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Introduction

The classical theory for stochastic partial differential equations depends strongly on the works of Ito at the
beginning of the twentieth century, where he developed a framework within which integration of stochastic
processes with respect to semi martingales can be defined. This allows us to rewrite any stochastic evolution
equation to an integral equation, which not only makes the mathematical treatment of these equations much
easier, but, in the first place, it also provides us with a formal definition of solutions to those equations.
These solutions are called strong solutions. However, this definition is often not enough in more complicated
situations, since, on the one hand, not every stochastic partial differential equation can be written as an
evolution equation, and, on the other hand, for many stochastic evolution equations it has turned out to be
very difficult to show existence of strong solutions, and therefore proofs of existence of strong solutions only
exist in some special cases. Thus, other definitions of solutions are needed, either to weaken the definition
of Ito in order to make existence proofs possible, or to provide us with a framework that can be applied
apart from evolution equations. In many situations it is necessary to develop specialised frameworks that
can only be applied to a rather small class of stochastic equations, or that may work only for a single
equation. Important situations where the standard theory breaks down, and specialised theories are needed,
are equations that appear in fluid dynamics.

This thesis deals with the stochastic Navier-Stokes equations in both the incompressible and the com-
pressible case. The equations are considered with stochastic initial conditions and stochastic forces acting
on the fluid. The domain for the fluid flow will always be a fixed bounded Lipschitz domain, and throughout
this thesis we assume homogeneous Dirichlet boundary conditions. Thus, neither the domain for the fluid
flow, nor the boundary conditions, will be subject to stochastic perturbation. The second, respectively the
third, part of the thesis deals with the incompressible, respectively the compressible, Navier-Stokes equations.
Following the ideas described in the previous paragraph, our goal in both situations is, roughly speaking, to
present a definition of solutions to the SPDE systems and afterwards to prove existence of those solutions.
In both cases, uniqueness is an open problem.

The second part of the thesis considers the incompressible Navier-Stokes equations. The definitions of
strong, weak and martingale solutions to stochastic evolution equations are presented in section 5. Although
the existence of strong or weak solutions to the incompressible Navier-Stokes system is an open problem,
those definitions will be given for sake of completeness. The concept of martingale solutions differs essentially
from those of strong or weak solutions, since solutions in the sense of the former are probability measures on
the path space, while solutions in the sense of the latter two concepts are stochastic processes. To motivate
the concept of martingale solutions, it will be shown that the probability measure on the path space induced
by a weak solution is always a martingale solution, as it was proved in [14]. Following the presentation of [16],
it will then be shown that the incompressible Navier-Stokes equations admit a formulation as a stochastic
evolution equation in the space of divergence free vector fields.

In section 6, we prove the existence of martingale solutions, following again [16]. The proof relies on the
existence of martingale solutions for finite dimensional Hilbert space, a result that can be obtained using
Ito’s calculus, and on Galerkin’s approximation scheme.

As it was shown in [16], an abstract Markov selection theorem can be applied to the present situation
to prove the existence of almost sure martingale solutions to the Markov problem associated with the
incompressible Navier-Stokes equations. The original proof for this selection theorem from [13] is presented

in section 7, together with the application to the current situation.



In the third part of the present thesis, the compressible Navier-Stokes equations are studied. At the be-
ginning of section 8, a brief discussion of the deterministic compressible Navier-Stokes equations it provided.
The concept of finite-energy weak solutions, as introduced in [11], is presented, as well as the main theorem
proofed in [11], claiming the existence of those solutions for bounded and measurable forces. Afterwards,
following [9], the extension of this concept to the stochastic Navier-Stokes system is discussed. Roughly
speaking, a stochastic process will be called a finite-energy weak solution to the stochastic compressible
Navier-Stokes system, if it solves the system path-wise. In other words, a stochastic process is called a
solution, if for almost every fixed w in the state space the following holds: The function that arises from
fixing w in the solution process is a finite-energy weak solution to the deterministic Navier-Stokes equations,
driven by the force that arises from fixing w in the force process. The major obstacle is that in all interesting
situations, the forces obtained in this way are defined as the time derivative of a nowhere differentiable
function. Thus, we need to deal with distributional forces and the existence theorem from [11] can not be
applied.

The heart of the third part is section 9, where the compressible Navier-Stokes system governed by
distributional forces is discussed, following the presentation of [9]. It will be shown that the system posses
a finite-energy weak solution. The proof is based on the correspondent result for measurable forces and on
approximation.

The proof of existence of solutions to the stochastic Navier-Stokes system, which is content of the first
part of section 10, makes use of the measurable selection theorem proved in [17]. In the final subsection of
this thesis, the developed theory is applied to Levy processes as presented in [9].
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Part 1

Preliminaries

1 Analysis

1.1

Frequently used notations
N:={1,2,3,..}.
No :={0,1,2,3...}.

The symbols ¢, ¢, ca,..., C,C1,Cy, ..., ¢ ¢... denote generic constants. They have different values in
different parts of the text.

We use the notation const(A, B, ...) to denote a constant only depending on A, B, ... .

For p € [1, 0] we set

o) ifp=1
;. .
pi=4h ifl<p<wo
1 if p=o0.

If M is a set and N € M, then Iy denotes the characteristic function.
Let M be any set and let A be an expression on M. We define

[A] :=={z e M| A(z)}.
For instance, if f: M — R, we have

[f<c]={xeM]|f(x) <c}

If f: M - N and X € M then f|x : X — N denotes the restriction of f to X. If A < N then we
define

Alx = {flx|f € A}.

We denote the power set of M by 2M.
We denote the Lebesgue measure of a Borel measurable subset A € R™ by measA.

In Lebesgue spaces and in Lebesgue integrals, we denote by dt, ds or dr the Lebesgue measure on
R and by dz, dy or dz the Lebesgue measure on RY for N > 1. For instance, if A is the Borel o-
algebra on R, then L'(R, A, dt) denotes the space of Lebesgue integrable functions and § f d¢ denotes
the Lebesgue integral of f.



e If (M,d) is a metric space, we denote the open ball with radius R and center x € M by Bg(z). If
A < M, then we define

Bg(A) := | Br(x).

€A

e If not otherwise stated, we always use the implicit summation convention, i.e. we sum up over all

indices which appear precisely two times in a term. For instance, we have

6ui
611' '

lul?* = wju; and divu =

1.2 Functional Analysis

We will frequently use the following two theorems about product topologies. The proof can be found e.g. in
[31], Theorem 1.3.1, respectively in [18], Theorem 1.12.

Theorem 1.1. (Tychonoff) Let (X;):er be a family of compact topological spaces. Then [[,., X; is compact

i€l

in the product topology.

Theorem 1.2. Let (X,)nen be a family of sequentially compact topological spaces. Then [, . Xn is se-

neN

quentially compact in the product topology.

1.3 Banach spaces and Hilbert spaces

Unless otherwise stated, all Banach and Hilbert spaces in this thesis are real-valued spaces.

Let X be a vector space. We write Y < X iff Y is a subspace of X. Let Z be a vector space and
X,Y < Z. Suppose X respectively Y carry norms | - | x respectively | - |y. Then, the spaces X + Y and
X nY carry the norms

2lxsy i= inf{zlx + lyly |2 +y = 2}
and
lzlx~y = lzlx + 2]y
Let X be a Banach space. We denote dual space by
X' :={2': X - R|2’ is linear and bounded}.
For 2’ € X’ and x € X we denote the duality product by
( x)y =x (o' xyx = 2/ (x).

We denote by tx : X — X" the canonical embedding. For Y < X’ we denote by o(X,Y’) the weak topology
on X with respect to Y, i.e. o(X,Y) is the initial topology with respect to the set Y of functionals on X.



For a sequence (z,)neny € X we write
Y . .
xp, =z iff z, >z ino(X)Y).

We call o(X, X') the weak topology on X and o(X',1x (X)) the weak-star topology on X' and we write

’

. X
T, —x iff z,==x

and for a sequence (z7,)neny S X' we write

We denote by X, the topological vector spaces X endowed with the weak topology.
If Y is a further Banach space, then we write ¥ «— X to denote that we can identify ¥ with some
subspace of X, i.e. there is a canonical embedding ty_,x : Y — X. If H is a Hilbert space, then we denote

the scalar product of x,y € H by

<J;a y>H

or simply by <z, y) if no confusion can arise. If H = R", we use the notation x - y := (&, y)r» = x;y; for the

scalar product.

Theorem 1.3. Let X be a separable Banach space and let A € X' be a bounded subset. Then, A equipped

with the weak-star topology on X' is metrizable.

Proof. Define the metric

e

d*(zl7y/) = Z

k=1

/ /
2% ag || x [Kz" =y, an)l,

/

where {ax}ren S X is dense. Clearly, we have 2, — ' in d* if z, = 2/. Lemma 1.13 yields the inverse

implication. O

Corollary 1.4. If X' is separable and A < X is bounded, then A equipped with the weak topology is
metrizable.

1.4 Linear operators

Let X and Y be Banach spaces.

Definition 1.5. We denote by L(X,Y") the space of linear and bounded operators A : X — Y. The space
carries the operator norm | - [|5(x y)-

We denote by Ls(X,Y) the space L(X,Y) equipped with the strong operator topology i.e. the initial
topology with respect to the family of mappings A — Az from L(X,Y) to Y for € X. In particular,
A, > Ain Tg(X,Y) if Ayz > Az in Y for all x € X.



We denote by L (X,Y) the space L(X,Y) equipped with the weak operator topology, i.e. the initial
topology with respect to the family of mappings A —y/< ¢/, Ax >y from L(X,Y) to R for x € X and
y ey’

Definition 1.6. Let H and U be Hilbert spaces and let A € L(H,U). Then,
L
A|(kerA)¢ t(kerA) - U

is injective. The pseudo inverse of A is defined by

Al= A|(_klerA)i :ran A — (kerA)l

1.5 Function spaces

If X is a topological space and Y is a Banach space, we define
C(X,Y):={f: X - Y| fis continuous and bounded}

The space C'(X,Y’) carries the supremum norm | - |c(x,y)- If no confusion about the involved spaces can
arise, we sometimes write | - [ := || - [|o(x,v)-
Let k,n e N, let 2 € R"™ be an open set and let A € R™ be an arbitrary set. We define the spaces

C°A,R¥) := {f: A > RF| f is continuous}
CP(Q,RF) = {f € COUQRY) | '€ P Y (QRD)}, forp>1
C*(Q,RF) := [ CP(Q,RF)

peN

and for m e N u {00}
C™(A,R¥) ;= {f: A - R"|3U 2 Aopen and g € C™ (U, R*)such that f = g|}.
Furthermore, we define

CM(A,RF) := {f e C™(A,R¥)| D f is bounded for all |a| < m}
C™(A,RF) := {f € C™(A,RF) |supp f € A is compact}.

In particular, we have

C(A,R*) = CP(A,RF).
In order to simplify notations we set

C™(A) :=C™(AR).

The spaces Cj"(A) and C(A) are defined analogously. The spaces CJ"(A,R) for m € Ny are Banach spaces



with respect to the norm

Ifllepm amry = Z 1D flloarry-

lal<m
For m e Nu {0} and A € R", we define the space of divergence free vector fields
D™(A) :={fe C™(AR")| div f =0}.

The spaces D;*(A) and DJ*(A) are defined analogously.

Let I € R be an interval and let F be a Banach space. We call a function f : I — E cddldg iff f is right
continuous and has left limits (i.e. lim,_,;— f(s) exists in E for all ¢ € I\{min I'}). The set of cadlag functions
is denoted by D(I, E).

Let X be a topological space and Y be a Banach space. We define the the space

Cw(X7 Y) = {f X - Y|<f()’yl> € Cb(X) for all y/ € Yl}a

i.e. the space of all continuous functions f : X — Y, where Y carries the weak topology, such that
IKF(-)s ¥ < o0 for all ¥ € Y. We say

fo = f in Cu(X,Y)
iff
n() 4 = {F0), 9D in Go(X)

for all 4/ € Y.
If X is any Banach space such that C(A4,R") — X for some A € R", then we denote by

II-x

X, :={feC*(AR)|divf=0}nX
In particular, we have Dj*(A) = Cy (A) for m € N.

1.6 The set of compact subsets

Definition 1.7. Let (X, d) be a metric space. We denote by C(X) the space of compact non-empty subsets
of X. We define a metric d¢ on this space by

de(K,H) :=inf{e >0 : K € B.(H) and H € B(K)}
for all compact sets K, H € C(X). The space C(X) is endowed with the Borel o-algebra of this metric.

