
Decoupling Object Manipulation
from Rendering in a Thin Client

Visualization System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Visual Computing

eingereicht von

Anna Frühstück BSc
Matrikelnummer 0626930

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Peter Rautek

Wien, 29. September 2015

Anna Frühstück Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Decoupling Object Manipulation
from Rendering in a Thin Client

Visualization System

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Visual Computing

by

Anna Frühstück BSc
Registration Number 0626930

to the Faculty of Informatics
at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Peter Rautek

Vienna, 29th September, 2015

Anna Frühstück Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Anna Frühstück BSc
Argentinierstr. 28/11
1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle
als Entlehnung kenntlich gemacht habe.

Wien, 29. September 2015

Anna Frühstück

v

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors. I would like to thank
Prof. Eduard Gröller for his support of my study and related research, for inspiring me to go
abroad to work on my project and for his willingness to supervise me remotely.
It was a privilege for me to work with Dr. Peter Rautek on my thesis. His guidance helped
me during the time of research and writing of this thesis. I am happy to have had him as my
advisor and mentor for my thesis project.

My loving parents Martha and Anton Frühstück have made it possible for me to pursue
the studies of my choice, supported me without reservation and have always encouraged me
to find my way, even if it was not always the shortest path chosen. For their never-ending,
considerate and most of all unconditional support I would like to thank them with all my heart.

To my wonderful siblings, who are friends to me as much as family, thank you for being
always there, readily providing help, inspiration and laughter in equal parts.

Furthermore I want to express my thanks to my very good friends and colleagues in
Vienna that continuously helped and motivated me throughout the course of my studies.

I am forever grateful for the amazing opportunity I got to be part of a group of smart,
inspiring colleagues at the King Abdullah University of Science and Technology. It was truly
a joy and eye-opening to get an insight into how passionate my colleagues feel about their
research, be part of their stimulating discussions and to be invited into their amicable, wel-
coming and creative environment.

Lastly, I would like to extend my gratitude to the International Office of the Technical
University of Vienna which supported my stay at the King Abdullah University of Science and
Technology with a stipend for short-term scientific work abroad.

vii

Danksagung

Zunächst möchte ich mich aufrichtig bei meinen beiden Betreuern bedanken. Prof. Eduard
Gröller danke ich für die Unterstützung meiner Diplomarbeit und der damit verbundenen
Forschungstätigkeit, für das Angebot, im Ausland an meinem Projekt arbeiten zu können und
seine Bereitschaft, mich dabei zu betreuen.
Ich bin dankbar für die Möglichkeit, unter der Anleitung von Dr. Peter Rautek an meiner
Diplomarbeit zu arbeiten. Seine Beratung während der Forschungsarbeit und der Erstellung
der Diplomarbeit war von großem Wert für mich, und ich bin froh, ihn als Betreuer und
Mentor meines Projektes zu haben.

Meine liebevollen Eltern Martha und Anton Frühstück haben es mir ermöglicht, das
Studium meiner Wahl zu verfolgen. Dabei haben sie mich vorbehaltslos unterstützt und mich
stets dazu ermutigt, meinen eigenen Weg zu verfolgen, selbst wenn es nicht der kürzeste
war. Für ihren nie endenwollenden, fürsorglichen, unaufdringlichen und bedingungslosen
Beistand möchte ich mich bei ihnen von ganzem Herzen bedanken.

Meine wunderbaren Geschwister, die für mich gleichzeitig Familie und Freunde sind:
Danke dafür, dass ihr immer für mich da seid, um mir je nach Anlass bereitwillig mit Hilfe,
Inspiration und Humor beiseite zu stehen.

Zudem möchte ich meinen guten Freunden und Kollegen in Wien, auf deren Unterstützung
und Motivation ich im Laufe des Studiums immer zählen konnte, meinen Dank aussprechen.

Immer dankbar werde für die großartige Chance sein, für die Dauer dieser Arbeit Teil
einer Gruppe von kompetenten und inspirierenden Kollegen an der King Abdullah University
of Science and Technology sein zu können. Es war mir ein Privileg, in dieser Umgebung zu
spüren, welche Begeisterung meine Kollegen für ihre Forschungsprojekte empfinden und in
ihrem freundschaftlichen und kreativen Umfeld leben und arbeiten zu dürfen.

Zuletzt möchte ich mich beim International Office der Technischen Universität Wien
bedanken, das meinen Aufenthalt an der King Abdullah University of Science and Technology
mit einem Stipendium für kurzfristige wissenschaftliche Arbeiten im Ausland unterstützt hat.

ix

Kurzfassung

Nutzern von Visualisierungsanwendungen stehen häufig keine leistungsfähigen Systeme
für rechenintensive Visualisierungsaufgaben zur Verfügung. Ein Remote Rendering der Vi-
sualisierung und der Einsatz eines Thin Clients (z.B. ein Web Browser) zur Darstellung der
Resultate ermöglichen den Zugriff auf die Visualisierungen sogar von Geräten, die nicht für
Grafikanwendungen geschaffen sind. In derartigen thin-client Konfigurationen erleidet jedoch
die Flexibilität, die Daten interaktiv zu manipulieren, Einbußen. Dadurch wird eine sinnvolle
Interaktion mit Datensätzen, die viele Objekte enthalten, erschwert. Besonders für In-Situ
Visualisierungssysteme stellt die Möglichkeit zur direkten Interaktion mit den Daten eine
Herausforderung dar.

Wir lösen dieses Problem durch unseren Ansatz, die Berechnung der Visualisierung anhand
einer Deferred Visualization Pipeline zwischen Client und Server aufzuteilen. Unser Client
baut auf Webtechnologien auf (HTML5, JavaScript) und ermöglicht mittels der D3 Library
interaktive datengesteuerte Visualisierungen. Wir führen eine Zwischenrepräsentation der
Objekte ein, die die Daten, welche vom Server zum Client gesendet werden, beschreibt. Dabei
führt der Server die rechenintensiven Teile der Pipeline durch, während der Client durch
die Möglichkeit, ohne erneutes Rendering Objektmodifikationen vorzunehmen, Flexibilität
bewahrt.

Wir bezeichnen die Zwischenrepräsentation der Deferred Visualization als Volume Object
Model. Dieses Modell besteht aus Metadaten und gerenderten Visualisierungen für jedes
Objekt in einem Datensatz.

Um selbst für große Datensätze die Interaktivität des Clients sicherzustellen, werden dem
Client in einer Pre-Visualization Stufe zunächst nur die Metadaten übertragen. Dadurch kann
der Anwender anhand der Metadaten eine Filterung der Daten vornehmen, wodurch die
Komplexität der Visualisierung bereits vor dem Streaming der Bilddaten reduziert werden
kann. Ist der Anwender mit der Filterung zufrieden, werden die Objektbilder vom Server
angefordert. In Verbindung mit den Metadaten kann so die finale Visualisierung aus den
Bildern zusammengesetzt werden. Zudem können alle Objekte der Visualisierung untersucht
und mittels einer integrierten Konsole programmiert werden.

Zusammenfassend gestattet unser System dem Nutzer, voll interaktive objektbezogene
Visualisierungsschritte in einem Web Browser vorzunehmen, ohne ein aufwendiges erneutes
Rendern am Server zu erfordern.

xi

Abstract

Often, users of visualization applications do not have access to high performance systems for
the computationally demanding visualization tasks. Rendering the visualization remotely and
using a thin client (e.g. a web browser) to display the result enable the users to access the
visualization even on devices that do not target graphics processing. However, the flexibility
to manipulate the data set interactively suffers in thin-client configurations. This makes a
meaningful interaction with data sets that contain many different objects difficult. This is
especially true in in-situ visualization scenarios, where direct interaction with the data can
be challenging.

We solve this problem by proposing an approach that employs a deferred visualization
pipeline to divide the visualization computation between a server and a client. Our thin client
is built on web technologies (HTML5, JavaScript) and is integrated with the D3 library to
enable interactive data-driven visualizations. An intermediate representation of objects is
introduced which describes the data that is transferred from the server to the client on request.
The server side carries out the computationally expensive parts of the pipeline while the
client retains extensive flexibility by performing object modification tasks without requiring a
re-rendering of the data.

We introduce a novel Volume Object Model as an intermediate representation for deferred
visualization. This model consists of metadata and pre-rendered visualizations of each object
in a data set.

In order to guarantee client-side interactivity even on large data sets, the client only
receives the metadata of all objects for a pre-visualization step. By allowing the user to
perform filtering using the metadata alone, the complexity of the requested visualization data
can be reduced from the client side before streaming any image data. Only when the user is
satisfied, the object images are requested from the server. In combination with the metadata,
the final visualization can then be reconstructed from the individual images. Moreover, all
objects in the visualization can be investigated and changed programmatically by the user
via an integrated console.

In summary, our system allows for fully interactive object-related visualization tasks in a
web browser without triggering an expensive re-rendering on the server.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xvi

1 Introduction 1
1.1 Motivation . 2
1.2 The Pipeline Concept . 3
1.3 Deferred Visualization Pipeline . 4
1.4 Thesis Overview . 5

2 Fundamentals and State of the Art 7
2.1 Deferred Rendering Pipelines . 8
2.2 Remote Visualization . 12
2.3 In-Situ Visualization . 14
2.4 Visualization in the Browser . 16
2.5 Rendering of Segmented Volume Data . 17

3 Remote Visualization with Deferred Object Interaction 21
3.1 Remote Visualization Architecture . 22
3.2 Volume Object Model . 25
3.3 Summary . 37

4 Implementation 39
4.1 Framework . 39
4.2 Data and Segmentation . 43
4.3 Server Implementation . 43
4.4 Client/Server Communication . 51
4.5 Client Implementation . 52
4.6 Limitations . 54

xv

5 Results 57
5.1 Server-side Object Rendering . 57
5.2 Web Client . 61
5.3 Client-Side Interaction . 63
5.4 Evaluation . 78

6 Conclusion and Future Work 81
6.1 Outlook . 82

A Appendix 83
A.1 Rectangle Packing Algorithm . 83

Bibliography 85

List of Figures

1.1 Conceptual Steps of a Graphics Pipeline . 3
1.2 The Deferred Visualization Pipeline . 4

2.1 Venn Diagram of Concepts . 7
2.2 Illustration of Deferred Shading . 8
2.3 Visualization by Proxy . 12
2.4 Classification of Remote Rendering . 13

3.1 System Architecture . 21
3.2 Pipeline on the Server . 23
3.3 Pipeline on the Client . 26
3.4 Scene Recompositing Depth Problem . 32
3.5 Solving the Depth Problem . 33
3.6 Object Access through DOM Handles in Web Client 35

4.1 VolumeShop Session View . 40
4.2 VolumeShop Web Viewer . 41
4.3 Block Subdivision in Rectangle Packing . 46
4.4 Intermediate Rectangle Packing Result . 47
4.5 Final Rectangle Packing Result . 48
4.6 Object Layer Representations . 49
4.7 Rendering Objects to their Target in the Render Pass 51

xvi

4.8 Screenshot of the Web Client . 52

5.1 Human hand data set . 58
5.2 Christmas tree data set . 58
5.3 Object Rendering According to the Label Color . 59
5.4 Object Rendering with Colors based on Transfer Function 59
5.5 Object Rendering with Blending . 60
5.6 Object Rendering with Depth Buffer . 60
5.7 Hand Data Set Displayed on the Client . 61
5.8 Client-Side Scene Reassembly . 62
5.9 Object Positioning on the Client . 62
5.10 Object Reordering on the Client . 63
5.11 Object Grouping through DOM Handles . 64
5.12 Object Operations on the Client . 66
5.13 Filtering Workflow on the Client . 70
5.14 Object Modification Workflow on the Client . 71
5.15 Scatterplot Visualization: Axes Generation . 75
5.16 Scatterplot Visualization: Plotting the Values . 76
5.17 Scatterplot Transition . 77

CHAPTER 1
Introduction

Contemporary scientists are confronted with the task of investigating real-life or simulated
data in order to gain novel findings and insights into their field of research. The concept of
observation and exploration of data for the acquisition of scientific knowledge is not new.
However, modern technology has changed the character of the available data significantly.

When, in the pre-digital era, data was primarily procured through human observation,
methodologies for the analysis of the data were usually close at hand. The data at the disposal
of present-day scientists is obtained through machine-supported processes, which renders
the results virtually always either very abstract, extensive or both.

Data is frequently acquired through the sampling of real-world signals in order to evaluate
physical conditions occurring in actual settings. This includes, among others, applications in
industrial, medical, biological and geophysical fields of research. Depending on the nature
of the investigated data, the process of gathering data differs. The core component of data
acquisition consists of sensors transforming physical phenomena to electrical signals. For
instance, CT (x-ray computed tomography) and MRI (magnetic resonance imaging) are two
commonly used techniques for the recording of three-dimensional volumetric data sets from
real-world objects. The output generated by any type of acquisition technique needs to be
converted into a numeric format which makes it applicable for the manipulation through
computerized systems.

Simulation, on the other hand, imitates processes of real-world systems by numerical
models that represent the key characteristics of the respective process as closely as possible.
While it is generally not possible to take into account every physical property of the modeled
process, scientists develop complex models. The behavior of these models corresponds to
the outcome that the underlying system would be expected to have. This procedure allows
researchers to make predictions about events and to evaluate the impact of different conditions
and courses of action. The simulation of a system facilitates an experimental insight even if
the system does not exist, is inaccessible or the experiment would be impractical.

1

1.1 Motivation

Visualization has gained a significant role in the investigation of many different fields of
science. The nature of the acquired data often makes it difficult to understand without the
aid of further computational methods. Suitable tools like scientific visualization that help in
the investigation process are therefore often indispensable. In most cases of research, the
continuously growing amount of data which scientists wish to analyze is not only far too
extensive for an individual examination of the data values. Also, the human brain is not
particularly well adapted to find patterns in data in numerical form.

On the other hand, an important quality of the brain is its inherent ability to recognize
visual patterns, which enables humans to quickly and instinctively evaluate complex situa-
tions. Therefore, devising meaningful visual presentations of data does not only accelerate
the recognition of particular data properties, frequently it is a crucial instrument in the
investigation process. Along these lines, volume visualization has become an important tool
for gaining insight into three-dimensional, possibly also multivariate data, in many scientific
fields.

Volume visualization systems are typically used by domain scientists who wish to investi-
gate their data through a high-level interface, rather than interfering directly with source
code and data at a low level. Therefore, visualization environments usually provide graphical
user interfaces for the configuration of the system as well as for the direct interaction with
the visualization parameters. However, this interaction metaphor is limiting in complex
environments. To extend the adaptability and flexibility of visualization interfaces at a higher
level, Rautek et al. [RBGH14] have proposed the use of domain specific languages (DSLs).
Their system ViSlang incorporates multiple DSLs targeting individual volume processing,
querying and visualization tasks of the visualization pipeline. The individual components of
a visualization system are separated and can be programmed using different DSLs.

By offering the scientist a programmable interface that executes commands in DSLs
targeted to describe common tasks for the manipulation of visualizations, a compromise is
made between flexibility and ease of use.

The architecture of modern visualization systems is modeled according to the established
visualization pipeline. Pipeline models structure the tasks that are performed in a process into
several big steps. The visualization pipeline model formulates the necessary steps between
the acquisition of raw data and the visualization image that is presented to the user. When
traversing the visualization pipeline, these individual steps can be performed either in one
software solution or using multiple tools. The visualization pipeline has to be customized for
each data type and application.

Our approach aims to develop a pipeline for visualization tasks on segmented objects.
Given large amounts of data, it makes sense to move most of the workload to a remote
server. This is particularly relevant in in-situ visualization scenarios, in which visualization
is performed without intermediate I/O-operations directly where the data is generated. An
example would be a simulation performed on a supercomputer that generates data faster

2

Figure 1.1: The basic rendering pipeline. This pipeline is composed of three conceptual steps:
application, geometry and rasterization. These stages can be parallelized and can be pipelines
themselves. The pipeline model is adopted by modern graphics hardware. This allows the GPU to
parallelize operations in several pipeline stages.

than the I/O-subsystem can store it to disk.

We therefore attempt to find the best possible stage to split the pipeline between the
client and the server. Our goal is to create a visualization pipeline that provides the client
with a high degree of interactivity for object-related investigative tasks. To that end, we
give the user access to program the client-side visualization. However, we want to perform
the computationally intensive volume rendering entirely on the server side. As a result, the
objective of our approach is to output an intermediate representation from the server. This
representation enables the client to recreate the visualization without requiring further access
to the original data set.

In the following, we describe and compare common pipeline models and discuss how we
structure the pipeline for our own approach.

1.2 The Pipeline Concept

The transformation of three-dimensional data (like point clouds, polygon meshes or volumetric
data) into two-dimensional images is a common task in computer graphics applications. The
rendering process generates images from the three-dimensional data in a series of consecutive
computational steps. Rendering pipelines are the conceptual definitions of the steps of a
graphics system. Since these steps depend on soft- and hardware constraints as well as
the specifics of the data and required software features, there is not one universal graphics
pipeline.

Frequently used pipelines are exposed to developers in graphics APIs like Direct3D [Bly06]
or OpenGL [WNDS99], which abstract the underlying hardware. These Real-Time Rendering
APIs use the rendering pipeline model to expose the independent steps of their pipeline
to developers. Individual steps of the pipeline can therefore be optimized separately. This
separation allows the vendor to specialize the operations of one step and to implement specific
functions in massively parallel hardware.

Stages

The rendering pipeline is conceptually divided into the three stages application, geometry
and rasterization [AMHH02], as illustrated in Figure 1.1. The term pipeline implies that the

3

Figure 1.2: Different versions of the visualization pipeline: The top row shows the traditional
visualization pipeline with Data Acquisition, Filtering, Visualization Mapping and Rendering
stages. The middle row depicts a modified pipeline that applies the concept of deferred rendering
to the last step. One example for such a pipeline was used by Hadwiger et al. [HSS+05]. In
the bottom row, we show a split pipeline which performs different visualization mapping and
rendering stages on the server and on the client, respectively. Tikhonova et al. [TCM10c] use
such a pipeline for deferred visualization in volume rendering where the transfer function can be
modified on the client. Our approach also employs this pipeline structure. However, we focus
on separating the rendering of objects from their manipulation. This allows us to interact with
objects on the client without re-rendering on the server.

calculation of one stage needs to be completed and the results made available before the
next stage can start its processing. Each of the stages of the rendering pipeline may consist of
several substages and hence be a pipeline itself.

The application stage, usually executed on the CPU, is responsible for gathering commands
from input devices and execute corresponding operations on the data. The objective of the
application stage is to prepare the geometrical primitives for being passed to the geometry
stage. In the geometry stage, the majority of per-polygon and per-vertex operations are
executed. The rasterizer transforms the geometrical primitives into discrete fragments, where
each fragment corresponds to a pixel in the frame buffer.

While the internal structure of conventional graphics cards that offered hardware ac-
celerated rendering relied heavily on implementing the graphics pipeline, these conditions
became restrictive with rising demands for flexibility. This is why modern graphics cards
offer a programmable shader-controlled pipeline which allows the developer to program
individual steps of the pipeline.

