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Abstract

Entropy and—maybe even more so—mutual information are invaluable tools for analyzing
properties of probability distributions, especially in coding theory. While there are general
definitions for both concepts available for arbitrary probability distributions, these tend to be
hard to work with and the literature (e.g., [CT06]) focuses on either discrete, or continuous
random variables. In this thesis we extend the theory to singular probability distributions on
suitably “smooth” lower-dimensional subsets of Euclidean space, where no p.d.f. or p.m.f. is
readily available. We choose those prerequisites carefully in order to retain most properties
from the discrete and/or continuous case.

The mathematical framework, this work is built upon, is the field of geometric measure
theory. In particular, we make extensive use of the material found in [Fed69]. As it is the study
of geometric properties of measures, and thereby closely related to probability theory as well,
geometric measure theory proves fruitful for analyzing information theoretic properties of
probability measures, when geometric restrictions are imposed.

We consider a random variable X on Euclidean space. The distribution (i.e. the induced
measure) of X is required to be absolutely continuous with respect to the m-dimensional
Hausdorff measure and to be concentrated on an m-dimensional rectifiable set E , i.e., the
complement of E is a set of measure zero. Under these conditions we obtain expressions for
the entropy h(X ) and develop the mutual information I (X ;Y ) for two random variables when
the combined random variable (X ,Y ) satisfies similar constraints. We give integral expressions
for these quantities and show how to manipulate them using results from geometric measure
theory. Another central result is the proof of the relation I (X ;Y ) = h(X )+ h(Y )− h(X ,Y )
between mutual information and entropy for our newly introduced definitions.

This work is intended as a theoretical starting point for further investigations. Possible
applications are, e.g., the information theoretic treatment of sparse sources in source coding or
of the vector interference channel in channel coding. In both examples singular distributions
on "smooth" lower-dimensional subsets play a pivotal role. While this work was conducted
with applications in coding theory in mind, the presented framework is inherently measure
theoretic and might, therefore, be applied in other areas as well.
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Zusammenfassung

Entropie und Transinformation stellen wichtige Werkzeuge dar, um Eigenschaften von Wahr-
scheinlichkeitsverteilungen, speziell in der Kodierungstheorie, zu studieren. Obwohl allge-
meine Definitionen beider Konzepte für beliebige Wahrscheinlichkeitsverteilungen zur Ver-
fügung stehen, sind diese schwer anwendbar, was zur Folge hat, dass sich der Großteil der
Literatur (z.B. [CT06]) auf die Analyse von diskreten oder kontinuierlichen Zufallsvariablen
beschränkt. In dieser Arbeit erweitern wir die Theorie von Entropie und Transinforma-
tion und betrachten dabei singuläre Verteilungen auf geeignet “glatten”, niedrig dimension-
alen Untermengen des Euklidischen Raumes, wo keine Wahrscheinlichkeitsfunktion oder
Wahrscheinlichkeitsdichtefunktion zur Verfügung steht. Die Voraussetzungen, die an die
Wahrscheinlichkeitsverteilungen gestellt werden, gestalten sich derart, dass viele wohlbekannte
Eigenschaften der (differentiellen) Entropie des diskreten (kontinuierlichen) Falls erhalten
bleiben.

Das Gebiet der geometrischen Maßtheorie bietet den Rahmen für unsere Überlegungen. Im
Speziellen greifen wir häufig auf [Fed69] zurück. Die geometrische Maßtheorie beschäftigt
sich mit den geometrischen Eigenschaften von Maßen und steht damit in enger Beziehung zur
Wahrscheinlichkeitstheorie. Sie ist geeignet, Wahrscheinlichkeitsmaße unter geometrischen
Einschränkungen informationstheoretisch zu untersuchen.

Wir betrachten eine Zufallsvariable X im Euklidischen Raum. Die Verteilung (d.h. das
induzierte Maß) von X ist absolut stetig bezüglich des m-dimensionalen Hausdorff-Maßes und
konzentriert auf einer m-dimensional rektifizierbaren Menge E , d.h. das Maß des Komple-
ments von E ist Null. Unter diesen Voraussetzungen leiten wir Ausdrücke für die Entropie
h(X ) her und betrachten außerdem die Transinformation I (X ;Y ), wenn ähnliche Vorausset-
zungen für die kombinierte Zufallsvariable (X ,Y ) gelten. Für die genannten Größen werden
Integralausdrücke präsentiert und wir zeigen, wie diese mit Mitteln der geometrischen Maßthe-
orie umgeformt werden können. Ein weiteres zentrales Resultat ist der Beweis der Relation
I (X ;Y ) = h(X )+ h(Y )− h(X ,Y ) zwischen der Transinformation und der Entropie für die
hier neu eingeführten Definitionen dieser Größen.

Diese Arbeit soll als theoretischer Ausgangspunkt für weitere Untersuchung dienen. Mögliche
Anwendungsbereiche sind z.B. die informationstheoretische Untersuchung dünnbesetzter
Quellen in der Quellenkodierung oder der Vektor-Interferenz Kanal in der Kanalkodierung.
In beiden Beispielen spielen singuläre Verteilungen auf “glatten”, niedrig dimensionalen Unter-
mengen eine wichtige Rolle. Obwohl diese Arbeit auf Anwendungen in der Kodierungstheorie
ausgerichtet ist, ist sie doch im Grunde der Maßtheorie zuzurechnen. Anwendungen in anderen
Bereichen sind daher durchaus denkbar.
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Chapter 1.

Introduction

1.1. Motivation
This text is dedicated to developing a generalization of entropy and mutual information of
random variables in Euclidean spaces, which assume values on lower-dimensional subsets. In
what follows we will illustrate where the material in this text may be applied.

Let X be a random variable, assuming values in an alphabetX . We will first focus on discrete
random variables and define their entropy. Thus, letX be a finite or countable set. Then X
is fully described by the probabilities px := P ({x}) = P (X = x), x ∈ X . Following [CT06,
Section 2.1], we define the entropy of X as

H (X ) := EX [− log pX ] =−
∑

x∈X
px log px , (1.1)

where EX [ f (X )] denotes the expectation of f (X )with respect to (w.r.t.) the random variable X .
For continuous random variables the situation looks similar. ForX =R let X be a continuous
random variable with density p(x).1 Referring to [CT06, Section 8.1], the differential entropy
h(X ) is defined as

h(X ) := EX [− log p(X )] =−
∫ ∞

−∞
p(x) log p(x)dx. (1.2)

Comparing (1.1) and (1.2), one notices that these equations look remarkably similar. We shall
reformulate them in measure theoretic terms, starting with discrete entropy.

Let µ be the probability measure2 on (X ,P(X )), induced by a discrete random variable X ,
i.e., |X | ≤ ℵ0. Denoting by ζ the counting measure onX , we can write

H (X ) =−
∫

log
dµ
dζ

dµ=−
∫

dµ
dζ

log
dµ
dζ

dζ , (1.3)

where dµ
dζ is the Radon-Nikodým derivative. Similarly, for the differential entropy (1.2), let λ

denote the Lebesgue measure, and µ the measure induced by a continuous random variable on

1We assumeX =R for simplicity. The same results would hold forX =RM with M ∈N.
2We will use some concepts and notation in this section that are defined later in the text. The reader is referred

to Chapter 2 and in particular Table 2.1.
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Chapter 1. Introduction

X =R. Then
h(X ) =−

∫

log
dµ
dλ

dµ=−
∫

dµ
dλ

log
dµ
dλ

dλ. (1.4)

As one can see, we can embed both (1.3) and (1.4) into a common formulation: Let µ be a
probability measure onX and ν some (different) measure on the same measure space such that
the Radon-Nikodým derivative dµ

dν exists. We can define the entropy of µ w.r.t. ν as

hν(µ) :=−
∫

log
dµ
dν

dµ=−
∫

dµ
dν

log
dµ
dν

dν .

In the case of a discrete random variable, ν is conveniently chosen to be the counting measure
and in the case of a continuous random variable, the Lebesgue measure is a reasonable choice.
But what happens if µ is neither continuous nor discrete? The remainder of this text is
devoted to answering this question for a certain type of such probability measures, namely
ones concentrated on “smooth” lower-dimensional subsets of RM .

1.2. Thesis Outline
The rest of this thesis is organized as follows.

• Chapter 2 gives an overview of the mathematical background, to the extent needed in
this text, and introduces the necessary notation. In Sections 2.1 to 2.5 an overview of
measure theory is given, while Section 2.6 covers more advanced topics in geometric
measure theory. In particular, Section 2.6 presents the novel concept ofB -countably
m-rectifiable sets, which will be used extensively in subsequent chapters.

• Based onB -countably m-rectifiable sets, our definition ofB -countably m-rectifiable
measures is established in Chapter 3 and their properties are analyzed. Furthermore, we
treat the density ofB -countably m-rectifiable measures with respect to the Hausdorff
measure in Section 3.2 and give a transformation law for the entropy of a random variable
under a (locally) Lipschitz function in Section 3.4.

• Chapter 4 states the main results of this thesis. The concepts that were introduced
prior to this chapter are generalized to product spaces and mixtures of random variables,
comprised of different dimensions. We show how to obtain mutual information in this
context and prove a familiar, though intricate, connection between mutual information
and entropy in Section 4.4.

• Final conclusions are drawn in Chapter 5 and we note some areas for possible further
investigation.
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Chapter 2.

Fundamentals and Notation

The analysis in this text involves measure theory and, in particular, geometric measure theory.
A very extensive treatment of geometric measure theory can be found in [Fed69]. Although it
does not only cover geometric measure theory in great detail, but also includes a full treatment
of the foundations of measure theory in general in Section 2, the book [Fed69] can only be
recommended to experienced readers. Readers not so familiar with measure theoretic concepts
can, e.g., resort to [AL06].

Most relevant results from the literature will be restated in this chapter with references to
proofs and further treatment. Some notation, which is not introduced in the text, but largely
follows known practice may be found in Table 2.1.

2.1. Measures
The material in this section is taken from [AL06], where more detailed information on the
subject can be found. A word of caution is in order as we will extensively refer to [Fed69] in
subsequent sections. Federer uses a different, but equivalent definition of measures. He defines
a measure as what is usually called an outer measure. An account of the differences can be found
in [KP08, Remark 1.2.6].

Definition 2.1.1. [AL06, Definitions 2.1.1 and 1.1.2] A pair (Ω,S) is called a measurable space
if Ω is a nonempty set and S⊆P(Ω) is a σ -algebra on Ω, i.e.,

(i) ∅ ∈S ,

(ii) A∈S =⇒ Ac ∈S, and

(iii) Ai ∈S for all i ∈N =⇒
⋃

i∈NAi ∈S .

An important σ -algebra on a metric space, e.g., Ω=R, is the σ -algebra of Borel sets. It is
the smallest (w.r.t. inclusion) σ -algebra containing all open sets.

Definition 2.1.2. [AL06, Definition 1.1.4] Let (Ω, d ) be a metric space with metric d :Ω×Ω→
[0,∞). Let T denote the topology on Ω induced by d , i.e., the set of all open subsets of Ω. Then

3



Chapter 2. Fundamentals and Notation

Symbol Definition

P(A) Power set of the set A
∅ Empty set ∅= {}
Ac Complement of the set A
R+ := [0,∞) Nonnegative real numbers
R̄+ := [0,∞] Nonnegative extended real numbers
R̄ := [−∞,∞] Extended real numbers
f −1(A) Preimage of the set A under the function f
N := {1,2,3, . . .} Set of natural numbers
1A Indicator function of the set A
idA Identity function on the set A
f ◦ g Composition of functions f and g
|A| Cardinality of the set A
ℵ0 := |N| Cardinality of the natural numbers
⋃

C /
⋂

C Union/Intersection:
⋃

C :=
⋃

C∈C C /
⋂

C :=
⋂

C∈C C
dist(·, ·) Euclidean distance
diam(E) Diameter of a set: diam(E) := supx,y∈E dist(x, y)
Br (x) Open ball: Br (x) = {y : dist(x, y)< r }
A Closure of the set A

Table 2.1.: Summary of notation

define the Borel σ -algebra on Ω as1

B(Ω) :=
⋂

{S⊆P(Ω) : S is σ -algebra,T ⊆S}.

If the underlying metric space is the real line with the Euclidean distance, i.e., (Ω, d ) =
(R, dist(·, ·)), we will useB :=B(R) for short to denote the Borel sets. Definition 2.1.2 is in
particular also applicable to the product of metric spaces, when equipped with the product
metric, e.g., higher dimensional Euclidean space RM , where M ∈ N and we will useBM :=
B(RM ) for short.

Now we introduce measures on measurable spaces. A measure is a function from the σ -
algebra S to R̄+ with certain properties.

Definition 2.1.3. [AL06, Definitions 2.1.1 and 1.3.2] A triple (Ω,S,µ) is called a measure space
if (Ω,S) is a measurable space and the function µ : S→ R̄+ satisfies the following properties:

(i) µ(∅) = 0 and

(ii) (σ -additivity) for a countable family {Ai}i∈N of pairwise disjoint sets Ai ∈ S, we have
µ
�⋃

i∈NAi

�

=
∑

i∈Nµ(Ai ) .

1For a proof that this is a well-defined σ -algebra see [AL06, Definition 1.1.3].
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2.1. Measures

The function µ is called a measure on the measurable space (Ω,S).

Some important properties arising from Definition 2.1.3 will be summarized in the following
proposition.

Proposition 2.1.4. Let (Ω,S,µ) be a measurable space as in Definition 2.1.3. Then the following
properties hold:

(i) (σ -subadditivity)[AL06, Proposition 1.2.3(ii)] For a countable family of (not necessarily
disjoint) sets {Ai}i∈N, Ai ∈S,

µ

�

⋃

i

Ai

�

≤
∑

i

µ(Ai ).

(ii) (monotonicity)[AL06, Proposition 1.2.2(i)] For two sets A,B ∈ S with A ⊆ B we have
µ(A)≤µ(B).

(iii) (monotone continuity from below)[AL06, Proposition 1.2.1(iii)b
′] For a countable family

of sets {Ai}i∈N, with Ai ∈S and Ai ⊆Ai+1 for all i ∈N,

µ

�

⋃

i

Ai

�

= lim
i→∞

µ(Ai ).

An important measure on (R,B) is the Lebesgue measure, denoted λ. For a detailed account
of its construction refer to [AL06, Definition 1.3.8]. Note that we do not consider the complete
Lebesgue measure, but its restriction to the Borel sets, also called Borel-Lebesgue measure by
some authors. Furthermore, we will make use of the higher dimensional Lebesgue measure on
RM and denote it by λM , where M ∈N. Again, a detailed account of the construction can be
found in the literature, e.g., in [AL06, Section 1.3.3].

Definition 2.1.5. The counting measure, denoted by ζ , is defined as

ζ (A) :=







|A|, A is finite

∞, otherwise

for any set A.

5



Chapter 2. Fundamentals and Notation

2.2. Lebesgue Integration
This section is meant to serve as an introduction to Lebesgue integration and may be skipped
by readers familiar with the concept. The text follows the introduction of the Lebesgue integral
in [KP08, Sections 1.3.1 and 1.3.2], where the proofs of the stated theorems may be found.

Let (Ω,S,µ) be a measure space throughout this section.

Definition 2.2.1. [KP08, Definition 1.3.1] The term µ-almost can serve as an adjective or adverb
in the following way:

LetP (x) be a statement or formula that contains a free variable x ∈Ω. We say thatP (x) holds
for µ-almost every (µ-a.e.) x ∈Ω if

µ
�

{x ∈Ω :P (x) is false}
�

= 0.

If Ω is understood from the context, we simply say thatP (x) holds µ-almost everywhere (µ-a.e.).

Definition 2.2.2. [AL06, Definition 2.1.3] Given two measurable spaces (Ω1,S1) and (Ω2,S2),
a function f : Ω1→Ω2 is called (S1,S2)-measurable if f −1(A) ∈S1, whenever A∈S2.

