
Optimizing Second-Level
Dynamic Programming

Algorithms
The D-FLATˆ2 System: Encodings and

Experimental Evaluation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Markus Hecher
Matrikelnummer 1026412

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Dipl.-Ing. Bernhard Bliem BSc

Wien, 29. September 2015
Markus Hecher Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Optimizing Second-Level
Dynamic Programming

Algorithms
The D-FLATˆ2 System: Encodings and

Experimental Evaluation

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Markus Hecher
Registration Number 1026412

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistance: Dipl.-Ing. Bernhard Bliem BSc

Vienna, 29th September, 2015
Markus Hecher Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Markus Hecher
Am Vogelsang 91
2753 Ober-Piesting

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. September 2015
Markus Hecher

v

Danksagung

Dieses Mal sollten die Dankesworte wohl etwas seriöser sein, daher habe ich beschlossen,
dies zu tun. Zu diesem Anlass möchte ich vorerst allen danken, die in irgendeiner Form
mitgewirkt haben. Ihr habt das super gemacht. Danke, lieber Leser, liebe Leserin, für
eure Aufmerksamkeit.

vii

Acknowledgements

Since this time the acknowledgements should be a little bit more serious, I decided to do
so. First of all, I want to thank everyone involved somehow. You did a good job. Thanks,
dearest readers for your attention.

ix

Kurzfassung

Für viele bekannte AI-Probleme wurde bereits gezeigt, dass sie – unter der Annahme
einer beschränkten Baumweite (tree-width) – in polynomieller Zeit und mit polynomiellen
Speicheranforderungen lösbar (tractable) sind. Um diesen Umstand auch in der Praxis
ausnutzen zu können, wurden relativ komplizierte Algorithmen für Baumzerlegungen
(tree decompositions) basierend auf Dynamischer Programmierung (DP) entwickelt und
implementiert. Typischerweise zeigen diese Algorithmen wiederkehrende Muster, die
beispielsweise Teilmengen-Minimierung erfordern. Gerade bei der Answer-Set Program-
mierung (ASP) zeigt sich beispielsweise folgender Umstand: Um die volle Ausdrucksstärke
dieser Technik auszunutzen – und damit auch co-NP-Tests durchführen zu können – ist
es oft erforderlich, ein sogenanntes Saturierungsverfahren zu verwenden. Damit sich
Benutzerinnen und Benutzer nicht immer mit Saturierung beschäftigen müssen, sind in
diesem Zusammenhang viele Ansätze entwickelt worden, um sie und ihn zu entlasten.

Unglücklicherweise gibt es diese „Bequemlichkeit“ bei der DP noch nicht. Daher
wird in dieser Arbeit eine neue Methode vorgestellt, um Algorithmen basierend auf
DP für Baumzerlegungen zu vereinfachen; im Speziellen wird dadurch Teilmengen-
Minimierung (und -Maximierung) automatisch durchgeführt. Um es anhand eines Beispiels
zu beschreiben, sei ein SAT-Algorithmus (d.h. ein Algorithmus, der entscheidet, ob es für
eine aussagenlogische Formel eine Wahrheitsbelegung der Variablen gibt, die die Formel
erfüllt) basierend auf DP für Baumzerlegungen anzunehmen. Die hier vorgeschlagene
Methode macht es nun möglich, diesen Algorithmus gemeinsam mit einer einfachen
Angabe, worüber optimiert wird, in einen Algorithmus für das Aufzählen von Teilmengen-
minimalen Modellen zu verwandeln. Für den Programmierer ist es also nicht mehr
notwendig, sich explizit um die Optimierung zu kümmern, da diese durch den neuen
Ansatz implizit passiert.

Weiters ist es oft der Fall, dass Problemlösungen via DP-Algorithmen für Baumzer-
legungen wegen der Teilmengenoptimalität unnötig viel Zeit- und Speicherressourcen
verbrauchen. Mit der vorgeschlagenen Methode wird dieses Problem dadurch umgangen,
dass die Berechnung nun in zwei Phasen (statt einer) erfolgt. In Phase eins werden zuerst
Lösungskandidaten ohne Berücksichtigung des Optimierungskriteriums berechnet; erst
danach wird in der zweiten Phase versucht, diese Kandidaten durch Finden von Gegen-
beispielen zu invalidieren, was durch den Zwei-Phasen-Ansatz sehr effizient durchgeführt
werden kann.

Um die Bedeutung dieser Arbeit näher darzulegen, werden hier neben einer Imple-
mentierung dieses Zwei-Phasen-Ansatzes – genannt D-FLATˆ2 – praktische Ergebnisse

xi

gezeigt. Die Einfachheit und Eleganz von D-FLATˆ2 wird anhand einiger Programme
für häufig vorkommende AI-Probleme präsentiert. Ferner wird ein neuer Algorithmus für
die Berechnung von „semi-stable“ Mengen aus der Abstrakten Argumentation entwickelt.
Praktische Ergebnisse zeigen schließlich, dass D-FLATˆ2 einen großen Performancevorteil
– im Vergleich zu D-FLAT, das nur einphasig arbeitet – mit sich bringt und weiters die
theoretischen Fixed-Paramter-Tractability (FPT) Resultate bezüglich Baumweite mit
diesen Erkenntnissen kompatibel sind. In diesem Zusammenhang ergibt sich für unsere
getesteten Probleme, dass die Optimierung annähernd kostenlos auftritt. In anderen
Worten, die korrespondierenden Probleme ohne Optimierung brauchen ungefähr die
gleichen Zeit- und Speicherressourcen.

Abstract

Many problems from the area of AI have been shown tractable for bounded tree-width.
In order to put such results into practice, quite involved Dynamic Programming (DP)
algorithms on Tree Decompositions (TDs) have to be designed and implemented. These
algorithms typically show recurring patterns that call for tasks like subset-minimization.
Especially in the world of Answer-Set Programming (ASP), we can witness such a
phenomenon: In order to exploit the full expressive power of this paradigm, a particular
saturation programming technique is required in order to express co-NP tests. Several
approaches for relieving the user from this task have been proposed.

Unfortunately, easy-to-use facilities had no analogue in the area of DP so far. In
this thesis, we provide a new method for obtaining DP algorithms on TDs from simpler
principles, where subset-minimization is performed automatically. For example, given
a DP algorithm on TDs for Sat, i.e. the problem whether a propositional formula is
satisfiable, our approach makes it possible to use this algorithm, together with simple
statements on what to minimize, for finding only subset-minimal models. Making
optimization implicit in this way makes the programmer’s life considerably easier.

Furthermore, standard DP algorithms on TDs for such problems often suffer from a
naive check for subset optimality that requires unnecessarily much space and time. Our
method avoids this issue by implicitly proceeding in two stages (instead of one stage in
the standard case): First we compute solution candidates without regard to optimization
and then we rule out invalid candidates by trying to find counterexamples. Because of
its two-phased nature, our approach can do so in an efficient way. We are not aware of
any work so far that introduces similar two-phased DP algorithms on TDs along with
the appropriate data structures.

To underline the practical relevance of our work, we present an implementation of
this two-stage algorithm called D-FLATˆ2. We illustrate the simplicity of our approach
by providing D-FLATˆ2 encodings for several AI problems including a new algorithm
for semi-stable semantics of Abstract Argumentation. Empirical results indicate a huge
performance advantage of D-FLATˆ2 compared to using only one stage as in D-FLAT
and that the theoretical Fixed-Parameter Tractability (FPT) results w.r.t. tree-width are
consistent with our experiments. Furthermore, we gathered that for our tested problems,
which are FPT w.r.t. tree-width, it turns out that the optimization is almost for free, i.e.
corresponding problems without optimization require about the same time and memory
resources.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xvii

List of Tables xviii

List of Algorithms xix

List of Listings xix

1 Introduction 1

2 Background 7
2.1 Fixed-Parameter Tractability . 7
2.2 Tree Decompositions . 8
2.3 Dynamic Programming on Tree Decompositions 9
2.4 Computational Complexity . 12
2.5 Abstract Argumentation . 14
2.6 Answer-Set Programming . 17

3 DP algorithms on TDs for Abstract Argumentation 21
3.1 Modified algorithm for Admissible Semantics 21
3.2 New algorithm for Semi-stable Semantics 32
3.3 An Adaption for Preferred Semantics . 43

4 Towards Optimization of DP algorithms on TDs 49
4.1 D-FLAT: DP on TDs . 49

4.1.1 System Overview . 50
4.1.2 Technical Details . 51
4.1.3 D-FLAT Encodings for Abstract Argumentation 61

4.2 D-FLATˆ2: Optimizing DP on TDs . 70

xv

4.2.1 Technical Details . 70
4.2.2 Further Optimizations . 74
4.2.3 System Overview . 75
4.2.4 Application to Common AI Problems 77

5 Benchmarks 85
5.1 Test Environment . 85

5.1.1 Compared Tools . 85
5.1.2 Test Framework . 86
5.1.3 Test Conditions . 86
5.1.4 Problem Instances . 87

5.2 Monolithic Encodings . 87
5.3 Results . 91

5.3.1 System Comparison . 91
5.3.2 Problem Comparison . 91
5.3.3 Basis Semantics Comparison . 93

6 Conclusion 95
6.1 Summary . 95
6.2 Further Work . 95

Bibliography 97

List of Figures

2.1 Incidence graph GEx and a semi-normalized TD TEx of φEx 9
2.2 Tables (length(1)-item trees) for Sat of φEx in TEx 11
2.3 Item trees for ⊆-Minimal Sat of φEx in TEx 13
2.4 Argumentation framework FEx = (AFEx , RFEx) with AFEx = {v, w, x, y, z} and

RFEx = {(w, x), (x,w), (w, y), (z, z), (z, x)}. 15

3.1 Instance FEx = (AFEx , RFEx) and a normalized TD TEx 45
3.2 Computation of vcolorings for FEx = (AFEx , RFEx) w.r.t. TEx (see Figure 3.1). 46
3.3 Computation of vpairs for FEx = (AFEx , RFEx) w.r.t. TEx (see Figure 3.1). . . 47
3.4 Computation of vprefpairs for FEx = (AFEx , RFEx) w.r.t. TEx (see Figure 3.1). 48

4.1 Flowchart that shows how D-FLAT and its components work [Bli12, ABC+14a]. 51
4.2 Data flow while processing a node with n children [Bli12, ABC+14a]. 51
4.3 Instance φEx , ASP representation, incidence graph GEx and a semi-normalized

TD TEx . 52
4.4 Instance φEx , ASP representation, primal graph Gprim

Ex and a semi-normalized
TD T prim

Ex . 56
4.5 Item tree computation for exchange node n3 of TEx 72
4.6 Item tree computation for join node n8 of TEx 74
4.7 D-FLATˆ2 updated flowchart, which shows how the system and its components

work. 75

5.1 8-Grid instance, (n = 6×m), tree-width = 7 for every m ≥ n [Cha12]. 88
5.2 Clique instance, tree-width = 5 [Cha12]. 89
5.3 System comparison: Average CPU time (left) and maximum resident set (right). 92
5.4 Problem comparison: Average CPU time (left) and maximum resident set

(right). 92
5.5 Basis semantics comparison: Average CPU time (left) and maximum resident

set (right). 93

xvii

List of Tables

2.1 Complexity results for Abstract Argumentation. 17

4.1 Input predicates describing the Tree Decomposition. 52
4.2 Input predicates describing tables of decomposition child nodes. 54
4.3 Output predicates for constructing the table of the current decomposition node. 55
4.4 Input predicates describing item trees of child nodes in the decomposition. . . 58
4.5 Output predicates for constructing the item tree of the current decomposition

node. 58

5.1 Restrictions for the benchmarks. 86

List of Algorithms

4.1 The procedure computeLv2. 71
4.2 The function handleExchange. 72
4.3 The function handleJoin. 74

List of Listings

2.1 Πex: ASP program for solving QBF ψ. 19
4.1 ΠSat: D-FLAT encoding for solving Sat. 54
4.2 Πprim

Sat : D-FLAT encoding for solving Sat using primal graphs. 55
4.3 Π⊆-Minimal Sat: D-FLAT encoding for solving ⊆-Minimal Sat. 59
4.4 Πprim

⊆-Minimal Sat: D-FLAT encoding for solving ⊆-Minimal Sat using pri-
mal graphs. 59

4.5 Πstable: D-FLAT encoding for stable extensions. 62
4.6 Πadmissible: D-FLAT encoding for admissible sets. 63
4.7 Π′admissible: Alternative D-FLAT encoding for admissible extensions. . . . 64
4.8 Πcomplete: D-FLAT encoding for complete extensions. 65
4.9 Πpreferred: D-FLAT encoding for directly computing preferred extensions. 66
4.10 Π′preferred: Alternative D-FLAT encoding for computing preferred extensions. 67
4.11 ΠsemiStable: D-FLAT encoding for directly computing semi-stable extensions. 68
4.12 ΠoptAllItems: used for solving conceptually simple problems (e.g., ⊆-

Minimal Sat). 76
4.13 ΠoptForSemiStable: used for computing semi-stable sets via Π2

semiStable =
ΠoptForSemiStable ∪Πadmissible. 78

4.14 ΠoptForCirc: used for solving Circumscription via Π2
Circ = ΠoptForCirc ∪ΠSat. 78

4.15 ΠpseudoForASP: used for solving disjunctive ASP via Π2
ASP = ΠpseudoForASP ∪

Π2
Circ. 79

4.16 Π′ex: ASP program for solving QBF ϕ. 80

xix

4.17 Input instance Πinputex for solving QBF ϕ using Π2
ASP. 80

4.18 ΠASP : D-FLAT encoding for solving disjunctive ASP. 81
4.19 Π2′

ASP: D-FLATˆ2 encoding for solving disjunctive ASP directly. 83
5.1 Monolithic encoding for stable semantics. 87
5.2 Monolithic encoding for admissible semantics. 88
5.3 Monolithic encoding for complete semantics. 89
5.4 Monolithic encoding for preferred semantics. 90
5.5 Monolithic encoding for semi-stable semantics. 90

CHAPTER 1
Introduction

Motivation

The problem class NP contains problems that can be solved in polynomial time using
non-deterministic Turing machines. Since it is still assumed that the class P of problems
(which can be solved in polynomial time with a deterministic Turing machine) does not
equal NP, one needs exponential time to cover this non-determinism. NP-hard problems
are problems s.t. any problem of the class NP like the canonical propositional Sat problem
can be transformed to them in polynomial time and space. Some problems are believed
to be even harder than NP(like propositional Circumscription or disjunctive Answer-Set
Programming1). These problems can be organized in the so-called polynomial hierarchy.
Many prominent such problems in the area of AI, however, have been shown tractable
for bounded tree-width. Tree-width measures the “tree-likeness” of a given graph s.t.
the smaller the tree-width, the more tree-like the graph. Luckily, several real-world
applications have input graphs of small tree-width. Since we believe that P is not equal
to NP and also assume that the polynomial hierarchy does not collapse, those NP-hard
problems can be located in the class NP or somewhere beyond.

Thanks to Courcelle’s meta-theorem [Cou90], it is sufficient to encode a problem
as an MSO sentence in order to obtain a Fixed-Parameter Tractability (FPT) result.
The literature contains several FPT proofs assuming fixed (i.e., bounded) tree-width
(which measures – as already mentioned – how tree-like a given graph is) for problems
like Sat [GS08], Circ, i.e. propositional Circumscription, resp. disjunctive Answer-Set
Programming (ASP) [GPW10a] or several problems of Abstract Argumentation [Dun07,
DSW12]. We can exploit this circumstance by designing Dynamic Programming (DP)
algorithms on Tree Decompositions (TDs) for these tractable fragments of NP.

The actual design of DP algorithms on TDs, however, can be quite tedious, in
particular for problems located at the second level of the polynomial hierarchy like Cir-

1Answer-Set Programming (ASP) deals with finding the so-called Answer-Sets, which are stable
models of a given program.

1

cumscription, Abduction, Answer-Set Programming [BET11] or Abstract Argumentation
(see [DPW12, JPW09, JPRW08, GPW10b]). In many cases, the increased complexity
of such problems is caused by subset minimization or maximization subproblems (e.g.,
minimality of models in Circumscription). It is exactly the handling of these subproblems
that makes the design of the DP algorithms on TDs difficult.

In this thesis, we discuss a solution to this issue by providing a method for auto-
matically obtaining DP algorithms on TDs for problems requiring minimization, given
only an algorithm for a problem variant without minimization. For example, given a
DP algorithm on TDs for Sat (like in [SS10]), the approach of this thesis makes it
possible to use this algorithm, together with simple statements on what to minimize, for
finding only subset-minimal models. Making minimization implicit in this way makes
the programmer’s life considerably easier. Furthermore, standard DP algorithms on such
problems often suffer from a naive check for subset minimality that requires unnecessarily
much space and time. The main contribution of this thesis is providing a method that
avoids this issue by proceeding in two stages (instead of one stage in the naive case).
Although we explicitly only consider minimization, all the results – including promising
performance experiments on AI problems – of course also apply to maximization.

State of the Art

To put Courcelle’s meta-theorem [Cou90] into practice, tailored systems for MSO logic
are required. While there has been remarkable progress in this direction [KLR11] there
is still evidence that designing DP algorithms on TDs for the considered problems from
scratch results in more efficient software solutions (cf. [Nie06]).

To facilitate the development of such algorithms, the D-FLAT system2 [ABC+14b]
has been introduced. It allows for rapid prototyping by automatically generating a Tree
Decomposition upon which it subsequently executes DP steps according to a specification
given by the user. The crucial feature of D-FLAT is that the user can encode these
problem-specific DP steps in Answer-Set Programming (ASP, see [BET11]), and such an
encoding is all that is required from the user. It therefore enables implementation of DP
algorithms on TDs in a rapid-prototyping style, which makes it an appealing general-
purpose tool for designing such algorithms. It allows for running DP-based algorithms on
TDs in one bottom-up traversal on automatically created TDs within Fixed-Parameter
polynomial time (if the algorithm is FPT). Creating optimal tree representations (minimal
tree-width) for graphs is NP-hard. Since D-FLAT exploits Fixed-Parameter Tractability
w.r.t. tree-width, the width of the TD has a huge impact on the performance of this tool.
Therefore, it uses heuristics in order to get rather good tree representations and to finally
achieve tractability for a large class of NP-complete problems or even ones beyond NP.

In order to find minimal propositional models via ASP encoding, we simply need
to express the Sat problem together with a special minimize statement (recognized by

2D-FLAT is an acronym for Dynamic Programming Framework with Local Execution of ASP on
Tree Decompositions and freely available at http://www.dbai.tuwien.ac.at/research/project/
dflat/.

2

http://www.dbai.tuwien.ac.at/research/project/dflat/
http://www.dbai.tuwien.ac.at/research/project/dflat/

systems like metasp [GKS11]). In this way, we easily obtain a program computing mini-
mal models. Unfortunately, easy-to-use facilities like such minimize statements had no
analogue in the area of DP so far; this circumstance directly leads to the aim of this thesis.

Main Contributions

One of the goals is to benefit in form of the new system3 D-FLATˆ2, based on D-FLAT,
which shall extend the existing system by an automated mechanism for subset-optimization
tailored for problems located on the second level of the polynomial hierarchy; thus, it
greatly simplifies certain existing DP algorithms on TDs and thereby also improves its
overall runtime performance.

As mentioned above, we will follow a two-stage approach. In the first stage we
compute solution candidates without regard to minimization and then in the second
stage we rule out invalid candidates by trying to find counterexamples while reusing
already materialized solution candidates of the first stage. Because of efficient reusing of
solution candidates and its two-phased nature (number of potential counterexamples is
greatly reduced since counterexamples are added in the second phase by using already
the end result of the first phase), our approach can do so in an efficient way. We are not
aware of any work so far that introduces similar two-phased DP algorithms on TDs along
with the appropriate data structures.

Moreover, this thesis shall provide several selected DP algorithms on TDs for AI-
related problems; in particular simplified implementations of DP algorithms (for certain
semantics of Abstract Argumentation [Dun95]) on TDs for D-FLATˆ2 will be introduced.
The design and implementation of these algorithms requires defining and maintaining
suitable data structures, which heavily depend on the given problem.

Benchmarks shall be provided, by comparing optimized implementations of algo-
rithms for D-FLATˆ2 with existing versions for D-FLAT and state-of-the-art Answer-Set
Solvers [GKK+11] with the help of monolithic encodings of ASPARTIX4. Thus, the
strengths of D-FLATˆ2 will be shown, which brings us one step closer towards tractabil-
ity for common intractable graph problems.

To sum up, in this thesis, we

• provide a new easy-to-use mechanism for automatically performing subset opti-
mization in two-layered DP algorithms on TDs;

• show applications thereof and its simple solution in practice;

• develop a new algorithm for semi-stable semantics and include a correctness proof;

• provide preliminary results, which show performance of D-FLATˆ2;

• give hints concerning a common methodology on developing encodings for D-FLATˆ2.
3The system D-FLATˆ2 is available at https://github.com/hmarkus/dflat-2.
4More information about Answer-Set Programming Argumentation Reasoning Tool (ASPARTIX) can

be found at http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/.

3

https://github.com/hmarkus/dflat-2
http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/

Case Study: Dynamic Programming for Abstract Argumentation

The Dung framework basically consists of a relation R and arguments such that whenever
for two arguments (a, b) ∈ R holds, a directed attack from a to b is modeled. The goal
now is to find certain subsets of these arguments, according to some semantics that fulfill
certain conditions. The considered semantics of this thesis are as already mentioned
admissible, complete, preferred and stable.

Abstract Argumentation has gained popularity in recent years. A number of different
frameworks exist, focusing not only on attack relations, but for instance also implementing
combined attacks or support relations. Therefore plenty of topics in this field are active
research. In [DSW12] several semantics and reasoning modes are discussed and FPT
results w.r.t. bounded tree-width are proven by reduction to MSO.

This thesis includes a new algorithm for semi-stable extensions of Abstract Argumen-
tation and a correctness proof for it. Previous work [DPW12] discusses a full correctness
proof for admissible semantics and then extends it to preferred extensions. On top
of this, we modified the algorithm for admissible sets in order to obtain one for com-
puting semi-stable extensions. In order to prove correctness of certain DP algorithms
on TDs, formal methods are required; especially for problems located on the second
level of the polynomial hierarchy (for instance for computing preferred or semi-stable
extensions) [DB02, DW10, Dvo12] this quickly gets tedious.

Encodings for D-FLATˆ2 will be presented in the light of readability, reusability and
maintainability, since D-FLATˆ2 elegantly allows reusing common parts of encodings.
Moreover, a methodology hint on how to write such encodings shall be presented. In
order to show D-FLATˆ2’s efficiency and prove practical applicability, we present results
using common AI problems (located on the second level of the polynomial hierarchy) and
compare its memory and time performance with existing tools. In case of small tree-width,
the subset-minimization resp. -maximization part of a given optimization problem – which
is FPT w.r.t. tree-width – seems to be almost for free. In other words, if we are given an
algorithm A for a basis problem P with FP tractability w.r.t. tree-width and an extended
optimization problem P ′ involving subset-minimization resp. maximization on top of P ,
the algorithm A′ (extended by D-FLATˆ2) for P ′ appears to require similar time and
memory requirements than A in case of small tree-width. Since all of the problems used
in this thesis are actually Fixed-Parameter Linear (FPL) w.r.t. tree-width – as already
mentioned, this can be shown by reduction to MSO and using the meta-theorem by
Courcelle [Cou90] – D-FLATˆ2 can be fruitfully applied. For FPT results concerning
Abstract Argumentation, we refer to [DSW12]; for Circumscription, disjunctive ASP
(and Abduction), our desired results are shown in [GPW10a]; results for the propositional
Sat problem appear in [GS08].

Publications

This thesis complements and extends both the description of D-FLATˆ2 [BCHW15b],
which focuses more on the technical realization of the system, and our paper [BCHW15a]
concerning D-FLATˆ2 in practice.

4

Overview

First of all, necessary theoretical background on the topics is provided in Chapter 2, which
includes in particular Abstract Argumentation, Answer-Set Programming and Dynamic
Programming on Tree Decompositions. Next, Chapter 3 modifies existing algorithms
of admissible extensions, then extends them further and provides a new algorithm for
semi-stable semantics where correctness is proved. D-FLAT and encodings for selected
problems (including ASP encodings) will be discussed in Chapter 4, followed by the
implementation of our approach – D-FLATˆ2 – and its underlying technical details. The
benchmark set-up, the results and a short discussion are available in Chapter 5. Finally,
the last chapter of this thesis is a conclusion and hints at further work.

5

CHAPTER 2
Background

In this chapter we outline Dynamic Programming on Tree Decompositions. The ideas
underlying this concept stem from the field of parameterized complexity. Many com-
putationally hard problems become tractable in case a certain problem parameter is
bound to a fixed constant. This property is referred to as Fixed-Parameter Tractability
(FPT) [DF99], and the complexity class FPT consists of problems that are solvable in
f(k) · nO(1), where f is a function that only depends on the parameter k, and n is the
input size.

2.1 Fixed-Parameter Tractability

As a matter of fact, D-FLATˆ2, the software developed in the focus of this thesis, is
an application of Fixed-Parameter Tractability. This means that the goal is to get
tractability by taking advantage of some characteristic parameter being bounded. This is
done here by creating Tree Decompositions and using tree-width as the desired parameter.
The fact that a tree-decomposed problem with k-bound tree-width can be solved in
linear time for such graphs is often shown with the help of Courcelle’s meta-theorem
using monadic second order logic (MSO) [Cou90]. This meta-theorem does not lead
to practically efficient algorithms, but shows that there is an algorithm with runtime
bounded by a function of the form f(k) · |I|(O(1)), where I is the problem instance and
n = |I| is its size. So the runtime basically has an upper-bound of a polynomial of
the input size multiplied by a function of k. Considering any fixed k, this formula is
polynomial as f(k) is constant. Therefore the fixed k is responsible for the tractability,
the algorithm obviously is in P under these limitations.

7

2.2 Tree Decompositions

For problems whose input can be represented as a graph, one important parameter is
tree-width, which, roughly speaking, measures the “tree-likeness” of a graph. It is defined
by means of Tree Decompositions (TDs), originally introduced in [RS84]. The intuition
behind TDs is to obtain a tree from a (potentially cyclic) graph by subsuming multiple
vertices under one node and thereby isolating the parts responsible for cyclicity.

Definition 2.1. A Tree Decomposition of a graph G = (V,E) is a pair T = (T, χ) where
T = (N,F) is a (rooted) tree and χ : N → 2V assigns to each node a set of vertices
(called the node’s bag), such that the following conditions are met: 1. For every vertex
v ∈ V , there exists a node n ∈ N such that v ∈ χ(n). 2. For every edge e ∈ E, there
exists a node n ∈ N such that e ⊆ χ(n). 3. For every v ∈ V , the subtree of T induced by
{n ∈ N | v ∈ χ(n)} is connected.

We call maxn∈N |χ(n)| − 1 the width of the decomposition. The tree-width of a graph
is the minimum width over all its Tree Decompositions.

Note that for constructing TDs, the input graph G can be directed as well. In this
case we only consider the shadow of G, which is the graph G′ that is obtained by not
considering the directions of the edges of G.
In general, constructing a TD with minimum width is intractable [ACP87]. However,
there are heuristics that give “good” TDs in polynomial time [Dec03, DGG+08, BK10].

Tree Decompositions can be defined in a generalized way for hypergraphs, which allow
edges between an arbitrary number of vertices [GLS02]. D-FLATˆ2, in fact, automatically
tries to generate hypergraph tree decompositions of minimum width, which in general
are NP-hard to compute, but it uses efficient and randomized heuristics to overcome this
restriction. More about Tree Decompositions and structural decomposition techniques
and its uses in general can be found at [ADG+11].

In this thesis we will mainly consider so-called semi-normalized TDs:

Definition 2.2. A Tree Decomposition T = (T, χ) with T = (N,F) is semi-normalized
if each non-leaf node n ∈ N is an exchange node (n has exactly one child), or a join
node (n has exactly two children n′, n′′ with χ(n) = χ(n′) = χ(n′′)).

Furthermore, we assume that for root node r of T , χ(r) = ∅ holds. Especially for
Chapter 3, we additionally require normalized TDs.

Definition 2.3. A Tree Decomposition (T ,X) of a graph G is called normalized if T is
a rooted tree and if each node 1 t ∈ T is of one of the following types.

1. LEAF: t is a leaf of T ;
2. FORGET: t has only one child t′ and Xt = Xt′\{v} for some v ∈ Xt′;
3. INSERT: t has only one child t′ and Xt = Xt′ ∪ {v} for some v 6∈ Xt′;
4. JOIN: t has two children t′, t′′ and Xt = Xt′ = Xt′′.

1For T = (VT , ET) we often write t ∈ T instead of t ∈ VT

8

GEx : x

y

z

c1

c2

TEx : ∅n9

{y, c2}n8

{y, c2}n4

{y}n3

{x, y}n2

{x, y, c1}n1

{y, c2} n7

{y, z, c2} n6

{z, c2} n5

Figure 2.1: Incidence graph GEx and a semi-normalized TD TEx of φEx .

A TD can be transformed into a semi-normalized resp. normalized one in linear time
without increasing the width [Klo94].

The enumeration variants of the Sat and ⊆-Minimal Sat problems (“Given a
propositional formula φ in CNF, what are the (subset-minimal) models of φ?”) will serve
as running examples throughout this section. These problems are well suited since the
DP algorithms incorporate concepts that often reappear in other AI-related problem
domains. To obtain a TD of a CNF-formula φ, we first have to construct an appropriate
graph representation. Let C denote the set of clauses and A the atoms in φ. Furthermore,
let at(c) denote the atoms occurring in c ∈ C. Then, the incidence graph G = (V,E) of φ
is given as V = C ∪ A and E =

⋃
c∈C{{a, c} | a ∈ at(c)}.

Example 2.4. Let φEx = (x ∨ y) ∧ (¬y ∨ z). We have C = {c1, c2} with c1 = x ∨ y,
c2 = ¬y ∨ z, at(c1) = {x, y} and at(c2) = {y, z}. The corresponding incidence graph GEx
and a possible (semi-normalized) TD TEx are depicted in Figure 2.1. The width of TEx is
2.

2.3 Dynamic Programming on Tree Decompositions

Algorithms for DP on TDs generally traverse the TD in bottom-up order. At each node,
partial solutions for the subgraph induced by the vertices encountered so far are computed
and stored in a data structure associated with the node. The size of the data structure
is typically bounded by the width of the TD and the number of TD nodes is linear in
the input size. Hence, if the width is bounded by a constant, the search space for the
subproblem is constant as well, and the number of subproblems only grows by a linear
factor for larger instances. The most challenging task when designing DP algorithms on
TDs is to identify the data structure on how to represent partial solution candidates at
each node.

9

In the following, so-called item trees [ABC+14b] will serve as the data structure for
storing partial solutions. In Section 4.2.1 we will present modifications that allow us to
solve several problems more efficiently that are hard for the second level of the polynomial
hierarchy. Each item tree node contains an item set whose elements are called items.
Usually, the information stored in the items is restricted to (or dependent on) the bag
elements of the respective decomposition node. Each item tree node additionally has a
set of extension pointer tuples that represents its origin. With this, one can reconstruct
solutions for the complete problem instance by starting at the root of the TD and
following the extension pointer tuples while combining the contents of the respective
item sets. These concepts are formalized as follows:

Definition 2.5. Let T = (T, χ) with T = (N,F) be a Tree Decomposition, and let
n ∈ N . The item tree of n is a triple (Sn, Xn, Yn) where Sn = (Tn, En) is a rooted
tree. Furthermore, Xn is a function that assigns to each item tree node tn ∈ Tn an
item set, where each item is some arbitrary string. Let n1, . . . , nx ∈ N be the child
nodes of n in T , let tn be an item tree node in Sn, and let, for 1 ≤ i ≤ x, Tni be the
item tree nodes in Sni. Then, Yn is a function that assigns to each tn a non-empty
set of extension pointer tuples, where each tuple is of the form (t1, . . . , tx), such that
ti ∈ Tni for 1 ≤ i ≤ x. Finally, we inductively define the set of extensions of tn as
Z(tn) = {Xn(tn) ∪A | A ∈

⋃
(p1,...,px)∈Yn(tn){e1 ∪ · · · ∪ ex | ei ∈ Z(pi)}}.

