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Nomenclature

Ai surface area of facei [m2]

aP discretised diagonal coefficient in the Finite Volume formulation

aNi
discretised neighbour coefficient in the Finite Volume formulation

b discretised source term in the Finite Volume formulation

C Chezy coefficient

~ci centroid of facei

Cµ, C1ε, C2ε empirical constants of thek − ε model

Eij mean rate of deformation of a finite fluid volume

f1 distance-based weighting factor

fx, fy, fz external forces [N]

hp surface elevation of pointp obtained by triangle interpolation [m]

h∗p surface elevation of pointp obtained by kriging [m]

hr friction loss [m]

Je energy gradient

k turbulent kinetic energy [m2/s2]

ks equivalent sand roughness (Nikuradse) [m]

kSt Strickler coefficient [m
1
3 /s]

L characteristic length of the flow domain [m]

`m mixing length

ṁf mass flux [kg/s]

~ni normal vector of facei

ix

-



Nomenclature

ni,x, ni,y, ni,z component of~ni pointing into Cartesian coordinate directionx, y, z

p or pi generic point; pressure [N/m2]; order of the discretisation scheme

Q discharge [m3/s]

q or qi generic point

qjk coefficient in the Bivariate Interpolation method

Rh hydraulic radius [m]

Rφ scaled residual ofφ

Rφ
u unscaled residual ofφ

s2 variance

Sp linearised source term

Su non-linear source term

Sφ source term for transported quantityφ

∆~s vector from cell centroid to face centroid

t time

u or u1 velocity component in the Cartesian coordinate direction ofx or x1

~u velocity vector

u∗ shear velocity [m/s]

Ui perimeter of cross-sectioni

uj short-hand notation foru1, u2andu3

ūj time-averaged mean velocity component [m/s]

ut tangential velocity [m/s]

u
′
iu

′
j Reynolds stress

V cell volume [m3]

v or u2 velocity component in the Cartesian coordinate direction ofy or x2

Vf control volume centered around the cell boundary [m3]

vj average flow velocity in cross-sectionj [m/s]

Wi weighting factor

w or u3 velocity component in the Cartesian coordinate direction ofz or x3
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Nomenclature

wj water surface elevation in cross sectionj [m]

x or x1 Cartesian coordinate directionx

xj short-hand notation forx1, x2andx3

xc x-coordinate of face centroid [m]

y or x2 Cartesian coordinate directiony

YE,p estimate of value forY in pointp

Yi value ofY in point i

∆yP normal wall distance of pointP [m]

z or x3 Cartesian coordinate directionz

zc z-coordinate of face centroid [m]

z1 (fvi) bottom elevation of face vertexi [m]

z2 (fvi) top elevation of face vertexi [m]

αφ relaxation coefficient for propertyφ

Γ diffusion coefficient

γ (dij) semivariance between data pointsi andj

δij Kronecker Delta (δij = 1 if i = j, δij = 0 if i 6= j)

δNP distance from pointN to pointP [m]

ε error bound

ε dissipation [m2/s3]

ΦA limiting function

φ transported quantity

φf face value ofφ

φN , φP value ofφ in pointsN andP

∇φ gradient ofφ in 3D

κ von Karman constant

λ Lagrange multiplier

µ dynamic viscosity [kg/m.s]

ν kinematic viscosity [m2/s]

νt turbulent (eddy) viscosity [m2/s]
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Nomenclature

ρ density [kg/m3]

σk, σε empirical constants of thek − ε model

τw wall shear stress [N/m2]

Θ rotation angle of the coordinate system

Ω control volume in general formulation

ω dissipation per turbulent kinetic energy, inverse time scale [1/s]
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1 Introduction

1.1 Thematic Introduction

In recent years a noticeable trend towards the use of numerical modelling can be observed in all

engineering disciplines. This development is not surprising as computer models often feature

lower cost than comparable physical experiments, are superior in speed and provide complete

information of all relevant quantities throughout the domain of interest at once. The wide field

of water-related sciences is no exception to this trend: hydrology has a long-standing tradition

in rainfall-runoff modelling, groundwater hydraulics uses solute transport computer models for a

long time already, and river hydraulics relies heavily on the use of computational fluid dynamics.

The present work will focus on the latter of these important topics.

Especially for the investigation of flow conditions and sediment transport in rivers, computational

fluid dynamics proves to be a valuable tool. Compared with physical experiments, it allows for

a rapid variation in boundary conditions, including surface roughness and discharge, but also

the effect of man-made structures can be quantified very quickly using tools for numerical flow

analysis. Hence, they are used in the planning stage of proposed structures or modifications

in the river or its surrounding areas, in real-time flood forecasting applications, and they also

assist experts in forming their opinion on the reasons of incidents that took place in the past.

Depending on the spatial modelling detail, the applications are classified into one-, two-, and

three-dimensional models. While the use of 1D-models is widespread among engineers, mostly

due to their easy application and the little in-depth knowledge required to apply them, 2D-models

are not yet used that frequently. Often they are applied by the engineer to simulate spatially con-

fined flow processes that exceed the application limits of one-dimensional models, for instance

the flooding of previously dry terrain where two-dimensional effects prevail. Finally, 3D-models

are rarely applied in practice; their use seems to be mostly limited to academia. This is not

surprising as the use of higher dimensional models usually requires in-depth knowledge about

both the underlying physical processes and the corresponding numerics. Furthermore, a much
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1.1. Thematic Introduction 1. INTRODUCTION

higher level of detail of the modelled region must be available for a successful application, but

very often this data is not at the engineer’s disposal, rendering the gain of 3D-models practically

useless.

However, if the required data is available, three-dimensional river analysis codes can become

extremely valuable tools for investigating phenomena exhibiting 3D flow characteristics. This

includes flow through river bends where a secondary motion is induced (Nguyen(2000) [51],

Feurich (2002) [21]), river junctions (Bradbrook et al.(2000) [12]), the presence of submerged

groynes (Ouillon & Dartus (1997) [60],Miller et al. (2003) [48]), scour around obstacles in the

flow domain (Premstaller(2002) [64]), and also the whole region in the vicinity of weirs and

other man-made structures. In all these cases statements about specific flow features, like flow

direction and magnitude, the position of the water surface, pressure and turbulent kinetic energy

can be made, all of which are crucial for an engineer’s assessment of the situation. The future

value of computational fluid dynamics tools clearly is found in predicting sediment transport on

a larger scale – especially since the treatment of sediments will be one of the major challenges of

the hydraulic engineer in the 21st century – but also water quality investigations and habitat mod-

elling are applications for the time to come, as soon as the required software will have reached

a reasonable level of applicability. It should, however, be noted that the correct prediction of the

flow field is of paramount importance for the evaluation of any properties that are transported

along with the flow. Therefore research efforts that are directed towards improvement of tools

for modelling the flow field are still required and will be the primary subject of this work.

Regardless of the dimension of the model or the discretisation technique employed, the flow

domain is always decomposed using a computation grid consisting of a large number of smaller

entities denoted cells. The common approach is to use triangular or quadrilateral cells in two

spatial dimensions, resulting in wedges, pyramids and hexahedra in 3D. Due to the meshing

mechanisms employed for this task, the grid forces the location of the respective cell centroids

and the user has little control about the actual points where the flow properties are about to be

stored. Besides that, the model operator must take reasonable care to align the computation grid

with the streamlines in the flow domain to avoid seeing the result affected by a process called

numerical diffusion, which will be subject to a detailed discussion later in this work. However,

such an alignment is not always straightforward or even possible if a dominating flow direction

cannot be identified.

This thesis proposes a paradigm shift in grid generation that comes at hand for circumventing

some of the mentioned problems associated with widely used meshing techniques. It derives and

prepares the required algorithms for creating computation grids based on point distributions given
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by the model user, enabling the operator to be in full control over the storage locations of the flow

properties he is interested in. The grid generator subsequently fulfils the task of creating a mesh

using the given point set, applying rules of neighbourship as fundamental base for its workflow.

This results in cells featuring an arbitrary number of edges in 2D and associated faces in 3D.

These cells are based on logic generation rules and allow for the exchange of mass between a

larger number of cells if an appropriate point distribution was chosen, thus reducing the negative

effects of flows not perpendicular to cell faces. This can be advantageous in situations where

no prevailing flow direction can be identified, as in recirculating flows or in the case of flows in

floodplains when multiple streams interact with each other (Tritthart & Milbradt (2003) [81]),

but also in any other flow situation exhibiting a strong secondary motion, as will be shown later.

1.2 Objectives and Outline

The prime objective of this work is to prove the feasibility of the polyhedral cell methodology

in practical situations where turbulent channel or river flow is encountered. To get to this point,

several other objectives must be met first. A first step is the design of algorithms for generating

a polyhedral mesh and its subsequent software implementation. This is followed by the deriva-

tion of the generic discretised equations of flow and turbulence and their implementation in a

numerical code, which is to be properly validated against a number of measurements in different

flow situations. In the following thesis chapters all required mathematical derivations, as well

as the results of validation and application runs are discussed, while the implementation is done

in a software model calledRSim-3D. This name is short forRiver Simulation in 3Dand it con-

sists of a pre- and postprocessor written in the Java programming language, hence allowing for a

platform-independent usage, and a solver module, coded in GNU compliant C because of speed

considerations. Due to all of these objectives, the work employs knowledge in the scientific fields

of mathematics, geometry, informatics and hydraulic research alike.

The work is arranged into five core chapters, each representing a distinct step in model develop-

ment. First of all, chapter 2 reviews a number of commercial and non-commercial 3D models

for computational fluid dynamics, listing their numerical capabilities along with usual fields of

application and past project references relevant for hydraulic engineering and research. At the

end of this chapter, the RSim-3D model is positioned within the framework of these models to

allow for a comparison.

In chapter 3, the design and application of polyhedral computation grids is discussed. Algo-

3



1.2. Objectives and Outline 1. INTRODUCTION

rithms for point distribution and grid generation are the core of this chapter, but it also discusses

issues like grid refinement in practical situations and equations for obtaining cell volumes and

surface areas in a geometrically complex grid configuration. For such a general grid requires

a very general treatment of the governing equations of flow and turbulence, chapter 4 derives

the discretised equations in an appropriate way. Furthermore this chapter outlines the boundary

conditions of all flow properties required to obtain a solution, before theoretical and practical

considerations about numerical issues like stability and convergence conclude that section.

The verification and validation of the model is subject to discussion in chapter 5. Validation

is done by applying the model to four different flow cases: a wind-channel duct curved by 90

degrees is computed first, followed by a rectangular laboratory flume with an 180 degree bend,

and subsequently a channel exhibiting a 270◦ bend. In the latter two cases, the used grid type is

varied to assess its influence on the results obtained. Finally, an S-shaped trapezoidal channel is

investigated to make a first step towards the modelling of realistic real-world flow situations.

The validation work of chapter 5 is followed by an exemplary application of the model to a

reach of the river Danube in chapter 6. Finally, a summary and the discussion of possible future

perspectives conclude the work.

4



2 Review of 3D CFD Programs for

Hydraulic Engineering

2.1 Introduction

Getting an overview on the capabilities and implementation details of comparable academic and

commercial software packages is an important first step towards the development of a new model.

Therefore, fourteen different 3D CFD codes that can be applied to general problems in hydraulic

engineering have been analyzed to determine their capabilities in this field. As there is constant

evolution in the CFD business and new software is developed frequently, it cannot be guaranteed

that this list is complete.

The information on the reviewed software packages was gathered from published literature and

extensive inquiries on the Internet. Sometimes it was difficult to find precise specifications of the

implemented methods and algorithms because this information was not disclosed to the public.

Such a non-disclosure policy is found in commercial codes quite frequently. However, the issue

that raised the most difficulty was to retrieve comparable price quotes for the different codes, as

the pricing policy varies greatly among the companies who author the software packages. For

some, an annual license fee applies, others offer perpetual licenses as well, and most of the time

discounts apply for academic institutions. In order to solve this problem,Olsen(1999) [55] pro-

poses a referencing system relating the software license cost to the price of computer hardware.

If the software price is in the same category as a high-end UNIX workstation, it is being refer-

enced as ”relatively expensive” according to this scheme, whereas the price category of a regular

desktop PC yields a ”relatively inexpensive” software price. This referencing system is adopted

in this work, using the terms Freeware, High-End and Low-End as classifiers.

Disregarding software packages that were developed for very specific applications, these pro-

grams were found to be applicable to tasks within the field of river hydraulics (listed in alphabetic

order):
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1. CFX-5by AEA Technology, UK

2. Cometby ICCM, Germany

3. Delft3Dby WL | Delft Hydraulics, The Netherlands

4. FEATFLOWby the University of Dortmund, Germany

5. FIDAP by Fluent Inc., USA

6. Flo++ by Softflo Corp., South Africa

7. FLOW-3Dby Flow Science Inc., USA

8. FLUENT by Fluent Inc., USA

9. NaSt3DGPby the University of Bonn, Germany

10. PHOENICSby CHAM Ltd., UK

11. SSIIMby the Norwegian University of Science and Technology, Norway

12. STAR-CDby CD adapco group, UK/USA

13. SWIFTby AVL List GmbH, Austria

14. TELEMAC-3Dby Electricité de France and HR Wallingford, France/UK

While most of the software packages implement different options only applicable to certain flow

situations, there is a reasonable number of implementation characteristics common to all pro-

grams that can be used as criteria for comparison. The ones used in this review are:

• Operating System the software was written for,

• Method used for spatial discretisation of the partial differential equations (Finite Differ-

ences, Finite Elements or Finite Volumes),

• Grid types (structured and unstructured) as well as grid shapes (tetrahedra or hexahedra),

• Numerical scheme used for discretisation of convective terms,

• Numerical methods used for time discretisation,

• Methods to deal with the challenging task of coupling pressure and velocity,

• Implemented turbulence models, and

• Implementation of a free water surface.
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2.2 Software Packages

2.2.1 CFX-5

Name of software CFX-5

Author/company AEA Technology, UK
Web page http://www.software.aeat.com/cfx

Field of application
Mechanical, biomedical and process engineering; several successful
applications to the field of hydraulic engineering are also known

Cost High-End
Operating System UNIX, Linux, Windows
Spatial discretisation Finite Volumes

Grid types
Unstructured grid consisting of tetrahedral, hexahedral, prism and
pyramid elements (triangles and quadrilaterals in plan view)

Numerical methods

Either a first order upwind scheme or a so-called ”numerical advection
corrected scheme” is being used for spatial discretisation along with
a specially developed technique for pressure-velocity coupling. For
time discretisation, a first order backward Euler scheme is employed.

Turbulence model
Zero-equation model, two kinds of k-ε models (two-equation), k-ω
model, Reynolds stress model

Free surface
A fluid mixture model allows for computation of any kind of free
surface conditions

Project references

Numerous real-world CFD application references in all branches are
listed on the software’s website. Among the ones relevant for hy-
draulic engineering are a scour study for a deep-water terminal jetty
in India (by HR Wallingford, UK), the investigation of flow patterns
within the vicinity of intakes (Hydroplan, UK), a natural river reha-
bilitation design study (University of Nottingham, UK), and also an
analysis of turbidity currents in a lake (ETH Lausanne, Switzerland,
referenced inOlsen(1999) [55])

References AEA(2002) [1]

Remarks

The software is equipped with a wealth of different physical models
to suit just about any kind of CFD problem in real-world applications.
The successful application to a reasonable number of projects in the
field of hydraulic engineering proves that the software is capable of
solving this kind of problems, as well. However, the fact that the
software price is in the high-end region makes it difficult for small or
mid-sized businesses to utilize it.

Table 2.1: Software characteristics of CFX-5
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2.2.2 Comet

Name of software Comet

Author/company
Institute of Computational Continuum Mechanics GmbH (member of
the CD adapco group), Hamburg, Germany

Web page http://www.iccm.de
Field of application Mechanical, chemical, environmental and hydraulic engineering
Cost No recent price quote available
Operating System UNIX, Linux, Windows
Spatial discretisation Finite Volumes
Grid types Unstructured mesh of hexahedra, tetrahedra and prisms

Numerical methods

Spatial discretisation is performed using one of the Upwind, Cen-
tral, MINMOD or HRIC schemes with the SIMPLE solution method
for pressure linkage. In terms of time discretization, fully implicit
schemes of first (Euler) or second order are employed in the model.

Turbulence model
Zero-equation model, several types of k-ε models (two-equation), all
types of k-ω models, Reynolds stress model

Free surface Interface-tracking method

Project references

Several references mostly from the industries of mechanical and
process engineering are listed on the software’s website. The prod-
uct is also being used at the Potsdam Model Basin (Schiffbau-
Versuchsanstalt Potsdam GmbH) and at the Federal Waterways En-
gineering and Research Institute (BAW) in Hamburg.

References
Except for the manuals that come with the software, no publication
related to the internals of the software could be found by the author.

Remarks

Comet is short for ”Continuum Mechanics Engineering Tool”, a gen-
eral CFD code with most applications in the field of mechanical engi-
neering. Physics are well represented in the software through numer-
ous different models.

Table 2.2: Software characteristics of Comet
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2.2.3 Delft3D

Name of software Delft3D

Author/company WL | Delft Hydraulics, Delft, The Netherlands
Web page http://www.wldelft.nl/d3d

Field of application
Hydraulic engineering, in particular wave hydrodynamics, sediment
transport and water quality investigations

Cost
High-End. A free evaluation version with limited capabilities is avail-
able.

Operating System Linux, Windows
Spatial discretisation Finite Differences
Grid types Orthogonal curvilinear grid

Numerical methods
Alternate Direction Implicit (ADI) method for discretisation of the
governing equations including transient terms

Turbulence model Any choice of k-ε, k-L, algebraic or constant (zero-equation) models

Free surface
Hydrostatic pressure assumption, water surface appears as an un-
known in the governing equations and is solved along with all other
unknowns

Project references

Recent projects are studies of coastal hydrodynamics related to land
reclamation for the new airport in Hongkong, the morphological de-
velopment of the Dutch coast, and studies of Lake Malawi and Lake
Victoria in Africa.

References
Besides the manuals that are supplied with the software, a short dis-
cussion of the software’s internals is given in the M.Sc. thesis ofLui-
jendijk (2001) [44]

Remarks

The software was particularly developed for hydraulic engineering
and seems to be well suited for coastal hydrodynamics where it comes
with a lot of experience. The hydrostatic pressure assumption, how-
ever, is not generally justified and can cause problems for example
in river flow computations. Furthermore, a Finite Difference formu-
lation is in general comparably fast but not always stable enough for
any kind of problem in hydraulic engineering.

Table 2.3: Software characteristics of Delft3D
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2.2.4 FEATFLOW

Name of software FEATFLOW

Author/company
Department of Applied Mathematics and Numerics, Univ. Dortmund,
head of group: Prof. Turek

Web page http://www.featflow.de

Field of application
Unsteady flows of any kind that can be described by the Navier-Stokes
equations

Cost Freeware

Operating System
UNIX, Linux, Windows (Fortran 77 compiler is required because the
software is distributed as source code only)

Spatial discretisation Finite Elements

Grid types
Unstructured grid of tetrahedra and hexahedra (triangles and non-
conforming quadrilaterals – predominantly the latter ones – in plan
view)

Numerical methods
FEM for spatial discretisation, implicit scheme for time discretisation
(choice between Backward Euler, Crank-Nicolson, Fractional Stepθ-
Method)

Turbulence model None (implementation planned for future releases)
Free surface Not implemented

Project references

Numerous academic applications, documented in the Virtual Album
of Fluid Motion, available on the CD that is shipped withTurek(1999)
[82] and on the Web page of the FEATFLOW group; project refer-
ences in the field of mechanical and chemical engineering

References Turek(1999) [82]

Remarks

FEAT is an abbreviation for ”Finite Element Analysis Tools”. The
software appears to be predominantly suited for scientific purposes
in research and teaching; good knowledge of numerics and the basic
equations for CFD-computations is assumed for the application of the
program.

Table 2.4: Software characteristics of FEATFLOW
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2.2.5 FIDAP

Name of software FIDAP

Author/company Fluent Inc., Lebanon, New Hampshire, USA
Web page http://www.fluent.com

Field of application
Mechanical, chemical, civil, biomedical engineering – all types of in-
dustrial CFD applications

Cost High-End
Operating System UNIX, Linux, Windows/NT
Spatial discretisation Finite Elements

Grid types
Unstructured mesh of tetrahedra, hexahedra, pyramids and wedges
(triangles and quadrilaterals in plan view)

Numerical methods
Finite Element Method for spatial discretisation, both explicit (Back-
ward Euler as a first order scheme, trapezoid rule for second order
accuracy) and implicit time discretization techniques are available

Turbulence model
Choice between mixing-length model (zero-equation model), four dif-
ferent k-ε models and the k-ω model by Wilcox (two-equation mod-
els)

Free surface
Volume of Fluid (VOF) approach available for large deformations and
Arbitrary Lagrangian-Eulerian (ALE) method for continuous surface
deformations

Project references
More than 50 working examples in all fields of application included
with the software release, countless scientific papers on projects ac-
complished with FIDAP (many in the field of biomedical engineering)

References Fluent(1998) [24]

Remarks

Very well tested software from a company with many years of experi-
ence in CFD. Includes numerous options to customize one’s research
parameters and choose between both different physical and numerical
approaches for problem solutions. Extensive software documentation
and tutorials. However, the high price tag makes the software unaf-
fordable for small businesses.

Table 2.5: Software characteristics of FIDAP
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2.2.6 Flo++

Name of software Flo++

Author/company Softflo Corp., Potchefstroom, South Africa
Web page http://www.softflo.com
Field of application Mechanical, chemical, biomedical and environmental engineering

Cost
Low-End. A free evaluation version with limited capabilities is avail-
able.

Operating System Windows 95/98/NT
Spatial discretisation Finite Volumes
Grid types Unstructured mesh of hexahedral or prism cells

Numerical methods

Finite Volume method using the upwind scheme and employing SIM-
PLE and PISO algorithms for pressure-velocity coupling in spatial
discretisation. A fully implicit technique is being used for time dis-
cretisation.

Turbulence model k-ε model for high Reynolds numbers
Free surface Implemented (technique not specified)

Project references
Several examples for applications of the program are presented on the
software’s website, however most of them are taken from the field of
mechanical engineering.

References
Except for the manuals that come with the software, no publication
related to the internals of the software could be found by the author.

Remarks

The software is not that expensive as comparable general purpose
CFD codes. Since it is relatively new on the market – compared to
other software – it is hard to find references related to experience with
the model. The built-in physics, however, look quite promising as
far as a successful application to the field of hydraulic engineering is
concerned.

Table 2.6: Software characteristics of Flo++
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2.2.7 FLOW-3D

Name of software FLOW-3D

Author/company Flow Science Inc., Santa Fe, New Mexico, USA
Web page http://www.flow3d.com
Field of application Free-surface problems in hydraulic and mechanical engineering
Cost High-End
Operating System UNIX, Linux, Windows
Spatial discretisation Finite Differences
Grid types Structured grid of rectangular shaped elements

Numerical methods
In both space and time, explicit methods are employed by default and
implicit methods are available as option (unfortunately, no further de-
tail about the used methods is available)

Turbulence model
Choice between Prandtl mixing length (zero-equation), a one-
equation and two types of k-ε two-equation models

Free surface Volume of Fluid (VOF) method

Project references

Numerous references to hydraulic engineering projects are available
as web links on the software’s website (e.g. Scribers Creek and Gold-
enrod Road Bridge by INCA engineers or a snow drifting analysis by
the University of Narvik)

References
Several hundred publications of studies performed with FLOW-3D are
listed on the software’s web site, however, there was no publication
found by the author that deals with the software itself

Remarks

When using the software, first a rectangular shaped grid is generated,
then the solid boundaries are embedded within that grid. By using
this approach, displacements in both the free surface and the (river)
bed can be modeled easily. Therefore, the software is well suited for
many hydraulic engineering problems (like weir flow, spillways or
scour problems in hydraulic engineering).

Table 2.7: Software characteristics of FLOW-3D
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2.2.8 FLUENT

Name of software FLUENT

Author/company Fluent Inc., Lebanon, New Hampshire, USA
Web page http://www.fluent.com
Field of application Mostly chemical and mechanical engineering
Cost High-End
Operating System UNIX, Linux, Windows
Spatial discretisation Finite Volumes

Grid types
Unstructured grid consisting of any combination of tetrahedra, hexa-
hedra, pyramids and wedges (triangles and quadrilaterals in plan
view)

Numerical methods

Control-Volume spatial discretisation with central-differencing of the
diffusion terms and several upwind-schemes (first order, second order,
power-law, QUICK) are at the user’s disposal. Time discretisation
is performed by first and second order explicit and implicit methods
upon the users choice.

Turbulence model
Choice between Spalart-Almaras model (one-equation), three differ-
ent k-ε models and two kinds of k-ω models (two-equation)

Free surface Volume of Fluid (VOF) approach implemented

Project references
Around 200 different application examples are well documented on
the software’s website. Of specific interest are the study of flow over
a weir and an analysis of currents in drinking water reservoirs.

References Fluent(2003) [25]

Remarks

Even though the software employs the physical Finite Volume ap-
proach, its application history seems to be fairly limited to chemical
and mechanical engineering. The fact that the software is bundled
with other software from Fluent Inc. makes it a good choice for those
cases where FIDAP doesn’t yield a result in appropriate time. The
model and numerical approaches in the program are well tested and
there is a reasonable amount of documentation. However, the price
tag is too high to be of use for small businesses.

Table 2.8: Software characteristics of FLUENT
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2.2.9 NaSt3DGP

Name of software NaSt3DGP

Author/company
Department of scientific computing and numerical simulation, Univ.
Bonn, head of group: Prof. Griebel

Web page
http://www.wissrech.iam.uni-bonn.de/research/
projects/koster/NaSt3DGP

Field of application Any type of general scientific 3D CFD problems
Cost Freeware

Operating System
UNIX, Linux, Windows (C++ compiler is required because the soft-
ware is distributed as source code only)

Spatial discretisation Finite Differences
Grid types Rectangular, non-uniform, staggered mesh

Numerical methods
Higher order upwind scheme, central difference scheme and first order
upwind schemes available for spatial discretisation; explicit Adams-
Bashford scheme (predictor-corrector method) for time discretisation.

Turbulence model None (implementation planned for future releases)

Free surface
Not implemented in the standard distribution (level-set approach
planned for future releases)

Project references
Three academic applications are documented: driven cavity flow
problem, measurement equipment in pharmaceutical applications,
odor modeling

References Griebel et al.(1995) [31]

Remarks

NaSt3D is apparently an abbreviation for ”Navier-Stokes 3D”. The
software seems to be best suited for solving academic problems in
mechanical and chemical engineering but due to the used techniques
it will probably deliver results very fast for just about any type of 3D
CFD problem.

Table 2.9: Software characteristics of NaSt3DGP
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2.2.10 PHOENICS

Name of software PHOENICS

Author/company Concentration Heat & Momentum Ltd, London, UK
Web page http://www.cham.co.uk
Field of application Mechanical, chemical, civil, environmental and hydraulic engineering

Cost
Low-End. Additionally to an ordinary licensing scheme, an old ver-
sion is available as inexpensive shareware.

Operating System UNIX, Linux, Windows
Spatial discretisation Finite Volumes
Grid types Structured hexahedral grid

Numerical methods
Spatial discretisation on the Finite Volume grid by linear (QUICK)
or non-linear schemes (SMART, OSPRE), employing the SIMPLE
solution algorithm

Turbulence model
Several zero-equation models (Prandtl mixing length among the better
known), numerous different k-ε models, k-ω model, several other less
popular methods

Free surface
Scalar-equation method (position of the free surface deduced from
the solution of the conservation equation) and height-of-liquid method
available

Project references

Numerous project references and validation cases are referenced on
the software’s website. Of specific interest are a study of flows in
differently shaped drinking water reservoirs, an analysis of currents in
a harbor, and the computation of oil spills into the sea.

References Spalding(1986) [76]

Remarks

The name of the software is derived from ”Parabolic Hyperbolic Or
Elliptic Numerical Integration Code Series” which refers to the types
of the underlying equations in general purpose CFD computations.
It is on the market since 1981, therefore it can be considered to be
very well tested and reliable. Many physical models, especially in
turbulence modeling, are included in the software package. However,
the structured grid approach is not as flexible as the grid types used by
other software authors.

Table 2.10: Software characteristics of PHOENICS
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2.2.11 SSIIM

Name of software SSIIM

Author/company
Norwegian University of Science and Technology, Department of Hy-
draulic and Environmental Engineering, Assoc. Prof. N.R.B. Olsen

Web page http://www.bygg.ntnu.no/~nilsol/ssiimwin
Field of application Hydraulic, river and sedimentation engineering
Cost Freeware
Operating System OS/2, Windows
Spatial discretisation Finite Volumes

Grid types
Structured hexahedral grid (version 1.1), unstructured grid of hexahe-
dra and wedges (version 2.0)

Numerical methods

For spatial discretisation, both second-order upwind and power-law
schemes can be chosen, pressure-correction is performed by the SIM-
PLE or the SIMPLEC method. Even though not specified in the soft-
ware manual,Olsen et al.(1999) [59] indicates that time discretisation
is performed by making use of an implicit technique.

Turbulence model k-ε (two-equation) model
Free surface Transient Free Surface (TFS) algorithm

Project references

In the software manual and on the website, a decent number of refer-
ences to projects with SSIIM are given, among them are the analysis
of secondary currents in a curved channel, a fish farm tank, a study
of reservoir trap efficiency, a flood wave hitting a building, a scour in
a flume, and several water quality computations for Norwegian lakes.
Reservoir flushing studies were done byOlsen(2000b) [56] andTritt-
hart (2000) [79]. Recent work with the software is focused on sub-
merged vegetation (Fischer-Antze et al., 2001 [23]) , sediment trans-
port and the evolution of meandering channels (Olsen, 2002 [58]).

References Olsen(1999) [55],Olsen(2000a) [57]

Remarks

SSIIM stands for ”sediment simulation in intakes with multiblock op-
tion” and refers to the software’s original purpose. Successive im-
provements have made the software to become a CFD tool for many
aspects of hydraulic and sedimentation engineering. Being not too dif-
ficult to use and equipped with concepts that are easy to understand, it
is also well suited for beginners and students in the field of hydraulic
CFD applications. However, as also stated in the manual, there are
aspects of the software that are not very well tested and lack stability,
sometimes also strange behavior of the graphical pre- and postproces-
sor may be experienced. But considering that the program is available
as freeware, these little problems are more than excusable.

Table 2.11: Software characteristics of SSIIM
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2.2.12 STAR-CD

Name of software STAR-CD

Author/company
CD adapco Group (consisting of Computational Dynamics Ltd, Lon-
don, UK and adapco, New York, USA)

Web page http://www.cd-adapco.com
Field of application Mechanical, biomedical, chemical and hydraulic engineering
Cost High-End
Operating System UNIX, Linux, Windows
Spatial discretisation Finite Volumes

Grid types
Fully unstructured grid of tetrahedra and hexahedra (triangles and
quadrilaterals in plan view)

Numerical methods

Control-Volume spatial discretisation approach with the SIMPLE
method, using an automated technique that either employs central dif-
ferencing or first order upwind differencing, depending on the level
of numerical dissipation. For time discretisation, a fully implicit first
order differencing scheme is employed.

Turbulence model
Smagorinsky model (zero-equation) and five different kinds of k-ε
models (two-equation) are available

Free surface Volume of Fluid (VOF) method

Project references

About ten project references for every single of eight different indus-
try categories are made available via the software’s website, adding
up to almost one hundred references. Among the more interesting
ones are the design of artificial reefs (Berlin University of Technol-
ogy), design studies for weir shapes (University of Hannover), vortex
modelling around pillars in rivers, the development of a fish guidance
system at Bonneville dam (US Army Corps of Engineers) and a study
of reservoir flows (Arup Corp.).

References
Except for the manuals that come with the software, no publication
related to the internals of the software could be found by the author.

Remarks

The software is a general purpose CFD code that can also be applied
to hydraulic engineering problems. The unstructured grid approach
in combination with with free surface and turbulence modelling make
it a flexible tool that appears to be quite popular in many industries,
especially in mechanical engineering.

Table 2.12: Software characteristics of STAR-CD
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2.2.13 SWIFT

Name of software SWIFT

Author/company AVL List GmbH, Graz, Austria
Web page http://www.avl.com
Field of application Mechanical, civil and hydraulic engineering
Cost No recent price quote available
Operating System UNIX, Linux, Windows
Spatial discretisation Finite Volumes
Grid types Fully unstructured grid of arbitrary cell types

Numerical methods

Control-Volume spatial discretisation approach with a variant of the
SIMPLE method. For spatial discretisation, the available options are
the first order upwind scheme, central differencing and two third or-
der schemes (MINMOD and AVL-SMART). Regarding time discreti-
sation, fully implicit first and second order differencing schemes are
offered.