Given a measure space (Ω1,S1,µ), a measurable space (Ω2,S2) and a (S1,S2)-measurable
function f : Ω1→ Ω2, f and µ can be used to define a measure on (Ω2,S2) in a very natural
way.

Definition 2.2.3. [AL06, Definition 2.2.1] For a measure space (Ω1,S1,µ) and a measurable
space (Ω2,S2), let f : Ω1→Ω2 be a (S1,S2)-measurable function. The induced measure µ f on
(Ω2,S2) is defined by

µ f (A) :=µ( f
−1(A))

for every A∈S2.

Definition 2.2.4. [KP08, Definition 1.3.8] By a nonnegative simple function f : Ω→ R+ we
mean a function that can be represented as a linear combination of indicator functions, i.e., f can
be written as

f (x) =
n
∑

i=1

ai1Ai
, (2.1)

where ai ∈R+ and Ai ⊆Ω for n ∈N and for all i ∈ {1, . . . , n}.

Lemma 2.2.5. [KP08, Lemma 1.3.9] If f : Ω→ R+ is (S,B)-measurable2, then there exists a

2Noting thatB is technically not a σ -algebra on R+, one can either interpret f as a function ef : Ω→R and
require ef to be (S,B)-measurable or require f to be (S,B∩R+)-measurable, whereB∩R+ := {B∩R+ : B ∈B}.
As both approaches are equivalent and there is no danger of confusion, we will not distinguish between f and ef .

6



2.2. Lebesgue Integration

sequence of (S,B)-measurable, simple functions hn : Ω→R+, n ∈N such that

(i) 0≤ h1 ≤ h2 ≤ · · · ≤ f , and

(ii) limn→∞ hn(x) = f (x), for all x ∈Ω.

Definition 2.2.6. [KP08, Lemma 1.3.10 and 1.3.11] If f : Ω→R is a (S,B)-measurable function,
then the Lebesgue integral of f w.r.t. µ is denoted by

∫

f dµ=
∫

f (x)dµ(x) (2.2)

and is defined as follows:

(i) In case f is a nonnegative, simple function (see Definition 2.2.4) written as in (2.1) with
Ai ∈S, we set

∫

f dµ :=
n
∑

i=1

aiµ(Ai ).

(ii) If f is a nonnegative function, we set

∫

f dµ := sup
§
∫

h dµ : 0≤ h ≤ f , h simple and (S,B)-measurable
ª

. (2.3)

(iii) Otherwise, we define f +(x) :=max( f (x), 0) and f −(x) :=max(− f (x), 0) and set

∫

f dµ :=
∫

f + dµ−
∫

f − dµ (2.4)

if at least one of the two
∫

f + dµ and
∫

f − dµ is finite. If
∫

f + dµ =
∫

f − dµ =∞, the
integral

∫

f dµ is undefined.

Note in particular that (2.3), and thereby also (2.4), is well-defined as the set in (2.3) is
non-empty by Lemma 2.2.5.

Remark 2.2.7. [KP08, Remark 1.3.2]

(i) For the purposes of measure and integration, two functions that are equal µ-almost
everywhere are equivalent. This defines an equivalence relation.

(ii) For integration, it thus suffices if a function is defined µ-a.e. as it then belongs to a
well-defined equivalence class w.r.t. equality µ-a.e. Thus, considering a function f : D ⊆
Ω→R where µ(Ω\D) = 0, we can define, e.g., the function

ef : Ω→R

7



Chapter 2. Fundamentals and Notation

x 7→







f (x), x ∈D

0, otherwise,

which is equivalent to f .

Remark 2.2.8. On the right-hand side in (2.2) the dummy variable x is introduced. This
notation will serve to distinguish which function is integrated w.r.t. which measure when
dealing with nested integrals.

Definition 2.2.9. [KP08, Lemma 1.3.11(1)] To integrate f over a set A∈S, we multiply f by
the indicator function of A, i.e.,

∫

A
f dµ :=

∫

1A f dµ.

We will summarize some properties of the Lebesgue integral in the following theorem.

Theorem 2.2.10. [Fed69, Theorem 2.4.4(3,4,5)]Given two (S,B)-measurable functions f : Ω→
R and g : Ω→R, such that the integrals

∫

f dµ ∈ R̄ and
∫

g dµ ∈ R̄ are defined (see Part (iii) of
Definition 2.2.6). Then the following properties hold:

(i) (Homogeneity) For c ∈R,
∫

c f dµ= c
∫

f dµ.

(ii) (Additivity)
∫

f + g dµ=
∫

f dµ+
∫

g dµ if the sum is defined.

(iii) (Monotonicity) If f (x)≥ g (x), µ-a.e. x ∈Ω, then
∫

f dµ≥
∫

g dµ.

2.3. The Radon-Nikodým Theorem
We will make extensive use of densities and product measures. To make these concepts precise,
we have to restrict ourselves to σ -finite measures.

Definition 2.3.1. [AL06, Definition 1.2.2] A measure space (Ω,S,µ) is called σ -finite if there
exists a countable family of sets {Ai}i∈N in S such that

⋃

i Ai =Ω and µ(Ai )<∞ for all i ∈N.
A measure µ on a measurable space (Ω,S) is called σ -finite if (Ω,S,µ) is σ -finite.

Definition 2.3.2. [AL06, Definitions 4.1.1 and 4.1.2] Let µ and ν be two measures on the mea-
surable space (Ω,S).

(i) We say that µ is absolutely continuous w.r.t. ν , written µ� ν , if for all A∈S,

ν(A) = 0 =⇒ µ(A) = 0.

8



2.3. The Radon-Nikodým Theorem

(ii) We call µ and ν mutually singular, written µ⊥ ν , if there exists an A∈S with

µ(A) = 0 and ν(Ac ) = 0.

Equipped with Definition 2.3.1 and Definition 2.3.2 we can state the Radon-Nikodým
theorem and the Lebesgue decomposition theorem. Especially the Radon-Nikodým theorem
is a basis of the subsequent considerations.

Theorem 2.3.3. [AL06, Theorem 4.1.1] Let (Ω,S) be a measurable space and let µ and ν be two
σ -finite measures on (Ω,S).

(i) (Lebesgue Decomposition Theorem). The measure µ can be uniquely decomposed as

µ=µa +µs ,

where µa and µs are σ -finite measures on (Ω,S), such that µa� ν and µs ⊥ ν .

(ii) (Radon-Nikodým Theorem). A nonnegative (S,B)-measurable function dµa
dν : Ω → R+

exists, such that

µa(A) =
∫

A

dµa

dν
dν for all A∈S.

Furthermore, if a function f : Ω→R+ satisfies

µa(A) =
∫

A
f dν for all A∈S,

then f = dµa
dν , ν -a.e.

Part (ii) of Theorem 2.3.3 states that dµa
dν is ν-almost unique. This result is mentioned in

[AL06, p.118] and proved in Proposition 2.3.6.
Two properties of the Radon-Nikodým derivative we will need later on are as follows.

Proposition 2.3.4. [AL06, Proposition 4.1.2(i,ii)] Let µ1, µ2, and ν be σ -finite measures on the
measurable space (Ω,S) and a, b ∈R+.

(i) If µ1�µ2 and µ2� ν , then µ1� ν and

dµ1

dν
(x) =

dµ1

dµ2

(x)
dµ2

dν
(x) for ν -a.e. x ∈Ω.

9



Chapter 2. Fundamentals and Notation

(ii) If µ1� ν and µ2� ν , then aµ1+ bµ2� ν and

d(aµ1+ bµ2)
dν

(x) = a
dµ1

dν
(x)+ b

dµ2

dν
(x) for ν -a.e. x ∈Ω.

Definition 2.3.5. Let (Ω,S,µ) be a measure space and let f : Ω→R+ be a nonnegative (S,B)-
measurable function, defined for µ-a.e. x ∈Ω. The measure f µ on (Ω,S) is defined for all A∈S
as

( f µ)(A) :=
∫

A
f dµ.

Proposition 2.3.6. For aσ -finite measure space (Ω,S,µ) and two nonnegative (S,B)-measurable
functions f : Ω→R+ and g : Ω→R+, satisfying f µ= gµ, we have that

g = f µ-a.e. (2.5)

Proof. First, we will prove (2.5) for a finite measure µ. If A := {x ∈ Ω : f (x) 6= g (x)}, then
A can be written as the disjoint union A= A1 ∪A2, where A1 = {x ∈ Ω : f (x) > g (x)} and
A2 = {x ∈Ω : f (x)< g (x)}. Because addition is continuous and thus measurable and we can
write, e.g., A= ( f − g )−1({0}c ), we have that A,A1,A2 ∈S. We now define the sets Bn ∈S for
n ∈N as

Bn :=
§

x ∈Ω : g (x)+
1
n
< f (x) and g (x)< n

ª

. (2.6)

Note that by (2.6), Bn ⊆ Bn+1 for n ∈N, and also
⋃∞

n=1 Bn =A1. We have that

∫

Bn

g dµ
(a)
=
∫

Bn

f dµ
(b )
≥
∫

Bn

�

g +
1
n

�

dµ
(c)
=
∫

Bn

g dµ+
1
n
µ(Bn), (2.7)

where (a) follows from f µ= gµ, (b ) follows from (2.6) and Part (ii) of Proposition 2.1.4, and
(c) is a consequence of Parts (i) and (ii) of Theorem 2.2.10. As µ is assumed finite and g < n on
Bn, (2.7) gives us µ(Bn) = 0, which yields

µ(A1) =µ
�

⋃

n

Bn

�

(a)
= lim

n→∞
µ(Bn) = 0, (2.8)

where Part (iii) of Proposition 2.1.4 was used in (a). Similarly one can show µ(A2) = 0.
For a σ -finite measure µ, applying (2.8) to the restricted measures µ|Ei

, where {Ei}i∈N is the
covering of Ω by countably many sets of finite measure (see Definition 2.3.1) proves µEi

(A1) =
µ(A1∩Ei ) = 0 for all i ∈N. Thus, µ(A1) = 0 by Part (i) of Proposition 2.1.4. Analogously one
proves µ(A2) = 0, which concludes the proof that µ(A) =µ(A1)+µ(A2) = 0.

10



2.4. Fubini’s Theorem

2.4. Fubini’s Theorem
Definition 2.4.1. [AL06, Definition 5.1.1(c,d)]Given two measurable spaces (Ω1,S1) and (Ω2,S2),
one defines their product measurable space as the measurable space

(Ω1×Ω2,S1×S2),

where Ω1×Ω2 denotes the Cartesian product and S1×S2 is the product σ -algebra given as3

S1×S2 :=
⋂

{S⊆P(Ω1×Ω2) : S is σ -algebra,T ×V ∈S for T ∈S1 and V ∈S2}.

Definition 2.4.2. For two σ -finite measure spaces (Ω1,S1,µ) and (Ω2,S2, ν), the measure µ× ν
is defined as the unique4 σ -finite measure on the product measurable space (Ω1×Ω2,S1×S2) with
the property

µ× ν(A×B) =µ(A)ν(B) for all A∈S1,B ∈S2.

Now we can state Fubini’s Theorem. The following is a slightly adapted variant of the one
provided in [AL06, Theorem 5.2.2].

Theorem 2.4.3. (Fubini’s Theorem) Let (Ω1,S1,µ) and (Ω2,S2, ν) be two σ -finite measure
spaces and f : Ω1×Ω2→R is a (S1×S2,B)-measurable function. If at least one of the integrals

∫

| f |d(µ× ν) ,
∫∫

| f (x, y)|dµ(x)dν(y) , or
∫∫

| f (x, y)|dν(y)dµ(x)

is finite, then

∫

f d(µ× ν) =
∫∫

f (x, y)dµ(x)dν(y) =
∫∫

f (x, y)dν(y)dµ(x) (2.9)

holds. In particular, the integrals in (2.9) are all defined.

2.5. Probability Measures
Now we can move on to a special type of measures, called probability measures, which are
used to represent probability distributions.

3As in Definition 2.1.2, the reader is referred to [AL06, Definition 1.1.3] for a proof that this is indeed a
well-defined σ -algebra.

4The uniqueness for σ -finite measure spaces is proved in [AL06, Theorem 5.1.2].
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Chapter 2. Fundamentals and Notation

Definition 2.5.1. [AL06, Definitions 1.2.2 and 2.1.1] A measure space (Ω,S,µ) is called a
probability space if µ(Ω) = 1. In this context the elements of S are also called events and µ is
called a probability measure.

Definition 2.5.2. For M ∈N, a random variable5 X on a probability space (Ω,S,µ) is a (S,BM )-
measurable function X : Ω→RM .

In particular, given a probability space (RM ,BM ,µ) for an M ∈ N, the identity idRM is a
random variable.

Remark 2.5.3. Recalling Definition 2.2.3, we note that a random variable X : Ω→RM induces
the probability measure µX on (RM ,BM ).

Remark 2.5.4. When dealing with two random variables, e.g., X : Ω→RM and Y : Ω→RN ,
M ,N ∈ N on a common probability space (Ω,S,µ), they can be combined to the random
variable (X ,Y ) : Ω→RM ×RN ∼RM+N .

2.6. Geometric Measure Theory
We will utilize some concepts from geometric measure theory. The most important definitions
and theorems, which we will need for our subsequent considerations, will be restated with
references to proofs and further treatment in the literature. The notation will mainly follow
[Fed69].

In this section we will introduce the types of sets and measures that will form the basis
of all subsequent considerations. To analyze the information theoretic properties of “lower-
dimensional” probability measures on Euclidean space, we first need to specify the meaning
of “lower-dimensional”. To this end, we will use rectifiable sets and the Hausdorff measure, as
provided by geometric measure theory.

The Hausdorff measure naturally permits measuring m-dimensional hypervolume in M -
dimensional (0≤ m ≤M ) Euclidean space and the rectifiable sets are those, where the Hausdorff
measure behaves “nicely”. The probability measures under study are assumed to be concentrated
on6 a rectifiable set and absolutely continuous w.r.t. the Hausdorff measure.

The construction of the Hausdorff measure makes use of a more general concept for con-
structing measures, commonly referred to as Caratheodory’s construction. We shall sketch
this process and thereby introduce the Hausdorff measureH m. A more rigorous and complete
treatment of this material can be found in [Fed69, Section 2.10] or [KP08, Section 2.1].

5Although a random variable is a function, it is customary to denote it using capital letters.
6“Concentrated on” means that the complement of the set in question has measure zero.
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2.6. Geometric Measure Theory

For M ∈N, let C⊆P(RM ) be a collection of subsets of RM and f : C→ R̄+. Then, for some
δ > 0 and A⊆RM , we define the approximating outer measure of size δ and gauge f as

φδ(A) := inf

¨

∑

Q∈D
f (Q) : D⊆ C∩{Q : diam(Q)≤ δ}, |D| ≤ ℵ0, and A⊆

⋃

D.

«

Thus, to obtain φδ(A), we take all countable coverings D of A by sets from C, whose diameter
does not exceed δ, and then take the infimum of the sums of the gauges f (Q) for Q ∈D. As,
by construction, φδ(A) increases as δ→ 0 (we take the infimum of ever smaller sets), we may
define another measure φ as

φ(A) := lim
δ↓0
φδ(A) = sup

δ>0
φδ(A). (2.10)

This method for obtaining φ is called Caratheodory’s construction. Once the collection of test
sets C and the gauge f is determined, the measure (2.10) is unique. This leads to the following
definition of the Hausdorff outer measure.

Definition 2.6.1. For M ∈N and m ≥ 0, the Hausdorff outer measure of dimension m on RM

is given by Caratheodory’s construction with C=P(RM )\{∅} and gauge

f (E) = α(m)
�diam(E)

2

�m

,

where the constant α(m) is defined as

α(m) :=

�

Γ ( 12 )
�m

Γ (m
2 + 1)

(2.11)

and denotes the m-hypervolume of the unit ball in m-dimensional Euclidean space, as given in
[Fed69, 2.10.2].

