
Dissertation

Local Electronic Excitations in Extended
Systems:

a Quantum-Chemistry approach

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften unter der Leitung von

O.Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Joachim Burgdörfer
Institut für theoretische Physik, E136

und
O.Prof. Dipl.-Phys. Dr.rer.nat. Ludger Wirtz

Universität Luxembourg

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von

Franz Paul Tiwald
Matrikelnummer 0225097

Mosergasse 14/15
A-1090 Wien

franz.paul.tiwald@tuwien.ac.at

Wien, am

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





To Martin, Katharina, Edith, Franz, Helene, Josef, and Larisa





Abstract

Real solids and surfaces are not “perfect”. Crystals inevitably contain various de-
fects and surfaces are subject to interactions with ambient particles leading, for
example, to oxidation and adsorption. Since such effects are present in everyday
devices and applications a deep understanding of the underlying physics is of great
importance. In this thesis we study the properties of two very localized imper-
fections: the F-type color center in alkali-halide crystals and the charge transfer
during scattering of an ion from an insulator surface. Both effects have been stud-
ied for a long time but a detailed theoretical understanding on the ab-initio level
seems to be missing. This thesis provides state-of-the-art ab-initio calculations
and addresses open questions. In particular, we present an ab-initio study of the
physics underlying the so-called Mollwo–Ivey relation. This relation connects the
F-center absorption energies with the crystal lattice constants and has not been
fully understood so far. Second, we present the first ab-initio results on the charge-
transfer probability during scattering of a proton from a lithium-fluoride surface.
This study is based on a non-adiabatic molecular dynamics approach that provides
microscopic insight into the charge-transfer process. Both the light absorption by
the color center and the charge transfer represent local electronic excitations: the
F-type color center consists of an electron strongly localized at an anionic vacancy
and the electron transferred is strongly localized in close vicinity of the proton.
This localization allows for application of the so-called embedded cluster approach
in which the extended system is approximated by an embedded finite-sized active
cluster. To study the properties of the active clusters we apply high-level quantum
chemistry methods solving the electronic Schrödinger equation.





Kurzfassung

Reale Festkörper und Oberflächen sind nicht “perfekt”. Kristalle enthalten eine
Vielzahl an Defekten und Oberflächen wechselwirken mit umgebenden Teilchen.
Letzteres führt, zum Beispiel, zu Oxidation und Absorption an der Oberfläche.
Da solche Effekte tägliche Anwendungen betreffen, ist ein profundes Verständnis
ihrer zugrundeliegenden Physik äußerst wichtig. In dieser Arbeit untersuchen wir
Eigenschaften zweier sehr lokalisierter Prozesse: Die Absorption von Licht durch
das Typ F Farbzentrum in Alkalihalogenidkristallen und den Ladungstransfer bei
der Streuung von Ionen an Isolatoroberflächen. Beide Effekte sind seit langem
Thema aktueller Forschung und dennoch fehlt bisher eine detaillierte theoretische
Beschreibung auf ab initio Niveau. Ziel dieser Arbeit ist es, genau solche ab ini-
tio Berechnungen durchzuführen und dadurch offene Fragen zu beantworten. Wir
präsentieren im Folgenden eine ab intio Untersuchung der Mollwo Ivey Beziehung,
die die Absorptionsenergien der Farbzentren mit den Gitterkonstanten der Alkali-
halogenide verbindet. Wir sind dadurch in der Lage erstmals den physikalischen
Grund dieser Beziehung zu identifizieren. Weiters präsentieren wir die erste ab initio
Berechnung des Elektronentransfers bei der Streuung eines Protons an einer Lithi-
umfluoridoberfläche. Die Berechnung basiert auf nicht-adiabatischer Molekulardy-
namik, die eine mikroskopisches Beschreibung des Ladungstransfers erlaubt. Beide
Prozesse, die Absorption von Licht durch das Farbzentrum und der Ladungstrans-
fer, sind lokale elektronische Anregungen. Das Farbzentrum besteht aus einem
Elektron, lokalisiert in einer Anionfehlstelle und der Ladungstransfer findet in naher
Umgebung des Protons statt. Diese Lokalität erlaubt die Anwendung der Methode
der eingebetteten Cluster, in der das Innere und die Oberfläche eines ausgedehnten
Kristalls näherungsweise durch einen endlichen, in den Festkörper eingebetteten
aktiven Cluster beschrieben wird. Wir studieren die Eigenschaften der eingebet-
teten Cluster durch das Lösen der elektronischen Schrödingergleichung mit genauen
Methoden aus der Quantenchemie.
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1. Introduction

Pristine, unperturbed crystals and surfaces do not exist in reality: crystals contain
various defects and even in ultra-high vacuum chambers there are rest gas atoms
interacting with the surface of the sample. In some instances these imperfections
cause complications (instability of material), in other instances they are a key
feature. Consider, for example, the doping of a silicon crystal with boron and
phosphorus to realize a diode within a p-n junction. Complex integrated circuits
and nano structures can be patterned onto surfaces using ion-beam lithography [1].
Applications of defects range from the performance enhancement of solar cells [2]
to NV-center defects as bits in quantum-computers [3]. In all these cases a deeper
understanding of the electronic and structure properties of perturbations of pristine
crystals or surfaces is of great importance. In this work we focus on the electronic
structure of two local perturbations in ionic alkali halides:

1. the F-type color center defect and its absorption of light and

2. charge transfer to protons impinging on a lithium-fluoride (LiF) surface.

The F-type color center defect in alkali-halide crystals was first observed at the
end of the 19𝑡ℎ century [4]. Systematic investigations of its properties started in
the late 1920s and soon after a basic understanding developed for its structure:
the F center consists of a strongly localized electron trapped in an anion vacancy
(for reviews see [5–8]). The defect is termed color center since the trapped elec-
tron can be excited by absorption of light in the visible range coloring the initially
transparent alkali-halide crystal. Despite its seemingly simple electronic structure,
ab-initio calculations of the F-center absorption energies remain a challenge and
are scarce. In this work we present state-of-the-art ab-initio calculations of the F
center in LiF and other alkali halides. We find unprecedented agreement between
experimental and theoretical absorption energies and give a detailed picture of the
light-absorption process.
In 1931 Mollwo [9] realized that the absorption energies, 𝐸𝑎𝑏𝑠, of F centers in alkali
halides are related to the anion-cation distance, 𝑎, of the corresponding crystals
by 𝐸𝑎𝑏𝑠 ∝ 1/𝑎𝑛. Later, based on a large set of alkali halides, Ivey [10] determined
the exponent to be 𝑛 = 1.8. The origin of this exponent has been debated since
the Mollwo–Ivey scaling was discovered. The most accepted explanations [11, 12]
are based on the scaling of the crystal-Madelung potential. In this interpretation
element-specific effects play a minor role. We show in this thesis that the opposite
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is true: element-specific effects are responsible for the exponent 𝑛 = 1.81 in the
Mollwo–Ivey relation.
In the second topic of this thesis we investigate the charge transfer during scatter-
ing of a proton and a lithium-fluoride surface which is a prototypical example for
particle-surface scattering. Interactions of heavy particles such as ions, atoms, and
molecules with surfaces affect our daily life. Applications range from the radiation
damage on satellite surfaces due to solar winds over ion implantation, focused ion-
beam techniques applied in semiconductor device fabrication (lithography, nano
patterning), to metal finishing (tool steel hardening), and catalytic reactions at
surfaces in, e.g., the catalytic converter in cars. A currently important topic is the
particle-wall interaction in plasma fusion reactors, in particular, the degradation
of the walls confining the plasma. Also in surface analytics methods, such as ion
scattering spectroscopy (ISS), low (medium) energy ion spectroscopy (L(M)EIS),
secondary ion (neutral) mass spectroscopy (SI(N)MS), Rutherford backscattering
spectroscopy (RBS) the physics of particle-surface interactions is exploited.
In 1995 Winter and coworkers found that atoms scattered off alkali-halide sur-
faces [13, 14] predominantly return as negatively charged ions. This came as a
surprise since the charge transfer from alkali-halide surfaces to projectiles was ex-
pected to be inefficient since the valence electrons are tightly bound to the anionic
sites. The explanation for the high efficiency of the charge transfer invokes the level
shift due to the particle-surface interaction [14] that brings the surface-donor and
projectile-acceptor level in close resonance. (Quasi-) Resonant charge transfer oc-
curs in many particle-surface combinations [15] but accurate ab-initio descriptions
are missing due to the complexity of the system. The charge transfer is induced by
the impinging projectile. Electronic and nuclear degrees of freedom are, therefore,
coupled and have to be treated simultaneously. Wirtz et al. [16] analyzed ab-initio
potential-energy surfaces of electronic states involved in the charge transfer but
did not include the motion of the projectile. We extend this work and present in
this thesis a time-dependent study of the charge transfer between a proton and a
lithium-fluoride surface. In our study electronic and nuclear degrees of freedom
are coupled in terms of non-adiabatic molecular dynamics. We provide a detailed
microscopic picture of the charge transfer and investigate questions such as how
many F− ions contribute to the charge transfer and how does the charge transfer
depend on initial kinematic properties of the proton. We also compare our data on
the proton-neutralization probability to (preliminary) experimental data.
The most widely used ab-initio method in solid-state and surface physics is density-
functional theory (DFT) in the periodic-boundary implementation. One aspect of
this thesis is to explore an alternative approach: we apply quantum-chemistry meth-
ods in the framework of the embedded cluster approach (ECA). We use quantum
chemistry (QC) since (a) it allows for including correlation effects of localized elec-
trons beyond standard DFT approaches, (b) standard DFT strongly underestimates
the band gaps of alkali-halide crystals [17], (c) QC is a powerful tool for calcula-
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tion of excited electronic states and the non-adiabatic couplings between them, and
(d) DFT as well as time-dependent DFT (TD-DFT) face fundamental difficulties in
describing charge-transfer processes [18–21]. The embedded cluster approach is cho-
sen since (a) the Coulomb field of the proton in the charge-transfer problem would
require huge supercells or the use of unphysical neutralizing background charges,
and (b) periodic boundary implementations of methods beyond Hartree–Fock are
very scarce and do not allow for the calculation of excited states (see [22] and ref-
erences in there). These advantages of quantum chemistry and/or the embedded
cluster approach have been used in several studies describing particle-surface inter-
action and reactions at surfaces. Some of these studies solely use the properties of
the potential-energy surfaces to, e.g., extract reaction barriers and identify reaction
pathways (see, e.g., [23–27]). Other studies include also the nuclear motion of the
particle in front of the surface (see, e.g., [28–31]). So far, however, the coupling of
nuclear and electronic degrees of freedom has been treated only in an approximate
way. In this thesis we include the nuclear-electronic coupling on an ab-initio level
opening the path to an ab-initio description of charge transfer between particle and
surface.
The thesis is structured as follows: in chapter 2 we briefly introduce the quantum
chemistry methods used throughout the thesis. It is a very “qualitative” introduc-
tion and meant for readers only vaguely familiar with standard quantum chemistry.
Strengths and weaknesses of various methods are compared and one goal of the
chapter is to give the reader an impression of the suitability of a special method
for a given system. Chapter 3 and 4 are devoted to the F-type color center defect
in alkali-halide crystals. In chapter 3 we focus on the F-center in LiF and study
in detail properties such as the absorption energy, the shape of the F-center wave
function in its ground and excited state, lattice relaxation, the influence of electron-
phonon coupling, the relaxed excited state, and the line width of the absorption. In
chapter 4 we extend this investigation to other alkali-halide crystals and present the
first ab-initio study of the Mollwo–Ivey relation. In chapter 5 we give an introduc-
tion to non-adiabatic dynamics and the methods used to solve the time-dependent
Schrödinger equation for coupled nuclear and electronic degrees of freedom, in par-
ticular, wave packet propagation on coupled potential energy surfaces and Tully’s
semi-classical surface hopping algorithm. We first benchmark these time-dependent
approaches by applying them to the charge transfer in ion-atom collisions. Chapter
6 is devoted to the charge transfer during the scattering of a proton from an LiF
surface. We present the first ab-initio analysis of the transfer process and determine
the neutralization probability of the rescattered projectile. We conclude this thesis
with a summary and an outlook 7 in which we point to further particle-surface
and particle-solid interaction problems the embedded cluster approach could help
to solve.
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2. Introduction to quantum
chemistry

The term quantum chemistry denotes all methods and strategies to (approximately)
solve the electronic Schrödinger equation of a given atom, molecule, or solid by
approximating the correlated many-electron wave functions of ground and excited
states. In this sense quantum chemistry has to be distinguished from other methods
such as Density Functional Theory (DFT) which approximates the total energy of
an electronic system in terms of their reduced one-electron density.
Although the goal of this thesis was not to develop a new quantum chemistry
method, this chapter is dedicated to quantum chemistry since it plays a crucial role
in the following discussion. This chapter does not feature a complete and detailed
review of quantum chemistry but it should introduce the reader in a “qualitative”
way to the basics of the methods used and highlight their properties as well as their
strengths and weaknesses. This basic knowledge is important to understand and
interpret the results shown in the following chapters. Experienced readers might
skip this chapter. Readers searching for a more detailed introduction to quantum
chemistry are referred to the vast amount of literature on this topic such as the
books used to write this chapter [32–34].
This chapter starts out with the definition of the so-called molecular Hamiltonian
and the solution of the corresponding Schrödinger equation by the Hartree–Fock
approximation which is the starting point for all correlated methods. Afterwards
correlated methods ranging from the Multi-Configurational Self-Consistent Field
(MCSCF) method up to the Coupled Cluster methods are briefly discussed. Their
strategies to include correlation are highlighted and they will be classified in terms
of the “kind” of correlation (static and/or dynamic) they account for.

2.1. The Hartree–Fock approximation

The non-relativistic Hamiltonian of a system consisting of 𝑁𝑛 nuclei and 𝑁𝑒 elec-
trons reads

𝐻̂tot = 𝑇𝑛 + 𝑇𝑒 + 𝑉𝑛𝑒 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛, (2.1)
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where 𝑇𝑛 and 𝑇𝑒 are the kinetic energy operators of nuclei and electrons, respec-
tively. 𝑉𝑛𝑛, 𝑉𝑒𝑒, and 𝑉𝑛𝑒 denote the Coulomb interaction between the nuclei (nn),
the electrons (ee), and between nuclei and electrons (ne), respectively. After the
transformation to the center of mass system and neglecting the center of mass
motion as well as the mass-polarization term it can be written as

𝐻̂tot = 𝑇𝑛 + 𝐻̂𝑒, (2.2)

where 𝐻̂𝑒 is the electronic Hamilton operator

𝐻̂𝑒 = 𝑇𝑒 + 𝑉𝑛𝑒 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛. (2.3)

In the Born–Oppenheimer or adiabatic approximation the motion of the nuclei 𝑇𝑛
is neglected and 𝐻̂tot = 𝐻̂𝑒. They are “clamped” to certain positions which enter
the electronic Hamiltonian via 𝑉𝑛𝑒 and 𝑉𝑛𝑛 as parameters. What happens when the
Born–Oppenheimer approximation breaks down is discussed in detail in chapter 5.
The stationary electronic Schrödinger equation in the Born–Oppenheimer approx-
imation reads

𝐻̂𝑒 Ψ(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒 ; 𝑅⃗1, 𝑅⃗2, ..., 𝑅⃗𝑁𝑛) = (2.4)

𝐸𝑒(𝑅⃗1, 𝑅⃗2, ..., 𝑅⃗𝑁𝑛) Ψ(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒 ; 𝑅⃗1, 𝑅⃗2, ..., 𝑅⃗𝑁𝑛), (2.5)

with Ψ the 𝑁𝑒-electron wave function, 𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒 the electronic and 𝑅⃗2, ..., 𝑅⃗𝑁𝑛

the nuclear degrees of freedom, and 𝐸𝑒 the total electronic energy, parametrically
depending on the nuclear coordinates. 𝐻̂𝑒 in its explicit form reads

𝐻̂𝑒 =
𝑁𝑒∑︁
𝑖

(−1

2
∇2

𝑖 ) −
𝑁𝑛∑︁
𝑎

𝑁𝑒∑︁
𝑖

𝑍𝑎

|𝑅⃗𝑎 − 𝑟⃗𝑖|
+

𝑁𝑒∑︁
𝑖

𝑁𝑒∑︁
𝑗>𝑖

1

|𝑟⃗𝑖 − 𝑟⃗𝑗|
+

𝑁𝑛∑︁
𝑎

𝑁𝑛∑︁
𝑏>𝑎

𝑍𝑎𝑍𝑏

|𝑅⃗𝑎 − 𝑅⃗𝑏|
.

(2.6)

Contracting the different operators according to their number of electron indices
leads to the more compact form

𝐻̂𝑒 =
𝑁𝑒∑︁
𝑖

ℎ̂𝑖 +
𝑁𝑒∑︁
𝑖

𝑁𝑒∑︁
𝑗>𝑖

𝑔𝑖𝑗 + 𝑉𝑛𝑛, (2.7)
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with

ℎ̂𝑖 = −1

2
∇2

𝑖 −
𝑁𝑛∑︁
𝑎

𝑍𝑎

|𝑅⃗𝑎 − 𝑟⃗𝑖|

𝑔𝑖𝑗 =
1

|𝑟⃗𝑖 − 𝑟⃗𝑗|
, (2.8)

where the one-body operator ℎ̂𝑖 describes the motion of a single electron in the field
of all the nuclei and the two-body operator 𝑔𝑖𝑗 accounts for the mutual repulsion
between the electrons.
The Hartree approximation states that the total N𝑒-electron wave function ΨH(𝑟⃗1, 𝑟⃗2,
..., 𝑟⃗𝑁𝑒) can be written as a product of single-particle wave functions 𝜑𝑖(𝑟⃗)

ΨH(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒) = 𝜑1(𝑟⃗) · 𝜑2(𝑟⃗) ... 𝜑𝑁𝑒(𝑟⃗). (2.9)

In the Hartree–Fock approximation the total wave function is approximated by a
Slater determinant

ΨHF(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒) =
1√
𝑁𝑒!

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝜑1(1) 𝜑2(1) · · · 𝜑𝑁𝑒(1)
𝜑1(2) 𝜑2(2) · · · 𝜑𝑁𝑒(2)

...
...

. . .
...

𝜑1(𝑁𝑒) 𝜑2(𝑁𝑒) · · · 𝜑𝑁𝑒(𝑁𝑒)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ , (2.10)

where we introduce the short hand notation 𝜑𝑖(𝑟⃗𝑗) = 𝜑𝑖(𝑗). The Slater determinant
is anti-symmetric under the interchange of any pair of electron coordinates which
accounts for the Pauli principle.
The single-particle wave functions 𝜑𝑖(𝑟⃗) are often called molecular orbitals or spin
orbitals and are themselves a product of two components

𝜑𝑖(𝑟⃗) = 𝜑𝑖(𝑟⃗) · 𝜉𝑖, (2.11)

where 𝜑𝑖(𝑟⃗) is the real-space wave function and 𝜉𝑖 denotes the spin function. Due
to the neglect of relativistic effects, spin is introduced ad hoc. Each electron has
a spin of 1

2
with the possible orientations of spin-up and spin-down in, e.g., the

z-direction. These two options are represented by 𝜉 = |𝛼⟩ or 𝜉 = |𝛽⟩, respectively,
where |𝛼⟩ and |𝛽⟩ obey the orthonormality conditions

⟨𝛼|𝛼⟩ = ⟨𝛽|𝛽⟩ = 1

⟨𝛼|𝛽⟩ = ⟨𝛽|𝛼⟩ = 0. (2.12)
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The Hartree–Fock equations

The energy expectation value of a normalized Hartree–Fock type Slater determinant
ΨHF is given by

𝐸HF = ⟨ΨHF|𝐻̂𝑒|ΨHF⟩. (2.13)

Inserting |ΨHF⟩ of eq. 2.10 and 𝐻̂𝑒 of eq. 2.7 leads to [32, 33]

𝐸HF =
𝑁𝑒∑︁
𝑖

⟨𝜑𝑖|ℎ̂𝑖|𝜑𝑖⟩ +
1

2

𝑁𝑒∑︁
𝑖

𝑁𝑒∑︁
𝑗

(︁
⟨𝜑𝑗|𝐽𝑖|𝜑𝑗⟩ − ⟨𝜑𝑗|𝐾̂𝑖|𝜑𝑗⟩

)︁
+ 𝑉𝑛𝑛. (2.14)

The operators 𝐽𝑖 and 𝐾̂𝑖 are called the Coulomb and exchange operator, respectively
and are given by

𝐽𝑖|𝜑𝑗(2)⟩ = ⟨𝜑𝑖(1)|𝑔𝑖𝑗|𝜑𝑖(1)⟩ |𝜑𝑗(2)⟩
𝐾̂𝑖|𝜑𝑗(2)⟩ = ⟨𝜑𝑖(1)|𝑔𝑖𝑗|𝜑𝑗(1)⟩ |𝜑𝑖(2)⟩. (2.15)

In contrast to the forms of the Hamiltonian in eqs. 2.6 and 2.7 the double sum
in eq. 2.14 is allowed to run over all possible values due to the factor 1

2
and due

to the fact that Coulomb and exchange term cancel each other if 𝑖 = 𝑗. These
two features ensure that double counting of energy contributions as well as the so
called self-interaction of an electron with its own charge distribution are properly
excluded.
The solution of the stationary Schrödinger equation (eq. 2.4) is equivalent to a
variation of the wave function Ψ such that the global minimum of the energy
E𝑒[Ψ] as a functional of the wave function is found. The goal of a Hartree–Fock
calculation is to find the optimal set of molecular orbitals {𝜑𝑖} such that the wave
function ΨHF corresponds to the minimal energy EHF. For systems with more than
a single electron 𝐸HF > 𝐸exact due to the use of an anti-symmetrized product ansatz
for ΨHF. The variation with respect to the molecular orbitals is done under the
constraint that the orthonormality of the spin orbitals ⟨𝜑𝑖|𝜑𝑗⟩ is not violated. Such
a constrained optimization is formulated using Lagrange multipliers and reads

𝛿

𝛿⟨𝜑𝑖|

[︃
𝐸HF [{𝜑𝑘}𝑘=1,...,𝑁𝑒 ] −

𝑁𝑒∑︁
𝑙𝑗

𝜆𝑙𝑗 (⟨𝜑𝑙|𝜑𝑗⟩ − 𝛿𝑖𝑗)

]︃
= 0. (2.16)
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This optimization leads to a set of coupled equations [32, 33] called the Hartree–
Fock equations [︃

ℎ̂𝑖 +
𝑁𝑒∑︁
𝑗

(𝐽𝑗 − 𝐾̂𝑗)

]︃
𝜑𝑖 =

𝑁𝑒∑︁
𝑗

𝜆𝑖𝑗 𝜑𝑗, (2.17)

which can be written with the so-called Fock operator 𝐹𝑖 = ℎ̂𝑖 +
∑︀𝑁𝑒

𝑗 (𝐽𝑗 − 𝐾̂𝑗) as

𝐹𝑖 𝜑𝑖 =
𝑁𝑒∑︁
𝑗

𝜆𝑖𝑗 𝜑𝑗. (2.18)

With a unitary transformation that makes the matrix of Lagrange multipliers di-
agonal, i.e. 𝜆𝑖𝑗 = 0 and 𝜆𝑖𝑖 = 𝜖𝑖, the HF equations can be simplified to

𝐹𝑖 𝜑𝑖 = 𝜖𝑖 𝜑𝑖. (2.19)

The set of orbitals {𝜑𝑖} that diagonalizes the Fock operator is called the set of
canonical orbitals which we use in the following. Any other set of orbitals {𝜑𝑖}
that obeys eq. 2.18 but does not diagonalize the Fock operator, leads to different
orbital shapes and different diagonal elements of 𝜆𝑖𝑗 while leaving the Hartree–Fock
approximation to the total energy 𝐸HF (eq. 2.14) unchanged. In the canonical form
of eq. 2.19 the physical interpretation of the Lagrange multipliers becomes obvious
being the energies 𝜖𝑖 of the corresponding Hartree–Fock orbitals 𝜑𝑖. According to
Koopmans’ theorem (see e.g. [32]), the canonical energies 𝜖𝑖 of occupied orbitals
(𝑖 ≤ 𝑁𝑒) can be interpreted as the energy needed to remove an electron from
the orbital 𝜑𝑖 of the 𝑁𝑒-electron system. For unoccupied, i.e. virtual orbitals (see
below), 𝜖𝑟 (𝑟 > 𝑁𝑒) is the energy needed or gained by adding an electron to orbital
𝜑𝑗 of the 𝑁𝑒-electron system.
Since the Fock operator depends on all the spin orbitals via the Coulomb and the
exchange operator this set of equations can only be solved iteratively, i.e., self-
consistently. Further the electron-electron repulsion is only treated in an average
fashion, i.e., in a mean-field approximation. These two facts lead to the name
self-consistent field (SCF) approximation which is equivalently used for the term
Hartree–Fock approximation in the field of quantum chemistry.
The total energy of a Hartree–Fock wave function can be written in terms of the
spin orbital energies as

𝐸HF =
𝑁𝑒∑︁
𝑖

𝜖𝑖 −
1

2

𝑁𝑒∑︁
𝑖𝑗

(𝐽𝑖𝑗 −𝐾𝑖𝑗) + 𝑉𝑛𝑛, (2.20)
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with

𝜖𝑖 = ⟨𝜑𝑖|𝐹 |𝜑𝑖⟩ = ℎ𝑖 +
𝑁𝑒∑︁
𝑗

(𝐽𝑖𝑗 −𝐾𝑖𝑗) , (2.21)

and ℎ𝑖, 𝐽𝑖𝑗, and 𝐾𝑖𝑗 being the matrix elements of the one-body Hamiltonian ℎ̂𝑖,
the Coulomb, and the exchange operator, respectively. The sum over the orbital
energies 𝜖𝑖 is not the total energy of the Hartree–Fock wave function due to the
mean-field character of the Hartree–Fock approximation. 𝜖𝑖 includes Coulomb and
exchange interaction of the electron 𝜑𝑖 with all other occupied electrons, in par-
ticular, 𝜑𝑗. Also 𝜖𝑗 includes the Coulomb and exchange interactions with all other
occupied electrons, in particular, with 𝜑𝑖. The sum 𝜖𝑖 + 𝜖𝑗, therefore, counts the
electron-electron interactions twice and makes the subtraction of half the Coulomb
and exchange energy in eq. 2.20 necessary.

Restricted and Unrestricted Hartree–Fock

Up to now the Hartree–Fock equations are discussed in their most general form in
which every spin orbital is occupied by a single electron. This form is called the
Unrestricted Hartree–Fock (UHF) approach since it allows for arbitrary occupation
of orbitals with |𝛼⟩ and |𝛽⟩ spin. It has, however, the disadvantage of producing a
wave function which is not an exact eigenstate of the 𝑆2 operator, an effect known
as spin contamination.
For singlet, i.e., closed-shell wave functions one can simplify the HF description by
forcing the spatial part of the orbitals with |𝛼⟩ and |𝛽⟩ spin to be identical. In
this case one orbital is occupied by two electrons and the dimension of the matrices
in equation 2.24 can be reduced by a factor of two. This procedure comes with
the name Restricted Hartree–Fock (RHF) approach which is somewhat misleading
since for closed-shell systems (at least in the vicinity of the equilibrium geometry)
the results of UHF and RHF are essentially identical.
Treating, however, open-shell systems with identical spatial parts for 𝛼 and 𝛽 or-
bitals is a true restriction. This approach has the name Restricted Open-shell
Hartree–Fock (ROHF) and the total energy obtained from such a calculation will
always be larger than the one obtained in UHF. While in UHF and RHF canonical
orbitals and energies 𝜖𝑖 are well defined, it is not possible in ROHF to find a set of
orbitals [32, 33] that diagonalizes the matrix of Lagrange multipliers 𝜆𝑖𝑗 in equation
2.18. Therefore, orbital shapes and energies are not uniquely defined and cannot
be interpreted according to Koopmans’ theorem. Nevertheless, ROHF is routinely
used as starting point for correlated methods since it limits the computational costs
due to the reduced number of orbitals and results of correlated methods only weakly
depend on the choice of ROHF orbitals (see, e.g., [35]).
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Solving the Hartree–Fock equations on a computer: Introduction of
basis functions

In most quantum chemistry program packages the orbitals are expanded into a total
number of 𝑁𝐵, so-called, Gaussian basis functions, 𝜒𝑗(𝑟⃗), localized at the atoms,
i.e. sites, of the system

𝜑𝑖(𝑟⃗) =

𝑁𝐵∑︁
𝑗

𝑐𝑖𝑗 𝜒𝑗(𝑟⃗). (2.22)

This notation is somewhat simplified since the sum contains both (a) the sum over
the atoms and (b) the sum over the basis sets per atom. Further, we dropped the

positions 𝑅⃗𝑘 of the atoms at which the different basis functions are centered. In
polar coordinates a basis function located at 𝑅⃗ = 0 reads

𝜒𝑗(𝑟⃗) = 𝜒𝜁,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜙) = 𝑁 𝑌𝑙,𝑚(𝜃, 𝜙) 𝑟2𝑛−2−𝑙 𝑒−𝜁𝑟2 , (2.23)

where 𝑁 is a normalization constant and Y𝑙,𝑚 are the spherical harmonics.
Inserting the expansion in eq. 2.22 into the Hartree–Fock equations leads to the so
called Hartree–Fock-Roothaan equations which read in matrix form

FC = SC𝜖. (2.24)

F is the Fock matrix containing the matrix elements of the Fock operator ⟨𝜒𝑖|𝐹 |𝜒𝑗⟩,
C is the matrix of the expansion coefficients c𝑖𝑗, S is the so-called overlap matrix
⟨𝜒𝑖|𝜒𝑗⟩, and 𝜖 is a diagonal matrix containing the orbital energies 𝜖𝑖. All matrices
are of dimension 𝑁𝐵 × 𝑁𝐵. The (self-consistent) solution of the Hartree–Fock-
Roothaan equations leads to a spectrum of 𝑁𝐵 orbital energies 𝜖𝑖. For a system
with 𝑁𝑒 electrons, 𝑁𝑒 of these orbitals “host” an electron and are, therefore, called
occupied orbitals. Furthermore, there are 𝑁𝑣𝑖𝑟𝑡 = 𝑁𝐵 − 𝑁𝑒 unoccupied, so-called
virtual orbitals.
In the following we schematically depict a RHF wave function, i.e., a RHF Slater
determinant (fig. 2.1) as follows. When 𝑁𝐵 basis functions are used in a calculation
the solution of the HF equations leads to 𝑁𝐵 orbitals with their corresponding
orbital energies. Both are indicated by horizontal bars. For a closed-shell system
with 𝑁𝑒 electrons 𝑁𝑒/2 orbitals are occupied by two electrons, one with spin |𝛼⟩
and one with spin |𝛽⟩, respectively. The electrons are depicted by the arrows
the direction of which indicate their corresponding spin. “Empty” horizontal lines
represent the 𝑁𝐵 −𝑁𝑒/2 unoccupied, i.e., virtual orbitals.
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Figure 2.1.: Schematic picture of a closed-shell Hartree–Fock determinant with 𝑁𝑒 elec-
trons and, consequently, 𝑁𝑒/2 occupied HF orbitals. With a total number
of 𝑁𝐵 basis functions used, there are 𝑁𝐵 −𝑁𝑒/2 virtual, i.e., unoccupied
orbitals.

Correlation energy

Due to the product form of a Slater determinant the HF approach treats the inter-
action between electrons in a mean-field fashion. This becomes manifest in the form
of the HF equations 2.19 each of which describes the motion of a single electron in
a static potential or “field” created by all the other electrons. Such a single-particle
approach neglects the correlated motion of two or more electrons. Therefore, the
energy difference between the exact energy of a system, 𝐸exact, and the HF energy,
𝐸HF, is termed correlation energy 𝐸corr. There are, however, different “flavors”
of Hartree–Fock namely UHF, ROHF, and RHF and there is no uniform defini-
tion as to which flavor 𝐸HF refers to. For the remainder of this work we define
correlation energy as difference between the exact energy 𝐸exact and the HF en-
ergy, 𝐸HF = 𝐸R(O)HF, corresponding to a restricted (open or closed shell) HF wave
function

𝐸corr = 𝐸exact − 𝐸HF = 𝐸exact − 𝐸R(O)HF. (2.25)

This choice is made because restricted HF wave functions are the starting points
for correlated methods applied in this thesis.

2.2. Methods for treating correlations

There are several ways of dividing the correlation energy into different parts. One
can discern, e.g., between inter- and intra-orbital correlation or between Coulomb
and Fermi correlation. The latter denotes the correlation between electrons of op-
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posite and equal spin, respectively. In the remainder of this thesis we use the
quantum-chemistry standard distinction between dynamic and static correlation.
This is not a mathematically rigorous definition and there is no clear border be-
tween these two contributions but they are very intuitive and help to group and
classify the various quantum chemistry methods. Dynamic correlation denotes the
portion of correlation resulting from the mutual Coulomb repulsion between the
electrons like, for example, two electrons occupying the same spatial orbital. Static
correlation arises from the possibility that the HF wave function can be (nearly)
degenerate with excited Slater determinants corresponding to different electronic
configurations. Dynamic correlation is present in every physical system containing
more than one electron and always needs to be taken into account when a quan-
titative description of a system is desired. Static correlation is not necessarily of
importance for calculating ground state properties. When the ground state energy
of a system is energetically well separated from the excited states static correlation
can be usually neglected. This is often the case for chemically inert systems close to
their equilibrium geometry. A system which belongs to this class of problems is the
F-type color center in alkali-halide crystals (chapters 3 and 4). As soon as two or
more configurations become energetically nearly degenerate static correlation needs
to be included. A prototypical example are charge transfer processes. The ground
state of a diatomic LiF molecule at equilibrium inter-nuclear distance has an ionic
configuration, the molecule “consists” of an F− and a Li+ ion. For large distances
between the two particles, however, the ground state corresponds to two neutral
atoms. This implies that there is a critical distance at which both configurations
F− + Li+ and F + Li are degenerate. This situation is encountered in chapter 6
where we treat the charge transfer between a proton and a lithium-fluoride crystal.
For systems where only dynamic correlation is of importance, the HF wave func-
tion typically gives a qualitatively good description and is a good starting point
for calculations of dynamic correlation. The most commonly methods used are
Configuration Interaction (CI), the Møller–Plesset perturbation theory of second
order (MP2), and coupled cluster methods. These three approximations to the
correlation energy will be very briefly reviewed in sections 2.2.1, 2.2.2, and 2.2.3,
respectively. When static correlation is present the HF wave function is typically
not capable of even qualitatively describing the system under consideration and is
not suitable as a starting point for correlation calculations. However, static corre-
lation is usually well included by the so called Multi-configurational self-consistent
field (MCSCF) method. Dynamic correlation is, however, not accounted for and
can be calculated with Multi-Reference CI (MRCI) and Complete active space
perturbation theory (CASPT2). Both methods use the MCSCF wave function as
starting point which makes them account for both static and dynamic correlation.
The MRCI and CASPT2 methods are briefly reviewed in sections 2.2.4, and 2.2.6,
respectively.
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2.2.1. Configuration Interaction with singles and doubles

The idea of a Configuration Interaction (CI) is to expand the total electronic wave
function into the HF wave function and a sum of so-called excited Slater determi-
nants. In an excited Slater determinant one or more orbitals, occupied in the HF
determinant, are replaced by orbitals initially belonging to the virtual, i.e., unoc-
cupied space. An equivalent formulation is that one or more electrons are excited
from the HF determinant into virtual orbitals. Depending on the number of excited
electrons in a given determinant one speaks of a singly, double, triply,... excited
determinant when one, two, three,... electrons occupy virtual orbitals, respectively
(fig. 2.2).

Figure 2.2.: Schematic picture of the Hartree–Fock determinant (a), a singly (b), doubly
(c), and triply (d) excited Slater determinant.

We denote the Hartree–Fock wave function by ΨHF = Ψ0 and a singly excited de-
terminant by Ψ𝑟

𝑎. The two indices mean that one electron from an initially occupied
orbital 𝑎 is excited to a virtual orbital 𝑟. Doubly and triply excited determinants
are, therefore, denoted by Ψ𝑟𝑠

𝑎𝑏 and Ψ𝑟𝑠𝑡
𝑎𝑏𝑐, respectively. With this notation we can

write the exact many-electron wave function as

ΨFCI = 𝑐0 Ψ0 +
∑︁
𝑎𝑟

𝑐𝑟𝑎 Ψ𝑟
𝑎 +

∑︁
𝑎<𝑏
𝑟<𝑠

𝑐𝑟𝑠𝑎𝑏 Ψ𝑟𝑠
𝑎𝑏 (2.26)

+
∑︁
𝑎<𝑏<𝑐
𝑟<𝑠<𝑡

𝑐𝑟𝑠𝑡𝑎𝑏𝑐 Ψ𝑟𝑠𝑡
𝑎𝑏𝑐 +

∑︁
𝑎<𝑏<𝑐<𝑑
𝑟<𝑠<𝑡<𝑢

𝑐𝑟𝑠𝑡𝑢𝑎𝑏𝑐𝑑 Ψ𝑟𝑠𝑡𝑢
𝑎𝑏𝑐𝑑 + · · · . (2.27)

This form is called a full-CI (FCI) expansion since every possible determinant is
included. In the limit of a complete basis set this is a numerically exact solution of
the many-electron Schrödinger equation. The summation limits ensure that there
is no double counting of determinants. The coefficients 𝑐······ are the so-called CI
coefficients and their absolute magnitude corresponds to the weight a given deter-
minant contributes to the total wave function. They are optimized in a variational
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approach minimizing the energy 𝐸FCI = ⟨ΨFCI|𝐻̂|ΨFCI⟩ corresponding to the FCI
wave function.
A full CI calculation includes all types of correlation and its accuracy is solely
limited by the basis set size. Unfortunately, an FCI is only feasible for very small
systems due to factorially growing number of determinants with atoms/basis sets.
In practice one uses truncated CI approaches such as the CI with singles and dou-
bles (CISD) in which only singly and doubly excited determinants are included.
The CISD wave function is, therefore, given by

ΨCISD = 𝑐0 Ψ0 +
∑︁
𝑎𝑟

𝑐𝑟𝑎 Ψ𝑟
𝑎 +

∑︁
𝑎<𝑏
𝑟<𝑠

𝑐𝑟𝑠𝑎𝑏 Ψ𝑟𝑠
𝑎𝑏. (2.28)

For systems with a single-determinant character, i.e. systems well described by
the HF wave function, this is a good approximation. It can be shown that doubly
excited determinants account for the major part of correlation energy, larger than
the contribution of, e.g., triply and quadruply excited determinants. The CISD
wave function is a so-called single-reference wave function, since it contains dou-
bly excited determinants only with respect to the ΨHF, a single-determinant wave
function. Therefore, the CISD is referred to as primarily accounting for dynamic
correlation.
A shortcoming of the CISD (actually of all CI expansions, except for a full CI) is
the lack of size extensivity: the larger the system, i.e. the number of electrons, gets
the smaller is the fraction of correlation energy captured by CISD. Mathematically
size extensivity can be expressed as follows [36]. Consider a system of N interacting
subsystems A. When the correlation energy 𝐸corr determined by a given quantum
chemistry method scales with the system size like

lim
𝑁→∞

𝐸corr(𝑁 · 𝐴)

𝑁
= 𝑐𝑜𝑛𝑠𝑡, (2.29)

then the method is size extensive. Lack of size extensivity in CISD is problematic
for large systems and when systems of different sizes are compared. In the latter
case an error is induced since, effectively, the smaller system is calculated with a
higher accuracy although for both the CISD is used.
The reason for this can be explained more intuitively by the related concept of size
consistency. Consider two H2 molecules A and B separated by a large distance.
When the CISD energy of each molecule E(A), E(B) is calculated separately, each
individual calculation corresponds to a full CI and the total energy is given by
E(A)+E(B). When the total energy of the two molecules is determined in a single
CISD calculation E(A+B) it does not correspond to an FCI energy. For example,
quadruply excited states are not included. Therefore, the CISD calculation of the
combined system is effectively of lower quality leading to E(A+B) ̸=E(A)+E(B). For
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a more detailed discussion of the concepts of size extensivity and size consistency see
[36]. The most important properties of the CISD approach (and all other methods
accounting for correlation energy) are summarized in table 2.1 at the end of sec.
2.2.

