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Zusammenfassung

Faserverbundwerkstoffe bedienen sich, nicht zuletzt aufgrund ihrer hervorragen-

den gewichtsspezifischen Eigenschaften, immer größer werdender Popularität in vie-

len Bereichen des Maschinenbaus. Um ihr volles Potential ausschöpfen zu können,

ist die Vorhersage des nichtlinearen Verhaltens von Strukturen aus diesen Materia-

len unabdingbar, was jedoch sehr hohen Rechenaufwand mit sich bringt und in der

Praxis bislang kaum durchführbar ist. Das Ziel dieser Arbeit ist es, die Vorhersa-

gemöglichkeiten linear elastischer Analysen großer Bauteile durch Berücksichtigung

von Informationen zu nichtlinearen Effekten, gewonnen über Simulationen auf klei-

neren Längenskalen, zu erweitern. Diese Vorgehensweise reduziert den Rechenauf-

wand auf ein praktikables Maß. Die vorgestellte Methode ist universell anwendbar,

wobei der Fokus dieser Arbeit auf die Anwendung auf Textillaminate gerichtet ist.

Es wird eine Modellierungsstrategie zur Simulation des nichtlinearen Verhal-

tens von Textillaminaten auf kleinen Längenskalen über sogenannte Einheitszel-

len beschrieben und mehrere Konstitutivgesetze, welche Schädigung und Plastizität

modellieren, vorgestellt. Eine Methodologie zur Kombination der aufgezeichneten

Nichtlinearitäten mit linear elastischen Berechnungen wird eingeführt, wobei zu-

erst die Erzeugung einer Datenbank, welche die nichtlinearen Einheitszellenantwor-

ten zu einer Verteilung von ebenen Spannungszuständen enthält, erklärt wird und

dann die Prozedur zur Bewertung linear elastisch berechneter Zustände hinsichtlich

auftretender Nichtlinearitäten vorgestellt wird. Die Generierung einer derartigen

Datenbank wird am Beispiel eines biaxialen Gewebes mit Körperbindung demon-

striert und die beschriebene Prozedur wird anhand eines U-Profils mit veränderli-

cher Flanschhöhe in einem 4-Punkt Biegeversuch präsentiert. Die vorgestellte Me-

thodik zeigt gute Anwendbarkeit bis zum leicht nichtlinearen Bereich und erlaubt

verbesserte Aussagen über eventuell vorhandene Festigkeitsreserven wodurch eine

detailliertere Auslegung von Faserverbundbauteilen ermöglicht werden soll.
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Abstract

Fibre reinforced composites are becoming increasingly popular in almost every

field of engineering, not least due to their favourable weight specific properties. In

order to exploit the full potential of these materials, a reliable prediction of the

nonlinear response of structural components is inevitable, which, however, claims

huge computational effort and is, in practice, hardly feasible up to now. The aim

of this work is to extend the predictional capabilities of large-scale linear elastic

analyses by combining them with information on nonlinear effects gained through

analyses at smaller length scales, thus reducing the computational demands to a

practicable extent. The presented approach is universally applicable, while this

work concentrates on the application on textile composites.

A modelling strategy for capturing the nonlinear mechanical behaviour of textile

composites at small length scales is described on the basis of a so-called unit cell

approach and several constitutive models for simulating damage and plasticity are

presented. A methodology for combining the monitored nonlinearities at small

length scales with the results of large-scale linear elastic analyses is introduced. In

a first step, a database of nonlinear unit cell responses to a distribution of plane

stress states is generated and, second, a procedure for assessing linear elastically

computed states regarding occurring nonlinearities is proposed. The generation

of such a database is demonstrated by the example of a 2/2 twill weave. In this

context, also the influence of the application of different constitutive models on the

evolution of dissipated energies is investigated. The assessment of nonlinearities in

large components is presented by the example of a U-section beam with variable

flange height in a four point bending test set-up consisting of several layers of ±30◦

twill braidings. The proposed methodology shows good applicability up to the

slightly nonlinear regime thus giving information beyond the linear elastic limit and

allows for a more detailed investigation of the mechanical performance of composites.
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Chapter 1

Introduction

1.1 General Remarks

During the past years the application of fibre reinforced polymers (FRP) has in-

creased significantly in almost every field of engineering. Due to their favourable

weight specific properties, namely high specific stiffness and strength, they are par-

ticularly advantageous in lightweight components. Therefore especially aerospace

and automotive industry aim at exploiting the potential of FRPs more and more.

To this end, it is necessary to reliably predict the structural response of com-

ponents consisting of FRPs up to the nonlinear regime which, however, is still

subject to research nowadays. Although computational methods and performance

have improved, mostly linear analyses are used for stiffness and strength predic-

tions thus limiting the range of application. The aim of this work is to contribute

to the development of computational models which allow for gaining knowledge

of the structural response beyond the linear limit, thus giving information about

strength reserve and helping to better identify critical spots in a construction.
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Figure 1.1: Materials usage in a Boeing 787 Dreamliner. [22]

In order to recall the importance of FRPs the makeup of the Boeing 787

Dreamliner is shown in Fig. 1.1 as an example from aerospace industry. As can be

seen composite materials are used in every major part, thus, increasing the amount

of composites to 50 percent of the total mass. The following sections give a short

overview of the different types of FRPs and their failure behaviour. Furthermore

typical analysis methods are outlined in order to give some basic knowledge in

the field of composites engineering. The textbook [32] may be useful in order to

get more detailed information on the structure, properties and also production

processes of FRPs.

1.2 Scope of the Present Work

The prediction of all relevant nonlinear mechanisms in large composite components

leads to vast computational demands and is, in practice, hardly feasible up to now.
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The aim of this work is to extend the predictional capabilities of large-scale linear

elastic analyses by combining them with information on nonlinear effects gained

through analyses at smaller length scales, thus reducing the computational effort

to a practicable extent. The presented approach is universally applicable, however,

this work concentrates on the application on textile composites.

First, a general classification of composites with focus on fibre reinforced poly-

mers is conducted and a short summary of their failure behaviour is given. Addi-

tionally, remarks on first ply failure analysis and progressive damage modelling are

listed. After these general informations on the field of composites engineering are

stated, the utilized modelling strategy for textile composites is described, where a

so-called unit cell approach is used to model the entire nonlinear behaviour of a

textile ply. After different constitutive models for simulating damage and plasticity

are described a method for monitoring the occurring nonlinearities is presented.

Chapter 4 introduces a two step methodology for combining the monitored

nonlinearities at small length scales with the results of large-scale linear elastic

analyses. Therefore, in a first step, a database of nonlinear unit cell responses to

a distribution of plane stress states is generated, where each state is computed

along radial stress and radial strain paths in order to account for the influence

of non-proportional loading in the nonlinear regime. Second, a procedure for

mapping linear to nonlinear states is proposed and the utilization of the generated

database in order to assess linear elastically computed states regarding occurring

nonlinearities is explained.

The example of a twill weave is used to demonstrate the generation of such

a database and levels of dissipated energies corresponding to different nonlinear

mechanisms are illustrated as envelopes in plane stress space. In this context, also

the influence of the application of different constitutive models on the evolution

3



of dissipated energies is investigated. The assessment of nonlinearities in large

components is presented by the example of a U-section beam with variable flange

height in a four point bending test set-up consisting of several layers of ±30◦ twill

braidings. In the end, a short summary of the work is given and conclusions on

the presented methodology are stated.
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Chapter 2

Fibre Reinforced Composites

2.1 Classification of Composites

In the most general sense, composites are materials consisting of two or more

different constituents with clearly recognizable interfaces. The basic advantage of

these materials lies in the combination itself, which allows for the design of specific

material properties customized for particular load cases. Usually, such a composite

consists of two phases (constituents), where one of them is characterized by high

stiffness and strength (reinforcement) thus being responsible for carrying the load

and the other one ensures the cohesion of the compound (matrix). A classification

of the various types can be conducted either by the matrix material or the type

of the reinforcement. Proceeding with the latter, particulate composites, discon-

tinuous fibre reinforced composites and continuous fibre reinforced composites are

distinguished. Since this work deals with continuous fibre reinforced composites

with a polymer matrix, continuous fibre reinforced polymers (CFRPs), the other

two categories are not further discussed.
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In CFRPs very thin fibres, mostly glass or carbon fibres, are combined to

form linear strands which are either directly used to form a component or further

processed to result in some 2 dimensional preform. The strands differ in the

number of fibres combined and their twist and are known as rovings, tows or

yarns, to name some of them. Often, lightweight structures contain thin-walled

shell structures where the use of planar preforms is beneficial. In this case the

fibres are processed to weaves, braids, knitted fabrics or unidirectional non-woven

arrangements (tapes) depending on the field of application, compare Fig. 2.1.

The waviness of the fibres additionally influences the material properties of the

compound, meaning that a higher amount of fibre curvature leads to additional

stresses in the fibres, which results in lower stiffness and strength of the final

material. However, the waviness adds more resistance against shear distortion and

the unhardened preform is more stable and thus easier to handle in processing.

Depending on the production method, the fibre material already combined with

(a) weave (b) knitted fabric (c) fleece

(d) braid (e) laminate

Figure 2.1: (a) to (d): Different fibre preforms. (e) Example of a laminate con-
sisting of 3 unidirectional layers with different orientations. [32]
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an amount of matrix material, for example epoxy, which is partially cured to

allow easy handling. Those pre-impregnated fibres (pre-pregs), mostly weaves

or unidirectional tapes, are very popular in aerospace applications. In order to

form a component, several layers (lamina) of those pre-processed arrangements

are combined (laminate), often with varying fibre orientation as optimization for

the most relevant load cases.

Weaves are the most common fibre arrangements in lightweight structures

where more than one fibre orientation is required. Their drapability, surface

smoothness and stability are mainly controlled by the weave style. Usually they

are represented by two perpendicular oriented fibre directions called weft and warp.

In the case of the simplest one, the plain weave, each warp fibre passes one weft

fibre on top and the following one on the bottom continued alternately, compare

Fig. 2.2 (a). However, the high degree of fibre waviness in such plain weaves causes

poorer drapability and decreases fatigue strength and other mechanical properties,

cf. [32]. Therefore other weave styles with reduced waviness, like twill weaves or

satin weaves, are used for highly loaded components up to unidirectional weaves,

where 90 percent of the fibres are oriented in the same direction (warp fibres) and

the weft fibres are just used to keep their position, compare Fig. 2.2 (b) to (d).

Braided fabrics are more complex in production than weaves and also limited

in dimensions due to the size of the braiding machine. Nevertheless, this technique

is often used to form axi-symmetric bodies like tubes or pressure cylinders. The

fibre orientation is adjustable from 15◦ to 85◦ with respect to the axial direction.

Unidirectional tapes are quite similar to unidirectional weaves, however, the

positioning of the fibres is ensured by stitching in this case. Fleeces have rather

poor mechanical properties and are primarily used as the outermost layer of a

composite to generate a smooth surface and to improve the impact strength and
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(a) plain weave (b) twill weave

(c) satin weave (d) basket weave

Figure 2.2: Different weave styles. [4]

resistance to weather. Knitted fabrics feature the highest flexibility and the ability

to wrinkle-free cover 3D curved shapes with the disadvantage of lower mechanical

properties, cf. [32].

Finally, it shall be stated that the mechanical response of the composites de-

scribed above usually varies depending on the load orientation, thus being non-

isotropic. In most cases the material symmetry is orthotropic or transversally

isotropic but the final properties depend on the ones of each layer and the se-

quence of the layers in the laminate. Additionally those materials are obviously

inhomogeneous. In order to properly assess the loading state and strength of a

CFRP component, knowledge of the possible failure mechanisms is inevitable.
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2.2 Failure-Behaviour of Fibre Reinforced

Polymers

Besides global failure of the structure due to huge deformations or global instability

there are several mechanisms arising from internal material failure at the micro-

or mesoscale. Those can be distinguished between failure in a single layer (ply) of

the laminate or in the interface between the plies (delamination). The following

remarks describe the failure behaviour of unidirectional fibre reinforced polymers

and are based on [32] and [33] but the interested reader my also be referred to [25],

[27] and [17].

Ply failure comprises cracking of the fibres, the matrix and also failure of the

interface between the fibres and the matrix. Since the mechanical response of FRPs

is direction dependent, the occurring failure modes also show direction dependence.

Thus, uniaxial tensile loads in fibre direction may lead to fibre cracking, fibre

pullout, failure due to shear stresses in the fibre-matrix interface or debonding

of fibres and matrix. The actually dominating mechanism is depending on the

materials, the fibre volume fraction and of course potential shortcomings in the

production process. Considering uniaxial compressive loading in fibre direction

several other mechanisms may occur. In this context, transverse tensile strains

caused by the different poisson ratios of fibre and matrix material can lead to

transversal cracks in the matrix (transverse splitting) and also in the interface

(debonding). Additionally, instability phenomena can arise since the fibres act like

thin columns elastically embedded in the matrix. The corresponding failure mode

is called fibre microbuckling where adjacent fibres either buckle independently

(extensional mode) when the distance between them is high enough or in parallel

(shear mode). Another instability mechanism leads to the formation of so-called
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kinkbands and is known as fibre kinking. In this case several adjacent fibres kink in

the same direction often starting from regions with small imperfections. Uniaxial

tensile loads in transversal direction cause stress concentrations in the matrix

due to the different Young’s modulus of the fibre material which obstructs the

matrix deformation. This reduces the tensile strength compared to the one of the

plain matrix material. The occurring mechanisms are transverse matrix cracking,

debonding and also fibre splitting. The corresponding compressive loading results

in matrix shear failure, debonding or fibre splitting where a combination of all

modes can occur along shear planes. Typically, these effects are accompanied by

plasticity effects. The last generic load case which shall be discussed is in-plane

shear. Here, the relevant failure mode depends on the strength of the fibre-matrix

interface and is either characterized by matrix shear failure if the interface is

strong or debonding in the opposite case, where both modes may be accompanied

by unrecoverable strain accumulation. Additionally, also a combination of both is

possible.

Delamination describes the separation of adjacent layers of a laminate due

to interlaminar normal or shear tractions, respectively, and can occur inside the

laminate but also in the vicinity of free edges. Delamination inside a laminate can

be caused by several effects, some of them are impact damage, fatigue loading,

moisture or structural discontinuities. Free edge delamination, on the other hand,

occurs due to different material properties of adjacent plies leading to a tri-axial

stress state in those regions. The range of influence of this so-called free edge effect

is about the same size as the laminate thickness.

Considering a laminate under some general stress state which is proportionally

increased, at some point failure will occur at the weakest point of the laminate (first

ply failure). If the load is further increased stress redistribution occurs and more

10



regions are going to be damaged but the ultimate strength may not be reached

yet. The point where the whole laminate fails is called last ply failure.

