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”It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If

it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman
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Abstract
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Electronic and optical properties of graphene and large-scale graphene

nanodevices

by Larisa A. Chizhova

Graphene, a one-atom thin honeycomb lattice of carbon, has exceptional electronic prop-

erties making it a prime candidate for future electronic applications. However, graphene

has no band gap which is essential for building logical circuits, and electronic transport

is highly sensitive to the edge or (substrate-induced) bulk disorder reducing carrier mo-

bility. In an attempt to overcome these issues, new substrates such as hexagonal boron

nitride have proven to reduce the bulk disorder in graphene and even to open a small

band gap of 40 meV. Although new substrates help to reduce bulk disorder, electronic

transport is still affected by edge roughness and the surrounding chemical environment.

The thesis aims to simulate realistic graphene devices and to provide a theoretical study

of several recent experiments performed with graphene. It addresses: (i) electron trans-

port properties of graphene nanoconstrictions; (ii) electronic and optical properties of

graphene on hexagonal boron nitride; and (iii) the nonlinear optical response of graphene.

In particular, we predict that the conductance of small graphene nanodevices can probe

the physics at the edges of the device by extracting the density of localized or trapped

edge states from the conductance trace measurements. We also show that new substrates

may modify the bandstructure of graphene by opening a small band gap and by creating

mini-gaps above and below the Dirac cone. The density of states of graphene with an

additional substrate potential in the magnetic field can be probed by optical magneto-

spectroscopy. Furthermore, due to its linear energy dispersion, graphene demonstrates

strong nonlinear response in the THz range highlighting its importance for building THz

lasers and detectors. We also prove that graphene can form high-harmonic generation

(HHG) spectra under the application of THz laser pulses similar to the HHG in gases.

University Web Site URL Here (include http://www.tuwien.ac.at/tuwien_home/)
Department or School Web Site URL Here (include http://itp.tuwien.ac.at/)


TU WIEN

Kurzfassung

Institut für Theoretische Physik

Elektronische und optische Eigenschaften von Graphen und

Graphen-Nanostructuren

von Larisa A. Chizhova

Graphen, eine Monolage von Kohlenstoffatomen mit der Gitterstruktur einer Bienen-

wabe, hat außergewöhnliche elektronische Eigenschaften, die es für zukünftiger Elek-

tronikanwendungen sehr interessant machen. Allerdings hat Graphen keine Bandlücke,

die für die Anwendung in logischen Schaltungen entscheidend ist. Elektronentransport

durch Graphen ist sehr empfindlich gegenüber Defekten der Kristallstruktur am Rand

und im Inneren der Monolage. Diese reduzieren die Mobilität der Elektronen. Neue

Substate, wie hexagonales Bornitrid, reduzieren die Anzahl der Defekte im Inneren von

Graphen und induzieren auch eine Bandlücke von etwa 40 meV. Verbesserte Proben-

qualität und optimierte Substrate verringern Defecte im Inneren. Daher dominieren nun

Randdefekte den Elektronentransport.

Diese Arbeit zielt darauf ab, realistische Graphen-Nanostructuren zu simulieren und the-

oretische Studien aktueller Experimente mit Graphen bereitzustellen. Wir untersuchen:

(i) Eigenschaften des Elektronentransports durch Graphennanodevices; (ii) elektron-

ische und optische Eigenschaften von Graphen auf hexagonalem Bornitrid; und (iii)

nicht-lineare optische Eigenschaften von Graphen. Insbesondere finden wir, dass die

Leitfähigkeit von Graphennanostrukturen die Physik an den Rändern der Strukturen

widerspiegelt. Durch Messung der Leitfähigkeit kann die Zustandsdichte lokalisierter

Randzustände gefunden werden. Wir zeigen auch, dass neue Substrate die Bandstruk-

tur von Graphen ändern können. Die Substrate führen zu einer kleinen Bandlücke am

Diracpunkt und zu Mini-Bandlücken oberhalb und unterhalb des Diracpunkts. Die Zu-

standsdichte von Graphen im Magnetfeld mit einem zusätzlichen Substratpotenzial kann

durch optische Magnetospektroskopie analysiert werden. Darüberhinaus zeigt Graphen

starke nichtlineare Effekte im THz Bereich aufgrund seiner linearen Energiedispersion.

Diese Eigenschaften haben eine große Bedeutung für den Bau von THz Lasern und

Detektoren. Wir zeigen, dass Graphen unter Belichtung mit THz Laserpulsen high-

harmonic (HHG) Strahlung bilden kann. Die HHG Spektren von Graphen ähneln deren

in Gasen.
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Chapter 1

Introduction

Some decades ago people could not imagine that graphite, a material everyone uses to

sketch, to write or to paint, would cause a breakthrough, establishing single-layer mate-

rial science. In spite of the discovery of 0D fullerenes already in 1985 [1] and quasi-1D

carbon nanotubes in 1991 [2]1, most scientists were certain that a 2D carbon material,

i.e. a monolayer of graphite, cannot exist under ambient conditions and in fact should

always fold into a nanotube. However, in the 2000s A. Geim and his team succeeded

in finding stable monolayers of graphite: graphene. The technique they used, the mi-

cromechanical cleavage or the Scotch-tape method, was very well-known for removing

the top most layers of a crystal before doing, for example, STM imaging of a surface.

One day, instead of looking at the highly oriented graphite surface in STM, they looked

at the Scotch-tape used in the surface preparation of the sample and found very thin

graphite pieces [4]. The follow-up measurements of electronic properties of these thin

films [5, 6] started a new era of science of monolayers.

Already the first series of experiments designed to investigate graphene demonstrated

the unique behavior of electrons in this material [5, 6]. It was discovered that graphene

is gapless and features a linear dispersion near the Fermi energy closely resembling a

Dirac cone. As a result electrons in graphene have a constant group velocity and move

across the layer at ”relativistic” speeds. With the progress in device fabrication, it is

nowadays possible to achieve electron mobilities in graphene of the order of 106 cm2/Vs

[7, 8], which is much larger than electron mobilities in silicon used in modern computer

technology. This makes graphene a very attractive candidate for building fast nano-

electronics. Moreover, its low dimensionality can help to improve the limit of Moore’s

1 In fact, the first observation of carbon nanotubes (CNT) was made already in 1952 by Radushkevich
and Lukyanovich [3], who published their work in the Journal of Physical Chemistry in Russian. But
it was not untill the rediscovery of nanotubes in 1991 by Iijima [2] when the actual rise of the CNTs
science begun.

2
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law: a prediction that the number of transistors on a computer chip should double every

year increasing the efficiency of computer devices. Very soon we will approach a point,

where further miniaturization of Si integrated circuits runs into the hard limit of atomic

scale resolution, where quantum effects become important. Graphene is also expected to

be an interesting material in terahertz optics and electronics: for building THz detectors

[9] and THz lasers [10]. The state of the art THz technology experiences a limitation

due to the so-called THz gap (0.1 to 10 THz) [11], i.e. efficient and practically usable

(of a small size) detectors and emitters of THz radiation are still hard to find. The

range of further possible applications of graphene is very broad. Besides being used in a

new generation of faster and smaller electronic devices (single-electron transistors [12]),

graphene is expected to be used in touch-screen devices, solar cells, conducting inks for

printing electronics or 3D printing. The elastic properties of graphene allow for creation

of flexible and non-brittle displays. Biomedical applications of graphene include drug

delivery, cancer therapy, and new biosensors. New studies with novel ideas appear every

day in journals, pre-prints, or proposals. More and more people become involved in

graphene research in academia and industry.

There are several problems with graphene, though. It is a semimetal with no band gap

and electronic transport is very sensitive to the device edges or bulk disorder. A band

gap is essential for building transistors with large on/off ratio needed for logical circuts.

In an attempt to overcome these issues, new graphene substrates were realized, such as

hexagonal boron nitride (hBN), which proved to reduce bulk disorder [13, 14] and even

to open a small band gap [15]. Graphene perfectly aligned on hBN features new physical

properties as compared to the unaligned or pristine one. In particular, the periodic moiré

pattern induced by the small lattice mismatch between the two materials influences the

local density of states [16]. It creates satellite structures above and below the Dirac

point observed in various experiments [16, 17]. In a magnetic field, the large periodicity

(∼ 14 nm) of the moiré superlattice allows for observation of the Hofstadter butterfly:

a fractal structure emerging as a result of the competition between two electron length

scales determined by the superlattice size and by the size of the magnetically confined

electronic state. The observation of these phenomena in conventional crystals with small

unit cells is not possible as it would require inaccessibly large magnetic fields. The large

size of the moiré supercell, however, lowers the required value of the magnetic field to

about 20 T, which allows for the observation of the Hofstadter butterfly in graphene on

hBN [18, 19].

Although graphene is predicted to have exceptional nonlinear properties in the THz

range which can be used to overcome the THz gap, the nonlinear response of a single

layer is very difficult to measure. The problem here is that a graphene monolayer absorbs

only 2.3 % of light [20], which is remarkably large for a single layer but very little for
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the experimental detection of its response. Nevertheless, in an experiment with 45-layer

graphene [21], a clear trace of nonlinear harmonics (third and fifth) was detected. In

nonlinear optics with gases [22–24] and other solid materials, for example ZiO or GaSe

[25, 26], an important question is the spectral range accessible by harmonic radiation,

i.e. what is the upper cut-off of the harmonic spectra. However, no prediction on the

high-harmonic generation spectra has been given for graphene.

In this thesis we theoretically address several fundamental questions of the physics of

graphene we briefly sketched above. In particular, we predict that the measured con-

ductance of small graphene nanodevices [27] can be a tool for probing the physics at the

device edges by extracting the density of localized or trapped edge states from conduc-

tance trace measurements. The nature of the moiré induced satellites and the Landau

level spectra of graphene on hBN is another topic of this thesis. We compare our the-

oretical results to the density of states probed by addition spectroscopy as function of

back gate voltage [18] and to the magneto-optical absorption spectra [15]. We also the-

oretically discuss the measured nonlinear response of graphene [21] to short THz laser

pulses.

Outline

This thesis is organized as follows. In chapter 2 we introduce graphene and its main prop-

erties. We discuss the peculiarities of solving the Dirac equation and the Schrödinger

equation within the third-nearest-neighbor tight-binding approach to approximate the

behavior of graphene in various physical problems. We briefly discuss the Green’s func-

tion formalism used for calculation of the transport properties of large-scale graphene

nanostructures and of the local density of states.

Chapter 3, 4 and 5 contain the main results of the thesis and include applications of

the method described in chapter 2. In chapter 3 we examine the transport properties

of graphene quantum point contacts (QPC) based on the experimental investigations

by Terrés et al. [27]. The measured conductance exhibit signatures of size quantization,

which we discuss in detail.

In chapter 4 we examine the change in the density of states of graphene alligned on

hBN and, therefore, featuring the periodic moré patterns. In particular, we observe

the formation of satellites and study their evolution with the magnetic field; we also

observe a Hofstadter butterfly on top of each Landau level; and we develop a way to

directly compare our results obtained as a function of Fermi energy with experiment,

where the DOS was measured as a function of back gate voltage. We also show that
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magneto-optical absorption measurements can be a complementary tool for probing the

energy dependence of the various structures in the density of states.

In the last chapter 5 we provide a study of the nonlinear optical response of graphene.

We calculate the nonlinear harmonic generation in graphene due to the laser field by

solving the time-dependent Dirac equation and Schrödinger equation within the tight-

binding approximation. Our observations are in a good agreement with experiment [21].

We also discuss the role of doping and disorder on the low-energy harmonics as well as

the behaviour of the high energy harmonics and their origin.

We conclude with a summary of the presented results and point to future extensions of

this work.

Several results of this thesis have in part been published or are in the preparation process

of being published.

Transport in graphene quantum point contacts (chapter 3)

1. B. Terres, L.A. Chizhova, F. Libisch, D. Jörger, S. Engels, A. Girschik, K. Watan-

abe, T. Taniguchi, S.V. Rotkin, J. Burgdörfer, and C. Stampfer.

Size quantization of Dirac fermions in graphene quantum point contacts

submitted to Nature Communications.

Graphene quantum dots on hexagonal boron nitride (chapter 4)

1. L.A. Chizhova, F. Libisch, and J. Burgdörfer.

Graphene quantum dot on boron nitride: Dirac cone replica and Hofstadter but-

terfly

Phys. Rev. B 90, 165404 (2014).

2. L.A. Chizhova, J. Burgdörfer, and F. Libisch.

Magneto-optical response of graphene: probing substrate interactions

Phys. Rev. B 92, 125411 (2015).

Nonlinear response of graphene (chapter 5)

1. L.A. Chizhova, F. Libisch, and J. Burgdörfer.

Nonlinear response of graphene to a few cycle THz laser pulse: role of doping and

disorder

in preparation.
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Other topics

1. L.A. Chizhova, S. Rotter, T. Jenke, G. Cronenberg, P. Geltenbort, G. Wautischer,

H. Filter, H. Abele, and J. Burgdörfer

Vectorial velocity filter for ultracold neutrons based on a surface-disordered mirror

system

Phys. Rev. E 89, 032907 (2014).

2. T. Jenke, G. Cronenberg, J. Burgdörfer, L.A. Chizhova, P. Geltenbort, A.N. Ivanov,

T. Lauer, T. Lins, S. Rotter, H. Saul, U. Schmidt, and H. Abele

Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Sce-

narios

Phys. Rev. Lett. 112, 151105 (2014).
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Chapter 2

Graphene

After its first experimental realization a decade ago and a milestone paper by K. Novoselov

and A. Geim [5], graphene still keeps researchers’ attention in different areas ranging

from nanoelectronics and optics to biophysics and medicine. The first reported atom-

ically thin graphitic films [5] were stable and highly conductive at ambient conditions

with a reported room temperature mobility of 105 cm2 /Vs, which is approximately two

hundred times that of silicon widely used in computer technology. It was later demon-

strated that the charge carriers in graphene closely resemble two-dimensional massless

Dirac fermions [6]. This unique behavior of charge carriers led to the observation of

unique electronic and optical properties: Klein tunneling, weak antilocalization, ob-

servation of Dirac Landau levels, unconventional integer and fractional quantum Hall

effects, a nonlinear optical response to THz fields, etc.

Besides the considerable academic interest in graphene, also the IT companies (e.g.,

Samsung, LG Electronics, Apple etc) have joined in trying to transform fundamental

studies to technological applications.

In this introductory chapter we discuss: (1) the main properties of graphene and gra-

phene nanoribbons; (2) the theoretical description of graphene using the Dirac equation

and the tight-binding approximation; and (3) theoretical aspects of the electron trans-

port and the scattering problem in graphene nanodevices.

2.1 Graphene geometry and bandstructure

The carbon atoms in graphene form a honeycomb lattice (or interleaved trigonal lattices)

with a unit cell containing two atoms, which form two so-called A and B sublattices.
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Figure 2.1: (a) Hexagonal lattice of graphene with lattice vectors ~a1 and ~a2. Red
area shows a unit cell with two carbon atoms. The carbon-carbon distance is 1.42 Å.
Atoms lying on the orange, blue and green circles correspond to the position of 1st, 2nd

and 3rd nearest neighbors for an atom in the middle. (b) Reciprocal lattice of graphene

with lattice vectors ~G1 and ~G2. Gray area displays the first Brillouin zone. The Dirac
cones appear at the corners of the hexagonal Brillouin zone, i.e. at the Dirac points K

and K’. Red trace show a path Γ-K-M-Γ used for bandstructure calculations.

The lattice vectors are [Fig.2.1(a)]

~a1 = a(
√
3, 0), ~a2 =

a

2
(
√
3, 3), (2.1)

where a ≈ 1.42 Å is the carbon-carbon distance. The reciprocal lattice is also hexagonal

with the lattice vectors [Fig.2.1(b)]:

~G1 =
2π

3a
(
√
3,−1), ~G2 =

2π

3a
(0, 2). (2.2)

The graphene Brillouin zone [shown as gray area in Fig.2.1(b)] has two special non-

equivalent points K and K’ at the corners which are called Dirac points. Near these

points two bands with pz-like character cross [Fig.2.2(a) bold curves] exactly at the Fermi

energy in undoped graphene. This makes the material a semimetal. We have calculated

the bandstructure [Fig.2.2(a)] using density functional theory (DFT) within the local

density approximation (LDA) along the path Γ-K-M-Γ [see red trace in Fig.2.1(b)]. The

energy dispersion of electrons near the Fermi energy (EF = 0) can be approximated by

a double cone structure [Fig.2.2(b)] which is similar to the solution of the massless Dirac

equation

EK = ±vF |~k|, (2.3)

where vF is the Fermi velocity. The particles in graphene, therefore, move with a

constant velocity independent of their energy. The numerical value of vF , which is about

106 m/s, can slightly vary in different systems depending on the substrate graphene is

placed on [15, 28]. Moreover, it was observed that many-body interactions can effectively

”reshape” the Dirac cone in suspended graphene leading to a varying Fermi velocity as
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Figure 2.2: (a) Bandstructure of graphene calculated using density functional theory
in the local density approximation (using ABINIT-LDA package). Bold lines corre-
spond to the states with pz-like character crossing at the Dirac point exactly at the
Fermi energy (EF = 0). These states, thus, determine the electronic properties of gra-
phene. (b) Low-energy approximation to the bandstructure near the K and K’ points
corresponding to the solution of the massless Dirac equation, so-called double-cone

dispersion.

function of charge carrier density close to the Dirac point [29]. We, however, neglect

this effect and consider a constant Fermi velocity.

2.2 Dirac equation

To describe the electronic properties of graphene we first discuss a continuous low-energy

approximation in terms of an effective massless Dirac Hamiltonian [30, 31]

HD = vF

(

0 p̂x − ip̂y

p̂x + ip̂y 0

)

= vF (p̂xσx + p̂yσy) = vF ~̂p · ~σ, (2.4)

where σx,y are Pauli matrices acting on the spinor (ψA, ψB) related to the sublattice

degree of freedom, the so-called pseudospin. Although pristine graphene is gapless, the

interaction with a substrate can, in general, lead to a band gap at the Dirac point. For

example, the interaction of graphene with a hexagonal boron nitride substrate, which

we discuss extensively in chapter 4, produces a bandgap of the order of several meV.

The gap opening can be described by an additional σz term, which is proportional to a

non-zero mass m acquired by the Dirac electrons in the interacting system. In this case
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the stationary Dirac equation is

vF

(

mvF pe−iθ~p

peiθ~p −mvF

)

ψ(~p) = Eψ(~p), (2.5)

and band gap is Eg = 2mv2F . Here we eliminate the spatial degrees of freedom by using

a Bloch ansatz ψ = ψ(~p)ei~r~p/~, and we introduce a directional angle of momentum, θ~p,

satisfying the equation: θ~p = arctan(px/py). The Dirac equation [Eq.(2.5)] provides two

solutions E = ±vF
√

∆2 + p2 for the conduction (+) and valence (-) bands where we

used the notation ∆ = mvF . The particle momentum in a band with index ξ = ±1 is

pξ = ξ
√

∆2 + p2. We search for the solution ψ(~p) of the Dirac equation [Eq.(2.5)] in the

following form:

ψ(~p) =

(

a(~p)

b(~p)

)

. (2.6)

We then rewrite Eq.(2.5) as a system of equations for the spinor components a(~p) and

b(~p) for each index ξ:






pe−iθ~pbξ(~p) = (pξ −∆) aξ(~p),

peiθ~paξ(~p) = (pξ +∆) bξ(~p).
(2.7)

From the first equation we obtain

aξ(~p) =
p

pξ −∆
e−iθ~pbξ(~p), (2.8)

and, therefore, the solution of the Dirac equation [Eq.(2.5)] is

ψξ(~p) = Cξ(~p)

(

p
pξ−∆e

−iθ~p/2

e−iθ~p/2

)

, (2.9)

where Cξ(~p) can be found from the normalization of the wave function

Cξ =

√

pξ −∆

2pξ
. (2.10)

As a results the wave function in momentum space is

ψξ(~p) =

√

pξ −∆

2pξ

(

p
pξ−∆e

−iθ~p/2

eiθ~p/2

)

. (2.11)

From this general solution it is easy to obtain the solution for massless Dirac fermions

by setting ∆ = mvF = 0, which is a good approximation for graphene with no band
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gap. In this case the wave function is

ψξ(~p) =
1√
2

(

e−iθ~p/2

ξeiθ~p/2

)

, (2.12)

where ξ = ±1 corresponds to two energy branches E = ±vF |~p| = ±~vF |~k| for conduction
and valence electrons. Interestingly, the state ψξ is an eigenstates of a helicity operator

ĥ = σ · ~̂p/|~p| [30], which projects the pseudospin onto the direction of the particle

momentum ~p:

ĥψξ = ξψξ. (2.13)

The eigenvalues of the operator, equal to ξ = ±1, imply that the pseudospin is oriented

along or against the direction of ~p. In the Dirac approximation the helicity (or chirality)

is a good quantum number which, in general, prevents backscattering and leads to

Klein tunneling [30, 32] - the unhindered transmission of relativistic particles through

a potential barrier for a wide range of incident angles. The helicity is well defined only

within the Dirac approximation. Any deviations of the bandstructure from the ideal

Dirac cone would destroy it.

The Dirac equation, however, is a low energy approximation and valid only in the vicinity

of the Dirac points K or K’. The non-equivalent cones (valleys) located at K and K’

create an additional K-K’ degeneracy. This allows us to present the wave function near

the Fermi energy as a four-component spinor |ψ〉 = (ψ
(K)
A , ψ

(K)
B , ψ

(K′)
A , ψ

(K′)
B ), which

accounts for both valleys. For a four-component spinor the Dirac equation reads:

HD = vF

(

~̂p · ~σ
)

⊗ τ1 + vF

(

~̂p · ~σ∗
)

⊗ τ2, (2.14)

where τ1,2 = (τ0 ± τz)/2 and τ0,x,y,z are Pauli matrices acting on the K-K’ degree of

freedom. If there is no interaction between the K and K’, the valley degree of freedom is

separable and we can write a wave function in momentum space for each valley similar

to [Eq.(2.12)] as

ψξ, ~K(~k) =
1√
2

(

e−iθ~k/2

ξeiθ~k/2

)

, ψ
ξ, ~K′

(~k) =
1√
2

(

eiθ~k/2

ξe−iθ~k/2

)

(2.15)

with the corresponding Dirac energy dispersion near each independent cone EK,K′ =

ξ~vF |~k| [30, 31]. As a result, the total four-component spinor wave function is

|ψξ〉 = |ψξ, ~K〉 ⊗ |ψ
ξ, ~K′

〉. (2.16)
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Figure 2.3: (a) Bandstructure of graphene calculated using tight-binding approxima-
tion [33] (b) The colormap of the upper band reveals the hexagonal symmetry with
minima corresponding to the Dirac points at K and K’ as well as trigonal distortion of

each Dirac cone, the trigonal warping.

The analytical solution of the massless (and massive) Dirac equation is very useful in

many cases and is often used to approximate the physics of graphene.

2.3 Tight-Binding Hamiltonian

The Dirac equation approximates the graphene bandstructure near the K and K’ points

only in the low-energy limit (up to |E| ≈ 0.5 eV). At higher energies the double-cone

bandstructure does not account for the trigonal deformation of the circular cross-section

of the cones called trigonal warping, for the electron-hole asymmetry and for the con-

nection between the K and K’ cones at even higher energies present in graphene. In

this chapter we briefly discuss the tight-binding approximation, which allows us to cap-

ture these bandstructure deformations to some extent. Due to the sp2 hybridization of

carbon atoms in graphene the electron transport and electronic structure of graphene

near the Fermi energy is determined by the pz carbon orbitals. Within the tight-binding

description this means that it is sufficient to consider only the pz orbital centered at

each carbon atom. The tight-binding Hamiltonian which includes interaction between

the nearest-neighbor atoms reads

H = ǫ0a
†
iai + t1a

†
ibi, (2.17)

where ǫ0 is the on-site energy t1 is the hopping amplitude between neighboring atoms,

ai/a
†
i (bi/b

†
i ) is annihilation/creation operator on site i of sublattice A (B). The calcu-

lated bandstructure within the first nearest-neighbor tight-binding approximation clearly
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displays a hexagonal Brillouin zone with two inequivalent cones and trigonal warping

[Fig.2.3(a,b)]. However, to account for the electron-hole asymmetry it is necessary to

include overlap integrals between higher order neighbors. This provides a better ap-

proximation, since the pz orbital is delocalized over the graphene hexagon leading to

significant interactions with more remote neighbors. The tight-binding Hamiltonian

which includes hopping up to third nearest neighbor reads

H = ǫ0a
†
iai + t1a

†
ibi + t2

∑

a†iai+1 + t3
∑

a†ibi+1, (2.18)

where t2 and t3 are the hopping amplitudes between second and third neighbors [for the

position of 1st, 2nd and 3rd nearest neighbors see Fig.2.1(a)]. The hopping parameters

represent the interaction between the adjacent sites and are extracted from a fit of the re-

sulting tight-binding bandstructure to the DFT-LDA calculations [34]. Throughout the

thesis we use the following tight-binding parameters (if not explicitly stated otherwise):

ǫ0 = −0.126 eV, t1 = −3.145 eV, t2 = −0.042 eV, t3 = −0.35 eV.

These tight-binding parameters produce a cone-like dispersion with a Fermi velocity

v0F = 0.78 · 106 m/s, which is slightly smaller than the values measured in experi-

ments. For instance, angle-resolved photoemission spectroscopy (ARPES) [35], magneto-

transport measurements [36], scanning tunneling microscopy (STM) [37], and cyclotron

resonance studies [38] give Fermi velocities ranging from vexpF ≈ 1.0 · 106 m/s to 1.1 · 106

m/s. This enhanced values of the velocity is due to many-body effects, such as nonlocal

electron-electron and electron-phonon interactions, which are missing in LDA [39].

The tight-binding approach is very efficient for simulating electronic transport or for cal-

culating optical response of graphene nanostructures and nanodevices, such as graphene

flakes, graphene ribbons, graphene quantum point contacts. The size of the Hamiltonian

matrix [Eq.(2.18)] is N×N, where N is the total number of atoms in the nanodevice. This

matrix is sparse which enables us to calculate the electronic and optical properties for

nanostructures with up to 107 atoms.

To illustrate how to create the Hamiltonian matrix [in Eq.(2.18)] for finite size structures,

let us consider a piece of a honeycomb lattice or a graphene quantum dot [Fig.2.4(a)].

The dot can be assembled by a repetition of supercells [outlined by a red box in

Fig.2.4(a)]. Such a building block, i.e. a supercell, creates a small piece of a matrix

which we will call H0. The elements of this matrix H0[i, j] correspond to the tight-

binding parameters between two atoms i and j within the supercell. The interaction

between the supercell and its neighboring supercell to the right [outlined by a red dashed

box in Fig.2.4(a)] is described by the matrix HI (or H†
I for its neighboring supercell to
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the left). The matrix element HI [i, j] is equal to the tight-binding parameter between

the atom i of the supercell and the atom j of its neighboring supercell. The full Hamil-

tonian matrix for any nanostructure has a block-diagonal form consisting of repeating

blocks of H0, HI and H†
I :

H =





































. . .

H0 HI 0 0 0 0

H†
I H0 HI 0 0 0

0 H†
I H0 HI 0 0

0 0 H†
I H0 HI 0

0 0 0 H†
I H0 HI

0 0 0 0 H†
I H0

. . .





































. (2.19)

The size of the matrix H0 describing the supercell and that of the interaction matrix

HI between the adjacent cells is determined by the number of atoms Ny within the cell

multiplied by the number of tight-binding orbitals per atom. One can generalize the

problem even further by considering a nanostructure with nanoblocks of different size.

In this case, the interaction matrix HI is no longer quadratic, but has a size Nk×Nm

with Nk and Nm atoms in the neighboring supercells k and m.

The diagonal elements of the matrix H are on-site energies related to each atom. There-

fore, an additional spatially varying potential affects only the on-site energies and can

be easily taken into account by adding this potential to the diagonal elements of the

matrix H. Similarly, short-ranged disorder, such as single and double vacancies can

be taken into account by adding large energy values to some diagonal elements of the

matrix H corresponding to the positions of the missing atoms. Moreover, the tight-

binding method allows for inclusion of strain or lattice deformations, which lead to the

modification of the on-site and hopping parameters in the matrix H for the appropriate

atoms.

2.4 Graphene nanoribbons

Repeating the supercell in Fig.2.4(a) ad infinitum creates an infinite graphene nanorib-

bon. The properties of the ribbon depend on the type of its edges: zigzag [see Fig.2.4(a)]

or armchair [see Fig.2.4(b)]. In the experiment, however, the edge is often ill-defined.

Its termination is neither zigzag nor armchair, as graphene is etched to the shape of the
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Figure 2.4: (a) A zigzag and (b) an armchair graphene nanoribbons with a unit cell
outlined by red box and with a neighboring cell outlined by dashed red box. Each unit
cell is described by H0 matrix. The interaction between the adjacent unit cells is given

by HI .

ribbon in any arbitrary lattice direction. Because of the fabrication process, the edge

also has a high amount of disorder. Nevertheless, general properties of nanoribbons can

be found for the zigzag and armchair types. Moreover, it is expected that the advances

in methods of fabrication of narrow graphene nanoribbons with atomically precise edges

[40, 41] will allow for experimental investigation of the transport properties theoretically

predicted for ideal ZGNRs and AGNRs in the near future.