2.2.2. Møller–Plesset perturbation theory of second order

Instead of expanding the total wave function in terms of excited Slater determinants
the Møller–Plesset approach is based on the Rayleigh–Schrödinger perturbation
theory. The Hamiltonian is split into an unperturbed (solvable) part 𝐻̂0 and a
perturbation 𝑉

𝐻̂𝑒 = 𝐻̂0 + 𝑉 . (2.30)

In the most common formulation of Møller–Plesset perturbation theory the unper-
turbed part is given by the sum over the single-particle Fock operators

𝐻̂0 =
∑︁
𝑖

𝐹𝑖 =
∑︁
𝑖

[︁
ℎ̂𝑖 + 𝑣𝐻𝐹

𝑖

]︁
, (2.31)

where 𝑣𝐻𝐹
𝑖 =

∑︀𝑁𝑒

𝑗 (𝐽𝑗 − 𝐾̂𝑗) is the so-called Hartree–Fock potential. The per-
turbation is given by the electron-electron Coulomb interaction minus the part of
electron-electron interaction already included in 𝐻̂0

𝑉 =
∑︁
𝑖<𝑗

1

|𝑟⃗𝑖 − 𝑟⃗𝑗|
−
∑︁
𝑖

𝑣𝐻𝐹
𝑖 =

∑︁
𝑖<𝑗

𝑔𝑖𝑗 −
∑︁
𝑖

𝑣𝐻𝐹
𝑖 . (2.32)

The energy of the system in 0𝑡ℎ order approximation is given by

𝐸MP0 = 𝐸(0) = ⟨ΨHF|𝐻̂0|ΨHF⟩ =
∑︁
𝑖

⟨𝜑𝑖|𝐹𝑖|𝜑𝑖⟩ =
∑︁
𝑖

𝜖𝑖, (2.33)

which is just the sum over all occupied HF-orbital energies. According to Rayleigh–
Schrödinger perturbation theory the first order correction is given by

⟨ΨHF|𝑉 |ΨHF⟩ = −1

2

∑︁
𝑖,𝑗

(𝐽𝑖𝑗 −𝐾𝑖𝑗) . (2.34)

The MP1 energy, therefore, is equal to the HF energy since

𝐸MP1 = 𝐸0 + 𝐸1 =
∑︁
𝑖

𝜖𝑖 −
1

2

∑︁
𝑖,𝑗

(𝐽𝑖𝑗 −𝐾𝑖𝑗) = 𝐸HF. (2.35)
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The first correction to the HF energy comes with the second-order contribution

𝐸(2) =
∑︁

𝑛 ̸=ΨHF

|⟨ΨHF|𝑉 |𝑛⟩|2

𝐸HF − 𝐸𝑛

. (2.36)

The index 𝑛 denotes excited states given by excited Slater determinants. For singly
excited determinants the matrix element ⟨ΨHF|𝑉 |𝑛⟩ reads

⟨ΨHF|𝑉 |Ψ𝑟
𝑎⟩ = ⟨ΨHF|𝐻̂|Ψ𝑟

𝑎⟩ − ⟨ΨHF|𝐻̂0|Ψ𝑟
𝑎⟩

= ⟨ΨHF|𝐻̂|Ψ𝑟
𝑎⟩ − ⟨ΨHF|

∑︁
𝑖

𝐹𝑖|Ψ𝑟
𝑎⟩

= ⟨ΨHF|𝐻̂|Ψ𝑟
𝑎⟩ −

∑︁
𝑖

𝜖𝑖⟨ΨHF|Ψ𝑟
𝑎⟩ = 0. (2.37)

Both terms in the last line vanish. The first term is zero due to Brillouin’s theorem
(see, e.g., [32]) and the second due to the orthogonality of the canonical orbitals.
Matrix elements including triply (or higher) excited determinants ⟨ΨHF|𝑉 |Ψ𝑟𝑠𝑡

𝑎𝑏𝑐⟩
vanish due to the two-body nature of the operator 𝑉 . Therefore, the matrix element
⟨ΨHF|𝑉 |𝑛⟩ is non-zero only for doubly excited determinants Ψ𝑟𝑠

𝑎𝑏 and eq. 2.36 reduces
to

𝐸(2) =
∑︁
𝑎<𝑏
𝑟<𝑠

|⟨ΨHF|𝑉 |Ψ𝑟𝑠
𝑎𝑏⟩|2

𝜖𝑎 + 𝜖𝑏 − 𝜖𝑟 − 𝜖𝑠
(2.38)

=
∑︁
𝑎<𝑏
𝑟<𝑠

|⟨𝜑𝑎(1)𝜑𝑏(2)|𝑔12|𝜑𝑟(1)𝜑𝑠(2)⟩ − ⟨𝜑𝑎(1)𝜑𝑏(2)|𝑔12|𝜑𝑠(1)𝜑𝑟(2)⟩|2

𝜖𝑎 + 𝜖𝑏 − 𝜖𝑟 − 𝜖𝑠
, (2.39)

leading to a total second-order energy of

𝐸MP2 = 𝐸HF + 𝐸(2). (2.40)

Since excitations from only a single determinant, the HF wave function, are included
the MP2 method primarily accounts for dynamic correlation, too. Obviously the
total energy EMP2 is not obtained via a variational approach. As a consequence
EMP2 must not be considered an upper bound for the energy. It is well known that,
in many cases, MP2 slightly overestimates the correlation energy and gives too low
values for the total energy [33]. Strengths of the MP2 method are its relatively low
computational costs and its size extensivity.
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2.2.3. Coupled–Cluster methods

One of the most powerful and accurate tools in quantum chemistry are coupled clus-
ter (CC) methods. Their derivation and the underlying formalism is quite lengthy.
Therefore, we present only the basic concepts and refer the interested reader to
more specialized literature [32–34, 37]. The main idea of coupled cluster methods
is to restore or repair the lack of size extensivity of truncated CI expansions. This
is done by writing the CC wave function as

ΨCC = 𝑒𝑇ΨHF, (2.41)

where 𝑇 = 𝑇1 + 𝑇2 + 𝑇3 + ... and 𝑇𝑗 is a linear combination of all j-type excitations

𝑇1ΨHF =
occ∑︁
𝑎

virt∑︁
𝑟

𝑡𝑟𝑎Ψ
𝑟
𝑎

𝑇2ΨHF =
occ∑︁
𝑎<𝑏

virt∑︁
𝑟<𝑠

𝑡𝑟𝑠𝑎𝑏Ψ
𝑟𝑠
𝑎𝑏

. . . , (2.42)

with 𝑡𝑟𝑎, 𝑡
𝑟𝑠
𝑎𝑏, ... are the so-called coupled cluster amplitudes to be determined. Since

finding all possible amplitudes is equivalent to a full CI and numerically extremely
demanding not all excitations can be included and truncations need to be used. The
most common one is CC with singles and doubles (CCSD) with 𝑇CCSD = 𝑇1 + 𝑇2
and the coupled cluster wave function

ΨCCSD = 𝑒𝑇CCSDΨHF

= ΨHF +
∑︁
𝑎

∑︁
𝑟

𝑡𝑟𝑎Ψ
𝑟
𝑎 +

∑︁
𝑎<𝑏

∑︁
𝑟<𝑠

𝑡𝑟𝑠𝑎𝑏Ψ
𝑟𝑠
𝑎𝑏

+
1

2

∑︁
𝑎𝑏

∑︁
𝑟𝑠

𝑡𝑟𝑎𝑡
𝑠
𝑏Ψ

𝑟𝑠
𝑎𝑏 +

1

2

∑︁
𝑎<𝑏

∑︁
𝑐<𝑑

∑︁
𝑟<𝑠

∑︁
𝑡<𝑢

𝑡𝑟𝑠𝑎𝑏𝑡
𝑡𝑢
𝑐𝑑Ψ

𝑟𝑠𝑡𝑢
𝑎𝑏𝑐𝑑 + ... . (2.43)

The form of the wave function makes the advantage of CCSD over CISD in terms
of accuracy visible. While the CISD wave function effectively ends after the first
three terms in eq. 2.43, the CCSD wave function approximately includes higher
excitations (see, e.g., the quadruple excitations in the last term) by estimating their
influence in terms of products of lower-excitation amplitudes. These kind of extra
terms are called disconnected excitations. The last term in eq. 2.43 corresponds,
physically, to the excitation of two non-interacting pairs of interacting electrons. It
is explained best by the toy model of two H2 molecules: for a single H2 molecule
CISD as well as CCSD correspond to a full CI expansion. For two non-interacting,



2. Introduction to quantum chemistry 33

i.e. well separated, H2 molecules, however, CISD is not a full CI anymore (triple and
quadruple excitations are missing) while CCSD is still equivalent to an FCI. For
smaller distances, i.e. when the two H2 molecules start to interact, also CCSD is not
equivalent to an FCI anymore since true, or direct triple and quadruple excitations
are missing. The disconnected excitations, however, make coupled-cluster theories
size extensive. Even for truncated expansions coupled-cluster total energies cannot
be determined variationally due to the large computational effort. Energies are
obtained iteratively solving the set of coupled-cluster equations [33] that connect
the amplitudes 𝑡.
Another acronym appearing in this thesis is CCSD(T) where (T) stands for a
perturbative treatment of the contribution of triple excitations. CCSD typically
recovers 95% of the correlation energy when large basis sets are used. CCSD(T)
reduces the error by another factor of 5 to 10 [38] which makes it one of the most
accurate methods still applicable to reasonable system sizes. It is, therefore, often
referred to as the “gold standard” of quantum chemistry. Still, CC wave functions
account primarily for dynamical correlation since they are based on excitations
from ΨHF.

2.2.4. Multi-configurational self-consistent field

The Multi-configurational self-consistent field (MCSCF) method is quite special
since it plays two important roles. First, due to its multi-determinant character it
takes into account static correlation between determinants close in energy. Second,
it serves as a starting point for the correlation-energy calculation of excited states
by providing a new set of orbitals optimized for this purpose.
An MCSCF wave function is, in principle, a truncated CI wave function for which
the multi-configuration character is generated as follows. Within the spectrum of
HF-orbital energies one defines a so-called active space containing occupied and
virtual orbitals (fig. 2.3). Within this space one can allow for, e.g., all possible
excitations from occupied to virtual orbitals. This case corresponds to a complete-
active space self-consistent field (CASSCF) calculation. One can also restrict the
number of excitations by, e.g., defining the maximum occupation number or the
maximum number of “holes” of selected orbitals to be one instead of two. This
corresponds to a restricted-active space self-consistent field (RASSCF) calculation.
The MCSCF wave function is then expanded in terms of the determinants gener-
ated by these excitations.
The first conceptual difference between a CISD and an MCSCF lies in the number
of excited determinants and in the way they are generated. In a CISD all possible
singly and doubly excited determinants are generated with respect to the HF wave
function. This produces a large number of determinants which is necessary for the
calculation of dynamic correlation. However, all these determinants are at most
doubly excited with respect to the HF wave function. In an MCSCF calculation
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Figure 2.3.: Schematic picture of the Hartree–Fock determinant and the complete-
active space (CAS) (green dashed box). The CASSCF (or MCSCF) wave
function is a linear combination of all determinants generated by all possible
excitations with the CAS.

the number of determinants in the CI expansion is much smaller due to the limited
active space. Within this space, however, higher excited Slater determinants are
included.
The second conceptual difference makes the MCSCF method suitable for the cal-
culation of excited states. In a CI-type variation of the total energy only the CI
coefficients are optimized while the orbitals, generated by a HF calculation, are
kept fixed. In an MCSCF calculation, additionally to the CI coefficients, also the
orbitals are optimized under the constraint that the sum of ground and excited
states of interest 𝐸0 +𝐸1 +𝐸2 + · · ·+𝐸𝑥 is minimized. This procedure, a so-called
state average calculation, produces a set of “average” orbitals corresponding to a
better basis for the simultaneous description of ground and excited states and for
the calculation of their dynamic correlation in subsequent steps.
The selection of the active space strongly depends on the problem considered. When
charge transfer is treated the two (or more) orbitals between which the electron
transfer occurs naturally need to be within the active space. Typically, the active
space can not be chosen too large since the simultaneous optimization of CI coeffi-
cients and orbitals is computationally demanding. Due to the limited active space
and the consequently small number of determinants included the MCSCF method
is not capable of accounting for dynamic correlation. This deficit can be fixed by
applying the methods described in the two following sections. They both rely on
MCSCF wave functions as input and use the ideas of CI and perturbation theory,
respectively, to include dynamic correlation.
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2.2.5. Multi-reference configuration interaction with singles
and doubles (MRCI-SD)

The MRCI-SD is a method capable of accounting for both static and dynamic
correlation. It does so by combining the ideas of the MCSCF and CISD methods.
As input serves the MCSCF wave function with static correlation already included.
In order to incorporate dynamic correlation, however, a much larger number of
excited determinants is needed. These determinants are generated by forming all
possible single and double excitations of all the determinants already contained in
the MCSCF wave function. Still the MRCI-SD wave function corresponds to a
truncated CI expansion which is not size extensive.
The energy in a MRCI-SD is obtained by optimizing the CI coefficients such that
the total energy is minimized separately for each state. The MCSCF orbitals, on
which the MRCI-SD is based, are not changed during the energy minimization.

2.2.6. Complete active space perturbation theory of second
order (CASPT2)

CASPT2 is a perturbation theory of second order based on a zeroth order wave
function MCSCF character [39, 40]. Loosely speaking, it is a combination of the
MCSCF and MP2 methods and, indeed, the CASPT2 energy of a HF wave function
is equal to its MP2 energy. Static correlation is accounted for by MCSCF and dy-
namic correlation by MP2 and since both methods are computationally relatively
cheap CASPT2 is a very effective tool applicable to quite large systems. Another
big advantage of CASPT2 is its size extensivity. Since we compare in the following
chapters calculations of large embedded clusters of various sizes CASPT2 is the
method of choice for most of the applications discussed in this thesis.
When strong interaction, i.e., a small energy difference between different MCSCF
states is present like, for example, in charge transfer problems (see, e.g., chapter
5) the Multi-State CASPT2 (MS-CASPT2) [41] method needs to be applied. In
essence, it is an additional, degenerate perturbation theory accounting for this inter-
action. A second-order effective Hamiltonian for the CASSCF states is constructed
leading to second-order off-diagonal matrix elements. The effective Hamiltonian is
diagonalized to obtain the final second-order energies. This procedure also leads
to new effective zero-th order wave function which are linear combinations of the
interacting CASSCF states.
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name type of correlation energy obtained size extensive
CISD dynamic variationally no
MP2 dynamic perturbatively yes

CCSD dynamic perturbatively yes
MCSCF static variationally yes

MRCI-SD static + dynamic variationally no
CASPT2 static + dynamic perturbatively yes

Table 2.1.: Properties of quantum-chemistry methods accounting for correlation
energy.

2.3. Natural orbitals and the one-particle

reduced density matrix

The probability to find an electron at a given position in space is given by the
reduced density function 𝜌(𝑟⃗1). It can be extracted from the absolute-magnitude
squared of the 𝑁𝑒-electron wave function, Ψ(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒), and subsequent integra-
tion over coordinates 𝑟⃗2...𝑟⃗𝑁𝑒

𝜌(𝑟⃗1) = 𝑁𝑒

∫︁
Ψ(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒) Ψ*(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒) d𝑟⃗2...𝑟⃗𝑁𝑒 . (2.44)

The normalization factor 𝑁𝑒 is included so that the integral∫︁
𝜌(𝑟⃗1) d𝑟⃗1 = 𝑁𝑒 (2.45)

equals the total number of electrons. Generalization of the density function 𝜌(𝑟⃗1)
to a density matrix 𝜌(𝑟⃗1, 𝑟⃗

′
1 ) leads to the definition

𝜌(𝑟⃗1, 𝑟⃗
′

1 ) = 𝑁𝑒

∫︁
Ψ(𝑟⃗1, 𝑟⃗2, ..., 𝑟⃗𝑁𝑒) Ψ*(𝑟⃗ ′

1 , 𝑟⃗2, ..., 𝑟⃗𝑁𝑒) d𝑟⃗2...𝑟⃗𝑁𝑒 . (2.46)

𝜌(𝑟⃗1, 𝑟⃗
′

1 ) is called the one-electron reduced density matrix and depends on two
continuous indices. It is connected to the reduced density function via the diagonal
of its continuous representation

𝜌(𝑟⃗1, 𝑟⃗1) = 𝜌(𝑟⃗1) (2.47)
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and it can be expanded in terms of, e.g., the orthonormal basis of Hartree–Fock
orbitals {𝜑𝑖} as

𝜌(𝑟⃗1, 𝑟⃗
′

1 ) =
∑︁
𝑖𝑗

𝜑𝑖(𝑟⃗1) 𝜌𝑖𝑗 𝜑
*
𝑗(𝑟⃗

′
1 ), (2.48)

with

𝜌𝑖𝑗 =

∫︁
𝜑*
𝑖 (𝑟⃗1) 𝜌(𝑟⃗1, 𝑟⃗

′
1 ) 𝜑𝑗(𝑟⃗

′
1 ) d𝑟⃗1d𝑟⃗

′
1 . (2.49)

For the special case of Ψ being a Hartree–Fock wave function ΨHF, composed of
canonical Hartree–Fock orbitals, the one-electron reduced density matrix turns into

𝜌HF(𝑟⃗1, 𝑟⃗
′

1 ) =
𝑁𝑒∑︁
𝑖

𝜑𝑖(𝑟⃗1) 𝜑
*
𝑖 (𝑟⃗

′
1 ), (2.50)

where the sum runs only over occupied orbitals. The discrete form 𝜌HF
𝑖𝑗 is a diagonal

matrix with ones along the diagonal for indices of occupied orbitals and zeros for
indices of unoccupied orbitals

𝜌HF
𝑖𝑗 =

{︃
𝛿𝑖𝑗 𝑖, 𝑗 ∈ occupied

0 otherwise.
(2.51)

Therefore, the diagonal elements can be interpreted as occupation numbers. For
the more general case of Ψ being a wave function including correlation (e.g. a CI
expansion of ΨHF) 𝜌𝑖𝑗 is not diagonal in the basis of the HF orbitals. Since 𝜌𝑖𝑗
is Hermitian, it is, however, possible to find via a unitary transformation a new
orthonormal basis set {𝜂𝑖}

𝜂𝑖(𝑟⃗) =
∑︁
𝑘

𝜑𝑘(𝑟⃗)𝑈𝑘𝑖 (2.52)

in which 𝜌𝑖𝑗 is diagonal with the continuous representation

𝜌(𝑟⃗1, 𝑟⃗
′

1 ) =
∑︁
𝑖

𝜆𝑖 𝜂𝑖(𝑟⃗1)𝜂𝑖(𝑟⃗
′

1 ). (2.53)

The new orthonormal orbitals {𝜂𝑖} are called natural orbitals. In contrast to
Ψ = ΨHF (eq. 2.50) the sum in the upper equation runs over all orbitals indices and
the occupation numbers 𝜆𝑖 vary between 0 and 1. For 𝑖 ≤ 𝑁𝑒, occupation numbers
are close to one and they are close to zero for 𝑖 > 𝑁𝑒.
Natural orbitals play an important role in speeding up the convergence in CI ex-
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pansions. For a given accuracy, the number of determinants formed by natural
orbitals needed is smaller than for a determinant formed by any other orthonormal
basis. We use natural orbitals in chapter 3 to qualitatively visualize the effect of
correlation on localized electrons.



3. The F-type color center in
lithium fluoride

Lithium fluoride (LiF) is an ionic alkali-halide crystal consisting of Li+ and F− ions
arranged in the so-called rock-salt crystal structure with a lattice constant [42] of
𝑑 = 7.62 Bohr corresponding to an anion-cation distance of 𝑎 = 𝑑/2 = 3.81 Bohr.
Every ion has six neighbor ions of opposite charge located at the vertices of a reg-
ular octahedron (fig. 3.1). LiF is an insulator with one of the largest band gaps
(14.2 eV, [43]) found in nature. In pristine LiF the size of the band gap makes op-
tical excitations, i.e., the absorption of light in the visible range impossible which
renders the material transparent. We encounter almost daily a material with very
similar properties which is table salt or, i.e., sodium chloride (NaCl). Already at
the end of the 19th century it was realized that after irradiation of ionic crystals
with massive particles or gamma radiation the transparent crystals get colored
[4]. In the late 1920s (see, e.g., [44]) these findings triggered an enormous effort
to understand this effect and find a proper explanation. Exemplary for the huge
amount of literature we list here a few books and reviews on this topic [5–8]. Soon
it became clear that the radiation causes the formation of a defect created by the
removal of an anion, an F− ion in the case of LiF, the lattice position of which is
subsequently occupied by a single electron. This leads to a very localized defect
which, in an oversimplified but intuitive picture, can be thought of as an electron
in a three-dimensional box [45, 46] with a side length approximately corresponding
to the lattice constant. The energy needed to excite this electron trapped in the
anion vacancy can be measured by optical absorption spectroscopy and lies, for
many alkali-halide crystals, in the optical range. This explains why the defect is
termed color-center or F-center where the “F” stands for Farbe, the German word
for color. Important to note, however, is the fact that in LiF the F-center absorbs
light with an energy of approximately 5 eV which lies above the visible range.
Due to the localization of the F-center defect we can employ what is called the
embedded-cluster approach (ECA) in the theoretical description. Only a finite
fragment of the LiF crystal containing the F− vacancy, the so-called active cluster,
is treated at a high level of theory while the remainder of the extended crystal is
essentially approximated by a large matrix of singly charged, positive and negative
point charges located at the lattice sites. The electronic structure, i.e., the total,
correlated N-electron wave function of the active cluster is then calculated or ap-
proximated by methods from quantum chemistry beyond the Hartree–Fock (HF)
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Figure 3.1.: Schematic drawing of the rock-salt crystal structure of a lithium-fluoride
crystal. Green-large ions are F− anions, red-small ions are Li+ cations.
Every ion has six nearest neighbors forming an octahedron.

approximation.
Despite all the previous work related to the F-center in LiF and other materials
there are still open questions concerning the extent of the defect-electron wave func-
tion and its actual shape in the ground as well as in the so-called relaxed excited
state. Another open question is the seemingly non-existent luminescence of the F-
center in LiF. Furthermore, all theoretical works determining the absorption energy
of the F-center in LiF are so far in unsatisfying agreement with the experimental
value. We present here a detailed ab-initio study of the F center and discuss in
detail technical aspects, such as embedding, active-cluster size, and basis-set size,
as well as the physical aspects, such as geometry relaxation, the Fermi contact
term, correlations, and the influence of local and lattice vibrations. While we find
very good agreement of the absorption energy with experimental data we reached
very quickly computational limits preventing us from completely solving questions
concerning the relaxed excited state. Despite this restriction, to our knowledge, the
present study is the most detailed performed so far.
The goal of a joint study [47] was to explore both the physics underlying the color
center as well as to compare and benchmark results obtained by density functional
theory (DFT) and methods beyond, such as GW and the solution of the Bethe-
Salpeter equation, against results of the Hartree–Fock (HF) and post-HF approxi-
mations. We termed these two strategies the solid-state physicist’s and the quantum
chemist’s approach, respectively. Apart from the solution of the electronic Hamil-
tonian there is another important difference between these two strategies. While
in quantum chemistry the F-center is represented by a finite embedded cluster, the
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DFT calculations are carried out in so-called supercells with periodic boundary
conditions. Although we focus in this chapter on the quantum chemistry approach
and present details of the calculations beyond the ones in the original publication
[47] we also compare in sec. 3.6 the quantum chemistry and post-DFT approaches
and the results obtained. Readers interested in details of the post-DFT calculations
are referred to ref. [47] and the doctoral thesis of Karsai [48].
This chapter in structured as follows. In sec. 3.1 we briefly review and summa-
rize previous work on the F-center in LiF within the frame work of the ECA. Sec.
3.2 describes calculation details such as active-cluster and basis-set size as well as
the embedding scheme. Hartree–Fock absorption energies and defect-electron wave
functions are presented in sec. 3.3. The effect of correlation on the absorption
energy and the defect-electron wave functions is studied in sec. 3.4. In sec. 3.5
we discuss further effects to be taken into account to compare our results for the
absorption energy to the experimental spectrum. These effects comprise geometry
relaxation, the line width of the absorption line and the influence of local and lattice
vibrations on the absorption energy. We also compare our results to the experi-
mental spectrum in this section. In sec. 3.6 we compare results from the quantum
chemist’s approach with the ones from the solid state physicist’s approach.

3.1. Previous work

The first calculations of the absorption energies of the F-center in alkali halides
are single-electron models in which the defect electron is treated as a hydrogenic
system embedded either in a matrix of point charges or in a “perfect continuum”
[49]. One of the first ab-initio ROHF calculation was done by Murrell and Tennyson
[50] using a Li14F12 active cluster consisting of 14 Li+ and 12 F− ions embedded
in a point-charge lattice. More advanced studies followed: Kung, Kunz, and Vail
[51] performed unrestricted Hartree–Fock (UHF) calculations for the six nearest-
neighbor Li+ ions surrounding the vacancy with additional point charge embedding.
Pandey, Seel, and Kunz [52] went beyond HF and combined many-body perturba-
tion theory with UHF calculations for LiF clusters of various sizes up to Li14F12

but neglected embedding effects completely. Bader and Platts [53] investigated in
detail the topology of the F-center ground-state electron density with a Li14F12

cluster embedded in point charges. For the same cluster size and embedding the
most recent and, so far, most detailed ROHF study was presented by Ewig and
co-workers [54, 55] including results for the shape of the defect-electron orbital in
its ground and excited state.
Common to almost all calculations using pure point charge embedding is the un-
satisfying agreement between theory and experiment, or, to be more precise, the
underestimation of the absorption energy. The range of values found lies approx-
imately between 3.2 and 4.2 eV while the experimental value is ∼5 eV. This un-
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derestimation is also found in calculations of F-center absorption energies in other
alkali halides. In the simple particle-in-the-box model this is due to a box with a
too large side length, i.e., a too weak confinement of the defect electron. Indeed,
exceptions to the underestimate are those single-electron approaches that, addi-
tional to the point-charge embedding, use some kind of confining potential for the
defect electron [56, 57]. This clearly indicates that a proper embedding is crucial
and needs to go beyond pure point charges. Apart from the improper embedding,
sources of errors are the limited active-cluster size, the limited basis-set size, and
the neglect of correlation and electron-phonon interactions. In this work we sys-
tematically investigate these issues which leads us to much more consistent results
than those found so far.

3.2. Setting up the calculation: cluster sizes,

embedding scheme and basis sets

The sizes of the active clusters used in this study are Li14F12, Li38F18, Li62F62, and
Li92F86 (fig. 3.2). The distance between cation and anion, 𝑎, is set to 3.81 a.u. taken
from experimental data [42] and all the ions are, for the time being, located at lat-
tice sites of pristine LiF. The Li14F12 cluster is a cube with a side length of three
ions and the vacancy located at the very center. Adding one F− ion surrounded
by four Li+ ions on each side of this cube leads to the Li38F18 cluster. The Li62F62

cluster is again a cube with a side length of five ions. Finally, the Li92F86 cluster is
composed of the Li62F62 cube plus four fluoride and five lithium ions on each of its
sides.
These clusters are embedded (fig. 3.3) in several layers of the so-called ab-initio
model potentials [58, 59] (AIMPs) and, beyond these layers, a large, cubic matrix
of positive and negative point charges located at the lattice sites of Li+ and F−

ions, respectively. AIMPs are all electron potentials which, in contrast to pure
point charges, also include exchange terms via a non-local potential. Exchange
leads to repulsive forces between electrons of equal spin, or, in this case between
the electrons of the active cluster and the “frozen” electrons of the AIMPs. The use
of AIMPs is, therefore, important to prevent unphysical excessive polarization of
ions at the border of the active cluster. In extreme cases this can lead to so-called
charge leakage which denotes the accumulation of charge, i.e., electrons, outside
the active cluster. With larger basis sets and without AIMPs we indeed observe
charge leakage which becomes manifest in defect-electron orbitals located far away
from the active cluster. Only the use of more than one layer of AIMPs leads to
defect-electron orbitals localized on the active cluster. For the Li62F62 cluster we
use four layers of AIMPs (2072 in total) and five layers of point charges (9970 in
total). Independent of the size of the active cluster we use a cubic point charge
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matrix which comprises 233 lattice sites and in which charges are arranged as pro-
posed by Evjen [60] with fractional charges of ±0.5, 0.25, 0.125 at faces, edges,
and corners, respectively. At the center, the place of the F-center vacancy, this
leads to a Madelung constant of 1.747562 in good agreement with the converged
value of 1.747565. The value of our Madelung constant does not change when it is
calculated, e.g., for the corner of the Li62F62 cluster.
Every active ion hosts a local, Gaussian-type basis set. We use Dunning’s correlation-
consistent polarized valence-only basis sets [61] of double, triple, and quadruple zeta
quality abbreviated by cc-pVDZ, cc-pVTZ, and cc-pVQZ, respectively. Addition-
ally to the basis sets localized at the ionic sites we also place a basis set pertinent
to an F atom at the vacancy site. This additional basis set, however, has hardly
any influence on the results of our calculations. Orbital size, shape, and energy
as well as the absorption energy hardly change (the latter by less than 0.01 eV)
compared to calculations without the basis set at the vacancy site. This is in line
with earlier studies [53, 62, 63] and indicates that the defect electron is well de-
scribed by basis sets localized on ions surrounding the vacancy. For the Li62F62

cluster and the cc-pVTZ basis set this gives a total number 3750 Gaussian-type ba-
sis functions. This rather large number of basis functions leads to a huge demand
for disk space via the two-electron integral file. The so-called Cholesky decomposi-
tion option in the quantum chemistry program package Molcas [64] approximates
the two-electron integrals. It allows for tremendous reduction of disk space needed
and, thereby, considerably reduces the computation time due to a reduction of I/O
operations. Without the Cholesky decomposition some of the results presented here
could not be obtained with computers available. The approximate treatment of the
two-electron integrals leads ultimately to an approximation of the total energies
determined by the quantum chemistry calculation. The approximation strength is
governed by the so-called Cholesky threshold parameter. For vanishing Cholesky
threshold the total energies converge to the value of a conventional calculation with
exactly evaluated two-electron integrals. In our calculations we use the standard
Cholesky threshold of 10−4. Further reduction of the threshold by a factor of 10
leads to a reduction of the absorption energy by approximately 0.03 eV which is
blow 1% of the experimental value.
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Figure 3.2.: Pictures of active LiF clusters. Red colored Li+ ions are drawn smaller in
contrast to the larger, green F− ions. The blue spheres in the center of the
clusters indicate the place of the anion vacancies. The cluster sizes are (a)
Li14F12, (b) Li38F18, (c) Li62F62, and (d) Li92F68. The yellow plane in (c)
indicates the 𝑧 = 0 layer of the cluster containing the vacancy.
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Figure 3.3.: 𝑧 = 0 layer of the embedded Li62F62 cluster (fig. 3.2 (c)). Inner region
contains the active F− and Li+ ions (red and green spheres) with the va-
cancy in the center (blue sphere). The second region contains the AIMPs
of F− and Li+ ions (brown and orange spheres). The outermost layer is
composed of singly charged positive and negative point charges (pink and
black spheres).
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3.3. The Hartree–Fock absorption energy and

the F-center orbitals

To get an overview of the electronic structure we study the RHF single-particle en-
ergy spectrum of an embedded Li38F18 cluster without the defect electron trapped
in the F− vacancy (fig. 3.4). We leave out the defect electron in order to treat all
orbitals to be occupied by the defect electron on the same footing meaning they
are subject to the same potential. All energies of unoccupied orbitals correspond,
according to Koopmans’ theorem, to electron addition energies and differences be-
tween these energies can be interpreted as electron transition energies. Since the
calculations are performed in the 𝐷2ℎ point-group symmetry (for an application-
oriented introduction to group theory see, e.g., [65]) the orbital energies are sorted
by the eight irreducible representations of 𝐷2ℎ. Orbital energies below 0 eV corre-
spond to the doubly occupied F-2p orbitals, i.e., the valence orbitals. All orbitals
with higher energies are unoccupied. The LUMO, the lowest unoccupied orbital,
has 𝐴𝑔 symmetry and is indicated by a black arrow. It is energetically well sepa-
rated from the valence orbitals and also from higher lying orbitals. It will host the
defect electron in its ground state. A dipole excitation of an electron occupying
this 𝐴𝑔 orbital is only possible to an orbital of 𝐵𝑢 symmetry since excitations to or-
bitals of all other symmetries lead to vanishing dipole matrix elements. Indeed, the
next highest orbital energies (LUMO+1) belong to three degenerate 𝐵𝑢 orbitals,
also marked by a black arrow. They are energetically well separated form higher
lying orbital energies, too and will host the defect electron in its excited state. The
single-particle energy difference of the LUMO and the LUMO+1 orbitals can be
interpreted as the F-center absorption energy leading to a value of 6.03 eV not too
far from the experimental value of ∼5 eV. However, this interpretation completely
neglects the response of the host-crystal electrons to the presence of the defect elec-
tron.
A more realistic description is obtained when the absorption energies of the em-
bedded clusters are determined in so-called ∆SCF calculations, i.e., as the total
energy difference of two restricted open-shell Hartree–Fock (ROHF) 𝑁 -electron
wave functions corresponding to the ground and the first optically allowed excited
state, respectively. Similar to the findings of Adachi [63] for the F-center in NaCl
we do not encounter any significant difference in the orbital shape and absorption
energy between ROHF and unrestricted HF (UHF) calculations. The distinction
between ground and excited state is again determined by symmetry. The ground
and excited-state wave functions are “ground states” within the 𝐴𝑔 and 𝐵𝑢 sym-
metry sectors, respectively.
Size and shape of the occupied defect orbitals are well converged already for the
Li38F18 cluster with the cc-pVTZ basis set. For this configuration the ROHF 𝐴𝑔

and one of the 𝐵𝑢 orbitals are plotted in fig. 3.5. A two-dimensional cut through
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Figure 3.4.: Single-particle energy spectrum of a closed-shell HF calculation without
the defect electron for a Li38F18 cluster with the cc-pVTZ basis set. Ener-
gies are sorted by the irreducible representations of the 𝐷2ℎ point group.
Defect-orbital energies to be occupied by the defect electron in its ground
(LUMO) and excited (LUMO+1) state are indicated by horizontal arrows.
The orbital energy difference, ∆𝜖, between them approximates the F-center
absorption energy. The origin of the energy scale is at the HOMO level.

the three-dimensional wave functions is shown in fig. 3.6. Both orbitals are well
localized within the vacancy and they qualitatively resemble a hydrogen-like 1s and
2p wave function, respectively. The shape of the s-type orbital is in good qualita-
tive agreement with the one from earlier calculations by Ewig and co-workers[54].
In this reference the p-type orbital, however, is highly delocalized and spread over
adjacent lattice sites. Cuts through the electron density show hardly any accumula-
tion of charge within the vacancy in strong contrast to our results. The delocalized
nature of the excited state may be due to the pure point charge embedding and
to the use of a moderate basis set size. As a function of the basis set size we find
two extreme cases in our calculation for pure point charge embedding. A small
basis set leads to s and p-type orbitals artificially localized within the vacancy. For
large basis sets both the s- and p-type orbital show charge leakage, i.e., they are
not localized on the active cluster. The calculations of Ewig and co-workers seem
to be an intermediate case where the basis set is too large to artificially localize
the excited state but is still too small to allow charge leakage. The use of AIMP
embedding stabilizes the defect-electron charge on the active cluster and leads to
more compact and localized ROHF orbitals within the vacancy region [66]. In this



48 3.3. The Hartree–Fock absorption energy and the F-center orbitals

Figure 3.5.: Isosurfaces of the F-center electron wave function in the (a) ground state
with 𝐴𝑔 symmetry and (b) the excited state with 𝐵𝑢 symmetry. The F-
center vacancy is located in the 𝑧 = 0 layer (grey planes). Blue and white
color indicate the different sign of the wave functions.

sense only embedding schemes beyond pure point charges allow for a meaningful
convergence study of the orbital properties as a function of cluster and basis-set
size.
The influence of the AIMPs on the absorption energy can be understood in terms
of the particle-in-the-box model and can explain the fact that most of the early
calculations with pure point charge embedding [50, 51, 54, 55] underestimate the
absorption energy of the F-center. While pure point-charge embedding underes-
timates the absorption energy due to the diffuse p-type orbitals, the inclusion of
additional repulsive forces (exchange) in the embedding narrows the width of the
box and leads to a larger separation of energy levels, i.e., to an increase of the
absorption energy. With AIMP embedding, we typically find ROHF absorption
energies higher than the experimental value. With increasing cluster and basis-set
size our results, however, systematically decrease approaching the measured ab-
sorption energy. The Hartree–Fock absorption energies we find are listed in table
3.1 as a function of basis set and cluster size and they are also plotted in fig. 3.8 in
the following section. Table 3.1 also contains the converged-basis set (CBS) limit
[67]. The Hartree–Fock absorption energies systematically decrease as a function of
cluster and basis-set size but show only a rather small variation of approximately
0.1 eV. The lowest value we find is 6.19 eV for the CBS limit of the Li62F62.
A technical issue to be addressed is the symmetry of the problem and the, related,
orientation of the p-type orbital. In figs. 3.5 and 3.6 the p-type orbital is oriented
towards the second nearest neighbor F− ions. This orientation, however, is not
unique. When the HF equations are solved for the excited state of the F-center we
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Figure 3.6.: Cuts through the ROHF orbital of the F-center electron in the (a) ground
state with 𝐴𝑔 symmetry and (b) the excited state with 𝐵𝑢 symmetry. The
cuts show the wave functions within the 𝑧 = 0 layer in fig. 3.5.

Basis set Li14F12 Li38F18 Li62F62 Li92F86

cc-pVDZ 6.31 6.27 6.24 6.21
cc-pVTZ 6.27 6.23 6.20 –
cc-pVQZ 6.26 6.23 – –
CBS limit 6.26 6.22 6.19 –

Table 3.1.: Hartree–Fock F-center absorption energies in eV as a function of basis set
and cluster size in clusters with the experimental anion-cation distance of
3.81 a.u..

can place the electron either in a 𝐵1𝑢, 𝐵2𝑢, or 𝐵3𝑢 orbital leading to three perfectly
degenerate solutions. Any linear combination of these three orbitals is, therefore,
also a solution to the HF equations with the same total energy and allows for an
arbitrary rotation of the excited-state defect orbital while leaving the absorption
energy unchanged. An example of such a rotation is shown in fig. 3.7 where the
defect orbital points towards the nearest neighbor Li ions.
The reason for finding three degenerate excited states corresponding to three dif-
ferent irreducible representations (𝐵1𝑢, 𝐵2𝑢, 𝐵3𝑢) is due to the fact that our re-
sults are reduced symmetry solutions: while the embedded clusters in fig. 3.2 have
𝑂ℎ symmetry, the point group with the highest symmetry supported by Molcas
and used in the calculations is 𝐷2ℎ. In the 𝑂ℎ point-group symmetry the excited
state orbitals belong to the 𝑡1𝑢 representation but the three degenerate 𝑡1𝑢 com-
ponents reduce to three different representations of the 𝐷2ℎ. This implies that a
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Figure 3.7.: The excited-state defect orbital pointing towards the nearest neighbor Li+

ions. Panel (a) shows a wave function isosurface and (b) shows a cut
through the wave function within the 𝑥 = 0 layer. The blue and white
color (a) and the blue and red color (b) indicate the sign of the orbital.

CASSCF calculation with these three orbitals in one CAS is not feasible and that
static correlation between the corresponding configurations, i.e., the possible multi-
determinant character of the total wave function is not captured.
Sousa and Illas [68] encountered the same problem in their study of the F cen-
ter in MgO. They suggested to remove all symmetry constraints (𝐶1 point group)
allowing for a CAS comprising the ground state s-type orbital and the three degen-
erate p-type orbitals. Unfortunately, a calculation without symmetry constraints
becomes computationally quite expensive which is why we only do a partial reduc-
tion of symmetry. The 𝐶2ℎ point-group has only four irreducible representations
and two of the three degenerate p-type defect orbitals correspond to 𝐵𝑢 symmetry
and can be part of the same CAS. For the Li38F18 cluster (cc-pVTZ basis set) the
𝐶2ℎ-CASSCF absorption energy of the F-center electron is 0.003 eV lower than
the ROHF energy using the 𝐷2ℎ symmetry. Application of CASPT2 (see below)
increases this value to 0.017 eV which is still negligible and confirms that the 𝐷2ℎ

solution hardly introduces any error.
The independence of the absorption energy on the p-orbital orientation is only valid
for the highly symmetric pristine (and relaxed ground state (sec. 3.5.2)) geometry.
For photo-emission, starting from the geometry of the so-called relaxed-excited
state, the orientation of the p-type orbital is crucial in order to find the minimum
total energy of the excited state as a function of cluster geometry (sec. 3.5.6).
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3.4. Beyond Hartree–Fock: absorption energies

including correlation

Quantum chemistry offers a variety of methods to include the effect of correla-
tions (see section 2.2) which we apply in the following to the F center in em-
bedded clusters. We investigate the influence of static correlation, now within
a single irreducible representation, by applying the CASSCF method and sub-
sequently comparing CASPT2 absorption energies based on a ROHF wave func-
tion (CASPT2(ROHF)) and a multi-determinant CASSCF wave function (CASPT2
(CAS)). The CAS for the ground state calculation (𝐴𝑔 symmetry) is formed by cor-
relating all occupied valence orbitals (F-2𝑝 orbitals) of 𝐴𝑔 symmetry plus a number
of virtual orbitals also of 𝐴𝑔 symmetry. For the excited state, the same procedure
is applied within one of the 𝐵𝑢 representations. The largest CASs are tested within
the Li38F18 cluster with the cc-pVTZ basis set and read (19,13), corresponding to
19 electrons in 13 orbitals, and (17,11) for the ground and excited state, respec-
tively. The absorption energies of the F-center are hardly affected by including the
static correlation contribution. We find a difference between CASPT2(ROHF) and
CASPT2(CAS) of less than 0.02 eV. This indicates the strong single-determinant
nature of the problem at hand.
We test the influence of dynamic correlation with CASPT2(ROHF), CCSD, and
CCSD(T). For this group of methods, the starting point is the ROHF wave function
of either ground or excited state, discussed in sec. 3.3. Absorption energies of the F-
center in the Li14F12 embedded cluster are summarized in table 3.2 for various basis
sets. Since CCSD and CCSD(T) calculations are computationally quite demanding
they can not be applied for all basis sets. The last line in table 3.2 shows values
for the converged basis set (CBS) limit obtained by employing the extrapolation
scheme proposed by Truhlar [67, 69]. This scheme is tailored to extrapolate per-
turbation theory, CCSD, and CCSD(T) energies from the cc-pVDZ and cc-pVTZ
basis sets to the CBS limit allowing for application to cases in which cc-pVQZ cal-
culations are not feasible. Where available, we compare the Truhlar CBS energies
to values from extrapolation schemes involving the energy of the larger cc-pVQZ
basis set [70], which show a deviation of less than 0.01 eV in the absorption en-
ergy. Results in table 3.2 prove the reliability of the CASPT2(ROHF) method
since it very closely reproduces the absorption energies of the more accurate CCSD
and CCSD(T) methods. For example, the CBS limits of the CASPT2(ROHF) and
the CCSD differ by only 0.04 eV. A comparison between CASPT2(ROHF) and
CCSD(T) absorption energies is only possible for the cc-pVDZ basis set for which
the CCSD(T) energy is 0.05 eV lower than the CASPT2(ROHF) value.
These small deviations (. 1 % of the experimental absorption energy) make the nu-
merically relatively cheap CASPT2(ROHF) method the perfect candidate to study
the convergence of the absorption energy as a function of cluster size. CASPT2
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Basis set ROHF CASPT2(ROHF) CCSD CCSD(T)
cc-pVDZ 6.31 5.99 6.00 5.94
cc-pVTZ 6.27 5.84 5.86 –
cc-pVQZ 6.26 5.79 – –
CBS limit 6.26 5.73 5.77 –

Table 3.2.: F-center absorption energies of the Li14F12 cluster calculated with different
methods and basis sets using the unperturbed crystal geometry and the
experimental lattice constant.