1.3 Deferred Visualization Pipeline

In a visualization context, common pipeline models integrate the iterative user exploration.
Two typical visualization pipeline models are shown in comparison to our pipeline in Fig-
ure 1.2. The user typically repeats the filtering and mapping tasks until a desirable visualiza-

4

tion is achieved. Frequently, scientists are interested in particular parts of the visualization
while other parts are considered less important and only displayed to provide context. When
the scientist wishes to interact with the object of interest, the conventional visualization
pipeline suggests that the entire view needs to be re-rendered. The re-rendering, however,
is largely redundant and rendering the entire volume interactively on user input produces
considerable computational overhead. In a remote visualization system, this introduces addi-
tional strain on the network performance, since the requested rendering has to be streamed
to the client over the network. These tasks are prohibitive in large-scale environments.

We propose a modified pipeline for visualization which renders to an intermediate repre-
sentation. This setup permits the user to interact with the objects based on this representation
rather than on the full dataset, greatly reducing the complexity of the operations.

In order to adapt our approach to in-situ visualization scenarios, we furthermore subdivide
the object-level interaction on the data into two passes, as illustrated in the bottom row
of Figure 1.2. On the server, we first generate an intermediate representation of the data.
The client then performs separate visualization mapping and rendering stages which allow
deferred interaction with objects. Instead of interacting with all of the data, the user interacts
with a more lightweight representation of the data. In practice, we implement the deferred
visualization pipeline as a two-pass process where the first pass is executed on a server and
the second pass on a thin client.

To accommodate operations on large-scale data, we allow the user to define what con-
stitutes an object in the first pass and how objects are visualized in the second pass. The
metadata that is gathered in the first pass can be visualized in an initial pre-visualization step.
This allows for a manipulation and filtering of the objects based on the object attributes in
the metadata. When the actual visualization is requested from the server, the visualization
data is filtered according to the result of the pre-visualization step. Only the objects that are
actually relevant to the user are transmitted. This workflow therefore makes our approach
applicable for large-scale in-situ visualization systems.

1.4 Thesis Overview

In the scope of this thesis a deferred visualization system was designed and implemented. The
concepts and architecture of this system are the principal subjects in the following chapters.

We first review related work and the fundamental concepts applied in our system in
Chapter 2. The main concepts of our approach are presented in Chapter 3. We discuss the
structural stages of our pipeline, the intermediate representation and a conceptual overview
of the client/server-architecture. We present details of our implementation in Chapter 4,
including the framework and optimizations we implemented in our client/server system.
Results and use cases of our system are shown in Chapter 5. Finally, we conclude with
Chapter 6, which summarizes our approach and discusses our contributions and future work.

5

CHAPTER 2
Fundamentals and State of the Art

The contribution of this work is based on several core concepts that will be described in this
chapter of the thesis in order to provide an overview of the context within which we place
our work. The following subsections aim to give an overview of the fundamentals of the
specific topics relevant to our approach. Moreover, related work will be discussed for each of
the areas.

Figure 2.1: Diagram of the different concepts used in this thesis. We outline these concepts as
overlapping areas and present how the related work described in this chapter can be classified
among these concepts. Our work is placed at the intersection of all four main concepts.

7

Figure 2.2: The first pass of deferred shading stores the albedo, the depth values and the normals
into the respective off-screen buffers. The result of the combination of the intermediate deferred
shading results is output at a later stage. The deferred shading approach thus allows for the
surfaces to be lit in the final fragment shader.

Images from Wikimedia Commons [Ast15]

Figure 2.1 illustrates how the related work we describe in this chapter is placed at the
intersections of the central methodologies we integrate in our work. We believe that our
work is the first to incorporate all of these concepts into one approach.

2.1 Deferred Rendering Pipelines

The standard pipeline for image generation in computer graphics employs forward ren-
dering [AMHH02], where visibility computation and shading are performed in the same
rendering pass. However, for some applications, it has proven useful to defer specific parts of
the rendering process to a later point in the graphics pipeline for increasing the performance
or flexibility of the approach. These deferred rendering pipelines work by writing intermedi-
ate results of earlier pipeline stages to corresponding image buffers. In a later stage or an
additional render pass, the values of the intermediate buffers are taken into account for the
generation of the final image. By retaining these buffers describing certain scene properties
for every output pixel, the combination of all influencing factors on the value of a pixel can be
delayed to a later stage, which allows for a recombination of the buffers according to certain
properties or the gathering of additional information before the ouput is evaluated.

8

2.1.1 Deferred Shading of Geometry

The first approaches that chose to defer certain calculations of the rendering process to a later
stage of the computation pipeline were devised in the field of 3D computer graphics when
the concept of deferred shading, sometimes also referred to as deferred rendering [HH04],
postponed the actual shading of the geometry to a second, independent pass.

When the concept of deferred shading was first introduced by proposing the methodology
of shading every pixel only once after depth resolution [DWS+88], the term ’deferred’ was
not mentioned in association with this technique yet. Even the introduction of deferred
shading as we know it today, which operates through the use of G-buffers [ST90], still does
not use the term ’deferred’. Since deferred shading became feasible on consumer graphics
cards around 2005, the technique became popular in video games [Shi05, Koo08].

In the first pass of this technique, the vertex and pixel shader are executed to gather
attributes of the scene’s geometry. This information includes the position or the depth value,
normals and diffuse color of every visible surface, as shown in Figure 2.2. Other approaches
enhance the technique and opt to additionally store material properties, emissive maps or
per-pixel specular values for later passes. However, no actual shading is performed in the first
pass and the gathered information is stored in off-screen render targets. The intermediate
computation results of the first render pass are stored into the geometry buffer (G-buffer),
which then contains a projection of certain attributes of the geometry as seen from the
viewpoint.

For any frame buffer, the computation of the fully lit result image can be done in the
fragment shader by solving the BRDF for each pixel once per light source. This gives the ability
to render a large number of light sources in a scene without a significant performance-hit.

Variants of Deferred Shading

In recent years, techniques that optimize the algorithm and address limitations of the original
approach have emerged [Pla06]. The original deferred shading approach is not able to handle
multiple materials, a limitation which can be overcome by storing additional properties in
the G-buffer at the cost of the increased buffer size [Shi05].

A serious disadvantage is also the algorithm’s inability to deal with transparent objects,
which some approaches try to address by either using a separate pipeline to render transparent
materials [Koo08] or interlacing transparent and opaque data and de-interlacing them in a
later composition step [Pan09].

The separation of the lighting from the geometric stage also entails that anti-aliasing
does not produce correct results, since a single pixel in the G-buffer maps to a single output
pixel, which is a drawback of the original algorithm. Recent approaches use supersampling
techniques through performing multi-sampling anti-aliasing [Thi09], subpixel reconstruction
antialiasing [CML11] or adaptive supersampling [HBE13] to deal with this issue.

Light indexed rendering [Tre09] stores an index to the light affecting each pixel instead
of storing the normals and colors per pixel.

9

Decoupled deferred shading for hardware rasterization [LD12] stores shading samples
independently from the visibility in order to cache and reuse shading computation.

Deferred Lighting

Deferred Lighting [GPB04], also referred to as Light Pre-Pass Rendering [Eng09] can loosely
be described as a modification of deferred shading. The concept differs in that only the
lighting – and not the shading – computations are deferred. This approach is frequently used
in video games.

This technique uses three passes in contrast to deferred shading, which is performed in
two render passes. The first traversal of the scene geometry serves to evaluate the attributes
necessary to compute per-pixel lighting and stores them to the G-buffer. The second step is a
pass over the screen-space which computes per-pixel diffuse and specular shading equations,
writing to specular and diffuse accumulation buffers. In the actual render pass, the scene
geometry is traversed once more, accessing the lighting data from the accumulated textures
and modulating them with the diffuse and specular colors before writing the final per-pixel
shading into the color buffer.

The benefit of the deferred lighting approach is a reduction in the size of the G-buffer,
which can get very large in deferred shading settings. Disadvantages include the obvious cost
of an additional scene traversal as well as the fact that the diffuse and specular irradiance
values are stored separately during the deferred pass. This either requires multiple render
targets or two passes, whereas the deferred pass in deferred shading outputs a single combined
radiance value. The separation of diffuse and specular irradiance overcomes the disadvantage
of the original deferred shading algorithm of being only able to render one type of material.

Deferred Ambient Occlusion

Ambient Occlusion is a rendering concept where the influence of ambient lighting on a specific
point in the scene is calculated. While not physically correct, this approach can be used to
achieve a realistic-looking shadowing of a scene at relatively low computational cost.

Screen Space Ambient Occlusion [Mit07] uses the positional and normal data stored
in the G-buffer to calculate the screen-space ambient occlusion values. Since the G-buffer
can be reused, this strategy makes this approach very well suitable for a combination with
deferred shading. The result of the ambient-occlusion calculation is stored to a gray-value
representation which is multiplied with the result of the regular rendering as a post-processing
effect.

In order to achieve more physically realistic occlusion effects, Bunnell [Bun05] converts
the polygons of the meshes represented in a scene to disk-shaped elements in a preprocessing
pass to facilitate the calculation of the degree of shadowing influence one surface has on
another one. This method also demonstrates how Dynamic Ambient Occlusion can be used for
ambient lighting. Hoberock and Jia [HJ07] extend this approach by building a hierarchical
tree from the shading-disk representations and applying them in a deferred shading method.

10

The approaches Deferred Occlusion from Analytic Surfaces [SBSO09] and Ambient Oc-
clusion Volumes [McG10] extend Hoberock and Jia’s method into a single-pass screen-space
technique.

2.1.2 Deferred Shading of Isosurfaces

In the process of rendering isosurfaces of dense volumetric grids, the shading of the isosurfaces
can be deferred to the end of the pipeline [HSS+05]. During volume ray-casting, the location
of the intersection of the ray with the isosurface is stored to an off-screen buffer in volumetric
coordinates or in depth values that can be transformed to volume coordinates. This allows
for all further computations and shading operations to be performed in image space.

An arbitrary number of screen-space passes for further operations on the data can be
performed. For every pixel, the recorded volumetric location can be evaluated from the
image. The results of calculations on the corresponding voxel can be stored to additional
buffers. Through this process, buffers can be generated for the gradient and normal vectors as
well as second derivatives for the visualization of curvature. Using the curvature, illustrative
visualization techniques like ridge and valley lines can be implemented.

Binyahib [Bin13] allows for the selection of multiple isovalues. The isosurfaces corre-
sponding to the specified values are then rendered to deferred buffers from a fixed view
point. A selection of the resulting isosurfaces can be superimposed with correct visibility
while facilitating a modification of the colormap and relighting.

2.1.3 Deferred Shading of Line Fields

Nagoor [Nag14] uses a deferred rendering approach for line fields consisting of path lines
corresponding to particle trajectories in large-scale combustion simulations. This deferred
line-field representation stores per-pixel linked lists for every image pixel. Then, a variety
of attributes for the rendering of the pathlines, such as particle creation time and scalar
properties such as temperature or soot density, can be modified interactively.

2.1.4 Deferred Volume Visualization

Explorable Images [TCM10a] are multi-layered volume representations that permit an inter-
active deferred exploration of volume data. These representations are extracted from the
data set by combining similar values along a ray into one layer. By recombining the images
opacity changes of individual features can be achieved. The layer extraction and modification
of the properties of each layer can be influenced by the user.

By generating proxy images as a deferred representation for volume data [TCM10c],
different types of proxy images allow for the deferral of exploratory operations on the volume,
as is shown in Figure 2.3. Deferred view changes can be performed through the use of
multi-perspective proxy images. The storage of a depth proxy facilitates a relighting of the
data set. A deferred transfer function exploration is implemented by accessing accumulated

11

Figure 2.3: Through the generation of proxy images (depicted on the left) in the approach
by [TCM10c], common exploratory tasks in volume visualization can be performed without a
re-rendering of the scene. On the top row, multi-perspective proxy images incorporate multiple
viewpoints of the data set. View changes and ambient occlusion can be estimated through this
technique. The bottom row shows the use of a depth proxy that enables interactive relighting of
the scene.

Images from Tikhonova et al. [Tik12]

attenuation proxies. These techniques provide an interactive exploration of large data sets
without performing potentially expensive volume rendering operations.

Attenuation functions summarize the distribution of attenuation along a ray, which can be
used to generate a data representation for dynamic volume exploration [TCM10b] in large-
scale visualization environments. The ray attenuation function is a compact representation
that nevertheless enables the user to dynamically filter the information on the screen and
modify color and opacity values of the visualization. Constructing the ray attenuation
distribution recursively from a hierarchy of blocks permits the computation to be performed
in parallel [TYCM11], resulting in significantly better performance.

2.2 Remote Visualization

In many visualization systems, the massive sizes of complex three-dimensional data sets
combined with the processing power that is needed to calculate meaningful representa-
tions from this data place a high demand on the workstations available to the analyzing
researchers [SME02, MDM02]. With the emergence of the internet, the partitioning of com-
putational tasks to different machines and the externalization of computationally demanding
operations combined with a retrieval of the results became feasible.

12

Figure 2.4: A classification of remote rendering systems according to the type of data transferred
from the server to the client, as described by Shi et al. [SH15]. Whereas thin clients receive an
image stream without additional information on the data, fat clients receive the data set and
perform the rendering process largely or entirely on the client side.

Motivation

The motivation behind remote visualization is to keep the memory and processing require-
ments low on the client side. Rather than trying to equip researchers with a high processing
power and large amounts of memory, the ubiquity of web technology suggests that outsourcing
the computationally intensive tasks may be a better solution to this problem[EE99, ESE00].

Processing and rendering the data remotely on machines specifically designed for these
purposes [BD13] while providing the end user with clients that only display the generated
results not only makes it possible for multiple researchers to share the high-performance
equipment. Also, whenever these resources need to be updated, this can be done in a
centralized way, which greatly reduces the overhead of keeping the visualization system up
to date.

Through this setup, it is sufficient for each researcher to have access to a regular worksta-
tion instead of having a dedicated high-end machine with specialized hardware designed
for computationally intensive tasks. Remote visualization frameworks enable the access of
results on mobile platforms that were previously unsuitable for scientific investigation. Espe-
cially when working with data sets or simulations at sizes that call for in-situ approaches, the
accessibility of the visualization results from regular workstations is of paramount importance.

Furthermore, if the data set lives in a centralized host location, the effort of transferring
the data when either the data set is updated or the simulation parameters change can be
omitted. Directly related to this, the replication of the data onto the machine of every
researcher that is working with the data multiplies the strain on storage space, an issue
that becomes particularly severe for large-scale data. The process of moving the bulk of
the computational effort to a remote location falls into the category of remote rendering
problems [HS98].

Evidently, the network bandwidth and latency aspects need to be taken into account
whenever data has to be transferred via a network connection at an interactive frame rate. De-

13

pending on the amount of data that is streamed – which, based on the underlying architecture,
might be anything from a simple image stream to complex models – this can be a bottleneck for
remote visualization. For this purpose, the use of multi-threaded asynchronous compression
was proposed early on in order to reduce the impact of the bandwidth [SDWE03].

Architecture of Remote Visualization Systems

The design of remote rendering systems can, in general, be classified according to the stage
in the rendering pipeline (cf. Figure 1.1) at which the computation is split between the server
and the client [WBW96], separating fat clients that perform a large part of the rendering
pipeline themselves from thin clients that merely stream the results of the rendering performed
on the server. Depending on the type of data that is transferred from the server to the client,
Shi et al. [SH15] propose a classification into model-based and image-based remote rendering
systems. The model-based systems transfer large amounts of the model data to the client
where the rendering occurs. The image-based systems perform server-side rendering and
the data being transferred is mostly limited to result images and augmenting data. Since the
variety of approaches is very big, the classification from model-based to image-based systems
is rather a gradual transition than just a two-class division, as Figure 2.4 illustrates.

When removing all stages of the visualization pipeline from the client, the final rendered
result for a user’s request is simply sent in an image stream [MPHK93]. While the client is
relieved from the computational workload, the flexibility on the client side suffers. Every
change in the visualization settings induces a new streaming request from the server. In-
creasing bandwidth and improved compression schemes make this a viable solution for many
settings [MHUnC12].

2.3 In-Situ Visualization

Today we see a continuous and unprecedented growth of data gathered from high-precision
measurements as well as generated through large-scale simulation. More and more data
are being continuously generated through high-performance computing, with every new
generation of hardware boosting the capacities of super computers, thereby enabling the
modeling of more complex scenarios. On the other hand, the task of performing a meaningful
analysis of the collected information becomes increasingly demanding. The aggregation of
data sets measuring Tera- and even Petabytes is already common in contemporary research
projects [YWG+10].

Traditionally, the acquired data is stored to disk and, at a later point, retrieved on a
visualization platform for analysis and investigation. While the throughput discrepancy
between the hardware simulating the data and the data storage was acceptably small, this
approach was suitable and it was reasonable to take on the cost of writing data to disk. The
process of storing the entirety of the generated amounts of data is, however, prohibitive, at
the scale that simulations are outputting nowadays [Chi07]. Additionally, visualization tools
are not able to process visualization tasks of petascale data size without initially performing

14

some simplification of the data in order to expressively visualize the data either at lower
resolution than originally generated or in smaller chunks.

Challenges

As a matter of fact, the biggest bottleneck in a traditional simulation-visualization workflow
is the storage and retrieval of the data. The application of post-processing operations to the
generated data frequently still needs huge amounts of I/O operations. In certain scenarios
this approach is not practicable. Data reduction techniques may introduce additional errors
that were not existent in the acquired data and a probabilistic selection of data values may
not yield satisfactory results, making parallel visualization at massive scale a highly complex
task.

Since the architecture of modern GPUs is nowadays flexible enough for them to be used
for general purpose computations, the widespread use of GPUs as computational nodes
in high-performance computing allows for the utilization of the same hardware for both
the computational as well as the visualization tasks. To that end, the concept of running a
visualization in parallel to the simulation is referred to as in-situ visualization and is currently
one of the most important research topics in large-scale visualization [Ma09]. Many large
visualization frameworks have embraced this development and offer in-situ visualization
integration solutions, like ParaView [CGM+06] and VisIt [WFM11].

Recently, even browser-based in-situ approaches have been proposed [SSF+15].

In Transit

The limited speed of the disk transfer rate is also a serious constraint for modern supercom-
puters, where the I/O speed is usually greatly exceeded by its computation rate. The problem
of the occurrence of latency while writing the data to disk can be addressed by setting up
a separate I/O layer that performs a buffering of the data and subsequently writes it to
disk while the computational nodes of the supercomputer continue running the simulation
without obstruction. The term in transit visualization describes the strategy of performing a
specialized form of in-situ visualization in exploiting this layout by intercepting the transport
infrastructure that is performing the I/O and using it to additionally perform visualization
and data analysis [MOM+11]. For this purpose, an additional set of staging processors can
be allocated to communicate the data via MPI (message passing interface) to perform an
analysis or processing of the data without interfering with the main simulation. Rather than
performing the in transit visualization on specifically assigned nodes on the supercomputer,
the architecture of the staging area can also be set up to operate as a separate service while
communicating with the client through a low-level network transport.

For in-situ environments, which are engineered to outsource tasks that would greatly
transcend the scope of a regular workstation, the workload is split between server and client.
The approaches vary between very thin clients that only display pre-rendered images and
clients that partially render the resulting images using an intermediate representation. This
intermediate representation usually allows for deferred interactions.