The next lemmata can be proved directly. For the proofs see [29], section 12.1.

Lemma 1.8. If X is separable, then C(X) is separable.



Lemma 1.9. For B e B(X) let

7(B):={KeC(X)|K < B},
and define

E:={r(U)|U < X is open}
and

E:={r(A)|AC X is closed}

Then, each element of € is open in C(X) and each element of € is closed in C(X). Furthermore, both £ and
& are generators for the Borel o-algebra B(C(X)).

Lemma 1.10. Let (X, d) be a separable metric space and let (E,)) be a measurable space. Let f : E — X
and g : E — C(X) be measurable maps. Then the set {x € E| f(z) € g(x)} is a measurable subset of E.

1.7 Properties of the weak and the weak-* topology

We list some results about the weak topology. Let X be a Banach space.
Lemma 1.11. (Banach-Alaoglu) Bounded sets in X' are pre-compact in the weak-* topology.

The proof can be found in any introductory book about functional analysis, i.e. [31], Theorem 5.4.1. Since

the weak-star topology on bounded sets is metrizable, bounded sets in X’ are also sequentially pre-compact.

Lemma 1.12. Let x, — x in X (respectively xy, Axin X'). Then, the sequence {xy}ren is bounded and
|| < lminf |zg].
k—a0

Proof. In both cases (i.e. the weak resp. the weak-star convergence), the boundedness of the sequence is a

direct consequence from Banach-Steinhaus’ Theorem. If z; — z in X, then the estimate follows from

|z|]x = sup Ka',z)|= sup lim [(&/,z;)| <liminf sup [{2/,zx)| = liminf |2k x.
o/l =1 o/ =1 K> FoT el =1 o
If 2, = z, the statement follows by a similar calculation. O

Lemma 1.13. Let {2y 1} (n k)enz S X such that v, x — ¢ for any fived k and x, x — ¥n for any fived n.
Suppose that

lim sup ||zn,k — @r|x = 0.
n—xKC keN

Then, there is x € X such that ¢y, — x, V), = = and x ) — T.
If v ) — Yy strong in X for all fived n, then v, — x and xy ), — .

10



Proof. Let € > 0. There is N € N such that
[¥n = ¥mlx < Uminf |z, — 2mplx <Uminf |z, —@rlx + [2me —erlx <
for all n,m > N. Thus, 1, — x for some z € X. We get for all 2’ € X'\{0} and any k,n e N
Kz = er, 2Dl < |z = ¥ullx 2’ x7 + Kibn = T g 2] + |2nn — onlx 2] x-
Choose n € N such that ||z — ¢, |x < em and supyey [|Tnx — erllx < em. Now, choose K € N such
that (¢, — 2nk,2')] < € for all k > K. Then, the right hand side is < 3e for all k¥ > K. Thus, we have

@ — x. Furthermore, we have

+ ek — erlx |2’ x + Kok — 2,271,

[ — e, 2] < zpn —

where n is chosen as above. Then, |zxx —Tn k| x < |Teke — @kl x + [Tne — erlx < 2€and |z, 5 —grllx <€
By the above there is K € N such that for all k£ > K we have [{pr — z,2")| < e. This shows zy , — z.
If z,,  — ¥y, strong in X, then have

lz —erlx < o —Ynlx +1vn — Tnrlx + |20k — rlx,

where the right hand side can be estimated as above. The assertion x3  — = can be shown similar. O

Lemma 1.14. Let x,, — = in X and z], —» x' in X'. Then the iterated limit exists, and we have

A, A s oy =l Ji S )

Proof. Since the sequence x,, is bounded in X and z!, — 2’ uniformly on bounded sets, we have

lim sup |(x! — 2’ x| = 0.

n—)/
Lemma 1.13 now yields the desired conclusion. O

Lemma 1.15. (weak lower semicontinuity of convex functions) Let Q@ € R™ be a bounded domain, f, — f
in L*(Q) and let F : R — R be a convex function. Then

n—aLC

fF(f hmmffF (fa)d

For the proof see [21], Lemma 3.5.

Lemma 1.16. Let (., A, u) be a complete, o-finite measure space, let F' : R — R be a strictly convex
function and let f,, f : % — R be measurable. Suppose that

Jo—f
F(fa) = F(fn)

in LY(QY). Then f, — f in L1(Q).

11



The proof can be found in [30], Theorem 2.

Lemma 1.17. Let T >0 and 1 < p,q,r,s < 00 such that

Let fr, = f in LP(0,T;L"(Q)) and g, — g in LI(0,T; L°(Y)). Assume that

of

15 et orw-magey < e
for some constants m = 0 and ¢ > 0 independent of n, and

lim sug lgn (- +&7) = gnllLao, ;L5 (2)) = 0

[£]=0 ne

Then, fngn — fg in D'((0,T) x Q). Furthermore, the weak convergence can be replaced with the weak-*

convergence, if some of the exponents are infinite.

The proof can be found in [24], Lemma 5.1.

2 Partial Differential Equations

2.1 Distributions

Let Q € R" be a measurable set.

Definition 2.1. We denote the set of test functions by

Definition 2.2. We say that ¢, — ¢ in D(Q) iff
(1) there exists a compact set K < € such that supp p,, € K for all n;

(2) for all a € Njj we have

lim [[D*(pn — @) = 0.

n—oC

Definition 2.3. We denote the set of distributions by

D(Q) = {u : D(Q) — R|w is linear and ¢, — ¢ in D(Q)) implies u(p,) — u((p)}

For p € D(Q) and u € D’'(2) we denote the duality product by

(u, ) = u(p)-

12



We define the derivative of distributions by
(D%, g) := (=1)I*lu, D).
We say u, — u in D'(Q) iff up, ) — {u, ) for all p € D(Q).

2.2 Sobolev Spaces

All results about Sobolev spaces can be found in [8], chapter 5, if not otherwise stated.

Definition 2.4. Let Q € R™ be an open set, let k¥ € N and p e N u {oo}. We define the Sobolev spaces
WEP(Q,R™) := {u e LP(Q,R™) | D*u € LP(,R™) for all multi-indices o with |a| < k}

and the norm

(S MW ifp <0

max|a|<k HDafHLVD(Q,R'nL) lfp = 0.

HfHkaP(Q;]Rm) =

Then we have

Wk,P(QJRm) = C7(Q,R™) n Wk,p(Q’Rm)wl\wk,p(g‘uw)
for any p < 0. The spaces W*2(Q, R™) are Hilbert spaces, endowed with the scalar product

<f,g>%vk,2(Q,Rm) = Z D, Da9>%2(Q,Rm)'

lee| <k

Theorem 2.5. (Trace Operator) Let Q € R™ be a bounded Lipschitz domain. There exists a unique bounded
linear operator T : WFP(Q,R™) — LP(0Q2,R™) such that

for all u e C*(Q,R™) n WkP(Q,R™).
We define the space
WEP (4 R™) i= {u e WFP(Q;R") | T(u) = 0}.
Lemma 2.6. Let Q € R™ be a bounded Lipschitz domain. Then we have

Wk’p(Q; Rm) _ m”'uwk,p(g;mm,) )

W(;C’p(ﬂ; Rm) _ W‘l'”wk‘p(g;mjn) '

Theorem 2.7. (Sobolev embedding) Let Q2 € R™ be a bounded Lipschitz domain and let 1 < p,q < o0 and

13



k,m € Ny such that kK < m. Then, the embedding

Wm™P(Q) — Whi(Q)

> k—2, and compact, if m—2 >k — %' The embedding

s continuous, if m — h -

n

P
WmP(Q) — Ck(Q)

is compact, if m — % > k.

Theorem 2.8. (Poincare inequality) Let Q@ € R™ be a bounded Lipschitz domain and let 1 < p < co. Then,

I lwpor ) < const(Qp)IV (-

For the proof of the next Lemma see [10], Theorem 10.18.

Lemma 2.9. (div-curl lemma) Let 1 < p < co. There exists a constant ¢ such that for allu € WP (RN RY)

we have

[V sy < el dival gy + | eurlal o e ey

Definition 2.10. For 1 < k < o0 and 1 < p < o0 we define the space
WRP(Q) .= WEP(Q)
We have
{(Df | fe LP(Q) and |a| < k} € WRP(Q).

Lemma 2.12 in the next subsection can be used to show the next immediate corollary:

Corollary 2.11. Let Q € R"™ be a bounded Lipschitz domain and let 1 < p,q < o0 and k, m € Ng such that
k < m. Then, the embedding

W=mP(Q) — Wr1(Q)

is continuous if k — % >m— 1%.

2.3 Gelfand triples

Lemma 2.12. Let Y — X continuously and densely. Then X' — Y’ continuously. If X is reflexive, then
X' — Y’ densely.

The proof can be found in [32], Problem 18.6.
Definition 2.13. Let X be a separable and reflexive Banach space and let H be a separable Hilbert space.

Suppose X <> H continuously and densely. Then, H = H’ — X’ continuously and densely and we call the

14



triple
X > H<—X

a Gelfand triple (or evolution triple).

Lemma 2.14. Let X — H — X' be a Gelfand triple, such that the embedding X — H is compact. Then,

there exists an orthonormal basis {by}neny © X of H such that
IPrz|x < ] x

for all x € X', where P, is the projection

n

Pnaj = Z X/<J,‘,bi>xbi.

1=1

For the proof see [16], Lemma 4.4.

2.4 Auxiliary Equations

2.4.1 Bogovskii Operator

Theorem 2.15. Let Q2 € R3 be a bounded Lipschitz domain and let p,r € (1,00). There exists a bounded

linear operator
B:{felLfQ) : J fdz =0} - WP (Q,R?)
Q
such that v = B[ f] solves the problem

dive = f in Q
v=0 on 0f.

Furthermore, if divg = f for some g€ WY (Q,R3) with g- 7 = 0 on 052, then

IBL L) < const(p,r, Q)glL-(0)-

For the proof see [15], Theorem 3.3.

Definition 2.16. The operator constructed in Theorem 2.15 is called Bogovskii operator.

15



2.4.2 LP multiplier

Definition 2.17. Let N e N, 1 < p < w and let m : R’ — R be a measurable function. We denote by T},
the formal Operator on LP(RY) defined by

D(Ty)( < LP(RN)) — LP(RY)
v FHmF(v))

T =

where F and F~! denote the Fourier transformation and the inverse Fourier transformation on RY. The
operator T}, is called multiplier operator and m is the symbol of T,,. If T is a multiplier operator with

symbol m, we write
T ~ m(¢).

The function m is called an LP(RYN)-multiplier if T,, : D(T,,)(S LP(RY)) — LP(RY) is a densely defined,
bounded operator. The unique linear and bounded extension T}, : LP(RY) — LP(RY) is then called LP(RY)-
multiplier operator.

Let O € RY be a domain and denote for v € LP(Q) by [v]g~ € LP(RY) the function that agrees with v

in Q and is prolonged by zero on RV\Q. If T}, is a multiplier operator, then we denote by the same symbol
Ty, the operator Ty, : Do(T,,) (S LP(Q)) — LP(Q), defined by

T (v) := T ([v]rv)e;
where Dq(Ty,) := {ve LP(Q) | [vlry € D(Tn)}-
Lemma 2.18. If T and S are multiplier operators, then T'S = ST whenever both sides are defined.
Proof. Follows directly from the definition. O

Theorem 2.19. (Mikhiln multiplier theorem) Let m € L™ (RN) be smooth except possibly at the origin and

suppose m satisfies
oV m] € L (&N RN
for all0 < k < % + 1. Then m is an LP(RN) multiplier for all 1 < p < co.

The original proof of this Theorem can be found in [25].

Definition 2.20. We introduce the following pseudo differential operators on RY used in later sections:

e the double Riesz transform R =(R; k) k=1, N, where

Rj,k ~ éé_f;,j,kZL ,N

16



e the inverse divergence A = (A;)j-1,. n, where

g
AJ ~ —W7 ] = 1, ,N
e the inverse Laplacian A~', where
1
AN —
I9&
Remark 2.21. Note, that we have
.Aj = 6]. AL
A=vA~!

R=VVA~1=vVA
and

ANTHv] = div(A[v]) = v.

Theorem 2.22. The double Riesz transform is an LP(RN)-multiplier operator for any 1 < p < .