Basis set Li14F12 Li38F18 Li62F62 Li92F86

cc-pVDZ 5.99 5.87 5.76 5.74
cc-pVTZ 5.84 5.73 5.62 –
cc-pVQZ 5.79 5.70 – –
CBS limit 5.73 5.63 5.50 –

Table 3.3.: CASPT2(ROHF) absorption energies of the F-center in LiF calculated with
different cluster sizes and basis sets using the unperturbed crystal geometry
and the experimental lattice constant.

(ROHF) absorption energies for different cluster sizes, different basis sets, and their
CBS limits are listed in table 3.3 and plotted together with the Hartree–Fock values
in fig. 3.8. Since for the cc-pVDZ basis set the difference between the Li62F62 and
the Li92F86 cluster is only 0.02 eV, we consider the absorption energy of the Li62F62

cluster converged within a satisfactory level of accuracy.
Beyond Hartree–Fock the single-particle picture is not applicable any more. Natural
orbitals (sec. 2.3), however, offer the possibility to qualitatively study the influence
of correlations on the defect-electron density. In the CASPT2 case the natural
orbitals diagonalize the one-particle reduced density matrix obtained from the ex-
act first-order wave function. Although the difference between CASPT2(ROHF)-
natural orbitals and ROHF orbitals is four orders of magnitude smaller than their
actual value, the difference between their absolute magnitudes (fig. 3.9) clearly
shows the tendency of correlations to slightly delocalize the F-center electron shift-
ing the density from the vacancy site to the surrounding F− ions. In the simple
picture of a particle in the box this suggests correlation to enlarge the box a little
leading to larger defect orbitals and to a reduction of the absorption energy.
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Figure 3.8.: ROHF and CASPT2(ROHF) F-center absorption energies as a function of
cluster and basis set size using the unperturbed crystal geometry and the
experimental lattice constant.

Figure 3.9.: Difference ∆ = |𝜑𝑛𝑎𝑡|2 − |𝜑𝐻𝐹 |2 between the absolute magnitudes of the
CASPT2(ROHF) first-order natural orbitals and the Hartree–Fock orbitals
of the electron in the 𝐹 -center vacancy for the (a) ground state (s-state)
and (b) excited state (p-state) configuration. Orbitals from calculations
using the Li38F18 cluster and the cc-pVTZ basis set are shown.
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3.5. Comparison with experiment

In the first section we discuss the so-called Fermi contact term which allows for
probing experimentally the total spin density at the ionic sites surrounding the
F-center defect by electron-nuclear spin resonance. The absorption energy of the
F-center in LiF is determined by optical absorption spectroscopy leading to an ab-
sorption peak with a maximum at 5.08 eV and a width (full width at half maximum)
of 0.62 eV at a temperature of about 5 K [71]. In order to compare our result with
the experimental absorption spectrum we need to take into account further effects
neglected so far. These effects comprise the change of geometry around the defect
(sec. 3.5.2) and the influence of lattice vibrations on the the line width (sec. 3.5.3)
as well as the maximum of the absorption peak (sec. 3.5.4). In sec. 3.5.6 we briefly
touch the problem of photoluminescence, the emission of light during the deexcita-
tion of the F-center electron, which has been detected in many alkali-halide crystals
except for LiF. Closely related is the problem of the so-called relaxed excited state.

3.5.1. Fermi Contact term

The Fermi contact term 𝐴0 in the hyperfine interaction between the defect electron
and nuclei surrounding it is experimentally accessible through electron-nuclear dou-
ble resonance (ENDOR), developed by Feher [72]. It can be determined for each
nucleus individually and it is proportional to the spin density, the total density
difference of spin up and spin down electrons |𝜓↑(0)|2 − |𝜓↓(0)|2, at the selected
nuclear site of the host crystal [73]:

𝐴0 = −2

3
𝜇0𝑔𝑒𝛽𝑒𝑔𝑛𝛽𝑛(|𝜓↑(0)|2 − 𝜓↓(0)|2), (3.1)

with the Bohr magneton 𝛽𝑒, the nuclear magneton 𝛽𝑛, the electron 𝑔𝑒 and nuclear
𝑔𝑛 factors. The 𝐴0 values at the first, second, and third nearest neighbor ions of the
F-center electron in LiF were measured by, e.g., Holton and Blum[74]. Mallia et al.
performed UHF calculations [75] with periodic boundary conditions. Experimental
and theoretical spin densities are listed in table 3.4 together with results from our
embedded cluster UHF and ROHF calculations. At the nearest-neighbor Li+ ion
embedded cluster and periodic boundary UHF spin densities are within ∼ 2% of the
experimental value. The errors, however, increase substantially for the second and
third nearest neighbor ions. ROHF considerably underestimates the spin densities
at all ionic sites due to the neglect of spin dependent polarization of core and valence
electrons. In the ROHF approach doubly occupied orbitals do not contribute to
the spin density and, therefore, the spin density is determined solely by the F-
center electron. Leitão et al. found this effect [62] for F centers in other alkali-
halides where core and valence electrons account for up to 30 % of the spin density.
Despite this substantial difference between ROHF and UHF we find essentially
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identical single-particle defect wave functions for the F-center electron (fig. 3.10)
and identical Fermi contact terms if, in UHF, only the defect orbital is considered.
Since experimentally the two contributions, defect and core electrons, can not be
disentangled the Fermi contact term can not be used to unambiguously map out
the defect-electron wave function. Nevertheless the good agreement of 𝐴0 at the
nearest-neighbor Li ions between theory and experiment shows that the central part
of the ROHF/UHF defect wave functions are reliable. The Fermi contact term of
ions beyond the nearest neighbor only probe subtle local effects on the tail of the
defect wave function strongly influenced by the properties of the on-site ionic cores.

Figure 3.10.: Cut through the ROHF (solid-red line) and UHF (dashed green) defect-
electron density function along the [100] crystal direction. Vertical dashed
arrow marks the ROHF spin density, i.e., UHF spin density neglecting the
spin dependent polarization of the Li-1s orbitals.

3.5.2. Relaxation of the ground state - The Franck–Condon
absorption energy

All convergence studies in secs. 3.3 and 3.4 are performed for an unperturbed crys-
tal geometry. The formation of the F-center defect, however, leads to forces on
the ions close to the vacancy displacing them from their position in pristine LiF.
We calculate these forces for the electronic ground state, the s-type state, on the
CASPT2(ROHF) level and optimize the structure of the Li38F18 cluster using the cc-
pVTZ basis set. For the absorption energy we only need to optimize the electronic
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|𝜓↑(0)|2 − |𝜓↓(0)|2 [a.u.]
Li+100 F−

110 Li+111
ROHF (ECA) 0.0177 0.0125 0.00014
UHF (ECA) 0.0229 0.0200 0.00009
UHF (PBC) 0.0225 0.0182 0.00006
experiment 0.0225 0.0252 0.00029

Table 3.4.: Spin densities in 1/bohr3 at the first (Li+100), second (F−
110), and third (Li+111)

nearest neighbor ions of the F center in LiF. Experimental data [74] are
compared with ab initio calculations within the framework of the embedded
cluster approach (ECA) and periodic boundary conditions (PBC) [75]. In
the ECA calculations of the Fermi contact term the lattice constant and the
geometry relaxation found in [75] is used.

ground state since the electronic excitation happens essentially instantaneously
compared with the time scale of the motion of the nuclei (vertical transition in
fig. 3.12). The relaxation is performed under the constraint that only nearest and
second-nearest neighbors are allowed to move. This constraint is imposed due to
two reasons. First, periodic-boundary DFT calculations [47] show essentially no
movement of ions further away and, second, potentially unphysical relaxation of
ions in the outermost layer of the active cluster neighboring AIMPs should be
avoided. We find an outward movement (away from the vacancy) of the nearest
neighbor Li+ ions of 0.08 bohr and also an outward movement of the second nearest
neighbor F− ions of 0.03 bohr. With this relaxed geometry the F-center absorp-
tion energy of the Li62F62 cluster in the CBS limit is 5.96 eV on the Hartree–Fock
and 5.31 eV on the CASPT2(ROHF) level. This corresponds to a decrease of the
absorption energy compared to the unrelaxed geometry calculation by 0.21 eV and
0.19 eV for the HF and CASPT2(ROHF) case, respectively.

3.5.3. Line width of the absorption spectrum

The line width of the F-center absorption in alkali halides is dominated by electron-
phonon interactions, i.e. the change of electronic energy with ion position. Lifetime
broadening can be neglected due to the long lifetime of the excited state [45] of
up to ∼ 10−6 s. Typically one local vibrational mode of ions close to the vacancy
dominates the line width and the absorption process [8, 76]. In the case of LiF,
this mode is the symmetric breathing mode of the six Li+ ions around the vacancy
in which they oscillate in phase towards/away from the vacancy (inset in fig. 3.11).
We calculate the configuration-coordinate diagram for this mode for the Li38F18

cluster and the cc-pVTZ basis set (fig. 3.11) and extract a vibrational frequency
of 15.78 THz (65.2 meV) and a line width of 0.27 eV due to the zero-point fluc-
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tuations. According to a “rule of thumb” by Stoneham [8], this result seems to
be reasonable since this frequency is comparable to the transverse optical phonon
frequency of bulk LiF of ∼10 THz [77, 78]. Also the theoretical line width is in rea-
sonable agreement with experimental values at low temperature ranging from 0.42
to 0.61 eV [71, 79] since this single-mode estimate should be considered as a lower
bound to the experiment. Further effects not included such as additional modes
including ions beyond the nearest neighbors, thermal broadening, broadening due
to imperfections (inhomogeneous broadening) would increase the theoretical line
width. The same is true for broadening due to folding of the line with the experi-
mental resolution.

Figure 3.11.: Calculated configuration coordinate curves for ground (red full line) and
excited (turquoise dashed) state of the F center in LiF as a function of
the elongation along the symmetric breathing vibration of the six Li+ ions
surrounding the defect (inset). Calculations are performed for the Li38F18

cluster and the cc-pVTZ basis set. The blue (dotted) line is the absolute
magnitude squared of the ground-state wave function of an harmonic
potential with ~𝜔=0.0652 eV (green dash-dotted line).

3.5.4. Electron-phonon coupling

The coupling of electronic and nuclear degrees of freedom may lead to a redshift of
the absorption line of the F center with respect to its Franck–Condon value. We
estimate contributions to this shift by analyzing the energy surfaces of ground and
excited states and, alternatively, by estimating the self-energy of a “small” polaron.
Fig. 3.12 shows two schematic potential energy surfaces of ground and excited state
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of the F center as a function of an effective configuration coordinate. The Franck–
Condon absorption is indicated by a vertical arrow, i.e., a vertical transition from
the potential minimum of the ground state to the excited state. The lowest possible
absorption energy, however, is given by the so-called zero-phonon line which is a
non-vertical transition from the minimum of the ground state to the minimum of
the excited state. The difference between the Franck–Condon and the zero-phonon
line, 𝐸relax, is an upper bound 𝐸relax = ∆𝐸max

e-ph to the contribution of electron-
phonon coupling to the redshift of the absorption line. 𝐸relax corresponds to the
relaxation energy of the excited state which we estimate in sec. 3.5.6 to be at least
𝐸relax ∼ 0.5 eV.

Figure 3.12.: Schematic picture of electronic potential energy surfaces of ground and
excited state of the F-center as a function of an effective configuration
coordinate. Arrows indicate the vertical (Franck-Condon like) transition
and the non-vertical transition to the minimum of the excited state po-
tential energy surface. The difference ∆𝐸max

e-ph in energy between these to
excitations is an upper bound for the red shift of the absorption line due
to electron-phonon interactions.

A proper way to determine the absorption spectrum and the influence of local vibra-
tion modes would be to calculate the Franck–Condon factors between the nuclear
eigen states of the PESs of the F-center ground and excited states. For reliable
results, however, the inclusion of more local modes as well as a proper description
of the minimum of the excited state PES (the relaxed excited state) is necessary.
An ab-initio realization of the latter, as will be shown in sec. 3.5.6, is, however,
highly non trivial. Alkauskas and co-workers recently calculated the luminescence
lineshape for a transition in the nitrogen-vacancy center in diamond and included
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not only quasi-localized modes but also bulk phonons on equal footing [80].
Alternatively, within a polaron model the correction to an electronic energy level is
given by the polaron self-energy induced by virtual excitations of electrons to the
conduction band and their interaction with longitudinal optical phonons. Accord-
ingly, differences between the polaron self-energies for the electronic ground and
excited state of the color center contributes to the shift of the absorption line with
respect to its Franck-Condon value. Since in alkali halides electron-phonon coupling
is large we employ Feynman’s strong-coupling limit for the polaron self-energy [81]
𝐸polaron = −(0.106𝛼2 + 2.83)~𝜔, where 𝛼 is the Fröhlich coupling constant [82]
and 𝜔 is the longitudinal optical phonon frequency. We estimate the shift of the

absorption line as ∆𝐸
(𝑄𝑗)
e-ph = −(0.106𝛼2 + 2.83)~∆𝜔𝑄𝑗

through the largest differ-
ence in vibration frequency ∆𝜔𝑄𝑗

of the local normal mode 𝑄𝑗 involving the six
neighboring Li+ ions between ground and excited state of the color center. The
frequencies are obtained from parabolic fits to configuration coordinate curves cal-
culated with the Li38F18 and the cc-pVTZ basis set. As dominant contribution we
find ∆𝜔𝑄2 ≈ 0.015 eV, where 𝑄2 corresponds to the stretch vibration shown in
fig. 3.13. Using the Fröhlich coupling constant of pristine LiF (𝛼 = 5.25) yields
∆𝐸e-ph = 0.09 eV.

Figure 3.13.: Schematic picture of the stretch vibration of the six Li+ ions neighboring
the vacancy responsible for the dominant contribution ∆𝜔𝑄2 ≈ 0.015 eV.

In addition we explore dynamical corrections to the Born-Oppenheimer energy
surfaces (see sec. 5.2) which scale with the inverse of the effective mass. The
lowest-order non-Born-Oppenheimer (NBO) corrections ∆𝐸(NBO) are given by the
eigenvalues of the Hamiltonian matrix

∆𝐻𝑖,𝑗 = −
∑︁
𝑎

1

𝑀𝑎

∫︁
𝑑𝑅 ⟨𝜑𝑗|∇𝑎|𝜑𝑖⟩ 𝜒𝑗∇𝑎𝜒𝑖

+

∫︁
𝑑𝑅 ⟨𝜑𝑗|𝑇𝑅|𝜑𝑖⟩ 𝜒𝑗𝜒𝑖, (3.2)
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where 𝜑𝑖 is the electronic wave function of the 𝑖-th state, 𝜒𝑖 is the nuclear wave
function in the 𝑖-th electronic state, and

𝑇𝑅 =
∑︁
𝑎

− 1

2𝑀𝑎

∇2
𝑎

∇𝑎 =

(︂
𝜕

𝜕𝑋𝑎

,
𝜕

𝜕𝑌𝑎
,
𝜕

𝜕𝑍𝑎

)︂
. (3.3)

The index 𝑎 runs over the atoms in the embedded cluster. The shift of the F-
center absorption line due to electron-vibrational coupling is then given by the
difference ∆𝐸(NBO) = 𝐸

(NBO)
𝑝 − 𝐸

(NBO)
𝑠 . We estimate ∆𝐸(NBO) from a strongly

truncated matrix including only the lowest-lying s and p-type states and with only
the six-nearest neighbour Li+ ions closest to the vacancy allowed to vibrate. The
electronic matrix elements are evaluated on the multi-state CASPT2 level using
finite differences (appendix A.4). For the nuclear wave functions 𝜒𝑖 the harmonic
approximation is used. As expected, this estimate leads to a negligible energy shift
below 0.0001 eV. We conclude that these dynamical corrections are completely
negligible compared to the corrections due to quasi-static lattice distortion and
relaxation.

3.5.5. Comparison of the theoretical and experimental
spectrum

In this section we combine the effects discussed in the sections above and plot the
theoretical spectrum together with the experimental one at T∼5 K in fig. 3.14.
The theoretical spectrum is represented by a Lorenzian centered at 5.22 eV and a
width (full width at half maximum) of 0.27 eV (sec. 3.5.3). The value for the peak
position is composed of the CBS limit of the relaxed Li62F62 cluster (sec. 3.5.2)
and the red shift due to electron phonon coupling ∆𝐸e-ph of 0.09 eV (sec. 3.5.4).
Parameters for the experimental spectrum are taken from ref. [71] in which the
spectrum is described by a Gaussion centered at 5.08 eV with a FWHM of 0.61 eV.
Both spectra are in unprecedented agreement with each other

3.5.6. Photoluminescence and the relaxed excited state

So far we have only considered the absorption of light by the F-center electron but
not the remaining processes in the optical cycle (fig. 3.15(a)). After the Franck–

Condon absorption 1 the ions surrounding the vacancy respond to the new elec-

tronic configuration by changing their position 2 and the system ends up in the
so-called relaxed excited state. The energy released in the relaxation is termed the
relaxation energy 𝐸relax. The relaxation proceeds quite quickly, taking only of the
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Figure 3.14.: Experimental [71] (green-dashed line) and calculated (red-solid lines) ab-
sorption spectra of the F center in LiF. The experimental spectrum is
measured at 𝑇 ≈ 5 K and is depicted as a Gaussian function with a peak
position of 5.08 eV and a full width at half maximum of FWHM= 0.61 eV.
The quantum chemistry result is obtained from a CASPT2(ROHF) cal-
culation in the converged basis set limit of the relaxed Li62F62 embedded
cluster (sec. 3.5.2). It is plotted as a Lorentzian with a calculated line
width at zero temperature (sec. 3.5.3) of 0.27 eV and contains a red
shifted due to electron phonon-coupling of ∆𝐸e-ph = 0.09 eV (sec. 3.5.4).

order of 10−12 seconds [45, 83], while the relaxed excited state is comparably long
lived, ∼ 10−6 seconds [45, 83], before it decays via emission of light, the photolu-

minescence 3 , to the unrelaxed ground state. A further relaxation back to the

initial geometry 4 closes the optical circle. The difference between the absorption
energy and the emission energy, 𝐸abs−𝐸em, is called the Stokes shift and is mainly
determined by the geometry of the relaxed excited state.

As we have shown in detail in this chapter, the absorption process of the F-
center in LiF (and also in other alkali-halide crystals (see next chapter)) is well
understood and ab initio results are in good agreement with experiment. This is,
however, not the case for the other steps of the optical cycle, especially for the
relaxed excited state and the emission process. To our knowledge there are two (re-
lated) unsolved problems. First, although F-center luminescence and the relaxed
excited state have been measured in detail in many alkali-halide crystals [45, 84]
(also the dynamics of the nuclear wave packet after excitation has been measured
[83]) there is no ab initio theory that could explain the large Stokes shifts ranging
up to 𝐸abs −𝐸em = 3.70− 1.66 = 2.04 eV for the F-center in NaF. Second, there is
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Figure 3.15.: Schematic picture of: (a) the optical cycle of (1) the absorption, (2)
relaxation into the relaxed excited state, (3) photoluminescence, and (4)
relaxation back to the initial ground state geometry; (b) radiationless
emission via an avoided crossing between the s-type and p-type potential
energy surface; (c) mixing of the PES of 2s and 2p-type excited state.

no observed luminescence of the F-center in LiF [85]. There are estimates [86, 87]
that 𝐸em should be in the range of ∼ 1.4 eV (a Stokes shift of ∼ 3.6 eV) but it has
not been found experimentally and it is also not clear why this is the case. Possible
explanations are that the signal is overshadowed by the emission from other defects
[87], or that the light emitted by the F-center matches the absorption energy of
another defect and, therefore, a large part is absorbed and reemitted at another
energy. Also radiationless deexcitation is possible [84, 88] either due to an avoided
crossing between the potential energy surfaces of the 1s and 2p level (fig. 3.15 (b))
or between the PESs of the 2s and the 2p levels (fig. 3.15 (c)) leading to a vanishing
dipole matrix element between the relaxed excited state and the ground state. A
partial reduction of the dipole element, the so-called 2s-2p mixing, is experimentally
found [83] to be the reason for the long lifetimes of the relaxed excited F-center
states in, e.g., KCl.
We try to shed some light on these questions by examining the relaxed excited state
in LiF by means of state specific geometry relaxation. For the highly symmetric
ground state geometry the three 𝐵𝑢 levels are degenerate and the orientation of the
excited p-type orbital is irrelevant (sec. 3.3). This is no longer true for the relaxed
excited state. When the geometry of the excited state is optimized symmetry is re-
duced and the degeneracy is lifted in a Jahn–Teller like distortion. The orientation
of the p-type orbital then crucially influences the emission energy. Within the 𝐷2ℎ

point-group symmetry there are two (classes of) orientations of the p-type orbital,
realized by different orientations of the 𝐷2ℎ symmetry planes with respect to the
active cluster. The p-type orbital can point either towards the nearest neighbor Li+

ions (fig. 3.7) or towards the second nearest neighbor F− ions (figs. 3.5 (b) and 3.6
(b)). Using a CASPT2(ROHF) relaxation (cc-pVTZ basis set) of the nearest and
second nearest neighbors in an Li38F18 cluster [47], we find the orientation towards
F− the more favorable one, i.e., the energetically lower one with 𝐸relax ≈ 0.5 eV,



3. The F-type color center in lithium fluoride 63

𝐸em = 4.49 eV, and a corresponding Stokes shift of ∼1 eV. This 𝐸em value, how-
ever, is clearly too large compared to the estimate of 1.4 eV and the luminescence
energy of the F-center in NaF, 𝐸em(𝑁𝑎𝐹 ) = 1.66 eV, the alkali halide with the
lattice constant closest to LiF.
The overestimation of 𝐸em in LiF is, at least partially, due to the limited clus-
ter size and, thus, the limited number of ions involved in the relaxation as well
as the symmetry constraints imposed by the 𝐷2ℎ point-group symmetry. We re-
move these restrictions by allowing also for third-nearest neighbor relaxation and
by using the 𝐶2ℎ point-group symmetry. The calculations become computationally
more demanding and, therefore, only a CASSCF relaxation with the cc-pVDZ basis
set is used. In the 𝐶2ℎ point-group symmetry two of the p-type levels are in the
CAS which allows for a rotation of the occupied p-type orbital within a plane. We
orient this plane such that it contains the defect vacancy and is perpendicular to
the [100] crystal direction (fig. 3.16 (a)). This choice comprises the p-type orbital
orientation towards the third nearest neighbor Li+ ion (fig. 3.16 (b)), i.e., orienta-
tion along the space diagonal of the LiF unit cell. This is, indeed, the orientation
with the lowest energy found in the CASSCF relaxation. At this relaxed geometry,
the CASPT2(ROHF,cc-pVTZ) emission energy is 3.99 eV (Stokes shift of 1.5 eV)
which is 0.5 eV lower than the emission energy for the orientation towards F−.
Although this emission energy is still too high, it clearly shows that a more general
relaxation protocol, in terms of number of ions involved and symmetry constraints,
considerably reduces the emission energy and increases the Stokes shift.

Figure 3.16.: (a) Plane in which the p-type orbital is allowed to rotate during the geom-
etry optimization of the relaxed excited state using the 𝐶2ℎ point-group
symmetry. (b) Isosurface of the F-center electron in the relaxed excited
state. The orbital points towards the third nearest neighbor Li+ ion along
the space diagonal of the LiF unit cell.
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Within the relaxed geometry with the p-type orbital oriented along the space di-
agonal we search for signs of a radiationless decay of the relaxed excited state but
we neither find avoided crossings nor a reduction of the dipole matrix element. A
definite answer to the problem of the luminescence of the F center in LiF (and other
alkali-halide crystals) awaits further calculations with larger cluster sizes and more
advanced relaxation strategies possibly also including long-range polarization.

3.6. Solid-state physicist’s and quantum

chemist’s approach to the F-center in LiF: a

comparison

In this section we compare the quantum chemistry results discussed above with
results on the F center in LiF from periodic boundary (post-) DFT calculations
conducted by Karsai [47, 48]. First, however, we illustrate the conceptual differ-
ences between the two approaches (fig. 3.17) using an oversimplified model: we
approximate the defect electron by a particle in a square-well potential of finite
height. The upper edge of the square well marks the onset of the conduction band,
𝐸𝑐. The ground-state energy of the electron, 𝐸𝑠, lies deep in the band gap of LiF,
i.e., the square well. Since the square well has a finite depth, the p-state energy,
𝐸𝑝, does not necessarily lie below the continuum onset, i.e., the conduction-band
edge, but may appear as a resonance within the conduction band.
The quantum chemistry approach to optical excitation energies typically sets out
from Hartree–Fock calculations of the ground and excited state configurations,
which are depicted in panel I(a) and I(b), respectively. The absorption, i.e. ex-
citation energy is then the total energy difference of the N-electron wave functions.
Excitonic effects are naturally included since the potential “seen” by the excited
F-center electron in panel I(b) contains the hole the electron left behind after ex-
citation. The Hartree–Fock approximation typically overestimates band gaps and,
therefore, the depth of the potential well in fig. 3.17. As a consequence both, the
s- and the p-orbital energies, lie below the onset of the continuum independent of
the configuration.
DFT is known for underestimating the band gap leading to a more shallow potential
well and to a p-state appearing as a broad resonance within the conduction band
in panel I(a). In periodic boundary calculations the band gap is usually corrected
by employing many-body perturbation theory on the level of the 𝐺𝑊 approxima-
tion [89]. The resulting quasi-particle energies correspond then to electron addition
and removal energies. Therefore, the quasi-particle energy 𝐸𝑝 in panel II(b) is the
energy of an electron added to the system in the presence of an electron occupying
the s-state. While 𝐺𝑊 considerably increases the depth of the potential well, the p
state is still in the conduction band due to the mutual repulsion with the electron
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Figure 3.17.: Alternative strategies for calculating F-center excitation energies. The
F-center electron is represented by a particle in the box. 𝐸𝑠 denotes
the single-particle level of the electron in the ground-state (“s-type wave
function”) of the F center, 𝐸𝑝 denotes the energy of the first excited state
(“p-type wave function”). The shaded area marks the conduction band
with the band edge at 𝐸𝑐. In the extended system approach (I) of solid-
state physics, the addition energy is determined by the GW approximation
(Ib) and the correction due to the excitonic interaction with the hole
(Ic) is described by the Bethe–Salpeter equation. In embedded-cluster
approaches employing quantum chemistry, the total N-electron energy of
the two lowest states of opposite parity (II a and b) are calculated and
subtracted from each other.

in the s-state. However, it has been localized more strongly, as indicated by the
narrowing of the energy level. A further correction is necessary to account for the
screened Coulomb attraction within the solid-state approach between the hole in
the s level and the electron in the p level. This gives rise to an excitonic state
which, in the present case, lies below the edge of the conduction band in panel
II(c). Excitonic corrections are typically calculated by solving the Bethe–Salpeter
equation [90].

On the single-particle level we can compare the defect orbitals from quantum
chemistry and DFT calculations. s- and p-type Kohn–Sham orbitals extracted at
the Γ point from DFT-SCF runs using the Tran–Blaha modified Becke–Johnson
(TB-mBJ) exchange-correlation potential [91] are plotted in fig. 3.18 (a) and (b),
respectively. The occupied s-type orbitals (ROHF: fig. 3.18 (c) and DFT: fig. 3.18
(a)) qualitatively agree in size and shape. Note that in both figures the same val-
ues for the contour lines are used. For a comparison of the p-type orbitals (ROHF:
fig. 3.18 (d) and DFT: fig. 3.18 (b)) a few explanations are necessary. One obje-
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tive from DFT point of view in our study in ref. [47] is the performance of the
TB-mBJ exchange-correlation potential compared to the application of the nu-
merically more expensive GW perturbation theory to correct the band gap. The
TB-mBJ exchange-correlation potential is designed for materials with large band
gaps, such as LiF, and corrects for the band-gap underestimation known for “stan-
dard” exchange-correlation potentials. It predicts the LiF band gap to be 14.51 eV
in good agreement with experiment (14.2 eV). As a consequence we find a situation
different to the one depicted in panel II(a) in fig. 3.17. The TB-mBJ potential
leads to a p-state orbital energy below the onset of the conduction band and to
the formation of localized, unoccupied p orbitals, one of which is shown in fig. 3.18
(b). This orbital should not be compared to the occupied Hartree–Fock p orbital
in fig. 3.6 (b). Rather it should be compared to the unoccupied HF-p orbital with
the defect electron in the ground state. As discussed above, HF leads to a large
overestimation of the band gap and, therefore, the excited (unoccupied) p levels
also lie below the conduction band. The unoccupied HF-p orbital (fig. 3.18 (d))
is somewhat more diffuse than the DFT-p orbital (and also the occupied HF-p or-
bital) but both are still in qualitative agreement.
Qualitative agreement is also found for the relaxation parameters for the ground
state of the F center. DFT(PBE) and CASPT2(ROHF) lead to an identical outward
relaxation of 0.08 bohr of the nearest-neighbor Li+ ions and to a similarly small out-
ward relaxation of the next-nearest neighbor F− ions (0.03 bohr in CASPT2(ROHF)
and 0.02 bohr in DFT). Such a degree of agreement between periodic DFT and
quantum-chemistry cluster calculations is not typical. In magnesium oxide, for ex-
ample, the relaxation of Mg+ ions surrounding the (two electron) F-center vacancy
obtained from periodic DFT [92] and embedded cluster HF calculations [93] differ
by a factor of ∼5. PBE is used for the geometry relaxation since TB-mBJ does not
provide total energies [91] and, thus, forces on the ionic cores are not available.
Also a comparison of the absorption spectra obtained from solving the Bethe–
Salpeter equation, the one from CASPT2(ROHF), and the experimental one (fig.
3.19) shows excellent agreement between the two theoretical methods and the ex-
periment. Please note that all theoretical spectra are plotted with the width de-
termined in sec. 3.5.3 and contain the shift due to electron-phonon coupling (sec.
3.5.4).
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Figure 3.18.: Upper panels: Kohn-Sham wave function (exchange-correlation potential:
TB-mBJ) contour plot within the (100) plane at the Γ point for the (𝛼-
spin) F-center bands in the Li32F31 supercell: (a) occupied s-orbital, (b)
one of the three degenerate unoccupied p-orbitals. Lower panels: ROHF
wave function of (c) the occupied s-orbital and (d) the unoccupied p-typ
orbital in an embedded Li38F18 embedded cluster.
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Figure 3.19.: Experimental [71] (green, dashed line) and calculated absorption spectra
of the F center in LiF. The experimental spectrum is measured at 𝑇 ≈ 5 K
and is depicted as a Gaussian function with a peak position of 5.08 eV
and a full width at half maximum of FWHM= 0.61 eV. Spectra calculated
from post DFT methods [TB-mBJ + BSE (black, fine-dashed line) and
GW0PBE +BSE (blue, dash-dotted line)] are determined within a Li16F15

unit cell. The quantum chemistry result (solid-red line) is obtained from a
CASPT2(ROHF) calculation in the converged basis set limit of the relaxed
Li62F62 embedded cluster (sec. 3.5.2). All theory data are plotted with
a calculated line width at zero temperature (sec. 3.5.3) of 0.27 eV and
contain a red shifted due to electron phonon-coupling of ∆𝐸e-ph = 0.09 eV
(sec. 3.5.4).



4. The Mollwo–Ivey relation for
F-centers in alkali halide
crystals

In this chapter we extend the investigation of F-center absorption energies to other
alkali halides. In particular, we focus on the scaling of the absorption energy with
the lattice constant known as the Mollwo–Ivey (MI) relation. Mollwo [9] first
observed in 1931 that the F-center absorption energy 𝐸abs in various alkali-halide
crystals scales like ∼ 1/𝑎2, where 𝑎 is the anion-cation distance. Later Ivey [10]
found, based on a larger data set of alkali halides, the scaling

𝐸abs = 𝐶 · 𝑎−𝑛 (4.1)

for various defects, where 𝐶 is a constant and 𝑛 is the so-called Mollwo–Ivey expo-
nent. A fit of this expression to experimental absorption energies of F centers in
rock-salt structure alkali halides [12, 71] leads to 𝑛 = 1.81±0.1 and 𝐶 = 17.3±2.8 eV
with 𝑎 given in Ångström. In the years to follow many theoretical studies were con-
ducted [7, 94–97] aiming at an explanation of this seemingly simple scaling relation
and resulting in a variety of qualitative and semi-quantitative models. These models
differ in detail but have a common underlying picture which is a simple particle-in-
the-box model: the F-center electron is the particle and the Madelung potential of
the ionic crystal provides the confining box. Also common to these models is the
neglect of the electronic structure of the actual chemical elements building up the
crystal. Their influence on the MI relation is summarized under the term ion-size
effects. Since they are not expected to follow any simple a-scaling, they were made
responsible only for small element-specific deviations from the scaling in eq. 4.1.
Refinements accounting for ion-size effects [56, 57, 98] were proposed when, e.g.,
experimental data on the pressure shift of 𝐸abs [99] showed stronger deviations from
the MI relation.
To our knowledge, however, a systematic ab-initio study of the Mollwo–Ivey relation
still seems to be missing. We, therefore, apply the quantum chemistry approach,
described in the previous chapter, to the F-center absorption in various rock salt
alkali-halide crystals and conduct a detailed study of the MI relation and the role
of ion-size effects. We find that earlier particle-in-the-box models need to be sub-
stantially refined. Instead of the Madelung potential element-specific effects, i.e.,
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ion-size effects are key for understanding the Mollwo-Ivey relation and its exponent.
Similar to the previous chapter this work has been done in collaboration with the
group of P. Blaha, in particular with Ferenc Karsai, who applied post-DFT meth-
ods to the problem at hand. To develop a more complete picture of the MI relation
we also show parts of his results in this work. Further post-DFT results as well
as details on the DFT calculations can be found in [100] and in Karsai’s doctoral
thesis [48].
This chapter is structured as follows. First, we briefly review in sec. 4.1 previously
proposed models for explaining the Mollwo–Ivey exponent. Second, in sec. 4.2 we
investigate the potential landscape in the defect region. In sec. 4.3 we introduce the
concept of a scaled alkali-halide crystal which helps to disentangle ion-size effects
from effects due to varying lattice constants. Ion-size effects and their influence on
the F-center absorption energies in various alkali halides are presented in sec. 4.4.
We do not repeat the computational details given in chapter 3. Only deviations
from this protocol will be mentioned.

4.1. Previous work

The experimental discovery of the Mollwo–Ivey relation triggered a considerable
amount of theoretical work intended to explore the physical background of the
Mollwo–Ivey relation and the origin of the experimental Mollwo–Ivey exponent of
𝑛𝑒𝑥𝑝 = 1.81. The first explanation was given by Fröhlich [94] who deduced 𝑛 = 2
from the energy spacing between bands of a delocalized nearly free electron in a
potential of period 2𝑎, ∆𝐸 ∼ 1

2𝑚* (2𝜋/2𝑎)2, with 𝑚* the effective mass. Stöckmann,
on the other hand, started out from a completely localized electron confined in a
hard-wall box potential [95–97] leading to the same 𝑎−2 scaling. This box potential
served as an approximation of the Madelung potential (see below) and was further
refined in subsequent works [7]. The two seemingly contradicting models both yield
𝑛 = 2 since both probe the kinetic energy of an electron either confined to a periodic
structure or to a hard wall box potential. The two most recent and widely accepted
explanations are given by Wood [11] and by Smith and co-workers [12, 98, 101–103]
and are briefly reviewed in the two following sections.

4.1.1. The point-ion model

In the point-ion model of Wood [11] the defect electron is described by a test wave
function the parameters of which are optimized to find the lowest energy of ground
and excited state. All other ions are represented by pure point charges. Wood
showed that, within this model, the energy of the F-center electron solely depends
on terms scaling with either 𝑎−1 (the Madelung potential energy) or with 𝑎−2 (the
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quantum-confined kinetic energy) leading to the absorption energy

𝐸abs = 𝑐−1𝑎
−1 + 𝑐−2𝑎

−2. (4.2)

Using two experimental data points he determined the constants 𝑐−1 and 𝑐−2 and
fitted the power series expansion (eq. 4.2) to a single exponent Mollwo–Ivey type re-
lation resulting in 𝑛 ≈ 1.8 in good agreement with experiment. Wood also explored,
what he called, the extended-ion model in which he included exchange terms and
effects arising from orthogonalization of the test wave function to the core electrons
of neighboring cations. These contributions were estimated to scale with powers in
(1/𝑎) larger than 2 and they hardly change Wood’s MI relation but are responsi-
ble for slight, element-specific deviations only. Also in other studies using similar
models [56, 57, 99] ion-size effects are used to describe small deviations from the
MI exponent 1.8.

4.1.2. Relation between the extent of the F-center wave
function and its absorption energy

The Vinti sum rule [104] allows to connect the extent of the defect wave function
in its ground state, |𝑠⟩, with the defect absorption energy, 𝐸abs. For single-electron
systems one can show [105] that the expectation value ⟨𝑠|𝑟2|𝑠⟩ is connected to
moments of the energy dependent absorption coefficient 𝐾(𝜔) by (in SI units)

⟨𝑠|𝑟2|𝑠⟩ =
3~

2𝑚𝑒

𝜇−1

𝜇0

, (4.3)

where 𝑚𝑒 denotes the free-electron mass and the n-th moment of 𝐾(𝜔) is given by

𝜇𝑛 =

∫︁
𝜔𝑛𝐾(𝜔) 𝑑𝜔. (4.4)

Application of this single-electron result to the absorption of defects in solids is
possible when the absorption of the defect and the one of the solid are separated
and when an effective electron mass 𝑚* is introduced. This leads to an approxi-
mate defect sum rule. Due to the large band gap in alkali halides the absorption
contributions from the F-center and the solid are typically easy to separate. Fur-
thermore, since the F-center hosts a strongly bound and highly localized electron,
the free electron mass is supposed to be a good approximation for the effective
mass. Nevertheless, to indicate the approximate nature of the defect sum rule we
keep the notation 𝑚* in the following.
F-center absorption spectra typically feature one dominant band, the F-band, cor-
responding to the excitation of the defect electron from the ground state to the first
optically allowed excited state. Excitations to higher lying states are possible [106],
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the so-called K and L absorption bands, but are much weaker [12]. Approximating
all individual bands of the F-center absorption spectrum 𝐾(𝜔) by 𝛿 functions with
oscillator strength 𝑓𝑖 and energy 𝐸𝑖 leads to the alternative expression

⟨𝑠|𝑟2|𝑠⟩ ≈ 3~2

2𝑚*

∑︀
𝑖 𝑓𝑖𝐸𝑖∑︀
𝑖 𝑓𝑖

(4.5)

for the Vinti sum rule. Neglecting all but the F absorption band with 𝑓𝑖 ≈ 1 leads
to

𝐸abs ≈
3~2

2𝑚*
1

⟨𝑠|𝑟2|𝑠⟩
, (4.6)

connecting the defect-absorption energy 𝐸abs with the mean-square radius of its
ground state wave function.
Malghani and Smith [12] analyzed the moments of experimental absorption spectra
[71, 106] and extracted the root-mean square (rms) radius ⟨𝑠|𝑟2|𝑠⟩1/2 of the F-center
defect wave function via eq. 4.3 for different alkali-halide crystals (fig. 4.1). They
found an almost perfectly linear increase of the rms radii with the anion-cation
distance and concluded: (i) the spatial extent of the wave function needs to be a
continuous function of 𝑎 and (ii) additional effects like, for example, ion sizes and
ion-dependent polarization are small and are only responsible for the scatter of the
data points around the fitted straight line. In other words, since the effects of the
ionic species involved are negligible, the crystal field, i.e., the Madelung potential
is responsible for the formation of the Mollwo–Ivey relation with an exponent of
𝑛𝑒𝑥𝑝 = 1.81.
Further, Malghani and Smith used their root-mean square radii extracted from the
F-center absorption spectra (eq. 4.3) to calculate absorption energies via the Vinti
sum rule (eq. 4.6). This protocol leads to excellent agreement with experimental
absorption energies. Malghani and Smith argue that this agreement supports the
validity of the Vinti sum rule for the F-center defect and the reliability of the root-
mean square radii extracted (4.1). This conclusion, however, is based on a circular
reasoning. The root-mean square radii in eq. 4.3 hardly depend on the shape of
the absorption spectra 𝐾(𝜔) but are almost exclusively dominated by the center of
the dominant F absorption line, i.e., by 𝐸abs, the experimental absorption energy.
Therefore, Malghani and Smith effectively used eq. 4.6 in both directions. First,
they extract the rms-radii from the experimental absorption energies and, second,
they used these radii to determine their own absorption energies, which are, of
course, in close agreement with the experimental ones.
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Figure 4.1.: Root-mean square radii ⟨𝑠|𝑟2|𝑠⟩1/2 of ground state F-center defect wave
functions in various alkali-halide crystals as extracted by Malghani and
Smith [12] from experimental absorption spectra [71] via eq. 4.3.

