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Ich erkläre hiermit, dass ich die eingereichte Diplomarbeit selbstständig verfasst
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Einleitung/Kurzfassung

Zum momentanen Zeitpunkt sind vier fundamentale Wechselwirkungen bekannt.

Drei davon, die elektromagnetische, die schwache und die starke Wechselwirkung

sind im Standardmodell der Elementarteilchenphysik vereinigt, wohingegen die

Gravitation unabhängig behandelt wird. Ein fundamentales Problem der Physik ist

die Inkompatibilität des quantenmechanischen Standardmodells mit der klassischen

allgemeinen Relativitätstheorie. Diese Problematik kann darauf zurückgeführt

werden, dass quantenmechanischen Observablen Wahrscheinlichkeiten zugeordnet

sind, wohingegen klassische Größen stets definitive Werte haben.

Neue Ideen kamen als das Holographische Prinzip entdeckt wurde. Es besagt, dass

die Information, welche für die Beschreibung einer fundamentalen Theorie

notwendig ist, nicht proportional zum Volumen, sondern zu seiner Oberfläche ist.

Dies ist ähnlich zu einem Hologramm, welches ebenfalls die Information für einen

scheinbar dreidimensionalen Körper auf einer zweidimensionalen Oberfläche

abspeichert.

Die mögliche holographische Theorie mit Dimension D − 1 am Rand einer D

dimensionalen Theorie kann meist eingeschränkt werden, wenn die asymptotische

Symmetriealgebra bekannt ist. In dieser Arbeit wird die asymptotische

Symmetriealgebra für asymptotische Lifshitz Raumzeiten für allgemeine

Relativitätstheorie mit negativer kosmologischer Kontante gekoppelt an ein

Eichfeld mit Spin 3 untersucht. Das asymptotische Verhalten von Lifshitz

Raumzeiten kann als Modell für bestimmte Systeme kondensierter Materie mit

Phasenübergängen am kritischen Punkt gesehen werden.

In dieser Arbeit werden zwei unterschiedliche konsistente Randbedingungen

definiert, welche asymptotisch Lifshitz Raumzeiten ergeben. Die asymptotische

Symmetriealgebra ergibt die eine W3 ×W3 Algebra, wohingegen die zweiten

gegebenen Randbedingungen noch nicht eindeutig mit einer bestimmten Algebra

identifiziert werden konnten. Wir vermuten, dass es sich um eine W(2)
3 ×W(2)

3

Algebra handelt.



Abstract

We analyze asymptotically Lifshitz spacetimes with a dynamical critical exponent of

z = 2 in spin-3 gravity in the principal embedding. Two different sets of consistent

boundary conditions with conserved charges are presented. For the stricter set of

boundary conditions the asymptotic symmetry algebra is W3 ×W3 with the central

charges c = 3l
2GN

. The variations of the looser set of boundary conditions are pre-

sented and we conjecture that the asymptotic symmetries in this case are given by

a W(2)
3 ×W(2)

3 algebra.
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1. Introduction

In this introduction we first want to motivate why a quantum theory of gravity is

needed. We further give a short overview of gravity seen as an effective field theory

and give minimum requirements for a valid theory of quantum gravity. We later

show how this leads to the holographic principle which is one of the motivations of

this work. We further discuss one of the most prominent realizations of holography,

the AdS/CFT correspondence.

1.1 Quantum gravity

We currently know of four fundamental forces. Three of them, the electromagnetic,

the weak and the strong interaction are incorporated in the Standard Model of parti-

cle physics whereas gravitation is not. Classical general relativity describes gravita-

tional effects from cosmological down to sub-millimeter scales [1,2]. The other forces

in the form of quantum theories are known to be valid at even smaller scales [3].

Together they explain a wide area of experimental results and at least in principle

all of our everyday phenomena.

On the other hand there are reasons to believe that there must be a more funda-

mental framework in which quantum mechanics and classical general relativity are

unified in a theory of quantum gravity [4–6]1. One of the reasons to believe in a

unification is that classical and quantum theories are known to be incompatible at a

fundamental level. The observables of a classical theory are given by definite values,

whereas quantum theories provide probabilities for the outcome of measurements.

In the case of Einstein’s equation

Gµν = 8πT̂µν (1.1)

the left hand side is a classical tensor whereas the right hand side is given by a

quantum operator. Superpositions of the form

|ψ〉 = 1/
√

2 (|Mass at A〉+ |Mass at B〉) (1.2)

would have no quantum mechanical counterpart on the left hand side of equation

(1.1)2.

It is widely believed that the true, fundamental theory unifies all fundamental

forces. Here again the classical or the quantum theory needs to be adapted. While it

is well established that a fundamental theory should be quantum mechanical another

logical possibility is to alter the description of quantum phenomena (see for example

[8]). Even though the arguments are not conclusive it seems reasonable to search for

a quantum version of general relativity.

1Most of this section is motivated by and oriented on [4, 5].
2The semi-classical interpretation using Gµν = 8π 〈ψ|Tµν |ψ〉 seems to be experimentally ex-

cluded [7].
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There are various approaches to quantize theories [3, 9].In the case of gravity

additionally to technical difficulties problems of conceptual nature exist, connected

to the lack of understanding what it means to quantize spacetime itself.

A fruitful approach is the attempt to build the theory as a quantum field theory

of the fluctuations hµν around some background g̃µν i.e., the metric gµν gets split

gµν = g̃µν + hµν . Diffeomorphism invariance is preserved and interesting quantities

are calculated perturbatively in hµν . After the development of the Feynman rules it

became clear that general relativity is non-renormalizable [10]. In the modern point

of view all quantum field theories are seen as effective field theories and as such

they are only valid up to a specific scale [3, 9]. Seen as an effective field theory the

Einstein-Hilbert Lagrangian consists of the leading two terms in the series

L =
√−g(M4

Λ +M2
PR + c1R

2 + c2RµνR
µν + c3RµνλρR

µνλρ + . . .). (1.3)

In the regime where the energy of interest is much smaller than the modified Planck

mass (E �MP ) the terms quadratic in curvature are suppressed by (E/MP )2. One

is able to calculate these leading quantum corrections to the Newtonian potential

energy [11,12]

V (r) = −GNmM

r

(
1 + 3

GN(m+M)

rc2
+

41

10π

GN~
r2c3

+ . . .

)
. (1.4)

These are in principle measurable deviations from the classical potential which show

low energy effects of quantum gravity.

As mentioned above general relativity as an effective field theory is only valid

at most up to the Planck scale. This situation is analogous to the Fermi theory of

weak interaction where we also know that it is only valid up to the electroweak scale.

At higher energies the theory is UV-completed by the electroweak interaction. A

possible UV-completion of general relativity could be string theory.

The current lack of observational or experimental evidence which could help to

improve or exclude theoretical models makes the search for a unified theory diffi-

cult. Additional to experimental search [13] there are some minimum theoretical

requirements which a theory of quantum gravity should fulfill:

Classical limit General relativity has passed all observational and experimental

tests so far. Therefore the “zeroth test” of any quantum gravity theory is to

reproduce general relativity in the classical limit. In the case of loop quantum

theory this is still an open problem [14] and it is not clear that the classical

limit is general relativity.

Hawking radiation Another robust prediction is the existence and spectrum of

black hole Hawking radiation. In a classical world nothing could exit a black

hole but since Hawking radiation is a quantum effect it is possible. It has been
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verified by various (semi-classical) calculations and is therefore a prediction that

any theory of quantum gravity should reproduce. Hawking radiation is perfect

black-body radiation with a for the black hole characteristic temperature. This

associated temperature is called Hawking temperature and is given by

TH =
κ

2π
. (1.5)

κ is the surface gravity at the event horizon. In the case of the 3+1 dimensional

Schwarzschild black hole κ = 1
4M

.

Black hole entropy Why one should associate entropy to a black hole can be mo-

tivated by the tension between the second law of thermodynamics and the

no-hair theorem. On the one hand, entropy should never decrease, but on

the other hand, any stationary black hole in 3+1 dimensions is characterized

by just three parameters which are the mass M , charge Q and angular mo-

mentum J . So a lot of different start configurations end up in the same final

state with entropy S = 0. A resolution is to associate to any black hole the

Bekenstein-Hawking entropy

SBH =
Ahorizon

4
(1.6)

where Ahorizon is the area of the event horizon. Since entropy is a measure for

the number of degrees of freedom, a quantum theory of gravity should be able

to explain and describe the microscopic origin of them.