Proof. This follows immediately from the Mikhlin multiplier Theorem. O

The operators Ay, are not LP(RY)-multiplier operators for any p € [1, ], but one can show the following

result:

Theorem 2.23. The operators Aj are bounded linear operators
Ai s LYRY) A L2RY) — L2(RY) + L*(RY)
and

Np

5 (RY)

A LP(RY) - L
for all 1 < p < N. Furthermore, we have for all 1 <1i,j,k < N
J Ai[u]ode = —J uAg[v] dx
Q Q
J Rij[u]vde = f uR; j[v] dz
Q Q

whenever both sides are defined.
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This can be proved by using basic properties of the Fourier transform, see [10], Theorem 10.26, and the
formulae at the end of section 10.16. Now the following is easy:

Corollary 2.24. Let Q € RY be a bounded domain. Then, the inverse divergence is a compact operator

A LP(Q) = C(Q)
and a continuous operator
Ai  LY(Q) - WH(Q)
foranyp> N and ¢q>1 and all 1 <i < N.
Ngq

Proof. For ¢ < N, the mapping Ay : LI(Q2) — LNLL(Q) is continuous, and since 7L > g, the embedding

L~ (Q) — L9(Q) is also continuous. Therefore,

|Ai[v]] Lao) < cllv]La)-

On the other hand, for any ¢ > N, there is r € [, N) such that ]\],V_T = ¢. Due to the continuity of the

2 T

embedding LI(Q2) — L"(Q2) and the continuity of the mapping A; : L™(2) — L(Q2), we conclude again
lA:[v]llzao) < c|v]La@)-
Furthermore, by the continuity of the double Riesz transform, we get
10;Ai[v]llLage) = |Rij[v]lLa(e) < clvllLae)-

Consequently, the second statement follows. The first statement now follows from the compactness of the
Sobolev embedding WP (Q) — C(Q) for p > N. O

Finally, we state a crucial result about commutators involving the double Riesz transform. For the proof
see [10], Theorem 10.27.

Theorem 2.25. Let 1 < p,q < o such that 1% + % =: L <1 and let v, — v in LP(R®) and u, — u in

Li(R3). Then we have
UnRij[un] — unRi j[vn] = vRs j[ul — uR, j[v] in LT(R3)

forall 1 <i,j <3.

18



2.4.3 On the regularization of solutions of transport equations

Definition 2.26. Let £ € CF(RY), {on dz =1, supp(§) S B1(0) and & > 0. Then, the family (&)ee(o,1],
defined by & = % &(2), is called smoothing sequence.

The next Lemma follows immediately; see e.g. [19], Lemma 13.3.10 for the case p = 1.
Lemma 2.27. Let ({)ce(0,1] be a smoothing sequence and let v € LP(RN) for 1 < p < . Then

v € — 0 in LP(RY)

as € — 0.

The proof for the next Lemma can be found in [23], Lemma 2.3.

Lemma 2.28. Let (&) be a smoothing sequence, v € WH(RY RN), g e LARN) with 1 < o, 8 < o0 and
1._

1,1 1._
Si=ats <1, where we set - := 0. Then, we have

Ac = | div(vg) = & — div(v(g * &)l mv) < Clvllwra@ymn)lglos @y

for some C = 0 independent of €, v and g. Furthermore, if v < 0, then lim._,o Ac = 0.

We need the following immediate corollary:

Lemma 2.29. Let v > 1, f € L*((0,T) x Q) and let (u,p) € L*(0,T; WH2(R3;R3)) x L*(0,T; L7(R3)) be
a solution of the transport equation

op . _
Fn + div(pu) = f

in D'((0,T) x R3). Furthermore, let (&) be a smoothing sequence and define p. := &. # p. Then,

aapte + div(peu) = f # & + 7 in D'((0,T) x R?)

with re — 0 in L2(0,T; L*(R?)) as € — 0, where a := 2L

y+2°

Proof. We have

aapte +div(pu) * & = % &+ div(pu) = & = f* &
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and consequently
re =div(peu) — div(pu) = &.
By the preceding Lemma, the right hand side tends to zero in L%(R3) for a.e. fixed t € (0,7T'). Since

|7el 220,100 m3yy = | div(peu) — div(pu) * Ecllp20,m;00 @)y < Clvllwr2@srs) |l ®s)s

Lebesgue’s theorem yields the desired conclusion.

3 Measure theory

3.1 General measure theory

Definition 3.1. Let Q be a set. If E C 2 is a system of subsets of {2, we denote by A, (E) the smallest
o-algebra A on 2 such that F € A. If (Q;, A;)er is a family of measurable spaces and X; :  — §; a family
of functions, we denote by A, ({X;|i € I}) the smallest o-algebra A on Q such that X; is A/.A; measurable
forall i e 1.

If (2, A) and (©', A’) are two measurable spaces, then we denote by L°(Q2, A; ', A’) the set of all A\A’

measurable functions f: Q — .

Lemma 3.2. (Coincidence criterion) Let (2, A) be a measurable space, let P and Q be probability measures
on (Q, A) and let £ < A be a generator of A which is closed under finite intersection. Assume P(A) = Q(A)
forall Ae £. Then P = Q.

For the proof see [4], Lemma 1.9.4.
Let X be a topological space. We denote by B(X) the Borel o-algebra on X.

Theorem 3.3. Let X andY be topological spaces and assume that Y has a countable base. Then, B(X xY) =
B(X) x B(Y).

For the proof see [5], Lemma 6.4.2.

Definition 3.4. Let (2, A) be a measurable space. Then we denote by Z2(2, A) the set of all probability
measures on (Q, A). We sometimes simply write £2(Q)) if no confusion can occur; if Q carries a topology,
this notation usually indicates that 2 is equipped with the Borel o-algebra, if not otherwise stated.

Definition 3.5. (weak convergence of measures) Let € be a topological space, let A be the Borel o-algebra
and let {pn}tney € 2(Q, A). We write p, — p in 2(Q) iff

deun - ffdu

for all bounded continuous functions f : Q — R.

If Q carries a topology, then the set Z2(€2, A) is always endowed with the topology of weak convergence

of measures.
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Theorem 3.6. If (2,d) is a (separable and/or complete) metric space, then the topology of weak convergence

of measures is metrizable by a (separable and/or complete) metric.

For the proof see [5], Theorem 8.3.2.
Lemma 3.7. Let ) be a separable metric space, let C € P(Q) be a convex and weakly closed subset and let
(Y, A, P') be a probability space. Assume f:Q — C is A'/B(F(Q)) measurable. Then

f F(@)()P(dw) € C.
Q

The proof can be found in [16], Lemma 7.2.

Definition 3.8. Let (€2, d) be a metric space. We call a subset X € Z2(Q) tight, iff for all € > 0, there is a
compact set K € Q such that P(Q\K) < e for all Pe X.

Theorem 3.9. (Prokorhov’s theorem) Let (£2,d) be a complete and separable metric space. A set K = Z(Q)

is tight if and only if K is pre-compact with respect to the weak convergence of measures.
For the proof see [5], Theorem 8.6.2.

Theorem 3.10. (Skorohod’s theorem) Let E be a separable topological space and let P,, P € L(E,B(E))
for all n € N. Suppose that P,, — P. Then, there exist a probability space (O, F,Q) and random variables
Xn:0->Qand X : O — Q such thatQOX;1 =P, Qo X '=Pand X, » X ae. inO.

For the proof see [3], Theorem 6.7.

3.2 Lebesgue-Bochner spaces

Let (92, A, 1) be a measure space and let E be a separable Banach space. Integration of measurable functions
with values in separable Banach spaces can be formally defined as in the real-valued case. For the proofs of
the Theorems see [26], chapter 1 and 2.

Definition 3.11. For a simple function
flw) = Zn: fila, (w),
i=1
where n € N, f; € E and A; € A, the Lebesgue-Bochner integral is defined by
| rani= glmmi).

Analogously to the real-valued case, we have the following result:

Theorem 3.12. Let f : Q — E be A/B(E) measurable. Then, there exists a sequence (fn)nen of simple

functions, such that

fn— f u— a.e. in
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and

Ifnlle < Ifle w— a.e in S

Remark 3.13. The preceding theorem does not hold for non-separable Banach spaces.

Definition 3.14. Let f: Q — E be A/B(FE) measurable and let (fy,)nen be a sequence of simple functions
enjoying the properties described in the above theorem. The Lebesgue-Bochner integral of f is defined as

| rani= i [ gan

if the limit exists. In this case, we call f Lebesgue-Bochner integrable. We set

Lfdu = [rasran.

The Lebesgue-Bochner integral is well defined:

Theorem 3.15. The definition of the Lebesgue-Bochner integral does not depend on the approzximating

sequence.

Definition 3.16. The Lebesque-Bochner space LP(Q), A, u; E) is the space of all (equivalence classes of p-a.e.
identical) A/B(E) measurable functions f : Q — E such that

%
1flr(.4,uE) = <J|f||% du> < 0.
iff p < 00 and
£z (0,4, ) = ess sup | f|r < o0

iff p = c0. In order to simply notation, we set LP(Q, u; E) := LP(Q, A, u; E) if no confusion can arise.
We list a few important theorems of Lebesgue-Bochner spaces:

Theorem 3.17. The Lebesgue-Bochner space L'(), A, u; E) is precisely the set of all (equivalence classes

of ) Lebesgue-Bochner integrable functions.

Remark 3.18. Obviously, the Lebesgue-Bochner integral does not depend on p-null sets, thus we can define
§ fdufor fe LY(Q,A, w; E).

Theorem 3.19. The Lebesgue-Bochner spaces are Banach spaces. For 1 < p < oo the spaces are reflexive.

For 1 < p < oo the spaces are separable and we have
(LP(Q, 5 B)) = L (Q, 5 ).

If u(Q) < oo, then L1(Q, A, pu; E) € LP(Q, A, u; E) whenever 1 < p < q < o0. Finally, if H is a separable
Hilbert space, then the space L?(Q, A, u; H) is a Hilbert space with respect to the scalar product

<f7 g>L2(Q,A,u;H) = J<f7 g>H d:u
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Definition 3.20. Let Q be a topological space, let A := B(Q) and p be a measure on (€2, A). Then we
define

L (A i E) :={fe L°(Q A E,B(E))| flc € LP(Q, A, u; E) for all compact C  Q}.

loc

We say f, — fin L}, (Q, A, pu; E) iff § | fn — f|% dp — 0 for all compact C' < Q.

loc

3.3 Conditional expectation
Let (Q,.A, u) be a measure space and let E be a separable Banach space.

Theorem 3.21. Let P € £2(Q, A) be a probability measure, let F < A be sub-c-algebra and let [ €
LY(Q, A, P; E). Then, there exists a unique g € L*(Q, F,P|r; E) such that

[ oo

for all C e F.

For the proof see [26], chapter 11.
Definition 3.22. We call the function g € L'(2, F,P|r; E) defined in the last theorem the conditional
expectation of f with respect to F and we use the notation

E[f|F]:=E°[f|F] = g.

Definition 3.23. Let P e (0, A) be a probability measure and let F € A be sub-c-algebra. A version of
the conditional probability distribution of P with respect to F is a mapping (w, A) — P(A|F)(w) for A€ A
and w € €, such that

P(A|F) = EF[I4|F] P- ae. inQ

for all A e A.
A version P(:|F)(-) : © x A — [0, 1] of the conditional probability distribution of P with respect to F is
called regular conditional probability distribution (r.c.p.d.) of P with respect to F iff

(1) P(A|F)(-) is F/B([0,1]) measurable for each A € A;
(2) P(|F)(w) e £(2,A) for each w € 2.

Theorem 3.24. Let ) be a polish space. Then, for any sub-c-algebra F < B(QY) and any P € P(Q), there

—~—

exists a r.c.p.d. of P with respect to F. Furthermore, if P(-|F)(-) and P(-|F)(-) are two r.c.p.d., then there
is a P-null set N € F such that

—

P(AJF)(w) = P(A|F)(w)

for any A e B(Q) and w e Q\N.