4.2. The “box” potential

In all the models above the Madelung potential is attributed a crucial role in form-
ing the box potential and in the explanation of the Mollwo–Ivey exponent. In this
section we compare the Madelung potential of LiF, the alkali halide with the small-
est ions, and, therefore, with smallest ion-size effects, to the potentials confining
the defect electron in ab initio calculations. The Madelung potential (fig. 4.2 (a))
is flat in the vacancy region and the second-nearest neighbor anions, or better,
negative charges form a confining potential well of ∼ 7.5 eV depth. This poten-
tial well initially motivated the particle-in-the-box model by Stöckmann. We have
shown in the previous chapter that the F-center electron is well localized within the
vacancy region and has only little weight on the neighboring ions. From the shape
of the Madelung potential, however, one would expect a significant “spill-out” to
the nearest-neighbor cations. This suggests that the confinement of the F-center
electron is due to the exchange interaction and the orthogonality of the defect-wave
function to core levels of the surrounding ions. Both effects strongly depend on the
specific elements of the alkali-halide crystal showing that ion-size effects, rather
than the Madelung potential, are responsible for the confinement and, therefore,
determine the Mollwo–Ivey relation.

DFT is a suitable tool to study the potential well in the defect region due to the
local representation of the single-electron potential, i.e., the Kohn–Sham (KS) po-
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tential. In contrast to the Madelung potential the Kohn–Sham potential within the
local-density approximation (LDA) 𝑉

(LDA)
KS (fig. 4.2 (b)) to the exchange-correlation

potential appears to lack any confining potential. This is due to the fact that the
KS potential is a potential common to all electrons and does not display the ef-
fects of orthogonalization between single-particle levels. After the self-consistent
determination of the orbitals of all electrons, the defect electron is localized within
the vacancy due to orthogonalization constraints imposed by the core and valence
electrons of neighboring ions. The presence of a potential barrier is indicated by
the point of inflection in the LDA defect-wave function (fig. 4.3) where the wave
function enters the classically forbidden region.
A pronounced potential barrier is present (fig. 4.2 (c)) in the Kohn–Sham potential

𝑉
(TB-mBJ)
KS , calculated with the TB-mBJ approximation to the exchange-correlation

potential. Its depth varies between 17 and 25 eV depending on the crystallographic
direction. A cut through the potential surface along the [111] direction (fig. 4.4)
clearly shows that the electrostatic potential, consisting of the electrostatic con-
tributions of the point nuclei and the self-consistent electron density, gives rise to
a local maximum in the potential near the location of the color center. Within
the TB-mBJ approximation, it is the exchange-correlation potential that is re-
sponsible for the formation of an attractive potential well in the total effective
Kohn–Sham potential and the confinement of the s-like defect-electron orbital with
Kohn–Sham energy 𝜖

(TB-mBJ)
KS (𝑠) (Fig. 4.4 (b)). The large differences between 𝑉

(LDA)
KS

and 𝑉
(TB-mBJ)
KS are not surprising. The LDA severely underestimates the band gap of

alkali halides. The TB-mBJ exchange-correlation potential is designed to reproduce
the experimental alkali-halide band gaps by raising the effective potential in the in-
terstitial regions. It is, therefore, expected to yield a ground state electron density
considerably different from LDA or Hartree–Fock. In view of these differences, an
interpretation in terms of a realistic landscape should be taken with caution as the
confinement of the wave function stems largely from the orthogonality requirement
built into the non-local potential. We will use 𝑉

(TB-mBJ)
KS in the following rather as

a useful approximation to the effective potential that an isolated defect electron
would feel in an otherwise fixed charge distribution.
Despite the pronounced differences between the potentials 𝑉

(LDA)
KS and 𝑉

(TB-mBJ)
KS

(Fig. 4.4 (a) and (b), respectively), as well as the non-local Hartree–Fock potential
in ROHF calculations the resulting wave functions of the defect electron are very
similar (Fig. 4.3). All of them feature a point of inflection indicative for an effective
confining potential well. Our current observations shed new light on previous work:
what was earlier considered to be a small “ion-size” correction to the leading expo-
nent 𝑛 = 1.8, is in fact the dominant contribution to the formation of the (effective)
well and, thus, to the Mollwo–Ivey exponent itself. It should be noted, however,
that the effective size of the potential well in terms of the classically allowed region
of the wave function, as marked by the point of inflection, cannot be determined
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for all spatial directions. Along, e.g., [100] no point of inflection can be found

in LDA and ROHF wave functions (Fig. 4.3 (b)). Also 𝜖
(TB-mBJ)
KS lies above the

barrier top in this direction, but still the TB-mBJ wave function displays a point
of inflection due to orthogonalization. We introduce in the following as effective
measure for the size of the F-center function the position of the (first) zero of the s
state along the [100] direction which accounts for the required orthogonality to the
nearest-neighbor ionic states. Another measure of the size of the F-center is the
mean-square radius of the wave-function ⟨𝑠|𝑟2|𝑠⟩.
The analysis of the Fermi contact term 𝐴0 (sec. 3.5.1) at nuclear sites surround-
ing the vacancy shows that an experimental mapping of the defect wave function
and, i.e., the confining potential is not unambiguously possible using experimen-
tal ENDOR data. The good agreement between experiment and UHF results for
𝐴0, however, shows that the UHF and the identical ROHF defect wave functions
are reliable at least for distances from the vacancy up to the nearest-neighbor ions
which covers more than 80 % of the defect density. Therefore, we focus in the
following on the ROHF defect wave functions as they are the starting point for the
CASPT2(ROHF) calculations of the F-center absorption energies. 𝑉

(LDA)
KS confines

the defect electron too weakly, leading to an overestimation of the Fermi contact
term at the nearest-neighbor Li+ ion of ∼ 10 %. LDA calculations using periodic
boundary conditions [75] overestimate 𝐴0 by even 20 %. Due to its deep potential

well 𝑉
(TB-mBJ)
KS localizes the defect electron too strongly leading to an underestima-

tion of 𝐴0 by ∼ 75 %.
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Figure 4.2.: Two-dimensional cut through (a) the Madelung potential, (b) the effective

Kohn–Sham potential 𝑉
(LDA)
KS (within the LDA), and (c) the effective KS

potential 𝑉
(TB-mBJ)
KS (with the TB-mBJ exchange-correlation potential) in

the F-center vacancy region of an LiF crystal. The vacancy is located at
the origin of the (100) plane shown.
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Figure 4.3.: Cut through the ground state TB-mBJ (solid red line), ROHF (dash-dotted
green), and LDA (blue dotted) orbital of the F-center electron in LiF along
the (a) [111] and (b) [100] crystal directions. Vertical arrows indicate points
of inflection where the wave function enters a classically forbidden region
and penetrates the effective potential barrier. 𝑟

[111]
0 and 𝑟

[100]
0 denote the

position of the first radial node of the ROHF wave function in the [111]
and [100] direction, respectively.

Figure 4.4.: Cut through the effective Kohn–Sham potential VKS (red solid line) (a)
in the local-density approximation and (b) using the TB-mBJ exchange-
correlation potential in the F-center defect region of an LiF crystal along
the [111] direction. Green (dashed) and blue (dotted) lines are the elec-
trostatic potential VH+ext (Hartree plus “external” ion-core potential) and
the exchange-correlation potential Vxc, respectively. The horizontal lines
labeled with 𝜀

(LDA)
KS and 𝜀

(TB-mBJ)
KS denote the Kohn–Sham single-particle

energy level of the localized F-center electron in using the LDA and the
TB-mBJ exchange-correlation potential, respectively.
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4.3. Scaling with the lattice constant

In this section we introduce the model system of the F center in a “scaled alkali-
halide crystal”. We calculate the absorption energy and the defect wave function
for arbitrary anion-cation distance, 𝑎, while keeping the anionic and cationic species
constant. This allows for a disentanglement of ion-size effects and effects induced
by a “pure” increase of the lattice constant. If earlier explanations were true and
ion sizes indeed play a minor role in the formation of the Mollwo–Ivey relation we
would expect to find good agreement between the experimental MI relation and the
one of a scaled alkali halide. More precisely, we would expect to find a Mollwo–Ivey
exponent close to 1.8. We neglect for the study of the scaling with 𝑎 any lattice
relaxation or corrections due to electron-phonon coupling.

4.3.1. F-center absorption energies in scaled LiF

Lithium fluoride is the alkali halide with the smallest ions and, therefore, also with
the smallest ion-size effects. In this sense scaled lithium fluoride is the closest ab
initio analogue to the point-ion model. Independent of the anion-cation distance
the defect electron in its ground state is well localized within the vacancy region
similar to the F-center in LiF with its real lattice constant shown, e.g., in fig. 3.5
(a). ROHF, CASPT2(ROHF), and DFT+BSE absorption energies in scaled LiF
smoothly decay with increasing 𝑎 (fig. 4.5) and fits of Mollwo–Ivey type relations
yield MI exponents of 𝑛ROHF = 2.14, 𝑛CASPT2 = 2.04, and 𝑛𝐵𝑆𝐸 = 2.01. Exponents
𝑛CASPT2 and 𝑛DFT+BSE are clearly larger than 𝑛𝑒𝑥𝑝 = 1.81 and almost perfectly
match the prediction of 𝑛 = 2 from the particle in the hard-wall potential box.
The exponent 𝑛ROHF = 2.14 is even larger due to the neglect of correlations. Both,
the absolute as well as the relative difference between ROHF and CASPT2(ROHF)
absorption energies decrease with increasing lattice constant. It seems as if this
was due to the short-range nature of correlation energy. The further the ions are
apart, the more the defect electron behaves like an isolated single-particle system.
From a computational viewpoint it should be noted that also in terms of con-
vergence there appears a dependence on the lattice parameter. To converge the
absorption energy of the F-center in real LiF we need to use the Li62F62 cluster and
extrapolate to the converged-basis set limit (see chap. 3). Already for LiF(𝑎NaF),
lithium fluoride with the anion-cation distance of sodium fluoride (NaF), however,
the absorption energy is essentially converged for the Li38F18 cluster and the cc-
pVTZ basis set. Except for the absorption energy in LiF(𝑎LiF) all energies in fig.
4.5 are obtained with this cluster and basis-set size.
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Figure 4.5.: Converged F-center absorption energies in scaled LiF as a function of the
anion-cation distance. Red squares, green diamonds, and blue triangles
are ROHF, CASPT2(ROHF), and DFT+BSE results, respectively. Lines
through the data points are fits of Mollwo–Ivey type relations with expo-
nents 𝑛ROHF =2.14, 𝑛CASPT2=2.04, and 𝑛𝐵𝑆𝐸 = 2.03.

4.3.2. Spatial extent of the F center in scaled LiF

We study now the shape of the F-center defect wave function in scaled LiF in its
ground state and its dependence on the anion-cation distance 𝑎. According to the
F-center defect version of the Vinti sum rule (eq. 4.6), the rms radius ⟨𝑠|𝑟2|𝑠⟩1/2,
a measure for the spatial extent of the wave function, is directly related to the
absorption energy. We calculate the rms radii by approximating |𝑠⟩ by the singly
occupied s-type ROHF orbital localized within the vacancy region (see, e.g., fig.
3.5 (a)). The ROHF defect orbitals are well converged for the Li38F18 cluster and
the cc-pVTZ basis set used for this calculation. The continuous stretching of the
LiF crystal leads to a continuous, or, to be more precise, an almost perfectly linear
growth of the rms-radius of the F-center with increasing anion-cation distance (fig.
4.6 (a)).
The evaluation of the rms radii comprises integration over all directions in space
which obscures the dependence of the defect’s extent on the crystallographic direc-
tions. To resolve this dependence we investigate the first radial nodes of the defect
s-type wave function 𝑟

[100]
0 , 𝑟

[110]
0 , and 𝑟

[111]
0 along the [100], [110], and [111] crys-

tal directions, respectively. Starting from the vacancy site they correspond to the
directions towards the nearest neighbor cation [100], the second-nearest neighbor
anion [110], and the third-nearest neighbor cation [111]. Similar to the rms radius
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Figure 4.6.: (a) Root-mean square radii of scaled LiF and (b) positions of the first
radial nodes of the s-type F-center defect wave function in scaled LiF along
the [100] (red squares), [110] (green diamonds), and [111] (blue triangles)
crystal directions. Dotted lines are linear fits 𝛼(𝑎−𝑑0) (see table 4.1) with
slopes close to 1,

√
2, and

√
3, respectively. The 𝑑0 values, the position

where the fits cross the 𝑦 = 0 axis, are measures for the effective size of
Li+ ([100] and [111] direction) and F− ions ([110] direction).

they show, independent of the crystal direction, an almost perfectly linear increase
with 𝑎 (fig. 4.6 (b)). Linear fits of the form 𝑟0 = 𝛼(𝑎− 𝑑0) (table 4.1) yield slopes
close to 1 ([100]),

√
2 ([110]), and

√
3 ([111]), respectively, which can be understood

in terms of the particle in the box model. Consider a hard-walled cube with the
vacancy in its center and a side length of 2𝑎. The effective distance between the
vacancy and the cube walls along the [100], [110], and [111] directions scales then
like the side length (1 ·𝑎), the face diagonal (

√
2 ·𝑎), and the space diagonal (

√
3 ·𝑎),

respectively. The largest deviation from this simple picture is found for 𝛼[110], the
slope of 𝑟

[110]
0 . It is a little lower than

√
2 due to the fact that the effective size

of the F− ion is smaller in the LiF crystal [107] than for an isolated F−. When
stretching the scaled LiF the effective size of F− grows leading to a reduced increase
of the defect orbital along the [110] direction 𝑟

[110]
0 . The influence of ion sizes also

becomes manifest in the displacement of the intercept with the x-axis 𝑑0, which
correspond to an effective range of the exchange potential. For the [100] and [111]

directions, pointing towards an Li+ ion, we find 𝑑
[100]
0 = 𝑑

[111]
0 = 0.38 a.u. while

𝑑
[110]
0 = 0.76 a.u. reflecting the larger size of the F− ion.
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direction [100] [110] [111]
𝛼: 0.97 1.29 1.74
𝑑0: 0.38 0.76 0.38

Table 4.1.: Fit parameters 𝛼 and 𝑑0 for the position of the radial nodes 𝑟0 = 𝛼(𝑎−𝑑0)
of the ground state defect wave function along different crystallographic
directions in scaled LiF. The 𝑟0 values scale approximately like 𝑎,

√
2𝑎, and√

3𝑎 just like the side length, the face diagonal, and the space diagonal of
a cube with side length 𝑎. The 𝑑0 values, the position where the fits cross
the 𝑦 = 0 axis in fig. 4.6, are measures for the effective size of Li+ ([100]
and [111] direction) and F− ions ([110] direction).

4.3.3. Scaled LiF and the Vinti sum rule

The Vinti sum rule (eq. 4.6) establishes a direct connection between the root-mean
square radius of the ground-state defect wave function ⟨𝑠|𝑟2|𝑠⟩1/2 and the F-center
absorption energy. In this section we conduct an ab-initio test of the Vinti-sum rule
in scaled LiF. We compare in fig. 4.7 the ROHF absorption energies with energies
derived via the Vinti sum rule (in atomic units)

𝐸abs =
3

2

1

⟨𝑠|𝑟2|𝑠⟩
, (4.7)

where |𝑠⟩ is the ROHF ground state defect orbital. For anion-cation distances
𝑎 beyond the one of NaF we find perfect agreement between the Vinti sum rule
and the ab-initio ROHF absorption energies. For small 𝑎, however, there is some
discrepancy which calls for further explanation.
Use of the Vinti-sum rule in the form of eq. 4.6 implies three major approximations.
First, for the mass of the defect electron the mass of the free electron is used, second,
only a single absorption peak, the F-band, is taken into account, and third, the
system is considered a single-electron system. The free electron mass seems to be
a reasonable choice since the defect electron is strongly bound and very localized.
Excitations of the F-center to higher excited states, the K- and L bands, have been
shown experimentally to be negligible [12, 106]. We also test this approximation by
evaluation of the oscillator strength for the s→p transition of the F-center which
yields a value close to one in scaled LiF as well as in the real materials. The third
approximation concerns the single-particle nature of the F-center. In principle, the
HF approximation is a single-particle approach. However, it does not agree with
the Vinti-sum rule for small 𝑎 since we determine the ROHF absorption energy
in a ∆SCF approach: 𝐸abs is the total energy difference between two independent
ROHF calculations for the ground and excited state. In a single-electron problem,
the potential the electron is bound to, is independent of the electronic state. Due
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Figure 4.7.: ROHF F-center absorption energies in scaled LiF obtained from ab-initio
∆SCF calculations (squares and solid red line) and from the Vinti sum rule
(diamonds and dashed green line), eq. 4.7, using the ROHF-rms radii of
the ground state defect wave function (fig. 4.6 (a)).

to the ∆SCF approach, however, the effective F-center potentials of the ground
and excited state differ which explains the discrepancy. For small anion-cation
distances, for which the defect is most compressed and has the largest overlap
with the host-crystal electrons, the discrepancy is largest. For larger 𝑎 the overlap
diminishes leading to a decreasing difference between ground and excited state F-
center potentials and, therefore, good agreement between the Vinti-sum rule and
the ROHF absorption energies in scaled LiF.

4.4. Ion-size effects on F centers in real materials

In the previous sections the model system of a scaled alkali halide yielded an F-
center absorption energy obeying 𝐸abs ∝ 1/𝑎2. In this section we study the influence
of ion-size effects on the spatial extent of the defect wave function and on the F-
center absorption energies in real alkali-halide crystals. In general we find reduced
growth of the extent of |𝑠⟩ with increasing anion-cation distance compared to a
scaled alkali halide since, in real materials, with 𝑎 also the size of the anions and
cations grow. This reduced growth translates, via the Vinti sum rule, to a Mollwo–
Ivey relation with an exponent below 2 in real alkali-halide crystals.
Before we turn to real alkali-halide crystals we introduce another ab-initio model
system that helps to establish a qualitative but very intuitive picture of element-



4. The Mollwo-Ivey relation 83

specific ion-size effects on the defect state. Consider an alkali-halide crystal with
fixed anion-cation distance 𝑎 = 𝑎KCl = 5.95 Bohr while varying the ionic species.
We study the density variation within the vacancy region under the exchange of
ionic species. In the following 𝑀 ∈ {𝐿𝑖,𝑁𝑎,𝐾} denotes the alkali metal, 𝑋 ∈
{𝐹,𝐶𝑙} the halide, and 𝜌𝑀𝑋 denotes the F-center electron density in the crystal
MX. Exchange of the metal, 𝜌NaF − 𝜌LiF, (fig. 4.8 (a)) and exchange of the halide,
𝜌LiCl − 𝜌LiF (fig. 4.8 (b)), both lead to an accumulation (or compression) of defect
electron density in the central vacancy region within the nearest-neighbor ions and
displays a strong directionality. Replacing the Li cation by an Na cation strongly
compresses the defect electron along the [100] and the [010] crystal direction. When
the F anion is replaced by a Cl anion the defect electron is compressed along the
[110] and [1-10] crystal axis, the two diagonals in fig. 4.8 (b), and the compression is
weaker than for the exchange of cations. These findings are in contradiction to the
results of Smith and Inokuti [98] who concluded that the rms of the F-center wave
function increases with the ionic size of the cation. For this model alkali-halide
system we find a decrease of the rms value from 4.14 to 4.04 Bohr when replacing
LiF by NaF and from 4.18 to 4.04 Bohr when replacing LiCl by NaCl. We note
that the rms radii are almost independent of the anionic constituent.

Figure 4.8.: Defect-electron density differences in 10−4/Bohr3 for the F center in (a)
NaF and LiF (𝜌NaF−𝜌LiF) and (b) in LiCl and LiF (𝜌LiCl−𝜌LiF) for a constant
anion-cation distance of 5.95 a.u. Replacing Li and F ions with the larger
Na and Cl ions, respectively, compresses the defect-electron density in the
anion vacancy.

Apart from the accumulation of defect-electron density at the vacancy site we also
observe an increase of density at the ionic neighbor to be exchanged. The ROHF
Fermi contact term at the corresponding metal or halide site increases by a factor
∼ 3 upon replacing Li+ by Na+ or F− by Cl−. This increase of density is due to
the increasingly stringent orthogonality requirement on the defect wave function
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imposed by larger ionic cores. Thus, the density increases both at the vacancy
site and at the neighboring ionic site. While the former is the consequence of the
compression of the defect wave function, the latter is a subtle local effect on the tails
of the wave function due orthogonalization and should not be taken as a measure
for the effective size of the confining “box” potential.

4.4.1. Spatial extent of the F center in real alkali-halide
crystals

A quantitative analysis of the extent of the defect wave function in real materials
is performed via the root-mean square radius of |𝑠⟩ and its first radial nodes along
different crystallographic directions. Instead of a continuous linear increase with 𝑎,
like in the scaled alkali halides, we find a highly non-linear dependence of the rms-
radii of LiF, NaF, KF, LiCl, NaCl, and KCl on their actual anion-cation distance
(fig. 4.9). For a given anion X the rms radius does increase with 𝑎, however, slower
than the one in, e.g., scaled LiF. Further, there is a pronounced offset between the
rms radii of fluorides and chlorides.

Figure 4.9.: Root-mean square radii of the ground state F-center electron wave function
in real alkali-halide crystals (red squares and solid lines) and in scaled LiF
(green diamonds and dashed line).

The reduced growth with 𝑎 for each anion species can be understood qualitatively
by the cation size, increasing with 𝑎, and the resulting compression of the F-center
electron. The offset between fluorides and chlorides can be understood in terms
of the positions of the first radial nodes (fig. 4.10) of the defect ground state wave
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function. Let us first focus on the [100] direction. As shown above, the scaled alkali

halide shows almost perfect linear growth of 𝑟
[100]
0 (𝑎) with slope ∼1. In the real ma-

terials, however, we find effectively 𝑎-independent 𝑟
[100]
0 values (fig. 4.10 (a)) of 3.4

a.u. and 4.3 a.u. for fluorides and chlorides, respectively. The difference of 0.9 a.u.
can be interpreted as the difference in radius between a Cl− and an F− ion. This
value indeed matches the prediction by the effective-ion-radii-in-pristine-crystals
model [108]. The model assumes crystal-independent effective radii 𝑟M and 𝑟X for
cations 𝑀 and anions 𝑋, respectively, which are extracted from measurements of
the lattice constants in different alkali-halide crystals. Adding up the radii 𝑟M and
𝑟X yields, to a good degree of approximation, the anion-cation distance 𝑎𝑀𝑋 of the
crystal 𝑀𝑋. Within this model the 𝑟

[100]
0 offset between chlorides and fluorides

comes about as follows. When going from, e.g., LiF to LiCl the effective size of
the vacancy in the [100] direction grows by 𝑟Cl− − 𝑟F− = 0.9 a.u. The constant

𝑟
[100]
0 values for fluorides and chlorides are due to the increasing size of the near-

est neighboring cations surrounding the vacancy. When going from, e.g., LiF to
NaF the gain in vacancy space along the [100] direction 𝑎NaF − 𝑎LiF is completely
compensated for by the increasing cation size 𝑟Na+ − 𝑟Li+ . As a consequence the
nearest constriction of the defect potential, formed by the nearest neighbor cations,
is constant for fluorides and chlorides, respectively.

Figure 4.10.: Positions of the first radial node 𝑟0 along the (a) [100] direction and (b)
the [110] and [111] direction of the ground state F-center wave function
in real alkali-halide crystals (black squares), scaled LiF (solid red line),
scaled LiCl (dashed green line), and scaled NaF (dash-dotted blue line).

Such a complete compensation of vacancy volume by increasing ion sizes is not
possible along the [110] and [111] directions because the distance from the origin,
the center of the vacancy, to the second- and third-nearest neighbors scales with√

2𝑎 and
√

3𝑎, respectively. Therefore, the radial nodes 𝑟
[110]
0 (𝑎) and 𝑟

[111]
0 (𝑎) in
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real materials (fig. 4.10 (b)) increase with 𝑎. Along the [110] direction towards

the second-nearest neighbor anion, the radial nodes behave as expected. 𝑟
[110]
0 (𝑎)

of real fluorides lies on a straight line which coincides with 𝑟
[110]
0 (𝑎) of scaled LiF

and scaled NaF. 𝑟
[110]
0 (𝑎) of real chlorides forms a straight line, too, which coincides

with the one of scaled LiCl. The chloride line, however, is located a little below the
fluoride line due to the larger size of the chloride ion.
The 𝑟

[111]
0 data seem to be more complicated but the scaled materials help to in-

terpret them. Let us first focus on the fluorides. 𝑟
[111]
0 of real LiF, NaF and KF

lie again on a straight line which has a smaller slope than the one of scaled LiF
and scaled NaF. The difference of 0.44 a.u. between 𝑟

[111]
0 of real NaF and scaled

LiF(𝑎NaF) at the NaF lattice constant as well as the difference 1.03 a.u. between
real KF and LiF(𝑎𝐾𝐹 ) are also in reasonable agreement with the effective-radii-
in-crystals model predicting 0.49 a.u. and 1.17 a.u. Clearly, the downward shift
of 𝑟

[111]
0 in real NaF and KF with respect to scaled LiF is induced by the larger

third-nearest neighbor anions Na+ and K+. The same argument holds for 𝑟
[111]
0 in

real NaCl and KCl. 𝑟
[111]
0 of real NaCl lies on the 𝑟

[111]
0 (𝑎) line of scaled NaF again

0.44 a.u. below the scaled LiF and 𝑟
[111]
0 of KCl lies 1.04 a.u. below scaled LiF.

Therefore, also for these two chlorides the size of the third-nearest neighbor anion
determines 𝑟

[111]
0 .

LiCl is the exception. A line through the points for real NaCl and KCl intersects
the 𝑟

[111]
0 (𝑎) line of scaled LiF essentially at an anion-cation distance of LiCl, i.e.,

exactly where one would expect 𝑟
[111]
0 (𝑎) of real LiCl. However, the 𝑟

[111]
0 (𝑎) of real

LiCl lies clearly below this point due to “blocking” of the [111] direction by the
large second-nearest neighbor Cl− ions. This means, instead of being determined
by the third-nearest neighbor Li+ cation the [111] direction is pointing towards,

𝑟
[111]
0 in real LiCl is governed by the orthogonalization requirement of the F-center

wave function to the second-nearest neighbor Cl− ion core states. We investigate
this “blocking” in more detail in appendix A.1 where we discuss the properties of
scaled NaF and LiCl. In appendix A.2 we use the 𝑟0 parameters (fig. 4.10) to in-
corporate ion-size effects into a new, refined qualitative particle in the box model.
The exceptional behavior of LiCl suggests a dependence of the physics of the F cen-
ter on the ratio of anion to cation radii. Such a strategy was followed by Buchenauer
and Fitchen [99] as well as Bartram and co-workers [57] investigating the deviations
from the Mollwo–Ivey relation due to ion-size effects as a function of 𝑟X/𝑟M. Un-
fortunately, their results are not comparable to ours because they found the largest
deviations from the Mollwo–Ivey relation for small 𝑟X/𝑟M, alkali-halides with large
cations and small anions in disagreement with what our results of LiCl would sug-
gest. The largest deviations were observed for the extreme cases of RbF and CsF,
materials we cannot treat on the same level of theory as the ones presented in this
work.
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4.5. F-center absorption energies and the

Mollwo–Ivey relation in real alkali-halide

crystals

Compared to the F center in scaled alkali-halide crystals, root-mean square radii
and the radial nodes of the F center in real alkali-halide crystals indicate a reduced
growth of the spatial extent of the defect wave function with anion-cation distance.
The reduced growth is due to ion-size effects and translates, via the Vinti-sum
rule (eq. 4.6), into a weaker decay of the absorption energies, 𝐸abs, with 𝑎, i.e., a
reduced Mollwo–Ivey exponent. This is exactly what we find in ROHF (fig. 4.11
(a)) as well as CASPT2(ROHF) and TB-mBJ+BSE absorption energies in real
alkali-halide crystals (fig. 4.11 (b)). CASPT2(ROHF) and TB-mBJ+BSE yield MI
exponents of 𝑛CASPT2 = 1.63 and 𝑛TB-mBJ+BSE = 1.83, respectively, both clearly
below 𝑛 = 2 as found in the scaled alkali halides. We conclude that in experiment
ion-size effects are responsible for the reduction from 𝑛 = 2 to 𝑛 = 1.81 and not
only for subtle deviations from this exponent as previously thought. Further, the
Madelung potential, in previous works involved in the explanation of the deviation
of the exponent from 2, is only of minor relevance in the present context.
The TB-mBJ data are in excellent agreement with experiment and seem to be more
accurate than the CASPT2(ROHF) data. This agreement, however, needs to be
taken with caution since the error bar in DFT calculations due to the choice of the
exchange correlation potential can be substantial. The F-center absorption energy
in LiF calculated with the Perdew–Burk–Ernzerhof (PBE) exchange-correlation po-
tential followed by perturbation theory (GW0) and the solution of the BSE (fig.
3.19) is ∼ 0.5 eV larger than the TB-mBJ+BSE solution.
Not only the reduced growth of the rms radii and the position of the radial nodes
translate to the F-center absorption energies but also their ion-specific offsets and
slopes. They are, however, more pronounced in the simulations than in experiment.
We highlight these effects in fig. 4.12, where we present the same CASPT2 (ROHF)
data as in fig. 4.11 (b), however, now with lines connecting data points correspond-
ing to crystals with the same anionic (fig. 4.12 (a)) and cationic (fig. 4.12 (b))
constituent. Fitting the data separately for every anion with a Mollwo–Ivey type
relation leads to exponents smaller than the one obtained by a fit of all absorption
energies. When the cation species is kept constant a steeper decrease is found be-
cause the size of the narrowest constriction formed by the nearest-neighbor cations
continuously increases. This analysis shows that the effective Mollwo–Ivey line is
a “smoothed” average over discrete ion-size effects. In an earlier work by Smakula
[11, 109] cation specific Mollwo–Ivey fits were presented. However, because of the
weak dependence of the experimental data final conclusions were difficult to draw.

In the ab-initio calculations we find an anion-specific relaxation of the nearest-
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Figure 4.11.: (a) ROHF F-center absorption energies in various real alkali-halide crys-
tals (black solid diamonds). Dashed black line is a Mollwo–Ivey fit
through these points which decreases weaker with 𝑎 than the absorp-
tion energies of the scaled materials (solid lines) due to ion-size ef-
fects. (b) CASPT2(ROHF) (red empty squares and green diamonds),
TB-mBJ+BSE (blue full squares), and experimental [71] (black dots) F-
center absorption energies in various alkali-halide crystals. Lines through
the data points are Mollwo–Ivey type fits with exponents 𝑛CASPT2 = 1.63,
𝑛TB-mBJ+BSE = 1.83, and 𝑛𝑒𝑥𝑝 = 1.81. Error bars of the experimental data
indicate the full width at half maximum of the F-center absorption peak.
CASPT2(ROHF) absorption energies (red squares) are converged basis
set limit values within embedded M38X18 clusters. Use of larger M62X62

embedded clusters, computationally feasible only for LiF, NaF, and LiCl,
leads to a reduction of the absorption energy between 0.12 eV (LiF) and
0.21 eV (LiCl). In all calculations we use the experimental lattice constant
with relaxed geometries from periodic boundary DFT(PBE) calculations.

neighbor cations: in fluorides the cations move away from the vacancy while in
chlorides they move towards the vacancy site. This effect counteracts the ion size
specific offsets in the rms radii since it leads to a weaker/stronger compression
of the defect wave function in fluorides/chlorides. Via the Vinti sum rule this
translates into a downward/upward shift of the F-center absorption energy for flu-
orides/chlorides (fig. 4.13 (a)) with respect to an unrelaxed geometry around the
defect. The variation of the absorption energies due to relaxation lies between
−0.2 eV (LiF) and +0.1 eV (LiCl) and its absolute magnitude, in general, dimin-
ishes with increasing lattice constants. These variations are too weak to significantly
change the Mollwo–Ivey exponent but large enough to weaken ion-size specific off-
sets.
Despite this anion-specific relaxation, ion-size specific offsets in theory are more
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Figure 4.12.: Same as fig. 4.11 (b). CASPT2(ROHF) absorption energies of crystals
with the same anion species (a) and the same cation species (b), respec-
tively, are connected.

pronounced than in experiment. A possible explanation could be the yet not com-
pletely reliable description of the lattice relaxation around the defect due to the
discrepancy between theoretical and experimental lattice constants. In the cal-
culations of the F-center absorption energies (fig. 4.11) we use the experimental
lattice constants while employing the PBE exchange-correlation potential for the
geometry relaxation. PBE is used since TB-mBJ does not provide total energies
[91] and, thus, forces on the ionic cores are not available. PBE, however, is known
to overestimate the lattice constants of alkali halides by up to ∼ 2% [110]. Also
Hartree–Fock [111] tends to overestimate the lattice constants of these materials by
a similar amount which is in the range of the nearest-neighbor ion displacements.
Therefore, final conclusions about the influence of lattice relaxation on the ion-size
specific offsets are difficult to draw.
In experiment, a clearer signature of ion-size effects is visible in the widths of the
F-center absorption lines (fig. 4.13 (b)) corresponding to the error bars in fig. 4.11
(b). We estimate the line widths via the symmetric breathing vibration of the
nearest-neighbor cations around the defect (sec. 3.5.3). This single mode approxi-
mation underestimates the line widths but it yields qualitative agreement with the
experimental anion-specific offset.
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Figure 4.13.: (a) Effect of lattice relaxation around the defect on the absorption en-
ergy. Data shown are CASPT2(ROHF) absorption energies (basis set:
cc-pvtz) within embedded M38X18 clusters. (b) Full width at half max-
imum (FWHM) of the F-center absorption line in various alkali-halide
crystals. Black dots are experimental data [71] and red-empty squares
are results from CASPT2(ROHF) calculations. The theoretical line width
is estimated via a single mode approximation describing the symmetric
breathing mode of the nearest-neighbor cations (sec. 3.5.3).



5. Non-adiabatic molecular
dynamics in a nutshell

The term non-adiabatic dynamics refers to the coupled motion of nuclei and elec-
trons in, e.g., ion-atom collisions. It is determined by the molecular Hamilto-
nian (eq. 2.1) and in this chapter we introduce the necessary tools to solve the
time-dependent Schrödinger equation: first, we introduce the concept of the Born–
Oppenheimer adiabatic approximation (sec. 5.1) as well as its break-down in the
context of non-adiabatic dynamics (sec. 5.2). Further, we briefly discuss the con-
cept of diabatic states (sec. 5.3) and the methods used to (approximately) solve the
time-dependent Schödinger equation of the combined nuclear and electronic motion
(sec. 5.4). Throughout this chapter the charge exchange in the scattering of an Si3+

ion off a helium atom (Si3+ + He → Si2+ + He+) serves as a test case since charge
transfer is the prototypical example for a non-adiabatic process. In the final section
(sec. 5.5) we calculate the charge-transfer cross section of this reaction and compare
it to experiment. This chapter is again only a brief and incomplete introduction
into the topic of non-adiabatic molecular dynamics. Interested readers are referred
to the literature along which this chapter is created [112–114].

5.1. The Born–Oppenheimer adiabatic

approximation

In chapter 2 we discussed methods to solve the electronic Hamilton operator 𝐻̂𝑒 (see

eq. 2.6) neglecting the motion of the nuclei. They are fixed at a given position 𝑅⃗
which is the only parameter entering 𝐻̂𝑒. This approximation was first formulated in
the PhD thesis of Wolfgang Pauli [115] and was later called the Born–Oppenheimer
or adiabatic approximation. It is based on the notion that in, e.g., atoms, molecules,
or solids the characteristic velocity of electrons is much larger than the one of the
nuclei 𝑣𝑒 ≫ 𝑣𝑛 due to the large difference in mass 𝑀𝑛 ≫ 𝑚𝑒. This approximation
implies that, at any instance in time, the electrons can instantaneously adapt to
the positions of the nuclei and that the motion of these two entities is decoupled.
From the view of the electrons the nuclei move infinitely slow, or, adiabatically
slow, a term borrowed from statistical physics. As a consequence, a system in, e.g.,
its electronic ground state will always remain in the ground state irrespective of



92 5.1. The Born–Oppenheimer adiabatic approximation

the position and the motion of the nuclei as long as 𝑣𝑒 ≫ 𝑣𝑛 holds.
Mathematically, the decoupled motion is expressed in a product ansatz for the total
wave function of the combined system

Φtotal(𝑟⃗, 𝑅⃗) = Ψelectron(𝑟⃗; 𝑅⃗) × 𝜒nuclear(𝑅⃗). (5.1)

𝑅⃗ and 𝑟⃗ comprise all the nuclear and electronic degrees of freedom, respectively. The
nuclear wave function 𝜒nuclear depends solely on 𝑅⃗. The electronic wave function
Ψelectron is a solution of the electronic Hamiltonian 𝐻̂𝑒 (eq. 2.3) and, therefore,

depends parametrically on the position of the nuclei, 𝑅⃗, via 𝑉𝑛𝑒 and 𝑉𝑛𝑛. This
parametric dependence is denoted by the semicolon between the 𝑟⃗ and 𝑅⃗. Plugging
this ansatz into the Schrödinger equation for the combined system, 𝐻̂tot Φtot =
(𝑇𝑛 + 𝐻̂𝑒) Φtot = 𝐸tot Φtot (eqs. 2.2 and 2.3), multiplication from the left with
Ψ*

electron and integration over the electronic degrees of freedom leads to(︁
𝑇𝑛 + 𝐸(𝑅⃗)

)︁
𝜒𝑛(𝑅⃗) = 𝐸tot 𝜒𝑛(𝑅⃗), (5.2)

with 𝐸(𝑅⃗) being the 𝑅⃗-dependent solution of 𝐻̂𝑒 Ψelectron = 𝐸(𝑅⃗) Ψelectron. This
nuclear Schrödinger equation shows that the motion of the nuclei is governed by
the effective potential 𝐸(𝑅⃗) generated by the nuclear Coulomb repulsion and the
(instantaneous) interaction between electrons and nuclei. Therefore, the function

𝐸(𝑅⃗) is called a potential energy surface (PES).
From the PES of the electronic ground state of the, e.g., diatomic H2 molecule (fig.
5.1) one can derive the quantized energy levels of the vibration of the molecule by
solving the Schrödinger equation 5.2. One can also derive the bonding distance,
the dissociation energy, and the force acting on the nuclei, 𝐹 = −∇𝑅𝐸(𝑅⃗).
The Born–Oppenheimer approximation is also applied in in much more complex
situations such as the scattering of slow (𝑣𝑛 ≪ 𝑣𝑒) projectiles off metallic and
insulating crystal surfaces [116, 117].



5. Non-adiabatic molecular dynamics in a nutshell 93

Figure 5.1.: CASPT2 electronic ground state energy of the H2 molecule as a function
of nuclear distance. Basis set used: cc-pvtz.

5.2. Beyond the Born–Oppenheimer adiabatic

approximation: the non-adiabatic couplings

When 𝑣𝑛 becomes large enough such that the electrons can not instantaneously fol-
low the nuclear motion anymore (breakdown of adiabaticity) the electronic system
will be excited and the motion of nuclei and electrons is no longer decoupled. A
quantitative measure for the strength of this coupling is the so-called non-adiabatic
coupling vector which we derive in the following. Due to the excitation of the elec-
tronic system we need to include more than one electronic state in the description
of Φtotal. The total wave function is expanded in terms of the adiabatic electronic
wave functions Ψ𝑖(𝑟⃗; 𝑅⃗), eigenfunctions to the electronic Hamiltonian 𝐻̂𝑒 (see eq.
2.6)

Φtotal(𝑟⃗, 𝑅⃗) =
∞∑︁
𝑖

𝜒𝑖(𝑅⃗) · Ψ𝑖(𝑟⃗; 𝑅⃗), (5.3)

with expansion coefficients 𝜒𝑖(𝑅⃗) being functions of the nuclear coordinates. This
so-called Born–Oppenheimer expansion is exact if the set Ψ𝑖 is complete. Errors
are, however, introduced by truncation which is necessary in practice. Inserting
the Born–Oppenheimer expansion into the Schrödinger equation 𝐻̂tot · Φtotal =
𝐸tot ·Φtotal multiplication from the left with Ψ*

𝑗 , and integration over the electronic
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degrees of freedom leads to the nuclear equations of motions(︂
− 1

2𝑀
∇⃗2 + 𝐸𝑗(𝑅⃗)

)︂
𝜒𝑗(𝑅⃗) −

∑︁
𝑖

𝛾𝑗𝑖(𝑅⃗) 𝜒𝑖(𝑅⃗) = 𝐸tot 𝜒𝑗(𝑅⃗), (5.4)

where we used the kinetic operator

𝑇𝑛 = − 1

2𝑀
∇⃗ · ∇⃗ = − 1

2𝑀
∇⃗2, (5.5)

and ∇⃗ is the gradient vector in the nuclear space.