For a DP algorithm solving the Sat problem on a TD of the input formula’s incidence
graph, we store partial solutions in the item sets at depth 1 of the item trees. For a TD
node n, these item sets are subsets of χ(n). Intuitively, each item set represents a partial
interpretation for φ, together with the clauses satisfied by the interpretation, restricted
to χ(n). At each decomposition node n, we obtain an item tree node by extending one
node from the item tree of each child of n. If n is an exchange node with child n′, we
additionally guess for every introduced atom (i.e., from χ(n) \ χ(n′)), whether it is true
and if so, we add it to the item set. If a clause from χ(n) is satisfied by the interpretation
represented by this item set, we additionally store that clause in the set. Whenever an
atom a is removed from the bag (i.e., in χ(n′) \ χ(n)), a is not put into an item set at n.
For a clause c that is removed from the bag, we only extend item sets that contained c, as
other item sets represent partial interpretations that do not satisfy c. In join nodes, we
extend pairs of item tree nodes that coincide on the partial interpretations, and compute
the union of the already satisfied clauses. Intuitively, the partial interpretations have
to agree on the truth assignment for common atoms in order to be a solution for the
complete problem instance.

Example 2.6. Figure 2.2 illustrates the item trees for TEx of φEx . For instance, in n1 we
store the partial interpretations ∅, {x}, {y}, {x, y}. The latter three satisfy clause c1, which
is additionally stored in the respective item sets. In n2, c1 is removed. Interpretation ∅
is not extended, since it does not satisfy c1. On the other hand, the item tree node in
n2 containing {x}, for example, extends the item tree node {x, c1} in n1. In the figure,
extension pointer tuples are marked with dashed lines. In n8, the item tree node with
item set {y, c2} extends {y} in n4 and {y, c2} in n7, since the latter two both contain the

10

∅
n9

c2 y y, c2
n8

c2 y
n4

∅ y
n3

x y x, y
n2

∅ x, c1 y, c1 x, y, c1
n1

c2 y y, c2
n7

c2 y z, c2 y, z, c2
n6

∅ z, c2
n5

Figure 2.2: Tables (length(1)-item trees) for Sat of φEx in TEx .

same partial interpretation. Here, the extension pointer tuple is of arity 2 and contains
references to both extended item tree nodes. For enumerating the solutions, we follow the
extension pointer tuples, starting at the root of the decomposition, and build the union
over the item sets, resulting in {{x, c1, c2}, {x, z, c1, c2}, {y, z, c1, c2}, {x, y, z, c1, c2}}. The
models of φEx are {{x}, {x, z}, {y, z}, {x, y, z}}.

Next, let us consider the ⊆-Minimal Sat problem. Here, solution candidates are again
stored at depth 1 of item trees. Furthermore, we store so-called counter candidates at
depth 2. A counter candidate is a potential witness for the solution candidate (its parent)
not being subset-minimal. This concept of storing witnesses (also called certificates)
is commonly used for problems that are hard for the second level of the polynomial
hierarchy [JPW09]. Item sets for solution and counter candidates are computed as for
the Sat problem. Additionally, partial interpretations represented by counter candidates
are strict subsets of partial interpretations represented by solution candidates. In the
following, we give details on how and when these counter candidates are constructed (for
⊆-Minimal Sat). For an introduced atom a in decomposition node n, whenever we have

11

that a is in the item set of some solution candidate tn, we add a new child whose item
set contains a and the atoms and clauses as the extended item set of tn Furthermore,
a new child for tn is added whose item set contains the same atoms and clauses as the
extended item set of tn. This child represents a new potential witness for the partial
interpretation associated with tn being not subset-minimal. In join nodes, solution
candidates are extended as in the Sat problem. Furthermore, we construct associated
counter candidates by combining two counter candidates or a counter candidate of one
item tree with the solution candidate of the other item tree, whenever they coincide on the
partial interpretations. Intuitively, a counter candidate at the join node either represents
a smaller interpretation in both child item trees, or in one of them together with the
solution candidate stored in the other item set. For removed atoms, and introduced
and removed clauses, the item sets are updated as described for Sat. At the root node,
item tree nodes at depth 1 without associated counterexamples represent subset-minimal
models of the overall problem instance, and the models are obtained by following the
respective extension pointer tuples.

Example 2.7. Consider again TEx of φEx . Figure 2.3 contains the computed item trees
for TD nodes n1, n2 and n3. In n1, we construct the item sets at depth 1 as described
before. The item sets at depth 2 represent counter candidates that are strict subsets of the
interpretations at depth 1. In n2, clause c1 is removed. Hence, we remove all item sets
representing interpretations that do not satisfy c1. In n3, atom x is removed. Observe
that this results in two item sets at depth 1 that both solely contain y, but differ in the
counter candidates stored at depth 2.

2.4 Computational Complexity

Since this thesis is not mainly directed towards complexity theory, we introduce here just
some required complexity classes. A given problem P is C-complete if P is in the class C
(membership) and P is C-hard, i.e. any problem of C can be reduced to P in polynomial
time and space.

Problems in P can be solved in polynomial time with a deterministic Turing machine.
The problem class NP contains problems that can be solved in polynomial time using
non-deterministic Turing machines. For any class C, the class co-C is the set of problems,
whose complement is in C, i.e., a problem P is in co-C if and only if the complement
co-C of P is in C. ΣP

2 is the class NPNP = NPco-NP, i.e. its members can be solved
by a non-deterministic Turing machine, which has access to an NP oracle in every
step, which itself can use the power of a non-deterministic Turing machine; ΠP

2 is the
class co-NPNP = co-NPco-NP. One can generalize further (and show some classes of the
polynomial hierarchy PH):

• ΣP
0 = NP,ΠP

0 = co-NP

• ΣP
i = NPΣP

i−1 ,ΠP
i = co-NPΠP

i−1 for i ≥ 1

12

∅ y y

∅ y

n3

x y x, y

x y

n2

∅ x, c1

∅

y, c1

∅

x, y, c1

∅ x, c1 y, c1

n1

Figure 2.3: Item trees for ⊆-Minimal Sat of φEx in TEx .

Quantified Boolean Formulas Literature showed that Quantified Boolean Formulas
(QBFs) are useful for showing complexity results due to one of its unique properties
explained in Proposition 2.1 below. The set of well-formed QBFs Q is the smallest set
that obeys the following rules (assuming atoms resp. variables is the set of atoms resp.
variables):

• If c ∈ {>,⊥}, then c ∈ Q

• If a ∈ atoms, then a ∈ Q

• If x ∈ variables, then x ∈ Q

• If ϕ ∈ Q, then (¬ϕ) ∈ Q

• If ϕ,ψ ∈ Q and ◦ ∈ {∨,∧}, then (ϕ ◦ ψ) ∈ Q

• If ϕ ∈ Q, Y ∈ {∃,∀} and x ∈ variables, then (Y x(ϕ)) ∈ Q

It is common practice to forget about parentheses in case precedence is clear assuming
the following typical order ¬ < ∧ < ∨.

We call ϕ ∈ Q satisfiable if there is some M with M |= ϕ where M : (variables ∪
atoms)→ {>,⊥}. ϕ ∈ Q is valid if for anyM defined as aboveM |= ϕ holds.

The semantic |=-relation is defined below. For this we need the notionM =%xM′,
which means that M is equal to M′ modulo variable x, i.e. M(y) = M′(y) for any
y ∈ (variables ∪ atoms)\{x}.

13

• M |= >,M 6|= ⊥

• If a ∈ atoms andM(a) = >, thenM |= a

• If x ∈ variables andM(x) = >, thenM |= x

• If ϕ ∈ Q andM 6|= ϕ, thenM |= ¬ϕ

• If ϕ ∧ ψ ∈ Q andM |= ϕ,ψ, thenM |= ϕ ∧ ψ

• If ϕ ∨ ψ ∈ Q and (M |= ϕ orM |= ψ), thenM |= ϕ ∨ ψ

• If x ∈ variables, ∃x ϕ ∈ Q, M′(x) = >, M′′(x) = ⊥, M =%x M′ =%x M′′ and
(M′ |= ϕ orM′′ |= ϕ) thenM |= ∃x ϕ

• If x ∈ variables, ∀x ϕ ∈ Q, M′(x) = >, M′′(x) = ⊥, M =%x M′ =%x M′′,
M′ |= ϕ andM′′ |= ϕ thenM |= ∀x ϕ

In the following, we assume closed QBFs, which are in prenex normal form (pnf), i.e.,
they are of the form Y1X1 Y2X2 · · · YnXn ϕ where ϕ ∈ Q,Y ∈ {∃,∀}, Xi ⊆ variables,
there is no occurrence of Y in ϕ and every variable of ϕ occurs in some variable set Xi.
Note that closed QBFs can only be valid or invalid.

Proposition 2.1. Assume a closed QBF ψ of the form Y1X1 Y2X2 · · · YnXn ϕ (pnf)
and some odd i with 1 ≤ i ≤ n− 1. If Yi = ∃, Yi+1 = ∀, then the question whether ψ is
valid (QSATn) is ΣP

n -complete. If Yi = ∀, Yi+1 = ∃, then QSATn is ΠP
n -complete.

2.5 Abstract Argumentation

Argumentation frameworks have gained increasing popularity in the world of artificial
intelligence in recent years and therefore they and their connections to other related topics
are currently active research. In this thesis, the Dung Argumentation Framework [Dun95]
is considered, which is defined as follows.

Definition 2.8. A Dung argumentation framework is a tuple (A,R), where A is a set
of arguments and R ⊆ A×A models the set of attacks.

Here we are not interested in instantiation of argumentation frameworks such that we get
a specific resulting framework. Hence, the graph instances are considered to be given and
the goal is to select sets S ⊆ A, which meet certain properties according to the desired
semantics. In the following section, a short review of the semantics that are used in
Chapter 4.1.3, namely admissible, complete, preferred, semi-stable and stable, is provided.
For this, we assume an argumentation framework F = (A,R) given as shown in Figure 2.4.
For SEM ∈ {conflict-free, admissible, complete, preferred, semi-stable}, the set SEM(F)
denotes the set of SEM-extensions in F . Next, we need some basic definitions concerning
defended and conflict-free sets.

14

v w x y z

Figure 2.4: Argumentation framework FEx = (AFEx , RFEx) with AFEx = {v, w, x, y, z}
and RFEx = {(w, x), (x,w), (w, y), (z, z), (z, x)}.

Definition 2.9. Given an argumentation framework F = (A,R). Any s ∈ S, such that
S ⊆ A is called defended by S in F if for every (s′, s) ∈ R, there exists s′′ ∈ S such that
(s′′, s′) ∈ R. The set defF (S) denotes

⋃
s∈A: s is defended by S in F s, any S′ ⊆ defF (S) is

called defended by S in F . Any S ⊆ A without existing s, s′ ∈ S such that (s, s′) ∈ R is
called conflict-free in F .

Example 2.10. Consider the set conflict-free(FEx) w.r.t. FEx of Figure 2.4. We observe
that ∅ ∈ conflict-free(FEx). Clearly, for every a ∈ AFEx s.t. a 6= z it holds that {a} ∈
conflict-free(FEx); since v is isolated, also {v, a} ∈ conflict-free(FEx) for every a ∈ AFEx

with a 6= z. Argument z is not contained in any S ∈ conflict-free(FEx), since it attacks it-
self. Finally, {x, y} ∈ conflict-free(FEx) and of course, {v, x, y} ∈ conflict-free(FEx). We
have conflict-free(FEx) = {∅, {v}, {w}, {x}, {y}, {v, w}, {v, x}, {v, y}, {x, y}, {v, x, y}}.

This basic notion leads to further definitions of semantics in the following.

Definition 2.11. Given an argumentation framework F = (A,R). Any S ⊆ A which
fulfills the following conditions is called admissible: 1.) S is conflict-free in F . 2.) every
s ∈ S is defended by S in F . Any S ⊆ A which fulfills the following conditions is called
stable: 1.) S is conflict-free in F . 2.) every s ∈ A \ S is attacked by any s′ ∈ S.

Example 2.12. Consider the set admissible(FEx) (w.r.t. FEx of Figure 2.4). By Def-
inition 2.11, we only have to consider elements of conflict-free(FEx). The argument
x can never be part of any admissible extension, therefore also y is not in any ex-
tension. The remaining sets of conflict-free(FEx) are admissible; thus, we have that
admissible(FEx) = {∅, {v}, {w}, {v, w}}. We consider now the set stable(FEx) w.r.t.
framework FEx of Figure 2.4. By Definition 2.11, we only have to consider elements of
conflict-free(FEx). Since z is not contained in any extension S ∈ conflict-free(FEx) and it
is not attacked by any a ∈ S (z only attacks itself), there cannot be any stable extension.
Thus, stable(FEx) = ∅.

Using the notion of admissible extensions, one can define complete sets.

Definition 2.13. Given an argumentation framework F = (A,R). Any S ⊆ A which
fulfills the following conditions is called complete in F : 1.) S is admissible in F .
2.) defF (S) = S.

15

Example 2.14. We consider the set complete(FEx) of framework FEx of Figure 2.4. By
Definition 2.13, we only have to consider elements of admissible(FEx). The set ∅ is not
complete since defFEx (∅) = {v}, {w} 6∈ complete({w}), since defFEx ({w}) = {v, w}. The
remaining sets of admissible(FEx) are complete, i.e. complete(FEx) = {{v}, {v, w}}.

One can also define extensions based on some optimization criteria; the following two
definitions maximize the elements in an extension resp. the range of an extension.

Definition 2.15. Given an argumentation framework F = (A,R). Any S ⊆ A which
fulfills the following conditions is called preferred in F : 1.) S is admissible in F .
2.) every S′ ⊃ S is not admissible in F . Any S ⊆ A s.t. S is admissible in F and every
S′ ⊆ A s.t. S′ is admissible in F with S+

R 6⊂ S′+R is called semi-stable in F where for
S ⊂ A, S+

R := S ∪ {a | ∃b ∈ S s.t. (b, a) ∈ R} (called the range of S in F).

Example 2.16. We consider the set preferred(FEx) of framework FEx of Figure 2.4. By
Definition 2.15, we only have to consider subset-maximal elements of admissible(FEx),
i.e. preferred(FEx) = {{v, w}}. Now we want to determine semi-stable(FEx) w.r.t. FEx
of Figure 2.4. By Definition 2.15, we only have to consider range-maximal elements of
semi-stable(FEx), i.e. semi-stable(FEx) = {{v, w}}.

Relation between semantics Recall that the set SEM(F) denotes the set of SEM-
extensions in F for SEM ∈ {conflict-free, admissible, complete, preferred, semi-stable}.
Given this – combined with the definitions above – for every framework F = (A,R)
the following holds: stable(F) ⊆ semi-stable(F) ⊆ preferred(F) ⊆ complete(F) ⊆
admissible(F) ⊆ conflict-free(F).

One can also provide an alternative to Definition 2.15 by using complete semantics
as basis in order to obtain a different, but equivalent (can be shown easily by the
subset-inclusions) characterization.

Definition 2.17. Given an argumentation framework F = (A,R). Any S ⊆ A which
fulfills the following conditions is called preferredcomplete in F : 1.) S is complete in
F . 2.) every S′ ⊃ S is not complete in F . Any S ⊆ A s.t. S is complete in F and
every S′ ⊂ S s.t. S′ is complete in F with S+

R 6⊂ S′+R is called semi-stablecomplete in
F where for S ⊂ A, S+

R is called the range of S in F (as defined above). Also for
SEM ∈ {preferredcomplete, semi-stablecomplete}, the set SEM(F) denotes the set of SEM-
extensions in F .

Example 2.18. Note that semi-stablecomplete(FEx) = semi-stable(FEx) and furthermore
preferredcomplete(FEx) = preferred(FEx) since {v, w} is already a complete extension.

Concerning notation, note that in this thesis – if the framework F is clear from the
context – we will omit framework F , for instance instead of writing that S is admissible
in F , we will denote for short that S is admissible.
Computational Complexity Remember the short introduction concerning compu-
tational complexity of Section 2.4. In Table 2.1, we show complexity results [DB02,

16

Semantics Credulous Acceptance Skeptical Acceptance
stable NP-complete co-NP-complete
admissible NP-complete trivial
complete NP-complete P-complete
preferred NP-complete ΠP

2 -complete
semi-stable ΣP

2 -complete ΠP
2 -complete

Table 2.1: Complexity results for Abstract Argumentation.

DW10, Dvo12] for the presented semantics. We define the terms credulous and skeptical
acceptance as follows.

Definition 2.19. Assume AF F = (A,R) and a ∈ A; Credσ is the problem whether a is
contained in at least one σ-extension of F .

Definition 2.20. Assume AF F = (A,R) and a ∈ A; Skeptσ is the problem whether a
is contained in every σ-extension of F .

It was shown in [DSW12] by reduction to MSO using Courcelle’s meta-theorem [Cou90]
that the discussed semantics are FPT (actually Fixed-Parameter Linear) w.r.t. k-bounded
tree-width for both credulous acceptance and skeptical acceptance. Actually in [DSW12]
FPT results are shown for several other semantics and different reasoning modes apart
from credulous and sceptical reasoning.

2.6 Answer-Set Programming
Answer-Set Programming2, which is often also referred to as logic programming under
the stable-model semantics, deals with finding the so-called Answer-Sets of a given
set of rules. The following brief definition of logic programs and Answer-Sets is based
on [BET11, BMW12].

Definition 2.21. A disjunctive logic program Π is a finite set of rules of the form a1 |
· · · | ak ← b1, · · · , bm, not bm+1, ..., not bn, where a1, · · · , ak, b1, · · · bn are propositional
atoms. For an arbitrary rule r ∈ Π, the following sets of atoms are defined: Head h(r) =
{a1, ..., ak}; Positive body b+(r) = {b1, ..., bm}; Negative body b−(r) = {bm+1, ..., bn};
Body b(r) = b+(r) ∪ b−(r). If for a given rule r, h(r) = ∅, r is called constraint, whereas
if b(r) = ∅, r is called a fact and ← can be left out.

Definition 2.22. A rule r ∈ Π is satisfied by an interpretation I, which is a set of
atoms, if I ∩ h(r) 6= ∅ or b−(r) ∩ I 6= ∅ or b+(r)\I 6= ∅. An interpretation I is an
Answer-Set of a program Π (denoted by I ∈ Answers(Π)) if it satisfies every rule r of

2Answer-Set Programming is often abbreviated to ASP; its connection to classical logic can be found
in [LPV01]

17

the Gelfond-Lifschitz reduct ΠI = {h(r)← b+(r) | r ∈ Π, b−(r)∩ I = ∅} and every proper
subset of I does not satisfy ΠI .

Typically, programs are designed according to the Guess & Check [EP06] paradigm.
This is done by generating (guessing) potential solution candidates and then eliminating
invalid ones by checking certain conditions.

The Gringo system [GKK+11] supports more advanced expressions and classical
negation, but all of its mechanisms have in common an ability to be reduced to logic
programs as defined above. Gringo’s atoms are predicates, whose arguments are variables
or ground terms. These programs are abbreviations for variable-free logic programs,
where the variables are replaced by ground terms during the process of grounding.

Gringo allows the appearance of cardinality constraints of the form l{L1, ..., Ln}u,
which are satisfied by an interpretation I if at least l and at most u of the literals
L1, ..., Ln are true in I. A literal is either an atom or a negated atom (using not). The
default value of l is 0 and of u it is infinity, i.e., every subset of the specified set is valid.
More details of Gringo and its syntactic sugar can be found in [GKK+11].

Besides Circumscription, the paper [GPW10a] presents FPT (actually FPL) results
for disjunctive ASP by reduction to MSO and applying Courcelle’s meta-theorem [Cou90].
Enhancing ASP Besides several extensions of disjunctive ASP – including weak
constraints, disjunction in the body of a rule or adding quantifiers – there are tricks to
unleash the full expressive power, but not necessarily without paying the price of losing
simplicity.

The saturation technique (as in [EG95, EGM97, LRS00]) is a common practice to
encode problems in disjunctive ASP and unleash its full expressive power (ΣP

2 , see
Section 2.4) of it. This technique requires restricted usage of default negation and
disjunction; an introduction can be found in [ABC+15]. Saturation complements the
Guess & Check [EP06] paradigm, where usage of default negation for the guess typically
gets replaced by disjunctive heads. This enables the possibility for an Answer-Set to
contain all the atoms that are subject to the guess.

The pattern often works like this and uses disjunction in guesses: First of all, we guess
a solution candidate S for which we want to know if there is no possibility for S being
no solution. To do so, we also guess a potential counter candidate C for invalidating S
being a solution. If C is not a counter candidate, we derive a designated atom A. This
atom A then causes the atoms subject to the second guess being set to true. Thus, all
models not leading to a counter candidate are saturated (hence “saturation”) with all
the atoms of the disjunction (of the second guess). If on the other hand C is a counter
candidate, S is discarded by a constraint (involving default negated A). If S is in fact an
invalid solution candidate, i.e., there exists some counter candidate C ′ (C 6= C ′), it is
discarded by the minimal model semantics, because each model not encoding such a C ′
is saturated and is therefore not a minimal model of its reduct. In fact, the Answer-Sets
just encode solutions S without existence of any counter candidate C ′.
Applying Saturation In the following, we present Example 2.23, which uses disjunctive
ASP (see the two definitions at the beginning of this chapter); due to the structure of the

18

Quantified Boolean Formula (QBF) ψ of this example, it requires ΣP
2 (see Section 2.4)

computational power. In order to solve problems, which require ΣP
2 computational power,

with ASP, typically the saturation technique is applied [EG95, EGM97, LRS00, ABC+15].

Example 2.23. Assume the following simple QBF ψ := ∃a∀b(¬a ∨ b). In order to solve
this problem, we can use the propositional disjunctive program Πex given in Listing 2.1.
It uses the saturation technique and atoms tV resp. fV to model that variable V of ψ
(V ∈ {a, b}) is set to true resp. false. Observe that ψ is evaluated to true, the witnesses are
M1,M2 with M1(a) = M2(a) = false and M1(b) = true and M2(b) = false. Assume now
Πex and a model M with a guessed to false, i.e. M(fa) = true and M(ta) = false. Clearly,
due to Lines 3, 6 and 7, M(sat) = true,M(tb) = true and M(fb) = true. Observe now
ΠM

ex, which is the same as Πex but without the rule in Line 10. Assume that there is
M ′ ⊆ M with M ′ |= ΠM

ex. Note that M ′(ta) cannot be true, since we require M ′ ⊆ M .
By Line 13 we get that M ′(fa) = true. But then M ′(sat) = true,M ′(tb) = true and
M ′(fb) = true has to hold as well; so M ′ = M . Therefore M is an Answer-Set of Πex.
We observe that there cannot exist any model M ′′ of Πex that is exactly as M , but with
M ′′(fa) = true instead of M ′′(fa) = false (since M ′′ ⊃M). To conclude that M is the
only Answer-Set of Πex, assume a model M∗ of Π with M∗(ta) = true. Due to Line 10,
we are forced to set M∗(tb) = true – leading to M∗(sat) = true – because otherwise M∗
would not be a model of Πex. Actually, we observe that there exists model N∗ ⊂ M∗

(with N∗(fb) = true, N∗(tb) = false, N∗(fa) = false, N∗(ta) = true and N∗(sat) = false)
of ΠM∗

ex invalidating M∗ as an Answer-Set of Πex.

1% Model t he ca s e s where ψ e v a l u a t e s to t ru e
2 sat ← tb.
3 sat ← fa.

5% Sa t u r i z e over the ∀−q u a n t i f i e d v a r i a b l e s , i f ψ e v a l u a t e s to t ru e
6 tb ← sat.
7 fb ← sat.

9% Ensure s a t i s f i a b i l i t y
10 ← not sat.

12% Guess t r u t h v a l u e s o f v a r i a b l e s a and b
13 ta v fa.
14 tb v fb.

Listing 2.1: Πex: ASP program for solving QBF ψ.

Metasp [GKS11] was designed to simplify several ASP encodings by extending disjunctive
ASP via several statements designed for enabling optimization without explicitly using
the (tedious) saturation technique as explained in the previous subsection. Instead, it
provides a way to perform complex optimizations with little additional effort.

19

CHAPTER 3
DP algorithms on TDs for
Abstract Argumentation

This chapter first gives an introduction on DP algorithms on TDs for Abstract Argumen-
tation by discussing and proving a DP algorithm on TDs for admissible semantics similar
to [DPW12] (see Section 3.1). We basically modified the given algorithm [DPW12] for
admissible semantics in order to be able to further adapt it to the new semi-stable
algorithm of Section 3.2. Moreover, we will briefly show how to further adapt the (more
advanced) proof of the DP algorithm on TDs for semi-stable semantics, in order to reach
a DP algorithm on TDs for preferred semantics in Section 3.3. Note that this chapter
will consider normalized TDs as defined in Chapter 2.

3.1 Modified algorithm for Admissible Semantics
First of all, we need some basic definitions for induced subframeworks.

Definition 3.1. For a Tree Decomposition (T ,X) of an AF F and t ∈ T , let X≥t be
the union of all bags Xs ∈ X such that s occurs in the subtree of T rooted at t. Moreover,
X>t denotes X≥t\Xt. We also use the following terminology:

• Ft = F |Xt is the subframework in t;

• F≥t = F |X≥t
is the subframework induced by (the subtree rooted at) t.

Note that the subframework induced by the root of such a decomposition of an AF F is F
itself.

From now on we restrict ourselves to normalized Tree Decompositions where the bag of
the root is empty. Unless stated otherwise, we thus assume below that (T ,X) always

21

denotes a normalized Tree Decomposition (with empty root bag) for some given AF F .
Note that TDs for directed graphs (and therefore also for AFs F) are defined without
concerning about directions, i.e. we take the shadow of the attack graph of F (see
Section 2).

Definition 3.2. Let F = (A,R) be an AF and B a set of arguments. A tuple (S, D) s.t.
S,D ⊆ A and S ∩D = ∅ is a B-restricted admissible tuple for F , if

1. S is conflict-free in F and S defends itself in F against all a ∈ A ∩B and

2. For each a ∈ A : ((S �attacks a or a �attacks S) =⇒ a ∈ D), i.e. if a ∈ A is
already or still requires to be defeated (by S), a ∈ D is ensured.

S is called a B-restricted admissible set for F if (S,D) is a B-restricted admissible tuple
for F .

Concerning notation we will denote both (S,D) to be B-restricted admissible and S to
be B-restricted admissible if the context makes it clear that (S,D) is a tuple and S is a
set.

Note that for A ⊆ B, B-restricted admissible sets of AF (A,R) are just admissible
sets for F . For A ∩B = ∅, B-restricted admissible sets are just the conflict-free sets for
F .

Example 3.3. Let us again consider the example framework FEx given in Figure 2.4
(see Chapter 2). Figure 3.1 shows both FEx and the decomposition of this framework and
also includes induced subframeworks (by also including the dashed arguments within a
node of a Tree Decomposition).

Consider the AF F = (A = {w, x, y}, R = {(w, x), (x,w), (w, y)}), which is a sub-
framework induced by node n3 of the TD TEx (see Figure 3.1). The {x, y}-restricted
admissible sets are ∅, {w}, {x}, {y} and {x, y}. The set {y} however is not {w}-restricted
admissible, since w �attacks y and y does not defend itself against w. We turn the stated
{x, y}-restricted admissible sets into {x, y}-restricted admissible tuples by adding a second
component, a superset of defeated (including arguments requiring defeating) arguments
w.r.t. F . Since A always satisfies condition (2) of Definition 3.2, in the following we
only state the smallest set, which satisfies condition (2). That is, the {x, y}-restricted
admissible tuples with smallest (w.r.t. the order induced by ⊆) second component are
(∅, ∅), ({w}, {x, y}), ({x}, {w}), ({y}, {w}) and ({x, y}, {w}). Of course, we can always
extend the second component up to A, therefore the remaining {x, y}-restricted admissible
tuples are (∅, {w}), (∅, {x}), (∅, {y}), (∅, {w, x}), (∅, {w, y}), (∅, {x, y}), (∅, {w, x, y}),
({w}, {w, x, y}), ({x}, {w, x}), ({x}, {w, y}), ({x}, {w, x, y}), ({y}, {w, x}), ({y}, {w, y}),
({y}, {w, x, y}), ({x, y}, {w, x}), ({x, y}, {w, y}), ({x, y}, {w, x, y}).

We require basic definitions about the semantical concept of valid colorings and the
syntactical vcolorings with its allowed operations in order to prove the correctness of
the algorithm for admissible semantics in the following (by showing equivalence between
valid colorings and vcolorings).

22

Definition 3.4. Let F = (A,R) be an AF (T ,X) be a Tree Decomposition and t ∈ T .
We call C : Xt → {in, attc, def, out} a coloring and define for such a coloring C, [C] =
{a | C(a) = in} and [[C]] = {a | C(a) = def or C(a) = attc}.

Definition 3.5. Let (T ,X) be a Tree Decomposition of an AF F and t ∈ T . Given a
coloring C for t, we define et(C) as the collection of X>t-restricted admissible tuples
(S,D) for F≥t which satisfy the following for each a ∈ Xt.

(i) C(a) = in ⇐⇒ a ∈ S
(ii) C(a) = def ⇐⇒ S �attacks a
(iii) C(a) = attc ⇐= S 6�attacks a and a�attacks S
(iv) C(a) = out =⇒ S 6�attacks a and a 6�attacks S
(v) C(a) ∈ {def, attc} ⇐⇒ a ∈ D

If et(C) 6= ∅, C is called a valid coloring for t; Ct denotes the set of valid colorings for t.

Definition 3.6. Let (T ,X) be a Tree Decomposition of an AF F and t ∈ T . Given
a coloring C for t, we define e′t(C) for convenience as follows: e′t(C) := {S | (S,D) ∈
et(C)}.

Lemma 3.1. Assuming that r is the root of a Tree Decomposition of an AF F and ε the
(empty) coloring for r, we have that e′r(ε) = admissible(F).

Proof. Note that for A ⊆ B, B-restricted admissible sets of AF (A,R) are just admissible
sets for F , therefore e′r(ε) = admissible(F) follows immediately from Definitions 3.2
and 3.5, assuming r is the root of the Tree Decomposition and ε the coloring for r.

The key observation that e′r(ε) = admissible(F) is crucial and justifies why it is required
to prove equivalence between colorings and vcolorings. Therefore, it suffices to show
equivalence between the concept of valid colorings and the vcolorings (in other words the
operations of our algorithm for admissible semantics). For this we need Definition 3.5
and require knowledge about allowed syntactical operations concerning vcolorings (see
the forthcoming definition).

Example 3.7. Consider the node t = n3 of our Tree Decomposition Xt = {w, x} (see
Figure 3.1) and the coloring C with C(w) = in, C(x) = def. It holds that F≥t =
({w, x, y}, {(w, x), (x,w), (w, y))} and X>t = {y}. The only tuple in et(C) which is
X>t-restricted admissible for F≥t and satisfies the conditions from Definition 3.5 is
({w}, {x, y}), i.e. et(C) = {({w}, {x, y})}.

