
Secure Control Applications in
Smart Homes and Buildings

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Mag. Dipl.-Ing. Friedrich Praus
Registration Number 0025854

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner

The dissertation has been reviewed by:

Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Wolfgang Kastner

Prof. Dr. Peter Palensky

Vienna, 1st October, 2015
Mag. Dipl.-Ing. Friedrich Praus

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Mag. Dipl.-Ing. Friedrich Praus
Hallergasse 11/29, A-1110 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2015
Friedrich Praus

v

Kurzfassung

Die zunehmende Integration von heterogenen Gebäudeautomationssystemen ermöglicht

gesteigerten Komfort, Energieeffizienz, verbessertes Gebäudemanagement, Nachhaltig-

keit sowie erweiterte Anwendungsgebiete, wie beispielsweise “Active Assisted Living”

Szenarien. Diese Smart Homes und Gebäude sind heutzutage als dezentrale Systeme rea-

lisiert, in denen eingebettete Geräte Prozessdaten über ein Netzwerk austauschen.

Offensichtlich verändern sich dabei die Anforderungen an derlei Systeme, vor allem

hinsichtlich der Informations- und Datensicherheit (Security). Dem Themengebiet siche-

re Kommunikation kommt dabei ein ähnlich wichtiger Stellenwert zu wie dem Aspekt

der Softwaresicherheit. Während erstere Thematik bereits von Standardisierungsgremi-

en und Herstellern aufgegriffen wurde, gibt es bis jetzt keine wissenschaftliche Aufar-

beitung, wie das Problem der Softwaresicherheit in diesem Bereich systemweit realisiert

werden kann. Kein generisches Angriffsmodell ist bekannt und es fehlt an Sicherheits-

empfehlungen. Existierende Schutzmechanismen sind entweder zu zeit- und kostenin-

tensiv oder können nicht einfach auf bestehende Technologien übertragen werden bzw.

berücksichtigen nicht die besonderen Anforderungen. Der Entwurf und die Umsetzung

von Sicherheitsmaßnahmen wird daher EntwicklerInnen überlassen, die oft aufgrund der

Vielfältigkeit des Problems und der Sicherheitsanforderungen überfordert sind. Daraus

resultiert, dass Steuerungs- und Regelungsanwendungen unsicher ausgeführt sind, und

es Widersachern ermöglicht wird, Gebäudeautomationssysteme anzugreifen.

Diese Dissertation stellt eine Architektur für sichere und verteilte Steuerungs- und Re-

gelungsanwendungen in Smart Homes und Gebäuden vor. Damit soll das Problem gelöst

werden, wie diese Software sicher auf den unterschiedlichen oft eingebetteten Systemen

ausgeführt werden kann. Die folgenden, bisher noch nicht wissenschaftlich aufgearbei-

teten Themen, werden diskutiert: eine umfassende Identifikation der Sicherheitsanforde-

rungen, ein Anwendungsmodell, das es ermöglicht Steuerungs- und Regelungsanwen-

dungen formal zu spezifizieren, das Konzept von Sicherheitsattributen, die die Formu-

lierung einer Sicherheitsrichtlinie erlauben und zu guter Letzt, eine Architektur, die die

sichere Entwicklung und Ausführung von Steuerungs- und Regelungsanwendungen so-

wie die Einhaltung von Sicherheitsrichtlinien garantiert.

vi

vii

Abstract

With today’s ongoing integration of heterogeneous building automation systems, in-

creased comfort, energy efficiency, improved building management, sustainability as well

as advanced applications such as active assisted living scenarios become possible. These

smart homes and buildings are implemented as decentralized systems, where embedded

devices are connected via networks to exchange their data.

Obviously, the demands – especially regarding security – increase: Secure communi-

cation becomes equally important as secure software being executed on the embedded

devices. While the former has (recently) been addressed by standardization committees

and manufacturers, until now no scientific research is available, that targets the problem

of secure control applications in this domain. No attack model has been defined, no secu-

rity measures have been recommended, existing measures from other domains are either

too cost or time intensive to deploy, cannot be trivially applied to or do not cover specific

demands and constraints of the building automation domain. Thus, deploying adequate

control application security measures is left open to developers, who are overburdened

with the manifold and often unknown security requirements. This yields to insecure con-

trol applications, which enable adversaries to attack building automation systems.

This dissertation introduces an architecture for distributed control applications in

smart homes and buildings, which tackles the problem on how to secure software run-

ning on different device classes. The following novelties are contributed, which – to the

best knowledge of the author – have not been addressed in research, yet: a comprehen-

sive identification of security requirements for control applications in smart homes and

buildings, an application model capable of depicting control applications in a formal way,

the concept of security attributes, being able to formally specify a security policy, and a

framework, which allows the secure development and execution of control applications,

and an enforcement of the defined security policies.

viii

ix

Acknowledgements

Ich möchte mich zuallererst bei meinem Doktorvater Wolfgang “k” Kastner bedanken.

Danke k, dass du mir gezeigt hast wie schön die Welt der Wissenschaft ist und mir beige-

bracht hast, mich darin zurecht zu finden. Ohne deine Unterstützung wäre diese Arbeit

nicht möglich gewesen. Danke, dass du mir auch als Freund seit mittlerweile über 11

Jahren beiseite stehst.

Ein großes Dankeschön auch an Peter Palensky. Danke Peter für deine Kommentare,

die wesentlich geholfen haben, diese Dissertation zu verbessern.

Ich möchte mich bei meinen Studiums-, Arbeitskollegen und Freunden für die Unter-

stützung bedanken. Allen voran gilt mein großer Dank Wolfgang Granzer. Danke Woif,

für die zahlreichen gemeinsamen Publikationen, die Motivation und die Unterstützung

bei der Erstellung dieser Arbeit. Danke Christian, Felix, Lukas, Marion und Woif für das

Korrekturlesen.

Ein besonderer Dank gilt meiner Familie. Danke für die jahrelange Unterstützung und

Hilfe bei meiner Ausbildung.

This work was partly funded by the FWF (Österreichischer Fonds zur Förderung der Wissen-

schaftlichen Forschung; Austrian Science Foundation) under the project P19673 and by the City

of Vienna, department MA23, under grant number MA23-Projekt 10-04.

x

Contents

Contents xi

List of Figures xv

List of Tables xix

List of Listings xxi

Acronyms xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Security in Building Automation Systems . 3

1.2.1 Secure Communication . 4

1.2.2 Secure Devices . 5

1.3 Problem Statement and Hypothesis . 6

1.4 Methodology and Organization . 7

2 Control Applications in Building Automation Systems 11

2.1 Device Classes . 11

2.2 Distributed Control Applications . 16

2.3 Application Models . 20

2.3.1 BACnet . 20

2.3.2 ISO/IEC 14543-3-10/EnOcean . 22

xi

xii CONTENTS

2.3.3 KNX . 23

2.3.4 LonWorks . 25

2.3.5 IEEE 802.15.4/ZigBee . 27

2.4 Summary . 28

3 Control Application Security 31

3.1 Security in Current Installations . 32

3.1.1 BACnet/IP and KNXnet/IP . 34

3.1.2 A Survey on Worldwide Installations 36

3.1.2.1 Attack Vector . 36

3.1.2.2 Scanning Architecture . 39

3.1.2.3 Scan Results . 40

3.2 Attacking Control Applications based on EnOcean 44

3.2.1 Eavesdropping Control Application Communication 46

3.2.2 Interfering Control Application Communication 47

3.2.3 Attacking Encrypted Control Application Communication 49

3.3 Threat Analysis . 53

3.4 Requirements for Secure Control Applications 56

3.4.1 Functional Requirements . 58

3.4.2 Organizational Requirements . 59

3.5 Summary . 62

4 Software Protection Techniques 63

4.1 Software Assisted Methods . 64

4.1.1 Static Methods . 65

4.1.2 Dynamic Methods . 67

4.2 Hardware Assisted Methods . 71

4.3 Human Assisted Methods . 72

4.4 Hybrid Methods . 73

4.5 Applicability Analysis for Building Automation Systems 75

4.6 Summary . 83

CONTENTS xiii

5 Secure Control Application Architecture 85

5.1 Generic Application Model . 87

5.2 Software Security Policy . 97

5.2.1 Security Attributes . 97

5.2.2 Enforcement . 103

5.3 Secure Software Environment . 104

5.3.1 System Software . 107

5.3.2 Enhanced Application Layer . 108

5.3.3 Sandbox . 109

5.3.4 Configuration and Management . 110

5.4 Attack Prevention and Detection . 111

5.4.1 Requirements . 111

5.4.2 Intrusion Detection Systems for Building Automation Systems . . . 113

5.5 Summary . 117

6 Implementation and Evaluation 119

6.1 Security Process . 121

6.1.1 Security Policy . 122

6.1.2 Control Application Development . 125

6.1.3 Building Automation Network Configuration 126

6.1.4 Device Commissioning . 127

6.2 Prototypes . 127

6.2.1 Sensor, Actuator and Controller . 129

6.2.1.1 Hardware Architecture . 130

6.2.1.2 Software Architecture . 132

6.2.1.3 Experimental Results . 138

6.2.2 Interconnection Device . 140

6.2.3 Network Based Intrusion Detection System 143

6.2.4 Management Device . 146

6.3 Enabling Security in Existing Installations . 148

6.4 Security Evaluation . 151

xiv CONTENTS

6.5 Summary . 156

7 Conclusion and Future Work 159

7.1 Summary . 159

7.2 Security Recommendations . 162

Bibliography 163

Curriculum Vitae 181

List of Figures

1.1 Security Attacks . 3

1.2 Network Attacks . 4

1.3 Device Attacks . 5

1.4 Security Process and Involved Stakeholders 7

2.1 Building Automation Network . 12

2.2 Building Automation System Hardware Building Blocks 16

2.3 Function Blocks (based on [163]) . 17

2.4 Use Case
⊗

: Distributed Control Application: VDI 3813-3: D-1-2 Lighting

Control Manual with Time-Controlled Switching Off (Stairwell Light) . . . 19

3.1 BACnet Communication . 35

3.2 KNXnet/IP Discovery . 36

3.3 KNXnet/IP Communication . 37

3.4 Unsecured Building Automation System Installations in Europe 41

3.5 Unsecured Building Automation System Installations in US 41

3.6 Unsecured KNX Installations in East Asia . 42

3.7 KNX Device Manufacturers . 44

3.8 Eavesdropping EnOcean Control Application Communication (based on [2]) 47

3.9 Man-in-the-Middle Attack on EnOcean Control Application Communica-

tion (based on [2]) . 48

3.10 EnOcean Variable Advanced Encryption Standard Encryption (based on [43]) 49

xv

xvi LIST OF FIGURES

3.11 Attacking Encrypted EnOcean Control Application Communication (based

on [2]) . 50

3.12 Vulnerabilities Breakdown 2010-03 – 2007 . 57

4.1 Attack Model . 63

4.2 Software Protection Techniques . 64

5.1 Secure Control Applications . 86

5.2 Building Automation System Integration and Advanced Use Cases 90

5.3 Generic Application Model . 91

5.4 Communication Connections . 92

5.5 Impossible Communication Connections . 93

5.6 Generic Application Model: Example for Use Case
⊗

. 96

5.7 Software Security Policy for Use Case
⊗

. 102

5.8 Control Applications in Building Automation Systems 105

5.9 Architecture of Sensor Actuator and Controllers 106

5.10 Data Gathering Component . 115

5.11 Data Gathering Component: Hybrid Approach 116

5.12 Intrusion Detection in Building Automation Systems 117

6.1 Test Environment and Proof-of-Concept Implementation of Use Case
⊗

. . 120

6.2 Security Process . 122

6.3 Security Attributes . 124

6.4 Control Application Development for Secure SAC Actuator 126

6.5 Configuration . 127

6.6 Commissioning . 128

6.7 Hardware Architecture for Proof-of-Concept 129

6.8 Sensor, Actuator and Controller Prototypes 131

6.9 Software Implementation . 137

6.10 Secure Interconnection Device and Implementation of KNX Firewall 141

6.11 Network Based KNX Intrusion Detection System 144

6.12 Secure BACnet Management Device . 146

LIST OF FIGURES xvii

6.13 Monitoring BACnet Devices and Objects . 148

6.14 Memory Map (µPD78F0534) and Stack . 150

xviii LIST OF FIGURES

List of Tables

2.1 BACnet Lighting-Output Object Type . 21

2.2 KNX Light Actuator Function Block . 25

2.3 LonWorks Scene Panel . 26

2.4 LonWorks Scene Controller . 26

2.5 LonWorks Lamp Actuator . 26

2.6 ZigBee Dimmable Light . 28

3.1 Scan 1 Results (Top 20 Countries) . 40

3.2 BACnet Responses . 43

3.3 Open Ports . 43

3.4 Scan 2 Results (Top 20 Countries) . 44

3.5 Variable Advanced Encryption Standard Encryption Attack 52

4.1 Comparison of Software Protection Techniques and Software Security in

Open Building Automation Systems: Protection Against Vulnerabilities . . 79

4.2 Comparison of Software Protection Techniques: Security Requirements . . . 81

4.3 Comparison of Software Protection Techniques: Applicability to Sensors,

Actuators and Controller Devices, Interconnection Devices, and Manage-

ment Devices . 82

5.1 Enforcement of Security Attributes on External Communication Connections103

6.1 Runtime Matrix Multiplication . 139

xix

xx LIST OF TABLES

6.2 Performance Analysis of Execution Time . 148

6.3 Security Evaluation of Functional Requirements 154

6.4 Security Evaluation of Organizational Requirements 157

Listings

3.1 Synchronization and Timing Vulnerability . 55

5.1 Extract of Application Model in XML Format 93

6.1 Control Application Function Blocks . 126

6.2 Extract of User Application Programming Interface 133

6.3 Device Configuration of Sensor Actuator and Controller Actuator 134

6.4 Sandbox and Policy Implementation . 136

6.5 Stairwell Light Control Application . 138

6.6 Configuration of Secure Interconnection Device with Firewall for Use Case
⊗

142

6.7 Implementation of Firewall . 143

6.8 Configuration of Network Based Intrusion Detection System for Use Case
⊗

145

6.9 Implementation of Intrusion Detection System 145

6.10 Configuration of Nagios Plugin . 147

6.11 Implementation of Nagios Plugin . 147

6.12 Implementation of Use Case
⊗

on a KNX Bus Interface Module-M130 . . . 150

6.13 Implementation of Use Case
⊗

on a LonWorks Device using Neuron C . . . 151

xxi

xxii LISTINGS

Acronyms

AES Advanced Encryption Standard

AIDS Anomaly based Intrusion Detection System

API Application Programming Interface

ARC4 Alleged Ron’s Code 4

ASC Attack Specific Countermeasure

APDU Application Protocol Data Unit

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASLR Address Space Layout Randomization

BAN Building Automation Network

BAS Building Automation System

BAU Bus Attachment Unit

BCU Bus Coupling Unit

BIM Bus Interface Module

CA Control Application

CBC Cipher-Block Chaining

xxiii

xxiv ACRONYMS

CC Common Criteria for Information Technology Security Evaluation

CCM Counter with CBC-MAC

CLDC Connected Limited Device Configuration

CMAC Cipher Based Message Authentication Code

CP Co-Processor

CPUEX CPU EXtension

CRC Cyclic Redundancy Check

CS Code-Signing

DDC Direct Digital Control

DEP Data Execution Protection

DES Data Encryption Standard

DIB Description Information Block

DNS Domain Name Service

DoS Denial of Service

DP Datapoint

DPT Data Point Type

DRM Digital Rights Management

EAL Evaluation Assurance Level

ECB Electronic Codebook Mode

EEP EnOcean Equipment Profile

EHS European Home System

EIA232 Electronic Industries Association standard RS-232-C

xxv

EIB European Installation Bus

ES Embedded System

ETS Engineering Tool Software

FB Function Block

FPGA Field-Programmable Gate Array

FR Functional Requirement

FV Formal Verification

GCC GNU Compiler Collection

HA Harvard Architecture

HAL Hardware Abstraction Layer

HMAC Hash Message Authentication Code

HPAI Host Protocol Address Information

HVAC Heating, cooling, Ventilation, and Air Conditioning

IAC Inspection And Certification

ICD InterConnection Device

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IRAM Industrial Risk Assessment Map

I/O Input/Output

IP Internet Protocol

IPv4 Internet Protocol version 4

IT Information Technology

xxvi ACRONYMS

Java ME Java Micro Edition

JVM Java Virtual Machine

LNS LonWorks Network Operating System

LON Local Operating Network

MAC Message Authentication Code

MCU MicroController Unit

MD5 Message-Digest Algorithm 5

MD Management Device

MDP Management Datapoint

NV Network Variable

NX No eXecute

OR Organizational Requirement

OSI Open Systems Interconnection

OS Operating System

OWL Web Ontology Language

PCC Proof-Carrying Code

PDP Physical or Process Datapoint

PEI Physical External Interface

PLC Programmable Logic Controller

PP Physical Partitioning

RDFS Resource Description Language Schema

RF Radio Frequency

xxvii

RLC Rolling Code

RORG Radio Organizational Number

SAC Sensor Actuator and Controller

SB Sandbox

SCA Static Code Analysis

SCADA Supervisory Control and Data Acquisition

SCC Self Checking Code

SCPT Standard Configuration Property Type

SFPT Standard Functional Profile Template

SIDS Signature based Intrusion Detection System

SMT Software Monitoring Techniques

SNVT Standard Network Variable Type

TCP Transmission Control Protocol

TP-UART Twisted Pair Universal Asynchronous Transceiver

UDP User Datagram Protocol

UI User Interface

USB Universal Serial Bus

VAES Variable Advanced Encryption Standard

VM Virtual Machine

VTS Visual Test Shell

VPN Virtual Private Network

WAN Wide Area Network

xxviii ACRONYMS

WM Watermarking

XD eXecute Disable

1
Introduction

1.1 Motivation

A Building Automation System (BAS) aims at improving control and management of me-

chanical and electrical systems in buildings – more generally, interaction among all kinds

of devices typically found in those smart homes and buildings. The core application

area of BASs is environmental control handled by the traditional services Heating, cool-

ing, Ventilation, and Air Conditioning (HVAC) and lighting/shading. Other application

specific services are often implemented by separated systems. This is especially true for

safety-critical (e.g. fire or social alarm systems) and security-critical (e.g. intrusion alarm

or access control systems) services, which are typically provided by proprietary stand-

alone systems. Today, if at all, only loose coupling is implemented with the core BAS for

visualization, alarm management and trending [62].

The benefits of deploying BASs are manifold. While improved building management,

sustainability and reduced operational costs are the dominant reasons for integrating

modern BASs in buildings, increased comfort and e-health applications including tele-

monitoring and telecare are becoming possible in smart homes. Especially the latter can

be seen as a new strategy to cope with the upcoming social and economic challenges

in industrial nations towards an aged population and a decline in birth rates due to the

demographic trend. Such Ambient Assistive Technologies – with smart homes being an

integral part of them – can provide support to elderly or disabled persons, foster their

autonomy and quality of life and lower the cost of medical care. The additional benefits

1

2 Introduction

concerning energy saving and energy efficiency apply to both applications areas – smart

homes as well as buildings.

To activate all inherent synergies among these diverse systems and enable such new

application areas, an integration – also of security and safety-critical systems – is a ma-

jor topic. Consider, for example, the possibility of sharing the data originating from just

one sensor in multiple application domains in parallel. This will reduce investment and

maintenance costs and also facilitate management and in particular configuration of the

integrated BAS as now a multitude of different applications can be substituted for a uni-

fied view and a single central configuration access point.

Obviously, the demands on a more sophisticated BAS controlling different subsystems

increase. This is especially true for the integration of security-critical services. They de-

pend on the underlying control system and its software to be reliable and robust against

malicious manipulations to fulfill their purpose. Integration also makes way for further

improvement of the traditional services. For example, although often not regarded as

security-critical, incorporating security countermeasures for HVAC and lighting/shading

services will prevent, among others, vandalism acts. The economic impact of a company-

wide shutdown of the lighting system can be easily compared to a successful attack on

the company Web server – the only difference being that, for the Web server, elaborate

security measures are already common practice. With further standardization and in-

creasing use of BASs (possibly with remote connections) adversaries can be expected to

target unprotected building control systems. Thus, it is required to set up schemes for

BASs providing protection as powerful as those already established in the Information

Technology (IT) world.

However, directly applying those IT security concepts to BASs is impossible due to

different requirements and resource limitations of the devices involved. To provide com-

parable protection, the development of new security concepts (although possibly based

on a redesign of IT mechanisms) is strictly necessary. The ultimate goal is a secure sys-

tem architecture for BASs applicable for the use in their core areas and tightly integrated

environments [62].

1.2 Security in Building Automation Systems 3

Target of attack

Adversary

Security attack

(i.e. action for violating security)

Security threat

(i.e. potential for violating security)

C
o

u
n

te
rm

ea
su

re
s

Vulnerability

Vulnerability

Figure 1.1: Security Attacks

1.2 Security in Building Automation Systems

To be able to integrate security-critical services, the implemented control functions, i.e.,

functions that control the building automation services, have to be protected against

unauthorized access and malicious interference (security attack). A typical example of

such a security attack is the manipulation of an access control system that opens and

closes an entrance door. To perform security attacks, the malicious entity (adversary) has

to identify vulnerabilities of a system that can be utilized to gain unauthorized access

to the control functions. The existence of vulnerabilities leads to a security threat which

can be regarded as the potential for violation of security that may or may not be utilized.

Figure 1.1 shows the relation between these basic security terms.

On the one hand, the protection of a system against security attacks demands that

the amount of vulnerabilities is minimized by incorporating security in every stage of the

system’s life cycle, especially already during design [90]. On the other hand, countermea-

sures that eliminate or prevent security threats and attacks in advance have to be imple-

mented. For example, the encryption of transmitted data can be used to avoid a disclosure

of confidential information. In cases where a prevention is not possible with reasonable

effort, mechanisms have to be deployed trying to at least detect security attacks, report

them, and minimize the resulting damage. Consider, for example, an Intrusion Detection

System (IDS) that reveals abnormal system behavior and tries to prevent a propagation

by isolating the source of the attack.

4 Introduction

Fabrication

Network
sniffing

Insert
malformed
messages

Insert correct
messages

Replay old
messages

Man-in-the-
middle attacks

Alteration

Interception Modification

Denial-of-
service

Network
flooding

Redirection

Network attacks

Interruption

Figure 1.2: Network Attacks

In today’s BASs, the control functions are distributed to Control Applications (CAs)

being hosted on different devices interconnected by a common network. Unauthorized

access by an adversary to control functions can be gained by, on the one hand, directly

manipulating the devices (e.g. changing the control logic or modifying control data such

as an output value) or, on the other hand, by indirectly changing control parameters or

interfering with the data exchanged among the CAs. Therefore, the devices themselves

as well as their communication means have to be secured [62].

1.2.1 Secure Communication

An adversary may attack the network medium to access the exchanged data and thus

interfere with the data when they are transmitted (network attacks; cf. Figure 1.2). Ac-

cording to [126], an adversary may try to intercept, manipulate, fabricate, or interrupt the

transmitted data. Access to the network medium can be achieved in two ways.

• Medium access: The adversary gains physical access to the network medium. This

can be accomplished more easily when open communication technologies (e.g.

Internet Protocol (IP), Radio Frequency (RF) or powerline networks) are used.

• Device access: The adversary can use the network interface of another compromised

device (e.g. a Web gateway).

1.2 Security in Building Automation Systems 5

1.2.2 Secure Devices

An adversary may attack a device to access control functions (device attacks; cf. Fig-

ure 1.3). These attacks can be classified based on the means used to launch them [77],

[136].

• Software attacks: An adversary may use regular communication channels to exploit

weaknesses in a device’s software.

• Side-channel attacks: An adversary may observe external (device) parameters

which are measurable during operation to collect information about internals.

• Physical or invasive attacks: An adversary may use physical intrusion or manipu-

lation to interfere with a device.

Physical and side-channel attacks can either be invasive, typically being hard to em-

ploy due to expensive hardware costs, or non-invasive targeting timing, power and elec-

tromagnetic analysis, and fault induction. Software attacks form a massive challenge for

the security engineering effort. The list of possible issues is extremely broad, with the

most common flaws being buffer overflows, memory corruption errors, code update pro-

cesses, insecure algorithms, cryptographic flaws, insecure key management or operating

system weaknesses. Additionally, the execution of basically trusted software, being hi-

jacked by an adversary or containing undetected flaws (e.g. virus, trojan, worm) often

causes security leaks or may result in Denial of Service (DoS) attacks.

Side-channel

Code injection
Exploiting algorithm

weaknesses
Availability attacks
Configuration

mechanisms abuse

Time analysis
Power analysis
Fault behaviour analysis

Eavesdropping
Microprobing
Component

replacement

Software Physical

Device attacks

Figure 1.3: Device Attacks

6 Introduction

1.3 Problem Statement and Hypothesis

In order to provide secure BASs, comprehensive measures need to cover communica-

tion as well as device security. Mechanisms tailored to the use in Building Automation

Networks (BANs) that counteract network attacks are presented in [58]. An overall de-

vice security needs to deal with software, side-channel, and physical attacks. An exten-

sive survey on the latter two and a short discussion of countermeasures can be found in

[104]. No scientific research is available that targets software attacks in the BAS domain.

This thesis focuses on the research question, how control applications for smart homes

and buildings can be secured. The following hypothesis will be discussed and proven

throughout the work:

Hypothesis 1 Today’s software for smart home and building devices lacks adequate security

mechanisms. Irrespective of the used technology, no sound protection against software attacks

is deployed, thus enabling adversaries to successfully attack those devices. Existing protection

techniques from other domains (e.g. the IT domain) are insufficient and not applicable to BASs

due to different functional and non-functional requirements. Thus, a secure architecture being

adaptable to all common BAS standards needs to be established. This architecture needs to cover

BAS specific constraints, provide a security policy and a secure software environment. Besides,

mechanisms for attack detection are needed.

Figure 1.4 briefly describes the security process and involved stakeholders over the

building lifetime. A building owner defines the requirements and instructs a planner

to plan the building. The system integrator selects and commissions the devices and

an installer deploys them in the building. The building operator finally maintains the

building. Basically, security is essential in all steps, for all stakeholders and during the

complete lifetime. This dissertation describes the process of providing secure CAs (blue

markings in Figure 1.4): Starting from secure CA development, committees are supported

in standardizing mechanisms, frameworks and generic policies, while CA manufacturers

are supported in creating CAs. System integrators and building operators are supported

in adapting security policies during CA operation.

1.4 Methodology and Organization 7

CA manufacturer

Facility manager

Building owner

System integrator

Installer

Standardization committee

Develop CAs

Security process

Define
requirements

Standardize CAs

Plan building

Operate
building

Select and
commission devices

Install devices

Define generic
policy

Adapt security
policy

Planner

Figure 1.4: Security Process and Involved Stakeholders

1.4 Methodology and Organization

The following methodology has been applied during this work. To motivate the research

question, first a security analysis of today’s BAS technologies and installations has been

performed. Then, functional and non-functional requirements for secure CAs have been

defined and the state-of-the-art has been examined by literature search with respect to

its applicability. Since the requirements can only be met partially, a secure CA architec-

ture has been investigated. The research result is an approach to provide secure CAs.

Validation could be done in various ways: First, it could be compared to other concepts

and be analyzed with respect to improvements. Since neither concepts nor implemen-

tations for secure CA development are available in the BAS domain no benchmarking

can be performed. Second, the generic technique could be implemented and be validated

using standardized security tests (e.g. CIS-CAT and Other CIS Benchmark Assessment

Tools1) or during security competitions (e.g. Competition on Software Verification (SV-

COMP)2). However, no tests or competitions exist in the BAS domain and additionally

such methods can only validate implementations and not generic concepts. Simulation

1 https://benchmarks.cisecurity.org/downloads/audit-tools/, Last access:
2015/09/18

2 http://sv-comp.sosy-lab.org/2016/, Last access: 2015/09/18

https://benchmarks.cisecurity.org/downloads/audit-tools/
http://sv-comp.sosy-lab.org/2016/

8 Introduction

of the concept could validate its applicability, however it is not feasible for security re-

quirements. Thus the presented approach has been validated using various orthogonal

analyses. On the basis of a use case, prototypes have been implemented and performance

benchmarks have been performed. An accompanying discussion shows how the security

process is carried out and can be used to enable security in today’s already existing BASs.

Concluding, an exhaustive analysis evaluates whether the functional and organizational

requirements can be fulfilled or not.

The thesis is structured as follows. Each section starts with a hypothesis covering

parts of secure CAs in smart homes and buildings, that is being discussed throughout the

section. In a summary this hypothesis is being proved.

Section 2 analyzes domain constraints in distributed CAs and the structure of modern

BASs, their devices and application models. Then the definition of CAs in related stan-

dards as well as their design, development and deployment in open BASs (i.e. BACnet,

EnOcean, KNX, LonWorks, ZigBee) are investigated.

To demonstrate that software security is currently being strongly neglected, a deep

analysis on CA security in current building automation standards and technologies is per-

formed by researching security mechanisms being deployed in installations and by iden-

tifying vulnerabilities being present. An additional exemplary evaluation on installed

CAs based on EnOcean shows the rather high probability of a successful attack. The

problem of insecure CAs is spread in the whole smart home and building automation do-

main, irrespective of deployed technology or manufacturer. Based on a software security

threat and risk analysis, security requirements are identified (cf. Section 3).

As a next step, a state-of-the-art analysis is performed. Existing software protection

techniques are investigated and security in open BAS standards is analyzed. This related

work is evaluated for BASs with respect to its applicability and implied security gain

regarding the discussed threats and requirements (cf. Section 4).

The main contribution of this dissertation is a comprehensive concept and process for

secure and distributed CAs, describing how to fulfill the demands for security-critical

smart homes and buildings. This secure CA architecture consists of a model as well as a

1.4 Methodology and Organization 9

mapping to common technologies of an integrated BAS, being capable to describe secure

CAs in a generic way. A formal method to define a security policy based on security

attributes for a whole BAS, a secure software environment to allow the execution of CAs

and the enforcement of the policy, and an attack prevention and detection system are

investigated (cf. Section 5).

The evaluation is described in Section 6. A use case is defined and prototypes are

implemented for the different device classes. Performance measurements and an accom-

panying discussion on how the security process is working demonstrate that the generic

concept can be implemented on today’s devices. Secondly, it is discussed how the pre-

sented approach can be used to enable security in current BASs. Attack detection and

prevention become possible, if appropriate devices are installed. Concluding, an exhaus-

tive discussion evaluates that all functional requirements are fulfilled by applying the

developed framework. Some organizational requirements still need to be considered,

when implementing real live installations.

Finally, recommendations for implementing secure CAs are formulated (cf. Section 7).

Parts of this dissertation were already published in the following peer-reviewed pub-

lications:

• W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “A Modular Architecture for

Building Automation Systems”, in Proc. 6th IEEE International Workshop on Factory Commu-

nication Systems (WFCS ’06), Jun. 2006, pp. 99–102

• W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “Security in Networked Build-

ing Automation Systems”, in Proc. 6th IEEE International Workshop on Factory Communication

Systems (WFCS ’06), Best Paper Award of WFCS ’06, Jun. 2006, pp. 283–292

• F. Praus, T. Flanitzer, and W. Kastner, “Secure and Customizable Software Applications in

Embedded Networks”, in Proc. 13th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA’08), Sep. 2008, pp. 1473–1480

• C. Reinisch, W. Granzer, F. Praus, and W. Kastner, “Integration of Heterogeneous Building

Automation Systems Using Ontologies”, in Proceedings of 34th Annual Conference of the IEEE

Industrial Electronics Society (IECON ’08), Nov. 2008, pp. 2736–2741

10 Introduction

• F. Praus and W. Kastner, “User Applications Development Using Embedded Java”, in Proc.

KNX Scientific Conference, Nov. 2008

• F. Praus, W. Granzer, and W. Kastner, “Enhanced Control Application Development in

Building Automation”, in Proc. 7th IEEE International Conference on Industrial Informatics

(INDIN’09), Jun. 2009, pp. 390–395

• F. Praus and W. Kastner, “Secure Control Applications in Building Automation Using Do-

main Knowledge”, in Proc. 8th IEEE International Conference on Industrial Informatics (IN-

DIN’10), Jul. 2010, pp. 52–57

• W. Granzer, F. Praus, and W. Kastner, “Security in Building Automation Systems”, IEEE

Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3622–3630, Nov. 2010

• F. Praus and W. Kastner, “Identifying Unsecured Building Automation Installations”, in

Proc. 19th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA’14), Sep. 2014

• F. Praus and W. Kastner, “Spotting Unsecured KNX Installations”, in Proc. KNX Scientific

Conference, KNX Scientific Award 2014, Nov. 2014

Nevertheless, this dissertation is submitted as monograph, describing secure CAs in

smart homes and buildings in a comprehensive manner.

2
Control Applications in Building

Automation Systems

Hypothesis 2 An overall software security in smart homes and buildings can only be established,

if the required measures are applicable to all common standards and technologies.

This section is dedicated to the definition of BASs and the classification of devices typi-

cally being found there. Besides, an identification of how to model distributed CAs in a

general way and an analysis of application models in existing technologies are covered.

2.1 Device Classes

The system functionality of BASs can be divided into a three level model being ordered

hierarchically [85]. At the field level, environmental data are measured and parameters

of the environment are physically controlled. Automatic control is performed at the au-

tomation level whereas global configuration and managements tasks are realized at the

management level. For years, the levels of the functional model have been mapped to

separate networks when BAS had to be implemented. Sensors and actuators were inter-

connected via field networks. Controllers (e.g. Direct Digital Controls (DDCs)) responsi-

ble for dedicated process-oriented and time-dependent sequential control were combined

via automation networks. Finally, servers and workstations hosting, for instance, appli-

cations for trend logging and visualization were linked by a management network. Of

11

12 Control Applications in Building Automation Systems

Control

networks

Backbone network

Management

devices (MDs)

Backbone level

Control level

WAN

Sensors, actuators

and controllers

(SACs)

Interconnection

devices (ICDs)

Figure 2.1: Building Automation Network

course, vertical access for data exchange from the lowest to the highest level had to be

provided.

Nowadays, the standard three level functional hierarchy model can be implemented

as a flatter, two-tier architecture (Figure 2.1) [96]. This is for two reasons. First, so called

intelligent field devices incorporate more functionality than ordinary ones. Second, IT

and its infrastructure became accepted not only at the management level, but also at the

automation level. This is due to the fact that functions of the former automation level

can be realized with cheap IT hardware since environmental conditions in the building

automation domain are not that harsh compared to industrial automation. Consequently,

functions of the former automation level are split, being reassigned either to field de-

vices (e.g. implementing controller functionality) or management devices (e.g. realizing

process data monitoring) [60].

As a result, the two-level architecture consists of a control network and a common

backbone which together form the BAN. The control network is home to field devices

and has a typical bandwidth in the order of a few KBits/s. Since the requirements of

management devices still cannot be fulfilled by this control network (e.g. a global con-

sistent view of the entire system needs higher data rates), control networks are intercon-

nected via a high-bandwidth (typically MBits/s) backbone network. At the intersection

2.1 Device Classes 13

point between the networks, interconnection devices are used. Based on this novel view

on a BAN, BAS devices and their functionality have to be re-classified and the following

demands have to be considered [60]:

• Resources: The required functionality of a BAS device significantly influences the

demands on processing power and memory.

• Interfaces: Different interfaces are desirable:

– Network interfaces to integrate the device into a BAN.

– Point-to-point interfaces to perform configuration tasks.

– Process interfaces for data acquisition and interacting with the physical environ-

ment.

– Human machine interfaces for user interaction.

• Power consumption: If a device is driven by battery or by a common power supply

(e.g. via link power), a low power consumption is needed.

• Environment: Since BASs shall be operable for many years, the used devices shall

be insensitive to rough installation environments.

• Costs: Device installation as well as maintenance costs need to be considered to

keep a BAS – probably consisting of thousands of devices – affordable.

Sensors, Actuators and Controllers (SACs) are located at the control level. Represen-

tatives of this device class interact directly with the physical environment and are respon-

sible for data acquisition and for controlling the behavior of the environment. Addition-

ally, they may include controller functionality. The following requirements are crucial for

SACs:

• Resources: As SACs have to perform more or less simple tasks, small and low cost

MicroController Unit (MCU) based devices are sufficient. The memory require-

ments are relaxed since the amount of process data (in the order of bytes to a few

KBytes) to be handled can be assumed to be small.

14 Control Applications in Building Automation Systems

• Interfaces: In order to configure and maintain a SAC device (e.g. upload new

firmware), a simple point-to-point interface (e.g. serial communication) has to be

provided. To exchange process data, a network interface is required. Compared

to industrial automation, the demands on the response time1 are more moderate

but they nevertheless exist (e.g. in the order of a few milliseconds; cf. [96]). Since

wireless networks are gaining importance in BASs, such interfaces have to be taken

into account as well. For SACs, a process interface for interaction with the physical

environment is mandatory.

• Power consumption: SACs are often supplied via link power to avoid the need for

an additional power cable. In some cases, SACs may be even driven by a battery

(e.g. glass break sensors). Here, low power consumption is of major concern.

• Environment: As SACs are usually located in the field, they have to be robust and

small.

InterConnection Devices (ICDs) provide an interconnection between network seg-

ments or remote access to foreign networks. They operate at different layers of the Open

Systems Interconnection (OSI) Reference Model. To extend the maximum physical net-

work cable length, repeaters and bridges can be used acting at the physical and data link

layer, respectively. While a router operates on protocols at the network layer, a gateway

to e.g., a Wide Area Network (WAN), ensures transparency to applications that run on

top of the protocol stack. The demands on ICDs are the following:

• Resources: Compared to SAC devices, the requirements on ICDs are quite similar.

Since routing is not a very complex task, MCUs are sufficient to fulfill the processing

power requirements of ICDs. However, routers and gateways may need additional

memory for storing routing tables or caching data.

• Interfaces: To configure and manage ICDs, some sort of local interface (e.g.

Universal Serial Bus (USB)) is required. The main objective of ICDs is the inter-

connection of two or more network segments or networks. Therefore, ICDs need at

least two (possibly different) network interfaces.
1 The term response time is referred to as the time interval between action initiation (e.g. pressing a

light switch) and action execution (e.g. light on).

2.1 Device Classes 15

• Power consumption: Since battery driven ICDs are uncommon, low power con-

sumption is not as important as it is for SACs.

• Environment: ICDs will normally be located at central points in the building

(e.g. in a switch cabinet). However, it is still important that ICDs are small and

maintenance-free.

Finally, Management Devices (MDs) are used to configure and maintain a BAS. Typi-

cally, MDs execute configuration (e.g. set initial configuration parameters), maintenance

(e.g. changing setpoints), and operator tasks (e.g. visualization, alarm monitoring, secu-

rity alert monitoring). In most cases, representatives of the MD class will be located at

the backbone level. Still, some representatives may be found at the control level (e.g. for

on-site device configuration). Since MDs are often controlled by humans, they provide

some kind of (graphical) User Interface (UI). Requirements on MDs are quite different

compared to SACs and ICDs:

• Resources: MDs have to operate with data from the whole BAS and therefore are

supposed to process higher data volumes (in the order of KBytes to MBytes). Addi-

tionally, management tasks require more processing power and (persistent) storage

for software and data.

• Interfaces: To be able to fulfill configuration and management tasks, a connection

to the BAN is mandatory. Such an interconnection can be achieved using so-called

network adapters (e.g. SAC with a serial connection). The demands on the response

time can be seen more relaxed since management tasks are not time critical. Addi-

tionally, interfaces for various UIs have to be provided.

• Power consumption: Since server, workstation and PC-based MDs are supplied via

the power grid, power consumption is not of major concern.

• Environment: MDs with fully fledged UIs will be normally located in moderate

environments (offices). Therefore, small size and robustness against rough environ-

mental conditions are less important. For other MD representatives, relaxed envi-

ronmental conditions can be expected as well.

16 Control Applications in Building Automation Systems

Figure 2.2 shows, from an abstract point of view, the different building blocks which

have to be assembled to provide the functionality for each device class. By selecting the

corresponding soft- and hardware blocks, SACs, ICDs or even MCU-based MDs can be

implemented.

MCU
Point-to-Point IF

Network Interface

Process IF

SAC

MCU
HMI

Network Interface
PC
HMI

Network Interface

MCU
Point-to-Point IF

N-IF 1 N-IF 2
MCU

Point-to-Point IF

N-IF 1 N-IF 2 S
torage

N-IF: Network interface
IF: Interface

ICD: Gateway ICD: Router

MCU based MD PC based MD

Figure 2.2: Building Automation System Hardware Building Blocks

2.2 Distributed Control Applications

While the functionality of system components (i.e. ICDs and MDs) is usually fixed, SACs

are highly customizable and manifold. Thus, in the BAS domain typically the approach

exists to customize generic ”template” network nodes with application specific hardware.

Universally designed base platforms consisting of MCUs and network interfaces are used

in conjunction with application specific components (e.g. switches, temperature sensors)

to form a particular system. Similarly, the software is split into a generic Operating Sys-

tem (OS) or system software providing basic functionality and a customizable CA dealing

with the specific hardware. While the former is usually fixed and non replaceable, the lat-

ter is implemented by the device manufacturer and may be downloaded by the system

integrator, even after installation of the device [142]. Allowing CAs to be uploaded in the

field has benefits for configuration and maintenance. Network adapters and application

specific hardware can be procured separately, and software updates can be applied after

installation.