Definition 2.6.2. For M ∈N and m ∈ {0,1, . . . , M} letH m denote the Hausdorff outer measure
of dimension m on RM , as defined in Definition 2.6.1, but restricted toBM . The measure7H m is
the Hausdorff measure of dimension m on RM .

Note that the dimension of the underlying space of the m-dimensional Hausdorff measure
is suppressed in the notation and will be stated explicitly, when there is danger of confusion.
Although, in general the m-dimensional Hausdorff measure is defined for any m ∈R+ ∪{0},

7The argument for H m being a measure on (RM ,BM ) as defined in Definition 2.1.3 is given in [Fed69,
Section 2.10] or [KP08, Section 2.1].
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Chapter 2. Fundamentals and Notation

we will only consider the case m ∈N∪{0}. We state some properties of the Hausdorff measure
in the following theorem.

Theorem 2.6.3. LetH m be the m-dimensional Hausdorff measure on RM , then

(i) m = 0 =⇒ H m =H 0 = ζ ,

(ii) m =M =⇒ H m =H M = λM ,

(iii) For all i ∈N let Ai ∈BM withH m(Ai )<∞, then for all m′ ∈ {m+ 1, m+ 2, . . . , M} we
have

H m′
�

⋃

i

Ai

�

= 0.

Proof. Part (i) follows immediately from the construction and is remarked in [Fed69, 2.10.2(1)].
For Part (ii) see [Fed69, Theorem 2.10.35]. The remark in [Fed69, 2.10.2(1)] and the σ -
subadditivity of measures (see Part (i) of Proposition 2.1.4) give us Part (iii).

The rest of this section is dedicated to analyzing rectifiable sets and their connection with
the Hausdorff measure. The rectifiable sets can be loosely characterized as those sets, where
the Hausdorff outer measure behaves “nicely”.

Definition 2.6.4. Let (X1, d1) and (X2, d2) be metric spaces. A function f :X1→X2 is called
Lipschitz if there exists an L≥ 0, such that

d2( f (x), f (y))≤ Ld1(x, y) for all x, y ∈X1. (2.12)

The smallest L≥ 0 satisfying (2.12) is called the Lipschitz constant of f , denoted by Lip( f ).

Furthermore, we will use the following notation for the multiplicity of a function.

Definition 2.6.5. For a function f : A→ B, define8

N ( f , y) := ζ
�

f −1({y})
�

for y ∈ B .

Definition 2.6.6. For m, n, k ∈N and a function f : Rm→Rn that is differentiable at x ∈Rm ,
let Jk f (x) denote the k-dimensional Jacobian of f at x. The details of this definition may be found
in [Fed69, 3.2.1] or [KP08, Definition 5.1.3].

The Jacobian can be thought of as a quantity representing the deformation caused by the
function f locally at x. Depending on m and n, it can be expressed using the differential (see

8Here ζ denotes the counting measure from Definition 2.1.5.
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[Fed69, 3.1.1]) D f (x) and is given by (from [KP08, Lemma 5.1.4])

Jmin(m,n) f (x) =



















|det(D f (x))| m = n
p

det[D f (x)T D f (x)] m ≤ n
p

det[D f (x)D f (x)T ] m ≥ n.

We will exclusively deal with the situation m ≤ n, thus

Jm f (x) =
Æ

det[D f (x)T D f (x)]. (2.13)

We can now define rectifiable sets. These sets will be the “support” for the probability
distributions to be discussed. We extend the definition of rectifiability given in [Fed69, 3.2.14]
to include the case m = 0, as suggested in the last paragraph of [Fed69, 3.2.14]. Furthermore,
we define a restriction of the concept of rectifiability, which will prove useful for our setting.

Definition 2.6.7. For E ⊆RM and m ∈ {0,1, . . . , M} we define:

(i) For m 6= 0, E is m-rectifiable if there exists a Lipschitz function f : A→ RM such that
f (A) = E for a bounded set A⊆Rm . E is 0-rectifiable if it is finite.

(ii) E isB -countably m-rectifiable if E equals the union of a countable family of m-rectifiable
Borel sets.

Lemma 2.6.8. Let E ⊆RM be an m-rectifiable Borel set, thenH m(E)<∞. Furthermore, for a
B -countably m-rectifiable set F the measureH m|F is σ -finite.

The proof of this lemma can be found in Appendix A.1.
Definition 2.6.7 has the nice property that any kind of rectifiability immediately extends to

subsets.

Corollary 2.6.9. Let E , F ⊆ RM , F ⊆ E and m ∈ {0,1, . . . , M}. Then the following properties
hold.

(i) E is m-rectifiable =⇒ F is m-rectifiable,

(ii) F ∈BM and E isB -countably m-rectifiable =⇒ F isB -countably m-rectifiable.

Proof. To see Part (i) for m = 0, note that |F | ≤ |E | <∞ implies that F is 0-rectifiable. For
m ∈ {1, . . . , M}, let f be a Lipschitz function on a bounded A⊆ Rm and f (A) = E . The set
B := f −1(F ) is bounded as B ⊆A, the function f |B is Lipschitz, and f (B) = F .
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Chapter 2. Fundamentals and Notation

For showing Part (ii) we write E =
⋃

i∈N Ei where each Ei is m-rectifiable. Then F =
⋃

i∈N(F ∩ Ei ), where for all i ∈N, (F ∩ Ei )⊆ Ei is Borel as intersection of two Borel sets and
m-rectifiable because of Part (i).

Remark 2.6.10. For aB -countably m-rectifiable set E , the m-rectifiable Borel sets covering E
can be chosen disjoint by subtracting all preceding sets and using Part (i) of Corollary 2.6.9, as
the Borel sets are closed under countable subtraction.

Remark 2.6.11. The countable union ofB -countably m-rectifiable sets is againB -countably
m-rectifiable.

Corollary 2.6.12. For m ∈ {0,1, . . . , M}, let the set E beB -countably m-rectifiable. Then, for
m′ > m,H m′(E) = 0.

Proof. According to Part (ii) of Definition 2.6.7, E =
⋃

i Ei , where Ei ∈BM is m-rectifiable
for i ∈ N. Hence, by Lemma 2.6.8,H m(Ei ) <∞ for all i ∈ N. Part (iii) of Theorem 2.6.3
now yieldsH m′(E) = 0.

Lemma 2.6.13. For two numbers m1, m2 ∈ {0,1, . . . , M}, let C ⊆ RM be B -countably m1-
rectifiable and D ⊆ RM be B -countably m2-rectifiable, then the set E := C × D ⊆ R2M is
B -countably (m1+m2)-rectifiable and9

H m1 |C ×H
m2 |D =H

m1+m2 |E . (2.14)

The proof of this lemma is rather lengthy. It may be found in Appendix A.2.

9It should be noted that (2.14) denotes the equality of two measures.
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Chapter 3.

Rectifiable Measures and Entropy

In this chapter we present the basic definitions and theorems, the rest of this thesis is built
upon. In particular, we introduceB -countably m-rectifiable measures in Section 3.1, a new
notion that encompasses both discrete (0-rectifiable) and continuous probability distributions.

We discuss the density (w.r.t. the Hausdorff measure) and entropy of rectifiable measures in
Sections 3.2 and 3.3, and conclude with a transformation formula for entropy under a (locally)
Lipschitz function in Section 3.4.

3.1. Rectifiable Measures

We will now move to discussing properties of finite measures on RM , which are concentrated
on a rectifiable set E , i.e., the set E c is a null set.

Definition 3.1.1. Let m ∈ {0,1, . . . , M} and let (RM ,BM ,µ) be a measure space. The measure
µ is an m-rectifiable measure (B -countably m-rectifiable measure) if there exists a set E ⊆RM

such that the following properties hold:

(i) µ(RM )<∞,

(ii) E is m-rectifiable and Borel (B -countably m-rectifiable), and

(iii) µ�H m|E .

We call a set E, satisfying these requirements, a support of µ.

Remark 3.1.2. For an m ∈ {0,1, . . . , M} and all i ∈ I , where I is finite, let µi be aB -countably
m-rectifiable measure with support Ei and pi a nonnegative real number. Then the measure

µ :=
∑

i

piµi

is againB -countably m-rectifiable with support E :=
⋃

i Ei (see Remark 2.6.11).

Lemma 3.1.3. For m ∈ {0,1, . . . , M}, let the measure µ on (RM ,BM ) be B -countably m-
rectifiable with support E. Then there exists a (BM ,B)-measurable function ḋµ

dH m |E
: RM →R+,

which satisfies

x /∈ E =⇒
ḋµ

dH m|E
(x) = 0 (3.1)
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Chapter 3. Rectifiable Measures and Entropy

and, using Definition 2.3.5,

µ=
ḋµ

dH m|E
H m. (3.2)

Proof. The measure µ is finite andH m|E is σ -finite by Lemma 2.6.8. This enables us to apply
Part (ii) of Theorem 2.3.3 which guarantees the existence of a function dµ

dH m |E
such that

µ=
dµ

dH m|E
H m|E .

The function
ḋµ

dH m|E
:= 1E

dµ
dH m|E

satisfies (3.1) and (3.2).

Remark 3.1.4. Using µ=µ|E (by Part (iii) of Definition 3.1.1) in (3.2), one can see that

µ=
ḋµ

dH m|E
H m =

�

ḋµ
dH m|E

H m

�
�

�

�

�

�

E

=
ḋµ

dH m|E
H m|E ,

which proves that ḋµ
dH m |E

is in fact a Radon-Nikodým derivative, conforming with Part (ii) of
Theorem 2.3.3 and justifying the notation.

Note that the support of aB -countably m-rectifiable measure is not unique. Nevertheless,
the function ḋµ

dH m |E
is unique except for anH m-null set, irrespective of E , as we will show now.

Lemma 3.1.5. For m ∈ {0,1, . . . , M}, let the measure µ on (RM ,BM ) be B -countably m-
rectifiable. Let E and E ′ denote two supports of µ, then

ḋµ
dH m|E

=
ḋµ

dH m|E ′
H m -a.e. (3.3)

Thus, we can drop the explicit dependence on the support E whenever changes on anH m -null
set are of no concern and simply write

ḋµ
dH m

.

Proof. We will first show

ḋµ
dH m|E

=
ḋµ

dH m|E ′
H m|E ′ -a.e. (3.4)
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To show (3.4), it suffices to prove

µ(A) =
∫

A

ḋµ
dH m|E

dH m|E ′ for all A∈BM ,

since (3.4) then follows from Part (ii) of Theorem 2.3.3. Using µ(A) =µ(A∩E ′), as µ(E ′c ) = 0
by Part (iii) of Definition 3.1.1, we obtain for any A∈BM ,

∫

A

ḋµ
dH m|E

dH m|E ′ =
∫

A∩E ′

ḋµ
dH m|E

dH m (a)= µ(A∩ E ′) =µ(A),

where (a) follows from (3.2). This shows (3.4).
We can now argue that in analogy to (3.4) also

ḋµ
dH m|E

=
ḋµ

dH m|E ′
H m|E -a.e.

holds, which, together with (3.4), provides

ḋµ
dH m|E

=
ḋµ

dH m|E ′
H m|E∪E ′ -a.e.

This already proves (3.3) since ḋµ
dH m |E

(x) = ḋµ
dH m |E ′

(x) = 0 for x ∈ (E ∪ E ′)c by (3.1).

Note, however, that ḋµ
dH m is not necessarily represented by a particular support of µ, i.e.,

there may be a function f that is H m-a.e. equal to ḋµ
dH m |E

for any support E of µ, but no

support E ′ exists with f = ḋµ
dH m |E ′

.

Lemma 3.1.6. Let M ⊆ {0,1, . . . , M} and for every m ∈M, let Im be a finite set. Let p i
m be a

nonnegative real number and µi
m be aB -countably m-rectifiable measure on (RM ,BM ) with

support E i
m for every m ∈M and i ∈ Im . Assume that the sets Em :=

⋃

i∈Im
E i

m are disjoint and set

µ :=
∑

m∈M

∑

i∈Im

p i
mµ

i
m.

Then, using Definition 2.3.5,

µ=

 

∑

m∈M

∑

i∈Im

p i
m

ḋµi
m

dH m|E i
m

!

�

∑

m∈M
H m|Em

�

. (3.5)

Proof. We define ν :=
∑

m∈MH m|Em
. The measure µ is finite and ν—as the finite sum of
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σ -finite measures—is also σ -finite. Applying Part (ii) of Theorem 2.3.3 and using Part (ii) of
Proposition 2.3.4, we can write

dµ
dν
=
∑

m∈M

∑

i∈Im

p i
m

dµi
m

dν
.

Note that µi
m = µ

i
m|E i

m
and that the sets Em are disjoint, which implies ν |E i

m
= H m|E i

m
, as

E i
m ⊆ Em. We thus have dµi

m
dν =

ḋµi
m

dH m |Ei
m

ν-a.e., which yields (3.5).

3.2. Densities

In this section we will obtain an explicit expression for the density ḋµ
dH m |E

of aB -countably
m-rectifiable measure µ. To this end, we will employ the Besicovitch differentiation theorem.

We recall from Table 2.1 that the closed ball with radius r , centered at x is denoted Br (x)⊆
RM , i.e., for r > 0, x ∈RM ,

Br (x) := {y ∈R
M : dist(x, y)≤ r },

where dist(·, ·) denotes the Euclidean distance.

Definition 3.2.1. [Fed69, 2.10.19] For m ∈ {0,1, . . . , M} let µ be a measure on (RM ,BM ). Then
the m-density Θm (µ, x) of µ at x ∈RM is defined as

Θm (µ, x) := lim
r↓0

µ(Br (x))
α(m)r m

, (3.6)

if the limit on the right in (3.6) exits. It may also assume the value +∞. The constant α(m) is
defined in (2.11).

It should be noted that the density from Definition 3.2.1 is linear in the measure. This will
be precisely formulated in the following corollary.

Corollary 3.2.2. For m ∈ {0,1, . . . , M} let (µi )i∈N be a sequence of measures on (RM ,BM ) and
let (ci )i∈N be a sequence of nonnegative real numbers. Assume that for an x ∈ RM , and for all
i ∈N, the density Θm (µi , x) exits. Then the density of the measure µ :=

∑

i ciµi can be expressed
as

Θm (µ, x) =
∑

i

ciΘ
m (µi , x) .

Proof. The result follows immediately from the definition of the m-density in (3.6).

20
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Definition 3.2.3. For m ∈ {0,1, . . . , M}, we define the m-density of a Borel set E ∈BM as the
m-density of the measureH m|E , i.e.,

Θm (E , x) :=Θm (H m|E , x) = lim
r↓0

H m|E (Br (x))
α(m)r m

= lim
r↓0

H m(E ∩Br (x))
α(m)r m

. (3.7)

Lemma 3.2.4. Letµ be a measure on (RM ,BM ), m ∈ {0,1, . . . , M} and E ∈BM withµ(E)<∞,
then

Θm (µ|E , x) = 1EΘ
m (µ|E , x) forH m -a.e. x ∈RM . (3.8)

Proof. In [Fed69, 2.10.19(4)] it is shown that1 Θm (µ|E , x) = 0 for H m-a.e. x ∈ E c , which
proves (3.8).

Theorem 3.2.5. For m ∈ {0,1, . . . , M}, let the measure µ on (RM ,BM ) be m-rectifiable. Then
the function

f (x) :=Θm (µ, x)

is definedH m -a.e. and f is a density of µ w.r.t.H m in the sense that

µ= fH m.

