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1 Introduction

1.1 Thematic Introduction

In recent years a noticeable trend towards the use of numerical modelling can be observed in all
engineering disciplines. This development is not surprising as computer models often feature
lower cost than comparable physical experiments, are superior in speed and provide complete
information of all relevant quantities throughout the domain of interest at once. The wide field
of water-related sciences is no exception to this trend: hydrology has a long-standing tradition
in rainfall-runoff modelling, groundwater hydraulics uses solute transport computer models for a
long time already, and river hydraulics relies heavily on the use of computational fluid dynamics.
The present work will focus on the latter of these important topics.

Especially for the investigation of flow conditions and sediment transport in rivers, computational
fluid dynamics proves to be a valuable tool. Compared with physical experiments, it allows for
a rapid variation in boundary conditions, including surface roughness and discharge, but also
the effect of man-made structures can be quantified very quickly using tools for numerical flow
analysis. Hence, they are used in the planning stage of proposed structures or modifications
in the river or its surrounding areas, in real-time flood forecasting applications, and they also
assist experts in forming their opinion on the reasons of incidents that took place in the past.
Depending on the spatial modelling detail, the applications are classified into one-, two-, and
three-dimensional models. While the use of 1D-models is widespread among engineers, mostly
due to their easy application and the little in-depth knowledge required to apply them, 2D-models
are not yet used that frequently. Often they are applied by the engineer to simulate spatially con-
fined flow processes that exceed the application limits of one-dimensional models, for instance
the flooding of previously dry terrain where two-dimensional effects prevail. Finally, 3D-models
are rarely applied in practice; their use seems to be mostly limited to academia. This is not
surprising as the use of higher dimensional models usually requires in-depth knowledge about
both the underlying physical processes and the corresponding numerics. Furthermore, a much
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higher level of detail of the modelled region must be available for a successful application, but
very often this data is not at the engineer’s disposal, rendering the gain of 3D-models practically
useless.

However, if the required data is available, three-dimensional river analysis codes can become
extremely valuable tools for investigating phenomena exhibiting 3D flow characteristics. This
includes flow through river bends where a secondary motion is indudgdyen(2000) [51],

Feurich (2002) [21]), river junctionsBradbrook et al.(2000) [12]), the presence of submerged
groynes Quillon & Dartus (1997) [60],Miller et al. (2003) [48]), scour around obstacles in the

flow domain Premstaller(2002) [64]), and also the whole region in the vicinity of weirs and
other man-made structures. In all these cases statements about specific flow features, like flow
direction and magnitude, the position of the water surface, pressure and turbulent kinetic energy
can be made, all of which are crucial for an engineer’'s assessment of the situation. The future
value of computational fluid dynamics tools clearly is found in predicting sediment transport on
a larger scale — especially since the treatment of sediments will be one of the major challenges of
the hydraulic engineer in the 21st century — but also water quality investigations and habitat mod-
elling are applications for the time to come, as soon as the required software will have reached
a reasonable level of applicability. It should, however, be noted that the correct prediction of the
flow field is of paramount importance for the evaluation of any properties that are transported
along with the flow. Therefore research efforts that are directed towards improvement of tools
for modelling the flow field are still required and will be the primary subject of this work.

Regardless of the dimension of the model or the discretisation technique employed, the flow
domain is always decomposed using a computation grid consisting of a large number of smaller
entities denoted cells. The common approach is to use triangular or quadrilateral cells in two
spatial dimensions, resulting in wedges, pyramids and hexahedra in 3D. Due to the meshing
mechanisms employed for this task, the grid forces the location of the respective cell centroids
and the user has little control about the actual points where the flow properties are about to be
stored. Besides that, the model operator must take reasonable care to align the computation grid
with the streamlines in the flow domain to avoid seeing the result affected by a process called
numerical diffusion, which will be subject to a detailed discussion later in this work. However,
such an alignment is not always straightforward or even possible if a dominating flow direction
cannot be identified.

This thesis proposes a paradigm shift in grid generation that comes at hand for circumventing
some of the mentioned problems associated with widely used meshing techniques. It derives and
prepares the required algorithms for creating computation grids based on point distributions given
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by the model user, enabling the operator to be in full control over the storage locations of the flow
properties he is interested in. The grid generator subsequently fulfils the task of creating a mesh
using the given point set, applying rules of neighbourship as fundamental base for its workflow.
This results in cells featuring an arbitrary number of edges in 2D and associated faces in 3D.
These cells are based on logic generation rules and allow for the exchange of mass between a
larger number of cells if an appropriate point distribution was chosen, thus reducing the negative
effects of flows not perpendicular to cell faces. This can be advantageous in situations where
no prevailing flow direction can be identified, as in recirculating flows or in the case of flows in
floodplains when multiple streams interact with each otfeitthart & Milbradt (2003) [81]),

but also in any other flow situation exhibiting a strong secondary motion, as will be shown later.

1.2 Objectives and Outline

The prime objective of this work is to prove the feasibility of the polyhedral cell methodology

in practical situations where turbulent channel or river flow is encountered. To get to this point,
several other objectives must be met first. A first step is the design of algorithms for generating
a polyhedral mesh and its subsequent software implementation. This is followed by the deriva-
tion of the generic discretised equations of flow and turbulence and their implementation in a
numerical code, which is to be properly validated against a number of measurements in different
flow situations. In the following thesis chapters all required mathematical derivations, as well
as the results of validation and application runs are discussed, while the implementation is done
in a software model calleBSim-3D This name is short foRiver Simulation in 3Cand it con-

sists of a pre- and postprocessor written in the Java programming language, hence allowing for a
platform-independent usage, and a solver module, coded in GNU compliant C because of speed
considerations. Due to all of these objectives, the work employs knowledge in the scientific fields
of mathematics, geometry, informatics and hydraulic research alike.

The work is arranged into five core chapters, each representing a distinct step in model develop-
ment. First of all, chapter 2 reviews a number of commercial and non-commercial 3D models
for computational fluid dynamics, listing their numerical capabilities along with usual fields of
application and past project references relevant for hydraulic engineering and research. At the
end of this chapter, the RSim-3D model is positioned within the framework of these models to
allow for a comparison.

In chapter 3, the design and application of polyhedral computation grids is discussed. Algo-
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rithms for point distribution and grid generation are the core of this chapter, but it also discusses
issues like grid refinement in practical situations and equations for obtaining cell volumes and
surface areas in a geometrically complex grid configuration. For such a general grid requires
a very general treatment of the governing equations of flow and turbulence, chapter 4 derives
the discretised equations in an appropriate way. Furthermore this chapter outlines the boundary
conditions of all flow properties required to obtain a solution, before theoretical and practical
considerations about numerical issues like stability and convergence conclude that section.

The verification and validation of the model is subject to discussion in chapter 5. Validation

is done by applying the model to four different flow cases: a wind-channel duct curved by 90
degrees is computed first, followed by a rectangular laboratory flume with an 180 degree bend,
and subsequently a channel exhibiting a2@énd. In the latter two cases, the used grid type is
varied to assess its influence on the results obtained. Finally, an S-shaped trapezoidal channel is
investigated to make a first step towards the modelling of realistic real-world flow situations.

The validation work of chapter 5 is followed by an exemplary application of the model to a
reach of the river Danube in chapter 6. Finally, a summary and the discussion of possible future
perspectives conclude the work.



2 Review of 3D CFD Programs for
Hydraulic Engineering

2.1 Introduction

Getting an overview on the capabilities and implementation details of comparable academic and
commercial software packages is an important first step towards the development of a new model.
Therefore, fourteen different 3D CFD codes that can be applied to general problems in hydraulic

engineering have been analyzed to determine their capabilities in this field. As there is constant
evolution in the CFD business and new software is developed frequently, it cannot be guaranteed
that this list is complete.

The information on the reviewed software packages was gathered from published literature and
extensive inquiries on the Internet. Sometimes it was difficult to find precise specifications of the
implemented methods and algorithms because this information was not disclosed to the public.
Such a non-disclosure policy is found in commercial codes quite frequently. However, the issue
that raised the most difficulty was to retrieve comparable price quotes for the different codes, as
the pricing policy varies greatly among the companies who author the software packages. For
some, an annual license fee applies, others offer perpetual licenses as well, and most of the time
discounts apply for academic institutions. In order to solve this probldegn(1999) [55] pro-

poses a referencing system relating the software license cost to the price of computer hardware.
If the software price is in the same category as a high-end UNIX workstation, it is being refer-
enced as "relatively expensive” according to this scheme, whereas the price category of a regular
desktop PC yields a "relatively inexpensive” software price. This referencing system is adopted
in this work, using the terms Freeware, High-End and Low-End as classifiers.

Disregarding software packages that were developed for very specific applications, these pro-
grams were found to be applicable to tasks within the field of river hydraulics (listed in alphabetic
order):
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CFX-5by AEA Technology, UK

Cometby ICCM, Germany

Delft3D by WL | Delft Hydraulics, The Netherlands
FEATFLOWDby the University of Dortmund, Germany
FIDAP by Fluent Inc., USA

Flo++ by Softflo Corp., South Africa

FLOW-3Dby Flow Science Inc., USA

FLUENT by Fluent Inc., USA

© © N o g M w0 N PE

NaSt3DGPoy the University of Bonn, Germany
. PHOENICSby CHAM Ltd., UK

e =
= O

. SSIIMby the Norwegian University of Science and Technology, Norway

=
N

. STAR-CDby CD adapco group, UK/USA

[EY
w

. SWIFTby AVL List GmbH, Austria
14. TELEMAC-3Dby Electricité de France and HR Wallingford, France/UK

While most of the software packages implement different options only applicable to certain flow
situations, there is a reasonable number of implementation characteristics common to all pro-
grams that can be used as criteria for comparison. The ones used in this review are:

e Operating System the software was written for,

e Method used for spatial discretisation of the partial differential equations (Finite Differ-
ences, Finite Elements or Finite Volumes),

e Grid types (structured and unstructured) as well as grid shapes (tetrahedra or hexahedra),
e Numerical scheme used for discretisation of convective terms,

e Numerical methods used for time discretisation,

e Methods to deal with the challenging task of coupling pressure and velocity,

¢ Implemented turbulence models, and

e Implementation of a free water surface.
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2.2 Software Packages

2.2.1 CFX-5

Name of software \ CFX-5 \

Author/company

AEA Technology, UK

Web page

http://www.software.aeat.com/cfx

Field of application

Mechanical, biomedical and process engineering; several succe
applications to the field of hydraulic engineering are also known

Cost

High-End

Operating System

UNIX, Linux, Windows

Spatial discretisatior

n Finite Volumes

Grid types

Unstructured grid consisting of tetrahedral, hexahedral, prism
pyramid elements (triangles and quadrilaterals in plan view)

Numerical methods

Either a first order upwind scheme or a so-called "numerical adve
corrected scheme” is being used for spatial discretisation along
a specially developed technique for pressure-velocity coupling.
time discretisation, a first order backward Euler scheme is empla

Turbulence model

Zero-equation model, two kinds of &models (two-equation), k-
model, Reynolds stress model

Free surface

A fluid mixture model allows for computation of any kind of free

surface conditions

Project references

assful

and

ction
with

For
yed.

Numerous real-world CFD application references in all branches are

listed on the software’s website. Among the ones relevant for
draulic engineering are a scour study for a deep-water terminal

in India (by HR Wallingford, UK), the investigation of flow patterns

within the vicinity of intakes (Hydroplan, UK), a natural river reh
bilitation design study (University of Nottingham, UK), and also

hy-
jetty

a-
an

analysis of turbidity currents in a lake (ETH Lausanne, Switzerland,

referenced irDIsen(1999) [55])

solving this kind of problems, as well. However, the fact that
software price is in the high-end region makes it difficult for smal
mid-sized businesses to utilize it.

Table 2.1: Software characteristics of CFX-5

ns.
n the
e of
the
or

References AEA(2002) [1]
The software is equipped with a wealth of different physical models
to suit just about any kind of CFD problem in real-world applicatio
The successful application to a reasonable number of projects i
Remarks field of hydraulic engineering proves that the software is capab
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2.2.2 Comet

Name of software | Comet |
Institute of Computational Continuum Mechanics GmbH (member of

Author/company the CD adapco group), Hamburg, Germany

Web page http://www.iccm.de

Field of application | Mechanical, chemical, environmental and hydraulic engineering
Cost No recent price quote available

Operating System | UNIX, Linux, Windows

Spatial discretisation Finite Volumes

Grid types Unstructured mesh of hexahedra, tetrahedra and prisms
Spatial discretisation is performed using one of the Upwind, Cen-
tral, MINMOD or HRIC schemes with the SIMPLE solution methpd
for pressure linkage. In terms of time discretization, fully implicit
schemes of first (Euler) or second order are employed in the model.
Zero-equation model, several types of kaodels (two-equation), all
types of kew models, Reynolds stress model
Free surface Interface-tracking method

Several references mostly from the industries of mechanical| and
process engineering are listed on the software’s website. The prod-
Project references | uct is also being used at the Potsdam Model Basin (Schiffbau-
Versuchsanstalt Potsdam GmbH) and at the Federal Waterways En-
gineering and Research Institute (BAW) in Hamburg.
Except for the manuals that come with the software, no publication

Numerical methods

Turbulence model

References related to the internals of the software could be found by the author.
Comet is short for "Continuum Mechanics Engineering Tool”, a gen-
Remarks eral CFD code with most applications in the field of mechanical engi-

neering. Physics are well represented in the software through numer-
ous different models.

Table 2.2: Software characteristics of Comet
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2.2.3 Delft3D

Name of software |

Delft3D |

Author/company

WL | Delft Hydraulics, Delft, The Netherlands

Web page

http://www.wldelft.nl/d3d

Field of application

Hydraulic engineering, in particular wave hydrodynamics, sedin
transport and water quality investigations

Cost

High-End. A free evaluation version with limited capabilities is av:
able.

Operating System

Linux, Windows

Spatial discretisation Finite Differences

Grid types

Orthogonal curvilinear grid

Numerical methods

Alternate Direction Implicit (ADI) method for discretisation of th
governing equations including transient terms

Turbulence model

Any choice of k=, k-L, algebraic or constant (zero-equation) mods

Free surface

Hydrostatic pressure assumption, water surface appears as g
known in the governing equations and is solved along with all o
unknowns

Project references

Recent projects are studies of coastal hydrodynamics related tg
reclamation for the new airport in Hongkong, the morphological
velopment of the Dutch coast, and studies of Lake Malawi and L
Victoria in Africa.

References

Besides the manuals that are supplied with the software, a shor
cussion of the software’s internals is given in the M.Sc. thesisuof
jendijk (2001) [44]

Remarks

The software was particularly developed for hydraulic engineeg
and seems to be well suited for coastal hydrodynamics where it ¢
with a lot of experience. The hydrostatic pressure assumption,

ever, is not generally justified and can cause problems for exa

nent

Ail-

e

p|s
N un-
ther

land
de-
lake

t dis-

ring

bmes
how-
mple

in river flow computations. Furthermore, a Finite Difference formu-

lation is in general comparably fast but not always stable enoug

h for

any kind of problem in hydraulic engineering.

Table 2.3: Software characteristics of Delft3D
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2.2.4 FEATFLOW

nd,

| Name of software | FEATFLOW |
Author/company Department of Applied Mathematics and Numerics, Univ. Dortmu
head of group: Prof. Turek
Web page http://lwww.featflow.de

Field of application

Unsteady flows of any kind that can be described by the Navier-St
equations

Cost

Freeware

Operating System

UNIX, Linux, Windows (Fortran 77 compiler is required because
software is distributed as source code only)

Spatial discretisation Finite Elements

Grid types

Unstructured grid of tetrahedra and hexahedra (triangles and
conforming quadrilaterals — predominantly the latter ones — in
view)

Numerical methods

FEM for spatial discretisation, implicit scheme for time discretisat
(choice between Backward Euler, Crank-Nicolson, Fractional &te
Method)

Turbulence model

None (implementation planned for future releases)

Free surface

Not implemented

Project references

Numerous academic applications, documented in the Virtual Al
of Fluid Motion, available on the CD that is shipped witlrek(1999)
[82] and on the Web page of the FEATFLOW group; project re
ences in the field of mechanical and chemical engineering

References

Turek(1999) [82]

Remarks

FEAT is an abbreviation for "Finite Element Analysis Tools”. T
software appears to be predominantly suited for scientific purp,
in research and teaching; good knowledge of numerics and the
equations for CFD-computations is assumed for the application g

okes

the

non-

blan

ion
P

pum

fer-

he

oses
basic
f the

program.

Table 2.4: Software characteristics of FEATFLOW

10
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2.2.5 FIDAP

Name of software

[ FIDAP |

Author/company

Fluent Inc., Lebanon, New Hampshire, USA

Web page

http://www.fluent.com

Field of application

Mechanical, chemical, civil, biomedical engineering — all types of
dustrial CFD applications

Cost

High-End

Operating System

UNIX, Linux, Windows/NT

Spatial discretisation Finite Elements

Grid types

Unstructured mesh of tetrahedra, hexahedra, pyramids and w
(triangles and quadrilaterals in plan view)

Numerical methods

ward Euler as a first order scheme, trapezoid rule for second ¢
accuracy) and implicit time discretization techniques are availabl

Turbulence model

ferent ke models and the k» model by Wilcox (two-equation mod
els)

Free surface

Volume of Fluid (VOF) approach available for large deformations
Arbitrary Lagrangian-Eulerian (ALE) method for continuous surf:
deformations

Project references

More than 50 working examples in all fields of application inclug

complished with FIDAP (many in the field of biomedical engineeri

n-

edges

Finite Element Method for spatial discretisation, both explicit (Back-

brder
2]

Choice between mixing-length model (zero-equation model), four|dif-

and
Ace

led

with the software release, countless scientific papers on projects ac-

ng)

earch

References Fluent(1998) [24]
Very well tested software from a company with many years of experi-
ence in CFD. Includes numerous options to customize one’s res
Remarks parameters and choose between both different physical and numerical

and tutorials. However, the high price tag makes the software
fordable for small businesses.

Table 2.5: Software characteristics of FIDAP

approaches for problem solutions. Extensive software documentation

Inaf-

11



2.2. Software Packages

2. REVIEW OF 3D CFD PROGRAMS

2.2.6 Flo++

Name of software \ Flo++

Author/company

Softflo Corp., Potchefstroom, South Africa

Web page

http://www.softflo.com

Field of application

Mechanical, chemical, biomedical and environmental engineerin

g

Cost

Low-End. A free evaluation version with limited capabilities is ava
able.

il-

Operating System

Windows 95/98/NT

Spatial discretisatior

n Finite Volumes

Grid types

Unstructured mesh of hexahedral or prism cells

Numerical methods

Finite Volume method using the upwind scheme and employing §
PLE and PISO algorithms for pressure-velocity coupling in spa
discretisation. A fully implicit technique is being used for time d
cretisation.

E
atial
is-

Turbulence model

k- model for high Reynolds numbers

Free surface

Implemented (technique not specified)

Project references

Several examples for applications of the program are presented ¢
software’s website, however most of them are taken from the fie
mechanical engineering.

References Except for thg manuals that come with the software, no publica
related to the internals of the software could be found by the auth
The software is not that expensive as comparable general pu
CFD codes. Since it is relatively new on the market — compare
Remarks other software — it is hard to find references related to experience

the model. The built-in physics, however, look quite promising
far as a successful application to the field of hydraulic engineerir
concerned.

12

Table 2.6: Software characteristics of Flo++
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2.2. Software Packages

2.2.7 FLOW-3D

Name of software \ FLOW-3D \

Author/company

Flow Science Inc., Santa Fe, New Mexico, USA

Web page

http://www.flow3d.com

Field of application

Free-surface problems in hydraulic and mechanical engineering

Cost

High-End

Operating System

UNIX, Linux, Windows

Spatial discretisatior

n Finite Differences

Grid types

Structured grid of rectangular shaped elements

Numerical methods

In both space and time, explicit methods are employed by default
implicit methods are available as option (unfortunately, no further
tail about the used methods is available)

Turbulence model

Choice between Prandtl mixing length (zero-equation), a 0
equation and two types of kfwo-equation models

Free surface

Volume of Fluid (VOF) method

Project references

Numerous references to hydraulic engineering projects are avajl

and
de-

ne-

able

as web links on the software’s website (e.g. Scribers Creek and Gold-

enrod Road Bridge by INCA engineers or a snow drifting analysis
the University of Narvik)

References

Several hundred publications of studies performed with FLOW-3D
listed on the software’s web site, however, there was no publica
found by the author that deals with the software itself

Remarks

When using the software, first a rectangular shaped grid is gene
then the solid boundaries are embedded within that grid. By u
this approach, displacements in both the free surface and the (r

by

are
tion

rated,
sing

iver)

bed can be modeled easily. Therefore, the software is well suited for

many hydraulic engineering problems (like weir flow, spillways
scour problems in hydraulic engineering).

Table 2.7: Software characteristics of FLOW-3D

13
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2.2.8 FLUENT

Name of software \ FLUENT

Author/company

Fluent Inc., Lebanon, New Hampshire, USA

Web page

http://www.fluent.com

Field of application

Mostly chemical and mechanical engineering

Cost

High-End

Operating System

UNIX, Linux, Windows

Spatial discretisatior

n Finite Volumes

Grid types

Unstructured grid consisting of any combination of tetrahedra, h
hedra, pyramids and wedges (triangles and quadrilaterals in
view)

Numerical methods

Control-Volume spatial discretisation with central-differencing of
diffusion terms and several upwind-schemes (first order, second ¢
power-law, QUICK) are at the user’s disposal. Time discretisaw
is performed by first and second order explicit and implicit meth
upon the users choice.

Turbulence model

Choice between Spalart-Almaras model (one-equation), three d
ent k< models and two kinds of k» models (two-equation)

Free surface

Volume of Fluid (VOF) approach implemented

Project references

Around 200 different application examples are well documente
the software’s website. Of specific interest are the study of flow
a weir and an analysis of currents in drinking water reservoirs.

exa-
plan

the
prder,
tion
ods

iffer-

1 on
pver

References

Fluent(2003) [25]

Remarks

Even though the software employs the physical Finite Volume
proach, its application history seems to be fairly limited to chem
and mechanical engineering. The fact that the software is bun
with other software from Fluent Inc. makes it a good choice for th
cases where FIDAP doesn'’t yield a result in appropriate time.
model and numerical approaches in the program are well teste(
there is a reasonable amount of documentation. However, the
tag is too high to be of use for small businesses.

ap-
ical
dled
ose
The
1 and
price

14

Table 2.8: Software characteristics of FLUENT
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2.2.9 NaSt3DGP

Name of software |

NaSt3DGP

|

Author/company

Department of scientific computing and numerical simulation, U
Bonn, head of group: Prof. Griebel

Web page

http://www.wissrech.iam.uni-bonn.de/research/
projects/koster/NaSt3DGP

Field of application

Any type of general scientific 3D CFD problems

Cost

Freeware

Operating System

UNIX, Linux, Windows (C++ compiler is required because the s¢
ware is distributed as source code only)

Spatial discretisatior

1 Finite Differences

Grid types

Rectangular, non-uniform, staggered mesh

Numerical methods

Higher order upwind scheme, central difference scheme and first
upwind schemes available for spatial discretisation; explicit Ada

niv.

Dft-

order
ms-

Bashford scheme (predictor-corrector method) for time discretisation.

Turbulence model

None (implementation planned for future releases)

Free surface

Not implemented in the standard distribution (level-set apprg
planned for future releases)

Project references

Three academic applications are documented: driven cavity
problem, measurement equipment in pharmaceutical applicat
odor modeling

References Griebel et al.(1995) [31]
NaSt3D is apparently an abbreviation for "Navier-Stokes 3D”. ]
software seems to be best suited for solving academic problen
Remarks mechanical and chemical engineering but due to the used techn

it will probably deliver results very fast for just about any type of |
CFD problem.

Table 2.9: Software characteristics of NaSt3DGP

ach

flow
ions,

Ihe
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2.2.10 PHOENIC

S

Name of software \ PHOENICS \

Author/company

Concentration Heat & Momentum Ltd, London, UK

Web page

http://www.cham.co.uk

Field of application

Mechanical, chemical, civil, environmental and hydraulic enginee

Cost

Low-End. Additionally to an ordinary licensing scheme, an old v
sion is available as inexpensive shareware.

Operating System

UNIX, Linux, Windows

Spatial discretisatior

n Finite Volumes

Grid types

Structured hexahedral grid

Numerical methods

Spatial discretisation on the Finite Volume grid by linear (QUIC
or non-linear schemes (SMART, OSPRE), employing the SIMR
solution algorithm

Turbulence model

Several zero-equation models (Prandtl mixing length among the b
known), numerous different k-models, k= model, several other les
popular methods

Free surface

Scalar-equation method (position of the free surface deduced
the solution of the conservation equation) and height-of-liquid met
available

Project references

Numerous project references and validation cases are refereng
the software’s website. Of specific interest are a study of flow
differently shaped drinking water reservoirs, an analysis of curren
a harbor, and the computation of oil spills into the sea.

ring
er-

K)
LE

etter
S

from
hod

ed on
S in
tsin

References Spalding(1986) [76]
The name of the software is derived from "Parabolic Hyperbolici Or
Elliptic Numerical Integration Code Series” which refers to the types
of the underlying equations in general purpose CFD computations.
Remarks It is on the market since 1981, therefore it can be considered to be

very well tested and reliable. Many physical models, especiall
turbulence modeling, are included in the software package. How
the structured grid approach is not as flexible as the grid types us
other software authors.

Table 2.10: Software characteristics of PHOENICS
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2.2. Software Packages

2.2.11 SSIIM

Name of software \ SSIIM

Author/company

Norwegian University of Science and Technology, Department of
draulic and Environmental Engineering, Assoc. Prof. N.R.B. Olsg

Web page

http://www.bygg.ntnu.no/~nilsol/ssiimwin

Field of application

Hydraulic, river and sedimentation engineering

Cost

Freeware

Operating System

0S/2, Windows

Spatial discretisatior

n Finite Volumes

Grid types

Structured hexahedral grid (version 1.1), unstructured grid of hex
dra and wedges (version 2.0)

Numerical methods

For spatial discretisation, both second-order upwind and power
schemes can be chosen, pressure-correction is performed by the
PLE or the SIMPLEC method. Even though not specified in the g
ware manualQlsen et al.(1999) [59] indicates that time discretisatig
is performed by making use of an implicit technique.

Turbulence model

k-¢ (two-equation) model

Free surface

Transient Free Surface (TFS) algorithm

Project references

In the software manual and on the website, a decent number of

ences to projects with SSIIM are given, among them are the ana
of secondary currents in a curved channel, a fish farm tank, a g
of reservoir trap efficiency, a flood wave hitting a building, a scou
a flume, and several water quality computations for Norwegian g
Reservoir flushing studies were done®lgen(2000b) [56] andTritt-
hart (2000) [79]. Recent work with the software is focused on s
merged vegetatiorHscher-Antze et al.2001 [23]) , sediment trang
port and the evolution of meandering chann€ssén 2002 [58]).

References

Olsen(1999) [55],0lsen(2000a) [57]

Remarks

SSIIM stands for "sediment simulation in intakes with multiblock ¢
tion” and refers to the software’s original purpose. Successive
provements have made the software to become a CFD tool for
aspects of hydraulic and sedimentation engineering. Being not to
ficult to use and equipped with concepts that are easy to understa
is also well suited for beginners and students in the field of hydra
CFD applications. However, as also stated in the manual, ther
aspects of the software that are not very well tested and lack stal
sometimes also strange behavior of the graphical pre- and postpr
sor may be experienced. But considering that the program is ava
as freeware, these little problems are more than excusable.

Table 2.11: Software characteristics of SSIIM
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2.2.12 STAR-CD

Name of software \ STAR-CD \

Author/company

CD adapco Group (consisting of Computational Dynamics Ltd, L
don, UK and adapco, New York, USA)

Web page

http://www.cd-adapco.com

Field of application

Mechanical, biomedical, chemical and hydraulic engineering

Cost

High-End

Operating System

UNIX, Linux, Windows

Spatial discretisatior

n Finite Volumes

Grid types

Fully unstructured grid of tetrahedra and hexahedra (triangles
quadrilaterals in plan view)

Numerical methods

Control-Volume spatial discretisation approach with the SIMR
method, using an automated technique that either employs centr
ferencing or first order upwind differencing, depending on the I¢
of numerical dissipation. For time discretisation, a fully implicit fi
order differencing scheme is employed.

Turbulence model

Smagorinsky model (zero-equation) and five different kinds ef
models (two-equation) are available

Free surface

Volume of Fluid (VOF) method

Project references

About ten project references for every single of eight different ing
try categories are made available via the software’s website, ac
up to almost one hundred references. Among the more intere
ones are the design of artificial reefs (Berlin University of Techr
ogy), design studies for weir shapes (University of Hannover), vo
modelling around pillars in rivers, the development of a fish guida
system at Bonneville dam (US Army Corps of Engineers) and a s
of reservoir flows (Arup Corp.).

References Except for thg manuals that come with the software, no publica
related to the internals of the software could be found by the auth
The software is a general purpose CFD code that can also be aj
to hydraulic engineering problems. The unstructured grid appre
Remarks in combination with with free surface and turbulence modelling m

on-
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al dif-
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it a flexible tool that appears to be quite popular in many industries,

especially in mechanical engineering.

Table 2.12: Software characteristics of STAR-CD
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2.2.13 SWIFT

Name of software \ SWIFT

Author/company

AVL List GmbH, Graz, Austria

Web page

http://www.avl.com

Field of application

Mechanical, civil and hydraulic engineering

Cost

No recent price quote available

Operating System

UNIX, Linux, Windows

Spatial discretisatior

n Finite Volumes

Grid types

Fully unstructured grid of arbitrary cell types

Numerical methods

Control-Volume spatial discretisation approach with a variant of
SIMPLE method. For spatial discretisation, the available options
the first order upwind scheme, central differencing and two third

sation, fully implicit first and second order differencing schemes
offered.

Turbulence model

The k<= model (two-equation), the non-linear Reynolds stress m

are available.

Free surface

Volume of Fluid (VOF) method

Project references

on the software’s website. In this context, the more relevant ¢

for Forests, Austria) and flooding simulations (VRVis, Austria).

the
are
or-

der schemes (MINMOD and AVL-SMART). Regarding time discreti-

are

pdel

and also a hybrid turbulence model developed by the software authors

About ten project references in different industrial fields can be found

bnes

include avalanche simulations (Federal Office and Research Centre

References Gouda et al.(2002) [30]
The software is a general purpose CFD code that can also be applied to
hydraulic engineering problems. The arbitrary grid approach together
with free surface and turbulence modeling make it a very promising
Remarks S . .
tool for the application in complicated flow situations. Unfortunately,

the number of project references is still not very high, but this as
may change over time.

