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Abstract

Derived datatypes are an integral part of the Message Passing Interface (MPI), the de-
facto standard for programming massively parallel, high performance applications. The
mechanism is essential for efficient and portable implementations of programs working
with complex data layouts. MPI defines several type constructors that are capable of
describing arbitrarily complex, heterogeneous and non-contiguous data layouts. The
type constructors may be applied recursively, leading to tree-like representations of data
layouts, also called type trees. Typically, multiple different representations of a given data
layout exist. MPI implementations require concise representations to process derived
datatypes efficiently. It is not easy to see for users which representation is the best for
a given data layout. Many non-obvious factors need to be considered, such as machine
specific hardware capabilities and optimizations.

The problem of computing the most concise (or optimal) type tree representation
for a given data layout was coined the Type Reconstruction Problem. It has been
an open question whether this problem can be solved to optimality in polynomial time
(w.r.t. to the size of the represented data layout). So far, heuristics have been used to
improve a given representation, without providing any guarantees about the quality of
the result.

In this master’s thesis, we present an algorithm that solves the Type Reconstruc-
tion Problem for arbitrarily complex data layouts in O(n4) time and O(n2) space,
where n is the size of the data layout. A recent work showed that optimal represen-
tations can be computed in O(n

√
n) time if the set of considered type constructors is

restricted to those with only one sub-type, i.e., if the type trees are restricted to type
paths. For this special case, called the Type Path Reconstruction Problem, we
improve the currently best known asymptotic bound significantly. Our approach requires
O(n logn/ log logn) time in the worst case and can furthermore be extended to handle
type constructors not considered in previous work.

For both problems, we present detailed algorithms and proofs for the claimed time
and space bounds. A proof-of-concept implementation exists, but an integration of
our approach into an existing MPI library implementation is not within the scope
of this master’s thesis. Our result for the Type Path Reconstruction Problem
was published at this year’s EuroMPI conference [KT15] and our approach for the
Type Reconstruction Problem is currently being prepared for a submission to
IPDPS [GKST] (a preliminary version as available, see [GKST15]).
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Kurzfassung

Abgeleitete Datentypen sind ein integraler Bestandteil des Message Passing Interface
(MPI), dem de-facto Standard zur Programmierung massiv paralleler Anwendungen. Der
Mechanismus ist essentiell für die effiziente Implementierung von Programmen, die mit
komplexen Datenlayouts arbeiten. MPI definiert zahlreiche Typkonstruktoren, welche
beliebig komplexe, heterogene und nicht zusammenhängende Datenlayouts beschreiben
können. Durch rekursive Anwendung dieser Typkonstruktoren entstehen baumartige
Repräsentationen von Datenlayouts, genannt Typbäume. Oft gibt es mehrere verschiedene
Typbäume die ein gegebenes Datenlayout repräsentieren. MPI-Implementierungen benöti-
gen bündige Repräsentationen um abgeleitete Datentypen effizient verarbeiten zu können.
Für den Nutzer ist es nicht einfach zu sehen, welche Typbaum-Representation die beste
für ein gegebenes Datenlayout ist, da zahlreiche nicht-triviale Faktoren berücksichtigt
werden müssen.

Das Problem, die bündigste (oder optimale) Repräsentation für ein gegebenes Daten-
layout zu finden wird als Typ-Rekonstruktionsproblem bezeichnet. Es war bis dato
offen, ob das Problem in polynomieller Zeit (in Bezug auf die Größe der Eingabeinstanz)
gelöst werden kann. Bisher wurden Heuristiken verwendet, um gegebene Typbäume zu
verbessern. Allerdings können dabei keine Garantien über die Qualität der Lösungen
gegeben werden.

Wir präsentieren in dieser Diplomarbeit einen Algorithmus, der das Typ-Rekon-
struktionsproblem für beliebig komplexe Datenlayouts in polynomieller Zeit löst.
Für eine Eingabeinstanz der Größe n benötigt der Algorithmus O(n4) Schritte und
O(n2) Speicher. Wie vor kurzem gezeigt wurde, können optimale Repräsentation effizient
berechnet werden, wenn die berücksichtigten Typkonstruktoren auf jene mit nur einem
Untertyp eingeschränkt werden. Die Typbäume sind in diesem Fall Pfade und das Problem
kann in O(n

√
n) Schritten gelöst werden [Trä14]. Wir verbessern die asymptotische

obere Schranke für diesen Spezialfall, genannt Typpfad-Rekonstruktionsproblem.
Unser Algorithmus benötigt O(n logn/ log logn) Schritte und kann auch zusätzliche
Typkonstruktoren berücksichtigen, die bisher keine Berücksichtigung fanden.

Wir präsentieren für beide Probleme detailierte Algorithmen und Beweise. Unser
Ergebnis für das Typpfad-Rekonstruktionsproblem wurde auf der diesjährigen
EuroMPI-Konferenz veröffentlicht [KT15]. Das Ergebnis für das Typ-Rekonstruk-
tionsproblem wird derzeit für eine Veröffentlichung bei der Konferenz IPDPS vorberei-
tet [GKST] (eine vorläufige Version ist verfügbar, siehe [GKST15]).
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CHAPTER 1
Introduction

This thesis is mainly concerned with the efficient construction of provably optimal represen-
tations for complex datatypes occurring in the Message Passing Interface (MPI) [MPI15],
the de-facto standard interface for programming massively parallel, high performance
applications. MPI’s derived datatypes are a powerful mechanism for describing non-
contiguous, heterogeneous data layouts. The concept is orthogonal to MPI’s communica-
tion operations: Complex, recursively defined datatypes may be used in all communication
operations defined by the MPI standard, including basic send-receive operations as well
as collective communication, remote memory access and parallel file I/O operations. The
usage of derived datatypes allows for possibly more efficient implementations of parallel
programs and additionally increases readability and portability of applications built with
MPI.

MPI provides several type constructors that are capable of describing arbitrarily
complex, non-contiguous and heterogeneous data layouts. Typically, a complex data
layout may be represented by different combinations of these type constructors. The
structural information of data encoded in such a representation enables MPI to efficiently
process the data, e.g., by exploiting advanced communication hardware features. A concise
representation is required to enable MPI libraries to fully exploit the potential performance
benefits. The problem of finding the most concise (or optimal) representation for a given
data layout was termed the Type Reconstruction Problem, the investigation of which
is the core of this master’s thesis. The closely related Type Normalization Problem
is to transform a given representation into an optimal one. A concise representation
ideally takes into account several far from trivial, machine dependent opportunities for
performance optimizations. It is therefore not at all obvious for MPI users how to best
construct a representation for a complex datatype. Although both problems were recently
conjectured to be NP-hard, we are able to present in this work polynomial-time algorithms.
However, for them to be practical, near-linear time complexity is required, which we
unfortunately could not achieve (yet). Additionally, we improve on the best known
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asymptotic time bound for a special case of the Type Reconstruction Problem that
often occurs in practice.

Our result for the Type Path Reconstruction Problem was published in [KT15].
The result for general type tree was submitted to IPDPS [GKST] and a preliminary
version is available [GKST15].

This introductory chapter provides a brief overview of MPI (Section 1.1) and in
particular its derived datatypes mechanism (Section 1.2). The aim of this part is to
provide the reader with sufficient knowledge about MPI to motivate and put into context
the Type Reconstruction Problem. It is by no means a tutorial of MPI and covers
only aspects relevant in the context of this work. A good introduction to MPI is given
by Gropp et al. [GLS99b] and the full definition of all MPI operations can be found
in the MPI standard [MPI15]. The Type Reconstruction Problem is introduced
informally and motivated in Section 1.3. To state the problem formally, a more precise
and detailed coverage of MPI’s derived datatypes is necessary, as is the introduction of
a formal, well-defined model. We therefore defer the formal problem statement until
Chapter 2 and focus on an intuitive understanding of the problem and its context in
this necessarily brief chapter. This chapter continues with a detailed statement of this
master’s thesis’ aim (Section 1.5) and a review of the applied methodology (Section 1.6).
It concludes with an overview of the subsequent chapters in Section 1.7.

1.1 The Message Passing Interface

The Message Passing Interface (MPI) [MPI15] is a widely used standard for programming
parallel, distributed memory computer systems. It is particularly relevant in the area
of high performance computing [Trä09]. It’s goal is to establish “a practical, portable,
efficient, and flexible standard for message passing” [MPI15, p. 1].

The message passing paradigm models computation as a collection of processes
communicating with messages. Each process executes a program, which may differ from
the programs executed by other processes. A process can perform operations only on
data residing in local memory and processes are not assumed to be synchronized. Using
Flynn’s taxonomy of computer architectures [Fly72], this model of computation can be
classified as Multiple Instruction, Multiple Data Streams (MIMD).

Gropp et al. define communication in the context of message passing systems as “a por-
tion of one process’s address space is copied into another process’s address space” [GLS99b,
p. 14]. The basic communication mechanism defined by MPI is point-to-point com-
munication where one process sends data (a message) to another, receiving process.
The MPI_Send operation sends data to a specific process, which may receive it with a
matching MPI_Recv operation.

The MPI collective communication operations define advanced communication pat-
terns that involve a group of processes: Data movement operations rearrange data among
the participating processes, whereas collective computation operations combine partial
results of computations carried out by different processes. Probably the simplest data
movement operation is MPI_Bcast, where an identical message is sent from one process
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(the root process) to each of the other processes participating in the operation. To give
another example, MPI_Scatter splits the data of the root process and distributes it
to the other participating processes. MPI_Reduce is a collective operation that com-
bines data of each process according to some operation. Predefined operations include
MPI_MAX, which finds the maximum value, and MPI_SUM, which computes the sum of
all elements.

MPI furthermore defines advanced operations such as parallel file I/O, remote memory
access, capabilities to query specifics of the execution environment and many more features
useful for implementing massively parallel, high performance applications.

In MPI, a message consists of count elements of a given datatype, which are
stored successively in memory, starting at address buf. The memory layout described
by this triple is also called a communication buffer. MPI’s communication operations
exchange typed values, not just uninterpreted bytes. This alleviates the application
programmer from tedious, machine specific details such as the binary representations
of values in different environments (e.g., IEEE 754 [IEE08] versus hexadecimal floating
point encoding used in IBM systems [zar]).

The MPI standard defines basic datatypes (or base types) with a one-to-one corre-
spondence to predefined datatypes in C or Fortran. For example, the C types char,
int, float and double correspond to MPI_CHAR, MPI_INT, MPI_FLOAT and MPI_-
DOUBLE and analogous MPI basic datatypes exist for Fortran datatypes [MPI15, p.
25-26]. The facilities described so far limit messages to be sequences of elements of the
same base type, but applications often require non-contiguous or heterogeneous data to
be transfered (e.g., a column of a matrix stored in row-major order; or an integer count
followed by an array of double values). MPI’s derived datatype functionality can represent
arbitrary data layouts and allows to directly transfer (that is, without explicitly copying)
such non-contiguous and heterogeneous data. This mechanism is orthogonal to other
features of MPI and may be used in all of MPI’s communication operations, including
collective communication and parallel file I/O as well as remote memory access operations.
Derived datatypes are the central concern of this work and a broad introduction is given
in the next section. A detailed and precise presentation, covering all aspects relevant for
this work in depth, is given in Sections 2.1 to 2.3.

It is important to note that MPI is a library interface specification, not a programming
language or a library implementation. As such, it provides a clearly defined set of
portable and (relatively) easy to use operations useful for implementing efficient parallel
applications based on the message passing paradigm. The MPI standard does not state
any implementation or performance requirements but leaves it to hardware vendors and
other organizations to provide high-quality implementations. This approach allows for
portable parallel applications that may nevertheless take advantage of vendor specific,
specialized hardware. All operations are expressed as functions (or subroutines), with
language bindings specified for C and Fortran (the C++ bindings included in previous
versions of the MPI standard are deprecated in the currently most relevant versions 2.2
and 3.1). Throughout this work, we use the language agnostic syntax with which the
MPI standard defines its operations, except for code listings where the corresponding
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1.1 1.2 1.3 1.4 1.5
2.1 2.2 2.3 2.4 2.5
3.1 3.2 3.3 3.4 3.5
4.1 4.2 4.3 4.4 4.5



Figure 1.1: An example matrix of 4x5 floating point (double) values.

C bindings are used. For predefined language specific handles like basic datatypes, C
bindings are used.

1.2 Derived datatypes

As outlined in the previous section, arbitrary, non-consecutive and/or heterogeneous data
layouts can be represented with derived datatypes. A data layout is a sequence of base
types together with their displacements in memory. Displacements are taken relative to
the start address of a communication buffer and are typically measured in bytes. In this
section, we proceed by example to give an intuitive, if rather informal, introduction to
this powerful mechanism as far as it is necessary for a basic understanding of the Type
Reconstruction and Normalization Problems and their applications.

In the area of high performance computing, computations are often performed on
large matrices and parts of matrices (e.g., a row or a column) need to be communicated
between processes. Assume that a 4x5 matrix of floating point values as shown in
Figure 1.1 is stored in memory in row-major order, i.e., as a linear, contiguous array[

1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 . . .
]

.

As mentioned above, a message in MPI is defined by a triple (buf, count, datatype).
A row of the matrix can easily be communicated with one message by setting buf to
the address of the row’s first element, count to the number of elements in a row and
datatype to the appropriate MPI datatype (MPI_DOUBLE in our example, where the
matrix elements are of type double).

A column of this matrix on the other hand is not stored contiguously in memory. To
send the values of the second column, we can construct a contiguous communication
buffer by copying the required elements into a separate array[

1.2 2.2 3.2 4.2
]

,

which is then used to perform the communication as before. However, this packing of
non-contiguous data into a contiguous, temporary communication buffer is tedious, error
prone and may reduce performance. Alternatively, the derived datatype constructor
MPI_TYPE_VECTOR can be used to directly describe such a column to the communication

4



operation:

MPI_TYPE_VECTOR(count, blocklength, stride,

oldtype, OUT newtype)

The MPI_TYPE_VECTOR constructor describes a data layout consisting of count blocks,
where each block consists of blocklengthmany concatenated elements of type oldtype
and two consecutive blocks are stride many elements apart. A type COLUMN_TYPE
representing a column of our example matrix can thus be constructed by

MPI_TYPE_VECTOR(4, 1, 5, MPI_DOUBLE, COLUMN_TYPE) .

COLUMN_TYPE describes a derived datatype of four elements of base type MPI_DOUBLE
with a “gap” of five elements between each. In other words, if the matrix is stored
in row-major order as above, COLUMN_TYPE selects every fifth element. To send the
second column of the matrix, one has to set buf to the address of the element in the
first row and second column, the count to one and the datatype to COLUMN_TYPE. The
message specified by the triple (buf, 1, COLUMN_TYPE) consists of one element of type
COLUMN_TYPE, which is stored in a memory area starting at address buf.

Note the difference in the way a row of the matrix was communicated, where several
elements of the base type were specified as the message. Alternatively, one can define a
ROW_TYPE to communicate a row analogously to a column. The constructor

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

replicates a datatype count many times into a contiguous buffer, analogously to an
array. A datatype for a row of the example matrix can be defined as

MPI_TYPE_CONTIGUOUS(5, MPI_DOUBLE, ROW_TYPE) .

This constructor can be seen as a less general version of MPI_TYPE_VECTOR, since a
call to MPI_TYPE_CONTIGUOUS(count,oldtype,newtype) is equivalent to

MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype) .

Listing 1.1 provides a concrete and full implementation of this example problem.
To compile and execute the programs listed in this section, a reasonably recent MPI
library implementation, adhering to version 3.0 of the standard, is required. Several open
source implementations exist, e.g., MPICH1 and OpenMPI2. To compile and execute the
example program with two processes, use

mpicc -o example example.c

mpirun -np 2 example

1http://www.mpich.org/
2http://www.open-mpi.org/
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1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main(int argc, char *argv[]) {
5 MPI_Init(&argc, &argv);
6

7 int i, rank, tag = 1;
8 MPI_Status status;
9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
10

11 // A 4x5 matrix of double values
12 double matrix[4][5] = { {1.1, 1.2, 1.3, 1.4, 1.5},
13 {2.1, 2.2, 2.3, 2.4, 2.5},
14 {3.1, 3.2, 3.3, 3.4, 3.5},
15 {4.1, 4.2, 4.3, 4.4, 4.5} };
16

17 // Non-contiguous data:
18 // Derived datatype for a column of a 4x5 matrix with double values
19 MPI_Datatype COLUMN_TYPE;
20 MPI_Type_vector(4, 1, 5, MPI_DOUBLE, &COLUMN_TYPE);
21 MPI_Type_commit(&COLUMN_TYPE);
22

23 if(rank == 0) {
24 // Send the second column of "matrix" to rank 1
25 printf("Rank %d: Sending 2nd column to rank 1\n", rank);
26 MPI_Send(&matrix[0][1], 1, COLUMN_TYPE, 1, tag, MPI_COMM_WORLD);
27 }
28 if(rank == 1) {
29 // Receive column data from rank 0 into contiguous buffer
30 double array[4];
31 MPI_Recv(array, 4, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD, &status);
32 printf("Rank %d: received:\n", rank);
33 for(i = 0; i < 4; i++)
34 printf("\t%.1f\n", array[i]);
35

36 }
37 MPI_Type_free(&COLUMN_TYPE);
38 MPI_Finalize();
39 }

Listing 1.1: Using a derived datatype to transmit a column of a matrix.

In the following, we give only an intuitive understanding of the MPI functions used in
the examples. We refer the reader to the excellent text book by Gropp et al. [GLS99b]
and the MPI standard [MPI15] for an in-depth coverage.

Every MPI program has to initialize the environment with a call to MPI_Init, before
calls to other MPI operations are permitted. This call allows to pass several parameters
to MPI, e.g., the number of processes that shall execute the code, which is given as an
argument (-np 2) when executing the program. To ensure proper termination, the last
call to an MPI operation has to be that of MPI_Finalize. The code between these
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two function calls is executed in parallel by all processes. To selectively execute portions
of the code by a certain process only, the rank of the process can be used. It is queried
by a call to MPI_Comm_rank, which returns a distinct integer in the range [0,np[ and
uniquely identifies a process. The example program then proceeds with the definition of
our example matrix and the declaration of the derived datatype COLUMN_TYPE. The call
to MPI_TYPE_VECTOR defines a non-contiguous datatype that picks every fifth element,
for a total of four. The elements are of type MPI_DOUBLE, which directly corresponds to
the C-type double. The environment is then made aware of this derived, user-defined
datatype by calling MPI_Type_commit, after which it can be used in communication
operations. When the datatype is not required any more, a call to MPI_Type_free is
used for deallocating the datatype. In our example, process 0 sends the second column of
the matrix to process 1. The message it transmits is specified as a triple, which consists
of 1) the start address of the buffer containing the message, 2) the number of elements,
and 3) the datatype of the elements. The appropriate values are given as the first three
arguments in MPI_Send. The remaining arguments are 4) the rank of the target process,
5) a tag that can be used to distinguish messages, and 6) a communicator, which defines a
set of processes that may participate in the operation (MPI_COMM_WORLD is a predefined
handle for the set of all processes of the current environment). Process 1 receives the
message with a call to MPI_Recv. The first three arguments again specify the message,
with 1) the start address of an allocated memory buffer to store the received data, 2) the
number of elements, and 3) their datatype. These arguments are followed by 1) the rank
of the sending process, 2) the tag, 3) the communicator, and 4) a status variable used to
return information about successful completion or an encountered error.

We briefly sketch two additional type constructors. MPI_TYPE_CREATE_INDEXED_-
BLOCK is slightly more general than MPI_TYPE_VECTOR, where the blocks do not have
to be strided but can have arbitrary displacements. This constructor, instead of the
scalar stride value, requires an array of displacements as argument. Even more general,
MPI_TYPE_INDEXED allows blocks to contain a different number of elements. Note that
all constructors introduced so far use a single oldtype argument. Although they can
describe arbitrary non-contiguous data layouts, a combination of different base types
is not possible. Only MPI_TYPE_CREATE_STRUCT, the most general type constructor,
allows for the representation of heterogeneous data. It takes an array of oldtypes as
an argument and can be used to specify e.g., a row of the example matrix (an array of
floating point values) preceded by an integer value indicating the row number, without
having to resort to manually packing the data into a buffer of non-typed data (bytes).

Listing 1.2 provides an implementation of this example problem. To get a complete
MPI program, replace lines 11 to 37 in Listing 1.1 with the code given in Listing 1.2.
Analogously to the previous example, the listing proceeds by first declaring the required
C-types and an MPI derived datatype, which is then used in a basic send-receive operation.
MY_ARRAY_TYPE is a heterogeneous datatype corresponding to the C structure My_-
array. Note that structures cannot directly be used in MPI operations, since portability
and transparent communication between heterogeneous platforms could not be provided
with such a low-level and machine specific description of message data. The construction
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1 // Array of doubles plus element count
2 typedef struct {
3 int row;
4 double elements[4];
5 } My_array;
6

7 // Derived datatype for an array of doubles plus element count
8 MPI_Datatype MY_ARRAY_TYPE;
9 const int nr_blocks = 2;
10 int blocklengths[nr_blocks] = {1, 4};
11 MPI_Datatype oldtypes[nr_blocks] = {MPI_INT, MPI_DOUBLE};
12 MPI_Aint displacements[nr_blocks];
13 displacements[0] = offsetof(My_array, row);
14 displacements[1] = offsetof(My_array, elements);
15 MPI_Type_create_struct(nr_blocks, blocklengths, displacements,
16 oldtypes, &MY_ARRAY_TYPE);
17 MPI_Type_commit(&MY_ARRAY_TYPE);
18

19 if(rank == 0) {
20 My_array array1 = {3, 3.1, 3.2, 3.3, 3.4};
21 // Send heterogenous data (1 int + 4 doubles) to rank 1
22 MPI_Send(&array1, 1, MY_ARRAY_TYPE, 1, tag, MPI_COMM_WORLD);
23 }
24 if(rank == 1) {
25 My_array array2;
26 // Receive data from rank 0
27 MPI_Recv(&array2, 1, MY_ARRAY_TYPE, 0, tag, MPI_COMM_WORLD, &status);
28 printf("Rank %d received elements of row %d:\n", rank, array2.row);
29 for(i = 0; i < 4; i++)
30 printf("\t%.1f\n", array2.elements[i]);
31 }
32 MPI_Type_free(&MY_ARRAY_TYPE);

Listing 1.2: Transmitting heterogeneous data with the help of derived datatypes.

of MY_ARRAY_TYPE is a bit more involved than the previous example: We want to
describe a memory layout of two blocks, with the first block containing one integer
and the second block containing four double values. Note that the start address of the
array elements depends on the used alignment and automatic padding performed by
the compiler. It is explicitly computed with the help of the C-function offsetof. Once
the required arguments are assembled and the datatype is committed, it can be used in
communication operations in the same way as any other datatype, including base types.

Several more examples can be found in the MPI standard itself [MPI15, p. 123–131].
It is not necessary that all processes participating in a communication operation use

the same datatype. Indeed, in the example in Listing 1.2, the send operation used the
derived datatype COLUMN_TYPE to send data stored locally in non-contiguous memory
locations, which is received into a contiguous buffer (i.e., an array) of floating point
values. Using different datatypes for the send and receive operations is possible, as long
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as the two datatypes match the message data. In other words, receiving an integer
value into a double variable is considered an invalid operation. In particular, the type
signatures of both datatypes must be equal. Unfortunately, datatype equivalence is not
well defined by the MPI standard [KGR10]. MPI libraries typically do not check for such
errors and thus a type mismatch may cause a subtle error that is hard to track down.

MPI’s type constructors can be applied recursively to describe extremely sophisticated
data layouts. A combination of multiple constructors allows for concise representations
of complex, non-contiguous and heterogeneous data layouts. The derived datatype
mechanism is orthogonal to MPI’s communication operations, meaning that an arbitrar-
ily complex derived datatype can be used wherever a type is required. By providing
information about the structure of the data, the MPI library may significantly improve
performance by exploiting special communication hardware that is able to deal with
structured data more efficiently than non-tuned self-devised packing code [GLS99b]. De-
rived datatypes may furthermore improve performance by obviating the need for internal
buffering [THRZ99,MT08] and have been used successfully to increase the performance
of classic parallel algorithms [TRH14] as well as numerical applications [BT11]. Höfler
and Gottlieb [HG10] report a 3.8 fold speedup for parallel Fast Fourier Transformation.
They incorporate a local memory transpose operation in the derived datatype, which
significantly reduces the amount of local copy-operations and highlights the usefulness
of derived datatypes beyond standard message passing. Lu et al. [LWPS04] report that
the usage of derived datatypes may increase performance “due to the optimizations
used in MPI implementations which are easily missed by users in their packing”. This
work as well as [SGH12] highlight that, apart from performance, the usage of derived
datatypes also improves readability and performance portability, meaning that a program
facilitating derived datatypes is able to perform well on a larger range of platforms,
whereas manually written packing code is typically optimized for only a few.

1.3 Type reconstruction and normalization

As discussed in the previous section, type constructors may be applied recursively and
can describe arbitrarily complex non-contiguous and heterogeneous data layouts. While
any data layout can be defined by explicitly listing the base types of all elements plus
their displacements, more concise specifications may be possible with the help of derived
datatypes.

As an example, assume that from an array of n floating point values every other
value has to be communicated to another process. This data layout can be described by
explicitly listing the displacement (0,2,4,. . . ) and datatype (MPI_DOUBLE) of the n over
two values with the help of the MPI_TYPE_CREATE_INDEXED_BLOCK constructor:

MPI_TYPE_CREATE_INDEXED_BLOCK(n/2, 1, [0,2,4,...],

MPI_DOUBLE, EVERY_OTHER_ELEMENT)
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Alternatively, the derived datatype EVERY_OTHER_ELEMENT can be defined as

MPI_TYPE_VECTOR(n/2, 1, 2, MPI_DOUBLE, EVERY_OTHER_ELEMENT) .

Note that the base type MPI_DOUBLE is repeated in the data layout with regular displace-
ments. This regular structure of the data layout is stated explicitly by the MPI_TYPE_-
VECTOR constructor and may be exploited to implement MPI operations more efficiently
(see e.g., [RMG03,SWP04]). Additionally, this representation of the data layout is much
more concise. Only a constant number of parameters needs to be stored, whereas an
explicit listing requires O(n) memory.

For more complex data layouts it is typically much harder to find an efficient repre-
sentation, since the type constructors may be applied recursively. Such a nested derived
datatype can be viewed as a type tree, a tree-like structure where an inner node corre-
sponds to the application of a type constructor and a leaf node to one of the base types
occurring in the data layout. The original data layout can be obtained by an ordered
traversal of such a type tree, which is detailed in Section 2.5.

It is natural to associate a cost with each inner node of the tree, reflecting the space
consumption and processing cost of the corresponding constructor. Different type trees
representing the same data layout thus may incur different costs. Space and processing
cost efficient representations of data layouts are required by MPI implementations to fully
exploit the potential performance advantages. The Type Reconstruction Problem
asks for a most concise type tree representation for a given data layout. The closely
related Type Normalization Problem asks to generate a cost-optimal type tree out
of a given, user-defined type tree.

If the set of considered constructors is restricted to those with only one sub-type,
the type trees degenerate to type paths. We denote this special case as the Type
Path Reconstruction Problem, which has recently been shown to be solvable in
polynomial time if only the MPI_TYPE_VECTOR and MPI_TYPE_CREATE_INDEXED_-
BLOCK constructors are considered [Trä14].