Definition 1 Control Application: A CA is a configurable software being executed on a SAC

with the purpose to control a process at the control level.

2.2 Distributed Control Applications 17

Definition 2 Distributed Control Applications: Distributed CAs communicate via the BAN and

implement a particular function of a BAS.

A common way to model distributed CAs and their application models is with the

help of Function Blocks (FBs) (cf. Figure 2.3). Sensor functions convert physical quanti-

ties to output information which in turn serves as input to application or actuator func-

tions. Actuator functions convert input information obtained through the BAN to physi-

cal quantities. Application functions represent the functionality to be achieved by means

of automation and control.

E

OUTPUT

Sensor function

type
INPUT 1 OUTPUT 1

Application function Actuator function

PAR_CAL

INPUT

type

A

OUTPUT
type

PAR_CAL
type

INPUT N OUTPUT M

PAR
type

typetype

type type

type
.
.
.

.

.

.

Figure 2.3: Function Blocks (based on [163])

The necessary vendor-independent compliance (i.e. interoperability) does not only

have to be guaranteed for communication but also for these distributed CAs, so that

devices of different vendors can be deployed in one system and broader acceptance of

advanced trade neutral applications for e.g. energy optimizations is achieved. Interop-

erability can only be met by standardizing the application models, which state how data

is represented (data format, encoding) and how the communication between CAs has to

be realized (methods to manipulate data). Today, efforts are underway to lay down the

functions of the building automation and required BAS domain knowledge within the

following (international) standards [132].

Among defining terms and discussing basic considerations regarding application soft-

ware, ISO 16484-3 [86] specifies the functions of building automation and control systems.

It distinguishes between input/output functions (e.g. binary in/output, analog in/out-

put), processing functions (e.g. monitoring, open loop controlling, closed loop control-

ling, calculating/optimizing), management functions (e.g. trending), and operator func-

18 Control Applications in Building Automation Systems

tions, and clearly describes what these functions ought to do. For description it relies on

FBs. The method for programming functions and applications, however, is not part of

ISO 16484-3.

Closely related to ISO 16484-3 is its predecessor VDI 3814 [164], which is partly obso-

lete, but additionally defines the requirements usually present in middle Europe includ-

ing legal restrictions.

VDI 3813-1 [163] describes a subset of building automation – the fundamentals of

room control. It defines the terms and functions of room automation independent of the

underlying technology on the basis of use cases. It further provides a thorough system

analysis and classification of room control functions into application functions (e.g. light-

ing control, temperature control), display/operator functions (e.g. light switch, tempera-

ture setpoint), service/diagnostic functions (e.g. self-diagnostics, software downloading),

and management functions (e.g. trending, energy analysis).

VDI 3813-2 [165] extends Part 1 and specifies the methodology to describe functions

of room automation. Using FBs and a textual description, it outlines the functionality (i.e.

inputs, outputs, parameters, physical in/outputs) of an object.

Experiences with VDI 3813-1 and VDI 3813-2 revealed that an exact specification on

how to combine those functions of room automation is missing. Thus, VDI 3813-3 [162]

specifies room automation function macros and application examples of room types.

VDI 3805 [166] describes the open product data exchange in building services between

different manufacturers or trades. Details such as product data, technical data and geom-

etry data are covered and their description is standardized in a machine processable way.

Although this standard is not directly related to CA development or CA security, impor-

tant domain knowledge (e.g. optimal/minimal/maximal volume flow of a fan) can be

extracted out of the technical data section.

With regard to system modeling, the process control domain is similar to BAS. Appli-

cation structure and development has been covered in multiple standards.

The conceptual FB specification for process control is described in IEC 61804-2 [82].

The device model as well as specifications of FBs for measurement, actuation and pro-

cessing are contained and can be mapped to specific communication systems and imple-

mentations. The IEC 61804-3 Electronic Device Description Language standard presents a

2.2 Distributed Control Applications 19

generic language for the description of the properties of automation system components.

Entities such as device parameters and their dependencies, device functions or interaction

with control devices can be modeled.

Quite similar, IEC 61499-1 [83] defines a nomenclature and reference model and spec-

ifies the concept of FBs with the big difference that an IEC 61499-1 FB is an IEC 61804 FB

with execution control, and event inputs and outputs being added.

IEC 61131-3 [84] defines the syntax and semantics of programming languages for pro-

grammable logic controllers. The software model, communication model as well as the

programming model are covered.

To be able to describe the security concept presented in this dissertation in a bet-

ter way, the following use case
⊗

is defined according to VDI 3813-3 and will be used

throughout the remaining sections. Figure 2.4 shows a minimalistic light actuator with

delayed on/off behavior being used for a stairwell light.

Use case
⊗

Stairwell light: When pressing the “on” button E of the light sensor, the attached

light control immediately triggers the light actuator to switch on lamp L. Upon pressing the “off”

button E of the light sensor, the attached light control waits the time configured with the off delay

parameter PAR_OFFD and then triggers the light actuator to switch off the lamp L. The output

L_STA of the light actuator is used as feedback to the actuate light sensor, to be able to display the

current status using output A.

E/A

L_STA L_SET

Actuate light (switching)

LightLight
L_MAN L_SET

Light control

Light

Time

Time

PAR_OND

PAR_OFFD

Light actuator

Light

PAR_POFF

PAR_PON

L_SET L_STA

L

Light

Light

Figure 2.4: Use Case
⊗

: Distributed Control Application: VDI 3813-3: D-1-2 Lighting
Control Manual with Time-Controlled Switching Off (Stairwell Light)

20 Control Applications in Building Automation Systems

2.3 Application Models

While the previous section considered CAs according to generic definitions, this section

gives an overview of application models and CA development in current BAS technolo-

gies. Besides, application security aspects briefly including also communication are an-

alyzed. Only the most important open BAS protocol standards BACnet, EnOcean, Lon-

Works, KNX and IEEE 802.15.4/ZigBee, which span more than one application domain

are considered for the rest of this thesis. In fact, detailed information about proprietary

standards such as Z-Wave [183] is not publicly available and BAS for special purposes

(e.g. DALI for lighting [81], M-BUS for smart meters [25], and Modbus mainly used for

accessing Programmable Logic Controller (PLC) memory [118]) do not cover all BAS ap-

plication areas of interest.

2.3.1 BACnet

Building Automation and Control networking protocol (BACnet) was developed by a

project committee established by the American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE). Its main objective is to provide a solution for BAS of

all sizes and types. In 1995, BACnet was published as ANSI/ASHRAE 135 standard [7].

Meanwhile, BACnet has become the CEN and ISO standard 16484 [87], [91].

BACnet defines the network visible part called BACnet object of a single data element.

The internal data structure is not covered and thus also the CA itself and its development

are not specified. Each BACnet object has a dedicated object type and represents a collec-

tion of properties. Each property has a data type defining the size and encoding of the

data element.

BACnet-2012 defines 54 different objects and more than 200 different property types

as well as object access services. The most important services used to access and manipu-

late objects are ReadProperty (i.e. read the value of a property), and WriteProperty

(i.e. set a new property value). Example objects are the generic binary and analog object

types such as BACnet Binary Output Object Type and BACnet Analog Input

Object Type. It is the responsibility of the CA to map the functionality of a simple

2.3 Application Models 21

light to a BACnet Binary Output Object Type or a room temperature value to a

BACnet Analog Input Object Type. However, there are efforts underway to stan-

dardize more application-specific object types in BACnet.

The Lighting-Output Object Type, for instance, has been included in the latest

standard (cf. Table 2.1). Issuing a WriteProperty request on the Present-Value of

a device implementing the Lighting-Output Object Type with a BACnet compliant

tool, a connected light can be switched on and off. If the parameter Off-Delay is set

appropriately, a stairwell light can be realized.

Property Identifier Property Datatype
Object-Identifier BACnetObjectIdentifier
Object-Name CharacterString
Object-Type BACnetObjectType
Present-Value REAL
Progress-Value REAL
Lighting-Cmd BACnetLightingCommand
Blink-Time Unsigned
Off-Delay REAL OPTIONAL
Blink-Prior.-Threshold Unsigned OPTIONAL
Status-Flags BACnetStatusFlags
Out-Of-Service BOOLEAN
Priority-Array BACnetPriorityArray
Relinquish-Default REAL
Priority-Array BACnetPriorityArray
Relinquish-Default REAL
Lighting-Cmd-Prior. Unsigned

Table 2.1: BACnet Lighting-Output Object Type

BACnet optionally uses the Advanced Encryption Standard (AES), the Keyed-Hash

Message Authentication Code (HMAC) algorithm, and a message ID in combination with

a time stamp to protect against unauthorized interception, modification, and fabrication

of data exchanged via the communication medium. Furthermore, security concepts like a

trusted key server being responsible for generating and distributing session keys and the

use of different key types and key revisions are used.

22 Control Applications in Building Automation Systems

2.3.2 ISO/IEC 14543-3-10/EnOcean

EnOcean is a wireless BAS standard for solutions with ultra-low power consumption

and energy harvesting. It has been developed by the EnOcean GmbH, which has been

founded in 2001 as a spin-off from Siemens AG. The company holds the patents for its

energy harvesting technology and manufactures the communication modules. In 2012,

the ISO/IEC 14543-3-10 standard was released, standardizing the physical, data link and

network layer of EnOcean [88]. Interoperability of applications is pursued by the non-

profit organization EnOcean Alliance. It defines the EnOcean Equipment Profiles (EEPs),

providing the data format, descriptions and procedure of device pairing [38].

EnOcean defines the communication protocol (i.e. the telegram format) for data ex-

change in BASs. CAs, their development, internal structures or deployment are not stan-

dardized. Depending on the telegram type, different applications (e.g. Light and Blind

Control, Temperature Sensor) can be realized.

Since no application model is defined by the EnOcean standard, a stairwell light

can be implemented in various ways. Using a standard rocker switch, EEP RPS

F6-02: Rocker Switch, 2 Rocker telegrams [38] are transmitted when buttons

are pressed. Compatible actuators receive these telegrams and switch their outputs ac-

cordingly. Using a manufacturer dependent local configuration of the switching actua-

tor (e.g. via DIP switches), a stairwell light can be realized. [38] defines the EEP 4BS

A5-38-08: Telegram-Central Command-Gateway telegram. Using the com-

mand 0x01: Switching, a delay value can be set to execute the switching command

after a certain delay.

Until 2012, EnOcean did not provide any security mechanisms. In March 2012, version

1.0 of the Security of EnOcean Radio Networks specification [43] was released, which cov-

ers security features targeting the very-low energy requirements of self-powered devices.

The current specification version 1.9 provides secure communication. The algorithm AES-

Cipher Based Message Authentication Code (CMAC) is used for authentication, AES-

Cipher-Block Chaining (CBC) and Variable Advanced Encryption Standard (VAES) for

en/decryption.

2.3 Application Models 23

In September 2013, three application notes have been released. [39] describes how to

implement security in CAs and the required security tasks for secure communication in

transmitters and receivers. [40] covers security in line-powered devices (i.e. gateways, ac-

tuators). Secure CA development and a secure architecture with the use of EnOcean Link

[42] a middleware for the EnOcean protocol stack are described. The EnOcean Link docu-

mentation contains a security example for secure communication and a security watcher

example, which can be used to detect possible security issues. [41] describes how to in-

clude security into self-sustaining applications (i.e. sensors).

2.3.3 KNX

The KNX standard [103] – being maintained by the KNX Association – describes an exten-

sive open system concept for distributed home and BASs. KNX covers the full scope of

related applications, including lighting, shading, shutters and blinds, HVAC and remote

meter reading. The KNX specification results from a formal merger of three technologies

dedicated to this area: European Installation Bus (EIB), Batibus, and European Home

System (EHS). Significant parts of the KNX specification are published as European stan-

dards EN13321 and EN50090 [74], [123], [124] but KNX technology is also covered by an

international standard ISO/IEC 14542-3 [89] as well as GB/Z 20965 [23] published by the

Standardization Administration of China.

KNX is more than just a simple network protocol specification. Besides merely defin-

ing how data is transferred, the standard includes rules and definitions of how a KNX

system is managed, how devices can be implemented by different vendors and how they

have to behave to achieve interworking. The central hardware concept are customized

application modules being connected via the Physical External Interface (PEI) to stan-

dardized Bus Attachment Units (BAUs). Certainly, the manufacturer dependent CAs

are the corresponding software components within a KNX system. KNX supports var-

ious standardized hardware interfaces. The first time creation of CAs for Bus Coupling

Unit (BCU) 1, Bus Interface Module (BIM) M111, BIM M115, BCU 2 and BIM M113 based

devices, however, remains quite complex since the hardware does not provide enough

memory for advanced CAs. No toolchain is available that offers high level program-

24 Control Applications in Building Automation Systems

ming languages (e.g. C, C++) and the developer has to consider MCU specific issues (e.g.

RAM flags). The new generation of BIMs (NEC 78K0/Kx2 based) overcomes the hard-

ware limitations and allows development in the C programming language and debug-

ging using the IAR Embedded Workbench. For development of CAs on a separate MCU,

a Twisted Pair Universal Asynchronous Transceiver (TP-UART) chip can be used, which

handles the physical and most of the data link layer tasks. Besides, various companies

provide KNX compliant hard- and software such as evaluation boards, devices, modules,

stacks and software (e.g. TAPKO Technologies GmbH2, Weinzierl Engineering GmbH3).

The central management software ETS then allows customization and adaptation of most

KNX compliant CAs to a specific installation by changing parameters.

KNX defines application models within the different application domains (e.g. HVAC,

lighting). Their functionality is distributed across functional blocks which are described

by a well-known behavior and consist of one or more datapoints. A functional block is

implemented by a single device, and each device can host multiple functional blocks. A

single datapoint (i.e. input, output, parameter that influences the behavior of the func-

tional block) represents a single data of the application and has a defined Data Point

Type (DPT) which states its format (e.g. bit length), encoding, range (e.g. upper and lower

bound of the value) and engineering unit (e.g. percent). Each datapoint can be accessed

using a specific KNX communication service as well as a particular address (e.g. group

object datapoints use group addresses and are accessible through group communication

services).

The KNX function block Light Actuator defines the following datapoints [103,

Part 7/20] (cf. Table 2.2). A push button can be used to issue an A_GroupValue_Write

on the datapoint OnOff. The light actuator then switches off the light after the time con-

figured by parameter Timed Duration. Feedback to sensors is given using the output

InfoOnOff.

KNX did not offer mechanisms to guarantee confidentiality, integrity or freshness for

process data being exchanged via the network until 2013. Neither did it support a ded-

icated authentication service. It only provided a basic access control scheme, which can

2 http://www.tapko.de/
3 http://weinzierl.de/

http://www.tapko.de/
http://weinzierl.de/

2.3 Application Models 25

Data Point Data Point Type
Output: InfoOnOff DPT_Switch
Input: OnOff DPT_Switch
Parameter: Timed Duration DPT_TimePeriodSec

Table 2.2: KNX Light Actuator Function Block

be used to limit the management access to devices. Up to 255 different access levels can

be defined, each of them associated with a different set of privileges. For each of these

access levels, a 4 byte password can be specified. The security extension KNXnet/IP Se-

cure [102] provides data integrity, freshness, confidentiality and mutual authentication

for KNXnet/IP. Moreover, KNX Data Security [101] supports secure communication for

all existing KNX communication media.

2.3.4 LonWorks

LonWorks or Local Operating Network (LON) was originally developed by Echelon Cor-

poration as a generic open control network to support a wide range of distributed ap-

plications in various domains such as building automation, industrial automation, trans-

port automation or street lighting. It consists of the LonTalk communication protocol, a

controller (Neuron Chip), transceivers for bus access and management and development

tools. In 1999, LonTalk was standardized as ANSI/EIA-709 and ANSI/CEA-709 stan-

dard [26]. It is also available as European standard EN14908 [122] and as international

standard ISO/IEC-14908 [92]. These standards are accompanied by ANSI/EIA-852 [160],

which describes tunneling of LonTalk over IP networks.

LonWorks nodes are usually based on a network controller (e.g. Neuron series, LoyTec

LC3020), which executes the network protocol stack and the CA. CAs define so called

Network Variables (NVs), which are basic communication objects and are shared by de-

vices over the network. The CA may be implemented in Neuron C (a programming lan-

guage similar to ANSI C), which represents NVs as standard C variables with the unique

property that a data packet is automatically created and transmitted whenever the value

of the NV changes or is automatically updated whenever a data packet has been received

from the network.

26 Control Applications in Building Automation Systems

For interoperability reasons, the LonMark Association4 standardizes the NVs through

the definition of Standard Network Variable Types (SNVTs). A SNVT is an exactly de-

fined (e.g. encoding, physical unit), calibrated, filtered and linearized engineering value

which allows its doubtless interpretation. Besides the SNVTs, also so called Standard

Configuration Property Types (SCPTs) are defined and used to access configuration func-

tions within a device (e.g. changing parameters). To satisfy the demands of special do-

mains such as building automation, the LonMark Interoperability Association defines so

called Standard Functional Profile Templates (SFPTs) for interoperability. These SFPTs

are application-specific and include NVs and configuration properties, default values,

and power-up behaviors.

To implement a light with delayed on/off behavior, three SFPTs are needed [112]. The

scene panel selects a defined scene (cf. Table 2.3). The scene controller delays

the switch off command (cf. Table 2.4). Finally the lamp actuator controls the light (cf.

Table 2.5).

Network Variable SNVT Type
Output: nvoScene SNVT_scene

Table 2.3: LonWorks Scene Panel

Network Variable SNVT Type
Input: nviScene SNVT_scene
Input: nvoSwitch SNVT_switch
SCPTdelayTime: nciDelayTime SNVT_time_sec

Table 2.4: LonWorks Scene Controller

Network Variable SNVT Type
Input: nviLampValue SNVT_switch
Output: nvoLampValueFb SNVT_switch

Table 2.5: LonWorks Lamp Actuator

LonWorks provides a four step challenge-response mechanism to counteract modifica-

tion and fabrication attacks of network messages. A sender which intends to authenticate

4 http://www.lonmark.org/

http://www.lonmark.org/

2.3 Application Models 27

a transmission asserts the authentication bit of its message. Receivers reply with a 64 bit

random number. The sender returns a 64 bit hash value calculated over the content of

the message and the random number using a shared key. The receiver performs the same

calculation and compares the results.

In addition to the basic LonWorks authentication mechanism, LonWorks/IP defines

its own security mechanism, which uses Message-Digest Algorithm 5 (MD5) together

with a shared secret to protect the data against modification and fabrication.

2.3.5 IEEE 802.15.4/ZigBee

IEEE 802.15.4 specifies a physical and a data link layer for communication in wireless

personal area networks as an open standard [78]. ZigBee is based on IEEE 802.15.4 and

standardizes a network and an application layer [180]. It aims at providing a simple,

low-rate, low-power and cost effective protocol for RF applications.

ZigBee CAs are implemented by application objects that are distributed across the Zig-

Bee devices, with one ZigBee device hosting a maximum of 240 application objects. Each

application object hereby implements a specific functionality of the distributed applica-

tion. Within the application object, the functionality is represented by so called clusters.

A cluster is a collection of commands and attributes. While a single attribute of a cluster

represents a single data of the process to be controlled (e.g. the state of a light), com-

mands are used to manipulate these attributes as well as to initiate actions within the

device. Therefore, clusters act as interfaces to the application objects.

The exact structure of the application objects and their associated clusters (includ-

ing the specification of the clusters’ attributes and commands) is not defined by the core

specification. However, to enable interoperability between ZigBee devices, so called ap-

plication profiles are defined. Application profiles target a specific application domain.

They contain a set of logical device descriptions that define the functionality to be imple-

mented. This functionality is represented by clusters, whose implementations can either

be mandatory or optional. An application object is thus an implementation of a logical de-

vice description (or at least of all its mandatory clusters) within a physical ZigBee device,

e.g. an On/Off Light.

28 Control Applications in Building Automation Systems

An example of such an application profile is the ZigBee Home Automation Profile

[179] targeting applications typically found in residential or light commercial environ-

ments. The Dimmable Light device can be used to realize a stairwell light, although

devices may disregard the Transmission time field if not being able to move at a

variable rate (cf. Table 2.6).

Cluster Command
Basic
Identify
On/Off
Level Control Move to Level (with On/Off) Cmd.
Scenes
Groups

Table 2.6: ZigBee Dimmable Light

IEEE 802.15.4 offers security services for data exchange at the link layer that use

Counter with CBC-MAC (CCM)* as combined encryption and authentication block ci-

pher mode. It can be used in environments requiring authentication only (against fab-

rication and modification), encryption only (against interception), or a combination of

both.

ZigBee utilizes the IEEE 802.15.4:2003 transmission services of the data link layer.

However, ZigBee does not use the security mechanisms provided by IEEE 802.15.4:2003 –

they are completely replaced by a more advanced security concept. This concept supports

the use of different key types and provides advanced key management services. Again,

CCM* is used as cryptographic algorithm.

2.4 Summary

Today’s open BAS technologies (i.e. BACnet, EnOcean, KNX, LonWorks and ZigBee)

achieve interoperability each by standardizing their own CA model. As shown in this

section, these application models differ significantly even for simple use cases such as

a stairwell light or an individual room control. A transparent (i.e. translation/gateway-

free) communication across technology borders is likewise impossible [137], as common

security mechanisms are missing. The actual functionality of a BAS, however, is always

2.4 Summary 29

similar and most of the traditional functions can likewise be realized by any of these tech-

nologies. Therefore, to be able to develop a secure CA architecture being adaptable to all

different standards and technologies, a consistent application model is required. Security

can then be investigated for this model and appropriate measures can be derived and

developed for the different technologies and standards.

30 Control Applications in Building Automation Systems

3
Control Application Security

Hypothesis 3 Today’s CAs are insecure. Irrespective of the used technology, no sound protection

considering BAS specific constraints is deployed, thus enabling adversaries to attack installed

devices.

The ultimate goal of an adversary is to gain unauthorized access to control level func-

tions by manipulating the software being executed on BAS devices. A possible attack

scenario is a burglar trying to hack a door switch to illegally access a building or to neu-

tralize a window break sensor by crashing its CA. Such attacks can either be performed

remotely via the network or locally, exploiting threats in a device’s interface. Based on the

abstract BAS model presented in Section 2.1, different attack scenarios on such software

can be identified.

• SAC: An adversary may directly access SACs to manipulate the behavior of the

hosted CAs by changing configuration parameters (e.g. setpoint), the control logic

(e.g. algorithm), or the control data (e.g. output value). On the one hand, such at-

tacks can be performed exploiting the threats discussed in Section 3.3. On the other

hand, the two level concept of downloadable CAs (as it is available in e.g. KNX

and LonWorks), which allows rapid innovation and implementation, may impose

security risks and another way of compromising a BAS. Malicious, erroneous or

compromised CAs may be uploaded long after device deployment and may tamper

with the device software to attack a BAS. In case a system integrator installs such

a malicious CA, neither network nor device protection help since the application

31

32 Control Application Security

seems to be trusted (trojan horse threat). A maliciously modified CA could obtain

access to arbitrary memory regions where, for instance, secret keys are stored.

• ICD: An adversary may attack the application running on the ICD to get access to

the data passing through the ICD. As ICDs may also provide an interconnection

to foreign public networks (e.g. the Internet), an ICD can also be misused as access

point to launch further attacks via the BAN.

• MD: An adversary may attack a MD by manipulating the operator software and

also impersonate a MD. The privileges of the compromised device can then be

misused to gain management access to SACs or ICDs.

This section is structured as follows: Section 3.1 is dedicated to a security analysis of

current BAS installations based on BACnet and KNX technology. The goal is to investi-

gate, if and how many BAS are being connected to the Internet and to find all available

SACs. Section 3.2 then covers research on how to attack the CAs on these SACs. In this

context, the EnOcean technology serves as an example for the investigations. Section 3.3

analyzes the threats to software running on BAS devices. Finally Section 3.4 defines the

requirements for secure CAs.

3.1 Security in Current Installations

Similar to the Industry 4.0 initiative in the industrial automation or the establishment

of cyber-physical systems, Ethernet and IP-based interconnection in open and well es-

tablished BAS technologies such as BACnet, EnOcean, KNX, LonWorks, Modbus using

specific ICDs (e.g. routers, gateways) are getting increasingly important. An integration

and connection to the management level is achieved in a more convenient way. Remote

access paves the way for energy management systems dedicated for functional buildings

and ambient assisted living applications tailored to our homes of which future solutions

may even reside within the cloud.

The Internet itself, however, is an open medium, which is used by adversaries all

over the world to attack connected devices – including automation technologies. In the

3.1 Security in Current Installations 33

industrial automation, such attacks already have been performed (e.g. Stuxnet [95]). Se-

curity awareness among integrators, developers and end-users, however, is still miss-

ing as recent research and experiments have shown (e.g. Industrial Risk Assessment

Map (IRAM)1). Thousands of Supervisory Control and Data Acquisition (SCADA) and

industrial control systems are directly connected to the Internet exposing them to various

attacks.

Even worse, often security vulnerabilities are present in those SACs. Early 2013, a

software bug in a block heat and power plant has been discovered, which allowed unau-

thorized remote control. Meanwhile, the software has been fixed and a Virtual Private

Network (VPN) box is available for secure data exchange [69]. Beginning of May 2013,

a software bug in a widespread industrial control system has been discovered, which

also allowed unauthorized remote control. 500 installations in Germany were affected

[68]. It lasted till August 2013 until the manufacturer released an update for up to 200.000

world-wide installations [113].

Research and analyses targeted industrial automation mainly based on the fact, that a

web server has been running on the default Transmission Control Protocol (TCP) port 80

of affected SACs, which has been exposed to the Internet search engine Shodan2. Up to

now, no extensive research is available, which deeply analyzes BASs being connected to

the Internet.

Therefore, this section is dedicated to security of existing (and installed) BASs. In

Section 3.1.1, BACnet and KNX and the basic technology required to connect them to IP-

based networks are briefly described. It is also outlined how discovery is standardized.

Section 3.1.2 describes a scanning architecture to detect BASs being connected to the In-

ternet and presents the results of worldwide Internet Protocol version 4 (IPv4) scans [131],

[133].
1 http://www.scadacs.org/iram.html, Last access: 2015/08/03
2 http://www.shodanhq.com/, Last access: 2013/10/05

http://www.scadacs.org/iram.html
http://www.shodanhq.com/

34 Control Application Security

3.1.1 BACnet/IP and KNXnet/IP

BACnet provides the network option BACnet/IP, which permits BACnet devices to use

standard Internet Protocols (User Datagram Protocol (UDP) and IP) as virtual data link

layer.

BACnet defines the network visible part called BACnet object of a single data element.

The internal data structure is not covered. Each BACnet object has a dedicated object type

and represents a collection of properties. Each property has a data type defining the size

and encoding of the data element. An object in a network is referenced by its system-wide

unique Object_Identifier property, which is usually assigned during configuration.

This provides a mechanism for accessing every object in the BAN via defined object access

services.

The left part of Figure 3.1 shows an example communication. To search for BAC-

net devices in a network, the Who-Is broadcast service can be used by BACnet clients.

Each receiving BACnet device shall respond with a broadcast I-Am request contain-

ing the IAmDeviceIdentifier (object type, device instance number) and some fur-

ther properties. The most important services used to access and manipulate objects are

ReadProperty (to read the value of a property), and WriteProperty (to set a new

property value), which are sent via unicast communication using the object and property

identifier.

BACnet integrates protocol security extensions for quite some time (since Addendum

g in 2008), which should protect the exchanged data against interception, modification,

and fabrication. Furthermore, advanced security concepts like the use of different key

types and key revisions have been introduced.

KNXnet/IP describes transportation of KNX telegrams on top of IP networks with

main purpose to expand building control beyond the local KNX bus. KNXnet/IP sup-

ports discovery and self-description of a KNXnet/IP server using one well known dis-

covery endpoint. A server should at least support one control endpoint and one data

endpoint (UDP or TCP on arbitrary ports) per KNX connection for additional communi-

cation (cf. Figure 3.2).

3.1 Security in Current Installations 35

Broadcast: Who-Is

BACnet client BACnet server

Broadcast: I-Am

Unicast: ReadProperty

Unicast: ReadPropertyAck

Unicast: ReadProperty

BACnet client BACnet server

Unicast ReadPropertyAck

Object: Device
Instance: 0
Property: Object_Name

Source Address +
I-Am Device Identifier
(Object Type: Device,
Instance Number)

Object Identifier +
Property Identifier

BACnet Error | Object Name

Figure 3.1: BACnet Communication

The left part of Figure 3.3 shows an example communication. For discovering

a KNXnet/IP server, the client sends a SEARCH_REQUEST to the discovery endpoint

(system default multicast address 224.0.23.12, UDP port 3671). Every server receiving

the request should respond immediately with a SEARCH_RESPONSE frame for each of

its service containers containing the Host Protocol Address Information (HPAI) (IPv4:

IP address and port number) of the control endpoint. Afterwards, the client typ-

ically sends a DESCRIPTION_REQUEST to all received control endpoints using uni-

cast telegrams and the information contained in the HPAI. Servers respond with a

DESCRIPTION_RESPONSE, containing Description Information Blocks (DIBs) with sup-

ported protocol, capabilities, state information and an optional user friendly name. To

connect to the control endpoints, a unicast CONNECT_REQUEST can be used.

The KNX Association standardized KNXnet/IP Secure in 2014. Until now, no devices

implementing this standard are available.

36 Control Application Security

KNXnet/IP server

Search.resp.
1

Search.resp.
2

KNXnet/IP client D

Search.req
D

Connect.resp.
4

KNXnet/IP client

Connect.req
3

3

Discovery Service

Container

Control

Data

Data

KNX subnetwork

1

4

Service

Container

Control

Data

Data

KNX subnetwork

2

Data req.

C
o
n
tr

o
l

D
a
ta

1) Discovery procedure

2) Establishing a connection

Figure 3.2: KNXnet/IP Discovery

3.1.2 A Survey on Worldwide Installations

3.1.2.1 Attack Vector

In order to research whether and how many BASs based on BACnet and KNX are openly

connected to the Internet and what security measures are currently implemented, the

following assumptions are made to find such sites:

• BACnet devices are connected to the Internet using their BACnet/IP network inter-

face or using BACnet/IP ICDs (i.e. BACnet IP routers/gateways).

• KNX installations are connected to the Internet using KNXnet/IP ICDs. KNX de-

vices directly connected to an IP backbone (“native” KNX IP devices) are not con-

sidered, since such devices hardly exist.

• IPv4 is used, no distinction between dynamic or static IP address ranges is made.

3.1 Security in Current Installations 37

Broadcast: Search.req

KNXnet/IP
client

KNXnet/IP
server

Unicast: Search.resp

Unicast: Connect.req

Unicast: Connect.resp

Unicast: Description.req

Unicast: Description.resp
HPAI

HPAI

UDP: 3671

KNXnet/IP
client

KNXnet/IP
server

UDP: 3671

DIB: device hardware
DIB: supported service families
DIB: other device information

Figure 3.3: KNXnet/IP Communication

• The installations are standard compliant as described in Section 3.1.1 and are reach-

able via the default IP ports. Devices are either being directly connected to the

Internet using a public IP address or reachable using port forwarding to a private

IP address. These ports are not filtered using a firewall.

Based on these assumptions, the following attack vector can be used to analyze BASs

being openly connected to the Internet.

Iterate through all (worldwide) IPv4 addresses and try to discover BACnet or KNX

services. Simple port scans using common tools (e.g. nmap3) cannot reveal BAS specific

details (e.g. human readable names, manufacturers) of connected installations and false

positives might occur if non BAS protocols rely on this port. A false positive is an error,

where a test indicates that a condition has been met although it has not been fulfilled.

Also such port scans without deeper protocol knowledge might result in false negatives,

since a connected device simply might ignore such scans. A false negative is an error,

where a test indicates that a condition failed, while it actually was successful.

3 http://nmap.org/, Last access: 2013/10/05

http://nmap.org/

38 Control Application Security

As shown in Section 3.1.1, the discovery mechanisms of BACnet and KNX rely on

broadcasts/multicasts. Within the Internet, however, UDP/IPv4 multicast and broadcast

telegrams and TCP/IPv4 broadcast telegrams are not routed, and TCP/IPv4 multicast

telegrams are not supported. Thus, discovery does not work for non-local networks.

Trying to perform a (slightly not standard compliant) discovery using unicast telegrams

from the client to the server might work in this direction, but according to the specifica-

tions servers might reply using multicast/broadcast telegrams which will not arrive at

the client.

To discover BACnet/IP based installations, a request as shown in the right part

of Figure 3.1 can be used. This is handled by issuing a well formed and standard

compliant unicast (UDP/IP, port 0xBAC0) ReadProperty on property Object_Name

to a probably existing Device Object, Instance 0 and evaluating the unicast

ReadPropertyAck. If a BACnet server is connected, it either will reply with a BAC-

net error if for example the object is not found, or with the proper Object_Name.

The only well known default port in KNXnet/IP is the control endpoint UDP 3671,

which can be used to get information about the data endpoint. The KNX standard de-

fines, that devices may use the same port numbers for both endpoints but may also as-

sign different port numbers for data exchange. Out of the box experiments with ICDs of

the major KNX manufacturers revealed that control and data exchange is implemented

using equal ports. Hence, to discover KNXnet/IP based installations, a request as shown

in the right part of Figure 3.3 can be used. A well formed and standard compliant uni-

cast DESCRIPTION_REQUEST is sent to the data endpoint, which is assumed to be lo-

cated on UDP port 3671. If a KNXnet/IP ICD is connected, it replies with a unicast

DESCRIPTION_RESPONSE containing the DIBs. If another device is connected, a non

KNXnet/IP standard compliant answer or no answer will be received. If no device is

listening to this port at all, no response will be received.

If the IP address of a BAS installation is found, further investigations can be done:

• Perform a detailed port scan on all ports. Often services, such as web servers, vi-

sualizations or web-cams are also reachable via the same IP address on probably

non-standard ports. Additional information regarding the BAS installation (e.g. hu-

man readable installation name or abbreviation, manufacturer of the connected de-

3.1 Security in Current Installations 39

vice) can easily be gained by simply accessing these services. If authentication is

requested, supplying no password, default usernames and passwords gained out

of the user manual of the specific manufacturer or trying guest accounts might give

access.

• Information such as country, city, organization, Internet service provider, latitude

and longitude can simply be gained performing geolocation and “whois” Domain

Name Service (DNS) lookups of the IP address. Thus, it might be possible to clearly

identify a BAS installation.

• If a BACnet/IP installation is found, Read and Write Property requests on dif-

ferent object types or object identifiers can be tried.

• If a KNXnet/IP installation is discovered, connecting to the installation via a

KNXnet/IP tunneling request can be tried. It is then possible to read and write

group addresses or receive all KNX data of the BAS.

3.1.2.2 Scanning Architecture

A simple but modular scanning architecture, which allows to deeply analyze BASs be-

ing connected to the Internet has been developed. A multi-threaded C-program initial-

izes logging facilities, handles inter-process communication and synchronization using

semaphores and allows to limit the amount of parallel IP connections. Pluggable proto-

col stacks (BACnet4, KNX5) provide the communication services.

The test system has been connected to the Internet using a consumer service provider

with bandwidth 150Mbit/s download and 15Mbit/s upload. System specifications are

an Intel Atom CPU 330 (2 cores, 1,6GHz) and 3GB RAM. The IP addresses [1-9].*.*.*, [11-

126].*.*.*, [128-223].*.*.* have been scanned. Concurrent connections have been limited to

2048/second. The timeout per connection has been set to 3 seconds. The average CPU

load was around 19%, average memory usage about 400MB, average incoming traffic

50kBit/s and average outgoing traffic 532kBit/s. After scanning, IP geolocation informa-

4 http://sf.net/projects/bacnet/, version 0.8.2
5 http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcusdk, version 0.0.5

http://sf.net/projects/bacnet/
http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcusdk

40 Control Application Security

Country BACnet
US, United States 8989
CA, Canada 2296
FI, Finland 282
AU, Australia 271
ES, Spain 231
FR, France 148
SE, Sweden 138
GB, United Kingdom 131
DE, Germany 118
KR, Korea, Republic of 110
NO, Norway 103
IT, Italy 101
CZ, Czech Republic 98
TW, Taiwan 97
NL, Netherlands 89
NZ, New Zealand 47
HK, Hong Kong 45
JP, Japan 44
AT, Austria 42
CH, Switzerland 39
worldwide 13964

Country KNX
DE, Germany 627
NL, Netherlands 522
ES, Spain 332
FR, France 244
AT, Austria 220
CH, Switzerland 204
IT, Italy 173
NO, Norway 129
SE, Sweden 120
BE, Belgium 119
IL, Israel 109
PL, Poland 67
GB, United Kingdom 56
GR, Greece 42
CZ, Czech Republic 30
RU, Russian Federation 24
VN, Vietnam 23
TR, Turkey 21
LT, Lithuania 20
PT, Portugal 20
worldwide 3295

Table 3.1: Scan 1 Results (Top 20 Countries)

tion has been gathered using the Maxmind GeoLite Country and GeoLite City database6.

The search for additional open ports has been performed using nmap and TCP SYN scans.

The final visualization is based on Google Earth.

3.1.2.3 Scan Results

Three scans have been carried out in 2014.

Scan 1 started on 6th January 2014 and lasted till 9th May 2014. Table 3.1 shows the

scan results grouped by technology and summed up per country. A total of 17.259 BAS in-

stallations has been detected. BACnet is being widely used in the US and Canada whereas

KNX is very popular in Europe. The installations ranged from business parks and towers,

high schools, shopping plazas, water pollution control stations, fire stations, churches to

smart homes with control of private saunas.

6 http://dev.maxmind.com/geoip/legacy/geolite/, Last access: 2015/04/10

http://dev.maxmind.com/geoip/legacy/geolite/

3.1 Security in Current Installations 41

Figure 3.4 shows the geolocations of the installations in Europe, whereas Figure 3.5

shows the geolocations of the installations in the US. Finally Figure 3.6 shows the geolo-

cations of KNX installations in East Asia.

Figure 3.4: Unsecured Building Automation System Installations in Europe

Figure 3.5: Unsecured Building Automation System Installations in US

42 Control Application Security

Figure 3.6: Unsecured KNX Installations in East Asia

A deeper analysis of BACnet installations is shown in Table 3.2. Most of the responses

correspond to installations where no Device Object with Instance 0 is found. Since

more detailed scans (with e.g. different instance numbers) on these installations can be

considered as illegal, they have been left out of scope. A possible real adversary, how-

ever, would not stop at this point. In 250 cases, it was possible to read out the object

name. Only in 3 cases (2x services: service request denied, 1x object:

service request denied) the request has been denied which shows, that BACnet

security as standardized since 2008 is seldom enabled in real systems.

Table 3.3 shows the additional top 15 open TCP ports grouped by port number. Typi-

cally, a web server is also available (especially in BACnet based installations) and authen-

tication is required. Since either default or guest passwords often permitted a login, or a

direct connection using the BACnet/IP or KNXnet/IP protocol is allowed anyway, severe

security attacks cannot be prevented.

A total of 3.295 KNX installations have been detected. The MAC addresses have

been extracted out of the DIBs and its Organizationally Unique Identifiers

have been used to to find out the vendors of the devices. Devices per vendor have been

summed up. Figure 3.7 shows this anonymized analysis. Under the assumption that the

3.1 Security in Current Installations 43

Return value (E)rror, (R)eject, (A)bort Count
E: object: unknown-object 13297
Empty 333
Success 250
E: device: unknown-object 31
R: Unrecognized Service 28
E: device: other 5
device 3
E: object: unsupported-object-type 3
E: property: unknown-object 3
E: services: service-request-denied 2
A: Buffer Overflow 2
E: device: configuration-in-progress 2
E: object: other 2
A: Other 1
A: Preempted by Higher Priority Task 1
E: object: service-request-denied 1

Table 3.2: BACnet Responses

Port Count
80/http 7846
443/https 3472
135/msrpc 3302
139/netbios-ssn 3268
445/microsoft-ds 3261
8080/http-proxy 2504
21/ftp 2375
3389/ms-wbt-server 1983
23/telnet 1874
3011/trusted-web 1861
5960/unknown 1524
22/ssh 1451
25/smtp 1297
1723/pptp 1163
50001/unknown 1086

Table 3.3: Open Ports

security awareness of people installing KNX based systems is independent of the devices

they deploy, the following estimation holds: The percentage of total installations to di-

rectly connected BAS can be estimated if the number of sold devices of one manufacturer

is known. Investigations revealed, that at least 1-5% of all KNX installations are being

insecurely connected to the Internet.

A rescan of the previously found installations (Scan 2) has been performed on 19th

August 2014. Table 3.4 shows the Scan 2 results summed up per country. 1.662 out of the

3.295 installations (about 50%) have still been reachable under the same IP address. This

does not imply, however, that the other 50% of installations can now be considered to be

secure. Most of the (private) installations use a dynamic IP address, obtained from the

service provider.

A short third scan (Scan 3) with a small subset of IP addresses from countries in Europe

lasted from 19th August to 25th August 2014. 375 installations (more than 10%) have been

re-detected (identified by their MAC address), which were reachable with a different IP

address.