Turbulence model
The k-ε model (two-equation), the non-linear Reynolds stress model
and also a hybrid turbulence model developed by the software authors
are available.

Free surface Volume of Fluid (VOF) method

Project references

About ten project references in different industrial fields can be found
on the software’s website. In this context, the more relevant ones
include avalanche simulations (Federal Office and Research Centre
for Forests, Austria) and flooding simulations (VRVis, Austria).

References Gouda et al.(2002) [30]

Remarks

The software is a general purpose CFD code that can also be applied to
hydraulic engineering problems. The arbitrary grid approach together
with free surface and turbulence modeling make it a very promising
tool for the application in complicated flow situations. Unfortunately,
the number of project references is still not very high, but this aspect
may change over time.

Table 2.13: Software characteristics of SWIFT
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2.2.14 TELEMAC-3D

Name of software TELEMAC-3D

Author/company
Electricité de France (Laboratoire National d’Hydraulique), Clamart,
France, and HR Wallingford, Oxfordshire, UK

Web page
http://www.wallingfordsoftware.com/products/
telemac.asp

Field of application
Hydraulic engineering (hydrodynamics, sediment transport and water
quality in the natural environment: river, estuaries, coastal waters)

Cost High-End
Operating System UNIX, Windows NT
Spatial discretisation Finite Elements
Grid types Unstructured triangular grid (tetrahedra and prisms in 3D)

Numerical methods
Fractional step decomposition (advection step, diffusion step and free
surface-continuity-pressure step)

Turbulence model
Prandtl mixing length (zero-equation) and k-ε model (two-equation)
available

Free surface
Computation based on the hydrostatic pressure assumption, one sepa-
rate step in the overall numerical method

Project references

HR Wallingford lists seven different real-life projects that have been
done using TELEMAC on its website (mostly marine/coastal applica-
tions) plus around a dozen companies and organisations that use the
TELEMAC software package.

References Hervouet et al.(1994) [35],Anderson(2000) [5]

Remarks

The software was specifically designed for hydraulic engineering and
proved its usefulness in this field for many years in numerous appli-
cations. Due to this approach, it does not contain so many features
which general purpose CFD codes must possess, a fact that makes it
even more useful for the hydraulic engineer. Furthermore, it appears
to produce very good results in river and coastal engineering, even
though some of its assumptions (i.e. the hydrostatic pressure assump-
tion in 3D) are not always the best fit for true physics in nature.

Table 2.14: Software characteristics of TELEMAC-3D
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2.3 Summary

Table 2.15 provides an overview of the capabilities of all fourteen reviewed software packages,

with the newly developedRSim-3Dmodel added to allow a comparison.

More than half of all models operate with the Finite Volume approach, both Finite Element and

Finite Difference techniques each make up for a quarter of the total number. Around two-thirds

work on unstructured grids, with more than 90 percent using at least hexahedral shaped elements

and more than half additionally allowing tetrahedra for spatial decomposition.

The usage of numerical methods and algorithms for both space and time discretisation is highly

inhomogeneous and doesn’t allow to draw conclusions about preferred techniques. It should be

mentioned that two out of the fourteen models operate using a hydrostatic pressure assumption

which makes them actually only quasi-3D applications that do not allow for computation of

several phenomena.

Two mostly academic products do not account for turbulence at all, a fact that restricts their

application to laminar flows. The other codes implement at least one two-equation turbulence

model, with the k-ε model being by far the favourite technique. More than half of all products

additionally allow usage of zero-equation models, and still almost 50 percent come equipped

with other techniques that are mostly based on higher dimensional stress formulations.

More than 80 percent of all models come with the ability to model free surface flows, again

mainly the academic codes do not have this feature built in. Techniques for free-surface imple-

mentation vary greatly, with the VOF (Volume of Fluid) being the favourite.

21



2.3. Summary 2. REVIEW OF 3D CFD PROGRAMS

C
F

X
-5

C
om

et

D
el

ft3
D

F
E

AT
F

LO
W

F
ID

A
P

F
lo

+
+

F
LO

W
-3

D

F
LU

E
N

T

N
aS

t3
D

G
P

P
H

O
E

N
IC

S

R
S

im
-3

D

S
S

IIM

S
TA

R
-C

D

S
W

IF
T

T
E

LE
M

A
C

-3
D

Software author

Academic / Commercial C A/C C A C C C C A C A A C C C

Operating System

UNIX x x x x x x x x x x x x

Linux x x x x x x x x x x x x

Windows x x x x x x x x x x x x x x x

OS/2 x

Spatial discretisation

FDM / FEM / FVM V V D E E V D V D V V V V V E

Grid types

Structured / Unstructured U U S U U U S U S S U U U U U

Grid shapes

Tetrahedra x x x x x x x x x

Hexahedra x x x x x x x x x x x x x x

Numerical methods - space

Central Differences x x x x x

Upwind first order x x x x x x x

Upwind second order x x x x

QUICK scheme x x

Other x x x x x x x x x x x

Numerical methods - time

Explicit first order x x x

Implicit first order x x x x x x x x x x

Implicit second order x x x x x x

Other (or no implementation) x x x x x x

Pressure-velocity coupling

SIMPLE x x x x x x x

Other x x x x x x x x

Hydrostatic pressure assump. x x

Turbulence models

zero-equation x x x x x x x x

k-ε x x x x x x x x x x x x x

k-ω x x x x x

Other x x x x x x x

Free surface

Implemented x x x x x x x x x x x x x

Table 2.15: Comparison of model characteristics
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3 Polyhedral Computation Grids

3.1 Background and Fundamentals

3.1.1 Conventional Computation Grids

In typical three-dimensional hydrodynamic simulations, grids based on tetrahedra or hexahedra

are employed (see chapter 2). Very often these computation grids are assembled by meshing

the domain in 2D and subdividing the resulting cell piles into several smaller entities. Since

this approach is also followed in the present work, this chapter will first discuss the process of

two-dimensional domain meshing before moving on to three-dimensional grids.

The conventional way of meshing multidimensional domains in 2D is to use triangles (fig. 3.1)

and quadrilaterals (fig. 3.2). As a rule of thumb it can be stated that quadrilaterals are frequently

used in Finite Volume codes, while triangles are the shape of choice in software packages based

on the Finite Element formulation – even though there are some exceptions to this. There is no

common standard as to how quadrilateral cells are formed, except for the fact that the longitudinal

sides are aligned with the expected main flow direction to avoid solutions being spoiled by false

diffusion, which is further discussed in section 5.3. Hence, grids based on quadrilateral cells

typically look like the one depicted in figure 3.2 which constitutes a stretch of the river Danube

east of Vienna.

Triangular cells, on the other hand, are usually generated by a procedure denotedDelaunay

triangulation (Wilhelm (2000) [91]). Implementation and algorithmic details of this method

are discussed inShewchuk(1996) [73]. Figure 3.1 shows a detail of a computation grid that

was created using this triangulation method; the grid was employed to analyse the August 2002

flood events in Lower Austria (Tritthart & Milbradt (2003) [81]). The principle of the Delaunay

triangulation is that exactly one triangular element results when a circle is drawn through three

points out of a set of base points while no other point lies within the same perimeter. Therefore
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Figure 3.1: Example of a grid using triangular cells

Figure 3.2: Example of a grid using quadrilateral cells
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3. POLYHEDRAL COMPUTATION GRIDS 3.1. Background and Fundamentals

always the nearest neighbours of a point make up a triangle. Further details of this method will

not be discussed here since they are out of the scope of the present work.

As opposed to grids based on triangles or quadrilaterals, the application of grids with cells char-

acterised by more than four edges is rarely found, even though some commercially available

numerical codes (e.g.Fluent(2003) [25]) are capable of dealing with cells of such shape.Stand-

ingford & Forth (2003) [77] have described the use of polygonal bounded cells in two spatial

dimensions in an aerospace application, using the CFD code FLITE3D.Creswell & Croaker

(2003) [14] presented a study using polygonal bounded Finite Volumes in three spatial dimen-

sions (i.e.polyhedralcells) to deal with different length scales within a computational domain,

computing internal air flow in a large warehouse with small windows which are represented by

several faces of a larger control volume, thus avoiding the use of an impractically high number

of elements to solve the problem. However, in the field of river hydrodynamics, no use has been

made of this technique so far (Tritthart (2004) [80]).

3.1.2 Voronoi Decomposition

As long as the unknowns of a numerical simulation are stored in cell centroids, the user normally

has little control over the exact location of these variables. A remedy is to store the unknowns

in the vertices of a computational grid, but there are some problems involved with this approach

as soon as the cells become more complex in overall shape, as will be discussed in chapter 4.

Another approach is to define the location of the cell centroids in a first step and construct the

grid around them afterwards. This results in cells of complex shape, being polygonally bounded

in 2D and polyhedral in 3D. It is, however, a paradigm shift compared to the common way of grid

generation, giving the user full control over the location of the conservation quantities within the

computational domain.

It improves the overall behaviour of the numerical solution process if a cell’s boundary line lies

exactly in the middle of a line connecting two neighbouring cell centroids. This results from the

fact that the face values of the conservation quantities can be obtained without the necessity of

weightedinterpolation, as it is shown in chapter 4. The numerical behaviour is obviously further

improved when the boundary line is exactly perpendicular to the connection line between cell

centroids since it avoids the need to transform both convective and diffusive fluxes. In contrast,

if there is a severe non-orthogonality between the connection line and cell boundary lines, non-

orthogonal terms must be introduced into the discretised equations, which is further discussed in

Davidson(1996) [16] and also in the subsequent chapter of the present work. Hence, a spatial
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discretisation or meshing algorithm should take care to avoid non-orthogonal cells (i.e. thin

stretched triangles) but produce cells conforming to the orthogonality constraint instead.

This constraint is automatically preserved if quadrilateral cells with approximately parallel edges

(i.e. cells of rectangular shape) are being used. However, alignment with the main flow direction

is mandatory for such a grid setup. It is therefore not a feasible approach in all those cases

where a main flow direction is not easy to determine a priori. A remedy to this problem is to

introduce a grid based on aVoronoi decompositionof the computational domain. This graphical

method was first published by G.Voronoi [88] in 1908 and is today frequently used in other

sciences: hydrology uses the method to obtain the Thiessen polygons surrounding rain gauges;

in geography the method is applied to find the region of influence of municipalities.

Graph theory defines the Voronoi decomposition as thedual graphto the Delaunay triangula-

tion (Frank (2002) [28]). In other words, there exists a unique relation that allows to construct

each graph as soon as the other one is known. Hence, it is sufficient to store only the elements

composing one of these graphs while the other one can be computed on the fly with very little

computational effort. This makes it possible to use the grid based on the Voronoi decomposition

to perform the numerical computations while the dual grid is used for interpolation of terrain and

water surface elevations – an approach that was used in the present work.

A technical definition of the Voronoi decomposition is given byMilbradt (2001) [47]. Accord-

ing to this definition, the Voronoi decomposition is the segmentation of the entire domain based

on neighbourshipof a given set of base pointsp. Neighbourship is defined by a distance func-

tion relating two points; usually the Euclidean norm is employed for this purpose. The nearest

neighbour of a given pointx is then the reference pointp where the distance function becomes a

minimum within the full set of points. Several different pointsx will therefore possess a common

nearest neighbourp; the set of points given by this criterion is denotedregion. For every region a

boundary and subsequently neighbouring regions can be defined. In the present work, the regions

are the two-dimensional representations of control volumes in the Finite Volume method while

their boundaries are the cell edges. The termregionwill therefore be used throughout this work

to refer to the 2D projection of cells on the x-y plane. Figure 3.3 illustrates this on the basis of

four points that have been arranged in such a way that hexagonal Voronoi regions emerge (one

of which has been marked in blue); the figure was plotted under the assumption of a boundary

constraint following its contour. Superimposed on the Voronoi regions are the Delaunay triangles

(one was coloured in red). It can be seen that the base points always represent the centre of the

regions while being the vertices of the Delaunay triangles at the same time. Edges of Voronoi

regions and Delaunay triangles are always perpendicular to each other.
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Figure 3.3: Voronoi regions and Delaunay triangles

After the fundamentals of the Voronoi decomposition have been discussed, it is now possible to

assess this method with regard to the criteria a computational grid should match for optimum

performance:

• Orthogonality: The edges of computational cells are always perpendicular to the con-

nection line between two cell centroids; hence, non-orthogonal terms in the discretised

equations can be dropped.

• Unweighted interpolation functions: The edges of computational cells are always located

right in the middle of the connection line of the cell centroids. Therefore the use of

weighted interpolation functions becomes unnecessary.

• Absence of numerical diffusion: If the computation points are distributed in a deliberate

way, cells possessing a larger number of edges result (see chapter 3.2). Since these cells

allow for fluxes in more than two main directions, numerical diffusion is reduced by a fair

amount.

Literature discusses many different approaches to construct Voronoi decompositions or Voronoi

diagrams in general. The most common ones are:

• Plane intersect method: This is the straightforward way to constructing a Voronoi diagram.

For each point in the total set the bisection line with every other point is computed. This

results in a number of half-planes which must be merged. The process must be repeated

for each and every point site in the plane (Viermetz(2001) [85]). This method is very
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inefficient since it is easy to figure out that it operates on the order ofO (n2), wheren

denotes the number of points.

• Plane sweep method: This algorithm is an enhanced version of the previous method for

it introduces the concept of incremental generation to minimise redundancy. The set of

points is sorted along the positive x-axis in a first step; afterwards always the next point

site in the list is inserted into the diagram. This approach minimises the number of required

cutting operations and yields an average complexity ofO (n log n), but of course the worst

case complexity remains atO (n2).

• Divide and conquer algorithm: This method is well known and widely used. It enhances

the plane sweep method by not only inserting point after point into the existing diagram,

but rather several point sites already merged into a Voronoi diagram (Viermetz(2001) [85]).

The algorithm consists of two steps: in the dividing step, the sites in the plane are divided

into two halves along a successively evolving bisection line; this procedure is subject to

recursion for every subset until only two or less elements are left. As a matter of fact, the

result of this step is a binary tree containing very simple Voronoi diagrams in its leaves.

These diagrams are then merged in the conquering step to yield the entire Voronoi diagram.

The algorithm has a complexity ofO (n log n).

• Fortune’s algorithm: This algorithm was proposed byFortune [26] in 1986 and is the

most efficient of all algorithms as it guarantees a worst-case performance of the order

O (n log n), i.e. in general situations it will operate faster than that. It is the algorithm

of choice for the present work, hence it will be explained in more detail in the following

section.

3.1.3 Fortune’s Algorithm

The algorithm’s underlying idea is to interpret the task of constructing Voronoi diagrams as the

two-dimensional projection of a three-dimensional procedure. First, a cone with an apex angle

of 45 degrees is constructed on each point site in the x-y plane (fig. 3.4). Afterwards, a plane

π slanted at 45 degrees is moved along the y-axis of the coordinate system. The intersection

line of this plane with each individual cone yields a parabola curve, if projected onto the x-y

plane. However, the intersection of two parabola curves is identical to a point of the Voronoi

line, defining the boundary between two regions. While the planeπ is now dragged through the

domain, complete Voronoi lines result that can be stored in an appropriate data structure.
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Figure 3.4: Three-dimensional interpretation of Fortune’s algorithm (Cuk(1999) [15])

The base line of the slanted plane is denotedsweep line, whereas the intersection curve of the

cones with the planeπ is referred to asparabolic frontor beach line(Wilhelm(2000) [91]). While

the sweep line moves along the x-y plane, the beach line is subject to constant modification.

However, there are two sorts of distinctive events that can arise during this procedure: point

events and circle events.

Point Event

A point event is encountered when the sweep line has hit a new pointp in the plane. Resulting

from this, a new parabolic arc appears on the beach line. This is illustrated in figure 3.5: in (a),

the sweep line has not yet encountered the new point; in (b), the sweep line is exactly at the site

of the new point and the parabolic segment is inserted, even though it degenerates to a straight

line at this moment; in (c), the sweep line has passed the point and the beach line is in regular

shape again, containing the new parabolic arc. For the joint point of two arcs in the beach line

defines a Voronoi line, the point event inserts a new vertex into the Voronoi diagram.

29

4 

z 

2 

0 

y 



3.1. Background and Fundamentals 3. POLYHEDRAL COMPUTATION GRIDS

Figure 3.5: Changes in the beach line upon encountering a point event (Wilhelm(2000) [91])

Circle Event

A circle event takes place when a parabolic arc shrinks to a point and disappears from the beach

line. The condition for the occurrence of this event is that three parabolic arcs – defined by

three base pointspi, pj, pk – intersect each other in a single pointq, as illustrated in figure 3.6.

This happens whenq has the same distance to the sweep line as to the three base points. In that

case, all base points lie on an empty circle with centre pointq and the sweep line is tangent to

that circle, hence the name of this event. As a consequence, pointq is a vertex in the Voronoi

diagram where two Voronoi lines intersect.

Figure 3.6: Changes in the beach line upon encountering a circle event (Wilhelm(2000) [91])
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3. POLYHEDRAL COMPUTATION GRIDS 3.1. Background and Fundamentals

Implementation

By testing for point and circle events while the sweep line moves through the entire domain, it

is possible to construct the complete Voronoi diagram in a very efficient way. Actually,Fortune

(1986) [26] proves that this algorithm is optimal, i.e. the task of computing the Voronoi diagram

cannot be done with a better performance. The actual implementation, however, is a challenging

task since all elements involved in the generation of the Voronoi diagram using Fortune’s method

must be stored in appropriate memory structures that need to be dynamically allocated.

Figure 3.7: Binary tree to represent the beach line

Implementation details are discussed inCuk (1999) [15],Fortune (1992) [27],Münch (1998)

[49] andWilhelm(2000) [91]. There is consensus that three data structures are required: one for

storing the Voronoi diagram and two others for the sweepline process, i.e. point/circle events and

the parabolic front. The data structure for the Voronoi diagram, modified to suit the needs arising

in the present work, is discussed in chapter 3.3. As far as the parabolic front is concerned,

a binary tree is best suited for storing its contents. Such a structure is a very natural way to

represent data in an object-oriented programming approach, furthermore it allows for fast updates

of its contents (i.e. when new elements are inserted or old ones removed). The binary tree

structure applied to the parabolic front is illustrated in figure 3.7. Finally, upcoming events are

stored in an event queue where the different events are stored by the point sites they refer to.
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It should be noted that a usual Voronoi diagram contains half-edges, denoting lines that have a

start point but no end point. The unmodified algorithm of Fortune naturally returns such ele-

ments as parts of the solution. However, the computational domain in hydrodynamic problems

is bounded by definition. Hence, Fortune’s algorithm has to be modified to compute the intersec-

tion points of half-edges with the domain boundary and include these, as well as the segments

of the bounding polygon, into the solution. The resulting domain decomposition is therefore no

longer an actual Voronoi diagram but represents aconstraint Voronoidecomposition.

3.2 Modular System

3.2.1 Background

Up to now, we only dealt with the generation of a Voronoi grid and treated the set of base points

as already known. As this is not the case in reality, a mechanism of point generation must be

found. For this purpose, the aim is the development of an automated distribution algorithm.

However, there are a number of constraints that must be accounted for:

• The grid resulting from the Voronoi decomposition with regard to the distributed set of

points must be as regular as possible, without large differences in size among single cells,

• The grid must honour the boundary line of the computational domain, following its course

and allowing for a finer discretisation in this region,

• The grid must honour structure lines (for instance levee crests) to avoid wrong terrain

interpolation (i.e. ”breaches”) in regions where structures must be preserved.

It is possible to construct a grid that conforms to all these constraints when a system of three

modules is employed for the distribution of base points:

• a base module, where points are distributed in a general pattern, forcing specific cell

shapes,

• a boundary module, where the base points follow the course of the boundary line, hence

avoiding the occurrence of irregular cells at the border of the domain and allowing for a

finer discretisation there,
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• a structure line module, where the base points follow the course of a structure line in such

a way that the structure line itself is represented by cell edges (or cell faces in a three-

dimensional situation).

The properties of these modules will be discussed in the next sections.

3.2.2 Base Module

This module is responsible for the distribution of base points in regions far away from a domain

boundary or structure line. As illustrated in figure 3.8, points are distributed starting at the origin

of the coordinate system that was rotated by an angleΘ. It is possible to force specific cell

shapes by certain point distribution patterns. The RSim-3D model employs only quadrilateral

and hexagonal patterns, but in general it is possible to construct cells with a larger number of

faces, as well. The quadrilateral pattern is given by two spatial distances,∆x and∆y (fig. 3.8,

left), from which an equidistant distribution is obtained. However, in the hexagonal pattern (fig.

3.8, right), the distance∆y is no longer subject to arbitrary choice, but it is derived from the

equation

∆y = ∆x ·
√

3

2
(3.1)

which defines an equilateral hexagon. The hexagonal cell shape is finally obtained after applying

an offset of∆x/2 to the lateral distance in every second row of points.

Figure 3.8: Quadrilateral and hexagonal base modules
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3.2.3 Boundary Module

The boundary module is used to allow for generating a grid that follows the boundary of the

computational domain in its course. This is of high importance in practical situations since it

avoids irregularly shaped grid cells near the boundary by ensuring that all cells have the same

distance to the border and that cell edges intersect the boundary at an angle of 90 degrees – at

least in a quadrilateral configuration. Furthermore, the boundary module makes it possible to

apply a finer spatial discretisation in that region, which will almost always be desired. Finally, it

is also possible to create a body-fitted grid in the whole computational domain by making use of

this module only. The generation process is simple: the boundary polygon is offset by a distance

∆y ·
(
i− 1

2

)
wherei denotes the row number, and points are distributed along that line. This

ensures that the base points of the first row are always located at half the grid spacing distance.

Care is taken to compute the correct end points of line segments in ”corners” of the flow domain,

i.e. where the angle between line segments is not 180 degrees. To illustrate this, figure 3.9 shows

an exemplary grid in a circular domain, constructed from a hexagonal base pattern and four rows

of hexagonal boundary elements.

Figure 3.9: Grid composed of hexagonal base elements and four rows of boundary elements
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However, care must be taken in the choice of grid spacings and distribution patterns to avoid

the creation of distorted elements. Figure 3.10 shows an exemplary grid in a box, based on four

rows of the boundary module in a quadrilateral configuration while the centre of the box is filled

with regions created by the base module. This grid would not be used for actual hydrodynamic

simulations since there is a small number of cells at the transition zone from one module to

the other that exhibit computation points which are not close to the cell centre, hence impairing

convergence.

Figure 3.10: Grid in a box, composed of quadrilateral boundary and base elements

3.2.4 Structure Line Module

Structure lines are applied when the meshing algorithm must preserve specific edges, including

them as part of the grid. For instance, this is desired when man-made structures (e.g. levees) are

to be represented in a numerical simulation. If these structures are not well preserved, the solu-

tion of the simulation may turn out numerically correct, but technically wrong (i.e. ”breaches” in

dams, resulting from wrong interpolation, leading to flooding of terrain which would otherwise
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not have been flooded). Fortunately, structure lines can be preserved in the same way as bound-

aries by the boundary module: at the border, the bounding polygon is offset into the domain by

a certain distance, and the points are distributed along that line (section 3.2.3). However, a struc-

ture line polygon must be offset tobothsides at the same distance when distributing points. As

Voronoi edges are always located half-way between two base points, the structure lines will be

automatically preserved following this approach. This allows for an interpretation of the struc-

ture line module simply as a boundary module being applied twice, at either side of the dividing

polygon line.

3.3 Data Structure

After the base points have been distributed in the computational domain and the two-dimensional

grid lines have been created, the resulting data must be stored in an appropriate data structure.

This structure must be designed to follow two major criteria:

• flexibility: the data structure must be capable of dealing with regions of all shapes, regard-

less of the number of edges,

• no redundancy: the entire structure must allow for quick access to all data, but at the same

time minimise redundancies to allow for fast and correct updates of elements if needed.

Data to be stored can be categorised in four different groups (fig. 3.11):

• regions: these are the actual two-dimensional projections of the 3D grid onto the x-y plane.

• base points: these 3D points define the computational centre of the regions; the third

component stores the terrain surface.

• grid lines: these lines represent the border between regions.

• vertices: these are points that define start and end coordinates of grid lines.
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Figure 3.11: Elements of a two-dimensional grid

Figure 3.12 illustrates how the data elements can be arranged into a data structure containing the

complete two-dimensional projection of the computation grid. It also lists the data types, using

these abbreviations:

• boolean: a binary data type that holds an argument of either 0 or 1

• int: an integer value

• float: a floating-point number in unspecified precision

• Point3D: an object-oriented data type, consisting of threefloat elementsx, y andz

• Vector | type: an array containing an unspecified number oftypeelements, i.e. its size may

change at any time if needed

There are a number of issues concerning this data structure that should be noted:

• The 3D coordinates of thebase pointscontain the exact location of a point at the terrain

surface (e.g. river bed); refer to section 3.4 for details about obtaining the vertical elevation.

• The vast majority ofverticesdoes not contain a third 3D coordinate argument, i.e. it is

zero or unused. However, interpolation at the boundary and along structure lines is only

possible if the vertices in these locations are assigned terrain elevations. Hence, the overall

data type must be a point in 3D space, even though the third argument is only used for a

small number of vertices.
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• Both boundaryand structure linesare identified by a separate boolean value. This is

necessary since due to the preprocessing of data, two polygon lines with different meaning

may lie on top of each other. However, for the actual treatment of these elements this

distinction does not make a difference.

• In a usual implementation, theindex-numbersof all types are not encoded in an extra field;

in order to save memory, the elements are addressed only by their position in memory.

This is legitimate since the storage sizes are known and the offset of any given element can

be computed easily on the fly.

Figure 3.12: Data structure of a two-dimensional grid
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3.4 Terrain Elevation

3.4.1 Background

Usually, the geodetic height of the 2D computation points is not known a priori, but either depth

measurements along cross section lines of a river bed or a digital terrain model of regularly

spaced data are available. Since these spatial data points rarely coincide with the actual base

points of the computation grid, a technique of spatial interpolation is required. Both the Bivari-

ate Interpolation Method ofAkima(1978a, 1978b) [2, 3] and a Kriging approach were evaluated

for that purpose and are subject to discussion in the following two subsections of this work. Fol-

lowing this approach, surface elevations can be derived for all computational points and those

grid line vertices that are part of the boundary polygon or a structural polygon within the com-

putational domain (Tritthart(2004) [80]).

Figure 3.13: Voronoi grid and Delaunay triangles with a section view

Figure 3.13 once again depicts the plan view of a domain represented by four hexagonal cells;

here it is presented along with a cross section. Let’s assume that the cells’ base points have

been set a vertical elevation following one of the approaches just mentioned. Now the problem

arises to make the surface (actually both the terrain and water surfaces) spatially consistent be-

tween neighbouring cells. A possible solution would be to introduce complex surface functions

of higher order for every single cell. However, this approach is not feasible in practice since

the discretised governing equations of fluid motion (chapter 4) rely on the existence of planar
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surfaces that can be defined by face centroids and surface area vectors. Furthermore, the com-

putation of cell volumes and surface areas would become significantly complex tasks. Therefore

only a triangulation can be the adequate way to deal with this problem. As already mentioned,

the Voronoi decomposition is the dual graph of the Delaunay triangulation. Hence, with the

Voronoi grid given, a consistent triangulation is already available without the need for additional

time-consuming triangulation procedures. Upon applying the duality property base points turn

into vertices in the Delaunay triangulation and edges are always perpendicular to each other. The

boundary constraint is honoured in the Delaunay graph as well. For the Delaunay triangles are

defined by the base points of the grid, every surface elevation within the grid can be derived by

means of simple triangle interpolation. Furthermore, as soon as the variables that were solved

for in the discretised equations are available, they can be interpolated and plotted using the same

mechanism of triangle interpolation.

3.4.2 Bivariate Interpolation Method

According toAkima (1978b) [3] the bivariate interpolation method is a smooth surface fitting

technique developed forz values given at points irregularly distributed in thex − y plane. It

uses a fifth-degree polynomial inx andy as interpolating function defined in each triangular

cell which has projections of three surface data points as its vertices. Triangulation is performed

on the surface data points according to a max-min angle criterion described in further detail in

Akima (1978b) [3]. The interpolation function for any given point(x, y) within each triangle

then reads

z (x, y) =
5∑

j=0

5−j∑
k=0

qjkx
jyk (3.2)

which results in the need to determine 21 coefficientsqjk. These coefficients are found by the

assumption that the values of the function, as well as its partial derivatives of first and second

order, are given at all vertices of the triangle. In combination with the presumption that the partial

derivative of the function differentiated in the direction perpendicular to each edge of the triangle

is a third-degree polynomial, 21 conditions are obtained to determine all coefficients. Due to the

polynomial functions used, smoothness of the interpolated surface both within each triangle and

at its edges results from this process as proven inAkima(1978b) [3].

The bivariate interpolation method works very well as long as the distribution of terrain points

follows a pattern that does not deviate too much from a regular distribution. Especially when

a terrain grid (i.e. a digital terrain model, DTM) is used as basis, the interpolation method
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yields reasonable interior values. However, as soon as measured river cross sections are used as

terrain data basis, the interpolated terrain elevations exhibit strong and irregular extreme values

(see appendix A for an illustrative example). This can be explained easily: the triangulation

procedure is performed on the terrain data points, as these are the only locations where actual

information is readily available without the need for interpolation. As a matter of fact, cross

sections of natural rivers come with a high resolution within each section but comparably large

distance between the profiles: for instance, measurements at the river Danube contain between

250 and 1000 data points per cross section, which is typically around 250m in distance, resulting

in a resolution of one point per 0.25m to 1.0 m; on the other hand, cross sections are fathomed

in a typical distance of 50m to 100m. This yields a ratio of longitudinal to transversal resolution

between 1:50 and 1:400. Hence, a triangulation of this data will inevitably result in triangles of

the same ratio, no matter how good the triangulation algorithm. It is easy to see that a polynomial

constructed on top of such a triangle will exhibit undesired maxima and minima in the interior

only to satisfy the first and second derivatives of the surface function at its edges. Therefore we

can conclude that this method can be of use when more or less regularly gridded terrain data is

available, but not in situations where cross sections of rivers are the only measurements available.

3.4.3 Kriging

This method was first published byD.G. Krige(1951) [38]. It is frequently used in geostatistics

to determine unknown values using known values and a semivariogram. There exist several

different types of kriging methods, but only the procedure denotedpoint krigingwas evaluated

for the present work. This approach relies on the assumption that an estimate of an unknown

valueYE,p at a pointp can be found by using a weighted average of the surrounding known

valuesYi,

YE,p =
∑

WiYi (3.3)

whereWi are the respective weights. The estimated value is said to be unbiased when the weights

sum to unity. Hence, the weights applied to solving a certain problem must obey the relation:

∑
Wi = 1 (3.4)

Optimal weights must not only satisfy the condition of producing an unbiased solution; they

are also required to have a minimum estimation variance, i.e. the scatter of the estimatesYE,p

about the actual valueYp must be minimised. This criterion can be enforced by introducing a
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set of simultaneous equations, complemented by a variable called the Lagrange multiplierλ.

To illustrate this procedure, we make the assumption that four known valuesY1 (at point ”1”)

throughY4 (at point ”4”) are used to estimate an unknown valueYE,p at pointp. Combining this

with equation 3.4, we can write the following equation set,

W1γ (d11) + W2γ (d12) + W3γ (d13) + W4γ (d14) + λ = γ (d1p)

W1γ (d21) + W2γ (d22) + W3γ (d23) + W4γ (d24) + λ = γ (d2p)

W1γ (d31) + W2γ (d32) + W3γ (d33) + W4γ (d34) + λ = γ (d3p) (3.5)

W1γ (d41) + W2γ (d42) + W3γ (d43) + W4γ (d44) + λ = γ (d4p)

W1 + W2 + W3 + W4 = 1

whereγ (dij) is the semivariance between data pointsi andj. In the present work, this semivari-

ance was set equal to the distance between the points, which is also the most common approach.