2.2.1 First Ply Failure Analysis

In order to evaluate stresses and strains in a laminate elastostatic methods are

applied. According to the historical progress, most of those methods have been

developed for the application on UD laminates, as for example the classical lamina-

tion theory which can be reviewed in [15]. Here, the global strains of the laminate

are calculated and evaluated for each ply followed by a transformation to the re-

spective local coordinate system. Now the local constitutive equations are solved

which finally yields the occurring stresses in each ply.

However, a strength analysis does not only require knowledge of the actual

acting stresses but also of the maximum allowable ones. Those are, in most cases,

determined for simple load cases thus necessitating the formulation of a criterion

to differentiate complex stress states leading to failure from allowable states. Such

a criterion,

F (σij , R
t,c
kl ) ⋚ 1, (2.1)

represented in form of a general function F of the stress tensor σij and the material

strengths Rt,c
kl for tension t and compression c identifies stress states causing first

identifiable damage of the ply (first ply failure).

Usually these failure criteria are applied at the ply level with reference to the

ply coordinate system, where a value of the function in Eq. (2.1) smaller than

1 means that the currently acting load can be withstood without failure while a

value larger than 1 marks states where failure has already occurred. Assuming

linear elastic material behaviour, a scalar factor λ representing the value, the

11
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Figure 2.3: Visualization of a failure criterion as an envelope of allowable conditions
for a biaxial stress state.

current stress tensor σij has to be multiplied with in order to reach the limit state

(F = 1) can be introduced, thus representing the safety factor. Additionally to the

mathematical formulation above, failure criteria can also be visualized as failure

surfaces or failure envelopes in stress space, compare Fig. 2.3. The failure envelope

itself differs according to the actual criterion used and represents all stress states

which lead to first ply failure (FPF) upon further load increase.

Basically, there are two types of failure criteria. They can either be a mathe-

matical construction formulated in a way which eases the adaption to fit experi-

mental data, like Tsai-Hill or Tsai-Wu (cf. [15], [16]), or they are motivated from

physical failure mechanisms. A popular representative of the latter is the criterion

developed by Puck, cf. [25], [27], [26], and also the one from Hashin [12]. The

World-Wide Failure Exercise [14] aims at validating the predictive capabilities of

several failure criteria and reveals that the Puck criterion ranks among the most

accurate ones. Although a FPF analysis is straightforward in its use for initial

component design and has only low computational demands it gives no informa-

tion about what happens after reaching the failure condition in a single ply of the

laminate. Thus, it is not possible to estimate the severeness of the current state

12



and no predication of the strength reserve can be given. In order to do so, the

application of continuum damage mechanics is necessary.

2.2.2 Progressive damage modelling

The purpose of progressive damage modelling lies in the coverage of the mechani-

cal behaviour of a laminate after a failure condition, as described above, has been

met at a certain point in one ply. In order to account for the influence of propa-

gating damage, two basically different approaches are possible. On the one hand,

concepts from fracture mechanics can be utilized for evaluating crack initiations

and propagations which give rise to the amount of damage and also the associ-

ated stress redistribution. However, the underlying computational model needs to

resolve stresses and strains at a microscopic level which increases the complexity

and restricts their application to small domains.

Another approach is known as continuum damage mechanics and is applied at

larger length scales, such as the mesoscopic or even the macroscopic level. Here,

the inhomogeneous material, typically a single ply, is assumed to be homogeneous

and the material properties of the constituents are replaced by effective material

properties. Additionally, damage is also assumed to be evenly distributed and

causes stiffness degradation of the affected domain. In this way load redistribu-

tion can be modelled, although damage modes of adjacent domains do not interact

directly. The benefit of this method reflects in the fact that the stress and strain

state only needs to be known at, for example, the ply-level which reduces the com-

putational effort essentially. A simple way to account for the stiffness degradation

is the use of a scalar damage variable d, as proposed in [28].

Edam = (1− d)Einit, (2.2)

13



In the uniaxial case, its impact on the Young’s modulus can be described accord-

ing to Eq. (2.2), where the Young’s modulus of the undamaged material Einit

is reduced according to the present amount of damage d in order to obtain the

Young’s modulus of the damaged configuration Edam. This approach can also be

generalized for multi-axial stress states resulting in tensorial equations and sev-

eral damage variables. However, the formulation of a constitutive law requires

the definition of the evolution of these damage variables and their effect on the

degradation of material properties. One methodology is based on FPF theories

and tries to describe propagating damage in a phenomenological way according to

experimental data. Although relations set up in this way are quite straightforward,

they are not necessarily physically consistent, meaning that these constitutive laws

do not fulfil conservation equations. Therefore most continuum damage models

incorporate thermodynamical considerations to overcome this disadvantage. Us-

ing continuum mechanics to model damage comprises the assumption that the

length scale of the cracks must be considerably smaller than the characteristic

length scale of the continuum, e.g. the ply thickness, which doesn’t always hold

true. All the above mentioned approaches lead to nonlinearities in the material

response and aim at reproducing the real material behaviour. However, continued

loading and unloading tests of specimens have shown that unrecoverable strains

can occur, thus giving rise to include plasticity in more sophisticated models as

well. A good overview of the development of damage mechanics and the avail-

able models is given in [8], which also describes a constitutive model used in this

work. It will be discussed in more detail in the following chapters together with

the simpler one from [18], which is implemented in the commercial finite element

code Abaqus/Standard v6.12 (Dassault Systemes Simulia Corp., Providence, RI,

USA).
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Chapter 3

Modelling Textile Composites

The structure of a composite laminate can be divided into several length scales

which have to be accounted for in the corresponding model. Typically, three

length scales are distinguished, namely the macroscale, mesoscale and mircoscale.

A characteristic length of the component is then denoted as macroscale while,

for example, laminate or ply level represents the mesoscale in a composite. The

microscale describes the length scale of the inhomogeneities like the fibre diam-

eters or distances between them. This hierarchy can be seen in Fig. 3.1, where

a part of an aeroplane’s wing consists of textile laminates. In order to describe

the mechanical properties of such inhomogeneous materials, micromechanical ap-

proaches can be used beneficially when the length scales are sufficiently far apart.

Then it can be assumed that the stress and strain fields at smaller length scales

(microfields) influence the macroscopic behaviour only via their volume averages

and the macroscopic fields are seen as constant from a microscopic point of view.

Accordingly, once the microfields are determined they are averaged over a specified

volume in order to get the macroscopic response which agrees with the overall ma-

terial properties if the averaging volume contains all necessary information. When

15



Figure 3.1: Different lengths scales in a component consisting of composite lami-
nates. The structure itself represents the macroscale (left, based on [24]). When
zooming in, the plies of the laminate, built from several tows, get visible and char-
acterize the mesoscale in this case (middle). Another step closer, single fibres in a
ply are recognizable denoting the microscale (right, [8]).

this is the case, a representative volume element (RVE) is chosen. The described

procedure is known as homogenization, whereas the opposite way is termed local-

ization. Basically, two groups of micromechanical methods can be distinguished,

where some describe the microgeometries based on statistical information, like

mean field approaches (MFA) or bounding methods, and others try to describe

discrete microstructures. The following section describes the general geometric

modelling of a composite’s microstructure by applying a method of the latter

group, a periodic microfield approach (PMA), and is based on [23] together with

[3], which represents a good summary of micromechanical methods. In the context

of this work a PMA is utilized to model the mesoscale geometry of a textile ply

in order to predict the entire nonlinear response at this length scale. The second

part of this chapter describes the applied material models at the mesoscale thus

giving an entire overview of the modelling strategy.
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3.1 Unit Cell Approach

The characteristics of inhomogeneous materials featuring periodic arrangements of

constituents, as typical for textile composites, can be studied conveniently using

PMAs. The most common method divides the meso/mircostructure into period-

ically repeating unit cells where the analysis of just one of them is sufficient for

covering the entire material behaviour. However, it shall be noted that this ap-

proach considers the investigated domain to be infinitely extended by translations

of the unit cell along the axes of periodicity which has to be taken into account

when applying the results to the macrostructure. The analyses in this work utilize

a unit cell model in combination with the finite element method for the numerical

evaluation.

3.1.1 Periodicity

Periodic materials can be categorized according to their number of axes of peri-

odicity. The most general type exhibits three axes of periodicity and is termed

spatially periodic whereas two axes of periodicity denote plane periodic arrange-

ments which are discussed in this section.

According to [2] and [23] a periodic medium can be described by independent

vectors of periodicity pk where k = A,B in the case of plane periodicity.

pA = l1 e1

pB = d2 e1 + l2 e2
(3.1)

These vectors are in general not necessarily perpendicular to each other, as illus-

trated in Fig. 3.2, and are defined corresponding to Eq. (3.1) where l1 and l2 are
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Figure 3.2: Plane periodic arrangement with periodicity vectors pA and pB.

the dimensions of the unit cell and d2 represents the offset in e2-direction, meaning

that d2 = 0 results in perpendicular periodicity vectors. The geometrical and me-

chanical properties of a point x1 of the periodic material are identical to the ones

of any point x2 if the vector x2−x1 is a linear combination of integral multiples of

pA and pB. The vector t in Eq. (3.2) represents such a linear combination, where

mA and mB are integers.

t = mA pA +mB pB (3.2)

Considering a function F(x) describing the spatial variation of an arbitrary ma-

terial property or state the above statement can be expressed as

F(x) = F(x+ t), (3.3)

allowing the investigations to be conducted on the domain of a single unit cell

without loss of information. The shape of the unit cell is determined by the ma-

terial’s topology, however often several arrangements are possible as illustrated in

Fig. 3.3. Additionally to the spatial description of periodic properties the bound-

ary conditions along the borders of the unit cell have to be defined accordingly.

The faces SI , cf. Fig. 3.2, therefore have to imitate an infinite extension of the do-

main, meaning that reaching the boundary on one side of the unit cell corresponds

to start from the opposite side again. The respective mechanical requirements are
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Figure 3.3: Possible minimum-size unit cell shapes for a two dimensional periodic
arrangement of inhomogeneities with periodicity vectors p

1
and p

2
. Paired faces

are marked by identical line styles. [3]

the continuity of the traction vector Ti and the compatibility of deformations along

SI , where the last condition makes sure that neither overlapping nor separation

occurs. The first condition reads as follows (cf. [23], [2])

T+
i = −T−

i n+
i = −n−

i , (3.4)

where the superscripts + and − denote opposite sides and ni represents the normal

vector. The requirement of compatible deformations leads to a periodic strain

field and can be expressed in terms of displacements for shell-like planar media

according to Eq. (3.5) (cf. [23]), where Eij is the mean (macroscopic) strain tensor,

χij the mean (macroscopic) curvature change tensor (cf. shell theory) and uPi (x)

denotes periodically varying microscopic fluctuations of the displacement field.

ui(x) = Eij xj − χij xj x3 + uPi (x) i, j = 1, 2

u3(x) =
1

2
χmn xm xn + uP3 (x) m,n = 1, 2

(3.5)

19



The upper and lower faces of the unit cell, SE , on the other hand, represent a

“true” external boundary in the plane periodic case and are therefore stress-free,

thus giving rise to assume plane stress conditions for the further analysis. The

above described conditions can be summarized under the term “plane periodic

boundary conditions”.

3.1.2 Homogenization of Stresses and Strains

The above described unit cell model is going to be incorporated into a finite element

model. However, this approach requires some special techniques in comparison to

standard FEM applications. Besides the periodic couplings explained above, the

question arises of how macroscopic (far field) stress and strain states are applied

as boundary conditions to the unit cell since the variations caused by the mi-

crostructure are not known a priori. On the other hand, the computed microfields

include these variations whereas mostly mean (macroscopic) fields are of interest

for evaluating material properties.

According to [23] it can be shown that the mean strain and stress tensors Eij

and Σij are identical to the volume average of the corresponding microfields εij(x)

and σij(x) over the unit cell volume, cf. Eq. (3.6).

Eij =
1

V

∫

V

εij(x)dV Σij =
1

V

∫

V

σij(x)dV (3.6)

Although these relations can be used for homogenization, they are not useful for

applying suitable boundary conditions arising from far field loads. Therefore the

“method of macroscopic degrees of freedom”, see [21], is utilized for the evaluation

of microfields and application of loads. In order to control the analysis, concen-

trated nodal forces or displacements are applied at master nodes, which in turn
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Figure 3.4: Example of a 2D unit cell with periodicity vectors pA and pB and
the corresponding master nodes A and B. A possible deformed state is shown as
dashed lines. The origin O of the 1,2 coordinate system is connected to the lower
left corner of the unit cell.

govern the unit cell’s response and are additionally used for evaluating the mean

stress and strain tensors. The homogenized strain tensor Eij follows directly from

Eq. (3.5) with x3 = 0 and the displacements for two corresponding points can then

be written as

ui(x) = Eijxj + uPi (x)

ui(x+ t) = Eij(xj + tj) + uPi (x)
(3.7)

Considering the situation illustrated in Fig. 3.4, where x = 0 and ui(0) = 0, it

follows that t = pk. Taking the difference of the two relations in Eq. (3.7) and

keeping in mind that the periodically varying fluctuations of the displacement field

are equal uPi (0) = uPi (p
k) leads to

ui(p
k) = uki = Eijp

k
j k = A,B (3.8)

where uki indicates the master node displacements. The periodicity vectors pA

and pB represent the undeformed state and are mapped onto the corresponding
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displacements via the mean strain tensor Eij. More precisely, Eij corresponds to the

displacement gradient tensor according to finite strain theory and is just identical

to the linear strain tensor in the case of small deformations. This aspect will be

discussed in the following section. Eq. (3.8) can also be written in matrix form as




uA1 uB1

uA2 uB2





︸ ︷︷ ︸

U

=




E11 E12

E21 E22





︸ ︷︷ ︸

E

·




pA1 pB1

pA2 pB2





︸ ︷︷ ︸

P

(3.9)

and is used for evaluating the boundary conditions in a strain controlled analysis.

The superscripts indicate the respective master node whereas the subscripts cor-

respond to the coordinate system in Fig. 3.4. In order to gain the homogenized

strains as the result of a stress controlled analysis, Eq. (3.9) can be transformed

as follows.

E = U · P−1 (3.10)

If the out of plane behaviour of the investigated material is of interest a 3D unit cell

has to be used and the corresponding mean curvature tensor X can be evaluated

in a similar way as described in [19], cf. Eq. (3.11) where R indicates the rotation

angles between top and bottom master nodes.

R = X · P X = R · P−1 (3.11)

In order to apply macroscopic stress states ΣM or the respective surface trac-

tions TM,k using the master node concept, the following relation is obtained by

employing the divergence theorem ([3])

F k
i =

∫

Γk

TM,k
i dΓ TM,k

i = ΣM
ji n

k
j (3.12)

22



where the index k indicates the master node, Γk and nk
j the corresponding surface

and normal vector, TM,k
i the traction vector related to the far field load along

Γk and F k
i the master node force. The opposite way, gaining the homogenized

(macroscopic) stress tensor Σ from the master node forces is conducted as follows.