44 Control Application Security

Country KNX
NL, Netherlands 427
AT, Austria 142
FR, France 133
ES, Spain 131
DE, Germany 115
CH, Switzerland 92
NO, Norway 87
IT, Italy 83
IL, Israel 73
SE, Sweden 61
BE, Belgium 58
PL, Poland 42
CZ, Czech Republic 27
RU, Russian Federation 19
GB, United Kingdom 19
LT, Lithuania 16
TR, Turkey 15
RO, Romania 14
SK, Slovakia 13
FI, Finland 12
worldwide 1662

Table 3.4: Scan 2 Results (Top 20
Countries)

1154

1124

400

138

134

8382
6130282412 118 4 2

Figure 3.7: KNX Device Manufacturers

3.2 Attacking Control Applications based on EnOcean

While the previous section described an attack vector on how to find BAS, this section is

dedicated to attacking the found CAs. The EnOcean technology is taken as an example to

demonstrate attacks targeting the monitoring of process data exchanged between SACs.

Due to requirements regarding low power communication, EnOcean’s security concept

is a trade-off between security and energy efficiency. It provides authentication, integrity,

confidentiality and freshness. Several weaknesses within EnOcean’s security have been

revealed and are still present [2], [8], which are listed here for completeness since no

extensive summary is available in related work:

• An insecure cryptographic algorithm (Alleged Ron’s Code 4 (ARC4)) has been used

until version 1.3 of [43].

3.2 Attacking Control Applications based on EnOcean 45

• For authentication, EnOcean also relied on the unique production given sender ID

until September 2013. [39] clarifies, that this concept is not secure.

• No encrypted key exchange mechanism is provided.

• Due to energy saving issues, the CMAC field is limited to 3 or 4 bytes. [36] rec-

ommends at least 8 bytes to avoid guessing attacks. Additionally, the rolling code

window size leads to a reduced guessing time for a valid CMAC (approximately

65 seconds [8]).

• The usage of the rolling code is not mandatory. Thus, no protection against a replay

attack is given.

• Authentication and encryption are not mandatory. In [43], use cases are given, that

show the single use of the two security features. Without authentication, replay

attacks can be launched; without data encryption, no confidentiality can be guaran-

teed.

• For many devices, private keys are not changeable. Therefore, the key lifetime cycle

cannot be limited.

• Usually AES-CBC is used for input data longer than one block. Due to the very

limited number of input data bytes in EnOcean (longest telegrams are 14 bytes [38])

and a fixed initial vector of 0, this mode is reduced to Electronic Codebook Mode

(ECB). Besides, 16 byte blocks are required for AES-128. The required padding

sequence is fixed in EnOcean, which may lead to attacks against the encryption if

known-plaintext weaknesses come up.

• The VAES algorithm (cf. Figure 3.10) has been invented by EnOcean. It does not

seem to be mathematically proven or publicly reviewed. The algorithm seems to be

weak with respect to known-plaintext and guessing attacks and its security seems

to be dependent on the rolling code size.

• No profound, open discussion on the security of EnOcean is available. Besides, the

document creation process, review policy and release policy need to be enhanced.

46 Control Application Security

[43], for instance, did not receive updates for 7.5 months until version 1.5. Updates

1.6 - 1.9 occurred within less than one month. Besides, version numbers are not

always clear and consistent within the document.

The following subsections are based on [2] and show, how EnOcean based CAs can be

attacked via the wireless network using three practical scenarios based on side-channel

and algorithm attacks.

3.2.1 Eavesdropping Control Application Communication

The first attack scenario is to eavesdrop the communication between two CAs.

• Similar to BACnet/IP or KNXnet/IP security, EnOcean’s security introduced in

2013 is not enabled in practice. Most of today’s devices communicate unencrypted

until now, making eavesdropping trivial, e.g. by using standard hardware such as

the USB 300 [44].

• Eavesdropping of teach-in telegrams (cf. Figure 3.8), which are required to bind

an EnOcean receiver and an EnOcean transmitter, is possible. These teach-in tele-

grams are transmitted in plain text, thus an adversary can reveal the contained pri-

vate information of the transmitting device. Information such as profile data (con-

tains Radio Organizational Number (RORG)/telegram type, device type and func-

tion), private keys, security level (defining encryption and authentication level) and

Rolling Code (RLC) (i.e. a synchronized shared value to prevent replay attacks) can

be extracted. Using this information, future, even encrypted communication can be

eavesdropped.

Two approaches seem feasible to prevent such attacks. First, an alternative teach-in

procedure could be used to provide a secure way of the pairing process. Using a wired

communication interface (e.g. a simple 2-wire connection probably even providing power

supply) the necessary information could be exchanged securely between the devices. If,

additionally a central MD is used, secret information such as private keys or RLCs can be

generated and downloaded securely into the SACs, even at the installation side. In such

way, no confidential information needs to pass the wireless medium in an unencrypted

3.2 Attacking Control Applications based on EnOcean 47

Adversary

Teach-in telegram

TransmitterReceiver

Transmit teach-in
telegram

Receive teach-in
telegram

Eavesdrop
teach-in telegram

Figure 3.8: Eavesdropping EnOcean Control Application Communication (based on [2])

way. Second, RF shielding or RF level limiting could be deployed, to reduce the risk of

eavesdropping a teach-in telegram. This is, however, difficult for already installed SACs.

3.2.2 Interfering Control Application Communication

The second attack scenario are interference operations issued by an adversary. Thereby,

the adversary tries to disturb normal communication by manipulating (parts of) a tele-

gram, being sent by a transmitter. Thus, the telegram gets corrupted and the receiving CA

will ignore it. On the one hand, adversaries might interfere all or only specially targeted

communication to just generate annoyance.

On the other hand, more sophisticated attacks might target the pairing process of En-

Ocean: SACs use an RLC to provide protection against replay attacks. According to the

specification, such an RLC needs to be synchronized between communicating CAs within

a window value of 128 maximum difference to be able to en-/decrypt and authenticate a

telegram. If the RLC differs more than 128, the devices have to be resynchronized using

the pairing process. An adversary being able to interfere telegrams, will also be able to

eavesdrop these plain text teach-in telegrams enabling the attack scenario as described in

the previous subsection.

48 Control Application Security

Adversary

EnOcean telegram

TransmitterReceiver

Transmit telegramReceive telegram

Interfere
EnOcean telegram

Modified
EnOcean telegram

Figure 3.9: Man-in-the-Middle Attack on EnOcean Control Application Communication
(based on [2])

The following procedure allows an adversary to perform a man-in-the-middle attack

(cf. Figure 3.9):

1. Interfere EnOcean telegrams transmitted between devices (e.g. jam the Cyclic Re-

dundancy Check (CRC) or hash value at the end of a telegram), until the RLC is out

of synchronization in order to provoke a teach-in. In practice, it can be assumed

that users will teach-in the corresponding devices, as soon as their malfunctioning

is reproducibly noticed. Thus, it is not necessary to interfere all 128 telegrams to get

the devices out of synchronization.

2. Eavesdrop and save the teach-in telegram and its parameters.

3. Interfere and save every encrypted and authenticated telegram from the original

transmitter. Thus, the receiver will drop this telegram.

4. Send a newly generated telegram, encrypt and authenticate it with a higher rolling

code (at least 128 steps difference to the original one).

As a result, the receiver will be synchronized to the adversary and will only accept the

adversary’s telegrams. Telegrams from the original transmitter will be dismissed.

3.2 Attacking Control Applications based on EnOcean 49

This attack scenario does not work on standard EnOcean hardware, since it does

not allow the required precise interfering or to freely change the Sender ID. A proof-

of-concept attacking device allowing this man-in-the-middle attack is presented in [2].

3.2.3 Attacking Encrypted Control Application Communication

While the two previous subsections discussed side-channel attacks, this part describes a

theoretical attack on encrypted EnOcean CA communication, in particular an attack on

its VAES encryption.

PUBLIC KEY
(known constant)

Rolling Code

PRIVATE KEY AES128 ENC

ENC

DATA

DATA_ENCRYPTED

XOR

XOR

Pseudo-random sequence generator

Figure 3.10: EnOcean Variable Advanced Encryption Standard Encryption (based on [43])

Using a state of the art block cipher in combination with a commonly used mode of

operation (e.g. AES-CBC), a block size of a multiple of 16 bytes is required, which may

produce a large overhead especially for energy harvesting networks, where typically in-

formation less than 5 bytes needs to be transmitted. Hence, the VAES encryption (cf. Fig-

ure 3.10) has been specified, which allows a smaller encrypted data length. The basic idea

is that transmitter and receiver share a synchronized random value, that changes after

each telegram. This value is cut to the same length as the plaintext data and XORed with

50 Control Application Security

it to generate the encrypted data. For decryption, the receiver XORs the encrypted tele-

gram with its (=the same) cut random value to recover the plaintext. A pseudo-random

sequence generator has been specified to provide this synchronized random value. A

known constant (EnOcean imprecisely refers to it as public key) is XORed with the RLC

and serves as an input to AES-CBC encryption using the private key. The encrypted value

has a variance depending on the RLC size (16 or 24 bits). Obviously the RLC needs to be

the same value for the transmitter and the receiver, which can be guaranteed by includ-

ing the RLC within the transmitted telegram or by checking the Message Authentication

Code (MAC).

Adversary

Encrypted telegram

TransmitterReceiver

Transmit VAES
encrypted telegram

Receive VAES
encrypted telegram

Eavesdrop
EnOcean telegram

Figure 3.11: Attacking Encrypted EnOcean Control Application Communication (based
on [2])

An attack (cf. Figure 3.11) on the VAES encryption targets the pseudo-random se-

quence generator. If an adversary knows this value, it can simply eavesdrop the trans-

mitted telegrams. In fact, the pseudo-random sequence generator is periodic with a wrap

around after 216 or 224 telegrams. The following attack model based on known plaintext

values can be used to get access to the pseudo-random sequences:

1. Find a CA communication relying on the VAES encryption. An adversary has to

eavesdrop RORG telegrams of type 0x30 or 0x31, which specify that encryption

using AES-CBC or VAES is being used. Since AES-CBC always has a 16 byte block

alignment, all telegrams with other alignments need to be based on VAES.

3.2 Attacking Control Applications based on EnOcean 51

2. Eavesdrop encrypted data fields and save them using the RLC or MAC as index.

This can be achieved using standard EnOcean devices and is invisible to the trans-

mitter and receiver since no active interference takes place.

3. Associate encrypted data bytes with known plaintext data bytes. The probability to

guess the correct plaintext data bytes depends on the CA of the transmitter. The eas-

iest case is a simple switch, being either pressed or released. Obviously the device

type needs to be known by the adversary.

4. Recover and save the pseudo-random sequence by XORing the encrypted and

plaintext data bytes. At least 216 or 224 telegrams have to be eavesdropped, to get

access to all possible pseudo-random values. The actual RLC width/period has to

be known. It can be guessed by detecting fixed data bits within the telegrams.

5. Use the pseudo-random value to decrypt all previously saved or future telegrams.

Note that it is not possible to recover the private key of a device, but actually this is

not necessary to get access to the plaintext data.

To increase the probability of a successful attack, the previously described procedure

can be combined with further measures. In combination with e.g. interference, addition-

ally transmitted telegrams can be provoked.

In the following, an attack on three EnOcean CAs – a PTM energy harvesting switch,

a temperature and a light sensor – is described in more detail. A summary is shown in

Table 3.5.

The PTM switch transmits a telegram containing 11 different possible plaintext values

when being pressed and a fixed release telegram when being released. Thus, at least ev-

ery second telegram is definitively known to an adversary giving a plaintext probability

greater than 0.5. Since only one byte is being transmitted and the typical data pattern can

be recognized, a PTM switch can easily be identified. Assuming that the switch is pressed

ten times a day, the 16 bit RLC overflows in about 8.9 years and a 24 bit RLC in about 2356

years. A successful attack thus is lasting longer than 17.8 years. This time might be re-

duced, if a switch is pressed more often or the data variation of the press telegram can be

reduced (e.g. a switch being known to only have 1 button).

52 Control Application Security

Device PTM switch Temperature sensor Light sensor
EEP D2-03-00 [38, p. 106] A5-02-04 [38, p. 25] A5-06-01 [38, p. 32]
Data type 4 bit (11 button 8 bit 8 bit (300lx to 30000lx

configurations) (-10° C to 30° C) or 600lx to 60000lx)
Data pattern 1 byte (only 4 bits used) 1 variable data byte 3 variable data bytes

Fixed release telegram 1 bit teach-in 1 bit teach-in
Possible 11 + 1 release at room temperature: 256
plaintext values 15° C to 25° C ≈ 64
Plaintext > 0.5 ≈ 0.016 ≈ 0.0039
probability
Transmission Press / release Usually periodic Usually periodic
pattern every 1s-100s every 1s-100s
RLC overflow 10 switch actions/day 1s transmission cycle 1s transmission cycle
16 bit ≈ 8.9 years ≈ 18.2h ≈ 18.2h
24 bit ≈ 2356 years ≈ 194 days ≈ 194 days
Attack duration
16 bit RLC ≈ 17.8 years ≈ 47 days ≈ 194 days
24 bit RLC ≈ 4712 years ≈ 34 years ≈ 140 years

Table 3.5: Variable Advanced Encryption Standard Encryption Attack

The temperature sensor transmits a telegram containing an 8 bit encoded temperature

value between -10° C to 30° C in a configurable interval. To enhance the plaintext guessing

probability, the data variance can be reduced to 64 different values if the temperature

interval is reduced to 15° C to 25° C for a room temperature sensor. Likewise it can be

reduced, if the sensor is used as outside temperature sensor and the adversary can guess

the correct temperature using other channels (e.g. weather information or measuring the

temperature on its own). Assuming a transmission interval of 1 second, the 16 bit RLC

overflows in 18.2 hours and the 24 bit RLC in 194 days. A successful attack is lasting 47

days respective 24 years.

A light sensor encodes the illumination between 300lx to 30000lx or 600lx to 60000lx

into an 8 bit value, thus giving 256 possible plaintext values. Assuming a transmission

interval of 1 second, an attack is lasting 194 days for a 16 bit RLC and 140 years for a 24

bit RLC.

Although the duration of a successful attack might seem quite long in many cases,

it has to be noted that no deep mathematical analysis of the VAES algorithm has been

3.3 Threat Analysis 53

performed. It can be assumed, that the duration can be shortened by a well-trained ad-

versary.

3.3 Threat Analysis

To be able to provide secure CAs in BASs, it is first necessary to identify the threats to

CA software and analyze possible vulnerabilities. Based on the Open Web Application

Security Project7 and [76], the following categorization can be established:

• Authentication vulnerability: Authentication is the process of verifying the identity

and ownership of a user or a BAS node. An adversary may exploit vulnerabilities

such as authentication bypass via assumed-immutable data (i.e. an authentication

decision is handled on the client side and is thus subject to adversary modification)

and empty string or hard-coded passwords being deployed to nodes by security

unaware users.

• Authorization vulnerability: Authorization is the process of verifying the access rights

of an authenticated process or user. An adversary may bypass authorization mecha-

nisms by exploiting vulnerabilities like weak privilege management (i.e. CAs being

executed with higher privileges than necessary).

• Code quality vulnerability: On the one hand, poor code quality may lead to poor us-

ability. On the other hand, it enables an adversary to stress a system in unexpected

ways. Examples are double frees (occurs in memory management when free() is

called more than once on the same memory address), leftover debug code, memory

leaks (occurs in memory management when unneeded memory is not freed), null

dereferences (dereferencing a null pointer), uninitialized variables (using the value

of an uninitialized variable), using freed memory (referencing memory after it has

been freed).

• Cryptographic vulnerability: Adversaries may exploit vulnerabilities in cryptographic

modules due to
7 http://www.owasp.org/, Last access: 2010/08/03

http://www.owasp.org/

54 Control Application Security

– Algorithmic problems: use of insecure algorithms such as Data Encryption

Standard (DES), MD5; choosing the wrong algorithm (e.g. encryption algo-

rithm for hashing); inappropriate use of an algorithm (e.g. insecure encryption

methods or non random initial vector); implementation errors.

– Key management problems: weak keys (too short or simple), key disclosure

(keys transmitted in clear text), key updates (reuse of existing keys).

– Random number generator problems: poor random number generators (c: rand(),

Java: java.util.Random()), no seed to the random number generator, use

of the same seed for the random number generator every time.

• Error handling vulnerability: Adversaries may try to generate errors and then exploit

vulnerabilities in error handling such as empty catch blocks, improper cleanup on

thrown exceptions, missing error handling, uncaught exceptions.

• General logic error vulnerability: This category includes vulnerabilities such as assign-

ing instead of comparing or comparing instead of assigning, omitted break state-

ments or use of sizeof() on a pointer type.

• Input validation vulnerability: If (user) input to CAs is not checked for proper con-

straints, an adversary might stress a BAS by intentional malformed inputs. This

type of vulnerability includes flaws due to buffer overflows (e.g. [121]), format

strings [120], improper data validations, string termination errors or validations

performed at client side.

• Protocol errors: This category includes vulnerabilities such as the failure to add in-

tegrity check values, the failure to check for certificate revocations, the failure to

encrypt data, key exchange without entity authentication or trusting self-reported

DNS names.

• Range and type error vulnerability: Improper handling of the type, size and signed-

ness of data may be exploited by an adversary. Typical vulnerabilities are compar-

ing classes by name, integer overflows, sign extension errors, signed � unsigned

conversion errors or truncation errors.

3.3 Threat Analysis 55

• Sensitive data protection vulnerability: This category contains vulnerabilities that lead

to insecure protection – i.e. failure to maintain confidentiality and integrity – of sen-

sitive data due to e.g. heap inspection, information leakage, privacy violation. Sim-

ple attacks by a malicious CA would allow to read the whole memory – including

firmware, secret password or any other confidential information – and to send the

contents over the network interface.

• Session management vulnerability: A session refers to a lasting interaction between

CAs and/or users. Vulnerabilities in session management due to e.g. cross site

scripting, insufficient session-ID length enable adversaries to hijack such interac-

tions.

• Synchronization and timing vulnerability: This category covers vulnerabilities, which

occur due to improper or unhandled timing dependencies in CAs or in communi-

cation between CAs. Examples are capture-replay vulnerabilities (i.e. the replay of

network traffic), race conditions [9] or time-of-check/time-of-use race conditions as

shown in the Listing 3.1 of a simple program, which accesses a file:
1 i f(!access(filename,W_OK)) { // check permissions
2 f = fopen(filename,"w+"); // open file
3 operate(f); // operate on file
4 ...
5 }
6 e lse {
7 fprintf(stderr,"Unable to open file %s.\n",filename);
8 }

Listing 3.1: Synchronization and Timing Vulnerability

If an adversary is able to manipulate the file with the name filename after its

access rights have been checked in line 1 (e.g. by suspending a program and creating

a link to another file), all subsequent operations on the new file are not checked for

access permissions.

• Mobile code: Mobile code is code being transmitted across a network and being ex-

ecuted on a remote machine. Special guidelines are necessary to protect such code

from manipulation by an adversary. Common examples of mobile code are Java

applets or ActiveX elements.

56 Control Application Security

• Use of dangerous Application Programming Interfaces (APIs): Certain APIs in various

programming languages are considered as being insecure and their usage may im-

pose security vulnerabilities in CAs. Examples are dangerous functions (e.g. C-

functions gets(), strcpy(), strcat(), printf()) that do not check for

the size of destination buffers), insecure temporary files or the use of obsolete meth-

ods.

To be able to create secure CAs, it is essential to know how often attacks on the pre-

sented vulnerabilities occur and which vulnerabilities need to be dealt with. No statisti-

cal data is, however, available for BASs or more generally for Embedded Systems (ESs)

typically being deployed in BASs. Therefore, an analysis based on the introduced cate-

gorization has been performed [129]. Figure 3.12 shows a breakdown of vulnerabilities

being openly available at the US-CERT Vulnerability Notes Database8). All entries of the

years 2007 to March 2010 (632 in total) have been analyzed, categorized and counted. The

numbers give an adequate overview of the commonness of vulnerability types. Although

this analysis basically covers vulnerabilities of traditional IT systems (i.e. OS and middle-

ware software), it shows the broad range of threats also possibly applicable to software

in BASs. Moreover, it reveals that since years, input validation vulnerabilities are the

most common challenge to provide secure CAs, but the other vulnerabilities must not be

neglected.

3.4 Requirements for Secure Control Applications

Due to the extreme broadness of threats and vulnerabilities to CAs, an attack model needs

to be defined:

Definition 3 Software attack model: Any (malicious) CA, irrelevant whether it originates from

trusted or non-trusted sources, being run on BAS devices may exploit weaknesses in security

schemes and system implementations, intentionally or unintentionally. Accidental programming

flaws in CAs may be present just like software being intentionally infected by trojans. Adversaries

may use these manifold possibilities to access control level functions they usually are not allowed

to.
8 http://www.kb.cert.org/vuls, Last access: 2015/08/03

http://www.kb.cert.org/vuls

3.4 Requirements for Secure Control Applications 57

16,67%

16,67%

22,22%

0,00%

0,00%

5,56%

16,67%

0,00%

5,56%

0,00%

11,11%

0,00%

5,56%

0,00%

12,90%

3,23%

3,23%

0,00%

0,00%

3,23%

54,84%

6,45%

1,61%

3,23%

1,61%

0,00%

3,23%

6,45%

6,82%

6,82%

4,55%

2,27%

0,57%

3,41%

49,43%

4,55%

3,98%

5,68%

2,27%

0,57%

2,27%

6,82%

2,93%

7,98%

9,84%

2,13%

1,33%

1,06%

51,33%

3,19%

6,12%

2,93%

3,72%

0,80%

3,72%

2,93%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

2010‐03‐01 2009 2008 2007

Figure 3.12: Vulnerabilities Breakdown 2010-03 – 2007

58 Control Application Security

Thus, it is not enough to provide yet another new method to prevent single attack

types like buffer overflows, but to provide a solid and reasonable approach allowing se-

cure CA development. Therefore, security mechanisms need to be included that ascertain

the operational correctness of protected code and data before and at runtime, enforce that

application content can remain secret and protect against probing.

Definition 4 Secure Control Application: A secure CA is a CA, which additionally provides

mechanisms to prevent and detect software attacks.

The overhead imposed by security mechanisms needs to be reasonable small and a

suitable balance between required level of security and available resources for a specific

domain has to be found. The resulting implications to BAS nodes are described in the

next two sections.

3.4.1 Functional Requirements

Functional Requirements (FRs) are directly related to the security considerations for CAs.

The utmost requirement is to prevent software attacks on CAs and, if not possible, at least

detect those attacks. The following FRs can be derived to achieve this goal:

FR–memory access: Considering the execution of a CA on a SAC, the memory access

must be controlled. On the one hand, a CA must not be allowed to access arbitrary

memory locations to e.g. prohibit, that a malicious CA subverts any security mech-

anism. On the other hand, a secure storage of protected data must be possible. To

put it differently, information such as configuration parameters or cryptographic

keys invisible and unaccessible to the CA need to be stored on the SAC to provide

the basis for a secure system. Vulnerabilities (e.g. memory corruption via buffer

and format string overflows or code injection) caused by side effects have to be pre-

vented.

FR–low level functionality access: The same way it must be possible to limit the actions

and allowed operations (e.g. access to low-level function calls) a CA can perform

with respect to

3.4 Requirements for Secure Control Applications 59

• Access rights: Is a CA allowed to call a particular function or not? Note, that

often a generic system software is deployed on SACs with far more capabilities

and functions than a simple CA may need. Hence, it is desirable to limit the

allowed operations for a SAC.

• Parameters: Likewise the parameters of a function call need to be limited so

that e.g. the present value of a Datapoint (DP) does not exceed a critical value.

• Execution time: The point in time when a function is called is an additional

constraint to monitor. Not only the actual instance, but also the invoking fre-

quency is critical for some applications.

• Domain constraints: Dependencies between function calls, which can be seen

as domain constraints, are a further critical issue. Consider e.g. an HVAC ap-

plication, where it is not desirable to simultaneously switch on the heating and

the cooling function.

FR–protection of environment: CAs must neither destruct the hardware or waste re-

sources intentionally nor due to programming flaws (e.g. wear out of a flash mem-

ory or exhaust battery power).

FR–communication relationship: CAs have a defined (static) communication relation-

ship. Being readily configured, it is known which CAs need to communicate and

which CAs do not need to communicate. A simple light switch, for instance, must

not be hacked and abused to open a security door. This communication relationship

needs to be considered in security mechanisms.

FR–availability: Availability, i.e. DoS attacks, need to be prevented or detected.

3.4.2 Organizational Requirements

Organizational Requirements (ORs) cover the special environmental conditions required

for developing secure CAs in BAS.

OR–limited resources: Due to cost efficiency and form factor, SACs are normally embed-

ded devices with limited system resources (e.g. memory, processing power) that

60 Control Application Security

rely on bus- or battery-power. Security mechanisms (especially cryptographic al-

gorithms) are computationally intensive and must not exceed the available device’s

processing resources (processing gap) and power resources (battery gap) [136]. The

overhead imposed by these mechanisms needs to be reasonably small. Therefore, a

suitable balance between a required level of security and available resources has to

be found (”good enough security”).

OR–development: CA development has to be simple and secure by design so that even

security unaware developers are able to design secure CAs. This is especially im-

portant for the BAS domain, since engineers are experts in the field of automation

but not in the field of security. Therefore, a two level concept with a dedicated sys-

tem software and a CA, as already present in KNX or LonWorks, needs to be sup-

ported. This way, also portability of CAs can be achieved due to their separation

from the system software. Clearly, this may impose security risks, which a security

concept has to deal with: While malicious, erroneous or compromised CAs may be

uploaded long after device deployment, they shall not interfere with the concerning

device software and thus violate the device’s security.

OR–high level language support: High-level programming languages (e.g. Java) need to

be supported such that the desired control logic and behavior can be obtained more

easily. CA development is also simplified, since the application programmer does

not have to cope with details such as a hardware specific system software or the

communication protocol.

OR–long lifetime: BASs have to be kept operable for years or even decades. Due to this

long lifetime, such systems obviously have to undergo maintenance during runtime

in order to keep them operable. With the complexity of the CA software increasing,

it also must be assumed that not all implementation flaws can be detected in the de-

velopment phase. Since these may result in security vulnerabilities, a secure update

mechanism is beneficial. Such a mechanism should allow the distribution of sys-

tem software patches and secure download and replacement of CAs in an easy and

secure manner. It can also be used to add required functionalities not anticipated

3.4 Requirements for Secure Control Applications 61

during development. Since such an update mechanism also offers an additional

attack point it has to be protected against unauthorized use.

OR–scalability: Since BASs can consist of hundreds or even thousands of devices, ap-

propriate scalability of security mechanisms is essential. For instance, key distri-

bution schemes which routinely require physical access to the individual devices

are not feasible in large networks. Therefore, services must be provided which as-

sist in performing these tasks. For many services in the IT domain the amount

of devices that communicate with each other is relatively small, thus allowing the

client/server model to be used in most cases where only the communication be-

tween the clients and the server has to be secured. BANs, on other hand, usually

consist of only a few MDs, some ICDs with defined applications, and thousands

of manifold SACs. Communication between SACs occurs peer-to-peer based with-

out a central instance. Thus, scalability of the integrated security mechanisms is of

major concern.

OR–network technology: Security mechanisms need to be geared towards the different

requirements in BANs regarding the used network technology. While in the IT

world IP based network protocols are dominant, the use of IP networks in BANs

is reserved to the backbone level. At the field level, predominantly non-IP fieldbus

are used. Besides, control data typically transmitted in BANs have a small volume

(in the order of bytes) with perhaps soft real time requirements (e.g. reaction time

in a lighting system). In the IT/office domain, the data volume to be transferred

is commonly high (in the order of mega- or gigabytes) with usually no real time

requirements.

OR–compatibility: The integration of a security extension into an established BAS is

preferable to create an entirely new system. Such an approach allows to leverage

the existing base of available components for parts of the system where security is

not (yet) a requirement. This allows a smooth transition until devices supporting

the security extension become widely available. It also offers an economical up-

grade path for existing installations. Downward compatibility will influence the

acceptance of a security extension significantly. Such a compatible extension shall

62 Control Application Security

not make existing standard system components obsolete. It shall be possible to use

them simultaneously with new secure devices, without mutual interference. How-

ever, security must not be compromised.

OR–physical access: In BANs, devices often operate in untrusted environments where

physical access (e.g. an intrusion alarm in a public building or a wireless sensor

network [64]) is given. Therefore, it has to be assumed that a short time physical

access to devices and networks cannot be avoided. Such attacks have to be detected

by a security system.

OR–usability: Usability of security measures has to be provided, when these systems

are installed. On the one hand, this implies that it has to be possible to deploy

them as easily as possible. In the best case, users do not even notice, that a secu-

rity measure is enabled. At least, education and guidelines (e.g. secure password

guidelines) need to be provided for support. On the other hand, this requirement

also covers protection against social engineering attacks. It has to be prevented, that

credulous users deactivate or bypass security measures unintentionally and enable

an adversary to attack a BAS.

3.5 Summary

As shown in this section, security awareness in the BAS domain is missing and today’s

CAs need to be considered as insecure. Thousands of BACnet and KNX based installa-

tions are being directly connected to the Internet, allowing an adversary to attack them.

Besides, exemplary attacks on the EnOcean technology demonstrate, that BAS specific

constraints have not been covered in research. Manifold vulnerabilities and requirements

need to be considered to be able to provide secure CAs.

4
Software Protection Techniques

Hypothesis 4 Existing software protection techniques from the IT domain cannot be used to

develop secure CAs. They are insufficient with respect to the functional and organizational re-

quirements and not applicable to BAS.

A broad range of commonly used state of the art approaches aims at improving appli-

cation level security in the presence of programming flaws or untrusted code. Consider-

ing the attack model as depicted in Figure 4.1, they can be distinguished into techniques

preventing attacks, detecting attacks, recovering after attacks and providing tamper evi-

dence.

This section focuses on related work which addresses attack prevention and attack de-

tection. Attack recovery and tamper evidence are out of scope of this dissertation. Soft-

ware protection techniques present in the IT world are likewise covered as techniques

Attack
prevention

Attack
detection

Attack
recovery

Tamper
evidence

Attack

Detection
latency

Recovery latency

Time

Figure 4.1: Attack Model

63

64 Software Protection Techniques

specifically tailored to ESs. In theory, it is preferable to fully prevent attacks. This may,

however, not always be possible or feasible with respect to a system’s resources. Thus, to

prevent a successful exploit of an attack, its detection latency has to be smaller than the

time it takes to reach an undesired software state. In the following, a short description

of software protection techniques (cf. Figure 4.2) is given and a categorization into static

software methods (cf. Section 4.1.1), dynamic software methods (cf. Section 4.1.2), hard-

ware assisted methods (cf. Section 4.2), human assisted methods (cf. Section 4.3) as well

as hybrid methods (cf. Section 4.4) is performed. Then, security in open BASs is analyzed.

Finally, the presented techniques and technologies are evaluated with respect to their ap-

plicability to protection against vulnerabilities, security requirements and device classes

in BASs (cf. Section 4.5).

Software protection
techniques

Software assisted Hardware assisted Human assisted

Static Dynamic

Figure 4.2: Software Protection Techniques

4.1 Software Assisted Methods

Approaches falling into this category try to improve security by applying additional soft-

ware assisted methods. A security policy or at least some security rules need to be defined

at system level, which then can be checked for violation. Software assisted methods can

be divided into static, usually performed at compile time or before execution, and dy-

namic methods. The latter generally try to hamper software attacks by applying security

mechanisms at runtime, either by preventing attacks a priori, or by detecting malicious

or undesirable actions and reacting to them according to a given policy.

4.1 Software Assisted Methods 65

4.1.1 Static Methods

Static Code Analysis (SCA) generally refers to manual as well as automated tool supported

analysis of program code to detect certain properties of a program without executing it

[22]. In security, it is used to detect programming flaws that result in vulnerabilities and

provide valuable feedback in a human readable form to developers. Automated tools

usually use pattern matching to detect common flaws. More sophisticated tools combine

techniques like annotations, heuristics and modeling the execution state.

On the one hand, SCA can be carried out on program source code. [15], for instance,

describes a compile-time analyzer which is capable of detecting dynamic errors. An an-

alyzer traces the execution paths, models memory and reports inconsistencies. Besides,

automatically generated models abstract the behavior of individual functions and thus

allow inter-procedural errors to be detected. [110] presents Splint, an approach, which

tries to mitigate buffer overflow vulnerabilities by lightweight and efficient static analysis

of C-code. Their approach is based on the static analysis tool LCLint [46]. With minimal

effort a detection of software flaws such as unused declarations, type inconsistencies, use

before definition, unreachable code, ignored return values, execution paths with no re-

turn, likely infinite loops, and fall through cases can be achieved. By adding annotations

to the source code, which provide additional information about its intended behavior,

stronger checking can be performed. The commercially available static analyzer ASTRÉE1

intends to prove the absence of runtime errors such as float rounding errors, overflow er-

rors in C-programs. By abstract interpretation of program code, all possible errors are

reported (i.e. ASTRÉE is always sound), however occasionally errors are signaled, that

cannot really happen (i.e. false alarms on spurious executions). ASTRÉE does not support

dynamic memory usage or recursion has, however, been deployed in the A340 and A380

aircraft and Jules Vernes Automated Transfer Vehicle.

On the other hand, SCA can be carried out on binary code. [27], [108] describe an

approach to statically analyze x86 binaries using symbolic execution. [161] uses SCA

based on abstract interpretation on embedded executable assembly code to determine

1 http://www.astree.ens.fr/, Last access: 2015/08/03

http://www.astree.ens.fr/

66 Software Protection Techniques

whether coding standards have been followed during application development or not.

However, only the presence of unwanted hard coded pointer variables is discussed.

Using Code-Signing (CS) program code is signed by its producer to confirm its origin

and non-modification [126]. Although CS does not provide any security measures itself,

the user can at least decide about the trustworthiness of a program with respect to its ori-

gin. Most of the current OSs (e.g. Linux, Apple Mac OS X, Microsoft Windows) utilize CS

to secure their update services and prevent maliciously distributed code via their patch

system. Typically a trusted third party is required to establish the trust relationship be-

tween code producer and consumer, but also approaches exist, where this is not required

[143].

Somewhat similar to CS, but with different purposes, is Watermarking (WM) [24]. It

is used to embed additional, secret and non-removable information into a piece of data,

usually to assure that the rights of the creator are not hurt and digital information is dis-

seminated in a controlled way [125]. A typical example is media WM where information

about owner and copyright is embedded into a picture, music or a movie (Digital Rights

Management (DRM)). WM applied to software protects against illegitimate modifications

and tampering by its users [17] before actually executing it.

Proof-Carrying Code (PCC) [119] is a technique where a code producer provides a proof

along with a program allowing to check with certainty, that the code is secure to execute

(e.g. does not to contain buffer overflows). On the one hand, the user specifies a set of

security rules. The code producer, on the other hand, creates a formal security proof

which proves adherence to these rules. Correctness is checked using a simple and fast

proof validation. PCC may be used in environments such as web browsers or ESs, where

the execution of downloaded code is allowed. A trust relationship between code producer

and user is not required, since all information needed to determine that the code is secure

to execute is contained within the code and the proof. If modifications have been applied

to the code, PCC guarantees that either the proof is no longer valid and the user can

reject the execution of the program, or the proof is valid and does not correspond to the

program anymore or that the proof is still valid.

4.1 Software Assisted Methods 67

4.1.2 Dynamic Methods

IDSs observe the behavior of a system by e.g. tracing system calls, file system operations

or network traffic and use the collected information to detect malicious modes or actions

[111], [117]. Advanced approaches exist, which rely on a distributed system to allow

better scalability [107].

Signature based Intrusion Detection Systems (SIDSs) detect malicious actions by compar-

ing observed information to a collection of signatures describing known attacks. Most

modern anti virus software use SID to detect malware.

Anomaly based Intrusion Detection Systems (AIDSs) use representations of the trained,

normal behavior of a system to detect abnormal activities which are assumed to be caused

by attacks. Here, mechanisms from simple statistical analyses to neural networks and

other artificial intelligence techniques are used. As an example, [71] is able to detect

intrusions at the level of privileged processes since they usually implicate anomalous se-

quences of system calls. In fact, short sequences of system calls executed by running pro-

cesses are a good discriminator between normal and abnormal behavior. An enhanced

training and learning sequence approach based on finite state automata is introduced by

[148]. [47] describes an AIDS, which allows anomaly detection by dynamically extracting

information from the call stack of a program execution. The return addresses are being

used to generate an abstract execution path between two program execution points. Be-

sides, approaches exist which describe an AIDS that targets mobile ad-hoc networks and

considers requirements such as the limited processing power and battery gap [32].

Software Monitoring Techniquess (SMTs) observe the execution of specific programs. By

identifying and reacting to certain security relevant events they can check if programs

behave according to a given (human specified or automatically generated) security pol-

icy. On the detection of malicious behavior, actions can be taken to prevent it or to stop

the program. Monitoring usually takes place at instruction level by checking some or

all instructions which are to be executed by a program. [54], [167] describe a secure en-

vironment for untrusted helper applications, which protect the hosting application by

intercepting and filtering dangerous system calls and thus restricting a program’s access

to the OS. Pre-existing legacy code can likewise be protected as newly developed soft-

68 Software Protection Techniques

ware. Control-Flow integrity is a safety property being able to hinder adversaries from

arbitrarily controlling a program behavior [1]. Its enforcement is simple, practical and

can be performed efficiently. Quite similar [93] defines local security checks to implement

a global security property by monitoring the control flow of software.

A Sandbox (SB) is a technique where possibly untrusted and malicious programs are

executed in a controlled way, often with restricted permissions [159]. The essential benefit

is that the executing host is protected from direct attacks of the software running in the

SB. Additionally, the behavior of the program can be monitored and controlled. The first

approaches used SBes to isolate software faults by logically separating an application’s

address space [168]. Adobe Acrobat Reader 10.0 and later, for instance, use a SB to im-

plement a so called protected mode prohibiting write accesses of code, which has been

infiltrated by malicious pdf documents2.

An extension to SBes is the concept of Virtual Machines (VMs) [153]. Process VMs pro-

vide virtualization mechanisms between OSs and processes. Such techniques are present

in most modern OSs and allow multiple processes to coexist on the same hardware and

have the illusion to possess the whole system for itself. System VMs apply virtualization

techniques between the OS and hardware. In such way, several OSs may be executed on

same hardware without interfering with each other. A lot of different VMs have been de-

veloped, which target (mobile) ESs and consider their requirements and resources. [157]

is a simple, fast and robust VM, which allows to run code compiled for a common instruc-

tion set architecture, independently from the underlying hardware. To allow efficient

on-the-fly compilation, the basic instruction set is matched to popular processor architec-

tures. Additional instructions for inter-device communication, power management and

error recovery are provided.

Self Checking Code (SCC) describes techniques where programs check themselves for

modifications at runtime, assuming that modifications are undesirable and probably ma-

licious [6]. Simple methods generate hash values over parts of the program and compare

them to stored values, usually determined at compile time. Note, however, that such ap-

proaches can easily be distinguished from normal code and thus could be bypassed by an

2 http://www.heise.de/ct/meldung/Adobe-Reader-X-mit-Sandbox-fuer-Windows-
verfuegbar-1139095.html, Last access: 2015/08/03

http://www.heise.de/ct/meldung/Adobe-Reader-X-mit-Sandbox-fuer-Windows-verfuegbar-1139095.html
http://www.heise.de/ct/meldung/Adobe-Reader-X-mit-Sandbox-fuer-Windows-verfuegbar-1139095.html

4.1 Software Assisted Methods 69

adversary. Measures such as watermarking, obfuscation and anti-debugging techniques

have to be taken, that hamper the discovery and modification of SCC code. Other meth-

ods apply public key cryptography to generate signatures of code and critical data which

are added to the program. This way not only the program’s integrity, but also its source

and trustworthiness can be checked. [75] describes a SCC mechanism to improve tam-

per resistance of large programs with the aim of securely executing them on potentially

hostile hosts. The concept of testers is introduced, which redundantly test for changes in

the executable code as it is running and report modifications. Addressing the challenge

of obfuscating the checking mechanisms, oblivious hashing [21] continuously calculates

hash values based on the dynamic execution trace of a piece of code. This way opera-

tional correctness can be checked at any point in the program and SCC can be blended

seamlessly into the application code.

There is also a number of Attack Specific Countermeasures (ASCs) which target only spe-

cific types of vulnerabilities. In such cases, the attack requirements are narrowed to a

small set of conditions, and assumptions are made on how they could be prevented. Es-

pecially for the still dominant stack based buffer overflow attacks a lot of approaches exist

which try to hinder them [172]. A popular example is StackGuard [28], which has been re-

leased in 1997 for the GNU Compiler Collection (GCC). It applied several techniques such

as storing return addresses for comparison or placing known values (canaries) between

buffer and control data for detecting overwrites. ProPolice [45], being part of the GCC

by default, additionally protects all registers saved in a function’s prologue (e.g. frame

pointer) and also sorts array variables to highest part of the stack frame. A compiler ad-

dition (i.e. /GS switch) for Microsoft Visual Studio [12] inserts a cookie (random data) be-

tween stack data and function return address and checks it when a function exits. Besides,

buffers are placed in higher memory locations than non buffers (e.g. function pointers).

