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ABSTRACT I 

 

 

ABSTRACT 

 

Saving energy in general and heating energy in particular has always been in the focus 

of research and development. Progress of technology, the potential of modern 

electronics, and advances in the digital world have led to many new practical 

opportunities to reduce the heating demand of buildings.  
 

In this context, one field of research concentrates on state-of-the-art control strategies. 
 

Electronics and microprocessors have become very powerful and reasonably priced 

and applications as embedded control have taken an important role in our life. This 

technology has also entered the thermal control of buildings, homes and apartments.  

'Smart' thermostats are a fast growing market and attract start-ups as well as big 

players in computer engineering. The applied technologies follow different paths to 

achieve energy savings.  
 

Use of advanced control systems is an important direction of research. And there, 

control algorithms using predictive control algorithms are one of these potential ways 

and are showing promising results. These prediction algorithms allow for optimized 

control strategies, taking into account a wide range of input parameters. The basis for 

the prediction and optimization process is a good knowledge about the systems 

characteristics, either by an empirically established set of system responses or by a 

mathematical model representing the thermal dynamics of the controlled zone. Both 

ways allow forecasting the thermal systems output as a reaction to an applied control 

input and to disturbance parameters.  
 

For a selected actual room, different predictive types of controllers and their respective 

energy saving potential is discussed. Switching thermostats with simple predictive 

methods as well as more complex model predictive control algorithm are compared. 

Also variations of sensor and input data configurations are compared in view of the 

achieved simulated energy savings. 

 

Keywords 

thermal building/room model, grey-box room model identification, predictive switching 

thermostat, model predictive thermostat control, smart thermostat 

 

 



 

 



 

CONTENTS 
 

1 Introduction ....................................................................................................... 1 

1.1 Overview ...................................................................................................... 1 

1.2 Motivation .................................................................................................... 1 

2 Background ....................................................................................................... 3 

2.1 Overview ...................................................................................................... 3 

2.2 Predictive control .......................................................................................... 4 

2.2.1 Simple predictive control ....................................................................... 5 

2.2.2 Model predictive control ........................................................................ 5 

2.2.3 Mathematical models ............................................................................ 5 

2.2.4 Model identification ................................................................................ 6 

3 Methodological structure .................................................................................. 7 

3.1 Overview ...................................................................................................... 7 

3.1.1 System setup summary ......................................................................... 8 

3.1.2 Simulation setup .................................................................................... 9 

3.1.3 Predictive control summary .................................................................... 9 

4 System setup ................................................................................................... 11 

4.1 Reference building/room/zone .................................................................... 11 

4.2 Reference model ........................................................................................ 14 

4.3 Reduced model .......................................................................................... 21 

4.3.1 Model structures ................................................................................. 22 

4.3.2 Mathematical description ..................................................................... 25 

Radiator dynamics ......................................................................................... 30 

5 Simulation setup .............................................................................................. 32 

5.1 Simulation and co-simulation ...................................................................... 32 

5.2 Process and configuration .......................................................................... 34 

6 Predictive control ............................................................................................ 37 

Step response and look-up table .................................................................... 39 

6.1 Lead time control - simple 'predictive' control - look-up tables .................... 42 

6.1.1 Results - simple predictive control ........................................................ 45 

Results without radiator lag ............................................................................ 45 

Results with radiator lag ................................................................................. 47 

Results and summary .................................................................................... 49 



 

 

6.2 Model predictive control ............................................................................. 51 

6.2.1 Principle .............................................................................................. 51 

Implementation details ................................................................................... 53 

6.2.2 Results - model predictive control ........................................................ 57 

Results and summary .................................................................................... 62 

Results without radiator lag ............................................................................ 62 

Results with radiator lag ................................................................................. 63 

6.3 Data/Sensor settings .................................................................................. 64 

6.3.1 Results and summary .......................................................................... 66 

6.3.2 Systems with slow thermal response ................................................... 68 

7 Summary of results ......................................................................................... 72 

7.1 Lead time control - simple 'predictive' control ............................................. 72 

7.2 Model predictive control ............................................................................. 72 

7.3 Data/sensor settings................................................................................... 74 

Systems with radiator heating ........................................................................ 74 

Systems with slow thermal response .............................................................. 77 

8 Conclusion ....................................................................................................... 78 

8.1 Outlook ...................................................................................................... 79 

Index ....................................................................................................................... 80 

List of figures ................................................................................................. 80 

List of equations ............................................................................................ 81 

List of tables .................................................................................................. 82 

Literature ................................................................................................................ 83 

Appendix ................................................................................................................ 85 

A.1 Reference building/room/zone ................................................................. 85 

A.2 Reduced model ....................................................................................... 87 



INTRODUCTION 1 
 

1 INTRODUCTION  

1.1 Overview 

Extensive research and development activities are directed to make buildings, offices 

and homes more efficient with respect to the heating energy use, by using state-of-the-

art building and material technology, and by applying the latest technologies in 

electronics and information technology. 
 

'Smart technologies' are finding their way not only into everyday life but also to building 

and home control. So are 'smart' thermostats a fast growing market and attract start-

ups as well as big players in computer engineering. Readily available electronics, 

embedded controllers allow to come up with efficient systems, sensor technology can 

link the computing power with many external parameters and ambient conditions. 
 

Research activities and applied technologies follow different paths to achieve energy 

savings.  
 

One of the subcategories of research is towards the use of modern control technology 

for temperature control, either by advanced control algorithms or by increased use of 

digital technology as microprocessors, embedded control etc. Reasonable production 

and product cost support continuous progress in this field and will boost the growth of 

this market segment. 
 

The objective of this thesis is to perform a comparative analysis of selected predictive 

control algorithms for their energy saving potential. Also different sensor settings and 

the availability of data and their forecasts is put in relation to achievable heating energy 

savings.  
 

The results will provide selection assistance for predictive controller systems with 

respect to reachable reduction of heating energy and the definition of an associated 

sensor system. 

 

1.2 Motivation 

Some research approaches are based on using either data driven models with 

extensive data volumes and records gathered over a long time and/or using high 

numbers of input variables and sensor data. This thesis will use an approach for 

minimal system complexity and is not striving for extreme data precision but focuses to 

provide a selection help for such thermal system models with limited hardware 

resources. Simplified numerical representations and reasonable accurate models can 

provide good results and are more easily applicable and practicable for a commercial 

environment and for use in embedded controllers. 
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The objective is to provide a comparative result of thermal control by different 

predicting algorithms and to establish the effect of different data sources and sensors 

and their forecasts on potential heating energy savings. 
 

Some control theory and model approaches are using either data driven models [14] with 

extensive data volumes and records gathered over a long time [4] and/or using high 

numbers of input variables and sensor data [4]. Others are using an approach with quite 

complex physical models [14] or are developing models for prediction of input and 

system variables to reach high precision levels. Most approaches require high hardware 

and computer complexity and resources [22]. 

Simplified numerical models [18,14] can provide reasonable accurate model results [24] and 

are more easily applicable and practicable for a commercial environment and for use in 

embedded controllers. 
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2 BACKGROUND  

2.1 Overview 

Extensive research and development activities are directed to make buildings, offices 

and homes more efficient with respect to the heating energy use, by making use of 

state-of-the-art building and material technology, and by applying the latest 

technologies in electronics and information technology. 

One of the subcategories of research is towards the use of modern control technology 

for temperature control, either by advanced control algorithms or by increased use of 

digital technology as microprocessors, embedded control etc. Reasonable production 

and product cost support continuous progress in this field and will boost the growth of 

this market segment. 
 

The segment of 'smart' systems is present in the building community and customers 

with mobile computing affinity.  

Some products call themselves 'smart thermostats' [38,39,40] which shows that the field of 

digital thermal control has become reality. These 'smart' devices follow different ideas 

and strategies and they will play an important role in the field of thermal control of 

private and commercial buildings.  
 

The main directions these smart thermostats are following, are automated and/or 

manual remote control, occupancy learning functionality, automated learning of user 

habits and schedules and others. 
 

Research in the field of temperature control strategy is directed towards the design and 

application of complex control theories as adaptive and predictive control, self-

parametrizing and robust controllers etc. [9,13]. For all theoretical approaches 

mathematical representations of real buildings, rooms or zones are necessary to be 

able to simulate various configurations, strategies and algorithms and to evaluate 

potential energy saving potentials. 

Some model approaches are using either data driven models [14] with extensive data 

volumes and records gathered over a long time [4] and/or using high numbers of input 

variables and sensor data [4]. Others are using an approach with quite complex physical 

models [14] or are developing models for prediction of input and system variables to 

reach high precision levels. Most approaches require high hardware and computer 

complexity and resources [22]. 
 

Simplified numerical models [18,14] can provide reasonable accurate model results [24] and 

are more easily applicable and practicable for a commercial environment and for use in 

embedded controllers. 
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Amongst the sought optimal control strategies is the application of controllers making 

use of forecasted and predicted parameters [3]. With such predicted input- and 

disturbance parameters the temperature control system can anticipate necessary 

actions, the controllers change from basically 'reacting' to already occurring deviations 

from the desired outputs to forward-looking 'acting' in view of expected impacts on the 

system. 
 

 

2.2 Predictive control 

Predictive control is a modern method for process control. In a very general sense, this 

method is using anticipated future conditions to optimize its controller strategy. 

In the present topic - control of a room temperature - these anticipated conditions 

comprise: 

 future input or independent variables  

as the control signal itself e.g. the heating energy supplied to the process. 

 future output or dependent variables 

of the controlled process as room temperature. 

 future disturbance variables 

also independent variables, to a system or process like be e.g. weather 

conditions like ambient temperature, solar irradiation, wind speed, occupation, 

gains etc. 

A possible indication or forecast of such variables allows to derive an optimal input 

signal sequence in order to bring the dependent variable or output signal to a targeted 

point.  
 

The principle advantages are obvious, but the question remains of how to establish 

such forecast for the impacting variables as well as on system behavior itself and its 

output parameters; and of how to make use of knowledge and physics background of 

a system to obtain useful input/output predictions.  
 

Disturbance variables are difficult to predict, but statistical methods like time series 

could give good estimates of expected value ranges. In the underlying case, some of 

the disturbance parameters could be estimated using e.g. weather forecasts. 
 

For all predictive methods it is not enough to get more information on forecasted 

impacts on the system, but they also require a quite precise knowledge on the dynamic 

behaviour of the controlled system itself. The real systems are modelled to represent 

the dynamics and other input-output relations. These models allow to 'test' control 

strategies before applying them to the real system. In this way the possible input 

variations can be optimized resulting in an optimal input sequence . 
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2.2.1 Simple predictive control 

One method to gain necessary system dynamics knowledge would be to measure its 

inputs and outputs and to establish a dynamic relationship. This can be done by 

applying test signals to the input as step functions signals or impulse functions. With 

the measured output the dynamic system response can be derived. In the case of 

room temperature control this could be e.g. a change in heating power from 0 to full 

power, and measuring the response of the room temperature.  

Knowing the dynamic characteristics a future response of the system can be derived, 

which in its term allows to adapt the input signal to reach room temperature targets at 

a required time and before the actual system response takes place. So such an 

algorithm is 'predicting' the systems response and thus its output. 
 

2.2.2 Model predictive control 

'Model predictive control' or MPC is a modern type of control and is used in industry 

since the 80's [8,17]. The introduction of microprocessors and digital process control 

allowed this advanced control method to establish its place especially in process 

industries. Further miniaturization, efficiency and availability of embedded controllers 

make this technology also available for applications in buildings and homes. 

 

For this control method, a more general method for predicting the output of a system is 

used. As the name refers to, it is using a dynamic 'model' of the process. Such models 

are mathematical representations of the physical background of the system by 

differential equations or other mathematical relations (see subchapter 'mathematical 

model' below). Models are in general not a 1:1 representation of all sub-processes but 

need to give a good relation of input signals, disturbance variables and the output of 

the system. Once such system description is available it is possible to calculate virtual 

outputs for different input signals.  
 

2.2.3 Mathematical models 

A dynamic system can be described in form of a set of equations. Such mathematical 

model is to represent the dynamics of the actual system as accurately as necessary for 

the intended use and applied time horizon. Dynamic systems do not have a unique 

mathematical model description and they can have a quite differing representation or 

form. 
 

Dynamic system models are described are defined by a set of differential equations. 

Such mathematical model has to represent the dynamics of the actual system as 

accurately as necessary for the intended use and applied time horizon. Note that a 

mathematical model is not unique to a given system. A system may be represented in 
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many different forms and, therefore, may have many mathematical models, depending 

on one’s perspective and the intended application and purpose. 

Mathematical models may assume many different forms and are often a compromise 

between necessary accuracy and reasonable simplicity, especially in case of involving 

numerical calculations. 
 

2.2.4 Model identification 

The mathematical models can be derived by describing all physical processes and 

dependencies. This usually leads to highly complex models. Mathematical model 

parameters can also be empirically derived from measured data by model identification 

methods (see subchapter 'model identification' below). Other methods are statistical 

identification of the model parameters. A model with an optimized parameter set will 

yield a dynamic behaviour representing the dynamic characteristics of the real system. 

Various identification methods are discussed in literature [22], as are methods for 

reducing the overall complexity of the thermal behaviour of buildings [22]. 

Control oriented approach [22] procedures and grey-box identification allow parameter 

estimation, parametrization and prediction, the identification [14] of the system dynamics 

as steady state properties [22] and transfer functions [4]. 
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3 METHODOLOGICAL STRUCTURE 

3.1 Overview 

Objective of this project is to evaluate potential heating energy savings by 

implementation of thermostats with advanced control strategies together with sensor 

setups. The methodology overview is shown in figure 3.1. 
 

Reference Building/Room/Zone

Reference Model

Reduced Model

Model Predictive Control

Simulation Setup
Lead-time Control

Data/Sensor Settings

Heating Energy Savings

4.14 1

4.2

4.3

4 System Setup  p  p

6 Predictive Control6 Predictive Control

5

5 Simulation Setup

66 26.26.26

6, 7

6.3

6.1

 
Figure 3.1 - methodology overview 

  

In order to relate the work and the findings to a 'real world scenario' an actual building, 

or in this case part of a building, is chosen as reference. Its thermal characteristics in 

form of recorded sensor readings are the basis for a thermal model implemented in the 

subsequent simulations. A model as best representation for its thermal and geometrical 

characteristics is used throughout all energy simulation steps as a reference model. All 

heating energy simulations are run with that model. 
 

For the control algorithms, especially for the model predictive control algorithm, an 

additional simplified mathematical model representation is developed. A suitable 

structure, taking into account all important influence factors as external weather 

conditions, room and adjacent conditions as well as design parameters is established.  
 

In a grey box identification process the parameters are estimated, completing the 

reduced mathematical representation of the reference room. This model is used in the 

simulations involving the model predicted control algorithms. 
 

In a co-simulation setup a thermal simulation software and a software running the 

controller algorithms are combined to run simulations in order to show the heating 

energy consumption. 
 

To show potential heating energy savings, different predictive control strategies are 

applied to the reference model. For simple predictive control algorithms, measured 
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model responses are used to predict the systems behavior. For the model predictive 

control method (MPC), the reduced mathematical model is used for prediction of 

systems results under impact of independent control variables as heating power and 

the disturbance factors as weather conditions, etc. 
 