Graphene nanoribbons (GNR) allows for investigating many phenomena of mesoscopic

systems previously observed in 2D electron gases (2DEG): ballistic transport, size quan-

tization, Coulomb blockade etc. GNRs are also promising for band gap engineering [42].

The band gap is required for building computer electronics, where one needs to account

for two logical values, i.e. true/false, by being able to switch transistors on and off.

Using the notations introduced in section 2.3 zigzag graphene nanoribbons (ZGNR) have

the following supercell [confined in red in Fig.2.4(a)] Hamiltonian
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Figure 2.5: (a) Part of a zigzag and (b) part of an armchair graphene nanoribbon
(GNR) shown in Fig.2.4 with a unit cell outlined by red box and with a neighboring cell
outlined by dashed red box. An example of interaction of an atom a3 for zigzag GNR
and a3̃ for armchair GNR with all neighboring atoms is demonstrated. The position of
1st, 2nd and 3rd nearest neighbors of a3 and a3̃ are depicted by the orange, blue and

green circles.

H0 =





































a1 a2 a3 a4 a5 a6 . . .

a1 ǫ0 t1 t2 t3 0 0

a2 t1 ǫ0 t1 t2 0 0

a3 t2 t1 ǫ0 t1 t2 t3 . . .

a4 t3 t2 t1 ǫ0 t1 t2

a5 0 0 t2 t1 ǫ0 t1

a6 0 0 t3 t2 t1 ǫ0
...

...
. . .





































(2.20)

and the following interaction Hamiltonian between adjacent supercells

HI =





































a′1 a′2 a′3 a′4 a′5 a′6 . . .

a1 t2 0 0 0 0 0

a2 t1 t2 t3 t2 0 0

a3 t2 t3 t2 t1 t2 0 . . .

a4 0 0 0 t2 t3 0

a5 0 0 0 t3 t2 0

a6 0 0 0 t2 t1 t2
...

. . .





































. (2.21)

Red boxes outline the matrix elements corresponding to the interaction of atom a3 with

all other atoms ai in the unit cell and atoms a′i of the neighboring unit cell [see also
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Fig. 2.5(a) for the position of the atom a3 and its nearest neighbors]. The nearest-

neighbor terms are colored by orange, blue and green consistent with Fig. 2.5(a).

For armchair graphene nanoribbons (AGNR) the unit cell [shown in Fig.2.4(b)] consists

of two carbon chains and has a size of 2Ny. Each chain can be viewed separately, which

means that both H0 and HI for AGNR have an additional block structure. For H0 the

two diagonal sub-matrices describe the chains themselves and off-diagonal sub-blocks

describe the interaction between the chains. In the third-nearest-neighbor tight-binding

approximation, the HI matrix has only one off-diagonal matrix being non-zero, which

is responsible for the interaction of the nearest-neighbor chains between the supercells.

H0 and HI have the following forms:

H0 =

































































a1 a2 a3 a4 a5 . . . ã1 ã2 ã3 ã4 ã5 . . .

a1 ǫ0 t1 t2 0 0 t3 t2 0 0 0

a2 t1 ǫ0 t1 t2 0 t2 t1 t2 t3 0

a3 t2 t1 ǫ0 t1 t2 0 t2 t3 t2 0

a4 0 t2 t1 ǫ0 t1 0 t3 t2 t1 t2

a5 0 0 t2 t1 ǫ0 0 0 0 t2 t3
...

. . .
...

. . .

ã1 t3 t2 0 0 0 ǫ0 t1 t2 0 0

ã2 t2 t1 t2 t3 0 t1 ǫ0 t1 t2 0

ã3 0 t2 t3 t2 0 . . . t2 t1 ǫ0 t1 t2 . . .

ã4 0 t3 t2 t1 t2 0 t2 t1 ǫ0 t1

ã5 0 0 0 t2 t3 0 0 t2 t1 ǫ0
...

. . .
...

. . .

































































, (2.22)
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HI =

































































a′1 a′2 a′3 a′4 a′5 . . . ã′1 ã′2 ã′3 ã′4 ã′5 . . .

a1

a2

a3

a4

a5 0 0
...

ã1 t1 t2 t3 0 0

ã2 t2 t3 t2 0 0

ã3 t3 t2 t1 t2 t3 . . . 0 0 0 0 0 . . .

ã4 0 0 t2 t3 t2

ã5 0 0 t3 t2 t1
...

. . .

































































. (2.23)

The block structure of the matrices is separated by vertical and horizontal lines in the

center. The example of interaction between the atom ã3 in the left chain of the unit cell

with all other atoms, i.e. with atoms ai and ãi in the same unit cell as well as with atoms

a′i and ã
′
i in the neighboring unit cell, are outlined by red boxes and are illustrated in

Fig. 2.5(b) similar to the ZGNR case.

2.4.1 The spectrum of graphene nanoribbons

For many applications it is necessary to know the energy spectrum (bandstructure) of

infinitely extended graphene nanoribbons due to the presence of transverse confinement.

In this case the spectrum in transverse direction y is discrete and consists of subbands

with energies En. The electron energy of such a ribbon is given by the sum of the energy

in longitudinal x-direction and the quantized energy due to the transverse confinement.

An electron at the Fermi energy EF traveling through the ribbon occupies only the

allowed subbands below EF and, therefore, acquires a discrete longitudinal momentum

knx according to the conservation of energy:

EF = En + E(knx) (2.24)

Thus, the bandstructure E(kx) can be viewed as a set of cross-sections of the Dirac cone

by En planes in ky direction. To calculate the bandstructure of an infinite ribbon, we

have to solve the Schrödinger equation H|ψ〉 = E|ψ〉 with the Hamiltonian given by

Eq.(2.19). The assumption of an infinite ribbon allows us to apply Bloch’s theorem in
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the longitudinal x-direction:

|ψ〉 =





















...

|ψj−1〉
|ψj〉
|ψj+1〉

...





















=





















...

e−ikx∆x

1

eikx∆x

...





















|χ〉 (2.25)

where ∆x is the periodicity of the supercell, and |ψj〉 is the wave function within the jth

supercell. Inserting this ansatz into the Schrödinger equation gives rise to the following

eigenvalue problem [34]:

Ĥχ|χ〉 = E|χ〉, (2.26a)

where

Ĥχ = H0 + eikx∆xHI + e−ikx∆xH†
I . (2.26b)

The solution of this eigenvalue problem for a given kx allows us to obtain the bandstruc-

ture of the nanoribbon [Fig.(2.6)(a) and (b) for ZGNR and AGNR respectively]. The

bandstructure of ZGNR has a band near E = 0 [outlined by a green box in Fig.(2.6)(a)],

which correspond to edge states. This band is dispersionless within the first-nearest-

neighbor tight-binding approximation which preserves electron-hole symmetry, but it

acquires a nonzero curvature if interaction with more neighbors is considered. The

edge states are absent for AGNR and its bandstructure reveals a band gap. We note

parenthetically, that more detailed DFT calculations (within LSDA) show that the edge

states of ZGNR have magnetic order with an antiferromagnetic ground state and a small

band gap [43]. However, calculations based on the Hubbard model and experimental

measurements of narrow zigzag ribbons showed a change of magnetic order (from an-

tiferromagnetic to ferromagnetic) of the edges as a function of the ribbon width; and

a semiconductor to metal transition was observed [44]. We do not account for edge

magnetism within our single-particle picture as we are generally interested in large-scale

systems with ill-defined edges, where the edge-induced magnetism is negligible.

An alternative approach to obtain the bandstructure of a nanoribbon is to solve the Dirac

equation with the Hamiltonian defined in Eq.(2.4), including the additional confinement

potential

V (y) =







∞, if y < 0 or y > W

0, if 0 ≤ y ≤W,
(2.27)
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Figure 2.6: Bandstructure E(knx ) of (a) a 22 nm wide zigzag graphene nanoribbon
and of (b) a 12 nm wide armchair graphene nanoribbon. The subbands can be viewed
as crossings of the Dirac cone by planes En corresponding to size quantization energies
in ky direction. The green dashed box highlights the dispersion of the edge states in

the zigzag GNR.

where W is the width of the ribbon. In this case one can separate x and y variables and

search for a wave function of the form:

ψ(~r) = eikxx

(

φA(y)

φB(y)

)

, (2.28)

where φA(B) is a wave function defined on the A(B) sublattice. After substituting this

wave function into the Dirac equation HDψ(~r) = Eψ(~r), one obtains the following

system of equations:










(

kx − ∂
∂y

)

φB(y) = ǫφA(y)
(

kx +
∂
∂y

)

φA(y) = ǫφB(y),
(2.29)

where ǫ = E/~vF . Substituting the second equation into the first one, allows us to find

φA and, consequently, φB:

φA(y) = C1e
λy + C2e

−λy

φB(y) =
1

ǫ

(

(kx + λ)C1e
λy + (kx − λ)C2e

−λy
)

, (2.30)

where λ =
√

k2x − ǫ2, and C1,2 are the constants of integration. To find the spectrum of a

ribbon, i.e. ǫ(kx), we apply the hard wall boundary conditions describing the edges. Con-

sidering a ZGNR of widthW with an even number of atoms in the supercell [Fig.2.4(a)],

which has A and B atoms terminating the opposite edges, the boundary conditions take

the form: φA(y = W ) = φ′A(y = W ) = φB(y = 0) = φ′B(y = 0) = 0. Applying these
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boundary conditions lead to the following equation for the bandstructure [30]:

e−2λW =
kx − λ

kx + λ
. (2.31)

Eq.(2.31) does not have an analytic solution and is solved numerically. However, the

simple analytic solution exists for the case of kx = 0, which is very useful for the quick

estimate of the number of open modes in the transport problem, and yields:

En = ±~vFπ

W

(

n+
1

2

)

. (2.32)

2.4.2 Graphene nanoribbons as infinite waveguides

In all transport calculations one requires the knowledge of the electronic states in the

infinite waveguide, which serves as a contact or a lead. For example, in our numerical

simulations infinite graphene nanoribbons of width W act as conducting contacts. To

find electronic states in the waveguide with Ny atoms in y direction, we need to find kx

for the given electron (Fermi) energy EF while solving Eq.(2.26), which we rewrite as

β(H†
I )

−1 (EF −H0) |χ〉 − (H†
I )

−1HI |χ〉 = β2|χ〉, (2.33)

where β = e−ikx∆x. This equation can be solved by doubling the dimensions of the

problem, i.e. by introducing a new vector |η〉 = β|χ〉 [34]:






|η〉 = β|χ〉

(H†
I )

−1 (EF −H0) |η〉 − (H†
I )

−1HI |χ〉 = β|χ〉,
(2.34)

which is a standard eigenvalue problem of the form Â ~X = a ~X. The solution gives 2Ny

values of kix, which can be separated into the right- and left-moving waves according to

the sign of the group velocity:

vi =
∂

∂k
〈χi|Ĥχ|χi〉 =

= i∆x〈χi|
(

HIe
ikix∆x +H†

Ie
−ikix∆x

)

|χi〉. (2.35)

Real eigenvalues among {kix} correspond to propagating modes and imaginary eigenval-

ues correspond to exponentially decaying (or evanescent) modes.

Finding the open modes (or all possible kix) in the lead for the electron energy EF using

Eq.(2.34) is possible only if the matrix (H†
I )

−1 exists. This requires that the matrix HI

is not degenerate, i.e. all eigenvalues of HI are non-zero. This is true for ZGNR, but not

for AGNR, where half of the eigenvalues are zero [see Eq.(2.23)]. Therefore, Eq.(2.34)
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can not be applied to AGNR. This problem, however, can be solved in two ways. (i) We

can include interactions with the fourth and fifth nearest neighbors resulting in a non-

degenerate matrix HI . The drawback of the method is, however, the introduction of new

elements into the sparse matrix, which brings us to stricter size limitations compared to

ZGNR. (ii) Alternatively, still within the third-nearest-neighbor approximation we can

rewrite Eq.(2.26) without multiplying by (H†
I )

−1 and acquire the new set of equations:







|η〉 = β|χ〉

(EF −H0) |η〉 −HI |χ〉 = βH†
I |χ〉,

(2.36)

which is a generalized eigenvalue problem Â ~X = aB̂ ~X. Its numerical solution does not

pose any difficulty.

2.5 Graphene in a perpendicular magnetic field

In the presence of a homogeneous magnetic field ~B = ~∇ × ~A perpendicular to the

graphene plane the Dirac Hamiltonian reads

HD = vF

(

0 px − ipy − e ~A

px + ipy − e ~A 0

)

= vF~σ ·
(

~̂p− e ~A
)

. (2.37)

Using the Landau gauge ~A = B(−y, 0) and the wave function of the form of Eq.(2.28)

[30], the Dirac equation becomes











(

kx − eB
~
y − ∂

∂y

)

φB(y) = ǫφA(y)
(

kx − eB
~
y + ∂

∂y

)

φA(y) = ǫφB(y),
(2.38)

here we use a notation ǫ = E/~vF . The magnetic field gives rise to a new magnetic

length scale lB =
√

~/eB = 25.5/
√

B[T ][nm]. Substituting the second equation into

the first one gives

∂2φA(y)

∂y2
−
(

kx −
y

l2B

)2

φA(y) + ǫ2φA(y) = 0, (2.39)

which is similar to the equation of a linear oscillator. The solution of this equation can

be found by introducing a new variable ξ = ( y
lB

− lBkx) and a new energy ǫ2l2B = 2N

similar to the harmonic oscillator problem [45]. Therefore,

ǫN = lB
√
2N. (2.40)
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Consequently, the Landau level spectrum of Dirac fermions is [46]

ED
N (B) = sgn(N)

√

2|e|~v2F |N |B, N ∈ Z0, (2.41)

This spectrum has three prominent features: (i) the existence of a 0th Landau level (N =

0), which does not depend on the magnetic field; (ii) a square-root dependence of all

N 6= 0 Landau levels on the magnetic field; and (iii) a graphene-specific degeneracy of the

Landau levels due to the valley symmetry. The non-equidistant energy spacing provides

a clear-cut distinction to the equidistant level spacing of non-relativistic Schrödinger

electrons where the Landau level spectrum takes on the form of a harmonic oscillator

[45] with the energy spectrum

ES
N (B) = ~ωB(N + 1/2) (2.42)

proportional to the cyclotron frequency ωB = |e|B/me. The Landau levels were experi-

mentally observed in graphene in, for example, [47] and [36]. The wave functions of bulk

graphene in the magnetic field are pseudospinors of the form [30, 48]

ΨN,K =

(

sgn(N)ψ|N |−1(ξ)

ψ|N |(ξ)

)

,ΨN,K′ =

(

ψ|N |(ξ)

sgn(N)ψ|N |−1(ξ)

)

, (2.43)

where ψN (ξ) = 2−N/2(N !)−1/2 exp[−ξ2/2]HN (ξ) with Hermite polynomial HN (ξ) are

the wave functions of a harmonic oscillator [30].

Any additional potential ∝ Egσ̂z/2 leading to the opening of a band gap Eg modifies

the Landau levels Eq.(2.41) as

ED
N (B) =







sgn(N)
√

2|e|~v2F |N |B + (Eg/2)2 : N 6= 0,

±Eg/2 : N = 0.
(2.44)

Consequently, for massive Dirac fermions [see section 2.2] the valley degeneracy of the

zeroth Landau level is lifted by the presence of a gap. These states we denote as 0+ and

0− corresponding to energies ±Eg/2 Eq.(2.44).

The spin degeneracy is lifted by the Zeeman effect and the Zeeman splitting between

the spin up and down states is

∆EZ = gµBB = 0.12B[T]meV, (2.45)

where µB is a Bohr magneton and g ≃ 2 is the gyromagnetic ratio for graphene [31].

In the simulations described in the following chapters this term is not included unless

stated otherwise.
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Within the tight-binding description the magnetic field is introduced through the Peierls

phase factor [49, 50]

Hnm = Hnm · exp
[

i
e

~

∫ ~rm

~rn

~A · d~r
]

, (2.46)

which corresponds to the phase an electron accumulates on the path from ~rn to ~rm.

This approach allows to account for both time-independent and time-dependent vector

potentials. For example, in chapter 5 we will discuss the behavior of graphene under a

short intense teraherz laser pulse, where we solve the time-dependent problem with the

pulse included through its vector potential using the Peierls phase.

For the gauge ~A = B(−y, 0) the integral in Eq.(2.46) is given by

∫ ~rm

~rn

~A · d~r = −(xm − xn)(ym + yn)
B

2
. (2.47)

For the gauge ~A = B(0, x) the result is

∫ ~rm

~rn

~A · d~r = −(ym − yn)(xm + xn)
B

2
. (2.48)

2.5.1 Graphene nanoribbons in a perpendicular magnetic field

The solution of the Dirac equation in the presence of a homogeneous, perpendicular

magnetic field [Eq.(2.37)] gets more complicated if one applies transverse confining po-

tential [Eq.(2.27)] to describe a graphene nanoribbon in the presence of a magnetic field

perpendicular to the ribbon. In this case, the Dirac equation does not have an analytic

solution and the problem must be solved numerically. We can predict, however, that at

B → 0, the spectrum is determined by the size quantization of the ribbon and for high

magnetic fields B → ∞ when lB ≪ W , the spectrum should follow the Landau-level

quantization [Eq.(2.41)]. Therefore, in general, the spectrum of the ribbon for B 6= 0 is

a mixture of two effects: the size quantization and the Landau-level quantization.

Although the Dirac equation provides eigenstates of a ribbon in the magnetic field,

for further applications (for example, while studying magneto-transport properties of

disordered ribbons - see chapter 3) it is more convenient to use the tight-binding ap-

proximation and find eigenstates of a Hamiltonian matrix [Eq.(2.19)] with the magnetic

Peierls phase [Eq.(2.46)] using the method discussed in subsection 2.4.1.

The bandstructure of graphene nanoribbons [Fig.2.6] becomes modified under the influ-

ence of the magnetic field [Fig.2.7]. In particular, we observe the appearance of flat parts

in the subbands. These flat energy bands are assigned to the Landau level quantization

of bulk graphene [Eq.(2.41)]. Such states have zero group velocity and, therefore, do not
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Figure 2.7: Bandstructure of (a) a 22 nm wide zigzag graphene nanoribbon and of (b)
a 12 nm wide armchair graphene nanoribbon (AGNR) in the presence of a perpendicular

magnetic field.

propagate. Classically, this means that electrons are confined within the ribbon by the

magnetic field on circular cyclotron orbits [see Fig.2.8(a)]. The radius R of the classical

orbit is proportional to the magnetic length lB ∼ 1/
√
B and can be deduced from energy

conservation

EN = vF p, (2.49)

i.e. the energy of a confined Landau level state should be equal to the energy of a

relativistic electron with a classical momentum p determined by the Lorentz force

√

2e~v2FNB = vF |e|BR. (2.50)

Therefore, the state-dependent radius RN of the classical trajectory is

RN =
√
2NlB. (2.51)

In terms of quantum mechanics the electron has a wave function of the Hermite polyno-

mial form, which is localized inside the ribbon [see, for example, local density of states

(LDOS) of the 0th Landau level Fig.2.8(b)]. The bands feature flat regions only if the

characteristic size of the Landau level state, estimated as twice the radius [Eq.(2.51)]

of the classical cyclotron trajectory, becomes smaller than the width W of the ribbon,

i.e. 2RN .W . In this case, the circular electron trajectory fits into the ribbon and gets

localized. The critical magnetic field needed to form the 1st Landau level is

Bcrit &
8~

eW 2
. (2.52)
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Figure 2.8: (a) Classical motion of the particle in the magnetic field B > Bcrit. Red
trajectory shows an orbit confined by the magnetic field. The blue trajectory represents
a propagating edge state. (b) Local density of states (LDOS) of the 0th Landau level
for a zigzag GNR. (c) LDOS of the edge state formed by the magnetic field for a ZGNR.

To observe higher Landau levels, the magnetic field should be further increased. Ac-

cording to Eq.(2.51), the effective size of the wave function of the Landau level state

N scales with the square root of the states number
√
N . Therefore, to resolve the N th

Landau level, one needs a magnetic field

B & NBcrit. (2.53)

For small magnetic fields (B < Bcrit), the classical electron trajectory scatters off the

edges of the ribbon before completing a circle. In this case, the electron is not confined

by the magnetic field and its wave function is delocalized. The quantized electron energy

spectrum in this magnetic field range is determined by the interplay between the size

and magnetic field quantizations.

At high magnetic fields (B > Bcrit), the propagation of electrons through the ribbon

is still possible along the edges. Classically, electrons scatter at the edges and, thus,

continue their motion [Fig.2.8(a)]. The wave function of such an electron becomes lo-

calized along the edges [see, for example, LDOS of an edge magnetic states of a ZGNR

in Fig.2.8(c)]. Notably, due to the magnetic field electrons at the opposite sides of the

ribbon propagate in opposite directions.

2.6 Lattice Green’s function and its application to the

transport problem

The lattice Green’s function method is a powerful numerical tool for solving the single-

particle Schrödinger equation. This approach allows the calculation of transmission,
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reflection and, thus, the scattering matrix of various scattering systems. The transmis-

sion coefficient or, likewise, the conductance within the Landauer-Büttiker formalism

[50–52] is an important characteristic of the system. In particular, it allows for studying

the size quantization in nanoribbons or quantum point contacts as well as the effects of

disorder and interferences. By definition the Green’s function contains information on

the response of the whole system, when a ”delta”-like excitation is applied to any of its

points. Moreover, it can be used to calculate the local density of states and total charge

densities at a given energy. Although the Green’s function formalism also allows for in-

clusion of many-body effects (e.g., electron-electron or electron-phonon scattering), we

restrict ourselves to the single-electron approximation, which is well justified for many

experimental results.

The formal definition of the Green’s function G(E) [50, 51] is

G =
1

Ĥ − E
, (2.54)

where Ĥ is a Hamiltonian of the system. G(E) is defined everywhere except at E = En,

where En are eigenstates of the Hamiltonian Ĥ. To avoid this singularity one can

introduce a small imaginary shift η as

G± = lim
η→0

1

Ĥ − E ± iη
, (2.55)

which is necessary for the evaluation of the Fourier transform of the Green’s function.

The two (±) Green’s functions correspond to two different ways of avoiding the singu-

larities while finding a Green’s function in time domain. These Green’s functions are

usually called the retarded GR(t, t′) = G+(t, t′) and the advanced GA(t, t′) = G−(t, t′)

Green’s functions. They are responsible for the propagation (or evolution) of state in

opposite direction of time from the point of excitation at t = t′ and can be thought of

as outgoing and incoming waves [51].

Within the tight-binding approximation, the Green’s function [Eq.(2.55)] is a finite size

matrix, which corresponds to the inverted tight-binding Hamiltonian matrix [Eq.(2.19)]

with modified on-site energies ǫ = ǫ0 − E ± η. This matrix connects together different

sites and can be written for the case of 2D graphene in terms of lattice site representation

G±(~r, ~r′;E) = G±(i, i′;E), (2.56)

using the lattice site indices ~r = ~ri = {i}.

It can be shown that the local density of states (LDOS), measured in scanning tunneling

microscopy (STM) experiments, is given by the imaginary part of the Green’s function
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[51]

ρ(~r;E) = − 1

π
Im
[

G+(~r, ~r;E)
]

. (2.57)

The LDOS provides an insight on the spatial distribution of electronic states within the

nanodevice at a certain energy E. In particular, the LDOS allows for analyzing the

behavior of different states upon the application of magnetic fields.

2.6.1 Transport problem

We now briefly discuss the scattering problem and the algorithm for finding the scat-

tering matrix using the Green’s function. We consider the following scattering problem:

two half-infinite waveguides (or leads) are attached to a scattering region (or device) of

a given shape [see Fig.2.9(a)]. The leads are modeled as semi-infinite ideal ribbons [see

section 2.4] and are characterized by the number of open modes at the electron (Fermi)

energy EF . We find the lead solution, i.e. open and evanescent modes, using Eq. 2.34.

For an electron with energy EF injected from the left lead the transmission/reflection

(T/R) probability to the right/left lead is calculated. The incoming and outgoing elec-

trons are modeled as a superposition of lead states in the confinement direction and

plane waves in the propagation direction [50, 51]. The relation between incoming and

outgoing waves for a coherent conductor is given by the scattering matrix, which has a

block structure

S =

(

rL tR

tL rR

)

(2.58)

where rL(rR) and tL(tR) are reflection and transmission coefficient through the device

from the left (right) lead. For instance, for the system shown in Fig.2.9(a) with two

open modes in the left lead and one in the right lead, the scattering matrix connects

the appropriate incoming (ai with i corresponding to the mode index) and outgoing

(similarly bi) amplitudes of the wave functions in the following way [51]:









b1

b2

b3









=









s11 s12 s13

s21 s22 s23

s31 s32 s33

















a1

a2

a3









, (2.59)

where horizontal and vertical lines outline the block structure of the scattering matrix

in accord with Eq.(2.58).
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Figure 2.9: (a) Schematic representation of the scattering problem with two leads
attached. In the case shown in figure, the electron energy is such that two and one
modes are opened in the left and the right lead. The wave functions of the open modes
are depicted in green. (b) The lead - single slice (or unit supercell) interface for a
semi-infinite zigzag GNR. (c) Schematic representation of the scattering problem in the

multi-lead case. In (a-c), the red dashed lines denote the lead-device interfaces.

2.6.2 Green’s function of a system with attached contacts

The S-matrix can be evaluated using the Green’s function method [34, 50, 51]. The

Green’s function matrix of the scattering region GS is given by the inversion of the

appropriate tight-binding Hamiltonian HS [Eq.(2.55)]. The size of GS is determined

by the total number of atoms in the device. In the same way, we may formally write

a Green’s function Gtotal of a system with attached semi-infinite leads, which serve as

contacts in our simulations [Fig.2.9(a)]. The matrix Gtotal has infinite dimension since

the leads are semi-infinite. However, the coupling between the isolated device and the

lead in the tight-binding approximation is non-zero only for adjacent grid points, which

allows us to truncate the matrix to a finite size as will be shown below. The coupling

matrix describing a device − lead interface can be viewed as an interaction matrix HI

between the adjacent slices or supercells [see section 2.4 and Eq.(2.21) or Eq.(2.23)].
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For simplicity, consider, first, a device with only one attached contact. The total Green’s

function of such a device can be found using Dyson’s equation [34, 51]:

Gtotal = GS +GSH†
Ig

LHIG
total, (2.60)

where gL is the surface Green’s function of the left semi-infinite lead (it is an infinite

matrix). This equation can be rewritten as

Gtotal =
[

HS − EF I −H†
Ig

LHI

]−1
, (2.61)

where we used the definition of GS = [HS −EF I]
−1 (I is the unity matrix) and we seek

for a solution at the Fermi level EF . The total Green’s function Gtotal is different from

the Green’s function of an isolated device GS only by the term called self-energy [51, 52]

ΣL = H†
Ig

LHI . (2.62)

The self-energy takes into account the interaction between the device and the contact.

If now we attach a second contact on the right of the device, we can similarly find the

self-energy for the right lead:

ΣR = HIg
RH†

I , (2.63)

with the Green’s function of the right lead gR. As a result we can write the total Green’s

function for a device with two leads as

Gtotal =
[

HS − EF I − ΣL − ΣR
]−1

. (2.64)

In general, just by adding the corresponding self-energies in the denominator of the total

Green’s function it is possible to account for any number of contacts − leads [Fig.2.9(c)].

The only question remaining is how to find the Green’s function matrices gL and gR of

semi-infinite leads. This can be done if we consider the following system: we connect a

semi-infinite lead with a single supercell of the same width as the lead [see Fig.2.9(b)].

Then the single slice plays the role of a scattering region described by GS connected to

a semi-infinite lead from the left. Therefore, the total Green’s function Gtotal of a single

supercell with only one lead attached can be found from Eq.(2.61). However, adding a

single stripe does not change the semi-infinite lead and the total Green’s function Gtotal

in Eq.(2.61) must be identical to the Green’s function of the lead gL, i.e. Gtotal = gL.

As a result, Eq.(2.61), after multiplying by (GS)−1, yields

(HS − EF )g
L = I +H†

Ig
LHIg

L. (2.65)
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It can be shown [34] that if gLHI is expressed in terms of an eigenvalue expansion of

left moving Bloch states |χi〉 in the lead

gLHI =
N
∑

i=1

|χi〉eikix∆x〈χi|, (2.66)

Eq.(2.65) is identical to Eq.(2.33). The size of this object is equal to the number of grid

points at the device-lead interface. It is also depends on the electron energy EF due to

the expansion over the states of the infinite ribbon evaluated at the Fermi energy EF .

The same is, likewise, true for the right lead

gRH†
I =

N ′

∑

i′=1

|χi′〉eiki
′

x ∆x〈χi′ |, (2.67)

with eigenvalue expansion of right moving Bloch states |χi′〉. Therefore, the electronic

states of the infinite waveguides calculated in subsection 2.4.2 are used to build a physical

real space representation of the Green’s functions describing the contacts.