Equation set 3.5 can now be rearranged in matrix form,



γ (d11) γ (d12) γ (d13) γ (d14) 1

γ (d21) γ (d22) γ (d23) γ (d24) 1

γ (d31) γ (d32) γ (d33) γ (d34) 1

γ (d41) γ (d42) γ (d43) γ (d44) 1

1 1 1 1 0


•



W1

W2

W3

W4

λ


=



γ (d1p)

γ (d2p)

γ (d3p)

γ (d4p)

1


(3.6)

which makes it possible to solve for the weights using common techniques for solving a set of

linear equations. Since the equationdij = dji holds true for distances, the left-hand matrix is

symmetrical. The main diagonal is filled with zeroes becausedii is obviously nil. After the

weights have been determined, the unknown valueYE,p can be estimated by:

YE,p = W1Y1 + W2Y2 + W3Y3 + W4Y4 (3.7)

The Lagrange multiplierλ is not needed to obtain an estimate of the unknown valueYE,p, but

its presence ensures that the minimum possible estimation error is obtained. The estimation

variances2 can now be calculated by

s2 = W1γ (d1p) + W1γ (d2p) + W1γ (d3p) + W4γ (d1p) + λ (3.8)
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which is a great advantage since it allows for a quantification of the error made in the estimation

of YE,p.

The method itself does not come with restrictions as to how many points can be used to esti-

mate an unknown terrain elevation at another location; however, in a real-world situation there

are constraints like memory requirements in storing the matrix of equation 3.6, or computation

time to solve the linear equation system. Due to these practical considerations, the following

methodology was adopted in the present work (see appendix A for an example):

• A circle with radiusR =
√

a2 + b2/2 is constructed on the location of every point with

unknown terrain elevation, wherea andb are the dimensions of the available terrain infor-

mation in the directions ofx andy within the computational domain.

• The circle is partitioned into four quadrants of equal size, and the terrain data available in

each quadrant is sorted according to its distance to the circle’s centre point.

• A maximum of eight terrain data points (those with the smallest distance to the point of

interest) is selected within each quadrant, summing up to a maximum of 32 terrain data

points available for a single kriging operation.

Undoubtedly the kriging method is computationally expensive. However, there are no problems

involved in using measured river cross sections as input data as the method is usually not subject

to exhibiting irregular maxima or minima of the estimated values. Hence, the kriging approach

was selected as method of choice for interpolating terrain elevations at the locations of computa-

tion points and grid line vertices that are part of the boundary polygon or a structural polygon.

3.5 Grid Refinement

After the computation grid was created by applying Fortune’s method to a set of points distrib-

uted following the procedures outlined in section 3.2, the next step is to refine the grid. Mesh

refinement in the vicinity of obstacles within the flow domain or at domain boundaries is gen-

erally possible by making use of boundary and structure line modules, which have already been

discussed. Additionally, there will usually be a desire for further refinement in regions with a

steeper surface slope. In order to meet this desire, a criterion of maximum absolute height error

is adopted in the present work: by means of kriging, it is possible to derive surface elevations
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Figure 3.14: Grid refinement procedure for ordinary cells (left), boundary cells (centre) and cells
adjacent to structure lines (right)

for arbitrary points within the computational domain; these elevations can be compared to the

ones obtained by interpolation on the triangular Delaunay grid (fig. 3.3), inserting new points if

a certain error bound is exceeded. This procedure is illustrated in figure 3.14 for three different

situations:

• Left: Two ordinary cellsadjacent to each other are subject to refinement if the surface

elevation of the midpoint P in the line connecting cell centroids A and B meets the criterion

|hP − h∗P | > ε (3.9)

wherehP is obtained by linear averaging of the surface elevations in points A and B,hA

andhB,

hP =
hA + hB

2
(3.10)

andh∗P is derived from surrounding terrain data points by means of kriging.ε is an error

bound given by the user. If the refinement criterion is met, a new basepoint P with elevation

h∗P is inserted into the complete set of basepoints and the grid is generated again.

• Centre: A cell at thedomain boundaryis subject to refinement if the midpoint D of the

line connecting the cell centroid B with the boundary line in perpendicular direction meets

the criterion:

|hD − h∗D| > ε (3.11)

In this case, the geodetic height of the start and end vertices of the boundary line (points

Q and R in figure 3.14) is known. Furthermore, we know from figure 3.3 that segments
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of boundary lines always make up triangles with the centroid of the adjacent cell. Hence,

the elevation of point P can be obtained by distance-weighted interpolation on the line

connecting points Q and R. Using this information, the height of point D,hD, can finally

be derived,

hD =
hB + hP

2
(3.12)

and a comparison with elevationh∗D, obtained by kriging, becomes possible. If refinement

is necessary, point D is inserted and the grid must be regenerated.

• Right: Special care must be taken to test for refinement in cells adjacent to astructure line

as this line must be preserved even after grid refinement has taken place. Therefore the

approach outlined for domain boundaries is adopted here: the surface elevation of points

Q and R is known, which makes it possible to derive the height of point P. Knowing this

elevation,bothheights of points C and D,hC andhD, obtained from equation 3.12, must

be compared with the respective valuesh∗C andh∗D, derived from kriging:

|hC − h∗C | > ε

|hD − h∗D| > ε (3.13)

If only oneof the criteria set forth in equation 3.13 is met,bothpoints C and D must be

inserted into the set of basepoints and the grid will be generated again. This is necessary

to preserve the structure line at its current location.

It should be noted that the grid refinement approach presented here is actually not very difficult

to carry out; still, the procedure may take a while on grids with a large number of base points

because the vertical coordinates of every connection line between two cell centroids must be

derived from the digital terrain model, and if new points are inserted the grid and its data structure

must be recreated.

An example of a computation grid refined using the approach described above is given in figure

3.15. It shows a detail of a grid which was created for a reach of the river Danube east of Vienna,

Austria. Based on a hexagonal cell pattern with a horizontal centre point distance of 40m and two

cell rows with half that spacing along the boundary, the grid was refined seven times, leading to an

absolute height error of less than 20cm in every computational cell within the domain (Tritthart

(2004) [80]). Contour lines allow for an interpretation of the surface gradient at the left side

of fig. 3.15, while the right side shows the dual Delaunay grid used for interpolation. Terrain

elevations were available in river cross sections (blue lines) and also along the river banks.
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Figure 3.15: Plan view of the grid for a reach of the river Danube east of Vienna with contour
and section lines (left) and the dual triangular grid (right)

3.6 Estimation of Water Surface Elevations

Before the actual three-dimensional grid can be created from the two-dimensional grid discussed

so far, an estimation of the water surface elevation must be performed for every single grid region.

The 3D grid will then be generated only in those regions where the water surface elevation lies

above the terrain surface. However, as the water surface changes during the solution of the

flow equations, it is possible that previously wet regions suddenly become dry and formerly dry

regions turn wet; hence, the 3D grid may significantly change during the computations, but it is

nonetheless important to provide a good estimate of the water surface elevation to the model so

that a reasonable initial grid may be created.

In order to come up with an estimate for the initial water surface elevation, the grid generator

needs to know the flow boundaries, i.e. those grid lines where water enters or exits the compu-

tational domain. As these are user-provided, we can treat them as known. The next challenge is

then to find the flow path – the polygon lines that connect inflow and outflow boundaries – known

as thalweg in rivers. In theory it is possible to obtain flow paths by means of gradient analysis:
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starting at a grid region adjacent to an inflow boundary, a polygon line is constructed that always

follows the steepest slope. While this procedure works well on hillslopes, it performs signifi-

cantly worse in actual rivers, especially when applied to rivers with large cross sections. There

is a number of reasons for this; among the most important are the very flat slopes encountered in

such rivers, leading to irregular flow paths, and the presence of dunes and bars which may cause

an automated algorithm to crash. Therefore – even when it may add a little inconvenience to the

model application in practical situations – it is best to leave the task of defining flow paths to the

user by providing the model with appropriate polygon lines.

A complex flow situation, but not uncommon in reality, is the presence of several such polygon

lines, each defining a separate river or channel that disembogues into another river, resulting in a

network of rivers. To perform an estimation of the water surface elevation in such a constellation,

all available flow paths must be sorted first. It is best to do so by assigning the river comprehend-

ing the downstream boundary condition an ordinal number of 1, channels discharging into such a

stream receive a classification of 2, and so forth (see fig. 3.16). This ordering system benefits an

automatic computer-aided calculation of water surface positions, since the elevations of streams

with lower ordinal numbers are computed first and can subsequently be used as boundary condi-

tions for those with higher ordinal numbers.

Figure 3.16: Schematic view of a river network with several confluences

As soon as the boundary conditions of all streams within the computational domain are known,

the detailed determination of the water surface elevations can be done. In the present work, four

different methods are available for performing this task:
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• Constant water surface elevation: Being the simplest of all methods, a constant water

surface elevation in the entire domain is useful for some validation cases (e.g. laboratory

flumes) that do not exhibit any bed slope, hence the surface slope is very small as well.

It can also be used for real-world situations when the region of interest is small-sized and

only local phenomena are being investigated.

• Linear interpolation: In this method, both upstream and downstream water levels are pre-

scribed by the user; the model performs linear interpolation along all flow path polygon

lines available. Usually, this technique gives a very good initial water surface estimate and

will suffice for most flow situations.

• Constant flow depth: This method is quite complex, as it requires the slicing of the three-

dimensional domain into a number of cross-sections perpendicular to the given flow path.

For each section, the minimum terrain elevation is determined, and after adding the flow

depth given by the user, the water surface elevation results. Actually this method works

very well for channels with a simple cross-section shape or rivers with very little variability

in bed forms. When unfiltered terrain data is used, the technique may yield a water surface

exhibiting the same irregularities as the bed, possibly leading to problems in the numerical

simulation thereafter.

• 1D backwater computation: Undoubtedly, this method returns the most realistic initial

guess for the water surface elevation within the flow domain, but it is only worth the com-

putational effort if the terrain data has been very carefully checked for errors; otherwise

unrealistic results may be obtained, impairing convergence in the numerical simulation.

The first step of this method is the same as in the case of constant flow depth: the 3D do-

main is sliced into a number of cross-sections perpendicular to the flow path. Considering

two consecutive cross-sections,j andj +1, we can use the extended Bernoulli equation to

write (Gutknecht(2004) [32])

wj+1 + αj+1 ·
v2

j+1

2g
= wj + αj ·

v2
j

2g
+ hr (3.14)

wherewj denotes the water surface elevation above sea level (or a reference surface),vj

is the average velocity in a cross-section and the coefficientαj is equal to unity.hr is the

friction loss due to the influence of roughness,

hr = Je ·∆x (3.15)
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whereJe denotes the energy gradient and∆x is the horizontal distance between cross-

sectionsj and j + 1. The energy gradientJe can be quantified by making use of the

Gauckler-Manning-Strickler equation to yield

Je =
1

k2
StR

4
3
h,m

· v2
m (3.16)

wherekSt is the Strickler coefficient, andvm andRh,m are mean average velocity and mean

hydraulic radius of the two consecutive cross-sections. Since the discharge is known, both

of the latter values can be expressed as functions of the geometric propertiesAm andUm,

denoting the mean cross-section area and perimeter, respectively. These properties can be

obtained by linear averaging from the values at both cross-sections. As the values forAj+1

andUj+1 are dependent on the unknown water surface elevationwj+1, the computation

must be done iteratively. Finally, after a (usually) small number of iterations,wj+1 is

obtained from equation 3.14, and the procedure is repeated for the next cross-sections

until the inflow section is reached.

It is important to mention that the methods of linear interpolation, constant flow depth and 1D

backwater computation are only capable of computing water surface elevations along previously

defined polygon paths. The model, however, needs water surface elevations for the whole do-

main, in every single grid region. Hence, the results of these computations are extended into 3D

by repeatedly specifying the one-dimensional surface elevations in all grid regions of an area de-

limited by each two consecutive cross-sections in a user-supplied distance (a typical value would

be 10m for a river). This completes the initial guess of water surface elevations and allows for

generating the three-dimensional grid.

3.7 3D Grid Geometry

The three-dimensional grid is obtained by partitioning the cell piles, defined by grid regions to-

gether with terrain and water surface elevations, into a number of finite cell volumes. Every

region is subdivided into the same number of cells, hence the grid isvertically structured. Figure

3.17 illustrates this: the vertically structured grid is composed of extruded grid regions in combi-

nation with a triangulated surface on top and bottom of the domain, which adds some geometric

complexity. Actually, every grid line bordering a grid region within the domain (i.e. not at the

domain boundary) is intersected byat least oneedge of the dual Delaunay triangulation making
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up for the terrain interpolation (see fig. 3.3). Therefore the 3D equivalent of the grid lines in 2D

– denotedfaces– actually become polygonal bounded surfaces as the grid becomes polyhedral.

Figure 3.17: Three-dimensional grid composed of extruded grid regions and a triangulated sur-
face

It is obvious that the calculation of cell volumes and face areas, both of which are needed for the

numerical solution of the discretised flow equations, becomes a complex and computationally

intensive task for the grid presented in this work. Fortunately, it is not necessary to recompute

these properties too often; instead, it is sufficient to calculate them only after updates of the water

surface have taken place. However, even then the two-dimensional intersection points between

the polygonal grid regions and the triangular surface representation stay the same. Therefore it

is adequate to compute these intersection points only once, after the grid generation has been

completed, and modify the vertical elevations (bottom and top) after every surface update, which

can be done reasonably fast. A new data type, denotedface vertex, is introduced: it stores four

floating point numbers, two of which represent thex andy coordinates of the intersection points

between grid regions and Delaunay triangles, the other two store the elevationsz1 and z2 of

bottom and top. Start and end points of grid lines in 2D of course transform into face vertices

in 3D, as well. Figure 3.18 shows an exemplary face composed of four face vertices, further

illustrating this.
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Figure 3.18: Cell face composed of four face vertices and three areas; C denotes the face centroid

Face areas

Face areas are computed by summing up all partial areas defining one face. By definition, the

area spanned by two face vertices is always a trapezoid. Hence, we can write for the area of an

entire vertical face given byn face verticesfv,

Af =
n∑

i=2

xi−1
z2 (fvi−1) + z2 (fvi)− z1 (fvi−1)− z1 (fvi)

2
(3.17)

wherex denotes the distance of one face vertex to his neighbour in thex− y plane,z2 (fv) is the

face vertex’ top elevation andz1 (fv) its bottom elevation.

Top and bottom areas of a cell always consist of a number of triangles, each of which is defined

by two face vertices and a base point with a top and a bottom elevation assigned. As triangles

can be interpreted as degenerate trapezoids, the same equations for face areas or centroids can be

applied; therefore top and bottom areas of cells will not be subject to further discussion in this

chapter.

Face centroids

The exact location of each face centroid must be known in order to compute the volume of the

cell enclosed by a number of faces. We start with the equations for the coordinatesCx andCz of

a compound section in two-dimensional space,

Cx =

∑
i Aixc,i∑

i Ai

Cz =

∑
i Aizc,i∑

i Ai

(3.18)

whereAi stands for the partial areai (in the present work spanned by two neighbouring face
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vertices), andxc,i andzc,i are the centroid coordinates of every partial area. The denominator of

both relations in eq. 3.18 is, of course, equal to the face area as given by equation 3.17. After

introducing three geometric relationsa, b andc in accordance with the definitions made for eq.

3.17,

a = z2 (fvi−1)− z1 (fvi−1)

b = z2 (fvi)− z1 (fvi) (3.19)

c = z1 (fvi−1)− z1 (fvi)

we can use the formulae available for the centroid coordinates of trapezoids,

x
′

c,i =
xi−1 (2a + b)

3 (a + b)

z
′

c,i =
2ac + a2 + cb + ab + b2

3 (a + b)
(3.20)

to compute the centroid coordinatesx
′
c,i andz

′
c,i in a local coordinate system with origin in the

bottom point of face vertexfvi. Figure 3.19 illustrates this procedure. Subsequently these local

coordinates must be shifted to a fixed point – in the present work the bottom point of the last face

vertexfvn was used – so that they can be used in eq. 3.18 to yield the coordinates of the face

centroids. These coordinates are finally transformed intox/y/z coordinate triples in the global

coordinate system to be of use for the computation of cell volumes.

Figure 3.19: Coordinate system and nomenclature for the calculation of centroid coordinates
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Face normals

Face normal vectors are required for the calculation of cell volumes and are also used excessively

throughout the solution process of the discretised flow equations (chapter 4). The normals of

vertical faces are obtained by rotating the two-dimensional grid lines by 90 degrees and inserting

a zero for the third coordinate. Normal vectors of triangle faces at the top and the bottom of cells

can be calculated by computing the cross product of two vectors that span the triangle surface.

All vectors are finally normalised to become unit vectors.

By definition, face normal vectors always point out of the cell they belong to. However, vectors

are stored as properties of faces, not cells. Since a face uniquely separates two cells, the vector

will always point outwards for one of the cells and inwards for the other. This means that any

algorithm must be able to determine into which direction the vector is actually pointing, to invert

it if needed. In the present work this problem was solved by storing the numbers of the cells

adjacent to each face along with the data for that face, defining that the surface vector always

points outwards for the first cell in this table. It is then possible for an algorithm to compare the

cell number it is working on with the ones in this table, and thus determine whether inversion of

the vector is necessary. The underlying cell numbering scheme is exemplified in appendix A.

Cell volumes

Calculating cell volumes of polyhedra by partitioning them into several small geometric elements

is a fairly complex and time-consuming task. However, it is possible to compute cell volumes

also in a different way, making use of Gauss’s Divergence Theorem (eq. 4.6, chapter 4) to

replace volume integrals by surface integrals. In other words, the cell volume can be computed

by summing over all its bounding faces.Ferziger(2002) [20] gives the exact equation for this;

adapted to the notation used in the present work, we can write

V =
1

3

n∑
i=1

(Ai~ni) · ~ci (3.21)

whereV denotes the volume of a cell bounded byn faces with the respective face areasAi, the

three-dimensional face normal vectors~ni and the 3D coordinates of the face centroids,~ci.

Partially dry cells

Cells are declared dry when the cell centroid lies below the terrain surface. However, it is easily

possible that this condition is not met, but still some face vertices lie below the surface. In this

case apartially dry cell is encountered. Such a cell geometry causes problems in the calculation
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of cell face areas, centroids and volumes, especially since the conservative formulation of eq.

3.21 does no longer yield the expected result for such a situation. It would be possible to deal

with partially dry cells by treating them as a set of smaller geometric entities, but this adds a

fair amount of complexity to the solution process. Therefore a workaround was chosen for the

work discussed here: if certain face vertices exhibit terrain elevations that lie above the water

surface, the terrain elevation is set equal to the water level. Indeed, this procedure introduces a

small geometric error into the whole solution process, but especially when measured terrain data

is used, this additional error is small compared to the errors inherent in the terrain data itself.

Data structure

The three-dimensional grid data is stored in an appropriate data structure, just as the one dis-

cussed in section 3.3 for the two-dimensional data. The structure used in the present work is

illustrated in fig. 3.20. The two main data types of the 3D grid arecellsandfaces; additionally

face verticesare required to save computation time in computing certain geometric properties of

the main types.

The nomenclature defined in section 3.3 is extended by these data type definitions:

• Vect3D: an object-oriented data type, consisting of threefloat elementsx, y andz; this is

the same definition as forPoint3D, only the name is different to make clear that a vector

and not a point is stored there.

• type[size]: an array ofsizeelements of the data typetype(i.e. a fixed-size array, not one

varying in size, as inVector).

It should be noted that thecellsdata structure does not only store geometric data but also data

required for the actual flow simulation. This includes

• the discretised diagonal coefficientaP of all six governing equations,

• the right-hand side of the six discretised governing equations, usually filled in by source

and sink terms,

• the conservation quantities (u, v, w, p, k, ε)

• the gradient of the conservation quantities in all three cartesian coordinate directions,

• and the isotropic eddy viscosity,

all of which are subject to discussion in the following chapter.
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Figure 3.20: Grid data structure for 3D flow simulations
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4 Governing Equations and

Discretisation

4.1 Momentum Equations

4.1.1 Equations

The motion of moving fluids in three spatial dimensions is governed by the Navier-Stokes equa-

tions, a set of three nonlinear partial differential equations (PDEs). Using a complete notation

for the incompressible case, they can be written as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

∂2u

∂x2
+ ν

∂2u

∂y2
+ ν

∂2u

∂z2
+ fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν

∂2v

∂x2
+ ν

∂2v

∂y2
+ ν

∂2v

∂z2
+ fy (4.1)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

∂2w

∂x2
+ ν

∂2w

∂y2
+ ν

∂2w

∂z2
+ fz

In equation 4.1u, v andw denote the velocities in the three spatial dimensionsx, y andz. The

density of the fluidρ and the kinematic viscosityν are the two fluid properties that are being

used in this equation set. Pressure is denoted byp, and the termsfx, fy andfz are external forces

acting on the fluid, with gravity or the Coriolis force being the most prominent examples. The

temporal dimensiont enters the equation through an additional transient term.

In addition to the Navier-Stokes equations, a moving fluid must satisfy the continuity equation,

which in three spatial dimensions is given by:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.2)
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These equations all have a similar structure and can therefore be written in a single form of a

generic transport equation using tensor notation (Ferziger(2002) [20]):

∂ (ρφ)

∂t︸ ︷︷ ︸
(I)

+
∂ (ρujφ)

∂xj︸ ︷︷ ︸
(II)

=
∂

∂xj

(
Γ

∂φ

∂xj

)
︸ ︷︷ ︸

(III)

+ Sφ︸︷︷︸
(IV )

(4.3)

This generic conservation equation is presented for general (i.e. compressible and incompress-

ible) fluids and uses the symbolφ for the quantity that is going to be transported through the

computational domain. Withφ = u, v, w (or φ = uj = u1, u2, u3) the Navier-Stokes equations

for the three coordinate directionsxj = x, y, z = x1, x2, x3 can be obtained when the diffusion

coefficientΓ is set equal toν · ρ. Source terms are denoted bySφ. In the absence of such source

terms, the continuity equation is obtained by usingφ = 1 in equation 4.3.

The generic transport equation therefore consists of four main terms:

• a transient term (I),

• a convective term (II),

• a diffusive term (III),

• and a source term (IV).

These terms must be treated differently in an implementation since they describe different phys-

ical phenomena and – from a mathematical point of view – are members of different types of

underlying PDEs.

For the discretisation of this generic conservation equation using the Finite Volume Method on

grids with arbitrary cell shapes, it is an advantage to present equation 4.3 in a coordinate-free

vector form using the divergence and gradient operators:

∂ (ρφ)

∂t
+ div (ρφ~u) = div (Γgradφ) + Sφ (4.4)

This notation takes into account the vectorial nature of velocity, denoted by~u = (u, v, w) =

(u1, u2, u3).
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Starting point of the discretisation is the integral form of the generic conservation equation in

vector form (eq. 4.4) which has been integrated over a control volumeΩ:

∫
Ω

∂ (ρφ)

∂t
dΩ +

∫
Ω

div (ρφ~u) dΩ =
∫
Ω

div (Γgradφ) dΩ +
∫
Ω

SφdΩ (4.5)

Using Gauss’s Divergence Theorem

∫
Ω

div~adΩ =
∫

A
~n · ~adA (4.6)

where~a is a generic vector, we can substitute the volume integral by an integral over the volume’s

surrounding surfaceA, with ~n denoting the surface normal vector ofA. As this work will not

deal with unsteady flows, we can drop the transient term, and after introducing the constraint of

incompressibility, we finally obtain:

∫
A

~n · (φ~u) dA =
∫

A
~n ·

(
Γ

ρ
gradφ

)
dA +

1

ρ

∫
Ω

SφdΩ (4.7)

It should be noted that the pressure term of equation 4.1 is contained in the source term in this

notation, which is the usual procedure in the derivation of the discretised momentum equations.

It will be dealt with later in this chapter.

4.1.2 Diffusive Term

The diffusive term of equation 4.7,

∫
A

~n ·
(

Γ

ρ
gradφ

)
dA (4.8)

contains a diffusion coefficientΓ which was already found to be equal toν · ρ in equation 4.3.

Since the kinematic viscosityν can be considered constant in the flow regimes dealt with in the

present work, this can be discretised as

ν
n∑

i=1

~ni · gradφ · Ai (4.9)

for a finite control volume confined byn faces with the respective areasAi and face normal
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vectors~ni. After breaking up the gradient operator, the diffusive term can be written as

ν
n∑

i=1

Ai

ni,x

(
∂φ

∂x

)
f

+ ni,y

(
∂φ

∂y

)
f

+ ni,z

(
∂φ

∂z

)
f

 (4.10)

using the subscriptf to denote that the partial differential is to be evaluated at the face instead

of the cell centre.ni,x, ni,y andni,z are the components of~ni in the three Cartesian coordinate

directions.Davidson & Stolcis(1995) [18] use Green’s Formula to express the bracket term in

equation 4.10 in a notation that contains the values ofφ at two discrete locations:

ni,x

(
∂φ

∂x

)
f

+ ni,y

(
∂φ

∂y

)
f

+ ni,z

(
∂φ

∂z

)
f

=
1

Vf

· Af · (φN − φP ) + NOD (4.11)

Af is used for the area of the face common to the two neighbouring cellsN andP with the

respective cell centre valuesφN andφP . Vf denotes a control volume from one cell centre to the

other, passing through the neighbouring face (see fig. 4.1, whereVf is bordered by the dashed

line).

Figure 4.1: Cells and control volume for face gradient computation

The final term of equation 4.11 – denoted NOD – describes the phenomenon of non-orthogonal

diffusion. According toDavidson(1996) [16] this term equals zero in an orthogonal cell setup.

Per definition of the Voronoi diagram, however, the connection line between two cell centres
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is always orthogonal on the dividing face. This allows us to neglect this term for all faces

vertically separating two adjacent cells. As for the top and bottom cell faces, a slight non-

orthogonality may result due to different gradients in surface and bottom of the flow domain.

This non-orthogonality, however, is hardly severe, and will therefore be neglected as well. From

figure 4.1 we can construct the relationship

Af

Vf

=
1

δNP

(4.12)

usingδNP = δPN to identify the spatial distance between cell centre pointsN andP . This allows

us to write the complete diffusive term as follows:

ν
n∑

i=1

Ai
φNi

− φP

δNiP

(4.13)

Here,P denotes the cell centre point of the cell the discretised equations are written for and

Ni are the respective neighbouring cell centre points (see fig. 4.2) with the spatial distance

δNiP = δPNi
to P .

Figure 4.2: Definition of control volumes and cell centroids
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4.1.3 Convective Term

The convective term of equation 4.7,

∫
A

~n · (φ~u) dA (4.14)

can be discretised as
n∑

i=1

~ni · (φ~u)f · Ai (4.15)

for a finite control volume confined byn faces with the respective areasAi and face normal

vectors~ni. The operator(.)f denotes the face values of its argument, in this case the product of

φf and ~uf .

Central Differencing Scheme

Since all conservation quantities are stored in the cell centres in the style of a colocated arrange-

ment (Ferziger(2002) [20]), obtaining interpolated face values is a challenging task. A straight-

forward way would be to use linear interpolation, resulting in thecentral differencing scheme:

φf = f1φN + (1− f1)φP (4.16)

In this equation,f1 is a weighting factor based on the spatial distance between nodesN andP

and the separating facef , respectively. Unfortunately, this technique has severe restrictions on

the boundedness of the solution, based on the cell Peclet number, which can only be satisfied

if the velocity is small, hence in diffusion-dominated low Reynolds number flows, or if the grid

spacing is small (Versteeg & Malalasekera(2001) [84]). Therefore discretisation schemes with

more favourable properties need to be employed.

Upwind Differencing Scheme

The basic idea of theupwind differencing schemeis that the value of a conservation quantity at

a given cell centre point contains all the information needed at the cell face. Therefore, after

identifying the flow direction, the cell face value is simply set equal to the cell centre value of

the upstream cell. For a cell setup as in fig. 4.3 with a western cellW , a center-cellP and an

eastern cellE, one can write for a flow in the positive coordinate direction:

φw = φW andφe = φE (4.17)
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While the boundedness property is not violated by this scheme, it must be noted that it produces

erroneous results when the flow is not aligned with the grid lines (Versteeg & Malalasekera

(2001) [84]), resulting in a smeared distribution of the transported quantities. For its appearance

is similar to diffusion effects, it is usually referred to as false diffusion. This undesired effect

reduces the usability of the scheme in many cases and therefore it is not being used in this work.

Figure 4.3: Cell setup and nodal values for the upwind differencing scheme (Versteeg &
Malalasekera(2001) [84])

QUICK Scheme

In theQUICK (Quadratic Interpolation for Convective Kinematics) scheme ofLeonard(1979)

[41], the face values are interpolated from the nodal values using a quadratic interpolation func-

tion which results in a scheme of higher order, but without the problems involved with the central

differencing scheme. This scheme involves using a larger number of neighbouring cells. Unfor-

tunately, the scheme can not be generalised for arbitrary cell shapes as employed in the present

work since it uses not only the upstream cell in the discretised equation but also the cell which is

upstream to the upstream cell. When using arbitrary cell shapes, such a cell cannot be defined, a

fact which is also stated byFluent (2003) [25]. For this reason, the scheme could not be used in

the present work.

Second Order Upwind Scheme

In a general formulation for arbitrary cell shapes, according toFluent (2003) [25] thesecond

order upwind schemeis given by

φf = φ +∇φ ·∆~s (4.18)

with φf denoting the face value of the transported propertyφ. ∇φ is the gradient ofφ in the

upstream cell, and∆~s is a vector from the upstream cell centroid to the face centroid. By em-

ploying this scheme it is ensured that the boundedness property is not violated but at the same
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time reasonable accuracy of the result is preserved. However, this scheme requires two challeng-

ing tasks:

• computing the gradient ofφ,

• and selecting the appropriate upstream cells for arbitrary cell shapes.

Gradient Computation

The appropriate way to evaluate gradients of transported properties in cells of arbitrary shape is

given inBarth & Jespersen(1989) [10]. By making use of the divergence theorem (eq. 4.6), we

can write:

∇φ = ΦA ·
1

V

n∑
i=1

φ̃i · Ai · ~ni (4.19)

The value forφ̃i is obtained by distance-weighted interpolation between two neighbouring cell

centres, making use of equation 4.16;V denotes the cell volume.ΦA is a limiting function

which ensures that no new maxima or minima are introduced upon evaluation of the gradient. It

is defined by

ΦA = min Φ̄Ai
(4.20)

with Φ̄Ai
given by

Φ̄Ai
=


min

(
1,

φmax
A −φA

φ̃i−φA

)
, if φ̃i − φA > 0

min
(
1,

φmin
A −φA

φ̃i−φA

)
, if φ̃i − φA < 0

1 if φ̃i − φA = 0

(4.21)

andφA equal to the value in the centroid of the cell where the gradient is to be evaluated.φmax
A is

the maximum of the propertyφ among the cell and all its neighbour cells, andφmin
A its minimum.

Selection of Upstream Cell

Determining the upstream cell for use in the second order upwind scheme is not a straightforward

task, especially in arbitrary geometries. According toPatankar(1980) [61] the expression used

to evaluate cell face values must be spatially consistent. Following this requirement, we can write

equation 4.22 for two cells with centre pointsP andN :

φf = f1 (φN +∇φN∆~sNf ) + (1− f1) (φP +∇φP ∆~sPf ) (4.22)
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∆~sNf and ∆~sPf are the vectors from the cell centroids ofN and P to the face centroid of

f . Using the inverse distance weighting approach byf1 as given in equation 4.16 this method

allows a spatially consistent evaluation ofφf . In order to determine whether cellN has actually

any convective influence on cellP , i.e. is an upstream cell or not, the entire convective term as

derived in equation 4.15 can be evaluated as follows:

n∑
i=1

max (−Ai ~ni · ~uf , 0) · (φP − φNi
) (4.23)

The face velocity vector~uf is evaluated by applying formula 4.22 to its componentsu, v and

w. Using the scalar product between this face velocity vector and the face normal vector, which

is pointing outwards of the cell by definition, yields the projection of the velocity onto the face

normal. The multiplication with the face area returns the convective mass flux through the cell

face. Since the influence of the neighbouring cell is positive when the mass flux points into

the current cell, the direction of the mass flux must be inverted, which is done by applying the

minus sign in equation 4.23. The maximum function ensures that any convective influence of the

neighbouring cell is disregarded as soon as the mass flux points out of the current cell.