The operations of the forthcoming Definition 3.8 intuitively correspond to allowed
operations of our algorithm for admissible semantics. The −-operation is for any FORGET
node, the different +-operations are the potential possibilities for any INSERT node,
whereas the ./-operator is allowed for JOIN nodes. The diverse restrictions of using
vcolorings are then formalized in Definition 3.9.

23

Intuitively, there are three possibilities (and this is in fact the crucial observation,
which is required for computing semi-stable extensions as we will see in the next section)
for the +-operations. C +attc a guesses the newly introduced atom a to be an attacking
candidate (attc), i.e. a requires defeating (def) by the resulting extension, let us call it S,
that is S �attacks a. C +̇in a assumes the new atom a to be in the resulting extension,
and finally C +̂out a results in the assumption that a is neither in the extension, nor is it
an attacking candidate of it.

Definition 3.8. Let (T ,X) be a Tree Decomposition of an AF F . Moreover, assume C
resp. D to be a coloring for node t′ resp. t′′ ∈ T . We define the following operations.

(C − a)(b) = C(b) for each b ∈ Xt′\{a}.

(C +attc a)(b) =

C(b) if b ∈ Xt′ ,

def if a = b and [C] �attacks a,

attc otherwise,

(C +̂out a)(b) =
{
C(b) if b ∈ Xt′ ,

out otherwise,

(C +̇in a)(b) =

in if a = b or C(b) = in,
out if a 6= b, (a, b) 6∈ F, (b, a) 6∈ F,C(b) = out,
def if a 6= b and ((C(b) = attc and (a, b) ∈ F) or C(b) = def),
attc otherwise,

(C ./ D)(b) =

in if C(b) = D(b) = in,
out if C(b) = D(b) = out,
def if C(b) = def or D(b) = def,
attc otherwise,

Definition 3.9. Let t ∈ T be a node in a normalized Tree Decomposition (T ,X) of an
AF F and t′, t′′ be the possible children of t. The operations are taken as defined in
Definition 3.8. A vcoloring is defined as following.

• FORGET: If C is a vcoloring for t′, Xt = Xt′\{a} and C(a) 6= attc then C − a is
a vcoloring for t.

• INSERT:
(i) C +attc a is a vcoloring for t if C is a vcoloring for t′ and Xt = Xt′ ∪ {a};
(ii) C +̂out a is a vcoloring for t if additionally to (i), [C] 6�attacks a and a 6�attacks

[C];
(iii) C +̇in a is a vcoloring for t if additionally to (i), a 6�attacks a, [C] 6�attacks a,

a 6�attacks [C] and [[C]] = [[C +̇in a]]

• JOIN: If C is a vcoloring for t′, D is a vcoloring for t′′, [C] = [D], and [[C]] = [[D]],
then C ./ D is a vcoloring for t.

24

• LEAF: Each coloring Xt → {in, out, def, attc} s.t.
C(x) = in⇒ C(y) ∈ {def, attc} for all y �attacks x
C(x) = def ⇐⇒ ∃y : C(y) = in and y �attacks x
holds for all x ∈ Xt, is a vcoloring.

Example 3.10. Figure 3.2 contains the bottom-up computation of the vcolorings for
FEx of Figure 3.1 w.r.t. the Tree Decomposition shown in Figure 3.1. The representation
is a little bit different (more compact and in table form, cf. Section 4.1.2.1; each row
represents one vcoloring) than for instance in Figure 2.2. In the forthcoming examples, we
will discuss some transitions from children to parent nodes (as defined in Definition 3.9).

The last column of the computed table of every Tree Decomposition node contains
the extension pointers as described in Chapter 2. Observe that by following these exten-
sion pointers, we get that in total admissible(AFEx) = {∅, {v}, {w}, {v, w}} (compare to
Example 2.12).

Now we show for every node n (i.e. all the different node types) equivalence between
vcolorings and colorings assuming equivalence between child nodes of n. This helps us
later to reach our goal of showing correctness of the algorithm for admissible semantics
(specified by Definitions 3.8 and 3.9) by structural induction.

Lemma 3.2. For any LEAF node in a Tree Decomposition of an AF F , valid colorings
and vcolorings coincide.

Proof. Let (T ,X) be a Tree Decomposition of F and t a leaf in T . We have X>t = ∅;
therefore, the X>t-restricted admissible sets for F≥t coincide with the conflict-free sets.
First, let C be a vcoloring for t. We have to show that then C is a valid coloring for t.
Suppose to the contrary that it is not, i.e., either [C] is not conflict-free in Ft = F≥t or C
violates one of the conditions in Definition 3.5. It is easy to check that, in both cases, one
of the conditions for C being a vcoloring is violated. For instance, if there is a conflict
in [C], then there exist arguments x, y ∈ Xt with X �attacks y and C(x) = C(y) = in.
Hence, the first condition in Definition 3.9 for vcolorings at a LEAF node is violated, a
contradiction.
Now suppose that C is a valid coloring for t, i.e., C satisfies the conditions of colorings
(see Definition 3.5) and [C] is conflict-free in F≥t. Then C satisfies the condition of a
vcoloring for a LEAF node according to Definition 3.9. For instance, let x, y ∈ Xt with
C(x) = in and y �attacks x. Then, since C is a valid coloring, either case (ii) or case (iii)
of Definition 3.5 applies and, thus, C(y) ∈ {attc, def} holds.

Example 3.11. Consider for instance node t = n1 of Figure 3.1 with bag {w, y}. We
have six different vcolorings (see Figure 3.2), which correspond to conflict-free sets
(actually ∅-restricted admissible tuples) for F≥t = ({w, y}, {(w, y)}): (∅, ∅), (∅, {w}),
(∅, {y}), (∅, {w, y}, ({w}, {y}), ({y}, {w}).

For proving equivalence for FORGET nodes, we need an additional lemma as follows.

25

Lemma 3.3. For any FORGET node t in a Tree Decomposition of an AF F with child
node t′ such that Xt = Xt′\{a}, and every S ⊆ A, the following relationships hold.

1. If (S,D) is an X>t-restricted admissible tuple for F≥t, then (S,D) is also an
X>t′-restricted admissible tuple for F≥t′.

2. If (S,D) is an X>t′-restricted admissible tuple for F≥t′ and a ∈ S, then (S,D) is
an X>t-restricted admissible tuple for F≥t.

3. If (S,D) is an X>t′-restricted admissible tuple for F≥t′ , a 6∈ S and S defends itself
against a (including the case that a does not attack S at all), then (S,D) is an
X>t-restricted admissible tuple for F≥t.

Proof. First, since Xt ⊆ Xt′ , we have F≥t = F≥t′ and X>t ⊇ X>t′ . Let (S,D) be an
X>t-restricted admissible tuple for F≥t and hence for F≥t′ , i.e., S is conflict-free in F , S
defends itself against all b ∈ X>t and D contains the arguments requiring defeating s.t.
S ∩D = ∅. By X>t ⊇ X>t′ , S thus also defends itself against all b ∈ X>t′ . Hence (S,D)
is an X>t′-restricted admissible tuple for F≥t′ , D still contains remaining arguments
requiring defeating and assertion (1) follows.
Now assume that (S,D) is an X>t′-restricted admissible tuple for F≥t′ and a ∈ S.
Then S is conflict-free in F , S defends itself against all b ∈ X>t′ and D contains the
arguments requiring defeating s.t. S ∩D = ∅. Strictly speaking, S defends itself against
all b ∈ X>t′\S. By X>t′\S = X>t\S (recall we are assuming that a ∈ S), therefore
S is an X>t-restricted admissible set for F≥t. Since a ∈ S, (S,D) is an X>t-restricted
admissible tuple for F≥t. This proves assertion (2).
Finally assume that (S,D) is an X>t′-restricted admissible tuple for F≥t′ , a 6∈ S and S
defends itself against a (i.e. a ∈ D). Since S is X>t′-restricted admissible, it is conflict-
free in F and defends itself against all b ∈ X>t′ . Moreover, X>t = X>t′ ∪ {a} and, by
assumption, S defends itself against a. Hence, S defends itself against all b ∈ X>t. Thus,
(S,D) is X>t-restricted admissible and assertion (3) follows.

Lemma 3.4. For any FORGET node t in a Tree Decomposition of an AF F , valid
colorings and vcolorings coincide, if they coincide in the child node t′ of t.

Proof. We assume that valid colorings and vcolorings coincide at t′. Let (T ,X) be a
Tree Decomposition of F = (A,R), t a FORGET node in T , and t′ the child node of
t. By definition, Xt = Xt′\{a} for some a ∈ A. Moreover, we get X≥t = X≥t′ and
X>t = X>t′ ∪ {a}.
Let C be a valid coloring for t. We show that there exists a valid coloring C ′ for t′ with
C ′(a) 6= attc and C = C ′ − a. We define C ′ as follows. For all b ∈ Xt = Xt′\{a}, we
set C ′(b) = C(b). Hence, no matter which value {in,def, out} we assign to C ′(a), we
have C = C ′ − a. In order to define C ′(a), we consider an arbitrary (S,D) ∈ et(C) and
distinguish two cases:

1. If a ∈ S, then we set C ′(a) = in. Since (S,D) is X>t-restricted admissible for
F≥t, it is also X>t′-restricted admissible for F≥t′ = F≥t, by Lemma 3.3. Moreover,

26

(S,D) ∈ et′(C ′), i.e., C ′ is a valid coloring for t′ (this can be seen by just using
the chosen S in the conditions in Definition 3.5). Hence, by assumption, C ′ is a
vcoloring for t′ and, therefore, also C = C ′ − a is a vcoloring for t, by definition.

2. Now let a 6∈ S. If S �attacks a, we set C ′(a) = def. If S 6�attacks a and a 6�attacks S,
we set C ′(a) = out. In both cases, (S,D) ∈ et′(C ′). Note that the case S 6�attacks a
and a�attacks S cannot occur since, by assumption, S is X>t-restricted admissible
for F≥t. By the same reasoning as above, C ′ is a vcoloring for t′; thus C is also a
vcoloring for t.

Now let C be a vcoloring for t, i.e., there exists a vcoloring C ′ for t′ such that C ′(a) 6= attc
and C = C ′− a. By assumption, C ′ is a valid coloring for t′. Hence, there exists (S,D) ∈
et′(C ′), i.e., (S,D) is X>t′-restricted admissible for F≥t′ = F≥t. Since C ′(a) 6= attc, it
cannot happen that both a �attacks S and S 6�attacks a hold. But then (S,D) is also
X>t-restricted admissible for F≥t by Lemma 3.3 and (S,D) ∈ et(C). Thus, C ∈ Ct.

Example 3.12. Our running example (Figure 3.2) proceeds with node t = n1 of Fig-
ure 3.1. The next node n2 above removes argument y and thus is of type FORGET;
X>n2 = {y}. Vcolorings for n2 are obtained from vcolorings for n1 except for C with
C(y) = attc. Intuitively, such colorings are not extended further, because y is still an
undefeated attacking candidate (i.e. y requires defeating). By properties (2) and (3) of
Tree Decompositions, y is not attacked by any argument outside X≥n2, i.e. there is no
chance for y becoming defeated. The colorings for n2 are now in accordance with the
X>n2-restricted admissible tuples for F≥n2 = F≥n1.

We consider now nodes of type INSERT, but also here an additional lemma is required.

Lemma 3.5. For any INSERT node t in a Tree Decomposition of an AF F with child
node t′ such that Xt = Xt′ ∪ {a}, and every S ⊆ A, the following relationships hold.

1. If (S,D) is an X>t-restricted admissible tuple for F≥t, then (S\{a}, D\{a}) is an
X>t′-restricted admissible tuple for F≥t′.

2. If (S,D) is an X>t′-restricted admissible tuple for F≥t′, then (S,D ∪ {a}) is also
an X>t-restricted admissible tuple for F≥t.

3. If (S,D) is an X>t′-restricted admissible tuple for F≥t′ and S ∪ {a} is conflict-free
in F≥t then (S ∪ {a}, D) is an X>t-restricted admissible tuple for F≥t.

4. If (S,D) is an X>t′-restricted admissible tuple for F≥t′ , S 6�attacks a and a 6�attacks
S, then (S,D) is also an X>t-restricted admissible tuple for F≥t.

Proof. By assumption, we have Xt = Xt′ ∪{a} and a 6∈ Xt′ . Thus, also X≥t = X≥t′ ∪{a}
and X>t = X>t′ hold. By properties (2) and (3) of Tree Decompositions, we know that
there are no attacks between the new argument a and arguments in X>t.
First, let (S,D) be an X>t-restricted admissible tuple for F≥t. By X>t = X>t′ , (S,D) is
also X>t′-restricted admissible for F≥t. Moreover, since a cannot attack any argument in
X>t′ , also (S\{a}, D\{a}) is X>t′-restricted admissible for F≥t′ (of course if a 6∈ S, then
S\{a} = S and the latter admissibility property is trivial). This proves assertion (1).

27

Now consider an X>t′-restricted admissible tuple (S,D) for F≥t′ . Then S is conflict-free
in F . Moreover, as explained above, there are no attacks between the new argument
a and arguments in X>t. Hence, the argument a does not affect the second condition
for being an X>t-restricted admissible set. Thus (S,D ∪ {a}) and (S ∪ {a}, D) (in case
S∪{a} is conflict-free) are X>t-restricted admissible tuples of F≥t. This proves assertions
(2) and (3). Moreover, if a 6�attacks S and S 6�attacks a, it is not required that a ∈ D, i.e.
(S,D) is already X>t-restricted admissible for F≥t, which proves assertion (4).

Lemma 3.6. For any INSERT node t in a Tree Decomposition of an AF F , valid
colorings and vcolorings coincide, if they coincide in the child node t′ of t.

Proof. Let (T ,X) be a Tree Decomposition of F = (A,R), t an INSERT node in T , and
t′ the child node of t. Moreover, let Xt = Xt′ ∪ {a}; observe that a 6∈ Xt′ . Let C be a
valid coloring for t, i.e., there exists an X>t-restricted admissible tuple (S,D) ∈ et(C)
for F≥t. Then, by Lemma 3.5, (S\{a}, D\{a}) is X>t′-restricted admissible for F≥t′ . We
construct a coloring C ′ for t′ with (S\{a}, D\{a}) ∈ et′(C ′) as follows. For arbitrary
b ∈ Xt′ , we define:

C ′(b) = in if b ∈ S\{a},
C ′(b) = def if b 6∈ S and S\{a}�attacks b,

C ′(b) = attc if b 6∈ S, b�attacks S\{a}, and S\{a} 6�attacks b,

C ′(b) = attc if b 6∈ S, b 6�attacks S\{a}, C(b) 6= out and S\{a} 6�attacks b,

C ′(b) = out if b 6∈ S, b 6�attacks S\{a}, C(b) = out and S\{a} 6�attacks b,

Thus, C ′ ∈ Ct′ , and by assumption, is a vcoloring for t′. Moreover, it is easy to check
that either C = C ′ +attc a or C = C ′ +̂out a (if a 6∈ S) holds, or C = C ′ +̇in a holds (if
a ∈ S). Hence, C is a vcoloring for t.
Now let C be a vcoloring for t, i.e., there exists a vcoloring C ′ for t′ with either
C = C ′ +attc a, C = C ′ +̇in a or C = C ′ +̂out a. By assumption, C ′ is a valid coloring
for t, i.e., there exists an X>t′-restricted (and, hence X>t-restricted) admissible tuple
(S,D) ∈ et′(C ′) of F≥t′ . It is easy to check that then (using Lemma 3.5) (S,D ∪ {a}) ∈
et(C ′ +attc a) and (S,D) ∈ et(C ′ +̂out a) (if S 6�attacks a and a 6�attacks S). Moreover, if
the set S ∪ {a} is conflict-free in F≥t, then (S ∪ {a}, D) ∈ et(C +̇in a) as well. Thus, C
(which is either C ′ +attc a, C ′ +̇in a or C ′ +̂out a) is a valid coloring for t.

Example 3.13. We continue our running example (Figure 3.2) of computing vcolorings
w.r.t. TEx of Figure 3.1. Node n3 adds argument x. Consider coloring C ′ of n2 with
C ′(w) = attc. We have now three possibilities to add argument x (corresponding to the
three different +-operations of vcolorings).

• C = C ′ +attc x: This results in C(x) = attc and C(w) = attc.

• C = C ′ +̇in x: If we set C(x) = in, this leads to C(w) = def since x�attacks w.

28

• C = C ′ +̂out x: This leads to C(x) = out and C(w) = attc.

For JOIN nodes we need two additional helping lemmas as following.

Lemma 3.7. Assume any JOIN node t in a Tree Decomposition of an AF F with child
nodes t′ and t′′. Now let S1, D1 ⊆ X≥t′ and S2, D2 ⊆ X≥t′′, such that

1. (S1, D1) is X>t′-restricted admissible for F≥t′;
2. (S2, D2) is X>t′′-restricted admissible for F≥t′′;
3. S1 ∩Xt = S2 ∩Xt.

Then (S = S1 ∪ S2, D = D1 ∪D2) is an X>t-restricted admissible tuple for F≥t.

Proof. By properties (2) and (3) of Tree Decompositions, there are no attacks between
the argument sets X>t′ and X>t′′ . In order to show that S = S1 ∪ S2 is X>t-restricted
admissible, we have to prove that (a) S is conflict-free in the AF F≥t; (b) S defends
itself against all attacks from arguments in X>t = X>t′ ∪X>t′′ in F≥t and (c) For every
a ∈ X≥t : ((S �attacks a or a�attacks S) =⇒ a ∈ D) and S ∩D = ∅.
(a) Suppose to the contrary that there is a conflict a �attacks b with a, b ∈ S. Then
a, b ∈ X≥t′ (resp. a, b ∈ X≥t′′) or a ∈ X≥t′ while b ∈ X≥t′′ (or vice versa). In the case
a, b ∈ X≥t′ , we get a, b ∈ S1 and, therefore, S1 is not conflict-free in F≥t′ , a contradiction
to assumption 1 (the same argument applies to a, b ∈ X≥t′′). Thus, assume a ∈ X≥t′
while b ∈ X≥t′′ (or vice versa). Since there are no attacks between an argument from X>t′

and an argument from X>t′′ , it must hold that a ∈ Xt or b ∈ Xt. Hence, {a, b} ⊆ X≥t′
or {a, b} ⊆ X≥t′′ holds. Assuming S1 ∩Xt = S2 ∩Xt, this means that there is a conflict
in S1 or S2, yielding a contradiction to assumption 1 or 2.
(b) We show that all arguments in S1 are defended by S against arguments from X>t in
F≥t. The analogous result for S2 then follows by symmetry. In total, every argument in
S is defended by S against arguments from X>t in F≥t. Together with the result from
(a), we thus derive the desired result, i.e. that S is an X>t-restricted admissible set for
F≥t.
By assumption, S1 defends itself against X>t′ in F≥t′ and thus against X>t′ in F≥t.
Moreover, there are no attacks from X>t′′ against X>t′ in F≥t by the properties of Tree
Decompositions. So X>t′′ can only attack arguments in S1 ∩Xt. Thus, S2 defends S1
against X>t′′ since, S1 ∩ Xt = S2 ∩ Xt and by assumption, S2 defends itself against
all attacks from X>t′′ in F≥t′ and thus also in F≥t. Putting this together, we have
S = S1 ∪ S2 defends S1 against X>t in F≥t.
(c) Since both for every a ∈ X≥t′ : ((S1 �attacks a or a �attacks S1) =⇒ a ∈ D1)
and ∀a ∈ X≥t′′ : ((S2 �attacks a or a �attacks S2) =⇒ a ∈ D2) holds, ∀a ∈ X≥t :
((S �attacks a or a �attacks S) =⇒ a ∈ D) follows; S ∩D = ∅ holds since S1 ∩D1 =
S2 ∩D2 = ∅ and S2 ∩D1 = ∅ holds since there are no attacks between the argument
sets X>t′ and X>t′′ and Xt = Xt′ = Xt′′ and S1 ∩ Xt = S2 ∩ Xt (S1 ∩ D2 = ∅ is by
symmetry).

29

Lemma 3.8. Let (S,D) be an X>t-restricted admissible tuple for F≥t, S1 = S∩X≥t′ , S2 =
S ∩X≥t′′ , D1 = D ∩X≥t′ and D2 = D ∩X≥t′′. Then,

1. (S1, D1) is X>t′-restricted admissible for F≥t′;
2. (S2, D2) is X>t′′-restricted admissible for F≥t′′;
3. S1 ∩Xt = S2 ∩Xt.
4. D1 ∩Xt = D2 ∩Xt.

Proof. Let (S,D) be an X>t-restricted admissible tuple for F≥t. Assumptions 3 and 4 are
immediate by the fact that X≥t′ ∩X≥t′′ = Xt. Moreover, since S is conflict-free in F≥t,
each subset of S is conflict-free in any subframework of F≥t, in particular S1 = S ∩X≥t′
is conflict-free in F≥t′ and S2 = S ∩X≥t′′ is conflict-free in F≥t′′ . It remains to show that
S1 (resp. S2) defends itself against all attacks from X>t′ (resp. from X>t′′) in F≥t′ (resp.
in F≥t′′). Suppose to the contrary that there exists a ∈ X>t′ such that a �attacks S1
and S1 6�attacks a in F≥t′ . Since S is X>t-restricted admissible in F≥t, we know that
S �attacks a in F≥t. Hence, there has to exist an argument b ∈ S\S1 = S ∩X>t′′ such
that b�attacks a in F≥t. But, as already observed earlier, there are no attacks between
X>t′ and X>t′′ , a contradiction. Since X>t′ ⊆ X>t, (S1, D1) is X>t′-restricted admissible
for F≥t′ . By symmetry, also (S2, D2) is X>t′′-restricted admissible for F≥t′′ .

Lemma 3.9. For any JOIN node t in a Tree Decomposition of an AF F , valid colorings
and vcolorings coincide, if they coincide also for both child nodes t′ and t′′ of t.

Proof. Let (T ,X) be a Tree Decomposition of F = (A,R) and t a JOIN node in T with suc-
cessors t′ and t′′. Then Xt = Xt′ = Xt′′ and X≥t′∩X≥t′′ = Xt and X≥t = X≥t′∪X≥t′′ . So
we can partition X≥t into three disjoint sets X>t′ , X>t′′ and Xt. Thus every set S ⊆ X≥t
can be seen as the union of two sets S1 ⊆ X≥t′ and S2 ⊆ X≥t′′ with S1 ∩Xt = S2 ∩Xt.
The Lemmas 3.7 and 3.8 identify important properties of these sets S1 and S2.
We now show that valid colorings and vcolorings for a JOIN node t coincide. First,
let C be a vcoloring for t, i.e., C = C ′ ./ C ′′, where C ′ (resp. C ′′) is a vcoloring
for t′ (resp. t′′), [C ′] = [C ′′] and [[C ′]] = [[C ′′]]. By assumption, C ′ and C ′′ are valid
colorings for the respective nodes t′ and t′′. Hence, there exist (S1, D1) ∈ et′(C ′) and
(S2, D2) ∈ et′′(C ′′). Moreover, by [C ′] = [C ′′], we have S1 ∩ Xt = S2 ∩ Xt. Thus, by
Lemma 3.7, (S = S1 ∪ S2, D = D1 ∪D2) is X>t-restricted admissible. It remains to show
that (S,D) ∈ et(C). To this end, we check that conditions in Definition 3.5 are satisfied
for every a ∈ Xt.

(i) By the definition of the ./-operator in Definition 3.8, we have C(a) = in ⇐⇒
C ′(a) = in and C ′′(a) = in. This, in turn, is equivalent to a ∈ S1 and a ∈ S2. In
total we have C(a) = in ⇐⇒ a ∈ S.

(ii) C(a) = def ⇐⇒ C ′(a) = def or C ′′(a) = def (see Definition 3.8) ⇐⇒ S1 �attacks
a or S2 �attacks a ⇐⇒ S �attacks a

(iii) S 6�attacks a and a�attacks S ⇐⇒ S1 6�attacks a, S2 6�attacks a, a�attacks S1 and
a�attacks S2 =⇒ C ′(a) = attc and C ′′(a) = attc ⇐⇒ C(a) = attc

30

(iv) C(a) = out ⇐⇒ C ′(a) = out and C ′′(a) = out (see Definition 3.8) =⇒
S1 6�attacks a, S2 6�attacks a, a 6�attacks S1 and a 6�attacks S2 =⇒ S 6�attacks a and
a 6�attacks S

(v) C(a) ∈ {def, attc} ⇐⇒ C ′(a) ∈ {def, attc} or C ′′(a) ∈ {def, attc} (see Defini-
tion 3.8) ⇐⇒ a ∈ D1 or a ∈ D2 ⇐⇒ a ∈ D.

Now assume that C is a valid coloring for t, i.e., there exists (S,D) ∈ et(C). We
define S1 = S ∩ X≥t′ , S2 = S ∩ X≥t′′ , D1 = D ∩ X≥t′ and D2 = D ∩ X≥t′′ . Then, by
Lemma 3.8, (S1, D1) is X>t′-restricted admissible for F≥t′ . (S2, D2) is X>t′′-restricted
admissible for F≥t′′ , and S1 ∩ Xt = S2 ∩ Xt. We define a coloring C ′ at t′ and a col-
oring C ′′ at t′′, such that (S1, D1) ∈ et′(C ′) and (S2, D2) ∈ et′′(C ′′). Then C ′ and C ′′
are valid colorings for the respective nodes t′ and t′′, and, therefore, by assumption
they are also vcolorings for their node. Now define the vcoloring C∗ = C ′ ./ C ′′ for
node t. We claim that C∗ = C holds. To prove this claim, we have to show that
C∗(a) = C(a) for every a ∈ Xt. This equality is shown by distinguishing the four
possible values {in,def, attc, out} and by exploiting the conditions in Definition 3.5 as
well as the definition of the ./-operator in Definition 3.8. We only work out the case of
in-nodes here; the remaining cases are treated analogously. Inspecting the ./-definition
in Definition 3.8, shows that C∗(a) = in ⇐⇒ C ′(a) = in and C ′′(a) = in ⇐⇒ a ∈ S1
and a ∈ S2 ⇐⇒ a ∈ S ⇐⇒ C(a) = in.

Example 3.14. The only JOIN node of our running example is t = n7, which combines
subframeworks F≥3 and F≥6 (see Figure 3.2 w.r.t. TEx of Figure 3.1). Assume C ′ resp.
C ′′ to be a coloring for n3 resp. n6. Moreover let us agree on C ′(w) = def = C ′′(w) and
C ′(x) = in = C ′′(x). Since [C ′] = [C ′′] and [[C ′]] = [[C ′′]], the colorings coincide on
X≥3∩X≥6 and we can join these colorings without any conflict leading to C = C ′ ./ C ′′

with C(x) = C ′(x) = C ′′(x) and C(w) = C ′(w) = C ′′(w) for node n7. Now consider
coloring C∗ with C∗(w) = in and C∗(x) = def. It holds that [C ′′] 6= [D′] and [C ′′]∪ [D′] =
{w, x} has a conflict leading to the fact that C ′′ and D′ does not result in a vcoloring for
node t = n7.

Now we have everything to complete our correctness proof of admissible semantics.

Theorem 3.1. Let (T ,X) be a normalized Tree Decomposition of an AF F = (A,R).
Then, for each coloring C for a node t ∈ T , it holds that C is a valid coloring for t iff C
is a vcoloring for t.

Proof. Structural induction and Lemmas 3.2 through 3.8.

Since we have shown equivalence, recall now our Lemma 3.1 and that the A-restricted
admissible sets for an AF F = (A,R) are just the admissible sets for F . We are able to
construct our valid coloring for the root r of any Tree Decomposition T via computing
vcolorings in a bottom-up manner and therefore finally are for instance capable of
computing (enumerating) our admissible sets via e′r(ε) (using Lemma 3.1 assuming that

31

ε is the coloring for r). Observe that ∅ is by definition always an admissible extension, so
ε trivially exists, but for enumerating (computing e′r(ε)) the vcoloring results for all the
nodes of T are required. In an efficient implementation, this can be done via connecting
vcolorings for the diverse nodes of T appropriately (during the bottom-up procedure;
compare with Section 2.3 and [ABC+14a]).

3.2 New algorithm for Semi-stable Semantics

In the previous section, we formally introduced both an algorithm for admissible semantics
and concepts required for proving its correctness. The algorithm was based on [DPW12],
but modified in such a way that we can now easily adapt it in order to achieve an algorithm
for semi-stable semantics. For this, we need to recall Definition 2.15, where we defined the
range of an admissible set S ⊆ A of an AF F = (A,R) as S+

R = S∪{a ∈ A | S �attacks a}.
So, our goal in this section now is to obtain an algorithm for semi-stable semantics, that
is we want to compute admissible extensions with a subset-maximal range.

We require some helping lemmas for simplifications as follows.

Lemma 3.10. Let (T ,X) be a Tree Decomposition of an AF F , t ∈ T , and (S,D) an X>t-
restricted admissible tuple for F≥t. Then, there is a coloring C ∈ Ct s.t. (S,D) ∈ et(C).

Proof. Since (S,D) is an X>t-restricted admissible tuple for F≥t, each argument a ∈ Xt

satisfies one of the following conditions: (i) a ∈ S and a 6∈ D, (ii) S �attacks a and a ∈ D,
(iii) S 6�attacks a,a �attacks S and a ∈ D, or (iv) S 6�attacks a and a 6�attacks S. For
these four cases, we define C as follows:

for case (i) : C(a) = in
for case (ii) : C(a) = def
for case (iii) : C(a) = attc
for case (iv) : C(a) = out

By the construction of C, S and D satisfy the conditions of Definition 3.5 and, since
(S,D) is X>t-restricted admissible for F≥t, it holds that (S,D) ∈ et(C).

Lemma 3.11. Let (T ,X) be a Tree Decomposition of an AF F = (A,R) and let C, C ′
be different colorings for a node t ∈ T . Then, et(C) ∩ et(C ′) = ∅.

Proof. Suppose to the contrary that there is a tuple (S,D) ∈ et(C) ∩ et(C ′), where C
and C ′ are different colorings for t. Then there exists an argument a ∈ Xt such that
C(a) 6= C ′(a). It remains to inspect all possible pairs of values of C(a) and C ′(a) and
to derive a contradiction in each case. First let us consider the case where C(a) = in
and C ′(a) ∈ {def, attc, out}. By Definition 3.5, C(a) = in implies a ∈ S and further
C ′(a) ∈ {def, attc, out} implies a 6∈ S, a contradiction. We continue with the case where
C(a) = def and C ′(a) ∈ {attc, out}. By Definition 3.5, C(a) = def implies S �attacks a.

32

On the other hand, C ′(a) ∈ {attc, out} implies S 6�attacks a, a contradiction. Finally,
the case C(a) = attc and C ′(a) = out. By Definition 3.5, C(a) = attc implies a ∈ D, but
a 6∈ D since C ′(a) = out.

Similar to before, we define the semantical part of proving our semi-stable algorithm
in form of valid pairs (Definition 3.15) and the vpairs in Definition 3.18, which require
adjusted operations formalized in Definition 3.17 (i.e. the syntactical parts; in other
words – and as before – our specification of the DP algorithm on TDs).

Definition 3.15. Let (T ,X) be a Tree Decomposition of an AF F , t ∈ T , and (C,Γ)
a pair with C being a coloring for t and Γ being a set of colorings for t. We call (C,Γ)
simply a pair for t and define et(C,Γ) as the collection of tuples (S,D) which satisfy the
following conditions.