String theory reproduces (1.6) for a large class of extremal and near-extremal

black holes [15]. Loop quantum gravity is able to calculate the entropy for

various classes of black holes, including the Schwarzschild black hole, but fails

to predict the proportionality factor [14].

Logarithmic corrections Logarithmic corrections to the black hole entropy of ex-

tremal black holes calculated by Euclidean gravity methods in terms of low

energy data agree perfectly with the microscopic string theory calculations.

This motivates to apply the former method to more general black holes and

thus constrain the underlying theory [16]. In loop quantum theory there are

logarithmic corrections to pure gravity Schwarzschild black holes that differ in

sign and magnitude to the one Euclidean gravity predicts

SEG = SBH + (
212

45
− 3) lnM. (1.7)

For string theory there exists no microscopic calculation for the Schwarzschild

black hole yet.
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1.2 The holographic principle

If we look at the entropy of black holes and the regions outside of them separately

the second law of thermodynamics can be violated. Throwing a cup into a black

hole reduces the external entropy whereas Hawking radiation reduces the entropy

of the black hole. To remain with a monotonically increasing entropy Bekenstein

suggested [17–19] the generalized second law

dStotal ≥ 0 (1.8)

with Stotal = SBH + Smatter.

To be sure that the decrease of Smatter results in an increase of Stotal, matter has

to obey the Bekenstein bound

Smatter ≤ 2πER. (1.9)

E is the mass-energy of the matter system and R is the radius of the smallest sphere

around it. Now even a very dense cup of coffee which enters the black hole decreases

Smatter such that the increase in SBH results in an increase in Stotal. One is able to

derive the spherical entropy bound with the condition that the matter should be

stable 2M ≤ R which leads us to

Smatter ≤ 2πMR ≤ πR2 =
A

4
. (1.10)

Now this generalized thermodynamics has very surprising consequences known

as the “holographic principle”3. It rests on the analysis of how many degrees of

freedom dof a fundamental theory has in a region with volume V and boundary area

A. The degrees of freedom are defined to be the logarithm of the dimension of its

quantum mechanical Hilbert space H

dof = ln dim(H). (1.11)

We start with the estimation of dof for a local field theory on a classical back-

ground spacetime. On a superficial level the answer would be dof =∞ because there

are infinitely many points in any volume. Furthermore the harmonic oscillator at

each point has an infinite dimensional Hilbert space.

At closer inspection we recognize that there is a minimal length that can be

resolved, the Planck length lP. Additionally there is also a maximal energy that can

be stored in such a Planck cell l3P which is of the order of one Planck mass. So we

can assume that the Hilbert space of one oscillator has a maximal dimension of n.

3The following analysis of the holographic principle is highly influenced by [20]. Throughout

the description it is assumed that the spacetime is asymptotically flat and the gravitation is weak

enough for the quantities A and V to make sense.
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The total number of independent quantum states in a volume is V (in Planck units)

so we get

dimH ∼ nV → dof & V. (1.12)

Another way to calculate the degrees of freedom is by using thermodynamics.

For an isolated thermodynamic system the number of possible states for specified

macroscopic variables is given by

dimH = eS. (1.13)

where S is the entropy of the system. This number is restricted by the spherical

entropy bound (1.10) which is saturated for a black hole. So the maximal number of

states is eA/4 with the degrees of freedom bound by

dof ≤ A

4
. (1.14)

This disagreement with local field theory, e.g., (1.12) can be traced back to the

fact that the ultra-violet cutoff by the Plank mass just restricts the formation of black

holes on small scales. Violating the inequality (1.14) would result in gravitational

collapse to a black hole.

If we assume that our fundamental theory is unitary and as such preserves in-

formation we conclude that any configuration that could end up as a black hole had

to respect (1.14) from the start because otherwise there would be information loss.

So trusting in black hole thermodynamics and unitarity ’t Hooft [21] and Susskind

[22] proposed the holographic principle [20]:

“A region with boundary of area A is fully described by no more than A/4 degrees

of freedom, or about 1 bit of information per Planck area. A fundamental theory,

unlike local field theory, should incorporate this counterintuitive result.”

1.3 AdS/CFT correspondence

The holographic principle is realized in string theory in the form of the AdS/CFT

correspondence. Maldacena [23] proposed that nonperturbative string theory in an

asymptotically Anti-de Sitter (AdS) background is dual to a flat spacetime conformal

field theory (CFT) in one dimension lower. A concrete example is type IIB string

theory on asymptotically AdS5 × S5 plus some appropriate boundary conditions,

which is dual to a 3 + 1 dimensional supersymmetric Yang-Mills theory in flat space.

The conformal boundary of the bulk AdS5 × S5 is 3 + 1 dimensional and this is

where the boundary theory “lives” [24]. Since the 4 dimensional boundary theory

describes all the physics of the theory of the 5 dimensional bulk we have a dimensional

reduction in agreement with the holographic principle [25].

To have a meaningful correspondence we further need to connect the interesting

quantities of the bulk and the boundary. The bulk fields of the string theory φ get
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evaluated at their boundary values φ0. The boundary CFT does not have particle

states or an S-matrix so the physical relevant quantities are given by correlation

functions of gauge invariant operators O. The proposal [26, 27] for the connection

between them is

Zstring[φ0] = 〈e
∫
∂M φ0O〉CFT . (1.15)

The left hand side is the full partition function of string theory and the right hand

side is the generating function of correlation functions of the field theory.

Various quantities of the bulk and the boundary theory have been compared.

They matched in perfect agreement with the correspondence. For more details,

other realizations and an extensive review of the results see [24].
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2. Higher spin gauge theories

In this section we provide a non-exhaustive overview of higher spin gauge theories and

the progress that has been made in the past. We will see that they provide examples

for many features that were discussed in the previous section. Focus will be laid

on three dimensional higher spin theories which provide a great balance between

analytic tractability and intrinsic complexity. Finally higher spin gravity with the

gauge algebra sl(N,R)⊕ sl(N,R) will be introduced.

2.1 Higher spin gauge theories and holography

All known physical fields in quantum theories can be classified by just the mass m and

the angular momentum s about the center of mass [9]. They can further be divided

in massive and massless particles with fulfill p2 = −m2 and p2 = 0 respectively.

The equations for non interacting massless particles of integer spin in 3 + 1

dimensions on a flat background were found by Frondsdal [28]4. For s = 0, 1, 2 they

reduce to the well known Klein Gordon equation, Maxwell equation and linearized

general relativity.

The local degrees of freedom for a massless field of integer spin s in D ≥ 4 flat

spacetime is given by5

(D + 2s− 4)(D + s− 5)!

(D − 4)!s!
. (2.1)

It is interesting to note that in four spacetime dimensions the local degrees of freedom

are 2, independently from the spin. This in agreement with the polarizations of the

photon and the graviton.

It is comparably easy to write down free higher spin fields. But coupling these for

s > 2 to gravity leads to various no-go theorems (for a review see [30]). Fradkin and

Vasiliev [31] showed that consistent higher spin gauge theories involving gravity need

to be defined on a curved background. They were first formulated by Vasiliev [32].

This theories involve an infinite tower of massless fields and can be constructed as

the simplest example on (A)dS spaces.

One interesting aspect of higher spin gauge fields is that they might be connected

to string theory in the tensionless limit in which the massive excitations of string

theory become massless. It is conjectured that string theory is a broken phase of a

higher spin gauge theory. For more details see [33] and references therein.

Furthermore the holographic principle finds a realization in the form of the pro-

posal made by Klebanov and Polyakov [34] and Sezgin and Sundell [35,36]. They con-

jectured that there exists a duality in the large N limit of the critical 3-dimensional

4We will restrict our explanations for the sake of simplicity on integer spin.
5This is connected to the fact that the stability subgroup of the Poincare group is ISO(D− 2).