15

For the purposes of this project, a high performance computing system might output
complex object representations that would be too costly to compute on a regular desktop
workstation, which could then be viewed, manipulated and interacted with on a client. If the
object representations could be generated in situ at simulation time, this might be additionally
helpful for investigation purposes.

2.4 Visualization in the Browser

Modern web browsers are powerful tools that integrate many well-engineered technologies
for accessing content from the Internet. The web browser as an environment for visualization
was explored early on [WBW96, MB97, RCMC00]. Recent tendencies to outsource most
computation to the cloud while accessing any content from a thin-client interface has shifted
the execution of many computerized tasks from standalone applications into the browser.
This general shift towards the preference of browser applications for many purposes can be
explained due to the attractiveness of browser interfaces for multiple reasons.

The technologies employed in modern web browsers can be used as a framework for
visualization tasks. HTML5, CSS3 and JavaScript are standard technologies incorporated by
default in web browsers. This makes visualizations easily accessible since the user does not
have to concern himself with obtaining, installing and updating the tools for the visualization
application. Furthermore, using the browser as the visualization framework guarantees that
the application is platform-independent.

Visualization approaches that rely on remote content based on web servers have fewer
issues with keeping the data consistent over many workplaces and most servers guarantee
protection from data loss.

Tools

Additional tools for specific tasks can easily be incorporated within a web application. Due to
the popularity of browser-based systems, many extensive frameworks are available for free.

WebGL [Par12] allows for hardware-accelerated rendering of 3D graphics within the
context of the browser without need for further plugins. WebGL is based on OpenGL ES in
combination with JavaScript. Three.js [thr15] is a free environment for three-dimensional
rendering implemented in JavaScript and WebGL.

Especially for information visualization, many toolkits and libraries exist that facilitate the
use of browser technology standards for visualization tasks. Prefuse [HCL05] is a visualization
toolkit that renders to a Java Plugin within the browser. ProtoVis [BH09] is a JavaScript library
that generates SVG graphics from data. D3 [BOH11] (short for data-driven documents) is a
direct successor of Prefuse and ProtoVis. It is a JavaScript library that is embedded into a
web page and capable of generating data visualizations through manipulation of the DOM
objects that describe the content of the web page. It supports the scripting of SVG, HTML5
and CSS properties.

16

Collaborative Visualization

Recent Web-based visualization solutions also aim to incorporate tools for cooperative ex-
ploration and investigation of data. Outsourcing the calculation to a remote server aims at
reducing the bandwidth limitations when visualizing large data sets[WPJR11]. Marion and
Jomier [MJ12] use WebGL to interactively render their data set within the browser and pass
the communication between the collaborators through WebSockets.

Visualization on Mobile Devices

The presentation of visualization content in the web browser makes it possible to use devices
that were previously unsuitable for this purpose. Mobile devices are omnipresent nowa-
days and are more and more used as a substitution for workstations. Many application
providers have picked up this development and offer solutions that perform processing in the
cloud [MHUnC12, SH15] or offer applications that run entirely in the browser.

Accessing visualization from thin clients like mobile devices requires for computationally
intensive calculations to be executed on a dedicated server component [TS15].

For thin-client settings, VirtualGL [Com07] offers the streaming of 3D rendering commands
to a server while streaming the output to the client.

2.5 Rendering of Segmented Volume Data

Object-based visualization approaches require the dataset to be segmented. This process
identifies individual regions or objects within the volume, e.g. according to tissue type. After
segmented objects have been defined, specific properties such as a separate transfer function,
can then be assigned individually to each object. The segmentation step is often the first task
after the data acquisition.

2.5.1 Direct Volume Rendering

In scientific visualization, volume rendering is the process of generating a two-dimensional
rendering of a volumetric data set [EHK+06]. Such data sets are typically represented as a
three-dimensional scalar field. They are obtained through 3D scanning devices, registration
of slices of 2D imaging techniques, or through simulation.

Images of volumetric data can be generated with multiple approaches. These can be
classified in image-order and object-order techniques. Image-order algorithms start from the
result image and gather information per output pixel whereas object-order algorithms iterate
over all voxels and map them to their respective output location.

Direct volume rendering is an image-order approach. For each pixel a ray of sight is
shot through the volume which is traversed until it exits the volume. Samples along the ray
are reconstructed, colored, shaded and accumulated. The opacity and color value is usually
specified by means of a transfer function that maps scalar values to RGBA values.

17

Volume Ray Casting [RPSC99] is a technique that shoots a ray of sight into the volume
which is traversed until it hits the bounding box of the volume. All voxels that are hit along
the ray are sampled, shaded and accumulated. The composition of the values along the
ray depends on the chosen ordering and projection (front-to-back, back-to-front, maximum
intensity projection).

Isosurfaces are surfaces connecting voxels within a volume that feature a constant value
(e.g. density, velocity, temperature). This constant value is called isovalue. Isosurfaces
can be extracted from the volume through dedicated algorithms, most notably Marching
Cubes [LC87], which constructs a polygonal model from all voxels within the isosurface. The
generated polygon mesh can be rendered through standard rendering techniques.

Splatting [Wes91] is an object-order approach. Every voxel is projected onto the viewing
surface in back-to-front or front-to-back order. The splats are represented by disks with
varying color and transparency values.

In our system, we use a modified ray-casting algorithm to render segmented volumetric
datasets to the object image proxies incorporated in our Volume Object Model.

2.5.2 Segmentation Techniques

The task of classifying data values to a certain object, also referred to as segmentation, can
be undertaken in many different ways [Wir07]. The approaches range from fully automated
segmentation where all steps in the segmentation process are performed algorithmically via
user assisted approaches to manual segmentation by hand in instances where algorithms are
not able to identify the correct separation of objects. Evidently, the utilized segmentation
algorithm depends not only on obtaining the envisaged segmentation results but also on the
nature of the data. A segmentation of meshes calls for different approaches than volumetric
or multidimensional data sets. Also, the quality of the data set and the pursued accuracy can
influence the choice of the approach.

Available segmentation techniques can roughly be classified into structural techniques
which rely on forming a segmentation of the volume by accessing structural information
and stochastic algorithms, which, in contrast, perform the segmentation through statistical
analysis only. In-between these categories, hybrid strategies try to combine the advantages of
multiple methods.

Three-dimensional edge detection [Liu77], which is a structural approach, defines an edge
at the intersection of two regions with different intensities of specific features. Local edges
are thus detected by using differentiation and are then grouped together to form boundary
contours separating the distinct regions. Morphological approaches use combinations of the
most fundamental transforms of mathematical morphology, erosion and dilation, in order to
approximate the shapes of the objects within the volume.

In graph based algorithms [MB98], edges and surfaces are depicted as graphs. In order to
generate objects from the graph, the algorithm searches for the lowest-cost path between
two nodes of the graph. Different search algorithms are used in various fields of science.

18

Deformable models [KWT88] are described by curves within the volume that deform under
the influence of external and internal forces. The external forces in this physically based
concept are influenced by the data which cause the model to adjust to the force, whereas the
internal forces counteract in trying to keep the model smooth.

Isosurfaces in three-dimensional volumes are defined by faces that connect voxels sharing
an isovalue. In combination with the usage of level sets [OS88], which are numerical tech-
niques to track the evolution of interfaces, this can be applied to track the contours of objects
within the scene.

Thresholding [SSW88] segmentation algorithms can classify objects according to whether
the value of a specific data attribute falls below or above a certain threshold. If a single
threshold is used, the result is a binary segmentation, but multiple thresholds can also be
defined. In volumes with a good contrast between regions, the use of thresholding methods
is a very effective approach. However, the technique is very reliant on the finding of a good
threshold, which is mostly done manually using visual feedback, although strategies that try
to automate the finding of correct thresholds [JMP88] exist.

Classification techniques [PXP00] are derived from pattern recognition approaches. N -
dimensional feature vectors computed for each voxel span an N -dimensional feature space.
Training data with known pre-segmented labels are fed to a classifier to correctly evaluate
the remainder of the data set.

Clustering algorithms can be used to partition a data set into a certain number of clusters
where each voxel is assigned to a specific cluster according to the minimization of some
distance function. Thereby, the algorithm groups all voxels of similar attributes into an
object. The most commonly used clustering algorithm for segmentation is K-means cluster-
ing [CA79], where the objects are iteratively grouped into K desired clusters while minimizing
the dissimilarity of the elements within one cluster.

Markov random field (MRF) modeling [Li94] is a statistical model that describes the
spatial interaction between nearby voxels. This method takes into account that statistically,
most pixels belong to the same class as their neighboring pixels. While by itself, it is not a
segmentation method, it can be applied within segmentation algorithms.

19

CHAPTER 3
Remote Visualization with Deferred

Object Interaction

When investigating real-world data in a visualization environment, often many objects occur
in a scene. Our usage of this term follows the definition of an object, or physical body, as
an "identifiable collection of matter in three-dimensional space which lives within a defined

Figure 3.1: This diagram illustrates the architecture of our system on a high level. When the
client sends a request for the visualization to the server, the server initiates the generation of the
Volume Object Model. The server returns the metadata generated during the rendering to the
client. This data allows the client to investigate the objects in a pre-visualization step, without
having access to the images yet. Tasks that can be performed in this step include filtering and
information visualization on the metadata. In a next step, the client requests the full visualization
from the server, at which point the server streams the images. Based on the images, the client
can reconstruct the visualization, which can be programmed on the object level.

21

contiguous boundary and may be more or less constrained to move together"1.

The architecture of our object-based remote visualization solution will be presented in
this chapter. We propose the introduction of a Volume Object Model (VOM) as an intermediate
stage in the volume visualization pipeline. Furthermore, we discuss the design of a remote
visualization architecture that employs this model in a similar way as a visualization by
proxy [TCM10c] approach. The Volume Object Model allows for a deferral of the user’s
interaction with individual objects in a segmented volumetric data set in order to manipulate
the data set on the object level in a thin client visualization system.

This solution is particularly advantageous if applied in an in-situ visualization scenario,
where the large quantities of data amassed in an HPC environment need to be rendered into
a suitable representation in order to be transmitted to a regular workstation and to be made
accessible to the researcher. The following sections describe the main conceptual notions of our
approach as well as the methods utilized in our implementation. A comprehensive description
of the technical implementation details of our system will be presented in Chapter 4.

3.1 Remote Visualization Architecture

Remote Visualization aims at transferring the computationally demanding tasks from the
client to a remote server. Many remote visualization systems are designed to perform all
calculations on the server which compromises the client-side flexibility. We describe our
architecture which proposes a deferred visualization pipeline to allow for client-side object
manipulation.

Remote Visualization with Deferred Interaction

Our concept is based on the notion that many use cases in visualization demand for inter-
activity in the context of object-wise interaction and manipulation. We therefore reduce
the visualization of our data set to a two-dimensional representation while still preserving
interaction capabilities on the object level at a later point in the pipeline. We call this in-
termediate object representation that is transferred from the server to the client Volume
Object Model. The client provides interaction methods with the individual objects within the
scene. By providing the user with a scripting console we maximize the object manipulation
possibilities. The user types in commands that are interpreted interactively and manipulate
both the appearance and behavior of the object representations. Since many tasks carried
out on sets of objects can be broken down into a few core operations, the user can program a
multitude of object-related queries and modifications and apply them to the visualization.

In contrast to pure remote visualization the client can render the final image from an
intermediate representation. This is especially desired when the rendering step on the client
is computationally cheap and the computation of the intermediate result is expensive. For
instance, the computation of object properties as well as spatial relations between objects
is relatively expensive. These object-level properties can be stored into an intermediate

1Definition from "Physical body", Wikipedia, The Free Encyclopedia

22

Figure 3.2: The server side of our system consists of several steps: First, the volume is segmented
into a number of distinct objects (left). When the objects are determined, their boundaries in
screen-space are evaluated in a first traversal of the volume (middle). The boundaries define
the size of the render targets for each object. In a second traversal of the volume, each object
is rendered to its target (right). Furthermore, metadata is accumulated about the objects. The
visualization and the metadata together constitute the Volume Object Model. The execution of
each of these steps is dependent on the result of the previous one.

representation. Deferred interaction on the client side is then possible based on these object
attributes.

3.1.1 Overview

The design of our system as shown in Figure 3.1 was created for an in-situ visualization
scenario, where a powerful HPC environment serves the computationally intensive requests
of the client. In order to comply with the entailing prerequisite of a thin-client visualization
setup, we designed a system which shifts the bulk load of the computational effort to the
server side while still preserving extensive adaptability for manifold object-manipulation
tasks on the client side. We believe this configuration results in a good trade-off between
client-side flexibility and an outsourcing of the processing performance to a suitable remote
device.

Our approach proposes the integration of deferred object manipulation capabilities within
a client/server-framework communicating via a socket-based streaming solution. For the
demonstration of our concept, we implemented a complete remote rendering system that
introduces the Volume Object Model in order to allow for client-side object manipulation
capabilities. To that end, a volumetric renderer for the server-side pipeline was implemented
within the context of the VolumeShop [BG05] visualization framework. A client that can

23

be accessed through any web browser capable of displaying the transferred data as HTML5
content was developed as a user interface for the system.

3.1.2 Server

The rendering process executed on the server side of the application prepares the data and
generates the Volume Object Model from the data set. A high-level illustration of the server’s
pipeline is shown in Figure 3.2.

As a first step, the server initiates the segmentation of the volume, unless the input
data is pre-segmented. For this purpose, any appropriate segmentation algorithm can be
implemented.

The server outputs the Volume Object Model, which consists of the visualizations of the
objects and the corresponding depth buffers. Additionally, metadata is extracted for each of
the objects during the traversal of the volume.

The server instance that performs the rendering of a data set on request can be executed
on any device. On execution, it opens a socket and listens to incoming connections. Whenever
the client requests data from the server, it processes the request and sends the resulting data
back through the socket.

3.1.3 Intermediate Representation

The Volume Object Model facilitates the generation of proxy representations for every ob-
ject within our scene. These proxies have reduced dimensionality, but allow for a scene
recomposition on the client side.

The Volume Object Model representation of the objects consists of a representation of
each of the objects rendered to a region defined as their minimal bounding rectangle. Every
object is rendered from the current viewpoint, but independent of occlusion. A depth layer
is also included into the representation for each object. In addition to the two-dimensional
proxies, metadata is generated in order to allow for a recomposition and for meaningful
query and interaction methods on the client side.

This metadata includes both view-dependent as well as volume-dependent object prop-
erties, respectively. The data can be object-wise information or data about inter-object
relationships.

View-dependent properties include the screen-space bounding boxes, the average depths
and an occlusion matrix. The occlusion matrix contains information for every object which
other objects it (partially) occludes. These view-dependent properties need to be updated
whenever the viewport changes.

View-independent metadata consists of properties like voxel counts, view-independent
relationship matrices and arbitrary object-wise features such as density or temperature.
An example for a view-independent relationship matrix is a distance matrix, which stores

24

the minimal distance between two objects in the volume. It is sufficient to evaluate these
properties once.

The construction of the visualization images contained in the Volume Object Model
requires two passes over the volume. This is necessary because we need to evaluate the size
of the objects in screen-space before we can create the appropriate render targets. These
areas are filled when a second pass over the volume renders each object to the dedicated
target. The view-dependent metadata is also calculated in these passes.

3.1.4 Client

Figure 3.3 gives a general overview of the steps the client performs before the visualization
is provided in the viewer. The client is implemented in HTML5 and JavaScript, providing a
console for user scripts which are executed interactively.

This strategy makes the environment highly customizable and gives the user complete free-
dom to modify the visualization, thereby allowing for a variety of object-related manipulations
that can be scripted interactively through the D3 JavaScript library.

If the browser-based client requests a visualization from the server, the object properties
are transmitted over the network to the client. Without transferring any actual image data
yet, the client constructs a pre-visualization solely from the metadata. This pre-visualization
step allows for the filtering and investigation of object properties. The request for the object
visualizations stored in the Volume Object Model can limit the bandwidth usage to the targeted
subset of objects.

The scriptable environment allows for queries, filtering and information visualization
tasks to be performed on this metadata. The user can program this pre-visualization, e.g.
show points as placeholders for all objects, visualize the metadata using techniques such as
scatterplots by mapping each object’s position to a scatterplot using selected object properties,
and perform filtering operations on the objects.

When the user is satisfied with the operations he made on the data, the query is sent to
the server. The object proxy images that the server transmits in response correspond to the
filtering of the objects specified in the pre-visualization. Through this strategy, the user can
limit the amount of data before it even gets transferred.

Only after the requested object images are received, the client-side rendering recomposes
them into the visualization. Like in the pre-visualization, the objects can be programmed
interactively in the visualization step.

3.2 Volume Object Model

We propose the Volume Object Model as an intermediate volume representation in a visu-
alization pipeline for segmented volumetric data. This intermediate representation can be
transferred from the server to the client and enables the client to fully reconstruct the scene
from the two-dimensional object visualizations provided within our model.

25

Figure 3.3: The steps in the client-side visualization pipeline: First, the client requests the pre-
visualization from the server. This request triggers the server-side rendering, after which the
server returns the metadata to the client. As soon as the client receives the metadata, the user
can perform pre-visualization tasks on this data. This includes investigation using information
visualization techniques as well as filtering of the objects. When the user is satisfied with the
results, the images are requested from the server. As soon as the images are transmitted, the
client can then reconstruct the original visualization from the images and program object-level
manipulations via a scripting interface.

3.2.1 Overview

This section will outline the motivation for the concept we devised as well as the details
of the steps to output an object-proxy representation for a data set. We describe how the
visualization and the metadata contained in our Volume Object Model are constructed. Lastly,
we will provide a description of how the volumetric representation of the object can be
reassembled and what modes of object interaction our model allows.

3.2.2 Objects in Volume Data Sets

When investigating large-scale volume data sets, often the nature of the data is such that it
can inherently be divided into a number of distinct objects. Subject to the level of detail of
the data set, multiple elements of the smallest data unit will frequently be related to each

26

other in that they share common properties, belong to the same structure or are contained
within a joint surface. If one is manipulated, the rest of the components within an object will
be constrained to react as well. These objects might, for instance, be different types of tissue
in a medical data set, distinct components of a technical device in an industrial data set or
delimited strata in a data set for geoscience. Depending on the research field, data sets may
consist of few (e.g. < 102 objects in medical data sets) up to many (e.g. ∼ 106 objects in
material science data) distinct objects.

Segmentation

In order to access the objects contained in a volume, rules for the distinction between
individual objects within the data set need to be applied first. As described in Section 2.5.2,
a variety of approaches exist for the allocation of data values to a certain object.

The choice of segmentation algorithm for a specific data set depends on many factors. The
nature and quality of the data set needs to be taken into account and the targeted result has to
be analyzed in order to select an appropriate algorithm. Since every algorithm has strengths
and weaknesses, often hybrid approaches are applied in order to obtain the best possible
result. Also, the quality of the segmentation depends heavily on whether the data set contains
a lot of noise, missing or corrupted values, which may impair an accurate segmentation. Since
the segmentation widely varies also with the scientific domain, our system is not focused
on one particular segmentation algorithm. The segmentation is an interchangeable module
in the design of our system. However, each algorithm comes with a set of parameters and
possibly with user interactions.

