
Parameterized Model Checking of

Fault-Tolerant Distributed

Algorithms

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

by

Annu Gmeiner MU

Registration Number 0927448

to the Faculty of Informatics
at the Vienna University of Technology

Advisors: Univ.-Prof. Dipl.-Ing. Dr. Helmut Veith
Privatdoz. Dipl.-Ing. Dr. Josef Widder

The dissertation has been reviewed by:

Prof. Helmut Veith Prof. Natasha Sharygina

Vienna, 5th October, 2015
Annu Gmeiner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Annu Gmeiner MU
Antonie-Alt-Gasse 8/2/10, Vienna, 1100-Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5 Oktober, 2015
Annu Gmeiner

iii

Acknowledgements

First of all I would like to thank Prof. Helmut Veith for accepting me as his PhD
student and for being such a great supervisor. Without his constant guidance, support
and motivation, I would not have been able to finish this thesis. I thank him for being
extremely patient and understanding while I had to take my time with the thesis due to
personal reasons. He always remained approachable in spite of his busy schedule and was
happy to o�er help and guidance in both professional and non-professional matters.

I would now like to thank Prof. Ulrich Schmid for introducing me to the area of
distributed algorithms through one of the best lectures I have attended. He introduced
me to my current research area. I thank him for the guidance he o�ered me and the
numerous discussions about various topics in distributed algorithms. I would like to
thank Prof. Hannes Werthner for founding the PhD School of Informatics and funding
me through it for the first two years of my PhD career. I also thank him for organizing
great lectures and seminars as a part of the PhD School, which introduced me to the
research area I was interested in.

I thank Prof. Thomas Eiter and Stefan Woltran for funding me through the Doctoral
School of Mathematical Logic in Computer Science and the constant guidance with the
various bureaucratic issues of the PhD program.

I would also like to thank Beatrix Forsthuber and Eva Nedoma for helping with the
various administrative issues at the institute and Clarissa Schmid for providing assistance
with administrative matters of the PhD School of Informatics.

I would now like to thank my FORSYTE colleagues, especially Igor Konnov and
Josef Widder, who I worked together with in this project. I thank Josef for agreeing
to be my second supervisor. Both Josef and Igor have taken a lot of time and e�ort to
help me with finishing my thesis. They have constantly and patiently answered all my
possibly silly questions. They have supported me by closely working together with me
when I was under extreme time pressure to finish my thesis. Without their prolonged
support it would have been impossible for me to finish writing this thesis. I also thank
them for making the whole task a bit lighter by creating a nice atmosphere at work
with their funny sense of humour and encouragement while I was weighed down by the
circumstances.

I thank Julia Demyanova for being such a great o�ce mate and friend. I would like
to also thank all the other FORSYTE colleagues for the very constructive feedback to
my practice talk. I also thank my PhD School and MLICS doctoral college colleagues for
the support and the great discussions that we have had.

v

Next, I thank Mark Guttenbrunner for the support and help during the first two years
of the PhD School without which I would have been able to be at this stage. I would
like to thank Eugen Jiresch for all the logic lectures he took me to, in the beginning of
the PhD school, not to forget the real-time translation to English. I thank Christoph
Roschger for the interesting discussions over the many lunches and cups of co�ee. I also
would like to thank other friends who made my academic life a lot better and funnier,
like Markus Huber, Barbara Donko, Stefan Ruemmele and Worarath Krathu.

I would like to thank Andreas Holzer for all the great technical and non-technical
discussions we have had during my time at FORSYTE. I thank him for being the fine
person that he is, for taking time to explaining all the silly questions that I had about
the di�erent papers I read. I would like to thank Florian Zuleger for being such a great
friend, for being the perfect best man, for the time and patience for the numerous visits
to choose the nicest wedding dress, for all the concerts that we have been to, for all the
support through my agonies of writing and finishing the thesis. I thank both Andi and
Florian for making the first conference that I attended such a memorable event.

Last but the most important, I would like to thank my family for tolerating the
many frequent lows and highs I had through out my PhD career. I would like to thank
my parents for continuously inspiring me to finish what I started and all the emotional
support they managed to shower on me in spite of being physically so far away from me.

I would like to thank Karl Gmeiner without whose support I would not have been
able to manage writing this thesis while being on maternity leave. First of all, I thank
him for making our PhD school period so much fun, for the numerous discussions we had
about almost everything, and for being such a great friend and husband. I thank Karl for
the all the emotional support and for being there whenever I needed him, for managing
a job and a family single-handedly while I was busy with my thesis, for standing me
through the extreme lows, for motivating me endlessly, for always being successful in
showing me the positive side of everything. Thank you for such a beautiful family that
we have.

I would also like to thank my darling daughter Sharon, for all the love and patience
she has showed while the thesis took all the time that I should have had for her.

Lastly, I would like to thank my son Arthur, who is way too young to remember any
of these.

Abstract

Distributed algorithms play an inevitable role in our day to day life. They are omnipresent,
with their applications extending to our household equipments, medical equipments,
air tra�c control, space missions, Internet and such numerous fields of application. A
mere peek at their application areas reveals the importance of their reliable operati-
on even in the presence of faults in the underlying system. Fault-Tolerant Distributed
Algorithms (FTDAs) were introduced to increase the reliability of distributed algo-
rithms. FTDAs are designed in a way that the system functions correctly even in the
presence of a certain number of faults in the system. However, in order to fulfill the
purpose of an FTDA, it is necessary to ensure that no man made errors have crept into
its design. In other words, it needs to be verified that the FTDA satisfies its specifications.

The common practice in the distributed algorithms community is to express such
algorithms using pseudo code backed by no formal semantics and prove their correctness
by mathematical reasoning in natural language. The semantics of the algorithm and
the assumptions made on the environment are usually not clear from the pseudo code
and expert knowledge of the algorithm is a necessity to understand and reason about
it. Moreover, the non-determinism introduced by concurrency, varying processor speeds
and message delays, a limited view of local states etc., make manual correctness proof
of such algorithms an extremely creative, time consuming and error prone task. The
inclusion of fault tolerance introduces an additional dimension of non-determinism due
the presence of faults. Since manual correctness proofs can be erroneous, verifying these
algorithms formally is the only way to ensure their correctness. Automatic verification
eliminates the need for in depth knowledge about the algorithm to be verified. Our aim is
to automatically verify a widely used class of FTDAs, where the processes send messages
to each other and take actions when the number of messages received crosses a certain
threshold. We call this class of algorithms, threshold-based FTDAs.

The first step towards formally verifying an algorithm is formalizing it. Thus, at
first we introduce a formal framework which captures the behavior of threshold-based
FTDAs. We introduce extended Control Flow Automata (CFA) for this purpose. The
extended CFA serves as a simple mathematical representation of the algorithm. We use
the Spin model checker to verify the algorithms. To this end, we extend Promela, which
is the input language of Spin in order to capture the various features of threshold-based
FTDAs, such as non-determinism, multiple parameters etc., and model these algorithms

vii

using extended Promela.

There are various formal verification techniques in existence. We choose model checking
because model checking provides an automated technique of verification with minimum
user intervention. FTDAs are parameterized in the number of correct process as well
as the maximum number of faulty processes. Moreover, the actual number of faulty
processes in an FTDA can take any value less than or equal to the maximum number of
faulty processes. Thus the system to be verified has multiple parameters. That is, in order
to ensure the correctness of an FTDA we have to consider all the possible values these
parameters can take. This gives rise to an infinite family of systems with unbounded states
to be verified and thus we have a Parameterized Model Checking Problem (PMCP) at
hand. We prove that our problem is undecidable and thus there is no general solution to it.

We introduce an abstraction method called Parameterized Interval Abstraction (PIA)
to reduce our family of unbounded systems to a single finite state system. To this end, we
apply the PIA to the family of unbounded-state systems in two levels. We first get rid of
the unbounded variables from the individual systems of the family by mapping them to
their corresponding abstract values of a finite domain. We then eliminate the parameters
from the resultant system by using PIA on the number processes in each location. As a
result we get a single finite state system, which can be verified using a conventional model
checker like Spin. We use refinement techniques to eliminate spurious counter examples
caused by the undesired behavior in the resultant finite state system introduced by the
abstraction. To validate our formalization and abstraction method, we present several
case studies where safety and liveness properties of di�erent threshold-based FTDAs are
verified. We also present simulation proofs for both levels of the abstraction to show that
our abstraction method is sound.

Abstract

Verteilte Algorithmen spielen eine wichtige Rolle in unserem täglichen Leben. Sie sind
allgegenwärtig, mit Anwendungen, die von Haushaltsgegenständen, medizinische Geräte,
Flugverkehrskontrolle, Weltraummissionen bis zum Internet und noch weiter reichen.
Schon ein kleiner Blick auf die Anwendungsfelder zeigt, wie wichtig die verlässliche
Funktionalität auch im Fehlerfall des grundlegenden Systems ist. Fehlertolerante verteilte
Algorithmen (FTDAs) wurden eingeführt, um die Zuverlässigkeit verteilter Algorithmen
zu erhöhen. FTDAs wurden so entwickelt, dass das System bis zu einer bestimmten
Anzahl von Fehlern korrekt funktioniert. Nichtsdestotrotz ist es nötig, sicherzustellen,
dass bei der Entwicklung des FDTAs Fehler vermieden werden. Mit anderen Worten,
man muss verifizieren, dass der FTDA seine Spezifikation erfüllt.

In der gängigen Literatur werden solche Algorithmen meist informell in Pseudo-Code
definiert und ihre Korrektheit wird durch mathematisches Schließen in natürlicher Spra-
che bewiesen. Die Semantik des Algorithmus und die Annahmen über die Umgebung
sind im Allgemeinen nicht aus dem Pseudo-Code erkennbar sodass die Analyse der
Algorithmen fundiertes Wissen über dieselben erfordert. Darüber hinaus sind informelle
Korrektheitsbeweise solcher Algorithmen komplex, zeitaufwändig und fehleranfällig wegen
des Nicht-Determinismus, der sich aus Nebenläufigkeit, unterschiedliche Prozessorge-
schwindigkeiten usw. ergibt. Durch das Einbeziehen von Fehlertoleranz muss auch das
nicht-deterministische Auftreten von Fehlern berücksichtigt werden. Da solche händi-
schen Korrektheitsbeweise fehlerbehaftet sein können ist die formale Verifizierung solcher
Algorithmen die einzige Möglichkeit um auszuschließen, dass bei der Entwicklung Fehler
eingebaut wurden. Automatische Verifizierung beseitigt die Notwendigkeit von tieferge-
hendem Wissen über den Algorithmus. Unser Ziel ist, sogenannte threshold-based FTDAs
automatisch zu verifizieren. In dieser Klasse von FTDAs tauschen Prozesse Nachrichten
miteinander aus und führen bestimmte Aktionen aus, nachdem die Zahl der eingehenden
Nachrichten einen Schwellenwert überschritten hat.

Der erste Schritt um einen Algorithmus formal zu verifizieren ist, diesen selbst zu
formalisieren. Aus diesem Grund führen wir ein formales Framework ein, das das Ver-
halten von threshold-based FTDAs abbildet. Zu diesem Zweck definieren wir erweitere
Kontrollfluss-Automaten (CFAs). Diese erweiterten CFAs stellen eine einfache mathema-
tische Repräsentation des Algorithmus dar. Wir benutzen den Spin Model Checker um
den Algorithmus zu verifizieren. Dazu erweitern wir Promela, die Eingabesprache von
Spin um die unterschiedlichen Eigenschaften von threshold-based FTDAs abzubilden

ix

wie Nicht-Determinismus, mehrere Parameter usw. und modellieren die Algorithmen im
erweiteren Promela.

Es gibt unterschiedliche Möglichkeiten zur formalen Verifizierung. Wir nutzen Model-
Checking weil es automatisiert mit minimaler Benutzerinteraktion ablaufen kann. FTDAs
sind parametrisiert sowohl bei der Anzahl der Prozesse als auch bei der maximalen Zahl
an fehlerhaften Prozessen. Darüber hinaus kann die tatsächliche Zahl an fehlerhaften
Prozessen in einem FTDA einen beliebigen Wert kleiner oder gleich der maximalen Anzahl
an fehlerhaften Prozessen annehmen. Daher muss das System mit mehreren unterschied-
lichen Parametern verifiziert werden. Um die Korrektheit eines FTDAs sicherzustellen
müssen wir alle möglichen Werte dieser Parameter berücksichtigen. Das führt zu einer
unendlich großen Familie von System mit unbegrenzt vielen Zuständen, die verifiziert
werden müssen und somit erhalten wir ein parametrisiertes Model-Checking-Problem
(PMCP). Wir beweisen, dass unser Problem unentschiedbar ist und somit keine allgemeine
Lösung existiert.

Wir führen eine Abstraktionsmethode ein, Parameterized Interval Abstraction (PIA),
um diese Familie an unbegrenzten Systemen zu einem einzige Finite-State-System zu
reduzieren. Dazu wenden wir PIA auf zwei Ebenen auf diese Systeme an. Zunächst
entfernen wir ungebundene Variablen von den einzelnen Systemen, indem wir sie auf
ihrem entsprechenden abstrakten Wert in einem endlichen Bereich abbilden. Danach
eliminieren wir die Parameter des sich daraus ergebenden Systems indem wir PIA auf
die Zahlen an Prozessen an jeder Stelle anwenden. Als Ergebnis erhalten wir ein einziges
Finite-State-System, das mit einem gewöhnlichen Model-Checker wie Spin verifiziert
werden kann. Wir benutzen Verfeinerungstechniken um falsche Gegenbeispiele zu elimi-
nieren, die durch ungewolltes Verhalten im Endsystem verursacht werden, das durch die
Abstraktion eingeführt wurde. Um unsere Formalisierung und Abstraktionsmethode zu
bestätigen zeigen wir zahlreiche Fallstudien, bei denen Safety- und Lifeness-Eigenschaften
unterschiedlicher FTDAs verifiziert werden. Wir präsentieren zusätzlich Simulationsbe-
weise für beide Ebenen der Abstraktion um zu zeigen, dass unsere Abstraktionsmethode
gültig ist.

Contents

Contents xi

List of Figures xiii

List of Tables xiv

List of Algorithms xv

1 Introduction 1
1.1 Aim . 1
1.2 Motivation . 1
1.3 Problem Statement . 9
1.4 Method of Approach . 10
1.5 State of the Art . 14
1.6 Structure of the Thesis and Contributions 15

2 Formal Framework 17
2.1 Computational Model for Asynchronous Distributed Algorithms 18
2.2 System Model with Multiple Parameters 18
2.3 Extended CFA for Threshold-based FTDAs 22
2.4 Transferring Pseudo Code to Extended CFA 24
2.5 Manual Translation of the pseudo code to Promela 34
2.6 Experiments . 41
2.7 Related Work . 44

3 Undecidability of PMCP 47
3.1 2-Counter Machines . 47
3.2 Undecidability of Liveness Properties . 49
3.3 Related Work . 55

4 Abstraction Scheme 57
4.1 Abstract Domain for Parametric Intervals (PIA) 58
4.2 PIA data abstraction . 62
4.3 PIA counter abstraction . 68

xi

4.4 Abstraction Refinement . 79
4.5 Practical Refinement Techniques . 81
4.6 Experiments . 90
4.7 Related Work . 90

5 Selected FTDAs in PROMELA 93
5.1 Folklore Reliable Broadcast Algorithm . 93
5.2 Asynchronous Byzantine Agreement Algorithm 96
5.3 Asynchronous Condition-Based Consensus Algorithm 100
5.4 Experiments . 104

6 Conclusions 107
6.1 Contributions . 107
6.2 Future Work . 108

Bibliography 111

A Running the Tool ByMC 119

List of Figures

1.1 CFA for algorithm given in Listing 2. 10
1.2 A small part of the transition system obtained by counter abstraction. . . . 13

2.1 CFA of our use case Algorithm 2.1. 27
2.2 CFA of Broadcast Algorithm in [89] with symmetric faults 29
2.3 CFA of Broadcast Algorithm in [89] with omission faults 31
2.4 CFA of Broadcast Algorithm in [89] with clean crashes - Model 1 32
2.5 CFA of Broadcast Algorithm in [89] with clean crashes - Model 2 33
2.6 CFA of Broadcast Algorithm in [89] with non-clean crashes 34
2.7 Modeling faulty processes explicitly: Byzantine (Byz), symmetric (Symm),

omission (Omit), non-clean (NonClean) and clean crashes (Clean) 38
2.8 Modeling the e�ect of faults on correct processes: Byzantine (ByzI), symmetric

(SymmI), omission (OmitI), clean crashes (CleanI and Clean2I) and non-clean
crashes (NonCleanI). 40

2.9 Visited states (left) and memory usage (right) when modeling message passing
with channels (ch) or shared variables (var). The faults are in e�ect only
when f > 0. Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory. . . 41

2.10 Spin memory usage (left) and running time (right) for Byz. 44

3.1 CFA J(v, w) for (v, w) œ E
+

and I(x, y) for inc y (and dec x). 52

4.1 The abstraction scheme . 58
4.2 Existential abstraction of x

2

= x

1

+ 1 . 63
4.3 A small part of the transition system obtained by counter abstraction. 71

5.1 CFA of Algorithm 5.1 (if x

Õ is not assigned, then x

Õ = x). 95
5.2 CFA of Algorithm 5.2 (if x

Õ is not assigned, then x

Õ = x). 98
5.3 CFA of Algorithm 5.3 (if x

Õ is not assigned, then x

Õ = x). 101

xiii

List of Tables

2.1 Summary of experiments related to [90] . 43

4.1 Summary of experiments in the parameterized case. 91

5.1 Summary of experiments with algorithms from [19, 16, 77] 105

xiv

List of Algorithms

2.1 Core logic of the broadcasting algorithm from [90]. 24
5.1 Core logic Folklore Broadcast Algorithm from [19]. 93
5.2 Core logic of Asynchronous Byzantine Agreement Algorithm from [16]. . . 97
5.3 Core logic of Condition-Based Consensus Algorithm from [77]. 100

xv

CHAPTER 1
Introduction

1.1 Aim

The aim of this thesis is to develop a novel method to enable automated verification of
an important class of Fault-Tolerant Distributed Algorithms (FTDAs), called threshold-
based FTDAs and thus make a substantial improvement to the current state of the art
in the area of formal verification of fault-tolerant distributed algorithms (FTDAs).

FTDAs are in essence distributed algorithms designed to ensure correctness of dis-
tributed systems even in the presence of a certain number of faulty processes, thereby
increasing the reliability of distributed systems.

We concentrate on an important and widely used class of fault-tolerant distributed al-
gorithms, that we name threshold-based fault-tolerant distributed algorithms. Threshold-
based FTDAs uses threshold-guards on the number of messages received by the processes
to decide action to be taken by the corresponding process [16, 52, 77, 71, 8, 69, 37, 19, 16].
They are used in many safety critical applications [64]. The algorithms we consider have
multiple parameters expressing the number of processes and faults. That is, we have to
verify a family of systems with all the possible values the parameters can take.

1.2 Motivation

To quote Leslie Lamport, “A distributed system is one in which the failure of a computer
which you did not even know existed can render your own computer unusable” [65]. A
distributed system consists of a collection of loosely coupled processes, that coordinate
with each other to achieve a common goal [8]. The Internet is one of the most well-known
examples of a distributed system. A distributed algorithm defines a protocol for the
behavior of each process in such a system. Distributed algorithms have been studied
extensively [71, 8], and the central problems are well understood.

1

The problems in distributed algorithms di�er from the fundamental problems in
sequential (that is, non-distributed) algorithms. The central problems in distributed
algorithms are posed by the inevitable uncertainty of any local view of the global state,
originating from unknown/varying processor speeds, communication delays, and failures.
Pivotal services in distributed systems, such as mutual exclusion, routing, consensus,
clock synchronization, leader election, atomic broadcasting, and replicated state machines,
must hence be designed to cope with this uncertainty. Moreover, it is a common practice
to represent distributed algorithms using a pseudo language. Thus, they are di�cult to
reason about and understand, when compared to non-distributed algorithms.

1.2.1 Classification of distributed algorithms
We can classify distributed algorithms into di�erent types based on the following at-
tributes:

Communication method: The interprocess communication models are

• Shared memory model, where the processes communicate with each other by
changing the value of shared variables.

• Message passing model, where the processes communicate by sending messages to
each other.

Timing model: Based on the timing model, distributed algorithms can be classified
into

• Synchronous Algorithms: In the synchronous model, the processes are perfectly
synchronized. That is, conceptually they take steps in perfect synchrony with each
other. This model is simple but expensive to achieve in reality [71].

• Asynchronous Algorithms: In an asynchronous algorithm there is no upper bound
to the message delay and relative process speeds [46]. Process steps can be ar-
bitrarily interleaved. These features of asynchronous algorithms gives rise to
non-determinism.

• Partially Synchronous Algorithms: Partially synchronous algorithms are more
restricted than asynchronous algorithms. Usually, an upper bound on the relative
process speeds and/or on the message delay is used to restrict the behavior of the
processes [37, 33].

Given below is the pseudo code of a distributed algorithm which solves consensus:
1 choose vi

2 send vi to a l l
3 wait until r e c e i v e d messages from a l l p r o c e s s e s
4 dec ide on s m a l l e s t r e c e i v e d value

Listing 1: pseudo code for consensus algorithm

2

In the example above, every process sends its value to all processes in the system and
then waits until it has received messages from all the processes in the system. Then it
decides on the smallest value that it has received. Now assume that one process in the
system is faulty and sends conflicting messages to di�erent subsets of processes. This can
give rise to disagreement, that is, a situation where di�erent processes decide on di�erent
values. Thus, with a single faulty process in the system, the algorithm fails to function
correctly.

Since distributed algorithms find their applications in a wide range of fields which
include safety critical applications like the aerospace, flight control systems, medical
equipments, automobiles etc [64], it is necessary to ensure their reliability even in the
presence of faults in the system. This is done using FTDAs. The idea is to have redundant
processes in the system to ensure that the system functions correctly even if some of
the processes are faulty. FTDAs define the behavior of the individual processes which
compose such systems.

1.2.2 Fault-Tolerant Distributed Algorithms
FTDAs constitute a core topic of the distributed algorithms community with a rich body
of results [71, 8]. An FTDA is designed such that the distributed system keeps working
correctly even though some processes in the system have failed. The algorithm given
below is an example for an FTDA, where n denotes the number of processes in the
system and t denotes the maximum number of faulty processes allowed. The algorithm
is explained in detail in Chapter 2 and is used as a case study throughout the thesis.
1 code f o r a c o r r e c t p roce s s i
2
3 vi in { fa l se , true }
4 accepti in { fa l se , true } <≠ false
5
6 CODE
7
8 if vi and not sent ÈechoÍ b e f o r e
9 then send ÈechoÍ to a l l ;

10
11 if r e c e i v e d ÈechoÍ from at l e a s t t+1 d i s t i n c t p r o c e s s e s and not sent
12 ÈechoÍ b e f o r e
13 then
14 send ÈechoÍ to a l l ;
15
16 if r e c e i v e d ÈechoÍ from at l e a s t n≠t d i s t i n c t p r o c e s s e s
17 then accepti <≠ true ;

Listing 2: Refer to Algorithm 2.1 and Section 2.4.1 for details

Fault assumptions: The maximum number of the faulty processes that can be present
in the system such that the system functions correctly, depends on the fault model
assumed. Of the di�erent kinds of faults, a Byzantine fault [80] is the most unrestricted
one. A Byzantine faulty process does not have to stick to the protocol and has no
assumptions on its behavior. Thus it can perform any action, including sending incorrect

3

messages to a subset of processes. A clean crash fault is the most restricted one, where the
faulty process just stops working. Fault models like send omission and receive omission
[53] lie in between Byzantine and crash fault, where the faulty process fails to send or
receive some messages occasionally. Faults can also be classified as transient or permanent.
A permanent fault, as the name suggests, is permanent where a process fails once and
forever, while a transient fault is temporary.

From a more operational viewpoint, FTDAs typically consist of multiple processes
that communicate by message passing over a completely connected communication graph.
Since a sender can be faulty, a receiver cannot wait for a message from a specific sender
process. Therefore, most FTDAs use counters to reason about their environment. For
instance if a process receives a certain message m from more than t distinct processes, it
can conclude that at least one of the senders is non-faulty.

For example, the pseudo code given in Listing 2 shows the core logic of the broadcasting
algorithm from [90] which tolerates Byzantine faults.

Threshold-based Fault-Tolerant Distributed Algorithms

In this thesis we concentrate on verifying the correctness of threshold-based FTDAs.
In addition to the standard execution of actions, which are guarded by some predicate
on the local state, most basic distributed algorithms (cf. [71, 8]) add existentially or
universally guarded commands involving received messages:

if r e c e i v e d <m>
from some proce s s

then ac t i on (m) ;

(a) existential guard

if r e c e i v e d <m>
from a l l p r o c e s s e s

then ac t i on (m) ;

(b) universal guard

Depending on the content of the message <m>, the function action performs a local
state transition and possibly sends messages to one or more processes. Such constructs
can be found, e.g., in (non-fault-tolerant) distributed algorithms for constructing spanning
trees, flooding, mutual exclusion, or network synchronization [71]. If we try to build
such a fault-tolerant distributed algorithm using the construct of Example (a) in the
presence of Byzantine faults, the (local state of the) receiver process would be corrupted
if the received message <m> originates in a faulty process. A faulty process could hence
contaminate a correct process. On the other hand, if one tried to use the construct
of Example (b), a correct process would wait forever (starve) when a faulty process
omits to send the required message. To overcome these problems, FTDAs typically
require assumptions on the maximum number of faults, and employ suitable thresholds
for the number of messages which can be expected to be received by correct processes.
Assuming that the system consists of n processes among which at most t may be faulty,
threshold-guarded commands such as the following are typically used by fault-tolerant
distributed algorithms:

4

if r e c e i v e d <m> from n≠t d i s t i n c t p r o c e s s e s
then ac t i on (m) ;

(c) threshold guard
Assuming that thresholds are functions of the parameters n and t, threshold guards are

just generalization of quantified guards as given in Examples (a) and (b). In Example (c),
a process waits to receive n ≠ t messages from distinct processes. As there are at least
n ≠ t correct processes, the guard cannot be blocked by faulty processes, which avoids the
problems of Example (b). In the distributed algorithms literature, we can find a variety
of di�erent thresholds: Typical numbers are Án/2 + 1Ë (for majority [37, 77]), t + 1 (to
wait for a message from at least one correct process [90, 37]), or n ≠ t (in the Byzantine
case [90, 6] to wait for at least t + 1 messages from correct processes, provided n > 3t).

In the setting of Byzantine fault tolerance, it is important to note that the use of
threshold-guarded commands implicitly rests on the assumption that a receiver can
distinguish messages from di�erent senders. In practice, this can be achieved e.g. by using
point-to-point links between processes or by message authentication. What is important
here is that Byzantine faulty processes are only allowed to exercise control on their own
messages and computations, but not on the messages sent by other processes and the
computation of other processes.
Resilience condition: The maximum number of faults allowed in a system is restricted
by a resilience condition. The resilience condition depends on the failure model assumed
and problem to be solved. In case of Byzantine failure, an example of the resilience
condition is n > 3t [80] and f Æ t, where n is the number of processes in the system, t is
the upper threshold of the number of faults allowed in the system and f is the number
of faulty processes in the system at any point of time.

1.2.3 Motivation for Automated Verification

Since the intention of FTDAs is to make distributed systems more reliable in presence of
faults, it is of utmost importance to ensure that they satisfy their specifications or in
layman’s terms, that they do what they are designed to do. In the distributed algorithms
community, the correctness of algorithms is proved manually using reasoning in natural
language [8, 71]. Since the algorithms are represented in pseudo code the semantic
details are di�cult to be extracted without having an expert knowledge of the algorithm.
Moreover, faults introduce additional dimensions of uncertainty and parameterization: the
unknown number of faulty processes in the system and the non-determinism introduced
by the faulty behavior of processes. With all these factors being involved, it is a very time
consuming and creative task to develop manual correctness proofs for these algorithms
and it is not surprising that errors creep into such proofs in some cases [70]. Hence
our goal is to ensure the correctness of these algorithms using automated verification
techniques.

5

1.2.4 Model Checking

There are several formal verification methods in existence, such as model checking,
theorem proving, abstract interpretation etc. [15, 38, 30]. In its original formulation [23],
model checking was concerned with verifying the correctness of finite state systems. If
we have a finite system model S and a specification Ï in temporal logic a model checker
checks whether S |= Ï.

We choose model checking for a number of reasons. Model checking provides a high
degree of automation, which is preferable in our case because that eliminates the necessity
of having in-depth knowledge about the nitty-gritties of the FTDA under consideration.
In model checking, the properties to be satisfied are checked against the system model
and if there is a violation, a counterexample is reported showing the path along which
the property is violated. Such a counterexample is enormously helpful in debugging.

State space explosion is the main challenge of model checking, where the state
space grows exponentially with system parameters like the number of processes in the
system, number of variables etc. There exist di�erent methods to handle the state
space explosion. Abstraction is an e�ective method to handle state space explosion
problem, where a system with a smaller state space is derived from the concrete system,
such that the abstract system simulates the concrete system [26]. Thus, the properties
only need to be checked in the abstract system. If the abstract system satisfies a
property, by construction the concrete system satisfies it. Otherwise, it is checked if the
counterexample is spurious or not. If the counterexample is found to be spurious, then
the abstraction is refined. If the counterexample is not spurious, the system does not
satisfy the property. CEGAR (Counterexample Guided Abstraction Refinement) [25] is
a method which refines the abstraction automatically based on the counterexample, if
the counterexample is found to be spurious. Partial order reduction [81, 50, 94] exploits
the fact that the order of transitions does not a�ect some properties, to reduce the state
space. Predicate abstraction [51, 25] uses theorem provers and SAT/SMT solvers to
compute an abstraction of a concrete system. Counter abstraction [35], abstracts away
the number of processes by introducing an abstract counter which represents the number
of processes in a each local state. Environment abstraction [28], abstracts away the
behaviour of the environment of a process.

Theorem proving being another alternative method generates a mathematical proof
which shows that the property is satisfied by the system model. Automated Theorem
Provers like Isabelle [79], VAMPIRE [84], PVS [85] needs high user interaction in the
form of input lemmas to guide the system through the proof. This demands the user to
have expert knowledge of the algorithm to be verified. On the other hand, testing, which
is not a formal verification method, is completely automated, but it is not complete. Thus
model checking is an ideal choice for us, since it is a good balance between completeness
and automation.

6

1.2.5 Parameterized Model Checking

Finite-state models are, however, not always an adequate modeling formalism for software
and hardware. Distributed algorithms are parameterized in one or more variables. Thus,
the conventional finite state model checker can only verify such algorithms for small
system instances with a fixed number of processes. To verify the algorithm for all possible
values of a parameter, we need parameterized model checking. Let S

n

be a system which
is parameterized in the number of processes n and Ï be a specification expressed in
temporal logic. Then a parameterized model checker checks if ’n Ø 0 . S

n

|= Ï.
Some FTDAs are described using the parameters n, t and f . Thus, FTDAs are more

di�cult than the standard setting of parameterized model checking because a certain
number t of the n processes can be faulty. Importantly, the upper bound t for the faulty
processes, which is essentially a fraction of n, is also a parameter. Thus, for example, we
have to reason about all systems with n ≠ f non-faulty and f faulty processes, where
f Æ t and n > 3t, for an FTDA which tolerates Byzantine faults. Now let us take a look
at the challenges involved in parameterized model checking of FTDAs.

1.2.6 Challenges

Only very few fault-tolerant distributed algorithms have been automatically verified.
This is be because many aspects of distributed algorithms still pose research challenges
for model checking. Given below are the five most pressing issues in model checking
distributed algorithms:

• There is no commonly agreed-upon distributed computing model, but rather many
variants, which di�er in subtle details. Moreover, distributed algorithms are usually
described in pseudo code, typically using di�erent (alas unspecified) pseudo code
languages, which obfuscates the relation to the underlying computing model.

• For many applications, the size of the distributed system, that is, the number of
participants is a priori unknown. Hence, the design and verification of distributed
algorithms should work for all system sizes. That is, distributed systems are
parameterized by construction.

• The inherent concurrency and the uncertainty caused by partial failure lead to many
sources of non-determinism, which makes reasoning about distributed algorithms
extremely di�cult.

• Correctness of distributed algorithms depends on the assumptions made on the
environment. Various assumptions made on the environment are for example, only
a certain fraction of the processes faulty, the interleaving of steps is restricted, the
message delays are bounded etc. Such assumptions are usually spread throughout
the literature and explained in natural language. Hence they cannot be extracted
from the pseudo code.

7

Considering all these facts, it is not a surprise that formal verification of FTDAs finds
itself in a very premature state of research.

We have identified the two main problems to be attacked in order to be able to model
check FTDAs: the formalization problem and verification problem.

Formalization problem

Formalizing the algorithm represented in pseudo code is a major challenge which we
have to overcome to be able to formally verify the algorithm. A clear understanding of
the semantics of the algorithm is unavoidable for ensuring the correct execution of the
algorithm. Thus, a formal framework for specifying the algorithms is necessary to be
able to verify them.

In the literature, a vast majority of distributed algorithms are described in pseudo
code [89, 6, 95]. The intended semantics of the pseudo code is folklore knowledge
among the distributed computing community. Researchers who have been working in this
community have intuitive understanding of keywords like “send”, “receive”, or “broadcast”.
For instance, inside the community it is understood that there is a semantical di�erence
between “send to all” and “broadcast” in the context of fault tolerance. Moreover, the
constraints on the environment are given in a rather informal way.

For example, let us consider the authenticated Byzantine model [37], Here it is
assumed that faulty processes may behave arbitrarily. At the same time, it is assumed
that there is some authentication service, which provides unbreakable digital signatures.
In conclusion, it is thus assumed that faulty processes send messages as they like, except
for the ones that look like messages sent by correct processes. However, inferring this
kind of information about the behavior of faulty processes is a very intricate task.

Thus, a close familiarity with the distributed algorithms community is required to
adequately model a distributed algorithm in preparation of formal verification. When the
essential conditions are hidden between the lines, one cannot be sure that the algorithm
being verified is the one that is actually intended by the authors. Hence there is a need for a
formal framework to precisely express distributed algorithms along with their environment.
Such a framework should not only be natural for distributed algorithms researchers, but
also provide unambiguous and clear semantics. Since distributed algorithms come with a
wide range of di�erent assumptions, the framework has to be easily configurable to these
situations.

The two major approaches that exist in formalizing distributed algorithms are I/O
Automata [72, 62, 76] and TLA [67, 60, 68]. Both these approaches do not cater to our
specific need for reason detailed in Section 2.7.