Quite similar heap based buffer overflow attacks can be performed (e.g. [4], [115]). How-

ever, detection mechanisms are deployed which make such rather simple attacks harder.

A random cookie can e.g. be added to each heap block. If it has been tampered due to an

overflow the application can then be aborted. Besides, heap integrity checks are common

when blocks are being freed and data structures are checked for validity. PointGuard [30]

describes a compiler technique to defend against buffer overflow attacks by encrypting

70 Software Protection Techniques

pointers while they are stored in memory and only decrypting them when being loaded

into registers. Address Space Layout Randomization (ASLR) is another technique being

deployed against buffer overflow attacks [151]. By randomly arranging the position of

key data (e.g. base of the executable, stack and heap in a process’s address space, posi-

tion of libraries), the predictability of the exact memory locations required for attacks is

not given anymore. In this way, ASLR does not prevent such attacks, but it makes them

harder to perform. Since the Vista version of Microsoft Windows, for example, stack ran-

domization is active and the stack base address varies by 0–31 pages and a random offset

in 4 KB pages is chosen. Similar to heap randomization, the heap offset is also random-

ized between 0–4 MB. To protect against exploits attempting to call shared libraries (e.g.

return-to-libc exploit [154]), function entry points are moved in memory between

256 different locations. To counter format string attacks FormatGuard [29] provides a

replacement of printf() function with more secure implementation and additionally

performs function argument counting. Race conditions are addressed in e.g. RaceGuard

[31], a kernel enhancement which circumvents temporary file race vulnerabilities.

Embedded OSs provide hardware abstraction and offer an interface to execute (multi-

ple) CAs. A kernel handles tasks such as interrupts, memory management, Input/Output

(I/O) or network access and limits what an application is allowed to do. Until now,

only two OSs are available, that target security critical applications and have achieved a

satisfying Common Criteria for Information Technology Security Evaluation (CC) level

[90]. Green Hills Software Integrity operating system3 is one of the most secure com-

mercial OS. Its integrity kernel has been certified according to CC Evaluation Assurance

Level (EAL) 6+ level [80]. The Secure Embedded L4 microkernel [100] is a complete,

general-purpose OS kernel. Its functional correctness has formally been proven in such

a way that the implementation strictly follows a high-level abstract specification of the

kernel behavior.
3 http://www.ghs.com/, Last access: 2015/08/03

http://www.ghs.com/

4.2 Hardware Assisted Methods 71

4.2 Hardware Assisted Methods

Dynamic software mechanisms typically face two common problems: First, they are ex-

ecuted on the same underlying processing hardware which exposes them to security at-

tacks themselves. Second, they implicate a performance overhead. Hardware assisted

methods may pose an extra barrier that is not easily bypassed with conventional tech-

niques and speed up security processing.

A common approach is to use a Co-Processor (CP) which performs security checks at

runtime. This often involves static analyses of the programs to generate some kind of

execution profile that is used for monitoring. The CP is usually closely attached to the

executing processor to enable extensive low-level monitoring. [5] describes such a con-

cept, which is able to monitor the inter-procedural control flow, intra-procedural control

flow, and the instruction stream integrity. Upon a security violation, the CP disrupts the

executing application. [114] provides an extension which allows detection within one

instruction cycle. [177] presents an approach, where a secure CP is used to execute an

IDS.

The increasing use of multicore architectures even on ESs allows their usage for se-

curity mechanisms. Physical Partitioning (PP) [70] may be used to improve a system’s

reliability as well as its resistance against security attacks by separation of execution do-

mains.

Processors implementing the Harvard Architecture (HA) provide resistance against

code injection attacks by design. The separation of instruction and data memory makes it

impossible to execute injected code. [139] proposes a change to the memory architecture

of modern processors imitating the HA on von Neumann processors. The memory is split

virtually into code and data memory. Therefore, a processor would never be able to fetch

injected code execution.

CPU EXtensions (CPUEXs) providing security features are common in the IT domain.

The No eXecute (NX) bit was first introduced by AMD4. It is present in most modern

processor architectures, only with different names, e.g. Intel’s eXecute Disable (XD) bit.

Traditional buffer overflows enter a system as data and then are executed. Thus, these

4 http://www.amd.com/, Last access: 2015/08/03

http://www.amd.com/

72 Software Protection Techniques

CPUEXs prevent the execution of code from data segments. They allow memory regions

to be designated as being non executable meaning that they may only be used to store

data making such traditional code injection attacks impossible. CPUEXs are supported

since Microsoft Windows XP SP2 (i.e. Data Execution Protection (DEP)), Linux 2.6.8 and

Mac OS X 10.6. Dynamic information flow tracking [158] is an architectural support

which tracks I/O inputs and monitors their use. Any unintended use is detected by a

processor and handled by special software. ARM TrustZone® technology5 is a system-

wide approach to security, which is tightly integrated into processors and targets high

performance platforms with applications such as secure payment, DRM and web based

services. [79] is an approach – consisting of a hardware architecture and a software coun-

terpart – to provide a processor virtualization architecture to be used on mobile terminals

for pre-installed applications as well as downloaded applications. [176] addresses soft-

ware protection based on a Field-Programmable Gate Array (FPGA) hardware. A secure

hardware component is used to recognize and certify strings of keys hidden in regular

unencrypted instructions in order to guarantee the non-modification of the executable.

4.3 Human Assisted Methods

Manual Inspection And Certification (IAC) performed by humans can be applied during

the software design and development process to strengthen security. In such way, con-

formance to standard coding rules (e.g. [73]) can be checked and code reviews can reveal

software bugs. IAC of a product’s functionality is already common for ensuring interop-

erability between devices from different manufacturers.

In the context of software protection techniques, Formal Verification (FV) is a mathe-

matical proof that a program (i.e. an implementation) fulfills its specification. For auto-

mated verification it often models the problem using formal methods such as finite state

automata or petri nets. Model checking explores all states and transitions within a model

and, if no violation of the specification is found, the model is proven to be correct. [20]

describes model checking programs for security properties, a formal approach for finding

5 http://www.arm.com/products/processors/technologies/trustzone.php, Last ac-
cess: 2015/08/03

http://www.arm.com/products/processors/technologies/trustzone.php

4.4 Hybrid Methods 73

bugs. Rules for safe programming practices are identified, encoded as safety properties

and then verified, if they are obeyed. [97], [98] present a flexible method to detect mali-

cious code patterns in executables by model checking.

4.4 Hybrid Methods

Hybrid methods combine different approaches with the goal to enhance overall security.

Only a few approaches are listed here as examples:

Program shepherding [99] is a SMT approach which relies on three techniques to en-

force a security policy. First, execution privileges of instructions can be restricted on base

of code origins. For that purpose, the three categories (1) code from original image on

disk, (2) dynamically generated but unmodified code, and (3) modified code are distin-

guished. Second, control transfer can be restricted by e.g. checking each direct or indirect

call, return or jump and forbidding the execution of shared library code except through

declared entry points. Third, all transfers of control are monitored by un-circumventable

sandboxing.

A hybrid approach combining static PCC and dynamic SMT is presented in [149].

Model-carrying code executes untrusted applications by allowing the user to select a se-

curity policy and enforcing it during runtime.

The Java Virtual Machine (JVM) uses a hybrid approach. Within the Java runtime

system, a SB forms an essential part of the security architecture. [33] identifies four ba-

sic security mechanisms of the SB in the Java Micro Edition (Java ME)6: (1) Java class

files are verified for correctness before execution, (2) only a restricted API is available

for untrusted code, (3) class loading mechanisms cannot be bypassed, and (4) the set of

functions accessible to the SB is closed. The SB model has undergone many improve-

ments to provide better security [55], [56]. A security manager class, for instance, has

been deployed, which checks and restricts actions performed by untrusted code. Besides,

an advanced class loader ensures, that such code cannot interfere with the operation of

other Java programs. [169]–[171] discuss, how to further strengthen the Java security con-

6 http://www.oracle.com/technetwork/java/embedded/javame/index.html, Last ac-
cess: 2015/08/03

http://www.oracle.com/technetwork/java/embedded/javame/index.html

74 Software Protection Techniques

cept for mobile code. [65], [66] describes a Java secure execution framework providing a

highly configurable security environment.

There are also a number of JVMs for ESs available, which offer a subset of the full

Java functionality. Oracle provides the official Java ME for mobile and other ESs such as

mobile phones, personal digital assistants, TV set-top boxes and printers. Although be-

ing strictly reduced in size and overhead, it still offers powerful programming interfaces,

robust security and built-in network protocols. The minimum system requirements spec-

ify around 160-512 KB of total memory and a 16 bit processor being clocked at at least

16 MHz. Oracle’s Java Card7 technology offers a secure environment for applications that

run on smart cards and other devices with very limited memory (1 KB RAM, 32-48 KB

ROM) and processing capabilities. [152] presents an advanced JVM architecture based on

the Connected Limited Device Configuration (CLDC) standard, which is targeted to run

on next generation smart cards. [11] describes a JVM for small ESs with a special focus

on home automation. The JVMs LEJOS8 and NanoVM9 allow the execution of standard

Java byte code, at least after preparation with an automated tool. They target very low

profile ESs. LEJOS has been developed for for the Lego Mindstorms RCX programmable

bricks with memory requirements of about 10 KB and support for multi-threading, ex-

ceptions and synchronization but e.g. missing floating point support. The NanoVM was

written for the Atmel AT-Mega8 micro controller, e.g. lacks multi-threading support but

has a small memory footprint of approximately 7 KB size. Besides, the JVM JamaicaVM10

with a memory footprint of about 256 KB provides a real-time environment for ESs. Also

dedicated processors implementing the JVM exist (e.g. [145]).

7 http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.
html, Last access: 2015/08/03

8 http://tinyvm.sourceforge.net/, Last access: 2015/08/03
9 http://www.harbaum.org/till/nanovm/index.shtml, Last access: 2015/08/03

10 http://www.aicas.com/, Last access: 2015/08/03

http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
http://tinyvm.sourceforge.net/
http://www.harbaum.org/till/nanovm/index.shtml
http://www.aicas.com/

4.5 Applicability Analysis for Building Automation Systems 75

4.5 Applicability Analysis for Building Automation Sys-

tems

This section evaluates the potential of available software protection techniques to pro-

vide an overall software security for CAs. Thus, their applicability to SACs, ICDs as well

as MDs and their protection against the presented threats (cf. Section 3.3) and the attack

model will be discussed in the next paragraphs. A summary can be found in Table 4.1.

Table 4.2 evaluates the applicability with respect to the functional and organizational se-

curity requirements described in Section 3.4.

The ideal software protection technique allows to fully prevent vulnerabilities and

hinders attacks to SACs, ICDs and MDs, no matter whether the attack pattern is already

known or not. To minimize performance overhead, it is applied only during compile time,

or at least does not have any performance overhead during runtime. Besides, it does not

require updates and scales well. These requirements are, however, contradictory and

cannot be applied all at the same time.

Static methods are applied during compile or development time, respectively. Hence,

they can prevent attacks at a point in time, where appropriate countermeasures or bug

fixes can be applied without interfering with running software. However, they cannot

detect all possible vulnerabilities without actually executing a piece of software. Applica-

tions successfully checked for security vulnerabilities could be “malicious by intent” and

e.g. distribute sensitive data such as encryption keys. Besides, SCA, CS and PCC have to

be performed on every code change. Nevertheless, they are assumed to be easily appli-

cable with respect to resources of the target system because they are only used at compile

time.

Applying SCA to binaries is difficult because of decoding the instructions. Especially

in the field of BAS and the ESs being deployed there, different instruction set architec-

tures hamper the use of general binary code SCA tools. Besides, most SCA techniques

target x86 binary code only, which are rarely used in this domain. SCA on source code

can be applied more easily, as long as the code is portable across architectures and stan-

dards for the programming language are respected. A problem of SCA is that for typical

76 Software Protection Techniques

programming languages some fundamental questions (consider, e.g. the halting prob-

lem) are undecidable or uncomputable [109]: The CA could be frozen, or be locked in an

endless loop. Even when the allowable instruction set (language) for CAs is restricted, it

cannot be guaranteed that insecure behavior can be detected a priori – at least while the

remaining subset is still powerful enough to do anything useful. Therefore, the results of

SCA tools can never be sound and complete and it will always be uncertain if some of

the detected flaws are false positives, or some real flaws remain undetected. [182] shows

that SCA does not detect some errors in real word programs and claims, that support

of automatic analysis tools is needed to be able to cope with high rate of false positives.

[178] shows that SCA is affordable with respect to costs and [16] demonstrates that it can

be quite effective.

CS can be quite effective to prevent the installation of arbitrary CAs by simply refusing

to execute unsigned or not properly signed code. Note, that a trust relationship to the

code signer and possibly a trusted certification authority are needed. However, CS does

not prevent malicious programs or accidental flaws. Besides, mechanisms for sensitive

data protection are needed, since the data required for maintaining the trust relationship

must not be overwritten by an adversary.

The universal applicability of PCC to BAS is questionable since the generation and

encoding of proofs for complex security policies are nontrivial tasks and have to be per-

formed on every code change. Besides, proofs do have a significant size, which can be a

magnitude larger than the actual code size. Although automated proof generators could

be developed, they will not be able to solve every difficulty for all types of programs and

complex security policies. [141] even states, that “there are properties related to informa-

tion flow and confidentiality, that can never be proven this way”. A hybrid combination

of the static PCC approach with dynamic execution monitoring, however, seems to be

practically feasible [149].

Obviously dynamic methods implicate a larger performance overhead than static

ones, since additional processing has to be performed during runtime. In addition, spe-

cial care has to be taken, that they are not bypassed by an adversary. Besides, applying

appropriate countermeasures during runtime is a difficult task, since quite often there is

no clear way on how to prevent damage and hinder a successful attack.

4.5 Applicability Analysis for Building Automation Systems 77

SIDSs offer a high attack detection accuracy. They, however, cannot detect new attacks

and are vulnerable to attack variations such as worms, that alter their own code base

on succeeding executions. SIDSs are not well suited as they depend on a usually large

database and require constant updates, which would be difficult in case of SACs and

ICDs.

AIDSs in contrast also allow to detect novel intrusions, which are not yet present in the

database of an IDS. They are, however, not able to distinguish between natural changes

of the monitored system and attacks. Thus, false positives could be reported, if e.g. nodes

are added or removed from a BAS.

AIDS, SMT as well as SCC may be efficiently implemented and could therefore be

quite appropriate. SMT at least requires hardware support for context switches.

ASCs can also work well in many cases, but might not be applicable due to differing

processor and memory architectures on SACs and ICDs. [172] even states, that prevent-

ing buffer overflows using ASCs only works in 50% of all test cases. Besides, the inner

working of such methods is often publicly available and therefore adversaries might find

a way to bypass them more easily. Memory randomization (e.g. stack or heap random-

ization) is often applied to hamper successful exploits of buffer overflows, but does not

really protect a BAS [151].

The applicability of SBes strongly depends on the overhead imposed by their feature

sets. While a reduced and lightweight SB could easily be deployed to SACs, an archi-

tecture like the full JVM with its vast execution and security mechanisms imposes a big

overhead. In any case, careful design is necessary to mind pitfalls and provide secu-

rity [53].

While in the IT world and thus also for MDs OSs typically limit what an application

is allowed to do, the targeted MCUs being deployed to SACs and ICDs do not provide

the necessary hardware support (e.g. lack of memory management units to separate the

address spaces of different processes). Traditional OSs for such lean ESs thus cannot pro-

vide comparable protection or are not even designed to provide security measures. In

general, trusted software such as an OS, cannot be guaranteed to contain no flaws. For

completeness, it has to be noted that possibilities exist to overcome the lack of memory

78 Software Protection Techniques

management units: [63] describes an approach providing virtual memory and OS protec-

tion.

Using dedicated hardware for security checks allows to lower the imposed perfor-

mance overhead in contrast to pure software based methods. However, hardware sup-

ported methods requiring additional components cannot be cost effectively deployed to

SACs and recent research also demonstrates that these methods may also be bypassed:

[150] presents a technique, that allows a return-to-libc attack to be performed on x86 exe-

cutables and calls no functions at all. [52] describes a code injection attack for the HA

based Atmel AVR microcontrollers. [140] introduces “return-oriented programming”,

which can be used to introduce arbitrary behavior in a program code whose control flow

has been diverted without injecting any code and is not prevented by CPUEXs methods.

Finally, [19] demonstrates an attack to voting machines. Despite their consequent HA,

arbitrary programs can be constructed out of existing code chunks from the stack and

tricky placement of return calls and thus elections can be manipulated.

IAC performed by humans may eliminate a lot of possible attacks, but requires exten-

sive knowledge by the auditing person, is time consuming, expensive and error-prone.

Thus, it does not scale at all and may limit flexibility, since it is only feasible to be applied

to code, which does not change frequently.

FV is the most tenable method for providing security constraints. If security attributes

can be represented in a formal way, provers can guarantee that these attributes are met.

However, applying FV to real life software or even an OS is a very hard task and only

two approaches are known for now that allow Common Criteria EAL6+ certification [80],

[100]. A simpler form of FV, which provides a trade off between a full mathematical proof

and reduced input set nevertheless seems feasible [10].

Hybrid methods try to combine the advantages of different software protection tech-

niques. Thus, they can provide more powerful protection and overcome limitations of

the software, hardware and human assisted methods mentioned before (cf. [141]). Until

now however, no reliable and secure approach for BASs is available. It is not clear, which

combinations of software protection techniques seem reasonable and fulfill the security

requirements. Therefore, hybrid methods cannot be discussed in the following tables.

4.5 Applicability Analysis for Building Automation Systems 79

−: not applicable ∼: applicable with restrictions p: prevent d: detect

m
et

ho
d

or
BA

S

A
ut

he
nt

ic
at

io
n

vu
ln

er
ab

ili
ty

A
ut

ho
ri

za
tio

n
vu

ln
er

ab
ili

ty

C
od

e
qu

al
ity

vu
ln

er
ab

ili
ty

C
ry

pt
og

ra
ph

ic
vu

ln
er

ab
ili

ty

Er
ro

r
ha

nd
lin

g
vu

ln
er

ab
ili

ty

G
en

er
al

lo
gi

c
er

ro
r

vu
ln

er
ab

ili
ty

In
pu

tv
al

id
at

io
n

vu
ln

er
ab

ili
ty

Pr
ot

oc
ol

er
ro

rs

R
an

ge
an

d
ty

pe
er

ro
r

vu
ln

er
ab

ili
ty

Se
ns

iti
ve

da
ta

pr
ot

ec
tio

n
vu

ln
er

ab
ili

ty

Se
ss

io
n

m
an

ag
em

en
tv

ul
ne

ra
bi

lit
y

Sy
nc

hr
on

iz
at

io
n

an
d

tim
in

g
vu

ln
er

ab
ili

ty

M
ob

ile
co

de

U
se

of
da

ng
er

ou
s

A
PI

s

static SCA − − p p p p ∼ ∼ ∼ − − − − p
software CS − − ∼ − − − ∼ − − − − − ∼ −
methods WM − − − − − − − − − − − − − −

PCC − − p − − p ∼ ∼ ∼ − − − ∼ −
SIDS ∼ d d d d d d ∼ d − − − ∼ −
AIDS ∼ d d d d d d ∼ d − d d d −

dynamic SMT ∼ d d − − d d − d − − d − −
software SB ∼ d d d d d d ∼ d p p d d −
methods SCC − − − − − d d − d − − − − −

ASC − − − − − − p − − − − − − −
OS ∼ d ∼ d − d ∼ ∼ d ∼ ∼ ∼ ∼ ∼
CP − − d d d d ∼ − ∼ − − − − d

hardware PP − d d d d − − − d d − − ∼ −
supported HA − − − − − − p − − − − − − −

CPUEX − − − − − − d − − − − − − −
human IAC p p p p p p p p p p p p − p

FV − − p − p p p − p p − p − p
BACnet − − − − − − − − − − − − − −

open EnOcean − − − ∼ − − − ∼ − − − − − ∼
BAS KNX ∼ ∼ − − − − − − − − − − − −

LonWorks − − − − − − − − − − − − − −
ZigBee − − − − − − − − − − − − − −

Table 4.1: Comparison of Software Protection Techniques and Software Security in Open
Building Automation Systems: Protection Against Vulnerabilities

80 Software Protection Techniques

Open BAS standards cover – if at all – only security for communication aspects. How-

ever, several flaws exist which shall be listed here briefly.

BACnet added security with Addendum g in 2008. It has been integrated into the stan-

dard in 2012. Before, several threats have been presented [72], [146], [175]. To support all

kinds of applications, the use of different communication models shall be possible. BAC-

net only provides support for the client/server model – exchanging process data within

groups as it is possible in LonWorks and KNX is not supported. Attacking EnOcean based

CAs is described in Section 3.2 in more detail. Before 2013 (and in fact, in all of today’s

installations), attacks to KNX based CAs could be launched in several ways [59], [61]. The

current KNXnet/IP specification [103] describes some attacks and also countermeasures.

[94] analyzes the security extension KNXnet/IP Secure [103] and shows some limitations

concerning the provided level of security. [146] shows, that the security mechanisms of

LonWorks are not sufficient to fulfill the requirements on BASs integrating security sub-

systems. IEEE 802.15.4/ZigBee provides a solid base. [181] however, highlights some

weaknesses in the standard. Mechanisms to protect against interruption attacks (e.g. DoS

attacks) are not supported by any of these standards. A key problem which has not been

solved by any of these five systems is the generation and distribution of the required ini-

tial secrets. Even if the architecture of the system itself is secure, a mechanism must be

available to distribute the initial secrets in a secure manner.

Mechanisms to counteract device attacks and provide software security are not cov-

ered by any of these standards. In fact, only the specifications of the standards can be

considered in the following. Local implementations or security checks cannot be consid-

ered, since they are not open to the public.

Since BACnet, EnOcean and IEEE 802.15.4/ZigBee only specify the communication

protocol and the application model to be used, details about the device implementation

and methods to manage CAs (e.g. management tools to configure and upload CAs) are

not covered. Therefore, appropriate security mechanisms that handle device attacks are

missing, too. A variety of engineering tools is available for LonWorks, most of them based

on the LonWorks Network Operating System (LNS) management middleware. However,

no security countermeasures are incorporated into LNS. For KNX, a single management

tool called ETS is available which provides mechanisms to configure and upload the CAs.

4.5 Applicability Analysis for Building Automation Systems 81

−: not applicable, ∼: applicable with restrictions, p: prevent|d: detect|+: applicable

m
et

ho
d

or
BA

S

FR
–m

em
or

y
ac

ce
ss

FR
–l

ow
le

ve
lf

un
ct

io
na

lit
y

ac
ce

ss

FR
–p

ro
te

ct
io

n
of

en
vi

ro
nm

en
t

FR
–c

om
m

un
ic

at
io

n
re

la
tio

ns
hi

p

FR
–a

va
ila

bi
lit

y

O
R

–l
im

ite
d

re
so

ur
ce

s

O
R

–d
ev

el
op

m
en

t

O
R

–h
ig

h
le

ve
ll

an
gu

ag
e

su
pp

or
t

O
R

–l
on

g
lif

et
im

e

O
R

–s
ca

la
bi

lit
y

O
R

–n
et

w
or

k
te

ch
no

lo
gy

O
R

–c
om

pa
tib

ili
ty

O
R

–p
hy

si
ca

la
cc

es
s

O
R

–u
sa

bi
lit

y

static SCA − − ∼ − − + ∼ + − − + ∼ − −
software CS − − − − − + ∼ + + + + ∼ − −
methods WM − − − − − + − + − + + ∼ − −

PCC − − ∼ − − + − + + − + ∼ − −
SIDS − − d d − ∼ ∼ + − − + + − −
AIDS − − d d d − + + + + + + + ∼

dynamic SMT − − ∼ − − ∼ − + − − + ∼ − −
software SB p p p p − ∼ + + + + + ∼ − +
methods SCC − − − − − ∼ − + − − ∼ ∼ − −

ASC − − − − − ∼ − + − − + ∼ − ∼
OS p p p p − − + + + + + ∼ − +

CP − ∼ − ∼ − + − + − − + ∼ + −
hardware PP p p − − − + + + − − + ∼ + −
supported HA − − − − − + + + − + + ∼ − +

CPUEX − − − − − + + − − + + ∼ − +

human IAC ∼ − p − − + − + − − + ∼ − −
FV − − p − − + − + − − + ∼ − −

Table 4.2: Comparison of Software Protection Techniques: Security Requirements

However, the only way to avoid unauthorized use of these management services is to

use an insecure access control mechanism. The new security extensions will address the

access to CAs, but they are not final at the time of writing this dissertation. A test for ma-

licious behavior of the uploaded CA is neither provided in LonWorks nor in KNX. Thus,

no protection against e.g. trojan horses or security concerns regarding resource access,

storage of sensitive information, content security and availability exist.

Table 4.3 summarizes the applicability of software protection techniques to SACs,

ICDs, and MDs. The software of a MD typically consists of an OS and the management

software. The security of the OS has to be provided by the system administrator. The

82 Software Protection Techniques

−: not applicable ∼: applicable with restrictions +: applicable

m
et

ho
d

or
BA

S

SA
C

IC
D

M
D

static SCA ∼ + −
software CS + + +
methods WM + + +

PCC − ∼ ∼
SIDS + + ∼
AIDS + + ∼

dynamic SMT ∼ + −
software SB + ∼ +
methods SCC − + −

ASC ∼ + +
OS − − +

CP − − +
hardware PP − − +
supported HA + + +

CPUEX + + +

human IAC − ∼ −
FV − ∼ −

Table 4.3: Comparison of Software Protection Techniques: Applicability to Sensors, Actu-
ators and Controller Devices, Interconnection Devices, and Management Devices

security of the management software itself can be established using SBes and hardware

supported mechanisms. Since the software of ICDs is rather fixed, SCA, SMT, SCC or

ASC may be used. Besides, ICD software is less susceptible to tampering since it is reused

over a broad range of devices. Modifications are thus less likely to go unnoticed. Also

the effort (and cost) required for implementing the mechanisms mentioned above can

be divided among a larger number of devices. Since usually a large number of SACs is

deployed, their functionalities depend on the application and CAs are likely to be devel-

oped by various manufacturers, static or human assisted methods seem too expensive

and ineffective to deploy. A reasonable combination, however, seems appropriate and is

presented in the next section.

4.6 Summary 83

4.6 Summary

As can be seen, the presented software protection techniques have several aspects in com-

mon, which hinder their seamless use in BASs.

• First, they are not able to offer full protection against the threats discussed in Sec-

tion 3. A hybrid approach, however, seems promising to provide an overall security.

• Second, they are designed for general purpose and do not cover the specialties con-

cerning security for BASs, SACs and their CAs, ICDs or MDs in any way.

• Third, even if perfectly applied, none of these techniques can offer a protection

against the widespread social engineering attacks, where users are somehow fooled

into revealing something they should not reveal. The only way to deal with those

attacks is user education or so restricted security permissions, that effective use of

the underlying system is not possible.

84 Software Protection Techniques

5
Secure Control Application Architecture

As presented in the previous sections, today’s BAS do not provide sufficient protection

against device attacks to satisfy the demands of security critical applications. Secure CAs

have only been considered as a side issue at best in open standards. Traditional IT soft-

ware methods to improve application security do not provide sufficient protection or

cannot be easily applied to the BAS domain due to e.g. limited system resources. Hence,

it is necessary to establish a security concept, that uses the domain knowledge being im-

plicitly present in the discussed standards to provide overall protection for CAs.

A secure BAS architecture rests on three different building blocks:

1. Secure BAN: Mechanisms for secure data exchange shall be provided.

2. Secure CAs: It shall be guaranteed that malicious CAs can not compromise the se-

curity of the system.

3. Attack detection: Mechanisms to detect attacks such as DoS within a reasonable

detection latency are required.

A secure BAN and detection of BAN DoS attacks are described in [58]. The goal of this

section is not to provide yet another new method to prevent single attack types like buffer

overflows, but to provide a solid and reasonable approach for secure CAs with respect to

the requirements presented in Section 3.

Thus, a secure architecture being adaptable to all common BAS standards has to be

established. This architecture needs to cover BAS specific constraints, provide a security

policy and a secure software environment. Besides, possible attacks need to be detected.

85

86 Secure Control Application Architecture

Hypothesis 5 Only hybrid software protection mechanisms can provide an overall CA security.

To ease the development of secure CAs hosted on SACs, a software environment being

able to prevent or detect the discussed attacks is required. Basically, protection against

software attacks shall be provided, but with other attack scenarios such as physical or

side channel attacks in mind.

SACMD

C
o

u
n

te
rm

e
a

s
u

re
s

SCA,

HA,

IAC,

FV

Configuration

Binary

System software

 Hardware abstraction

System componentsPolicyNetwork stack

Sandbox

Control application SB

IDS

Figure 5.1: Secure Control Applications

As outlined in Figure 5.1, the software of a SAC consists of three major components,

each imposing an additional security barrier to the overall security and limiting possible

security threats:

• A tight and secure system software provides controlled access to system resources.

Its security is analyzed using human being based IAC, SCA using automated tools

as well as FV.

• A SB restricts the execution of customizable CAs. Basically, this uploadable code

shall be allowed to perform any desired action. However, to prevent security flaws

it is under continuous control of the system software during runtime, determining

whether it is allowed to execute a desired function or not. The SB is also designed

to support the rapid development of CAs. It provides a clear abstraction of the

underlying hardware and offers interfaces to the system software. The developer

is thus relieved of any hardware or device specific details and can focus on the

5.1 Generic Application Model 87

application development. This allows portability of applications between devices

offering the same SB.

• A configuration has to be provided to the system software during upload of a CA

that defines its basic policy (i.e. normal behavior). Any abnormal behavior can then

be detected by the system software using an AIDS. Thus, limits to e.g. network or

processing resources may be defined, which are enforced at runtime.

To further limit possible attack scenarios, the use of a HA based hardware is recom-

mended.

The following sections describe the security architecture in more detail. Section 5.1

defines a generic application model, required to develop a secure system being used for

the different BASs. Section 5.2 describes how to define a security policy using security

attributes, which allow a formal way to formulate security requirements. Section 5.3 out-

lines the software environment being needed to securely execute CAs and enforce the

security policy. Finally, Section 5.4 outlines the methods to detect possible attacks.

5.1 Generic Application Model

The first step towards secure CAs within the heterogeneous open BAS standards is to de-

fine distributed applications in a general and abstract way and provide a unified system

view. A generic application model is required that can accommodate common function-

alities found in BASs. The employment of this model promises on the one hand a security

architecture being compatible with all open BASs and on the other hand also several ben-

efits such as a central point for configuration and system access [137].

One possible way to represent such a generic application model are ontologies. “(An

ontology is) a shared and common understanding of a domain that can be communicated

between people and heterogeneous and distributed systems [48].” Thus, an ontology is

basically a way to store, organize and represent knowledge. More specific, concepts be-

longing to a particular domain and their relations can be defined in an abstract way, thus

forming a model of this domain. Additionally, ontologies allow to reason on the stored

data, so that an automatic generation of new information is possible. Ontologies are com-

88 Secure Control Application Architecture

monly designed and developed with tool support and are often based on the Resource

Description Language Schema (RDFS) [13] and the Web Ontology Language (OWL) [116]

as description languages. Probably the most prominent tool for this purpose is Protege1

which was developed at Stanford University. Ontologies are used in various scientific

fields, ranging from biology to linguistics. Also, technical systems are considered to be

augmented with their help. In the industrial automation field, ontologies allow to access

fieldbus device information (device descriptions) using Semantic Web technologies and

thus easier creation, processing and management of this information becomes possible

(cf. [67]). In [155], an ontology called DomoML representing data of household appliances

and their environment (e.g. rooms, furniture) is defined. The main target is human home

interaction with the goal to improve pervasiveness and interoperability of domestic de-

vices. [127] describes BASont, a modular, adaptive BAS ontology that addresses use cases

from design, to commissioning, to operation and refurbishment. Within the ThinkHome

project2, a multi-agent system, a knowledge base and ontology, control strategies and a

simulation environment are being researched with the goal to utilize artificial intelligence

to improve control of home automation functions provided by dedicated automation sys-

tems. [105] describes the developed ontology. The Secure and Semantic Web of Automa-

tion project3 addresses interoperability issues that arise due to the plethora of commonly

used home and building automation systems by realizing the idea of universally inter-

connected things through the use of Semantic Web technologies. [49] gives a case study

for interoperability on management level of BACnet and OPC UA. A similar approach

as DomoML but for industrial and building automation systems is outlined in [18]. The

main aim is to establish interoperability among heterogeneous automation networks at

the level of web services. [57] presents first experiences on the concept of integration on-

tologies, targeting the interoperation of different ontologies. Ontologies also allow the

representation of application specific knowledge in a structured way. However, no ontol-

ogy describing CA security is available and also a generic application model is missing.

Nevertheless, for providing security in BASs, ontologies seem promising regarding the

1 http://protege.stanford.edu/, Last access: 2015/08/16
2 https://www.auto.tuwien.ac.at/projectsites/thinkhome/overview.html, Last ac-

cess: 2015/08/16
3 https://www.auto.tuwien.ac.at/projects/viewBlog/40/, Last access: 2015/08/16

http://protege.stanford.edu/
https://www.auto.tuwien.ac.at/projectsites/thinkhome/overview.html
https://www.auto.tuwien.ac.at/projects/viewBlog/40/

5.1 Generic Application Model 89

heterogeneous network and device infrastructure often found there. The remainder of

this section focuses on a generic application model, which is being described in a formal

way enriched with illustrative listings.

As described in Section 2.3, the application models in open standards are different.

They do not only use different communication services at the application layer but also

different data structures to store application data. To provide a unified view and CA

security, a mapping between the different application models is necessary. In a specific

installation, this means that the network-visible data structures of the application data,

i.e. the DPs, need to be mapped from one protocol to the other (DP mapping). Likewise,

also the services used to access them have to be translated. Additionally, it has to be de-

fined which DPs shall be used for data exchange. This step is referred to as binding. In

fact, binding and configuration of thousands of devices in larger installations is time con-

suming and error prone. [34], [35] describe an automated way to enhance the situation.

The basic idea of such a generic application model for BAS is to separate generic in-

formation from an installation dependent one. This is achieved by the definition of the

abstract model (e.g. the abstract BAS device description) and concrete instances therefrom

(e.g. a BAS device instance representing a particular technology with specific parameters).

Additionally, protocol-specific and domain-specific knowledge (e.g. BAS specific vocab-

ulary, security attributes) are part of the model.

An application model thus can be used to abstract an existing BAS installation and rep-

resent this particular installation in a generic form. All configuration and management

tasks and definition of a security policy can now be performed directly on the abstracted

representation and be automatically distributed to the different underlying technologies.

Considering the integration of heterogeneous networks, the employment of a generic ap-

plication model holds major benefits (cf. Figure 5.2).

It is no longer necessary to define multiple security policies and mapping rules cover-

ing each protocol with each protocol (pairwise for each two protocols), but it is sufficient

to map each protocol to the abstract representation (the generic application model), which

acts as a common base for all protocols. Furthermore, if a new technology is considered

for integration, again just a single mapping needs to be defined (i.e. from the technology

90 Secure Control Application Architecture

Generic application

model

Integration tool (binding
of heterogeneous
applications)

KNX
application

model

KNX
application

model

ZigBee
application

model

LonWorks
application

model

BACnet
application

model

Export of configuration for datapoint mapping

Gateways

Multi-
protocol
devices

Routers

KNX LonWorks ZigBeeBACnet

BACnet

KNX LonWorks ZigBeeBACnet

BAS engineering tool export

System
engineer Binding

Instances

Figure 5.2: Building Automation System Integration and Advanced Use Cases

to the generic application model), while an approach without common representation

would require additional mappings. Therefore, future extensions are highly facilitated.

Besides, integrated BAS can be configured centrally by accessing and modifying the

application model only. For all protocols that are employed, an (automatic) translation

of the (centrally managed) configuration data into the technology-specific form (i.e. the

instances representing the used BAS) becomes possible. This central management ap-

proach facilitates BAS management and guarantees system consistency. Additionally,

also the gateway configuration can be derived automatically. Consider, for example, a

ZigBee light switch that shall be integrated into a KNX lighting system. To achieve this,

the engineer now binds the generic DPs of these two functions. After having finished

the binding of all desired functions, it is possible to automatically generate and export

this binding in form of configuration data. This configuration data can then be loaded

into gateways or multi-protocol devices respectively. [147] presents such a reliable and

flexible gateway between KNX and ZigBee.

This generic application model [132] (cf. Figure 5.3) is expressive enough to be able to

model all different types of distributed CAs typically found in the building automation

domain. It allows an easy mapping between the generic CA model and the standard-

specific CA models of the most popular open BAS standards (cf. Section 2.3). At the

same time, the model is generic enough to accommodate to the CA models of future BAS

5.1 Generic Application Model 91

Process

D
om

ain
D

om
ain

SAC 1
Control Application A

PDP

MDP

SAC 2

CA B

SAC 3

CA C

SAC n

CA N

Communication Network

PDP

Function-
block a

has
Input Datapoint

FB d

FB eFB b

FB c

has
Parameter

has
Output

Internal
communication

connection

External
communication

connection

Security Attribute

has
Input

(D.15)

(D.16)

(D.17)
(D.18) (D.19)

(D.20)

Figure 5.3: Generic Application Model

standards. In this model, the nomenclature is based on the one used in IEC 61499 [83], but

modifications were made with respect to the building automation domain vocabulary. It

is specified using a formal way accompanied by a textual representation.

DP : < p, . . . > (D.1)

FB : {dpi|dpi ∈ DP, i ∈N} (D.2)

CA : { f bi| f bi ∈ FB, i ∈N} (D.3)

SAC : {CA} (D.4)

DOMAIN : {saci|saci ∈ SAC, i ∈N} (D.5)

PROCESS : {domaini|domaini ∈ DOMAIN, i ∈N} (D.6)

The application model consists of SACs which are linked by a communication network

and interact with a process (i.e. a building) under control. The BAS controls this process

which can be split into various control domains (cf. Definition (D.6)).

92 Secure Control Application Architecture

A control domain can logically be seen as a grouping of distributed BAS nodes

(i.e. SACs), which realize a common functionality (e.g. HVAC, lighting). It consists of at

least one SAC, which itself may arbitrarily belong to multiple other domains and which

interacts with the environment (cf. Definition (D.5)).

Each SAC hosts exactly one CA4 (cf. Definition (D.4)).

CAs implement at least one FB, which contributes its particular part to functionality

of the CA (cf. Definition (D.3)).

A FB is a data structure with algorithms, internal variables and an arbitrary combina-

tion of the binary input and output relations hasInput, hasParameter and hasOutput. These

relations link a single FB to a single DP (cf. Definition (D.2)).

A communication connection between FBs, however, is established, if two different

relations link to exactly the same DP. This sometimes is also referred to as binding and

can e.g. be seen between FB a and FB b in Figure 5.3. In such a way, the cardinality of the

relation between FBs is not limited and so the definitions of the well known 1:1, 1:n, n:1,

and m:n relations are possible (cf. Figure 5.4a–5.4d).

FB a FB b

FB c
X

FB a FB b

FB cX

FB a FB b

FB c

FB a FB b

FB c

FB a FB b

FB a FB b

FB c FB d

p<mina
p=x

p<minb

p=x

(a) 1:1

FB a FB b

FB c
X

FB a FB b

FB cX

FB a FB b

FB c

FB a FB b

FB c

FB a FB b

FB a FB b

FB c FB d

p<mina
p=x

p<minb

p=x

(b) 1:n

FB a FB b

FB c
X

FB a FB b

FB cX

FB a FB b

FB c

FB a FB b

FB c

FB a FB b

FB a FB b

FB c FB d

p<mina
p=x

p<minb

p=x

(c) n:1

FB a FB b

FB c
X

FB a FB b

FB cX

FB a FB b

FB c

FB a FB b

FB c

FB a FB b

FB a FB b

FB c FB d

p<mina
p=x

p<minb

p=x

(d) m:n

Figure 5.4: Communication Connections

Note, that a binary relation is a relation between exactly one DP and one FB. Thus,

a setup as shown in Figure 5.5a where a single relation links two different DPs (i.e. the

relation with red cross) is not possible. It has to be realized by adding an additional

hasOutput relation to FB a. These two DPs are either equal and thus only a single commu-

nication connection is required, or unequal and have to be treated differently by the FB

anyway. Communication connections are called internal if their corresponding FBs are

located within the same CA or device, respectively. They are called external if the FBs do

4 Since SACs typically are low end embedded nodes with limited resources, they are not considered
to be multiprocess capable.

5.1 Generic Application Model 93

not share the same CA and communication between SACs via the network occurs. A DP

refers to a single datum (i.e. tuple) of the CA whose structure and semantics (e.g. present

value p, encoding, unit, minimum value, maximum value) are fully specified (cf. Defini-

tion (D.1) and [14]). A DP represents the same datum with all the same values for every

involved relation. A setup (i.e. the relation with red cross) as shown in Figure 5.5b is not

allowed. Another DP would have to be added, perhaps with the same present value but

other differences to allow varying input constraints for FB b and FB c. The Physical or

Process Datapoint (PDP) refers to a DP located within the process (e.g. temperature value

t in room x). Therefore, special hardware is required to access it. A Management Data-

point (MDP) corresponds to a configuration parameter of a FB. PDPs and MDPs can only

be connected to a single FB.

