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Abstract

In the first chapter we show that if ZFC is consistent then so is ZFC plus its
relativization to a countable, transitive set. To do this we prove a theorem
that shows that every formula is reflected in a countable transitive set and
then use a compactness argument. This chapter mostly follows [9].

In the second chapter we develop Cohen’s forcing method using Boolean
algebras, closely following [6]. We show how partial orders can be embedded
into Boolean algebras, define Boolean-valued models of set theory and show
how Boolean-valued models can be turned into regular two-valued models
by factoring with a generic filter. Finally we prove the forcing theorem.

In the following chapters we prove the independence of various state-
ments from ZFC, using the forcing method. Among them are the continuum
hypothesis, the Suslin-hypothesis and the Diamond-principle. Furthermore
we show various implications between these statements. The proofs in these
chapters are collected from [6][7][8][9][10].

We then show how to iterated the forcing method a transfinite number
of times, following [6]. Finally we employ this method of iterated forcing to
prove the consistency of Martin’s axiom, following [6] and [7].
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Kurzfassung

Im ersten Kapitel zeigen wir, dass, wenn ZFC widerspruchsfrei ist, auch ZFC
plus ZFC relativiert auf eine abzählbare, transitive Menge widerspruchsfrei
ist. Um das zu beweisen zeigen wir, dass jede Formel in einer abzählbaren,
transitiven Menge reflektiert wird und verwenden ein Kompaktheitsargu-
ment. Wir folgen in diesem Kapitel [9].

Im zweiten Kapitel entwickeln wir die Forcing-Methode von Cohen. Wir
benutzen dazu Boolsche Algebren und folgen dabei [6]. Wir zeigen wie
man Halbordnungen in Boolsche Algebren einbettet, definieren Modelle von
ZFC mit Boolschen Wahrheitswerten und zeigen wie aus solchen Modellen,
durch Ausfaktorisieren nach einem generischen Filter, gewöhnliche Modelle
mit binären Wahrheitswerten werden. Schließlich beweisen wir das Forcing-
Theorem.

In den folgenden Kapiteln zeigen wir die Unabhängigkeit verschiedener
Aussagen von ZFC. Darunter sind die Kontinuumshypothese, die Suslin-
Hypothese und das Karo-Prinzip. Die Beweise in diesen Kapiteln sind aus
[6][7][8][9][10] gesammelt.

Weiters zeigen wir, wie man die Forcing-Methode transfinit wiederholt.
Dabei folgen wir [6]. Schließlich benutzen wir die wiederholte Forcing-
Methode um die Widerspruchsfreiheit des Martinschen Axioms zu beweisen,
wobei wir [6] und [7] folgen.

ix





Contents

Erklärung zur Verfassung der Arbeit v

Abstract vii

Kurzfassung ix

0 Introduction 1

0.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 The Axioms of Zermelo-Fraenkel . . . . . . . . . . . . . . . . 2

1 A Countable Transitive Model 5

1.1 Relativization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Reflexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Absoluteness . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Forcing Method 13

2.1 Forcings, Dense Sets, Generic Filters . . . . . . . . . . . . . . 13

2.2 Separative Forcings and Boolean Algebras . . . . . . . . . . . 15

2.3 Boolean-Valued Models . . . . . . . . . . . . . . . . . . . . . 20

2.4 The class V B . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 The Forcing Theorem . . . . . . . . . . . . . . . . . . . . . . 30

3 The Continuum Hypothesis 33

3.1 Notes on Absoluteness . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The consistency of CH . . . . . . . . . . . . . . . . . . . . . . 34

3.3 The consistency of ¬CH . . . . . . . . . . . . . . . . . . . . . 36

xi



xii CONTENTS

4 The Suslin Hypothesis 39

4.1 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The consistency of ¬SH . . . . . . . . . . . . . . . . . . . . . 40

5 The Diamond Principle 43

5.1 Club Sets, Stationary Sets . . . . . . . . . . . . . . . . . . . . 43

5.2 The consistency of ♦ . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 ♦ → CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 ♦ → ¬SH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Iterated Forcing 49

6.1 Two-step forcing . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Iterated Forcing with Finite Support . . . . . . . . . . . . . . 52

7 Martin’s Axiom 55

7.1 CH → MA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 The consistency of MA ∧ ¬CH . . . . . . . . . . . . . . . . . 55

7.3 (MA ∧ ¬CH) → SH . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 61



Chapter 0

Introduction

0.1 Historical Overview

In 1878 Georg Cantor formulated the following question: Is there a set of
cardinality strictly greater than the cardinality of the set of natural numbers
but strictly less than the cardinality of the set of real numbers? Cantor
believed that no such set exists but failed to prove it. His conjecture became
known as the continuum hypothesis (CH) and in 1900 appeared as the first
entry to David Hilbert’s famous list of open problems.

The second problem on Hilbert’s list was the proof that arithmetic is
consistent. In 1931 Kurt Gödel answered this question by showing that any
sufficiently powerful first order theory is incomplete (i.e. there are state-
ments that the theory neither proves nor refutes) and in particular does not
prove its own consistency.

While in arithmetic such independent statements are often of somewhat
artificial character they tend to occur very naturally in set theory. Cantor’s
continuum hypothesis turned out to be one of them. In 1940 Gödel showed
that the continuum hypothesis is consistent by constructing a model, the so-
called constructible universe, in which the continuum hypothesis holds. In
1963 Paul Cohen applied his newly developed technique of forcing to show
the consistency of the failure of the continuum hypothesis, thus proving the
continuum hypothesis is in fact independent of set theory.

In this thesis we will only work with Cohen’s forcing technique which
can also be used to construct a model in which the continuum hypothesis
holds.

1



2 CHAPTER 0. INTRODUCTION

0.2 The Axioms of Zermelo-Fraenkel

We are going to use the ZFC formulation of set theory. ZFC is a theory of
first order logic. The language of ZFC consists of a single two-ary predicate
symbol ∈. Before we introduce the axioms of ZFC let us introduce some
abbreviations to make notation less cumbersome. All free variables of all
formulas in this chapter are to be understood as universally quantified.

The symbol ⊆ is an abbreviation for

x ⊆ y ↔ ∀z(z ∈ x→ z ∈ y).

The symbol ∅ is an abbreviation for

x = ∅ ↔ ∀y(y 6∈ x).

Note that ∅ is well-defined. It is unique because of the axiom of extension-
ality and its existence can be proved using the separation scheme. Finally
s(x) is an abbreviation for

y = s(x) ↔ ∀z(z ∈ y ↔ z ∈ x ∨ z = x).

Note that even though we only list nine (i.e. finitely many) axioms of
ZFC, two of these axioms are really axiom schemes that state an axiom for
each of the countably many formulas in the language ZFC.

Axiom 1. Extensionality.

∀z(z ∈ x↔ z ∈ y)→ x = y

The axiom of extensionality states that two sets are equal if and only if
they contain the same elements.

Axiom 2. Pairing.
∃z(x ∈ z ∧ y ∈ z)

The axiom of pairing states that for any two sets there exists a set that
contains both of them. Together with separation this means there exists a
set that contains exactly both of them, i.e. for sets x, y the set {x, y} exists.

Axiom 3. Separation Scheme.

For each formula φ in the language of ZFC in which y does not occur free.

∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z, p))
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The separation scheme states that for a property φ that can be formu-
lated in ZFC and any set x there exists the set

{z ∈ x : φ(z)}.

Axiom 4. Union.

∃z∀y∀u(u ∈ y ∧ y ∈ x→ u ∈ x)

The axiom of union states that for every x the set
⋃
y∈x y exists.

Axiom 5. Power Set.

∃y∀z(z ⊆ x→ z ∈ y)

The power set axiom states that for every set there exists a set that
contains all its subsets as elements. Again combined with separation this
means there exists a set that contains exactly its subsets.

Axiom 6. Infinity.

∃x(∅ ∈ x ∧ ∀y(y ∈ x→ s(y) ∈ x))

The axiom of infinity states that there exists a set that contains all
natural numbers.

Axiom 7. Collection Scheme.

For any formula φ in the language of ZFC in which Y does not occur free.

∀X∃Y (∀x ∈ X)((∃y)φ(x, y)→ (∃y ∈ Y )φ(x, y))

Over the other axioms of ZFC this is equivalent to the statement that
for any function the image of that function is a set.

Axiom 8. Regularity.

x 6= ∅ → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))

The axiom of regularity implies that there is no sequence x0, x1, x2, . . .
such that xn+1 ∈ xn for all n ∈ ω. In particular there exists no sequence
x0, x1, . . . xn such that xk+1 ∈ xk for all k < n and x0 ∈ xn.

Axiom 9. Choice. Every set can be well-ordered.





Chapter 1

A Countable Transitive
Model

1.1 Relativization

Definition 1.1. Let M be a set and σ be a formula in the language of ZFC.
We define the relativization σ|M of σ to M inductively as1

(x ∈ y)|M ↔ x ∈ y,
(x = y)|M ↔ x = y,

(¬φ)|M ↔ ¬(φ|M ),

(φ ∨ ψ)|M ↔ φ|M ∨ ψ|M ,
(φ ∧ ψ)|M ↔ φ|M ∧ ψ|M ,

(∃xφ)|M ↔ ∃x ∈M : φ|M ,
(∀xφ)|M ↔ ∀x ∈M : φ|M .

(1.1)

Instead of φ|M we sometimes write M |= φ.

Definition 1.2. Let M,N be sets. We say that a function f : M → N is

1There are two logical connectives, ∨ and ¬. Other connectives are abbreviations:

φ ∧ ψ = ¬(¬φ ∨ ¬ψ)

φ→ ψ = ¬φ ∨ ψ
φ↔ ψ = (φ→ ψ) ∧ (ψ → φ).

There is one quantifier ∃ and
∀xφ(x) = ¬∃x¬φ.

This is useful when we want to verify statements inductively on the structure of a formula.
However if it makes things more clear we may still treat the abbreviated connectives as if
they actually exist.

5



6 CHAPTER 1. A COUNTABLE TRANSITIVE MODEL

an ∈-isomorphism if f is bijective and for all x, y ∈M

x ∈ y ↔ f(x) ∈ f(y).

Lemma 1.3. Let M,N be sets and let f : M → N be an ∈-isomorphism.
Then for all formulas φ and for all a1, . . . , an ∈M

φ(a1, . . . , an)|M ↔ φ(f(a1), . . . , f(an))|N .

Proof. Easy induction on the structure of φ.

Definition 1.4. A set M is called extensional if

∀x, y ∈M :
(
x 6= y → (∃t ∈M : t ∈ x↔ t 6∈ y)

)
.

This is simply the axiom of extensionality relativized to M . Informally this
means that sets x 6= y in M can be “separated” by an element of M , so they
also look different from the perspective of M .

Definition 1.5. A set M is called transitive if

∀x : x ∈M → x ⊆M.

An equivalent formulation of transitivity that explains the name is

∀x, y : (y ∈ x ∧ x ∈M)→ y ∈M.

Definition 1.6. For every set x we can define its rank ρ(x) by

ρ(x) = sup{ρ(y) + 1 : y ∈ x}

The axiom of regularity is crucial for this definition to work.

Theorem 1.7 (Mostowski collapse). Let M be an extensional set. Then
there exists a transitive set N and an ∈-isomorphism f : M → N .

Proof. Inductively by rank we define for x ∈M

f(x) = {f(y) : y ∈ x ∩M}

and let2 N = f [X].

We convince ourselves that N is transitive. If a ∈ N and b ∈ a then
there exists x ∈ M such that f(x) = a. Now a = {f(y) : y ∈ x ∩M} and
therefore there exists y ∈M such that b = f(y). Thus b ∈ N .

Assume that f is not injective. Then there exists x ∈M such that there
is some y ∈ M with y 6= x and f(x) = f(y). Let x be an element with
minimal rank that has this property. Now there are two cases.

2Let f : M → N be a function and P ⊆ M be a subset of M . Then f [P ] = {f(m) :
m ∈ P} denotes the image of P under f .
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1. There is s ∈ M such that s ∈ x and s 6∈ y. Since f(x) = f(y) and
f(s) ∈ f(x) there must be some t ∈ y ∩M such that f(s) = f(t) and
of course s 6= t. This contradicts the minimality of x.

2. There is t ∈ M such that t 6∈ x and t ∈ y. Analogously we find
s ∈ x ∩M such that f(s) = f(t), again contradicting the minimality
of x.

Therefore f must be injective. This settles the non trivial direction of

x ∈ y ↔ f(x) ∈ f(y)

and thus f is indeed an ∈-isomorphism.

1.2 Reflexion

Definition 1.8. Let C(X) be the formula “X is a countable set” and let
CT(X) be the formula “X is a countable, transitive set”.

Lemma 1.9. Let φ0, . . . , φn be formulas in the language of ZFC. Then there
exists a countable set M such that for every i ≤ n and all a1, . . . ani ∈M .

∃x : φi(x, a1, . . . , ani) → ∃x ∈M : φi(x, a1, . . . , ani).

Proof. For every i ≤ n we define a Skolem function fφi such that

∃x : φi(x, a1, . . . , ani) → φi(fφi(a1, . . . , ani), a1, . . . , ani)

and fφi(a1, . . . , ani) = a1 if no such x exists. We remark that for this we
used the axiom of choice.

Now we define M inductively.

1. M0 = {∅}.

2. Mk+1 = Mk ∪
⋃
i≤n fφi [M

ni
k ]

3. M =
⋃
k<ωMk.

It is clear that if Mk is countable so is Mk+1 Thus M is the countable
union of countable sets and therefore M is countable.

If a1, . . . , ani ∈ M then there exists k < ω such that a1, . . . , ani ∈ Mk.
Thus if ∃xφi(a1, . . . , ani) holds then, because there exists x = fφi(a1, . . . , ani) ∈
Mk+1 ⊆M such that φ(x, a1, . . . , ani) holds, we have ∃x ∈M : φi(x, a1, . . . , ani).
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Remark 1.10. To be more precise lemma 1.9 is really a lemma-scheme that
states that for formulas φ0, . . . , φn in the language of ZFC it holds that

ZFC ` ∃M :
(
C(M)∧

∧
i≤n
∀a1, . . . ani :

(
∃x : φi(x,~a)→ ∃x ∈M : φi(x,~a)

))
.

Here
∧
i≤n is to be understood as an abbreviation for copying the same

formula for every φ0, . . . , φn.