𝛾𝑗𝑖 =
1

2𝑀

(︁
2𝐹𝑗𝑖 · ∇⃗ +𝐺𝑗𝑖

)︁
(5.6)

are the non-adiabatic couplings describing the dynamical interaction between the
motion of nuclei and electrons. They split in two contributions: the so-called non-
adiabatic derivative coupling or the non-adiabatic vector coupling

𝐹𝑗𝑖(𝑅⃗) = ⟨Ψ𝑗(𝑟⃗; 𝑅⃗)|∇⃗ Ψ𝑖(𝑟⃗; 𝑅⃗)⟩ (5.7)

and the non-adiabatic scalar coupling

𝐺𝑗𝑖 = ⟨Ψ𝑗(𝑟⃗; 𝑅⃗)|∇⃗2 Ψ𝑖(𝑟⃗; 𝑅⃗)⟩. (5.8)

Both quantities are connected to each other (see appendix A.3) by,

𝐺𝑗𝑖 =
(︁
∇⃗ · 𝐹𝑗𝑖

)︁
+
∑︁
𝑘

𝐹𝑗𝑘 · 𝐹𝑘𝑖, (5.9)

where the brackets in the first term indicate that the ∇⃗ operator acts only on 𝐹𝑗𝑖.
With this relation and by dropping the indices (vectors and matrices in the “state
space” are bold) we can rewrite the coupled Schrödinger equation for the nuclear
wave functions 5.4 in the more compact form(︂

− 1

2𝑀

(︁
∇⃗ + F⃗

)︁2

+ 𝐸

)︂
𝜒 = 𝐸tot 𝜒, (5.10)

with (︁
∇⃗ + F⃗

)︁2

=
(︁
∇⃗2 + 2F⃗∇⃗ + G

)︁
. (5.11)

For real electronic wave functions Ψ𝑖(𝑟⃗; 𝑅⃗) the vector matrix 𝐹𝑗𝑖 vanishes on the
diagonal and is anti-Hermitian. The scalar coupling matrix 𝐺𝑗𝑖, however, has both
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non-vanishing diagonal and off-diagonal entries which are usually termed the diag-
onal correction and the second-order non-adiabatic coupling elements, respectively.
The coupling elements 𝛾𝑗𝑖 in eq. 5.6 scale with 1/𝑀 and are, therefore, smaller than
the PESs, 𝐸𝑗, by a factor equal to the ratio of electronic and nuclear masses. In the
Born–Oppenheimer approximation they are neglected completely. The BO approx-
imation fails for increasing nuclear velocity which is reflected in the first term of 𝛾𝑗𝑖

in eq. 5.6 reading 𝐹𝑗𝑖 · ∇⃗
𝑀

. Since ∇⃗/𝑀 is proportional to the nuclear velocity the
efficiency of the coupling increases for larger nuclear velocities. A measure for the
efficiency is the so-called Massey parameter. In the following we study the PES,
non-adiabatic coupling and the Massey parameter for the electron transfer in the
scattering of Si3+ from a helium atom.
The charge transfer reaction Si3+ + He → Si2+ + He+ is an important recombina-
tion process, i.e., loss mechanism of Si3+ in gaseous nebulae in outer space [118, 119]
(see also references in [120]). It has been investigated extensively in theory [121–
124] while experimental data on the low energy charge transfer are scarce [120, 125].
Consider a head-on collision between Si3+ and He with a single nuclear degree of
freedom: the inter-nuclear distance R (inset in fig. 5.2 (a)). At large R the two
energetically lowest potential energy surfaces Σ1 and Σ2 of the combined system
(fig. 5.2 (a)) are energetically well separated and correspond to the configurations

Σ1 : Si2+(3s2) + He+(1s)

Σ2 : Si3+(3s) + He(1s2).

At R≈6.5 the two PES approach each other and form a so-called avoided crossing
which comes about as follows (for a review see [126]). When calculating PESs of
ground and excited states of a system they can, in principle, touch each other,
i.e., 𝐸𝑖 = 𝐸𝑗. This touching is called a conical intersection and gives rise to many
interesting effects well studied in the literature [112]. Conical intersections, however,
appear only when the potential energy surfaces depend at least on two independent
parameters. In diatomic molecules with a single-internal nuclear degree of freedom
(the inter-nuclear distance 𝑅), the Wigner–von Neumann non-crossing rule holds.
It states: potential energy curves corresponding to electronic states of the same
symmetry cannot cross.
To understand the non-crossing rule we perform a qualitative derivation. Consider
we want to determine the ground and the first excited charge-transfer electronic
wave function of the Si3+ + He system by using the variational principle. The test
wave function

Ψtest(𝑟⃗;𝑅) = 𝑐1𝜓1(𝑟⃗;𝑅) + 𝑐2𝜓2(𝑟⃗;𝑅), (5.12)
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is expanded into the basis 𝜓1 and 𝜓2 which are not eigenfunctions of the electronic
Hamiltonian 𝐻𝑒. In the basis of 𝜓1 and 𝜓2, 𝐻𝑒 reads(︂

𝐻11(𝑅) 𝐻12(𝑅)
𝐻21(𝑅) 𝐻22(𝑅)

)︂
, (5.13)

where all matrix elements are functions of the parameter R. In order to find a
conical intersection, i.e., a degenerate solution, it is necessary that

𝐻11 −𝐻22 = 𝐹1(𝑅) = 0 and 𝐻12 = 𝐻21 = 𝐹2(𝑅) = 0. (5.14)

In general it is not possible to find one value of the parameter R to satisfy both
conditions simultaneously leading to the avoided crossing [126]. Another formula-
tion says that the interaction, the off-diagonal terms, between 𝜓1 and 𝜓2 induces
the avoided crossing by lifting the degeneracy at the point where the 𝐻11(𝑅) and
𝐻22(𝑅) intersect. In an N-atomic molecule, however, the number of independent
inter-atomic distances is 𝑆 = 3𝑁 − 6 for 𝑁 > 2. For a three-atomic molecule there
are three parameters available to simultaneously fulfill conditions 5.14. Therefore,
conical intersections can be found in such molecules.
Let us return now to the PES Σ1 and Σ2 in fig. 5.2. The charge state of the He
atom/ion in Σ1 and Σ2 (fig. 5.2 (b)) is determined by the Mulliken population
analysis. For 𝑅 . 3 a.u. charge states need to be taken with a grain of salt since
a clear separation between Si and He is not possible. At the avoided crossing, the
He-charge state almost perfectly switches from 1 to 0 (0 to 1) for Σ1 (Σ2). In other
words, if we follow the adiabatic PES of Σ1 from 𝑅 ≈ 8 to 𝑅 ≈ 6 the system changes
its configuration and an electron is transferred from Si to He (and vice versa for Σ2).
The non-adiabatic coupling vector ⟨Ψ1|𝜕/𝜕𝑅 Ψ2⟩ (fig. 5.2 (c), appendix A.4), which
is a scalar in this single-nuclear dimension example, is essentially zero except at the
avoided crossing. There it features a sharp and narrow peak indicating the strong
non-adiabaticity of this region. Avoided crossings with a such a structure (narrow
avoided crossing with narrow change of configuration, and narrow and peaked non-
adiabatic coupling vector) are referred to as Landau–Zener-type crossings.
As discussed above the efficiency of the coupling between the two electronic states
Σ1 and Σ2 depends mainly on the velocity of the two nuclei, i.e., on how strongly the
Born–Oppenheimer approximation is violated. The Massey parameter 𝜉 = 𝜔𝑒𝑙 𝜏𝑛 is
a measure for the efficiency of the coupling. It is the product of 𝜔𝑒𝑙, the electronic
transition frequency, and 𝜏𝑛, the characteristic time for the change of electronic wave
functions upon nuclear motion. In our example 𝜔𝑒𝑙 = Σ2 − Σ1 = ∆𝐸 ≈ 0.18 eV
at the point of the avoided crossing R≈6.65. 𝜏𝑛 = ∆𝐿/𝑣𝑛, where ∆𝐿 ≈ 0.3 a.u. is
the characteristic length scale of the non-adiabatic coupling (the full width at half
maximum of the peak in fig. 5.2 (c)) and 𝑣𝑛 is the nuclear velocity. This leads to
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Figure 5.2.: (a) The two energetically lowest adiabatic MCSCF potential energy surfaces
(basis set: cc-pvtz) Σ1 and Σ2 responsible for the charge transfer reaction
Si3+ + He → Si2+ + He+. (b) Charge state, i.e., Mulliken charges of the
He constituent. (c) Non-adiabatic coupling vector ⟨Σ1|𝜕𝑅|Σ2⟩.

(for 𝑣𝑛 in a.u.)

𝜉(𝑅) =
∆𝐸 ∆𝐿

𝑣𝑛
≈ 0.002

𝑣𝑛
. (5.15)

For the passage of the system through the interaction region the non-adiabatic
coupling is efficient when 𝜉 is in the order of unity or below and inefficient when
𝜉 ≫ 1. Therefore, we expect the onset of charge transfer at a relative nuclear
velocity of 𝑣𝑛 ≈ 0.002 a.u. which corresponds to a momentum of 12 a.u. and a
kinetic energy of 0.3 eV in the center of mass frame.
In terms of the Massey parameter the validity of the BO approximation reads as
follows. For a system in a given electronic state Γ the nuclear motion is governed
by a single adiabatic potential energy surface 𝐸Γ(𝑅) when 𝜉 ≫ 1 (low velocities
𝑣𝑛). For the other limiting case 𝜉 ≪ 1 (high velocities 𝑣𝑛) the concept of diabatic
states, introduced in the following section, is more suitable.

5.3. The diabatic representation

In situations where 𝜉 ≪ 1 nuclear velocities are so large that electrons cannot
adapt to the nuclear motion any more. This means the electrons do not change
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their configuration when the system runs through an interaction region and the
dynamics is governed by a single, so-called, diabatic potential energy surface. In this
section we derive the matrix A for the Si3+ + He which allows for transformation
from the adiabatic to the diabatic picture and vice versa. Further, we discuss
how the diabatic picture simplifies the solution of the time-dependent Schrödinger
equation.
In the following we drop the electronic-state indices of 𝜒𝑖(𝑅⃗) and Ψ𝑖(𝑟⃗; 𝑅⃗) and
consider 𝜒 and Ψ to be column vectors of the nuclear and electronic wave functions,
respectively. With this notation the Born–Oppenheimer expansion (5.3) reads

Φtotal(𝑟⃗, 𝑅⃗) = 𝜒(𝑅⃗) · Ψ(𝑟⃗; 𝑅⃗), (5.16)

which can further be modified by inserting the unitary adiabatic-to-diabatic trans-
formation matrix 𝐴

Φtotal = Ψ(𝑟⃗; 𝑅⃗) · 𝜒(𝑅⃗) = Ψ(𝑟⃗; 𝑅⃗)𝐴(𝑅⃗)𝐴†(𝑅⃗)𝜒(𝑅⃗). (5.17)

We further drop the dependence of the wave functions on the coordinates and define
a new set of electronic basis functions Ψ̃ and nuclear wave functions 𝜒̃

Ψ̃ = Ψ𝐴

𝜒̃ = 𝐴†𝜒. (5.18)

With this definition (and dropping the factor −1/2𝑀) we can rewrite the first term
of equation 5.10 as(︁

∇⃗ + 𝐹
)︁2

𝜒 =
(︁
∇⃗ + 𝐹

)︁2

𝐴𝜒̃

= 𝐴∇⃗2𝜒̃+ 2(∇⃗𝐴+ 𝐹𝐴) · ∇⃗𝜒̃+ {(𝐹 + ∇⃗) · (∇⃗𝐴+ 𝐹𝐴)}𝜒̃, (5.19)

where the ∇⃗-operators in the last term act only within curly brackets. If A is chosen
to be a solution of the equation

∇⃗𝐴+ 𝐹𝐴 = 0 (5.20)

only the first term in the above equation is non-zero. After multiplication with A†

from the left the nuclear Schrödinger equation 5.10 becomes

− 1

2𝑀
∇⃗2𝜒̃+ 𝐸̃𝜒̃ = 𝐸tot𝜒̃. (5.21)
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𝐸̃ is the diabatic potential matrix given by

𝐸̃ = 𝐴†𝐸𝐴, (5.22)

which is, in general, a full matrix. The diagonal contains the so-called diabatic
potential energy surfaces and the off-diagonal part contains the diabatic couplings.
The adiabatic-to-diabatic transition simplifies the form of the time-dependent Schrö-
dinger equation by eliminating the non-adiabatic coupling vector 𝐹 in eq. 5.10. The
prize to be paid are the off-diagonal terms in 𝐸̃, the diabatic potential matrix. In
this context this transition is said to transform the kinetic coupling 𝐹 · ∇⃗ (adia-
batic picture) into a potential coupling in 𝐸̃ (diabatic picture). The elimination of

𝐹 eases the solution of the nuclear motion in two ways. First, the non-adiabatic
couplings 𝐹 are quite often very narrow (see fig. 5.2 (c)) which requires a high

spatial resolution in the ab-initio calculation of the PES and 𝐹 and it requires a
high temporal resolution to correctly describe the motion of the system through the
narrow avoided crossing. The diabatic couplings, on the other hand, vary typically
much smoother with R. Second, the “book keeping” is somewhat simplified since
𝐹 is a vector of matrices while the entries in 𝐸̃ are scalars.
The matrix 𝐴 can be found by solving equation 5.20, which is called strict di-
abatization [127–130]. Unfortunately, an unambiguous solution only exists for a
single adiabatic parameter, i.e., for a single nuclear degree of freedom R. In higher-
dimensional nuclear spaces 𝐴(𝑅⃗) depends on the path 𝑅⃗(𝑡), where 𝑡 is the integra-
tion parameter, along which eq. 5.20 is integrated. For the one-dimensional case
equation 5.20 reduces to

𝜕

𝜕𝑅
𝐴(𝑅) = −𝐹 (𝑅) 𝐴(𝑅), (5.23)

which comprises the important case of diatomic molecules. For more complex
systems strategies different from strict diabatization have to be applied. Such
strategies include property based diabatization, energy based diabatization, the
concept of regularized diabatic states, and local diabatization (see, e.g, [112, 131]).
The numerical solution of eq. 5.23 is given by a Cranck-Nicholson-like equation
[132] for the transformation matrix propagation(︂

1 + 𝐹
∆𝑅

2

)︂
𝐴(𝑅 + ∆𝑅) =

(︂
1− 𝐹

∆𝑅

2

)︂
𝐴(𝑅), (5.24)

where ∆𝑅 is the integration step. For the Si3+ + He system the integration is done
as follows. We start the in the region 𝑅 > 10 where 𝐹 = 0 (fig. 5.2 (c)) and the
adiabatic and diabatic representations are equivalent. We set 𝐴 = 1, propagate eq.
5.24 from 𝑅 = 12 towards smaller distances, and calculate for every distance R the
diabatic potential matrix.
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Fig. 5.3 (a) shows the diagonal elements of 𝐸̃𝑗𝑖(𝑅), the diabatic potential energy
surfaces, panel (b) shows the He charge state attributed to the diabatic PES, and
panel (c) shows the diabatic coupling elements, the off-diagonal entry of 𝐸̃. The
charge state of He are the diagonal elements of a matrix 𝑀̃ = 𝐴†𝑀𝐴, where 𝑀
is a matrix with the adiabatic Mulliken charges on the diagonal and zeros in the
off-diagonal parts. For this specific case (narrow avoided crossing) the diabatic

Figure 5.3.: (a) The two energetically lowest diabatic MCSCF potential energy surfaces
(basis set: cc-pvtz) Σ̃1 and Σ̃2 contributing to the charge transfer reaction
Si3+ + He → Si2+ + He+. (b) Diabatic charge state, i.e., diabatized
Mulliken charges of the He constituent and (c) diabatic coupling element
𝐸̃12(𝑅).

and adiabatic PES look qualitatively similar. The difference between them is,
that, instead of the avoided crossing in the adiabatic case, the diabatic PES do
cross. They are allowed to do so since the diabatic electronic wave functions Ψ̃𝑖

are not eigenfunctions of the electronic Hamiltonian. The charge state for the
diabatic states Σ̃1 and Σ̃2 do behave exactly in the opposite way. While they cross
in the adiabatic picture they form an anti-crossing in the diabatic representation.
When the system moves along the adiabatic PES Σ1 (or Σ2) and passes the avoided
crossing, electron transfer between Si and He occurs which is reflected by the change
in the He charge state before and after the avoided crossing. Moving along a
diabatic PES (Σ̃1 or Σ̃2) the He charge state is the same before and after the
crossing, which means charge transfer does not occur upon passage of the crossing,
i.e., the electronic configuration does not change. The diabatic couplings in panel
(c) vary smoother with R than the non-adiabatic couplings in fig. 5.2 (c).
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5.4. Solution of the time-dependent Schrödinger

equation for the nuclear motion

In this section we review methods used to (approximately) solve the time-dependent
Schrödinger equation

𝑖
𝜕

𝜕𝑡
𝜒 = − 1

2𝑀

(︁
∇⃗ + 𝐹⃗

)︁2

𝜒 + 𝐸 𝜒 (5.25)

(or its diabatic analog) for the nuclear motion on several potential energy surfaces.
The methods considered can be divided into three groups. First, we discuss ana-
lytical approximations for the transition probability between two electronic states
upon passage of an interaction region. Second, the semi-classical Tully surface-
hopping algorithm is discussed which combines both a quantum propagation of the
electronic degrees of freedom (from which transition probabilities are derived) and
a classical propagation for the motion of the nuclei. Third, we investigate a full
quantum-mechanical solution of the scattering event by wave packet propagation.
We introduce these methods with the help of the model system Si3+ + He with two
electronic states and calculate the charge transfer probability in a head-on collision
with 𝑅, the inter-nuclear distance, being the only nuclear degree of freedom.

5.4.1. Approximate analytic solutions

There are two typical shapes of potential energy surfaces describing charge transfer
in diatomic scattering events. Their characteristics is determined by the charge
states of the two scatterers at asymptotic distances 𝑅 → ∞. First, consider the
reaction 𝐴3+ +𝐵 ↔ 𝐴2+ +𝐵+ to which our model system Si3+ + He belongs. In a
two-state model each side of this reaction corresponds to one PES, at large distances
𝑅. The PES of 𝐴3+ + 𝐵 typically varies only slowly with 𝑅 since the species 𝐵
is neutral and the interaction between the scatterers is governed by the weakly
attractive ion-induced dipole force, i.e., the interaction between the ion 𝐴3+ and
the polarized atom 𝐵. The PES of 𝐴2+ + 𝐵+, however, scales like 1/𝑅 due to the
Coulomb repulsion of the scatterers. This large difference in 𝑅-dependence forms a
very narrow avoided crossing (fig. 5.2) which is called a Landau–Zener–Stückelberg
(LZS) type of avoided crossing. Second, consider the reaction 𝐴+ + 𝐵 ↔ 𝐴+ 𝐵+.
In this case, there is a neutral scatterer on both sides of the reaction and the PESs
of both sides are governed by the induced-dipole attraction. Therefore, the PESs
are rather flat at large 𝑅 and almost run in parallel (fig. 5.6). Although they do
not feature a conspicuous narrow avoided crossing the charge transfer occurs quite
locally and one speaks of a hidden crossing. PES of this type are described by the
Rosen–Zener–Demkov (RZD) model.
In this section we will briefly introduce both models (for a review see, e.g., [133] and
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references in there) and apply them to calculate the charge-transfer probability in
two model systems. There are also “intermediate models”, e.g., the Nikitin model
dealing with PES that are neither parallel lines nor have a narrow avoided crossing.
We do not describe such models here but refer the interested reader to the literature
(see, e.g., [133])

The Landau–Zener–Stückelberg approximation

Landau [134, 135], Zener [136] and Stückelberg [137] considered a two-state model
with crossing linear-diabatic PES and a constant diabatic coupling between them.
Upon diagonalization one finds adiabatic PES with a narrow avoided crossing just
like the one of Si3++He (fig. 5.2). Landau derived an expression for 𝑝LZ12 the tran-
sition probability between two adiabatic states by the complex contour integral
method after analytic continuation of the adiabatic PES into the complex plane.
Zener solved the time-dependent Schrödinger equation in the diabatic representa-
tion.
In the following we apply the Landau–Zener–Stückelberg model to the Si3++He
two-level system. The non-adiabatic couplings are approximated to be non-zero
only in a very narrow region of space ∆𝐿. Outside of this region adiabatic and
(quasi)-diabatic PES lie exactly on top of each other. Inside of ∆𝐿 the adiabatic
PES feature the avoided crossing while the (quasi)-diabatic states cross at 𝑅𝑐 and
are approximated by straight lines. We use the term quasi-diabatic in this context
since the diabatic PES are not determined by solving eq. 5.23 but are, within ∆𝐿,
drawn “by hand” and coincide with the adiabatic PES elsewhere. 𝑅𝑐 is the real
part of 𝑅*, the complex crossing point of the adiabatic potentials. Approximating
the diabatic couplings to be constant within ∆𝐿 leads to the Landau-Zener diabatic
potential matrix

𝐸̃LZ
11 (𝑅) = 𝐸̃0 − 𝑘1 (𝑅−𝑅𝑐)

𝐸̃LZ
22 (𝑅) = 𝐸̃0 − 𝑘2 (𝑅−𝑅𝑐)

𝐸̃LZ
12 (𝑅) = 𝑉 = 𝑐𝑜𝑛𝑠𝑡., (5.26)

with

𝑘𝑖 =
d𝐸̃LZ

𝑖𝑖 (𝑅)

d𝑅

⃒⃒⃒⃒
⃒
𝑅𝑐

, (5.27)

the slopes 𝑘𝑖 of the Landau–Zener diabatic states 𝐸̃LZ
𝑖𝑖 (𝑅) at 𝑅 = 𝑅𝑐. Via a

diagonalization one can derive a connection between the diabatic coupling 𝑉 and
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the spacing between the adiabatic PES at 𝑅𝑐 reading

(∆𝐸)2 = 4𝑉 2. (5.28)

With ∆𝑘 = |𝑘1 − 𝑘2| the transition probability between the adiabatic PES upon a
single passage of 𝑅𝑐 reads

𝑝LZ12 = 𝑒−2𝜋 𝑉 2

Δ𝑘𝑣𝑛 = 𝑒−2𝜋𝜉LZ , (5.29)

which varies between 0 (𝑣𝑛 ≪ 1) and 1 (𝑣𝑛 ≫ 1). 𝑣𝑛 is the nuclear velocity and 𝜉LZ
is the Massey parameter within the Landau-Zener approximation

𝜉LZ =
𝑉 2

∆𝑘𝑣𝑛
. (5.30)

For the determination of the charge-transfer probability in the Si3++He scattering
we extract ∆𝐸 = 0.18 eV and ∆𝑘 = 0.045 a.u. from the adiabatic and diabatic
PES in figs. 5.2 and 5.3, respectively. The Landau–Zener Massey parameter then
reads (for 𝑣𝑛 in a.u.)

𝜉LZ ≈ 0.00024

𝑣𝑛
, (5.31)

suggesting the onset of charge transfer to be at 𝑣𝑛 ≈ 0.00024 a.u. which corresponds,
with the reduced mass 𝜇 = 6386 a.u., to a momentum of ∼ 1.5 a.u. in the center
of mass frame.
During the head-on rescattering collision the system passes the avoided crossing
twice which leads to a total charge-transfer probability of

⟨𝒫LZ
12 ⟩ = 2𝑝LZ12 (1 − 𝑝LZ12 ). (5.32)

It is written in brackets because it denotes an average value neglecting the quantum
nature of the scattering process. ⟨𝒫LZ

12 ⟩ is shown in fig. 5.4 as a function of the initial
relative nuclear momentum 𝑃init = 𝜇𝑣𝑛 and the initial kinetic energy 𝑃 2

init/2𝜇 in
the center of mass frame. Since the PES of the initial state Σ2 is quite flat we
approximate the nuclear velocity at the avoided crossing 𝑅𝑐 by the initial velocity.
Charge transfer sets in at a momentum of ∼ 1 a.u. and features a maximum at
𝑃init ≈ 14.5, exactly where 𝑝LZ12 = 0.5 corresponding to the Massey maximum. If 𝑣𝑛
is very small (𝑝LZ12 ≈ 0) the system stays on the initial adiabatic potential surface
upon both passages through the avoided crossing and no charge transfer occurs. For
very large velocities (𝑝LZ12 ≈ 1) the system switches the adiabatic PES upon both
passages and there is no net charge transfer. The maximum probability for charge
transfer is, therefore, reached in an intermediate velocity regime where the single-
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passage probability 𝑝LZ12 equals 50%. This analysis implies that for low velocities,
near the adiabatic limit, the nuclear motion is governed by a single adiabatic PES
while in the diabatic limit of very fast nuclei, to motion takes place on a single
diabatic PES.

Figure 5.4.: Landau-Zener charge transfer probability for a head-on collision of Si3+

and He as a function of initial relative momentum and kinetic energy in the
center of mass frame. The initial momentum reads 𝑃init = 𝜇𝑣𝑛 with the
reduced mass 𝜇 = 6386 a.u. The solid red line is the average probability
while the dotted green line shows Stückelberg oscillations due to quantum
interference.

Consider the system initially in state Σ2. During the scattering event the system
has two options to end up in state Σ1. It can change from Σ2 to Σ1 either upon
the first passage of 𝑅𝑐 (the inward motion) or upon the second passage of 𝑅𝑐 (the
outward motion). Semiclassically, these two options correspond to two alternative
pathways giving rise to quantum interference and, therefore, a modulation of the
charge-transfer probability, the so-called Stückelberg oscillations [137]. The phase
difference between the two paths is given by

∆𝜑12 = 2

(︂∫︁ 𝑅𝑡1

𝑅𝑐

𝑝1(𝑅) 𝑑𝑅−
∫︁ 𝑅𝑡2

𝑅𝑐

𝑝2(𝑅) 𝑑𝑅

)︂
. (5.33)

𝑅𝑡1 and 𝑅𝑡2 are the classical turning points of a particle with mass 𝜇 propagating
on the PES of Σ1 and Σ2, respectively, and depend on the initial momentum 𝑃init.
Accordingly, 𝑝1(𝑅) and 𝑝2(𝑅) are the momenta of the particle at a given R on the



5. Non-adiabatic molecular dynamics in a nutshell 105

PES of the two electronic states. With this phase difference the charge transfer
probability reads

𝒫LZ
12 = 2𝑝LZ12 (1 − 𝑝LZ12 )(1 − cos ∆𝜑12). (5.34)

It shows oscillations (fig. 5.4) around ⟨𝒫LZ
12 ⟩ the frequency of which varies with

the initial velocity and depend via eq. 5.33 on the shape of the PES. The phase
difference ∆𝜑12 depends on the initial momentum 𝑃init via the turning points in eq.
5.33. Interferences in the charge-transfer probability, therefore, cause oscillations
with frequency

Ω =
d∆𝜑12

d𝑃init

. (5.35)

At 𝑃init ≈ 80 a.u., ∆𝜑12(𝑃init) has an extremum, i.e. Ω = 0, leading to a broad
oscillation in 𝒫LZ

12 . This extremum is due to the different shapes of the potential
energy surfaces Σ1 and Σ2. Approximating Σ1 by an L-shaped potential (fig. 5.5)
and Σ2 by a straight line allows for analytic solution of the two phase-space integrals
in eq. 5.33. Within this approximation, the first term, corresponding to Σ1, is
proportional to 𝑃init while the second term, corresponding to Σ2, scales with 𝑃 3

init.
For initial momenta below 80 a.u., the first term grows faster with 𝑃init than the
second one. For momenta above 80 a.u. this tendency is reversed leading to the
extremum in ∆𝜑12(𝑃init).

The Rosen–Zener–Demkov approximation

The Rosen–Zener–Demkov (RZD) model represents the opposite limit of diabatic
PESs. They are approximated by two parallel lines around 𝑅𝑐 unlike the Landau–
Zener model for two crossing straight lines around 𝑅𝑐. For the diabatic coupling an
exponential dependence on 𝑅 is assumed. 𝑅𝑐 again denotes the real part of 𝑅*, the
crossing point in the complex plane. Rosen and Zener [138], and Demkov [139, 140]
solved the time-dependent Schrödinger equation for such a system exactly and de-
rived an expression for 𝑝RZD

12 the transition probability between the two states.
PESs, charge states, and non-adiabatic coupling vector of RZD type (fig. 5.6) are
found for the charge transfer between a proton H+ and a cluster Li5F1 representing
a LiF crystal surface. The cluster is embedded in a matrix of point charges which
is constructed such that cluster plus embedding is neutral. The charge-transfer
reaction can, therefore, be written as 𝐻+ + Li5F1 ↔ H + (Li5F1)

+. This system
is studied in more detail in chapter 6. The nuclear coordinate R denotes the dis-
tance between H+ and the surface. Since PES of RZD type have no narrow avoided
crossing the position of 𝑅𝑐 is not as obvious as in the LZ case. For large R, the two
potential energy surfaces are essentially parallel. At 𝑅𝑐 the non-adiabatic coupling
has a maximum and the adiabatic PES start to diverge. Also the diabatic PES of
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Figure 5.5.: The two energetically lowest adiabatic MCSCF potential energy surfaces
(basis set: cc-pvtz) Σ1 (solid-red line) and Σ2 (dashed-green line) respon-
sible for the charge transfer reaction Si3+ + He → Si2+ + He+. Solid-black
and dashed-black lines are approximations to the PES used in the analytic
solution of the phase integral in eq. 5.33.

this model system cross but the crossing point is at 𝑅 < 𝑅𝑐 while at 𝑅𝑐 the diabatic
PESs are parallel.
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Figure 5.6.: Schematic adiabatic (left panels) and diabatic (right panels) potential en-
ergy curves, couplings, and charge states of the H+ + LiF-surface ↔ H +
(LiF)+-surface charge transfer as a function of the inter-nuclear distance
R. PES are of Rosen–Zener–Demkov type.
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The RZD diabatic Hamiltonian approximates the two PES and the diabatic cou-
pling around 𝑅𝑐 by

𝐸̃RZD
11 = 𝐸̃avg − ∆𝐸̃/2

𝐸̃RZD
22 = 𝐸̃avg + ∆𝐸̃/2

𝐸̃RZD
12 = 𝐴0/2 𝑒

−𝛼𝑅. (5.36)

The choice of 𝐸̃RZD
12 = 𝐴0/2 𝑒

−𝛼𝑅 in terms of a single exponential is due to Demkov.
Rosen and Zener originally treated a symmetric (𝑡 → −𝑡) coupling 𝐸̃𝑅𝑍

12 (𝑡) ∝
cosh−1(𝑡/𝜏0). For the present scattering system eq. 5.36 is more appropriate. The
RZD-transition probability for a single passage of 𝑅𝑐 is given by

𝑝RZD
12 =

𝑒−𝜋𝜉RZD

1 + 𝑒−𝜋𝜉RZD
, (5.37)

with 𝜉RZD = ∆𝐸̃/𝑣𝑁𝛼 the Massey parameter for the RZD model. ∆𝐸̃ is the
energy spacing between the two parallel diabatic PES at 𝑅𝑐, 𝑣𝑛 is the nuclear
velocity and 𝛼 is the exponent describing the decay of the diabatic coupling. We
determine the parameters ∆𝐸̃ and 𝛼 by fitting to the diabatic PES in fig. 5.6
yielding ∆𝐸̃ = 0.0409 a.u. (1.11 eV) and 𝛼 = 0.77 a.u. 𝐸̃avg and 𝐴0 in eq. 5.36 are
𝑅-independent constants. The average neutralization probability after rescattering,
i.e., after the double passage of 𝑅𝑐 reads

⟨𝒫RZD
12 ⟩ = 2𝑝RZD

12 (1 − 𝑝RZD
12 ) =

1

2

1

𝑐𝑜𝑠ℎ2(𝜋
2
𝜉RZD)

(5.38)

and is plotted as solid-red line in fig. 5.7 with 𝜇 = 1837 a.u., the mass of the
hydrogen projectile. Conceptual differences to a LZ crossing model become obvious.
In the present case the RZD crossing is much more inefficient than a LZ crossing
which is reflected in the RZD-Massey parameter (for 𝑣𝑛 in a.u.)

𝜉RZD ≈ 0.053

𝑣𝑛
, (5.39)

which approaches 𝜉RZD ≈ 1 only for much larger velocities than 𝜉LZ (eq. 5.31).
Therefore, ⟨𝒫RZD

12 ⟩ stays close to zero up to much larger nuclear velocities. Another
difference is the absence of a Massey maximum in the RZD model (as long as the
average neutralization probability after double passage can be approximated by two
independent single passages like in eq. 5.38). For LZ crossings the single-passage
probability 𝑝LZ12 takes values between 0 and 1 leading to a Massey maximum in the
double passage probability ⟨𝒫LZ

12 ⟩ at 𝑝LZ12 = 0.5. The RZD single-passage probability
varies only between 0 and 0.5. ⟨𝒫RZD

12 ⟩, therefore, has no maximum but rises from
0 to 0.5 with increasing nuclear velocity. This implies for the dynamics in the RZD



5. Non-adiabatic molecular dynamics in a nutshell 109

Figure 5.7.: Rosen–Zener–Demkov neutralization probability of H+ for the H+ + LiF-
surface ↔ H + (LiF)+-surface charge-transfer reaction as a function of
the initial momentum and kinetic energy in the center of mass frame. The
mass used is 𝜇 = 1837 a.u. (the mass of a hydrogen atom). Solid-red line
is the average probability while the dotted-green line shows Stückelberg
oscillations due to quantum interference.

model the following picture. In the adiabatic limit the nuclear motion is governed
by a single adiabatic PES while in the diabatic limit the motion is determined by
both diabatic PES.
The Stückelberg oscillations are determined analogously to the LZ case by numer-
ically calculating the phase difference ∆𝜑12 in equation 5.33. The total neutraliza-
tion probability 𝑃RZD

12 (fig. 5.7) then reads

𝑃RZD
12 =

1

𝑐𝑜𝑠ℎ2(𝜋
2
𝜉RZD)

sin2(∆𝜑12/2). (5.40)

5.4.2. The Tully surface-hopping algorithm

For systems with more than two states as well as arbitrarily shaped avoided cross-
ings and couplings the application of such analytical approximations becomes prob-
lematic. The full quantum-mechanical solution of the TDSE handles any type of
avoided crossing but it becomes numerically very demanding and in many cases
impossible to solve for many nuclear degrees of freedom. An alternative to the
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full quantum-mechanical solution is the use of semi-classical approaches such as
the Tully surface-hopping (TSH) algorithm [141–143]. It is based on a separate
treatment of the nuclear and electronic degrees of freedom. While for the electronic
degrees of freedom the time integration is performed quantum-mechanically within
a set of coupled channel equations, the nuclear motion is treated purely classical.
Therefore, the system is described by a classical particle moving on, at each in-
stance of time, a single PES according to Newton’s equations of motion. It is the
locality introduced by the classical treatment of the nuclear motion that eases the
time integration compared to full quantum solution. Within the TSH approach,
the coupling between electronic and nuclear motion is introduced via a stochastic
algorithm based on a non-vanishing probability for the classical particle to jump,
or, to hop between the PES in every time step of the integration. This hopping
probability depends on the non-adiabatic coupling vector, the amplitudes of the
electronic channels, and the nuclear velocity as will be shown in the following. The
probabilistic character of a full quantum solution by a nuclear-wave packet prop-
agation is regained by using an ensemble of classical nuclear trajectories for each
initial condition in a classical Monte Carlo type of approach. For the two-state
example of the charge transfer in a Si3+ + He collision this is done in practice as
follows. A large number of trajectories is started on the PES of Σ2 at 𝑅 = 12 with
a given momentum pointing towards the origin (schematically depicted in fig. 5.8
(a)). On their inward motion the trajectories pass the avoided crossing the first
time leading to hopping from Σ2 to Σ1. Trajectories are reflected at their classi-
cal turning points 𝑅𝑡1 and 𝑅𝑡2 (fig. 5.8 (b)). After passing the avoided crossing a
second time rescattered trajectories can either return on the PES of Σ1 or Σ2 (fig.
5.8 (c)) and the charge-transfer probability is given by the fraction of trajectories
returning in Σ1 divided by the number of started trajectories.
Under the assumption of nuclei moving on classical trajectories 𝑅⃗(𝑡) the time de-
pendent many-electron wave function can be written as

Ψelectron(𝑟⃗, 𝑅⃗, 𝑡) =
𝑁∑︁
𝑗=1

𝑐𝑗(𝑡) · Ψ𝑗(𝑟⃗; 𝑅⃗(𝑡)), (5.41)

where 𝑟⃗ encompasses all electronic degrees of freedom. In the adiabatic representa-
tion Ψ𝑗(𝑟⃗; 𝑅⃗(𝑡)) is the 𝑗𝑡ℎ eigenfunction of the electronic Hamiltonian 𝐻𝑒Ψ𝑗(𝑟⃗; 𝑅⃗) =

𝐸𝑗(𝑅⃗)Ψ𝑗(𝑟⃗; 𝑅⃗). Inserting this ansatz into the time-dependent electronic Schrödinger
equation 𝑖~𝜕𝑡Ψelectron = 𝐻𝑒Ψelectron leads to a set of coupled differential equations
for the expansion coefficients, the so-called coupled channel equations,

𝑖
𝜕

𝜕𝑡
𝑐𝑗(𝑡) = 𝐸𝑗(𝑅⃗(𝑡)) 𝑐𝑗(𝑡) − 𝑖

∑︁
𝑖

⟨Ψ𝑗|
𝜕

𝜕𝑡
|Ψ𝑖⟩ 𝑐𝑖(𝑡). (5.42)
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Figure 5.8.: Schematic illustration of the Tully surface hopping approach applied to the
Si3+ + He charge transfer. Initially, an ensemble of trajectories is prepared
in the electronic state of Σ2 with a velocity pointing towards the origin (a).
During their inward motion they pass the avoided crossing giving rise to
a non-zero probability for hopping between the potential energy surfaces.
The trajectories are rescattered at their classical turning points 𝑅𝑡1 and
𝑅𝑡2 (b). On their outward motion they pass the avoided crossing a second
time. (c) After rescattering a fraction of the trajectories, equal to the
charge-transfer probability, has changed the electronic state and returns on
the PES of Σ1.