The local degrees of freedom can then be determined from the dimension of the unitary irreducible

representation of this group [29].
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O(N) model and the minimal bosonic higher spin theory in AdS4. This holographic

proposal got supported by calculations of Giombi and Yin [37] and the current status

is reviewed in [38].

We will now focus on 2 + 1 dimensions where the situation changes significantly.

Gauge fields with “spin”6 s > 1 posses no local degrees of freedom anymore. This

makes theories in 2 + 1 dimensions interesting in various aspects. While there is still

enough structure to be nontrivial the technical difficulties that arise in the higher

dimensional cases are often circumvented.

This is already seen in the famous result by Brown and Henneaux [39] which

can be seen as a precursor of the AdS3/CFT2 correspondence. They showed that

three dimensional Einstein-Hilbert gravity with a negative cosmological constant and

Brown-Henneaux boundary conditions leads to asymptotic symmetries given by the

conformal group in two dimensions. Interestingly there appears a nontrivial central

charge in the algebra of the canonical generators.

This charge appears again in the analysis of another unexpected result, the

BTZ black hole [40]. Even though there are no local degrees of freedom in three

dimensional gravity, black holes are possible. Using the central charge it was shown

that it is possible to calculate the asymptotic density of states and the entropy [41].

So a microscopic interpretation for the states of the black hole is possible and the

holographic principle is realized.

To add interacting fields with spin s > 2, in contrast to the higher dimensional

case, no infinite number of higher spin fields are needed [42]. The Brown Henneaux

analysis has been generalized to higher spin fields [43–45]. In the case of the coupling

of a spin 3 field to gravity the asymptotic symmetries are given byW3×W3 algebras

(see Appendix A.3). Fields of spin s = 3, 4, . . . , N coupled to gravity are given by

a Chern-Simons theory with gauge algebra sl(n,R) ⊕ sl(n,R) (see section 2.2) and

have in the case of an AdS3 background the asymptotic symmetriesWN×WN . Using

the higher spin algebras hs[λ]⊕hs[λ] as gauge algebra we get gravity coupled to spin

fields s = 3, 4, . . . ,∞ and again for AdS3 asymptotic symmetries W∞[λ] × W∞[λ]

(for details please see the cited references above).

Another aspect that is advantageous in D = 3 is that the dual to AdS3 is given

by CFT2. Two dimensional conformal field theories are well understood and offer a

high degree of analytic control. It was proposed by Gaberdiel and Gopakumar [46]

that the hs[λ] theory on AdS3 is dual to the large-N limit ofWN minimal models on

the CFT side. As a hint for the validity of this proposal can be seen that this limit

on the CFT side leads, like in the bulk theory, also to a W∞ algebra. The duality is

reviewed in [47].

Since the BTZ black hole can also be generalized in higher spin gauge theories

6“Spin” in D = 3 refers to the transformation properties of the field under Lorentz transforma-

tions and is unrelated to the considerations given in footnote 5.
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new questions concerning gauge invariant characterization and black hole thermody-

namics arise (for a review of the proposed answers see [48]).

2.2 sl(N,R)⊕ sl(N,R) higher spin gravity

Much of the progress in 2 + 1 dimensions is due to the fact that an action for the

interacting fields is known [49]. This is in contrast to the higher dimensional case

which is only known as a formulation at the level of field equations.

Higher spin gravity (HS gravity) is given as a sl(N,R)⊕ sl(N,R) Chern-Simons

theory with the Lie algebra valued one forms A and Ā7

I[A,A] = ICS,±[A]− ICS,±[A] (2.2)

where

ICS,±[A] =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A) +B±[A]. (2.3)

The trace Tr is with respect to the sl(N,R) algebra and B±[A] denotes a possible

boundary term. For N = 2 standard three dimensional gravity with a negative

cosmological constant is recovered [50, 51]. For N > 2 HS gravity is gravity coupled

to symmetric tensor fields of rank s = 3, 4, . . . , N . The sl(2,R) part of the sl(N,R)

theory should match with the Einstein-Hilbert action. To guarantee that in the case

of the fundamental (N -dimensional) representation of the algebra and the principal

embedding we have to set [43]

k =
l

8GNTrN(L0L0)
(2.4)

where the trace of the L0 generator of sl(2,R) can be given in general by TrN(L0L0) =
N(N2−1)

12
[52].

The action is written for gauge fields A and Ā. When we want to recover a spin

n field in its “metric formulation” we use the relation

φµ1µ2...µn ∼ Tr(e(µ1eµ2 . . . eµn)) (2.5)

where the brackets around the indices on the right hand denote symmetrization. In

the case of s > 3 this is already not unique anymore. For example for s = 4 we have

the options Tr(e4) and Tr(e2)Tr(e2) [44]. The (zu)vielbein e and the spin connection

ω are given by

e =
l

2
(A− Ā) and ω =

1

2
(A+ Ā) (2.6)

where l is the AdS radius. In our analysis the manifold is assumed to have cylindrical

topologyM = R×D and the boundary ∂M has the topology ∂M = R×S1 (figure 1).

The coordinates are denoted by xµ = (t, r, x).

7Ā is not the complex conjugate of A. The bar denotes an independent field.
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x

r

t

D
S1

Figure 1: Topology of the spacetime

2.3 Variational principle

We will now focus on ICS,±[A] since the analysis for A follows by replacing A→ A.

Chern-Simons gauge theories are well documented, see for example [43, 51, 53–55]

and references therein.

Since the gauge field A is a sl(N,R)-valued one-form we can write it as A =

Aa Ta = Aµdx
µ = Aaµ Tadx

µ. The Ta span the basis of the Lie algebra with the

structure constants given by [Ta, Tb] = f cabTc. The trace Tr is with respect to this

algebra and gab = Tr(TaTb) is the Cartan–Killing metric8.

To have a kinetic energy∫
M

Tr(A ∧ dA) = gab

∫
M
Aa ∧ dAb (2.7)

for all components of the gauge fields we need the metric gab to be non-degenerate.

This is fulfilled in the case of semisimple Lie algebras and thus in our theory.

Varying now the action ICS,±[A] leads to

δICS,±[A] =
k

2π

∫
M

Tr(F ∧ δA)− k

4π

∫
∂M

Tr(A ∧ δA) + δB±[A], (2.8)

where F = dA+ A ∧ A. Demanding δICS,±[A] = 0 leads to the equations of motion

(EOM)

F = dA+ A ∧ A = 0 (2.9)

which can be written more explicit as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = 0. (2.10)

8Not to be confused with the spacetime metric gµν .
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Going on-shell after varying the action leads to a boundary term

δICS,±[A]
∣∣∣
EOM

= − k

4π

∫
∂M

Tr(A ∧ δA) + δB±[A] (2.11)

=
k

4π

∫
∂M

Tr(δAxAt − AxδAt)dx ∧ dt+ δB±[A]. (2.12)

One option for a well defined variational principle is to start without an addi-

tional boundary term B±[A] and demand one of the following three conditions

Ax

∣∣∣
∂M

= 0 At

∣∣∣
∂M

= 0 Ax

∣∣∣
∂M
∝ At

∣∣∣
∂M

. (2.13)

Another option which leaves us with less restrictions is, to define the boundary

term as

B±[A] = ± k

4π

∫
∂M

Tr(AxAt)dx ∧ dt, (2.14)

which gives in the case of a plus sign

δICS,+[A]
∣∣∣
EOM

=
k

2π

∫
∂M

Tr(δAxAt)dx ∧ dt. (2.15)

So we get the following options for a well defined variational principle

δICS,+[A]
∣∣∣
EOM

= 0 =⇒ δAx

∣∣∣
∂M

= 0 or At

∣∣∣
∂M

= 0 (2.16)

δICS,−[A]
∣∣∣
EOM

= 0 =⇒ δAt

∣∣∣
∂M

= 0 or Ax

∣∣∣
∂M

= 0. (2.17)
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3. Lifshitz higher spin holography

In this section we will first give examples of holography besides AdS. Then the

spacetime that will be further discussed will be defined and the symmetries recovered.

