of the grading proposal to the supervisor occurs alike the distributions of

solutions, with the difference that the task does not have to be divided.
Finally, the wiring which distributes the grading to the respective student is a little more

complex to realize. The guard query takes a grading and reads all student registrations. The
service makes a query against the entry collection in order to obtain the address of the student’s
registration which matches the grading by the matriculation number. This is actually not the
service’s task, but the guard did not know the student’s matriculation number before the wiring
has fired. Next the service sets the DEST property in the grading entry which is subsequently
sent to the respective student peer.

As the use case without security has been successfully realized with the PeerSpace.NET,
we can now focus on the access control. In the first step the explanation will be general, i.e.
independent of the PeerSpace.NET.

7.1.3 General Access Control for the Academic Exercise

The procedure starts when a supervisor registers at the lecture server which grants him/her the
required access on the lecture server to control the exercise. Next the supervisor enables the
registration for this exercise for students and for tutors.

Students register themselves at the lecture server. This shall only be possible when the
maximum registration count of students has not been reached and the registration has started
and not ended yet. Registered students accept exercises and gradings from the lecture server.

The registration for tutors is likewise the one of the students. Tutors accept solutions from
the lecture server.

When the supervisor ends the registration and starts the exercise, nobody can register any
more and the registered tutors and students are granted to upload exercises and solutions, re-
spectively. This is possible as long as the supervisor has not ended the exercise.

When the exercise ends, the tutors are permitted to upload grading proposals to the lecture
server, which are forwarded to the supervisor and build the basis for the grading. The supervisor
uploads the gradings to the lecture server from where it is sent to the respective students.

7.1.4 Access Control for the Academic Exercise with the PeerSpace.NET

Let us now focus on the implementation with the secured PeerSpace.NET. The particular rules
are examined in the context of this use case.

First a supervisor registers itself at the lecture server by sending a SupervisorRegistration

entry to it. This is only granted when a supervisor sends its own registration (scope field) and
no other supervisor has been registered yet (condition). Note that $ID refers to the sender’s id
obtained from the entry’s subject property chain.

• Lecture Server Rule 1

– Subject Property Template [0]: Role = Supervisor
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– Resources: Runtime Peer PIC

– Operation: Write

– Condition: [¬, Amount = 1, Type = SupervisorRegistration]

– Scope field: Type = SupervisorRegistration, Additional Predicate = (ID = $ID)

– Effect: Permit

The next rule grants the registered supervisor (condition) write access to the lecture server’s
PIC for the entries of the types stated in the scope field.

• Lecture Server Rule 2

– Subject Property Template [0]: Role = Supervisor

– Resources: Runtime Peer PIC

– Operation: Write

– Condition: [Amount = 1, Type = SupervisorRegistration, Additional Predicate = (ID
= $ID)]

– Scope field: Type = EnableRegistration, DisableRegistration, EnableExercise, Dis-
ableExercise, Grading

– Effect: Permit

The lecture server accepts student registration entries when the registration has been started
and not ended yet and less than ten registration have been done. This is stated in the rule’s
condition. The dynamic scope field determines that students can only sent registrations for
themselves which is validated by the matriculation number.

• Lecture Server Rule 3

– Subject Property Template [0]: Role = Student

– Resources: Runtime Peer PIC

– Operation: Write

– Condition: [Amount = 1, Type = EnableRegistration] AND [¬, Amount = 1, Type =
DisableRegistration] AND [¬, Amount = 10, Type = StudentRegistration]

– Scope field: Type = StudentRegistration, Additional Predicate = (MNR = $MNr)

– Effect: Permit

The following rule grants registrations for tutors.

• Lecture Server Rule 4

– Subject Property Template [0]: Role = Tutors

– Resources: Runtime Peer PIC
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– Operation: Write

– Condition: [Amount = 1, Type = EnableRegistration] AND [¬, Amount = 1, Type =
DisableRegistration] AND [¬, Amount = 2, Type = TutorRegistration]

– Scope field: Type = TutorRegistration, Additional Predicate = (MNR = $MNr)

– Effect: Permit

The next rule grants the registered tutors (condition) the upload of exercises (scope field) to
the lecture server, under the premise that the exercise has started and not ended (condition).