Verification problem (Parameterized Model Checking Problem)

The properties we want to verify are safety and liveness properties. Safety properties say
that nothing bad can happen in the system, while liveness properties indicate something
good will eventually happen. An example for a safety property for a consensus algorithm

8

is, no two correct processes decide on conflicting values. Similarly, an example for a
liveness property is, every correct process eventually decides on a value.

Availability of a formal framework still leaves the challenge of parametrized model
checking open. The two challenges we face in our verification problem are, dealing with
the parameter in the individual process codes, and parameterization in the number of
processes in the system.

(i) Parameterized process codes: Unbounded variables are used to model the sending
and reception of messages by the processes in our system. Since the number of process are
not fixed, every process in our system has an unbounded state. We need an abstraction h,
to eliminate the parameters within the process and thus transform the process model I

to a bounded state model h(I). The construction of h assures soundness, i.e., for a given
specification logic we can assure by construction that h(I) |= Ï implies I |= Ï. The major
drawback of abstraction is incompleteness: if h(I) ”|= Ï then it does in general not follow
that I ”|= Ï. CEGAR addresses this problem by an adaptive procedure, which analyzes
the abstract counterexample for h(I) ”|= Ï on h(I) to find a concrete counterexample or
obtain a better abstraction h

Õ(I). For abstraction to work in practice, it is crucial that
the abstract domain from which h and h

Õ are chosen is tailored to the problem class and
possibly the specification. Abstraction thus is a semi-decision procedure whose usefulness
has to be demonstrated by practical examples.

(ii) Parameterization on the number of processes: As we have seen earlier in this
chapter, the number of processes in a distributed system is usually not a priori known.
Moreover, fault tolerance requires process replication, which in turn depends on the fault
model. Thus, an FTDA has multiple parameters, for instance, the number of processes
in the system n, the maximum number of allowed faulty processes t and the number of
actual faulty processes in the system f . Hence they are represented by an infinite class
of structures S = S

1

, S

2

, . . . } rather than a single structure, where S is parameterized in
n, t and f .

1.3 Problem Statement

Given a parametrized system model which consists of an asynchronous parallel com-
bination of n process models and a specification, our goal is to check if the system
model satisfies the specification for all possible combinations of the parameter values
defined by the resilience condition. Let M(n, t, f) be the system model which consists
of a parallel combination of n process models such that f Æ t. That is, M(n, t, f) =
M

1

(n, t, f) || M

2

(n, t, f) || ... || M

n

(n, t, f). Let F be a family of such systems with all
possible combinations of the parameters n, t and f such that, the resilience condition is
not violated. Then, if „ is a system specification represented as a Linear Temporal Logic
(LTL) formula, we need to check if F |= „.

9

q

I

q

1

q

2

q

3

q

4

sv = V1

sv ”= V1 ·
sv0 = sv·
nsnt0 = nsnt

nsnt0 = nsnt + 1

sv0 = SE

q

5

q

6

q

7

q

8

q

9

q

F

rcvd Æ rcvd Õ · rcvd Õ Æ nsnt + f

(t + 1 >

rcvd Õ) ·
svÕ = sv0 ·
nsnt Õ = nsnt0

t + 1 Æ rcvd Õ

sv0 = V0
sv0 ”= V0 ·
nsnt Õ = nsnt0

nsnt Õ = nsnt0 + 1

n ≠ t > rcvd Õ

n ≠ t Æ rcvd Õ

svÕ = SE

svÕ = AC

Figure 1.1: CFA for algorithm given in Listing 2.

1.4 Method of Approach

1.4.1 Formalizing the distributed algorithm
The first step is to tackle the formalization problem mentioned in Section 1.2.6. We use
extended Control Flow Automata (CFA) which accommodates non-determinism and
threshold guards to formalize threshold-guarded FTDAs.

For example, let us consider the CFA given in Figure 1.1 that formalizes the authenti-
cated broadcast algorithm [89]. A detailed explanation of the algorithm, its formalization
and modeling can be seen in Chapter 2. The CFA uses the shared integer variable nsnt
which captures the number of messages sent by non-faulty processes, the local integer

10

variable rcvd which stores the number of messages received by the process so far and the
local status variable sv (ranges over a finite domain), which captures the local progress
w.r.t. the FTDA.

We use the CFA in Figure 1.1 to represent one atomic step of the FTDA in [89]:Each
edge is labeled with a guard. A path from q

I

to q

F

induces a conjunction of all the guards
along it, and imposes constraints on the variables before the step, after the step and on
the temporary variables. The variables are renamed after every assignment operation
in order to prevent overwriting the value of the same variable. Thus, sv and svÕ refer
to the same variable, before the step and after the step respectively. sv0 represents a
temporary variable. If we fix the variables before the step, di�erent valuations of the
primed variables that satisfy the constraints capture non-determinism. Faulty processes
can be modeled explicitly or implicitly in the CFA. In implicit modeling, the model
does not include the faulty processes and their e�ect on the correct processes is modeled
by letting them receive more messages than those sent in the system. Our example in
Figure 1.1 uses implicit modeling of faulty processes.

While the extended CFA model of the algorithm serves as a simple mathematical
representation, we model the algorithms using an extended version of Promela (input
language of Spin model checker) which is used as the input to the model checker Spin to
practically verify the algorithm.

1.4.2 Parameterized model checking by abstraction
We give a brief introduction to this step in the following paragraphs. A detailed description
can be found in Chapter 4.

From Section 1.4.1 we infer that there are two sources of unboundedness: the integer
variables and the parametric number of processes. We deal with these two issues in
two steps.
Step 1: PIA data abstraction: We observe that the CFA contains several transitions
which are labeled with threshold guards that refer to (unbounded) variables and param-
eters. For instance, the CFA in Figure 1.1 contains the following transition, which is
labeled with a threshold guard:

q

4

q

5

t + 1 Æ rcvd Õ

The CFA also contains a guard. Intuitively, the correctness of the FTDA is based on
the fact that the values of the thresholds, e.g., t + 1 and n ≠ t, are su�ciently far
apart from each other. From the resilience condition n > 3t · f Æ t, it follows that
(n ≠ t) ≠ f Ø t + 1. These properties are also used in the manual correctness proofs [90].
We observe that such FTDAs are designed by carefully choosing the thresholds and the
resilience condition. Consequently, our abstraction must be su�ciently precise to preserve
the resilience condition and the relationship between thresholds.

The second important observation is that the progress of a process depends on the
satisfaction of the threshold guards. Thus, it is not necessary to keep track of the precise

11

value of variables that are compared against thresholds, e.g., rcvd Õ. Rather, in our case
study, it is su�cient to know whether the variable under consideration crosses certain
threshold values or not. Thus, instead of tracking every single value taken by rcvd Õ, we
may just check if rcvd Õ lies in the interval [0, t + 1[, or [t + 1, n ≠ t[, or [n ≠ t, Œ[, in order
to determine which of the threshold guards of the CFA are satisfied. Our parametric
interval abstraction PIA exploits this idea. In addition, in Step 2 we will see that we also
have to distinguish 0 from other values. Thus, PIA consists of mapping integers to a
finite domain of four intervals I

0

= [0, 1[and I

1

= [1, t + 1[and I

2

= [t + 1, n ≠ t[and
I

3

= [n ≠ t; Œ[.
We replace the guards that refer to unbounded variables and parameters by their

abstraction. For instance, the above transition with the guard t + 1 Æ rcvd Õ means that
rcvd Õ lies in the intervals [t + 1, n ≠ t[or [n ≠ t, Œ[. As these correspond to the abstract
intervals I

2

and I

3

, respectively, we can replace the guard by:

q

4

q

5rcvd Õ = I

2

‚ rcvd Õ = I

3

The abstraction of the guard nsnt0 = nsnt + 1 can be expressed similarly, which will
be demonstrated in Chapter 4. The expression rcvd Õ Æ nsnt + f , which is also used in
a guard, is more complicated as it involves two variables and a parameter. Still, the
basic abstraction idea is the same. The corresponding abstract expression has the form
(rcvd Õ = I

0

· nsnt = I

0

) ‚ (rcvd Õ = I

0

· nsnt = I

1

) ‚ · · · ‚ (rcvd Õ = I

3

· nsnt = I

3

).
These abstract guards are Boolean expressions over equalities between variables and

abstract values. Therefore, it is su�cient to interpret the variables nsnt and rcvd over
the finite domain. Hence, all variables range over finite domains, and we arrive at finite
state processes in this way. Our system, however, is still parameterized, namely, in the
number of processes. Thus our next task is to get rid of this parameter.
Step 2: PIA counter abstraction. The resultant system obtained by applying the
previous step to the CFA shown in Figure 1.1 is still parameterized in the number of
processes. We reduce this resultant system a finite state system as follows.

We use the global variable nsnt to keep track of the number of messages sent in the
system. The global state is represented by the abstract shared variable nsnt and by one
counter each for each local state. The counters keep a count of the number of processes
in each local state. Second, as processes interact only via the nsnt variable, precisely
counting processes in certain states may not be necessary; as nsnt already ranges over the
abstract domain, it is natural to count processes in terms of the same abstract domain.
Thus we use the same abstract domain to eliminate the unboundedness of the counter
values.

The local state of a process is determined by the values of sv and rcvd. Thus,
Ÿ[x, y] = I means that the number of processes with sv = x and rcvd = y lies in the
abstract interval I. Then, in Figure 1.2, the state s

0

represents the initial states where
the number of process with sv = V0 and rcvd = 0 lies between t + 1 and n ≠ t ≠ 1 and
the number of process with sv = V1 and rcvd = 0 lies between 1 and t. We omit local
states that have the counter value I

0

for better readability.

12

Ÿ[V0, I0] = I2
Ÿ[V1, I0] = I1

nsnt = I0

s0

Ÿ[V0, I0] = I2
Ÿ[V0, I1] = I1
Ÿ[V1, I0] = I1
nsnt = I0

s1

Ÿ[V0, I0] = I1
Ÿ[V0, I1] = I1
Ÿ[V1, I0] = I1
nsnt = I0

s2

Ÿ[V0, I1] = I1
Ÿ[V1, I0] = I1
nsnt = I0

s6

Ÿ[V0, I0] = I2
Ÿ[V0, I1] = I2
Ÿ[V1, I0] = I1
nsnt = I0

s3

Ÿ[V0, I0] = I1
Ÿ[V0, I1] = I2
Ÿ[V1, I0] = I1
nsnt = I0

s4

.

.

Figure 1.2: A small part of the transition system obtained by counter abstraction.

Figure 1.2 gives a small part of the transition system obtained from the counter
abstraction starting from initial state s

0

. Each transition corresponds to one process
taking a step in the concrete system. For instance, in the transition (s

0

, s

2

) a process
with local state [V0, I

0

] changes its state to [V0, I

1

]. Therefore, the counter Ÿ[V0, I

0

] is
decremented and the counter Ÿ[V0, I

1

] is incremented. However, as we interpret counters
over the abstract domain, the operations of incrementing and decrementing a counter
are actually non-deterministic. Consequently, the transition (s

0

, s

1

) captures the same
concrete local step as (s

0

, s

2

). In (s
0

, s

1

), the non-deterministic decrement of the abstract
counter Ÿ[V0, I

0

] did not change its value.

Abstraction refinement: Our abstraction steps result in a system which is an over-
approximation of all systems with fixed parameters. For instance, the non-determinism in
the counters may “increase” or “decrease” the number of processes in a system, although
in all concrete system the number of processes is constant: Consider the transition (s

2

, s

6

)
in Figure 1.2, and let x, y, z be the non-negative integers that are in s

2

, abstracted
to Ÿ[V0, I

0

], Ÿ[V0, I

1

], and Ÿ[V1, I

0

], respectively. Similarly y

Õ and z

Õ are abstracted to
Ÿ[V0, I

1

] and Ÿ[V1, I

0

] in s

6

. If the following inequalities do not have a solution under
the resilience condition (n > 3t, t Ø f), then there is no concrete system with a transition
between two states that are abstracted to s

2

and s

6

, respectively.

1 Æ x < t + 1, 1 Æ y < t + 1, 1 Æ z < t + 1,

1 Æ y

Õ
< t + 1, 1 Æ z

Õ
< t + 1,

x + y + z = y

Õ + z

Õ = n ≠ f.

We use an SMT solver to find out whether there is a solution for the above inequalities,
and examine each transition of a counterexample returned by a model checker. If a
transition is spurious, then we remove it from the abstract system. We force Spin to
prune spurious executions, buy using a flag to indicate the spurious transitions in the
current execution.

13

1.5 State of the Art

The conventional way of proving the correctness of FTDAs is by handwritten proofs [8, 71].
These handwritten proofs are usually di�cult to understand and writing them requires
expert knowledge of the algorithm. Moreover, proving correctness using handwritten
proofs is very tedious and time consuming, and such proofs can be erroneous due to the
inherent non-determinism of the algorithms [70].

Several distributed algorithms have been formally verified in the literature. Typically,
these papers have addressed specific algorithms in fixed computational models. There
are roughly two lines of research. On the one hand, the semi-manual proofs conducted
with proof assistants which typically involve an enormous amount of manual work by the
user, and on the other hand automatic verification, e.g., using model checking.

Among the work using proof assistants, Byzantine agreement in the synchronous case
was considered in [70, 88]. In the context of the heard-of model with message corruption
[11] Isabelle proofs are given in [20]. In [21] the authors used Isabelle/HOL to verify
a well known consensus algorithm called Paxos, represented in the Heard-Of model.
In [70] PVS is used to prove the correctness of the Oral Messages (OM) algorithm of
Lamport, Shostak, and Pease. In this paper it is shown that a variant of this algorithm
by Thambidurai and Park has serious flaws in spite of the proofs they provided in
natural language. In [88] the PVS theorem prover is used to verify the 1-round Byzantine
agreement algorithm OMH. Byzantine Paxos algorithm is verified using the TLAPS proof
system in [69]. In all these cases, proof assistants are used to verify FTDAs and the
verification process involves strong user interaction in the form of supplying lemmas to
help the proof assistant verify the algorithms.

Our aim is to automatically verifying FTDAs using model checking techniques. Model
checking of fault-tolerant distributed algorithms is usually limited to small instances,
i.e., to systems consisting of only few processes (e.g., 4 to 10). However, distributed
algorithms are typically designed for parameterized systems, i.e., for systems of arbitrary
size. The model checking community has created interesting results toward closing this
gap, although it still remains a big research challenge. Model checking has been used to
verify FTDAs for di�erent values of system sizes in [91] and [93]. That is, these papers do
not tackle the verification of FTDAs for all possible values of the system size and faults.

We will now take a look at the state of the art of parametrized model checking
techniques. In [24] a technique to verify a family of finite state-transition systems based
on network grammars and abstraction is introduced. In [83] counter abstraction is used
to verify liveness properties in parametrized systems. Here, the processes are abstracted
away into three groups (0, 1 and many), based on the local states which they are in. In [9],
again counter abstraction is used ot verify device drivers. The processes are assumed to
be perfectly symmetric with each other and finite state. Environment abstraction is used
in [28] to check Lamport’s bakery algorithm and Szymanski’s mutual exclusion algorithm.
Vector Addition Systems with States (VASS) are used to model check concurrent systems
with an arbitrary number of finite state process in [48].

14

In [41] it is shown how to model check ring-based message passing systems by reducing
the ring with an arbitrary number of process to a fixed number of cut-o� processes.
Their method is sound and complete for bidirectional rings and the reduced system is
a replica of the original system. These methods are di�erent from the verification of
concurrent code which uses mechanisms like shared memory and locks for large systems
whose verification is non-trivial due to the size [10, 34, 61, 44].

In [92] German’s cache coherence protocol has been verified using the compositional
(CMP) method [73, 22] reinforced with invariants derived from message flows to verify
cache coherence protocols. CMP method has been used to verify flash protocols in [74]
and [22]. In [40] the authors consider parametrized reasoning of cache coherence protocols.
Cache coherence is an area where parametrized model checking has been used to verify
systems of arbitrary size. Since these protocols are usually described via message passing,
they appear similar to asynchronous distributed algorithms. However, issues such as
faulty components and liveness are not considered in the literature.

Most of the work on parameterized model checking considers only safety. For example,
in [7], the safety of synchronous broadcasting algorithms that tolerate crash or send
omission faults has been verified. Notable exceptions are [63, 83] where several notions
of fairness are considered in the context of abstraction to verify liveness.

1.6 Structure of the Thesis and Contributions
This thesis presents work published in [59], [58], [57] and [49], except for Chapter 3 which
consists of unpublished result. We will now outline the structure of the thesis along with
chapter-wise contributions.

In Chapter 2 we deal with the formalization problem in verifying FTDAs. We
introduce the formal framework for FTDAs and with the help of a use case algorithm [90],
we show how to represent the pseudo code in our extended CFA. Then we show how to
translate the algorithm represented in the extended CFA to Promela code, which is the
input language of the Spin model checker. We explain the extensions we incorporated in
Promela to accommodate several inherent features of FTDAs. We also show how to
model di�erent kinds of faults in our formal framework.

In Chapter 3 we discuss the undecidability of the parameterized model checking
problem for liveness properties.

Chapter 4 introduces our Parameterized Interval Abstraction. We explain the abstract
domain followed by the PIA data abstraction. Then the PIA counter abstraction and the
associated formalism are explained with the help of a use case algorithm [90]. We give a
general framework for sound refinement of our abstract model and provide a detailed
discussion about the refinement techniques we use.

In Chapter 5, we present three di�erent algorithms, explain how we formalize them
using the extended CFA and translate them to Promela code. The algorithms di�er in
the number of message types and the kind of faults tolerated. The algorithms presented are
Folklore Reliable Broadcast algorithm [19], Asynchronous Byzantine Agreement algorithm
[16] and the Condition-Based Consensus algorithm [77]. We conduct experiments using

15

our tool chain ByMC for the algorithms mentioned above. We present the results of
these experiments for both non-parameterized (with fixed parameters) and parameterized
versions of these algorithms.

Finally, we provide the summary of our work and discuss future work in Chapter 6.

16

CHAPTER 2
Formal Framework

In this chapter we present our approach towards solving the first problem to be dealt
with in verifying fault-tolerant distributed algorithms: the formalization problem. As
we have already discussed in Chapter 1, distributed algorithms are usually expressed
using pseudo code with no formal backbone to it and their correctness is proved using
reasoning in natural language. This poses a major barrier to the verification e�orts of
such algorithms due to the di�culty in understanding the multitude of intricate details of
the underlying semantics of the algorithm, hidden behind the deceptively simple pseudo
code. Thus, the first step towards our goal of automatically verifying FTDAs is of course
formalizing them.

This chapter is organized as follows. In Section 2.1 we present the computational
model for asynchronous distributed algorithms. We then develop a system model for
fault-tolerant distributed algorithms with multiple parameters in Section 2.2 and express
the specifications of parameterized systems using Linear Temporal Logic without the
next time operator (LTL-X). In Section 2.3 we introduce extended CFA which is used to
to precisely express the semantics of the FTDA in the form of a transition system. Then
we show how to transfer a threshold-based FTDA given in pseudo code to extended CFA,
using Algorithm 2.1 in Section 2.4, for di�erent fault assumptions. We use an extended
version of Promela (input language of Spin model checker [55]), to encode the algorithm.
The Promela code serves as the input to our next step: parameterized model checking
by abstraction. It is also used to run experiments using our tool chain ByMC [1]. In
Section 2.5 we give the encoding of Algorithm 2.1 for various fault models, in extended
Promela. In Section 2.6 we present experiments which validates the adequacy of our
formalization method. To this end we try di�erent fixed parameter (non-parameterized)
variations of Algorithm 2.1, with di�erent combinations of parameter values and verify
that each these variants gives the expected result.

17

2.1 Computational Model for Asynchronous Distributed
Algorithms

The computational model we use for threshold-based FTDAs is the one presented in
[46]. Let us first recall the standard assumptions for asynchronous distributed algorithms
introduced in Section 1.2.2. A system consists of n processes out of which at most t may
be faulty. When considering a fixed computation, we denote by f the actual number
of faulty processes. The relation between n, t and f is fixed by the resilience condition.
As these parameters do not change during a run, they can be encoded as constants.
Correct processes follow the algorithm by taking steps that correspond to the algorithm
description. Between every pair of processes, there is a bidirectional link over which
messages are exchanged. A link contains two message bu�ers, each being the receive
bu�er of one of the incident processes.

A step of a correct process is atomic and consists of the following three parts:

• The process possibly receives a message. A process is not forced to receive a message
in a step even if there is one in its bu�er [46].

• Then, it performs a state transition depending on its current state and the received
message.

• Finally, a process may send at most one message to each process, that is, it puts a
message in the bu�er of the other processes.

Moreover, if a message m is put into a process p’s bu�er, and p is correct, then m

is eventually received, i.e., every message sent is eventually received. This property is
called reliable communication. Thus, computations are asynchronous in a way that the
steps can be arbitrarily interleaved, provided that each correct process takes an infinite
number of steps. Since the processes are not forced to receive a message in every step,
in order to satisfy the reliable communication property, each correct process should be
able to take infinite number of steps. For instance, Algorithm 2 has runs that never
accept and are infinite, since processes are not forced to receive messages when they take
a step. Conceptually, the standard model requires that processes executing terminating
algorithms loop forever in terminal states [71].

2.2 System Model with Multiple Parameters
In this section we develop all notions that are required to precisely state the parameterized
model checking problem for a system with multiple parameters.

As we already have seen in Chapter 1, threshold-based FTDAs have multiple parame-
ters. As running example, we use the parameters n, t and f (explained in Section 2.1).
We define the processes parameterized over n, t and f in a way that we can modularly
compose them into a parameterized system instance.

We define the local variables of the processes, the shared variables and the parameters
referring to a single domain D that is totally ordered and has the operations of addition

18

and subtraction. In the rest of this thesis we assume that D is the set of nonnegative
integers N

0

.
Let us start with some notation. Let Y be a finite set of variables ranging over D. We

denote the set of all |Y |-tuples of variable values, by D

|Y |. For instance, let Y = {x, y, z}.
That is, the cardinality of Y , |Y | = 3. D

|Y | = {(x
1

, y

1

, z

1

), (x
2

, y

2

, z

2

),}, where x

i

, y

i

,
z

i

, are di�erent valuations of the variables x, y and z, respectively, where i = 1, 2, .. .
Each valuation is a natural number which belongs to D. Given a vector s œ D

|Y |, we use
the expression s.y, to refer to the value of a variable y œ Y in vector s. That is, in the
above example if s is (x

1

, y

1

, z

1

), then s.y = y

1

For two vectors s and sÕ, by s =
X

sÕ we
denote the fact that for all x œ X, s.x = sÕ

.x holds. Thus if sÕ = (x
2

, y

2

, z

2

), then s =
Y

sÕ

means x

1

= x

2

, y

1

= y

2

and z

1

= z

2

. That is, the value of each variable element of the
set Y in s is the same as its value in sÕ .

The set of variables V is {sv} fi � fi � fi �. The variable sv is the status variable that
ranges over a finite set SV of status values. For simplicity, we assume that only one status
variable is used. However, multiple finite domain status variables can be encoded into sv.
The finite set � contains variables that range over the domain D. The variable sv and the
variables from � are local variables. The finite set � contains the shared variables that
range over D. The finite set � is a set of parameter variables that range over D, and the
resilience condition RC is a predicate over D

|�|. For instance in our use case Algorithm 2.1,
� = {n, t, f}, and the resilience condition RC (n, t, f) is n > 3t · f Æ t · t > 0. We
denote the set of admissible parameters by P

RC

= {p œ D

|�| | p |= RC}. That is, the
set of admissible parameters is the set of all 3-tuples of parameter values (values of n, t

and f), which satisfy the resilience condition.
We use this system model to verify FTDAs as follows: We take a process description

that uses the parameters n and t and from this we construct a system instance parameter-
ized in n, t, and f , which then describes all runs of an algorithm in which exactly f faults
occur. The verification problem for a distributed algorithm in the concrete case with
fixed n and t is the composition of model checking problems, where in each problem f

takes values such that f Æ t. This modeling also allows us to set f = t + 1, which models
runs in which more faults occur than expected, and search for counterexamples. For the
parameterized case, we are required to verify the algorithm for all values of parameters
that satisfy the resilience condition.

2.2.1 Process Skeleton and Instance
Here we explain the semantics of an individual process in terms of a transition system.
A process operates on states from the set S = SV ◊ D

|�| ◊ D

|�| ◊ D

|�|. Each process
starts its computation in an initial state from a set S

0 ™ S. A relation R ™ S ◊ S defines
transitions from one state to another, with the restriction that the values of parameters
remain unchanged, i.e., for all (s, t) œ R, s =

�

t. Then, a parameterized process skeleton
is a tuple Sk = (S, S

0

, R). Note that the set of states includes the set of all |�|-tuples of
parameter values which satisfy the resilience condition. But every transition relation is
restricted in a way that the parameter values do not change when the process goes from
one state to another.

19

We get a process instance by fixing the parameter values p œ D

|�|. That is, we choose
one tuple from the set of |�|-tuples D

|�|. We can restrict the set of process states to
S|

p

= {s œ S | s =
�

p} and the set of transitions to R|
p

= R fl (S|
p

◊ S|
p

). Thus, the
set of the states of the processes are restricted to those where the parameter values are
equal to the specific combination chosen from the set of |�|-tuples D

|�|. The transition
relation is restricted to the transition between these states. Then, a process instance is a
process skeleton Sk|

p

= (S|
p

, S

0|
p

, R|
p

) where p is constant.

2.2.2 System Instance
For fixed admissible parameters p, a distributed system is modeled as an asynchronous
parallel composition of identical processes Sk|

p

. We define the size of a system as the
number of processes in the system, using a function N : P

RC

æ N
0

. The number of
processes in the system model depends on our modeling choices. For instance, we may
choose to model only the correct processes explicitly for a byzantine tolerant system. In
such a scenario the system size N(n, t, f) = n ≠ f .

Given p œ P
RC

, and a process skeleton Sk = (S, S

0

, R), a system instance is
defined as an asynchronous parallel composition of N(p) process instances, indexed by
i œ {1, . . . , N(p)}, with standard interleaving semantics [38]. Let AP be a set of atomic
propositions. A system instance Inst(p, Sk) is a Kripke structure (S

I

, S

0

I

, R

I

, AP, ⁄

I

)
where:

• S

I

= {(‡[1], . . . , ‡[N(p)]) œ (S|
p

)N(p) | ’i, j œ {1, . . . , N(p)}, ‡[i] =
�fi�

‡[j]} is
the set of (global) states. Informally, a global state ‡ is a Cartesian product of the
state ‡[i] of each process i, with identical values of parameters and shared variables
for each process.

• S

0

I

= (S0)N(p)flS

I

is the set of initial (global) states, where (S0)N(p) is the Cartesian
product of initial states of individual processes.

• A transition (‡, ‡

Õ) from a global state ‡ œ S

I

to a global state ‡

Õ œ S

I

belongs to
R

I

i� there is an index i, 1 Æ i Æ N(p), such that:

(move) The i-th process moves: (‡[i], ‡

Õ[i]) œ R|
p

.
(frame) The values of the local variables of the other processes are preserved:

for every process index j ”= i, 1 Æ j Æ N(p), it holds that ‡[j] ={sv}fi�

‡

Õ[j].

• ⁄

I

: S

I

æ 2AP is a state labeling function.

Remark 1. The set of global states S

I

and the transition relation R

I

are preserved under
every transposition i ¡ j of process indices i and j in {1, . . . , N(p)}. That is, every
system Inst(p, Sk) is fully symmetric by construction.

Remark 2. We call a pair of resilience condition and system size function (RC , N)
natural if {N(p) | RC (p)} is infinite. From now on we consider only families of system

20

instances with natural (RC , N), as this implies that there is no bound on the number
of processes. Since N(p) is a function, in principle it is possible that N(p) takes a
single value, which then do not reflect parameterized systems. In order to avoid such a
scenario, it is important to define the natural pair of resilience condition and system size
as explained above, so that all possible values of N(p) are taken into consideration.

Temporal logic

We write specifications of our parameterized systems in LTL-X. We use the standard
definitions of paths and LTL-X semantics [38]. A formula of LTL-X is defined inductively
as:

• a literal p or ¬p, where p œ APSV , or

• F Ï, G Ï, Ï U Â, Ï ‚ Â, and Ï · Â, where Ï and Â are LTL-X formulas.

This contrasts the vast majority of work on parameterized model checking where
indexed temporal logics are used [17, 29, 27, 42]. The reason for the use of indexed
temporal logics is that they allow to express the progress of individual processes, e.g.,
in dining philosophers it is required that if a philosopher i is hungry, then i eventually
eats. Intuitively, dining philosophers requires us to trace indexed processes along a
computation, e.g., ’i. G (hungry

i

æ (F eating
i

)).
In contrast, fault-tolerant distributed algorithms are typically used to achieve certain

global properties such as, consensus (agreeing on a common value), or broadcast (ensuring
that all processes deliver the same set of messages). To capture these kinds of properties,
we have to trace only existentially or universally quantified properties, e.g., one of
the broadcast specifications (relay) [90] states that if some correct process accepts a
message, then all (correct) processes accept the message. That is, (G (÷i. accept

i

)) æ
(F (’j. accept

j

)).
We therefore use a temporal logic where the quantification over processes is restricted

to propositional formulas.

2.2.3 Atomic Propositions

We will need two kinds of quantified propositional formulas. First, we introduce the set
APSV that contains atomic propositions that capture comparison against some status
value Z œ SV , i.e.,

[’i. sv
i

= Z] and [÷i. sv
i

= Z] .

This allows us to express specifications of distributed algorithms.
Second, in order to express comparison of variables ranging over D, we add a set of

atomic propositions APD that capture the comparison of variables x, y, and a constant
c, all of them ranging over D. APD consists of propositions of the form

[÷i. x

i

+ c < y

i

] .

21

We then define the set of atomic propositions AP to be the disjoint union of APSV
and APD. The labeling function ⁄

I

of a system instance Inst(p, Sk) maps its state ‡ to
expressions p from AP as follows:

[’i. sv
i

= Z] œ ⁄

I

(‡) i�
fi

1ÆiÆN(p)

(‡[i].sv = Z)

[÷i. sv
i

= Z] œ ⁄

I

(‡) i�
fl

1ÆiÆN(p)

(‡[i].sv = Z)

[÷i. x

i

+ c < y

i

] œ ⁄

I

(‡) i�
fl

1ÆiÆN(p)

(‡[i].x + c < ‡[i].y)

Fairness. We are interested in verifying safety and liveness properties. The latter can be
usually proven only in the presence of fairness constraints. As in [63, 83], we consider
verification of safety and liveness in systems with justice fairness constraints. We define
fair paths of a system instance Inst(p, Sk) using a set of justice constraints J ™ APD. A
path fi of a system Inst(p, Sk) is J-fair i� for every p œ J there are infinitely many states
‡ in fi with p œ ⁄

I

(‡). That is, p holds infinitely many times in the path fi, for fi to be
J-fair. By Inst(p, Sk) |=

J

Ï we denote that the formula Ï holds on all J-fair paths of
Inst(p, Sk).

Definition 3. Parameterized Model Checking Problem: Given a system description
containing

• a domain D,

• a parameterized process skeleton Sk = (S, S

0

, R),

• a resilience condition RC (generating a set of admissible parameters P
RC

),

• a system size function N ,

• justice requirements J ,

and an LTL-X formula Ï, the parameterized model checking problem (PMCP) is to verify
’p œ P

RC

. Inst(p, Sk) |=
J

Ï.

2.3 Extended CFA for Threshold-based FTDAs
In this section we explain our formalization approach using extended CFA in detail. CFA
o�ers a simple way to express the semantics of an algorithm in a precise way. It also
o�ers us a convenient model which we can use to explain our abstraction method. Thus,
we formalize threshold-based FTDAs as a transition system, using an extended version
of CFA which was briefly introduced in Section 1.4.1. We also gave an example CFA in
Figure 1.1.

22

Processes that run distributed algorithms execute the same acyclic piece of code
repeatedly. In the parlance of distributed algorithms, a single execution of this code is
called a step, and steps of correct processes are considered to be atomic. Distributed
algorithms can be classified based on what can happen during a step, which in turn
depends on the actual code. For instance, in our case study, a step consists of a receive,
a computation and a sending phase. We use the concept of CFA to formalize the steps
taken by each process. The paths from the initial to the final location of the CFA describe
one step of the distributed algorithm. We define an extended version of CFA to represent
distributed algorithms that contain threshold guards.

The concept of CFA was introduced by Henzinger et al. [54], as a framework to
describe the control flow of a program. We extend the original version of the CFA so
that it can handle the features of a threshold-based FTDA. Formally, a guarded control
flow automaton is an edge-labeled directed acyclic graph A = (Q, q

I

, q

F

, E) with a finite
set Q of nodes called locations, an initial location q

I

œ Q, and a final location q

F

œ Q. A
path from q

I

to q

F

is used to describe one step of a distributed algorithm. The edges
have the form E ™ Q ◊ guard ◊ Q, where guard is defined as an expression of one of the
following forms where a

0

, . . . , a|�| œ Z, and � = {p

1

, . . . , p|�|}:

• if Z œ SV , then sv = Z and sv ”= Z are status guards;

• if x is a variable in D and C œ {Æ, >}, then

a

0

+
ÿ

1ÆiÆ|�|
a

i

· p

i

C x

is a threshold guard;

• if y, z

1

, . . . , z

k

are variables in D for k Ø 1, and C œ {=, ”=, <, Æ, >, Ø}, and
a

0

, . . . , a|�| œ Z, then

y C z

1

+ · · · + z

k

+
!

a

0

+
ÿ

1ÆiÆ|�|
a

i

· p

i

"

is a comparison guard;

• a conjunction g

1

· g

2

of guards g

1

and g

2

is a guard.

Status guards are used to capture the basic control flow. Threshold guards capture
the core primitive of the FTDAs we consider. Finally, comparison guards are used to
model send and receive operations. Further, we model the faults such that the correct
processes receive more or less messages than the actual number of messages that have
been sent, based on the fault model.

Definition 4 (PMCP for CFA). We define the Parameterized Model Checking Problem
for CFA A by specializing Definition 3 to the parameterized process skeleton Sk(A).

In the following section we show how to represent an algorithm given in pseudo code
using our extended CFA with the help of Algorithm 2.1. The soundness of the modeling
approach requires involved arguments which is discussed in Section 2.4.