Our system exposes the segmentation step to the user with a programming interface.
The user can specify a predicate that either evaluates to true or false for each voxel using
a domain specific language. We determine the objects within our data set by performing a
connected-component labeling of the voxels contained in our volume. This process assigns an
integer to every voxel which designates the label of the object it belongs to. The background
(i.e. non-segmented parts of the volume) are assigned the label zero.

Object Specification and Object Attribute Computation

Our system uses a domain specific language (DSL) for the object specification and the object
attribute computation. The user specifies what constitutes an object and how to compute
attributes of objects. These programs are entered in the console of the client. The client then
transmits the program to the server. The used DSL is ViSlang [RBGH14] which translates the
object specification and attribute computation code to OpenCL code. The server efficiently
executes the OpenCL code on heterogeneous architectures using multiple processors or GPUs
scaling well to large data sets.
predicate inRange[voxel v] (float fMin, float fMax) {

return ((v.value >= fMin) & (v.value <= fMax));
}
server.inRange(0.5,0.75);

Listing 3.1: An example for ViSlang object specification code

27

A predicate inRange (cf. Listing 3.1) is defined and evaluated over all voxels in parallel. It
evaluates to a Boolean value for each voxel resulting in a binary volume. Using a connected
component algorithm the binary volume is transformed into a label volume where each binary
region gets assigned a unique ID. These regions constitute the volume objects.

The user can assign attributes to the volume objects by using the DSL.

/* declare mapping function for parallel reduction that allows counting
of voxels in a region */

integer isInRegion[voxel v](voxel vox, integer id) {
if (vox.value == id) {

return 1; // return 1 if voxel value matches id
}
return 0; // return 0 otherwise

}

object attributes:
integer id = label; // make the id part of the objects attributes
/* compute voxelCount of each object using a parallel sum reduction */
integer voxelCount = sum[voxel v in volume]isInRegion(v, object.id);

Listing 3.2: An example for ViSlang object attribute computation example

First a mapping function isInRegion is defined as shown in Listing 3.2. This function
returns 1 if the voxel value matches the object id and 0 otherwise. To define the object
attribute voxelCount, the mapping function is evaluated in parallel for each object ID. The
sum of all voxels that are part of the region equals the voxelCount.

Object-Level Manipulation

While each of these objects may be of arbitrary size and consist of many different voxels,
frequently scientists wish to treat the entirety of such an object as one entity and manipulate
the data on the object-level rather than on the lowest granularity of the data set. Both
real-world and simulated data sets will usually consist in large parts of regions that are of
low interest to the researcher, thereby constituting the background. Through object-based
approaches, scientists are able to investigate individual objects of their data set in detail while
either completely masking out the rest or keeping an unobtrusive representation of the other
objects in order to provide some context within the data set.

In multivariate data sets, object-centered approaches can provide the ability to combine
the attributes of individual objects into combined features for easier comparison with other
objects. Operations on the object-level allow the researcher to query the data set according to
object features, highlight objects with similar properties or display the objects with different
opacity values according to their importance.

If the spatial context of the individual objects is not relevant, the objects can also be
rearranged into views that facilitate an expedient investigation. Examples include exploded
views, sorting by a certain attribute, resizing, or other layouting criteria.

28

3.2.3 Object Model Computation

The central contribution of this work is a novel object model representation that enables a seg-
mented data set to be rendered on the server side into an intermediate object representation.
This representation consists of object attributes and 2.5D images.

To that end, each distinct object within the volume is rendered to its individual represen-
tation, which happens independent of occlusion and culling. The object representation allows
for user interaction and object manipulation as long as the viewpoint of the scene remains
unaltered. In our implementation, this representation is generated through the application of
a process that can conceptually be divided into three steps, during which two ray-traversal
passes over the volume are necessary. Refer to Figure 3.2 for an overview of our server-side
computation pipeline.

View-Independent Object Attribute Computation

Our architecture is designed to handle an arbitrary number of objects. The actual number of
objects is determined by an initial pass over the scene geometry. This pass counts the number
of heterogeneous objects within the scene, which is constituted by the previously executed
segmentation step.

In the pass over the scene, when evaluating the label value of every voxel, we not only
count the number of distinct objects but also count the quantity of voxels associated to each
of the objects.

To select a subset of objects from the total number of objects in case the network bandwidth
or the computational power do not support a presentation of the full number of objects, the
user can query and filter these object attributes before requesting the object proxy images
from the server.

View-Dependent Object Attribute Computation

Since we want to store every object’s two-dimensional rendered output image to a dedicated
rectangular area, we need to determine the size of every object’s screen-space bounding box.
This view-dependent object attribute is evaluated in the first render pass of the implementation.
For this purpose, an object tracing kernel traverses the entire volume. Other view-dependent
properties can be added to the metadata in this step of our process.

We perform direct volume rendering on the GPU via a modified ray-casting technique.
For every viewport pixel, a view ray is cast into the scene, passing through all the voxels
in the scene that contribute to that specific pixel when looked at from the current viewing
position. This ray starts at the eye point and is defined through a spatial vector denoting the
direction of the ray. Then, the ray is traversed step-wise from the volume entry position to
the volume exit position.

In standard ray-casting, the color value of the pixel is calculated by traversing the ray until
the composited color reaches an opacity value of 100%, at which point the ray is terminated.
In contrast, our modified approach always traces the ray until it exits the volume, determining

29

all objects that are intersected. At each step, the current position along the ray is computed
and rounded to the nearest voxel in the volume, the value of which is then considered as
lying along the ray. Whenever a voxel is hit, its label and therefore its affiliation to an object
is determined. If the value differs from that of the previous voxel (which designates it as
belonging to the front face of an object), the current position is appended to a data structure
storing all the voxels that were hit along this ray.

After the ray has terminated, all encountered objects are evaluated. For the screen-space
bounding box evaluation of every object that was detected along the ray as seen from the
viewport, the minima and maxima values of each of the objects are compared to the current
pixel’s position. If the voxel’s projection to the viewport lies outside of the current bounding
box, the values are updated to the current location. An analogous technique is applied for
finding the minimal and maximal depth values of the object during ray traversal.

Object Depth Computation We calculate an average depth value for each object, which
can be used for a simplistic depth sorting on the client. For complex scenarios, however,
the object-wise depth value is not sufficient. Therefore, we also store the depth data to a
screen-space buffer. This measure increases the size of the buffers but allows us a correct
reconstruction of the visibility of the objects even for convex or intersecting objects.

Metadata Assembly

Since we want to not only output our image buffer, but also make the necessary metadata
available to be utilized for object-related calculations on the client side, we can integrate
the corresponding calculations into the render pass. Aside from the indispensable metadata,
which is needed to reassemble the objects into an accurate scene representation, depending
on the use case and the nature of the data, we can append additional characteristics. The way
in which we define the metadata requires object-wise properties which can be used to define
our objects in more detail and can be calculated either in the course of the object tracing
pass, render pass or in a separate calculation step. This additional metadata can consist
of object-wise attributes like statistical measures (e.g. averaged features from multivariate
data sets like density, temperature or pressure values per object), geometric properties (e.g.
elongation, eccentricity) or topological properties (e.g. holes and tunnels).

Object Relationship Matrices In the course of the render pass, we can also calculate inter-
object relations. Such relationships are stored in matrix form, each entry specifying the value
of a specific property for a single object-object-pairing. Typical examples of object relations
are: occlusions, partial occlusions, distances, accessibility (i.e. is there a path between two
objects), similarity, correlation, etc.). Our approach aims to give our user full access to
program these relationship attributes from the client-side using DSLs.

Metadata Storage Our approach allows for an arbitrary number of metadata entries to
be stored for each object. Some of these properties may be stored object-wise while other
describe object-object-relations. However, we define some metadata properties that are

30

indispensable in order for our Volume Object Model to be reassembled. Therefore, first and
foremost, we need to store the information for client-side reassembly. We will show that
these attributes are sufficient for a straightforward object recomposition performed by the
client for simple scenarios.

The first of these properties is a list of all the object labels included in the scene, which is
attached for reference. The attributes for the composition of the object layers can be divided
into scene-related data and image buffer-related data. As for the scene, we need to store the
minimal bounds for each object within the scene in x- and y- direction as well as the width
and height of the objects in the scene. The data needed related to the image buffer consists
of the location of the object’s render target and the width and height in the output buffer. We
choose to normalize all of these properties to the [0, 1] range to facilitate a rescaling on the
client side. Therefore, we also transmit the dimensions of the scene as well as the dimensions
of the generated output. Furthermore, the average object-wise depth values computed in the
render pass are appended to the metadata.

3.2.4 Object Model Transmission

A server instance keeps a socket open listening to requests. The client, which runs in a web
browser, can then access the host’s address. The user is first offered a list of previously stored
sessions. If a session is selected, the client opens the viewer interface. After the server loads
the volume, it generates the output and sends the rendered image as a response through the
socket. The client also requests the metadata, which the host also transmits. Our modified
client does not instantly display the streamed image in the viewer but waits for both of the
responses to arrive and then initiates the recomposition of the scene.

3.2.5 Client-Side Scene Reassembly

On the client’s request, we first transmit the object attributes from the Volume Object Model
without the image data. By giving the client access to the metadata, we allow for a pre-
visualization mode. The user solely interacts with object attributes and is able to filter and
investigate them. Since the environment is fully programmable, the user can assign each
object a placeholder (e.g. a dot) and create visualizations with these placeholders.

Only after the user is satisfied with the outcome of his pre-visualization, the actual
visualization data is requested for the filtered selection of objects. On the web client, the two-
dimensional object representations are received and need to be evaluated and recomposed in
order to arrange the objects into their original positions within the input scene. The client
triggers a repaint of the viewer window as soon as the image stream has finished transferring
from the server.

The goal of our approach for the client-side object reassembly is to reconstruct the entire
scene from HTML5 elements. Besides the fact that by rendering the scene into an HTML
representation, any modern browser can display it correctly and no further software needs
to be installed on the client, we also consider it a very user-friendly solution. This design is
motivated by the idea that the appearance and behavior of HTML5 DOM elements can easily

31

Figure 3.4: An illustration for a depth issue that can occur whenever non-convex objects inter-
penetrate. In such instances, each of the objects partially overlaps the other object. If both objects
are rendered to a flat representation, a simple layering approach is not sufficient to guarantee
correct visibility.

be accessed and edited even by non-computer scientists using standard web technologies -
the JavaScript, CSS and HTML languages. We therefore generate our object representations
as HTML5 canvas elements and provide a console in our viewer which allows for an editing
of these DOM elements.

Object Reassembly

The resulting two-dimensional object representations need to be arranged in the viewer
according to their original position within the scene, which is looked up from the supplemental
metadata and mapped to the client’s viewer size.

We write every object to a separate HTML layer in order to make these layers pro-
grammable through JavaScript. The metadata can be attached to the layer as attributes,
which can be queried through the respective string descriptor.

The most crucial task is to ensure a correct depth sorting of all of the objects since we
reduced their representations to two-dimensional layers. In order to arrange the objects in an
approximate z-ordering, the canvas is assigned the averaged depth value. This strategy results
in a correct reproduction of the original object arrangement for scenes with non-intersecting
convex objects.

Per-Pixel Compositing

For many purposes in the process of assembling the scene from the individual objects, the
object recomposition can be done by arranging the layers containing the individual objects in
the correct position in x- and y-dimension and adjusting the z-index of the layers in order to
compose the objects in the right depth ordering. However, for scenes with non-convex objects
or intersecting objects it is impossible to recompose the scene by two-dimensional layering.
A more sophisticated approach to combine the objects is required in this case. Figure 3.4
illustrates the depth-sorting problem. Another way of looking at the issue of complex depth

32

Figure 3.5: For scenarios where two objects overlap each other a pixel-wise depth test is performed.
If one pixel of the front object has a depth value that actually indicates that this pixel lies behind
the back object, it is hidden from the representation. This method increases the calculation
overhead on the client, however, it ensures that correct depth is rendered even for complex objects,
which could not be obtained with the z-layering approach.

is to figure out for two objects whether those occlude each other. If both objects overlap
each other, neither of them can be completely arranged in front of the other through simple
layering without causing incorrect occlusion values.

Whenever two objects intersect, their representations would need to be either cut into
smaller parts that can be set to visible and hidden according to the intersection, or the
objects need to be traversed to determine which pixel is visible. The first option has great
disadvantages – for every object and camera modification, the subsections of the objects
would have to be updated since different parts would become visible or get occluded. We
therefore decided to implement the second approach.

Checking every object pairing in order to determine whether they partly occlude each other
would work, but is too costly for the client side. We therefore compute and transmit an object
occlusion matrix as part of the metadata. The viewpoint-dependent object occlusion matrix
stores information about whether one object is fully or partly occluded by any of the other
objects. A partial occlusion does not necessarily imply that reciprocal occlusion occurs in the
object pairing. Therefore, the occlusion matrix has to be checked in both directions: If Object
x occludes Object y and Object y occludes Object x , we perform pixel-wise z-comparison.

Since we can determine through the use of the occlusion matrix, whether two objects
overlap, we can reduce the overhead of checking all object pairings to the few that are actually
relevant. In a case where both objects overlap each other partially, it is necessary to check for
overlaps on a per-pixel basis in order to filter out wrong occlusion values. To this end, we
need to determine the area of overlap of the two canvases and compare the depth values
from the object-wise depth buffer within the overlap, as shown in Figure 3.5.

The pixel-wise comparison increases the client-side overhead, which is why for highly
complex scenes with many interleaving objects, the calculation effort may rise in the course
of the recomposition.

33

3.2.6 Deferred Object Interaction

Both in the pre-visualization step and in the actual visualization, the programmability of our
client framework gives the user the freedom to modify and query the objects. We describe
the techniques of interaction that our user has access to in the visualization composed from
our Volume Object Model.

Modes of Interaction

Scientists often perform a series of exploratory operations in order to optimize the presentation
of the data for their use case. Frequently users will try to detect the objects and regions
that they are interested in, will then zoom to the areas of interest and try to distinguish the
interesting data from the context.

Additionally, if the exact placement of the objects within their context is of low relevance,
the users may want to alter the data set in order to improve the visibility of specific objects,
to arrange them by different attributes to better understand relations between them. Many
of the tasks that scientists typically perform can be reduced to fundamental object-level
operations, most notably selection, filtering, sorting and rearrangement.

Selection We assign our objects their label as a unique ID (#objectN) in order to be able
to address them directly in a query. Furthermore, all objects are assigned a common class
tag (.object). Figure 3.6 illustrates how the DOM objects displayed on the client can be
interacted with by addressing them by their handle. Users can add additional class tags to a
subset of objects which makes it possible to address them as a group.

To that end, we can either access objects individually or write functions to perform
operations on a group of objects. Scripting a command that is executed on one object can be
performed by accessing it by its identifier #objectN. If we want to perform an operation on
multiple objects simultaneously, we need to group these elements by assigning a custom class
or through a selection and filtering operation. Then, we can apply our function through either
the JQuery method $(’.myObjectGroup’).each(function(){}) or D3’s equivalent. D3
selectors select and selectAll inherently loop over all elements that the selector applies
to and performs the specified operations. For applying custom functions to selections in D3,
the function d3.selectAll(’.myObjectGroup’).each(function(){}) can be used.

For instance, in a medical data set, for every type of tissue, the corresponding objects can
be grouped into a specific class. This allows for the bones, skin, muscle, etc. to be addressed
via their class. The selection of all objects that were previously assigned the class tag "bone"
is scripted as follows:

d3.selectAll(’.object’) // select by class ’object’
.filter(function(d){ // filter by specified function

var elem = d3.select(this);
return (elem.density > min_density && elem.density < max_density);

})
.classed(’bone’, true); // assign class ’bone’ to filtered objects

34

Figure 3.6: Each object is assigned a unique ID according to its label. This allows every object to
be addressed by its handle from JavaScript and D3. Most modern web browsers offer tools that
are able to highlight the elements within the web page and show a detailed description about the
element. In this image, one of the objects is highlighted. We can see that it is a canvas object
with ID #object2 and class .object of size 216× 205 px.

var bones = d3.selectAll(’.bone’); // select by class ’bone’

Filtering One of the most important instruments in the exploration of any kind of data
set is filtering. Segmented data sets are particularly suitable for the application of filtering
operations since a classification of the data into objects makes the object-wise querying of
properties much more convenient. As most real-world data sets contain large quantities of
less relevant information that can be either masked out or set visibly distinct as background
in order to provide context in an unobtrusive way, filtering is a crucial tool to figure out
areas of interest. Furthermore, filtering operations can be used to visually encode objects
with attributes according to some property, which makes it easy to distinguish interesting
characteristics at first glance.

A filtering operation can usually be described by the function that specifies which subset
of objects is relevant for the operation and by the task that should be executed on the objects
that fall within this subset.

35

A simple example for a filtering operation might be
"Select all objects whose temperature lies between 10 and 30 degrees and set opacity to 50%."

Such an operation is implemented within our framework with a function:

d3.selectAll(’.object’) // select by class ’object’
.filter(function(d){ // filter by specified function

var elem = d3.select(this);
return (elem.temp > 10 && elem.temp < 30); //filter function

})
.style(’opacity’, .5); //adjust style of resulting set of objects

Analogously, more sophisticated filtering functions that query data from the parameters
attached to the objects can easily be implemented in few lines of code. There are many
possibilities as to what kind of visual distinction can be applied to filtered objects in order to
either highlight them or make their appearance unobtrusive. Parameters that can be edited
include HTML attributes like opacity (and visibility) and borders, but D3 also allows for the
coding of more complex appearance modifications.

Another example for more complex object filtering is shown here:
"Select objects with a voxel count greater than the average voxel count and display in blue color."

This operation requires us to first evaluate the average voxel count, then modify the
objects that correspond to the query accordingly. For more complex appearance modifications
like this one, we delve a little deeper into CSS3. JavaScript also allows us to append new
elements to the DOM in the course of our operations.

/* select all objects and store the voxel count to a list */
var numVoxels = d3.selectAll(’.object’).attr(’data-voxels’);
/* calculate the average voxel count */
var avgVoxels = d3.sum(numVoxels) / numVoxels[0].length;
d3.selectAll(’.object’) //select by class ’object’

.filter(function(d){ //filter by specified function
var elem = d3.select(this);
return (elem.num_voxels > avgVoxels); //filter function

})
.append(’div’) //append a new DOM element to the object

.classed(’layover’, true) //assign a common class

.style(’background-color’, ’rgba(0, 100, 170, 1.0)’) //assign color

.style(’mix-blend-mode’, ’color’); //set the blend mode to color

The HTML5 canvas furthermore offers a straightforward text rendering functionality
through which arbitrary information can be shown as text on top of each of the objects.

Additionally, filtering may be done not only attribute-related but also on an object-relation
basis. That is, objects may, for instance, be filtered according to their distance to another
object using a distance matrix incorporated in the metadata. To this end, once again, D3’s
extensive capabilities allow for the generation of custom filter functions in very few lines of
code which makes the use of JavaScript for our purposes very powerful.

36

Rearrangement Aside from modifying the visual appearance of our objects, if the preser-
vation of the spatial location of the individual objects of interest is not paramount, we can
just as easily rearrange the objects as we altered their visual attributes. This approach can
be useful in many visualization scenarios. A simple example for such a use case would be if
one object is occluded by another object of interest, in which case the user may benefit from
rearranging them in order to see both objects at the same time.