They represent the semi-classical version of non-Born-Oppenheimer dynamics. With
the relation

⟨Ψ𝑗|
𝜕

𝜕𝑡
|Ψ𝑖⟩ = ⟨Ψ𝑗|

𝜕

𝜕𝑅⃗
|Ψ𝑖⟩

𝜕𝑅⃗

𝜕𝑡
= 𝐹𝑗𝑖 ·

˙⃗
𝑅, (5.43)

this can be written as

𝑖
𝜕

𝜕𝑡
𝑐𝑗(𝑡) = 𝐸𝑗(𝑅⃗(𝑡)) 𝑐𝑗(𝑡) − 𝑖

˙⃗
𝑅
∑︁
𝑖

𝐹𝑗𝑖 𝑐𝑖(𝑡). (5.44)

𝐹𝑗𝑖(𝑅⃗(𝑡)) is the non-adiabatic coupling vector between the states 𝑗 and 𝑖 and
˙⃗
𝑅(𝑡)

is the nuclear-velocity vector. The nuclear motion at a given instance of time is
governed by Newton’s equation of motion on a single potential energy surface

𝑀
𝜕2

𝜕𝑡2
𝑅⃗(𝑡) = −∇𝐸𝑗(𝑅⃗), (5.45)

where 𝑀 is the nuclear mass. In the simulation Newton’s equation of motion and
the equations for the amplitudes 𝑐𝑗(𝑡) are integrated simultaneously.
In the following we give a “qualitative” derivation of the probability 𝑔𝑖→𝑓 , proposed
by Tully [141], that the system hops from the initial state i to a final state f within
the time step ∆𝑡. One key aspect of Tully’s surface hopping approach is the fewest
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switches criterion. 𝑔𝑖→𝑓 is defined such that as few jumps between PESs as possible
occur to retain as much “quantum information” as possible. In an algorithm with
a very high jump probability per time step a trajectory effectively evolves on an
average PES which affects the regions the trajectories explore and, consequently,
also the phase of 𝑐𝑗 accumulated during propagation. Consider a two-state system
and a large number 𝑁 of trajectories. At time 𝑡0 there is a number of 𝑁 ′

𝑖 = 𝑎′𝑖𝑖 𝑁
(with 𝑎𝑘𝑙 = 𝑐𝑘𝑐

*
𝑙 and 𝑎𝑘𝑘 = |𝑐𝑘|2 being the state populations) trajectories associated

with state 𝑖 and 𝑁 ′
𝑓 = 𝑎′𝑓𝑓 𝑁 with state 𝑓 . Let us assume at a later time 𝑡0 +∆𝑡 the

state populations have changed to 𝑎𝑖𝑖 < 𝑎′𝑖𝑖 and 𝑎𝑓𝑓 > 𝑎′𝑓𝑓 and so have the number
of trajectories associated with these states 𝑁𝑖 = 𝑁𝑎𝑖𝑖 < 𝑁 ′

𝑖 = 𝑁𝑎′𝑖𝑖. In principle,
trajectories can switch in both directions: from i to f and from f to i. In total,
however, the number of trajectories switching from 𝑖 to 𝑓 must be larger. The
smallest number of switches is achieved when no switches from 𝑓 to 𝑖 are allowed
and (𝑎′𝑖𝑖 − 𝑎𝑖𝑖)𝑁 switches from 𝑖 to 𝑓 occur. The switching probability is given by
(𝑎′𝑖𝑖 − 𝑎𝑖𝑖)/𝑎

′
𝑖𝑖 which can be rewritten for small time intervals ∆𝑡:

(𝑎′𝑖𝑖 − 𝑎𝑖𝑖)

𝑎′𝑖𝑖
≈

(𝑎𝑓𝑓−𝑎′𝑓𝑓 )

Δ𝑡
∆𝑡

𝑎𝑖𝑖
≈ 𝑎̇𝑓𝑓∆𝑡

𝑎𝑖𝑖
. (5.46)

Generalization to a multiple-state model [141] leads, with eq. 5.44, to

𝑔𝑖→𝑓 = −∆𝑡 · 1

𝑎𝑖𝑖
· 2ℜ{𝑐*𝑖 𝑐𝑓

˙⃗
𝑅 · 𝐹𝑖𝑓}. (5.47)

The quantity 𝑔𝑖→𝑓 is not positive definite. We follow in this work the ad-hoc
proposal of Tully [141] and set 𝑔𝑖→𝑓 = 0 if 𝑔𝑖→𝑓 < 0. During every time step, 𝑔𝑖→𝑓

is compared to a random number between 0 and 1 to decide if a jump occurs. Upon
a jump the nuclear velocity vector is rescaled to preserve the total energy.
The coupled channel equations (eq. 5.44) and 𝑔𝑖→𝑓 are derived in the adiabatic
picture. The TSH algorithm can, however, be easily transformed into the diabatic
representation. The coupled channel equations become

𝑖
𝜕

𝜕𝑡
𝑐𝑗(𝑡) =

∑︁
𝑖

𝐸̃𝑖𝑗(𝑅⃗(𝑡)) 𝑐𝑗(𝑡), (5.48)

and the transition probability from the initial state i to the final state f reads

𝑔𝑖→𝑓 = ∆𝑡 · 1

𝑎𝑖
· 2ℑ{𝑐*𝑖 𝑐𝑓 𝐸̃𝑖𝑓}. (5.49)

Also the classical propagation of the nuclei (eq. 5.45) must then be performed on

the diabatic PES 𝐸̃𝑗𝑗(𝑅⃗).
The classical treatment of the nuclei typically lowers the computational effort to
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solve the TDSE. Despite this classical approach the TSH algorithm is capable of
approximately accounting for Stückelberg oscillations, i.e., the interference between
different paths. This is achieved by the integration of amplitudes 𝑐𝑖(𝑡) of the elec-
tronic channels in eq. 5.44. The main approximation entering the coupled channel

equations is the use of the classical, local velocity
˙⃗
𝑅(𝑡) determined by a single PES

at a given instance in time. Due to this fact the coherence between different states
is only approximate. This effect is discussed in, e.g., [144] and so-called decoherence
corrections are available. Quantum effects which are not accounted for by the TSH
algorithm are the treatment of the zero-point energy and tunneling.
For the Si3+ + He charge transfer probability the TSH approach yields quite sim-
ilar results as the Landau–Zener approximation (fig. 5.9) and the full quantum
solution (fig. 5.11). The onset of the charge transfer, the Massey maximum as
well as the decrease at higher momenta are essentially equal. Only the phase and
the frequency of the Stückelberg oscillations deviates from the Landau–Zener and
the full-quantum result. Also the low-frequency oscillation at 𝑃init ≈ 80 a.u. is
absent in the TSH. At higher momenta the frequency of the TSH-Stückelberg os-
cillations seem to approach the ones of the other results when the initial kinetic
energy (𝑃 2

init/2𝜇) of the trajectories exceeds the potential-energy difference of the
PES in the phase difference integral

∆𝜑12 = 2

(︂∫︁ 𝑅𝑡1

𝑅𝑐

𝑝1(𝑅) 𝑑𝑅−
∫︁ 𝑅𝑡2

𝑅𝑐

𝑝2(𝑅) 𝑑𝑅

)︂
, (5.50)

with

𝑝𝑖(𝑅) =
√︁
𝑃 2
init − 2𝜇Σ𝑖(𝑅). (5.51)

5.4.3. Wave-packet propagation

For a full quantum-mechanical solution of the TDSE the time-dependent expansion
coefficients 𝜒𝑖(𝑅, 𝑡) in eq. 5.25 are interpreted as the nuclear wave functions and
are propagated on several, coupled potential-energy surfaces. The charge-transfer
probability in the Si3+ + He scattering is then determined as schematically depicted
in fig. 5.10. Initially, at 𝑡 = 𝑡0 a normalized Gaussian wave packet 𝜒2(𝑅, 𝑡0) is placed
at 𝑅 = 12 on the PES of Σ2 with an initial central momentum 𝑃init pointing towards
the origin. The form of the initial wave packet does not influence the average
neutralization probability. Its width in momentum space, however, determines the
resolution of the Stückelberg oscillations. During the scattering process the wave
packet splits and probability density is transferred to 𝜒1(𝑅), the wave packet on the
PES of Σ1. When both wave packets are rescattered and leave the interaction region
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Figure 5.9.: Landau–Zener–Stückelberg approximation (solid and dotted-red line) and
Tully surface-hopping charge transfer probability (dashed-blue) for a head-
on collision of Si3+ and He as a function of initial relative momentum and
kinetic energy in the center of mass frame.

at 𝑡 = 𝑡∞ the charge-transfer probability is determined by
∫︀∞
0

|𝜒1(𝑅, 𝑡∞)|2 d𝑅.
The integration of the TDSE is done within the diabatic representation using the
so-called split-operator method. The propagator is approximated by

𝑒−𝑖𝐻Δ𝑡 ≈ 𝑒−𝑖𝑇/2Δ𝑡 · 𝑒−𝑖𝐸̂Δ𝑡 · 𝑒−𝑖𝑇/2Δ𝑡, (5.52)

with an error of the order of 𝒪(∆𝑡3). The three evolution steps in eq. 5.52 are suc-
cessively applied to the nuclear wave packets with Fourier transforms in between
to switch from real space to momentum space and vice versa.
The full quantum solution for charge transfer probability of the Si3+ + He scat-
tering almost perfectly matches the Landau–Zener results (fig. 5.11 (a)). Not only
the overall behavior is equal but also the phase and frequency of the Stückelberg
oscillations at higher momenta agree. This is quite remarkable and shows the
accuracy of the Landau–Zener approximation. For small momenta, however, the
Stückelberg oscillations vanish due to averaging. The initial width of the wave
packet in momentum space ∆𝑃init is chosen to be constant independent of the ini-
tial momentum 𝑃init. This leads to a large relative width ∆𝑃init/𝑃init for small
momenta and, therefore, to a “smearing” of the Stückelberg oscillations. Better
resolution at low momenta can be reached by refining ∆𝑃init with decreasing 𝑃init.
This leads, however, to large widths of the wave packet in real space and, therefore,
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Figure 5.10.: Schematic illustration of the wave packet propagation on two coupled
potential energy surfaces. (a) A normalized wave packet 𝜒2 is initialized
at 𝑡 = 𝑡0 on the PES of Σ2 with a momentum pointing towards the origin.
(b) After rescattering and the double passage of the avoided crossing
at 𝑡 = 𝑡∞ the wave packet has split and probability density has been
transferred to 𝜒1 on the PES of Σ1. The charge transfer probability is
then given by

∫︀∞
0

|𝜒1(𝑅, 𝑡∞)|2 𝑑𝑅.

to large calculation boxes and considerably longer computing times.
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Figure 5.11.: Full-quantum solution of the charge transfer probability in a head-on col-
lision of Si3+ and He as a function of initial relative momentum and ki-
netic energy in the center of mass frame compared to (a) results of the
Landau–Zener–Stückelberg approximation and (b) to results of the Tully
surface-hopping algorithm.

5.5. Si3+ + He charge-transfer cross section

In this section we compare the total charge-transfer cross section 𝜎tot for the Si3+ +
He scattering from our time-domain calculations with experimental data as well as
other theoretical works using different approaches to solve the scattering problem.
Rabli et al. [124] used a one-electron model Hamiltonian to determine the PES of
Σ1 and Σ2 as well as the non-adiabatic coupling between them. Stancil et al. [123]
calculated ab-initio CASSCF wave functions and included in total five electronic
states in their dynamics calculation. The three additional states correspond, for
large inter nuclear distances, to excitations of the Si3+/Si2+ ion. In both works 𝜎tot
is determined by using a partial wave expansion of the nuclear wave function and
subsequent solution of the stationary coupled radial equations [145] from which the
scattering matrix and the cross section can be derived. For a spherical symmetric
scattering potential potential this is, indeed, a very effective way of solving the
inelastic scattering problem. As soon as this symmetry is broken, as, for example,
in the scattering of a projectile from a crystal surface, many partial waves couple
with each other making this approach inefficient.
The total cross section of Rabli et al. and Stancil et al. (fig. 5.12 (a)) show equivalent
shapes as a function of the collision energy 𝐸col. In the low-energy limit 𝜎tot features
the orbiting singularity since even for zero velocity the two particles approach each
other due to the polarization of the He atom by the Si3+ ion leading to the orbiting
singularity. The He atom cannot escape the Si3+ ion and the system runs through
the avoided crossing infinitely many times. This leads to a probability of 1 for charge
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transfer independent of the initial position, i.e., impact parameter and, therefore,
to a diverging cross section. In the high energy limit the system is in the diabatic
regime. The non-adiabatic coupling is so effective, that the dynamics is governed by
a single, diabatic PES suppressing charge transfer and leading to a vanishing cross
section. The maximum at intermediate energies lies near the Massey maximum
(see, e.g., fig. 5.4). Although there are some deviations between the data of Rabli
and Stancil they do, in general, agree well. The discrepancies between the two
theoretical cross sections are not due to the influence of higher excited states in the
calculation of Stancil but must be due to differences in the PES and the couplings
used. An analysis of partial, state-specific cross sections by Stancil [123] shows that
states with an excited Si ion contribute less than 0.6% to the total cross section
in the energy range shown. We also perform calculations with two and five states
leading to almost the same result. Interestingly, the experimental data seem to
split into two groups. The two data points for the lowest collision energy lie almost
exactly on the cross section of Rabli while the other points almost perfectly agree
with the cross section of Stancil. This match, however, is fortuitous since both
curves lie well within the experimental error bars and, as discussed above, can not
be explained by the opening of additional channels.

Figure 5.12.: (a) Total charge transfer cross section for the reaction Si3+ + He → Si2+

+ He+ calculated with nuclear-wave packet propagation, Tully surface
hopping (TSH), and the Landau–Zener–Stückelberg (LZS) approximation.
The collision energy is given in the center-of-mass frame. Black dots are
experimental data [125] and lines are partial-wave calculations by Stancil
et al. [123] and Rabli et al. [124]. (b) Sketch of the initial scattering
geometry in the lab frame with the impact parameter b.

We calculate 𝜎tot using the Landau–Zener approximation, Tully’s surface hopping
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approach, and wave packet propagation. The total cross section is given by [146]

𝜎tot(𝐸col) = 2𝜋

∫︁ ∞

0

𝑏 𝑓(𝑏, 𝐸col)𝑑𝑏, (5.53)

where 𝑓(𝑏, 𝐸col) is the charge transfer probability for a given impact parameter 𝑏
(fig. 5.12 (b)) and a given collision energy. The Landau–Zener solution is deter-
mined “semi-analytically”: for simplicity, we approximate the trajectories of Si3+

(fig. 5.12 (b)) by straight lines with constant velocities which leads to an analytic
expression of the integral in eq. 5.53 (see appendix A.5). We calculate 𝜎tot by solving
this integral numerically for several collision energies. The “straight-line approxi-
mation” is not suitable for describing the low energy part of the cross section since
orbiting is neglected. For collision energies above 0.1 eV/amu there is, however,
good agreement of the LZS approximation with other methods (fig. 5.12 (a)). This
shows what a powerful tool the LZS approximation is since the application of Tully-
surface hopping and wave packet propagation is much more involved: in order to
calculate 𝑓(𝑏, 𝐸col) we apply a two-dimensional (𝑅𝑥,𝑅𝑦) version of Tully’s surface
hopping approach and the wave packet propagation with radial symmetric PES
and non-adiabatic coupling vector (figs. 5.2). For every value of 𝐸col we calculate
𝑓(𝑏, 𝐸col) on a grid of b values with a spacing of ∆𝑏 = 0.0625 a.u. For each set of
initial conditions we start 2000 trajectories in the Tully surface hopping approach
and one wave packet for a full quantum solution.
Results of all methods agree rather well with the data of Rabli (fig. 5.12 (a)), are
essentially independent of the number of electronic states included, and lie within
the error bars of experiment. This confirms the accuracy of all time domain solu-
tions presented in this chapter and justifies their application to charge-transfer. We
do not calculate data for low initial momenta since the impact-parameter method
(fig. 5.12 (b)) as well as the time-domain approach are not suitable in this energy
range. One would have to include infinitely large impact parameters and propagate
an infinitely long time to describe the diverging part of the total-cross section for
𝐸col → 0.



6. Charge transfer between a
proton and a lithium-fluoride
surface

Non-adiabatic effects play an important role in particle-surface interaction, for ex-
ample, in chemical reactions at surfaces (see, e.g., [147]). The theoretical description
of non-adiabatic effects in this context is, however, difficult due to the large number
of coupled nuclear and electronic degrees of freedom involved. There are several ad-
vanced studies based on ab-initio potential energy surface that account for excited
states in an approximate fashion (see, e.g., [147] and references in there). For metal
surfaces the effect of excited electronic states is often included as a friction term
for the nuclear motion [148–151]. In photodesorption of molecules from insulating
surfaces [28, 30, 152] the nuclear wave packet is propagated on excited states for
an average lifetime 𝜏 that is used as a fit parameter to match experimental data.
In this chapter we present a study on particle-surface interaction that incorporates
the non-adiabatic coupling on an ab-initio level. To this end we focus on the pro-
totypical non-adiabatic effect of charge transfer in ion-surface collisions.
Resonant charge transfer and Auger-type processes (fig. 6.1) are the two basic mech-
anisms for charge transfer. The former refers to the transition of a single electron
between the continuous band of a solid and a discrete level of the projectile which
are close in energy (fig. 6.1 (a)). In Auger processes the charge-transfer levels are
out of resonance and energy conservation is enforced by the accompanied by the
energy transfer to an additional surface electron. In the Auger neutralization of
a singly charged projectile in front of a metal surface (fig. 6.1 (b)) an electron is
transferred to a deep projectile level accompanied by the ejection of a conduction
band electron.
Charge transfer processes were understood first for metal surfaces [153–155] and
there is a large amount of literature on experimental and theoretical studies on
various combinations of projectiles and surfaces. Extensive lists of literature can
be found in [156, 157]. Initially, charge transfer was described using jellium-type
models of the surface which facilitated calculations by conserving, together with the
projectile, cylindrical symmetry (see, e.g., [155, 158–162]). Neglect of the atom-
istic surface structure, however, lead to failures of the jellium models [163, 164]
and called for more accurate DFT and TD-DFT approaches (see, e.g., [165–168]).



120

Figure 6.1.: Schematic of two basic charge transfer mechanisms: (a) resonant and (b)
Auger-type charge transfer between a surface and a projectile. 𝐸𝐹 denotes
the Fermi energy and 𝑊 is the work function.

While these methods are mainly applied to resonant charge transfer, also for Auger
processes models beyond the jellium approximation are available [157].
Studies of charge transfer near insulating surfaces are much more scarce (see, e.g.,
[156, 169, 170]) probably due to the fact that, initially, the charge transfer from
insulators was thought to be rather inefficient due to the tightly bound valence
electrons, narrow band widths, and large work functions. This was proven wrong,
however, when in grazing scattering experiments by Winter and co-workers [13, 14]
charge transfer probabilities of close to unity were observed for O and F atoms
scattered off alkali-halide surfaces. This finding triggered many theoretical stud-
ies most of which involve the embedded cluster approach based on the notion of
the valence electron being tightly bound to the anions in alkali-halide crystals and,
therefore, the charge transfer being a very local process involving the projectile and
a single surface anion only.
Souda et al. [171, 172] studied neutralization and negative ion conversion of H+,
H, and He projectiles scattered from LiF and LiCl. They investigated HF single-
particle energy level diagrams of molecular orbitals in embedded clusters containing
up to 9 anions. Goldberg et al. [173, 174] investigated the negative-ion conversion
of H+ during large-angle scattering at a LiF surface in the framework of the time-
dependent Anderson Hamiltonian. Parameters for this model Hamiltonian were de-
duced from HF calculations of small embedded clusters. Zeijlmans van Emmichoven
et al. [175] studied the negative-ion conversion and subsequent electron emission
during grazing-incidence scattering of protons at an LiF surface. They investigated
energy-level diagrams of molecular orbitals of the H + F− system in a crystalline
environment from which they constructed diabatic and adiabatic potential-energy
surfaces. Borisov et al. performed HF calculations for the negative-ion conversion
of F0 during grazing incidence on LiF and MgO surfaces. They used small embed-
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ded surface clusters with one [14, 176] and two [177, 178] negative ions as electron
donor and constructed diabatic PESs and coupling-matrix elements from calcula-
tions of atomic-like states. Also Darling et al. [179, 180] studied the negative ion
conversion of F0 scattered off LiF and KI under a grazing angle of incidence. They
constructed PESs using a semi-empirical valence bond method developed for gas-
phase studies of alkali-metals scattered off halides. The charge transfer dynamics
was determined in a two-dimensional nuclear wave packet propagation. Wirtz et
al. [16, 181, 182] were the first ones to conduct a detailed study of ab-initio PESs of
various projectiles in front of embedded LiF surface clusters of various sizes. They
applied high-level quantum chemistry methods to investigate the level ordering,
i.e., the relative position of valence band and projectile level involved in the charge
transfer.
We first present in this chapter an extension of the work of Wirtz et al. in terms of
the accuracy of quantum-chemistry methods and active cluster sizes. Most impor-
tantly, we perform full quantum as well as semi-classical charge transfer dynamics
simulations of projectiles rescattered from the embedded surface clusters. This
provides a fully ab-initio treatment of the charge transfer process which is, to our
knowledge, missing so far. We focus on the (100) surface of LiF since it is the
experimentally most studied insulating material, and, LiF is the alkali-halide with
the smallest possible ionic constituents. It allows for larger cluster sizes than other
insulating crystals. Further, we focus on resonant charge transfer rendering the
proton H+ the optimal projectile since its H(1s) capture level lies approximately in
the center of the LiF valence band.
The chapter is organized as follows. In sec. 6.1 we discuss the electronic structure
of the combined system LiF + H+, the effect of applying the embedded cluster
approach to particle surface scattering, and give details on quantum-chemistry cal-
culations. The work function of the LiF clusters is a crucial figure of merit for
the reliability of the embedded cluster calculations since it determines the position
of the LiF valence band and, therefore, shows if the resonance condition between
valence band and capture level is met. We investigate the work function of various
embedded clusters in sec. 6.2 and test its dependence on parameters such as cluster
and basis set size. In sec. 6.3 we perform one- and three-dimensional charge-transfer
dynamics simulations of a proton rescattered from an embedded Li5F1 surface clus-
ter and study the characteristics of the PESs involved in the charge transfer. This
study is extended to larger clusters containing up to 14 F− ions in up to three sur-
face layers in sections 6.4 and 6.5 where we also compare our results on the charge
transfer with preliminary experimental data.
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6.1. Setting up the calculation: electronic

structure of LiF+H+ and the embedded

cluster approach

The valence band, formed by the F(2p) orbitals, and the conduction band, formed
by the Li(2s) orbitals, of pristine LiF are schematically depicted in fig. 6.2 (a).
The top of the valence band lies approximately 12 eV below the vacuum level [183]
corresponding to a work function, WLiF, of 12 eV. The width of the valence band
is approximately 3.5 eV [184]. LiF has a band gap of 14.2 eV [43] rendering the
bottom of the conduction band to lie at about 2.2 eV above vacuum. The electronic
ground state H(1s) level of the projectile (fig. 6.2 (b)) is located at an energy of
-13.6 eV approximately in the center of the LiF valence band. Upon motion of the
H+ ion towards the surface quasi-resonant electron transfer from the valence band
to the H(1s) capture level is likely to occur. We term the process quasi-resonant
because the H(1s) level is subject to an upward level shift upon approaching the
surface due to the image charge interaction [171]. This shift dynamically changes
the relative position of the H(1s) and the valence band levels as a function of the
distance between projectile and surface.
In this work we exclusively treat the electron transfer from the valence band to
the H(1s) level. Only these states are included in the CAS of our calculations.
We neglect the influence of the conduction band and the H(2s) level which are
energetically well separated from the valence band by more than 10 eV. This is
only approximately valid because the kinetic energies of the H+ projectile used in
our simulations are larger than 10 eV and make the conduction band and the H(2s)
level in principle accessible. In view of the weaker coupling due to this energy
gap, they are neglected. Furthermore, due to the quickly increasing sizes of the
complete-active spaces we are limited to very small cluster sizes when including
these higher lying energy levels and neglect them also for computational reasons.
In the outlook (chap. 7) we briefly discuss effects such as the electronic stopping
power of ions and atoms in LiF as well as Auger neutralization processes where
excitations to these levels are explicitly needed.
Employing the embedded-cluster approach (ECA) implies the approximation of
the continuous valence band in LiF by a discrete set of F(2p) levels (to be more
precise, molecular orbitals formed by linear combinations of F(2p) orbitals). Their
number equals three times the number of F− ions in the embedded cluster. This
discretization is schematically depicted in fig. 6.3 (a) for large distances between
surface and projectile. The H(1s) level is separated from the top of the valence band
by approximately WH−WLiF =1.6 eV, the difference in energy between the H(1s)
binding energy and the LiF work function. Converting this single-particle picture
into a total-energy picture yields fig. 6.3 (b). In the initial state of our system,
the H+ ion approaching the LiF surface, the valence band levels are fully occupied
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Figure 6.2.: Schematic picture of the electronic structure of (a) bulk lithium fluoride
and (b) an isolated H+ ion. WLiF ≈12 eV is the work function of bulk
LiF, the minimum energy needed to remove an electron from an LiF crys-
tal. W𝐻 =13.6 eV is the (negative) energy of the H(1s) level which lies
approximately in the center of the LiF valence band.

while the H(1s) level is empty. This configuration, however, is not the electronic
ground state E1 of the combined system, i.e., it does not correspond to the lowest
eigenvalue of the electronic Hamiltonian of the embedded cluster. The ground
state is realized by the configuration in which the the H(1s) level is occupied by
one electron, taken out of the topmost level of the valence band. Likewise one can
think of a hole transferred from H(1s) to the topmost valence-band level. Pushing
the hole downwards in energy in panel (a) successively leads to the higher excited
states and allows for building up the energy spectrum of total energies E𝑗 in panel
(b).
In doing so we can deduce the following rules for the number and the configurations
of the electronic states entering in our calculations. When the valence band is
discretized by N F(2p) levels then the number of electronic states to be taken
into account is N+1. For large distances between projectile and surface, N of these
states correspond to the configuration (LiF)++H, denoted as (asymptotic) covalent
states in the following, and one corresponds to the configuration LiF+H+ (E4 in
fig. 6.3 (b)), denoted in the following as the (asymptotic) ionic state. The latter
serves as initial state in our dynamics calculations. Furthermore, if the embedded
cluster is large enough to reasonably sample the valence band of LiF then the energy
difference ∆𝐸g-ion between the ionic state and the electronic ground state E1 (fig.
6.3 (b)) is approximately 1.6 eV, again for a large distance between projectile and
surface. This statement can be reformulated in terms of the work function. Since
WH−WLiF =1.6 eV and WH is independent of the cluster size WLiF is the only
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quantity determining the energy difference between the LiF+H+ state and E1. In
the following section we study the convergence of WLiF with cluster size.

Figure 6.3.: Schematic picture of (a) the discretization of the LiF valence band (blue
shaded area) by single particle F(2p) levels when applying the embedded
cluster approach and (b) total energy spectrum of the embedded LiF +
H+ cluster. The electronic ground state of the cluster at large distances
between LiF surface and projectile corresponds to the configuration (LiF)+

+ H in which the H(1s) level is occupied by an electron taken out from the
single particle level denoted by VB-1 localized at the LiF surface. Pushing
the hole further down in the single particle picture (a) gives rise to the
total energy spectrum in (b). If the embedded cluster is large enough to
reliably sample the (top of the) LiF valence band the total energy difference
∆𝐸𝑔 − 𝑖𝑜𝑛 between electronic ground and the ionic (LiF + H+) state
equals WH−WLiF =1.6 eV.

6.2. Convergence of the electronic structure of

embedded LiF clusters

Crucial for an accurate description of the charge transfer is the relative position in
energy of valence band and the H(1s) level. Since the H(1s) level is independent of
the LiF-cluster size and correctly reproduced on the independent-particle level we
focus in this section on the valence band and investigate in detail the dependence of
its properties on cluster size, quantum-chemical method, basis-set size, embedding,
and symmetry. The valence band is determined by two parameters: its width and
the work function WLiF (fig. 6.2). In photo-emission experiments [183] the work
function of evaporated LiF films is found to be WLiF=11.8±0.3 eV and the experi-
mental band width [184] is ≈3.5 eV.
Wirtz and co-workers used embedded clusters completely surrounded by point
charges to model the bulk electronic structure. The band width was estimated
[16, 182] as the difference between the HF-orbital energies of the highest occupied
(HO) and the lowest occupied (LO) F(2p) orbital of the active embedded cluster,
𝜖HO[F(2p)] − 𝜖LO[F(2p)], (fig. 6.4 (a)). The band width increases with cluster size and
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extrapolation to an infinite number of active F− ions leads to 𝜖HO[F(2p)]−𝜖LO[F(2p)] ≈
3.46 eV in good agreement with experiment (fig. 6.4 (b)). For a number of ∼15
active F− ions, approximately the cluster size we use in the following section for
the calculation of the charge transfer, the band width is of the order of 2 eV which
is considerably smaller than in experiment but large enough such that the H(1s)
level lies within the valence band (fig. 6.3).

Figure 6.4.: Picture taken from [181]. (a) Hartree–Fock single particle energies of the
highest and lowest (occupied) F(2p) like orbitals in embedded clusters of
various sizes. The x-axis denotes the number of active F− ions. Active
clusters are completely surrounded by point charges to approximate the
Madelung potential in bulk LiF. (b) “Valence band width” of embedded
clusters extrapolated to infinite cluster size. The width is approximated
by the energy difference between highest and lowest (occupied) F(2p) like
orbitals.

Wirtz and co-workers also studied WLiF and its dependence on several parameters
entering the quantum-chemical calculation. Due to the lack of computing power
they were, however, restricted in the choice of the quantum-chemistry methods
and limited to small basis sets and cluster sizes. We extend this previous study to
larger basis sets and clusters and, most importantly, to more accurate quantum-
chemistry methods. We determine WLiF for the (100) surface of LiF that we also
use in the calculation of the charge transfer. We split the study into two parts,
the first part (sec. 6.2.1) discusses the change of WLiF with cluster size and the
quantum-chemistry method used. In the second part (sec. 6.2.2), we investigate
the dependence of WLiF on basis set size, embedding, cluster shape and symmetry.
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6.2.1. Dependence of WLiF on quantum-chemistry method
and cluster size

Throughout this section we use the basis set consisting of the DZ basis [185] for
the Li+ ions and the cc-pVTZ basis [61] for the F− ions. The latter is a quite
large basis set leading typically to reliable results (see chaps. 3 and 4) while the
DZ basis set for the lithiums is rather small. It is chosen as a compromise as larger
basis sets limit the feasible cluster size. Further the influence of the basis set on
the lithiums on WLiF is smaller than the one of the F− basis since only the core
orbitals of Li+ are occupied which only weakly contribute to the screening of the
hole. We use clusters with various sizes and shapes (fig. 6.5) comprising clusters
with active F− ions only in the first layer of the surface (fig. 6.5 (a)) up to clusters
with active F− ions in the first three layers (fig. 6.5 (c)). The notation in following
is Li𝐴F𝐵 F𝐶 F𝐷, where A denotes the number of active Li+ ions and B, C, and
D denote the number of active F− ions in the first (B), second (C), and third (D)
surface layer, respectively. All clusters are constructed such that all active F− ions
are surrounded by active Li+ ions and not by an embedding point charge to avoid
artificial polarization due to the lack of the Pauli repulsion. All clusters are embed-
ded in a matrix of point charges large enough to converge WLiF to an accuracy of
better than 0.01 eV. Further, all clusters have a four-fold rotation symmetry (𝐶4𝑣)
around the symmetry axis (the surface normal) going through the central F− ion
of the topmost surface layer. Since Molcas, however, does not support the 𝐶4𝑣

point-group symmetry all calculations are done within 𝐶2𝑣.
The simplest estimate for WLiF are the HF single-particle energies of the HOMO,
𝜖HOMO, of the embedded clusters since they can be associated with the ionization po-
tential via Koopmans’ theorem. We find quite similar results as Wirtz (fig. 6.4 (a)).
𝜖HOMO varies only slightly with cluster size from, e.g., 𝜖HOMO(Li17F5) = −14.53 eV
to 𝜖HOMO(Li65F21 F12) = −14.35 eV. Koopmans’ theorem neglects the relaxation
of orbitals due to the missing electron, i.e., polarization effects. Performing two
separate calculations for the neutral (LiF) and the singly charged surface (LiF)+

allows for inclusion of polarization. The difference of the total energies of the two
surface configurations is then the work function 𝑊HF

LiF = 𝐸HF(𝐿𝑖𝐹 ) − 𝐸HF(LiF+).
Unfortunately, there is some arbitrariness in the calculation of 𝐸HF(𝐿𝑖𝐹 )+ due to a
numerical difficulty: the shape of the hole orbital strongly and somewhat randomly
depends on the shape of the active cluster. For strongly localized hole orbitals the
polarization reduces the work function by ∼3 eV while for more weakly localized
hole orbitals the polarization contributions are below 0.5 eV (fig. 6.6). Paren-
thetically we note that this is independent from whether an ROHF or an UHF
calculation is performed.
Equivalent to the ROHF calculation is the MCSCF method in its “standard setup”.
The latter refers to a total-energy difference between the (LiF) and the (LiF)+

configuration for both of which the CAS comprises all F(2p) orbitals of the 𝐴1 ir-
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Figure 6.5.: Active clusters with (a) 9 active F− ions (large-green spheres) in the top-
most surface layer (b) 9 active F− ions in the first and four in the second
layer, and (c) 13 active F− ions in the first, 12 in the second and 5 in the
third surface layers. Lithium ions are depicted by small-red spheres. The
black vertical line denotes the four-fold rotation symmetry axis.

reducible representation. In the neutral configuration all F(2p) orbitals are doubly
occupied rendering the MCSCF an effective closed-shell HF calculation. For the
(LiF)+ configuration there is a single hole in the CAS allowing only for singly ex-
cited determinants in the expansion of the many-electron wave function. According
to Brillouin’s theorem [32], singly excited determinants do not improve the total
energy of the initial ROHF wave function. Optimizing the ground state energy (no
state average is performed) renders this approach an effective ROHF calculation.
Resulting work functions (fig. 6.6 (a)), show strong dependence on the shape of the
hole orbital governed by the cluster size and shape. As function of the number of
active F− orbitals the MCSCF work function WMCSCF

LiF strongly oscillates between
values of 11.5 eV and 14.25 eV.
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Figure 6.6.: MCSCF work functions of embedded clusters as function of cluster size
and arrangement of the active F− ions (a) without performing a state
average (equivalent to ROHF work functions) and (b) with a state average
comprising all possible states in the CAS. Dashed-horizontal lines denote
the range for the experimental LiF work function [183].

These oscillations vanish (fig. 6.6 (b)) when in the calculation of the total en-
ergy of the singly charged active cluster, 𝐸MCSCF-avg(LiF+), a state average is per-
formed that includes all possible excited states in the CAS. For N orbitals in the
CAS, there are N possible electronic states the energetically lowest of which is
𝐸MCSCF-avg(LiF+). Performing a state average might seem counterintuitive since
calculation of the work function typically requires the optimal, i.e., energetically
lowest many-electron wave function. However, for the LiF + H+ charge transfer
problem we need to determine excited states including a state average. Therefore,
we also perform the state average in the calculation of WLiF since we want both
calculations (with and without H+) to be compatible. In calculations with H+ the
work function is given by 13.6 eV −∆𝐸g-ion (fig. 6.3 (b)). 13.6 eV is the energy of the

H(1s) level. The MCSCF work function including the state average WMCSCF-avg
LiF =

𝐸MCSCF-avg(𝐿𝑖𝐹 )−𝐸MCSCF-avg(LiF+) = 𝐸HF(𝐿𝑖𝐹 )−𝐸MCSCF-avg(LiF+) (fig. 6.6 (b))
does not oscillate and it follows a quite clear trend as a function of the number of
active F− ions. After reaching a maximum of 14.31 eV, WMCSCF-avg

LiF very slowly
decreases with increasing number of active F− ions. This decrease is physically
reasonable since larger clusters lead to a better screening of the hole and, there-
fore, to a reduction of WMCSCF-avg

LiF . For the cluster sizes used, WMCSCF-avg
LiF is more

than 2 eV higher than the experimental value and its slow decay with cluster size
suggests that also for very large clusters W𝑒𝑥𝑝

LiF cannot be reached. This makes the
MCSCF-avg unreliable for the LiF + H+ charge transfer since it de-tunes the LiF-
VB and the H(1s) level such that they are out of resonance by ∼0.7 eV.
Including dynamic correlation corrects for this shortcoming. CASPT2 reduces
WMCSCF

LiF substantially (fig. 6.7) bringing it close to the experimental value. Since
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CASPT2 is based on the MCSCF wave functions the oscillations in WMCSCF
LiF are

also present in the CASPT2 work function WCASPT2
LiF (fig. 6.7 (a)). Their value

(12 ≤ 𝑊CASPT2
LiF ≤ 13.5), however, is smaller than in the MCSCF case. With the

state averaged MCSCF wave functions we apply MS-CASPT2 and determine the
work function WMS-CASPT2

LiF which again shows no oscillations (fig. 6.7 (b)). It decays
monotonically with the number of active F− ions and, for a large number of clusters,
lies within the experimental error bars. Further, it hardly depends on the cluster
shape since clusters with the same number of active F− ions arranged in different
ways give almost exactly the same MS-CASPT2 work function. The monotonic
decay of WMS-CASPT2

LiF suggests that it is not yet converged. With increase of the
number of active F− ions, WMS-CASPT2

LiF drops further and seems to converge at a
value below the experimental data range. We estimate WMS-CASPT2

LiF for an infinite
number of active F− ions to lie between 10.2 eV and 10.8 eV (appendix A.7). There
are, however, mechanisms possibly explaining this behavior. First, it is well known
that perturbation theory of second order, such as MP2, overestimates the effect of
dynamic correlations [33] and that higher orders typically correct for this error. In
terms of our problem the effect of dynamic correlation is a reduction of the work
function by 𝑊MCSCF-avg

LiF −𝑊MS-CASPT2
LiF ≈ 3 eV. Therefore, higher order perturba-

tion theory lead to higher values of WMS-CASPT2
LiF as Wirtz found [181] using MP3.

Second, as we show in the following, basis sets, the embedding, cluster shape, and
symmetry constraints also influence WMS-CASPT2

LiF .

Figure 6.7.: MS-CASPT2 work functions of embedded clusters as function of cluster
size and arrangement of the active F− ions (a) without performing a state
average in the preceding MCSCF and (b) with a state average in the MCSCF
comprising all possible states in the CAS. Dashed-horizontal lines denote
the range for the experimental LiF work function [183].

Completely converged calculations with respect to cluster size and correlation en-
ergy are computationally not feasible. The MS-CASPT2 protocol described above,
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however, leads to cluster realizations of the system with WMS-CASPT2
LiF within the

error bars of the experiment and with a realistic level ordering of the LiF valence
band and the H(1s) level. Therefore we expect these clusters to give a realistic de-
scription of the LiF + H+ charge transfer and we apply this protocol in section 6.4
to determine the PES of the combined system entering the dynamics calculations.

6.2.2. Dependence of WMS-CASPT2
LiF on basis-set size,

embedding, cluster shape, and symmetry

For the sake of completeness we very briefly study the dependence of WMS-CASPT2
LiF

on the parameters kept constant in the previous section: basis set size, embedding,
cluster shape, and symmetry constraints. To this end we focus on the Li29F9 F4

cluster (fig. 6.5 (b)) with WMS-CASPT2
LiF = 11.98 eV obtained with pure point charge

embedding and the basis sets DZ for the lithium ions and cc-pVTZ for the fluoride
ions. Changing the Li basis set from DZ to cc-pVDZ shifts WMS-CASPT2

LiF upwards
by 0.12 eV. Similarly, the larger cc-pVQZ (and, equally, the aug-cc-pVTZ) basis
set for the F− ions increase WMS-CASPT2

LiF by 0.15 eV. Surrounding the active cluster
with two layers of AIMPs (plus the point charge matrix) has the opposite effect
lowering WMS-CASPT2

LiF by 0.25 eV.
As discussed above, WMS-CASPT2

LiF only depends on the number of active F− ions
not on their arrangement (fig. 6.7 (b)). All clusters used in the above study have
an active F− ion in the very center of the topmost surface layer. We check if the
structure independence also holds for clusters hosting an Li+ ion in the surface
center by inverting the Li29F9 F4 cluster, i.e., by exchanging Li+ by F− and vice
versa. This swap, however, calls for slight rearrangement of the Li+ ions since we
still want to make sure that no F− ion is located at the border of the active cluster
leading to a Li34F4 F9 cluster with WMS-CASPT2

LiF = 12.16 eV (basis sets: Li: DZ;
F: cc-pVTZ; embedding: point charges only) only 0.18 eV larger than the work
function of the Li29F9 F4 cluster.
All calculations described above used the 𝐶2𝑣 symmetry and a CAS comprising
only F(2p) orbitals of the 𝐴1 irreducible representation. By lifting all symmetry
constraints we can create a CAS using all F(2p) orbitals. Unfortunately, this leads
to a strong increase of the number of active electrons which restricts this approach
to quite small cluster sizes. Without any symmetry constraints we find for the
Li17F5 cluster (basis sets: Li: DZ; F: cc-pVTZ; embedding: point charges only)
WMS-CASPT2

LiF = 12.41 eV which is 0.23 eV lower than the high-symmetry 𝐶2𝑣 result.

6.3. The embedded Li5F1 cluster

Before studying the potential energy surfaces of large LiF + H+ embedded clusters
with a complex electronic structure we focus on the small Li5F1 + H+ cluster
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depicted in fig. 6.8 (a). It consists of five Li+ ions surrounding a single F− ion and
the H+ projectile at a distance of 𝑅𝑧 above the LiF surface (the 𝑅𝑥−𝑅𝑦 plane). The
F− ion features three F(2p) orbitals giving rise, together with the H(1s) orbital,
to four electronic states (three covalent states and one ionic state) to enter the
charge-exchange calculation. Despite this small number of states involved, their
PES already show characteristic features also found for larger clusters. This fact
supports the assumption that the charge transfer is a very local process. Studying
these features in this simple system allows for better understanding of the main
mechanisms involved in the charge transfer. In sec. 6.3.1 we specify details of the
calculation of the electronic structure and analyze the PES of the Li5F1 + H+

cluster. Details of the motion of the projectile and the calculation of the charge-
transfer probability are discussed in sections 6.3.2 and 6.3.3.

Figure 6.8.: Li5F1 + H+ surface cluster (a) without and (b) with point-charge matrix.

6.3.1. Potential energy surfaces of Li5F1

Fig. 6.8 (b) shows the active Li5F1 cluster embedded into a matrix of 962 singly-
charged positive and negative point charges. The projectile is placed at 𝑅𝑧 =
10.0 a.u. above the surface. For both, active cluster and embedding matrix, the
experimental anion-cation distance (3.81 a.u.) of pristine LiF is used. The point-
charge matrix accounts for the Madelung potential within the active-cluster region
with an accuracy better than 10−2 eV and enforces charge neutrality of the unper-
turbed surface.
The PESs of the active Li5F1 + H+ cluster are determined by consecutive Hartree–

Fock, CASSCF and MRCI-SD calculations using the DZ basis set. HF delivers
the starting molecular orbitals for the CASSCF. The complete-active space com-
prises six valence electrons in four HF energy levels corresponding, for large 𝑅𝑧, to
the three F(2p) and the H(1s) leading to 10 configurations in the CAS. With the
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Figure 6.9.: MRCI-SD potential energy surfaces of the embedded Li5F1 + H+ cluster as
function of 𝑅𝑥 and 𝑅𝑧 (see fig. 6.8), Cartesian coordinates of the projectile
nucleus parallel and perpendicular to the LiF surface, respectively.