Proof. Let E be a support of µ. The measures µ and H m|E (see Lemma 2.6.8) are finite,
therefore also σ -finite, and inner regular by [AFP00, Proposition 1.43]. Additionally, as both
measures are finite, every compact set trivially has finite measure. As a result µ andH m|E
fulfill the requirements for Radon measures as defined in [AFP00, Definition 1.40]. We can
therefore apply the Besicovitch differentiation theorem [AFP00, Theorem 2.22]. It guarantees
H m|E -a.e. the existence of

ef (x) := lim
r↓0

µ(Br (x))

H m|E (Br (x))
= lim

r↓0

µ(Br (x))

H m(E ∩Br (x))
, (3.9)

and it ensures that ef is the Radon-Nikodým derivative of µ w.r.t.H m|E because µ�H m|E
by Part (iii) of Definition 3.1.1, i.e., we have

µ= efH m|E . (3.10)

1Federer proves the stated result for the spherical measure S m , but S m ≥H m by [Fed69, 2.10.6].
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Chapter 3. Rectifiable Measures and Entropy

By [Fed69, Theorem 3.2.19], we have that

Θm (E , x) = 1 forH m-a.e. x ∈ E . (3.11)

Using (3.11), we obtain forH m-a.e. x ∈ E :

ef (x)
(3.9)
= lim

r↓0

µ(Br (x))

H m(E ∩Br (x))
Θm (E , x) =

(3.6)
= lim

r↓0

µ(Br (x))

H m(E ∩Br (x))
lim
r↓0

H m(E ∩Br (x))
α(m)r m

=

= lim
r↓0

µ(Br (x))H m(E ∩Br (x))

H m(E ∩Br (x))α(m)r m
=

(3.7)
= Θm (µ, x) (3.12)

Note that by Part (iii) of Definition 3.1.1, µ=µ|E . Using Lemma 3.2.4, we get

µ
(3.10)
= efH m|E

(3.12)
= 1EΘ

m (µ, ·)H m 3.2.4= Θm (µ, ·)H m = fH m.

Corollary 3.2.6. For m ∈ {0,1, . . . , M}, let the measure µ on (RM ,BM ) be B -countably m-
rectifiable, then the function

f (x) :=Θm (µ, x)

is definedH m -a.e. and f is a density of µ w.r.t.H m in the sense that

µ= fH m. (3.13)

Proof. Let E be a support of µ and {Ei}i∈N be a partition of E into m-rectifiable Borel sets
which exists according to Part (ii) of Definition 2.6.7 and Remark 2.6.10.

First, we want to show for all i ∈ N that Θm
�

µ|Ei
, x
�

is well-defined forH m-a.e. x ∈ Ei ,
that

Θm
�

µ|Ei
, x
�

=Θm (µ, x) forH m-a.e. x ∈ Ei (3.14)

and, that
µ|Ei
=Θm

�

µ|Ei
, ·
�

H m. (3.15)

Checking Definition 3.1.1 reveals that µ|Ei
is an m-rectifiable measure with support Ei .

This permits application of Theorem 3.2.5, which guarantees that Θm
�

µ|Ei
, ·
�

is well-defined
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3.2. Densities

H m-a.e., and yields (3.15).
As {Ei}i∈N is a partition of E , using Definition 3.2.1, we can rewrite

Θm (µ, x) = lim
r↓0

µ(Br (x))
α(m)r m

= lim
r↓0

µ(Ei ∩Br (x))+µ
��
⋃

j 6=i E j

�

∩Br (x)
�

α(m)r m

=Θm
�

µ|Ei
, x
�

+Θm
�

µ|⋃
j 6=i E j

, x
�

.

Using Lemma 3.2.4, we see that Θm
�

µ|⋃
j 6=i E j

, x
�

= 0 forH m-a.e. x ∈ Ei , thus proving (3.14).

Now, using these properties, we can prove (3.13) by

µ =
∑

i

µ|Ei

(3.15)
=

∑

i

Θm
�

µ|Ei
, ·
�

H m

(a)
=

∑

i

1Ei
Θm

�

µ|Ei
, ·
�

H m

(3.14)
=

∑

i

1Ei
Θm (µ, ·)H m

(b )
= 1EΘ

m (µ, ·)H m

(c)
= Θm (µ, ·)H m,

where (a) holds because of Lemma 3.2.4, (b ) follows from [Fed69, 2.4.8], and (c) holds by
Lemma 3.2.4 and because µ=µ|E (see Part (iii) of Definition 3.1.1).

Comparing now (3.2) and (3.13), we note that

Θm (µ, x) =
ḋµ

dH m|E
(x) forH m-a.e. x ∈RM ,

i.e.,
ḋµ

dH m|E
= 1EΘ

m (µ, ·) .

satisfies both (3.1) and (3.2).
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Chapter 3. Rectifiable Measures and Entropy

3.3. Entropy
In this section we will define entropy in a general setting and then apply it to the case of a
B -countably m-rectifiable probability measure.

Definition 3.3.1. Let (Ω,S,µ) be a probability space and let ν be a σ -finite measure on the same
measurable space (Ω,S) with the property µ� ν . Then the Radon-Nikodým derivative dµ

dν exists
(see Part (ii) of Theorem 2.3.3) and the entropy of µ w.r.t. ν is given by

hν(µ) :=
∫

log
�

dµ
dν

�−1

dµ, (3.16)

if the integral in (3.16) is defined.

As a special case of Definition 3.3.1 we define the entropy of a random variable on (RM ,BM ).

Definition 3.3.2. Let (RM ,BM ,µ) be a probability space and let the random variable X = idRM

be the identity onRM . Furthermore, let ν denote a σ -finite measure on (RM ,BM )with the property
µ� ν . Then the entropy of X w.r.t. ν is defined as the entropy of µ w.r.t. ν , i.e.,

hν(X ) := hν(µ) =
∫

log
�

dµ
dν

�−1

dµ, (3.17)

if the integral in (3.17) is defined.

We can already give a useful expression for the entropy of a B -countably m-rectifiable
probability measure.

Lemma 3.3.3. Let µ be aB -countably m-rectifiable probability measure on (RM ,BM ), where
m ∈ {0,1, . . . , M}. If E is a support of µ, the entropy of µ w.r.t.H m|E satisfies

hH m |E (µ) =
∫

ḋµ
dH m

log

�

ḋµ
dH m

�−1

dH m, (3.18)

if the integral in (3.18) is defined. It is in particular independent of the choice of the support E.

Proof. As the dotted Radon-Nikodým derivative is also a Radon-Nikodým derivative by Re-
mark 3.1.4, inserting ν =H m|E in (3.17), yields

hH m |E (µ) =
∫

ḋµ
dH m|E

log

�

ḋµ
dH m|E

�−1

dH m|E .
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3.4. Image of a Lipschitz Function

We can drop the restriction of the integration because of (3.1) and dropping the supports in the
dotted Radon-Nikodým derivatives is justified by Lemma 3.1.5.

The fact that hH m |E (µ) does not depend on the particular support E justifies the following
definition.

Definition 3.3.4. Let µ be a B -countably m-rectifiable measure on (RM ,BM ), where m ∈
{0,1, . . . , M}. Let E be an arbitrary support of µ. Then the entropy of µ is defined as

h(µ) := hH m |E (µ), (3.19)

if hH m |E (µ) is defined.

Remark 3.3.5. It is worthwhile pointing out that Definition 3.3.4 generalizes entropy of discrete
random variables (see [CT06, Section 2.1]) and differential entropy (see [CT06, Section 8.1]) of
continuous random variables. Ifµ is a discrete probability measure on (RM ,BM ), it takes values
in a countable set E ⊆ RM , i.e., µ isB -countably 0-rectifiable by Part (i) of Theorem 2.6.3
with support E and

h(µ) = hζ |E (µ) =
∑

x∈E

µ({x}) logµ({x})−1.

Given a probability measure µ on (RM ,BM ) with µ� λM , Part (ii) of Theorem 2.6.3 shows
that µ isB -countably M -rectifiable with support E =RM and

h(µ) = hλM (µ) =
∫

dµ
dλM

log
�

dµ
dλM

�−1

dλM .

3.4. Image of a Lipschitz Function
In this section we will discuss the entropy of the image of a random variable under a (locally)
Lipschitz function. The discussion will give rise to an elegant conversion law for entropy and
the simplest case, a linear transformation (without full rank), will also be treated.

Much of the subsequent considerations will rely on the following two fundamental theorems.

Theorem 3.4.1. [Fed69, Theorem 2.10.43] (Kirszbraun’s Theorem) For M ∈ N and m ∈
{1, . . . , M}, if S ⊆Rm and f : S→RM is Lipschitz, then there exists a Lipschitz function g : Rm→
RM satisfying f (x) = g (x) for all x ∈ S and Lip(g ) = Lip( f ).

Theorem 3.4.2. [Fed69, Theorem 3.2.3] (Area Formula) For M ∈ N and m ∈ {1, . . . , M}, let
f : Rm→RM be a Lipschitz function.
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Chapter 3. Rectifiable Measures and Entropy

(i) If A∈Bm , then
∫

A
Jm f (x)dλm(x) =

∫

N ( f |A, y)dH m(y). (3.20)

(ii) If u : Rm→R+ is a (Bm,B)-measurable function, then

∫

u(x)Jm f (x)dλm(x) =
∫

∑

x∈ f −1({y})
u(x)dH m(y). (3.21)

The domain of the integrals on the left-hand side in (3.20) and (3.21) is Rm and the domain of the
integrals on the right-hand side is RM .

Define the random variable X = idRm on the probability space (Rm,Bm,µ), satisfying
µ� λm for m ∈ N, and let f be a function f : Rm → RM for M ≥ m. If the function f is
measurable, we obtain the random variable Y = f (X ), which induces µY = µ f ◦X = µ f on
(RM ,BM ), as given in Remark 2.5.3. In general µ f will not beB -countably m-rectifiable,

however, we will now state sufficient conditions and develop an expression for ḋµ
dH m | f (Rm )

,
following this analysis.

Theorem 3.4.3. For M , m ∈ N and m < M let (Rm,Bm,µ) be a probability space satisfying
µ� λm . A function f : Rm→RM is given, for which the following properties hold.

(i) For λm -a.e. x ∈ Rm , there exists an open set x ∈ Ux , such that f |Ux
is Lipschitz, i.e., f is

locally Lipschitz λm -a.e. Let B be the λm -null set where no such open set exists.

(ii) For λm -a.e. x ∈Rm , the Jacobian Jm f (x)> 0.

Then the induced measure µ f is B -countably m-rectifiable and there exists a support E of µ f

satisfying f (B c )⊆ E.

Proof. We check the properties in Definition 3.1.1. Part (i) follows from µ f (RM ) =µ(Rm) = 1.
To show Part (ii) we proceed as follows. For every x ∈ B c we choose rx > 0 such that

Vx := Brx
(x) ⊆ Brx

(x) ⊆ Ux (Ux is the open set from Part (i) of Theorem 3.4.3.). {Vx}x∈B c

constitutes an open2 cover of B c . By [Mun00, Theorem 30.2], B c is second-countable, as the
topological subspace of the second-countable spaceRM . Thus, B c also has the Lindelöf property
by [Mun00, Theorem 30.3] and a countable subcover {Vxi

}i∈N suffices to cover B c . For i ∈N,
Vxi

is bounded and closed, i.e., compact. The set Ei := f (Vxi
) is the image of a compact set

under a continuous function and thus compact by [Mun00, Theorem 26.5]. Every compact set
is in particular a Borel set and therefore Ei is Borel and the image of the bounded set Vxi

under

2B c is equipped with the subspace topology.
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3.4. Image of a Lipschitz Function

the Lipschitz function f , i.e., m-rectifiable. The set E :=
⋃

i Ei is consequentlyB -countably
m-rectifiable and satisfies f (B c )⊆ E .

For showing Part (iii), let C ∈ BM with H m|E (C ) = 0. We need to show µ f (C ) =
µ( f −1(C )) = 0. By Part (ii) of Proposition 2.1.4, H m(C ∩ Ei ) = 0 for all i ∈ N. Using
Theorem 3.4.1, we can extend f |Ei

to a Lipschitz function with domain Rm and apply Part (i)
of Theorem 3.4.2 (setting A= f −1(C ∩ Ei )) yielding

∫

f −1(C∩Ei )
Jm f dλm =

∫

N ( f | f −1(C∩Ei )
, y)dH m(y) = 0,

where we used N ( f | f −1(C∩Ei )
, y) = 0 forH m-a.e. y ∈RM because N ( f | f −1(C∩Ei )

, y) 6= 0 only for
y ∈ (C ∩ Ei ), which is anH m-null set. As Jm f (x)> 0 for λm-a.e. x ∈Rm, f −1(C ∩ Ei ) has to
be a λm-null set.

We note that

λm �( f −1(E))c
� (a)
= λm

��

f −1

�

⋃

i

f (Vxi
)
��c�

= λm

��

⋃

i

f −1( f (Vxi
))
�c�

(b )
≤ λm

��

⋃

i

Vxi

�c�

(c)
≤ λm(B) = 0, (3.22)

where (a) follows from the definition of E , and (b ) and (c) follow from the monotonicity of
measures (Part (ii) of Proposition 2.1.4), using additionally B c ⊆

⋃

i Vxi
in (c). We conclude

λm � f −1(C )
� (a)
= λm � f −1(C )∩ f −1(E)

�

= λm � f −1 (C ∩ E)
�

(b )
= λm

�

⋃

i

f −1 (C ∩ Ei )
�

(c)
≤

∑

i

λm( f −1 (C ∩ Ei ) = 0,

where (a) follows from (3.22), (b ) follows from the definition of E , and (c) is a consequence of
the σ -subadditivity (Part (i) of Proposition 2.1.4). Now µ� λm yields µ f (C ) =µ( f

−1(C )) =
0.
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The Area Formula also provides us with an expression for the Radon-Nikodým derivative
of µ f w.r.t. the Hausdorff measureH m|E .

Theorem 3.4.4. In the situation of Theorem 3.4.3, for any C ∈BM ,

µ f (C ) =
∫

C

∑

x∈ f −1({y})

dµ
dλm (x)
Jm f (x)

dH m|E (y),

i.e.,
dµ f

dH m|E
(y) =

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

. (3.23)

Proof. The proof will use the Area Formula in a similar fashion as the proof of Theorem 3.4.3.
Choose E , Ei , and Vxi

as in the proof of Theorem 3.4.3. By removing all preceding sets in
the countable covering, we obtain the partition

eVi :=Vxi
\
⋃

i ′<i

Vxi
.

For every i ∈ N, the function f |
eVi

is Lipschitz. We can extend it using Theorem 3.4.1 and
apply Part (ii) of Theorem 3.4.2, yielding

∫

eVi

u(x)Jm f (x)dλm(x) =
∫

f ( eVi )

∑

x∈ f −1({y})
u(x)dH m(y) (3.24)

for a (Bm,B)-measurable function u : Rm→R+. For C ∈BM , we can choose u as

u(x) = 1 f −1(C )(x)
dµ
dλm
(x)

1
Jm f (x)

(3.25)

observing that Jm f (x) 6= 0 for λm-a.e. x ∈Rm. Substituting (3.25) in (3.24) yields

µ( f −1(C )∩ eVi ) =
∫

eVi

1 f −1(C )(x)
dµ
dλm
(x)dλm(x)

(3.24)
=

∫

f ( eVi )

∑

x∈ f −1({y})
1 f −1(C )(x)

dµ
dλm
(x)

1
Jm f (x)

dH m(y)

=
∫

f ( eVi )∩C

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

dH m(y). (3.26)
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Using µ
��
⋃

i
eVi

�c�
=µ

��
⋃

i Vxi

�c�
≤µ(B) = 0, we can write

µ f (C ) = µ( f −1(C ))
(a)
=

∑

i

µ( f −1(C )∩ eVi )

(3.26)
=

∑

i

∫

f ( eVi )∩C

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

dH m(y)

(b )
=

∫

E∩C

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

dH m(y),

where (a) follows from B c ⊆
⋃

i
eVi by the σ -additivity (Part (ii) of Definition 2.1.3) and (b )

follows from [Fed69, 2.4.8].