4.1.4 Pressure Term

For the sake of convenience the pressure term of equation 4.1 was included into the source term

in the derivation and discretisation of a generic transport equation. We shall now explicitly deal

with this term starting with its integrated form

1

ρ

∫
Ω

∂p

∂xj

dΩ (4.24)

which is to be included in the momentum equations forx1 = u, x2 = v andx3 = w. Once again

using the divergence theorem, we obtain

1

ρ

∫
A

pnxj
dA (4.25)

wherenxj
denotes the component of the face normal vector of the surrounding surfaceA which
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points into the direction ofxj. This can be discretised as

Su =
1

ρ

n∑
i=1

nxj ,i · Ai · pf,i (4.26)

with pf,i meaning the pressure on each face.Su, the result of the discretisation, is a non-linearised

source term (see section 4.1.5). The face pressure value can be obtained by weighted interpola-

tion

pf = f1pN + (1− f1)pP (4.27)

wheref1 is based on the ratio of the normal distances from both cell centroids to the dividing

face.

4.1.5 Source Terms

Other source terms enter the momentum equations via the last term of equation 4.7:

1

ρ

∫
Ω

SφdΩ (4.28)

Discretisation of this integral for a cell with volumeV yields:

1

ρ
SφV (4.29)

Usually,Sφ is linearised, i.e. split into a termSφ1 dependent ofφ and a termSφ2 independent of

φ. For cellP we can therefore write the complete source term as

Su − SpφP (4.30)

using the relations

Su =
V

ρ
Sφ1 andSp = −V

ρ
Sφ2 (4.31)
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4.1.6 Complete Discretised Equation

After all terms of the momentum equation have been discretised they can be assembled to yield

the complete discretised set of three momentum equations forj = 1, 2, 3:

n∑
i=1

[
νAi

uj,Ni
− uj,P

δNiP

+ max (−Ai ~ni · ~ufi
, 0) · (uj,Ni

− uj,P )

−1

ρ
nxj ,i · Ai · (f1pNi

+ (1− f1)pP )

]
+ Su − Spuj,P = 0 (4.32)

In a next step all terms containing the transported properties for cellP are arranged on the left

hand side of the equation and all neighbour properties and nonlinear source terms on the right

hand side in order to receive an equation of the type

aP uj,P =
n∑

i=1

aNi
uj,Ni

+ b (4.33)

which is the typical form of a discretised equation when using the Finite Volume method. In the

problem discussed here, the coefficientsaP andaNi
become

aP =
n∑

i=1

[
νAi

δNiP

+ max (−Ai ~ni · ~ufi
, 0)

]
+ Sp and

aNi
=

νAi

δNiP

+ max (−Ai ~ni · ~ufi
, 0) (4.34)

The source termb finally becomes

b =
n∑

i=1

[
−1

ρ
nxj ,i · Ai · (f1pNi

+ (1− f1)pP )

]
+ Su (4.35)

4.1.7 Basic rules of the Finite Volume Method

Patankar(1980) [61] states the four basic rules which must not be violated in the discretisation

of the governing equations:

1. Consistency at control-volume faces: fluxes across faces of adjacent cells must be repre-

sented by the same expression in the discretisation equations,
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2. Positive coefficients: all coefficientsaP andaNi
must always be positive,

3. Negative-slope linearisation of the source term: in order to avoid a violation of rule 2,Sp

must always be positive,

4. Sum of the neighbour coefficients: the coefficientaP must always equal the sum of the

neighbour coefficients in the absence ofSp.

In section 4.1.3 a consistent formula (eq. 4.22) was developed to evaluate transported properties

at cell faces. By applying this formula to all occurrences of~ufi
, the first rule is observed. Rule

2 is satisfied in the presented discretisation since the values ofν, Ai andδNiP are physical and

geometrical properties which cannot become negative, and the maximum-function approach for

the convective terms ensures that this term is always positive as well. Since no linearised source

term occurs in the momentum equations, the third rule is not violated. Finally, from equation

4.34 it is clearly visible thataP equals the sum of all neighbour coefficients, thus satisfying the

fourth rule.

4.2 Pressure Correction Equation

The pressure appears in all three momentum equations where it usually represents the main mo-

mentum source term. It is therefore highly important to obtain a valid pressure field. This is,

however, a very challenging task since there is no governing equation for pressure. A common

approach in incompressible flows is to use the continuity equation to couple pressure and ve-

locity, introducing a constraint on the solution such that if the correct pressure field is applied

in the momentum equations, the resulting velocity field satisfies continuity (Versteeg & Malale-

sekera(2001) [84]). This is achieved using an iterative procedure calledSIMPLE algorithm–

which is an acronym for Semi-Implicit Method for Pressure-Linked Equations – first presented

in Patankar & Spalding(1972) [62]. The idea behind it is to use a guessed pressure field to

solve the momentum equations, and to use the resulting velocity field in a so-called pressure

correction equation, which is derived from the continuity equation, in order to obtain a pressure

correction field. This field again is used to correct velocity and pressure distributions before the

next iteration cycle is entered. Figure 4.4 illustrates this procedure; a detailed flow-chart of its

implementation in RSim-3D is provided in appendix A.

One of the major challenges in establishing a valid pressure field is illustrated in figure 4.5. In a

regularly spaced grid arrangement a decoupling of the pressure term (eq. 4.26) between neigh-
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Figure 4.4: Flowchart for the SIMPLE algorithm

Figure 4.5: Checker-board pressure field (Steinrück(2002) [78])
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4. GOVERNING EQUATIONS AND DISCRETISATION 4.2. Pressure Correction Equation

bouring cells may result, leading to a so-calledchecker-board pressure field(Patankar(1980)

[61], Steinrück(2002) [78]). While such a pressure distribution perfectly satisfies the momen-

tum equations it impairs overall convergence and yields oscillatory solutions. In the polyhedral

grid arrangement adopted in this work, there is no reason to expect oscillations in the horizontal

projection of the pressure field since the cell shapes do not permit such solutions to occur. In

the vertical direction, however, the grid is structured and therefore at a high risk of producing

checker-board solutions. A usual remedy to this problem is to store pressure and velocities in

different locations within the grid, which results in a staggered grid arrangement (see fig. 4.6).

In the polyhedral grid setup this would result in large additional complexities as far as storage

requirements and memory structures are concerned, which renders the approach not feasible.

Instead, an approach presented byRhie & Chow(1983) [66] is used where oscillations are pre-

vented by introducing a third derivative term in pressure into the expression for the mass flux over

cell faces. This term is only added when the continuity defect in the pressure correction equation

has to be resolved and is not applied to the convection terms in the momentum equations.

Figure 4.6: Complex staggered variable placement (location of velocities: red vectors; location
of pressure: blue circles)

FollowingDavidson(1996) [16] the derivation starts with the evaluation of the pressure gradient

vector at thecentroidsof two adjacent cellsP andNi and projecting it on the normal vector of

the dividing face: {
∂p

∂xj

}
P

~ni and

{
∂p

∂xj

}
Ni

~ni (4.36)
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The normal vector projection of the pressure gradient at thecell facecan be written as

{
∂p

∂xj

}
f

~ni =
pNi

− pP

δPNi

(4.37)

with δPNi
denoting the spatial distance between the cell centroids. Defining the third derivative

term as difference between two first derivative terms, the first evaluated at the cell centroids (eq.

4.36), the second at the cell face (eq. 4.37), we obtain

pNi
− pP

δPNi

−

f1

{
∂p

∂xj

}
Ni

+ (1− f1)

{
∂p

∂xj

}
P

 ~ni (4.38)

using the interpolation technique presented in equation 4.27 withf1 implemented as distance-

weighted coefficient.

The mass flux at the cell faces can now be written as (Davidson(1996) [16])

ṁfi
= ρAi~ufi

~ni −
(

ρV A

aP

)
f

pNi
− pP

δPNi

−

f1

{
∂p

∂xj

}
Ni

+ (1− f1)

{
∂p

∂xj

}
P

 ~ni

 (4.39)

once again using the operator(.)f to denote that its argument is to be evaluated at the face. With

aP as the discretised diagonal coefficient in the momentum equations (eq. 4.34), we can write

(
ρV A

aP

)
f

= VfAi

[
f1

aP,Ni

+
1− f1

aP,P

]
(4.40)

with Vf denoting the face control volume defined in figure 4.1. The densityρ is dropped from

the right hand side of the equation since the discretised diagonal coefficientsaP,Ni
and aP,P

were already divided by the density during the derivation of the momentum equations. The face

control volumeVf can now be approximated as

Vf = AiδPNi
(4.41)

which allows us to rewrite equation 4.39 as follows:

ṁfi
= ρAi~ufi

~ni (4.42)

−A2
i

[
f1

aP,Ni

+
1− f1

aP,P

] (pNi
− pP )− δPNi

f1

{
∂p

∂xj

}
Ni

+ (1− f1)

{
∂p

∂xj

}
P

 ~ni


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The face velocity~ufi
can be evaluated by applying equation 4.22 to its components. Finally, both

pressure gradients at cell centroids are obtained through equation 4.19.

In a next step, we express the continuity equation for a discretised cell withn faces by using the

mass flux:
n∑

i=1

ṁfi
= 0 (4.43)

However, during an iterative procedure, this equation will not be satisfied if the mass flux was

derived using the pressure and velocity fields from a previous iteration step. Therefore the mass

fluxesṁfi
are split into an old valuėm∗

fi
and a correctioṅm

′
fi

:

ṁfi
= ṁ∗

fi
+ ṁ

′

fi
(4.44)

In a converged solution, the pressure correction must be zero. Hence, using the equation for the

mass flux over cell faces (eq. 4.42) without the stabilising third derivative term, we obtain the

following relation

ṁ
′

fi
= ρAi~ufi

~ni = A2
i

(
f1

aP,Ni

+
1− f1

aP,P

)(
p

′

Ni
− p

′

P

)
(4.45)

wherep
′
Ni

and p
′
P are the respective pressure correction values for cell centroidsNi and P .

Inserting this expression into equation 4.44, the continuity equation (eq. 4.43) yields:

n∑
i=1

A2
i

(
f1

aP,Ni

+
1− f1

aP,P

)(
p

′

Ni
− p

′

P

)
+

n∑
i=1

ṁ∗
fi

= 0 (4.46)

After arranging all terms containing the pressure correction forP on the left hand side and those

for the neighboursNi on the right hand side we obtain an equation similar to eq. 4.33 in the

usual way of a Finite Volume discretisation:

aP p
′

P =
n∑

i=1

aNi
p

′

Ni
+ b (4.47)

The coefficientsaP , aNi
andb subsequently take the following values:

aP =
n∑

i=1

A2
i

(
f1

aP,Ni

+
1− f1

aP,P

)
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aNi
= A2

i

(
f1

aP,Ni

+
1− f1

aP,P

)
(4.48)

b =
n∑

i=1

ṁ∗
fi

=
n∑

i=1

{
ρAi~u

∗
fi
~ni − A2

i

[
f1

aP,Ni

+
1− f1

aP,P

] [(
p∗Ni

− p∗P
)

−δPNi
(f1∇pNi

+ (1− f1)∇pP ) ~ni]}

p∗ and~u∗f are pressure and velocity fields from a previous iteration step.∇p was used as a

short-hand notation for the pressure gradient evaluated at cell centroids.

Assessment of the discretised pressure correction equation in regard to the four basic rules of the

Finite Volume Method (section 4.1.7) gives:

1. Consistent functions were used to obtain velocities at cell faces and weighted diagonal

coefficients of the momentum equation.

2. The coefficientsaP andaNi
are dependent on the face areas and the diagonal coefficients

of the momentum equation only, which both take positive values at any time.

3. There is no linearised source term that could become negative.

4. aP is equal to the sum of allaNi
for a given cell.

Hence the discretised pressure correction equation obeys all basic rules of the Finite Volume

Method.

It is important to point out that the result of the solution of the pressure correction equation is

a pressurecorrectionfield for the whole computational domain. Thus the pressure field itself

is never obtained explicitly but only after applying the pressure correction everywhere in a final

correction step which also includes updating the velocity field:

p = p∗ + p
′

uj = u∗j −
V

ρaP,P

∂p
′

∂xj

(4.49)

V denotes the cell volume whileaP,P is the discretised diagonal coefficient in the momentum

equation which must be multiplied with the densityρ since the momentum equations were de-

rived without density terms. The gradient of the pressure correction in all three coordinate direc-
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tions can be obtained by making use of the divergence theorem (eq. 4.6) once more,

∂p
′

∂xj

=
1

V

n∑
i=1

p
′

fi
· Ai · ni,j (4.50)

where the face values of the pressure correctionp
′
fi

can easily be obtained using linear interpo-

lation.

4.3 Turbulence Modelling

4.3.1 Turbulence Models

The first step towards modelling of turbulent flows is the splitting of velocity components and

pressure into a mean and a fluctuating component:

uj = ūj + u
′

j

p = p̄ + p
′

(4.51)

Introducing this concept into the Navier-Stokes equations the Reynolds equations for turbulent

flow can be written. In analogy to equation 4.1, they are written in a complete notation:

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
= −1

ρ

∂p̄

∂x
+ ν

∂2ū

∂x2
+ ν

∂2ū

∂y2
+ ν

∂2ū

∂z2
− ∂u′2

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
+ fx

∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z
= −1

ρ

∂p̄

∂y
+ ν

∂2v̄

∂x2
+ ν

∂2v̄

∂y2
+ ν

∂2v̄

∂z2
− ∂u′v′

∂x
− ∂v′2

∂y
− ∂v′w′

∂z
+ fy

∂w̄

∂t
+ ū

∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z
= −1

ρ

∂p̄

∂z
+ ν

∂2w̄

∂x2
+ ν

∂2w̄

∂y2
+ ν

∂2w̄

∂z2
− ∂u′w′

∂x
− ∂v′w′

∂y
− ∂w′2

∂z
+ fz

(4.52)

Each momentum equation contains three additional terms which involve products of fluctuating

velocities. These additional terms act as turbulent stresses (Reynolds stresses) on the mean ve-

locity components (Versteeg & Malalasekera(2001) [84]). In tensor notation we can write the

Reynolds equations in short:

ui
∂uj

∂xi

= −1

ρ

∂p̄

∂xi

−
∂u

′
iu

′
j

∂xj

+ ν
∂2ui

∂x2
j

+ S (4.53)
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In general it is not possible to derive governing equations for the Reynolds stresses. Several

turbulence models are available to deal with thisclosure problem, the most common methods are

described in the following sections.

Boussinesq established a relationship between the Reynolds stresses and the mean rates of de-

formation, resulting in

−u
′
iu

′
j = νt

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
kδij (4.54)

wherek is the turbulent kinetic energy

k =
1

2

(
u′2 + v′2 + w′2

)
(4.55)

and δij the Kronecker delta, which takes the valueδij = 1 if i = j and δij = 0 if i 6= j.

The symbolνt is used to denote the turbulent or eddy viscosity for which an assumption must be

made. Based on the complexity of this assumption, a distinction in zero-equation-, one-equation-

two-equation-, and turbulent stress models is made (Rodi(1984) [68]).

Zero-Equation Models

This model type is characterised by the absence of any kind of transport equation for turbulence

quantities. The eddy viscosity is either assumed constant or related to the mean velocity distrib-

ution. According toRodi(1984) [68] a constant eddy-viscosity assumption has little significance

for the calculation of hydrodynamic properties since in flow situations where the turbulence terms

are unimportant the model has no influence anyway, and in all other flow situations the model is

mostly too coarse to describe this behaviour correctly.

A specific way to relate the eddy viscosity to the mean velocity gradient significant in simple

two-dimensional flows was first proposed by Prandtl,

νt = `2
m

∣∣∣∣∣∂ū

∂y

∣∣∣∣∣ (4.56)

which yields much more realistic results. The parameter`m is the so-called mixing length which

can be computed by simple algebraic formulae based on the flow type encountered. A disad-

vantage of this model is its incapability of describing flows with separation and recirculation

(Versteeg & Malalasekera(2001) [84]), therefore it is not the best choice for the present work.
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One-Equation Models

In this model type the eddy viscosity is related to a velocity scale for which a transport equation

can be written. Known as the Kolmogorov-Prandtl expression, it yields

νt = c
′

µ

√
kL (4.57)

with
√

k as the velocity scale related to the turbulent kinetic energy defined in equation 4.55,

L a characteristic length of the flow domain andc
′
µ an empirical constant. FollowingVersteeg

& Malalasekera(2001) [84], the model equation for the turbulent kinetic energyk written in

coordinate-free vector form in analogy to equation 4.4 can be written as:

∂k

∂t︸︷︷︸
(I)

+ div
(
k~̄u
)

︸ ︷︷ ︸
(II)

= div
(

νt

σk

gradk
)

︸ ︷︷ ︸
(III)

−u
′
iu

′
j · Eij︸ ︷︷ ︸
(IV )

− ε︸︷︷︸
(V )

(4.58)

In this equation,σk is an empirical constant.Eij is the mean rate of deformation of a finite fluid

volume, given by:

Eij =
∂ūi

∂xj

+
∂ūj

∂xi

(4.59)

The symbolε denotes the viscous dissipation, i.e. the transfer of kinetic energy into internal

energy of the fluid, and stands for:

ε = ν
∂u

′
i

∂xj

∂u
′
i

∂xj

(4.60)

The transport equation for the turbulent kinetic energy therefore consists of five main terms:

• a transient term, describing the rate of change ofk over time (I)

• a term describing the convective transport (II),

• a term giving the diffusive transport (III),

• a term accounting for production of kinetic energy by shear (IV) which is often also de-

notedPk,

• and finally a term describing the dissipation of kinetic energy (V).

75



4.3. Turbulence Modelling 4. GOVERNING EQUATIONS AND DISCRETISATION

Following Rodi (1984) [68], in a one-equation model the dissipation is usually modelled by the

expression

ε = cD
k

3
2

L
(4.61)

wherecD is another empirical constant.

Rodi (1984) [68] assesses the class of one-equation models as superior to the models based on

the mixing-length hypothesis since they account for convective and diffusive transport of the

turbulent velocity scale. However, one of the main difficulties is the specification of the length

scaleL in flows that are more complex than shear layers as there is little empirical information

available on the length scale distribution. That’s the reason why two-equation models, where the

length scale is determined from another transport equation, are a better choice for the present

work than one-equation models.

Two-Equation Models

The most popular two-equation model today is thek − ε model byLaunder & Spalding(1974)

[40]. Following the idea that dissipation itself is a process influencing the length scale, a transport

equation forε can be derived

∂ε

∂t
+ div

(
ε~̄u
)

= div
(

νt

σε

gradε
)
− C1ε

ε

k
u

′
iu

′
j · Eij − C2ε

ε2

k
(4.62)

where the eddy viscosityνt is modelled as

νt = Cµ
k2

ε
(4.63)

andC1ε, C2ε, σε andCµ are empirical constants likeσk in the transport equation fork. The

values recommended byLaunder & Spalding(1974) [40] are:

Cµ = 0.09

σk = 1.00

σε = 1.30 (4.64)

C1ε = 1.44

C2ε = 1.92
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The meaning of the terms in theε- equation is the same as those in thek-equation with the last

two terms accounting for production and destruction ofε.

One of the advantages of thek − ε model is the validity of the model constants for a large

number of flow situations. However, complete universality of the constants cannot and should

not be expected (Rodi (1984) [68]). Problems where the standardk − ε model performs poorly

have been well documented in literature. These include rotating flows and flows with highly

curved boundary layers, fully developed flows in non-circular ducts (Versteeg & Malalasekera

(2001) [84]) or the prediction of the spreading rate of axisymmetric jets (Rodi (1972) [67]).

Modifications of the model constants have been proposed to overcome some of these problems.

The RNGk − ε model (Yakhot & Orszag(1986) [93]) and thek − ε model for low Reynolds

numbers (Patel et al.(1985) [63]) are among the better known ones.

Another two-equation model is thek − ω model byWilcox (1994) [90]. This model uses an in-

verse time scale denotedω – defined as dissipation per turbulent kinetic energy – and employs a

transport equation for this quantity which is quite similar to theε-equation except for a different

set of empirical constants.Wilcox (1994) [90] states that the model has a high numerical stabil-

ity and shows better rates of convergence than comparable models. However, its applicability

decreases with increasing Reynolds numbers with the model performing best at low to medium

Reynolds numbers. Furthermore, the model is quite sensitive as far as the choice of boundary

conditions is concerned. To overcome this problem a modifiedk − ω model has been proposed

by Menter(1994) [46].

Because thek − ε model has been used extensively in the past and is therefore very well docu-

mented for its applicability to flows with high Reynolds numbers, it is chosen for this work.

Reynolds Stress Models

Reynolds or turbulent stress models, also called second-moment closure models, account for

individual transport of the six Reynolds stressesu
′
iu

′
j. This overcomes the limitations introduced

by the concept of an isotropic eddy viscosity and allows for an application of the model to flow

situations which do not yield satisfactory results when computed using two-equation models.

The single most relevant flow phenomenon in river flow applications affected by this limitation

is the prediction of turbulence-driven secondary motions (Rodi(1984) [68]).

On the other hand, the application of Reynolds stress models is highly complicated and compu-

tationally expensive. Six additional transport equations need to be solved and all of them require

the interpolation of gradients at cell faces which is a fairly complex task in the case of arbitrary
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cell shapes as employed in the present work. However, a requirement for the successful applica-

tion of Reynolds stress models is the availability of measurements for all transported properties

at inlet and outlet of the computational domain, including correlations between velocity fluc-

tuations. If this necessary input data can be provided, this type of turbulence models has the

capabilities to account for an improved representation of the physical processes of turbulence.

An implementation of a Reynolds stress model into RSim-3D is therefore an important prospect

for future improvements of this simulation model.

4.3.2 Discretisation

Transport equation for kinetic energy k

After dropping the transient term from the transport equation for turbulent kinetic energyk (eq.

4.58) it can be presented in an integrated form suitable for a Finite Volume discretisation:

∫
Ω

div
(
k~̄u
)

dΩ =
∫
Ω

div
(

νt

σk

gradk
)

dΩ−
∫
Ω

u
′
iu

′
j · EijdΩ−

∫
Ω

εdΩ (4.65)

The convective and diffusive terms can be discretised in the same way as in the momentum

equations. Following the procedure outlined in equations 4.7 through 4.13, we obtain for the

diffusive term ∫
Ω

div
(

νt

σk

gradk
)

dΩ (4.66)

the following discretised form
1

σk

n∑
i=1

Aiνt,fi

kNi
− kP

δNiP

(4.67)

whereνt,fi
is the eddy viscosity at the cell facefi, obtained by linear interpolation from the

values at neighbouring cell centroids.

In analogy to equations 4.14 through 4.23, the convective term

∫
Ω

div
(
k~̄u
)

dΩ (4.68)

can be discretised to become

n∑
i=1

max
(
−Ai ~ni · ~̄uf , 0

)
· (kP − kNi

) (4.69)
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with ~̄uf denoting the face velocity vector defined in the derivation of the momentum equations.

In order to discretise the production term we can employ the Boussinesq approximation (eq.

4.54) in conjunction with equation 4.59 to obtain

−
∫
Ω

u
′
iu

′
j · EijdΩ = Pk = V

2

(∂ū

∂x

)2

+

(
∂v̄

∂y

)2

+

(
∂w̄

∂z

)2
+

(
∂ū

∂y
+

∂v̄

∂x

)2

(4.70)

+

(
∂ū

∂z
+

∂w̄

∂x

)2

+

(
∂v̄

∂z
+

∂w̄

∂y

)2

− 2

3
kP

(
∂ū

∂x
+

∂v̄

∂y
+

∂w̄

∂z

)
which was presented in a full notation for the sake of clarity. All six different partial differentials

are evaluated using equation 4.19. Fortunately, these differentials are also needed in the second

order upwind procedure and therefore no additional effort is needed to obtain them. While it may

be tempting to implement the part containing the turbulent kinetic energy as a linearised source

term, it is not wise to do so since it cannot be guaranteed that this term will always be positive,

thus violating the third basic rule of the Finite Volume method. Therefore the complete right

hand side of equation 4.70 must be implemented as a nonlinear source termSu.

Finally, the dissipation term is discretised as:

−
∫
Ω

εdΩ = −εP V (4.71)

While it was not possible to linearise the production term, it is possible to do so with the dissi-

pation term which will have a stabilising effect on the solution. Neither a negative dissipation

nor a negative cell volume are physically possible, and so we can ”linearise” the dissipation term

without violation of the basic rules of the Finite Volume Method to yield

−
∫
Ω

εdΩ = −εP V

k∗P
· kP (4.72)

wherek∗P is the turbulent kinetic energy value after the previous iteration, resulting in the linear

source term

Sp =
εP V

k∗P
(4.73)

Putting the terms together and re-arranging them in the same way as in the previous sections for
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the momentum and pressure correction equations, we obtain

aP kP =
n∑

i=1

aNi
kNi

+ b (4.74)

with the following values foraP , aNi
andb:

aP =
n∑

i=1

{
Ai

σkδNiP

[f1νt,Ni
+ (1− f1) νt,P ] + max

(
−Ai ~ni · ~̄uf , 0

)}
+

εP V

k∗P

aNi
=

Ai

σkδNiP

[f1νt,Ni
+ (1− f1) νt,P ] + max

(
−Ai ~ni · ~̄uf , 0

)
(4.75)

b = V

2

(∂ū

∂x

)2

+

(
∂v̄

∂y

)2

+

(
∂w̄

∂z

)2
+

(
∂ū

∂y
+

∂v̄

∂x

)2

+

(
∂ū

∂z
+

∂w̄

∂x

)2

+

(
∂v̄

∂z
+

∂w̄

∂y

)2

− 2

3
k∗P

(
∂ū

∂x
+

∂v̄

∂y
+

∂w̄

∂z

)
It is important to note that upon solution of the discretisedk-equation slightly negative values

for k may be obtained. This is a phenomenon of numerics which must be avoided since it dis-

equilibrates the whole solution algorithm. Therefore it must be ensured thatk is always positive

by enforcingk ≥ 0 during the iteration cycle.

A consideration of the discretisedk-equation regarding the basic rules of the Finite Volume

method yields that none of these rules are violated since consistent formulations were used at cell

faces, all coefficients are always positive, the linearised source term is positive and the diagonal

coefficient equals the sum of the neighbour coefficients.

Transport equation for dissipation ε

The transport equation for dissipationε (eq. 4.62) presented without the transient term and in

integrated form reads:

∫
Ω

div
(
ε~̄u
)

dΩ =
∫
Ω

div
(

νt

σε

gradε
)

dΩ−
∫
Ω

C1ε
ε

k
u

′
iu

′
j · EijdΩ−

∫
Ω

C2ε
ε2

k
dΩ (4.76)

The diffusive and convective terms are very similar to their counterparts in thek-equation. There-

fore we can directly write them in discretised form:

∫
Ω

div
(

νt

σε

gradε
)

dΩ =
1

σε

n∑
i=1

Aiνt,fi

εNi
− εP

δNiP

(4.77)
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∫
Ω

div
(
ε~̄u
)

dΩ =
n∑

i=1

max
(
−Ai ~ni · ~̄uf , 0

)
· (εP − εNi

) (4.78)

Using the definition ofPk from equation 4.70 the production term can be discretised as:

−
∫
Ω

C1ε
ε

k
u

′
iu

′
j · EijdΩ = V C1ε

εP

kP

Pk (4.79)

Again, it is not possible to linearise the production term without violating the third basic rule of

the Finite Volume method. But it is possible to improve stability in another way; by using the

definition of the eddy viscosity (eq. 4.63), we can write

V C1ε
εP

kP

Pk = V C1εCµPk
kP

νt

(4.80)

which removes any direct reference toεP from the source term sinceνt is computed before the

equations of turbulence are evaluated. Finally, the destruction term ofε is modelled as:

−
∫
Ω

C2ε
ε2

k
dΩ = −V C2ε

ε2
P

kP

(4.81)

Using the same procedure as with the production term, it can be written

−V C2ε
ε2

P

kP

= −V C2εCµ
kP

νt

εP (4.82)

and this term can be expressed as a linearised source term:

Sp = V C2εCµ
kP

νt

(4.83)

Finally, the terms are put together in the usual way to obtain

aP εP =
n∑

i=1

aNi
εNi

+ b (4.84)

with the following values foraP , aNi
andb:

aP =
n∑

i=1

{
Ai

σεδNiP

[f1νt,Ni
+ (1− f1) νt,P ] + max

(
−Ai ~ni · ~̄uf , 0

)}
+ V C2εCµ

kP

νt
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aNi
=

Ai

σεδNiP

[f1νt,Ni
+ (1− f1) νt,P ] + max

(
−Ai ~ni · ~̄uf , 0

)
(4.85)

b = V C1εCµPk
kP

νt

The statement about enforcing the positiveness ofk applies in the same way toε as well and

the considerations regarding the basic rules of the Finite Volume method also hold true for the

discretisedε-equation.

Modification of momentum equations

Very little change is required to solve the Reynolds equations (eq. 4.52) with the technique

already derived for the Navier-Stokes equations (eq. 4.1). The equations have the same form if

the molecular viscosityµ is replaced by the effective viscosity

µeff = µ + µt (4.86)

as pointed out byFerziger(2002) [20]. For the discretised momentum equations in the present

work contain the kinematic viscosityν, it is therefore sufficient to replace it byνeff = ν + νt.

This is the only modification needed in order to solve the Reynolds equations.

4.4 Boundary Conditions

4.4.1 Inlet

Momentum equations

At the inlet of the computational domain, the normal velocities are prescribed. Given the dis-

chargeQ, usually it is sufficient to compute the normal velocitiesun by

un =
Q∑m

i=1 Ai

(4.87)

wherem is the number of faces at the inlet. This prescribes a uniform velocity distribution which

does not occur in reality; a fact that does not matter if the inlet boundary is placed sufficiently far

upstream from the area of interest since the flow will develop a natural distribution very quickly.
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If this method appears too inaccurate, it is alternatively possible to prescribe a logarithmic veloc-

ity profile at the inlet. For points outside of the viscous wall layer,Schlichting & Gersten(1997)

[71] give the followinglaw of the wall

u+ =
u(y)

u∗
=

1

κ
ln

(
y

yk

)
(4.88)

whereu(y) is the velocity dependent on the wall distancey, u∗ the shear velocity defined as

u∗ =

√
τw

ρ
(4.89)

with τw denoting the wall shear stress.κ is the Von Karman constant which takes the value

κ = 0.41. For the fully rough flow domain, the parameteryk can be computed by

yk = ks exp (−8.0κ) (4.90)

whereks is Nikuradse’s equivalent sand roughness of the wall. Using this relationship, equation

4.88 can be reformulated to read:

u(y) =
u∗

κ
ln
(

26.58y

ks

)
(4.91)

The velocity distribution given in this formula can subsequently be integrated over the depth of

the flow domainh in order to obtain the dischargeQ:

Q =
∫ h

0
u(y) · A

h
dy (4.92)

The result of this integral is used to compute the shear velocityu∗

u∗ = κ
Q

A

1

2.2802 + ln
(

h
ks

) (4.93)

which finally allows us to use expression 4.91 to prescribe the velocity at the inlet dependent

on the vertical layer. It should be noted that the denominator of this equation must not become

negative for this approach to work. This sets a natural limit for the ratio between the depth of the

flow domain and the equivalent sand roughness of the wall.
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While the equivalent sand roughnessks is used throughout many boundary conditions, often this

parameter is not available in engineering calculations, but the Strickler coefficientkSt is given

instead. These two parameters are related by the empirical relationship:

ks =
(

26.4

kSt

)6

(4.94)

According toUSACE(1994) [83], this formula holds true for riprapped channels whereks =

D90, while for natural sediment whereks = D50, the relationship

ks =
(

29.4

kSt

)6

(4.95)

is appropriate. However, these equations are applicable only to medium-range values for the

Strickler parameter, i.e. not to smooth and very rough surfaces.Naudascher(1987) [50] assesses

their applicability for typical Reynolds numbers in river flow situations to be in the range20 <

4R/ks < 1000 whereR denotes the hydraulic radius.

Turbulent kinetic energy

If the inlet boundary is placed sufficiently far away from the region of interest, the prescribed

values fork have no significant influence on the turbulence field further downstream as long as

thek − ε model is employed. This conclusion can be drawn when comparing the suggestions

given by different authors as far as this quantity is concerned.Ferziger(2002) [20] suggests to

use a small value fork and givesk = 10−4ū2 as example, whileVersteeg & Malalasekera(2001)

[84] propose to estimatek from the turbulence intensityTi which is typically between 1% and

6%: k = 3
2
(ūTi)

2. Davidson & Nielsen(1995) [17] document the use ofk = 10−2ū2 andOlsen

(1999) [55] finally relates the turbulent kinetic energy to the wall shear stressτ at the inlet and

obtains

kB =
τ

ρ
√

Cµ

(4.96)

for the inlet bed with a linear decrease towards the free surface. This approach is adopted here.