(i) (S,D) ∈ et(C);
(ii) For all C ′ ∈ Γ, there is an (E,U) ∈ et(C ′) such that S ∪D ⊂ E ∪ U ;
(iii) For all X>t-restricted admissible (for F≥t) tuples (E,U) with S ∪D ⊂ E ∪U , there

exists some C ′ ∈ Γ with (E,U) ∈ et(C ′).

If et(C,Γ) 6= ∅, (C,Γ) is a valid pair for t.

Definition 3.16. Let (T ,X) be a Tree Decomposition of an AF F and t ∈ T . Given a
pair (C,Γ) for t, we define e′t(C,Γ) for convenience as follows: e′t(C,Γ) := {S | (S,D) ∈
et(C,Γ)}.

Definition 3.17. Let (T ,X) be a Tree Decomposition of an AF F . Moreover, assume
Γ resp. ∆ to be a set of colorings for node t′ resp. t′′ ∈ T . We define the following
operations (compare with Definition 3.8).

Γ− a = {C − a | C ∈ Γ, C(a) 6= attc}
Γ +attc a = {C +attc a | C ∈ Γ, [C] 6�attacks a, a 6�attacks [C]}
Γ +̇in a = {C +̇in a | C ∈ Γ, [C] 6�attacks a, a 6�attacks [C], a 6�attacks a and

[[C]] = [[C +̇in a]]}
Γ +̂out a = {C +̂out a | C ∈ Γ}
Γ ./ ∆ = {C ./ D | C ∈ Γ, D ∈ ∆, [C] = [D] and [[C]] = [[D]]}

Definition 3.18. Let (T ,X) be a normalized Tree Decomposition of an AF F and let
t ∈ T be a node with t′, t′′ its possible children. Depending on the node type of t we
define a vpair for t as follows.

• LEAF: Each (C,Γ) where C ∈ Ct and Γ = {C ′ ∈ Ct | [C]∪ [[C]] ⊂ [C ′]∪ [[C ′]]} is a
vpair for t.

• FORGET: If (C ′,Γ′) is a vpair for t′, Xt = Xt\{a}, and C ′(a) 6= attc, then
(C ′ − a,Γ′ − a) is a vpair for t.

33

• INSERT: If (C ′,Γ′) is a vpair for t′ and Xt = Xt′ ∪ {a}, and if C ′ +̇in a is a
vcoloring for t then (C ′ +̇in a, (Γ′ +attc a)∪ (Γ′ +̇in a)) is a vpair for t; if moreover
C ′ +̂out a is a vcoloring for t, then (C ′ +̂out a, ({C ′}+attca)∪({C ′} +̇in a)∪(Γ′+attc
a) ∪ (Γ′ +̇in a) ∪ (Γ′ +̂out a)) is a vpair for t; (C ′ +attc a, (Γ′ +attc a) ∪ (Γ′ +̇in a))
is a vpair for t.

• JOIN: If (C ′,Γ′) is a vpair for t′, (C ′′,Γ′′) is a vpair for t′′, [C ′] = [C ′′] and
[[C ′]] = [[C ′′]], then (C ′ ./ C ′′, (Γ′ ./ Γ′′) ∪ ({C ′} ./ Γ′′) ∪ (Γ′ ./ {C ′′})) is a vpair
for t.

Example 3.19. Figure 3.3 illustrates the computation of the vpairs for FEx of Figure 3.1
w.r.t. the Tree Decomposition shown in Figure 3.1.

In addition to Figure 3.2, the additional column Γ of the table of every Tree Decom-
position node uses column ID and represents (strict) counter candidates. Observe that by
following the extension pointers, we get that semi-stable(AFEx) = {{v, w}} (compare to
Example 2.16).

Observe that indeed there exists coloring C s.t. (C,Γ) and (C,Γ′) being pairs for the
same node with Γ 6= Γ′.

Similar to the begin of this subsection, we need two additional lemmas adjusted to pairs
as follows.

Lemma 3.12. Let (T ,X) be a Tree Decomposition of an AF F , t ∈ T , and (S,D) an X>t-
restricted admissible tuple for F≥t. Then, there is a pair (C,Γ) for t s.t. (S,D) ∈ et(C,Γ).

Proof. Let (S,D) be an X>t-restricted admissible tuple for F≥t. By Lemma 3.10, there ex-
ists a coloring C with (S,D) ∈ et(C). Moreover, let E = {(E,U) | (E,U) isX>t-restricted
admissible for F≥t s.t. S∪D ⊂ E∪U}. Moreover, let Γ = {C ′ | ∃(E,U) ∈ E , s.t. (E,U) ∈
et(C ′)}. We claim that (S,D) ∈ et(C,Γ). To prove this, we check conditions (i)-(iii) from
Definition 3.15: (i)(S,D) ∈ et(C) by the selection of C. (ii) For all C ′ ∈ Γ, there exists
(E,U) ∈ et(C ′) with S ∪D ⊂ E ∪ U ; this follows by the construction of Γ from E . (iii)
For all X>t-restricted admissible tuples (E,U) (in F≥t) with S ∪D ⊂ E ∪U , there exists
C ′ ∈ Γ with (E,U) ∈ et(C ′); again this follows by the construction of Γ from E .

Lemma 3.13. Let (T ,X) be a Tree Decomposition of an AF F = (A,R), t ∈ T ,
and let (C,Γ), (C ′,Γ′) be different pairs for t (but not necessarily C 6= C ′). Then,
et(C,Γ) ∩ et(C ′,Γ′) = ∅.

Proof. If C 6= C ′ then, by Lemma 3.11, et(C) ∩ et(C ′) = ∅ and our claim follows. Thus,
it remains to consider pairs (C,Γ), (C ′,Γ′) with C = C ′ and Γ 6= Γ′. W.l.o.g., we assume
that there exists a coloring C̄ for t such that C̄ ∈ Γ but C̄ 6∈ Γ′. In order to show that
et(C,Γ) ∩ et(C ′,Γ′) = ∅, we prove that none of the tuples (S,D) ∈ et(C,Γ) is contained
in et(C ′,Γ′).
Let (S,D) be an arbitrary tuple in et(C,Γ). Suppose to the contrary that (S,D) is
also contained in et(C,Γ′). By Definition 3.15 (applied to et(C,Γ)), there exists an

34

X>t-restricted admissible tuple (E,U) ∈ et(C̄) for F≥t such that S ∪ D ⊂ E ∪ U .
By Definition 3.15 (applied to et(C ′,Γ′)), there exists a coloring C∗ ∈ Γ′ such that
(E,U) ∈ et(C∗). By Lemma 3.11, the colorings C̄ and C∗ coincide. Thus, C̄ ∈ Γ′, a
contradiction.

The following proposition is the key ingredient in our proof and justifies why it is enough
to just show equivalence between valid pairs and vpairs.

Proposition 3.1. Let r be the root of a normalized Tree Decomposition (T ,X) of an
AF F . Then, e′r(ε, ∅) = semi-stable(F).

Proof. Recall that e′r(ε) = admissible(F) (see Lemma 3.1, Definitions 3.2 and 3.5). To
show e′r(ε, ∅) ⊆ semi-stable(F), let (S,D) be an arbitrary tuple s.t. (S,D) ∈ er(ε, ∅). By
Definition 3.15(i) we obtain that S is admissible for F≥r = F . Further by (iii) and the
fact that Γ = ∅ we conclude that there is no admissible tuple (E,U) for F with E ∪ U
being a proper superset of S∪D, i.e. S is a semi-stable extension of F . It remains to show
that e′r(ε, ∅) ⊇ semi-stable(F). Thus, let S ∈ semi-stable(F) be an arbitrary semi-stable
extension with range R of F . We set D = R\S to get the arguments requiring defeating.
By Lemma 3.12 we get that there exists a pair (C,Γ) such that (S,D) ∈ er(C,Γ). Since
the root node has an empty bag, C = ε and further, by Definition 3.15(ii) and the fact
that S ∪D is maximal (w.r.t. ⊂-inclusion) in F , we conclude that Γ = ∅ has to hold as
well.

In the following, the different node types handle equivalence between vpairs and valid
pairs (similar to the equivalence between vcolorings and valid colorings of the previous
section).

Lemma 3.14. For any LEAF node t in a Tree Decomposition of an AF F , its vpairs
coincide with its valid pairs.

Proof. Let (T ,X) be a Tree Decomposition of F and t a leaf node in T . The X>t-
restricted admissible tuples for F≥t coincide with the tuples ([C], [[C]]) for the valid
colorings C ∈ Ct. Moreover, the valid colorings and vcolorings for t coincide by Lemma 3.2.
Now let (C,Γ) be a valid pair for t. Then, by Definition 3.15, ([C], [[C]]) ∈ et(C,Γ).
Hence, by Definition 3.18, (C,Γ) is a vpair for t.
Conversely, let (C,Γ) be a vpair for t and let S = [C], D = [[C]]. By Definition 3.9, (S,D)
isX>t-restricted admissible for F≥t. Hence, by Definitions 3.15 and 3.18, (S,D) ∈ et(C,Γ).
(C,Γ) is thus a valid pair for node t.

Lemma 3.15. For any FORGET node t in a Tree Decomposition of an AF F , vpairs
and valid pairs coincide, if they coincide in the child node t′ of t.

Proof. Let (T ,X) be a Tree Decomposition of F = (A,R), t a FORGET node in T , and
t′ the child node of t. We have that Xt = Xt′\{a} for some argument a ∈ Xt′ .

First we show that every valid pair for t is also a vpair for t. Thus, let (C,Γ) be a
valid pair for t. Then there exists a tuple (S,D) ∈ et(C,Γ). In particular, (S,D) is X>t-
restricted admissible for F≥t, and hence, also X>t′-restricted admissible for F≥t′ = F≥t.

35

Thus, by Lemmas 3.12 and 3.13, there exists one unique, valid pair (C ′,Γ′) for t′ with
(S,D) ∈ et′(C ′,Γ′). By assumption (C ′,Γ′) is a vpair for t′. Since (S,D) is X>t-restricted
admissible for F≥t and (S,D) ∈ et′(C ′), we have C ′(a) 6= attc. Then (C ′ − a,Γ′ − a) is a
vpair for t. We claim that (C ′ − a,Γ′ − a) = (C,Γ) holds.

For C ′ − a = C, recall the construction from the proof of Lemma 3.4, where we
constructed a coloring, which we denote here as C∗, such that C∗ − a = C and (S,D) ∈
et′(C∗). As also (S,D) ∈ et′(C ′) holds, by Lemma 3.11, we have that C ′ = C∗ and thus
C ′ − a = C.

To show Γ′ − a = Γ, we first consider the inclusion Γ′ − a ⊆ Γ: Let T ′ ∈ Γ′ with
T ′(a) 6= attc. By condition (ii) of Definition 3.15, there exists anX>t′-restricted admissible
tuple (E,U) for F≥t′ with S∪D ⊂ E∪U and (E,U) ∈ et′(T ′). By T ′(a) 6= attc, we know
that (E,U) is also X>t-restricted admissible. Hence, by condition (iii) of Definition 3.15,
there exists T ∈ Γ with (E,U) ∈ et(T). As before, one can use the construction of
Lemma 3.4 and Lemma 3.11, to obtain T = T ′ − a. Hence, Γ′ − a ⊆ Γ.

Now consider an arbitrary coloring T ∈ Γ. By condition (ii) of Definition 3.15,
there exists X>t-restricted admissible tuple (E,U) for F≥t with S ∪ D ⊆ E ∪ U and
(E,U) ∈ et(T). By condition (iii) of Definition 3.15 and since (E,U) is alsoX>t′-restricted
admissible for F≥t′ , there exists T ′ ∈ Γ′ with (E,U) ∈ et′(T ′). Again, by the construction
of the proof of Lemma 3.4 and Lemma 3.11 we have that T = T ′ − a. Hence, Γ ⊆ Γ′ − a.

We now show that every vpair of the FORGET node t is also valid pair for t. Let
(C,Γ) be a vpair for t, i.e., there exists a vpair (C ′,Γ′) for node t′ with C ′(a) 6= attc
and (C,Γ) = (C ′ − a,Γ′ − a). By assumption, (C ′,Γ′) is a valid pair for t′. Hence, there
exists (S,D) ∈ et′(C ′,Γ′). We claim that also (S,D) ∈ et(C,Γ) holds. As in the proof
of Lemma 3.4, (S,D) ∈ et(C) holds since C = C ′ − a. It remains to show that also
conditions (ii) and (iii) of Definition 3.15 are fulfilled.

To show condition (ii), let T ∈ Γ, i.e. T is of the form T = T ′−a for some T ′ ∈ Γ′ with
T ′(a) 6= attc. Since (S,D) ∈ et′(C ′,Γ′), there exists (E,U) ∈ et′(T ′) with S ∪D ⊂ E ∪U .
As in the proof of Lemma 3.4, then also (E,U) ∈ et(T ′ − a). To show condition (iii), let
(E,U) be X>t-restricted admissible for F≥t with S∪D ⊂ E∪U . Then (E,U) is also X>t′-
restricted admissible for F≥t′ , and therefore, there exists T ′ ∈ Γ′ with (E,U) ∈ et′(T ′).
Since (E,U) is X>t-restricted admissible, we have T ′(a) 6= attc. But then, as in the proof
of Lemma 3.4, also (E,U) ∈ et(T ′ − a).

Lemma 3.16. For any INSERT node t in a Tree Decomposition of an AF F , vpairs
and valid pairs coincide, if they coincide in the child node t′ of t.

Proof. Let (T ,X) be a Tree Decomposition of F = (A,R), t an INSERT node in T , and
t′ the child node of t. Hence we have that Xt = Xt′ ∪ {a} for some argument a ∈ A.

First we show that every valid pair for t is also a vpair for t. Thus let (C,Γ) be a
valid pair for t. Then there exists (S,D) ∈ et(C,Γ), which is X>t-restricted admissible
for F≥t and further the set (S′ = S\{a}, D′ = D\{a}) is X>t′-restricted admissible for
F≥t′ . Thus, by Lemmas 3.12 and 3.13, there exists a unique valid pair (C ′,Γ′) for t′ with
(S′, D′) ∈ et′(C ′,Γ′). By assumption, (C ′,Γ′) is a vpair for t′. Then, if [C ′] 6�attacks a

36

and a 6�attacks [C ′], (C ′ +̂out a,Γ1) with Γ1 = {({C ′}+attc a) ∪ ({C ′} +̇in a) ∪ (Γ′ +attc
a) ∪ (Γ′ +̇in a) ∪ (Γ′ +̂out a)}, and further, if [C ′] ∪ {a} is conflict-free in Ft′ and
[[C ′]] = [[C ′ +̇in a]], (C ′ +̇in a, (Γ′ +attc a) ∪ (Γ′ +̇in a)) are both vpairs. Moreover,
(C ′+attca, (Γ′+attca)∪(Γ′ +̇in a)) is a vpair. We claim that either (C ′ +̂out a,Γ1) = (C,Γ),
(C ′+attc a, (Γ′+attc a)∪ (Γ′ +̇in a)) = (C,Γ) or (C ′ +̇in a, (Γ′+attc a)∪ (Γ′ +̇in a)) = (C,Γ)
holds.

To show that either C = C ′ +attc a, C = C ′ +̂out a (if a 6∈ S) or C = C ′ +̇in a holds,
recall the proof of Lemma 3.6, where we constructed a coloring, which we denote here as C∗,
such that C = C∗+attc a, C = C∗ +̂out a or C = C∗ +̇in a and (S\{a}, D\{a}) ∈ et′(C∗).
As also (S\{a}, D\{a}) ∈ et′(C ′) holds, by Lemma 3.11 we have that C ′ = C∗ and the
assertion follows.

In the following we show that also the respective sets of certificates coincide. To this
end we distinguish the two mentioned cases a 6∈ S and a ∈ S, respectively:
(1a) Assume a 6∈ S, a 6∈ D: To derive Γ1 = Γ, we first show the relation Γ1 ⊆ Γ; this can

be split up into the following statements:
(α) Γ′ +attc a ⊆ Γ,
(β) Γ′ +̇in a ⊆ Γ,
(γ) C ′ +̇in a ⊆ Γ,
(δ) C ′ +attc a ⊆ Γ,
(ε) Γ′ +̂out a ⊆ Γ.
To show (α), (β) and (ε), consider T ′ ∈ Γ′. By condition (ii) of Definition 3.15, there
exists an X>t′-restricted admissible tuple (E′, U ′) for F≥t′ with S′ ∪D′ ⊂ E′ ∪ U ′
and (E′, U ′) ∈ et′(T ′). As we have here S = S′, D = D′, we obtain S ∪D ⊂ (E =
E′) ∪ (U = U ′ ∪ {a}) for (α), S ∪ D ⊂ (E = E′ ∪ {a}) ∪ (U = U ′) for (β) and
S ∪D ⊂ (E = E′)∪ (U = U ′) for (ε). In the first case we have that E is conflict-free
in F≥t by definition, and further as X>t = X>t′ and a 6∈ X>t, (E,U) is also an
X>t-restricted admissible tuple for F≥t. In the second case E is conflict-free in F≥t iff
the set [T ′]∪{a} is conflict-free. This is due to the definition of Tree Decompositions
which ensures that there are no attacks between the set X>t and the new argument a.
Using that a is not attacked by X>t or the third case, we get that if E is conflict-free
in F≥t then (E,U) is also an X>t-restricted admissible tuple for F≥t.
Now by condition (iii) of Definition 3.15 there exists T ∈ Γ such that (E,U) ∈
et(T). As before, using the construction from the proof of Lemma 3.6 together with
Lemma 3.11, we obtain that, in the case (α) it holds that T = T ′ +attc a, in the
case (β) it holds that T = T ′ +̇in a, and in case (ε), T = T ′ +̂out a holds. Next, we
prove statement (γ). To do this let us consider the set (C ′ +̇in a). If (C ′ +̇in a) = ∅
statement (γ) is trivially true. Otherwise we have that (S ∪ {a}, D) ∈ et(C ′ +̇in a)
and as S ∪D ⊂ S ∪{a}∪D that C ′ +̇in a ∈ Γ. Hence, C ′ +̇in a ⊆ Γ. Let us consider
C ′+attca of (δ); we have that (S,D∪{a}) ∈ et(C ′+attca) and as S∪D ⊂ S∪D∪{a},
C ′ +attc a ∈ Γ holds. Finally, Γ1 ⊆ Γ.
To prove Γ ⊆ Γ1, consider an arbitrary T ∈ Γ. By condition (ii) of Definition 3.15,
there exists an X>t-restricted admissible tuple (E,U) for F≥t with S ∪D ⊂ E ∪ U
and (E,U) ∈ et(T). By the assumption a 6∈ S, a 6∈ D, i.e. S = S′, D = D′, we have

37

that for E′ = E\{a}, U ′ = U\{a} either S′ ∪ D′ ⊂ E′ ∪ U ′, E = S ∪ {a}, U = D′

(i.e. E′ = S) or E = S,U = D ∪ {a} (i.e. U ′ = D) holds. In both cases we have
that (E′, U ′) is X>t′-restricted admissible for F≥t′ and thus there exists T ′ ∈ Γ′
with (E′, U ′) ∈ et′(T ′). Now we can use the proof of Lemma 3.6 together with
Lemma 3.11 to show that in the case S′ ∪D′ ⊂ E′ ∪U ′, T = T ′ +̇in a, T = T ′+attc a
or T = T ′ +̂out a holds; or T = C ′ +attc a or T = C ′ +̇in a otherwise. Hence, Γ ⊆ Γ1.

(1b) Assume a 6∈ S, a ∈ D: To show (Γ′ +attc a) ∪ (Γ′ +̇in a) = Γ, we first show the
relation (Γ′ +attc a) ∪ (Γ′ +̇in a) ⊆ Γ
Consider T ′ ∈ Γ′. By condition (ii) of Definition 3.15, there exists an X>t′-restricted
admissible tuple (E′, U ′) for F≥t′ with S′ ∪D′ ⊂ E′ ∪ U ′ and (E′, U ′) ∈ et′(T ′). As
we have here S = S′, D = D′∪{a}, we obtain S ∪D ⊂ (E = E′)∪ (U = U ′∪{a}) for
showing ((Γ′+attca) ⊆ Γ) and S∪D ⊂ (E = E′∪{a})∪(U = U ′) for ((Γ′ +̇in a) ⊆ Γ).
In the first case we have that E is conflict-free in F≥t by definition, and further
as X>t = X>t′ and a 6∈ X>t, (E,U) is also an X>t-restricted admissible tuple for
F≥t. In the latter case E is conflict-free in F≥t iff the set [T ′] ∪ {a} is conflict-free.
This is due to the definition of Tree Decompositions which ensures that there are no
attacks between the set X>t and the new argument a. Using that a is not attacked
by X>t, we get that if E is conflict-free in F≥t then (E,U) is also an X>t-restricted
admissible tuple for F≥t.
Now by condition (iii) of Definition 3.15 there exists T ∈ Γ such that (E,U) ∈
et(T). As before, using the construction from the proof of Lemma 3.6 together with
Lemma 3.11, we obtain that, in the first case it holds that T = T ′ +attc a, and in the
second case it holds that T = T ′ +̇in a. Finally ((Γ′ +attc a) ∪ (Γ′ +̇in a)) ⊆ Γ.
To prove Γ ⊆ ((Γ′ +attc a) ∪ (Γ′ +̇in a)), consider an arbitrary T ∈ Γ. By condition
(ii) of Definition 3.15, there exists an X>t-restricted admissible tuple (E,U) for F≥t
with S ∪ D ⊂ E ∪ U and (E,U) ∈ et(T). By the assumption a 6∈ S, a ∈ D, i.e.
S = S′, D = D′ ∪ {a}, we have that for E′ = E\{a}, U ′ = U\{a} S′ ∪D′ ⊂ E′ ∪ U ′
holds. We have that (E′, U ′) is X>t′-restricted admissible for F≥t′ and thus there
exists T ′ ∈ Γ′ with (E′, U ′) ∈ et′(T ′). Now we can use the proof of Lemma 3.6
together with Lemma 3.11 to show that since S′ ∪D′ ⊂ E′ ∪ U ′, T = T ′ +̇in a or
T = T ′ +attc a otherwise. Hence, Γ ⊆ ((Γ′ +attc a) ∪ (Γ′ +̇in a)).

(2) Assume a ∈ S: To show (Γ′ +attc a) ∪ (Γ′ +̇in a) = Γ, we first consider the inclusion
(Γ′+attc a)∪ (Γ′ +̇in a) ⊆ Γ: Consider T ′ ∈ Γ′. By condition (ii) Definition 3.15, there
exists an X>t′-restricted admissible tuple (E′, U ′) for F≥t′ with S′ ∪D′ ⊂ E′ ∪ U ′
and (E′, U ′) ∈ et′(T ′). As by assumption S = S′ ∪ {a} we have that on the one
hand S ∪D ⊂ E′ ∪ (U = U ′ ∪ {a}) and (E,U) is X>t-restricted admissible for F≥t.
On the other hand, S ∪D ⊂ (E = E′ ∪ {a}) ∪ U and as in case (1) if [T ′] ∪ {a} is
conflict-free then (E,U) is X>t-restricted admissible for F≥t. In both cases we get by
Definition 3.15 that there exists T ∈ Γ such that (E,U) ∈ et(T). By the construction
from the proof of Lemma 3.6 and Lemma 3.11, it holds that T = T ′ +attc a or
T = T ′ +̇in a. Hence ((Γ′ +attc a) ∪ (Γ′ +̇in a)) ⊆ Γ.
To prove Γ ⊆ ((Γ′ +attc a) ∪ (Γ′ +̇in a)), consider an arbitrary T ∈ Γ. By condition
(ii) of Definition 3.15, there exists an X>t-restricted admissible tuple (E,U) for

38

F≥t with S ∪D ⊂ E ∪ U and (E,U) ∈ et(T). We have that both S′ ∪D′ ⊂ (E′ =
E\{a})∪(U ′ = U) and S′∪D′ ⊂ (E′ = E)∪(U ′ = U\{a}) holds; further that (E′, U ′)
in both cases is X>t′-restricted admissible for F≥t′ . Thus there exists T ′ ∈ Γ′ with
(E′, U ′) ∈ et′(T ′). By the construction from the proof of Lemma 3.6 and Lemma 3.11,
we get that T = T ′ +attc a or T = T ′ +̇in a. Hence Γ ⊆ ((Γ′ +attc a) ∪ (Γ′ +̇in a))
holds.

It remains to show that every vpair for an INSERT node is also a valid pair. Thus let
(C,Γ) be a vpair for t, i.e., there exists a vpair (C ′,Γ′) for node t′ such that either (1)
(C,Γ) = (C ′ +̂out a,Γ1) (with [C ′] 6�attacks a, a 6�attacks [C ′]; Γ1 defined as above, recall
that Γ1 = {({C ′}+attc a) ∪ ({C ′} +̇in a) ∪ (Γ′ +attc a) ∪ (Γ′ +̇in a) ∪ (Γ′ +̂out a)}), (2)
(C,Γ) = (C ′ +̇in a, (Γ′ +attc a) ∪ (Γ′ +̇in a)) with [C] ∪ {a} being conflict-free in Ft and
[[C]] = [[C +̇in a]] or (3) (C,Γ) = (C ′ +attc a, (Γ′ +attc a) ∪ (Γ′ +̇in a)). By assumption,
(C ′,Γ′) is a valid pair for t′ and thus there exists (S′, D′) ∈ et′(C ′,Γ′). To show that
(C,Γ) is a valid pair for t we distinguish the cases (1), (2) and (3) as follows:

(1) As in the proof of Lemma 3.6, (S = S′, D = D′) ∈ et(C) holds since C = C ′ +̂out a.
It remains to show that also conditions (ii) and (iii) of Definition 3.15 are fulfilled.
To show condition (ii), consider an arbitrary T ∈ Γ, i.e., T is either of the form
(a) T = T ′ +attc a
(b) T = T ′ +̇in a with [T] ∪ {a} conflict-free in Ft and [[T ′]] = [[T ′ +̇in a]],
(c) T = T ′ +̂out a with [T ′] 6�attacks a and a 6�attacks [T ′],
(d) T = C ′ +̇in a with [C ′] ∪ {a} conflict-free in Ft and [[C ′]] = [[C ′ +̇in a]] or
(e) T = C ′ +attc a.
Since (S,D′) ∈ et′(C ′,Γ′), there exists (E′, U ′) ∈ et′(T ′) with S ∪D′ ⊂ E′ ∪ U ′. In
case (a), we follow the proof of Lemma 3.6, and obtain (E′, U ′ ∪ {a}) ∈ et(T ′+attc a).
For case (b), we get by the construction of T that E = E′ ∪ {a} is conflict-free in
F≥t. Once more we can use the fact that Xt 6�attacks a to obtain that (E,U = U ′)
is an X>t-restricted admissible tuple for F≥t. Further S ∪ D ⊂ E ∪ U and as in
the proof of Lemma 3.6, then also (E,U) ∈ et(T ′ +̇in a) holds. For case (c), we
get by the construction of T that [T ′] 6�attacks a and a 6�attacks [T ′] to obtain that
(E = E′, U = U ′) is anX>t-restricted admissible tuple for F≥t. Further S∪D ⊂ E∪U
and as in the proof of Lemma 3.6, then also (E,U) ∈ et(T ′ +̂out a) holds. Finally,
for (d) resp. (e) the construction of T = C ′ +̇in a resp. T = C ′ +attc a yields that
(E = (S ∪ {a}), U = D′) resp. (E = S,U = (D ∪ {a})) is conflict-free in F≥t and
thus as before (E,U) is an X>t-restricted admissible set for F≥t. Hence, as in the
proof of Lemma 3.6, also (E,U) ∈ et(C ′ +̇in a) holds. Further, as a 6∈ S, we have
that S ∪D ⊂ E ∪ U .
To show condition (iii), consider an arbitrary X>t-restricted admissible tuple (E,U)
for F≥t such that S ∪D ⊂ E ∪U . Then (E′ = E\{a}, U ′ = U\{a}) is X>t′-restricted
admissible for F≥t′ . If E′ = S,U ′ = D′ then C ′ is the unique vcoloring such that
(E′, U ′) ∈ et′(C ′). Otherwise if E′ 6= S or U ′ 6= D′ it holds that S′ ∪D′ ⊂ E′ ∪ U ′
and thus, there exists T ′ ∈ Γ with (E′, U ′) ∈ et′(T ′). Since (E,U) is X>t-restricted
admissible for F≥t, we have that there is a unique vcoloring T such that (E,U) ∈ et(T).

39

But then, as in the proof of Lemma 3.6, either T = C ′ +̇in a, T = T ′ +attc a,
T = T ′ +̇in a, T = T ′ +̂out a or T = C ′ +attc a holds.

(2) By the assumption C = C ′ +̇in a we have that (S = S′ ∪ {a}, D = D′\{a}) ∈ et(C).
It remains to show that the vpair (C,Γ) also satisfies conditions (ii) and (iii) of
Definition 3.15. To show condition (ii), consider T ∈ Γ, i.e., T is of the form
T = T ′ +̇in a with [T ′] ∪ {a} conflict-free in Ft and [[T ′]] = [[T ′ +̇in a]]. Since
(S′, D′) ∈ et′(C ′,Γ′), there exists (E′, U ′) ∈ et′(T ′) with S′ ∪D′ ⊂ E′ ∪ U ′. By the
construction of T we have that E = E′ ∪ {a} is conflict-free in Ft and thus that
(E,U = U ′) is an X>t-restricted admissible tuple for F≥t. By definition of E it holds
that S ∪D ⊂ E ∪U and further, as in the proof of Lemma 3.6, we get that (E,U) ∈
et(T ′ +̇in a). To show condition (iii) of Definition 3.15, let (E,U) be an X>t-restricted
admissible tuple for F≥t such that S ∪D ⊂ E ∪ U . Then (E′ = E\{a}, U ′ = U\{a})
is X>t′-restricted admissible for F≥t′ and (S′ = S\{a}) ∪ (D′ = D\{a}) ⊂ E′ ∪ U ′.
Thus, there exists T ′ ∈ Γ′ with (E′, U ′) ∈ et′(T ′). Since (E,U) is X>t-restricted
admissible, we have that there is a unique vcoloring T such that (E,U) ∈ et(T). But
then, as in the proof of Lemma 3.6, T = T ′ +̇in a (if a ∈ E) or T = T ′ +attc a (if
a ∈ U) holds.

(3) As in the proof of Lemma 3.6, (S = S′, D = D′ ∪ {a}) ∈ et(C) holds by assumption
(C = C ′+attca). It remains to show that also conditions (ii) and (iii) of Definition 3.15
are fulfilled. To show condition (ii), consider an arbitrary T ∈ Γ, i.e. (a) T = T ′+attca
or (b) T = T ′ +̇in a. Since (S,D′) ∈ et′(C ′,Γ′), there exists (E′, U ′) ∈ et′(T ′) with
S ∪ D′ ⊂ E′ ∪ U ′. In case (a), we follow the proof of Lemma 3.6, and obtain
(E′, U ′ ∪ {a}) ∈ et(T ′ +attc a). For case (b), we get by the construction of T that
E = E′∪{a} is conflict-free in F≥t. Once more we can use the fact that Xt 6�attacks a
to obtain that (E,U = U ′) is an X>t-restricted admissible tuple for F≥t. Further
S ∪D ⊂ E ∪ U and as in the proof of Lemma 3.6, then also (E,U) ∈ et(T ′ +̇in a)
holds.
To show condition (iii), consider an arbitrary X>t-restricted admissible tuple (E,U)
for F≥t such that S ∪D ⊂ E ∪U . Then (E′ = E\{a}, U ′ = U\{a}) is X>t′-restricted
admissible for F≥t′ . Since E′ 6= S or U ′ 6= D′ it holds that S′∪D′ ⊂ E′∪U ′ and thus,
there exists T ′ ∈ Γ with (E′, U ′) ∈ et′(T ′). Since (E,U) is X>t-restricted admissible
for F≥t, we have that there is a unique vcoloring T such that (E,U) ∈ et(T). But
then, as in the proof of Lemma 3.6, either T = T ′ +̇in a (if a ∈ E), or T = T ′ +attc a
(if a ∈ U) holds.