• Lecture Server Rule 5

– Subject Property Template [0]: Role = Tutors

– Resources: Runtime Peer PIC

– Operation: Write

– Condition: [Amount = 1, Type = TutorRegistration, Additional Predicate = (MNR =
$MNr)] AND [Amount = 1, Type = EnableExercise] AND [¬, Amount = 1, Type =
DisableExercise]

– Scope field: Type = Exercise

– Effect: Permit

Further, registered tutors are allowed to upload grading proposals when the exercise has
ended. This rule acts similar to the former one, but possesses a different scope field and a
slightly different condition.

• Lecture Server Rule 6

– Subject Property Template [0]: Role = Tutors

– Resources: Runtime Peer PIC

– Operation: Write

– Condition: [Amount = 1, Type = TutorRegistration, Additional Predicate = (MNR =
$MNr)] AND [Amount = 1, Type = DisableExercise]

– Scope field: Type = Grading Proposal

– Effect: Permit

Following rule grants registered students (condition) the upload of solutions (scope field) to
the lecture server, under the premise that the exercise has started and not ended (condition).

• Lecture Server Rule 7

– Subject Property Template [0]: Role = Student

– Resources: Runtime Peer PIC
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– Operation: Write

– Condition: [Amount = 1, Type = StudentRegistration, Additional Predicate = (MNR
= $MNr)] AND [Amount = 1, Type = EnableExercise] AND [¬, Amount = 1, Type
= DisableExercise]

– Scope field: Type = Solution, Additional Predicate = (MNR = $MNr)

– Effect: Permit

The following rule is located in the student peers. It grants the lecture server write access to
a student peer for entries of the types Exercise and Grading.

• Student Rule 1

– Subject Property Template [0]: Role = Lecture Server

– Resources: Runtime Peer PIC

– Operation: Write

– Condition: None

– Scope field: Type = Exercise, Grading

– Effect: Permit

The next rule is located in the tutor peers and is similar to the previous rule but possesses a
different scope field.

• Tutor Rule 1

– Subject Property Template [0]: Role = Lecture Server

– Resources: Runtime Peer PIC

– Operation: Write

– Condition: None

– Scope field: Type = Solution

– Effect: Permit

The supervisor accepts only grading proposals from the lecture server which have been up-
loaded by a tutor to the lecture server. Thus, the lecture server is stated as direct sender and the
tutor is stated as the first indirect sender in the subject property template of the following rule.
This ensures that the grading proposal was issued by a tutor instead of, e.g., a malicious student.

• Supervisor 1

– Subject Property Template [0]: Role = Lecture Server

– Subject Property Template [1]: Role = Tutor

– Resources: Runtime Peer PIC
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– Operation: Write

– Condition: None

– Scope field: Type = GradingProposal

– Effect: Permit

Figure 7.4 illustrates the procedure of the secured academic exercise and states the correla-
tion between the granting rules and the respective process steps.
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Figure 7.4: Process steps with the corresponding rules

7.1.5 Satisfied Requirements Demonstrated with the Use Case

Every peer has its own policy, thus enables that, e.g., the lecture server peer has a complete
different policy than a student peer. The use case demonstrates the expressiveness of the im-
plemented security model by employing rules where complex scope fields and/or conditions are
specified. For example, “Lecture Server Rule 3” allows students to send their own registrations
(dynamic scope field) under the condition that the registration is enabled and not disabled and
that less than ten students are already registered. “Lecture Server Rule 7” grants registered stu-
dents (dynamic condition) to upload their solutions (dynamic scope field) under the condition
that the exercise is enabled and not disabled. The supervisor peer accepts grading proposals
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from the lecture server that are sent on behalf of a tutor. This is defined in “Supervisor Rule 1”
which demonstrates the authorization for delegated entries.

Some features that have not been demonstrated are in the following discussed in the context
of the use case. When, e.g., the number of allowed students is increased to fifteen and some
students are already registered, it is useful to update the policy during run time, which is feasible
with the implemented security model. A further feature of the security model is the delegation
for the possibly remote administration of a peer’s policy to certain users. This feature could be
used to enable the supervisor to change the policy, e.g., when the number of allowed students
is increased. The supervisor could achieve this task from home. The security model supports
wildcards for, among others, an arbitrary number of subject property chain elements. Thus, e.g.,
a rule can be defined which grants a solution entry, that is sent from the lecture server peer and
has its origin at a student peer, access to the supervisor peer, regardless of the intermediate peers
(e.g. tutor peers).