1.4 Applications
Applications typically require type normalization. In particular, the Type Normal-
ization Problem is important for MPI implementations to handle derived datatypes
efficiently [MT08,GHTT11]. The potential performance benefits of optimal type repre-
sentations are huge with execution times reduced by up to 50% for simple communication
operations (see Section 2.4 for details). A suitable point for performing datatype normal-
ization is at commit time, i.e., in the call of MPI_Type_commit [PG15].

The problem can trivially be solved by performing type reconstruction on the type
map represented by the type tree. This however requires to explicitly store the type
map, which may be arbitrarily larger than its type tree representation. Apart from this
straight-forward approach, only heuristic approaches (see Chapter 3) and one result for
the special case of type paths [Trä14] have been presented so far. Thus, improvements
to the Type Reconstruction Problem directly lead to better algorithms for the
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Type Normalization Problem. Furthermore, type reconstruction is relevant for the
automatic generation of derived datatypes, where a derived datatype representation is
constructed for given packing code [KHS12,SKH13] or complex C datatypes [RP06].

One can also imagine a stand-alone tool for type normalization to determine optimal
representations for a given execution environment. The resulting type representations
can then be hard-coded in the application, thus saving the cost of type normalization
that would otherwise have to be performed by the MPI library for each execution.

1.5 Aim of this work
The aim of this master’s thesis is to advance research on the Type Reconstruction
Problem and, where possible, to apply the new findings to the Type Normalization
Problem.

The Type Reconstruction Problem was recently conjectured to be NP-hard
(see [GHTT11,Trä14]). The main contribution of this work is to refute this conjecture by
giving a polynomial-time algorithm for the problem. This algorithm was submitted to
the IPDPS conference [GKST] and a preliminary version is available online [GKST15].
Contrary to scientific publications, which target experts and have to adhere to strict
page limits, this master’s thesis is written for a more general audience by providing a
much more elaborate introduction to and motivation for the problem as well as a more
detailed, step-by-step presentation of algorithms and proofs.

The second major contribution is an algorithm solving the Type Path Reconstruc-
tion Problem asymptotically faster than previously known approaches. Our approach
is capable of integrating further type constructors not considered so far and was published
in this year’s EuroMPI conference [KT15]. It is likewise presented in a detailed and
accessible manner.

1.6 Methodological approach
The assumed model of computation is the sequential random access machine (RAM)
model, as used in the standard text book for algorithms by Cormen et al. [CLRS09]. As
discussed in Section 1.2, processes participating in a communication operation do not
have to employ the same datatype definition. Indeed, a process does not know which
datatype is used by the other processes unless the used datatypes are communicated
explicitly. Thus, datatype reconstruction has to be solved individually by each process.
Therefore all presented algorithms as well as approaches in related work are purely
sequential and no model of parallel computation has to be adopted.

We analyze the worst-case time and space requirements of all presented algorithms
w.r.t. the size of the input. The input is a data layout consisting of n elements (pairs of
base type plus displacement). We use standard big-O notation to state the asymptotic
time and space complexity of algorithms. Let f(n) and g(n) be non-negative functions
and n ∈ N and c ∈ R≥0, n0 ∈ N be suitable constants. We use f(n) = O(g(n)) to express
that g(n) is an asymptotic upper bound for f(b), which is formally defined as
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f(n) = O(g(n)) ⇐⇒ ∃c, n0 ∀n ≥ n0 : f(n) ≤ cg(n)

⇐⇒ lim sup
n→∞

f(n)
g(n) <∞ .

Likewise, we use Ω(n) and Θ(n) to denote lower and tight bounds.

f(n) = Ω(g(n)) ⇐⇒ ∃c, n0 ∀n ≥ n0 : cg(n) ≤ f(n)

⇐⇒ lim inf
n→∞

f(n)
g(n) > 0

f(n) = Θ(g(n)) ⇐⇒ f(n) = Ω(n) ∧ f(n) = O(n)

A simple, yet flexible cost model is used to determine the cost of a type tree represen-
tation. A type tree is optimal, if it is of minimal cost, i.e., there is no other type tree
of less cost representing the same type map. This cost model is formally introduced in
Chapter 2, where also the precise problem statement is given.

Algorithms are mostly presented in high-level pseudo-code. Proof-of-concept imple-
mentations of the developed algorithms have been written in C (ask the author for the
sources). Implementation details are discussed in this work only insofar as they are
necessary for proving an algorithm’s correctness or space and time bounds. This, however,
should suffice for a capable programmer to implement the algorithms. An integration
into an existing MPI library implementation is not within the scope of this master’s
thesis.

1.7 Structure of this work
Chapter 2 states formally and much more precisely all of the problems introduced so
far. To do so, a closer look at MPI’s derived datatypes mechanism, a formal model
for type trees as well as a cost model are required. We introduce several additional
interesting problem variants at the end of that chapter. An overview of previous research
on the Type Reconstruction Problem and related work is given in Chapter 3.
Chapter 4 investigates properties of optimal type trees. These properties are crucial
for the developed algorithms for the Type Reconstruction Problem and Type
Path Reconstruction Problem. The algorithms are presented in detail in Chapter 5
and Chapter 6 respectively. We provide detailed proofs of their correctness and for the
claimed runtime and space bounds. In Chapter 7, we discuss several interesting problem
variants and the applicability of our results to these problems. Chapter 8 concludes with
an overview of the results of this master’s thesis, compares our findings to related work
and discusses possible directions for future research.
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CHAPTER 2
Type Reconstruction and

Normalization

The Type Reconstruction Problem and the Type Normalization Problem
are formally introduced towards the end of this chapter in Section 2.7. In order to do
so, a closer look at data layouts,formally called type maps, MPI’s derived datatypes
and type tree representations is necessary (Sections 2.1 to 2.3). We then present a
formal framework for modeling type constructors and type trees as well as a cost model
measuring the conciseness of type representations (Sections 2.5 and 2.6).

Interesting variations with a significant impact on asymptotically efficient algorithms
for the Type Reconstruction Problem exist: If the most general MPI_TYPE_-
CREATE_STRUCT constructor is excluded, type trees degenerate to type paths. Although
type trees allow for a potentially more efficient representation of a type map than
type paths, the latter are easier to compute. Even more concise representations are
possible when the tree structure of type trees is generalized to directed acyclic graphs
(DAG), where equal nodes of a type tree can be folded into a single one. The Type
Reconstruction and Normalization Problems presumably are harder to solve for
type DAG representations. Type paths and DAGs are introduced formally in Section 2.7.1
and Section 2.7.2.

2.1 Type maps

MPI defines several basic datatypes that directly correspond to the basic (or elementary)
datatypes in C or Fortran (e.g., MPI_INT, which maps to the C-type int; MPI_DOUBLE
and double). In addition, MPI provides a set of type constructors so that users can define
custom datatypes, called derived datatypes. This mechanism can describe arbitrarily
complex, non-contiguous and heterogeneous application data, e.g., a column or row vector
or a sub-matrix of a multi-dimensional matrix. The layout of such data can be described
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Figure 2.1: A graphical representation of the type map 〈(int, 0), (double, 4),
(double, 12), (double, 20)〉.

explicitly by a sequence of basic datatypes together with their respective displacements
in memory. Displacements are taken as offsets relative to a given start address and are
measured either in bytes or in multiples of a given type. Such a sequence of pairs of a
basic datatype plus a displacement value is called a type map. Equivalently, a type map
may be seen as a sequence of basic datatypes plus a sequence of displacements. We use
the two notations interchangeably, whichever is more convenient in the current context.

Basic MPI datatypes are predefined special cases of a general datatype. The base
type MPI_DOUBLE for example defines the type map 〈(double, 0)〉, with one element of
type double and displacement 0. A derived datatype that consists of one element of
type int followed by three elements of type double (which in C can easily be defined
with the struct operator), defines the type map

〈(int, 0), (double, 4), (double, 12), (double, 20)〉 .

We assume that an int and a double take up 4 and 8 bytes of memory respectively,
and ignore potential alignment issues. The same type map is represented graphically in
Figure 2.1.

In this work, only basic datatypes with a one-to-one correspondence to elementary
datatypes of the host language are used. Similar to the MPI standard, we forgo distin-
guishing between them to avoid notational overhead and instead refer to both as “base
types”. In examples we use elementary datatypes for type maps, which are essentially a
direct image of data in memory. For type trees, which are an MPI specific concept, MPI
base types are used. Formally, type maps are defined as follows.

Definition 1 (Type map). A type map M = (T,D) of length n is a sequence of
base types T plus a sequence of displacements D, both of length n. The type sequence
(or type signature) T = 〈t0, t1, . . . , tn−1〉 consists of base types ti. The displacement
sequence D = 〈d0, d1, . . . , dn−1〉 consists of arbitrary integer displacements di, that is,
the displacements are not required to be positive, distinct or in ascending order.

Note that data elements need not appear in the same order as they do in memory and
that an element may appear more than once. However, the ordering of elements imposed
by the displacement sequence (which, as the name states, is a sequence and not a set)
implies that data are accessed in a specific order: The type map 〈(double, 0), (int, 8)〉
is not equivalent to the type map 〈(int, 8), (double, 0)〉. A homogeneous type map is a
type map where all base types ti are the same. We denote homogeneous type maps as
M = (t,D), i.e., with a single base type instead of a sequence of base types.

A type map together with a start address buf defines a communication buffer that
consists of n elements, where the i-th element has type ti and is located in memory at
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Figure 2.2: A graphical representation of the type map 〈(char, 0), (int, 2), (char, 6),
(int, 8), (char, 12), (int, 14)〉.

address buf + di. All of MPI’s communication operations exchange typed values and
therefore have a datatype argument, for which any (basic or derived) datatype may be
used.

2.2 MPI’s derived datatype constructors

MPI provides a set of datatype constructors to specify heterogeneous and non-contiguous
data layouts, that is, to represent arbitrarily complex type maps. Most of the type
constructors replicate a given datatype (the oldtype argument, also called the sub-
type) in some regular, semi-regular or irregular pattern. A more general constructor
concatenates multiple different sub-types. Type constructors may be applied recursively,
i.e., arbitrarily complex derived datatypes may serve as a sub-type.

The simplest datatype constructor,

MPI_TYPE_CONTIGUOUS(count, oldtype, OUT newtype)

replicates a sub-type (the oldtype argument) into count many consecutive locations.
The resulting datatype corresponds to an array of oldtype values.

To determine their displacements, the sub-type’s extent is used. A datatype’s extent
is defined to be the span from the first to the last byte occupied by elements of the
datatype, possibly rounded up to meet alignment requirements [MPI15, p. 84]. In other
words, for a type map M = (〈(t0, d0), . . . , (tn−1, dn−1)〉), the extent is

max
i

(di + sizeof(ti))−min
i

(di) + ε ,

where ε is the additional space required for correct alignment.
For a base type, the extent is typically equal to its size, i.e., to the number of bytes

an element of this type occupies in memory. This, however, is not necessarily always
true, since the extent of a datatype may be manipulated by the user. The definition
of the datatype’s extent is fairly complicated and convoluted (see [MPI15, p. 84-85, p.
104-110]). We omit this peculiar feature of MPI and simply assume that the extent of
a datatype is always equal to the span from the first to the last byte occupied by its
elements. It will become clear in the following sections that this does not alter the nature
of the considered problems. We use a small subset of predefined datatypes, listed in
Table 2.1 together with their corresponding C-type and assumed extent, for the purpose
of illustrating examples. Refer to the MPI standard [MPI15, p. 26] for a full list of
predefined MPI datatypes.
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Table 2.1: Basic MPI datatypes used in this work and their corresponding C types and
assumed extent.

MPI datatype C datatype Assumed extent
MPI_CHAR char 1 byte
MPI_INT int 4 bytes
MPI_FLOAT float 4 bytes
MPI_DOUBLE double 8 bytes

To give an example, assume that oldtype represents the type map 〈(char, 0), (int, 2)〉
and that the base types char and int have an extent of 1 and 4 bytes respectively.
Note that oldtype’s extent is 6 bytes and that the represented type map contains a gap
of one byte between the two base types char and int. MPI_TYPE_CONTIGUOUS(3,
oldtype, MY_TYPE) defines a derived datatype consisting of 3 consecutive replications
of the type map represented by oldtype, i.e., MY_TYPE represents the type map

〈(char, 0), (int, 2), (char, 6), (int, 8), (char, 12), (int, 14)〉 .

This type map is represented graphically in Figure 2.2.
The MPI_TYPE_VECTOR constructor,

MPI_TYPE_VECTOR(count, blocklength, stride,

oldtype, OUT newtype)

is slightly more general than MPI_TYPE_CONTIGUOUS. It generates count many blocks
that are stride many elements apart and contain blocklength many elements each.
By using the same oldtype as before and setting count to 3, blocklength to 2 and
stride to 4, MPI_TYPE_VECTOR creates a datatype with type map

〈(char, 0), (int, 2), (char, 6), (int, 8),
(char, 24), (int, 26), (char, 30), (int, 32),
(char, 48), (int, 50), (char, 54), (int, 56)〉 .

The second block starts with the second row at displacement 24, which is equal to
stride times the oldtype’s extent. The third block follows at displacement 48, i.e.,
each two successive blocks are 24 bytes apart. The blocks are said to be strided, since
their displacements follow a regular pattern. This constructor is generalized by the
following two constructors.

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength, displacements[],

oldtype, OUT newtype)
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MPI_TYPE_INDEXED(count, blocklengths[], displacements[],

oldtype, OUT newtype)

The MPI_TYPE_CREATE_INDEXED_BLOCK constructor allows irregular block displace-
ments. The MPI_TYPE_INDEXED constructor additionally allows for a different replica-
tion count for each block. Using oldtype as before and letting count = 2, blocklengths
= [1,3] and displacements = [1,2], MPI_TYPE_INDEXED generates a datatype
with type map

〈(char, 6), (int, 8),
(char, 12), (int, 14), (char, 20), (int, 22), (char, 28), (int, 30)〉 .

The first line contains the part of the type map generated by the first block of one
replication of oldtime and the second line contains the three replications of the second
block. The MPI_TYPE_CREATE_STRUCT constructor,

MPI_TYPE_CREATE_STRUCT(count, blocklengths[], displacements[],

oldtypes[], OUT newtype)

generates blocks of replications of different sub-types and is the most general. Con-
trary to the previous constructors, block displacements are given in bytes, and not in
multiples of the sub-type’s extent. Using count = 2, displacements = [0,8],
blocklengths = [2,3] and the two types 〈(int, 0)〉 and 〈(double, 0)〉 as sub-types
(the first with an extent of 4 bytes, the second with 8 bytes), MPI_TYPE_CREATE_-
STRUCT creates a datatype with type map

〈(int, 0), (int, 4),
(double, 8), (double, 16), (double, 20)〉 .

For the constructors MPI_TYPE_VECTOR, MPI_TYPE_INDEXED and MPI_TYPE_-
CREATE_INDEXED_BLOCK, the alternate versions MPI_CREATE_TYPE_HVECTOR, MPI_-
CREATE_TYPE_HINDEXED and MPI_CREATE_TYPE_HHINDEXED_BLOCK exist. They
specify block displacements in bytes rather than in multiples of the sub-type’s extent.
However, as with a type’s extent, we abstract from such details and in our model consider
all displacements to be measured in bytes. Therefore, these constructors do not have
to be considered here. To improve readability and avoid the similar, overly long names
of the type constructors, we make use of abbreviations listed in Table 2.2. The type
constructors presented here are listed in order of increasing generality. The most general
one, STRUCT, is in principle sufficient to represent any data layout, albeit incurring a
large overhead for simple, regular layouts compared to a representation with e.g., the
CONTIGUOUS or VECTOR constructors. This overhead causes notational redundancy
that is inconvenient for the user and potentially incurs significant performance penalties.
If a more specific constructor can be used to represent a type map, the representation
is typically more concise and therefore leads to better performance. The next section
formally defines what is meant by the conciseness of a type representation.

17



Table 2.2: Type constructors and their abbreviations.

Type constructor Abbreviation
MPI_TYPE_CONTIGUOUS CONTIGUOUS
MPI_TYPE_VECTOR VECTOR
MPI_CREATE_TYPE_HVECTOR HVECTOR
MPI_TYPE_INDEXED INDEXED
MPI_CREATE_TYPE_HINDEXED HINDEXED
MPI_TYPE_CREATE_INDEXED_BLOCK INDEXED_BLOCK
MPI_CREATE_TYPE_HHINDEXED_BLOCK HINDEXED_BLOCK
MPI_TYPE_CREATE_STRUCT STRUCT

STRUCT(2,〈1, 1〉,〈0, 10〉)

VECTOR(3,2,4)

MPI_CHAR

MPI_INT

Figure 2.3: A possible type tree representation for the type map 〈(int, 0), (char, 10),
(char, 11), (char, 14), (char, 15), (char, 18), (char, 19)〉.

2.3 Type tree representations

A derived datatype constructed with the type constructors presented in Section 2.2 can
be viewed as a type tree.

Definition 2. A type tree is a tree-like structure where

• the leafs correspond to the base types,

• inner nodes correspond to the application of a type constructor describing a repetition
of a part of the type map or a concatenation of different parts, and

• an edge indicates that the datatype represented by a child node is used as a sub-type
in the constructor associated with the parent node.

Figure 2.3 shows an example type tree using the VECTOR and STRUCT constructors
to represent a type map that consists of one integer followed by several non-contiguously
stored char values. A constructor’s oldtype arguments are represented by its child
nodes. The newtype argument, which returns a handle to the constructed datatype, is
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omitted. The represented type map can be obtained by an ordered traversal of the type
tree, as detailed in Section 2.5 or [THRZ99].

Note that several different type tree representations may exist for a given type
map. Space and cost efficient representations of user- or application-defined derived
datatypes are required to enable MPI implementations to handle them efficiently. These
representations are internal and usually not exposed to the users of MPI.

The problem of computing the most efficient (or optimal) type tree representation
out of a given one was termed the Type Normalization Problem. The closely
related Type Reconstruction Problem instead asks for the most efficient type tree
representation of a given type map. Both problems are defined formally in Section 2.7.
However, before being able to do so, a formal model for type tree representations and
the cost model have to be introduced.

2.4 Performance impact of optimal derived datatypes

In this section, we study the impact of different derived datatype definitions. Given an
n× n matrix of integer values, assume that we want to communicate the data of the first
row and the first column. Since two-dimensional arrays are stored in row-major order
in C, the elements of a single row are stored in a contiguous memory area, while the
elements of a column are stored non-contiguously, in a regularly strided pattern.

This data layout can be described with different derived datatypes. We compare
three natural variants:

• INDEXED_BLOCK_TYPE: Lists the displacements of all the 2n elements explicitly.

• INDEXED_TYPE: The elements of the row are described as a single block of length
n, followed by an explicit list of displacements for the n elements of the column.

• STRUCT_VEC_TYPE: The elements of the column are described as a vector type
with stride n (note that in an n×n matrix stored in row-major order, the elements
of a column are n elements apart). This vector type is then concatenated with the
row elements, which are again described as a single block of length n.

The code to construct these datatypes can be found in Listing 2.1 and Listing 2.2. The
resulting type trees are illustrated in Figure 2.5.

The benchmarking procedure is given in Listings 2.1 and proceeds as follows. The
performance impact of the three derived datatypes is measured by sending the row and
column data from process 0 to process 1 and back to process 0 (lines 35 – 47). Process 0
measures the time it requires to send the data and receive it back from process 1.

First, the MPI environment is set up and the communication buffers are initialized.
The two-dimensional matrix of 1000 × 1000 values is stored locally at process 0 in
send_buf and the result is received into recv_buf. Process 1 receives the data
into sendrecv_buf, from which the data is directly sent back to process 0. In the
second step, the derived datatype description for the desired data layout is constructed.
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1 #include <mpi.h>
2 #include <stdlib.h>
3

4 int main(int argc, char** argv) {
5 MPI_Init(&argc, & argv);
6 int rank, tag = 0;
7 MPI_Status status;
8 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
9

10 // set up communication buffers and initialize data
11 int *send_buf = NULL, *recv_buf = NULL, *sendrecv_buf = NULL;
12 const size_t n = 1000;
13 if(rank == 0) {
14 send_buf = malloc(n * n * sizeof(int));
15 for(size_t i = 0; i < n; i++) {
16 for(size_t j = 0; j < n; j++)
17 send_buf[i * n + j] = i * n + j;
18 }
19 recv_buf = malloc(n * n * sizeof(int));
20 }
21 if(rank == 1)
22 sendrecv_buf = malloc(n * n * sizeof(int));
23

24 // Create derived datatype: INDEXED_BLOCK_TYPE
25 MPI_Datatype datatype;
26 int displacements[2 * n];
27 for(size_t i = 0; i < n; i++) {
28 displacements[i] = i;
29 displacements[n + i] = i * n;
30 }
31 MPI_Type_create_indexed_block(2 * n, 1, displacements, MPI_INT, &datatype);
32 MPI_Type_commit(&datatype);
33

34 // benchmark
35 for(size_t i = 0; i < 100; i++) {
36 if(rank == 0) {
37 double time = MPI_Wtime();
38 MPI_Send(send_buf, 1, datatype, 1, tag, MPI_COMM_WORLD);
39 MPI_Recv(recv_buf, 1, datatype, 1, tag, MPI_COMM_WORLD, &status);
40 printf("%0.10f\n", (MPI_Wtime() - time) * 1000);
41 }
42 if (rank == 1) {
43 MPI_Recv(sendrecv_buf, 1, datatype, 0, tag, MPI_COMM_WORLD, &status);
44 MPI_Send(sendrecv_buf, 1, datatype, 0, tag, MPI_COMM_WORLD);
45 }
46 MPI_Barrier(MPI_COMM_WORLD);
47 }
48

49 MPI_Type_free(&datatype);
50 MPI_Finalize();
51 return EXIT_SUCCESS;
52 }

Listing 2.1: Benchmarking the performance impact of different derived datatypes.
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INDEXED_BLOCK(2n,1,〈0, 1 . . . , n− 1, 0, n, 2n, . . . , (n− 1)n〉)

MPI_INT

(a) INDEXED_BLOCK_TYPE

INDEXED(n+ 1,〈n, 1, 1, . . .〉,〈0, 0, n, 2n, . . . , (n− 1)n〉)

MPI_INT

(b) INDEXED_TYPE

STRUCT(2,〈n, 1〉,〈0, 0〉)

VECTOR(n,1,n)

MPI_INT

MPI_INT

(c) STRUCT_VEC_TYPE

Figure 2.4: Type tree representations of three different derived datatypes describing the
data of the first row plus the second column of an n× n matrix of int values.

Listing 2.1 contains the code for constructing the datatype INDEXED_BLOCK_TYPE
(lines 24 –32). The construction of the two remaining derived datatypes, INDEXED_TYPE
and STRUCT_VEC_TYPE, is given in Listing 2.2. The derived datatype is then used to
communicate the elements of one row and one column of the matrix from process 0 to
process 1 and back, as detailed above.

The performance impact of the different datatype representations is evaluated on a
medium-sized distributed memory machine at TU Wien, nick-named “Jupiter”. Jupiter
consists of 3 compute nodes, where each node consists of two AMD Opteron 6134
processors (2.3 GHz, 8 cores per processor) and 32 GB main memory. The nodes are
connected via Ethernet and an Ifiniband-QDR switch (type MT4036). Jupiter runs Linux
with Kernel version 2.6.32-573.3.1.el6.x86_64. The source code was complied with gcc
version 4.4.7 and tested with two MPI implementations, namely NEC MPI 1.3.1 and
OpenMPI 1.8.4. The benchmark was executed 100 times for each derived datatype and
MPI library. In Figure 2.5, we report the mean execution time together with the 5% and
95% confidence intervals.

With both MPI implementations, execution times are roughly equal using INDEXED_-
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1 // INDEXED_TYPE
2 MPI_Datatype datatype;
3 int blocklengths[2 * n];
4 int displacements[2 * n];
5 for(size_t i = 0; i < 2 * n; i++)
6 blocklengths[i] = 1;
7 for(size_t i = 0; i < n; i++) {
8 displacements[i] = i;
9 displacements[n + i] = i * n;
10 }
11 MPI_Type_indexed(2 * n, blocklengths, displacements, MPI_INT, &datatype);
12

13

14 // STRUCT_VEC_TYPE
15 MPI_Datatype VEC1_TYPE;
16 MPI_Type_vector(n, 1, 1, MPI_INT, &VEC1_TYPE);
17 MPI_Type_commit(&VEC1_TYPE);
18

19 MPI_Datatype VEC2_TYPE;
20 MPI_Type_vector(n, 1, n, MPI_INT, &VEC2_TYPE);
21 MPI_Type_commit(&VEC2_TYPE);
22

23 MPI_Datatype datatype;
24 int blocklengths[2] = {1, 1};
25 MPI_Aint displacements[2] = {0, 0};
26 MPI_Datatype oldtypes[2] = {VEC1_TYPE, VEC2_TYPE};
27

28 MPI_Type_create_struct(2, blocklengths, displacements, oldtypes, &datatype);

Listing 2.2: Alternative derived datatypes.

(a) OpenMPI (b) NEC MPI

Figure 2.5: Performance comparison of different derived datatypes for a given data layout.
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BLOCK_TYPE and INDEXED_TYPE. With STRUCT_VEC_TYPE, performance increases
drastically with execution times reduced to around one half to two thirds respectively. The
first observation indicates that both MPI implementations perform type normalization
to some extent. MPI most likely detects that the n row elements listed explicitly by
INDEXED_TYPE are stored contiguously and can thus be treated as a single, contiguous
memory block. As Gropp et al. [GHTT11] point out, very little type normalization seems
to be performed by current MPI implementations. The optimizations are typically based
on simple heuristics, which we detail in Chapter 3. The STRUCT_VEC_TYPE performs
much better because the regular structure of the column data is captured well by the
VECTOR constructor used as a sub-type. This derived datatype cannot be obtained
by applying the heuristic optimizations on INDEXED_BLOCK_TYPE or INDEXED_TYPE.
It is thus not constructed by the two MPI libraries used and has to be supplied by a
knowledgeable user. This datatype is optimal in the formal model we adopt (Sections 2.5
and 2.6) and highlights the performance gains that can potentially be achieved by solving
the Type Normalization Problem to optimality. Similar results were observed for
other data layouts, including heterogeneous data.

2.5 Formal model

To model the problem of optimal (or least-cost) type trees, we use a convenient abstraction
of the set of MPI type constructors (see Definition 3). The mapping is straight forward
and detailed in Section 2.5.1.

The displacements of a type map refer to memory addresses relative to a given start
address. Thus their values are limited to a finite range and it is safe to assume that
a displacement value can be stored with a constant number of bits. Some of the type
constructors defined by MPI measure displacements and strides in bytes, while others
use multiples of the sub-type’s extent. While these semantics are convenient for users,
we measure all displacements and strides in bytes to reduce notational overhead.

We define a shift operation (+) for displacement sequences and type maps, which
adds a scalar value to all displacements. For a displacement sequence D = 〈d0, . . . , dn−1〉
and a scalar k, D + k = 〈d0 + k, . . . , dn−1 + k〉. For a type map M = (T,D) with
D = 〈d0, . . . , dn−1〉 and a scalar k we have that

M + k = (T,D + k) = (T, 〈d0 + k, d1 + k, . . . , dn−1 + k〉) .

We abbreviate a shift operation with a negative scalar by (−).
The replication operation (∗) replicates a type sequence a given number of times: For

a type sequence T = 〈t0, . . . , tn−1〉 and a scalar k, k∗T = 〈t′0, . . . , t′kn−1〉 with t′i = ti mod n

for n ≤ i < kn.