Table 2.13: Software characteristics of SWIFT

pect
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2.2.14 TELEMAC-3D

Name of software \ TELEMAC-3D

|

Author/company

Electricité de France (Laboratoire National d’'Hydraulique), Clam
France, and HR Wallingford, Oxfordshire, UK

Web page

http://www.wallingfordsoftware.com/products/
telemac.asp

Field of application

Hydraulic engineering (hydrodynamics, sediment transport and v
quality in the natural environment: river, estuaries, coastal waters

Cost

High-End

Operating System

UNIX, Windows NT

Spatial discretisatior

1 Finite Elements

Grid types

Unstructured triangular grid (tetrahedra and prisms in 3D)

Numerical methods

Fractional step decomposition (advection step, diffusion step ang
surface-continuity-pressure step)

Turbulence model

Prandtl mixing length (zero-equation) and knodel (two-equation
available

Free surface

Computation based on the hydrostatic pressure assumption, one
rate step in the overall numerical method

Project references

HR Wallingford lists seven different real-life projects that have b
done using TELEMAC on its website (mostly marine/coastal appl
tions) plus around a dozen companies and organisations that u
TELEMAC software package.

art,

vater

)

free

sepa-
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tures

References Hervouet et al(1994) [35],Anderson2000) [5]
The software was specifically designed for hydraulic engineering
proved its usefulness in this field for many years in numerous a
cations. Due to this approach, it does not contain so many fe
Remarks which general purpose CFD codes must possess, a fact that makes it

to produce very good results in river and coastal engineering,

tion in 3D) are not always the best fit for true physics in nature.

even more useful for the hydraulic engineer. Furthermore, it appears

ven

though some of its assumptions (i.e. the hydrostatic pressure assump-

Ta
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2.3 Summary

Table 2.15 provides an overview of the capabilities of all fourteen reviewed software packages,
with the newly develope®Sim-3Dmodel added to allow a comparison.

More than half of all models operate with the Finite Volume approach, both Finite Element and
Finite Difference techniques each make up for a quarter of the total number. Around two-thirds
work on unstructured grids, with more than 90 percent using at least hexahedral shaped elements
and more than half additionally allowing tetrahedra for spatial decomposition.

The usage of numerical methods and algorithms for both space and time discretisation is highly
inhomogeneous and doesn’t allow to draw conclusions about preferred techniques. It should be
mentioned that two out of the fourteen models operate using a hydrostatic pressure assumption
which makes them actually only quasi-3D applications that do not allow for computation of
several phenomena.

Two mostly academic products do not account for turbulence at all, a fact that restricts their
application to laminar flows. The other codes implement at least one two-equation turbulence
model, with the k= model being by far the favourite technique. More than half of all products
additionally allow usage of zero-equation models, and still almost 50 percent come equipped
with other techniques that are mostly based on higher dimensional stress formulations.

More than 80 percent of all models come with the ability to model free surface flows, again
mainly the academic codes do not have this feature built in. Techniques for free-surface imple-
mentation vary greatly, with the VOF (Volume of Fluid) being the favourite.
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Software author

Academic / Commercial C AC|C A|lC C|C C|A C|/A A|jC Cc|C

Operating System

UNIX X X X | X X X | X X | X X X | X

Linux

Windows X X [ X X | X X|X X|X X|X X|X X|X

0S/2

Spatial discretisation

FDM /FEM / FVM V V b E|/E VvV|D VvV|D V|V V|V VI|E

Grid types

Structured / Unstructured u u S Uju Uu|s U|js s|uUu uUlu uU|U

Grid shapes

Tetrahedra X X X | X X X X X | X

Hexahedra X X X X | X X|X X|X X|Xx X

Numerical methods - space
Central Differences

Upwind first order X X X
Upwind second order
QUICK scheme
Other X X X X | X X

X X X X X
x
x

Numerical methods - time
Explicit first order

Implicit first order X X X | X X | X X X | X
Implicit second order
Other (or no implementation) X X X X | X X

Pressure-velocity coupling
SIMPLE X X X | X X | X X
Other X X | X X |XxX X/|X
Hydrostatic pressure assump. X X

Turbulence models
zero-equation

k-e

k-w

Other

X X X X
X X X X
X X X X

Free surface

Implemented X X X X X | X X X | X X | X X|X

Table 2.15: Comparison of model characteristics
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3 Polyhedral Computation Grids

3.1 Background and Fundamentals

3.1.1 Conventional Computation Grids

In typical three-dimensional hydrodynamic simulations, grids based on tetrahedra or hexahedra
are employed (see chapter 2). Very often these computation grids are assembled by meshing
the domain in 2D and subdividing the resulting cell piles into several smaller entities. Since
this approach is also followed in the present work, this chapter will first discuss the process of
two-dimensional domain meshing before moving on to three-dimensional grids.

The conventional way of meshing multidimensional domains in 2D is to use triangles (fig. 3.1)
and quadrilaterals (fig. 3.2). As a rule of thumb it can be stated that quadrilaterals are frequently
used in Finite Volume codes, while triangles are the shape of choice in software packages based
on the Finite Element formulation — even though there are some exceptions to this. There is no
common standard as to how quadrilateral cells are formed, except for the fact that the longitudinal
sides are aligned with the expected main flow direction to avoid solutions being spoiled by false
diffusion, which is further discussed in section 5.3. Hence, grids based on quadrilateral cells
typically look like the one depicted in figure 3.2 which constitutes a stretch of the river Danube
east of Vienna.

Triangular cells, on the other hand, are usually generated by a procedure dBetdeday
triangulation (Wilhelm (2000) [91]). Implementation and algorithmic details of this method
are discussed i®hewchul1996) [73]. Figure 3.1 shows a detail of a computation grid that
was created using this triangulation method; the grid was employed to analyse the August 2002
flood events in Lower Austrialtitthart & Milbradt (2003) [81]). The principle of the Delaunay
triangulation is that exactly one triangular element results when a circle is drawn through three
points out of a set of base points while no other point lies within the same perimeter. Therefore
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3.1. Background and Fundamentals

Figure 3.1: Example of a grid using triangular cells

Figure 3.2: Example of a grid using quadrilateral cells
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always the nearest neighbours of a point make up a triangle. Further details of this method will
not be discussed here since they are out of the scope of the present work.

As opposed to grids based on triangles or quadrilaterals, the application of grids with cells char-
acterised by more than four edges is rarely found, even though some commercially available
numerical codes (e.drluent(2003) [25]) are capable of dealing with cells of such sh&tand-
ingford & Forth (2003) [77] have described the use of polygonal bounded cells in two spatial
dimensions in an aerospace application, using the CFD code FLITEB3well & Croaker
(2003) [14] presented a study using polygonal bounded Finite Volumes in three spatial dimen-
sions (i.e.polyhedralcells) to deal with different length scales within a computational domain,
computing internal air flow in a large warehouse with small windows which are represented by
several faces of a larger control volume, thus avoiding the use of an impractically high number
of elements to solve the problem. However, in the field of river hydrodynamics, no use has been
made of this technique so fafrtthart (2004) [80]).

3.1.2 Voronoi Decomposition

As long as the unknowns of a numerical simulation are stored in cell centroids, the user normally
has little control over the exact location of these variables. A remedy is to store the unknowns
in the vertices of a computational grid, but there are some problems involved with this approach
as soon as the cells become more complex in overall shape, as will be discussed in chapter 4.
Another approach is to define the location of the cell centroids in a first step and construct the
grid around them afterwards. This results in cells of complex shape, being polygonally bounded
in 2D and polyhedral in 3D. Itis, however, a paradigm shift compared to the common way of grid
generation, giving the user full control over the location of the conservation quantities within the
computational domain.

It improves the overall behaviour of the numerical solution process if a cell's boundary line lies
exactly in the middle of a line connecting two neighbouring cell centroids. This results from the
fact that the face values of the conservation quantities can be obtained without the necessity of
weightedinterpolation, as it is shown in chapter 4. The numerical behaviour is obviously further
improved when the boundary line is exactly perpendicular to the connection line between cell
centroids since it avoids the need to transform both convective and diffusive fluxes. In contrast,
if there is a severe non-orthogonality between the connection line and cell boundary lines, non-
orthogonal terms must be introduced into the discretised equations, which is further discussed in
Davidson(1996) [16] and also in the subsequent chapter of the present work. Hence, a spatial
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discretisation or meshing algorithm should take care to avoid non-orthogonal cells (i.e. thin
stretched triangles) but produce cells conforming to the orthogonality constraint instead.

This constraint is automatically preserved if quadrilateral cells with approximately parallel edges
(i.e. cells of rectangular shape) are being used. However, alignment with the main flow direction
is mandatory for such a grid setup. It is therefore not a feasible approach in all those cases
where a main flow direction is not easy to determine a priori. A remedy to this problem is to
introduce a grid based onvronoi decompositionf the computational domain. This graphical
method was first published by Goronoi[88] in 1908 and is today frequently used in other
sciences: hydrology uses the method to obtain the Thiessen polygons surrounding rain gauges;
in geography the method is applied to find the region of influence of municipalities.

Graph theory defines the Voronoi decomposition asdin@ graphto the Delaunay triangula-

tion (Frank (2002) [28]). In other words, there exists a unique relation that allows to construct
each graph as soon as the other one is known. Hence, it is sufficient to store only the elements
composing one of these graphs while the other one can be computed on the fly with very little
computational effort. This makes it possible to use the grid based on the Voronoi decomposition
to perform the numerical computations while the dual grid is used for interpolation of terrain and
water surface elevations — an approach that was used in the present work.

A technical definition of the Voronoi decomposition is givenMitbradt (2001) [47]. Accord-

ing to this definition, the Voronoi decomposition is the segmentation of the entire domain based
on neighbourshipof a given set of base points Neighbourship is defined by a distance func-

tion relating two points; usually the Euclidean norm is employed for this purpose. The nearest
neighbour of a given point is then the reference poiptwhere the distance function becomes a
minimum within the full set of points. Several different pointwiill therefore possess a common
nearest neighbouyr, the set of points given by this criterion is denotedion For every region a
boundary and subsequently neighbouring regions can be defined. In the present work, the regions
are the two-dimensional representations of control volumes in the Finite Volume method while
their boundaries are the cell edges. The tezgionwill therefore be used throughout this work

to refer to the 2D projection of cells on the x-y plane. Figure 3.3 illustrates this on the basis of
four points that have been arranged in such a way that hexagonal Voronoi regions emerge (one
of which has been marked in blue); the figure was plotted under the assumption of a boundary
constraint following its contour. Superimposed on the Voronoi regions are the Delaunay triangles
(one was coloured in red). It can be seen that the base points always represent the centre of the
regions while being the vertices of the Delaunay triangles at the same time. Edges of Voronoi
regions and Delaunay triangles are always perpendicular to each other.
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Delaunay triangle

Voronoi region

Base point

Figure 3.3: Voronoi regions and Delaunay triangles

After the fundamentals of the Voronoi decomposition have been discussed, it is now possible to
assess this method with regard to the criteria a computational grid should match for optimum
performance:

e Orthogonality: The edges of computational cells are always perpendicular to the con-
nection line between two cell centroids; hence, non-orthogonal terms in the discretised
equations can be dropped.

e Unweighted interpolation functions: The edges of computational cells are always located
right in the middle of the connection line of the cell centroids. Therefore the use of
weighted interpolation functions becomes unnecessary.

e Absence of numerical diffusion: If the computation points are distributed in a deliberate
way, cells possessing a larger number of edges result (see chapter 3.2). Since these cells
allow for fluxes in more than two main directions, numerical diffusion is reduced by a fair
amount.

Literature discusses many different approaches to construct Voronoi decompositions or Voronoi
diagrams in general. The most common ones are:

e Plane intersect method his is the straightforward way to constructing a Voronoi diagram.
For each point in the total set the bisection line with every other point is computed. This
results in a number of half-planes which must be merged. The process must be repeated
for each and every point site in the plane (Vierm@a01) [85]). This method is very
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inefficient since it is easy to figure out that it operates on the ordé? @f*), wheren
denotes the number of points.

e Plane sweep methodrhis algorithm is an enhanced version of the previous method for
it introduces the concept of incremental generation to minimise redundancy. The set of
points is sorted along the positive x-axis in a first step; afterwards always the next point
site in the list is inserted into the diagram. This approach minimises the number of required
cutting operations and yields an average complexity 6f log ), but of course the worst
case complexity remains & (n?).

¢ Divide and conquer algorithmThis method is well known and widely used. It enhances
the plane sweep method by not only inserting point after point into the existing diagram,
but rather several point sites already merged into a Voronoi diagreem{et22001) [85]).
The algorithm consists of two steps: in the dividing step, the sites in the plane are divided
into two halves along a successively evolving bisection line; this procedure is subject to
recursion for every subset until only two or less elements are left. As a matter of fact, the
result of this step is a binary tree containing very simple Voronoi diagrams in its leaves.
These diagrams are then merged in the conquering step to yield the entire Voronoi diagram.
The algorithm has a complexity 6f (nlogn).

e Fortune’s algorithm This algorithm was proposed yortune [26] in 1986 and is the
most efficient of all algorithms as it guarantees a worst-case performance of the order
O (nlogn), i.e. in general situations it will operate faster than that. It is the algorithm
of choice for the present work, hence it will be explained in more detail in the following
section.

3.1.3 Fortune’s Algorithm

The algorithm’s underlying idea is to interpret the task of constructing Voronoi diagrams as the
two-dimensional projection of a three-dimensional procedure. First, a cone with an apex angle
of 45 degrees is constructed on each point site in the x-y plane (fig. 3.4). Afterwards, a plane
7 slanted at 45 degrees is moved along the y-axis of the coordinate system. The intersection
line of this plane with each individual cone yields a parabola curve, if projected onto the x-y
plane. However, the intersection of two parabola curves is identical to a point of the Voronoi
line, defining the boundary between two regions. While the pfaisenow dragged through the
domain, complete Voronoi lines result that can be stored in an appropriate data structure.
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Figure 3.4: Three-dimensional interpretation of Fortune’s algorithm (C889) [15])

The base line of the slanted plane is denategep line, whereas the intersection curve of the
cones with the plane is referred to aparabolic frontor beach lingWilhelm(2000) [91]). While

the sweep line moves along the x-y plane, the beach line is subject to constant modification.
However, there are two sorts of distinctive events that can arise during this procedure: point
events and circle events.

Point Event

A point event is encountered when the sweep line has hit a new pairthe plane. Resulting

from this, a new parabolic arc appears on the beach line. This is illustrated in figure 3.5: in (a),
the sweep line has not yet encountered the new point; in (b), the sweep line is exactly at the site
of the new point and the parabolic segment is inserted, even though it degenerates to a straight
line at this moment; in (c), the sweep line has passed the point and the beach line is in regular
shape again, containing the new parabolic arc. For the joint point of two arcs in the beach line
defines a Voronoi line, the point event inserts a new vertex into the Voronoi diagram.
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Figure 3.5: Changes in the beach line upon encountering a point event (Wit£)6) [91])

Circle Event

A circle event takes place when a parabolic arc shrinks to a point and disappears from the beach
line. The condition for the occurrence of this event is that three parabolic arcs — defined by
three base pointg;, p;, pi — intersect each other in a single pointas illustrated in figure 3.6.

This happens whei has the same distance to the sweep line as to the three base points. In that
case, all base points lie on an empty circle with centre ppemd the sweep line is tangent to

that circle, hence the name of this event. As a consequence, @i vertex in the Voronoi
diagram where two Voronoi lines intersect.

Figure 3.6: Changes in the beach line upon encountering a circle event (Wi#8£6) [91])
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Implementation

By testing for point and circle events while the sweep line moves through the entire domain, it
is possible to construct the complete Voronoi diagram in a very efficient way. Acttatyne

(1986) [26] proves that this algorithm is optimal, i.e. the task of computing the Voronoi diagram
cannot be done with a better performance. The actual implementation, however, is a challenging
task since all elements involved in the generation of the Voronoi diagram using Fortune’s method
must be stored in appropriate memory structures that need to be dynamically allocated.

(o1, pK]

[pi, pi] [Pk, p1]

pi Y Pk pi

[ 3 o P ® DI

@ Pk

tvy—yg v
]

Figure 3.7: Binary tree to represent the beach line

Implementation details are discusseddnok (1999) [15], Fortune (1992) [27], Minch (1998)

[49] andWilhelm(2000) [91]. There is consensus that three data structures are required: one for
storing the Voronoi diagram and two others for the sweepline process, i.e. point/circle events and
the parabolic front. The data structure for the Voronoi diagram, modified to suit the needs arising
in the present work, is discussed in chapter 3.3. As far as the parabolic front is concerned,
a binary tree is best suited for storing its contents. Such a structure is a very natural way to
represent data in an object-oriented programming approach, furthermore it allows for fast updates
of its contents (i.e. when new elements are inserted or old ones removed). The binary tree
structure applied to the parabolic front is illustrated in figure 3.7. Finally, upcoming events are
stored in an event queue where the different events are stored by the point sites they refer to.
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It should be noted that a usual Voronoi diagram contains half-edges, denoting lines that have a
start point but no end point. The unmodified algorithm of Fortune naturally returns such ele-
ments as parts of the solution. However, the computational domain in hydrodynamic problems
is bounded by definition. Hence, Fortune’s algorithm has to be modified to compute the intersec-
tion points of half-edges with the domain boundary and include these, as well as the segments
of the bounding polygon, into the solution. The resulting domain decomposition is therefore no
longer an actual Voronoi diagram but representsmstraint Voronodecomposition.

3.2 Modular System

3.2.1 Background

Up to now, we only dealt with the generation of a Voronoi grid and treated the set of base points
as already known. As this is not the case in reality, a mechanism of point generation must be
found. For this purpose, the aim is the development of an automated distribution algorithm.
However, there are a number of constraints that must be accounted for:

e The grid resulting from the Voronoi decomposition with regard to the distributed set of
points must be as regular as possible, without large differences in size among single cells,

e The grid must honour the boundary line of the computational domain, following its course
and allowing for a finer discretisation in this region,

e The grid must honour structure lines (for instance levee crests) to avoid wrong terrain
interpolation (i.e. "breaches”) in regions where structures must be preserved.

It is possible to construct a grid that conforms to all these constraints when a system of three
modules is employed for the distribution of base points:

e a base modulewhere points are distributed in a general pattern, forcing specific cell
shapes,

e aboundary modulewhere the base points follow the course of the boundary line, hence
avoiding the occurrence of irregular cells at the border of the domain and allowing for a
finer discretisation there,
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e astructure line module, where the base points follow the course of a structure line in such
a way that the structure line itself is represented by cell edges (or cell faces in a three-
dimensional situation).

The properties of these modules will be discussed in the next sections.

3.2.2 Base Module

This module is responsible for the distribution of base points in regions far away from a domain
boundary or structure line. As illustrated in figure 3.8, points are distributed starting at the origin
of the coordinate system that was rotated by an afgldt is possible to force specific cell
shapes by certain point distribution patterns. The RSim-3D model employs only quadrilateral
and hexagonal patterns, but in general it is possible to construct cells with a larger number of
faces, as well. The quadrilateral pattern is given by two spatial distaneeand Ay (fig. 3.8,

left), from which an equidistant distribution is obtained. However, in the hexagonal pattern (fig.
3.8, right), the distancéy is no longer subject to arbitrary choice, but it is derived from the
equation

Ay = Az - \ég (3.1)
which defines an equilateral hexagon. The hexagonal cell shape is finally obtained after applying

an offset ofAz/2 to the lateral distance in every second row of points.

Figure 3.8: Quadrilateral and hexagonal base modules
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3.2.3 Boundary Module

The boundary module is used to allow for generating a grid that follows the boundary of the
computational domain in its course. This is of high importance in practical situations since it
avoids irregularly shaped grid cells near the boundary by ensuring that all cells have the same
distance to the border and that cell edges intersect the boundary at an angle of 90 degrees — at
least in a quadrilateral configuration. Furthermore, the boundary module makes it possible to
apply a finer spatial discretisation in that region, which will almost always be desired. Finally, it

is also possible to create a body-fitted grid in the whole computational domain by making use of
this module only. The generation process is simple: the boundary polygon is offset by a distance
Ay - (2 — %) wherei denotes the row number, and points are distributed along that line. This
ensures that the base points of the first row are always located at half the grid spacing distance.
Care is taken to compute the correct end points of line segments in "corners” of the flow domain,
i.e. where the angle between line segments is not 180 degrees. To illustrate this, figure 3.9 shows
an exemplary grid in a circular domain, constructed from a hexagonal base pattern and four rows
of hexagonal boundary elements.

Figure 3.9: Grid composed of hexagonal base elements and four rows of boundary elements
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However, care must be taken in the choice of grid spacings and distribution patterns to avoid
the creation of distorted elements. Figure 3.10 shows an exemplary grid in a box, based on four
rows of the boundary module in a quadrilateral configuration while the centre of the box is filled
with regions created by the base module. This grid would not be used for actual hydrodynamic
simulations since there is a small number of cells at the transition zone from one module to
the other that exhibit computation points which are not close to the cell centre, hence impairing
convergence.

Figure 3.10: Grid in a box, composed of quadrilateral boundary and base elements

3.2.4 Structure Line Module

Structure lines are applied when the meshing algorithm must preserve specific edges, including
them as part of the grid. For instance, this is desired when man-made structures (e.g. levees) are
to be represented in a numerical simulation. If these structures are not well preserved, the solu-
tion of the simulation may turn out numerically correct, but technically wrong (i.e. "breaches” in
dams, resulting from wrong interpolation, leading to flooding of terrain which would otherwise
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not have been flooded). Fortunately, structure lines can be preserved in the same way as bound-
aries by the boundary module: at the border, the bounding polygon is offset into the domain by
a certain distance, and the points are distributed along that line (section 3.2.3). However, a struc-
ture line polygon must be offset twothsides at the same distance when distributing points. As
Voronoi edges are always located half-way between two base points, the structure lines will be
automatically preserved following this approach. This allows for an interpretation of the struc-
ture line module simply as a boundary module being applied twice, at either side of the dividing
polygon line.

3.3 Data Structure

After the base points have been distributed in the computational domain and the two-dimensional
grid lines have been created, the resulting data must be stored in an appropriate data structure.
This structure must be designed to follow two major criteria:

o flexibility: the data structure must be capable of dealing with regions of all shapes, regard-
less of the number of edges,

e no redundancythe entire structure must allow for quick access to all data, but at the same
time minimise redundancies to allow for fast and correct updates of elements if needed.

Data to be stored can be categorised in four different groups (fig. 3.11):

regions these are the actual two-dimensional projections of the 3D grid onto the x-y plane.

base points these 3D points define the computational centre of the regions; the third
component stores the terrain surface.

grid lines these lines represent the border between regions.

vertices these are points that define start and end coordinates of grid lines.
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Grid line

Region

Vertices Base point

Figure 3.11: Elements of a two-dimensional grid

Figure 3.12 illustrates how the data elements can be arranged into a data structure containing the
complete two-dimensional projection of the computation grid. It also lists the data types, using
these abbreviations:

boolean: a binary data type that holds an argument of either O or 1

int: an integer value

float a floating-point number in unspecified precision

Point3D: an object-oriented data type, consisting of ttilest elements, y andz

Vector | type: an array containing an unspecified numbgmeelements, i.e. its size may
change at any time if needed

There are a number of issues concerning this data structure that should be noted:

e The 3D coordinates of thiease pointontain the exact location of a point at the terrain
surface (e.qg. river bed); refer to section 3.4 for details about obtaining the vertical elevation.

e The vast majority ofverticesdoes not contain a third 3D coordinate argument, i.e. it is
zero or unused. However, interpolation at the boundary and along structure lines is only
possible if the vertices in these locations are assigned terrain elevations. Hence, the overall
data type must be a point in 3D space, even though the third argument is only used for a
small number of vertices.
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e Both boundaryand structure linesare identified by a separate boolean value. This is
necessary since due to the preprocessing of data, two polygon lines with different meaning
may lie on top of each other. However, for the actual treatment of these elements this
distinction does not make a difference.

¢ In a usual implementation, thedex-numbersf all types are not encoded in an extra field;
in order to save memory, the elements are addressed only by their position in memory.
This is legitimate since the storage sizes are known and the offset of any given element can
be computed easily on the fly.

regions
Index-No. int
cTTTTms - Base point int
' Grid lines Vector | intd====-=-- .
' Water surface float
. Roughness float !
A 4 \ 4
base points grid lines
Index-No. int Index-No. int
3D coordinates Point3D ST - Start vertex int
mm—-- - End vertex int
! Boundary line boolean
. Structure line boolean
\ 4
vertices
Index-No. int

2D/3D coordinates  Point3D

Figure 3.12: Data structure of a two-dimensional grid
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3.4 Terrain Elevation

3.4.1 Background

Usually, the geodetic height of the 2D computation points is not known a priori, but either depth
measurements along cross section lines of a river bed or a digital terrain model of regularly
spaced data are available. Since these spatial data points rarely coincide with the actual base
points of the computation grid, a technique of spatial interpolation is required. Both the Bivari-
ate Interpolation Method cAkima(1978a, 1978b) [2, 3] and a Kriging approach were evaluated

for that purpose and are subject to discussion in the following two subsections of this work. Fol-
lowing this approach, surface elevations can be derived for all computational points and those
grid line vertices that are part of the boundary polygon or a structural polygon within the com-
putational domain (Tritthar(2004) [80]).

Section A-A

Surfaces (dual graph)

Figure 3.13: Voronoi grid and Delaunay triangles with a section view

Figure 3.13 once again depicts the plan view of a domain represented by four hexagonal cells;
here it is presented along with a cross section. Let’'s assume that the cells’ base points have
been set a vertical elevation following one of the approaches just mentioned. Now the problem
arises to make the surface (actually both the terrain and water surfaces) spatially consistent be-
tween neighbouring cells. A possible solution would be to introduce complex surface functions
of higher order for every single cell. However, this approach is not feasible in practice since
the discretised governing equations of fluid motion (chapter 4) rely on the existence of planar
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surfaces that can be defined by face centroids and surface area vectors. Furthermore, the com-
putation of cell volumes and surface areas would become significantly complex tasks. Therefore
only a triangulation can be the adequate way to deal with this problem. As already mentioned,
the Voronoi decomposition is the dual graph of the Delaunay triangulation. Hence, with the
Voronoi grid given, a consistent triangulation is already available without the need for additional
time-consuming triangulation procedures. Upon applying the duality property base points turn
into vertices in the Delaunay triangulation and edges are always perpendicular to each other. The
boundary constraint is honoured in the Delaunay graph as well. For the Delaunay triangles are
defined by the base points of the grid, every surface elevation within the grid can be derived by
means of simple triangle interpolation. Furthermore, as soon as the variables that were solved
for in the discretised equations are available, they can be interpolated and plotted using the same
mechanism of triangle interpolation.

3.4.2 Bivariate Interpolation Method

According toAkima (1978b) [3] the bivariate interpolation method is a smooth surface fitting
technique developed for values given at points irregularly distributed in the- y plane. It

uses a fifth-degree polynomial inandy as interpolating function defined in each triangular
cell which has projections of three surface data points as its vertices. Triangulation is performed
on the surface data points according to a max-min angle criterion described in further detail in
Akima (1978b) [3]. The interpolation function for any given poinat, y) within each triangle

then reads
5 5—J

z(z,y) = D3 qpa’y” (3.2)
=0 k=0

which results in the need to determine 21 coefficients These coefficients are found by the
assumption that the values of the function, as well as its partial derivatives of first and second
order, are given at all vertices of the triangle. In combination with the presumption that the partial
derivative of the function differentiated in the direction perpendicular to each edge of the triangle
is a third-degree polynomial, 21 conditions are obtained to determine all coefficients. Due to the
polynomial functions used, smoothness of the interpolated surface both within each triangle and
at its edges results from this process as provekkima(1978b) [3].

The bivariate interpolation method works very well as long as the distribution of terrain points
follows a pattern that does not deviate too much from a regular distribution. Especially when
a terrain grid (i.e. a digital terrain model, DTM) is used as basis, the interpolation method
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yields reasonable interior values. However, as soon as measured river cross sections are used as
terrain data basis, the interpolated terrain elevations exhibit strong and irregular extreme values
(see appendix A for an illustrative example). This can be explained easily: the triangulation
procedure is performed on the terrain data points, as these are the only locations where actual
information is readily available without the need for interpolation. As a matter of fact, cross
sections of natural rivers come with a high resolution within each section but comparably large
distance between the profiles: for instance, measurements at the river Danube contain between
250 and 1000 data points per cross section, which is typically around 250m in distance, resulting
in a resolution of one point per 0.25m to 1.0 m; on the other hand, cross sections are fathomed
in a typical distance of 50m to 100m. This yields a ratio of longitudinal to transversal resolution
between 1:50 and 1:400. Hence, a triangulation of this data will inevitably result in triangles of
the same ratio, no matter how good the triangulation algorithm. It is easy to see that a polynomial
constructed on top of such a triangle will exhibit undesired maxima and minima in the interior
only to satisfy the first and second derivatives of the surface function at its edges. Therefore we
can conclude that this method can be of use when more or less regularly gridded terrain data is
available, but not in situations where cross sections of rivers are the only measurements available.

3.4.3 Kriging

This method was first published Iy.G. Krige (1951) [38]. It is frequently used in geostatistics
to determine unknown values using known values and a semivariogram. There exist several
different types of kriging methods, but only the procedure denptedt krigingwas evaluated
for the present work. This approach relies on the assumption that an estimate of an unknown
value Yy, at a pointp can be found by using a weighted average of the surrounding known
valuesy;,

Yi, =Y WY, (3.3)

wherelV; are the respective weights. The estimated value is said to be unbiased when the weights
sum to unity. Hence, the weights applied to solving a certain problem must obey the relation:

Sw=1 (3.4)
Optimal weights must not only satisfy the condition of producing an unbiased solution; they

are also required to have a minimum estimation variance, i.e. the scatter of the eslimates
about the actual valug, must be minimised. This criterion can be enforced by introducing a
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set of simultaneous equations, complemented by a variable called the Lagrange multiplier
To illustrate this procedure, we make the assumption that four known valugg point "1")
throughY; (at point "4”) are used to estimate an unknown valiig, at pointp. Combining this
with equation 3.4, we can write the following equation set,

Wiy (dir) + Way (diz) + Way (dis) + Wiy (dia) + A = 7y (dip)

Wiy (da1) + Way (daz) + Way (daz) + Way (daa) + A = 7 (dap)

Wiy (ds1) + Way (ds2) + Way (dsz) + Way (dza) + A = v (dsp) (3.5)

Wiy (dar) + Way (daz) + Wiy (daz) + Way (dag) + A = 7 (dap)
Wi+Wot+Ws+W, = 1

wherey (d;;) is the semivariance between data poirasd;. In the present work, this semivari-
ance was set equal to the distance between the points, which is also the most common approach.
Equation set 3.5 can now be rearranged in matrix form,

V(di1) v (di2) v(diz) 7(dia) 1 Wi 7 (dip)
Y (da1) v (daa) v (daz) v(daa) 1 W 7 (d2p)
Y (ds1) v(ds2) v(dzz) v(dza) 1 |®| W3 | = | 7(ds) (3.6)
v(da) v (ds2) v (daz) 7(da) 1 W, v (dap)
1 1 1 1 0 A 1

which makes it possible to solve for the weights using common techniques for solving a set of
linear equations. Since the equatidn = d;; holds true for distances, the left-hand matrix is
symmetrical. The main diagonal is filled with zeroes becalisés obviously nil. After the
weights have been determined, the unknown vaigg can be estimated by:

Yi,p = WiYs + WoYs + WiYs + WLY)y (3.7)
The Lagrange multiplieA is not needed to obtain an estimate of the unknown valyg but

its presence ensures that the minimum possible estimation error is obtained. The estimation
variances? can now be calculated by

st = Wiy (dip) + Wiy (dap) + Wiy (dap) + Wy (dip) + A (3.8)
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which is a great advantage since it allows for a quantification of the error made in the estimation
of Yg .

The method itself does not come with restrictions as to how many points can be used to esti-
mate an unknown terrain elevation at another location; however, in a real-world situation there
are constraints like memory requirements in storing the matrix of equation 3.6, or computation
time to solve the linear equation system. Due to these practical considerations, the following
methodology was adopted in the present work (see appendix A for an example):

e A circle with radiusR = +v/a? + b?/2 is constructed on the location of every point with
unknown terrain elevation, wheteandb are the dimensions of the available terrain infor-
mation in the directions of andy within the computational domain.

e The circle is partitioned into four quadrants of equal size, and the terrain data available in
each quadrant is sorted according to its distance to the circle’s centre point.

e A maximum of eight terrain data points (those with the smallest distance to the point of
interest) is selected within each quadrant, summing up to a maximum of 32 terrain data
points available for a single kriging operation.