Lemma 3.17. For any JOIN node t in a Tree Decomposition of an AF F , vpairs and
valid pairs coincide, if they coincide on the successors t′ and t′′ of t.

Proof. Let (T ,X) be a Tree Decomposition of F = (A,R) and t a JOIN node in T with
successors t′ and t′′.

First consider an arbitrary valid pair (C,Γ) for t. We show that (C,Γ) is also a vpair.
As (C,Γ) is valid, there exists an X>t-restricted admissible tuple (S,D) for F≥t such
that (S,D) ∈ et(C,Γ). As in the proof of Lemma 3.9 we have that there exist unique sets

40

S1 ⊆ X≥t′ and S2 ⊆ X≥t′′ , such that S1 ∩Xt = S2 ∩Xt and S = S1 ∪S2; moreover, there
exist D1 ⊆ X≥t′ and D2 ⊆ X≥t′′ with D = D1 ∪D2. Further, there exist valid colorings
C ′, C ′′ such that (S1, D1) ∈ et′(C ′), (S2, D2) ∈ et′′(C ′′) and C = C ′ ./ C ′′. Thus, by
Lemma 3.13 there are valid pairs (C ′,Γ′) and (C ′′,Γ′′) such that (S1, D1) ∈ et′(C ′,Γ′)
and (S2, D2) ∈ et′′(C ′′,Γ′′). (Note that by Lemma 3.11 there cannot be a pair (C∗,Γ∗)
with (S1, D1) ∈ et′(C∗,Γ∗) and C ′ 6= C∗. Analogously, C ′′ with the above properties is
unique.) By assumption these valid pairs are also vpairs.

Now we turn our attention to the set Γ. We first have to show Γ ⊆ Γ∗ with
Γ∗ = (Γ′ ./ Γ′′) ∪ ({C ′} ./ Γ′′) ∪ (Γ′ ./ {C ′′}). For every T ∈ Γ there exists an
X>t-restricted admissible tuple (E,U) ∈ et(T) such that S ∪ D ⊂ E ∪ U . We define
E = E1∪E2, U = U1∪U2 analogously to S1, S2, D1, D2. Now we have that S∪D ⊂ E∪U
holds iff either
(i) S1 ∪D1 ⊂ E1 ∪ U1 and S2 ∪D2 ⊂ E2 ∪ U2,
(ii) S1 = E1, D1 = U1 and S2 ∪D2 ⊂ E2 ∪ U2 or
(iii) S2 = E2, D2 = U2 and S1 ∪D1 ⊂ E1 ∪ U1

holds. (Observe that Si∪Di 6⊆ Ei∪Ui is not possible, since S1∩Xt = S2∩Xt, D1∩Xt =
D2∩Xt, E1∩Xt = E2∩Xt, U1∩Xt = U2∩Xt, Si∩Di = ∅, Ei∩Ui = ∅ and by properties
(2) and (3) of Tree Decompositions, i.e. there cannot exist x ∈ X≥t′ , X≥t′′ , but x 6∈ Xt.)
We discuss these cases separately:
(i) Consider arbitrary T ′ ∈ Γ′, T ′′ ∈ Γ′ with [T ′] = [T ′′], [[T ′]] = [[T ′′]], (E1, U1) ∈ et′(T ′)

and (E2, U2) ∈ et′′(T ′′). By Definition 3.15 we have that Si ∪Di ⊂ Ei ∪ Ui. We
conclude that S ∪ D ⊂ E ∪ U and by the proof of Lemma 3.9 and Lemma 3.10
that T = T ′ ./ T ′′ is the unique coloring such that (E,U) ∈ et(T). Therefore
T ′ ./ T ′′ ∈ Γ and thus Γ′ ./ Γ′′ ⊆ Γ.

(ii) Consider an arbitrary T ′′ ∈ Γ′′ with [T ′] = [T ′′], [[T ′]] = [[T ′′]] and (E2, U2) ∈
et′′(D′′). We have that S ∪ D ⊂ (E = S1 ∪ E2) ∪ (U = D1 ∪ U2) and that T =
{C ′} ./ T ′′ is the unique coloring such that (E,U) ∈ et(T). Thus {C ′} ./ Γ′′ ⊆ Γ.

(iii) By symmetry to (ii).

Thus we have that Γ ⊆ Γ∗. It remains to show that Γ∗ ⊆ Γ which is equivalent to showing
each of the following inclusions:
(i) Γ∗ ./ Γ′′ ⊆ Γ,
(ii) {C ′} ./ Γ′′ ⊆ Γ and
(iii) Γ′ ./ {C ′′} ⊆ Γ.

This can be done as follows:
(i) Consider arbitrary T ′ ∈ Γ′ and T ′′ ∈ Γ′′ with [T ′] = [T ′′], [[T ′]] = [[T ′′]], (E1, U1) ∈

et′(T ′) and (E2, U2) ∈ et′′(T ′′). By Definition 3.15 we have that S1 ∪D1 ⊂ E1 ∪ U1
and S2 ∪ D2 ⊂ E2 ∪ U2. We conclude that S ∪ D ⊂ E ∪ U and by the proof of
Lemma 3.9 and Lemma 3.11 that T = T ′ ./ T ′′ is the unique coloring such that
(E,U) ∈ et(T). Therefore T ′ ./ T ′′ ∈ Γ and thus Γ′ ./ Γ′′ ⊆ Γ.

41

(ii) Consider an arbitrary T ′′ ∈ Γ′′ with [C ′] = [T ′′], [[C ′]] = [[T ′′]] and (E2, U2) ∈
et′′(T ′′). We have that S ∪D ⊂ (E = S1 ∪ E2) ∪ U and that T = {C ′} ./ T ′′ is the
unique coloring such that (E,U) ∈ et(T). Thus {C ′} ./ Γ′′ ⊆ Γ.

(iii) By symmetry to (ii).
This shows Γ = Γ∗ and thus every valid pair (C,Γ) is also a vpair.

Now we show that every vpair for t is also a valid pair for t. Thus, let (C,Γ) be a
vpair for t, i.e., there exists a vpair (C ′,Γ′) for node t′ and a vpair (C ′′,Γ′′) for node
t′′ with [C ′] = [C ′′] and [[C ′]] = [[C ′′]] such that (C,Γ) = (C ′ ./ C ′′,Γ∗) (Γ∗ defined
as above). By assumption (C ′,Γ′) and (C ′′,Γ′′) are valid pairs. Hence, there exist
tuples (S1, D1) ∈ et′(C ′,Γ′) and (S2, D2) ∈ et′′(C ′′,Γ′′). As in the proof of Lemma 3.9,
(S = S1 ∪ S2, D = D1 ∪D2) ∈ et(C) holds since [C ′′] = [C ′].

It remains to show that (C,Γ) also fulfills conditions (ii) and (iii) of Definition 3.15.
To show condition (ii), consider T ∈ Γ, i.e., T is one of the following forms:
(a) T = T ′ ./ T ′′ for some T ′ ∈ Γ′, T ′′ ∈ Γ′′ with [D′] = [D′′], [[D′]] = [[D′′]];
(b) T = C ′ ./ T ′′ for some T ′′ ∈ Γ′′ with [C ′] = [D′′], [[C ′]] = [[D′′]];
(c) T = T ′ ./ C ′′ for some T ′ ∈ Γ′ with [T ′] = [C ′′], [[T ′]] = [[C ′′]].

We only discuss case (a) here as the cases (b) and (c) are similar: Since (S1, D1) ∈
et′(C ′,Γ′) and (S2, D2) ∈ et′′(C ′′,Γ′′), there exist (E1, U1) ∈ et′(T ′) and (E2, U2) ∈ et′′(T ′′)
with S ∪ D ⊂ E1 ∪ U1, S ∪ D ⊂ E2 ∪ U2 and E1 ∩ Xt = E2 ∩ Xt. As in the proof of
Lemma 3.9, then also (E = E1 ∪ E2, U = U1 ∪ U2) ∈ et(T ′ ./ T ′′) and S ∪D ⊂ E ∪ U .

To show condition (iii), let (E,U) be X>t-restricted admissible for F≥t with S ∪D ⊂
E∪U . Then (E1, U1) is X>t′-restricted admissible for F≥t′ and (E2, U2) is X>t′′-restricted
admissible for F≥t′′ . Hence there exist sets T ′ and T ′′ with (E1, U1) ∈ et′(T ′), (E2, U2) ∈
et′′(T ′′), E1 ∩Xt = E2 ∩Xt, and either
(A) T ′ ∈ Γ′, T ′′ ∈ Γ′′,
(B) T ′ = C ′, T ′′ ∈ Γ′′ or
(C) T ′ ∈ Γ′, T ′′ = C ′′

holds. But then, as in the proof of Lemma 3.9, also (E = E1 ∪ E2, U = U1 ∪ U2) ∈
et(D′ ./ D′′).

With this knowledge, we can show the main theorem of this section in the following
(again the structural induction is just sketched).

Theorem 3.2. Let (T ,X) be a normalized Tree Decomposition of an AF F = (A,R).
Then, for each pair (C,Γ) for a node t, it holds that (C,Γ) is a valid pair for t iff (C,Γ)
is a vpair for t.

Proof. As in Theorem 3.1, the proof proceeds by structural induction. For the induction
base, we have to show that vpairs and valid pairs coincide on LEAF nodes, which is the
case due to Lemma 3.14. For the induction step, we have to show this property for the
remaining nodes. Indeed, this is captured by Lemmas 3.15, 3.16 and 3.17.

42

The previous theorem and Proposition 3.1 now allow us to compute semi-stable extensions
via vpairs. For the root r of some Tree Decomposition T (w.r.t. some framework
F = (A,R)), we can now compute our validpairs via vpairs starting from the leaves
towards the root of T in a bottom-up manner. For enumerating e′r(ε, ∅) (i.e. the semi-
stable extensions w.r.t. F≥r = F), the determined vpairs of all the nodes of T are required
(compare with Section 2.3 and [ABC+14a]).

3.3 An Adaption for Preferred Semantics
The previous section deals with computing semi-stable sets (as defined in Definition 2.15),
that is maximizing (w.r.t. ⊆) the range, i.e. the elements in the set and the ones attacked
by it, of a given admissible extension S. Using this knowledge, the simpler task of
computing preferred extensions (see Definition 2.15), i.e. maximizing only the elements
in the set S, can now be obtained easily. For adapting the previous algorithm of semi-
stable semantics in order to present an alternative (compared to [DPW12]) algorithm
for preferred semantics, we basically need to modify (actually simplify) two definitions,
which are Definitions 3.15 and 3.18. The different proofs go through similarly, several
cases even collapse.

Definition 3.20. Let (T ,X) be a Tree Decomposition of an AF F , t ∈ T , and (C, T)
a pair with C being a coloring for t and Γ being a set of colorings for t. We call (C,Γ)
simply a prefpair for t and define epref

t (C,Γ) as the collection of tuples (S,D) which
satisfy the following conditions (see Definitions 3.15).

(i) (S,D) ∈ et(C);
(ii) For all C ′ ∈ Γ, there is an (E,U) ∈ et(C ′) such that S ⊂ E;
(iii) For all X>t-restricted admissible (for F≥t) tuples (E,U) with S ⊂ E, there exists

some C ′ ∈ Γ with (E,U) ∈ et(C ′).

If epref
t (C,Γ) 6= ∅, (C,Γ) is a valid prefpair for t.

Definition 3.21. Let (T ,X) be a normalized Tree Decomposition of an AF F and let
t ∈ T be a node with t′, t′′ its possible children. Depending on the node type of t we
define a vprefpair for t as follows (see Definitions 3.18).

• LEAF: Each (C,Γ) where C ∈ Ct and Γ = {C ′ ∈ Ct | [C] ⊂ [C ′]} is a vprefpair for
t.

• FORGET: If (C ′,Γ′) is a vprefpair for t′, Xt = Xt\{a}, and C ′(a) 6= attc, then
(C ′ − a,Γ′ − a) is a vprefpair for t.

• INSERT: If (C ′,Γ′) is a vprefpair for t′ and Xt = Xt′ ∪ {a}, and if C ′ +̇in a is a
vcoloring then (C ′ +̇in a,Γ′ +̇in a) is a vprefpair for t; if moreover C ′ +̂out a is a
vcoloring, then (C ′ +̂out a, ({C ′} +̇in a) ∪ (Γ′ +attc a) ∪ (Γ′ +̇in a) ∪ (Γ′ +̂out a)) is

43

a vprefpair for t; (C ′ +attc a, (Γ′ +attc a) ∪ (Γ′ +̇in a) ∪ (Γ′ +̂out a)) is a vprefpair
for t.

• JOIN: If (C ′,Γ′) is a vprefpair for t′, (C ′′,Γ′′) is a vprefpair for t′′, [C ′] = [C ′′]
and [[C ′]] = [[C ′′]], then (C ′ ./ C ′′, (Γ′ ./ Γ′′) ∪ ({C ′} ./ Γ′′) ∪ (Γ′ ./ {C ′′})) is a
vprefpair for t.

Example 3.22. Figure 3.4 shows the computation of the vprefpairs for FEx of Figure 3.1
w.r.t. Tree Decomposition shown in Figure 3.1.

In addition to Figure 3.2, the additional column Γ of the table of every Tree Decom-
position node uses column ID and represents (strict) counter candidates. Observe that
by following the extension pointers, we get that preferred(AFEx) = {{v, w}} (compare to
Example 2.16).

If one compares now Figure 3.4 with Figure 3.3, where the goal is to compute admissible
sets of maximum range (more involved optimization criteria), one can – due to the overall
potentially smaller cardinalities of Γ and reduced number of lines per table – observe that
computing preferred extensions seems to be simpler than computing semi-stable ones.

44

FEx :
v w x y z

TEx :

v w x y zn11

v w x y zn10

w x y zn9

w x y zn8

w x y zn7

w x yn3

w yn2

w yn1

w x z
n6

x z
n5

x z
n4

Figure 3.1: Instance FEx = (AFEx , RFEx) and a normalized TD TEx .

45

Ext.
n11

v Ext.
in
attc
out

n10

Ext.
n9

x Ext.
def
attc
out

n8

w x Ext.
in def
attc attc
out attc
attc out
out out

n7

w x Ext.
in def
def in
attc attc
out attc
attc out
out out

n3

w Ext.
in
attc
out

n2

w y Ext.
in def
attc in
attc out
attc attc
out attc
out out

n1

w x Ext.
in def
attc attc
out attc
attc out
out out

n6

x Ext.
attc
out

n5

x z Ext.
in attc
attc attc
attc out
out attc
out out

n4

Figure 3.2: Computation of vcolorings for FEx = (AFEx , RFEx) w.r.t. TEx (see Figure 3.1).

46

ID Γ Ext.
C11,1 {C11,1}
C11,1 {}
C11,2 {C11,1, C11,2}
C11,2 {C11,1}

n11ID v Γ Ext.
C10,1 in {}
C10,1 in {C10,1, C10,2}
C10,2 attc {}
C10,2 attc {C10,1, C10,2}
C10,3 out {C10,1, C10,2}
C10,3 out {C10,i | i ≤ 3}

n10

ID Γ Ext.
C9,1 {}
C9,1 {C9,1}

n9

ID x Γ Ext.
C8,1 def {}
C8,2 attc {C8,1}
C8,3 out {C8,1, C8,2}

n8

ID w x Γ Ext.
C7,1 in def {}
C7,2 attc attc {}
C7,2 attc attc {C7,1, C7,2}
C7,3 out attc {C7,i | i 6∈ {3, 5}}
C7,4 attc out {C7,1, C7,2}
C7,4 attc out {C7,i | i 6∈ {3, 5}}
C7,5 out out {C7,i | i ≤ 4}

n7

ID w x Γ Ext.
C3,1 in def {}
C3,2 def in {}
C3,2 def in {C3,i | i ≤ 3}
C3,3 attc attc {}
C3,3 attc attc {C3,i | i ≤ 3}
C3,4 out attc {C3,i | i 6∈ {4, 6}}
C3,5 attc out {C3,i | i ≤ 3}
C3,5 attc out {C3,i | i 6∈ {4, 6}}
C3,6 out out {C3,i | i ≤ 5}

n3

ID w Γ Ext.
C2,1 in {}
C2,2 attc {}
C2,2 attc {C2,1, C2,2}
C2,3 out {C2,1, C2,2}

n2

ID w y Γ Ext.
C1,1 in def {}
C1,2 attc in {}
C1,3 attc out {C1,1, C1,2, C1,4}
C1,4 attc attc {}
C1,5 out attc {C1,1, C1,2, C1,4}
C1,6 out out {C1,i | i ≤ 5}

n1

ID w x Γ Ext.
C6,1 in def {}
C6,2 attc attc {}
C6,3 out attc {C6,1, C6,2}
C6,4 attc out {C6,i | i ≤ 3}
C6,5 out out {C6,i | i ≤ 4}

n6

ID x Γ Ext.
C5,1 attc {}
C5,2 out {C5,1}

n5

ID x z Γ Ext.
C4,1 in attc {}
C4,2 attc attc {}
C4,3 attc out {C4,1, C4,2}
C4,4 out attc {C4,1, C4,2}
C4,5 out out {C4,i | i ≤ 4}

n4

Figure 3.3: Computation of vpairs for FEx = (AFEx , RFEx) w.r.t. TEx (see Figure 3.1).
47

ID Γ Ext.
C11,1 {C11,1}
C11,1 {}
C11,2 {C11,1, C11,2}
C11,2 {C11,1}

n11

ID v Γ Ext.
C10,1 in {}
C10,1 in {C10,1}
C10,2 attc {C10,1}
C10,2 attc {C10,1, C10,2, C10,3}
C10,3 out {C10,1}
C10,3 out {C10,1, C10,2, C10,3}

n10

ID Γ Ext.
C9,1 {}
C9,1 {C9,1}

n9

ID x Γ Ext.
C8,1 def {}
C8,2 attc {C8,1}
C8,3 out {C8,1}

n8

ID w x Γ Ext.
C7,1 in def {}
C7,2 attc attc {C7,1}
C7,3 out attc {C7,1}
C7,4 attc out {C7,1}
C7,5 out out {C7,1}

n7

ID w x Γ Ext.
C3,1 in def {}
C3,2 def in {}
C3,3 attc attc {C3,1, C3,2}
C3,4 out attc {C3,1, C3,2}
C3,5 attc out {C3,1, C3,2}
C3,6 out out {C3,1, C3,2}

n3

ID w Γ Ext.
C2,1 in {}
C2,2 attc {C2,1}
C2,3 out {C2,1}

n2

ID w y Γ Ext.
C1,1 in def {}
C1,2 attc in {}
C1,3 attc out {C1,1, C1,2}
C1,4 attc attc {C1,1, C1,2}
C1,5 out attc {C1,1, C1,2}
C1,6 out out {C1,1, C1,2}

n1

ID w x Γ Ext.
C6,1 in def {}
C6,2 attc attc {C6,1}
C6,3 out attc {C6,1}
C6,4 attc out {C6,1}
C6,5 out out {C6,1}

n6

ID x Γ Ext.
C5,1 attc {}
C5,2 out {}

n5

ID x z Γ Ext.
C4,1 in attc {}
C4,2 attc attc {C4,1}
C4,3 attc out {C4,1}
C4,4 out attc {C4,1}
C4,5 out out {C4,1}

n4

Figure 3.4: Computation of vprefpairs for FEx = (AFEx , RFEx) w.r.t. TEx (see Figure 3.1).
48

CHAPTER 4
Towards Optimization of DP

algorithms on TDs

4.1 D-FLAT: DP on TDs
D-FLAT is a system for rapid prototyping of DP algorithms specified in ASP, where the
user only has to develop a problem-specific ASP encoding that is executed at each node
of the TD.

In this section we explain the concept of DP on Tree Decompositions (TDs) as realized
in the D-FLAT system. We highlight the concepts on basis of enumeration variants for
the Sat and ⊆-Minimal Sat problems. These problems are well suited since the DP
algorithms incorporate concepts that often reappear in other AI-related problem domains.
In general, given some problem that is tractable for bounded tree-width (such as Sat)
and an input instance (e.g., some formula φ), DP on TDs consists of the following steps:

1. The input instance is decomposed, thereby obtaining a TD. Each node in the TD
represents parts of the original instance (e.g., some atoms and clauses of φ).

2. The TD is traversed in post-order. At each TD node, partial solutions are computed
(e.g., partial interpretations of φ).

3. In order to enumerate the solutions for the whole problem instance (e.g., the models
of φ), the TD is traversed a second time where the partial solutions are combined.

Usually, an algorithm designer has to implement these three steps for every problem from
scratch. D-FLAT is a system for rapid prototyping of DP algorithms. Here, the user only
has to develop a problem-specific ASP encoding that defines how the partial solutions
are constructed. This encoding will be invoked once for every node during a post-order
traversal of the TD, and its models specify the partial solutions at the respective node.
Communication between D-FLAT and the encoding is implemented via an interface

49

consisting of pre-defined predicates. Overall, when D-FLAT is called together with the
encoding and an input instance, it internally executes the steps described above and
returns the solution.

4.1.1 System Overview

D-FLAT1 uses Dynamic Programming on TDs, which are generated by the Hypertree
Decomposition library Htdecomp [DGG+08]. As it is an application of Fixed-Parameter
Tractability with tree-width as the parameter, its performance highly depends on the
generated decomposition; to be more precise, on its width. It is therefore vital to generate
decompositions with a rather small width, which comes very close to the tree-width of
the input graph.

The figures and the content basis of this subsection are taken from [Bli12, ABC+14a].
The control flow of D-FLAT is as seen in Figure 4.1 and in the following section explained
briefly. For more details we refer to [Bli12, ABC+14a]. First of all, the input instance
is parsed and prepared (graph representation is created) for Htdecomp, which tries to
generate a Tree Decomposition of small width. Then a bottom-up traversal is performed
to compute the tables of the TD nodes. A table is a data representation containing
rows and is realized as an item tree of height 1 (see Section 4.1). Each row contains for
each node of the bag the desired mapped information and extension information of its
child nodes. Depending on the problem type, it is not always trivial to figure out, what
information should be mapped to a particular node in order to get the complete solutions
out of the partial solution candidates during the tree traversal.

The data representation can also be done in a way using more than one level, which
was designed particularly for problems in some complexity class beyond NP of the PH.
For this D-FLAT uses so-called item trees (see Section 2.3) of higher depth than 1; in
particular for problems on the 2nd level of PH, item trees of depth 2 are used. Second-
Level encodings allow each item set (often a solution candidate) at level one to manage
its own children (items) at level two, which typically are used to store counter candidates.
As the number of levels increases, it is even possible to define algorithms with i levels –
D-FLAT internally uses item trees of depth i to solve this ith-Level algorithm.

At the root node of the decomposition, i.e., at the end of the bottom-up traversal,
the remaining rows of its table represent the solutions to the given problem instance –
every row represents many solutions in general. By traversing the stored inheritance
information from any row at the root node back to the bottom of the decomposition,
D-FLAT is able to combine the mapped information in order to show all solutions.

Within a node during the bottom-up traversal, D-FLAT flattens child tables, which
means it builds a set of facts describing the content of the table of each child node. In
order to compute the new table, D-FLAT invokes the integrated Answer-Set Solver with
the problem instance, the Dynamic Programming algorithm (the user program), a set of

1D-FLAT is an acronym for Dynamic Programming Framework with Local Execution of ASP on
Tree Decompositions and it is publicly available for free at http://www.dbai.tuwien.ac.at/proj/
dynasp/dflat/

50

http://www.dbai.tuwien.ac.at/proj/dynasp/dflat/
http://www.dbai.tuwien.ac.at/proj/dynasp/dflat/

Gringo/clasp Compute
table rows

D-FLAT Parse instance Populate table Flatten
child tables

Materialize
solution

htdecomp Decompose

D-FLAT Done? no

yes

Visit next
node in

post-order

Figure 4.1: Flowchart that shows how D-FLAT and its components work [Bli12,
ABC+14a].

Current table

Answer sets

ASP solver
User program

Instance
Bag

Child rows

1st child table

Child rows

nth child table

. . .

. . .

Figure 4.2: Data flow while processing a node with n children [Bli12, ABC+14a].

facts for each child node and a description of its bag contents and a description of the
current bag as a set of facts, stating which vertices are present, as shown in Figure 4.2.

4.1.2 Technical Details

In this section we explain the concept of Dynamic Programming (DP) on Tree De-
compositions (TDs) as realized in the D-FLAT system. In the following we explain
the individual steps of D-FLAT based on the enumeration variants of the Sat and
⊆-Minimal Sat problems. We first describe how the input for our running example
(Sat) can be represented in D-FLAT. Remember that in Section 2.2 we introduced TDs
formally, Section 4.1.2.1 describes how partial solutions are represented and how the

51

φEx : (x ∨ y)︸ ︷︷ ︸
c1

∧ (¬y ∨ z)︸ ︷︷ ︸
c2

ASP: clause(c1;c2).
atom(x;y;z).
pos(c1,x). pos(c1,y).
neg(c2,y). pos(c2,z).

GEx : x

y

z

c1

c2

TEx : ∅n9

{y, c2}n8

{y, c2}n4

{y}n3

{x, y}n2

{x, y, c1}n1

{y, c2} n7

{y, z, c2} n6

{z, c2} n5

Figure 4.3: Instance φEx , ASP representation, incidence graph GEx and a semi-normalized
TD TEx .

Input predicate Meaning
final The current Tree Decomposition node is the root.
childNode(N) N is a child of the current decomposition node.
bag(N,V) V is contained in the bag of the decomposition node N .
current(V) V is an element of the current bag.
introduced(V) V is a current vertex but was in no child node’s bag.
removed(V) V was in a child node’s bag but is not in the current one.

Table 4.1: Input predicates describing the Tree Decomposition.

problem-specific encoding can be written. Finally, in Section 4.1.2.2 we outline how the
partial solutions are combined.

Input representation In order to construct a TD, the input has to be specified in
form of a graph. For Sat, we consider the incidence graph G = (V,E) of φ, where V is
the set of clauses and atoms occurring in φ, given as ASP facts clause(·) and atom(·)
respectively. E is given as facts pos(c, a) (neg(c, a)) that denote that some atom a occurs
positively (negatively) in clause c. An example is given in Figure 4.3.

Since constructing a TD with minimum width is intractable, D-FLAT relies on
polynomial-time heuristics.

D-FLAT transforms a TD into a semi-normalized one in linear time without increasing
the width. A possible TD TEx of our example formula φEx is depicted in Figure 4.3.
The width of TEx is 2. When traversing the Tree Decomposition, D-FLAT provides
information about the current TD node and its child node(s) via the predicates described
in Table 4.1.

52

4.1.2.1 Data Representation and Algorithm Execution

D-FLAT traverses the decomposition in post-order. At each DP node the partial solutions
are computed. Here, an ASP solver (Gringo 4.4.0, Clasp 3.1.1) is called with the following
input:

1. the user-specified, problem-specific ASP encoding,

2. the input instance,

3. information about the current and child TD node(s) (see above), and

4. the partial solutions computed in the child TD node(s) (described in this section).

The models returned by the solver represent partial solutions of the current node.2 A
partial solution is a solution to the problem restricted to the subgraph induced by the
vertices encountered so far. In D-FLAT each node is associated with a data structure that
stores the partial solutions. For problems in NP tables are employed, harder problems
can be solved using item trees [ABC+14a] as described in Section 2.3.

In the following, encodings for D-FLAT covering Sat and ⊆-Minimal Sat are
given. Later on in Chapter 4.1.3, we will see encodings for certain semantics of Abstract
Argumentation. These encodings are based on the work on Tree Decomposition algorithms
in the thesis [Cha12] and are all based on the Guess & Check [EP06] paradigm. A basic
approach on how to start writing encodings for D-FLAT is presented in Chapter 3.2
of [Bli12], whereas Chapter 4 of the same document provides good documentation
of D-FLAT and a set of selected case studies. More details about encodings for the
current version of D-FLAT can be found in [ABC+14a], in particular there is an updated
and extended version of case studies for the current version of D-FLAT in Chapter 4
of [ABC+14a]. Chapter 5 of [ABC+14a] introduces a debugger for D-FLAT designed
for support in finding flaws in complicated encodings. The given programs make use
of some language features of the grounder Gringo. More details can be found in the
guide [GKK+11].

Data Representation (tables) Each row in a table represents many partial solutions
to the problem. When traversing the TD, tables for the already-visited child nodes are
given to the user-specified encoding via predicates as listed in Table 4.2. Then, the partial
solutions for the current TD node are computed via the user-specified encoding, and
returned via the output predicates listed in Table 4.3. Each row consists of a set of items
that are arbitrary ground ASP terms. While items are typically used to store information
that has to coincide in the two children of a join node (e.g., the truth assignment of atoms
in the Sat problem), auxiliary items store information that does not need to coincide (e.g.,
whether a clause becomes satisfied). Following this rule, D-FLAT in particular provides
a default implementation for join nodes (called default join) in case of semi-normalized
TDs (and several other ones, see [ABC+14a]). We will explain this distinction in detail

2We use colors to highlight input (red), output (orange) and input instance (blue) predicates.

53

Input predicate Meaning
childRow(R,N) R is a table row belonging to decomposition node N .
childItem(R, I) The item set of table row R contains I.
childAuxItem(R, I) The auxiliary item set of table row R contains I.

Table 4.2: Input predicates describing tables of decomposition child nodes.

throughout the following example for Sat. The output predicate extend/1 specifies the
child row(s) that give rise to the partial solution encoded by the respective model.

Listing 4.1 gives an example of a user-specified ASP encoding ΠSat for the Sat
problem. The encoding makes use of D-FLAT’s input interface (see Tables 4.1 and 4.2)
in the bodies of the rules, and the output interface (see Table 4.3) in the heads of the
rules. The computed partial solutions for our running example are depicted in Figure 2.2.
We will now go through Listing 4.1 and our example in detail. Let us first consider leaf
node n1 of TEx . Since n1 has no children, only Lines 9, 22 and 23 are of interest to
us. For atoms x and y in χ(n1) = {x, y, c1} we guess their truth assignment (Line 9).
In case an atom gets assigned true, it is added to the item set of the computed row.
Lines 22 and 23 denote that a clause is added to the auxItem set in case it is satisfied
by the current truth assignment. In node n1 of Figure 2.2, we thus have four partial
solutions (“rows”), namely {∅, {x, c1}, {y, c1}, {x, y, c1}}. In n2, c1 is removed from the
bag. Whenever an atom was assigned false in a child row, Line 2 makes this explicit, and
Line 3 identifies clauses that have not been satisfied yet. We now extend each partial
solution of the child node (Line 6). Partial solution ∅ is not extended, since it does not
satisfy c1 (Line 15). The other partial solutions are extended and their information,
restricted to the current bag in case one requires FPT, is kept via Lines 18 and 19. In
Figure 2.2, this extension is marked with dashed arrows. In join nodes, we extend exactly
one row per child table at a time (Line 6). Extended partial solutions have to agree on
the truth assignment of atoms in the current bag (Line 12). Consider join node n8. Here,
the row containing partial solution {y, c2} extends {y} in n4 and {y, c2} in n7, since the
latter two both contain the same truth assignment. This also highlights the difference
between item and auxItem: In the former, common items have to be contained in both
extended partial solutions (they have to agree on the truth assignment of atoms) and a
union over the items is built (required for non-common items); in the latter only a union
over the auxiliary items is built (i.e., a clause that is satisfied in one subgraph is also
satisfied in the combined subgraph).