FB a FB b

FB c
X

FB a FB b

FB cX

FB a FB b

FB c

FB a FB b

FB c

FB a FB b

FB a FB b

FB c FB d

p<mina
p=x

p<minb

p=x

(a) Case I

FB a FB b

FB c
X

FB a FB b

FB cX

FB a FB b

FB c

FB a FB b

FB c

FB a FB b

FB a FB b

FB c FB d

p=x, p<mina

p=x, p<minb

(b) Case II

Figure 5.5: Impossible Communication Connections

In Figure 5.3, PDPs, MDPs as well as DPs of external communication connections

are located outside any particular SAC for modeling. It is clear, that PDPs and MDPs

are assigned to their corresponding FBs when implementing a SAC and processing (e.g.

memory allocation) takes place there. Likewise, a DP of an external communication con-

nection needs to be split since on the one hand the sending node needs to process it and

on the other hand the receiving node as well.

The generic application model is defined in the following machine readable form (cf.

Listing 5.1):
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ApplicationModel xmlns:xsi="http://<!-- [...] -->">
3 <!-- BACnet application model -->
4 <BACnet>
5 <Object Name="Lighting-Output" Object_Type="LIGHTING_OUTPUT">
6 <Property id="bacnetdp_1" Name="Object_Identifier" Datatype="

BACnetObjectIdentifier" />
7 <Property id="bacnetdp_2" Name="Present_Value" Datatype="REAL" />
8 <Property id="bacnetdp_3" Name="Off-Delay" Datatype="REAL" />
9 <!-- [...] -->

10 </BACnet>

94 Secure Control Application Architecture

11

12 <!-- KNX application model -->
13 <KNX>
14 <DataTypes>
15 <DataType id="1" name="Boolean" format="1" unit="-">
16 <Range>
17 <Value id="0">0</Value>
18 <Value id="1">1</Value>
19 </Range>
20 </DataType>
21 <!-- [...] -->
22 </DataTypes>
23 <DatapointTypes>
24 <DPT id="1.001" Name="DPT_Switch" DataTyperef="1">
25 <Encoding valueref="0" description="Off"/>
26 <Encoding valueref="1" description="On"/>
27 </DPT>
28 <!-- [...] -->
29 </DatapointTypes>
30 <!-- [...] -->
31 <FunctionalBlock ObjectType="417" Name="FB_Light_Actuator" Title="Light

Actuator">
32 <Functional_specification>
33 Switch the light according to the received value on the OnOff

datapoint
34 </Functional_specification>
35 <DataPoints>
36 <Input>
37 <DP id="knxdp_1" Name="OnOff" Abbr="OO"
38 Mandatory="true"
39 Description="To switch the light On or Off"
40 DatapointTypeRef="1.001" />
41 <!-- [...] -->
42 </Input>
43 <Parameter>
44 <DP id="knxdp_2" Name="Timed Duration" Abbr="P1"
45 Mandatory="false" Description="Duration to switch..."
46 DatapointTypeRef="7.005"
47 Default="0" />
48 <!-- [...] -->
49 </Parameter>
50 </DataPoints>
51 <!-- [...] -->
52 </FunctionalBlock>
53 </KNX>
54

55 <!-- EnOcean application model -->
56 <EnOcean> </EnOcean>
57

58 <!-- LonWorks application model -->
59 <LonWorks> </LonWorks>
60

61 <!-- ZigBee application model -->
62 <ZigBee> </ZigBee>
63

64 <!-- Generic aplication model -->
65 <Generic>
66 <!-- Stairwell light -->
67 <Application Name="Stairwell light" id="3813-3_D-1-2">
68 <FunctionBlock Name="Actuate light" />
69 <FunctionBlock Name="Light actuator" id="3813-2_6_4_2"/>
70 <FunctionBlock Name="Light control" id="3813-2_6_5-6">

5.1 Generic Application Model 95

71 <!-- Associate technology specific datapoints with generic datapoint -->
72 <ProcessDataPoint id="L_SET" Name="Light control setpoint" Type="Light

">
73 <BACnetDataPoint id="bacnetdp_2" />
74 <EnOceanDataPoint id="enoceandp_1" />
75 <KNXDataPoint id="knxdp_1" />
76 <LONDataPoint id="londp_1" />
77 <ZigBeeDataPoint id="zigbeedp_1" />
78 </ProcessDataPoint>
79 <ManagmentDataPoint id="PAR_OFFD" Name="Parameter off delay" Type="

Time">
80 <BACnetDataPoint id="bacnetdp_3" />
81 <EnOceanDataPoint id="enoceandp_2" />
82 <KNXDataPoint id="knxdp_2" />
83 <LONDataPoint id="londp_2" />
84 <ZigBeeDataPoint id="zigbeedp_2" />
85 </ManagmentDataPoint>
86 </FunctionBlock>
87 <!-- [...] -->

Listing 5.1: Extract of Application Model in XML Format

In the listing, first the Lighting-Output object of BACnet is being modeled. The

two BACnet DPs Present_Value and Off-Delay are declared (cf. lines 4–10). Then,

the KNX application model is specified. Lines 14–29 specify the KNX DPT DPT_Switch,

lines 31–52 define the FB FB_Light_Actuator containing the DPs OnOff and Timed

Duration. The EnOcean, LonWorks and ZigBee application model is contained in

lines 55–62. Line 67 declares the generic application VDI 3813-3: D-1-2 Lighting

control manual with time-controlled switching off (stairwell light)

containing the FBs Actuate light, Light actuator and Light control. The lat-

ter contains the PDP L_SET and MDP PAR_OFFD. The mapping of technology specific

DPs to L_SET is shown in lines 72–78. The mapping of technology specific parameters to

PAR_OFFD is contained in lines 79–85.

Figure 5.6 shows an example implementation for use case
⊗

. Its formal specification

is shown in Definition D.7

96 Secure Control Application Architecture

Process

Lighting D
om

ain

SAC actuator

Control Application Light
actuator

SAC switch

Control Application
Actuate light

Communication Network

FB Actuate
light

has
Output

FB Light
actuator

FB Light
control

has
Parameter

PAR_OFFD

has
Input L_SET

has
Output

has
Input

L_MAN

Figure 5.6: Generic Application Model: Example for Use Case
⊗

MDP PAR_OFFD : < p, . . . > (D.7)

PDP L_MAN : < p, . . . >

PDP L_SET : < p, . . . >

FB Actuate light : {DP L_MAN}

FB Light control : {DP PAR_OFFD, DP L_MAN, DP L_SET}

FB Light actuator : {DP L_SET}

CA Actuate light : {FB Actuate light}

CA Light actuator : {FB Light control, FB Light actuator}

SAC switch : {CA Actuate light}

SAC actuator : {CA Light actuator}

LIGHTING DOMAIN : {SAC switch, SAC actuator}

PROCESS : {Lighting}

5.2 Software Security Policy 97

A process of control domain lighting is defined. Two SACs (SAC actuator, SAC

switch) are deployed, each of them implementing a CA. The CA Light actuator ac-

tually implements the function blocks FB Light actuator and FB Light control.

It is thus responsible for switching the physical output according to the present value

contained in MDP PAR_OFFD and the present value contained in PDP L_MAN. The CA

Actuate light is responsible for reading a physical switch and setting the PDP L_MAN

appropriately.

5.2 Software Security Policy

The second step to be able to establish adequate countermeasures against the discussed

security threats, is to define a security policy. This global policy states, whether the con-

dition of a BAS is security critical and violates some defined constraints or not. For ex-

ecuting this policy it can be split down to involved present values pi of DPs DPi, where

security requirements for the conditions derived from the policy can be defined, formu-

lated and finally evaluated.

5.2.1 Security Attributes

The model of an integrated BAS as presented in Section 5.1 is enriched with so called

security attributes. A security attribute s is a tuple consisting of a present value p, condi-

tions of (possibly other) present values cond1 . . . condn and boolean operations •1 . . . •n−1

which relate to these conditions:

security_attribute s :< p, cond1, . . . , condn, •1, . . . , •n−1 > (D.8)

A condition is formulated using a function on a present value at some instant f (pα(t)),

a function on a second present value at some point in time g(pβ(t)) and a third function

98 Secure Control Application Architecture

◦ relating them.

cond(f (pα(t)), g(pβ(t)), ◦) |

pα(t) ∈ A, pβ(t) ∈ B,

f : A→ C, g : B→ C,

◦ : f × g→ {true, f alse} (D.9)

Note, that for many use cases only the current present value is relevant and so p(t)

reduces to p. It is further defined:

cond(check_access(pα(t)), {read},=)

= check_access(pα(t)) = {read}

=

true if pα(t) is readable

f alse otherwise

cond(check_access(pα(t)), {write},=)

= check_access(pα(t)) = {write}

=

true if pα(t) is writeable

f alse otherwise
(D.10)

cond(check_value(pα(t)), g(pβ(t)), ◦)

= ◦(pα(t), g(pβ(t))) (D.11)

cond(check_history(pα(t)), g(pβ(t)), ◦)

= ◦(p′α(t), g(p′β(t))) (D.12)

cond(check_accesstime(pα(t)), g(pβ(t)), ◦)

= ◦(check_accesstime(pα(t)), constant)

=

true if check_accesstime(pα(t)) ◦ constant

f alse otherwise
(D.13)

The condition of p can thus be controlled with respect to:

5.2 Software Security Policy 99

• Access rights: (D.10) enforces a basic access restriction policy but can also be used

to limit the communication relationship of a CA to the desired communication part-

ners. The required information can be automatically generated from the binding

relationship present within the application model.

• Value range: (D.11) limits the values of p. To e.g. define, that p has to be larger

than a minimum value, define g(pβ(t)) = {min} to be constant and the relation as

◦ = {≥}. To e.g. define, that p shall be twice as large as the present value pβ define

g(pβ(t)) : 2 ∗ pβ and the relation as ◦ : {=}.

• Historical data: p may depend on past values and so minimum and maximum dif-

ference per time unit may be limited. (D.12)

• Time dependencies: Finally the access frequency of p may be limited. A minimum

frequency declares how often a CA has to update a DP (e.g. periodic transmission

of alarm sensor values), and a maximum frequency limits the required resources

(e.g. malicious exhaust of network bandwidth in case of too frequent DP updates).

(D.13)

Finally, a security attribute is evaluated by checking all involved conditions:

eval(s) =

true if cond1, . . . , condn = true

f alse otherwise
(D.14)

The evaluation function returns true if the present value p satisfies the policy with all

conditions, and is f alse otherwise.

100 Secure Control Application Architecture

Six conceptual locations can be identified, where security attributes have to be located

(cf. Figure 5.3):

sec_attrDP : s | {∀pi ∈ DP ∧ pi = p, ∀i = 1, . . . , n} (D.15)

sec_attrFB : s | {∀pi ∈ FB} (D.16)

sec_attrCA : s | {∀pi ∈ CA} (D.17)

sec_attrSAC : {security_attributesystemcalls} (D.18)

sec_attrDOMAIN : s | {∀pi ∈ DOMAIN} (D.19)

sec_attrPROCESS : s | {∀pi ∈ PROCESS} (D.20)

• Security attributes at the DP level cover only local constraints of the present value

p. (D.15)

• A FB may consist of multiple relations to DPs. Security relevant dependencies be-

tween these entities can be modeled and expressed within security attributes. The

security of a present value p1 of DP1 can be evaluated under the condition of the

present value p2 of a second DP DP2. Security attributes attached to FBs may also

be used to handle priorities within the input and output relations. (D.16)

• Similar to dependencies between relations within a FB, dependencies between DPs

DP1 and DP2 of different FBs within a CA can be modeled and expressed in security

attributes. Consider a single-room control CA, which is used to cool or heat a room.

A security attribute can be formulated which prohibits the simultaneous activation

of the cooling function via DP1 with p1 and the heating appliance via DP2 with p2.

(D.17)

• Since only a single CA is executed on SACs, no dependencies between CAs are for-

mulated. Assuming more powerful devices being able to execute CAs in parallel,

traditional OS (security) mechanisms have to be applied (e.g. memory protection,

interprocess communication). This is, however, not in the scope of this work. Nev-

ertheless security attributes can be engaged at device level to provide additional

protection for e.g. the device’s hardware. No DP is associated with these attributes,

5.2 Software Security Policy 101

they can rather be seen as limits to system calls within the CA software. Such at-

tributes may e.g. prevent a wearout of the devices flash memory or a flooding of its

storage space due to a malicious CA. (D.18)

• Security attributes dedicated to dependencies between SACs can be attached to the

control domain. As an example, consider the security system domain, when a cen-

tral close door locks functionality is requested. It has to be guaranteed, that all in-

volved doors really close their locks and an adversary does not bypass the request.

(D.19)

• Finally, security attributes can be generated for the whole process. Within the build-

ing, a security system can be a typical use case. Upon detecting an alarm condition,

all lights of the house shall be turned on to banish a possible pick lock. In this case,

an information flow from the alarm sensor to the light actuator needs to take place.

This information flow, however, must not be abused by malicious CAs. (D.20)

The mightiness of the established security attributes depends on the location where

they are attached. Security attributes attached to DPs are rather limited with respect to

providing overall BAS security. They simply can be used to enforce local conditions.

However, the expressiveness of security attributes rises the more manifold the set of the

involved present values is, opening the possibility to define global security conditions.

To put it differently, the expressiveness follows the relation DP ⊆ FB ⊆ CA ⊆ SAC ⊆

DOMAIN ⊆ PROCESS.

Figure 5.7 shows an example a software security policy again for use case
⊗

. The

formal specification is illustrated in Definitions D.21–D.23.

A security attribute on DP level is shown in Definition D.21. The present value of

the MDP needs to be within a certain range. Thus, it needs to be greater than a defined

minimum and smaller than a defined maximum. Definition D.22 describes a security

attribute on SAC level. To prevent damage, the physical output of the SAC must not

exceed a maximum switching frequency. Finally, a security attribute on domain level is

shown in Definition D.23. The present value of PDP L_MAN shared between two SACs

needs to be zero or one. Since L_SET is a DP of an internal communication connection,

no security attribute needs to be formulated.

102 Secure Control Application Architecture

Process

Lighting D
om

ain

SAC actuator

Control Application Light
actuator

SAC switch

Control Application
Actuate light

Communication Network

FB Actuate
light

has
Output

FB Light
actuator

FB Light
control

has
Parameter

PAR_OFFD

has
Input L_SET

has
Output

has
Input

L_MAN

Security Attribute

(D.23)

(D.22)

(D.21)

Figure 5.7: Software Security Policy for Use Case
⊗

sDP PAR_OFFD :< pPAR_OFFD, cond1pPAR_OFFD , cond2pPAR_OFFD , AND > (D.21)

eval(pPAR_OFFD)→ cond1pPAR_OFFD AND cond2pPAR_OFFD

cond1pPAR_OFFD : cond(pPAR_OFFD, maximum,≤)

cond2pPAR_OFFD : cond(pPAR_OFFD, minimum,≥)

sSAC actuator :< systemcall_switchoutput, (D.22)

check_accesstime(systemcall_switchoutput, maximum_ f requency,≤) >

sLighting DOMAIN :< pL_MAN, condpL_MAN > (D.23)

condpL_MAN : cond(pL_MAN, {0, 1},=)

5.2 Software Security Policy 103

5.2.2 Enforcement

To be able to evaluate the presented security attributes, a concept is needed which is able

to monitor and enforce them at runtime and must not be bypassed [132]. The basic idea

behind security attributes is that each entity is able to evaluate upon reading or writing a

present value if it satisfies all conditions. It is obvious, that this entity also needs to have

access to all involved present values.

Process or control domain security attributes, however, may affect multiple devices

or CAs, which are not necessarily linked via communication connections. Therefore, the

enforcement of such global properties may not be possible for a single CA. Nevertheless,

these security attributes can be used as inputs for additional security devices or mecha-

nisms, such as IDSs [111]: Although any violation of a process or control domain security

attribute can not be recognized by a single CA, it can very well be monitored by an in-

trusion detection system being connected to the network and having a global view of the

exchanged process data (cf. Section 5.4). Further actions such as alarming the operator

can then be taken.

To be able to enforce DP, FB, CA and device security attributes – which only affect a

single device – it is necessary, that the execution of the CA can be limited and controlled

and that a separation of the device’s system software from the CA can take place. Note,

however, that the hardware being used for SACs is very limited and any deployed secu-

rity mechanisms must not exhaust a device’s resources.

To reduce the security overhead it is necessary to discuss if and when an enforcement

of security attributes needs to occur and when it does not provide an additional level of

security. Within the application model, it is not necessary for internal communication

connections to monitor or enforce their security attributes, since only a single CA is be-

ing executed and all data exchanged represent internal data being accessible to the CA

anyway.

Traditional CAs Secure CAs
reading writing reading writing

Insecure channel yes yes yes yes
Secure channel yes yes no yes

Table 5.1: Enforcement of Security Attributes on External Communication Connections

104 Secure Control Application Architecture

Table 5.1 describes the need to monitor and enforce security attributes for external

communication connections between a secure CA and other SACs. Basically only those

present values shall exist within a BAS which do not violate the security policy. It, how-

ever, depends on the particular structure of a BAS if this is possible or not.

If a secure channel, that uses physical or cryptographic mechanisms to provide au-

thentication, data integrity, data freshness and data confidentiality, and a homogeneous

BAS consisting of secure CAs solely are available, CAs only need to monitor and enforce

security attributes when writing a DP. No malicious present values can be inserted into

the BAS by reading operations.

If, however, an insecure channel is used that does not prevent malicious alteration of

present values or communication with a possible insecure CA takes place, a secure CA

needs to monitor and enforce security attributes both when reading and writing a DP.

Nevertheless, such a desirable homogeneous network – consisting of secure CAs

solely which rely on secure communication – will only be present within completely new

installations.

5.3 Secure Software Environment

As described in Section 2.3, today’s BASs are implemented using various technologies

(e.g. BACnet, EnOcean, KNX, LonWorks, ZigBee), each with own benefits and features.

ICDs perform a generic task which is quite similar for all different installations. Their

implementation and possible security measures can be performed very generic and do

not need to be adapted to individual setups. SACs need to fulfill many different automa-

tion tasks which are not predefined by the BAS architecture per se. Traditionally, SAC

and CA development is quite a complex task which requires profound expertise. The

first time creation of CAs is highly technical since often low level constructs and detailed

knowledge about the underlying control network stack are required. Moreover, even if

fulfilling the same tasks, CAs are not compatible and the knowledge of CA developers

in one technology cannot be easily applied to another BAS because of the different net-

work protocol stacks and CA models. Thus, even the design of a simple stairwell lighting

application with configurable lighting duration provides an unnecessary high barrier for

5.3 Secure Software Environment 105

developers. A traditional deep integration is far from being straightforward, requires the

use of gateways and maintenance of huge mapping tables. Obviously, security is getting

more and more important, however, it has not been covered at all in open BAS standards.

Thus, dealing with the indispensable security requirements is left open for the security

unexperienced application developer, who often is not able to cope with manifold threats

and attack possibilities. The left side of the dashed line in Figure 5.8 shows this traditional

CA concept, while the right side describes the secure software environment.

IP Backbone

BACnet MD

ZigBee ICD

K
N

X

KNX MD LonWorks MD ZigBee MD

KNX ICD

Application
model

KNX SAC

KNX CA

KNX SAC

KNX CA

B
A

C
ne

t

BACnet ICD

BACnet SAC

BACnet
CA

BACnet SAC

BACnet
CA

Lo
nW

or
ks

LonWorks ICD

LonWorks SAC

LonWorks
CA

LonWorks SAC

LonWorks
CA

ZigBee SAC

ZigBee
CA

ZigBee SAC

ZigBee
CA

B
A

C
ne

t/K
N

X
/L

on
W

or
ks

/Z
ig

B
ee

BACnet/KNX/
LonWorks/ZigBee SAC

Generic
CA

Multi-protocol SAC

Generic
CA

ICD

MD

Technology specific CA
Secure generic CA

with network plugin(s)

Figure 5.8: Control Applications in Building Automation Systems

To ease the development of secure CAs for low end (<100 KBytes memory, <100 MHz

CPU speed) SACs, a secure software environment being able to deal with the threats

discussed in Section 3.3 is needed [130]. Application designers shall be supported to

allow rapid innovation and implementation, configuration, deployment and execution of

arbitrary, uninspected and uncertified software without compromising the overall system

106 Secure Control Application Architecture

security. Besides, this possible erroneous or malicious software shall not compromise the

overall system security. Not only attacks evolving from accidental software faults are

to be prevented but also attacks resulting from intentional malicious software. Such a

solution needs to be low cost and no special hardware modifications are to be required,

thus allowing easy and compatible integration.

SAC

Enhanced application layer

Management
device

Security measures

Static code analysis
Harvard architecture

Inspection and certification
Formal verificationConfiguration

Binary

Control network

Sandboxing

System software

Sandbox
Control application

User APIManagement API

Application
objects Policy

Hardware abstraction

Data point
mapping

Network pluginsNetwork pluginsNetwork plugins System ComponentsSystem ComponentsSystem components

Network interface Process interface

Application model

Intrusion detection

Figure 5.9: Architecture of Sensors, Actuators and Controllers

As resulted in the evaluation in Section 4, no single software protection technique is

able to meet these CA security requirements. Static software methods such as e.g. SCA

being integrated into the development process could report detected security vulnerabili-

ties to the programmer. They could also be used to detect certain types of malicious code.

However, as mentioned, the results of those methods in general cannot be sound and

complete and do not seem to provide serious protection against all security threats. Thus,

monitoring the CA’s actions and allowing or denying them at runtime is a more powerful

approach. However, implementing such a SB on lean embedded devices is made difficult

by resource constraints. Certain functions may not be available at all due to missing hard-

ware support. Thus, a reasonable combination and extension of the different techniques

consisting of a priori analysis and run time monitoring is necessary to provide protection

5.3 Secure Software Environment 107

against software attacks primarily, but with other attack scenarios such as physical or side

channel attacks in mind.

The idea is to separate the system software (including network stacks) running on

the device from the CA as well as the node configuration. This model encapsulates the

system software entities in a way which is inspired by the object-oriented paradigm. It

also makes use of a generic application model, which describes the application behavior

and provides relevant configuration and security parameters.

As outlined in Figure 5.9, the architecture of a secure SAC consists of three major com-

ponents, each imposing an additional security barrier to the overall security and limiting

possible security threats:

• A system software provides controlled access to system resources. It encapsulates

hardware specific details, the network protocol stack, the process interface as well

as any further system components and offers clean interfaces for the enhanced ap-

plication layer (cf. Section 5.3.1).

• An enhanced application layer stores the application objects, their DP mappings as

well as the security policy for the CA (cf. Section 5.3.2).

• A Sandbox executes the CA in a controlled way and is also designed to support its

rapid development. It interfaces the system software via the enhanced application

layer and provides a clear abstraction of the underlying hard- and software by pro-

viding an object-oriented access (using e.g. the Java programming language). The

application designer can thus focus on the application development. This also al-

lows portability of applications between devices offering the same SB (Section 5.3.3).

5.3.1 System Software

A simple, tight and secure system software provides controlled access to system re-

sources. It consists of various layers and intends to provide building blocks which can

be mixed and matched to support different hardware configurations. Besides, it is de-

signed to maximize code reuse. A change in the combination of the software modules or

a change in the hardware design should only require a minimum of modification to the

108 Secure Control Application Architecture

software. It takes care of initialization tasks and manages the available resources of the

system.

To access the hardware in an independent and modular way at the lowest level, a

Hardware Abstraction Layer (HAL) hides the peculiarities of basic I/O handling and

on-chip peripherals. It allows to easily deploy the developed software to other MCU ar-

chitectures allowing flexibility in design and to fulfill the differing resource requirements.

(Secure) network protocol stacks can be integrated according to the requirements of a

particular application. To provide communication security, secure algorithms and crypto-

graphic functions are contained. The network plugins handle the mapping of technology

specific application models to the generic application objects. Basically, they keep the

application objects up to date when corresponding network messages are received and

trigger network messages when the application object is changed by the CA. Since the

CA is separated from the system software, it can be ensured that all (bus-)communication

is standard compliant and the latter has to be certified only once.

Further system components (e.g. for controlling peripherals) are also located on top of

the HAL. Besides, the system software runs the SB and manages its required memory.

To provide security, the system software is analyzed using human being based IAC,

code reviews as well as SCA using automated tools. This long lasting process has to be

done very thoroughly since mistakes in this stage may easily squash any later efforts in

developing a secure platform. However, this (extra) effort is not for nothing since such an

established common system software for a particular architecture/processor, may – once

considered to be secure – serve as a common code base for SACs.

5.3.2 Enhanced Application Layer

The enhanced application layer stores the application objects, their data point mappings

as well as the security policy for the CA. Any network plugin or system component exclu-

sively interacts with the CA via these shared objects. Note, that multiple network plugins

may be deployed, allowing the design of multi-protocol devices [156]. The security pol-

icy defines the normal behavior of the CA. Any abnormal behavior can be detected using

5.3 Secure Software Environment 109

an AIDS. Thus, limits to e.g. network or processing resources may be defined, which are

enforced at runtime.

The user API provides various services to access the application objects (e.g. network

access, access to on-chip peripherals such as timers, process interaction) and allows to

control the possibilities of a CA. Such a generic API also increases portability and com-

patibility of applications on different platforms and technologies. The design of the user

API will vary for different application fields. Nevertheless, it should be kept as general

as possible and, in the ideal case, the user API should operate at a very high abstraction

level. For example, in the case of networking, only valid incoming messages shall be

reported to the CA, while erroneous receptions will automatically be rejected and neg-

atively acknowledged. This way, the CAs can be kept simple and at the same time can

concentrate to perform intended actions, only.

The management API interfaces with a management tool, which pre-processes the bi-

nary of a CA as well as its corresponding configuration and allows access to the system

software to support the total replacement and download of CAs. Moreover, this tool al-

lows customization of an application by adapting runtime parameters for the SB defined

by its configuration.

5.3.3 Sandbox

A SB executes the CA in a controlled way and is often used for untrusted programs or

untested code with the essential benefit that the system outside the SB is protected from

(malicious) actions by the CA. The behavior of the program in the SB can be monitored

and controlled and mechanisms to provide memory protection can be integrated. De-

spite enforcing limits derived from the security policy of a SAC, the SB also may provide

watchdog functionality to e.g. reset an application if no specified action occurs within a

defined time. Additionally, the execution of CAs can be limited to those being signed

and containing valid cryptographic signatures to provide support for DRM. Besides, a

SB may also be designed to support the rapid development of CAs. It interfaces the en-

hanced application layer which provides a clear abstraction of the underlying hard- and

software by an object-oriented access to the application objects. The application designer

110 Secure Control Application Architecture

is thus relieved of any hardware or device specific details and can focus on the application

development. This also allows portability of CAs between devices offering the same SB.

It is obvious that such a SB has to be designed for little memory usage and low overhead.

While this approach may at first seem inappropriate for a low-end SAC due to the rela-

tively high resource requirements of such techniques, it offers outstanding possibilities.5

Besides, the resource requirements can be lowered to a significant extent with the accep-

tance of certain limitations. The SB does not need to support fully fledged programming

models, since the desired operations, especially in control tasks, are often quite simple.

For such purposes, CAs more or less consisting of a sequence of simple operations may

be sufficient, which can be supported by a resource-saving SB implementation.

5.3.4 Configuration and Management

A MD is used to configure the parameters of the system software and enhanced applica-

tion layer (even during runtime) and securely deploy the CA into the SB. Communication

takes part via the well-defined management API. Since BASs typically consist of a large

amount of SACs, management access to them should be possible over the BAN.

The configuration is based on a generic application model (cf. Listing 5.1), that hosts

the technology specific application models (i.e. BACnet objects, KNX standardized FBs,

LonWorks SFPTs, ZigBee objects) as well as a definition of generic application objects.

Besides, it provides a mapping of the technology datapoints to the generic datapoints.

This way a device specific configuration can reference this knowledge base and provide

the necessary additional information such as network address(es) for actually implement-

ing a SAC. In addition, the configuration contains the security policy, which defines the

normal behavior of a CA. Any abnormal behavior or attacks can thus be detected by the

system software and limits to e.g. network or processing resources may be defined, which

are enforced during runtime.

It is important to note, that the configuration forms a major part regarding security

since it allows to enforce complex security policies if properly designed. With its help

additional valuable information can be supplied to the SB which otherwise could never

5 Sandboxes might even be designed to be capable of executing native BAS code and to allow the
integration of already existing applications.

5.4 Attack Prevention and Detection 111

be gained from methods described in Section 4. Consider e.g. the intended frequency

of traffic a CA is about to generate on the network. A temperature sensor may once a

minute want to transmit the temperature. The according configuration could thus supply

exactly this information to the SB, which on its part may enforce this limit. Obviously, a

CA designer has to provide reasonable values along with a CA and the user has to inspect

these values. However, it is always possible for the user to deny the execution of a CA if

the configuration does not fulfill the demands (e.g. supplies “limits=none”). Besides, it is

possible for a wide range of SACs to define generic device profiles, which may be shared

among applications of the same purpose. In such a way, the device class of sensors may

share a single profile with generic limits and the CA designer does not have to provide

an individual configuration which eases and speeds up the development of CAs and

increases their security. In fact, standardization within the BAS domain (cf. Section 2.2)

already provides a generic view with valuable information regarding CA behavior. This

information solely has to be provided to the security system.

As always with security issues, a monitoring of policy violations has to be done and

appropriate measures have to be specified. If misbehavior is detected, it may not always

be considered a severe attack. Therefore, in the implementation different alert levels need

to be defined and an attack (prevention and) detection system needs to be deployed.

5.4 Attack Prevention and Detection

5.4.1 Requirements

Securing the BAN by providing secure communication as well as verifying the identity of

the involved network nodes (i.e. authentication) prevents security threats like unautho-

rized interception (e.g. network sniffing), modification (e.g. man-in-the-middle attacks)

and fabrication (e.g. replay attacks). As introduced, secure communication can be pro-

vided by employing cryptographic algorithms and secured channels.

Providing secure devices and preventing software attacks can be partly achieved us-

ing the secure CA architecture presented in the sections before. Code injection or al-

112 Secure Control Application Architecture

gorithm weaknesses, for example, can likewise be avoided as the requirements such as

FR–memory access or FR–protection of environment can be fulfilled using SBes.

Nevertheless, network as well as device attacks exist, that cannot be prevented using

such methods. For BANs typical representatives are interruption attacks, which have the

objective of making a service or data unavailable [126]. These attacks are also referred to

as DoS attacks. In order to interrupt the communication in a BAN, the adversary is trying

to waste network and system resources to prevent the SAC from performing its expected

function. DoS attacks are always hard to handle, which is especially true for SACs where

nodes are subject to stiff resource limitations.

Regarding device attacks, Section 5.2.2 discussed the enforcement of security at-

tributes for CAs. Attacks or violations on control domain or process location (cf. D.19

and D.20) can only be detected or prevented by a system having a global view of ex-

changed process data. Besides, such a system is also needed to fulfill FR–communication

relationship, FR–availability, and partly FR–low level functionality access.

Hence, an attack prevention and detection system has to

• prevent attacks on security attributes D.15, D.16, D.17 and D.18 using the secure CA

architecture and additionally report those violations,

• detect attacks on security attributes D.19 and D.20 and additionally report those

violations,

• provide a reasonably small detection latency to be able to react to security attacks,

• be operable without influencing the normal operation of a BAS regarding its perfor-

mance,

• be secured with respect to attacks directed towards its operation,

• support various information sources such as information regarding communication

within a BAN, data coming from ICDs such as a firewall or data derived from a

security policy, and

• be update-able with respect to new attack scenarios as well as being flexible with

respect to changed system behavior.

5.4 Attack Prevention and Detection 113

5.4.2 Intrusion Detection Systems for Building Automation Systems

The main objective of an IDS is to detect abnormal network communication as well as

abnormal behavior of devices. After having detected such an abnormal situation, it must

be determined whether it has to be considered as an attack. If it is considered as an

attack, countermeasures can be initiated to minimize its consequences. Available BAS do

not provide any measures to prevent or detect attacks. A mechanism to provide effective

protection is presented in this section.

In the IT domain, various different, well-established IDS exist (e.g. SNORT6, TC-

PLogD7, Autonomous Agents for Intrusion Detection (AAFID)8, Cyberarms IDDS9, GFI

EventsManager10, KFSensor11, NIDS Sax212, Secondary Heuristic Analysis for Defensive

Online Warfare (SHADOW)13), which due to the radically different system environment

cannot be trivially adopted. Nevertheless, whenever possible available IDS components

shall be used.

An IDS commonly consists of four components [107] described in the following.

• The data gathering component is responsible for collecting the data by observing

the network traffic as well as the behavior of the different network devices. IDS

are often classified according to the type of data collection (i.e. the location of the

data gathering components). For the BAS domain, host-based, networked-based

and hybrid systems are relevant.

A host-based IDS is executed on a single device and tries to discover abnormal ac-

tivities [50]. These methods typically observe the activities of the OS and its applica-

tions by monitoring changes on system files, system calls as well as logs. Host-based

IDSs typically are used for non network communication related checks and are es-

pecially applicable for security critical devices (e.g. key servers, gateways). Three

6 http://www.snort.org/, Last access: 2015/08/03
7 http://www.securiteam.com/tools/2JUPQQKQ0M.html, Last access: 2015/08/03
8 http://www.cerias.purdue.edu/site/about/history/coast/projects/aafid.php,

Last access: 2015/08/03
9 http://cyberarms.net/features/key-features.aspx, Last access: 2015/08/03

10 http://www.gfisoftware.de/eventsmanager/esmfeatures.htm, Last access: 2015/08/03
11 http://www.keyfocus.net/kfsensor/, Last access: 2015/08/03
12 http://ids-sax2.com/, Last access: 2015/08/03
13 http://www.softpanorama.org/Security/IDS/shadow.shtml, Last access: 2015/08/03

http://www.snort.org/
http://www.securiteam.com/tools/2JUPQQKQ0M.html
http://www.cerias.purdue.edu/site/about/history/coast/projects/aafid.php
http://cyberarms.net/features/key-features.aspx
http://www.gfisoftware.de/eventsmanager/esmfeatures.htm
http://www.keyfocus.net/kfsensor/
http://ids-sax2.com/
http://www.softpanorama.org/Security/IDS/shadow.shtml

114 Secure Control Application Architecture

categories can further be distinguished. On system or OS level, the IDS monitors

multiple processes and their interaction and compares the behavior pattern with a

reference (profiling). IDSs can also monitor specific, security critical applications,

but then need to be especially tailored. Finally, IDSs can also be used to regularly

check the integrity of the device by e.g. comparing calculated checksums of files to

reference values. This has the benefit, that the exact location of security violations

can be identified easier. A violation, however, also might imply, that a security at-

tack has already been successfully performed. Summing up, host-based IDSs due to

their specific adaption to a single device provide a reasonable attack detection prob-

ability. However, such systems need to be installed on each security critical device

and thus also affect its performance. They also cannot be hidden from an adversary.

Figure 5.10a shows the network topology of a host-based IDS.

A network-based IDS observes the complete network traffic or the traffic of the net-

work segment it is connected to and is executed on a dedicated device. Therefore,

these systems are able to discover anomalies which affect more than a single host.

Besides, they have the benefit that they do not affect the performance of the other

devices in the network and can be installed without being accessible to a possible

adversary. Since high network traffic may be present (especially in the backbone

network), network-based IDSs need to be powerful. Figure 5.10b shows the net-

work topology of a network-based IDS.

In a hybrid IDS the architecture consists of distributed host-based and network-

based IDSs and a management system (cf. Figure 5.11). The latter is used to collect

the information of the entire network, alarm and log in case of a security attack.

BASs are typically large networks and monitoring single network nodes is not suffi-

cient. Since a hybrid solution combines the benefits of both types it can be expected

to be the most effective, but also most expensive IDS.

• The core unit of an IDS is the data processing component. It processes the col-

lected data and determines whether an attack is present or not. Again, different

approaches exist. According to [107], the two most important ones are called mis-

use/signature based and anomaly based. Misuse/signature based systems (SIDS)

5.4 Attack Prevention and Detection 115

ICD
+

Host based IDS

SACs
+

Host based IDSs

MD
+

Host based IDS

ICD
+

Host based IDS
ICD

+
Host based IDS

(a) Host-based

ICD

SACs

MD

ICD ICD

Net based IDS

Net based IDS Net based IDS

(b) Network-based

Figure 5.10: Data Gathering Component

use a-priori knowledge of activities that form an attack. This knowledge (i.e. specific

misuse patterns based on a security threat analysis) is stored in a database which

contains typical patterns of known attacks (signatures). To determine whether an

observation can be classified as an attack, different techniques such as expert sys-

tems as well as signature detection mechanisms can be used.

An AIDS tries to detect abnormal behavior by comparing the observed behavior

with the normal and expected behavior (also called reference pattern). To achieve

such a comparison, an application model must be specified. This model must define

the default reference pattern (i.e. network traffic, device behavior) which represents

the expected and normal behavior of the system. Obviously, this default behavior

is not static since it can change during the lifetime of the system. Therefore, self-

116 Secure Control Application Architecture

ICD
+

Host based IDS

SACs
+

Host based IDSs

MD

ICD ICD

Net based IDS

Net based IDS

IDS management system

Figure 5.11: Data Gathering Component: Hybrid Approach

learning techniques (e.g. neural networks) are used to provide the opportunity to

adapt the reference patterns during runtime.

Again, a hybrid solution which combines the benefits of both approaches seems to

be the most practical one for BAS.

• Collecting the results as well as the observed data (communication traces) is the task

of the data storage unit.

• The response component, on the other hand, is responsible for initiating actions to

minimize the consequences of a detected security attack. This can be done by per-

forming a direct feedback to the BAN. For example, it could decouple the affected

control network segment.

The resulting IDS model for BAS is shown in Figure 5.12.

5.5 Summary 117

Data Gathering
Component

Response
ComponentData Processing Component

Data Storage
Component

Knowledge
Base

Process Model

Figure 5.12: Intrusion Detection in Building Automation Systems

5.5 Summary

To summarize this section, the following hybrid software protection mechanisms are de-

ployed to provide security of the architecture:

• SCA, IAC and code reviews are performed on the system software, which provides

an abstraction and layering to ease CA development.

• An AIDS based upon a security policy and a generic application model is deployed

on process control data and system call level to prevent attacks. An IDS is deployed

to detect attacks.

• Uncircumventable sandboxing of CAs is performed to protect the system outside

of the SB from attacks. DRM could also be deployed to only execute signed CAs, if

desired.

118 Secure Control Application Architecture

6
Implementation and Evaluation

Hypothesis 6 The developed secure CA architecture can be implemented on the devices typically

found in BAS. It fulfills the requirements for secure CAs and is able to prevent or at least detect

attacks.

As introduced in Section 3.4, the typical security requirements for BAS devices are

identification (i.e. user validation), resource access (i.e. network and I/O access only if

the device is authorized), communication (i.e. authentication, confidentiality, integrity,

freshness), storage of sensitive information (i.e. confidentiality and integrity), content se-

curity (i.e. usage restrictions of digital content), and availability (i.e. performing intended

functions) [37]. Thus, a sophisticated security architecture as presented in Section 5 needs

to provide defense in depth considering the challenging constraints on these systems and

to provide secure communication, intrusion detection, a secure software execution envi-

ronment as well as physical security.

To validate the feasibility of the presented architecture, this section uses the following

methods:

• On the basis of use case
⊗

, prototypes have been implemented for the different de-

vice classes to evaluate and test the stability with respect to memory consumption,

performance, and security. A test environment (cf. Figure 6.1) has been established

for SACs, which interact directly with the physical environment, ICDs which link

different networks and network segments, and MDs which are used to configure,

maintain and diagnose a BAS. It consists of a KNXnet/IP based backbone with an

119

120 Implementation and Evaluation

attached desktop computer running the Engineering Tool Software (ETS) and a net-

work based IDS to provide additional security. Using secure ICDs with firewalls,

two KNX lines are connected to the backbone. A secure SAC switch and a stan-

dard KNX SAC are located on these different lines. A secure SAC actuator has been

implemented as multi-protocol device being connected to a KNX line and a BAC-

net/IP network. A desktop computer running the Visual Test Shell (VTS) attached

for monitoring as well as sending and receiving BACnet service requests and a se-

cure MD are likewise connected to the BACnet/IP network.

KNXnet/IP

Secure MD

Secure SAC switch
+

Host based IDS
(stripboard)

Network based IDS

Secure ICD
with firewall

Secure ICD
with firewall

Se
cu

ri
ty

 p
o

lic
y

VTS

ETS

BACnet/IP

K
N

X

K
N

X

Secure SAC actuator
+

Host based IDS
(KNXcalibur)

KNX SAC

Figure 6.1: Test Environment and Proof-of-Concept Implementation of Use Case
⊗

• To further evaluate the presented concept, a discussion on how it can be used to

enable security in today’s already existing BASs follows. Attack detection and pre-

vention become possible, if appropriate devices are installed.