2.6.3 Transmission coefficients

The Green’s function allows us to find the S-matrix and, therefore, the transmission and

reflection amplitudes. The elements of the scattering matrix are given by the Fisher-Lee

relation [51, 53], which corresponds to the projection of the Green’s function onto the

propagating modes in the leads:

snm = −δnm + i~
√
vnvm

∫ ∫

χn(yp)G
total(xp, yp;xq, yq)χm(yq)dypdyq (2.68)

where Gtotal(xp, yp;xq, yq) is the Green’s function between the leads q and p, (xp, yp)

and (xq, yq) are coordinates of the corresponding lead-device interface. The indices n

and m are in [1, Ntotal], where Ntotal = NL + NR is the total number of propagating

modes in both leads. The reflection coefficients rnm = snm correspond to the set of

(n, m) belonging to the same lead (and, therefore, p = q), whereas the transmission

coefficients tnm = snm are determined by (n, m) of different leads [and, therefore, p 6= q],

i.e. n ∈ [1, NL] and m ∈ [NL + 1, NL +NR] or vice versa. The transmission probability

is given by the absolute square of the corresponding transmission coefficient:

Tnm = |tnm|2 . (2.69)

The total transmission is obtained through summation of Tnm over all open modes n and

m available in the leads at the given energy E [51]. For example, the total transmission
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from left to right is

T =

NL
∑

n=1

NL+NR
∑

m=NL

|tnm|2 . (2.70)

Notably, to determine the total transmission, or the total S-matrix, it is not necessary

to calculate the whole Green’s function matrix by direct inversion. Calculating only

certain element of the matrix Gtotal(xp, yp;xq, yq) is enough, which substantially reduces

the computational time.

In the experiment the macroscopic property related to the transmission is the conduc-

tance, which is determined as proportionality coefficient between measured current and

applied voltage: I = GV . Within the Landauer-Büttiker formalism [50–52], the conduc-

tance G of a coherent device is directly proportional to the total transmission

G =
2e2

h
T. (2.71)

The factor 2 accounts for the spin multiplicity in spin-independent calculations.

The formalism above can be easily generalized to any number of leads [see Fig.2.9(c)]. In

the experiment a multi-contact regime (or multi-lead regime) is preferable, as it lowers

the residual resistance of the contacts and allows for better resolution of the signal

(current).

The single-electron approximation we apply is valid only for coherent transport when the

dephasing or the decoherence time due to inelastic scattering is large. This means that

we neglect inelastic processes, such as electron-phonon or electron-electron scattering.

However, we do treat elastic scattering at short-range lattice defects [54], long-range

charge puddles [55], or rough edges [56].

2.7 Transition between Fermi energy and back gate volt-

age

Transport measurements are often done as a function of back gate voltage (Vbg), which

tunes the amount of charge carriers in the graphene layer through capacitive coupling.

Therefore, a change of Vbg allows for control of the Fermi level in the graphene sheet.

However, theoretical predictions are usually determined as a function of electron (Fermi)

energy EF . From this perspective it is necessary to understand the functional correspon-

dence between Vbg and EF which we derive here.
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The number of charge carriers N in graphene layer is given by the capacitive gate

coupling α

N = αVbg, (2.72)

where α is usually of the order of 7·1010 cm−2V−1 and can be determined experimentally

from the lever-arm of Coulomb diamonds for graphene dots [57] or from high magnetic

field Landau level measurements for bulk graphene [27]. On the other hand, the number

of charge carriers N in general is given by the integration of the density of states ρ(E)

from the Dirac point up to the Fermi level (for the hole side the integration limits are

flipped):

N =

∫ EF

0
ρ(E)dE. (2.73)

Due to the linear dispersion of Dirac fermions, the integral in Eq.(2.73) leads to a square

root dependence between EF and N and similarly between EF and Vbg by taking into

account Eq.(2.72),

EF = ~vF
√

παVbg. (2.74)

Notably, for a density of states with nonlinear behavior, the functional dependence

between EF and Vbg can still be found through the integration of Eq.(2.73), however,

the result will differ from Eq.(2.74).

2.8 Fast Fourier transform on a graphene lattice

Fourier transform of a real space wave function allows for analyzing its momentum

distribution. In the tight-binding approximation, a wave function is a vector |φ〉 with

elements φi computed on a graphene lattice for each lattice point i described by the

position vector ~ri. To obtain a real space wave function Ψ(~r) one needs to multiply the

tight-binding wave function with the real space representation of the pz orbital Ψpz(~r)

of the valence electrons in graphene at each lattice site:

Ψ(~r) =
∑

i

Ψpz(~r − ~ri) · φi, (2.75)

where the summation extends over the whole structure. As soon as Ψ(~r) is known it

is straight-forward to obtain its Fourier transform F [Ψ(~r)]. Computationally, the wave

function Ψ(~r) is represented on a Cartesian grid, which must adequately describe Ψ(~r)

in the real space. Consequently, the grid size usually is much larger than the number of

atoms in the device. It is, thus, challenging, e.g., to store or to Fourier transform the

real space representation Ψ(~r) of the wave function if the number of atoms in the system

is large. Instead of evaluating the Fourier transform of the wave function directly, we
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note that it can be calculated using the convolution theorem as

F [Ψ(~r)] =
∑

i

∫

Ψpz(~r − ~ri) · φie−i~k~rd~r =

=
∑

i

φie
−i~k~ri

∫

Ψpz(~r − ~ri)e
−i~k(~r−~ri)d~r =

= F [Ψpz(~r)] · F [φ].

(2.76)

In other words, the Fourier transform of the wave function is the product of the pz orbital

Fourier transform F [Ψpz(~r)] and the discrete Fourier transform of the tight-binding wave

function F [φ]. As a result, the computation of the Fourier transform is limited only by

the total number of lattice sites, because there is no difficulty to find F [Ψpz(~r)] for a

given orbital representation. A localized real space orbital gives a broad contribution to

the total Fourier spectrum; however, the detailed structure of the Fourier spectrum is

governed by F [φ]. Notably, if φi = 1, its Fourier transform F [φ] =
∑

i e
−i~k~ri coincides

with the structure factor Sstruct(~k) used to characterize the elastic scattering of particles

off a crystal [58].

Evaluating F [φ] can be further optimized for rectangular graphene flakes.1 The graphene

lattice for flakes with zigzag and armchair termination can be viewed as a superposition

of four orthogonal lattices with lattice vectors ~a1 = (
√
3a, 0) and ~a2 = (0, 3a) shifted with

respect to each other [see Fig.2.10(a), where lattice sites marked with the same color

belong to one orthogonal sublattice]. Their relative displacements are (0, 0), (a1x/2,

a2y/6), (a1x/2, a2y/2) and (0, 2a2y/3). We can, thus, find a discrete Fourier transform

of the wave functions determined on different sublattices [which we denote as φ(1), φ(2),

φ(3) and φ(4)] independently and combine them with an appropriate phase shift due to

the finite displacement of the sublattices with respect to the origin. The proof of the

last statement is based on the definition of the discrete Fourier transform:

F [φ]kx,ky =

Nx·Ny/4
∑

j=0

φ
(1)
j e−i(kxxj+kyyj) + φ

(2)
j e−i(kx(xj+a1x/2)+ky(yj+a2y/6))+

φ
(3)
j e−i(kx(xj+a1x/2)+ky(yj+a2y/2)) + φ

(4)
j e−i(kxxj+ky(yj+2a2y/3)) =

= F [φ(1)]kx,ky + F [φ(2)]kx,kye
−i(kxa1x+kya2y/3)/2+

F [φ(3)]kx,kye
−i(kxa1x+kya2y)/2 + F [φ(4)]kx,kye

−iky2a2y/3,

(2.77)

where j are the lattice site indices of the orthogonal sublattice. Since optimized al-

gorithms exist for Cartesian grids (e.g., fast Fourier transform), this approach greatly

speeds up the calculation time.

1 Other device geometries can be modeled by applying a step-like potential following the specific
shape of the nanostructure.
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Figure 2.10: (a) Graphene lattice consists of four orthogonal sublattices shown by
orange, green, brown and blue atoms. The lattice vectors of these sublattices are ~a1
and ~a2. (b) The real space wave function in the form of a Gaussian with an initial

momentum near the K point ~k = (1.7, 0) Å−1 on a rectangular graphene flake. (c) A
Fourier transform showing the momentum space representation of the wave packet in
(b). The Fourier transform is calculated using Eq.(2.77). It features Gaussians localized
at the K points as well as Gaussians located off the K or K’ points. The centers of
the Gaussians form an orthogonal lattice shown by white dashed lines, which coincides

with the reciprocal lattice of the orthogonal sublattices depicted in (a).

Let us now consider an example of a tight-binding wave function φ in the form of a

Gaussian wave packed defined on a graphene flake of size Lx × Ly = 25× 15 nm2 with

an initial momentum near the K point ~k = (1.7, 0) Å−1 [see Fig.2.10(b)]. Indeed, by

evaluating the Fourier transform of φ using Eq.(2.77), we find Gaussians located exactly

at the Dirac K points [see Fig.2.10(c), the Brillouin zone is shown in white]. In addition

we find Gaussians located off the K or K’ points [see Fig.2.10(c), where some of the

Gaussians are located inside the hexagonal Brillouin zones]. Interestingly, the centers of

the Gaussians form a rectangular lattice in reciprocal space [shown by white dashed lines

in Fig.2.10(c)]. This additional symmetry is an artifact arising from the the presence of

the four orthogonal sublattices [see Fig.2.10(a)] in a rectangular flake, which we employed

to derive Eq.(2.77). The reciprocal lattice of these orthogonal sublattices coincides with

the position of the Gaussians.
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Chapter 3

Observation of size quantization

in graphene nanodevices:

transition to Landau levels

The ability to probe ballistic transport in graphene strongly depends on the amount

of disorder in a graphene device. The roughness of the substrate material induces cor-

rugation of the graphene monolayer [59], charge puddles [55], and charge traps [30]

leading to diffusive transport behavior and dramatically lowering the mobility. Reduc-

ing substrate-induced disorder is critical for achieving higher carrier mobility especially

in transport applications. The advances in fabrication of graphene nanostructures made

it possible to realize well-known phenomena of mesoscopic systems in application to

graphene. For example, the study of ballistic transport through graphene nanoribbons

grown on SiC [60] led to the discovery of an exceptional temperature independent single

spin mode which remains unexplained by theory. The size quantization due to confine-

ment of Dirac fermions first measured on suspended graphene nanoribbons [61] is very

sensitive to disorder and is much more challenging to observe in experiment than in a

two-dimensional electron gas (2DEG) in GaAs-AlGaAs heterostructures [62]. Further

reduction of bulk disorder was achieved in nanodevices built on top of an atomically

flat hexagonal boron nitride substrate [13, 14, 63] or in graphene - hexagonal boron

nitride (hBN) sandwiches [27]. Although the bulk disorder in such devices is reduced,

scattering at the edge still can play a crucial role. For example, in a recent study [64]

the observation of unconventional Coulomb blockade in nanoribbons attached to wide

leads was attributed to the charging of localized states at the edges. In an experiment by

Terres et al. [27], which we discuss in this chapter, the size quantization was observed in

small-size ballistic quantum point contacts (QPCs) which are narrow constrictions with

comparable width and length confined between large conducting areas. The deviation

38
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of the conductance signal from the theoretical expectations allowed us to make a link to

the density of localized states at the edges of the device. These findings highlight the

important role of trapped edge states on transport measurements as a function of back

gate voltage.

In this chapter we focus on the theoretical aspects of ballistic transport through graphene

nanodevices using the Green’s function formalism described in section 2.6. In particular,

we study size quantization in nanoribbons and quantum point contacts. Our tight-

binding calculations allow us to explain the main features observed in experiment [27]

and to directly compare the size quantization in a 2DEG and graphene quantum point

contacts. We also investigate the evolution of size quantization with the magnetic field

and the transition to Landau levels in confined systems with and without disorder.

3.1 Quantum transport and size quantization in nanorib-

bons and quantum point contacts

In an ideal ballistic nanoribbon geometry with perfect edges the conductance as a func-

tion of energy is a staircase function. It increases by e2/h each time a new size quantiza-

tion channel becomes available to the charge carriers as their energy increase. Therefore,

the conductance [Eq.(2.71)] can be written as a sum of occupied open modes at a given

Fermi level EF :

G =
2e2

h

∞
∑

n=1

Θ(EF − En) , (3.1)

where the factor 2 accounts for the spin multiplicity and En stands for the energy of

the subbands due to size quantization. Using Eq.(2.32), which estimates the number of

open modes in graphene nanoribbons, the conductance can be rewritten as

G =
4e2

h

∞
∑

i=1

Θ

(

WEF

π~vF
− i

)

=
4e2

h

∞
∑

i=1

Θ

(

WkF
π

− i

)

, (3.2)

where the additional factor of 2 accounts for valley degeneracy, the Fermi wave vec-

tor kF = EF /~vF for graphene, and we neglect the phase factor 1/2 arising from the

zigzag edge. The conductance of graphene nanoribbons calculated using Green’s function

method [section 2.6] as function of Fermi energy EF reproduces this staircase behavior

[see Fig.3.1(a) green and red traces].
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The Fourier expansion of Eq.(3.2) yields

G =
4e2

h





WkF
π

c0 +
∞
∑

j=1

cjsin

(

2πj
WkF
π

)



 (3.3)

with c0 = 1 and cj = 1/(jπ). The first term

G(0) =
4e2

h

WkF
π

c0 =
4e2

h

W

π
c0
√

παVbg (3.4)

describes an average increase of conductance. It is proportional to the square root of Vbg

according to Eq.(2.74). In the presence of disorder, i.e. bulk or edge disorder, the average

conductance decreases due to enhanced backscattering in the ribbon and, therefore, the

coefficient c0 drops in magnitude. The higher Fourier components in Eq.(3.3) form the

sharp steps. In a realistic nanoribbon the amplitude of these harmonics cj is expected

to decay faster than 1/j and to acquire an additional phase due to random scattering

processes in a disordered nanoribbon. Consequently, the sharp quantization steps turn

into modulations on top of the average conductance G(0).

Size quantization plateaus in the conductance were observed for the first time in a

high-mobility (µ ∼ 106 cm2/Vs) two-dimensional electron gas (2DEG) created in GaAs-

AlGaAs heterostructures [62]. The device was shaped in a form of a quantum point

contact (QPC), which is a narrow constriction with similar width and length confined

between two wide conducting regions [see Fig.3.1(c, d)]. The quantum point contact

in semiconductor heterostructures was realized by applying a voltage between two side

gates shaping a narrow region with smooth boundaries in between, forming an effectively

one-dimensional electron gas (1DEG). The transverse confinement of the electrons led

to quantization of conductance in a similar way as in waveguides [Eq.(3.1)]. The size

quantization in the 2DEG confined to a narrow region of width W is

En =
~
2π2

2m∗W 2
n2, (3.5)

where m∗ is the effective electron mass. In the adiabatic transport model the conduc-

tance through a QPC with smooth boundaries approximated by a parabolic function

αx2 [50] can be written as a sum of Fermi-like functions:

G =
2e2

h

∑

n

1

1 + e−βn[EF−En]
, (3.6)

where

βn =

√

2m∗

α~2En
. (3.7)
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Figure 3.1: Calculated conductance (black traces) of (a) graphene and (b) 2DEG
quantum point contacts as a function of electron energy. Green steps show the quan-
tized conductance of an ideal ribbon of the QPC width. Red steps are the quantized
conductance of the leads. In (a) red dashed lines correspond to the onset of the mode
openings in the leads (red steps). For low energies these lines coincide with the posi-
tions of the step-like increase in the conductance (black curve). Examples of a wave

function in (c) graphene and (d) 2DEG QPCs.

If α = 0, i.e. in the limit of an infinite waveguide, we recover conductance given by

Eq.(3.1). For long constrictions with small α (and large βn) well-defined steps are

expected, whereas for a sharp QPC with large α the steps are smoothed out. In other

words, the amplitude cj of higher Fourier components in Eq.(3.3), where for 2DEG kF =
√
2m∗EF and prefactor is 2e2/h, decays faster for shorter constrictions. In addition, the

adiabatic approximation implies that cj does not acquire a (substantial) random phase

during the transport process due to scattering at impurities or boundaries.

In a 2DEG the electron wave length near the Γ point is very long and cannot resolve

disorder on sub-nanometer scale. Therefore, for short QPCs the adiabatic approxima-

tion is valid and smooth steps are observed [62]. However, the effect of impurities or

edge roughness (which is of the order of several nanometers) scattering becomes impor-

tant as the length of the quantum point contact increases. Back scattering enhances the

randomization of transmission, breaking the adiabatic approximation and restricting the

observation of sharp steps in the conductance in the experiment. In contrast to a 2DEG,

the conducting electrons in graphene have a momentum near the K (or K’) point and,
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therefore, a much shorter wave length. As a result, scattering at atomically rough edges

has a substantial impact on transport even for short quantum point contacts. This sen-

sitivity of electrons in graphene to atomic roughness is most probably responsible for the

difficulties in observing clear confinement quantization effects in graphene nanodevices

[61, 65].

To corroborate this discussion, we perform tight-binding transport simulations for gra-

phene and a 2DEG in the same quantum point contact geometry1 with two infinite leads

attached [see example of scattering wave functions in graphene and a 2DEG QPCs in

Fig.3.1(c) and (d)]. We chose this geometry of the QPC from an experiment [27] dis-

cussed in section 3.2. In our calculations the width of the QPC is W = 16.5 nm. The

width of the leads is 2W . Graphene and 2DEG quantum point contacts have no bulk

disorder and only edge roughness on the atomic scale due to the shape of the constric-

tion. It is evident that the calculated conductance as function of electron energy behaves

differently for graphene and a 2DEG [compare black traces in Fig.3.1(a) for graphene

and (b) for the 2DEG]. In particular, for the 2DEG we observe a smooth conductance

signal [black trace in Fig.3.1(b)], which follows the size quantization steps of an infinite

waveguide of width W [green trace in Fig.3.1(b)]. The smoothed steps can be described

by a sum of smooth Fermi-like functions [Eq.(3.6)] within the adiabatic approximation.

By contrast, the calculated conductance of the graphene QPC as function of electron

energy is more complex [black trace in Fig.3.1(a)]. Especially at small energies E . 0.25

eV the conductance is modulated not by the size quantization corresponding to the

narrowest region of width W [green steps in Fig.3.1(a)], but by the size quantization

of the leads of width 2W [red steps in Fig.3.1(a)]. This is a consequence of the con-

servation of the electron chirality (ĥ = ~σ · ~p/2|~p| introduced in section 2.2) near the

Dirac point, which implies the conservation of the propagating direction. Although the

conservation of helicity or chirality is partially destroyed by the QPC boundaries, it still

can enhance the transport near the Dirac point, where the Dirac cone approximation is

accurate. This additional integral of motion does not exist for Schrödinger electrons in

2DEG and, therefore, no enhanced transmission is observed close to the Γ point. The

mean of the calculated transmission G(0) for graphene, however, follows Eq.(3.4) if we

assume the QPC width W . At higher energies, where the helicity is destroyed due to

the deviations of the bandstructure from the idealized Dirac cone, the size and height of

the modulations start to follow the conductance determined by the widthW of the QPC

[see green steps in Fig.3.1(a)] rather than that of the leads in accord with the traces we

observe for the 2DEG.

1 The tight-biding transport simulation for 2DEG were performed in the same way as for graphene,
however, on a square lattice. In the case of parabolic dispersion of 2DEG H0 matrix is tri-diagonal with
on-site energies ǫ0 = 4~2/2m∗a2 and first-nearest-neighbor coupling t1 = −~

2/2m∗a2, where a is the
lattice spacing and m∗ is an effective electron mass in the semiconductor. The interaction matrix HI is
diagonal with elements equal to t1.
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Our calculations suggest that a smooth quantized conductance can be observed in gra-

phene QPC with smooth edges. Adding a small edge roughness (of about 1% of the QPC

width) leads to random fluctuations in the conductance, which destroy the smooth mod-

ulations due to the size quantization in the constriction region. Unfortunately, current

state of the art experimental patterning techniques usually produce rough edges and the

parameters of the roughness are unknown. However, evidence of quantized conductance

can still be found in experiments as discussed in the following section.

3.2 Experimental evidence of the size quantization in gra-

phene quantum point contacts

The observation of quantum confinement was reported by Terrés et al. [27], who inves-

tigated the transport through high-mobility graphene-hBN sandwich devices patterned

in the shape of a quantum point contact with widths ranging from W ≈ 230 to 850 nm.

Unlike the 2DEG QPCs, it is not possible to confine electrons in graphene by applying

a side gate voltage and, therefore, the shape of the constriction has to be patterned by

removing graphene atoms. The measurements were performed in a four-terminal con-

figuration to avoid residual contact resistances. In this configuration the conductance

is

G =
I13
V24

(3.8)

with the small bias voltage V24 applied between the diagonal contacts 2 and 4, and the

current I13 measured between the other two contacts 1 and 3 [for the device geometry

see inset in Fig.3.2(a)]. The conductance was measured as a function of back gate

voltage Vbg, which allows for changing the Fermi energy [see section 2.7]. In this section

we discuss the conductance traces for two different cool-downs [Fig.3.2(a, b)] of the

same device of width W ≈ 230 nm. The width is determined from scanning electron

microscopy (SEM) images.

Away from the Dirac point, the measured transmission curves in graphene QPCs [black

and blue curves in Fig.3.2(a, b)], indeed, follow the theoretical prediction of G(0) given by

Eq.(3.4) [red curves in Fig.3.2(a, b)]. From the best fit of Eq.(3.4) to the experimental

data we can extract the zeroth order Fourier amplitude c0 of around 0.56, which is

substantially smaller than 1 due to reflections influenced by the device geometry and

the edge roughness. From the reduction of c0 under the assumption of no bulk disorder,

we can estimate the edge disorder amplitude ∆W defined for each edge as a difference

between the geometrical width W and the reduced width c0W divided by the number

of edges, i.e.

∆W = (1− c0)W/2 ≈ 0.2W. (3.9)
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Figure 3.2: (a,b) Measured back gate voltage dependence of the conductance for
two cool-downs shown in black and blue. Red curves correspond to the best fit of the
average conductance G(0) [Eq.(3.4)] to the experiment. The shaded areas mark the
regions, where the conductance traces substantially deviate from the expected average
conductance G(0). The atomic force microscope (AFM) image of the device geometry

is shown in the inset of (a).

Such a large disorder at the edges could possibly arise due to the formation of micro-

cracks during the etching of the constriction. The rough edges dramatically increase

the scattering, leading to rapid decay and additional random phase of high Fourier

components cj [Eq.(3.3)]. For this reason the observation of perfect quantization steps

in the conductance is impossible. Indeed, the conductance traces only show some quasi-

periodic modulations, ”kinks”, on top of G(0). We discuss these modulations in more

details in subsection 3.2.2.

To fit the experimental data and to extractW , we use the lever arm α = 7.2·1010 cm−2V−1

for the first cool-down [shown in Fig.3.2(a)] and α = 6.2 · 1010 cm−2V−1 for the second

cool-down [shown in Fig.3.2(b)]. In the experiment these capacitive couplings were ob-

tained independently through Landau level fan measurements for each cool-down. The

Landau levels [Eq.(2.41)] on the Vbg - B plane are

V N
bg =

2|e|N
πα~

B, N ∈ Z0, (3.10)

and α is extracted from the slopes of these linear Landau levels. The difference in α

between two cool-downs can be explained by a change of the chemical composition of

the edges while the device was brought to room temperature and subsequently cooled

down again [see also subsection 3.2.1 for more discussion]. The additional charge traps

acquired by the edges as well as the additional charge contamination of the substrate

during cool-down processes slightly modifies the capacitive coupling resulting in a cool-

down dependent α.
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3.2.1 Localized edge states in QPC

Surprisingly, the measured conductance deviates from the square root behavior or av-

erage conductance G(0) near the Dirac point in both cool-downs [see shaded regions in

Fig.3.2(a,b)]. As we discussed in section 2.7, the square root dependence of EF on Vbg

assumes a linear density of states as a function of energy. However, rough edges or bulk

disorder will modify the density of states (DOS), as the localized states at the rough

edges give a prominent contribution to the density of states near the Dirac point [64, 66].

Although these states do not contribute to transport, they modify the total number of

charge carriers on the device

N =

∫ EF

0
ρ(E)dE =

∫ EF

0
ρD(E)dE +

∫ EF

0
ρT (E)dE, (3.11)

where ρD(E) is the linear DOS of conducting Dirac fermions and ρT (E) is the DOS of

the trapped and localized states. The connection between N and the back gate voltage

is given by Eq.(2.72). We, therefore, write

αVbg = π−1

(

EF

~vF

)2

+NT (Vbg), (3.12)

where NT (Vbg) is the amount of the trapped charge. Our tight-binding density of states

calculations for the real device geometry [see Fig.3.3(a,b)] confirms the presence of the

trapped states at the edges. Their energies lie close to the Dirac point [see green trace

in Fig.3.3(c)] leading to the deviation of the DOS from the expected linear behavior of

Dirac fermions [see red trace in Fig.3.3(c)]. Away from the Dirac point, the density of

localized states decreases and the second term in Eq.(3.12) becomes a constant equal to

the total amount of trapped charge. Consequently, the expected square root dependence

of the conductance on Vbg [Eq.(3.4)] is restored with a constant shift proportional to the

total number of trapped charge given by NT =
∫∞
0 ρT (E)dE for the electron side and

by NT =
∫ 0
−∞ ρT (E)dE for the hole side.

We therefore propose that in the experiment deviations of the conductance from the

square root behavior near the Dirac point [shaded areas in Fig.(3.2)] is governed by the

charging of the trapped states. We extract the DOS of the localized states using this

deviation. Substituting EF determined by Eq.(3.12) in Eq.(3.4) we find:

G =
4e2

h

WEF

~πvF
=

4e2

h

W

π
kF =

4e2

h

W

π

√

παVbg −NT (Vbg). (3.13)

We approximate DOS of the trapped states ρT (E) by a Gaussian to preserve the small-

scale oscillations of the measured conductance. From the fit of the theoretical estimate
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Figure 3.3: (a,b) The calculated local density of states for the device geometry cor-
responding to the experiment features edge localized states. (c) Calculated density of
states (DOS) of the trapped/localized states (green) in the device geometry shown in

(a,b). Red lines are the expected linear DOS of Dirac fermions.

[Eq.(3.13)] to the measured conductance traces [Fig.3.2] we extract the parameters of the

Gaussian DOS, ρT (E), i.e. the position of the center, width and height of the Gaussian

[Fig.(3.4)(c) and (d)]. The shift of the Gaussian relative to the Dirac point is linked to

the asymmetry of the transmission traces [Fig.(3.2)] near the charge neutrality point or

Vbg = 0. The area of the Gaussian determines the effective number of trapped states.

In particular, we extract a wider Gaussian for the second cool-down (of the same de-

vice), which supports our previous discussion of changing of the chemical composition of

the edges, i.e. the increasing edge contamination, between two cool-downs. The chem-

ical contamination of the edges affects the capacitive coupling α and the transmission

measurements.

The estimate of ρT (E) together with the linear DOS of Dirac fermions allows us to

establish a connection between the back gate voltage and the Fermi energy. The con-

ductance traces as a function of energy feature linear behavior in the whole energy range

as predicted by Eq.(3.4) [black and blue traces in Fig.3.4(a, b)]. Notably, if we do not

include the trapped states (ρT (E)=0) and use only the square root energy-voltage cor-

respondence [Eq.(2.74)], the conductance traces substantially deviate from the linear

behavior near EF ∼ kF ≈ 0 [red traces in Fig.3.4(a, b)]. This further supports our

argument of the influence of the localized edge states on the experimental signal.

3.2.2 Size quantization in QPC

We discussed so far the effect of localized states on the average conductance. However,

besides the overall linear (as a function of EF ∼ kF ) behavior of the conductance traces,

we observe also modulations (”kinks”) of the signal [Fig.3.4(a, b)]. These modulations,

according to the Fourier expansion of an ideal conductance [Eq.(3.3)], should be a con-

sequence of the size quantization in the quantum point contact. The Fourier analysis

of the conductance after subtracting the zeroth-order Fourier component G(0) ∼ kF ,
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Figure 3.4: (a,b) Black and blue trances are the measured conductances as a function
of kF (∼ EF ) for the two cool-downs. The transition from back gate voltage to energy
(or kF ) scale includes the density of localized edge states shown in (c,d). Red dashed
lines correspond to the average conductance G(0) [Eq.(3.4)]. Neglecting the trapped/lo-
calized states leads to significant changes in conductance shown by red traces. (c,d)
Black and blue Gaussian are the DOS of trapped states obtained from the deviations
of the measured conductance near the Dirac point from the square root dependence on

Vbg. Red lines are the expected DOS of the Dirac fermions.

i.e. δG = G − G(0), allows us to determine the length scales in the system influencing

the signal. In particular, we observe a pronounced peak of the first order harmonic

at approximately 230 nm [see black curves in Fig.3.5(c)], which is consistent with the

width W of the device extracted from SEM. By contrast, the zeroth order Fourier com-

ponent, i.e. average conductance, yields lower value of an effective width c0W ≈ 130

nm. Therefore, the analysis of the Fourier spectra allows us to attribute the reduction

in transmission to edge scattering.

To further support the discussion above we perform transport simulations through a

graphene nanoconstriction using the Green’s function method discussed in section 2.6.