Next we follow the idea of Gary, Grumiller and Rashkov [56] and the algorithm

suggested in [57]. Our goal is to find the asymptotic symmetry algebra and its cen-

tral charges since this gives us hints about the dual field theory. To do that we first

identify the bulk theory and the variational principle and further generate the back-

ground. We impose suitable boundary conditions where we want to find boundary

preserving gauge transformations which lead to nontrivial, state-dependent, finite,

conserved and integrable charges.

Two such boundary conditions were found. The stricter set leads to a W3×W3

algebra whereas the looser set is still work in progress.

3.1 Non-AdS holography

In many applications it is necessary to generalize holography to spacetimes more

general than asymptotic AdS. Examples are [56]:

Null warped AdS spacetimes which arise in proposed holographic duals of non-

relativistic CFTs describing cold atoms [58,59]

Schrödinger spacetimes, which generalize null warped AdS by introducing an ar-

bitrary scaling exponent [60]

Lifshitz spacetimes, which arise in gravity duals of Lifshitz-like fixed points [61] and

also have a scaling exponent parametrizing spacetime anisotropy

AdS/log CFT [62], which requires a relaxation of the Brown–Henneaux boundary

conditions [63–65]

Flat space holography for asymptotically flat spaces [66–72]

A variational principle for 3-dimensional higher spin gravity that accommodates

spacetimes like asymptotically AdS2 × R, H2 × R, Schrödinger, Lifshitz or warped

AdS spacetimes was proposed and the connections that generate this backgrounds

presented [56].

For the case of H2 × R realized in sl(3,R) HS gravity in the non-principal em-

bedding the asymptotic symmetry algebra turned out to be W(2)
3 ⊕ û(1) [57].

During the preparation of this work Gutperle, Hijano and Samani [73] presented

a work concerning asymptotically Lifshitz black holes in higher spin gravity.
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3.2 Lifshitz spacetime

The Lifshitz background [61] is the proposed gravity dual to specific condensed

matter systems with phase transitions governed by fixed points which exhibit an

anisotropic scale invariance between spatial and temporal scaling

t→ λzt ~x→ λ~x (r → r/λ) z 6= 1 (3.1)

with the scaling exponent z ∈ R. As an example the Lifshitz field theory [74]

S[φ] =

∫
d2x dt

(
(∂tφ)2 − κ(∆φ)2

)
(3.2)

is invariant under the scaling (3.1) when z = 2.

Motivated by such field theories which are invariant under this anisotropic scal-

ing, time and space translations, spatial rotations, spatial parity, and time-reversal

one gets the Lifshitz spacetime metric LifzD

ds2
LifzD

= l2
(
−r2zdt2 +

dr2

r2
+ r2d~x2

)
(3.3)

where d~x2 = dx2
1 + . . . dx2

D−2 and l is the scale for the radius of curvature of the

geometry. For the z = 1 the metric is that of Poincaré patch AdSD. One way

to obtain the Lifshitz spacetime is to couple general relativity to some appropriate

matter content. For an example see [61] where Lifz4 is realized using general relativity

coupled to a 1-form and a 2-form field.

We will now restrict our discussion to D = 3 to obtain the spacetime metric

ds2
Lifz3

= l2
(
−r2zdt2 +

dr2

r2
+ r2dx2

)
. (3.4)

Furthermore we will set z = 2 and substitute by r = eρ/2 which leads us to the metric

ds2
Lif23

= l2
(
−e4ρdt2 + dρ2 + e2ρdx2

)
(3.5)

which will be used for the remaining work.

If we substitute r = e4ρ in equation (3.4) and set z = 1/2 we get the metric

ds2

Lif
1/2
3

= l2
(
−e2ρdt2 + 4dρ2 + e4ρdx2

)
. (3.6)

We observe that the following analysis can also be used for z = 1/2 when we exchange

x↔ t and the constant coefficients accordingly.
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3.3 Symmetries of Lifshitz spacetimes Lifz3

We want to find the Killing vector fields ξ = ξµ(r, x, t)∂µ and the symmetry algebra

for Lifz3 (for the special case z = 1, i.e., AdS3 see appendix B). So we want to solve

Lξgµν = ξλ∂λgµν + gλν∂µξ
λ + gµλ∂νξ

λ = 0 (3.7)

for ξ. Substitution of the metric (3.4) leads to the following system of equations

r∂rξ
r(r, x, t)− ξr(r, x, t) = 0 (3.8a)

∂xξ
r(r, x, t) + ∂rξ

x(r, x, t) = 0 (3.8b)

−r2−2z∂rξ
t(r, x, t) + ∂tξ

r(r, x, t) = 0 (3.8c)

−r∂xξx(r, x, t) + ξr(r, x, t) = 0 (3.8d)

−r2−2z∂xξ
t(r, x, t) + ∂tξ

x(r, x, t) = 0 (3.8e)

zξr(r, x, t)− r∂tξt(r, x, t) = 0. (3.8f)

Equation (3.8a) is solved by

ξr(r, x, t) = rξr(x, t) (3.9)

which when inserted into equation (3.8d) leads to

ξr(x, t) = ∂xξ
x(r, x, t) (3.10)

with the solution

ξx(r, x, t) =

∫ x

ξr(y, t) dy + α(r, t). (3.11)

Inserting now into (3.8c) gives the equation

∂tξ
r(x, t) = r1−2z∂rξ

t(r, x, t) (3.12)

with the solution

ξt(r, x, t) =
r2z∂tξ

r(x, t)

2z
+ β(x, t). (3.13)

We take now equation (3.8b)

r∂xξ
r(x, t) + ∂rα(r, t) = 0 (3.14)

which is solved by

ξr(x, t) = xγ(t) + δ(t) (3.15)

α(r, t) = −1

2
r2γ(t) + ε(t). (3.16)

Equation (3.8e) now has the form

2r2−2z∂xβ(x, t) +
(
r2
(
z−1 + 1

)
− x2

)
γ′(t) = 2 (xδ′(t) + ε′(t)) . (3.17)
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Looking at the coefficients we recognize that

∂xβ(x, t) = 0→ β(x, t) = φ(t) (3.18)

γ′(t) = 0→ γ(t) = γ0 (3.19)

δ′(t) = 0→ δ(t) = c (3.20)

ε′(t) = 0→ ε(t) = a. (3.21)

Inserting in the last equation (3.8f) leads to

−φ′(t) + cz + zxγ0 = 0 (3.22)

where we see that γ0 and −φ′(t) + cz have to vanish independently

γ0 = 0 (3.23)

φ(t) = czt+ b. (3.24)

So Lξgµν = 0 is fulfilled by arbitrary linear combinations of the following three vector

fields

P = ∂x (3.25)

H = ∂t (3.26)

D = zt∂t + r∂r + x∂x (3.27)

We recognize the generators of space translation P , time translationH and anisotropic

dilatation D which lead to the Lie algebra lifz3

[P,H] = 0 (3.28)

[P,D] = P (3.29)

[H,D] = zH (3.30)

Let us now analyze this algebra [75]. Since there is a nontrivial ideal i spanned by

{P,H} this algebra is neither simple nor semi-simple.

The lower central series9 Dklifz3 is spanned by {P,H} for all k ∈ N>0 so the

algebra is not nilpotent.

The derived series10 Dklifz3 is

• D1lifz3 which is spanned by {P,H}

• D2lifz3 = 0

9Defined inductively by D1g = [g, g] and Dkg = [g,Dk−1g].
10Defined inductively by D1g = [g, g] and Dkg = [Dk−1g,Dk−1g].
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which means that the algebra is solvable.

Three-dimensional solvable Lie algebras are classified see, e.g., [76] and citations

therein. Our algebra is isomorphic to the Lie algebra L3
a

[x1, x2] = 0 (3.31)

[x3, x1] = x2 (3.32)

[x3, x2] = ax1 + x2 (3.33)

in that article. The isomorphism is

D = −(z + 1)x3 (3.34)

P = a(z + 1)x1 + x2 (3.35)

H = (a(z + 1) + 1)x1 − x2 (3.36)

under the condition that

a = − z

(z + 1)2
with z 6= −1 (3.37)

3.4 Bulk theory and variational principle

The bulk action for our theory it the one for sl(3,R)⊕ sl(3,R) (see section 2) with

a boundary term [56]

I[A,A] = ICS,−[A]− ICS,−[A] (3.38)

where

ICS,−[A] =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)− k

4π

∫
∂M

Tr(AxAt)dx ∧ dt. (3.39)

To have a well defined variational principle we have to fulfill the flatness conditions

for connections A and A

F = dA+ A ∧ A = 0 F̄ = dA +A ∧A = 0 (3.40)

and the boundary conditions

δAt

∣∣∣
∂M

= 0 δAt

∣∣∣
∂M

= 0. (3.41)

Using no boundary term would lead to more restrictive boundary conditions (see sec-

tion 2.3). Using ICS,+[A] or ICS,+[A] would lead, when the less restrictive boundary

conditions are chosen, by equation (3.65) or (3.66) to trivial charges.