If f is injective, Theorem 3.4.4 directly provides an expression for the entropy of µ f . When
inserting (3.23) into Definition 3.3.2, Definition 3.3.4 gives us

h(µ f )
(3.17)
=

∫

log

�

dµ f

dH m|E
(y)
�−1

dµ f (y)

(3.23)
=

∫

log

 

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

!−1

dµ f (y)

=
∫

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

log

 

∑

ex∈ f −1({y})

dµ
dλm
(ex)

1
Jm f (ex)

!−1

dH m|E (y)

(a)
=

∫

∑

x∈ f −1({y})

dµ
dλm
(x)

1
Jm f (x)

log
�

dµ
dλm
(x)

1
Jm f (x)

�−1

dH m|E (y)

(b )
=

∫

dµ
dλm
(x) log

�

dµ
dλm
(x)

1
Jm f (x)

�−1

dλm(x)

(c)
=

∫

dµ
dλm
(x) log

�

dµ
dλm
(x)
�−1

dλm(x)+
∫

dµ
dλm
(x) log

�

1
Jm f (x)

�−1

dλm(x)

= h(µ)+
∫

dµ
dλm
(x) log (Jm f (x)) dλm(x), (3.27)

where (a) follows from f being injective, Part (ii) of Theorem 3.4.2 is applied in (b ), and (c)
follows from Part (ii) of Theorem 2.2.10 if the integrals in (3.27) and their sum are defined.
Thus, we proved the following theorem.

Theorem 3.4.5. For M , m ∈ N and m < M let (Rm,Bm,µ) be a probability space satisfying
µ� λm . An injective function f : Rm→RM is given and the following properties hold.
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(i) For λm -a.e. x ∈ Rm , there exists an open set x ∈ Ux , such that f |Ux
is Lipschitz, i.e., f is

locally Lipschitz λm -a.e.

(ii) For λm -a.e. x ∈Rm , the Jacobian Jm f (x)> 0.

Then the entropy of the induced measure µ f is given by

h(µ f ) = h(µ)+
∫

dµ
dλm
(x) log (Jm f (x)) dλm(x), (3.28)

if the entropy h(µ) of µ w.r.t. the Lebesgue measure λm , the integral and their sum in (3.28) are
defined.

In particular, if f is a linear function, represented by the (M ×m)-matrix D,

h(µ f ) = h(µ)+ log
p

det[DT D],

if h(µ) is defined.

Proof. The first part has been proved already. The second part follows from (3.28) by µ being
a probability measure and using (2.13).
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Chapter 4.

Combined Rectifiable Measures and
Mutual Information

So far we focused on one probability measure and its properties. This chapter is dedicated to
generalizing the concepts developed in Chapter 3 to the product space of two Euclidean spaces.
That will permit the analysis of two random variables by means of their combined distribution
and will result in an expression for mutual information.

Furthermore, mixtures of random variables, comprised of different dimensions, are treated
in Section 4.2 and all subsequent results are given for those. In Section 4.4 we will show a
connection between mutual information and entropy, as defined earlier in Chapter 3.

4.1. Combined Rectifiable Measures

We will now consider finite measures on RN ×RN ∼=R2N for N ∈N.
Choosing different dimensions, i.e., RN ′ ×RM ′ and allowing for N ′ 6=M ′ would not provide

any benefit, as simply choosing N = max(N ′, M ′) and defining measures on1 {0} ×RN ′+M ′

yields the same result.

Definition 4.1.1. For n1, n2 ∈ {0,1, . . . ,N}, a measure µ on (R2N ,B 2N ), is called a combined
B -countably (n1, n2)-rectifiable measure if there exist two sets C , D ∈BN , such that the following
properties hold:

(i) µ(R2N )<∞

(ii) C isB -countably n1-rectifiable

(iii) D isB -countably n2-rectifiable

(iv) µ�H n1 |C ×H n2 |D

We call two sets C and D, fulfilling these requirements, a first and second support ofµ, respectively.

Lemma 4.1.2. For n1, n2 ∈ {0,1, . . . ,N}, let µ be a combinedB -countably (n1, n2)-rectifiable
measure on R2N with C and D denoting a first and second support, respectively. Then µ is also a
B -countably (n1+ n2)-rectifiable measure on R2N and C ×D is a support of µ.

1Here 0 denotes the all-zero vector of appropriate dimension |N ′−M ′|.
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Proof. As µ is a measure on (R2N ,B 2N ) by definition, we have to check the three conditions
in Definition 3.1.1:

Part (i) holds because of Part (i) of Definition 4.1.1, Part (ii) holds because of Lemma 2.6.13,
and Part (iii) is equivalent to Part (iv) of Definition 4.1.1 by Lemma 2.6.13.

Definition 4.1.3. Let (R2N ,B 2N ,µ) be a measure space.

(i) The measure µ1 on (RN ,BN ), defined as µ1(A) := µ(A×RN ) for a set A∈BN is called
the first marginal of µ.

(ii) The measure µ2 on (RN ,BN ), defined as µ2(A) := µ(RN ×A) for a set A∈BN is called
the second marginal of µ.

Lemma 4.1.4. For n1, n2 ∈ {0,1, . . . ,N} let µ be a combined B -countably (n1, n2)-rectifiable
measure on R2N with C and D denoting a first and second support, respectively. For ξ ∈ {1,2}, let
µξ be the first/second marginal ofµ as in Definition 4.1.3. Thenµξ is aB -countably nξ -rectifiable
measure. Furthermore, C is a support of µ1 and D is a support of µ2.

Proof. We will prove Lemma 4.1.4 for ξ = 1. The case ξ = 2 follows analogously. Apparently,
µ1 is a measure on (RN ,BN ) and we have to check the three conditions in Definition 3.1.1:

Part (i) holds as µ1(RN ) =µ(RN ×RN )<∞ because of Part (i) of Definition 4.1.1. Part (ii)
follows from Part (ii) of Definition 4.1.1 and Part (iii) can be seen as follows. For any A∈BN

H n1 |C (A) = 0 =⇒ H n1 |C ×H
n2 |D(A×R

N ) = 0
(a)
=⇒ µ(A×RN ) = 0⇔µ1(A) = 0,

where (a) follows from Part (iv) of Definition 4.1.1.

Lemma 4.1.5. For n1, n2 ∈ {0,1, . . . ,N} let µ1 be a B -countably n1-rectifiable measure on
(RN ,BN ) with support C and let µ2 be a B -countably n2-rectifiable measure on (RN ,BN )
with support D. Then the product measure µ1×µ2 is a combinedB -countably (n1, n2)-rectifiable
measure on (R2N ,B 2N ) with C and D as first and second support. Furthermore,

ḋµ1×µ2

dH n1+n2 |C×D

(x, y) =
ḋµ1

dH n1 |C
(x)

ḋµ2

dH n2 |D
(y) (4.1)

can be chosen in compliance with Lemma 3.1.3.

Proof. We check Definition 4.1.1:
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4.1. Combined Rectifiable Measures

For Part (i), we have µ1×µ2(R2N ) =µ1(RN )µ2(RN )<∞, as both µ1 and µ2 are finite by
Part (i) of Definition 3.1.1. Parts (ii) and (iii) are equivalent to Part (ii) of Definition 3.1.1. To
show Part (iv), we apply Theorem 2.4.3 (Fubini’s Theorem) for an arbitrary A∈B 2N ,

µ1×µ2(A) =
∫

1A d(µ1×µ2)

=
∫∫

1A(x, y)dµ1(x)dµ2(y)

=
∫∫

1A(x, y)
dµ1

dH n1 |C
(x)

dµ2

dH n2 |D
(y)dH n1 |C (x)dH

n2 |D(y)

=
∫

1A(x, y)
dµ1

dH n1 |C
(x)

dµ2

dH n2 |D
(y)d(H n1 |C ×H

n2 |D)(x, y).

As A was arbitrary this proves that

µ1×µ2 =
dµ1

dH n1 |C
(x)

dµ2

dH n2 |D
(y)(H n1 |C ×H

n2 |D)(x, y)

(a)
=

dµ1

dH n1 |C
(x)

dµ2

dH n2 |D
(y)(H n1+n2 |C×D(x, y), (4.2)

where (a) follows from Lemma 2.6.13. As a result, anH n1 |C ×H n2 |D -null set is also a µ1×µ2-
null set.

Now define ḋµ1×µ2
dH n1+n2 |C×D

, as in (4.1). Considering Remark 3.1.4, the dotted Radon-Nikodým
derivatives can also be used in (4.2), which shows (3.2), as we already have (x, y) /∈C ×D =⇒

ḋµ1
dH n1 |C

(x) = 0 or ḋµ2
dH n2 |D

(y) = 0. This reasoning also shows that ḋµ1×µ2
dH n1+n2 |C×D

satisfies (3.1).

The following corollary now follows immediately.

Corollary 4.1.6. For n1, n2 ∈ {0,1, . . . ,N} let µ be a combinedB -countably (n1, n2)-rectifiable
measure on R2N with C and D denoting a first and second support, respectively. Let µ1 and µ2

denote the first and second marginal of µ, respectively, as defined in Definition 4.1.3. Then the
product measure µ1×µ2 is a combinedB -countably (n1, n2)-rectifiable measure on (R2N ,B 2N )
with C and D as first and second support, respectively. Furthermore,

ḋµ1×µ2

dH n1+n2 |C×D

(x, y) =
ḋµ1

dH n1 |C
(x)

ḋµ2

dH n2 |D
(y)

can be chosen in compliance with Lemma 3.1.3.

Proof. The result follows immediately from Lemmas 4.1.4 and 4.1.5.

In Corollary 4.1.6 we are constructing a measure from the two marginals of a combined
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Chapter 4. Combined Rectifiable Measures and Mutual Information

B -countably (n1, n2)-rectifiable measure. We combine them to a new combinedB -countably
(n1, n2)-rectifiable measure as if they were independent. This construction will be useful for
defining mutual information later on, as mutual information may be defined as the “deviation”
(Kullback-Leibler divergence) from independence.

4.2. Mixtures
With the aim of deriving more general results, we will now consider linear combinations of
B -countably m-rectifiable measures for different m ∈ {0,1, . . . , M}. We will restrict ourselves
to probability measures as our primary object of investigation, although the results in this
section hold for finite measures in general and the restriction is not used in any of the proofs in
this section.

First, we will introduce some notation. Let M ∈N and for every m ∈ {0,1, . . . , M},

(a1) µm is aB -countably m-rectifiable measure on (RM ,BM ),

(a2) µm(RM ) = 1,

(a3) Em is a support of the measure µm, with

Em ∩ Em′ =∅ for m 6= m′, and (4.3)

(a4) pm ∈R+ with
∑

m pm = 1.

(a5) We define the measure µ as
µ :=

∑

m

pmµm

and introduce the random variable X = idRM . Note that by Assumptions (a2) and (a4), µ
is a probability measure.

Remark 4.2.1. Note that (4.3) can be satisfied without loss of generality considering Lemma A.3.1.

Theorem 4.2.2. Under Assumptions (a1) to (a5), µ can be written as

µ=
�

∑

m

pm
ḋµm

dH m|Em

�

�

∑

m

H m|Em

�

.

Proof. The result is a special case of Lemma 3.1.6 with M = {0,1, . . . , M}, Im = {0}, and
p0

m = pm.
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4.2. Mixtures

Adapting the setup given in Assumptions (a1) to (a5) to account for combined measures, we
introduce the following notation, which we will use extensively throughout the rest of this
section.

Let N ∈N and for all (n1, n2) ∈ {0,1, . . . ,N}2,

(b1) the measureµn1,n2
is a combinedB -countably (n1, n2)-rectifiable measure on (R2N ,B 2N ),

(b2) Cn1,n2
and Dn1,n2

are a first and second support of the measure µn1,n2
, respectively,

(b3) µn1,n2
(R2N ) = 1 for all (n1, n2) ∈ {0,1, . . . ,N}2,

(b4) µ1
n1,n2

and µ2
n1,n2

denote the first and second marginal of µn1,n2
, respectively,

(b5) pn1,n2
∈R+, with

∑

n1,n2
pn1,n2

= 1, and

(b6) we introduce the following notation2

En1,n2
:=Cn1,n2

×Dn1,n2
,

En :=
⋃

n=n1+n2

En1,n2
, (4.4)

µn :=
∑

n=n1+n2

pn1,n2
µn1,n2

,

Cn1
:=
⋃

n2

Cn1,n2
, (4.5)

Dn2
:=
⋃

n1

Dn1,n2
,

Fn1,n2
:=Cn1

×Dn2
=
⋃

n′2,n′1

Cn1,n′2
×Dn′1,n2

, and (4.6)

Fn :=
⋃

n=n1+n2

Fn1,n2
, (4.7)

where we require

Fn1,n2
∩ Fm1,m2

=∅ for (n1, n2) 6= (m1, m2). (4.8)

(b7) Furthermore, we define the measure µ as

µ :=
∑

n1,n2

pn1,n2
µn1,n2

(4.9)

2We use the symbol
⋃

n=n1+n2

�

∑

n=n1+n2

�

to denote the union (sum) of sets indexed by {(n1, n2) ∈
{0,1, . . . ,N}2 : n1+ n2 = n}.
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Chapter 4. Combined Rectifiable Measures and Mutual Information

Measure Support

µn1,n2
En1,n2

µ1
n1,n2

Cn1,n2

µ2
n1,n2

Dn1,n2

µn En
∑

n2
pn1,n2

µ1
n1,n2

Cn1
∑

n1
pn1,n2

µ2
n1,n2

Dn2∑

n′1,n′2

pn1,n′2
pn′1,n2

µ1
n1,n′2
×µ2

n′1,n2
Fn1,n2

∑

n=n1+n2

∑

n′1,n′2

pn1,n′2
pn′1,n2

µ1
n1,n′2
×µ2

n′1,n2
Fn

Table 4.1.: Measures and their respective supports in Assumptions (b1) to (b8)

and additionally µ1 and µ2 shall denote the first and second marginal of µ (see Defini-
tion 4.1.3).

(b8) Two random variables X : R2N →RN and Y : R2N →RN are defined as the projections
on the first N and the second N components, respectively. These induce the measures
µX =µ1 and µY =µ2 on (RN ,BN ).

Note that by Assumptions (b3) and (b5) µ (as defined in (4.9)) is a probability measure

Remark 4.2.3. The sets introduced in Assumption (b6) will serve as supports for certain
measures. Table 4.1 lists the measures and their corresponding supports. This can be seen using
Remark 3.1.2.

Remark 4.2.4. Note that (4.8) can be satisfied without loss of generality considering Lemma A.3.2.

Remark 4.2.5. Furthermore, (4.8) also implies

Fn ∩ Fm =∅ for n 6= m, (4.10)

En ∩ Em =∅ for n 6= m, (4.11)

En1,n2
∩ Em1,m2

=∅ for (n1, n2) 6= (m1, m2), (4.12)

Cn1
∩Cm1

=∅ for n1 6= m1, and

Dn2
∩Dm2

=∅ for n2 6= m2.

We can now prove the following theorem.
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4.2. Mixtures

Theorem 4.2.6. Under Assumptions (b1) to (b8), the measure µ can be expressed as

µ=

 

∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

!

�

∑

n

H n|En

�

. (4.13)

Proof. From Lemma 4.1.2 we know that µn1,n2
is aB -countably (n1+ n2)-rectifiable measure.

Together with (4.11) this shows that all the requirements for Lemma 3.1.6 are met and we
can apply it with M = {0,1, . . . , 2N}, Im = In = {(n1, n2) ∈ {0,1, . . . ,N}2 : n = n1+ n2}, and
p i

m = p (n1,n2)
n = pn1,n2

. This gives us

µ=

 

∑

n

∑

n=n1+n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

!