We simulate a four-terminal device with a constriction geometry provided by the AFM

image [see inset Fig.3.2(a)], however, with narrower lead regions [Fig.3.5(b)]. To obtain a

numerically feasible problem size we scale down the constriction geometry by a factor of
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Figure 3.5: (a) Conductance as a function of kF : experiment (black trace) versus
theoretical calculations (green trace). Red steps follow the quantized conductance of
an ideal zigzag graphene nanoribbon of the QPC widthW . Red dashed lines correspond
to the average conductance G(0) [Eq.(3.4)]. (b) An example of a wave function in the
four-terminal geometry used for the transport calculations. (c) Fourier transform of the
conductance signal away from the Dirac point for both experiment (black traces) and
theory (green traces) evaluated separately for electron (solid traces) and hole (dashed

traces) sides.

four. We also account for edge disorder with an amplitude of 0.2W in the range predicted

for the experiment [Eq.(3.9)]. Theory and experiment show similar smooth, irregular

modulations [ compare green and black curves in Fig.3.5(a) corresponding to measured

and calculated conductance]. The presence of these irregular modulations or ”kinks” in

the conductance instead of sharp quantization steps reflects the strong scattering at the

rough edges of the device. Our single-particle transport calculations include only elastic

edge-disorder scattering but neglect other scattering mechanisms, e.g., electron-electron

or electron-phonon scattering present in the experiment. Therefore, the good agreement

between theory and experiment suggests that the edge scattering controls the formation

of the ”kinks”. Furthermore, the Fourier analysis of the theoretical trace shows a pro-

nounced peak at approximately 230 nm taking into account the scaling of the device size



Chapter 3. Observation of size quantization in graphene nanodevices 49

[see green curves in Fig.3.5(c)] correctly reproducing the position of the peak in the cor-

responding Fourier transform of the measured conductance [compare to black curves in

Fig.3.5(c)]. In both theory and experiment this peak is more pronounced on the electron

side than on the hole side [Fig.3.5(c)] due to the slightly asymmetric energy distribution

of the trapped states [see Fig.3.3(c) and Fig.3.4(c)]. Although we included the same

amount of disorder in our simulations, the harmonics in the experiment decay faster

than predicted by theory. This effect can be attributed to the presence of decoherence

or inelastic scattering processes in the real device, which are neglected in our model.

Even though the higher Fourier components are suppressed, we observe harmonics at

different length scales, which are not multiples of W , probably corresponding to the size

quantization in the lead regions [e.g., see position of arrows in Fig.3.5(c)]. In addition,

the scattering at the rough edges introduces a nonzero broadening to the otherwise sharp

spectral lines [according to Eq.(3.3)]. As a result, the edge-disorder scattering is strong

enough to destroy the quantization steps in the conductance signal.

Bias spectroscopy measurements [Fig.3.6(a)], i.e. conductance measurements as a func-

tion of source-drain voltage for different back gate voltages in a range from 0.5 V to 4.6

V in steps of 30 mV, offer a way to estimate the energy scale of the size quantization.

The energy difference between the adjacent subbands ∆E = Ei −Ei−1 is directly given

by the bias voltage range where the plateaus or ”kinks” [dense regions in Fig.3.6(a)]

disappear and is about ≈14 eV. We can estimate the Fermi velocity vF near the Dirac

point using the energy of first few subbands given by Eq.(2.32) as

vF =
W∆E

π~
. (3.14)

Taking the geometrical width W = 230 nm we estimate vF ≈ 1.6 · 106 m/s, which is

significantly larger than in bulk graphene. This is a signature of the Fermi velocity

renormalization near the charge neutrality point in graphene nanodevices related to

electron-electron interactions [29]. Moreover, the extracted energy scales are consistent

with the weak temperature dependence of the quantized conductance [see arrows in

Fig.3.6(b)].

3.3 Quantum transport in graphene nanoribbons in the

presence of a perpendicular magnetic field

We now move to the investigation of quantum transport through graphene nanoribbons

in the presence of a perpendicular magnetic field. We then apply the results of this
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Figure 3.6: (a) Conductance as function of bias voltage Vbias at B = 0 T and T = 6
K. Each line resolves Vbg voltage in a range from 0.5 V to 4.6 V in steps of 30 mV. (b)

Conductance traces as function of temperature and Vbg. (Adapted from [27])

section to the measured magnetic field evolution of the conductance through graphene

QPC. Consider an ideal 50 nm wide zigzag graphene nanoribbon (ZGNR) in a perpen-

dicular magnetic field. Our tight-binding calculation demonstrates a step-like quantized

conductance [Fig.3.7(a)]. All the steps have a height of 2e2/h due to the valley degen-

eracy, except for the nondegenerate edge state of ZGNR, which contributes e2/h to the

conductance (we do not include the physical spin degree of freedom which would dou-

ble the conductance) in line with bandstructure calculations [see subsection 2.5.1]. The

evolution of the quantization steps with the magnetic field can be traced by evaluating

the first derivative of the conductance with respect to the electron energy GE = ∂G/∂E

[Fig.3.7(b)]. The derivative is non-zero only at the onset of steps, which corresponds to

the opening of new propagating channels in the ribbon as a function of energy and field.

As we discuss in subsection 2.5.1, we observe size quantization of the ribbon at B → 0,

which evolves to Landau levels at higher fields [see black dashed parabolas following

Landau level quantization in Fig.3.7(b) and its insert which coincide with non-zero val-

ues of GE at high fields]. Each Landau level N contributes to the transport through

the coupling to the edges, which becomes a dominant process at fields B & NBcrit

[Eq.(2.53)]. We can estimate the onset of the quantum Hall regime (or of the Landau

levels regime) in the GNR using a geometrical argument [Eq.(2.51) and Eq.(2.53)]: the

effective Landau level state size determined by the magnetic length lB should be smaller

than the width of the ribbon W . To derive the onset on the E-B plane, we express the

Landau level state index N from Eq.(2.41) as:

N =
E2

2|e|~v2FB
, (3.15)
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Figure 3.7: (a) Conductance and (b) its first derivative with respect to energy for
a 50 nm wide ideal ZGNR in the presence of a perpendicular magnetic field. In (a)
conductance traces at different magnetic fields are shifted for clarity. In (b) black dashed
parabolas follow the Landau level quantization of Dirac fermions [Eq.(2.41)]; black solid
line corresponds to the estimate of the onset of the quantum Hall regime in the ribbons
Ẽ(B) [Eq.(3.16)]; inset shows the evolution at higher B-fields. (c) Conductance and
(d) its first derivative with respect to energy of a 50 nm wide and 50 nm long ZGNR
in the presence of single vacancies with a density of n = 1.2 · 10−4 Å−2. Dashed lines
correspond to the conductance and the positions of maxima and minima of its first
derivative for an ideal 50 nm wide ZGNR. Near the Dirac point conductance feature a

perfectly conducting channel marked by arrows in (c).

and substitute it into Eq.(2.53). Consequently, the onset of Landau levels is at

Ẽ =
W

2
vF eB. (3.16)
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Figure 3.8: (a) Conductance and (b) its first derivative with respect to energy for
a 40 nm wide and 50 nm long AGNR in a presence of the magnetic field and single
vacancies with a density of n = 1.2 ·10−4 Å−2. In (b) black solid line corresponds to the
estimate of the onset of the Landau level quantization in the ribbons Ẽ(B) [Eq.(3.16)].
Dashed lines correspond to the conductance and the positions of maxima and minima

of its first derivative for an ideal 40 nm wide AGNR.

This simple estimate is in good agreement with our calculations [see black solid lines in

Fig.3.7(b) and its inset]. At fixed B the quantization is a mixture of size and Landau

level quantizations for EF below Ẽ(B).

To determine the effect of disorder on the conductance of ZGNR we introduce single

vacancies by applying a large on-site potential at random lattice sites with a density of

n = 1.2 · 10−4 Å−2 in a 50 nm long and 50 nm wide nanoribbon. The quantization steps

in the conductance are destroyed by the strong back scattering [Fig.3.7(c)], which is a

consequence of the strong K-K’ scattering at the single vacancies in ZGNRs. However,

steps emerge as the magnetic field increases, because propagating states become more

confined to the edges of the device, and their spatial extent into the bulk decreases. As

a result, at high fields the edge states are only weakly perturbed by bulk disorder. By

contrast, the presence of rough edges destroys the steps even at high fields. Interestingly,

there is a state near the Dirac point, which contributes to the conductance of e2/h with

increasing magnetic field even if the edge is rough [see marked by arrow plateaus in

Fig.3.7(c)]. This conducting channel, which is also called perfectly conducting channel

(PCC) [67, 68], is formed by the edge band of ZGNR [see Fig.2.6(a)]. The PCC was

theoretically discussed in [67, 68] for ZGNRs with long-range disorder at B = 0. It exists

for the following reason. The edge band of ZGNR is shared by both (K and K’) valleys

[see Fig.2.6(a) at B=0T] in contrast to other quantized subbands. Near the K valley the

edge state contributes to a left-going mode (negative group velocity), whereas near the
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K’ valley it contributes to a right-going mode (positive group velocity). Since near each

valley only one (edge) mode with well-defined moving direction exist, this edge state

is robust to any kind of disorder, which does not induce intervalley scattering. In all

other subbands each valley has both right- and left-moving states, which allows also for

intravalley scattering. Therefore, at B=0T the edge state survives in contrast to higher

subbands if only long-range disorder is present. However, the edge state can be destroyed

by short-range disorder, which enhances the K-K’ valley scattering. In other words

the left- and right-going edge states belonging to opposite edges of the ribbon become

coupled through the short-range disorder scattering. For increasing magnetic field, the

coupling between the states propagating along the different edges (or near the different

valleys) decreases suppressing intervalley scattering. Essentially, if an electron belonging

to an edge band and moving along one edge would scatter off an impurity, it would be

pushed back to the same edge by the magnetic field. Therefore, the disorder-induced

intervalley scattering between the states located at the opposite edges of the nanoribbon

decreases for stronger magnetic fields, and the observation of the PCC becomes possible

again even in the presence of short range bulk and edge disorder [see plateaus marked

by arrows near the Dirac point in Fig.3.7(c)].

Even though the conductance does not show clear steps and for low fields the steps

are even untraceable, its first derivative GE [Fig.3.7(d)] demonstrates a characteristic

evolution of states in agreement with GE of an ideal ribbon [see Fig.3.7(b) and black

dashed line in Fig.3.7(d)]. This means that even in systems with irregular behavior of

conductance, the parametric magnetic field evolution of the conductance can provide an

additional insight on the size quantization in the system.

Remarkably, single vacancies do not have such a substantial impact on the electron

transport through armchair graphene nanoribbons (AGNR). In particular, our calcula-

tions for a 40 nm wide and 50 nm long nanoribbon show that the quantization steps can

be observed even at small magnetic fields [Fig.3.8(a)]. Moreover, the first derivative GE

[Fig.3.8(b)] shows a well-pronounced evolution of the quantized states in the ribbon as a

function of energy and magnetic field, which coincides with the evolution of states in an

ideal AGNR [black dashed curves in Fig.3.8(b)]. This effect can be explained with the

help of the bandstructure [see Fig.2.6(b)]. The conducting electrons in AGNRs in both

Dirac cones have momenta in the propagating direction (kx) near zero, i.e. Γ point, and,

therefore, have large wave lengths. The short-range disorder producing high Fourier

components in k space does not induce the scattering between the cones located at the

same point in kx in contrast to ZGNRs with well separated K and K’ cones. As a result,

the electrons in AGNRs are only weakly perturbed by the atomically sharp disorder.

The behavior of AGNRs and ZGNRs is, therefore, qualitatively similar to the respective
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behavior of a 2D electron gas and Dirac fermions in quantum point contacts discussed

in the previous section.

Another interesting feature of AGNRs is the evolution of the quantized states with the

B-field. In ZGNRs each quantum state is valley degenerate except for the zigzag edge

state, which evolves to the zeroth Landau level upon the application of a magnetic

field. Each non-zero valley degenerate Landau level, therefore, emerges from a single

size quantization state. In AGNRs the valley degeneracy is weakly lifted and the edge

band is missing. As a result, the zeroth Landau level at E = 0 is formed from the two

lowest size quantization states from the electron and the hole sides corresponding to two

different valleys in attempt to restore the valley degeneracy of the zeroth Landau level.

Analogously, all other non-zero Landau levels are formed from the two neighboring size

quantized states corresponding to different valleys [see Fig.3.8(b)].

3.4 Graphene quantum point contact in the presence of a

perpendicular magnetic field

As we observed for GNRs, the magnetic field evolution of the conductance contains

the signatures of conductance quantization even in the presence of disorder. Coming

back to the conductance measurements in quantum point contacts, we can probe the

parametric evolution of the observed ”kinks” with the magnetic field to further confirm

their origin [Fig.3.9(a)]. The first derivative GV = ∂G/∂Vbg and the second derivative

GV B = ∂2G/∂Vbg∂B of the measured conductance show traces of the transition from size

quantization to Landau level quantization [Fig.3.9(b,c)]. In particular, we observe that

”kinks” directly evolve to the Landau levels with increasing field strength. We theoreti-

cally estimate the observed magnetic field evolution of the conductance quantization by

performing bandstructure calculations of a 230 nm (to be consistent with the extracted

from SEM geometrical size W ) wide zigzag nanoribbon without adjustable parameters.

The transmission increases each time a new quantized band becomes energetically avail-

able for conducting electrons with increasing energy. We, therefore, calculate the energy

minimum of each band as a function of magnetic field. The estimate we obtain [black

solid curves in Fig.3.9(b,c,d)] follows the states’ evolution in the experiment [maxima of

GV or GV B in Fig.3.9(b,c,d)]. The onset of the quantum Hall regime [Eq.(3.16)] coin-

cides with the estimate derived for the ribbons [see black dashed curve in Fig.3.9(b,c)].

At higher fields the Landau levels are distinct, whereas for lower fields on top of the

magnetic evolution of the subbands more complex structures emerge. We notice a slight

tilt of the additional structures [marked by black circles in Fig.3.9(d)], which is consis-

tent with bulk Landau level quantization. However, in this energy window the states in
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the constriction are still strongly influenced by boundaries and we do not expect pure

Landau levels to form. Therefore, we assign these additional patterns to Landau levels

formed in the wider contact regions of the device. According to Eq.(3.16), for wider

ribbons Landau levels are formed at lower magnetic fields. The minima of subbands in

our bandstructure calculations for a 640 nm wide nanoribbon agree well with the trends

of the additional structures [see black dashed curves in Fig.3.9(d)]. The details of the

pattern are governed by avoided crossings between the bulk Landau levels of the wide

contract areas and the subbands due to size-quantization in the constriction.

To conclude, magnetic field resolved measurements and their analysis allow us to support

our notion of the conductance ”kinks” observed at B = 0 being the signatures of size

quantization of the constriction. We also observe that other length scales can influence

the transmission leading to complex irregular structures on top of the simple evolution of

the quantization at the quantum point contact. This finding is in line with our Fourier

analysis of the B = 0 traces, where we observed harmonics at lengths different from

W = 230 nm.
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Figure 3.9: (a) The measured conductance through a graphene quantum point contact
as a function of back gate voltage in the presence of the magnetic field. The conductance
traces at different magnetic fields are shifted for clarity. (b,c) First GV and second GV B

derivatives of the conductance traces in (a). (d) Close up of GV B shown in (c). (b-
d) The black solid curves correspond to the calculated magnetic field evolution of the
subbands minima in the bandstructure of a 250 nm wide ZGNR. (b-c) The black dashed
curves mark the onset of the quantum Hall regime in the QPC [Eq.(3.16)]. The black
dashed lines in (d) follow the calculated magnetic field evolution of the subbands minima
in the bandstructure of a 640 nm wide ZGNR, which enters the Landau level regime at
fields where the QPC still exhibits the intermediate mixture of size and Landau level
quantizations. The modulations (for example, marked by black circles) on top of the
quantized conductance of the QPC are governed by the Landau levels formed outside

of the QPC region.
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Chapter 4

Graphene on hexagonal boron

nitride

To achieve a high mobility of charge carriers in graphene it is necessary to reduce sub-

strate induced disorder. In comparison to the conventional SiO2 substrate, new sub-

strates such as a hexagonal boron nitride (hBN) [13, 14] - a wide band gap insulator,

dramatically improve the electronic and transport properties of graphene. Using hBN-

graphene sandwich structures made the observation of size quantization of spatially

confined electrons feasible [see chapter 3]. Graphene on clean transition metal surfaces

(e.g., iridium (Ir) [69, 70] or ruthenium [71]) or on graphite [72] has also been shown to

feature reduced disorder [73, 74].

However, the substrate can substantially modify the physical properties of graphene

itself. For example, perfectly aligned graphene on hBN reveals a periodic superlattice,

or so-called moiré pattern, due to the small lattice mismatch between the two materials

[13, 14, 16]. This superlattice induces an additional periodic potential on a scale much

larger than the lattice periodicity of graphene through the van der Waals type graphene-

substrate interaction. The moiré pattern of graphene on hBN with an alignment angle

φ = 0◦ has a periodicity aS = 13.8 nm (aS/a & 50, where a is the periodicity of graphene

lattice). Moiré patterns were also observed in graphene with a grid of electron-beam

deposited adatoms [75, 76] and in twisted bilayer graphene due to the misalignment

between the layers [77, 78]. The presence of a new length scale induces new properties

to the graphene devices [75]. In particular, the superlattice potential caused by hBN

leads to the opening of a gap at the Dirac cone and Brillouin zone folding resulting in

additional satellite band gaps energetically above and below the main Dirac cone. Note,

however, that the graphene-hBN sandwich devices discussed in the previous chapter

58
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were not aligned, which allowed us to neglect the modification of the graphene Brillouin

zone and bandstructure due to the substrate.

In the presence of a perpendicular magnetic field, the large superlattice unit cell allows

for one entire magnetic flux quantum Φ = h/e passing through the supercell at labora-

tory magnetic field strength of the order of twenty Tesla. Consequently, the observation

of fractal Hofstadter butterfly structures on top of each Landau level becomes possible

[17–19]. These structures have been inaccessible in pristine graphene due to the small

unit cell size (of ≈ 2 Å), which would require unrealistically large magnetic fields. The

satellite band gaps evolve into secondary Landau level satellite structures as a function

of perpendicular magnetic field. In the experiment [17–19], the satellites were attributed

to additional Dirac-cones caused by the moiré pattern of the superlattice. However, a

zeroth Landau level, the hallmark of Dirac-like Landau level structures [46] is clearly

missing [18, 19].

In this chapter we simulate large-scale graphene nanoflakes interacting with an hBN

substrate [Fig. 4.1]. The moiré pattern is included through the effective potential with

parameters based on recent ab-initio DFT calculations [79, 80]. We benchmark our

description by reproducing characteristic features of graphene on hBN in a magnetic

field, i.e. the Hofstadter butterfly [81, 82] as well as the experimentally observed satellite

structures [17, 19]. Our density of states and bandstructure calculations suggest that

these satellites are caused by parabolic extremal points in the bandstructure giving rise

to Schrödinger-like Landau levels rather than replica of Dirac cones. It appears that

interpretation of the satellites as secondary Dirac points [83] is an artifact of measuring

as function of back gate voltage: both Dirac- and Schrödinger-like dispersion relations

give rise to linear Landau level structures when plotted as a function of Vbg. The

distinguishing feature turns out to be the presence (or absence) of a zeroth Landau level.

We show that only when employing an unrealistically strong superlattice potential true

Dirac-cone like satellite structures, that include a zeroth Landau level, emerge close

to the main Dirac point. We also demonstrate that the magneto-optical response of

the graphene flakes subject to an effective hBN potential can provide energy resolved

information on the electronic structure in the experiment. It can be used for probing the

energy dependence of Landau levels of the satellites. In addition we include magneto-

excitonic effects, which provide an explanation for the recently observed Landau-level

dependent renormalization of the Fermi velocity [15, 28, 84, 85].
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Figure 4.1: (a) Schematic view of a graphene flake with the superlattice potential
landscape. (b) Superlattice unit cell for graphene on hBN with carbon (black), boron
(orange) and nitrogen (green) atoms. We follow the numbering of areas with different

chemical composition, i.e. I (red), III and V (blue), from Ref. [79]

4.1 Graphene Model Hamiltonian

We first aim to construct a model Hamiltonian of graphene with an additional periodic

potential due to hBN. The effective Dirac Hamiltonian for a four-component spinor

[Eq.(2.14)] in the presence of the homogeneous magnetic field ~B = ~∇× ~A perpendicular

to the graphene plane as well as an external electrostatic potential reads

HD = vF~σ · (~̂p− e

c
~A)⊗ τ1 + vF ~σ∗ · (~̂p−

e

c
~A)⊗ τ2

+ V (~r) · ✶⊗ τ0 +W (~r) · σz ⊗ τ0. (4.1)

In Eq. (4.1) we have distinguished two different classes of potentials: (1) the slowly

varying potential V (~r) (represented by a ✶ in sublattice space) breaking the particle-

hole symmetry; and (2) the short range potential W (~r) (represented by σz in sublattice

space) breaking sublattice symmetry. W (~r) introduces a finite ”mass” and, therefore, a

band gap at the Dirac point [86]. A wide variety of substrate effects can be effectively

modeled by these two potentials.

Graphene on a hBN substrate features a moiré pattern with aS = 13.8 nm periodicity

for φ ≈ 0◦ alignment. The resulting hexagonal superlattice vectors are ~aS1 = (13.8, 0) nm

and ~aS2 = (6.9, 11.9) nm [see Fig. 4.1(b)]. The supercell has three main regions with dif-

ferent local alignment of the graphene and hBN top layer [here, we follow the numbering

from Ref. [79], see also labels in Fig. 4.1(b)]: (I) the carbon atoms of one sublattice A

are on top of boron and the carbon atoms of the other sublattice B on top of nitrogen;

(III) the carbon atoms of A on top of the nitrogen atoms and the atoms of B are in the

middle of a hBN hexagon; (V ) the carbon atoms of A are on top of boron atoms while
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now the B atoms are located off the hBN hexagons. The regions (II) and (IV ) feature

intermediate stacking.

We obtain the realistic potential parameters from recent ab-initio DFT calculations dis-

cussed in [79, 80]. These ab-initio studies reveal sublattice symmetry breaking potentials

W (~r) which feature broad maxima and minima at the centers of the regions I, III and V .

We therefore expand W (~r) in Gaussians centered in these three main regions according

to

W (~r) =
∑

i=I,III,V

Wi exp

(

−(~r − ~Ri)
2

2w2
i

)

(4.2)

with amplitudes WI = 57 meV, WIII = −34 meV, WV = −47 meV taken from Sachs

et al. [79] and widths 0.63 · wI = wIII = wV = 7 nm from geometrical considerations.

Local doping by, e.g., charge traps may lead to further local potential variations in

the experiment. The potential W (~r) opens a band gap near the Dirac point, which

modifies the Landau levels according to Eq.(2.44). These spectrum reveals two zeroth

Landau levels with energies ED
±0 = ±Eg/2, which correspond to the lifting of the valley

degeneracy.

The experimental data, however, also reveals a pronounced electron-hole asymmetry

between the electron and hole satellites [18]. Note that the Dirac picture we consider here

is electron-hole symmetric and the electron-hole asymmetry in the third-nearest-neighbor

tight-binding approximation, which we use for the DOS calculations, is too weak to

explain the experiment. Therefore, it is the graphene-substrate interaction described by

the potential V (~r), which breaks the electron-hole symmetry. This potential, however,

is difficult to determine from ab-initio calculations. DFT calculations of the adhesion

energy of graphene on hBN predict 20 meV stronger binding in region V compared to

the other regions [79]. As we verified numerically, this value is too small to explain the

experimental observations. From second-order perturbation theory Yankowitz et al. [16]

estimate the variation of V (~r) to be of the order of 120 meV. We account for the stronger

binding in region V by a potential V (~r), which we approximate by a Gaussian [similar

to Eq.(4.2)] as

V (~r) = VV exp

(

−(~r − ~Ri)
2

2w2
V

)

(4.3)

with the amplitude VV ≈ −100 meV corresponding to a potential minimum at the site

of the strongest adhesion.

The potential W (~r) lifts the valley degeneracy but does not affect physical spin. The

experiment, however, indicates a complete lifting of the four-fold degeneracy of the zeroth

Landau level. The Zeeman contribution [Eq.(2.45)] splits the spin degree of freedom.

However, the measurements of quantum Hall states as a function of magnetic field [87]
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suggest an enhanced effective gyromagnetic ratio compare to the gyromagnetic ratio for

graphene g0 = 2 due to many-body interactions. Furthermore, a linear increase of valley

splitting ∆V with magnetic field is measured. This effect is attributed to the exchange

interaction related to the energy cost of a spin reversal relative to adjacent (polarized)

spins [87]. The magnetic field dependence of ∆V related to many-body interactions is

currently not fully understood theoretically. Two alternative theoretical models have

been previously proposed to explain this observation. (i) One model, based on the

continuous Dirac model in the Hartree-Fock approximation, predicts a
√
B scaling of

the valley splitting [88, 89]. While this scaling differs from the linear scaling observed in

experiment, the resulting numerical values for the valley splitting resemble those of the

experiment within the range of investigated magnetic field strengths. (ii) The second

model, based on the effect of lattice distortion and the interaction with the substrate,

predicts linear scaling of valley splitting with B but underestimates the strength of the

splitting by an order of magnitude [90]. We account for this valley splitting within our

single-particle description by adding a phenomenological correction

WMB(~r) = α ·Be−r2/2w2

I , (4.4)

to the potential W (~r) that scales linearly in B with α = 8 meV/T in accord with the

experiment [87]. The spin splitting is included through the Zeeman effect [Eq.(2.45)]

with the enhanced gyromagnetic ratio geff .

4.2 Hofstadter Butterfly

In 1976 Hofstadter [82] showed that Bloch electrons on a 2D square lattice subject

to a perpendicular magnetic field acquire a fractal pattern in the Landau level energy

spectrum as function of magnetic field field. The solution of Harper’s equation, which

was used as a model to describe the behavior of electrons, reveal a competition of two

length scales: the lattice periodicity and the magnetic periodicity due to the circular

motion of electrons in the magnetic field. When the two length scales are commensurate,

a regularly repeating structure develops on top of each Landau level. In other words,

when the ratio of magnetic flux Φ through the area A of one unit cell of the spatially

periodic lattice [81, 82, 91] to the magnetic flux quantum Φ0 = h/e is a rational number

Φ

Φ0
=
p

q
, where {p, q} ∈ ❩, (4.5)

each Landau level splits into q bands which are p-fold degenerate. Hofstadter [82] also

noted that the observation of the calculated spectrum experimentally using a crystal

lattice with periodicity of ≈ 2 Å is not feasible, as it would require magnetic fields of
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up to 104 T. However, the large scale superlattice moiré potential should allow for the

observation of the effect.

Graphene, as a 2D material, is a prime candidate for the experimental observation of

the Hofstadter butterfly. Indeed, the experiments of graphene on a flat hBN with a

periodic superlattice of 14 nm already demonstrate the Hofstadter butterfly spectrum

in laboratory accessible magnetic fields of up to 30-40 T [17–19]. The magnetic flux

ratio for the hexagonal moiré superlattice Φ/Φ0 = BAe/h equal unity at B = 25T.

Three experiments [17–19] confirmed the theoretical prediction by Hofstadter [82] in-

dependently using different techniques: (1) magnetocapacitance measurements [18]; (2)

magnetotransport measurements [19]; and (3) quantum Hall state measurements [17].

4.3 DOS and bandstructure simulations

The density of states (DOS) calculations of large size graphene flakes within the tight-

binding approach is a good approximation of the DOS of bulk graphene. The method

is very useful for situations, where sophisticated techniques mainly based on periodic

boundary conditions (e.g., density functional theory) are computationally difficult or not

applicable, for example, due to the presence of a magnetic field or an additional large-

scale potential: superlattice or charge puddles. We simulate the magnetic response

of a finite-sized patch of graphene with dimensions Lx × Ly = 170 × 130 nm2 [see

Fig. 4.1(a)] using the third-nearest-neighbor tight-binding approximation [see 2.3]. The

hBN substrate and many-particle effects are included through the potentials of Eqs.(4.2)-

(4.4). The sublattice symmetry breaking potentials ofW (~r) type affect sublattices A and

B with opposite sign. To eliminate the edge effects at the flake boundary (i.e. localization

at the zigzag edges), we include a repulsive Berry-Mondragon potential [86] ofW (~r) type:

Wedge =W0 exp (−∆(~r)/∆0), (4.6)

where ∆(~r) is a distance to the edge, ∆0 is the characteristic decay distance chosen to be

much smaller compared to the size of the flake andW0 is the amplitude at the edge of the

graphene flake. The magnetic field is included by a Peierls phase factor [see section 2.5

and Eq.(2.46)], and we account for the Zeeman term by first-order perturbation theory.