Dissipation

The dissipationε must return the correct scale, thus it is useful to choose its inlet value in ac-

cordance with equation 4.61 which can be reformulated (Versteeg & Malalasekera(2001) [84])
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as

ε = C
3
4
µ

k
3
2

0.07L
(4.97)

whereL is a characteristic length of the flow domain that can be approximated byL ≈ h where

h is the water depth. This procedure is also confirmed in a paper byDavidson & Nielsen(1995)

[17] where an inlet value ofε = 0.16k1.5

0.1L
is being used; the only difference is the choice of0.1L

as mixing length in the denominator owing to the different type of flow problem modelled.

4.4.2 Outlet

Ferziger (2002) [20] notes that we usually know little about the flow at the outlet and for this

reason, these boundaries should be as far downstream of the region of interest as possible. In

the present work a zero gradient boundary condition in the streamwise direction is applied to all

quantities:
∂uj

∂n
=

∂p

∂n
=

∂k

∂n
=

∂ε

∂n
= 0 (4.98)

Of course, for this assumption to hold true, the outlet boundary must be placed perpendicular to

the flow direction. Additionally it must be noted that the pressure correction equation does only

yield relative pressures, therefore it is necessary and common practice to fix the pressure at one

outlet node and let the pressure field evolve from there.

As stated inVersteeg & Malalasekera(2001) [84] mass conservation over the whole computa-

tional domain is not guaranteed during the iterative solution process. Therefore it can be advan-

tageous to sum up the mass fluxMout going out of the domain after an iteration cycle and then

use the relation

un = u∗n
Min

Mout

(4.99)

to correct the normal velocitiesun at the outlet for the next iteration cycle. This procedure has

also been adopted in the present work.

4.4.3 Solid Walls

Momentum equations

Directly at the wall all velocities are zero (no-slip condition) and no convective fluxes take place

through the wall. The momentum equations, however, receive sink terms based on the shear
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stress at the wall. In order to derive these terms, first the velocity in tangential direction to the

wall ut needs to be computed. This is done by calculating the tangent vector~t in a first step by

using the relations derived byFerziger(2002) [20]

~up = ~u− (~u · ~n)~n

~t =
~up

|~up|
(4.100)

where~u is the three-dimensional velocity vector at the nearest wall node and~n the normal vector

of the cell face at the wall, pointing outwards as usual. The tangential velocity is then obtained

by projecting the velocity vector on~t:

ut = ~u · ~t (4.101)

In a next step it must be evaluated whether the cell centroid nearest to the wall lies within the

viscous sublayer or the turbulent outer region. This evaluation is performed by first computing

y+ =
∆yP

ν

√
τw

ρ
(4.102)

where∆yP is the normal distance from the cell centroid to the wall. Assuming the near wall

node is in the turbulent outer region – which is almost always the case – the wall shear stressτw

can be estimated as given byVersteeg & Malalasekera(2001) [84],

τw = ρC
1
4
µ k

1
2
P

ut

u+
(4.103)

wherekP denotes the turbulent kinetic energy at the near-wall node andu+ is derived from

equation 4.88. The limit of the viscous sublayer is given byy+ < 11.63. If y+ is found to be less

than this value, the assumption that the cell centroid was in the turbulent region does not hold,

and the wall shear stress must be computed by:

τw = µ
ut

∆yP

(4.104)

After the wall shear stress has been obtained, the sink term for the momentum equationsj =

1, 2, 3 reads

Su,j = −τw

ρ
Af · tj (4.105)
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wheretj is the row of vector~t that points into the direction ofj andAf denotes the surface area

the cell shares with the wall.

Attention must also be paid to the implementation of the pressure term. The pressurepf at the

wall cannot be obtained in the usual way since there is no second cell the linear interpolation

could be performed with.Wesseling(2001) [89] suggests to extrapolate the needed values from

the cell centroid values of the near-wall cell and the cell next to it in the computational domain.

The problem with such an approach, however, is that such a second cell is undefined in arbitrary

unstructured grid setups – which was also the reason why the QUICK scheme could not be used

(section 4.1.3). Some other authors state that their flow problems gave satisfactory results upon

using the zero-gradient boundary condition for pressure. Especially in curved channels where

the pressure gradients become significant, such an approach is not a feasible solution. Therefore

it is proposed to use the pressure gradient∇pP obtained via the procedure outlined in equation

4.19 and already used in the pressure correction equation and set

pf = pP +∇pP · ~s (4.106)

where~s is the vector from the cell centroid to the wall face centroid. However, it should be noted

that during the evaluation of the pressure gradient itself assumptions about the value at the face

need to be made. Due to these assumptions the pressure gradient within the cell can never be

steeper than obtained from all surrounding cells which eventually leads to the same result as in

Wesseling’s (2001) [89] gradient evaluation.

Turbulent kinetic energy

For the turbulent kinetic energy right at the wall it is appropriate to setk = 0 (Ferziger(2002)

[20]). At the same time, the equations for near-wall cells must receive an explicit source term

Sk =
(
τwut − ρC

3
4
µ k

3
2
P u+

)
V

∆yP

(4.107)

according toVersteeg & Malalasekera(2001) [84]. This source term can be linearised, and after

introducingk∗P to denote the value of kinetic energy after the previous iteration and dividing the

term by density, we can write:

Sp =
C

3
4
µ k

∗ 1
2

P u+V

∆yP

and Su =
τwutV

ρ∆yP

(4.108)
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Dissipation

Setting a zero dissipation value at the wall is inappropriate. But since a value at the wall would

be needed in order to apply the transport equation forε there, the usual procedure is to avoid

solving theε-equations in near-wall regions by setting the nodal value of the cell adjacent to a

wall to the value given byVersteeg & Malalasekera(2001) [84]:

εP =
C

3
4
µ k

3
2
P

κ∆yP

(4.109)

4.4.4 Free Surface

The free surface is implemented as a symmetry boundary which means that no fluxes occur

across this boundary. The normal velocity (usually theu3 = w component) is therefore zero

right at the boundary. All other properties take boundary values equal to those encountered in

the cell centroid right beneath the free surface.Ferziger (2002) [20] notes that a free surface

boundary condition ofk ≈ 0 andε ≈ 0 would be appropriate, but on the other hand turbulent

structures can be observed exactly at the free surface of a water body. However, as a matter

of fact no scalar fluxes take place concerning these quantities. Therefore the condition of zero

fluxes ofk andε was used in this work.

The pressure at the free surface is evaluated by using the same gradient approach as described in

the previous section. This implies, however, that the pressure is not zero at the surface (except for

the single outlet surface cell where it is fixed). The resulting extra pressure head can be directly

used to locate and subsequently update the position of the free surface. This approach has been

implemented in the present work.

4.5 Solution of Equations

4.5.1 Solver

After the discretised equations have been assembled they need to be solved in an efficient way

without consuming too much time or computer memory. Very efficient algorithms are available

if the coefficients of the discretised equations can be arranged in diagonally dominant matrix

form (Schmid(2001) [72]) as it is possible when structured grids are employed. For unstructured
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grids with a fixed number of neighbours for each cell it may be possible to use solvers developed

in context of the Finite Element method (Zienkiewicz(1971) [95]). However, if even the number

of neighbouring cells is unknown a priori and varies from cell to cell, none of these techniques

is applicable.

The solution methods applicable to problems involving grids with cells that may have an arbi-

trary number of neighbours include the Gauss-Seidel method (Press(1987) [65]), the Conjugate

Gradient Squared method (Barrett et al.(1994) [9]) or its modification, the Biconjugate Gradient

Stabilized method. The latter two exhibit a very good convergence behaviour at the cost of large

memory requirements during a cycle of the rather complex solution algorithms. For the work

presented here, the Gauss-Seidel method was preferred. It is a slow solution algorithm but there

are very few memory requirements for the solver itself and implementation is uncomplicated.

Furthermore the algorithm is easy to understand and the reasons for instabilities can be located

quickly, which is an advantage during model development and validation.

The Gauss-Seidel method solves the linear system of equationsAx = b whereA is a matrix of

coefficients,b a vector containing boundary conditions andx the unknown solution vector. In

the present workA is composed of the coefficientsaP andaNi
, andb takes the values of the

nonlinear source terms in the discretised equations. The algorithm solves thencells equations one

at a time in sequence and can be written as

x
(k)
i =

bi −
∑

j<i aijx
(k)
j −∑

j>i aijx
(k−1)
j

aii

(4.110)

wherei andj are the cell numbers, thusaij the coefficientsaNi
andaii the diagonal coefficientaP

for each cell, andk is the inner iteration counter of the algorithm. It is easy to see that results of

the solution of previous equations are used as soon as they are available. The solution requires an

initial guessx(0) which is provided by using results obtained in the previous outer iteration step.

The only exception is the pressure correction equation, where it is useful to start fromp
′
= 0 so

that the solution forp
′
does not acquire a large absolute value (Patankar(1980) [61]).

The Gauss-Seidel procedure is usually repeated until convergence is obtained. However, con-

vergence is difficult to assess within the solver itself for it is applied to equations with entirely

different scales and physical meanings. Furthermore it is not useful to solve the equations until

convergence is achieved since the result is only used as an intermediate result in the overall solu-

tion (Ferziger(2002) [20]). For this reason, the Gauss-Seidel procedure is repeated a predefined

number of times only, without extra assessment of convergence after every iteration. Usually,

evaluating each equation 10 times is sufficient for the most common flow situations.
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4.5.2 Relaxation Scheme

Due to the strong nonlinearity in the governing equations the solution process may rapidly di-

verge if the solution vector obtained from the solver is used as starting point for the next overall

iteration cycle. Especially the pressure correction equation is susceptible to divergence (Versteeg

& Malalasekera(2001) [84]). It is therefore necessary to employ an under-relaxation scheme,

such as

φnew = αφφ + (1− αφ)φ
old (4.111)

where the new valueφnew is obtained from the solutionφold after the previous iteration and

the solutionφ given by the solver in the current iteration step by using the relaxation factorαφ

which is typically in the range between 0 and 1. The choice of optimum relaxation factors is

problem dependent and can be found by test computations or experience. There are, however,

typical ranges for the selection of the relaxation factors for the six governing equations of three-

dimensional CFD problems:

The velocity relaxation factorαu is usually in the range 0.5 – 0.8 (Apsley(2003) [6]). Olsen

(2000a) [57] employs a default value of 0.8 but notes that the factor can be set as low as 0.1 for

flow situations that are difficult to converge.

For the pressure relaxation factorαp, Apsley(2003) [6] gives the typical range 0.1 – 0.3. This is

fully consistent withOlsen(1999, 2000a) [55, 57] where a default value of 0.2 is used. The latter

work also gives a lower bound of 0.03 for complex flow situations. These observations can be

confirmed by the author as well: some flow problems required a pressure relaxation factor less

than 0.1 during the first iteration cycles in order to achieve convergence.

Finally, the relaxation factors for the turbulent kinetic energy and the dissipation (αk andαε)

default to 0.5 inOlsen(2000a) [57] but are said to sometimes require values as low as 0.05 in

order to result in a converged solution. RSim-3D uses default values for the relaxation factors

according to table 4.1.

RSim-3D uses lower factors for the turbulence properties because the governing equations for

these quantities are not the ones that dominate the overall convergence behaviour (see figure 4.8)

as the number of iterations required to solve a flow problem is vastly dominated by the pressure

correction equation. So, in order to damp the sometimes observed instabilities in the turbulence

equations lower default relaxation factors have been chosen. However, for the vast majority of

flow situations choosingαk = αε = 0.5 or larger would be sufficient.

Also the update of the free surface position introduces instabilities into the solution process since
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Quantity Symbol Default value

Velocities αu 0.8
Pressure αp 0.2
Turb. kinetic energy αk 0.3
Dissipation αε 0.3
Free surface position αs 0.5

Table 4.1: Default relaxation factors

cell volumes and vertical position of the cell centroids are changed after every update. Depending

on the complexity of the flow problem these instabilities may also lead to rapid divergence.

Therefore it is advisable to relax the free surface position as well. A value of 0.5 for this value

has worked for most flow situations examined. Finally it should be noted that updates of the free

surface are not overly useful if the scaled residuals (see section 4.5.3) of all other properties are

still large. Therefore these updates are only performed if all residuals are below 0.05.

4.5.3 Residuals

In order to define convergence of a solution an assessment of the solution errors is required. For

every propertyφ in each cell the imbalance within the discretised equation can be computed as

the difference between right hand side and left hand side. Summing this imbalance over all cells

we obtain the unscaled residualRφ
u:

Rφ
u =

ncells∑
j=1

∣∣∣∣∣
n∑

i=1

aNi
φNi

+ b− aP φP

∣∣∣∣∣ (4.112)

In Fluent(2003) [25] it is noted that even thoughRφ
u is a measure of the solution error, it is diffi-

cult to judge convergence since no scaling is employed that allows for a generalised assessment

in different types of flow problems. A good scaling factor is the left hand side of the discretised

equation. Therefore a scaled residualRφ can be introduced

Rφ =
Rφ

u∑ncells
j=1 |aP φP |

(4.113)

that is suitable for judging convergence on any type of flow problem. This formula is used in the

present work to determine the residuals of thek andε equations. For the momentum equations
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the denominator termaP φP is replaced byaP |~uP | where|~uP | is the magnitude of the velocity at

cell P (Fluent(2003) [25]).

The unscaled residual for the continuity equation is defined as the absolute value of the source

term of the pressure correction equation (eq. 4.48) summed over all cells. This definition is equal

to stating that the unscaled continuity residual is the sum of mass creation in all cells:

Rc
u =

ncells∑
j=1

∣∣∣∣∣
n∑

i=1

ṁ∗
fi

∣∣∣∣∣ (4.114)

In order to scale the continuity residuals they are divided by the maximum unscaled residual

within the first five iterations (Rc
u,5) resulting in:

Rc =
Rc

u

Rc
u,5

(4.115)

In the present work, convergence of the solution is obtained when the scaled continuity residual

is less than10−4 and all other residuals are less than10−5.

4.6 Remarks on Numerical Stability and Convergence

Usually, the numerical stability in the iterative procedure increases when lower relaxation factors

are being used, even when there is no guarantee that this assumption holds true for every flow

situation encountered. On the other hand, lower relaxation factors often result in a significant

increase of iterations needed for the solution to converge.Ferziger (2002) [20] analysed the

number of iterations needed to reduce the residual levels by three orders of magnitude on four

different grid setups for the problem of a lid-driven cavity as a function of the velocity relaxation

factorαu. The result is plotted in figure 4.7. From this diagram it is obvious that the optimum

relaxation factorαu for this type of flow problem is around 0.9; higher factors introduce insta-

bilities and oscillations that slow down the overall convergence process while lower factors have

a negative influence on the convergence speed as well.

Other sources of instabilities during the solution process can be the improper placement of inlet

and outlet boundaries (i.e. not sufficiently far away from the region of interest or not perpendicu-

lar to the flow direction), a bad choice of wall boundary conditions or the presence of irregularly

shaped cells within the computational domain. These issues can therefore seriously slow down
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Figure 4.7: Number of iterations for the lid-driven cavity problem (Ferziger(2002) [20])

convergence or even cause the solution algorithm to diverge. A natural source of instabilities

is the update of the vertical water surface position during the solution process since it leads to

the recalculation of cell volumes and the location of the respective cell centroids. But as long

as the relaxation factors are not too large, these instabilities are damped very quickly and the

residuals reach their original level again soon. This fact is shown in figure 4.8 where the scaled

residuals for the simple case of turbulent flow in a straight channel are plotted. The left diagram

was created without updates of the water surface; in the right diagram the surface was free to

move. The case without moving water surface reached a converged state (continuity residuals

have dropped by four orders of magnitude, all other residuals five orders of magnitude) after 730

iterations while the moving water surface problem took 990 iterations, which is a 35% increase

in computation time. The instabilities introduced by the surface updates are clearly visible in the

convergence norms. It should also be noted that the decrease of the continuity error norm for the

fixed surface problem is almost linear in a logarithmic scale.

The time which is needed to obtain a solution for a specific flow problem was discussed to

be related to issues of stability and relaxation factors so far. However, these are not the only

causes that affect the convergence speed. The technique employed in the solver introduces a

relation between the size of the problem (i.e. the number of cells) and convergence speed: the

Gauss-Seidel scheme is very efficient in removing local (high-frequency) errors but global (low-

frequency) errors are reduced at a rate inversely related to the grid size (Fluent(2003) [25]).

Hence it is impossible to solve very large problems within an acceptable time span using the
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Figure 4.8: Convergence history for turbulent channel flow

Gauss-Seidel solver. But since the solution methods based on the Conjugate Gradient scheme

(section 4.5.1) are both complicated to implement and suffer from serious robustness problems,

only the so-calledMultigrid schemeswould be capable of delivering robustness and efficiency

in removing global errors. The basic concept is to treat these low-frequency errors by a series of

successively coarser grids whereas high-frequency errors are reduced by finer meshes. For the

present work, however, this is not a feasible solution since the two-dimensional domain gridding

process using polyhedral cells is a time-consuming process. Therefore, if a reduction of the

vertical solution accuracy can be accepted, it is advisable to decrease the vertical resolution of

the flow domain upon an increase of the horizontal resolution to allow for a converged solution

to be obtained within an acceptable amount of time using the Gauss-Seidel solver.

Finally, the time until convergence is also affected by hardware characteristics of the computer

system used. While CPU architecture and clock rate are straightforward parameters, the relation

Figure 4.9: Performance for three different computer systems (Armfield(2003) [8])
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4. GOVERNING EQUATIONS AND DISCRETISATION 4.6. Remarks on Numerics

between internal cache size of the CPU (level 2 cache) and number of floating point operations

per second dependent on the problem size is not so easy to assess.Armfield(2003) [8] demon-

strates this relation which is given in figure 4.9. It can be seen that the performance – given

as million floating point operations per second (MFLOPS) – rapidly decreases once the prob-

lem size exceeds the size of the CPU’s level 2 cache and direct RAM access operations become

necessary.
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5 Verification and Validation Cases

5.1 Verification

The purpose of the verification study is to assess the discretisation error, defined as the difference

between the exact solution of the governing equations and the exact solution of the discrete ap-

proximation (Ferziger(2002) [20]). This error is due to the use of approximations for the various

terms in the equations and the boundary conditions (ibid.). The quality of these approximations

is described by theorder of the numerical scheme. It is assessed by comparing the solutions

obtained on different grids that are distinguished by their grid spacing.

In theory, the numerical scheme employed in this work should be of second order, hence the

nameSecond Order Upwindscheme. Analysis to derive the actual order of the scheme is done

by a study on three different grids that can be characterised by a unique grid spacing, with the grid

point distance being halved from each grid level to the next one. For this study to be successful,

it is important that the grid can be actually characterised by a unique length scale because the

equation used to assess the order of the scheme (eq. 5.1) was derived using this precondition.

Therefore the order assessment uses a hexahedral grid where grid spacing can be defined. Using

such a grid with constant grid point distanceh at the finest level, the orderp of the implemented

scheme is obtained by evaluating

p =
1

ln 2
ln

φ4h − φ2h

φ2h − φ1h

+ o (1) (5.1)

(Steinrück(2002) [78]), whereφ is the quantity that the underlying governing equation was

being derived for. Equation 5.1 is to be evaluated for a grid node that is located sufficiently far

away from any boundary, hence allowing for an assessment with as little influence by boundary

conditions as possible.

In the present study, a simple rectangular duct is being modelled: 50m in length, 5m in width, 1m

in height, without bottom slope. All surrounding walls are assigned an equivalent sand roughness
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5. VERIFICATION AND VALIDATION CASES 5.1. Verification

ks of 0.00034 m which corresponds to a Strickler coefficient ofkSt = 100. A constant discharge

of 5 m3/s leads to a pressure gradient between inlet and outlet since the surface is not allowed to

move.

Three different computation grids are employed:

• a coarse grid using 250 regions in 2D (size: 1.0 x 1.0m) and 11 vertical layers, resulting in

2750 cells,

• a medium sized grid using 1,000 regions in 2D (size: 0.5 x 0.5 m) and 11 vertical layers,

resulting in 11,000 cells,

• a fine grid using 4,000 regions in 2D (size: 0.25 x 0.25 m) and 11 vertical layers, resulting

in 44,000 cells.

The grid spacing in the vertical direction was kept constant for all three variants, with the top and

the lowest cell each accounting for 5% of the computational domain and all other cells for 10%.

It can be expected that this fact did not have a significant influence on the result because the flow

conditions are essentially one-dimensional.

Figure 5.1: Grid levels for verification case: 250 regions (top), 1,000 regions (center), 4,000
regions (bottom), reference location marked in red

To minimise the influence of boundary conditions, a point close to the centre of the domain was

selected as reference location: 25.5m from the inlet, 2.5m from the side walls, 0.5m from the

bottom. Figure 5.1 depicts the three different grid levels and the reference location.
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5.1. Verification 5. VERIFICATION AND VALIDATION CASES

Since flow along a straight channel is a one-dimensional problem, the quantity to be evaluated

at the reference location isu1, the velocity in the direction of the global coordinate axisx. Its

values are given in table 5.1 in high precision for an accurate assessment of the discretisation

error and subsequently the order of the numerical scheme.

Case N regions Velocity u1 [m/s]

4h 250 1.15930315
2h 1000 1.154079538
1h 4000 1.152698668

Table 5.1: Velocityu1 at the reference location for different grid levels

Evaluating equation 5.1 using the values from table 5.1 yields the order of the implemented

numerical scheme. It takes the value

p = 1.92 (5.2)

which is very close to 2.0, the perfect result for a scheme of second order. The slight difference

can be explained by the influence of boundary conditions, the missing refinement in the vertical

direction and effects with similar impact that cannot be quantified exactly.

Case N Cells Iterations Time [h]

4h 2750 8100 0:35
2h 11000 5900 2:05
1h 44000 5100 7:20

Table 5.2: Number of iterations and computation time for the verification case

In addition, the convergence behaviour of the verification case on the different grid levels is of

special interest from an engineer’s point of view. Table 5.2 gives the number of iterations needed

for the solution to converge on the different grids along with the computation time on a reference

computer system. The reference system is a Pentium IV-class machine with 2.8 GHz clock rate

and 1 GB RAM installed in a dual-channel setup.

Most notably the number of iterations decreases when the problem size increases. This can

be easily explained by the better spatial resolution of the computational domain which causes

fewer errors in the solution, hence fewer iterations are required for convergence. Furthermore

the actual time spent on the solution of the problem scales sub-linearly with the problem size,

i.e. computations on coarse grids converge relatively slower than on refined grids: during every

iteration, additional computations must be performed (e.g. evaluation of gradients or the eddy
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5. VERIFICATION AND VALIDATION CASES 5.1. Verification

viscosity for all cells), hence an increase in the number of iterations has an additional adverse

effect on the time the model takes to reach a converged state.

Finally, the convergence history for the verification case on the three different grid levels is

depicted in figure 5.2. From this figure it is clear that the decrease in the continuity residual is

linear in a logarithmic scale. Furthermore, it is possible to see that the equations of the turbulence

model take more time to converge than the momentum equations; according to the author’s

experience this can consistently be seen in a large number of flow problems.
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Figure 5.2: Convergence history for verification case
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5.2. Developing Flow in a Curved Duct 5. VERIFICATION AND VALIDATION CASES

5.2 Developing Flow in a Curved Rectangular Duct

In this section, the numerical model will be validated against measurements in a curved rec-

tangular duct. The experiment is described and selected results are published inKim & Patel

(1994) [37]. The full data sets of the results are available on the Classic Data Base of the Eu-

ropean Research Community on Flow, Turbulence and Combustion (ERCOFTAC(1995) [19]).

The measurements of Kim and Patel’s experiment were already used to assess the validity of

computational codes in the past (e.g.Nguyen(2000) [51]).

Figure 5.3: Layout of Kim & Patel’s experiment

The experimental setup is depicted in figure 5.3. The physical model consists of a rectangular

ductH=20.3cm wide and 6H=1.22m high. It features an upstream section of 7.5H=1.52m in

length, followed by a 90◦ bend with a mean radius of curvature being 3.5H=71.1cm, and a

long downstream section of 25.5H=5.18m. The duct is run as a wind-tunnel, using air with a
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5. VERIFICATION AND VALIDATION CASES 5.2. Developing Flow in a Curved Duct

kinematic viscosity ofν = 1.45 · 10−5m2/s and a density of approximatelyρ = 1.25kg/m3.

The freestream velocity near the middle of the upstream section was found to beU0 = 16m/s,

resulting in a duct-based Reynolds number ofU0H/ν = 224, 000.

As a measurement of wall roughness, a friction coefficientCf = 0.0038 is provided. In a first

step, this friction coefficient must be converted to the concept of equivalent sand roughness to be

of use in the present work. Starting at the definition of the friction coefficient,

Cf =
τw

0.5ρU2
(5.3)

whereτw denotes the wall shear stress andU is the velocity outside of the boundary layer, we

can evaluateτw = 0.61N/m2. Introducing the shear velocityu∗ as defined by equation 4.89,

we obtainu∗ = 0.7m/s. Now evaluating equation 4.91 for the wall-distance where the free-

stream velocity is to be expected (i.e. the duct half widthH/2), a fictitious sand roughness of

ks = 2 ·10−5 is obtained that can be used in the present study. Of course, one must be fully aware

that the concept of an equivalent sand roughness is actually not applicable to air flows, which

may lead to errors in the results due to a wrong assessment of the wall’s influence on the mean

flow.

Measurements are provided at cross-sections U2, 15◦, 45◦, 75◦ and D1. In this chapter an analysis

of cross-section 45◦ is presented; results for all other cross-sections can be found in appendix B.

Except for the contour plots presented, all evaluated quantities are non-dimensionalised by the

freestream velocityU0 and the duct widthH.

In Kim & Patel (1994) [37] it is recommended to use velocity and turbulence measurements at

the upstream cross-section as inlet conditions for numerical studies and do the computations for

a reduced model only. However, since the numerical model should actually be able to return

these values if the full experimental domain is represented in the computational model and all

boundary conditions are applied correctly, it was decided to do the computations on the full

domain. With this assumption, a freestream velocity of 16.4m/s was obtained at the reference

location – which is not far from the freestream velocity given inKim & Patel (1994) [37] – and

so the non-dimensionalisation of the computational results was performed using this value.

The measurements and also previous studies indicate that strong gradients in many flow proper-

ties are to be expected along the bend. Since it is of utmost importance to capture these gradients

correctly, the computational grid must be refined in the vicinity of the side walls. On the other

hand, a fine discretisation in the flow direction is not needed. This leads to the spatial discretisa-
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5.2. Developing Flow in a Curved Duct 5. VERIFICATION AND VALIDATION CASES

tion using a grid based on quadrilateral regions since cells having a larger number of sides would

become seriously distorted under these circumstances. A detail of the computational grid along

the bend is depicted in figure 5.4. It can be seen that an area occupying 20% of the flow domain

both near the inner and outer walls is discretised by five regions while the centre area is allocated

the same amount of regions. A small number of cells near the entrance and the exit of the bend

are slightly distorted due to the grid generation algorithm, but the number is too small to expect

a negative influence on the results. In the vertical direction, the channel is symmetric and so a

symmetry boundary was introduced at 3H, allowing us to represent only half of the experimental

domain in the numerical model. This domain is divided into eleven cells (see figure 5.4, inset)

with the top and bottom cells each occupying 5% of the height and all other cells using 10%.

This results in a total of 37,906 cells. The solution converged after 8,100 iterations in 10 hours

on the reference system (see section 5.1).

Figure 5.4: Detail of computation grid for Kim & Patel’s experiment
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5. VERIFICATION AND VALIDATION CASES 5.2. Developing Flow in a Curved Duct

Figure 5.5: Computed depth-averaged flow velocity for Kim & Patel’s experiment

Figure 5.5 depicts the computed depth-averaged flow velocity along the bend. This and subse-

quent images were produced using the algorithm described inBourke(1987) [11]. It can be seen

that minima occur close to the outer wall along the bend and at the inner wall in the downstream

section of the duct. These minima take values of approximately 60% of the maxima observed in

the corresponding cross-section. An assessment of these results can be done when the computed

results are compared with the measurements by Kim and Patel.
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Figure 5.6: Longitudinal velocity profiles for cross section 45◦ of Kim & Patel’s experiment

This is shown in figure 5.6 for the longitudinal velocity profiles. One can see a good agree-

ment between computation and measurements in the region close to the center line and still a

reasonable agreement in the outer regions. The vortex in the vicinity of the bottom wall, lead-

ing to distorted shapes of the velocity distributions in that area, is not captured by the model.
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5. VERIFICATION AND VALIDATION CASES 5.2. Developing Flow in a Curved Duct

Sotiropoulos & Patel(1995) [75] credit this effect to the weak secondary motion predicted by

thek − ε turbulence closure, so that no longitudinal vortex forms.
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Figure 5.7: Transversal velocity profiles for cross section 45◦ of Kim & Patel’s experiment
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5.2. Developing Flow in a Curved Duct 5. VERIFICATION AND VALIDATION CASES

Another important flow property in curved channels or ducts is the secondary movement that can

be seen in the transversal velocities as depicted in figure 5.7. The measurements exhibit strong

minima close to the bottom wall that take values of up to−0.15U0 while maxima of about0.05U0

occur atz/H = 0.5. At the outer wall the flow pattern becomes quite complex as several vortices

are evolving. It can be seen that the model captures the overall distribution of secondary velocity

correctly, but fails to predict the exact vortex pattern close to the outer wall. This effect can be

credited to deficiencies in thek − ε turbulence closure (Sotiropoulos & Patel(1995) [75]), the

second order upwind scheme employed in the present work, and the vertical resolution of the

model.

While the minima of the velocity profile are correctly represented – at least in the inner regions

of the duct – the maxima are underestimated to some extent. This has also been found and

documented bySotiropoulos & Patel(1992) [74] who conclude that thek−ε model underpredicts

the strength of the secondary motion.
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Figure 5.8: Distribution of non-dimensionalised turbulent kinetic energy for cross section 45◦ of
Kim & Patel’s experiment
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5. VERIFICATION AND VALIDATION CASES 5.2. Developing Flow in a Curved Duct

Figure 5.8 finally depicts the distribution of the non-dimensionalised turbulent kinetic energy in

the 45◦ cross-section in four distinct vertical layers. The measurements exhibit maxima at the

side walls and minimal values in the inner flow region. The computational results also follow this

pattern but vastly overpredict the turbulent kinetic energy almost everywhere in the flow domain –

a feature of thek−ε model that has also been found by other authors in the past. Furthermore, the

distribution along the outer wall is not very well represented in the model. It should be mentioned

though that the model correctly captures three distinct local maxima at the layerz/H = 0.3125

so it can be concluded that the model is at least able to represent certain characteristics of the

turbulent flow pattern. However, the overall agreement between model results and measurements

is not too good; a fact which does not matter for the engineer as long as he is mostly interested

in flow patterns and water surface elevations but that should be considered when the distribution

of turbulent kinetic energy is of interest.
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5.3. Flow in a Sharply Curved Channel 5. VERIFICATION AND VALIDATION CASES

5.3 Flow in a Sharply Curved Channel

After the model itself has been validated to comply with different measurements in section 5.2,

in this section the influence of different grid types on the results is investigated. For this purpose

a validation experiment was chosen that has been used extensively in the past in the course of the

development of numerical models (e.g.Leschziner & Rodi(1979) [42],Ammer(1993) [4],Lien

et al. (1999) [43],Nguyen(2000) [51],Wu et al. (2000) [92],Ghamry & Steffler(2002) [29]):

Rozovskii(1961) [69] investigated the flow characteristics of a sharp 180◦ bend with a ratio of

width to mean radius of curvature of 1.0. A curve with a width-to-mean radius ratio of 0.4 and

more is considered to be sharp, as pointed out byLien et al. (1999) [43], hence resulting in a

highly three-dimensional flow situation.

Figure 5.9: Layout of Rozovskii’s experiment

The experimental setup is depicted in figure 5.9. An approach channel of 6m in length is followed

by a 180◦ bend with a mean radius of 0.8m and an exit channel of 3m. The channel is horizontal

and has a rectangular cross section with a width of 0.8m. The discharge in the channel is constant

at 0.0123 m3/s and the water depth at theinlet was documented to be 0.063m byRozovskii(1961)

[69], resulting in an average velocity ofUM = 0.265m/s. As a measure of wall roughness the

experimenter gives a Chezy coefficient ofC = 60m
1
2 /s. The Chezy and Strickler coefficients

are related by the equation

kSt =
C

R
1
6
h

(5.4)

whereRh denotes the hydraulic radius. Using this formula, the Strickler coefficient is found to
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5. VERIFICATION AND VALIDATION CASES 5.3. Flow in a Sharply Curved Channel

take a value ofkSt = 98m
1
3 /s which in turn corresponds to a roughness height ofks = 0.0004m.