�

∑

n

H n|En

�

,

using (4.4). Rearranging the finite sum yields (4.13).

Explicit use of the supports En1,n2
in (4.13) is necessary, i.e., substituting

ḋµn1,n2
dH n1+n2 for

ḋµn1,n2
dH n1+n2 |En1,n2

is not possible. This is due to the fact that the measure is comprised of several Hausdorff mea-
sures with different dimensions. Thus, changing the function on anH m-null set, A, might
influence integration as A may not be aH m′ -null set for m′ < m.

Theorem 4.2.7. Under Assumptions (b1) to (b8), the measure µ1×µ2 can be written as

µ1×µ2 =





∑

n1,n′2,n′1,n2

pn1,n′2
pn′1,n2

ḋµ1
n1,n′2

dH n1 |Cn1,n′2

(x)
ḋµ2

n′1,n2

dH n2 |Dn′1,n2

(y)





�

∑

n

H n|Fn
(x, y)

�

. (4.14)

Proof. From the definition of the marginal (see Definition 4.1.3) we know that for all A∈BN ,

µ1(A) =µ(A×R
N ) =

∑

n1,n2

pn1,n2
µn1,n2

(A×RN ) =
∑

n1,n2

pn1,n2
µ1

n1,n2
(A). (4.15)

Therefore, µ1 =
∑

n1,n2
pn1,n2

µ1
n1,n2

and accordingly µ2 =
∑

n1,n2
pn1,n2

µ2
n1,n2

. As the product
measure µ1×µ2 is unique (see Definition 2.4.2) and for any A,B ∈BN ,

µ1×µ2(A×B) = µ1(A)µ2(B)

(4.15)
=

�

∑

n1,n2

pn1,n2
µ1

n1,n2
(A)
��

∑

n1,n2

pn1,n2
µ2

n1,n2
(B)
�

=
∑

n1,n′2,n′1,n2

pn1,n′2
µ1

n1,n′2
(A)pn′1,n2

µ2
n′1,n2
(B)
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=
∑

n1,n′2,n′1,n2

pn1,n′2
pn′1,n2

(µ1
n1,n′2
×µ2

n′1,n2
)(A×B),

we obtain that
µ1×µ2 =

∑

n1,n′2,n′1,n2

pn1,n′2
pn′1,n2

(µ1
n1,n′2
×µ2

n′1,n2
).

Corollary 4.1.6, applied to the productsµ1
n1,n′2
×µ2

n′1,n2
, guarantees their combinedB -countably

(n1, n2)-rectifiability and gives us

ḋ(µ1
n1,n′2
×µ2

n′1,n2
)

dH n1+n2 |Cn1,n′2
×Dn′1,n2

(x, y) =
ḋµ1

n1,n′2

dH n1 |Cn1,n′2

(x)
ḋµ2

n′1,n2

dH n2 |Dn′1,n2

(y).

Together with (4.10) this guarantees that the prerequisites of Lemma 3.1.6 are satisfied.
Applying Lemma 3.1.6 with M= {0,1, . . . , 2N}, Im = {(n1, n2) ∈ {0,1, . . . ,N}2 : n1+ n2 = n},
and p i

m = p (n1,n2)
n = pn1,n2

, and substituting (4.7) yields (4.14).

4.3. Mutual Information
We will present a definition of mutual information from [Gra13] in a very general setting and
then apply it in the context of combined rectifiable probability measures. To this end we will
first introduce some definitions, we will then use to define mutual information.

Definition 4.3.1. [Gra13, Section 2.3] Letµ and ν denote probability measures on the measurable
space (Ω,S) and let Q ⊆ S, be a finite measurable partition of Ω, i.e., the elements of Q are
disjoint, and their union equals Ω. The relative entropy ofQ with measure µ w.r.t. ν is defined as

Hµ‖ν(Q) =
∑

q∈Q
µ(q) log

µ(q)
ν(q)

. (4.16)

It should be noted that the sum in (4.16) is finite and thus, Hµ‖ν(Q) is well-defined although
it may assume the value +∞ in case µ(q)> 0 and ν(q) = 0 for some q ∈Q.

Definition 4.3.2. [Gra13, Section 5.2, (5.1)] Let µ and ν denote probability measures on the
measurable space (Ω,S). The divergence of µ w.r.t. ν is defined as

D(µ‖ν) = sup
Q

Hµ‖ν(Q),

where the supremum is taken over all finite measurable partitions of Ω.
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4.3. Mutual Information

Again, D(µ‖ν) = +∞may occur.

Definition 4.3.3. [Gra13, Section 5.5, (5.29)] Let (Ω,S,µ) be a probability space and with N ∈N
let X : Ω→RN and Y : Ω→RN be two random variables (see Definition 2.5.2) on that space. The
mutual information of X and Y is defined as3

I (X ;Y ) =D(µ(X ,Y )‖µX ×µY ). (4.17)

To obtain an explicit expression for the mutual information, given in Definition 4.3.3, one
resorts to the Perez-Yaglom-Gelfand theorem which is stated in the following lemma.

Lemma 4.3.4. [Gra13, Lemma 5.2.3] (Perez-Yaglom-Gelfand Theorem) Given two probability
measures µ and ν on a common measurable space (Ω,S), if µ 6� ν , then

D(µ‖ν) =∞.

If µ� ν , then the Radon-Nikodým derivative f = dµ
dν exists and

D(µ‖ν) =
∫

log f dµ=
∫

f log f dν.

This directly amounts to a formula for the mutual information of X and Y as given in
Assumption (b8). We will use the symbol H2(pn1,n2

) to denote

H2(pn1,n2
) :=

∑

n1,n2

pn1,n2
log

1
pn1,n2

. (4.18)

Theorem 4.3.5. Under Assumptions (b1) to (b8), I (X ;Y ) can be expressed as

I (X ;Y ) =−H2(pn1,n2
)

+
∑

n1,n2

pn1,n2

∫ ḋµn1,n2

dH n1+n2
(x, y) log



















ḋµn1,n2

dH n1+n2
(x, y)

∑

n′1,n′2

pn1,n′2
pn′1,n2

ḋµ1
n1,n′2

dH n1
(x)

ḋµ2
n′1,n2

dH n2
(y)



















dH n1+n2(x, y)

(4.19)

3The measures with a random variable in the subscript are induced, as given in Definition 2.2.3 and (X ,Y )
denotes the combined random variable as in Remark 2.5.4.
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if the integrand in (4.19) is defined, otherwise

I (X ;Y ) =∞.

Proof. Note that the combined random variable (X ,Y ) equals the identity, thus µ(X ,Y ) =µ.

Case µ�µ1×µ2. We define
ν :=

∑

n

H n|Fn
. (4.20)

The sets Fn1,n2
=Cn1

×Dn2
areB -countably (n1+n2)-rectifiable by Lemma 2.6.13. Thus,

by the definition of Fn in (4.7) and Remark 2.6.11, Fn isB -countably n-rectifiable. By
Lemma 2.6.8, H n|Fn

is σ -finite and, thus, also is ν as it is the finite sum of σ -finite
measures.

Note that
∑

nH n|En
can be replaced by

∑

nH n|Fn
in Theorem 4.2.6. This is justified by

∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

(x) = 0 for all x /∈
⋃

n

En.

Together with Theorem 4.2.7, this gives us expressions for the Radon-Nikodým deriva-
tives of µ and µ1×µ2 w.r.t. ν. We can write the Radon-Nikodým derivative of µ w.r.t.
µ1×µ2 using Part (i) of Proposition 2.3.4 as

dµ
d (µ1×µ2)

=
dµ
d ν

�

d (µ1×µ2)
d ν

�−1

.

because d(µ1×µ2)
dν 6= 0, µ1×µ2-a.e.

By (4.17) and Lemma 4.3.4 we then have

I (X ;Y ) =D(µ‖µ1×µ2)

=
∫

log

�

dµ
dν

�

d(µ1×µ2)
dν

�−1�

dµ

=
∫

dµ
dν

log

�

dµ
dν

�

d(µ1×µ2)
dν

�−1�

dν . (4.21)

40



4.3. Mutual Information

Inserting (4.13) and (4.14) into (4.21) yields

I (X ;Y ) =
∫

 

∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

!

· log



















∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

∑

n1,n2,n′1,n′2

pn1,n′2
pn′1,n2

ḋµ1
n1,n′2

dH n1 |Cn1,n′2

(x)
ḋµ2

n′1,n2

dH n2 |Dn′1,n2

(y)



















dν(x, y)

(a)
=
∑

n1,n2

∫

 

∑

en1,en2

p
en1,en2

ḋµ
en1,en2

dH en1+en2 |E
en1,en2

(x, y)

!

· log



















∑

en1,en2

p
en1,en2

ḋµ
en1,en2

dH en1+en2 |E
en1,en2

(x, y)

∑

en1,en2,n′1,n′2

p
en1,n′2

pn′1,en2

ḋµ1
en1,n′2

dH en1 |C
en1,n′2

(x)
ḋµ2

n′1,en2

dH en2 |Dn′1,en2

(y)



















dH n1+n2 |Fn1,n2
(x, y)

(b )
=
∑

n1,n2

pn1,n2

∫ ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

· log



















pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

∑

en1,en2,n′1,n′2

p
en1,n′2

pn′1,en2

ḋµ1
en1,n′2

dH en1 |C
en1,n′2

(x)
ḋµ2

n′1,en2

dH en2 |Dn′1,en2

(y)



















dH n1+n2 |En1,n2
(x, y)

(c)
=
∑

n1,n2

pn1,n2

∫ ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

· log



















pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

∑

n′1,n′2

pn1,n′2
pn′1,n2

ḋµ1
n1,n′2

dH n1 |Cn1,n′2

(x)
ḋµ2

n′1,n2

dH n2 |Dn′1,n2

(y)



















dH n1+n2 |En1,n2
(x, y)
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(d )
=
∑

n1,n2

pn1,n2

∫ ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

· log



















ḋµn1,n2

dH n1+n2 |En1,n2

(x, y)

∑

n′1,n′2

pn1,n′2
pn′1,n2

ḋµ1
n1,n′2

dH n1 |Cn1,n′2

(x)
ḋµ2

n′1,n2

dH n2 |Dn′1,n2

(y)



















dH n1+n2 |En1,n2
(x, y)

−H2(pn1,n2
) (4.22)

where (a) follows from (4.20). For justifying (b ), assume (en1, en2) 6= (n1, n2). Then for

(x, y) ∈ En1,n2
,

ḋµ
en1,en2

dH en1+en2 |E
en1,en2

(x, y) = 0, by (3.1) and (4.12). Part (i) of Theorem 2.2.10 is

used to pull pn1,n2
out of the integral. To justify (c), assume en1 6= n1 and x ∈ En1,n2

. Then

x ∈ Cn1
and

ḋµ1
en1,n′2

dH en1 |C
en1,n′2

(x) = 0 for any n′2, which follows from the fact that Cn1
and C

en1

are disjoint (see Remark 4.2.5). The case en2 6= n2 can be treated the same way. In (d ) the
additive term log pn1,n2

is split from the logarithm and we use that µn1,n2
is a probability

measure by Assumption (b3).

To prove (4.19), it is only left to argue that we can drop the supports in all the dotted

Radon-Nikodým derivatives in (4.22). We can argue with Lemma 3.1.5 that
ḋµn1,n2

dH n1+n2 |En1,n2

=

ḋµn1,n2
dH n1+n2 for the purpose of this integration, i.e.,H n1+n2 -a.e. We have to show that the set

G :=







(x, y) ∈ En1,n2
:

ḋµ1
n1,n′2

dH n1 |Cn1,n′2

(x)
ḋµ2

n′1,n2

dH n2 |Dn′1,n2

(y) 6=
ḋµ1

n1,n′2

dH n1
(x)

ḋµ2
n′1,n2

dH n2
(y)







satisfiesH n1+n2(G) = 0. We write G ⊆ (G1×Dn1,n2
)∪ (Cn1,n2

×G2) with

G1 :=







x ∈Cn1,n2
:

ḋµ1
n1,n′2

dH n1 |Cn1,n′2

(x) 6=
ḋµ1

n1,n′2

dH n1
(x)







and

G2 :=







y ∈Dn1,n2
:

ḋµ2
n′1,n2

dH n2 |Dn′1,n2

(y) 6=
ḋµ2

n′1,n2

dH n2
(y)







.
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The set G1 ⊆Cn1,n2
is Borel, which can be seen by writing it like4

G1 =Cn1,n2
∩





ḋµ1
n1,n′2

dH n1 |Cn1,n′2

−
ḋµ1

n1,n′2

dH n1





−1

({0}).

Thus, G1 is B -countably n1-rectifiable by Part (ii) of Corollary 2.6.9. Analogously
one proves the B -countably n2-rectifiability of G2. Lemma 2.6.13 then guarantees
0 =H n1+n2(G1 ×Dn1,n2

) =H n1+n2(Cn1,n2
×G2), which showsH n1+n2(G) = 0 by the

monotonicity of measures, Part (ii) of Proposition 2.1.4.

And, finally, Lemma 3.1.3 allows us to integrate w.r.t.H n1+n2 instead ofH n1+n2 |En1,n2
.

Case µ 6�µ1×µ2. This is equivalent to the existence of a set A ∈ B 2N with µ(A) > 0 and
µ1×µ2(A) = 0. We can conclude that for the set A′ := {x ∈ A : dµ

dν (x) > 0}, ν(A′) > 0
holds. But as dµ1×µ2

dν (x) = 0 for ν -a.e. x ∈A′ ⊆A, the integrand in (4.21) is not defined on
a set of positive measure and, by Lemma 4.3.4, I (X ;Y ) =∞.

Remark 4.3.6. It is worthwhile mentioning that the distinction between the two cases, when
the integrand in (4.19) is defined, and when it is not, is just a consequence of the definition of
measurable functions that we introduced. If we allowed for measurable functions taking values
in the extended reals R̄, the integral in (4.19) would be defined in any case and yield +∞, in
the case µ 6�µ1×µ2.

4.4. Connection between Mutual Information and Entropy
In this section we will develop expressions for the entropy of linear combinations of combined
rectifiable probability measures and use them to show a connection between the mutual
information, as presented in Section 4.3 in the same setting, and entropy, as treated in Section 3.3.
This intricate connection also serves as an additional motivation and justification for our
definition of entropy (Definition 3.3.2).

We will use the notation
H2(pm) :=

∑

m

pm log
1

pm

as in (4.18).

4Here f −1(·) denotes the preimage.
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Lemma 4.4.1. Under Assumptions (a1) to (a5), if the entropy of µ (entropy of X ) w.r.t. ν :=
∑

mH m|Em
(as defined in Definition 3.3.2) is defined, it can be expressed as

hν(X ) = hν(µ) =H2(pm)+
∑

m

pm h(µm). (4.23)

Proof. By Theorem 4.2.2,
dµ
dν
=
∑

m

pm
ḋµm

dH m|Em

. (4.24)

This gives us

hν(µ)
(3.17)
=

∫

log
�

dµ
dν

�−1

dµ

(4.24)
=

∫

�

∑

m

pm
ḋµm

dH m|Em

�

log

�

∑

m

pm
ḋµm

dH m|Em

�−1

d ν

(a)
=

∑

m

∫

�

∑

em

p
em

ḋµ
em

dH em|E
em

�

log

�

∑

em

p
em

ḋµ
em

dH em|E
em

�−1

dH m|Em

(b )
=

∑

m

pm

∫

ḋµm

dH m|Em

log

�

pm
ḋµm

dH m|Em

�−1

dH m|Em

(c)
= H2(pm)+

∑

m

pm

∫

ḋµm

dH m|Em

log

�

ḋµm

dH m|Em

�−1

dH m|Em
, (4.25)

where (a) follows from the definition of ν , (b ) follows from the fact that ḋµ
em

dH em |E
em

(x) = 0 for any

x ∈ Em if em 6= m and from Part (i) of Theorem 2.2.10. In (c), the additive term log pm is split
from the logarithm and the fact that µm is a probability measure (Assumption (a2)) is used.
Substituting (3.18) and (3.19) in (4.25) completes the proof.