Undoubtedly the kriging method is computationally expensive. However, there are no problems
involved in using measured river cross sections as input data as the method is usually not subject
to exhibiting irregular maxima or minima of the estimated values. Hence, the kriging approach
was selected as method of choice for interpolating terrain elevations at the locations of computa-
tion points and grid line vertices that are part of the boundary polygon or a structural polygon.

3.5 Grid Refinement

After the computation grid was created by applying Fortune’s method to a set of points distrib-
uted following the procedures outlined in section 3.2, the next step is to refine the grid. Mesh
refinement in the vicinity of obstacles within the flow domain or at domain boundaries is gen-
erally possible by making use of boundary and structure line modules, which have already been
discussed. Additionally, there will usually be a desire for further refinement in regions with a
steeper surface slope. In order to meet this desire, a criterion of maximum absolute height error
is adopted in the present work: by means of kriging, it is possible to derive surface elevations
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Figure 3.14: Grid refinement procedure for ordinary cells (left), boundary cells (centre) and cells
adjacent to structure lines (right)

for arbitrary points within the computational domain; these elevations can be compared to the
ones obtained by interpolation on the triangular Delaunay grid (fig. 3.3), inserting new points if
a certain error bound is exceeded. This procedure is illustrated in figure 3.14 for three different
situations:

e Left Two ordinary cellsadjacent to each other are subject to refinement if the surface
elevation of the midpoint P in the line connecting cell centroids A and B meets the criterion

hp — | > e (3.9)

wherehp is obtained by linear averaging of the surface elevations in points A anhd B,

andhg, I
_ha B

2
andh}, is derived from surrounding terrain data points by means of krigirig.an error
bound given by the user. If the refinement criterion is met, a new basepoint P with elevation
h% is inserted into the complete set of basepoints and the grid is generated again.

hp (3.10)

e Centre A cell at thedomain boundarys subject to refinement if the midpoint D of the
line connecting the cell centroid B with the boundary line in perpendicular direction meets
the criterion:

|hp — h}| > € (3.11)

In this case, the geodetic height of the start and end vertices of the boundary line (points
Q and R in figure 3.14) is known. Furthermore, we know from figure 3.3 that segments
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of boundary lines always make up triangles with the centroid of the adjacent cell. Hence,
the elevation of point P can be obtained by distance-weighted interpolation on the line
connecting points Q and R. Using this information, the height of poirt £),can finally

be derived,
. hg + hp

2
and a comparison with elevatidi},, obtained by kriging, becomes possible. If refinement
is necessary, point D is inserted and the grid must be regenerated.

ho (3.12)

¢ Right Special care must be taken to test for refinement in cells adjacesttociure line
as this line must be preserved even after grid refinement has taken place. Therefore the
approach outlined for domain boundaries is adopted here: the surface elevation of points
Q and R is known, which makes it possible to derive the height of point P. Knowing this
elevation,both heights of points C and Dy andhp, obtained from equation 3.12, must
be compared with the respective valugsandh},, derived from kriging:

‘hc— Z“ > €
hp — 5| > (3.13)

If only oneof the criteria set forth in equation 3.13 is mbgth points C and D must be
inserted into the set of basepoints and the grid will be generated again. This is necessary
to preserve the structure line at its current location.

It should be noted that the grid refinement approach presented here is actually not very difficult
to carry out; still, the procedure may take a while on grids with a large number of base points

because the vertical coordinates of every connection line between two cell centroids must be
derived from the digital terrain model, and if new points are inserted the grid and its data structure
must be recreated.

An example of a computation grid refined using the approach described above is given in figure
3.15. It shows a detail of a grid which was created for a reach of the river Danube east of Vienna,
Austria. Based on a hexagonal cell pattern with a horizontal centre point distance of 40m and two
cell rows with half that spacing along the boundary, the grid was refined seven times, leading to an
absolute height error of less than 20cm in every computational cell within the domathart

(2004) [80]). Contour lines allow for an interpretation of the surface gradient at the left side
of fig. 3.15, while the right side shows the dual Delaunay grid used for interpolation. Terrain
elevations were available in river cross sections (blue lines) and also along the river banks.
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dimensional grid discussed

dimensional grid can be created from the two

as the water surface changes during the solution of the

3.6. Estimation of Water Surface Elevations

)=
IR

In theory it is possible to obtain flow paths by means of gradient analysis:

and section lines (left) and the dual triangular grid (right)
In order to come up with an estimate for the initial water surface elevation, the grid generator

needs to know the flow boundaries, i.e. those grid lines where water enters or exits the compu-
tational domain. As these are user-provided, we can treat them as known. The next challenge is
then to find the flow path — the polygon lines that connect inflow and outflow boundaries — known

nonetheless important to provide a good estimate of the water surface elevation to the model so
as thalweg in rivers.

Figure 3.15: Plan view of the grid for a reach of the river Danube east of Vienna with contour
that a reasonable initial grid may be created.

flow equations, it is possible that previously wet regions suddenly become dry and formerly dry
regions turn wet; hence, the 3D grid may significantly change during the computations, but it is

so far, an estimation of the water surface elevation must be performed for every single grid region.
The 3D grid will then be generated only in those regions where the water surface elevation lies

3.6 Estimation of Water Surface Elevations

above the terrain surface. However

Before the actual three
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starting at a grid region adjacent to an inflow boundary, a polygon line is constructed that always
follows the steepest slope. While this procedure works well on hillslopes, it performs signifi-
cantly worse in actual rivers, especially when applied to rivers with large cross sections. There
is a number of reasons for this; among the most important are the very flat slopes encountered in
such rivers, leading to irregular flow paths, and the presence of dunes and bars which may cause
an automated algorithm to crash. Therefore — even when it may add a little inconvenience to the
model application in practical situations — it is best to leave the task of defining flow paths to the
user by providing the model with appropriate polygon lines.

A complex flow situation, but not uncommon in reality, is the presence of several such polygon
lines, each defining a separate river or channel that disembogues into another river, resulting in a
network of rivers. To perform an estimation of the water surface elevation in such a constellation,
all available flow paths must be sorted first. It is best to do so by assigning the river comprehend-
ing the downstream boundary condition an ordinal number of 1, channels discharging into such a
stream receive a classification of 2, and so forth (see fig. 3.16). This ordering system benefits an
automatic computer-aided calculation of water surface positions, since the elevations of streams
with lower ordinal numbers are computed first and can subsequently be used as boundary condi-
tions for those with higher ordinal numbers.

Order 2

Order 1

Figure 3.16: Schematic view of a river network with several confluences

As soon as the boundary conditions of all streams within the computational domain are known,
the detailed determination of the water surface elevations can be done. In the present work, four
different methods are available for performing this task:
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e Constant water surface elevatioBeing the simplest of all methods, a constant water

surface elevation in the entire domain is useful for some validation cases (e.g. laboratory
flumes) that do not exhibit any bed slope, hence the surface slope is very small as well.
It can also be used for real-world situations when the region of interest is small-sized and
only local phenomena are being investigated.

Linear interpolation In this method, both upstream and downstream water levels are pre-
scribed by the user; the model performs linear interpolation along all flow path polygon
lines available. Usually, this technique gives a very good initial water surface estimate and
will suffice for most flow situations.

Constant flow depthThis method is quite complex, as it requires the slicing of the three-
dimensional domain into a number of cross-sections perpendicular to the given flow path.
For each section, the minimum terrain elevation is determined, and after adding the flow
depth given by the user, the water surface elevation results. Actually this method works
very well for channels with a simple cross-section shape or rivers with very little variability

in bed forms. When unfiltered terrain data is used, the technique may yield a water surface
exhibiting the same irregularities as the bed, possibly leading to problems in the numerical
simulation thereatfter.

1D backwater computationUndoubtedly, this method returns the most realistic initial
guess for the water surface elevation within the flow domain, but it is only worth the com-
putational effort if the terrain data has been very carefully checked for errors; otherwise
unrealistic results may be obtained, impairing convergence in the numerical simulation.
The first step of this method is the same as in the case of constant flow depth: the 3D do-
main is sliced into a number of cross-sections perpendicular to the flow path. Considering
two consecutive cross-sectionsand; + 1, we can use the extended Bernoulli equation to
write (Gutknechi{2004) [32])

2 2

Uj+1 = wj + Ozj . Ufj + hr (314)

Wj+1 + Qg1 BT} 2

wherew; denotes the water surface elevation above sea level (or a reference sutface),
is the average velocity in a cross-section and the coefficiers equal to unity.h, is the
friction loss due to the influence of roughness,

hy = J.- Az (3.15)
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where J, denotes the energy gradient aid: is the horizontal distance between cross-
sectionsj andj + 1. The energy gradienf, can be quantified by making use of the
Gauckler-Manning-Strickler equation to yield

1 2

Jo = T " Up (316)
k%tRf?z,m

wherekg, is the Strickler coefficient, and,, and R}, ,,, are mean average velocity and mean
hydraulic radius of the two consecutive cross-sections. Since the discharge is known, both
of the latter values can be expressed as functions of the geometric propgytaasdU,,,

denoting the mean cross-section area and perimeter, respectively. These properties can be
obtained by linear averaging from the values at both cross-sections. As the valdes,for
andU,, are dependent on the unknown water surface elevatign, the computation

must be done iteratively. Finally, after a (usually) small number of iterations, is
obtained from equation 3.14, and the procedure is repeated for the next cross-sections
until the inflow section is reached.

It is important to mention that the methods of linear interpolation, constant flow depth and 1D
backwater computation are only capable of computing water surface elevations along previously
defined polygon paths. The model, however, needs water surface elevations for the whole do-
main, in every single grid region. Hence, the results of these computations are extended into 3D
by repeatedly specifying the one-dimensional surface elevations in all grid regions of an area de-
limited by each two consecutive cross-sections in a user-supplied distance (a typical value would
be 10m for a river). This completes the initial guess of water surface elevations and allows for
generating the three-dimensional grid.

3.7 3D Grid Geometry

The three-dimensional grid is obtained by partitioning the cell piles, defined by grid regions to-
gether with terrain and water surface elevations, into a number of finite cell volumes. Every
region is subdivided into the same number of cells, hence the grétiically structured Figure

3.17 illustrates this: the vertically structured grid is composed of extruded grid regions in combi-
nation with a triangulated surface on top and bottom of the domain, which adds some geometric
complexity. Actually, every grid line bordering a grid region within the domain (i.e. not at the
domain boundary) is intersected ayleast oneedge of the dual Delaunay triangulation making
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up for the terrain interpolation (see fig. 3.3). Therefore the 3D equivalent of the grid lines in 2D
— denotedaces— actually become polygonal bounded surfaces as the grid becomes polyhedral.

Figure 3.17: Three-dimensional grid composed of extruded grid regions and a triangulated sur-
face

It is obvious that the calculation of cell volumes and face areas, both of which are needed for the
numerical solution of the discretised flow equations, becomes a complex and computationally
intensive task for the grid presented in this work. Fortunately, it is not necessary to recompute
these properties too often; instead, it is sufficient to calculate them only after updates of the water
surface have taken place. However, even then the two-dimensional intersection points between
the polygonal grid regions and the triangular surface representation stay the same. Therefore it
is adequate to compute these intersection points only once, after the grid generation has been
completed, and modify the vertical elevations (bottom and top) after every surface update, which
can be done reasonably fast. A new data type, derfatelvertexis introduced: it stores four
floating point numbers, two of which represent thandy coordinates of the intersection points
between grid regions and Delaunay triangles, the other two store the elevatiand z, of

bottom and top. Start and end points of grid lines in 2D of course transform into face vertices
in 3D, as well. Figure 3.18 shows an exemplary face composed of four face vertices, further
illustrating this.
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fv1 fva

Figure 3.18: Cell face composed of four face vertices and three areas; C denotes the face centroid

Face areas

Face areas are computed by summing up all partial areas defining one face. By definition, the
area spanned by two face vertices is always a trapezoid. Hence, we can write for the area of an
entire vertical face given by face verticesf v,

A = Zn:xHZz (fvi-1) + 2z (foi) ; 21 (fvicd) — 21 (foi) (3.17)
1=2

wherex denotes the distance of one face vertex to his neighbour in thgplane,z; (fv) is the

face vertex’ top elevation and (fv) its bottom elevation.

Top and bottom areas of a cell always consist of a number of triangles, each of which is defined

by two face vertices and a base point with a top and a bottom elevation assigned. As triangles
can be interpreted as degenerate trapezoids, the same equations for face areas or centroids can be
applied; therefore top and bottom areas of cells will not be subject to further discussion in this
chapter.

Face centroids

The exact location of each face centroid must be known in order to compute the volume of the
cell enclosed by a number of faces. We start with the equations for the coordihaesC', of
a compound section in two-dimensional space,

o Zz Aimc,i
o= e
C. Z{{: (3.18)

where A; stands for the partial area(in the present work spanned by two neighbouring face
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vertices), and:.; andz.; are the centroid coordinates of every partial area. The denominator of
both relations in eq. 3.18 is, of course, equal to the face area as given by equation 3.17. After
introducing three geometric relationsb andc in accordance with the definitions made for eq.
3.17,

a = 2 (fvi1) — 2 (fvi)
b = 2z (fvi) — 2 (fui) (3.19)
c =z (f%'fl) -z (fUz)

we can use the formulae available for the centroid coordinates of trapezoids,

’ Ti—1 (2@ + b)
€T . = _—_—
ot 3(a+Db)
, 2 2 2
- ac+a*+cb+ab+0b (3.20)
’ 3(a+Db)

to compute the centroid coordinategi andz;’i in a local coordinate system with origin in the
bottom point of face vertexv;. Figure 3.19 illustrates this procedure. Subsequently these local
coordinates must be shifted to a fixed point — in the present work the bottom point of the last face
vertex fv, was used — so that they can be used in eq. 3.18 to yield the coordinates of the face
centroids. These coordinates are finally transformed:itjt: coordinate triples in the global
coordinate system to be of use for the computation of cell volumes.

z4(fv))

Figure 3.19: Coordinate system and nomenclature for the calculation of centroid coordinates
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Face normals

Face normal vectors are required for the calculation of cell volumes and are also used excessively
throughout the solution process of the discretised flow equations (chapter 4). The normals of
vertical faces are obtained by rotating the two-dimensional grid lines by 90 degrees and inserting
a zero for the third coordinate. Normal vectors of triangle faces at the top and the bottom of cells
can be calculated by computing the cross product of two vectors that span the triangle surface.
All vectors are finally normalised to become unit vectors.

By definition, face normal vectors always point out of the cell they belong to. However, vectors
are stored as properties of faces, not cells. Since a face uniquely separates two cells, the vector
will always point outwards for one of the cells and inwards for the other. This means that any
algorithm must be able to determine into which direction the vector is actually pointing, to invert

it if needed. In the present work this problem was solved by storing the numbers of the cells
adjacent to each face along with the data for that face, defining that the surface vector always
points outwards for the first cell in this table. It is then possible for an algorithm to compare the
cell number it is working on with the ones in this table, and thus determine whether inversion of
the vector is necessary. The underlying cell numbering scheme is exemplified in appendix A.

Cell volumes

Calculating cell volumes of polyhedra by partitioning them into several small geometric elements
is a fairly complex and time-consuming task. However, it is possible to compute cell volumes
also in a different way, making use of Gauss’s Divergence Theorem (eq. 4.6, chapter 4) to
replace volume integrals by surface integrals. In other words, the cell volume can be computed
by summing over all its bounding faceBerziger(2002) [20] gives the exact equation for this;
adapted to the notation used in the present work, we can write

V= (Airi;) - ¢ (3.21)

1 n
3
wherel” denotes the volume of a cell boundedsbjaces with the respective face are§s the
three-dimensional face normal vectaisand the 3D coordinates of the face centroidls,

Partially dry cells

Cells are declared dry when the cell centroid lies below the terrain surface. However, it is easily
possible that this condition is not met, but still some face vertices lie below the surface. In this
case gartially dry cell is encountered. Such a cell geometry causes problems in the calculation
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of cell face areas, centroids and volumes, especially since the conservative formulation of eq.
3.21 does no longer yield the expected result for such a situation. It would be possible to deal
with partially dry cells by treating them as a set of smaller geometric entities, but this adds a
fair amount of complexity to the solution process. Therefore a workaround was chosen for the
work discussed here: if certain face vertices exhibit terrain elevations that lie above the water
surface, the terrain elevation is set equal to the water level. Indeed, this procedure introduces a
small geometric error into the whole solution process, but especially when measured terrain data
is used, this additional error is small compared to the errors inherent in the terrain data itself.

Data structure

The three-dimensional grid data is stored in an appropriate data structure, just as the one dis-
cussed in section 3.3 for the two-dimensional data. The structure used in the present work is
illustrated in fig. 3.20. The two main data types of the 3D gridaaks andfaces additionally

face verticesre required to save computation time in computing certain geometric properties of
the main types.

The nomenclature defined in section 3.3 is extended by these data type definitions:

¢ \ect3D an object-oriented data type, consisting of thiteat elementse, y andz; this is
the same definition as fd?oint3D, only the name is different to make clear that a vector
and not a point is stored there.

e type[size] an array ofsizeelements of the data typgpe(i.e. a fixed-size array, not one
varying in size, as iivector).

It should be noted that theells data structure does not only store geometric data but also data
required for the actual flow simulation. This includes

¢ the discretised diagonal coefficient of all six governing equations,

¢ the right-hand side of the six discretised governing equations, usually filled in by source
and sink terms,

e the conservation quantities,(v, w, p, k, €)
¢ the gradient of the conservation quantities in all three cartesian coordinate directions,

e and the isotropic eddy viscosity,

all of which are subject to discussion in the following chapter.
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cells
Index-No. int
Corresp. region int
Bounding faces  Vector | int======- .
Cell type int .
Centroid elevation float
Volume float !
Eddy viscosity float .
Discretised coeff. ap  float[6] .
Eqn. right-hand side  float[6] :
Conserv. quantities  float[6]
Gradients Vect3D[6] '
v
faces
Index-No. int
Area float
Face normal Vect3D
Centroid Point3D
------------------- Neighbouring cells int[2]

face vertices

Index-No. int
Corresp. grid line int
Vertex + base elev. Point3D
Top elevation float

Figure 3.20: Grid data structure for 3D flow simulations
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4 Governing Equations and
Discretisation

4.1 Momentum Equations

4.1.1 Equations

The motion of moving fluids in three spatial dimensions is governed by the Navier-Stokes equa-
tions, a set of three nonlinear partial differential equations (PDEs). Using a complete notation
for the incompressible case, they can be written as follows:

@ @—F @ @ — _}@_’_ 82u_|_ 82u+ 82u_|_f
ot Yor " dy Yo, T p Ox Yozz T oy? Yoz e
ov ov ov ov 10p 0% 0%v 0%
D Y ¥ el AT . T 4.1
ot "ar Ty TV pay Vow Vo TVan T 4D
a—w+ua—w+va—w+wa—w = —1@+Va2w+u(92w+u82w+f
ot ox y oz  poz 0x? oy? 022 ‘

In equation 4.1, v andw denote the velocities in the three spatial dimensiongandz. The
density of the fluidp and the kinematic viscosity are the two fluid properties that are being
used in this equation set. Pressure is denotgd bpd the termg,,, f, and f, are external forces
acting on the fluid, with gravity or the Coriolis force being the most prominent examples. The
temporal dimension enters the equation through an additional transient term.

In addition to the Navier-Stokes equations, a moving fluid must satisfy the continuity equation,
which in three spatial dimensions is given by:

ou Ov Ow
D T Eha 4.2
ox * oy * 0z 0 (4.2)
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4. GOVERNING EQUATIONS AND DISCRETISATION 4.1. Momentum Equations

These equations all have a similar structure and can therefore be written in a single form of a
generic transport equation using tensor notatkerZiger(2002) [20]):

9p9)  Ilpu9) _ 0 (00 o (4.3)
8t 8xj al’j al’j ~—~
() (I1) (I11)

This generic conservation equation is presented for general (i.e. compressible and incompress-
ible) fluids and uses the symbelfor the quantity that is going to be transported through the
computational domain. With = u,v,w (or ¢ = u; = uy, us, ug) the Navier-Stokes equations

for the three coordinate directions = z,y, z = 1, 25, x3 can be obtained when the diffusion
coefficientl is set equal to - p. Source terms are denoted By. In the absence of such source
terms, the continuity equation is obtained by using 1 in equation 4.3.

The generic transport equation therefore consists of four main terms:

a transient term (1),

a convective term (Il),

a diffusive term (ll1),

and a source term (1V).

These terms must be treated differently in an implementation since they describe different phys-
ical phenomena and — from a mathematical point of view — are members of different types of
underlying PDEs.

For the discretisation of this generic conservation equation using the Finite Volume Method on
grids with arbitrary cell shapes, it is an advantage to present equation 4.3 in a coordinate-free
vector form using the divergence and gradient operators:

a(apt@ + div (pgii) = div (I'gradp) + S (4.4)

This notation takes into account the vectorial nature of velocity, denoted By (u, v, w) =

<U1, Us, U3).
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4.1. Momentum Equations 4. GOVERNING EQUATIONS AND DISCRETISATION

Starting point of the discretisation is the integral form of the generic conservation equation in
vector form (eq. 4.4) which has been integrated over a control vofame

0 ) _
/Q Egpf)dQ + /Q div (pgu) d2 = /Q div (I'gradp) d2 + /Q S,dQ (4.5)

Using Gauss’s Divergence Theorem

/Q divadQ — /A 7. adA (4.6)

whered is a generic vector, we can substitute the volume integral by an integral over the volume’s
surrounding surfacel, with 77 denoting the surface normal vector 4f As this work will not

deal with unsteady flows, we can drop the transient term, and after introducing the constraint of
incompressibility, we finally obtain:

[ (omda= [ 5 (Egracib) dA+; [ s,d0 4.7)

It should be noted that the pressure term of equation 4.1 is contained in the source term in this
notation, which is the usual procedure in the derivation of the discretised momentum equations.
It will be dealt with later in this chapter.

4.1.2 Diffusive Term

The diffusive term of equation 4.7,
L (T
/ 7 (gradﬁ) dA (4.8)
A p

contains a diffusion coefficierit which was already found to be equal:to p in equation 4.3.
Since the kinematic viscosity can be considered constant in the flow regimes dealt with in the
present work, this can be discretised as

vy n;-grads - A, (4.9)
=1

for a finite control volume confined by faces with the respective areds and face normal
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4. GOVERNING EQUATIONS AND DISCRETISATION 4.1. Momentum Equations

vectorsn;. After breaking up the gradient operator, the diffusive term can be written as

8¢ 8¢ 8¢
N (ar> ; + Ny <8y> ; + N~ (az) f] (410)

using the subscripf to denote that the partial differential is to be evaluated at the face instead
of the cell centren, ., n,;, andn, , are the components af, in the three Cartesian coordinate
directions.Davidson & Stolcig1995) [18] use Green’s Formula to express the bracket term in
equation 4.10 in a notation that contains the values aff two discrete locations:

n

VZAZ

i=1

a¢ a¢ g 1 . . f—

Ay is used for the area of the face common to the two neighbouring 8eteid P with the
respective cell centre values; and¢p. V; denotes a control volume from one cell centre to the
other, passing through the neighbouring face (see fig. 4.1, wheisbordered by the dashed
line).

centroid of P

centroid of N control volume V¢

Figure 4.1: Cells and control volume for face gradient computation

The final term of equation 4.11 — denoted NOD — describes the phenomenon of non-orthogonal
diffusion. According taDavidson(1996) [16] this term equals zero in an orthogonal cell setup.
Per definition of the Voronoi diagram, however, the connection line between two cell centres
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4.1. Momentum Equations 4. GOVERNING EQUATIONS AND DISCRETISATION

is always orthogonal on the dividing face. This allows us to neglect this term for all faces
vertically separating two adjacent cells. As for the top and bottom cell faces, a slight non-
orthogonality may result due to different gradients in surface and bottom of the flow domain.
This non-orthogonality, however, is hardly severe, and will therefore be neglected as well. From
figure 4.1 we can construct the relationship

Ay 1

= 4.12
Vf 6NP ( )

usingdyp = dpy to identify the spatial distance between cell centre paendP. This allows
us to write the complete diffusive term as follows:

v zn: A, 0N = 0p (4.13)
=1

on, P

Here, P denotes the cell centre point of the cell the discretised equations are written for and
N; are the respective neighbouring cell centre points (see fig. 4.2) with the spatial distance
5N¢P = 6PN¢ to P.

Figure 4.2: Definition of control volumes and cell centroids
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4. GOVERNING EQUATIONS AND DISCRETISATION 4.1. Momentum Equations

4.1.3 Convective Term

The convective term of equation 4.7,

/A i - () dA (4.14)

can be discretised as .
S - () - Ay (4.15)

=1

for a finite control volume confined by faces with the respective areds and face normal
vectorsn;. The operato(.)f denotes the face values of its argument, in this case the product of
¢ anduy.

Central Differencing Scheme

Since all conservation quantities are stored in the cell centres in the style of a colocated arrange-
ment Eerziger(2002) [20]), obtaining interpolated face values is a challenging task. A straight-
forward way would be to use linear interpolation, resulting indbetral differencing scheme

¢r = fign + (1= fi)or (4.16)

In this equation f; is a weighting factor based on the spatial distance between node=l P

and the separating fagé respectively. Unfortunately, this technique has severe restrictions on
the boundedness of the solution, based on the cell Peclet number, which can only be satisfied
if the velocity is small, hence in diffusion-dominated low Reynolds number flows, or if the grid
spacing is small\fersteeg & Malalasekeré2001) [84]). Therefore discretisation schemes with
more favourable properties need to be employed.

Upwind Differencing Scheme

The basic idea of thapwind differencing schemeg that the value of a conservation quantity at

a given cell centre point contains all the information needed at the cell face. Therefore, after
identifying the flow direction, the cell face value is simply set equal to the cell centre value of
the upstream cell. For a cell setup as in fig. 4.3 with a westerni ek center-cellP and an
eastern celFE, one can write for a flow in the positive coordinate direction:

bw = ¢w ande. = o (4.17)
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4.1. Momentum Equations 4. GOVERNING EQUATIONS AND DISCRETISATION

While the boundedness property is not violated by this scheme, it must be noted that it produces
erroneous results when the flow is not aligned with the grid lines (Versteeg & Malalasekera
(2001) [84]), resulting in a smeared distribution of the transported quantities. For its appearance
is similar to diffusion effects, it is usually referred to as false diffusion. This undesired effect
reduces the usability of the scheme in many cases and therefore it is not being used in this work.

E
dxp | Sxp, | 8xeg - !
T

Figure 4.3: Cell setup and nodal values for the upwind differencing scheme (Versteeg &
Malalasekerg2001) [84])

QUICK Scheme

In the QUICK (Quadratic Interpolation for Convective Kinematics) scheméeaxinard(1979)

[41], the face values are interpolated from the nodal values using a quadratic interpolation func-
tion which results in a scheme of higher order, but without the problems involved with the central
differencing scheme. This scheme involves using a larger number of neighbouring cells. Unfor-
tunately, the scheme can not be generalised for arbitrary cell shapes as employed in the present
work since it uses not only the upstream cell in the discretised equation but also the cell which is
upstream to the upstream cell. When using arbitrary cell shapes, such a cell cannot be defined, a
fact which is also stated byluent (2003) [25]. For this reason, the scheme could not be used in

the present work.

Second Order Upwind Scheme

In a general formulation for arbitrary cell shapes, accordinglteent (2003) [25] thesecond
order upwind schemis given by
¢ =0+ Vo A5 (4.18)

with ¢, denoting the face value of the transported propettyV ¢ is the gradient ofp in the
upstream cell, and\s'is a vector from the upstream cell centroid to the face centroid. By em-
ploying this scheme it is ensured that the boundedness property is not violated but at the same
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time reasonable accuracy of the result is preserved. However, this scheme requires two challeng-
ing tasks:

e computing the gradient af,

e and selecting the appropriate upstream cells for arbitrary cell shapes.

Gradient Computation

The appropriate way to evaluate gradients of transported properties in cells of arbitrary shape is
given inBarth & Jespersei(1989) [10]. By making use of the divergence theorem (eq. 4.6), we
can write:

1 -
Vo=0ar 3 b Aiei (4.19)
=1

The value forg; is obtained by distance-weighted interpolation between two neighbouring cell
centres, making use of equation 4.16;denotes the cell volume®, is a limiting function
which ensures that no new maxima or minima are introduced upon evaluation of the gradient. It
is defined by

P4 = min Dy, (4.20)

with ® 4, given by
min (1,7704) it 4 g,y 50

Pi—da
= - FTIn— 4 o
®,4, = { min (1, %i_m ) , f g?z pa <0 (4.21)
1 if ¢; —pa=0

and¢ 4 equal to the value in the centroid of the cell where the gradient is to be evaly&t€ds
the maximum of the property among the cell and all its neighbour cells, a#fgl™ its minimum.
Selection of Upstream Cell

Determining the upstream cell for use in the second order upwind scheme is not a straightforward
task, especially in arbitrary geometries. AccordindgPedankar(1980) [61] the expression used

to evaluate cell face values must be spatially consistent. Following this requirement, we can write
equation 4.22 for two cells with centre poinfisand V:

¢r = fi(¢n + VonAsns) + (1 — f1) (¢p + VopAspy) (4.22)
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A3y and Asp, are the vectors from the cell centroids &f and P to the face centroid of

f. Using the inverse distance weighting approachfpgs given in equation 4.16 this method
allows a spatially consistent evaluationgf. In order to determine whether cell has actually
any convective influence on céfl, i.e. is an upstream cell or not, the entire convective term as
derived in equation 4.15 can be evaluated as follows:

imax (= Ay - 1y, 0) - (¢p — On,) (4.23)
=1

The face velocity vectoti; is evaluated by applying formula 4.22 to its components and

w. Using the scalar product between this face velocity vector and the face normal vector, which
is pointing outwards of the cell by definition, yields the projection of the velocity onto the face
normal. The multiplication with the face area returns the convective mass flux through the cell
face. Since the influence of the neighbouring cell is positive when the mass flux points into
the current cell, the direction of the mass flux must be inverted, which is done by applying the
minus sign in equation 4.23. The maximum function ensures that any convective influence of the
neighbouring cell is disregarded as soon as the mass flux points out of the current cell.

4.1.4 Pressure Term

For the sake of convenience the pressure term of equation 4.1 was included into the source term
in the derivation and discretisation of a generic transport equation. We shall now explicitly deal
with this term starting with its integrated form

1 1 Op
- [ =—dQ 4.24
p /Q ijd (4.24)

which is to be included in the momentum equationsifpe= u, o = v andxs = w. Once again
using the divergence theorem, we obtain

1 / pn,, dA (4.25)
pJa

wheren,; denotes the component of the face normal vector of the surrounding surfabeh
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points into the direction af;. This can be discretised as

1.7
=1

with p;; meaning the pressure on each fagg.the result of the discretisation, is a non-linearised
source term (see section 4.1.5). The face pressure value can be obtained by weighted interpola-
tion

pr = firn + (1 — fi)pp (4.27)

where f; is based on the ratio of the normal distances from both cell centroids to the dividing
face.