Thedownstreamwater depth required for the numerical model was introduced as a calibration

parameter, with the final result after a number of runs yielding 0.053m. This value perfectly

agrees withGhamry’s (2002) [29] result.

Figure 5.10: Computation grids for Rozovskii’s experiment

In terms of spatial discretisation two different grids were employed to investigate the influence

of the cell shape on the results:

• A first grid (see fig. 5.10, top) based on regions of hexagonal shape with a longitudinal

grid point distance of 0.1m and a transversal grid point distance of 0.0866m. The grid is

vertically structured, with the top and bottom cells each occupying 5% of the flow depth

while all other cells occupy 10%. This setup results in 12,089 computation cells.

• A second grid (see fig. 5.10, bottom) based on regions of quadrilateral shape with longitu-

dinal and transversal grid distances being equal to 0.1m. The vertical structure is the same

as in the first setup, resulting in 10,648 computation cells.
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5.3. Flow in a Sharply Curved Channel 5. VERIFICATION AND VALIDATION CASES

While the numerical experiment based on quadrilateral regions converged after approximately

41,000 iterations in 15 hours on the reference system (see section 5.1), the computations us-

ing hexagonal grid regions took significantly longer and converged after approximately 68,000

iterations in 37 hours. The results are depicted in figures 5.11 through 5.21.

Figure 5.11: Computed water surface elevations for Rozovskii’s experiment (top: hexagonal grid
regions; bottom: quadrilateral grid regions)

Figure 5.11 shows the computed water surface elevations for both grid types (top: hexagonal

regions, bottom: quadrilateral regions). When the results are compared with figure 5.12, one

can see a reasonably well qualitative agreement between computations and measurements, even

though a quantitative comparison is not so straightforward since the experimental results are

presented in a reference system which apparently is not based on the channel bed. The results

between the two different grids are approximately equal, with the hexagonal grid having a ten-

dency towards smoothing out extremal values along the outer bank and exhibiting higher extrema

along the inner bank.

A more precise assessment of the results can be done if the water surface elevation along the
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5. VERIFICATION AND VALIDATION CASES 5.3. Flow in a Sharply Curved Channel

Figure 5.12: Measured water surface elevations byRozovskii(1961) [69]

5.2

5.4

5.6

5.8

6.0

6.2

6.4

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

S
id

ew
al

l f
lo

w
 d

ep
th

 [c
m

]

Channel length [m]

Measured
Hexagonal regions

Quadrilateral regions

Figure 5.13: Sidewall flow depth for Rozovskii’s experiment

channel walls is plotted for the bend as depicted in figure 5.13. The impression gained from the

interpretation of the contour plots in fig. 5.11 is confirmed: the model using hexagonal regions

shows a better agreement along the outer bank while it performs not so good along the inner

bank. However, both grid types yield a relatively good agreement with the measurements. The

differences between computations and measurements near start and end of the bend have been

noticed by other authors, as well (e.g.Lien et al. (1999) [43]); they can be explained as results

of the model calibration by making use of the inlet flow depth. Referring to these discrepancies,
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5. VERIFICATION AND VALIDATION CASES 5.3. Flow in a Sharply Curved Channel

the cross-section can be assigned a value ofy/b, with negative values ranging from the left bank

to the centre line.
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Figure 5.15: Selected longitudinal velocity profiles for cross sections 3 and 6 of Rozovskii’s
experiment

It can be seen that the agreement between measurements and computations is quite reasonable

for both grids in the vicinity of the centre line, while the results notably deviate from the mea-

surements in the region close to the banks. This effect can be credited to the lack of grid re-

finement in the bank regions which does not allow for the pressure gradients to be precisely

captured, thus influencing the distribution of mass fluxes and velocities. It should also be noted

that the curvature of the calculated velocity profile exhibits a different general tendency than

the measurements. Considering the analogy to observations made in section 5.2 with regard to

the longitudinal velocity profiles, it is very likely that this can be credited to thek − ε model

underestimating the strength of the secondary motion which in turn leads to deficiencies in the

prediction of longitudinal velocities.

In general it was found that, except for the outer bank at cross-section 3 where the hexagonal grid
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5.3. Flow in a Sharply Curved Channel 5. VERIFICATION AND VALIDATION CASES

performs better, the quadrilateral grid returns results closer to the measurements. This allows the

conclusion that actually a certain level of false or numerical diffusion is present when the hexag-

onal grid is being used, even though it is apparently not severe since the differences between the

results on the two grids are generally not large.
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Figure 5.16: Selected longitudinal velocity profiles for cross sections 8 and 12 of Rozovskii’s
experiment

This impression is confirmed when the averaged velocity ratioU/UM is plotted for the cross-

sections along the bend (fig. 5.17). While the results obtained on both grid setups exhibit an

excellent agreement with the measured values, the quadrilateral grid still performs slightly better.

In the vicinity of the banks the deviation from the measurements is larger than close to the centre

of the channel.

Figures 5.18 through 5.20 depict the model results for the transversal velocities in all major

cross-sections, using the two different grid shape approaches. Figure 5.21 finally compares the

computed velocity profiles with the measurements published by Rozovskii.
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Figure 5.17: Averaged velocity ratioU/UM for Rozovskii’s experiment

It is clearly visible that the flow exhibits a strong secondary motion throughout the bend. While

the model predicts maxima of about 0.05m/s, measurements give values of up to 0.15m/s. Indeed

the model correctly captures the direction of the motion, but underpredicts its strength – a fact

that can be seen in other numerical codes as well (e.g.Ghamry & Steffler(2002) [29]). A closer
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5.3. Flow in a Sharply Curved Channel 5. VERIFICATION AND VALIDATION CASES

Figure 5.18: Contour plot of computed transversal velocityu2 for cross-sections 3 and 4 of Ro-
zovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) – fig-
ure scaled by the factor 2 in the vertical direction

look on the location where these extremal values occur reveals that they are found at the bed

and close to the water surface. However, due to the model assumptions (i.e. zero velocity at

the bottom, irrespective of flow direction) and also due to the vertical resolution of the model, it

is virtually impossible to capture these maxima. Furthermore, it should be questioned whether

extremal values right at the bed – as documented byRozovskii(1961) [69] – are even physically
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5. VERIFICATION AND VALIDATION CASES 5.3. Flow in a Sharply Curved Channel

Figure 5.19: Contour plot of computed transversal velocityu2 for cross-sections 6 and 8 of Ro-
zovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) – fig-
ure scaled by the factor 2 in the vertical direction

possible. In contrast, section 5.4 discusses a flow situation where the maxima of the secondary

motion were not measured at the bed but rather a significant distance above it – a behaviour

which is correctly predicted by the model if a reasonable vertical resolution is employed.

The comparison between the results obtained on the two different grid shapes, as it is done in
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5.3. Flow in a Sharply Curved Channel 5. VERIFICATION AND VALIDATION CASES

Figure 5.20: Contour plot of computed transversal velocityu2 for cross-sections 10 and 12 of
Rozovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) –
figure scaled by the factor 2 in the vertical direction

figure 5.21, gives a very interesting result: throughout all locations evaluated, the transversal

velocities obtained on the grid based on hexagonal regions are closer to the measurements than

the solution on the quadrilateral grid regions. From this perception we can conclude that the

hexagonal grid type actually yields a closer representation of mass fluxes in the transversal di-

rection, which in turn leads to a better prediction of the secondary flow phenomena observed in
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Rozovskii’s experiment.
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Figure 5.21: Selected transversal velocity profiles for Rozovskii’s experiment
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5.4 Flow in a 270 ◦ Bend with Moderate Curvature

In this section, a second numerical experiment will be conducted using two different grid shapes

in order to assess the influence of the grid on the results obtained. The underlying physical

experiment was done by Peter Steffler in 1984 and parts of the results were published inGhamry

& Steffler(2002) [29]. As can be seen in figure 5.22, the experimental channel has the shape of a

270◦ bend. Compared to Rozovskii’s experiment, the curvature cannot be considered sharp since

the width-to-mean radius ratio is around 0.3, hence it can be classified as moderate. Nonetheless

the flow situation exhibits strong three-dimensional characteristics as will be shown later.

Figure 5.22: Layout of Steffler’s experiment

The laboratory flume consists of an approach channel of 6.13m in length, followed by the 270◦

bend with a mean radius of 3.66m and an exit channel of 2.53m. The channel is 1.07m wide and

features a bed slope of 0.00083. The total discharge is 0.0235 m3/s; together with a specified wa-
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ter depth of 0.061m at the outlet, an average flow velocity ofUM = 0.36m/s can be determined.

Ghamry & Steffler(2002) [29] document an equivalent sand roughness value ofks = 0.0013m

which is equivalent to a Strickler coefficient ofkSt = 80m
1
3 /s.

Once again, two different computation grids are being used to compare the results obtained on

them:

• The first grid (fig. 5.23, top) is based on regions of hexagonal shape with a longitudinal grid

point distance of 0.1m and a transversal distance of 0.089m. In accordance with previous

computations, the grid is vertically structured: the top and bottom cells each occupy 5% of

the flow depth while all other cells occupy 10%. This setup results in 34,639 computation

cells.

• The second grid (fig. 5.23, bottom) uses quadrilateral grid regions with a longitudinal point

distance of 0.1m and a transversal distance of 0.089m. The vertical structure is the same

as in the first setup, resulting in a total of 34,584 computation cells.

The computation times until convergence of the results were significantly higher for Steffler’s

experiment compared with any other experiment investigated. On the reference system (see sec-

tion 5.1), a solution for the grid based on hexagonal regions was obtained after 114,000 iterations

in over 160 hours. The flow problem using quadrilateral grid regions reached equilibrium after

147,000 iterations in almost 200 hours – more than eight days. These extraordinary computation

times, compared with Rozovskii’s run, can be explained by the large number of computation

cells which causes the solver to return results very slowly, which was discussed at the end of

chapter 4. Furthermore both approach and exit channels point into negative directions of the

global coordinate system. While this fact does not influence the result obtained, it slows down

convergence because the numbering of cells is done according to the global coordinate system,

and the solver module evaluates the equations according to the cell numbers. Hence, the reduc-

tion of errors in the solution is performed even more slowly if the numbering is exactly opposite

to the flow direction.

The assessment of the solutions obtained on the different grids starts with the evaluation of the

water depth as depicted in figure 5.24. No measurements of water levels are available, but the

computations can be compared with each other. It can be seen that the overall shape of the water

surface elevations is very similar, but the hexagonal grid setup results in a difference of about

1mm at the inlet. However, this difference, compared to the flow depth, is only around 1.5%,
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Figure 5.23: Computation grids for Steffler’s experiment
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Figure 5.24: Computed water depths for Steffler’s experiment (top: hexagonal grid regions; bot-
tom: quadrilateral grid regions)
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Figure 5.25: Computed depth-averaged flow velocity for Steffler’s experiment (top: hexagonal
grid regions; bottom: quadrilateral grid regions)
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therefore the results can be judged as equal. The zigzag shape of some contour lines results from

the graphical postprocessor’s algorithms and is not a feature of the flow solver.
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Figure 5.26: Selected longitudinal velocity profiles for cross-sections 0◦ and 90◦ of Steffler’s
experiment

Not quite as equal as the computed water surface elevations are the depth-averaged velocity

distributions, as depicted in figure 5.25. Somehow the same impression arises as documented

in previous section: extremal values are smoothed out in the hexagonal setup, as opposed to the

grid based on quadrilateral regions. The latter grid exhibits very low flow velocities at the outer

bank of the beginning of the bend. Later throughout the bend and in the exit channel, these

low velocities are found along the inner bank. Compared to the maxima of flow velocity, they

are roughly half their magnitude. An interesting result of the computation is the fact that both

solutions are in agreement concerning the location of the maximum velocities; these are to be

found along the exit channel. However, it must be noted that the length of the exit channel is

actually too small to claim that no boundary condition errors would be able to propagate upstream

and influence the results. But considering the way grid generation is performed (chapter 3), it is
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not possible to assign a longer exit channel to the present model.

A more detailed assessment of the accuracy of the flow field can be done when interpreting

figures 5.26 and 5.27. We can see that the minima along the outer bank at the beginning of the

channel, as given by the grid using quadrilateral regions, are actually too low. Even though the

hexagonal grid setup underestimates these velocities as well, this solution is much closer to the

actual measurements. When we move towards the centre line of the channel, the results obtained

on the quadrilateral grid become better, with an almost accurate prediction right at the center line

of the 0◦ cross-section.
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Figure 5.27: Selected longitudinal velocity profiles for cross-sections 90◦ , 180◦ and 270◦ of
Steffler’s experiment

At the cross-sections of 90◦ and 180◦, the outer bank velocities are underestimated as well by

both setups, with the hexagonal grid again returning better results. The main flow velocities at

the inner bank are accurately predicted by the hexagonal grid; and this grid type also yields the

best results in the 270◦ cross-section (fig. 5.27), even at the centre line. From this assessment

we can conclude that – as far as the longitudinal velocity profiles are concerned – the hexagonal
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grid type performs better than the quadrilateral one. This conclusion is fairly remarkable since it

means that the smoothing of extremal values cannot be considered to be an effect purely raised

by numerical diffusion, but that it is rather of a physical nature which is better captured by the

hexagonally shaped grid.

Figure 5.28: Contour plot of computed transversal velocityu2 for cross-sections 0◦ and 90◦ of
Steffler’s experiment (top: hexagonal regions; bottom: quadrilateral regions) – fig-
ure scaled by the factor 2 in the vertical direction

Figures 5.28 and 5.29 depict the computed transversal velocities in a number of cross-sections.

Again we can see that the solution obtained on the grid using quadrilateral regions exhibits

stronger extremal values. A clear secondary motion is visible throughout the bend, with maxima

of around 0.07m/s in measurements and 0.05m/s in the computation results.
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Figure 5.29: Contour plot of computed transversal velocityu2 for cross-sections 180◦ and 270◦

of Steffler’s experiment (top: hexagonal regions; bottom: quadrilateral regions) –
figure scaled by the factor 2 in the vertical direction

Figure 5.30 allows for a comparison with Steffler’s measurements. On a first glimpse, the im-

pression is the same as in Rozovskii’s experiment, with the computed transversal velocities not

yielding a very good agreement with the measurements and the strength of the secondary motion

being vastly underestimated. However, a closer look at the measured velocities reveals that the

maxima are not to be found right at the bed but rather a certain distance above it – a fact that also

represents the real situation better than the measurements done by Rozovskii (section 5.3). And

exactly these velocities at the bed seem to be represented well in the present model. Since the

wall boundary condition – which is applied at the bed and the banks – is a very strong bound-

ary condition that highly influences the computational results, and since the vertical resolution
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Figure 5.30: Selected transversal velocity profiles for Steffler’s experiment

of the model is not so dense as to capture the extremal values visible in the diagrams, one can

conclude that actually a better representation of the secondary velocities is not possible in the

present setup. If a better vertical resolution would be employed, it can be expected that the sec-

ondary flow motion would be represented more exactly, but on the other hand the computation
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times would become prohibitively high in order to achieve this goal.

As far as the comparison of secondary velocities between hexagonal and quadrilateral grid re-

gions is concerned, there is not much difference in the results except for two locations close to

the centre line of the channel where the quadrilateral setup yields slightly better results. On the

other hand, the computation time was lower for the hexagonal grid setup and this configuration

also yielded longitudinal velocities in better agreement with the measurements. Therefore, in

terms of an overall assessment, we can conclude that the hexagonal grid setup would actually be

the better choice for an engineering application in a problem similar to Steffler’s experiment.
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5.5 Flow in an S-Shaped Trapezoidal Channel

So far only channels with rectangular cross-section have been used for validation of the numerical

code. The final validation experiment now leads us to a channel with trapezoidal profile, thus

making a step towards natural flow situations. The physical experiment was set up at the Water

Resources Institute of the University of Innsbruck, consisting of an approach channel 3.0m in

length followed by two consecutive bends with a mean radius of 4.0m and apex angle of 60

degrees each, and finally an exit channel being 2.8m long. The banks are sloped by a ratio of

2:3. This configuration corresponds to characteristic values for alpine sinuously trained rivers

(Vigl (1990) [86]). Initially a bed slope of S=0.01 was chosen to simulate alpine conditions,

exhibiting Froude numbers larger than unity, but later the physical model was adapted to a slope

of S=0.005 (Feurich & Schöberl(2003) [22]). The model’s cross-sectional geometry consists of

a fixed bed 0.40m in width and two banks, each 0.80m wide; into this geometry the actual bed

layer is introduced by filling it with sediment to a certain height, either fixing it afterwards or

allowing for sediment transport (erosion and deposition).Feurich(2002) [21] discusses a series

of experiments with varying discharge, bed layer depth and fixed or mobile sediment at the bed.

Figure 5.31: Layout of the computational equivalent of the S-shaped trapezoidal channel
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The present work focuses on only one of these variations: the bed layer of this experiment is

20cm thick, resulting in the geometry illustrated in figure 5.31 with a 100cm wide fixed bed.

Discharge is 0.09m3/s, and roughness conditions are documented to beks=0.0047m at the bed

andks=0.0074m along the banks. The physical experiment is subdivided into 120 cross-sections

along which measurements were performed.

In terms of spatial discretisation, a grid composed of hexahedral cells is employed in the present

work. This approach was chosen for two major reasons: first, the experiment allows for iden-

tification of a clear main direction of the main flow; second, a high-resolution discretisation in

transversal direction is very important to capture the geometry at the side walls correctly. If

a polyhedral grid based on hexagonal regions had been employed, either a prohibitively large

number of cells would have resulted, or it would have been necessary to reduce the transversal

resolution. Since neither option was acceptable, it was found that a brick-type grid composed of

hexahedral cells was best suited for studying this physical experiment in a numerical model.

The computation grid starts at cross-section 120 and ends at cross-section 10, with the longitu-

dinal cell dimension being equal to the cross-section distance, resulting in a length of approxi-

mately 110mm.Feurich(2002) [21] conducted a sensitivity study using the SSIIM model (Olsen

(2000) [57]) and found that computed water surface and flow velocities obtained on a grid with

extended entrance and exit channels did not differ from the corresponding results using a grid

representing the area between cross-sections 10 and 120, respectively. In other words, no sig-

nificant influence of the upstream and downstream boundary conditions was found that would

require extensions of approach and exit channels in the present configuration.

For the transversal cell dimension, a distance of 35mm was chosen. Hence, the ratio of longitu-

dinal and transversal grid dimension is about 3:1, which is in the recommended range found in

literature. The average flow depth in the flume was found to be approximately 100mm which,

Figure 5.32: Computation grid for the S-shaped trapezoidal channel
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due to the bank slope of 2:3, results in a wetted bank width of 150mm each.

Chapter 3.7 discussed the conditions under which a cell pile can become wet: basically, its base

point must exhibit a higher elevation than the terrain surface. Given the transversal cell dimension

of 35mm and the bank slope of 2:3, the centre point of an outside region would only turn wet

if the water level rises for more than 12mm. For all other cells, a rise in water levels results in

a change of vertical elevation only. It was found that the condition of a rise in water levels of

more than 12mm was met only in a very small number of grid regions. However, these regions

would subsequently exhibit water depths of only a few millimeters, and after vertical subdivision

the bottom grid point would be located less than a millimeter above the terrain surface. In

combination with a roughness height ofks= 7.4mm, this leads to severe instabilities in those

cells since the equations that make up the boundary conditions for the flow module (chapter 4)

contain the ratio between roughness height and surface distance. This is the reason why most

commercial models come with a restriction as far as the minimum cell height is concerned.

Since such a restriction was not implemented in the present model, it must be enforced by proper

geometrical choices, which finally justifies the cutting of geometry at the wetting line of the

mean flow, leading to the actual geometry as illustrated in figure 5.31 with the corresponding

computation grid depicted in figure 5.32. The consequence of such a reduced geometry is a slight

increase in water depth, since continuity must be enforced by the model; however, the impact

was found to be actually very little, which is also in line withFeurich’s (2002) [21] findings who

employed a similar procedure for representing the geometry.Nguyen(2000) [51] also reports

the need for a small ”vertical wall” at the banks of a numerical model to avoid instabilities in a

trapezoidal channel.

During test computations required to find the optimum numerical parameters (e.g. relaxation fac-

tors) it was found that the trapezoidal channel experiment actually exhibits numerical instabilities

that can be credited to the cells with a low distance from the channel bed to the cell centroid.

These instabilities could be reduced by making use of comparatively low relaxation factors (ve-

locities were relaxed by 0.5, pressure/continuity by 0.03 and turbulence by 0.25). However, still

the numerical algorithm exhibited severe instabilities upon the first update of the water surface,

leading to divergence irrespective of the surface relaxation factor used. Even though the exact

reason for this behaviour could not be found, it could be traced to the influence of roughness

along the banks on thek − ε model equations, resulting in large absolute values for turbulent

kinetic energy and dissipation in regions of low water depth. To avoid this phenomenon causing

instabilities in the solution procedure, other flow simulation models (e.g. Fluent) limit the ratio

of eddy viscosity and kinematic viscosity. Another approach is to lower the roughness height in
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regions of low water depth by introducing a mean roughness value for the entire flow domain in-

stead of the two different roughness heights in bed and banks.Feurich(2002) [21] discusses the

theoretical background for obtaining such a mean roughness for trapezoidal channels and comes

up withks=5,4mm as a result for the present case, noting that he found hardly any difference in

the results obtained using this approach. By applying this value to the entire flow domain, it was

possible to solve the flow equations until convergence.

The 4,218 grid regions depicted in figure 5.32 were vertically structured into six cells, each

occupying exactly one sixth of the flow depth, resulting in 25,308 cells. This setup was preferred

over the one used so far in order to keep the total number of cells relatively low and avoid cell

centroids being located too close to the solid walls bounding the flow domain. Nonetheless

about 58,000 iterations and approximately 65 hours of computation time were needed to obtain

equilibrium, this being mostly the result of the low relaxation factors employed.

Figure 5.33 depicts the computed water surface along with the measured values and the results

of the SSIIM model as found byFeurich (2002) [21]. The most notable finding is the perfect

agreement between the simulation results of the two numerical models; they are virtually indis-

tinguishable from each other. However, simulation and measurements are not in perfect agree-

ment. In the second (downstream) bend, the results fit the measurements very well, with the rise

of the water level along the right bank and the fall of the water surface along the left bank being

correctly predicted. In the first bend both numerical models slightly underpredict the maximum

of the water level along the left bank. But a closer look on the measurements reveals that right

downstream of the inlet a depression in the water surface can be found which of course gives rise

to a more distinctly visible peak along the left bank thereafter. The reason for this depression in

the measured surface is unclear; it could be the result of a slight bump in the laboratory flume,

an imperfection in bed roughness, or the overall situation at the inlet. This local minimum in the

water surface is also the reason for the lack of agreement between measurements and simulation

in the approach channel itself; however, since this region is heavily influenced by the boundary

conditions – both in the laboratory and the numerical experiments – it will not be used for a com-

parison after all. Hence, in summary it can be said that the computed water surface is actually in

good agreement with the measurements.

Unfortunately, measurements of flow velocities for this case were performed with an instrumen-

tation that was later found to produce unreliable results by the experimenter. However, reliable

measurements are available for the same flow situation on a mobile bed; these were found to be

in good agreement with the corresponding SSIIM model results (Feurich(2002) [21]). Therefore

we can expect the SSIIM model results for the fixed bed situation to be reliable as well and use

134



5. VERIFICATION AND VALIDATION CASES 5.5. Flow in an S-Shaped Channel

that data as basis for validation.

Figure 5.33: Water surface elevations for the S-shaped trapezoidal channel

Figure 5.34 allows for a comparison between the depth-averaged flow velocity obtained through

the SSIIM and RSim-3D models, respectively. It should be noted that the available SSIIM model

data only covered the flow area between the base points of the embankment, illustrated by the

inner two green lines, and therefore the plotted data along the banks had to be obtained by means
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5.5. Flow in an S-Shaped Channel 5. VERIFICATION AND VALIDATION CASES

of extrapolation. This is the reason why the effect of surface roughness in those regions of the

embankment that exhibit low water depths cannot be seen in correspondingly low flow velocities

in the illustration. Hence, a comparison is only useful in the region between the two base lines

of the embankment. It is visible that the maximum of the flow velocity in the second bend

is predicted correctly, both in location and magnitude (see also fig. 5.35). Also the velocity

distribution downstream from this location is in very good agreement. Besides small differences

in the approach channel, once again resulting from the influence of the boundary condition at the

inlet, a good agreement can also be found in the first bend, with maximum and minimum flow

velocities being correctly predicted.

Figure 5.34: Depth-averaged flow velocity for the S-shaped trapezoidal channel

Finally, figure 5.36 depicts a series of cross-sections throughout the channel:

• start of the first bend (cross-section #105),

• middle of the first bend (cross-section #85),

• point of inflection (cross-section #64),
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6 River Application

6.1 Introduction

In August 2002, a catastrophic flood event following several days of heavy rainfalls struck large

parts of Central and Eastern Europe. Many rivers in this region reached flood peak levels that

exceeded the highest maxima historically known, causing severe losses which sum up to approx-

imately 3.1 billion Euro in Austria (ZENAR(2003) [94]). A significant portion of the damage can

be attributed to the river Danube, where a 100 year’s flood was encountered, and its tributaries,

in some of which the return period of the flood event reached several thousand years (e.g. river

Kamp,Gutknecht et al.(2002) [33]).

Figure 6.1: Location of the Danube river bend at Grein in Austria
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6.1. Introduction 6. RIVER APPLICATION

Figure 6.2: Detailed map of the river bend at Grein (based on Austrian Map by BEV)

Among the inundated villages along the river Danube was the municipality of Grein, located in

the administrative division of Upper Austria (fig. 6.1). Figure 6.2 depicts a detailed map of the

region in question. It can be seen that the municipality is located along the outer bank of a 90

degree river bend near river station 2079.0; the flow direction is from South-West to North-East

in this region. However, even though the flood protection of the village was dimensioned to

withstand a 100 year’s flood, it was overtopped and, as a consequence, parts of the municipality

were flooded. During the flood event a difference in water surface elevations between left and

right bank was measured which amounted to 80cm. That is the reason why the river bend at Grein

was included in a list of problematic places along the river Danube in the FloodRisk project of
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6. RIVER APPLICATION 6.1. Introduction

2003/2004 (Habersack (ed.)(2004) [34]). In its assessment of the situation, the project team

recommended the use of a 3D flow simulation model to reproduce the water surface slope in this

region since the usually applied 1D models are not adequate for this purpose – that’s also the

reason why the maximum water level at the outer bank corresponding to a flood return period of

100 years was inaccurately predicted in the past.

In this chapter of the present work, the flow situation in the river bend at Grein is analysed

with three different simulation models (RSim-3D, SSIIM and Fluent). The project domain was

established between river stations 2082.0 (upstream) and 2078.0 (downstream), resulting in a

river reach four kilometers in length. The area of specific interest is – as previously mentioned

– located near station 2079.0, hence the approach section of the river is approximately three

kilometers long. This selection was made to ensure that proper flow conditions, independent

of flow boundary conditions, are to be found near the municipality of Grein. In this context it

should be mentioned that it would have been desirable to move the outflow boundary further

downstream as well, but unfortunately the river bed becomes bifurcated several hundred meters

after the selected outflow (see fig. 6.2), causing this region to be unsuitable for a flow boundary.

Figure 6.3 depicts the terrain elevation data which was available for setting up the numerical

model: terrain elevations are known at all data points coloured in blue. Within the river bed, the

elevations are frequently measured in cross-sections, one per 100m river length. For the current

study, data gathered in the year 1999 was used; the measurement points in each cross-section

were available in a density of one point per meter cross-section length. In addition to the bed

elevations, terrain elevation data was provided by the Austrian Federal Waterways Authority.

This data had been derived from aerial views of the region to extend the river cross-sections

across embankments and floodplains. The resulting digital terrain model is visualised in figure

6.3 by yellow contour lines every 5 meters.

Meshing the whole area of available terrain elevation data would have resulted in a large number

of cells and nodes, requiring unnecessarily high computational effort irrespective of the numer-

ical model used. Therefore it was decided to perform a 1D backwater computation using the

RSim-3D model to approximate the bank line for the 100 year’s flood and subsequently use this

line as domain boundary (red line in fig. 6.3). Figure 6.4 allows for a comparison with the actual

bank line (coloured in yellow) encountered during the passage of the flood in August 2002: the

aerial view shows that the overall shape of the flooded terrain is well predicted; two small basins

at km 2078.9 and km 2078.5 are correctly represented, and so is also the bank line both in the

village of Grein and at the opposite shore. Only the large basin at the left bank near km 2079.4

is underestimated in its size. This error is to be attributed to the unavailable terrain data in that
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6.1. Introduction 6. RIVER APPLICATION

Figure 6.3: Terrain elevation data and boundary of the numerical model
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6. RIVER APPLICATION 6.1. Introduction

region, since terrain elevations are known only in extension lines of river cross-sections and the

region in question lies between two of them. Hence, the Kriging approach could not reproduce

the exact terrain in this area. However, after evaluating the aerial view and the flow patterns dis-

cussed later in this chapter, it becomes clear that water depths and flow velocities in said region

are very low so that the area does not contribute to the overall conveyance, therefore the results

of the flow simulations are not affected.

Figure 6.4: Aerial view of Grein in August 2002 (based onBEV (2002) [13])

The maximum water surface elevations corresponding to specific discharges are published by

the Austrian Federal Waterways Authority for every stream-kilometer along the river Danube
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6.2. Numerical simulation 6. RIVER APPLICATION

in Austria. Known as KWD (”K ennzeichnendeWasserstände derDonau”, characteristic water

levels of the River Danube), they can be used as flow boundary conditions for numerical models.

After the flood event of August 2002, the KWD values for the 100 year’s flood were revised to

reflect the maximum water levels observed. Therefore these values are not only useful as bound-

ary conditions, but they are also good indicators for the assessment of the output of numerical

models. Table 6.1 gives the KWD above sea level for mean discharge (MQ), highest navigable

discharge (HSQ) and discharge with a return period of 100 years (HQ100) in the project region.

Stream-km MQ [m3/s] MW [m] HSQ [m3/s] HSW [m] HQ100 [m3/s] HW100 [m]

2082.0 1 830 226.74 4 770 228.79 11 050 235.03
2081.0 1 830 226.67 4 770 228.56 11 050 234.77
2080.0 1 830 226.61 4 770 228.32 11 050 234.51
2079.0 1 830 226.58 4 770 228.23 11 050 234.38
2078.0 1 830 226.52 4 770 227.95 11 050 233.65

Table 6.1: Characteristic water levels of the River Danube (KWD) near Grein

In section 6.2, first the characteristics of establishing a numerical model within each simulation

software are discussed. To allow for a comparison of both computation times and results, ap-

proximately the same number of cells was used in the same geometric framework for all models,

leading to a comparative analysis of operational characteristics at the end of section 6.2. Section

6.3 provides the results of the numerical simulations for all models and discusses the differences.

The results discussed include water surface elevations, mean flow velocities and secondary flow

patterns in selected cross-sections. Finally, section 6.4 gives a short summary of this chapter.

6.2 Numerical simulation

6.2.1 RSim-3D

An unstructured grid based on hexagonal regions with a base distance of 20m was used to fill the

area given by the bank line as obtained from a 1D backwater computation (see previous section

for details). Along the boundary line, two rows with hexagonal regions characterised by a point

distance of 10m were used to obtain a finer discretisation. Terrain elevations for the computation

points were gathered by applying the Kriging approach discussed in chapter 3.4. In the vertical

direction, the grid was subdivided into six equidistant layers, resulting in approximately 31,000

cells. To ensure numerical stability, an algorithm was added to the model that deactivates regions
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6. RIVER APPLICATION 6.2. Numerical simulation

with a water depth – measured above the computation points – of less than 20cm, which results

in a maximum cell depth of approximately 3cm.

At the inflow cross-section at stream-km 2082.0, a constant discharge of 11,050 m3/s was pre-

scribed; the model automatically adjusts the corresponding inflow velocities according to the cur-

rent flow area based on the water level, hence the inflow velocities did not have to be prescribed

directly. The downstream boundary condition consists of a constant water depth of 233.65m

above sea level according to table 6.1 for km 2078.0. As opposed to comparable models, RSim-

3D enforces the outflow water depth at all regions next to the outflow boundary. This may result

in differences in water surface elevations compared to other models, as will be discussed later.