Lemma 4.4.1 can in particular be applied to a discrete continuous mixture on R, i.e., µ=
p1µ1+(1− p1)µ0. The entropy of µ is given by Lemma 4.4.1 as

h(µ) =−p1 log(p1)− (1− p1) log(1− p1)+ p1h(µ1)+ (1− p1)h(µ0), (4.26)

where h(µ0) and h(µ1) are the entropy of a discrete random variable and differential entropy,
respectively, by Remark 3.3.5. The entropy given in (4.26) coincides with Rényi-Entropy,
introduced by Alfréd Rényi in [Ré59], by virtue of [Ré59, Theorem 3].

It is worthwhile mentioning that (4.23) shows that the entropy of µ w.r.t. ν does not depend
on the individual supports Em. It does not, however, fully justify the definition of an entropy
of µ without referring to ν, as it was done for a single measure in Definition 3.3.4. This is
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4.4. Connection between Mutual Information and Entropy

due to the fact that entropy might still depend on the particular representation of µ as linear
combination of rectifiable measures. We will show in the following that this is not the case.

Lemma 4.4.2. Under Assumptions (a1) to (a5), given p ′m ∈ [0,1] andB -countably m-rectifiable
measures µ′m for m ∈ {0,1, . . . , M}, such that

µ=
∑

m

pmµm =
∑

m

p ′mµ
′
m, (4.27)

then necessarily p ′m = pm and, whenever pm 6= 0, µ′m =µm for every m ∈ {0,1, . . . , M}.

Proof. We do a proof by induction. Let E ′m denote a support ofµ′m. For some k ∈ {0,1, . . . , M},
suppose pm = p ′m and if pm 6= 0, then µm =µ

′
m for all m ∈ {0,1, . . . , k − 1}. For the base case,

k = 0, this is satisfied since {0,1, . . . , k − 1} = ∅. The induction step is done as follows. We
have for any set S ∈BM ,

∑

m

p ′mµ
′
m(S ∩ (Ek ∪ E ′k))

(4.27)
=

∑

m

pmµm(S ∩ (Ek ∪ E ′k))

∑

m≥k

p ′mµ
′
m(S ∩ (Ek ∪ E ′k))

(a)
=

∑

m≥k

pmµm(S ∩ (Ek ∪ E ′k))

p ′kµ
′
k(S) = p ′kµ

′
k(S ∩ (Ek ∪ E ′k))

(b )
= pkµk(S ∩ (Ek ∪ E ′k)) = pkµk(S), (4.28)

where (a) follows from the induction hypothesis and the fact that the measures µm are finite
and in (b ), Corollary 2.6.12 is used to provide µ′m(S ∩ (Ek ∪ E ′k)) = µm(S ∩ (Ek ∪ E ′k)) = 0
for m > k. Equation (4.28) holds for all S ∈BM , thus in particular for S =RM . This yields
pk = p ′k , as both µk and µ′k , are probability measures. That in turn results in µk =µ

′
k if pk 6= 0.

Thus, proceeding inductively from k = 0 to k = M proves pm = p ′m and, if pm 6= 0, also
µm =µ

′
m for all m ∈ {0,1, . . . , M}.

This justifies the following definition.

Definition 4.4.3. Under Assumptions (a1) to (a5), the entropy of µ (entropy of X ) is defined as

h(X ) := h(µ) := h∑
mH m |Em

(µ), (4.29)

if h∑
mH m |Em

(µ) is defined.

The entropy in (4.29) is well-defined as the representation µ =
∑

m pmµm is unique by
Lemma 4.4.2 and thus (4.23) is also unique.

It should be noted that also under Assumptions (b1) to (b8), Definition 4.4.3 already supplies
us with an entropy of µ, µ1, and µ2. This can be seen as follows. In Assumptions (b1) to (b8),
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µ can be represented as µ=
∑

m pmµm, like in Assumptions (a1) to (a5), choosing

pm =
∑

m=n1+n2

pn1,n2
, and

µm =
1

pm

∑

m=n1+n2

pn1,n2
µn1,n2

for m ∈ {0,1, . . . , 2N}. As one can see in Table 4.1, Em (notation of Assumption (b6)) is a
support of µm. Similarly, we can represent µ1 in Assumption (b7) like µ in Assumption (a5).
Using (4.15), µ1 is given by

pm =
∑

n′2

pm,n′2
, and

µm =
1

pm

∑

n′2

pm,n′2
µ1

m,n′2

for m ∈ {0,1, . . . ,N}. In Table 4.1, Cm is given as a support of µm. Also µ2 can be expressed
the same way.

Thus, Definition 4.4.3 is directly applicable to µ, µ1, and µ2, which justifies the following
definition.

Definition 4.4.4. Under Assumptions (b1) to (b8), we define the entropy of µ (entropy of (X ,Y ))
as

h(X ,Y ) := h(µ) := h∑
nH n |En

(µ),

if h∑
nH n |En

(µ) is defined. Furthermore, the entropy of µ1 (entropy of X ) and the entropy of µ2

(entropy of Y ) are given by

h(X ) := h(µ1) := h∑
n1
H n1 |Cn1

(µ1), and

h(Y ) := h(µ2) := h∑
n2
H n2 |Dn2

(µ2),

respectively, if the respective entropies h∑
n1
H n1 |Cn1

(µ1) and h∑
n2
H n2 |Dn2

(µ2) are defined.

The next results extend Lemma 4.4.1 to combined distributions and develop expressions for
the entropies in Definition 4.4.4.

Lemma 4.4.5. Under Assumptions (b1) to (b8), if the entropy of µ (entropy of (X ,Y )) is defined, it
satisfies

h(X ,Y ) = h(µ) =H2(pn1,n2
)+

∑

n1,n2

pn1,n2
h(µn1,n2

). (4.30)
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Proof. The proof follows the same steps as the proof of Lemma 4.4.1. We set ν :=
∑

nH n|En

and thus have h(µ) = hν(µ) from Definition 4.4.4. By Theorem 4.2.6, we can insert

dµ
dν
=
∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

(4.31)

into (3.17), which results in

hν(µ)
(3.17)
=

∫

log
�

dµ
dν

�−1

dµ

(4.31)
=

∫

 

∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

!

log

 

∑

n1,n2

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

!−1

dν

(a)
=

∑

n1,n2

∫

 

∑

en1,en2

p
en1,en2

ḋµ
en1,en2

dH en1+en2 |E
en1,en2

!

log

 

∑

en1,en2

p
en1,en2

ḋµ
en1,en2

dH en1+en2 |E
en1,en2

!−1

dH n1+n2 |En1,n2

(b )
=

∑

n1,n2

pn1,n2

∫ ḋµn1,n2

dH n1+n2 |En1,n2

log

 

pn1,n2

ḋµn1,n2

dH n1+n2 |En1,n2

!−1

dH n1+n2 |En1,n2

(c)
= H2(pn1,n2

)+
∑

n1,n2

pn1,n2

∫ ḋµn1,n2

dH n1+n2 |En1,n2

log

 

ḋµn1,n2

dH n1+n2 |En1,n2

!−1

dH n1+n2 |En1,n2
,

where one can argue (a), (b ), and (c) as for (4.25) in the proof of Lemma 4.4.1. Using Lem-
mas 3.1.5 and 3.3.3 gives us (4.30).

Lemma 4.4.6. Under Assumptions (b1) to (b8), the entropies of µ1 (X ) and µ2 (Y ) satisfy

h(X ) = h(µ1) =
∑

n1,n2

pn1,n2

∫ ḋµ1
n1,n2

dH n1
log





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1





−1

dH n1 and (4.32)

h(Y ) = h(µ2) =
∑

n1,n2

pn1,n2

∫ ḋµ2
n1,n2

dH n2
log





∑

n′1

pn′1,n2

ḋµ2
n′1,n2

dH n2





−1

dH n2 , (4.33)

respectively, if the integrals and sums in (4.32) and (4.33) are defined.

Proof. We will only prove (4.32), as (4.33) follows analogously.
Using ν1 :=

∑

n1
H n1 |Cn1

gives us h(µ1) = hν1(µ1) by Definition 4.4.4. From Lemma 4.1.4
we know that µ1

n1,n2
is aB -countably n1-rectifiable probability measure. Furthermore, we
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know µ1 =
∑

n1,n2
pn1,n2

µ1
n1,n2

from (4.15). We can therefore apply Lemma 3.1.6, yielding

dµ1

dν1
=
∑

n1,n2

pn1,n2

ḋµ1
n1,n2

dH n1 |Cn1,n2

. (4.34)

And when substituting in (3.17),

hν1(µ1)
(3.17)
=

∫

log
�

dµ1

dν1

�−1

dµ1

(4.34)
=

∫

 

∑

n1,n2

pn1,n2

ḋµ1
n1,n2

dH n1 |Cn1,n2

!

log

 

∑

n1,n2

pn1,n2

ḋµ1
n1,n2

dH n1 |Cn1,n2

!−1

dν1

(a)
=

∑

n1

∫





∑

en1,n2

p
en1,n2

ḋµ1
en1,n2

dH en1 |C
en1,n2



 log





∑

en1,n2

p
en1,n2

ḋµ1
en1,n2

dH en1 |C
en1,n2





−1

dH n1 |Cn1

(b )
=

∑

n1

∫

 

∑

n2

pn1,n2

ḋµ1
n1,n2

dH n1 |Cn1,n2

!

log

 

∑

n2

pn1,n2

ḋµ1
n1,n2

dH n1 |Cn1,n2

!−1

dH n1 |Cn1

(c)
=

∑

n1,n2

pn1,n2

∫ ḋµ1
n1,n2

dH n1 |Cn1,n2

log





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1 |Cn1,n′2





−1

dH n1 |Cn1,n2
, (4.35)

where (a) follows from the definition of ν1, (b ) from the fact that
ḋµ1

en1,n2

dH en1 |C
en1,n2

(x) = 0 for x ∈

Cn1
and en1 6= n1. To justify (c), we use the linearity of the integral (Parts (i) and (ii) of

Theorem 2.2.10) and Cn1,n2
⊆ Cn1

with (3.1). We can drop the restriction on the domain
of integration in (4.35) because of (3.1) and we can drop the supports in the dotted Radon-
Nikodým derivatives, as the integration is w.r.t.H n1 and the functions are thus considered
equivalent (see Part (i) of Remark 2.2.7). This yields (4.32).

Note that in the expression for I (X ;Y ) in (4.19), we can factor the finite sum

∑

n′1,n′2

pn1,n′2
pn′1,n2

ḋµ1
n1,n′2

dH n1
(x)

ḋµ2
n′1,n2

dH n2
(y) =





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1
(x)









∑

n′1

pn′1,n2

ḋµ2
n′1,n2

dH n2
(y)



 ,
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and thereby split up the logarithm, which yields

I (X ;Y ) =−H2(pn1,n2
)+

∑

n1,n2

pn1,n2

∫

�

ḋµn1,n2

dH n1+n2
(x, y) log

 

ḋµn1,n2

dH n1+n2
(x, y)

!

−
ḋµn1,n2

dH n1+n2
(x, y) log





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1
(x)





−
ḋµn1,n2

dH n1+n2
(x, y) log





∑

n′1

pn′1,n2

ḋµ2
n′1,n2

dH n2
(y)





�

dH n1+n2(x, y). (4.36)

If all the entropies h(X ), h(Y ), and h(X ,Y ) are defined and also their sum is defined, we can
use the linearity of the Lebesgue integral (see Parts (i) and (ii) of Theorem 2.2.10) to split the
integral and use Theorem 2.4.3 (Fubini’s theorem) to show, e.g., for the third term in (4.36),

∫ ḋµn1,n2

dH n1+n2
(x, y) log





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1
(x)



 dH n1+n2(x, y)

(a)
=
∫

log





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1
(x)





 

∫ ḋµn1,n2

dH n1+n2
(x, y)dH n2(y)

!

dH n1(x)

(b )
=
∫

log





∑

n′2

pn1,n′2

ḋµ1
n1,n′2

dH n1
(x)





ḋµ1
n1,n2

dH n1
(x)dH n1(x) = h(X ),

where we used Lemma 2.6.13 and Theorem 2.4.3 in (a), and (b ) can be justified by applying
Fubini’s Theorem (Theorem 2.4.3) to

µ1
n1,n2
(A) =

∫

A×RN

ḋµn1,n2

dH n1+n2
dH n1+n2 =

∫

A

∫ ḋµn1,n2

dH n1+n2
(x, y)dH n2(y)dH n1(x).

This gives us the following theorem.

Theorem 4.4.7. Under Assumptions (b1) to (b8), if h(X ), h(Y ), and h(X ,Y ) are defined then

I (X ;Y ) = h(X )+ h(Y )− h(X ,Y ), (4.37)

if the sum in (4.37) is defined.
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Chapter 5.

Conclusions

In this thesis we introducedB -countably m-rectifiable measures andB -countably m-rectifiable
sets as their support. The properties of these sets and measures were discussed and we subse-
quently gave a definition of entropy forB -countably m-rectifiable probability measures. This
definition generalizes entropy of discrete random variables, differential entropy, and also Rényi
entropy, for discrete continuous mixtures.

We generalized B -countably m-rectifiability to product spaces, which led to combined
B -countably (n1, n2)-rectifiable sets and measures. Based on the well-known general definition
of mutual information, those enabled us to study the mutual information of mixtures ofB -
countably (n1, n2)-rectifiable probability measures, comprised of different dimensions. This
discussion concluded with the proof of the relation I (X ;Y ) = h(X )+ h(Y )− h(X ,Y ), for our
newly defined entropy, giving additional justification for the definitions we introduced.

We hope that the presented results will lead to future research in this topic. Possible applica-
tions, where singular distributions on “smooth” lower-dimensional subsets play an important
role, are, e.g., the following areas:

• Almost lossless and lossy (analog) signal compression: Almost lossless compression is con-
cerned with compression by a mapping from a higher-dimensional Euclidean space RM

to a lower-dimensional space Rm, satisfying certain regularity conditions. Here singular,
lower-dimensional probability distributions play an important role, and their infor-
mation theoretic properties give rise to bounds on the efficiency of such compression
schemes. Based on Rényi information dimension, recovery thresholds and optimal phase
transition were derived in [WV10] and [WV12], respectively.

• Vector interference channel: The optimum input distribution for the vector interference
channel is singular and concentrated in a subspace of the ambient signal space, as shown
in [SB12].

• Block-fading channels: The number of degrees of freedom of the block-fading channel was
treated in [KRDH13]. The received vector distribution was shown to be singular and
again concentrated on a lower-dimensional subset of the ambient space.

The material presented in this thesis can provide for a finer information theoretic analysis
than purely dimension or degrees-of-freedom based approaches, by taking entropy itself, and
not merely its dimension into account.
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A. Appendix

A.1. Proof of Lemma 2.6.8
Before proving Lemma 2.6.8, we present a result on the Jacobian of a Lipschitz function,
which will be used in the proof. To this end we will need the following remarkable theorem
concerning Lipschitz functions from [Fed69].

Theorem A.1.1. [Fed69, Theorem 3.1.6] (Rademacher’s Theorem) For m, M ∈N, if f : Rm→
RM is Lipschitz, then f is differentiable at λm -a.e. point of Rm .

Lemma A.1.2. Let f : Rm→RM be Lipschitz. Then there exists a constant L<∞, such that for
λm -a.e. x ∈Rm ,

Jm f (x)≤ L. (A.1)

Proof. Theorem A.1.1 (Rademacher’s Theorem) guarantees that f is differentiable at λm-a.e.
point in Rm. We conclude that D f (x), and therefore also Jm f (x) := ‖ΛmD f (x)‖ are well-
defined for λm-a.e. x ∈Rm.