For the proof see [5], Corollary 10.4.6. From now on, if {2 is a polish space, the expression P(-|F) always refers
to a regular conditional probability distribution. Regular conditional probabilities are helpful in calculations:
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Theorem 3.25. Let Q) be measurable space, let A := B(Q) and let F € G < A be sub-c-algebras. Assume
that some P e P (Q, A) admits a r.c.p.d. with respect to both sub-o-algebras F and G. Then

P(-|F) = J P(-|G)(w)P(dw | F) P-a.e.,
Q
and for any f € L*(Q, A,P; E), where E is a separable Banach space, we have
B 171 = [ 7@ P(dal) B
Q

For the proof see [5], Proposition 10.4.18.
Furthermore, the next two results will be helpful in different parts of the text:

Theorem 3.26. Let (2, A) be a measurable space, let F S A be a countable generated sub-o-algebra, i.e.
F = Ay(D) for some countable D € A, and let P(-|F)(-) be a r.c.p.d.. Define the set

K(w):=({Ae Flwe A}
for any we Q. Then, K(w) € F, and there is a P-null set N € F, such that
P(K(w)|F)(w) =1

for all we Q\N.
For the proof see [29], Theorem 1.1.8.

Lemma 3.27. Let (Q,A) be a measurable space, let P and Q be probability measures on (2, A) and let
G € A be a sub-o-algebra. Assume Plg = Q|g and P(:|G) = Q(:|G), where both are r.c.p.d. Then P = Q.

Proof. For any A € A we have

P(A) = j P(A|G) dP|g = f Q(AIG) dQlg = Q(A).

3.4 Inequalities

Let (92, A, 1) be a measure space and let E be a separable Banach space. To simply notations, denote in
this section LP := LP(Q, A, u; E). We have the following inequalities:

Theorem 3.28. (Hilder’s inequality) Let p € [1,00] and q := p’. Then, we have

Ifgle < 1flzelglre-

Corollary 3.29. Letp=¢ €[1,©] and r € (1,00). Then, we have

£ gl < [fllzerllglzar-
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Proof. By Holder’s inequality we have

1£7g" | < 1 Nze g™z = 1 V2o |9l ar-
O

Corollary 3.30. Letye (1,0), a >0 and p = ¢ € (1,00). Assume ayp =1 and (1 — a)yqg = 1. Then, we

have

1_
112 < 1 1Eae 1F1 0

Proof. By the preceding Corollary, we have

« —« o« —« @ 11—«
1l = 170 P o < 1F 1w 1A N zra = [ 1Een 191 e

Finally, the following Theorem is often helpful:

Theorem 3.31. Let u be a finite measure and let p > 1. Suppose that || f,|r» < ¢ for some ¢ independent
of n, and f, — f in measure with respect to pn. Then, f € L? and f,, — f in L® for any s < p.

Proof. Let Q¢ :=[|fn — fllg > €] for any n € N and € > 0.
To show f € L?, assume conversely that f ¢ LP. Let A, := [n —1 < |f| < n]. Since p is finite, we know
that! (|f] —2)" ¢ LP, and thus,

S i) —2)° = oo,
n=2

Now, fix R > 0 and choose N € N such that

M=

w(Ay)(n—2)? > 2R.
1

n

Let
s:=min{p(A,) |1 <n <N, u(A,) >0}
and choose kg such that for any k > kg

Q) = plllfi = fI1>1]) <

N »

IFor any real-valued function h, we denote h™ := max{h,0}.
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Now, we have

| felP dp

M=
b ?

3

flmpdw

3
Il
—

| fxlP dpe

anik

3
Il
—

WV
M=
b ?

(1 =1)")" dp

n"“Qi,k

3
Il
—

WV
M=
b 2

p(An)((n —2)")"

WV
M=
N | =

3
Il
—

WV

in contradiction to || fi|rr < c. We conclude that f e L?.
Now, fix € > 0, and choose ng such that

.u(Qe,n) <€

for all n = ng. Then, we have

( f 1 — £l ) < (u(@)e® + f 1o — flp d)®

€,

<ot (um)‘éep Fu@ua)t [ -1t du)

e,n

<25 ()5 e + e e+ || f]Le),

where the right hand side tends to zero as € — 0. O

3.5 Measurable selections

We need the following result about the existence of measurable selections for multivalued mappings. The
proof can be found in [17], Theorem 1.5.

Theorem 3.32. (Kuratowski-Ryll-Nardzewski theorem) Let (X, A) we any measurable space and let (Y,d)

be a complete and separable metric space. Let F : X — 2Y . Assume that F(x) CY is closed and non-empty
for any x € X and assume

{reX|Fla)nU#J}leA
for all open sets U € Y. Then, there exists a measurable selection F of F, i.e. a measurable mapping
F: X —Y such that F(z) € F(z) for allz € X.

We need the following immediate corollary:

Corollary 3.33. Let X and Y be a complete metric spaces, and let F: X — 2V such that F(x) is closed
and non-empty for any x € X. Assume that graph F := {(z,y) € X xY |y € F(x)} is closed in X xY. Then
there exists a Borel measurable selection of F'.
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Proof. Let U €Y be an open set and let A := X xU € B(X) xB(Y). Since F posses a closed graph, we have
graph F € B(X xY). By Lemma 3.3 we have B(X xY) = B(X) x B(Y), thus A n graph F € B(X) x B(Y).
By writing

{zre X|F(x)nU # &} = {x € X |y € Y such that (z,y) € graph F' n A},

we conclude {x € X | F(z) nU # &} € B(X). Theorem 3.32 now yields the desired conclusion. O

4 Stochastic processes

4.1 General stochastic processes

Let (O, F,P) be a probability space, let (F,.A) be a measurable space and let I € R.

Definition 4.1. A family (F;)s of o-algebras is called a filtration of (O, F,P) ifft 7, € F, € F for all
s,t € I with s > t. The tuple (O, F, (F¢)ter, P) is called filtered probability space.

Definition 4.2. The predictable o-algebra P (with respect to (F;)er) is the o-algebra on I x O defined by
P = A,,({((s,t] NnI)xAls<t, Ae]—'s}uP0>

where

%) if Amin 1,

PO =
{{min[} x A|lAe fminj} if 3min 1.

Definition 4.3. An E-valued stochastic process is a family of random variables (X} ) such that X, is /A
measurable for all ¢ € I.

Definition 4.4. The process X is called adapted to (Fy)ier iff X is F;/.A measurable for all t € I, progress-
ively measurable with respect to (Fy)ier iff the mapping X|r~(—o,q : (5,w) = X(w) is B(I n (—0,t]) @ F;
measurable for all ¢t € I and predictable if the mapping X : I x O — FE is measurable with respect to the
predictable o-algebra.

The next Lemma follows immediately from the Definition.

Lemma 4.5. Every predictable process is progressively measurable. Every progressively measurable process

is adapted.

Definition 4.6. The filtration (F;)s given by
Fii=A-({Xs|sel, s<t})

is called the canonical filtration for X.

Definition 4.7. If E' is a Banach space, then we call an F-valued process (X;)wer simple, if there are random
variables X; : O — E, i =0, ...,n, such that X; takes only a finite number of different values for all 1 < i < n,
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and t; < ... <t, with ¢t; € [ for ¢ = 1,...,n, such that

Z?:l XiH(ti,I ,ti]ml(t) if ﬂ min Iv
X =

S Xilyadar () + Xolgnn (1) if Imin L.
forall tel.
The following theorem follows immediately:

Theorem 4.8. Let E be a separable Banach space. Then, the set £ of simple processes is dense in LP(I x
O,P, dt®P; E) for any 1 < p < .

Proof. In this proof, we call a set A € P simple, if A = ((s,t] nI) x B for some s,t € [ and B € F;, or,

in the case that I posses a minimum, A = {min/} x B for some B € Fns. Let £ be the set of simple
n

subsets. The set of processes of the form X;(w) = >, ; a;ll4,(t,w) where o; € E and A; € P is dense
in LP(I x O,P,dt ® P; E). The process X is simple if A4; is simple for each 1 < i < n. The proof is
finished when we can show that for each A € P and ¢ > 0, there are simple sets B;, i = 1,...,n such that
dt @ P(AA(|, Bi)) < €. But the set of all those sets A form a Dynkin system D such that £ € D. Since £

is a generator of F which is closed under finite intersection, we have
F=A,()=DE)cDCcF.

O

Definition 4.9. For each w € 2, the mapping t — X;(w) is called a path of X. Let F' € E. The process X

is called concentrated on the paths with values in F, iff for a.e. w e Q
Xt(w) e F foralltel.

If E is a topological space, then the process X is called continuous if for a.e. w € Q the path t —» X;(w)

is continuous. Right-, left-, Holdercontinuous, ... are defined analogously.
The proof for the next Lemma can be found e.g. in [20] Proposition 1.12.

Lemma 4.10. Let E be a topological space equipped with the Borel algebra. Then, every right (or left)

continuous and adapted process is progressively measurable.

Definition 4.11. Let E be a Banach space. We call X (square) integrable iff X, is (square) integrable for
all tel.

Definition 4.12. For ¢y, ..., t, € I, the probability measures Q;,, ..., € Z(E™), defined by
ch..‘,t" (B]_ X ... X Bn) = P(th € B; forall 1 <i < n)

for all B; € A, are called finite dimensional distributions of X. A stochastic process Y : I x O — FE, where
O is some further probability space, is called a version of X iff X and Y have the same finite dimensional
distributions.
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4.2 Path space

Definition 4.13. The space E! is called path space (for X). The standard o-algebra G on the path space is

the o-algebra generated by sets of the form (so-called cylindrical sets)

{feE"|f(t) e B}

where t € [ and B € A.
Definition 4.14. The probability measure Q := P o X! € 2(E!) is called distribution of X.

Remark 4.15. A probability measure on the path space Q € Z(E!,G), is a distribution of X, if and only if
forall neN, ty, ..., t, € I and B; € A we have

Q({ue B |u(t;) e Bifor all 1 <i <n}) =P(X;, € B; for all 1 <i < n),

since the system of sets of this form are a generator of G which is closed under finite intersection. Thus,
two stochastic process X and Y have the same distribution if and only if they are version of each other
(Daniel-Kolmogorov theorem).

Definition 4.16. The canonical process (£;)ier of the path space is given by
&(u) :=u(t), tel,ue B

Definition 4.17. The canonical filtration (G;)iwc; on (E!,G) is given by
Gri=A({&ssel, s<t}),

i.e the canonical filtration on (E',G) is the canonical filtration of £&. In particular, the canonical process is

adapted to the canonical filtration.

Remark 4.18. A probability measure Q € Z(E?) is a distribution of X iff the canonical process ¢ and X are
versions of each other.

Lemma 4.19. Let B€ G,. Then {u€ E" |u|;~(—0 4] € Blin(—n41} = B.
Proof. The system

]::={Geg

{ue B |ulrn( v € Glin(-wq} = G}
is a o-algebra. Let s € I n (—o0,t] and A € A. Then we have
&NA) ={ue Eu(s)e A} e F,

ie. & is F/A measurable. Thus, G, € F. O

Definition 4.20. Let I = (T,) for some T € R. Then, for any ¢t > 0, we define the shift operator
U, : ET > ET by

U, (u)(s) :=u(t + s).

29



Note, that images of G-measurable sets are G-measurable. In particular, we use the same symbol to denote
the corresponding image operator U, : G — G defined by W;(A) := {U;(u) |u € A}.

If (X;)ses is a stochastic process with paths in M € E', we use the same notation and definitions on the
space M. In particular we also call M the path space. The canonical filtration on M consists of the trace
o-algebras of the o-algebras of the canonical filtration of E7.

Let FF € E. We denote by &Zr(M) the set of all probability measures on M such that the canonical
process is concentrated on the paths with values in F.

4.3 The space C(]|0,o0); E) as a path space

The most important path space in this thesis is the space of continuous functions from the interval [0, o) to
a separable Banach space FE endowed with the Borel algebra. Everything described in this section holds for
any other interval analogously. We usually denote this space by the symbol ¢ := C([0, ), E).

We have the following result:

Theorem 4.21. The standard o-algebra G on C([0,0), E) is the Borel o-algebra. The system & € G

consisting of sets of the form
{ue C([0,), E) |u(t;) € A; for all1 <i < n}

where 0 < t; and A; S E open, is a generator of G which is stable under finite intersections. The system
& € Gy consisting of sets of the form

{ue C([0,), E) |u(t;) € A; for all1 < i< n}

where 0 < t; <t and A; € E open, is a generator of G, which is stable under finite intersections.