Considering Eq. (3.12), the traction T PK1,k
i along the surface Γk slaved to the

master node k is evaluated as

T PK1,k
i =

F k
i

Ak
0

(3.13)

with Ak
0 as the area of Γk at the undeformed state. The superscript PK1 indicates

the connection to the first Piola Kirchhoff stress tensor which is discussed in the

following section. Eq. (3.14) shows the relation between the traction T PK1,k
i and

the corresponding stress tensor ΣPK1,k
ji .

T PK1,k
i = ΣPK1,k

ji nk
0j (3.14)

nk
0j describes the vector normal to the surface Γk at the undeformed state and is

perpendicular to the respective periodicity vector pki .

Now, that the application of loads and displacements and also the evaluation

of homogenized (mean) stress and strain fields using the master node concept have

been explained, the occurring stress and strain measures shall be discussed in more

detail as already referred above.

3.1.3 Nonlinear Stress and Strain Measures

Although geometric nonlinearities may appear, the use of linearized stress and

strain relations for homogenization and the application of far field loads would be
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sufficient in most cases. However, the formulations above give rise to nonlinear

measures and in order to keep consistency a short summary of stress and strain

measures and the corresponding transformations shall be given. A more detailed

description can be found in [1] which also represents the basis for the remarks

below.

The motion of a material body can be described by the motion of its material

points where rigid-body displacements and deformations can occur. If those ma-

terial points are mapped onto the Euclidian space each of them is assigned to a

spatial point. Prescribing a fixed reference frame, the position of a material point

can be described by the position vector x(t) for every point in time t. Additionally

a reference configuration a at the reference time t0 is introduced, cf. Eq. (3.15),

which uniquely marks a specific material point.

x(t0) = a (3.15)

The motion of a specific material point can then be described as trajectory within

a cartesian coordinate system according to Eq. (3.16) and is illustrated in Fig. 3.5.

xi = xi(aj , t) (3.16)

Here, a specific material point is chosen and the change of related quantities is

described with respect to this point. This approach is known as Lagrangian de-

scription. Since the deformation of a body is described by Eq. (3.16), a deformation

gradient tensor F can be introduced, which maps line elements from the reference

configuration da to the current configuration dx as illustrated in Fig. 3.6.

Fij =
∂xi
∂aj

dx = F · da (3.17)

24



x2, a2

x1, a1

x3, a3

x

a

P (ai)
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Figure 3.5: Trajectory of a material point P from the reference state a to an
arbitrary state x. [1]

The transformation of area elements follows accordingly. An area element of the

reference configuration is defined by two corresponding line elements, Eq. (3.18)

top, just as the one of the current configuration, Eq. (3.18) bottom.

dA0 = da1 × da2

dA = dx1 × dx2 = (F · da1)× (F · da2)
(3.18)

After some manipulations the following relation is obtained.

dA = (detF )(F T )−1 · dA0 (3.19)

Finally the transformation of a volume element is defined in Eq. (3.20)

dV0 = |(da1 × da2) · da3|

dV = |(dx1 × dx2)| · dx3|

dV = |detF |dV0

(3.20)
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Figure 3.6: Transformation of a line element da of the reference configuration to
the current configuration dx. [1]

The deformation of a body described in Eq. (3.16) can also be formulated in terms

of displacements ui.

xi = ai + ui(a, t) (3.21)

The definition of the deformation gradient tensor, Eq. (3.17), then gives

Fij =
∂xi
∂aj

= Iij +
∂ui
∂aj

Jij =
∂ui
∂aj

(3.22)

with the displacement gradient tensor Jij. Since the deformation gradient tensor

Fij and also the displacement gradient tensor Jij still contain possibly occurring

rigid body motions and furthermore refer to the current configuration as well

as to the reference configuration they are not appropriate for measuring strains.

Therefore the rigid body motions are eliminated via a polar decomposition of Fij,

F = R ·U = V ·R (3.23)
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whereR·U is termed right polar decomposition and V ·R left polar decomposition.

U and V cause dilatation or compression of a line element along their principal

directions whereas R is orthogonal and responsible for a rigid body rotation. Thus

the following deformation tensors are obtained.

U = (F T · F )1/2 C = U 2 = (F T · F )

V = (F · F T )1/2 B = V 2 = (F · F T )
(3.24)

An interpretation of the right stretch tensor U , the left stretch tensor V and the

right and left Cauchy-Green tensors C and V is given in [1] (pages 94-95). The

Green-Lagrange strain tensor G is then defined according to Eq. (3.25), I denotes

the identity tensor.

G =
1

2
[C − I] (3.25)

G, in contrast to F , represents a symmetric tensor and gives G = 0 in the case of

rigid body motions. Another popular strain measure is the so-called logarithmic

strain or true strain, respectively. Motivated from uniaxial tension experiments

where the strain rate is evaluated as the ratio of length change to current length

the logarithmic strain definition, Eq. (3.26), can be generalized to three dimensions

as shown in Eq. (3.27) ([6]).

dεln =
dl

l
εln = ln(

l

l0
) (3.26)

Here, the natural logarithm of the left stretch tensor V is evaluated using the

method of spectral decomposition. Therefore the logarithm is applied to the eigen-

values λi of V which are then multiplied with the tensor built form the dyades of

the normalized eigenvectors of V .

ε
ln
= ln(V ) = ln(λi) ni ⊗ ni (3.27)
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Now that the most relevant strain tensors have been defined the corresponding

stress measures shall be discussed. According to the Euler-Cauchy stress principle,

external loads generate distributed forces within a body which can be described

as tractions Ti(xi, ni, t) depending on the considered area dA and the respective

normal vector ni, compare Fig. 3.7. Thus, the Cauchy traction vector is defined

as a measure for the internal load acting at a specific point.

TCa.
i (xi, ni, t) =

dfi
dA

. (3.28)

Since this formulation depends not only on the location but also on the orientation

of the considered plane, the stress state at a certain point is defined by the entirety

of traction vectors arising from an infinte number of plane orientations. A more

favourable characterization of the stress state is represented by the stress tensor,

which is independent of the plane orientation. Therefore the Cauchy stress tensor

σCa. follows as

TCa.
i = σCa.

ji nj (3.29)

where the superscript indicates that Cauchy measures are described. It shall be

noted that these measures just refer to the current configuration, meaning that

dA

df

df

Figure 3.7: Illustration of the Euler-Cauchy stress principle. [1]
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the current differential area element dA and normal vector ni, cf. Eqs. (3.18)

and (3.19), as well as the current differential force vector dfi are used to determine

the stress state.

In some situations it is advantageous to refer to the reference configuration

which is the case for the Piola-Kirchoff traction vectors and stress tensors. The

first Piola-Kirchhoff traction vector refers the current differential force vector dfi to

the differential area element of the reference configuration dA0. The corresponding

stress tensor is then defined according to Eq. (3.30), where n0j denotes the normal

vector of the considered plane in the reference configuration. Stresses defined in

this way are also termed engineering stresses.

T PK1
i =

dfi
dA0

T PK1
i = σPK1

ji n0j (3.30)

The second Piola-Kirchhoff traction vector and the corresponding stress tensor are

completely defined in the reference configuration, as shown in Eq. (3.31), and have

no straight physical meaning but the representation of the current stress state in

the reference configuration.

T PK2
i =

df0i
dA0

σPK2 = σPK1 · F−T (3.31)

df0i denotes the differential force vector corresponding to the reference configura-

tion. All the above mentioned stress measures can be transformed into each other

by using the transformation rules for line and area elements, Eqs. (3.17) and (3.19).

σPK1 = det(F )F−1 · σCa.

σPK2 = det(F )[F−1 · σCa. · F−T ]
(3.32)

When stress and strain tensors are linked together, special care has to be taken ac-
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cording their physical relation so that the specific internal power ė gives identical

values for conjugated tensors. The corresponding pairs for the presented ten-

sors are given in Eq. (3.34), where the superscripted dot indicates the substantial

derivative of the respective strain tensors.

ρė = σCa. · ·ε̇
ln
, ρ0ė = σPK1 · ·Ḟ , ρ0ė = σPK2 · ·Ġ (3.33)

ρ and ρ0, respectively, denote the mass density and the double dot product (··) is

defined as

A · ·B = Aij Bji (3.34)

3.2 Material Nonlinearities

Besides the geometric description of the compound proper constitutive models have

to be assigned to each of the constituents in order to obtain useful predictions of the

overall material behaviour. The analyses carried out in this work utilize different

material models and compare their effects on the predicted response. The following

sections provide a short description of these models together with an approach for

monitoring occurring nonlinearities.

3.2.1 Elasto-Brittle-Damage Model

This section describes a constitutive law capable of predicting the onset of damage

and the post damage behaviour of transversally isotropic elastic-brittle materi-

als. It is formulated in plane stress space and based on the assumptions that

the undamaged material response is linear elastic and damage is initiated with-

out plastic deformation. Hence, the influence of possibly occurring plasticity is
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neglected. However, fibre reinforced materials often exhibit such behaviour. This

constitutive model has been proposed in [18] and is implement in the commercial

finite element code Abaqus.

Damage initiation

In order to determine the onset of material degradation at a specific point the

failure criterion proposed by Hashin [12] is used, which distinguishes between four

different failure mechanisms: fibre tension (σ̂ll ≥ 0),

Fft =

(
σ̂ll
XT

)2

+ α

(
σ̂lq
SL

)2

= 1, (3.35)

fibre compression (σ̂ll < 0),

Ffc =

(
σ̂ll
XC

)2

= 1, (3.36)

matrix tension (σ̂qq ≥ 0),

Fmt =

(
σ̂qq
Y T

)2

+ α

(
σ̂lq
SL

)2

= 1, (3.37)

and matrix compression (σ̂qq < 0),

Fmc =

(
σ̂ll
2ST

)2

+

[(
Y C

2ST

)2

− 1

]

σ̂qq
Y C

+

(
σ̂lq
SL

)2

= 1. (3.38)

Although this criterion has shown to may not accurately predict the onset of failure

it is widely used in industry. The criterion is based on a local coordinate system

where l denotes the fibre direction and q the transverse in-plane direction. XT

and XC are the tensile and compressive strengths in fibre direction, Y T and Y C
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the tensile and compressive strengths in transverse in-plane direction and SL and

ST the in-plane and transverse (out of plane) shear strengths.

Damage evolution

The stresses σ̂ij denote effective stresses which are related to the nominal stresses

according to Eq. (3.39) and the coefficient α controls the contribution of shear

stress to the initiation criterion for fibre tension.








σ̂ll

σ̂qq

σ̂lq








=








1
1−dt,c

f

0 0

0 1
1−dt,cm

0

0 0 1
1−ds















σll

σqq

σlq








(3.39)

The matrix acts as a damage operator with the damage variables d t,c
f , d t,c

m and ds

for fibre, matrix and shear failure modes which range from 0 to 1. If no damage has

occurred up to the current state σ̂ij = σij . Once one of the criteria above is met, the

effective stresses are used to determine the onset of other failure mechanisms and

the propagation of the already activated ones. The damage variable corresponding

to shear is assumed to be not independent in this model and the according relation

is given below.

ds = 1− (1− dtf)(1− dcf)(1− dtm)(1− dcm) (3.40)

Effect of Damage

Upon damage has occured the material response is computed from the relation

σ = Cdε, (3.41)
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where σ and ε are the vectors of stress/strain components according to Voigt

notation and Cd denotes the damaged stiffness matrix, which is defined as follows.

Cd =
1

D








(1− dt,cf )El (1− dt,cf )(1− dt,cm )νlqEl 0

(1− dt,cf )(1− dt,cm )νlqEq (1− dt,cm )Eq 0

0 0 (1− ds)GlqD








D = 1− (1− dt,cf )(1− dt,cm )νlqνql
(3.42)

El, Eq and Glq are the undamaged material moduli and νlq and νql the correspond-

ing poisson ratios. The evolution of the damage variables is based on the fracture

energy dissipated during the damage process and is controlled by equivalent dis-

placements, which make sure that no mesh dependency is exhibited during strain

softening. The relation between equivalent displacements and stresses shows a

positive linear slope prior to damage initiation and a negative linear slope in the

softening regime afterwards which is achieved by the evolution of the damage

variables. The damage variable for each failure mode is then defined as

dI =
δfailI,eq (δI,eq − δ0I,eq)

δI,eq(δ
fail
I,eq − δ0I,eq)

I ∈ {ft, fc,mt,mc} (3.43)

where δ0I,eq is the equivalent displacement at which the initiation criterion is met

and δfailI,eq the equivalent displacement for the fully damaged material. The equa-

tions for evaluating the equivalent displacements and stresses from the current

stress and strain state are given in [18].

Since softening material behaviour and stiffness degradation can lead to con-

vergence problems in implicit solution algorithms a viscous regularization scheme

is implemented which ensures the tangent stiffness matrix of the softening mate-

rial to be positive definite for sufficiently small time increments. Therefore viscous
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damage variables are introduced whereby the amount of energy dissipated due

to viscous regularization shall be kept small in order to give reasonable material

responses.

3.2.2 Elasto-Plasto-Damage Model

The constitutive model presented in the following has been developed by Flatscher

[8] and aims at describing the nonlinear intra-ply behaviour of embedded plies in

a composite laminate based on the plane stress assumption. Among various pos-

sible phenomena leading to a nonlinear material response, two basically different

mechanisms are distinguished, namely stiffness degradation and accumulation of

unrecoverable strains. The latter one is associated to inelastic microscopic ma-

trix deformation and described by a multi-surface plasticity law whereas stiffness

degradation is related to microscopic brittle matrix cracking, fibre matrix debond-

ing and progressive fibre failure. These effects are modelled by brittle continuum

damage mechanics where two approaches are considered, the first one addressing

evenly distributed matrix dominated phenomena leading to strain hardening with-

out damage localization and the second one accounting for localized matrix and

fibre dominated phenomena leading to strain softening. All the above mentioned

phenomena are combined in a single material law which reads, after integration of

the loading history, as

ε = ε(el) + ε(pl) = C σ + ε(pl). (3.44)

ε and σ represent the vectors of strain and stress components, respectively, and

C denotes the current compliance matrix. Hence, nonlinear effects are modelled

through C and the vector of plastic strain components ε(pl).
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Damage Initiation Criteria

The onset of damage is described by factors of material exertion for fibre and

matrix material which are evaluated on the basis of Puck’s failure surface,

FP [σll, σqq, σlq] = 0, (3.45)

cf. [8]. The formulation is again based on a local ply coordinate system where l

denotes the fibre direction and q the transverse in-plane direction. These factors

are independent of the loading history and just reflect the current stress state.