4.1.5 Source Terms

Other source terms enter the momentum equations via the last term of equation 4.7:

1 .
; /Q S,d02 (4.28)

Discretisation of this integral for a cell with volumeéyields:

1
;S¢V (4.29)

Usually, S, is linearised, i.e. split into a teri,; dependent of and a termS,, independent of
¢. For cell P we can therefore write the complete source term as

Sy — S,0p (4.30)

using the relations
% %
Su = ;S(;sl andSp = —;S(;gg (431)
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4.1.6 Complete Discretised Equation

After all terms of the momentum equation have been discretised they can be assembled to yield
the complete discretised set of three momentum equations=for, 2, 3:

” Ui N, — Ujp
> vA—E—25  max (— A - Uy, 0) - (ujn, — i p)

i=1 ON;P
1
_;nxj,i . Az : (flei + (1 - fl)pP) + Su - Spuj,P =0 (432)

In a next step all terms containing the transported properties forcate arranged on the left
hand side of the equation and all neighbour properties and nonlinear source terms on the right
hand side in order to receive an equation of the type

n

apljp = ZaNiuiji + b (433)

=1

which is the typical form of a discretised equation when using the Finite Volume method. In the
problem discussed here, the coefficientsanday, become

ap=> L? + max (—A;n; - ﬁfi,O)] +S5, and
i=1 N; P

an, = VAi + max (—Aﬂf; : I_l:fi, 0) (434)
oN, P

The source term finally becomes

b= En: l—;%i <A - (fipn, + (1 - fl)pp)] + Su (4.35)

=1

4.1.7 Basic rules of the Finite Volume Method

Patankar(1980) [61] states the four basic rules which must not be violated in the discretisation
of the governing equations:

1. Consistency at control-volume facdkixes across faces of adjacent cells must be repre-
sented by the same expression in the discretisation equations,
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2. Positive coefficientsall coefficientsap anday, must always be positive,

3. Negative-slope linearisation of the source teimorder to avoid a violation of rule 253,
must always be positive,

4. Sum of the neighbour coefficientthe coefficientap must always equal the sum of the
neighbour coefficients in the absenceSpf

In section 4.1.3 a consistent formula (eq. 4.22) was developed to evaluate transported properties
at cell faces. By applying this formula to all occurrencesipf the first rule is observed. Rule

2 is satisfied in the presented discretisation since the valuesAfanddy, p are physical and
geometrical properties which cannot become negative, and the maximum-function approach for
the convective terms ensures that this term is always positive as well. Since no linearised source
term occurs in the momentum equations, the third rule is not violated. Finally, from equation
4.34 it is clearly visible that » equals the sum of all neighbour coefficients, thus satisfying the
fourth rule.

4.2 Pressure Correction Equation

The pressure appears in all three momentum equations where it usually represents the main mo-
mentum source term. It is therefore highly important to obtain a valid pressure field. This is,
however, a very challenging task since there is no governing equation for pressure. A common
approach in incompressible flows is to use the continuity equation to couple pressure and ve-
locity, introducing a constraint on the solution such that if the correct pressure field is applied
in the momentum equations, the resulting velocity field satisfies contindgtgieeg & Malale-
sekera(2001) [84]). This is achieved using an iterative procedure c8IddPLE algorithm—

which is an acronym for Semi-Implicit Method for Pressure-Linked Equations — first presented
in Patankar & Spalding(1972) [62]. The idea behind it is to use a guessed pressure field to
solve the momentum equations, and to use the resulting velocity field in a so-called pressure
correction equation, which is derived from the continuity equation, in order to obtain a pressure
correction field. This field again is used to correct velocity and pressure distributions before the
next iteration cycle is entered. Figure 4.4 illustrates this procedure; a detailed flow-chart of its
implementation in RSim-3D is provided in appendix A.

One of the major challenges in establishing a valid pressure field is illustrated in figure 4.5. In a
regularly spaced grid arrangement a decoupling of the pressure term (eq. 4.26) between neigh-
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Provide an mitial guess for
pressure and velocities

n
L

v

Solve discretised momentum equations

'

Solve pressure correction equation

!

Correct pressure and velocities

'

Solve the discretised equations for
turbulent kinetic energy and dissipation

No

Convergence?

Figure 4.4: Flowchart for the SIMPLE algorithm

Figure 4.5: Checker-board pressure field (Stein(@2€02) [78])
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bouring cells may result, leading to a so-caltdtecker-board pressure fiel@Patankar(1980)

[61], Steinrtick(2002) [78]). While such a pressure distribution perfectly satisfies the momen-
tum equations it impairs overall convergence and yields oscillatory solutions. In the polyhedral
grid arrangement adopted in this work, there is no reason to expect oscillations in the horizontal
projection of the pressure field since the cell shapes do not permit such solutions to occur. In
the vertical direction, however, the grid is structured and therefore at a high risk of producing
checker-board solutions. A usual remedy to this problem is to store pressure and velocities in
different locations within the grid, which results in a staggered grid arrangement (see fig. 4.6).
In the polyhedral grid setup this would result in large additional complexities as far as storage
requirements and memory structures are concerned, which renders the approach not feasible.
Instead, an approach presented®fye & Chow(1983) [66] is used where oscillations are pre-
vented by introducing a third derivative term in pressure into the expression for the mass flux over
cell faces. This term is only added when the continuity defect in the pressure correction equation
has to be resolved and is not applied to the convection terms in the momentum equations.

Figure 4.6: Complex staggered variable placement (location of velocities: red vectors; location
of pressure: blue circles)

Following Davidson(1996) [16] the derivation starts with the evaluation of the pressure gradient
vector at thecentroidsof two adjacent cells” and N; and projecting it on the normal vector of

the dividing face:
{ap} 7, and {ap} 7 (4.36)
axj P 8xj N,
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The normal vector projection of the pressure gradient at#fidacecan be written as

{ p } = _ PN PP 4.37)

or; f . dpn,

with dpy, denoting the spatial distance between the cell centroids. Defining the third derivative
term as difference between two first derivative terms, the first evaluated at the cell centroids (eq.
4.36), the second at the cell face (eq. 4.37), we obtain

DN, — PP Op op .
- (0 {ae), - {a) ) @39

using the interpolation technique presented in equation 4.27 fyittnplemented as distance-
weighted coefficient.

The mass flux at the cell faces can now be writterCes/{dson(1996) [16])

PN, — PP ap ap .
5PNZ- - (fl {8%}]\@ + (1 - fl) {a%}P) nz] (4.39)

once again using the operafoJ, to denote that its argument is to be evaluated at the face. With
ap as the discretised diagonal coefficient in the momentum equations (eq. 4.34), we can write

pVA)
!

ap

mfi = pAZﬁfzﬁZ - (

(PVA) :VfAi[ J1 +1—f1] (4.40)
ap /g ap n;

app

with V; denoting the face control volume defined in figure 4.1. The depsigydropped from

the right hand side of the equation since the discretised diagonal coeffieientsand ap p

were already divided by the density during the derivation of the momentum equations. The face
control volumel’; can now be approximated as

Vi = Aiépn, (4.412)
which allows us to rewrite equation 4.39 as follows:

fi 1-fi Op Op .
—A? LZRM + - ] [(pNi —pp) = dpy, (fl {&x]}N + (1= f1) {%}J m]

y,

(3
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The face velocityi,, can be evaluated by applying equation 4.22 to its components. Finally, both
pressure gradients at cell centroids are obtained through equation 4.19.

In a next step, we express the continuity equation for a discretised celhVdites by using the
mass flux:

S iy =0 (4.43)
=1

However, during an iterative procedure, this equation will not be satisfied if the mass flux was
derived using the pressure and velocity fields from a previous iteration step. Therefore the mass
fluxesriny, are splitinto an old value}, and a correctiomn; :

Ty, =1+, (4.44)

In a converged solution, the pressure correction must be zero. Hence, using the equation for the
mass flux over cell faces (eq. 4.42) without the stabilising third derivative term, we obtain the
following relation

! 1 - ’ i
iy = pAgiiyii; = A7 ( h 127 1) (P, — Pp) (4.45)

apn; app

wherep, andp, are the respective pressure correction values for cell centrgjdand P.
Inserting this expression into equation 4.44, the continuity equation (eq. 4.43) yields:

n 1 — / / n . %
ZA? (apl + fl) (pNi - pP) + mei =0 (4.46)
i=1 i=1

N; app

After arranging all terms containing the pressure correctiorPfon the left hand side and those
for the neighboursV; on the right hand side we obtain an equation similar to eq. 4.33 in the
usual way of a Finite Volume discretisation:

appp =Y anpy, +b (4.47)

=1

The coefficients:p, ay, andb subsequently take the following values:

ap = i:A?(afl —l—l_fl)

i—1 P,N; app
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1 —
ay, = Af( fi + f1> (4.48)
apN; app
L - . il 1—f1]
z; & ;{p i [GP,M ap,p Kle pp)

—0pn, (f1Vpn, + (1 = f1) Vpp) 7]}

p* andu}; are pressure and velocity fields from a previous iteration stép.was used as a
short-hand notation for the pressure gradient evaluated at cell centroids.

Assessment of the discretised pressure correction equation in regard to the four basic rules of the
Finite Volume Method (section 4.1.7) gives:

1. Consistent functions were used to obtain velocities at cell faces and weighted diagonal
coefficients of the momentum equation.

2. The coefficientap anday, are dependent on the face areas and the diagonal coefficients
of the momentum equation only, which both take positive values at any time.

3. There is no linearised source term that could become negative.

4. ap is equal to the sum of adly, for a given cell.

Hence the discretised pressure correction equation obeys all basic rules of the Finite Volume
Method.

It is important to point out that the result of the solution of the pressure correction equation is
a pressureorrectionfield for the whole computational domain. Thus the pressure field itself
is never obtained explicitly but only after applying the pressure correction everywhere in a final
correction step which also includes updating the velocity field:
p = p+p
VvV oop

o= ui— == 4.49
u] u] PGP,P 837]’ ( )

V' denotes the cell volume whilep p is the discretised diagonal coefficient in the momentum
equation which must be multiplied with the densitgince the momentum equations were de-
rived without density terms. The gradient of the pressure correction in all three coordinate direc-
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tions can be obtained by making use of the divergence theorem (eq. 4.6) once more,

ap/ 1 n ’
A A 4.50
833]' V lpfi " 7 ( )

1=

where the face values of the pressure correqjiijgm:an easily be obtained using linear interpo-
lation.

4.3 Turbulence Modelling

4.3.1 Turbulence Models

The first step towards modelling of turbulent flows is the splitting of velocity components and
pressure into a mean and a fluctuating component:

_ /
uj = Uy +uy

p = p+p (4.51)

Introducing this concept into the Navier-Stokes equations the Reynolds equations for turbulent
flow can be written. In analogy to equation 4.1, they are written in a complete notation:

@"_ﬂ@‘l_@@_’_w@ = —1@—%1/82@—#1/02&%—1/82&—aﬁ—am—ﬁm-kf

ot ox oy 0z pOox 0x? Oy? 022 ox oy 0z v

oo _0v  _Ov _Ov 19p 9% 9% 0% oW w? o

o T Tyt T ooy ol TVap TVo2 T ar oy 0e I

ow _Ow _Ow 0w 10p 0w o o v Ww  dw?

E+“%+“Fy+w$ - _;£+V8x2+yay2+y822 9 Oy 0z NEE
(4.52)

Each momentum equation contains three additional terms which involve products of fluctuating
velocities. These additional terms act as turbulent stresses (Reynolds stresses) on the mean ve-
locity components\{ersteeg & Malalaseker@001) [84]). In tensor notation we can write the
Reynolds equations in short:

_Ou;  10p  Ouug 0

frv—rt+ S (4.53)

i ox;  pox; ox; Ox3
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In general it is not possible to derive governing equations for the Reynolds stresses. Several
turbulence models are available to deal with tigsure problemthe most common methods are
described in the following sections.

Boussinesq established a relationship between the Reynolds stresses and the mean rates of de-
formation, resulting in

1o aul ()'LL] 2
U ut< ., + 913@) 3k(5 (4.54)

wherek is the turbulent kinetic energy

k= (u?+07 +u?) (4.55)

DN | —

and ¢;; the Kronecker delta, which takes the valje = 1 if ¢« = j andé;; = 01if @ # j.

The symbol, is used to denote the turbulent or eddy viscosity for which an assumption must be
made. Based on the complexity of this assumption, a distinction in zero-equation-, one-equation-
two-equation-, and turbulent stress models is ma&ttel{(1984) [68]).

Zero-Equation Models

This model type is characterised by the absence of any kind of transport equation for turbulence
guantities. The eddy viscosity is either assumed constant or related to the mean velocity distrib-
ution. According tdRodi(1984) [68] a constant eddy-viscosity assumption has little significance
for the calculation of hydrodynamic properties since in flow situations where the turbulence terms
are unimportant the model has no influence anyway, and in all other flow situations the model is
mostly too coarse to describe this behaviour correctly.

A specific way to relate the eddy viscosity to the mean velocity gradient significant in simple
two-dimensional flows was first proposed by Prandtl,

(4.56)

which yields much more realistic results. The paramétes the so-called mixing length which

can be computed by simple algebraic formulae based on the flow type encountered. A disad-
vantage of this model is its incapability of describing flows with separation and recirculation
(Versteeg & Malalasekeré2001) [84]), therefore it is not the best choice for the present work.
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One-Equation Models

In this model type the eddy viscosity is related to a velocity scale for which a transport equation
can be written. Known as the Kolmogorov-Prandtl expression, it yields

vi = ¢,VkL (4.57)

with vk as the velocity scale related to the turbulent kinetic energy defined in equation 4.55,
L a characteristic length of the flow domain aijdan empirical constant. Followingersteeg

& Malalasekera(2001) [84], the model equation for the turbulent kinetic engrgyritten in
coordinate-free vector form in analogy to equation 4.4 can be written as:

9 div (ki) = div ( —-grack ) — uu - Fy; — e (4.58)
ot o tJ ~~
(I (I (II1) (V)

In this equationg, is an empirical constantz;; is the mean rate of deformation of a finite fluid

volume, given by:

ou; 0u;
+

Ez" -
8xj 8[@

(4.59)

The symbole denotes the viscous dissipation, i.e. the transfer of kinetic energy into internal
energy of the fluid, and stands for: -
Ou; Ou;;
=V
a.’L'j 395]-

(4.60)

£

The transport equation for the turbulent kinetic energy therefore consists of five main terms:

e atransient term, describing the rate of changé ofer time (1)
e aterm describing the convective transport (I1),
e aterm giving the diffusive transport (I11),

e a term accounting for production of kinetic energy by shear (V) which is often also de-
notedP,

¢ and finally a term describing the dissipation of kinetic energy (V).
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Following Rodi(1984) [68], in a one-equation model the dissipation is usually modelled by the
expression ‘
e=cpp (4.61)

wherecp is another empirical constant.

Rodi(1984) [68] assesses the class of one-equation models as superior to the models based on
the mixing-length hypothesis since they account for convective and diffusive transport of the
turbulent velocity scale. However, one of the main difficulties is the specification of the length
scaleL in flows that are more complex than shear layers as there is little empirical information
available on the length scale distribution. That's the reason why two-equation models, where the
length scale is determined from another transport equation, are a better choice for the present
work than one-equation models.

Two-Equation Models

The most popular two-equation model today is khe £ model byLaunder & Spalding1974)
[40]. Following the idea that dissipation itself is a process influencing the length scale, a transport
equation for= can be derived

2

Oe . - . Vy E— €
a + div (gu) =div (Uegrad;) — ClEEUin : Eij — CQEE (462)
where the eddy viscosity; is modelled as
k2
Vy = ON? (463)

andCy,, Cy, 0. andC,, are empirical constants like, in the transport equation fot. The
values recommended tyaunder & Spalding1974) [40] are:

C, = 0.09

o, = 1.00

o. = 1.30 (4.64)
Ci. = 144
Co. = 192
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The meaning of the terms in thie equation is the same as those in thequation with the last
two terms accounting for production and destruction.of

One of the advantages of tlie— ¢ model is the validity of the model constants for a large
number of flow situations. However, complete universality of the constants cannot and should
not be expectedRodi(1984) [68]). Problems where the standard ¢ model performs poorly

have been well documented in literature. These include rotating flows and flows with highly
curved boundary layers, fully developed flows in non-circular dudessteeg & Malalasekera
(2001) [84]) or the prediction of the spreading rate of axisymmetric jeted{(1972) [67]).
Modifications of the model constants have been proposed to overcome some of these problems.
The RNGE — £ model (Yakhot & Orszag1986) [93]) and thé: — = model for low Reynolds
numbers Patel et al.(1985) [63]) are among the better known ones.

Another two-equation model is the— w model byWilcox(1994) [90]. This model uses an in-
verse time scale denoted- defined as dissipation per turbulent kinetic energy — and employs a
transport equation for this quantity which is quite similar to ékequation except for a different

set of empirical constant®ilcox (1994) [90] states that the model has a high numerical stabil-

ity and shows better rates of convergence than comparable models. However, its applicability
decreases with increasing Reynolds numbers with the model performing best at low to medium
Reynolds numbers. Furthermore, the model is quite sensitive as far as the choice of boundary
conditions is concerned. To overcome this problem a modifiedv model has been proposed

by Menter(1994) [46].

Because thé — < model has been used extensively in the past and is therefore very well docu-
mented for its applicability to flows with high Reynolds numbers, it is chosen for this work.

Reynolds Stress Models

Reynolds or turbulent stress models, also called second-moment closure models, account for
individual transport of the six Reynolds stresaTgs;. This overcomes the limitations introduced

by the concept of an isotropic eddy viscosity and allows for an application of the model to flow
situations which do not yield satisfactory results when computed using two-equation models.
The single most relevant flow phenomenon in river flow applications affected by this limitation

is the prediction of turbulence-driven secondary motiddad| (1984) [68]).

On the other hand, the application of Reynolds stress models is highly complicated and compu-
tationally expensive. Six additional transport equations need to be solved and all of them require
the interpolation of gradients at cell faces which is a fairly complex task in the case of arbitrary
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cell shapes as employed in the present work. However, a requirement for the successful applica-
tion of Reynolds stress models is the availability of measurements for all transported properties
at inlet and outlet of the computational domain, including correlations between velocity fluc-
tuations. If this necessary input data can be provided, this type of turbulence models has the
capabilities to account for an improved representation of the physical processes of turbulence.
An implementation of a Reynolds stress model into RSim-3D is therefore an important prospect
for future improvements of this simulation model.

4.3.2 Discretisation

Transport equation for kinetic energy &

After dropping the transient term from the transport equation for turbulent kinetic ehdrgy.
4.58) it can be presented in an integrated form suitable for a Finite Volume discretisation:

/Q div (ki) 0 = /Q div (Uyligradk:) do — /Q W A0 — /Q cd0 (4.65)

The convective and diffusive terms can be discretised in the same way as in the momentum
equations. Following the procedure outlined in equations 4.7 through 4.13, we obtain for the
diffusive term

/ div (ytgradk:> a0 (4.66)
JQ (o
the following discretised form
— ZA vy 2P AT (4.67)
Ok =1 6 NP

wherev, ;, is the eddy viscosity at the cell fagk, obtained by linear interpolation from the
values at neighbouring cell centroids.

In analogy to equations 4.14 through 4.23, the convective term
/ div (ki) do (4.68)
Q
can be discretised to become

> max (= A - iy,0) - (kp — kn,) (4.69)
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with i, denoting the face velocity vector defined in the derivation of the momentum equations.

In order to discretise the production term we can employ the Boussinesq approximation (eq.
4.54) in conjunction with equation 4.59 to obtain

ou\> [(ov\® [ow\’ ou o\’
- = — — 4= 4.7
i) ()« (3) ]+ (5 +5) wm
L(0u 00\, (on 0w\ 2 (ou 00 dw

0z O dz 0Oy 377\ ox oy 0z

which was presented in a full notation for the sake of clarity. All six different partial differentials

are evaluated using equation 4.19. Fortunately, these differentials are also needed in the second
order upwind procedure and therefore no additional effort is needed to obtain them. While it may
be tempting to implement the part containing the turbulent kinetic energy as a linearised source
term, it is not wise to do so since it cannot be guaranteed that this term will always be positive,
thus violating the third basic rule of the Finite Volume method. Therefore the complete right
hand side of equation 4.70 must be implemented as a nonlinear sourcg term

JQ

Finally, the dissipation term is discretised as:

. /Q cd) = —epV 4.71)

While it was not possible to linearise the production term, it is possible to do so with the dissi-
pation term which will have a stabilising effect on the solution. Neither a negative dissipation
nor a negative cell volume are physically possible, and so we can "linearise” the dissipation term
without violation of the basic rules of the Finite Volume Method to yield

. / o= -V, (4.72)
Q kb

wherek}, is the turbulent kinetic energy value after the previous iteration, resulting in the linear

source term v
S, =L (4.73)
kp

Putting the terms together and re-arranging them in the same way as in the previous sections for
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the momentum and pressure correction equations, we obtain

(lpk‘P = Za’NikNi + b (474)

=1

with the following values fokp, ax, andb:

- AZ o5 = epV

ap = Z { [fth,Ni + (1 - fl) Vt,P] + max (—Amz “ Uy, 0)} + P*
= | okdn,p kb

ay, = [fiven, + (1 — f1) v p| + max (—Ami Sy, 0) (4.75)
0k5N,;P

N ox dy 0z dy Ox 0z Oz
(00 0w\ 2, (bu o dw
dz 0Oy 3P \oxr Oy 0z
It is important to note that upon solution of the discretigeequation slightly negative values
for £ may be obtained. This is a phenomenon of numerics which must be avoided since it dis-

equilibrates the whole solution algorithm. Therefore it must be ensured thatlways positive
by enforcingk > 0 during the iteration cycle.

A consideration of the discretisédequation regarding the basic rules of the Finite Volume
method yields that none of these rules are violated since consistent formulations were used at cell
faces, all coefficients are always positive, the linearised source term is positive and the diagonal
coefficient equals the sum of the neighbour coefficients.

Transport equation for dissipation ¢

The transport equation for dissipatier{eq. 4.62) presented without the transient term and in
integrated form reads:

/Q div (=) d2 = /Q div (Zgract) do — /Q Crom i - By - /Q cggidgz (4.76)

The diffusive and convective terms are very similar to their counterparts inréggiation. There-
fore we can directly write them in discretised form:

. 1% . 1 n ‘ 6Ni —Ep
/lev (U&_grad;) dQ = p S Ay —— (4.77)

€ i=1 5N¢P
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/Q div (i) d2 = gmax(—Aim-af,o)-(gp—gNi) (4.78)

Using the definition ofP, from equation 4.70 the production term can be discretised as:

E—r Ep
_ /Q Cre iy By = VO Py (4.79)

Again, it is not possible to linearise the production term without violating the third basic rule of
the Finite Volume method. But it is possible to improve stability in another way; by using the
definition of the eddy viscosity (eq. 4.63), we can write
Ep ]{JP
VClak—Pk =VC..C,Py— (4.80)
P

Vi

which removes any direct referenceste from the source term sinae is computed before the
equations of turbulence are evaluated. Finally, the destruction tetris@hodelled as:

2 g2
. / Co.d) = — V.5 (4.81)
Q k k)p

Using the same procedure as with the production term, it can be written

2
k
P V0O Py (4.82)

-V .
CZ kp Vi

and this term can be expressed as a linearised source term:

S, = Vo0, (4.83)

Vg

Finally, the terms are put together in the usual way to obtain

apEp = ZGNZ.(:“NZ. + b (484)

i=1

with the following values fokp, ax, andb:

< A L = k
ap = Z { [fth,Ni + (1 - fl) I/t’p] + max (—Amz “ur, 0)} + VCQEC!L?]:

i=1 O-a(sNiP

81



4.4. Boundary Conditions 4. GOVERNING EQUATIONS AND DISCRETISATION

Az’ N
ay, = —— |[firn, + (1 — fi) v p] + max (—Aini Sy, O) (4.85)
00N, P
k
b = vclac,tpkf

t

The statement about enforcing the positiveness applies in the same way toas well and
the considerations regarding the basic rules of the Finite Volume method also hold true for the
discretisedt-equation.

Modification of momentum equations

Very little change is required to solve the Reynolds equations (eq. 4.52) with the technique
already derived for the Navier-Stokes equations (eq. 4.1). The equations have the same form if
the molecular viscosity is replaced by the effective viscosity

Heff = [b =+ [t (4.86)

as pointed out byrerziger(2002) [20]. For the discretised momentum equations in the present
work contain the kinematic viscosity, it is therefore sufficient to replace it by = v + 1.
This is the only modification needed in order to solve the Reynolds equations.

4.4 Boundary Conditions
4.4.1 Inlet

Momentum equations

At the inlet of the computational domain, the normal velocities are prescribed. Given the dis-
charge®, usually it is sufficient to compute the normal velocitigsby

Q
iy A

(4.87)

Uy =

wherem is the number of faces at the inlet. This prescribes a uniform velocity distribution which
does not occur in reality; a fact that does not matter if the inlet boundary is placed sufficiently far
upstream from the area of interest since the flow will develop a natural distribution very quickly.

82



4. GOVERNING EQUATIONS AND DISCRETISATION 4.4. Boundary Conditions

If this method appears too inaccurate, it is alternatively possible to prescribe a logarithmic veloc-
ity profile at the inlet. For points outside of the viscous wall lagahlichting & Gerster§1997)
[71] give the followinglaw of the wall

ut = uy) = lln <y> (4.88)

AN

whereu(y) is the velocity dependent on the wall distance* the shear velocity defined as

ut =, /— (4.89)

with 7, denoting the wall shear stress. is the Von Karman constant which takes the value
r = 0.41. For the fully rough flow domain, the parametgrcan be computed by

yr = ksexp (—8.0k) (4.90)

wherek, is Nikuradse’s equivalent sand roughness of the wall. Using this relationship, equation
4.88 can be reformulated to read:

u* 26.58y
=—1
uy) K n< ks >

(4.91)

The velocity distribution given in this formula can subsequently be integrated over the depth of
the flow domaim in order to obtain the dischargg:

Q= [ uy) dy (.92

The result of this integral is used to compute the shear velatity

. Q 1
T A 802 1 (&)

E

(4.93)

which finally allows us to use expression 4.91 to prescribe the velocity at the inlet dependent
on the vertical layer. It should be noted that the denominator of this equation must not become
negative for this approach to work. This sets a natural limit for the ratio between the depth of the
flow domain and the equivalent sand roughness of the wall.
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While the equivalent sand roughnésss used throughout many boundary conditions, often this
parameter is not available in engineering calculations, but the Strickler coeffigjeist given
instead. These two parameters are related by the empirical relationship:

6
k= (264> (4.94)
kst

According toUSACE(1994) [83], this formula holds true for riprapped channels whiere-
Dqyg, While for natural sediment whefe = Dxq, the relationship

6
ky = (29'4) (4.95)
Esq

is appropriate. However, these equations are applicable only to medium-range values for the
Strickler parameter, i.e. not to smooth and very rough surfdé¢a@gsdasche(1987) [50] assesses

their applicability for typical Reynolds numbers in river flow situations to be in the rafge

4R/ks < 1000 whereR denotes the hydraulic radius.

Turbulent kinetic energy

If the inlet boundary is placed sufficiently far away from the region of interest, the prescribed
values fork have no significant influence on the turbulence field further downstream as long as
the £ — ¢ model is employed. This conclusion can be drawn when comparing the suggestions
given by different authors as far as this quantity is concerfedziger(2002) [20] suggests to

use a small value far and givest = 10~*%? as example, whil¥ersteeg & Malalasekerg2001)

[84] propose to estimate from the turbulence intensity; which is typically between 1% and

6%: k = 3 (aT};)*. Davidson & Nielser{1995) [17] document the use bf= 10~2a2 andOlsen
(1999) [55] finally relates the turbulent kinetic energy to the wall shear strasshe inlet and

obtains
-

P\ Cu

kp = (4.96)

for the inlet bed with a linear decrease towards the free surface. This approach is adopted here.

Dissipation

The dissipatiore must return the correct scale, thus it is useful to choose its inlet value in ac-
cordance with equation 4.61 which can be reformulatiqteeg & Malalasekeré2001) [84])
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as

e=C} (4.97)

wherelL is a characteristic length of the flow domain that can be approximatdd~y: where
h is the water depth. This procedure is also confirmed in a papBrabidson & Nielser{1995)
[17] where an inlet value of = %1% is being used; the only difference is the choice)dfL
as mixing length in the denominator owing to the different type of flow problem modelled.

4.4.2 Outlet

Ferziger (2002) [20] notes that we usually know little about the flow at the outlet and for this
reason, these boundaries should be as far downstream of the region of interest as possible. In
the present work a zero gradient boundary condition in the streamwise direction is applied to all
guantities:

Ou; Op Ok Oe

7 _E_ T _ T 4.98

on On On On ( )
Of course, for this assumption to hold true, the outlet boundary must be placed perpendicular to
the flow direction. Additionally it must be noted that the pressure correction equation does only
yield relative pressures, therefore it is necessary and common practice to fix the pressure at one

outlet node and let the pressure field evolve from there.

As stated invVersteeg & Malalasekerg2001) [84] mass conservation over the whole computa-
tional domain is not guaranteed during the iterative solution process. Therefore it can be advan-
tageous to sum up the mass fllix,;, going out of the domain after an iteration cycle and then

use the relation
. M

n
out

(4.99)

Uy, = U

to correct the normal velocities, at the outlet for the next iteration cycle. This procedure has
also been adopted in the present work.

4.4.3 Solid Walls

Momentum equations

Directly at the wall all velocities are zero (no-slip condition) and no convective fluxes take place
through the wall. The momentum equations, however, receive sink terms based on the shear
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stress at the wall. In order to derive these terms, first the velocity in tangential direction to the
wall u, needs to be computed. This is done by calculating the tangent véaterfirst step by
using the relations derived erziger(2002) [20]

i, = @— (@ 7)f
D (4.100)
|up‘

wheret is the three-dimensional velocity vector at the nearest wall nod& dmelnormal vector
of the cell face at the wall, pointing outwards as usual. The tangential velocity is then obtained
by projecting the velocity vector on

=1t (4.101)

In a next step it must be evaluated whether the cell centroid nearest to the wall lies within the
viscous sublayer or the turbulent outer region. This evaluation is performed by first computing

+:AyP Tw
v p

(4.102)

where Ayp is the normal distance from the cell centroid to the wall. Assuming the near wall
node is in the turbulent outer region — which is almost always the case — the wall shear stress
can be estimated as given Wgrsteeg & Malalasekeré2001) [84],

T = pCil k2L (4.103)

where kp denotes the turbulent kinetic energy at the near-wall nodeudnis derived from
equation 4.88. The limit of the viscous sublayer is giveny/by< 11.63. If y* is found to be less

than this value, the assumption that the cell centroid was in the turbulent region does not hold,
and the wall shear stress must be computed by:

Uy

— 4.104
1 Aur ( )

Tw

After the wall shear stress has been obtained, the sink term for the momentum equations
1,2,3 reads
Suj = Ap-t (4.105)
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wheret; is the row of vector that points into the direction gfand A, denotes the surface area
the cell shares with the wall.

Attention must also be paid to the implementation of the pressure term. The pressirte

wall cannot be obtained in the usual way since there is no second cell the linear interpolation
could be performed withWesseling2001) [89] suggests to extrapolate the needed values from
the cell centroid values of the near-wall cell and the cell next to it in the computational domain.
The problem with such an approach, however, is that such a second cell is undefined in arbitrary
unstructured grid setups — which was also the reason why the QUICK scheme could not be used
(section 4.1.3). Some other authors state that their flow problems gave satisfactory results upon
using the zero-gradient boundary condition for pressure. Especially in curved channels where
the pressure gradients become significant, such an approach is not a feasible solution. Therefore
it is proposed to use the pressure gradieépt obtained via the procedure outlined in equation
4.19 and already used in the pressure correction equation and set

pr=pp+Vpp-§ (4.106)

wheres'is the vector from the cell centroid to the wall face centroid. However, it should be noted
that during the evaluation of the pressure gradient itself assumptions about the value at the face
need to be made. Due to these assumptions the pressure gradient within the cell can never be
steeper than obtained from all surrounding cells which eventually leads to the same result as in
Wesseling (2001) [89] gradient evaluation.