7.1.6 Gained Findings from the Use Case

The rules from the use case are pretty straight forward to define and manage. The implemented
access control facilitate a fine-grained policy which would not be feasible with simple access
control lists (ACLs). For example, the rule Lecture Server Rule 5 that grants only registered
tutors under the condition that the exercise has started and not ended exceeds the expressiveness
of ACLs. Further, the rule Supervisor 1 demonstrates the expressiveness of the implemented
access control by also including the identity of the indirect sender to state whether the rule is
applicable. It was feasible to successively implement the use case as no security was enabled and
only the coordination of the use case was modeled in the first step. When security was enabled
(during start-up) the policies could be dynamically managed with ease.

7.2 Benchmark Test

The benchmarks were executed on a standard laptop (CPU Intel 3610QM, 2.30 GHz, Windows
8.1) with the Stopwatch shipped with .NET. Each benchmark was executed five times and the
average times are depicted in Table 7.1. The test scenario is as follows: Runtime peer A sends
100, 1000 and 10000 entries of the type string to runtime peer B. Both runtime peers are hosted
on the same computer, thus there is no network latency in this benchmark test. The authentica-
tion of entries is conducted for every access control. The entries are generated in advance and
written to runtime peer A which sends all entries at once to runtime peer B with the aid of a
wiring, whose service starts the Stopwatch. Runtime peer B possesses a wiring whose service
stops the Stopwatch.

The benchmarks were executed without access control (No AC), with one simple rule (1 SR),
ten simple rules (10 SR), one complex rule (1 CR) and ten complex rules (10 CR). The simple
rules define only the subject property template and the complex rules define the subject property
template, a scope field with additional predicate and a condition with two condition predicates.
Note that all unspecified fields of a rule are defined as wildcards. When the benchmark test run
with one rule, this rule granted access to the sent entries. When the benchmark test run with
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ten rules, only one of them granted access to the sent entries. To obtain results that correspond
neither to best nor to worst case scenarios, the granting rule was positioned in the middle of the
ten rules.

The first column in Table 7.1 shows the count of the sent entries. The other columns state
the elapsed time in milliseconds.

Entries No AC 1 SR 10 SR 1 CR 10 CR

100 78 567 580 617 701
1000 168 737 743 951 1734
10000 1569 3148 3252 5165 13033

Table 7.1: Benchmark tests with different counts and complexity of rules

7.2.1 Interpretation of the Benchmark Tests

When 100 entries are sent to runtime peer B the time elapsed until they are authorized does not
differ much between the different employed rules. Thus the authentication process where the
receiving runtime peer queries the sender’s security attributes from the identity provider forms
the most overhead in this case.

There is nearly no time difference when one or ten simple rules are employed. That is
because these rules possess all the information needed for an access control decision and when
the rules are in the cache of the access manager once, there is not much difference between
evaluating one or five rules.

In contrast, the evaluation of complex rules where a scope field and a condition are specified
takes much more time. That is because information must be gathered in order to make an access
control decision. For the evaluation of the scope field only information from the entry whose
access control decision is made must be gathered, but for the evaluation of the condition, query
operations in the Peer Space are needed. This causes much overhead which reflects the field in
Table 7.1 where 10000 entries are authorized with one of ten complex rules.

Note that in real world scenarios there is a network latency and some computations with
the entries are executed which takes time. This puts the results of the benchmark tests into
perspective.

The findings of the benchmark tests are that complex rules lower the performance. These
kind of rules should only be employed when necessary. Further, when entries that are granted by
a complex rule can also be granted by a (partly redundant) simple rule, this simple rule should
also be employed as it grants access with less overhead than the complex rule.

7.3 Comparison to the Analyzed Systems from the Related Work

Several middlewares were compared concerning their security features in the related work chap-
ter. Table 7.2 depicts the comparison table which also includes the implemented security model
for the PeerSpace.NET (SPSN) to illustrate its positioning.