23

2.4 Transferring Pseudo Code to Extended CFA
To capture the step semantics of FTDAs, a step of the distributed algorithm is defined
via a path from the initial location of the CFA to the final location. In this section we
explain the process of transferring the pseudo code to our extended CFA with the help
of an use case. For this purpose, let us recall the core logic of the reliable broadcast
algorithm in Algorithm 2.1, which was already introduced in Chapter 1.

Algorithm 2.1 Core logic of the broadcasting algorithm from [90].

1 code f o r a c o r r e c t p roce s s i
2
3 vi in { fa l se , true }
4 accepti in { fa l se , true } <≠ false
5
6 CODE
7
8 if vi and not sent ÈechoÍ b e f o r e
9 then send ÈechoÍ to a l l ;

10
11 if r e c e i v e d ÈechoÍ from at l e a s t t+1 d i s t i n c t p r o c e s s e s and not sent
12 ÈechoÍ b e f o r e
13 then
14 send ÈechoÍ to a l l ;
15
16
17 if r e c e i v e d ÈechoÍ from at l e a s t n≠t d i s t i n c t p r o c e s s e s
18 then accepti <≠ true ;

2.4.1 Algorithm 2.1 in detail
Reliable broadcast is an ongoing “system service” with the following informal specification:
Each process i may invoke a primitive called broadcast by calling bcast(i, m), where m is
a unique message content. Processes may deliver a message by invoking accept(i, m) for
di�erent process and message pairs (i, m). The goal is that all correct processes invoke
accept(i, m) for the same set of (i, m) pairs, under some additional constraints, which are,
all messages broadcast by correct processes must be accepted by all correct processes,
and accept(i, m) may not be invoked, if i is correct and i has not invoked bcast(i, m). Our
case study is to verify that the algorithm from [90] implements these primitives on top of
point-to-point channels, in the presence of Byzantine faults. In [90] the specifications
were given in natural language as follows:

(U) Unforgeability. If correct process i does not broadcast (i, m), then no correct
process ever accepts (i, m).

(C) Correctness. If correct process i broadcasts (i, m), then every correct process
accepts (i, m).

24

(R) Relay If a correct process accepts (i, m), then every other correct process accepts
(i, m).

In [90], the instances for di�erent (i, m) pairs do not interfere. Therefore, we will not
consider i and m. Rather, we distinguish the di�erent kinds of invocations of bcast(i, m)
that may occur, e.g., the cases where the invoking process is faulty or correct. As we
focus on the core functionality, we do not model the broadcaster explicitly. We observe
that correct broadcasters send either to all or to no other correct processes. We model
this by using the initial status values V1 and V0. V0 denotes that the process has not
received the message from the broadcaster and V1 denotes that the process has received
the message from the broadcaster.

The core logic in Algorithm 2.1 is typical pseudo code found in the distributed
algorithms literature. The lines 8-18 describe one step of the algorithm. Receiving
messages is implicit and performed before line 8, and the possible sending of messages is
deferred to the end, and is performed after line 18.

We observe that the send operation of a process always sends to all. Moreover,
lines 8-18 only consider messages of type ÈechoÍ, while all other messages are ignored.
Hence, a Byzantine faulty process has an impact on correct processes only if they send
an ÈechoÍ when they should not, or vice versa.

Note that faulty processes may behave two-faced, that is, they may send messages
only to a subset of the correct processes. Moreover, faulty processes may send multiple
ÈechoÍ messages to a correct process. However, from the code we observe that multiple
receptions of such messages do not influence the number of messages received by “distinct”
processes due to non-masquerading as mentioned in Section 1.2.2. Finally, the condition
“not sent ÈechoÍ before” guarantees that each correct process sends ÈechoÍ at most once.

2.4.2 Our modeling choices
The most immediate choice is that we consider the set of parameters � to be {n, t, f}
and RC(n, t, f) = n > 3t · f Æ t · t > 0. In the pseudo code, the status of a process is
only implicitly mentioned. We have to represent the following information in the status
variable:

i the initial state,

ii whether a process has already sent ÈechoÍ, and

iii whether a process has set accept to true.

Observe that once a process has sent ÈechoÍ, its value v

i

does not interfere anymore
with the further state transitions. Moreover, a process only sets accept to true if it has
sent a message (or is about to do so in the current step). Hence, we define the set SV to
be {V0, V1, SE, AC}, where SV

0

= {V0, V1}. V0 corresponds to the case where initially
v

i

= false, and V1 to the case where initially v

i

= true. Further, SE means that a
process has sent an ÈechoÍ message but has not set accept to true yet, and AC means

25

that the process has set accept to true. Having fixed the status values, we can formalize
the specifications, unforgeability, correctness, and relay mentioned in Section 2.4.1 as
follows:

G ([’i. sv
i

”= V1] æ G [’j. sv
j

”= AC]) (U)
G ([’i. sv

i

= V1] æ F [÷j. sv
j

= AC]) (C)
G ([÷i. sv

i

= AC] æ F [’j. sv
j

= AC]) (R)

Note carefully that (U) is a safety specification while (C) and (R) are liveness specifica-
tions.

As the asynchrony of steps is already handled by our parallel composition described
in Section 2.2.2, what remains is to describe the semantics of sending and receiving
messages in our system model using control flow automata.

Let us first focus on messages sent to and received from the correct processes. Since
each correct process sends at most one message, and multiple messages from faulty
processes have no influence, it would be su�cient to represent each bu�er by a single
variable that represents whether a message of a certain kind has been put into the bu�er.
As we have only ÈechoÍ messages sent by correct processes, it is su�cient to model one
variable per bu�er. Moreover, if we only consider the bu�ers between correct processes,
due to the “send to all” it is su�cient to capture all messages between correct processes
in a single variable. To model this, we introduce the shared variable nsnt.

The reception of messages can then be modeled by a local variable rcvd whose update
depends on the messages sent. In particular, upon a receive, the variable rcvd can be
increased to any value less than or equal to nsnt.

Now, it remains to model faults. As our system model is symmetric by construction,
all processes must be identical to each other. This allows at least two possibilities to
model faults:

• We capture whether a process is correct or faulty using a flag in the status, and
require that in each run f Æ t processes are faulty. Then we would have to derive a
CFA sub-automaton for faulty processes, and would need additional variables to
capture sent messages by faulty processes.

• We consider the system to consist of correct processes only, let N(n, t, f) = n ≠ f ,
and model only the influence of faults, via the messages correct processes may
receive. This can be done by allowing each correct process to receive at most f

messages more than sent by correct ones, that is that rcvd can be increased to any
value less than or equal to nsnt + f .

Implementing the first option would require more variables: the additional flag to
distinguish correct from faulty processes, and the additional variables to capture messages
by faulty processes. These variables would increase the state space, and thus make this
option non-practical. Moreover, we would have to capture the number of faults f and the
corresponding resilience condition. Therefore, we have implemented the latter approach.

26

q

I

q

1

q

2

q

3

q

4

sv = V1

sv ”= V1 ·
sv0 = sv·
nsnt0 = nsnt

nsnt0 = nsnt + 1

sv0 = SE

q

5

q

6

q

7

q

8

q

9

q

F

rcvd Æ rcvd Õ · rcvd Õ Æ nsnt + f

(t + 1 >

rcvd Õ) ·
svÕ = sv0 ·
nsnt Õ = nsnt0

t + 1 Æ rcvd Õ

sv0 = V0
sv0 ”= V0 ·
nsnt Õ = nsnt0

nsnt Õ = nsnt0 + 1

n ≠ t > rcvd Õ

n ≠ t Æ rcvd Õ

svÕ = SE

svÕ = AC

Figure 2.1: CFA of our use case Algorithm 2.1.

Based on this discussion we directly obtain the CFA given in Figure 2.1 that describes
the steps of Algorithm 2.1. Note that its structure follows the pseudo code description of
Algorithm 2.1.

Fairness: Relevant liveness properties can typically only be guaranteed if the underlying
system ensures some fairness guarantees (refer to Section 2.2.3). In asynchronous
distributed systems one assumes communication fairness. That is, every message that
has been sent is eventually received. The statement ÷i. rcvd

i

< nsnt describes a global
state where messages are still in transit. It follows that a formula Â defined by

G F ¬ [÷i. rcvd
i

< nsnt] (RelComm)

27

states that the system periodically delivers all messages sent by (correct) processes. Thus,
the formula ¬Â defined by

F G [÷i. rcvd
i

< nsnt] (UnrelComm)

states that the system violates communication fairness. We only require a liveness
specification Ï to be satisfied if the system is communication fair. In other words, Ï

is satisfied or the communication is unfair, that is, Ï ‚ ¬Â. Our approach is to verify
Ï ‚ ¬Â.

Along all paths where communication is fair, the value of rcvd
i

has to reach at least
the value of nsnt. Since rcvd

i

can only increase when i takes a step, i is forced to take
steps as long as it has not enough received messages to take any other actions yet. That
is, receiving is a non-blocking operation. Thus, by this modeling communication fairness
implies some form of computation fairness.

2.4.3 Obtaining a skeleton from a CFA

One step of a process skeleton is defined by a path from q

I

to q

F

in a CFA. In order to
obtain the process skeleton induced by the CFA, we are required to capture these steps
as a transition relation. In particular, we need to compute a formula that represents this
relation. To this end, we use the standard technique introduced by Cytron et al. [31]
to construct CFA that are in the form of single static assignment (SSA). Informally, a
variable x is used to represent the value before a step and the variable x

Õ to represent
value after the step. That is, we create new variables by renaming the existing ones, and
use an assignment operation to avoid overwriting. For example, the increment operation
x = x + 1 is written as, x

Õ = x + 1, to avoid the variable x from being overwritten.
Given SV , �, �, �, RC , and a CFA A, we define the process skeleton Sk(A) = (S, S

0

, R)
induced by A as follows:

The set of variables used by the CFA is W ´ �fi�fi�fi{sv}fi{x

Õ | x œ �fi�fi{sv}}.
A path p from q

I

to q

F

of CFA induces a conjunction of all the guards along it. We
call a mapping v from W to the values from the respective domains a valuation. We
may write v |= p to denote that the valuation v satisfies the guards of the path p. We
are now in the position to define the mapping between a CFA A and the transition
relation of a process skeleton Sk(A): If there is a path p and a valuation v with v |= p,
then v defines a single transition (s, t) of a process skeleton Sk(A), if for each variable
x œ � fi � fi {sv} it holds that s.x = v(x) and t.x = v(xÕ) and for each parameter variable
z œ �, s.z = t.z = v(z).

Finally, to specify S

0, all variables of the skeleton that range over D are initialized
to 0, and sv ranging over SV takes an initial value from a fixed subset of SV .

2.4.4 Modeling other fault scenarios

Fault scenarios other than Byzantine faults can be modeled by changing the system size,
using conditions similar to (RelComm), and slightly changing the CFA. More precisely,

28

q

I

q

1

q

2

q

3

q

4

q

5

q

6

q

F

rcvd Õ
< nsnt + f

s

· rcvd Æ rcvd Õ

rcvd Õ Ø t + 1

sv = V1

sv = AC‚
rcvd Õ

< t + 1·
sv ”= V1·

sv ”= SEsv = SE
sv ”= SE

nsnt Õ = nsnt + 1·
svÕ = AC

svÕ = AC
nsnt Õ = nsnt + 1·

svÕ = SE

nsnt Õ = nsnt · svÕ = sv

Figure 2.2: CFA of Broadcast Algorithm in [89] with symmetric faults

by changing the guard on the edge leaving q

I

that corresponds to receiving messages, we
can change the fault model.

Symmetric faults [8]

A symmetric faulty process may send a wrong message, but it sends the message to either
all the processes or to none of them. Symmetric faults are modeled implicitly, similar
to Byzantine faults. That is, the e�ects of the faulty process on the correct processes
are modeled instead of modeling the faulty processes explicitly. Thus, the system size is
n ≠ f

s

, where f

s

is the actual number of faulty processes in the system in a specific run.
The e�ect of the faulty processes on correct processes is modeled by letting the correct
processes receive f

s

messages more that the number of messages sent in the system. The
CFA of Algorithm 2.1 for symmetric faults is shown in Figure 2.2. The fairness condition
used to verify liveness in case of symmetric faults is G F ¬ [÷i. rcvd

i

< nsnt + f

s

].

29

Omission faults [52]

Figure 2.3 shows the CFA of Algorithm 2.1 for omission faults. Processes which exhibit
omission faults are not as malicious as the Byzantine faulty processes. They do not send
conflicting messages to di�erent processes. Neither do they send messages which do not
comply with the algorithm. But they may fail to send messages to some or all processes.
That is, their behavior is more restrictive when compared to Byzantine faulty processes.

We model the omission faulty processes explicitly by setting N(n, t, f) = n. Thus,
the processes may receive all the messages being sent in the system, but not more. That
is, rcvd can be increased to any value less than or equal to nsnt, which is reflected
by the guard on the edge leaving q

I

. While verifying liveness, we use the condition
G F ¬ [÷i. rcvd

i

+ f < nsnt] to express fairness in communication and thus, model the
e�ect of faulty processes on the number of messages received (f processes may fail to
send messages).

Clean crash faults [96]

These faults are more restrictive than omission faults. With clean crash faults, a faulty
process either sends a message to all processes or it sends it to none. Moreover, the
messages sent have to comply with the algorithm. That is, they also follow the algorithm
in a way that they do not send malicious messages. As in the case of omission faults, we
model the faulty process explicitly. Thus the system size is n.

There are two ways to model the e�ect of faults on the correct processes:

Modeling faults by communication restrictions: Here we distinguish two kinds
of faulty processes: those that crash before sending the message and those that crash
after sending a message. If a process crashes before they send a message, the correct
processes do not receive any messages from it. If it crashes after sending a message, the
correct processes should eventually receive the message sent by the faulty process. Let
f

c

be the number of processes which crash, f

nc

be the number of processes which crash
before sending the message and t, the maximum number of faulty processes allowed in
the system. That is, f

nc

Æ f

c

Æ t Æ n .
Thus, rcvd can be incremented up to nsnt ≠ f

nc

, since f

nc

processes fail to send
messages. Figure 2.4 shows the CFA of our use case algorithm with clean crash fault
tolerance, for the first fault model. The communication fairness in this model of clean
crashes is represented by the condition G F ¬ [÷i. rcvd

i

< nsnt ≠ f

nc

]
That is, for the communication to be fair, every correct process must eventually

receive all the messages sent and f

nc

may fail to send messages. Note that this includes
the messages sent by the faulty processes before crashing. Figure 2.4 shows the CFA of
Algorithm 2.1 with clean crash faults for this model.

Modeling faults by adding local state: In this modeling method we have a distinct
status value CR, which is used to distinguish a process which has crashed. We use a
global variable nfaulty, which denotes the number of processes that has crashed. We let

30

q

I

q

1

q

2

q

3

q

4

q

5

q

6

q

F

rcvd Õ Æ nsnt · rcvd Æ rcvd Õ

rcvd Õ Ø t + 1
sv = V 1‚

(rcvd Õ Ø 1·
rcvd Õ

< t + 1·
sv ”= SE)

(sv ”= V 1·
rcvd Õ

< 1)‚
(rcvd Õ Ø 1·

rcvd Õ
< t + 1·
sv = SE)sv = SE

sv ”= SE

nsnt Õ = nsnt + 1·
svÕ = AC

svÕ = AC nsnt Õ = nsnt + 1 ·
svÕ = SE

nsnt Õ = nsnt · svÕ = sv

Figure 2.3: CFA of Broadcast Algorithm in [89] with omission faults

processes crash if the number of crashed process is less than f

c

, which is the number of
actual crashes in a run. When a process crashes, its status value is changed to CR and
it increments the global variable nfaulty. We do not need to discriminate between the
messages sent by a faulty process vs. those sent by correct process, since if a clean crash
faulty process sends messages it sends to all processes and the messages sent are correct.
Thus, rcvd can be incremented up to nsnt, because nsnt represents the message sent by
the correct process and the faulty processes. The communication fairness in this case is
represented by the condition G F ¬ [÷i. rcvd

i

< nsnt] That is, for the communication to
be fair every correct process must eventually receive all the messages sent in the system.
Figure 2.5 shows the CFA of our use case algorithm with clean crash fault tolerance, for
this fault model.

31

q

I

q

1

q

2

q

3

q

4

q

5

q

6

q

F

rcvd Õ Æ nsnt ≠ f

nc

· rcvd Æ rcvd Õ

rcvd Õ Ø n ≠ t

sv = V1sv = AC‚
(rcvd Õ

< n ≠ t·
sv ”= V1

·sv ”= SE)
sv = SE

sv ”= SE

nsnt Õ = nsnt + 1·
svÕ = AC

svÕ = AC nsnt Õ = nsnt + 1·
svÕ = SE

nsnt Õ = nsnt · svÕ = sv

Figure 2.4: CFA of Broadcast Algorithm in [89] with clean crashes - Model 1

Non-clean crash faults [46]

With non-clean crash, a faulty process is allowed to send messages to all, none or a
subset of processes, although they are not allowed to send malicious messages. Here
our approach is to use two global variables, nsntf and nfaulty, to model the e�ect of
faulty process on correct process. The variable nfaulty is used exactly as in model 2 of
clean crash faults. nsntf is used to count the number of messages sent by the faulty
processes, since they might send the messages to a subset of processes. It can be noticed
that this is very similar to omission faults, the di�erence being the faulty process in case
of a non-clean crash does not do anything after it crashes. With omission faults, the
faulty process continues following the algorithm, but they might just miss sending some
messages to a subset of processes.

In this case, rcvd can be incremented up to nsnt + nsntf , since nsnt models just

32

q

I

q

1

q

2

q

3

q

4

q

5

q

6

q

7

q

F

rcvd Õ Æ nsnt · rcvd Æ rcvd Õ

sv ”= CR·
rcvd Õ Ø n ≠ t sv = V1

sv ”= CR·
nfaulty < f

c

sv = CR‚
sv = AC‚

(rcvd Õ
< n ≠ t·
sv ”= V1·
sv ”= SE)sv = SE

sv ”= SE

nsnt Õ = nsnt + 1·
svÕ = AC

svÕ = AC

nsnt Õ = nsnt + 1·
svÕ = SE

svÕ = CR·
nfaultyÕ = nfaulty + 1

nsnt Õ = nsnt · svÕ = sv

Figure 2.5: CFA of Broadcast Algorithm in [89] with clean crashes - Model 2

the messages sent by correct processes. The communication fairness is represented by
the condition G F ¬ [÷i. rcvd

i

< nsnt] That is, for the communication to be fair every
correct process must eventually receive all the messages sent by the correct processes.
Processes may, but not necessarily, receive upto nsnt + nsntf messages. Thus we model
the behavior of the faulty processes where they send messages to subsets of processes or
to none. We model the faulty processes such that, if they are in a state where they have
to send a message (location q

3

and q

5

in Figure 2.6), they can either crash or send the
message to every process. They may also crash in other locations without sending any
messages.

33

q

I

q

1

q

2

q

3

q

4

q

5

q

6

q

7

q

8

q

9

q

F

rcvd Õ Æ nsnt + nsntf · rcvd Æ rcvd Õ

sv ”= CR·
rcvd Õ Ø n ≠ t

sv = V1

(sv = V0 ‚ sv = SE‚
sv = AC) · nfaulty < f

c

sv = CR‚
sv = AC‚

(rcvd Õ
< n ≠ t·
sv ”= V1·
sv ”= SE)

sv = SE

sv ”= SE

nfaulty < f

c

nsnt Õ = nsnt + 1·
svÕ = AC

svÕ = AC

nfaulty < f

c

nsnt Õ = nsnt + 1·
svÕ = SE

svÕ = CR·
nfaultyÕ = nfaulty + 1·

nsntf Õ = nsntf + 1

svÕ = CR·
nfaultyÕ = nfaulty + 1·

nsntf Õ = nsntf + 1

svÕ = CR·
nfaultyÕ = nfaulty + 1·

nsntf Õ = nsntf + 1
nsnt Õ = nsnt·

svÕ = sv

Figure 2.6: CFA of Broadcast Algorithm in [89] with non-clean crashes

2.5 Manual Translation of the pseudo code to Promela
Now we translate the pseudo code to Promela, which gives a parallel formalism in
addition to the CFA representation. The Promela code for the algorithm closely follows
the CFA representation. This step is necessary because it provides a formal representation
of the algorithm which can be used by the Spin model checker for practically verifying it.

As an example we translate Algorithm 2.1 into Promela code. In Algorithm 2.1 we
consider Byzantine faults. We have also seen the CFA formalization of Algorithm 2.1
for other faults like omission, clean crash and symmetric faults in Section 2.4.4. Now
we will explain how to formalize Algorithm 2.1 for each fault type mentioned above, in
Promela code.

First of all, we present the extensions we added to Promela. Then, we explain our
encoding of message passing for threshold-guarded fault-tolerant distributed algorithms.
and encode the control flow of Algorithm 2.1. The rationale of the modeling decisions
are that, the resulting Promela model

i captures the assumptions of distributed algorithms adequately, and

34

ii allows e�cient verification either using explicit state enumeration or by abstraction
as discussed in Chapter 4.

2.5.1 Parametric extensions to Promela
We extend Promela such that we can express our CFA that uses unbounded and
symbolic variables to express parameters. Let us see the di�erent extensions we have
incorporated in Promela in the examples given below:

The keyword symbolic is used to declare parameters. In our case these are n, t and f

as explained in Section 1.2.2. The syntax is as follows:
symbolic int n, t, f;

To impose resilience conditions on the parameters we use the keyword assume. This
keyword is ignored in explicit state model checking.

assume (n > 3*t);

Next, we show how to declare atomic propositions. We use the key word atomic
for declaring atomic propositions that are unfolded into conjunctions over all processes
(similarly for some).

Examples are:
/ú t h e r e e x i s t s a proces s wi th sv = V0 ú/
atomic p = some(Proc:sv == V0);
/ú sv = V1 fo r a l l p roce s s e s ú/
atomic q = all(Proc:sv == V1);
atomic r = (nsnt > 1);

We can also use boolean combinations of atomic propositions as shown in the example
below:

atomic p = some(Proc:sv == V0) ||
all(Proc:sv == V1) && (nsnt > 1);

We can use the keyword active to create a number of processes, such that the number
for processes is an expression over parameters as follows:

active [n-f] proctype ProcName() {... }

Note that in standard Promela the number of processes created has to be a constant.
There is one more extension which we have developed, to be used with NuSMV and

symbolic model checkers. We give a brief introduction to it, though it is not used for
work done in this thesis:

x = 1;
havoc (x);
assume (x > 5);
y = x;

The example above has the havoc() function followed by assume(). This is used for
the SSA representation [31] of the variable x in the code. That is, havoc(x) makes sure

35

that x is not rewritten, by creating fresh variables. So the above code in e�ect does what
is shown below:

x

0 = 1;
x

1
> 5;

y

0 = x

1;

2.5.2 E�cient encoding of message passing
In threshold-guarded distributed algorithms, the processes

i count how many messages of the same type they have received from distinct
processes, and change their states depending on this number,

ii always send to all processes (including the process itself), and

iii send messages only for a fixed number of message types (only messages of type
ÈechoÍ are sent in Algorithm 2.1).

Fault-free communication: From the discussion in Section 2.1 we observe that bu�ers
are required to be unbounded, and thus sending is non-blocking. Further, receiving is
non-blocking even if no message has been sent to the process. If we assume that for
each message type, each correct process sends at most one message in each run (as in
Algorithm 2.1), non-blocking send can be natively encoded in Promela using message
channels. In principle, non-blocking receive also can be implemented in Promela, but it
is not a basic construct.

Given the standard assumptions on the computational model, it is tempting to model
communication in Promela using point-to-point message passing over FIFO channels.
Now we discuss how to model such algorithms more e�ciently than the straightforward
implementation with Promela channels. Our approach captures both message passing
and the e�ect of faults on the correct process. However, for the sake of comprehensibility
let us first consider a fault-free system (f = 0). Later in the section we model di�erent
fault scenarios.

In the following examples of Promela code, we show a straightforward way to
implement “received ÈechoÍ from at least x distinct processes” and “send ÈechoÍ to all”
using Promela channels. We declare an array p2p of n

2 channels, one per pair of
processes, and an array rx to keep track of the ÈechoÍ messages received from distinct
processes (at most one ÈechoÍ message from a process j is received by a process i).

mtype = { ECHO }; /ú one message type ú/
chan p2p[NxN] = [1] of { mtype }; /ú channe ls o f capac i t y 1 ú/
bit rx[NxN]; /ú a b i t map to implement " d i s t i n c t " ú/
active[N] proctype STBcastChan() {

int i, nrcvd = 0; /ú nr . o f echoes ú/

Then, the receive code iterates over n channels. A process can choose to receive or
not to receive an ÈechoÍ message from a non-empty channel and the empty channels are
skipped. If a message is received, the corresponding channel is marked in the array rx:

36

i = 0; do
:: (i < N) && nempty(p2p[i * N + _pid]) ->

p2p[i * N + _pid]?ECHO; /ú r e t r i e v e a message ú/
if

:: !rx[i * N + _pid] ->
rx[i * N + _pid] = 1; /ú mark the channel ú/
nrcvd++; break; /ú r e c e i v e at most one message ú/

:: rx[i * N + _pid]; /ú i gnore d u p l i c a t e s ú/
fi; i++;

:: (i < N) ->
i++; /ú channel i s empty or postpone r ec ep t i on ú/

:: i == N -> break;
od

Finally, the sending code also iterates over n channels and sends on each:
for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Recall that threshold-guarded algorithms have specific constraints:

i messages from all processes are processed uniformly,

ii messages carry only a message type without a process identifier, and

iii each process sends a message to all processes in no particular order.

This suggests a simpler modeling solution. Instead of using message passing directly, we
keep only the numbers of sent and received messages in integer variables:

int nsnt; /ú one shared v a r i a b l e per a message type ú/
active[N] proctype STBcast() {

int nrcvd = 0, next_nrcvd = 0; /ú nr . o f echoes ú/
...

step: atomic {
if /ú r e c e i v e one more echo ú/

:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd; /ú or noth ing ú/
fi;
...
nsnt++; /ú send echo to a l l ú/

}

As one process step is executed atomically, concurrent reads and updates of nsnt are
not a concern to us. Note that the presented code is based on the assumption that each
correct process sends at most one message. We show how to enforce this assumption
when discussing the control flow of our implementation of Algorithm 2.1 in Section 2.5.3.

Recall that in asynchronous distributed systems one assumes communication fairness,
that is, every message sent is eventually received as given in RelComm. Hence we will
add such fairness requirements to our specifications.

37

Faulty processes: Figure 2.7 shows how to model the di�erent types of faults discussed
above using channels. The implementations are direct consequences of the fault description
given in Section 2.4.4.

active[F] proctype Byz() {
step: atomic {

i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /ú some ú/
:: i == N -> break;
od

}; goto step;
}

active[F] proctype Omit() {
step: atomic {

/ú r e c e i v e as a c o r r e c t ú/
/ú compute as a c o r r e c t ú/
if :: correctCodeSendsAll ->

i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /ú omit ú/
:: i == N -> break;

od
:: skip;

fi
if :: not(correctCodeSendsAll)

->
goto crash;

fi
}; goto step;

}

active[F] proctype Symm() {
step: atomic {

if
:: /ú send a l l ú/

for (i : 1 .. N)
{ sendTo(i); }

:: skip; /ú or none ú/
fi

}; goto step;
}

active[F] proctype NonClean() {
step: atomic {

/ú r e c e i v e as a c o r r e c t ú/
/ú compute as a c o r r e c t ú/
if :: correctCodeSendsAll ->

i = 0; do
:: i < N -> sendTo(i); i++;
:: i == N -> break;
od

:: correctCodeSendsAll ->
i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /ú omit ú/
:: i == N -> break;
::goto crash;
od

fi
if :: !correctCodeSendsAll->

goto crash;
}; goto step;
}

active[F] proctype Clean() {
step: atomic {

/ú r e c e i v e as a c o r r e c t ú/
/ú compute as a c o r r e c t ú/
/ú send as a c o r r e c t one ú/
};
if

:: goto step;
:: goto crash;

fi;
crash:
}

Figure 2.7: Modeling faulty processes explicitly: Byzantine (Byz), symmetric (Symm),
omission (Omit), non-clean (NonClean) and clean crashes (Clean)

Figure 2.8 shows how can the impact of faults on correct processes be implemented

38

in the shared memory implementation of message passing. Note that in contrast to
Figure 2.7, the processes in Figure 2.8 are not the faulty ones, but correct ones whose
variable next_nrcvd is subject to non-deterministic updates that correspond to the
impact of faulty process. For instance, in the Byzantine case, in addition to the messages
sent by correct processes, a process can receive up to f messages more. This is expressed
by the condition (next_nrcvd < nsnt + F).

For Byzantine and symmetric faults we only model correct processes explicitly.
Thus, we specify that there are N-F processes in the system. Moreover, we can use
Property (RelComm) to model reliable communication. However, we model omission
and crash (clean and non-clean) faults explicitly. Thus we have N processes in these two
cases. The impact of faulty processes is modeled by relaxed fairness requirements as
explained in Section 2.4.4. Similar adaptations can be made to model, e.g., corrupted
communication (e.g., due to faulty links) [87], or hybrid fault models [12] that contain
di�erent fault scenarios.

Figure 2.9 compares the number of states and memory consumption when modeling
message passing using both solutions. We ran Spin to perform exhaustive state enumera-
tion on the encoding of Algorithm 2.1 (discussed in the next section). As can be seen,
the model with explicit channels and faulty processes ran out of memory on six processes,
whereas the shared memory model did so only with nine processes. Moreover, the latter
scales better in the presence of faults, while the former degrades with faults. This leads
us to use the shared memory encoding based on nsnt variables.

2.5.3 Encoding the control flow

Recall Algorithm 2.1, which is written in typical pseudo code found in the distributed
algorithms literature, the details of which are given in Section 2.4.1.

We encoded the Algorithm 2.1 in Listing 3 using custom Promela extensions (see
Section 2.5.1) to express notions of fault-tolerant distributed algorithms. The extensions
are required to express a parameterized model checking problem and are used by our tool
that implements the abstraction methods introduced in Chapter 4. When the parameters
are fixed, these extensions are just syntactic sugar.

In the encoding in Listing 3, the whole step is captured within an atomic block (lines
20–42). As usual for fault-tolerant algorithms, this block has three logical parts: the
receive part (lines 21–24), the computation part (lines 25–32), and the sending part (lines
33–38). We have already discussed the encoding of message passing above. Now we
discuss the control flow of the algorithm.

Control state of the algorithm: Apart from receiving and sending messages, Al-
gorithm 2.1 refers to several facts about the current control state of a process: “sent
ÈechoÍ before”, “if v

i

”, and “accept
i

Ω true”. We capture all possible control states
in a finite set SV . For instance, for Algorithm 2.1 we have the set of status values
SV = {V0, V1, SE, AC}, where:

39

/ú N > 3T · T Ø F Ø 0 ú/
active[N-F] proctype ByzI() {
step: atomic {

if
:: (next_nrcvd < nsnt + F)
-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/ú compute ú/
/ú send ú/

}; goto step;
}

/ú N > 2T · T Ø F Ø 0 ú/
active[N] proctype OmitI() {
step: atomic {

if
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/ú compute ú/
/ú send ú/

}; goto step;
}

/ú N > 2T · T Ø Fp Ø Fs Ø 0 ú/
active[N-Fp] proctype SymmI() {
step: atomic {

if
:: (next_nrcvd < nsnt + Fs)
-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/ú compute ú/
/ú send ú/

}; goto step;
}

/ú N Ø T · T Ø Fc Ø Fnc Ø 0 ú/
active[N] proctype CleanI() {
step: atomic {
if
:: (next_nrcvd < nsnt - Fnc)

-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/ú compute ú/
/ú send ú/

}; goto step;
}

/ú N Ø T · T Ø Fc Ø 0 ú/
active[N] proctype Clean2I() {
step: atomic {
if
:: (next_nrcvd < nsnt)

-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/ú compute ú/
/ú send ú/

}; goto step;
}

/ú N Ø T · T Ø Fc Ø 0 ú/
active[N] proctype NonCleanI() {
step: atomic {
if
:: (next_nrcvd < nsnt+nsntf)

-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/ú compute ú/
/ú send ú/

}; goto step;
}

Figure 2.8: Modeling the e�ect of faults on correct processes: Byzantine (ByzI), symmetric
(SymmI), omission (OmitI), clean crashes (CleanI and Clean2I) and non-clean crashes
(NonCleanI).

40

10
100

1000
10000

100000
1e+06
1e+07
1e+08
1e+09

3 4 5 6 7 8 9

st
at

es
 (l

og
sc

al
e)

number of processes, N

var, f=0
var, f=1
ch, f=0
ch, f=1

 128
 256
 512

1024
2048
4096
8192

3 4 5 6 7 8 9

m
em

or
y,

 M
B

(lo
gs

ca
le

)

number of processes, N

Figure 2.9: Visited states (left) and memory usage (right) when modeling message passing
with channels (ch) or shared variables (var). The faults are in e�ect only when f > 0.
Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory.

• the status value V0 corresponds to v

i

= false, accept
i

= false and ÈechoÍ not
sent.

• the status value V1 corresponds to v

i

= true, accept
i

= false and ÈechoÍ not
sent.

• the status value SE corresponds to the case where accept
i

= false and ÈechoÍ has
been sent. Observe that once a process has sent ÈechoÍ, its value of v

i

does not
interfere with the subsequent control flow anymore.

• the status value AC corresponds to the case where accept
i

= true and ÈechoÍ has
been sent. A process sets accept to true only if it has sent a message (or is about
to do so in the current step).

Thus, the control state is captured within a single status variable sv over SV with
the set SV

0

= {V0, V1} of initial control states.

Verification goal: Recall the resilience condition on the parameters for Algorithm
2.1 n, t, and f , namely, n > 3t · f Æ t · t > 0. As these parameters do not change
during a run, they can be encoded as constants in Promela. The verification problem
for a distributed algorithm with fixed n and t is then the composition of model checking
problems that di�er in the actual value of f (satisfying f Æ t).

2.6 Experiments
In this section we demonstrate the results of experiments on model checking of Algo-
rithm 2.1 for fixed parameters using our ByMC tool chain. A brief description about
the usage of the tool is given in Appendix A. The tool and the benchmarks are available
at [1].