Theorem 1.11 (Reflection principle). Let σ be a sentence in the language
of ZFC. Then there exists a countable, transitive set M such that

σ|M ↔ σ.

Proof. Let τ be the axiom of regularity and let φ1, ..φn be a list of formulas
such that φ1 = σ, φ2 = τ and for every i ≤ n the following holds:

1. If φi = ¬ψ then there is j ≤ n such that φj = ψ

2. If φi = ψ ∨ χ then there are j, k ≤ n such that φj = ψ and φk = χ.

3. If φi = (∀x)ψ then there is j ≤ n such that φj = ψ.

In other words the list φ1, . . . , φn contains σ, τ and all their subformulas.

Now let M be the countable set obtained by the application of lemma
1.9 to ¬φi, . . . ,¬φn. We are going to show that for all φi, i ≤ n it holds that

φi(a1, . . . , am)|M ↔ φi(a1, . . . , am)

for all a1, . . . , am ∈M by induction on the complexity of φi.

If φi is atomic then the equivalence is trivial. Likewise if φi = ¬ψ or
φi = ψ ∨ χ then we have already proven the equivalence of for ψ and χ and
again the equivalence follows trivially for φi.

Now let φi = (∀x)ψ(x, a1, . . . , am). Clearly if φi holds so does (∀x ∈
M)ψ(x, a1, . . . , am) and by induction hypothesis φi|M = ψ|M (x, a1, . . . , am)
holds. Conversely if φ fails then there exists x such that ¬ψ(x, a1, . . . , am)
holds and by lemma 1.9 x ∈ M . Thus (∀x ∈ M)ψ(x, a1, . . . , am) fails and
and by induction hypothesis φi|M = ψ|M (x, a1, . . . , am) fails.

Now because φ1 = σ it holds that σ|M ↔ σ and because φ2 = τ the set
M is extensional and we can apply lemma 1.7.

Remark 1.12. Again reflection principle 1.11 is really theorem-scheme that
states that for any sentence σ in the language of ZFC and its corresponding
sentence σ|M it holds that

ZFC ` ∃M : (CT(M) ∧ σ|M ↔ σ).
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Definition 1.13. We define a theory ZFC+. The language of ZFC+ is the
language of ZFC with a constant symbol M added. Every axiom φ of ZFC+

satisfies either

1. φ is an axiom of ZFC or

2. φ = CT(M)

3. φ = ψ|M and ψ is an axiom of ZFC.

Theorem 1.14. Let σ be formula in the language of ZFC. Then if ZFC+ ` σ
already ZFC ` σ.

Proof. Assume that we can prove σ from ZFC+. This proof only uses a
finite number of axioms of the form φi|M where φi is some axiom of ZFC.
Let φ = φ1 ∧ · · · ∧ φn and observe that φ|M = φ1|M ∧ · · · ∧ φn|M . Therefore
we have

ZFC ` (CT(M) ∧ φ|M )→ σ. (1.2)

On the other hand by lemma 1.11 we know that

ZFC ` ∃N : CT(N) ∧ (φ↔ φ|N )

and because φ is a theorem of ZFC we get

ZFC ` ∃N : CT(N) ∧ φ|N . (1.3)

Combining 1.2 and 1.3 we arrive at

ZFC ` σ.

Corollary 1.15. If ZFC is consistent so is ZFC+.

Proof. Choose σ = ⊥.

Remark 1.16. The axioms of ZFC+ state that M is a countable, transitive
set that satisfies the axioms of ZFC. Thus in some sense M acts as a count-
able, transitive model of ZFC. However we need to be careful here. What
we state is in fact a scheme

For all axioms φ of ZFC : ZFC+ `
(
M |= φ

)
in the meta-theory which is not to be confused with the statement

ZFC+ `
(
∀φ ∈ ZFC : M |= φ

)
.
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The latter statement implies ZFC+ ` Con(ZFC) and therefore by 1.14
ZFC ` Con(ZFC). Assuming that ZFC is consistent this contradicts Gödel’s
second incompleteness theorem.

In the following we will simply say “Let M be a countable transitive
model...”. What we actually mean by this is that we work in ZFC+.

It remains to justify why “pretending” that M is a countable transitive
model is good enough to give us consistency results.

Theorem 1.17. Let σ be a formula in the language of ZFC. Assume that
in ZFC+ we can construct3 a set M [G] such that:

1. ZFC+ `
(
M [G] |= σ

)
.

2. For every axiom φ of ZFC it holds that ZFC+ `
(
M [G] |= φ

)
Then if ZFC is consistent so is ZFC + σ.

Proof. Assume that we can prove ⊥ in ZFC + σ. Again this prove only
uses finitely many axioms φi of ZFC and let again φ = φ1 ∧ · · · ∧ φn. Note
that ψ =

(
(φ ∧ σ) → ⊥

)
is a theorem in predicate logic and thus ψ|M [G] =(

(φ|M [G] ∧ σ|M [G]) → ⊥
)

is valid too. Since we assume ψ|M [G] and σ|M [G]

this implies that ZFC+ is inconsistent which in turn by the previous lemma
1.15 implies that ZFC is inconsistent. This contradicts our assumption that
ZFC is consistent and therefore ZFC + σ must also be consistent.

1.3 Absoluteness

Definition 1.18. Let σ be a formula in the language of ZFC. We say that
σ is absolute for a set M if for all x1, . . . , xn ∈M

σ|M (x1, . . . , xn) ↔ σ(x1, . . . , xn).

Again to be precise this means

ZFC `
(
φ is absolute for M ↔ ∀~x ∈M :

(
φ|M (~x)↔ φ(~x)

))
.

Definition 1.19. Let σ be a formula in the language of ZFC. We say that
σ is a ∆0-formula if it is of one of the following forms.

1. σ is atomic.

3For a given forcing P ∈M we can explicitly define an M -generic filter G on P and the
set M [G].
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2. σ = ¬φ and φ is a ∆0 formula.

3. σ = φ ∗ ψ and φ, ψ are ∆0-formulas and ∗ ∈ {∧,∨,→}.

4. σ(X) =
(
(∃x ∈ X)φ(x)

)
(X) and φ is a ∆0 formula.

5. σ(X) =
(
(∀x ∈ X)φ(x)

)
(X) and φ is a ∆0 formula.

A formula is called Σ1-formula if it is of the form ∃xφ where φ is a
∆0-formula.

Theorem 1.20. Let M be a transitive set and let σ be a ∆0-formula. Then
σ is absolute for M .

Proof. By induction on the structure of σ. For atomic formulas the theorem
is trivial and for conjunction, disjunction and negation the induction step is
trivial.

Consider σ =
(
(∃x ∈ X)φ(x)

)
(X). Then for any X ∈ M we have,

because M is transitive and thus also X ⊆M ,

σ(X)|M ↔ (∃x ∈M ∩X)φ|M (x)↔ (∃x ∈M ∩X)φ(x)↔ σ(X)

using the induction hypothesis for the second equivalence. The quantifier ∀
is treated analogously.

Lemma 1.21. “x is an ordinal” is a ∆0-formula.

Proof. Using the axiom of regularity we can prove that “x is a an ordinal”
is equivalent to “x is transitive and linearly ordered (by ∈)”. The formula
“x is transitive” is

∀y ∈ x : ∀z ∈ y : z ∈ x

and the formula “x is trichotomic” is

∀y ∈ x,∀z ∈ x : y ∈ z ∨ y = z ∨ z ∈ y.

This means that for any countable transitive model M of ZFC x is an
ordinal in M if x is “really” an ordinal.

Lemma 1.22. “x is the ordinal ω” is a ∆0-formula.

Proof. By the previous lemma 1.21 being an ordinal is a ∆0-property. The
formula “x is a limit ordinal” is

∀y ∈ x : ∃z ∈ x : y ∈ z.
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The formula “x is the smallest limit ordinal” is

∀y ∈ x : “x is not a limit ordinal”.

Thus we have shown that being the smallest limit ordinal is a ∆0-property.

Corollary 1.23. If M is a countable transitive model of ZFC then ω ∈ M
and n ∈M for all n ∈ ω.

Lemma 1.24. The formula “x can be well-ordered” is a Σ1-property.

Proof. The formula “x can be well-ordered” is equivalent to

∃α
(
∃e ∈ x2 : ∃f ∈ x×α : α is an ordinal ∧f is an isomorphism (x, e)→ (α,∈)

)
.



Chapter 2

The Forcing Method

2.1 Forcings, Dense Sets, Generic Filters

In this chapter let M denote a countable, transitive model of ZFC.

Definition 2.1. Any partially ordered set (P,≤) ∈ M is called a forcing
notion for M .

Let p, q ∈ P.

1. If q ≤ p we say that q extends p.

2. If p and q have a common extension we say that p and q are compatible
and write p ‖ q.

3. If p and q are not compatible we call them incompatible and write p⊥q.

Definition 2.2. We call D ⊆ P dense if ∀p ∈ P : ∃d ∈ D : d ≤ p.

Definition 2.3. We call A ⊆ P an antichain if

∀p, q ∈ A : p 6= q → p⊥q,

i.e. the elements of A are pairwise incompatible. We say that an antichain
A is maximal if no A′ ⊃ A is an antichain.1

Definition 2.4. A subset F ⊆ P is called a filter if

(i) F is nonempty (non-triviality).

1As it is commonly done with every other relation we denote by the symbol ⊆ reflexive
and by the symbol ⊂ irreflexive set inclusion. I.e. for sets M and N , if N is a subset of
M we write N ⊆M and if N is a proper subset of M we write N ⊂M .

13
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(ii) Any p, q ∈ F are compatible (directedness).

(iii) If q ∈ F and q ≤ p then also p ∈ F (upward stability).

A filter F ⊆ P is called generic over M or simply M -generic if it intersects
every dense subset D ⊆ P with D ∈M .

Likewise, if D is a family of dense sets D ⊆ P we say that a filter F is
D-generic if it F intersects every D ∈ D.

Lemma 2.5. Let P be a forcing notion and let D = {Dn ⊆ P : n < ω} be
a family of countably many dense sets. Then there exists a D-generic filter
F ⊆ P.

Proof. We find d0 ∈ D0. Then because D0 is dense we find d1 ≤ d0 such
that d1 ∈ D1 and because D2 is dense we find d2 ≤ d1 such that d2 ∈ D2

and so on. Now let

F = {p ∈ P : (∃n < ω) p ≥ dn}.

Definition 2.6. If B is a Boolean algebra2 a subset U ⊆ B is called an
ultrafilter if U is a filter on (B,≤) and for all b ∈ B

b ∈ U ∨ (¬b) ∈ U.

Lemma 2.7. For a filter F ⊆ P the following are equivalent:

(i) F is generic over M .

(ii) F intersects every maximal antichain A ⊆ P with A ∈M .

Proof. Let G be generic and let A be a maximal antichain. We claim that
the set

DA =
⋃
a∈A
{p : p ≤ a}

is dense. Assume the contrary. Then for some p ∈ P there exists no d ∈ DA

with d ≤ p. Then for all a ∈ A it holds that p⊥a because otherwise there
exists r ≤ p, r ≤ a and r ∈ DA. Thus A ∪ {p} is an antichain that extends
A contradicting the maximality of A.

2In Boolean algebras we write ∧ for meet and ∨ for join but still
∏

and
∑

for meeting
and joining over a collection of elements. The complement of an element is denoted by ¬.
We define the abbreviations

a \ b = a ∧ ¬b
a→ b = ¬a ∨ b.
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Hence DA must be dense and by genericity of G there exists p ∈ G∩DA

and by upward-stability a ∈ G ∩DA for some a ∈ A.

To prove the other direction we claim that every dense set D contains
a maximal antichain A. Let A ⊆ D be a maximal antichain in D. Assume
that A is not a maximal antichain in P. Then there exists p 6∈ A and p⊥a
for all a ∈ A. Because D is dense there exists d ∈ D with d ≤ p and d ‖ a
for some a ∈ A. But this implies p ‖ a.

Thus D contains an antichain that is maximal in P and if F intersects
every maximal antichain it also intersects D.

2.2 Separative Forcings and Boolean Algebras

Definition 2.8. A partially ordered set (P,≤) is called separative if

∀p, q ∈ P :
(
p 6≤ q → ∃r ≤ p : r⊥q

)
,

i.e. either p ≤ q or there exists r ≤ p that is incompatible with q.

Let B be a Boolean algebra and let B+ denote its nonzero elements. We
call a subset D ⊆ B dense (in B) if it is dense in (B+,≤).

We can characterize separative, partially ordered sets by the following
theorem.

Theorem 2.9. Separative partially ordered sets are up to isomorphism ex-
actly the dense subsets of complete Boolean algebras.

The theorem follows by combining the following two lemmas.

Lemma 2.10. Let B be a Boolean algebra. Then the following holds:

(i) Then (B+,≤) is separative.

(ii) If D is a dense subset of B then (D,≤) is a separative partial order.

Proof.

(i) Let p, q ∈ B+ and p 6≤ q. We have to find r ≤ p with r⊥q. Choose
r = p \ q.

(ii) For p, q ∈ D with p 6≤ q there exists r ∈ B+ such that r ≤ p and
r⊥q because by the previous lemma B+ is separative. By density of
D there exists d ≤ r with d ∈ D. Hence also d ≤ p and d⊥q.
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Lemma 2.11. Let (P,≤) be a separative partially ordered set. Then there
exists a complete Boolean algebra B such that:

(i) P ⊆ B.

(ii) ≤ agrees with the partial ordering of B.

(iii) P′ is dense in B.

B is unique up to isomorphism.

To be precise we are really talking about an isomorphic copy Q of P but the
isomorphism is so canonic that we do not distinguish between the two.

The construction of B is analogous to the construction of the completion
of a Boolean algebra using Dedekind cuts.

Proof. We call a set U ⊆ P a cut if

∀p ∈ U : ∀q ∈ P : q ≤ p→ q ∈ U

and for all p ∈ P let Up denote the cut {q : q ≤ p}.

We remark that it also makes sense to say that cuts are open sets because
they form a basis for a topology.

We say a cut U is regular if for all p 6∈ U there exists r ≤ p such that
U ∩ Ur = ∅. For any q ∈ P the cut Uq is regular. Assume p 6∈ Uq. Then
p 6≤ q and thus because P is separative there exists r ≤ p, r⊥q and clearly
Uq ∩ Ur = ∅.