Finally the simulations are run with different virtual sensor settings. These settings refer 

to the availability of certain measurement data from applied sensors and to the 

availability of forecasts of these sensor data, like input factors as weather conditions, 

internal gains and occupancy. These input factors are used in the model predictive 

control algorithm.  

The resulting simulated heating demands and their comparison represent the sought 

results of this project. 
 

To get an overview of applied methodology towards a comparison of potential 

reduction of heating demand with advanced control algorithms, the process can be 

split up in several steps (see figure 3.1 - methodology overview):  

 

 

The applied methodology and their steps at a glance: 

3.1.1 System setup summary 

 Reference Building/Room/Zone 

To establish potential reductions in heating demand being related to the 'real 

world' it was decided to link the data and following calculations to an existing 

building. This building, room or zone with its data and measurements serves as a 

reference for the next steps - see subchapter 'Reference Building/Room/Zone' 

below. 
 

 Reference Model 

For the subsequent steps a reference model was established for thermal 

simulation by EnergyPlus software, a widely used simulation package developed 

by the U.S. Department of Energy Building Technologies Office. 
 

Why is this EnergyPlus model needed? With this model it is possible to apply 

controls and change parameters for the room to generate respective thermal 

responses. These system responses allow to evaluate energy savings 

(comparability) in different situation and under various controls and to cross 

check with the reduced mathematical model (see below) 

The parameters for this reference model are optimized to best fit the calculated 

temperatures to the actually measured data of the reference room (see above). 

The parameter fitting is performed with GenOpt® [33]. GenOpt® is an optimization 

program for the minimization of a defined cost function; the input data is provided 
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by an external simulation program, such as EnergyPlus [32]. 

See subchapter 4.1.2 'Reference Model' below. 
 

 Reduced Model 

In the next step, a reduced mathematical model is developed. This model is a 

representation of the zone physics, namely the thermal characteristics, by a set of 

differential equations. The parameters of these differential equations are obtained 

in a grey-box identification process. A grey-box identification is used when the 

mathematical structure and representation form can be derived from the 

underlying physics; the parameters are fitted to the actual input and outputs of 

the system in question. 

The objective of this model is not to best describe all physical relations in detail, 

but to obtain a model, best describing the thermal behavior of the zone 

mathematically, and being as simple as possible. This model is necessary as 

basis for the Model Predictive Control algorithm. - see subchapter 4.1.3 

'Reduced Model' below 
 

3.1.2 Simulation setup 

 The thermal simulation is done with EnergyPlus [32], it is widely used and is an 

open-source, and cross-platform. EnergyPlus itself does not provide reasonable 

support for adding complex control structures or algorithms. Another software 

environment is selected for running more complex controllers, in particular the 

numerically involving model predictive controller algorithms. For its capabilities 

and tool packages MATLAB® [31] is used. 

Interfaces and protocols are provided to link EnergyPlus to other software, as 

MATLAB®, via the EnergyPlus 'Building Controls Virtual Test Bed' (BCVTB)  [21] or 

MLE+ [36,19]; this are software environments that allows users to run a 

communication protocol amongst two software packages for co-simulation. The 

testbed provides capability to exchange data between the linked software 

packages during the simulation run. The program setup and the configuration of 

exchange variables and protocols are completed in this step. 
 

3.1.3 Predictive control summary 

 Lead-time Control 

This refers to an application of a forward looking control strategy. This method 

addresses the high energy saving potential for systems with fast dynamic 

responses, taking into consideration the time needed to warm up a room to the 

desired temperature at a given time. In contrary to the model predictive control 

algorithm it does not work on calculated model results, but is based on a 

simulated or measured thermal response behavior of the system. With these 
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forecasted outputs such methods can also be considered a 'predictive control'. 

The results for the heating energy consumption are obtained on a simulation of 

the reference model in EnergyPlus. - see subchapter 'Lead-time Control' below. 
 

 Predictive Control 

In this step a model predictive control algorithm is applied. The algorithm is based 

on the calculated/estimated model outputs and characteristics of the reduced 

model, derived before. As described in the 'Reduced Model' section, this method 

can take into account typical external system inputs as weather parameters like 

ambient temperature, solar irradiation, wind as well as impact from an adjacent 

zone and gains within the thermal zone like occupancy gains and gains by 

appliances. The control is run on the reference model, reflecting the actual 

reference building. See subchapter 'Predictive Control' below. 
 

 Sensor Setting 

As described, the model predictive control takes into account several inputs with 

an impact to the thermal behavior of the system. Sensors and sensor 

combinations can provide the necessary data and allow forecasts of these 

values. The effect on the potential reduction of heating demand will however vary, 

depending on the thermal and dynamic characteristics of the system. As before, 

the simulation is run with the reference model on EnergyPlus. See subchapter 

'Sensors' below 
 

 Heating Energy Savings 

The objective of this project and final result is the comparison of the potential 

reduction of heating demand with respect to the applied control strategy - lead-

time control, model predictive control - and potential sensor/data settings. The 

results are obtained by EnergyPlus simulations based on the reference model. As 

the reference model is a good representation of the actual reference 

building/room/zone, the results are representative for the selected reference 

building. 

 

In the following chapters these methodology sections and steps are presented in detail 

together with the respective results. 
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Photo 4.1 - reference room  

(source bpi, TU-Wien) 
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Figure 4.1 - system setup 

 

4.1 Reference building/room/zone 

For this project a building part was selected as a 

representative real-world setup. This building is part of 

the Vienna University of Technology, the room and the 

annex weather observation tower is used by the 

Department of Building Physics and Building Ecology. 
 

The room is only temporarily used by the institute for 

seminars and research projects and provides access 

to the weather observation station on the tower. 
 

The reasons for the selection of this room were: 

 Some sensors have been installed for previous work, thus various sensor data on 

the room and the annex hallway are available. 

 A weather station on the adjacent tower provides weather data in direct vicinity of 

the reference room. 

 It was possible to obtain sensor data for a prolonged free-running period, that is 

obtaining thermal characteristics of the room without any perturbations by 

heating (radiator thermostats off), occupancy gains or gains due to additional 

appliances. 
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The room layout and the setup with respect to its direct vicinity are shown in figure 4.2 

and figure 4.3. 

N
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17.75 m2, 45.8 m3

hallway

tower
weather observation station

ve
nt

 &
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ui
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ct

 

  

Figure 4.2 - reference room layout Figure 4.3 - reference room setup 
 

Special characteristics of the reference room: 

 Sensible and relatively strong cross ventilation though door to hallway and door 

to vent & equipment duct (indirect hall area). 

 Through the cross ventilation and the connecting wall there is big influence of the 

conditions in the adjacent hallway. The hallway is the upper part of a complete 

section staircase, therefore the temperature conditions are relatively stable for the 

cold season. In warmer period the window across a hallway is kept open for 

most of the time to provide ventilation. The window is remotely opened but set 

manually, therefore no information on opening/closing conditions or temperatures 

is available. 

 Some external walls have an extra insulation through a layer of silicon aerogel 

plaster from a previous research program (see figure 4.4 - aerogel plaster). 

 Window blinds are in a constant horizontal setting. This setting was kept 

throughout this work as all measurements had been done with this setting; this 

leads to solar irradiation effects that are a nonlinear function of the zenith angle. 

All fitting process to an optimal model representation and the grey box 

identification process for the reduced model were done with this setting. 

 Sensors and data logging devices (see figure 4.5) are running at full time, the 

power supplies in use represent an electrical power dissipation of approx. 60W 

(approx. nominal power of used power supplies). These electrical gains have 

been used as input for further calculations. 

 
 



SYSTEM SETUP 13 
 

 

Room sensors 

The sensor data for this project has been collected in the period of 3/27 to 5/5 2015. In 

this period the reference room was in an undisturbed free running mode. 
 

Data logging is event driven, the sensor data is not saved periodically but sensors 

transmit their reading to a server only when a minimum reading change has been 

detected. 

The event driven data stream was transformed into a periodical form, in an hourly 

based and in a minute based data list. In both cases the average value for the 

respective period (1 hour for weather data or 1 minute for internal sensor data) is used. 

For the room temperature an average of the sensors room-center, room-door and 

averaged radiator temperature was used. 
 

For more details on sensors - room and weather sensors - refer to Appendix A.1. 

 

 

Radiator right
Radiator left

Room
tower door

Hallway
ceiling

Room
center ceiling

 
Figure 4.4 - aerogel plaster Figure 4.5 - sensor positions 

 

Heating equipment 

The room is equipped with 2 radiators of a controlled building central heating. The 

radiators are 3.0m by 0.5m each and have a total nominal heating power of 3kW 

(similar model [42]). 

Each radiator is controlled by a radiator thermostat; the setting for the measurement 

period was on completely off position. The two sensors mounted on the radiators 

allowed to verify that no heating gains were introduced during that measurement 

period. 
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Hallway 

The hallway towards the indoor wall of the reference room is linked to the upper part of 

a complete section staircase (TU, Stiege 4) thus forming a big thermal zone. Directly in 

front of the reference room there is a window. In warmer period the window is kept 

open for most of the time to provide ventilation to the staircase. The window is remotely 

opened but the setting is operated manually, therefore no information or data on 

opening/closing conditions or temperatures is available. 

 

4.2 Reference model 

As described before, for the heat energy simulations a reference model is needed. It 

allows exerting inputs as heating power, occupancy schedules, thermostat settings etc. 

This makes the reference model more versatile compared to the real zone, which only 

was measured in free running mode (no thermal inputs or gains apart from weather 

effects). The reference model will also represent the thermal reference system for 

different control strategies and is used to derive the difference of heating demand for a 

longer period than the measurement period. 
 

The reference model also serves to establish the thermal dynamics and to simulate 

step responses to isolated inputs. These step responses are used to develop the 

necessary leading time of the thermal system; this in turn allows controlling the heating 

process to reach the thermostat settings exactly in time. These lead time tables are the 

basis for the table look-up function of the lead-time control algorithms. 
 

The geometry was modelled in SketchUp [34] with OpenStudio® plug-in [35]. Secondary 

zone geometries were partially selected for a geometry fit and limited complexity (e.g. 

weather tower). The outline geometry of these adjacent zones are retained for reasons 

of shading and influence of thermal mass. 
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Thermal zones 

Thermal zones setup, see figure 4.6 and figure 4.7. 
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Figure 4.6 - reference room, thermal zones, 1 Figure 4.7 - ref.room, thermal zones, 

2 
 

 reference room, zone 1  

This is the core zone for all evaluations and control simulations. 

 hallway. zone 2  

The hallway being linked to the central building staircase represents the 'indoor 

adjacent temperature zone'. The temperature is not varying as much as in the 

other zones, however there is a big influence of the ambient conditions as the 

window is mostly opened at higher ambient temperatures.  

 vent and equipment duct, zone 3  

This is a duct towards the northern outside walls and a split glass block window. 

It is indirectly thermally connected to the staircase and contains building control 

equipment. 

 tower, zone 4  

References the tower shaped access to the weather observation station and is a 

free running building zone. 

 roof, zone 5  

Thermal zone representing a relatively flat space between the roof and the ceiling 

of thermal zone 1 and presumably only contains a construction for the metal 

covered roof. 

 zones 6 and 7  

These areas are basically walls and/or hollow space with only minor effect on the 

reference room. 
 

Materials of the model were changed to materials as used in the reference building or, 

where the materials were unknown, to assumed material combinations giving U-values 

as required in the building code for the building period of construction. 
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Fitting Model to measured data 

To establish a model behavior and dynamics for the reference model, as close as 

possible with respect to the reference room and with its measured data in the period of 

3/27 to 5/5, selected model parameters were adjusted for a best fit in an optimization 

process. The optimization was run in GenOpt®. 
 

For the search for best fit and the optimization process a target function based on 

statistical parameters was defined. Various statistical parameters can be used for 

measuring the fit. Previous research [16,25] propose to use 'coefficient of root mean 

squared deviation variation CV(RMSD)' and the 'coefficient of determination R2'. They 

are reliable and practical indicators for fitness analysis: 

 coefficient of variation of root mean squared deviation CV(RMSD) 

With squared errors to measures the deviation of predictions from actual values. 

Objective is to minimize the errors in the fitting process, hence a small value of 

RMSD is sought, with zero representing an ideal fit. 

 coefficient of determination R2 

In the present context R2 is representing a similarity between predicted and 

simulated values. The indicator is a representative for 'goodness of fit' and 

determines the likelihood between actual data points and the regression line. R2 

is in the range 0..1 with 1 showing the best fit [16]. 

 

In the following relations (equations 4.1 to 4.3) m=[x1,x2,....xn] is representing the 

measured values whereas s=[y1,y2,...yn] stand for simulated values of the reference 

room temperature during the measurement period; n refers to the number of 

measurements and mmean to the mean of the measured values. 
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4.1 - root mean 
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In the fitting process via an optimization in GenOpt® a set of parameters was selected 

as variables for variation: 

 window material 

Taken from EnergyPlus material list/database. The effect of this material controls 

the solar irradiation rate into the room. 

 infiltration  

In air changes per hour [ach], with identical setting for all thermal zones (zone 1 to 

zone 7). This selection to account for the felt draw and the exposed position of 

the building for the wind. 

 ventilation crossfeed rate 

From the adjacent hallway section into the reference room zone 2 to zone 1.  

As described above, there is a sensible air intake from the hallway and the 

indirectly connected vent duct. This parameter will link the thermal characteristics 

of the room to that of the hallway. 

 thermal conductivity of the concrete blocks in the external walls 

This material has a high impact on the insulation of the outside walls. This stands 

for all outside wall types, with and without the special Aerogel Fixit system. 

 thermal conductivity of the outside plastering 

Together with the previous parameter, this parameter will adapt the conductance 

of the outside wall. 
 

The target function as implemented in GenOpt® is: 
 

( )( ) ( ) ( )
2

2

( )1 .
1

ini

ini

CV RMSDf CV RMSD R
R

= + −
−

 
(4.4) 

4.1 - target function for model fitting 

 

The applied calculation equation (4.4) refers to an arbitrary initial term. To evaluate the 

influence of that term and show the changes in the optimization results, the initial term 

was replaced by a fixed weighing. The influence in the optimization results remains 

marginal, for the reference model the main influence are with resulting ventilation and 

cross feed ventilation rates (see table 4.1). 
 

Table 4.1 - model fitting target function results 

target function RMSD
1*CV(RMSD)

+1*R2
1*CV(RMSD)

+10*R2
1*CV(RMSD)

+50*R2
1*CV(RMSD)

+100*R2
1*CV(RMSD)

+1000*R2
1*CV(RMSD)

+10000*R2
selected 

parameters
rmsd-term 0.7420 0.7422 0.7422 0.7429 0.7467 0.8011 0.8260
r2-term 0.9711 0.9711 0.9713 0.9716 0.9719 0.9731 0.9731
r2term weighing factor 0 1 10 50 100 1000 10000

glass [] 202 202 202 202 202 202 202 202
lambda outside gypsum [W/mK] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
infiltration [ach] 0.35 0.035 0.35 0.35 0.3375 0.3 0.3 0.3625
lambda wallblock [W/mK] 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
crossfeedrate [m3/s] 0.0019 0.0019 0.0021 0.0031 0.0035 0.0081 0.0100 0.0025  
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Staircase
Stiege 4

Reference
room

Hallway

Weather
 station
tower

 
Figure 4.9 - staircase model 

EnergyPlus model reference model 

The resulting simulation model with optimally fitted parameters is a good representation 

of the chosen reference building/room. Selected and optimized parameters are not 

directly representing the used materials but lead to comparable thermal behavior. This 

model is not representing the real world, material and conditions, but is a reasonably 

good approximation of the thermal characteristics within the measurement period from 

3/27 to 5/5 (figure 4.8). 
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Figure 4.8 - fitting results of reference model 
 

It needs to be noted, that the deviations at the beginning of the simulation period are 

partially due to the initial adaption period within the EnergyPlus simulation process. 