41

1 symbolic int N, T, F; /ú parameters ú/
2 /ú the r e s i l i e n c e cond i t i on ú/
3 assume(N > 3 * T && T >= 1 && 0 <= F && F <= T);
4 int nsnt; /ú number o f echoes sen t by c o r r e c t p roce s s e s ú/
5 /ú q u a n t i f i e d atomic p r o p o s i t i o n s ú/
6 atomic prec_unforg = all(STBcast:sv == V0);
7 atomic prec_corr = all(STBcast:sv == V1);
8 atomic prec_init = all(STBcaststep);
9 atomic ex_acc = some(STBcast:sv == AC);

10 atomic all_acc = all(STBcast:sv == AC);
11 atomic in_transit = some(STBcast:nrcvd < nsnt);
12
13 active[N - F] proctype STBcast() {
14 byte sv, next_sv; /ú s t a t u s o f the a l gor i thm ú/
15 int nrcvd = 0, next_nrcvd = 0; /ú nr . o f echoes r e c e i v e d ú/
16 if /ú i n i t i a l i z e ú/
17 :: sv = V0; /ú vi = FALSE ú/
18 :: sv = V1; /ú vi = TRUE ú/
19 fi;
20 step: atomic { /ú an i n d i v i s i b l e s t ep ú/
21 if /ú r e c e i v e one more echo (up to nsnt + F) ú/
22 :: (next_nrcvd < nsnt + F) -> next_nrcvd = nrcvd + 1;
23 :: next_nrcvd = nrcvd; /ú or noth ing ú/
24 fi;
25 if /ú compute ú/
26 :: (next_nrcvd >= N - T) ->
27 next_sv = AC; /ú accepti = TRUE ú/
28 :: (next_nrcvd < N - T && sv == V1
29 || next_nrcvd >= T + 1) ->
30 next_sv = SE; /ú remember t h a t <echo> i s sen t ú/
31 :: else -> next_sv = sv; /ú keep the s t a t u s ú/
32 fi;
33 if /ú send ú/
34 :: (sv == V0 || sv == V1)
35 && (next_sv == SE || next_sv == AC) ->
36 nsnt++; /ú send <echo> ú/
37 :: else; /ú send noth ing ú/
38 fi;
39 /ú update l o c a l v a r i a b l e s and r e s e t s c ra t ch v a r i a b l e s ú/
40 sv = next_sv; nrcvd = next_nrcvd;
41 next_sv = 0; next_nrcvd = 0;
42 } goto step;
43 }
44 /ú LTL≠X formulas ú/
45 ltl fairness { []<>(!in_transit) } /ú added to o ther formulas ú/
46 ltl relay { [](ex_acc -> <>all_acc) }
47 ltl corr { []((prec_init && prec_corr) -> <>(ex_acc)) }
48 ltl unforg { []((prec_init && prec_unforg) -> []!ex_acc) }

Listing 3: Encoding of Algorithm 2.1 in parametric Promela.

42

parameter values spec valid Time Mem. Stored Transitions Depth

Byz
B1 N=7,T=2,F=2 (U) X 3.13 sec. 74 MB 193 · 103 1 · 106 229
B2 N=7,T=2,F=2 (C) X 3.43 sec. 75 MB 207 · 103 2 · 106 229
B3 N=7,T=2,F=2 (R) X 6.3 sec. 77 MB 290 · 103 3 · 106 229
B4 N=7,T=3,F=2 (U) X 4.38 sec. 77 MB 265 · 103 2 · 106 233
B5 N=7,T=3,F=2 (C) X 4.5 sec. 77 MB 271 · 103 2 · 106 233
B6 N=7,T=3,F=2 (R) 7 0.02 sec. 68 MB 1 · 103 13 · 103 210

omit
O1 N=5,To=2,Fo=2 (U) X 1.43 sec. 69 MB 51 · 103 878 · 103 175
O2 N=5,To=2,Fo=2 (C) X 1.64 sec. 69 MB 60 · 103 1 · 106 183
O3 N=5,To=2,Fo=2 (R) X 3.69 sec. 71 MB 92 · 103 2 · 106 183
O4 N=5,To=2,Fo=3 (U) X 1.39 sec. 69 MB 51 · 103 878 · 103 175
O5 N=5,To=2,Fo=3 (C) 7 1.63 sec. 69 MB 53 · 103 1 · 106 183
O6 N=5,To=2,Fo=3 (R) 7 0.01 sec. 68 MB 17 135 53

symm
S1 N=5,T=1,Fp=1,Fs=0 (U) X 0.04 sec. 68 MB 3 · 103 23 · 103 121
S2 N=5,T=1,Fp=1,Fs=0 (C) X 0.03 sec. 68 MB 3 · 103 24 · 103 121
S3 N=5,T=1,Fp=1,Fs=0 (R) X 0.08 sec. 68 MB 5 · 103 53 · 103 121
S4 N=5,T=3,Fp=3,Fs=1 (U) X 0.01 sec. 68 MB 66 267 62
S5 N=5,T=3,Fp=3,Fs=1 (C) 7 0.01 sec. 68 MB 62 221 66
S6 N=5,T=3,Fp=3,Fs=1 (R) X 0.01 sec. 68 MB 62 235 62

clean
C1 N=3,Tc=2,Fc=2,Fnc=0 (U) X 0.01 sec. 68 MB 668 7 · 103 77
C2 N=3,Tc=2,Fc=2,Fnc=0 (C) X 0.01 sec. 68 MB 892 8 · 103 81
C3 N=3,Tc=2,Fc=2,Fnc=0 (R) X 0.02 sec. 68 MB 1 · 103 17 · 103 81

Table 2.1: Summary of experiments related to [90]

Listing 3 provides the central parts of the code of our case study. We implemented
Algorithm 2.1 for di�erent fault models as given below:

Byz: tolerates t Byzantine faults if n > 3t,

symm: tolerates t symmetric (identical Byzantine [8]) faults if n > 2t,

omit: tolerates t send omission faults if n > 2t,

clean: tolerates t clean crash faults for n > t.

The given resilience conditions on n and t are the ones we expected from the literature,
and their tightness was confirmed by our experiments.

The major goal of the experiments was to check the adequacy of our formalization.
To this end, we first considered the four well-understood variants of [90], for each of
which we systematically changed the parameter values. We verify each variant with Spin.
By doing so, we verify that under our modeling the di�erent combination of parameters

43

 128
 256
 512

1024
2048
4096
8192

3 4 5 6 7 8 9

m
em

or
y,

 M
B

(lo
gs

ca
le

)

number of processes, N

t=2, f=0, (u)
t=2, f=0, (c)
t=2, f=0, (r)
t=2, f=2, (u)
t=2, f=2, (c)
t=2, f=2, (r)

0.01
0.1

1
1e+01
1e+02
1e+03
1e+04

3 4 5 6 7 8 9

tim
e,

 s
ec

 (l
og

sc
al

e)

number of processes, N

Figure 2.10: Spin memory usage (left) and running time (right) for Byz.

lead to the expected result. Table 2.1 and Figure 2.10 summarize the results of our
experiments for broadcasting algorithms in the spirit of [90]. Lines B1 – B3, O1 – O3,
S1 – S3, and C1 – C3 capture the cases for which the resilience condition is satisfied. In
Lines B4 – B6, the algorithm’s parameters are chosen to achieve a goal that is known to
be impossible [80], i.e., to tolerate 3 faulty processes out of 7 processes. This violates
the n > 3t requirement. Our experiment shows that even if only 2 faults occur in this
setting, the relay specification (R) is violated. In lines O4 – O6, the algorithm is designed
properly, i.e., 2 out of 5 processes may fail (n > 2t in the case of omission faults). Our
experiments show that this algorithm fails in the presence of 3 faulty processes, i.e., (C)
and (R) are violated.

We present experiments with other algorithms which covers di�erent threshold condi-
tions as well as fault models, with di�erent combination of parameter values, in Chapter 5.
Our experiments run out of memory for systems as big as those with n = 11. This shows
the need for parameterized verification of such algorithms. Before moving on to the
parameterized verification, in the next chapter, we will show that the parameterized
model checking problem for FTDAs is an undecidable.

2.7 Related Work
Most of the distributed algorithms are described using pseudo code and natural language
is used to specify the computational model, as can be seen in the seminal papers like
[45, 33, 37, 19]. This makes the algorithms di�cult to understand and reason about for
non-experts and causes misunderstanding of the important subtleties of the algorithm.

There have been two major undertakings of formalization that gained acceptance
within the distributed algorithms community. Both were initiated by researchers with a
background in distributed algorithms and with a precise understanding of what needs
to be expressed. These approaches are on the one hand, I/O Automata by Lynch and
several collaborators [72, 62, 76], and on the other hand, TLA by Lamport and others
[67, 60, 68]. IOA and TLA are general frameworks that are based on labeled transition
systems and a variant of linear temporal logic, respectively. I/O Automata are used
to model individual components of the distributed system, like each process and the

44

communication medium. An automaton is capable of input and output actions. TLA is
used for specifying and reasoning about concurrent systems and is a variation of temporal
logic by Pnueli [82]. TLA+ is the specification language based on TLA. This approach is
very general and can be used to specify a wide range of systems. In this approach both
the algorithm and the properties are specified in the same logic.

Both frameworks were originally developed at a time when automated verification
was out of reach, and they were mostly intended to be used as formal foundations for
handwritten proofs. Today, the tool support for IOA is still in preliminary stages [2].
For TLA [3], the TLC model checker is a simple explicit state model checker, while the
current version of the TLA+ Proof System can only check safety proofs.

In all these approaches, specifying the semantics for fault-tolerant distributed algo-
rithms is a research challenge, and we believe that this research requires an interdisci-
plinary e�ort between researchers in distributed algorithms and model checking. In this
chapter we presented our first results towards this direction.

45

CHAPTER 3
Undecidability of PMCP

In this chapter we prove the undecidability of the PMCP to motivate the development of
our new abstraction method which facilitates the verification of threshold-based FTDAs.
We show that the verification problem we have at hand is hard and thus it is impossible
to have a general solution for it.

We discussed the modeling details of di�erent kinds of faults in Chapter 2. In some
cases, e.g., Byzantine faults, we model faults by the influence they have on values of
variables in the domain D. As we do not restrict the set of local and global variables,
the result also applies if these sets are non-empty. Moreover, in this kind of modeling,
the atomic propositions [÷i. sv

i

= Z] range over correct processes only. Hence, the
undecidability result also holds for FTDAs. If we choose to model faults di�erently, i.e.,
by changing the transition relation of a process, then the decidability depends on the
way the transition relation is modified.

In the previous chapter we discussed the di�erent kind of guards used in our CFA, of
which the status guards capture the control flow of the algorithm. We call a CFA with
only status guards, a non-communicating CFA. We prove that the PMCP for CFA as
given in Definition 4 is undecidable even if the CFA is non-communicating. As in [48, 42],
our approach is to reduce the non-halting problem of 2-counter machines to our problem.

3.1 2-Counter Machines
Counter machines or Minsky machines [75] consist of at least one unbounded counter
encoded in unary representation. It allows three instructions on each counter: increment,
decrement, and test for zero. The increment instruction increments the value of the
corresponding counter, the decrement instruction decrements the corresponding counter
value, and the test for zero instruction compares the value of a counter with zero. The
counters can take only positive integer values. Thus, a counter is decremented only if
it has a value greater than zero. A 2-counter machine (2CM) as the name implies, is a

47

counter machine with two counters. With the help of some examples we will show that
2CMs are indeed capable of powerful operations on the counters.

Let us take the example given below:

l1: if C2 = 0 then goto l2
else C2 ≠ ≠; goto l3

l3: C1 + +; goto l1 ;

l2: <halt>

Assume that initially C

1

= a and C

2

= b. Then at location l

2

we have C

1

= a + b and
C

2

= 0. Thus, the code above adds the initial value of the counters and stores it in
counter C

1

. The operation destroys the value in counter C

2

.
The example below performs a comparison operation between the two counters:

l1: if C1 = 0 then goto l2
else C1 ≠ ≠; goto l3

l2: if C2 = 0 then goto l4
else goto l5

l3: if C2 = 0 then goto l5
else C2 ≠ ≠; goto l1

l4: <equal>
l5: <not equal>

The above code checks if the two counters C

1

and C

2

are equal. Note that the operation
destroys both the counter values.

As the final example, let us consider the implementation of an assignment operation
C

1

:= C

2

without destroying the counter C

2

:

l1: if C1 = 0 then goto l2
else C1 ≠ ≠; goto l1

l2: if C3 = 0 then goto l3
else C3 ≠ ≠; goto l2

l3: if C2 = 0 then goto l4
else C2 ≠ ≠; C1 + +; C3 + +; goto l3

l4: if C3 = 0 then goto l5
else C3 ≠ ≠; C2 + +; goto l4

l5: <halt>

This example uses a temporary counter C

3

to restore the value of counter C

2

after the
assignment operation.

48

3.1.1 Halting and non-halting problem for counter machines
Given a counter machine with m counters C

1

, C

2

, ... C

m

such that, C

1

= b

1

, C

2

= b

2

, ...
C

m

= b

m

, where b

1

, b

2

, ... b

m

can be any non-negative integers, we define the halting
(P1) and non-halting (P2) problems of counter machines as follows:

P1: For all b

1

, b

2

, ... b

m

whether the counter machine halts.

P2: Whether there exist b

1

, b

2

, ... b

m

such that the counter machine never halts.

Then we have the following theorems:

Theorem 5. [75] The halting and non-halting problems for counter machines are unde-
cidable for m Ø 2.

Theorem 6. [75] The halting and non-halting problems for counter machines are unde-
cidable for C

1

= 0, C

2

= 0, ... C

m

= 0.

From Theorem 5 we know that the halting and the non-halting problems for 2CMs
are undecidable.

3.2 Undecidability of Liveness Properties
In this section, we show that the non-halting problem of a 2-counter machine (2CM) is
reducible to the parameterized model checking problem. We using a parameter n and a
CFA A to construct a system instance Inst(n + 1, Sk(A)), an LTL-X formula Ï

nonhalt

that
uses G , F , and atomic propositions [÷i. sv

i

= Z]. We then show that Inst(n + 1, Sk(A))
simulates at least n steps of the 2CM, and the general parameterized model checking
problem is therefore undecidable. Note that G , F , and [÷i. sv

i

= Z] are required
to express the liveness property (R) of our use case Algorithm 2.1. Let us recall the
specifications of Algorithm 2.1 presented in Chapter 2 below:

[’i. sv
i

”= V1] æG [’j. sv
j

”= AC] (U)
[’i. sv

i

= V1] æF [÷j. sv
j

= AC] (C)
G (¬ [÷i. sv

i

= AC])‚ F [’j. sv
j

= AC] (R)

Thus, we prove the following theorem:

Theorem 7. Let M be a 2-counter machine, and (RC , N) be a natural pair of resilience
condition and system size function. Then a non-communicating CFA A(M) and an
LTL-X property Ï

nonhalt

(M) can be e�ciently constructed such that the following two
statements are equivalent:

• M does not halt.

• ’p œ P
RC

, Inst(p, Sk(A)) |=ÿ Ï

nonhalt

(M).

49

Corollary 8. PMCP for CFAs is undecidable even if CFAs contain only status guards.

The outline of the proof is similar to the undecidability proofs in [48, 42]: one of
the processes plays the role of a control process that simulates the program of a two
counter machine (2CM), and the other processes are data processes that each store at
most one digit of one of the two counters encoded in unary representation. The control
processes increments or decrements a counter by a handshake with a data process in a
way that only one data process synchronizes with the control process at a time. In system
instances that contain n data processes, this is su�cient to simulate n steps of a 2CM. If
the parameterized model checking problem under consideration is defined for a natural
(RC , N), then for arbitrarily many steps there is some system instance that simulates at
least that many steps of the 2CM. Undecidability of the parameterized model checking
problem then follows from the undecidability of the non-halting problem for 2CMs.

The CFA A contains the functionalities of a control process that simulates the program
of the 2CM, as well as of data processes that each store at most one digit of one of the
two counters B and C encoded in unary representation. For simplicity of presentation,
we say that if a data process does not store a digit for B or C, then it stores a digit for a
counter D. Counter D thus serves as a capacity (initially set to n), from which B and C

can borrow (and return) digits, that is, initially the status variables of all data processes
correspond to D. Our CFA A uses only the status variable sv, while the sets of local and
global variables can be empty. We consider paths where exactly one process plays the
role of the control process, and the remaining n processes are data processes. This can
be encoded using G , F , and [÷i. sv

i

= Z].

Esparza [43] has shown that test for zero statements of a 2CM can be simulated
with a temporal logic specification using an atomic proposition “test for zero”. Given
the proof strategies from [48, 42], the only technical di�culty that remains is to ensure
a handshake between non-communicating CFAs. We do so by enforcing a handshake
using sequences of status values the CFAs go through, and an LTL-X specification which
acts as a scheduler that ensures a specific interleaving between the updates of the status
variables of the two CFAs. Intuitively, whenever the control process has to increase or
decrease the value of a counter, this is done by a handshake of the control with a data
process; up to this point, our proof follows ideas from [48, 42, 43]. In contrast to these
papers, however, our system model does not provide primitives for such a handshake,
which leads to the central contribution for our proof: we “move” this handshake into
the specification without using the “next time” operator which is not present in LTL-X.
In addition, as in [43], also the test for zero is moved into the specification using our
propositions ¬[÷i. sv

i

= Z]. We start with some preliminary definitions.

A 2-counter machine (2CM) M is a list of m + 1 statements over two counters B and
C. A statement at location v uses a counter C(v) œ {B, C} and has one of the following

50

forms (note, that the machine halts at location m):

v : inc C(v); goto w (3.1)
v : if C(v) = 0 then goto w

Õ (3.2)
else dec C(v); goto w

ÕÕ (3.3)
m : halt (3.4)

The control flow of the machine M is defined by the labeled graph (V, E , C), where
V = {v | 0 Æ v Æ m} is the set of locations, E = E

+

fi E
0

fi E≠ fi {m, m} is the set of edges,
and C : V æ {B, C} is the labeling function which maps a location to the counter used
in this location. The sets E

+

, E
0

, E≠ are defined as follows:

• E
+

= {(v, w) | statement at v goes to w as in (3.1)};

• E
0

= {(v, w

Õ) | statement at v goes to w

Õ as in (3.2)};

• E≠ = {(v, w

ÕÕ) | statement at v goes to w

ÕÕ as in (3.3)}.

Handshake: In what follows, we model a handshake between the control process and
a data process in order to implement an increment as in (3.1) or decrement as in (3.3).
The handshake is guaranteed by a combination of steps both in the control and the data
processes and by a constraint formulated in LTL-X as follows.

We define the set SV
C

of status values of the control process and the set SV
D

be
the set of status values of a data process:

SV
C

=
€

v,wœV
{(v, v, IdlC), (v, w, SynC), (v, w, AckC), (v, w, WaitC)}

SV
D

=
€

x,yœ{B,C,D}
{(x, x, IdlD), (x, y, SynD), (x, y, AckD)

For each (f, t, h) œ SV
C

fi SV
D

, f is the state before a handshake, t is the scheduled
state after a handshake, and h is the status of the handshake.

Consider an edge (v, w) œ E
+

and x = D and y = C(v), that is, in location v the
counter C(v) is incremented, and then the control goes to location w. Incrementing the
counter is done by a handshake during which the control process goes from v to w, while
a data process goes from D (the capacity) to C(v).

To do so, we construct two CFAs J(v, w) and I(x, y) shown in Figure 3.1: J(v, w)
goes from location v of M to location w in three steps SynC æ AckC æ WaitC æ IdlC ,
whereas I(x, y) transfers one digit from counter x to counter y in steps SynD æ AckD æ
IdlD. To actually enforce the handshake synchronization, we add the following formulas

51

q

I

q

I

q

v,w

1

q

v,w

2

q

v,w

3

q

v,w

4

r

x,y

1

r

x,y

2

r

x,y

3

q

F

q

F

sv = (v, v, IdlC)

sv = (v, w, SynC)

sv = (v, w, AckC)

sv = (v, w, WaitC)

svÕ = (v, w, SynC)

svÕ = (v, w, AckC)

svÕ = (w, w, WaitC)

svÕ = (w, w, IdlC)

sv = (x, x, IdlD)

sv = (x, y, SynD)

sv = (x, y, AckD)

svÕ = (x, y, SynD)

svÕ = (x, y, AckD)

svÕ = (y, y, IdlD)

Figure 3.1: CFA J(v, w) for (v, w) œ E
+

and I(x, y) for inc y (and dec x).

that must hold in every state of a system instance:

[÷k.sv
k

= (x, y, SynD)] æ([÷k.sv
k

= (v, w, SynC)] ‚
[÷k.sv

k

= (v, w, AckC)]) (3.5)
[÷k.sv

k

= (x, y, AckD)] æ¬[÷k.sv
k

= (x, y, SynD)] (3.6)
[÷k.sv

k

= (x, y, AckD)] æ([÷k.sv
k

= (v, w, AckC)] ‚
[÷k.sv

k

= (v, w, WaitC)]) (3.7)
[÷k.sv

k

= (w, w, IdlC] æ(¬[÷k.sv
k

= (x, y, SynD)] ·
¬[÷k.sv

k

= (x, y, AckD)]) (3.8)
[÷k.sv

k

= (y, y, IdlD)] æ(¬[÷k.sv
k

= (v, w, AckC)] ‚
[÷k.sv

k

= (x, y, SynD)] ‚
[÷k.sv

k

= (x, y, AckD)]) (3.9)

Let the handshaking formula HS(v, w, x, y) be the conjunction of the formulas (3.5)-
(3.9). Then HS(v, w, x, y) must hold in all states of a system instance.

In what follows, we will consider the union of CFAs, where union is defined naturally
as the union of the sets of nodes and the union of the sets of edges (note that the CFAs
are joint at the initial node q

I

, and the final node q

F

).
We are now ready to prove the central result: Let M be a system of K processes

Inst(K, Sk(J(v, w) fi I(x, y))) and ‡

1

be a global state of M such that

‡

1

[1].sv = (v, v, IdlC) and
‡

1

[k].sv = (x, x, IdlD) for all 2 Æ k Æ K.

The constraints (3.5)-(3.9) impose a synchronization behavior:

52

Proposition 9. Let fi be an infinite path {‡

i

}
iØ1

of M starting with ‡

1

. If fi |=
G HS(v, w, x, y), then there exists an index ¸ such that 2 Æ ¸ Æ K and the following prefix
of states holds true for all executions:

step ‡

i

[1] ‡

i

[¸] ‡

i

[k], k ”= ¸

‡

1

1 (v, v, IdlC) (x, x, IdlD) (x, x, IdlD)
‡

2

¸ (v, w, SynC) (x, x, IdlD) (x, x, IdlD)
‡

3

1 (v, w, SynC) (x, y, SynD) (x, x, IdlD)
‡

4

¸ (v, w, AckC) (x, y, SynD) (x, x, IdlD)
‡

5

1 (v, w, AckC) (x, y, AckD) (x, x, IdlD)
‡

6

¸ (v, w, WaitC) (y, y, AckD) (x, x, IdlD)
‡

7

1 (v, w, WaitC) (y, y, IdlD) (x, x, IdlD)
‡

8

(w, w, IdlC) (y, y, IdlD) (x, x, IdlD)

Proof. Now, we show that the prefix ‡

1

, . . . ‡

8

is as given above for some process ¸ such
that 2 Æ ¸ Æ K. We show that other possible executions contradict the proposition’s
hypothesis. Recall that a single step of a process corresponds to a path of its CFA from
q

I

to q

F

. We start with ‡

1

and show that the only possible step that can be taken from
‡

1

and each succeeding state in the prefix is as shown in the Proposition 9:
State ‡

1

. The infinite path starts with ‡

1

by the hypothesis of the proposition.
State ‡

2

. By (3.5), data processes are blocked until the control process initiates the
handshake with SynC . Thus, only process 1 can take a step in ‡

1

.
State ‡

3

. By (3.9), the control process is blocked in ‡

2

. Hence, there is some data process
¸ which takes the step.
State ‡

4

. In ‡

3

process ¸ is blocked by (3.7). Further, suppose by contradiction that a
data process k ”= ¸ takes a step resulting in ‡

Õ
4

[k] = (x, y, SynD). Due to (3.6), processes ¸

and k are blocked in ‡

Õ
4

. It follows that in the path starting with ‡

Õ
4

, all data processes
can move from (x, x, IdlD) to (x, y, SynD). As we have finitely many processes, eventually
all data processes will stop at (x, y, SynD). Let ‡

Õ
x

be the state where all the data process
have moved to (x, y, SynD). Then, once all the data process have moved to (x, y, SynD),
process 1 can take a step and move to (v, w, AckC) and then to (v, w, WaitC) as shown
below:

step ‡

i

[1] ‡

i

[¸] ‡

i

[k], k ”= ¸

‡

Õ
x

1 (v, w, SynC) (x, y, SynD) (x, x, SynD)
‡

Õ
x+1

1 (v, w, AckC) (y, y, SynD) (x, x, SynD)
‡

Õ
x+2

(v, w, WaitC) (y, y, SynD) (x, x, SynD)
In ‡

Õ
x

and ‡

Õ
x+1

all the data processes are blocked by (3.6). In ‡

Õ
x+2

, process 1 is
blocked by (3.8) and all the data processes are blocked by (3.6). Thus, no process can
take a step in ‡

Õ
x+2

. This contradicts the assumption that fi is infinite. Thus, only process
1 can take a step in ‡

3

.
State ‡

5

. In ‡

4

, every data process k ”= ¸ is blocked by the same argument as in state ‡

3

(they all eventually group and are blocked in (x, y, SynD)). Process 1 can move to

53

‡

Õ
5

[k] = (x, y, WaitC), but after that it is blocked due to (3.8), which contradicts the
assumption that fi is infinite. Thus, only process ¸ can take a step in ‡

4

.
State ‡

6

. In ‡

5

, every data process k ”= ¸ is blocked due to (3.6) and process ¸ is blocked
due to (3.9). Thus, only process 1 can take a step in ‡

5

.
State ‡

7

. In ‡

6

, every data process k ”= ¸ is blocked due to (3.5) and process 1 is blocked
due to (3.8). Thus, only process ¸ can take a step in ‡

6

.
State ‡

8

. In ‡

7

, all the data processes are blocked due to (3.5). Thus, only process 1 can
take a step.

Now we can prove Theorem 7 as follows:

Proof. Using J(v, w) and I(x, y) we can simulate (3.1) for (v, w) œ E
+

by instantiating
J(v, w) and I(D, C(v)). Moreover, we can simulate (3.3) for (v, w

ÕÕ) œ E≠ by instantiating
J(v, w

ÕÕ) and I(C(v), D). Finally, we can simulate (3.2) for (v, w

Õ) œ E
0

(that is, the test
for zero) by instantiating J(v, w

Õ) and adding one more temporal constraint:

[÷k.sv
k

= (v, w

Õ
, SynC)] æ ¬[÷k.sv

k

= (C(v), C(v), IdlD)] (EQ0)

Now we can construct the CFA A(M) that simulates M. This CFA is a union of
CFAs constructed for edges of E . If

Q

J

=
€

(v,w)œE
J(v, w),

then

A(M) = Q

J

fi
€

(v,w)œE+

I(D, C(v)) fi
€

(v,w)œE≠

I(C(v), D).

Further we define a specification which ensures that there is always exactly one control
process as

fi

qœQJ

fi

q

ÕœQJ \{q}
¬[÷k. sv

k

= q] ‚ ¬[÷k. sv
k

= q

Õ] (CP)

Now, we can specify the non-halting property Ï

nonhalt

as follows:

G
1

¬[÷k.sv
k

= (m, m, IdlC)]
2

‚ F ¬
1

CP·
fi

(v,w)œE0

EQ0·
fi

(v,w)œE+fiE≠

HS(v, w, C(v), C(v))
2

We can specify two initial process states: One is where the process stays in sv
C

=
(¸

0

, ¸

0

, IdlC) and another one is where the process sv
D

= (D, D, IdlD). Then SV
0

=
{sv

C

, sv
D

}. This concludes the proof.

54

3.3 Related Work
The decidability of model checking of distributed systems under di�erent link semantics
is studied in [5, 18]. Although several approaches have been made to identify decidable
classes for parameterized verification [42, 39, 97], no decidable formalism has been found
which covers a reasonably large class of interesting problems. The diversity of problem
domains for parameterized verification and the di�culty of the problem gave rise to many
approaches including regular model checking [4] and abstraction [83, 29] — the method
discussed the following chapter. The challenge in abstraction is to find an abstraction
h(K) such that h(K) |= Ï implies K

i

|= Ï for all i.
Notwithstanding this undecidability results, the rest of the thesis is concerned with

abstraction techniques for threshold-based FTDAs. In this context, Corollary 8 shows
that the model checking problem that we obtain after the first abstraction step (mentioned
in the introduction) is still undecidable. As discussed in the introduction, abstraction
always has to be accompanied by a case study along with practical experiments.

55

CHAPTER 4
Abstraction Scheme

After dealing with the formalization problem in Chapter 2, in this chapter we deal
with the second challenge faced in verifying FTDAs: the verification problem. Here we
present our Parameterized Interval Abstraction (PIA) method which was sketched in
Section 1.4.2 and demonstrate how it is used to reduce a parameterized model checking
problem to a finite-state model checking problem. As explained in Section 1.3, our
verification problem involves a family of concrete systems with unbounded states. We use
two levels of abstraction to abstract away this family of concrete systems to an abstract
finite state system: Parameterized Interval Data Abstraction (PIA data abstraction) and
Parameterized Interval Counter Abstraction (PIA counter abstraction).

Parameterized model checking requires us to ensure that the specifications to be
checked are satisfied by the family of concrete systems with all possible combinations
of parameter values. Hence, our abstract system must contain all the concrete system
behaviors. Consequently, we use existential abstraction which ensures that if there exists
a concrete run in a concrete system, it is mapped to a run in the abstract system. Thus,
if a specification is violated in a concrete system, it is also violated in the abstract system.
That is, in the other direction, if a specification holds in the abstract system, then it
holds in all concrete systems. Such an abstraction method is said to be sound.

Usually abstractions introduce new behavior that is not present in the original system.
Thus, a finite-state model checker might find a spurious run, that is, a run that does not
exist in the concrete system, while checking the abstract system. In order to discard such
runs, abstraction refinement techniques [25] have to be developed.

An overview of our abstraction scheme is given in Figure 4.1. In the sections that
follow, we will explain in detail both the abstraction steps involved, the abstraction
refinement step and also show why our abstraction method is sound.

Throughout this chapter we use the Algorithm 2.1 as our running example. Its
encoding in parametric Promela is given in Listing 3. Our final goal is to obtain a
Promela program that we can verify in Spin model checker. We will begin with our case
study, introduce the formalism and show how to abstract the parametric Promela code

57

Parametric Promela code static analysis + Yices

Parametric Interval Domain ‚

D

Parametric data abstraction
with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter rep-
resentation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat sat

Figure 4.1: The abstraction scheme

given in Listing 3 to a program in standard Promela [55]. We also present experiments
with Spin where we verify di�erent parameterized algorithms in order to validate our
abstraction method.

4.1 Abstract Domain for Parametric Intervals (PIA)

In order to gain an intuition about our abstract domain, let us begin with the code in
Listing 3. The process prototype STBcast refers to two kinds of variables, each of them
having a special role:

• Bounded variables. These are local variables that range over a finite domain, the
size of which is independent of the parameters. In our example, sv and next_sv
are variables of this kind.

• Unbounded variables. These variables range over an unbounded domain. They may
be local or shared. In our example, the variables nrcvd, next_nrcvd, and nsnt
are unbounded. These variables might become bounded, if we fix the parameters,
as in our example with nsnt Æ n ≠ f . However, we need a finite representation
independent of the parameters, that is, the bounds on the variable values must be
independent of the parameter values.

58

We can partition the variables into the sets B (bounded) and U (unbounded) by
performing value analysis on the process body. Intuitively, one can imagine that the
analysis iteratively computes the set B of variables that are assigned their values using
two kinds of statements:

• An assignment that copies a constant expression to a variable;

• An assignment that copies the value of another variable, which already belongs to
B.

The variables outside of B, e.g., those that are incremented in the code, belong to U .
This can be done by a simple implementation of abstract interpretation [30].

The data abstraction deals with unbounded variables by turning the operations
over unbounded domains into operations over finite domains. Threshold-based fault-
tolerant distributed algorithms give us a natural source of abstract values: the threshold
expressions. In our example, the variable next_nrcvd is compared against thresholds
t + 1 and n ≠ t. Thus, it appears natural to forget about concrete values of next_nrcvd.
Let us first try to replace the expressions that involve next_nrcvd with the expressions
over the two predicates: p1_next_nrcvd © x < t+1 and p2_next_nrcvd © x < n≠t.
Then, the following code is an abstraction of the computation block in lines (25)–(32) of
Listing 3:

if /ú compute ú/
:: (!p2_next_nrcvd) -> next_sv = AC;
:: (!p2_next_nrcvd && (sv == V1 || !p1_next_nrcvd)) ->

next_sv = SE;
:: else -> next_sv = sv;

fi;

Listing 4: Predicate abstraction of the computation block

However, our modeling involves operations like comparison of two variables, incre-
menting the value of a variable etc. as can be seen in the code line 22 of Listing 3. Since
such notions are not naturally expressed in terms of predicate abstraction, we introduce
parametric interval abstraction PIA. In this abstraction the abstract domain represents
intervals. The boundaries of these intervals are expressions to which the unbounded
variables are compared to, e.g., t + 1 and n ≠ t. We then use an SMT solver (Yices) to
abstract the expressions involving unbounded variables, e.g., comparisons.

Thus, instead of using several predicates, we replace the concrete domain of every
variable x œ U in Listing 3, with the abstract domain {I

0

, I

t+1

, I

n≠t

}. For reasons that
are motivated by the counter abstraction, we have to distinguish value 0 from a positive
value. This will be introduced later in Section 4.3. So we extend the domain with the
threshold “1”, that is, ‚

D = {I

0

, I

1

, I

t+1

, I

n≠t

}.