• Concluding, an exhaustive discussion evaluates, that all functional requirements

are fulfilled by means of the concept. Some organizational requirements still need

to be considered, when implementing real live installations.

6.1 Security Process 121

This section is structured as follows: First, the process of how to implement the secure

architecture is described in detail: Section 6.1.1 discusses a common security policy for the

prototypes, Section 6.1.2 describes the required steps to implement the CA fulfilling the

use case, Section 6.1.3 addresses the configuration of a BAS, and Section 6.1.4 describes

how device configurations can be derived out of the previously mentioned components.

The following sections describe these prototypes – including but not strictly limited to the

implementation of use case
⊗

– in more detail. Section 6.2.1 introduces two secure SAC

prototypes, Section 6.2.2 describes an implementation of a secure ICD with a firewall,

Section 6.2.3 demonstrates features of a network based IDS, and Section 6.2.4 discusses

a secure MD. Performance measurements and an accompanying discussion on how the

security process is working demonstrate, that the generic concept is applicable to today’s

hardware. Then, Section 6.3 demonstrates, that the proposed architecture can be used to

provide security for already existing technologies and installations. Finally, Section 6.4

discusses the benefits and disadvantages of the proposed architecture.

6.1 Security Process

Section 5 provides a concept for secure and distributed CAs in BAS. A generic application

model based on VDI 3813 and a mapping on today’s technologies, a semi-formal frame-

work for the definition of security policies as well as a system architecture and building

blocks for implementation of secure devices have been described. Standardization com-

mittees can thus be supported in standardizing secure CAs and in defining generic secu-

rity policies (cf. left side of Figure 6.2). By means of use case
⊗

, this section describes the

process of how to implement secure CAs (cf. right side of Figure 6.2). It is shown, how

the generic architecture can be instantiated, i.e. how the CA can be modeled and how the

policies can be adapted. Prototype implementations demonstrate, how to generate con-

figurations for the devices, how commissioning can be performed, and which parts of the

architecture guarantee the compliance with the security policy.

122 Implementation and Evaluation

CA manufacturer

Facility manager

System integrator

Standardization committee

Develop CAs

Security process

Standardize CAs

Define generic
policy

Adapt security
policy

Secure Control Application Architecture Implementation

Generic application model

Software security policy

Secure software environment

Attack prevention and detection

Select and
commission devices

Figure 6.2: Security Process

6.1.1 Security Policy

The generic application model as defined in Section 5.1 contains all DPs which need to

be considered by standardization committees for formulating a security policy. The idea

of such a generic approach is, that a reasonable template policy with default values is

established. This template policy is instantiated and adapted, when a BAS is being imple-

mented. The implementation of use case
⊗

is given in Figure 5.6. The formal definition

is found in D.7. This section describes the process of implementing a security policy on

the basis of these proof-of-concept CAs.

1. The first step is to find the relevant DPs in the generic application model for the

desired CA. As can be seen in Definition D.7, at least two DPs (MDP PAR_OFFD

and PDP L_MAN) are required to implement a stairwell light.

2. The second step is to specify the security attributes. As seen in Definition D.8, a

security attribute is always related to a present value p of a DP. For use case
⊗

,

the generic security attributes are listed in Definitions D.21–D.23. The instances are

6.1 Security Process 123

formulated the following way:

sDP PAR_OFFD : <pPAR_OFFD, cond(pPAR_OFFD, 600s,≤), (P.1)

cond(pPAR_OFFD, 60s,≥), AND >

sSAC actuator : <systemcall_switchoutput,

check_accesstime(systemcall_switchoutput, 1Hz,≥) >

sDOMAIN Lighting : <pL_MAN, cond(pL_MAN, {0, 1},=) >

3. The next step is to associate the DPs to the SACs implementing the FBs as well as

ICDs and MDs being connected to the BAN. As seen in Definition D.7, the SAC

switch and SAC actuator are implemented. Remember, a binding between SACs is

established, if they reference the same DP. For the proof-of-concept, additionally

two ICDs, a network based IDS and a MD are connected. Thus, the following se-

curity policy can be defined for the BAS, specifying which device has to evaluate

which security attribute:

SAC switch : sDOMAIN Lighting (P.2)

SAC actuator : sSAC actuator, sDP PAR_OFFD, sDOMAIN Lighting

ICD : sDOMAIN Lighting

network based IDS : sDOMAIN Lighting

MD : sDP PAR_OFFD

The SAC switch only has access to pL_MAN, therefore it can evaluate sDOMAIN Lighting.

The SAC actuator has access to all DPs, therefore can evaluate all security attributes.

The ICDs have access to the control network, thus giving them the possibility to

evaluate sDOMAIN Lighting, if process data is exchanged via this network. The net-

work based IDS is permanently connected to the backbone, giving it the possibility

to evaluate sDOMAIN Lighting, if process data is exchanged via the backbone. Since

also the binding is known in this step, it is also possible to evaluate, which device

is allowed to communicate with a partner once the concrete configurations (e.g. ad-

124 Implementation and Evaluation

dresses) are known. The MD being connected to the backbone, is able to evaluate

sDP PAR_OFFD, since it has access to configuration data.

In order to demonstrate the feasibility of the presented approach, some more case

studies of how security attributes can be applied to enhance existing standards are given.

Energy
level

selection
M_ACTM_BMS

Motor
control

VZ

MSSMF

B_WINDOW

P_ACT

Level Level

Bool

Pres

MES

BRM

MVB

MS

MA

Bool

Bool

Bool

Bool

Bool

Bool

Bool

Real

Light
actuator

L_STAL_SET

PAR_POFF

PAR_PON

Light

Light

Light

PAR_DIMTime

PAR_CAL

Constant
light control

L_SETP_ACT

H_ROOM

L_MAN

Pres Light

Lux

PAR_SETPTLux

PAR_ONDTime

PAR_OFFDTime

PAR_DIMTime

Light switch
L_SETL_STA

PAR_OP

PAR_MON

Light Light

Light

Light

(a) VDI 3813-2 FB level

Energy
level

selection
M_ACTM_BMS

Motor
control

VZ

MSSMF

B_WINDOW

P_ACT

Level Level

Bool

Pres

MES

BRM

MVB

MS

MA

Bool

Bool

Bool

Bool

Bool

Bool

Bool

Real

Light
actuator

L_STAL_SET

PAR_POFF

PAR_PON

Light

Light

Light

PAR_DIMTime

PAR_CAL

Constant
light control

L_SETP_ACT

H_ROOM

L_MAN

Pres Light

Lux

PAR_SETPTLux

PAR_ONDTime

PAR_OFFDTime

PAR_DIMTime

Light switch
L_SETL_STA

PAR_OP

PAR_MON

Light Light

Light

Light

(b) ISO 16484 FB level

Energy
level

selection
M_ACTM_BMS

Motor
control

VZ

MSSMF

B_WINDOW

P_ACT

Level Level

Bool

Pres

MES

BRM

MVB

MS

MA

Bool

Bool

Bool

Bool

Bool

Bool

Bool

Real

Light
actuator

L_STAL_SET

PAR_POFF

PAR_PON

Light

Light

Light

PAR_DIMTime

PAR_CAL

Constant
light control

L_SETP_ACT

H_ROOM

L_MAN

Pres Light

Lux

PAR_SETPTLux

PAR_ONDTime

PAR_OFFDTime

PAR_DIMTime

Light switch
L_SETL_STA

PAR_OP

PAR_MON

Light Light

Light

Light

(c) VDI 3813-2 Domain level

Figure 6.3: Security Attributes

A security attribute at FB level can e.g. be applied to VDI3813-2, FB 6.5.1 energy level

selection, whose purpose is to adapt the energy transfer to the utilization of a room. The

mapping of this functionality to a FB of the application model is shown in Figure 6.3a.

A room is not constantly being kept on comfort temperature level, but the setpoints vary

depending on external constraints. For instance, the output energy level pM_ACT depends

on the boolean input pB_WINDOW . If the window is open, then pM_ACT has to be at protec-

tion level so that no damage to the installation or the basic structure of a building occurs,

otherwise internal control functions are executed and pM_ACT may be set to other levels.

The corresponding security attribute can be formulated as:

svdi3813_651_pM_ACT :< pM_ACT, condpM_ACT , condpB_WINDOW , AND > (P.3)

condpM_ACT : cond(pM_ACT, protection_level,=) (P.4)

condpB_WINDOW : cond(pB_WINDOW , true,=) (P.5)

and can be read as: If the window is open (P.5), then pM_ACT needs to be at protection

level (P.4). Otherwise the security attribute is violated.

Another example for a FB security attribute is ISO 16484-3, 5.5.3.3.3 motor control

(cf. Figure 6.3b), where its output pMSS must stop the motor if a failure is reported. Thus,

6.1 Security Process 125

the input motor electrical failure pMES has a higher priority than the input motor enable

pMF and under all error conditions overrides it. The corresponding security attribute can

be formulated as:

siso16484_55333_pMSS :< pMSS, condpMES > (P.6)

condpMES : cond(pMES, true,=) (P.7)

which states, that irrelevant of the input parameter pMF the motor shall be turned off, if

an error is detected (P.7).

Finally, an example of a security attribute for the lighting control domain is the inter-

action of the VDI3813-2 5.2 light switch, 6.3.5 constant light control and 4.2.1 light actuator

FBs (cf. Figure 6.3c). The light switch can be used as input for a central off function. Its

output is connected to pL_MAN of the constant light control and forces its pL_SET output to

switch off. All light actuators connected to pL_SET should then switch their corresponding

outputs off. The security attribute:

svdi3813_lighting_pL_STA :< pL_STA, condpL_STA > (P.8)

condpL_STA : cond(pL_STA, pL_SET,=) (P.9)

models exactly this relationship between the pL_SET output of the light switch and all

connected pL_STA outputs of the light actuators (P.9).

6.1.2 Control Application Development

When developing a CA, a manufacturer has to perform the following steps:

• First, it has to decide which FBs of the generic application model to implement

and which not. Mandatory DPs need to be implemented and optional DPs need to

be considered when appropriate. Figure 6.4 shows this development step for the

secure SAC actuator. The functionality given by the FB light control and the

FB light actuator will be implemented within a single CA light actuator.

Listing 6.1 shows how the generic application model (i.e. the FBs) is referenced.

126 Implementation and Evaluation

SAC actuator

Control Application Light
actuator

FB Light
actuator

FB Light
control

has
ParameterPAR_OFFD

has
Input L_SET

has
Output

has
Input

L_MAN

Figure 6.4: Control Application Development for Secure SAC Actuator

1 <?xml version="1.0" encoding="UTF-8"?>
2 <SAC_actuator xmlns:xsi="http://<!-- [...] -->">
3 <!-- implement function blocks -->
4 <FunctionBlock idref="3813-2_6_4_2">
5 <!-- implement light actuator FB -->
6 <ProcessDataPoint idref="L_SET" />
7 </FunctionBlock>
8 <FunctionBlock idref="3813-2_6_5-6">
9 <!-- implement light control FB -->

10 <ProcessDataPoint idref="L_SET" />
11 <ProcessDataPoint idref="L_MAN" />
12 <ManagementDataPoint idref="PAR_OFFD" />
13 </FunctionBlock>
14 <!-- [...] -->

Listing 6.1: Control Application Function Blocks

• Second, the underlying BAS technologies need to be chosen. Using the generic ap-

plication model, it is possible to provide an automatic mapping of generic DPs to

technology dependent ones.

• Finally, the building blocks of the secure software environment (i.e. the system soft-

ware, the enhanced application layer and the SB) need to be realized. It depends

on the manufacturers and used technology, whether existing solutions are chosen

or the manufacturers implement these blocks on their own.

6.1.3 Building Automation Network Configuration

After a building has been planned, the system integrator is responsible for the realization

of the desired functionality and fulfillment of the requirements. It selects suitable devices

6.2 Prototypes 127

and CAs and plans the BAN topology. This involves deciding which FBs will be realized

by which devices and how these devices are being connected (i.e. binding). This also

involves an adaption of the security policy with respect to building owner’s requirements.

Figure 6.5 shows the configuration (green text) for the test environment and proof-of-

concept implementation of use case
⊗

.

KNXnet/IP

Secure MD

Secure SAC switch
+

Host based IDS
(stripboard)

Network based IDS

Secure ICD
with firewall

Secure ICD
with firewall

VTS

ETS

BACnet/IP

K
N

X

K
N

X

Secure SAC actuator
+

Host based IDS
(KNXcalibur)

KNX SAC

individual address = 1.1.1
knx_dp1, knx_ga1 = 0/0/1

individual address = 1.2.2
knxdp_1, knx_ga1 = 0/0/1

individual address = 1.1.3
knx_dp1, knx_ga1 = 0/0/1

bada1 = 192.168.0.1
bacnetdp_1 = 1

Figure 6.5: Configuration

6.1.4 Device Commissioning

The final step when implementing a BAS is the commissioning of the devices. Using the

security policy, the configuration and the CAs, it is possible for the system integrator to

derive the device configuration and security policy for each node. Figure 6.6 shows this

process for the five prototypes of use case
⊗

.

6.2 Prototypes

The introduced device classes obviously need different hard- and software due to the dis-

cussed requirements. Nevertheless they may share the same components if appropriate.

A modular architecture consists of different, exchangeable hardware blocks which are

128 Implementation and Evaluation

System integrator

Security process

Setup

Security policy

Configuration

Control application

Select and
comission devices

Secure SAC switch configuration including security policy

Secure SAC actuator configuration including security policy

Secure MD configuration including security policy

Network based IDS configuration including security policy

Secure ICD with firewall configuration including security policy

Figure 6.6: Commissioning

able to fulfill embedded control, interconnection as well as configuration and manage-

ment tasks. The resulting devices/platforms are:

• Universally applicable to serve as a basis for further work in the scope of building

automation (e.g. test platform for protocol extensions)

• Compact, embedded, robust and low cost

• Flexible (i.e. configurable in hardware by use of jumpers and software, which is

especially useful for SACs and ICDs) and extensible

• Easy to use

• Powerful, meaning that enough processing power and memory shall be available

to implement representatives up to MDs

At the left side of Figure 6.7, a mapping of the general hardware model (cf. Figure 2.2)

to a modular architecture is shown. At the right side, possible implementations derived

from this architecture are displayed.

6.2 Prototypes 129

POSSIBLE IMPLEMENTATION
MODULAR ARCHITECTURE

StoragePower

Local Interfaces Process Interface
and HMI

Network Interfaces

CPU

Zigbee

SD Card
Texas Instruments MSP430
Fujitsu MB90F334A
Atmel AVR ATmega16

EIA-232 USB Ethernet TP-UART

Flash

PEI/EMI

Router

M
B

90
F3

34
A

U
S

B

TP
-U

A
R

T
TP

-U
A

R
T

Wireless Router

M
B

90
F3

34
A

U
S

B

TP
-U

A
R

T
Zi

gb
ee

IP Tunneling Router

M
B

90
F3

34
A

U
S

B

TP
-U

A
R

T
E

th
er

ne
t

IP Gateway

M
B

90
F3

34
A

U
S

B

TP
-U

A
R

T
E

th
er

ne
t Storage

SAC

M
S

P4
30

M
B

90
F3

34
A

A
V

R
 A

Tm
eg

a1
6

E
IA

-2
32

/P
E

I

TP
-U

A
R

T/
Zi

gb
ee

I/O

MCU based MD

M
B9

0F
33

4A

H
TT

P

TP
-U

A
R

T/
 E

th
er

ne
t Storage

PC-based MD

P
C G

U
I

TP
-U

A
R

T/
 E

th
er

ne
t Storage

Figure 6.7: Hardware Architecture for Proof-of-Concept

6.2.1 Sensor, Actuator and Controller

This section presents an implementation of secure SAC prototypes, which allow un-

trusted, possible intentional malicious software to be executed securely on those different

low end ESs. Application designers are supported to allow rapid innovation and imple-

mentation, configuration, deployment and execution of arbitrary CAs. The outcome is a

secure and customizable CA environment targeted to work with low end SACs featuring

MCUs of limited memory (<100 KBytes in total) and tight processing power (<25 MHz).

Based on the identified demands, modular hardware platforms have been designed,

which serve as a basis for not only the development of software for SACs but also can be

used for e.g. ICDs. Several aspects have to be considered for the SAC hardware design.

Although application tasks are not complex, enough resources have to be available to

handle security tasks such as encryption. Hardware support for CA isolation has to be

considered. Power consumption is of major concern since SACs are often supplied via

link power to avoid an additional power cable. In special cases, they may be even driven

by a battery (e.g. glass break sensors). Finally, SACs have to be reasonably robust when

placed in the field. All these requirements have to be achieved in a cost efficient way since

the number of SACs in a BAS is high. In addition, a modular software design has been

implemented. Based on a HAL, hardware independent modular software components

have been implemented (e.g. system software, enhanced application layer, SB).

130 Implementation and Evaluation

With the first proof-of-concept implementation Secure SAC switch (cf. Figure 6.1)

it is possible to control a KNX compliant light KNX SAC as well as the second Secure

SAC actuator. The latter implements use case
⊗

and has been designed as an en-

hanced multi-protocol device being integrated into a BACnet and KNX network. Com-

munication between sensor and the enhanced actuator has been secured using a subset

of [61].

6.2.1.1 Hardware Architecture

The presented concept has been deployed on two different hardware architectures, each

with its own use cases.

First, a SAC stripboard [129] (cf. Figure 6.8a) intended to be powerful enough to han-

dle the presented SB approach and control a KNX compliant light (on, off) has been as-

sembled, with the main goal to verify the approach regarding the imposed overhead and

gain performance results. Moreover, it is intended to provide a low level BAN access

in order to use it as test device for security analyses. Offering bit level access to KNX

using dedicated hardware, security attacks can be performed and results be observed.

The SAC stripboard stays very small scale and represents the lowest end SAC devices.

While it appeared reliable during development and testing of the software running on

it, it is not intended for real-life use. Hardware assisted methods in mind, an Atmel

ATMega168 MCU (implementing the HA) clocked at 8 MHz, featuring 16 KBytes flash,

1 KByte SRAM, 512 Bytes EEPROM was chosen. Among others, the controller provides 23

programmable I/O lines, two 8-bit Timer/Counters and one 16-bit Timer/Counter with

various compare modes, a programmable serial USART, a byte-oriented 2-wire serial in-

terface and two external interrupts. Some external components have been equipped to

provide additional functionality: For debugging, testing and basic interfacing, a LED and

a pushbutton are attached. An additional external EEPROM (MICROCHIP 24LC16B/P)

with a memory size of 2048 Bytes is used to provide extra non-volatile memory. It is

connected via the 2-wire serial interface supported by the ATMega168, which is actu-

ally an I2C connection (the naming is different due to licensing reasons). The connection

is clocked at 400 kHz, which is the fastest possible with the external EEPROM. It still

limits the data rate significantly, since there is some overhead contained in the required

6.2 Prototypes 131

data exchange protocol. A MAXIM MAX 3232CPE dual channel driver/receiver chip is

equipped to convert controller signals to Electronic Industries Association standard RS-

232-C (EIA232) levels to enable serial communication, for example with a PC. On the side

of the MCU, it is directly connected to the USART pins of the ATMega168. To access the

KNX bus, a slightly adapted version of the basic circuit of the Freebus project1 has been

considered to convert the MCU signals to KNX signals and to power the device using the

bus line.

(a) SAC stripboard (b) KNXcalibur

Figure 6.8: Sensor, Actuator and Controller Prototypes

Second, an integrated, compact and powerful platform named KNXcalibur was built

[128], [135] (cf. Figure 6.8b). It is applicable as SAC, but can also be used as ICD and

MCU based MD with an integrated web server in mind. KNXcalibur is based on a Fujitsu

16 bit MB90330 family MCU. It operates at a maximum frequency of 24 MHz and pro-

vides 24 Kilobytes RAM, 384 KB flash, 4 UARTs, a 8/10 Bit A/D converter and a Serial

Peripheral Interface as well as an external bus interface similar to the ISA bus. Moreover,

USB functionality and Ethernet connectivity via the Cirrus Logic CS8900A Ethernet LAN

controller are realized. To support persistent storage of large amounts of data on KNX-

calibur, a SD/MMC card connection has been integrated. Connection to KNX is realized

with Siemens TP-UART ICs. Via the available pin headers an extension daughter board

has been connected. It provides 8 push buttons, 8 LEDs, 8 switches, 1 relay, 1 buzzer

1 http://www.freebus.org, Last access: 2015/19/08

http://www.freebus.org

132 Implementation and Evaluation

and a MAX3471 for EIA-485 connectivity. In addition the following sensors have been

integrated: an HSP15 humidity sensor, a MPX4250 pressure sensor, a NSL19M51 light

dependent resistor, an LM335Z analog temperature sensor, a DS1820 digital temperature

sensor and a DCF77 connector for attaching a FSZ01020 antenna.

Using pin headers, all devices can be connected to ”header boards” with modular

components (power supply, point-to-point interface, process interface, network inter-

face). Simple buttons and LEDs are used as process interfaces. Moreover, a PEI connector,

which offers digital and analog access to external sensors and actuators, is present.

6.2.1.2 Software Architecture

To allow flexibility and different hardware configurations, the software has been imple-

mented modular, based on the generic architecture (cf. Figure 5.9). With limited hardware

resources of SACs in mind, an embedded VM forms a SB and provides a lean environ-

ment for Java based CAs. Interfacing to the BAN (e.g. KNX or BACnet) and the specific

hardware is done by a well-defined Java API. In addition, a management API allows to

download and configure CAs inside the VM. The programming concept, configuration

and management issues as well as the workflow using the open development platform

Eclipse are described. Figure 6.9b shows the software implementation structure.

The main basis for hardware independent software modules forms the HAL, which

has been implemented in an event based way.

Using the HAL it is possible to implement generic modules in the system software,

such as the KNX network plugin, which provides bit stuffing support for controlling the

Freebus hardware as well as a TP-UART driver for more simplified KNX network access.

Independent of the underlying OSI layer 1/2, the KNX stack offers KNX group

communication as well as group object handling (A_GroupValue_Read, A_Group-

Value_Write, A_GroupValue_Response) and management communication (A_Prop-

ertyValue_ Read, A_PropertyValue_Write, A_PropertyValue_ Response). In

a first prototype, it has been configured to keep a standard KNX light actuator

FB_Light_Actuator with associated group address synchronized with the generic ap-

plication object On/Off Light. This way, runtime compliance to the KNX standard can

6.2 Prototypes 133

be demonstrated. In a second prototype, it is used for implementing use case
⊗

and to

show the implementation of a security policy.

Likewise the BACnet plugin provides access to BACnet/IP. It maps the On/Off

Light to the BACnet Lighting-Output and provides the services ReadProperty and

WriteProperty to manipulate its properties (e.g. PresentValue).

Besides, drivers for the sensors mentioned before are contained in the system software

within further software modules. The system software also manages and stores configu-

ration parameters and data of the enhanced application layer in non-volatile memory.

The user API forms the main component for the CA developer and is the only way

to interact with the environment. Native Java classes have been defined which form the

interface for the CA. The SB maps these Java methods and variables to their C implemen-

tations, which then access the application objects. The KNX plugin hides KNX specific

details and provides a high-level access to group objects. Communication is solely per-

formed by reading and writing these objects. Any messaging related tasks such as frame

and checksum generation and checking, handling of acknowledgments and retransmis-

sion in case of errors are carried out by the library. Likewise, the BACnet plugin handles

BACnet communication. The I/O plugin handles access to peripherals and is, as men-

tioned, common to every hardware configuration. Listing 6.2 shows an extract of how

CAs can access a generic (networked) application object or a peripheral.
1 c l a s s FunctionBlock {
2 public ProcessDataPoint readValue(String id); // Reads and returns the

current value of the application object from the memory.
3 public void WriteValue(ProcessDataPoint value); // Writes the value of the

application object. Automatically triggers network plugins to update
their values.

4 [...]
5 }
6 c l a s s IO {
7 public s t a t i c i n t out(i n t pin, i n t value); // 1 turns on pin, 0 off
8

9 public s t a t i c i n t initDCF77(void); // initialize DCF77
10 public s t a t i c Date getTime(); // returns current date and time
11

12 public s t a t i c i n t initTempDigital(void); // initialize digital temperature
sensor

13 public s t a t i c Float getTempDigital(void); // returns temperature value
14

15 public s t a t i c i n t initPressure(void); // initialize pressure sensor
16 public s t a t i c Float getPressure(void); // returns pressure value
17

18 public s t a t i c i n t initLDR(void); // initialize LDR
19 public s t a t i c Integer getBrightness(); // returns brightness value
20

134 Implementation and Evaluation

21 public s t a t i c i n t initHumidity(void); // initialize humidity sensor
22 public s t a t i c Integer getHumidity(); // returns humidity value
23 [...]

Listing 6.2: Extract of User Application Programming Interface

Configuration of a node is XML based and, as described, can be generated using e.g.

a configuration tool. Using the generic application model the required mappings of the

specific addresses to the generic DPs can be calculated. Likewise, the corresponding se-

curity attributes for the plugins can be generated out of the generic application object.

The desired generic FBs and DPs are instantiated using their id attributes, and their pa-

rameters are configured. Then a configuration of the network plugins can be calculated.

Basically, this means binding the DPs to addresses. Security policy restrictions for the

different APIs can also be derived. Besides, relevant parameters for further system com-

ponents (e.g. mapping a MCU output pin to the corresponding light) can be set.

Finally, this representation is transferred into a suitable binary format and stored in

the EEPROM of the target node using the management API. Listing 6.3 shows the config-

uration of the SAC actuator of use case
⊗

. The security policy is derived from P.2.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <DeviceConfig name="SAC actuator" xmlns:devconf="http://[...]">
3 <Generic>
4 <!-- instantiate generic function blocks -->
5 <FunctionBlock idref="3813-2_6_5-6">
6 <!-- set security attribute s_DOMAIN Lighting -->
7 <ProcessDataPoint idref="L_MAN" value="0,1" />
8 <!-- set MDP to 120 and security attribute s_DP PAR_OFFD-->
9 <ManagementDataPoint idref="PAR_OFFD" largerthan="60" smallerthan="600">

120</ManagementDataPoint>
10 </FunctionBlock>
11 </Generic>
12

13 <IO> <!-- configuration and restrictions for I/O library -->
14 <!-- set security attribute s_SAC actuator-->
15 <Systemcall id="out" maximumfrequency="1">
16 </IO>
17

18 <KNX> <!-- configuration for KNX plugin -->
19 <!-- KNX physical address -->
20 <IndividualAddress>1.1.1</IndividualAddress>
21 <!-- define group address -->
22 <GroupAddress id="knx_ga1">0/0/1</GroupAddress>
23 <!-- bind group address to datapoint -->
24 <DP idref="knxdp_1" garef="knx_ga1" />
25 </KNX>
26

27 <BACnet> <!-- configuration for BACnet plugin -->
28 <!-- define device address -->
29 <BACnetDeviceAddress id="bada1">192.168.0.1</BACnetDeviceAddress>
30 <!-- define object identifier -->

6.2 Prototypes 135

31 <Property idref="bacnetdp_1">1</Property>
32 </BACnet>
33 <!-- [...] -->

Listing 6.3: Device Configuration of Sensor Actuator and Controller Actuator

As shown in Section 4.4, a lot of different SBes are available. Due to the memory re-

quirements (160-512 KBytes of total memory) and the requirement for a 16 Bit processor

clocked at 16 MHz or higher the Java ME is slightly beyond the limitations of the tar-

geted hardware. Besides, the official Java versions, there is a number of implementations

available which are targeted at systems with very low resources. These implementa-

tions often come at the price of only offering a subset of the full Java functionality. Two

suitable solutions will be discussed in the following: NanoVM and TinyVM. Both VM

implementations allow the execution of standard Java bytecode, at least after preparation

with an automated tool. They target very low-profile ESs. The NanoVM was originally

written for the Atmel ATMega8 MCU included in the Asuro robot, and has a memory

footprint of approximately 7 KBytes. Some of its features are 15/31 bit integer arithmetic,

floating point operations, garbage collection, simple application upload, inheritance, a

unified stack and heap architecture and about 20k Java opcodes per second on a 8 MHz

AVR. The TinyVM operates on Lego Mindstorms RCX programmable bricks which are

equipped with an Hitachi H8 MCU. It has memory requirements of around 10 KBytes.

Both VMs have some limitations regarding the Java language features. For example, the

NanoVM does not support multi-threading. The TinyVM is generally more advanced (of

course also due to the more powerful hardware it runs on), and supports multi-threading,

exceptions and synchronization but for example misses floating point operations. But de-

spite these limitations both VMs have their possible application areas, since the omitted

functionality is often not required for their intended use.

Finally, the NanoVM was chosen for sandboxing the CA, since a port to the AVR MCU

already existed and only a port to the Fujitsu MCU had to be done. Nevertheless, con-

siderable modifications have been applied to achieve the targeted level of functionality.

First, the CA is not stored in the flash memory of the MCU but on external storage (ex-

ternal EEPROM in case of the stripboard, SD card for KNXcalibur). Thus, the NanoVM

had to be modified to allow fetching the CA instructions from external program stor-

age. In addition, Java libraries have been written to access the peripherals (via the user

136 Implementation and Evaluation

API) of the hardware platforms and to enable BAS specific methods (e.g. KNX compat-

ible data exchange). The NanoVM has also been extended to provide a basic AIDS-like

protection mechanism. During execution, all instructions are monitored and checked

against the predefined security policy. This way, problematic behavior caused by mal-

functioning or malicious software can be detected and the execution can be stopped. The

policy is extracted out of the configuration file described before. Currently, this step is

performed manually, however, a model-driven approach would allow automatic trans-

formation [144]. Listing 6.4 briefly shows the implemented SB and policy monitoring.
1 // Number of policy rules
2 # define SEC_POLICY_RULES_CNT 1
3 // Macro to store rule in memory
4 # define COMPOSE_RULE(limit, time, action) ((time & 0x3f) | ((limit & 0x3f)

<<6) | ((action & 0x3)<<14))
5 // Macro to get limit per time
6 # define GET_RULE_LIMIT(rule) ((rule >> 6) & 0x3f)
7 // Macro to get time of last call
8 # define GET_RULE_TIME(rule) (rule & 0x3f)
9 // Macro to get action on policy violation

10 # define GET_RULE_ACTION(rule) ((rule >> 14) & 0x3)
11

12 // Compose rule to halt the CA if io.out is called more often than one time
per second

13 policy_rule_t sec_policy_rules[SEC_POLICY_RULES_CNT] =
14 {
15 {NATIVE_CLASS_IO, NATIVE_METHOD_OUT, COMPOSE_RULE(1, 1, RULE_ACTION_HALT)}
16 };
17 // This method is called on every instruction of the CA
18 u08_t sec_check_invocation(u16_t mref) {
19 // For all defined policies
20 for (u08_t i=0; i<SEC_POLICY_RULES_CNT; i++) {
21 // If policy rule is available for instruction
22 i f (NATIVE_ID2CLASS(mref) == sec_policy_rules[i].class_ref) &&
23 (NATIVE_ID2METHOD(mref) == sec_policy_rules[i].method_ref) {
24 // Count number of calls
25 invocations[i].count += 1;
26 // If rule violated, halt CA
27 i f (invocations[i].count >= GET_RULE_LIMIT(sec_policy_rules[i].rule)) {
28 switch (GET_RULE_ACTION(sec_policy_rules[i].rule)) {
29 case RULE_ACTION_HALT:
30 error(ERROR_POLICY_VIOLATION);
31 break;
32 [...]
33 // Timer interrupt
34 void TIMER1_COMPA_vect(void) {
35 // For all defined policies
36 for (u08_t i=0; i<SEC_POLICY_RULES_CNT; i++) {
37 // Reset counters if rule not violated
38 i f (invocations[i].time >= GET_RULE_TIME(sec_policy_rules[i].rule)) {
39 invocations[i].count = 0;
40 invocations[i].time = 0;
41 [...]
42 // Invoke instruction of CA
43 void native_invoke(u16_t mref) {
44 // Check if invokation is allowed by policy

6.2 Prototypes 137

45 i f (sec_check_invocation(mref) != 0) return;
46 // Select native function and invoke it
47 i f(NATIVE_ID2CLASS(mref) == NATIVE_CLASS_PORT) {
48 native_avr_port_invoke(NATIVE_ID2METHOD(mref));

Listing 6.4: Sandbox and Policy Implementation

(a) Components

KNXcalibur

Enhanced application layer

System Software

NanoVM

Control Application

User APIManagement API

On/Off Light
Policy

Hardware Abstraction

KNX address
BACnet adress

BACnet
plugin

KNX
plugin

OutputDCF77

KNX
interface

IP
interface

Java interpreterProgram storage

Time

(b) KNXcalibur

Figure 6.9: Software Implementation

Figure 6.9a outlines the flow of information between the software components. CA

Java bytecode instructions are fetched from the program storage and are interpreted by

the Java interpreter. The instructions may be operations on internal Java variables or calls

to library methods. The library methods read possible configuration values, execute the

designated functions on the hardware platform or communicate with peripherals.

In the following, the development workflow – starting from program development to

final CA download – and the stairwell lighting CA are described. The system software

itself has been compiled and downloaded using the MCU specific toolchain (e.g. avr-

gcc and AVR Downloader/UploaDEr, avrdude). CAs may be developed and compiled

using standard Java toolchains (e.g. Eclipse SDK and the OracleJDK) and utilizing the

User API. XML device configuration files currently have to be written manually. The

configuration tool (NanoVMTool) is being used to prepare the compiled class files, which

includes stripping unnecessary and unsupported instructions from the binary as well as

mapping native Java library calls to their corresponding implementations in C. Besides,

138 Implementation and Evaluation

the NanoVMTool has been extended to provide functionality for parsing the XML based

configuration file and changing application parameters. Finally it is used to upload the

CA into the SB via the serial interface.

Listing 6.5 shows the required CA to implement the SAC actuator (Stairwell

light). A node configuration defining the required application and parameters is as-

sumed (like in Listing 6.3).
1 import nanovm.UserAPI.*;
2 c l a s s StairwellLight {
3 FunctionBlock fb1=new FunctionBlock("3813-2_6_5-6"); // configuration is

automatically read using the id "3813-2_6_5-6"
4 public s t a t i c void main() {
5 ProcessDataPoint pdp = new ProcessDataPoint(); // temporary pdp
6 Date date_temp = new Date(); // temporary date
7 while(t rue) {
8 i f (!pdp.equals(fb1.readValue("L_MAN"))) { // if pdp has changed
9 pdp = fb1.readValue("L_MAN"); // read its value

10 i f (pdp.intValue() == 1) { // if L_MAN is set to on
11 io.out(0,1); // immediately switch lamp 0 on
12 }
13 date_temp = new Date(); // store time since last change of L_MAN
14 }
15 i f (Date().getTimeSeconds()-date.getTimeSeconds() > fb1.readValue("

PAR_OFFD") { // if time longer than PAR_OFFD elapsed
16 io.out(0,0); // switch lamp 0 off
17 [...]

Listing 6.5: Stairwell Light Control Application

The main application code is placed in an infinite loop. Here, first the FB object fb1 is

checked for changes, which could be present if a related BAS message has been received.

If there are any messages the PDP value is read. If an on telegram has been received, the

light is immediately switched on. If an off packet is received, the light is switched off

after the PAR_OFFD.

6.2.1.3 Experimental Results

Investigations regarding memory consumption reveal that the implementation on the

SAC stripboard results in about 8 KBytes code size thus leaving another 8 KBytes Flash

memory for further extensions. The internal 512 Bytes and external 2 KBytes EEPROM

remain free and are used to store the CA and configuration parameters. Analysis of the

usage of the 1 KByte application SRAM has been aggravated due to the virtual heap ar-

chitecture provided by the NanoVM. In the original version, it reserves 256 Bytes for the

internal operation thus leaving 768 Bytes SRAM for execution of CAs. With the imple-

6.2 Prototypes 139

Matrix dimension Native C Java (int. EEPROM) Java (ext. EEPROM)
2 31 µ s 13.2 ms 420 ms
4 440 µ s 20 ms 2.62 s
8 3.92 ms 595 ms 18.5 s

16 32.8 ms 4.64 s /

Table 6.1: Runtime Matrix Multiplication

mented extensions, approximately 70 Bytes of extra memory are used and therefore the

heap size was reduced to 668 Bytes. To get a first estimation of memory consumption of

a typical CA, a prepared code involving switching of the LED and KNX communication

several times has been executed. As expected, the remaining heap size was shrinking ev-

ery cycle until it reached zero. Then the built-in garbage collector was executed, freeing

all the unused heap memory. The freed heap size is considered to be the actual unused

heap memory being available to CAs. This size was around 580 Bytes resulting in a heap

use of around 90 Bytes which leaves enough room for CAs dedicated for SACs.

The performance overhead of the imposed security measures has been evaluated from

several points of view. Regarding the simple CA being able to control a light, no subjec-

tive feeling of slowdown can be observed. In addition, a simple PID controller has been

implemented. Again no subjective slowdown can be detected and temperature control

works as expected. Since SACs typically do not perform more computationally expensive

tasks and the used stripboard represents the lowest end of todays available hardware the

approach can be considered working. To objectively estimate the performance impact of

the SB approach the raw calculation capability of square matrix multiplications with dif-

ferent matrix dimensions has been measured. It has to be noted, that no optimizations

have been performed. Implementations in C and Java, running in the NanoVM using

either internal or external EEPROM as program storage, are compared (cf. Table 6.1). The

measured durations of the native C-implementation are always three to four orders of

a magnitude smaller than the corresponding Java versions using the external EEPROM.

Memory access operations due to slow connection of this EEPROM have been identified

as a major reason for slowdown. A replacement of the external EEPROM with a faster

one seems reasonable. For performance analysis the CA has been moved to the internal

EEPROM. As can be seen, this clearly improves the execution time. The applicability of

140 Implementation and Evaluation

the presented approach to a particular ES depends on the acceptable slowdown of the CA

or any other imposed overhead (e.g. battery gap). If the performance is good enough to

enable the ES to fulfill the required tasks, the SB approach clearly improves security. Fur-

ther it has to be noted, that an implementation of complex calculations in native C is also

possible (with lack of SB security) if the corresponding Java code is too slow. The addi-

tionally required encryption of process and management communication data obviously

takes resources of the involved devices. To evaluate the performance of KNXcalibur, a

freely available AES implementation [138] was ported to the prototype (without further

optimization). A first performance analysis shows that the encryption of a single KNX

telegram takes approximately 0.59 ms net processor time. Since the total transmission

time2 of such a message is 39 ms the additional processing time clearly is not a limiting

factor. The prototype thus can be expected to be able to handle encrypted messages at the

maximum theoretical data rate of the KNX network.

6.2.2 Interconnection Device

This section is dedicated to a secure ICD with firewall (cf. Figure 6.1). First, a generic

firewall architecture is presented, which is then implemented for a KNX based BAS [51].

The developed prototype is able to prevent attacks by physically separating two or more

different BANs. Process data exchange on the network interfaces is being analyzed and

depending on the deployed security policy data telegrams are filtered.

On the one hand, it is possible to check the communication relationship between CAs–

i.e. which device is allowed to talk to which other device. The required information is

gained out of the binding information, which has been generated when linking DPs. On

the other hand, the data being exchanged – i.e. the present values – are monitored and

checked against the security attributes gained out of P.2.

The left side of Figure 6.10 shows the typical filter rules and filter chains of a fire-

wall, which are used to implement a security policy. Using the rule DENY, telegrams are

silently dropped by the firewall. Neither sender nor receiver are informed, that delivery

of telegrams has been filtered. Using the rule REJECT, telegrams are also dropped with

2 This covers the whole transmission cycle including immediate acknowledgment and required bus
idle times.

6.2 Prototypes 141

the difference that the sender is informed. The rule ALLOW permits telegrams to pass the

firewall. Filter chains accumulate filter rules, which are evaluated step by step. The filter

chain INPUT is used for filtering process data exchange targeting the application layer of

the firewall. The filter chain OUTPUT is applied, when the application layer of the firewall

transmits a telegram. In fact, the use of the INPUT and OUTPUT chain is only feasible,

if a firewall is implemented directly on a SAC. If an ICD without CA is deployed, only

the FORWARD chain is required. It is responsible for filtering telegrams being transmit-

ted from one interface to the other. Two approaches are possible, when implementing a

firewall policy. The first approach, being more secure but also harder to configure and

maintain, is to DENY or REJECT all telegrams per default and to provide ALLOW rules for

each telegram, that should be allowed to pass the firewall. Second, the default rule is set

to ALLOW and DENY or REJECT rules are specified for specific telegrams that need to be

blocked.