 

Hallway and staircase 

The hallway temperature has a non-negligible 

effect on the thermal characteristics of the 

reference room - once through the relatively thin 

separation wall and secondly through a cross 

ventilation between the hallway and the reference 

room.  

For the thermal zone of the hallway temperature 

readings are also is available for the measurement 

period from 3/27 to 5/5. 
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The hallway is representing the upper part of an entire building section staircase. The 

staircase is surrounded mostly by heated areas (offices, institute rooms) and the thick 

walls in that area represent a big thermal mass, hence the temperature from that zone 

remains relatively stable in cold periods. On the other hand, in the warmer period the 

window across the reference room is reported to be kept open for most of the time to 

provide ventilation to the staircase.  
 

To avoid averaged temperature (e.g. from the measurement period) across the entire 

year and to be able to select a sensor setting including the hallway temperature sensor, 

another source for a representative zone temperature was sought. Similar to above 

described method, a simple staircase model was established and the thermal 

characteristics fitted to the existing measurements.  

This procedure allows calculating an estimated zone temperature (Tadj) for the entire 

simulation period. The temperature from the simulation run serves as input for the 

hallway thermal zone to above described reference model. 
 

For further details and results on the hallway modelling, please refer to Appendix A.2. 

 

Model step response functions 

The thermal dynamics of the EnergyPlus reference model were established by 

simulation. This is to crosscheck the magnitudes of response times and to establish the 

heating time lags. These results, especially the effect on the room temperature (Ti) are 

an indicator for system responses and necessary for the look-up tables for the simple 

predictive control. 
 

To separate certain parameters, virtual weather files were established and used. In 

these files certain external disturbance parameters were kept constant or were set to a 

value not influencing the investigated thermal response. 
 

Several time responses to input step-functions were established: 

 Room temperature (Ti) step response to a step of ambient temperature Tamb 

(table 4.2) - indicator for the time thermal capacitance of the building envelope 
 

Table 4.2 - step response Tamb 

Step Tamb [°C] -20°C-0°C -10°C-10°C 0°C-20°C 10°C-30°C
delta Troom [°C] 12.8 12.1 11.7 13.29
63% [min] 3200 3000 2950 3130
95% [min] 16500 14800 14100 15550

Room temperature step response - Tamb step

  

 Room temperature (Ti) step response to a step of heating power (Ph from 0 to 

3kW) (table 4.3) - indicator of thermal dynamics within the room and thus primary 

information for the heating lag-time 
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Table 4.3 - step response heating power 

Tamb [°C] -20 -10 0 10 20 30
delta Troom [°C] 35.8 36 36.1 35.9 35 33.8
63% [min] 899 912 910 880 820 747
95% [min] 10357 10145 10300 10000 9575 9168

Room temperature step response - Heating power step (3kW)

  

 Room temperature (Ti) step response to a step of the temperature in the 

adjacent room/hallway Tadj (table 4.4) - indicator for thermal dynamics and 

reaction on changes in adjacent building parts. 
 

Table 4.4 - step response Tadj 

  

 Room temperature (Ti) step response to a step of heating power with different 

radiator radiant fractions (table 4.5) - this analysis was performed to fit the 

heating by the EnergyPlus actuator 'other gains' to the reaction of the standard 

EnergyPlus heating characteristics. The actuator 'other gains' was selected as it 

is accessible from external programs and thus can be controlled from programs 

other than EnergyPlus. 
 

Table 4.5 - step response to radiator f(radiant fraction) 

Tamb [°C] 10 10 10 10 10 10 10 10 10 10 10 10 10
radiator radiant fraction 0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
delta Troom [°C] 36.5 36.5 36.2 35.9 35.3 34.6 33.9 33.2 32.4 31.6 30.6 29.4 28.2
63% [min] 830 831 853 876 924 976 1033 1094 1161 1235 1338 1455 1613
95% [min] 3295 3296 3318 3342 3390 3440 3495 3555 3623 3700 3795 3940 4047

Room temperature step response - Heating power step (3kW) - radiator radiant fraction

  

 

Tamb [°C] 0 20
Tadj [°C] 0°C-20°C 0°C-20°C
delta Troom [°C] 7.6 7.2
63% [min] 1823 2018
95% [min] 16800 17745

Room temp. step response - Tadj step
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4.3 Reduced model 

General 

What is the use for yet another model?  
 

For algorithms, as for the 'Model Predictive Control' control strategy, a mathematical 

representation of the underlying system is necessary. With such a model it is possible 

to calculate/estimate/simulate the resulting or depending variables - e.g. the room 

temperature - as direct result to the applied input variables - e.g. heating energy input. 
 

The objective for the mathematical representation is to provide a best fit of the thermal 

characteristics of the model with the real system. Under the assumption of a 

mathematical representation with similar thermal dynamic as the reference room, input 

sequences can be applied to the model and the resulting output will be close to the 

output the real system - our reference room - under the same conditions. 
 

The mathematical representation needs to be as close to the actual thermal dynamics 

but, for hardware and numerical resources reason, especially the limited possibilities in 

embedded controllers, at the same time as simple as possible. 
 

Hence, a mathematical model needs to be derived to represent  

a) the thermal dynamics of the reference room and/or  

b) the reference model which had been fitted to the real system. 
 

This allows to 'predict' the output trajectory in time, based on the known input 

parameters over time (applied heating power), it is hence possible to vary and optimize 

potential input sequences without applying them to the actual system. In an 

optimization process under a defined target function, an optimal input sequence can be 

found.  

Optimizing the input sequences in the mathematical model - e.g. heating power starting 

at current time and over future time - and evaluating the output variables with target- or 

cost functions will lead to 'optimal' input trajectories in time (model predictive control 

algorithm) 
 

In this project, the mathematical representation will be fitted to a). In spite of running the 

simulations for heating demand with the reference model (EnergyPlus model) the 

reference room and the available measurements were selected for the fitting process of 

the mathematical model. Reason is that a potential practical application also would be 

linked to sensor measurements of the respective thermal zone and not to a simulation 

model. 
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4.3.1 Model structures 

In the literature [2,14,11,12,7] a variety of different model structures for the description of 

thermal behavior of rooms are presented and discussed. The physical background and 

the thermal dynamics are described by a set of differential equations. For easier 

representation these are 'translated' into electrical circuit equivalents. 
 

It needs to be noted that such reduced model descriptions represent the dynamic 

characteristics only, any detailed geometry and material details are subsumed in virtual 

elements as capacities, resistances, etc. There is no direct physical interpretation for 

the values of these virtual elements [2], these parameters combine and represent several 

underlying physical effects and thermal characteristics. 
 

This project follows the basic model structures and systematic approach and 

categorization of [2].  

Some modifications were applied to make the models more suitable for this project as: 

 the solar irradiation energy applied via a sol-air temperature (Tsolair, see below) 

instead of feeding solar energy to the envelope element 

 adding the parameter of an adjacent thermal zone (Tadj) to represent temperature 

and cross ventilation effects. This especially in view of the actual situation with 

considerable cross ventilation from the hallway. 
 

In this process the modelling is started at a very simple model with only few differential 

equations (see figure 4.10, equation 4.5). The variables of the differential equations are 

corresponding to the states (Ti, Te, Th) in a state space description of the system. 

For easier notation the terminology of [2, 11], referencing to the the states of the model, is 

adopted (see table 4.6 and figures 4.10 to 4.11): 
 

In the underlying case the systems, in the nomenclature as in [2, 11], are: 

 Ti: represents the simplest system and is a representation in one differential 

equation respectively one state space variable (Ti) only. This model does not 

sufficiently fit to the thermal characteristics of the reference model, nor does it 

allow the variation of any input variables apart from the ambient temperature 

Ta=Tamb (e.g. sensor readings). 

 TiTe: the thermal mass property of the envelope/wall is added. This property 

requires an additional first order differential equation. In the state space 

description a second variable (Te) is added. 
 

Cie

Ria

 =TroomTi
Ta =Tamb

Ph Pg Ps Ps

 

Cie

 =TroomTi
Ta =Tamb

Ph Pg Ps Ps
Cea

TeRie Rea

 

Figure 4.10 - Ti model structure Figure 4.11 - TiTe model structure 
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 TiTe_RiaRib: a direct thermal influence from ambient temperature and adjacent 

temperature is added. These parameters allow modelling an effect of infiltration 

and ventilation as well as cross ventilation from an adjacent thermal zone (e.g. 

hallway). The number of describing differential equations and states remains 

unchanged. 

This model is representing the reference model and its impacts quite well. It also 

allows to study and vary different sensor settings.  

 TiThTe_RiaRib: in this representation an additional physical effect is described in 

another differential equation or state respectively; it is the thermal characteristics 

of the radiators (and interior). Their thermal capacity adds lag time to the 

dynamics of the systems described above also see 'Radiator dynamics' below). 
 

 Table 4.6 - model terms 

Ria

Rib

Tsolair

Tb

 =Tamb

Cie

 =TroomTi

Ph Pg Ps Ps
Cea

TeRie Rea

Ta

 

Ti Troom, interior temperature, representation as a state  [°C]
Te state representing virtual envelope temperature  [°C]
Th state representing virtual radiator temperature  [°C]
Ria thermal resistance interior-ambient  [°C/kW]
Rib thermal resistance interior-adjacent  [°C/kW]
Rie thermal resistance interior-envelope  [°C/kW]
Rea thermal resistance envelope-ambient  [°C/kW]
Rih thermal resistance interior-heater  [°C/kW]
Ci thermal capacitance, internal  [kWh/°C]
Ce thermal capacitance, envelope  [kWh/°C]
Ch thermal capacitance, heater  [kWh/°C]

 

Figure 4.12 - TiTe_RiaRib model structure  

 

 

For the control calculations in the next chapters the TiThTe_RiaRib structure is 

selected.  

Even using a different way for the simulation of the radiator dynamics (see 'Radiator 

dynamics' further below), this model was retained as it offers the most versatile 

structure for adaptions with respect to different sensor settings. 

The equivalent circuit diagram of the selected TiThTe_RiaRib structure is shown in 

figure 4.13. 

 

Cie

 =TroomTi

Th

Ph

Pg Ps Ps
Cea

Cih

TeRie
Rih

Rea

Tb =Tadj

Ria
Tsolair

 =TambTa

Rib
 

Figure 4.13 - TiThTe_RiaRib model structure 
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Output-/Input parameters 

The output parameter is: 

 Ti [°C] 

Is representing the interior temperature of the reference room (Troom). This is the 

temperature the thermostat or controller has to keep within the required limits, set 

forth by the thermostat schedule and thermostat setting values. 

The input parameters to this model are: 

 Ta [°C] 

Representing the ambient temperature in direct vicinity of the reference room. 

 Ps [kW] 

Factor the solar gains by solar radiation power through the window areas. 

 Ph [kW] 

Represents the main input/control factor, the heating power applied to the room. 

The heating power is in the range of zero to the maximum radiator heating power 

of 3000W. 

 Pg [kW] 

For other thermal gains as electrical gains from appliances or occupancy gains. 

 Tb [°C] 

Referring to the temperature of an internal zone adjacent to the reference room, 

also indicated as adjacent temperatureTadj. 

 Tsolair [°C] 

According to the ASHRAE® handbook [37] the sol-air temperature is "the outdoor 

air temperature that, in the absence of all radiation changes gives the same rate 

of heat entry into the surface as would the combination of incident solar 

radiation,..., and convective heat exchange with outdoor air" [37].  

This virtual temperature is selected to include solar radiation gains to the walls, 

instead of applying the energy into the envelope as proposed by [2].  

The concept of Tsolair as a function of solar irradiation, wind speed, radiation 

impact angle and area, also allows the potential implementation of a wind speed 

sensor and of information concerning building orientation and geometry. 
 

Tsolair is calculated to: 

,. .s total
solair amb

o o

P RT T
h h

a ε ∆
= + −

 
(4.5) 

4.5 - sol-air temperature Tsolair 

with: 

a absorptance of surface exposed to solar radiation 

Ps,total total solar radiation to surface [kW/hm2] 
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ho heat transfer coefficient for convection and long wave radiation [kW/hm2], 

 approximated with hc (convective surface film) as  

 hc=5.6+3.9vwind for vwind ≤ 5 m/s 

 hc=7.2vwind
0.78 for vwind ≥ 5 m/s 

ε emittance of surface 

ΔR difference between long wave radiation from sky and surroundings and 

emitted radiation (black body) at the ambient temperature Tamb. According 

to 2009 ASHRAE® Handbook [37] it is common practice to assume  R=0 

for vertical surfaces, as the usually higher temperatures of surfaces of 

terrestrial objects partially compensate the sky's low emittance. 

 

4.3.2 Mathematical description 

The representation of the system by its equivalent electrical circuit can be directly 

translated to the respective description in form of differential equations. For the simplest 

model - the Ti model - that leads to (4.6): 
 

1 ( ) gh w
i a i h s g

ia i i i i

hh AdT T T P P P
R C C C C

= − + + +
 

(4.6) 
4.6 - mathematical description - Ti model 

 

While the simplest representations do not follow well to the measured dynamics of 

reference room, the more complex systems show a good fit to the measured data. 

For the most comprehensive model - the TiThTe_RiaRib model - still simple, but 

including all important parameters, the description in form of differential equations leads 

to (4.7): 
 

e

1 1 1 1( ) ( ) ( ) ( )

1 1( ) ( )
R

1 1( ) ( )

gw
i e i h i a i s g b i

ie i ih i ia i i i ib i

e i e solair e
ie e a i

h
h i h h b i

ih i h ib i

hAdT T T T T T T P P T T
R C R C R C C C R C

dT T T T T
R C C

hdT T T P T T
R C C R C

= − + − + − + + + −

= − + −

= − + + −
 

(4.7) 
4.7 - mathematical 

description - 
TiThTe_RiaRib model 

 

To answer the underlying question of this work - the effect of different sensor/input 

settings, an important selection criteria for the model structure is that the representation 

has to incorporate significant influence factors of the room model (e.g. Tb, ...). The 

model has therefore to provide input parameters linked to different sensor readings.  
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Such indirect variables are (equation 4.6): 

 Tambient - outside temperature 

 Tb - temperature of adjacent room 

 Tsolair - is a calculated virtual outside temperature. Apart from the outside 

temperature Tamb, this value takes also into account other impacts as solar 

irradiation to the wall, wind speed, absorptance of the wall as well as other 

factors as orientation of building and walls and their size ratio 

 Ph - heating power 

 Pg - occupancy related gains (e.g. people, appliances) 

 Ps - solar irradiation through transparent building elements 
 

If e.g. the dependency of solar irradiation and the presence of such sensor, respectively 

the availability of such sensor data, should be derived, the model needs the solar 

irradiation as input parameter. The same is valid for ambient Temperature (Tamb), 

temperature of an adjacent thermal zone (Tadj), wind speed, electrical gains, occupancy, 

and heating energy. 
 