Let B be the set of all regular cuts of P. We claim that (B,⊆) is a
complete Boolean algebra that densely contains P. The intersection of a
family Ui, i ∈ I of regular cuts is a regular cut. If p 6∈

⋂
i∈I Ui then there

exists i0 ∈ I such that p 6∈ Ui0 and because Ui0 is regular there exists r ≤ p
such that Ui0 ∩ Ur = ∅. Now since Ui0 ⊆

⋂
i∈I Ui also

⋂
i∈I Ui ∩ Ur = ∅.

Therefore every cut U is contained in a minimal regular cut.

For any cut V we define V to be the minimal regular cut such that
V ⊆ V .

Now for u, v ∈ B we define

u ∧ v = u ∩ v

u ∨ v = u ∪ v

¬u = {p : Up ∩ u = ∅}



2.2. SEPARATIVE FORCINGS AND BOOLEAN ALGEBRAS 17

and take ∅ as the zero and P as the one of B. The definition of ¬u works
because if p 6∈ ¬u then there is some r ≤ p with r ∈ u and thus Ur ⊆ u. This
means that for all q ∈ Ur it holds that Uq ∩ u = Uq 6= ∅ and thus q 6∈ ¬u,
i.e. Ur ∩ u = ∅. Thus ¬u is regular.

To see that the least regular cut containing u and ¬u is in fact P assume
there exists p 6∈ v = u ∪ ¬u. Since v is regular there must exist some r ≤ p
such that Ur ∩ v = ∅. However if p 6∈ v then in particular p 6∈ ¬u so with
the same argument as before Ur ⊆ u and thus Ur ∩ v 6= ∅. Therefore for all
p ∈ P it must hold that p ∈ v.

Apart from this it is straight forward to check that B is indeed a complete
Boolean algebra and that the embedding p 7→ Up is an isomorphism. Finally
for any u ∈ B we can take an arbitrary p ∈ u and it holds that Up ⊆ u.
Therefore the embedding of P in B is dense.

Again the argument that B is unique is analogous to the argument that
the completion of a Boolean algebra is unique. Let C be a complete Boolean
algebra with P ⊆ C dense in C. Define a function φ : B → C by

φ(b) =
∑
C

{p ∈ P : p ≤B b}.

It is easy to see that φ is a homomorphism.

To see that φ is injective consider b1 6= b2 and let without loss of gener-
ality be b1 \ b2 6= 0. Because P is dense there exists some p ∈ P such that
p ≤ b1 \ b2 and obviously p 6≤ b2. Thus φ(b1) 6= φ(b2).

To see surjectivity consider c ∈ C, let U = {p ∈ P : p ≤C c} and let
b =

∑
B U . Clearly φ(b) ≤ c. Assume that φ(b) < c and consider p ∈ P

with p ≤ c \ φ(b). Then p 6≤ φ(b) but also p ∈ U thus p ≤ φ(b). Thus
φ(b) = c.

If our partially ordered set is not separative we can embed it in a sepa-
rative partially ordered set.

Lemma 2.12. Let (P,≤) be a partially ordered set. Then there exists a
separative partially ordered set (Q,≤) and a map φ : P → Q such that for
all p, q ∈ P the following holds:

(i) p ≤ q → φ(p) ≤ φ(q).

(ii) p ‖ q ↔ φ(p) ‖ φ(q).

We say that Q is the separative quotient of P. The separative quotient is
unique up to isomorphism.
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Proof. We define the equivalence relation ∼ on P as follows:

p ∼ q ↔ ∀r
(
r ‖ p↔ r ‖ q

)
Define Q = P/∼,

[p] ≤ [q]↔ (∀r ≤ p) r ‖ q

and φ : p 7→ [p].

Q is indeed separative. Assume [p] 6≤ [q], i.e. ∃r : r ≤ p ∧ r⊥q. Clearly
r ≤ p implies [r] ≤ [p] and r⊥q implies [r]⊥[q]. To see the second implication
assume r⊥q and [s] < [r], [s] < [q] for some s ∈ P. Then since s ≤ s it holds
that s ‖ r, i.e. there is some t ∈ P such that t ≤ r and in particular t ≤ s
thus t ‖ q and therefore r ‖ q.

It is easy to see that in a separative partial order p ≤ q if and only if for
every r with r ‖ p also p ‖ q. Thus the separative quotient is unique.

Combining the previous lemmas we get the following result.

Theorem 2.13. For every partially ordered set (P,≤) there is a complete
Boolean algebra B and an embedding π : P→ B+ such that for all p, q ∈ P:

1. p ≤ q → π(p) ≤ π(q).

2. p⊥q ↔ π(p) ∧ π(q) = 0.

3. The image π[P ] of P under π is dense in B.

B is unique up to isomorphism and we refer to it as B(P).

Proof. The statements (i) and (iii) follow directly from 2.11 and 2.12. For
(ii) observe for b, c ∈ B+ that b⊥B+c↔ b ∧ c = 0.

Uniqueness of B follows again from 2.11 and 2.12.

This result is useful because it turns out that the generic extensions of
M are determined by B(P), based on the following observations.

Lemma 2.14. In M let (P,≤) be a partially ordered set, (Q,≤) its sep-
arative quotient, and φ : P → Q an embedding as in 2.12. Then it holds
that:

(i) If G ⊆ P is an M -generic filter then so is φ[G] ⊆ Q.

(ii) If H ⊆ Q is an M -generic filter then so is φ−1[H] ⊆ P.

Again in M let (P,≤) be a partially ordered set and D ⊆ P be a dense subset
of P.
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(i) If G ⊆ P is an M -generic filter the so is G ∩D ⊆ D.

(ii) If H ⊆ D is an M -generic filter then so is {p ∈ P : (∃d ∈ D) d ≤
p} ⊆ P.

Now if we have P, B(P) and π : P → B(P) and some generic filter G ∈ P
then we can define H = {b ∈ B : (∃p ∈ G) p ≤ b} and conversely if H ∈ B
is a generic filter we can define G = π−1[H ∩ π[P]]. In both cases G is
generic if and only if H is generic and since we can define one from the
other M [G] = M [H] as we will see later.

The following lemma characterizes M -generic filters on B+.

Lemma 2.15. Let B be a complete Boolean algebra in M . Then the follow-
ing are equivalent:

(i) G ⊆ B+ is generic over M .

(ii) G ⊆ B is an ultrafilter and

∀X ⊆ G,X ∈M :
∏

X ∈ G

Note that B may not be complete outside of M .

Proof. (i) → (ii): First observe that for any b ∈ B the set {b,¬b} is a
maximal antichain. By lemma 2.7 a generic filter meets every antichain.
Thus G is an ultrafilter in B.

Now take a set X ⊆ G with X ∈M . Let

D = {b ∈ B+ : (∀x ∈ X) b ≤ x} ∪ {b ∈ B+ : (∃x ∈ X)b ≤ ¬x}.

Clearly D is dense and D ∈M . Since G is generic there is some b ∈ D ∩G
and b must be contained in the first part of D because it must be compatible
with every element of the filter G and thus in particular with all x ∈ X.
Therefore b ≤ x for all x ∈ X and by upward-stability of G we get

∏
X ∈ G.

(ii) → (i): Let G be an ultrafilter with the property in (ii). Assume
there is a dense set D ⊆ B+, D ∈ M and G ∩ D = ∅. Because G is an
ultrafilter we have ¬D = {¬d : d ∈ D} ⊆ G. If

∏
¬D = 0 we get the

contradiction 0 ∈ G. If
∏
¬D = b > 0 for some b ∈ B then because D is

dense there exists some d ∈ D with d < b which is also a contradiction.

Hence G meets every dense set D ∈M .

Therefore we say that G ⊆ B is a generic ultrafilter over M if it satisfies
the condition in (ii).
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Lemma 2.16. Let B be a complete Boolean algebra in M and let G be
an M -generic filter on B. Let X ⊆ B be a set such that X ∈ M and let
x∗ =

∑
X. Then it holds that

x∗ ∈ G ↔ ∃x ∈ X : x ∈ G.

Proof. We work in M . We define a maximal antichain W ⊆ {b : b ≤ x∗} by

W = {
∏
x∈X

x̄ : (∀x ∈ X) x̄ ∈ {x,¬x}, (∃x0 ∈ X) x̄0 = x0} \ {0}.

Now if x∗ ∈ G then by lemma 2.7 there exists w ∈W such that w ∈ G and
because for some x0 ∈ X it holds w ≤ x0 and therefore x0 ∈ G.

2.3 Boolean-Valued Models

Definition 2.17. A Boolean-valued model of set theory is a triple A =
(A,B, ‖·‖) that consists of a universe A, a Boolean algebra B and a function
‖ · ‖ that maps all atomic expressions to values in B, written

‖x ∈ y‖, ‖x = y‖

and ‖ · ‖ satisfies the following sanity conditions:

(i) ‖x = x‖ = 1

(ii) ‖x = y‖ = ‖y = x‖

(iii) ‖x = y‖ ∧ ‖y = z‖ ≤ ‖x = z‖.

(iv) ‖x ∈ y‖ ∧ ‖x = s‖ ∧ ‖y = t‖ ≤ ‖s ∈ t‖.

For all formulas φ(x1, . . . , xn) we can now define

‖φ(a1, . . . , an)‖, a1, . . . , an ∈ A

recursively as follows:

1. ‖(φ ∨ ψ)(a1, . . . an)‖ = ‖φ(a1, . . . an)‖ ∨ ‖ψ(a1, . . . an)‖.

2. ‖(φ ∧ ψ)(a1, . . . an)‖ = ‖φ(a1, . . . an)‖ ∧ ‖ψ(a1, . . . an)‖.

3. ‖(φ→ ψ)(a1, . . . an)‖ = ‖(¬φ ∨ ψ)(a1, . . . an)‖.

4. ‖¬φ(a1, . . . an)‖ = ¬‖φ(a1, . . . an)‖.
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5. ‖∀xφ(x, a1, . . . an)‖ =
∏
a∈A ‖φ(a, a1, . . . an)‖.

6. ‖∃xφ(x, a1, . . . an)‖ =
∑

a∈A ‖φ(a, a1, . . . an)‖.

We call φ(a1, . . . , an) valid in A if ‖φ(a1, . . . , an)‖ = 1.

It is easy to see that an implication φ→ ψ is valid iff and only if ‖φ‖ ≤
‖ψ‖. Using this inequality one can verify by a simple calculation that every
axiom of predicate calculus is valid in A. Likewise if φ and φ → ψ are
valid the inequality forces ψ to be valid as well. Therefore anything that
can be derived in predicate calculus is valid in A. Furthermore if φ and ψ
are equivalent in predicate calculus then ‖φ‖ = ‖ψ‖, again by the above
inequality.

Now consider a Boolean-valued model A in which every axiom of ZFC is
valid and let φ be a statement in the language of set theory. Then ‖φ‖ > 0
implies that φ is consistent with ZFC, otherwise ¬φ would be valid in A and
therefore ‖φ‖ = ¬‖¬φ‖ = 0.

If A is a Boolean-valued model of ZFC it seems natural to attempt to
turn it into a regular, two-valued model of ZFC by having an ultrafilter
U ⊆ B decide which b ∈ B should evaluate to true.

Definition 2.18. Let A = (A,B, ‖ · ‖) be a Boolean-valued model and let
U ⊆ B be an ultrafilter.

We define an equivalence relation ≡ on A:

x ≡ y ↔ ‖x = y‖ ∈ U.

It follows from the sanity conditions for ‖ · ‖ that ≡ is indeed an equivalence
relation: 2.17 (i) implies reflexivity, (ii) implies symmetry and (iii) together
with the upward-stability of U implies transitivity.

Now we define a relation ε on A/≡:

[x] ε [y]↔ ‖x ∈ y‖ ∈ U.

The relation ε is well definied because it follows from 2.17 (iv) that it does
not depend on the representatives we choose for [x] and [y].

Finally define
A/U = (A/≡, ε).

Our hope is that if A is a Boolean-valued model of ZFC then A/U is going
to be a two-valued model of ZFC. However there is a technical requirement
for this.

Definition 2.19. A Boolean-valued model A is called full if for all formulas
φ(x, x1, . . . , xn) and all a1, . . . , an ∈ A there is an a ∈ A such that

‖∃xφ(x, a1, . . . , an)‖ = ‖φ(a, a1, . . . , an)‖.
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Theorem 2.20. Let A = (A,B‖ · ‖) be a full, Boolean-valued model and
let U be an ultrafilter on B. Then for all formulas φ(x1, . . . xn) and all
a1, . . . an ∈ A it holds that

A/U |= φ([a1], . . . , [an]) ↔ ‖φ(a1, . . . , an)‖ ∈ U.

Proof. We prove the theorem by induction on the structure of φ.

If φ is atomic then the theorem holds by the definition of A/U .

For negation we have the following chain of equivalences, using the in-
duction hypothesis, the fact that U is an ultrafilter and the definition of
‖ · ‖:

A/U |= ¬φ ⇔ A/U 6|= φ ⇔ ‖φ‖ 6∈ U ⇔

⇔ ¬‖φ‖ ∈ U ⇔ ‖¬φ‖ ∈ U.

For disjunction we have

A/U |= φ ∨ ψ wlog⇒ A/U |= φ ⇒ ‖φ‖ ∈ U ⇒ ‖φ ∨ ψ‖ ∈ U

and the last implication follows because φ → φ ∨ ψ implies ‖φ‖ ≤ ‖φ ∨ ψ‖.
Contrary we have

A/U 6|= φ∨ψ ⇒ A/U |= ¬φ∧¬ψ ⇒ A/U |= ¬φ ∧ A/U |= ¬ψ ⇒

⇒ ‖φ‖ 6∈ U ∧ ‖ψ‖ 6∈ U ⇒ ‖φ‖ ∨ ‖ψ‖ 6∈ U ⇒ ‖φ ∨ ψ‖ 6∈ U.

Finally consider the formula ∃xψ(x). Because A is full we can find a ∈ A
with ‖φ(a)‖ = ‖∃φ(x)‖. Combined with the fact that for any b ∈ A it holds
that φ(b)→ ∃xφ(x) we get

‖∃xφ(x)‖ ∈ U ↔ (∃a ∈ A) ‖φ(a)‖ ∈ U

which is by induction hypothesis equivalent to

A/U |= ∃xφ(x).

2.4 The class V B

In this section B be a complete Boolean algebra. Starting from the class V
we define the class V B of “Boolean-valued sets”.