Proof. Denote by G the standard o-algebra defined in the previous section. Let € > 0 and u € C([0, ), E).
For every g € Q n [0,00) we have {v e C([0,20), E)|u(q) € Bc(u(q))} € G and therefore

B(w) = () U fvec(o,),E)|v(g) € Bs(u(a))} € G-

geQn[0,50) 6eQn(0,€)
This shows B(C([0,), E)) € G.
On the other hand, for any fixed ¢t > 0, the mapping ¢ : C([0, ), E) — E, defined by ¢(u) = u(t), is
B(C([0,0), E))/B(E) measurable, i.e. we have G € B(C([0,0), E)).
The first part of the above proof also shows that £ is a generator of G. The assertion about G; follows

similar. O

Sometimes, it will be important to consider only the space of continuous functions on the interval [¢, o)
for some ¢t > 0; we usually use the notation U* := C([t,), E) for this space. Furthermore, we use the
notation G* := B(U") for the standard o-algebra and (G!)ss; for the canonical filtration. Let P € Z(U) be
any probability measure. By Theorem 3.26, the r.c.p.d. with respect to G, satisfies the property

P({v|uljo,g = vljo,q} | Ge)(u) = 1.
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Thus, we can consider P(-|G;)(u) as a probability measure on U*, defined by
P(A|G:)(u) :=P({velU |[Iwe A: w = V| )}|Ge)(u)

for any A € B(U'). We will make use of this in different parts of the thesis.
We need three results about the space Y. The proofs can be found in [27], Lemma 4.3, Lemma 8.2, and
Lemma 8.3.

Definition 4.22. Let E be a Banach space. For ¢ = 1, we denote by A9(F) the set of all functionals
Z:E —[0,0]
such that
(1) Z(z)=0iff z = 0;
(2) Z is lower semi-continuous;
(3) Z(azx) < a?Z(x) for all @« > 1 and = € E;
(4) Z1(]0,1]) is relatively compact in E.

Lemma 4.23. Let X — H — X' be a Gelfand triple such that X — H compactly. Let {P,}nen S Pu(U)

be a sequence of probability measures. Assume for some >0, ¢ = 2 and Z € AY(H) we have

_ s , T
suIN)IEP"[ sup [&(t)|m + sup 1€6) = &5l —iﬁﬁ)x +JO Z(f(s))ds] <

ne t€[0,7] oss<t<T |t
for all T > 0. Then, P,(L}. ([0,00),X") nU) =1 and {P,}nen S P2(L]([0,00), X") A U) is tight.

Theorem 4.24. Let D := {(s,t) € [0,00)?|s < t} and let (Xy;)(spep and (Ysi)(snep be families of
G\B(R™) measurable random variables from U to RT, let P € 2 U) and r = 0.

Assume that for any fived s > 0 the mapping t — X, is P-a.s. increasing and t — Y, is P-a.s. right
continuous and Yy ; is Gs-measurable for any t > s.

Assume further that for any t > s > r = 0 we have X.;, ,Y.; € L*((0,t) x Q; dt ® P) and X4(u) =
Xorp—r(Vru) and Yy 1 (u) = Yoy (V)

Then, the following are equivalent

(1) There is a Lebesgue null set T < (r,0) such that for any s € (r,0)\T and t > s we have

EF[ X | Fs] < Yar

(2) For? Pz, —a.e. u€ U, there is Lebesque null set T,,  (0,0) such that for any s € (0,00)\T, and t > s
we have

]EP(-‘]:T)O‘IIT_ [Xs,t |-7:s] $ Ys,t-

2The expression P| 7, — a.e. w € U means that we can choose the exceptional null set in F.
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Theorem 4.25. Let (X;)i=0 and (Yi)i=0 be (Gi)i=o-adapted, real-valued, integrable processes on (U,G,P)
such that X¢(u) = X¢_(V,u) and YVi(u) =Y. (V,u) for all t = r = 0. Then, the following are equivalent:

(1) (Xp)e=r 18 a continuous martingale with square variation process (Yi)i=, with respect to P.

(2) For P|r. —a.e. u € U, the process (Xi)i=0 is a continuous martingale with square variation process
(Y1)i=0 with respect to P(-|F,)(u) o Ut

4.4 Markov processes

Let (O, F,P) be a probability space, (F;):es a filtration and let E be a separable Banach space.

Definition 4.26. An adapted E-valued stochastic process (X; )y is called Markov process if X, € L*(O, F,P)
for all t € I and

E[X; | Fs] = E[X¢ [ Aq(Xs)] (4.1)

for all s,t € I with s < t.

Lemma 4.27. An adapted, E-valued, integrable stochastic process (Xi)ier is a Markov process iff
P(X;e A|Fs) =P(X; € A| Ay (Xs)) (4.2)
for all s,t € I with s <t and A€ B(E), iff
w—P(X, € Al F)(w) (4.3)

is Ay (Xs)/B(R) measurable for all s,t € I with s <t and A € B(FE).

Proof. Step 1. Let (X¢)ier be a Markov process and let s,¢ € T with s < t and A € B(E). Since 14 is
B(E)/B(R) measurable, (4.1) implies

E[la(Xe) [ Fs] = E[La(Xe) [ A (Xs)]- (4.4)
This is equivalent to (4.2). Assume conversely that (4.4) holds. Then, by linearity we have
Elo(X:) | Fs] = E[p(Xe) [ Ao (Xs)]- (4.5)

for all simple functions ¢ and by approximating id with simple functions, we get (4.1) by Daniell’s continuity
of the conditional expectation.
Step 2. Since A,(X;) S Fs we have

P(P(Xt €A | ]:s) |-AU(XS)) = P(Xt €A | -AU(XS))
and we obviously have
P(P(Xt € A|]:s) |AU(XS)) = P(Xt € A|]:s)

iff w— P(X; e A|Fs)(w) is Ax(Xs)/B(R) measurable O
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4.5 DMartingales
Let (O, F,P) be a probability space, (F;):er a filtration and let E be a separable Banach space.

Definition 4.28. An adapted E-valued stochastic process (X; )« is called martingale, if X; € L*(O, F,P)
for all ¢ € I and

E[X, | Fs] = Xs

for all s,t e I with t > s.

Definition 4.29. A mapping 7: O — [ is called stopping time, if
[T < t] € ft

for all te 1.

Definition 4.30. The process X is called a local martingale, if there exists a sequence of stopping times
(Tn)nen, such that 7, — o0 a.e. in O and (X(,, r¢))ter is a martingale for all n € N.

Theorem 4.31. (Burkholder-Davis-Gundy inequality or BDG inequality) For any 1 < p < o there are
constants c1 and co such that for all R-valued, continuous, local martingales X with Xo = 0 a.e. and
X, € LP(O, F,P) for allt € I, we have

G E[COf ] < Elsup | X.[7] < B0,

For the proof see [20], Theorem 3.28. For future use, we remark that in the case p = 1, a possible choice
for the right constant cy is cp = 4+/2.

Corollary 4.32. (BDG inequality for conditional expectation) Let U := C([0,0); E) for some separable
Banach space E, let P € ZP(U) and let v > 0. Moreover, let (X¢)i=0 be an R-valued, continuous, square
integrable martingale X with X, = 0 a.e. and assume that X satisfies X (t,u) = X(t — s, Vsu) for all s >0
and P-a.e. ueU. Then, we have

B sup [X,|| F] < AV2EF[CXO] | 7).

r<s<t

Proof. We have by Theorem 4.25 and the BDG-inequality

E[ sup |X,||F] =E"V) sup |X,]

r<s<t r<s<t

-1
— EP('|-7:T)°‘I’T [ sup |Xé|]
0<s<t—r

< AVIEPUFDOV ()7 ]

— 4VREP[(X)Z | F]

33



4.6 Stochastic integration in finite Dimensions
Let (O, F, (Ft)t=0, P) be a filtered probability space, let n,m € N and let I = [0, o).

Definition 4.33. Let H be an R™*™-valued simple process. Then, for any R"-valued adapted stochastic
process (X;)i>0, the stochastic integral of H with respect to X is defined by

t k
| B = 3 X = Xy )
0

1=1

forallt >0, if
—~ k _
Hy = Holo(t) + > Hil s, 4 (t)
i=1

Definition 4.34. An R™-valued adapted stochastic process X is called total semimartingale, if X is cadlag
and adapted, and whenever H is a simple process and {(H}"):>0}nen 1S a sequence of simple processes, such
that H" — H in L*((0,T) x O,dt ® P) for any T > 0, then

T T
J H}!dX, — J H,dX, in probaility.
0 0

In other words, the last assertion is equivalent to the fact that Sg -dX, : S — LY is a continuous operator for
any T > 0, where the space S of simple processes is endowed with the topology of L ((0,T) x O, R™"*™)), and
the space of random variables L° = L°(O;R™) is endowed with the topology of convergence in probability.

Definition 4.35. An R™-valued adapted stochastic process X is called semimartingale, iff (X;,7)i=0 is a
total semimartingale for any 7" > 0.

Definition 4.36. Let H™ and H be stochastic processes for n € N. We say H™ — H uniformly on compacts
in probability, or short u.c.p., iff for any T' > 0 we have

sup |H}' — H| — 0 in probability

0stsT

as n — o0.

Theorem 4.37. For any semimartingale X, the mapping H — S(t) H,dX; is a bounded linear mapping if
both sides are endowed with the u.c.p. topology. Moreover, the stochastic integral can be uniquely extended to
the set of continuous stochastic processes by continuity. More precisely, for any t = 0, the stochastic integral
with respect to X is a continuous map

t C—-D
J-dX:z .
0 H'—’SOHsts

where C respectively D denote the sets of continuous respectively cddldg processes, both endowed with the
u.c.p topology.

For the proof see [28], Theorem 11.
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Lemma 4.38. Any adapted continuous local martingale is a semimartingale.
For the proof see [28], Corollary 2.

Lemma 4.39. Any adapted cddlig process of (path wise a.e.) finite variation on compact intervals is a

semimartingale.
For the proof see [28], Theorem 7.

Lemma 4.40. The stochastic integral is continuous if and only if X is continuous a.e.
For the proof see [28], Theorem 13.

Definition 4.41. Let (X;);>o and (Y;)¢>0 be continuous, real-valued semimartingales. The (predictable)®
quadratic covariation (X, Y ) = ((X,Y ))i>0 is defined by

t t
(XYY = Xth—f XdY—J Y dX.
0 0

The (predictable) quadratic variation of X is defined by
<X>t = <)(7 X>t

Lemma 4.42. The quadratic covariation process is an adapted, continuous, increasing semimartingale.
For the proof see [28], Theorem 22.

Lemma 4.43. Let X be a continuous, real-valued semimartingale of (path wise a.e.) finite variation. Then,
(X) = const, i.e. {(X), = X¢ for all t > 0.

This is an immediate consequence from [28], Theorem 17.

Lemma 4.44. Let X and Y be continuous, real-valued semimartingales, and assume {X); = const, i.e.
(XY ={X)og = X& for allt = 0. Then, (X,Y) = const, i.e. (X,Y ) = XoYy for all t > 0.

This is an immediate consequence from [28], Theorem 25.

Lemma 4.45. If (X;)i>0 is a continuous, R -valued (local) martingale, then the quadratic variation is the
unique adapted, continuous, increasing process ((X)i)i=o0 starting at zero a.s., such that | X|* —(X) is a

(local) martingale.

For the proof see [28], Theorem 27. The importance of quadratic covariation is due to Ito’s formula,
which can be interpreted as a generalization of the fundamental theorem of calculus to stochastic processes.

Theorem 4.46. (Ito’s Formula) Let X = (X%)"_; be an R™-valued continuous semimartingale and f €
C?(R™). Then, f(X) is a semimartingale and the following formula holds for all t > 0:
1 (" of

X, )dX! + =
( ) s * 2 0 0.’1:716.%']

taf

0 0;

f(Xe) = f(Xo) + (Xs) dXT, XT)s.

3Formally, the Definition below defines the predictable quadratic covariation and not the quadratic covariation. But these two
definitions only differ if one of the involved processes is not continuous. Since in this thesis, (predictable) quadratic covariation
is only used in a case when X and Y are both continuous, we restrict the definition to continuous processes. Then, the process
defined below is actually both, the quadratic covariation and the predictable quadratic covariation of X and Y. Thus, from
now on, this process will be called the quadratic covariation.
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For the proof see [28], Theorem 32.

Definition 4.47. Let X be an R™-valued semimartingale. The quadratic covariation operator is the unique
R™*™-valued process (X)) = ({X),)¢=0 such that (X)), is symmetric and

uT X Dyu = (X up

for all ¢ > 0.