Therefore, the factor of matrix exertion f
(m)
E is defined according to Eq. (3.46)

where σ◦

ij denotes the current stress state and σ⋆
qq and σ⋆

lq are determined so that

FP [σ
◦

ll, σ
⋆
qq, σ

⋆
lq] = 0 holds.




σ◦

qq

σ◦

lq



 = f
(m)
E




σ⋆
qq

σ⋆
lq



 (3.46)

The factor of fibre exertion follows as

f
(f)
E = max

[
σll
XT

,
−σll
XC

]

(3.47)

where XT and XC denote the tensile and compressive strengths in fibre direction.

Additionally, also the fracture plane orientation according to Puck’s criteria is

evaluated. Hence, a value of f
(m)
E > 1 depicts the onset of distributed brittle

damage and upon a certain critical value of matrix exertion is reached also the

localized brittle damage mechanism is activated whereas f
(f)
E > 1 immediately

causes softening material behaviour.
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Distributed brittle damage

This damage mechanism accounts for the stiffness degrading effect of evenly dis-

tributed, matrix dominated phenomena like microscopic matrix cracking and fibre

matrix debonding. Therefore strain hardening is modelled since no damage local-

ization is expected. The effect of these phenomena is represented by embedding

fictitious spheroidal inhomogeneities into the undamaged, smeared out ply mate-

rial, cf. [31]. These penny-shaped inhomogeneities with small aspect ratio are

aligned according to the predicted fracture plane orientation and are either mod-

elled as voids under transverse tensile loads or isotropic material properties are

assigned in the case of transverse compressive loads. The volume fraction ξ(m) of

the inhomogeneities directly represents the damage value and is computed accord-

ing to Eq. (3.48), k
(m)
d denotes the evolution parameter and has to be calibrated

from experimental data.

ξ(m) = k
(m)
d

(

f
(m)
E − 1

)2

, f
(m)
E > 1 (3.48)

Furthermore, always the maximum volume fraction ξ(m) occurred in the loading

history is used for the stiffness computation in order to prevent decreasing damage

values. Finally, the full compliance tensor C of the damaged material is evaluated

utilizing a Mori-Tanaka like method, cf. [3].

C =

(

I +
∑

p

D(p)

)

C(0) (3.49)

C(0) represents the undamaged compliance tensor, I the identity tensor and D(p)

represents the effect of the populations of inhomogeneities. A more detailed ex-

planation is given in [8].
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Localized brittle damage

The effect of localized failure is modelled as local stiffness degradation causing

strain softening behaviour where the same micromechanical approach as for dis-

tributed brittle damage is utilized. Thus, additional fictitious inhomogeneities

with the same shape as for distributed damage are introduced and aligned in fi-

bre direction in order to capture progressive fibre failure. The characterization

of damage evolution is conducted by introducing equivalent stresses and strains

in a similar way as already outlined in the description of the elasto-brittle dam-

age model above, cf. also [18], with the difference that exponential softening is

assumed. Four failure modes are distinguished, fibre tension, fibre compression,

matrix transverse tension and matrix transverse compression, where the equivalent

stresses and strains at the onset of softening are related to the energy dissipation

due to failure of the corresponding mode. The effect of localized brittle damage

on the compliance matrix C is evaluated similar to Eq. (3.49).

C = C(0) +D C(0) = C(0) +
ξ

1− ξ
N (0) (3.50)

N (0) is an auxiliary matrix and ξ denotes a generalized amount of damage as

the volume fractions of inhomogeneities originating from the active failure modes

where the evolution of these volume fractions is driven by a scalar damage evolution

parameter. The evolution parameter itself strongly depends on the exponential

softening law which is thus determining the propagation of damage. It shall be

noted that this damage mechanism, once a certain matrix exertion factor f
(m)
E is

reached, also influences the evolution of volume fractions of those inhomogeneities

originating from the distributed damage mechanism.
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Multi-surface plasticity

Loading and unloading loops during experimental testing have shown that, be-

sides the already described elasto-brittle behaviour, the occurrence of unrecover-

able strain accumulation may be observed. This phenomenon is captured by an

incorporated multi-surface plasticity model which assumes the plastic shear strains

to be driven by tractions along planes parallel to the fracture planes predicted ac-

cording to Puck’s criteria (shear planes). The evolution of plastic strains is then

modelled by two plasticity mechanisms where each of them is assigned to specific

shear planes and controlled by a characteristic shear stress component. Accord-

ingly, these mechanisms, in-plane shear and transverse compression, represent the

evolution of the respective characteristic plastic strain component. The first mech-

anism captures the ply behaviour under dominant shear loads thus accumulating

the plastic shear strains γ
(pl)
lq driven by the shear stress component σlq whereas

the latter concerns the behaviour under dominant transverse compressive loads.

Therefore, the plastic shear strains γ
(pl)
nt accumulate controlled by the shear stress

component σnt, where n denotes the direction normal to the inclined shear plane

and t the transverse direction, accordingly. The yield criteria for the mechanisms

follow as

fI = σI − σ̃I = 0

fII = σII − σ̃II = 0
(3.51)

where σI,II represents an equivalent stress which is determined in dependence of

the current ratio of in-plane shear stress to transverse stress. The yield stress

σ̃I,II is represented by a Ludwick type power law and the hardening behaviour

is assumed to be linear in the amount of plastic flow. The contributions of both
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mechanisms are combined in order to give the total plastic strain rate.

ε̇(pl) = ε̇
(pl)
I + ε̇

(pl)
II (3.52)

3.2.3 Drucker-Prager Plasticity

This section gives a short overview of the linear Drucker-Prager plasticity model

in the form of its implementation in the commercial finite element code Abaqus,

cf. [5]. In the context of this work it is meant to model the accumulation of

unrecoverable strains in the unreinforced matrix pockets of a textile ply.

A plasticity model is defined by a yield condition, a flow rule and, if hardening

shall be modelled, a hardening law. Before these attributes are given for the linear

Drucker-Prager model, some basic definitions are introduced. Thus, the equivalent

pressure stress p is defined as the negative hydrostatic part of the stress tensor, cf.

Eq. (3.53).

p = −
1

3
σii (3.53)

Accordingly, the stress deviator tensor S follows as

S = σ + pI (3.54)

with the identity tensor I. The Mises equivalent stress q then reads as

q =

√

3

2

(
S : S

)
. (3.55)

The yield condition F for the linear Drucker-Prager plasticity model is defined
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according to Eq. (3.56),

F = t− p tan β − d = 0

t =
1

2
q

[

1 +
1

K
−

(

1−
1

K

)(
r

q

)3
]

r =

(
9

2
S · S : S

) 1

3

d =

(
1

K
+

1

3
tan β

)

σt

(3.56)

where β denotes the friction angle of the material and t defines the shape of the

yield surface according to a cut in the deviatoric plane. K is the ratio of the yield

stress in triaxial tension to the one in triaxial compression. A value of K = 1

results in a circular, Mises-like shape of a cross-section in the deviatoric plane.

r represents the third invariant of the deviator stress tensor and d denotes the

cohesion of the material with the uniaxial tensile yield stress σt. In the case of

K = 1 the resulting yield surface represents a cone in principal stress space where

its axis of rotation is aligned to the hydrostatic axis and the peak is pointing

towards increasing values. The flow rule is defined through the flow potential G,

cf. Eq. (3.57), with the dilation angle ψ.

G = t− p tanψ (3.57)

If ψ = β associated flow is modelled. Considering the Abaqus implementation,

hardening behaviour can be specified by directly entering yield stress values versus

equivalent plastic strain. The other input variables are the friction angle β, the

dilation angle ψ and the yield stress ratio K.
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3.2.4 Assessing Nonlinearities

This chapter so far described a micromechanical modelling approach for investigat-

ing composite laminates together with some advanced constitutive models to be

applied. The corresponding unit cell simulations completely describe the nonlinear

material response with all phenomena incorporated in the respective constitutive

model. However, the question arises of how the current loading state can be as-

sessed with respect to a quantity which identifies e.g. specific damage/plasticity

states and thus provides a measure for comparing different loading situations with

respect to induced damage/plasticity. Although the occurring phenomena could be

described via the corresponding stress and strain tensors, a more straightforward

way is represented by the respective dissipated energies, which are, additionally,

directly accessible from FEM simulations. Considering an example of an uniaxial

stress-strain relation, the contributions of different mechanisms to the total strain

energy density can be easily visualized, cf. Fig. 3.8 where wdam denotes the dis-

sipated energy density due to damage, wpla the dissipated energy density due to

plasticity and wrec the recoverable strain energy density. Hence, if plasticity and

σ

ε

σσ

εε

wpla wdam

wrec

wpla

wrec

wdam

wrec

Figure 3.8: Visualization of the contributions of different phenomena to the total
strain energy in the case of uniaxial stress-strain curves. The situation when just
damage occurs is depicted on the left side, just plasticity in the middle and both
phenomena combined on the right side, cf. [10]. For the combined situation it
is assumed that, at the beginning, just plasticity occurs while from the onset of
damage the plastic strains stay constant.
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damage are the considered nonlinear mechanisms the total strain energy density

is given by Eq. (3.58).

wtot = wrec + wdam + wpla (3.58)

These energy dissipations allow for a distinct assignment of the occurring nonlin-

earity to the causing mechanism and thus represent suitable quantities for assessing

the current loading state. Furthermore it has been shown, in the case of damage, cf.

[7], that nonlinear material behaviour due to progressing damage can be described

by choosing the dissipated energy as the damage parameter in the constitutive

model which confirms the choice of these quantities as measure for nonlinearities.

In order to generalize this approach, the respective dissipated energy densities are

normalized using the current total strain energy density wtot. The resulting energy

fractions pi, cf. Eq. (3.59), are then used to determine the material utilization as

described in the following chapter.

pi(t) =
wi(t)

wtot(t)
, i ∈ {dam, pla, ...} (3.59)

The parameter t in Eq. (3.59) denotes the current load magnitude during a simula-

tion (simulation time). This characterization is not just restricted to damage and

plasticity but can also be extended to describe delamination, friction and other

mechanisms.
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Chapter 4

Energy Dissipation Monitoring

The prediction of the nonlinear behaviour of textile composites by numerically

solved unit cell models is computationally demanding and therefore limited to

small domains. In order to extend the predictional capabilities to large structures

a two step procedure is proposed which combines linear elastic structural analyses

with nonlinear unit cell simulations. To this end, in a first step, occurring nonlinear

mechanisms are systematically investigated by conducting unit cell simulations for

a distribution of plane stress states comprising appropriate constitutive laws, as

described in Chapter 3, while monitoring the dissipated energies corresponding to

the respective mechanisms. Those are easily accessible from FEM simulations and

the resulting energy fractions, cf. Eq. (3.59), are used to assess the loading state

and generate envelopes for individual mechanisms. This procedure is described in

the first part of this chapter. In a second step, a methodology for mapping the in-

formation gained from unit cell simulations to large scale linear elastic analyses as

a post-processing option is proposed and presented in the second part of this chap-

ter. Parts of this concept have already been presented at the 19th International

Conference on Composite Materials [10].

43



4.1 Generating Envelopes

Considering a general example of a nonlinear unit cell simulation, the basic quan-

tities describing the nonlinear response are represented by the homogenized stress

and strain states and the corresponding dissipated energies at each load increment

of the simulation. A generic example of how these quantities are related to each

other is given in Fig. 4.1 for the case of uniaxial loading. Depending on the applied

constitutive model, at some load increment nonlinear mechanisms are initiated and

start to develop according to the implemented evolution law. This onset of dis-

sipative mechanisms causes stiffness degradation and inelastic strains resulting in

a nonlinear stress-strain relation. The values of the dissipated energy fractions

are assigned to the stress-strain state according to the current load level t∗, as

illustrated in Fig. 4.1, which allows for an assessment of the load state for each

simulated increment t0 ≤ t∗ ≤ tend. However, this assessment corresponds to one

specific load case with a defined relation between each load increment, which will

be referred to as load path. In order to be able to assess arbitrary stress and strain

pi σ

ε

σ(ε)

ppla

pdam

t∗

Figure 4.1: Sketch of a uniaxial stress-strain relation with the corresponding dis-
sipated energy fractions pi. t

∗ denotes the load level under consideration.
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states, respectively, regarding their corresponding dissipated energy fractions pi,

simulations of an infinite number of load paths are necessary.

This demand can be reduced to just cover plane stress states without signif-

icant loss in applicability since textile composites are mostly used in thin walled

structures. Furthermore, a discretization of plane stress space reduces the number

of states necessary to be simulated where intermediate states are interpolated ac-

cordingly, cf. Fig. 4.2 left. However, since nonlinear dissipative behaviour is load

history dependent, meaning that the stress-strain state and the corresponding en-

ergy fractions pi at a specific load increment t∗ depend on the currently applied

load but also on every load state applied before (t ≤ t∗), it is not sufficient to

compute just one load path for each selected state (point) in plane stress space.

Thus, all possible curves (load paths) connecting the origin (unloaded state) with

the selected point (state) in plane stress space have to be computed in order to

entirely describe and assess the selected state, cf. Fig. 4.2 right. This obviously

σ12

σ11

σ22 σ22

σ11

σ12

Figure 4.2: Possible discretization illustrated for a selected range of plane stress
states (left) and depiction of three different load paths leading to the same state
in plane stress space, but, different strain states (right). The straight dotted line
represents proportionally increasing stress components and, thus, depicts a radial
stress path.
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continuous system shall now be reduced to a discrete one by assuming that the

set of all load paths leading to one specific state can be approximated by several

straight (radial) paths which enclose the specific path under consideration. This

assumption, together with the simplifications mentioned above, finally allows to

assess arbitrary stress and strain states by simulating a finite number of specifi-

cally chosen radial load paths. A method for choosing radial load paths related to

one specific plane stress state so that they enclose all other paths related to this

state is proposed in the following section.

4.1.1 Radial Load Paths

In general, a radial load path is represented by the proportional increase of all

stress tensor components, cf. Fig. 4.2 right where an example of a radial stress

path in plane stress space is illustrated as a dotted line. Since not only stresses

can be applied as loads but also strains, the existence of radial strain paths follows

consequently.

Considering the material behaviour in the linear elastic regime, stress and

strain states are independent of the loading history meaning that the simulation

of just one radial stress path related to a selected plane stress state is enough to

predict all quantities corresponding to this state. Furthermore, every plane stress

state represented by a point in plane stress space can be uniquely related to a

corresponding strain state according to the linear elastic stiffness of the textile

composite under consideration thus giving rise to an associated radial strain path.