59

Semantics of the abstract domain: We introduce an abstract version of x, denoted
by x̂. The values of x̂ (from ‚

D) relate to the concrete values of x as follows:

x̂ =

Y

_

_

_

_

_

]

_

_

_

_

_

[

I

0

i� x œ [0; 1[
I

1

i� x œ [1; t + 1[
I

t+1

i� x œ [t + 1; n ≠ t[
I

n≠t

i� x œ [n ≠ t; Œ[
(4.1)

Now we translate the computation block in lines (25)–(32) of Listing 3 as follows:
1 if /ú compute ú/
2 :: next_nrcvd == In≠t -> next_sv = AC;
3 :: (next_nrcvd == I0 || next_nrcvd == I1 || next_nrcvd== It+1)
4 && (sv == V1 || (next_nrcvd == It+1 || next_nrcvd == In≠t))
5 -> next_sv = SE;
6 :: else -> next_sv = sv;
7 fi;

Listing 5: Parametric interval abstraction of the computation block

The abstraction of the receive block (lines 21–24 of Listing 3) involves the assignment
next_nrcvd = nrcvd + 1. This becomes a non-deterministic choice of the abstract
value of next_nrcvd, since it depends on the abstract value of nrcvd. Intuitively,
next_nrcvd could be in the same interval as nrcvd or in the interval above. We
provide the abstraction of lines 21–24 below. Later in this chapter, we will discuss how
this abstraction can be computed using an SMT solver.
8 if /ú r e c e i v e ú/
9 :: (/ú a b s t r a c t i o n o f (next_nrcvd < nsnt + F) ú/) ->

10 if :: nrcvd == I0 -> next_nrcvd = I1;
11 :: nrcvd == I1 -> next_nrcvd = I1;
12 :: nrcvd == I1 -> next_nrcvd = It+1;
13 :: nrcvd == It+1 -> next_nrcvd = It+1;
14 :: nrcvd == It+1 -> next_nrcvd = In≠t;
15 :: nrcvd == In≠t -> next_nrcvd = In≠t;
16 fi;
17 :: next_nrcvd = nrcvd;
18 fi;

Listing 6: Parametric interval abstraction of the receive block

There are several interesting consequences of transforming the receive block as above.
First, due to our resilience condition (which ensures that intervals do not overlap) for
every value of nrcvd there are at most two values that can be assigned to next_nrcvd.
For instance, if nrcvd equals I

t+1

, then next_nrcvd becomes either I

t+1

, or I

n≠t

.
Second, due to non-determinism, the assignment is not anymore guaranteed to reach any
value, e.g., next_nrcvd might be always assigned value I

1

.

60

Formalization: The input to our abstraction method is the infinite parameterized
family F = {Inst(p, Sk(A)) | p œ P

RC

} of Kripke structures specified via a CFA A. The
family F has two principal sources of unboundedness: unbounded variables in the process
skeleton Sk(A), and the unbounded number of processes N(p). We deal with these two
aspects separately, using two abstraction steps, namely the PIA data abstraction and
the PIA counter abstraction. In both abstraction steps we use the parametric interval
abstraction PIA.

Given a CFA A, let GA be the set of all linear combinations a

0

+
q

1ÆiÆ|�| a

i

· p

i

in
the left-hand sides of A’s threshold guards (see Section 2.3). Every expression Á of GA
defines a function f

Á

: P
RC

æ D. Let T = {0, 1} fi {f

Á

| Á œ GA} be a finite threshold set,
and µ + 1 its cardinality. For convenience, we name elements of T as Ë

0

, Ë

1

, . . . , Ë

µ

with
Ë

0

corresponding to the constant 0, and Ë

1

corresponding to the constant 1. For example,
the CFA in Fig. 2.1 has the threshold set {Ë

0

, Ë

1

, Ë

2

, Ë

3

}, where Ë

2

(n, t, f) = t + 1 and
Ë

3

(n, t, f) = n ≠ t. Then, we define the domain of parametric intervals as:

‚

D = {I

j

| 0 Æ j Æ µ}

Intuitively, as in [83], I

0

reflects an existential quantifier. However, in our case, an
abstract domain which distinguishes between 0, 1, and more [83] is too coarse to track
whether variables have surpassed certain thresholds.

Our abstraction rests on an implicit property of many FTDAs, namely, that the
resilience condition RC induces an order on the thresholds used in the algorithm (e.g.,
t + 1 < n ≠ t). We may thus restrict the threshold sets we consider by the following
definition:

Definition 10. The finite set T is uniformly ordered if for all p œ P
RC

, and all Ë

j

(p)
and Ë

k

(p) in T with 0 Æ j < k Æ µ, it holds that Ë

j

(p) < Ë

k

(p).

In cases where only a partial order is induced by RC , one can simply enumerate all
finitely many total orders. As parameters, and thus thresholds, are kept unchanged in a
run, one can verify an algorithm for each threshold order separately, and then combine
the results.

Definition 10 allows us to properly define the parameterized abstraction function
–

p

: D æ ‚

D and the parameterized concretization function “

p

: ‚

D æ 2D.

–

p

(x) =
I

I

j

if x œ [Ë
j

(p), Ë

j+1

(p)[for some 0 Æ j < µ

I

µ

otherwise.

“

p

(I
j

) =
I

[Ë
j

(p), Ë

j+1

(p)[if j < µ

[Ë
µ

(p), Œ[otherwise.

From Ë

0

(p) = 0 and Ë

1

(p) = 1, it immediately follows that for all p œ P
RC

, we have
–

p

(0) = I

0

, –

p

(1) = I

1

, and “

p

(I
0

) = {0}. Moreover, from the definitions of –, “, and
Definition 10 one immediately obtains:

Proposition 11. For all p in P
RC

, and for all a in D, it holds that a œ “

p

(–
p

(a)).

61

Definition 12. We define comparison between parametric intervals I

k

and I

¸

as I

k

Æ
I

¸

i� k Æ ¸.

The PIA domain has similarities to predicate abstraction since the interval borders
are naturally expressed as predicates, and computations over PIA are directly reduced
to SMT solvers. However, notions such as the order of Definition 12 are not naturally
expressed in terms of predicate abstraction.

4.2 PIA data abstraction
Our parameterized data abstraction is based on two abstraction ideas. First, the variables
used in a process skeleton are unbounded and we have to map these unbounded variables
to a finite domain. If we fix parameters p œ P

RC

, then an interval abstraction [30]
is a natural solution to the problem of unboundedness. Second, we want to produce
a single process skeleton that does not depend on parameters p œ P

RC

and captures
the behavior of all process instances. This can be done by using ideas from existential
abstraction [26, 32, 63] and sound abstraction of fairness constraints [63]. Our contribution
consists of combining these two ideas to arrive at parametric interval data abstraction.

Our abstraction maps values of unbounded variables to parametric intervals I

j

, whose
boundaries are symbolic expressions over parameters. However, for every instance, the
boundaries are constant because the parameters are fixed.

We now discuss an existential abstraction of a formula � that is either a threshold or
a comparison guard (we consider other guards later). To this end, we introduce notation
for sets of vectors satisfying �. Formula � has two kinds of free variables: parameter
variables from � and data variables from � fi �. Let xp be a vector of parameter variables
(xp

1

, . . . , x

p

|�|) and xv be a vector of variables (xv

1

, . . . , x

v

k

) over D

k. Given a k-dimensional
vector d of values from D, by

xp = p, xv = d |= �

we denote that � is satisfied on concrete values x

v

1

= d

1

, . . . , x

v

k

= d

k

and parameter
values p. Then, we define:

||�||÷ = {d̂ œ ‚

D

k | ÷p œ P
RC

÷d = (d
1

, . . . , d

k

) œ D

k

.

d̂ = (–
p

(d
1

), . . . , –

p

(d
k

)) · xp = p, xv = d |= �}

Hence, the set ||�||÷ contains all vectors of abstract values that correspond to some
concrete values satisfying �. Parameters do not appear anymore due to existential
quantification. A PIA existential abstraction of � is defined to be a formula �̂ over a
vector of variables x̂ = (x̂

1

, . . . , x̂

k

) over ‚

D

k such that {d̂ œ ‚

D

k | x̂ = d̂ |= �̂} ´ ||�||÷.
A pictorial representation of PIA data abstraction is given in Figure 4.2. The shaded

area approximates the line x

2

= x

1

+ 1 along the boundaries of our parametric intervals.
Each shaded rectangle corresponds to one conjunctive clause in the formula to the right.

62

x̂

2

x

1

x̂

1

1 t + 1n ≠ t

I

0

I

1

I

2

I

3

I

0

I

1

I

2

I

3

� © x2 = x1 + 1 �̂ © x̂1 = I0 · x̂2 = I1

‚ x̂1 = I1 · x̂2 = I1

‚ x̂1 = I1 · x̂2 = I2

‚ x̂1 = I2 · x̂2 = I2

‚ x̂1 = I2 · x̂2 = I3

‚ x̂1 = I3 · x̂2 = I3

Figure 4.2: Existential abstraction of x

2

= x

1

+ 1

Thus, given � © x

2

= x

1

+ 1, the shaded rectangles correspond to ||�||÷, from which we
immediately construct the existential abstraction �̂.

The central property of our abstract domain is that it allows to abstract comparisons
against thresholds (i.e., threshold guards) in a precise way. That is, we can abstract
formulas of the form Ë

j

(p) Æ x

1

by I

j

Æ x̂

1

and Ë

j

(p) > x

1

by I

j

> x̂

1

. In fact, this
abstraction is precise in the following sense.

Proposition 13. For all p œ P
RC

and all a œ D:
Ë

j

(p) Æ a i� I

j

Æ –

p

(a), and Ë

j

(p) > a i� I

j

> –

p

(a).

Proof. Fix an arbitrary p œ P
RC

.
Case a Ø Ë

j

(p). (∆) Fix an arbitrary a œ D satisfying a Ø Ë

j

(p). Let k be a maximum
number such that a Ø Ë

k

(p). Then –

p

(a) = I

k

. By Definition of –

p

we have k Ø j and
thus, by Definition 12, I

k

Ø I

j

. It immediately gives –

p

(a) Ø I

j

.
(≈) Let a œ D be a value satisfying –

p

(a) Ø I

j

. There is k such that –

p

(a) = I

k

and
a Ø Ë

k

(p). From –

p

(a) Ø I

j

it follows that I

k

Ø I

j

and, by Definition 12, k Ø j. Then
by Definition 10 we have Ë

k

(p) Ø Ë

j

(p) and by transitivity a Ø Ë

j

(p).
Case a < Ë

j

(p). (∆) Fix an arbitrary a œ D satisfying a < Ë

j

(p). Let k be a maximum
number such that a Ø Ë

k

(p). Then –

p

(a) = I

k

.
Consider the case when k Ø j. By definition 12 it implies I

k

Ø I

j

. It immediately
gives –

p

(a) Ø I

j

, which contradicts the assumption a < Ë

j

(p). Thus, the only case is
k < j.

By Definition 12, k < j implies I

k

Æ I

j

. As we excluded the case k = j we have
I

k

Æ I

j

, I

k

”= I

j

or, equivalently, –

p

(a) = I

k

< I

j

.
(≈) Let a œ D be a value satisfying –

p

(a) < I

j

or, equivalently, –

p

(a) Æ I

j

and
–

p

(a) ”= I

j

. There exists k such that –

p

(a) = I

k

and either (a) a < Ë

k+1

(p) or (b) k = µ.
From the assumption we have I

k

Æ I

j

and I

k

”= I

j

. From this we conclude: (c) k ”= µ

excluding (b); (d) I

k+1

Æ I

j

. From (d) by Definition 12, k + 1 Æ j. This implies by
Definition 10, Ë

k+1

(p) Æ Ë

j

(p). From this and (a) we conclude that a < Ë

j

(p).

For comparison guards we use the general form, well-known from the literature, from
the following proposition.

63

Proposition 14. If � is a formula over variables x

1

, . . . , x

k

over D, then
x

(

ˆ

d1,...,

ˆ

dk)œ||�||÷ x̂

1

=
d̂

1

· · · · · x̂

k

= d̂

k

is a PIA existential abstraction.

Proof. Consider an arbitrary d œ ||�||÷. As d œ ||�||÷, it satisfies the conjunct x̂

1

=
d̂

1

· · · · · x̂

k

= d̂

k

and thus satisfies the disjunction �̂, i.e. x = d |= �̂÷. As d is chosen
arbitrarily, we conclude that ||�||÷ ™ {x̂ œ ‚

D

k | x̂ |= �̂÷}.

4.2.1 Computing the existential abstraction
If the domain ‚

D is small (as it is in our case), then all vectors of abstract values in ‚

D

k

can be enumerated and can be checked to find out which belong to our abstraction ||�||÷,
using an SMT solver. As example consider the PIA domain {I

0

, I

1

, I

2

, I

3

} for the CFA
from Fig. 2.1. Figure 4.2 illustrates ||�||÷ of x

2

= x

1

+ 1 and the use of the formula from
Proposition 14.

So far, we have seen the abstraction examples and the formal machinery in the form
of existential abstraction ||�||÷. Now we show how to compute the abstractions using an
SMT solver. The input language we use is Yices [36], but this choice is not essential.
Any other solver that supports linear arithmetics over integers, e.g., Z3 [78], should be
su�cient for our purpose. We start with declaring the parameters and the resilience
condition:
1 (define n :: int)
2 (define t :: int)
3 (define f :: int)
4 (assert (and (> n 3) (>= f 0)
5 (>= t 1) (<= f t) (> n (* 3 t))))

Listing 7: The parameters and the resilience condition in Yices

Assume that we want to compute the existential abstraction of an expression similar
to one found in line 22 in Listing 3, that is,

�
1

© a < b + f.

According to the definition of ||�
1

||÷, we have to enumerate all abstract values of a

and b, and check whether there exists a valuation of the parameters n, t, and f and a
concretization “

n,t,f

of the abstract values that satisfies �
1

. In the case of �
1

this boils
down to finding all the abstract pairs (â, b̂) œ ‚

D ◊ ‚

D satisfying the formula:

÷a, b : –

n,t,f

(a) = â · –

n,t,f

(b) = b̂ · a < b + f (4.2)

Given â and b̂, Formula (4.2) can be encoded as a satisfiability problem in linear
integer arithmetics. For instance, if â = I

1

and b̂ = I

0

, then we encode Formula (4.2) as
follows:
6 (push) ;; store the context for the future use
7 (define a :: int)
8 (define b :: int)
9 (assert (and (>= a 1) (< a (+ t 1)))) ;; –n,t,f (a) = I1

64

10 (assert (and (>= b 0) (< b 1))) ;; –n,t,f (b) = I0
11 (assert (< a (+ b f))) ;; �1
12 (check) ;; is satisfiable?
13 (pop) ;; restore the previously saved context

Listing 8: Are there a and b with a < b + f , –

n,t,f

(a) = I

1

, and –

n,t,f

(b) = I

0

?

When we execute lines (1)–(13) of Listing 8 in Yices, we receive sat on the output.
That is, Formula 4.2 is valid for the values â = I

1

and b̂ = I

0

and (I
1

, I

0

) œ ||a < b + f ||÷.
To see concrete values of a, b, n, t, and f satisfying lines (1)–(13), we issue the following
command:
14 (set-evidence! true)
15 ;; copy lines (1) ≠ (13) here

Yices provides us with the following model:
(= n 7)
(= f 2)
(= t 2)
(= a 1)
(= b 0)

By enumerating all values from ‚

D◊ ‚

D, we obtain the following abstraction of a < b+f

(this is an abstraction of line (22) in Listing 3):
a == In≠t && b == In≠t || a == It+1 && b == In≠t

|| a == I1 && b == In≠t || a == I0 && b == In≠t

|| a == In≠t && b == It+1 || a == It+1 && b == It+1
|| a == I1 && b == It+1 || a == I0 && b == It+1
|| a == It+1 && b == I1 || a == I1 && b == I1
|| a == I0 && b == I1 || a == I1 && b == I0 || a == I0 && b== I0

Listing 9: Parametric interval abstraction of a < b + f

By applying the same principle to all expressions in Listing 3, we abstract the process
code. As the abstract code is too verbose, we do not give it here. It can be obtained by
running the tool on our benchmarks [1], as described in Appendix A.

4.2.2 Simulation proof for data abstraction

Transforming CFA: We now describe a general method to abstract guard formulas,
and thus construct an abstract process skeleton. To this end, by –

E

we denote a mapping
from a concrete formula � to some existential abstraction of � (not necessarily constructed
as above). By fixing –

E

, we can define an abstraction of a guard of a CFA:

abs(g) =

Y

_

_

_

_

_

]

_

_

_

_

_

[

–

E

(g) if g is a threshold guard
–

E

(g) if g is a comparison guard
g if g is a status guard
abs(g

1

) · abs(g
2

) otherwise, i.e., g is g

1

· g

2

65

By abusing the notation, for a CFA A by abs(A) we denote the CFA that is obtained
from A by replacing every guard g with abs(g). Note that abs(A) contains only guards
over sv and over abstract variables over ‚

D.

Definition 15. We define a mapping h

dat

p

from valuations v of a CFA A to valuations v̂

of CFA abst(A) as follows: for each variable x over D, v̂.x = –

p

(v.x), and for each
variable y over SV , v̂.y = v.y.

The following theorem follows immediately from the definition of existential abstrac-
tion and abst(A):

Theorem 16. For all guards g, all p in P
RC

, and for all valuations v with v =
�

p, if
v |= g, then h

dat

p

(v) |= abst(g).

For model checking purposes we have to reason about the Kripke structures that
are built using the skeletons obtained from CFAs. By Skabs(A) we denote the process
skeleton that is induced by CFA abst(A). Analogously to h

dat

p

, we define the parameterized
abstraction mapping h̄

dat

p

that maps global states from Inst(p, Sk(A)) to global states
from Inst(p, Skabs(A)). After that, we obtain Theorem 18 from Theorem 16 and the
construction of system instances.

Soundness: It can be shown that for all p œ P
RC

, and for all CFA A, Inst(p, Sk(A))
is simulated by Inst(p, Skabs(A)), with respect to APSV . Moreover, the abstraction of a
J-fair path of Inst(p, Sk(A)) is a J-fair path of Inst(p, Skabs(A)).

Definition 17. Let ‡ be a state of Inst(p, Sk(A)), and ‡̂ be a state of the abstract instance
Inst(p, Skabs(A)). Then, ‡̂ = h̄

dat

p

(‡) if for each variable y œ � fi � fi �, ‡̂.y = –

p

(‡.y),
and ‡̂.sv = ‡.sv.

Theorem 18. For all p œ P
RC

, and for all CFA A, if system instance Inst(p, Sk(A)) =
(S

I

, S

0

I

, R

I

, AP, ⁄

I

) and system instance Inst(p, Skabs(A)) = (S
ˆ

I

, S

0

ˆ

I

, R

ˆ

I

, AP, ⁄

ˆ

I

), then:
if (‡, ‡

Õ) œ R

I

, then (h̄dat

p

(‡), h̄

dat

p

(‡Õ)) œ R

ˆ

I

.

Proof. Let R and R

abs

be the transition relations of Sk(A) and Skabs(A) respectively.
From (‡, ‡

Õ) œ R

I

and the definition of Inst(p, Sk(A)) it follows that there is a process
index i : 1 Æ i Æ N(p) such that (‡[i], ‡

Õ[i]) œ R and other processes do not change their
local states.

Let v be a valuation of A. By the definition of Sk(A) from (‡[i], ‡

Õ[i]) œ R we have
that CFA A has a path q

1

, g

1

, q

2

, . . . , q

k

such that q

1

= q

I

, q

k

= q

F

and for every guard
g

j

it holds that v |= g

j

. Moreover, for any x œ � fi � fi � fi {sv} it holds v(x) = ‡[i].x
and v(xÕ) = ‡

Õ[i].x.
We choose the same path in abst(A) and construct the valuation h

dat

p

(v). From
Theorem 16 we have that for every guard g

j

it holds that h

dat

p

(v) |= abst(g
j

). Hence, the
path q

1

, g

1

, q

2

, . . . , q

k

is a path of CFA abst(A) as well.

66

By the definitions of h

dat

p

and h̄

dat

p

we have that for every x œ � fi � fi � fi {sv} it holds
h

dat

p

(v)(x) = h̄

dat

p

(‡)[i].x and h

dat

p

(v)(xÕ) = h̄

dat

p

(‡Õ)[i].x. By the definition of Skabs(A) it
immediately follows that (h̄dat

p

(‡), h̄

dat

p

(‡Õ)) œ R

abs

.
Finally, (h̄dat

p

(‡), h̄

dat

p

(‡Õ)) œ R

abs

implies that (h̄dat

p

(‡), h̄

dat

p

(‡Õ)) œ R

ˆ

I

.

Theorem 18 is the first step to prove simulation. In order to actually do so, we now
define the labeling function ⁄

ˆ

I

. For propositions from APSV , ⁄

ˆ

I

(‡̂) is defined in the
same way as ⁄

I

. Similar to [63], for propositions from APD, which are used in justice
constraints, we define ⁄

ˆ

I

(‡̂) as:

÷i. x

i

+ c < y

i

œ ⁄

ˆ

I

(‡̂) i�
fl

1ÆiÆN(p)

‡̂[i] |= –

E

({x + c(p) < y})

’i. x

i

+ c Ø y

i

œ ⁄

ˆ

I

(‡̂) i�
fi

1ÆiÆN(p)

‡̂[i] |= –

E

({x + c(p) Ø y})

From Theorem 18, the definition of h̄

dat

p

with respect to the variable sv, and the
definition of ⁄

ˆ

I

, one immediately obtains the following theorems. Theorem 20 ensures
that justice constraints J in the abstract system Inst(p, Skabs(A)) are a sound abstraction
of justice constraints J in Inst(p, Sk(A)).

Theorem 19. For all p œ P
RC

, and for all CFA A, Inst(p, Sk(A)) ∞ Inst(p, Skabs(A))
holds with respect to APSV .

Theorem 20. Let fi = {‡

i

}
iØ1

be a J-fair path of Inst(p, Sk(A)). Then fî = {h̄

dat

p

(‡
i

)}
iØ1

is a J-fair path of Inst(p, Skabs(A)).

Proof. By inductively applying Theorem 18 to fi we conclude that fî is indeed a path of
Inst(p, Skabs(A)).

Fix an arbitrary justice constraint q œ J ™ APD; infinitely many states on fi are
labelled with q. Fix a state ‡ on fi with q œ ⁄

I

. We show that q œ ⁄

ˆ

I

(h̄dat

p

(‡)). Consider
two cases:
Case 1. Proposition q has a form [÷i. �(i)], where � has free variables of two types: a
vector of parameters xp = x

p

1

, . . . , x

p

|�| from � and a vector of variables xv = x

v

1

, . . . , x

v

k

.
There is a process index i : 1 Æ i Æ N(p) such that ‡[i] |= �(i). Hence, xp = p, x

v

1

=
‡[i].x

1

, . . . , x

v

k

= ‡[i].x
k

|= �(i). From the definition of the existential abstraction it
follows that (–

p

(‡[i].x
1

), . . . , –

p

(‡[i].x
k

)) œ ||�(i)||
E

. Thus, x̂

v

1

= –

p

(‡[i].x
1

), . . . , x̂

v

k

=
–

p

(‡[i].x
k

) |= –

E

(�(i)). As for every x

j

: 1 Æ j Æ k the value h̄

dat

p

(‡)[i].x
j

is exactly
x̂

v

j

, we arrive at h̄

dat

p

(‡)[i] |= –

E

(�(i)). Then by the construction of ⁄

ˆ

I

it holds that
[÷i. �(i)] œ ⁄

ˆ

I

(h̄dat

p

(‡)).
Case 2. Proposition q has a form [’i. �(i)], where � has free variables of two types: a
vector of parameters xp = x

p

1

, . . . , x

p

|�| from � and a vector of variables xv = x

v

1

, . . . , x

v

k

.
Then for every process index i : 1 Æ i Æ N(p) it holds ‡[i] |= �(i). By fixing an arbitrary
i : 1 Æ i Æ N(p) and repeating exactly the same argument as in the Case 1, we show that

67

h̄

dat

p

(‡)[i] |= –

E

(�(i)). We conclude that
w

1ÆiÆN(p)

h̄

dat

p

(‡)[i] |= –

E

(�(i)), as i is chosen

arbitrarily. By the construction of ⁄

ˆ

I

it holds that [’i. �(i)] œ ⁄

ˆ

I

(h̄dat

p

(s)).
From Case 1 and Case 2 we conclude that q œ ⁄

ˆ

I

(h̄dat

p

(‡)). As we chose ‡ to be an
arbitrary state on fi labelled with q and we know that there are infinitely many such
states on fi, we have shown that there are infinitely many states h̄

dat

p

(‡) on fî labelled
with q. Finally, as q was chosen to be an arbitrary justice constraint from J , we conclude
that every justice constraint q œ J appears infinitely often on fî.

This proves that fî is a fair path.

Abstraction of specifications: As we have seen in Section 2.4.1, we use only spec-
ifications that compare status variable sv against a value from SV . For instance, the
unforgeability property U (U) refers to atomic proposition [’i. sv

i

”= V1]. Interval data
abstraction neither a�ects the domain of sv, nor does it change expressions over sv. Thus,
we do not have to change the specifications when applying the data abstraction.

However, the specifications are verified under justice constraints, e.g., the reliable
communication constraint RelComm (RelComm): G F ¬ [÷i. rcvd

i

< nsnt]. Our goal is
to preserve fair or in other words, just runs with the abstraction. That is, if each state
of a just run is abstracted, then the resulting sequence of abstract states is a just run of
the abstract system. Intuitively, when we verify a property that holds on all abstract just
runs, then we conclude that the property also holds on all concrete just runs. In fact, we
apply existential abstraction to the formulas that capture just states, e.g., we transform
the expression ¬ [÷i. rcvd

i

< nsnt] using existential abstraction ||¬ [÷i. rcvd
i

< nsnt] ||÷.
Let Â be a propositional formula that describes just states, and JÂK

p

be the set of
states that satisfy Â in the concrete system with the parameter values p œ P

RC

. Then, by
the definition of existential abstraction, for all p œ P

RC

, it holds that JÂK
p

is contained
in the concretization of ||Â||÷. This property ensures justice preservation.

Remark on the precision: It can be argued that domain ‚

D is too imprecise and it
might be helpful to add more elements to ‚

D. By Proposition 13, however, the domain
gives us a precise abstraction of the comparisons against the thresholds. Thus, we
do not lose precision when abstracting the expressions like next_nrcvd < t + 1 and
next_nrcvd Ø n ≠ t, and we cannot benefit from enriching the abstract domain ‚

D with
expressions di�erent from the thresholds.

4.3 PIA counter abstraction

In the previous section we abstracted a parameterized process into a finite-state process.
In this section we turn a system parameterized in the number of finite-state processes
into a system which consists of a single process and finitely many states. First, we fix
parameters p and show how to convert a system of N(p) processes into a single process
system by using a counting argument.

68

Counter representation: The structure of the Promela program after applying the
data abstraction from Section 4.2 looks as follows:

int nsnt: 2 = 0; /ú 0 ‘æ I0, 1 ‘æ I1, 2 ‘æ It+1, 3 ‘æ In≠t ú/
active[n - f] proctype Proc() {

int pc: 2 = 0; /ú 0 ‘æ V 0, 1 ‘æ V 1, 2 ‘æ SE, 3 ‘æ AC ú/
int nrcvd: 2 = 0; /ú 0 ‘æ I0, 1 ‘æ I1, 2 ‘æ It+1, 3 ‘æ In≠t ú/
int next_pc: 2 = 0, next_nrcvd: 2 = 0;
if :: pc = 0; /ú V0 ú/

:: pc = 1; /ú V1 ú/
fi;

loop: atomic {
/ú r e c e i v e ú/
/ú compute ú/
/ú send ú/ }

goto loop;
}

Listing 10: Process structure after data abstraction

Note that a system consists of N(p) identical processes. We may thus change the
representation of a global state. Instead of storing which process is in which local state,
we just count the number of processes in each local state. We have seen in the previous
section that after the PIA data abstraction, processes have a fixed number of states.
Hence, we can use a fixed number of counters. To this end, we introduce a global array
of counters k that keeps the number of processes in every potential local state. By L we
denote the set of local states and by L

0

the set of initial local states. In order to map
the local states to array indices, we define a bijection: h : L æ {0, . . . , |L| ≠ 1}.

In our example, we have 16 potential local states, i.e., L

ST

= {(pc, nrcvd) | pc œ
{V 0, V 1, SE, AC}, nrcvd œ ‚

D}. In our Promela encoding, the elements of ‚

D and SV
are represented as integers; we represent this encoding by the function val : ‚

D fi SV æ
{0, 1, 2, 3} so that no two elements of ‚

D are mapped to the same number and no two
elements of SV are mapped to the same number. We allocate 16 elements for k and define
the mapping h

ST

: L

ST

æ {0, . . . , |L
ST

|≠1} as h

ST

((pc, nrcvd)) = 4·val(pc)+val(nrcvd).
Then k[h

ST

(¸)] stores how many processes are in local state ¸. Thus, a global state is
given by the array k, and the global variable nsnt.

Now we define the transition relation. As we have to capture interleaving semantics,
intuitively, if a process is in local state ¸ and goes to a di�erent local state ¸

Õ, then
k[h

ST

(¸)] must be decreased by 1 and k[h
ST

(¸Õ)] must be increased by 1. To do so in our
encoding, we first select a state ¸ to move away from, perform a step as above, that is,
calculate the successor state ¸

Õ, and finally update the counters. Thus, the template of
the counter representation looks as follows:

int k[16]; /ú number o f p roce s s e s in every l o c a l s t a t e ú/
int nsnt: 2 = 0;
active[1] proctype CtrAbs() {

int pc: 2 = 0, nrcvd: 2 = 0;
int next_pc: 2 = 0, next_nrcvd: 2 = 0;

69

/ú i n i t ú/
loop: /ú s e l e c t ú/

/ú r e c e i v e ú/
/ú compute ú/
/ú send ú/
/ú update counters ú/

goto loop;
}

Listing 11: Process structure of counter representation

The blocks receive, compute, and send stay the same, as they were in Section 4.2.
The new blocks have the following semantics: In init, an initial combination of counters
is chosen such that

q

¸œL0 k[¸] = N(p) and
q

¸œL\L0 k[¸] = 0. In select, a local state ¸

with k[¸] ”= 0 is non-deterministically chosen; In update counters, the counters of ¸ and a
successor of ¸ are decremented and incremented respectively.

We now consider the blocks in detail and start with init. Each of n ≠ f processes
starts in one of the two initial states: (V 0, I

0

) with h

ST

(V 0, I

0

) = 0 and (V 1, I

0

) with
h

ST

(V 1, I

0

) = 3. Thus, the initial block non-deterministically chooses the values for
the counters k[0] and k[3], so that k[0] + k[3] = n ≠ f and all the other indices are set
to zero. The following code fragment encodes this non-deterministic choice. Observe
that the number of choices needed is n ≠ f + 1, so the length of this code must depend
on the choices of these parameters. We will get rid of this requirement in the counter
abstraction below.
1 if /ú 0 ‘æ (pc = V 0, nrcvd = I0); 3 ‘æ (pc = V 1, nrcvd = I0) ú/
2 :: k[0] = n - f; k[3] = 0;
3 :: k[0] = n - f - 1; k[3] = 1;
4 ...
5 :: k[0] = 0; k[3] = n - f;
6 fi;

In the select block we pick non-deterministically a non-zero counter k[¸] and set pc

and nrcvd so that h

ST

(pc, nrcvd) = ¸. Again, here is a small fragment of the code:
7 if
8 :: k[0] != 0 -> pc = 0 /ú V 0 ú/; nrcvd = 0 /ú I0 ú/;
9 :: k[1] != 0 -> pc = 0 /ú V 0 ú/; nrcvd = 1 /ú I1 ú/;

10 ...
11 :: k[15] != 0 -> pc = 3 /ú AC ú/; nrcvd = 3 /ú In≠t ú/;
12 fi;

Finally, as the compute block assigns new values to next_pc and next_nrcvd, which
correspond to the successor state of (pc, nrcvd), we update the counters to reflect the
fact that one process moved from state (pc, nrcvd) to state (next_pc, next_nrcvd):
13 if
14 :: pc != next_pc || nrcvd != next_nrcvd ->
15 k[4 * pc + nrcvd]--; k[4 * next_pc + next_nrcvd]++;
16 :: else; /ú do not update the counters ú/
17 fi;

70

k[V0, I0] = I2
k[V1, I0] = I1

nsnt = I0

s0

k[V0, I0] = I2
k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s1

k[V0, I0] = I1
k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s2

k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s6

k[V0, I0] = I2
k[V0, I1] = I2
k[V1, I0] = I1
nsnt = I0

s3

k[V0, I0] = I1
k[V0, I1] = I2
k[V1, I0] = I1
nsnt = I0

s4

.

.

Figure 4.3: A small part of the transition system obtained by counter abstraction.

This representation might look ine�cient in comparison to the one with explicit
processes; e.g., Spin cannot use partial order reduction on this representation. However,
this representation is only an intermediate step.

Specifications: In the original system (before introducing the counter representation)
it is obvious how global states are linked with atomic propositions of the form [÷i. �(i)]
and [’i. �(i)]; a process i must satisfy �(i) or all processes must do so, respectively. In
the counter representation we do not have processes in the system anymore, and we have
to understand which states to label with our atomic propositions.

In the counter representation, we exploit the fact that our properties are all quantified,
which naturally translates to statements about counters. Let J�K be the set of local states
that satisfy �. In our example we are interested in the local states that satisfy sv = AC,
as it appears in our specifications. There are several such states (not all reachable)
depending on the di�erent values of nsnt. Then, a global state satisfies [÷i. �(i)] if
x

¸œJ�K k[¸] ”= 0. Similarly, a global state satisfies [’i. �(i)] if
w

¸”œJ�K k[¸] = 0.
As we are dealing with counters, instead of using disjunctions and conjunctions, we

could also use sums to evaluate quantifiers: the universal quantifier could also be expressed
as

q

¸œJ�K k[¸] = N(p). However, in the following counter abstraction this formalization
has drawbacks, due to the non-determinism of the operations on the abstract domain,
while the abstraction of 0 is precise.

Counter abstraction: The counter representation encodes a system of n≠f processes
as a single process system. When, n, t, and f are fixed, the elements of array k are
bounded by n. However, in the parameterized case the elements of k are unbounded. To
circumvent this problem, we apply the PIA abstraction from Section 4.2 to the elements
of k.

In the counter abstraction, the elements of k range over the abstract domain ‚

D.
Similar to Section 4.2, we have to compute the abstract operations over k. These are the
operations in the init block and in the update block.