We use the principal embedding of sl(2,R) into sl(3,R). The explicit sl(3,R)

representation is given in appendix A.

With e = l
2
(A−A) we define the spacetime metric as

gµν =
1

2
Tr(eµeν) (3.42)

and the spin 3 field as

φµνρ =
1

3!
Tr(e(µeνeρ)). (3.43)
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3.5 Background generation and general fluctuations

We decompose the connection as in [40,43,57]

A = b−1db+ b−1
(
â(0) + a(0) + a(1)

)
b (3.44)

A = bdb−1 + b
(
â

(0)
+ a(0) + a(1)

)
b−1 (3.45)

with b = eρL0 . â(0) = â(0)(t, x) has to generate the background asymptotically and has

to fulfill the EOM asymptotically. a(0) = a(0)(t, x) are the leading state-dependent

fluctuations which are compatible with the boundary conditions of the action. In

principle they do not have to fulfill the EOM asymptotically but it is convenient

and without loss of generality to impose them. The sub-leading terms are always

a(1) = a(1) = o(1).

First we construct the Lifshitz background. With the defined algebra this can

be done with

â(0) = L1dx+
4

9
W2dt (3.46)

â
(0)

= L−1dx+W−2dt (3.47)

which leads when inserted into our definition of the metric (3.42) to

l2
(
−e4ρdt2 + dρ2 + e2ρdx2

)
(3.48)

which is ds2
Lif23

. Since we want to fulfill the boundary conditions (3.41) our ansatz

for the state-dependent fluctuations is

a
(0)
t = 0 (3.49a)

a(0)
ρ = 0 (3.49b)

a(0)
x =

1∑
n=−1

αLn(t, x)Ln +
2∑

n=−2

αWn(t, x)Wn (3.49c)

and

a
(0)
t = 0 (3.50a)

a(0)
ρ = 0 (3.50b)

a(0)
x =

1∑
n=−1

αLn(t, x)Ln +
2∑

n=−2

αWn(t, x)Wn. (3.50c)

To be asymptotic Lifshitz we set αL1 = 0 and use the EOM to get

a(0)
x =

(
l0(x) + 4tw−2(x)

)
L0 + l−1(x)L−1 +

(
−8

9
tl0(x)− 16

9
t2w−2(x) + w2(x)

)
W2

+

(
w1(x)− 16

9
tl−1(x)

)
W1 + w0(x)W0 + w−2(x)W−2.

(3.51)
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For the barred sector we set αL−1 = 0 and get on-shell

a(0)
x = l 1(x)L1 +

(
l 0(x)− 9tw2(x)

)
L0 +w2(x)W2 +w0(x)W0

+
(
4tl 1(x) +w−1(x)

)
W−1 +

(
−9w2(x)t2 + 2l 0(x)t+w−2(x)

)
W−2.

(3.52)

Further restrictions need to be set to get integrable charges. We will now discuss

two separate cases where boundary preserving gauge transformations and nontrivial,

finite, conserved, integrable charges were found.

3.6 W3 ×W3 boundary conditions

For the stricter set of boundary conditions (strict BC) we set l0, w2, w1, w0 of

equation (3.51) and l 0, w0, w−1 ,w−2 of equation (3.52) to zero. We rescale and

rename the remaining fluctuations with hindsight and omit the x dependence

a(0)
x = −8π

9k
tW L0 +

π

2k
LL−1 +

32π

81k
t2WW2 −

8π

9k
tLW1 −

2π

9k
WW−2 (3.53)

a(0)
x =

π

2k
LL1 +

2π

k
tW L0 −

2π

9k
WW2 +

2π

k
tLW−1 +

2π

k
t2WW−2 (3.54)

Finite gauge transformations are given by

A→ A′ = g−1(A+ d)g. (3.55)

and lead using g = 1 + ε to infinitesimal gauge transformations

δεA = Dε = dε+ [A, ε]. (3.56)

In component form this is given by

δεA
a
µ = ∂µε

a + fabc A
b
µ ε

c (3.57)

with the gauge parameter ε = εaTa. To find the asymptotic symmetry algebra we

have to find the boundary preserving gauge transformations that fulfill

δεA
a
µ = ∂µε

a + fabcA
b
µε
c = O(A(0)

µ + A(1)
µ )a. (3.58)

We split now the gauge parameter

ε = b−1(ε(0) + ε(1))b (3.59)

were ε(0) is ρ-independent and ε(1) is subleading.

The δεA
a
ρ equation of (3.58) is by construction fulfilled. So the remaining equa-

tions we have to fulfill are given by

∂iε
(0)a + fabc (â

(0)
i + a

(0)
i )bε(0)c = O(a

(0)
i )a for i = (t, x). (3.60)
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The strict BC are preserved by gauge transformations of the form

ε = b−1
(
ε(0) + o (1)

)
b (3.61)

ε = b
(
ε (0) + o (1)

)
b−1. (3.62)

We define ε(0) = εTaTa, ε
(0) = εTaTa and the two free functions εL = εL(x) and

εW = εW(x) to get the following boundary preserving gauge transformations for the

unbarred sector

εL1 = εL −
π

3k
tL′εW −

5π

6k
tLε′W −

1

6
tε′′′W

εL0 = −8π

9k
tWεL − ε′L +

π2

k2
tL2εW +

π

3k
tL′′εW +

7π

6k
tL′ε′W +

4π

3k
tLε′′W +

1

6
tε′′′′W

εL−1 =
π

2k
LεL +

1

2
ε′′L +

π

k
WεW

εW2 =
32π

81k
t2WεL +

8

9
tε′L + εW −

4π2

9k2
t2L2εW

− 4π

27k
t2L′′εW −

14π

27k
t2L′ε′W −

16π

27k
t2Lε′′W −

2

27
t2ε′′′′W

εW1 = −8π

9k
tLεL −

16π

9k
tWεW − ε′W −

8t

9
ε′′L

εW0 =
π

k
LεW +

1

2
ε′′W

εW−1 = − π

3k
L′εW −

5π

6k
Lε′W −

1

6
ε′′′W

εW−2 = −2π

9k
WεL +

π2

4k2
L2εW +

π

12k
L′′εW +

7π

24k
L′ε′W +

π

3k
Lε′′W +

1

24
ε′′′′W . (3.63)

For the barred sector we have the two free functions εL = εL(x) and εW = εW(x)

and

εL1 =
π

2k
LεL +

1

2
ε ′′L +

π

k
WεW

εL0 =
2π

k
tWεL + ε ′L −

9π2

4k2
tL2εW −

3π

4k
tL′′εW −

21π

8k
tL′ε ′W −

3π

k
tLε ′′W −

3

8
tε ′′′′W

εL−1 = εL −
3π

4k
tL′εW −

15π

8k
tLε ′W −

3

8
tε ′′′W

εW2 = −2π

9k
WεL +

π2

4k2
L2εW +

π

12k
L′′εW +

7π

24k
L′ε ′W +

π

3k
Lε ′′W +

1

24
ε ′′′′W

εW1 =
π

3k
εWL′ +

5π

6k
Lε ′W +

1

6
ε ′′′W

εW0 =
π

k
LεW +

1

2
ε ′′W

εW−1 =
2π

k
tLεL + 2tε ′′L +

4π

k
tWεW + ε ′W
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εW−2 =
2π

k
t2WεL + 2tε ′L + εW −

9π2

4k2
t2L2εW

− 3π

4k
t2L′′εW −

21π

8k
t2L′ε ′W −

3π

k
t2Lε ′′W −

3

8
t2ε ′′′′W . (3.64)

The variation of the canonical asymptotic charges are in general given by [40]11

(for the canonical analysis of Chern-Simons theories see appendix C)

δQ = − k

2π

∮
Tr(ε(0)δa(0)

x dx) (3.65)

δQ = − k

2π

∮
Tr(ε (0)δa(0)

x dx). (3.66)

This surface term needs to be added to the gauge generators to guarantee functional

differentiability. Since Q andQ do not vanish weakly they are improper gauge trans-

formations [77]. This means they are global symmetries which transform physically

distinguishable states into each other. This is in contrast to gauge generators which

vanish weakly and transform between physically equivalent configurations.