Before discussing the density of states, we consider the unperturbed [Fig. 4.2(a)] and the

superlattice-induced bandstructures [Fig. 4.2(b)-(e)]. The bandstructure calculations

were performed for a square supercell with the moiré potential distribution depicted in

Fig. 4.2(f) imposing periodic boundary conditions. Since we consider the same supercell

for both perturbed and unperturbed (V = W = 0) calculations, the bandstructure is
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Figure 4.2: Cut through bandstructure (ky = 0) of bulk graphene with periodic
superlattice potential within the reduced zone structure of the superlattice calculated
using third nearest-neighbor tight-binding: (a) V = W = 0 eV, i.e. pristine graphene,
(b)-(e) WI = 57 meV, WIII = −34 meV and WV = −47 meV with varying VV . The
red dashed lines show a linear fit to the main Dirac cone D0 (red regions) and to the
secondary cone D1 (yellow area) in (e), from which values of the Fermi velocity vF are
extracted. Green regions in (b) shows the formation of avoided crossings due to the
moire potential, which are absent in (a). (f) Potential landscape of the supercell used
in the bandstructure calculations. (g) The dependence of the Fermi velocity vF of D0

on the amplitude of the superlattice potential VV .

displayed within the first Brillouin zone of the reciprocal supercell. In the unperturbed

case, the parabolic bands [Fig.4.2(a)] correspond to cuts through back-folded off-center

(ky 6= 0) cones while the near-linear bands correspond to the main cone D0 and its replica

centered at ky = 0. The substrate interactionW (~r) [Eq.(4.2)], as expected, opens a band
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gap at the main Dirac cone of Eg = 15 meV. Furthermore, the presence of an additional

potential W (~r) induces a number of avoided crossings [green areas in Fig. 4.2(b)] which

are absent in pristine graphene [green areas in Fig. 4.2(a)]. The additional long-range

(particle-hole symmetry breaking) potential V (~r) [Eq.(4.3)] increases the size of the

avoided crossings and shifts the position of the main Dirac cone D0 relative to E = 0

eV [see the evolution of D0 outlined by red areas in Fig. 4.2(c)-(e)]. The shift, to first

order, is given by the average of the superlattice potential. The potential V (~r) also

influences the effective Fermi velocity vF of the main Dirac cone [D0 is outlined by red

areas in Fig. 4.2(a)-(e)]. vF decreases with increasing amplitude VV [Fig. 4.2(g)]. The

tight-binding bandstructure calculations for pristine graphene yields a Fermi velocity

of v0F = 0.78 · 106 m/s . With increasing |VV | the velocity vF drops proportionally to

the square of the amplitude of the on-site potential VV , in agreement with second-order

perturbation theory [92] which predicts a velocity renormalization

v
F~k

= v0F −
∑

~G 6=0

2
∣

∣

∣
V ( ~G)

∣

∣

∣

2

v0F

∣

∣

∣

~G
∣

∣

∣

sin2 θ~k, ~G. (4.7)

Here, ~G is the reciprocal lattice vector, V ( ~G) is the Fourier transform of the superlattice

potential V (~r) [Eq.(4.2)], and θ~k, ~G is the angle between ~k and ~G.

Although we consider a perfectly aligned graphene on hBN with alignment angle φ = 0,

we note that for a finite alignment angle φ between graphene and hBN lattices, the

periodicity of the moiré pattern is decreased, thereby increasing the size of the Brillouin

zone in reciprocal space. Consequently, the additional bands due to the overlap between

the main Dirac cone and its replica are located further away from the Dirac point.

We calculate the density of states of large graphene flakes on perfectly aligned hBN

described by the additional potentials W (~r) [Eq.(4.2)], V (~r) [Eq.(4.3)] and WMB(~r)

[Eq.(4.4)] using Arnoldi-Lanczos diagonalization. We first present the DOS for a realistic

value of VV = −0.1 eV for the electron-hole symmetry breaking potential V (~r) in both

the E-B plane [Fig. 4.3(a,d)] and the N -B plane [Fig. 4.3(b)], where N is the number of

charge carriers in the quantum dot (N ∝ Vbg within a linear capacitance model discussed

in section 2.7). For the transformation from energy to charge carrier number we do not

use the square root dependence E ∼
√
N for bulk graphene but sum over the actual

number of eigenstates (or charge) of the finite size flake between the Dirac cone and the

corresponding Fermi energy EF , to accurately account for deviations from the linear

DOS close to the Dirac point.
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Figure 4.3: Density of states of a graphene flake in the presence of a superlattice
potential (VV = −0.1 eV): (a) as a function of electron energy and magnetic field; (b)
same as (a) however as a function of the number of charge carriers N ; (c) schematic
plot of the important Landau level structures seen in (a): red dashed lines represent
the Landau levels of the main Dirac cone including the energy gap Eg = 15 meV [see
Fig. 4.2]; blue dashed lines denote the splitting of the zeroth Landau level due to WMB;
solid lines represent the Landau levels of the two Schrödinger-like satellites, whose origin
is marked with black arrows in (a)-(d). (d) magnification of the area with the right
satellite structure in (a). (e) four-fold splitting of the 0th Landau level including WMB

and Zeeman term with an enhanced g = 5 due to electron-electron interaction [compare
the area confined by yellow dashed lines in (b), where the Zeeman term is not included].

The calculated DOS displays the formation of Landau levels emanating from the Dirac

point of the main cone D0 [Fig. 4.3(a,c)]. The parabolic dependence [Eq. (2.44)] B ∼ E2

[see red dashed parabolas in Fig. 4.3(a) and the schematic plot in (c)] confirms a relativis-

tic diamagnetic response behavior. Moreover, the curvature of the parabolas [Eq. (2.41)]
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Figure 4.4: Two-dimensional zero-field (B = 0) bandstructure E(kx). (a) Near the
main Dirac cone D0 (see Fig.4.2(c)). (b) Bandstructure in the region of the satellite

structure marked by the right arrow in Fig.4.3(a) and (c).

determined by the Fermi velocity vBN
F = 0.76 ·106 m/s extracted from the fit to the main

Dirac cone in the bandstructure [red dashed lines in Fig.4.2(c)] agrees well with that of

the simulated DOS. The zeroth Landau level splits linearly due to many-body correction

[Eq. (4.4)]. We observe the substrate-induced Hofstadter spectrum [section 4.2] with a

”diamond”-like structures [81] [see close up of the structure in Fig. 4.3(d)] which is most

pronounced at rational fractions of magnetic flux through a supercell to magnetic flux

quantum Φ/Φ0 [81, 91]. For the hexagonal superlattice with a period of aS = 13.8 nm,

this ratio equals one at B0 = 25.5 T [see Fig. 4.3(a, d)]. Moreover, we observe two

distinct satellites which evolve (approximately) linearly in the E-B plane emerging at

B = 0 near E = 0.13 eV and −0.16 eV [marked by arrows in Fig. 4.3(a, c, d)]. These

satellite structures clearly display a non-relativistic rather than a relativistic E(B) de-

pendence. A closer look into the B = 0 bandstructure near the satellites [Fig. 4.2(c)]

reveals that they originate from a region with a parabolic rather than a linear E(k)

dispersion. At these energies, the 2D bandstructure E(kx, ky) [Fig. 4.4(a), (c)] near

the satellites does not show cone-like structures unlike the bandstructure near the main

Dirac cone [Fig. 4.4(b)]. Consequently, the Landau levels show a Schrödinger-like rather

than a Dirac-like [Eq. (2.41)] B-field dependence as a function of EF . However, when

plotted as a function of the charge carrier number N or, equivalently, as a function of

Vbg a linear B-N (B-Vbg) dependence emerges [Fig. 4.3(b)] for both the main Dirac cone

and the satellites. A simple capacitive coupling model [as discussed in section 2.7 and

Eq.(2.74)] predicts a square-root relation between Vbg and E, i.e. E ∝
√

Vbg. Therefore,

Eq. (2.41) predicts a linear Vbg-B relation for the relativistic Landau levels. Remark-

ably, the same holds for non-relativistic Schrödinger electrons since the non-relativistic
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Figure 4.5: Calculated DOS (a) [combined Fig.4.3(b) and (e)] versus measured mag-
netocapacitance (b) [18]. The orange dashed lines The orange dashed lines follow
Landau levels of satellites. These lines feature the same inclination for both theory and

experiment.

density of states in 2D is energy independent, ρS =const, and N ∼ Vbg ∼ E. Con-

sequently, the linear relation between Vbg and B or, equivalently, Vbg and the charge

carrier number N is found for both a Dirac-like and a Schrödinger-like spectrum.

The linear dependence for the satellites was observed in the experiment [18, 19] [see

Fig.4.5(b) adapted from [18]] and was interpreted as the formation of Dirac Landau

levels emerging from the satellites [83]. The satellites were, therefore, attributed to a

Dirac cone replica. As discussed above, the linear behavior of Landau levels in the B-

Vbg plane cannot be used to identify a Dirac cone or its replica. Instead, the distinctive

feature is the presence or absence of the zeroth Landau level. Our DOS simulations with

the chosen set of superlattice potential parameters agree very well with the measured

magnetocapacitance [18] [compare Fig. 4.5(a) and (b)] in the B-N plane. In particular,

the simulations demonstrate the linear Landau levels dependence on B emerged from the

main Dirac point when viewed as a function of Vbg [see Fig. 4.5(a)] with the complex

Hofstadter butterfly structures on top. The simulations correctly describe the zeroth

Landau level splitting [Fig. 4.3(e); also included in Fig. 4.5(a)] when including the B-

field dependent phenomenological many-body term WMB lifting the valley degeneracy

and the Zeeman term lifting the spin degeneracy with a strongly enhanced gyromagnetic

ratio geff = 5 [87]. In general, the effective g factor will be different for different Landau

levels. Therefore, we do not discuss within our single-electron model the spin splitting

of higher Landau levels. Our model also does not account for the valley splitting in the

higher Landau states, as our effective many-body potentialWMB has negligible influence

on energies far away from the Dirac point. Finally, we were able to reproduce the correct

linear slopes of Landau levels of satellites. We, therefore, conclude, that the absence of
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Figure 4.6: Two-dimensional bandstructure for graphene on hBN with an unreal-
istically enhanced strength VV = −0.5 eV of superlattice on-site potential V (~r). (a)

Primary Dirac cone D0, (b) secondary Dirac cone D1 (see Fig.4.2(e))

the 0th Landau level and its Hofstadter butterfly for the satellites both in experiment

and in our simulation, unambiguously confirms that the satellites are associated with a

parabolic bandstructure rather than with a Dirac cone replica.

The origin of the non-relativistic dispersion can be easily traced to the unperturbed

spectrum of bulk graphene [Fig. 4.2(a)]. The satellites emerge from parabolic bands with

energies |E| ≈ 0.15 eV above and below the Dirac point. Replica D1 of the Dirac cone

centered at ky = 0 appears at much higher energies |E| & 0.28 eV and are submerged in

a region of high DOS. Accordingly, the superlattice potential resulting from the van der

Waals interaction with the hBN substrate which is of the order |V | . 0.1 eV represents

only a moderately weak perturbation of the parabolic bands giving rise to distortion

and narrow avoided crossings but cannot significantly shift the distant Dirac cone into

the region of low DOS and into the proximity of D0. In turn, increasing the van der

Waals interaction to an unrealistic strength with an on-site potential V (~r) [Eq.(4.3)]

from VV = −0.1 eV to VV = −0.5 eV renders the replica D1 of the Dirac cone visible

near E = 0.114 eV [Fig. 4.6(a), (c) and D1 is outlined by yellow area in Fig. 4.2(e)] in

addition to the main cone D0 at E = −0.07 eV [Fig. 4.6(b). We note that the main

cone D0 shows a finite gap of about 10 meV, while the replica cone appears gapless

[compare Fig. 4.6 (b) and (c) for D0 and D1 cones]. The DOS in the B-E representation

[Fig. 4.7(a)] and in the B-N representation [Fig. 4.7(b)] shows now two emerging Landau

fans of relativistic dispersion with B ∼ E2 [in Fig. 4.7(a)] and B ∼ N [in Fig. 4.7(b)].

The Fermi velocity of the main cone D0 is now vD0

F = 0.62 · 106 m/s, while we find

vD1

F = 0.39 · 106 m/s for the secondary cone D1. The curvature of the parabolic Landau

level states [Eq.(2.41)] determined by vD0

F and vD1

F again fits well to the DOS near both

D0 and D1 [see red dashed parabolas in Fig. 4.7(a)]. The additional features emerging
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Figure 4.7: Density of states of a graphene flake on hBN however with an unrealisti-
cally large superlattice potential (VV = −0.5 eV and WMB = 0): (a) in the B-E plane,
as a function of magnetic field and electron energy; (b) in the B-N plane, as a function
of magnetic field and number of charge carriers. Black arrows at B = 0 mark the same

Schrödinger like satellites as in Fig. 4.3.

near E = 0.03 eV and E = −0.19 eV at B = 0 [see arrows in Fig. 4.7(a)] resulting

from the regions of non-relativistic quasi-quadratic dispersion remain present for this

much stronger superlattice potential. Thus, the coexistence in the spectrum of a Dirac-

like and a Schrödinger-like diamagnetic response persists. As a function of back gate

voltage, the satellite structures for relativistic and non-relativistic particles [Fig. 4.7(b)]

are similar. However, as discussed above, they can be well distinguished by the presence

of the zeroth Landau level for relativistic dispersion.

Another way to distinguish the two different dispersion relations is a direct energy de-

pendent measurement. For example, magnetic field resolved STM measurements of the

LDOS or measurements of the optical transitions within the satellite structures and

within the Landau levels of the main cone [15] would yield data on their energy depen-

dence. The magneto-optical response of graphene flakes with a superlattice potential is

discussed in details in section 4.4.

We discuss now the behavior of the eigenfunctions of the graphene flakes with realistically

moderate strength VV = −0.1 eV of the on-site potential V (~r) [Eq.(4.3)]. In the vicinity

of each Landau level of the flake, we observe bulk Landau states [see Fig.4.8(a), (b)]

and quantum Hall-like edge states [see Fig.4.8(c)]. The bulk states forming the Landau

level are broad and separated from the edge. The edge states, on the other hand, are

localized at the circumference of the dot. For increasing magnetic field, these states

move spatially from the edge to the bulk eventually merging into the bundle of states

associate with Landau levels. The same magnetic field evolution of wavefunctions was

observed for graphene flakes without any moiré potential [93]. The superlattice potential

of the hBN, however, causes the periodic modulations of the eigenstates.
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Figure 4.8: Typical eigenstates of graphene flake with hBN potential. (a) bulk eigen-
state forming the 0+ Landau level (at B = 25 T and E = 0.08 eV) (b) bulk eigenstate
forming the −1 Landau level (at B = 25 T and E = 0.15 eV) (c) edge state in a vicinity

of the 0+ Landau level (at B = 25 T and E = 0.08 eV)

4.3.1 DOS of graphene on hBN: influence of disorder

Another interesting question is the influence of disorder on the density of states. Al-

though graphene on hBN features reduced bulk and substrate induced disorder as com-

pared to graphene on SiO2, bulk disorder cannot be excluded completely and its possible

impact on the signal in the experiment is important to elucidate. We therefore calculate

the DOS of a graphene flake with a realistic hBN potential in the presence of single

vacancies with a density of n = 1.2 · 10−4 Å−2 [see Fig.4.9(a,b)]. The main features

such as the Landau levels and satellites remain discernible in line with previous studies

[93]. However, the short-range disorder softens all features of the DOS. In particular,

the fine structure of the Hofstadter butterfly is smeared out and is no longer well pro-

nounced in agreement with the experiment [compare Fig.4.9(b) and Fig.4.5(b)]. We also

notice one more difference to the disorder-free case − the presence of a magnetic field

independent ”gap” between the 0+ and 0− Landau levels at N = 0 [Fig.4.9(b)]. This

gap is also present in the experiment [Fig.4.5(b)] and is missing in clean graphene flakes

[Fig.4.5(a)]. In the disorder-free case there are no states between the two valley-splitted

Landau levels [Fig.4.3(a)] and, therefore, the amount of charge in this area is N = 0.

This means that the back gate voltage, which is ∼ N , cannot resolve this region at all,

i.e. no gap between 0− and 0+ valley splitted Landau levels is observed. On the other

hand, there is a small amount of (edge-) states (N 6= 0) between, for example, −1 and

0− or 0+ and 1 Landau levels, which can couple to the back gate. Consequently, we

observe a clear separation (a ”gap”) between these Landau levels in the DOS in the

B-N plane in the disorder-free case. Introducing disorder not only broadens the Landau

levels but also shifts a small amount of states from the 0+ and 0− Landau levels into the

region in between [Fig.4.9(a)]. The non-zero contribution of these states opens a ”gap”

at N = 0 between the valley splitted zeroth Landau levels in the B-N plane [Fig.4.9(b)],

which is also clearly visible in the experiment [Fig.4.5(b)]. Finally, long-range disorder,
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Figure 4.9: Density of states of graphene flake on top of hBN in the presence of single
vacancies with a density of n = 1.210−4 Å−2: (a) in the B-E plane, as a function of
magnetic field and electron energy; (b) in the B-N plane, as a function of magnetic

field and number of charge carriers.

which would compete with the moiré superstructure is expected to further smear out

the signal and the satellites.

4.4 Magneto-optical response of graphene flakes

As we discussed in the previous section, recent experiments aiming to probe the Hof-

stadter butterfly and the satellite structures of graphene on hBN in a magnetic field

were performed using the back gate voltage (Vbg) to control the effective Fermi level

in the graphene sheet. However, this method does not allow for probing the behavior

of Landau levels and its Hofstadter butterfly in energy directly: quantum capacitance

effects and deviations from the idealized linear density of states of graphene (as present,

e.g., by the satellite structures) might substantially modify the relation between energy

and applied back gate voltage.

A simple way to experimentally probe the physics of graphene in terms of energy is

magneto-spectroscopy [15, 28, 94]. The method allows for probing the optical tran-

sitions between Landau levels in terms of energy directly. Localized (edge) states or

traps which potentially alter the linear DOS of graphene and, thus, the Vbg coupling

are eliminated. Fermi velocities are extracted from the fit of Dirac Landau levels to
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the appropriate transitions. In the presence of a supercell, e.g., due to a substrate in-

duced moiré potential, the magneto-optical signal can also provide information about

the satellites and the evolution of associated Landau levels. Moreover, such experiments

can elucidate the interaction of graphene with the substrate. For example, magneto-

optical experiments of graphene on hBN, [15] performed in magnetic fields up to ten

Tesla, showed the presence of a 38 meV band gap due to breaking of sublattice (A and

B) symmetry by the hBN substrate. In this section, we compare the behavior of a pris-

tine graphene flake with a graphene flake aligned with hBN represented by a superlattice

potential described in section 4.1.

We first calculate the DOS of a pristine graphene flake with Berry-Mondragon edge

potential in a perpendicular magnetic field B [Fig.4.10(a)] in the same way we did in

the previous section 4.3. The dimension of the flake we use here is 140 × 120 nm2.

As before we employ the third-nearest-neighbor tight-binding approximation to find the

eigenstates of such a flake. For small magnetic fields ,i.e. B ≈ 0, the density of states [see

Fig.4.10(a)] is dominated by size quantization and properties of the flake boundaries.

As the field increases, Landau levels begin to emerge resembling the behavior of bulk

graphene. The transition from the linear DOS of bulk graphene at B = 0 to the Landau

level regime is governed by the magnetic length lB: the Landau levels appear when lB

becomes smaller than the flake diameter D.

The selection rule for optically allowed inter-Landau levels transitions is ∆N = |Nf | −
|Ni| = ±1, where Nf (Ni) is the final (initial) Landau level quantum number [78]. The

imperfections of the realistic graphene bandstructure beyond the Dirac approximation

such as trigonal warping or the perturbation by the interaction with the substrate will

break this selection rule and transitions with |∆N | > 1 become possible [78]. However,

the probability of these transitions remains small. The main transition lines visible in

the measured infrared absorption spectra [15, 28] are T1 = ED
1 − ED

0 , T2 = ED
2 − ED

−1

and T3 = ED
3 − ED

−2, where E
D
N is the energy of the N th Landau level [Eq.(2.41)] The

analytical forms of the transition lines minima in the absorption spectra can be deduced

from Eq.(2.41) as

T1 =
√

2|e|~v2FB,

T2 =
√

2|e|~v2FB(
√
2 + 1),

T3 =
√

2|e|~v2FB(
√
3 +

√
2).

(4.8)

From the density of states calculations, which provide the eigenstates and eigenvalues

of the graphene flake in a perpendicular magnetic field, it is straightforward to calcu-

late optical dipole transitions between the different eigenstates. The associated optical
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Figure 4.10: (a) The density of states of a 140x120 nm2 pristine graphene flake as a
function of energy and magnetic field. The black dashed parabolas correspond to the
Landau levels of massless Dirac fermions [Eq.(2.41)]. (b) Real and (c) imaginary part
of optical conductivity σ of the flake as a function of the excitation energy ∆E = ~ω
and magnetic field. The black dashed parabolas follows the analytical prediction for

optical inter-Landau levels transitions [see Eq.(4.8)].

conductivity in velocity gauge is given by [78]

σ(ω) =
e2~

iS

∑

a,b

f(ǫa)− f(ǫb)

ǫa − ǫb

|〈a|v̂x|b〉|2
ǫa − ǫb − ~ω + iη

, (4.9)

where ǫa (ǫb) is the eigenenergy corresponding to the eigenstate |a〉 (|b〉) of a flake, S is

the size of the flake. The summation indices a and b go over all the eigenstates of the

flake in the selected energy window. Here, we consider a graphene flake interacting with

a laser light linearly polarized in x-direction. We transform Eq.(4.9) to the length gauge

by replacing the velocity operator v̂x = (i/~)[x̂, Ĥ]:

σ(ω) =
ie2

~S

∑

a,b

f(ǫa)− f(ǫb)

ǫa − ǫb − ~ω + iη
(ǫa − ǫb)|〈a|x̂|b〉|2. (4.10)

The matrix element 〈a|x̂|b〉 gives the transition dipole moment between the two eigen-

states. We use the Fermi distribution f(ǫa,b) at zero temperature with the chemical

potential located at the Dirac point. The difference of Fermi distributions, f(ǫa)−f(ǫb),
is non-zero for transitions between occupied and unoccupied states corresponding to

particle-hole excitation. Zeros in the denominator signify resonant absorption of pho-

tons with ~ω = ǫa− ǫb. A line broadening η = 0.1 meV of sharp transitions between the

discrete eigenstates of the flake is introduced to smoothen the numerical signal. This

artificial broadening is small compared to the physical width of the coarse-grained DOS

and, thus, of no consequence for the numerical results.

The magneto-optical conductivity calculated using Eq.(4.10) for the pristine graphene

flake [Fig.4.10(b, c)] as function of the photon excitation energy ∆E = ~ω shows the
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underlying optical transition lines between different Landau levels [Eq.(4.8)] following

the main selection rule. The maximum of the real part of the optical conductivity

as well as nodal lines of its imaginary part agree well with the analytical prediction

[Eq.(4.8)] using the Fermi velocity v0F = 0.78 · 106 m/s of pristine graphene [see black

lines in Fig.4.10(b, c)] corresponding to the present set of tight-binding parameters [see

section 2.3]. We find sharp optical transition lines between different Landau levels with

widths given by the widths of Landau levels in the DOS, which is ≈ 2 meV [Fig.4.10(a)].

Transitions with ∆N = ±2, 3, 4 are too weak to be visible in the conductance signal but

have non-vanishing dipole matrix elements.

We now discuss a graphene flake on hBN subject to a periodic moiré potential, which

we discussed in detail in section 4.1. More precisely, we include the potentials W (~r)

[Eq.(4.2)], V (~r) [Eq.(4.3)] and WMB(~r,B) [Eq.(4.4)]. The sublattice symmetry breaking

potential W (~r) [Eq.(4.2)] induced by the substrate opens up a band gap and modifies

the Landau level spectrum according to Eq.(2.44). Hence, the positions of optical inter-

Landau levels transitions for fermions with a gapped Dirac cone dispersion become

T1 =
√

2|e|~v2FB + (Eg/2)2 + Eg/2,

T2 =
√

2|e|~v2FB · 2 + (Eg/2)2 +
√

2|e|~v2FB + (Eg/2)2,

T3 =
√

2|e|~v2FB · 3 + (Eg/2)2 +
√

2|e|~v2FB · 2 + (Eg/2)2

(4.11)

It follows from Eq.(2.44), that the valley degeneracy of the zeroth Landau level is lifted

by the presence of the gap. The effective many-body potential WMB(~r,B) [Eq.(4.4)]

introduces an additional linear magnetic field dependent splitting of valleys ∆V ∼ B (in

this section we do not include the spin splitting due to the Zeeman effect).

For magnetic fields up to 10 T, the DOS of the graphene flake on hBN [Fig.4.11(a)]

features the square root scaling for all N 6= 0 Landau levels ED
N ∼

√
B [Eq.(2.44)] [see

black dashed parabolas in Fig.4.11(a)]. By contrast, the zeroth Landau level scales lin-

early with B due to the effective many-body potential WMB(B) [see red dashed lines in

Fig.4.11(a)]. IfWMB = 0, the valley splitting in the zeroth Landau level is magnetic field

independent [vertical black dashed lines in Fig.4.11(a)]. The positions of the absorption

lines in the calculated optical conductivity for N 6= 0 coincide with the analytical esti-

mate [Eq.(4.11)] for the energy difference between the Landau levels [see black dashed

lines for T2 and T3 transitions in Fig.4.11(b,c)]. Here we used the reduced values for the

Fermi velocity vBN
F = 0.76 · 106 m/s deduced in section 4.3 for the potential modeling

graphene on hBN. For the transition T1 involving the N = 0 Landau level we have to

include in Eq.(4.11) the linear magnetic field dependence of the 0− Landau level due

to many-body effects [red dashed curves in Fig.4.11(b,c)] resulting in a shift of the T1
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Figure 4.11: Same as Fig.4.10 but for a graphene flake placed on top of hBN resulting
in a superlattice potential with 14 nm period. The black dashed parabolas in (a)
correspond to the Landau levels of Dirac fermions with a finite mass [Eq.(2.44)]. The
red dashed curves in (a) indicate the magnetic field dependent valley splitting in the
zeroth Landau level due to phenomenological Many body term WMB [Eq.(4.4)]. The
satellites are marked by arrows and dotted lines. In (b) and (c) black dashed curves
follow the analytical prediction for the position of inter-Landau levels transitions for
massive Dirac fermions [Eq.4.11]. The red dashed curve shows the position of T1 optical
transition if magnetic field dependent many-body potential WMB is included. The
optical transition between the Landau levels of satellites are marked by arrows and
dotted lines. Details of the real part of the optical conductivity as a function of energy
at (d) B=10T and (e) B=20T. The red traces show the conductivity of graphene flake
on top of hBN as in (b). For comparison, the black traces show the conductivity of

pristine graphene flake presented in Fig.4.10(b).

transition to T′
1. The sensitivity of the T1 transition to the many-body valley splitting

in the zeroth Landau level, thus, offers an alternative to activation gaps measurement

[87].

At higher magnetic fields, the Hofstadter butterfly becomes visible as a diamond-like

structure in the DOS [Fig.4.11(a), see also the detailed structure in Fig.4.3(d)]. The

optical conductivity reveals the Hofstadter butterfly as a magnetic field dependent ab-

sorption line broadening [Fig.4.11(b,c)]. The sharp peaks in the optical response of

pristine graphene are replaced by a broad multi-peak structure [compare black T1 tran-

sition of pristine graphene with red T′
1 transition for graphene on hBN in Fig.4.11(d,e)].

The energetic width of the diamond (FWHM) of the T′
1 transition at 25 T, i.e. at the

magnetic field where the ratio of the magnetic flux through the moiré supercell equals



Chapter 4. Graphene on hexagonal boron nitride 77

to the magnetic flux quantum Φ = Φ0 [section 4.2], is 20 meV consistent with the size

of the first Landau level diamond obtained from the density of states [Fig.4.11(a)].

As we discussed in section 4.3, the Landau levels of the satellites evolve linearly with

magnetic field in the DOS near E=-0.15 eV and E=0.14 eV at B=0 T [see arrows and

dotted black lines in Fig.4.11(a)]. The same behavior is observed in the optical con-

ductivity where a linear transition line emerges starting from ∆E=0.3 eV at B=0 T

[marked by arrows and dotted black lines in Fig.4.11(b,c)], leading to a well-defined

peak structure at ∼20T [Fig.4.11(d)]. The slope of the line corresponds to the slope

of the Landau levels associated with the satellites. The difference in the magnetic field

evolution of Landau levels of the satellites and the main Dirac cone is not obvious when

measured as a function of Vbg [see section 4.3]. By contrast, energy-dependent optical

measurements can distinguish Dirac and Schrödinger dispersions in the bandstructure.

Magneto-optical experiments for graphene on hBN [15] have, up to now, not focused on

the satellite structures induced by the moiré pattern. While challenging, the experimen-

tal observations of the satellites and their magnetic field evolution would yield valuable

information on the moiré-potential modified bandstructure.

4.4.1 Magneto-excitons in graphene flakes

In the single-particle picture we considered so far, the calculated optical conductivity

demonstrates the resonant optical inter-Landau levels transitions at the photon energies

following the analytical prediction [Eq.(4.8)]. However, magneto-optical experiments

[15, 28] probing Landau levels of graphene on different substrates reveal a shift of these

inter-Landau levels transition lines. The shift can be conveniently parametrized in terms

of a transition-line dependent Fermi velocity vTi in the analytical prediction Eq.(4.8).