State space description 

Mathematical models as representation of dynamic systems in control engineering are 

often transformed to a set of coupled first order differential equations.  

Every such differential equation is describing a 'state' variable, the 'state space' is a 

mathematical space, with these states as describing the axes. The states, inputs and 

outputs are defined as vectors within that space. The state variables are system 

variables, representing a state of the system as function of time. The number of state 

variables needed to model a given system, is representing the order of the differential 

equation defining the systems dynamics. 
 

Such state-space descriptions represent a compact method to model and analyse 

systems with multiple inputs and outputs (scheme figure 4.14). 
 

It needs to be noted, that the states of a given state space model do not represent an 

actually measurable physical parameter but rather reflect a virtual result of a first order 

differential equation, necessary for this type of mathematical description. Values of such 

virtual states can be mathematically accessed or observed but cannot be measured. 

Also the interpretation of such states in form of accessible' physical parameters is not 

necessarily simple or possible. 
 

A

B
y(t)x(t)x(t)u(t)

C

D

+
+ +

+
1/s

 
Figure 4.14 - state space system 
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The general matrix form of a state space description of a system is (equation 4.8): 
 

( ) *x(t) * ( )
y(t) * ( ) * ( )
x t A B u t

C x t D u t
= +
= +



 
(4.8) 

4.8 - state space description 

with  

 x(t) being the state vector 

 y(t) the output vector 

 u(t) the input (or control) vector,  

 A the state (or system) matrix,  

 B the input matrix 

 C the output matrix and 

 D the feedthrough (or feedforward) matrix. 

 

By rewriting the differential equations from above (4.7) the matrices state space 

description for the TiThTe_RiaRib model can be derived as (4.9), with the state and 

output vectors (4.9): 

[ ] [ ] [ ] [ ] [ ]* * * *

a a

s s
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h h
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b b

solair solair

T T
P P

T T T
P Pd T A T B y C T D
P Pdt
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(4.9) 
4.9 - state space 

description - 
TiThTe_RiaRib model 

 

with the system matrices (4.10): 
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(4.10) 
4.10 - state space 
system matrices - 

TiThTe_RiaRib model 
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Model-/Parameter identification 

Model identification is the process to determine the values of parameters of the 

mathematical model and/or the structure of the model representation (e.g. order of the 

model). The process involves optimization of the parameters and/or structure to best 

match the mathematical model to measured data. 
 

Depending on the elements to be identified the model identification can be 

differentiated as: 

 white box identification: estimate the parameter values of a fully defined 

physical model (theoretical case) 

 black box identification: the structure as well as the parameter values are to be 

established 

 grey box identification: combines an established theoretical structure of a 

model with measured data and optimizes the parameter values to best fit the real 

dynamics in form of available data with the dynamics of the mathematical model. 
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Figure 4.15 - model identification 

(source [1]) 

 

As the underlying model structure with order of the system and differential equations 

are established (see above) a grey box identification process is applied. It combines an 

established theoretical structure of a model with measured data and optimizes the 

parameter values to best fit the real dynamics in form of available data with the 

dynamics of the mathematical model. 
 

As emphasized above, the state space description and its parameters describe the 

system but do not necessarily have a direct equivalent parameter definition in the real 

world. The parameters that need to be identified are the variables in the system matrix  

For the parameter identification process an input time series (Ta, Ps, Ph, Pg, Tb, Tsolair) 

with the actual sensor data is applied to the mathematical model. In an optimization 

process the variables - the mentioned matrix elements - are varied to generate a best fit 

of the output of the mathematical model with the actual sensor data for these 

parameters - in this case for the temperature of the reference room (Troom, Ti). For this 

identification process the MATLAB® model identification toolbox is applied. 
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The identified parameters for the TiThTe_RiaRib model result to (table 4.7): 
 

Table 4.7 - model identification results 

Model identification - results
heat 

capacities [kWh/°C]
thermal 

resistance [°C/kW] factors [m2]
Ci 8.00E+00 Rie 1.50E+00 Aw 6.76E-01
Ce 1.00E+03 Rea 3.70E+00
Ch 6.67E-01 Rih 3.00E+00 factors [1]

Ria 4.38E+01 Hfactg 4.36E+00
Rib 6.25E+00 Hfacth 4.00E+00  

 

With the resulting parameters the system- and input matrix for continuous system result 

to (4.11): 
 

1.48 01 8.33 02 4.17 02 2.86 03 8.44 02 0 5.45 01 2.00 02 0
6.67 04 9.37 04 0 0 0 0 0 0 2.70 04
5.00 01 0 5.00 01 0 0 6.00 00 0 0 0

E E E E E E E
A E E B E

E E E

− − − − − − − −   
   = − − − = −   
   − − − +     

(4.11) 
4.11 - state 

space system 
matrices 

 

with a fitting factor of >80% 
 

The fitting factor indicates how well the system with the identified parameters fits the 

measured data. It is indicated as normalized root mean squared error (NRMSE), 

expressed as percentage. To facilitate comparison of results the mean squared error 

(RMSE) is normalized, that is divided by the span of the values (max-min). 

 

State space description - continuous and discrete time system 

So far the system description was done for a continuous system. In this case the 

system is described as a system of coupled differential equations. The differential 

calculus builds on the assumption of infinitely short time segments, their tangents 

converging to differentials of the functions (e.g. dx/dt). With this infinite number of time 

points along the time axis, time is considered as a continuous variable. The state space 

description is in the form: 
 

( ) *x(t) * ( )
y(t) * ( ) * ( )
x t A B u t

C x t D u t
= +
= +



 
(4.12) 

4.12 - state space description - continuous time 
system 

 

Discrete systems work on a time concept with values at specific points along the time 

axis only (sample time); in between these points the values remain constant (first order 

hold). At the discrete time points the values change their value (e.g. measurement 

value). Thus the number of value changes or measurements between two points in time 

is finite. This fact does not allow a description in form of differential equations. 
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Figure 4.16 - PT1 system 

Discrete systems are described in form of difference equations in the form of: 
 

( 1) *x(t) * ( )
y(t) * ( ) * ( )
x t A B u t

C x t D u t
+ = +
= +  

(4.13) 
4.13 - state space description - discrete time system 

 

Continuous system descriptions can be converted to discrete system descriptions and 

the respective difference equations; necessary for such conversions is a definition of a 

sample time. 
 

Description in discrete form as a set of coupled difference equations (recurrence 

relations) is not only necessary for digital systems but also much easier to process 

digitally. All controller algorithms are based on a discrete state space description of the 

mathematical model. 
 

Radiator dynamics 

The response characteristics of the radiators represent very 

specific dynamic effects and require special adaptions to the 

mathematical model. 

The radiators represent a first order lag element (PT1 element). 

A PT1 element response to a step input signal is an output 

asymptotically approaching its final value; in an exponential 

response function with a time constant t (see figure 4.17 and 

4.18). An electrical equivalent would be a RC lag circuit (see 

figure 4.16) 
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Figure 4.17 - radiator system 

response - heating up Figure 4.18 - radiator system response - cooling down 
 

'Unfortunately' the radiator is not just a 'simple' PT1 element but shows very different 

thermal dynamics and time constants for heating up and cooling down. 
 

When heating up, the heating energy is first used to heat up the radiator mass (metal 

case) itself, the heating energy to the room is a function of its resulting surface 

temperature. The heating water, provided with high flow/supply temperature does not 

need any time to be at its maximum temperature, the time constant for warming up is 



SYSTEM SETUP 31 
 

influenced by the thermal mass of the radiator itself (metal case). Time constants for 

heating up are in the range of 5 minutes. 
 

For cooling down however, the respective time constant is much longer. The radiator 

cooling not only refers to the metal parts of the radiator but also to the water contained 

in the radiator. This leads to a time constant for cooling down of approximately 30 

minutes as indicated in [41]. These thermal characteristics can be verified by using the 

technical data of the radiators [42] - weight and water content - and the respective 

thermal capacity of steel and water. 
 

For the simulations with different controller strategies the radiators are modelled in 

separate mathematical PT1 elements. 
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5 SIMULATION SETUP 
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Figure 5.1 - model simulation 

 

5.1 Simulation and co-simulation 

Simulations are a common way to forecast characteristics of systems; a building can 

be such a system, the thermal characteristics as heating energy demand, internal 

temperatures can be the parameters the simulation is run for. 
 

One of the typical software package for thermal building simulation is EnergyPlus, an 

open-source, and cross-platform software, developed by the U.S. Department of 

Energy Building Technologies Office [32].  
 

EnergyPlus provides some capabilities for internal calculations, however for this project 

this functional support is by far not enough to program more complex controller 

structures and algorithms or to use forecasted input variables. 
 

For more complex programming MATLAB® is a very capable and widely used program 

in the engineering community. MATLAB® [30] is a programming environment with its own 

programming language, with its functionality based on matrix calculations and available 

software tool packages for various engineering applications it is a perfect choice for 

running the control algorithms as model predictive control. 
 

In order to combine these capabilities - the thermal building simulation and the 

capability to run complex algorithms - a cooperation of these software packages is 

necessary. 
 

The 'Building Controls Virtual Test Bed' (short BCVTB), developed at the University of 

California, is such a tool [43]. It was especially created for co-simulation of two or more 

software packages; it is controlled by an own programming language [10]. 
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EnergyPlus 

As described before, this building simulation package is primarily designed to evaluate 

the energy demand for heating and cooling. It also provides the option to incorporate 

modern systems linking up with the energy demand calculation as e.g. complex 

HVAC-systems, photovoltaic and solar heating panels, etc. 

A model for EnergyPlus requires detailed specification of the geometry of the building, 

the thermal boundary conditions of building elements, material information together 

with their thermal characteristics and weather data. 

For this work, the model - our reference model - was established in chapter 'Reference 

Building' (see above). 
 

The co-simulation feature and interface in EnergyPlus has an open communication 

protocol which can be used with the Building Controls Virtual Test Bed BCVTB and 

other programs controlling co-simulations as MLE+. 

 

MATLAB® 

The MATLAB® environment has been chosen for its functionality to be the program for 

the implementation of the control algorithms. It offers a wide range of functions for the 

areas of linear algebra, for matrix operations and the handling of systems described by 

a set of coupled differential equations. 
 

The description on the MATLAB® underlines the advantages and suitability of this 

software environment for this project: "MATLAB® is a high-level language and 

interactive environment for numerical computation, visualization, and programming. 

Using MATLAB®, you can analyze data, develop algorithms, and create models and 

applications. The language, tools, and built-in math functions enable you to explore 

multiple approaches...You can use MATLAB® for a range of applications, including 

control systems, test and measurement,..."[31]  

 

Virtual Testbed 

The 'Building Controls Virtual Test Bed' (BCVTB) allows to link the building simulation 

software EnergyPlus to another software environment, as MATLAB®. BCVTB is an 

open-source software platform from the Lawrence Berkeley National Laboratory, 

allowing engineers to simulate building energy systems and to develop complex control 

systems [27]. 

The EnergyPlus interface was originally developed for BCVTB, however the 

communication protocol is open and can be used by any program to perform co-

simulation with EnergyPlus. MLE+ is an example of such programs. 
 

The BCVTB is a software environment based on Ptolemy-II language and has been 

developed for co-simulation of two or more software environments. Co-simulation 
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refers to at least two simulators, each of them simulating, calculating or solving a set of 

differential or difference equation, are coupled, providing an exchange of data amongst 

the two programs while running [27]. 

 

MLE+ 

MLE+ is another open-source MATLAB®/Simulink® toolbox for co-simulation with the 

building simulation software EnergyPlus. It is designed for engineers and researchers 

who want to use MATLAB® functionality for thermal building simulation. MLE+ is 

developed at the Embedded Systems Laboratory at the University of Pennsylvania. 
 

MLE+ tool package provides objects and parameters for the linking process and for 

running the co-simulation. It can be used for complex control strategies and algorithms 

and for parameter optimization for simulation run in EnergyPlus. Via MATLAB® it 

provides full access to the full functionality of its environment, and to the toolboxes [36]. 
 

The software tool MLE+ offers a GUI interface, but also comes in a legacy version [19]. 

This version is used in further co-simulations, running the building simulation in 

EnergyPlus and the controller algorithms in the MATLAB® environment. 
 

BCVTB is offering a wider linking functionality than MLE+ and is able to couple other 

programs apart from EnergyPlus and MATLAB®. Other than BCVTB, which is running in 

its own environment, MLE+ is running within the MATLAB® session. Therefore it 

integrates better with MATLAB® and the complete functionality of MATLAB®b can be 

used with MLE+. 

 

5.2 Process and configuration 

There are several connection program points, especially in EnergyPlus, to exchange 

data between the two programs. The difference refers e.g. to as to when the data is 

provided and read in, whether this is before or after the simulation run, etc. The 

described process corresponds to the linking process as used in further co-simulations 

in this project. 
 

http://mlab.seas.upenn.edu/
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The process steps as used in the co-simulation of MATLAB® and EnergyPlus are (see 

figure 5.2): 

 In the MATLAB® environment an MLE+ object is created and a session and 

interface are established. The MLE+ object and its integrated program routines 

provide the connection to EnergyPlus 

 EnergyPlus is initialized and 

 provides the data as defined in a configuration file. 

 In the MATLAB® program the data from EnergyPlus is decoded and assigned to 

variables. 

 The MATLAB® program code and function loops are performed -  e.g. for the 

controller algorithms, 

 resulting in parameters to be used for the EnergyPlus. 

 Valid parameters for the external interface of EnergyPlus are schedule, variable 

and actuator parameters. 

 In the case of this work actuator data is sent to EnergyPlus. 

 EnergyPlus then starts a simulation run, using its own parameters and the 

actuator data sent from the MLE+ session within MATLAB®. After completion of 

the single simulation calculation run, EnergyPlus provides the new data set to 

MATLAB® for the next calculation loop. 

 At the end of the required calculations in MATLAB®, the EnergyPlus as well as the 

MLE+ sessions are terminated. 
  

session interface
start

get data

initiate EP run

Matlab
program

code,
control

algorithm

EnergyPlus
simulation
program

send actuator data

provide data
parameter values

start simulation

start EnergyPlus

EnergyPlusMATLAB®

end simulation
end simulation

get data
actuator values

session interface
end

MLE+ object

external interface

 
Figure 5.2 - co-simulation process 
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For the definition of the communication protocol and as to which data will be 

transferred,  

 a configuration file is provided for the MLE+ object in MATLAB® 

 the external interface is defined in the 'External Interface' section of the idf file of 

the EnergyPlus model 

 the actuator or schedule parameters of EnergyPlus' external interface are also 

defined in the 'External Interface' section 

 the variables for transmission from EnergyPlus to MATLAB® are defined in the 

'Output' section of the idf file 

 a socket configuration file defines the communication for the MLE+ object in 

MATLAB®. 
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Figure 6.1 - predictive control 

 

General simulation conditions 

Unless otherwise stated in the respective subchapter, the boundary conditions for the 

simulations in subchapter 'Simple Predictive Control' are 

 simulation period 1/1-6/30 

 no electrical gains 

 no occupancy gains 

 thermostat schedule: workdays 9:00-12:00 21°C, 14:00-16:00 21°, all other 

times free running (no thermostat setting) 

 ambient Tamb=Ta temperature per weather-file 

 adjacent Temperature Tadj=Tb from simulation results of staircase/hallway model 

(see chapter 4.1.2) 

 simulation time step 1 minute. 