Definition 3 (Type Constructors, type tree). Any type map can be represented, possibly
more concisely than listing all elements explicitly, as a type tree built out of the following
type constructors (or nodes).
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(a) Type map represented by a vec constructor with stride s. Basic idea: Sub-type is repeated at
regular intervals.
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(b) Type map represented by an idx constructor with displacements 〈e, 4e, 5e, 7e, 9e, . . .〉. Basic
idea: Sub-type is repeated at irregular intervals.
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(c) Type map represented by an idxbuc constructor with bucket stride s = e, bucket sizes 〈3, 5〉 and
displacements 〈0, 5e〉. Basic idea: Sub-type is repeated in consecutive locations within irregularly
displaced buckets.

0

S1

e 2e

S2

3e 4e

S2
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S2

6e 7e

S3
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S3
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(d) Type map represented by a strc constructor with displacements 〈e, 3e, 5e, 6e, 8e, 9e〉 and
sub-type array 〈T1, T2, T2, T2, T3, T3〉. Basic idea: Combine multiple distinct sub-types.

Figure 2.6: Sketches of the characteristics of type maps represented by different type
constructors. All examples use a generic sub-type S (S1, S2) which may be any basic or
derived MPI datatype. The extent of all the sub-types S, S1 and S2 is assumed to be e.

• A leaf, leaf(t) represents the base type t with displacement 0, i.e., the type map
M = (〈t〉, 〈0〉).

• A vector, vec(c, s,S), with count c, stride s and type tree S representing a type map
N = (T,D), describes the replication of the type map N at relative displacements
0, s, 2s, . . . , (c− 1)s, i.e., a type map1 M = (c ∗ T, 〈D,D + s, . . . ,D + (c− 1)s〉). S
is also called the sub-type.

• An index, idx(c, 〈i0, i1, . . . , ic−1〉,S), with displacements 〈i0, i1, . . . , ic−1〉, describes
the replication of the type map N (represented by S) at relative displacements i0,
i1, . . . , ic−1, i.e., a type map M = (c ∗ T, 〈D + i0, D + ii, . . . , D + ic−1〉).

• An index bucket idxbuc(c, s, 〈b0, . . . , bc−1〉, 〈i0, . . . , ic−1〉,S), with bucket sizes b0, . . . ,
bc−1, describes the concatenation of c type maps Ni at relative displacements
〈i0, . . . , ic−1〉. The i-th type map Ni is the replication of the type map N (repre-
sented by S) at relative displacements 0, s, 2s, . . . , (bi − 1)s. Thus, an index bucket

1We abuse notation a bit and define a sequence of sequences to be just a sequence, i.e, 〈D, D + s〉 =
〈〈d0, . . . , dn−1〉, 〈d0 + s, . . . , dn−1 + s〉〉 = 〈d0, . . . , dn−1, d0 + s, . . . , dn−1 + s〉.
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idx(9, 〈0, 1, 2, 3, 10, 11, 12, 13, 14〉)

leaf(MPI_CHAR)

(a) Trivial representation with idx

idxbuc(2, 1, 〈4, 5〉, 〈0, 10〉)

leaf(MPI_CHAR)

(b) More concise representation with idxbuc

strc(9, 〈0, 1, 2, 3, 10, 11, 12, 13, 14〉)

leaf(MPI_CHAR). . .leaf(MPI_CHAR)

(c) Trivial representation with strc (with a total of nine child nodes)

strc(2, 〈0, 10〉)

vec(5, 1)

leaf(MPI_CHAR)

vec(4, 1)

leaf(MPI_CHAR)

(d) Representation using a combination of vec and strc

Figure 2.7: Examples illustrating the type constructors defined in Definition 3. The type
map represented by each type tree is M = (〈char, . . .〉, 〈0, 1, 2, 3, 10, 11, 12, 13, 14〉) (four
contiguous elements of type char starting at offset 0 followed by five more contiguous
elements starting at offset 10).

describes a type map with displacement sequence

〈D+ i0 + 0s, . . . ,D+ i0 + (b0 − 1)s, . . . ,D+ ic−1 + 0s, . . . ,D+ ic−1 + (bc−1 − 1)s〉

and type sequence 〈b0 ∗ T, . . . , bc−1 ∗ T 〉.

• A struct (or heterogeneous index), strc(c, 〈i0, . . . , ic−1〉, 〈S0, . . . ,Sc−1〉), with sub-
types Si representing type maps Ni = (Ti, Di), describes the concatenation of
c type maps N0, . . . , Nc−1 (represented by S0, . . . ,Sc−1) at relative displacements
i0, . . . , ic−1, i.e., a type map

M = (〈T0, . . . , Tc−1〉, 〈D0 + i0, . . . , Dc−1 + ic−1〉) .

The basic idea of each constructor is illustrated in Figure 2.6 and we give some
examples in the following. A type map (〈char,char,char〉, 〈3, 5, 7〉) can be described
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by the type tree T = idx(1, 〈3〉, vec(3, 2, leaf(MPI_CHAR))). Any type map M = (〈t0, . . . ,
tn−1〉, 〈d0, . . . , dn−1〉) can trivially be represented with the strc constructor as strc(n,
〈d0, . . . , dn−1〉, 〈t0, . . . , tn−1〉), implying that the defined set of constructors is sufficient
to represent any type map. If M contains only one base type t, it can furthermore
trivially be represented as idx(n, 〈d0, . . . , dn−1〉, t). More examples illustrating each of
the constructors are given in Figure 2.7.

Note that child nodes represent the sub-type arguments of a constructor and that we
abbreviate longer type sequences of the same base type as 〈t, . . .〉. The number of occur-
rences of t can easily be derived from the length of the displacement sequence. To reduce
notational overhead, we sometimes use a type map instead of a type tree as sub-type. This
way, the example given before can also be stated as T = idx(1, 〈3〉, vec(3, 2, (〈char〉, 〈0〉)).
We may use MPI base types, C datatypes and leaf nodes with a concrete base type
interchangeably, since the mapping is one-to-one. For example, we may write strc(c, 〈. . .〉,
〈char,int, . . .〉) instead of strc(c, 〈. . .〉, 〈leaf(MPI_CHAR), leaf(MPI_INT), . . .〉). Further-
more, we use M = T to indicate that T represents M . We refer to vertices of type trees
also as type nodes, where each type node is one of the constructors. A type node repre-
senting a leaf constructor is also called a leaf node. Analogously, type nodes representing
a vec, idx, idxbuc or strc constructor are called vec, idx, idxbuc and strc node respectively.
The constructors that require an array of displacements (idx, idxbuc, strc) are grouped
together as irregular constructors, whereas the vec constructor is referred to as a regular
constructor. This distinction comes from the fact that the vec constructor concatenates
the sub-type in a regular pattern, whereas the others describe an irregular pattern. Note
that all leaf nodes of a type tree are necessarily leaf constructors, which however can
never be used as an internal node.

Each type tree represents one type map, which can be obtained by an ordered traversal
of the tree. The converse is not true: a non-trivial type map will often have several
possible type tree representations. This is exemplified in Figure 2.7, where four different
type tree representations are shown for the same type sequence. Actually, infinitely many
type tree representations exist for any type map, since

1. a representation can be blown up to arbitrary size by adding nodes that do
not increase the length of the represented type map compared to the type map
represented by the sub-type, and

2. for any type tree that consists of at least two irregular constructors, infinitely many
type trees with the same structure but different displacement arrays exist, where
all variants represent the same type map.

TO be more concrete, a type tree T = vec(1, s,S) (with arbitrary stride s) represents
the exact same type map as the type tree S. The same is true for the type tree
T ′ = idx(1, 〈0〉,S). Similar examples can easily be constructed with an idxbuc or a strc
node. Furthermore, the type tree T = idx(1, 〈−10〉, idx(1, 〈10〉,S)) represents the same
type map as T ′ = idx(1, 〈0〉, idx(1, 〈0〉,S)). Figure 2.8 illustrates this issue by providing
several different valid (if rather unnatural) type tree representations for a simple type

26



strc(2, 〈0, 1〉)

leaf(MPI_INT)leaf(MPI_CHAR)

(a) A natural representation with a minimal
amount of type nodes.

strc(2, 〈0, 1〉)

leaf(MPI_INT)vec(1, s)

leaf(MPI_CHAR)

(b) Adding a vec node with count 1 does not
change the represented type map...

idx(1, 〈0〉)

strc(2, 〈0, 1〉)

leaf(MPI_INT)vec(1, s)

leaf(MPI_CHAR)

(c) Neither does the addition of an idx node
with count 1 and displacement array 〈0〉...

idx(1, 〈−10〉)

strc(2, 〈10, 11〉)

leaf(MPI_INT)vec(1, 0)

leaf(MPI_CHAR)

(d) Or different values in the displacement
arrays that “cancel” each other out.

Figure 2.8: Several different type tree representations of decreasing “naturalness” for the
type map (〈char,int〉), 〈0, 1〉).

map. Fortunately, the number of representations one would consider “useful”, “sensible”
or – especially – “efficient” is comparatively small, as Chapter 4 shows.

The process of obtaining the type map represented by a type tree is called flattening.
Algorithm 2 gives a straight-forward implementation for the constructors of Definition 3,
assuming that type nodes are represented with some form of C-style structures. Possible
implementations for the constructor nodes are sketched in Listing 1. We make no claim
that this is a particularly efficient way of implementing flattening, but it suffices for the
purposes of this work. For a more efficient approach, see Träff et al. [THRZ99].

2.5.1 Mapping of MPI datatype constructors

Mapping MPI’s derived datatype constructors to the type constructors of the formal
model is straight forward and almost one-to-one. We first highlight their differences and
then show how each of the MPI derived datatype constructors introduced in Section 2.2
is expressible by the type constructors given in Definition 3.

27



Listing 1: Possible structures for representing leaf, idxbuc, vec and strc nodes in
type trees. The structure for idx nodes is equal to the one for idxbuc nodes minus
the members s and buckets. Each type node is assumed to store as the first two
members a variable kind indicating which constructor it encodes and a variable
cost holding the total cost of the type tree rooted at the node (see Section 2.6 for
details). We assume that any type node can be cast to the general type Typenode.
1 enum kind = {leaf, vec, idx, idxbuc, strc}
2 struct {
3 kind kind
4 int cost /* cost of type tree rooted at this node */

5 } Typenode
6
7 struct {
8 Basetype basetype /* base type */
9 } Leaf

10
11 struct {
12 kind kind ← idxbuc
13 int cost
14 int c /* count */
15 int s /* bucket stride */
16 int buckets[] /* bucket sizes */
17 int disp[] /* displacements */
18 Typenode subtype /* sub-type */

19 } IdxBuc
20
21 struct {
22 kind kind ← vec
23 int cost
24 int c /* count */
25 int s /* stride */
26 Typenode subtype /* sub-type */

27 } Vec
28
29 struct {
30 kind kind ← strc
31 int cost
32 int c /* count */
33 int disp[] /* displacements */
34 Typenode subtype[] /* array of sub-types */

35 } Strc
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Algorithm 2: Flattening procedure constructing the type map represented by a
given type tree T . The procedure is called with a base displacement, which will
normally be 0.
1 M ← (∅, ∅) /* empty type map */
2 Function Flatten(Typenode T , int base)
3 switch T .kind do
4 case leaf /* leaf */
5 Add (base, T .basetype) to M
6 case vec /* vector */
7 for i← 0; i < T .c; i++ do
8 Flatten(T .subtype, base + i · T .s)

9 case idx /* index */
10 for i← 0; i < T .c; i++ do
11 Flatten(T .subtype, base + T .disp[i])

12 case idxbuc /* index bucket */
13 for i← 0; i < T .c; i++ do
14 for j ← 0; j < T .buckets[i]; j++ do
15 Flatten(T .subtype, base + T .disp[i] + j · T .s)

16 case strc /* struct */
17 for i← 0; i < T .c; i++ do
18 Flatten (T .subtype[i], base + T .disp[i])

19 return M

The type nodes in the formal model are a slight simplification of MPI’s derived
datatype constructors:

• As was stated in Section 2.2, we assume that a datatype’s extent is the span of the
first to the last byte it occupies in memory. Therefore the datatype’s extent does
not have to be stored explicitly.

• Contrary to MPI, which measures displacements and strides either in bytes or mul-
tiples of the extent of the sub-type, the formal model defines all displacements and
strides in bytes. The constructors HVECTOR, HINDEXED and HINDEXED_BLOCK
measure displacements and strides in bytes but are otherwise equivalent to VECTOR,
INDEXED and INDEXED_BLOCK. Thus, they do not have to be incorporated into
the formal model.

• Some of MPI’s datatype constructors replicate the sub-type into several blocks,
where each block contains a certain number of either contiguous or strided replica-
tions of the sub-type (given by the blocklength or blocklengths[] argument
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of the VECTOR, INDEXED_BLOCK, INDEXED and STRUCT constructors). Except
for INDEXED, the corresponding type constructors in the formal model (vec, idx
and strc) save this extra value or sequence of values. If a sub-type is indeed such a
block of contiguous or strided replications, this information can easily be encoded
by the sub-type with the help of the vec constructor.

• Compared to the VECTOR constructor, CONTIGUOUS requires only one less argu-
ment. In our formal model, we map this constructor to the VECTOR constructor
with stride 1.

An arbitrary MPI derived datatype T can be mapped to a type tree T using only
the type constructors of the formal model as follows. If T is a base type, it is directly
modeled by a leaf node with the base type as argument. Otherwise, T has a sub-type
(oldtype) S with extent e. Assuming that S represents S in the formal model, T is
represented by T as follows.

T = CONTIGUOUS(c,S)
→ T = vec(c, e,S)

T = VECTOR(c, b, s, S)
→ T = vec(c, se, vec(b, e,S))

T = INDEXED_BLOCK(c, b, 〈i0, i1, . . . , ic−1〉,S)
→ T = idx(c, 〈i0e, i1e, . . . , ic−1e〉, vec(b, e,S))

T = INDEXED(c, 〈b0, b1, . . . , bc−1〉, 〈i0, i1, . . . , ic−1〉, S)
→ T = idxbuc(c, e, 〈b0, b1, . . . , bc−1〉, 〈i0, i1, . . . , ic−1〉,S)

T = STRUCT(c, 〈b0, b1, . . . , bc−1〉, 〈i0, i1, . . . , ic−1〉, 〈S0, S1, . . . ,Sc−1〉)
→ T = strc(c, 〈i0, i1, . . . , ic−1〉, 〈vec(b0, e,S0), vec(b1, e,S1), . . . , vec(bc−1, e,Sc−1)〉)

Figure 2.9 gives an example illustrating the differences between MPI’s datatype
constructors and the formal model. In an MPI implementation, the mapped type tree is
supposed to be used only as the internal representation of a user-defined derived datatype.
Transforming it back to a representation using MPI’s derived datatype constructors
is usually not necessary. It is certainly possible to perform such a transformation by
inverting the rules given above.

Note that the extent e of a base type may differ for different platforms, implying that
the internal representation of a derived datatype is platform dependent. Although the
structure and used constructors are the same, the mapped type trees may store different
values for displacements and strides (see Figure 2.10) This however does not constitute a
problem: Although MPI’s communication operations exchange typed values, the type
information itself is not transmitted or shared between participating processes. In other
words, each process constructs its own type tree representation. MPI does however take
care of correctly converting typed data if it is communicated between heterogeneous
machines.
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STRUCT(2,〈1, 1〉,〈0, 10〉)

VECTOR(3,2,4)

MPI_INT

MPI_CHAR

(a) Type tree with MPI datatype construc-
tors

strc(2, 〈0, 10〉)

vec(3, 16)

vec(2, 4)

leaf(MPI_INT)

leaf(MPI_CHAR)

(b) Type tree in the formal model

Figure 2.9: An example type tree constructed with MPI derived datatype constructors
and its translation to the formal model. The represented type map is (〈char,int, . . .〉,
〈0, 10, 14, 26, 30, 42, 46〉).

VECTOR(3,1,2)

MPI_DOUBLE

(a) A simple derived datatype. The stride argument of the VECTOR constructor is measured in
multiples of the base type’s extent.

vec(3, 16)

leaf(MPI_DOUBLE)

(b) Assumed extent of MPI_DOUBLE: 8
bytes.

vec(3, 32)

leaf(MPI_DOUBLE)

(c) Assumed extent of MPI_DOUBLE: 16
bytes.

Figure 2.10: Different extents for datatypes result in type trees storing different values
for displacements and strides.
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2.6 Cost model

Recall that a type tree T represents a type map M if Flatten (T , 0) = M . As can be
seen in e.g., Figure 2.7, a type map often has multiple different type tree representations.
MPI’s philosophy is to not define any performance requirements for its operations, instead
leaving it to implementations to provide the best possible solution for a given system.
It is thus not at all clear what an efficient or “good” representation looks like, which
may bar users from utilizing derived datatypes, instead reverting to manual packing
and unpacking routines. This issue was addressed by several authors who formulated
self-consistent performance guidelines for MPI’s communication operations [TGT10] as
well as parallel I/O [GKR+08] and derived datatypes [GHTT11]. Ideally, one should
be able to define the required data layout in the most natural way and trust the MPI
library implementation to find the most efficient representation. The notion of efficiency
of a representation is relative to how the type tree is used or processed by the MPI
implementation. Different cost models may be useful, depending on the context in which
derived datatypes are used as well as the target platform.

To process a derived datatype, each of the base types has to be located, e.g., by the
ordered traversal shown in Algorithm 2. The processing cost as well as the storage cost
of a type tree is thus proportional to the number of nodes it consists of. While leaf and
vec nodes can trivially be stored using only constant memory, the irregular constructors
require space proportional to the count c to store the arrays of displacements, bucket
sizes and sub-types. These arrays require time for processing as well as space to be stored
and the processing cost is thus also related to their size.

Träff [Trä14] introduced a simple, yet flexible additive cost model to capture these
observations by defining the cost of a type node to be “the number of words that must
be stored to process the node”. We extend it to cover all the constructors listed in
Definition 3. A strc node for example requires to store the kind of the node (leaf, vec,
idx, idxbuc or strc), the count and pointers to the arrays of displacements and sub-types.
Processing a strc node entails a per-element lookup cost for the arrays of displacements
and sub-types.

Definition 4 (Type node costs).

cost(leaf(t)) = Kleaf

cost(vec(c, s, T )) = Kvec

cost(idx(c, 〈. . .〉, T )) = Kidx + cKlookup

cost(idxbuc(c, s, 〈. . .〉, 〈. . .〉, T )) = Kidxbuc + 2cKlookup

cost(strc(c, 〈. . .〉, 〈. . .〉)) = Kstrc + 2cKlookup

To keep the cost model flexible, the constant cost per node and the per-element
lookup cost can be adjusted to also reflect other costs. The only assumption we do make
is that the cost values are always greater than zero. To match the C-style structure used
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strc(1 + 3, 〈0, 4, 8, 12〉)

leaf(MPI_FLOAT)leaf(MPI_FLOAT)leaf(MPI_FLOAT)leaf(MPI_INT)

(a) Trivial representation with cost a cost of 25.

strc(2, 〈0, 4〉)

vec(3, 1)

leaf(MPI_FLOAT)

leaf(MPI_INT)

(b) Exploiting the partially regular structure of the data reduces the cost to 20.

Figure 2.11: Exploiting (partially) regular structure of data may reduce cost. The
represented type map is M = (〈int,float, . . .〉, 〈0, 4, 8, 12〉).

to represent type nodes (Listing 1), we use the following values for examples throughout
this work. For a leaf node its kind and (a pointer to) its base type t have to be stored.
For efficient implementations (Chapters 5 and 6) it is necessary to store the cost of a
type tree with its root node. A member cost was included in the structure representing a
type node. For a leaf node a total of three words need to be stored, and thus we take the
cost of a leaf node to be Kleaf = 3. The costs for the other nodes can easily be deduced
as Kvec = Kidx = Kstrc = 5 and Kidxbuc = 7. We furthermore use Klookup = 1.

We define the cost of a type tree T as the sum of the costs of its type nodes Ti:

cost(T ) =
∑

i

cost(Ti)

With this cost model it is clear that type trees with less and more specialized nodes are
cheaper. However, a representation with a minimal amount of nodes is not necessarily the
cheapest: As an example, assume a type map that consists of one integer value plus
an array of k float values, i.e., M = (〈int,float, . . .〉, 〈0, 4, . . . , 4k〉). Different type
tree representations of this type map with k = 3 are given in Figure 2.11. The trivial
representation with the strc constructor simply lists all k+ 1 base types. A representation
of less cost is possible by taking into account that the k float values are stored
contiguously. The trivial representation has a cost of Kstrc +2(k+1)Klookup +(k+1)Kleaf ,
while the second one has cost Kstrc + 2Klookup +Kvec + 2Kleaf . Note that the cost of the
second representation is constant for any k, while the cost of the trivial representation
grows linearly with k. Thus, the difference in costs can be made arbitrarily large by
increasing k.
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idx(20, 〈0, 2, . . . , 24, 100, 103, . . . , 118〉)

leaf(MPI_CHAR)

(a) Trivial representation. Cost: 28.

idxbuc(8, 2, 〈13, 1, . . . , 1〉, 〈0, 100, 103, . . . , 118〉)

leaf(MPI_CHAR)

(b) Using idxbuc reduces the cost to 26.

strc(2, 〈0, 100〉)

vec(7, 3)

leaf(MPI_CHAR)

vec(13, 2)

leaf(MPI_CHAR)

(c) This representation uses the vec constructor to exploit the partially regular structure of the
type map and the strc constructor to concatenate two different sub-types. Cost: 25.

Figure 2.12: Three type tree representations for the type mapM = (〈char, . . .〉, 〈0, 2, . . . ,
24, 100, 103, . . . , 118〉) consisting of a total of 20 char types, highlighting the usefulness
of the strc constructor for homogeneous type maps.

The strc constructor is useful not only for heterogeneous type maps, as the example
in Figure 2.12 shows. For the homogeneous type map M = (〈char, . . .〉, 〈0, 1, 3, . . . , 39〉)
containing a total of 21 base types, the representation consisting of the strc and vec
constructors is optimal (i.e., no other type tree representation with less cost exists for
M).

To give an additional example, the type trees shown in Figure 2.8 have a cost of
(from 2.8a to 2.8d) 15, 20, 26 and 26. The last two type trees are of equal cost since they
consist of the same nodes, only with different values in their displacement sequences.

2.7 Formal problem definition

Using the formal model and cost model presented in the previous sections, we can now
formally define the Type Reconstruction Problem.

Type Reconstruction Problem
Instance: A type map M of length n.
Task: Find a least-cost (or optimal) type tree T representing M . A type tree T
is optimal if cost(T ) ≤ cost(T ′) for any other type tree T ′ representing M .
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P = idx(18, 〈0, 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28〉)

leaf(MPI_CHAR)

(a) Type path representation. Cost: 26.

T = strc(2, 〈0, 10〉)

vec(10, 2)

leaf(MPI_CHAR)

vec(8, 1)

leaf(MPI_CHAR)

(b) Type tree representation. Cost: 25.

D = strc(2, 〈0, 10〉)

vec(10, 2)vec(8, 1)

leaf(MPI_CHAR)

(c) Type DAG representation. Cost: 22.

Figure 2.13: The type map (〈char, ...〉, 〈0, 1, . . . , 7, 10, 12, . . . , 28〉) consisting of 18 char’s,
represented with a type path, type tree and type DAG. These representations are optimal
in the sense that no type path, type tree or type DAG of less cost than the ones shown
here exist. That is, no type path representation of less cost than P exists for the given
type map.

This master’s thesis is mostly concerned with type tree representations, which are
used in the vast majority of related work (see Chapter 3 for an explicit list of published
articles using type tree representations). However, possibly more efficient representations
exist when the underlying structure is generalized to directed acyclic graphs (DAG),
where equivalent nodes that occur multiple times in a type tree are folded into one
node. We suspect that some of the related work implicitly assumes and works with a
DAG structure, since the used type trees are often only loosely defined. On the other
hand, type tree representations can be computed more efficiently if the set of considered
constructors is restricted to those with only one sub-type, i.e., if only type paths are
constructed. The difference between type trees, type paths and type DAGs is illustrated
in Figure 2.13 and these problem variants are defined formally in the next sections.

2.7.1 Type DAGs

The definition of type trees (Definition 2) directly carries over to type DAGs. The only
difference is that a node in a type DAG may have arbitrarily many predecessors (or
incoming edges), i.e., a type may be used as the sub-type of multiple constructors, or even
multiple times by the same strc constructor. In general, a DAG does not contain a unique
root node, but may of course contain a designated start node. A DAG can be depicted
as a hierarchical structure similar to a tree: The start node is at the very top and edges
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n0

n2

n7n6n5

n1

n4n3

Figure 2.14: A simple DAG, depicted as a hierarchical structure. Contrary to a tree,
where edges may be orientated only downwards, a hierarchically drawn DAG may also
contain sideways orientated edges. It must not contain any upward edges, though.

T = strc(2c, 〈. . .〉)

Uc−1S. . .U1SU0S

(a) Type tree representation.

D = strc(2c, 〈. . .〉)

Uc−1. . .U1U0

S
(b) Type DAG representation.

Figure 2.15: Type DAGs can be arbitrarily more concise than type trees, as this example
shows. Both the type tree T and the type DAG D represent the same type map. The
sub-type S, which occurs multiple times, is folded into a single node in the DAG, thus
saving the cost for all its other occurrences.

may only be orientated downwards or sideways, but never upwards. Figure 2.14 shows an
example, with n0 being the start node. A type DAG D with start node N represents a
certain type map M that can be obtained by the same ordered traversal as used for type
trees, namely the flattening procedure given in Algorithm 2, i.e., M = Flatten(N , 0).

Figure 2.15 gives an example of the savings that can potentially be achieved with
type DAGs. Assume that the type tree T in Figure 2.15a is an optimal type tree for some
type map M . It consists of c equal sub-types S interleaved with c pair-wise different
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sub-types Ui. The cost of T is thus

cost(T ) = c · cost(S) +
c−1∑
i=0

cost(Ui) .

Since the c instances of the sub-type S are all the same, T can be “folded” into a DAG.
Figure 2.15b shows the resulting type DAG D. It represents the same type map M , but
is of less cost:

cost(D) = cost(S) +
c−1∑
i=0

cost(Ui)

In other words, it saves (c− 1) times the cost of S. As this example shows, compared to
type tree, arbitrarily large savings are possible with type DAGs.

Type DAG Reconstruction Problem
Instance: A type map M of length n.
Task: Find a least-cost (or optimal) type DAG representing M .

The definitions of the Type Reconstruction and Normalization Problems can
be easily adapted for type DAGs. However, as we discuss in Chapter 7, the algorithm
developed for constructing optimal type trees does not seem to be useful for the more
general problem of constructing optimal type DAGs.

2.7.2 Type paths

Type maps that can be represented optimally with the help of only the VECTOR and
INDEXED_BLOCK constructors are common in applications, e.g, if sub-matrices need to
be communicated [Trä14,KT15]. In this case, type trees degenerate to simple paths,
because the considered constructors do not take more than one sub-type. In this work,
we call type representations restricted to the leaf, vec and idx constructors type paths.
An extended type path may additionally consist of the idxbuc constructor.

Type Path Reconstruction Problem
Instance: A homogeneous type map M of length n.
Task: Find a least-cost (or optimal) type path P representing M .

The Extended Type Path Reconstruction Problem is defined analogously. The
Type Path Reconstruction Problem problem can be solved quite efficiently in
O(n
√
n) time, as was shown by Träff [Trä14]. In Chapter 6, we present our algorithm for

this problem, which improves the worst-case bound to O(n log / log logn) time.
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2.7.3 Type normalization

The Type Normalization Problem, which is closely related to the Type Recon-
struction Problem, is to transform a given type tree to an optimal one.

Type Normalization Problem
Instance: A type tree S.
Task: Find a least-cost (or optimal) type tree T representing the same type map
as S.