Notably, different velocity renormalizations for different transition lines were also ob-

served in magneto-Raman scattering experiments [84, 85]. The velocity renormalization

is often related to the influence of magneto-excitons [48, 95] created by optical excitations

between the Landau levels. This many-body effect is absent in addition spectroscopy

when varying the back-gate voltage Vbg

In this section we discuss the influence of many-body effects on magneto-optical tran-

sitions due to the formation of inter-Landau level excitonic states. To lowest order the

excitonic wave function is a product of an electron and a hole wave function:

Ψexc
NM (~rel, ~rh) = ψN (~rel)ψM (~rh), (4.12)
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where ~rel (~rh) is an electron (hole) coordinate, ψN and ψM correspond to the wave

functions of the N th and M th Landau level undergoing optical transitions. The corre-

sponding Dirac equation reads

ĤΨexc
NM (~rel, ~rh) = EΨexc

NM (~rel, ~rh), (4.13)

where

Ĥ =
∑

i=el,h

vF~σ · (~pi − e ~A)− e2

4πε0ε |~rel − ~rh|
, (4.14)

ε is a dielectric constant and ε0 is the permittivity of the vacuum. We use ε = 5 found

for graphene on SiO2 within the random phase approximation (RPA) [96] and also for

graphene on hBN [84]. If we neglect the Coulomb interaction [second term in Ĥ in

Eq.(4.14)] the excitonic energy coincides with Eq.(4.8), i.e. the single-particle energy

difference. The Coulomb interaction changes the transition energy value resulting in

the observed energy shift due to particle-hole attraction. The magneto-excitonic effect

was studied in details for the two-dimensional electron gas [97, 98] and for graphene

[48, 95, 99]. In particular, it was shown that the excitation energy can be viewed as a sum

of several terms: the (non-interacting) single-particle exciton energy ∆E = ED
N − ED

M ;

the exciton binding energy, i.e. the direct Coulomb two-particle interactions between

the particle and the hole; the annihilation and creation of electron-hole pairs at different

points of the Brillouin zone; and the exchange interaction. The direct Coulomb term is

negative and gives the leading contribution to the exciton binding energy. Therefore, the

optical transition energy becomes smaller than estimated in the single-particle picture.

However, the last two contributions, while smaller, are positive and slightly reduce the

binding energy. Since the effect of these contributions is already, to a certain extent,

empirically accounted for by the dielectric response of the medium ε, we neglect an

explicit treatment of these terms.

Within the tight-biding approximation applied to graphene dots, it is possible to account

for magneto-excitonic effects. To compare our results with the experiment we include

the dielectric environment for graphene on a SiO2 substrate by taking into account the

dielectric constant ε when evaluating the Coulomb interaction term. We evaluate the

dominant contribution of the direct Coulomb electron-hole interaction using first-order

perturbation theory. Consider an optical transition between the two Landau levels N

and M . Each of the Landau levels is degenerate and is formed by several eigenstates of

the flake [see Fig.(4.10(a))] [93]. We restrict our considerations only to eigenstates con-

tributing to a specific transition. A photoexcited state can be written as a superposition
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Figure 4.12: (a, b, c) Real part of the optical conductivity of the main transition
lines T1, T2 and T3 plotted with a constant shift to resolve magnetic field. Black
traces correspond to the single-particle transitions, red traces correspond to the optical
transitions taking into account the direct Coulomb electron-hole interactions from the
first-order perturbation theory. (d) The position (dots) and width (bars) of spectral
lines extracted from the first and second moment of the single-particle (black) and ex-
citonic excitation (red) spectra. The black curves correspond to the theoretical Landau
level transitions [Eq.(4.8)] with Fermi velocity v0F = 0.78 · 106 m/s. The red curves cor-
respond to the fit of the theoretical lines Eq.(4.8) with renormalized Fermi velocities:
vT1

F = 0.69 · 106 m/s, vT2

F = 0.745 · 106 m/s and vT3

F = 0.755 · 106 m/s. (e) The ratio
between Fermi velocities of T2 (right) and T3 (left) transitions to the Fermi velocity of

T1: theory versus experiment.

of flake eigenstates near the corresponding Landau levels involved in the transition:

Ψexc
NM (~rel, ~rh) =

∑

a,b

Cabφ
N
a (~rel)φ

M
b (~rh). (4.15)

The expansion coefficients Cab can be obtained by inserting this wave function ansatz

into the Dirac equation [Eq.(4.14)] as

(ǫNa − ǫMb )Cab −
∑

a′,b′

V ab
a′b′Ca′b′ = ǫCab, (4.16)
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with eigenenergies of the flake ǫNa (ǫMb ) in the vicinity of N th (M th) Landau level. The

Coulomb matrix element is

V ab
a′b′ =

e2

4πǫ0ǫ

∫∫

d~reld~rh
φ∗Na′ (~rel)φ

∗M
b′ (~rh)φ

N
a (~rel)φ

M
b (~rh)

|~rel − ~rh|
(4.17)

Eq.(4.16) is similar to the Bethe–Salpeter equation (BSE) [100] adapted for a finite

size graphene flake. The Coulomb integral [Eq.(4.17)], as discussed above, gives the

exciton binding energy. The full solution of Eq.(4.16) is numerically difficult as the size

of the Coulomb matrix V ab
a′b′ is determined by the product of the number of eigenstates

forming the Landau levels N and M. For each Landau level involved in the transition,

we consider the energetically closest NS ≈ 30−40 eigenstates of a flake, which is a good

compromise between accuracy and numerical effort. The dimension of the matrix V ab
a′b′ is

N2
S ×N2

S ≈ 106. Moreover, each matrix element requires evaluation of a double spatial

integral with a Coulomb kernel. Therefore, to keep the problem numerically feasible

we solve Eq.(4.16) within first-order perturbation theory [45], i.e. we evaluate only the

diagonal Coulomb matrix elements V ab
ab in the sum, and reduce the size of the graphene

flake to 24× 24 nm2, to speed up the calculation of each matrix element. Since the size

of the flake is smaller than we used in section 4.3 and section 4.4, the Landau levels are

formed at higher magnetic fields, when the magnetic length lB becomes smaller than

the flake diameter D [according to the geometrical argument given in section 2.5]. For

example, the N = 3 Landau level participating in the T3 optical transition emerges

only at B & 30 T for the reduced flake size we consider here. For magnetic fields

strong enough to form the magnetically confined Landau level states inside the flake,

the magneto-excitons created by two Landau levels are only weakly perturbed by the

flake boundaries and boundary effects on our results can be neglected, making our results

applicable also to bulk graphene. In first-order perturbation theory each electron-hole

pair |a, b〉 is treated independently and the corresponding first-order energy correction

to the noninteracting electron-hole transition energies ǫ
(0)
a,b = (ǫa − ǫb) is given directly

by the diagonal matrix element:

ǫ
(1)
a,b = V ab

ab =
e2

4πǫ0ǫ

∫∫

d~reld~rh
|φNa (~rel)|2|φMb (~rh)|2

|~rel − ~rh|
. (4.18)

The total energy of the |a, b〉 exciton in this approximation is ǫa,b = ǫ
(0)
a,b − ǫ

(1)
a,b.

We focus on the first three transition lines and calculate the energy shift ǫ
(1)
a,b for each

electron-hole excitation pair |a, b〉 for different magnetic fields. More precisely, we first

calculate the eigenstates and eigenfunctions of the flake using the third-nearest-neighbor

tight-binding approach for a specific B-field. We then select eigenstates corresponding

to each Landau level contributing to the photoexcitation and evaluate Eq.(4.18). The
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optical conductivity of each electron-hole pair, which is related to the dipole matrix

element between an electron in eigenstate of the flake |a〉 and a hole in |b〉, is calculated
using Eq.(4.10), however, with new excitonic energies. Within first-order perturbation

theory, our calculations yield a clear shift of the T1, T2 and T3 transition lines in the

direction of smaller photon energies [see red traces in Fig.4.12(a,b,c)] as compared to the

noninteracting single-particle picture [see black traces in Fig.4.12(a,b,c)]. The position

and width of the transitions can be deduced from the first and second moments of the

calculated spectral lines. If we neglect the Coulomb interaction, we extract the position

of transitions [see black dots in Fig.4.12(d)] in agreement with analytical expectation

[Eq.(4.8)] with a Fermi velocity of pristine graphene v0F = 0.78 · 106 m/s [see black

traces in Fig.4.12(d)]. By contrast, the positions of transition lines including the two-

particle excitonic corrections are shifted to lower excitation energies ∆E [see red points in

Fig.4.12(d)]. Interestingly, the shifted transition lines demonstrate the same square root

dependence on the magnetic field, i.e. ∆E ∼
√
B, as the single-particle energies. The

√
B scaling of the excitonic correction is related to the inverse scaling of the computed

Coulomb integral [Eq.(4.18)] with the length scale of the magneto-exciton determined by

the magnetic length lB ∼ (
√
B)−1. Therefore, both the single-particle transition energies

as well as the first order excitonic correction to these energies scale as square root of

the magnetic field. Consequently, the results we obtain can be (to first order) directly

compared to magneto-optical experiments on bulk graphene at laboratory accessible

magnetic fields. The energy shifts we compute are different for different transitions.

Since the lines should follow a
√
B scaling, we can conveniently introduce the line-specific

Fermi velocities in the Eq.(4.8). In particular, from the best fit we find for T1 the Fermi

velocity vT1

F = 0.69 · 106 m/s; for T2, v
T2

F = 0.745 · 106 m/s and for T3, v
T3

F = 0.755 · 106

m/s. This velocity renormalization is clearly observed in recent experiments [15, 28].

To provide a comparison between experimentally observed and calculated line shifts, we

evaluate the ratio of the renormalized Fermi velocities of the T2,3 transitions to that of T1

[see Fig.4.12(e)]. By doing so, we can distinguish effects of Landau level specific velocity

renormalization from other bandstructure effects that uniformly affect all transitions.

We find a reasonable agreement with experiments measuring optical inter-Landau levels

transitions for graphene on SiO2 and also with alternative theoretical approaches for

bulk graphene [95, 99][Fig.4.12(e)]. The effect of puddles observed in graphene on SiO2

can be included within our tight-binding description by including a smooth disorder

potential with an amplitude of 25 meV (50 meV) and a correlation length of 10 nm

(5nm), which is close to realistic values [55]. The calculated transitions lines remain

well-defined in the presence of disorder and feature the same velocity renormalization as

for pristine graphene.
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However, the measured magneto-optical response for graphene on hBN reveals a veloc-

ity renormalization notably different from our theoretical estimate [Fig.4.12(e)]. This

mismatch arises due to substantially lower value of vT1

F in experiment compared to

our theory, which can be attributed to many-body effects strongly influencing the ze-

roth Landau level. One possible explanation is the substantial splitting of the four-fold

degenerate Landau levels for graphene on hBN observed in quantum capacitance mea-

surements [18]. On the other hand, any such splitting should shift the T1 line to higher

photon energies [as seen in Fig.4.11(b,c)], i.e. in the opposite direction to that observed

in the experiment. Clearly, future magneto-optical experiments for graphene on hBN

are necessary to resolve this puzzle.

4.5 Commensurate to incommensurate transition

In the discussion up to now, we considered graphene on top of the hBN with a fixed

carbon-carbon distance throughout the flake. In reality graphene aligned on hBN fea-

tures a periodic strain pattern [101], which depends on the alignment angle φ. In particu-

lar, for a moiré periodicity of less than 10 nm, the Young’s modulus follows a sinusoidal

pattern. For larger moiré supercells and φ → 0 the behavior is different: ∼ 2 nm

wide narrow regions with large Young’s modulus alternate with broad regions of small

modulus. This change in behavior is explained by a commensurate − incommensurate

transition. It appears that for almost perfect alignment φ ≈ 0 the energetically most

favorable configuration corresponds to locally adjusting the graphene lattice to be com-

mensurate with hBN. In this case the loss in elastic energy is compensated by the gain

in van der Waals interaction energy with the substrate. For smaller moiré supercells,

the incommensurate configuration is energetically more preferable [101, 102].

To account for the induced strain in graphene on hBN in the perfectly aligned config-

uration considered in the previous sections, we change the on-site potential V (~r) and

the first nearest - neighbor coupling ts1(~r) according to the measured Young’s modulus

profile. Since V (~r) describes only variations of the local on-site potential and does not

necessary relate to lattice deformations, local variations in the hopping element ts1(~r)

are important to include if one aims to account for a strained graphene lattice. As a

template for W (~r), V (~r) and ts1(~r) we use a hexagonal structure [see Fig.4.13(a)] fol-

lowing experimental observations [101]. The template consists of 3 regions of different

alignment of graphene with hBN: I, III and V in accordance with section 4.1. The

energetically most favorable region V , where carbon atoms of sublattice A of graphene

are on top of boron, appears commensurate with the hBN over a much more extended

area than considered in section 4.1. As a result the graphene in this region is stretched
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Figure 4.13: (a) Template of a potential in an extended supercell following the com-
mensurate state of the experiment [101]. (b) The on-site potential used in the simula-
tions based on the template in (a). The moiré supercell (with periodicity of 13.8 nm)

lattice vectors are shown in yellow.

to match the lattice constant of hBN, which is 1.8% larger. To compensate the com-

mensurate parts of the supercell, graphene in regions I and III becomes compressed by

about 1.4 to 2%. These compressed areas create the hexagons of large Young’s modulus

seen in experiment [101]. We reuse the maximal values of the W (~r) ∝ σ̂z in those three

regions according to our previous discussions and Ref. [79], as they correspond to the

local van der Waals interactions of aligned graphene with boron, nitride or a vacancy.

However, we change the on-site potential V (~r) as well as the first nearest-neighbor cou-

pling t1 to account for the strain. The tight-binding parameters for V (~r) and ts1 under

strain can be obtained from DFT calculations of stretched or compressed graphene [103].

The maximal values of the potentials and nearest-neighbor couplings are summarized in

Table 4.1, where for the region V we also added an adhesion energy of -20 meV obtained

in [79].

Bandstructure calculations with the strain-dependent potential [Fig.4.14(b) and includ-

ing the local variation of the t1 in Fig.4.14(c)] reveal features similar to the ones ob-

served for a moiré superlattice potential in a form of Gaussians discussed in section 4.3

[Fig.4.14(a)]. In particular, we observe the formation of avoided crossings and opening

of the band gap at the main cone D0 [marked by green and red in Fig.4.14, respectively].

The new potential creates a larger band gap Eg = 40 meV at D0 as compared to Eg = 15

meV for the superlattice potential used in section 4.3. The increase of the band gap is
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Table 4.1: Summary of parameters of superlattice potential for the different aligned
regions of graphene on hBN

I III V

carbon - carbon distance
(in % of a = 1.42 Å for un-
stratched graphene)

98 % 99 % 101.8 %

W (~r) (meV) 57 -34 -47
V (~r) (meV) 30 20 -43
ts1/t1 1.06 1.04 0.95

related to the geometrical enlargement of the region V accounting for the commensurate

state. We note that the same band gap Eg = 38 ± 4 meV was extracted from fitting

the transition lines between Landau levels in a magneto-optical experiment performed

for graphene on hBN [15]. The positions of the avoided crossings and their parabolic

behavior qualitatively do not change for different effective moiré potentials [compare the

bandstructure used for simulations of DOS in section 4.3 Fig.4.14(a) with the bandstruc-

tures calculated for the new potential Fig.4.14(b,c)]. The interesting feature, however,

is a more pronounced electron - hole asymmetry of the avoided crossings (at ∼ 0.13 eV

and ∼ −0.16 eV) which generate the satellite structures in the DOS [marked in green

in Fig.4.14(a,b,c) near 0.13 eV and −0.16 eV]. The satellite bands at 0.13 eV become

dense as compared to the bands at ∼ −0.16 eV. Therefore, the magnetic evolution of

the satellite at positive energy is expected to be less pronounced than the evolution of

the satellite at negative energy. This electron - hole asymmetry of the satellites is very

well visible in the experiment [18, 19]. However, the linear magnetic field dependence of

the satellites in the B −E plane should not change and their overall behavior stays the

same as discussed in section 4.3.

We also point out another interesting detail: the bandstructure stays qualitatively un-

changed if we include strain by local variation of the bond length [Fig.4.14(c)], i.e. by lo-

cal variation in the nearest-neighbor hopping amplitude ts1, as compared to the strain free

case ts1 = t1 [Fig.4.14(b)]. Bandstructures with [Fig.4.14(c)] and without [Fig.4.14(b)]

strain both are qualitatively similar to the bandstructure obtained for the parameters

of an effective hBN potential used in the previous sections [Fig.4.14(a)]. We therefore

expect no crucial change in the magnetic field evolution of the DOS in a system with

and without strain. Indeed, the DOS calculated using the hBN potential discussed in

this section reveals the same structure as the DOS calculated in section 4.3. Although,

the inclusion of strain into our tight-binding model qualitatively does not affect the

DOS, it can be critically important in, for example, the local density of states (LDOS)

of graphene on hBN.
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Figure 4.14: Cut through bandstructure (ky = 0) for graphene on hBN: (a) with a
moiré superlattice potential in a form of Gaussians discussed in section 4.1 and 4.3:
WI = 57 meV, WIII = −34 meV and WV = −47 meV; VV = −100 meV. (b, c)
with a moiré superlattice potential in a form of a hexagonal pattern according to the
commensurate state in the experiment [101]. The parameters W (~r) and V (~r) are given
in Table 4.1: (b) with a constant nearest-neighbor interaction ts1 = t1 of unstrained
graphene; (c) with a strain dependent nearest-neighbor interaction ts1 given in Table

4.1.



Chapter 5

Nonlinear optical response of

graphene to a few cycles THz

laser pulse

Graphene with its exceptional electronic properties is a very interesting playground for

the investigation of the optical response. The linear dispersion of graphene in contrast

to the parabolic one in semiconductors plays an important role in the generation of

nonlinear optical response of graphene to an applied terahertz laser field [the process is

schematically shown in Fig.5.1]. The optical response of graphene in the THz part of

the spectrum was extensively studied theoretically [104–106] by solving the Boltzmann

equation or the Dirac equation in the time-domain. With the advances in THz laser

technology achieved in the last years, studies of different nonlinear effects (such as second

harmonic generation [107, 108], photon drag effect [109], four-wave mixing [108] as well as

the study of the nonlinear carrier dynamics [110] and THz generation [111]) in graphene

became feasible. The nonlinear low odd harmonic generation in graphene was examined

experimentally by Paul et al. [112] and Bowlan et al. [21]. In Ref. [112] the response

of multi-layer (∼ 20 layers) epitaxial graphene and a single layer graphene produced by

chemical vapor deposition (CVD) to a strong teraherz field was investigated. This study

showed no generation of harmonics in graphene up to 40 kV/cm amplitudes of the laser

fields. Nevertheless in the experiment by Bowlan et al. [21], nonlinear odd harmonics of

multi-layer (∼ 45 layers) epitaxial graphene were observed for short laser pulses with 40

kV/cm field strength and 2 THz frequency. The power spectrum of the detected far-field

THz response showed the first, third, and fifth harmonics with relative strengths of 1,

3 · 10−3 and 5 · 10−4. In this chapter we develop the theory of the nonlinear response

of graphene by solving the Dirac equation in the time domain and by solving the time-

dependent Schrödinger equation with the tight-binding Hamiltonian of graphene. The

86
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Figure 5.1: The incoming THz laser pulse (red) accelerate electrons in graphene,
which emit radiation (blue) at higher frequencies.

latter approach, although applied to finite size structures, produces qualitatively and

quantitatively similar nonlinear responses to the solution of the Dirac equation for bulk

graphene. Furthermore, the tight-binding approach allows for inclusion of different types

of disorder, superlattice potentials due to the substrate (for example, the hBN potential

considered in chapter 4) and imperfections of the bandstructure such as trigonal warping

and electron-hole asymmetry. We also provide a comparison of the calculated response

with the experiment [21] and analyze the change in the signal due to non-zero doping

and disorder.

Another issue we address is the high-harmonic generation in graphene and especially the

high harmonic cut-off we observe. The calculated harmonic spectrum reveals similarities

to the nonlinear response of atoms to intense laser fields [22–24], where the generation

of high harmonics is due to the recombination of ionized electrons with their ions. We

derive the harmonic energy cut-off in graphene, which is proportional to the amplitude

of the electric field ∼ E0, whereas in atoms it is proportional to the field intensity ∼ E2
0 .

The study of high-harmonic generation in other solid materials, like ZiO [25], GaSe [26]

and SiO2 [113], also unveil linear scaling with E0 of the cut-off. Probing the driven

fermionic dynamics in close vicinity to the Dirac point is an interesting problem from

the point of view of solid state physics and relativistic electron dynamics.

5.1 Classical motion of Dirac fermions in a laser field

Surprisingly, the enhanced non-linear properties of graphene follow from the linear dis-

persion of Dirac fermions. To illustrate this, let us consider the classical motion of a
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massless Dirac fermion in a continuous linearly polarized laser with the harmonic electric

field:

Ex(t) = E0 cos(ωt), (5.1)

where E0 is the amplitude and ω is the frequency of the laser. Then, the Hamiltonian

of the classical relativistic fermion reads:

H = vF

√

p2x + p2y − eExx, (5.2)

and the canonical Hamilton equations take the form

ṗx =
∂H

∂x
= −eEx,

ṗy =
∂H

∂y
= 0,

ẋ = vx =
∂H

∂px
= vF

px(t)
√

px(t)2 + py(t)2
,

ẏ = vy =
∂H

∂py
= vF

py(t)
√

px(t)2 + py(t)2
.

(5.3)

The electron momentum follows from the first two equations:

px = px0 +
eE0

ω
sin(ωt) = px0 + eAx(t),

py = py0 = const,

(5.4)

where ~p0 = (px0, py0) is the initial electron momentum. The x component of the mo-

mentum oscillates harmonically and follows the vector potential of the laser field

Ax(t) = −
∫

Ex(t)dt =
E0

ω
sin(ωt). (5.5)

The time evolution of the electron energy is

E(t) = vF

√

(px0 + eAx(t))2 + p2y0. (5.6)

Unlike the harmonic behavior of the momentum px(t) ∝ Ax(t), the electron velocity

exhibits strong nonlinear or anharmonic behavior (from Eq.(5.3))

vx = vF
px0 + eAx(t)

√

(px0 + eAx(t))2 + (py0)2
, (5.7)

which arises from the square-root dependence of the denominator. This is different from

the behavior of nonrelativistic electrons (or electrons in semiconductors with parabolic

energy dispersion), where the velocity is proportional to the momentum and likewise

exhibits harmonic oscillations with the field. The physical observables such as the electric
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current (jx = −|e|nvx with n being the electron density) or the second derivative of the

dipole moment responsible for the far-field radiation are proportional to the electron

velocity and, therefore, are also nonlinear. In general, the current can be connected to

the laser field as

ji(t) = σ
(1)
ij Ej(t) + σ

(2)
ijkEi(t)Ej(t) + σ

(3)
ijklEj(t)Ek(t)El(t) + · · · , (5.8)

where indices i,j,k,l refer to the Cartesian coordinates. The first term describes the

linear response of the medium characterized by linear optical conductivity tensor σ(1),

whereas the other terms describe the nonlinear response to the applied electric field

and are characterized by the nonlinear optical conductivity tensor σ(N 6=1). We simplify

Eq.(5.8) for the fields ~E(t) = Ex(t)~ex considered in this chapter as

jx(t) = σ(1)Ex(t) + σ(2)E2
x(t) + σ(3)E3

x(t) + · · · . (5.9)

The higher order terms contribute to the response at higher carrier frequencies than the

frequency ω of the driving field. For example, the second order nonlinearity ∼ E2
x(t)

contributes to the frequency of 2ω and the third order nonlinearity ∼ E3
x(t) contributes

to 3ω in the response.

The nonlinear behavior of fermions in graphene depends on their initial momentum. For

instance, consider py0 = 0. In this case the x velocity component is

vx = ξvF
px0 + eAx(t)

|px0 + eAx(t)|
= ξvF sign [sin(ωt)] (5.10)

where ξ = ±1 is the conduction and valence band index. The obtained velocity is a

square wave, and its Fourier expansion yields

vx = ξvF
4

π

(

sin(ωt) +
1

3
sin(3ωt) +

1

5
sin(5ωt) + · · ·

)

. (5.11)

Since jx ∼ vx, we observe a strong non-linear signal [Eq.(5.9)] with odd harmonics

(ω, 3ω, 5ω, · · · ) and relative amplitudes (1, 1/3, 1/5, · · · ). It is also striking that the

theory predicts the generation of odd harmonics at arbitrary low field strengths in this

example. However, to obtain the response from an ensemble of electrons in graphene

near the Fermi energy we need to find the total current by integrating over the different

initial electron momenta. As a result the nonlinearity in graphene is observed only at

finite (102 − 103 V/cm) field strengths (see discussion below).
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5.2 Time-dependent Dirac equation

In the previous section we obtained the equations of motion of classical relativistic

electrons. Let us now understand the response of graphene under the application of

an arbitrary in-plane field ~E(t) by solving the more general case of the time-dependent

Dirac equation for massive fermions (TDDE):

i~
∂

∂t
ψ = vF

(

∆ pe−iθ~p + |e| ~A(t)
peiθ~p + |e| ~A(t) −∆

)

ψ, (5.12)

where ∆ = mvF , and the band gap at the Dirac point is Eg = 2mv2F [see section 2.2],

~A(t) is the vector potential, and θ~p is the directional angle of the electron momentum,

i.e. θ~p = arctan(px/py). Within the Dirac picture we use the Fermi velocity vDF = 106

m/s. In the field-free case, the solution of the TDDE follows trivially from the solution

of the stationary equation [Eq.(2.5)]:

ψξ(~p) =

√

pξ −∆

2pξ

(

p
pξ−∆e

−iθ~p/2

e−iθ~p/2.

)

, (5.13)

multiplied by the corresponding phase

eiEξt/~, (5.14)

where ξ = ±1 is the band index and Eξ = ξvF
√

∆2 + p2. For non-zero field we first

consider the case of a field linearly polarized along the x direction and an electron

momentum parallel to the field, i.e. ~p = (px, 0). In this case, the TDDE has an analytic

solution [106, 114]:

ψξ(t) = ψξ(px, 0) exp

(

−iξ vF
~

∫

√

(px + |e|Ax(t))2 +∆2dt

)

, (5.15)

where ψξ(px, 0) is given by Eq.(5.13). The solution is similar to the field-free case,

however, with a modified temporal phase due to the time-dependence of the Hamiltonian.

We can extend the solution above to an arbitrary in-plane field and an arbitrary electron

momentum. To do this, we expand the single-electron wave function as:

ψ(t) =
∑

ξ

Cξ(t)ψξ(t), (5.16)

where

ψξ(t) = ψξ(~p) exp (−iξφ(t)) , (5.17)
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and the temporal phase is

φ(t) =
vF
~

∫

√

(px + |e|Ax(t))2 + (py + |e|Ay(t))2dt. (5.18)

Substituting this expansion [Eq.(5.16)] into the TDDE [Eq.(5.12)] yields a system of

differential equations for the coefficients Cξ(t). For the case of massless Dirac fermions,

i.e. ∆ = 0, it reads [106]:

Ċξ(t) =
i

2
θ̇~pC−ξ(t)e

2iξφ(t). (5.19)

The differential equations for the fermions with a finite mass, i.e. ∆ 6= 0 are more

difficult. We therefore numerically solve the time-dependent Dirac equation [Eq.(5.12)]

directly by searching for a solution in terms of a time-dependent spinor

ψ(~p, t) =

(

a(~p, t)

b(~p, t)

)

. (5.20)

After substituting this wave function into the TDDE [Eq.(5.12)], we arrive at another

system of differential equations, which we solve numerically:







i~
vF
ȧ = ∆a+ [px + |e|Ax(t)− i(py + |e|Ay(t))] b,

i~
vF
ḃ = −∆b+ [px + |e|Ax(t) + i(py + |e|Ay(t))] a.

(5.21)

Despite the use of Eq.(5.21) in the numerical treatment, the analytical solution Eq.(5.17)

is still very useful for understanding the essence of electron dynamics in graphene. We

will use it later along with the full numerical solution of Eq.(5.21).

5.2.1 Single-electron currents in the TDDE

We study electron dynamics by solving the TDDE numerically [Eq.(5.21)] and by ana-

lyzing the single-electron current given by [106]

~j(t) = (jx(t), jy(t)) = vF 〈ψ(t)|(σx, σy)|ψ(t)〉, (5.22)

where σx,y are the Pauli matrices. We start our discussion with the simplest case of

massless Dirac fermions (∆ = 0) subject to a linearly polarized laser field and moving

parallel to the field, i.e. py = 0. In this case the analytical solution [Eq.(5.15)] of the

TDDE reads:

ψξ(t) = exp

(

−iξ vF
~

∫

(px + |e|Ax(t))dt

)

(

e−iπ
4
(1−sgn(px))

ξei
π
4
(1−sgn(px))

)

. (5.23)
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Figure 5.2: Schematic electron motion on the Dirac cone with different initial mo-
menta and mass: (a) py = 0 and m = 0; (b) py 6= 0 and m = 0; (c) arbitrary py and
m 6= 0 results in a finite energy gap at the Dirac point. The top row of figures shows the
2D energy dispersions. The bottom row of figures displays cross-sections of the Dirac

cones with py = const plane.

It is easy to find the current using this analytical form of the wave function for the

conductance or the valence band

~j = (ξ, 0)vF . (5.24)

The current is obviously conserved and shows no response, as electrons with py = 0

undergo a complete population inversion and, therefore, a constant velocity when passing

the Dirac point [see Fig.5.2(a)].