As long as the linear elastic regime is not left, the simulation of this radial strain

path is equivalent to the simulation of the related radial stress path. However,

once dissipative mechanisms are activated the uniqueness of the relation between

the discussed stress and strain states is lost due the load history dependence and
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the results obtained through radial stress or strain paths differ. In order to avoid

the simulation of an infinite number of combinations of paths leading to the same

state as discussed above, an analogy from micromechanics shall be applied in

a heuristic manner. There, upper and lower bounds for the elastic properties of

inhomogeneous materials depending on the volume fraction of the inhomogeneities

are stated in following way. Assuming perfect bonding between the constituents,

a lower bound, known as Reuss bound [29], for the elastic properties is found by

assuming uniaxial transverse loading, cf. Fig. 4.3 left. In this situation, the stress

states in fibres and matrix are equal to the applied stress σ∞ = σf = σm leading

to a constant stress state in the composite. In order to evaluate a lower bound

for the elastic modulus the rule of mixtures is then applied on the compliance

components. The right situation in Fig. 4.3 leads to a constant strain state in the

composite for perfectly bonded constituents, ε∞ = εf = εm, and gives an upper

bound for the elastic properties, known as Voigt bound [34]. Thus, applying the

rule of mixtures on the stiffness components yields the upper bound for the elastic

modulus. The combination of both bounds in tensorial form is known as Hill

σ∞ σ∞

σ∞σ∞

Figure 4.3: Uniaxial loading of a continuous fibre reinforced composite. The left
situation corresponds to the situation for evaluating lower bounds of the elastic
properties according to Reuss [29] and the right one gives the corresponding upper
bounds according to Voigt [34].
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bounds [13]. In the present case, estimates for the dissipated energy fractions pi

at certain (plane) stress states shall be stated in a similar way as the Hill bounds

for the elastic properties. Therefore, some lower estimate may be assumed to be

given by simulating a radial stress path containing the desired (plane) stress state.

Accordingly, the upper bound is supposed to be related to a radial strain path

where the corresponding strain state is approximated by using the linear elastic

stiffness of the composite. These stress and strain states are uniquely related in

the linear elastic regime but once nonlinear mechanisms occur this property is

lost and the corresponding radial stress and strain paths are assumed to represent

lower and upper estimates for the dissipated energy fractions. Therefore, the

computation of these two paths for each given (plane) stress state is sufficient for

entirely describing this state.

Radial Stress Paths

In a first step, radial stress paths are considered. Since arbitrary (plane) stress

states shall be covered several paths have to be investigated so that whole plane

stress space is covered. In the case of some microgeometries of textile composites,

symmetries may be utilized in order to reduce the domain to be investigated, but,

for the sake of generality these properties are not discussed in the following.

Now, a suitable discretization of plane stress space is needed. Obviously, the

more paths are taken into consideration the more precise the prediction for different

states will be. However, a beneficial spatial variation of the paths in terms of

resolution and computational effort is not known a priori and thus has to be

determined iteratively for each textile composite under consideration. A first try

may be represented by evenly distributed paths modelling a sphere in plane stress

space as proposed in [20]. Therefore, a specific stress path i is represented by the
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vector of stress components σi which can be splitted into a directional unit vector

di and a scalar multiplier smax determining the length of σi.

σi =








σi
11

σi
22

σi
12








σi = smax di (4.1)

di is then given according to a suitable distribution of points in plane stress space

and smax is chosen to be high enough so that the investigated nonlinear mechanisms

are clearly recognizable. The resulting stress states represent the homogenized

(far field) stresses in terms of the unit cell analysis and the equivalent boundary

conditions are determined according to Eq. (3.12).

Besides the spatial resolution of the predictions also the radial discretization

shall be discussed. Since the onset and evolution of the dissipated energy fractions

shall be tracked along each path it is essential to provide a small load (time)

increment for the simulation so that enough points along the path are computed.

After all paths of interest have been simulated, each of them can be scanned for

stress and strain states where certain energy fractions pi are met. The gathered

points can then be marked in plane stress space and form an envelope for a defined

value of the energy fraction of a chosen mechanism. Thus, the occurrence and the

directional sensitivity of each mechanism can be visualized. Furthermore, the

gained information can be stored in a database in order to allow for an automated

assessment of specified stress states. This procedure will be discussed in section 4.2.

Simulations of radial stress paths for investigating nonlinear material behaviour

of textile composites have already been done by Meindlhumer [20], whose work is

directly continued in this thesis.
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Radial Strain Paths

The definition of radial strain paths follows directly from the radial stress paths

discussed above by transforming the corresponding plane stress state via the linear

elastic stiffness of the textile composite under consideration. The obtained strain

state is then used to define a straight (radial) path in plane strain space. Although

different strain states could be related to the specified stress state, the choice of the

linear elastic relation follows from the motivation that the obtained information

shall be applied on the results of linear elastic simulations of large structures.

First, the stiffness of the textile composite has to be evaluated. Since the

modelling strategy described in Chapter 3 implies that the behaviour of thin layers

is considered, the constitutive relation for shells is used, cf. Eq. (4.2).




N

M



 =




A B

B D








ε

−χ



 (4.2)

N and M are the stress resultants (membrane forces and bending moments)

according to Eq. (4.3), i.e. the components of the stress tensor integrated over the

thickness h of the considered cross-section, ε represents the membrane strains and

χ the curvature changes, both in Voigt notation.

N =








N11

N22

N12








M =








M11

M22

M12








Nij =

∫ h/2

−h/2

σij dx3 Mij =

∫ h/2

−h/2

σijx3 dx3

(4.3)

The matrix containing the submatricesA, B andD depicts the (6x6) shell stiffness

matrix where A, B and D are called extensional, coupling and bending stiffness
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matrices. In order to determine the 36 components of the ABD matrix, 6 linearly

independent load cases need to be evaluated. These can be, for example, tension

in 1-direction, tension in 2-direction, shear, bending around the 1-axis, bending

around the 2-axis and twist. Now equation systems for each line of the ABD

matrix can be set up and solved consecutively thus determining all components.

Consequently, the already selected radial stress paths σi are transformed ac-

cording to Eq. (4.2) after the corresponding stress resultants have been evaluated.

Within the scope of this work, the curvature changes are set to be χ = 0 and just

the extensional stiffness matrix A and the membrane stress and strain states, N

and ε, are considered. Therefore the radial strain paths i are expressed as follows.

εi = emax di
ε (4.4)

emax defines the length of the strain paths and is chosen in the same way as

smax and di
ε represents the directional unit vector in plane strain space. The

boundary conditions for the subsequent unit cell analyses are evaluated according

to Eq. (3.9), where εi corresponds to the homogenized (far field) strains. For the

avoidance of doubt it shall be clarified that the considered states, visualized as

radial paths in plane strain space, are still plane stress states since the out of

plane deformation is not prescribed to be zero. The corresponding boundaries are

modelled traction free in both cases. As already described for radial stress paths,

the results can be used for generating surfaces (envelopes) of constant energy

fractions pi in plane stress space and, furthermore, a database for automated post-

processing can be set up.
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4.2 Assessing nonlinearities in large structural

components

After the computation of all considered radial stress and strain paths through

nonlinear unit cell analyses the question arises of how these results can be combined

with linear elastic simulations of large structural components. First every stress/

strain state obtained in the linear elastic structural analysis has to be mapped

appropriately to the corresponding nonlinear state so that the associated energy

fractions pi can be related to the linear elastic states. Since a finite number of

paths is computed the energy fractions are interpolated for intermediate states

and their evolution is evaluated in terms of proportional load increase.

In order to allow for an automated post processing of arbitrary linear elastic

stress analyses, the results of all simulated paths are stored in a database and the

described methodology is completely scripted and implemented in the commercial

finite element code Abaqus. Thus, once a database for a specific material system

has been generated, the assessment of arbitrary linear elastic stress states can

be done within seconds independently from the complexity of the investigated

component.

4.2.1 Linking Mesoscale and Macroscale

The starting point of the proposed post-processing methodology is represented by

the linear elastic stress state σlin of interest and the corresponding strain state

εlin, both represented in Voigt notation. However, the entire state (σlin, εlin)

may be inaccessible in terms of the conducted unit cell analyses since nonlinear

mechanisms can already be active at the investigated state. Hence, either equal
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stress states or equal strain states can be compared, cf. Eq. (4.5). Furthermore,

both combinations in Eq. (4.5) can be applied on radial stress and radial strain

paths for determining the energy fractions pi related to the state (σlin, εlin). In

order to reduce the number of possible combinations and to keep a consistent

formulation, equal stress states (Eq. (4.5) top) are considered along radial stress

paths and equal strain states (Eq. (4.5) bottom) are considered along radial strain

paths.

σnl(εnl) = σlin(εlin), εnl 6= εlin

εnl(σnl) = εlin(σlin), σnl 6= σlin

(4.5)

This procedure is illustrated in Fig. 4.4, where the energy fractions corresponding

to a specified linear elastic state are evaluated for equal stress states (left) and

equal strain states (right). The left situation corresponds to the unit cell response

of the related radial stress path whereas the right situation depicts the response

of the related radial strain path. The determined energy fractions are denoted

σ

ε

(σlin, εlin)
(σnl = σlin, εnl)

pσdam

pσpla

pdam

ppla

pi σ

ε

pi

(σlin, εlin)

(σnl, εnl = εlin)

pεdam

pεpla

pdam

ppla

Figure 4.4: Example of the relation between the linear elastic state obatined from
a structural analysis and the nonlinear unit cell response for radial stress paths
(left) and radial strain paths (right) in the case of uniaxial loading.
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as pσi and pεi , where the superscript indicates whether stress or strain states are

compared. At this point it shall be mentioned that the described procedure for

mapping linear to nonlinear states has a recognizable influence on the determined

values for pσi and pεi and may lead to pσi > pεi . Although this circumstance may

seems contradicting to the assumption that radial stress and strain paths represent

lower and upper bounds for the dissipated energy fractions, the situation is just

occurring due to the mapping itself.

In order to circumvent this methodological influence another additional pro-

cedure for mapping linear to nonlinear states is proposed. Considering the linear

elastic state (σlin, εlin) at a certain material point, this state can also be expressed

by means of the corresponding total strain energy density wtot, cf. Eq. (4.6), where

the general relation through integration and also the simplified one for the linear

case are stated. All vectors in Eq. (4.6) are written in Voigt notation and represent

the vectors of stress and strain components.

wtot =

∫

σT dε wlin
tot =

1

2
σT

lin εlin (4.6)

Now, two related states are represented by equal strain energy densities wnl
tot = wlin

tot ,

where wnl
tot is the total strain energy density corresponding to the nonlinear unit

cell simulations, cf. Eq. (3.58). This condition can also be formulated as follows.

∫
εnl

0

σT
nl dε =

1

2
σT

lin εlin (4.7)

In the case of uniaxial loading Eq. (4.7) requires that the areas below the corre-

sponding stress-strain curves are equal, cf. Fig. 4.5. This procedure is applied on

both, radial stress and strain paths, and the determined dissipated energy fractions

are denoted as p
w(σ)
i and p

w(ε)
i , where the superscripts w(σ) and w(ε) indicate the
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σ

ε

pi

(σlin, εlin)

(σnl, εnl)

pwdam

pwpla

pdam

ppla

Figure 4.5: Mapping of linear and nonlinear states according to equal strain energy
densities in the case of uniaxial loading. The yellow highlighted area below the
linear response is equal to the hatched area below the unit cell response.

associated load path. If p
w(σ)
i = p

w(ε)
i it may be assumed that the sensitivity of the

energy fractions pi regarding the loading history (i.e. different load paths) is neg-

ligibly small and the determined pσi and pεi may be interpreted as upper and lower

estimates for the actual value of pi whereas p
w(σ)
i and p

w(ε)
i may be interpreted

as some other estimate for the actual value of pi. It shall be noted that different

values for pσi and p
w(σ)
i are just caused by the mapping procedure, while the evolu-

tion of the considered dissipated energy fraction is equal in both cases. The same

consideration applies to pεi and p
w(ε)
i . If p

w(σ)
i and p

w(ε)
i differ, the loading history,

i.e. the shape of the load path (cf. Fig. 4.2 right), has recognizable influence on the

evolution of the energy fractions and the application of the obtained results has

to be done with special care since it is just assumed that radial stress and strain

paths represent lower and upper estimates regarding the loading history influence.

Hence, more critical (non-proportional) load paths may exist. Considering the

application of the described methodology on structural components, it shall be
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stated that the presented approach cannot account for stress redistribution at the

macroscopic length scale, i.e. in the component. As stated above the influence

of non-proportional loading is accounted for in an approximate way at the length

scale of the underlying unit cell computations (e.g. mesoscale), while the stress

redistribution is just covered at the microscale. Hence, it can be stated that this

approach is hardly applicable in the region of pronounced nonlinearities since the

accompanied stress redistribution in the component is not covered. However, it

is expected that reasonable predicitons of the dissipated energy fractions can be

given in the slightly nonlinear regime thus extending the information on material

exertion beyond the linear elastic limit.

4.2.2 Utilization of Generated Envelopes

After the completion of nonlinear unit cell simulations of a specified distribution

of radial stress and strain paths, as described above, relevant data is stored in

a database related to the material and microgeometry of the textile composite

under consideration thus allowing for fast access of specific information. This

database contains the homogenized stress and strain tensors and the corresponding

dissipated energy fractions for each load path, hence, representing the basis for the

proposed post-processing method. In the following, the different steps for applying

the generated database on large-scale linear elastic analyses are outlined.

Input

In order to start with the post-processing routine, a linear elastic stress state

σlin of interest has to be chosen. The corresponding strain state εlin is determined

according to the already evaluated ABDmatrix of the considered textile composite,
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cf. Eq. (4.2). For the further investigation the geometrical interpretation of σlin

and εlin as vectors in plane stress and plane strain space, respectively, shall be

used.

Find enclosing paths

Considering a mesh of radial paths in plane stress space, cf. Fig. 4.2, the first task

in evaluating the properties of intermediate states is to find the computed sampling

states which are closest to the specified one. Since the following procedure is equal

for radial stress and strain paths it will just be discussed for radial stress paths. It

can be stated that, if whole plane stress space is covered by a finite number of paths,

several paths are found which enclose the input state σlin in plane stress space,

where the three tightest enclosing paths need to be determined in order to allow

for a suitable interpolation of the actual state. In a first step, it is checked whether

σlin is parallel to one of the computed paths. In this case the determination of

enclosing paths and the interpolation between different load paths is not required

and the subsequent steps are just applied on the parallel path.

Therefore, the directional unit vectors di and dlin of each computed path σi

and σlin are evaluated and written in spherical coordinates, cf. Eq. (4.8), where θ

denotes the azimuth angle and φ the elevation angle.

di =








θi

φi

1







, dlin =








θlin

φlin

1








(4.8)

Hence, if the condition in Eq. (4.9) is met the associated load path n is found to be

parallel to dlin and the routine for finding enclosing paths is completed. Otherwise
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it is proceeded as follows.

dT
lin dn = 1 (4.9)

Now, the orientation of each load path di relative to dlin is evaluated by taking

the difference of the azimuth and elevation components.