1% Def ine f a l s e atoms and u n s a t i s f i e d c l a u s e s
2 f(R,X) ← childRow(R,N), bag(N,X), not childItem(R,X).
3 unsat(R,C) ← childRow(R,N), bag(N,C), not childAuxItem(R,C).

5% Guess p a r t i a l s o l u t i o n s to be ex tended
6 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

54

Output
predicate

Meaning

item(I) The item set of the current table row shall contain the item I.
auxItem(I) The auxiliary item set of the current table row shall contain the item I.
extend(R) The current table row shall extend the child table row R.

Table 4.3: Output predicates for constructing the table of the current decomposition
node.

8% Guess t r u t h va l u e o f i n t r oduced atoms
9 { item(A) : atom(A), introduced(A) }.

11% Only j o i n rows c o i n c i d i n g on t r u t h v a l u e s o f atoms
12 ← extend(X;Y), atom(A), childItem(X,A), f(Y,A).

14% Rows wi th u n s a t i s f i e d , removed c l a u s e s are not ex t ended
15 ← clause(C), removed(C), extend(R), unsat(R,C).

17% True atoms and s a t i s f i e d c l a u s e s are k ep t
18 item(X) ← extend(R), childItem(R,X), current(X).
19 auxItem(C) ← extend(R), childAuxItem(R,C), current(C).

21% Through gues s c l a u s e s may become s a t i s f i e d
22 auxItem(C) ← current(C;A), pos(C,A), item(A).
23 auxItem(C) ← current(C;A), neg(C,A), not item(A).

Listing 4.1: ΠSat: D-FLAT encoding for solving Sat.

Note that instead of the incidence graph (see Figure 4.3), we could also for instance
specify a different form of input graph, the so-called primal graph (see Figure 4.4), where
every atom of some clause c is connected to every other atom of c (i.e. the atoms of a
clause form a clique). Observe that, by the properties of TDs (see Chapter 2), it is thus
required that there has to occur some bag containing all the atoms of c. So, when the
node whose bag contains all the atoms of some clause c is processed, one can decide about
the satisfiability of c (in this case we say that c is implicitly contained in the current bag).
Listing 4.2 should look familiar if compared to Listing 4.1, in fact the main difference has
to do with predicate curr/1, which marks whether a clause is implicitly in the current
bag (and one can therefore decide about its satisfiability). Lines 17 and 18 deal with
marking the current clause, while Line 25 of Listing 4.2 handles unsatisfied clauses. As a
final note, one has to keep in mind here that the only edge type of the input graph is
occurTogether/1 and that the vertices are just the atoms of the input formula.

1% Def ine f a l s e atoms
2 f(R,X) ← childRow(R,N), bag(N,X), not childItem(R,X).

55

φEx : (x ∨ y)︸ ︷︷ ︸
c1

∧ (¬y ∨ z)︸ ︷︷ ︸
c2

ASP: clause(c1;c2).
atom(x;y;z).
pos(c1,x). pos(c1,y).
neg(c2,y). pos(c2,z).
occurTogether(x,y). occurTogether(y,z).
occursIn(x,c1). occursIn(y,c1).
occursIn(y,c2). occursIn(z,c2).

Gprim
Ex : x

z

y

T prim
Ex : ∅n5

{y, z}n4

{y}n3

{x, y}n2

{x}n1

Figure 4.4: Instance φEx , ASP representation, primal graph Gprim
Ex and a semi-normalized

TD T prim
Ex .

4% Guess p a r t i a l s o l u t i o n s to be ex tended
5 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

7% Guess t r u t h va l u e o f i n t r oduced atoms
8 { item(A) : introduced(A) }.

10% Only j o i n rows c o i n c i d i n g on t r u t h v a l u e s o f atoms
11 ← extend(X;Y), childItem(X,A), f(Y,A).

13% True atoms are kep t
14 item(X) ← extend(R), childItem(R,X), current(X).

16% Current c l a u s e s
17 notCurr(C) ← occursIn(A,C), not current(A).
18 curr(C) ← clause(C), not notCurr(C).

20% Def ine s a t i s f i e d c l a u s e s
21 sat(C) ← curr(C), pos(C,A), item(A).
22 sat(C) ← curr(C), neg(C,A), not item(A).

24% Current c l a u s e s need to be s a t i s f i e d
25 ← curr(C), not sat(C).

Listing 4.2: Πprim
Sat : D-FLAT encoding for solving Sat using primal graphs.

Data Representation (item trees) For problems that are harder than NP, D-FLAT
provides item trees to store partial solutions. A brief overview is given in this section,
for details we refer to [ABC+14a]. The predicates specifying item trees computed in
the child nodes are given in Table 4.4, and the output predicates are listed in Table 4.5.

56

Similar to before, each item tree node contains an item/2 and an auxItem/2 set. Again,
the information stored in the items is restricted to (or dependent on) the bag elements
of the respective decomposition node in case one requires FPT. Each item tree node
additionally has a set of extension pointer tuples that represents its origin, denoted by
extend/2. (Note that these are now binary predicates.) Each root-to-leaf path has a
particular length/1, and the level of an item tree node is its depth on the path. At the
TD’s root, each item tree node must be labeled with either accept or reject if it is a
leaf, otherwise with or/1 or and/1. D-FLAT uses this to filter out solution candidates
for which “counterexamples” exist: Only so-called accepting nodes are kept at the TD
root, where a node is accepting if

1. its label is accept, or

2. its label is or and at least one child is accepting, or

3. its label is and and all children are accepting.

One can view the table-based data structure as a special case of item trees, where the
length of each root-to-leaf path is one, and the root node is of type or. Furthermore,
contrary to tables, where each model returned by the ASP solver represents a row, for
item trees a model represents a single root-to-leaf path in the item tree.

Now we will explain item trees on basis of the ⊆-Minimal Sat problem. Conceptually,
we store solution candidates at depth 1 of the item trees (similar to partial solutions
stored in the rows for Sat). Furthermore, we store so-called counter candidates at
depth 2. A counter candidate is a potential witness for the solution candidate (its parent)
not being subset-minimal (cf., e.g., [JPW09]). This concept of storing witnesses (also
called certificates) is commonly used for problems that are hard for the second level of
the polynomial hierarchy [JPW09]. In D-FLAT, it is again only required to specify a
single ASP encoding, depicted in Listing 4.3. The encoding defines that item sets for
both solution and counter candidates are computed as in the Sat problem. Additionally,
this encoding ensures that partial interpretations represented by counter candidates are
strict subsets of partial interpretations represented by solution candidates. Line 1 states
that we have an item tree of depth 2. Furthermore, the encoding is designed to only
return a solution in case there exists some (or(0)) solution candidate at level 1, such
that no (and(1) in combination with Line 36) smaller counter candidate at level 2 exists.
Similar to ΠSat, Lines 3-7 make explicit if an atom is false or a clause is unsatisfied in
an item tree node. Exactly one root-to-leaf path of each child item tree is extended
(Lines 10-11). Then, for each level it is guessed whether an introduced atom is contained
in the interpretation represented by the item set (Line 14), root-to-leaf paths are only
joined in case the respective item sets coincide on their truth assignments for current
atoms (Line 17), item sets with unsatisfied removed clauses are not extended (Line 20),
truth assignments are propagated (Lines 23-24) and the set of satisfied clauses is updated
(Lines 27-28). Line 31 guarantees that the interpretation in a counter candidate is a
subset of (or equal to) that of a solution candidate. Then, flag smaller denotes that the
counter candidate represents a proper subset of the solution candidate (Lines 34-35). In

57

Input predicate Meaning
atNode(S,N) S is an item tree node belonging to decomposition node N .
rootOf(S,N) S is the root of the item tree at decomposition node N .
sub(R,S) R is an item tree node with child S.
childItem(S, I) The item set of item tree node S contains item I.
childAuxItem(S, I) The auxiliary item set of item tree node S contains item I.

Table 4.4: Input predicates describing item trees of child nodes in the decomposition.

Output pred-
icate

Meaning

item(L, I) I is in the item set of the node at level L in the current root-to-leaf
path.

auxItem(L, I) I is in the auxiliary item set at level L in the current root-to-leaf
path.

extend(L, S) Node at level L in current root-to-leaf path extends child item tree
node S.

length(L) The current root-to-leaf path has length L.
or(L)/and(L) The node at level L in the current root-to-leaf path has type

“or”/“and”.
accept/reject The leaf in the current root-to-leaf path has type “accept”/“reject”.

Table 4.5: Output predicates for constructing the item tree of the current decomposition
node.

the final (i.e., root) node of the TD, solution candidates are rejected that still have a
smaller counter candidate, and accepted otherwise (Lines 36-37). Figure 2.3 contains
the computed item trees for TD nodes n1, n2 and n3 of our running example. In n1,
we construct the item sets at depth 1 as described for Sat. The item sets at depth 2
represent counter candidates that are strict subsets of the interpretations at depth 1 (note
that we omit counter candidates without smaller here). In n2, clause c1 is removed.
Hence, we remove all item sets representing interpretations that do not satisfy c1. In n3,
atom x is removed. This results in two item sets at depth 1 that both solely contain y.
However, they differ in the counter candidates stored at depth 2.

Observe that Listing 4.3 is quite similar to Listing 4.1. However, in Listing 4.3 the
counter candidates at the second level have to be handled, which, in turn, is done similarly
to the solution candidates at the first level. In D-FLATˆ2, we address this repetition
of code by abstracting away the minimization task from the user. As we will see, this
allows one to reuse Listing 4.1 for solving ⊆-Minimal Sat by solely specifying the set of
items to be minimized upon (see Section 4.2.1).

58

1 length(2). or(0). and(1).

3 childBag(S,X) ← atNode(S,N), sub(_,S), childNode(N), bag(N,X).

5% Def ine f a l s e atoms and u n s a t i s f i e d c l a u s e s
6 f(S,X) ← childBag(S,X), not childItem(S,X).
7 unsat(S,C) ← childBag(S,C), not childAuxItem(S,C).

9% Guess root−to− l e a f pa th s in i tem t r e e s to be ex tended
10 extend(0,R) ← root(R).
11 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.

13% Guess t r u t h va l u e o f i n t r oduced atoms
14 { item(2,A;1,A) : atom(A), introduced(A) }.

16% Only j o i n root−to− l e a f pa th s c o i n c i d i n g on atom t r u t h v a l u e s
17 ← extend(L,X;L,Y), atom(A), childItem(X,A), f(Y,A), L=1..2.

19% Paths wi th u n s a t i s f i e d , removed c l a u s e s are not ex tended
20 ← extend(L,R), clause(C), removed(C), unsat(R,C), L=1..2.

22% True atoms and s a t i s f i e d c l a u s e s are k ep t
23 item(L,X) ← extend(L,R), childItem(R,X), current(X), L=1..2.
24 auxItem(L,C) ← extend(L,R), childAuxItem(R,C), current(C), L=1..2.

26% Through guess , c l a u s e s may become s a t i s f i e d
27 auxItem(L,C) ← current(C;A), pos(C,A), item(L,A), L=1..2.
28 auxItem(L,C) ← current(C;A), neg(C,A), not item(L,A), L=1..2.

30% In t e r p r e t a t i o n a t l e v e l 2 must be s u b s e t o f t h a t a t l e v e l 1
31 ← atom(A), item(2,A), not item(1,A).

33% Update s u b s e t in f o rmat ion ; r e j e c t l a r g e r models a t roo t
34 auxItem(2,smaller) ← extend(2,S), childAuxItem(S,smaller).
35 auxItem(2,smaller) ← atom(A), item(1,A), not item(2,A).
36 reject ← final, auxItem(2,smaller).
37 accept ← final, not reject.

Listing 4.3: Π⊆-Minimal Sat: D-FLAT encoding for solving ⊆-Minimal Sat.

Similar to the previous data representation (tables), one can also state a different encoding
for ⊆-Minimal Sat using primal graphs (see Listing 4.4).

1 length(2). or(0). and(1).

3% Def ine f a l s e atoms
4 f(S,X) ← atNode(S,N), sub(_,S), childNode(N), bag(N,X), not

childItem(S,X).

59

6% Guess root−to− l e a f pa th s in i tem t r e e s to be ex tended
7 extend(0,R) ← root(R).
8 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.

10% Guess t r u t h va l u e o f i n t r oduced atoms
11 { item(2,A;1,A) : introduced(A) }.

13% Only j o i n root−to− l e a f pa th s c o i n c i d i n g on atom t r u t h v a l u e s
14 ← extend(L,X;L,Y), childItem(X,A), f(Y,A), L=1..2.

16% Current c l a u s e s
17 notCurr(C) ← occursIn(A,C), not current(A).
18 curr(C) ← clause(C), not notCurr(C).

20% Def ine s a t i s f i e d c l a u s e s
21 sat(L,C) ← curr(C), pos(C,A), item(L,A), L=1..2.
22 sat(L,C) ← curr(C), neg(C,A), not item(L,A), L=1..2.

24% Current c l a u s e s need to be s a t i s f i e d
25 ← curr(C), not sat(L,C), L=1..2.

27% True atoms are kep t
28 item(L,X) ← extend(L,R), childItem(R,X), current(X), L=1..2.

30% In t e r p r e t a t i o n a t l e v e l 2 must be s u b s e t o f t h a t a t l e v e l 1
31 ← item(2,A), not item(1,A).

33% Update s u b s e t in f o rmat ion ; r e j e c t l a r g e r models a t roo t
34 auxItem(2,smaller) ← extend(2,S), childAuxItem(S,smaller).
35 auxItem(2,smaller) ← item(1,A), not item(2,A).
36 reject ← final, auxItem(2,smaller).
37 accept ← final, not reject.

Listing 4.4: Πprim
⊆-Minimal Sat: D-FLAT encoding for solving ⊆-Minimal Sat using primal

graphs.

4.1.2.2 Obtaining Solutions

At the TD’s root, from the properties of Tree Decompositions we know that the whole
instance has been taken into account. Typically, for decision problems (e.g., satisfiability,
credulous, or skeptical reasoning) the result is directly available at the root node. For
enumeration tasks the tree is traversed a second time (now in pre-order) and the partial
solutions associated with each Tree Decomposition node are combined in order to obtain
the complete solutions (see Definition 2.5 for formal means). Here, we follow the extension
pointer tuples while combining the contents of the respective item sets. For our running
example, considering Sat, we have {{x, c1, c2}, {x, z, c1, c2}, {y, z, c1, c2}, {x, y, z, c1, c2}}.

60

The models of φEx are {{x}, {x, z}, {y, z}, {x, y, z}}, and the subset-minimal models are
{{x}, {y, z}}.

4.1.3 D-FLAT Encodings for Abstract Argumentation

The following section contains encodings for Abstract Argumentation using D-FLAT,
in particular we will show encodings for stable, admissible, complete, preferred and
semi-stable extensions.

For the presented encodings for Abstract Argumentation, it is assumed that the input
instances model the attack relation by using att/2.

Further, the encodings have in common that in order to deal with the problem of
selecting sets S ⊆ A with the desired properties of a given argumentation framework
F = (A,R), they map colors to nodes n ∈ A in order to remember information during
the traversal of the generated Tree Decomposition. The color can be in if and only if a
node is inside the target set S, out to state that the node is not included in the set, outc
to mark out candidates (used for encoding complete semantics), attc to mark attacking
candidate nodes (they are not allowed to stay undefeated), att to mark attackers, and
finally def, which is used to remember defeated nodes. It is important to note that, in
general, the mapping of a node n ∈ A to any of these colors is not fixed and therefore
may change while the bottom-up traversal of the generated Tree Decomposition. This
observation is due to the fact that, in general, information concerning the attack relation
may appear some time later during the traversal of the decomposition.

Due to the already discussed process of how D-FLAT represents a solution in Chap-
ter 4.1, i.e. how it generates the output of a valid solution, the following rules are
introduced in order to transfer the output of D-FLAT into the correct solution for the
given graph input.

1. The color of every node is either in or one from {outc, out, attc, att, def}.

2. If the color is one from {outc, out, attc, att, def}, the produced result needs
to be viewed with respect to the partial ordering <C , i.e. one needs to take the
minimum thereof, formalized in Lines 4.1 and 4.2 as follows.

∀col ∈ {outc, out, attc, att, def} : col ≤C col (4.1)
def <C att <C attc <C out <C outc (4.2)

3. If one node does not explicitly assign a color, it is considered out, i.e. out is the
default color.

Stable semantics This is the shortest and easiest of the encodings of this section. Its
implementation uses the colors in and def, uncolored nodes are considered out.

Similar to the encodings of the previous section, it guesses the row, which is going to
be extended in Line 2. Line 5 guesses, whether an introduced atom is going to be in the
resulting extension or not included at all. It is required to remember which argument is

61

defeated (see Line 19). Recall that this is done similarly in incidence SAT above (see
Listing 4.1), where we stored the already satisfied clauses. Note that arguments which are
guessed to be in an extension can not be defeated, because extensions are required to be
conflict-free (see Line 22). Lines 12 and 13 so to say inherit information, that is whether
an argument is in an extension resp. defeated by it, to the next node towards the root of
the TD. Finally, Line 16 makes sure that there are no undefeated arguments outside an
extension (due to the connectedness property (3.) of the TD; see Definition 2.1).

1% Guess root−to− l e a f pa th s in i tem t r e e s to be ex tended
2 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

4% Guess whether an e lement i s in or out
5 0 { item(in(A)) } 1 ← introduced(A).

7% Join on ly arguments wi th the same co l o r
8 nIn(S,A) ← childRow(S,N), bag(N,A), not childItem(S,in(A)).
9 ← extend(S1), extend(S2), childItem(S1,in(A)), nIn(S2,A).

11% In h e r i t arguments t h a t are in or de f
12 item(in(A)) ← extend(S), childItem(S,in(A)), current(A).
13 auxItem(def(A)) ← extend(S), childAuxItem(S,def(A)), current(A).

15% Discard s e t s i f any a t t a c k i n g or out−argument i s removed .
16 ← removed(A), not childItem(S,in(A)), not childAuxItem(S,def(A)),

extend(S), childRow(S,N), bag(N,A).

18% Set d e f e a t e d arguments
19 auxItem(def(A)) ← current(A;B), att(B,A), item(in(B)).

21% Assure t h a t t he s e t i s c o n f l i c t −f r e e
22 ← item(in(A)), item(in(B)), att(A,B).

Listing 4.5: Πstable: D-FLAT encoding for stable extensions.

Admissible semantics This program explicitly uses the colors in, def and attc (for
marking attacking candidates), whereas uncolored nodes are considered out as mentioned
above.

Note that in Chapter 3 we specified an algorithm for admissible semantics and proved
its correctness. Listing 4.6 now shows an implementation of this algorithm for the
D-FLAT framework.

Πadmissible (see Listing 4.6) contains several parts, which are similar to the previous
Listing 4.5. Lines 1 and 31 are in fact identical as in Listing 4.5. Lines 9, 10 and 11 ensure
that only rows which color same arguments with the same color are joined together.
Observe that in this sense argument a with colors def (defeated) of node, say n1, and
attc (attacking candidate) (which still require defeating) of node, say n2 is allowed when

62

joining n1 and n2 together in node n3, because this implies that a is already defeated in
the subtree rooted at n1 (see Section 3.1). Lines 15 and 20 also show this circumstance;
only if a certain attacking candidate argument a is not defeated in any branch, it gets
again color attc as seen in Line 23. The remaining parts are quite easy, however it is
not allowed that an argument, which is guessed to be not in the extension (and also
not an attacking candidate), is defeated (see Lines 27 resp. 19). Undefeated attacking
candidates are not allowed, as Line 34 suggests.

1 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

3% Guess whether an e lement i s in , out or a t t a c k i n g (a t t c)
4 0 { item(in(A)); attc(A) } 1 ← introduced(A).

6% Join on ly arguments wi th the same co l o r
7 nIn(S,A) ← childRow(S,N), bag(N,A), not childItem(S,in(A)).
8 nDef(S,A) ← childRow(S,N), bag(N,A), not childAuxItem(S,def(A)),

not childAuxItem(S,attc(A)).
9 ← extend(S1), extend(S2), childItem(S1,in(A)), nIn(S2,A).

10 ← extend(S1), extend(S2), childAuxItem(S1,def(A)), nDef(S2,A).
11 ← extend(S1), extend(S2), childAuxItem(S1,attc(A)), nDef(S2,A).

13% In h e r i t arguments t h a t are in , d e f e a t e d or a t t a c k e r s
14 item(in(A)) ← extend(S), childItem(S,in(A)), current(A).
15 chdef(A) ← extend(S), childAuxItem(S,def(A)), current(A).
16 attc(A) ← extend(S), childAuxItem(S,attc(A)), current(A).

18% Set d e f e a t e d arguments
19 auxItem(def(A)) ← current(A;B), att(B,A), item(in(B)).
20 auxItem(def(A)) ← chdef(A).

22% S t i l l remaining (unde f ea t ed) a t t a c k e r s
23 auxItem(attc(A)) ← attc(A), not auxItem(def(A)).

25% Out−arguments are not a l l owed to be d e f e a t e d / a t t a c k e r s
26 out(A) ← not attc(A), not chdef(A), current(A).
27 ← auxItem(def(A)), out(A).
28 ← out(A), current(A), item(in(B)), att(A,B).

30% Assure t h a t t he s e t i s c o n f l i c t −f r e e
31 ← item(in(A)), item(in(B)), att(A,B).

33% Remove cand i da t e s t h a t l e a v e a t t a c k e r s unde f ea t ed
34 ← extend(S), childAuxItem(S,attc(A)), removed(A).

Listing 4.6: Πadmissible: D-FLAT encoding for admissible sets.

The alternative program of Listing 4.7 explicitly uses the colors in, def and att (for
marking attacking arguments), whereas uncolored nodes are considered out as mentioned

63

above.
Listing 4.7 contains on principal several parts, which are similar to the previous

Listing 4.6, but simplified. Lines 1 and 20 is in fact identical as in Listing 4.6, the main
difference lies in Line 4 (simplified guess). Line 8 ensures that only rows which color same
arguments are joined together. Observe that in this sense also (in addition to the case
of the previous encoding) arguments a with colors att (attacked) of node, say n1, and
out (no attacker until now) of node, say n2 is allowed when joining n1 and n2 together
in node n3, because this implies that a is an attacker (in the subtree rooted at n1; see
Section 3.1). The remaining parts are quite easy. Undefeated attacking candidates are
not allowed, as Line 23 suggests.

1 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

3% Guess whether an e lement i s in or out
4 0 { item(in(A)) } 1 ← introduced(A).

6% Join on ly arguments wi th the same co l o r
7 nIn(S,A) ← childRow(S,N), bag(N,A), not childItem(S,in(A)).
8 ← extend(S1), extend(S2), childItem(S1,in(A)), nIn(S2,A).

10% In h e r i t arguments t h a t are in , d e f e a t e d or a t t a c k e r s
11 item(in(A)) ← extend(S), childItem(S,in(A)), current(A).
12 auxItem(def(A)) ← extend(S), childAuxItem(S,def(A)), current(A).
13 auxItem(att(A)) ← extend(S), childAuxItem(S,att(A)), current(A),

not auxItem(def(A)).

15% Set d e f e a t e d arguments
16 auxItem(def(A)) ← current(A;B), att(B,A), item(in(B)).
17 auxItem(att(A)) ← current(A;B), att(A,B), item(in(B)), not

auxItem(def(A)).

19% Assure t h a t t he s e t i s c o n f l i c t −f r e e
20 ← item(in(A)), item(in(B)), att(A,B).

22% Remove cand i da t e s t h a t l e a v e a t t a c k e r s unde f ea t ed
23 ← extend(S), childAuxItem(S,att(A)), removed(A).

Listing 4.7: Π′admissible: Alternative D-FLAT encoding for admissible extensions.

Complete semantics In addition to the previous encoding, this one uses the additional
color outc (and also explicitly colors nodes out this time), which marks out candidates.

This leads to the additional Line 15, where the out arguments are inherited. Trough
the encoding we use outc/1 to actually mark both out candidates and out-arguments as
seen in Line 29. An out candidate a becomes out in Line 22 if an other out candidate
or out argument b attacks a, (i.e. it is not defeated due to an attack by an argument
which is colored in). If an outc argument a does not become truely out, it still keeps

64

the out candidate status as formalized in Line 26. Similar to the previous Listing 4.6 it
is not allowed to keep so to say unproven (i.e. candidate) arguments; in particular out
candidates are not tolerated when the argument gets removed (see Line 40).

1 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

3% Guess whether an e lement i s in , out or a t t a c k i n g (a t t c)
4 0 { item(in(A)); attc(A) } 1 ← introduced(A).

6% Join on ly arguments wi th the same co l o r
7 nIn(S,A) ← childRow(S,N), bag(N,A), not childItem(S,in(A)).
8 nDef(S,A) ← childRow(S,N), bag(N,A), not childAuxItem(S,def(A)),

not childAuxItem(S,attc(A)).
9 ← extend(S1), extend(S2), childItem(S1,in(A)), nIn(S2,A).

10 ← extend(S1), extend(S2), childAuxItem(S1,def(A)), nDef(S2,A).
11 ← extend(S1), extend(S2), childAuxItem(S1,attc(A)), nDef(S2,A).

13% In h e r i t arguments t h a t are in , d e f e a t e d or a t t a c k e r s
14 item(in(A)) ← extend(S), childItem(S,in(A)), current(A).
15 auxItem(out(A)) ← extend(S), childAuxItem(S,out(A)), current(A).
16 chdef(A) ← extend(S), childAuxItem(S,def(A)), current(A).
17 attc(A) ← extend(S), childAuxItem(S,attc(A)), current(A).

19% Set d e f e a t e d arguments
20 auxItem(def(A)) ← current(A;B), att(B,A), item(in(B)).
21 auxItem(def(A)) ← chdef(A).
22 auxItem(out(A)) ← current(A;B), att(B,A), outc(B), outc(A).

24% S t i l l remaining (unde f ea t ed) a t t a c k e r s
25 auxItem(attc(A)) ← attc(A), not auxItem(def(A)).
26 auxItem(outc(A)) ← outc(A), not auxItem(out(A)).

28% Out−arguments are not a l l owed to be d e f e a t e d / a t t a c k e r s
29 outc(A) ← not attc(A), not chdef(A), not item(in(A)), current(A).
30 ← auxItem(def(A)), outc(A).
31 ← outc(A), current(A), item(in(B)), att(A,B).

33% Assure t h a t t he s e t i s c o n f l i c t −f r e e
34 ← item(in(A)), item(in(B)), att(A,B).

36% Remove cand i da t e s t h a t l e a v e a t t a c k e r s unde f ea t ed
37 ← extend(S), childAuxItem(S,attc(A)), removed(A).

39% Remove cand i da t e s t h a t l e a v e out cand i da t e s unde f ea t ed
40 ← extend(S), childAuxItem(S,outc(A)), removed(A).

Listing 4.8: Πcomplete: D-FLAT encoding for complete extensions.

65

Preferred semantics The goal is to select admissible sets S ⊆ A of a framework
(A,R), such that every S′ ⊃ S is not admissible. The intended way to deal with problems
beyond NP is to use multiple levels [Bli12], so the additional level one is used to try
to invalidate the condition above, i.e. to find for any guessed set S a set S′, which is
admissible. If no such S′ exists, the guessed set actually is a preferred extension, otherwise
it is not. Therefore colorings at level one represent counter candidates (compare with
Chapter 4.2.1). If any of these counter-example candidates remain valid (at level one)
for a row at level zero of the root node (of the decomposition), i.e. the according row at
level one has not already been discarded during the tree traversal, the given row at level
zero cannot represent a preferred extension.

This program explicitly uses the colors in, def and attc, whereas uncolored nodes
are considered out.

Observe that there are quite redundant tasks, similar work has to be done at the
different levels. Moreover, one can detect recurring patterns (compare to Listing 4.3).

In particular, we need additional Line 41 to prohibit a smaller (w.r.t. ⊆) extension at
level two. Lines 45 and 44 maintain the bigger flag to indicate true counter candidates
(up to the current node). Finally, Line 46 rejects extensions with counter candidates at
the root of the TD; otherwise they are accepted in Line 47.

1 length(2). or(0). and(1).

3% Guess root−to− l e a f pa th s in i tem t r e e s to be ex tended
4 extend(0,R) ← root(R).
5 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.

7% Guess t r u t h va l u e o f i n t r oduced atoms
8 0 { item(L,in(A)); attc(L,A) } 1 ← introduced(A), L=1..2.

10% Only j o i n root−to− l e a f pa th s c o i n c i d i n g on c o l o r s
11 nIn(S,A) ← childNode(N), atNode(S,N), bag(N,A), not

childItem(S,in(A)).
12 nDef(S,A) ← childNode(N), atNode(S,N), bag(N,A), not

childAuxItem(S,def(A)), not childAuxItem(S,defc(A)).
13 ← extend(L,S1;L,S2), childItem(S1,in(A)), nIn(S2,A).
14 ← extend(L,S1;L,S2), childAuxItem(S1,def(A)), nDef(S2,A).
15 ← extend(L,S1;L,S2), childAuxItem(S1,defc(A)), nDef(S2,A).

17% In h e r i t arguments t h a t are in , d e f e a t e d or a t t a c k e r s
18 item(L,in(A)) ← extend(L,S), childItem(S,in(A)), current(A).
19 chdef(L,A) ← extend(L,S), childAuxItem(S,def(A)), current(A).
20 attc(L,A) ← extend(L,S), childAuxItem(S,attc(A)), current(A).

22% Set d e f e a t e d arguments
23 auxItem(L,def(A)) ← current(A;B), att(B,A), item(L,in(B)).
24 auxItem(L,def(A)) ← chdef(L,A).

66

26% S t i l l remaining (unde f ea t ed) a t t a c k e r s
27 auxItem(L,attc(A)) ← attc(L,A), not auxItem(L,def(A)).

29% Out−arguments are not a l l owed to be d e f e a t e d / a t t a c k e r s
30 out(L,A) ← not attc(L,A), not chdef(L,A), current(A), L=1..2.
31 ← auxItem(L,def(A)), out(L,A).
32 ← out(L,A), current(A), item(L,in(B)), att(A,B).

34% Assure t h a t t he s e t i s c o n f l i c t −f r e e
35 ← item(L,in(A)), item(L,in(B)), att(A,B).

37% Remove cand i da t e s t h a t l e a v e a t t a c k e r s unde f ea t ed
38 ← extend(L,S), childAuxItem(S,attc(A)), removed(A).

40% Items a t l e v e l 2 must be s u b s e t o f t h a t a t l e v e l 1
41 ← item(1,A), not item(2,A).

43% Update s u b s e t in f o rmat ion ; r e j e c t models a t roo t w i th l a r g e r s
44 auxItem(2,bigger) ← extend(2,S), childAuxItem(S,bigger).
45 auxItem(2,bigger) ← item(2,A), not item(1,A). %b i g g e r S
46 reject ← final, auxItem(2,bigger).
47 accept ← final, not reject.

Listing 4.9: Πpreferred: D-FLAT encoding for directly computing preferred extensions.

Similar to the above alternative encoding covering admissible semantics (see Listing 4.7),
we also state here a simpler encoding for preferred semantics for the sake of completeness.
Πpreferred (see Listing 4.9) is an implementation of the algorithm for preferred semantics
defined in Chapter 3; this approach, however, can be simplified. In fact, Listing 4.10
evolved from the more efficient Π′admissible (compare with Listing 4.7). It explicitly
uses the colors in, def and att (for marking attackers), whereas uncolored nodes are
considered out as mentioned above. Similar to Πadmissible vs. Π′admissible, most of the
parts are as in the previous Listing 4.9, but simplified.