 

Distribution of heating difference and starting temperature 

The free running conditions (night and day setback conditions) in between the periods 

with thermostat setting (21°C) lead to reduced room temperatures. The difference 

between the thermostat setting of 21°C and the temperature before the beginning of 

the morning and afternoon heating periods is shown in the histogram in figure 6.2. 
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Figure 6.2 - distribution initial temperature span 
 

 

As the simulation runs, especially with more involving algorithms as model predictive 

control (MPC), become numerically intensive, the number of simulations needed to be 

reduced.  

For more detailed investigation of temperatures and heating demand, 3 (4) 

representative days within the simulation period from 1/1 to 6/30 were selected, 

representing the starting temperature for the heating period in the morning as: 

 minimum temperature: 

lowest initial temperature 6.5°C on 2/6 

 the median temperature 

11.8°C on 2/22 

 the upper quantile temperature 

16.9°C on 4/14. 

 

For most further comparisons and figures the  

 the lower quantile temperature 

9.6°C on 1/20 

was not taken into consideration; the reason is that the potential energy savings are 

savings are higher for higher starting temperatures (heating system running at partial 

load in the transition period), resulting in only smaller differences for the lower quantile 

temperature versus the minimum temperature and the median temperature. 
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Step response and look-up table 

The room temperature step response on input changes in heating power (step function) 

is the basis for a simple predictive control strategy. Two versions of such step 

responses have been studied more in detail: 

 step response without thermal radiator dynamics 

That is an ideal radiator transferring the full input heating power to the room 

without any lag time. 

 step response with a radiator lag time 

Due to the radiator dynamics with a power dissipation lag time when heating up 

the radiator itself. This leads to longer heating times for the room (see figure 6.3). 
 

All step response simulations simulation runs where performed  

 without any other direct gains as appliances or occupancy,  

 without any other weather inputs like solar irradiation and with a constant ambient 

temperature (Tamb) and  

 constant temperature of the adjacent hallway (Tadj).   

Figure 6.3 shows the responses without (upper curves) and with radiator gain (lower 

curves). Table 6.1 represents a look-up table as used for the simple predictive control - 

see subchapter 4.3.1) 
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Figure 6.3 - step response wo/w radiator lag 
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Table 6.1 - lead time look-up table 

Look up table
ambient temp Tamb [°C] -20 -10 0 10 20 30 -20 -10 0 10 20 30
tot. temperature rise [°C] 37,4 38,8 39,6 39,4 38,4 37,6 37,2 38,7 39,6 39,4 38,4 37,6

temperature rise [°C]
1 0 0 0 0 0 0 3 3 3 3 3 3
2 1 1 1 1 1 1 4 4 4 4 4 4
3 1 1 1 1 1 1 5 5 5 5 5 5
4 2 2 2 2 2 2 6 6 6 6 6 6
5 2 2 2 2 2 2 7 7 7 7 7 7
6 3 3 3 3 3 3 9 8 8 8 8 8
7 4 4 3 3 3 3 10 10 10 10 9 9
8 5 4 4 4 4 4 12 12 11 11 11 11
9 6 5 5 5 5 5 14 14 14 13 13 13
10 7 7 7 7 6 6 17 17 17 16 16 16
11 10 10 10 9 9 8 22 21 21 20 20 20
12 17 16 15 15 15 13 29 28 27 27 27 26
13 30 28 28 27 27 25 41 39 38 38 38 36
14 50 47 47 46 46 43 60 57 56 56 56 53
15 77 74 73 72 72 69 88 84 82 81 82 78
16 115 110 108 106 107 103 127 120 117 116 117 113
17 166 157 153 151 153 149 179 168 163 161 163 159
18 232 218 211 207 211 208 246 229 221 217 221 218
19 314 293 282 276 283 281 330 305 292 287 293 291
20 413 383 365 358 368 368 432 396 376 369 379 379

without radiator lag time with radiator lag time

minutes to establish temperature riseminutes to establish temperature rise

 
 

At a first view, it would be expected that the responses are exponential functions. As 

can be seen from the results at 63% and 95% the response functions resulting from 

EnergyPlus simulations are not exponential functions, but functions that seem more 

close to exponential responses of parallel thermal subsystems. This system behaviour, 

and especially the effect of the relatively low temperature increase gradient beyond 

approximatively 12°C temperature rise has an effect on the applied control algorithms 

see subchapter 4.3.2. 
 

How to get the look up table of a real room 

In the described case, the look-up table was established based on simulation, taking 

the output (room temperature) as thermal response to a step change of an input 

parameter (heating energy). 

Such thermal response characteristic can also be derived from measurements on a real 

room. If a known input signal sequence is applied, the measured output can be 

analyzed and a system step response can be derived.  

As an example, this could be done for the period of night temperature setback. In that 

situation, right after the energy supply is cut off, the thermal system is in a free running 

mode. The room cooling curve represents a thermal step response to the change in 

input energy. The ambient temperature remains as disturbance parameters, other 

influence parameters, as e.g. solar irradiation energy, or occupancy would not be a 

factor during the night. For other measurement situations, disturbance parameters 

however could negatively influence the accuracy. To avoid that, the major influence 

factors would also need to be measured. 
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Multi-dimensional look-up tables 

The presented control algorithms refer to one dimensional look-up tables. The 

necessary heating lead time is the output variable with the heating-up temperature the 

only input variable. 

Of course other input variables could be added, thus forming a multi-dimensional look-

up table or -matrix. The output variable (heating lead time) would then be a function of 

several input parameters. Such input parameters could be heating water flow 

temperature, parametrized weather data, gain factors, etc. 
 

Look-up table lead control with flow temperature control 

Some heating control systems include a control of the heating water flow temperature. 

This method is applied to reduce heat losses for conditions when heating power 

demand remains below the nominal system heating power. This is the case for higher 

ambient temperatures. The flow temperature is usually controlled by characteristic 

curves, giving the flow temperature set point as function of the ambient temperature 

conditions. 
 

Such case would be an example for a two dimensional look-up table for the necessary 

heating lead time. One input parameter being the heating temperature difference as 

before, the second input parameter then would be the set flow temperature. Lower 

settings for the flow temperature would yield longer lead times for heating. 
 

The principle results as described below however would not change. The difference is 

that for lower flow temperatures the heating has to start earlier (longer lead times) as 

the energy supplied to the room via the radiators is lower than the nominal power. The 

overall resulting supplied energy - for a longer time, but at lower energy output - 

remains the same. 
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6.1 Lead time control - simple 'predictive' control - look-
up tables 

For systems with short response time, as in the example of the reference room, the 

biggest savings are expected during the warming-up period.  

In order to reach the required thermostat setting at a given time, standard thermostat-

timers have to be set to start heating well before the time the temperature needs to be 

at the requested level. For this case, the thermostat timer has to be set in a way to 

cover the worst case of heating-time. That is when the room temperature before 

heating is at its lowest level. 
 

For the underlying reference model the repartition of room temperatures before the 

schedule set point (time when a requested temperature should be reached) is shown in 

figure 6.2. The worst case in the first half year 2015 for heating-up is at a room 

temperature of 6.5°C (2/6), requiring the heating to cover a temperature difference of 

14.6°C. The system responses to input steps of heating energy are simulated and 

evaluated; results as shown in figure 6.3 and table 6.1, indicate the necessary time to 

heat the room for given degrees. For the worst starting temperature, the time required 

to heat the room by 14.5°C is between 50 and 70 minutes. 
 

A setting for the thermostat timer to start heating exactly the required time before the 

schedule point would be the best setting to satisfy the target of least heating energy 

use and to get to the requested temperature level at the stipulated time (figure 6.4). 

With that start time set to the thermostat, the heater will start with this lead time. Thus, 

in all cases but the 'worst case' (lowest room temperature), the heater will start too 

early for the prevailing temperature, resulting in the room temperature reaching its 

target temperature earlier than requested. The heating energy for this time span is not 

necessary and could be saved. This saving could be realized if the lead time is derived 

as a function of the room temperature and the known response time of the system. The 

known/measured (in this case simulated) thermal response characteristic of the room 

allows forecasting the system response. Thus a control, adapting the heating lead time 

as function of the model result is in principle a 'model predictive control'.  

As such control strategy does not exactly represent what in control theory is 

understood under 'model predictive control', however in the context of this project the 

term look-up control, or simple predictive control is used. 
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Figure 6.4 - step response without radiator lag 
 

Thermostat controller algorithms representing simple on/off controller and on/off 

controller with hysteresis (2-point switch) have been programmed in MATLAB®. A co-

simulation of the reference model with MATLAB® and EnergyPlus was performed. The 

results of the three days selected for their initial temperature - worst case day, the 

median day and the upper quantile day are shown in figures 6.4 and 6.5 
 

Radiator dynamics 

When applying the radiator dynamics, with its lagging heating and cooling-down effect, 

the same as above applies. The results differ in the necessary heating lead time and the 

heating energy demand. For systems with the radiator lag, a dampening effect keeps 

the room temperature closer and/or in a more narrow tolerance band around the target 

temperature. On the other hand, temperature overshoot may occur as the radiator and 

its stored heat keep heating up the room after the energy supply to the radiator has 

been switched off. These effects drain some energy. 
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Figure 6.5 - step response with radiator lag 
 

Switching thermostats 

For the simulations with switching thermostats, the characteristics of these simple 

switching devices were programmed in MATLAB®. 
 

Two different versions of switching thermostats were used for the simulations: 

 simple switching thermostat, without hysteresis 

This thermostat simply switches on, when the room temperature is below the 

thermostat setpoint, and inversely, switches off when above the set point. This 

represents a technically (over)simplified case, high switching rates could be the 

result, especially with fast system dynamics. 

 two point switching thermostat 

A two point switching device represents a realistic model of a thermostat. The 

switch/heating is on when the temperature going up and is below the target plus 

hysteresis temperature; above that level it is off. When the temperature is thus 

falling, the switch remains off until reaching the target minus hysteresis 

temperature. Mechanical systems do show such hysteresis behavior and such 

switching characteristic is reducing the switching rate (see figure 6.6). 
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Figure 6.6 - 2-point switch 
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6.1.1 Results - simple predictive control 

Simulation runs with different thermostat setups and with reference models - system 

without as well as with radiator delay - show the effect of look-up table predictive 

control versus fixed lead time thermostat settings. 
 

Results without radiator lag 

On/off switching thermostat - no lead time: 

In this case the thermostat is starting the heating only when triggered by the thermostat 

schedule, thus the room is heated up to the desired temperature only after a long 

delay. In the worst case, that is starting from the lowest temperature in the simulation 

period (6.5°C) this gives a maximum delay to reach the desired temperature of 42 

minutes. 

 

This case does not fulfill the requirement - reaching the room temperature at the right 

time - and is only retained for comparison reasons. 
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Figure 6.7 - on/off switching thermostat, no lead time 

 

2 point thermostat with hysteresis - with fixed lead time: 

In this simulation, a 2 point switching thermostat with a hysteresis of 0.5°C is modelled. 

In order to counteract the heating up delay, a 42 minutes heating lead time is applied. 

Figure 6.7 shows the 3 simulation results: 

 the lower curve representing the heating from the lowest room temperature 

(minimum temperature) occurring in the simulation period (1/1 to 6/30), 

 the result starting from the median morning starting temperature, and 

 the result starting at the upper quantile morning temperature. 

The room temperature is at the desired level for all starting temperatures, however for 

all but the lowest temperature the temperature gets to the desired level well before the 

required time. This leads to higher heating energy demand than necessary. 
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Figure 6.8 - 2 point switching thermostat, fixed lead time 
 

2 point controller - variable lead time: 

In this case, the controller is adapting the lead time using the look-up table which was 

established from the system step responses (see 'Step response and Look-up table' 

above). Depending on the actual room temperature, the controller establishes the 

necessary lead time for heating up and starts the heating process at the stipulated time 

minus the calculated lead time. This results in reaching the desired temperature always 

on time, but not before. This reduces the heating energy demand vs. previous results - 

see figure 6.9. 

Starting temperatures in figure 6.9 as described above. 
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Figure 6.9 - 2 point switching thermostat, variable lead time 
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Results with radiator lag 

The next paragraphs describe the simulations with implemented effect of a radiator lag: 

 when heating up  

The heating energy is first used to heat up the radiator, which in its turn is 

providing heating energy to the room as a function of its surface temperature vs. 

room temperature. 

 when cooling down 

The heat storage capacity of the radiator and the heating water content leads to 

lagging heat dissipation from the radiator. The heat dissipation again is a function 

of the surface temperature vs. the room temperature. 

 time constants as the heating water does not need any time to be at its max 

temperature when the controller opens the valve, but reflects a thermal capacity 

when cooling down, the time constants for heating up and cooling down differ 

considerably. For heating up described time constants are in the range of 5 

minutes, for cooling down of 30 minutes [41]. These mentioned time constants are 

used in the simulations with radiator lag effect. 
 

Heating energy with thermal radiator inertia 

The above mentioned timing effects are even stronger when the heating or response 

time of the system is longer. This is the case if the radiators are modelled in a way that 

their response time to input of heating energy is more like in reality. It is not only 

delaying the heating power of the radiator, but radiators also show different time 

constants for heating up and cooling down.  
 

For heating up, hot water is immediately available from the heating system, so only the 

metal parts need to be warmed up, whereas for cooling down the heat is stored in the 

metal parts as well as in the water inside the radiator. [41] indicates considerable 

differences in time constants for heating and cooling down in the range of factor of 5  

to 6. 
 

To generate such thermal characteristics a PT1 subsystem was programmed in 

MATLAB®, giving the dynamically resulting heat energy to the EnergyPlus model. The 

mathematical representation of the radiator system description also changes the time 

constants, depending whether the radiator is heating up or cooling down. 
 

On/off controller - no lead time - radiator lag 

This case is similar as described under 'On/off switching thermostat - no lead time' 

above, but with the effect of the radiator lag. This additional system lag leads to 

prolonged periods for heating-up, in this case up to 53 minutes. 

This case does not fulfill the requirement - reaching the room temperature at the right 

time - and is only retained for comparison reasons. 
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Figure 6.10 - on/off switching thermostat, no lead time, with radiator lag 
 

2 point controller - with fixed lead time and with radiator lag 

The set lead time of 53 minutes guarantees that for all conditions in the simulation 

period the room temperature will meet the desired levels at the given times. However, 

as described above, the desired room temperature will be reached too early for all initial 

room temperatures above the worst case temperature - see figure 6.11. 
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Figure 6.11 - 2 point switching thermostat, fixed lead time, with radiator lag 
 

The dynamic responses get smoother due to the thermal capacity effect of the 

radiators. On the other hand, the over- and undercutting of the room target 

temperature (21°C ± 0.5°C) increases. This is due to the characteristics of the 

switching controller, which only acts when the measured temperature is getting outside 

of the hysteresis band. For measured temperatures slightly within the hysteresis band, 

no switching is initiated, leading to relatively strong over- and undershooting of the 

target within the following control time step of 1 minute (simulation step).  