The situation is different for py 6= 0. For states with an initial energy |E| = vF
√

p2x + p2y

larger than the maximal energy a particle can pick up from the pulse, i.e. Ec = vF |e|A0,

where A0 is the strength of the vector potential of the laser, the dynamics is governed

by the electron motion within one band, which is referenced to as the intraband current.

For smaller py and |E| . Ep, the electron can be excited to the conduction band through

interband Landau-Zener tunneling [115] inducing interband polarization and, therefore,
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an interband current. The tunneling probability [115] depends exponentially on the

smallest energy gap (∆E) between the two cones at the py = const conical intersection

[see Fig.5.2(b)]:

P =
|e|aωAx

h
e−α∆E2/ωAx , (5.25)

where α = π2mea/h
2|e| and a is the periodicity of the graphene unit cell. This prob-

ability P is exponentially small for large py (and, therefore, large ∆E) and the effect

of interband polarization can be neglected. The dynamics of Dirac fermions having a

linear dispersion with a finite band gap Eg is qualitatively similar [see Fig.5.2(c)]

To be more quantitative, suppose we know the solution of the TDDE [Eq.(5.12)] for the

coefficients Cξ [Eq.(5.19)] of the wave function expansion in Eq.(5.16). These coefficients

convey the evolution of the population in each band, which we describe by introducing

the population difference n = |C+|2 − |C−|2, and the interband coherence ρ = C+C
∗
−.

The single-electron current for any arbitrary py is then given by [106]

jx(t) = vF

(

n cos θ~p + i sin θ~p[ρe
−2iφ(t) − ρ∗e2iφ(t)]

)

,

jy(t) = vF

(

n sin θ~p − i cos θ~p[ρe
−2iφ(t) − ρ∗e2iφ(t)]

)

,
(5.26)

where the first term describes the intraband current and the last two terms describe the

interband polarizations. Notably, at t = 0 the current jx(t = 0) (jy(t = 0)) is propor-

tional to the cosine (sine) of the directional angle. If we neglect interband tunneling

processes by neglecting the second term in Eq.(5.26) and setting the population to only

one band n = ξ, we obtain an intraband current

jx = ξvF
px + eAx(t)

√

(px + eAx(t))2 + (py + eAy(t))
, (5.27)

which coincides with the classical solution in Eq.(5.7) as expected.

In order to test the solution of the time-dependent Dirac equation, we consider the

particular example of a few-cycle THz pulse linearly polarized along x [Fig.5.3]: Ax(t) ≡
A(t) = Aenv(t) sin(2πνt). We model a ν = 2 THz pulse with a period T = 0.5 ps and

the envelope:

A(t) = A0(t)











exp
(

− (t−1.1T )2

(0.67T )2

)

, if t <= 1.1T ;

exp
(

− (t−1.1T )2.7

(0.47T )2.7

)

otherwise,
(5.28)

where the amplitude of the vector potential A0 = E0/2πν is proportional to the laser

field strength E0 and inversely proportional to the laser frequency ω = 2πν. The pulse

shape is chosen to resemble the experimental pulse used for observation of nonlinear

harmonics in [21].
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Figure 5.3: The normalized electric field (green) and vector potential (blue) of a 2
THz linearly polarized laser pulse following the experiment [21].

5.2.2 Examples of single-electron currents

To provide examples of the solutions of the TDDE, we calculate the response of massless

Dirac fermions located in the valence band at t = 0 with different initial momenta

and energies: (i) with py = 0; (ii) with py 6= 0 and near the Dirac point E ≈ 0,

i.e. with energy much less than the maximal energy a particle can gain from the laser

field Ec = −vF |e|A0; (iii) with energy E ≈ Ec and py ≪ px; (iv) far away from the

Dirac point E ≪ Ec. In the first case of py = 0, the solution of the Dirac equation

yields a constant current [red line in Fig.5.4(a)] in line with the analytical prediction

[Eq.(5.24)]. In this situation the response is governed by the interband dynamics. This

is in contrast to the pure intraband current [Eq.(5.27)], which changes sign at the Dirac

point for an electron to stay within the valence band [green square wave in Fig.5.4(a)].

The windowed Fourier transform (WFT) [see Appendix A] of the calculated total wave

function [Fig.5.4(b)] confirms our analysis of total population inversion at the Dirac

point, i.e. E = 0, which is the reason of the constant current. The particle trajectory

in energy space alternates smoothly between the corresponding intraband trajectories

E±(t) = ξvF |px + |e|A(t)|, determined by the energy evolution of a relativistic electron

driven by the laser field, in the lower [black-white curve in Fig. 5.2(b)] and upper [white-

dashed curve in Fig. 5.2(b)] cones. The wave function of an electron moving only within

the valence band can be calculated using Eq.(5.17) for ξ = −1. The windowed Fourier

transform of this intraband wave function coincides with the intraband energy evolution

in the valence band [black-white lines in Fig.5.4(c)] and shows a sharp change of the

trajectory in momentum (energy) space at the Dirac point.

The current corresponding to the initial states (ii) and (iii) with py 6= 0 and E . Ec [see

red curves in Fig.5.4(d) and (g)] strongly deviates from the corresponding intraband

current [see green curves in Fig.5.4(d) and (g)] and the constant current of the (i)

case when py = 0. Moreover, it oscillates due to the presence of two parts of the
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wave packet simultaneously propagating in the valence and the conduction bands and

acquiring opposite phases. The intraband response does not show these oscillations

as the electron follows the classical pathway in the energy space while moving in the

valence band only [see Fig.5.4(f) and (i)]. The interband polarization appears as a

result of the Landau-Zener tunneling between the two bands at the point where the

wave packet in the energy space travels through the Dirac point. Part of the wave

packet then propagates within in the upper band [white dashed curves in Fig.5.4(e) and

(h)] while the other portion of the wave packet still follows the classical trajectory E(t)

in the lower band [black-white dashed curves in Fig.5.4(e) and (h)]. Their superposition

results in a beating of current with frequency 2φ(t) [Eq.(5.33)], since the two parts of

the wave packet acquire phases of opposite sign eiφ(t) and e−iφ(t) while moving on the

valence and the conduction cones [Eq.(5.17)]. The oscillations are time-dependent and

their frequency Ω(t) = φ̇(t) = (E+(t)−E−(t))/~ = 2E(t)/~ follows the evolution of the

energy difference between the two pathways. The analytical solution [Eq.(5.26)] predicts

oscillations in the current with this frequency [second term in Eq.(5.26)].

In the last case (iv) when px, py ≫ 0 and E ≫ Ec the calculated current [red curve

in Fig.5.4(j)] and intraband current [green curve in Fig.5.4(j)] coincide. In this case

the windowed Fourier transforms of the wave function obtained from the full solution

of TDDE and the intraband wave function [Eq.(5.27)] are the same [Fig.5.4(k) and

(l)]. Indeed, far away from the Dirac point the interband polarizations as well as the

tunneling probability [Eq.(5.25)] between the upper and lower cones approaches zero,

and the electron dynamics is well approximated by the intraband contribution only.

All the considered examples show a highly nonlinear response of the current to the laser

field. The anharmonic behavior of the current leads to the observed nonlinear response

in terms of far-field radiation which we discuss in detail in section 5.4.
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Figure 5.4: (a), (d), (g), (j) Red and green curves correspond to the single-electron
currents calculated within the TDDE and intraband currents for different initial con-
ditions: (a-c) ~p0 = (0.1, 0)p̃; (d-f) ~p0 = (0.1, 0.02)p̃; (g-i) ~p0 = (0.8, 0.1)p̃; (j-l)
~p0 = (1.0, 1.0)p̃, where p̃ = |e|A0 is the maximal momentum an electron can gain
from the laser vector potential with an amplitude A0. Windowed Fourier transform of
the wave function (b), (e), (h), (k) and the intraband wave function (c), (f), (i), (l).
Black-white and white dashed curves correspond to the classical trajectory in energy (or
momentum) space [Eq.(5.6)] for the electron motion in the valence and the conduction

bands respectively.
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Figure 5.5: (a) Eigenstates of a Lx×Ly = 250×25 nm2 flake with periodic boundary
conditions in x-direction and screened zigzag boundaries parallel to the x-axis (blue
dots). Black curves correspond to the bandstructure of the infinite ZGNR of the same
width Ly with screened boundaries. The bandstructure of the flake revels a bandgap
Eg ≈ 64 meV. Green, black and red triangles denote the eigenstates, for which we show
the single-electron current in (b) calculated within TDTB. Blue curve in (b) represents

the renormalized vector potential of the laser.

5.3 Time-dependent tight-binding approximation

Another way to approach the problem of the electron dynamics in graphene is to solve

the time-dependent Schrödinger equation with the third-nearest-neighbor tight-binding

Hamiltonian [section 2.3]:

i~
∂

∂t
ψ(t) = HTBψ(t) (5.29)

We will apply the time-dependent tight-binding approximation (TDTB) to large finite

size structures to approximate the behavior of bulk graphene. The great advantage of

the method is the opportunity to study the influence of disorder or a substrate on the

response of graphene. We include the laser pulse through its vector potential (velocity

gauge) using the Peierls phase factor [Eq.(2.46)]. We solve the Schrödinger equation

[Eq.(5.29)] numerically using a Short Iterative Lanczos propagator (SIL) [116] [see Ap-

pendix B]. The SIL is a powerful method for finding the wave function described by

a complex vector for a Hamiltonian given by a large, sparse matrix. SIL propagates

the wave function at each time step, allowing for variations in the time-steps for the

time-dependent Hamiltonian.

5.3.1 Single-electron currents in the TDTB

As the single-electron response in the TDTB approximation applied to a finite size

graphene flake we consider the evolution of an nth eigenstate ψn(t) in a laser field.
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A single-electron current is then determined by the quantum mechanical probability

current:

jnx (t) =
1

2m

{

−i~
(

ψn(t)
∗ ∂

∂t
ψn(t)− ψn(t)

∂

∂t
ψn(t)

∗

)

+ 2|e|Ax|ψn(t)|2
}

. (5.30)

To provide a numerical example, we first calculate the eigenstates of a rectangular gra-

phene flake with dimensions Lx×Ly = 250×25 nm2 with periodic boundary conditions

in x-direction, i.e. the pulse polarization direction. We screen the zigzag edges parallel to

the x-direction with a Berry-Mondragon potential [86] to avoid the high density of edge

states at the Dirac point. The eigenstates of the flake in the field-free case [Fig.5.5(a)

blue points] feature two inequivalent K and K’ Dirac cones and closely resemble the

bandstructure of the infinite zigzag graphene nanoribbon of the same width Ly with

likewise screened edge [see black curves in Fig.5.5(a)] also calculated within the third-

nearest-neighbor tight-binding approach. To resolve the eigenstates of the flake as a

function of kx, we calculated the Fourier transform of the corresponding eigenfunction

[as described in section 2.8]. We then find kx as a local maximum of the Fourier trans-

form near each cone and assign one eigenstate to kx near K and another one to k′x near

K’ in order to disentangle the two degenerate states near K and K’. It is evident that,

unlike the solution of the TDDE where the initial single-electron wave function can have

any momentum of the continuous Dirac spectrum, the eigenstates of the flake allow for

probing of the electron dynamics only for discrete values of momentum. Moreover, in

the distribution of eigenstates, we observe a clear size quantization in y-direction and a

band gap Eg = 64 meV [Fig.5.5(a)]. The effect of the size quantization and the finite

band gap can be reduced by increasing the flake size at additional computational cost.

For the chosen parameters of the flake, the single-electron currents [Fig.5.5(b)] reveal

similar features to those discussed in subsection 5.2.1 for the single-electron currents

calculated within the TDDE [Fig.5.4(a, d, g, j)]. In particular, for an initial state

ψn(t = 0) corresponding to an eigenstate of the flake away from the Dirac point [marked

by a black triangle in Fig.5.5(a)], we observe the suppression of the interband response,

and the dynamics is governed by the intraband motion [see black curve in Fig.5.5(b)].

For the initial states ψn(t = 0) in the vicinity of the Dirac point [marked by red and

green triangles in Fig.5.5(a)], the laser-induced tunneling between the cones creates an

interband polarization, which we observe as high frequency oscillations in the current [see

green and red curves in Fig.5.5(b)]. However, the response of graphene calculated using

the TDDE and the TDTB are different due to differences in the band structure, i.e. the

presence of size-quantization and a non-zero band gap in our tight-binding approach.
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5.4 Simulation of the experiment: TDDE versus TDTB

The physical observable in the experiment [21] was the far-field response of graphene,

which clearly revealed the presence of the odd harmonics in the power spectrum. The

electromagnetic field generated by the moving charges in graphene due to the interaction

with the laser pulse is determined by the dipole acceleration of the charge carriers ~̈d(t)

in the far-field approximation. The squared Fourier transform of the dipole acceleration

yields the power spectrum:

P (ω) ∝
∣

∣

∣

~̈d(ω)
∣

∣

∣

2

=
∣

∣

∣ω ~̇d(ω)
∣

∣

∣

2

. (5.31)

Since both current and first derivative of the dipole moment are proportional to the

velocity, we can equivalently write

P (ω) ∝
∣

∣

∣ω ~J(ω)
∣

∣

∣

2
, (5.32)

where ~J(ω) is a Fourier transform of the total current given by [114]

~JTDDE(t) =
nsnv|e|
(2π~)2

∫

~j~p(t)d~p,

~JTDTB(t) = ns|e|
∑

n

~jn(t),
(5.33)

with ns = 2 and nv = 2 the spin- and valley-multiplicity. We assume that at t = 0

electrons in graphene occupy the valence band up to the Dirac point, i.e. EF = 0. The

states in the conduction band are empty. The single-electron current ~j(t) is calculated

either by solving the TDDE or the TDTB. The integration is performed over the uniform

momentum distribution ~p for the TDDE or by summation over the eigenstates of a

graphene flake for the TDTB. We consider electrons in the valence band with energies

0 ≤ E ≤ −0.33 eV at t = 0 to capture all the states reaching the Dirac point for the

pulse strengths we examine. We focus only on the far-field response parallel to the

polarization axis of the laser, i.e. we evaluate ~Jx and calculate the power spectrum P (ω)

only for this component of the total current. The y component of the current is zero for

a symmetric distribution of py.

The power spectrum [Eq.(5.32)] of the integrated intraband response [see Fig.5.6 (a-e)]

calculated using Eq.(5.27) shows the formation of the third and the fifth harmonics

starting from the field strength of E0 ≈ 20 kV/cm. The harmonic strengths grow with

laser intensity. The power spectrum of the integrated current [Eq.(5.33)] calculated

using the TDDE for massless fermions [Eq.(5.21)] is similar to the intraband response

[see Fig.5.6 (f-j)] but has more structure due to the additional interband polarizations.
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Figure 5.6: (a) Nonlinear far-field intraband response represented by power spectrum
[Eq.(5.32)] (in color) as function of laser field strength and harmonic energy. Vertical
dashed lines denote the low odd harmonics. (b-e) The cuts through (a) for different
field strengths: (b) E0 = 20 kV/cm, (c) E0 = 30 kV/cm, (d) E0 = 40 kV/cm and (e)
E0 = 50 kV/cm. (f) Same as in (a-e) but for the power spectrum evaluated within the
TDDE, which includes both intraband and interband contributions. In all figures, the
blue curves are the power spectrum of the pulse itself and the black curves represent

the measured response adapted from [21].

In particular, the interband current leads to a stronger nonlinear response at low fields

in comparison with the intraband contributions. The onset of odd harmonic generation
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Figure 5.7: Same as in Fig.(5.6), but for nonlinear responses evaluated by solving
TDDE with a finite band gap Eg = 64 meV (a-e) and for nonlinear responses evaluated

within TDTB (f-j). Vertical dashed lines denote the low odd harmonics.

is again at about E0 ≈ 20 kV/cm. The nonlinear response becomes more pronounced if

we calculate the power spectrum of the integrated current [Eq.(5.33)] using the TDDE

with a band gap of Eg = 2vF∆ = 64 meV [see Fig.5.7 (a-e)] as compared to the

response of massless Dirac fermions [see Fig.5.6 (f-j)]. Obviously, the presence of the

gap reduces the interband polarization, which is responsible for the fluctuations in the

signal. The solution of the TDDE for the fermions with finite mass can be compared
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Figure 5.8: (a) First, third and fifth harmonic intensities as function of laser field
strength of the intraband response (red) and the response calculated within the TDDE
(green). (b) Same as (a), but for the low harmonic response determined within the
TDDE for electrons with a finite mass due to a band gap Eg = 64 meV in the energy

dispersion (green) and the response calculated within TDTB (blue).

with the solution of the TDTB equation [Eq.(5.29)] applied to the finite size ribbon [see

Fig.5.7(f-j)], since the ribbon also features a band gap of ≈ 64 meV [see the eigenstates

of the ribbon in Fig.(5.5)(a)]. We again observe a qualitatively similar behavior between

these two approaches. However, in the power spectrum of the TDTB we find larger

intensities at 70-100 meV, which correspond to dipole excitations between the different

subbands of the ribbon [see Fig.5.5(a)]. We finally compare odd harmonic intensities as

function of the laser field strength calculated with different methods [see Fig.5.8]. We find

comparable harmonic behavior as function of pulse amplitude. The experimental values

of the harmonic intensities [black triangles in Fig.5.8], taken from [21] and normalized

to the first harmonic of the TDDE response at 40kV/cm, are in reasonable agreement

with the calculated response.

We emphasize the excellent overall agreement of all the calculations with the exper-

imental power spectrum for the field strength of E0 = 40 kV/cm [21] [compare the

calculated power spectrum in green with an experiment in black in Fig.5.6 (d),(i) and

Fig.5.7 (d),(i)]. The only adjustable parameter is the overall normalization to the peak

intensity of the linear response, i.e. the first harmonic. There are, however, several no-

ticeable deviations. First of all, the methods underestimate the intensity of the fifth

harmonic, which we explain in the following section as a result of non-zero doping of the

samples. Secondly, the experimental data shows the presence of the second harmonic.

The second-order nonlinearity appears due to the presence of disorder, for example grain

boundaries, edges, vacancies etc., which allow for local inversion symmetry breaking re-

sulting in the back scattering of the laser driven electrons in real space. In the next

subsections we, therefore, provide a thorough discussion of the influence of non-zero

doping [subsection 5.4.1] and disorder [subsection 5.4.2]. We consider the effect of short-

and long-range disorder within the TDTB approximation.
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Figure 5.9: Specttal power of the nonlinear harmonic response of graphene at different
doping levels for E0 = 40 kV/cm laser pulse. The response is evaluated within (a)
TDDE and (b) within TDTB. The blue curves are the power spectrum of the pulse
itself and the black curves represent the measured response adapted from [21]. (c)
First, third and fifth harmonic intensities as function of laser field strength for the
response evaluated within TDDE with a band gap Eg = 64 meV (green) and within
TDTB (violet) at the Fermi level of 50 meV. (d) Zoom in of the first harmonic in (b)

for different amount of doping, i.e. EF .

5.4.1 Influence of doping

All the calculations above were performed for zero doping of graphene, as we considered

only the occupied states up to the Dirac point, and Fermi energy EF = 0. In the exper-

iment, however, this is not the case due to finite doping of the samples. The influence of

the doping on the harmonic intensities can be large. The response near the Dirac point

is very sensitive to interband polarizations, which may lower the harmonic intensities.

By changing the doping or by changing EF this high frequency interband-induced os-

cillations in the current can be reduced and stronger intraband signal with higher odd

harmonics can be observed. The influence of doping was theoretically considered in

[105] while solving the kinetic Boltzmann equation. Al-Naib et al. [104] examined the
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maximization problem of the emitted third harmonic as a function of Fermi energy for

the intraband response. In this subsection we follow up on this discussions and calculate

the response of graphene within the TDDE and the TDTB approximations at E0 = 40

kV/cm for different values of EF [see Fig.5.9(a,b)]. Within our single-electron picture,

we calculate the total current [Eq.(5.33)] by integrating over k-space including electron

energies up to EF in the TDDE approach (in the same way as we did for EF = 0) and

by summing the response of eigenstates with energies up to EF in the TDTB.

The change in Fermi level has a dramatic influence on the harmonic spectra of the total

current. In particular, we observe one to two orders of magnitude increase of the 5th

harmonic in both TDDE and TDTB solutions. Its amplitude becomes comparable with

experiment upon changing EF . This indirectly confirms the non-zero doping of the

graphene samples used in [21]. However, in the experiment [21] a direct measurement

of the doping was not possible. A doping level of EF = 24 meV was deduced from

fitting the measured signal to the Drude model. We also find a more pronounced 7th

harmonic as the doping level increases. The strength of the 7th harmonic is maximal

at EF ≈ 50 meV and decreases at higher EF . Notably, the response for the same

absolute value but different sign of the Fermi energy is very similar [compare, e.g., the

responses for EF = 50 meV and EF = −50 meV shown as light orange and dark orange

traces in Fig.(5.9)(b)]. In comparison to the evaluation of the integrated current for

zero doping, i.e. EF = 0, the summation in Eq.(5.33) excludes states with energies

−|EF | > −|E| > 0 for negative Fermi energies, while for positive Fermi energies states

above the Dirac point with energies 0 < E < EF are included in the sum. States with the

same momentum and absolute value of the energy but belonging to upper and lower cones

produce nearly identical currents with opposite sign (within the Dirac picture the current

are exactly opposite) and, therefore, approximately cancel each other [see false color plor

in Fig.5.10: currents for the states in the upper and the lower cones have opposite sign].

Therefore, the resulting current from the energy window −|EF | < E < EF is nearly zero

producing a negligible response. Since the difference between the currents evaluated for

the occupied states up to +|EF | and up to −|EF | is the current produced by the states

with −|EF | < E < EF , the integrated current does not change leading to the same

nonlinear response for the opposite doping levels. The magnitude of the 3rd and 5th

harmonics in our calculations agree well with the experiment when doping is taken into

account [see Fig.5.9(c)]. Both, the TDDE and the TDTB methods give qualitatively

and quantitatively very similar results: the harmonic strengths as a function of the field

amplitude E0 are comparable [see Fig.5.9(c)].

We also note a change in the intensity of the linear response [see close up of the first har-

monic in Fig.5.9(d)]. The reduction of the first harmonic amplitude, i.e. linear response

j
(1)
x (ω) = σ(1)(ω)Ex(ω) [Eq.(5.9)] is correlated with the decrease of the amplitude of the
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total current. The decline of the total current with EF or doping concentration obvi-

ously reduces the optical conductivity. This result, however, contradicts experimental

observations [117] of a growing optical sheet conductivity with the applied back gate

voltage outside of the charge neutrality point (CNP). The experiment [117] were per-

formed on graphene grown by chemical vapor deposition and placed on SiO2 with a Si

substrate used as back gate. The optical conductivity was obtained by measuring the

THz transmission amplitude through the graphene sample with different Vbg applied.

The increase of the conductivity with the doping level away from the CNP was explained

by a simple Drude model, which described classical electron transport: the conducting

electrons move on straight trajectories in the solid between inelastic collisions with, for

example, atoms in the lattice or other electrons (the exact scattering mechanism in the

Drude model is unimportant). The optical conductivity within the Drude model in

application to graphene reads [117]

σ(ω) =
e2

~

2kBT

π~

[

ln
(

e−EF /kBT + eEF /kBT
)] 1

1/τ − iω
, (5.34)

where kB is the Boltzmann constant, T is the temperature and τ is the scattering time.

Near the CNP in the region of charge puddles and trap states [see also subsection 3.2.1],

the optical conductivity remains constant and is proportional to T . Away from the

CNP σ(ω) ∼ EF . The Drude model includes effective scattering, which influences the

collective electron dynamics. Therefore, the difference between the theory presented here

and the experiment can be explained as a result of electron-electron, electron-phonon

and other scattering mechanisms which we neglect completely.

5.4.2 Influence of disorder

Another issue we address is the presence of second-harmonic generation (SHG) in the

experiment [21] The second-order nonlinear response to a linear polarized continuous

laser field is

j(2)x = σ(2)ExE
∗
x, (5.35)

where σ(2) is the optical conductivity tensor describing second-order nonlinearity [see

Eq.(5.9)]. This equation describes the so-called linear photogalvanic effect [118, 119].

In pristine graphene, i.e. with no local symmetry reduction due to bulk disorder or

edges, the quadratic form ExE
∗
x does not change its sign under parity transformation

in contrast to the current. Therefore, the SHG is zero unless the lattice symmetry is

broken, which leads to increased back scattering of electrons and hence the opposite to

the direction of the field current flow. In our tight-binding simulations we can account

for different types of disorder. Major candidates for local symmetry breaking in real
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Figure 5.10: (a-b) Time evolution of single-electron currents (in color) corresponding
to different eigenstates of a rectangular flake calculated within TDTB in the disorder-
free case (a) and in the case of short-range disorder (b) simulated by adding single
vacancies (with density nv = 1.3 · 10−4Å−2). (c-f) A comparison between the single-
electron currents produced by the 330th (d,f) and 336th (c,e) eigenstate of the flake
driven by the laser field. Black curves show the current in a disorder-free flake, whereas
red curves correspond to the current in a flake with (c-d) short-range and (e-f) long-
range (with correlation length lcor = 10 nm and amplitude of 50 meV) types of disorder.

crystals are vacancies [54] (short-range disorder) and charge puddles [55] (long-range

disorder). We calculate the response of a graphene flake in the presence of disorder to

a laser pulse [Eq.(5.28)] for a laser intensity of 40 kV/cm using time dependent tight-

binding (TDTB). The single-electron current is given by the time propagation of an

eigenstate of the disordered flake.

We first examine the effect of randomly distributed single vacancies. The influence

of other short-range defects is expected to be qualitatively similar. First of all, we

observe a dramatic change in the single-electron current jn(t) calculated for a flake

with single vacancies [Fig.5.10(b) and red curves in Fig.5.10(c) and (d)] as compared
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Figure 5.11: The time evolution of the integrated current [Eq.(5.33)] calculated within
the TDTB approximation for different number of randomly distributed over the flake

single vacancies.

to the disorder-free case [Fig.5.10(a) and black curves in Fig.5.10(c) and (d)] . Within

each half-cycle of the pulse the current decreases, due to electron backscattering at the

vacancies. The total (integrated) current [Eq.(5.33)] calculated for a pulse strength of

40 kV/cm [Fig.5.11] displays a pronounced decrease of its amplitude with increasing

amount of short-range disorder due to the enhancement of electron back scattering.

Furthermore, in the presence of disorder the response is out of phase with the vector

potential [blue curve in Fig.5.11, the ideal current denoted in red in Fig.5.11 is perfectly

in-phase with the vector potential]. The current is leading the vector potential and the

phase shift increases with increasing disorder. We note that we only consider elastic

disorder scattering processes with the amount of disorder resulting in shortest elastic

scattering times of ≈ 100 fs. Including the energy loss in theoretical calculations [105]

leads to a similar phase shift of the current.

The power spectrum [Eq.(5.32)] of the total response of the graphene flake in the presence

of short-range scatterers [Fig.5.12(a)] clearly shows the SHG. The intensity of the second-

order nonlinearity increases with increasing number of vacancies. In contrast, long-range

disorder does not lead to the appearance of the second-order harmonic [Fig.5.12(b)]. We

model long-range disorder as smooth random modulations of the on-site energies with

amplitude a = 50 meV and correlation length lcor =10 (or 25) nm in the tight-binding

approximation. This potential describes charge puddles in graphene on SiO2 [55]. Note

that lcor is much smaller than the classical quiver amplitude x0 = |e|A0/mω = 180 nm at

E0 = 40 kV/cm. Long-range disorder does not allow for K-K’ (intervalley) scattering and

the intravalley back scattering is very weak. Therefore, there is no second-order response

as compared to short-range disorder, which induces strong intervalley back scattering

of electrons. Indeed, long-range disorder does not significantly reduce single-electron
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Figure 5.12: Power spectra of the far-field response calculated within the TDTB
for different amount of disorder: (a) for different number of single vacancies and (b)
for different correlation lengths of the smoothly varying random potential landscape.
Arrows mark the second harmonic, which is only present in the case of short-range

disorder.

currents generated by the eigenstates of the flake [red curves in Fig.5.10(e)] as compared

to the single vacancies [red curves in Fig.5.10(c)]. Although the long-range disorder

lowers the magnitude of the single-electron currents [red curves in Fig.5.10(e,f)], their

contours still follow the currents of the disorder-free case [black curves in Fig.5.10(e,f)].

Notably, the interband polarizations manifesting themselves as oscillations of the cur-

rent decrease [red curve in Fig.5.10(e)] in comparison with the disorder-free case [black

curve in Fig.5.10(e)] presumably due to the disorder-induced dephasing of the signal,

i.e. dephasing between the two electron paths moving within the conduction and valence

bands [see discussion in subsection 5.2.2 and Fig.5.4].

5.5 High-harmonic generation in graphene

One important aspect of nonlinear optics is high-harmonic generation in systems inter-

acting with strong laser pulses. This nonlinear phenomenon was first discovered in gases

[22, 23]. In strong femtosecond laser fields an electron can leave the atomic core through

above threshold ionization (ATI) and recombine with the core as the field reverses, emit-

ting a single high-frequency photon [24]. The recombination and emission of photons in

gases creates a train of attosecond pulses. The harmonic spectrum of such a pulse train

reveal a sharp cut-off [22, 23], which scales linearly with the laser intensity or parabolic
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with the laser field amplitude. By contrast, recent studies of solid crystals, e.g., ZnO

[25], GaSe [26], and SiO2 [113] subject to intense laser pulses revealed high-harmonic

generation with a cut-off energy scaling linearly with the laser field, i.e. with the square

root of the laser intensity. This fundamental difference in the behavior of gases and

solids sparked a lot of discussions [26, 113, 120–123].