1. V B
0 = ∅
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2. V B
α+1 is the set of all functions x that map dom(x) ⊆ V B

α to the Boolean
algebra B.

3. V B
λ =

⋃
α<λ V

B
α if λ is a limit ordinal.

4. V B =
⋃
α∈ord V

B
α .

Sometimes when it is more convenient we will treat elements y 6∈ dom(x)
as if x(y) = 0.

Just as in V we can define a rank function ρ for x ∈ V B.

ρ(x) = min{α ∈ ord : x ∈ V B
α }.

We give a mutually recursive definition of ‖ · ‖ on the atoms of V B.

1. ‖x ∈ y‖ =
∑

t∈domy

(
y(t) ∧ ‖x = t‖

)
2. ‖x ⊆ y‖ =

∏
t∈domx

(
x(t)→ ‖t ∈ y‖

)
3. ‖x = y‖ = ‖x ⊆ y‖ ∧ ‖y ⊆ x‖

Lemma 2.21. The function ‖ · ‖ satisfies the sanity conditions from 2.17.

Proof. First we show that for all x ∈ V B

‖x = x‖ = 1

by induction on the rank of x. Clearly it is enough to show that ‖x ⊆ x‖ = 1
which means by definition that (x(t) → ‖t ∈ x‖) = 1 for all t ∈ dom(x)
or equivalently x(t) ≤ ‖t ∈ x‖. By induction hypothesis ‖t = t‖ = 1 and
therefore by definition of ‖t ∈ x‖ it holds that ‖t = t‖∧x(t) = x(t) ≤ ‖t ∈ x‖.

The condition

‖x = y‖ = ‖y = x‖

is trivially satisfied by symmetric definition of ‖x = y‖.

The remaining two conditions follow by verifying the following. For all
x, y, z ∈ V B:

1. ‖x = y‖ ∧ ‖y = z‖ ≤ ‖x = y‖,

2. ‖x ∈ y‖ ∧ ‖x = z‖ ≤ ‖z ∈ y‖,

3. ‖y ∈ x‖ ∧ ‖x = z‖ ≤ ‖y ∈ z‖.
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Again we prove this by induction on the ranks of x, y, z.

1. As before it is enough to show that ‖x ⊆ y‖ ∧ ‖y = z‖ ≤ ‖x ⊆ z‖.
Thus by the definition of ‖x ⊆ z‖ we want to show that for all t ∈ dom(x)
it holds that

(x(t)→ ‖t ∈ y‖) ∧ ‖y = z‖ ≤ (x(t)→ ‖t ∈ z‖).

Now by induction hypothesis ‖t ∈ y‖ ∧ ‖y = z‖ ≤ ‖t ∈ z‖. Therefore
(¬x(t) ∨ ‖t ∈ y‖) ∧ ‖y = z‖ = (‖y = z‖ ∧ ¬x(t)) ∨ (‖t ∈ y‖ ∧ ‖y = z‖) ≤
¬x(t) ∨ ‖t ∈ z‖.

2. By induction hypothesis we have ‖x = z‖ ∧ ‖x = t‖ ≤ ‖z = t‖ for all
t ∈ dom(y) and thus

‖x = z‖ ∧ ‖x = t‖ ∧ y(t) ≤ ‖z = t‖ ∧ y(t).

Summing up over all t ∈ dom(y) we get

‖x = z‖ ∧
∑

t∈dom(y)

(
‖x = t‖ ∧ y(t)

)
≤

∑
t∈dom(y)

(
‖z = t‖ ∧ y(t)

)
,

i.e. ‖x = z‖ ∧ ‖x ∈ y‖ ≤ ‖z ∈ y‖.

3. For any t ∈ dom(x) we have by the definition of ‖x = z‖ that
‖x = z‖ ≤ ¬x(t) ∨ ‖t ∈ z‖. Thus x(t) ∧ ‖x = z‖ ≤ ‖t ∈ z‖ and

‖y = t‖ ∧ x(t) ∧ ‖x = z‖ ≤ ‖y = t‖ ∧ ‖t ∈ z‖.

Now by induction hypothesis ‖y = t‖ ∧ ‖t ∈ z‖ ≤ ‖y ∈ z‖ and therefore

‖y = t‖ ∧ x(t) ∧ ‖x = z‖ ≤ ‖y ∈ z‖.

Summing up over t ∈ dom(x) we get∑
t∈dom(x)

(
‖y = t‖ ∧ x(t)

)
∧ ‖x = z‖ ≤ ‖y ∈ z‖,

i.e. ‖y ∈ x‖ ∧ ‖x = z‖ ≤ ‖y ∈ z‖.

Thus V B is a Boolean-valued model, except for the fact it is not a set.
We want to show that every axiom of ZFC is valid in V B.

Before we do this however we are going to show that V B is full. We are
going to need the following technical lemma.

Lemma 2.22. Let W ⊆ B be an antichain and let {au : u ∈W} be a family
of elements of V B. Then there exists a ∈ V B such that for all u ∈ W the
inequality u ≤ ‖a = au‖ holds.
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Proof. We define a as follows. Let dom(a) =
⋃
u∈W dom(au) and for t ∈

dom(a) let a(t) =
∑

u∈W (u ∧ au(t)). Now since W is an antichain we have
u∧a(t) = u∧au(t) for all u ∈W, t ∈ dom(a). This means u ≤ (a(t)→ au(t))
and u ≤ (au(t)→ a(t)) and therefore u ≤ ‖a = au‖.

Lemma 2.23. V B is full.

Proof. We have to show that for every formula φ(x, . . . ) there exists a ∈ V B

such that
‖φ(a, . . . )‖ = ‖∃xφ(x, . . . )‖.

Clearly since for a ∈ V B it holds that φ(a, . . . )→ ∃xφ(x, . . . ) the≤ direction
holds for every a. Therefore we need to find a ∈ V B such that ≥ holds. Let
u0 = ‖∃xφ(x, . . . )‖ and let

D = {u ∈ B : ∃au : u ≤ ‖φ(au, . . . )‖}

It is easy to see from the definition of ‖ · ‖ for ∃ that D is in dense below
u0. Let W ⊆ D be a maximal antichain in D. Clearly

∑
u∈W u ≤ u0

and by lemma 2.22 there exists a ∈ V B such that u ≤ ‖a = au‖ for all
u ∈ W . Therefore u ≤ ‖φ(a, . . . )‖ for every u ∈ W and thus it holds that
u0 ≤ ‖φ(a, . . . )‖.

The following lemma will be useful for calculations later on.

Lemma 2.24.

‖∃x ∈ y : φ(x)‖ =
∑

x∈dom(y)

(
‖φ(x)‖ ∧ y(x)

)

‖∀x ∈ y : φ(x)‖ =
∏

x∈dom(y)

(
y(x)→ ‖φ(x)‖

)

Proof.

‖∃x ∈ y : φ(x)‖ =

= ‖∃x
(
φ(x) ∧ x ∈ y

)
‖ =

=
∑
a∈V B

‖φ(a) ∧ a ∈ y‖ =

=
∑

a∈dom(y)

(
‖φ(a)‖ ∧ ‖a ∈ y‖

)
=

=
∑

a∈dom(y)

(
‖φ(a)‖ ∧

∑
b∈dom(y)

(
‖b = a‖ ∧ y(b)

))
=

=
∑

x∈dom(y)

(
‖φ(x)‖ ∧ y(x)

)
.
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The second formula can be verified by a similar calculation.

For ever set x ∈ V we can find a canonical copy x̌ in our Boolean-valued
model V B.

Definition 2.25. We define inductively:

1. ∅̌ = ∅.

2. x̌ = {y̌ : y ∈ x} × {1}, i.e. x̌ is a function with dom(x) = {y̌ : y ∈ x}
and x̌(y̌) = 1 for all y ∈ x.

Furthermore for σ, τ ∈ V B we define

up(σ, τ) = {(σ, 1), (τ, 1)},

op(σ, τ) = up(up(σ, σ),up(σ, τ)).

Lemma 2.26. If φ(x1, . . . , xn) is a ∆0-formula then

φ(x1, . . . , xn) ↔ ‖φ(x̌1, . . . , x̌n)‖ = 1.

Proof. By induction on the structure of φ. For atomic formulas we show
that

x ∈ y ↔ ‖x̌ ∈ y̌‖ = 1

x ⊆ y ↔ ‖x̌ ⊆ y̌‖ = 1

by mutual induction on the ranks of x, y:

‖x̌ ∈ y̌‖ =
∑

ť∈dom(y̌)

(
‖ť = x̌‖ ∧ y̌(ť)

)
=

∑
ť∈dom(y̌)

‖ť = x̌‖.

‖x̌ ⊆ y̌‖ =
∏

ť∈dom(x̌)

(
x̌(ť)→ ‖ť ∈ y̌‖

)
=

∏
ť∈dom(x̌)

x̌(ť).

For conjunction we have

φ(x) ∧ ψ(y) ⇔ ‖φ(x̌)‖ = 1 ∧ ‖ψ(y̌)‖ = 1 ⇔ ‖φ(x̌) ∧ ψ(y̌)‖ = 1.

For negation we have

¬φ(x) ⇔ ‖φ(x̌)‖ = 0 ⇔ ¬‖φ(x̌)‖ = 1 ⇔ ‖¬φ(x̌)‖ = 1.

Finally for the existential quantifier we have, using 2.24,

‖∃a ∈ y̌ : φ(a, x̌)‖ = ‖
∑

a∈dom(y̌)

(
y̌(a) ∧ φ(a, x̌)

)
‖ = 1

⇔ ∃a ∈ y : ‖φ(ǎ, y̌)‖ = 1

⇔ ∃a ∈ y : φ(a, x).

(2.1)
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Corollary 2.27. If φ is a Σ1-formula then φ(x1, . . . , xn) implies ‖φ(x̌1, . . . , x̌n)‖ =
1.

The absoluteness of ∆0 formulas implies, because being an ordinal is a
∆0-property by 1.21, that the construction of V B “preserves” the ordinals
that occur in V . The following lemma shows that V and V B have in fact
“the same” ordinals, i.e. no new ordinals appear in V B.

Lemma 2.28. For x ∈ V B it holds that

‖x is an ordinal‖ =
∑
α∈ord

‖x = α̌‖.

Proof. By 1.21 and 2.26 it holds that∑
α∈ord

‖x = α̌‖ ≤ ‖x is an ordinal‖.

For the other direction note that for any ordinal γ it holds that

‖x ∈ γ̌‖ =
∑
α<γ

‖x = α̌‖

and furthermore for any ordinal α it holds that

‖x is an ordinal‖ ≤ ‖x ∈ α̌‖ ∨ ‖x = α̌‖ ∨ ‖α̌ ∈ x‖.

We observe that A = {α : ‖α̌ ∈ x‖ > 0} is a set because ‖α̌ ∈ x‖ > 0
implies that there exists t ∈ dom(x) such that ‖α̌ = t‖ > 0. It is easy to see
by induction that this implies ρ(t) ≥ ρ(α) = α. This means that no such
t ∈ dom(x) exists for α > supt∈dom(x) ρ(t).

Now let α∗ = supA+ 1 and let γ = α∗ + 1. Then

‖x is an ordinal‖ ≤ ‖x ∈ α̌∗‖ ∨ ‖x = α̌∗‖ = ‖x ∈ γ̌‖

and it follows from what we proved above that

‖x is an ordinal‖ ≤
∑
α<γ

‖x = α̌‖.

Now we can show that V B is indeed a model of ZFC.

Theorem 2.29. Every axiom of ZFC is valid in V B.
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Extensionality. First we observe that for a, b, c ∈ B if a ≤ b then (b →
c) ≤ (a → c). Clearly for t,X, Y ∈ V B we have X(t) ≤ ‖t ∈ X‖ and
therefore (‖t ∈ X‖ → ‖t ∈ Y ‖) ≤ (X(t)→ ‖t ∈ Y ‖). Hence∏

t∈V B
(‖t ∈ X‖ → ‖t ∈ Y ‖) ≤

∏
t∈V B

(X(t)→ ‖t ∈ Y ‖)

and the left side of the inequality is equal to ‖∀t : t ∈ X → t ∈ Y ‖ and the
left side is equal to ‖X ⊆ Y ‖.

Doing the same with the roles of X,Y swapped yields that V B is exten-
sional.

Pairing. For x, y ∈ V B let z ∈ V B be such that dom(z) = {x, y} and
z(x) = z(y) = 1. Clearly ‖x ∈ z ∧ y ∈ z‖ = 1.

Separation Scheme. For X ∈ V B and a formula φ we find Y ∈ V B such
that

dom(Y ) = dom(X), Y (t) = X(t) ∧ ‖φ(t)‖
for all t ∈ dom(X). Then ‖x ∈ Y ‖ = ‖x ∈ X‖ ∧ ‖φ(x)‖ for all x ∈ V B,
utilizing that ‖x = t‖∧φ(t) = ‖x = t‖∧φ(x) for all t ∈ V B (and in particular
all t ∈ dom(Y )).

Union. For X ∈ V B we find Y ∈ V B such that

dom(Y ) =
⋃
{dom(x) : x ∈ dom(X)}, Y (y) = 1

for all y ∈ dom(Y ).

Power Set. For X ∈ V B we find Y ∈ V B such that

dom(Y ) = {z ∈ V B : dom(z) = dom(X) ∧ ∀t ∈ dom(x) : z(t) ≤ X(t)}

and Y (u) = 1 forall u ∈ dom(Y ).

Infinity. By lemma 2.26 we have ‖“ω̌ is the smallest limit ordinal”‖ = 1.

Collection Scheme. For X ∈ V B and a formula φ we find Y ∈ V B such
that

dom(Y ) =
⋃
{Sx : x ∈ X}

where Sx ⊆ V B is a set such that∑
y∈V B

‖φ(x, y)‖ =
∑
y∈Sx

‖φ(x, y)‖.
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Regularity. Let X ∈ V B. Assume that regularity is not valid for X, i.e.

‖∃x : (x ∈ X) ∧ ∀y ∈ X : ∃z ∈ y : z ∈ X‖ = b > 0.

Now let y ∈ V B be such that ‖y ∈ X‖∧b > 0 let y be an element of minimal
rank with this property. Then because ‖y ∈ X‖ ∧ b ≤ ‖∃z ∈ y : z ∈ X‖
there exists (using fullness) z ∈ dom(y) with ‖z ∈ X‖ ∧ ‖y ∈ X‖ ∧ b > 0.
But the rank of z is smaller than the rank of y and therefore we have found
a contradiction.