The problem is analogously defined for type paths and type DAGs. The Type Nor-
malization Problem, in particular the Type Path Normalization Problem, are
discussed in more detail in Section 7.2.
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CHAPTER 3
State of the art and related work

Historically, many MPI implementations handled derived datatypes poorly. Trivial manual
packing and unpacking code often performed significantly better than an implementation
relying on MPI’s derived datatype capabilities [GLS99a,RMG03]. A large amount of
research since focused on more efficient datatype processing (see e.g., [THRZ99,RMG03,
BGST03,MT08,KHS12,SKH13,PG15], some of which are discussed in more detail below),
which evidences the need of efficient internal representations of derived datatypes.

The Type Reconstruction and Normalization Problems, both for type trees
and type DAGs, appeared within this context. The Type DAG Reconstruction
Problem was first stated as an interesting open problem by Mir and Träff [MT08]. A
paper by Gropp et al. [GHTT11], which proposed explicit, self-consistent performance
guidelines for derived datatypes, formally defines the Type Normalization Problem.
It observes that enforcing these guidelines would require MPI implementations to solve
this problem, which was conjectured to be NP-hard. This conjecture was substantiated
in a recent paper by Träff [Trä14], who stated which type constructors are assumed to
make the problem hard. They also showed that the Type Path Reconstruction
Problem for type maps of length n is feasible in O(n

√
n) time if the set of considered

constructors is restricted to CONTIGUOUS, VECTOR and INDEXED. Furthermore, the
Type Path Normalization Problem with the same set of constructors can be solved
in time proportional to the depth of the type path and the length of the longest occurring
list of displacements. Their work is the most relevant for this thesis, and is discussed in
more detail in Section 6.1.

To the best of our knowledge, no other approaches to construct provably cost-optimal
type DAG, type tree or type path representations exist. Indeed, Gropp et al. [GHTT11]
when investigating the performance of derived datatypes in several MPI implementations,
found that very little type normalization is performed, even in trivial cases.

There is however a substantial amount of research using type tree representations
where heuristic, local optimizations are employed, which do not provide any guarantees
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on the quality of the constructed type trees. Typically, a subset of the following heuristic
optimizations is applied:

1. Specializing (or promoting) constructors to less general ones: Ross et al. [RMG03]
check for STRUCT constructors if they can be replaced with the HINDEXED con-
structor, which is assumed to be less costly. Their assumption is that this is always
the case for homogeneous data layouts. However, with a flexible cost model such
as the one used in this work, this is not necessarily true (refer to Section 2.6
for an example). In a similar manner, Schneider et al. [SKH13] replace with
CONTIGUOUS any VECTOR constructor with equal stride and blocklength
arguments. In [KHS12], Kjolstad et al. use a total of four specialization passes.
After the STRUCT to HINDEXED conversion outlined above, it is checked whether
further specialization to HVECTOR, VECTOR and finally CONTIGUOUS is possible.
Details about performing such constructor specializations can be found in a tech-
nical report [KHS11] accompanying the published work [KHS12]. Prabhu and
Gropp [PG15] seem to perform very similar optimizations, which unfortunately are
not described in detail.

2. Compressing (or merging) constructors: Kjolstad et al. [KHS12], Schneider et
al. [SKH13] and Prabhu et al. [PG15] merge contiguous sub-types into the parent
type. In this way, the total amount of used constructors is reduced by exploiting the
blocklength argument which most of the type constructors offer. An additional
compression is applied by [KHS12], where two consecutive STRUCT or HINDEXED
constructors are merged into one. Curiously, the INDEXED constructor is not
considered.

3. Ross et al. [RMG03] coalesce contiguous indexed regions, i.e., multiple blocks of
an INDEXED constructor, where the displacements are such that the blocks form a
contiguous memory area.

4. Kjolstad et al. [KHS12] also perform an optimization that changes the repre-
sented type map. When a contiguous datatype is used in a send operation, the
CONTIGUOUS constructor can be saved by integrating its count argument into
the send operation. That is, instead of sending n elements of a contiguous type
that replicates a sub-type count many times, n times count many elements of
the sub-type are sent.

A different strand of research focuses on the automatic generation of derived datatypes
with the aim of making their usage easier. A derived datatype can be generated either
out of a C datatype definition [RP06], C++ classes [TT08] or manually written packing
code [KHS12]. These approaches again perform only local heuristic optimizations, if any.

Other representations than the graph-based type DAGs and type trees are possible.
Ross et al. use a representation called dataloops [RMG03], which are closely related to
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type paths. Their approach does not consider the STRUCT constructor and therefore has
to revert to considering all data as untyped bytes if the data layout contains more than
one base type. Gropp et al. [GLS99a] use a representation based on a finite automaton,
where some sub-types of a type tree are replaced by special, highly optimized leaf nodes.
Jenkins et al. [JDB+14] developed a representation of derived datatypes that exposes
fine-grained parallelism and is thus suitable for processing by GPUs. Their idea is to split
arrays of displacements and sub-types, which are of arbitrary size, from the remaining
constant amount of information stored with each type node.

Several authors [SWP04, WWP04] propose to improve the performance of non-
contiguous data communication by facilitating advanced network features. The explicit
packing of message data into a contiguous buffer can be avoided if the network hardware
is capable of directly communicating strided (or even more complex) data, which enhances
performance significantly.
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CHAPTER 4
Characterizing type trees

In this chapter, we investigate the structure of optimal type trees. Some properties
of optimal type trees are hinted at in the previous chapters and we formalize these
observations in the following. In particular, in the discussion of MPI’s type constructors
in Section 2.2, we state for certain constructors that they describe the replication of
a given type map at certain displacements. While the idx constructor uses arbitrary,
possibly irregular displacement values, the vec constructor replicates into strided (or
regular) locations. The idxbuc constructor is a mixture of both, while the strc constructor
behaves in a fundamentally different way. To construct a type tree representation for a
given type map, it has to be checked if the type map follows such a pattern of irregular
or strided replications, that is, if a prefix of the type map repeats in a particular way.
This notion is defined formally in Section 4.1.

The properties shown in the following sections are crucial for efficient algorithms
solving the Type Reconstruction Problem and the Type Path Reconstruction
Problem, which are presented in Chapters 5 and 6 respectively. These algorithms
compute optimal type trees for the special case of aligned type maps (see Definition 13).
The structure of an optimal type tree can be characterized well for this special case and
we derive several crucial properties useful for proving the correctness of our algorithms.
A solution for a general type map can be derived without increasing the asymptotic time
and space bounds from an optimal type tree and partial results constructed along the
way.

This chapter contains many definitions, lemmas and corollaries and their proofs. We
separate the investigation of type tree properties and the presentation of algorithms into
multiple chapters for several reasons:

1. The properties presented in this chapter are required to solve both the Type
Reconstruction Problem and the Type Path Reconstruction Problem
efficiently.
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char

0 1

char

2

char

3 4

char

5 6

char

7 8 9

char

10

(a) The prefix of length 1 is repeated, but not strided.

int

0

float

4

double

8 16

int

100

float

104

double

108 116

int

200

float

204

double

208

(b) The prefix of length 3 is repeated and strided.

int

0

float

4

float

8

float

12 16

float

400

(c) No repeated prefix (except for the whole type map itself).

Figure 4.1: Examples of repeated and strided prefixes.

2. This chapter provides a detailed presentation of properties of (optimal) type trees
and intends to further the understanding of their nature.

3. By clearly separating these observations from how they are employed in the algo-
rithms, this chapter may serve as a starting point for deriving other, possibly more
efficient algorithms.

4.1 Repeated and strided prefixes
Recall the definition of a type map given in Section 2.1: A type map M = (T,D) of
length n is a sequence of base types T plus a sequence of displacements D, both of length
n. The type sequence (or type signature) T = 〈t0, t1, . . . , tn−1〉 consists of base types
ti and the displacement sequence D = 〈d0, d1, . . . , dn−1〉 consists of arbitrary integer
displacements di. A segment as well as a prefix of a type map, displacement or type
sequence refer to certain parts of the whole sequence:

Definition 5 (Segment, Prefix). A segment of an n-element displacement sequence from
index i to j is denoted by D[i, j] = 〈di, di+1 . . . , dj〉, 0 ≤ i ≤ j < n. A segment starting at
index 0 is also called a prefix. We denote a prefix of length q as Dq, i.e., Dq = D[0, q−1].

These terms are defined analogously for type sequences and the definition extends to
type maps in a natural way: The segment M [i, j] of a type map M = (T,D) of length n
is defined as M [i, j] = (T [i, j], D[i, j]). A segment of length q starting at index 0 is again
called a prefix and denoted by Mq.

If a type map M is equivalent to the replication of some prefix, the prefix is said to be
repeated in M .

Definition 6 (Repeated prefix of a displacement sequence). A repeated prefix of length
q in an n-element displacement sequence D is a prefix Dq s.t. q is a divisor of n and for
all i, j, 1 ≤ i < n/q, 0 ≤ j < q we have that

D[j]−D[0] = D[iq + j]−D[iq] .
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For type sequences, the notion of a repeated prefix is slightly different:

Definition 7 (Repeated prefix of a type sequence). A repeated prefix of length q in an
n-element type sequence T is a prefix Tq s.t. q is a divisor of n and for all i, 0 ≤ i < n
we have that

T [i] = T [i mod q] .

Definition 8 (Repeated prefix of a type map). A prefix Mq of a type map M = (T,D)
is a repeated prefix if both Tq and Dq are repeated prefixes in T and D respectively.

Figure 4.1a contains an example of a repeated prefix, with the prefix of length 1 being
repeated at displacements 0, 2, 3, 5, 7 and 10. A repeated prefix allows for a repre-
sentation via the idx constructor. In particular, this type map can be represented as
idx(6, 〈0, 2, 3, 5, 7, 10〉, leaf(MPI_CHAR)). The sub-type can be an arbitrarily complex type
map, as the example in Figure 4.1b shows. Here, the prefix M3 is repeated and thus the
type map M can be represented as idx(3, 〈0, 100, 200〉,M3). Contrary to the previous
two, the type map in Figure 4.1c does not contain a repeated prefix of length less than
n. Nevertheless, a type tree representation exists, since the example type map can be
represented as

strc(401, 〈0, 4, 8, . . . , 400〉, 〈leaf(MPI_INT), leaf(MPI_FLOAT), . . .〉 .

This is true for any type map, as the following corollary shows:

Corollary 1. Any type map can be represented by a type tree.

Proof. Let M = (〈t0, . . . , tn−1〉, D) denote an arbitrary type map of length n. M can be
represented by the type tree strc(n,D, 〈leaf(t0), . . . , leaf(tn−1)〉).

It follows directly from the definitions that any homogeneous type map can be
represented with one idx plus one leaf constructor, since a type mapM = (〈t, t, . . .〉, D) of
length n can be represented as idx(n,D, leaf(t)). Equivalently, any homogeneous type map
can also be represented by the idxbuc constructor as idxbuc(n, s, 〈1, 1, . . .〉, D, leaf(t)) with
arbitrary bucket stride s, or with the strc constructor as strc(n,D, 〈leaf(t), leaf(t), . . .〉).
Note that in the considered cost model these representations may in principle be of
less cost than the representation with the idx constructor, even though intuitively they
are of course more redundant. For our algorithms, we cannot make any assumptions
beyond the definition of the cost model given in Section 2.6 and thus have to consider
these representations. For examples, however, we do not explicitly mention a possible
representation with the idxbuc constructor with all bucket size values being 1, as well
as a representation with the strc constructor with all sub-types being equal. They can
trivially be derived for any representation with an idx constructor.

Definition 9 (Strided prefix). A strided prefix Dq of a displacement sequence D is a
repeated prefix that additionally fulfills

D[q]−D[0] = D[(i+ 1)q]−D[iq]
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T = strc(0, 10)

V = vec(3, 4)

leaf(MPI_INT)

U = vec(3, 1)

leaf(MPI_CHAR)

Figure 4.2: An optimal type tree representation for the type map M = (〈char,
char,char,int,int,int〉, 〈0, 1, 2, 10, 14, 18〉). The subtree U represents the type map
(〈char,char,char〉, 〈0, 1, 2〉), which is a prefix M . The subtree V represents the type
map (〈int,int,int〉, 〈0, 4, 8〉). Note that this is not a segment of M , since the displace-
ments do not match.

for all i, 0 ≤ i < n/q− 1, where s = D[q]−D[0] is the stride. A prefix Mq of a type map
M = (T,D) is a strided prefix if Dq is a strided prefix in D and Tq is a repeated prefix
in T .

Informally, a repeated prefix is a strided prefix if the repetitions occur at regular dis-
placements. Analogously to repeated prefixes, a strided prefix additionally allows for a
representation with the vec constructor. For example, the type map in Figure 4.1b can
alternatively be represented as vec(3, 100,M3).

Note that by definition, a type map, displacement or type sequence is always a
strided prefix of itself. Any type map M can therefore be represented as idx(1, 〈0〉,M)
or vec(1, 0,M). Although such representations may not be natural and, as Corollary 4
shows, are never part of an optimal type tree representation, they do exist. Defining
repeated and strided prefixes in this way reduces the number of special cases that have to
be dealt with in the algorithms. We typically omit this trivially strided prefix in examples
since they need not be considered when constructing optimal type trees, as the next
section shows.

4.2 Optimal type trees

In this section, we take a closer look at properties of optimal type trees. Note that type
paths are a special case of type trees for which the following observations hold as well.

The fundamental observation for our algorithms is that any type map can be described
by either a concatenation of the same kind of shorter type maps (and thus by the idx and
idxbuc constructors and possibly also by the vec constructor) or by a concatenation of
different, but shorter type maps (and thus by the strc constructor). Type maps of length
1 are trivially represented by a single leaf node.

Recall that a type tree is optimal if and only if no type tree of less cost representing the
same type map exists. It is easy to see that a solution for the Type Reconstruction
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Problem exhibits optimal sub-structure [CLRS09], i.e., that the dynamic programming
principle (or principle of optimality) applies. Given an optimal type tree representing a
type map M , each subtree S must represent the corresponding type map optimally. The
corresponding type map of a type tree is the type map represented by the type tree. For
a type tree S, the corresponding type map N is N = Flatten(S, 0). The statement
requires only that some type map is represented optimally, i.e., the corresponding type
map N is not necessarily a segment of M . Instead, the represented type map N is an
aligned segment of M . This is illustrated in Figure 4.2 and expanded on in Section 4.3.
The following lemma proves that an optimal type tree exhibits optimal sub-structure.

Corollary 2. Given an optimal type tree T representing a type map M , each subtree S
of T is an optimal representation of the corresponding type map.

Proof. By contradiction: Assume that an optimal type tree T for the type map M
contains a subtree S, which is a non-optimal representation of the type map N . Since S
is non-optimal, a different representation U of less cost exists for N . Replacing S with U
in T reduces the cost of T by the cost of S minus the cost of U , since the cost of U is
strictly less than the cost of S. This contradicts the assumption that T is optimal.

Definition 10 (Structure of an optimal type tree). An optimal type tree T for a type
map M = (T,D) of length n is either

1. T = leaf(t0), a single leaf node with base type t0 if n equals 1; or

2. T = vec(c, s,S), where the prefix Mq of length q = n/c is a strided prefix in M
with stride s and S is an optimal type tree for Mq; or

3. T = idx(c, 〈i0, . . . , ic−1〉,S), where the prefix Mq of length q = n/c is a repeated
prefix in M , S is an optimal type tree for Mq and the displacements i0, . . . , ic−1
are such that Flatten(T , 0) = M ; or

4. T = idxbuc(c, s, 〈b0, . . . , bc−1〉, 〈i0, . . . , ic−1〉,S), where the prefix Mq of length q =
n/c is a repeated prefix inM , S is an optimal type tree forMq and the displacements
i0, . . . , ic−1 together with the bucket sizes b0, . . . , bc−1 and the bucket stride s are
such that Flatten(T , 0) = M ; or

5. T = strc(c, 〈i0, . . . , ic−1〉, 〈S0, . . . ,Sc−1〉), where the subtrees Sj, 0 ≤ j < c, are
optimal type trees for the type maps Nj = Flatten(Sj , 0) which together with the
displacements i0, . . . , ic−1 are such that Flatten(T , 0) = M .

A few aspects of this characterization of optimal type trees must be pointed out.

• The stride s for a representation via a vec node is easily derived as s = D[q]−D[0].

• By the definition of the vec constructor, the type map represented by the subtree
S is replicated at displacements 0, s, 2s,. . . This does however not imply that D[0]
is equal to 0, since S may describe a type map where the first displacement value
is different from 0. Refer to Figure 4.3 for an example.
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vec(10, 1)

idx(1, 〈−10〉)

leaf(MPI_CHAR)

Figure 4.3: An optimal type tree for the type map (〈char, . . .〉, 〈−10,−9, . . . ,−1〉).
Although the root node is a vec node, the type tree represents a type map with D[0] 6= i.

idx(5, 〈1, 11, 21, 51, 101〉)

idx(3, 〈−1, 1,−2〉)

leaf(MPI_CHAR)

(a) The displacement values of the root node
are not equal to D[0], D[3],. . . ,D[12].

idx(5, 〈0, 10, 20, 50, 100〉)

idx(3, 〈0, 2,−1〉)

leaf(MPI_CHAR)

(b) A more natural representation.

Figure 4.4: Two optimal type trees for the type map (〈char, . . .〉, 〈0, 2,−1, 10, 12, 9, . . . ,
100, 102, 99〉).

idx(1, 〈−10〉)

S = vec(100, 4)

leaf(MPI_CHAR)

Figure 4.5: An optimal type tree for the type map (〈char, . . .〉, 〈−10,−6,−2, 2, . . . , 386〉).
The idx node with count c = 1 shifts the type map represented by the subtree S, but
does not affect the represented type map in any other way.
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• Contrary to the stride for vec nodes, the displacements for an idx, idxbuc or strc node
are not easily derivable. As the example in Figure 4.4a shows, the displacements
depend on the sub-type. Infinitely many different representations with the same
structure can be derived by adding some value x to the displacements of one
idx node and −x to the displacements of the other. Although a more natural
representation exists (Figure 4.4b), both are of same cost and equally valid.

• The above characterization allows for the vec, idx, idxbuc and strc nodes to have
a count of c = 1. This is a necessity for the irregular constructors, as Figure 4.5
exemplifies. If we required for c to be strictly larger than 1, we would not be able
to exploit the regular structure of the example type map which is captured by the
vec constructor. In this example, the idx node with count 1 shifts the represented
type map by the value −10.

4.3 Nice type trees
In this section, we introduce a special form of a type tree, called nice type tree. It is more
restricted in its structure than general type trees. We show that an optimal type tree of
this form exists for all type maps, thereby limiting the number of type trees that need
to be considered drastically. The definition of a nice type tree (Defintion 12) may seem
technical, but it closely matches what one would consider a natural representation. Some
technicalities are required before we can formally introduce nice type trees.

Definition 11 (Shifting node). We call an index node idx(c, 〈i0, . . .〉,S), an index bucket
node idxbuc(c, s, 〈. . .〉〈i0, . . .〉,S) or a struct node strc(c, 〈i0, . . .〉, 〈. . .〉) with i0 6= 0 a
shifting node; x = i0 is called the node’s shift.

Adding some shift x to all displacements of an irregular node T shifts the represented
type map by x. For example, assume a type tree idx(c, 〈i0, . . . , ic−1〉,S) representing
the type map M = (〈t0, . . . , tn−1〉, 〈d0, . . . , dn−1〉). Then, the type tree idx(c, 〈i0 + x, . . . ,
ic−1 + x〉) represents the type map M + x = (〈t0, . . . , tn−1〉, 〈d0 + x, . . . , dn−1 + x〉), i.e.,
the same type map shifted by the value x. If a type path contains an irregular node N
with count 1 and displacement value i0, N shifts the represented type map by i0. That is,
if a type path P represents a type map M , P \N represents the type map M − i0. As the
following corollary shows, N can be moved within P without changing the represented
type map. Figure 4.6 provides an illustration.

Corollary 3. If an irregular node N with count 1 is the child of a vec, idx or idxbuc
node O, N and O can be swapped without changing the represented type map.

Proof. Assume that a type tree T contains an idx node N = idx(1, 〈i0〉,S) with count 1.
Assume further that N is the child node of a vec node O, i.e., O = vec(c, s, idx(1, 〈i0〉,S))
with some fixed count c and stride s. The type tree rooted at O represents a replication
of S at relative displacements i0, i0 + s, . . . , i0 + (c− 1)s. Swapping N and O does not
change the represented type sequence. The type tree idx(1, 〈i0〉, vec(c, s,S)) represents a
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idxbuc(2, 10, 〈2, 1〉, 〈0, 30〉)

vec(2, 2)

idx(1, 〈10〉)

leaf(MPI_CHAR)

idxbuc(2, 10, 〈2, 1〉, 〈0, 30〉)

idx(1, 〈10〉)

vec(2, 2)

leaf(MPI_CHAR)

idx(1, 〈10〉)

idxbuc(2, 10, 〈2, 1〉, 〈0, 30〉)

vec(2, 2)

leaf(MPI_CHAR)

Figure 4.6: Three alternate type tree representations of same cost for the type map
(〈char, . . .〉, 〈10, 12, 20, 22, 40, 42〉).

replication of S at relative displacements 0 + i0, s+ i0, . . . , (c− 1)s+ i0. The proof is
analogous for any combination of O being a vec, idx or idxbuc node and N being an idx,
idxbuc or strc node with count 1.

Note that N cannot be moved across strc nodes (with count c > 1), as this would affect
the type maps represented by the strc node’s other sub-types as well, thereby changing
the type map represented by the type tree.

Definition 12 (Nice type tree). A nice type tree T is a type tree that contains at most
one shifting node, which, if it exists, is the first irregular node on every root to leaf path
in T .

Figure 4.7 shows an example type tree and its nice type tree equivalent.

Lemma 1. For any type tree T representing a type mapM , a nice type tree representation
T ′ of M with equal cost exists.

Proof. A node is bad if it is a shifting node and not the first irregular node on any root
to leaf path in T , i.e., if it violates the nice type tree property. If a node is not bad, it
is good. A nice type tree T ′ representing the type map M can be constructed from the
initial type tree T inductively as follows. Assume that a bad idx node B = idx(c, 〈i0, . . . ,
ic−1〉,S) with shift x = i0 is present in T ′ (the proof is analogous for bad idxbuc and bad
strc nodes). On the path from B to the root node R there is either

1. a (good or bad) strc node N with no other strc, bad idx or bad idxbuc node on the
path from B to N ; or

2. a bad idx or a bad idxbuc node N with no other strc, bad idx or bad idxbuc node
on the path from B to N ; or
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idx(1, 〈10〉)

strc(3, 〈−10, 0, 15〉)

idx(3, 〈5, 3, 0, 7〉)

leaf(MPI_CHAR)

idxbuc(2, 1, 〈2, 3〉, 〈5, 10〉)

leaf(MPI_CHAR)

idxbuc(1, 0, 〈1〉, 〈4〉)

vec(4, 3)

leaf(MPI_CHAR)

(a) In general, a type tree may contain many shifting nodes as well as many irregular nodes with
count 1. This example type tree contains two irregular nodes with count 1 and a total of five
shifting nodes.

idx(1, 〈4〉)

strc(3, 〈0, 11, 26〉)

idx(3, 〈0,−2, 5, 2〉)

leaf(MPI_CHAR)

idxbuc(2, 1, 〈2, 3〉, 〈0, 5〉)

leaf(MPI_CHAR)

idxbuc(1, 0, 〈1〉, 〈0〉)

vec(4, 3)

leaf(MPI_CHAR)

(b) A nice type tree representation of equal cost. Note that the structure does not change, only
the displacement values do. This tree contains only one shifting node, which is the first irregular
node on any root to leaf path. All other nodes are aligned, i.e., their first displacement value is
equal 0. The remaining displacement values have been adapted s.t. this type tree represents the
same type map as the one in Figure 4.7a.

Figure 4.7: A general and a nice type tree representation for the type map (〈char, . . .〉,
〈4, 7, 10, 13, 15, 16, 20, 21, 22, 30, 28, 35, 32〉).
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3. a good idx or idxbuc node N s.t. there is no other idx, idxbuc or strc node on the
path from R to N and cases 1 and 2 do not apply.

In the first two cases, we are interested in the bad idx, bad idxbuc or (good or bad) strc
node that is closest to B on the path from B to R; in the third case we are interested in
a good idx or idxbuc node that is closest to R. Note that for every bad node in a type
tree, exactly one of the three cases applies. We show for each case how the bad node B
can be transformed into a good one.

Case 1: On the path from B to R there is a strc node N = strc(c′, 〈i′0, . . . , i′k, . . . ,
i′c′−1〉, 〈S ′0, . . . ,S ′k, . . .S ′c−1〉) with B being in the k-th subtree S′k. We can change B to a
non-shifting and thus good node by subtracting its shift value x from all displacements
and adding x to the k-th displacement of the strc node N . Formally, we set B = idx(c,
〈0, i1 − x, . . . , ic−1 − x〉,S) and N = strc(c′, 〈i′0, . . . , i′k−1, i

′
k + x, i′k+1, . . . , i

′
c′−1〉, 〈S ′0, . . . ,

S ′c−1〉).

1a: For k = 0, this may turn the strc node N from a good to a bad node and thus not
decrease the total number of bad nodes in T ′. However, this can occur only finitely
many times. The bad node always moves up the tree towards the root and the
number of bad nodes is reduced by the following cases eventually.

1b: For k > 0, the status of N is not changed and thus we have one less bad node in
T ′.

Case 2: On the path from B to R there is another bad idx node N = idx(c′, 〈i′0, . . . ,
i′c−1,S ′〉 (the proof is analogous for a bad idxbuc node N = idxbuc(c′, s′, 〈b′0, . . . , b′c−1〉,
〈i′0, . . . , ic−1〉,S ′)). We change B to a non-shifting node by subtracting its shift value x
from all displacements, as before. This is compensated by adding the same shift value to
all displacements of N , i.e., we set N = idx(c′, 〈i′0 + x, . . . , i′c−1 + x〉,S ′). Since N was a
bad node before, the total number of bad nodes in T ′ is reduced by one.

Case 3: There is no strc node and no other bad idx or idxbuc node on the path from
B to R. Since B is a bad node, there has to be at least one good idx or idxbuc node on
the path from B to R (otherwise, B would be the first irregular node on a root to leaf
path and thus not a bad node). Let N = idx(c′, 〈i′, . . . , i′c−1〉,S ′) be the first such node on
the path from R to B (the proof is analogous for N being an idxbuc node). Subtracting
B’s shift x from its displacements and adding it to the displacements of N reduces the
number of bad nodes in T ′ by one. The node N is the first irregular node on the path
from R to B and thus the first such node on any root to leaf path. Adding the shift value
x to its displacements does not turn N into a bad node.

A nice type tree T ′ can be obtained by applying the above transformations as long as
a bad node exists in T ′. None of the transformations changes the represented type map,
since a shift value subtracted from one node is always added at some other appropriate
node. Only displacement values of irregular nodes are changed by these transformations,
while the size of the displacement arrays stays the same and no nodes are added to or
deleted from T ′. Thus, T ′ is a nice type tree representing M and of the same cost as the
initial type tree T .
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Observe that a nice type tree is not necessarily optimal. For example, the nice type
tree shown in Figure 4.7b contains an idxbuc node with count 1 and i0 = 0. This node is
“useless” in the sense that it can be removed from the type tree without changing the
represented type map. Doing so reduces the cost of the whole type tree and therefore
the initial type tree, although nice, cannot be optimal. This intuition of useless nodes
is formalized in the next corollary and we continue to prove several more properties of
optimal type trees.