Furthermore, well-known visualization techniques have already proven that oftentimes,
it can be beneficial to reorganize the objects within a scene in order to get a more meaningful
representation. These applications range from the generation of exploded views to a clustering
of the objects by chosen attributes rather than arranging them by their original spatial location.
Moreover, the objects can also easily be resized by accessing their height and width properties.

3.3 Summary

In this chapter, we have shown on the basis of several exemplary application tasks that our
approach provides powerful tools for the interaction with objects within a visualization and
exploration environment. Our technique runs fully interactive in the client’s web-browser
without requesting new data from the host unless the viewpoint of the scene changes, at
which point a re-rendering of the data set is triggered on the server.

37

CHAPTER 4
Implementation

This chapter aims to provide a detailed discussion of the development and technical details
of the remote visualization system that was implemented during a research project at the
King Abdullah University of Science and Technology.

4.1 Framework

For the implementation of the system we used the VolumeShop [BG05] research framework.
The VolumeShop framework is designed to be easily extensible through the implementation

of plugins. We created a rendering plugin within the context of the application that accesses
a segmented data volume and outputs the Volume Object Model representation.

VolumeShop also provides a simple client/server-interface for remote visualization. This
environment executes as a command-line server application, which is run on the host computer.
The server instance then communicates with the client via sockets. We used this setup as a
basis for our own client/server implementation and built our web client on top of the existing
framework by modifying and extending it.

For the extension of these frameworks and the implementation of a new renderer within
the context of VolumeShop, the C++11 programming language was used and built with the
Visual Studio 2013 compiler for 64-bit platforms. For rendering on the GPU, we implemented
OpenCL kernels in the OpenCL 1.2 standard. The web client makes use of the HTML5, CSS3
and JavaScript (with the JQuery [JQu15] and D3 [BOH11] libraries) technologies in order
to be executed within modern web browsers.

4.1.1 VolumeShop

The VolumeShop framework by Bruckner et al. [BG05] provides a complete interface for
illustrative volume visualization. It was used as the main environment for the implementation
of this thesis project.

39

Figure 4.1: This figure shows a screenshot of a VolumeShop session. A 3D view of the loaded
dataset is depicted in the prominent viewer window on the left side. If desired, this view can be
interactively rotated and zoomed via an interactor plugin, which is signified by the blue cube
at the bottom of the viewer window. To the right of the viewer, property windows allow for a
detailed specification of the settings of the different plugins used in the current session.

VolumeShop was designed as an interactive standalone solution for illustrative visual-
ization tasks. It gives the user the flexibility of choosing between different renderers and
visualization techniques in order to devise meaningful representations of their data set. As
such, it also offers approaches for interacting with both segmented and unsegmented volumes.
The interaction techniques VolumeShop offers for visual exploration and analysis include,
among others, cut-aways, ghosting and exploded views.

Within the VolumeShop application, scientists can navigate and explore their data dy-
namically and in real time via a three-dimensional viewer interface directly operating on
the volumetric data set. A screenshot of the application is shown in Figure 4.1. Users of the
VolumeShop environment are able to combine multiple interactive renderers for meaningful
and customizable non-photorealistic representations.

The extensibility of the application allows for an arbitrary number of plugins to be
added, modified and applied at the same time. It is also possible to add and display more

40

Figure 4.2: The VolumeShop web viewer in its original state as pictured here is a thin client
interface that streams the image output from the host. This diagram shows the process of loading
the same session which was displayed in the standalone VolumeShop program in Figure 4.1.
After the corresponding session and viewer were selected from the interface, the viewer interface is
loaded into the browser window, which can be interacted with through 3D rotation and zooming.
Note that the property windows provided in the standalone tool are not available in the simplified
web client, which is why all the settings need to be specified beforehand and saved to a session
file.

than one viewer in order to display multiple visualizations or the same volume in various
representations simultaneously. If there are several renderers applied to one viewer instance,
a compositor is responsible for the superimposition of the outputs of the renderers in the
order that they are sorted.

The architecture of the framework facilitates a straightforward implementation of addi-
tional components by offering a plugin-based system with interfaces for different types of
plugins.

41

4.1.2 Remote Visualization with the VolumeShop Framework

VolumeShop is usually executed as a standalone application as described in the previous
section. Besides this application, VolumeShop also offers a client/server-framework for
presenting rendered content by displaying it remotely in a web browser interface. An instance
of this framework and the workflow of accessing a visualization within the web viewer is
shown in Figure 4.2. This environment was created to offer an easily accessible visualization
interface for end users who do not wish to concern themselves with the deeper settings
for modifying the visualization which are available in the regular VolumeShop GUI. This
framework was used as the basis for our remote visualization implementation and was
adapted and extended into an interactive environment to work with our approach.

When running VolumeShop as a server instance rather than using the GUI, the server
needs to be started from the console and opens a socket. The client can open the web interface
in any browser and send requests to the server.

Sessions

Prepared VolumeShop sessions can be loaded via the simplified client interface. The session
specifies which dataset is loaded and which renderers are responsible for displaying it in the
viewer. The server then creates the renderers and writes their output to a framebuffer. For
accessing a particular visualization session using the web client, the VolumeShop session
needs to previously have been created using the VolumeShop GUI since the simplified client
does not offer interfaces to specify the datasets and plugins to be used within this session.

The session is stored in an .xml file which describes the location of the displayed data set,
the viewers that are made available to display the data and the active renderers and plugins
used for the visualization within each viewer as well as all other VolumeShop settings that
can be loaded on startup of the application.

Workflow

When loading the session from the web interface, the user is provided with a view which
offers a selection of the different viewers the session has stored. Since the interface is meant
to be kept simple, there can only be a single viewer displayed at once within the browser
window.

As soon as the user selects a specific viewer, the actual content associated with the
respective viewer is loaded into the web interface, displaying a window streaming the
rendered data from the web server. Here, the composed output of one or multiple renderers
is displayed in the way it was defined in the session. For this purpose, the web server creates
a VolumeShop instance with the predefined session parameters, streaming a single image
containing the composite output of the VolumeShop viewer from the server to the client
upon request. The interaction modes of this client/server-framework are limited to rotation
and zooming in the 3D view of the data set. The client displays an image stream, while the

42

rendering process is performed on the remote server. In accordance with the classification of
remote rendering systems as presented in Figure 2.4, this can be classified as a thin client.

4.2 Data and Segmentation

We have implemented our novel server-side rendering component as a plugin in the Vol-
umeShop framework. It outputs the Volume Object Model, the intermediate object represen-
tation we propose in Section 3.2.

For the purpose of rendering a segmented volume, we load a data set and perform a
threshold-based segmentation algorithm. Afterwards, we run a connected component analysis
which results in a labeled volume. Alternatively, the segmentation can also be loaded from a
volume file. The segmentation can be programmed using a ViSlang DSL [RBGH14].

The current implementation of our renderer receives a voxelized volume where every
voxel is labeled by an integer value that can be either zero (background) or a label denoting
the voxel’s allocation to a specific object.

The input volume is loaded from a .dat file which stores the data values in the a simple
binary format at unsigned short values, which sets the data range to [0,4095].

4.3 Server Implementation

On the server side, a novel renderer was implemented within the context of the regular Vol-
umeShop framework. Since our system runs on a regular workstation, in our implementation,
we introduced a deferred visualization pipeline that includes several optimizations.

4.3.1 Overview

The server side is based on a segmentation-data ray-casting algorithm [RBGH14] which is
an existing VolumeShop rendering plugin. It is a GPU-accelerated renderer that executes
an OpenCL kernel writing the output to an image buffer. The image buffer is displayed
using OpenGL or transferred to the client over the network. To efficiently transmit the object
visualizations over the network we pack as many images as possible into one output buffer.

In contrast to conventional ray-casting, our renderer outputs the volume not as a compo-
sition of all objects, but renders each object into a separate rectangular area in the output
image, which is sized according to the object’s minimal screen-space bounding rectangle.

After the data segmentation, we perform an object-tracing step, which is responsible
for determining view-dependent object properties. For this purpose, the renderer needs to
traverse the volume in two passes (each executed in a GPU-accelerated OpenCL kernel) rather
than one ray-casting pass. The screen-space bounding boxes of all the objects in the scene
are evaluated in the course of this traversal while tracking the boundaries for each object.

43

A rectangle packing step is executed on the CPU in-between the two render passes. The
two-pass approach is necessary because the minimal bounding rectangles per object need to
be determined before the actual rendering can take place.

In order to reduce the workload for the second object traversal, we also buffer a per-pixel
object count which can be used to look up the expected number of hits in the second render
pass. Subsequently, we use the image-space bounding boxes in a rectangle packing step to
create a packing of all object boxes within one rectangle. We do this because we would like
to transfer all object representations within a single output buffer. This step is necessary to
determine the location of every object within the output buffer.

A render pass over the volume by traversing it once again via ray-casting renders the
individual objects to the dedicated areas within the output buffer. For this purpose, we pass
the render kernel the coordinates of the rectangular regions that define the objects’ render
targets. From this information, the render kernel evaluates the correct position for every
pixel in the output.

4.3.2 Metadata Storage

For the storage of the metadata, we use VolumeShop’s integrated property functionality,
where plugins have the ability to store and read from different types of attribute data. A
property is stored with a string descriptor and a data field. VolumeShop’s property fields
store data of the VolumeShop API class Variant. The data types that can be stored to this
field include Integer, Boolean, Float, String, etc. Data structures (Arrays, Matrices, etc.) are
composited from the primitive data types.

Additionally, we store and transmit an object occlusion matrix in order to determine on
the client side whether we need a more sophisticated depth comparison between two specific
objects.

For large datasets, object relationship matrices are typically sparse. For instance, in the
case of the occlusion matrix, most objects are not occluding most other objects, leaving most
entries of the matrix zero. A sparse matrix representation would save memory consumption
and transmission overhead in such cases. However, in our current implementation, we store
and transmit dense matrices only.

4.3.3 Object Traversal Pass

If the application calls the renderer’s display function, the first render pass is initiated. It calls
the OpenCL kernel d_precompute for the window, which performs a ray-casting operation
for each pixel of the viewport. This kernel determines the viewpoint’s position and viewing
direction with respect to the data volume, and emits a ray into the data set. In the OpenCL
function evaluateRay_precompute which is called from the kernel for the ray being cast
for the current viewport pixel, the position along the ray is incremented stepwise until it exits
the volume. In the course of this traversal, data about the objects is collected.

44

The information acquired from this ray-casting pass includes the number of objects that
are hit along the ray as well as their IDs. In this process, a voxel being hit counts as an object
whenever it is nonzero (which is the value assigned to empty voxels) and differs from the
voxel previously hit along the ray (that is, it is the front face of the current object as seen
from the eye position). This process implies that objects that would be occluded from the
viewpoint in a conventional renderer as well as objects that are concave and are therefore hit
multiple times along a ray with another object or empty space in-between are not left out.

Most importantly, however, the object-tracing pass determines the bounding rectangle
for each object in the scene with respect to the viewport. For this purpose, the minimal and
maximal coordinates of all the objects that were detected along the ray are compared to the
current position and updated if necessary. The screen-space bounding box values are stored
in global buffers for the minima and maxima in both dimensions.

We use atomic operations for the comparison of a potential new value to the old value
in order to keep the value’s integrity even if multiple threads try to access it simultaneously.
Therefore we apply the atomic_min and atomic_max functions when testing for boundaries.

4.3.4 Object Image Packing

Since our implementation is designed to transfer all object visualizations in one buffer, we
try to arrange those render targets optimally within a rectangular area. This approach also
has the advantage of letting the use view the visualization output as a single image when
instantiating our renderer in the VolumeShop GUI on the server.

The minima and maxima buffers that were output from the object-tracing kernel are then
used to determine the minimal possible area of the renderer’s final image buffer as well as
the location of each individual object within the output. Since the individual rendering of all
objects results in an output of rectangular areas of different sizes, these resulting rectangles
need to be arranged optimally within the result image in order to minimize the total image
area.

Object Bounding-Box Packing

At this point in our approach, we have evaluated the size of the rectangular rendering
destination that each individual object requires. This size is determined from the minima and
maxima values that we receive as the output of our object-tracing pass, which can be used
to calculate the width and height for each object’s size. Since we pack images of multiple
objects into one common render target, we attempt to arrange the rectangular object areas
optimally within the output buffer in order to minimize the memory consumption. To this
end, we perform a packing operation on the bounding boxes of our objects.

The Rectangle Packing Problem The task of packing our render targets into one output
is as a rectangle packing problem, which has been shown to be NP-hard [Kor03]. It is an
optimization problem where two main problem sets can be distinguished: On the one hand,
the problem of fitting as many rectangles as possible into an area of fixed size and on the

45

Figure 4.3: If a rectangle is fitted into a free area with remaining space, the block needs to be
subdivided. The cut that separates the new horizontal and vertical sub-blocks can be done in two
ways as illustrated. We chose the solution that maximizes the area of one of the sub-blocks to
increase the chance of fitting another block into the empty space in the subsequent fitting steps.

other hand, finding an enclosing rectangle of minimal size that fits all elements of a set of
arbitrary sized rectangles without overlap [Kor04]. Since the first of the problem sets cannot
guarantee that all rectangles can be fit into the result and a lot of space may remain empty if
either the number or the size of the rectangles is very small, we chose the second approach
to find an optimal fitting for our rectangular object areas. Our approach to the rectangle
packing task is based on the algorithm described by Gordon [Gor11]. For further reference,
Algorithm A.1 in the appendix outlines the implementation of our algorithm in pseudo code.

Rectangle Sorting In order to create a packing that fits all our objects into a minimal
containing rectangle, we require a list of all rectangles sorted from biggest to smallest. This is
necessary because bigger rectangles need to be packed first, while smaller rectangles can be
filled in the free space that remains. For this purpose, we tried sorting the objects by different
criteria: by width, by height, by max(height, width) and by the rectangle’s area height×width.
We found that a sorting by max(height, width) performs best because for rectangles with
uneven proportions (i.e. one side is much larger than the other), the prioritization of the
longer side ensures it is inserted as early as possible. The insertion of two or more such
rectangles will usually generate a larger free space, which, if fitted early on, is more likely to
be filled by the subsequent candidates.

Rectangle Packing For the packing itself, the list of sorted rectangles is iterated from
biggest to smallest, ensuring that the big rectangles are first fit into the result with the smaller
rectangles filling up the remaining free space. Since we use a growing rectangle approach, the
output size is initially set to the size of the first (and biggest) rectangle in our list. Whenever

46

Figure 4.4: This figure depicts an intermediate result during the rectangle packing process of our
implementation where 20 rectangles (in gray hues) were already packed into the output area.
The free blocks are shown in red and blue hues, depending on whether they are the horizontal
or vertical child of their parent block. For better comprehensibility, the placed rectangles are
numbered according to the order in which they were inserted. Next to the intermediate result,
we illustrate the underlying tree structure of the rectangle subdivision.

a new rectangle is supposed to be fit into the result, the output is recursively searched for
any remaining space that is big enough for the width and height at hand. If there is no free
space of sufficient size, the output is resized to dimensions that can accommodate the new
rectangle. In order to keep track of the allocation of areas and also to search efficiently for
free space, the containing rectangle is subdivided into free and occupied blocks, building a
binary tree storing horizontal and vertical nodes.

Tree Traversal For the fitting of any rectangle, the first step is to search the existing tree for
free areas, and, whenever a free block is found, determining whether its area is big enough.
We choose to search the whole tree recursively rather than simply picking the first sufficiently
big area in order to find the smallest possible space that can still accommodate our rectangle.
To this end, for every free block with large enough dimensions, we calculate a ratio rectangleArea

blockArea
between the area of the potential rectangle candidate and the block’s area. Finally we select
the available block with the maximum ratio, meaning that, from all potential candidates, we
choose the one of the smallest dimension.

As soon as the most suitable unoccupied space is found, we set the status of the block

47

Figure 4.5: An exemplary output of our rectangle packing algorithm, the intermediate result of
which was depicted in Figure 4.4, is shown in this Figure. This example shows a packing of 512
rectangles and illustrates that in most conditions, our algorithm is able to pack the rectangles
efficiently. This final result serves as input for the consecutive render pass.

to occupied and assign the coordinates of its designated space to the rectangle. It is also
determined whether the horizontal and vertical dimensions of the rectangle fit the free area
exactly. If this is not the case, the remaining space is divided into one or two blocks that are
still unassigned. The unassigned block(s) describe the free area in horizontal and vertical
direction and are appended as children to the newly occupied block, thereby extending the
tree structure. This process is illustrated in Figure 4.3.

Packing Heuristics Since we do not know which size of rectangle might be fit into the
free blocks, there is no efficient way to determine whether a horizontal or vertical split will
yield better results in the end. We therefore calculate the sizes of the remaining children and
the quotient smallerArea

biggerArea for both possibilities. Small values for this quotient are considered
favorable, since it means that one area is much bigger than the other one. Choosing the split
that minimizes this quotient therefore results in the subdivision that is more likely to be able
to fit other big rectangles.

Generating the Output The searching and placing process is repeated for every object until
all objects are packed into the output. Figure 4.4 shows an intermediate result of our rectangle
packing algorithm, while also serving as illustration of an interim step of the construction of

48

Figure 4.6: Since the objects are rendered to two-dimensional representations, the naïve approach
to display them in a correct depth ordering is by layering the objects according to an average
depth value calculated for each object similar to the billboard approach common in real-time
rendering techniques.

the binary tree built during the process of the packing. We show the underlying tree structure
next to the intermediate result, with blue arrows depicting horizontal child relationships and
red arrows pointing towards vertical children.

For use cases with a sufficiently large number of objects, Figure 4.5, which shows the
final result of the packing displayed in Figure 4.4, demonstrates that our approach generates
an output that fills up a rectangular area while leaving little free space.

4.3.5 Volume Rendering

The assignment of the object coordinates within the output buffer serves as a map for the
second pass to render the objects into the allocated bounding rectangles which is executed by
calling the OpenCL kernel d_render. This kernel traverses the volume in a fashion similar
to the object-tracing pass by shooting rays into the volume from each pixel using the function
evaluateRay_render. Each ray through the volume is traversed in step-wise increments,
evaluating the voxels the ray passes through.

After the ray traversal has gathered all the information about the objects along the
ray, they are rendered into an off-screen buffer. The rendering targets are represented as
two-dimensional layers per object, an approach that works in a similar way to the screen-
aligned billboards rendering frequently used in real-time rendering scenarios [AMHH02]. An
illustration of the objects that are represented by layers is shown in Figure 4.6.

In our implementation, we place all render targets into one common one-dimensional
image buffer. The size of the image buffer is determined by width×height of the dimensions
that the rectangle packing determined.

49

Object-based Early Ray Termination Since we have recorded the number of objects en-
countered per pixel to a screen-space buffer in the first pass, we can make use of this
information in our render pass. The precomputed per-pixel object count is queried to deter-
mine whether there are any objects expected along the current ray and whether it therefore
needs to be pursued or can be skipped without further investigation.

While in the first ray-casting pass the ray was only terminated when reaching the volume’s
boundary, we can now end the ray traversal for each ray as soon as we encountered the
expected number of objects for this particular pixel. This is particularly helpful for rays
emitted from pixels that do not reach any object – through this strategy, these rays can now
be aborted right away.