θirel = θlin − θi φi
rel = φlin − φi (4.10)

The closest paths are then represented by small relative angles θirel and φ
i
rel. There-

fore, a vector Di containing the sum of the absolute values of θirel and φi
rel is

introduced.

Di = |θirel|+ |φi
rel| (4.11)

The load paths related to the two smallest values in Di are found to be the two

closest paths to dlin and are denoted as d1
encl and d2

encl. Since the third closest

load path according to Di is not necessarily the one so that the three chosen

paths enclose dlin another criterion is introduced to ensure this property. It can

be stated that three linearly independent directions di form a basis in 3D vector

space. Hence, if dlin can be represented by a linear combination of the chosen

basis vectors so that just positive coefficients appear the basis is enclosing dlin. In

order to make sure that the closest suitable path is chosen for d3
encl, the remaining

load paths are sorted according to ascending values of Di and consecutively proven

if they satisfy the criterion in Eq. (4.12). The first of the remaining load paths

satisfying this criterion is then chosen to be d3
encl.

b1 d1
encl + b2 d2

encl + b3 d3
encl = dlin, b1, b2, b3 ≥ 0 (4.12)

58



Interpolation of the actual state

Now, the mapping techniques for relating linear elastically computed states of

a structural component to the nonlinear unit cell responses, as described in sec-

tion 4.2.1, are applied on each of the enclosing paths. Again, for the sake of brevity

just radial stress paths are considered since the procedure is equal for radial strain

paths. Therefore, the norm of ||σlin||, i.e. the length, is applied on each of the

three paths thus marking three sampling stress states σ1
encl, σ

2
encl and σ3

encl.

σi
encl = ||σlin|| d

i
encl i = 1, 2, 3 (4.13)

However, these sampling stress states will usually lie between computed stress

states along the load path and the corresponding quantities, i.e. the energy frac-

tions, are interpolated linearly regarding the lengths related to the neighbouring

stress states, cf. Fig. 4.6, where the computed states are marked as t − 1 and t.

In the case of the equal strain energy mapping method, the sampling stress states

are determined in a way such that they represent the state where wlin
tot is reached.

The interpolation between the computed states is then conducted regarding the

enclosing path i

σlin

σi
encl

t− 1

t

σ12

σ11

σ22

Figure 4.6: Interpolation of the state related to σi
encl between the computed states

at t− 1 and t along the enclosing path i.

59



total strain energies of the neighbouring stress states. Now, a plane containing

the three sampling states σ1
encl, σ

2
encl and σ3

encl is defined, cf. Eq. (4.14), where n

denotes the normal vector of the plane and s represents the corresponding set of

points.

(
s− σ1

encl

)T
n = 0, n =

(
σ2

encl − σ1
encl

)
×
(
σ3

encl − σ1
encl

)
(4.14)

In order to determine the intersection of the input stress path with this plane, σlin

is defined as a line in plane stress space, cf. Eq. (4.15) left. By comparing the sets

of points s and g the unknown coefficient ℓ is determined, cf. Eq. (4.15) right, and

the intersection point σinter is yield.

g = ℓdlin ℓ =
σ1

encl · n

dlin · n
(4.15)

Finally, the quantities of interest, i.e. the dissipated energy fractions p, are evalu-

ated using the inverse distance method, cf. Eq. (4.16), where the energy fraction

corresponding to the input state is denoted as p(σlin) and pk represents the energy

fractions related to the sampling states. Fig. 4.7 illustrates this procedure.

p(σlin) =
3∑

k=1

vk(σinter) pk
∑3

j=1 vj(σinter)
vk(σinter) =

1

||σinter − σk
encl||

2
(4.16)

Evolution of dissipated energy fractions

In order to allow for fast post-processing of structural components regarding occur-

ring nonlinear mechanisms, the described procedure, together with the generated

dataset, is implemented into Abaqus/Standard. Additionally, envelopes represent-
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σ1
encl

σ2
encl

σ3
encl

σinter

g

σ12

σ11

σ22

Figure 4.7: Intersection of the plane (σ1
encl,σ

2
encl,σ

3
encl) with the line g. The

distances between the corners and the intersection point σinter are marked as
dotted arrows.

ing the onset of the individual mechanisms are generated as surfaces in plane stress

space where onset is related to a specified small (but nonzero) value of the corre-

sponding dissipated energy fraction pi. These initiation surfaces are then used to

assess the occurring stress states by evaluating the intersection points with the re-

spective stress paths and extracting the reserve and safety factors. Hence, a reserve

factor > 1 indicates the onset of the considered mechanism and the correspond-

ing stress state is interpreted as critical. Considering some structural component,

these locations can easily be found by generating a contour plot of the reserve

factor.

Now, critical stress states can be further investigated by passing them to the

described post processing routine in order to get information about the nonlinear

behaviour. Therefore, the enclosing paths are determined and the corresponding

dissipated energy fractions pi are evaluated. Since not only the current state but

also the evolution of the occurring nonlinear mechanisms is of interest, the routine

is executed for several proportional loading states up to a specified multiple of the

investigated stress state. In this way, the sensitivity of the current state regarding
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further load increase can be estimated and an idea of the strength reserve of

the component may be revealed. Although states with a reserve factor < 1 are

not critical at the current state, their behaviour may deviate from the one of the

investigated states upon further load increase and may lead to a more critical state

than the investigated one. In order to incorporate this aspect in the assessment

of stress states, additionally, a reserve/safety factor related to surfaces of higher

values of pi can be determined in the same way as described above thus allowing

for a first examination of the evolution of pi before selected states are investigated

in detail.
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Chapter 5

Applications

Within this chapter, the application of the proposed methodology shall be demon-

strated in two steps. First, the generation of a material specific database and

related energy dissipation envelopes is presented by the example of a 2/2 twill

weave. Furthermore, the influence of different material models in terms of dissi-

pated energies is outlined by comparing the responses of configurations featuring

the elasto-brittle-damage model, cf. section 3.2.1, and the elasto-plasto-damage

model, cf. section 3.2.2. In a second step, the usage of a generated database for

assessing linear elastically computed stress states in large components regarding

occurring nonlinearities shall be demonstrated by applying the proposed post-

processing routine to a 4 point bending beam consisting of several layers of 30

degree twill braids.

All finite element simulations in the context of this work have been carried out

using the commercial finite element code Abaqus/Standard v6.12/6.13, whereas

the post-processing routine is based on a user defined subroutine and several Mat-

lab scripts. The implementation in Abaqus is realized via the Abaqus GUI Toolkit.
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5.1 2x2 Twill Weave

This section deals with the simulation of the nonlinear material behaviour in a 45

degree carbon/epoxy 2/2 twill weave based on an unit cell approach. In order to

be able to assess arbitrary plane stress states, a distribution of some 200 radial

stress and strain paths is simulated where all relevant results, such as the homog-

enized stress and strain tensors and the dissipated energy fractions pi are stored

in a database for use in combination with the proposed post-processing routine.

Before the results are presented, the underlying finite element model describing the

composite’s mesostructure shall be summarized and the application of appropriate

boundary conditions for simulating radial paths is explained.

5.1.1 Finite Element Model

Since some 200 nonlinear simulations are necessary in order to cover whole plane

stress and strain space, a computationally efficient model is inevitable. Therefore,

a shell element based unit cell approach modelling a representative volume element

of the investigated composite is chosen. This model has been developed by Gager,

cf. [11, 9] and is illustrated in Figs. 5.1 and 5.2. The mesostructure of the 2/2 twill

weave is modelled by a piecewise linear ondulation of fibre tows with rectangular

Figure 5.1: Cross section of the 2/2 Twill Weave showing the piecewise linear
ondulation path and rectangular tow cross sections (hatched) with dimensions in
mm. The dashed line represents the unit cell perimeter and the grey areas denote
the matrix pockets [11].
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Figure 5.2: Shell element based unit cell separated into fibre tows and unreinforced
matrix pockets. The white circles in the assembled configuration mark the unit
cell’s master nodes [11].

cross section, cf. Fig. 5.1. The unreinforced matrix pockets filling the hollow space

between the tows consequently feature linearly varying thicknesses too. The unit

cell’s geometry is meshed using linearly interpolated, 4 noded shell elements with

five section points in thickness direction, where the usual element size is 1/14th of

the tow width. The reference planes of the tows and the matrix pockets shown in

Fig. 5.2 are tied appropriately featuring perfect interfaces. Hence, delamination is

not modelled. Furthermore, plane periodic boundary conditions, cf. section 3.1.1,

are applied. For the following investigations, two configurations, A and B, of ap-

plied constitutive models, cf. section 3.2, are compared, as summarized in tab. 5.1.

Table 5.1: Applied constitutive models for capturing the behaviour of tows and
matrix pockets.

configuration A configuration B

tows
elasto-brittle-
damage

elasto-plasto-
damage

matrix
pockets

Drucker-Prager
plasticity

elastic
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Thus a computationally simpler model featuring an elasto-brittle-damage model

for the tows and Drucker-Prager plasticity for the matrix pockets is confronted

with a more sophisticated approach featuring an elasto-plasto-damage model for

the tows and elastic matrix pockets.

Material data

The material parameters are chosen according to [8] and describe the material

system Cycom977. The following tables give all necessary parameters to define

the applied constitutive models. The sub- and superscripts follow the notation

used in section 3.2. The parameters in tab. 5.4 are additionally needed to define

the elasto-plasto-damage model, cf. section 3.2.2. These parameters comprise the

slope and weakening parameters for the Puck criteria, the constants to define the

power law plasticity models and other parameters which define the damage model

and interaction of mechanisms. More information is given in [8].

Table 5.2: Initial engineering elastic constants, nominal strength values and specific
fracture energies of the fibre tows. Values marked with ∗ are estimated. [8]

El Eq = Er νlq = νlr νqr

elastic 146 GPa 9 GPa 0.34∗ 0.61∗

constants Glq = Glr Gqr

4.27∗ GPa 2.8∗ GPa

nominal XT XC Y T Y C S

strengths 2100 MPa 1407 MPa 82 MPa 249 MPa 110∗ MPa

fract. G(ft) G(fc) G(mt) G(mc) G(ps)

energies 89.8 N/mm 78.3 N/mm 0.2 N/mm 0.8 N/mm 1.0 N/mm
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Table 5.3: Parameters for viscous regularization. Values marked with ∗ are esti-
mated. [8]

ηft ηfc ηmt ηmc

0.002∗ s 0.002∗ s 0.004∗ s 0.004∗ s

Table 5.4: Additional parameters needed to define the elasto-plasto-damage model
for the fibre tows. [8]

Puck criterion
pt pc s s

0.35 0.30 0.5 (1.0) 1.0

σ̃I kI nI

power law 22.8 MPa 161 MPa 0.214

plasticity σ̃II kII nII

41.7 MPa 1175 MPa 0.364

e(f) e(m) k
(m)
d ξ

(m)
a(c) µd

damage/ 0.01 0.01 8.00 0.015 0

interaction λI λII µt
I µc

I µII

1.50 0.25 0.10 0.08 0.25

Table 5.5: Elastic properties of the matrix pockets and parameters for the Drucker-
Prager plasticity model.

elastic const.
E ν

3520 MPa 0.37

Drucker-Prager
σt
y β ψ K

81.4 MPa 25◦ 25◦ 1
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Tab. 5.5 summarizes the elastic properties of the unreinforced matrix pockets and

gives the parameters to define the Drucker-Prager plasticity model which is applied

in configuration A. It shall be noted that ideal plastic behaviour is assumed. Since

β = ψ associated flow is modelled in this case.

Boundary conditions

The application of boundary conditions is accomplished via the unit cell’s master

nodes, cf. Fig. 5.3, where also the 1, 2, 3 coordinate system, on which the following

considerations are based, is illustrated. In order to prevent rigid body motions,

displacements of master nodes are restricted according to tab. 5.6. Furthermore,

the displacements of SEB and SET are defined to be equal in 1 and 2 direction, as

well as the ones ofNWB andNWT in 2 direction, which suppresses the occurrence

of global bending.

In order to apply boundary conditions corresponding to a radial stress path,

as already done by Meindlhumer [20] for configuration A of this model, respective

concentrated forces are assigned to the master nodes SEB and NWB. These are

increased proportionally starting from a chosen initial increment thus resulting

in a radial stress path. The relation between the concentrated forces and the

stress state is given in section 3.1.2. For the simulation of radial strain paths,

displacements corresponding to the desired strain state are assigned to SEB and

NWB, cf. Eq. (3.9) and increased proportionally. It shall be noted that the

Table 5.6: Boundary conditions for preventing rigid body motions and coupling
effects. Displacements in the stated directions are prescribed to be zero.

SWB SWT SEB SET NWB NWT

1, 2, 3 1, 2 3 − 1, 3 −
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SET

SEB

SWB

SWT

NWT

NWB

3

2

1

Figure 5.3: Illustration of the unit cell’s master nodes. The 1, 2, 3 coordinate
system is aligned with the fibre tows, cf. [20]

presented boundary conditions model simple shear in both cases, although it would

be possible to simulate pure shear in the case of radial strain paths.

Distribution of load paths

Up to this point, the simulation is set up for one specific stress or strain path,

respectively. In order to generate a database for assessing arbitrary plane stress

states, a distribution of load paths has to be selected. As stated in [20], the present

weave exhibits several symmetries regarding loading in plane stress space. Thus,

the response of the unit cell is assumed to be equal for positive or negative plane

shear components σ12, as well as for loading in 1 or 2 direction. The resulting

symmetry planes in plane stress space are given in Eq. (5.1).

σ12 = 0 σ11 − σ22 = 0 (5.1)

Since the results of Meindlhumer [20] have shown that a uniform distribution of

radial stress paths does not give an optimum resolution for describing the evolution
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Figure 5.4: Computed distribution of radial stress paths illustrated in plane stress
space. Existing symmetries are already utilized. Each node of the wireframe
corresponds to one path. smax = 600

of the investigated nonlinear mechanisms, an adapted distribution is chosen in this

work, cf. Fig. 5.4. Therefore, more paths are computed in the region of small shear

components σ12, whereas a coarser distribution is chosen at higher values of σ12.

The coefficients determining the lengths of the radial stress and strain paths are

chosen to be

smax = 600 emax = 0.02. (5.2)

All results presented in the following are based on the distribution shown in

Fig. 5.4, except the ones of configuration A for radial stress paths, which are

taken from Meindlhumer [20].

5.1.2 Results

In the context of this work, computations based on the load path distribution

shown in Fig. 5.4 have been conducted for radial strain paths of configuration A

as well as for radial stress and strain paths of configuration B, cf. tab. 5.1. Thus,
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together with Meindlhumer’s results [20], two entire datasets for both configura-

tions have been generated. In the following, the differences between radial stress

and strain paths shall be outlined before the influence of the applied constitutive

model is investigated.