Corollary 4. An optimal type tree does not contain a vec node with count 1 or an
irregular node with count 1 and i0 = 0.

Proof. Assume a type tree T = vec(1, s,S) that represents the type map M . Note
that S represents the same type map with less cost and thus T cannot be an optimal
representation of M . Due to the principle of optimality (Corollary 2), a vec node with
count 1 can never be part of an optimal type tree representation. The proof for irregular
nodes with count 1 and i0 = 0 is analogous.

Corollary 5. Any optimal type tree T contains at most one irregular node with count 1.
This node, if it exists, is a shifting node and the only irregular node in T .

Proof. Assume that T is optimal and contains more than one irregular node with count 1.
The nice type tree property (Lemma 1) implies that a cost equivalent nice type tree exists
which contains at most one shifting node (with arbitrary count). Any other irregular
node is a non-shifting node with displacement array 〈0, . . .〉. Those irregular nodes with
count 1 can be removed without changing the represented type map (Corollary 4). A
representation of less cost exists, contradicting the premises that T is optimal. This
proves that T contains at most one irregular node with count 1 and that this node is a
shifting node. Call this node N and its shift x. It remains to show that N is the only
irregular node in T . Assume that N as well as at least one other irregular node are part
of T . Let N ′ be the first irregular node different from N on the path from N to the root
node. If such a node does not exist, let N ′ be the first irregular node different from N on
the path from N to a leaf node. Analogously to the proof of the nice type tree property
(Lemma 1) we can set the first and only displacement value of N to 0 and add x to

• the displacement values of N ′ if it is an idx or idxbuc node; or

• the k-th displacement value ik of N ′ if it is a strc node with N in the k-th subtree;
or

• all the displacement values of N ′ if it is a strc node with N being an ancestor of
N ′.

This does not change the represented type map but renders N useless.

Corollary 6. If an optimal type tree T representing a type map M contains an irregular
node N with count 1, M can be represented by a cost-equivalent type tree T ′ s.t. N is the
root node of T ′.
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Proof. Note that idx, idxbuc and strc nodes with count 1 all represent the same operation,
i.e., for a given sub-type S, displacement array 〈i0〉 and – where necessary – block lengths
of 〈1〉, they all represent the same type map. We can therefore assume w.l.o.g. that N is
an idx node. Due to Corollary 5, N is the only irregular node in T , i.e., the only other
nodes in T are leaf and vec nodes. In particular, T does not contain a strc node and we
can apply Corollary 3 to move N to the top of the type tree.

4.4 Optimal type trees for aligned type maps

Definition 13 (Aligned type map). A displacement sequence D is aligned if D[0] = 0.
A type map M = (T,D) is aligned if D is.

Note that a type tree T not containing any shifting nodes always represents an aligned
type map M , since it is not possible to generate a type map with first displacement value
D[0] 6= 0 without a shifting node.

Corollary 7. A nice type tree T for an aligned type map M does not contain any shifting
nodes.

Proof. The nice type tree property (Definition 12) guarantees that T contains at most one
shifting node, which is additionally the first irregular node on any root to leaf path. We
proceed by contradiction: Assume that a shifting node N = strc(c, 〈i0, . . .〉, 〈S0, . . . ,Sc−1〉)
indeed exists in T (the proof is analogous for idx and idxbuc nodes). Since N is the first
irregular node on any root to leaf path, the type map N represented by N is a prefix
of M , not a segment M [i, j] with i 6= 0. In particular, S0, which does not contain any
shifting nodes, represents an aligned prefix of M . Since N is a shifting node, it represents
a prefix of M that is not aligned; a contradiction, since N cannot represent both an
aligned and a non-aligned prefix of M .

Given a type tree T without shifting nodes, it is clear that each subtree of T (including
T itself) represents an aligned type map. If T represents the type map M , any subtree
S represents an aligned segment of M .

4.5 Height of an optimal type tree

In the following, we prove one more property of optimal type trees, namely that the
height of an optimal type tree representation for a type map of length n is bounded by
O(logn). This property is crucial for the construction of optimal type trees and optimal
type paths for general type maps, i.e., the proofs of Lemma 8 (Section 5.6) and Lemma 13
(Section 6.4).

Corollary 8. An optimal type tree T contains no directly nested strc nodes, i.e., no node
of the form N = strc(c, 〈i0, . . . , ik, . . . , ic−1〉, 〈S0, . . . ,Sk, . . . ,Sc−1〉) with Sk = strc(c′,
〈i′0, . . . , i′c′−1〉, 〈S ′0, . . . ,S ′c′−1〉) for some k, 0 ≤ k < c.
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N = strc(c, 〈i0, . . . , ik, . . . , ic−1〉)

Sc−1. . .Sk = strc(c′, 〈i′0, . . . , i′c′−1〉)

S′c−1. . .S′0

. . .S0

(a) A representation with two directly nested strc nodes.

N ′ = strc(c, 〈i0, . . . , ik−1, ik + i′0, . . . , ik + i′c′−1, ik+1, . . . , ic−1〉)

Sc−1. . .Sk+1S′c′−1. . .S′0Sk−1. . .S0

(b) A more concise representation with the two strc nodes merged into one.

Figure 4.8: Two directly nested strc nodes can always be merged into one.

Proof. The two directly nested strc nodes can be merged into a single node N ′ =
strc(c + c′ − 1, 〈i0, . . . , ik−1, ik + i′0, . . . , ik + i′c′−1, ik+1, . . . , ic−1〉, 〈S0, . . . ,Sk−1,S ′0, . . . ,
S ′c′−1,Sk+1 . . . ,Sc−1〉). See Figure 4.8 for an illustration. The overall cost is reduced
by the cost of the two nodes N and Sk and increased by the cost of N ′, i.e., by
Kstrc + cKlookup +Kstrc + c′Klookup − (Kstrc + (c+ c′ − 1)Klookup) = Kstrc +Klookup.

Lemma 2. The height of an optimal type tree representing a type map of length n is
O(logn).

Proof. Note that a vec, idx or idxbuc node with count c > 1 and sub-type S increases
the length of the represented type map by a factor of c, compared to the type map
represented by S. A strc node with count c > 1 on the other hand increases the length of
the represented type map by only c− 1 in the worst case, compared to the largest type
map represented by its sub-types. To see this, assume that one sub-type S represents a
type map of length l, while the remaining c− 1 sub-types represent type maps of length 1
(i.e., they are simple leaf nodes). Concatenating these sub-types with a strc constructor
results in a type tree representing a type map of length l + c− 1, i.e., a type map that is
only c− 1 elements longer than the type map of length l represented by the sub-type S.

Due to Corollary 5, an optimal type tree contains at most one node with count 1.
Except for this node and the leaf node, at least every other node on any root to leaf path
is a vec, idx or idxbuc node with count c > 1, since strc nodes cannot be directly nested
(Corollary 8). Thus, on any root to leaf path the length of the represented type map at
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least doubles with at least every other node, implying that the length of any root to leaf
path in an optimal type tree is O(logn).
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CHAPTER 5
Type tree reconstruction

In this chapter, we present our algorithm that solves the Type Reconstruction
Problem in polynomial time. More precisely, we prove the following theorem:

Theorem 1. For any type map M of length n, the Type Reconstruction Problem
can be solved in O(n4) time and O(n2) space.

The observations regarding optimal type trees, nice type trees and aligned type maps
made in the previous chapter (Sections 4.2 to 4.4) directly lead to an approach for
attacking the Type Reconstruction Problem for the special case of aligned type
maps. With the properties proved so far, we can give a high-level outline of our algorithm
(Section 5.1). The missing parts are developed in Sections 5.2 to 5.4 and the full algorithm
solving the problem for the special case of aligned type maps is given in Section 5.5.
Section 5.6 shows how a solutions for general type maps can be constructed and concludes
the chapter with the proof of Theorem 1.

5.1 Outline of the algorithm

We start with an outline of our algorithm for the Type Reconstruction Problem for
aligned type maps. We draw from the pool of properties discussed in Chapter 4 to derive
and justify an elegant and efficient algorithm. The missing parts, represented on a high
level in Algorithm 3 by comments, are developed in the following sections.

Due to Lemma 1, it suffices to construct an optimal nice type tree. Furthermore,
an optimal type tree for an aligned type map does not contain any shifting nodes
(Corollary 7) or nodes with count 1 (Corollary 4). In other words, an optimal type tree
for an aligned type map can be computed by an exhaustive search of all possible nice
type tree representations that do not contain any shifting nodes or nodes with count 1.
The problem exhibits optimal sub-structure (Corollary 2) and a dynamic programming
algorithm can solve the problem by combining solutions of sub-problems. A sub-problem
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Algorithm 3: A high level outline of our algorithm solving the Type Recon-
struction Problem for aligned type maps.
Input: Aligned type map M = (T,D) of length n.
Output: Optimal type tree representation of M .

1 Function Typetree(M , n)
2 // Trivial solution for all segments of length 1
3 for i← 0; i < n; i++ do
4 Ti,i ← leaf(T [i]);
5 // Construct optimal type tree for all aligned segments

of M
6 for l← 2; l ≤ n; l++ do
7 for i← 0; i ≤ n− l; i++ do
8 j ← i+ l − 1
9 // Let Ni,j be the aligned segment M [i, j]

10 // Construct for Ni,j the least-cost type tree...
11 // ...Tidx with an idx node as root
12 // ...Tidxbuc with an idxbuc node as root
13 // ...Tvec with a vec node as root
14 // ...Tstrc with a strc node as root
15 // Optimal type tree Ti,j for Ni,j is one of Tidx, Tidxbuc,

Tvec or Tstrc.

16 return T0,n−1

of the Type Reconstruction Problem for an aligned type map M of length n is to
compute an optimal type tree representation for an aligned segment N of M , where N is
of length strictly less than n. Given a type map M = (T,D), we designate by Ni,j the
aligned segment M [i, j], i.e., Ni,j = M [i, j]−D[i]. An optimal type tree representation
for the sub-problem Ni,j is designated by Ti,j , which is also called a solution for the
sub-problem.

Our approach is outlined in Algorithm 3 and proceeds in a bottom up manner: It
iteratively constructs solutions for all sub-problems, i.e., for all aligned segments of the
type map, starting with the segments of length 1. A sub-problem of length 1 is a pair
of some base type t and the displacement 0. Formally, we have that Ni,i = (〈ti〉, 〈0〉)
for all i, 0 ≤ i < n. Such a type map can trivially be represented by a single leaf
node leaf(ti) and it is clear that this is the optimal representation. This trivial solution
is constructed for each sub-problem of length 1 in lines 3 to 4 of Algorithm 3. The
algorithm then proceeds to compute optimal representations for all sub-problems of
length l, l = 2, 3, . . . , n. Assume that a solution is known for all sub-problems of length
strictly shorter than l, i.e., for all Ni,j for which j − i+ 1 < l, 0 ≤ i ≤ j < n. A solution
for a sub-problem Ni,i+l−1 is a type tree with either a vec, idx, idxbuc or strc node as the
root node with the sub-types being solutions to some of the sub-problems Ni,j . For each
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sub-problem, the algorithm constructs all possible nice type tree representations and
picks the one of least cost. In other words, the solution is found by exhaustive search,
with the search space restricted to nice type trees. The algorithm constructs up to four
different representations for the sub-problem Ni,i+l−1:

• If the prefix Ni,i+q−1 of length q is repeated in Ni,i+l−1, a representation Tidx =
idx(c, 〈i0, . . . , ic−1〉, Ti,i+q−1), with c = n/q is possible.

• With the same repeated prefix a representation Tidxbuc = idxbuc(c, s, 〈b0, . . . , bc−1〉,
〈i0, . . . , ic−1〉, Ti,i+q−1) is also possible.

• If the prefix of length q is strided in Ni,i+l−1, a representation Tvec = vec(c, s,
Ti,i+q−1), with c = n/q exists.

• A representation Tstrc = strc(c, 〈i0, . . . , ic−1〉, 〈T0, . . . , Tc−1〉), which always exists.

In Sections 5.2 to 5.4, we describe in detail how these representations can be constructed.
Each of them is of least cost w.r.t. to all possible representations of that form. That is,
no representation of Ni,i+l−1 exists that has an idx node as the root node and is of less
cost than Tidx. Out of these four representations, the one with least cost is necessarily
an optimal solution for the sub-problem Ni,i+l−1. The representation Tstrc is guaranteed
to exist due to Corollary 1. The representations Tidx and Tidxbuc, however, exist only
if Ni,i+l−1 contains a repeated prefix. The representation Tvec exists only if Ni,i+l−1
contains a strided prefix. As discussed in Section 4.1, the prefix of length l is trivially
repeated and strided in any type map of length l. However, using this prefix for a
representation via an idx, idxbuc, vec or strc node creates a node with count 1, which
cannot exist in an optimal type tree representation. The solution for the sub-problem
N0,n−1 is the required solution for M , since N0,n−1 = M for aligned type maps.

5.2 Representations via the vector and index constructors
In this section, we present straight-forward procedures to construct the representations
Tidx and Tvec. Formally, we prove the following lemma.

Lemma 3. Let M = (T,D) be an aligned type map of length n and assume that optimal
type tree representations T0,j are known for all sub-problems of length strictly less than
n, i.e., for each sub-problem N0,j with j < n− 1. The representations Tidx and Tvec, s.t.
each of them is of least cost w.r.t. all possible representations of the respective form, can
be computed in O(n

√
n) time.

The algorithms computing the representations Tidx and Tvec employ two simple
procedures (given in Algorithm 4) which check in a straight-forward way if a prefix is
repeated and strided. It is easy to see that both procedures require O(n) time: The inner
for-loop in procedure Repeated executes q times for each of the n over q iterations of
the outer for-loop, leading to a total of O(n) executions of the nested for-loop’s body. The
body of the third for-loop is executed at most n− q times, implying an O(n) worst case
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Algorithm 4: Trivial checks for repetitions and strided repetitions.
Input: Type map M = (T,D) of length n; integer q s.t. q is a divisor of n.
Output: true, if the prefix Mq is repeated in M ; false otherwise.

1 Function Repeated(M, n, q)
2 for i← q; i < n; i← i+ q do
3 for j ← 1; j < q; j ← j + 1 do
4 if D[j]−D[0] 6= D[i+ j]−D[i] then
5 return false

6 for i← q; i < n; i++ do
7 if T [i] 6= T [i mod q] then
8 return false

9 return true
10

Input: Type map M = (T,D) of length n; integer q s.t. Mq is a repeated prefix
Output: true, if the prefix Mq is strided in M ; false otherwise

11 Function Strided(M, n, q)
12 s← D[q]−D[0]
13 for i← q; i < n; i← i+ q do
14 if D[i]−D[i− q] 6= s then
15 return false

16 return true

bound for the whole procedure. The for-loop in Strided performs n over q iterations,
directly implying the claimed upper bound.

Furthermore, Algorithms 5 and 6 use the function Min. Given two type trees T and
S, Min returns the one with least cost. If either is null, the other is returned. Since we
keep with each type node the cost of the type tree rooted at this node (as discussed in
Section 2.6), Min can easily be implemented in constant time.

Algorithms 5 and 6 enumerate all possible representation of the desired forms and
keep track of the ones with least cost. A representation with an idx node as root node
can be constructed for each repeated prefix Mq of length q. Algorithm 5 simply checks
for each divisor q of n whether the prefix Mq is repeated in M . If a prefix of length q
is repeated in M , M can be represented with an idx node with count c = n/q and the
sub-type T0,q−1. Since both the prefix of length q and the type map M are aligned, we
have that N0,q−1 = Mq. Thus, the displacement values are easily derived as i0 = D[0],
i1 = D[q], . . . , ic−1 = D[(c− 1)q]. If this prefix is additionally strided, a representation
via a vec node with stride s = D[q]−D[0] is also possible.

The foreach-loop (line 3 in both Algorithm 5 and Algorithm 6) is executed for each
divisor of n, except for n itself. For q = 1, the sub-type is a leaf node, whereas q = n
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Algorithm 5: Finding a least cost representation with an idx node as root node.
Input: Type map M = (T,D) of length n; optimal type trees T0,j for each

sub-problem N0,j with j < n− 1.
Output: Representation Tidx of M , which is of least cost w.r.t. all possible

representations of this form.
1 Function Idx(M , n, {T0,j | 0 ≤ j < n− 1})
2 Tidx ←null
3 foreach divisor q of n, q < n do
4 if Repeated(M , n, q) then
5 c← n/q
6 for i = 0; i < c; i++ do
7 disp[i]← D[iq]
8 S ← idx(c, disp, T0,q−1)
9 S.cost ← Kidx + cKlookup + T0,q−1.cost

10 Tidx ← Min(Tidx, S)

11 return Tidx

Algorithm 6: Finding a least cost representation with a vec node as root node.
Input: Aligned type map M = (T,D) of length n; optimal type trees T0,j for each

sub-problem N0,j with j < n− 1.
Output: Representation Tvec of M , which is of least cost w.r.t. all possible

representations of this form.
1 Function Vec(M , n, {T0,j | 0 ≤ j < n− 1})
2 Tvec ←null
3 foreach divisor q of n, q < n do
4 if Repeated(M , n, q) and Strided(M , n, q) then
5 c← n/q
6 s← D[q]−D[0]
7 S ← vec(c, s, T0,q−1)
8 S.cost ← Kvec + T0,q−1.cost
9 Tvec ← Min(Tvec, S)

10 return Tvec
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would lead to nodes with count 1. Since M is aligned, we have that D[0] = 0 and the
constructed nodes do not violate the nice type tree property. We stress that the type
map must be aligned for Algorithm 6 to work correctly, whereas Algorithm 5 constructs
a valid representation for general type maps.

Proof of Lemma 3. The correctness of Algorithm 5 and Algorithm 6 follows from the
above observations. The body of the foreach-loop of Algorithm 5 requires O(n) time:
It contains one call of Repeated and assembling the array of displacements requires
c steps. The remaining steps are each feasible in constant time. Since all these costs
are additive, O(n) is an upper bound for the loop-body, which is executed once for each
divisor q of n (except for n itself).

A rough upper bound for the number of divisors of n is O(
√
n): Each divisor of n

smaller than or equal to
√
n is paired with a divisor larger than or equal to

√
n. We can

count the number of divisors smaller than
√
n and multiply it by two to get the total

number of divisors. Since at most
√
n values divide

√
n, the total number of divisors of

n is at most 2
√
n, which is O(

√
n). We note that this rough upper bound suffices for the

purposes of this section. In Chapter 6, a more efficient algorithm is presented that leads
to a tighter bound, which may be beneficial for implementations.

In total, Algorithm 5 performs O(n
√
n) steps. The same bound holds for Algorithm 6:

Checking whether a prefix is repeated and strided requires O(n) time. The upper bound
for the number of divisors directly proves the claim.

5.3 Representation via the index bucket constructor
For the construction of the representation Tidxbuc, repeated prefixes are also required.
The representations Tidx and Tidxbuc are closely related: If a representation with an idx
node as root node exists, so does a representation where the root node is an idxbuc node.
Nevertheless, computing the representation Tidxbuc is more involved than the construction
of the Tvct and Tidx representations.

Lemma 4. Let M = (T,D) be an aligned type map of length n and assume that optimal
type tree representations T0,j are known for all sub-problems of length strictly less than n,
i.e., for each sub-problem N0,j with j < n − 1. The representation Tidxbuc of least cost
w.r.t. all possible representations of this form can be computed in O(n

√
n logn) time.

As discussed in Section 4.1, a representation via an idxbuc node can always be
derived from a representation with an idx node. In particular, if idx(c, 〈i0, i1, . . . , ic−1〉,
T0,q−1) represents M , so does the type tree idxbuc(c, s, 〈1, . . . , 1〉, 〈i0, i1, . . . , ic−1〉, T0,q−1)
with arbitrary bucket stride s. Although the latter is clearly more redundant, it is not
necessarily a more costly representation of M . Using a bucket stride s = D[q] −D[0]
allows for the two s-strided segments D[0, q− 1], D[q, 2q− 1] to be joined into one bucket,
i.e., the following representation is possible: idxbuc(c − 1, s, 〈2, . . . , 1〉, 〈i0, i2, . . . , ic−1〉,
T0,q−1). Note that the number of buckets was reduced by one and that the cost of an
idxbuc node depends on the number but not the size of the buckets. It is clear that the
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Algorithm 7: Finding a least cost representation with an idxbuc node as root node.
Input: Type map M = (T,D) of length n; optimal type trees T0,j for each

sub-problem N0,j with j < n− 1.
Output: Representation Tidxbuc of M , which of least cost w.r.t. all possible

representations of this form.
1 Function Idxbuc(M , n, {T0,j | 0 ≤ j < n− 1})
2 Tidxbuc ← null
3 foreach divisor q of n, q < n do
4 if Repeated(M , n, q) then
5 E ← {D[iq]−D[(i− 1)q] | 1 ≤ i < n/q}
6 sort E
7 s← most frequently occurring element in E
8 disp[0]← D[0]
9 buckets[0]← 1

10 j ← 0
11 for i← 1; i < n/q; i++ do
12 if D[iq]−D[(i− 1)q] = s then
13 buckets[j]← buckets[j] + 1
14 else
15 j ← j + 1
16 disp[j]← D[iq]
17 buckets[j]← 1

18 S ← idxbuc(j + 1, s, buckets, disp, T0,q−1)
19 S.cost ← Kidxbuc + 2cKlookup + T0,q−1.cost
20 Tidxbuc ← Min(Tidxbuc, S)

21 return Tidxbuc

least-cost representation Tidxbuc joins as many segments as possible into buckets. This can
be done for a given type mapM and repeated prefixMq by computing the offsets between
any two consecutive segments of the displacement sequence and setting the bucket stride
s to the value that occurs most frequently. Algorithm 7 does this in a straight-forward
way. It generates the set E of offsets between each two consecutive segments, i.e., the
set of values D[iq]−D[(i− 1)q] for all i, 1 ≤ i < n/q. After sorting the set E, a single
scan suffices to find the most frequent value. In the next step, the bucket sizes and
displacements are computed for the given bucket stride s. Two consecutive segments are
joined into one bucket if their stride is equal to s. In this case, the appropriate bucket
size is increased by one. Otherwise, the next displacement value is set to the segment’s
displacement and the next bucket size value is initialized. Note that each bucket is at
least of size one and that its size is increased for every two consecutive segments with an
offset of s.
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Figure 5.1: A generic type map of length 4 and its mapping to a DAG, used for finding
a least-cost representation via a strc node. An edge (vi, vj+1) corresponds to the sub-
problem Ni,j and its optimal type tree representation Ti,j . By construction, the edge
(v0, v4) does not exist in the graph. It can be thought of as corresponding to the whole
type map or equally, the sub-problem N0,3), for which the desired representation can be
computed by finding a shortest path in the graph.

Again, it is clear that the constructed type tree adheres to the nice type tree property.
The algorithm in line 8 sets i0 to D[0], which is equal to 0 for aligned type maps.

Proof of Lemma 4. By the same argument as used in the proof of Lemma 3, the for-loop
is executed O(

√
n) times. Sorting the set E, which is of size O(n), requires O(n logn)

time, while all the other steps in the loop body are trivially feasible in O(n) time. In
total, we have that the algorithm performs O(n

√
n logn) steps.

5.4 Representation via the struct constructor
The algorithms for computing the representations Tidx, Tidxbuc and Tvec are based on
repeated prefixes. The strc constructor does not require a repeated prefix to be applicable
and thus a fundamentally different approach is required to construct the representation
Tstrc.

Lemma 5. Let M be an aligned type map of length n and assume that optimal type tree
representations Ti,j are known for all sub-problem Ni,j of length strictly less than n, i.e.,
for each sub-problem Ni,j with 0 ≤ i ≤ j < n, j − i+ 1 < n. The representation Tstrc of
least cost w.r.t. all possible representations of this form can be computed in O(n2) time.

Proof. Construct a weighted, directed acyclic graph (DAG) G = (V,E,w) with

V = {v0, . . . , vn}
E = {(vi, vj) | 0 ≤ i < j ≤ n, j − i < n}

∀(vi, vj) ∈ E : w(vi, vj) = 2Klookup + cost(Ti,j−1) .
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Algorithm 8: Finding a least cost representation with a strc node as the root node.
Input: Aligned type map M = (T,D) of length n; optimal type trees Ti,j for each

sub-problem Ni,j with 0 ≤ i ≤ j < n, j − i < n− 1.
Output: Representation Tstrc of M , which is of least cost w.r.t. all possible

representations of this form.
1 Function Struc(M , n, {Ti,j | 0 ≤ i ≤ j < n, j − i < n− 1})
2 // Construct the graph G
3 G← (V ← {v0, . . . , vn}, E ← ∅, w)
4 for i← 0; i < n; i++ do
5 for j ← i; j < n; j++ do
6 E ← E ∪ (vi, vj+1)
7 w(vi, vj+1)← 2Klookup + Ti,j .cost

8 P ← shortest path from v0 to vn in G
9 Assume P = 〈v0, u1, . . . , uk, vn〉 with ui ∈ V , 1 ≤ i ≤ k < n

10 P.cost = w(v0, u1) + w(u1, u2) + · · ·+ w(uk, vn)
11 // Map P to a representation via a strc node
12 disp ← 〈D[v0], D[u1], . . . , D[uk]〉
13 subtypes ← 〈Tv0,u1−1, Tu1,u2−1, . . . , Tuk,n−1〉
14 Tstrc ← strc(k + 1, disp, subtypes)
15 Tstrc.cost ← Kstrc + P.cost
16 return Tstrc

In Figure 5.1 the construction is exemplified for a type map of length 4. It is used in
Algorithm 8 to compute the representation Tstrc. The intended meaning of G is as follows.
The graph contains n + 1 vertices for a type map of length n, where a vertex vi with
0 ≤ i < n corresponds to the i-th base type – displacement pair (ti, di) of M . The
vertex vn corresponds to the hypothetical first element after the end of M . An edge is
associated with both a sub-problem and its solution. In particular, the edge (vi, vj+1)
corresponds to the sub-problem Ni,j+1, with the aligned type map segment starting at
index i and ending right before index j + 1, i.e., at index j. The weight w(vi, vj+1) of
an edge (vi, vj+1) is equal to the cost including the associated representation Ti,j for
Ni,j as a sub-type in a strc node, i.e., to the cost of Ti,j plus the lookup costs for the
displacement and sub-type arrays. By assumption, the solution Ti,j for the sub-problem
Ni,j already exists, since the length of the associated sub-problem is less than n. The edge
(v0, vn), which is not part of the constructed graph, can be thought of as corresponding
to the type tree T0,n−1, i.e., the optimal type tree representation for M that we want to
compute. The number of edges in the resulting graph is(

n+ 1
2

)
− 1 = (n+ 1)n

2 − 1 = O(n2) ,

since there is an edge between each node pair except for (v0, vn).
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Next, we show a direct correspondence between paths from v0 to vn in the graph G
and representations via the strc constructor. Informally, each edge in a path v0  vn in
G corresponds to an aligned segment of M being used as a sub-type. Since G is a DAG
by construction, any path in G is necessarily a simple path, i.e., it does not contain any
loops. Additionally, because of the direct correspondence of edges and sub-problems, a
path in G covers all of M : Each vertex vi on a path, except for v0 and vn, has exactly
one ingoing and one outgoing edge, implying the segment ending at index i−1 is followed
by a segment starting at index i.