Accumulating the Color Value per Object For every voxel encountered along the viewing
ray, we can access both the original volume as well as the segmentation mask, which specifies
the voxel’s affiliation to an object. The voxel’s RGBA values are accumulated to the color
value of the object denoted by the voxel’s label.

The RGB color of the voxel can be looked up in a global transfer function according to the
voxel value in the original volume. Alternatively, a color value can be assigned to each label
to allow for a visual distinction between different objects. Through settings in the shader,
we can specify a blend factor to take into account both the label color value as well as the
transfer function. The alpha value is always looked up in the transfer function.

By storing the object-wise accumulated colors, when the ray is terminated, distinct color
values are returned to the kernel for all objects that were encountered. Through this approach,
multiple objects can be rendered from one single ray.

Writing to the Image Buffer When the ray is terminated, the kernel writes the accumulated
color values for all encountered objects to the image buffer. In order to render to the correct
pixel of the image buffer, the renderer is supplied with the coordinate list for the rectangles
of all the objects determined in the rectangle packing. Figure 4.7 illustrates how the mapping
from the camera coordinates to the image buffer is calculated.
The pixel’s index in the one-dimensional buffer sums up to

index = widthimageBuffer(ylocal + youtputCoords) + xlocal + xoutputCoords

where xlocal = xviewport − xboundingBox and ylocal = yviewport − yboundingBox.
x, youtputCoords denotes the coordinates calculated in the rectangle packing and x, yboundingBox
are the the bounding values of the object in the context of the volume, evaluated in the
object-tracing pass.

Not only the first object but all occluded objects are written to their respective render
target. This implies that since the color values were accumulated per object in the ray-casting,
the pixel buffer can be accessed multiple times per kernel call.

Depth Buffer At this point we note that we do not only store the color values to the
image buffer, but also allocate regions of the same size as the objects for storing a depth

50

Figure 4.7: Mapping from image space to image buffer coordinates: In the render pass, each
object is rendered to its dedicated rectangle in the output image buffer. The position of the
rectangle is determined by the rectangle packing algorithm. To render to the correct area, the
coordinates need to be translated from the image coordinates to the coordinates of the image
buffer.

representation of the object to the output. For this purpose, we double the object’s calculated
width before rectangle packing and use the second half of the provided area for the storage of
the depth values. The storage of the depth values increases the size of the output buffer, but
gives us greater accuracy in rebuilding the scene at the client, which is particularly relevant for
complex objects. The depth values could also be stored to a dedicated buffer rather than being
included in the image buffer, which would lead to both more efficient storage and a more
suitable data representation (in per-pixel linked lists) of the objects’ depth representations.
We were limited in this issue by the current constraints of our framework and consider the
improvement of the depth representation as future work.

4.4 Client/Server Communication

The client/server communication operates over sockets. In order to open a socket, the server
relies on the socket functionality that is integrated in the Qt framework [Qt15]. It opens a
socket on the specified port and listens to incoming connections. The client can then send
requests to the server’s address.

Our implementation optimizes the deferred visualization pipeline we described in that
we request the metadata and the visualization simultaneously. This works for relatively
small data sets while it is not applicable to in-situ scenarios. The metadata and visualization

51

Figure 4.8: The web client can be accessed through any web browser and consists of a main view
showing the visualization data as well as a smaller overview, here shown on the top left. If objects
in the main visualization are modified, the overview preserves the context of the original object
arrangement. On the right, a console shows the HTML content of the visualization, displaying
the canvases for each object, and another console is used for scripting JavaScript commands.
These consoles can be edited interactively.

are already streamed independently through JavaScript requests, since the visualization is
requested via an image stream and the metadata is obtained following a request for the
VolumeShop property. In order to wait for both requests to finish their execution, we rely on
the JQuery Deferred object. This concept allows multiple JavaScript functions to return a
promise, which is only resolved when the function has finished. The main function therefore
waits for all promises to be resolved before it continues with the execution.

4.5 Client Implementation

The Web Client, which is shown in Figure 4.8, is designed to run in any web browser capable
of displaying HTML5 content. This approach has multiple advantages: On the one hand,
this ensures broad support for the client on any kind of device. The client is run in an
environment that users are familiar with and which does not require additional software or
plugins. Additionally, this strategy also gives access to the highly developed technologies that
modern web browsers offer, which makes our solution highly customizable.

52

4.5.1 Pre-Visualization

In order to be able to deal with large data, our approach proposes a pre-visualization step
which performs visualization tasks solely on the metadata. This allows the user to pre-filter
and modify the objects according to their attributes, thereby optimizing the query for the
request of the images. JavaScript can be used to attach glyphs to the abstract metadata
to perform information visualization: e.g. scatterplots, histograms and other visualization
techniques can be programmed through the console using the D3 library.

Since our implementation was executed on a regular workstation and we were not
handling extremely large data sets, we requested both metadata and images at the same time.
The pre-visualization tasks can be performed on the metadata nevertheless.

4.5.2 Image Unpacking and Image-based Rendering

In order to convert the streamed data into our object representation, we need to subdivide
the image buffer which we received through the host’s image stream into the rectangles
specified by the image coordinates in the metadata. The image-related metadata is stored in
a normalized form with values in the range [0, 1], therefore we need to adjust the coordinate
values to the height and width of our image data, which was also transferred in the metadata.
Since we output our objects as HTML5 canvas elements, the slicing of the image into object
regions is straightforward. The canvas element can be filled from a subregion of a specified
input image by indicating the appropriate coordinates and sizes. Furthermore, the canvas
element provides functionality that is hardware-accelerated, which is beneficial for the
rendering of the objects in the browser.

We iterate through all the objects specified in the metadata and access the canvas elements
for each of the objects. On the first loading of the viewer, these canvas elements need to be
created and appended to the viewer. In this process, each canvas is assigned a common class
as well as a unique ID which corresponds to the label of the appropriate object. Through
these descriptors, objects can be addressed individually or as a group. At a later point, i.e.
when the view is reloaded due to a rotation of the viewpoint, the canvases are simply updated
by accessing their unique IDs. We then fill every canvas with the corresponding rectangular
part of the image received through the stream and finally displace the canvas to the location
as specified in the metadata.

An advantage of the usage of HTML5 elements is that arbitrary metadata which was
transferred in addition to the data for the object reassembly can easily be attached to an object
by assigning it to the object canvas as an attribute, which is composed of a string descriptor
and a variable value. Through this methodology, metadata can be effortlessly queried from
any object by requesting it through specifying the corresponding string property.

We determine from the occlusion matrix we transmitted as part of the metadata, whether a
mutual occlusion occurs between two objects. If this is the case, we do a pixel-wise depth test
for the overlapping area, looking up the actual depth values of both objects in the depth buffer
we transmitted as part of the image buffer. The pixel-wise depth test is a costly operation. It

53

is, however, necessary to ensure a correct depth representation of the objects at the client.

4.5.3 Object Interaction and Manipulation

We integrate a console into our viewer window which allows the user to script the HTML5,
CSS3 and JavaScript behavior of the visualization. For the console environment, we used
the CodeMirror [Cod15] library which provides an interactive scripting environment that
integrates into web pages. Most web browsers also offer debugging consoles with extensive
editing capabilities that essentially provide the same functionality.

Since we are rendering our layers as HTML5 objects, we make use of the capabilities of
modern web browsers. The objects’ behavior can be programmed by accessing the canvas
layers via the built-in browser technologies JavaScript (to influence the behavior), CSS (to
modify the appearance) and HTML (to access the document as well as the objects’ position
and size).

We furthermore included the D3 JavaScript library [BOH11] within our framework in or-
der to facilitate visualization tasks. D3 offers powerful tools for frequently used manipulation
tasks of the Document Object Model, especially through providing straightforward selectors
for objects from the DOM and then applying operations to each of the selected objects.

4.6 Limitations

Our implementation was integrated within the VolumeShop framework and partly built on ex-
isting parts of the framework. This facilitated some tasks, while it limited our implementation
in other regards.

First and foremost, we would ideally like to use more than one renderer with our approach.
Our VLabelObjectsRenderer is a relatively simple volume renderer. However, since our
renderer outputs the visualization object-wise and additionally calculates the metadata, any
type of renderer would have to be adapted to comply with our approach. Alternatively,
we could integrate additional rendering options into the existing renderer to make it more
adaptable.

Since we reused parts of VolumeShop’s client/server interface, we were not able to
completely rebuild the data transmission within the scope of this thesis. This turned out to
pose limitations to our implementation, since we had to pack all of our image targets within
one image buffer for the transmission. If we output and transmit every image to its own
target, rotation (which triggers re-rendering) could be performed on a single object instead
of requiring a re-rendering of the entire data set.

Furthermore, the metadata transmission was executed through the VolumeShop proper-
ties functionality, which can be accessed remotely through an appropriate request. While
this functionality was convenient, it also constrained the way our metadata was stored.
Furthermore, the storage and transmission of the depth buffer was integrated into the image

54

buffer because more efficient storage (e.g. as per-pixel linked lists) would have required a
remodeling of the framework.

Additionally, the memory consumption of the OpenCL kernels could be improved. Since
we need to store multiple buffers with object-wise data and dynamic memory allocation is not
possible in OpenCL, we need to allocate buffer sizes corresponding to the maximum number
of labels we allow.

For complicated depth problems, the pixel-wise comparison solution proves to be slow on
the client side. This is the case because custom pixel-wise canvas operations are very slow in
contrast to the hardware-accelerated functions the canvas provides. Generally, the client side
calculations can get slow for larger data sets because JavaScript’s performance does not scale
very well. The implementation of the pre-visualization step would help alleviate this issue.

55

CHAPTER 5
Results

In this chapter, we give an overview of the capabilities of our system. We demonstrate the
results of our rendering framework as well as the object interaction that is possible on the
volume representation which we can access in the web client. Furthermore, we discuss the
design of the system and report performance numbers that show the benefits of our approach.

System

We implemented and tested our application on a workstation running Windows 7 x64 on an
Intel Xeon X5680 CPU and 48GB of RAM. The graphics card used in our workstation was
an Nvidia GeForce GTX TITAN Black. We run both the client and the server on this machine.
However, the components are solely connected through web sockets and could reside on
different machines.

Data Sets

We show the functionalities of our system by means of two exemplary data sets. Figure 5.1
depicts a volume rendering of a data set of a human hand. This hand data consists of two
large objects, measures 244×124×257 voxels in size and is well suited to present the object
modification capacities of our system. Figure 5.2 shows a volume rendering of a data set of a
Christmas tree [KTM+02]. We use this data set to illustrate the capabilities of the system and
demonstrate that it scales to a large number of objects. The Christmas tree data set measures
512×499×512 voxels and consists, depending on the segmentation parameters, of up to
1350 objects.

5.1 Server-side Object Rendering

We first describe the server-side object rendering. The server loads data sets, labels the objects
in the volume through a ViSlang script and renders the Volume Object Model representation.

57

Figure 5.1: Human hand data set Figure 5.2: Christmas tree data set

In order to generate the Volume Object Model, we perform an object-wise volume ren-
dering of the data set where the appearance of the objects can be configured according to
multiple parameters. For each object, we perform a full volume rendering where the RGBA
values for the output are accumulated object-wise. Depending on our settings, we can define
transfer functions globally or for the individual objects based on their labels.

5.1.1 Object Coloring

In order to be able to visually distinguish different objects, we color code the objects according
to the distinct labels as shown in Figure 5.3. The renderer allows us to render the objects
based on a global transfer function as depicted in Figure 5.4. The appearance of the colors
used in the volume rendering is adjustable through the transfer-function panel. Furthermore,
we can smoothly blend between the assigned label colors and the transfer function in order
to show the volume rendering with enhanced object distinctiveness (Figure 5.5).

Usually, the rendering is called remotely from the client, but we can also instantiate
our renderer in the VolumeShop GUI on the server in order to generate output images of
the Volume Object Model for debug purposes. As shown in Figures 5.3, 5.4 and 5.5, the
images of the individual objects are packed into a rectangular image on the server side in our
implementation. For illustrative purposes, we show a packing of solely the output images for
every object, leaving out the metadata and the depth buffer.

The full representation also contains depth buffers in order to render complex occlusion
cases correctly. In our current implementation, this means that the image buffer doubles in
size. Figure 5.6 is a detail of the result of our server-side rendering where both the object
image and the depth image of one objects are rendered side-by-side. The depth is encoded in
gray-scale, white signifying near and black signifying far values.

58

Figure 5.3: Every label can be assigned a color to allow for a distinction between the different
objects. In this case, only the alpha value is taken from the transfer function.

Figure 5.4: The renderer is capable of coloring each object according to a global transfer function.
To that end, the color values of the samples along the ray are looked up from the transfer function
and accumulated object-wise.

Figure 5.5: The volume rendering can also be blended with the distinctive label colors to enhance
the rendering. The factor of this blending is specified in the shader.

Figure 5.6: We store an object-wise screen-space depth buffer to resolve occlusions on the client
side. Depicted is the result of rendering one object from the Christmas tree data set [KTM+02]
(left) with the associated depth image (right).

5.2 Web Client

In Figure 5.7 a screenshot of the client can be seen. The interface in the browser window
consists of three areas: the main visualization view, the console and a moveable and resizable
overview window. The web client requests the Volume Object Model from the server. On
receiving the streamed response, it builds the scene from the individual objects, as Figure 5.8
shows. Each object is displayed in its individual rectangle which is placed at the correct x- and
y-coordinate and layered using an approximate depth value. Figure 5.9 shows the outline of
each of the canvas elements in the scene. It serves to illustrate how these objects are aligned
in the visualization according to the metadata from the Volume Object Model. We adjusted
the opacity value of all objects and specified a border value in their appearance parameters.
An overview of the objects is depicted in Figure 5.10 where the objects are sorted by their
voxel count and arranged side-by-side in order to avoid occlusion. These visualizations were
generated on the client side. It is noteworthy that the server-side generated Volume Object
Models for the visualizations of Figures 5.9 and 5.10 are identical. However, the client-side
visualizations greatly differ from each other, conveying different aspects of the data. This
means that computationally inexpensive operations can be performed on the client side that
result in visualizations that can serve different purposes.

Figure 5.7: Interface of our client, which displays a data set of a human hand containing
two objects. The interface consists of three views. The main view shows a visualization of the
Volume Object Model. The porgramming interface on the right allows the scripting of HTML and
JavaScript commands that are executed interactively. The context visualization retains a view of
the original composition of the volume even if object properties are modified in the main view.

61

Figure 5.8: The canvas elements containing the objects are positioned in the client window
according to the metadata. This allows us to recreate the full scene.

Figure 5.9: The visualization illustrates the positioning of the objects by outlining each object in
in the scene.

Figure 5.10: For an overview of all the objects, we can sort the objects by their voxel count and
arrange them side-by-side.

5.3 Client-Side Interaction

In our web client, we can perform object-wise tasks on the data set without triggering a
server-side re-rendering for every operation. Our framework allows us to interact with and
modify the objects in the visualization using the Volume Object Model that the client received
from the server. We show how we can script commands on the client-side in the browser and
apply these to our objects.

5.3.1 Addressing Objects

The client-side interaction with the Volume Object Model was implemented using Document
Object Model (DOM) which is integrated with web browsers. We use the JavaScript libraries
JQuery and D3 for DOM (hence Volume Object Model) interactions. We can address each
object via the unique handle that we attached to DOM element. All objects also are assigned
a common class object, through which they can be addressed. HTML objects only have one
ID, but can have an arbitrary number of classes.

63

(a) Object .bone highlighted

(b) Object .vessels highlighted

Figure 5.11: This example shows two objects that have been assigned additional DOM handles as
classes. #object1 was assigned the class .bone (a) whereas #object2 was assigned the class
.vessels (b). Classes can contain multiple objects – the class .hand was added to both objects
– thereby effectively providing the possibility of combining multiple objects into a group, which
can be addressed through the common handle.

64

We can append additional classes to objects. Figure 5.11 shows an example where objects
were assigned multiple new classes. This can be done by editing the HTML source in the
console, or interactively through scripting (e.g. through the JQuery command $(’#object1’

).addClass(’newClass’)), which allows for a grouping of elements into custom categories,
as depicted in Figures 5.11a and 5.11b. To retrieve objects of a certain class, we use either
the JQuery selector $ or the D3 selectors d3.select and d3.selectAll.

5.3.2 Programming Object Appearance

We can program the appearance of the objects on the client by accessing them via the ID or
class handles. In the application case shown in Figure 5.12a, we want to apply a translation
operation on the objects in our scene. Translating the objects allows us to move them apart
in our visualization in order to reduce occlusion or visual clutter and investigate the objects
separately. This can be done by either modifying the CSS properties top and left for each
object directly in the embedded HTML console or by applying a JavaScript function on the
objects.

Analogously, we can also change visual properties of the objects, such as adjusting the
opacity value. Figure 5.12b depicts how the opacity value of one object can be reduced in
order to make other objects visually stand out more. The discernibility of the vessels of the
human hand is increased in this case by reducing the opacity of the bone.

65

(a) Object translation of two objects, the bone and the vessels

(b) Opacity change of one object, the bone

Figure 5.12: We can program operations that change the appearance and behavior of the objects.
Here, we show how the objects in the scene are originally composed (in the overview) and can be
modified via scripting. We can translate objects (a) as well as change their visual properties (b).

Complex Appearance Modifications

We will now describe a workflow outlining how to program more complex modifications
according to object parameters carried out on the objects in a visualization. The procedure
we describe is shown in Figures 5.13 and 5.14.

In this example, we look at the Christmas tree [KTM+02] data set, which, in this case,
was divided into 1047 objects using thresholding with ViSlang on the server side. In order to
examine this data set, we first remove one object (the base of the tree) from the visualization,
since it is uninteresting to our current investigation. We locate the ID of the appropriate
object by assigning an object class to big objects according to their voxel count.