As given in [Fed69, 3.1.1], the differential of f at x ∈A, applied to v ∈Rm, can be written as

D f (x)(v) = lim
t→0

f (x + t v)− f (x)
t

. (A.2)

Using the definition of convergence, we can write (A.2) as

lim
t→0













D f (x)(v)−
f (x + t v)− f (x)

t













= 0, (A.3)

and applying the reverse triangle inequality
�

�‖a‖−‖b‖
�

�≤ ‖a− b‖, gives us

0
(A.3)
= lim

t→0













D f (x)(v)−
f (x + t v)− f (x)

t













≥ lim
t→0

�

�

�

�

‖D f (x)(v)‖−












f (x + t v)− f (x)
t













�

�

�

�

.

Since ‖D f (x)(v)‖ does not depend on t , it follows that

lim
t→0













f (x + t v)− f (x)
t













= ‖D f (x)(v)‖ . (A.4)

Using the Lipschitz property (Definition 2.6.4) of f with Lipschitz constant Lip( f ) = eL gives
us

‖D f (x)(v)‖ (A.4)
= lim

t→0













f (x + t v)− f (x)
t













(2.12)
≤ lim

t→0

eL‖t v‖
|t |

= eL‖v‖ .
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This results in a bound on the operator norm,

‖D f (x)‖ ≤ eL. (A.5)

Finally, [Fed69, 1.7.6] and (A.5) yield

Jm f (x) = ‖ΛmD f (x)‖ ≤ ‖D f (x)(v)‖m ≤ eLm,

which ensures that L := eLm satisfies (A.1).

Proof of Lemma 2.6.8. For m = 0, the statement follows from Part (i) of Theorem 2.6.3 as, by
Part (i) of Definition 2.6.7, |E | <∞. For m > 0, let A ⊆ Rm be bounded, f : A→ RM be
Lipschitz and f (A) = E . As E is a Borel set, so is f −1(E) =A, because f is continuous and thus
(Bm,BM )-measurable. We extend f to ef : Rm→RM , using Theorem 3.4.1. Applying Part (i)
of Theorem 3.4.2, we obtain

∫

A
Jm
ef (x)dλm(x) =

∫

N ( f , y)dH m(y). (A.6)

Because of N ( f , y)≥ 1 for y ∈ E and N ( f , y) = 0 for y /∈ E , we have by (A.6) that

∫

A
Jm
ef (x)dλm(x)

(a)
≥
∫

1E (y)dH
m(y) =H m(E), (A.7)

where (a) holds by Part (iii) of Theorem 2.2.10. Since A is bounded, λm(A)<∞, which yields

∫

A
Jm
ef (x)dλm(x)

(a)
≤ λm(A)L<∞, (A.8)

where (a) holds for some L ≥ 0 because of Lemma A.1.2, and Part (iii) of Theorem 2.2.10.
Combining (A.7) and (A.8) yieldsH m(E)<∞.

According to Part (ii) of Definition 2.6.7, aB -countably m-rectifiable set F can be written
as a countable union F =

⋃

i Fi , where Fi is m-rectifiable and Borel for all i ∈N. For all i ∈N
we already showedH m(Fi )<∞, which concludes the proof.

A.2. Proof of Lemma 2.6.13
To prove Lemma 2.6.13, we will need the following weaker version of a result from [Fed69].

Theorem A.2.1. [Fed69, Theorem 3.2.23] Let m, n, M ,N ∈ N, W ⊆ RM be an m-rectifiable
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Borel set, and Z ⊆RN an n-rectifiable Borel set. Then1

H m+n|W×Z =H
m|W ×H

n|Z . (A.9)

As Federer does not use 0-rectifiable sets in [Fed69], we have to prove an extension of
Theorem A.2.1, which is given in the following lemma.

Lemma A.2.2. Let N ∈N, n ∈ {1, . . . ,N}, a ∈RN and E ⊆RN , then

H n(E) =H n({a}× E),

whereH n is used to denote both, the n-dimensional Hausdorff measure on (RN ,BN ) and on
(R2N ,B 2N ).

Proof. Following Carathéodory’s construction ([Fed69, 2.10.1]) of the Hausdorff measure
([Fed69, 2.10.2(1)]), one notes that a countable covering of E by nonempty sets {Ei}i∈I in RN

corresponds to the covering {{a}× Ei}i∈I of {a}× E in R2N . As diam(Ei ) = diam({a}× Ei ), it
follows that

H n({a}× E)≤H n(E),

as this inequality holds for all size δ > 0 approximating measures.
On the other hand assume {Ei}i∈I to be a countable covering of {a}×E inR2N by nonempty

sets. Let π2 : R2N →RN denote the canonical projection onto the second N coordinates and
for a set A∈R2N we define [A]a :=A∩ ({a}×RN ). Then the sets { eEi :=π2([Ei]a)}i∈I : eEi 6=∅

give

us a nonempty countable covering of E in RN . As clearly diam( eEi )≤ diam(Ei ),

H n(E)≤H n({a}× E)

also holds, as it is valid for all size δ > 0 approximating measures.

Proof of Lemma 2.6.13. Let {Ci}i∈N and {Di}i∈N be partitions of C and D into countably many
m1-rectifiable/m2-rectifiable Borel sets. By Remark 2.6.10 we can assume both, {Ci}i∈N and
{Di}i∈N, to be mutually disjoint, i.e., Ci ∩Ci ′ =∅ and Di ∩Di ′ =∅ for i 6= i ′.

Case m1 = m2 = 0. This is equivalent to |C |, |D | ≤ ℵ0. The Cartesian product of two countable
sets is again countable, therefore E isB -countably 0-rectifiable and (2.14) holds true for
the counting measure.

Case m1 = 0, m2 > 0. For every j ∈ N, there exists a Lipschitz function g j : B j ⊆ Rm2 → RM

with B j bounded, and g j (B j ) = D j . By Part (ii) of Definition 2.6.7, |C | ≤ ℵ0. We can

1Note that (A.9) establishes the equality of two measures.
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write C =
⋃

i{ci}. Then E is given as

E =
�

⋃

i

{ci}
�

×D =
⋃

i , j

�

{ci}×D j

�

.

The sets Ei , j := {ci}×D j ∈B 2M are m2-rectifiable, because the function

gi , j : D j →R
2M

x 7→ (ci , g j (x))

is Lipschitz. Furthermore, gi , j (D j ) = Ei , j and, thus, E isB -countably m2-rectifiable.
As both, H 0|C andH m2 |D are σ -finite by Lemma 2.6.8, their product, as defined in
Definition 2.4.2, is unique. Therefore, to prove (2.14) we have to show that for any two
sets A,B ∈BM ,

H m2 |E (A×B) =H 0|C (A)H
m2 |D(B).

Indeed,

H m2 |E (A×B)
(a)
=

∑

i∈N
H m2([A∩{ci}]× [B ∩D])

(b )
=

∑

i∈N
1A(ci )H

m2 |D(B)

= H 0|C (A)H
m2 |D(B),

where (a) holds because of Part (ii) of Definition 2.1.3 and (b ) follows from Lemma A.2.2.

Case m1 > 0, m2 = 0. Follows in analogy to the case m1 = 0, m2 > 0.

Case m1 > 0, m2 > 0. For all i , j ∈ N, there exist Lipschitz functions fi : Ai ⊆ Rm1 → RM

and g j : B j ⊆ Rm2 → RM with fi (Ai ) = Ci and g j (B j ) = D j , where Ai , B j are bounded.
As bothH m1 |C andH m2 |D are σ -finite by Lemma 2.6.8, their product as defined in
Definition 2.4.2 is unique, i.e., to prove (2.14), we have to show thatH m1+m2 |E (A×B) =
H m1 |C (A)H m2 |D(B) for any two Borel sets A and B .

We have

E =C ×D

=
⋃

i

Ci ×
⋃

j

D j

=
⋃

i , j

Ci ×D j . (A.10)
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As the union in (A.10) is disjoint, applying Theorem A.2.1 and the σ -additivity of
measures (Part (ii) of Definition 2.1.3) yields

H m1+m2 |E =
∑

i , j

H m1+m2 |Ci×D j
=
∑

i , j

H m1 |Ci
×H m2 |D j

. (A.11)

Thus, for any two Borel sets A and B ,

H m1+m2 |E (A×B)
(A.11)
=

∑

i , j

H m1 |Ci
(A)H m2 |D j

(B) =

=
�

∑

i

H m1 |Ci
(A)
�

 

∑

j

H m2 |D j
(B)

!

=

=
�

∑

i

H m1(Ci ∩A)
�

 

∑

j

H m2(D j ∩B)

!

=

(a)
= H m1 |C (A)H

m2 |D(B),

where (a) follows from the σ -additivity of measures, Part (ii) of Definition 2.1.3.

We define the function

hi , j : Ai ×B j ⊆R
m1+m2 →R2M

(x, y) 7→ ( fi (x), g j (y))

for all (i , j ) ∈N2. As the sets Ai ×B j are bounded and hi , j is Lipschitz, with Lipschitz
constant Lip(hi , j ) = max(Lip( fi ), Lip(g j )), the Borel sets hi , j (Ai × B j ) = Ci × D j are
(m1+m2)-rectifiable and their union E is thereforeB -countably (m1+m2)-rectifiable.

A.3. On the Decomposition of Mixtures
In Section 4.2 we analyzed mixtures of rectifiable measures of different dimensions. For several
results, it was crucial that the supports of these different measures be disjoint. The following
two lemmas show that such supports can always be found.

Lemma A.3.1. In the setup given in Assumptions (a1) to (a5), drop (4.3) (Em∩Em′ =∅ for m 6= m′).
Then it is still possible to find a new support eEm for each measure µm , such that,

eEm ∩ eEm′ =∅ for m 6= m′ (A.12)
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holds.

Proof. Define
eEm := Em\

⋃

m′<m

Em′ .

Then the sets eEm satisfy (A.12).
We need to check that eEm fulfills the requirements for a support in Definition 3.1.1. It

is noted that eEm is Borel as a finite intersection of Borel sets and thereforeB -countably m-
rectifiable according to Part (ii) of Corollary 2.6.9, which ensures Part (ii). Because for m′ < m,
H m(Em′) = 0, as proved in Corollary 2.6.12, we have H m(

⋃

m′<m Em′) = 0 by Part (i) of
Proposition 2.1.4. This yieldsH m|Em

=H m|
eEm

, which establishes Part (iii).

Lemma A.3.2. In the setup given in Assumptions (b1) to (b8), drop (4.8) (Fn1,n2
∩ Fm1,m2

=∅ for
(n1, n2) 6= (m1, m2)). It is then still possible to choose first and second supports eCn1,n2

and eDn1,n2
of

µn1,n2
for each (n1, n2) ∈ {0,1, . . . ,N}2, such that

(i)
eCn1
∩ eCm1

=∅ for n1 6= m1,

(ii)
eDn2
∩ eDm2

=∅ for n2 6= m2, and

(iii)
eFn1,n2

∩ eFm1,m2
=∅ for (n1, n2) 6= (m1, m2).

Proof. Let
eCn1,n2

:=Cn1,n2
\
⋃

n′1<n1

Cn′1
(A.13)

and
eDn1,n2

:=Dn1,n2
\
⋃

n′2<n2

Dn′2
.

To show Parts (i) and (ii) we proceed as follows. Let, without loss of generality, n1 > m1. We
assume x ∈ ( eCm1

∩ eCn1
), which will lead to a contradiction. According to (4.5), x ∈ eCm1,m2

for
some m2 and hence, by (A.13), x ∈Cm1,m2

and therefore, using again (4.5), x ∈Cm1
. Because

m1 < n1, according to (A.13), x /∈ eCn1,n2
for all n2 ∈ {0,1, . . . ,N}, which establishes x /∈ eCn1

,
contradicting our initial assumption. Part (ii) follows analogously. For showing Part (iii) let m1,
m2, n1, n2 be such that (n1, n2) 6= (m1, m2). Then either n1 6= m1 or n2 6= m2. Without loss of
generality we assume n1 6= m1. By Part (i), eCn1

∩ eCm1
=∅, which establishes eFn1,n2

∩ eFm1,m2
=∅

using (4.6).
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It remains to show that the newly defined sets are in fact valid supports of their respec-
tive measures. The sets eCn1,n2

and eDn1,n2
are Borel as intersections of Borel sets, hence they

are B -countably n1-rectifiable/B -countably n2-rectifiable, as proved in Part (ii) of Corol-
lary 2.6.9. It remains to show that µn1,n2

�H n1 |
eCn1,n2
×H n2 |

eDn1,n2
. We will achieve this by

showingH n1+n2 |Cn1,n2
×Dn1,n2

=H n1 |
eCn1,n2
×H n2 |

eDn1,n2
. For the two sets R :=

⋃

n′1<n1
Cn′1

and

S :=
⋃

n′2<n2
Dn′2

, by Part (iii) of Theorem 2.6.3,H n1(R) = 0 andH n2(S) = 0. Together with
Lemma 2.6.13 this results in

H n1+n2 |Cn1,n2
×Dn1,n2

(2.14)
= H n1 |Cn1,n2

×H n2 |Dn1,n2

= (H n1 |
eCn1,n2
+H n1 |R∩Cn1,n2

)× (H n2 |
eDn1,n2

+H n2 |S∩Dn1,n2
)

= H n1 |
eCn1,n2
×H n2 |

eDn1,n2
.
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Index

absolutely continuous, 8
Ac , 4
α(m), 13
Area Formula, 25

B(Ω), see Borel σ -algebra
Borel σ -algebra, 4
Borel-Lebesgue measure, 5
Br (x), 4

Caratheodory’s construction, 13
counting measure, 5

divergence, 38
ḋµ

dH m |E
, 17

entropy, 24
of aB -countably m-rectifiable

measure, 25
event, 12

hν(µ), see entropy
Hµ‖ν(Q), see relative entropy
H2(pn1,n2

), 39
H2(pm), 43
Hausdorff measure, 13
Hausdorff outer measure, 13

I (X ;Y ), see mutual information
induced measure, 6
integral, see Lebesgue integral

λ, see Lebesgue measure
Lebesgue integral, 7
Lebesgue measure, 5
Lipschitz constant, 14
Lipschitz function, 14

m-density, 20
of a Borel set, 21

marginal, 32
(S1,S2)-measurable function, 6
measurable space, 3
measure, 5

m-rectifiable, 17
B -countably m-rectifiable, 17
combinedB -countably
(n1, n2)-rectifiable, 31

measure space, 4
monotone continuity from below, 5
monotonicity, 5
µ-a.e., see µ-almost every or µ-almost

everywhere
µ-almost every, 6
µ-almost everywhere, 6
multiplicity, 14
mutual information, 39
mutually singular, 9

N ( f , y), see multiplicity

outer measure, 3

P(A), 4
probability measure, 12
probability space, 12
product σ -algebra, 11
product measurable space, 11

R+, 4
R̄, 4
R̄+, 4
random variable, 12
relative entropy, 38

61



A. Appendix

set

m-rectifiable, 15

B -countably m-rectifiable, 15

σ -additivity, 4

σ -algebra, 3

σ -finite, 8

σ -subadditivity, 5

simple function, 6

support

of an m-rectifiable measure, 17

T , see topology

theorem

Besicovitch differentiation, 21
Fubini’s, 11
Kirszbraun’s, 25
Lebesgue Decomposition, 9
Perez-Yaglom-Gelfand, 39
Rademacher’s, 53
Radon-Nikodým, 9

Θm (E , x), see m-density, of a Borel set
Θm (µ, x), see m-density
topology, 3

w.r.t., 1

ζ , see counting measure
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