4.7 Brownian Motion

The proof for all theorems about (cylindrical) Brownian motions and integration with respect to (cylindrical)
Brownian motions can be found in [27], chapter 2 and appendix B.
Let (O, F,P) be a probability space and let E be a separable Banach space.

Definition 4.48. A random variable X : O — FE is called Gaussian, if there is x € E and a positive and
symmetric operator @ € L(F’, E) such that

X(z') := fo exp(i(a’, X)) dP = exp(ilz’, x) — %@', Qz")

for all ' € E’. Then, x and the operator Q are called the mean and the covariance operator of X.

Theorem 4.49. Mean and covariance of a Gaussian random variable are uniquely determined. The covari-
ance operator is the unique positive and symmetric operator Q € L(E', E) such that

@', Qa") = E[{a’, X)?]
for all z' € E'.

Theorem 4.50. A random variable X : O — E is Gaussian iff {x’, X) is an R-valued Gaussian random
variable for all z’' € E'.

Definition 4.51. Let (F;)ies be a filtration and @ € L(E’, E) be symmetric and positive. An adapted

stochastic process (Wy);=0 is called Brownian motion with covariation Q if
(1) W(0) =0 as;
(2) W(t) — W(s) is Gaussian with zero mean and covariance operator (t — s)@ for all t > s > 0;
(3) W(t) — W(s) is independent of F, for all ¢t > s > 0;
(4) W is continuous.

Theorem 4.52. (Lévy’s martingale characterization theorem) An adapted R-valued stochastic process (Wy)i=o
is a Brownian motion if and only if W(0) = 0 a.s. and W is a continuous martingale with quadratic variation
< W >;=1t.

Not every positive and symmetric operator @) € L(E’, F) is the covariance operator of some Gaussian random
variable. In Hilbert spaces, the set of all those operators ) can be explicitly identified:
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Definition 4.53. Let U and H be separable Hilbert spaces and let T € L(U, H). Then, T is called nuclear
operator or of finite trace, if there exists sequences {ax}reny € H and {bg}xeny S U such that

o8]
Tz = Z<bk,x>U a
k=1

for all z € U, and

D larlalbrlo < oo.
keN

We denote the set of all nuclear operators by Li(U, H) and we set L1 (U) := L1 (U, U).
Lemma 4.54. Any nuclear operator is compact.

Theorem 4.55. Let Q € L(H) be symmetric and positive. Then, Q) is the covariance operator of some

H-valued Gaussian random variable if and only if Q is of finite trace.
Finally, we have the following representation theorem for Brownian motions:

Theorem 4.56. (Representation theorem) Let (W)= be a Brownian motion in H with covariance operator
Q. Let (by)nen be an orthonormal basis consisting of eigenvectors of Q and let (\,)nen be the corresponding

sequence of eigenvalues. Then

Wi = Y bp(Wi, by

neN

where the sum converges in H and the processes ((Wy, b,))e=0 are independent, real-valued Brownian motions
with covariance \,. Conversely, if (Bn)nen is a sequence of independent real-valued Brownian motions with
identity covariance, (\,)nen € I>(N,R) and (b,)nen is a orthonormal basis of H, then

Wi = Z AnBnbn

neN

defines a Brownian motion, where the covariance operator is given by

Qz = > A, b

neN
4.8 Cylindrical Brownian motions
Let H and U be separable Hilbert spaces and let @ € L(H) be symmetric and positive.

Definition 4.57. (Hilbert-Schmidt operators) Let (bg)ren be an orthonormal basis of U. The space of
Hilbert-Schmidt operators from U to H is defined by

Ly(U, H) := {Ae L(UH)| Y. |Aby3 < oo}.
keN
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The space Ly(U, H) carries the scalar product

(A, B)r,w,m) = Z (Aby, Bbi)p .

keN
We denote Lo(H) := Lo(H, H).

Theorem 4.58. The definition of Lo(U, H) and the value of (A, B)r,w, i) are independent of the choice
of the orthonormal basis (by)ren, the space La(U, H) is a Hilbert space and we have |A|pw gy < | Al L, w,m
for all Ae Lo(U,H).

Theorem 4.59. For Ae L(U, H), we have A€ Ly(U, H) iff A* € Lo(H,U), and in this case |A|p,w o) =

| A* | Lo rr,0y -
The next Lemma states an important connection between nuclear and Hilbert-Schmidt operator:

Lemma 4.60. Let A€ Lo(H1, Hs) and B € Lo(Ha, Hs), where H; are separable Hilbert spaces fori =1,2,3.
Then, BAe€ Ll(Hh Hg)

Definition 4.61. A Hilbert-Schmidt embedding from H to U is an injective mapping ¢ € Lo(H, U).

Hilbert-Schmidt embeddings always exist: Let (b,)nen be an orthonormal basis of H, let (¢x)ren be an
orthonormal basis of U and let (ay)ren € [2(N;RT). Then

u(z) = Z alx, by e

k=1

for x € H defines a Hilbert-Schmidt embedding from H to U.
Let

Hy :=ran Q%
be equipped with the scalar product

_1 _1
<$7y>H0 = <Q 2$,Q 2y>H7
where Q’% denotes the pseudo inverse. We have the following result.

Lemma 4.62. The space Hy is a Hilbert space.

Let J : Hy — U be a Hilbert-Schmidt embedding. Then, @ = JJ* € L1(U) and @ is a positive and
symmetric operator. Thus, there exists a Brownian motion (W;);»0 in U with covariance @ A simple
calculation shows the following.

Lemma 4.63. The mapping J : Hy — ran @% s an tsometry.

Definition 4.64. A Brownian motion (W;);>0 in U with covariance @ is called cylindrical Brownian motion
(in H) with covariance operator Q.

We end this subsection by introducing the following concept:
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Definition 4.65. Let U and U be separable Hilbert spaces and let J : U — U be a Hilbert-Schmidt
embedding. A Brownian stochastic basis (or simply Brownian basis) for (U,U,J) is a tuple

(07-7:3 (Ft)tZOa]Pa (Wt)tZO)

such that (O, F, (F;)i=0,P) is a filtered probability space and (W;);=0 is an adapted a Brownian motion in
U with covariance operator J.J*.

We call (O, F, (Ft)i=0, P, (Wi)i=0) a Brownian stochastic basis (or simply Brownian basis) for U if there
exists U and J such that (O, F, (Fi)i=0, P, (Wi)i»0) is a Brownian stochastic basis for (U, U, J).

Remark 4.66. Let (O, F, (F)i=0,P, (Wi)i=0) be Brownian basis for (U,U,.J). Then (W)= is a cylindrical
Brownian motion in U with identity covariance and corresponding Hilbert-Schmidt embedding J.

4.9 Integration with respect to Brownian motions

Let H and U be separable Hilbert spaces, let Q € L1(U) be symmetric and positive and let (W;);=0 be a
Brownian motion with covariance (). Denote by Uy := ran Q%, equipped with the scalar product defined in
the preceding subsection.

Denote by £ the space of all simple Lo(U, H)-valued processes (P¢)¢=o0,

n
®y i= Rolip) (8) + ), Pille, (1)
i=1
for all t > 0.

Definition 4.67. The stochastic integral of ® with respect to W is defined as

t n
J’ ®, dW, := Z ¢i(Wti/\t - Wti,lAt)-
0 i=1

Lemma 4.68. (Ito’s isometry) Let &, € £. Then, for any t = 0, we have
t
IIJ s AWl L2 (0,7 pim) = I®] 210,61 x 0.B([0,0)@F: , at@P; L (U, 1)) -
0
Since Theorem 4.8 implies that
E”'”LZ([O,t]xO,B([O,t])@]—},dt®P;L2(Uo,H)) _ LQ([O,t] x O, Py, dt @ P; Lo (Ug, H)) := N‘%V(O,T; H)

where P; denotes the predictable o-algebra on [0,t] x O, the following definition makes sense.

Definition 4.69. The stochastic integral is extended to an isometrical mapping

t
f -dW : N&(0,T; H) — L*(O, F;,P; H).
0
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4.10 Integration with respect to cylindrical Brownian motions

Let H and U be separable Hilbert spaces, let Q € L(U) be symmetric and positive, let Uy := ran Q% and let
(W4)i=0 be a cylindrical Brownian motion with covariance @ and correspondlng Hilbert-Schmidt embedding
J Uy — U. Let Q = JJ* e Ll(U) and UO ;= ran Q2 Then, J : Uy — Uo is an isometry. An easy
calculation shows that

X € L*([0,t] x O, Py, dt @ P; Ly(Up, H)) := Nt (0,73 H)
if and only if
X oJ ' e L([0,t] x O, Py, dt @ P; Ly(Uy, H)).

Definition 4.70. Let X € N2,(0,T; H). Then, the integral of X with respect to W is defined as
t t
J X, dW, :=J X, oJ LdW,.
0 0

Theorem 4.71. The stochastic integral is a continuous, square integrable martingale, and Ito’s isometry

HL Qs AWl 20,7, 5:m5) = 1P 2210, % 0,8([0,4))@F: ,dt@P; Lo (U, H)) -

holds.

Theorem 4.72. The quadratic covariation of a stochastic integral is given by

) t
<J,0 X dWs>t = J;) HXSH%z(UOvH) ds

4.11 Lévy processes

Let E be a separable Banach space.

Definition 4.73. We call an E-valued stochastic process (X;):>0 a Lévy process if
(1) X(0)=0as;

(2) (independent increments) for all 0 < tp < ... < t,, the random variables Xy, Xy, — X4g, - » Xt,, — Xt

are independent;
(3) (stationary increments) for all s,t > 0, the distribution of X,,; — X, does not depend on s;
(4) X is continuous in probability (i.e. lims_,; Xy = X; in probability for all ¢ > 0);
(5) X is cadlag.
An important example of Lévy process are Brownian motions:

Theorem 4.74. An E-valued stochastic process X is a Brownian motion if and only if X is a continuous

Lévy process.
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Part 11

Incompressible Equations

5 Introduction and Framework

5.1 Introduction

Let (O, G,P) be a probability space. We consider the incompressible Navier-Stokes equations on a bounded
Lipschitz domain £ € R? driven by a stochastic Noise w, that can be formally written in the form

divu = 0, (5.1)
du = (vAu— (u-V)u+ Vp)dt + f(z,u)dt + d(w(t, z,u)), (5.2)

subject to the no-slip boundary condition

ulog =0, (5.3)
and the initial condition

u(0) = ug. (5.4)

Here, the unknown functions u : [0,00) x Q x O — R3 and p : [0,00) x Q x O — R represent the random
velocity and the random pressure of the fluid, the function f : Q x R® — R3? represents the deterministic
force and the stochastic process w : [0,00) x Q x R? x O — R? represents the random noise. This thesis
studies the equations in the case that w is a Brownian motion, see Section 5.4.

The incompressible Navier-Stokes equations can be written as a stochastic evolution equation in the space
of divergence-free vector fields. Thus, we develop an abstract framework for stochastic evolution equations in
the next subsection. The subsequent subsection provides a summary of different types of solutions to abstract
stochastic evolution equations. Subsection 5.4 describes how the Navier-Stokes equations can be formulated
in this abstract framework. Afterwards, we focus on martingale solutions (see Definition 5.3) and show the
existence of a martingale solution for arbitrary initial conditions ug in section 6. In section 7 abstract Markov
and pre-Markov families are introduced and an abstract Markov-selection theorem is proved. Afterwards,
the existence of a.s. martingale Markov solutions (see Definition 5.8) is an rather immediate consequence of
this theorem.

5.2 Stochastic Evolution Equations

All definitions and results are formulated for separable Banach spaces (respectively separable Hilbert spaces);
everything holds for finite dimensional spaces analogously.

Let X — H < X' be an evolution triple and let (O, F,P, (F,)nen, (W(t))t=0) be a Brownian stochastic
basis for U (see Definition 4.65), where U is a further separable Hilbert space. We assume X «— H compactly.
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Let A and B be measurable operators

A:H-X, (5.5)
B:H — Ly(U, H), (5.6)

where all spaces are endowed with their respective Borel algebra. We consider the abstract stochastic

evolution equation

QU
S
~~
=
Il

A(u(t)) dt + B(u(t)) dWy, (5.7)
u(0) = uo, (5.8)

for ¢t > 0 and ug € H.
We always assume that the operators A and B satisfy the following three assumptions (A1)-(A3) :
(A1) (Demi-Continuity) We have
AH-X,
continuously, and
B* :H — Lg(H, )
continuously. Here, B*(x) € Ly(H, U) denotes the adjoint operator of B(z).
(A2) (Coercivity) There exists a constant x1 > 0 and Z € AY(H) for some ¢ > 2 such that
(A(z),2) < =Z(2) + 1 (1 + [2]f)
for all z € X, where A?(H) is defined in Definition 4.22.