In the case of the strict BC the nontrivial, state-dependent, finite, conserved and

integrable charges are given by

Q =

∮
dx (LεL +WεW) (3.67)

Q =

∮
dx
(
LεL +WεW

)
. (3.68)

The variations are

δεLL = L′εL + 2Lε′L +
k

π
ε′′′L (3.69a)

δεLW =W ′εL + 3Wε′L (3.69b)

δεWL = 2W ′εW + 3Wε′W (3.69c)

δεWW = −χ
[(

16π

k
LL′ + 2L′′′

)
εW +

(
16π

k
L2 + 9L′′

)
ε′W

+15L′ε′′W + 10Lε′′′W +
k

π
ε

(5)
W

]
,

(3.69d)

and identically, in the barred sector with ε→ ε , L → L and W →W . Even though

χ = 3
16

in our current analysis it is without loss of generality to define it as χ ∈ R>0.

The variations (3.69) are equivalent to the variations for asymptotically AdS

sl(3,R) HS-gravity, which makes the further analysis equivalent to Campoleoni et

11Please denote that we follow the conventions of [40]. The gauge generators have a relative

minus sign with respect to the ones given in appendix C
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al. [43, Section 4.2]12 and Henneaux and Rey [45]. The shortcut (see e.g. [43, 45])

δεQ[ε•] = {Q[ε], Q[ε•]} (3.70)

δε• = {Q[ε], •} (3.71)

leads to the Poisson structure of (3.69), which is that of a classical W3-algebra with

a classical central charge of c = 24k. Using (2.4) we find that

c = 24k =
3l

2GN

(3.72)

which shows that our c is equal to the one of pure gravity [39]. In terms of Fourier

modes the W3-algebra is given by [43,45]

i {Lp,Lq } = (p− q)Lp+q +
c

12
(p3 − p) δp+q,0 , (3.73a)

i {Lp,Wq } = (2p− q)Wp+q , (3.73b)

i {Wp,Wq } = χ

[
(p− q)(2p2 + 2q2 − pq − 8)Lp+q +

96

c
(p− q) Λp+q

+
c

12
p(p2 − 1)(p2 − 4) δp+q,0

]
, (3.73c)

where

Λp ≡
∑
q∈Z

Lp−qLq . (3.74)

The quantum version of this algebra [78, 79] for, e.g., χ = 1
30

is given when we

substitute

i{ , } → [ , ] (3.75)

16

5c
(p− q) Λp+q →

16

22 + 5c
(p− q) Λp+q (3.76)

Λp → Λp −
3

10
(p+ 3)(p+ 2)Lp. (3.77)

3.7 Loose boundary conditions

A second set of boundary preserving gauge transformations was found. For the looser

boundary conditions we set l0, w2 of equation (3.51) and l 0,w−2 of equation (3.52)

12It is equal for χ = −σ3 . Note that different normalization of the Cartan–Killing metric leads to

a rescaled k.
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to zero. We rescale and rename again with hindsight and omit the x dependence:

a(0)
x =

8π

9k
tW−2L0 −

π

2k
L−1L−1 −

32π

81k
t2W−2W2

+

(
8π

9k
tL−1 −

8π

9k
W1

)
W1 +

4π

3k
W0W0 +

2π

9k
W−2W−2 (3.78)

a(0)
x = − π

2k
L1L1 −

2π

k
tW 2L0 +

2π

9k
W 2W2

+
4π

3k
W 0W0 +

(
−2π

k
tL1 −

8π

9k
W−1

)
W−1 −

2π

k
t2W 2W−2 (3.79)

This boundary conditions can be combined with the boundary conditions of sec-

tion 3.6 to get mixed boundary conditions for the barred or unbarred sector.

Once again it is possible to determine the boundary condition preserving gauge

transformations ε and ε , leading to the finite, integrable, conserved charges

Q = −
∮
dx
(
L−1εL−1 +W0εW0 +W1εW1 +W−2εW−2

)
(3.80a)

Q = −
∮
dx
(
L1εL1 +W 2εW2 +W 0εW0 +W−1εW−1

)
. (3.80b)

The variations of the asymptotic charges are given by

δεL−1
L−1 =

(
L′−1 +

16π3

9k3
W0W2

1W ′0 +
16π3

9k3
W2

0W1W ′1
)
εL−1

+

(
−8π

3k
W ′0W ′1 −

4π

3k
W1W ′′0 −

4π

3k
W0W ′′1

)
εL−1

+

(
2L−1 +

16π3

9k3
W2

0W2
1 −

8π

3k
W1W ′0 −

8π

3k
W0W ′1

)
ε′L−1
− k

π
ε

(3)
L−1

(3.80c)

δεL−1
W1 =

(
3W0 −

4π2

3k2
W0W2

1 +W ′1
)
εL−1 (3.80d)

δεL−1
W0 = −

(
4π2

3k2
W2

1W ′0 +
4π2

3k2
W0W1W ′1

)
εL−1 −

4π2

3k2
W0W2

1 ε
′
L−1
−W1ε

′′
L−1

(3.80e)

δεL−1
W−2 =

(
8π2

3k2
W0W1W−2 +

3π

2k
W0L′−1 +

3π

2k
L−1W ′0 −

2π2

k2
W1W ′20

)
εL−1

−
(

6π2

k2
W0W ′0W ′1 −W ′−2 +

2π2

k2
W0W1W ′′0 +

2π2

k2
W2

0W ′′1
)
εL−1

+

(
3π

2k
L−1W0 + 3W−2 −

6π2

k2
W0W1W ′0 −

4π2

k2
W2

0W ′1
)
ε′L−1

+

(
−2π2

k2
W2

0W1 −
3

2
W ′0
)
ε′′L−1
− 3

2
W0εL−1

(3) (3.80f)
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δεW1
L−1 =

(
−3W0 +

4π2

3k2
W0W2

1 −W ′1
)
εW1 (3.80g)

δεW1
W1 = 0 (3.80h)

δεW1
W0 =

(
9k

4π
− π

k
W2

1

)
εW1 (3.80i)

δεW1
W−2 =

(
9

4
L−1 −

3π

2k
W1W ′0 −

3π

2k
W0W ′1

)
εW1 −

3π

2k
W0W1ε

′
W1
− 9k

8π
ε′′W1

(3.80j)

δεW0
L−1 =

(
−4π2

3k2
W0W1W ′1 +W ′′1

)
εW0

+

(
−4π2

3k2
W0W2

1 + 2W ′1
)
ε′W0

+W1ε
′′
W0

(3.80k)

δεW0
W1 =

(
−9k

4π
+
π

k
W2

1

)
εW0 (3.80l)

δεW0
W0 =

π

k
W1W ′1εW0 +

(
3k

4π
+
π

k
W2

1

)
ε′W0

(3.80m)

δεW0
W−2 =

(
−2π

k
W1W−2 −

9

8
L′−1 +

3π

2k
W ′0W ′1 +

3π

2k
W0W ′′1

)
εW0

−
(

9

8
L−1 −

3π

2k
W1W ′0 −

3π

k
W0W ′1

)
ε′W0

+
3π

2k
W0W1ε

′′
W0

(3.80n)

δεW−2
L−1 =

(
−8π2

3k2
W0W1W−2 + 2W ′−2

)
εW−2

+

(
3π

2k
L−1W0 + 3W−2 +

2π2

k2
W0W1W ′0 −

3

2
W ′′0
)
ε′W−2

+

(
2π2

k2
W2

0W1 − 3W ′0
)
ε′′W−2

− 3

2
W0ε

(3)
W−2

(3.80o)