CASSCF we produce a new set of orbitals emerging from a state-average calculation
comprising the four energetically lowest total energies. Since HF as well as CASSCF
lead to a wrong level ordering, both find the electronic ground state configuration
LiF + H+, we need to apply the MRCI-SD method. Parenthetically we note that
MS-CASPT2 leads to almost equivalent results as MRCI-SD for this combination
of basis set and cluster size. Using the CAS as reference space leads to a total
of 8200 Slater determinants as basis for the total electronic wave functions. The
MRCI-SD leads, for large 𝑅𝑧, to a (LiF)+ + H ground state in agreement with the
experimental electronic structure (sec. 6.1). Also the energy spacing between the
ground state and the ionic state of 1.1 eV (fig. 6.10 (a)) is in fair agreement with the
experimental value of 1.6 eV. We stress, however, that this agreement is fortuitous
due to the choice of the relatively small basis set. The active cluster used cannot
account for (long range) polarization effects giving rise to an incomplete screening
of an electron hole in the surface. This, in return, leads to an overestimation of the
work function and, therefore, a de-tuning of the valence band and the H(1s) level
(see fig. 6.2). By using a small basis set we artificially decrease the work function to
almost the experimental value leading to a correct level ordering and a reasonable
energy spacing between ground and ionic state. This ad-hoc procedure is justified a
posteriori by the fact that, with the basis set used, the small Li5F1 cluster already
shows the key features of the charge transfer also seen in calculations using larger
basis sets and clusters.
A further approximation used throughout this work is the frozen-surface approx-
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imation. We do not include the motion of the surface atoms but only consider
the movement of the projectile along its three Cartesian coordinates 𝑅⃗. Fig. 6.9
shows a two-dimensional cut through the three-dimensional adiabatic PESs of three
electronic states along 𝑅𝑧. In fact we calculate four electronic states, for better vis-
ibility, however, only three of them are plotted. A one-dimensional cut along 𝑅𝑧 is
plotted in fig. 6.10, with 𝑅𝑥 = 𝑅𝑦 = 0, the projectile located at a high-symmetry
point exactly above the active F− ion. Panel (a) shows the PESs of the four elec-
tronic states and panel (b) shows the corresponding projectile charge. Due to the
high symmetry two of the four PESs are degenerate leading to only three visible
lines in panel (a) and (b). The origin of the degeneracy becomes clear when study-
ing the configurations underlying the four PESs at large 𝑅𝑧. In all four electronic
states there is a single hole which is either located at the projectile (LiF + H+,
ionic state) or in the 2p orbitals of the 𝐹− ion ((LiF)+ + H, covalent states). In the
ground state the hole is in the F(2p𝑧) orbital pointing out of the surface towards
the projectile. In the ionic state the hole sits at the projectile in the H(1s) level.
The two degenerate covalent states are characterized by the hole being located in
two linear combinations of the F(2p𝑥) and F(2p𝑦) orbitals both of which lie in the

surface plane. Panel (c) shows 𝐹
(𝑧)
𝑖𝑗 = ⟨Ψ𝑖|𝜕/𝜕𝑅𝑧 |Ψ𝑗⟩, the z-component of the non-

adiabatic coupling vector 𝐹𝑖𝑗. There is only one non-vanishing coupling element
for the state indices i=1 and j=4 due to symmetry. States 1 and 4 correspond to
the ground and ionic state, respectively. Both states belong to the same irreducible
representation as does the 𝜕/𝜕𝑅𝑧 operator. This is not true for the covalent states
2 and 3 leading to the vanishing of matrix elements ⟨Ψ𝑖|𝜕/𝜕𝑅𝑧 |Ψ𝑗⟩ involving one of
these indices.
The PESs of all states in fig. 6.10 are essentially parallel to each other for 𝑅𝑧 > 7
a.u. At 𝑅𝑧 ≈ 6 a.u. the PESs of the coupled ground and ionic state separate from
each other. 𝑅𝑧 ≈ 6 a.u. is also the position where the projectile charge states indi-
cate the onset of a change of configuration (panel (b)) and where the non-adiabatic
coupling element (panel (c)) has a maximum. This is the typical shape of Rosen–
Zener–Demkov interacting potential-energy surfaces (see chapter 5) for which the
change of configuration as well as the non-adiabatic coupling span over a quite
large region of space. In the present case both range from essentially 𝑅𝑧 = 0 to
𝑅𝑧 ≈ 8 a.u. The diabatic version of these PESs is shown in fig. 6.11. Dynamics
and the charge transfer probability on these PESs will be discussed in detail in
sec. 6.3.2 and sec. 6.3.3 for one-dimensional and three-dimensional motion of the
projectile, respectively.

6.3.2. 1-D dynamics in Li5F1 + H+

In this section we study the charge-transfer dynamics between a proton and the
Li5F1 embedded cluster under the constraint 𝑅𝑥 = 𝑅𝑦 = 0. The projectile is mov-
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Figure 6.10.: One-dimensional cut along 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0) through (a) the MRCI-SD
adiabatic potential energy surfaces and (b) projectile charge states for the
Li5F1 + H+ embedded cluster. (c) Non-adiabatic coupling matrix element
⟨Ψ1|𝜕/𝜕𝑅𝑧 |Ψ4⟩ between the ground state and the ionic state.

ing along the surface normal and remains centered above the active, surface F−

ion. 𝑅𝑧 denotes the distance between the surface and the projectile. For this high-
symmetry geometry the charge transfer is an effective two-state problem defined
by the PESs of the (covalent) ground state, the ionic state in fig. 6.10, and the
coupling between them. Initially the system is prepared in the ionic state (LiF
+ H+) and we determine the probability for electron transfer from the surface to
the projectile, i.e., the neutralization probability of the proton as a function of the
proton’s initial momentum.
In fig. 6.12 (a) we plot results of the Rosen–Zener–Demkov model (for details see
sec. 5.4.1) which agree well with Tully’s surface-hopping approach and the full
quantum solution of the projectile dynamics (fig. 6.12 (b)). Initial conditions in
the Tully surface-hopping calculation and the wave-packet simulation are selected
as follows. In the surface-hopping approach the trajectories of a particle with the
hydrogen mass (the mass of the surface is infinite) are started at 𝑅𝑧 = 14 a.u. on
the PES of the ionic state with the initial momentum pointing towards the surface.
For a given initial momentum 𝑁 = 2500 trajectories are started. The initial kinetic
energy of each individual trajectory is randomly selected from a Gaussian distri-
bution which is centered at the nominal value and has a width of 2.35 eV [186].
The initial amplitudes of the coupled-channel equations are |𝑐1(𝑡 = 0)|2 = 0 and
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Figure 6.11.: One-dimensional cut along 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0) through (a) the diabatic
MRCI-SD potential energy surfaces and (b) projectile charge states for
the Li5F1 + H+ embedded cluster obtained by strict diabatization. (c)
Diabatic coupling element 𝐸̃14 between the ground state and the ionic
state.

|𝑐4(𝑡 = 0)|2 = 1. Upon return of the trajectories to 𝑅𝑧 = 14 a.u. after rescattering
the neutralization probability is given by the ratio 𝑁1/𝑁 where 𝑁1 is the number
of trajectories returning in the covalent ground state. Analogously, the initial wave
packets are set to 𝜒1(𝑅𝑧, 𝑡 = 0) = 0 and 𝜒4(𝑅𝑧, 𝑡 = 0) ∝ 𝑒−𝜅(𝑅𝑧−𝑅init)

2
𝑒𝑖𝑝init(𝑅𝑧−𝑅init),

where 𝑝init is the initial, central momentum towards the surface. 𝜅 is chosen such
that the full-width at half maximum of the wave packet in energy space is 2.35 eV.
After rescattering, i.e., after the wave packets 𝜒1 and 𝜒4 passed 𝑅init on their way
out, the neutralization probability is given by

∫︀∞
−∞ |𝜒1(𝑅𝑧)|2𝑑𝑅𝑧 when the initial

wave packet is normalized.
The agreement between all three methods is quite good. The RZD model slightly
underestimates the neutralization probability but it clearly shows the Rosen–Zener–
Demkov nature of the PESs in fig. 6.10. Also the Stückelberg oscillations are, in
terms of their frequency, in good agreement with the quantum solutions. This, a-
posteriori, justifies the local treatment of the avoided crossing around 𝑅𝑐 = 5.46 a.u.
and shows that the charge transfer indeed occurs in close vicinity around 𝑅𝑐.
Surface-hopping results almost perfectly match the full quantum solution except
for slight deviations in positions and the amplitude the Stückelberg oscillations.
Both effects are due to the approximate coherence in the semi-classical treatment.
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Figure 6.12.: Neutralization probability of H+ rescattered from an Li5F1 embedded clus-
ter, under perpendicular incidence along 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0). Results are
obtained by the Rosen–Zener–Demkov model (solid-red and dashed-black
line), within Tully’s surface-hopping approach (solid-blue line), as well as
in a full quantum wave-packet simulation (solid-pink line).

This result suggests the application of the numerically cheaper surface-hopping ap-
proach to the full three-dimensional treatment of the projectile motion without a
considerable loss of accuracy.

6.3.3. 3-D dynamics in Li5F1 + H+

In this section we determine the neutralization probability of the H+ projectile
using Tully’s surface hopping approach under more realistic conditions. First, the
motion of the projectile is no longer limited to 𝑅𝑧 but all its Cartesian coordinates 𝑅⃗
are taken into account. Second, in experiment the proton beam hitting the surface
covers the entire surface unit cell and, therefore, the neutralization probability is
calculated as an average over the unit cell. To this end we use 2485 initial positions
(𝑅𝑥, 𝑅𝑦) uniformly distributed over the irreducible surface unit cell. For a given
initial energy/momentum and each initial position 2500 trajectories are started at
𝑅𝑧 = 14 a.u. above the surface. Initial energies are Gaussian distributed around
the nominal value with a full-width at half maximum of 2.35 eV. Propagation of
trajectories is stopped when they reach 𝑅𝑧 = 14 a.u. again after being rescattered
from the surface, or, when they penetrate the surface, i.e., when 𝑅𝑧 ≤ 0.0 a.u. The
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last condition reflects the fact that in the interstitial regions the PESs are only
weakly repulsive. In the present work we neglect the dynamics of projectiles be-
low the surface and also neglect their possible rescattering from lower-lying surface
layers. This approximation is justified since in experiment particles reflected from
sub-surface layers can be distinguished from the ones reflected from the topmost
surface layer by their energy loss and their scattering angle (see sec. 6.5.3). Fig.
6.13 shows the fraction of projectiles reflected from the surface and the fraction
of trajectories being reflected as protons, i.e., on the PES of the ionic state. In
our model only 5% of the projectiles are reflected at an initial kinetic energy of
55 eV which is in reasonable agreement with molecular-dynamics simulation (see
appendix A.6) based on binary O’Conner-Biersack potentials [187].

Figure 6.13.: (a) Top view of an LiF surface. The dashed square is the surface unitcell
and the solid triangle the irreducible surface unitcell. Fractions “top F”
and “top Li” within the irreducible surface unitcell indicate areas in the
𝑅𝑥−𝑅𝑦-plane in which trajectories denoted by top F and top Li are started
at 𝑅𝑧 = 14 a.u. (b) Fraction of projectiles reflected from an embedded
Li5F1 surface cluster (perpendicular incidence) irrespective of the charge
state of the reflected projectile (solid-green line). Fraction of projectiles
reflected in the ionic (H+) state (dashed-blue line). Results are obtained
in a three-dimensional Tully-surface hopping propagation of the projectile
and are averaged over initial projectile positions uniformly distributed over
the surface unit cell.

The total neutralization probability (normalized to the number of initial trajecto-
ries) in fig. 6.14 (a) is given by the difference between the total reflection probability
and the ionic reflection probability (fig. 6.13). It shows a maximum at an initial
momentum of ≈90 a.u. (60 eV) formed by two competing processes. With increas-
ing nuclear velocity the neutralization probability rises due to increasing efficiency
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of the avoided crossing. On the other hand, a higher nuclear velocity leads to an
increasing number of trajectories entering the surface and, therefore, to a lowering
of the reflection and the neutralization probability. The ratio of reflected neutral
trajectories to reflected trajectories is the so-called partial neutralization probabil-
ity (fig. 6.14 (b)). It is a steadily increasing function of the initial momentum.
Both neutralization probabilities show modulations at higher momenta which can
be identified as traces of Stückelberg oscillations. Vertical lines in fig. 6.14 indi-
cate the minima of the Tully surface-hopping neutralization probability of the 1-D
dynamics with 𝑅𝑥 = 𝑅𝑦 = 0 (fig. 6.12). They coincide with the minima of the mod-
ulations in the 3-D neutralization probability. This means the 3-D neutralization
probability is governed by trajectories reflected from the surface within a narrow
region around the F− ion. We confirm this by the so-called top F contributions to
the partial neutralization probability (fig. 6.14 (b)). The top-F contributions are
influenced by the number of reflected particles from both F− and Li+ (see appendix
A.8) and must not be interpreted as the neutralization probability of a proton scat-
tered at an “isolated” F− surface ion (neglecting the Li+). Top-F trajectories are
started at 𝑅𝑧 = 14 a.u. within a lateral circle with radius 1 a.u. (𝑅2

𝑥 +𝑅2
𝑦 ≤ 1 a.u.)

around the F− ion (see fig. 6.13 (a)). For momenta larger than 130 a.u. these tra-
jectories account for more than 50% of the partial neutralization probability. For
lower momenta, however, there is a significant top Li contribution from trajectories
started within a radius of 1 a.u. above an Li+ ion. The top Li and top F contribution
together fully account for the partial neutralization probability for momenta larger
than 90 a.u. On first sight the large contribution of the top Li trajectories seems
counterintuitive since the charge transfer obviously occurs between the active F−

ion and the projectile. A comparison of the nearest-neighbor distance (3.81 a.u.)
and the first maximum of the non-adiabatic coupling (𝑅𝑐 = 5.46 a.u.) shows that
even a trajectory started exactly on top of an Li+ ion comes close enough to the
F− ion to pass the avoided crossing at 𝑅𝑐. This, in turn, implies the need of larger
cluster sizes for a more realistic description of the charge transfer. Active clusters
need to be large enough such that a projectile approaching an Li+ ion can interact
with four active surface F− ions.
Another issue to be addressed is the periodicity of the LiF surface. In the model
discussed above we apply periodic boundary conditions which lead, however, to
unphysical situations. Consider the projectile propagating on the ionic PES and
jumping to a covalent PES, i.e., becoming a hydrogen atom. When the hydrogen
atom leaves the surface unit cell it “sees” a neutral F-surface atom in the neighbor-
ing cell to which it can lose its electron again. This leads to an underestimation of
the neutralization probability since, in reality, the hydrogen “transfers” the electron
to the neighboring unit cell leading to the new configuration LiF+H for which a
charge transfer (H− formation) is much less probable. To approximate this effect we
use the following protocol: whenever a projectile leaves the initial surface unit cell
the PES it is moving on is recorded. For the PES of the ionic state (state number
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Figure 6.14.: (a) Total and (b) partial neutralization probability of H+ scattered off
a Li5F1 embedded surface cluster (perpendicular incidence). Results are
obtained in a three-dimensional Tully-surface hopping propagation of the
projectile and are averaged over initial projectile positions uniformly dis-
tributed over the surface unit cell leading to a reflection from an F− ion.
The total neutralization probability is normalized to the number of ini-
tial trajectories, the partial neutralization probability is normalized to the
number of reflected trajectories (solid-green line in fig. 6.13 (b)). Top F
and top Li contributions (see fig. 6.13 (a)) denote trajectories started in
the 𝑅𝑧 = 14 a.u. plane within a circle of radius 1 a.u. around an F− and
an Li+ ion, respectively. Dashed-vertical lines indicate the minima of the
Stückelberg oscillations in the one-dimensional neutralization probability
from fig. 6.12.

4) the periodic boundary conditions hold and the propagation is continued. For
PESs of covalent states (hydrogenic projectile, states 1 to 3) the jump probability is
set to zero for the remaining path of the projectile. This should mimic the reduced
charge transfer probability for the LiF+H configuration. Clearly, this method is
an approximation and is likely to overestimate the neutralization probability since,
first, for small 𝑅𝑧 covalent and ionic states are not distinguishable, and, second,
charge transfer from the projectile to the neutral F atom, after leaving and re-
turning to the inital surface unit cell, is neglected. Therefore, this protocol yields
an upper bound for the neutralization probability: we find an increase of ∼30%
relative to the application of “standard” periodic boundary conditions but, apart
from that, qualitatively identical results as shown in fig. 6.14. Clearly the optimal
solution for the periodicity problem is the use of clusters large enough such that
projectiles under perpendicular incidence do not leave the surface area covered by
the active cluster. Unfortunately, such cluster sizes are currently computationally
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out of reach.

6.4. 1-D charge-transfer dynamics in larger

clusters

Now that we have analyzed in detail the charge transfer dynamics of the Li5F1 + H+

embedded cluster surface we extend this study to clusters containing more than a
single active F− ion. We restrict the study in this section again to clusters with four-
fold rotation symmetry and an active F− ion in the center of the topmost surface
layer, i.e., the point where the rotation-symmetry axis penetrates the embedded
cluster surface. Also the projectile is laterally always positioned exactly on the
rotation axis 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0; see e.g. fig. 6.8 (a)) rendering the dynamics a
1-dimensional problem where the degree of freedom considered is 𝑅𝑧, the distance
between projectile and surface.
We use MCSCF and, subsequently, MS-CASPT2 with pure point-charge embedding
and basis sets: cc-pVTZ for F and H and DZ for Li. All calculations are performed
within the 𝐶2𝑣 pointgroup symmetry and the complete active space in the MCSCF
contains all F(2p) orbitals of 𝐴1 symmetry plus the H(1s) orbital which is also of
𝐴1 symmetry. For 𝑁 F(2p) orbitals of 𝐴1 symmetry the CAS consequently hosts
2𝑁 electrons in 𝑁 + 1 orbitals. The state average includes all PESs considered in
the dynamics comprising 1 ionic state (LiF + H+) and 𝑁 covalent states ((LiF)+

+ H). These 𝑁 + 1 MCSCF many-electron wave functions are used as starting
point for the MS-CASPT2. One remark on the symmetry is due. The clusters
used belong to the 𝐶4𝑣 point-group symmetry. Since Molcas does not support
𝐶4𝑣 the calculations are performed in 𝐶2𝑣 and there are electronic states within the
𝐴1 irreducible representation of different symmetry. These two classes of states do
not interact and the non-adiabatic coupling element between them vanishes. In the
following we only plot PESs of states with a non-zero coupling to the asymptotic
ionic state, the initial state in the charge-transfer simulation.

6.4.1. Clusters with active F− ions in the topmost layer
only

First, we focus on clusters containing active F− ions only in the topmost surface
layer. MS-CASPT2 adiabatic PESs of the Li25F9 cluster and their corresponding
projectile charges (fig. 6.15 (a)) show a feature independent of the quantum chem-

istry method used: the PES split into three “groups” for 𝑅𝑧 < 5 a.u. Group 1

and 3 each consists of a single state below and above group 2 . The splitting can
be understood on the molecular orbital level in terms of the hole orbital. There is
a single hole in the combined system which can be either located at the projectile
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(LiF + H+) or in the surface ((LiF)+ + H). States of group 2 are covalent states
with the hole located on the surface F− ions except for the F− ion in the very center
of the cluster. At 𝑅𝑧 = 1.5 a.u. the hole in state 1 (fig. 6.15 (b)) is mainly located

at the p𝑧 orbital of the central F− ion and in state 3 (fig. 6.15 (b)) the biggest
contribution to the hole is located at the projectile. In this sense the splitting is
interpreted as the hybridization of the p𝑧 orbital of the central F− and the H(1s)

level leading to a bonding 3 (ionic bond between F− and H+) and anti-bonding

1 solution suggesting a strong coupling between these two PESs.

Figure 6.15.: (a) MS-CASPT2 adiabatic potential energy surfaces and corresponding
projectile charges along 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0) of the Li25F9 embedded sur-
face cluster. Dash-dotted red line and dashed blue line mark the asymp-
totic ionic and the ground state, respectively. Black lines are asymptotic
covalent states. (b) Hole orbital of states (1) and (3) for 𝑅𝑧 = 1.5 a.u.
(dashed-vertical line in panel (a)).

For 𝑅𝑧 = 12 a.u. the MS-CASPT2 electronic ground state is of covalent charac-
ter and the energy difference between ground and ionic state ∆𝐸g-ion = 1.65 eV
corresponding to WMS-CASPT2

LiF = 13.6 − ∆𝐸g-ion = 11.95 eV (fig. 6.16). This
is in good agreement with experiment and also with the “direct” calculation of
WMS-CASPT2

LiF (Li25F9) without the projectile (sec. 6.2). Since at 𝑅𝑧 ≈ 2 a.u. the
electronic ground state, however, is of ionic character due to the F− - H+ bonding
there must be a change of configuration of the asymptotic-ionic PES with 𝑅𝑧. This
change is indeed visible in the projectile charges (fig. 6.16 (a)). At intermediate
projectile-surface distances (4 < 𝑅𝑧 < 6 a.u.) the PESs of the asymptotic-covalent
states lie within a narrow energy window and there are several narrow, Landau–
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Zener-like, avoided crossings between them. The asymptotic-ionic state lies a little
above the covalent ones and there seems to be a Rosen–Zener–Demkov type of
hidden crossing between the ionic and one of the covalent states indicated by the
splitting of the PESs at 𝑅𝑧 ≈ 5 a.u. It becomes clearer when the narrow cross-
ings between the covalent states are replaced by hand by linear crossings and when
the two following states are highlighted (fig. 6.16 (b)): the asymptotic-ionic state
and the new “diabatized” asymptotic-covalent state which is the electronic ground
state at 𝑅𝑧 = 2 a.u. The evolving picture features two PESs running in parralel for
𝑅𝑧 > 5 a.u. which diverge at 𝑅𝑧 ≈ 5 a.u. “Diabatized” projectile charges show an
almost complete change of configuration. Both, the PES and the projectile charges
of these two states strongly resemble the ones found for Li5F1 + H+ (fig. 6.10)
suggesting also the Li25F9 + H+ charge transfer to be an effective 2-state Rosen–
Zener–Demkov problem. However, only as long as the projectile velocity is large
enough such that the Landau–Zener single-passage probability is 𝑝LZ𝑖𝑗 ≈ 1 at the
narrow avoided crossings in fig. 6.16 (a).

Figure 6.16.: (a) MS-CASPT2 adiabatic potential energy surfaces and corresponding
projectile charges along 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0) of the Li25F9 embedded-
surface cluster. ∆𝐸g-ion is the energy difference between the electronic
ground state and the ionic state. (b) Same as (a) with narrow avoided
crossings replaced by linear crossings.
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Quantitatively, the effective two-state character of the Li25F9 + H+ PES can be
shown in their diabatized version (fig. 6.17) obtained by strict diabatization (see
sec. 5.3). There is one single diabatic coupling element (fig. 6.17 (c)) connecting

the ionic state ( 3 ) and one of the covalent states ( 1 ). For 𝑅𝑧 & 8 a.u., these
two states are equivalent with the two states found by “diabatization by hand” in
fig. 6.16 (b). In the covalent state ( 1 ) the hole orbital for 𝑅𝑧 = 12 a.u. is located
almost exclusively on the p𝑧 orbital of the central F site (inset in fig. 6.17 (a)) which
is strong evidence that the charge transfer in Li25F9 + H+ scattering takes place
between the central F− and the projectile only.

Figure 6.17.: (a) MS-CASPT2 diabatic potential energy surfaces, (b) corresponding
projectile charges, and (c) diabatic coupling elements 𝐸̃𝑖𝑗 along 𝑅𝑧

(𝑅𝑥 = 𝑅𝑦 = 0) of the Li25F9 embedded surface cluster obtained by
strict diabatization. Inset in panel (a) shows the hole orbital located at
the central F in state (1) for 𝑅𝑧 = 12 a.u.

The same analysis holds true also for the MS-CASPT2 potential energy surfaces
of the Li5F1 + H+ and the Li17F5 + H+ embedded clusters. In all three cases the
charge transfer occurs almost exclusively between two PES and the electron trans-
ferred from the surface to the projectile comes from the central F− ion. Therefore,
also the H+ neutralization probability for all these systems look quite similar (fig.
6.18). Since only two states are involved clean Stückelberg oscillations are found,
the phase of which seems to be converged already for Li17F5 + H+. The increase of
the average neutralization probability with projectile momentum to ∼0.5 confirms
the Rosen–Zener nature of the hidden crossing responsible for the charge transfer.
There are, however, distinct differences between the neutralization probabilities of
the different cluster sizes for low initial proton momenta. They arise due to a vari-
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ation of the energy splitting of the two diabatic charge-transfer states. For Li5F1

+ H+ the PES of these states are essentially degenerate leading to a neutraliza-
tion probability of 0.5 at low proton momenta in agreement with the Rosen–Zener
model. These results differ from the ones found in sec. 6.3 for the same cluster
due to the different basis-set size. The largest splitting is found for Li25F9 + H+

translating into the smallest value of the neutralization probability. With increas-
ing proton momenta the differences get smaller since the probabilities of all clusters
oscillate about their maximum average value of 0.5.

Figure 6.18.: Neutralization probability of H+ reflected from embedded Li5F1, Li17F5,
and Li25F9 surface clusters determined in a one-dimensional (𝑅𝑥 = 𝑅𝑦 =
0) wave packet simulation. Dashed-vertical lines indicate the minima of
the Stückelberg oscillations in the Li17F5 and Li25F9 data.

The decrease of the neutralization probability with cluster size at low proton mo-
menta reflects the decrease of WMS-CASPT2

LiF (fig. 6.7 (b)) resulting in a downward
shift of the asymptotic covalent states with respect to the ionic state. In the Li25F9

+ H+ cluster the asymptotic ionic state lies ∼1 eV above the highest asymptotic
covalent state (fig. 6.16). In the following we show that by changing the positions
of the active F− ions in the cluster this splitting changes while the work function
of the cluster remains unchanged.

6.4.2. Clusters with active F− ions in deeper surface layers

While WMS-CASPT2
LiF only depends on the number of active F− ions, the width of the

valence band is also sensitive to their positions within the active cluster. By re-
ordering the Li25F9 + H+ cluster to form a Li25F5 F4 + H+ cluster with four active
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F− ions in the second surface layer the width of the “valence band” (measured by
the energy difference between the highest and lowest asymptotic covalent PES) in-
creases from 1 eV (fig. 6.16) to 1.8 eV (fig. 6.19). As a consequence the asymptotic
ionic state is no longer separated from the covalent ones and the asymptotic PES
with the highest energy is of covalent character.

Figure 6.19.: (a) Adiabatic and (b) diabatic potential energy surfaces and projectile
charges along 𝑅𝑧 (𝑅𝑥 = 𝑅𝑦 = 0) of the Li25F5F4 + H+ embedded
surface cluster. Diabatic PESs are obtained by strict diabatization. The
dashed-green line in (a) is the energetically highest adiabatic state. The
dashed-blue line is the adiabatic ground state. In both panels the dash-
dotted red line is the asymptotic-ionic state.

Broadening of the valence band also affects the charge transfer dynamics (fig. 6.20).
The picture of only two PES responsible for the LiF + H+ charge transfer does not
hold as soon as active F− ions are placed into deeper surface layers. Although the
number of contributing states is still small (3-4) for the clusters used (Li25F5 F4,
Li26F5 F4 F1, Li38F5 F4 F5) the neutralization probability changes considerably.
Yet there are similarities to the single-layered cluster results. The Stückelberg os-
cillations for multi-layered clusters (fig. 6.20) are somewhat “smeared out” but all
minima of the neutralization probability can be identified with the ones of single-
layered clusters (fig. 6.18). Further, only in covalent states contributing to the
charge transfer there is a portion of the hole located at the p𝑧 orbital of the central
F− ion emphasizing the locality of the charge transfer.
Apparently two layers of active F− ions are enough to obtain approximately con-
verged results for the neutralization probability (fig. 6.20) as there are only small
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Figure 6.20.: Neutralization probability of H+ reflected from an embedded Li25F5 F4,
Li25F5 F4 F1, and Li38F5 F4 F5 surface cluster determined in a one-
dimensional (𝑅𝑥 = 𝑅𝑦 = 0) wave-packet simulation. Dashed-vertical
lines indicate the minima of Stückelberg oscillations in the neutralization
probabilities using clusters with active F− ions in the topmost surface layer
only (fig. 6.18).

changes when a third layer is added. Also the number of active F− ions in the
topmost layer (fig. 6.18) seems to be converged for five active F− ions, at least
in terms of the Stückelberg oscillations. Definite answers in terms of convergence,
however, can only be found with even larger active clusters which are, unfortu-
nately, computationally not yet feasible. The limiting factor are “instabilities” in
the MS-CASPT2 calculations due to intruder states (see, e.g., [188]). They lead to
unphysical kinks and jumps in the PES and, also, in the non-adiabatic couplings
which make a charge transfer analysis impossible. Usually, problems with intruder
states are solved via real [188, 189] or imaginary [190] shifts in the energy denom-
inator which dampen the influence of these states in the perturbation expansion.
Unfortunately, the shifts needed to get continuous PES and couplings are so large
that the perturbation correction to the MCSCF calculation becomes negligible.
Alternatively, the CAS can be enlarged such that it includes the intruder states.
Adding virtual orbitals to the CAS, however, considerably increases the computa-
tional effort and is, therefore, an impractical solution.
The optimal cluster size for the charge transfer problem is such that WMS-CASPT2

LiF ≈
Wexperiment

LiF . Further, the width and density of the valence band, i.e., the number
of asymptotic covalent states, should be large enough such that the ionic state is
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closely surrounded by them. Our 1-D calculation with the largest number of PES is
done for the Li25F5 F4 + H+ cluster with reduced symmetry. We use the 𝐶𝑠 point-
group symmetry (one mirror plane) and move the projectile slightly away from the
𝑅𝑧 axis (𝑅𝑥 = 0.15 a.u., 𝑅𝑦 = 0.0). This reduces the number of irreducible rep-
resentations and increases the number of interacting states in the CAS to 16. For
this setup we vary the projectile-surface distance and calculate the neutralization
probability. As it turns out a total number of 5 PESs contribute to the charge
transfer and we find essentially the same result as for the high-symmetry case in
fig. 6.20.

6.5. 3-D charge-transfer dynamics in Li20F6 F1 +

H+

The convergence of the neutralization probability with cluster size in the previ-
ous section shows that the 3-D projectile dynamics calculation based on the small
Li5F1 cluster is not reliable. In this sections we perform 3-D projectile dynamics
using a cluster that is (a) large enough to yield reasonable agreement with the
largest clusters tested and (b) small enough such that a calculation of 3-D PESs
is computationally feasible. In the following sections we introduce such a cluster
(fig. 6.21) and discuss details of the quantum-chemistry and dynamics calculations
(6.5.1). Further, we calcualte the charge-transfer probability and analyze it in view
of results of previous sections (6.5.2). We also compare our results with preliminary
experimental data (6.5.3).

6.5.1. The Li20F6 F1 + H+ embedded cluster

The Li20F6 F1 surface cluster (fig. 6.21 (a)) is the smallest cluster that obeys the
convergence criteria found in the previous sections: it has more than five active F−

ions in the topmost and one active F− in the second surface layer. Further, the
atoms are arranged such that the two active ions in the irreducible unit cell used for
the PES calculation (fig. 6.21 (b)) are surrounded by five active nearest-neighbor
ions (four in the first and one in the second surface layer). Additionally, all other
active F− ions are also surrounded by five active nearest-neighbor Li+ ions. The
active cluster is surrounded by one layer of fluoride AIMPs since, otherwise, charge
leak occurs when no symmetry constraints are employed. AIMPs and cluster are
embedded into a large matrix of point charges.
We determine three-dimensional PESs and non-adiabatic couplings (see appendix

A.4) on a grid by varying the projectile position 𝑅⃗ with 𝑅𝑥 and 𝑅𝑦 within the
irreducible surface unit cell and 𝑅𝑧 betwenn 0.1 and 15.0 a.u. Distances between
adjacent grid points are 0.1 a.u. for the lateral grid along 𝑅𝑥 and 𝑅𝑦 and 0.05 a.u.
for the 𝑅𝑧 gird. The latter is chosen finer since we simulate (near) perpendicular
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Figure 6.21.: (a) Li20F6 F1 active cluster. (b) Top view of the Li20F6 F1 cluster and
the irreducible surface unitcell. The cluster is constructed such that the
F− and the Li+ ion in the irreducible surface unitcell are surrounded by 4
active neighbors in the first and one active neighbor in the second surface
layer. The origin of the projectile-coordinate system (𝑅𝑥 = 𝑅𝑦 = 𝑅𝑧 = 0)
is defined at the F− ion in the irred. surface unitcell.

incidence of the projectile for which an accurate sampling of the narrow avoided
crossings along 𝑅𝑧 is crucial. The PES and non-adiabatic coupling grids within
the irreducible unit cell are continued periodically to simulate the extended crystal
surface. We calculate 22 PESs and the couplings between them on the MCSCF
level with a (43,22) CAS since the MS-CASPT2 calculation, without any symmetry
constraints, features unphysical kinks and discontinuities due to intruder states.
MCSCF combined with the cc-pVDZ basis set yields a cluster-work function of
𝑊MCSCF-avg

LiF = 13.1 eV clearly larger than the experimental one. Nevertheless, we
expect reliable results for the charge transfer since the relative level ordering of the
PESs at large 𝑅𝑧 is reasonable with the ionic state centered in the ∼2 eV broad
band of covalent states (fig. 6.22).

6.5.2. 1-D and 3-D projectile dynamics

Despite the differences in the quantum-chemistry treatment (cluster size, basis set,
quantum-chemistry method, embedding) of the Li20F6 F1 cluster and the clusters
in the previous section we find good agreement for the charge transfer probability
in a one-dimensional (𝑅𝑥 = 𝑅𝑦 = 0) projectile dynamics calculation (fig. 6.23).
Stückelberg oscillations obtained with the different clusters do not match perfectly
but their frequencies are in reasonable agreement. Fig. 6.23 also indicates the ex-
cellent agreement of the Tully-surface hopping and the wave packet approach for
Li20F6 F1. For initial momenta 𝑃init > 120 a.u. also the phase and frequency of the
Stückelberg oscillations agree and, therefore, we expect the Tully surface-hopping



6. Charge transfer between a proton and a lithium-fluoride surface 149

Figure 6.22.: (a) MCSCF adiabatic and (b) diabatic potential energy surfaces and pro-
jectile charges along 𝑅𝑧 (𝑅𝑥 = 0.1 a.u., 𝑅𝑦 = 0) of the embedded
Li20F6 F1 cluster. The projectile is positioned at 𝑅𝑥 ̸= 0 to break the clus-
ter symmetry. Diabatic PESs are obtained by strict diabatization. The
dash-dotted red line marks the asymptotic-ionic adiabatic and diabatic
state. Dotted-green and dashed-blue lines in (a) indicate the electronic
ground state and the highest excited state in the adiabatic representation,
respectively.

algorithm to generate reliable quantum results also in three-dimensional dynamics
calculations discussed in the following.
The proton beam perpendicularly incident on the surface is simulated analogously
to sec. 6.3.3: we take into account all three Cartesian components of the projec-
tile motion and average observables using 3916 initial projectile positions (𝑅𝑥,𝑅𝑦)
uniformly distributed over the irreducible unit cell. For a given initial proton en-
ergy/momentum (𝑃𝑥 = 𝑃𝑦 = 0,𝑃𝑧 = −𝑃init) and each initial position 1000 trajec-
tories are started at 𝑅𝑧 = 14.5 a.u. above the surface. The propagation is stopped
when the particles pass again the 𝑅𝑧 = 14.5 plane after being rescattered from the
surface. We neglect projectiles rescattered from lower surface layers and the projec-
tile motion within the LiF crystal by stopping the propagation when the particles
penetrate the surface, i.e., when 𝑅𝑧 ≤ 0.0 a.u. The fraction of projectiles reflected
from the topmost surface layer (fig. 6.24) agrees reasonably well with results ob-
tained with the embedded Li5F1 cluster (fig. 6.13) and with simulations based on
the binary potentials of O’Conner and Biersack (see appendix A.6). For an initial
projectile kinetic energy of 55 eV, 4% of the projectiles are reflected.
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Figure 6.23.: Neutralization probability of H+ reflected from embedded Li20F6 F1 (solid-
red and dashed-green lines) and Li25F5 F4 (dotted-blue line) surface clus-
ters determined in a one-dimensional (𝑅𝑥 = 𝑅𝑦 = 0) wave-packet and
Tully-surface hopping simulation along 𝑅𝑧.

The fraction of protons (trajectories on the ionic PES) reflected from the embed-
ded Li20F6 F1 surface cluster (fig. 6.24) is, however, considerably lower than the
one found for the Li5F1 cluster (fig. 6.13). This is due to the fact that in the
Li20F6 F1 cluster there are 21 channels available for neutralization compared to
only three in the Li5F1 cluster. Furthermore, the level spacing between the ionic
and the covalent states is smaller in Li20F6 F1. Consequently, the total neutral-
ization probability normalized to the number of initial projectiles (fig. 6.25 (a)), is
larger by about one order of magnitude than its Li5F1 equivalent (fig. 6.14). Since
the total reflection probability dominates the ionic one, also the dependence of the
total neutralization probability on the initial proton momentum is governed by the
monotonic decay of the total reflection probability. Normalizing the neutraliztion
probability to the number of rescattered trajectories leads to the partial neutral-
ization probability (fig. 6.25 (b)) which shows a weak decrease with initial proton
momentum. Also the average 1-D neutralization probability decays with increasing
momentum (fig. 6.23), however, the decay is faster and the neutralization probabil-
ity is clearly lower. 3-D trajectories started in the vicinity of the central F− ion are
responsible for the enhanced 3-D neutralization probability. Trajectories with ini-
tial positions 𝑅2

𝑥 +𝑅2
𝑦 < 𝑟2𝑐 around the F− ion, with 𝑟𝑐 being a critical radius, yield

very similar results to a 1-D calculation. Trajectories starting beyond 𝑟𝑐, however,
have a slowly varying neutralization probability close to unity. Since their weight is
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Figure 6.24.: Fraction of projectiles reflected from an embedded Li20F6 F1 surface clus-
ter (perpendicular incidence) irrespective of the charge state of the re-
flected projectile (solid-green line). Fraction of projectiles reflected in
the ionic (H+) state (dashed-blue line). Results are obtained in a three-
dimensional Tully-surface hopping propagation of the projectile averaged
over initial projectile positions uniformly distributed over the surface unit
cell.

larger for geometric reasons they dominate the full 3-D neutralization probability.
The top F and top Li weights show that for small momenta trajectories rescattered
from F− and Li+ equally contribute to the partial neutralization probability while
for larger momenta the top F− contribution dominates.

6.5.3. Comparison with experiment

In both total and partial neutralization probabilities (6.25 (b)) there are only weak
traces of Stückelberg oscillations. The multitude of projectile paths on different
PESs and varying scattering angles average them out and slightly shift the maxima
relative to the 1-D result. In large-angle scattering experiments, however, trajecto-
ries with certain scattering angles can be selected by the scattering geometry which
should make more pronounced Stückelberg oscillations accessible. A typical exper-
iment suitable for measuring the neutralization probability is the large angle Time-
of-Flight Low-Energy Ion Spectroscopy (TOF-LEIS) of Bauer and co-workers [191].
Ions are accelerated towards a sample surface under an angle of incidence of 25.5∘

relative to the surface normal. The position of the detector is such that it records
specularly reflected projectiles within a scattering angle of 𝜃𝑠𝑐𝑎𝑡 = 129∘± ∼ 1.5∘.
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Figure 6.25.: (a) Total and (b) partial neutralization probability of H+ scattered off
a Li20F6 F1 embedded surface cluster (perpendicular incidence). Results
are obtained in a three-dimensional Tully-surface hopping propagation of
the projectile and are averaged over initial projectile positions uniformly
distributed over the surface unit cell. The total neutralization probability is
normalized to the number of initial trajectories, the partial neutralization
probability is normalized to the number of reflected trajectories (solid-
green line in fig. 6.24). Top F and top Li contributions (see fig. 6.13 (a))
denote trajectories started in the 𝑅𝑧 = 14.5 a.u. plane within a circle of
radius 1 a.u. around an F− and an Li+ ion, respectively.