(A3) (Growth condition) There exists a constant ko > 0 and 4 >+ > 1 such that

IAGz) %
| B(x) ||%2 (U,H)

ka(1 + |z + 2(2)),

<
< fa(1 + =),

for all x € X, where Z is as in (A2).

5.3 Concepts of solutions

A huge amount of the theory of stochastic evolution equations we know today is due to, or was inspired by,
Ito’s works at the beginning of the twentieth century. One of Ito’s most important achievements was the
development of a framework within which stochastic integration can be performed. The theory of integration
of stochastic processes, in turn, leads to the natural concept of strong solutions. The first definition below
formally introduces this concept. But, as the existence of strong solutions to the incompressible Navier-
Stokes equations is still an open problem today, this will be done solely for completeness. A major difficulty
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in the present situation is that the Navier-Stokes equations do not satisfy any kind monotonicity conditions.
On the other hand, some kind of monotonicity condition on the operators A and B is usually essential to
prove existence of strong solutions.

Introducing weak and martingale solutions, the two subsequent definitions weaken the concept of strong
solutions considerably. The concept of martingale solutions is the weakest of the three and it is also of
different nature: while strong and weak solutions are stochastic processes, martingale solutions are probability
measures on the path space. As shown below, the probability distribution on the path space induced by
a weak solution is always a martingale solution. In this sense, martingale solutions weaken the concept of
weak solutions once more.

Finally, any of these three definitions can be extended to the corresponding Markov problem. The goal
of part two of the thesis in hand is to show the existence of almost sure martingale solutions to the Markov
problem associated with (5.7), (5.8).

For the rest of this section, we let U := C(]0,00),X"). We consider U as a path space and use the notations
and definitions from the preliminaries. The next three definitions introduce strong, weak and martingale

solutions.

Definition 5.1. Let (O, F, (Ft)t=0, P, (W:)t=0) be a given Brownian basis for U and let ug € H. We call an
(Fi)i=o-predictable stochastic process u : [0,00) x O — H a strong solution of (5.7), (5.8) ift

(1) u(.,w) e C([0,0);X’) for a.e. we
(2) u(0,w) = uo for a.e. w e

(3) A(u) e L'((0,T) x O, dt ® P;X') for all T > 0;

(4) B(u)e L2((0,T) x O, dt ® P; L(U, H)) for all T > 0;

(5) We have for all ¢t > 0
u(t) = u(0) +JO A(u(s))ds + L B(u(s)) dWs.

Definition 5.2. Let ug € H. A weak solution of (5.7), (5.8) consists of a Brownian stochastic basis
(O, F, (Ft)t=0,P, (Wi)i>0) and an (F;)=o-predictable stochastic process u : [0,00) x O — H such that (1) -
(5) from the preceding Definition 5.1 are satisfied.

Often, we simply call u a weak solution of (5.7), (5.8) and (O, F, (Ft)i=0, P, (Wi)i=0) the Brownian basis

for the solution u.
Definition 5.3. Let ug € H. A probability measure P € L (U) is called a martingale solution of (5.7), (5.8)
iff

(1) The canonical process ¢ : [0,00) x U — X’ is P—concentrated on the paths with values in H;

(2) w(0) =wug for P —a.e. ue U;

(3) A(&) e LY(0,T) x U,dt ® P; X') for all T > 0;

(4) B(¢) € L2((0,T) x U, dt @ P; Ly (U, H)) for all T > 0;
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(5) There exists a dense subspace Y < X such that for all z € Y the process

My (t,u) := Cult), z) = (u(0), ) — L<A(U(8)), ) ds

is a continuous, square integrable (G;)-martingale with respect to P, whose quadratic variation process
is given by

¢
(M)(t,u) = L | B*(u(s)) ()| ds
where B*(u) denotes the adjoin operator of B(u).

Obviously, any strong solution is also a weak solution. A little more work is needed to show that the
probability measure on the path space induced by an arbitrary weak solution is always a martingale solution.
The proof is given below.

The next Lemma provides a natural probability space for weak solutions:

Lemma 5.4. Let V be any separable Hilbert space and let
V = C([0,0); V).
If there exists a weak solution, then there exists an identically distributed weak solution of the form
[u, U x V,G®F, (Gt ® Ft)iz0, P, (Wi)i=0)]

where G and G;, respectively F and Fy, are the Borel o— Algebra and the natural filtration on U, respectively
V, P is a probability measure on (U xV,GRF), the process u is the canonical process on the first component,

i.e.

u(t,v,w) := £(t,v) = v(t) t=20,veld,weV
and W is the canonical process on the second component, i.e.

W (t,v,w) := &(t,w) = w(t) t=>0,veld,weV

Proof. Since there exists a weak solution, there is a separable Hilbert space U and J : U — U such that
(O, F, (F)i=0, P, (W;)i=0) is a Brownian stochastic basis for (U, U, J) and

[ﬂ’ (67 ‘Ta (‘Ft)tZOa ]Pv (Wt)t>0)]

=

is a weak solution. Let ¢ : U — V be an isometrical isomorphism. Then, Jy := ¢ o J is a Hilbert-
Schmidt embedding from U to V and (W,");=0 := (@(W;))i=0 is a Brownian motion in V with covari-
ation operator pJ(pJ)*. Consequently, (O, F, (F¢)i»0, P, (W, )=o) is a Brownian basis for (U, V, Jy) and
[, (O, F, (Fi)t=0,P, (W) )i=0)] is a weak solution. Thus, we can assume without loss of generality that

U=Vand W, = W,.
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We can regard (%, W) as a random variable with values in (U x V,G ® F), thus we can define
P:=Po(a,W) .
Then, the combined processes (u, W) and (@, W) are equally distributed, i.e.
Po(@oW)™ ' =Po (u, W)™
Furthermore, (W;);>0 is a cylindrical Brownian motion in U and v and W are adapted processes. Now it

follows immediately that [u7 U XV, GRF, (Gt ® Fi)iz0, P, (Wi)i=0)] is a weak solution. O

The next three Definitions introduce the concept of Markov-solutions.

Definition 5.5. Let B = (O, F, (Fi)t=0, P, (Wi)t=0) be a Brownian basis for U and let (uy)qzem be a family
of stochastic processes, such that for all x € H the process u, is a strong solution of (5.7), (5.8) with initial
value ug = x. Then, the family (u,)cm is called almost sure strong solution to the Markov problem associated
with (5.7),(5.8), or short a.s. strong Markov solution, iff

(1) foreach 0 <t; <ty <..<t,and all A; € B(X'), i =1,...,n, the mapping
- Po(up(ty), oy un(ty)) (AL X ... x Ay)

is B(H)/B(R) measurable;

(2) for all € H there exists a Lebesgue null set T, € (0,00) such that for all ¢t € (0,00)\T, and any

t1,ta, ..., t, =t we have

-1

P(-|F) 0 (ue(tr), ue(ta), s ue(tn) ™ =P o (ty, @) (tr = t), ty, 1) (t2 — 1), oor s Uy (1) (En — 1))

With minor modifications, this definition can be extended to weak solutions:

Definition 5.6. Let (u,).em be a family of stochastic processes and let
(BI)J?EH = (Oﬂf’fz’ (ftm)t207pxa (Wzér)tZO)IEH

be a family of Brownian bases for U, such that for all = € H the process u, is a weak solution of (5.7), (5.8)
with initial value uy = = and Brownian basis B®. Then, the family (u;).em is called an almost sure weak
solution to the Markov problem associated with (5.7),(5.8), or short a.s weak Markov solution, iff

(1) foreach 0 <ty <tg <..<t,and all A; € B(X'), ¢ =1,...,n, the mapping
x> PP o (ug(ty), ooy un(tn)) (AL X .o x Ay)

is B(H)/B(R) measurable;

(2) for all z € H there exists a Lebesgue null set 7, € (0,0) such that for all ¢t € (0,00)\T, and any

ty,ta,...,t, =t we have

P |FE) 0 (ua(th), ua(ta), o ua(tn)) =P%®o (W (1) (t1 = ), U (1) (b2 — 1), oo Uy (1) (B0 — 1))
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Remark 5.7. Let (uy)zem be an a.s. weak Markov solution. The above definition implies that each u, is a
Markov process: on the one hand, since the paths of u, are continuous, it is sufficient to show the Markov
property only for a dense subset I < (0, 00); in particular, we can assume I = (0,0)\T,. On the other hand,
since uy is (FJ)e=0 adapted, it is sufficient to show that for each t € I, s > ¢t and A € B(H), the random
variable P*(-|FF) o (uz(s))fl(A) is Ay (ug(t))/B(R) measurable. But this is obvious by (2) of Definition 5.6,

since
W > 11y (£) ()
is o/, (us(t))/B(H) measurable and
Yo BY ou, (s — 1)1 (4)

is B(H)/B(R) measurable.

We can also formulate the idea of the Markov problem in terms of martingale solutions. Again, the connection

to the previous definitions is shown below.

Definition 5.8. Let (Qu)zem S Z(U) be a family of probability measures such that Q, is a martingale
solution of (5.7), (5.8) with initial value ug = z. Then, the family (Qy)zen is called almost sure martingale

solution to the Markov problem associated with (5.7), (5.8), or short a.s. martingale Markov solution, iff
(1) for each Ae G = B(C(0,T;X’)) the mapping
x> Qi (A)

is B(H)/B(R) measurable;

(2) for all z € H there exists a Lebesgue null set T, € (0, 00) such that for all ¢ € (0,0)\T, and v € U we

have

Qu(+1Gt)(v) = Qury 0 Vs,

where both sides are considered as probability measures on U* = C([t,0),X’) (see section 4.3) and
where ¥, : Ut — U denotes the shift operator

U, (v)(s) = v(s+1t).

The next two theorems summarize the connection between weak and martingale solutions and the connections

between the corresponding Markov problems.

Theorem 5.9. Let ug € H and let (u)i=0 be a weak solution with initial value uy and Brownian basis
(O7Fa (-Ft)t207p7 (Wt)tZO)' Then,

Q:=Poute 2U)

is a martingale solution with initial value ug.
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Assume conversely that the noise is state independent, i.e. assume that B(xz) = B for some B € Lo(U, H)
and all € H, and assume ker B = {0}. Let Q € 2(U) be a martingale solution with initial value ug. Then,

the canonical process & is a weak solution with initial value ug.

Proof. Step 1. The canonical process ¢ : [0,0) x U — X' has the same distribution under Q as u under P,

i.e. we have
Qoétt=PouL.
Since u is concentrated on the paths with values in H, the process ¢ is too. Next, we have
Qv €U : v(0) = up}) = P[u(0) = uo) = L.

The integrability conditions on A and B follow immediately. For the last point of Definition 5.3 choose
Y = X and let z € X arbitrary. Define M;(v) := M, (t,v), then Definition 5.2 implies

My (u(- w)) = My (t,u(-,w)) = (Lt<B(U(S))7w>dWs>(w)

for a.e. w € O. By this equation, M is defined Q — a.e. in U. We have (v — My(v)) € L*(U, G, Q; R) for all

t > 0, since by Ito’s isometry we have

Tto Def.5.2,(4)
E[M;(-)*] = EF[Ma(t,£)*] = [KB(u(-, ), 23, 0.0y w0 atgm: Loy < -

Furthermore, we have (¢t — M,(v)) € C([0,%0)) for Q —a.e.v € Y. We show that (M;);>0 is a martingale
with respect to (U, G, (Gt)i=0, Q), i.e. we need to show

EQ[M,|Gs](v) = M,(v) forQ—ae. veld

for all ¢ = s. From the definition of Q it is clear, that it is sufficient to show
EQ[M,|Gs](u(-,w)) = My(u(-,w)) for P—a.e. we O
From the theory of stochastic integration with respect to a cylindrical Brownian motion, we know that
Ni(w) 1= My(u(:,w))
is martingale with respect to (O, F, (F¢)i=0,P), i.e. we have
E°[M:(w)|F)(w) = M(u(-,w)). (5.9)
Consequently, we are left to show
EQ[M;|Gs] o u(-,w) = EF[M; o ulF.](w) for P—a.e. we Q.