δεW−2
W1 = −9

4
L−1εW−2 −

3π

2k
W0W1ε

′
W−2

+
9k

8π
ε′′W−2

(3.80p)

δεW−2
W0 =

2π

k
W1W−2εW−2 −

(
9

8
L−1 +

3π

2k
W1W ′0

)
ε′W−2

− 3π

2k
W0W1ε

′′
W−2

(3.80q)

δεW−2
W−2 =

(
3π

k
W−2W ′0 +

3π

k
W0W ′−2

)
εW−2

+

(
6π

k
W0W−2 −

9π

4k
W ′20 −

9π

4k
W0W ′′0

)
ε′W−2

− 27π

4k
W0W ′0ε′′W−2

− 9π

4k
W2

0 ε
(3)
W−2

(3.80r)

and similar expressions for the barred sector. This algebra is still work in progress but

we suspect that a suitable charge redefinition could lead to an asymptotic symmetry

algebra W(2)
3 ×W(2)

3 .
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4. Conclusion

We studied the asymptotic symmetries of Lifshitz spacetimes in 2 + 1 dimensions

with an anisotropic scaling of z = 2 in sl(3,R)⊕ sl(3,R) higher spin gravity. Due to

technical simplicity the Chern-Simons formulation has been used but the analysis is

equivalent to Einstein-Hilbert gravity with a negative cosmological constant coupled

to a spin 3 field.

Two different boundary conditions which fulfill a well defined variational princi-

ple and lead to conserved charges were presented.

The stricter boundary conditions lead to aW3×W3 algebra with a central charge

which is equivalent to the one of pure gravity found by Brown-Henneaux [39] and

asymptotically AdS in sl(N,R) ⊕ sl(N,R) higher spin gravity [43–45]. Since the

asymptotic symmetry algebra is equivalent to the one of sl(3,R) higher spin gravity

in asymptotically AdS it seems interesting to explore the exact relationship to the

asymptotic Lifshitz theory we proposed.

The second boundary conditions which have been found are less restrictive on

the fluctuations. The variations of the asymptotic charges are presented but the

associtation with a specific algebra is still work in progress. Based on the structure

unravelled so far we conjecture that it is a W(2)
3 ×W(2)

3 algebra, i.e., two copies of

the Polyakov–Bershadsky algebra.

An interesting aspect is that the given analysis can be used to derive one half of

the asymptotic symmetry group of Schrödinger spacetimes [56] of the same scaling

exponent. This is due to the fact that the barred sector of Schrödinger spacetimes

is generated similar to the one of Lifshitz.

It will further be interesting to generalize this analysis to more general gauge

algebras, i.e., sl(N,R)⊗ sl(N,R) higher spin gravity and a general scaling exponent.

Another aspect that should be discussed is the relation of this work to the work

of Gutperle et al. [73]. It will be interesting to see if the given boundary conditions

also admit asymptotically Lifshitz black holes and how they fit in the discussion

given by Gutperle et al.
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A. Conventions and algebra

A.1 Conventions

Throughout this work Planck units where used:

GN = c = ~ = kB = 1. (A.1)

If readability could have been improved and there was no risk of confusion one or

more of the constants were restored. Furthermore the mostly plus convention for the

metric is adopted. The Riemann tensor and Ricci tensor are given by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ Rµν = Rλ

µλν . (A.2)

For the symmetrization of tensors denoted by parentheses no normalization fac-

tor is intended, for example T(ab) = Tab + Tba.

A.2 sl(3,R) algebra

The Lie algebra of sl(3,R) is given by

[Ln, Lm] = (n−m)Ln+m (A.3a)

[Ln,Wm] = (2n−m)Wn+m (A.3b)

[Wn,Wm] = f(n,m)Ln+m (A.3c)

with the non-zero entries of f(n,m) = −f(m,n) given by

f(0, 1) = −9

8
f(0,−1) =

9

8
(A.4a)

f(1,−1) =
9

8
f(1,−2) = −9

4
(A.4b)

f(2,−1) = −9

4
f(2,−2) = −9. (A.4c)

With the following matrix representation of sl(3,R):

L1 =

 0 0 0

−
√

2 0 0

0 −
√

2 0

 L0 =

 1 0 0

0 0 0

0 0 −1

 L−1 =

 0
√

2 0

0 0
√

2

0 0 0

 (A.5a)

W2 =

 0 0 0

0 0 0

3 0 0

 W1 =

 0 0 0

− 3
2
√

2
0 0

0 3
2
√

2
0

 W0 =

 1
2

0 0

0 −1 0

0 0 1
2

 (A.5b)

W−1 =

 0 3
2
√

2
0

0 0 − 3
2
√

2

0 0 0

 W−2 =

 0 0 −3

0 0 0

0 0 0

 (A.5c)
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The Cartan–Killing metric is given by

gab = Tr(TaTb) =



L−1 L0 L1 W−2 W−1 W0 W1 W2

L−1 0 0 −4 0 0 0 0 0

L0 0 2 0 0 0 0 0 0

L1 −4 0 0 0 0 0 0 0

W−2 0 0 0 0 0 0 0 9

W−1 0 0 0 0 0 0 −9
4

0

W0 0 0 0 0 0 3
2

0 0

W1 0 0 0 0 −9
4

0 0 0

W2 0 0 0 9 0 0 0 0


(A.6)

where T = (L−1, L0, L1,W−2, . . . ,W2). Using

exABe−xA = B + [A,B]x+ [A, [A,B]]
x2

2!
+ [A, [A, [A,B]]]

x3

3!
+ . . . (A.7)

we get the following useful formulas (b = eL0ρ)

b−1 Ln b = Ln e
ρn b Ln b

−1 = Ln e
−ρn (A.8)

b−1Wn b = Wn e
ρn bWn b

−1 = Wn e
−ρn. (A.9)

A.3 Some algebra definitions

The definitions are taken from [79–81].

Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c̃

12
m(m2 − 1)δm+n,0 m,n ∈ Z (A.10)

Where c̃ is the central charge, i.e., an element of Z and [Ln, c̃] = 0. With c̃ = 0

the algebra is called the Witt algebra. The Witt algebra for m,n = −1, 0, 1 is

sl(2,R).

Untwisted affine algebra ĝ (=current algebra) associated with a compact finite-

dimensional Lie algebra g is defined by

[T am, T
b
n] = fabcT

c
m+n + k̃ m δab δm+n,0 m,n ∈ Z a, b, c ∈ 1 . . . |g| (A.11)

where fabc are structure constants associated with g. So the generators T a0
define a subalgebra of ĝ which is equivalent to g. The full algebra is the

“affinization” of this finite dimensional subalgebra. k̃ is the central element

known as level of the current algebra.

û(1) is an example of an affine algebra where the associated Lie algebra is the abelian

algebra u(1)

[Tm, Tn] = k̃ m δm+n,0 m,n ∈ Z (A.12)
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Primary field of weight hφ transforms under x→ x+ ε(x) as

δεφ = hφε
′φ+ εφ′ (A.13)

Algebra of primary field φ with conformal dimension or weight hφ ,which is equiv-

alent to the spin and the scaling dimension if h̄φ = 0, is

[Lm, φn] = ((hφ − 1)m− n)φm+n m,n ∈ Z. (A.14)

If that only holds for m = −1, 0,+1, as it is for example the case for the

Virasoro algebra, then the field φ is called a sl(2,R) primary.