1 length(2). or(0). and(1).

3% Guess root−to− l e a f pa th s in i tem t r e e s to be ex tended
4 extend(0,R) ← root(R).
5 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.

7% Guess t r u t h va l u e o f i n t r oduced atoms
8 0 { item(L,in(A)) } 1 ← introduced(A), L=1..2.

10% Items at l e v e l 2 must be s u b s e t o f t h a t a t l e v e l 1
11 item(2,A) ← item(1,A).

13% Only j o i n root−to− l e a f pa th s c o i n c i d i n g on c o l o r s
14 nIn(S,A) ← childNode(N), atNode(S,N), bag(N,A), not

67

childItem(S,in(A)).
15 ← extend(L,S1;L,S2), childItem(S1,in(A)), nIn(S2,A).

17% In h e r i t arguments t h a t are in , d e f e a t e d or a t t a c k e r s
18 item(L,in(A)) ← extend(L,S), childItem(S,in(A)), current(A).
19 auxItem(L,def(A)) ← extend(L,S), childAuxItem(S,def(A)), current(A).
20% Set d e f e a t e d arguments
21 auxItem(L,def(A)) ← current(A;B), att(B,A), item(L,in(B)).

23% S t i l l remaining (unde f ea t ed) a t t a c k e r s
24 auxItem(L,att(A)) ← extend(L,S), childAuxItem(S,att(A)),

current(A), not auxItem(L,def(A)).
25 auxItem(L,att(A)) ← current(A;B), att(A,B), item(L,in(B)), not

auxItem(L,def(A)).

27% Assure t h a t t he s e t i s c o n f l i c t −f r e e
28 ← item(L,in(A)), item(L,in(B)), att(A,B).

30% Remove cand i da t e s t h a t l e a v e a t t a c k e r s unde f ea t ed
31 ← extend(L,S), childAuxItem(S,att(A)), removed(A).

33% Update s u b s e t in f o rmat ion ; r e j e c t models a t roo t w i th l a r g e r s
34 auxItem(2,bigger) ← extend(2,S), childAuxItem(S,bigger).
35 auxItem(2,bigger) ← item(2,A), not item(1,A). %b i g g e r S
36 reject ← final, auxItem(2,bigger).
37 accept ← final, not reject.

Listing 4.10: Π′preferred: Alternative D-FLAT encoding for computing preferred
extensions.

Semi-stable semantics This program behaves quite similar to the encoding before,
but has to somehow capture the fact that our goal is to maximize the range S+

R of any
given admissible set S. Remember (compare with Chapter 2) that the range is defined
as follows: S+

R := S ∪ {a | ∃b ∈ S s.t. (b, a) ∈ R}.
Note that Listing 4.11 complies with a D-FLAT encoding of the algorithm for semi-

stable semantics specified (and shown to be correct) in Chapter 3.
Listing 4.11 is quite similar to the previous Listing 4.9, but maximizes the range.

For this, we need Lines 41, 42 and 43, which set up the range. Line 48 finally is the
desired line for setting the bigger flag similar to the previous encoding. Note that this is
the implementation of the according theoretical Section 3.2, in other words Listing 4.11
forms the implementation of the proven algorithm.

1 length(2). or(0). and(1).

3% Guess root−to− l e a f pa th s in i tem t r e e s to be ex tended
4 extend(0,R) ← root(R).

68

5 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.

7% Guess t r u t h va l u e o f i n t r oduced atoms
8 0 { item(L,in(A)); attc(L,A) } 1 ← introduced(A), L=1..2.

10% Only j o i n root−to− l e a f pa th s c o i n c i d i n g on c o l o r s
11 nIn(S,A) ← childNode(N), atNode(S,N), bag(N,A), not

childItem(S,in(A)).
12 nDef(S,A) ← childNode(N), atNode(S,N), bag(N,A), not

childAuxItem(S,def(A)), not childAuxItem(S,defc(A)).
13 ← extend(L,S1;L,S2), childItem(S1,in(A)), nIn(S2,A).
14 ← extend(L,S1;L,S2), childAuxItem(S1,def(A)), nDef(S2,A).
15 ← extend(L,S1;L,S2), childAuxItem(S1,defc(A)), nDef(S2,A).

17% In h e r i t arguments t h a t are in , d e f e a t e d or a t t a c k e r s
18 item(L,in(A)) ← extend(L,S), childItem(S,in(A)), current(A).
19 chdef(L,A) ← extend(L,S), childAuxItem(S,def(A)), current(A).
20 attc(L,A) ← extend(L,S), childAuxItem(S,attc(A)), current(A).

22% Set d e f e a t e d arguments
23 auxItem(L,def(A)) ← current(A;B), att(B,A), item(L,in(B)).
24 auxItem(L,def(A)) ← chdef(L,A).

26% S t i l l remaining (unde f ea t ed) a t t a c k e r s
27 auxItem(L,attc(A)) ← attc(L,A), not auxItem(L,def(A)).

29% Out−arguments are not a l l owed to be d e f e a t e d / a t t a c k e r s
30 out(L,A) ← not attc(L,A), not chdef(L,A), current(A), L=1..2.
31 ← auxItem(L,def(A)), out(L,A).
32 ← out(L,A), current(A), item(L,in(B)), att(A,B).

34% Assure t h a t t he s e t i s c o n f l i c t −f r e e
35 ← item(L,in(A)), item(L,in(B)), att(A,B).

37% Remove cand i da t e s t h a t l e a v e a t t a c k e r s unde f ea t ed
38 ← extend(L,S), childAuxItem(S,attc(A)), removed(A).

40% s at l e v e l 2 must be s u b s e t o f t h a t a t l e v e l 1
41 s(L,A) ← item(L,in(A)).
42 s(L,A) ← auxItem(L,attc(A)).
43 s(L,A) ← auxItem(L,def(A)).
44 ← s(1,A), not s(2,A).

46% Update s u b s e t in f o rmat ion ; r e j e c t models a t roo t w i th l a r g e r s
47 auxItem(2,bigger) ← extend(2,S), childAuxItem(S,bigger).
48 auxItem(2,bigger) ← s(2,A), not s(1,A). %b i g g e r S
49 reject ← final, auxItem(2,bigger).

69

50 accept ← final, not reject.

Listing 4.11: ΠsemiStable: D-FLAT encoding for directly computing semi-stable extensions.

4.2 D-FLATˆ2: Optimizing DP on TDs

4.2.1 Technical Details

We give a general algorithm of how the task of subset minimization in DP on TDs can be
implemented efficiently. There are some issues with DP algorithm specifications involving
subset optimization. In particular, the development of our algorithm is motivated by the
following observations.

1) Counter candidates are often constructed similarly to solution candidates.

2) Typically, counter candidates are also stored as solution candidates.

3) Counter candidates that are also solution candidates can be omitted if the respective
solution candidate turns out to be no solution.

Our approach avoids redundant computations of solution and counter candidates. It
supports minimization and maximization on user-specified items (e.g., for ⊆-Minimal
Sat, on atoms but not on clauses).

In our approach so-called reduced item trees serve as the main data structure. A
reduced item tree is an item tree of depth 1 that can store additional information at each
node n: Besides extension pointer tuples, n is associated with a set of back pointers. Node
n has a back pointer to a node n′ iff some element of some extension pointer tuple in n′
references n. Furthermore, n has an optimization item set, which contains the items on
which subset minimization is performed. In contrast to the straightforward way of using
(non-reduced) item trees whose depth-2 nodes represent counter candidates, n contains a
set of counter candidate pointers, which are hidden from the user. A counter candidate
pointer is a pair (c, s), where c is a reference to a sibling of n and s is a Boolean flag
that is set to true iff there is an extension of c whose optimization items form a proper
subset (or superset for maximization problems) of those of each extension of n (similar to
the smaller predicate in Listing 4.3). Note that every node n has at least the counter
candidate pointers (n,>) or (n,⊥).

Opposed to classical implementations such as the algorithm for ⊆-Minimal Sat
described in Section 2, we perform two bottom-up traversals of the TD: In the first
traversal, we compute all reduced item trees as in classical implementations, but only up
to depth 1. After this step, the back pointers are added to the reduced item tree nodes.
In the second traversal, we add counter candidates to nodes at depth 1 appropriately,
but instead of creating children that are copies of other item sets from depth 1, we store
only counter candidate pointers to already existing item sets.

Our main contribution is outlined in Algorithms 4.1, 4.2 and 4.3 (assuming semi-
normalized TDs as defined in Definition 2.2 whose leaves have empty bags): The second

70

Algorithm 4.1: The procedure computeLv2.
Input: Item tree rooted at a node r

1 foreach tuple ∈ r.extPtrs, e ∈ tuple do
2 computeLv2(e);
3 end
4 foreach c ∈ r.children do
5 if r belongs to a leaf node then
6 c.counterC← c.counterC ∪ {(c,⊥)};
7 end
8 else
9 foreach tuple ∈ c.extPtrs do

10 if r belongs to an exchange node then
11 cCs ← handleExchange(c, tuple);
12 end
13 else
14 cCs ← handleJoin(c, tuple);
15 end
16 insertCompress(c, tuple, cCs);
17 end
18 end
19 end

TD traversal is initiated by applying computeLv2 to the root of the reduced item tree at
the TD’s root. This results in all counter candidates being appended to the reduced item
trees.

To begin with, we describe the notation employed in our pseudocode. Let n be
a reduced item tree node. By n.extPtrs we denote its set of extension pointer tuples,
n.children refers to its set of children, n.backPtrs is its set of back pointers, n.items is
its set of items, and n.optItems is a set consisting of those items at n among which
minimization is performed. Finally, if n is at depth 1 of the reduced item tree, n.counterC
is a set of counter candidates of the form (c, s). At the TD’s root, these are used to
delete any node n at depth 1 of the reduced item tree that has among n.counterC a tuple
(n′,>), which witnesses that n′ represents a better solution than n.

The omitted procedure insertCompress(c, tuple, cCs) sets c.extPtrs to c.extPtrs \
{tuple}, duplicates node c resulting in c′ and adds c′ to the reduced item tree (as a sibling
of c) with c′.counterC set to cCs and c′.extPtrs set to {tuple}; moreover, c.backPtrs and
c′.backPtrs get recomputed. We will discuss the reason for this duplication below (and it
will turn out that in some cases we can avoid duplication).

71

Algorithm 4.2: The function handleExchange.
Input: Item tree node c, extension pointer tuple (e)

1 cCs ← ∅;
2 foreach (cc, strict) ∈ e.counterC do
3 foreach b ∈ cc.backPtrs do
4 if b.optItems ⊆ c.optItems then
5 s← strict ∨ (b.optItems ⊂ c.optItems);
6 cCs ← cCs ∪ {(b, s)};
7 end
8 end
9 end

10 return cCs;

∅ y
n3

x y x, yn2

∅ y yn3

x y x, yn2

4

9

2

3

16

16

16

Figure 4.5: Item tree computation for exchange node n3 of TEx .

4.2.1.1 Exchange nodes

We show how Algorithm 4.2 proceeds at exchange nodes by means of an example
illustrated in Figure 4.5, which consists of two parts: The left hand side depicts two
reduced item trees belonging to an exchange node n3 and its child n2, respectively, just
before the counter candidates at node n3 are computed. The result of this computation
is depicted on the right hand side. Straight solid lines signify parent-child relationships
in an reduced item tree; dashed arrows represent extension pointers and back pointers; a
curved solid arrow denotes that the target node represents a counter candidate to the
source node. (All such arrows depicted in our figures correspond to counter candidates
whose subset relation is proper. Note that we omitted self loops via such arrows, which
are in fact present at every node because any solution candidate is a counter candidate
to itself.) In the following, we explain the figure in detail.

Assuming that all solution candidates have already been obtained, the idea for

72

computing the counter candidates at n3 is as follows: For each solution candidate C at
n3, we look at the solution candidates at n2 reachable by extension pointers. For these
we already know the counter candidates, as we are doing a bottom-up traversal. We
iterate over all of these counter candidates and check if the current one has some back
pointer referencing a sibling of C called C ′ whose set of optimization items is a subset of
the respective item set of C. If so, we conclude that C ′ is a counter candidate to C.

To see an example for such a situation, let ni:S in the following denote the reduced
item tree node at ni whose item set is S in the left hand side of Figure 4.5. Assume
that our invocation of computeLv2 is currently in a state where the variable c in Line 4
is n3:{y} and the variable tuple in Line 9 has the value (n2:{x,y}). We moreover assume
that the tuple of variables (cc, strict) in Line 2 is set to (n2:{x},>), and the variable
b in Line 3 is n3:∅. This state of our invocation of computeLv2 is indicated in the left
part of Figure 4.5 by red arrows whose attached numbers indicate the line number of
the corresponding loop. Since n3:∅.optItems ⊂ n3:{y}.optItems, the set cCs in Line 6
grows by (n3:∅,>) in the current iteration of the loop. Similarly, the next iteration of the
loop in Line 2 causes cCs to grow by (n3:{y},>) and the current call to handleExchange
returns {(n3:∅,>), (n3:{y},>)}.

As shown on the right hand side of Figure 4.5, the subsequent call to insertCompress
splits node n3:{y} into two nodes having the same item set: One of these copies extends
n2:{y} while the other one extends n2:{x,y}. In the former case, no counter candidates
exist (as n2:{y} has none), whereas in the latter we can obtain counter candidates just as
the preceding call to handleExchange indicated. Splitting nodes like this has the reason
that the counter candidates of a solution candidate C depend on which extension pointer
of C we choose.

In some cases we can avoid this duplication – in fact, the case of n3:{y} is one of them:
The rightmost copy of n3:{y} on the right hand side of Figure 4.5 has among its counter
candidates a node with the same item set. So if that copy turns out to lead to a solution,
then that counter candidate will lead to a proper counterexample: As soon as two nodes
have the same item set, they are indistinguishable by DP algorithms.

4.2.1.2 Join nodes

At join nodes, extension pointer tuples have arity 2, so back pointers are not just inverted
extension pointers. This complicates the algorithm compared to the case of exchange
nodes. Algorithm 4.3 shows how we handle join nodes.

To explain the algorithm, we follow an example illustrated in Figure 4.6. Let ni:S in
the following denote the reduced item tree node at ni whose item set is S in the left hand
side of Figure 4.6. Assume that our invocation of computeLv2 is currently in a state as
depicted in Figure 4.6, where the variable c in Line 4 is n8:{y,c2} and the variable tuple in
Line 9 has the value (n4:{y}, n7:{y,c2}). We moreover assume that the tuple of variables
(i1, i2) in Line 5 is set to (n4:{y}, n7:{y}); note that in Figure 4.6 we have omitted the
arrow for the first component as it is one of the self-loops that we have hidden. In Line 6,
procedure occurExtPtrs(tuple, c) provides a set of nodes such that for each b in the set
we have tuple ∈ b.extPtrs and b.optItems ⊆ c.optItems. Intuitively, occurExtPtrs uses

73

Algorithm 4.3: The function handleJoin.
Input: Item tree node c, extension pointer tuple (e1, e2)

1 (cCs, e′1, e′2)← (∅, ∅, ∅);
2 foreach ei ∈ {e1, e2}, (cc, strict) ∈ ei.counterC do
3 e′i ← e′i ∪ {cc};
4 end
5 foreach (i1, i2) ∈ e′1 × e′2 do
6 foreach b ∈ occurExtPtrs((i1, i2), c) do
7 strict1 ← (i1,>) ∈ e1.counterC;
8 strict2 ← (i2,>) ∈ e2.counterC;
9 cCs ← cCs ∪ {(b, strict1 ∨ strict2)};

10 end
11 end
12 return cCs;

c2 y y, c2

n8

c2 y

n4

c2 y y, c2
n7

c2 y y, c2
n8

c2 y

n4

c2 y y, c2
n7

4

9

5

6

16

Figure 4.6: Item tree computation for join node n8 of TEx .

the backward pointers to compute all the extension pointer occurrences, i.e., nodes that
have the given 2-tuple among their extension pointer tuples. In our example, for tuple
(n4:{y}, n7:{y}), variable b is n8:{y}. Line 16 inserts the found node n8:{y} to the counter
candidates of n8:{y,c2}, as depicted on the right hand side of Figure 4.6. The computation
of the strict flag in Line 9 is not depicted; it is the disjunction of the flags from the two
counter candidates that are extended by the new counter candidate.

4.2.2 Further Optimizations

After the counter candidates at a TD node have been computed, all counter candidate
pointers at children in the TD can be discarded, which allows for all reduced item tree

74

Gringo/clasp Compute
table rows

D-FLATˆ2 Parse instance Populate table Flatten
child tables

Store
counter

candidates

Htdecomp Decompose

D-FLATˆ2 Pass 1 Done? no

yes

Visit next
node in

post-order

Visit next
node in

post-order

D-FLATˆ2 Pass 2 Done? no

yes

D-FLAT Materialize
solution

Figure 4.7: D-FLATˆ2 updated flowchart, which shows how the system and its compo-
nents work.

nodes to be deleted that are no longer referred to by an extension pointer. A further
optimization is to remove reduced item tree nodes n with (n′,>) ∈ n.counterC such that
n.items = n′.items.

As for some problems the counter candidates are not necessarily solution candidates,
we propose to mark them with a special flag as “pseudo solution candidates” that only
serve to be referenced as counter candidates. To avoid unnecessary memory consumption,
such candidates can be deleted as soon as the parent node in the TD has been fully
processed.

4.2.3 System Overview

We have implemented our approach (as described in the previous section) in a system
called D-FLATˆ2 by extending the publicly available D-FLAT system [ABC+14b]. The
updated flowchart compared to D-FLAT (see Figure 4.1 of Chapter 4.1) can be seen in
Figure 4.7.

75

Both systems allow the problem-specific steps of a DP algorithm working on a TD to
be specified in ASP; i.e., similar to the traditional D-FLAT methodology, the only thing
required from the user of D-FLATˆ2 is an ASP encoding where each model corresponds
to a single solution or counter candidate. In D-FLATˆ2, the user can specify the
computation of solution candidates and the system takes care of the second TD traversal
that computes counter candidate pointers and performs subset minimization. For the
introductory example ⊆-Minimal Sat, it suffices to provide an algorithm encoding
that computes models like for Sat and to specify that items corresponding to atoms
are optimization items. Similarly, for preferred sets in Abstract Argumentation, we can
start with an encoding for admissible sets and state that all arguments that are in an
extension also are optimization items, as we will see later on in Section 4.2.4.

As already mentioned, besides extension pointer tuples, every node n has an opti-
mization item set, which contains the items on which subset optimization is performed.
D-FLATˆ2 thus defines the new output predicate optItem/1, where optItem(S) means
that item S is subject to optimization. Instead of using item trees whose nodes at depth 2
represent counter candidates, n contains a set of counter candidate pointers, which are
hidden from the user.

optItem(X) ← item(X).

Listing 4.12: ΠoptAllItems: used for solving conceptually simple problems (e.g., ⊆-Minimal
Sat).

Program ΠoptAllItems (Listing 4.12) illustrates a trivial usage of the optItem/1 predicate.
With this, we can obtain the D-FLATˆ2 encoding Π2

⊆-Minimal Sat = ΠoptAllItems ∪ΠSat,
which allows us to solve⊆-Minimal Sat by simply using the existing encoding for Sat and
adding information on what to optimize. In this case, the basic specification ΠoptAllItems
suffices, as in ⊆-Minimal Sat we consider all items for minimization. D-FLATˆ2
encoding Π2

⊆-Minimal Sat gives several advantages over the traditional D-FLAT encoding
(see Listing 4.3): It allows us to again use the simplified table-based interface and the
overall length of the encoding is greatly reduced.

Remember the encoding Πprim
Sat (see Listing 4.2) for solving Sat using primal graphs

instead of incidence graphs. Recall that the primal graph of a given formula consists
of all the atoms of the formula and every atom of some clause c is connected to every
other one of c. Adding now ΠoptAllItems, it is possible to obtain Π2 prim

⊆-Minimal Sat for solving
⊆-Minimal Sat using primal graphs, i.e. Π2 prim

⊆-Minimal Sat = ΠoptAllItems ∪Πprim
Sat .

For some problems, we require counter candidates that are not solution candidates at
the same time. An example will be given in Section 4.2.4, where we consider disjunctive
ASP. There, counter candidates are models of a program reduct and not the program
itself. In such cases, the item tree nodes representing such counter candidates can
be marked with a special flag as “pseudo solution candidates” by means of the atom
auxItem(pseudo), which is taken into account by D-FLATˆ2.

76

4.2.3.1 Command-line Interface

In the following, we shortly describe the command-line interface for D-FLATˆ2 in
addition to its ASP interface as seen in the previous chapter (Section 4.1). More detailed
descriptions can be found in [ABC+14a] and [ABC+14b]. The examples (as for instance
the previous section) only work for semi-normalized Tree Decomposition. Thus, one
needs to start D-FLATˆ2 with -n semi. Minimization resp. maximization (i.e. enabling
the recognition of the optItem predicate) can be switched on by adding --tables-min

resp. --tables-max.
The rest of the options required for D-FLATˆ2 are the same as for D-FLAT. An

edge type is specified with -e and the program filename with -p (containing the ASP
program and occurrences of the optItem predicate).

4.2.4 Application to Common AI Problems

4.2.4.1 Abstract Argumentation

Problems from Abstract Argumentation [Dun95] are further examples where our approach
is reasonable. Recall from Chapter 2, that, given an object F = (A,R), where A is a set
of arguments and R ⊆ A×A, we call a set S ⊆ A admissible in F if (1) (a, b) /∈ R for all
a, b ∈ S and (2) for each s ∈ S and r ∈ A, (r, s) ∈ R implies that there is some q ∈ S
with (q, r) ∈ R. S is preferred in F if it is a subset-maximal admissible set in F . For any
C ⊆ A, we call C+

R = C ∪ {a | ∃b ∈ C s.t. (b, a) ∈ R} the range of C in F . A set S is
semi-stable in F if it is admissible in F and for every admissible set S′ in F , S+

R 6⊂ S
′+
R

holds.
Recall Listing 4.6, which shows an encoding Πadmissible for computing admissible sets.

Πadmissible complies with the algorithm for admissible extensions specified in Chapter 3
and is also used in Chapter 3 to form an algorithm for computing semi-stable semantics.
At first glance, it seems to be overcomplicated compared to the algorithm in [DPW12]
(compare with Π′admissible of Listing 4.7): For computing admissible sets it actually
suffices to guess which introduced arguments are in S, whereas we guess in Πadmissible
which arguments are in the set, attackers or neither. In order for a guessed set to be a
solution, every attacker has to be defeated by the time it is removed from the bag. Once
it can be determined that an attacker is defeated, its status changes from “attc” to
“def”. This additional complexity allows us to reuse Πadmissible for computing semi-stable
sets later on.

Given Πadmissible, we can compute preferred sets by simple subset maximization via
Π2

preferred = ΠoptAllItems ∪ Πadmissible. Moreover, for computing preferred extension, we
can even use Π′admissible (see Listing 4.7), i.e. we have that Π2′

preferred = ΠoptAllItems ∪
Π′admissible with Π2′

preferred ≡ Π2
preferred. Furthermore, it is now also easy to compute

semi-stable sets by means of ΠoptForSemiStable (Listing 4.13), which gives us Π2
semiStable =

ΠoptForSemiStable ∪ Πadmissible. Although the guess from Πadmissible could have been
simplified for the previous examples, here it is indeed required because we need to find
those admissible sets that have maximal range.

77

1 optItem(A) ← item(in(A)).
2 optItem(A) ← auxItem(attc(A)).
3 optItem(A) ← auxItem(def(A)).

Listing 4.13: ΠoptForSemiStable: used for computing semi-stable sets via Π2
semiStable =

ΠoptForSemiStable ∪Πadmissible.

Note that with D-FLATˆ2 it is even possible to take complete semantics (see Chap-
ter 4.1.3) and compute some modification of preferred semantics, where complete seman-
tics serves as basis (see Definition 2.17), i.e. Π2

preferredcomplete
= ΠoptAllItems ∪ Πcomplete.

Similarly, one can solve semi-stable semantics with complete as basis semantics (see
Definition 2.17), in signs Π2

semiStablecomplete = ΠoptForSemiStable ∪Πcomplete.

4.2.4.2 Circumscription

In the propositional case of Circumscription [McC80], we are given a theory T and sets
of atoms P and Z, and we are interested in models M of T such that there is no model
M ′ with M ′ ∩ P ⊂M ∩ P and M ∩ Z = M ′ ∩ Z (see Definition 4.1).

Definition 4.1. The problem Circ [McC80] is defined as follows: Given a theory T
and sets of atoms P and Z. The goal is the set of models defined as CircMod(T ;P ;Z) :=
{M |M |= T, @M∗ : (M∗ |= T,M∗∩P ⊂M ∩P,M ∩Z = M∗∩Z)}. The formula whose
classical models correspond to exactly those solutions is denoted by Circ(T ;P ;Z).

We can model Circumscription in our approach by a slight modification of our ⊆-Minimal
Sat algorithm: We only put an atom x in an optimization item set if x ∈ P ; and for any
x ∈ Z we add optimization items t(x) or f(x) if the item set contains x or not, respectively
(thus making solution candidates with different interpretations of Z incomparable). By
applying this technique we have that for any sibling nodes n and n′ in an item tree,
the optimization item set of n is a subset of the one of n′ iff Mn ∩ P ⊆ Mn′ ∩ P and
Mn ∩Z = Mn′ ∩Z, where Mn is the partial interpretation for node n following extension
pointers. The program ΠoptForCirc (Listing 4.14) takes these considerations into account;
moreover, Π2

Circ = ΠoptForCirc∪ΠSat is a D-FLATˆ2 implementation of the DP algorithm
for Circumscription. As input it expects the theory T to be given as a CNF formula
like for ΠSat and the sets P and Z to be given using the unary predicates p and z,
respectively.

1 optItem(X) ← item(X), p(X).
2 optItem(t(X)) ← item(X), z(X).
3 optItem(f(X)) ← not item(X), z(X), current(X).

Listing 4.14: ΠoptForCirc: used for solving Circumscription via Π2
Circ = ΠoptForCirc∪ΠSat.

Similar to Πprim
Sat (see Listing 4.2) one can also solve Circumscription using primal

graphs. With D-FLATˆ2, we can reuse ΠoptForCirc to obtain the encoding Π2 prim
Circ =

ΠoptForCirc ∪Πprim
Sat .

78

4.2.4.3 Disjunctive ASP

While a traditional TD-based DP algorithm for solving disjunctive ASP can be found
in [JPW09], here we solve the problem with D-FLATˆ2. We first do so via reduction
to Circumscription. In the following, for any interpretation, rule or set of atoms X, we
write X ′ to denote the result of replacing each atom a in X with a new atom a′ (see
Proposition 4.1). Given a disjunctive logic program Π consisting of rules, we use the
notations H(r), B+(r) and B−(r) (cf. Definition 4.2).
Definition 4.1 can now be used to define a reduction from disjunctive ASP to Circum-
scription. For this, we need to add a new definition concerning ASP.

Definition 4.2. Given a disjunctive logic program Π consisting of rules of the form
a1 ∨ a2 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn, we denote H(r) :=

∨
1≤i≤k ai,

B+(r) :=
∧

1≤i≤m bi and B−(r) :=
∧
m+1≤i≤n ¬bi. HB(Π) denotes the Herbrand base of

Π, that is, it contains all the (ground) atoms that can possibly occur within Π.

Proposition 4.1. For any interpretation, rule or set of atoms X, we write X ′ to denote
the result of replacing each atom a in X with a new atom a′. As shown in [PTW09],
I ∈ Answers(Π) iff I ∪ I ′ |= ψ with

ψ :=
∧

p∈HB(Π)
(p ≡ p′) ∧Circ(

⋃
r∈Π
{(B+(r) ∧B−(r′))→ H(r)}; HB(Π); HB(Π)′).

As shown in [PTW09], an interpretation I is an Answer-Set of Π iff I ∪ I ′ is a model of
ψ, assuming HB(Π) denotes the Herbrand base of Π (see Proposition 4.1). In order to
compute models of this formula, we can first calculate models of the Circumscription part
and then remove those models (using the “pseudo” item for marking pseudo solution
candidates), where the truth value of some atom a is different from the one of a′. This
amounts to ΠpseudoForASP (Listing 4.15), which can be used for solving disjunctive ASP
by means of the combined program Π2

ASP = ΠpseudoForASP ∪Π2
Circ. The predicate cor/2

in this encoding is assumed to be symmetric and occurring in input facts in order to
associate each atom a with its corresponding primed variant a′. (We require that a and
a′ always occur together in some bag, which can be achieved by adding an edge (a, a′) to
the input graph.)

1 auxItem(pseudo) ← cor(A,B), current(A;B), item(A), not item(B).
2 auxItem(pseudo) ← extend(R), childAuxItem(R,pseudo).

Listing 4.15: ΠpseudoForASP: used for solving disjunctive ASP via Π2
ASP = ΠpseudoForASP ∪

Π2
Circ.

Once more, this trick also works for primal graphs; since ASP is solved here via reduction
to Circumscription, one can also state an encoding for D-FLATˆ2 using primal graphs:
Π2 prim

ASP = ΠpseudoForASP ∪Π2 prim
Circ .

Example 4.3. Assume the following simple QBF (see Section 2.4) ϕ := ∃a∃c∀b((¬a ∧
c) ∨ (a ∧ c) ∨ b). In order to solve this problem, we can use the propositional disjunctive

79

grounded program Π′ex given in Listing 4.16. It uses the saturation technique and atoms
tV resp. fV to model that variable V of ϕ (V ∈ {a, b, c}) is set to true resp. false. Now
we can transform this problem into Circ as seen in the formula ϕCirc := (sat ≡ sat′)∧
Circ(ϕrules; {sat, ta, fa, tb, fb, tc, fc}; {sat′}) where ϕrules = {fa ∧ tc→ sat, ta ∧ tc→
sat, tb→ sat, sat→ tb, sat→ fb,¬sat′ → ⊥,> → ta ∨ fa,> → tb ∨ fb,> → tc ∨ fc}.

Listing 4.17 shows a given valid input instance for D-FLATˆ2 using program Π2
ASP

(and the option to perform minimization).

1% Model t he ca s e s where the matr ix o f ϕ e v a l u a t e s to t ru e
2 sat ← fa, tc.
3 sat ← ta, tc.
4 sat ← tb.

6% Sa t u r i z e over the ∀−q u a n t i f i e d v a r i a b l e s , i f ϕ e v a l u a t e s to t ru e
7 tb ← sat.
8 fb ← sat.

10% Ensure s a t i s f i a b i l i t y
11 ← not sat.

13% Guess t r u t h v a l u e s o f v a r i a b l e s a , b and c
14 ta v fa.
15 tb v fb.
16 tc v fc.

Listing 4.16: Π′ex: ASP program for solving QBF ϕ.

1% Def ine used c l a u s e s
2 clause(c1). clause(c2). clause (c3). clause(c4). clause(c5).
3 clause(c6). clause(c7). clause (c8). clause(c9).

5% Def ine used atoms
6 atom(sat). atom(sat’). cor(sat, sat’).
7 atom(ta). atom(fa).
8 atom(tb). atom(fb).
9 atom(tc). atom(fc).

11% Def ine vary ing atoms
12 p(sat).
13 p(ta). p(fa).
14 p(tb). p(fb).
15 p(tc). p(fc).

17% Def ine f i x e d atoms
18 z(sat’).