Comparison of radial stress and strain paths

In order to outline the difference in the unit cell’s response regarding the consid-

ered load path, a comparison of stress-strain curves and the corresponding energy

fractions is given in Fig. 5.5, where the cases of uniaxial tension and compression

in tow direction are illustrated for both configurations A and B. The dashed lines

represent radial stress paths, also indicated by the superscript σ, whereas solid

lines mark radial strain paths, indicated by the superscript ε.

Considering the case of uniaxial tension, Fig. 5.5 (a) and (b), it can be stated

that there is barely any noticeable difference between the responses for radial stress

and strain paths of both configurations. Hence, it may be deduced that very little

load history dependence, i.e. influence of the load path shape (cf. Fig. 4.2 right),

is exhibited and energy fractions of related stress states may be considered as

bounds in terms of the proposed post-processing routine. It shall be noted that

the response of B showed very slow convergence at higher loads which is the reason

for the smaller plot domain.

The case of uniaxial compression, Fig. 5.5 (b) and (d), shows good agreement

between the load paths up to the slightly nonlinear regime. However, in the

region of pronounced nonlinearity the responses start to deviate more and more.

Furthermore, the assumption of upper and lower bounds for radial strain and stress

paths is violated for both configurations, since the energy fraction corresponding to
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Figure 5.5: Stress-strain plots illustrating uniaxial tension, (a) and (b), and uni-
axial compression, (c) and (d), of the unit cell. (a) and (c) correspond to config-
uration A whereas (b) and (d) represent configuration B. The results for radial
stress paths of configuration A are taken from [20].

plasticity is always larger for radial stress paths pσpla > pεpla. Thus, the assumption

of bounds cannot be maintained in this situation and the assessment of related

stress states has to be done with special care. The responses may still represent

bounds, although the underlying assumption is harmed, however, more critical

paths are likely to exist. Obviously, the prescribed strains retard the propagation

of plasticity, although they lead to higher stresses in loading direction. A reason

might be the fact that the response corresponding to the radial strain path does
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not represent uniaxial loading in the nonlinear regime, cf. Eq. (4.2). Therefore, the

assumption of bounds may be considered to be valid in cases where the responses

of radial stress and strain paths show little deviation. For all other cases, higher or

lower estimates of the energy fractions can’t be assigned to radial stress or strain

paths a priori, however, these distinct load paths may still represent upper and

lower estimates. For the sake of completeness, it shall be noted, that the higher

values of pipla in configuration B are caused by the fact, that configuration A

just accounts for plasticity in the matrix pockets whereas configuration B models

plasticity in the fibre tows.

As already mentioned, stress and strain states corresponding to certain values

of dissipated energy fractions pi can be evaluated in order to form surfaces (en-

velopes) of constant values of pi in stress and strain space. Naturally, envelopes

corresponding to radial stress paths are described in plane stress space, whereas

those corresponding to radial strain paths are described in plane strain space. A

comparison of whole envelopes regarding load path influence would then require

envelopes generated from radial strain paths to be described in plane stress space or

vice versa, which is, however, no significant comparison since, for example, radial

strain paths are curved in plane stress space and distances between the illustrated

envelopes cannot be interpreted in terms of a proportional load factor, cf. Fig. 2.3.

The difference between the responses of radial stress and strain paths will be

outlined once more when the application of the post-processing routine is discussed,

cf. section 5.2.3. Nevertheless, surfaces corresponding to the onset of a nonlinear

mechanism are equal for both paths since radial stress and strain paths are uniquely

related in the linear regime.
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Initiation envelopes

Based on the above statement, just initiation surfaces based on radial stress paths

are presented where those corresponding to configuration A can be found in [20].

Envelopes marking the onset of damage and plasticity according to configuration

B are illustrated in Fig. 5.6, where onset of an individual dissipative mechanism

is defined as

pi > 10−5, (5.3)

with pi denoting the dissipated energy fraction of mechanism i, cf. Eq. (3.59).

As can be seen, biaxial tension states (σ11 > 0, σ22 > 0) are more sensitive

to damage since this mechanism is activated at lower stress states in this regime.

For biaxial compression states, plasticity occurs first. Furthermore, there is a huge

difference in the sensitivity to shear stresses. The initiation envelope corresponding

Figure 5.6: Surfaces marking the onset of damage (blue) and plasticity (red) in
plane stress space according to configuration B. All values are in MPa.
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to plasticity, cf. Fig. 5.6 (red), is rather flat meaning that already small shear stress

components lead to the onset of plasticity whereas the onset of damage is located

at much higher values of σ12.

Comparison of material models

For the sake of brevity, the comparison of the influence of the applied constitutive

models is conducted only for radial stress paths. Of course, the investigation

could also be done for radial strain paths, which shall, however, be omitted in this

case. In order to provide a suitable comparison of the evolution of damage and

plasticity according to the two combinations of applied constitutive models, A and

B, cuts along the symmetry planes of the corresponding envelopes, cf. Eq. (5.1),

are presented in Figs. 5.7 and 5.8.

Considering the evolution of damage for biaxial stress states, cf. Fig. 5.7 (top),

it can be seen that initiation occurs at equal stress states for both configurations.

However, the propagation of damage takes place faster for configuration A, as

the envelope for 2% damage almost coincides with the one for 1% damage of

configuration B. Furthermore, it shall be noted that damage accumulates much

faster at biaxial compression stress states for both configurations.

The evolution of damage in relation to the applied shear stress σ12, as illus-

trated in Fig. 5.7 (bottom), shows quite different behaviour at all levels of pdam.

Thus, configuration A is much more sensitive to shear stress components than

configuration B, where corresponding levels of pdam are reached at approximately

twice as high values of σ12. Once damage has occurred, its propagation takes place

rather fast for both configurations when the shear stress component is increased.

The differences between configuration A and B in the presented damage envelopes

75



−200 −100 0 100 200 300 400 500

−100

0

100

200

300

400

σ11

σ
2
2

init

1%

2%

init

1%

2%

−100 0 100 200 300 400 500

−200

−100

0

100

200

√

σ
2
11 + σ

2
22

σ
1
2

init

0.5%

2%

init

0.5% 2%

Figure 5.7: Evolution of damage in terms of pσdam for configuration A (dashed
lines) and configuration B (solid lines) in symmetry planes of plane stress space
according to Eq. (5.1). Red circles mark points where the stated level of pσdam has
not been reached. All values are in MPa.
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Figure 5.8: Evolution of plasticity in terms of pσpla for configuration A (dashed
lines) and configuration B (solid lines) in symmetry planes of plane stress space
according to Eq. (5.1). Red circles mark points where the stated level of pσpla has
not been reached. All values are in MPa.
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may be caused by the different approaches for modelling damage in the applied

constitutive models, but, also the fact that configuration B accounts for plastic-

ity in the tows is of influence. Comparing the evolution of plasticity, Fig. 5.8, it

has to be kept in mind that configuration A just accounts for plasticity in the

matrix pockets whereas configuration B just accounts for plasticity in the tows.

Hence, envelopes representing the same value of ppla have quite different shapes.

Considering biaxial stress states, cf. Fig. 5.8 (top), it can be stated that plasticity

propagates faster for tensile stress states (σ11 > 0, σ22 > 0) in configuration A,

whereas at compressive stress states the propagation takes place faster in config-

uration B. Considering the stress states where the illustrated levels of ppla are

reached in comparison with the ones for pdam, it can be stated that plasticity plays

a minor role in the tensile region for both configurations, whereas, especially for

configuration B, its influence is of more importance at compressive stress states.

Both configurations are quite sensitive to shear stress components, however, config-

uration B is especially sensitive to pure shear loading. Combining the predictions

of both configurations, it can be stated that plasticity is induced in the tows at

earlier stages than in the matrix pockets, whenever shear stress components are

present. The red circle in Figs. 5.7 and 5.8 mark points where the stated level of

pσpla has not been reached.

In order to investigate the dominance of damage and plasticity regarding differ-

ent stress paths, i.e. different directions in plane stress space, the dissipated energy

fraction due to damage, pdam, is considered at a certain level of ppla and vice versa.

Therefore, stress and strain paths corresponding to the symmetry planes stated in

Eq. (5.1) are investigated, where the energy fractions are evaluated as follows.

pidam = pidam(p
i
pla = 0.01) = pidam(p

i,0.01
pla ) i ∈ {σ, ε}

pipla = pipla(p
i
dam = 0.01) = pipla(p

i,0.01
dam ) i ∈ {σ, ε}

(5.4)
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Hence, pdam is evaluated at the load increment where ppla reaches a level of 1% and

vice versa for each considered load path. The superscript i in Eq. (5.4) denotes

whether radial stress or strain paths are considered. The evaluation of the de-

scribed procedure is illustrated in Fig. 5.9 for both configurations A and B, where

the load path 1 always corresponds to states with

σ11 = σ22 σ11, σ22 < 0, (5.5)

whereas the last load path in each plot in Fig. 5.9 represents states with

σ11 = σ22 σ11, σ22 > 0. (5.6)

Thus, Figs. 5.9 (a) and (b) correspond to paths where the ratio between σ11 and

σ22 is varied while Figs. 5.9 (c) and (d) illustrate the variation of σ12 for states

with σ11 = σ22, where just positive values of σ12 are considered.

First, the occurrence of damage and plasticity shall be discussed for biaxial

stress states (σ12 = 0), cf. Fig. 5.9 (a) for configuration A and Fig. 5.9 (b) for

configuration B. It can be seen that plasticity in the matrix pockets plays a

minor role at these loading scenarios since the damage fraction at 1% plasticity is

always reasonably higher than 1%, cf. Fig. 5.9 (a). The largest influence of damage

occurs at uniaxial tension in tow direction. The situation for configuration B is

quite different, since both mechanisms seem to be equally important according to

Fig. 5.9 (b), where tow plasticity is dominant for compressive states with a peak

in the region of uniaxial compression in tow direction and damage is dominant for

tensile states. Again, the largest influence of damage can be observed at uniaxial

tension in tow direction. Considering the influence of shear components on the

dominance of the occurring mechanisms it can be stated that damage and plasticity
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Figure 5.9: Illustration of the dominance of damage and plasticity regarding dif-
ferent load paths, i.e. directions in plane stress space, cf. Eq. (5.4). (a) and (c)
represent configuration A whereas (b) and (d) represent configuration B.

in the matrix pockets are equally important in configuration A, cf. Fig. 5.9 (c),

where the region in the middle of the plot corresponds to plane shear and the first

and last load path represent states without shear component. Taking a look at the

same situation for configuration B reveals that tow plasticity is highly dominant

for increasing shear stress components while damage has almost no influence in

comparison. Thus, combining the predictions of both configurations it can be
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stated that plasticity in the matrix pockets has just minor impact on the overall

dissipated energy fractions. Whenever compressive states or states with nonzero

shear components are considered, tow plasticity plays a dominant role and should

therefore not be neglected in these situations. Furthermore, it has been observed

that radial strain paths qualitatively give a higher amount of damage but lead

to less plasticity in comparison to radial stress paths for both configurations. It

shall be noted, that points in Figs. 5.7 and 5.8 where the stated level of an energy

fraction has not been reached are caused by the dominance of another mechanism.

Thus, for example, high damage fractions are not reached for compressive states

with nonzero shear components since tow plasticity is dominant in this region.

5.2 Structural Application

Now, the procedure for utilizing a generated dataset in order to assess occurring

nonlinearities in large structural components based on linear elastic finite element

simulations shall be presented by the example of a U-section beam with variable

flange height in a four point bending test set-up consisting of four layers of bi-

axial ±30◦ braidings. Therefore, in a first step a dataset capturing the nonlinear

behaviour of the considered material system is generated by conducting unit cell

simulations as described before, which is then integrated in the proposed post pro-

cessing routine in order to determine and assess critical locations in the U-section

beam. First, the unit cell model and some differences to the one presented in the

former section are described. Afterwards, the model of the beam is summarized

and the loading situation is investigated.
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5.2.1 Unit Cell Model

The finite element model for investigating the mesoscale structure of a single layer

of the ±30◦ twill braiding is quite similar to the one described in section 5.1. Of

course, the angle between the fibre tows is different and additionally, the tows

are modelled with lenticular cross section and a smooth ondulation path, thus,

featuring a more realistic geometry. An illustration of the modelled geometry is

given in Fig. 5.10. This model has also been developed by Gager [11, 9], where

more details on the modelling strategy are found.

Since the braid geometry indicates that tow plasticity is going to be an es-

sential mechanism, the elasto-plasto-damage model, cf. section 3.2.2, is chosen

to simulate the tow behaviour while the matrix pockets are modelled by linear

elastic constitutive relations. This configuration is expected to be suited to the

investigated loading conditions, as outlined in the former section.

2

1

η

ξ

Figure 5.10: Geometry of the ±30◦ twill braiding with indicated periodicity vec-
tors, cf. [9]. The 1, 2 coordinate system is denoted as braid coordinate system and
is used to describe the orientation of the braid on a macroscopic component. The
ξ, η coordiante system is aligned with one tow direction and represents the unit
cell coordinate system.
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Material data

The considered braid features a RTM6/HTS40 matrix/fibre system. The material

properties and additional parameters needed to define the constitutive models are

presented in the tabs. 5.7, 5.8, 5.9 and 5.10, where the sub- and superscripts follow

the notation used in section 3.2.

Boundary conditions

The boundary conditions are applied in a similar way as for the twill weave unit

cell and the same nomenclature as illustrated in Fig. 5.3 is used. The locked

master node displacements are stated in tab. 5.11, where the unit cell coordinate

system ξ, η, ζ is utilized. Its axes are rotated through α = −30◦ to the braid

coordinate system such that ξ is aligned with a tow direction, cf. Fig. 5.10. The

Table 5.7: Initial engineering elastic constants, nominal strength values and specific
fracture energies of the fibre tows. [9]

El Eq = Er νlq = νlr νqr

elastic 203.165 GPa 11.988 GPa 0.22 0.6785

constants Glq = Glr Gqr

5.611 GPa 3.571 GPa

nominal XT XC Y T Y C S

strengths 2791 MPa 1400 MPa 33 MPa 175 MPa 76.4 MPa

fract. G(ft) G(fc) G(mt) G(mc) G(ps)

energies 89.8 N/mm 78.3 N/mm 0.2 N/mm 0.76 N/mm 1.0 N/mm
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Table 5.8: Additional parameters needed to define the elasto-plasto-damage model
for the fibre tows. [9]

Puck criterion
pt pc s s

0.35 0.30 1.0 1.0

σ̃I kI nI

power law 20.7 MPa 171.6 MPa 0.229

plasticity σ̃II kII nII

37.12 MPa 1390.8 MPa 0.3895

e(f) e(m) k
(m)
d ξ

(m)
a(c) µd

damage/ 0.01 0.01 8.00 0.015 0

interaction λI λII µt
I µc

I µII

1.50 0.25 0.10 0.08 0.25

Table 5.9: Elastic properties of the matrix pockets. [9]

E ν

2890 MPa 0.38

Table 5.10: Parameters for viscous regularization. [9]

ηft ηfc ηmt ηmc

0.002 s 0.002 s 0.004 s 0.004 s
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Table 5.11: Boundary conditions for preventing rigid body motions and coupling
effects. Displacements in the stated directions are prescribed to be zero. The ξ, η, ζ
coordinate system is aligned such that the ξ axis is parallel with a tow direction,
cf. Fig 5.10.