Let P = 〈v0, u1, . . . , uk, vn〉 be a path in G from v0 to vn with ui ∈ V for 1 ≤ i ≤ k.
Note that P consists of k + 1 edges and that any such path P consists of at least two
and at most n edges: Since G does not contain the edge (v0, vn), a path from v0 to vn

containing only one edge cannot exist. This implies that for any edge (vi, vj) in P , j − i
is at most n− 1. Thus, the sub-problems represented by the edges in a path P are all of
length strictly less than n. Since P cannot contain any loops, each of the n+ 1 vertices
can occur at most once, implying that there are at most n edges in P .

If P = 〈v0, u1, u2, . . . , uk, vn〉 is a path from v0 to vn in G, the type tree Tstrc = strc(k+
1, 〈D[0], D[u1], . . . , D[uk]〉, 〈T0,u1−1, Tu1,u2−1, . . . , Tuk,n−1〉) is a valid representation of M .
The total cost of a type tree rooted at a strc node strc(c, 〈. . . , 〉, 〈S0, . . . ,Sc−1〉) is equal
to

Kstrc + 2cKlookup +
i<c∑
i=0
Si.cost = Kstrc +

i<c∑
i=0

(2Klookup + Si.cost) .

Thus, the cost of the representation Tstrc is

Kstrc+2cKlookup + T0,u1−1.cost+ Tu1,u2−1.cost+ · · ·+ Tuk,n−1.cost =
= Kstrc + w(v0, u1) + w(u1, u2) + · · ·+ w(uk, vn) =
= Kstrc + P.cost .

Since M is an aligned type map, we have that D[0] = 0 and therefore the constructed
node adheres to the nice type tree property. By construction, for any valid representation
of M of the desired form, a corresponding path from v0 to vn exists in G. Since the
weight of the edges is equal to the cost of including the corresponding sub-problems as
sub-types, a shortest path represents a least-cost solution of the desired form.

The overall runtime of this construction as shown in Algorithm 8 is as follows. The
construction of the DAG G requires O(n2) time, due to the two nested for-loops. A
shortest path in G can be found in O(|V |+ |E|) time (Cormen et al. [CLRS09, p. 655]).
The number of edges |E| in G is O(n2) and a shortest path P can thus be found in O(n2)
time. Given P , the desired representation can be constructed in linear time, because
optimal representations for all required sub-problems are known.

5.5 Full algorithm for aligned type maps
We can now give the full algorithm for constructing optimal type trees for aligned type
maps. The algorithm completes the outline given in Algorithm 3, using the observations
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and algorithms discussed in Sections 5.2 and 5.4 to fill in the missing parts.

Lemma 6. For any aligned type map M of length n, the Type Reconstruction
Problem can be solved in O(n4) time.

Algorithm 9: Type tree reconstruction algorithm for aligned type maps.
Input: Aligned type map M = (T,D) of length n.
Output: DAG G, with optimal type tree representations Ti,j for each sub-problem

Ni,j of M associated with edge (vi, vj+1), 0 ≤ i ≤ j < n.
1 Function Typetree(M , n)
2 G← (V ← {v0, . . . , vn}, E ← ∅, w)
3 // Solutions for all sub-problems of length 1
4 for i← 0; i < n; i++ do
5 Ti,i ← leaf(T [i])
6 Ti,i.cost ← Kleaf
7 E ← E ∪ (vi, vi+1)
8 w(vi, vi+1)← 2Klookup + Ti,i.cost
9 // Find solutions for all sub-problems

10 for l← 2; l ≤ n; l++ do
11 for i← 0; i ≤ n− l; i++ do
12 j ← i+ l − 1
13 // Get sub-problem Ni,j

14 Ni,j = (TS ← 〈〉, DS ← 〈〉)
15 for k ← 0; k < l; k++ do
16 TS [k]← T [i+ k]
17 DS [k]← D[i+ k]−DS [i]
18 // Representations via vec, idx and idxbuc nodes
19 Tvec ← Vec(Ni,j, l, {Ti,k | i ≤ k < i+ l}, i)
20 Tidx ← Idx(Ni,j, l, {Ti,k | i ≤ k < i+ l}, i)
21 Tidxbuc ← Idxbuc(Ni,j, l, {Ti,k | i ≤ k < i+ l}, i)
22 // Representation via strc node
23 Tstrc ← Struc(M , G, i, j + 1)
24 // Solution for the sub-problem Ni,j

25 Ti,j ←Min(Tidx,Tidxbuc,Tvec,Tstrc)
26 // Update G
27 E ← E ∪ (vi, vj+1)
28 w(vi, vj+1)← 2Klookup + Ti,j .cost

29 return G // Solution for M is stored with edge (v0, vn)

The input to the dynamic programming algorithm given in Algorithm 9 is an aligned
type map M of length n. The algorithm constructs an optimal type tree Ti,j for each
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sub-problem Ni,j . It can be viewed as filling out a dynamic programming table, which
consists of n rows and n columns. A sub-problem Ni,j corresponds to the table entry
at row i and column j, i.e., the aligned segment of M starting at index i and ending
at index j. This dynamic programming table is implicit in the constructed DAG G.
To compute the representations Tidx, Tidxbuc and Tvec, small, technical modifications are
required (Algorithm 5, Algorithm 6 and Algorithm 7 respectively). For the computation
of the representation Tstrc, we split the generation of the graph from the remaining steps
of finding a shortest path and mapping it to a strc node. These modifications do not
change the overall semantics of the algorithms and we we address them in detail in the
following.

In the first step of Algorithm 9, the graph G is initialized with n+ 1 vertices and an
empty edge set. A preprocessing step to construct optimal type tree representations for
all sub-problems of length 1 follows. As discussed in Section 5.1, the optimal solution
for such a sub-problem is always a single leaf node and we therefore set Ti,i = leaf(T [i])
for all i, 0 ≤ i < n. The cost of this representation is trivially equal to Kleaf . We add
an edge (vi, vi+1) for each sub-problem Ni,i to G and set its cost to 2Klookup + Ti,i.cost,
which is the cost of including Ti,i as a sub-type in a representation via a strc node.

The algorithm proceeds to construct optimal representations for longer and longer
sub-problems. Note that the preprocessing step constructed solutions for all sub-problems
of length 1 and that therefore Lemma 3, Lemma 4 and Lemma 5 are applicable for
each sub-problem of length 2. By incrementally computing optimal representations
for all sub-problems of length l = 2, . . . , n, it is guaranteed that solutions for all sub-
problems of length less than l are known when a solution for a sub-problem of length
l is to be computed. This ensures that the three lemmas can be applied to compute
an optimal representation for each sub-problem as follows. We denote the type and
displacement sequence of a sub-problem Ni,j as TS and DS respectively. After extracting
the sub-problem (lines 14 – 17), we can use Algorithm 5, Algorithm 6 and Algorithm 7
to construct the representations Tidx, Tvec and Tidxbuc for Ni,j .

Note that these algorithms require access to optimal representations of the prefixes
of the sub-problem. Since a sub-problem Ni,j is a segment, but not necessarily a prefix
of M , its prefixes start at index i of the input type map M . To account for this and
avoid copying the type tree representations for prefixes of Ni,j , we pass an additional
argument o representing the offset of the sub-problem within the type map M . Thus, for
a sub-problem Ni,j we use o = i and replace all occurrences of T0,q−1 with To,o+q−1 (lines
1, 8 and 9 in Algorithm 5, lines 1, 7 and 8 in Algorithm 6 as well as lines 1, 18 and 19 in
Algorithm 7).

Algorithm 8, which computes the representation Tstrc, is not directly used as a
subroutine. Instead of constructing a DAG for each sub-problem, the algorithm is
changed so that it can compute the representation Tstrc for all sub-problems using
only a single, incrementally built graph. Instead of mapping the type map to a DAG,
Algorithm 10 takes the DAG as input together with a start and target vertex. When
computing the solution for a sub-problem Ni,j , the sub-graph induced by the vertex set
{vi, . . . , vj+1} of G is equivalent to the graph constructed by Algorithm 8. Formally,
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v0 v1 v2 v3 v4 v5
T0,0 T1,1 T2,2 T3,3 T4,4

T0,1 T1,2 T2,3 T3,4

T0,2 T1,3 T2,4

T0,3 T1,4

Figure 5.2: The graph G when computing the representation Tstrc for the sub-problem
N1,4 of a type map of length 5. Solutions for all sub-problems Ni,j with 0 ≤ i ≤ j ≤ 5,
j − i ≤ 3 as well as for N0,3 are already known and thus the corresponding edges
(vi, vj+1) exist in G. To compute the representation Tstrc for the sub-problem N1,4 (which
corresponds to the dashed edge (v1, v5)), a shortest path from v1 to v5 has to be found
in the sub-graph induced by the vertex set {v1, . . . , v5}, which is highlighted in blue.

Algorithm 10: Finding least cost representations with a strc node as the root
node.
Input: Aligned type map M = (T,D) of length n; DAG mapping G for M ;

indices s, t of start and target node in G.
Output: Representation Tstrc for the sub-problem Ns,t−1; Tstrc is of least cost w.r.t.

all possible representations of this form.
1 Function Struc(M , G, s, t)
2 P ← shortest path from vs to vt in G
3 Assume P = 〈vs, u1, . . . , uk, vt〉 with ui ∈ V , 1 ≤ i ≤ k < t− s
4 P.cost = w(vs, u1) + w(u1, u2) + · · ·+ w(uk, vt)
5 // Map P to a representation via a strc node
6 disp ← 〈D[vs], D[u1], . . . , D[uk]〉
7 subtypes ← 〈Tvs,u1−1, Tu1,u2−1, . . . , Tuk,n〉
8 Tstrc ← strc(k + 1, disp, subtypes)
9 Tstrc.cost ← Kstrc + P.cost

10 return Tstrc
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given a graph G = (V,E) and a subset V ′ ⊂ V , the sub-graph induced by V ′ is the graph
G′ = (V ′, E′), where E‘ = {(u, v ∈ E | u, v ∈ V ′)} (see, e.g., [CLRS09, p. 1171]). By
construction, when computing the desired representation for a sub-problem Ni,j of length
l = j − i+ 1, G contains edges that correspond to optimal type trees for all sub-problems
of length less than l. That is, for each edge (vi, vj+1) with j − i < l, an optimal type
tree representation Ti,j for the corresponding sub-problem Ni,j exists. We do not pass
these type trees explicitly as for the previous algorithms, since they are implicitly passed
with G. The graph G may additionally contain some edges representing sub-problems of
length l. However, those edges can never be part of the sub-graph induced by the vertex
set {vi, . . . , vj+1}. In other words, a shortest path from vi to vj+1 in G is equivalent to
the shortest path computed by Algorithm 8 in the sense that it leads to the exact same
representation of the sub-problem Ni,j . Figure 5.2 illustrates an example graph G and
the induced sub-graph required for finding the representation Tstrc for a sub-problem.

Once Tidx, Tvec, Tidxbuc and Tstrc, which are each representations of the sub-problem
Ni,j and are of least cost w.r.t. all possible representations of the respective form, have
been computed, the optimal representation for this sub-problem is simply the one with
minimal cost. Finally, the edge (vi, vj+1), corresponding to the newly found solution Ti,j

for the sub-problem Ni,j , is added to G, ensuring that Ti,j can be used as a sub-type for
other, longer sub-problems. The weight of this edge is equal to the cost of including this
representation as a sub-type, i.e., (vi, vj+1) = 2Klookup + Ti,j .cost.

Proof of Lemma 6. The first two steps of Algorithm 9, namely the initialization of the
DAG G and the construction of solutions for each sub-problem of length 1 can trivially
be done in O(n) time. The algorithm then computes an optimal representation for each
of the O(n2) sub-problems, i.e., the body of the nested for-loops is executed O(n2) times.
Extracting the sub-problem Ni,j is again trivially feasible in O(l) times, where l = j−i+1.
Note that the length of the sub-problem is l, and not n. Computing the representations
Tidx, Tvec and Tidxbuc with the help of Algorithm 5, Algorithm 6 and Algorithm 7 requires
at most O(l2) time for each, as shown in Lemma 3 and Lemma 4. The steps for finding
Tstrc are exactly the same as in Algorithm 8 minus the construction of the graph, and thus
a shortest path for a sub-problem Ni,j can be found and mapped to a representation via
a strc node in O(l2) time. One execution of the loop body requires O(l2) time, which is
O(n2) since l ≤ n. Since the loop body is executed O(n2) times, we find that Algorithm 9
requires O(n4) time to compute an optimal type tree representation for an aligned type
map M of length n.

Algorithm 9 computes a shortest path for each of the O(n2) sub-problems. Alterna-
tively, a shortest path for all sub-problems of length l can be computed by solving the
all-pairs shortest path (APSP) problem once. Although this approach does not improve
the asymptotic bound, we mention it for the sake of completeness.

Johnson’s algorithm [CLRS09, p. 700] solves APSP in O(|V |2 log |V |+ |V ||E|) time,
and we can apply it in each iteration of the outer-for loop. Note that only the solutions
for node pairs (vi, vi+l), i.e., the sub-problems of length l, are required. For pairs (vi, vj)
with j − i < l, an optimal solution and thus a shortest path is already known. For pairs
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(vi, vj) with j − i > l, the optimal solutions for the sub-problems of length l need to
be considered too, which is done in the next iteration of the loop. We can bound the
number of edges in the graph for each execution of the APSP algorithm with O(n2).
Thus, finding a shortest path for all the n− l+ 1 sub-problems of length l requires O(n3)
time, implying that O(n4) time is required in total for the computation of all the required
shortest paths.

5.5.1 Required space

To meet the space bound stated in Theorem 1, Algorithm 9 as presented in the previous
section has to be amended slightly. We apply a standard trick often used in dynamic
programming algorithms to reduce the space bound by a factor of n, proving the following
lemma.

Lemma 7. For any aligned type map M of length n, an optimal type tree representation
can be found using O(n2) space.

Algorithm 9 constructs a graph with O(n) vertices and O(n2) edges, where a basic
tree Ti,j , representing the solution for the sub-problem Ni,j , is associated with each edge
(vi, vj+1). For each edge (vi, vj+1) it suffices to store the root node of the associated basic
tree Ti,j plus pointers to its child nodes, which are already stored with the respective
edges. Note that the sub-problem Ni,j is only generated temporarily but not stored
explicitly with the generated graph. To meet the desired space bound, only a constant
amount of space may be used by each edge and associated type tree. This is trivially
true for leaf and vec nodes: Apart from one word indicating the node’s kind and the cost
of the type tree rooted at that node, for a leaf node only the count c needs to be stored.
For vec nodes, an additional two integer values and one pointer to the child node are
required.

However, idx, idxbuc and strc nodes may require Ω(n) space in the worst case, e.g., if
strc(n,D, 〈leaf(t0), leaf(t1), . . .〉 is the optimal representation of M = (〈t0, t1 . . .〉, D). We
avoid this issue by storing for each node only the information required to reconstruct
the full solution once the algorithm has terminated. A node for which only this partial
information is stored is called a node fragment. To meet the space bound, no lists of
displacements, bucket sizes or sub-types can be stored. In particular, we store

• for idx nodes the count c and a pointer to the sub-type S;

• for idxbuc nodes the count c, the bucket stride s, a pointer to the sub-type S and
the length q of the sub-problem represented by T ;

• for strc nodes the count c.

Note that the sub-type S for idx nodes could alternatively be derived easily. Due to
its association with an edge (vi, vj+1), we know that the idx node is the root node of
the type tree Ti,j , which represents the sub-problem Ni,j . The sub-problem is of length
l = j − i + 1 and therefore S = Ti,i+q−1, with q = l/c. Given the input type map
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Algorithm 11: Constructing a full type tree out of a type tree containing node
fragments.
Input: Type tree Ti,j representing the sub-problem Ni,j of the type map

M = (T,D); Ti,j may contain node fragments. DAG G as constructed by
Typetree.

Output: Full type tree representation.
1 Function Reconstruct(Ti,j, M , G)
2 if Ti,j .kind = leaf then
3 return
4 l← j − i+ 1
5 for k ← 0; k < l; k++ do
6 DS [k]← D[i+ k]−D[i]
7 c← Ti,j .count
8 if Ti,j .kind = idx then
9 q ← l/c

10 Ti,j .disp← 〈DS [0], DS [q], . . . , DS [(c− 1)q]〉
11 Reconstruct(Ti,j .subtype, M , G)
12 if Ti,j .kind = idxbuc then
13 disp[0]← D[0]
14 buckets[0]← 1
15 h← 0
16 s← Ti,j .stride
17 q ← Ti,j .q
18 for k ← 1; k < l/q; k++ do
19 if DS [kq]−DS [(k − 1)q] = s then
20 buckets[h]← buckets[h] + 1
21 else
22 h← h+ 1
23 disp[h]← DS [kq]
24 buckets[h]← 1

25 Ti,j .buckets ← buckets
26 Ti,j .disp← disp
27 Reconstruct(Ti,j .subtype, M , G)
28 if Ti,j .kind = strc then
29 Remove edge (vi, vj+1) from G
30 Ti,j ← Struc(M, G, i, j+1)
31 for k ← 0; k < Ti,j .count, k++ do
32 Reconstruct(Ti,j .subtype[k], M , G)
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M = (T,D), the displacement sequence DS for the sub-problem Ni,j can easily be
derived as DS = 〈D[i]−D[i], D[i+1]−D[i], . . . , D[j]−D[i]〉. The array of displacements
for an idx node can thus be recomputed as 〈DS [0], DS [q], . . . , DS [c− 1)q]〉. For an idxbuc
node, we additionally store the length q of the sub-problem represented by the sub-type
S. Note that contrary to idx nodes, the value q cannot be easily derived for idxbuc nodes
since it is not equal necessarily equal to l over c. The count c defines the number of
buckets, while the number of replications of the repeated prefix is equal to

c−1∑
i=0

buckets[i] .

The displacement and bucket size arrays can be recomputed by the same steps as
used in Algorithm 7, lines 8 – 17.

The parameters of a strc node associated with an edge (vi, vj+1) can be reconstructed
by again computing the shortest path from node vi to vj+1 and mapping it to a strc node
as done by Algorithm 10.

Proof of Lemma 7. Note that this reconstruction step as shown in Algorithm 11 does
not change the asymptotic runtime bound, since all costs are additive to the O(n4) time
bound of Algorithm 9. The required space for each edge and associated node is O(1).
There are O(n2) edges and O(n) vertices in G and the weight function requires O(n2)
space to be stored. It is trivial to see that the remaining data, such as the computed
shortest path, the extracted sub-problems and sequences of displacements and datatypes
can easily be handled in a total of O(n2) memory. The claimed upper bound of O(n2)
space follows.

5.6 General type maps

In this section, we show how an optimal type tree for general, non-aligned type maps
can be constructed.

Lemma 8. Given optimal nice type tree representations Ti,j for all sub-problems Ni,j

of a type map M = (T,D) of length n, an optimal type tree T representing M can be
computed in O(n2) time and O(n2) space.

Proof. By Lemma 1, a cost-equivalent nice type tree representation T̃ of M exists for
any optimal type tree representation T of M . It therefore suffices to find an optimal nice
type tree T̃ for M . By assumption, an optimal nice type tree representation T0,n−1 for
the aligned type map exists. We distinguish the following two cases to construct T̃ :

Case 1: If T contains an irregular node, find the first such node on any root to
leaf path in T0,n−1. Adding the type map’s shift x = D[0] to the displacements of this
node generates the desired solution. In particular, if the top-most irregular node in T
is an idx node N = idx(c, 〈i0, . . . , ic−1〉,S), set Ñ = idx(c, 〈i0 + x, . . . , ic−1 + x〉,S). The
construction is analogous for idxbuc and strc nodes. Note that T̃ represents M and is
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of the same cost as T . Thus, T̃ is an optimal representation of M . Finding the first
irregular node in T requires O(logn) steps, since the height of the tree is limited by
the same upper bound (Lemma 2). The list of displacements of N contains at most n
elements and therefore this construction is feasible in O(n) time.

Case 2: If no irregular node exists in T , it follows from the nice type tree property
(Lemma 1) and Corollary 6 that the optimal representation is either

• T̃ = idx(c, 〈. . .〉, T0,n/c−1), for some divisor c of n; or

• T̃ = idxbuc(c, s, 〈. . .〉, 〈. . .〉, T0,n/c−1), for some divisor c of n; or

• T̃ = strc(c, 〈. . .〉, 〈T0,j1 , Tj1,j2 , . . . , Tjc−1,n−1〉), for some c, 1 ≤ c ≤ n and sub-types
Tji,ji+1 with 0 ≤ ji < n for all i.

Note that both of the trivial representations with c = 1 and c = n need to be considered
for each node. Such a node with count 1 does not violate the nice type tree property,
since it is the only such node in the constructed type tree and also the first irregular node
on any root to leaf path. Although any irregular node with count 1 has the same effect
(it only shifts the represented type map), we cannot assume that an idx node with count 1
is cheaper than an idxbuc or strc node with count 1. A representation of least cost among
all those given by the above characterization can be found by exhaustive search. For the
idx and idxbuc nodes, this can be done the same way as in Section 5.2 and Section 5.3, i.e.,
by checking for each divisor c of n whether the prefix Mq with q = n/c is repeated in M .
The algorithms need to be modified slightly to cover all divisors of n, including n itself.
This modification does not change the asymptotic time and space bounds. It is easy see
that these two algorithms compute a correct result also for non-aligned type maps (this
is not true for Algorithm 6, which however is not required for this step). Thus, Lemma 3
and Lemma 4 are applicable and we conclude that this step requires O(n2) time. For the
strc node, we can apply Lemma 5 with a small modification: The generated graph has to
contain also the edge (v0, vn) with a cost of 2Klookup + T0,n−1.cost. Lemma 5 still holds
with this modification, implying that this step too is feasible in O(n2) time. Overall, the
construction requires only O(n2) time since the solutions Ti,j for the sub-problems Ni,j

are already known. The space bound is O(n2) by the same arguments as used in the
proof of Lemma 7.

We can now prove that the Type Reconstruction Problem for general type maps
can be solved in O(n4) time and O(n2) space, as claimed in Theorem 1.

Proof of Theorem 1. For a general, non-aligned type map M = (T,D), an optimal type
tree T is constructed by the following three steps:

1. Let M ′ be the aligned type map M and let x be M ’s shift, i.e., x = D[0] and
M ′ = M − x.

2. Use Algorithm 9 to compute optimal type tree representations Ti,j for all sub-
problems Ni,j of M ′. This includes the optimal type tree representation T = T0,n−1
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or the aligned type map M ′ = N0,n−1. Note that the type trees Ti,j may contain
node fragments, for which some missing arguments remain to be recomputed.

3. To construct an optimal type tree for the original type map M , we distinguish two
cases:

• If T contains at least one irregular node, compute the complete solution out of
the fragment as detailed in Section 5.5.1. Find the first irregular node on any
root to leaf path and add the type map’s shift x to all displacement values,
i.e., apply Case 1 of Lemma 8.
• Otherwise, apply Case 2 of Lemma 8 to construct a fragment of an optimal
solution before recomputing the complete solution as shown in Section 5.5.1.

Normalizing a type map is trivially feasible in linear time and requires only a
constant amount of additional space. Thus, the whole construction is clearly
dominated by the O(n4) time required by Algorithm 9. The space bound follows
from the O(n2) space required by both Algorithm 9 and the last step of generating
the solution for a general type map (Lemma 8).

75





CHAPTER 6
Type path reconstruction

In this chapter, we present our algorithm for the Type Path Reconstruction Prob-
lem. For this special case of the Type Reconstruction Problem, we restrict
ourselves to the leaf, vec and idx constructors. Our algorithm solves the problem in
O(n log / log logn) time, which is a significant improvement over the previously best
known bound of O(n

√
n) by Träff [Trä14]. We detail their approach in Section 6.1, before

setting out to prove the following lemma.

Theorem 2. Given a homogeneous type map M of length n, the Type Path Recon-
struction Problem can be solved in O(n logn/ log logn) time and O(n) space.

The structure of an optimal type path is analogous to the structure of an optimal
type tree as given in Definition 10, minus the strc and idxbuc nodes.

Definition 14 (Structure of an optimal type path). An optimal type path P for a
homogeneous type map M = (t,D) of length n is either

1. P = leaf(t), a single leaf node with base type t if n equals 1; or

2. P = vec(c, s,Q), where the prefix Mq of length q = n/c is a strided prefix in M
with stride s and Q is an optimal type path for Mq; or

3. P = idx(c, 〈i0, . . . , ic−1〉,Q), where the prefix Mq of length q = n/c is a repeated
prefix in M , Q is an optimal type path for Mq and the displacements i0, . . . , ic−1
are such that Flatten(P, 0) = M .

A type path contains exactly one leaf node and can thus only represent homogeneous
type maps, i.e., type maps that consist of a single base type. To reduce notational
overhead and since all base types are equal, we denote homogeneous type maps by
M = (t,D), i.e., with a single base type t instead of a sequence of base types. Thus,
a prefix Mq of M is a repeated prefix if and only if the prefix Dq of the displacement
sequence D is a repeated prefix, i.e., the type signature need not be checked.
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Table 6.1: In the type map M = (char, D), with the first 16 values of D as shown in the
second table row, the prefixes of length 2 and 8 are repeated. The prefix of length 4 is
not repeated in M , since D[6]−D[5] = 3 6= D[6 mod 4]−D[5 mod 4] = D[2]−D[1] = 2.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D[i] 0 1 3 4 8 9 12 13 20 21 23 24 28 29 32 33

D[i]−D[i− 1] 1 2 1 4 1 3 1 87 1 2 1 4 1 3 1

Since any type path is a type tree, all properties shown in Chapter 4 also hold for
type paths. In particular, the problem exhibits optimal sub-structure. Equivalently to
nice type trees, for each optimal type path a nice type path of equal cost exists. For
aligned type maps, an optimal type path does not contain any nodes with count 1 and at
most one shifting node. Our algorithm for the Type Path Reconstruction Problem
is similar to the algorithm solving the Type Reconstruction Problem given in
Chapter 5. Note that all constructors considered for the Type Path Reconstruction
Problem problem require a repeated prefix to exist, which is used as the sub-type.
Contrary to the Type Reconstruction Problem, a segment that is not a prefix of
the input type map can never be used as a sub-type in a type path. In order to achieve
the drastically lower runtime bound, some new ideas for computing repeated prefixes
are required. The key idea is to find all repeated and strided prefixes in a preprocessing
step, so that the dynamic programming algorithm performing the actual reconstruction
can be implemented more efficiently. The straight-forward approach to find all repeated
prefixes is to check for each divisor q of n whether the prefix of length q is repeated in D.
While the check for a given divisor can trivially be done in linear time (see Algorithm 4),
the number of divisors d(n) can be somewhat large. As shown in Landau [Lan09, pages
219–222],

d(n) = e
Θ
( log n

log log n

)
.

Note that this bound is sharp. Although this approach directly leads to an O
(
nn

1
log log n

)
(i.e., a sub-quadratic) time procedure for computing all repeated prefixes, it does not
seem to allow for an O(n logn) time algorithm.

Somewhat counter-intuitively, the existence of a repeated prefix of length c does not
imply that the prefixes of length kc or c/k, with k ∈ N, are also repeated. Table 6.1
gives an example type map where the prefixes of length 2 and 8 are repeated, but the
prefix of length 4 is not. Figure 6.1 shows a type path representation for the example
type map, which directly shows that the prefixes of length 2 and 8 are repeated. This
observation makes it clear that computing all repeated prefixes efficiently, i.e., faster than
the straight-forward approach outlined above, is not a trivial task.