Turbulent kinetic energy

For the turbulent kinetic energy right at the wall it is appropriate tokset 0 (Ferziger(2002)
[20]). At the same time, the equations for near-wall cells must receive an explicit source term

v

— 4,107
Ayp ( )

3 3
S = <Twut — pCii /{:]%u+)

according to/ersteeg & Malalasekeré2001) [84]. This source term can be linearised, and after
introducingk}, to denote the value of kinetic energy after the previous iteration and dividing the
term by density, we can write:

3 L1
— M and Su — Twutv

S.
g Ayp pAyp

(4.108)
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Dissipation

Setting a zero dissipation value at the wall is inappropriate. But since a value at the wall would
be needed in order to apply the transport equatiore fttrere, the usual procedure is to avoid
solving thes-equations in near-wall regions by setting the nodal value of the cell adjacent to a
wall to the value given byersteeg & Malalasekeré?2001) [84]:

3 3
~ Cukp
B kAyp

ep (4.109)

4.4.4 Free Surface

The free surface is implemented as a symmetry boundary which means that no fluxes occur
across this boundary. The normal velocity (usually the= w component) is therefore zero

right at the boundary. All other properties take boundary values equal to those encountered in
the cell centroid right beneath the free surfaéerziger (2002) [20] notes that a free surface
boundary condition of ~ 0 ande ~ 0 would be appropriate, but on the other hand turbulent
structures can be observed exactly at the free surface of a water body. However, as a matter
of fact no scalar fluxes take place concerning these quantities. Therefore the condition of zero
fluxes ofk ande was used in this work.

The pressure at the free surface is evaluated by using the same gradient approach as described in
the previous section. This implies, however, that the pressure is not zero at the surface (except for
the single outlet surface cell where it is fixed). The resulting extra pressure head can be directly
used to locate and subsequently update the position of the free surface. This approach has been
implemented in the present work.

4.5 Solution of Equations

4.5.1 Solver

After the discretised equations have been assembled they need to be solved in an efficient way
without consuming too much time or computer memory. Very efficient algorithms are available
if the coefficients of the discretised equations can be arranged in diagonally dominant matrix
form (Schmid(2001) [72]) as it is possible when structured grids are employed. For unstructured
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grids with a fixed number of neighbours for each cell it may be possible to use solvers developed
in context of the Finite Element methodiénkiewicZ1971) [95]). However, if even the number

of neighbouring cells is unknown a priori and varies from cell to cell, none of these techniques
is applicable.

The solution methods applicable to problems involving grids with cells that may have an arbi-
trary number of neighbours include the Gauss-Seidel metPms§(1987) [65]), the Conjugate
Gradient Squared methoBdrrett et al.(1994) [9]) or its modification, the Biconjugate Gradient
Stabilized method. The latter two exhibit a very good convergence behaviour at the cost of large
memory requirements during a cycle of the rather complex solution algorithms. For the work
presented here, the Gauss-Seidel method was preferred. It is a slow solution algorithm but there
are very few memory requirements for the solver itself and implementation is uncomplicated.
Furthermore the algorithm is easy to understand and the reasons for instabilities can be located
quickly, which is an advantage during model development and validation.

The Gauss-Seidel method solves the linear system of equations b where A is a matrix of
coefficients,b a vector containing boundary conditions antéhe unknown solution vector. In
the present workd is composed of the coefficients anday,, andb takes the values of the
nonlinear source terms in the discretised equations. The algorithm solvegthequations one
at a time in sequence and can be written as

2P = bi = L 0575 — Ly airy (4.110)

A

where: andj are the cell numbers, thus; the coefficients.y, anda,; the diagonal coefficient,

for each cell, and: is the inner iteration counter of the algorithm. It is easy to see that results of
the solution of previous equations are used as soon as they are available. The solution requires an
initial guessz(®) which is provided by using results obtained in the previous outer iteration step.
The only exception is the pressure correction equation, where it is useful to stagt feert so

that the solution fop’ does not acquire a large absolute valBatankar(1980) [61]).

The Gauss-Seidel procedure is usually repeated until convergence is obtained. However, con-
vergence is difficult to assess within the solver itself for it is applied to equations with entirely
different scales and physical meanings. Furthermore it is not useful to solve the equations until
convergence is achieved since the result is only used as an intermediate result in the overall solu-
tion (Ferziger(2002) [20]). For this reason, the Gauss-Seidel procedure is repeated a predefined
number of times only, without extra assessment of convergence after every iteration. Usually,
evaluating each equation 10 times is sufficient for the most common flow situations.
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4.5.2 Relaxation Scheme

Due to the strong nonlinearity in the governing equations the solution process may rapidly di-
verge if the solution vector obtained from the solver is used as starting point for the next overall
iteration cycle. Especially the pressure correction equation is susceptible to divergerstedg
& Malalasekera(2001) [84]). It is therefore necessary to employ an under-relaxation scheme,
such as

¢ = agd + (1 — ay)o™ (4.111)

where the new value " is obtained from the solution® after the previous iteration and

the solutiong given by the solver in the current iteration step by using the relaxation fagtor
which is typically in the range between 0 and 1. The choice of optimum relaxation factors is
problem dependent and can be found by test computations or experience. There are, however,
typical ranges for the selection of the relaxation factors for the six governing equations of three-
dimensional CFD problems:

The velocity relaxation factos, is usually in the range 0.5 — 0.8sley(2003) [6]). Olsen
(2000a) [57] employs a default value of 0.8 but notes that the factor can be set as low as 0.1 for
flow situations that are difficult to converge.

For the pressure relaxation factey, Apsley(2003) [6] gives the typical range 0.1 — 0.3. This is
fully consistent withOlsen(1999, 2000a) [55, 57] where a default value of 0.2 is used. The latter
work also gives a lower bound of 0.03 for complex flow situations. These observations can be
confirmed by the author as well: some flow problems required a pressure relaxation factor less
than 0.1 during the first iteration cycles in order to achieve convergence.

Finally, the relaxation factors for the turbulent kinetic energy and the dissipatioar(d a.)
default to 0.5 inOlsen(2000a) [57] but are said to sometimes require values as low as 0.05 in
order to result in a converged solution. RSim-3D uses default values for the relaxation factors
according to table 4.1.

RSim-3D uses lower factors for the turbulence properties because the governing equations for
these quantities are not the ones that dominate the overall convergence behaviour (see figure 4.8)
as the number of iterations required to solve a flow problem is vastly dominated by the pressure
correction equation. So, in order to damp the sometimes observed instabilities in the turbulence
equations lower default relaxation factors have been chosen. However, for the vast majority of
flow situations choosing, = «a. = 0.5 or larger would be sufficient.

Also the update of the free surface position introduces instabilities into the solution process since
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| Quantity | Symbol | Default value |
Velocities Qy, 0.8
Pressure ap 0.2
Turb. kinetic energy Qg 0.3
Dissipation Q. 0.3
Free surface position Qs 0.5

Table 4.1: Default relaxation factors

cell volumes and vertical position of the cell centroids are changed after every update. Depending
on the complexity of the flow problem these instabilities may also lead to rapid divergence.
Therefore it is advisable to relax the free surface position as well. A value of 0.5 for this value
has worked for most flow situations examined. Finally it should be noted that updates of the free
surface are not overly useful if the scaled residuals (see section 4.5.3) of all other properties are
still large. Therefore these updates are only performed if all residuals are below 0.05.

4.5.3 Residuals

In order to define convergence of a solution an assessment of the solution errors is required. For
every property in each cell the imbalance within the discretised equation can be computed as
the difference between right hand side and left hand side. Summing this imbalance over all cells
we obtain the unscaled residuay}:

Neells | N

RE=3" Y anon, +b—apgp (4.112)

=1 li=1

In Fluent(2003) [25] it is noted that even thoudty is a measure of the solution error, it is diffi-

cult to judge convergence since no scaling is employed that allows for a generalised assessment
in different types of flow problems. A good scaling factor is the left hand side of the discretised
equation. Therefore a scaled residizdlcan be introduced

R

RV =
> lapdpl

(4.113)

that is suitable for judging convergence on any type of flow problem. This formula is used in the
present work to determine the residuals of th@ndes equations. For the momentum equations
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the denominator termp¢p is replaced by:p |ip| Wwhere|ip| is the magnitude of the velocity at
cell P (Fluent(2003) [25]).

The unscaled residual for the continuity equation is defined as the absolute value of the source
term of the pressure correction equation (eq. 4.48) summed over all cells. This definition is equal
to stating that the unscaled continuity residual is the sum of mass creation in all cells:

Tlcells | M

Ri=3.

Jj=1

(4.114)

my,
=1
In order to scale the continuity residuals they are divided by the maximum unscaled residual
within the first five iterations gy, ;) resulting in:
RC
“ (4.115)

c
u,b

R =

In the present work, convergence of the solution is obtained when the scaled continuity residual
is less thari0~* and all other residuals are less thidr>.

4.6 Remarks on Numerical Stability and Convergence

Usually, the numerical stability in the iterative procedure increases when lower relaxation factors
are being used, even when there is no guarantee that this assumption holds true for every flow
situation encountered. On the other hand, lower relaxation factors often result in a significant
increase of iterations needed for the solution to convefggziger (2002) [20] analysed the
number of iterations needed to reduce the residual levels by three orders of magnitude on four
different grid setups for the problem of a lid-driven cavity as a function of the velocity relaxation
factor «,. The result is plotted in figure 4.7. From this diagram it is obvious that the optimum
relaxation factow, for this type of flow problem is around 0.9; higher factors introduce insta-
bilities and oscillations that slow down the overall convergence process while lower factors have
a negative influence on the convergence speed as well.

Other sources of instabilities during the solution process can be the improper placement of inlet
and outlet boundaries (i.e. not sufficiently far away from the region of interest or not perpendicu-
lar to the flow direction), a bad choice of wall boundary conditions or the presence of irregularly
shaped cells within the computational domain. These issues can therefore seriously slow down
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Figure 4.7: Number of iterations for the lid-driven cavity problem (Ferzi@&02) [20])

convergence or even cause the solution algorithm to diverge. A natural source of instabilities
is the update of the vertical water surface position during the solution process since it leads to
the recalculation of cell volumes and the location of the respective cell centroids. But as long
as the relaxation factors are not too large, these instabilities are damped very quickly and the
residuals reach their original level again soon. This fact is shown in figure 4.8 where the scaled
residuals for the simple case of turbulent flow in a straight channel are plotted. The left diagram
was created without updates of the water surface; in the right diagram the surface was free to
move. The case without moving water surface reached a converged state (continuity residuals
have dropped by four orders of magnitude, all other residuals five orders of magnitude) after 730
iterations while the moving water surface problem took 990 iterations, which is a 35% increase
in computation time. The instabilities introduced by the surface updates are clearly visible in the
convergence norms. It should also be noted that the decrease of the continuity error norm for the
fixed surface problem is almost linear in a logarithmic scale.

The time which is needed to obtain a solution for a specific flow problem was discussed to
be related to issues of stability and relaxation factors so far. However, these are not the only
causes that affect the convergence speed. The technique employed in the solver introduces a
relation between the size of the problem (i.e. the number of cells) and convergence speed: the
Gauss-Seidel scheme is very efficient in removing local (high-frequency) errors but global (low-
frequency) errors are reduced at a rate inversely related to the grid size (R2003) [25]).

Hence it is impossible to solve very large problems within an acceptable time span using the
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Figure 4.8: Convergence history for turbulent channel flow

Gauss-Seidel solver. But since the solution methods based on the Conjugate Gradient scheme
(section 4.5.1) are both complicated to implement and suffer from serious robustness problems,
only the so-calledMultigrid schemesvould be capable of delivering robustness and efficiency

in removing global errors. The basic concept is to treat these low-frequency errors by a series of
successively coarser grids whereas high-frequency errors are reduced by finer meshes. For the
present work, however, this is not a feasible solution since the two-dimensional domain gridding
process using polyhedral cells is a time-consuming process. Therefore, if a reduction of the
vertical solution accuracy can be accepted, it is advisable to decrease the vertical resolution of
the flow domain upon an increase of the horizontal resolution to allow for a converged solution
to be obtained within an acceptable amount of time using the Gauss-Seidel solver.

Finally, the time until convergence is also affected by hardware characteristics of the computer
system used. While CPU architecture and clock rate are straightforward parameters, the relation
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Figure 4.9: Performance for three different computer systems (Arng#e@s) [8])
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between internal cache size of the CPU (level 2 cache) and number of floating point operations
per second dependent on the problem size is not so easy to adsedeld (2003) [8] demon-

strates this relation which is given in figure 4.9. It can be seen that the performance — given
as million floating point operations per second (MFLOPS) — rapidly decreases once the prob-
lem size exceeds the size of the CPU'’s level 2 cache and direct RAM access operations become
necessary.
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5 Verification and Validation Cases

5.1 Verification

The purpose of the verification study is to assess the discretisation error, defined as the difference
between the exact solution of the governing equations and the exact solution of the discrete ap-
proximation Eerziger(2002) [20]). This error is due to the use of approximations for the various
terms in the equations and the boundary conditidmd.y. The quality of these approximations

is described by therder of the numerical scheme. It is assessed by comparing the solutions
obtained on different grids that are distinguished by their grid spacing.

In theory, the numerical scheme employed in this work should be of second order, hence the
nameSecond Order Upwindcheme. Analysis to derive the actual order of the scheme is done

by a study on three different grids that can be characterised by a unique grid spacing, with the grid
point distance being halved from each grid level to the next one. For this study to be successful,

it is important that the grid can be actually characterised by a unique length scale because the
equation used to assess the order of the scheme (eq. 5.1) was derived using this precondition.
Therefore the order assessment uses a hexahedral grid where grid spacing can be defined. Using
such a grid with constant grid point distancat the finest level, the orderof the implemented
scheme is obtained by evaluating

1 Gan — P2n
p=

BT e +o(1) (5.1)

(Steinriick(2002) [78]), whereyp is the quantity that the underlying governing equation was
being derived for. Equation 5.1 is to be evaluated for a grid node that is located sufficiently far
away from any boundary, hence allowing for an assessment with as little influence by boundary
conditions as possible.

In the present study, a simple rectangular duct is being modelled: 50m in length, 5m in width, 1m
in height, without bottom slope. All surrounding walls are assigned an equivalent sand roughness
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ks of 0.00034 m which corresponds to a Strickler coefficientgf= 100. A constant discharge
of 5 m’/s leads to a pressure gradient between inlet and outlet since the surface is not allowed to
move.

Three different computation grids are employed:

e a coarse grid using 250 regions in 2D (size: 1.0 x 1.0m) and 11 vertical layers, resulting in
2750 cells,

e a medium sized grid using 1,000 regions in 2D (size: 0.5 x 0.5 m) and 11 vertical layers,
resulting in 11,000 cells,

¢ afine grid using 4,000 regions in 2D (size: 0.25 x 0.25 m) and 11 vertical layers, resulting
in 44,000 cells.

The grid spacing in the vertical direction was kept constant for all three variants, with the top and
the lowest cell each accounting for 5% of the computational domain and all other cells for 10%.
It can be expected that this fact did not have a significant influence on the result because the flow
conditions are essentially one-dimensional.

Figure 5.1: Grid levels for verification case: 250 regions (top), 1,000 regions (center), 4,000
regions (bottom), reference location marked in red

To minimise the influence of boundary conditions, a point close to the centre of the domain was
selected as reference location: 25.5m from the inlet, 2.5m from the side walls, 0.5m from the
bottom. Figure 5.1 depicts the three different grid levels and the reference location.
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Since flow along a straight channel is a one-dimensional problem, the quantity to be evaluated
at the reference location ig, the velocity in the direction of the global coordinate axislts

values are given in table 5.1 in high precision for an accurate assessment of the discretisation
error and subsequently the order of the numerical scheme.

| Case | N regions | Velocity u; [m/s] |

4h 250 1.15930315
2h 1000 1.154079538
1h 4000 1.152698668

Table 5.1: Velocityu, at the reference location for different grid levels

Evaluating equation 5.1 using the values from table 5.1 yields the order of the implemented
numerical scheme. It takes the value
p=1092 (5.2)

which is very close to 2.0, the perfect result for a scheme of second order. The slight difference
can be explained by the influence of boundary conditions, the missing refinement in the vertical
direction and effects with similar impact that cannot be quantified exactly.

| Case | N Cells | lterations | Time [h] |

4h 2750 8100 0:35
2h 11000 5900 2:05
1h 44000 5100 7:20

Table 5.2: Number of iterations and computation time for the verification case

In addition, the convergence behaviour of the verification case on the different grid levels is of
special interest from an engineer’s point of view. Table 5.2 gives the number of iterations needed
for the solution to converge on the different grids along with the computation time on a reference
computer system. The reference system is a Pentium IV-class machine with 2.8 GHz clock rate
and 1 GB RAM installed in a dual-channel setup.

Most notably the number of iterations decreases when the problem size increases. This can
be easily explained by the better spatial resolution of the computational domain which causes
fewer errors in the solution, hence fewer iterations are required for convergence. Furthermore
the actual time spent on the solution of the problem scales sub-linearly with the problem size,
i.e. computations on coarse grids converge relatively slower than on refined grids: during every
iteration, additional computations must be performed (e.g. evaluation of gradients or the eddy
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viscosity for all cells), hence an increase in the number of iterations has an additional adverse
effect on the time the model takes to reach a converged state.

Finally, the convergence history for the verification case on the three different grid levels is
depicted in figure 5.2. From this figure it is clear that the decrease in the continuity residual is
linear in a logarithmic scale. Furthermore, it is possible to see that the equations of the turbulence
model take more time to converge than the momentum equations; according to the author’s
experience this can consistently be seen in a large number of flow problems.
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Figure 5.2: Convergence history for verification case
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5.2 Developing Flow in a Curved Rectangular Duct

In this section, the numerical model will be validated against measurements in a curved rec-
tangular duct. The experiment is described and selected results are publisgtied &nPatel

(1994) [37]. The full data sets of the results are available on the Classic Data Base of the Eu-
ropean Research Community on Flow, Turbulence and Combustion (ERCOR®AE) [19]).

The measurements of Kim and Patel's experiment were already used to assess the validity of
computational codes in the past (eNguyen(2000) [51]).
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Figure 5.3: Layout of Kim & Patel's experiment

The experimental setup is depicted in figure 5.3. The physical model consists of a rectangular
duct H=20.3cm wide and 6 #1.22m high. It features an upstream section of Z3/2m in
length, followed by a 90bend with a mean radius of curvature being 3=%H.1cm, and a

long downstream section of 25.543.18m. The duct is run as a wind-tunnel, using air with a
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kinematic viscosity of» = 1.45 - 107°m?/s and a density of approximately = 1.25kg/m3.
The freestream velocity near the middle of the upstream section was foundtp-be 6m/s,
resulting in a duct-based Reynolds numbet/pf/ /v = 224, 000.

As a measurement of wall roughness, a friction coeffic@&nt= 0.0038 is provided. In a first
step, this friction coefficient must be converted to the concept of equivalent sand roughness to be
of use in the present work. Starting at the definition of the friction coefficient,

O = (lg’?"UQ (5.3)
wherer, denotes the wall shear stress dndls the velocity outside of the boundary layer, we

can evaluate,, = 0.61N/m?. Introducing the shear velocity* as defined by equation 4.89,

we obtainu* = 0.7m/s. Now evaluating equation 4.91 for the wall-distance where the free-
stream velocity is to be expected (i.e. the duct half widi2), a fictitious sand roughness of

k, = 2-107% is obtained that can be used in the present study. Of course, one must be fully aware
that the concept of an equivalent sand roughness is actually not applicable to air flows, which
may lead to errors in the results due to a wrong assessment of the wall’s influence on the mean
flow.

Measurements are provided at cross-sections U2485, 75° and D1. In this chapter an analysis

of cross-section 45s presented; results for all other cross-sections can be found in appendix B.
Except for the contour plots presented, all evaluated quantities are non-dimensionalised by the
freestream velocity/, and the duct width.

In Kim & Patel (1994) [37] it is recommended to use velocity and turbulence measurements at
the upstream cross-section as inlet conditions for numerical studies and do the computations for
a reduced model only. However, since the numerical model should actually be able to return
these values if the full experimental domain is represented in the computational model and all
boundary conditions are applied correctly, it was decided to do the computations on the full
domain. With this assumption, a freestream velocity of 16.4m/s was obtained at the reference
location — which is not far from the freestream velocity giverkim & Patel (1994) [37] — and

so the non-dimensionalisation of the computational results was performed using this value.

The measurements and also previous studies indicate that strong gradients in many flow proper-
ties are to be expected along the bend. Since it is of utmost importance to capture these gradients
correctly, the computational grid must be refined in the vicinity of the side walls. On the other
hand, a fine discretisation in the flow direction is not needed. This leads to the spatial discretisa-
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tion using a grid based on quadrilateral regions since cells having a larger number of sides would
become seriously distorted under these circumstances. A detail of the computational grid along
the bend is depicted in figure 5.4. It can be seen that an area occupying 20% of the flow domain
both near the inner and outer walls is discretised by five regions while the centre area is allocated
the same amount of regions. A small number of cells near the entrance and the exit of the bend
are slightly distorted due to the grid generation algorithm, but the number is too small to expect
a negative influence on the results. In the vertical direction, the channel is symmetric and so a
symmetry boundary was introduced a&f 3allowing us to represent only half of the experimental
domain in the numerical model. This domain is divided into eleven cells (see figure 5.4, inset)
with the top and bottom cells each occupying 5% of the height and all other cells using 10%.
This results in a total of 37,906 cells. The solution converged after 8,100 iterations in 10 hours
on the reference system (see section 5.1).

Figure 5.4: Detail of computation grid for Kim & Patel’'s experiment
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Figure 5.5: Computed depth-averaged flow velocity for Kim & Patel’'s experiment

Figure 5.5 depicts the computed depth-averaged flow velocity along the bend. This and subse-
guent images were produced using the algorithm describBduinke(1987) [11]. It can be seen

that minima occur close to the outer wall along the bend and at the inner wall in the downstream
section of the duct. These minima take values of approximately 60% of the maxima observed in
the corresponding cross-section. An assessment of these results can be done when the computed
results are compared with the measurements by Kim and Patel.
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Figure 5.6: Longitudinal velocity profiles for cross sectioni 45Kim & Patel’'s experiment

This is shown in figure 5.6 for the longitudinal velocity profiles. One can see a good agree-
ment between computation and measurements in the region close to the center line and still a
reasonable agreement in the outer regions. The vortex in the vicinity of the bottom wall, lead-
ing to distorted shapes of the velocity distributions in that area, is not captured by the model.
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Sotiropoulos & Pate(1995) [75] credit this effect to the weak secondary motion predicted by
thek — e turbulence closure, so that no longitudinal vortex forms.
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Figure 5.7: Transversal velocity profiles for cross sectiohefXKim & Patel’'s experiment
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Another important flow property in curved channels or ducts is the secondary movement that can
be seen in the transversal velocities as depicted in figure 5.7. The measurements exhibit strong
minima close to the bottom wall that take values of up-tb15U, while maxima of aboud.05U,

occur atz/H = 0.5. At the outer wall the flow pattern becomes quite complex as several vortices
are evolving. It can be seen that the model captures the overall distribution of secondary velocity
correctly, but fails to predict the exact vortex pattern close to the outer wall. This effect can be
credited to deficiencies in thle— ¢ turbulence closure (Sotiropoulos & Pa{@l995) [75]), the
second order upwind scheme employed in the present work, and the vertical resolution of the
model.

While the minima of the velocity profile are correctly represented — at least in the inner regions
of the duct — the maxima are underestimated to some extent. This has also been found and
documented b$otiropoulos & Pate{1992) [74] who conclude that thke-= model underpredicts

the strength of the secondary motion.
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Figure 5.8: Distribution of non-dimensionalised turbulent kinetic energy for cross sectiai 45
Kim & Patel’s experiment
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Figure 5.8 finally depicts the distribution of the non-dimensionalised turbulent kinetic energy in
the 45 cross-section in four distinct vertical layers. The measurements exhibit maxima at the
side walls and minimal values in the inner flow region. The computational results also follow this
pattern but vastly overpredict the turbulent kinetic energy almost everywhere in the flow domain —

a feature of thé& —e model that has also been found by other authors in the past. Furthermore, the
distribution along the outer wall is not very well represented in the model. It should be mentioned
though that the model correctly captures three distinct local maxima at thezlasfer= 0.3125

so it can be concluded that the model is at least able to represent certain characteristics of the
turbulent flow pattern. However, the overall agreement between model results and measurements
is not too good; a fact which does not matter for the engineer as long as he is mostly interested
in flow patterns and water surface elevations but that should be considered when the distribution
of turbulent kinetic energy is of interest.

107



5.3. Flow in a Sharply Curved Channel 5. VERIFICATION AND VALIDATION CASES

5.3 Flow in a Sharply Curved Channel

After the model itself has been validated to comply with different measurements in section 5.2,
in this section the influence of different grid types on the results is investigated. For this purpose

a validation experiment was chosen that has been used extensively in the past in the course of the
development of numerical models (elgeschziner & Rod{1979) [42],Ammer(1993) [4],Lien

et al. (1999) [43],Nguyen(2000) [51],Wu et al. (2000) [92],Ghamry & Steffle(2002) [29]):
Rozovski(1961) [69] investigated the flow characteristics of a sharpy H&Mhd with a ratio of

width to mean radius of curvature of 1.0. A curve with a width-to-mean radius ratio of 0.4 and
more is considered to be sharp, as pointed outtiby et al. (1999) [43], hence resulting in a

highly three-dimensional flow situation.
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Figure 5.9: Layout of Rozovskii’s experiment

The experimental setup is depicted in figure 5.9. An approach channel of 6m in length is followed
by a 180 bend with a mean radius of 0.8m and an exit channel of 3m. The channel is horizontal
and has a rectangular cross section with a width of 0.8m. The discharge in the channel is constant
at 0.0123 n¥s and the water depth at theet was documented to be 0.063mRgzovski{1961)

[69], resulting in an average velocity 6fA/ = 0.265m/s. As a measure of wall roughness the
experimenter gives a Chezy coefficient@f= 60m 2 /s. The Chezy and Strickler coefficients

are related by the equation

C
kSt = —71 (54)

R

S ol

where R, denotes the hydraulic radius. Using this formula, the Strickler coefficient is found to
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take a value okg; = 98m%/s which in turn corresponds to a roughness heigtit,cf 0.0004m.
The downstreanwater depth required for the numerical model was introduced as a calibration

parameter, with the final result after a number of runs yielding 0.053m. This value perfectly
agrees wittGhamry’s (2002) [29] result.
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Figure 5.10: Computation grids for Rozovskii's experiment

In terms of spatial discretisation two different grids were employed to investigate the influence
of the cell shape on the results:

o Afirst grid (see fig. 5.10, top) based on regions of hexagonal shape with a longitudinal
grid point distance of 0.1m and a transversal grid point distance of 0.0866m. The grid is
vertically structured, with the top and bottom cells each occupying 5% of the flow depth
while all other cells occupy 10%. This setup results in 12,089 computation cells.

e A second grid (see fig. 5.10, bottom) based on regions of quadrilateral shape with longitu-

dinal and transversal grid distances being equal to 0.1m. The vertical structure is the same
as in the first setup, resulting in 10,648 computation cells.
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While the numerical experiment based on quadrilateral regions converged after approximately
41,000 iterations in 15 hours on the reference system (see section 5.1), the computations us-
ing hexagonal grid regions took significantly longer and converged after approximately 68,000
iterations in 37 hours. The results are depicted in figures 5.11 through 5.21.

Water surface [m]

0.054
0.055
0.056
0.057
0.058
0.059

0.060

0.081
- 0052

Figure 5.11: Computed water surface elevations for Rozovskii's experiment (top: hexagonal grid
regions; bottom: quadrilateral grid regions)

Figure 5.11 shows the computed water surface elevations for both grid types (top: hexagonal
regions, bottom: quadrilateral regions). When the results are compared with figure 5.12, one
can see a reasonably well qualitative agreement between computations and measurements, even
though a quantitative comparison is not so straightforward since the experimental results are
presented in a reference system which apparently is not based on the channel bed. The results
between the two different grids are approximately equal, with the hexagonal grid having a ten-
dency towards smoothing out extremal values along the outer bank and exhibiting higher extrema
along the inner bank.

A more precise assessment of the results can be done if the water surface elevation along the
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Figure 5.12: Measured water surface elevation®byovski(1961) [69]
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Figure 5.13: Sidewall flow depth for Rozovskii's experiment

channel walls is plotted for the bend as depicted in figure 5.13. The impression gained from the
interpretation of the contour plots in fig. 5.11 is confirmed: the model using hexagonal regions
shows a better agreement along the outer bank while it performs not so good along the inner
bank. However, both grid types yield a relatively good agreement with the measurements. The
differences between computations and measurements near start and end of the bend have been
noticed by other authors, as well (elgen et al. (1999) [43]); they can be explained as results

of the model calibration by making use of the inlet flow depth. Referring to these discrepancies,
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5. VERIFICATION AND VALIDATION CASES 5.3. Flow in a Sharply Curved Channel

the cross-section can be assigned a valug/ dfwith negative values ranging from the left bank
to the centre line.

Cross-section 3 (y/b = 0.5) Cross-section 6 (y/b = -0.5)
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Figure 5.15: Selected longitudinal velocity profiles for cross sections 3 and 6 of Rozovskii's
experiment

It can be seen that the agreement between measurements and computations is quite reasonable
for both grids in the vicinity of the centre line, while the results notably deviate from the mea-
surements in the region close to the banks. This effect can be credited to the lack of grid re-
finement in the bank regions which does not allow for the pressure gradients to be precisely
captured, thus influencing the distribution of mass fluxes and velocities. It should also be noted
that the curvature of the calculated velocity profile exhibits a different general tendency than
the measurements. Considering the analogy to observations made in section 5.2 with regard to
the longitudinal velocity profiles, it is very likely that this can be credited toithe ¢ model
underestimating the strength of the secondary motion which in turn leads to deficiencies in the
prediction of longitudinal velocities.

In general it was found that, except for the outer bank at cross-section 3 where the hexagonal grid
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performs better, the quadrilateral grid returns results closer to the measurements. This allows the
conclusion that actually a certain level of false or numerical diffusion is present when the hexag-
onal grid is being used, even though it is apparently not severe since the differences between the
results on the two grids are generally not large.
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Figure 5.16: Selected longitudinal velocity profiles for cross sections 8 and 12 of Rozovskii’'s
experiment

This impression is confirmed when the averaged velocity @fio' M is plotted for the cross-
sections along the bend (fig. 5.17). While the results obtained on both grid setups exhibit an
excellent agreement with the measured values, the quadrilateral grid still performs slightly better.
In the vicinity of the banks the deviation from the measurements is larger than close to the centre
of the channel.

Figures 5.18 through 5.20 depict the model results for the transversal velocities in all major
cross-sections, using the two different grid shape approaches. Figure 5.21 finally compares the
computed velocity profiles with the measurements published by Rozovskii.
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Figure 5.17: Averaged velocity ratié/U M for Rozovskii's experiment

It is clearly visible that the flow exhibits a strong secondary motion throughout the bend. While
the model predicts maxima of about 0.05m/s, measurements give values of up to 0.15m/s. Indeed
the model correctly captures the direction of the motion, but underpredicts its strength — a fact
that can be seen in other numerical codes as well @xamry & Steffle(2002) [29]). A closer
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Figure 5.18: Contour plot of computed transversal velogityor cross-sections 3 and 4 of Ro-
zovskii’'s experiment (top: hexagonal regions; bottom: quadrilateral regions) — fig-
ure scaled by the factor 2 in the vertical direction

look on the location where these extremal values occur reveals that they are found at the bed
and close to the water surface. However, due to the model assumptions (i.e. zero velocity at
the bottom, irrespective of flow direction) and also due to the vertical resolution of the model, it
is virtually impossible to capture these maxima. Furthermore, it should be questioned whether
extremal values right at the bed — as documenteRdgovski(1961) [69] — are even physically
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Figure 5.19: Contour plot of computed transversal velogityor cross-sections 6 and 8 of Ro-
zovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) — fig-
ure scaled by the factor 2 in the vertical direction

possible. In contrast, section 5.4 discusses a flow situation where the maxima of the secondary
motion were not measured at the bed but rather a significant distance above it — a behaviour
which is correctly predicted by the model if a reasonable vertical resolution is employed.