71

To transform the init block, we first compute the existential abstraction of
q

¸œL0 k[¸] =
N(p). In our example, we compute the set ||k[0]+k[3] = n≠f ||÷ and non-deterministically
choose an element from this set. Again, we can do it with Yices. We give the initializa-
tion block after the abstraction (note that the number of choices is fixed and determined
by the size of the abstract domain):
1 if /ú 0 ‘æ (pc = V 0, nrcvd = I0); 3 ‘æ (pc = V 1, nrcvd = I0) ú/
2 :: k[0] = 3 /ú In≠t ú/; k[3] = 0 /ú I0 ú/;
3 :: k[0] = 3 /ú In≠t ú/; k[3] = 1 /ú I1 ú/;
4 ...
5 :: k[0] = 0 /ú I0 ú/; k[3] = 3 /ú In≠t ú/;
6 fi;

Listing 12: Initialization of the counters

In the update block we have to compute the abstraction of k[4 * pc + nrcvd]-
and k[4 * next_pc + next_nrcvd]++. We have already seen how to do this with
the data abstraction. The update block looks as follows after the abstraction:
18 if
19 :: pc != next_pc || nrcvd != next_nrcvd ->
20 if /ú decrement the counter o f the prev ious s t a t e ú/
21 :: (k[((pc * 4) + nrcvd)] == 3) ->
22 k[((pc * 4) + nrcvd)] = 3;
23 :: (k[((pc * 4) + nrcvd)] == 3) ->
24 k[((pc * 4) + nrcvd)] = 2;
25 ...
26 :: (k[((pc * 4) + nrcvd)] == 1) ->
27 k[((pc * 4) + nrcvd)] = 0;
28 fi;
29 if /ú increment the counter o f the next s t a t e ú/
30 :: (k[((next_pc * 4) + next_nrcvd)] == 3) ->
31 k[((next_pc * 4) + next_nrcvd)] = 3;
32 :: (k[((next_pc * 4) + next_nrcvd)] == 2) ->
33 k[((next_pc * 4) + next_nrcvd)] = 3;
34 ...
35 :: (k[((next_pc * 4) + next_nrcvd)] == 0) ->
36 k[((next_pc * 4) + next_nrcvd)] = 1;
37 fi;
38 :: else; /ú do not update the counters ú/
39 fi;

Listing 13: Abstract increment and decrement of the counters

In contrast to the counter representation, the increment and decrement of the counters
in the array k are now non-deterministic. For instance, the counter k[((pc * 4) +
nrcvd)] can change its value from I

n≠t

to I

t+1

or stay unchanged. Similarly, the
value of k[((next_pc * 4) + next_nrcvd)] can change from I

1

to I

t+1

or stay
unchanged.

This non-determinism adds the following behaviors to the abstract systems:

72

• both counters could stay unchanged, which leads to stuttering.

• the value of k[(pc * 4 + nrcvd)] decreases, while at the same time the value of
k[(next_pc * 4 + next_nrcvd)] stays unchanged. Thus we lose processes.

• k[(next_pc * 4 + next_nrcvd)] increases and k[(pc * 4 + nrcvd)]
stays unchanged. That is, processes are added.

Some of these behaviors lead to spurious counterexamples we deal with in Section 4.4.
Figure 4.3 shows a small part of the transition system obtained from the counter
abstraction. We omit local states that have the counter value I

0

to facilitate reading.
The state s

0

represents the initial states with t + 1 to n ≠ t ≠ 1 processes having sv = V0
and 1 to t processes having sv = V1. Each transition corresponds to one process taking a
step in the concrete system. For instance, in the transition (s

0

, s

2

) a process with local
state [V0, I

0

] changes its state to [V0, I

1

]. Therefore, the counter Ÿ[V0, I

0

] is decremented
and the counter Ÿ[V0, I

1

] is incremented.

Specifications: Similar to the counter representations, quantifiers can be encoded as
expressions on the counters. Instead of comparing to 0, we compare to the abstract zero
I

0

: A global state satisfies [÷i. �(i)] if
x

¸œJ�K k[¸] ”= I

0

. Similarly, a global state satisfies
[’i. �(i)] if

w

¸ ”œJ�K k[¸] = I

0

.

Formalization: Our counter abstraction is inspired by [83], which maps a system
instance composed of identical finite state process skeletons to a single finite state system.
We use the PIA domain ‚

D along with abstractions –

E

({x

Õ = x+1}) and –

E

({x

Õ = x≠1})
for the counters.

Stage 1: Vector Addition System with States (VASS) Let L = {¸ œ SV ◊D̄

|�| |
÷s œ S. ¸ ={sv}fi�

s} be the set of local states of a process skeleton. As the domain D̄ and
the set of local variables � are finite, L is finite. We write the elements of L as ¸

1

, . . . , ¸|L|.
We define the counting function K : S

I

◊ L æ D such that K[‡, ¸] is the number of
processes i whose local state is ¸ in global state ‡ œ S

I

, i.e., ‡[i] ={sv}fi�

¸. Thus, we
represent the system state ‡ as a tuple (g

1

, . . . , g

k

, K[‡, ¸

1

], . . . , K[‡, ¸|L|]), i.e., by the
shared global state and by the counters for the local states. If a process moves from
local state ¸

i

to local state ¸

j

, the counters of ¸

i

and ¸

j

will decrement and increment,
respectively.

Stage 2: Abstraction of VASS We abstract the counters K of the VASS represen-
tation using the PIA domain to obtain a finite state Kripke structure C(Sk). To compute
C(Sk) = (SC, S

0

C, RC, AP, ⁄C) we proceed as follows:
A state w œ SC is given by values of shared variables from the set �, ranging over

D̄

|�|, and by a vector (Ÿ[¸
1

], . . . , Ÿ[¸|L|]) over the abstract domain ‚

D from Section 4.1.
More concisely, SC = ‚

D

|L| ◊ D̄

|�|.

73

Definition 21. The parameterized abstraction mapping h̄

cnt

p

maps a global state ‡ of
the system Inst(p, Sk) to a state w of the abstraction C(Sk) such that: For all ¸ œ L it
holds that w.Ÿ[¸] = –

p

(K[‡, ¸]), and w =
�

‡.

From the definition, we can see how to construct the initial states. Informally, we
require the following to hold true:

1. the initial shared states of C(Sk) correspond to initial shared states of Sk,

2. there are actually N(p) processes in the system, and

3. initially all processes are in an initial state.

The intuitive construction of the transition relation is as follows: Like in VASS, a step
that brings a process from local state ¸

i

to ¸

j

can be modeled by decrementing the (non-
zero) counter of ¸

i

and incrementing the counter of ¸

j

using the existential abstraction
–

E

({Ÿ

Õ[¸
i

] = Ÿ[¸
i

] ≠ 1}) and –

E

({Ÿ

Õ[¸
j

] = Ÿ[¸
j

] + 1}).
Like Pnueli, Xu, and Zuck [83] we use the idea of representing counters in an abstract

domain, and performing increment and decrement using existential abstraction. They
used a three-valued domain representing 0, 1, or more processes. As we are interested,
e.g., in the fact whether at least t + 1 or n ≠ t processes are in a certain state, the domain
from [83] is too coarse for us. Therefore, we use counters from ‚

D, and we increment and
decrement counters using the formulas –

E

({x

Õ = x + 1}) and –

E

({x

Õ = x ≠ 1}).

Initial states: Let L

0

be a set {¸ | ¸ œ L · ÷s

0

œ S

0

. ¸ ={sv}fi�

s

0

}. It captures initial
local states. Then w

0

œ S

0

C if and only the following conditions are met:

÷p œ P
RC

÷k

1

· · · ÷k|L|.
ÿ

1ÆiÆ|L|
k

i

= N(p) · ’i : 1 Æ i Æ |L|. –

p

(k
i

) = w

0

.Ÿ[¸
i

]

’i : 1 Æ i Æ |L|. (¸
i

”œ L

0

) æ (w
0

.Ÿ[¸
i

] = I

0

)

÷s

0

œ S

0

. w

0

=
�

s

0

Less formally:

• Concrete counter values are mapped to w

0

.Ÿ[¸
i

] using –

p

.

• We consider only combinations of counters that give a system size N(p).

• Every counter Ÿ[¸
i

] is initialized to zero, if the local state ¸

i

is met in no initial
state s

0

œ S

0

.

• A shared variable g of w

0

may be initialized to a value v only if there is some initial
state s

0

œ S

0

with s

0

.g = v.

74

Transition relation: We now formalize the transition relation RC of C(Sk). The
formal definition of when for two states w and w

Õ of the counter abstraction it holds that
(w, w

Õ) œ RC is given below in (4.3) to (4.12). We will discuss each of these formulas
separately. We start from the transition relation R of the process skeleton Sk from which
we abstract. Recall that (s, s

Õ) œ R means that a process can go from s to s

Õ. From (4.4)
and (4.7) we obtain, from is the local state of s, and to is the local state of s

Õ.
In the abstraction, if from ”= to, a step from s to s

Õ is represented by increasing
the counter at index to by 1 and decreasing the one at from by 1. Otherwise, that is,
if from = to, the counter of from should not change. Here “increase” and “decrease”
is performed using the corresponding functions over the abstract domain ‚

D, and the
mentioned updates of the counters are enforced in (4.10), (4.11), and (4.9). Further,
the counters of all local states di�erent from from and to should not change, which
we achieved by (4.12). Performing such a transition should only be possible if there is
actually a process in state s, which means in the abstraction that the corresponding
counter is greater than I

0

. We enforce this restriction by (4.6).
Thus, we abstract the transition with respect to local states. However, s and s

Õ also
contain the shared variables. We have to make sure that the shared variables are updated
in the abstraction in the same way they are updated in the concrete system, which is
achieved in (4.5) and (4.8).

We thus arrive at the formal definition of the abstract transition relation. RC consists
of all pairs (w, w

Õ) for which there exist s and s

Õ in S, and from and to in L such that
equations (4.3)–(4.12) hold:

(s, s

Õ) œ R (4.3)
from ={sv}fi�

s (4.4)
w =

�

s (4.5)

w.Ÿ[from] ”= I

0

(4.6)
to ={sv}fi�

s

Õ (4.7)
w

Õ =
�

s

Õ (4.8)

(to = from) æ w

Õ
.Ÿ[from] = w.Ÿ[from] (4.9)

(to ”= from) æ (x = w.Ÿ[to], x

Õ = w

Õ
.Ÿ[to] |= –

E

({x

Õ = x + 1})) (4.10)

(to ”= from) æ (x = w.Ÿ[from], x

Õ = w

Õ
.Ÿ[from] |= –

E

({x

Õ = x ≠ 1})) (4.11)

’i : 1 Æ i Æ |L|.(¸
i

”= from · ¸

i

”= to) æ w

Õ
.Ÿ[¸

i

] = w.Ÿ[¸
i

] (4.12)

4.3.1 Simulation proof for counter abstraction

Soundness: The soundness is based on two properties. First, between every concrete
system and the abstract system, there is a simulation relation. The central argument to
prove this comes from Proposition 13, from which it follows that if a threshold is satisfied
in the concrete system, the abstraction of the threshold is satisfied in the abstract systems.

75

Intuitively, this means that if a transition is enabled in the concrete system, then it is
enabled in the abstract system, which is required to prove simulation.

Second, the abstraction of a fair path (with respect to our justice properties) in the
concrete system is a fair path in the abstract system. This follows from construction.
We label an abstract state with a proposition if the abstract state satisfies the existential
abstraction of the proposition, in other words, if there is a concretization of the abstract
state that satisfies the proposition. We show that for all p œ P

RC

, and for all finite
state process skeletons Sk, Inst(p, Sk) is simulated by C(Sk), w.r.t. APSV . Further, the
abstraction of a J-fair path of Inst(p, Sk) is a J-fair path of C(Sk).

Theorem 22. For all p œ P
RC

, and all finite state process skeletons Sk, let system
instance Inst(p, Sk) = (S

I

, S

0

I

, R

I

, AP, ⁄

I

), and C(Sk) = (SC, S

0

C, RC, AP, ⁄C). Then:
if (‡, ‡

Õ) œ R

I

, then
1

h̄

cnt

p

(‡), h̄

cnt

p

(‡Õ)
2

œ RC.

Proof. We have to show that if (‡, ‡

Õ) œ R

I

, then w = h̄

cnt

p

(‡) and w

Õ = h̄

cnt

p

(‡Õ)
satisfy (4.3) to (4.12. We first note that as (‡, ‡

Õ) œ R

I

, it follows from the (move)
property of transition relations that there is a process index i such that (‡[i], ‡

Õ[i]) œ R

I

;
we will use the existence of i in the following:
(4.3). Abbreviating s = ‡[i] and s

Õ = ‡

Õ[i], (4.3) follows.
(4.4) and (4.7). Follows immediately from the definition of L.
(4.6). From the definition of h̄

cnt

p

it follows that w.Ÿ[from] = –

p

(K(‡, from)).
From the existence of the index i it follows that K(‡, from) Ø 1. Hence, we have

K(‡, from) ”= 0 and from the definition of –

p

it follows that –

p

(K(‡, from)) ”= 0. From
–

p

(1) = I

1

and Definition 12 of total order we conclude (4.6), i.e. –

p

(K(‡, from)) ”= I

0

.
(4.5) and (4.8). Follows immediately from the definition of h̄

cnt

p

.
(4.9). Since to = from, it follows from (4.4) and (4.7) that s ={sv}fi�

s

Õ. Thus the
process with index i does not change its local state. Moreover from the property (frame)
of transition relations, all processes other than i maintain their local state. It follows that
for all ¸ in L, K(‡, ¸) = K(‡Õ

, ¸), and further that –

p

(K(‡, ¸)) = –

p

(K(‡Õ
, ¸)), and in

particular –

p

(K(‡, from)) = –

p

(K(‡Õ
, from)). Then (4.9) follows from the definition

of h̄

cnt

p

.
(4.10) and (4.11). From the property (frame) of transition relations, all processes other
than i maintain their local state. Since to ”= from it follows that i changes it local
state. It follows that

K(‡Õ
, to) = K(‡, to) + 1, (4.13)

K(‡Õ
, from) = K(‡, from) ≠ 1. (4.14)

From the definition of h̄

cnt

p

we have

w

Õ
.Ÿ[to] = –

p

(K(‡Õ
, to)) and w.Ÿ[to] = –

p

(K(‡, to))
w

Õ
.Ÿ[from] = –

p

(K(‡Õ
, from)) and w.Ÿ[from] = –

p

(K(‡, from))

76

From Proposition 11 follows that

K(‡Õ
, to) œ “

p

(wÕ
.Ÿ[to]) and K(‡, to) œ “

p

(w.Ÿ[to]) (4.15)
K(‡Õ

, from) œ “

p

(wÕ
.Ÿ[from]) and K(‡, from) œ “

p

(w.Ÿ[from]). (4.16)

(4.10) follows from (4.13), (4.15), and the definition of existential abstraction –

E

,
while (4.11) follows from (4.14), (4.16), and the definition of existential abstraction –

E

.
(4.12). From property (frame) processes other than i do not move. The move of
process i does not change the number of processes in states other than from and
to. Consequently, for all local states ¸ di�erent from from and to it holds that

K(‡Õ
, ¸) = K(‡, ¸). It follows that –

p

(K(‡Õ
, ¸)) = –

p

(K(‡, ¸)), and (4.12) follows from
the definition of h̄

cnt

p

.

To prove simulation, we now define the labeling function ⁄C. Here we consider
propositions from APD fi APSV in the form of [÷i. �(i)] and [’i. �(i)]. Formula �(i) is
defined over variables from the |�|-dimensional vector xp of parameters, a k-dimensional
vector x¸ of local variables and sv, an m-dimensional vector of global variables xg. Then,
the labeling function is defined by

[÷i. �(i)] œ ⁄C(w) i�
fl

¸œL

1

x¸ =
�

¸, xg =
�

w |= abst(�(i)) · w.k[¸] ”= I

0

2

[’i. �(i)] œ ⁄C(w) i�
fi

¸œL

1

x¸ =
�

¸, xg =
�

w |= abst(�(i)) ‚ w.k[¸] = I

0

2

Theorem 23. For all p œ P
RC

, and for all finite state process skeletons Sk, Inst(p, Sk) ∞
C(Sk), w.r.t. APSV .

Proof. Due to Theorem 22, it is su�cient to show that if a proposition p œ APSV holds
in state ‡ of Inst(p, Sk) then it also holds in state h̄

cnt

p

(‡) and vice versa. We distinguish
two types of propositions.

If p = [’i. sv
i

= Z] and p œ ⁄

I

(‡), then by the definition of ⁄

I

we have
w

1ÆiÆN(p)

(‡[i].sv = Z). Thus, in global state ‡ all processes are in a local state with
sv = Z. In other words, no process is in a local state with sv ”= Z. It follows that each
local state ¸ satisfies in ‡ that ¸.sv = Z or K(‡, ¸) = 0. From the definition of h̄

cnt

p

and
the definition of ⁄C this case follows. The same argument works in the opposite direction.

If p = [÷i. sv
i

= Z] and p œ ⁄

I

(‡), then by the definition of ⁄

I

we have
x

1ÆiÆN(p)

(‡[i].sv = Z). Thus, in global state ‡ there is a process in a local state ¸ with
sv = Z. It follows that K(‡, ¸) > 0. From the definition of h̄

cnt

p

and the definition of ⁄C
the case follows. The same argument works in the opposite direction.

These two cases conclude the proof.

Theorem 24. If fi = {‡

i

}
iØ1

is a J-fair path of Inst(p, Sk), then the path fî = {h̄

cnt

p

(‡
i

)}
iØ1

is a J-fair path of C.

77

Proof. By inductively applying Theorem 22 to fi we conclude that fî is indeed a path of
C.

Fix an arbitrary justice constraint q œ J ™ APD; infinitely many states on fi are
labelled with q. Fix an arbitrary state ‡ on fi such that q œ ⁄

I

. We show that
q œ ⁄C(h̄cnt

p

(‡)).
Propositions from APD have the form of [÷i. �(i)] and [’i. �(i)], where each �(i) has

free variables of two types: a vector of parameters xp = x

p

1

, . . . , x

p

|�| from �, a vector of
local variables x

¸ = x

¸

1

, . . . , x

¸

k

from �, and a vector of global variables x

g = x

g

1

, . . . , x

g

m

from �.

[÷i. �(i)] œ ⁄C(w) i�
fl

¸œL

1

x¸ = ¸, xg =
�

w |= –

E

(�(i)) · w.k[¸] ”= I

0

2

(4.17)

[’i. �(i)] œ ⁄C(w) i�
fi

¸œL

1

x¸ = ¸, xg =
�

w |= –

E

(�(i)) ‚ w.k[¸] = I

0

2

(4.18)

Consider two cases: Existential case (4.17). There is a process index i : 1 Æ i Æ N(p)
such that ‡̂[i] |= –

E

(�(i)).
Consider a local state ¸ œ L with ¸ =

L

‡̂[i]. As ‡̂[i] |= –

E

(�(i)) it follows that
x

¸

1

= ¸.x

¸

1

, . . . , x

¸

k

= ¸.x

¸

k

, x

g

1

= w.x

g

1

, . . . , x

g

m

= w.x

g

m

|= –

E

(�(i)). As i is the index of a
process with ¸ =

L

‡̂[i], it immediately follows that K(w, ¸) ”= 0. From the definition of –

it follows that for every p œ P
RC

it holds –

p

(K(w, ¸)) ”= I

0

. Thus, by the definition of
h̄

cnt

p

we have w.Ÿ[¸] ”= I

0

.
Hence, both requirements of Equation (4.17) are met for ¸ and from the property of

disjunction we have q œ ⁄C(w).
Universal case (4.18). Then for every process index i : 1 Æ i Æ N(p) it holds ‡̂[i] |=
–

E

(�(i)).
By fixing an arbitrary i : 1 Æ i Æ N(p), choosing ¸ œ L with ¸ =

L

w and by repeating
exactly the same argument as in the existential case, we show that x

¸

1

= ¸.x

¸

1

, . . . , x

¸

k

=
¸.x

¸

k

, x

g

1

= w.x

g

1

, . . . , x

g

m

= w.x

g

m

|= –

E

(�(i)). Thus, for every ¸ œ L such that there exists
i : 1 Æ i Æ N(p) with ¸ =

L

w the disjunct for ¸ in (4.18) holds true.
Consider ¸

Õ œ L such that for every i : 1 Æ i Æ N(p) it holds ¸

Õ ”=
L

w. It immediately
follows that K(w, ¸

Õ) = 0; from the definition of –

p

we have that –

p

(K(w, ¸

Õ)) = I

0

and
thus Ÿ[¸Õ] = I

0

. Then for ¸

Õ the disjunct in (4.18) holds true as well.
Thus, we conclude that the conjunction in the right-hand side of the equation (4.18)

holds, which immediately results in q œ ⁄C(w).
From the Universal Case and the Existential Case we conclude that q œ ⁄C(w). As

we chose ‡̂ to be an arbitrary state on fi labelled with q and we know that there are
infinitely many such states on fi, we have shown that there are infinitely many states
h̄

cnt

p

(‡̂) on fî labelled with q. Finally, as q was chosen to be an arbitrary justice constraint
from J , we conclude that every justice constraint q œ J appears infinitely often on fî.

This proves that fî is a fair path.

78

From Theorems 19, 20, 23, 24, and [38, Thm. 16] we obtain the following central
corollary in the form necessary for our parameterized model checking problem.

Corollary 25 (Soundness of data & counter abstraction). For all CFA A, and for all
formulas Ï from LTL-X over APSV and justice constraints J ™ APD: if C(Skabs(A)) |=

J

Ï,
then for all p œ P

RC

it holds Inst(p, Sk(A)) |=
J

Ï.

Theorem 26 (Soundness of data & counter abstraction). For all CFA A, and for all
formulas Ï from LTL-X over APSV and justice constraints J ™ APD: if C(Skabs(A)) |=

J

Ï,
then for all p œ P

RC

it holds Inst(p, Sk(A)) |=
J

Ï.

4.4 Abstraction Refinement
In Section 4.2 and Section 4.3, we constructed approximations of the transition systems.
First, we transformed parameterized code of a process into finite-state non-parameterized
code. Second, we constructed a finite-state process that approximates the behavior of
n ≠ f processes.

The states of the abstract system are determined by variables over ‚

D. Proposition 13
shows that we precisely abstract the relevant properties of our variables, i.e., comparisons
to thresholds. Hence, the classic CEGAR approach [25], which consists of refining
the state space, does not appear suitable. However, the non-determinism due to our
existential abstraction leads to spurious transitions that one can eliminate.

We encountered two sources of spurious transitions:

1. Transitions can “lose processes,” i.e., any concretization of the abstract number of
processes is less than the number of processes we started with. This is not within
the assumption of FTDAs, and is thus spurious.

2. In our use case (Figure 2.1) processes increase the global variable nsnt by one,
when they transfer to a state where the value of the status variable is in {SE, AC}.
Hence, in concrete system instances, nsnt should always be equal to the number
of processes whose status variable value is in {SE, AC}, while due to phenomena
similar to those discussed above, we can “lose messages” in the abstract system.

The experiments show that in our case studies neither losing processes nor losing
messages has influence on the verification of safety specifications. However, these behaviors
pose challenges for liveness as they lead to spurious counterexamples. Message passing
FTDAs typically require a process to receive messages from (nearly) all correct processes,
which is problematic if processes (i.e., potential senders) or messages are lost.

Besides, in Figure 2.1 we model message receptions by an update of the variable
rcvd, more precisely, rcvd Æ rcvd Õ · rcvd Õ Æ nsnt + f . We can observe that this does
not require the value of rcvd to actually increase. Hence, we add justice requirements,
e.g., J = {[’i. rcvd

i

Ø nsnt]} in our case study. As observed by [83], counter abstraction
may lead to justice suppression. Given a counter-example in the form of a lasso, we
detect whether its loop contains only unjust states. If this is the case, similar to an idea

79

from [83], we refine C(Skabs(A)) by adding a justice requirement, which is consistent with
existing requirements in all concrete instances.

Below, we give a general framework for a sound refinement of C(Skabs(A)). We
provide a more detailed discussion on the practical refinement techniques that we use in
our experiments in Section 4.5. To simplify presentation, we define a monster system as
a (possibly infinite) Kripke structure Sys

Ê

= (S
Ê

, S

0

Ê

, R

Ê

, AP, ⁄

Ê

), whose state space and
transition relation are disjoint unions of state spaces and transition relations of system
instances Inst(p, Sk(A)) = (S

p

, S

0

p

, R

p

, AP, ⁄

p

) over all admissible parameters:

S

Ê

=
€

pœPRC

S

p

, S

0

Ê

=
€

pœPRC

S

0

p

, R

Ê

=
€

pœPRC

R

p

⁄

Ê

: S

Ê

æ 2AP and ’p œ P
RC

, ’s œ S

p

. ⁄

Ê

(s) = ⁄

p

(s)

Let h : S

Ê

æ SC be an abstraction mapping, e.g., a combination of the abstraction
mappings from Section 4.2 and Section 4.3.

Definition 27. A sequence T = {‡

i

}
iØ1

is a concretization of path T̂ = {w

i

}
iØ1

from
C(Skabs(A)) if and only if ‡

1

œ S

0

Ê

and for all i Ø 1 it holds h(‡
i

) = w

i

.

Definition 28. A path T̂ of C(Skabs(A)) is a spurious path i� every concretization T

of T̂ is not a path in Sys
Ê

.

A prerequisite to abstraction refinement is to check whether a counter-example
provided by the model checker is spurious. While for finite state systems there are
methods to detect whether a path is spurious [25], we are not aware of a method to
detect whether a path T̂ in C(Skabs(A)) corresponds to a path in the (concrete) infinite
monster system Sys

Ê

. Therefore, we limit ourselves to detecting and refining uniformly
spurious transitions and unjust states. We first consider spurious transitions.

Definition 29. An abstract transition (w, w

Õ) œ RC is uniformly spurious i� there is no
transition (‡, ‡

Õ) œ R

Ê

with w = h(‡) and w

Õ = h(‡Õ).

The following theorem provides us with a general criterion that ensures that removing
uniformly spurious transitions does not a�ect the property of transition preservation.

Theorem 30. Let T ™ RC be a set of spurious transitions. Then for every transition
(‡, ‡

Õ) œ R

Ê

there is a transition (h(‡), h(‡Õ)) in RC \ T .

Proof. Assume that there is transition (‡, ‡

Õ) œ R

Ê

with w = h(‡), w

Õ = h(‡Õ), and
(w, w

Õ) œ RC fl T . As T is a set of uniformly spurious transitions, we have that the
transition (w, w

Õ) is uniformly spurious. Consider a pair of states fl, fl

Õ œ S

Ê

with the
property h(fl) = w and h(flÕ) = w

Õ. From Definition 29 it follows that (fl, fl

Õ) ”œ R

Ê

. This
contradicts the assumption (‡, ‡

Õ) œ R

Ê

as we can take fl = ‡ and fl

Õ = ‡

Õ.

It follows that the system (SC, S

0

C, RC \ T, AP, ⁄C) still simulates Sys
Ê

. After consid-
ering spurious transitions, we now consider justice suppression.

80

Definition 31. An abstract state w œ SC is unjust under q œ APD i� there is no concrete
state ‡ œ S

Ê

with w = h(‡) and q œ ⁄

Ê

(‡).

Consider infinite counterexamples of C(Skabs(A)), which have a form of lassos
w

1

. . . w

k

(w
k+1

. . . w

m

)Ê. For such a counterexample T̂ we denote the set of states in
the lasso’s loop by U . We then check, whether all states of U are unjust under some
justice constraint q œ J . If this is the case, then T̂ is a spurious counterexample, because
the justice constraint q is violated. Note that it is sound to only consider infinite paths,
where states outside of U appear infinitely often; in fact, this is a justice requirement.
To refine C’s unjust behavior we add a corresponding justice requirement. Formally, we
augment J (and APD) with a propositional symbol [o� U]. Further, we augment the
labelling function ⁄C such that every w œ SC is labelled with [o� U] if and only if w ”œ U .

Theorem 32. Let J ™ APD be a set of justice requirements, q œ J , and U ™ SC be a
set of unjust states under q. Let fi = {‡

i

}
iØ1

be an arbitrary fair path of Sys
Ê

under J .
The path fî = {h(‡

i

)}
iØ1

is fair in C(Skabs(A)) under J fi {[o� U]}.

Proof. Consider an arbitrary fair path fi = {‡

i

}
iØ1

of Sys
Ê

under J . Assume that
fî = {h(‡

i

)}
iØ1

is fair under J , but it becomes unfair under J fi {[o� U]}.
If fî is unfair under {[o� U]}, then fî does not have infinitely many states labelled

with [o� U]. Thus, fî must have an infinite su�x suf (fî), where each w œ suf (fî) has
the property [o� U] /œ ⁄C. From the definition of [o� U] we immediately conclude that
every state w œ suf (fî) belongs to U , i.e., w is unjust under q œ J .

Using the su�x suf (fî) we reconstruct a corresponding su�x suf (fi) of fi (by skipping
the prefix of the same length as in fî). From the fact that every state of suf (fî) is unjust
under q we know that every state ‡ œ suf (fi) violates the constraint q as well, namely,
q ”œ ⁄

Ê

(‡). Thus, fi has at most finitely many states labelled with q œ J . It immediately
follows from the definition of fairness that fi is not fair under J . This contradicts the
assumption of the theorem.

From this it follows that loops containing only unjust states can be eliminated, and
thus C(Skabs(A)) be refined.

We encountered cases where several non-uniform spurious transitions resulted in
a uniformly spurious path (i.e., a counterexample). We refine such spurious behavior
by invariants. These invariants are provided by the user as invariant candidates, and
are then automatically checked to actually be invariants using an SMT solver. In our
example the invariant is simply “the number of processes that sent a message equals the
number of sent messages.”

4.5 Practical Refinement Techniques
Given a run of the counter abstraction, we have to check that the run is spurious for all
combinations of parameters from P

RC

. This problem is again parameterized, and we are
not aware of techniques to deal with it in the general case. Thus, we limit ourselves to

81

detecting the runs that have a uniformly spurious transition, that is, a transition that
does not have a concretization for all the parameters from P

RC

.
We check for spurious transitions using SMT solvers. To do so, we have to encode the

transition relation of all concrete systems (which are defined by di�erent parameter values)
in SMT. We explain our approach in three steps: first we encode a single Promela
statement. Based on this we encode a process step that consists of several statements.
Finally, we use the encoding of a step to define the transition relation of the system.

4.5.1 Encoding the transition relation

Encoding a single statement: As we want to detect spurious behavior, the SMT
encoding must capture a system on a less abstract level than the counter abstraction. One
first idea would be to encode the transition relation of the concrete systems. However, as
we do parameterized model checking, we actually have infinitely many concrete systems,
and the state space and the number of processes in these systems is not bounded. Hence,
we require a representation whose “degree of abstraction” lies between the concrete systems
and the counter abstraction. In principle, the counter representation from Section 4.3
seems to be a good candidate. Its state is given by finitely many integer counters, and
finitely many shared variables that range over the abstract domain. Although there are
infinitely many states (the counters are not bounded), the state space and transition
relation can be encoded as an SMT problem. Moreover, threshold guards and the
operations on the process counters can be expressed in linear integer arithmetic, which is
supported by many SMT solvers.

However, experiments showed that we need a representation closer to the concrete
systems. Hence, we use a system whose only di�erence to the counter representation
from Section 4.3 is that the shared variables are not abstracted. The main di�culty
in this is to encode transitions that involve abstract local as well as concrete global
variables. For that, we represent the parameters in SMT. Then, instead of comparing
global variables against abstract values, we check whether the global variables are within
parametric intervals. Here we do not go into the formal details of this abstraction. Rather,
we explain it by example. The most complicated case is the one where an expression
involves the parameters, local variables, and shared variables. For instance, consider
the code in Listing 8, where a is a local variable and b is a shared one. In this new
abstraction a is abstract and b is concrete. Thus, we have to encode constraints on b as
inequalities expressing which interval b belongs to. Specifically, we replace b = I

k

with
either Ë

k

Æ b < Ë

k+1

(when k is not the largest threshold Ë

µ

), or Ë

µ

Æ b (otherwise):

a == In≠t && n ≠ t Æ b || a == It+1 && n ≠ t Æ b

|| a == I1 && n ≠ t Æ b || a == I0 && n ≠ t Æ b

|| a == In≠t && t + 1 Æ b < n ≠ t || a == It+1 && t + 1 Æ b < n ≠ t

|| a == I1 && t + 1 Æ b < n ≠ t || a == I0 && t + 1 Æ b < n ≠ t

|| a == It+1 && 1 Æ b < t + 1 || a == I1 && 1 Æ b < t + 1
|| a == I0 && 1 Æ b < t + 1 || a == I1 && 0 Æ b < 1
|| a == I0 && 0 Æ b < 1

82

Apart from this, statements that depend solely on shared variables are not changed.
Finally, statements that consist of local variables and parameters are abstracted as in
Section 4.2. This level of abstraction allows us to detect spurious transitions of both
types (a) and (b).

Encoding a single process step: Let us recall that our Promela code is an im-
plementation of the CFA representation of the pseudo-code. That is, the Promela
code defines a transition system. A single iteration of the loop expresses one step (or
transition) which consists of several expressions executed indivisibly. The code before
the loop defines the constraints on the initial states of the transition system.

As introduced in Section 2.3, formally, a guarded control flow automaton (CFA) is an
edge-labeled directed acyclic graph A = (Q, q

I

, q

F

, E) with a finite set Q of nodes called
locations, an initial location q

I

œ Q, and a final location q

F

œ Q. Edges are labeled with
simple Promela statements (assignments and comparisons). Each transition is defined
by a path from q

I

to q

F

in a CFA. Our goal is to construct a formula that encodes the
transition relation. We do this by translating a statement on every edge from E into
an SMT formula in a way similar to [13, Chapter 16]. Let us recall that the CFA for
the algorithm is given in the SSA form. That is we take care of multiple assignments
to the same variable, such that they do not overwrite previously assigned values. We
assume the following notation for the multiple copies of a variable x in SSA: x denotes
the input variable, that is, the copy of x at location q

I

; x

Õ denotes the output variable,
that is, the copy of x at location q

F

; x

i denotes a temporary variable, that is, a copy of
x that is overwritten by another copy before reaching q

F

. This requires us to capture
all paths of the CFA. Our goal is to construct a single formula T which represents the
process transition relation over the following vectors of free variables:

• p is the vector of integer parameters from �, which is not changed by a transition;

• x is the vector of integer input variables from � fi {sv};

• xÕ is the vector of integer output variables of x;

• g is the vector of integer input variables from �;

• gÕ is the vector of integer output variables of g;

• t is the vector of integer temporary variables of x and g;

• en is the vector of boolean variables, one variable en

e

per an edge e œ E, which
means that edge e lies on the path from q

I

to q

F

.