Interface 1 Interface 2

Forward

Application Layer

OutputInput DENY | REJECT | ALLOW

Medium 2

KNX Firewall

Medium 1

eibd

TP-UART

eibd

KNXnet/IP

Forward

Figure 6.10: Secure Interconnection Device and Implementation of KNX Firewall

To validate the approach, a KNX based prototype ICD has been implemented for use

case
⊗

(cf. right side of Figure 6.10). It provides connection to two KNX lines using two

instances of the eibd3. The first interface is connected to TP-1 using a TP-UART con-

nection, whereas the second interface is connected to an IP backbone using a KNXnet/IP

router. A FORWARD chain between those lines is configured, no INPUT or OUTPUT chain is

defined. To generate firewall rules, the following KNX characteristics need to be consid-

ered, when formulating ALLOW, DENY or REJECT rules. The communication relationships

between CAs can easily be gained out of the installation configuration being available in

the ETS. Physical destination addresses are only used for management communication

3 https://www.auto.tuwien.ac.at/~mkoegler/index.php/eibd, Last access: 2015/09/01

https://www.auto.tuwien.ac.at/~mkoegler/index.php/eibd

142 Implementation and Evaluation

to e.g. (re-) configure devices, read mask version or memory areas. A REJECT rule gen-

erates a NACK, and an ALLOW rule generates an IACK on TP-1 lines. The Application

Protocol Data Unit (APDU) type can be used to further filter process data exchange. The

A_GroupValue_Write, for instance, is used to set a PDP.

The following security policy can thus be formulated (cf. Listing 6.6). The syntax is

similar to the one used in the standard Linux firewall:

• Drop physically addressed telegrams (cf. Line 3).

• Prohibit process data exchange between unknown CAs (cf. Line 3).

• Evaluate the security attribute sDOMAIN Lighting (cf. P.1 and Line 16):

-a append a new rule to chain FORWARD

-s source address is always a physical address

-d destination address can be physical or group address

-i in-interface

-o out-interface

-p APDU type and value

-j action being applied on rule match

1 [global]
2 # deny all telegrams (including physical addressing)
3 standardFirewallRule=DENY
4

5 # configuration for first interface
6 [KNX-IF-1]
7 connectionurl=ip://auto.tuwien.ac.at:6720
8

9 # configuration for second interface
10 [KNX-IF-2]
11 connectionurl=ip://auto.tuwien.ac.at:6721
12

13 # rules
14 [rules]
15 # allow telgrams from secure SAC switch originating from KNX-IF-1 to KNX-IF-2

with target secure SAC actuator, present value must be 0 or 1
16 -a FORWARD -s 1.2.2 -d 0/0/1 -i KNX-IF-1 -o KNX-IF-2 -p A_GroupValue_Write

={0,1} -j ALLOW

Listing 6.6: Configuration of Secure Interconnection Device with Firewall for Use Case
⊗

Implementation of the policy check can be realized using simple if statements (cf.

Listing 6.7).

6.2 Prototypes 143

1 // Check every received telegram
2 s t a t i c gboolean CheckReceivedTelegram(s t r u c t FirewallRuleChain *chain,

eibaddr_t source, eibaddr_t destination, gchar in_interface, gchar
out_interface, APDU *data) {

3 // Check source address
4 i f (CheckSourceAddress(chain->source_from, source)) {
5 // Check destination address
6 i f (CheckDestinationAddress(chain->destination_to, destination)) {
7 // Check in and out interface
8 i f ((chain->in_interface & in_interface) && (chain->out_interface &

out_interface)) {
9 // Check APDU type and value

10 i f (CheckAPDU(chain->data, data) {
11 // Rule matched, apply jump
12 return (chain->jump);
13 [...]

Listing 6.7: Implementation of Firewall

The secure ICD with firewall has been implemented on an embedded Linux platform.

Regarding performance, no reasonable measurements can be performed. In fact, the pro-

cessing time of the firewall chain and rules is less than 1 ms and thus not measurable

using system time. Also, the speed of the TP-1 medium is so low, that even on full bus

load no reasonable telegram delay can be measured using this platform.

6.2.3 Network Based Intrusion Detection System

To be able to validate that the requirements as stated in Section 5.4.1 can be fulfilled by

the presented attack detection system, this section describes a prototype implementation

of an IDS. A network based approach has been chosen. It is thus possible to avoid influ-

encing the normal operation of the BAS, since no change of SACs is required, and also no

performance penalty on those nodes is generated. A dedicated IDS can also be equipped

with more processing and memory resources. Besides, such an IDS can be deployed to

existing installations, since only an access to the BAN is required, which can be achieved

easily. The following attack detection functionality has been realized in the KNX based

prototype implementation of use case
⊗

(based on [106]):

• Alert on process data exchange between CAs, if it either violates a statically defined

policy, or additional abnormal communication relationships are detected.

• Alert on management communication i.e. physical destination addresses.

• Alert on high bus load (the threshold needs to be defined a priori).

144 Implementation and Evaluation

Medium 1

Network Based Intrusion Detection System

Data Processing

Anomaly Based

Signature Based
RAM

Log Files
Console Output

Data Storage Response

eibd

TP-UART KNXnet/IP

Data Gathering

Figure 6.11: Network Based KNX Intrusion Detection System

Figure 6.11 shows the software structure of the prototype, which has been imple-

mented on the same embedded Linux platform as the secure ICD. The data gathering

component relies on one or more instances of eibd. KNX telegrams from various BANs

can thus be gathered by the IDS.

The data processing component has been implemented in a hybrid way. A SIDS ap-

proach is used to detect the following issues:

• Violation of communication relationships: The policy (i.e. the security attribute

sDOMAIN Lighting) is provided, which defines the normal communication behavior

between CAs. Likewise, security attributes are specified, which define forbidden

communication behavior. Alerts are then immediately generated, if e.g. a sending

address is not allowed to write to a specific receiving address.

• Management communication

• High bus load

Listing 6.8 shows the configuration containing the static rules for the prototype. Syn-

tax is based on the SNORT IDS and enhanced with KNX specifics. A rule is struc-

tured as follows: <command> <source address> -> <destination address>

[APDU] [msg:“<message to display>”]

Command can either be alert, to trigger the response component to e.g. log to a file

or pass to allow communication. It is followed by the source and destination address,

6.2 Prototypes 145

which is a group or physical address in KNX notation or any for a wild card. Then an op-

tional specification of the APDU can be provided, to enable evaluating security attributes.

Finally, a message can be specified, which is also sent to the response component.
1 [global]
2 # Configuration for first interface
3 [KNX-IF-1]
4 connectionurl=ip://auto.tuwien.ac.at:6720
5 # Alert on bus load higher than 60%
6 bus-load-warning=60
7

8 # Alarm on management communication i.e. physical destination addresses
9 alert any -> *.*.* (msg:"Management communication detected")

10

11 # Do not alarm on communication from secure SAC switch to secure SAC actuator
12 pass 1.2.2 -> 0/0/1 A_GroupValue_Write={0,1}

Listing 6.8: Configuration of Network Based Intrusion Detection System for Use Case
⊗

Additionally, an AIDS approach is implemented, where the IDS first gathers data from

the BAN. The data processing component then uses anomaly based algorithms, to learn

the normal communication relationships between CAs and also their behavior regarding

telegram rates. Malicious communication between CAs can then be detected and alerted

during runtime.

Implementation of the policy check in the data processing component can be realized

using simple if statements (cf. Listing 6.9).
1 i n t checkRule(T_NetworkDataStorage *rule, T_Telegram *telegram) {
2 // check source address
3 i f (checkSourceAddress(rule->source, telegram->source)) {
4 // check destination address
5 i f (checkDestinationAddress(rule->destination, telegram->destination)) {
6 // check APDU type and value
7 i f (checkAPDU(rule->apdu, telegram->data) {
8 // rule matched, apply command
9 return (rule->command);

10 [...]

Listing 6.9: Implementation of Intrusion Detection System

The data storage component simply stores relevant data in the memory and does not

rely on a database. This allows implementation on simple non-Linux based MCUs.

The response component is also only implemented partially as a passive system,

which simply displays alert messages on the standard output and logs them to files.

Experimental tests with the implementation show similar results regarding perfor-

mance and memory overhead as the ICD prototype. No reasonably measurements can

be performed during normal runtime, and even when stress tests have been executed at

146 Implementation and Evaluation

maximum bus speed of the TP-1 medium, the CPU load and memory usage are negli-

gible. The requirement to provide a minimal detection latency is fulfilled, since every

telegram is analyzed immediately and alerts are generated, if appropriate. Using a net-

work based IDS also ensures, that the standard process data exchange between SACs is

not influenced.

6.2.4 Management Device

Finally, a secure MD prototype has been implemented, to demonstrate the evaluation of

the security attribute sDP PAR_OFFD (cf. P.1) on a MD. The MD is being connected to the

backbone, where it monitors devices based on active queries: It generates telegrams to

detect malfunctions and attacks. Care has to be taken to not flood the BAN with traffic

and influence the normal operation of the BAS. Thus, the query cycles have to be set

appropriately, depending on the deployed technologies. The goal is to:

• Monitor the availability of devices (i.e. if they are on- or offline due to malfunction-

ing or DoS attacks).

• Monitor, if the security policy regarding the MDPs of CAs has been violated or not.

BACnet/IP

Secure Management Device

Nagios

BACpypes

Analog-Input, 100 Lighting-Output, 1

Device_VTS Device_SAC_Actuator

Figure 6.12: Secure BACnet Management Device

A setup consisting of a BACnet/IP BAN, a virtual BACnet device being imple-

mented in the VTS (Device_VTS) and a secure SAC actuator based on KNXcalibur

(Device_SAC_Actuator), and a secure MD has been deployed (cf. Figure 6.12). The

device Device_VTS implements an Analog-Input object with ID 100. The SAC is

6.2 Prototypes 147

implemented as multi-protocol device and thus connected to KNX and BACnet/IP like-

wise. Mapping of the DPs is established using the generic application model. The object

Lighting-Output with ID 1 contains the MDP PAR_OFFD of use case
⊗

. The MD ac-

cesses the BAN using the BACpypes network stack4 and implements a monitoring system

using Nagios5 [173], [174]. As shown in Figure 6.13, the availability of devices is checked

using Internet Control Message Protocol (ICMP) Echo Requests. The security attribute

sDP PAR_OFFD (cf. P.1) is evaluated using the implemented Nagios script, which performs

a ReadProperty request on 192.168.0.1, Lighting-Output 1, Off-Delay on

a configurable interval. Listing 6.10 shows the configuration of the Nagios plugin. Listing

6.11 shows its implementation in Python.
1 define command{
2 command_name check-bacnet-object
3 command_line $USER1$/check_bacnet -a $_HOSTADDRESS$ -t $_HOSTTYPE$ -i

$_HOSTINSTANCE$ -p $_HOSTPROPERTY$ -w $_HOSTWARNING$ -c $_HOSTCRITICAL$
4 }
5 define host{
6 use host-template-bacnet
7 host_name Device_1_LO_1
8 alias Object_Lighting-Output-1
9 _address 192.168.0.1

10 _type LightingOutput
11 _instance 1
12 _property Off-Delay
13 _critical 60:600
14 }

Listing 6.10: Configuration of Nagios Plugin

1 import nagiosplugin
2

3 def main():
4 argp = argparse.ArgumentParser(description=__doc__)
5 argp.add_argument(’-w’, ’--warning’, metavar=’RANGE’, default=’’,
6 help=’return warning if value is outside RANGE’)
7 [...]
8

9 args = argp.parse_args()
10 check = nagiosplugin.Check(
11 Object(args.address, args.type, args.instance, args.property),
12 nagiosplugin.ScalarContext(’value’, args.warning, args.critical))
13 check.main(verbose=args.verbose)

Listing 6.11: Implementation of Nagios Plugin

To gain experimental results regarding the execution time of a single security attribute

check, a performance analysis has been performed. The execution time of the Nagios

4 http://bacpypes.sourceforge.net/, Last access: 2015/09/03
5 https://www.nagios.org/, Last access: 2015/09/03

http://bacpypes.sourceforge.net/
https://www.nagios.org/

148 Implementation and Evaluation

Current Network Status
Last Updated: Thu Sep 3 20:44:17 CEST 2015
Updated every 90 seconds
Nagios® Core™ 3.5.1 - www.nagios.org
Logged in as nagiosadmin

View Service Status Detail For All Host Groups
View Status Overview For All Host Groups
View Status Summary For All Host Groups
View Status Grid For All Host Groups

Host Status Totals

Up Down Unreachable Pending

17 0 0 0

All Problems All Types

0 17

Service Status Totals

Ok Warning Unknown Critical Pending

71 0 0 0 0

All Problems All Types

0 71

Host Status Details For All Host
Groups

Limit Results: 100

Host Status Last Check Duration Status Information

Device_VTS UP 03-09-2015 20:42:07 23d 9h 34m 50s PING OK - Packet loss = 0%, RTA = 13.98 ms

Device_SAC_Actuator UP 03-09-2015 20:42:27 15d 19h 57m 40s PING OK - Packet loss = 0%, RTA = 14.78 ms

Object_Lighting-Output-1 UP 03-09-2015 20:42:27 15d 19h 57m 30s OBJECT OK - ID 1 - Off-Delay 120

Results 1 - 17 of 17 Matching Hosts

Figure 6.13: Monitoring BACnet Devices and Objects

script has been measured for 100 successive executions. Minimum, maximum and mean

execution time are shown in Table 6.2. Considerable overhead can be assumed, if larger

amounts of security attributes need to be evaluated.

Device Object ID Minimum Maximum Mean
Device_VTS 100 174 ms 3189 ms 664 ms
Device_SAC_Actuator 1 175 ms 3144 ms 497 ms

Table 6.2: Performance Analysis of Execution Time

6.3 Enabling Security in Existing Installations

To validate that the presented CA architecture can be used to enhance security in current

technologies and installations, this section is dedicated to additional case studies, demon-

strating that such attacks can be prevented or at least be detected. The case studies are

selected based on the following criteria: Case study 1 covers BACnet/IP and KNXnet/IP

since more than 17.000 installations are connected to the Internet unprotected. Case

study 2 targets attacks performed on EnOcean based CAs, since no adequate protection

mechanisms are available, yet. Case study 3 and Case study 5 deal with today’s most

common software vulnerabilities (cf. Figure 3.12). Case study 4 has been selected, since

KNX seems to be one of the most spread technology today6.

Case study 1 Prevent attacks on current installations

The analysis in Section 3.1 relied on the fact, that SACs have been directly connected

to the Internet and no secure ICDs have been deployed, which check the communication

relationships. In fact, attack prevention is easy, since only a single ICD with firewall needs

6 http://knx.org/knx-en/knx/technology/introduction/index.php, Last access:
2015/09/29

http://knx.org/knx-en/knx/technology/introduction/index.php

6.3 Enabling Security in Existing Installations 149

to be installed at the interconnection point between the Internet and the BAN. Also, attack

detection is possible, if an IDS is installed in the BAN. The required security policy can

simply be gained out of the ETS for KNX based BAS or the corresponding configuration

tool for BACnet based BAS.

Case study 2 Detect attacks on current installations

Regarding protection against attacks on EnOcean based CAs (cf. Section 3.2) it has to be

distinguished whether the attack is performed passively or actively. In the former case,

an adversary just listens to the BAN and does not actually transmit telegrams. Thus, no

possibilities exist to prevent attacks which target the eavesdropping of unsecured teach-

in telegrams or encrypted telegrams relying on the VAES encryption algorithm. In the

latter case, an adversary generates telegrams on its own. Such a behavior can be detected

if an IDS is deployed and within transmission range of the wireless adversary.

Case study 3 Prevent attacks on KNX based SACs

Listing 6.12 shows an implementation of the SAC light actuator of use case
⊗

on a

standard KNX BIM-M130 using a µPD78F0534 MCU. An Input validation vulnerability

is present: Line 5 declares a byte array buf of size 1 byte. The U._TestAndCopyObject

function in line 11 tests, if there was an update for object 0. If this is the case, 2 bytes of the

object value are copied to the byte array buf. A buffer overflow happens, since 2 bytes

are copied into an array, which only is of size one byte. Figure 6.14 shows what is happen-

ing in the memory. The internal high-speed RAM starts at address 0xFEDF right below

the address space of the general-purpose registers. It contains the data such as the byte

array buf as well as the stack. Before calling the U._TestAndCopyObject function the

return address is pushed on the stack, which grows down towards the lower addresses.

Likewise the arguments (i.e. 0, address of buf, 2) are pushed onto the stack. Then

the function is called, which copies 2 bytes of data into the array. Since the array grows

towards the higher memory addresses, the general-purpose registers are being overwrit-

ten, which might cause memory corruption or in the worst case direct access to control

functions, if an I/O register is hit.

150 Implementation and Evaluation

1 void main (void) {
2 // do some initializations
3 AppInit();
4 // declare BYTE buffer of size 1
5 BYTE buf[1];
6 // set port to output
7 PM0=0xFF;
8 // start the main loop of the

application program
9 for(;;) {

10 // if pdp L_MAN (id 0) has
changed, copy 2 bytes into
buf

11 i f(U._TestAndCopyObject
12 (0, (void*) buf, 2)) {
13 // if it is set to on
14 i f (buf[0] == 0x01) {
15 // immediatley swich lamp 0 on
16 P0_bit.no0 = 1;
17 }
18 }
19 // handle switch off light after

PAR_OFFD
20 }
21 }

Listing 6.12: Implementation of Use
Case

⊗
on a KNX Bus Interface

Module-M130

Flash memory

Reserved

Internal expansion RAM

Reserved

General-purpose
registers

Special function registers

0x0000

0xFFFF

0xFB00

0xFEDF
0xFEE0

Internal high-speed RAM

buf[0]
return address
0
address of buf
2
local data

write (SP--)

read (SP++)

Figure 6.14: Memory Map (µPD78F0534)
and Stack

Such an attack can be prevented by the use of a secure SAC. The SB controls the exe-

cution of the CA. Thus, also memory access can be limited. In the case of the secure SAC

actuator presented before, an ArrayIndexOutOfBoundsException will be thrown by

the SB and the CA will not have direct access to the control functions.

Case study 4 Prevent attacks on KNX based BASs using secure ICDs

Using the KNX technology, couplers are used to interconnect different physical lines.

They allow to filter telegrams based on group addresses and also to prohibit physical ad-

dressing. Configuration for the devices is automatically generated out of the ETS when

they are being programmed and can also be extracted when showing the filter table of a

coupler. However, no mechanisms are present which allow context-based filtering. Thus,

also only simple security policies can be monitored by those couplers. Using the pre-

sented secure ICDs, however, complex policies can be defined and be enforced by ICDs.

6.4 Security Evaluation 151

Case study 5 Prevent Attacks on LonWorks based SACs

Listing 6.13 shows an implementation of the SAC light actuator of use case
⊗

on a stan-

dard LonWorks device using Neuron C. The Neuron Chip implements an event driven

scheduler, which executes code blocks when a given condition becomes TRUE. When an

update of the PDP L_MAN is received, the condition nv_update_occurs stores its value

in a flag. The condition in line 6 is then triggered to switch the lamp on. Unfortunately, an

General logic error vulnerability is present in this line. An assignment is performed instead

of a comparison. Thus, this condition always evaluates to TRUE and the I/O is switched

as often as the scheduler checks the condition.
1 // NV input: pdp L_MAN
2 network input SNVT_switch nviLampValue;
3 // lamp is connected to I/O 0 pin 0
4 IO_O output bit io_lamp_control = 0;
5 // if flag is equal to TRUE
6 when (flag=TRUE) {
7 // switch lamp on
8 io_out(io_lamp_control, 1);
9 flag = FALSE;

10 }
11 // if flag is equal to FALSE
12 when (flag==FALSE) {
13 // handle switch off light after PAR_OFFD
14 }
15 // when new value of L_MAN is received
16 when (nv_update_occurs(nviLampValue)) {
17 // store value in flag
18 i f (nviLampValue == 1) {
19 flag = TRUE;
20 }
21 e lse {
22 flag = FALSE;
23 }
24 }

Listing 6.13: Implementation of Use Case
⊗

on a LonWorks Device using Neuron C

Such an attack can be prevented by the use of a secure SAC with appropriate security

policy (cf. P.1), since the SB controls the execution of the CA and the policy specifies a

maximum execution rate of the switchoutput function of 1Hz.

6.4 Security Evaluation

When deployed to SACs, ICDs and MDs, the presented architecture allows the devel-

opment, upload, and execution of arbitrary, non-inspected and uncertified (and possibly

152 Implementation and Evaluation

erroneous or malicious) CAs without compromising the overall BAS security. Not only

attacks evolving from accidental software faults can be prevented and detected, but also

attacks resulting from intentional malicious software. In the following, the strengths and

limits of the architecture – with respect to which requirements for secure CAs are ful-

filled, and which requirements need additional research or organizational attention – will

be discussed to prove Hypothesis 6.

First, it will be discussed, how the deployment of the secure CA architecture on the

different device classes enables compliance with the FRs, as presented in Section 3.4.1. A

summary is shown in Table 6.3.

FR–memory access: To fulfill this FR, a secure software environment being deployed on

a SAC (cf. Section 5.3) is required. The system software and enhanced application

layer together with the execution of the CA in the SB guarantee, that memory areas

(i.e. code and working memory) between system software and CA are separated.

CAs can only access defined memory locations. This way it is possible to store

information invisible and unaccessible to the CA on the system and provide content

security and secure resource access. Vulnerabilities in the code of system software or

SB caused by incalculable side effects can be minimized by the use of SCA, IAC and

FV. This analysis has to be performed only once and does not have to be repeated

on CA exchange. Code injection attacks are hardened, if a HA is used on the SAC

(cf. Section 4.2). It has to be noted, that providing security for the system software

and SB itself is of utmost importance. If flaws are present in the implementations,

attacks cannot be prevented. In practice, this will not be easy to achieve. In the

prototype implementations, no security analyses of the system software have been

performed.

FR–low level functionality access and FR–protection of environment: Attacks targeting

these requirements can be prevented by providing the SB together with the secu-

rity policy. Since memory areas on the SACs are separated, CAs have no access to

low level functions. CAs can only issue a defined set of operations and may not in-

terfere with the system software. Additionally, the actions a CA intends to perform

can be limited (e.g. in terms of issuing frequency) and a malicious CA is not able

6.4 Security Evaluation 153

to e.g. waste resources. Besides, a CA is not able to damage or overtake the SB. It

has, however, to be noted that some limitations in the implementations of the proto-

types are present. The code size of the used SB is targeted to be as small as possible.

Therefore, it lacks several mechanisms of a full blown Java VM (e.g. no exceptions,

threads or inheritance from native classes). In addition, code checking capabilities

have been reduced to a minimum. It is required, that the Java compiler produces

(semantically) valid bytecode in order not to crash the NanoVM. Full implementa-

tions such as the Oracle JRE, however, fulfill this requirement.

FR–communication relationship: To prevent and detect attacks targeting the communi-

cation relationship, various security measures need to be provided on the different

device classes. As presented, a CA communicates with other CAs by accessing DPs

in an abstracted, object oriented way. No explicit telegrams need to be sent and no

destination addresses need to be considered by a CA. The communication relation-

ship is contained in the configuration, and thus the SB is able to limit it. Using the

same configuration/policy, it is possible for an ICD to detect and prevent attacks

to other CAs within a reasonable time. To be able to monitor CA communication

within the whole BAN, IDSs are required. Using an SIDS configured by the secu-

rity policy, it can detect known attacks. Using AIDS, IDSs can be used to learn the

normal CA behavior of a BAS and later on detect attacks. Monitoring MDPs can be

achieved using a MD.

FR–availability: Availability attacks are always hard to handle. In fact, they cannot be

prevented in general. Using the secure architecture and the security policy, how-

ever, it is at least possible to detect these attacks. High bus load or abnormal tele-

gram telegram rates can be detected by an IDS, whereas the availability of CAs can

be monitored by a MD. The desired detection latency needs to be adjusted with

respect to the tolerable performance overhead.

In the following, it will be discussed, if and how the secure CA architecture complies

with the ORs (cf. Section 3.4.2). A summary is shown in Table 6.4.

OR–limited resources: The deployment of dynamic security measures being executed

during runtime clearly imposes a performance overhead. Depending on the appli-

154 Implementation and Evaluation

Se
cu

re
C

A
A

rc
hi

te
ct

ur
e

FR
–m

em
or

y
ac

ce
ss

FR
–l

ow
le

ve
lf

un
ct

io
na

lit
y

ac
ce

ss
FR

–p
ro

te
ct

io
n

of
en

vi
ro

nm
en

t

FR
–c

om
m

un
ic

at
io

n
re

la
tio

ns
hi

p

FR
–a

va
ila

bi
lit

y

SAC {SCA, HA, IAC, FV}+SB SB+IDS SB
ICD IDS
IDS SIDS+AIDS SIDS+AIDS
MD IDS IDS

Table 6.3: Security Evaluation of Functional Requirements

cation, a suitable balance between required level of security and tolerable overhead

needs to be found. For CAs in BAS, it has been shown in the prototype imple-

mentations, that such a balance can be achieved on SACs. Although considerable

performance overhead came up in the experimental tests with the matrix multipli-

cations, the ongoing trend in hardware development with more available memory

and processing power, facilitates the fulfillment of this OR. Also, no optimizations

have been performed. They can be implemented, once the requirements as well as

soft- and hardware specifications for a concrete CA are available.

OR–development: The SB approach eases the development of secure CAs by providing

a limited but controllable programming interface to secure SACs. CA development

is simplified, since the application programmer does not have to cope with details

concerning the network protocol, the system software or hardware specific code and

thus can focus on the CA itself. CAs being easier to understand are also less error

prone. It can further be ensured that all (bus-)communication is standard compliant,

even if the CA developer does not know a particular technology. Since the CA is

separated from the system software, the latter has to be certified only once. This

eases a possible certification process.

6.4 Security Evaluation 155

OR–high level language support: The architecture supports the use of high-level lan-

guages, in particular Java. Standard Java toolchains can be used for development,

offering object oriented development on SACs. Thus, the desired application behav-

ior can be implemented more easily and BAS control tasks can be carried out very

flexible and with an adaptable configuration. Portability of CAs can additionally be

achieved due to their separation from the system software and the network stack.

OR–long lifetime: Due to the SB approach, CAs can be downloaded into a SAC. Thus,

also updates to CAs are possible. Whether an update of the system software is

possible depends on the deployed hardware. In fact, it is not easy to update the

system software of MCUs, once they are deployed in BAS. This is, however, out of

scope of this dissertation. Likewise, the security of the CA update process, and also

the organizational process covering who and how updates to CAs can be performed

after their installation, are not discussed.

OR–scalability: The presented architecture relies on security measures being distributed

to the different devices within a BAS. Thus, also the implied overhead is being dis-

tributed among the SACs. Additionally, it does not require any hardware modifica-

tions. This makes the architecture scale well with respect to performance and costs

of the single devices.

OR–network technology: The secure CA architecture is geared towards the small amount

of control data in the BAS domain. In fact, the mechanisms only target the monitor-

ing of the present value being exchanged between CAs. No overhead is generated

on the network, except when active MDs are used. Besides, the concept is generic

enough, that different network technologies are supported. It has to be noted, that

no analyses regarding possible real-time requirements have been performed. Except

for the safety domain (e.g. fire alarm systems), BAS do not require special treatment.

At most, soft-real-time requirements are needed sometimes. Due to e.g. dynamic

memory management of the SB, however, the implied delay or jitter can be quite

high.

156 Implementation and Evaluation

OR–compatibility: The presented architecture relies on a security policy, defining the

normal and abnormal behavior of a BAS. Since control data exchange via the BAN

is not affected, an easy and compatible integration into existing BASs becomes pos-

sible by changing or adding single devices. If legacy devices are still used in an

installation, at least attack detection by additional security devices (i.e. ICDs, MDs)

becomes possible using the security policy. This way, also existing, non-secure SACs

can be monitored regarding security violations. It has to be noted, that existing CAs

need to be adapted to be executable in a SB.

OR–physical access: Detecting physical manipulations of SACs, requires special treat-

ment in hardware. The required mechanisms are not discussed in this dissertation.

Alarming of intrusions, however, can be performed by e.g. an IDS, monitoring other

security related issues. ICDs and MDs can be assumed as being located in a secure

environment (e.g. switchboard or server rack).

OR–usability: Providing usability of security measures seems to be hardest task, when

they are being put into practice. As shown in Section 3.1, thousands of installations

are directly connected to the Internet. No encryption or passwords are set. It can

be assumed, that additional security mechanisms, which are not usable, will not

be enabled in practice. Regarding the presented architecture, it is essential that the

security policy is defined in a sound way. Therefore, typical configurations need

to be provided by standards and manufacturers and integrators need to enable the

security features. Some guidelines and recommendations to provide overall CA

security are given in Section 7.2.

6.5 Summary

Various hypotheses have been formulated throughout this dissertation. This section

briefly summarizes how they have been verified.

Hypothesis 1 covers the main problem statement of this thesis. It can be split into Hy-

pothesis 2 – Hypothesis 6 and evaluated likewise. Hypothesis 2 is discussed in Section 2,

which analyzes common standards and Section 5, which introduces a secure architecture

6.5 Summary 157

O
R

–l
im

ite
d

re
so

ur
ce

s

O
R

–d
ev

el
op

m
en

t

O
R

–h
ig

h
le

ve
ll

an
gu

ag
e

su
pp

or
t

O
R

–l
on

g
lif

et
im

e

O
R

–s
ca

la
bi

lit
y

O
R

–n
et

w
or

k
te

ch
no

lo
gy

O
R

–c
om

pa
tib

ili
ty

O
R

–p
hy

si
ca

la
cc

es
s

O
R

–u
sa

bi
lit

y

Secure CA Architecture ∼ + + ∼ + + ∼ n/a n/a

Table 6.4: Security Evaluation of Organizational Requirements

and a mapping on these standards. Hypothesis 3 is validated in Section 3, which demon-

strates that today’s CAs can be attacked by an adversary. Hypothesis 4 is evaluated in

Section 4, which illustrates that no sound protection mechanisms are available that fulfill

the requirements of BAS. Hypothesis 5 is discussed in Section 5, which introduces a se-

cure CA architecture relying on hybrid protection mechanisms. Finally, Hypothesis 6 is

validated with the help of prototype implementations and case studies. Section 6 shows

that the proposed architecture fulfills the requirements for secure CAs.

Summarizing, the overall security of the architecture relies on

• the security measures provided by e.g. system software, SB, ICDs, MDs not contain-

ing any flaws (e.g. buffer overflows) and not being bypassed,

• the interfaces from the CA to the system software being limited enough, and

• the user (e.g. system integrator) being able to determine, if the behavior of a CA

defined in the policy is malicious.

158 Implementation and Evaluation

7
Conclusion and Future Work

7.1 Summary

The history of IT security can serve both as a good and bad example for the future of

BAS security. Important Internet-related protocols were developed for a virtually closed

user community. Consequently, security was neglected and services and applications

that used these protocols remained unprotected against security attacks. Due to the ubiq-

uitous use of the Internet, unprotected services and applications became attractive for

adversaries. The resulting economic damage through viruses, trojan horses, and worms

is still clearly tangible today. To counteract these threats, protocol extensions and security

mechanisms have been developed that are widely used today.

This dissertation shows, that BAS are equally prone to security attacks (as the IT world

years before) because existing technologies lack state of the art security features. Besides,

as the performed scans during this research show, security measures in the BAS domain

are still deeply missing. Thousands of BASs are being directly connected to the Internet

and allow unauthenticated and unauthorized access to their underlying DPs and CAs.

Two BAS technologies have been analyzed, other relevant standards (e.g. LonWorks,

Modbus) can be assumed as insecure, too. Security is currently still neglected in installa-

tions due to various reasons. First, security features have only been added recently. A lot

of current installations (and most of the devices still being sold) use “old” protocols with-

out appropriate security features. Second, there is a huge lack of security awareness in

the BAS domain. Besides, even if a BAS provides security mechanisms and these mecha-

159

160 Conclusion and Future Work

nisms are enabled in installations, security weaknesses might be present in specifications

and implementations. Based on a security analysis of EnOcean, Section 3.2 outlined as an

example, that this standard had to undergo multiple improvements in the past. A weak

encryption method, for instance, had been specified and some minor and major security

issues (e.g. plain text private key transfer, static private keys) are still present.

Thus, it is mandatory to identify and set up security mechanisms as it has been done in

the IT domain – otherwise adversaries will soon single out unprotected BAS as their next

target on a large scale. In order to enhance security in BASs, a comprehensive approach is

needed: On the one hand technologies need to provide mechanisms for secure communi-

cation, secure software and update routines as well as protection to provide availability.

While secure communication has been addressed recently, a secure environment for CA

has been missing. On the other hand also education covering security mechanisms and

accompanying measures are needed in the BAS domain. Immediately, mechanisms such

as firewalls helping to prevent access and VPNs allowing to connect remote sites need to

be deployed in BASs.

This dissertation concentrates on the problems of secure CAs in BAS and contributes

the following novelties:

• A comprehensive identification of security requirements for CAs: Until now, it has

not been clear, which requirements hinder the use of available software protection

techniques in the BAS domain and security awareness has been missing. As a result,

thousands of BAS installations are being connected directly to the Internet, often

without any security mechanisms available or enabled.

• An application model capable of depicting CAs in a formal way: Within this dis-

sertation, the application models of today’s BAS technologies and contained back-

ground knowledge have been analyzed and a formalism to express this knowledge

has been described. The developed application model is the first to cover BAS soft-

ware security at all. Its expressiveness allows to describe any desired CA, which

can be formulated using FBs.

7.1 Summary 161

• The concept of security attributes, being able to formally specify a security policy

for a BAS: As has been shown in this dissertation, the available domain knowledge

can be utilized to formulate a security policy and to provide an overall security.

• A framework, which allows the secure development and execution of CAs and en-

forcement of the defined security policy.

• Evaluation prototypes describing the experimental results of an integration of all

components into a common secure BAS and validating the presented secure CA

architecture.

Additional work, however, is required to formulate generic security policies. In fact,

this dissertation has shown, that security attributes can be mapped onto today’s open

BAS technologies. A generic policy being ready to deploy on real installations, however,

is missing. Using ontologies consisting of the definition of the application model, a map-

ping to the different technologies and a device description as knowledge base, seems to

be a promising approach. A generic policy can then be formulated. Using the ontology it

is possible to automatically express the security attributes for a specific SAC, ICD or MD.

In fact, a broad agreement in standardization committees and between manufacturers is

required to support developers, users and integrators in establishing secure BAS.

Besides, the security of the security measures needs to be considered, when the de-

vices are installed in practice. The security of the system software needs to be provided,

likewise as the secure implementation of an ICD or MD. Otherwise, adversaries will first

attack or disable those devices and circumvent the security measures.

An overall device security also needs to include side channel and physical attacks.

Without providing protection against these attacks, adversaries also can be assumed to

bypass software protection techniques.

Finally, an open point in this dissertation is the usability of security measures. If they

are too difficult or complicated to deploy, it can be assumed that they will not be enabled

in practice. Standardization committees and manufacturers have to take care on provid-

ing security by design and not to burden users.

162 Conclusion and Future Work

7.2 Security Recommendations

The following section gives some final security recommendations. Comparing, [3] gives

an insight into securing distributed and critical infrastructure.

• Security cannot be gained using security by obscurity (which is especially true for

an open standard). A system has to be secure by design.

• Security needs to be considered for a whole system. Nobody will attack the most

secure part of a system, but its weakest point. Therefore, multiple countermeasures

and defense in depth need to be deployed.

• Security needs to be seen as a process and not as a one time event. Since a building’s

life cycle typically is 20 to 30 years, it is very likely, that security requirements will

change during this time. Thus, a secure standard has to discuss this requirement,

which is clearly missing in today’s standardization committees.

• A secure standard needs to cover education (e.g. during certification) covering se-

curity requirements and measures. Maintenance, commissioning personnel and in-

tegrators are no security experts but domain experts. Simple and clear guidelines

have to be available.

• During a building’s life cycle multiple parties (e.g. electrician, integrator, visualiza-

tion developer, maintainer) are involved. Each of them needs to be trusted to sustain

security.

• Secure communication needs to be provided.

• Device attacks need to be prevented or detected to reduce the risk of unauthorized

access or sabotage to a BAS installation. Secure software architectures (e.g. a secure

system software/stack) and an API need to be provided to be able to develop secure

CAs. Update routines need to be available, to be able to address security issues after

installation. Embedded systems such as SACs need to be likewise update-able as it

is common for PCs (e.g. Windows update).

• Protection to provide availability of installations (e.g. IDSs) is required.

Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-Flow Integrity”, in

CCS ’05: Proceedings of the 12th ACM Conference on Computer and Communications

Security, Alexandria, VA, USA: ACM, 2005, pp. 340–353, ISBN: 1-59593-226-7.

[2] B. Aigner, “How to Hack EnOcean: An Evaluation of EnOcean’s Security”, Mas-

ter’s thesis, AAT-Lab@Department of Embedded Systems, FH Technikum Wien,

Jun. 2014.

[3] J. Akerberg, “Towards Securing Distributed and Critical Infrastructure”, in Proc.

19th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA 2014), Sep. 2014.

[4] Anonymous Author, “Once Upon a Free()”, Phrack, vol. 11, no. 57, Aug. 2001.

[5] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-Assisted Run-Time

Monitoring for Secure Program Execution on Embedded Processors”, IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 12, pp. 1295–1308,

2006, ISSN: 1063-8210.

[6] D. Aucsmith, “Tamper Resistant Software: An Implementation”, in Proceedings of

the First International Workshop on Information Hiding, London, UK: Springer-Verlag,

1996, pp. 317–333, ISBN: 3-540-61996-8.

[7] BACnet – A Data Communication Protocol for Building Automation and Control Net-

works, ANSI/ASHRAE 135, 2012.

163

164 BIBLIOGRAPHY

[8] F. Bachmann, “Evaluation of and Recommendations for the Security of EnOcean

Radio Networks”, Master’s thesis, Technische Universität München Fakultät für

Elektro- und Informationstechnik, Lehrstuhl für Sicherheit in der Informations-

technik, 2012.

[9] M. Bishop and M. Dilger, “Checking for Race Conditions in File Accesses”, Com-

puting Systems, vol. 9, pp. 131–152, 1996.

[10] M. Blum and S. Kannan, “Designing Programs that Check their Work”, Journal of

the ACM (JACM), vol. 42, no. 1, pp. 269–291, 1995, ISSN: 0004-5411.

[11] H. Boehme, “Virtuelle Java-Maschinen für kleine eingebettete Systeme”, PhD the-

sis, Technische Universität Carolo-Wilhelmina zu Braunschweig, 2007.

[12] B. Bray, “Compiler Security Checks In Depth”, Microsoft Corporation, Visual Stu-

dio Technical Articles, 2002.

[13] D. Brickley and R. Guha, RDF Vocabulary Description Language 1.0: RDF Schema,

W3C Recommendation, Feb. 2004.

[14] W. Burgstaller, S. Soucek, and P. Palensky, “Current Challenges in Abstraction

Data Points”, in IFAC Int. Conf. on Fieldbus Systems and their Applications, 2005,

pp. 40–47.

[15] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A Static Analyzer for Finding Dynamic

Programming Errors”, Softw. Pract. Exper., vol. 30, no. 7, pp. 775–802, 2000, ISSN:

0038-0644.

[16] P. Caseley and M. Hadley, “Assessing the Effectiveness of Static Code Analysis”,

IET Conference Publications, vol. 2006, no. CP515, pp. 227–237, 2006.

[17] H. Chang and M. J. Atallah, “Protecting Software Code by Guards”, in DRM ’01:

Revised Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital Rights

Management, London, UK: Springer-Verlag, 2002, pp. 160–175, ISBN: 3-540-43677-4.

[18] K. J. Charatsis, A. P. Kalogeras, M. Georgoudakis, and G. Papadopoulos, “Inte-

gration of Semantic Web Services and Ontologies into the Industrial and Building

Automation Layer”, EUROCON, 2007. Int. Conf. on Computer as a Tool, pp. 478–483,

Sep. 2007.

BIBLIOGRAPHY 165

[19] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and

H. Shacham, “Can DREs Provide Long-Lasting Security? The Case of Return-

Oriented Programming and the AVC Advantage”, in Proceedings of EVT/WOTE

2009, D. Jefferson, J. L. Hall, and T. Moran, Eds., USENIX/ACCURATE/IAVoSS,

Aug. 2009.

[20] H. Chen and D. A. Wagner, “MOPS: an Infrastructure for Examining Security

Properties of Software”, University of California at Berkeley, Berkeley, CA, USA,

Tech. Rep., 2002.

[21] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. Jakubowski, “Obliv-

ious Hashing: A Stealthy Software Integrity Verification Primitive”, in IH ’02: Re-

vised Papers from the 5th International Workshop on Information Hiding, London, UK:

Springer-Verlag, 2003, pp. 400–414, ISBN: 3-540-00421-1.

[22] B. Chess and G. McGraw, “Static Analysis for Security”, IEEE Security and Privacy,

vol. 2, no. 6, pp. 76–79, 2004, ISSN: 1540-7993.

[23] Chinese Standard for Home and Building Control based on KNX, GB/Z 20965, SAC TC

124, 2007.

[24] C. S. Collberg and C. Thomborson, “Watermarking, Tamper-Proofing, and Obfus-

cation - Tools for Software Protection”, in IEEE Transactions on Software Engineering,

vol. 28, Aug. 2002, pp. 735–746.

[25] Communication Systems for Meters and Remote Reading of Meters, EN 13757, 2004.

[26] Control Network Protocol Specification, ANSI/EIA/CEA 709 Rev. B, 2002.

[27] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static Detection of Vulnerabilities

in x86 Executables”, Computer Security Applications Conference, 2006. ACSAC ’06.

22nd Annual, vol. 22nd Annual, pp. 269–278, Dec. 2006, ISSN: 1063-9527.