The comparison between the results obtained on the two different grid shapes, as it is done in
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Figure 5.20: Contour plot of computed transversal velogifyfor cross-sections 10 and 12 of
Rozovskii's experiment (top: hexagonal regions; bottom: quadrilateral regions) —
figure scaled by the factor 2 in the vertical direction

figure 5.21, gives a very interesting result: throughout all locations evaluated, the transversal
velocities obtained on the grid based on hexagonal regions are closer to the measurements than
the solution on the quadrilateral grid regions. From this perception we can conclude that the
hexagonal grid type actually yields a closer representation of mass fluxes in the transversal di-
rection, which in turn leads to a better prediction of the secondary flow phenomena observed in
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Rozovskii's experiment.
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Figure 5.21: Selected transversal velocity profiles for Rozovskii's experiment
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5.4 Flow in a 270 ° Bend with Moderate Curvature

In this section, a second numerical experiment will be conducted using two different grid shapes
in order to assess the influence of the grid on the results obtained. The underlying physical
experiment was done by Peter Steffler in 1984 and parts of the results were publi€temny

& Steffler(2002) [29]. As can be seen in figure 5.22, the experimental channel has the shape of a
270 bend. Compared to Rozovskii’'s experiment, the curvature cannot be considered sharp since
the width-to-mean radius ratio is around 0.3, hence it can be classified as moderate. Nonetheless
the flow situation exhibits strong three-dimensional characteristics as will be shown later.
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Figure 5.22: Layout of Steffler's experiment

The laboratory flume consists of an approach channel of 6.13m in length, followed by the 270
bend with a mean radius of 3.66m and an exit channel of 2.53m. The channel is 1.07m wide and
features a bed slope of 0.00083. The total discharge is 0.0235twgether with a specified wa-
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ter depth of 0.061m at the outlet, an average flow velocity df = 0.36m /s can be determined.
Ghamry & Steffle(2002) [29] document an equivalent sand roughness valég of 0.0013m
which is equivalent to a Strickler coefficient bf; = 80m%/s.

Once again, two different computation grids are being used to compare the results obtained on
them:

e Thefirst grid (fig. 5.23, top) is based on regions of hexagonal shape with a longitudinal grid
point distance of 0.1m and a transversal distance of 0.089m. In accordance with previous
computations, the grid is vertically structured: the top and bottom cells each occupy 5% of
the flow depth while all other cells occupy 10%. This setup results in 34,639 computation
cells.

e The second grid (fig. 5.23, bottom) uses quadrilateral grid regions with a longitudinal point
distance of 0.1m and a transversal distance of 0.089m. The vertical structure is the same
as in the first setup, resulting in a total of 34,584 computation cells.

The computation times until convergence of the results were significantly higher for Steffler's
experiment compared with any other experiment investigated. On the reference system (see sec-
tion 5.1), a solution for the grid based on hexagonal regions was obtained after 114,000 iterations
in over 160 hours. The flow problem using quadrilateral grid regions reached equilibrium after
147,000 iterations in almost 200 hours — more than eight days. These extraordinary computation
times, compared with Rozovskii’s run, can be explained by the large number of computation
cells which causes the solver to return results very slowly, which was discussed at the end of
chapter 4. Furthermore both approach and exit channels point into negative directions of the
global coordinate system. While this fact does not influence the result obtained, it slows down
convergence because the numbering of cells is done according to the global coordinate system,
and the solver module evaluates the equations according to the cell numbers. Hence, the reduc-
tion of errors in the solution is performed even more slowly if the numbering is exactly opposite

to the flow direction.

The assessment of the solutions obtained on the different grids starts with the evaluation of the
water depth as depicted in figure 5.24. No measurements of water levels are available, but the
computations can be compared with each other. It can be seen that the overall shape of the water
surface elevations is very similar, but the hexagonal grid setup results in a difference of about
1mm at the inlet. However, this difference, compared to the flow depth, is only around 1.5%,
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Water depth [m]

Figure 5.24: Computed water depths for Steffler's experiment (top: hexagonal grid regions; bot-
tom: quadrilateral grid regions)
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Flow velocity [m/s]
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Figure 5.25: Computed depth-averaged flow velocity for Steffler's experiment (top: hexagonal
grid regions; bottom: quadrilateral grid regions)
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therefore the results can be judged as equal. The zigzag shape of some contour lines results from
the graphical postprocessor’s algorithms and is not a feature of the flow solver.
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Figure 5.26: Selected longitudinal velocity profiles for cross-sectionand 90 of Steffler's
experiment

Not quite as equal as the computed water surface elevations are the depth-averaged velocity
distributions, as depicted in figure 5.25. Somehow the same impression arises as documented
in previous section: extremal values are smoothed out in the hexagonal setup, as opposed to the
grid based on quadrilateral regions. The latter grid exhibits very low flow velocities at the outer
bank of the beginning of the bend. Later throughout the bend and in the exit channel, these
low velocities are found along the inner bank. Compared to the maxima of flow velocity, they
are roughly half their magnitude. An interesting result of the computation is the fact that both
solutions are in agreement concerning the location of the maximum velocities; these are to be
found along the exit channel. However, it must be noted that the length of the exit channel is
actually too small to claim that no boundary condition errors would be able to propagate upstream
and influence the results. But considering the way grid generation is performed (chapter 3), it is
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not possible to assign a longer exit channel to the present model.

A more detailed assessment of the accuracy of the flow field can be done when interpreting
figures 5.26 and 5.27. We can see that the minima along the outer bank at the beginning of the
channel, as given by the grid using quadrilateral regions, are actually too low. Even though the
hexagonal grid setup underestimates these velocities as well, this solution is much closer to the
actual measurements. When we move towards the centre line of the channel, the results obtained
on the quadrilateral grid become better, with an almost accurate prediction right at the center line
of the O’ cross-section.
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Figure 5.27: Selected longitudinal velocity profiles for cross-sectiofis, A0 and 270 of
Steffler's experiment

At the cross-sections of 9&nd 180, the outer bank velocities are underestimated as well by
both setups, with the hexagonal grid again returning better results. The main flow velocities at
the inner bank are accurately predicted by the hexagonal grid; and this grid type also yields the
best results in the 27@ross-section (fig. 5.27), even at the centre line. From this assessment
we can conclude that — as far as the longitudinal velocity profiles are concerned — the hexagonal
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grid type performs better than the quadrilateral one. This conclusion is fairly remarkable since it
means that the smoothing of extremal values cannot be considered to be an effect purely raised
by numerical diffusion, but that it is rather of a physical nature which is better captured by the
hexagonally shaped grid.
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Figure 5.28: Contour plot of computed transversal velogityor cross-sections®Cand 90 of
Steffler's experiment (top: hexagonal regions; bottom: quadrilateral regions) — fig-
ure scaled by the factor 2 in the vertical direction

Figures 5.28 and 5.29 depict the computed transversal velocities in a number of cross-sections.
Again we can see that the solution obtained on the grid using quadrilateral regions exhibits
stronger extremal values. A clear secondary motion is visible throughout the bend, with maxima
of around 0.07m/s in measurements and 0.05m/s in the computation results.
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Welocity u2 [mfs]
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Figure 5.29: Contour plot of computed transversal velogityor cross-sections 18Gand 270
of Steffler's experiment (top: hexagonal regions; bottom: quadrilateral regions) —
figure scaled by the factor 2 in the vertical direction

Figure 5.30 allows for a comparison with Steffler's measurements. On a first glimpse, the im-
pression is the same as in Rozovskii’'s experiment, with the computed transversal velocities not
yielding a very good agreement with the measurements and the strength of the secondary motion
being vastly underestimated. However, a closer look at the measured velocities reveals that the
maxima are not to be found right at the bed but rather a certain distance above it — a fact that also
represents the real situation better than the measurements done by Rozovskii (section 5.3). And
exactly these velocities at the bed seem to be represented well in the present model. Since the
wall boundary condition — which is applied at the bed and the banks — is a very strong bound-
ary condition that highly influences the computational results, and since the vertical resolution
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Figure 5.30: Selected transversal velocity profiles for Steffler's experiment

of the model is not so dense as to capture the extremal values visible in the diagrams, one can
conclude that actually a better representation of the secondary velocities is not possible in the
present setup. If a better vertical resolution would be employed, it can be expected that the sec-
ondary flow motion would be represented more exactly, but on the other hand the computation
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times would become prohibitively high in order to achieve this goal.

As far as the comparison of secondary velocities between hexagonal and quadrilateral grid re-
gions is concerned, there is not much difference in the results except for two locations close to
the centre line of the channel where the quadrilateral setup yields slightly better results. On the
other hand, the computation time was lower for the hexagonal grid setup and this configuration
also yielded longitudinal velocities in better agreement with the measurements. Therefore, in
terms of an overall assessment, we can conclude that the hexagonal grid setup would actually be
the better choice for an engineering application in a problem similar to Steffler's experiment.
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5.5 Flow in an S-Shaped Trapezoidal Channel

So far only channels with rectangular cross-section have been used for validation of the numerical
code. The final validation experiment now leads us to a channel with trapezoidal profile, thus
making a step towards natural flow situations. The physical experiment was set up at the Water
Resources Institute of the University of Innsbruck, consisting of an approach channel 3.0m in
length followed by two consecutive bends with a mean radius of 4.0m and apex angle of 60
degrees each, and finally an exit channel being 2.8m long. The banks are sloped by a ratio of
2:3. This configuration corresponds to characteristic values for alpine sinuously trained rivers
(Vigl (1990) [86]). Initially a bed slope of S=0.01 was chosen to simulate alpine conditions,
exhibiting Froude numbers larger than unity, but later the physical model was adapted to a slope
of S=0.005 (Feurich & Schobe(R003) [22]). The model’s cross-sectional geometry consists of

a fixed bed 0.40m in width and two banks, each 0.80m wide; into this geometry the actual bed
layer is introduced by filling it with sediment to a certain height, either fixing it afterwards or
allowing for sediment transport (erosion and depositiGieurich (2002) [21] discusses a series

of experiments with varying discharge, bed layer depth and fixed or mobile sediment at the bed.
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Figure 5.31: Layout of the computational equivalent of the S-shaped trapezoidal channel
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The present work focuses on only one of these variations: the bed layer of this experiment is
20cm thick, resulting in the geometry illustrated in figure 5.31 with a 100cm wide fixed bed.
Discharge is 0.09#4s, and roughness conditions are documented th,56.0047m at the bed

andk,=0.0074m along the banks. The physical experiment is subdivided into 120 cross-sections
along which measurements were performed.

In terms of spatial discretisation, a grid composed of hexahedral cells is employed in the present
work. This approach was chosen for two major reasons: first, the experiment allows for iden-
tification of a clear main direction of the main flow; second, a high-resolution discretisation in
transversal direction is very important to capture the geometry at the side walls correctly. If
a polyhedral grid based on hexagonal regions had been employed, either a prohibitively large
number of cells would have resulted, or it would have been necessary to reduce the transversal
resolution. Since neither option was acceptable, it was found that a brick-type grid composed of
hexahedral cells was best suited for studying this physical experiment in a numerical model.

The computation grid starts at cross-section 120 and ends at cross-section 10, with the longitu-
dinal cell dimension being equal to the cross-section distance, resulting in a length of approxi-
mately 110mmFeurich(2002) [21] conducted a sensitivity study using the SSIIM mo@étén

(2000) [57]) and found that computed water surface and flow velocities obtained on a grid with
extended entrance and exit channels did not differ from the corresponding results using a grid
representing the area between cross-sections 10 and 120, respectively. In other words, no sig-
nificant influence of the upstream and downstream boundary conditions was found that would
require extensions of approach and exit channels in the present configuration.

For the transversal cell dimension, a distance of 35mm was chosen. Hence, the ratio of longitu-
dinal and transversal grid dimension is about 3:1, which is in the recommended range found in
literature. The average flow depth in the flume was found to be approximately 100mm which,
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Figure 5.32: Computation grid for the S-shaped trapezoidal channel
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due to the bank slope of 2:3, results in a wetted bank width of 150mm each.

Chapter 3.7 discussed the conditions under which a cell pile can become wet: basically, its base
point must exhibit a higher elevation than the terrain surface. Given the transversal cell dimension
of 35mm and the bank slope of 2:3, the centre point of an outside region would only turn wet
if the water level rises for more than 12mm. For all other cells, a rise in water levels results in
a change of vertical elevation only. It was found that the condition of a rise in water levels of
more than 12mm was met only in a very small number of grid regions. However, these regions
would subsequently exhibit water depths of only a few millimeters, and after vertical subdivision
the bottom grid point would be located less than a millimeter above the terrain surface. In
combination with a roughness height af= 7.4mm, this leads to severe instabilities in those
cells since the equations that make up the boundary conditions for the flow module (chapter 4)
contain the ratio between roughness height and surface distance. This is the reason why most
commercial models come with a restriction as far as the minimum cell height is concerned.
Since such a restriction was not implemented in the present model, it must be enforced by proper
geometrical choices, which finally justifies the cutting of geometry at the wetting line of the
mean flow, leading to the actual geometry as illustrated in figure 5.31 with the corresponding
computation grid depicted in figure 5.32. The consequence of such a reduced geometry is a slight
increase in water depth, since continuity must be enforced by the model; however, the impact
was found to be actually very little, which is also in line witaurichis (2002) [21] findings who
employed a similar procedure for representing the geométguyen(2000) [51] also reports

the need for a small "vertical wall” at the banks of a numerical model to avoid instabilities in a
trapezoidal channel.

During test computations required to find the optimum numerical parameters (e.g. relaxation fac-
tors) it was found that the trapezoidal channel experiment actually exhibits numerical instabilities
that can be credited to the cells with a low distance from the channel bed to the cell centroid.
These instabilities could be reduced by making use of comparatively low relaxation factors (ve-
locities were relaxed by 0.5, pressure/continuity by 0.03 and turbulence by 0.25). However, still
the numerical algorithm exhibited severe instabilities upon the first update of the water surface,
leading to divergence irrespective of the surface relaxation factor used. Even though the exact
reason for this behaviour could not be found, it could be traced to the influence of roughness
along the banks on the — ¢ model equations, resulting in large absolute values for turbulent
kinetic energy and dissipation in regions of low water depth. To avoid this phenomenon causing
instabilities in the solution procedure, other flow simulation models (e.g. Fluent) limit the ratio
of eddy viscosity and kinematic viscosity. Another approach is to lower the roughness height in

133



5.5. Flow in an S-Shaped Channel 5. VERIFICATION AND VALIDATION CASES

regions of low water depth by introducing a mean roughness value for the entire flow domain in-
stead of the two different roughness heights in bed and bdeksich (2002) [21] discusses the
theoretical background for obtaining such a mean roughness for trapezoidal channels and comes
up with £,=5,4mm as a result for the present case, noting that he found hardly any difference in
the results obtained using this approach. By applying this value to the entire flow domain, it was
possible to solve the flow equations until convergence.

The 4,218 grid regions depicted in figure 5.32 were vertically structured into six cells, each
occupying exactly one sixth of the flow depth, resulting in 25,308 cells. This setup was preferred
over the one used so far in order to keep the total number of cells relatively low and avoid cell
centroids being located too close to the solid walls bounding the flow domain. Nonetheless
about 58,000 iterations and approximately 65 hours of computation time were needed to obtain
equilibrium, this being mostly the result of the low relaxation factors employed.

Figure 5.33 depicts the computed water surface along with the measured values and the results
of the SSIIM model as found bifeurich (2002) [21]. The most notable finding is the perfect
agreement between the simulation results of the two numerical models; they are virtually indis-
tinguishable from each other. However, simulation and measurements are not in perfect agree-
ment. In the second (downstream) bend, the results fit the measurements very well, with the rise
of the water level along the right bank and the fall of the water surface along the left bank being
correctly predicted. In the first bend both numerical models slightly underpredict the maximum
of the water level along the left bank. But a closer look on the measurements reveals that right
downstream of the inlet a depression in the water surface can be found which of course gives rise
to a more distinctly visible peak along the left bank thereafter. The reason for this depression in
the measured surface is unclear; it could be the result of a slight bump in the laboratory flume,
an imperfection in bed roughness, or the overall situation at the inlet. This local minimum in the
water surface is also the reason for the lack of agreement between measurements and simulation
in the approach channel itself; however, since this region is heavily influenced by the boundary
conditions — both in the laboratory and the numerical experiments — it will not be used for a com-
parison after all. Hence, in summary it can be said that the computed water surface is actually in
good agreement with the measurements.

Unfortunately, measurements of flow velocities for this case were performed with an instrumen-
tation that was later found to produce unreliable results by the experimenter. However, reliable
measurements are available for the same flow situation on a mobile bed; these were found to be
in good agreement with the corresponding SSIIM model resie#tsr{ch (2002) [21]). Therefore

we can expect the SSIIM model results for the fixed bed situation to be reliable as well and use
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that data as basis for validation.
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Figure 5.33: Water surface elevations for the S-shaped trapezoidal channel

Figure 5.34 allows for a comparison between the depth-averaged flow velocity obtained through
the SSIIM and RSim-3D models, respectively. It should be noted that the available SSIIM model
data only covered the flow area between the base points of the embankment, illustrated by the
inner two green lines, and therefore the plotted data along the banks had to be obtained by means
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of extrapolation. This is the reason why the effect of surface roughness in those regions of the
embankment that exhibit low water depths cannot be seen in correspondingly low flow velocities
in the illustration. Hence, a comparison is only useful in the region between the two base lines
of the embankment. It is visible that the maximum of the flow velocity in the second bend
is predicted correctly, both in location and magnitude (see also fig. 5.35). Also the velocity
distribution downstream from this location is in very good agreement. Besides small differences
in the approach channel, once again resulting from the influence of the boundary condition at the
inlet, a good agreement can also be found in the first bend, with maximum and minimum flow
velocities being correctly predicted.

Flove velocity [rmis]

0.460
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I 050 SSIIM model
0.700

0.760
0.820

1660
- 02
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Figure 5.34: Depth-averaged flow velocity for the S-shaped trapezoidal channel

Finally, figure 5.36 depicts a series of cross-sections throughout the channel:

o start of the first bend (cross-section #105),
e middle of the first bend (cross-section #85),

e point of inflection (cross-section #64),
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6 River Application

6.1 Introduction

In August 2002, a catastrophic flood event following several days of heavy rainfalls struck large
parts of Central and Eastern Europe. Many rivers in this region reached flood peak levels that
exceeded the highest maxima historically known, causing severe losses which sum up to approx-
imately 3.1 billion Euro in Austria (ZENARO0O03) [94]). A significant portion of the damage can

be attributed to the river Danube, where a 100 year’s flood was encountered, and its tributaries,
in some of which the return period of the flood event reached several thousand years (e.g. river
Kamp, Gutknecht et al(2002) [33]).
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Figure 6.1: Location of the Danube river bend at Grein in Austria
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Figure 6.2: Detailed map of the river bend at Grein (based on Austrian Map by BEV)

Among the inundated villages along the river Danube was the municipality of Grein, located in
the administrative division of Upper Austria (fig. 6.1). Figure 6.2 depicts a detailed map of the
region in question. It can be seen that the municipality is located along the outer bank of a 90
degree river bend near river station 2079.0; the flow direction is from South-West to North-East
in this region. However, even though the flood protection of the village was dimensioned to
withstand a 100 year’s flood, it was overtopped and, as a consequence, parts of the municipality
were flooded. During the flood event a difference in water surface elevations between left and
right bank was measured which amounted to 80cm. That is the reason why the river bend at Grein
was included in a list of problematic places along the river Danube in the FloodRisk project of
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2003/2004 Habersack (ed.)(2004) [34]). In its assessment of the situation, the project team
recommended the use of a 3D flow simulation model to reproduce the water surface slope in this
region since the usually applied 1D models are not adequate for this purpose — that’s also the
reason why the maximum water level at the outer bank corresponding to a flood return period of
100 years was inaccurately predicted in the past.

In this chapter of the present work, the flow situation in the river bend at Grein is analysed
with three different simulation models (RSim-3D, SSIIM and Fluent). The project domain was
established between river stations 2082.0 (upstream) and 2078.0 (downstream), resulting in a
river reach four kilometers in length. The area of specific interest is — as previously mentioned
— located near station 2079.0, hence the approach section of the river is approximately three
kilometers long. This selection was made to ensure that proper flow conditions, independent
of flow boundary conditions, are to be found near the municipality of Grein. In this context it
should be mentioned that it would have been desirable to move the outflow boundary further
downstream as well, but unfortunately the river bed becomes bifurcated several hundred meters
after the selected outflow (see fig. 6.2), causing this region to be unsuitable for a flow boundary.

Figure 6.3 depicts the terrain elevation data which was available for setting up the numerical
model: terrain elevations are known at all data points coloured in blue. Within the river bed, the
elevations are frequently measured in cross-sections, one per 100m river length. For the current
study, data gathered in the year 1999 was used; the measurement points in each cross-section
were available in a density of one point per meter cross-section length. In addition to the bed
elevations, terrain elevation data was provided by the Austrian Federal Waterways Authority.
This data had been derived from aerial views of the region to extend the river cross-sections
across embankments and floodplains. The resulting digital terrain model is visualised in figure
6.3 by yellow contour lines every 5 meters.

Meshing the whole area of available terrain elevation data would have resulted in a large number
of cells and nodes, requiring unnecessarily high computational effort irrespective of the numer-
ical model used. Therefore it was decided to perform a 1D backwater computation using the
RSim-3D model to approximate the bank line for the 100 year’s flood and subsequently use this
line as domain boundary (red line in fig. 6.3). Figure 6.4 allows for a comparison with the actual
bank line (coloured in yellow) encountered during the passage of the flood in August 2002: the
aerial view shows that the overall shape of the flooded terrain is well predicted; two small basins
at km 2078.9 and km 2078.5 are correctly represented, and so is also the bank line both in the
village of Grein and at the opposite shore. Only the large basin at the left bank near km 2079.4
is underestimated in its size. This error is to be attributed to the unavailable terrain data in that
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Figure 6.3: Terrain elevation data and boundary of the numerical model
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region, since terrain elevations are known only in extension lines of river cross-sections and the
region in question lies between two of them. Hence, the Kriging approach could not reproduce
the exact terrain in this area. However, after evaluating the aerial view and the flow patterns dis-
cussed later in this chapter, it becomes clear that water depths and flow velocities in said region
are very low so that the area does not contribute to the overall conveyance, therefore the results
of the flow simulations are not affected.

Figure 6.4: Aerial view of Grein in August 2002 (basedBBV (2002) [13])

The maximum water surface elevations corresponding to specific discharges are published by
the Austrian Federal Waterways Authority for every stream-kilometer along the river Danube
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in Austria. Known as KWD 'K ennzeichnend#/asserstande d&onaud, characteristic water

levels of the River Danube), they can be used as flow boundary conditions for numerical models.
After the flood event of August 2002, the KWD values for the 100 year’s flood were revised to
reflect the maximum water levels observed. Therefore these values are not only useful as bound-
ary conditions, but they are also good indicators for the assessment of the output of numerical
models. Table 6.1 gives the KWD above sea level for mean discharge (MQ), highest navigable
discharge (HSQ) and discharge with a return period of 100 years (HQ100) in the project region.

| Stream-km || MQ [m?/s] | MW [m] || HSQ [m®/s] | HSW [m] || HQ100 [m3/s] | HW100 [m] |

2082.0 1830 226.74 4770 228.79 11 050 235.03
2081.0 1830 226.67 4770 228.56 11 050 234.77
2080.0 1830 226.61 4770 228.32 11 050 234.51
2079.0 1830 226.58 4770 228.23 11 050 234.38
2078.0 1830 226.52 4770 227.95 11 050 233.65

Table 6.1: Characteristic water levels of the River Danube (KWD) near Grein

In section 6.2, first the characteristics of establishing a numerical model within each simulation
software are discussed. To allow for a comparison of both computation times and results, ap-
proximately the same number of cells was used in the same geometric framework for all models,
leading to a comparative analysis of operational characteristics at the end of section 6.2. Section
6.3 provides the results of the numerical simulations for all models and discusses the differences.
The results discussed include water surface elevations, mean flow velocities and secondary flow
patterns in selected cross-sections. Finally, section 6.4 gives a short summary of this chapter.

6.2 Numerical simulation

6.2.1 RSim-3D

An unstructured grid based on hexagonal regions with a base distance of 20m was used to fill the
area given by the bank line as obtained from a 1D backwater computation (see previous section
for details). Along the boundary line, two rows with hexagonal regions characterised by a point

distance of 10m were used to obtain a finer discretisation. Terrain elevations for the computation
points were gathered by applying the Kriging approach discussed in chapter 3.4. In the vertical
direction, the grid was subdivided into six equidistant layers, resulting in approximately 31,000

cells. To ensure numerical stability, an algorithm was added to the model that deactivates regions
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with a water depth — measured above the computation points — of less than 20cm, which results
in a maximum cell depth of approximately 3cm.

At the inflow cross-section at stream-km 2082.0, a constant discharge of 11305 as pre-
scribed; the model automatically adjusts the corresponding inflow velocities according to the cur-
rent flow area based on the water level, hence the inflow velocities did not have to be prescribed
directly. The downstream boundary condition consists of a constant water depth of 233.65m
above sea level according to table 6.1 for km 2078.0. As opposed to comparable models, RSim-
3D enforces the outflow water depth at all regions next to the outflow boundary. This may result
in differences in water surface elevations compared to other models, as will be discussed later.

While the water surface is treated as a symmetry boundary in RSim-3D and the corresponding
elevations are found by evaluating the pressure equation, the wall boundary condition had to be
calibrated in order to find the appropriate roughness coefficient. Disregarding the first kilometer
within the flow domain — a region which was only modelled to obtain realistic flow conditions

— the roughness coefficient was varied to obtain a good accordance with the KWD value at river
station 2081.0. For the RSim-3D model, a Strickler coefficient of 35.0 most closely met this
criterion. However, calibration of the roughness height for the flooded regions of the municipality
of Grein was not possible because this parameter did not exhibit a notable influence on the water
surface elevations in other parts of the flow domain. In the absence of measurements of water
surface elevations and flow velocities in the inundated terrain to be used in a local calibration
procedure, a value for the roughness height had to be selected from literature.

In Vionnet et al.(2004) [87] the selection of floodplain roughness coefficients for Besos River

in Spain is performed by comparing data from physical model experiments and calibration re-
sults of a two-dimensional numerical model. As result a Manning coefficient of around 0.05 is
obtained which corresponds to a Strickler coefficient of 20@holas & Mitchell (2003) [53]

apply a numerical model to a floodplain region of River Culm in the UK. Their calibration proce-
dure results in a Manning coefficient of 0.06 (Strickler coefficient of 16.7) giving the best fit with
measured data. IMason et al.(2003) [45] a node-based friction parameterisation of floodplains

is proposed which, based on data obtained by airborne scanning laser altimetry, classifies veg-
etation as short (<1.2m), intermediate or tall (>5m). Short vegetation comprehends most crops
and grasses while hedges and shrubs represent intermediate vegetation; trees and buildings are
classified as tall vegetation. AccordingMason et al.(2003) [45], a floodplain containing a

mix of grasses, crops, hedges and trees typical for the UK is characterised by a Manning coeffi-
cient of 0.06 (Strickler coefficient of 16.7§utknechi(2004) [32] gives a range of 10.0 to 25.0

for Strickler coefficients in typical floodplains, akdcement & Schneidg2003) [7] show that
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dense alluvial forests can take Strickler coefficients ranging as low as from 5.0 to 10.0.

From the aerial view in figure 6.4 it can be seen that large trees occupy parts of the inundated
region within the municipality of Grein while houses had been built in other parts and even other
parts appear completely without any vegetation or man-made structure. However, figure 6.2
shows that a woodless campsite and a road are located at the left bank of the river, smoothen-
ing the floodplains significantly. Therefore the actual Strickler coefficient can be expected to be
slightly higher than the values given in the literature. Based on these considerations a rough-
ness height of 1000mm was selected which corresponds to a Strickler coefficient of around 26
according to equation 4.94.

In terms of numerical characteristics, the second-order upstream method is employed for the dis-
cretisation of convective terms and the SIMPLE algorithm is used for pressure-velocity coupling.
The standard k-model with default constants provides turbulence closure. These characteristics
are the same for all three simulation models to allow for a comparison of the results obtained.

6.2.2 SSIIM

The second numerical simulation was performed with the SSIIM model (see chapter 2.2.11).
This model comes in two versions which are capable of dealing with both structured and un-
structured grids. Due to issues of numerical stability in the context of a flow problem with a free
water surface, the structured grid version was preferred over the unstructured one for the present
study. The structured grid was formed by subdividing the area between two river cross-sections
— which are 100m apart — into five cell rows, and by dividing each cross-section into 25 cell
columns. After subdividing each cell pile into six cells, a total of 30,000 cells results, which is

a comparable number to the one which was used in RSim-3D. However, it should be mentioned
that the usage of a structured grid results in an enormous speed-up of the numerical model, at the
cost of the inability of using the model in complex geometries. Therefore, the bounding polygon
of figure 6.3 had to be smoothed in the flood basins near Grein to allow for an application of the
model to this problem.

Terrain elevations for all cell regions were obtained by applying a built-in longitudinal cross-
section interpolation method to the data points depicted in figure 6.3. This method, which can
be applied to structured grids only, interpolates along the vector from one cell row to the next,
which usually results in a reasonably smooth terrain.

Again, a constant discharge of 11,056/smwas prescribed at the inflow cross-section. At the
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centre cell of the downstream boundary a constant water depth of 233.65m above sea level was
enforced; the model allows the surface to move at all other cells near the outflow. The free water
surface was modelled as a symmetry boundary, and the bed roughness was once again subject to
calibration. After several calibration runs, a Strickler roughness parameter of 35.0 was found to
give the optimum water surface position at river station 2081.0. For the floodplain roughness a
value of 1000mm was used as discussed above.

6.2.3 FLUENT

The third software package used to simulate the flow conditions in the river Danube near the
municipality of Grein was Fluent (see chapter 2.2.8). While RSim-3D and SSIIM were run on
a regular PC with a clock rate of 2.8 GHz and 1GB of RAM, Fluent was installed on an Alpha
workstation cluster at the computing centre of Vienna University of Technology. The comparison
of computation times, as it is done in the next subsection of this work, can therefore only be seen
as a guideline, as far as the Fluent model is concerned.

Grid generation for Fluent is done with a software called Gambit. However, it must be pointed
out that this software is mainly of use for applications in mechanical engineering where the
computational domain is bounded by pipes and other structures that follow clear geometrical
rules. Creating the grid for a natural channel with a complicated bed geometry and a free water
surface turned out to be an extremely time-consuming task. Fluent can operate both on structured
and unstructured grids, but will generally produce results much faster when supplied a structured
grid. Therefore it was decided to set up a structured grid similar to the one used by SSIIM.
The bed geometry was imported from SSIIM, side walls were constructed manually in regions
where the initial water level was located at a higher elevation than bed data points existed, and
finally the resulting volume was decomposed into 30,000 cells following the pattern discussed in
previous subsection.