Moreover, slower dynamic system response leads to over- and under-temperature. 

This overshooting effect is stronger for higher initial room temperatures, which are 

caused by warmer ambient conditions. For these conditions, less energy is dissipated 

from the entire system, thus the effect of excess heating capacity effect once the 

energy supply is cut off, is stronger - also see figure 33 below. 
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2 point controller - with variable lead time and radiator lag 

As described above, in this case a table look-up algorithm is used to derive a heating 

starting point as function of the actual room temperature in order to reach the desired 

temperature at the necessary set time. This method prevents the use of heating energy 

for non-scheduled thermostat periods. 
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Figure 6.12 - 2 point switching thermostat, variable lead time, with radiator lag 

 

Results and summary 

Value comparison 

Table 6.2 and table 6.3 show the heating energy demand for different starting 

temperatures in the room: 

 the second part uses a fixed lead time to fulfil the requirements of thermostat 

setting and timing.  

 the third part is showing the results of a table look-up strategy and the energy 

savings with respect to the fixed lead time algorithm.  

The last columns in the respective tables show the heating energy demand within the 

entire simulation period from 1/1 to 6/30. 
 

Results without radiator lag: 
Table 6.2 - simple prediction, results without radiator lag 

Results without radiator lag
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Especially for higher starting temperatures, the reduction of heating demand is obvious, 

reaching more than 14% for the specific days and showing savings of 11.6% for the 

entire period. 

 

Results with radiator lag: 
Table 6.3 - simple prediction, results with radiator lag 

Results with radiator lag
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The heating demand for the case of radiator lag is higher than for the simple system 

before. This is due to the longer heating effect when cooling down. Nevertheless, the 

table look-up strategy with variable lead time leads to a potential heating demand 

saving of up to 10.4% for the median temperature and 9% for the full period. 

 

Summary - simple predictive control 

Above control strategies have shown that with relatively little information of the system 

response characteristics there are potential heating energy savings. In view of the 

simplicity of the system - e.g. does not require any other sensors than the room 

temperature sensor - the saving potential is considerable. 

 

Advantages: 

 Does not need any additional sensors apart from the room sensor, which is in 

any case necessary for the control of a room temperature. 

 Relatively simple way to get to the look-up tables by e.g. using defined heating 

curves and measuring the response (e.g. step response, cooling response during 

night setback period). 

Disadvantages: 

 Does not take into consideration any other influence parameters as e.g. 

appliances that are running also in non-heating periods but may reduce the 

heating up period. 
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6.2 Model predictive control 

6.2.1 Principle 

The background of this method has been touched in the introduction section, this 

section presents a more detailed background, specifically related to the applied 

algorithm. 
 

To 'predict' the responses of the thermal system a mathematical representation of this 

system - the model - is used. For this project, this is the reduced model, developed in 

chapter 4.1.3. This model is not a 1:1 representation of all sub-processes but gives a 

good relation of input signals, disturbance variables and the output of the thermal 

system of the reference room.  
 

The MPC algorithm is based on a finite-horizon optimization. In this very case, to get an 

optimal input signal sequence (heating energy input) to get or maintain the output signal 

or predicted output signal (room temperature) within a targeted range (thermostat 

setting). 
 

Output prediction 

Virtually applying a known input signal, the system output over a finite period is 

calculated respectively predicted. This is done by taking the input signal and simulating 

the output variable in the reduced mathematical model, leading to a forecast of the 

output variable. In this case this is giving a prediction for the room temperature, taking 

into account the applied input signal (heating energy) and other disturbance variables 

(weather, gains, occupancy). 
 

Optimal input signal - optimization 

With a numerical minimization algorithm and by minimizing a cost function (e.g. heating 

energy, temperature deviation) an optimal input signal can be generated. The 

optimization process can be done by various methods and algorithms as e.g. quadratic 

programming. For the nature of the limits and boundary conditions of this project, a 

pattern search method was selected for the minimization process to calculate an 

optimal heating energy supply. 

Apart from selecting the optimization method a target function has to be defined. The 

target function returns a value which is a function of  

 the deviation of the predicted output from the target value - difference of room 

temperature to thermostat setting 

 the amount of input - the amount of heating energy supplied 

 the prediction horizon - the time of following the output prediction into the future 
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In the optimization process, the input signal - the heating energy supply - is varied to 

obtain the lowest result value of the target function. This optimal result represents an 

input sequence (heating power over future time) which, applied to the model will result 

in an optimal fulfilment of the target criteria as specified in the target function. 
 

Forward control of real system 

As the mathematical model used in the optimization represents the thermal dynamics 

of the real system (reference room) it can be deducted that the application of such 

input sequence to the real system would also lead to optimal results for the given 

criteria of the target function. That is, for the reference room, the optimal heating input 

sequence would optimally lead to the desired result of  

 maintaining the room temperature within the thermostat setting (target 

temperature and timing), and 

 using a minimum of heating energy to do so  

This derived optimal input signal is applied to the system in a form of an open loop 

control.  

 

Feedback control of the system 

The process described so far is a forward control only, without taking into account any 

disturbance factors or other system deviations from the target state (e.g. opening of 

windows). 

The described process of prediction and optimization is repeated every process time 

step. With updated and actual output and disturbance parameters, the actual situation 

is taken into account. The newly optimized input sequence is applied at the next time 

step. So, in every step usually only the initial element of the input sequence is applied 

before the entire sequence will be re-evaluated/optimized, and the initial step of the 

new input sequence is applied to the system. This process of re-evaluation under 

consideration of the actual parameters is in fact establishing the characteristics of a 

feedback system. 

The described model predictive algorithm hence is a combination of a forward control 

with a feedback control by its iterative nature. 

 

Prediction and control horizon 

For the model predictive control process the predictive horizon defines how far into the 

future the model output is forecasted. The control horizon defines as to how far the 

input control sequence is optimized. The control horizon can be shorter than the 

prediction horizon. A long control horizon requires longer optimization calculations as 

the number of possible outputs per time step need to be optimized. 
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As described before, the optimization process is iterated, with every new iteration the 

actual parameters of states, disturbance variables if available and output 

measurements are updated and used for the new optimization process. The newly 

derived input sequence replaces the previous one. 
 

 
Figure 6.13 - model predictive control 

 

Implementation details 

This sub-chapter will give some project specific details on the implementation of the 

model predictive control algorithm. 
 

The controller is implemented in MATLAB®; the input variables are 

 the simulation results provided by EnergyPlus 

 'future' input parameters as ambient temperature, solar- and occupancy gains, 

adjacent temperature (Tadj) and sol-air temperature (Tsolair) are available to the 

MATLAB® algorithm (data file) 

 actual and future thermostat settings and thermostat status indicating the active 

thermostat and the thermostat during the night setback period (data file) 

 the values of the states of the mathematical model from a state space observer 

(see below), necessary to define the initial conditions for the prediction process. 
 

Prediction and control horizon 

The specified horizons are in multiples of the simulation time steps, that is in units of 

minutes. The control input consists of 1-10 different variables (function of time) for 

optimization. For the co-simulation, the optimization is done for 3 variables (u(t1), u(t2), 

u(t3)) for calculation time reasons. The three control variables refer to periods of 10, 20 

and 30 minutes, thus covering a control horizon of 60 minutes (see figure 6.14). The 

prediction horizon is set to 60 minutes as well. In view of the dynamics of the system 

these horizons seem sufficient. The first element of the input vector trajectory is then 

applied to the system. 
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Figure 6.14 - model predictive control - application  
 

 

The optimization process for input vector u is repeated every 3 minutes. For this next 

step the actual measurement parameters as well as sensor parameters are used, thus 

updating the prior conditions. The input vector u is again calculated by pattern search 

optimization with respect to the target function (4.14). The iteration gives a new input 

vector, again the first element is applied to the system (see figure 6.15)   
 

 

Figure 6.15 - model predictive control - iterations 
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Target function 

The optimization process is varying the input variables to reach a minimum of the target 

function (6.1).  

arg ,
1 1

* * * ( )
predhcontrh

t et wu h i wdev penalty target room j
i j

f f P f f T T
= =

= + −∑ ∑
 

(6.1) 
6.1 - target function - model predictive optimization 

fwu weighing factor for heating input 

Ph heating power 

fwdev weighing factor for temperature deviation parameter 

fpenalty penalty function for temperature deviation magnitude 

contrh control horizon 

predh prediction horizon 
 

The target function (function 6.1) takes into consideration 

 the heating energy input, summarized over the control horizon, and 

 the deviation of the room temperature from the target temperature (thermostat 

setting). The deviation norm is calculated as squared temperature deviation, 

multiplied with a penalty term. The penalty term is lower when the room 

temperature stays within the target temperature ± the specified tolerance, and 

selected higher for room temperatures beyond the tolerance limits. This was 

chosen to force the temperature within the tolerance limits, but allow 'floating' 

within the tolerance band.  

The tolerance limits are set differently, depending whether the thermostat is 

active (stringer penalty terms) or whether the thermostat is in a setback period 

(low penalty terms). The reason for this setting is that the system should be left in 

a free running mode while the thermostat is not active (21°C), but get the 

temperature within the inactive period to reach the targeted temperature at the 

beginning of the active thermostat period. 

 

State observer 

The prediction procedure in the MPC optimization process requires initial values for the 

states. For the used mathematical model these states are the room temperature Ti and 

the state temperatures linked to virtual heating end envelope temperatures. The virtual 

temperatures are not available, so the concept of a state observer was implemented 

(Luenberger observer, figure 6.16).  

This concept uses the differences of the actual measured state(s) - in the underlying 

case this is the room temperature only - and the calculated outputs of the mathematical 

representation. In this representation all states are available, their values can be used. 

The difference of these output vectors is fed back into the Luenberger observer. With 

the input from this feedback loop the states of the mathematical system representation 
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are controlled towards a fit of the two output signals. This allows to read state variables 

values. As described before, the states do not represent actual physical parameters, so 

the observed states do not represent and measurable quantities either, but can be 

used to estimate the initial values for the prediction process. 

 
system

state observer

y(t)

y(t)-y(t)

x(t)

y(t)x(t)
x(t)=Ax+Bu

u(t)
C
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L

+
_
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Figure 6.16 - state-space observer 
 

General simulation conditions 

Unless otherwise stated in the respective subchapter, the boundary conditions for the 

simulations for the subchapter 'Model Predictive Control' are 

 simulation period 1/1-6/30, for this section the actual control is limited to 4 

representative days representing   

- minimum temperature, lowest initial temperature: 6.5°C on 2/6  

- the median temperature: 11.8°C on 2/22  

- the upper quantile temperature: 16.9°C on 4/14. 

 model predictive control (MPC) 

 no electrical gains, no occupancy gains 

 thermostat schedule: workdays 9:00-12:00 21°C, 14:00-16:00 21°, all other 

times free running (no thermostat setting) 

 available sensor/forecast data  

- ambient Tamb=Ta temperature per weather file  

- adjacent Temperature Tadj=Tb from simulation results of staircase/hallway model 

(see chapter 4.2)  

- Tsolair sol-air temperature (no solar gains through transparent envelope) 

 simulation time step 1 minute  

 

 simulation for entire period free running mode 

 5 days before selected days for controller analysis, simulation reheating by 

switching controller 

 24h on the selected day, simulation with specified controller. 
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6.2.2 Results - model predictive control 

 

Results without radiator lag 
 

On/off switching thermostat - fixed lead time 

This simple controller simulation, representing a commonly used controller type, 

describes the reference case, the results for the other controller types will be compared 

against this configuration. 

Different from before, the switching hysteresis is 0.2°C. This value will be kept for the 

simulation of switching thermostats throughout this subchapter; this temperature band 

has been selected to reduce the over- and undershoots as shown in figure 6.17. 
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Figure 6.17 - 2 point switching thermostat, fixed lead time 
 

The resulting heating energy demand of course is not optimal, the fixed lead time for all 

initial temperatures leaves room for improvement. 
 

2 point thermostat - variable lead time 

As discussed in the previous chapter. one step to reduce the heating energy demand is 

to adapt the lead time for heating-up. The controller is adapting the lead time using the 

look-up table which was established from the system step responses (see ' Step 

response and Look-up table ' above). Depending on the measured room temperature, 

the controller establishes the necessary lead time for heating up and starts the heating 

process at the stipulated time minus the calculated lead time. This results in reaching 

the desired temperature always on time, but not before.  
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Figure 6.18 - 2 point switching thermostat, variable lead time 

 

PI-controller - variable lead time 

The PI controller - with a proportional and integral control parameter - represents a 

more complex control algorithm than the switching control (see above). This simulation 

setup also uses look-up tables for adapting the staring time for the heating-up process 

to reach the requested thermostat setting at the stipulated time. 
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Figure 6.19 - PI-controller, variable lead time 
 

The PI-controller is not switching between two output states - full power on, or no 

power applied - but has an analogue output in the range of 0...3000W. 

This feedback control algorithm results in a smoother temperature trend, the resulting 

temperature stays closer to the thermostat setting. 
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Model predictive controller 

The model predictive controller, as described above, is a more complex algorithm. It 

combines a  

 forward control with an optimized system input sequence 

 feedback control through the iterative nature of the algorithm and the updating of 

the optimal solution based on the actual target value 

The model predictive algorithm does not require any look-up table to optimize the 

starting point for heating-up. This functionality is implemented in the controller algorithm 

by evaluating the mathematical model representation. 
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Figure 6.20 - model predictive control 
 

The disturbances at the beginning of the heating periods originates in differences 

between the initial part of the system response of the real system and the mathematical 

representation. This difference is indicating a slightly slower temperature increase of the 

reduced model, thus requesting heat energy to start. The real system (EnergyPlus 

simulation model) is reacting slightly faster, which in turn results in a 'throttling back' of 

the heating power. 
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Results with thermal radiator inertia 
 

On/off switching thermostat - fixed lead time 

As described before, this model is used as reference model for the comparison of 

results. 
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Figure 6.21 - 2 point switching thermostat, fixed lead time, with radiator lag 
 

The thermal inertia of the radiators leads to smoother dynamic responses. However, 

the overshooting of the room target temperature increases. When the switching 

controller switches the heating energy supply off, the hot radiator continues to release 

heating energy, thus the room temperature keeps increasing beyond the thermostat 

setting. There is no undercutting as the radiator provides the effective heating energy to 

the room much faster (see chapter 'Radiator dynamics'). 

The temperature overshooting is stronger for higher initial room temperatures, which 

are going hand in hand with warmer ambient conditions. For these conditions, less 

energy is dissipated from the entire system, thus the effect of excess heating capacity 

effect of the radiator inertia is stronger. 

 

2 point thermostat - variable lead time 

switching hysteresis 0.2°C 
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Figure 6.22 - 2 point switching thermostat, variable lead time, with radiator lag 
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PI-controller - variable lead time 
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Figure 6.23 - PI-controller, variable lead time, with radiator lag 
 

The higher room temperature over a longer period is due to the integral control 

parameter. It is overcompensating the proportional error. 

The overshooting at the beginning of the thermostat setting period is due to the radiator 

lag effect. 