/* we assign objects separate classes according to their voxel count */
d3.selectAll(’.object’)

.filter(function(d) { //filter function
var object = d3.select(this);
return object.attr(’data-voxels’) > 50000;

})
.classed(’big’, true); //add class ’big’ to objects

Only the base object and the tree are classified as big. Therefore, we can easily assign the
base object the class base. For our purpose, we set this object to hidden.

d3.select(’.base’)
.style(’visibility’, ’hidden’); //hide object

The result of this script is shown in Figure 5.13a. Since it is hard to get an overview of the
objects contained in the volume, we want to align them without occlusion. In order to do
that, we first sort the objects by height.

var heights = [];
/* create array containing indices of all objects and their heights */
d3.selectAll(’.object’).each(function(d, i) {
var object = d3.select(this);

heights.push([i, object.attr(’height’)]);
})

/* sort the array according to heights */
heights.sort(function cmp(a, b) {

return b[1] - a[1];
})

We implement a function that iterates over the sorted list and translates each object within
the viewport to be displayed next to each other as seen in Figure 5.13b.

var dimensions = [$(’body’).width(), $(’body’).height()];
var xPos = 0,

yPos = dimensions[1];

67

/* iterate over sorted list and translate objects to positions */
$.each(heights, function(d, entry) {
var object = $(objects[entry[0]]);

var obj_width = parseInt(object.attr(’width’));
var obj_height = parseInt(object.attr(’height’));

if(xPos + obj_width > dimensions[0]) {
xPos = 0;

}
if(xPos == 0) {

yPos -= obj_height; //decrement y position of object
}

object.css({
top: yPos,
left: xPos

})
xPos += obj_width; //increment x position of object

})

In this view, we can see that many of the objects are very small. These objects are displayed
on the top of the visualization in Figure 5.13b. Since we choose to investigate mid-sized
objects, we remove the small objects from the visualization by applying a size threshold. Only
objects bigger than the threshold remain, as depicted in Figure 5.13c.
d3.selectAll(’.object’)

.filter(function(d) { //filter function
var object = d3.select(this);
return object.attr(’data-voxels’) < 5000;

})
.classed(’small’, true) // add class ’small’ to filtered objects
.style(’visibility’, ’hidden’); //hide objects

We can return to the original arrangement of the volume and view the data set without the
filtered out objects, as shown in Figure 5.14d.
d3.selectAll(’.object’).each(function(d, i){
var object = d3.select(this);

object.transition()
.duration(2000)
.style({ // move object to original stored position

top: object.attr(’data-top’) + ’px’,
left: object.attr(’data-left’) + ’px’

})
})

We then decide that the tree is not as relevant to us as the decorative items on the tree, but
we want to keep it for context, therefore reducing its opacity.
d3.select(’.tree’)

.style(’opacity’, ’0.4’);

68

When addressing multiple objects in order to perform the same operation on each of them,
we need to group them either by using a selection-and-filtering operation each time they are
addressed, or by assigning them a class once. In Figure 5.14e, we assign all decorative items
a common class, which allows us to easily address them as a group in future operations.

d3.selectAll(’.object’)
.filter(function(d) { //filter function

var object = d3.select(this);
var voxels = object.attr(’data-voxels’);
return (voxels > 5000 && voxels < 50000);

})
.classed(’decoration’, true); //add class ’decoration’ to objects

In a last step, which is shown in Figure 5.14f, we visually emphasize all objects contained in
the class .decoration by scaling their size to 120%.

/* scale each object by 120% around object center */
d3.selectAll(’.decoration’).each(function(d, i) {
var object = d3.select(this);

var object_width = object.attr(’width’);
var object_height = object.attr(’height’);

var new_width = object_width * 1.2;
var new_height = object_height * 1.2;

var diff_width = (new_width - object_width) / 2;
var diff_height = (new_height - object_height) / 2;
object.style({ // update object position and size

width: new_width,
height: new_height,
left: object.style(’left’) - diff_width,
top: object.style(’top’) - diff_height

})
})

69

Figure 5.13: We can selectively hide objects from our visualization. In order to get a bet-
ter overview, we can rearrange the objects according to specific object parameters and filter
uninteresting objects in our current investigation. (continued in Figure 5.14)

Figure 5.14: We can rebuild our visualization from the filtered objects and perform visual
modifications on subsets of the objects. In this instance, we set one object to semi-transparent
while enlarging the objects we classified as decoration.

71

5.3.3 Programming Visualizations

By means of another exemplary workflow on the client, we show how we can utilize the
powerful web technologies embedded on the client to create entirely new visualizations from
the data we provide. This process is illustrated in Figures 5.15 and 5.16.

Once again, we want to investigate the Christmas tree data set. We want to explore
the relationship between the object-wise properties voxel count and density by means of a
scatterplot visualization.

Since our scene contains two very large objects (i.e., the base object and the tree) we
filter them out as shown in Figure 5.15a. Their voxel count is significantly higher than the
voxel count of the decorative items on the tree and would therefore distort our scatterplot
visualization.

d3.selectAll(’.object’)
.filter(function(d) { //filter function

var object = d3.select(this);
return object.attr(’data-voxels’) > 50000;

})
.style(’visibility’, ’hidden’); //hide big objects

Then, we traverse all the objects and gather information about their voxel counts and densities
in order to find maxima and minima values for these properties.

var range_px = [Number.MAX_VALUE, 0], //range for pixel count
range_vx = [Number.MAX_VALUE, 0], //range for voxel count
range_dn = [Number.MAX_VALUE, 0.0]; //range for density

/* evaluate ranges for object properties */
d3.selectAll(’.object’).each(function(d, i){
var o = d3.select(this);

var px = o.attr(’data-pixels’),
vx = o.attr(’data-voxels’),
dn = o.attr(’data-density’);

range_px = [Math.min(range_px[0], px), Math.max(range_px[1], px)];
range_vx = [Math.min(range_vx[0], vx), Math.max(range_vx[1], vx)];
range_dn = [Math.min(range_dn[0], dn), Math.max(range_dn[1], dn)];

});

We use these ranges to create mapping functions from the data range to the scatterplot
dimensions, which we can use to look up our objects’ coordinates in the scatterplot coordinate
system.

var dimensions = [$(’body’).width(), $(’body’).height()]; //window size

var pad = 50; //padding for the plot
var w = dimensions[0] - 2 * pad, //plot dimensions

h = dimensions[1] - pad;

72

var scatterplot = d3.select(’body’)
.append(’svg’) //create svg element for scatterplot
.attr(’width’, w)
.attr(’height’, h);

//functions to map values to scale for x-Axis, y-Axis and radius
var x = d3.scale.linear().domain(range_vx).range([2 * pad, w - pad]),

y = d3.scale.linear().domain(range_dn).range([h - pad * 2, pad]),
r = d3.scale.log().domain(range_px).range([0,30]);

Axes for the scatterplot can be created from this information by using the designated axes
functionality provided by the D3 library. Figure 5.15b shows the unchanged data set with
axes created for density and voxel count.

//set scales for axes
var xAxis = d3.svg.axis().scale(x).orient(’bottom’),

yAxis = d3.svg.axis().scale(y).orient(’left’);

/* create scatterplot axes */
scatterplot.append(’g’) //create x-Axis

.attr(’class’, ’axis’)

.attr(’transform’, ’translate(0, ’ + (h - pad) + ’)’)

.call(xAxis);

scatterplot.append(’g’) //create y-Axis
.attr(’class’, ’axis’)
.attr(’transform’, ’translate(’ + (2 * pad - pad) + ’, 0)’)
.call(yAxis);

We can modify all object positions in the scene to be arranged according to the objects’ voxel
count (on the x-axis) and density value (on the y-axis). In order to retain an overview of the
objects’ trajectories, we can transition in a smooth animation from the spatial arrangement
to the scatterplot and back. This animation is computed by D3 and illustrated in Figure 5.17.
Using JavaScript and D3, this can be achieved in a few lines of code.

/* moves objects to their position in the plot by looking up the value
in the mapping function */

d3.selectAll(’.object’).each(function(d, i){
var o = d3.select(this);

//translate to new position for object
o.transition()
.duration(2000)
.style(’top’, y(o.attr(’data-density’)) + ’px’)
.style(’left’, x(o.attr(’data-voxels’)) + ’px’)

})

At any point in the visualization process, we can easily revert to the original arrangement
of the objects within the volume by looking up the coordinates from the stored values.

/* optional: moves objects back to their original position */
d3.selectAll(’.object’).each(function(d, i){

73

var o = d3.select(this);

o.transition()
.duration(2000)
.style(’top’, o.attr(’data-top’) + ’px’)
.style(’left’, o.attr(’data-left’) + ’px’)

})

The scatterplot in Figure 5.16a shows that similar decorative objects from the Christmas
tree are nicely grouped together within the scatterplot, even though the three-dimensional
perspective of the volume makes them appear in different sizes.

If the representation of each object by its visualization makes the view too cluttered, we
can hide each object and substitute it by a glyph. This is illustrated in Figure 5.16b. In this
example, we chose circles with a diameter logarithmically corresponding to the number of
screen-space pixels of the objects. The logarithmic scale was selected because the majority of
objects are very small (clustered in the scatterplot on the bottom left). This lets us achieve a
meaningful mapping of the size difference in small objects to the radii of the circles.

/* hides objects and replaces them with svg circles */
d3.selectAll(’.object’).each(function(d, i){
var o = d3.select(this);

.style(’visibility’, ’hidden’); //hide object

scatterplot.append(’circle’) //append glyph
.attr(’class’, ’circle’)
.attr(’cx’, function (d) { return x(o.attr(’data-voxels’)); })
.attr(’cy’, function (d) { return y(o.attr(’data-density’));})
.attr(’r’, function (d) { return r(o.attr(’data-pixels’)); });

})

74

Figure 5.15: Workflow for generating a scatterplot of the objects in the Christmas tree data set.
First, we accumulate the ranges of the data values we plot along the axes from the objects. From
these ranges, we plot the axes for the scatterplot and generate mapping functions from the data
range to the scatterplot range. (continued in Figure 5.16)

Figure 5.16: We look up the coordinates in the scatterplot for each object from the mapping
functions we created. This allows us to move every object to its position in the scatterplot. We
can also substitute the objects with glyphs, in this case circles, where the radius is defined by the
objects’ pixel count.

76

Figure 5.17: D3 allows for a smooth transition between the original arrangement (1) of the
objects and the new visualization (6) in order to maintain the comprehensibility of the object
rearrangement. Six timeframes from this transition are depicted.

77

5.4 Evaluation

Our approach surpasses existing techniques for remote visualization in that it provides a fully
programmable environment for executing customized deferred visualization tasks.

In contrast to conventional remote rendering techniques, our approach does not require a
re-rendering unless the viewpoint is changed. Whereas the Visualization by Proxy [TCM10c]
technique only allows for certain settings of the visualization to be deferred to a later stage
in the pipeline, our Volume Object Model permits the user to interactively modify the visual-
ization according to any parameters that are transmitted in the metadata.

By performing the visualization per object, we facilitate selection, filtering and rearrange-
ment tasks in a thin client. The use of the web browser as the environment for our client
does not only allow the user to access the visualization platform-independently, but also the
full toolset of modern web technology can be accessed for programming the visualization.

As shown in the scatterplot example, we can repurpose the object images to serve as glyphs
in information visualization techniques. By transitioning smoothly from one visualization
to the other, the arrangements of the objects in the different views stay transparent and
comprehensible.

Through the reconciliation of information visualization techniques with three dimensional
object representations, we provide the users with tools for obtaining novel insights into their
data.

5.4.1 Performance

We tested the performance of our server-side Volume Object Model generation with multiple
data sets at a viewport size of 1280×800. The performance currently depends heavily on
choosing adequate values for the memory settings (e.g. the constant defining the maximum
number of possible labels in the data set) in the OpenCL kernels.

Data Set Size Objects First Pass Packing Second Pass
Three balls 128×128×128 3 3 ms 6 ms 2 ms

Human hand 244×124×257 2 11 ms 6 ms 16 ms
Small Christmas tree 128×124×128 283 85 ms 7 ms 20 ms

Christmas tree 512×499×512 1047 276 ms 12 ms 57 ms

On the client-side, we measured the timing for executing the customized function se-
quences we implemented. The execution time of the complete Christmas tree appearance
modification example described in Section 5.3.2 for 1049 objects is 68.40 ms. The execution
time of the complete scatterplot example described in Section 5.3.2 for 1049 objects is 53.43
ms. The calculation for the transitioning of the objects to their regular position as depicted in
Figure 5.17 takes 14.5 ms.

78

5.4.2 Discussion and Comparison to State of the Art

The novelty of our approach lies in the design of a system that deliberately splits the visual-
ization task into two stages. The first stage is computed on the server side and generates the
intermediate representation of the data (i.e., the Volume Object Model). The second stage is
computed on the client side and generates visualizations of the Volume Object Model.

The design of our system makes several assumptions about data sets, client and server
architectures and the memory bandwidth. We assume that there is a powerful server for
computation and a thin client for visualization. This assumption only makes sense if

(i) the data size is too large to be moved from the server to the client, or
(ii) the client does not have enough memory to hold the data, or

(iii) the client does not have enough computational power to interactively query and visualize
the data set.

If any of the above conditions is met, a remote visualization approach might be a suitable
choice. We demonstrate that our approach benefits the visualization system design under
each of the above-mentioned conditions:

(i) In the case of large data sets that cannot be transmitted from the server to the client, we
have to prove that the data transmission requirements of our approach are less than the
data set size. We show that this is true even for medium sized volume data sets with a
large number of objects. Instead of transferring the data set which consists of N voxels,
we only transmit the Volume Object Model, a condensed representation of the volume,
once per request. Although the memory savings depend on the number of objects, it
is a weak assumption that the Volume Object Model is much more compact than the
raw data. The Volume Object Model and image data are only transmitted for the K
objects, where K is typically much smaller than N . The view dependent parts of the
Volume Object Model (e.g., the object images) need to be transmitted per viewpoint and
therefore might grow larger than the actual data for intensive investigations. However,
this limitation is true for any remote visualization scenario and is not unique to our
approach.

(ii) In case the client does not have enough memory to hold the entire data set, our approach
is clearly beneficial. The memory that has to be allocated on the client side consists of
memory for the Volume Object Model and of memory for the images of the objects. The
memory requirements for the Volume Object Model are small compared to the whole
data set, which directly follows from (i). The memory requirements for the image data
are typically smaller than the memory requirements for the volume data. This fact is
exploited in all remote visualization scenarios.
For instance, the memory requirement for the Human hand data set (11.39 MB) shown
in Figure 5.1 is larger by a factor of 12 compared to the memory required for the
corresponding Volume Object Model with its image data (0.92 MB). For the Christmas
tree data set shown in Figure 5.2, the memory requirement (255.49 MB) is larger by a
factor of 187 compared to the Volume Object Model with image data (1.36 MB). Clearly,
this factor increases for larger data sets and becomes even more beneficial for in-situ

79

visualization scenarios.
(iii) In case the client does not have enough computational power to query a volume

dataset for objects and to render the objects directly, we have to prove that the object
property computation and object visualization is more expensive than the object level
manipulation and final visualization on the client side. This requirement is easily shown
for typical data sets, since the object level computations are only performed on the
metadata of a relatively low number of objects compared to the number of all voxels in
a volume. The visualization of the image data on the client side is also known to be
less expensive, which is a heavily exploited property in billboard- or impostor-based
real-time rendering approaches. These techniques replace complex models by a more
compact image based representation when possible [AMHH02]. Our system is designed
to be asymmetric and to perform the major workload on the server. For instance in the
example of Figure 5.17, the server computes the volume object model once in 345 ms,
while the client runs the object level animations with approximately 25 frames per
second.

Our prototype implementation proves that our system design is a feasible approach and
the assumptions hold true. Compared to other remote visualization systems, we propose
an approach that defers object-level tasks to a later stage than the voxel-level tasks. This
task separation offloads the compute intensive voxel-level operations to a server, yet allows
deferred interaction and visualization on an object level in a thin client. The flexibility of the
Volume Object Model is a key aspect to improve the applicability of deferred visualization
approaches in the future.

Other remote visualization systems [ESE00, SME02, SDWE03] completely lack the flexi-
bility to do deferred interactions and visualizations and solely transmit image data. Although
the work of Tikhonova et al. [TCM10c] shows a related deferred visualization model, the
focus of their system is on the reconstruction of volume rendered images under slight changes
of the visualization parameters. We, in contrast, demonstrate object level operations on
the client side that go beyond these capabilities and enable entirely new avenues for in-situ
visualization. In fact, the work of Tikhonova et al. [TCM10c] is orthogonal to our approach
and could be incorporated for even more flexible deferred visualizations.

80

CHAPTER 6
Conclusion and Future Work

In this thesis, we presented a novel approach for enabling deferred object-manipulation tasks
on a segmented data set in an in-situ remote visualization environment. We describe how
we apply the deferral concept to the visualization pipeline. For object manipulation and
modification tasks in in-situ visualization scenarios, a complete re-rendering of the volume
is too costly, especially if the viewpoint is not changed. It is advantageous to enhance the
visualization with object-wise metadata that allows for certain object-related operations to be
performed on the visualization without re-rendering.

Our system reduces the bandwidth requirements and the load on the server. In con-
ventional remote visualization, a re-rendering would be necessary on every change of the
visualization parameters. The Visualization by Proxy [TCM10c] approach only allows certain
settings changes to be deferred. We provide an object-based volume representation that,
at comparatively little additional computational cost and memory requirements, allows for
interactive object visualization tasks without requesting additional information.

The construction of the volume using the Volume Object Model representation on the
client side poses some constraints to the programmability of the visualization. These include
viewpoint changes, adjustments to the segmentation algorithm and transfer function, shading
and lighting modifications. We can integrate these tasks with our system, but we need to
send a new streaming request to the server and re-render the data set.

The operations our approach can perform on the client based on the Volume Object Model
include the modification of the objects’ appearance (e.g. visually enhance specific objects
according to certain properties) and the resizing and rearrangement of objects within the
viewer (e.g. arranging all objects next to each other in order to avoid occlusion). To enable
the system to perform object-related operations, it is necessary to provide metadata describing
the objects. These object-wise properties need to be gathered during the first pass of the
visualization process and are provided by the server. The pre-visualization step allows the
user to prefilter the data set based on the metadata. After filtering on an object level, images

81

of a subset of objects are displayed in a second pass.

We show how a deferred visualization pipeline can be made programmable on the client-
side for extensive flexibility. Our system makes use of fully developed web technologies to
provide users with powerful tools for generating customized visualizations from their data.

Our approach is only suitable for segmented volumes since all tasks we defer to the client
are object-wise operations. Data sets where segmentation algorithms are inapplicable cannot
be investigated using our system.

For in-situ environments, calculations on the client side may get slow due to technological
limitations. The HTML5 canvas is hardware-accelerated, but pixel-wise operations on the
canvas are expensive and JavaScript does not scale very well in these situations. Therefore,
for very large data sets with many complicated occlusion cases, the performance of the
visualization may be impaired.

6.1 Outlook

In the future, we will work to overcome the limitations of the current implementation of our
system. We currently transmit the complete Volume Object Model, that is, both the image data
and the metadata, to the client simultaneously. For the data sets we tested our system with,
this strategy was acceptable. Future work includes an integration of the pre-visualization
step in that the filtered visualization data is requested only after the interesting subset of the
data set has been selected. Our current approach to pack all render targets into one image
buffer does not yet allow us to select a subset of objects for streaming. This will help solving
performance issues for very large data sets.

A solution for the integration of flexible renderer settings within our application would
be desirable. Additionally, we want to enable rotation of specific objects only and requesting
a re-rendering for these while preserving the other objects as they are. Furthermore, we
want to give the user the flexibility of specifying the parameters of the segmentation and
visualization that are currently hardcoded in the session file in the request for the data. This
can be achieved by encoding the parameters in a string and sending them in the request for
the visualization. We also want to permit the user to specify the properties that should be
included in the metadata.

The user interaction of our viewer is currently limited to rotation and zooming. All object
interactions our framework offers need to be scripted in the console. It would be beneficial
to provide handles for additional interaction metaphors which should also be programmable.
Examples are click-and-drag operations or the display of information on mouseover. The
programmability of our approach actually allows these interactions to be implemented in
JavaScript in the current version of our client, but an implementation of common functions
and basic interaction techniques in a library would be expedient to the usability of our client.

While we demonstrated that our approach works in principle on a small scale, we did not
test our implementation on an HPC system. The adaptation and evaluation of our system for
an in-situ scenario is planned for future work.