While both SSIIM and RSim-3D use the pressure equation to relate pressure to changes in the
water surface elevation for every grid region, Fluent does not provide such an algorithm. Instead,
it uses the VOF (volume of fluid) method to predict the position of a surface that separates two

phases (air and water in the case of a river). Unfortunately, this method requires the existence
of separate inlets for both phases which must be filled entirely by either phase. For the position

of the phase boundary is constantly on the move, the only way to simulate a water inlet that is

entirely surrounded by water is by making water enter the computational domain through the

river bed long before the actual area of interégib(izecky(2002) [39]). This procedure was
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found to require long approach channels before natural flow conditions are obtained, further-
more it needs computation times of approximately three weeks for a typical river stretch, as the
one in the present work, to result in a converged solutimfzecky(2002) [39]). Due to these
severe limitations in the handling of the VOF method it was decided to employ a different tech-
nique: an initial grid was constructed using both bed geometry and surface shape obtained from
a converged run of the SSIIM model. Then, Fluent was run using this grid, and after obtaining a
converged solution, the pressure at the water surface was evaluated and translated into changes
in the elevation level of the corresponding grid regions. This modified surface was again run
through the Gambit grid generator before the whole process was repeated. It turned out that after
three iterations of this kind the pressure difference was below 100 Pa in every single surface cell,
corresponding to an accuracy of the resulting surface of 1cm.

The handling of the free surface was not the only problem encountered during the simulation runs
using the Fluent model: regions with low water depth exhibited instabilities as far as turbulent
kinetic energy and dissipation were concerned, leading to model divergence. Problems of this
kind have also been reported Bpdskinsor(1996) [36] andNicholas & Sambrook Smit{1999)

[54]. Nicholas(2001) [52] notes that these difficulties result from the existence of an upper limit
on the roughness height for a given near-bed cell thickness: for the Fluent moégkhould

not exceed the distance to the centroid of the near-bed grid cell. The implication of this is that
the thickness of the near-bed cell limits the maximum shear velocity at the bed, so that near-bed
velocities may be overpredicted in field situations involving high relative roughitads (

Similar problems were encountered in the RSim-3D model but could be resolved by deactivating
regions with low water depths. Since such an option did not exist in the Fluent model, it was
finally decided to reduce the model geometry by excluding the floodplains and using only the
data points within the river bed. This procedure ensures that low water depths cannot occur,
hence avoiding instabilities of the kind observed. However, additional errors are introduced into
the simulation and so the Fluent results are not directly comparable to those obtained from other
simulation models.

The boundary conditions employed for Fluent were as follows: an inlet boundary ofrtsipe

flow inletwas used, prescribing 105 - 107kg/s as mass flow. This type of inlet ensures that the
inlet velocity is automatically adjusted for every new grid fed into the model. The usual zero-
gradient outflow condition was used at the outlet, and symmetry conditions were prescribed at
the water surface. The wall roughness was calibrated in the usual way, with a roughness height of
0.20m yielding the correct water surface position at river station 2078.0 — since Fluent does not
enforce a given downstream water surface elevation, the model must be calibrated by prescribing
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the water surface at the inlet and using the outlet as monitoring location. Using equation 4.94,
the roughness height of 0.20m translates into a Strickler coefficient of 34.5, which is perfectly in
line with the parameters obtained by the other two models.

6.2.4 Comparison

The first parameter of relevance in the context of an engineering application is the result of the
model calibration: the bed roughness. The values obtained for this parameter are summarised in
table 6.2.

| | RSIm-3D | SSIIM | FLUENT

Bed roughness (1D calibration) [Kgt] 30.0 31.0 -
Bed roughness (3D calibration) [Kgt] 35.0 35.0 34.5
Floodplain roughness [m] 1.0 1.0 -

Table 6.2: Roughness values as result of model calibration

From this table it can be seen that there are no significant differences in the bed roughness ob-
tained by a 3D model calibration. This is due to the fact that the Strickler coefficient is translated
into a roughness height by both RSim-3D and SSIIM — Fluent directly operates on a roughness
height — and that the roughness enters the momentum equations by similar equations in all three
models. Both RSim-3D and SSIIM also offer the possibility to obtain an initial guess for the
water surface elevation by running a 1D backwater computation. Again, there is no big differ-
ence between the roughness parameters obtained on the two models, but it becomes clear that
a significant difference exists between 1D and 3D model calibrations; the Strickler coefficient
obtained by 1D calibration is lower than in 3D. The main reason for this difference lies in the
methodology that is used to take bed roughness into account in different model dimensions: in
one-dimensional computations the roughness coefficient also covers cross-sectional effects, i.e.
the influence of secondary motion, while it is purely a measure of actual surface roughness in
three-dimensional calculations.

The time until a solution to a specific flow problem can be obtained and the effort, both in
human and computational resources, which must be spent on the problem, is another issue of
high relevance to the engineer. Therefore the time spent on distinct tasks while working on the
project was measured and is summarised in table 6.3:

e Grid generation: the time needed to produce a computational grid from geospatial data,
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and the time required for subsequent operations on the same grid (i.e. manual changes to
reflect surface changes),

Model handling: the time required to write input files or set the appropriate numerical
parameters in a graphical user interface, and the time for user interaction during model
calibration (many of these tasks are of the nature of trial-and-error),

Computation time: the actual time the software runs to return a converged solution; it
should be pointed out that due to the fact that the Fluent model was run on a different
computer hardware architecture, it is not possible to draw conclusions about the solver
efficiency from this value for that software.

| [ RSim-3D [ SSIIM | FLUENT

Grid generation [h] 3.0 4.0 70.0
Model handling [h] 5.0 2.0 25.0
Computation time [h] 61.0 1.0 0.75

Table 6.3: Time spent on distinct modelling tasks

Three major conclusions can be drawn from the figures in table 6.3:

1. While grid generation can be done rather quickly in both RSim-3D and SSIIM, this is a
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time-consuming task in Fluent. As already mentioned, this is mostly due to the fact that no
options for converting measured data points (bed and surface) into a three-dimensional grid
exist in Fluent, so that many operations must be done manually, requiring a fair amount of
user interaction. Additionally, some small bugs in the 3D grid generation routines of Gam-
bit (Fluent’s graphical grid generator) led to inconsistencies in the solver module later. The
respective errors in the grid had to be found and corrected manually before a converged
flow solution could be obtained. Of course, the advantage of RSim-3D and SSIIM in terms
of grid generation is not only that these programs were actually written to work on mea-
sured real-world terrain data, but also the fact that the author has much more experience
with these models than with the Fluent software. Nonetheless it can be said that the cre-
ation of a suitable grid featuring a river stretch is a time-consuming and complex task in
Fluent.

. The handling of the model itself does not require much interaction in SSIIM, a little more

in RSim-3D and is most time-consuming in Fluent. As mentioned, the author has worked



6. RIVER APPLICATION 6.2. Numerical simulation

with SSIIM at numerous occasions in the past (élgtthart (2000) [79],Scheuerlein et

al. (2004) [70]) and so the experience with the software facilitates a short interaction time
during the runs of the model. As author of the RSim-3D model, the same thing holds
true; however, it must be said that RSim-3D is still "work in progress”, hence it requires
more interaction time to get some parameters right to avoid instabilities. As far as Fluent
is concerned, the comparably long interaction time is a result of the way in which the free
water surface was treated, but also — to a lesser amount — the lack of detailed experience in
using this model.

3. Once a suitable grid is supplied to the model, both Fluent and SSIIM deliver results rather
quickly while RSim-3D needs long periods of time until a state of convergence is reached.
The reasons for this are manifold:

e Solvers operating on structured grids deliver results significantly faster than those us-
ing unstructured grids. Structured grids do not require a table storing the position of
every cell in the continuum and the connecting faces between the cells; all of these
values are known implicitly by supplying the index of each cell. Furthermore, cells in
hexahedral shape usually do not exhibit geometric distortion, facilitating a fast solver
progress. Experience with unstructured grids using the Fluent solveKfeugzecky
(2002) [39]) shows that computation times become extremely long using unstruc-
tured grids. However, the advantage in representing complex geometries exactly by
using unstructured grids, is a decisive reason to favor this grid type despite its higher
computational cost.

e RSim-3D’s solver is not using the fastest algorithm available. For smaller flow prob-
lems, it is reasonably fast, but for larger numbers of cells it becomes inefficient (see
chapter 4.6). This may be a starting point for a possible improvement of the model in
the future.

¢ Relaxation factors significantly influence the time until convergence is reached. Due
to instabilities in regions with low flow depths, RSim-3D had to use lower relaxation
factors than SSIIM or Fluent. While the latter model even required the removal of
all regions with low flow depth (i.e. floodplains) before reasonable relaxation factors
could be used, SSIIM did not exhibit stability problems at all and operated using the
standard relaxation factors.

e The models employ different convergence criteria. SSIIM uses unscaled residuals
while RSim-3D and Fluent employ scaled residuals (chapter 4.5.3). Depending on the
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flow situation encountered, the latter can be a much stronger criterion. Furthermore,
by default, the SSIIM model declares a solution converged as soon as the maximum of
all residuals is below0—2, while RSim-3D use$0~*. Recalling figure 4.8 in chapter

4.6, adrop in residuals is linear on a logarithmic scale, i.e. it takes approximately the

same number of iteration cycles to reduce the residuals friéhto 10~!, as from

1073 to 1074,

6.3 Results

6.3.1 Water surface

The resulting water surface elevation for the discharge with a return period of 100 years is de-
picted in figures 6.5, 6.7 and 6.8 for the RSim-3D, SSIIM and Fluent models, respectively. Figure
6.6 visualises the water depth within the project domain. It should be noted that the first stream
kilometer from km 2082.0 to 2081.0 was only modelled to obtain natural flow conditions in the
reach thereafter; hence, depending on the model used, the water surface elevation in this first
kilometer exhibits reasonable differences. However, after approximately 1.5 kilometers all mod-
els show pretty much the same water surface pattern with a significant rise at the outer bank
near the municipality of Grein and a drop in water surface elevations at the opposite bank. The
water surfaced obtained from the SSIIM model appears smoother than the one computed with
RSim-3D, which can be attributed to the different terrain interpolation techniques employed in
these models. This is also the obvious reason for the slightly higher extrema in figure 6.5.

Some spots near the left bank in figure 6.5 appear red (high altitude) or blue (low altitude). This
is because RSim-3D displays inactive grid regions along with the active ones, and so the red
spots are just dry areas with an altitude higher than the maximum water surface elevation, while
the blue spots are areas that have been automatically deactivated due to very low water depth.

When comparing the water surface obtained from Fluent (fig. 6.8) with the other figures, it can
be seen that the general water surface pattern shows no significant differences, even though the
floodplain regions were excluded from the computational domain. Only the absolute elevation
above sea level is slightly lower, but this stems from the model having been calibrated from an
upstream location, as opposed to a downstream location in RSim-3D and SSIIM.

Figure 6.9 shows the resulting water surface elevations at the left and right banks for all three
simulation models along with the characteristic water levels (KWD). Since the KWD values are
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Figure 6.5: Water surface in the Danube bend near Grein (RSim-3D model)
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Figure 6.6: Water depth in the Danube bend near Grein (RSim-3D model)
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YWWater surface [m]
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Figure 6.7: Water surface in the Danube bend near Grein (SSIIM model)
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Figure 6.8: Water surface in the Danube bend near Grein (Fluent model)

156



6. RIVER APPLICATION

6.3. Results
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Figure 6.9: Water surface elevations along left and right banks
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based on thaighest water levelsbserved in August 2002, the computed water surfaces should
always match these values at one bank while being lower or equal along the other bank. These
characteristic values are now analysed one at a time:

e km 2081.0 RSim-3D gets the KWD right at the left bank, the water surface at the right
bank is overpredicted by approximately 10cm. In the SSIIM model the KWD value lies
right between the left and the right bank, with the latter being about 5¢cm too high. Fluent
is the only model to exactly predict the KWD, but this is to no surprise since this location
was used as monitoring location during model calibration.

e km 2080.0 In both Fluent and SSIIM, the water surface elevation at this river station is
underestimated by 15cm (SSIIM) to 20cm (Fluent). RSim-3D performs very well at this
location, getting the KWD approximately right.

e km 2079.0This river station is located right near the municipality of Grein at the apex of
the bend. RSim-3D overpredicts the water surface elevation by several centimetres while
SSIIM and Fluent give the correct value. However, as far as the Fluent model is concerned,
this result must be assessed very critically: considering the simplifications required to
obtain a converged solution, the numerically correct value could be mere coincidence.
RSim-3D’s overprediction of the actual situation can be attributed to the different terrain
interpolation technique employed in that software package.

e km 2078.0Used as monitoring location in RSim-3D and SSIIM, it is no surprise that these
two models perform slightly better than Fluent. However, while the downstream water
surface elevation is enforced over the whole cross-section width in RSim-3D, SSIIM uses
only one reference cell for this purpose. Since this reference cell is usually placed right at
the centre line of the river, the water surface is free to move at both banks. It can be seen
that SSIIM predicts a significant drop in water levels along the left bank. Since the same
bed elevations were used for SSIIM and Fluent — and the latter model does not exhibit this
water surface minimum — a wrongly interpolated channel bed can be excluded from the
list of possible reasons to cause this effect.

It remains to analyse the maximum difference in water levels between left and right bank near
the village of Grein. The introductory section of this chapter already discussed the fact that
during the flood event of August 2002 a difference of 80cm was observed. Table 6.4 summarises
the simulation results for the cross-section at km 2078.9, where the largest differences were
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computed by all models. It can be seen that none of the models yields a difference of 80cm, but
both RSim-3D and Fluent exhibit differences close to 70cm — a reasonably good agreement with
the observations.

| | RSIm-3D | SSIIM | Fluent |
| Difference left-right bank [ 68cm | 62cm | 69cm |

Table 6.4: Differences in water surface elevations at river station 2078.9

6.3.2 Depth-averaged flow velocities

Figures 6.10 through 6.12 depict the depth-averaged flow velocities for the three simulation mod-
els. Again, the overall flow pattern is very similar for all models. The most significant difference
between RSim-3D and SSIIM on one hand and Fluent on the other is that the velocity pattern
in the flow domain appears much smoother in the output of Fluent. This is due to the excluded
floodplains and the terrain data points that were not used in the bed interpolation algorithm.
Comparing the output of RSim-3D and SSIIM it can be seen that the shape of the velocity dis-
tribution near the banks is slightly smoother in the latter model. This can be attributed to the
different terrain interpolation methods.

Still, all three models agree on a maximum velocity magnitude between 3.6 and 4.0 m/s, with

maxima to be found at the straight river reach near km 2080.0 and near the downstream model
boundary at km 2078.0. The mean flow velocity slows down to some extent while passing by

the municipality of Grein where the inundated terrain enlarges the river cross-section; this effect
cannot be seen in the Fluent model output since the floodplains were not modelled.

An area of specific interest is the inundation area between the cross-sections of km 2079.6 and km
2079.3. Itis depicted in detail in figure 6.13 (output of RSim-3D). It can be seen that an area of
recirculating flow with a velocity magnitude of 0.5 to 1.0 m/s evolves which is rotating counter-
clockwise being excited by the main flow. The same recirculating flow pattern is predicted by
the SSIIM model, as well.
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Figure 6.10: Depth-averaged flow velocity in the Danube bend near Grein (RSim-3D model)
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Figure 6.11: Depth-averaged flow velocity in the Danube bend near Grein (SSIIM model)
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Figure 6.12: Depth-averaged flow velocity in the Danube bend near Grein (Fluent model)
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Figure 6.13: Flow detail in the inundation area near km 2079.5

6.3.3 Secondary flow

The results of the three models exhibit little to no differences between the secondary flow pat-
terns. Therefore only the output of RSim-3D is depicted in this section. Figures 6.14 and 6.15
show cross-sections for every 200m between river stations 2079.8 and 2078.2, additionally the
cross-section at km 2078.9 is depicted where the maximum difference in water surface eleva-
tions between left and right bank was encountered. All figures are scaled by the factor 2.0 in the
vertical direction. In order to preserve the same velocity vector scale for all cross-sections it was
necessary to apply different geometric scales.

At cross-sections 2079.8 and 2079.6 the secondary movement points towards the right bank with
a velocity magnitude of up to 0.6 m/s, a consequence of the beginning bend. Then, at river sta-
tions 2079.4 and 2079.2 the secondary movement changes its direction and points towards the
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Figure 6.14: Secondary flow in cross-sections 2079.8 through 2079.0

164



6. RIVER APPLICATION 6.3. Results

Cross-section km 2078.9

Cross-section km 2078.8

Cross-section km 2078.6

Cross-section km 2078.4

Cross-section km 2078.2

Yelocity u2 [més]

-0.600
-0.600
-0.400
-0.200
0.000
0200
0.400
0.600
0.500

— U=1.000 mis

Figure 6.15: Secondary flow in cross-sections 2078.9 through 2078.2
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left bank with velocity magnitudes of up to 0.8 m/s. This is caused by the flow from the river bed
into the direction of the inundated terrain within the village of Grein. The first really distinct sec-
ondary flow pattern evolves at cross-section 2079.0, pointing towards the left (outer) bank near
the water surface and into the opposite direction close to the bed. This pattern continues through-
out cross-sections 2078.9 and 2078.8 with velocity magnitudes of up to 0.8 m/s. Cross-sections
2078.6 and 2078.4 still exhibit a distinct secondary flow pattern, and the velocity magnitude falls
below 0.4 m/s. At km 2078.2 this pattern has disappeared, and the movement points towards the
right bank in the entire cross-section.

6.4 Summary

A study of the flow conditions during the flood event of August 2002 in the Danube river bend
near the municipality of Grein in Upper Austria was performed using three different simulation
models: RSim-3D, SSIIM and Fluent. For the RSim-3D model an unstructured polyhedral com-
putation grid based on hexagonal grid regions was used while the other two models employed
structured grids consisting of hexahedra. It became apparent that the models using structured
grids exhibit significant advantages in terms of computation time required to obtain a converged
solution; however, this advantage is bought by geometry simplifications, imposing restrictions
on the shape of the polygon bounding the project domain. On the other hand, it was found that
a lot of manual work is required to build a grid for the Fluent model — a generic flow simulation
code —, a task which is easier to perform in the typical river simulation models.

As far as results of the flow simulation are concerned, the shape of the computed water surface,
the depth-averaged flow velocities and secondary flow patterns were evaluated. No significant
differences were encountered in the computed water surfaces, even though the maxima computed
by the RSim-3D model were slightly higher than those obtained through the other software pack-
ages, resulting in a closer match with the observations of August 2002 in certain places. However,
this can either be attributed to the polygonal cell shapes, the different bed elevation interpolation
technique employed in that model or a combination of both. All simulation results show the
characteristic pattern of a rise in water surface elevations along the outer bank and a drop along
the inner bank, even though the computed maximum difference of almost 70cm falls slightly
short of the 80cm observed during the flood event.

In terms of the depth-averaged flow velocities, all three models agree on a maximum velocity
magnitude between 3.6 and 4.0 m/s. The output of the Fluent model appears somewhat smoother
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which is to be attributed to the reduced simulation domain employed for building the grid since
areas of low water depth in the inundated regions led to instabilities during the simulation runs,
requiring these regions to be removed from the computational domain. Both the RSim-3D and
SSIIM models show a large recirculation area near the left bank at the beginning of the river
bend with velocity magnitudes of up to 1.0 m/s. Finally taking a closer look at the secondary
flow patterns, it was found that a distinct secondary movement can be found throughout the bend,
pointing towards the outer bank near the water surface and into the direction of the inner bank
close to the bed. The secondary movement reaches velocity magnitudes of up to 0.8 m/s.

In a final assessment of the performance of the RSim-3D model compared to the other flow

simulation models used in this study it can be summarised that the computational cost is higher,
but most of this can be attributed to the unstructured grid approach. The results are approximately
equal to that of other models, delivering both a realistic water surface and flow pattern throughout

the entire project domain.
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7 Conclusions and Future Work

7.1 Conclusions

In this thesis, a 3D river flow simulation model based on the Finite Volume Method and using un-
structured computation grids consisting of polyhedral cells was derived and implemented along
with a software tool for pre- and post-processing tasks. The simulation model uses the Sec-
ond Order Upwind scheme for the discretisation of convective terms in the Reynolds-Averaged
Navier-Stokes equations, the SIMPLE method to couple the unknown pressure and velocity fields
in the governing equations, and the standards model for turbulence closure. The position of

the free water surface is determined by evaluating the computed pressure at the water surface.

The simulation model was validated against laboratory data using four selected channel flow
cases before it was compared to other numerical codes by applying it to a reach of the river
Danube near the municipality of Grein in Austria, analysing the flow conditions during the flood
event of August 2002 when a discharge with a return period of 100 years was encountered.

Purpose of the validation study was also to assess the difference between using polyhedral and
the hexahedral cell shapes normally employed. It was found that in some cases the simulation
results were closer to the observed values using polyhedral cells while other cases showed no
significant differences to using hexahedral cells. When the polyhedral cells were arranged in the
flow domain such that the resulting grid was rather coarse and the prevailing flow direction was
not perpendicular to any of the cells’ faces, some numerical diffusion was observed, even though
not severe. This means that the problem of the flow solution depending on the exact arrange-
ment of cells is not entirely solved, but polyhedral cells are capable of reducing its severity. A
reasonable level of grid refinement can provide a remedy to the problem.

In the practical application of the model to a real flow situation it was found that the model
based on polyhedral cells yields results of equal or higher quality — using the deviation from
observed values as yardstick — than comparable models. However, since the usage of different
terrain interpolation methods has a significant influence on the results obtained, the exact reason
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for the model’s advantage in some distinct places within the project domain cannot be clarified
completely.

It was found that the implemented model, using a polyhedral grid approach, requires relatively
higher computation times to obtain a converged solution than comparable models. A signifi-
cant portion of this time is attributed to the unstructured grid which needs significantly more
computational effort than its structured counterparts, but the general formulation of the discre-
tised governing equations and the Gauss-Seidel solver algorithm also have their share in being
computationally demanding.

On the other hand, many flow problems in complex bounded domains need to be simplified
before they can be computed by making use of a solver based on a structured grid. The polyhedral
grid approach, however, does not come with such restrictions. Furthermore the polyhedral cell
shapes do not become distorted easily, not even when bounding polygons of very complicated
shape are being used, which is another significant advantage of this modelling technique.

7.2 Future Work

The numerical model is perfectly operational using the formulae and algorithms presented in this
thesis. However, of practical relevance is definitely the efficiency of the solver algorithm as it
directly translates into the computational effort required to solve a particular problem. It is clear
that this could be a starting point for potential future improvements of the model. The efficiency
of different algorithms in the context of a typical river flow situation could easily be assessed to
find and subsequently implement the one that has been found to be optimal.

Furthermore, the simulation model is not capable of dealing with unsteady flow conditions at
this moment. Its use is therefore restricted to steady flows or weakly unsteady conditions which
can be treated by a variation of boundary conditions alone. Transient flow problems require
the discretisation and implementation of additional terms in the governing equations. It is not
particularly difficult to discretise these terms and add them to the numerical model; implementa-
tion, however, requires extensive additional testing to prove that mass is actually conserved over
several time steps.

The problem of sediment transport in rivers, lakes and reservoirs will probably be the most
important challenge for the hydraulic and water resources engineer in the 21st century. Since
physical experiments in this field are usually expensive in terms of time and money, and also
complicated if the variation of sediment grain diameters is required in a study, it is predictable
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that the focus of such experiments will shift towards numerical modelling soon. Due to the
modular design of the RSim-3D model developed in this work, it is not difficult to add further
transport equations and their respective boundary conditions to the source code. No special
considerations will be needed for the implementation of a mobile bed geometry since the same
approaches can be used that allow the water surface to move freely in the vertical direction.

Another challenge for the hydraulic and water resources engineer is the analysis of water quality
and the transport of pollutants in inland waters. While the water quality of many rivers in Europe
has improved notably during the past decades, there is still need for improvement in a significant
number of waterbodies. Furthermore the real challenge may not even lie in the restoration of
polluted rivers but in keeping the high water quality standard of all others, predicting the spread
of pollutants once a disaster has taken place. This issue can be addressed in a numerical model
by implementing the appropriate transport equations which are actually well-known.

Finally, it should be pointed out that RSim-3D’s visualisation options are limited to plan views
and cross-sections. Even though transects can be defined between two arbitrary points, allow-
ing the user to analyse every place within the flow domain, this may turn out to be insufficient
when the results of a flow simulation are going to be presented to the general public. Visualisa-
tion tools in three spatial dimensions, like particle tracking or streamline contours, are available
which are capable of bridging the gap between the engineer and the general public. It would be
very interesting, though also very challenging, to couple the simulation model with one of these
visualisation techniques in the future.
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Appendix A Flow charts and examples

lllustration of region and cell numbering schemes
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Figure A.1: Region and cell numbering schemes



Appendix A

Stages of the numbering process (fig. A.1)

a. General situation:Pattern of distributed base points within a bounding polygon.

b. Sorting of points:Fortune’s algorithm requires the base points to be sorted/numbered in

A.2

ascending order along the positive y-axis; points with equal distance along the y-axis are
sorted along the positive x-axis.

. Numbering of 2D regionsTwo-dimensional grid regions receive the same identification

number as the base point they belong to.

. Numbering of 3D cellsApplying a structured vertical subdivision of each grid region into

n cells, the cell number is derived from the region number by
c=n-r+1

wherec is the cell number; the region number andthe vertical cell index in the range 0
ton-1. In order to store boundary conditions at the bed and the water surface, one extra cell
is added on each side of the cell pile, therefore the internal valuésagqual to(n,se; + 2)
wheren.., IS the user-supplied number of cells in each cell pile.



Appendix A

lllustrative example of the Kriging process
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Figure A.2: lllustrative example of the Kriging process
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Appendix A

Stages of the Kriging process (fig. A.2)

a. General situation: Distributed data points with known terrain elevation (black circles)
surround a point with unknown terrain elevation (red box).

b. Determine spatial dimensionstThe dimensionsAz and Ay of the terrain data set are
computed.

c. Apply search circleA circle with diameterl = /Az? + Ay? is constructed on top of the
point with unknown terrain elevation. Terrain data points lying outside of this circle are
excluded from the data set.

d. Sector subdivisionThe data set is subdivided into four sectors (quadrants).

e. Sector searchBetween one and eight data points of every quadrant are used for the semi-
variogram. If there are more than eight points available (as in the north-eastern quadrant),
only the points with the shortest distance to the point with unknown terrain elevation stay
in the data set; all other points (green ellipse) are excluded.

f. Computation of semivariogranThe semivariances — distances from every point to every
other point — are computed for the remaining points in the data set (coloured in blue) before
the linear equation set is solved as outlined in chapter 3.4.3.

In the computational implementation of the Kriging process these stages are executed in parallel
as illustrated in figure A.3.
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Flow chart of the Kriging algorithm

Compute dimensions Ax and Ay of the terrain data set
and compute diameter of the search circle:
d =AM +Ay*

Initialise two-dimensional array points[4][8] for four quadrants and max. eight points each,
initialise control variable /=0 (i identifies the terrain data point currently worked on)

Increment i by 1 =m

points? Yes
No

Compute signed distances dx and dy between the point P of which the elevation is to be
determined and terrain data point /

I

From signs of dx and dy determine number of quadrant of terrain data point J,
compute spatial distance r between point with unknown elevation P and terrain data point

distance r < radius d/2 ?
No

mber of points in thi
uadrant < 87

No

Add the terrain data point to the points array for the respective quadrant,
sort the points array in ascending order of the distance r

istance r < distancé
th points eleme

Replace the 8th element of the points array for the respective quadrant
with the current terrain data point / and sort the array according to r

!

Compute minimum distance of r over all quadrants () |

Use this
Yes €levation

Construct the semivariogram of the entire points array and solve the
resulting set of linear equations to obtain the terrain elevation for P

Figure A.3: Flow chart of the Kriging algorithm
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Kriging vs. Bivariate Interpolation on cross-section data

Appendix A

Figure A.4: Kriging (a.) and Bivariate Interpolation (b.) applied to a reach of the River Danube
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Appendix A

Flow chart of the solver algorithm

Initialisation phase
Velocity field (u=v=w=0.0), pressure field (p=0.0), turbulence field (k=¢=10-8)
Set boundary conditions, compute inflow mass flux M;,
Compute gradients of all conservation quantities
Initialise weighted residuals (R=1.0) and iteration counter (/ter=1)

»

>

v

Compute outflow mass flux Mo,
Correct velocities at the outlet by multiplication with M;,/My,

v

Compute eddy viscosities for all cells (chapter 4.3, equation 4.63)

v

Compute coefficients of the three momentum (RANS) equations for all cells
(chapter 4.1.6, equations 4.34 and 4.35)

v

Solve the three momentum (RANS) equations using the Gauss-Seidel solver
(chapter 4.5)

v

Compute scaled residuals of the momentum (RANS) equations
(chapter 4.5.3, equation 4.113)

v

Compute coefficients of the pressure-correction equation
(chapter 4.2, equation 4.48)

v

Solve the pressure-correction equation using the Gauss-Seidel solver
(chapter 4.5)

v

Correct pressure and velocity fields (chapter 4.2, equation 4.49)

v

Compute the mass-defect Myer in the entire computation domain
(chapter 4.5.3, equations 4.114 and 4.115)

Scale mass defect
using residual scale

Set Myer as new residual scale
Scaled resid. of contin.eq.=1.0

Compute velocity and pressure gradients for all cells

®

Figure A.5: Flow chart of the solver algorithm (part 1)
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A.8

®

A

A

@

Compute coefficients of the k- equations
(chapter 4.3.2, equations 4.75 and 4.85)

v

Solve the k-e equations using the Gauss-Seidel solver (chapter 4.5)

v

Enforce positiveness constraint on k and ¢

v

|Compute scaled residuals of the k- equations (chapter 4.5.3, equation 4.113)‘

v

Print scaled residuals for all equations

v

Calculate maximum of all residuals MaxRes

Update surface positions according to pressure head at the surface (ch.4.4.4)

Compute new cell volumes and surface areas

<

Y

(scaled residuals < resid.
for convergence) OR

(scaled residuals < resid.
for divergence) OR
(Iter = Maxliter)?

No

Save solution to disk
Print information on screen

Figure A.6: Flow chart of the solver algorithm (part 2)




Appendix B Velocity profiles
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Figure B.1: Longitudinal velocity profiles for cross section U2 of Kim & Patel's experiment
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Cross-section 75° (y/H = 0.0625)
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Figure B.5: Transversal velocity profiles for cross section U2 of Kim & Patel's experiment
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Figure B.6: Transversal velocity profiles for cross sectiondfXim & Patel’'s experiment
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Figure B.7: Transversal velocity profiles for cross sectionafXim & Patel’'s experiment
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Appendix B

Cross-section D1 (y/H = 0.0625)
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Figure B.8: Transversal velocity profiles for cross section D1 of Kim & Patel's experiment
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WIENER MITTEILUNGEN

WASSER ¢ ABWASSER ¢« GEWASSER

Eine von den Wasserbauinstituten an der Technischen Universitit Wien, den
Instituten fur Wasserwirtschaft der Universitit fiir Bodenkultur und dem

Osterreichischen Wasser-

Schriftenreihe

Band Nr

und Abfallwirtschaftsverband herausgegebene

Preis €

1

10

11

Das Wasser (1968)
Kresser W.

Die Gesetzmiiligkeiten der stationdren Fliissigkeitsstromung durch

gleichformig rotierende zylindrische Rohre (1968)
Breiner, H.

Abwasserreinigung - Grundkurs (1969)
von der Emde, W.