Choice. We showed in 1.24 that being well-ordered is a Σ1-property. There-
fore for every Y ∈ V it holds by corollary 2.27 that

‖Y̌ can be well-ordered‖ = 1

For any X ∈ V B we find a set Y ∈ V and f ∈ V B such that

‖f is a function on Y̌ ∧X ⊆ ran(f)‖ = 1

We define Y = dom(X) and

dom(f) = {op(y̌, y) : y ∈ Y }, f(t) = 1

for all t ∈ dom(f). In other words a well-order on dom(X) induces a well-
order on X.

Definition 2.30. There is a canonical name Γ for a generic ultrafilter which
is a Boolean-valued function with domain

dom(Γ) = {b̌ : b ∈ B}

and values
Γ(b̌) = b,∀b ∈ B.

Indeed it holds that

‖Γ is a V -generic ultrafilter on B‖ = 1.

To verify this first note that for b ∈ B we have

‖b̌ ∈ Γ‖ =
∑

ǔ∈dom(Γ)

(‖b̌ = ǔ‖ ∧ Γ(b̌)). = b

Using this it is easy to see the following holds:

1. ‖0̌ ∈ Γ‖ = 0.

2. Let b, c ∈ B, b ≤ c. Then ‖b̌ ∈ Γ‖ ≤ ‖č ∈ Γ‖.
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3. Let b, c ∈ B and d = b ∧ c. Then ‖b̌ ∈ Γ‖ ∧ ‖č ∈ Γ‖ ≤ ‖ď ∈ Γ‖.

Therefore Γ is indeed an ultrafilter. Furthermore it holds that:

For every X ⊆ B,P =
∏

X : ‖X̌ ⊆ Γ→ P̌ ∈ Γ‖ = 1.

This follows from

‖X̌ ⊆ Γ‖ =
∏

ǔ∈dom(X̌)

(X̌(ǔ)→ ‖ǔ ∈ Γ‖) =
∏
u∈X

u = ‖P̌ ∈ Γ‖.

2.5 The Forcing Theorem

As before let M be a countable transitive model of ZFC.

Definition 2.31. Let (P,≤) ∈ M be a forcing and let B = B(P) be the
complete Boolean algebra constructed in M as in theorem 2.13 with the
embedding π : P→ B.

Then MP = MB(P) denotes the Boolean-valued model as defined in the
previous section, constructed inside of M . We are going to refer to the
elements of MP as P-names.

The forcing relation 
P is defined as

p 
P φ(ȧ1, . . . , ȧn) ↔ π(p) ≤ ‖φ(ȧ1, . . . , ȧn)‖M

for P-names ȧ1, . . . ȧn ∈MP.

If p 
P φ(ȧ1, . . . , ȧn) holds we say that “p forces φ(ȧ1, . . . , ȧn)”. If every
p ∈ P forces φ(ȧ1, . . . , ȧn) we write 
P φ(ȧ1, . . . , ȧn). If it is clear which
forcing notion is used we simply write 
 instead of 
P.

Lemma 2.32. Let P ∈ M be a forcing notion. Then there exists an M -
generic filter G.

Proof. Because M is countable there are only countably many dense subsets
of P in M . By lemma 2.5 there exists an M -generic filter.

Definition 2.33. Let again B be a complete Boolean algebra in M and let
G ⊆ B be an M -generic ultrafilter. For x ∈ MB we define the evaluation
xG of x under G inductively as

1. ∅G = ∅.

2. xG = {yG : x(y) ∈ G}.
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The generic extension M [G] of M is defined as

M [G] = {xG : x ∈MB}.

Theorem 2.34. M [G] is isomorphic to MB/G as defined in 2.18 with the
canonical isomorphism that maps [x]∼ to xG.

Proof. It holds for all x, y ∈MB:

1. ‖x = y‖ ∈ G ↔ xG = yG

2. ‖x ∈ y‖ ∈ G ↔ xG ∈ yG

We verify by alternating induction on the ranks of x, y:

‖x ∈ y‖ ∈ G⇔ ∃t ∈ dom(y)
(
y(t) ∈ G ∧ ‖x = t‖ ∈ G

)
⇔ ∃t

(
y(t) ∈ G ∧ xG = tG

)
⇔ xG ∈ {tG : y(t) ∈ G}
⇔ xG ∈ yG

‖x ⊆ y‖ ∈ G⇔ ∀t ∈ dom(x)
(
x(t) ∈ G→ ‖t ∈ y‖ ∈ G

)
⇔ ∀t

(
x(t) ∈ G→ tG ∈ yG

)
⇔ {tG : x(t) ∈ G} ⊆ yG

⇔ xG ⊆ yG

The non-trivial direction of the first equivalences follows from 2.15 and
2.16 respectively, using the genericity of G.

Thus we can restate theorem 2.20 as follows.

Theorem 2.35. Let G be an M -generic ultrafilter on B. Then for all
x1, . . . xn ∈MB and all formulas φ it holds that

M [G] |= φ(xG1 , . . . , x
G
n ) ↔ ‖φ(x1, . . . , xn)‖ ∈ G.

It is also possible to verify this theorem directly by induction, using the
M -genericity of G.

Corollary 2.36. If M is a model of ZFC then so is M [G].
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Proof. In 2.29 we showed that every axiom σ of ZFC is valid in MB, i.e.
‖σ‖ = 1 ∈ G.

Furthermore we can easily verify the following using what we have al-
ready shown.

Corollary 2.37.

1. M ⊆M [G]

2. M and M [G] have the same ordinals.

3. G ∈M [G]

4. If N ⊇M is a transitive model of ZFC then G ∈ N implies M [G] ⊆ N .

Proof.

1. It can easily be checked by induction that for all x ∈M it holds that
x̌G = x.

2. Follows immediately from 2.28.

3. ΓG = G.

4. If N ⊆M is a transitive model containing G then the construction of
M [G] can be done inside of N .

Theorem 2.38. Let (P,≤) ∈ M be a forcing notion and let G ⊆ P be an
M -generic filter. For a formula φ and ȧ1, . . . , ȧn ∈MP (B) it holds that

M [G] |= φ(ȧG1 , . . . , ȧ
G
n ) ↔ ∃p ∈ G : p 
 φ(ȧ1, . . . , ȧn).

Proof. For a forcing (P,≤) ∈M , its completion B = B(P ) with the embed-
ding π : P→ B and an M -generic filter G ⊆ P we define for x ∈MB.

1. ∅G = ∅

2. xG = {yG : (∃p ∈ G) π(p) ≤ x(y)}

We recall that G induces a canonical filter H = {b ∈ B : (∃p ∈ G) π(p) ≤
b} on B and it is easy to check that xG = xH for all x ∈MB.



Chapter 3

The Continuum Hypothesis

3.1 Notes on Absoluteness

Again let M be a countable transitive model of ZFC. Definitions that make
sense in V can be relativized toM . For example there are sets ωM ,P(ω)M ,ℵM1 ∈
M such that

1. M |= “ωM is the set of the natural numbers.”

2. M |= “P(ω)M is the powerset of the natural numbers.”

3. M |= “ℵM1 is the first uncountable cardinal.”

We say that “ωM plays the role of of ω in M”, and so on. We have already
seen that “x is the set of natural numbers” is an absolute property and
therefore ωM = ω.

Clearly since M is countable every set in M , even those that play the role
of uncountable sets such as ℵM1 , are countable (from the outside perspective).
However M does not contain a bijection between ωM and ℵM1 and therefore
thinks that ℵM1 is uncountable. However every set that plays the role of a
cardinal also plays the role of an ordinal and this is an absolute property.
Thus if κ plays the role of a cardinal in M then it is (from the outside) a
countable ordinal.

We have shown that M and a generic extension M [G] contain the same
ordinals. However it may be the case that ordinals that played the role of a
cardinal in M do not play the role of a cardinal in M [G]. For example we
might force with partial bijections between ω and ℵM1 . Then ℵM1 is countable
in M [G] and therefore cannot play the role of the smallest uncountable
ordinal anymore. In other words there may be new bijections in M [G] that

33
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did not exists in M that cause cardinals in M to become “smaller”. If this
happens to a cardinal κ we say that κ collapsed in M [G].

On the other hand new cardinals cannot appear. If κ plays the role of
a cardinal in M [G] then it must have played the role of a cardinal in M .
Because if κ was not a cardinal in M then there existed a bijection in M
between κ and an ordinal smaller than κ and this bijection still exists in
M [G].

3.2 The consistency of CH

Definition 3.1. The continuum hypothesis is the statement 2ℵ0 = ℵ1.

Starting from M we want to construct a bijection G between P(ω) and
ℵ1 such that in the model M [G] the continuum hypothesis holds. This
means, since we are working in M , we are really constructing a bijection
between P(ω)M and ℵM1 . However what we want is a bijection G between

P(ω)M [G] and ℵM [G]
1 .

This is actually a problem as we will see in the following attempt of
forcing CH. Consider, in M , the forcing (P,⊇) of all finite partial bijections
between P(ω) and ℵ1 and let G ⊆ P be an M -generic filter.

First of all it is easy to see that f =
⋃
G is a bijection between P(ω)M

and ℵM1 in M [G]. It follows from the directedness of G that f is a function
and f is total because for every A ∈ P(ω) the set DA = {p ∈ P : A ∈
dom(p)} is dense.

However the following lemma shows that f is in fact not a bijection

between P(ω)M [G] and ℵM [G]
1 in M [G].

Lemma 3.2. In M let (P,⊇) be the set of all finite partial bijections between
P(ω) and ℵ1. Then there appear new subsets of ω in M [G], i.e. P(ω)M ⊂
P(ω)M [G].

Proof. Clearly since ω is absolute P(ω)M ⊆ P(ω)M [G]. We use f =
⋃
G to

define a set A ⊆ ω by

n ∈ A ↔ f(n) < ω.

Let B ⊆ ω be a subset of ω in M . Then the set

DB = {p ∈ P : ∃n ∈ dom(p) : (p(n) ≥ ω ∧ n ∈ B) ∨ (p(n) < ω ∧ n 6∈ B)}

is dense. This is easy to see because dom(p) is finite for all p ∈ P so we
can always add n with this property. Now any generic filter G must contain
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some p ∈ DB and therefore there exists n ∈ ω such that

n ∈ A ↔ f(n) < ω ↔ n 6∈ B,

i.e. A 6= B and since B was an arbitrary subset of ω in M it follows that
A 6∈M .

The above lemma shows that things may go wrong, even if we do not
do something “obviously” wrong such as forcing with bijections between ω
and ℵM1 . The following condition ensures that ℵ1 is preserved in the generic
extension.

Definition 3.3. A forcing (P,≤)) is called σ-closed if every sequence p0 ≥
p1 ≥ p2 ≥ . . . has a lower bound p ∈ P.

Lemma 3.4. Let (P,≤) ∈ M be an σ-closed forcing and let G be an M -
generic filter on P. Let X ∈M be a set and let f : ω → X be a function in
M [G]. Then f is already contained in M .

Proof. Let ḟ be a P-name and let p ∈ P such that

p 
 f is a function from ω to X̌

and let G be an M -generic filter containing p. For n < ω let xn ∈ X denote
the image of n under f in M [G], i.e.

M [G] |= f(n) = xn.

Therefore there is p0 ∈ G such that p0 
 ḟ(0̌) = x̌0 and by directedness of G
we can assume that p0 ≤ p. Now there is p1 ∈ G such that p1 
 ḟ(1̌) = x̌1

and again we may assume p1 ≤ p0. Continuing this way we construct a
sequence p0 ≥ p1 ≥ p2 ≥ . . . . Let q ∈ P be a lower bound of this sequence.
Clearly q 
 ḟ(ň) = x̌n for ever n < ω. Now working in M we can define a
function g : ω → X by

g(n) = x↔ q 
 ḟ(ň) = x̌.

Of course g = f and therefore f ∈M .

Corollary 3.5. Let (P,≤) ∈ M be an σ-closed forcing and let G be an

M -generic filter on P. Then ℵM1 = ℵM [G]
1 .

Proof. Assume that M [G] |= “ℵM1 is countable”. Then there is a surjective
function f : ω → ℵM1 in M [G]. However by the above lemma f would
already be in M and therefore M |= “ℵM1 is countable”, a contradiction.
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Theorem 3.6. Let M be a countable transitive model. Then there is a
generic extension M [G] of M such that

M [G] |= 2ℵ0 = ℵ1

Proof. In M let P be the set of all functions p such that

1. dom(p) is a countable subset of 2ℵ0 .

2. ran(p) is a countable subset of ℵ1.

3. p is a bijection.

Clearly (P,⊇) is σ-closed and thus ℵM1 = ℵM [G]
1 . Furthermore any f ∈ 2ℵ0

is a function ω → 2 and therefore if f ∈ M [G] then f ∈ M . Thus also
(2ℵ0)M = (2ℵ0)M [G].

Now if G is an M -generic filter on P then f =
⋃
G is a bijection between

(2ℵ0)M and ℵM1 = ℵM [G]
1 . Indeed f is total because for every x ∈ 2ℵ0 the set

{p ∈ P : x ∈ dom(p)} is dense and likewise f is surjective because for every
x ∈ ℵ1 the set {p ∈ P : x ∈ ran(p)} is dense.

3.3 The consistency of ¬CH

Definition 3.7. We say that a forcing (P,≤) has the countable chain con-
dition (c.c.c.) if every antichain W ⊆ P is at most countable.

Lemma 3.8. Let (P,≤) be a c.c.c. forcing. Let X,Y ∈M and let f : X →
Y be a function in M [G]. Then there is a function g : X → P(Y ) in M
that “approximates” f in M in the sense that f maps every x ∈ X to some
y ∈ g(x) and for all x ∈ X the set g(x) is countable in M .

Proof. There exist some p ∈ G, ḟ ∈MB(P ) such that

p 
 ḟ is a function from X̌ to Y̌ .

Now for x ∈ X let

g(x) = {y ∈ Y : (∃q ≤ p) q 
 ḟ(x̌) = y̌}.

Clearly f can only map x to some y ∈ g(x). To see that for all x ∈ X the
set g(x) is countable fix for every y ∈ g(x) a qy ∈ P such that qy 
 ḟ(x̌) = y̌.
Then since qy forces different values for f(x) for every y ∈ g(x) the set
{qy : y ∈ g(x)} is an antichain and thus countable.
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With the help of this lemma we can show that c.c.c. forcings preserve
cardinals.