While the water surface is treated as a symmetry boundary in RSim-3D and the corresponding

elevations are found by evaluating the pressure equation, the wall boundary condition had to be

calibrated in order to find the appropriate roughness coefficient. Disregarding the first kilometer

within the flow domain – a region which was only modelled to obtain realistic flow conditions

– the roughness coefficient was varied to obtain a good accordance with the KWD value at river

station 2081.0. For the RSim-3D model, a Strickler coefficient of 35.0 most closely met this

criterion. However, calibration of the roughness height for the flooded regions of the municipality

of Grein was not possible because this parameter did not exhibit a notable influence on the water

surface elevations in other parts of the flow domain. In the absence of measurements of water

surface elevations and flow velocities in the inundated terrain to be used in a local calibration

procedure, a value for the roughness height had to be selected from literature.

In Vionnet et al.(2004) [87] the selection of floodplain roughness coefficients for Besos River

in Spain is performed by comparing data from physical model experiments and calibration re-

sults of a two-dimensional numerical model. As result a Manning coefficient of around 0.05 is

obtained which corresponds to a Strickler coefficient of 20.0.Nicholas & Mitchell(2003) [53]

apply a numerical model to a floodplain region of River Culm in the UK. Their calibration proce-

dure results in a Manning coefficient of 0.06 (Strickler coefficient of 16.7) giving the best fit with

measured data. InMason et al.(2003) [45] a node-based friction parameterisation of floodplains

is proposed which, based on data obtained by airborne scanning laser altimetry, classifies veg-

etation as short (<1.2m), intermediate or tall (>5m). Short vegetation comprehends most crops

and grasses while hedges and shrubs represent intermediate vegetation; trees and buildings are

classified as tall vegetation. According toMason et al. (2003) [45], a floodplain containing a

mix of grasses, crops, hedges and trees typical for the UK is characterised by a Manning coeffi-

cient of 0.06 (Strickler coefficient of 16.7).Gutknecht(2004) [32] gives a range of 10.0 to 25.0

for Strickler coefficients in typical floodplains, andArcement & Schneider(2003) [7] show that
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6.2. Numerical simulation 6. RIVER APPLICATION

dense alluvial forests can take Strickler coefficients ranging as low as from 5.0 to 10.0.

From the aerial view in figure 6.4 it can be seen that large trees occupy parts of the inundated

region within the municipality of Grein while houses had been built in other parts and even other

parts appear completely without any vegetation or man-made structure. However, figure 6.2

shows that a woodless campsite and a road are located at the left bank of the river, smoothen-

ing the floodplains significantly. Therefore the actual Strickler coefficient can be expected to be

slightly higher than the values given in the literature. Based on these considerations a rough-

ness height of 1000mm was selected which corresponds to a Strickler coefficient of around 26

according to equation 4.94.

In terms of numerical characteristics, the second-order upstream method is employed for the dis-

cretisation of convective terms and the SIMPLE algorithm is used for pressure-velocity coupling.

The standard k-ε model with default constants provides turbulence closure. These characteristics

are the same for all three simulation models to allow for a comparison of the results obtained.

6.2.2 SSIIM

The second numerical simulation was performed with the SSIIM model (see chapter 2.2.11).

This model comes in two versions which are capable of dealing with both structured and un-

structured grids. Due to issues of numerical stability in the context of a flow problem with a free

water surface, the structured grid version was preferred over the unstructured one for the present

study. The structured grid was formed by subdividing the area between two river cross-sections

– which are 100m apart – into five cell rows, and by dividing each cross-section into 25 cell

columns. After subdividing each cell pile into six cells, a total of 30,000 cells results, which is

a comparable number to the one which was used in RSim-3D. However, it should be mentioned

that the usage of a structured grid results in an enormous speed-up of the numerical model, at the

cost of the inability of using the model in complex geometries. Therefore, the bounding polygon

of figure 6.3 had to be smoothed in the flood basins near Grein to allow for an application of the

model to this problem.

Terrain elevations for all cell regions were obtained by applying a built-in longitudinal cross-

section interpolation method to the data points depicted in figure 6.3. This method, which can

be applied to structured grids only, interpolates along the vector from one cell row to the next,

which usually results in a reasonably smooth terrain.

Again, a constant discharge of 11,050 m3/s was prescribed at the inflow cross-section. At the
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6. RIVER APPLICATION 6.2. Numerical simulation

centre cell of the downstream boundary a constant water depth of 233.65m above sea level was

enforced; the model allows the surface to move at all other cells near the outflow. The free water

surface was modelled as a symmetry boundary, and the bed roughness was once again subject to

calibration. After several calibration runs, a Strickler roughness parameter of 35.0 was found to

give the optimum water surface position at river station 2081.0. For the floodplain roughness a

value of 1000mm was used as discussed above.

6.2.3 FLUENT

The third software package used to simulate the flow conditions in the river Danube near the

municipality of Grein was Fluent (see chapter 2.2.8). While RSim-3D and SSIIM were run on

a regular PC with a clock rate of 2.8 GHz and 1GB of RAM, Fluent was installed on an Alpha

workstation cluster at the computing centre of Vienna University of Technology. The comparison

of computation times, as it is done in the next subsection of this work, can therefore only be seen

as a guideline, as far as the Fluent model is concerned.

Grid generation for Fluent is done with a software called Gambit. However, it must be pointed

out that this software is mainly of use for applications in mechanical engineering where the

computational domain is bounded by pipes and other structures that follow clear geometrical

rules. Creating the grid for a natural channel with a complicated bed geometry and a free water

surface turned out to be an extremely time-consuming task. Fluent can operate both on structured

and unstructured grids, but will generally produce results much faster when supplied a structured

grid. Therefore it was decided to set up a structured grid similar to the one used by SSIIM.

The bed geometry was imported from SSIIM, side walls were constructed manually in regions

where the initial water level was located at a higher elevation than bed data points existed, and

finally the resulting volume was decomposed into 30,000 cells following the pattern discussed in

previous subsection.

While both SSIIM and RSim-3D use the pressure equation to relate pressure to changes in the

water surface elevation for every grid region, Fluent does not provide such an algorithm. Instead,

it uses the VOF (volume of fluid) method to predict the position of a surface that separates two

phases (air and water in the case of a river). Unfortunately, this method requires the existence

of separate inlets for both phases which must be filled entirely by either phase. For the position

of the phase boundary is constantly on the move, the only way to simulate a water inlet that is

entirely surrounded by water is by making water enter the computational domain through the

river bed long before the actual area of interest (Krouzecky(2002) [39]). This procedure was
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found to require long approach channels before natural flow conditions are obtained, further-

more it needs computation times of approximately three weeks for a typical river stretch, as the

one in the present work, to result in a converged solution (Krouzecky(2002) [39]). Due to these

severe limitations in the handling of the VOF method it was decided to employ a different tech-

nique: an initial grid was constructed using both bed geometry and surface shape obtained from

a converged run of the SSIIM model. Then, Fluent was run using this grid, and after obtaining a

converged solution, the pressure at the water surface was evaluated and translated into changes

in the elevation level of the corresponding grid regions. This modified surface was again run

through the Gambit grid generator before the whole process was repeated. It turned out that after

three iterations of this kind the pressure difference was below 100 Pa in every single surface cell,

corresponding to an accuracy of the resulting surface of 1cm.

The handling of the free surface was not the only problem encountered during the simulation runs

using the Fluent model: regions with low water depth exhibited instabilities as far as turbulent

kinetic energy and dissipation were concerned, leading to model divergence. Problems of this

kind have also been reported byHodskinson(1996) [36] andNicholas & Sambrook Smith(1999)

[54]. Nicholas(2001) [52] notes that these difficulties result from the existence of an upper limit

on the roughness heightks for a given near-bed cell thickness: for the Fluent model,ks should

not exceed the distance to the centroid of the near-bed grid cell. The implication of this is that

the thickness of the near-bed cell limits the maximum shear velocity at the bed, so that near-bed

velocities may be overpredicted in field situations involving high relative roughness (ibid.).

Similar problems were encountered in the RSim-3D model but could be resolved by deactivating

regions with low water depths. Since such an option did not exist in the Fluent model, it was

finally decided to reduce the model geometry by excluding the floodplains and using only the

data points within the river bed. This procedure ensures that low water depths cannot occur,

hence avoiding instabilities of the kind observed. However, additional errors are introduced into

the simulation and so the Fluent results are not directly comparable to those obtained from other

simulation models.

The boundary conditions employed for Fluent were as follows: an inlet boundary of typemass

flow inletwas used, prescribing1.105 · 107kg/s as mass flow. This type of inlet ensures that the

inlet velocity is automatically adjusted for every new grid fed into the model. The usual zero-

gradient outflow condition was used at the outlet, and symmetry conditions were prescribed at

the water surface. The wall roughness was calibrated in the usual way, with a roughness height of

0.20m yielding the correct water surface position at river station 2078.0 – since Fluent does not

enforce a given downstream water surface elevation, the model must be calibrated by prescribing
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the water surface at the inlet and using the outlet as monitoring location. Using equation 4.94,

the roughness height of 0.20m translates into a Strickler coefficient of 34.5, which is perfectly in

line with the parameters obtained by the other two models.

6.2.4 Comparison

The first parameter of relevance in the context of an engineering application is the result of the

model calibration: the bed roughness. The values obtained for this parameter are summarised in

table 6.2.

RSim-3D SSIIM FLUENT

Bed roughness (1D calibration) [KSt] 30.0 31.0 –
Bed roughness (3D calibration) [KSt] 35.0 35.0 34.5

Floodplain roughness [m] 1.0 1.0 –

Table 6.2: Roughness values as result of model calibration

From this table it can be seen that there are no significant differences in the bed roughness ob-

tained by a 3D model calibration. This is due to the fact that the Strickler coefficient is translated

into a roughness height by both RSim-3D and SSIIM – Fluent directly operates on a roughness

height – and that the roughness enters the momentum equations by similar equations in all three

models. Both RSim-3D and SSIIM also offer the possibility to obtain an initial guess for the

water surface elevation by running a 1D backwater computation. Again, there is no big differ-

ence between the roughness parameters obtained on the two models, but it becomes clear that

a significant difference exists between 1D and 3D model calibrations; the Strickler coefficient

obtained by 1D calibration is lower than in 3D. The main reason for this difference lies in the

methodology that is used to take bed roughness into account in different model dimensions: in

one-dimensional computations the roughness coefficient also covers cross-sectional effects, i.e.

the influence of secondary motion, while it is purely a measure of actual surface roughness in

three-dimensional calculations.

The time until a solution to a specific flow problem can be obtained and the effort, both in

human and computational resources, which must be spent on the problem, is another issue of

high relevance to the engineer. Therefore the time spent on distinct tasks while working on the

project was measured and is summarised in table 6.3:

• Grid generation: the time needed to produce a computational grid from geospatial data,
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and the time required for subsequent operations on the same grid (i.e. manual changes to

reflect surface changes),

• Model handling: the time required to write input files or set the appropriate numerical

parameters in a graphical user interface, and the time for user interaction during model

calibration (many of these tasks are of the nature of trial-and-error),

• Computation time: the actual time the software runs to return a converged solution; it

should be pointed out that due to the fact that the Fluent model was run on a different

computer hardware architecture, it is not possible to draw conclusions about the solver

efficiency from this value for that software.

RSim-3D SSIIM FLUENT

Grid generation [h] 3.0 4.0 70.0
Model handling [h] 5.0 2.0 25.0

Computation time [h] 61.0 1.0 0.75

Table 6.3: Time spent on distinct modelling tasks

Three major conclusions can be drawn from the figures in table 6.3:

1. While grid generation can be done rather quickly in both RSim-3D and SSIIM, this is a

time-consuming task in Fluent. As already mentioned, this is mostly due to the fact that no

options for converting measured data points (bed and surface) into a three-dimensional grid

exist in Fluent, so that many operations must be done manually, requiring a fair amount of

user interaction. Additionally, some small bugs in the 3D grid generation routines of Gam-

bit (Fluent’s graphical grid generator) led to inconsistencies in the solver module later. The

respective errors in the grid had to be found and corrected manually before a converged

flow solution could be obtained. Of course, the advantage of RSim-3D and SSIIM in terms

of grid generation is not only that these programs were actually written to work on mea-

sured real-world terrain data, but also the fact that the author has much more experience

with these models than with the Fluent software. Nonetheless it can be said that the cre-

ation of a suitable grid featuring a river stretch is a time-consuming and complex task in

Fluent.

2. The handling of the model itself does not require much interaction in SSIIM, a little more

in RSim-3D and is most time-consuming in Fluent. As mentioned, the author has worked
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with SSIIM at numerous occasions in the past (e.g.Tritthart (2000) [79],Scheuerlein et

al. (2004) [70]) and so the experience with the software facilitates a short interaction time

during the runs of the model. As author of the RSim-3D model, the same thing holds

true; however, it must be said that RSim-3D is still ”work in progress”, hence it requires

more interaction time to get some parameters right to avoid instabilities. As far as Fluent

is concerned, the comparably long interaction time is a result of the way in which the free

water surface was treated, but also – to a lesser amount – the lack of detailed experience in

using this model.

3. Once a suitable grid is supplied to the model, both Fluent and SSIIM deliver results rather

quickly while RSim-3D needs long periods of time until a state of convergence is reached.

The reasons for this are manifold:

• Solvers operating on structured grids deliver results significantly faster than those us-

ing unstructured grids. Structured grids do not require a table storing the position of

every cell in the continuum and the connecting faces between the cells; all of these

values are known implicitly by supplying the index of each cell. Furthermore, cells in

hexahedral shape usually do not exhibit geometric distortion, facilitating a fast solver

progress. Experience with unstructured grids using the Fluent solver (e.g.Krouzecky

(2002) [39]) shows that computation times become extremely long using unstruc-

tured grids. However, the advantage in representing complex geometries exactly by

using unstructured grids, is a decisive reason to favor this grid type despite its higher

computational cost.

• RSim-3D’s solver is not using the fastest algorithm available. For smaller flow prob-

lems, it is reasonably fast, but for larger numbers of cells it becomes inefficient (see

chapter 4.6). This may be a starting point for a possible improvement of the model in

the future.

• Relaxation factors significantly influence the time until convergence is reached. Due

to instabilities in regions with low flow depths, RSim-3D had to use lower relaxation

factors than SSIIM or Fluent. While the latter model even required the removal of

all regions with low flow depth (i.e. floodplains) before reasonable relaxation factors

could be used, SSIIM did not exhibit stability problems at all and operated using the

standard relaxation factors.

• The models employ different convergence criteria. SSIIM uses unscaled residuals

while RSim-3D and Fluent employ scaled residuals (chapter 4.5.3). Depending on the
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flow situation encountered, the latter can be a much stronger criterion. Furthermore,

by default, the SSIIM model declares a solution converged as soon as the maximum of

all residuals is below10−3, while RSim-3D uses10−4. Recalling figure 4.8 in chapter

4.6, a drop in residuals is linear on a logarithmic scale, i.e. it takes approximately the

same number of iteration cycles to reduce the residuals from100 to 10−1, as from

10−3 to 10−4.

6.3 Results

6.3.1 Water surface

The resulting water surface elevation for the discharge with a return period of 100 years is de-

picted in figures 6.5, 6.7 and 6.8 for the RSim-3D, SSIIM and Fluent models, respectively. Figure

6.6 visualises the water depth within the project domain. It should be noted that the first stream

kilometer from km 2082.0 to 2081.0 was only modelled to obtain natural flow conditions in the

reach thereafter; hence, depending on the model used, the water surface elevation in this first

kilometer exhibits reasonable differences. However, after approximately 1.5 kilometers all mod-

els show pretty much the same water surface pattern with a significant rise at the outer bank

near the municipality of Grein and a drop in water surface elevations at the opposite bank. The

water surfaced obtained from the SSIIM model appears smoother than the one computed with

RSim-3D, which can be attributed to the different terrain interpolation techniques employed in

these models. This is also the obvious reason for the slightly higher extrema in figure 6.5.

Some spots near the left bank in figure 6.5 appear red (high altitude) or blue (low altitude). This

is because RSim-3D displays inactive grid regions along with the active ones, and so the red

spots are just dry areas with an altitude higher than the maximum water surface elevation, while

the blue spots are areas that have been automatically deactivated due to very low water depth.

When comparing the water surface obtained from Fluent (fig. 6.8) with the other figures, it can

be seen that the general water surface pattern shows no significant differences, even though the

floodplain regions were excluded from the computational domain. Only the absolute elevation

above sea level is slightly lower, but this stems from the model having been calibrated from an

upstream location, as opposed to a downstream location in RSim-3D and SSIIM.

Figure 6.9 shows the resulting water surface elevations at the left and right banks for all three

simulation models along with the characteristic water levels (KWD). Since the KWD values are
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Figure 6.5: Water surface in the Danube bend near Grein (RSim-3D model)
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Figure 6.6: Water depth in the Danube bend near Grein (RSim-3D model)
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Figure 6.7: Water surface in the Danube bend near Grein (SSIIM model)
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Figure 6.8: Water surface in the Danube bend near Grein (Fluent model)
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Figure 6.9: Water surface elevations along left and right banks
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based on thehighest water levelsobserved in August 2002, the computed water surfaces should

always match these values at one bank while being lower or equal along the other bank. These

characteristic values are now analysed one at a time:

• km 2081.0: RSim-3D gets the KWD right at the left bank, the water surface at the right

bank is overpredicted by approximately 10cm. In the SSIIM model the KWD value lies

right between the left and the right bank, with the latter being about 5cm too high. Fluent

is the only model to exactly predict the KWD, but this is to no surprise since this location

was used as monitoring location during model calibration.

• km 2080.0: In both Fluent and SSIIM, the water surface elevation at this river station is

underestimated by 15cm (SSIIM) to 20cm (Fluent). RSim-3D performs very well at this

location, getting the KWD approximately right.

• km 2079.0: This river station is located right near the municipality of Grein at the apex of

the bend. RSim-3D overpredicts the water surface elevation by several centimetres while

SSIIM and Fluent give the correct value. However, as far as the Fluent model is concerned,

this result must be assessed very critically: considering the simplifications required to

obtain a converged solution, the numerically correct value could be mere coincidence.

RSim-3D’s overprediction of the actual situation can be attributed to the different terrain

interpolation technique employed in that software package.

• km 2078.0: Used as monitoring location in RSim-3D and SSIIM, it is no surprise that these

two models perform slightly better than Fluent. However, while the downstream water

surface elevation is enforced over the whole cross-section width in RSim-3D, SSIIM uses

only one reference cell for this purpose. Since this reference cell is usually placed right at

the centre line of the river, the water surface is free to move at both banks. It can be seen

that SSIIM predicts a significant drop in water levels along the left bank. Since the same

bed elevations were used for SSIIM and Fluent – and the latter model does not exhibit this

water surface minimum – a wrongly interpolated channel bed can be excluded from the

list of possible reasons to cause this effect.

It remains to analyse the maximum difference in water levels between left and right bank near

the village of Grein. The introductory section of this chapter already discussed the fact that

during the flood event of August 2002 a difference of 80cm was observed. Table 6.4 summarises

the simulation results for the cross-section at km 2078.9, where the largest differences were
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computed by all models. It can be seen that none of the models yields a difference of 80cm, but

both RSim-3D and Fluent exhibit differences close to 70cm – a reasonably good agreement with

the observations.

RSim-3D SSIIM Fluent

Difference left-right bank 68cm 62cm 69cm

Table 6.4: Differences in water surface elevations at river station 2078.9

6.3.2 Depth-averaged flow velocities

Figures 6.10 through 6.12 depict the depth-averaged flow velocities for the three simulation mod-

els. Again, the overall flow pattern is very similar for all models. The most significant difference

between RSim-3D and SSIIM on one hand and Fluent on the other is that the velocity pattern

in the flow domain appears much smoother in the output of Fluent. This is due to the excluded

floodplains and the terrain data points that were not used in the bed interpolation algorithm.

Comparing the output of RSim-3D and SSIIM it can be seen that the shape of the velocity dis-

tribution near the banks is slightly smoother in the latter model. This can be attributed to the

different terrain interpolation methods.

Still, all three models agree on a maximum velocity magnitude between 3.6 and 4.0 m/s, with

maxima to be found at the straight river reach near km 2080.0 and near the downstream model

boundary at km 2078.0. The mean flow velocity slows down to some extent while passing by

the municipality of Grein where the inundated terrain enlarges the river cross-section; this effect

cannot be seen in the Fluent model output since the floodplains were not modelled.

An area of specific interest is the inundation area between the cross-sections of km 2079.6 and km

2079.3. It is depicted in detail in figure 6.13 (output of RSim-3D). It can be seen that an area of

recirculating flow with a velocity magnitude of 0.5 to 1.0 m/s evolves which is rotating counter-

clockwise being excited by the main flow. The same recirculating flow pattern is predicted by

the SSIIM model, as well.
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Figure 6.10: Depth-averaged flow velocity in the Danube bend near Grein (RSim-3D model)
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Figure 6.11: Depth-averaged flow velocity in the Danube bend near Grein (SSIIM model)
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Figure 6.12: Depth-averaged flow velocity in the Danube bend near Grein (Fluent model)
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Figure 6.13: Flow detail in the inundation area near km 2079.5

6.3.3 Secondary flow

The results of the three models exhibit little to no differences between the secondary flow pat-

terns. Therefore only the output of RSim-3D is depicted in this section. Figures 6.14 and 6.15

show cross-sections for every 200m between river stations 2079.8 and 2078.2, additionally the

cross-section at km 2078.9 is depicted where the maximum difference in water surface eleva-

tions between left and right bank was encountered. All figures are scaled by the factor 2.0 in the

vertical direction. In order to preserve the same velocity vector scale for all cross-sections it was

necessary to apply different geometric scales.

At cross-sections 2079.8 and 2079.6 the secondary movement points towards the right bank with

a velocity magnitude of up to 0.6 m/s, a consequence of the beginning bend. Then, at river sta-

tions 2079.4 and 2079.2 the secondary movement changes its direction and points towards the
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Figure 6.14: Secondary flow in cross-sections 2079.8 through 2079.0
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Figure 6.15: Secondary flow in cross-sections 2078.9 through 2078.2
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left bank with velocity magnitudes of up to 0.8 m/s. This is caused by the flow from the river bed

into the direction of the inundated terrain within the village of Grein. The first really distinct sec-

ondary flow pattern evolves at cross-section 2079.0, pointing towards the left (outer) bank near

the water surface and into the opposite direction close to the bed. This pattern continues through-

out cross-sections 2078.9 and 2078.8 with velocity magnitudes of up to 0.8 m/s. Cross-sections

2078.6 and 2078.4 still exhibit a distinct secondary flow pattern, and the velocity magnitude falls

below 0.4 m/s. At km 2078.2 this pattern has disappeared, and the movement points towards the

right bank in the entire cross-section.

6.4 Summary

A study of the flow conditions during the flood event of August 2002 in the Danube river bend

near the municipality of Grein in Upper Austria was performed using three different simulation

models: RSim-3D, SSIIM and Fluent. For the RSim-3D model an unstructured polyhedral com-

putation grid based on hexagonal grid regions was used while the other two models employed

structured grids consisting of hexahedra. It became apparent that the models using structured

grids exhibit significant advantages in terms of computation time required to obtain a converged

solution; however, this advantage is bought by geometry simplifications, imposing restrictions

on the shape of the polygon bounding the project domain. On the other hand, it was found that

a lot of manual work is required to build a grid for the Fluent model – a generic flow simulation

code –, a task which is easier to perform in the typical river simulation models.

As far as results of the flow simulation are concerned, the shape of the computed water surface,

the depth-averaged flow velocities and secondary flow patterns were evaluated. No significant

differences were encountered in the computed water surfaces, even though the maxima computed

by the RSim-3D model were slightly higher than those obtained through the other software pack-

ages, resulting in a closer match with the observations of August 2002 in certain places. However,

this can either be attributed to the polygonal cell shapes, the different bed elevation interpolation

technique employed in that model or a combination of both. All simulation results show the

characteristic pattern of a rise in water surface elevations along the outer bank and a drop along

the inner bank, even though the computed maximum difference of almost 70cm falls slightly

short of the 80cm observed during the flood event.

In terms of the depth-averaged flow velocities, all three models agree on a maximum velocity

magnitude between 3.6 and 4.0 m/s. The output of the Fluent model appears somewhat smoother
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which is to be attributed to the reduced simulation domain employed for building the grid since

areas of low water depth in the inundated regions led to instabilities during the simulation runs,

requiring these regions to be removed from the computational domain. Both the RSim-3D and

SSIIM models show a large recirculation area near the left bank at the beginning of the river

bend with velocity magnitudes of up to 1.0 m/s. Finally taking a closer look at the secondary

flow patterns, it was found that a distinct secondary movement can be found throughout the bend,

pointing towards the outer bank near the water surface and into the direction of the inner bank

close to the bed. The secondary movement reaches velocity magnitudes of up to 0.8 m/s.

In a final assessment of the performance of the RSim-3D model compared to the other flow

simulation models used in this study it can be summarised that the computational cost is higher,

but most of this can be attributed to the unstructured grid approach. The results are approximately

equal to that of other models, delivering both a realistic water surface and flow pattern throughout

the entire project domain.
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7.1 Conclusions

In this thesis, a 3D river flow simulation model based on the Finite Volume Method and using un-

structured computation grids consisting of polyhedral cells was derived and implemented along

with a software tool for pre- and post-processing tasks. The simulation model uses the Sec-

ond Order Upwind scheme for the discretisation of convective terms in the Reynolds-Averaged

Navier-Stokes equations, the SIMPLE method to couple the unknown pressure and velocity fields

in the governing equations, and the standardk− ε model for turbulence closure. The position of

the free water surface is determined by evaluating the computed pressure at the water surface.

The simulation model was validated against laboratory data using four selected channel flow

cases before it was compared to other numerical codes by applying it to a reach of the river

Danube near the municipality of Grein in Austria, analysing the flow conditions during the flood

event of August 2002 when a discharge with a return period of 100 years was encountered.

Purpose of the validation study was also to assess the difference between using polyhedral and

the hexahedral cell shapes normally employed. It was found that in some cases the simulation

results were closer to the observed values using polyhedral cells while other cases showed no

significant differences to using hexahedral cells. When the polyhedral cells were arranged in the

flow domain such that the resulting grid was rather coarse and the prevailing flow direction was

not perpendicular to any of the cells’ faces, some numerical diffusion was observed, even though

not severe. This means that the problem of the flow solution depending on the exact arrange-

ment of cells is not entirely solved, but polyhedral cells are capable of reducing its severity. A

reasonable level of grid refinement can provide a remedy to the problem.

In the practical application of the model to a real flow situation it was found that the model

based on polyhedral cells yields results of equal or higher quality – using the deviation from

observed values as yardstick – than comparable models. However, since the usage of different

terrain interpolation methods has a significant influence on the results obtained, the exact reason
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for the model’s advantage in some distinct places within the project domain cannot be clarified

completely.

It was found that the implemented model, using a polyhedral grid approach, requires relatively

higher computation times to obtain a converged solution than comparable models. A signifi-

cant portion of this time is attributed to the unstructured grid which needs significantly more

computational effort than its structured counterparts, but the general formulation of the discre-

tised governing equations and the Gauss-Seidel solver algorithm also have their share in being

computationally demanding.

On the other hand, many flow problems in complex bounded domains need to be simplified

before they can be computed by making use of a solver based on a structured grid. The polyhedral

grid approach, however, does not come with such restrictions. Furthermore the polyhedral cell

shapes do not become distorted easily, not even when bounding polygons of very complicated

shape are being used, which is another significant advantage of this modelling technique.

7.2 Future Work

The numerical model is perfectly operational using the formulae and algorithms presented in this

thesis. However, of practical relevance is definitely the efficiency of the solver algorithm as it

directly translates into the computational effort required to solve a particular problem. It is clear

that this could be a starting point for potential future improvements of the model. The efficiency

of different algorithms in the context of a typical river flow situation could easily be assessed to

find and subsequently implement the one that has been found to be optimal.

Furthermore, the simulation model is not capable of dealing with unsteady flow conditions at

this moment. Its use is therefore restricted to steady flows or weakly unsteady conditions which

can be treated by a variation of boundary conditions alone. Transient flow problems require

the discretisation and implementation of additional terms in the governing equations. It is not

particularly difficult to discretise these terms and add them to the numerical model; implementa-

tion, however, requires extensive additional testing to prove that mass is actually conserved over

several time steps.

The problem of sediment transport in rivers, lakes and reservoirs will probably be the most

important challenge for the hydraulic and water resources engineer in the 21st century. Since

physical experiments in this field are usually expensive in terms of time and money, and also

complicated if the variation of sediment grain diameters is required in a study, it is predictable
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that the focus of such experiments will shift towards numerical modelling soon. Due to the

modular design of the RSim-3D model developed in this work, it is not difficult to add further

transport equations and their respective boundary conditions to the source code. No special

considerations will be needed for the implementation of a mobile bed geometry since the same

approaches can be used that allow the water surface to move freely in the vertical direction.

Another challenge for the hydraulic and water resources engineer is the analysis of water quality

and the transport of pollutants in inland waters. While the water quality of many rivers in Europe

has improved notably during the past decades, there is still need for improvement in a significant

number of waterbodies. Furthermore the real challenge may not even lie in the restoration of

polluted rivers but in keeping the high water quality standard of all others, predicting the spread

of pollutants once a disaster has taken place. This issue can be addressed in a numerical model

by implementing the appropriate transport equations which are actually well-known.

Finally, it should be pointed out that RSim-3D’s visualisation options are limited to plan views

and cross-sections. Even though transects can be defined between two arbitrary points, allow-

ing the user to analyse every place within the flow domain, this may turn out to be insufficient

when the results of a flow simulation are going to be presented to the general public. Visualisa-

tion tools in three spatial dimensions, like particle tracking or streamline contours, are available

which are capable of bridging the gap between the engineer and the general public. It would be

very interesting, though also very challenging, to couple the simulation model with one of these

visualisation techniques in the future.
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Appendix A Flow charts and examples

Illustration of region and cell numbering schemes

Figure A.1: Region and cell numbering schemes
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Appendix A

Stages of the numbering process (fig. A.1)

a. General situation:Pattern of distributed base points within a bounding polygon.

b. Sorting of points:Fortune’s algorithm requires the base points to be sorted/numbered in

ascending order along the positive y-axis; points with equal distance along the y-axis are

sorted along the positive x-axis.

c. Numbering of 2D regions:Two-dimensional grid regions receive the same identification

number as the base point they belong to.

d. Numbering of 3D cells:Applying a structured vertical subdivision of each grid region into

n cells, the cell number is derived from the region number by

c = n · r + i

wherec is the cell number,r the region number andi the vertical cell index in the range 0

ton-1. In order to store boundary conditions at the bed and the water surface, one extra cell

is added on each side of the cell pile, therefore the internal value ofn is equal to(nuser + 2)

wherenuser is the user-supplied number of cells in each cell pile.
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Appendix A

Illustrative example of the Kriging process

Figure A.2: Illustrative example of the Kriging process
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Stages of the Kriging process (fig. A.2)

a. General situation: Distributed data points with known terrain elevation (black circles)

surround a point with unknown terrain elevation (red box).

b. Determine spatial dimensions:The dimensions∆x and ∆y of the terrain data set are

computed.

c. Apply search circle:A circle with diameterd =
√

∆x2 + ∆y2 is constructed on top of the

point with unknown terrain elevation. Terrain data points lying outside of this circle are

excluded from the data set.

d. Sector subdivision:The data set is subdivided into four sectors (quadrants).

e. Sector search:Between one and eight data points of every quadrant are used for the semi-

variogram. If there are more than eight points available (as in the north-eastern quadrant),

only the points with the shortest distance to the point with unknown terrain elevation stay

in the data set; all other points (green ellipse) are excluded.

f. Computation of semivariogram:The semivariances – distances from every point to every

other point – are computed for the remaining points in the data set (coloured in blue) before

the linear equation set is solved as outlined in chapter 3.4.3.