 

Model predictive controller 

By evaluation of the mathematical model, representing the room dynamics as well as 

the radiator inertia, the principle model predictive control strategy is 'designed' to adjust 

for effects as the added radiator lag. 
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Figure 6.24 - model predictive control, with radiator lag 
 

The results show a relatively smooth temperature trend, which however can show 

some more disturbances due to numerical reasons and discontinuous optimization 

results. 
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Results and summary 

Value comparison 

Table 6.4 and table 6.5 show the heating energy for the different starting temperatures 

in the room, the first table 6.4 without radiator lag, the second table 6.5 with the effect 

of radiator lag: 

 The first part of the table refers to a 2point switch with fixed lead time and serves 

as reference of heating energy demand for the 24 hours of the specific day. 

 The second part shows the 2 point switch, but with variable lead time by a look-

up table.  

 The third part is showing the results of the simulation with an analogue PI-

controller with variable heating start. 

 The last sub-table refers to a model predictive control. 

 

Results without radiator lag 
 

Table 6.4 - results without radiator lag 

Results without radiator lag
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 15.2 12.0 9.5 3.9 14.3 10.4 8.1 3.2 15.1 10.9 8.5 3.1 15.4 11.3 8.6 3.1
max lag to thermostat setting [min] 5 3 2 1 5 3 3 1 0 0 0 0 3 5 4 2
relative heating power [%] 94% 87% 85% 81% 100% 91% 89% 79% 101% 94% 91% 80%

Model Predictive Cont.2p cont. - fixed lead t. 2p cont - variable lead t. PI cont. - variable lead t.

 
 

The results are given for 2point switching controller with fixed lead time (first block), 2 

point switching controller with variable lead time (2nd block), PI controller (3rd block) and 

the model predictive controller (4th block). The lines indicate: 

 initial room temperature: the temperature before the heating process towards the 

target temperature of 21°C starts 

 heating up difference: difference between starting temperature and target 

temperature of 21°C 

 heating energy: necessary heating energy for the time span of a full day 

 maximum lag time to thermostat setting: measures a time delay the room 

temperature is getting to the desired target temperature 

 relative heating power: shows the heating power demand with respect to the first 

data block 
 

Especially for higher starting temperatures, the reduction of heating demand is obvious, 

reaching more than 20% in case of higher initial room temperatures. 
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Results with radiator lag 
 

Table 6.5 - results with radiator lag 

Results with radiator lag
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 18.2 14.1 11.9 5.7 17.1 12.8 10.6 5.0 17.8 12.9 10.2 3.8 17.4 12.8 10.0 3.7
max lag to thermostat setting [min] 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
relative heating power [%] 94% 90% 89% 88% 98% 91% 86% 67% 96% 91% 84% 65%

Model Predictive Cont.2p cont. - fixed lead t. 2p cont - variable lead t. PI cont. - variable lead t.

 
 

The heating demand for the case of radiator lag is higher than for the simple system 

before.  

 

As expected, especially for higher initial temperatures, savings in the supplied heating 

energy can be shown. Under the assumption that  

 all parameters are set for an optimal heating starting point,  

 optimal look-up table,  

 mathematical model with very good fit to the EnergyPlus model, 

it would be expected that there are no savings for the case of the lowest initial room 

temperature. From the results (tables 6.4 and 6.5) it therefore could be deducted that 

the expected inaccuracy for the shown heating demand would be in the range of ±2% 

to±4%. 

 

Summary - model predictive control 

Above results for the predictive control strategies show that there are potential energy 

saving potentials. The results also show that the dominant savings can be realized in 

the heating-up phase. The results of simple predictive control (look-up tables) and 

model predictive control show that optimal heat up start time is accounting for the 

biggest savings. 
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6.3 Data/Sensor settings 

In this section, the impact of available sensor data and future data (forecasts, 

extrapolations, etc.) on potential heating energy savings are evaluated.   

The data/sensors in question are: 

 Tamb  ambient temperature sensor/data 

 Tadj  adjacent temperature (hallway) sensor/data 

 Tsolair  data from effects of ambient temperature, wind speed, solar irradiation, 

absorptance of surface 

 Ps  gains from solar irradiation through transparent areas 

 Pg  gains from use of electrical equipment (power supplies, PC's) and 

occupancy gains 
 

The sensor values in the co-simulation have an impact on the prediction process in the 

model predictive control algorithm only. For that process estimated or forecasted 

disturbance parameters are used in the prediction of the system behaviour. 
 

For this simulation it is assumed, that the future values are not only known, but also fit 

100% to the available data. In reality, sensor values and measurements would not be 

100% accurate, they would allow to extrapolate statistical estimates of future impact 

values. In this case an estimation error would be expected. For simulations this could 

be approximated by superposing a statistical error disturbance, however, the 

underlying simulations were done without statistical disturbances. 
 

For the EnergyPlus simulation itself all current data - that is data measured at the 

respective simulation time step - is available. But no future aspects can be used in the 

thermal simulation process. 
 

The availability of data or sensor readings respectively is controlled by the input vector 

u(t) to the mathematical model (equation 6.2). 
 

( 1) *x(t) * ( )
y(t) * ( ) * ( )
x t A B u t

C x t D u t
+ = +
= +  

(6.2) 
6.2 - state space description - continuous time 

system 

 

Parameters values which are considered 'available' are set to the data (past & future). If 

they are simulated as 'not available', the values are replaced either by zero value or by 

the average (in the total period from 1/1 to 6/30) of that value. 

With this method, forecasted sensor data can be 'switched on or off'. 
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Simulation settings 

The following data settings were simulated for their impact on heating energy savings 

(see table 6.6). The selection groups are done by 

 temperature sensors: ambient temperature Tamb, adjacent temperature Tadj and 

sol-air temperature Tsolair, 

 gains: electrical and occupational gains, and 

 solar gains: through transparent areas and via Tsolair.  
Table 6.6 - data/sensor settings 

data/sensor settings
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sensor settings
0 no data 0 0 0 0 0 0 0
1 sensor setting, previous simulations 1 1 1 1 0 0 0
2 ambient temperature 1 Tamb 0 0 0 0 0
3 ambient, sol-air, adjacent temperature 1 1 1 0 0 0 0
4 avg ambient, sol-air, adjacent temp. avg avg avg 0 0 0 0
5 electrical gains (power supplies) 0 0 0 0 1 0 0
6 electrical gains 0 0 0 0 1 1 0
7 electrical & occupancy gains 0 0 0 0 1 1 1
8 all data 1 1 1 1 1 1 1
9 all avg data avg avg avg avg avg avg avg

Se
tti

ng
 N

o.

  

General simulation conditions 

The boundary conditions for the simulations for the subchapter 'Data/Sensor Settings' 

are 

 simulation period 1/1-6/30, for this section the actual control is limited to 4 

representative days representing   

- lowest initial temperature: 6.5°C on 2/6  

- the median temperature: 11.8°C on 2/22  

- the upper quantile temperature: 16.9°C on 4/14. 

 MPC control 

 thermostat schedule: all days 9:00-12:00 21°C, 14:00-16:00 21°, all other times 

free running (no thermostat setting) 

 electrical gains - power supplies: 60W, always on 

 electrical gains . PC's, 2x250W see occupancy schedule 

 occupancy: all days 9:00-12:00 2 persons, 14:00-16:00 4 persons, activity level 

100W 

 simulation time step 1 minute  
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 simulation for entire period free running mode 

 5 days before selected days for controller analysis, simulation reheating by 

switching controller 

 24h on the selected day, simulation with model predictive controller. 

6.3.1 Results and summary 

Comparison results of sensor settings 

For comparison of the results, the relative power saving best shows the effect. 
 

Table 6.7 - results simulations data/sensor settings - general settings 
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 12.2 8.6 5.5 1.4 12.1 8.6 5.6 1.4 12.1 8.2 5.4 0.7 12.0 8.6 5.5 1.3
max lag to thermostat setting [min] 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
relative heating power [%] 99% 100% 101% 97% 99% 96% 97% 52% 99% 100% 100% 94%

all avg data/sensors(9)no sensor data (0) sensor, previous sims. (1) all data/sensors (8)

 
 

Table 6.8 - results simulations data/sensor settings - temperature data 

temperature data
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 12.2 8.6 5.5 1.4 12.2 8.6 5.7 1.3 12.2 8.6 5.6 1.3 12.2 8.5 5.7 1.4
max lag to thermostat setting [min] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
relative heating power [%] 100% 100% 102% 95% 100% 100% 101% 95% 100% 99% 103% 98%

no sensor data (0) ambient temperature (2) amb, adj,  sol-air temp (3) average temps (4)

 
 

Table 6.9 - results simulations data/sensor settings - gains data 

gains data
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 12.2 8.6 5.5 1.4 12.2 8.4 5.6 1.2 12.1 8.3 5.3 0.8
max lag to thermostat setting [min] 0 0 0 0 1 1 0 0 1 1 0 0
relative heating power [%] 101% 97% 102% 88% 100% 96% 96% 56%

no sensor data (0) electr. & occup. gains (7)electrical gains (6)

 
 

Note that, as discussed in context of previous results (see explanation to tables 6.4 and 

6.5 above), the conclusion can be reached that the expected inaccuracy for the shown 

heating demand would be in the range of ±2% to ±4%. 
 

As all relative energy savings - with one exception - in tables 6.7 to 6.9 are within this 

inaccuracy band, no tendency or significant change can be detected. 
 

Especially for the days with higher heating differences - the higher heating temperature 

difference being a result of lower ambient temperatures, higher dissipated energy, and 

higher energy input - the difference of required heating power with respect to available 

sensor data is negligible and/or within the inaccuracy bandwidth. This stands true for 
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the results in all tables (6.7, 6.8 and 6.9). 
 

For days with relative high ambient temperature, the heat dissipation is lower, 

temperature overshoots due to radiator lag are more pronounced. In these cases, 

additional heating through gains - electrical and occupancy - add to that effect. After 

all, these gains at full occupancy account for 4*100W occupancy, 2*250W PC's 60W 

power supplies, which in turn corresponds to 32% of the nominal heating power of the 

radiators. The model predictive control can anticipate such future heating effect and 

therefore reduce the heating power supplied to the radiators. Hence the reduction in 

heating power by significant a percentage (see table 6.9). 
 

Temperature sensors as for ambient temperature, adjacent temperature and virtual sol-

air temperature as well as solar irradiation have no significant impact on the savings of 

heating energy. 

The reason for that lies in the slow dynamics compared to the relatively fast dynamics 

of the heating itself. Whereas the heating and similar impact types as occupancy gains 

are working in response times in the range of minutes to 1 hour (see figure 6.3 and 

table 6.1), the time constants and response to changes in ambient and adjacent 

temperature and solar irradiation on walls, are in a magnitude of several hours to more 

than a day (see table 6.10). 

Thus, with the fast responses of the heating system, the controller easily compensates 

the effect of these disturbance parameters without excess heating power. No 

advantages can be drawn from the prediction process. The disturbances are so to 

speak, corrected away before their long term effect influences the faster system. 

 

A different situation would be expected with heating systems with slower response 

times. This would be in the case of heating with big thermal capacities involved as e.g. 

tiled stoves or floor heating systems. For floor heating systems time constants can be 

much higher. With such system as actuator, the controller needs to anticipate more. 

For such systems, data or sensors measuring 'slower' disturbance, are expected to 

show higher impact on potential energy savings. 
 

Table 6.10 - heating systems time constants 
source [41] 

Time constants - heating systems

heating system
time constant 

heating up
[min]

time constant
cooling down

[ms]
radiator heating 5 30

floor heating, dry structure 27 123
floor heating, wet structure 90 638  

 

Another reason to the low impact of sensor forecast data is the selection of the 'critical' 

point the results are compared against. That is the criterion that the room temperature 
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has to be within the thermostat setting at the beginning of the heating time (thermostat 

schedule). This makes the model predictive control less flexible in reducing power 

supply, e.g. in expectation of the coming electrical and occupancy gains. If this criterion 

is not applied, the results of the different are not directly comparable. It also would be 

necessary to define penalty parameters, e.g. on user satisfaction, for lower 

temperatures than set at the thermostat. 

 

6.3.2 Systems with slow thermal response 

To underline above statements on fast vs. slow thermal system responses, and to 

show potential influence of data availability, it is necessary to leave the frame of the 

reference room.  
 

For thermal simulation of the slower actuator/heating system, the 'test room', identical 

to the reference room, is 'equipped' with a virtual floor heating system. The floor 

heating is built in a wet structure, the big thermal mass lead to response time constants 

of 90 min for heating up, and 640 minutes for cooling down (see table 6.10, [38]. 

Other changes were made to the parameters governing the model predictive process, 

to account for the slower system dynamics: 

 preheating in model predictive control for 5 days, preheating before with 

switching controller 

 model predictive process till one day after the reference days 

 iterative optimization for input sequence every 10 minutes 

 control step width of 30, 60, 60, 120, 120 and 240 minutes 

 time constants of heating system 90/640 minutes for heating up/cooling down. 

 

Comparison results of sensor settings - floor heating 

For comparison of the results, the relative power saving best shows the effect. 
 

Table 6.11 - results simulations data/sensor settings - general settings 
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general settings
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 23.3 17.4 13.2 3.7 22.9 17.5 12.5 3.2 21.4 17.0 12.1 2.5 22.5 17.4 12.3 3.1
max lag to thermostat setting [min] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
relative heating power [%] 98% 100% 94% 86% 92% 98% 92% 69% 96% 100% 93% 85%

no sensor data (0) sensor, previous sims. (1) all data/sensors (8) all avg data/sensors(9)
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Table 6.12 - results simulations data/sensor settings - temperature data 

floor heating
temperature data
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 23.3 17.4 13.2 3.7 22.6 17.8 12.2 3.6 23.0 17.9 12.7 3.2 22.0 16.8 12.3 3.2
max lag to thermostat setting [min] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
relative heating power [%] 97% 102% 92% 97% 99% 103% 96% 85% 94% 96% 93% 86%

no sensor data (0) ambient temperature (2) amb, adj,  sol-air temp (3) average temps (4)

 
 

Table 6.13 - results simulations data/sensor settings - gains data 

floor heating
gains data
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initial room temperature [°C] 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9 6.5 9.6 11.8 16.9
heating-up difference [°C] 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1 14.5 11.4 9.2 4.1
heating energy [kWh] 23.3 17.4 13.2 3.7 21.2 16.8 11.8 3.3 21.9 16.4 12.8 3.5
max lag to thermostat setting [min] 0 0 0 0 0 0 0 0 0 0 0 0
relative heating power [%] 91% 96% 89% 90% 94% 94% 96% 94%

no sensor data (0) electr. & occup. gains (7)electrical gains (6)

 
 

 

Due to the much longer prediction horizon and the optimization involving more input 

parameter steps (6), the expected inaccuracy for the shown heating demand is higher 

than for previous simulations and probably is in the range of ±4% to ±6%. 

 

For the slower floor heating system the advantageous data availability is for the slower 

changing impact factors as ambient temperatures, sol-air temperature and adjacent 

temperature (table 6.12).  

For the interior gains, the forecasted data on electrical gains shows positive results for 

potential heating energy savings.  