20% Model t he ca s e s where ϕ e v a l u a t e s to t ru e

80

21% sa t ← t b .
22 pos(c1, sat). neg(c1, tb).
23% sa t ← fa , t c .
24 pos(c2, sat). neg(c2, fa). neg(c2, tc).
25% sa t ← ta , t c .
26 pos(c3, sat). neg(c2, ta). neg(c2, tc).

28% Sa t u r i z e over the ∀−q u a n t i f i e d v a r i a b l e s , i f ϕ e v a l u a t e s to t ru e
29% tb ← s a t .
30 pos(c4, tb). neg(c4, sat).
31% f b ← s a t .
32 pos(c5, fb). neg(c5, sat).

34% Ensure s a t i s f i a b i l i t y
35% ← not s a t .
36 pos(c6, sat’).

38% Guess t r u t h v a l u e s o f v a r i a b l e s a , b and c
39% ta v fa .
40 pos(c7, ta). pos(c7, fa).
41% tb v f b .
42 pos(c8, tb). pos(c8, fb).
43% tc v f c .
44 pos(c9, tc). pos(c9, fc).

Listing 4.17: Input instance Πinputex for solving QBF ϕ using Π2
ASP.

We are now going to present a direct encoding for disjunctive ASP for D-FLATˆ2 without
reducing to Circumscription. Before that, Listing 4.18 contains the implementation of a
direct encoding of disjunctive ASP for D-FLAT. This encoding stores both satisfied rules
and atoms in the item set (and does not use the default join implementation provided by
D-FLAT). Parts at the beginning of it are relatively similar to Listing 4.3 and explained
by comments, parts starting from Line 36 cover the optimization part and also occurs
similarly to Listing 4.3. The different parts that require explanation are Line 30 and the
block starting from Line 23. The lines of the block beginning in Line 23 cover satisfied
rules among the two levels. In this sense, a rule is satisfied whenever any atom of its
head is true w.r.t. the current item set, or the body of it is not. However, the second
level is minorly different (see Line 30). This is due to the semantics of disjunctive ASP.
Whenever we have that at the first level, some atom A is guessed to true (i.e. in the item
set) and it appears in the negative part of the body of a rule, the rule is automatically
satisfied (by the definition of the reduct). This exactly allows more potentially smaller
models (minimal-model semantics) at the second level since in this case it is not required
for A to be in the item set at the second level.

1 length(2). or(0). and(1).

3% Make e x p l i c i t when an atom i s f a l s e or a r u l e i s u n s a t i s f i e d

81

4 false(S,X) ← sub(_,S), atNode(S,N), bag(N,X), not childItem(S,X).

6% Guess a branch in the i tem t r e e f o r every c h i l d node
7 extend(0,R) ← root(R).
8 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L < 2.

10% Only j o i n c h i l d i tem s e t s t h a t c o i n c i d e on common atoms
11 ← extend(L,X), extend(L,Y), atom(A), childItem(X,A), false(Y,A).

13% A c h i l d i tem s e t cannot be ex tended i f a removed r u l e i s
u n s a t i s f i e d by i t

14 ← extend(_,S), rule(X), removed(X), false(S,X).

16% True atoms and s a t i s f i e d r u l e s remain so un l e s s removed
17 item(L,X) ← extend(L,S), childItem(S,X), current(X).

19% Guess t r u t h va l u e o f i n t r oduced atoms
20 { item(1,A;2,A) : atom(A), introduced(A) }.

22% Through the guess , r u l e s may become s a t i s f i e d
23 item(1,R) ← current(R), current(A), head(R,A), item(1,A).
24 item(1,R) ← current(R), current(A), pos(R,A), not item(1,A).
25 item(1,R) ← current(R), current(A), neg(R,A), item(1,A).
26 item(2,R) ← current(R), current(A), head(R,A), item(2,A).
27 item(2,R) ← current(R), current(A), pos(R,A), not item(2,A).

29% I f a n e g a t i v e body atom i s t ru e on the top l e v e l , t h e r u l e
d i s appea r s from reduc t (w . r . t . t h e top l e v e l)

30 item(2,R) ← current(R), current(A), neg(R,A), item(1,A).

32% Leve l 2 i n t e r p r e t a t i o n must not be b i g g e r than l e v e l 1
33 ← atom(A), item(2,A), not item(1,A).

35% In h e r i t (or ex tend) markers i n d i c a t i n g t h a t t he l e v e l 2
i n t e r p r e t a t i o n i s sma l l e r

36 item(2,smaller) ← extend(2,S), childItem(S,smaller).
37 item(2,smaller) ← atom(A), item(1,A), not item(2,A).

39% Make sure t h a t e v e n t u a l l y on ly minimal models o f t he r educ t
s u r v i v e

40 reject ← final, item(2,smaller).
41 accept ← final, not reject.

Listing 4.18: ΠASP : D-FLAT encoding for solving disjunctive ASP.

In Listing 4.19, we present an alternative approach to solving disjunctive ASP via
D-FLATˆ2 (compare to Listing 4.18), which does not resort to Circumscription. In
this encoding, Π2′

ASP, we generate solution candidates for all interpretations that are
candidates for being a classical model of the input program, which is specified by means

82

of the predicates head, pos and neg. A classical model M of a program P might be
no Answer-Set because some M ′ ⊂M is a model of the reduct PM . To check this, we
generate additional item tree nodes that only serve as counter candidates (like M ′) to
the nodes representing classical model candidates (like M). For any atom a from the
current bag, if an item set contains a, then the corresponding interpretation sets a to true
(otherwise to false). The item tree nodes representing counter candidates can additionally
contain items of the form r(a). This signifies that the atom a is false in the respective
counter candidate but true in the classical model candidates that reference this counter
candidate (by means of their counter candidate pointers). In Lines 28 and 31, we make
sure that any item tree node containing an item r(a) is marked with the “pseudo” item
and will therefore not be considered as a solution but rather serves as a counter candidate
only. Lines 36 and 37 are required to ensure that any counter candidate C of any solution
candidate M only contains r(a) for atoms a that are also contained in M .

1 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
2% Guess t r u t h va l u e / r u l e f l a g o f i n t r oduced atoms
3 0 { item(A;r(A)) : atom(A), introduced(A) } 1.

5% Make e x p l i c i t when an atom i s f a l s e or a r u l e i s unsat
6 false(R,X) ← childRow(R,N), bag(N,X), not childItem(R,X).
7 falser(R,X) ← childRow(R,N), bag(N,X), not childItem(R,r(X)).
8 unsat(R,X) ← childRow(R,N), bag(N,X), not childAuxItem(R,X).

10% Only j o i n c h i l d i tem s e t s t h a t c o i n c i d e on common atoms
11 ← extend(X;Y), atom(A), childItem(X,A), false(Y,A).
12 ← extend(X;Y), atom(A), childItem(X,r(A)), falser(Y,A).

14% Only ex tend c h i l d i tem s e t s s a t i s f y i n g a l l removed r u l e s
15 ← extend(S), rule(X), removed(X), unsat(S,X).

17% True atoms and s a t i s f i e d r u l e s remain so un l e s s removed
18 item(X) ← extend(S), childItem(S,X), current(X).
19 item(r(X)) ← extend(S), childItem(S,r(X)), current(X).

21% Through the guess , r u l e s may become s a t i s f i e d
22 auxItem(R) ← current(R;A), head(R,A), item(A).
23 auxItem(R) ← current(R;A), pos(R,A), not item(A).
24 auxItem(R) ← current(R;A), neg(R,A), item(A).

26% Rule i s not in r educ t i f a n e g a t i v e body atom i s s e t to t ru e
27 auxItem(R) ← current(R;A), neg(R,A), item(r(A)).
28 auxItem(pseudo) ← item(r(X)), current(X).

30% In h e r i t pseudo f l a g from c h i l d nodes
31 auxItem(pseudo) ← extend(R), childAuxItem(R,pseudo).

33 optItem(S) ← atom(S), item(S).

83

35% Prevents r (S) a t l e v e l 2 (r educ t) i f S i s not t ru e a t l e v e l 1
36 optItem(r(S)) ← atom(S), item(S), not auxItem(pseudo).
37 optItem(r(S)) ← atom(S), item(r(S)).

Listing 4.19: Π2′
ASP: D-FLATˆ2 encoding for solving disjunctive ASP directly.

84

CHAPTER 5
Benchmarks

5.1 Test Environment

In this chapter we focus on experiments for problems from the area of Abstract Argu-
mentation.

5.1.1 Compared Tools

The benchmark results were gathered using D-FLAT, D-FLATˆ2, ASPARTIX [EGW10]
(for solving argumentation-related problems directly via ASP) and the popular Answer-Set
Programming toolchain Potassco [GKK+11], in particular Gringo 4.4.0 and Clasp 3.1.1.
D-FLAT and D-FLATˆ2 internally also use ASP grounder Gringo 4.4.0 and solver
Clasp 3.1.1. The results for ASPARTIX were produced with Gringo 3.0.5, as it is not
fully compatible with newer versions of Gringo.

In order to assure a fair and comparable benchmark process, each tool only used
one single core of the underlying CPU. D-FLATˆ2 was used for benchmarks that use
semi-normalized Tree Decompositions (using encodings of Section 4.2.4). D-FLAT also
served for semi-normalized TDs (using encodings of Section 4.1.3) and the Potassco suite
was chosen for benchmarks using the monolithic encodings of Section 5.2.

Since we actually discussed different D-FLAT and D-FLATˆ2 encodings for both
admissible and preferred semantics, we note here that this section contains results
using the simplified Π′admissible and therefore Π2′

preferred = ΠoptAllItems ∪Π′admissible with
Π2′

preferred ≡ Πpreferred (see Section 4.2.4). Moreover, we employ Π′preferred instead of
Πpreferred for our benchmarks. Of course for the more elaborate semi-stable semantics,
we still use Π2

semiStable = ΠoptForSemiStable ∪Πadmissible here.
The implemented and presented encodings were tested in practice with many different

seeds (and therefore different generated Tree Decompositions) and a huge number of
nodes.

85

5.1.2 Test Framework

An important consideration for the design of the test framework was that it should be
capable of running several benchmarks both concurrently and independently. This is due
to the fact that D-FLAT uses Htdecomp, which is based on randomized heuristics and
therefore produces different results depending on the given random seed. In order to
generate reproducible results, the developed test framework uses different seeds for each
of the ten runs. To be more concrete, if run number, instance size and semantics are the
same, the tested toolkits will share the same generated seed. That means, for example,
that every ith run (i ≤ 5) of the three compared tools of the problem type counting and
the semi-stable semantics with an instance size of 55 shares the same seed.

The test framework was mainly designed for running different processes in parallel
depending on the current requirements and capabilities of the CPU. This is achieved by
monitoring whether an already started task has stopped working due to various reasons,
so whenever any task terminates, the framework spawns new tasks until the maximum
number of active tasks is reached, which can be dynamically changed.

5.1.3 Test Conditions

Every test was repeated five times and restricted to the conditions shown in Table 5.1.
The plots in this chapter show the instance size in relation to either the time usage or
the resident memory set. If time and memory resource usages did not differ significantly
within the five runs of a given problem instance, this result is emphasized by showing
the corresponding maximum usage, whereas for bigger deviations, i.e. instances with
increasing tree-width, the arithmetical mean is plotted.

Restriction Violation Consequences

A maximum of 3GB of virtual main memory
was allowed.

Memory Error, Termination

A maximum of 3600 seconds of CPU time were
permitted.

Timeout, Termination

Enumeration only: The main parts of the output
(the particular extensions) were discarded.

Table 5.1: Restrictions for the benchmarks.

Test Devices One x64-based PC was used to perform the benchmarks; it consisted
of 16GB 1600Mhz, CL8 main memory and was powered by an Intel i5-3470 CPU and a
Gigabyte GA-Z77-DS3H motherboard. For collecting data, a 64GB Samsung SSD 830

86

Series served as main disk. The underlying software was Xubuntu-14.041 with disabled
swap to ensure that every process gets enough physical main memory and would not be
slowed down due to swapping.

5.1.4 Problem Instances

The figures of this subsection are taken from [Cha12]. In order to make use of the gained
Fixed-Parameter Tractability and to therefore show the advantages and disadvantages
of D-FLAT, specific test cases were used. Although during the benchmarking process
random instances also were used, it became apparent that it was not advisable to choose
them, because of the fact that the performance of D-FLAT and D-FLATˆ2 highly depends
on the produced Tree Decomposition. Therefore in order to gain expressive results, the
benchmarks concentrated primarily on the 8-Grid [Cha12] instances with different tree-
widths. These “grid-based” instances, where vertices are arranged on an n×m matrix
and edges connect horizontally, vertically and diagonally neighbouring vertices. Figure 5.1
contains an example of this instance type. The encircled part shows which nodes of
the graph have to occur together in one node inside any Tree Decomposition. With
these instances memory and time requirements are more stable when using D-FLAT
resp. D-FLATˆ2 since the design of them allows to set an upper-bound for the width
of any potential Tree Decomposition. Clique instances of [Cha12] were also tried. An
example of such an instance is seen in Figure 5.2. However, these instances only worked
for semi-normalized decompositions; non-normalized ones caused timeouts even with
small numbers of nodes in cliques and even smaller numbers of cliques.

5.2 Monolithic Encodings

The following encodings are taken from the ASPARTIX2 project and are only included for
completeness since they are used for result comparison purposes; these may be used for
comparison with the corresponding D-FLAT resp. D-FLATˆ2 encodings of Section 4.1.3
resp. Section 4.2. Descriptions are given as comments to the listings, some encodings
require metasp (see Section 2.6).

1%% an argument x d e f e a t s an argument y i f x a t t a c k s y
2 defeat(X,Y) ← att(X,Y).

4%% Guess a s e t S \ s u b s e t e q A
5 in(X) ← not out(X), arg(X).
6 out(X) ← not in(X), arg(X).

1To be more specific, the version available at http://cdimage.ubuntu.com/xubuntu/
releases/trusty/release/xubuntu-14.04-desktop-amd64.iso.torrent was used.

2More information about ASPARTIX can be found at http://www.dbai.tuwien.ac.at/proj/
argumentation/systempage/.

87

http://cdimage.ubuntu.com/xubuntu/releases/trusty/release/xubuntu-14.04-desktop-amd64.iso.torrent
http://cdimage.ubuntu.com/xubuntu/releases/trusty/release/xubuntu-14.04-desktop-amd64.iso.torrent
http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/

1

2

3

4

...

1 2 3 4 5 6

x

Figure 5.1: 8-Grid instance, (n = 6×m), tree-width = 7 for every m ≥ n [Cha12].

8%% S has to be c o n f l i c t −f r e e
9 ← in(X), in(Y), defeat(X,Y).

11%% The argument x i s d e f e a t e d by the s e t S
12 defeated(X) ← in(Y), defeat(Y,X).

14%% S d e f e a t s a l l arguments which do not b e l ong to S
15 ← out(X), not defeated(X).

Listing 5.1: Monolithic encoding for stable semantics.

1%% an argument x d e f e a t s an argument y i f x a t t a c k s y
2 defeat(X,Y) ← att(X,Y).

4%% Guess a s e t S \ s u b s e t e q A
5 in(X) ← not out(X), arg(X).
6 out(X) ← not in(X), arg(X).

8%% S has to be c o n f l i c t −f r e e

88

1 2 . . .

. . .

Figure 5.2: Clique instance, tree-width = 5 [Cha12].

9 ← in(X), in(Y), defeat(X,Y).

11%% The argument x i s d e f e a t e d by the s e t S
12 defeated(X) ← in(Y), defeat(Y,X).

14%% The argument x i s not de fended by S
15 not_defended(X) ← defeat(Y,X), not defeated(Y).

17%% Al l arguments x \ in S need to be de fended by S
18 ← in(X), not_defended(X).

Listing 5.2: Monolithic encoding for admissible semantics.

1%% an argument x d e f e a t s an argument y i f x a t t a c k s y
2 defeat(X,Y) ← att(X,Y).

4%% Guess a s e t S \ s u b s e t e q A
5 in(X) ← not out(X), arg(X).
6 out(X) ← not in(X), arg(X).

8%% S has to be c o n f l i c t −f r e e
9 ← in(X), in(Y), defeat(X,Y).

11%% The argument x i s d e f e a t e d by the s e t S
12 defeated(X) ← in(Y), defeat(Y,X).

14%% The argument x i s not de fended by S

89

15 not_defended(X) ← defeat(Y,X), not defeated(Y).

17%% adm i s s i b l e
18 ← in(X), not_defended(X).

20%% Every argument which i s de fended by S b e l on g s to S
21 ← out(X), not not_defended(X).

Listing 5.3: Monolithic encoding for complete semantics.

1%% an argument x d e f e a t s an argument y i f x a t t a c k s y
2 defeat(X,Y) ← att(X,Y).

4%% Guess a s e t S \ s u b s e t e q A
5 in(X) ← not out(X), arg(X).
6 out(X) ← not in(X), arg(X).

8%% S has to be c o n f l i c t −f r e e
9 ← in(X), in(Y), defeat(X,Y).

11%% Al l arguments x \ in S need to be de fended by S (a dm i s s i b i l i t y)
12 defeated(X) ← in(Y), defeat(Y,X).
13 ← in(X), defeat(Y,X), not defeated(Y).

15%% Minimize out to g e t t h e sub se t−maximal a dm i s s i b l e s e t s (needs
metasp)

16 #minimize [out(X)].

Listing 5.4: Monolithic encoding for preferred semantics.

1%% an argument x d e f e a t s an argument y i f x a t t a c k s y
2 defeat(X,Y) ← att(X,Y).

4%% Guess a s e t S \ s u b s e t e q A
5 in(X) ← not out(X), arg(X).
6 out(X) ← not in(X), arg(X).

8%% S has to be c o n f l i c t −f r e e
9 ← in(X), in(Y), defeat(X,Y).

11%% Al l arguments x \ in S need to be de fended by S (a dm i s s i b i l i t y)
12 defeated(X) ← in(Y), defeat(Y,X).

90

13 ← in(X), defeat(Y,X), not defeated(Y).

15%% Compute range o f S
16 in_range(X) ← in(X).
17 in_range(X) ← in(Y), defeat(Y,X).
18 not_in_range(X) ← arg(X), not in_range(X).

20%% Minimize not_in_range to g e t t he sub se t−maximal s e t s wrt range
(needs metasp)

21 #minimize [not_in_range(X)].

Listing 5.5: Monolithic encoding for semi-stable semantics.

5.3 Results

This section shortly presents and discusses the results of our selected benchmarks. First
of all, D-FLATˆ2 is compared with the Potassco toolkit, then information concerning
performance differences between D-FLAT and D-FLATˆ2 is gathered. Finally, we give
an outlook concerning different basis semantics (admissible vs. complete semantics).

5.3.1 System Comparison

We considered the problem of enumerating all preferred extensions and compared the
systems on grid-based instances with 40 to 65 nodes and tree-width 4. Figure 5.3
illustrates average runtimes and allocated memory together with the 95 % confidence
interval. D-FLATˆ2 showed the best performance, while D-FLAT is slightly slower and
requires more memory. For ASPARTIX we observed timeouts for instances having more
than 55 nodes.

5.3.2 Problem Comparison

As D-FLATˆ2 is based on D-FLAT, we compared these systems on several problems.
Moreover, we analyzed the cost of computing preferred and semi-stable sets compared to
only obtaining admissible sets. As instances have much more admissible sets than preferred
sets, which would bias a performance comparison when doing explicit enumeration, we
considered the counting variants of these problems. Results are summarized in Figure 5.4,
where again grid-based instances with tree-width 4 were tested.

When counting admissible sets, D-FLATˆ2 requires slightly more time and memory
than D-FLAT due to the overhead imposed by using reduced item trees instead of item
trees. For preferred sets, the inefficiency of computing redundant counter candidates in
D-FLAT becomes evident. On the contrary, in D-FLATˆ2 the difference in runtime for

91

2-8

2-6

2-4

2-2

20

22

24

40 45 50 55 65
number of nodesC

P
U

 ti
m

e
[m

in
]

0.00

0.05

0.10

0.15

40 45 50 55 65
number of nodes

m
em

or
y

[G
B

]

mode
ASPARTIX preferred
D-FLAT preferred
D-FLAT^2 preferred

Figure 5.3: System comparison: Average CPU time (left) and maximum resident set
(right).

0

5

10

15

20

3000 4000 5000
number of nodes

C
P

U
 ti

m
e

[m
in

]

0.0

0.5

1.0

1.5

3000 4000 5000
number of nodes

m
em

or
y

[G
B

]
mode

D-FLAT admissible
D-FLAT preferred
D-FLAT^2 admissible
D-FLAT^2 preferred
D-FLAT^2 semi-stable

Figure 5.4: Problem comparison: Average CPU time (left) and maximum resident set
(right).

counting preferred instead of admissible sets is barely measurable (i.e., within the 95%
confidence interval). Here, we observed that subset maximization comes practically for
free for instances of small tree-width. (We also observed this effect in a comparison of
Sat with ⊆-Minimal Sat, where the overhead of D-FLAT was even larger.) Finally, for
semi-stable sets, D-FLAT was not able solve instances with 500 vertices within the given
memory limits. One reason is that for this problem many potential counter candidates
have to be computed that turn out to be not even admissible. Thus, our two-phased
approach of first computing (not necessarily maximal) solutions and then performing
maximization obviously pays off in this case.

92

0

5

10

15

3000 4000 5000
number of nodes

C
P

U
 ti

m
e

[m
in

]

0.0

0.5

1.0

3000 4000 5000
number of nodes

m
em

or
y

[G
B

]

mode
D-FLAT^2 admissible
D-FLAT^2 complete
D-FLAT^2 preferred
D-FLAT^2 preferred_complete
D-FLAT^2 semi-stable
D-FLAT^2 semi-stable_complete

Figure 5.5: Basis semantics comparison: Average CPU time (left) and maximum resident
set (right).

5.3.3 Basis Semantics Comparison

In the following, counting results of 8-Grid using D-FLATˆ2 are discussed. As seen
in Figure 5.5, there are only some statistically significant (non-overlapping confidence
interval ranges) differences concerning runtime between the two basis semantics admissible,
complete and the two more complex ones semi-stable and preferred w.r.t. the two basis
semantics. However, complete semantics seem to be the most expensive one, that is, as
in the previous section, we observe the more elaborate semantics cost only about the
runtime its basis costs. Concerning memory usage, we obtain a different image (similar
to before). Since there is a more involved guess in the encodings for complete-based
semantics (and actually semi-stable since Π2

semiStable uses the more complex Πadmissible),
we also observe the increasing memory requirements (compared to admissible-based
ones).

However, it seems strange that with complete basis semantics Π2
preferredcomplete

needs
more memory than Π2

semStablecomplete . An explanation might be that Π2
semiStablecomplete

sooner invalidates potential solution candidates during bottom-up traversal due to strict
counter candidates involving nodes with the same item set (see Section 4.2.2).

To sum up, our general observation that the more involved encodings practically
require resources of its basis semantics in case of small tree-width, can also be observed
here.

93

CHAPTER 6
Conclusion

6.1 Summary

In this work we presented a method for solving problems involving subset minimization
by means of DP on TDs. Given an algorithm for a version of the problem without
minimization, our method allows us to perform the minimization tasks in an automatic
and uniform way, thus making the development of such algorithms significantly easier.
This thesis also presented an implementation called D-FLATˆ2 allowing for subset-
minimization resp. maximization w.r.t. a user-specified optimization set in a simple
way.

Users of D-FLATˆ2 are only required to provide an ASP program that specifies an
algorithm for a version of the problem without optimization. Our method then models the
optimization tasks in the DP algorithm in an automatic and uniform way, thus making
the development of such algorithms significantly easier. We have outlined the details of
this minimization procedure and shown its effectiveness and efficiency by experimenting
with a prototype implementation.

Moreover, we applied D-FLATˆ2 to several problems by giving appropriate ASP
encodings. Following our case study concerning Abstract Argumentation, this thesis even
provides a new DP algorithm on TDs for semi-stable semantics along with a correctness
proof.

Preliminary experiments indicate that the new approach brings significant advantages
in terms of time and memory compared to previous solutions. This makes the method
relevant especially for AI problems, as these often require some sort of subset optimization.

6.2 Further Work

There are still several tasks required in order to optimize the specified algorithm. This
thesis presents a working version of D-FLATˆ2, but software like this requires permanent

95

maintenance and further research.
In the future, we also need to test our approach on more problems in order to further

improve the D-FLATˆ2 system. Moreover, we plan to extend our approach to problems
that are even higher in the polynomial hierarchy than the second level. That is, the
algorithm presented in Chapter 4.2 shall be further generalized to arbitrary item trees
and moreover to arbitrary, non-normalized TDs.

Ongoing work in particular includes a formal correctness proof concerning our approach
of automatically generated parts of the DP.

96

Bibliography

[ABC+14a] M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and S. Woltran.
D-FLAT: Progress report. Technical Report DBAI-TR-2014-86, TU Wien,
2014.

[ABC+14b] M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and S. Woltran.
The D-FLAT system for dynamic programming on tree decompositions. In
JELIA, volume 8761 of LNCS, pages 558–572. Springer, 2014.

[ABC+15] M. Abseher, B. Bliem, G. Charwat, F. Dusberger, and S. Woltran. Com-
puting secure sets in graphs using answer set programming. J. of Logic
and Computation, special issue of ASPOCP 2014, 2015. Accepted for
publication.

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284,
1987.

[ADG+11] M. Aschinger, C. Drescher, G. Gottlob, P. Jeavons, and E. Thorstensen.
Structural decomposition methods and what they are good for. In STACS,
volume 9 of LIPIcs, pages 12–28. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2011.

[BCHW15a] B. Bliem, G. Charwat, M. Hecher, and S. Woltran. D-FLATˆ2: Subset
minimization in dynamic programming on tree decompositions made easy.
In ASPOCP, 2015.

[BCHW15b] B. Bliem, G. Charwat, M. Hecher, and S. Woltran. Optimization of
tree-decomposition-based dynamic programming for AI problems. Unpub-
lished draft. Available at http://dbai.tuwien.ac.at/proj/dflat/
dflat-squared-draft.pdf, 2015.

[BET11] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[BK10] H. J. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper
bounds. Inf. Comput., 208(3):259–275, 2010.

97

http://dbai.tuwien.ac.at/proj/dflat/dflat-squared-draft.pdf
http://dbai.tuwien.ac.at/proj/dflat/dflat-squared-draft.pdf

[Bli12] B. Bliem. Decompose, guess & check: declarative problem solving on tree
decompositions. Master’s thesis, Vienna University of Technology, 2012.

[BMW12] B. Bliem, M. Morak, and S. Woltran. D-FLAT: Declarative problem solving
using tree decompositions and answer-set programming. TPLP, 12:445–464,
2012.

[Cha12] G. Charwat. Tree-decomposition based algorithms for abstract argumenta-
tion frameworks. Master’s thesis, Vienna University of Technology, 2012.

[Cou90] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Inf. Comput., 85(1):12–75, 1990.

[DB02] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument
systems. Artif. Intell., 141(1/2):187–203, 2002.

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999.

[DGG+08] A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and
M. Samer. Heuristic methods for hypertree decomposition. In MICAI,
volume 5317 of LNCS, pages 1–11. Springer, 2008.

[DPW12] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable
algorithms for abstract argumentation. Artif. Intell., 186:1–37, 2012.

[DSW12] W. Dvořák, S. Szeider, and S. Woltran. Abstract argumentation via monadic
second order logic. In SCM, volume 7520 of LNCS, pages 85–98. Springer,
2012.

[Dun95] P. M. Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artif.
Intell., 77(2):321–357, 1995.

[Dun07] P. E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.

[Dvo12] Wolfgang Dvorák. Computationale aspekte der abstrakten argumentation.
In Ausgezeichnete Informatikdissertationen 2012, pages 61–70, 2012.

[DW10] Wolfgang Dvorák and Stefan Woltran. Complexity of semi-stable and stage
semantics in argumentation frameworks. Inf. Process. Lett., 110(11):425–430,
2010.

[EG95] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic
programming: Propositional case. Annals of Mathematics and Artificial
Intelligence, 15(3-4):289–323, 1995.

98

[EGM97] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Trans.
Database Syst., 22(3):364–418, September 1997.

[EGW10] U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings
for argumentation frameworks. Argument and Computation, 1(2):147–177,
2010.

[EP06] T. Eiter and A. Polleres. Towards automated integration of guess and check
programs in answer set programming: a meta-interpreter and applications.
TPLP, 6(1-2):23–60, 2006.

[GKK+11] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider. Potassco: The potsdam answer set solving collection. AI
Communications, 24:107–124, 2011.

[GKS11] M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer
set programming. TPLP, 11(4-5):821–839, 2011.

[GLS02] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and
tractable queries. J. of Computer and System Sciences, 64(3):579 – 627,
2002.

[GPW10a] G. Gottlob, R. Pichler, and F. Wei. Bounded treewidth as a key to tractabil-
ity of knowledge representation and reasoning. Artif. Intell., 174(1):105–132,
2010.

[GPW10b] G. Gottlob, R. Pichler, and F. Wei. Tractable database design and datalog
abduction through bounded treewidth. Inf. Syst., 35(3):278–298, 2010.

[GS08] G. Gottlob and S. Szeider. Fixed-parameter algorithms for artificial in-
telligence, constraint satisfaction and database problems. Comput. J.,
51(3):303–325, 2008.

[JPRW08] M. Jakl, R. Pichler, S. Rümmele, and S. Woltran. Fast counting with
bounded treewidth. In LPAR, volume 5330 of LNCS, pages 436–450.
Springer, 2008.

[JPW09] M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded
treewidth. In IJCAI, pages 816–822. AAAI Press, 2009.

[Klo94] T. Kloks. Treewidth: Computations and Approximations, volume 842 of
LNCS. Springer, 1994.

[KLR11] J. Kneis, A. Langer, and P. Rossmanith. Courcelle’s theorem – a game-
theoretic approach. Discrete Optimization, 8(4):568–594, 2011.

[LPV01] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs.
ACM Trans. Comput. Log., 2:526–541, 2001.

99

[LRS00] N. Leone, R. Rosati, and F. Scarcello. Enhancing answer set planning.
Technical Report DBAI-TR-2000-37, TU Wien, 2000.

[McC80] J. McCarthy. Circumscription – a form of non-monotonic reasoning. Artif.
Intell., 13(1-2):27–39, 1980.

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture
Series in Mathematics and its Applications. OUP, 2006.

[PTW09] D. Pearce, H. Tompits, and S. Woltran. Characterising equilibrium logic and
nested logic programs: Reductions and complexity. TPLP, 9(5):565–616,
2009.

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J.
Comb. Theory, Ser. B, 36(1):49–64, 1984.

[SS10] M. Samer and S. Szeider. Algorithms for propositional model counting. J.
Discrete Algorithms, 8(1):50–64, 2010.

100

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Introduction
	Background
	Fixed-Parameter Tractability
	Tree Decompositions
	Dynamic Programming on Tree Decompositions
	Computational Complexity
	Abstract Argumentation
	Answer-Set Programming

	DP algorithms on TDs for Abstract Argumentation
	Modified algorithm for Admissible Semantics
	New algorithm for Semi-stable Semantics
	An Adaption for Preferred Semantics

	Towards Optimization of DP algorithms on TDs
	D-FLAT: DP on TDs
	System Overview
	Technical Details
	D-FLAT Encodings for Abstract Argumentation

	D-FLAT^2: Optimizing DP on TDs
	Technical Details
	Further Optimizations
	System Overview
	Application to Common AI Problems

	Benchmarks
	Test Environment
	Compared Tools
	Test Framework
	Test Conditions
	Problem Instances

	Monolithic Encodings
	Results
	System Comparison
	Problem Comparison
	Basis Semantics Comparison

	Conclusion
	Summary
	Further Work

	Bibliography