[28] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,

Q. Zhang, and H. Hinton, “StackGuard: Automatic Adaptive Detection and Pre-

vention of Buffer-Overflow Attacks”, in Proc. 7th USENIX Security Conference, San

Antonio, Texas, Jan. 1998, pp. 63–78.

166 BIBLIOGRAPHY

[29] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and J. Lok-

ier, “FormatGuard: Automatic Protection from printf Format String Vulnerabili-

ties”, in SSYM’01: Proceedings of the 10th Conference on USENIX Security Symposium,

Washington, D.C.: USENIX Association, 2001, pp. 15–15.

[30] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard™: Protecting Pointers

from Buffer Overflow Vulnerabilities”, in SSYM’03: Proceedings of the 12th Confer-

ence on USENIX Security Symposium, Washington, DC: USENIX Association, 2003,

pp. 7–7.

[31] C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman, “RaceGuard: Kernel Pro-

tection from Temporary File Race Vulnerabilities”, in In Proceedings of the Tenth

USENIX Security Symposium, USENIX Association, 2001, p. 12.

[32] G. Cretu, J. Parekh, K. Wang, and S. Stolfo, “Intrusion and Anomaly Detection

Model Exchange for Mobile Ad-Hoc Networks”, in Proc. 3rd IEEE Consumer Com-

munications and Networking Conference CCNC 2006, vol. 1, Aug. 2006, pp. 635–639.

[33] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua, “Security Evaluation of J2ME CLDC

Embedded Java Platform”, Journal of Object Technology, vol. 5, no. 2, pp. 125–154,

2006.

[34] H. Dibowski, “Semantischer Gerätebeschreibungsansatz für einen automatisierten

Entwurf von Raumautomationssystemen”, PhD thesis, Technische Universität

Dresden, 2013.

[35] H. Dibowski, J. Ploennigs, and K. Kabitzsch, “Automated Design of Building

Automation Systems”, IEEE Transactions on Industrial Electronics, vol. 57, no. 11,

pp. 3606–3613, 2010.

[36] M. Dworkin, “Recommendation for Block Cipher Modes of Operation: The CMAC

Mode for Authentication”, National Institute of Standards and Technology, Tech.

Rep., May 2005, NIST Special Publication 800-38B.

[37] D. Dzung, M. Naedele, T. Von Hoff, and M. Crevatin, “Security for Industrial

Communication Systems”, Proceedings of the IEEE, vol. 93, no. 6, M. Naedele, Ed.,

pp. 1152–1177, 2005, ISSN: 0018-9219.

BIBLIOGRAPHY 167

[38] EnOcean Alliance – Technical Task Group Interoperability, EnOcean Equipment Pro-

files (EEP), Version: 2.6, Last Access: 2015/01/01, Dec. 2013.

[39] EnOcean GmbH, AN509: Explanation of EnOcean Security in Applications, Last Ac-

cess: 2015/01/01, Sep. 2013.

[40] ——, AN510: Adding Security to EnOcean Receivers, Last Access: 2015/01/01, Sep.

2013.

[41] ——, AN511: Advanced Security in Self-Powered Wireless Applications, Last Access:

2015/01/01, Sep. 2013.

[42] ——, EnOcean Link, Last Access: 2015/01/01.

[43] ——, Security of EnOcean Radio Networks, Version: 1.9, Last Access: 2015/01/01,

Dec. 2013.

[44] ——, USB 300 Gateway, Last Access: 2015/06/16, Sep. 2014.

[45] H. Etoh, GCC Extension for Protecting Applications from Stack-Smashing Attacks

(ProPolice), 2003.

[46] D. Evans, J. Guttag, J. Horning, and Y. M. Tan, “LCLint: A Tool for Using Specifi-

cations to Check Code”, in In FSE, 1994, pp. 87–96.

[47] H. Feng, H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly De-

tection Using Call Stack Information”, in Proc. Symposium on Security and Privacy,

O. Kolesnikov, Ed., 2003, pp. 62–75.

[48] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Dom-

inque, “Enabling Semantic Web Services”, in, 1st ed. Springer, 2007, ch. 3.

[49] A. Fernbach, W. Granzer, and W. Kastner, “Interoperability at the Management

Level of Building Automation Systems: A Case Study for BACnet and OPC UA”,

in Proc. of 16th IEEE Conference on Emerging Technologies and Factory Automation

(ETFA ’11), Sep. 2011.

[50] E. A. Fisch and G. B. White, Secure Computers and Networks: Analysis, Design and

Implementation. CRC Press, 1999.

168 BIBLIOGRAPHY

[51] G. Forstner, “Security in Smart Homes - Eine modulare KNX Firewall”, Master’s

thesis, AAT-Lab@Department of Embedded Systems, FH Technikum Wien, May

2013.

[52] A. Francillon and C. Castelluccia, “Code Injection Attacks on Harvard-Architecture

Devices”, in CCS ’08: Proceedings of the 15th ACM Conference on Computer and Com-

munications Security, Alexandria, Virginia, USA: ACM, 2008, pp. 15–26, ISBN: 978-

1-59593-810-7.

[53] T. Garfinkel, “Traps and Pitfalls: Practical Problems in System Call Interposition

based Security Tools”, in Proc. Network and Distributed Systems Security Symposium,

Feb. 2003.

[54] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A Secure Environment for

Untrusted Helper Applications”, in Proceedings of the 6th Usenix Security Sympo-

sium, San Jose, CA, USA, 1996.

[55] L. Gong, “Java Security: Present and Near Future”, Micro, IEEE, vol. 17, no. 3,

pp. 14–19, May 1997, ISSN: 0272-1732.

[56] L. Gong, M. Müller, H. Prafullchandra, and R. Schemers, “Going Beyond the Sand-

box: An Overview of the New Security Architecture in the Java™Development Kit

1.2”, in USITS’97: Proceedings of the USENIX Symposium on Internet Technologies and

Systems on USENIX Symposium on Internet Technologies and Systems, Monterey, Cal-

ifornia: USENIX Association, 1997, pp. 10–10.

[57] A. Gössling and M. Wollschläger, “On Working with the Concept of Integration

Ontologies”, in Proc. 13th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA’08), Sep. 2008, pp. 709–712.

[58] W. Granzer, “Secure Communication in Home and Building Automation Sys-

tems”, PhD thesis, Vienna University of Technology, Feb. 2010.

[59] ——, “Security in Networked Building Automation Systems”, Master’s thesis, Vi-

enna University of Technology, Institute of Computer Aided Automation, 2005.

BIBLIOGRAPHY 169

[60] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “A Modular Archi-

tecture for Building Automation Systems”, in Proc. 6th IEEE International Workshop

on Factory Communication Systems (WFCS ’06), Jun. 2006, pp. 99–102.

[61] ——, “Security in Networked Building Automation Systems”, in Proc. 6th IEEE

International Workshop on Factory Communication Systems (WFCS ’06), Best Paper

Award of WFCS ’06, Jun. 2006, pp. 283–292.

[62] W. Granzer, F. Praus, and W. Kastner, “Security in Building Automation Systems”,

IEEE Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3622–3630, Nov. 2010.

[63] L. Gu and J. A. Stankovic, “T-Kernel: Providing Reliable OS Support to Wireless

Sensor Networks”, in SenSys ’06: Proceedings of the 4th International Conference on

Embedded Networked Sensor Systems, Boulder, Colorado, USA: ACM, 2006, pp. 1–

14, ISBN: 1-59593-343-3.

[64] V. Gungor and G. Hancke, “Industrial Wireless Sensor Networks: Challenges, De-

sign Principles, and Technical Approaches”, IEEE Transactions on Industrial Elec-

tronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[65] M. Hauswirth, C. Kerer, and R. Kurmanowytsch, “A Flexible and Extensible Secu-

rity Framework for Java Code”, Technical Report TUV-1841-99-14, Technical Univ.

of Vienna, Tech. Rep., 2000.

[66] ——, “A Secure Execution Framework for Java”, in Proceedings of the 7th ACM

Conference on Computer and Communications Security, ACM, 2000, pp. 43–52.

[67] S. Hegler and M. Wollschläger, “The Semantic Web in Action: Semantically En-

abled Device Descriptions”, 5th IEEE Int. Conf. on Industrial Informatics, vol. 2,

pp. 1013–1018, Jun. 2007, ISSN: 1935-4576.

[68] heise Security. (May 2013). Kritische Schwachstelle in hunderten Industrieanlagen.

Last Access: 2015/07/23, [Online]. Available: http://heise.de/-1854385.

[69] ——, (Apr. 2013). Vaillant-Heizungen mit Sicherheits-Leck. Last Access: 2015/07/23,

[Online]. Available: http://heise.de/-1840919.

http://heise.de/-1854385
http://heise.de/-1840919

170 BIBLIOGRAPHY

[70] I. Hiroaki, M. Edahiro, and J. Sakai, “Towards Scalable and Secure Execution Plat-

form for Embedded Systems”, in ASP-DAC ’07: Proceedings of the 2007 Conference

on Asia South Pacific Design Automation, Washington, DC, USA: IEEE Computer

Society, 2007, pp. 350–354, ISBN: 1-4244-0629-3.

[71] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using Sequences

of System Calls”, Journal of Computer Security, vol. 6, no. 3, pp. 151–180, 1998.

[72] D. G. Holmberg, “BACnet Wide Area Network Security Threat Assessment”, Na-

tional Institute of Standards and Technology, Tech. Rep., 2003.

[73] G. Holzmann, “The Power of 10: Rules for Developing Safety-Critical Code”, IEEE

Computer, vol. 39, no. 6, pp. 95–99, Jun. 2006, ISSN: 0018-9162.

[74] Home and Building Electronic Systems (HBES), EN 50090, CENELEC, 1997-2007.

[75] B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic Self-Checking

Techniques for Improved Tamper Resistance”, in Digital Rights Management Work-

shop, 2001, pp. 141–159.

[76] M. Howard, D. LeBlanc, and J. Viega, 19 DEADLY SINS OF SOFTWARE SECU-

RITY. New York, NY, USA: McGraw-Hill, Inc., 2006, ISBN: 0072260858, 9780072260854.

[77] D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede, “Securing Embedded Sys-

tems”, IEEE Security and Privacy, vol. 4, no. 2, pp. 40–49, Mar. 2006, ISSN: 1540-7993.

[78] IEEE Computer Society, IEEE Standard for Local and Metropolitan Area Networks–

Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), New York, Sep.

2011.

[79] H. Inoue, H. Inoue, A. Ikeno, M. Kondo, J. Sakai, and M. Edahiro, “VIRTUS: a New

Processor Virtualization Architecture for Security-Oriented Next-Generation Mo-

bile Terminals”, in Proc. 43rd ACM/IEEE Design Automation Conference, A. Ikeno,

Ed., 2006, pp. 484–489.

[80] INTEGRITY-178B Separation Kernel Security Target Version 1.0, Science Applications

International Corporation, Common Criteria Testing Laboratory, 2008.

[81] International Electrotechnical Commission, Digital Addressable Lighting Interface,

IEC 62386, 2009.

BIBLIOGRAPHY 171

[82] ——, Function Blocks (FB) for Process Control, IEC 61804-2, Oct. 2007.

[83] ——, Function Blocks – Part 1: Architecture, IEC 61499-1, Dec. 2011.

[84] ——, Programmable Controllers - Part 3: Programming Languages, IEC 61131-3, Dec.

2003.

[85] International Organization for Standardization, Building Automation and Control

Systems (BACS) – Part 2: Hardware, ISO 16484-2, 2004.

[86] ——, Building Automation and Control Systems (BACS) – Part 3: Functions, ISO 16484-

3, International Organization for Standardization, Dec. 2005.

[87] ——, Building Automation and Control Systems (BACS) – Part 6: Data Communication

Conformance Testing, ISO 16484-6, 2009.

[88] ——, Information Technology – Home Electronic System (HES) Architecture – Part 3-10:

Wireless Short-Packet (WSP) Protocol Optimised for Energy Harvesting – Architecture

and Lower Layer Protocols, ISO/IEC 14543-3-10, Geneva, Switzerland, 2012.

[89] ——, Information Technology – Home Electronic Systems (HES) Architecture, ISO/IEC

14543-3, Geneva, Switzerland, 2006-2007.

[90] ——, Information Technology – Security Techniques – Evaluation Criteria for IT Security,

ISO/IEC 15408, 2005.

[91] ——, Building Automation and Control Systems (BACS) – Part 5: Data Communication

Protocol, ISO 16484-5, May 2014.

[92] ——, Open Data Communication in Building Automation, Controls and Building Man-

agement – Control Network Protocol, ISO/IEC 14908, 2008.

[93] T. Jensen, D. Le Metayer, and T. Thorn, “Verification of Control Flow Based Secu-

rity Properties”, in Proc. IEEE Symposium on Security and Privacy, D. Le Metayer,

Ed., 1999, pp. 89–103.

[94] A. Judmayer, L. Krammer, and W. Kastner, “On the Security of Security Extensions

for IP-Based KNX Networks”, in Proc. of the 10th IEEE International Workshop on

Factory Communication Systems (WFCS’14), May 2014.

172 BIBLIOGRAPHY

[95] S. Karnouskos, “Stuxnet Worm Impact on Industrial Cyber-Physical System Secu-

rity”, in IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society,

2011, pp. 4490–4494.

[96] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Communica-

tion Systems for Building Automation and Control”, Proceedings of the IEEE, vol.

93, no. 6, pp. 1178–1203, Jun. 2005.

[97] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive Detection of

Computer Worms Using Model Checking”, IEEE Transactions on Dependable and

Secure Computing, vol. 7, no. 4, pp. 424–438, 2010.

[98] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting Malicious Code

by Model Checking”, in GI SIG SIDAR Conference on Detection of Intrusions and

Malware & Vulnerability Assessment (DIMVA’05), K. Julisch and C. Krügel, Eds., ser.

Lecture Notes in Computer Science, vol. 3548, Vienna, Austria: Springer, Jul. 2005,

pp. 174–187, ISBN: 3-540-26613-5.

[99] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure Execution Via Program

Shepherding”, in Proceedings of the 11th USENIX Security Symposium, USENIX As-

sociation, Aug. 2002, pp. 191–206, ISBN: 1-931971-00-5.

[100] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “seL4:

Formal Verification of an OS Kernel”, in SOSP ’09: Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles, Big Sky, Montana, USA: ACM,

2009, pp. 207–220, ISBN: 978-1-60558-752-3.

[101] KNX System Specifications – Application Note 158/13 v02 – KNX Data Security, KNX

Association, May 2013.

[102] KNX System Specifications – Application Note 159/13 v05 – KNXnet/IP Secure, KNX

Association, Jul. 2015.

[103] KNX System Specifications, Version 2.1, KNX Association, ISO/IEC 14543-3, Jan.

2014.

BIBLIOGRAPHY 173

[104] F. Koeune and F.-X. Standaert, “A Tutorial on Physical Security and Side-Channel

Attacks”, in Foundations of Security Analysis and Design III, FOSAD 2004/2005 Tuto-

rial Lectures, 2004, pp. 78–108.

[105] M. J. Kofler, “An Ontology as Shared Vocabulary for Distributed Intelligence in

Smart Homes”, PhD thesis, Vienna University of Technology, 2014.

[106] M. Kreilach, “Ein netzbasiertes Intrusion Detection System für KNX”, Master’s

thesis, AAT-Lab@Department of Embedded Systems, FH Technikum Wien, May

2013.

[107] C. Krügel, “Network Alertness – Towards an Adaptive, Collaborating Intrusion

Detection System”, PhD thesis, Vienna University of Technology, 2002.

[108] C. Krügel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automating Mimicry

Attacks Using Static Binary Analysis”, in SSYM’05: Proceedings of the 14th Confer-

ence on USENIX Security Symposium, Baltimore, MD: USENIX Association, 2005,

pp. 11–11.

[109] W. Landi, “Undecidability of Static Analysis”, ACM Letters on Programming Lan-

guages and Systems, vol. 1, no. 4, pp. 323–337, Dec. 1992.

[110] D. Larochelle and D. Evans, “Statically Detecting Likely Buffer Overflow Vulnera-

bilities”, in SSYM’01: Proceedings of the 10th Conference on USENIX Security Sympo-

sium, Washington, D.C.: USENIX Association, 2001, pp. 14–14.

[111] Z. Li, A. Das, and J. Zhou, “Theoretical Basis for Intrusion Detection”, in Proceed-

ings of 6th IEEE Information Assurance Workshop (IAW), West Point, NY, USA: IEEE

SMC Society, Jun. 2005.

[112] LonMark Functional Profiles: Lamp Actuator: 3040, Scene Controller: 3251, Scene Panel:

3250, LonMark International, 1997.

[113] Louis-F. Stahl. (Aug. 2013). Kritisches Sicherheitsupdate für 200.000 Industries-

teuerungen. Last Access: 2015/07/23, heise Security, [Online]. Available: http:

//heise.de/-1934787.

http://heise.de/-1934787
http://heise.de/-1934787

174 BIBLIOGRAPHY

[114] S. Mao and T. Wolf, “Hardware Support for Secure Processing in Embedded Sys-

tems”, in Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, Apr. 2007,

pp. 483–488.

[115] MaXX, “Vudo Malloc Tricks”, Phrack, vol. 11, no. 57, Aug. 2001.

[116] D. L. McGuinness and F. van Harmelen, OWL Web Ontology Language Overview,

W3C Recommendation, Feb. 2004.

[117] J. McHugh, “Intrusion and Intrusion Detection”, International Journal of Information

Security, vol. 1, no. 1, pp. 14–35, 2001.

[118] Modbus Application Protocol V1.1b, Modbus Organization, 2006.

[119] G. C. Necula and P. Lee, “Safe, Untrusted Agents Using Proof-Carrying Code”,

in Mobile Agents and Security, London, UK: Springer-Verlag, 1998, pp. 61–91, ISBN:

3-540-64792-9.

[120] T. Newsham. (Sep. 2000). Format String Attacks, Guardent, Inc.

[121] A. One, “Smashing The Stack For Fun And Profit”, Phrack, vol. 7, no. 49, Nov. 1996.

[122] Open Data Communication in Building Automation, Controls and Building Management

– Control Network Protocol, EN 14908, 2005.

[123] Open Data Communication in Building Automation, Controls and Building Management

– Home and Building Electronic System – Part 1: Product and System Requirements. EN

13321-1, Brussels, Belgium, CEN, 2006.

[124] Open Data Communication in Building Automation, Controls and Building Manage-

ment – Home and Building Electronic System – Part 2: KNXnet/IP Communication. EN

13321-2, Brussels, Belgium, CEN, 2006.

[125] J. Park, R. Sandhu, and J. Schifalacqua, “Security Architectures for Controlled Dig-

ital Information Dissemination”, in Proc. 16th Annual Conference Computer Security

Applications ACSAC ’00, Nov. 2000, pp. 224–233.

[126] C. P. Pfleeger and S. L. Pfleeger, Security in Computing. Prentice Hall Professional

Technical Reference, 2002, ISBN: 0130355488.

BIBLIOGRAPHY 175

[127] J. Plönnigs, B. Hensel, H. Dibowski, and K. Kabitzsch, “BASont - A Modular,

Adaptive Building Automation System Ontology”, in IECON 2012 - 38th Annual

Conference on IEEE Industrial Electronics Society, 2012, pp. 4827–4833.

[128] F. Praus, “A Versatile Networked Embedded Platform for KNX/EIB”, Master’s

thesis, Vienna University of Technology, Institute of Computer Aided Automation,

Automation Systems Group, 2005.

[129] F. Praus, T. Flanitzer, and W. Kastner, “Secure and Customizable Software Ap-

plications in Embedded Networks”, in Proc. 13th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA’08), Sep. 2008, pp. 1473–1480.

[130] F. Praus, W. Granzer, and W. Kastner, “Enhanced Control Application Develop-

ment in Building Automation”, in Proc. 7th IEEE International Conference on Indus-

trial Informatics (INDIN’09), Jun. 2009, pp. 390–395.

[131] F. Praus and W. Kastner, “Identifying Unsecured Building Automation Installa-

tions”, in Proc. 19th IEEE International Conference on Emerging Technologies and Fac-

tory Automation (ETFA’14), Sep. 2014.

[132] ——, “Secure Control Applications in Building Automation Using Domain Knowl-

edge”, in Proc. 8th IEEE International Conference on Industrial Informatics (INDIN’10),

Jul. 2010, pp. 52–57.

[133] ——, “Spotting Unsecured KNX Installations”, in Proc. KNX Scientific Conference,

KNX Scientific Award 2014, Nov. 2014.

[134] ——, “User Applications Development Using Embedded Java”, in Proc. KNX Sci-

entific Conference, Nov. 2008.

[135] F. Praus, W. Kastner, and G. Neugschwandtner, “A Versatile Networked Embed-

ded Platform for KNX/EIB”, in Proc. KNX Scientific Conference, Nov. 2006.

[136] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in Embedded

Systems: Design Challenges”, Transactions on Embedded Computing Systems, vol. 3,

no. 3, pp. 461–491, 2004, ISSN: 1539-9087.

176 BIBLIOGRAPHY

[137] C. Reinisch, W. Granzer, F. Praus, and W. Kastner, “Integration of Heterogeneous

Building Automation Systems Using Ontologies”, in Proceedings of 34th Annual

Conference of the IEEE Industrial Electronics Society (IECON ’08), Nov. 2008, pp. 2736–

2741.

[138] V. Rijmen, A. Bosselaers, and P. Barreto, Optimised ANSI C code for the Rijndael

Cipher (now AES), http://www.iaik.tu-graz.ac.at/research/krypto/AES/, version

3.0, 2000.

[139] R. Riley, X. Jiang, and D. Xu, “An Architectural Approach to Preventing Code In-

jection Attacks”, in DSN ’07: Proceedings of the 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, Washington, DC, USA: IEEE Com-

puter Society, 2007, pp. 30–40, ISBN: 0-7695-2855-4.

[140] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-Oriented Program-

ming: Systems, Languages, and Applications”, ACM Trans. Inf. Syst. Secur., vol. 15,

no. 1, 2:1–2:34, Mar. 2012, ISSN: 1094-9224.

[141] A. D. Rubin and D. E. Geer, Jr., “Mobile Code Security”, IEEE Internet Computing,

vol. 2, no. 6, pp. 30–34, 1998, ISSN: 1089-7801.

[142] T. Sauter, D. Dietrich, and W. Kastner, EIB Installation Bus System. Publicis, 2000.

[143] A. Saxena and B. Soh, “Authenticating Mobile Agent Platforms Using Signature

Chaining Without Trusted Third Parties”, in Proc. IEEE International Conference on

e-Technology, e-Commerce and e-Service EEE ’05, Mar. 2005, pp. 282–285.

[144] D. Schachinger and W. Kastner, “Model-driven integration of building automation

systems into web service gateways”, in Factory Communication Systems (WFCS),

2015 IEEE World Conference on, May 2015, pp. 1–8.

[145] M. Schoeberl, “JOP: A Java Optimized Processor for Embedded Real-Time Sys-

tems”, PhD thesis, Vienna University of Technology, 2005.

[146] C. Schwaiger and A. Treytl, “Smart Card Based Security for Fieldbus Systems”,

in Proc. IEEE Conference on Emerging Technologies and Factory Automation (WFCS),

vol. 1, 2003, pp. 398–406.

BIBLIOGRAPHY 177

[147] S. Seifried, L. Krammer, and W. Kastner, “A Reliable and Flexible KNX Gateway”,

in Proc. KNX Scientific Conference, Oct. 2014.

[148] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast Automaton-Based

Method for Detecting Anomalous Program Behaviors”, in Proc. IEEE Symposium

on Security and Privacy S&P, M. Bendre, Ed., 2001, pp. 144–155.

[149] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney, “Model-

Carrying Code: A Practical Approach for Safe Execution of Untrusted Applica-

tions”, in SOSP ’03: Proceedings of the Nineteenth ACM Symposium on Operating Sys-

tems Principles, Bolton Landing, NY, USA: ACM, 2003, pp. 15–28, ISBN: 1-58113-

757-5.

[150] H. Shacham, “The Geometry of Innocent Flesh on the Bone: return-into-libc With-

out Function Calls (on the x86)”, in CCS ’07: Proceedings of the 14th ACM Conference

on Computer and Communications Security, Alexandria, Virginia, USA: ACM, 2007,

pp. 552–561, ISBN: 978-1-59593-703-2.

[151] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the

Effectiveness of Address-Space Randomization”, in CCS ’04: Proceedings of the 11th

ACM Conference on Computer and Communications Security, Washington DC, USA:

ACM, 2004, pp. 298–307, ISBN: 1-58113-961-6.

[152] N. Shaylor, D. N. Simon, and W. R. Bush, “A Java Virtual Machine Architecture for

Very Small Devices”, SIGPLAN Not., vol. 38, no. 7, pp. 34–41, 2003, ISSN: 0362-1340.

[153] J. E. Smith and R. Nair, “The Architecture of Virtual Machines”, IEEE Computer,

vol. 38, no. 5, pp. 32–38, 2005, ISSN: 0018-9162.

[154] Solar Designer. (Aug. 1997). return-to-libc Attack.

[155] L. Sommaruga, A. Perri, and F. Furfari, “DomoML-env: An Ontology for Human

Home Interaction”, in SWAP 2005: Proc. of the 2nd Italian Semantic Web Workshop,

P. Bouquet and G. Tummarello, Eds., vol. 166, Dec. 2005.

[156] S. Soucek and D. Loy, “Vertical Integration in Building Automation Systems”, in

Proc. 5th IEEE INDIN, Jun. 2007, pp. 81–86.

178 BIBLIOGRAPHY

[157] P. Stanley-Marbell and L. Iftode, “Scylla: A Smart Virtual Machine for Mobile Em-

bedded Systems”, in 3rd IEEE Workshop on Mobile Computing Systems and Applica-

tions, WMCSA2000, Dec. 2000.

[158] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure Program Execution via

Dynamic Information Flow Tracking”, in ASPLOS-XI: Proceedings of the 11th Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems, Boston, MA, USA: ACM, 2004, pp. 85–96, ISBN: 1-58113-804-0.

[159] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and Paradigms.

Prentice Hall, 2002.

[160] Tunneling Component Network Protocols Over Internet Protocol Channels, ANSI/EIA

852, 2002.

[161] R. Venkitaraman and G. Gupta, “Static Program Analysis of Embedded Executable

Assembly Code”, in CASES ’04: Proceedings of the 2004 International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, Washington DC, USA:

ACM, 2004, pp. 157–166, ISBN: 1-58113-890-3.

[162] Verein Deutscher Ingenieure, Building Automation and Control Systems (BACS) –

Application Examples for Room Types and Function Macros of Room Automation and

Control, VDI 3813-3, Feb. 2015.

[163] ——, Building Automation and Control Systems (BACS) – Fundamentals for Room Con-

trol, VDI 3813-1, May 2011.

[164] ——, Building Automation and Control Systems (BACS) – Legislation, Technical rules,

VDI 3814-2, Jul. 2009.

[165] ——, Building Automation and Control Systems (BACS) – Room Control Functions (RA

functions), VDI 3813-2, May 2011.

[166] ——, Product Data Exchange in the Building Services, VDI 3805, 2002–2011.

[167] D. A. Wagner, “Janus: An Approach for Confinement of Untrusted Applications”,

Master’s thesis, University of California, Dec. 1999, p. 65.

BIBLIOGRAPHY 179

[168] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient Software-Based

Fault Isolation”, in SOSP ’93: Proceedings of the Fourteenth ACM Symposium on Op-

erating Systems Principles, Asheville, North Carolina, United States: ACM, 1993,

pp. 203–216, ISBN: 0-89791-632-8.

[169] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten, “Extensible Security Archi-

tectures for Java”, SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp. 116–128, 1997, ISSN:

0163-5980.

[170] D. S. Wallach, “A New Approach to Mobile Code Security”, PhD thesis, Princeton

University, 1999.

[171] D. Wallach and E. Felten, “Understanding Java Stack Inspection”, in Proc. IEEE

Symposium on Security and Privacy, E. Felten, Ed., 1998, pp. 52–63.

[172] J. Wilander and M. Kamkar, “A Comparison of Publicly Available Tools for Dy-

namic Buffer Overflow Prevention”, in Proceedings of the 10th Network and Dis-

tributed System Security Symposium, San Diego, California, Feb. 2003, pp. 149–162.

[173] R. Woischke, “BACnet Monitoring”, AAT-Lab@Department of Embedded Sys-

tems, FH Technikum Wien, Tech. Rep., Feb. 2013.

[174] ——, “Entwicklung eines BACnet Monitoring Tools auf Basis von Nagios”, AAT-

Lab@Department of Embedded Systems, FH Technikum Wien, Tech. Rep., May

2013.

[175] J. Zachary, R. Brooks, and D. Thompson, “Secure Integration of Building Networks

into the Global Internet”, National Institute of Standards and Technology, Tech.

Rep., 2002.

[176] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, and N. Memon, “SAFE-OPS:

An Approach to Embedded Software Security”, ACM Trans. Embed. Comput. Syst.,

vol. 4, no. 1, pp. 189–210, 2005, ISSN: 1539-9087.

[177] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure Coprocessor-

Based Intrusion Detection”, in EW10: Proceedings of the 10th Workshop on ACM

SIGOPS European Workshop, Saint-Emilion, France: ACM, 2002, pp. 239–242.

180 BIBLIOGRAPHY

[178] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk,

“On the Value of Static Analysis for Fault Detection in Software”, IEEE Transactions

on Software Engineering, vol. 32, no. 4, pp. 240–253, 2006, ISSN: 0098-5598.

[179] ZigBee: Home Automation Public Application Profile, Version 1.1, ZigBee Alliance,

Feb. 2010.

[180] ZigBee Specification, ZigBee Alliance, San Ramon, Sep. 2012.

[181] T. Zillner, “ZigBee Exploited. The Good, the Bad and the Ugly”, cognosec, Tech.

Rep. 1.1, Aug. 2015.

[182] M. Zitser, R. Lippmann, and T. Leek, “Testing Static Analysis Tools Using Ex-

ploitable Buffer Overflows from Open Source Code”, SIGSOFT Softw. Eng. Notes,

vol. 29, no. 6, pp. 97–106, 2004, ISSN: 0163-5948.

[183] Z-Wave System Design Specification: Z-Wave Protocol Overview, Zensys A/S, Fre-

mont, 2005.

Lebenslauf Friedrich Praus

1. Persönliche Informationen

Name: FH-Prof. Mag.rer.soc.oec. Dipl.Ing. Praus Friedrich
Adresse: Hallergasse 11/29, 1110 Wien, Österreich
Telefon: +43 699 11075818
E-Mail: fritz@praus.at
Internet: http://www.praus.at/
Geburtsdatum: 08.01.1981
Nationalität: Österreich

2. Ausbildung

2006-jetzt:
Doktoratsstudium der technischen Wissenschaften – Technische Universität Wien
Dissertationstitel: „Secure Control Applications in Smart Homes and Buildings“

2007-2008:
Mag.rer.soc.oec. in Informatikmanagement (mit Auszeichnung) – Technische
Universität Wien

2000-2005:
Dipl.-Ing. in Informatik (mit Auszeichnung) – Technische Universität Wien

1999-jetzt:
Bundesheer (Milizoffizier, S6)

3. Beruflicher Werdegang

2014-2015:
Studiengangsentwicklung: Mitglied des Entwicklungsteams für den Bachelor
Studiengang Smart Homes und Assistive Technologien, FH Technikum Wien

2014-jetzt:
Projektleiter: Stadt Wien Projekt ViTAL: Institut für Embedded Systems,
Fachhochschule Technikum Wien

2014:
Verleihung des Titels FH Professor

2012-jetzt:
FFG benefit Projekt moduLAAr: Projektverantwortlich am Institut für Embedded
Systems, Fachhochschule Technikum Wien

2010-2014:
Stadt Wien Stiftungsprofessor Ambient Assistive Technologies: Institut für
Embedded Systems, Fachhochschule Technikum Wien

2007-2010:
Forschungsassistent: Institut für rechnergestützte Automation, Technische
Universität Wien, seBAS - Security in Buidling Automation (FWF Projekt)

2006-2007:
Forschungsassistent: Institut für integrierte Sensorsysteme, Österreichische
Akademie der Wissenschaften, Wr. Neustadt, IMAGINE - Introduction of Master
Group Based Industrial Ethernet Highly precise clock synchronization and more
(BRIDGE Projekt)

4. Publikationen

Diplomarbeit:

Friedrich Praus, A Versatile Networked Embedded Platform for KNX/EIB,
Vienna University of Technology, Institute of Computer Aided Automation, 2005

Artikel:

Wolfgang Granzer, Friedrich Praus, and Wolfgang Kastner. Security in Building
Automation Systems. IEEE Transactions on Industrial Electronics, 57(11):3622-
3630, November 2010.

Bücher:

Wolfgang Kastner, Friedrich Praus, Georg Neugschwandtner, Wolfgang Granzer,
KNX. In The Industrial Electronics Handbook, Second Edition, Part 4: Industrial
Communication Systems, J.D. Irwin, and B. M. Wilamowski, Eds., chapter 42,
pages 42-1 – 42-14. CRC Press, 2011

Workshops und Konferenzen:

1. Friedrich Praus and Wolfgang Kastner. Spotting Unsecured KNX Installations.
In Proc. KNX Scientific Conference, November 2014. KNX Scientific Award
2014.

2. Friedrich Praus and Wolfgang Kastner. Identifying Unsecured Building
Automation Installations. In Proc. 19th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2014), number 978-1-
4799-4845-1, September 2014.

3. Richard Wagner, Peter Wolff, Klaus Schaeffer, Friedrich Praus. Ambient Assitive
Technologies: The Mobile Robot P3AAT, Proceedings of the Austrian Robotics
Workshop (ARW-13), May 2013

4. Wolfgang Granzer, Friedrich Praus, Peter Balog. Source Code Plagiarism in
Computer Engineering Courses. 3rd International Conference on Education,
Training and Informatic (ICETI12), March 2012, Paper ID: EB266TP.

5. Johannes Kropf, Barbara Prazak-Aram, Lukas Roedl, Friedrich Praus, and
Christian Siegel. Large Scale Integration and Evaluation of AAL Technologies in
Eastern Austria - the moduLAAr Project. In AAL Forum, volume Session D3,
September 2013.

6. Richard Isaacs, Friedrich Praus. Design & Development of a Prototype Android
App for a KNX Home. In Proc. KNX Scientific Conference, November 2012.

7. Luka Samardzija, Friedrich Praus. ANT goes KNX - an Open Platform Gateway
for ANT and KNX, KNX Scientific Conference. In Proc. KNX Scientific
Conference, November 2012.

8. Wolfgang Granzer, Friedrich Praus, and Peter Balog. Source Code Plagiarism in
Computer Engineering Courses. In Proc. 3rd International Conference on
Education, Training and Informatic (ICETI12). Paper ID: EB266TP, March 2012.
Best Presentation Award.

9. Friedrich Praus, Christian Reinisch, Paul Leitner, and Wolfgang Kastner. Open
Source Approaches to Integrate KNX into Media Centers. In Proc. KNX
Scientific Conference, November 2010.

10. Friedrich Praus and Wolfgang Kastner. Secure Control Applications in Building
Automation Using Domain Knowledge. In Proc. 8th IEEE International
Conference on Industrial Informatics (INDIN '10), 2010, pages 52-57, July 2010.

11. Wolfgang Granzer, Daniel Lechner, Friedrich Praus, and Wolfgang Kastner.
Securing IP Backbones in Building Automation Networks. In Proc. 7th IEEE
International Conference on Industrial Informatics (INDIN '09), pages 410-415,
June 2009.

12. Friedrich Praus, Wolfgang Granzer, and Wolfgang Kastner. Enhanced Control
Application Development in Building Automation. In Proc. 7th IEEE
International Conference on Industrial Informatics (INDIN '09), pages 390-395,
June 2009.

13. Friedrich Praus and Wolfgang Kastner. User Applications Development Using
Embedded java. In Proc. KNX Scientific Conference, November 2008.

14. Christian Reinisch, Wolfgang Granzer, Friedrich Praus, and Wolfgang Kastner.
Integration of Heterogeneous Building Automation Systems Using Ontologies. In
Proceedings of 34th Annual Conference of the IEEE Industrial Electronics
Society (IECON '08), pages 2736-2741, November 2008.

15. Friedrich Praus, Thomas Flanitzer, and Wolfgang Kastner. Secure and
Customizable Software Applications in Embedded Networks. In Proc. 13th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA '08), pages 1473-1480, September 2008.

16. Friedrich Praus, Wolfgang Granzer, Georg Gaderer, and Thilo Sauter. A
Simulation Framework for Fault-Tolerant Clock Synchronization in Industrial
Automation Networks. In Proc. of 12th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA '07), pages 1465-1472, September
2007.

17. Friedrich Praus, Wolfgang Kastner, and Georg Neugschwandtner. A Versatile
Networked Embedded Platform for KNX/EIB. In Proc. KNX Scientific
Conference, November 2006.

18. Christian Reinisch, Wolfgang Granzer, Friedrich Praus, and Wolfgang Kastner.
Wireless Communication in KNX/EIB. In KNX Scientifc Conference, November
2006.

19. Wolfgang Granzer, Wolfgang Kastner, Georg Neugschwandtner, and Friedrich
Praus. Security in Networked Building Automation Systems. In Proc. 6th IEEE
International Workshop on Factory Communication Systems (WFCS '06), pages
283-292, June 2006.

20. Wolfgang Granzer, Wolfgang Kastner, Georg Neugschwandtner, and Friedrich
Praus. A Modular Architecture for Building Automation Systems. In Proc. 6th
IEEE International Workshop on Factory Communication Systems (WFCS '06),
pages 99-102, June 2006.

21. Friedrich Praus and Wolfgang Kastner. A Versatile Networked Embedded
Platform for KNX/EIB. In Junior Scientific Conference, pages 59-60, April 2006.

22. Friedrich Praus, Wolfgang Kastner, and Oliver Alt. Yet Another All-Purpose
EIBNet/IP Gateway. In Proc. KNX Scientific Conference, October 2004.

5. Awards

1. KNX Scientific Award 2014
2. Best Presentation Award der 3rd International Conference on Education, Training

and Informatic für Source Code Plagiarism in Computer Engineering Courses.
3. Best Paper Award des 6th IEEE International Workshop on Factory

Communication Systems für Security in Networked Building Automation
Systems

6. Invited Talks

29.10.2014: ENISA European Cyber Security Month, Security in Smart Homes and
Buildings

04.06.2013: Wiener Technikgespräche, Smart Homes – Intelligentes Wohnen durch
Automatisierung

184 CURRICULUM VITAE

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Security in Building Automation Systems
	1.2.1 Secure Communication
	1.2.2 Secure Devices

	1.3 Problem Statement and Hypothesis
	1.4 Methodology and Organization

	2 Control Applications in Building Automation Systems
	2.1 Device Classes
	2.2 Distributed Control Applications
	2.3 Application Models
	2.3.1 BACnet
	2.3.2 ISO/IEC 14543-3-10/EnOcean
	2.3.3 KNX
	2.3.4 LonWorks
	2.3.5 IEEE 802.15.4/ZigBee

	2.4 Summary

	3 Control Application Security
	3.1 Security in Current Installations
	3.1.1 BACnet/IP and KNXnet/IP
	3.1.2 A Survey on Worldwide Installations
	3.1.2.1 Attack Vector
	3.1.2.2 Scanning Architecture
	3.1.2.3 Scan Results

	3.2 Attacking Control Applications based on EnOcean
	3.2.1 Eavesdropping Control Application Communication
	3.2.2 Interfering Control Application Communication
	3.2.3 Attacking Encrypted Control Application Communication

	3.3 Threat Analysis
	3.4 Requirements for Secure Control Applications
	3.4.1 Functional Requirements
	3.4.2 Organizational Requirements

	3.5 Summary

	4 Software Protection Techniques
	4.1 Software Assisted Methods
	4.1.1 Static Methods
	4.1.2 Dynamic Methods

	4.2 Hardware Assisted Methods
	4.3 Human Assisted Methods
	4.4 Hybrid Methods
	4.5 Applicability Analysis for Building Automation Systems
	4.6 Summary

	5 Secure Control Application Architecture
	5.1 Generic Application Model
	5.2 Software Security Policy
	5.2.1 Security Attributes
	5.2.2 Enforcement

	5.3 Secure Software Environment
	5.3.1 System Software
	5.3.2 Enhanced Application Layer
	5.3.3 Sandbox
	5.3.4 Configuration and Management

	5.4 Attack Prevention and Detection
	5.4.1 Requirements
	5.4.2 Intrusion Detection Systems for Building Automation Systems

	5.5 Summary

	6 Implementation and Evaluation
	6.1 Security Process
	6.1.1 Security Policy
	6.1.2 Control Application Development
	6.1.3 Building Automation Network Configuration
	6.1.4 Device Commissioning

	6.2 Prototypes
	6.2.1 Sensor, Actuator and Controller
	6.2.1.1 Hardware Architecture
	6.2.1.2 Software Architecture
	6.2.1.3 Experimental Results

	6.2.2 Interconnection Device
	6.2.3 Network Based Intrusion Detection System
	6.2.4 Management Device

	6.3 Enabling Security in Existing Installations
	6.4 Security Evaluation
	6.5 Summary

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Security Recommendations

	Bibliography
	Curriculum Vitae