 

As above, the effects are visible for the heating systems running in their part load 

operational range. This is the case for higher ambient temperatures. Under these 

conditions the gains, as electrical and occupational gains and solar irradiation, have a 

higher relative impact. With model predictive control these algorithms can achieve 

some energy savings by anticipating these disturbance effects. 
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Figure 6.25 - model predictive control - floor heating - all sensor data 

 

Figure 46 and 47 show the supply of heating energy for set up with all sensor data 

forecasts available (figure 6.25) , and without any no sensor data forecasts (figure 6.26). 
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Figure 6.26 - model predictive control - floor heating - no sensor data 

 
 

The anticipating behaviour can be seen for the supply of the afternoon's period; the 

available forecasts allow a much more sensitive and anticipating energy control. 
 

It can be seen for all cases however, that the additional heating effect due to electrical 

and occupancy gains cannot be eliminated. The reason is that the system is forced to 

pass the critical point at the specified time, that is the room temperature at the 

beginning of the thermostat setting period has to be at the setting temperature. 

Therefore the electrical and occupancy gains cannot be eliminated by anticipation as 

they cut in right after that critical time. The heating of the room cannot be slowed down 

quickly enough, the thermal mass of the floor heating system keeps on heating at 

previous level. 
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As discussed before, when this target function criterion would be changed including an 

'allowance term', the gains could be anticipated. Additional energy savings would be 

the result. However the results of a predictive system with such target function term are 

not directly comparable to other solutions as e.g. the switching controllers.  

 

The expected energy savings would be expected to be a function of the 'softness' of 

such allowance terms, that is, if more deviations are allowed, more energy can be 

saved. But at the same time, the time of complying with the thermostat settings would 

be reduced. 

 

This effect would also appear with systems with faster heating dynamics, however the 

faster response time allows to act on disturbances as electrical and occupancy gains 

quicker, leading to the room temperatures to come down to targeted values very fast. 
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7 SUMMARY OF RESULTS 

 

7.1 Lead time control - simple 'predictive' control 

In the first controller simulation set switching controllers without/with lead time control 

were investigated. For the controllers simple 2 point switching characteristics with 

temperature tolerance of ±0.5°C were applied, and the simulation was run for a half 

year period of 1/1 to 6/30 2015. 

Considerable heating power savings could be shown using a heating schedule 

algorithm with variable lead time versus a fixed lead time (see table 7.1). 

A control with fixed lead time was used as the reference for the comparative evaluation 

of the heating demand; this 2point switching with fixed lead time was also used as 

reference in the simulations for model predictive control in chapter 7.2 (detailed in 

chapter 6.1). 
 

Table 7.1 - heating energy - simple predictive control  

Results 1st simulation setup
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results without radiator lag
heating energy [kWh] 14.4 11.4 8.9 3.9 797.5 14.2 10.2 7.8 3.3 703.6
relative heating power [%] 100% 100% 100% 100% 100% 98% 89% 88% 86% 88%
results with radiator lag
heating energy [kWh] 17.3 13.9 11.5 4.8 1015.3 17.0 12.6 10.3 4.5 928.7
relative heating power [%] 100% 100% 100% 100% 100% 98% 91% 90% 92% 91%

2p controler - fixed lead time 42min 2 p controller - variable lead time

 

 

7.2 Model predictive control 

For this 2nd controller simulation set, a PI-controller and model predictive controller 

(MPC) with analog controller outputs was simulated.  
 

For comparison two 2 point switching control was added, however with a temperature 

tolerance of ±0.2°C (chapter 7.1).  

A side result shows that for the given simulation setup, the reduction of the tolerance 

band from ±0.5°C (first controller simulation set, 6.1, 7.1) to ±0.2°C leads to an 

increase of the heating demand by approximately 4%. 
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Due to the numerically more involving algorithms of the PI and MPC controller and the 

consequently longer simulation runs, the simulation concentrated on 4 selected days - 

the days with  

 minimum starting temperature for heating up,  

 lower quantile temperature,  

 median temperature and  

 upper quantile temperature.  
 

The results are shown in the following tables, table 7.2 for a system without radiator 

dynamics and table 7.3 for the simulation with radiator lag effect. Especially for the 

transition period considerable savings - for systems with radiator lag up to 35% - could 

be achieved. 
 

Table 7.2 - model predictive control, without radiator lag 

estimated 6 months heating power

results without radiator lag
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heating energy [kWh] 15.2 12.0 9.5 3.9 14.3 10.4 8.1 3.2 15.1 10.9 8.5 3.1 15.4 11.3 8.6 3.1
relative heating power [%] 100% 100% 100% 100% 94% 87% 85% 81% 100% 91% 89% 79% 101% 94% 91% 80%

2p control - fixed lead time 2p control - variable lead t. PI control - variable lead time Model Predictive Control

 
 

Table 7.3 - model predictive control, with radiator lag 

estimated 6 months heating power

results with radiator lag
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heating energy [kWh] 18.2 14.1 11.9 5.7 17.1 12.8 10.6 5.0 17.8 12.9 10.2 3.8 17.4 12.8 10.0 3.7
relative heating power [%] 100% 100% 100% 100% 94% 90% 89% 88% 98% 91% 86% 67% 96% 91% 84% 65%

2p control - fixed lead time 2p control - variable lead t. PI control - variable lead time Model Predictive Control

 

 

Based on the first controller simulation set (table 7.1), which was run for the selected 

days as well as for the entire half year period, the heating energy demand for the half 

year period was estimated - see table 7.4 and figure 7.1. The half year period results 

reflect the potential savings impact of the selected days and hence show reduced 

heating energy savings. Nevertheless, for the realistic case of a system with radiator lag 

savings of 12% are shown. 
 

Table 7.4 - heating energy for model predictive control - half year estimate 
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results without radiator lag
heating energy [kWh] 842.4 746.8 780.4 797.9
relative heating power [%] 100% 89% 93% 95%
results with radiator lag
heating energy [kWh] 1036.8 946.3 928.3 912.9
relative heating power [%] 100% 91% 90% 88%  
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Figure 7.1 - heating energy for model predictive control, with radiator lag 

 

7.3 Data/sensor settings 

Systems with radiator heating 

In the 3rd controller simulation set a model predictive control algorithm was simulated 

with different sensor/data settings. As described in detail in chapter 6.3, different 

sensor/data setups were compared for the selected days - the days with minimum 

starting temperature for heating up, lower quantile temperature, median temperature 

and upper quantile temperature. All simulations run taking the radiator dynamics 

(radiator lag) into consideration. For the detailed results see tables 6.7 to 6.9. 

 

Link of model predictive control and the sensor/data settings simulation results 

The results of the model predictive control algorithms (2nd setup, chapter 7.2) represent 

one base case - sensor/data of previous simulation (1) - for a link to the simulations 

with different sensor/data settings.  

However, there is no direct comparison of the results, as the simulations with different 

sensor/data settings were done with occupancy related gains (occupancy and electrical 

gains), whereas the base simulations for different control strategies (e.g. model 

predictive control) was performed without these gains. 
 

This specific context, together with the simulation results of the selected days is shown 

in graph 7.2. 
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Figure 7.2 - model predictive control & sensor/data settings 
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For the following comparisons of the various sensor/data settings results (see tables 

7.5 and 7.6 and graphs 7.3 and 7.4), the relative heating power is shown with 

reference to a 'no sensor data'-setting; this setting represents the absence of any 

sensor/data as opposed by the 'all data/sensors' configuration where the complete 

data set (see table 6.6) is available. 
 

The heating demand for the 6 months period was estimated from the results of the 

specified days as described for the 2nd simulation setup. The resulting estimates are 

shown in table 7.5 and figure 7.3.  
 

The resulting lower heating demand stems from the occupancy related gains - 

occupancy and electrical appliances (PC's) - which were introduced for this 3rd 

simulation configuration. 
 

The saving effects of the different sensor/data settings is lower due to the faster 

dynamic characteristics of the room temperature control than of the slower disturbance 

factors as weather etc. (see chapter 6.3.1). 

 
 

Table 7.5 - heating energy for different sensor/data settings 
estimated 6 months heating power
sensor settings
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Figure 7.3 - heating energy for different sensor/data settings 
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Systems with slow thermal response 

Beyond the actual reference room system, a hypothetical floor heating with longer time 

constants and therefore much slower dynamic characteristic was added to the 

simulations (see chapter 6.3.2). For detailed results see tables 6.11 to 6.13. 
 

The estimated results for the half year period were derived as described above. As 

expected for such slower thermal systems, potential energy savings could be identified 

for availability of more environmental data (weather, occupancy). For other definitions of 

target temperature/time requirements (see description chapter 6.3.2) these potential 

saving effects, especially for occupancy related gains, could be higher. 
 

The in average much higher temperatures in the room cause a generally much higher 

energy demand; this higher temperature is a result of the slow cooling down dynamics 

and the heating effect of the big thermal mass represented by the floor construction. 
 

Table 7.6 - heating energy for different sensor/data settings - floor heating 
estimated 6 months heating power
sensor settings - floor heating
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Figure 7.4 - heating energy for different sensor/data settings - floor heating 
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8 CONCLUSION 

 

This work has identified potential heating energy savings for the conditions in a selected 

building. Several thermostat strategies - from simple switching to model predictive 

control algorithms - were simulated. Different setups of the heating dynamics, without 

and with the effect of thermal inertia of the radiators, were put to test. 

 

The simulation results have shown significant saving potential in the heating-up process 

from setback periods. With tight lead time control energy savings up to 11-14% for 

systems without radiator lag, 9-10% for systems with radiator lag and for warmer 

ambient conditions, could be shown. The lead time control is working with predictions 

of the system behaviour/outputs; either based on look-up tables derived from 

measured thermal system responses, or on the principles of model predictive control. 

Objective for all methods is to start the heating process as late as possible, but in time 

to reach the thermostat set point exactly at the requested time. 

 

This can be done by relatively simple switching thermostats. The look-up table principle 

is not limited to single input parameters, but can be extended to impact factors as 

controlled flow temperature systems. The look-up values can also be derived by an 

intelligent thermostat from measurements of the output and the known switching 

states, e.g. during phases of heating up or cooling down. 

 

In systems with radiator lag, thermostats with more complex control algorithms, as 

model predictive control, do show better results, with savings of 4-35%, also for the 

heating system running in the partial-load operational range (warmer ambient 

conditions). For setting the beginning of the heating-up process they do work on 

basically the same principle, therefore the results do not differ. Difference is the 'online' 

calculation of the right point in time, based on a prediction and optimization process 

with mathematical model representation of the thermal system.  

The advantage of these systems comes for systems with higher thermal lag and for the 

higher control precision; they work in a narrower band around the thermostat setting 

and better reduce overshooting of the target temperature through anticipated power 

reduction. 
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The simulation of different data/sensor setups - that is availability of forecasts for certain 

disturbance parameters - has shown the dependency of saving potentials on the 

thermal characteristic of the system. 

Systems with fast dynamic actuator characteristics show no improvement with 

available forecast data of parameters with a slow dynamic effect. Slow disturbance 

impacts are compensated by the temperature controller, available forecast data of such 

impact parameters do not yield an energy saving potential. 

 

For heating systems with slower response time, as e.g. floor heating, a positive effect of 

available data to anticipate slower external impacts could be shown. Available forecast 

data on ambient and adjacent temperature indicate heating energy saving potential. 

 

8.1 Outlook 

 

The expected increase in energy cost on one side and technology developments on the 

other will offer a wide field for research and will continue to drive the development to 

achieve further energy savings. 

 

In context of this work several interesting topics arose, amongst those were: 

 study 'allowance terms' of target function to fulfill comfort requirements and the 

countertrade of further potential energy saving 

 extend to cooling and specifically to natural cooling  

 real time system identification (disruptive parameter development, open 

windows,...) and control algorithms to react to such disturbances 

 study the influence of parameters for the model predictive control algorithm as 

prediction and control horizon, with the background of the heating system 

dynamics and in view of applications in embedded control with its limitations. 

 study the effect of effect of statistical occupancy on the results of model 

predictive control 

 interconnected systems and zones, e.g. in an office building, control in a 

network, and potential energy savings beyond the single thermal zone 
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APPENDIX 

A.1 Reference building/room/zone  

A.1.1 Data 

 

Position & Geometry: 

The reference room is located on the roof of the main building of Vienna University of 

Technology (48.199°N, 16.369°E), staircase No 4, with a graphically derived orientation 

of 22.45°W vs. south (source Google Maps) 

 

Room sensors: 

 
Table A.1 - reference room - sensors  

Adress Type Position
SR04CO2rH_01009222 Temp & rel humidity ceiling center
SR04rH 0005726f Temperature next to door to tower
SR65TF 0006d5ea Temperature radiator left
SR65TF 0006d0fd Temperature radiator right
SR04rH 00057270 Temperature hallway
SR04rH 00057258 Temperature tower  

Radiator right
Radiator left

Room
tower door

Hallway
ceiling

Room
center ceiling

 

 
Figure A.1 - reference room - 

sensor positions 

Weather sensors: 

The weather data is obtained from logged data from the weather station, run by the 

Department of Building Physics and Building Ecology at the Vienna University of 

Technology . 
Table A.2 - sensors weather station 

Adress Type Position
WsThiesTemp1 ambient temperature
WsTem1 ambient temperature
WsRad1 solar irradiation
WsSPN1GlobRad1 solar irradiation
WsThiesWindSpeed1 wind speed

weather observation
station on tower

 

 

Weather file 

Average values for 2 ambient temperature readings and 2 solar readings, the relative 

humidity values, wind speed and direction were used to generate a weather file for 

further use as input to the EnergyPlus simulations. 

The weather file in an .epw-format was generated from the above data set using the 

software Meteonorm 
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Ceiling
ceiling brick/concrete
20mm ceiling air space
35mm Heraklith
10mm stucco

Outside wall 2
20mm outside plastering
200mm concrete block
20mm light plastering

Outside wall 1
50mm Aerogel fixit systemb
20mm outside plastering
200mm concrete block
20mm light plastering

Floor
19mm wood subfloor
100mm lightweight concrete
adiabatic surface

Inside wall 1
10mm interior plastering
80/120mm concrete block
10mm interior plastering

Materials reference room
main components

Inside wall 2
20mm common plastering
200mm concrete block
20mm common plastering

Door to hallway
metal surface
25mm insulation board
metal surface

Door to vent duct
metal surface

Door to tower
20mm wood

Windows
3mm theoretical glass 202
20mm air
3mm theoretical glass 202
blind medium reflectivity slats

 
Figure A.2 - reference room - materials 

A.1.2 Reference model 

 

Materials 

 

Hallway and staircase 

 
Temperatures staircase - measurement period
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Figure A.3 - staircase model - fitting results 
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A.2 Reduced model 

full state space description (equation A.1) 

 

e e

1 1 1 1 1 1 1 10 0

1 1 1 10 * 0 0 0 0 0 *
R R

1 1 0 0 0 0 00

agw

sie i ih i ia i ib i ie i ih i i i ib i ia i
i i

h
e e

ie ie e a e a e
h h

h

hih h ih h

ThA
PR C R C R C R C R C R C C C R C R CT T
Pd T T

dt R Ce R C C C
T T

h
CR C R C

   
− − − −   
            = − − +                  

−   
    

[ ] [ ] [ ]1 0 0 * 0 0 0 0 0 0 *

g

b

solair

a

s
i

h
e

g
h

b

solair

P
T

T

T
P

T
P

y T
P

T
T

T

 
 
 
 
 
 
 
 
  

 
 
  
  = +   
     
 
    

(A.1) 
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