Within a single-band model [25, 113, 124] the appearance of high-harmonic generation

(HHG) in semiconductors was attributed to the nonlinear intraband response as a result

of the nonparabolicity of the band. Within this model the cut-off frequency ωc of

the broadband HHG spectra is predicted to be proportional to the Bloch oscillation

frequency ΩB = |e|aE0/~, i.e. the largest possible frequency in the one band model.

Here a is the lattice constant and E0 is the electric field amplitude of the laser. The

same scaling behavior of ωc was derived as a result of transitions between Wannier-

Stark states separated by multiples of ~ΩB in Ref. [125]. However, this model fails to

predict the harmonic generation with odd frequencies of the driving field ω in the spectra

observed in various experiments.

Alternative approaches to HHG in solids based on the inclusion of multiple bands [120–

123] anticipate that the HHG is governed not only by the anharmonic electron motion

within one conduction band but by a complex interplay between intraband and interband

responses. More precisely, this interplay results in interband polarizations dominating

the high energy part of the spectra and the harmonic cut-off. For example, in Refs. [121,

122] the cut-off is given by the maximal energy difference between the valence and

conduction bands. The cut-off frequency ωc scales as E0/ω or equally as strength of the

vector potential of the laser pulse A0.
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Figure 5.13: (a)-(c) Integrated (top) and time-resolved (bottom) power spectrum
[Eq.(5.32)] of the far-field response of the graphene to a 2THz, 2-cycle Gaussian laser
pulse with zero carrier envelope phase. The amplitude of the laser field: (a) E0 =
20 kV/cm, (b) E0 = 30 kV/cm and (c) E0 = 40 kV/cm. We use linear dispersion
E = vF p = vF |e|A(t) to plot the vector potential (black-white curve), starting from
the critical energy |Ec| = vF |e|A0. Solid red lines show the theoretically estimated
harmonic cut-off Uc. Dashed red lines correspond to 50 % of the Uc (d) Theoretically
estimated (red line) and computed (black dots) harmonic cut-offs as function of the

laser field strength.
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In this section we address the question of the importance of the interband polarizations

on the spectra of a qualitatively different material - the monolayer graphene. Consider

first the response of graphene to a 2THz, two-cycle laser pulse with a Gaussian envelope

and zero carrier envelope phase. The calculated high-harmonic spectra [see Fig.5.13(a-

c)] for different laser strengths consist of three main regions: (i) a pronounced part of

low frequency harmonics exponentially decaying as a function of ω; (ii) a central plateau

region; and (iii) a sharp cut-off at high frequencies. Similar spectra were first observed

in laser-irradiated gases [22, 23]. The generation of high frequency photons in gases is

explained through recombination of the ionized electrons with their ionic cores. The

kinetic energy gained by an electron propagating in the laser field determines the energy

of the radiation emitted, when the electron recombines with its core. The cut-off Uc is

given by the maximal kinetic energy gain after which an electron can still return back

to its core and is estimated as [24]

Uatoms
c = Ip + 3.17Up = Ip + 3.17e2E2

0/4mω
2, (5.36)

where Ip and Up are the ionization potential of the atom and the ponderomotive energy

respectively [24, 126] defined as the average quiver energy of the oscillating electron in

the laser field. It scales as the square of the vector potential A0. The reason for the

cut-off can be explained as follows. The time-evolution of the ionized electron (due to

the ATI) can be approximated using classical equations of motion. To generate a photon

through recombination with the ionic core, the electron needs to return back to its ion

at some later time. A precise analysis of such classical trajectories reveals that the

maximum classical electron kinetic energy upon the return is 3.17Up, determining the

cut-off [24]. Notably, the cut-off is proportional to the square of the vector potential (or

to the laser intensity, i.e. E2
0). By contrast, the linear dispersion of graphene results in a

cut-off energy linearly proportional to the vector potential [see black dots in Fig.5.13(d)].

The HHG cut-off Uc in graphene and in atoms depends not only on the amplitude of

the laser field, but also on the laser frequency.

To gain an understanding on how the harmonic spectrum is formed and within what

time frame the highest possible harmonics are generated we perform a windowed Fourier

transform of the total current [see bottom figures in Fig.5.13(a-c)]. Interestingly, a time-

resolved analysis of the Fourier spectrum shows the appearance of very high harmonics

right after the maximum of the vector potential Amax. The highest harmonic develops

at the subsequent minimum of the vector potential Amin. For the rest of the laser pulse

the spectrum stays broad but confined to energies below 50 % of the cut-off energy. The

appearance of high harmonics within a narrow time window and their energy cut-off

can be understood as follows. Consider an electron with initial electron momentum

px ≈ −|e|A0 (py << px) and energy Ec ≈ −vF |e|A0 [Fig.5.14(a) at t0], which coincides
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Figure 5.14: (a) Schematic interpretation of high energy harmonic generation in
graphene and the harmonic cut-off. The depicted state contributes to the energy cut-
off. At t0 = 0 a state has an energy Ec and momentum px ≈ −|e|A0 (but py 6= 0).
At the maximum of the vector potential (at time t1) the state momentum is ≈ 0 and
its energy reaches the minimal cross-sectional (with py = const) band gap allowing for
enhanced Landau-Zener tunneling between the two bands. Two paths then propagate
within conduction and valences cones. The maximal energy distance between the two
trajectories at the minimum of the vector potential (at time t3) give rise to the cut-off
energy. (b) Windowed Fourier transform of a wave function Ψ(t) evaluated by solving
the TDDE with an initial momentum ~p = (px, py) = (−0.9, 0.1)|e|A0 and an energy
close to Ec. (c) Time-evolution of the single-electron current (red curve) evaluated for
the same wave function Ψ(t) as in (b). The corresponding intraband current (for a state
moving only within one band) is shown in green. We multiplied the intraband current

by -1 for better visibility. Blue curve represents the vector potential of the laser.

with the maximal energy a Dirac electron can pick up from the laser field. Then,

at the maximum of the vector potential this electron is brought close to the Dirac

point px = px0 + |e|A0 = 0 by the laser [Fig.5.14(a) at t1], where part of the electron

wave packet can be excited to the conduction band through interband Landau-Zener

tunneling [115]. Superposition of the two wave packets results in the oscillations of

the single-electron current jx(t). The oscillation frequency is determined by the phase

difference between the two wave packets, Ω(t) = (E+(t) − E−(t))/~ = 2E+(t)/~ [106]

[as discussed in subsection 5.2.1]. The maximal possible phase and, therefore, energy

difference between the two (conduction and valence band) pathways is achieved at the

minimum of the vector potential [Fig.5.14(a) at t2], i.e. ≈ 2vF |e|(Amax − Amin), and

determines the energy cut-off

Ugraphene
c = 2vF |e|(Amax −Amin)

≈ 4vF |e|A0 = 4vF |e|E0/ω,
(5.37)

being proportional to A0. Notably, the cut-off depends not only on the field strength,

but also on the driving frequency similar to Uatoms
c [Eq.(5.36)]. The cut-off predicted for

Bloch oscillating electrons within a single cosine-like band model does not show any fre-

quency dependence. Even if the single band model includes (small) higher order Fourier

components to correctly reproduce the bandstructure [113], the frequency dependence of
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Figure 5.15: High-harmonic generation in graphene: the total nonlinear response of
graphene is shown in black; red trace corresponds to the response of electrons near
the Dirac point with energies 1.1Ec < E < 0, these electrons contribute to the high-
harmonic part of the spectra; the response of electrons away from the Dirac point with
E < 1.1Ec is shown in green, it reveals only rapidly decaying odd harmonics at low

energies.

the cut-off energy is expected to be weak. Our theoretical estimate of Ugraphene
c [see solid

red lines in Fig.5.13(a-c) and Fig.5.13(d)] agrees well with simulations [see black dots in

Fig.5.13(d)]. The small deviation between theoretical estimate and calculations can be

explained by the tunneling and interband polarization for electrons with energies below

|Ec|. The probability of such events, however, decays exponentially with increasing |E|.

To further support the discussion above and to provide an example of a trajectory in

the energy space contributing to the harmonic cut-off, we solve the TDDE for an initial

state with ~p = (0.8, 0.1)eA0 and E = −0.8vF |e|A0. The windowed Fourier transform

of the calculated wave function ψ(t) describes the energy evolution E(t) of the wave

packet [Fig.5.14(b)]. Apparently, the two wave packets are formed near the minimum of

the vector potential at t & t1. The two wave packets gain the largest phase difference

at the maximum of the laser pulse, t ∼ t2, as we described above. Moreover, the

single-electron current [red curve in Fig.5.14(c)] evaluated by using Eq.(5.22) reveals

oscillations. There is an obvious correlation between the frequency of these oscillations

and the phase difference between the two wave packet propagating within the valence

and conduction bands. In particular, the oscillations are present only if two wave packets

are formed due to the tunneling process while passing near the Dirac point, i.e. at times

t & t1 [see red curve in Fig.5.14(c)]. They are the fastest, when the phase difference

between the two wave packets (or the energy difference between the two pathways Eξ(t)

along which the wave packets propagate in the laser field) is maximal. The intraband

current [green curve in Fig.5.14(c)] calculated for an electron moving only within the
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valence band does not show such oscillations. It coincides with the total current [red

curve in Fig.5.14(c)] only at the beginning of the pulse, i.e. t . t1, when the electron

moves only within the lower band.

Electrons above the energy Ec and up to the Dirac point can tunnel between the two

cones similarly producing single-electron currents resulting in a complex mixture be-

tween intraband and interband contributions. These electrons form the broad harmonic

plateau as well as decaying low harmonics. Electrons with energies below Ec have an

exponentially small tunneling probability between the two cones and, hence, produce

only an intraband current. We confirm these statements by calculating the integrated

response of electrons with E . Ec [see green trace in Fig.5.15]. The harmonic spectrum

shows only rapidly decaying odd harmonics due to the intraband current at low ener-

gies. Note that this current does not probe the vicinity of the sharp Dirac point and,

therefore, produces an exponentially decaying response. The other features, such as the

plateau and the harmonic cut-off, are absent. Electrons with energies Ec . E ≤ 0, on

the other hand, account for the most part of the high-harmonic spectrum [see Fig.5.15

red trace], and in high energies (up to the cut-off energy) their contribution coincides

with the total response [see Fig.5.15 black trace].

In the time-resolved Fourier spectrum we observe another cut-off after the pulse is over

[denoted by dashed red lines in Fig.5.13(a-d)]. This cut-off originates from the residual

interband polarizations after the end of the pulse. The maximal oscillation frequency

in the single-electron current is governed by the same types of trajectories (in energy

space) that give rise to the main cut-off [Fig.5.14(b)]. After the pulse is over the wave

packet in the lower band returns to its initial state with energy −|Ec| and the wave

packet in the upper band correspondingly returns to a state with |Ec|. The frequency

of the oscillations of the current produced by the superposition of these two states is

Ω = (E+ − E−)/~ = 2|Ec|/~, which results in a cut-off with 50 % of the cut-off energy

Ugraphene
c .

It is also important to note that the carrier envelope phase (CEP) of the laser pulse does

not induce an additional effect to the cut-off energy [Fig.5.16(a)], but can modify the

details of the high energy tail. In particular a Gaussian envelope pulse with CEP of π/2

causes a more chaotic pattern near the cut-off as compared to the pulse with zero CEP

[Fig.5.13(b)]. Longer pulses, for example, a Gaussian 10-cycle envelope pulse with zero

CEP [Fig.5.16(b)], also do not introduce any change in the scaling of the cut-off and

its estimate [Eq.(5.37)], but modify the harmonic spectra in the high-harmonic tail in a

similar way as for a short pulse with CEP of π/2. In both cases the change in behavior

near the cut-off can be assigned to the intercycle processes, i.e. the generation of high

energy trajectories within the different laser cycles. Since for the short laser pulses with
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zero CEP the high energy trajectories contributing to the high energy part of the spectra

are generated only within one laser cycle, the high energy tail of the spectra is smooth.

Furthermore, we stress that Ugraphene
c is proportional to the Fermi velocity, which may

allow for an independent way to extract vF in the experiment, i.e. by analyzing the

high-harmonic cut-off. For example, the Fermi velocity of graphene in our tight-binding

approximation is v0F = 0.78 · 106 m/s. The HHG spectra for graphene evaluated within

the TDDE with changed value of Fermi velocity from vDF = 106 m/s to v0F [Fig.5.16(c)]

and the HHG calculated within the TDTB approach [Fig.5.16(d)] feature a cut-off shifted

to lower energies in accord with our estimate of Ugraphene
c [Eq.(5.37)]. Notably, these

harmonic spectra calculated within the TDDE and the TDTB [Fig.5.16(c) and (d)] show

overall comparable behavior. The differences in the two signals arise from the different

approximate treatment of the graphene bandstructure in these two approaches.
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Figure 5.16: Same as in Fig.5.13. High armonic spectra of graphene subject (a) to a
2-cycle Gaussian 2THz laser pulse with carrier envelope phase (CEP) of π/2; (b) to a 10-
cycle Gaussian 2THz laser pulse (CEP=0). (c-d) to a 2-cycle Gaussian 2THz laser pulse
(CEP=0). In all figures the pulse strength is 30 kV/cm. Response in (c) is calculated
within the TDDE, however, with a reduced value of Fermi velocity v0F = 0.78 · 106
m/s equal to the Fermi velocity of graphene in our tight-binding approximation. (d)
The high-harmonic spectra of graphene within the TDTB. In (c-d) the cut-off energy
is shifted as compared to Fig.5.13(b) calculated within TDDE with vDF = 106 m/s due

to a smaller value of the Fermi velocity v0F .



Chapter 6

Summary

In this thesis we touched only a few problems of graphene science. Our research was

mainly motivated by the following recent experiments: (i) measurements of electrical

conductivity in graphene nanoconstrictions [27]; (ii) measurements of electronic and

optical properties of graphene on hexagonal boron nitride [15, 18]; and (iii) the measured

nonlinear optical response of multi-layer graphene [21]. These experiments inspired

us to attempt a detailed theoretical description which is based on the Dirac and the

third-nearest-neighbor tight-binding approximations. Both methods have advantages

and disadvantages. A solution of the Dirac equation provides insight on the properties

of bulk graphene, but in this approach the bandstructure of graphene is oversimplified,

for example, trigonal warping and electron-hole asymmetry are neglected. These issues

can be resolved in the tight-binding approximation. Considering contributions from

up to the third-nearest-neighbor carbon atoms leads to recovering of proper particle-

hole asymmetry in the bandstructure and of trigonal warping. By constructing the

tight-binding Hamiltonian on a grid, one can introduce disorder and describe complex

nanostructures.

In chapter 3 we applied the tight-binding approximation to study the electronic transport

properties of graphene nanoconstrictions resembling quantum point contacts (QPC).

The shape of the nanodevice we studied was taken directly from an AFM image of

the device used in the experiment [27]. The measured conductance through the QPC

showed distinct features whose connection to size quantization were confirmed by the

magnetic field evolution. Our theoretical calculations demonstrate very good agreement

with the measurements away from the Dirac point. The observed deviations from the

theoretically predicted behavior of the conductance near the charge neutrality (or Dirac)

point, brought us to the conclusion that localized edge states must have a significant

impact on the measured signal. Indeed, the calculated density of states of such QPCs
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demonstrate a large deviation from the linear density of states of ideal graphene near

the Dirac point due to the rough edges introduced in the calculations. This change in

the density of states, of course, alters the correspondence between the back gate voltage

and the Fermi energy level. Taking into account the density of localized states allowed

us to achieve an excellent agreement between the measured and calculated conductance

traces. We, therefore, propose that the conductance of small graphene nanodevices

can be a tool for probing the physics at the device edges, by extracting the density of

localized or trapped edge states from conductance trace measurements.

The graphene QPCs used in this particular experiment were sandwiched between hexag-

onal boron nitride films. Nowadays, hBN is commonly used as a substrate for graphene.

Compared to more conventional substrates such as SiO2 which were popular at the be-

ginning of graphene science, atomically flat hBN induces less disorder, i.e. charge puddles

and surface corrugation. Therefore, devices placed on a hBN substrate have higher mo-

bility and allow one to observe ballistic electron transport. However, hBN can strongly

modify the electronic properties of graphene if the layers are (almost) perfectly aligned.

In this case the hBN induces a moiré pattern (with up to 14 nm periodicity), which

changes the bandstructure of graphene by backfolding the graphene Brillouin zone into

the smaller Brillouin zone of the moiré superlattice. Van der Waals interaction between

graphene and hBN opens up a gap at the Dirac point and small mini-gaps, where the

bands cross. In chapter 4 we studied the influence of such superlattice on the bandstruc-

ture of bulk graphene. Using the tight-binding approximation we calculated the density

of states of large-scale graphene flakes in a magnetic field and found excellent agree-

ment with magneto-capacitance experiments. In particular, we observed the formation

of Hofstadter butterflies on top of each Landau level of Dirac fermions and new Landau

levels emerging above and below the Dirac point, corresponding to mini-gaps (or avoided

crossings) in the bandstructure. Moreover, our analysis showed that the correspondence

between the back gate voltage and the Fermi energy in graphene depends on the density

of states in a similar way as we observed for the transport problem [chapter 3]. To

resolve any artifact related to measurements of the density of states as function of back

gate voltage, we presented an alternative probe of the DOS in the magnetic field by

using magneto-optical spectroscopy. In this method, the measured optical conductivity

provides information on optical inter-Landau levels transitions as function of the pho-

ton energy. The theoretically calculated optical conductivity has many features which

we could trace back to the DOS. We also included effects related to the formation of

magneto-excitons, i.e. electron-hole pairs created due to optical excitations between the

Landau levels. We estimated the exciton binding energy in terms of the direct two-

particle Coulomb interaction, approximating the excitonic wave function as a product

of two eigenstates of a graphene flake near the optically excited Landau levels. Even
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though we evaluated the direct Coulomb interaction to first order only, our approach

yields quantitative agreement to the experimentally observed shift of the inter-Landau

levels transition lines [15].

After studying the optical response of graphene in the near- and mid-infrared spec-

tral range we moved to the far-infrared region and studied the nonlinear response of

graphene to THz radiation [chapter 5]. The linear dispersion of electrons in graphene

is a promising prerequisite for the observation of nonlinear effects such as high-order

harmonics generation. We confirmed the existence of high-order nonlinearities by solv-

ing the Dirac and the Schrödinger equations (with a tight-binding Hamiltonian) in the

time domain. The results of our calculations agree well with a recent experiment where

the third and fifth harmonics were observed in multilayer epitaxial graphene [21]: the

relative harmonic strengths are consistent with the experiment in both Dirac and tight-

binding models. We demonstrated that the second-order harmonic appear only after

introducing defects, which locally break the inversion symmetry of graphene. Moreover,

we investigated the influence of interband polarization on the high-harmonic cut-off,

which scales linearly with the laser field. We found a close correspondence with other

experiments and theories studying the high harmonic generation in semiconductors and

insulators.

As outlook we note that in chapter 3 and 4, we dealt with graphene on hBN or graphene

sandwiched between hBN. Going forward, new devices with several layers of alternating

graphene and hBN or other 2D materials can be fabricated [127–129]. Such layered

materials are called van der Waals heterostructures and are expected to become a new

area of material science. The graphene - hBN heterostructures could be interesting for

studying nonlinear response of graphene. Single layer graphene absorbing only 2.3% of

light [20] generates a very weak response signal which is difficult to detect. Therefore,

to enhance the response a multi-layer graphene was used in the optical experiments

aiming to detect a nonlinear response. However, the interaction between layers cannot

be neglected and the signal might deviate from expectations in the high-energy part of

the nonlinear spectra. An additional hBN layer between graphene layers could prevent

such interlayer interactions. The further study of moiré phenomena could be another

interesting subject in application to transport and nonlinear optical response. The moiré

superlattice changing the bandstructure of graphene leads to substantial changes in

magneto-transport properties [19, 130] due to the presence of mini-gaps and Hofstadter

butterfly. The presence of minigaps can alter the nonlinear optical response of graphene.

In particular, the mini-gaps could modify the cut-off energy and perhaps enhance the

interband polarizations. We believe these questions will be addressed in works to follow.
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Figure 6.1: Thesis summary

As final accord, we summarized the whole thesis in a diagram in Fig.6.1, which was

created by counting the words most frequently used throughout the thesis.
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Appendix A

Windowed Fourier transform

The windowed Fourier transform is a tool to obtain information about a signal simul-

taneously in the time and frequency domains (for more details see [131]). The Fourier

transform of a signal function f(t) in the time-frequency domains is defined as:

f(ω, t) =

∫ ∞

−∞
dt′e−2πiωt′g(t′ − t)f(t′), (A.1)

where g(t) is a window (or weight) function helping to resolve the signal with time.

It is defined within a time window T, which defines the time-resolution of the Fourier

transform of the signal. Outside this window g(t) vanishes. We use a g(t) of the form:

g(t) =







1 + cos
(

2πt
T

)

|x| ≤ T/2

0 otherwise.
(A.2)

In the main text of the thesis, we performed the windowed Fourier transform using the

window function g(t) defined above with the parameter T chosen to achieve reasonable

time-frequency resolution.
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Short Iterative Lanczos

propagator

To perform numerical time propagation of a wave function, i.e. to find e−iHt/~Ψ, we

use the Short Iterative Lanczos propagator. In this section we highlight the concept

of the method (for more details, see Ref.[132]). This polynomial method, performs the

propagation within a Krylov subspace. The N-dimensional Krylov subspace is spanned

by the vectors qj = HjΨ(0). In the Lanzos method each new Krylov vector is constructed

to be orthogonal to all previous ones. The first vector q0 is just an initial state Ψ(0). To

determine the second vector, we multiply q0 by the hamiltonian matrix H and do the

necessary orthogonalization

Hq0 = α0q0 + β0q1, (B.1)

by introducing α0 = 〈q0|H|q0〉 and β0 = 〈q1|H|q0〉. One can show that the general

expression for finding vector qj+1 in the Krylov subspace is

Hqj = βj−1qj−1 + αjqj + βjqj+1, (B.2)

with αj = 〈qj |H|qj〉 and βj = 〈qj+1|H|qj〉. The coefficients αj and βj are the elements of

the tridiagonal matrixHN in the Lanczos basis, i.e. satisfy the equationHqj =
∑

iH
ij
Nqi.

The propagator in the N-dimensional Lanczos-Krylov subspace over the time step ∆t is

U(∆t) = e−iHN∆t/~. (B.3)

By diagonalizing the matrix HN , we can find its eigenvalues and eigenfunctions. If DN

is a diagonal matrix of eigenvalues of HN and O is a matrix holding the corresponsing
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eigenfunctions, i.e. HN = ODNO
†, we can rewrite the evolution operator as

U(∆t) = Oe−iDN∆t/~O†. (B.4)

The evolution of the wave function in the Lanczos basis over a time step ∆t is

|ψ(∆t)〉 = Oe−iDN∆t/~O†|ψ(0)〉, (B.5)

where ψ(0) is an N dimensional vector with elements (1, 0, 0, . . . , 0)T . The real space

wave function we have to project |ψ(∆t)〉 onto the Krylov basis vectors as

Ψ(~r,∆t) =
N
∑

i=0

ψi〈ψi(∆t)|qi〉. (B.6)

The numerical error can be estimated, by evaluating

NError =

∣

∣

∣

∣

∂

∂t
Ψ− H

i~
Ψ(0)

∣

∣

∣

∣

=

∣

∣

∣

∣

Ψ(∆t)−Ψ(0)

∆t
− H

i~
Ψ(0)

∣

∣

∣

∣

. (B.7)

The method is very efficient, as the size of the Krylov subspace N is usually small and

is governed by the numerical error NError. Therefore, diagonalization of the matrix HN

is fast. For further optimization this method can be used with an adaptive step size. To

determine the time step ∆t or size of the Krylov subspace N in a particular problem,

one evaluates the numerical error NError. If NError becomes larger than desired error,

one increases N or decreases ∆t. Another advantage of the method is the possibility

to consider time-dependent Hamiltonians, i.e. we can change our hamiltonian matrix

after each propagation step. This is important for treating, for example, electronic

propagation due to the presence of a time-dependent laser pulse.



Bibliography

[1] H. W. Kroto, J. R. Heath, S. C. O’Brien,

R. F. Curl, and R. E. Smalley, “C60: Buck-

minsterfullerene,” Nature, vol. 318, no. 6042,

pp. 162–163, 1985.

[2] S. Iijima, “Helical microtubules of graphitic

carbon,” Nature, vol. 354, no. 6348, pp. 56–

58, 1991.

[3] M. Monthioux and V. L. Kuznetsov, “Who

should be given the credit for the discovery of

carbon nanotubes?,” Carbon, vol. 44, no. 9,

pp. 1621–1623, 2006.

[4] A. K. Geim, “Nobel lecture: Random walk to

graphene,” Rev. Mod. Phys., vol. 83, pp. 851–

862, Aug 2011.

[5] K. S. Novoselov, A. K. Geim, S. V. Moro-

zov, D. Jiang, Y. Zhang, S. V. Dubonos,

I. V. Grigorieva, and A. A. Firsov, “Elec-

tric Field Effect in Atomically Thin Carbon

Films,” Science, vol. 306, pp. 666–669, Oct.

2004.

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov,

D. Jiang, M. I. Katsnelson, I. V. Grigorieva,

S. V. Dubonos, and A. A. Firsov, “Two-

dimensional gas of massless Dirac fermions

in graphene,” Nature, vol. 438, pp. 197–200,

Nov. 2005.

[7] N. Tombros, A. Veligura, J. Junesch, J. J.

van den Berg, P. J. Zomer, M. Wojtaszek,

I. J. Vera Marun, H. T. Jonkman, and B. J.

van Wees, “Large yield production of high

mobility freely suspended graphene elec-

tronic devices on a polydimethylglutarimide

based organic polymer,” Journal of Applied

Physics, vol. 109, pp. 093702+, May 2011.

[8] L. Banszerus, M. Schmitz, S. Engels,

J. Dauber, M. Oellers, F. Haupt, K. Watan-

abe, T. Taniguchi, B. Beschoten, and

C. Stampfer, “Ultrahigh-mobility graphene

devices from chemical vapor deposition on

reusable copper,” Science Advances, vol. 1,

no. 6, p. e1500222, 2015.

[9] L. Vicarelli, M. S. Vitiello, D. Coquillat,

A. Lombardo, A. C. Ferrari, W. Knap,

M. Polini, V. Pellegrini, and A. Tredicucci,

“Graphene field-effect transistors as room-

temperature terahertz detectors,” Nature

Materials, vol. 11, pp. 865–871, Oct. 2012.

[10] L. Prechtel, L. Song, D. Schuh, P. Ajayan,

W. Wegscheider, and A. W. Holleitner,

“Time-resolved ultrafast photocurrents and

terahertz generation in freely suspended gra-

phene,” Nature Communications, vol. 3,

p. 646, 2012.

[11] C. Sirtori, “Applied physics: Bridge for the

terahertz gap,” Nature, vol. 417, pp. 132–

133, May 2002.

[12] L. A. Ponomarenko, F. Schedin, M. I.

Katsnelson, R. Yang, E. W. Hill, K. S.

Novoselov, and A. K. Geim, “Chaotic Dirac

Billiard in Graphene Quantum Dots,” Sci-

ence, vol. 320, pp. 356–358, Apr. 2008.

[13] J. Xue, J. Sanchez-Yamagishi, D. Bulmash,

P. Jacquod, A. Deshpande, K. Watanabe,

T. Taniguchi, P. Jarillo-Herrero, and B. J.

LeRoy, “Scanning tunnelling microscopy

and spectroscopy of ultra-flat graphene on

hexagonal boron nitride,” Nature Materials,

vol. 10, pp. 282–285, Feb. 2011.

126



Bibliography 127

[14] R. Decker, Y. Wang, V. W. Brar, W. Regan,

H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and

M. F. Crommie, “Local Electronic Properties

of Graphene on a BN Substrate via Scanning

Tunneling Microscopy,” Nano Lett., vol. 11,

pp. 2291–2295, May 2011.

[15] Z.-G. Chen, Z. Shi, W. Yang, X. Lu, Y. Lai,

H. Yan, F. Wang, G. Zhang, and Z. Li, “Ob-

servation of an intrinsic bandgap and Landau

level renormalization in graphene/boron-

nitride heterostructures,” Nature Communi-

cations, vol. 5, July 2014.

[16] M. Yankowitz, J. Xue, D. Cormode,

J. D. Sanchez-Yamagishi, K. Watanabe,

T. Taniguchi, P. Jarillo-Herrero, P. Jacquod,

and B. J. LeRoy, “Emergence of superlattice

Dirac points in graphene on hexagonal boron

nitride,” Nature Physics, vol. 8, pp. 382–386,

Mar. 2012.

[17] C. R. Dean, L. Wang, P. Maher, C. Forsythe,

F. Ghahari, Y. Gao, J. Katoch, M. Ishigami,

P. Moon, M. Koshino, T. Taniguchi,

K. Watanabe, K. L. Shepard, J. Hone, and

P. Kim, “Hofstadter’s butterfly and the frac-

tal quantum Hall effect in moiré superlat-
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