In the computational implementation of the Kriging process these stages are executed in parallel

as illustrated in figure A.3.
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Flow chart of the Kriging algorithm

Figure A.3: Flow chart of the Kriging algorithm
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Compute dimensions ruc and t-.y of the terrain data set 
and compute diameter of the search circle: 

d =.Jl'lx2 +t-.y2 

lnitialise !wo-dimensional array points[4][8] for four quadrants and max. eight points each, 
initialise control variable i=0 (i identifies the terrain data point currently worked on) 

lncrement i by 1 

Yes 

Compute signed distances dx and dy between the point P of which the elevation is to be 
determined and terrain data point i 

From signs of dx and dy determine number of quadrant of terrain data point i, 
compute spatial distance r between point with unknown elevation P and terrain data point i 

No 

,__ ___ Add the terrain data point to the points array for the respective quadrant, 
sort the points array in ascending order of the distance r 

No 

Replace the 8th element of the points array for the respective quadrant 
with the current terrain data point i and sort the array according to r 

Compute minimum distance of rover all quadrants (rm;n) 

r,mn < 0.05m? Use this 
ves elevation 

STOP 

Construct the semivariogram of the entire points array and solve the 
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Kriging vs. Bivariate Interpolation on cross-section data

Figure A.4: Kriging (a.) and Bivariate Interpolation (b.) applied to a reach of the River Danube
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Flow chart of the solver algorithm

Figure A.5: Flow chart of the solver algorithm (part 1)
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Figure A.6: Flow chart of the solver algorithm (part 2)
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Figure B.1: Longitudinal velocity profiles for cross section U2 of Kim & Patel’s experiment

B.1



Appendix B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

z/
H

U/U0

Cross-section 15o (y/H = 0.0625)

Measured
Computed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
z/

H
U/U0

Cross-section 15o (y/H = 0.1375)

Measured
Computed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

z/
H

U/U0

Cross-section 15o (y/H = 0.3125)

Measured
Computed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

z/
H

U/U0

Cross-section 15o (y/H = 0.5000)

Measured
Computed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

z/
H

U/U0

Cross-section 15o (y/H = 0.8625)

Measured
Computed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

z/
H

U/U0

Cross-section 15o (y/H = 0.9375)

Measured
Computed

Figure B.2: Longitudinal velocity profiles for cross section 15◦ of Kim & Patel’s experiment
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Figure B.3: Longitudinal velocity profiles for cross section 75◦ of Kim & Patel’s experiment
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Figure B.4: Longitudinal velocity profiles for cross section D1 of Kim & Patel’s experiment
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Figure B.5: Transversal velocity profiles for cross section U2 of Kim & Patel’s experiment
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Figure B.6: Transversal velocity profiles for cross section 15◦ of Kim & Patel’s experiment
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Figure B.7: Transversal velocity profiles for cross section 75◦ of Kim & Patel’s experiment
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Figure B.8: Transversal velocity profiles for cross section D1 of Kim & Patel’s experiment
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 Anhang I 

WIENER MITTEILUNGEN 
WASSER • ABWASSER • GEWÄSSER 
 

 
Eine von den Wasserbauinstituten an der Technischen Universität Wien, den 
Instituten für Wasserwirtschaft der Universität für Bodenkultur und dem 
Österreichischen Wasser- und Abfallwirtschaftsverband herausgegebene 
Schriftenreihe 
 
Band Nr  Preis € 
1 Das Wasser (1968) 

Kresser W. vergriffen 

2 Die Gesetzmäßigkeiten der stationären Flüssigkeitsströmung durch 
gleichförmig rotierende zylindrische Rohre (1968) 
Breiner, H. vergriffen 

3 Abwasserreinigung - Grundkurs (1969) 
von der Emde, W. vergriffen 

4 Abwasserreinigungsanlagen - Entwurf-Bau-Betrieb (1969) 
4. ÖWWV-Seminar, Raach 1969 vergriffen 

5 Zukunftsprobleme der Trinkwasserversorgung (1970) 
5. ÖWWV-Seminar, Raach 1970 vergriffen 

6 Industrieabwässer (1971) 
6. ÖWWV-Seminar, Raach 1971 vergriffen 

7 Wasser- und Abfallwirtschaft (1972) 
7. ÖWWV-Seminar, Raach 1972  vergriffen 

8 Das vollkommene Peilrohr  
(Zur Methodik der Grundwasserbeobachtung) (1972) 
Schmidt, F. vergriffen 

9 Über die Anwendung von radioaktiven Tracern in der  
Hydrologie (1972) 
Pruzsinsky, W. 
Über die Auswertung von Abflußmengen auf elektronischen  
Rechenanlagen 
Doleisch, M.: 18,- 

10 1. Hydrologie-Fortbildungskurs (1972) 
 vergriffen 

11 Vergleichende Untersuchungen zur Berechnung von HW- 
Abflüssen aus kleinen Einzugsgebieten (1972) 
Gutknecht, D. vergriffen 



Band Nr  Preis € 

 Anhang II 

12 Uferfiltrat und Grundwasseranreicherung (1973) 
8. ÖWWV-Seminar, Raach 1973 vergriffen 

13 Zellstoffabwässer-Anfall und Reinigung (1972) 
von der Emde W., Fleckseder H., Huber L.,Viehl K. vergriffen 

14 Abfluß - Geschiebe (1973) 
2. Hydrologie-Fortbildungskurs 1973 vergriffen 

15 Neue Entwicklung in der Abwassertechnik (1983) 
9. ÖWWV-Seminar, Raach 1974 vergriffen 

16 Praktikum der Kläranlagentechnik (1974) 
von der Emde W. vergriffen 

17 Stabilitätsuntersuchung von Abflußprofilen mittels  
hydraulischer Methoden und Trendanalyse (1974) 
Behr, O.: 18,- 

18 Hydrologische Grundlagen zur Speicherbemessung(1975) 
3. Hydrologie-Fortbildungskurs 1975 vergriffen 

19 Vorhersagen in der Wasserwirtschaft (1976) 
1. Hydrologisches Seminar des ÖWWV 1976 10,- 

20 Abfall- und Schlammbehandlung aus wasserwirtschaftlicher  
Sicht (1976) 
11. ÖWWV-Seminar, Raach 1976 vergriffen 

21 Zur Theorie und Praxis der Speicherwirtschaft (1977) 
2. Hydrologisches Seminar des ÖWWV 1977 22,- 

22 Abwasserreinigung in kleineren Verhältnissen (1977) 
12. ÖWWV-Seminar, Raach 1977 vergriffen 

23 Methoden zur rechnerischen Behandlung von Grundwasser- 
leitern (1977) 
Baron W., Heindl W., Behr O., Reitinger J. vergriffen 

24 Ein Beitrag zur Reinigung des Abwassers eines Chemiefaser 
werkes, eines chemischen Betriebes und einer Molkerei (1978) 
Begert A.  vergriffen 

25 Ein Beitrag zur Reinigung von Zuckerfabrikabwaser (1978) 
Kroiss H. vergriffen 

26 Methoden der hydrologischen Kurzfirstvorhersage (1978) 
Gutknecht D. vergriffen 

27 Wasserversorgung-Gewässerschutz (1978) 
13. ÖWWV-Seminar, Raach 1978 vergriffen 

28 Industrieabwasserbehandlung - Neue Entwicklungen (1979) 
14. ÖWWV-Seminar, Raach 1979 vergriffen 



Band Nr  Preis € 
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29 Probleme der Uferfiltration und Grundwasseranreicherung  
mit besonderer Berücksichtigung des Wiener Raumes (1979) 
Frischherz H. vergriffen 

30 Beiträge zur Hydraulik, Gewässerkunde und Wasser- 
wirtschaft (1979) 
o. Univ.-Prof. DDr. Werner Kresser zum 60. Geburtstag vergriffen 

31 Grundwasserzuströmungsverhältnisse zu Horizontalfilterrohr- 
brunnen (1980) 
Schügerl W. vergriffen 

32 Grundwasserwirtschaft (1980) 
3. Hydrologisches Seminar des ÖWWV 1980 25,- 

33 Kulturtechnik und Wasserwirtschaft heute (1) (1980) 
 vergriffen 

34 Behandlung und Beseitigung kommunaler und industrieller  
Schlämme (1980) 
15. ÖWWV-Seminar, Raach 1980 vergriffen 

35 Faktoren, die die Inaktivierung von Viren beim Belebungsverfahren 
beeinflussen (1980) 
Usrael G. vergriffen 

36 Vergleichende Kostenuntersuchungen über das Belebungs- 
verfahren (1980) 
Flögl W. vergriffen 

37 Ein Beitrag zur Reinigung und Geruchsfreimachung von  
Abwasser aus Tierkörperverwertungsanstalten (1980) 
Ruider E. vergriffen 

38 Wasserwirtschaftliche Probleme der Elektrizitätserzeugung (1981) 
Schiller, G.: vergriffen 

39 Kulturtechnik und Wasserwirtschaft heute (1981) 
Teil 2 vergriffen 

40 Wasseraufbereitung und Abwasserreinigung als zusammengehörige  
Techniken (1981) 
16. ÖWWV-Seminar, Raach 1981 vergriffen 

41 Filterbrunnen zur Erschließung von Grundwasser (1981)  
ÖWWV-Fortbildungskurs 1981 29,- 

42 Zur Ermittlung von Bemessungshochwässern im Wasserbau (1981) 
Kirnbauer R. 22,- 

43 Wissenschaftliche Arbeiten, Zeitraum 1977 bis 1981 (1981) 
 25,- 

44 Kulturtechnik und Wasserwirtschaft - heute (1981) 
Teil 3  25,- 
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45 Verbundwirtschaft in der Wasserversorgung (1982) 
ÖWWV-Fortbildungskurs 1982 29,- 

46 Gewässerschutzplanung, deren Umsetzung und Zielkontrolle  
im Einzugsgebiet des Neusiedler Sees (1982) 
Stalzer W. vergriffen 

47 Wechselwirkung zwischen Planung und Betrieb von Abwasser-
reinigungsanlagen, Erfahrungen und Probleme (1982) 
17. ÖWWV-Seminar, Ottenstein 1982 vergriffen 

48 Kleinwasserkraftwerke - Notwendigkeit und Bedeutung (1982) 
Flußstudien: Schwarza, kleine Ybbs, Saalach vergriffen 

49 Beiträge zur Wasserversorgung, Abwasserreinigung,  
Gewässerschutz und Abfallwirtschaft (1982) 
o. Univ.-Prof. Dr.-Ing. W. v.d. Emde zum 60. Geburtstag vergriffen 

50 Kulturtechnik und Wasserwirtschaft - heute (1982) 
Teil 4 vergriffen 

51 Sicherung der Wasserversorgung in der Zukunft (1983) 
18. ÖWWV-Seminar, Ottenstein 1983 vergriffen 

52 Thermische Beeinflussung des Grundwassers (1983) 
ÖWWV-Fortbildungskurs, 1983 vergriffen 

53 Planung und Betrieb von Regenentlastungsanlagen (1984) 
ÖWWV-Fortbildungskurs, 1984 vergriffen 

54 Sonderabfall und Gewässerschutz (1984) 
19. ÖWWV-Seminar, Gmunden 1984 vergriffen 

55 Naturnahes Regulierungskonzept "Pram" (1984) 
 26,- 

56 Blähschlamm beim Belebungsverfahren (1985) 
ÖWWV-Fortbildungskurs, 1985 vergriffen 

57 Chemie in der Wassergütewirtschaft (1985) 
ÖWWV-Fortbildungskurs, 1985 vergriffen 

58 Klärschlamm - Verwertung und Ablagerung (1985) 
20. ÖWWV-Seminar, Ottenstein 1985 vergriffen 

59 Wasserkraftnutzung an der Thaya (1985) 
Pelikan B. 23,- 

60 Seminar "Wasser - Umwelt - Raumordnung" (1985) 
 16,- 

61 Gewässerschutz im Wandel der Zeit 
Ziele und Maßnahmen zu ihrer Verwirklichung (1985) 
Fleckseder, H. vergriffen 

62 Anaerobe Abwasserreinigung (1985) 
Kroiss H. vergriffen 
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63 Kleine Belebungsanlagen mit einem Anschlußwert bis 500 
Einwohnergleichwerte (1985) 
Begert A. vergriffen 

64 Belüftungssysteme beim Belebungsverfahren (1986) 
ÖWWV-Fortbildungskurs, 1986 vergriffen 

65 Planung und Betrieb von Behandlungsanlagen für Industrie- 
abwässer (1986) 
21. ÖWWV-Seminar, Ottenstein 1986 vergriffen 

66 Ausspracheseminar Grundwasserschutz in Österreich (1986) 
ÖWWV-Fortbildungskurs, 1986 29,- 

67 Kulturtechnik und Wasserwirtschaft heute (5) (1986)  vergriffen 

68 Zur mathematischen Modellierung der Abflußentstehung an  
Hängen (1986) 
Schmid B.H. 22,- 

69 Nitrifikation - Denitrifikation (1987) 
ÖWWV-Fortbildungskurs, 1987 vergriffen 

70 Flußbau und Fischerei (1987)  
 vergriffen 

71 Wasserversorgungung und Abwasserreinigung in kleinen  
Verhältnissen (1987) 
22. ÖWWV-Seminar, Ottenstein 1987 vergriffen 

72 Wasserwirtschaft und Lebensschutz (1987) 
Wurzer E. vergriffen 

73 Anaerobe Abwasserreinigung  
Grundlagen und großtechnische Erfahrung (1988) 
ÖWWV-Fortbildungskurs, 1988 vergriffen 

74 Wasserbau und Wasserwirtschaft im Alpenraum aus historischer  
Sicht (1988) 
 22,- 

75 Wechselbeziehungen zwischen Land-, Forst und Wasser- 
wirtschaft (1988) 
ÖWWV-Fortbildungskurs, 1988  vergriffen 

76 Gefährdung des Grundwassers durch Altlasten (1988) 
23. ÖWWV-Seminar, Ottenstein 1988 vergriffen 

77 Kulturtechnik und Wasserwirtschaft heute (6) (1987) 
 vergriffen 

78 Wasserwirtschaftliche Planung bei mehrfacher Zielsetzung (1988) 
Nachtnebel, H.P. 25,- 

79 Hydraulik offener Gerinne (1989) 
Symposium, 1989 vergriffen 
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80 Untersuchung der Fischaufstiegshilfe bei der Stauhaltung im  
Gießgang Greifenstein (1988) 
Jungwirth M., Schmutz S. vergriffen 

81 Biologische Abwasserreinigung (1989) 
ÖWWV-Fortbildungskurs, 1989, TU-Wien vergriffen 

82 Klärschlammentsorgung (1989) 
24. ÖWWV-Seminar, Ottenstein 1989 vergriffen 

83 Viruskontamination der Umwelt und Verfahren der  
Kontrolle (1990) 
2. Symposium 18,- 

84 Schadstofffragen in der Wasserwirtschaft (1989) 
ÖWWV-Fortbildungskurs 1989, TU-Wien 29,- 

85 Schlußbericht zum Forschungsvorhaben Trinkwasseraufbereitung 
mit Ultraschall, Projekt Abschnitt I (1989) 
Frischherz H.; Benes E.; Ernst J.; Haber F.; Stuckart W. 18,- 

86 Umfassende Betrachtung der Erosions- und Sedimentations- 
problematik (1989) 
Summer W. 25,- 

87 Großräumige Lösungen in der Wasserversorgung (1990) 
25. ÖWWV-Seminar, Ottenstein 1990 vergriffen 

88 Revitalisierung von Fließgewässern (1990) 
Beiträge zum Workshop Scharfling, 1989 vergriffen 

89 Kulturtechnik und Wasserwirtschaft heute (1990) 
Teil 9 vergriffen 

90 A Study on Kinematic Cascades (1990) 
Schmid B.H. 18,- 

91 Snowmelt Simulation in Rugged Terrain -  
The Gap Between Point and Catchment Scale Approaches (1990) 
Blöschl G. 18,- 

92 Dateninterpretation und ihre Bedeutung für Grundwasser- 
strömungsmodelle (1990) 
Blaschke A.P. nicht erschienen 

93 Decision Support Systeme für die Grundwasserwirtschaft  
unter Verwendung geografischer Informationssysteme (1990) 
Fürst J. 18,- 

94 Schlußbericht zum Forschungsvorhaben Trinkwasser- 
aufbereitung mit Ultraschall; Projekt-Abschnitt 1990 (1990) 
Frischherz H., Benes E., Stuckhart W., Ilmer A., Gröschl M., Bolek W. 18,- 

95 Anaerobe Abwasserreinigung - Ein Modell zur Berechnung  
und Darstellung der maßgebenden chemischen Parameter (1991) 
Svardal K. 22,- 
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96 EDV-Einsatz auf Abwasserreinigungsanlagen (1991) 
ÖWWV-Fortbildungskurs 1991, TU-Wien 29,- 

97 Entfernung von Phosphorverbindungen bei der Abwasser- 
reinigung (1991) 
ÖWWV-Fortbildungskurs 1991, TU-Wien 25,- 

98 Auswirkungen der Wasserrechtsgesetznovelle 1990 auf Behörden,  
Planer und Betreiber kommunaler Abwasserreinigungsanlagen - 
aus technischer, rechtlicher und wirtschaftlicher Sicht (1991) 
26. ÖWWV-Seminar, Ottenstein 1991 36,- 

99 Geruchsemissionen aus Abwasserreinigungsanlagen (1991) 
ÖWWV-Fortbildungskurs 1991, 22,- 

100 Anpassung von Kläranlagen an den Stand der Technik (1992) 
ÖWWV-Fortbildungskurs 1992, TU-Wien vergriffen 

101 Umweltbezogene Planung wasserbaulicher Maßnahmen  
an Fließgewässern (1992) 
Pelikan B. 18,- 

102 Erfassung hydrometeorologischer Elemente in Österreich  
im Hinblick auf den Wasserhaushalt (1992) 
Behr O. i.V. 

103 Wasser- und Abfallwirtschaft in dünn besiedelten Gebieten (1992) 
27. ÖWWV-Seminar Ottenstein 1992 36,- 

104 Virus Contamination of the Environment (1992) 
Methods and Control vergriffen 

105 Fließgewässer und ihre Ökologie (1993) 
ÖWAV-Fortbildungskurs 1992, TU-Wien 22,- 

106 Festlegung einer Dotierwassermenge über Dotationsversuche (1992) 
Mader H. 22,- 

107 Wasserrechtsgesetznovelle 1990 und neue Emissions- 
verordnungen (1992) 
Vorträge anläßlich der UTEC 1992 29,- 

108 Chemische Analytik für einen zeitgemäßen Gewässerschutz (1992) 
Vorträge anläßlich der UTEC 1992 29,- 

109 Kulturtechnik und Wasserwirtschaft heute (1994) 
Teil 10 - Beiträge zum Seminar an der Universität für Bodenkultur  
im November 1994 i.V. 

110 Bemessung u. Betrieb von Kläranlagen zur Stickstoffentfernung (1993) 
ÖWAV-Seminar 1993, TU-Wien 36,- 

111 Wasserreserven in Österreich -  
Schutz und Nutzung in Gegenwart und Zukunft (1993) 
28. ÖWAV-Seminar Ottenstein 1993 vergriffen 
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112 Contamination of the Environment by Viruses and Methods of  
Control (1993) 
 18,- 

113 Wasserkraft 
O.Univ.-Prof. Dipl.-Ing. Dr.techn. S. Radler anläßlich  
seiner Emeritierung vergriffen 

114 Klärwärter-Grundkurs (1994) 
2. Auflage 1994 vergriffen 

115 Beitrag zur Reduzierung der Abwasseremissionen der Bleicherei beim 
Sulfatverfahren (1994) 
Urban W. 
ISBN 3-85234-001-2 22,- 

116 Eigenüberwachung von Abwasserreinigungsanlagen  
für den Gewässerschutz (1994) 
ÖWAV-Seminar 1994, TU-Wien 
ISBN 3-85234-002-0 25,- 

117 Abwasserreinigungskonzepte -  
Internationaler Erfahrungsaustausch über neue Entwicklungen (1995) 
ÖWAV-Seminar 1994, TU Wien 
ISBN 3-85234-003-9 25,- 

118 3 Jahre WRG-Novelle (1994) 
29. ÖWAV-Seminar: Ottenstein 1994 
ISBN 3-85234-004-7 19,- 

119 Landeskulturelle Wasserwirtschaft (1994) 
anläßlich der Emeritierung von  
o.Univ.-Prof. Dipl.-Ing. Dr. H. Supersperg vergriffen 

120 Gewässerbetreuungskonzepte - Stand und Perspektiven (1994) 
Beiträge zur Tagung an der BOKU 1994 
ISBN 3-85234-010-1 32,- 

121 Generelle Entwässerungsplanung im Siedlungsraum (1996) 
ÖWAV-Seminar 1995, TU Wien 
ISBN 3-85234-011-X 29,- 

122 Bedeutung von geowissenschaftlicher Zusatzinformation für die  
Schätzung der Transmissivitätsverteilung in einem Aquifer (1994) 
Kupfersberger H. 18,- 

123 Modellierung und Regionalisierung der Grundwassermengenbildung  
und des Bodenwasserhaushaltes (1994) 
Holzmann, H. 22,- 

124 Pflanzenkläranlagen - Stand der Technik, Zukunftsaspekte (1995) 
ÖWAV-Seminar, BOKU Wien 
ISBN 3-85234-014-4 22,- 
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125 Abwasserreinigung - Probleme  bei der praktischen Umsetzung des 
Wasserrechtsgesetzes, (1995) 
ÖWAV-Seminar 1995, TU-Wien 
ISBN 3-85234-015-2 32,- 

126 Konfliktfeld Landwirtschaft - Wasserwirtschaft (1995) 
30. ÖWAV-Seminar, Ottenstein 1995 
ISBN 3-85234-016-0 29,- 

127 Alte und neue Summenparameter (1995) 
ÖWAV-Seminar 1995, TU-Wien 
ISBN 3-85234-017-9 29,- 

128 Viruskontamination der Umwelt und Verfahren der Kontrolle  
(deutsch oder englisch) (1995) 
4. Symposium Univ.Prof.Dr. R. Walter 
ISBN 3-85234-019-5 0,- 

129 Einfluß von Indirekteinleitungen auf Planung und Betrieb  
von Abwasseranlagen (1996) 
ÖWAV-Seminar 1996, TU-Wien 
ISBN 3-85234-020-9 vergriffen 

130 Zentrale und dezentrale Abwasserreinigung (1996) 
31. ÖWAV-Seminar, Ottenstein 1996 
ISBN 3-85234-021-7 36,- 

131 Methoden der Planung und Berechnung des Kanalisationssystems (1996) 
ÖWAV-Seminar 1996, BOKU-Wien 
ISBN 3-85234-022-5 29,- 

132 Scale and Scaling in Hydrology (1996) 
Blöschl G. 
ISBN 3-85234-023-3 vergriffen 

133 Kulturtechnik und Wasserwirtschaft heute (11) (1996) 
Integrale Interpretation eines zeitgemäßen Gewässerschutzes 
ISBN 3-85234-024-0 12,- 

134 Ein Beitrag zur Charakterisierung von Belüftungssystemen für die  
biologische Abwasserreinigung nach dem Belebungsverfahren mit  
Sauerstoffzufuhrmessungen (1996) 
Frey W. 
ISBN 3-85234-025-X 22,- 

135 Nitrifikation im Belebungsverfahren bei maßgebendem 
Industrieabwassereinfluß (1996) 
Nowak O. 
ISBN 3-85234-026-8 36,- 

136 1. Wassertechnisches Seminar (1996) 
Nebenprodukte von Desinfektion und Oxidation bei der 
Trinkwasseraufbereitung 
ISBN 3-85234-027-6 i.V. 
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137 Modellanwendung bei Planung und Betrieb von Belebungs- 
anlagen (1997) 
ÖWAV - Seminar 1997, TU-Wien 
ISBN 3-85234-028-4 32,- 

138 Nitrifikationshemmung bei kommunaler Abwasserreinigung (1997) 
Schweighofer P. 
ISBN 3-85234-029-2 25,- 

139 Ein Beitrag zu Verständnis und Anwendung aerober Selektoren für die 
Blähschlammvermeidung (1997) 
Prendl L. 
ISBN 3-85234-030-6 22,- 

140 Auswirkungen eines Kläranlagenablaufes auf abflußschwache Vorfluter  
am Beispiel der Kläranlage Mödling und des Krottenbaches (1997) 
Franz A. 
ISBN 3-85234-031-4 25,- 

141 Neue Entwicklungen in der Abwassertechnik (1997) 
ÖWAV - Seminar 1997, TU-Wien 
ISBN 3-85234-032-2 36,- 

142 Kulturtechnik und Wasserwirtschaft heute (11) (1997) 
Abfallwirtschaft und Altlastensanierung morgen 
ISBN 3-85234-033-0 18,- 

143 Abwasserbeseitigung und Wasserversorgung in Wien (1997) 
Eine ökonomische Beurteilung der Einnahmen, Ausgaben und Kosten 
Kosz M. 
ISBN 3-85234-034-9 22,- 

144 Raum-Zeitliche Variabilitäten im Geschiebehaushalt  
und dessen Beeinflussung am Beispiel der Drau (1997) 
Habersack H. 
ISBN 3-85234-035-7 29,- 

145 Fortbildungskurs: Biologische Abwasserreinigung (1998) 
ÖWAV - Seminar 1998, TU-Wien 
ISBN 3-85234-036-5 vergriffen 

146 2. Wassertechnisches Seminar (1998) 
Desinfektion in der Trinkwasseraufbereitung 
ISBN 3-85234-037-3 i.V. 

147 Eigenüberwachung und Fremdüberwachung bei Kläranlagen (1998) 
32. ÖWAV-Seminar , Linz 1998 
ISBN 3-85234-038-1 36,- 

148 Grundwasserdynamik (1998) 
ISBN 3-85234-039-C 36,- 
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149 Die Tradition in der Kulturtechnik (1998) 
Kastanek F. 
Simulationsanwendung bei der Störung durch poröses Medium (1998) 
Loiskandl W. 
ISBN 3-85234-040-4 22,- 

150 Auswirkungen von Niederschlagsereignissen und der Schneeschmelze  
auf Karstquellen (1998) 
Steinkellner M. 
ISBN 3-85234-041-1 36,- 

151 Experiences with soil erosion models (1998) 
ISBN 3-85234-042-X 29,- 

152 Ein Beitrag zur Optimierung der Stickstoffentfernung  
in zweistufigen Belebungsanlagen (1998) 
Dornhofer K. 
ISBN 3-85234-043-8 25,- 

153 Hormonell aktive Substanzen in der Umwelt (1998) 
ÖWAV / UBA Seminar 1998, BOKU Wien 
ISBN 3-58234-044-6 vergriffen 

154 Erfassung, Bewertung und Sanierung von Kanalisationen (1998) 
ÖWAV Seminar 1999, BOKU Wien 
ISBN 3-8523-045-4 29,- 

155 Nährstoffbewirtschaftung und Wassergüte im Donauraum (1999) 
ÖWAV - Seminar 1999, TU-Wien  
ISBN 3-85234-046-2 32,- 

156 Der spektrale Absorptionskoeffizient zur Bestimmung der organischen 
Abwasserbelastung (1999) 
UV-Seminar 1998, Duisburg 
ISBN 3-85234-047-0 22,- 

157 Bedeutung und Steuerung von Nährstoff- und Schwermetallflüssen  
des Abwassers (1999) 
Zessner M. 
ISBN 3-85234-048-9 25,- 

158 Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der 
Abfallwirtschaft (1999) 
Rechberger H. 
ISBN 3-85234-049-7 vergriffen 

159 Sicherheit und Gesundheitsschutz auf Abwasseranlagen und  
deren Evaluierung (2000) 
ÖWAV – Seminar 2000, TU-Wien 
ISBN 3-85234-050-0 22,- 
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160 Auswirkungen von Klimaänderungen auf die Hydrologie alpiner  
Einzugsgebiete (2000) 
Hebenstreit K. 
ISBN 3-85234-051-9 25,-  

161 Innovative Messtechnik in der Wasserwirtschaft (2000) 
Präsentation eines Forschungsprojektes 
ÖWAV – Seminar 2000, BOKU – Wien 
ISBN 3-85234-052-7 vergriffen 

162 Sickerwasser und Oberflächenabdichtung auf  
Reaktordeponien (2000) 
ÖWAV - Seminar 2000, Wirtschaftskammer Wien 
ISBN 3-85234-053-5 25,- 

163 Abfall- und Abwasserentsorgung in kleinen Verhältnissen (2000) 
ÖWAV - Seminar 2000, Ottenstein 
ISBN 3-85234-054-3 25,- 

164 Niederschlag-Abfluss-Modellierung – Simulation und Prognose (2000) 
ÖWAV-Seminar 2000, TU Wien 
ISBN 3-85234-055-1 30,- 

165 Mehrdimensionale Abflussmodellierung am Beispiel der Lafnitz (2000) 
Habersack, H. / Mayr, P. / Girlinger, R. / Schneglberger, St. 
ISBN 3-85234-056-x 25,- 

166 Anpassung von Kläranlagen – Planung und Betrieb (2001) 
ÖWAV-Seminar 2001, TU Wien 
ISBN 3-85234-057-8 40,- 

167 Bepflanzte Bodenfilter zur weitergehenden Reinigung von Oberflächen- 
wasser und Kläranlagenabläufen (2001) 
Laber J. 
ISBN 3-85234-058-6 25,- 

168 Kanalbetrieb und Niederschlagsbehandlung (2001) 
ÖWAV-Seminar 2001, BOKU Wien. 
ISBN 3-85234-059-4 29,- 

169 Development of a Simulation Tool for Subsurface Flow Constructed  
Wetlands (Entwicklung eines Simulationsmodells für bepflanzte  
Bodenfilter) (2001) 
Langergraber G. 
ISBN 3-85234-060-8 25,- 

170 Simulation von Niederschlagszeitreihen mittels stochastischer Prozess- 
modelle unter Berücksichtigung der Skaleninvarianz (2001) 
Bogner 
ISBN 3-85234-061-6 i.V. 

171 Sewage Sludge Disposal – Sustainable and/or Reliable Solutions (2001) 
ÖWAV / EWA Workshop 2001, TU-Wien 
ISBN 3-85234-062-4 25,- 
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172 Stickstoffentfernung mit Biofiltern (2002) 
Nikolavcic B. 
ISBN 3-85234-063-2 30,- 

173 Anaerobe Abwasserreinigung: Beeinflussende Faktoren der  
Versäuerung eines Zitronesäurefabrikabwassers (2002) 
Moser D. 
ISBN 3-85234-064-0 20,- 

174 Gewässerschutz bei Entlastungsbauwerken der Mischkanalisation (2002) 
Fenz R. 
ISBN 3-85234-065-9 25,- 

175 Wechselwirkung von physikalischen, chemischen und biotischen  
Prozessen in aquatischen Systemen (2002) 
Kreuzinger N. 
ISBN 3-85234-066-7 i.V. 

176 Benchmarking in der Abwasserentsorgung (2002) 
ÖWAV Workshop Februar 2002, TU-Wien 
ISBN 3-85234-067-5 30,- 

177 Klärschlamm (2002) 
Möglichkeiten und Verfahren zur Verwertung / Entsorgung ab 2004 
ÖWAV Seminar April 2002, Wirtschaftskammer Österreich 
Schlammbehandlung und Entsorgung 
ÖWAV / TU – Workshop September 2000, TU-Wien 
ISBN 3-85234-068-3 30,- 

178 Arzneimittel in der aquatischen Umwelt (2002) 
 ÖWAV Seminar 2002 
ISBN 3-85234-069-1 30,- 

179 Untersuchungen zur Entfernung natürlicher radioaktiver Stoffe aus 
Trinkwasser und Überblick zu deren Verbreitung in Österreich (2002) 
ISBN 3-85234-070-5 25,- 

180 Zum Fließwiderstandsverhalten flexibler Vegetation (2002) 
Stephan U. 
ISBN 3-85234-071-3 30,- 

181 Understanding and estimating flood probabilities  
at the regional scale (2002) 
Merz R. 
ISBN 3-85234-072-3 30,- 

182  Kanalmanagement - Neues Schlagwort oder alte Herausforderung ? (2003) 
ÖWAV Seminar 2003, BOKU Wien 
ISBN 3-85234-073-X 30,- 

183 Fortbildungsseminar Abwasserentsorgung (2003) 
ÖWAV Seminar Februar 2003, TU-Wien 
ISBN 3-85234-074-8 40,- 
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184 Klärschlamm (2003) 
ÖWAV Seminar November 2003, TU-Wien 
ISBN 3-85234-075-6 30,- 

185 Nachhaltige Nutzung von Wasser (2003) 
Endbericht zu Modul MU11 im Rahmen des Forschungsschwerpunktes 
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