W3 (=W(2, 3)) consists of an Ln Virasoro algebra and Wn Virasoro primaries of

conformal dimension hW = 3 and [Wm,Wn] as given in [79] equation (3.10,11).
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B. AdS3 symmetries

For the sake of completeness we look at the case where z = 1 i.e., AdS3. So we take

equation (3.4) and set l = 1

ds2 = −dt
2

r2
+
dr2 + dx2

r2
(B.1)

We proceed analog to section 3.3 and end up with the analog to equation (3.17)

2∂xβ(x, t) +
(
2r2 − x2

)
γ′(t) = 2 (xδ′(t) + ε′(t)) . (B.2)

Since the γ(t) term is the only one with a r coefficient it needs to be constant

γ(t) = e. (B.3)

There are two equations left that need to be fulfilled

β(1,0)(x, t) = xδ′(t) + ε′(t) (B.4a)

β(0,1)(x, t) = −r
2

2
δ′′(t) + δ(t) + ex. (B.4b)

The only term with an r coefficient in equation (B.4b) is the δ′′(t) term which

means it has to vanish. This leads to

δ(t) = ft+ d (B.5)

which then transforms equation (B.4b) to

β(0,1)(x, t) = ft+ d+ ex (B.6)

which is solved by

β(x, t) = h(x) +
ft2

2
+ dt+ ext. (B.7)

The equation (B.4a) now reads

h′(x) + et = fx+ ε′(t) (B.8)

and is solved by

h(x) =
fx2

2
+ cx+ a (B.9)

ε(t) =
et2

2
+ ct+ b. (B.10)
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So we have generator of time translation H, spatial translation P , boost L, dilatation

D and the 2 special conformal transformations K1 and K2

H = ∂t P = ∂x (B.11)

L = x∂t + t∂x D = t∂t + r∂r + x∂x (B.12)

K1 =
1

2
(t2 + r2 + x2)∂t + tr∂r + tx∂x K2 = tx∂t + rx∂r +

1

2
(t2 − r2 + x2)∂x

(B.13)

which generate the algebra so(2, 2). With Pi = (H,P ) the non commuting elements

are

[Pi, D] = Pi (B.14)

[Ki, D] = −Ki (B.15)

[Pi, Kj] = δijD + |εij|L (B.16)

[Pi, L] = |εij|Pj (B.17)

[Ki, L] = −|εij|Kj (B.18)

This algebra is isomorphic to sl(2,R)⊕ sl(2,R) with the explicit isomorphism

L1 =
1√
2

(H + P ) L̄1 =
1√
2

(H − P ) (B.19)

L0 =
1

2
(D + L) L̄0 =

1

2
(D − L) (B.20)

L−1 =
1√
2

(K1 +K2) L̄−1 =
1√
2

(K1 −K2) (B.21)

with

[Ln, Lm] = (n−m)Ln+m

[
L̄n, L̄m

]
= (n−m)L̄n+m (B.22)

[Ln, L̄m] = 0 (B.23)

Since so(2, 1) ' sl(2,R) with the metric ηµν = (−1, 1, 1) which also lowers and raises

indices and ε012 = 1 we have the isomorphism

J0 =
1

2
(L1 + L−1) (B.24)

J1 =
1

2
(−L1 + L−1) [Jµ, Jν ] = εµνρJ

ρ (B.25)

J2 = L0 (B.26)

So we have the isomorphic algebras so(2, 2) ' sl(2,R)⊕sl(2,R) ' so(2, 1)⊕so(2, 1).
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C. Review of canonical analysis

For the readers convenience this appendix is copied from [57], with one correction

before equation (C.7).

In order to proceed with the canonical analysis it is convenient to use a 2 + 1

decomposition of the action (2.3) [40,54].

ICS[A] =
k

4π

∫
R

dt

∫
D

d2x εijgab

(
ȦaiA

b
j + Aa0F

b
ij

)
, (C.1)

with F a
ij = ∂iA

a
j − ∂jAai + fabcA

b
iA

c
j, A = AaTa, gab = Tr(TaTb), [Ta, Tb] = f cabTc,

εij = εtij, dot denotes ∂t, and we dropped boundary terms. Calculating the canonical

momenta πµa ≡ ∂L
∂Ȧaµ

corresponding to the canonical variables Aaµ generates primary

constraints φµa .

φ0
a := π0

a ≈ 0 φia := πia −
k

4π
εijgabA

b
j ≈ 0 (C.2)

The Poisson bracket has its canonical form, {Aaµ(x), πνb (y)} = δab δ
ν
µ δ

2(x − y). The

canonical Hamiltonian density, up to boundary terms, is given by

H = − k

4π
εijgabA

a
0F

b
ij . (C.3)

The total Hamiltonian is then given as HT = H + uaµφ
µ
a , where uaµ are Lagrange

multipliers. Conservation of the primary constraints, φ̇µa = {φµa , HT} ≈ 0, leads to

the following secondary constraints

Ka ≡ −
k

4π
εijgabF

b
ij ≈ 0 , DiA

a
0 − uai ≈ 0 , (C.4)

with the covariant derivative DiX
a = ∂iX

a + fabcA
b
iX

c. Defining K̄a = Ka − Diφ
i
a

the total Hamiltonian can be expressed as a sum over constraints.

HT = Aa0 K̄a + ua0 φ
0
a (C.5)

The non-vanishing Poisson brackets between the constraints lead to the following

algebra.

{φia(x), φjb(y)} = − k

2π
εijgab δ

2(x− y) (C.6a)

{φia(x), K̄b(y)} = −fabcφic δ2(x− y) (C.6b)

{K̄a(x), K̄b(y)} = −fabcK̄c δ2(x− y) (C.6c)

Thus φ0
a and K̄a are first class constraints and φia are second class constraints. The

second class constraints are eliminated by introducing the Dirac bracket (denoted
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again by {, }), which turns out to be identical to the Poisson bracket, except for the

relation {Aai (x), Abj(y)} = 2π
k
gabεij δ

2(x− y).

As next step we construct the canonical generators of gauge transformations

using Castellani’s algorithm. They are given by G = ε̇(t)G1 + ε(t)G0, where the

constraints G0 and G1 have to fulfill the relations G1 = CPFC, G0 + {G1,HT} =

CPFC, {G0,HT} = CPFC. Here CPFC denotes a primary first class constraint. These

relations are fulfilled for G1 = π0
a and G0 = K̄a − f c

ab A
b
0π

0
c . The smeared generator

of gauge transformations then reads

Ḡ[ε] =

∫
D

d2x
(
D0ε

aπ0
a + εaK̄a

)
. (C.7)

The generator Ḡ is not yet functionally differentiable.

δḠ[ε] = regular−
∫
D

d2x ∂i

( k
4π

εijgabε
a δAbj + εa δπia

)
(C.8)

The first term is the bulk variation of the generator (C.7). The second term is a

boundary term and spoils functional differentiability. In order to fix this one adds a

suitable boundary term Q to the canonical generator (C.7) such that the variation

of this additional boundary term cancels exactly the boundary term in (C.8).

δG[ε] = δḠ[ε] + δQ[ε] (C.9)

with

δQ[ε] =

∫
D

d2x ∂i

( k
4π

εijgabε
aδAbj + εaδπia

)
. (C.10)

Using the Stokes theorem and the fact that in the reduced phase space the constraint

φia strongly equals to zero, the variation of the boundary charge simplifies to

δQ[ε] =
k

2π

∮
∂D

dϕ gabε
aδAbϕ . (C.11)
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D. Differential forms

This is a short collection of useful definitions and relations concerning differential

forms which proved to be useful in the process of this work [55].

A differential form of order p also called p-form is a totally antisymmetric tensor

of type (0, p).

The wedge product ∧ of p one-forms is defined by the totally antisymmetric

tensor product

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp =
∑
P∈Sp

sgn(P ) dxµP (1) ⊗ dxµP (2) ⊗ · · · ⊗ dxµP (p) (D.1)

where P is an element of Sp, the symmetric group of order p and sgn(P ) is +1 for

even and −1 for odd permutations. So we can write a p-form α as

α =
1

p!
αµ1µ2···µpdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp (D.2)

which when using the antisymmetry reduces to

α = αµ1µ2···µpdx
µ1 ⊗ dxµ2 ⊗ · · · ⊗ dxµp . (D.3)

For the p-form α and the b-form β the definition of the exterior product between

forms ∧ leads to an p+ b-form and can be written as

α ∧ β =
1

p!b!
αµ1µ2···µpβµp+1µp+2···µp+bdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp+b . (D.4)

The exterior derivative d is defined by

dα =
1

p!
∂ραµ1µ2···µpdx

ρ ∧ dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp . (D.5)

Some other useful relations

α ∧ β = (−1)pbβ ∧ α (D.6)

α ∧ α = 0 if p is odd (D.7)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) (D.8)

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ (D.9)

d2 = 0 (D.10)
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