79



XVSM Hermes SMEPP TuCSon WCF SPSN

RBAC + + − + + +

ABAC + − − − + +

Content-aware rules + + − + ∼ +

Context-aware rules + + − + ∼ +

Authorization for indirect sender ∼ − − ≃ ≃ +

Wildcard support for indirect sender − − − − − +

Dynamic policies + + − + + +

Remote policy changes + + − + + +

Administration delegation + + − + + +

Bootstrapped architecture + + ∼ + − +

Transparency + + + + − +

Scalability ∼ + ∼ ∼ + ∼

Table 7.2: Positioning of the implemented security model SPSN

+: supported
∼: supported with limitations
≃: supported with major limitations
−: not supported

The implemented security model fulfills all requirements and satisfies all points stated in
Table 7.2. Content-aware rules are feasible due to a rule’s scope field and context-aware rules
are feasible due to a rule’s condition. The (dynamic) scope field may involve data from the user
and the (dynamic) condition may depend on the entry the rule is evaluated for and on data of
the user who sent the entry. Rules can be added and removed possibly from remote during run
time as rules and remove rules are realized as entries and transmitted with the mechanisms of the
PeerSpace.NET, i.e. the security model’s architecture is also bootstrapped. The administration
of the policy can be delegated to a certain user with the aid of rules defining this user access to
the own policy peer.

The implemented security model is the most expressive model in Table 7.2 due to Autho-

rization for indirect sender and Wildcard support for indirect sender because it facilitates to
involve the indirect senders of an arbitrarily long delegation chain and supports wildcards for an
arbitrary and possibly unknown count of elements of the subject property chain.
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CHAPTER 8
Future Work

During the design and implementation of the security model we found some future work which
is stated in this chapter.

Unauthorized operations are denied and logged, which requires computing power. This
renders the system vulnerable for DoS attacks. To reduce this vulnerability a mechanism which
cleverly prevents the logging of every denied operation should be implemented.

The current implementation of the security model uses an identity provider from a single
organization. The support of identity providers from diverse organizations and the integration
of an existing identity provider instead of the file-based solution would be beneficial for the
practical employment of the system.

Entries are authenticated by attaching the sender’s security attributes. Assume entries re-
side in the PeerSpace.NET and are authenticated with the security attributes from a user that is
meanwhile kicked from the system. These entries possess obsolete security attributes and conse-
quently the access control applied to them may be incorrect. Therefore a better approach would
be to associate the entries with the id of the sender and request the up-to-date security attributes
for every access control decision.

A pool of prevalent security patterns whereof the appropriate rules are derived and auto-
matically created would be a handy feature which facilitates the administration of the access
control.

Further future work requires an enhancement of the PeerSpace.NET, namely the possibility
to add sub-peers and wirings to a peer from remote and by different users. Thus a multi-user con-
cept would be realized where different parts of peers may belong to different users. Future work
would be to adapt the subject property template for this multi-user concept, whereby the users
may be registered at different organizations and possibly indirectly authenticated. Access control
for read and take operations would also be necessary to secure the enhanced PeerSpace.NET.
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CHAPTER 9
Conclusion

The goal of this thesis was the design and implementation of a security model for the Peer-
Space.NET coordination middleware. Authentication and authorization methods were studied,
as well as middlewares, the Peer Model and the PeerSpace.NET. With the aid of the gained
knowledge the requirements for the security model were gathered. As the PeerSpace.NET is
a P2P middleware, where no centralized server exists which could conduct the authentication,
an appropriate mechanism therefore had to be found. The solution was a stand-alone identity
provider with the capability to administrate user registrations.

The main requirements concerning the authorization were the possibility to express fine-
grained rules which may also involve the identity of indirect senders. Further, peer owners
should be able to define and enforce their own policy or possibly delegate this task to certain
users.

On the basis of the requirements and the knowledge about the PeerSpace.NET the design
was created which depicts the architecture of the security model and describes the necessary
procedures. On its basis the implementation of the security model for the PeerSpace.NET was
carried out.

The evaluation of the implementation comprises a theoretical validation of the requirements’
satisfaction, a use case, a benchmark test and a comparison to other middlewares. The use case
demonstrates the functionality of the security model and shows the application of fine-grained
policies which use content- and context information for the evaluation of access control. The
benchmark tests indicate that the security model scales well for simple rules. The comparison
depicts the security features in contrast to other middlewares.

Thus the evaluation indicates the successful implementation of the security model.
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