Lemma 3.9. Let (P,≤) be a c.c.c. forcing. Then if α is a cardinal in M it
is still a cardinal in M [G].

Proof. We have shown that M and M [G] have the same ordinals, in par-
ticular if α is an ordinal in M it is also an ordinal in M [G]. Thus if α is a
cardinal in M but not in M [G] then in M [G] there exists an ordinal β < α
and a surjective function f : β → α. Now let g : β → P(α) a function in M
as in lemma 3.8. Then it holds that

M |= |α| = |
⋃
γ<β

g(γ)| ≤ |β| · ℵ0 = |β|.

This contradicts the fact that α is a cardinal in M .

To prove that the forcing we are going to use to show the the consistency
of ¬CH has the countable chain condition we need the following lemma.

Lemma 3.10 (∆-Lemma). Let C be an uncountable family of finite sets.
Then there exists an uncountable set D ⊆ C and a set D such that for all
X,Y ∈ D

X 6= Y → X ∩ Y = D.

Proof. First note that because C is uncountable there exists a natural num-
ber n < ω such that |X| = n for uncountably many X ∈ C. Therefore we
can assume without loss of generality that |X| = n for all X ∈ C. We now
prove the lemma by induction on n. The case n = 1 is trivial. If n > 1 then
we have two cases.

1. If there is some a such that a ∈ X for uncountably many X ∈ C then
we can assume without loss of generality that a ∈ X for all X ∈ C.
Now we can apply the lemma to {X \ {a} : X ∈ C}.

2. Otherwise every a is contained in at most countably many X ∈ C and
we construct a family D = {Xα : α < ω1} of disjoint sets by induc-
tively. For α < ω1 we can easily find set Xα ∈ X that is disjoint from
every Xβ, β < α because α is countable and every Xβ only intersects
countably many sets.

Theorem 3.11. Let M be a countable transitive model. Then there is a
generic extension M [G] of M such that

M [G] |= 2ℵ0 > ℵ1.
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Proof. In M let P be the set of all functions p such that

1. dom(p) is a finite subset of ω × ℵ2.

2. ran(p) ⊆ 2.

First we show that (P,⊇) satisfies the countable chain condition in M .

Let W be an uncountable subset of P and consider C = {dom(p) : p ∈
W}. Clearly, since for every finite X ⊆ ω × ℵ2 the set of functions with
domain X and values in 2 is also finite, C must be uncountable. By the
∆-lemma 3.10 there exists an uncountable D ⊆ C and a set D such that
X ∩ Y = D for all X,Y ∈ D. Now let V = {p ∈ W : dom(p) ∈ D}. Again,
because there are only finitely many function from D into 2, there must be
uncountably many p ∈ V with equal p � D. Now if for p, q ∈ V ⊆ W we
have p � D = q � D then p and q are compatible and W is not an antichain.

Therefore we know by lemma 3.9 that forcing with P preserves cardinals

and in particular ℵM1 = ℵM [G]
1 and ℵM2 = ℵM [G]

2 .

Let G be an M -generic filter on P and f =
⋃
G. As before it is easy

to see that f is a total function from ω × ℵ2 into 2. For α < ℵ2 we define
functions fα : ω → 2 by

fα(n) = f(n, α)

We show that for α 6= β also fα 6= fβ. This follows from the fact that the
set

Dα,β = {p ∈ P : (∃n < ω)p(n, α) 6= p(n, β)}

is dense in P.

Thus the set M [G] contains ℵ2 distinct reals and

M [G] |= 2ℵ0 > ℵ1.



Chapter 4

The Suslin Hypothesis

4.1 Trees

Definition 4.1. We call a partial order (T,≤) a plant if for all x ∈ T the
set

T<x = {y : y < x}

is well-ordered by ≤.

Similarly we define
T≥x = {y : y ≥ x}

for every x ∈ T and it easy to see that T≥x is a plant.

The height h(x) of x ∈ T is the unique ordinal number α such that
T<x ∼= α.

For an ordinal α let

Tα = {x ∈ T : h(x) = α}

be the αth level of T and we define the height h(T ) of T as the least ordinal
number α such that Tα = ∅.

A maximal totally ordered subset B ⊆ T is called a branch and again
we define the height h(B) of B as the unique ordinal number α such that
B ∼= α.

Definition 4.2. A plant (T,≤) is called a tree if:

1. T has a least element r such that x ≥ r for all x ∈ T .

2. If α is a limit ordinal then for all x, y ∈ Tα

x 6= y → T<x 6= T<y.

39



40 CHAPTER 4. THE SUSLIN HYPOTHESIS

Definition 4.3. Let (T,≤) be a tree. We call a set A ⊆ T an antichain if
for every x ∈ X there is a ∈ A such that a ≤ x or x ≤ a.

We say that A is bounded if there is some α < h(T ) such that h(a) ≤ α
for all a ∈ A. This condition is trivial if h(T ) is a successor ordinal.

Note that the definition of antichains on a trees contradicts our previous
definition of antichains on general partially ordered sets. However if A ⊆ T
is an antichain in the tree sense then A is an antichain in the general sense
on (T,≥).

Definition 4.4. A tree (T,≤) is called a Suslin tree if:

1. T has height ω1.

2. Every antichain A ⊆ T is at most countable.

3. Every branch B has height less than ω1.

4. For all x ∈ T and all ordinals α with h(x) < α < ω1 there is y ≥ x
such that h(y) = α.

Definition 4.5. The Suslin hypothesis SH states that there exists no Suslin
tree.

4.2 The consistency of ¬SH

Theorem 4.6. Let M be a countable transitive model. Then there exists a
generic extension M [G] of M such that there is a Suslin tree in M [G].

In this section let P+ be the set of all sets T such that for some α ≤ ω1:

1. T ⊆ ω<α

2. If x : β → ω is in T then x � γ ∈ T for every γ < β.

3. If x : β → ω is in T and β + 1 < ω1 then x_n ∈ T for every n < ω.

4. If x : β → ω is in T then for every β < γ < α there is y : γ → ω in T
such that y � β = x.

5. T ∩ ωβ is at most countable for every β < α.

It is easy to see that every T ∈ P+, ordered by set inclusion, is a tree of
height less or equal ω1. Let P be the set of all T ∈ P+ of height less than
ω1. For S, T ∈ P+ we define

S ≤ T ↔ (∃α ≤ h(S)) T = {x � α : x ∈ S}.
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Let G be an M -generic filter on (P,≤) and let T =
⋃
G. We are going

to show that T is a Suslin tree in M [G].

First observe that for two compatible S, T ∈ P either S ≤ T or T ≤ S.
Thus, because T is the union of pairwise compatible trees, it is easy to see
that T is a itself tree and every level of T is at most countable.

Likewise it is easy to see that for a sequence T0 ≥ T1 ≥ T2 ≥ . . . the
union T =

⋃
n<ω Tn lies in P, i.e. P is σ-closed and ℵ1 is preserved in M [G].

First of all we are going to verify that T has height ℵ1. We claim that
for every α < ω1 the set

Dα = {T ∈ P : h(T ) > α}

is dense in P and thus h(T ) > α. It suffices to show that for every T ∈ P
there is S ∈ P such that h(S) = h(T ) + 1 and S ≤ T . Then we can use
induction, taking unions at limit steps, to find S′ ≤ T such that h(S′) > α.

If h(T ) = β+1 finding S is trivial. If h(T ) = β is a limit ordinal take for
every x ∈ T a branch Bx such that x ∈ B and h(Bx) = β. This is possible
by condition 4. Let bx =

⋃
Bx and let S = T ∪ {bx : x ∈ T}. Clearly since

T is countable so is S and therefore S ∈ P.

It remains to show that every antichain in T is at most countable. Before
we do this let us establish the following facts about antichains.

Lemma 4.7. Let T ∈ P and let A ⊆ T be a bounded maximal antichain.
Then for every S ∈ P+ with S ≤ T it holds that A is a maximal antichain
in S (and of course A is still bounded in S).

Proof. Let x ∈ S be arbitrary and let α < h(T ) be such that h(a) ≤ α for
all a ∈ A. Then because s � α ∈ S there exists a ∈ A such that a ⊆ s � α.
This implies a ⊆ s and therefore A is an antichain.

Remark 4.8. Note that the condition that A is bounded is necessary. Con-
sider T = ω<ω,

A = {0_0_ . . ._ 0︸ ︷︷ ︸
n

_m : n,m ∈ ω,m > 0}

and

S = ω<ω ∪ {x ∈ ωω : x(i) = 0 for all but finitely many i ∈ ω}.

Then A is a maximal antichain in T but in S the set A is no longer maximal
because x ≡ 0 is in S.

Lemma 4.9. Let T ∈ P such that h(T ) = α is a limit ordinal and let A ⊆ T
be a maximal antichain in T . Then there exists S ≤ T of height α+ 1 such
that A is a maximal antichain in S (and in particular A is bounded in S),
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Proof. We construct S as follows. For x ∈ T there exists ax ∈ A such that
ax ⊆ x or x ⊆ ax. Let Bx be a branch of height α (such branch exists
because of condition 4.) such that x ∈ Bx and ax ∈ Bx and let bx =

⋃
Bx.

Now let S = T ∪ {bx : x ∈ T}. Clearly A remains an antichain in S and
because T is countable so is S, thus S ∈ P.

We are now ready to complete the proof that T is a a Suslin tree. Because
every antichain is contained in a maximal antichain it is enough to show that
every maximal antichain is countable.

Let A be a maximal antichain in T . Then there exists a P-name Ȧ for
A, a P-name Ṫ for T and T ∈ G such that

T 
 Ȧ is a maximal antichain in Ṫ

We claim that the set

{S ≤ T : there is a bounded maximal antichain in B ∈ S with S 
 B̌ ⊆ Ȧ}

is dense below T . In this case there is S ∈ G such that B ⊆ A is a bounded
maximal antichain in S. Because T ≤ S by lemma 4.7 B remains a maximal
antichain in T . Thus B = A and because B ⊆ S is countable so is A.

Let T0 ≤ T be arbitrary and of course

T0 
 Ȧ is a maximal antichain and Ṫ ≤ Ť0.

Therefore for any x ∈ T there exists T ′0 ≤ T0 and ax ∈ T ′0 such that ax ⊆ x
or x ⊆ ax and

T ′0 
 ax ∈ Ȧ.

Because T is countable and P is σ-closed we can find T ′0 ≤ T0 that forces
this condition for every x ∈ T . Let T1 = T ′0. We construct a sequence
T0 ≥ T1 ≥ T2, . . . inductively such that for every n ∈ ω it holds that for all
x ∈ Tn there is ax ∈ Tn+1 such that ax ⊆ x or x ⊆ ax and

Tn+1 
 a ∈ ax ∈ Ȧ.

We find a lowerbound Tω =
⋃
n<ω Tn for this sequence and let B = {ax :

x ∈ Tω}. Of course B is a maximal antichain in Tω and

Tω 
 B ⊆ Ȧ.

Now we apply lemma 4.9 to Tω and get S ≤ ω such that B is bounded in
S. Clearly S ≤ T0 and

S 
 B ⊆ Ȧ

and therefore S ∈ D. Thus D is dense.
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The Diamond Principle

5.1 Club Sets, Stationary Sets

Definition 5.1. A set C ⊆ ω1 is closed if for every countable X ⊆ C it
holds that its supremum

⋃
X ∈ C.

A set C ⊆ ω1 is unbounded if for every α ∈ ω1 there exists b > α such
that β ∈ C.

A set C ⊆ ω1 is club set if it is closed and unbounded.

A set S ⊆ ω is stationary if for every club set C ⊆ ω1 it holds that
C ∩ S 6= ∅.

Definition 5.2. The diamond principle ♦ states that there exists sequence
{Aα ⊆ α : α < ω1} such that for all sets A ⊆ ω1 the set {α : A∩α = Aα} is
stationary.

This is equivalent to the statement that there exists a sequence of func-
tion {(hα : α → 2) : α < ω1} such that for all functions f : ω1 → 2 the set
{α : f � α = hα} is stationary.

Sequences {Aα : α < ω1} or {hα : α < ω1} that verify the diamond
principle are called ♦-sequence.

5.2 The consistency of ♦

Theorem 5.3. Let M be a countable transitive model. Then there exists a
generic extension M [G] of M such that there is a ♦-sequence in M [G].

Proof. We are going to construct a ♦-sequence by forcing.
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Let P be the set of all p such that p = {hβ : β < α} for some α < ω1

and hβ is a function β → 2 for every β < α. We call α the height of p. For
p, q ∈ P let p ≤ q if p ⊇ q.

Clearly, because the supremum of countable many countable ordinals is
countable, P is σ-closed and thus preserves ω1.

Let G be an M -generic filter on P and let Γ =
⋃
G. Obviously for every

α < ω the set {p ∈ P : p has height greater than α} is dense and therefore
Γ = {hα : α < ω1} with hα being a function α→ 2 for every α < ω1.

We may hope this construction is going to work because, working in M ,
if f is a function ω1 → 2 and C is a club (and in particular unbounded) the
set of p ∈ P with f � α = p for some α ∈ C is dense in P. But of course we
need this for all club sets in M [G].

Let f : ω1 → 2 be a function in M [G], let C be a club set in M [G], let
ḟ and Ċ be P-names for f and C respectively and let Γ̇ be a P-name for Γ.

First note that for every p = {hβ : β < α} ∈ P of height α

p 
 Γ̇(β̌) = ȟβ

for every β < α.

We find p ∈ G such that

p 
 ḟ is a function ω̌1 → 2̌ and Ċ is a club subset of ω̌1

and claim that for all q ≤ p of height α there exists β > α, a function
g : α→ 2 in M and q′ ≤ q of height greater or equal β such that

q′ 
 β̌ ∈ Ċ ∧ ḟ � α̌ = ǧ.

Indeed if G′ is an arbitrary M -generic ideal that contains q then for every
α < ω1, because q 
 “Ċ is unbounded”, there exists q1 ∈ G′ such that
q1 
 β̌ ∈ Ċ for some β > α. Let g = ḟG

′
� α. Then by lemma 3.4 we have

g ∈ M . Therefore there is some q2 ∈ G′ such that q2 
 ḟ � α̌ = ǧ. By
directedness of G′ there is q′ ∈ G such that q′ ≤ q, q′ ≤ q1, q

′ ≤ q2 and again
by directedness we may assume that q has height at least β.