We present in Section 6.2 a more efficient algorithm that finds all repeated prefixes of
a homogeneous type map in O(n logn/ log logn) time. This is a crucial building block
for our algorithm solving the Type Path Reconstruction Problem for the special
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vec(2, 20)

idx(8, 〈0, 3, 8, 12〉)

vec(2, 1)

leaf(MPI_CHAR)

Figure 6.1: A type tree representing the type map M = (char, 〈0, 1, 3, 4, 8, 9, 12, 13, 20,
21, 23, 24, 28, 29, 32, 33〉). As Table 6.1 shows, the prefixes of length 2 and 8 are repeated,
but the prefix of length 4 is not.

case of aligned type maps, which is detailed in Section 6.3. Section 6.4 shows how to
derive a solution for a general type map.

With our approach it is furthermore possible to also include the idxbuc constructor.
Such a type path is called an extended type path, which in addition to Definition 14 may
be of the form

4. P = idxbuc(c, s, 〈b0, . . . , bc−1〉, 〈i0, . . . , ic−1〉,Q), where the prefix Mq of length q =
n/c is a repeated prefix in M , Q is an optimal extended type path for Mq and
the displacements i0, . . . , ic−1 together with the bucket lengths b0, . . . , bc−1 and the
stride s are such that Flatten(P, 0) = M .

This constructor can be included in the algorithm in a straight-forward manner as shown
in Section 6.5. However, this increases the time bound to O(n2 log2 n). Although this may
not be feasible in practice, it demonstrates that our algorithm may easily be extended to
consider further constructors. We strongly suspect that more efficient approaches for the
idxbuc constructor exist.

6.1 Träff’s type path reconstruction and normalization
algorithm

Träff [Trä14] recently presented an algorithm that solves the Type Path Reconstruc-
tion Problem in O(n

√
n) time. They use this algorithm as a basis to solve the Type

Path Normalization Problem in O(dl
√
l + (d log l)3) time, where d is the height

(or depth) of the type path and l is the length of the longest occurring displacement
sequence. Their approach is based on a nice property stating that a cost-optimal type
path can always be constructed out of a so-called canonical type path by purely local
optimizations.
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The formal model used in their work is basically the same as the one detailed in
Chapter 2, with a few minor differences.

• Consideration is restricted to homogeneous type maps, since a type path cannot
represent a type map consisting of more than one basic datatype.

• The remaining basic datatype is discarded, and data layouts are interpreted as a
sequence of bytes. They thus assume that the input for the Type Path Recon-
struction Problem is a displacement sequence without any type information.

• A leaf node, denoted by con(c), with count c describes a sequence of c contiguous
displacements 0, 1, . . . , c− 1. Since no type information is kept, this node is also
used to represent basic datatypes whose representations span multiple bytes (as is
usual for basic datatypes such as, e.g., int and float).

• The assumed cost model is the same as in this work, but different, changing cost
values are adopted for examples.

The following structural lemma contains the key observation for their algorithm. We
paraphrase the lemma to match the definitions and conventions of this work.

Lemma 9. Let D be a displacement sequence that is not regularly strided, and let Dq

be the shortest repeated prefix of length q, q ≥ 2. For any longer prefix Dq′ of length q′,
q′ > q that is also repeated in D, it holds that q′ is a multiple of q.

The reader is referred to [Trä14] for a formal proof of this lemma. Intuitively, Lemma 9
shows that for displacement sequences that do not contain a strided prefix it suffices to
find the shortest repeated prefix. The length of all other repeated prefixes is a multiple of
the length q of the shortest repeated prefix Dq and they can be discovered by recursively
analyzing Dq. This lemma is the basis for an algorithm constructing a canonical type
path for the given displacement sequence. A canonical type path is not necessarily a
least-cost representation, but has the following useful properties.

Definition 15 (Canonical type path). A canonical type path for a displacement sequence
of length n is a type path from which any other type path representation of D can be
obtained by repeatedly applying the following two modifications:

• Combine two successive nodes.

• Split a vec node with count c into two vec nodes with counts c0 and c1, where
c = c0c1.

By the same arguments that we use to bound the height of an optimal type tree
(Lemma 2), the height of a canonical type path is at most dlog2 ne. Care must be taken
to cover the two modifications for all possible combinations of considered constructors.
A dynamic programming algorithm is used to perform local improvements according to
the two possible modifications outlined above. The paper considers only the idx, vec and
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con constructors, which already lead to ten different cases. It is not clear if and how the
canonical type path property can be extended to include further constructors. A curious
feature of the algorithm is that in this step, global optimality is achieved by purely local
optimizations.

These ideas to solve the Type Path Reconstruction Problem directly lead to a
non-trivial approach for the Type Path Normalization Problem. For a given type
path that is to be normalized, the algorithm performs the following sequence of steps.

1. Convert idx to vec nodes wherever possible, i.e., where the prefix represented by
the sub-type is regularly strided. Note that this operation is similar to the heuristic
optimization of specializing a constructor where possible (see Chapter 3).

2. Combine nested vec nodes where possible.

3. For each remaining idx node, apply type reconstruction on the represented displace-
ment sequence.

4. Perform local optimizations as outlined above.

To show that the resulting normalized type path is indeed optimal, it suffices to show
that the normalization procedure constructs the same type path that results from solving
the Type Path Reconstruction Problem on the flattened input type tree.

6.2 Efficient computation of repeated prefixes
We now present our algorithm for efficiently computing all repeated prefixes, proving the
following lemma.

Lemma 10. For any displacement sequence D of length n, all repeated prefixes can be
found in O(n logn/ log logn) time and O(n) space.

In a homogeneous type map M = (t,D), a prefix Mq is repeated if and only if the prefix
Dq is repeated in the displacement sequence D, i.e., the base type is of no significance.
In this section, we therefore restrict consideration to displacement sequences.

For a given divisor q of n, we define the set Rq as

Rq = {p ≥ 1 | p divides q ∧ Dp is a repeated prefix in D} .

The set R is defined as
R =

⋃
q|n
Rq .

We give an example to illustrate this rather technical notion and to highlight the difference
between a set Rq and the set R: Assume a displacement sequence D of length n = 24
where, in addition to the trivially repeated prefixes of length 1 and 24, the prefixes of
length 6, 8 and 12 are repeated. For q = 12, we find that R12 = {1, 6, 12}, i.e., R12
contains all repeated prefixes whose length p is a divisor of 12. The repeated prefix of
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length 8 is not in R12, since 8 is not a divisor of 12. This prefix is however contained
in the set R8 and we we have that R = {1, 6, 8, 12, 24} for this example. Each repeated
prefix is contained in at least one set Rq and thus in the set R. For a repeated prefix Dp

of length p, p is in the set Rp, since p is necessarily a divisor of n (otherwise, Dp cannot
be a repeated prefix) and p trivially divides p.

Our approach for computing the set of all repeated prefixes for a given displacement
sequence is detailed in Algorithm 14. It uses Algorithm 13, which computes the set Rq

for a given displacement sequence and divisor q.

Lemma 11. Let D be an arbitrary displacement sequence of length n and q be an
arbitrary divisor of n. All prefixes repeated in D that are of length p, where p is a divisor
of q (i.e., the set Rq), can be found in linear time.

To find the whole set R of repeated prefixes, we need to ensure that all possible
divisors of n are covered. This is done by applying the above lemma for those divisors of
n that contain all but one of its distinct prime factors. More formally, given the prime
factor decomposition n = fa1

1 fa2
2 . . . fak

k of n, let qi = n/fi for 1 ≤ i ≤ k and apply
Lemma 11 for each qi. The correctness of this approach and the claimed time and space
bounds are shown in the remainder of this section. While the algorithms presented in
this section are quite short and straight-forward to implement, the proofs are somewhat
technical and require careful attention to detail.

The key idea for Algorithm 13 is that once some repeated prefix has been found,
some (but not all) shorter repeated prefixes can be found easily by recursively analyzing
the already found repeated prefix. Assume that a prefix Dq is repeated in a displacement
sequence D of length n. For each divisor p of q, it suffices to check if the prefix Dp is
repeated in Dq to determine whether the prefix Dp is repeated in D. In other words, the
segment D[q, n− 1] does not have to be checked explicitly.

Corollary 9. Assume an n-element displacement sequence D s.t. the prefix Dq, 1 ≤ q ≤ n,
is a repeated prefix. If the prefix Dp, for 1 ≤ p ≤ q, is repeated in the prefix Dq, Dp is
also repeated in D.

Proof. The definition of repeated prefixes (Definition 6) can equivalently be stated as

q | n ∧ ∀i ∀j 1 ≤ i < n/q, 1 ≤ j < q : D[j]−D[j − 1] = D[iq + j]−D[iq + j − 1] .

Taking S[i] = D[i]−D[i− 1], this is equivalent to

∀i, 1 ≤ i < n : i mod q = 0 ∨ S[i mod q] = S[i] .

Since Dq is repeated in D and Dp is in turn repeated in Dq, we have that

1. ∀i, 1 ≤ i < n: i mod q = 0 ∨ S[i mod q] = S[i] and

2. ∀j, 1 ≤ j < q: j mod p = 0 ∨ S[j mod p] = S[j].
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Since q divides n and p divides q, we get that

∀i, 1 ≤ i < n : i mod p = 0 ∨ S[i mod p] = S[i] ,

i.e., the prefix of length p is repeated in D.

To compute Rq, Algorithm 13 employs Algorithm 12 to find a repeated prefix that
quickly leads to as many additional repeated prefixes as possible. To make this notation
precise, the following definitions are required.

Definition 16 (Postfix of a displacement sequence). Given a displacement sequence D
of length n, a postfix starting at index q denotes the segment D[q, n− 1].

Definition 17 (Potentially repeated prefix). Given a displacement sequence D of length
n and a non-trivial divisor q of n, we say that a prefix Dp is potentially repeated in D
w.r.t. q if the prefix Dp is repeated in the postfix D[q, n− 1], i.e., Dp being repeated in
the prefix Dq implies that Dp is also a repeated prefix in D.

Algorithm 12: Finding the longest potentially repeated prefix in the postfix
starting at index q.
Input: Displacement sequence D of length n; non-trivial divisor q of n.
Output: Largest p s.t. p divides q and the prefix of length p is potentially

repeated in D w.r.t. q.
1 Function LongestInPostFix(D, n, q)
2 for i← 1; i < n/q; i++ do
3 for j ← 1; j < q; j++ do
4 if D[j]−D[0] 6= D[iq + j]−D[iq] then
5 D′ ← D[iq + j, n− 1]
6 n′ ← n− iq − j
7 q′ ← gcd(q, j)
8 return LongestInPostFix(D′, n′, q′)

9 return q

Given a displacement sequence D of length n and a divisor q of n, Algorithm 12 finds
the longest potentially repeated prefix Dp, where p is a divisor of q. The algorithm checks
for every segment D[iq, (i+ 1)q − 1], 1 ≤ i < n/q − 1, whether the prefix of length q is
repeated. If this is the case, the prefix Dq is a repeated prefix in the postfix D[q, n− 1]
and therefore also the longest potentially repeated prefix w.r.t. q. Since Dq is trivially
repeated in the segment D[0, q − 1], the potentially repeated prefix Dq is a repeated
prefix in D.

If the condition for repeated prefixes is not met at index j of the i-th segment
D[iq, (i+ 1)q − 1], the procedure proceeds recursively to find the longest prefix of length
p repeated in the postfix D[iq + j, n− 1], where p is a divisor of gcd(q, j). The condition
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Algorithm 13: Computing the set Rq for a displacement sequence D of length n
and a non-trivial divisor q of n.
Input: Displacement sequence D of length n; non-trivial divisor q of n; the

distinct prime factors of q in ascending order.
Output: rq is set to true if the prefix of length q is repeated in D.

1 Function AllRRPForDivisor(D, n, q, factors)
2 if q == 1 then
3 r1 ← true
4 return
5 ql ←LongestInPostFix(D, n, q)
6 if ql == q then
7 rq ← true
8 n′ ← q
9 f ← smallest prime factor of q

10 q′ ← q/f
11 Remove one occurrence of f from factors
12 AllRRPForDivisor(D, n′, q′, factors)

being met up to index iq + j − 1 implies that the prefix Dq is repeated in the segment
D[q, iq+j−1]. Once the recursive call returns with the length p of the longest potentially
repeated prefix in the segment D[iq + j, n− 1], it suffices to check whether the prefix Dp

is repeated in the prefix Dq to determine whether or not Dp is repeated in the segment
D[q, iq+ j − 1] (Corollary 9). Since Dp is repeated in the postfix starting at index iq+ j,
Dp is potentially repeated in the postfix starting at index q. This extends to divisors o
of p: If Dp is potentially repeated in the postfix D[q, n− 1] and the prefix Do is repeated
in Dq (and therefore also in the prefix Dp), Do is repeated in D.

The condition not being met at index iq+j means that D[iq+j]−D[iq] 6= D[j]−D[0],
implying that the length p of the longest repeated prefix in D w.r.t q is at most j. Since
we are only interested in those prefixes of length p where p | q, we find that p ≤ gcd(q, j).
Since the prefix of length 1 is a repeated prefix in any displacement sequence and 1 is
always a divisor of q, the procedure is guaranteed to find a longest repeated prefix.

Algorithm 13 uses Algorithm 12 to efficiently compute the set Rq, i.e., all repeated
prefixes of length p where p divides q. If the prefix Dq is potentially repeated in the
postfix D[q, n − 1], it is trivially also a repeated prefix in D. The algorithm proceeds
by recursively computing all repeated prefixes in Rq. Note that the longest possible,
non-trivial repeated prefix in Rq is of length less than or equal to q over the smallest
prime factor of q. Due to Corollary 9, any prefix repeated in Dq is also repeated in the
displacement sequence D. If the longest potentially repeated prefix is of length q′ < q,
we need to check whether the prefix of length q′ is repeated in the prefix of length q.
This is done by recursively computing all repeated prefixes of the prefix D[0, q − 1]. The
prime factors of q (with multiplicity) are passed to Algorithm 13 in the initial call and
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the algorithm keeps track of the prime factorization of the parameter q.

Proof of Lemma 11. Algorithm 12 requires O(n) time, due to the recursive call proceeding
with the postfix D[iq + j, n− 1] in case the condition for repeated prefixes is not met for
an element at index iq + j. Note that when called with parameter q for a displacement
sequence of length n, the procedure does not do the check for any element in the prefix
D[0, q − 1]. We use this fact to account for any subsequent calls of Algorithm 12 that
happen in Algorithm 13: The algorithm recurses on the prefix of length (at most) q, for
which it calls Algorithm 12 with a displacement sequence of length q. Therefore, during
an execution of Algorithm 13, Algorithm 12 performs the check on line 4 of Algorithm 12
for each element at most once. The smallest prime factor of q is stored as the first element
of factors. If factors is implemented as an ordered list, the smallest prime factor of q can
be retrieved and removed in constant time.

Given a displacement sequence D of length n, Algorithm 14 sets rq = true if and
only if the prefix Dq is repeated in D. The algorithm first factorizes n, the length of
the input sequence. The list all is used to store all prime factors of n in ascending
order, while distinct keeps track of its unique prime factors. Given the prime factor
decomposition of n, n = fa1

1 fa2
2 . . . fak

k , all contains a1 times the prime factor f1, followed
by a2 occurrences of f2 and so on. The list distinct contains each of p1, p2, . . . , pk exactly
once, in arbitrary order. We make no claim that the given approach for factorizing n is
particularly efficient. However, as the analysis will show, its asymptotic runtime behavior
suffices for our purposes. The algorithm then proceeds to find all repeated prefixes by
applying Lemma 11 once for each distinct prime factor fi of n. It executes Algorithm 13
with parameter q = n/fi for each fi, 1 ≤ i ≤ k, to compute the set Rq. The prime factor
decomposition of q can easily be obtained by removing one occurrence of pi from the
prime factor decomposition of n. It is passed to Algorithm 13, which requires that the
first element may be accessed and removed in constant time. Therefore, all and factors
are assumed to be implemented as ordered linked lists.

Proof of Lemma 10. The prime factorization as outlined in Algorithm 14 is feasible in
linear time w.r.t. the size of the input for the Type Reconstruction Problem, which
is O(n). We do not claim that factorizing an integer n is possible in linear time w.r.t.
the size of the binary representation of n, and therefore the previous statement does not
contradict the fact that prime factorization is not known to be solvable in polynomial
time. More efficient approaches can be found in [Knu81, p. 379-417]. Note that any
number is a composite of at most log2(n) prime factors. The worst case is n being a
power of 2 and thus the size of both all and distinct is O(logn).

Algorithm 14 applies Lemma 11 (implemented as Algorithm 13) for each qi = n/fi,
where the fi are the distinct prime factors. Any non-trivial divisor q of n is equal to n/f ,
where f is a divisor of n that contains at least 1 of n’s prime factors. Since Algorithm 13
with parameter q finds all repeated prefixes of length q′ where q′ divides q, calling it for
all qi = n/fi ensures that all divisors of n are covered.

As shown in the proof of Lemma 11, Algorithm 13 requires O(n) steps on displacement
sequences of length n. The number of executions is bounded by the number of distinct
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Algorithm 14: Finding all repeated prefixes.
Input: Displacement sequence D of length n.
Output: rq = true if and only if the prefix of length q is repeated in D.

1 Function AllRepeatedPrefixes(D, n)
2 // prime factorization of n
3 f ← 2
4 d← 0
5 n′ ← n
6 all ← null
7 distinct ← null
8 while f ≤ n′ do
9 if n′ mod f = 0 then

10 if f 6= d then
11 d← f
12 distinct.add(d)
13 all.add(f)
14 n′ ← n′/f

15 else
16 f++

17 // Initialization
18 for i← 1; i ≤ n; i++ do
19 ri ← false
20 // Find all repeated prefixes
21 for i← 1; i < |distinct|; i++ do
22 factors ← all
23 Remove one occurrence of distinct[i] from factors
24 AllRRPForDivisor(D, n, n/distinct[i], factors)
25 // Trivially repeated prefix
26 rn ← true
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prime factors of n. As shown by Robin [Rob83], the number of distinct prime factors of
n is upper-bounded by O(logn/ log logn), implying the claimed runtime bound. Apart
from the two linked lists of size O(logn), the algorithm requires O(n) variables ri. The
total required space is therefore O(n).

6.3 Full algorithm for aligned type maps
In this section, we present our algorithm that solves the Type Path Reconstruction
Problem in O(n logn/ log logn) time for the special case of aligned homogeneous type
maps. Some of the key ideas are the same as for our algorithm solving the Type
Reconstruction Problem (see Chapter 5). Since any type path is a type tree, the
properties discussed in Chapter 4 hold for them as well. In particular, a nice type path of
equal cost exists for any optimal type path. Furthermore, the problem exhibits optimal
sub-structure. For the Type Path Reconstruction Problem, the sub-problems are
the prefixes of the aligned type map. We denote the sub-problem of length q as Nq,
i.e., Nq = (t,D[0, q − 1]) for 1 ≤ q ≤ n. An optimal type path for the sub-problem
Nq is denoted by Pq. We can reduce the required space by the same trick as used in
Section 5.5.1, namely that of reconstructing a full solution out of solution fragments once
the algorithm terminates. A solution for a general type map can be constructed out of
the solutions for all prefixes of a homogeneous type map. This is similar to the approach
in Section 5.6, but can be done much more efficiently for type paths. In addition to these
ideas, we use two preprocessing steps to efficiently compute repeated and strided prefixes.
Once this information is available, the algorithm can construct an optimal type path in
near-linear time.

Algorithm 15 proceeds in four steps. In the first, the algorithm constructs the trivially
optimal representation for the sub-problem N1. For an aligned type map, the prefix of
length 1 is the type map (t, 〈0〉) and therefore the optimal representation is via a leaf
node. The algorithm thus directly sets T1 = leaf(t).

In the second step, all repeated prefixes of D are computed with the help of Algo-
rithm 14. As discussed in the previous section, a prefix Mq of a homogeneous type map
M = (t,D) is a repeated prefix if and only if the prefix Dq is repeated in the displacement
sequence D. If the prefix Dp is repeated in Dq, its type path representation Pp can be
used as a sub-type for the representation Pq.

In the third step, the algorithm computes for each repeated prefix Dp the longest
prefix Dl in which Dp is repeated, i.e.,

max
l,p≤l≤n

(Dp is strided in Dl) .

Note that if the prefix Dp is strided in Dl, it is also strided in any prefix Dq with q s.t. p
divides q and q ≤ l. If the repeated prefix Dp is strided in some prefix Dl, any repeated
prefix Dq with p ≤ q ≤ l and p | q can be represented via a vec node, using Pp as the
sub-type.

In the fourth step, the algorithm iteratively constructs optimal type path representa-
tions for longer and longer prefixes, using the already computed optimal representations
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Algorithm 15: Construction of optimal type path representations for aligned
homogeneous type maps.
Input: Aligned homogeneous type map M = (t,D) of length n.
Output: Optimal type path representation for M .

1 Function Typepath(M , n)
2 // Step 1: Trivial optimal representation for N1
3 T1 = leaf(t)
4 // Step 2: Find all repeated prefixes
5 AllRepeatedPrefixes(D, n)
6 // Step 3: Find strided prefixes
7 for p← 1; p < n; p++ do
8 if rp 6= true then
9 continue

10 sp ← p
11 s← D[p]−D[0]
12 while sp + p < n and D[sp + p]−D[sp] = s do
13 sp ← sp + p

14 // Step 4: Construct optimal representation for each
repeated prefix

15 foreach q ∈ {i | ri = true, 2 ≤ i ≤ n} do
16 cbest ←∞
17 foreach p ∈ {i | ri = true, 1 ≤ i < q} do
18 if q ≤ sp ∧ p divides q then
19 cvec ← Kvec + Tp

20 if cvec < cbest then
21 s← D[p]−D[0]
22 Tq ← vec(q/p, s, Tp)
23 cbest ← cvec

24 cidx ← Kidx + (q/p)Klookup + Tp.cost
25 if cidx < cbest then
26 // disp ← 〈D[0], D[p], . . . , D[(q/p− 1)p]〉
27 Tq ← idx(q/p, disp, Tp)
28 cbest ← cidx

29 return Tn
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for shorter prefixes as sub-types. To do this efficiently, each node stores the cost of the
type path rooted at this node. When a new type path Pq for the prefix Dq is constructed
out of a prefix Dp, the cost of Pq can be computed in constant time, by adding the cost
of the constructed root node to the cost of the sub-type Pp. The information gathered
by the first three steps allows for an efficient construction of an optimal representation
for a prefix of length q out of already computed optimal representations for repeated
prefixes of length less than q. As discussed at the begin of this chapter, the optimal type
path representation for a repeated prefix of length q, 1 < q ≤ n, is either an idx or vec
node with an optimal representation of a shorter repeated prefix as the sub-type and
appropriate parameters. The least cost representation is found by enumerating all possible
representations of the prefix of length q, as done in the body of the nested for-loop. If two
prefixes Dp and Dq, p < q are both repeated in D, it is clear that Dp is also repeated in
Dq. A representation of Dq via an idx node of the form Pq = idx(q/p, 〈D[0], D[p], . . .〉,Pp)
is possible. The prefix of length 1 is a repeated prefix in any homogeneous type map
and thus the algorithm is guaranteed to find a valid representation for all repeated
prefixes. If the prefix Dp is a strided repetition in the prefix Dq, Dq can alternatively
be represented via a vec node as Pq = vec(q/p,D[p]−D[0],Pp). Note that rn was set to
true by Algorithm 14, since the prefix of length n is by definition a repeated prefix. Thus,
an optimal type path representation for the full displacement sequence is constructed in
the last iteration.

The first step implicitly assumes constant update times for the variables ri, which
can be guaranteed by storing them in an n-element array. In the fourth step however
we cannot afford to scan an array of size n to find those ri that were set to true, since
that would lead to an O(n2) time bound for the two nested loops. This can be avoided
by copying only the required information to a new, smaller array that contains only the
values i for which ri = true.

Lemma 12. Given an aligned homogeneous type map M of length n, Algorithm 15
constructs an optimal type path representation in O(n logn/ log logn) time and O(n)
space.

Proof. As shown in Section 6.2, all the repeated prefixes of D can be computed using
O(n logn/ log logn) time and O(n) space. The second step requires O(n/q) time for each
repeated prefix of length q. The divisor summatory function, i.e., the function

∑
q|n q,

computes the sum of all divisors q of n. Due to Gronwall [Gro13], the result of this
summation can be bounded by∑

q|n
q = O(n logn/ log logn) .

Using this upper bound, the time required by the second step can be bounded as∑
q s.t. rq=true

n/q ≤
∑
q|n

n/q =
∑
q|n

q = O(n logn/ log logn) .

The body of the inner for-loop of the fourth step requires only constant time due to
the information gathered in the previous steps and the trick of not computing the array
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of displacements for idx nodes as outlined above. The number of repeated prefixes of
a displacement sequence Dq is at most equal to the number of divisors of q. Using the
same rough upper bound as in the proof of Lemma 3, we can bound the number of
divisors of q with O(√q). Thus, the body of the inner loop is executed O(√q) times for
each q. The remainder of the outer for-loop’s body trivially requires constant time. The
outer loop is executed at most once for each divisor q of n and thus O(

√
n) times. Since

q ≤ n, we have that O(√q) is O(
√
n) and the body of the nested for-loop is executed

O(
√
n
√
n) = O(n) times.

We use the same trick as in Section 5.5.1 to prove the claimed space bound. We do
not need to store the displacement array with each constructed idx node, since it can
easily be reconstructed once the optimal type path has been found. In particular, if the
root node of an optimal type path for a sub-problem Nq is an idx node, only the kind of
the node, the count c and the cost of the type path Pq rooted at this node have to be
stored. The full node can easily be derived as idx(c, 〈D[0], D[p], . . . , D[(c − 1)p]〉,Pq/c)
with p = q/c.

Note that the information kept for an idx node fragment requires only constant space.
For vec nodes, no reconstruction is required since all information can trivially fit into
a constant amount of space. Optimal type paths are computed only for the repeated
prefixes of the type map M , the number of which is upper bounded by O(n). This
implies that the constructed type paths for all sub-problems require only O(n) space.
The algorithm additionally requires O(n) variables ri and si. The claimed space bound
follows directly.

6.4 General type maps

Lemma 13. Given optimal nice type path representations Pq for all sub-problems Nq of
a homogeneous type map M = (t,D) of length n, an optimal type path P representing M
can be computed in O(n) time.

Proof. By Lemma 1, a cost-equivalent nice type path representation P̃ of M exists
for any optimal type path representation P of M . By assumption, an optimal nice
type path representation Pn for the sub-problem Nn, i.e, the aligned type map M ,
exists. To construct an optimal representation of M , find the top most index node
N = idx(c, 〈i0, . . . , ic−1〉,Q) in Pn and add the displacement sequence’s shift x = D[0]
to all its displacements, i.e., N = idx(c, 〈i0 + s, . . . , ic−1 + x〉,Q). Note that P has the
same cost as Pn and is therefore optimal. Traversing the whole type path requires only
O(logn) time (Lemma 2) and the list of displacements in an index node is at most of
length n. This step is therefore feasible in O(n) time.

If such an index node does not exist, it follows directly from Lemma 1 that the
optimal representation of M is of the form P = idx(n/q, 〈. . .〉,Pq) for some divisor q of n,
including the trivial divisors 1 and n. Since solutions for all sub-problems Nq with q < n
already exist, an optimal type path forM can be found in linear time by enumerating (the
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cost of) all possible representations of this form. The approach is analogous to the one
used in Algorithm 15, except that also the prefix of length n needs to be considered.

Proof of Theorem 2. The Type Path Reconstruction Problem for a homogeneous
type map M of length n can be solved by computing an optimal type path for the aligned
type map with the help of Algorithm 15 and applying the post-processing step outlined
in Lemma 13. The claimed time and space bounds follow directly from Lemma 12 and
Lemma 13.