Abwasserreinigungsanlagen - Entwurf-Bau-Betrieb (1969)
4. OWWV-Seminar, Raach 1969

Zukunftsprobleme der Trinkwasserversorgung (1970)
5. OWWV-Seminar, Raach 1970

Industrieabwisser (1971)
6. OWWV-Seminar, Raach 1971

Wasser- und Abfallwirtschaft (1972)
7. OWWV-Seminar, Raach 1972

Das vollkommene Peilrohr
(Zur Methodik der Grundwasserbeobachtung) (1972)
Schmidt, F.

Uber die Anwendung von radioaktiven Tracern in der
Hydrologie (1972)

Pruzsinsky, W.

Uber die Auswertung von AbfluBmengen auf elektronischen
Rechenanlagen

Doleisch, M.:

1. Hydrologie-Fortbildungskurs (1972)

Vergleichende Untersuchungen zur Berechnung von HW-
Abfliissen aus kleinen Einzugsgebieten (1972)
Gutknecht, D.

Anhang I

vergriffen

vergriffen

vergriffen

vergriffen

vergriffen

vergriffen

vergriffen

vergriffen

18.-

vergriffen

vergriffen



Band Nr Preis €
12 Uferfiltrat und Grundwasseranreicherung (1973)

8. OWWV-Seminar, Raach 1973 vergriffen
13 Zellstoffabwisser-Anfall und Reinigung (1972)

von der Emde W., Fleckseder H., Huber L.,Viehl K. vergriffen
14 AbfluB} - Geschiebe (1973)

2. Hydrologie-Fortbildungskurs 1973 vergriffen
15 Neue Entwicklung in der Abwassertechnik (1983)

9. OWWV-Seminar, Raach 1974 vergriffen
16 Praktikum der Kldranlagentechnik (1974)

von der Emde W. vergriffen
17 Stabilititsuntersuchung von Abflufiprofilen mittels

hydraulischer Methoden und Trendanalyse (1974)

Behr, O.: 18,-
18 Hydrologische Grundlagen zur Speicherbemessung(1975)

3. Hydrologie-Fortbildungskurs 1975 vergriffen
19 Vorhersagen in der Wasserwirtschaft (1976)

1. Hydrologisches Seminar des OWWYV 1976 10,-
20 Abfall- und Schlammbehandlung aus wasserwirtschaftlicher

Sicht (1976)

11. OWWV-Seminar, Raach 1976 vergriffen
21 Zur Theorie und Praxis der Speicherwirtschaft (1977)

2. Hydrologisches Seminar des OWWYV 1977 22,-
22 Abwasserreinigung in kleineren Verhiltnissen (1977)

12. OWWV-Seminar, Raach 1977 vergriffen
23 Methoden zur rechnerischen Behandlung von Grundwasser-

leitern (1977)

Baron W., Heindl W., Behr O., Reitinger J. vergriffen
24 Ein Beitrag zur Reinigung des Abwassers eines Chemiefaser

werkes, eines chemischen Betriebes und einer Molkerei (1978)

Begert A. vergriffen
25 Ein Beitrag zur Reinigung von Zuckerfabrikabwaser (1978)

Kroiss H. vergriffen
26 Methoden der hydrologischen Kurzfirstvorhersage (1978)

Gutknecht D. vergriffen
27 Wasserversorgung-Gewasserschutz (1978)

13. OWWV-Seminar, Raach 1978 vergriffen
28 Industrieabwasserbehandlung - Neue Entwicklungen (1979)

14. OWWV-Seminar, Raach 1979 vergriffen

Anhang II



Band Nr Preis €
29 Probleme der Uferfiltration und Grundwasseranreicherung
mit besonderer Beriicksichtigung des Wiener Raumes (1979)
Frischherz H. vergriffen
30 Beitriage zur Hydraulik, Gewisserkunde und Wasser-
wirtschaft (1979)
0. Univ.-Prof. DDr. Werner Kresser zum 60. Geburtstag vergriffen
31 Grundwasserzustromungsverhiltnisse zu Horizontalfilterrohr-
brunnen (1980)
Schiigerl W. vergriffen
32 Grundwasserwirtschaft (1980)
3. Hydrologisches Seminar des OWWYV 1980 25,-
33 Kulturtechnik und Wasserwirtschaft heute (1) (1980)
vergriffen
34 Behandlung und Beseitigung kommunaler und industrieller
Schlimme (1980)
15. OWWYV-Seminar, Raach 1980 vergriffen
35 Faktoren, die die Inaktivierung von Viren beim Belebungsverfahren
beeinflussen (1980)
Usrael G. vergriffen
36 Vergleichende Kostenuntersuchungen iiber das Belebungs-
verfahren (1980)
Flogl W. vergriffen
37 Ein Beitrag zur Reinigung und Geruchsfreimachung von
Abwasser aus Tierkorperverwertungsanstalten (1980)
Ruider E. vergriffen
38 Wasserwirtschaftliche Probleme der Elektrizititserzeugung (1981)
Schiller, G.: vergriffen
39 Kulturtechnik und Wasserwirtschaft heute (1981)
Teil 2 vergriffen
40 Wasseraufbereitung und Abwasserreinigung als zusammengehorige
Techniken (1981)
16. OWWV-Seminar, Raach 1981 vergriffen
41 lfilterbrunnen zur Erschlieung von Grundwasser (1981)
OWWYV-Fortbildungskurs 1981 29,-
42 Zur Ermittlung von Bemessungshochwissern im Wasserbau (1981)
Kirnbauer R. 22,-
43 Wissenschaftliche Arbeiten, Zeitraum 1977 bis 1981 (1981)
25,-
44 Kulturtechnik und Wasserwirtschaft - heute (1981)
Teil 3 25.-

Anhang I1I



Band Nr Preis €
45 Verbundwirtschaft in der Wasserversorgung (1982)

OWWYV-Fortbildungskurs 1982 29,-
46 Gewisserschutzplanung, deren Umsetzung und Zielkontrolle

im Einzugsgebiet des Neusiedler Sees (1982)

Stalzer W. vergriffen
47 Wechselwirkung zwischen Planung und Betrieb von Abwasser-

reinigungsanlagen, Erfahrungen und Probleme (1982)

17. OWWV-Seminar, Ottenstein 1982 vergriffen
48 Kleinwasserkraftwerke - Notwendigkeit und Bedeutung (1982)

FluB3studien: Schwarza, kleine Ybbs, Saalach vergriffen
49 Beitrige zur Wasserversorgung, Abwasserreinigung,

Gewisserschutz und Abfallwirtschaft (1982)

0. Univ.-Prof. Dr.-Ing. W. v.d. Emde zum 60. Geburtstag vergriffen
50 Kulturtechnik und Wasserwirtschaft - heute (1982)

Teil 4 vergriffen
51 Sicherung der Wasserversorgung in der Zukunft (1983)

18. OWWV-Seminar, Ottenstein 1983 vergriffen
52 Thermische Beeinflussung des Grundwassers (1983)

OWWV-Fortbildungskurs, 1983 vergriffen
53 Planung und Betrieb von Regenentlastungsanlagen (1984)

OWWV-Fortbildungskurs, 1984 vergriffen
54 Sonderabfall und Gewisserschutz (1984)

19. OWWV-Seminar, Gmunden 1984 vergriffen
55 Naturnahes Regulierungskonzept "Pram' (1984)

26,-

56 Blihschlamm beim Belebungsverfahren (1985)

OWWV-Fortbildungskurs, 1985 vergriffen
57 Chemie in der Wassergiitewirtschaft (1985)

OWWYV-Fortbildungskurs, 1985 vergriffen
58 Klirschlamm - Verwertung und Ablagerung (1985)

20. OWWV-Seminar, Ottenstein 1985 vergriffen
59 Wasserkraftnutzung an der Thaya (1985)

Pelikan B. 23,-
60 Seminar "Wasser - Umwelt - Raumordnung' (1985)

16,-

61 Gewisserschutz im Wandel der Zeit

Ziele und Mafinahmen zu ihrer Verwirklichung (1985)

Fleckseder, H. vergriffen
62 Anaerobe Abwasserreinigung (1985)

Kroiss H. vergriffen

Anhang IV



Band Nr Preis €
63 Kleine Belebungsanlagen mit einem AnschluB3wert bis 500
Einwohnergleichwerte (1985)
Begert A. vergriffen
64 Beliiftungssysteme beim Belebungsverfahren (1986)
OWWV-Fortbildungskurs, 1986 vergriffen
65 Planung und Betrieb von Behandlungsanlagen fiir Industrie-
abwasser (1986)
21. OWWV-Seminar, Ottenstein 1986 vergriffen
66 Ausspracheseminar Grundwasserschutz in Osterreich (1986)
OWWV-Fortbildungskurs, 1986 29,-
67 Kulturtechnik und Wasserwirtschaft heute (5) (1986) vergriffen
68 Zur mathematischen Modellierung der Abflulentstehung an
Hingen (1986)
Schmid B.H. 22,-
69 Nitrifikation - Denitrifikation (1987)
OWWYV-Fortbildungskurs, 1987 vergriffen
70 Flu3bau und Fischerei (1987)
vergriffen
71 Wasserversorgungung und Abwasserreinigung in kleinen
Verhiltnissen (1987)
22. OWWV-Seminar, Ottenstein 1987 vergriffen
72 Wasserwirtschaft und Lebensschutz (1987)
Wurzer E. vergriffen
73 Anaerobe Abwasserreinigung
Grundlagen und grofitechnische Erfahrung (1988)
OWWYV-Fortbildungskurs, 1988 vergriffen
74 Wasserbau und Wasserwirtschaft im Alpenraum aus historischer
Sicht (1988)
22,-
75 Wechselbeziehungen zwischen Land-, Forst und Wasser-
wirtschaft (1988)
OWWV-Fortbildungskurs, 1988 vergriffen
76 Gefiahrdung des Grundwassers durch Altlasten (1988)
23. OWWV-Seminar, Ottenstein 1988 vergriffen
77 Kulturtechnik und Wasserwirtschaft heute (6) (1987)
vergriffen
78 Wasserwirtschaftliche Planung bei mehrfacher Zielsetzung (1988)
Nachtnebel, H.P. 25,-
79 Hydraulik offener Gerinne (1989)
Symposium, 1989 vergriffen

Anhang V



Band Nr Preis €

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

Untersuchung der Fischaufstiegshilfe bei der Stauhaltung im
Gieigang Greifenstein (1988)

Jungwirth M., Schmutz S. vergriffen
Biologische Abwasserreinigung (1989)

OWWV-Fortbildungskurs, 1989, TU-Wien vergriffen
Kldrschlammentsorgung (1989)

24. OWWV-Seminar, Ottenstein 1989 vergriffen
Viruskontamination der Umwelt und Verfahren der

Kontrolle (1990)

2. Symposium 18.-
Schadstofffragen in der Wasserwirtschaft (1989)

OWWV-Fortbildungskurs 1989, TU-Wien 29,-

Schluibericht zum Forschungsvorhaben Trinkwasseraufbereitung
mit Ultraschall, Projekt Abschnitt I (1989)

Frischherz H.; Benes E.; Ernst J.; Haber F.; Stuckart W. 18,-
Umfassende Betrachtung der Erosions- und Sedimentations-

problematik (1989)

Summer W. 25,-
Grofiriumige Losungen in der Wasserversorgung (1990)

25. OWWV-Seminar, Ottenstein 1990 vergriffen
Revitalisierung von FlieBgewissern (1990)

Beitrdge zum Workshop Scharfling, 1989 vergriffen
Kulturtechnik und Wasserwirtschaft heute (1990)

Teil 9 vergriffen
A Study on Kinematic Cascades (1990)

Schmid B.H. 18,-

Snowmelt Simulation in Rugged Terrain -
The Gap Between Point and Catchment Scale Approaches (1990)
Bloschl G. 18,-

Dateninterpretation und ihre Bedeutung fiir Grundwasser-
stromungsmodelle (1990)
Blaschke A.P. nicht erschienen

Decision Support Systeme fiir die Grundwasserwirtschaft
unter Verwendung geografischer Informationssysteme (1990)
First J. 18, -

Schlufibericht zum Forschungsvorhaben Trinkwasser-
aufbereitung mit Ultraschall; Projekt-Abschnitt 1990 (1990)
Frischherz H., Benes E., Stuckhart W., Ilmer A., Groschl M., Bolek W. 18,-

Anaerobe Abwasserreinigung - Ein Modell zur Berechnung
und Darstellung der mafigebenden chemischen Parameter (1991)
Svardal K. 22,-

Anhang VI



Band Nr

Preis €

96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

111

EDV-Einsatz auf Abwasserreinigungsanlagen (1991)
OWWV-Fortbildungskurs 1991, TU-Wien

Entfernung von Phosphorverbindungen bei der Abwasser-
reinigung (1991)
OWWV-Fortbildungskurs 1991, TU-Wien

Auswirkungen der Wasserrechtsgesetznovelle 1990 auf Behorden,
Planer und Betreiber kommunaler Abwasserreinigungsanlagen -
aus technischer, rechtlicher und wirtschaftlicher Sicht (1991)

26. OWWV-Seminar, Ottenstein 1991

Geruchsemissionen aus Abwasserreinigungsanlagen (1991)
OWWV-Fortbildungskurs 1991,

Anpassung von Kliranlagen an den Stand der Technik (1992)
OWWV-Fortbildungskurs 1992, TU-Wien

Umweltbezogene Planung wasserbaulicher Mafinahmen
an Fliegewissern (1992)
Pelikan B.

Erfassung hydrometeorologischer Elemente in Osterreich
im Hinblick auf den Wasserhaushalt (1992)
Behr O.

Wasser- und Abfallwirtschaft in diinn besiedelten Gebieten (1992)
27. OWWV-Seminar Ottenstein 1992

Virus Contamination of the Environment (1992)
Methods and Control

FlieBgewisser und ihre Okologie (1993)
OWAV-Fortbildungskurs 1992, TU-Wien

Festlegung einer Dotierwassermenge iiber Dotationsversuche (1992)

Mader H.

Wasserrechtsgesetznovelle 1990 und neue Emissions-
verordnungen (1992)
Vortrdge anldBlich der UTEC 1992

Chemische Analytik fiir einen zeitgeméflen Gewisserschutz (1992)
Vortriage anldBlich der UTEC 1992

Kulturtechnik und Wasserwirtschaft heute (1994)
Teil 10 - Beitrdge zum Seminar an der Universitit fiir Bodenkultur
im November 1994

29,-

25,-

36,-

22,-

vergriffen

18.-

L.V.

36,-

vergriffen

22,-

22,-

29,-

29,-

L.V.

Bemessung u. Betrieb von Kliranlagen zur Stickstoffentfernung (1993)

OWAV-Seminar 1993, TU-Wien

Wasserreserven in Osterreich -
Schutz und Nutzung in Gegenwart und Zukunft (1993)
28. OWAV-Seminar Ottenstein 1993

36,-

vergriffen

Anhang VII



Band Nr Preis €

112

113

114

115

116

117

118

119

120

121

122

123

124

Contamination of the Environment by Viruses and Methods of
Control (1993)
18.-

Wasserkraft
O.Univ.-Prof. Dipl.-Ing. Dr.techn. S. Radler anlidBlich
seiner Emeritierung vergriffen

Kliarwirter-Grundkurs (1994)
2. Auflage 1994 vergriffen

Beitrag zur Reduzierung der Abwasseremissionen der Bleicherei beim
Sulfatverfahren (1994)

Urban W.

ISBN 3-85234-001-2 22,-

Eigeniiberwachung von Abwasserreinigungsanlagen

fiir den Gewiisserschutz (1994)

OWAV-Seminar 1994, TU-Wien

ISBN 3-85234-002-0 25,-

Abwasserreinigungskonzepte -

Internationaler Erfahrungsaustausch iiber neue Entwicklungen (1995)
OWAV-Seminar 1994, TU Wien

ISBN 3-85234-003-9 25,-

3 Jahre WRG-Novelle (1994)
29. OWAV-Seminar: Ottenstein 1994
ISBN 3-85234-004-7 19,-

Landeskulturelle Wasserwirtschaft (1994)
anlaBlich der Emeritierung von
0.Univ.-Prof. Dipl.-Ing. Dr. H. Supersperg vergriffen

Gewisserbetreuungskonzepte - Stand und Perspektiven (1994)
Beitrdge zur Tagung an der BOKU 1994
ISBN 3-85234-010-1 32,-

Generelle Entwisserungsplanung im Siedlungsraum (1996)
OWAV-Seminar 1995, TU Wien
ISBN 3-85234-011-X 29,-

Bedeutung von geowissenschaftlicher Zusatzinformation fiir die
Schitzung der Transmissivititsverteilung in einem Aquifer (1994)
Kupfersberger H. 18,-

Modellierung und Regionalisierung der Grundwassermengenbildung
und des Bodenwasserhaushaltes (1994)
Holzmann, H. 22,-

Pflanzenkliranlagen - Stand der Technik, Zukunftsaspekte (1995)
OWAV-Seminar, BOKU Wien
ISBN 3-85234-014-4 22,-

Anhang VIII



Band Nr

Preis €

125

126

127

128

129

130

131

132

133

134

135

136

Abwasserreinigung - Probleme bei der praktischen Umsetzung des
Wasserrechtsgesetzes, (1995)

OWAV-Seminar 1995, TU-Wien

ISBN 3-85234-015-2

Konfliktfeld Landwirtschaft - Wasserwirtschaft (1995)
30. OWAV-Seminar, Ottenstein 1995
ISBN 3-85234-016-0

Alte und neue Summenparameter (1995)
OWAV-Seminar 1995, TU-Wien
ISBN 3-85234-017-9

Viruskontamination der Umwelt und Verfahren der Kontrolle
(deutsch oder englisch) (1995)

4. Symposium Univ.Prof.Dr. R. Walter

ISBN 3-85234-019-5

Einfluf§ von Indirekteinleitungen auf Planung und Betrieb
von Abwasseranlagen (1996)

OWAV-Seminar 1996, TU-Wien

ISBN 3-85234-020-9

Zentrale und dezentrale Abwasserreinigung (1996)
31. OWAV-Seminar, Ottenstein 1996
ISBN 3-85234-021-7

32.-

29,-

29,-

vergriffen

36,-

Methoden der Planung und Berechnung des Kanalisationssystems (1996)

OWAV-Seminar 1996, BOKU-Wien
ISBN 3-85234-022-5

Scale and Scaling in Hydrology (1996)
Bloschl G.
ISBN 3-85234-023-3

Kulturtechnik und Wasserwirtschaft heute (11) (1996)
Integrale Interpretation eines zeitgemiflen Gewésserschutzes
ISBN 3-85234-024-0

Ein Beitrag zur Charakterisierung von Beliiftungssystemen fiir die
biologische Abwasserreinigung nach dem Belebungsverfahren mit
Sauerstoffzufuhrmessungen (1996)

Frey W.

ISBN 3-85234-025-X

Nitrifikation im Belebungsverfahren bei mafigebendem
Industrieabwassereinflufl (1996)

Nowak O.

ISBN 3-85234-026-8

1. Wassertechnisches Seminar (1996)
Nebenprodukte von Desinfektion und Oxidation bei der

Trinkwasseraufbereitung
ISBN 3-85234-027-6

29,-

vergriffen

12,-

22,-

36,-

L.V.

Anhang [X



Band Nr Preis €

137 Modellanwendung bei Planung und Betrieb von Belebungs-
anlagen (1997)
OWAYV - Seminar 1997, TU-Wien
ISBN 3-85234-028-4 32,-

138 Nitrifikationshemmung bei kommunaler Abwasserreinigung (1997)
Schweighofer P.
ISBN 3-85234-029-2 25,-

139 Ein Beitrag zu Verstindnis und Anwendung aerober Selektoren fiir die
Blihschlammvermeidung (1997)
Prendl L.
ISBN 3-85234-030-6 22.-

140 Auswirkungen eines Kliranlagenablaufes auf abflulschwache Vorfluter
am Beispiel der Kliranlage Modling und des Krottenbaches (1997)
Franz A.
ISBN 3-85234-031-4 25,-

141 Neue Entwicklungen in der Abwassertechnik (1997)
OWAYV - Seminar 1997, TU-Wien
ISBN 3-85234-032-2 36,-

142 Kulturtechnik und Wasserwirtschaft heute (11) (1997)
Abfallwirtschaft und Altlastensanierung morgen
ISBN 3-85234-033-0 18.-

143 Abwasserbeseitigung und Wasserversorgung in Wien (1997)
Eine 6konomische Beurteilung der Einnahmen, Ausgaben und Kosten
Kosz M.
ISBN 3-85234-034-9 22,-

144 Raum-Zeitliche Variabilititen im Geschiebehaushalt
und dessen Beeinflussung am Beispiel der Drau (1997)
Habersack H.
ISBN 3-85234-035-7 29,-

145 Fortbildungskurs: Biologische Abwasserreinigung (1998)
OWAYV - Seminar 1998, TU-Wien
ISBN 3-85234-036-5 vergriffen

146 2. Wassertechnisches Seminar (1998)
Desinfektion in der Trinkwasseraufbereitung
ISBN 3-85234-037-3 1.V.

147 Eigeniiberwachung und Fremdiiberwachung bei Kliranlagen (1998)
32. OWAV-Seminar , Linz 1998

ISBN 3-85234-038-1 36,-
148 Grundwasserdynamik (1998)
ISBN 3-85234-039-C 36,-

Anhang X



Band Nr Preis €

149 Die Tradition in der Kulturtechnik (1998)
Kastanek F.
Simulationsanwendung bei der Storung durch poroses Medium (1998)
Loiskandl W.
ISBN 3-85234-040-4 22,-

150 Auswirkungen von Niederschlagsereignissen und der Schneeschmelze
auf Karstquellen (1998)

Steinkellner M.

ISBN 3-85234-041-1 36,-
151 Experiences with soil erosion models (1998)

ISBN 3-85234-042-X 29.,-

152 Ein Beitrag zur Optimierung der Stickstoffentfernung
in zweistufigen Belebungsanlagen (1998)
Dornhofer K.
ISBN 3-85234-043-8 25,-

153 Hormonell aktive Substanzen in der Umwelt (1998)
OWAV / UBA Seminar 1998, BOKU Wien

ISBN 3-58234-044-6 vergriffen
154 Erfassung, Bewertung und Sanierung von Kanalisationen (1998)

OWAYV Seminar 1999, BOKU Wien

ISBN 3-8523-045-4 29,-

155 Niahrstoffbewirtschaftung und Wassergiite im Donauraum (1999)
OWAYV - Seminar 1999, TU-Wien
ISBN 3-85234-046-2 32,-

156 Der spektrale Absorptionskoeffizient zur Bestimmung der organischen
Abwasserbelastung (1999)
UV-Seminar 1998, Duisburg
ISBN 3-85234-047-0 22.-

157 Bedeutung und Steuerung von Nihrstoff- und Schwermetallfliissen
des Abwassers (1999)
Zessner M.
ISBN 3-85234-048-9 25,-

158 Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der
Abfallwirtschaft (1999)
Rechberger H.
ISBN 3-85234-049-7 vergriffen

159 Sicherheit und Gesundheitsschutz auf Abwasseranlagen und
deren Evaluierung (2000)
OWAV — Seminar 2000, TU-Wien
ISBN 3-85234-050-0 22,-

Anhang XI



Band Nr Preis €

160 Auswirkungen von Klimainderungen auf die Hydrologie alpiner
Einzugsgebiete (2000)
Hebenstreit K.
ISBN 3-85234-051-9 25,-

161 Innovative Messtechnik in der Wasserwirtschaft (2000)
Prisentation eines Forschungsprojektes
OWAYV — Seminar 2000, BOKU — Wien
ISBN 3-85234-052-7 vergriffen

162 Sickerwasser und Oberflichenabdichtung auf
Reaktordeponien (2000)
OWAV - Seminar 2000, Wirtschaftskammer Wien
ISBN 3-85234-053-5 25,-

163 Abfall- und Abwasserentsorgung in kleinen Verhiltnissen (2000)
OWAV - Seminar 2000, Ottenstein
ISBN 3-85234-054-3 25,-

164 Niederschlag-Abfluss-Modellierung — Simulation und Prognose (2000)
OWAV-Seminar 2000, TU Wien
ISBN 3-85234-055-1 30,-

165 Mehrdimensionale Abflussmodellierung am Beispiel der Lafnitz (2000)
Habersack, H. / Mayr, P. / Girlinger, R. / Schneglberger, St.
ISBN 3-85234-056-x 25,-

166 Anpassung von Kliranlagen — Planung und Betrieb (2001)
OWAV-Seminar 2001, TU Wien

ISBN 3-85234-057-8 40,-
167 Bepflanzte Bodenfilter zur weitergehenden Reinigung von Oberflichen-

wasser und Kliranlagenabliaufen (2001)

Laber J.

ISBN 3-85234-058-6 25,-

168 Kanalbetrieb und Niederschlagsbehandlung (2001)

OWAV-Seminar 2001, BOKU Wien.

ISBN 3-85234-059-4 29,-
169 Development of a Simulation Tool for Subsurface Flow Constructed

Wetlands (Entwicklung eines Simulationsmodells fiir bepflanzte

Bodenfilter) (2001)

Langergraber G.

ISBN 3-85234-060-8 25,-
170 Simulation von Niederschlagszeitreihen mittels stochastischer Prozess-

modelle unter Beriicksichtigung der Skaleninvarianz (2001)

Bogner
ISBN 3-85234-061-6 1.V.

171 Sewage Sludge Disposal — Sustainable and/or Reliable Solutions (2001)
OWAYV / EWA Workshop 2001, TU-Wien
ISBN 3-85234-062-4 25,-
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172 Stickstoffentfernung mit Biofiltern (2002)

Nikolavcic B.

ISBN 3-85234-063-2 30,-
173 Anaerobe Abwasserreinigung: Beeinflussende Faktoren der

Versauerung eines Zitronesiurefabrikabwassers (2002)

Moser D.

ISBN 3-85234-064-0 20,-
174 Gewiisserschutz bei Entlastungsbauwerken der Mischkanalisation (2002)

Fenz R.

ISBN 3-85234-065-9 25,-
175 Wechselwirkung von physikalischen, chemischen und biotischen

Prozessen in aquatischen Systemen (2002)

Kreuzinger N.

ISBN 3-85234-066-7 1.V.
176 Benchmarking in der Abwasserentsorgung (2002)

OWAYV Workshop Februar 2002, TU-Wien

ISBN 3-85234-067-5 30,-
177 Klarschlamm (2002)

Maoglichkeiten und Verfahren zur Verwertung / Entsorgung ab 2004

OWAYV Seminar April 2002, Wirtschaftskammer Osterreich

Schlammbehandlung und Entsorgung

OWAV / TU — Workshop September 2000, TU-Wien

ISBN 3-85234-068-3 30,-
178 Arzneimittel in der aquatischen Umwelt (2002)

OWAYV Seminar 2002

ISBN 3-85234-069-1 30,-
179 Untersuchungen zur Entfernung natiirlicher radioaktiver Stoffe aus

Trinkwasser und Uberblick zu deren Verbreitung in Osterreich (2002)

ISBN 3-85234-070-5 25,-
180 Zum FlieBwiderstandsverhalten flexibler Vegetation (2002)

Stephan U.

ISBN 3-85234-071-3 30,-
181 Understanding and estimating flood probabilities

at the regional scale (2002)

Merz R.

ISBN 3-85234-072-3 30,-
182 Kanalmanagement - Neues Schlagwort oder alte Herausforderung ? (2003)

OWAYV Seminar 2003, BOKU Wien

ISBN 3-85234-073-X 30,-
183 Fortbildungsseminar Abwasserentsorgung (2003)

OWAYV Seminar Februar 2003, TU-Wien

ISBN 3-85234-074-8 40,-
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184

185

186

187

188

189

190

191

192

193

Kléirschlamm (2003)
OWAYV Seminar November 2003, TU-Wien
ISBN 3-85234-075-6

Nachhaltige Nutzung von Wasser (2003)

Endbericht zu Modul MU11 im Rahmen des Forschungsschwerpunktes
»Nachhaltige Entwicklung Osterreichischer Kulturlandschaften®

ISBN 3-85234-076-4

Inspektion von Kanalisationen

(inkl. Umsetzung ONORM EN 13508-2) (2004)
OWAV-Informationsveranstaltung 2004, BOKU Wien
ISBN 3-85234-077-2

Datengewinnung, -verwaltung und -nutzung in der
Wassergiitewirtschaft (2004)

OWAV Seminar Mirz 2004, TU-Wien

ISBN 3-85234-078-0

CSB-Elimination in hochstbelasteten Belebungsstufen und ihre
Auswirkung auf die Stickstoffelimination von zweistufigen Anlagen
unter dem Gesichtspunkt der mathematischen Modellierung (2004)
Haider S.

ISBN 3-85234-079-9

Beitrag zum Benchmarking von Abwasserreinigungsanlagen (2004)
Lindtner S.
ISBN 3-85234-080-2

Offentlichkeitsarbeit auf Kliranlagen (2004)
OWAYV Seminar Juni 2004, St. P6lten
ISBN 3-85234-081-0

Das Verhalten ausgewihlter organischer Spurenstoffe bei der
biologischen Abwasserreinigung (2004)

Clara M.

ISBN 3-85234-082-9

Chemie in der Wassergiitewirtschaft (2005)
OWAYV Seminar Februar 2005, TU Wien
ISBN 3-85234-083-7

Three-Dimensional Numerical Modelling of Turbulent River Flow
using Polyhedral Finite Volumes (2005)

Tritthart M.

ISBN 3-85234-084-5

30,-

30,-

30,-

40,

30,-

25,-

30,-

25.-

45,

30,-

Anhang XIV



Band Nr Preis €

Die Bande sind zu beziehen bei:

Institut fiir Wassergiite und Abfallwirtschaft
der Technischen Universitdt Wien
Karlsplatz 13/226, A-1040 Wien

Band: 12, 15, 16, 20, 28, 34, 35, 36, 37, 47, 49, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65,
69, 73, 81, 82, 84, 95, 96, 97, 98, 99, 100, 105, 107, 108, 110, 114, 116, 117,
121, 125, 127, 129, 130, 134, 135, 137, 138, 139, 140, 141, 143, 145, 147,
152, 153, 155, 156, 157, 158, 159, 161, 162, 166, 171, 172, 173, 174, 175,
176, 177, 178, 183, 184, 187, 188, 189, 190, 191, 192

Institut fiir Wasserbau und Ingenieurhydrologie
der Technischen Universitdit Wien
Karlsplatz 13/222, A-1040 Wien

Band: 1,2,8,9, 17,21, 23,26, 30, 31, 41, 42, 52, 66, 68, 74, 90, 91, 92, 102, 122,
132, 148, 164, 180, 181, 193

Institut fiir Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau
der Universitit fiir Bodenkultur,
Muthgasse 18, A-1190 Wien

Band: 18, 19, 32, 38, 43, 44, 45, 48, 50, 55, 59, 60, 70, 75, 78, 86, 89, 93, 101, 106,
109, 113, 123, 144, 160, 165, 167, 169

Institut fiir Wasservorsorge, Gewésserokologie und Abfallwirtschaft
der Universitit fiir Bodenkultur,
Muthgasse 18, A-1190 Wien

Band: 22, 29, 39, 40, 46, 67, 71, 72, 76, 77, 80, 83, 85, 87, 88, 94, 103, 112, 115,

118, 120, 124, 126, 128, 131, 133, 136, 142, 146, 150, 154, 163, 167, 168,
169, 178, 179, 182, 185, 186

Institut fiir Hydraulik und landeskulturelle Wasserwirtschaft
der Universitit fiir Bodenkultur
Muthgasse 18, A-1190 Wien

Band: 119, 149, 151, 170
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ISBN 3-85234-084-5
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