Let form(s) be a straightforward translation of a Promela statement s into a formula
as discussed above. Assignments are replaced with equalities and relations (e.g., Æ, >)
are kept as they are. Then, for an edge e œ E labeled with a statement s, we construct a
formula T

e

(p, x, xÕ
, g, gÕ

, t, en) as follows:

T

e

© en

e

æ form(s),

83

Now, formula T is constructed as the following conjunction whose subformulas are
discussed in detail below:

T © start · follow · mux ·
w

eœE

T

e

Intuitively, start says that at least one edge outgoing from q

I

is activated, follow
says that whenever a location has an incoming activated edge, it also has at least one
outgoing activated edge and mux expresses the fact that at most one outgoing edge can
be picked. These formulas are defined formally as follows:

start ©
x

(q,q

Õ
)œE: q=qI

en

(q,q

Õ
)

follow ©
w

(q,q

Õ
)œE

A

en

(q,q

Õ
)

æ
x

(q

Õ
,q

ÕÕ
)œE

en

(q

Õ
,q

ÕÕ
)

B

mux ©
x

(q,q

Õ
),(q,q

ÕÕ
)œE

¬en

(q,q

Õ
)

‚ ¬en

(q,q

ÕÕ
)

We have to introduce formula mux, because the branching operators in Promela
allow one to pick a branch non-deterministically whenever the guard of the branch
evaluates to true. To pick exactly one branch, we have to introduce the mutual exclusion
constraints in the form of mux. In contrast, programming languages like C do not need
this constraint, as the conditions of the if-branch and the else-branch cannot both evaluate
to true simultaneously.

Having constructed formula T , we say that a process can take a transition from
state x to state xÕ under some combination of parameters if and only if the formula
T (p, x, xÕ

, g, gÕ
, t, en) · RC (p) is satisfiable.

Transition relation of the counter representation: Now we show how to encode
the transition relation R of the counter representation using the process transition relation
T . The transition relation connects counters k and global variables g before a step with
their primed versions kÕ and gÕ after the step. Recall that in Section 4.3, we introduced
the bijection h that maps states to numbers. In the following, by abusing the notation,
we denote an SMT expression that encodes the bijection h, by h(x) . We use the formulas
dec and inc. Informally, dec ensures that the counter that corresponds to h(x) is not
equal to zero and decrements the counter, while inc increments the counter k[h(xÕ)]. Let
R be the following conjunction:

R © dec · T · inc · keep,

We define dec, inc, and keep as follows:

dec ©
w

0Æ¸<|L|
(h(x) = ¸) æ k[¸] > 0 · kÕ[¸] = k[¸] ≠ 1

inc ©
w

0Æ¸<|L|
(h(xÕ) = ¸) æ kÕ[¸] = k[¸] + 1

keep ©
w

0Æ¸<|L|
(h(x) ”= ¸ · h(xÕ) ”= ¸) æ kÕ[¸] = k[¸]

84

Now we can say that a counter representation of a system takes a step from (k, g) to
(kÕ

, gÕ) if and only if R(p, x, xÕ
, k, kÕ

, g, gÕ
, t, en) · RC (p) is satisfiable. In what follows,

we denote the latter formula by Step.
In order to encode operations on k, we use arrays. In our case, however, each array

may be replaced with |L| integer variables. Thus, we do not actually use important
properties of array theory.

4.5.2 Spurious Behavior
Losing and introducing processes: We start with the first type of spurious behavior,
where a transition “loses” or “introduces” processes. Consider the following sequence of
abstract states, which introduces new processes due to non-determinism of the counter
updates:
1 k = {0, 0, 0, 0, 3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 3 , 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 3 , 0, 0, 0, 2 , 0, 0, 0, 0, 0, 0, 0}, nsnt =2

Here we represent the abstract states in the format similar to the one used in our tool.
The assignment “k = {. . . }” shows the contents of the array k in C format, that is, the
position i = h(¸) gives the abstract number of processes in local state ¸. The assignment
“nsnt = . . . ” shows the value of nsnt.

As one can see, counter k[8] changes its value from I

0

to I

1

and then to I

t+1

. The
combination of k[8] = I

t+1

and k[4] = I

n≠t

indicates that the transition from state 2 to
state 3 is spurious. In fact, we can detect this kind of spurious behavior with Yices:
1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 3 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 15) nat))
8 (assert+ (and (<= (- n t) (k 4))))
9 (assert+ (and (<= (+ t 1) (k 8)) (< (k 8) (- n t))))

10 ;; -> copy the assertion below for the indices 1-3, 5-7, 9-15
11 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
12 (assert (= (- n f) (+
13 (k 0) (k 1) (k 2) (k 3) (k 4) (k 5) (k 6) (k 7)
14 (k 8) (k 9) (k 10) (k 11) (k 12) (k 13) (k 14) (k 15))))
15 (check)

Listing 14: Constraints on state 3 encoded in Yices

In lines (8) – (11), we constrain the values of process counters to reside within the
parametric intervals as defined by the abstract values of state 3. In lines (12) – (14), we
assert that the total number of processes equals n≠f . Yices reports that the constraints
are unsatisfiable, which means that state 3 cannot be an abstraction of a system state
with n ≠ f processes. We conclude that the transition from state 2 to state 3 is uniformly
spurious, and we eliminate it.

85

In fact, Yices also reports that it did not use all the assertions to come up with
unsatisfiability. An unsatisfiable core — a minimal set of assertions that leads to unsatisfi-
ability — consists of the assertions in lines (8) – (9). Thus, we can remove every transition
leading to a state with k[4] = I

n≠t

and k[8] = I

t+1

.
Now consider a sequence of abstract states, which is losing processes:

1 k = {0, 0, 0, 0, 3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 2 , 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 1 , 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0}, nsnt =1

As with the case of introducing processes, we can detect with Yices that the transition
from state 2 to state 3 is uniformly spurious, and eliminate all the transitions captured
with an unsatisfiable core.

Losing messages: In our case study (Figure 2.1) processes increase the global variable
nsnt by one, when they transfer to a state where the value of the status variable is
in {SE, AC}. Hence, in concrete system instances, nsnt should always be equal to the
number of processes whose status is in {SE, AC}, while due to phenomena similar to those
discussed above, we can “lose messages” in the abstract system. When checking safety
properties, this kind of spurious behavior does not produce counterexamples. However,
it generates spurious counterexamples for liveness. Consider the following example:
1 k = {0, 0, 0, 0, 3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 3 , 0, 0, 0, 1 , 0, 0, 0, 0, 0, 0, 0}, nsnt = 1
3 k = {0, 0, 0, 0, 2 , 0, 0, 0, 2 , 0, 0, 0, 0, 0, 0, 0}, nsnt = 1

Consider state 3. Here, the number of processes with sv = SE is at least t + 1 (as
k[8] = 2 corresponding to I

t+1

), while the number of messages is always strictly less than
t + 1 (as nsnt = 1 corresponding to I

1

). We can try to check, whether the transition
from state 2 to state 3 is spurious. Again, we add the constraints by Step:
1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 3 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 15) nat))
8 (define k’ :: (-> (subrange 0 15) nat))
9 (assert+ (and (<= (+ t 1) (k 4)) (<= (k 4) (- n t))))

10 (assert+ (and (<= 1 (k 8)) (< (k 8) (+ t 1))))
11 (assert+ (and (<= 1 (k’ 4)) (<= (k’ 4) (+ t 1))))
12 (assert+ (and (<= 1 (k’ 8)) (< (k’ 8) (+ t 1))))
13 ;; copy the assertions below for the indices 1-3, 5-7, 9-15
14 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
15 (assert+ (and (<= 0 (k’ 0)) (< (k’ 0) 1)))
16 ;; -> copy Step here <-
17 (check)

Listing 15: Concretization of transition from state 2 to state 3 in Yices

86

However, this time Yices reports that the constraints are satisfiable. Indeed, it is
possible to pick the number of processes that satisfy the constraints in lines (9) – (12)
in Listing 15 and still do not increase nsnt so that it reaches t + 1. As we know that
this example represents spurious behavior, the user can introduce an invariant candidate
in Promela:

atomic tx_inv =
((card(Proc:pc == SE) + card(Proc:pc == AC)) == nsnt);

Then we can automatically test, whether the invariant candidate tx_inv is an invariant
by checking that the following formula is unsatisfiable (tx_invÕ is a copy of tx_inv with
x replaced by xÕ, and Init is a formula encoding the initial states):

¬((Init æ tx_inv) · ((tx_inv · Step) æ tx_invÕ))

As soon as we know that tx_inv is an invariant, we can add the following assertion
to the previous query in Yices:
18 (assert (= nsnt (+
19 (k 8) (k 9) (k 10) (k 11) (k 12) (k 13) (k 14) (k 15))))

Listing 16: Constraint expressed by the invariant tx_inv

With this assertion in place, we discover that the transition from state 2 to state 3 is
uniformly spurious.

4.5.3 Removing transitions in Promela

So far, we were concerned with detecting uniformly spurious transitions. Now we discuss
how can we remove spurious transitions from the counter abstraction that was introduced
in Section 4.3 (Listing 11).

Whenever we detect a uniformly spurious transition, we extract two sets of constraints
from the SMT solver:

1. The constraints on the abstract state before the transition (precondition) and

2. The constraints on the abstract state after the transition (postcondition).

Consider the following uniformly spurious transition:
1 k = {1, 0 , 0, 0, 3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {1, 1 , 0, 0, 3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt = 1

Here we extract the following constraints from an unsatisfiability core given to us by
the SMT solver (written in Promela notation):

pre = (nsnt == 0);
post = (k[0] == 1) && (k[1] == 2)

&& (k[4] == 3) && (k[15] == 0) && (nsnt == 0);

87

In order to remove the spurious transition, we have to enforce Spin to prune the
executions that include the transition. To this end, we introduce a boolean variable
is_spur that turns true, whenever the current execution has at least one spurious
transition. Then for each refinement iteration K Ø 1 we introduce a boolean variable
pK_pre that turns true, whenever the current state satisfies the precondition of the
spurious transition detected in iteration K. We modify Promela code as follows:

bool is_spur = 0; /ú i s the current execu t ion spur ious ú/
bool p1_pre = 0; /ú d e t e c t e d at re f inement i t e r a t i o n 1 ú/
...
bool pK_pre = 0; /ú d e t e c t e d at re f inement i t e r a t i o n K ú/
...
active[1] proctype CtrAbs() {
...
/ú i n i t ú/

loop:
...
pK_pre = (nsnt == 0);
/ú s e l e c t ú/
/ú r e c e i v e ú/
/ú compute ú/
/ú send ú/
/ú update counters ú/
...
/ú i s the current t r a n s i t i o n spur ious ? ú/
spur = spur || pK_pre && k[0] == 1 && k[1] == 2

&& k[4] == 3 && k[15] == 0 && nsnt == 0;
goto loop;

}

Listing 17: Counter abstraction with detection of spurious transitions

Finally, we prune the spurious executions by modifying each LTL-X formula Ï

in Promela specifications as follows:
[]!is_spur -> Ï

4.5.4 Detecting unfair loops
There is a third kind of spurious behavior that is not present in our case study, but it
occurs in the experiments with omission faults (Section 2.4.4). Modeling omission faults
introduces 12 local states instead of 16. Here is a counterexample showing the violation
of the liveness property R (Section 2.4.1):
3 k = { 2 , 0, 0, 2 , 0, 0, 0, 0, 0, 0, 0, 0}, nsnt = 0
4 k = { 2 , 0, 0, 2 , 0, 0, 1 , 0, 0, 0, 0, 0}, nsnt = 1
5 k = { 2 , 0, 0, 2 , 0, 0, 1 , 1 , 0, 0, 0, 0}, nsnt = 2
6 k = { 2 , 0, 0, 2 , 0, 0, 1 , 2 , 0, 0, 0, 0}, nsnt = 2
7 k = { 1 , 0, 0, 2 , 0, 0, 1 , 2 , 0, 0, 0, 0}, nsnt = 2
8 k = {0, 0, 0, 2 , 0, 0, 1 , 2 , 0, 0, 0, 0}, nsnt = 2

88

9 k = {0, 0, 0, 1 , 0, 0, 1 , 2 , 0, 0, 0, 0}, nsnt = 2
10 k = {0, 0, 0, 0, 0, 0, 1 , 2 , 0, 0, 0, 0}, nsnt = 2
11 k = {0, 0, 0, 0, 0, 0, 0, 2 , 0, 0, 0, 0}, nsnt = 2
12 k = {0, 0, 0, 0, 0, 0, 0, 2 , 0, 0, 0, 1 }, nsnt = 2
13 k = {0, 0, 0, 0, 0, 0, 0, 2 , 0, 0, 0, 2 }, nsnt = 2
14 k = {0, 0, 0, 0, 0, 0, 0, 1 , 0, 0, 0, 2 }, nsnt = 2
15 ««<START OF CYCLE»»>
16 k = {0, 0, 0, 0, 0, 0, 0, 1 , 0, 0, 0, 2 }, nsnt = 2

Listing 18: A counterexample with a spurious (unfair) loop

Here state 16 is repeated in a loop, but it violates the following fairness constraint
which says that up to nsnt ≠ F messages must be eventually delivered:

atomic in_transit = some(Proc:nrcvd < nsnt - F);
ltl fairness { []<>(!in_transit) && (...) }

Again, using the SMT solver we can check whether the loop is unfair, that is, no
state within the loop satisfies the fairness constraint, e.g., !in_transit.
1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 2 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 11) nat))
8 ;; the constraints by the state 14:
9 (assert+ (and (<= 1 (k 7)) (< (k 4) (+ t 1))))

10 (assert+ (and (<= (+ t 1) (k 11))))
11 ;; -> repeat the assertion below for the indices 0-6, 7-10
12 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
13 (assert+ (>= nsnt (+ t 1)))
14 ;; constraints by !in_transit
15 (assert+ (not (or
16 (and (>= (- nsnt f) (+ t 1))
17 (or (/= (k 1) 0) (/= (k 4) 0) (/= (k 7) 0) (/= (k 10) 0)))
18 (and (>= (- nsnt f) (+ t 1))
19 (or (/= (k 0) 0) (/= (k 3) 0) (/= (k 6) 0) (/= (k 9) 0)))
20 (and (>= (- nsnt f) 1) (< (- nsnt f) (+ t 1))
21 (or (/= (k 0) 0) (/= (k 3) 0) (/= (k 6) 0) (/= (k 9) 0)))
22)))
23 (check)

Listing 19: Does state 16 have a concretization that meets justice constraints?

This query is unsatisfiable and Yices gives us an unsatisfiable core that we track
in Promela as we did with the spurious transitions:

/ú update counters ú/
...
r0 = k[0] == 0 && k[1] == 0

&& k[2] == 0 && k[3] == 0 && k[4] == 0
&& k[5] == 0 && k[7] == 1 && k[10] == 0;

89

and modify each specification Ï to avoid infinite occurrences of r0:
(<>[]r0) || Ï

4.6 Experiments
To show the feasibility of our abstractions, we implemented the PIA abstractions and
the refinement loop in OCaml as a prototype tool ByMC. We evaluated it on di�erent
broadcasting algorithms. They deal with di�erent fault models and resilience conditions.
The algorithms are: (Byz), which is our use case algorithm (Algorithm 2.1 whose
CFA given in Figure 2.1), for t Byzantine faults if n > 3t, (symm) for t symmetric
(identical Byzantine [8]) faults if n > 2t, (omit) for t send omission faults if n > 2t, and
(clean) for t clean crash faults [96] if n > t. (symm), (omit) and (clean) are basically
Algorithm 2.1 with di�erent fault assumptions as explained in Section 2.4.4. In addition,
we verified the folklore broadcasting algorithm (FBC), which was also formalized in [47].
The formalization of FBC is discussed in Sections 5.1.

Table 4.1 summarizes our experiments run on 3.3GHz Intel R• CoreTM 4GB. In the
cases (A) we used resilience conditions as provided by the literature, and verified the
specification. The model FBC is the folklore reliable broadcast algorithm under the
resilience condition n Ø t Ø f . In the bottom part of Table 4.1 we used di�erent resilience
conditions under which we expected the algorithms to fail. The cases (B) capture the case
where more faults occur than expected by the algorithm designer (f Æ t + 1 instead of
f Æ t), while the cases (C) and (D) capture the cases where the algorithms were designed
by assuming wrong resilience conditions (e.g., n Ø 3t instead of n > 3t in the Byzantine
case). We omit (clean) as the only sensible case n = t = f (all processes are faulty)
results into a trivial abstract domain of one interval [0, Œ). The column “#R” gives the
number of refinement steps. In the cases where #R is greater than zero, refinement was
necessary, and “Spin Time” refers to the Spin running time after the last refinement step.
Finally, column | ‚

D| indicates the size of the abstract domain.

4.7 Related Work
Most of the previous research on parameterized model checking focused on concurrent
systems with n + c processes where n is the parameter and c is a constant. n of the
processes are identical copies andc processes represent the non-replicated part of the
system, e.g., cache directories, shared memory, dispatcher processes etc. [48, 56, 74, 29].
Algorithms in the heard-of model were verified by (bounded) model checking [93].

Partial order reductions for a class of fault-tolerant distributed algorithms (with
“quorum transitions”) for fixed-size systems were introduced in [14].

None of the above methods consider parameterized model checking of FTDAs. To the
best of our knowledge there are two papers on parameterized model checking of FTDAs
[47, 7]. The authors of [47] use regular model checking to make interesting theoretical
progress, but did not do any implementation. Their models are limited to processes

90

M |= Ï? RC Spin Spin Spin Spin | ‚D| #R Total

Time Memory States Depth Time

Byz |= U (a) 2.3 s 82 MB 483k 9154 4 0 4 s
Byz |= C (a) 3.5 s 104 MB 970k 20626 4 10 32 s
Byz |= R (a) 6.3 s 107 MB 1327k 20844 4 10 24 s

Symm |= U (a) 0.1 s 67 MB 19k 897 3 0 1 s
Symm |= C (a) 0.1 s 67 MB 19k 1113 3 2 3 s
Symm |= R (a) 0.3 s 69 MB 87k 2047 3 12 16 s
Omit |= U (a) 0.1 s 66 MB 4k 487 3 0 1 s
Omit |= C (a) 0.1 s 66 MB 7k 747 3 5 6 s
Omit |= R (a) 0.1 s 66 MB 8k 704 3 5 10 s

Clean |= U (a) 0.3 s 67 MB 30k 1371 3 0 2 s
Clean |= C (a) 0.4 s 67 MB 35k 1707 3 4 8 s
Clean |= R (a) 1.1 s 67 MB 51k 2162 3 13 31 s

FBC |= U — 0.1 s 66 MB 0.8k 232 2 0 1 s
FBC |= F — 0.1 s 66 MB 1.7k 333 2 0 1 s
FBC |= R — 0.1 s 66 MB 1.2k 259 2 0 1 s
FBC ”|= C — 0.1 s 66 MB 0.8k 232 2 0 1 s
Byz ”|= U (b) 5.2 s 101 MB 1093k 17685 4 9 56 s
Byz ”|= C (b) 3.7 s 102 MB 980k 19772 4 11 52 s
Byz ”|= R (b) 0.4 s 67 MB 59k 6194 4 10 17 s
Byz |= U (c) 3.4 s 87 MB 655k 10385 4 0 5 s
Byz |= C (c) 3.9 s 101 MB 963k 20651 4 9 32 s
Byz ”|= R (c) 2.1 s 91 MB 797k 14172 4 30 78 s

Symm ”|= U (b) 0.1 s 67 MB 19k 947 3 0 2 s
Symm ”|= C (b) 0.1 s 67 MB 18k 1175 3 2 4 s
Symm |= R (b) 0.2 s 67 MB 42k 1681 3 8 12 s
Omit |= U (d) 0.1 s 66 MB 5k 487 3 0 1 s
Omit ”|= C (d) 0.1 s 66 MB 5k 487 3 0 2 s
Omit ”|= R (d) 0.1 s 66 MB 0.1k 401 3 0 2 s

Table 4.1: Summary of experiments in the parameterized case.

whose local state space and transition relation are finite and independent of parameters.
This was su�cient to formalize a reliable broadcast algorithm that tolerates crash faults,
and where every process stores whether it has received at least one message. Such
models are not su�cient to capture FTDAs that contain threshold guards as in our case.
Moreover, the presence of a resilience condition such as n > 3t would require them to
intersect the regular languages, which describe sets of states, with context-free languages
that enforce the resilience condition. In [7], the safety of synchronous broadcasting
algorithms that tolerate crash or send omission faults has been verified. These FTDAs
have similar restrictions as the ones considered in [47]: Alberti et al. [7] mention that they

91

did not consider FTDAs that feature “substantial arithmetic reasoning”, i.e., threshold
guards and resilience conditions, as they would require novel suitable techniques. Our
abstractions address this arithmetic reasoning.

Interval abstraction [30] is a natural solution to the problem of unboundedness of
local variables. However, if we fixed the interval bounds to numeric values, then they
would not be aligned to the thresholds, and the abstraction would not be su�ciently
precise to do parametric verification. At the same time, we do not have to deal with
symbolic ranges over variables in the sense of [86], because for FTDAs the interval bounds
are constant in each run.

Further, we want to produce a single process skeleton that is independent of parameters
and captures the behavior of all process instances. This can be done by using ideas from
existential abstraction [26, 32, 63] and sound abstraction of fairness constraints [63]. We
combined these two ideas to arrive at PIA data abstraction.

The PIA counter abstraction is similar to [83] in a way that counters range over an
abstract domain, and increment and decrement is done using existential abstraction. The
domain in [83] consists of three values representing 0, 1, or more. This domain is su�cient
for mutual-exclusion-like problems. It allows to distinguish good from bad states, while
it is not possible and also not necessary to distinguish two bad states. A bad state is one
where at least two processes are in the critical section, which is precisely abstracted in the
three-valued domain. However, two bad states where, e.g., 2 and 3 processes are in the
critical section cannot be distinguished. Verification of threshold-based FTDAs requires
more involved counting: e.g., we have to capture whether at least n ≠ t processes or at
most t processes incremented nsnt. Therefore, we use counters from the PIA domain.

Our abstraction di�ers from interval abstraction [30] since in our case the interval
bounds are not numeric. However, for every instance, the boundaries are constant
because the parameters are fixed. We hence do not have to deal with symbolic ranges
over variables in the sense of [86].

92

CHAPTER 5
Selected FTDAs in PROMELA

In Chapter 2 we presented our formalization method and validated it using experimental
results. We used Algorithm 2.1 as a use case for this purpose. In this chapter we
consider three other threshold-based FTDAs each with a di�erent fault model: the
Folklore Reliable Broadcast Algorithm from [19] which tolerates non-clean crash faults,
the Asynchronous Byzantine Agreement Algorithm from [16] and the Asynchronous
Condition-Based Consensus Algorithm from [77], which tolerates clean crash faults.
We formalize these algorithms using extended CFA and Promela and also present
experimental results by verifying these algorithms for various combinations of parameter
values.

5.1 Folklore Reliable Broadcast Algorithm

Algorithm 5.1 Core logic Folklore Broadcast Algorithm from [19].

1 code f o r a c o r r e c t p roce s s i
2
3
4 vi in { false , true} <≠ false
5 accepti in { false , true} <≠ false
6
7 CODE
8
9 if vi or r e c e i v e d (echo) from some other p roce s s and

10 not sent ÈechoÍ b e f o r e
11 then
12 send ÈechoÍ to a l l ;
13 accepti <≠ true ;

93

Algorithm 5.1 shows the core logic of the Folklore Reliable Broadcast Algorithm
from [19]. This algorithm is designed to tolerate non-clean crash faults (Section 2.4.4).
The algorithm works as follows. A process broadcasts a message by sending it to all
processes. Upon the reception of a message for the first time by a process, it sends the
message to all the processes in the system and accepts it.

As with Algorithm 2.1, we limit the number of broadcasting processes to at most
one at a time, in order to limit the number of messages types. We are able to use this
restriction since the messages sent by individual broadcasters do not interfere with each
other. For this purpose we use the variable v

i

. v

i

= true indicates that the process i has
received the message from the broadcasting process and v

i

= false indicates otherwise.
Thus, if a process starts with v

i

= true, and it has not sent an ÈechoÍ yet, it sends an
ÈechoÍ to every process and accepts. Also, if a process has received ÈechoÍ and has not
sent ÈechoÍ yet then it sends an ÈechoÍ to every process and accepts.

As we can see from the pseudo code, there is only one message type in the system:
ÈechoÍ. The send operation always sends to all processes in the system. A process sends
message only if it is correct. Lines 9 - 13 represent one single step of a process.

Details about reliable broadcast and the related specifications are explained in
Section 2.4.1. Folklore Reliable Broadcast Algorithm is also considered in [47], where the
authors use an agreement property, which can be defined as follows:

(F) Agreement From a certain point of time, no two correct processes decide di�erently.

This property can be formalized as follows:

(G [’i. (sv
i

= V0 ‚ sv
i

= V1)] æ F G (¬[÷i. sv
i

= AC] ‚ [’i. sv
i

= AC])) (F)

Thus, in addition to the specifications of reliable broadcast (unforgeability U, relay R
and correctness C), we also consider the property F while verifying this algorithm.

Control flow: Now we will explain status values required for modeling the Folklore
Reliable Broadcast Algorithm. As already mentioned, the variable v

i

may take the
values true or false. We set the status variable of a process to V0 if it starts with
v

i

= false and to V1 if it starts with v

i

= true by V

1

. Thus, the set of initial status
values SV

0

= {V0, V1}. We can observe from the pseudo code that there are two more
important distinctions that we should make in the status of a process, that is, whether a
process has sent an ÈechoÍ and whether it has accepted. We use SE and AC to distinguish
these two control states, where SE denotes that the process has sent an ÈechoÍ already,
but has not accepted yet and AC denotes that the process has accepted.

Modeling non-clean crash faults: Modeling of non-clean crash faults is explained
in detail in Section 2.4.4. The faulty processes are modeled explicitly, by using a special
status value CR to denote that a process has crashed. We let a process crash by assigning
the value CR to the status variable of the process. Thus, the status variable of a process
can take one of the five values from the set of status values SV = {V0, V1, SE, AC, CR}.

94

q

I

q

1

q

2

q

3

q

4

q

5

q

F

rcvd Æ rcvd Õ · rcvd Õ Æ nsnt + nsntf

sv = V0

sv = V1

sv = AC‚
sv = CR

svÕ = AC svÕ = CR

1 Æ rcvd Õ

nsnt Õ = nsnt + 1

nsntf Õ = nsntf + 1

1 > rcvd Õ

Figure 5.1: CFA of Algorithm 5.1 (if x

Õ is not assigned, then x

Õ = x).

95

Upon crashing, the process increments the global variable nsntf (if it is required to send
a message), which denotes the number of messages sent by the crashed processes. This
algorithm does not limit the number of crashes. Hence we do not count the number of
crashes.

We use the local variable rcvd to model the reception of the messages and the global
variable nsnt to model the number of messages sent in the system at any point of time,
as explained in the modeling of Algorithm 2.1 in Section 2.4.2. Thus, we obtain the CFA
for Algorithm 5.1 as given in Figure 5.1 and the symbolic Promela code as given in
Listing 20.
1 symbolic int N;
2 int nsnt, nsntF;
3 atomic in_transit
4 = some(Proc:nrcvd < nsnt);
5 ...
6 active[N] proctype STFolklore() {
7 ...
8 if /ú receive ú/
9 :: next_nrcvd < nsnt + nsntF ->

10 next_nrcvd = nrcvd + 1;
11 :: next_nrcvd = nrcvd;
12 fi;
13 if /ú compute ú/
14 :: sv == V1 ->
15 next_sv = AC;
16 :: sv == V1 ->
17 next_sv = CR; /ú crash ú/
18 :: sv != AC && sv != CR && (next_nrcvd >= 1) ->
19 next_sv = AC;
20 :: sv != AC && sv != CR && next_nrcvd >= 1 ->
21 next_sv = CR;
22 :: else -> next_sv = sv;
23 fi;
24 if /ú send ú/
25 :: (pc == V0 || pc == V1)
26 && next_pc == AC -> nsnt++;
27 :: (pc == V0 || pc == V1)
28 && (next_pc == CR) -> nsntF++;
29 :: else
30 fi;
31 ...
32 ltl fkl { [](prec_init -> <>[](!ex_acc || all_acc)) }

Listing 20: Fragment of Algorithm 5.1 in Symbolic Promela

5.2 Asynchronous Byzantine Agreement Algorithm
The second algorithm we consider is the Asynchronous Byzantine Agreement Algorithm
from [16]. It works as follows: Similar to the previous algorithm, the broadcasting process
sends the message to all processes. A process which receives a message from a broadcaster

96

Algorithm 5.2 Core logic of Asynchronous Byzantine Agreement Algorithm from [16].

1 code f o r a c o r r e c t p roce s s i
2
3 vi in { false , true}<≠ false
4 accepti in { false , true} <≠ false
5
6 CODE
7
8 if vi and not sent ÈechoÍ b e f o r e
9 then

10 sendÈechoÍ to a l l ;
11 if r e c e i v e d ÈechoÍ from at l e a s t Â(n + t)/2Ê d i s t i n c t p r o c e s s e s and not sent
12 ÈreadyÍ b e f o r e
13 then
14 send ÈreadyÍ to a l l ;
15 if r e c e i v e d ÈreadyÍ from at l e a s t 2 t+1 d i s t i n c t p r oc e s s e
16 then
17 accepti <≠ true ;

for the first time relays the message to all processes via ÈechoÍ messages. If a process
receives at least Â(n + t)/2Ê of such ÈechoÍ messages, it sends ÈreadyÍ to all processes.
When a process has received (2k +1) ÈreadyÍ messages, it decides on that value by setting
accept

i

to true.
The pseudo code for the core logic of Asynchronous Byzantine Agreement Algorithm

is given in Algorithm 5.2. As is obvious from the name of the algorithm, it tolerates
Byzantine faults. Using the same reasoning as for Algorithm 5.1, we limit the number
of broadcasters to at most one, by using the variable v

i

. v

i

= true indicates that the
process i has received a message from the broadcaster. Otherwise, it has not received
any messages from the broadcaster yet. Lines 8 - 17 denote one step of a process. A send
operation always sends to all. There are two message types in this algorithm: ÈechoÍ and
ÈreadyÍ. Thus, the Byzantine faulty processes a�ect the correct processes only when the
messages they send belong to one of these two message types: others are ignored.

The specifications for this algorithm are those for reliable broadcast: unforgeability U,
relay R and correctness C as given in Section 2.4.1.

Control flow: As in the previous example, the variable v

i

can take two values: TRUE
or FALSE. The di�erent states to be distinguished here are (i) whether a process starts
from v

i

= true or v

i

= false, (ii) whether a process has sent an ÈechoÍ, (iii) whether
it has sent a ÈreadyÍ and (iv) whether it has accepted by setting accept

i

= true. The
set of initial status values, SV

0

= {V0, V1}, where V0 corresponds to a process starting
with v

i

= false and V1 corresponds to a process starting with v

i

= true. SE denotes
that the process has sent the ÈechoÍ and SR denotes that the process has sent a ÈreadyÍ
already, but has not accepted yet. AC denotes that the process has already accepted.
Thus the set of status values SV = {V0, V1, SE, SR, AC}.

97

q

I

q

1

q

2

q

3

q

4

q

5

q

F

rcvde

Õ Æ nsnte + f·
rcvdr

Õ Æ nsntr + f·
rcvde Æ nrcvde

Õ·
rcvdr Æ nrcvdr

Õ

sv = V 1‚
(sv = V 0·

(rcvde

Õ Ø Â(n + t)/2Ê + 1‚
rcvdr

Õ Ø t + 1))

nsnte

Õ = nsnte + 1·
sv

Õ = SE

sv = SE

sv = RD

sv = AC‚
(sv = V 0·

(rcvde

Õ
< Â(n + t)/2Ê + 1·

rcvdr

Õ
< t + 1))

rcvde

Õ Ø Â(n + t)/2Ê‚
rcvdr

Õ Ø 2t + 1

sv

Õ = RD·
nsntr

Õ = nsntr + 1

sv

Õ = AC

Figure 5.2: CFA of Algorithm 5.2 (if x

Õ is not assigned, then x

Õ = x).

98

Modeling byzantine faults: Byzantine faults are modeled as explained in Section 2.4.
Since we have two types of messages in this algorithm, we need to use two variables per
message type to model the send and receive operations. The local variables rcvde and
rcvdr are used to keep track of the reception of ÈechoÍ and ÈreadyÍ, respectively. Similarly,
we use two global variables to model the number of messages ÈechoÍ and ÈreadyÍ sent in
the system: nsnte and nsntr, respectively.

Thus, we get the formalization of the algorithm as given in the CFA in Figure 5.2
and the symbolic Promela code as given in Listing 21.

1 symbolic int N, T, F;
2 int nsnte, nsntr;
3 assume(N > 3); assume(F >= 0);
4 assume(T >= 1); assume(N > 3 * T);
5 assume(F <= T);

6 assume(((N + T) / 2 + 1) > (2 * T + 1));/úTo impose orderú/
7 atomic prec_unforg = all(Proc:pc == V0);
8 atomic prec_corr = all(Proc:pc == V1);
9 atomic prec_inV0 = all(Proc@end);

10 atomic prec_no0 = all(Proc:pc != V1);
11 atomic ex_acc = some(Proc:pc == AC);
12 atomic all_acc = all(Proc:pc == AC);
13 atomic in_transV0e = some(Proc:nrcvde < nsnte);
14 atomic in_transV0r = some(Proc:nrcvdr < nsntr);
15 active[N-F] proctype Proc() {
16 byte pc = 0, next_pc = 0;
17 int nrcvde = 0, next_nrcvde = 0;
18 int nrcvdr = 0, next_nrcvdr = 0;

19 if /ú INIT ú/
20 :: pc = V0;
21 :: pc = V1;
22 fi; end:
23 do
24 :: atomic {
25 if
26 :: (nrcvde < nsnte + F) -> next_nrcvde = nrcvde + 1;
27 :: next_nrcvde = nrcvde;
28 fi;
29 assume(nrcvde <= nsnte + F);
30 assert(next_nrcvde <= N + F);
31 if
32 :: (nrcvdr < nsntr + F) -> next_nrcvdr = nrcvdr + 1;
33 :: next_nrcvdr = nrcvdr;
34 fi;
35 assume(nrcvdr <= nsntr + F);
36 assert(next_nrcvdr <= N + F);

37 /ú a step by FSM: find the next value of the program counterú/
38 if
39 :: pc == V1 -> next_pc = EC;
40 :: (pc == V0) && ((next_nrcvde >= (N + T)/2 + 1)
41 || (next_nrcvdr >= (T + 1))) -> next_pc = EC;
42 :: (pc == EC) && ((next_nrcvde >= (N + T)/2 + 1)
43 || (next_nrcvdr >= (T + 1))) -> next_pc = RD;
44 :: (pc == RD) && (next_nrcvdr >= (2*T + 1)) -> next_pc = AC;
45 :: else -> next_pc = pc;

46 fi;/ú send the echo and ready messages ú/
47 if
48 :: ((pc == V0) || (pc == V1)) && (next_pc == EC) -> nsnte++;
49 ::(pc == EC) && next_pc == RD -> nsntr++;

99

50 :: else;
51 fi;
52 pc = next_pc; nrcvde = next_nrcvde;
53 nrcvdr = next_nrcvdr; next_pc = 0;
54 next_nrcvde = 0; next_nrcvdr = 0; }
55 od;}
56 ltl fairness { []<>(!in_transV0e && !in_transV0r) }
57 ltl agreement { [](ex_acc -> <>(all_acc))}
58 ltl corr { []((prec_inV0 && prec_corr) -> <>(ex_acc)) }
59 ltl unforg { []((prec_inV0 && prec_unforg) -> []!ex_acc) }

Listing 21: Fragment of Algorithm 5.2 in Symbolic Promela

5.3 Asynchronous Condition-Based Consensus Algorithm

Algorithm 5.3 Core logic of Condition-Based Consensus Algorithm from [77].