SWB SWT SEB SET NWB NWT

ξ, η, ζ ξ, η η, ζ η ζ −

transformationn relation between the two coordiante system follows as




xξ

xη



 =




cos α sin α

− sin α cos α








x1

x2



 (5.7)

Additionally, the displacements of NWB and NWT are defined to be equal in 1

and 2 direction as well as the displacements of SEB and SET in 1 direction in order

to suppress global bending. Concentrated forces or displacements, respectively, for

simulating radial stress and strain paths are prescribed to the master nodes SEB

and NWB in a similar way as described for the twill weave unit cell. Again, simple

shear is modelled.

Distribution of load paths

The load path distribution for generating the dataset for the post processing rou-

tine is equal to the one illustrated in Fig. 5.4, however, the ±30◦ braiding shows

just symmetric behaviour about the plane

σ12 = 0. (5.8)

Hence, a hemisphere in plane stress space has to be simulated instead of the quarter

sphere in Fig. 5.4. The coefficients smax and emax determining the lengths of the
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computed stress paths and strain paths are chosen to be

smax = 800 emax = 0.03. (5.9)

5.2.2 U-section Beam Model

The finite element model of the U-section beam with variable flange height in a four

point bending test set-up illustrated in Fig. 5.11 has been developed by Salcher

[30]. The beam is modelled using shell elements with an average edge lentgh of 1/24

of the beam height h, where existing symmetries at ℓ/2 and w/2 are utilized. The

connection of the half cylinder, the plate and the beam is modelled via surface to

surface contact and the application of the load F is handled through a distinct node

which is coupled to all others of the half cylinder in order to simulate a realistic

test set-up. The plates between the steel cylinders and the beam are assumed to

consist of aluminium and ensure that the concentrated load is distributed at the

region of load application. The beam is supported at two cross sections, between

ℓ w

h

F

F

a

b

Figure 5.11: Isometric view of the investigated four point bending beam with the
applied load F . ℓ = 700mm, w = 50mm, h = 60mm, a = 50 mm, b = 150
mm. The marked cross sections indicate the locations of supports. The braiding
is aligned such that the 1-axis of the braid coordinate system is parallel to the
length direction and the 2-axis lies in the plane of the beam surface, cf. Fig 5.10.
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Table 5.12: Effective material data applied to each layer of the investigated beam.
The transverse shear moduli (∗) are estimated. Coordinate 1 is parallel to the
length direction of the beam and 3 is always normal to the surface. 2 denotes the
transverse in plane direction.

E1 E2 ν12 G12 G∗

13 G∗

23

42569 MPa 8717.8 MPa 1.5123 24140 MPa 24140 MPa 2890 MPa

the left border and the left load application and between the right border and the

right load application, where the applied load F is

F = 200 N. (5.10)

The beam itself consists of four layers of ±30◦ twill braidings, where effective

material properties are applied to each layer, cf. tab. 5.12. The 1, 2, 3 cooridnate

system according to tab. 5.12 is aligned in parallel to the braid coordinate system

illustrated in Fig. 5.10. The braidings are applied such that the 1-axis of the braid

coordinate system is aligned with the length axis of the beam and the 2-axis lies

in the plane of the beam surface, cf. Fig. 5.10. The effective material properties

are evaluated based on the unit cell model presented above and correspond to the

initial stiffness of four layers stacked in-phase [9]. Although these properties do

not correspond to the ones used for generating the database of nonlinear unit cell

responses, where just a single layer is considered, this practice is used due to the

fact that single layer properties underestimate the stiffness of stacked layers since

they do not account for the interaction between adjacent layers. Furthermore,

the case that a component is made out of a single layer of some braiding is rather

unusual. The dissipated energy fractions are assumed to be just slightly depending

on the number of layers considered and therefore the combination is considered to

be reasonable.
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5.2.3 Macroscopic Results - Assessment of Nonlinearities

Now, a linear elastic simulation of the presented four point bending beam is con-

ducted while, already at this stage, a user subroutine is implemented into Abaqus,

which accesses envelopes marking the onset of damage and plasticity. These en-

velopes are evaluated from the generated dataset according to the onset condition

Eq. (5.3) and delivered as vtk file.

This user subroutine represents the first step in the post processing procedure

since it evaluates a reserve factor corresponding to the utilized envelopes for each

mechanism regarding proportional load increase and provides the respective factor

as an output variable directly selectable in the Abaqus Viewer. This way, a fast

overview of critical locations on the structure is given. However, it shall be noted

that the locations found this way may not be the only critical spots in the structure

as stated in section 4.2.2.

Fig. 5.12 shows the reserve factors related to damage and plasticity as contour

plots for the most critical layer. The critical spots are found to be in the region

of ℓ/2 along the length direction of the beam, where damage has not occurred up

to the current state, as can be seen in Fig. 5.12 (a) which illustrates the region of

the highest occurring reserve factor for damage initiation. The most critical spot

regarding plasticity is found to be the lower edge at ℓ/2, cf. Fig. 5.12 (b), where

a reserve factor of two indicates that plastic deformations have already occurred

in this region. The green area in the vicinity of this spot exhibits a reserve factor

of about one and indicates the border of the domain where plasticity may appear.

The other layers do not exhibit as high reserve factors and the corresponding plots

are therefore not shown. Up to this point no information about the nonlinear

response at the critical spots has been given and it has just been stated that plas-

ticity is supposed to occur at the discussed locations. In order to gain knowledge

88



of the extent of plasticity at these locations and to estimate the sensitivity of cer-

tain locations regarding further load increase the dataset containing all computed

nonlinear unit cell responses is utilized, cf. section 4.2, and a functionality to di-

rectly select a certain element and pass the stress state over to the post processing

routine is implemented into Abaqus via the Abaqus GUI Toolkit. Thus, all loca-

tions of interest can easily be selected and investigated regarding the evolution of

damage and plasticity. First, the state exhibiting a reserve factor of RFpla = 2

regarding plasticity shall be investigated, cf. Fig. 5.12 (b). The post processing

routine has shown that the this state does not exhibit damage initiation up to a

Layer 4 - damage: RFmax = 0.6

(a)

Layer 4 - plasticity: RFmax = 2

(b)

Figure 5.12: Contour plots of reserve factors for the most critical layer. The red
regions mark the specified maximum value of the reserve factor RFmax. Layers are
counted from bottom to top, hence, layer 4 denotes the top layer.
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proportional load increase by a factor of two and, hence, a plot illustrating the

evolution of damage is not given for this state. The evolution of plasticity in terms

of proportional load increase is shown in Fig. 5.13. As can be seen, the plasticity

fractions corresponding to radial stress and strain paths, pσpla and pεpla, mark some

upper and lower estimates thus indicating a value between 2.5% and 4% for the

actual plasticity fraction ppla at the current state. The energy based plasticity

fractions p
W (σ)
pla and p

W (ε)
pla , cf. section 4.2.1, are coincident up to the current state

but start to deviate upon further load increase. Hence, it can be stated that the

loading history influence is of minor importance at the considered state and it may

be assumed that the plasticity fractions pσpla and pεpla represent upper and lower

bounds on the actual value of ppla. At further load increase the plasticity fraction

is steadily growing and reaches an upper estimate of 16% at a load fraction of two.

Additionally, the load fraction where the initiation criterion for ppla, cf. Eq. (5.3),

has been met is marked with a circle in Fig. 5.13 and can be identified with a

value of 0.4, which corresponds to the evaluated reserve factor of about two in

Fig. 5.12 (b). Furthermore it can be seen that the value ppla stays quite low in
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Figure 5.13: Evolution of the plasticity fraction ppla in terms of proportional load
increase at the critical location illustrated in Fig. 5.12 (b). The specified stress
state σlin denotes the stress components according to Voigt notation and is based
on the braid coordinate system, cf. Fig. 5.10.
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the region between onset of plasticity and a load fraction of 0.6 thus giving rise to

the assumption that a safety factor regarding plasticity onset may be reduced in

such situations. Of course, such an approach has to be verified by accompanying

experiments.

Now, the location where the highest reserve factor regarding damage occurs,

cf. Fig. 5.12 (a), shall be investigated regarding the sensitivity to further load

increase. The contour plots in Fig. 5.12 reveal that, additionally to the reserve

factor of RFdam = 0.6 for damage onset, the reserve factor for plasticity onset

is close to one in this region. Hence, the proposed post processing routine shall

give information on the evolution of damage and plasticity at this location, as

illustrated in Fig. 5.14 for the damage and plasticity fractions, pdam and ppla, in

terms of proportional load increase. It can be seen that the initiation criterion for

plasticity is met at a load fraction of 1.1 whereas damage onset is observed at a load

fraction of 1.3. Again, the energy fractions corresponding to radial stress paths, pσi ,
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Figure 5.14: Evolution of the damage fraction pdam (a) and the plasticity fraction
ppla (b) in terms of proportional load increase at the location of the highest damage
reserve factor, cf. Fig. 5.12 (a). The specified stress state σlin denotes the stress
components according to Voigt notation and is based on the braid coordinate
system, cf. Fig. 5.10.
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represent upper estimates whereas the ones corresponding to radial strain paths, pεi

represent lower estimates on the actual values of pi. It shall be noted that, contrary

to the situation in Fig. 5.13, the damage and plasticity fractions based on the

equivalent strain energy mapping procedure, p
W (σ)
pla and p

W (ε)
pla , already deviate just

after the onset of the considered mechanism thus indicating that loading history

influence is not negligible even in the slightly nonlinear region. Hence, predictions

of the amount of damage and plasticity at increased loads have to be interpreted

with great care since there may be load paths leading to more critical states than

the ones predicted for radial stress and strain paths. In this case, information on

the actual loading history should be taken into account in order to estimate the

validity of the underlying assumptions of the proposed methodology. The current

state according to Fig. 5.14 may be interpreted to be just moderately sensitive to

load increase since, even at a load fraction of two, the upper estimates for pdam

and ppla reach values of about 0.4%, which are considerably small compared to the

current amount of plasticity (≈ 3%) at the location investigated before. However,

damage fractions pdam may need to be treated different compared to the ones for

plasticity, ppla, since certain amounts of either fractions have not been investigated

regarding structural failure. Hence, critical values of pdam and ppla cannot be

stated within the scope of this work but can may be determined in combination

with experiments.

It shall be noted that the presented approach cannot account for stress redistri-

bution at macroscopic length scales, i.e. in the component. However, the influence

of non-proportional loading is captured in an approximate way at the mesoscale

while stress redistribution is just accounted for at the microscale. Therefore, rea-

sonable results may just be expected as long as the loading state of the considered

component stays in the slightly nonlinear regime.
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Chapter 6

Conclusion

The application of fibre reinforced composites (FRCs) increases significantly in

almost every field of engineering, not least due to their favourable weight specific

properties as high specific stiffness and strength. In order to fully exploit their

potential, it is necessary to reliably predict the nonlinear structural response of

components consisting of FRCs. However, the coverage of all relevant nonlinear

mechanisms in large structural analyses leads to vast computational demands and

is therefore, in practice, hardly feasible. In order to resolve this disadvantage, a

two step methodology is proposed which extends the predictional capabilities of

large-scale linear elastic analyses by combining them with information on nonlin-

ear effects gained through unit cell analyses and thus reduces the computational

effort to a practicable extent. Since this combination is meant to be entirely decou-

pled, effects like stress redistribution cannot be accounted for on the macroscopic

scale, i.e. in the component. Nevertheless, it is assumed that the influence of non-

proportional loading is captured in an approximate way in terms of upper and

lower estimates given by the simulation of related radial stress and strain paths.

Of course, this approxiamtion is just valid at the length scale of the underlying
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unit cell computations, e.g. the mesoscale. Now, unit cell responses of a sufficient

number of paths representing plane stress states are computed while dissipated

energies are monitored in order to characterize and quantify occurring nonlineari-

ties. This information is then stored in a material specific database and represents

the basis of the proposed methodology. In a second step, arbitrary plane stress

states occurring at some chosen locations in linear elastic structural analyses are

mapped to corresponding states of the generated database thus facilitating the

assessment of material nonlinearities on the macroscale. Hence, once a dataset

has been generated the assessment of arbitrary linear elastic stress states can be

done within seconds independently from the investigated structure.

The application of this methodology is demonstrated on the basis of two differ-

ent textile composites, a twill weave and a ±30◦ twill braiding, where the mapping

procedure is applied on a linear elastically computed U-section beam with variable

flange height in a four point bending test set-up. It is shown that the unit cell

responses corresponding to radial stress and strain paths deviate clearly recogniz-

able in the region of pronounced nonlinearities, indicating non negligible influence

of the loading history in terms of non-proportional loading. Furthermore, the as-

sumption of upper and lower estimates related to radial strain and stress paths is

found to be reversed in some situations. Hence, estimates on the dissipated energy

fractions have to be treated with special care whenever the above conditions are

observed since more critical load paths are likely to exist. However, the responses

for radial stress and strain paths tend to coincide in the slightly nonlinear region

thus allowing the predicted energy fractions to be interpreted as upper and lower

estimates. In some cases the energy fractions stay relatively low after the corre-

sponding onset criterion has been met whereas they are increasing considerably fast

in other situations. Observations like this give rise to the assumption that some

loading situations may be less critical than others and the presented approach may
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be directly utilized for adapting safety factors in component design, of course, af-

ter an experimental validation of the proposed methodology has been conducted.

Finally, it shall be noted that the energy dissipation monitoring concept is not

restricted to the application on textile composites and can be universally applied

whenever the investigated mechanisms can be tracked by their dissipated energies.

In order to allow a reasonable application of the proposed methodology in com-

ponent design, critical levels of dissipated energy fractions have to be identified

by accompanying experiments. Such information would extend the predictional

capabilities regarding strength reserve. The disadvantage of the decoupled pro-

cedure is represented by the inability to account for stress redistribution at the

macroscopic scale. Hence, the generated dataset may be utilized directly coupled

with large scale simulations instead of its application at the post-processing stage

in order to overcome this shortcoming. However, such an approach still contains

the assumption of radial paths.
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[26] A. Puck and H. Schürmann. Failure analysis of FRP laminates by means of

physically based phenomenological models. Computers Science an Technology,

58:1045–1067, 1998.

98
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