With a TOF setup the energy spectrum of the rescattered particles is determined
which allows for separation of projectiles reflected from the topmost and sub-surface
layers. Particles reflected from sub-surface layers suffer energy loss due to nuclear
and electronic stopping on their path through the crystal and, therefore, appear in
the low-energy part of the spectrum. Further, an acceleration lens between sample
and detector allows for the separation of ionic and neutral particles arriving at the
detector.
Bauer and co-workers investigate with this system the charge transfer between the
surface of an evaporated LiF film and a proton beam. Their preliminary data on
the ratio of backscattered hydrogen atoms to backscattered protons are compared
in fig. 6.26 with our calculations. We use the Li20F6 F1 cluster and protons with
an angle of incidence of 25.5∘ relative to the surface normal. In the calculation
we only consider projectiles reflected from an F− surface ion. Particles reflected
from an Li+ ion do not contribute to the hydrogen-proton ratio in experiment since
they also appear in the low energy part of the spectrum due to the larger energy
transfer in the collision with the lighter Li+ ion. For theoretical data shown in fig.
6.26 only a single azimuthal angle of incidence is chosen: the momentum compo-
nent of the projectiles parallel to the surface points into the [110] crystal direction.
Considering only backscattered trajectories with a scattering angle of 129.5∘±20∘
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leads to pronounced Stückelberg oscillations which are partially averaged over but
still visible, when all backscattered trajectories are taken into account.
We find agreement in terms of the order of magnitude of the hydrogen to proton
ratio between theory and experiment. The Stückelberg oscillations, however, are
not visible in the experimental data for two reasons. First, the use of an undefined
LiF surface structure and, second, the fact that the scatter of the measured data
points is quite large. According to our experimental collaborators, the F− ion is
not a very effective back scatterer due to its small atomic number. This makes long
opening times of the choppers in the TOF setup necessary and ultimately leads
to a limited resolution in the energy spectrum of reflected particles. The limited
resolution influences the evaluation of the hydrogen to proton ratio by making a
clear separation between projectiles rescattered from the topmost and sub-surface
layers more difficult. Further, the accelerator used for the primary protons and the
projectile detectors are not optimized for initial kinetic energies below 1 keV which
also worsens the spectral resolution. Low-energy projectiles are, however, crucial to
minimize the influence of degradation of the LiF surface due to sputtering during
the measurement. Sputtering is already present at initial proton kinetic energies of
20 eV [192] but stays relatively constant at 0.5 sputtered LiF molecules per initial
projectile up to at least 100 eV. Apart from modifying the surface we do not ex-
pect sputtering to influence the experimental results. Even Stückelberg oscillations
should remain mostly unaffected since the characteristic time for sputtering off a
surface ion is large compared to the time in which the projectile is reflected from
the surface. At very low initial kinetic energies, however, this can change. When
the time, the projectile spends in a region with non-zero coupling, becomes compa-
rable to the period of lattice vibrations then sputtering, excitation of phonons, and
sticking of the projectile at the surface alter the PESs. The coherence of the proton
wave packet is thereby destroyed making Stückelberg oscillations hard to observe.
However, for the lowest proton momentum used in our simulations (𝑃init ≈ 50 a.u.),
a phonon period is about a factor of ten larger than the time the projectile spends
in the interaction region.
For better future comparison between theory and experiment one either needs to
average the theory results over several azimuthal angles of incidence or use crys-
talline and oriented LiF samples in experiment instead of the evaporated films with
an undefined surface structure. Further, more experimental data points are needed
and the use of accelerators and detectors optimized for the energy range of interest
could help to reduce the error bar in the experiment.
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Figure 6.26.: Number of backscattered hydrogen atoms divided by the number of
backscattered protons as a function of initial proton momentum. Theory
data (solid red and dashed green line) are obtained in a three-dimensional
TSH propagation. The projectiles are directed towards the surface under
an angle of incidence of 25.5∘ relative to the surface normal. Initial posi-
tions are uniformly distributed over the surface unit cell. The dashed green
line shows the hydrogen to proton ratio taking into account all backscat-
tered projectiles while for the solid red line only backscattered trajectories
with a scattering angle of 𝜃𝑠𝑐𝑎𝑡 = 129.5∘ ± 20∘ are used. These parame-
ters simulate the TOF-LEIS setup of Bauer and co-workers [191] used to
measure the data points shown.
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In this work we have investigated localized electronic excitations of (i) defects in
bulk insulators and (ii) surfaces during reactive scattering of impinging projectiles
on a state-of-the-art ab-initio level. In particular, we have studied the absorption of
light by F-type color center defects in alkali halides and the non-adiabatic charge-
transfer dynamics during the scattering of a proton off a lithium-fluoride surface.
We have employed quantum-chemistry methods in the framework of the embed-
ded cluster approach which allow for (a) including correlation effects of localized
electrons in extended systems beyond standard DFT approaches, (b) the accurate
calculation of excited electronic states, and (c) investigating non-adiabatic effects,
i.e., the coupling of nuclear and electronic degrees of freedom.
Our investigation of the light absorption of the F center in LiF is, up to now, the
most advanced available leading to unprecedented agreement between the exper-
imental and theoretical absorption energy. We have also determined the Fermi
contact term at ions surrounding the defect, the approximate width of the F-center
absorption line, and we have estimated the influence of electron-phonon coupling.
Although the F center, being a single-electron defect, seems to have a simple elec-
tronic structure state-of-the-art methods are required in order to find satisfying
agreement with experiment. A proper embedding of the active cluster by AIMPs
turns out to be crucial for a reliable description of the excited state of the color
center. In contrast to earlier studies we have found a much more localized p-type
orbital. Our results are not only in unprecedented agreement with experiment but
also agree with calculations based on post-DFT methods. F-center orbital shapes
as well as the ground state geometry and the F-center absorption energy agree.
Further effort, however, needs to be invested in the photoluminescence of F-centers
in alkali halides where theory lags behind experiment. First, ab initio methods
need to be found which can reliably describe the relaxation of the excited state, the
energy of the emitted photon and the large Stokes shifts observed in experiment. If
this prerequisite is met a fully ab-initio description of the nuclear wave packet dy-
namics during the optical cycle as measured in [83], the influence of electron-phonon
coupling becomes feasible, and the open question of the, up to now unobserved, F-
center luminescence in LiF can be addressed.
We have also, for the first time, performed an investigation of the experimentally
observed Mollwo–Ivey (MI) relation on an ab-initio level. It connects the absorp-
tion energies, 𝐸abs, of F-type color centers in alkali-halides with the anion-cation
distance, 𝑎, of the corresponding crystals by 𝐸abs ∝ 1/𝑎1.8. Previous explanations
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of the MI relation and its exponent, 𝑛exp = 1.81, rely mainly on the Madelung
potential and attributed to ion-size effects only a minor influence. Only small de-
viations from the MI relation were interpreted as signatures of ion-size effects. By
introducing the model system of a scaled alkali halide, in particular scaled LiF the
alkali halide with the smallest ions, we have been able to disentangle ion-size effects
and effects due to the increase of the lattice constant. We have found ion-size ef-
fects to be the predominant mechanism for the formation of the potential well the
defect electron is bound to. Therefore, the size of the ions surrounding the vacancy
shape the defect electron wave function and are responsible for the fractional MI
exponent. Without ion-size effects we find an exponent of 𝑛 = 2 just like a simple
three-dimensional square well potential model by Stöckmann suggests. We have
verified that larger ions cause a compression of electron density in the F-center va-
cancy. This compression leads, compared to scaled LiF, to a reduced growth of the
defect wave function’s extent with the lattice constant and ultimately translates,
via the Vinti sum rule, to a reduced Mollwo–Ivey exponent in real alkali-halide
crystals.
An interesting question for future work is what such an analysis would yield for
more complex defects, hosting more than one electron, and for color centers in ma-
terials different from alkali halides. For such defects Mollwo–Ivey relations exist
[10, 193] with an exponent far from 2. Further open questions concern the emission
process for which the Mollwo–Ivey relation fails completely. If the F center in the
relaxed excited state, however, is interpreted as an electron-hole pair (an exciton),
the Coulomb interaction of which is screened by a dielectric constant 𝜖, the energy
difference between ground and first excited state derived from the Rydberg law is
given by

∆𝐸emission = 𝐸2𝑝 − 𝐸1𝑠 =
3𝑒4𝑚*

128𝜋2~2𝜖2
∼ 𝜖−2. (7.1)

Eq. 7.1 is independent of the anion-cation distance 𝑎. A fit of experimental emis-
sion energies with 𝐶/𝜖2 shows reasonable agreement [45]. Da Silva [194] suggested
that large relaxations of ions surrounding the vacancy reshape the defect-potential
well such that the pristine anion-cation distance, 𝑎, becomes unsuitable for fitting
the emission energies. Rather the new, relaxed potential well sizes need to be used
for ordering and fitting the emission energies in a Mollwo–Ivey type relation. An
ab-initio analysis as presented in this chapter could shed light on this question.
However, also for such an investigation, a proper description of the relaxed excited
state is necessary.
Non-adiabatic effects such as charge transfer play an important role in the field of
particle-surface interaction. However, the ab-initio treatment of charge transfer in
terms of ion-surface scattering is numerically difficult due to the large number of
coupled nuclear and electronic degrees of freedom. We have presented here the, to
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our knowledge, first fully ab-initio analysis of the resonant electron transfer process
during rescattering of a proton from an LiF surface. We have employed MCSCF,
MRCI, and MS-CASPT2 to calculate the PESs of embedded LiF surface clusters
and we have solved the time-dependent Schrödinger equation for coupled projectile
and electronic degrees of freedom to determine the neutralization probability of the
reflected proton. The influence of parameters such as cluster size and shape as well
as basis-set sizes on the charge transfer and the electronic structure of the embed-
ded clusters has been investigated. The work function of the embedded clusters
used is, though not fully converged, in fair agreement with experiment. Analysis
of the PESs of the embedded Li5F1 surface cluster reveals the charge transfer to
be driven by a Rosen–Zener–Demkov like hidden crossing. In all clusters tested we
have found pronounced Stückelberg oscillations in the neutralization probability of
protons under perpendicular incidence on the central surface F−. The oscillations
are only weakly dependent on the cluster size and shape, confirming the picture of
the charge transfer being a local process involving only a few surface atoms and elec-
tronic states. We have estimated the size of the charge transfer region to encompass
five F− ions in the first and four F− ions in the second surface layer. Additional F−

ions hardly change the shape of the Stückelberg oscillations in the neutralization
probability. These oscillations also appear in the ratio of backscattered hydro-
gen atoms to backscattered protons determined in a full three-dimensional proton
scattering dynamics calculation simulating an experiment performed by Bauer and
co-workers. We have found agreement in the order of magnitude between theory
and preliminary experimental data. However, more accurate measurements in a
lower energy range (to limit the surface degradation during measurement) would
be highly desirable to confirm the presence of Stückelberg oscillations and the agree-
ment between experiment and theory.
The ab-initio approach presented can be improved by enlarging the clusters to en-
sure an even better description of the surface electronic structure, in particular of
the LiF valence band. So far we are able to account for realistic work functions
but not for a dense sampling of the valence band over its full width. Enlarging the
embedded clusters requires a reliable protocol to calculate accurate PESs as well as
the non-adiabatic couplings between them. MS-CASPT2 seems to be the perfect
tool, however, for very large cluster sizes the problem of intruder states leading to
discontinuities in the PESs and, even more so, in the non-adiabatic couplings needs
to be solved. In future work, the ab-initio approach presented can also be extended
to grazing incidence scattering for which (a) plenty of experimental data are avail-
able and (b) the projectile-velocity component perpendicular to the surface can be
as low as a few eV. This can be done according to the work of Borisov et al. [176]
who approximated the grazing angle projectile trajectory by a piecewise motion of
the projectile at constant distance to the surface, with one “piece” corresponding
to the surface unit cell.
Apart from extensions of the LiF + H+ neutralization problem the embedded clus-
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ter approach can be applied to other scattering problems such as negative ion con-
version, charge transfer from strongly localized 3d orbitals, Auger neutralization,
and electronic stopping of projectiles in LiF. Each of these four topics is briefly
introduced in the following sections.

Negative-ion conversion of H scattered off LiF

Negative-ion conversion denotes the single (double) electron capture of a neutral
(singly positive charged) projectile and was extensively measured for particles scat-
tered under grazing incidence from, e.g., alkali-halide surfaces [13, 195]. Negative
ion fractions of close to 80% are reached for certain projectile-surface combinations
due to the so-called diabatic energy level confluence [14] denoting the level shift
that brings the projectile-affinity level into near resonance with the surface-valence
band. There are “parameter free” models available, however, a fully ab-initio treat-
ment of the conversion is still absent.

Figure 7.1.: (a) Embedded Li25F5 F4 + H surface cluster used to calculate (b) adiabatic
MCSCF potential energy surfaces and corresponding projectile charges.
Dash-dotted red line is the initial, covalent LiF + H state and solid black
lines are ionic LiF+ + H− states. The arrow indicates the ionic state with
the strongest coupling to the initial state.

To investigate hydrogen negative ion conversion H + LiF → H− + (LiF)+ we need
to replace the H+ projectile in the previous discussion by H. Adiabatic MCSCF
PESs (fig. 7.1 (b)) of the Li25F5 F4 + H embedded cluster (fig. 7.1 (a)) separate

into two groups: the initial, covalent LiF + H state 1 and a set of ionic LiF+ +
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H− states 2 . One of the latter, indicated by the arrow in fig. 7.1 (b), however, is
special. It is clearly lower in energy relative to the other covalent states since the
surface hole in this very state is located exclusively at the central F and, therefore,
has the shortest distance to the negatively charged projectile. In this sense the
Coulomb attraction between H− and the surface hole helps to localize the latter
making the LiF + H → LiF+ + H− conversion an even more localized and effective
two level process than the neutralization of H+. We, therefore, predict smaller clus-
ter sizes being sufficient for convergence of the two relevant PESs which should ease
the the ab-initio description of negative ion conversion compared to neutralization.

Neutralization of He+ scattered off a Germanium

surface

Neutralization-cross sections of He+ ions reflected from a Germanium surface under
large angle scattering were first measured by Erickson et al. [196] in 1974. More
recently, Göbel et al. [197] provided a more detailed study with absolute values
for the He+ neutralization probability P(He). Both experiments find oscillations
in P(He). Tolk and co-workers [198] interpreted this result as a quasi-resonant
charge transfer between the strongly localized Ge(3d) orbitals and the He(1s) level.
Due to this localization, similar to LiF + H+, only a few states are involved in
the charge transfer leading to pronounced Stückelberg oscillations in P(He). Göbel
applied a qualitative model [197] that, with a suitable choice of parameters, leads
to good agreement with experimental data. However, information on underlying
neutralization processes is impossible to extract from such a model, as the authors
state.
Microscopic understanding of the charge transfer can be provided by quantum
chemistry within the embedded cluster approach. The simplest embedded cluster
modeling a germanium-surface or bulk atom is a single germane molecule (fig.
7.2 (a)). It consists of a single germanium atom the open bonds of which are
saturated by four hydrogen atoms. A one-dimensional surface hopping dynamics
simulation along 𝑅𝑧 on seven MCSCF potential energy surfaces shows an enhanced
coupling of the initial, ionic state (H4Ge1 + He+) to covalent PESs ((H4Ge1)

+

+ He) corresponding to a hole in the Ge(3d) orbitals (rather than in Ge(4s) and
Ge(4p)). The resulting P(He) fraction matches the frequency and the position of the
Stückelberg oscillations in experiment (fig. 7.2 (b)) while their amplitude is larger
than in experiment. The absolute value of the calculated P(He) is smaller than the
experimental one by a factor of ∼3.5, indicating that the He+ neutralization is more
effective than suggested by this simple model. An explanation for this mismatch
is the inaccurate description of the surface leading to inaccurate positions of the
He+(1s) and Ge(3d) levels. While in experiment the Ge(3d) levels (binding energy
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Figure 7.2.: (a) H4Ge1 + He+ cluster simulating a surface Ge atom. This cluster is used
for calculating seven potential energy surfaces as well as the non-adiabatic
coupling between them. A one-dimensional Tully-surface hopping dynamics
of the He+ projectile along 𝑅𝑧 yields (b) the fraction of neutral-reflected
projectiles (solid red line). Black dots are experimental data [197]. Please
note the different scale for theory and experimental data.

∼30 eV, [199]) are separated from the He+(1s) level (24.59 eV) by ∼5 eV the
MCSCF total energies of the corresponding charge transfer states are separated by
more than 10 eV. Also a possible level shift of the He+(1s) level upon approaching
the surface is treated only approximately due to the small cluster size. Also the
sign of the slope of the averaged P(He) seems to be different. This might be caused
by the limited cluster size as we observed for the neutralization probability of H+

+ LiF. This system can serve as a playground for improving and testing embedding
schemes as well as quantum-chemistry methods.

Auger neutralization of He+ in front of a LiF

surface

While electron transfer from an LiF surface to a H+ projectile is governed by (quasi)
resonant neutralization, for a He+ projectile the capture level lies at -24.59 eV
clearly out of resonance with the valence band (fig.7.3 (a)). Nevertheless, neutral-
ization of He+ is possible via Auger neutralization (fig. 7.3 (a)). An electron is
transferred from the valence band to the projectile while the surface is left in an
excited state: an additional electron-hole pair is created leading to the formation
of a trion (two holes and one electron) [200]. Since electron-electron interaction
mediates the excitation of the surface, Auger neutralization is referred to as a two-
electron process in contrast to resonant neutralization, a single electron process.
This “orbital energy picture” in fig. 7.3 (a) translates to total energies, i.e., to MC-
SCF potential energy surfaces (fig. 7.3 (c)) of a Li4F2 F2 + He+ embedded surface
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cluster (fig. 7.3 (b)) as follows: there is a single asymptotic ionic state 2 corre-
sponding to LiF + He+. For the (LiF)+ + He configuration there are, however,
two types of states. First, a single hole can be located in the LiF valence band, the
F(2p) orbitals, leading to the energetically lowest PESs 1 . Additionally, there
can be a second hole in the valence band due to the excitation of an F(2p) electron
to the Li(2s) orbitals forming, in total, a trion. This configuration creates the en-

ergetically highest PESs 3 . Due to the vicinity and the avoided crossings of the
initial-ionic state and the covalent states with the trion at 𝑅𝑧 ≈ 2 a.u. we expect a
strong coupling between them responsible for Auger neutralization of the He+ pro-
jectile. Quantum-chemistry and a molecular dynamics simulations could provide
an ab-initio determination of Auger neutralization probabilities and, therefore, a
microscopic understanding of individual Auger neutralization processes.

Figure 7.3.: (a) Auger neutralization of He+ in front of an LiF surface, schematically. An
electron is transferred to the He+ capture level and the surface is excited by
the creation of an additional electron-hole pair, leading to a trion. (b) Em-
bedded Li4F2 F2 surface cluster used to calculate (c) the adiabatic MCSCF
potential energy surfaces of (1) and (3), asymptotic covalent states, and
(2), the asymptotic ionic state, as well as corresponding projectile charges
involved in the Auger neutralization. The dash-dotted red line denotes the
only asymptotic ionic state while all solid black lines are covalent states.

Electronic stopping of He in an LiF crystal

Bauer and co-workers [201] measured the electronic stopping power of He and H
projectiles traveling through an LiF crystal. Surprisingly, the threshold velocity of
the projectiles for the onset of electronic stopping is much lower than predicted by
a simple binary-encounter model. The latter is based on the momentum and energy
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transfer in a head-on collision between the projectile and a target electron in the LiF
valance band. The stopping power was studied within a time-dependent density-
functional theory approach [202] by Pruneda et al. for channeling trajectories only.
They found good agreement for the threshold velocity which they attributed to
local excitations (charge transfer from F− to Li+) but could not explain the slope
of the linear increase of the stopping power with projectile velocity.
In a quantum-chemistry study one can extend the understanding of the microscopic
excitation process. Consider a single layer of LiF (approximated by an active Li6F6

cluster (fig. 7.4 (a) embedded in a two-dimensional point charge matrix). The He
projectile moves perpendicular to the LiF layer (along the 𝑅𝑧 axis) and penetrates
the layer in the “channel” exactly between a Li+ and an F− ion. At large 𝑅𝑧 the
MCSCF potential energy surfaces (fig. 7.4 (b)) split into the electronic ground,

or initial state 1 (surface and projectile are in their respective electronic ground

state) and a large band of excited states 2 at ≈12 eV. Projectile charges of all
PESs are almost independent of 𝑅𝑧 confirming that no charge transfer takes place
on this PES and, since excited states of He lie well above 12 eV, the excited states
2 correspond to excitations of the Li6F6 layer. Similar to the LiF + H+ case, the

coupling to only a few of the excited states dominates. These states “drop out” of
the band of excited states 2 at 𝑅𝑧 ≈2 a.u. (see arrow in fig. 7.4 (b)) leading to a
reduction of the energy gap to the initial state which could explain the low onset
of electronic stopping found by Bauer.
A future study could investigate the nature of these exited states and their role in

the electronic stopping power of LiF. Further, in a dynamics calculation, an impact-
parameter (𝑅𝑥, 𝑅𝑦) and projectile-velocity dependent excitation probability can be
determined which can be used in a Classical-Trajectory Monte Carlo calculation
simulating the slowing down of a He projectile in a LiF crystal by the passage and
excitation of independent layers of LiF.
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Figure 7.4.: (a) Embedded Li6F6 cluster simulating a single layer of LiF. (b) Adiabatic
MCSCF potential energy surfaces and corresponding projectile charges as
function of 𝑅𝑧 the distance between the He projectile and the LiF layer.
The dash-dotted red line (1) is the initial covalent state corresponding to
the electronic ground state of the LiF layer and the He projectile. Solid
black lines (2) are covalent states corresponding to electron-hole excitations
in the LiF layer.





A. Appendices

A.1. Scaled NaF and LiCl

According to the picture developed in section 4.3 the F-center absorption energy
in any alkali-halide crystal should scale with 1/𝑎2 when the crystal is stretched.
In this section we test this prediction and show that the 1/𝑎2 scaling needs to be
taken with care since also in scaled alkali halides ion-size effects are present.
Mollwo–Ivey fits of CASPT2(ROHF) F-center absorption energies in scaled LiF,
NaF, and LiCl (fig. A.1 (a)) yield exponents of 𝑛LiF = 2.04, 𝑛NaF = 2.02, and
𝑛LiCl = 2.32. While NaF nicely agrees with our prediction of 𝑛 = 2 the F-center
absorption energy in LiCl decreases, unexpectedly, faster. This can be qualitatively
understood, however, by means of the radial nodes 𝑟0 and the rms radii of the defect
ground state wave function.

Figure A.1.: (a) CASPT2(ROHF) F-center absorption energies of stretched LiF, LiCl,
and NaF. (b) First radial nodes 𝑟0 of the s-type defect wave function along
the [100], [110], and [111] direction in stretched LiF, LiCl and NaF.

Fig. A.1 (b) shows 𝑟
[100]
0 (𝑎), 𝑟

[110]
0 (𝑎), and 𝑟

[111]
0 (𝑎) of the F-center defect wave func-

tion in scaled LiF, NaF and LiCl. Let us first focus on the 𝑟0 values in NaF: they
behave quite similarly to the ones of LiF showing almost perfectly linear increase
with a slope of 1,

√
2, and

√
3 for the [100], [110], and [111] direction, respectively.

Along the [110] direction, pointing in both cases towards F−, 𝑟
[110]
0 (𝑎) of LiF and
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NaF coincide. 𝑟
[100]
0 (𝑎) and 𝑟

[111]
0 (𝑎) of NaF are shifted towards lower values with

respect to the ones of LiF due to ion sizes. The [100] and [111] directions in NaF
point towards an Na+ ion while in LiF they point towards the smaller Li+ ion. The
downward shift is almost independent of 𝑎 and it is almost equal for both directions
(∼ 0.5 a.u.). The latter value can be interpreted as the difference in radius of the
Na+ and the Li+ ion. A value of 0.49 a.u. for this difference is predicted by the
model of effective ionic radii in pristine crystals [108].

In scaled LiCl, 𝑟
[100]
0 (𝑎) and 𝑟

[110]
0 (𝑎) behave similarly as in scaled LiF. 𝑟

[100]
0 (𝑎) of

LiCl almost perfectly coincides with 𝑟
[100]
0 (𝑎) of LiF since in both cases the nearest

neighbor is an Li+ ion. 𝑟
[110]
0 (𝑎) of LiCl is lower relative to scaled LiF due to the

larger second-nearest neighbor Cl− ion. The downward shift varies between 0.35
a.u. and 0.55 a.u. which underestimates the difference in ion radii between Cl− and
F− of 0.9 a.u. predicted by the effective ion model. 𝑟

[111]
0 (𝑎) shows a highly non-

linear behavior. Instead of coinciding with the 𝑟
[111]
0 (𝑎) values of LiF, it is strongly

pushed to lower values at small anion-cation distances. With increasing 𝑎, however,
𝑟
[111]
0 (𝑎) of LiCl approaches the value of LiF and from 𝑎 ≈ 6.5 a.u. on, the lattice

constant of RbBr, both curves coincide. We interpret this result as a blocking of
the [111] direction due to the orthogonalization requirement of the F-center wave
function with respect to the Cl− ion core states. With increasing 𝑎 the blocking is
gradually released to the point where 𝑟

[111]
0 is determined by the orthogonalization

of the defect electron to the third-nearest neighbor Li+ ion core states.
The unblocking is also visible in the root-mean square radius of stretched LiCl.
While the rms radii of LiF and NaF increase almost perfectly linear with 𝑎, the
rms radius of LiCl grows, for small 𝑎, with a higher power of 𝑎. With the Vinti
sum rule (eq. 4.7) this translates into a decay of 𝐸abs in LiCl faster than 1/𝑎2 and
a Mollwo–Ivey exponent 𝑛LiCl = 2.32 larger than 2.
We also extract F-center absorption energies from the rms radii in scaled LiCl and
NaF via the Vinti sum rule and compare them with the ab-initio ∆SCF calcula-
tions. The result is quite similar to the one of scaled LiF in fig. 4.7. For small 𝑎 the
Vinti-sum rule energies overestimate the ∆SCF energies and both approach each
other for larger 𝑎. The difference to LiF is that in LiCl and NaF one needs to go
to larger anion-cation distances to find good agreement between the Vinti-sum rule
and the ROHF absorption energies.
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Figure A.2.: Root-mean square radii of the ground-state F-center wave function in
scaled LiF, scaled LiCl, and scaled NaF as a function of the anion-cation
distance.

A.2. A refined particle in the box model

For scaled LiF we illustrated the particle-in-the-box model to be a good approxi-
mation for the potential of the F-center electron. Scaled LiF shows a perfect 1/𝑎2

dependence of 𝐸abs and perfectly linear growth of the extent of the defect wave
function. For the F centers in real materials, however, this model needs to be
refined. Consider, for simplicity, a two-dimensional hard-walled box the size and
shape of which is determined by two independent parameters. These parameters
are 𝑟

[100]
0 the distance from the center of the box to the center of its edges and

𝑟
[110]
0 the distance from the center of the box to its corners. As the notation already

suggests we use the radial nodes of the ROHF ground state F-center wave functions
(figs. 4.6 and 4.10) as parameters in this model which leads to a star-like shaped
potential as shown in fig. A.3 (a). The energy difference between the ground and
the first excited state of this model potential (fig. A.3 (b)) do, of course, not re-
produce the ab-initio F-center absorption energy, but they show qualitatively the
same behavior. Especially the difference between the continuous decrease of the
absorption energies in scaled LiF (fig. 4.5) and the anion-specific offset as well as
the reduced decay of 𝐸abs in real materials (figs. 4.11 and 4.12) is nicely reproduced.
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Figure A.3.: (a) Two-dimensional hard-wall model potential of the F-center electron

potential well. Its shape is determined by the parameters 𝑟
[100]
0 and 𝑟

[110]
0

denoting the distances from the center of the box to the center of its edges
and the distance from the center of the box to its corners, respectively. (b)
Energy difference between the ground and the first excited state in the box
potential in panel (a) when the position of the first radial nodes of the
defect wave functions in real alkali-halide crystals and scaled LiF from figs.
4.6 and 4.10, respectively, are used as parameters 𝑟

[100]
0 and 𝑟

[110]
0 .

A.3. Relation between the non-adiabatic vector

𝐹𝑗𝑖 and scalar coupling 𝐺𝑗𝑖

Applying ∇⃗ onto 𝐹𝑗𝑖 leads to(︁
∇⃗ · 𝐹𝑗𝑖

)︁
= ∇⃗ ⟨Ψ𝑗(𝑟⃗; 𝑅⃗)|∇⃗ Ψ𝑖(𝑟⃗; 𝑅⃗)⟩

= ⟨∇⃗Ψ𝑗|∇⃗ Ψ𝑖⟩ + ⟨Ψ𝑗|∇⃗2Ψ𝑖⟩, (A.1)

where brackets on the left hand side of the equation indicate that the ∇⃗ operator
acts only on 𝐹𝑗𝑖. The very last term in the upper equation equals 𝐺𝑗𝑖 which leads
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to

𝐺𝑗𝑖 =
(︁
∇⃗ · 𝐹𝑗𝑖

)︁
− ⟨∇⃗Ψ𝑗|∇⃗ Ψ𝑖⟩

=
(︁
∇⃗ · 𝐹𝑗𝑖

)︁
−
∑︁
𝑘

⟨∇⃗Ψ𝑗|Ψ𝑘⟩⟨Ψ𝑘|∇⃗ Ψ𝑖⟩

=
(︁
∇⃗ · 𝐹𝑗𝑖

)︁
+
∑︁
𝑘

⟨Ψ𝑗|∇⃗Ψ𝑘⟩⟨Ψ𝑘|∇⃗ Ψ𝑖⟩

=
(︁
∇⃗ · 𝐹𝑗𝑖

)︁
+
∑︁
𝑘

𝐹𝑗𝑘𝐹𝑘𝑖, (A.2)

where we used

⟨∇⃗Ψ𝑗|Ψ𝑖⟩ = −⟨Ψ𝑗|∇⃗Ψ𝑖⟩, (A.3)

since (︁
∇⃗⟨Ψ𝑗|Ψ𝑖⟩

)︁
= ⟨∇⃗Ψ𝑗|Ψ𝑖⟩ + ⟨Ψ𝑗|∇⃗Ψ𝑖⟩ = 0. (A.4)

A.4. Calculation of the non-adiabatic derivative

coupling

Non-adiabatic derivative couplings

𝐹𝑗𝑖(𝑅) = ⟨Ψ𝑗(𝑟⃗;𝑅)|∇⃗ Ψ𝑖(𝑟⃗;𝑅)⟩ (A.5)

on the CASSCF and MS-CASPT2 level are approximated by finite differences. 𝑅
denotes a nuclear coordinate and 𝑟⃗ comprises all electronic degrees of freedom.
Consider a real-space grid in the nuclear coordinate {𝑅𝑚} with a grid spacing of
∆. The non-adiabatic coupling vector at grid point 𝑅𝑚 is then approximated by
the symmetric difference quotient

𝐹𝑗𝑖(𝑅𝑚) = ⟨Ψ𝑗(𝑟⃗;𝑅𝑚)| 𝜕
𝜕𝑅

Ψ𝑖(𝑟⃗;𝑅𝑚)⟩

= ⟨Ψ𝑗(𝑟⃗;𝑅𝑚)|Ψ𝑖(𝑟⃗;𝑅𝑚 + ∆)⟩ − Ψ𝑖(𝑟⃗;𝑅𝑚 − ∆)⟩
2∆

+ 𝒪(∆2)

≈ 1

2∆
(⟨Ψ𝑗(𝑟⃗;𝑅𝑚)|Ψ𝑖(𝑟⃗;𝑅𝑚 + ∆)⟩ − ⟨Ψ𝑗(𝑟⃗;𝑅𝑚)|Ψ𝑖(𝑟⃗;𝑅𝑚 − ∆)⟩) . (A.6)

The overlaps ⟨Ψ𝑗(𝑟⃗;𝑅𝑚)|Ψ𝑖(𝑟⃗;𝑅𝑚 + ∆)⟩ and ⟨Ψ𝑗(𝑟⃗;𝑅𝑚)|Ψ𝑖(𝑟⃗;𝑅𝑚 − ∆)⟩ are cal-
culated within the RASSI program of the Molcas program package. One- and
two-electron integrals are evaluated for both types of overlaps at the geometry 𝑅𝑚.
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The sign of CASSCF and MS-CASPT2 wave functions is random leading also to a
random sign in the non-adiabatic derivative coupling. To solve this problem every
wave function in eq. A.6 needs to be multiplied with a phase factor, 𝜑𝑗(𝑅𝑚) = ±1.
These phase factors are defined such that the overlaps between two wave functions
(of the same electronic state 𝑗) at two adjacent nuclear-coordinate grid points are
close to +1. How close the overlaps are to unity is determined by the grid spacing
∆. With the nuclear-coordinate grid index 𝑚 ∈ [1, . . . , 𝑁 ], the phase factors for
each electronic state 𝑗 read

𝜑𝑗(𝑅𝑚)
!

= 1, 𝑚 = 𝑁

𝜑𝑗(𝑅𝑚) = 𝜑𝑗(𝑅𝑚+1) ⟨Ψ𝑗(𝑟⃗;𝑅𝑚+1)|Ψ𝑗(𝑟⃗;𝑅𝑚)⟩
!
≈ 1, ∀ 𝑚 ∈ [1, . . . , 𝑁 − 1]. (A.7)

A.5. Total Si3+ + He charge-transfer cross section

within the Landau–Zener approximation

We approximate the trajectories of the Si3+ projectile by straight lines with constant
velocity 𝑣𝑛 (fig. A.4 (a)). When the system passes the narrow Landau–Zener like
avoided crossing at 𝑅𝑐 (fig. A.4 (b)) the radial velocity component 𝑣rad is given by

𝑣rad = 𝑣𝑛 cos(𝛼). (A.8)

With sin(𝛼) = 𝑏
𝑅𝑐

this leads to

𝑣rad = 𝑣𝑛

√︃
1 − 𝑏2

𝑅2
𝑐

. (A.9)

With this relation we can define an impact-parameter dependent Massey parameter
which reads

𝜉LZ(𝑏, 𝑣𝑛) =
𝛾

𝑣rad(𝑏)
=

𝛾

𝑣𝑛

√︁
1 − 𝑏2

𝑅2
𝑐

. (A.10)

For the Si3+ + He charge transfer 𝛾 = 0.00024, when 𝑣𝑛 is given in a.u. (eq. 5.31).
With the charge-transfer probability after double passage of the avoided crossing



A. Appendices 171

Figure A.4.: (a) Straight line approximation for the Si3+ + He scattering. (b) Definition
of the radial momentum component 𝑣rad.

⟨𝒫LZ
12 ⟩ (eq. 5.32) the total charge-transfer cross section reads

𝜎tot(𝑣𝑛) = 2𝜋

∫︁ ∞

0

𝑏 ⟨𝒫LZ
12 ⟩(𝑏, 𝑣𝑛))𝑑𝑏

= 4𝜋

∫︁ ∞

0

𝑏 𝑒−2𝜋𝜉LZ(𝑏,𝑣𝑛)(1 − 𝑒−2𝜋𝜉LZ(𝑏,𝑣𝑛)) 𝑑𝑏

= 4𝜋

∫︁ ∞

0

𝑏

⎡⎣𝑒− 2𝜋𝛾

𝑣𝑛

√︃
1− 𝑏2

𝑅2
𝑐 − 𝑒

− 4𝜋𝛾

𝑣𝑛

√︃
1− 𝑏2

𝑅2
𝑐

⎤⎦ 𝑑𝑏 (A.11)

A.6. Reflection probability of H+ from an LiF

surface

The potentials by O’Connor and Biersack (OCB) [187] are binary potentials for
atoms that solely depend on the atomic number of the two scattering partners and
the distance 𝑅 between them. The potential is given by

𝑉OCB =
𝑍1𝑍2

𝑅
𝑓(𝑅/𝑎OCB), (A.12)

where 𝑍1 and 𝑍2 are the atomic numbers of the two atoms and 𝑓(𝑅/𝑎OCB) is an
interatomic “screening function” with a length scale referred to as the “screening
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length” 𝑎OCB. The screening function reads

𝑓(𝑅/𝑎OCB) =
∑︁
𝑖

𝑏𝑖𝑒
−𝑐𝑖𝑅/𝑎OCB , (A.13)

with the parameter sets 𝑏𝑖 = {0.35, 0.55, 0.1} and 𝑐𝑖 = {0.3, 1.2, 6}. The screening
length is given by

𝑎OCB = [0.045(
√︀
𝑍1 +

√︀
𝑍2) + 0.54] · 0.8854(

√︀
𝑍1 +

√︀
𝑍2)

−2/3. (A.14)

OCB-type potentials are successfully used to simulate projectile trajectories in
atom-surface scattering experiments [170] by approximating the projectile-surface
potential by a sum over binary potentials between projectile and target atoms. We
use them to verify our results on the reflection probability of (initially) H+ pro-
jectiles (perpendicular incidence) rescattered from embedded LiF clusters (see figs.
6.13 and 6.24). For every initial projectile momentum in the OCB approach, 3916
trajectories, uniformly distributed over the surface unit cell, are directed towards
the surface. A projectile is considered to be absorbed when it penetrates the top-
most surface layer. Embedded cluster results on the reflection probability from
the topmost surface layer are in reasonable agreement with OCB results (fig. A.5)
confirming the reliability of both approaches.

Figure A.5.: Fractions of initially H+ (embedded cluster approach) or H (OCB ap-
proach) projectiles reflected from the topmost surface layer of an embedded
Li20F6 F1 cluster (solid red line), an Li5F1 cluster (dashed green line), and
a surface approximated by OCB binary potentials (dash dotted blue line).
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A.7. Extrapolation of the MS-CASPT2 work

function

We estimate the converged MS-CASPT2 work function, converged with cluster size,
by extrapolating 𝑊MS-CASPT2

LiF to an infinite number of active F− ions (#𝐹−). In
fig. A.6 the MS-CASPT2 work function is plotted as a function of (#𝐹−)−1/2 and
(#𝐹−)−1/3 which are measures for the inverse of the linear dimension of the surface
covered by the cluster and its volume, respectively. For infinitely large clusters,
(#𝐹−)−1/2 → 0 and (#𝐹−)−1/3 → 0, we find by linear regression values of 10.8 eV
and 10.2 eV, respectively.

Figure A.6.: MS-CASPT2 work functions of embedded clusters as function of (a)
(#𝐹−)−1/2 and (b) (#𝐹−)−1/3, where #𝐹− is the number of active F−

ions.

A.8. Definition of top-F and top-Li contributions

Consider initial trajectories started at 𝑅𝑧 = 14 a.u. within a lateral circle with
radius 1 a.u. (𝑅2

𝑥 + 𝑅2
𝑦 ≤ 1 a.u.) around the F− and the Li+ ion (fig. 6.13 (a))

which are denoted by top-F and top Li-trajectories in the following. For initial
momenta larger than 90 a.u. top-F and top-Li initial trajectories account for all
trajectories that are reflected from the surface. Trajectories started at 𝑅𝑧 = 14 a.u.
outside of the top-F or top-Li region penetrate the surface and are neglected in
our analysis. For 𝑃init & 90 a.u., the total number of reflected hydrogen atoms
𝑌 0(total) or protons 𝑌 +(total) can then be splitted into these two contributions:

𝑌 0(total) = 𝑌 0(topF) + 𝑌 0(topLi)

𝑌 +(total) = 𝑌 +(topF) + 𝑌 +(topLi). (A.15)
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The total neutralization probability (for 𝑃init & 90 a.u.) reads then

𝑁0(total) =
𝑌 0(total)

𝑌 0(total) + 𝑌 +(total)

=
𝑌 0(topF)

𝑌 0(total) + 𝑌 +(total)
+

𝑌 0(topLi)

𝑌 0(total) + 𝑌 +(total)
, (A.16)

with the top F and top Li contributions

𝑁0(topF) =
𝑌 0(topF)

𝑌 0(total) + 𝑌 +(total)

𝑁0(topLi) =
𝑌 0(topLi)

𝑌 0(total) + 𝑌 +(total)
. (A.17)

Both contributions are weights normalized to the total number of rescattered parti-
cles. The variation of the top-F contribution with the initial momentum, therefore,
implicitly depends on the neutralization probability and the reflection yield of top
Li since

𝑁0(topF) +𝑁0(topLi) = 𝑁0(total). (A.18)

In contrast, the “local” neutralization probability of a particle started in top F and
rescattered from F can behave quite differently. It needs to be said that particles
started in the top F or the top Li region are always reflected at the particle they
are started above. The local F− neutralization probability completely neglects the
top-Li trajectories (and the Li+ surface ion) and reads

𝑁0(localF) =
𝑌 0(F)

𝑌 0(F) + 𝑌 +(F)
. (A.19)
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[44] R. Hilsch and R. W. Pohl. Über die Lichtabsorption in einfachen Ionengittern
und den elektrischen Nachweis des latenten Bildes. Zeitschrift für Physik 68,
721 (1931).

[45] G. Baldacchini. Relaxed Excited States of Color Centers. In B. Bartolo and
C. Beckwith (eds.), Optical Properties of Excited States in Solids, volume 301
of NATO ASI Series, pp. 255–303. Springer US (1992).

[46] M. Fox. Optical Properties of Solids, pp. 186–203. Oxford University Press,
first edition (2001).

[47] F. Karsai, P. Tiwald, R. Laskowski, F. Tran, D. Koller, S. Gräfe,
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[185] A. Schäfer, H. Horn, and R. Ahlrichs. Fully optimized contracted Gaussian
basis sets for atoms Li to Kr. The Journal of Chemical Physics 97, 2571
(1992).

[186] A. D. Gaus, W. T. Htwe, J. A. Brand, T. J. Gay, and M. Schulz. Energy spread
and ion current measurements of several ion sources. Review of Scientific
Instruments 65, 3739 (1994).

[187] D. J. O’Connor and J. P. Biersack. Comparison of theoretical and empirical
interatomic potentials. Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 15, 14 (1986).



192 BIBLIOGRAPHY

[188] B. O. Roos and K. Andersson. Multiconfigurational perturbation theory with
level shift - the Cr2 potential revisited. Chemical Physics Letters 245, 215
(1995).

[189] B. O. Roos, K. Andersson, M. P. Fülscher, L. Serrano-Andrés, K. Pierloot,
M. Merchán, and V. Molina. Applications of level shift corrected pertur-
bation theory in electronic spectroscopy. Journal of Molecular Structure:
THEOCHEM 388, 257 (1996).

[190] N. Forsberg and P.-A. Malmqvist. Multiconfiguration perturbation theory with
imaginary level shift. Chemical Physics Letters 274, 196 (1997).

[191] M. Draxler, S. N. Markin, S. N. Ermolov, K. Schmid, C. Hesch, A. Poschacher,
R. Gruber, M. Bergsmann, and P. Bauer. ACOLISSA: a powerful set-up
for ion beam analysis of surfaces and multilayer structures. Vacuum 73, 39
(2004).

[192] G. Hayderer, M. Schmid, P. Varga, H. P. Winter, F. Aumayr, L. Wirtz,
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