1 code f o r a c o r r e c t p roce s s i
2
3 vi in {0 , 1}
4 estimatei in {0 , 1}
5 phasei in {0 , 1} <≠ 0
6 accepti in { 0 , 1 , ‹ } <≠ ‹
7
8 CODE
9

10 send (phasei , vi) to a l l
11 if phasei i s 0 and not sent e s t imate yet
12 and r e c e i v e d at l e a s t (n≠t) d i s t i n c t phase0 messages
13 then
14 if number o f vi=0 messages r e c e i v e d > vi=1 messages
15 then
16 estimatei <≠ 0 ;
17 phasei <≠ 1 ;
18 send (phasei , estimatei) to a l l ;
19 if phasei i s 0 and not sent e s t imate yet
20 and r e c e i v e d at l e a s t (n≠t) d i s t i n c t phase0 messages
21 then
22 if number o f vi=1 messages r e c e i v e d > vi=0 messages
23 then
24 estimatei <≠ 1 ;
25 phasei <≠ 1 ;
26 send (phasei , estimatei) to a l l ;
27 if phasei i s 1 and not accepted yet
28 and r e c e i v e d at l e a s t (n≠1)/2 d i s t i n c t (phasei=1, estimatei=0) messages
29 then accepti <≠ 0 ;
30
31 if phasei i s 1 and not accepted yet
32 and r e c e i v e d at l e a s t (n≠1)/2 d i s t i n c t (phasei=1, estimatei=1) messages
33 then accepti <≠ 1 ;

100

The Asynchronous Condition-Based Consensus Algorithm as presented in [77] works
as follows: The algorithm works in two phases. In phase 0, all the processes send its value
to all. Each process then computes an estimate value when it has received n ≠ t distinct
messages from phase 0. The estimate value can be chosen based on di�erent conditions:
for instance, the most frequently occurring value or the maximum value. We calculate
the estimate as the most frequently occurring value in the input vector. On calculating
the estimate, a process moves to phase 1 and sends this estimate value to all processes if
it has not already done so. In phase 1, each process accepts the estimate value which it
has received from a majority of processes. This algorithm tolerates clean crash faults.

q

I

q

1

q

2

q

3

q

4

q

5

q

6

q

7

q

8

q

9

q

10

q

11

q

F

rcvd Õ
00

Æ nsnt
00

· rcvd Õ
01

Æ nsnt
01

·
rcvd Õ

10

Æ nsnt
10

· rcvd Õ
11

Æ nsnt
11

·
rcvd

00

Æ rcvd Õ
00

· rcvd
01

Æ rcvd Õ
01

·
rcvd

10

Æ rcvd Õ
10

· rcvd
11

Æ rcvd Õ
11

SV = W0‚
SV = W1

SV = P1

SV = V0 SV = V1

SV = P0

SV ”= CR·
nfaulty < F

c

SV = AC0‚
SV = AC1‚

SV = CR

nsnt Õ
00

= nsnt
00

+ 1·
SV Õ = P0

SV Õ = P0
nsnt Õ

01

= nsnt
01

+ 1

SV Õ = P1

rcvd Õ
10

Ø (n ≠ 1)/2

rcvd Õ
11

Ø (n ≠ 1)/2

rcvd Õ
00

+ rcvd Õ
01

Ø n ≠ t·
rcvd Õ

01

> rcvd Õ
00

rcvd Õ
00

+ rcvd Õ
01

Ø n ≠ t·
rcvd Õ

00

> rcvd Õ
01

nsnt Õ
10

= nsnt
10

+ 1·
SV Õ = W0

SV Õ = W1
nsnt Õ

11

= nsnt
11

+ 1

SV Õ = AC0 SV Õ = AC1

SV Õ = CR·
nfaulty

Õ = nfaulty + 1

Figure 5.3: CFA of Algorithm 5.3 (if x

Õ is not assigned, then x

Õ = x).

Algorithm 5.3 shows the core logic of Asynchronous Condition-Based Consensus

101

Algorithm. We reduce the problem to be solved to binary consensus by limiting the set
of input values to {0, 1}. Lines 10 - 33 represent one single step.

Control flow: As mentioned before, there are two input values possible (0 and 1) and
each correct process has to accept one of these values. A process can start with either
v

i

= 0 or v

i

= 1. We distinguish these two cases with the status values V0 and V1,
respectively: that is the set of initial states, SV

0

= {V0, V1}. The two phases in which the
algorithm operates are distinguished by the status values P 0 and P 1. In P 0, the processes
send their estimate values and in P1 they accept a value, both based on the number of
each values received. The other states to be distinguished are (i) whether a process has
sent the estimate value and (ii) whether it has accepted a value. We use the status values
W0 and W1to denote that the process has sent the estimate value 0 and 1, respectively.
Similarly, the status values AC0 and AC1 are used to denote that the process has
accepted value 0 and 1, respectively. Thus, SV = {V 0, V 1, P0, P1, W0, W1, AC0, AC1}
is the set of status values.

Specifications: The specifications for the consensus problem are as follows [77]:

(V0, V1) Validity. If a process decides a value v, then v was proposed by some process.

(A) Agreement At any point of time, no two processes decide di�erently.

(T) Termination Every process eventually decides on some value.

Note that (V0) and (A) are safety properties and (T) is a liveness property.
1 symbolic int N, T, F;
2 int nsnt00, nsnt01, nsnt10, nsnt11, nrcvd00, nrcvd01, nrcvd10, nrcvd11;
3 int init0, init1, nfaulty;
4 assume(N > 2); assume(F >= 0); assume(T >= 1); assume(N > 2 * T); assume(F <= T);

5 /ú two orders between the thresholds are possible : ú/
6 assume (F >= 1); assume (F == 0);
7 atomic prec_no0 = all(Proc:pc != V0); atomic prec_no1 = all(Proc:pc != V1);
8 atomic ex_acc0 = some(Proc:pc == AC0); atomic ex_acc1 = some(Proc:pc == AC1);
9 atomic prec_init = ((init0 + init1) == N);

10 atomic cond_init = ((init0 > (init1 + F)) || (init1 > (init0 + F)));
11 atomic all_acc = all(Proc:pc == CR ||Proc:pc == AC0 || Proc:pc == AC1);
12 atomic in_transit00 = some(Proc:nrcvd00 < nsnt00);
13 atomic in_transit01 = some(Proc:nrcvd01 < nsnt01);
14 atomic in_transit10 = some(Proc:nrcvd10 < nsnt10);
15 atomic in_transit11 = some(Proc:nrcvd11 < nsnt11);
16 active[N] proctype Proc() {
17 byte pc = 0, next_pc = 0;
18 int nrcvd00 = 0, next_nrcvd00 = 0, nrcvd01 = 0, next_nrcvd01 = 0;
19 int nrcvd10 = 0, next_nrcvd10 = 0, nrcvd11 = 0, next_nrcvd11 = 0;

20 if /ú INIT ú/
21 :: pc = V0 -> init0++;
22 :: pc = V1 -> init1++;
23 fi;
24 end:
25 do
26 :: atomic {
27 if

102

28 :: (pc == V0 || pc == V1 || pc == P0) && (nrcvd00 < nsnt00) ->
29 next_nrcvd00 = nrcvd00 + 1;
30 :: next_nrcvd00 = nrcvd00; fi;
31 if
32 :: (pc == V0 || pc == V1 || pc == P0) && (nrcvd01 < nsnt01) ->
33 next_nrcvd01 = nrcvd01 + 1;
34 :: next_nrcvd01 = nrcvd01; fi;
35 if
36 :: (pc == W0 || pc == W1 || pc == P1) && (nrcvd10 < nsnt10) ->
37 next_nrcvd10 = nrcvd10 + 1;
38 :: next_nrcvd10 = nrcvd10; fi;
39 if
40 :: (pc == W0 || pc == W1 || pc == P1) && (nrcvd11 < nsnt11) ->
41 next_nrcvd11 = nrcvd11 + 1;
42 :: next_nrcvd11 = nrcvd11; fi;
43 if /ú a step by FSM: find the next value of the program counter ú/
44 :: pc == V0 || pc == V1 -> next_pc = P0;
45 :: (pc == P0) && ((next_nrcvd00 + next_nrcvd01) >= N - T)
46 && (next_nrcvd00 > next_nrcvd01) -> next_pc = W0;
47 :: (pc == P0) && ((next_nrcvd00 + next_nrcvd01) >= N - T)
48 && (next_nrcvd01 > next_nrcvd00) -> next_pc = W1;
49 :: pc == W0 || pc == W1 -> next_pc = P1;
50 :: (pc == P1) && (next_nrcvd10 >= ((N-1) / 2)+1) -> next_pc = AC0;
51 :: (pc == P1) && (next_nrcvd11 >= ((N-1) / 2)+1) -> next_pc = AC1;
52 :: nfaulty < F && pc != CR -> nfaulty++; next_pc = CR;
53 ::else -> next_pc = pc; fi;
54 if /ú send the echo message ú/
55 :: (pc == V0) && (next_pc == P0) -> nsnt00++;
56 :: (pc == V1) && (next_pc == P0) -> nsnt01++;
57 :: (pc == P0) && (next_pc == W0) -> nsnt10++; next_nrcvd00 = 0; next_nrcvd01

= 0;
58 :: (pc == P1) && next_pc == W1 -> nsnt11++; next_nrcvd00 = 0; next_nrcvd01 =

0;
59 :: else; fi;
60 pc = next_pc;
61 nrcvd00 = next_nrcvd00; nrcvd01 = next_nrcvd01;
62 nrcvd10 = next_nrcvd10; nrcvd11 = next_nrcvd11;
63 next_pc = 0;
64 next_nrcvd00 = 0; next_nrcvd01 = 0;
65 next_nrcvd10 = 0; next_nrcvd11 = 0; }
66 od; }
67 ltl fairness { []<>(!in_transit00 && !in_transit01 && !in_transit10 && !

in_transit11) }
68 ltl validity0 { (([](prec_no0) && <>(prec_init)) -> []!ex_acc0) }
69 ltl validity1 { (([](prec_no1) && <>(prec_init)) -> []!ex_acc1) }
70 ltl agreement { [](!ex_acc0 || !ex_acc1)}
71 ltl termination { []((!prec_init || !cond_init) || (<>(all_acc))) }

Listing 22: Fragment of Algorithm 5.3 in Symbolic Promela

Modeling clean crash faults: In Section 2.4.4, we discussed two methods to model
clean crash faults. Here, we use the second model. That is, we have a global variable
nfaulty, which keeps track of the number of processes that have crashed. When a
process crashes, its status variable is assigned the value CR and the variable nfaulty is
incremented. Note that a process is allowed to crash only if nfaulty is less than the actual
number of faulty process F

c

in the system.

103

The local variables used to model the message reception are, rcvd
00

, rcvd
01

, rcvd
10

,
rcvd

11

. rcvd
00

stands for the reception of message 0 in phase 0, rcvd
01

stands for reception
of message1 in phase 0, rcvd

10

stands for reception of message 0 in phase 1 and rcvd
11

stands for reception of message 1 in phase 1. Similarly, we use nsnt
00

to model sending
of message 0 in phase 0, nsnt

01

to model sending of message1 in phase 0, nsnt
10

to model
sending of message 0 in phase 1 and nsnt

11

to model sending of message 1 in phase 1.
The number of messages received is allowed to take any value up to the number of

messages sent for each phase and message value. This includes the message sent by the
crashed processes, if they send any. Thus, the fairness condition is represented by the
following condition:

G F ¬ [÷i. rcvd
00

< nsnt
00

] · (5.1)
G F ¬ [÷i. rcvd

01

< nsnt
01

] · (5.2)
G F ¬ [÷i. rcvd

10

< nsnt
10

] · (5.3)
G F ¬ [÷i. rcvd

11

< nsnt
11

] (5.4)

Now let us formalize the specifications for this Algorithm 5.3 as follows:

G ([’i. sv
i

”= V0] æ G [’j. sv
j

”= AC0]) (V0)
G ([’i. sv

i

”= V1] æ G [’j. sv
j

”= AC1]) (V1)
G (¬ [÷i. sv

i

= AC1] ‚ ¬ [÷i. sv
i

= AC0]) (A)
F [(’i. sv

i

= AC0) ‚ (’j. sv
i

= AC1)] (T)

The CFA in Figure 5.3 shows the formalization of Algorithm 5.3 and the symbolic
Promela code is given in Listing 22.

5.4 Experiments
In this section we list our experimental results for the three algorithms modeled in this
chapter for di�erent combinations of parameter values, using Spin.

Table 5.1 summarizes our experiments for Algorithm 5.1, Algorithm 5.2 and Algo-
rithm 5.3. The Property (F) is the agreement property from [47]. Properties (V0)
and (V1) are non-triviality, that is, if all processes propose 0 (1), then 0 (1) is the only
possible decision value. Property (A) is agreement and similar to (R), while Property (T)
is termination, and requires that every correct process eventually decides. In all experi-
ments the validity of the specifications was as expected from the distributed algorithms
literature.

104

parameter values spec valid Time Mem. Stored Transitions Depth

Folklore Broadcast [19]
F1 N=2 (U) X 0.01 sec. 98 MB 121 7 · 103 77
F2 N=2 (R) X 0.01 sec. 98 MB 143 8 · 103 48
F3 N=2 ((F) X 0.01 sec. 98 MB 257 2 · 103 76
F4 N=6 (U) X 386 sec. 670 MB 15 · 106 20 · 106 272
F5 N=6 (R) X 691 sec. 996 MB 24 · 106 370 · 106 272
F6 N=6 ((F) X 1690 sec. 1819 MB 39 · 106 875 · 106 328

Asynchronous Byzantine Agreement [16]
T1 N=5,T=1,F=1 (R) X 131 sec. 239 MB 4 · 106 74 · 106 211
T2 N=5,T=1,F=2 (R) 7 0.68 sec. 99 MB 11 · 103 465 · 103 187
T3 N=5,T=2,F=2 (R) 7 0.02 sec. 99 MB 726 9 · 103 264

Condition-Based consensus [77]
S1 N=3,T=1,F=1 (V0) X 0.01 sec. 98 MB 1.4 · 103 7 · 103 115
S2 N=3,T=1,F=1 (V1) X 0.04 sec. 98 MB 3 · 103 18 · 103 128
S3 N=3,T=1,F=1 (A) X 0.09 sec. 98 MB 8 · 103 42 · 103 127
S4 N=3,T=1,F=1 (T) X 0.16 sec. 66 MB 9 · 103 83 · 103 133
S5 N=3,T=1,F=2 (V0) X 0.02 sec. 68 MB 1724 9835 123
S6 N=3,T=1,F=2 (V1) X 0.05 sec. 68 MB 3647 23 · 103 136
S7 N=3,T=1,F=2 (A) X 0.12 sec. 68 MB 10 · 103 55 · 103 135
S8 N=3,T=1,F=2 (T) 7 0.05 sec. 68 MB 3 · 103 17 · 103 135

Table 5.1: Summary of experiments with algorithms from [19, 16, 77]

105

CHAPTER 6
Conclusions

The work done in thesis has been motivated by the importance of ensuring the correctness
of FTDAs and the fact that existing work in this area is extremely scarce due to the
various challenges faced in verifying FTDAs. We have seen that FTDAs are widely used
in many safety critical applications and the traditional way of proving their correctness
such algorithms using handwritten proofs requires expert knowledge of the algorithm
and is very time consuming. Due to the inherent non-determinism and concurrency of
distributed algorithms and uncertainty introduced by the presence of faults, such manual
proofs can be error prone. Thus it is highly desirable to automate such proofs as much
as possible.

Our aim was to automatically verify an important and widely used class of FT-
DAs, called threshold-based FTDAs. Thus, in this thesis, we extended the standard
setting of parameterized model checking to processes that use threshold guards, and are
parameterized with a resilience condition.

6.1 Contributions
In Chapter 2 we presented a method to formalize Threshold-based FTDAs using an
extension version of Control Flow Automata. We presented a way to e�ciently encode
fault-tolerant threshold-guarded distributed algorithms using shared variables. We
showed that our encoding scales significantly better than a straightforward approach.
With the help of a use case, we showed how to transfer an algorithm given in pseudo-
code to CFA, and also how to translate the CFA obtained to our symbolic Promela
language. In more detail, we first added mild extensions to the syntax of Promela
to be able to express the kind of parameterized systems we are interested in. We also
showed by experimental evaluation that the standard language constructs for interprocess
communication do not scale well, and do not naturally match the required semantics
for fault-tolerant distributed algorithms. We thus introduced an e�cient encoding of a

107

fault-tolerant distributed algorithm in the extended Promela. We also discussed the
modeling approaches for di�erent fault models and presented the the CFA and Promela
representations of our use case algorithm in presence of di�erent kind of faults. This
representation builds the input for our tool chain, and we discussed in detail how it can
be automatically translated into abstract models.

In Chapter 3 we proved the undecidability of parameterized model checking problem
(PMCP) for CFAs, by reducing a 2-counter machine to PMCP.

We presented our method of abstraction, the Parameterized Interval Abstraction
(PIA) in Chapter 4, to verify threshold-based FTDAs. We showed how the abstraction is
applied on two levels (data and counter) to eliminate the unbounded variables in each
process and to abstract away the parameters in the system which consists of a parallel
combination of all the finite state processes obtained after the first abstraction. We also
presented the simulation proofs for both the levels of abstraction. As our abstractions
are over-approximations, the model checker returned spurious counterexamples, which
we eliminated using counterexample guided abstraction refinement (CEGAR) [25]. In
contrast to the classic CEGAR setting, in the parameterized case we have an infinite
number of concrete systems which posed new challenges. We discussed several of them
and presented the details of the abstraction refinement approach that was su�cient to
verify our case studies.

The only way to evaluate the practical use of an abstraction is to conduct experiments
on several case studies, and thus demonstrate that the abstraction is su�ciently precise
to verify correct distributed algorithms, and find counterexamples in buggy ones. Hence,
understanding implementations is crucial to evaluate the theoretical work and they are
thus of highest importance. With our encoding we were able to verify small system
instances and the parameterized versions of a number of broadcasting algorithms [90,
16, 19] for diverse failure models, as demonstrated in Chapter 5. The experiments with
fixed parameters help us to validate the adequacy of our formalization method. For
instance, we tried variations in the parameter combinations which violates the resilience
condition to see if the specifications are violated. With system sizes as big as n = 11, we
run out of memory, which points at the need of parameterized verification. We found
counterexamples in cases where the actual number of faults exceeded the threshold. We
also verified a condition-based consensus algorithm [77].

6.2 Future Work
The case studies presented in this thesis are fundamental algorithms with limited message
types. For instance, the state-of-the-art FTDAs for consensus or replicated state machines
such as Paxos [66] and other similar algorithms in [37, 19] have characteristics that
currently no parameterized model checking tool can deal with. The above mentioned
algorithms have executions separated into rounds and the messages carry the round
number. Thus, there are multiple message types. Also these algorithms often work based
on a (rotating) coordinator, which breaks symmetry. Our current verification method is
limited to one round. Also, the symmetry of the processes involved is an essential factor

108

for our abstraction to work. Currently there are no tools which make parameterized
model checking of such algorithms possible. Developing new techniques of parameterized
model checking that address these issues is future work.

We need to address two issues to be able to handle the parameterized verification of
the state-of-the-art algorithms mentioned above. They are,

• New abstraction techniques have to be designed that can handle limited forms of
asymmetric systems.

• To handle multiple rounds we must develop compositional methods that allow us
to combine verification results of several individual rounds.

Yet another direction of future work is to automatize the simulation proofs. We have
presented the simulation proofs for our abstraction in Chapter 4. Automated theorem
provers like Isabelle can be used to automatize these proofs instead of manually proving
the simulation relation.

109

Bibliography

[1] ByMC 0.4.0: Byzantine model checker, 2013. Accessed: March, 2014.

[2] Tempo toolset. Web page. http://www.veromodo.com/.

[3] TLA – the temporal logic of actions. Web page. http://research.microsoft.
com/en-us/um/people/lamport/tla/tla.html.

[4] P. Abdulla. Regular model checking. International Journal on Software Tools for
Technology Transfer, 14:109–118, 2012.

[5] P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Inf.
Comput., 127(2):91–101, 1996.

[6] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Consensus with
Byzantine failures and little system synchrony. In DSN, pages 147–155, 2006.

[7] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. Rossi. Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
JSAT, 8(1/2):29–61, 2012.

[8] H. Attiya and J. Welch. Distributed Computing. John Wiley & Sons, 2nd edition,
2004.

[9] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter abstraction
for concurrent software. In Proceedings of the 21st International Conference on
Computer Aided Verification, CAV ’09, pages 64–78. Springer-Verlag, 2009.

[10] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter abstraction
for concurrent software. In CAV, volume 5643 of LNCS, pages 64–78. Springer, 2009.

[11] M. Biely, B. Charron-Bost, A. Gaillard, M. Hutle, A. Schipe, and J. Widder.
Tolerating corrupted communication. In PODC, pages 244–253, August 2007.

[12] M. Biely, U. Schmid, and B. Weiss. Synchronous consensus under hybrid process
and link failures. Theoretical Computer Science, 412(40):5602–5630, 2011.

[13] A. Biere. Handbook of satisfiability, volume 185. IOS Press, 2009.

111

http://www.veromodo.com/
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

[14] P. Bokor, J. Kinder, M. Serafini, and N. Suri. E�cient model checking of fault-
tolerant distributed protocols. In DSN, pages 73–84, 2011.

[15] R.. Boyer and J. Moore. Proof-checking, theorem-proving and program verification.
Technical report, 1983.

[16] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, 1985.

[17] M. Browne, E. Clarke, and O. Grumberg. Reasoning about networks with many
identical finite state processes. Inf. Comput., 81:13–31, April 1989.

[18] P. Chambart and P. Schnoebelen. Mixing lossy and perfect fifo channels. In
CONCUR, volume 5201 of LNCS, pages 340–355, 2008.

[19] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
J. ACM, 43(2):225–267.

[20] B. Charron-Bost, H. Debrat, and S. Merz. Formal verification of consensus algorithms
tolerating malicious faults. In Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed Systems, SSS’11, pages 120–134,
2011.

[21] B. Charron-Bost and S. Merz. Formal verification of a consensus algorithm in the
heard-of model. Int. J. Software and Informatics, 3(2–3):273–303, 2009.

[22] C. Chou, P. Mannava, and S. Park. A simple method for parameterized verification
of cache coherence protocols. In in Formal Methods in Computer Aided Design,
pages 382–398. Springer, 2004.

[23] E. Clarke and A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, volume 131 of LNCS, pages
52–71, 1981.

[24] E. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using
abstraction and regular languages. In CONCUR, pages 395–407, 1995.

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM, 50(5):752–794, September
2003.

[26] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM Trans.
Program. Lang. Syst., 16(5):1512–1542, September 1994.

[27] E. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition.
In CONCUR 2004, volume 3170, pages 276–291, 2004.

[28] E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized
verification. In In 7 th VMCAI, LNCS 3855, pages 126–141. Springer, 2006.

112

[29] E. Clarke, M. Talupur, and H. Veith. Proving Ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In TACAS’08/ETAPS’08,
pages 33–47. Springer, 2008.

[30] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

[31] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. E�ciently computing
static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst., 13(4):451–490, October 1991.

[32] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19(2):253–291, March 1997.

[33] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. J. ACM, 34:77–97, January 1987.

[34] A. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In CAV, volume 6806 of LNCS,
pages 356–371. Springer, 2011.

[35] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated techniques
for formal software verification. Trans. Comp.-Aided Des. Integ. Cir. Sys., 27(7):1165–
1178, July 2008.

[36] B. Dutertre and L. De Moura. A fast linear-arithmetic solver for DPLL (T). In
Computer Aided Verification, pages 81–94. Springer, 2006.

[37] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2), April 1988.

[38] E.Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[39] A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In
CADE, volume 1831 of LNCS, pages 236–254. Springer, 2000.

[40] A. Emerson and V. Kahlon. Exact and e�cient verification of parameterized cache
coherence protocols. In CHARME, volume 2860 of LNCS, pages 247–262. Springer,
2003.

[41] A. Emerson and V. Kahlon. Parameterized model checking of ring-based message
passing systems. In CSL, volume 3210 of LNCS, pages 325–339. Springer, 2004.

[42] E. Emerson and K. Namjoshi. Reasoning about rings. In POPL, pages 85–94, 1995.

[43] J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34(2):85–107, 1997.

113

[44] A. Farzan and Z. Kincaid. Verification of parameterized concurrent programs by
modular reasoning about data and control. In POPL, pages 297–â��308, 2012.

[45] J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. In Proceedings of the 2nd ACM SIGACT-SIGMOD symposium
on Principles of database systems, PODS ’83, pages 1–7. ACM, 1983.

[46] J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[47] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance of distributed
protocols. In TACAS, volume 4963 of LNCS, pages 315–331. Springer, 2008.

[48] S. German and P. Sistla. Reasoning about systems with many processes. J. ACM,
39(3):675–735, 1992.

[49] A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and J. Widder. Tutorial on parameter-
ized model checking of fault-tolerant distributed algorithms. In Formal Methods for
Executable Software Models, LNCS, pages 122–171. Springer, 2014.

[50] P. Godefroid. Using partial orders to improve automatic verification methods. In
Proceedings of the 2Nd International Workshop on Computer Aided Verification,
CAV ’90, pages 176–185, London, UK, UK, 1991. Springer-Verlag.

[51] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. pages 72–83.
Springer-Verlag, 1997.

[52] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In
Distributed Systems, chapter 5, pages 97–145. Addison-Wesley, 2nd edition, 1993.

[53] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, 1994.

[54] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL,
pages 58–70. ACM, 2002.

[55] G. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003.

[56] C. Ip and D. Dill. Verifying systems with replicated components in mur„. In CAV,
volume 1102 of LNCS, pages 147–158. Springer, 1996.

[57] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Brief announcement:
Parameterized model checking of fault-tolerant distributed algorithms by abstraction.
In ACM PODC, 2013. (to appear; long version at arXiv CoRR abs/1210.3846).

114

[58] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In Proceedings
Formal Methods in Computer-Aided Design (FMCAD’13), pages 201–209. IEEE,
2013.

[59] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Towards modeling
and model checking fault-tolerant distributed algorithms. In Proceedings 20th
International Symposium on Model Checking Software (SPIN’13), Springer LNCS
7976, pages 209–226. Springer, 2013.

[60] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and Y. Yu. Checking cache-
coherence protocols with TLA+. Formal Methods in System Design, 22(2):125–131,
2003.

[61] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cuto� detection in parameterized
concurrent programs. In CAV, volume 6174 of LNCS, pages 654–659. Springer, 2010.

[62] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O
Automata (Synthesis Lectures in Computer Science). Morgan & Claypool Publishers,
2006.

[63] Y. Kesten and A. Pnueli. Control and data abstraction: the cornerstones of practical
formal verification. STTT, 2:328–342, 2000.

[64] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, 1st edition, 1997.

[65] L. Lamport. Email message sent to a dec src bulletin board at 12:23:29 pdt on 28
may 87.

[66] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169,
May 1998.

[67] L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

[68] L. Lamport. The pluscal algorithm language. In ICTAC, volume 5684 of LNCS,
pages 36–60, 2009.

[69] L. Lamport. Byzantizing paxos by refinement. In DISC, volume 6950 of LNCS,
pages 211–224, 2011.

[70] P. Lincoln and J. Rushby. A formally verified algorithm for interactive consistency
under a hybrid fault model. In FTCS-23, pages 402–411, jun 1993.

[71] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[72] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI Quarterly,
2:219–246, 1989.

115

[73] K. Mcmillan. Verification of an implementation of tomasuloâ�ès algorithm by
compositional model checking. pages 110–121. Springer-Verlag, 1998.

[74] K. McMillan. Parameterized verification of the flash cache coherence protocol by
compositional model checking. In CHARME, volume 2144 of LNCS, pages 179–195.
Springer, 2001.

[75] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

[76] S. Mitra and N. Lynch. Proving approximate implementations for probabilistic I/O
automata. Electr. Notes Theor. Comput. Sci., 174(8):71–93, 2007.

[77] A. Mostéfaoui, E. Mourgaya, P. Parvédy, and M. Raynal. Evaluating the condition-
based approach to solve consensus. In DSN. IEEE Computer Society, 2003.

[78] L. De Mourao and N. Bjørner. Z3: An e�cient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[79] T. Nipkow and L. C. Paulson. Isabelle-91. In In Proceedings of the 11th International
Conference on Automated Deduction, D. Kapur, Ed. Springer-Verlag LNAI 607,
pages 673–676, 1992.

[80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
J.ACM, 27(2):228–234, April 1980.

[81] D. Peled. All from one, one for all: On model checking using representatives. In
Proceedings of the 5th International Conference on Computer Aided Verification,
CAV ’93, pages 409–423, London, UK, UK, 1993. Springer-Verlag.

[82] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[83] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,Œ)- counter abstraction. In CAV,
volume 2404 of LNCS, pages 93–111. Springer, 2002.

[84] A. Riazanov and A. Voronkov. The design and implementation of vampire. AI
Commun., 15(2,3):91–110, August 2002.

[85] J. M. Rushby S. Owre and N. Shankar. Pvs: A prototype verification system. In
Deepak Kapur, editor, Automated Deductionâ��CADE-11, volume 607 of Lecture
Notes in Computer Science, pages 748–752. Springer Berlin Heidelberg, 1992.

[86] S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program analysis using symbolic
ranges. In SAS, volume 4634 of LNCS, pages 366–383, 2007.

[87] N. Santoro and P. Widmayer. Time is not a healer. In STACS, volume 349 of LNCS,
pages 304–313. Springer, 1989.

116

[88] U. Schmid, B. Weiss, and J. Rushby. Formally verified Byzantine agreement in
presence of link faults. In ICDCS, pages 608–616, 2002.

[89] T. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM,
34(3):626–645, July 1987.

[90] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing, 2:80–94, 1987.

[91] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model checking a fault-tolerant
startup algorithm: From design exploration to exhaustive fault simulation. In DSN,
pages 189–198, 2004.

[92] M. Talupur and M. Tuttle. Going with the flow: Parameterized verification using
message flows. In FMCAD, pages 1–8. IEEE, 2008.

[93] T. Tsuchiya and A. Schiper. Verification of consensus algorithms using satisfiability
solving. Distributed Computing, 23(5–6):341–358, 2011.

[94] A. Valmari. Stubborn sets for reduced state space generation. In Proceedings of
the Tenth International Conference on Application and Theory of Petri Nets, pages
1–22, 1989.

[95] J. Widder, M. Biely, G. Gridling, B. Weiss, and J. Blanquart. Consensus in the
presence of mortal Byzantine faulty processes. Distributed Computing, 24(6):299–321,
2012.

[96] J. Widder and U. Schmid. Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing, 20(2):115–140,
August 2007.

[97] S. Wöhrle and W. Thomas. Model checking synchronized products of infinite
transition systems. LMCS, 3(4), 2007.

117

APPENDIX A
Running the Tool ByMC

In what follows, we use the tool on the running example bcast-byz.pml available in
the set of benchmarks benchmarks-sfm14 at [1]. We also assume that the tool resides
in the directory ${bymc}.

The tool chain supports two modes of operation:

• Concrete model checking. In this mode, the user fixes the values of the param-
eters p. The tool instantiates code in standard Promela and performs finite-state
model checking with Spin. This step is very useful to make sure that the user code
operates as expected without abstraction involved.

• Parameterized model checking. In this mode, the tool applies data and
counter abstractions and performs finite-state model checking of the abstract
model with Spin.

For concrete-state model checking of the relay property, one issues the com-
mand verifyco-spin as follows:

$ ${bymc}/verifyco-spin "N=4,T=1,F=1" bcast-byz.pml relay

The tool instantiates the model checking problem in the directory
“./x/spin-bcast-byz-relay-N=4,T=1,F=1”. The directory contains the file concrete.prm
that di�ers from the source code as follows: The parameters N , T , and F in the Promela
code are replaced with the values 4, 1, 1 respectively. The process prototype is replaced
with N ≠ F = 3 active processes.

In order to run parameterized model checking, one issues verifypa-spin as follows:
$ ${bymc}/verifypa-spin bcast-omit.pml relay

The tool instantiates the model checking problem in a directory, whose name follows
the pattern “./x/bcast-byz-relay-yymmdd-HHMM.*”. The directory contains the
following files of interest: abs-interval.prm is the result of the data abstraction;

119

abs-counter.prm is the result of the counter abstraction; abs-vass.prm is the
auxiliary abstraction for the abstraction refinement; mc.out contains the last output
by Spin; cex.trace contains the counterexample (if there is one); yices.log contains
communication log with Yices.

120

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Aim
	Motivation
	Problem Statement
	Method of Approach
	State of the Art
	Structure of the Thesis and Contributions

	Formal Framework
	Computational Model for Asynchronous Distributed Algorithms
	System Model with Multiple Parameters
	Extended CFA for Threshold-based FTDAs
	Transferring Pseudo Code to Extended CFA
	Manual Translation of the pseudo code to Promela
	Experiments
	Related Work

	Undecidability of PMCP
	2-Counter Machines
	Undecidability of Liveness Properties
	Related Work

	Abstraction Scheme
	Abstract Domain for Parametric Intervals (PIA)
	PIA data abstraction
	PIA counter abstraction
	Abstraction Refinement
	Practical Refinement Techniques
	Experiments
	Related Work

	Selected FTDAs in PROMELA
	Folklore Reliable Broadcast Algorithm
	Asynchronous Byzantine Agreement Algorithm
	Asynchronous Condition-Based Consensus Algorithm
	Experiments

	Conclusions
	Contributions
	Future Work

	Bibliography
	Running the Tool ByMC