82

APPENDIX A
Appendix

A.1 Rectangle Packing Algorithm

Algorithm A.1: Rectangle Packing
Input: sorted_list 〈Rectangle〉 rectangles, Block root
Data: Rectangle: input format, Block: binary tree node
Result: added coordinates to rectangles

1 foreach rectangle in rectangles do
2 Block block = search (root, rectangle);
3 if found block then
4 subdivide (block, rectangle);
5 else
6 block = grow (rectangle);
7 end
8 rectangle.coordinates = block.xy;
9 end

83

Algorithm A.2: Rectangle Packing: search

1 function search(Block block, Rectangle rectangle)
2 if block not used and rectangle fits in block then
3 return block;
4 end
5 if block used and has vertical child then
6 Block optionv = search(childvertical, rectangle);
7 end
8 if block used and has horizontal child then
9 Block optionh = search(childhorizontal, rectangle);

10 end
11 Block found = choose better filling ratio from {optionv or optionh};
12 return found;

Algorithm A.3: Rectangle Packing: subdivide

1 function subdivide(Block block, Rectangle rectangle)
2 set block to used;
3 if rectangle.dimensions < block.dimensions then
4 attach preferable subdivisions from

{vertical_subdivision() or horizontal_subdivision()}
as children to block;

5 end

Algorithm A.4: Rectangle Packing: grow

1 function grow(Rectangle rectangle)
2 Block extension = choose preferable extension from

(vertical_extension(), horizontal_extension());
3 attach extension as child to {topMost or rightMost} block;
4 adjust root.dimensions;
5 subdivide (extension, rectangle);
6 return extension;

84

Bibliography

[AMHH02] Tomas Akenine-Moller, Eric Haines, and Naty Hofmann. Real-Time Rendering.
A. K. Peters, Ltd., 3rd edition, 2002.

[Ast15] Astrofra (Wikimedia Commons). Deferred rendering illustrations. https:

//commons.wikimedia.org/wiki/Special:Contributions/Astrofra,
2015. (Accessed on 20/09/2015).

[BD13] Poorna Banerjee and Amit Dave. GPGPU based parallelized client-server frame-
work for providing high performance computation support. International Jour-
nal of Computer Science & Technology, 4, 2013.

[BG05] Stefan Bruckner and M. Eduard Gröller. VolumeShop: An interactive system
for direct volume illustration. In Proceedings of IEEE Visualization 2005, pages
671–678, 2005.

[BH09] Michael Bostock and Jeffrey Heer. ProtoVis: A graphical toolkit for visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1121–1128,
2009.

[Bin13] Roba S. Binyahib. Image-based exploration of iso-surfaces for large multi-
variable datasets using parameter space. Master’s thesis, King Abdullah Univer-
sity of Science and Technology, 2013.

[Bly06] David Blythe. The Direct3D 10 system. In Proceedings of ACM SIGGRAPH ’06,
pages 724–734. ACM, 2006.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[Bun05] Michael Bunnell. Dynamic ambient occlusion and indirect lighting. In Hubert
Nguyen, editor, GPU Gems 2, pages 223–233. Addison-Wesley Professional,
2005.

[CA79] Guy B. Coleman and Harry C. Andrews. Image segmentation by clustering.
Proceedings of the IEEE, 67(5):773–785, 1979.

85

https://commons.wikimedia.org/wiki/Special:Contributions/Astrofra
https://commons.wikimedia.org/wiki/Special:Contributions/Astrofra

[CGM+06] Andy Cedilnik, Berk Geveci, Kenneth Moreland, James P Ahrens, and Jean M
Favre. Remote large data visualization in the paraview framework. InProceed-
ings of Eurographics/IEEE-VGTC Symposium on Parallel Graphics and Visualiza-
tion (EGPGV) 2006, pages 163–170, 2006.

[Chi07] Hank Childs. Architectural challenges and solutions for petascale postprocessing.
In Journal of Physics: Conference Series, volume 78, page 012012. IOP Publishing,
2007.

[CML11] Matthäus G. Chajdas, Morgan McGuire, and David Luebke. Subpixel recon-
struction antialiasing for deferred shading. In Proceedings of Symposium on
interactive 3D graphics and games (I3D) 2011, pages 15–22, 2011.

[Cod15] CodeMirror. CodeMirror JavaScript library. https://codemirror.net/,
2015. (Accessed on 20/09/2015).

[Com07] Darrell Commander. VirtualGL: 3D without boundaries–the VirtualGL project.
http://www.virtualgl.org/, 2007. (Accessed on 20/09/2015).

[DWS+88] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt.
The triangle processor and normal vector shader: A VLSI system for high
performance graphics. In Proceedings of ACM SIGGRAPH ’88, pages 21–30,
1988.

[EE99] Klaus Engel and Thomas Ertl. Texture-based volume visualization for multiple
users on the world wide web. In Proceedings of Eurographics Symposium on
Virtual Environments ’99, pages 115–124. 1999.

[EHK+06] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and Daniel
Weiskopf. Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006.

[Eng09] Wolfgang Engel. Designing a renderer for multiple lights – the light pre-pass
renderer. ShaderX series, pages 217–224. Charles River Media, 2009.

[ESE00] Klaus Engel, Ove Sommer, and Thomas Ertl. A framework for interactive
hardware accelerated remote 3D-visualization. In Proceedings of Eurographics
Symposium on Data Visualization (VisSym) 2000, pages 167–177. 2000.

[Gor11] Jake Gordon. Binary tree bin packing algorithm. http://codeincomplete.
com/posts/2011/5/7/bin_packing/, 2011. (Accessed on 20/09/2015).

[GPB04] Rich Geldreich, Matt Pritchard, and John Brooks. Deferred lighting and shading.
Game Developers Conference, D3D Tutorial Day, 2004.

[HBE13] Matthias Holländer, Tamy Boubekeur, and Elmar Eisemann. Adaptive super-
sampling for deferred anti-aliasing. Journal of Computer Graphics Techniques
(JCGT), 2(1):1–14, 2013.

86

https://codemirror.net/
http://www.virtualgl.org/
http://codeincomplete.com/posts/2011/5/7/bin_packing/
http://codeincomplete.com/posts/2011/5/7/bin_packing/

[HCL05] Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: a toolkit for
interactive information visualization. In Proceedings of the SIGCHI conference on
Human factors in computing systems 2005, pages 421–430, 2005.

[HH04] Shawn Hargreaves and Mark Harris. Deferred shading. Game Developers
Conference, D3D Tutorial Day, 2004.

[HJ07] Jared Hoberock and Yuntao Jia. High-quality ambient occlusion. In Hubert
Nguyen, editor, GPU Gems 3, pages 257–274. Addison-Wesley Professional,
2007.

[HS98] Gerd Hesina and Dieter Schmalstieg. A network architecture for remote ren-
dering. In Proceedings of 2nd International Workshop on Distributed Interactive
Simulation and Real Time Applications (DIS-RT) ’98, pages 88–91, 1998.

[HSS+05] Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja Bühler, and Markus
Gross. Real-time ray-casting and advanced shading of discrete isosurfaces. In
Proceedings of Eurographics 2005, pages 303–312, 2005.

[JMP88] Tianlai Jiang, Michael B. Merickel, and Edward A. Parrish. Automated threshold
detection using a pyramid data structure. In Pattern Recognition, 1988., 9th
International Conference on, pages 689–692 vol.2, Nov 1988.

[JQu15] JQuery. JQuery JavaScript library. https://jquery.com/, 2015. (Accessed
on 20/09/2015).

[Koo08] Rusty Koonce. Deferred shading in tabula rasa. In Hubert Nguyen, editor, GPU
Gems 3, pages 429–457. Addison-Wesley Professional, 2008.

[Kor03] Richard E Korf. Optimal rectangle packing: Initial results. In Proceedings of
ICAPS 2003, pages 287–295, 2003.

[Kor04] Richard E Korf. Optimal rectangle packing: New results. In Proceedings of ICAPS
2004, pages 142–149, 2004.

[KTM+02] Armin Kanitsar, Thomas Theußl, Lukas Mroz, Milos Sramek, Anna Vi-
lanova Bartroli, Balázs Csébfalvi, Jirí Hladuvka, Stefan Guthe, Michael Knapp,
Rainer Wegenkittl, Petr Felkel, Stefan Roettger, Dominik Fleischmann, Werner
Purgathofer, and M. Eduard Gröller. Christmas tree case study: Computed
tomography as a tool for mastering complex real world objects with applica-
tions in computer graphics. https://www.cg.tuwien.ac.at/xmas/, 2002.
(Accessed on 20/09/2015).

[KWT88] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour
models. International journal of computer vision, 1(4):321–331, 1988.

87

https://jquery.com/
https://www.cg.tuwien.ac.at/xmas/

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of ACM SIGGRAPH ’87, pages
163–169. ACM, 1987.

[LD12] Gábor Liktor and Carsten Dachsbacher. Decoupled deferred shading for hard-
ware rasterization. In Proceedings of Symposium on Interactive 3D Graphics and
Games (I3D) 2012, pages 143–150, 2012.

[Li94] Stan Z. Li. Markov random field models in computer vision. In Proceedings of
the Third European Conference-Volume II on Computer Vision - Volume II, ECCV
’94, pages 361–370. Springer-Verlag, 1994.

[Liu77] Hsun K. Liu. Two-and three-dimensional boundary detection. Computer Graphics
and Image Processing, 6(2):123–134, 1977.

[Ma09] Kwan-Liu Ma. In situ visualization at extreme scale: Challenges and opportuni-
ties. IEEE Computer Graphics and Applications, 29(6):14–19, 2009.

[MB97] Cherilyn Michaels and Michael Bailey. VizWiz: A java applet for interactive
3D scientific visualization on the web. In Proceedings of the 8th Conference on
Visualization ’97, VIS ’97, pages 261–267. IEEE Computer Society Press, 1997.

[MB98] Eric N. Mortensen and William A. Barrett. Interactive segmentation with intelli-
gent scissors. Graphical models and image processing, 60(5):349–384, 1998.

[McG10] M. McGuire. Ambient occlusion volumes. In Proceedings of the Conference on
High Performance Graphics, HPG ’10, pages 47–56. Eurographics Association,
2010.

[MDM02] Johan Montagnat, Eduardo Davila, and Isabelle E Magnin. 3D objects visu-
alization for remote interactive medical applications. In Proceedings of First
International Symposium on 3D Data Processing Visualization and Transmission
2002, pages 75–78, 2002.

[MHUnC12] Marc Manzano, José Alberto Hernández, Manuel Urueña, and Eusebi Calle. An
empirical study of cloud gaming. In Proceedings of the 11th Annual Workshop
on Network and Systems Support for Games, NetGames ’12, pages 17:1–17:2.
IEEE Press, 2012.

[Mit07] Martin Mittring. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007
courses, pages 97–121. ACM, 2007.

[MJ12] Charles Marion and Julien Jomier. Real-time collaborative scientific WebGL
visualization with WebSocket. In Proceedings of the 17th International Conference
on 3D Web Technology, Web3D ’12, pages 47–50. ACM, 2012.

88

[MOM+11] Kenneth Moreland, Ron Oldfield, Pat Marion, Sebastien Jourdain, Norbert
Podhorszki, Venkatram Vishwanath, Nathan Fabian, Ciprian Docan, Manish
Parashar, Mark Hereld, Michael E. Papka, and Scott Klasky. Examples of in transit
visualization. In Proceedings of the 2nd International Workshop on Petascale Data
Analytics: Challenges and Opportunities (PDAC) ’11, pages 1–6, 2011.

[MPHK93] Kwan Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. A data
distributed, parallel algorithm for ray-traced volume rendering. InProceedings
of the 1993 Symposium on Parallel Rendering, PRS ’93, pages 15–22, New York,
NY, USA, 1993. ACM.

[Nag14] Omniah H. Nagoor. Image-based exploration of large-scale pathline fields.
Master’s thesis, King Abdullah University of Science and Technology, 2014.

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations.Journal
of computational physics, 79(1):12–49, 1988.

[Pan09] David Pangerl. Deferred rendering transparency. In Wolfgang Engel, editor,
ShaderX7: Advanced Rendering Techniques, ShaderX series, pages 217–224.
Charles River Media, 2009.

[Par12] Tony Parisi. WebGL: Up and Running. O’Reilly Media, Inc., 1st edition, 2012.

[Pla06] Frank Puig Placeres. Overcoming deferred shading drawbacks. In Wolfgang
Engel, editor, ShaderX5: Advanced Rendering Techniques, pages 115–130. Charles
River Media, 2006.

[PXP00] Dzung L. Pham, Chenyang Xu, and Jerry L. Prince. Current methods in medical
image segmentation. Annual review of biomedical engineering, 2(1):315–337,
2000.

[Qt15] Qt. Qt application framework. http://www.qt.io/, 2015. (Accessed on
20/09/2015).

[RBGH14] Peter Rautek, Stefan Bruckner, M. Eduard Gröller, and Markus Hadwiger. ViS-
lang: A system for interpreted domain-specific languages for scientific visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics, 20(12):2388–
2396, 2014.

[RCMC00] Kirsten Risden, Mary P. Czerwinski, Tamara Munzner, and Daniel B. Cook. An
initial examination of ease of use for 2D and 3D information visualizations of
web content. International Journal of Human-Computer Studies, 53(5):695–714,
2000.

[RPSC99] Harvey Ray, Hanspeter Pfister, Deborah Silver, and Todd A. Cook. Ray casting
architectures for volume visualization. IEEE Transactions on Visualization and
Computer Graphics, 5(3):210–223, 1999.

89

http://www.qt.io/

[SBSO09] Jeremy Shopf, Joshua Barczak, Thorsten Scheuermann, and Christopher Oat.
Deferred occlusion from analytic surfaces. In Wolfgang Engel, editor, ShaderX7:
Advanced Rendering Techniques, ShaderX series, pages 445–453. Charles River
Media, 2009.

[SDWE03] Simon Stegmaier, Joachim Diepstraten, Manfred Weiler, and Thomas Ertl.
Widening the remote visualization bottleneck. In Proceedings of the 3rd In-
ternational Symposium on Image and Signal Processing and Analysis (ISPA) 2003,
pages 174–179, 2003.

[SH15] Shu Shi and Cheng-Hsin Hsu. A survey of interactive remote rendering systems.
ACM Computing Survey, 47(4):57:1–57:29, 2015.

[Shi05] Oles Shishkovtsov. Deferred shading in S.T.A.L.K.E.R. In Hubert Nguyen, editor,
GPU Gems 2, pages 143–166. Addison-Wesley Professional, 2005.

[SME02] Simon Stegmaier, Marcelo Magallón, and Thomas Ertl. A generic solution
for hardware-accelerated remote visualization. In Proceedings of Eurographics
Symposium on Data Visualization (VisSym) 2002, pages 87–96, 2002.

[SSF+15] Karan Sapra, Melissa C. Smith, F. Alex Feltus, Asher Sampong, Joshua A. Levine,
and Anagha Joshi. G3NA: A GPU optimized global gene network alignment
tool. In GPU Technical Conference, 2015.

[SSW88] Prasanna K. Sahoo, Sasan Soltani, and Andrew K. C. Wong. A survey of thresh-
olding techniques. Computer Vision, Graphics and Image Processing, 41(2):233–
260, 1988.

[ST90] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D
shapes. In Proceedings of ACM SIGGRAPH ’90, pages 197–206, 1990.

[TCM10a] Anna Tikhonova, Carlos D. Correa, and Kwan-Liu Ma. Explorable images for
visualizing volume data. In Visualization Symposium (PacificVis), 2010 IEEE
Pacific, pages 177–184, March 2010.

[TCM10b] Anna Tikhonova, Carlos D. Correa, and Kwan-Liu Ma. An exploratory technique
for coherent visualization of time-varying volume data. Computer Graphics
Forum, 29(3):783–792, 2010.

[TCM10c] Anna Tikhonova, Carlos D. Correa, and Kwan-Liu Ma. Visualization by proxy: A
novel framework for deferred interaction with volume data. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1551–1559, 2010.

[Thi09] Nicolas Thibieroz. Deferred shading with multisampling anti-aliasing in Di-
rectX 10. In Wolfgang Engel, editor, ShaderX7: Advanced Rendering Techniques,
ShaderX series, pages 225–242. Charles River Media, 2009.

90

[thr15] three.js. three.js JavaScript/WebGL environment. http://threejs.org/

editor/, 2015. (Accessed on 20/09/2015).

[Tik12] Anna Tikhonova. Deferred Visualization and Interaction with Explorable Images.
PhD thesis, University of California at Davis, 2012.

[Tre09] Damian Trebilco. Light-indexed deferred rendering. In Wolfgang Engel, editor,
ShaderX7: Advanced Rendering Techniques, ShaderX series, pages 243–255.
Charles River Media, 2009.

[TS15] Georg Tamm and Philipp Slusallek. Plugin free remote visualization in the
browser. In Proceedings of SPIE Conference on Visualization and Data Analysis,
pages 939705–1:15, 2015.

[TYCM11] Anna Tikhonova, Hongfeng Yu, Carlos D. Correa, and Kwan-Liu Ma. A preview
and exploratory technique for large scale scientific simulations. InProceedings
of Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 2011,
pages 111–120, 2011.

[WBW96] Jason Wood, Ken Brodlie, and Helen Wright. Visualization over the world
wide web and its application to environmental data. In Proceedings of the 7th
Conference on Visualization ’96 , VIS ’96, pages 81–87. IEEE Computer Society
Press, 1996.

[Wes91] Lee Alan Westover. Splatting: A Parallel, Feed-forward Volume Rendering Algo-
rithm. PhD thesis, 1991. UMI Order No. GAX92-08005.

[WFM11] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. Parallel in situ coupling
of simulation with a fully featured visualization system. In Proceedings of
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 2011,
pages 101–109, 2011.

[Wir07] Oliver Wirjadi. Survey of 3D image segmentation methods. Technical report,
Fraunhofer ITWM, 2007.

[WNDS99] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley
Longman Publishing Co., Inc., 3rd edition, 1999.

[WPJR11] Andrew Wessels, Mike Purvis, Jahrain Jackson, and Syed Rahman. Remote data
visualization through websockets. In Information Technology: New Generations
(ITNG), 2011 Eighth International Conference on, pages 1050–1051, April 2011.

[YWG+10] Hongfeng Yu, Chaoli Wang, Ray W Grout, Jacqueline H Chen, and Kwan-Liu
Ma. In situ visualization for large-scale combustion simulations. IEEE Computer
Graphics and Applications, (3):45–57, 2010.

91

http://threejs.org/editor/
http://threejs.org/editor/

	Kurzfassung
	Abstract
	Contents
	List of Figures
	Introduction
	Motivation
	The Pipeline Concept
	Deferred Visualization Pipeline
	Thesis Overview

	Fundamentals and State of the Art
	Deferred Rendering Pipelines
	Remote Visualization
	In-Situ Visualization
	Visualization in the Browser
	Rendering of Segmented Volume Data

	Remote Visualization with Deferred Object Interaction
	Remote Visualization Architecture
	Volume Object Model
	Summary

	Implementation
	Framework
	Data and Segmentation
	Server Implementation
	Client/Server Communication
	Client Implementation
	Limitations

	Results
	Server-side Object Rendering
	Web Client
	Client-Side Interaction
	Evaluation

	Conclusion and Future Work
	Outlook

	Appendix
	Rectangle Packing Algorithm

	Bibliography