6.5 Including the index bucket constructor

In this section, we extend the algorithm for the Type Path Reconstruction Problem
(Algorithm 15) to also consider the idxbuc constructor. Formally, the following problem
is solved.

Extended Type Path Reconstruction Problem
Instance: A homogeneous type map M of length n.
Task: Find a least-cost (or optimal) extended type path P representing M .

Algorithm 16: Constructing an optimal type path for the prefixMq with an idxbuc
node as root node and the repeated prefix Mp as sub-type.
1 E ← {D[ip]−D[(i− 1)p] | 1 ≤ i < p/q}
2 sort E
3 s← most frequently occurring element in E
4 o← number of occurrences of s in E
5 cidxbuc ← Kidxbuc + 2oKlookup + Pp.cost
6 if cidxbuc < cbest then
7 disp[0]← D[0]
8 buckets[0]← 1
9 j ← 0

10 for i← 1; i < q/p; i++ do
11 if D[ip]−D[(i− 1)p] = s then
12 buckets[j]← buckets[j] + 1
13 else
14 j ← j + 1
15 disp[j]← D[ip]
16 buckets[j]← 1

17 Pq ← idxbuc(j + 1, s, buckets, disp,Pp)
18 cbest ← cidxbuc
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The approach is very similar to the one used for computing the representation Tidxbuc
for the construction of an optimal type tree (Section 5.3). The slightly adapted procedure
is shown in Algorithm 16, which can directly be plugged into the type path reconstruction
algorithm (Algorithm 15) by including it in the body of the inner-most foreach-loop,
i.e., after line 28. The correctness of this approach is immediate from the observations
made in Section 5.3 and Section 6.3. We however make no claim that this approach is
particularly efficient and expect that the asymptotic runtime can be reduced significantly
with the help of a clever preprocessing step similar to the idx and vec constructors (steps
two and three in Algorithm 15). The main purpose of this section is to demonstrate
that our algorithm can be extended to consider further constructors based on repeated
prefixes.

Lemma 14. The Extended Type Path Reconstruction Problem can be solved
in O(n2 log2 n) time and O(n) space.

Proof. The asymptotic runtime of Algorithm 16 is dominated by the cost of sorting q over
p elements on line 2. The remaining steps can all easily be implemented in linear time.
The inner foreach-loop of Algorithm 15 is executed for each divisor p of a given q, whereas
the outer foreach-loop is executed for each divisor q of n. The number of elements to be
sorted in one iteration of Algorithm 16 is q/p. We can apply Gronwall’s [Gro13] upper
bound for the divisor summatory function to bound the number of elements to be sorted
in one iteration of the outer loop as∑

p|q
q/p ≤

∑
p|q

p = O(q log q/ log log q) .

Thus, O(q log q/ log log q) elements have to be sorted to compute the optimal type path
Pq for the prefix Mq, assuming that optimal representations Pp are already known for all
prefixes Mp repeated in Mq. We find that in total the number of items that need to be
sorted is

∑
q|n

O(q log q log log q) ≤
∑
q|n

O(q log q) ≤
n∑

q=1
O(q log q) ≤ O(n2 logn) .

Using any standard sorting algorithm that sorts n elements in O(n) time, this is feasible
in O(n2 log2 n) time, since

O(n2 logn log(n2 logn)) = O(n2 logn(2 logn+ log logn)) = O(n2 log2 n) .

The space bound follows directly from the fact that the set E and the lists disp and
buckets each contain at most n elements.
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CHAPTER 7
Problem variants

In this chapter, we discuss variants of the Type Reconstruction Problem and their
potential advantages. In particular, we discuss the Type DAG Reconstruction
Problem in Section 7.1, the Type Normalization Problem in Section 7.2 and the
inclusion of additional constructors in Section 7.3. For most of these problems, only
straight-forward solutions are known. However, we strongly suspect that more efficient
solutions exist and this chapter can be seen as a collection of possible directions for future
work.

7.1 Type DAG reconstruction

Recall the definition of type DAGs and the Type DAG Reconstruction Problem
from Section 2.7.1. Contrary to the less general type tree structure, the nodes of a
type DAG may have multiple predecessor nodes (or incoming edges), whereas a node
in a type tree may have at most one parent. Basic concepts, such as the flattening
procedure for type trees (Algorithm 2 in Section 2.7) can easily be adapted for type
DAGs. As mentioned in Section 2.7.1, type DAGs may lead to arbitrarily more concise
representations and some of the related work discussed in Chapter 3 may implicitly work
with a DAG-like structure.

However, the principle of optimality (or dynamic programming principle) does not
hold for type DAGs, as we show by example in the following. We first define the notation
of a sub-structure for a type DAG. The definition is a bit more involved than for type
trees, where a sub-structure is easily defined as a subtree. Intuitively, in a DAG the
sub-structure attached to a node N consists of all the nodes reachable from N and all
the edges between these nodes. Figure 7.1 illustrates this notation.
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Figure 7.1: Examples of a sub-structures in a type DAG. The sub-structure attached
at the node N1 consists of all the blue nodes and edges. The sub-structure attached at
node N6 is highlighted in green and the sub-structure attached to N7 in red.

D1 = strc(2, 〈0, 10〉

E = vec(5, 1)leaf(MPI_CHAR)

(a) Cost: 17.

D2 = idx(9, 〈0, 10, . . . , 14〉)

leaf(MPI_CHAR)

(b) Cost: 14.

Figure 7.2: Two type DAG representations for the type map M = (〈char, ...〉, 〈0, 10,
11, . . . , 14〉).

Definition 18. Given a type DAG D = (V,E) with the node set V = {N0, . . . ,Nn−1}
and the edge set E, the sub-structure E = (V ′E′) attached at node O ∈ V is defined as

V ′ = {Ni ∈ V | Ni is reachable from O}
E′ = {(Ni,Nj) ∈ E | Ni ∈ V ′ ∧Nj ∈ V ′}

A node Ni is reachable from a node O if there exists a path from O to Ni.

We now give an example to show that a type DAG does not adhere to the principle of
optimality. To keep the example simple, we do not consider idxbuc nodes in this section.
One may assume that the cost Kidxbuc of an idxbuc node is very large, e.g., Kidxbuc =∞,
so that a representation via an idxbuc node is never optimal.

Lemma 15. An optimal type DAG may contain sub-structures that do not represent the
corresponding type map optimally.

Proof. Assume a type map that consists of 6 char values, 5 of which are stored con-
secutively, e.g., a type map M = (〈char, ...〉, 〈0, 10, 11, . . . , 14〉). Figure 7.2 gives two
representations for the type map M . The representation D1 in Figure 7.2a has a cost
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F = strc(. . . )

E = vec(5, 1)

leaf(MPI_CHAR)

at least one vec or idx node

D2 = idx(6, 〈0, 10, . . . , 14〉)

leaf(MPI_CHAR)

Figure 7.3: A type DAG using optimal representations D2 and E for the sub-problems
M and N .

of Kstrc + 2Klookup + Kleaf + Kvec = 17, while the representation D2 in Figure 7.2b
has a smaller cost of Kidx + 6Klookup + Kleaf = 14. The representation D2 is optimal
for the type map M . The representation D1 contains the sub-structure E , which is
an optimal representation for the sub-problem N1,5 of M , i.e., the aligned type map
N = (〈char, . . .〉, 〈0, 1, . . . , 4〉).

We construct a larger type DAG F , shown in Figure 7.3, that contains the type DAGs
D2 and E as sub-structures. The dashed lines indicate the general structure of F . We
require F to follow these four properties but do not care about its concrete form:

• The sub-structures D1 and E are joined in F by a strc node.

• There is at least one idx or vec node between the two nodes D2 and F . This is to
ensure that the sub-structure representing the sub-problem M cannot be directly
merged into a strc node, even if the start node of the representation is a strc node.

• The type DAG D2 occurs only once in F .

• The type DAG D1 does not occur in F .

Assume that type DAGs adhere to the principle of optimality. We contradict this
assumption in the following by showing that a type DAG of less cost can be constructed
by replacing the optimal sub-structure D2 with the non-optimal sub-structure D1. Since
the representations D2 and E are optimal for the respective sub-problems M and N ,
they may in principle occur in an optimal type DAG of the form outlined in Figure 7.3
(they do not necessarily occur, since other representations that do not make use of
these two sub-problems may exist.) The total cost of the sub-structures D2 and E is
Kidx + 6Klookup +Kleaf +Kvec +Kleaf = 22.

However, we can reduce the cost of this type DAG by replacing the representation
D2 with the (initially) more costly representation D1 of the same sub-problem M . This
allows to represent the second occurrence of the sub-structure E with a single edge

95



F ′ = strc(. . . )

at least one vec or idx node

D1 = strc(2, 〈0, 10〉

E = vec(5, 1)leaf(MPI_CHAR)

Figure 7.4: Using the non-optimal representation D1 for the sub-problem M reduces
the overall cost of the DAG F , since in F ′ parts of D1 can be reused to represent the
sub-problem N .

to its first occurrence, as shown in Figure 7.4. In the modified type DAG F ′, the
cost of the representations D1 and E for the sub-problems M and N is reduced to
Kstrc + 2Klookup + Kvec + Kleaf = 17. Thus, the representation F , although using an
optimal representation for sub-problem M , is more costly than the representation F ′,
which uses a non-optimal representation for the same sub-problem. This contradicts the
assumptions that type DAGs exhibit optimal sub-structure, i.e., the dynamic programming
principle does not apply.

The dynamic programming principle is one of the key ideas for our algorithm for
the Type Reconstruction Problem. Further observations, like the nice type tree
property (Lemma 1) and the construction of optimal type trees for non-aligned type
maps (Lemma 8), build on this principle. It seems that our ideas for the Type Recon-
struction Problem are not (easily) adaptable for the Type DAG Reconstruction
Problem and it remains an open question whether or not this problem can be solved in
polynomial time. Due to the potentially large benefits of type DAGs in comparison to
type trees, this problem is certainly relevant. Further efforts are required to determine
the computational hardness of the Type DAG Reconstruction Problem. Thus,
heuristic approaches that target type DAGs specifically are a further topic of interest.

7.2 Type normalization
Recall the definition of the Type Normalization Problem form Section 2.7. Given a
type tree T , the task is to compute an optimal representation for the type map represented
by T .

A straight-forward solution for the Type Normalization Problem is to flatten
the given type tree T and perform type reconstruction on the resulting type map. The
same strategy works for type paths and type DAGs.
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T1 = vec(n, s)

leaf(MPI_CHAR)

(a) Cost: 17.

T2 = idx(n,D)

leaf(MPI_CHAR)

(b) Cost: 14.

Figure 7.5: Two type path representations for a type mapM = (〈char, . . .〉, 〈0, s, 2s, . . .〉)
of arbitrary length n. For Träff’s type path normalization algorithm [Trä14], the repre-
sentation P1 given in Figure 7.5a constitutes the best case, whereas the representation
P2 from Figure 7.5b constitutes the worst case. A type path of height d with the longest
occurring displacement sequence being of length l is normalized in O(dl

√
l + (d log l)3)

time. The representation P1 does not contain any displacement sequence and the depth
is constant w.r.t. n. It can thus be normalized in constant time. The algorithm, however,
requires O(n

√
n) time to normalize the representation P2, since the longest occurring

displacement sequence is of length n. Our approach, which is to flatten the input
type path and perform type path reconstruction on the resulting type map, requires
O(n logn/ log logn) time in both cases. Flattening the type paths P1 and P2 can trivially
be done in O(n) time. Our approach is thus asymptotically faster for the representation
P2, but slower for the representation P1.

So far, we have not given runtime bounds for the flattening procedure (Algorithm 2).
It is in general not possible to give an asymptotic upper bound w.r.t. the length n of
the represented type map, since a (non-optimal) type tree representation may contain
arbitrarily many nodes (refer to Section 2.5). For the following, we assume that the type
trees are such that flattening can be performed in O(n logn/ log logn) time, i.e., that the
flattening step does not dominate the complexity of the outlined approach for type path
normalization. This assumption is reasonable since any type map M = (T,D) of length
n can be represented as strc(n,D, T ), which can be flattened in O(n) time.

To the best of our knowledge, previous attempts to solve the Type Normalization
Problem exist only for type paths consisting solely of vec, idx and leaf nodes [Trä14].
Apart from heuristic approaches (see Chapter 3 for details), we were not able to find
solutions for normalizing type trees or type DAGs. Thus, the straight-forward approach
using our algorithm for the Type Reconstruction Problem is currently the most
efficient for type trees and no algorithm for normalizing type DAGs exists as of yet.

The straight-forward approach outlined above requires to explicitly generate the
full type map M = (T,D) represented by T . If M is of length n, O(n) memory is
required to store M . However, a type tree (type path, type DAG) representation may
be arbitrarily more concise than the represented type map. For example, the simple
type path P1 = vec(n, s, leaf(MPI_CHAR)) can easily be stored in a constant amount
of memory, but the type map requires O(n) memory, i.e., M may be arbitrarily larger
than T . This cost has to be paid even if the given representation was already optimal.
Träff [Trä14] presented an algorithm that performs normalization on type paths in time
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proportional to the height d of the type path and the length l of the longest occurring
displacement sequence in any node of the input or output type tree. In particular,
the algorithm requires O(dl

√
l + (d log l)3) time. Type paths that consist only of vec

and leaf nodes (e.g., P1) are normalized in O(d3) time since no displacement arrays
are present. If the given type path contains no (or only a constant number of) useless
nodes, i.e., vec and idx nodes with count 1, this is equivalent to O(log3 n), since the
height of such a path is O(logn) (Lemma 2). The worst case for this algorithm occurs
when a node in the given type path contains an array of displacements of size n, e.g.,
for P2 = idx(n,D, leaf(MPI_CHAR)). In this case, the algorithm requires O(n

√
n) time,

whereas flattening and constructing an optimal type path with our algorithm presented
in Chapter 6 requires O(n logn/ log logn) time. In other words, there are relevant cases
where the algorithm by Träff is asymptotically slower than ours. However, our approach
always hits the worst case.

We note that Träff’s algorithm can be improved by using our ideas for computing
repeated prefixes efficiently (Section 6.2). Their current approach performs straight-
forward checks to see if a given prefix is repeated. Using our efficient method to
pre-compute all repeated prefixes, the worst case bound of Träff’s algorithm can be
improved to match our bound. However, their approach does not seem to allow for an
(easy) integration of further constructors, e.g., the idxbuc constructor. As discussed in
Section 6.1, their algorithm is based on the canonical path property. It is not clear how
this property can be extended to cover further constructors. The dynamic programming
step of combining and splitting nodes, which already consists of ten cases if only the
leaf, idx and vec nodes are considered, will be a lot more involved for every additional
constructor.

Unfortunately, so far we were not able to find a way to utilize the ideas presented in
Chapters 4 to 6 for an algorithm that performs type normalization more efficiently than
the straight-forward approach outlined above.

7.3 Additional constructors

Several new type constructors have been proposed in addition to the ones defined by
the MPI standard. The proposals usually stem from a desire to make the usage of
derived datatypes easier and more transparent. Furthermore, they typically capture
occurring data layouts more efficiently than the available type constructors. We provide
a brief overview of the proposed constructors and argue informally about their inclusion
in our algorithms for the Type Reconstruction Problem and the Type Path
Reconstruction Problem.

• A bounded vector [TR14] is a slight generalization of the VECTOR constructor.
Recall that the VECTOR constructor replicates a given sub-type blocklength
many times into each of the count many blocks. The idea is to give the total
number of replications of the sub-type instead of the number of blocks. Thus,
the type map resulting from the standard VECTOR constructor is cut off when a
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certain number of replications is reached, i.e., the last block may contain less than
blocklength elements. Träff et al. [TRH14] show that this constructor is useful
in the implementation of the classic Bruck algorithm [BHK+97] for the all-to-all
collective communication operation (MPI_ALLTOALL [MPI15, p. 168]).

• A circular vector [TR14] further generalizes the bounded vector constructor. The
basic idea is to wrap the type map generated by a bounded vector. After a certain
number of replications of the sub-type, the remaining replications are at smaller
displacements, i.e., the type map “wraps around” a given bound. This constructor
too is useful for implementing the Bruck algorithm [TRH14].

• The bucket type [TR14] is the natural complement to the INDEXED_BLOCK con-
structor. Instead of an array of displacements, it takes an array of block lengths as
argument. The basic idea is that a memory area is divided in contiguous blocks
(or buckets) of a fixed length, called the bucket size. The number of elements in
each bucket is given by the corresponding bucket length value. This constructor is
also useful for the Bruck algorithm [TRH14], in particular for irregular all-to-all
communication (MPI_ALTOOALLV [MPI15, p. 170]).

• The triangular type [TLRH15] describes a type map of regularly changing blocks.
The blocks change in two dimensions: The i-th block contains blockincrement
many replications more than its predecessor block. Its stride is equal to the
initial stride plus the strideincrement value, i.e., the i-th block starts at
displacement i(stride + strideincrement). This constructor is useful for the
implementation of stencil computations [TLRH15].

The bounded and circular vector constructors can easily be expressed with existing MPI
datatype constructors, although for the latter it is necessary to take care of multiple
tedious special cases. Type maps specified by the bucket type constructor can trivially
be represented by the built-in INDEXED constructor. However, since the displacements
of the blocks are all multiples of the bucket size, listing them explicitly is redundant and
incurs a large memory overhead. Instead of one array (the actual number of elements in
each bucket) and a scalar value (the bucket size), two arrays (displacements and block
lengths) are required to specify the same type map with the INDEXED constructor. The
triangular type constructor can represent some of the type maps occurring in stencil
computations with constant cost, whereas a representation with the INDEXED constructor
would require space proportional to the number of blocks.

Träff and Rougier [TR14] observe that the bounded vector constructor in particular
was beneficial for the overall performance. They argue that an integration into the
MPI datatype engine will lead to further performance improvements. To handle the
new constructors efficiently, they need to be considered for type normalization and
reconstruction. We argue informally that the proposed constructors can be integrated
into our algorithm for the Type Reconstruction Problem. To include one of the
proposed constructors in Algorithm 9, one has to check whether the constructor can
represent a given type map with a given sub-type. Recall that the key challenge for this
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algorithm was the inclusion of the strc constructor, which is the only constructor taking
more than one sub-type. As with the vec, idx and idxbuc constructors, straight-forward
approaches for the new constructors suffice as long as they require O(n2) time to perform
one such check. Since the proposed constructors all follow the basic idea of the idxbuc
or vec constructors to replicate a sub-type into (semi-) regular locations, this should be
possible. For a formal proof, the properties given in Chapter 4 need to be extended to
also cover the new constructors. Since all of the proposed constructors take only one
sub-type, key characteristics such as the nice type tree property (Lemma 1) or the bound
on the height of a type tree (Lemma 2) should still hold.

Constructors that rely on repeated prefixes can be incorporated into our algorithm
for the Type Path Reconstruction Problem (Algorithm 15) similarly to the idxbuc
constructor (see Section 6.5). This includes the triangular and bucket types as well as
the bounded and vector types. Note that for the last two, only the sub-type but not
the block is required to be a repeated prefix. As for the idxbuc constructor, further
ideas are required to reduce the asymptotic runtime of the resulting algorithm. The
O(n logn/ log logn) time bound may be hard to achieve, since the proposed constructors
take more parameters and thus more possible representations of a type map need to be
checked. However, we strongly believe that the basic algorithm for handling only the vec
and idx constructors provides a solid basis for this endeavor.
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CHAPTER 8
Conclusion

In this concluding chapter, the main results of this master’s thesis are summarized briefly.
We furthermore put our results into context with related work and state possible directions
for future research. We point out that the previous chapter, which discusses several
interesting variations of the Type Reconstruction Problem, contains multiple
open problems as well as a detailed comparison of our result for the Type Path
Reconstruction Problem with the best previously known solution.

8.1 Results of this work

This master’s thesis explored the Type Reconstruction Problem, that is, the
problem of constructing provably optimal type tree representations for arbitrarily complex,
heterogeneous and non-contiguous data layouts with the help of MPI’s derived datatype
constructors.

The master thesis starts with an intuitive introduction to the problem. In particular,
we give an overview of MPI and its derived datatypes mechanism to motivate and put into
context the Type Reconstruction Problem. The introductory chapter is followed
by a detailed and precise presentation of MPI’s derived datatype functionality, before
the formal model for data layouts and type trees as well as the assumed cost model are
introduced. This is followed by a formal definition of the following problems:

• The Type Reconstruction Problem, which asks for a least-cost type tree
representation of a given data layout.

• The Type Path Reconstruction Problem, which is a special case of the former
problem where type trees are restricted to type paths.

• The Type DAG Reconstruction Problem, for which the structure of type
trees is generalized to type DAGs.
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• The Type Normalization Problem, which requires to construct a least-cost
type tree representation out of a given type tree.

A careful and detailed analysis of the structure of (optimal) type trees is provided in
Chapter 4. The properties proved in this part of the master’s thesis are crucial for the
algorithms developed in the following two chapters and may provide a good starting point
for future, possibly more efficient algorithms. We deem this chapter most important
for a thorough understanding of type trees and the reconstruction and normalization
problems.

The following chapter presents in detail our algorithm that solves the Type Recon-
struction Problem in polynomial time, i.e., in O(n4) time and O(n2) space, where
n is the size of the given data layout. This refutes the conjectured NP-hardness of
the problem [GHTT11,Trä14] and to the best of our knowledge is the first successful
attempt to solve the problem to optimality. The result was submitted to the IPDPS
conference [GKST] and a preliminary version is available online [GKST15].

Our second main contribution is an algorithm solving the special case of the Type
Path Reconstruction Problem in asymptotically less time than previous approaches.
In particular, our algorithm requires O(n log / log logn) time and O(n) space to construct
an optimal type path for a data layout of length n. The previously best known solution
requires O(n

√
n) time. Our approach is furthermore able to integrate additional type

constructors. Although this increases the asymptotic bound significantly, our algorithm
is the first to allow for a relatively easy extension to further constructors. This result
was published at this year’s EuroMPI conference [KT15].

As a minor contribution, we show in Chapter 7 that the principle of optimality,
which is crucial for our type tree and type path reconstruction algorithms, does not
hold when the structure of the representation is generalized to a DAG. The chapter
furthermore contains a discussion about closely related, interesting problem variations
and the applicability of our results to the Type Normalization Problem.

8.2 Comparison to related work

A detailed comparison of our solution for the Type Path Reconstruction Problem
and the resulting straight-forward approach to the Type Path Normalization Prob-
lem is already given in Section 7.2. The heuristic optimization techniques outlined in
Chapter 3 are performed implicitly by our algorithms as far as they are applicable in
our model, assuming that the chosen cost values reflect the assumed advantages of these
optimizations.

• If a data layout can be represented with less cost with a more specialized constructor,
the algorithm will choose the latter. Heuristic optimizations typically assume that
a representation with the STRUCT constructor is the most costly. Optimizations
are performed by specializing along the following hierarchy (see, e.g., [RMG03,
SKH13,KHS12]):
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– STRUCT→ HINDEXED. Ross et al. [RMG03] assume that this specialization is
always possible for homogeneous data layouts without decreasing the quality
of the solution. As shown by example in Section 2.6, this is not necessarily
true. Our algorithm for the Type Reconstruction Problem treats this
case correctly, while the algorithm for the Type Path Reconstruction
Problem does not consider the STRUCT constructor by definition, i.e., it
implicitly performs this “optimization”.

– HINDEXED → HVECTOR → VECTOR → CONTIGUOUS. Recall that the MPI
standard often defines two versions of the same constructor, with one measuring
displacements and strides in multiples of the extent of the base type while the
other uses bytes as the base unit. In our model, we measure all these arguments
in bytes and therefore both versions are modeled with a single constructor.
Furthermore, the CONTIGUOUS constructor is modeled as a vec constructor
with count 1. Apart from that, the same optimizations are performed if the
cost model is chosen s.t. the cost of a vec constructor is less than the cost of
an idx constructor etc.

• Kjolstad et al. [KHS12] merge two consecutive STRUCT constructors into a single
one. As shown in Lemma 8, an optimal type tree cannot contain two directly
nested strc nodes and thus our algorithm is guaranteed to not produce such a
representation.

• Schneider et al. [SKH13] and Kjolstad et al. [KHS12] furthermore merge contiguous
sub-types into the parent type with the help of the blocklength argument
that most MPI type constructors take. In our simplified model, only the idxbuc
constructor still takes this argument, while vec, strc and idx, contrary to their MPI
counterparts, do not. This optimization is thus not applicable in our model.

• Contiguous indexed regions are coalesced by Ross et al. [RMG03] This is done
by our algorithms only if it reduces the cost of the generated representation. It
may very well be the case that a representation of less cost is possible if parts of a
contiguous region are represented by multiple constructors, e.g., if each part can be
represented efficiently with the vec constructor.

• Kjolstad et al. [KHS12] save the cost of the CONTIGUOUS constructor if it is the
top-most constructor in a derived datatype. In particular, instead of communicating
one element of a contiguous datatype with count c and a certain sub-type, the
operation is changed to communicate c elements of the sub-type. Although this
results in a semantically equivalent operation, the represented type map is not the
same. Such an optimization is thus out of the scope of datatype reconstruction and
normalization, but can easily be performed in addition.
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8.3 Open issues and future work
Due to its O(n4) runtime, our algorithm for the Type Reconstruction Problem
may not be all that helpful in practice, except for small n. To improve this asymptotic
bound, the step of constructing the least-cost representation Tstrc in Algorithm 9 has
to be improved. We currently bound the runtime of this step as O(n2) for all sub-
problems of length l, l ≤ n. This is clearly a very rough upper bound which may be
improved significantly by a careful investigation and analysis of the algorithm. This
step is dominated by the O(n2) time required to find a shortest path in a DAG with
O(n) nodes and O(n2) edges. As discussed at the end of Section 5.5, we can subsume
the computations of a shortest path for each of the n− l + 1 sub-problems of length l
by one instance of an all pairs shortest path problem. This, however, does not reduce
the asymptotic runtime. Small changes to the current algorithm and/or a more careful
analysis may reduce this bound significantly.

Our algorithm for the Type Path Reconstruction Problem runs in near-linear
time, which we deem acceptable for practical purposes. However, the bound increases to
O(n2 log2 n) time when also the idxbuc constructor is considered. Our approach for the
inclusion of this constructor is straight-forward and we expect that this bound may be
improved drastically.

Several directions for future research are outlined in Chapter 7, where we discuss
variations of the Type Reconstruction Problem. In particular, the following
questions require further investigation:

• Does there exist a polynomial-time algorithm for the Type DAG Reconstruction
Problem or is this problem NP-hard?

• Can our ideas be used for a type tree (or type path) normalization algorithm that
is more efficient than performing type reconstruction on the flattened type tree?

• As discussed in Section 7.3, additional constructors not currently defined by the
MPI standard should be easy to integrate into our algorithm for the Type Recon-
struction Problem. However, a formal proof of correctness has to include the
additional constructors in the proofs of all the properties discussed in Chapter 4,
which requires a non-trivial effort.

• Can the additional constructors be included in our algorithm for the Type Path
Reconstruction Problem, without increasing its asymptotic runtime (too
much)?

The open questions outlined so far are of a purely algorithmic nature. For a practically
useful type reconstruction algorithm, the following more practical issues need to be
investigated:

• The cost model adapted for this work is very general. While it is simple enough for
a formal analysis and flexible enough to reasonable model costs in different settings,
it is not detailed enough to capture the costs as they occur in practice. The current
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cost model for example does not consider memory hierarchies, which often play a
crucial role for high performance applications.

• An experimental evaluation of our algorithm for the Type Path Reconstruction
Problem is required to determine its applicability in practice. This requires an
integration of the algorithm in an MPI implementation, for which our proof of
concept implementation may be a helpful starting point.
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