Repeating this step and fixing q ≤ p we can inductively construct a
sequence q = p0 ≥ p1 ≥ p2 ≥ . . . such that for each pn of height αn there
exists βn > αn and gn : α→ 2 such that

pn+1 
 β̌n ∈ Ċ ∧ ḟ � α̌ = ǧn.

Utilizing the σ-closedness of P we find

p∗ =
⋃
n<ω

pn
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of height
α∗ = sup

n<ω
αn = sup

n<ω
βn.

Clearly p∗ 
 β̌n ∈ Ċ and p∗ 
 ḟ � α̌ = ǧn for every n < ω. Furthermore
because p∗ 
 “Ċ is closed” it follows that p∗ 
 α∗ ∈ Ċ.

Likewise let
g∗ =

⋃
n<ω

gn

and of course g∗ is a function α∗ → 2 and let u = p∗ ∪ g∗. Clearly

u 
 ḟ � α̌∗ = ǧ∗ ∧ α∗ ∈ Ċ ∧ Γ̇(α̌∗) = ǧ∗

and of course u ≤ q ≤ p. Finally because q was arbitrary the set of all u
with this property for some α∗, g∗ is dense below p and therefore G must
contain one of them.

5.3 ♦ → CH

Theorem 5.4. The diamond principle implies the continuum hypothesis.

Proof. Let {Aα : α < ω1} be a ♦-sequence and let A ⊆ ω be arbitrary. Then
the set S = {α : A ∩ α = Aα} is stationary and clearly there exists α > ω
with α ∈ S. To see this simply consider the club set ω1 \ ω. Now because
α ∈ S we have A ∩ α = Aα and because α > ω we have A ∩ α = A. Thus
we have found α < ω1 such that Aα = A and because A was arbitrary we
have shown that every subset of ω occurs in the ♦-sequence.

5.4 ♦ → ¬SH

Lemma 5.5. Let T ⊆ ω<ω1

1 be a tree and let A ⊆ T be a maximal antichain.
Then the set

C = {α : A ∩ T<α is a maximal antichain in T<α}

is a club set.

Proof. Let α0 < α1 < α2 < . . . be a sequence in C and let α = supn<ω αn.
For every x ∈ T<α there is n ∈ ω such that x ∈ T<αn and there is some
a ∈ A ∩ T<αn with a ⊆ x or x ⊆ a. Because A ∩ T<αn ⊆ A ∩ T<α it follows
that A ∩ T<α is a maximal antichain in T<α. Thus α ∈ C and C is closed.

Let α0 < ω1 be arbitrary. Then for every x ∈ T<α0 there exists ax ∈ A
such that ax ⊆ x or x ⊆ ax. Let α1 ≥ α0 be such that {ax : x ∈ T<α0} ⊆
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T<α1 . Then let α2 ≥ α1 be such that {ax : x ∈ T<α1} ⊆ T<α2 and so on.
Let α = supn<ω αn. If x ∈ T<α then there is n ∈ ω such that x ∈ T<αn and
ax ∈ A ∩ T<αn+1 ⊆ A ∩ T<α with ax ⊆ x or x ⊆ ax. Therefore A ∩ T<α is
a maximal antichain in T<α and α ∈ C. Of course α0 ≤ α and thus C is
unbounded.

Theorem 5.6. The diamond principle implies that there exists a Suslin
tree.

Let {Aα : α < ω1} be a ♦-sequence. We construct a tree T = ω1 that
consists of exactly the countable ordinal numbers. We take the ordinals in
order such that every time we add an element to the tree we take the least
ordinal we have not used yet.

We start by defining T0 = {0}.

If α = β + 1 is a successor ordinal then we construct Tα by adding
countably many successors above every element in Tβ. It is clear that Tα is
countable.

If α is a limit and we have defined T<α there are two cases.

1. If Aα is a maximal antichain in T<α for every element x ∈ T there
exists ax ∈ Aα with ax ⊆ x or x ⊆ ax. Now let Bx be a branch of
height α in T<α such that x ∈ Bx and ax ∈ Bx and add bx to Tα such
that y ≤ bx for all y ∈ Bx.

2. Otherwise simply do the same construction as in the first case but
with and arbitrary branch containing x for every x ∈ T<α.

In both cases it is clear that because T<α was countable so is Tα. We continue
with this construction until we have constructed a tree T =

⋃
α<ω1

Tα of
height ω1.

Assume that the exists a branch T ⊆ B of height ω1. Then {α + 1 :
α ∈ B} is an uncountable antichain. Therefore to verify that T is a Suslin
tree we only need to show that T does not contain an uncountable maximal
antichain.

Let A be a maximal antichain in T and let C be as in lemma 5.5. First
note that D = {α ∈ C : T<α = α} is a club set. Closure is obvious. For
unboundedness let α0 < ω1 be arbitrary. Choose α1 ≥ α0 such that Tα0 ⊆
α1, then choose α2 ≥ α1 such that Tα1 ⊆ α2 and so on. Let α = supn<ω αn,
i.e. α =

⋃
n<ω αn =

⋃
n<ω T<αn = T<α.

Thus by ♦ there exists α < ω1 such that A ∩ α = Aα, A ∩ T<α is a
maximal antichain in T<α and T<α = α. Because A ∩ T<α = A ∩ α = Aα
it follows that Aα is a maximal antichain in T < α. Now by construction
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every element in Tα lies above some a ∈ Aα and thus Aα is also a maximal
antichain T . Therefore Aα = A and because Aα ⊆ α it follows that A is
countable.





Chapter 6

Iterated Forcing

6.1 Two-step forcing

Definition 6.1. Again let M be a countable transitive model of ZFC. Let
P be a forcing notion in M and Q̇ be a name for a partial order in MP.

We define
P ∗ Q̇ = {(p, q̇) : p ∈ P,
P q̇ ∈ Q̇}.

and for (p1, q̇1), (p2, q̇2) ∈ P ∗ Q̇ let

(p1, q̇1) ≤ (p2, q̇2) ↔ (p1 ≤ p2) ∧ (p1 
 q̇1 ≤ q̇2).

Remark 6.2. Note that P∗ Q̇ will typically be a proper class, not a set. To
see this let p, q ∈ P be incompatible and consider the names

σα = {(α̌, p)}

τα = {(σα, q), (0̌, 1)}

where α is an ordinal number. A simple calculation shows that


P τα = {0̌}.

Now if Q̇ is a P-name for a forcing with 
P {0̌} ∈ Q̇ it follows that {τα : α ∈
ord} ⊆ P ∗ Q̇.

We solve this problem with the following lemma.

Lemma 6.3. There exists a set Z of P-names such that for all (p, q̇) ∈ P∗Q̇
there is q̇′ ∈ Z with 
P q̇

′ = q̇.

Proof. Given (p, q̇) ∈ P ∗ Q̇ we construct q̇′ as follows. We define the dense
set

X = {p ∈ P : (∃ẋ ∈ dom(Q̇)) p 
 q̇ = ẋ}
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and choose a maximal antichain W ⊆ X. Now let

q̇′ = {(ẋ, w) : w ∈W, ẋ ∈ dom(Q̇), w 
 q̇ = ẋ}.

It is clear that 
P q̇ = q̇′ and the names ṙ with dom(r) ⊆ dom(Q̇) form a
set.

Lemma 6.4.

1. Let G be an M -generic filter on P, let Q = Q̇G and let H be an M [G]-
generic filter on Q. Then

G ∗H = {(p, q̇) : p ∈ G ∧ q̇G ∈ H}

is a M -generic filter on P ∗ Q̇ and

M [G][H] = M [G ∗H].

2. Conversely let K be an M -generic filter on P ∗ Q̇. Let

G = {p ∈ P : (∃q̇ ∈ Q̇) (p, q̇) ∈ K}
H = {q̇G : (∃p ∈ P) (p, q̇) ∈ K}.

Then G is an M -generic filter on P and H is an M [G] generic filter
on Q = Q̇G.

Proof. 1. Let D ∈M be a dense subset of P ∗ Q̇. In M [G] let

D′ = {q̇G : (∃p ∈ G) (p, q̇) ∈ D}.

It is easy to see that D′ is dense in Q because for every q̇ ∈ Q̇ the set (in
M)

Dq̇ = {p ∈ P : (∃q̇′ ∈ Q̇) p 
 q̇′ ≤ q̇ ∧ (p, q̇′) ∈ D}

is a dense subset of P (because D is dense). Thus there exists q ∈ D′ ∩H
(and in particular q ∈ H) such that for some p ∈ G and a name q̇ with
q̇G = q it holds that (p, q̇) ∈ D. Therefore D ∩ (G ∗ H) 6= ∅ and G ∗ H is
M -generic.

For any model N it holds that G ∈ N ∧H ∈ N if and only if G∗H ∈ N .
Thus M [G][H] = M [G ∗H].

2. Let D ∈ M be a dense subset of P. Then D′ = {(p, q̇) : p ∈ D, q̇ ∈
Q̇, p 
 q̇ ∈ Q̇} is a dense subset of P∗Q̇. Thus D∩G 6= ∅ and G is M -generic.

Let D ∈ M [G] be a dense subset of Q and let Ḋ be a name such that
ḊG = D. Then D′ = {(p, q̇) ∈ P ∗ Q̇ : p 
 q̇ ∈ Ḋ} is a dense subset of P ∗ Q̇.
Thus D ∩H 6= ∅ and H is M [G]-generic.
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Theorem 6.5. If P satisfies the countable chain condition in M and Q̇
satisfies the countable chain condition in MP then P∗Q̇ satisfies the countable
chain condition in M .

Proof. Assume there exists an uncountable antichain W = {(pα, q̇α), α <
ℵ1} ⊆ P ∗ Q̇. Let G be an arbitrary M -generic filter and let Ż be a P-name
for the set {α : pα ∈ G}, i.e. dom(Ż) = ℵ̌1 and Ż(α) = pα. Because W is
an antichain it holds that

∀α 6= β < ℵ1 : pα⊥pβ ∨ (pα ∧ pβ) 
 q̇α⊥q̇β.

For all α, β ∈ Z = ŻG it holds that pα ‖ pβ because G is a filter and therefore
qα⊥qβ in M [G]. Now because Q satisfies the countable chain condition in
M [G] it holds that 
P |Ż| < ℵ1. The intuition now is that because P satisfies
the countable chain condition that if Z is countable in M [G] it must already
be countable in M . However Z may not exist in M . Therefore we argue as
follows.

Let X = {pn : n < ω} ⊆ P be a maximal antichain. Then for every
pn ∈ X there exists αn < ℵ1 such that pn 
 Ż ⊆ α̌n. Let α = supn<ω αn and
of course α < ℵ0. Then 
P Ż ⊆ α̌ and because P satisfies the countable chain
condition also 
P α̌ < ℵ1. This contradicts the fact that pα 
 α̌ ∈ Ż.

Theorem 6.6. If P ∗ Q̇ satisfies the countable chain condition then

1. P satisfies the countable chain condition.

2. 
P Q̇ satisfies the countable chain condition.

Proof.

1. P satisfies the countable chain condition because every antichain in P
induces an antichain in P ∗ Q̇.

2. Let Ẇ ∈MB and p ∈ P such that

p 
 Ẇ is an uncountable subset of Q̇.

Now let ḟ ∈MB be such that

p 
 ḟ is a bijection between ℵ1 and Ẇ .

This means that for every α < ℵ1

p 
 (∃ẋ ∈ Ẇ ) ḟ(α̌) = ẋ

and because MB is full there exists q̇α ∈ Q̇ such that

p 
 q̇α ∈ Ẇ ∧ ḟ(α̌) = q̇α.
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We let X = {(p, q̇α) : α < ℵ0} and because p 
 q̇α 6= qβ for α 6= β we know
that X is uncountable. Now because P ∗ Q̇ does not contain an uncountable
antichain X cannot be an antichain and therefore there exists α, β < ℵ0

such that 
B (q̇α ‖ q̇β). and thus

p 
 Ẇ is not an antichain.

Corollary 6.7. If P and Q satisfy the countable chain condition then P×Q
satisfies the countable chain condition if and only if


P Q̌ satisfies the countable chain condition.

Remark 6.8. Note that the condition (
P Q̌ satisfies the countable chain
condition) is necessary. It is not enough that Q̌ is the name of a forcing
that satisfies the countable chain condition in the ground model. Consider
for example forcing with a Suslin tree T ∈ M . It is easy to see that a
generic filter on T corresponds to a branch of height ω1 and therefore T is
no longer a Suslin tree in M [G] (see 7.11 for details) and in particular no
longer satisfies the countable chain condition. Thus T ×T does not satisfies
the countable chain condition in M .

6.2 Iterated Forcing with Finite Support

Let λ be an ordinal. We are going to define a sequence of forcing notions
{Pα : α < λ} such that for every successor ordinal α + 1 it holds that
Pα+1 = Pα ∗ Q̇α for some Q̇α ∈ MPα . For limit ordinals α we are going
to define a limit of {Pβ : β < α} in a way described below. For α < λ
the symbol ≤α denotes the partial order of Pα and 
α denotes the forcing
relation induced by Pα.

Definition 6.9. We call a forcing P rooted if it has a greatest element. As
with Boolean algebras we denote the greatest element by 1.

Definition 6.10. Let α ≥ 1. We say that a set Pα of sequences of length α
is an iteration with finite support (of length α) if the following holds.

1. If α = 1:
There exists a rooted forcing notion Q0 such that P1 = {(p(0)) : p(0) ∈
Q0} and

(p(0)) ≤1 (q(0)) ↔ p(0) ≤Q0 q(0).
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2. If α = β + 1:
The set Pβ = Pα � β = {p � β : p ∈ Pα} is an iteration with finite
support of length β and there exists a Pβ- name Q̇β ∈MPβ for a rooted
forcing such that

p ∈ Pα ↔ 
β p(β) ∈ Q̇β

p ≤α q ↔ p � β ≤β q � β ∧ p � β 
β p(β) ≤Q̇β q(β).

3. If α is a limit ordinal:
For all β < α the set Pβ = Pα � β = {p � β : p ∈ Pα} is an iteration
with finite support of length β and

p ∈ Pα ↔ ∀β < α : p ∈ Pβ ∧ |{β < α : p(β) 6= 1̇Qβ}| ≤ ℵ0.

p ≤α q ↔ ∀β < α : p � β ≤β q � β.

For p ∈ Pα we define supp(p) = {β < α : p(β) 6= 1̇Qβ} and say supp(p) is
the support of p.

Since Pα is uniquely determined by {Q̇β, β < α} we say that Pα is an
iteration of {Q̇β, β < α} and it is clear that for all β < α it holds that
Pβ+1

∼= Pβ ∗ Q̇β.

Theorem 6.11. Let Pα be is an iteration of finite support of {Q̇β, β < α}
such that for all β < α it holds that


β Q̇β satisfies the countable chain condition.

Then Pα satisfies the countable chain condition.

Proof. We prove the theorem by induction. If α is a successor ordinal then
the theorem follows from 6.5.

Thus let α be a limit ordinal and let W ⊆ Pα be an uncountable set.
Let C = {supp(p) : p ∈ W}. Then by lemma 3.10 there is an uncountable
D ⊆ C and a set d such that for s, t ∈ D

s 6= t→ s ∩ t = d.

Because α is a limit there exists β < α such that d ⊆ β. By induction
hypothesis Pβ satisfies the countable chain condition so there are p, q ∈ W
such that p � β ‖Pβ q � β. Now because (supp(p) \ β) ∩ (supp(q) \ β) = ∅ it
is easy to see by induction that p ‖Pα q.

Indeed if u ≤ p � β, u ≤ q � β and without loss of generality 
β p(β) =
1. Then u 
β q(β) ≤ p(β) and of course also u 
β q(β) ≤ q(β). Thus
u_q(β) ≤ p � (β + 1), u_q(β) ≤ q � (β + 1), i.e. p � (β + 1) ‖ q � (β + 1).
Limit steps are trivial. Therefore W is not an antichain.





Chapter 7

Martin’s Axiom

Definition 7.1. Martin’s axiom MA is the statement that if (P,≤) is a
partial order that satisfies the countable chain condition and D is a family
of less than 2ℵ0 dense sets then there exists a filter G ⊆ P that intersects
every D ∈ D, i.e. there exists a D-generic filter G.

7.1 CH → MA

Theorem 7.2. The continuum hypothesis implies Martin’s axiom.

Proof. Clearly if CH holds then every family D of less than 2ℵ0 families is
countable and therefore a D-generic filter exists by lemma 2.5.

7.2 The consistency of MA ∧ ¬CH

Definition 7.3. In this section a P-name τ will be a relation such that

∀(σ, p) ∈ τ : σ is a P-name ∧ p ∈ P,

i.e. τ is not necessarily a function and ran(τ) is a subset of P, not B(P).
Just as in theorem 2.38 it is easy to see that this approach yields the same
generic extension M [G] as the old definition.

Again we refer to the set of all P-names (of the new definition) as MP.

Definition 7.4. Let τ ∈MP. A nice name for a subset of τ is a P-name of
the form ⋃

{{σ} ×Aσ : σ ∈ dom(τ), Aσ is an antichain in P}.

55
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Lemma 7.5. Let τ ∈ MP and let M |= κ = |P|, M |= λ = |dom(τ)|. If P
satisfies the countable chain condition and κ and λ are infinite then there
exist no more than κλ nice names for subsets of τ .

Proof. Because P is ccc there are at most κℵ0 antichains and therefore there
are at most (κℵ0)λ = κℵ0·λ = κλ nice names.

Lemma 7.6. Let τ, µ ∈MP. Then there is a nice name θ ∈MP for a subset
of τ such that


 µ ⊆ τ → µ = θ.

Proof. We work in M . Choose θ =
⋃
{{σ} × Aσ : σ ∈ dom(τ)} such that

each Aσ is a maximal antichain in the set {p ∈ P : p 
 σ ∈ µ}.

Let G be an arbitrary M -generic filter on P. We want to show that
M [G] |= µ ⊆ τ → µ = θ. We assume that µG ⊆ τG and show µG = θG.

θG ⊆ µG: Fix x ∈ θG. Then there exists (σ, p) ∈ θ with p ∈ G such that
x = σG. By definition of θ it holds that p 
 σ ∈ µ and thus x ∈ µG.

µG ⊆ θG: Assume there exists x ∈ µG \ θG. Then because µG ⊆ τG it
holds that x ∈ τG and again x = σG for some (σ, p) ∈ τ . Therefore there
exists q ∈ G such that q 
 σ ∈ µ ∧ σ 6∈ θ and q⊥p for all p ∈ Aσ because
(σ, p) ∈ θ implies that p 
 σ ∈ θ. Thus q contradicts the maximality of
Aσ.

Lemma 7.7. In M let P satisfy the countable chain condition, let κ, λ be
infinite cardinals with |P| = κ. Let G be an M -generic filter on P. Then

M [G] |= 2λ ≤ κλ.

Proof. In M the name λ̌ has cardinality λ and so we can use lemma 7.5
to get an enumeration {θα : α < κλ} of the nice names for subsets of the
subsets of λ̌. Now let σ be the name {(op(α̌, θα), 1) : α < κλ}.

In MG it holds that σG is a function on κλ with σG(α) = θGα for all
α < κλ. If s is a subset of λ in M [G] then by lemma 7.6 σG(α) = s for some
α < κλ. Thus λ has at most κλ subsets in M [G].

Lemma 7.8. Martin’s axiom is equivalent to its restriction to partial orders
of size less than 2ℵ0.

Proof. Let (P,≤) be a partial order and let D be a family of fewer than 2ℵ0

dense subsets of P. For each D ∈ D let WD be a maximal antichain in D.
Because WD is countable for every D there exists a set Q ⊆ P of size less
than 2ℵ0 such that WD ⊆ Q for every D and if p, q ∈ Q are compatible (in P)
then there is r ∈ Q such that r ≤ p, r ≤ q as a witness of compatibility. Thus
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WD remains a maximal antichain in Q for each D and Q retains countable
chain condition.

We define Q-dense sets ED = {q ∈ Q : (∃w ∈ WD) q ≤ w}. Let H be
a be a {ED : D ∈ D}-generic filter. Then using lemma 2.7 it is easy to see
that H induces a G generic filter on P.

Remark 7.9. It is clear that we may restrict ourselves to only consider
partial orders on cardinal numbers.

Theorem 7.10. Let M be a countable transitive model. Then there exists
a forcing notion P that satisfies the countable chain condition such that the
generic extension M [G] (with G ⊆ P) satisfies Martin’s axiom and 2ℵ0 = ℵ2.

Proof. In 3.6 we showed that we may assume that

M |= 2ℵ0 = ℵ1.

Completely analogous to 3.6 we can force with bijections between 2ℵ1 and
ℵ2 of size ℵ1. Thus we may additionally assume that

M |= 2ℵ1 = ℵ2.

Informally our plan is as follows: Using lemma 7.8 we want to make sure
that every ccc partial order on ℵ1 has a generic set. Thus we try to simply
add those generic sets by iteratively forcing with every ccc partial order on
ℵ1. There are a number of issues with this plan we need to pay attention
to. A partial order that was ccc in the ground model may no longer be
ccc in a generic extension. In this case we skip this partial order to make
sure that ℵ1 does not collapse, making the work we already did irrelevant
(see lemma 6.11). Furthermore new ccc partial orders may appear and new
dense subsets of ccc partial orders we have already forced with may appear.
We will use a bookkeeping method to make sure we treat every ccc partial
order we have to.

Let f : ℵ2 → ℵ2×ℵ2 be a surjective map such that f(α) = (η, γ) implies
that η ≤ α.

We construct a finite support iteration P of length ℵ2 from a sequence
{Q̇α : α < ℵ2}. It will hold that 
α Q̇α is a ccc partial order of ℵ̌1 for every
α < ℵ2. Thus Pα is ccc for every α ≤ ℵ2 by lemma 6.11 and by lemma 3.9
every Pα preserves cardinals. In particular ℵ1 does not collapse.

Of course for ever α < ℵ2 the name Q̇α is really a triple (Q̇α, ≤̇α, 1̇α).
We will work with Q̇α = ℵ̌1 (see lemma 7.8). Hence for all α < ℵ2 it holds
that |Q̇α| = ℵ1 and thus |Pα| = ℵ1 for α < ℵ2 and |P| = ℵ2.

We define the sequence {Q̇α : α < ℵ2} inductively. Assume we have
defined Pβ and let α = β+ 1 (the definition of iterated forcing tells us what
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to do at limit steps). Firstly let {≤̇αγ : γ < ℵ2} be an enumeration of all
nice Pβ-names for subsets of ℵ1 × ℵ1. This is possible because there are

|Pβ||ℵ1×ℵ1| = ℵℵ11 ≤ (2ℵ1)ℵ1 = 2ℵ1×ℵ1 = 2ℵ1 = ℵ2 such names by lemma 7.5
and our assumption that M |= 2ℵ1 = ℵ2.

Secondly let (η, γ) = f(α) and let Q̇α be the triple (ℵ̌1, ≤̇α, 0̌) where
≤̇α be a name such that for every p ∈ Pβ it holds that (p 
 (ℵ̌1, ≤̇ηγ , 0̌) is
a ccc partial order with maximal element 0̌) implies (p 
 ≤̇α = ≤̇ηγ) and
(p 
 (ℵ̌1, ≤̇ηγ , 0̌) is not a ccc partial order with maximal element 0̌) implies
(p 
 ≤̇α is the linear order on ℵ̌1 defined by reverse inclusion). Defining such
≤̇α is possible using maximal antichains in the sets {p ∈ Pβ : p 
 (ℵ̌1, ≤̇ηγ , 0̌)
is a ccc partial order with maximal element 0̌} and {p ∈ Pβ : p 
 (ℵ̌1, ≤̇ηγ , 0̌)
is not a ccc partial order with maximal element 0̌} and lemma 2.22.

We claim that if R is a subset of ℵ1 in M [G] where G is a generic
filter on P then there exists α < ℵ2 such that R ∈ M [Gα] where Gα is a
generic filter on Pα. By lemma 7.6 R has a nice P-name Ṙ, i.e. a name
where β ∈ R is decided by a countable antichain Wβ for every β < ℵ1.
Because |P| = ℵ2 is regular it holds for α = sup(

⋃
β<ℵ1

⋃
w∈Wβ

supp(w))

that α < ℵ2. Clearly there is a canonical Pα-name Ṡ that corresponds to Ṙ
such that ṠGα = ṘG = R and thus R ∈M [Gα].

Now let Q be a ccc partial order of ℵ1 in M [G] and and let D be a
family of ℵ1 Q-dense subset of ℵ1. Then by the above for every D ∈ D
there is αD < ℵ2 such that D ∈ M [GαD ] and because Q corresponds to
a subset of ℵ1 × ℵ1

∼= ℵ1 there exists αQ such that Q ∈ M [GαQ ]. Let
η = sup({αD : D ∈ D} ∪ {αQ}) and again because ℵ2 is regular η < ℵ2.
Now because a name Q̇ =≤ηγ0 for Q appears in {≤̇ηγ : γ < ℵ2} and because

there exits α ≥ η such that f(α) = (η, γ0) it holds that Q̇ = Q̇α for some
α < ℵ2. Thus Gα is a D-generic filter and clearly Gα ∈M [G].

Thus every ccc partial order of size ℵ1 in M [G] and every family of
at most ℵ1 dense subsets of this partial order in M [G] has a generic filter
in M [G]. It remains to verify the size of the continuum in M [G]. Using
|P| = ℵ2, lemma 7.7 and our assumption M |= 2ℵ0 = ℵ1 we can bound the
continuum in M [G] by 2ℵ0 ≤ ℵℵ02 = ℵ2 · ℵℵ01 = ℵ2 · ℵ1 · ℵℵ00 = ℵ2.

To see that 2ℵ0 ≥ ℵ2 consider the forcing Q = (2<ω,⊇). Q is countable
and thus ccc and can be embedded into a forcing that lives on ℵ1 (simply take
countably many elements to represent Q and put the rest above). Therefore
there exists a generic filter for every family of ℵ1 dense subset of Q by what
we showed above. Consider D = {Dx, x ∈ 2ω} where Dx = {q ∈ Q : q 6⊆ x}.
It is easy to see that Dx is in fact dense for every x ∈ 2ω and that Dx 6= Dy

for x 6= y. Thus |D| = 2ℵ0 . Assume that G is a D-generic filter on Q.
Clearly x =

⋃
G is a branch, i.e. x ∈ 2ω is a new real, and G ∩ Dx = ∅,

contracting the genericity of G. Thus 2ℵ0 > ℵ1.
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7.3 (MA ∧ ¬CH) → SH

Theorem 7.11. If Martin’s axiom holds and 2ℵ0 > ℵ1 then there exists no
Suslin tree.

Proof. Let (T,≤) be a Suslin tree and consider the partial order (T,≥).
Clearly (T,≥) satisfies the countable chain condition. For every α < ω1 the
set Dα = {x ∈ T : h(x) > α} is dense in (T,≥). Let D = {Dα : α < ω1} and
let G be a D-generic filter. It is clear that G is a branch and because G is
D-generic G contains an element at every level α < ω1, i.e. G is a branch of
height ω1. This contradicts our assumption that (T,≤) is a Suslin tree.
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[10] Juris Steprāns: Combinatorial consequences of adding Cohen reals, Is-
rael Mathematical Conference Proceedings: Set Theory of the Reals,
Haim Judah, Editor, A publication of Bar-Ilan University, 1993

61





Index

∆0-formula, 10
∈-isomorphism, 6
σ-closed, 35

absolute, 10
antichain, 13, 40

bounded, 40

Boolean-valued model, 20
branch, 39

closed, 43
club, 43
compatible, 13

incompatible, 13
constructible universe, 1
continuum hypothesis, 1, 34
countable chain condition, 36

dense, 13, 15
diamond

principle, 43
sequence, 43

directedness, 14

extension, 13

filter, 13
generic, 14

finite support, 52
forcing notion, 13
full, 21

generic, 14

height, 39

iteration, 52

level, 39

Martin’s axiom, 55
Mostowski collapse, 6

nice name, 55

P-name, 30
plant, 39

rank, 6
reflection principle, 8
relativization, 5
rooted, 52

separative, 15
quotient, 17

stationary, 43
Suslin

hypothesis, 40
tree, 40

tree, 39

ultrafilter, 14
unbounded, 43
upward stability, 14

ZFC, 2
ZFC+, 9

63