If we consider both sides as a function in w, then both sides are mappings from O to R. Furthermore, if
we consider u as a mapping u : O — U, w +— u(-,w), then both sides are u 1(G,)/B(R) measurable, since
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both sides are compositions of a Gs/B(R)-measurable mapping and the u=!(G,)/G,-measurable mapping u;
for the right hand side, this follows from (5.9). Let B € G, and A := u~!(B), then we have

f EQ[MAQS]oudIP’:j EQ[Mt|gs] dQ
A B
:J M,;dQ
B
:J M; oudP
A

= f EF[M; o u|F,] dP.
A

Thus, we have shown that (M;);>¢ is a continuous, square integrable martingale with respect to Q.

Finally, define the process (R;):=0 by

Ry(v) = L | B*(v(s)) ()5 ds = L KB ()(-), L, (v gy ds-

The proof is finished, when we can show that (R;):>o is the quadratic variation process of (My)i=o.
Obviously, (R¢)i=0 is a continuous, non-decreasing, (G;)-adapted process starting at zero a.e. with respect
to Q. Thus, we are left to show that (|M;|> — R;):=0 is a martingale with respect to Q.

The theory of stochastic integration implies that w — R;(u(-,w)) is the quadratic variation process of
w — M;(u(-,w)) with respect to P, and consequently

oo (1Ml )P = Relul))

is a martingale with respect to (O, F, (F)i=0,P). Exactly as above, we deduce that

v (1P - 7))

is a martingale with respect to (U, G, (G¢)i=0, Q)-
Step 2. The first four points of Definition 5.2 are easy to check. For the last point, let z € Y. We have

(MH(t) = to?
with
o = |B*z|u,

and by Lévy’s martingale characterisation theorem it follows that (M, (t)):>0 is a Brownian motion. Now
choose an orthonormal basis (b, )nen of H with b, € Y for all n € N and define

Wi t= Y b M, (t).

neN

Then W, is a Brownian motion on (U, G, (Gt)i=0, Q) with values in H and covariance operator BB*. To
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construct the desired Brownian basis we choose U = H and J = B. Then (W4)i=0 is a cylindrical Brownian
motion in U with identity covariance and thus (U, G, (Gt)i=0, Q, (Wi)i=0) is a Brownian basis for (U, H, B).
Now, we have

— S b, )My, () = W (1), 2> = (B o B-W (1), 2 = ¢ j BdW,, z)

neN

for all € Y and consequently

Cu(t), 7> = (u(0) x>+<jA dsx>+<fB ) dW,, ).

Since Y is dense in X, this shows

+£A(u(s))ds+£3(u(s))dw

Theorem 5.10. Let (uy)zen be an a.s. weak Markov solution, and denote the Brownian basis for u, by B* :=
(0%, F* (F&)i=0,P%, (W¥)i=0)- Then, the family of probability measures (Qy)zem where Q := P¥ o uy ! is
an a.s. martingale Markov solution.

O

Proof. Let £ be the set of all I" € G of the form I' = ﬂ?zl I'; with
={vel : v(t;) € A;}

where n e N, 0 < t; <9 < ... <t, and A; € B(X'). Then, £ is a generator of G and & is closed under finite
intersection.

For all A € £ the mapping
x> Qu(A) =P ouy ' (A)

is measurable by Definition 5.6. By Lemma 5.11 below, the above mapping is measurable for all A € G.
To prove point (2), we assume without loss of generality that all weak solutions [u,, B*] are defined as
in Lemma 5.4. Let £' be the set of all T € G' = B(U*) of the form I = ()_, I'; with

= {U eEU : ’U(tl) € Al}
where n e N, t <t; <ty <...<t, and 4; € B(X'). Tt is enough to show that we have

Qe (T'1G1)(v) = Qur) 0 T (I') (5.10)
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for all T € £*. We have for a.e. v € U by the Definition of a.s. weak Markov solutions

Qu(T1G)(©) = B (1t (), oy s (1) ™ (A1 X e x A)| 7))
=P 0 (g (tr — ), ooy ey (tn — £)) TH( A1 X oo x Ay)
=Quy({weld : w(t;—t)e A; foral 1 <i<nj)
= Qut) o Uy (I).

O

Lemma 5.11. Let (2, A4) and (', A’) be measurable spaces, and let (P,)uecq be a family of probability
measures on (', A"). Assume that the mapping w — P,(A) is A/B(R) measurable for all A € £, where
E € A is a generator of A" which is closed under finite intersection. Then, w — P, (A) is A/B(R) measurable
forall Aec A'.

Proof. Let
D:={AeA|ww- P,(A)is A/B(R) measurable}.

Then, D is a Dynkin system and £ € D. Thus, we have

where D(&) denotes the Dynkin system generated by £. O

Finally, we state an existence result about martingale solutions to stochastic evolution equations in finite
dimensions. For the proof see e.g. [16], Theorem 9.3.

Theorem 5.12. Let A and B satisfy (A1)-(A3) and assume dimH < oo. Then, there exists a martingale
solution to equation (5.7) for any initial value ug € H.

5.4 Abstract Framework for the Navier-Stokes Equations

We use the notation from the previous subsection. From now on, we will restrict our attention to stochastic
perturbation dw in (5.2) of the form dw; = B(u(t))dW; for some cylindrical Brownian motion (W;);»0. To
formulate the Navier-Stokes system (5.1)-(5.4) in the framework of an abstract stochastic evolution equation,
let

L2(;R?)

)

H i 12, (L F) = DF(®)
and
X = Wy2(Q,R?).
Denote by P : L?(Q,R?) — L?(Q, R?) the orthogonal projection with ranP = H, and let
Ai(u) = vP(Au)
Az(u) :=P((u- V)u)
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for ue DX (), and

As(u) := P(f(-, u(-)))
for u € D(A3)(S H). Then we get the following result:

Lemma 5.13. The operators A; and Ay are local uniformly continuous mappings from H n DX (Q) to X’
satisfying

[ Ai () < culi (5.11)

for i =1,2. In particular, we can extend them to continuous operators from H to X',

Proof. We prove the statement about Ay, the statement about A; follows similar. Let B := {w € DX(Q) :
|wlx < 1}. By continuity of the Sobolev embedding W32(Q) — C}(Q2) we have

[ Az(u) = Az (v)[[x:

sup [z (Az(u) = Az(v), w)x|

weB

=sup| | diviu®u —v®v)w dz|
weB Q

=sup|| (W®u—v®v)- Vwdz|
weB JQ
< sug IVulc@ylu®@u—v@v|Liq)
wEe
< c(ullz + o) u = vl
This shows that As is local uniformly continuous. To see (5.11), let v = 0. O
Assume that for some A > 0 and g € L?(f)) we have
|f (2, w)] < Auf + g(z) (5.12)
for all (z,u) € Q x R3. Then we have also Az : H — X’ and consequently

AZ=A1—A2+A3IH—>XI.

To motivate the definition of a solution for the stochastic incompressible Navier-Stokes equations, it is

convenient to have a look at the deterministic equations first. Thus, consider the deterministic Navier-Stokes

equations:
div(u) = 0 in (0,7) x Q (5.13)
% =vAu—(u-V)u+Vp+ f in (0,T) x Q (5.14)
u=0 on (0,T) x 0Q (5.15)

and consider a smooth solution (u,p). We will construct a weak formulation of these equations in the
following way: First, for smooth solutions, the equation of continuity (i.e. div(u) = 0) together with the
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boundary condition are equivalent to u(t) € H for any ¢ € [0,7]. Secondly, by integrating the second equation
from 0 to t € [0,T] and then applying the projection operator P, we get

u(t) = u(0) + L A(u) dr. (5.16)

Note, that the pressure has disappeared, since P(Vp) = 0 for any smooth function p. Combining these two
steps, we call a function v € C([0,T],H) a weak solution of (5.13)-(5.15) iff (5.16) is satisfied.

Back to the stochastic equations: by the thoughts above it seems plausible to restrict ourselves to noises
wy with values in H for any ¢ > 0. Furthermore, for simplicity, we will restrict ourselves to the case when the
noise wy is a Brownian motion*. To be concrete, we assume that there exists a further separable Hilbert space
U and a Brownian basis (O, F,P, (Fn)nen, (W (t))t=0) for U, such that w, = B(u)W; for some measurable
operator B : H — Lo(U, H) satisfying assumption (A1)-(A3).

The above considerations make it seem reasonable to call an H-valued stochastic process u a solution®
to (5.1), (5.2) iff

u(t) = u(0) + JO Au) dr +L Bu) dWW,. (5.17)

Since any strong solution to the abstract stochastic evolution equation satisfies (5.17), we can rewrite the
Navier-Stokes equations to an abstract stochastic evolution equation:

N
g
—~
N
I

A(u(t)) dt + B(u(t)) dW,, (5.18)

where ug € H.
Proposition 5.14. The operators A and B satisfy assumptions (A1)-(A3).

Proof. (A1) The operators A; and Ay are continuous from H to X’ and consequently demicontinuous. Now
let u,, — w in H. Then

143 (un)lx < el £ (s un( ) 22() < calllunlzz@) + 19lL2() < cs,

and consequently, by reflexivity of X, the sequence Aj(u,,) is sequentially pre-compact in X/ . Let v be any
accumulation point of (As(uy))nen in X!, and choose a subsequence u,,, such that Az(u,,) — vin X'. We can
assume u,, — u a.e. in ), passing to another subsequence if necessary. Then, As(uy, ) — As(u) a.e. in Q and
by the Dominated convergence theorem Ag(uy,) — As(w) in H. This shows v = As(u), and consequently,
the sequence As(uy) has only a single accumulation point in X! . Thus, we have As(u,) — Asz(u).

(A2) For u € H define

Z(u) = HVUH?P(Q,H@) for u e Wol,’?(QaRS)
400 otherwise.

4A generalization of the results presented in section 6 and 7 to Lévy processes was published in (7]
5This definition is only a motivation; we will never use (5.17) as an actual Definition for a solution.
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We show that Z € A2?(H), where A?(H) is defined in Definition 4.22. Let v, — y in H. We show

Z(y) < liminf Z(y,).

n—o0

We can assume sup,, Z(y,) < o0 and consequentlyHynHW01,2 (o) < ¢ Therefore, at least for a subsequence, we

1
have y, — y in WOI’Q(Q). By Poincare’s inequality, the mapping u — (Z(u))z defines an equivalent norm
on Wol’z(Q). Since norms are weak lower-semicontinuous, this yields the desired conclusion.
Obviously, we have Z(u) = 0 iff u =0 and

Z(cu) = *Z(u)
for all ¢ > 0. Finally,
ZY[0,1]) cH

is pre-compact by compactness of Sobolev embedding Wy ?(Q2) «— L2(Q). This shows Z € A2(H).
Now let u € X. Then we have

x{AL(uw), wx = —Z(u),

x{Aa(u), uyx = J u'u! O;u? do = lf u'0;(wu?) do = —lj Oiu' (ulu?) dx = 0,
Q 2 Ja 2 Ja

and
xr(Az(w), wx = {f(u(-), wr < C(Julf +1).

This shows (A2).
(A3) By Lemma 5.13 and (5.12) we have

| Al < c(llullz +1).

6 Existence of martingale solutions

In this section we show the existence of martingale solutions in the sense of Definition 5.3 for any initial
value x € H. Fix an arbitrary orthonormal basis {b,} € X of H enjoying the properties from Lemma 2.14.
Let

Y := span {b, |n € N}.
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Then, we have Y < X and Y is dense in X. For all p € [2,00) we define functions k, € C* ([0, c0); RT) by®

kp(t) := (4 + 7pt) exp(37pt) (6.1)

with v, := max{2pr; + (2p(p — 1) + 64p* )k, 1}, where 11 and k2 are as in (A2)-(A3), and we define the
lower semi-continuous functionals on H:

Zp(u) := | 2 (u) (6.2)

where Z is as in (A2)-(A3).

Definition 6.1. Let x € H. We denote by ., p y(z) € & (U) the set of all martingale solutions [P of (5.7)
with initial value 2, which satisfy (5) in Definition 5.3 with Y = Y, and which satisfy the following condition:
For any p € [2,0) there exists a Lebesgue null-set 7}, < (0, ) such that”

[ sl + [ Zytec
re(s,t]

for all s € (0,00)\T, and t > s, where £ denotes the canonical process on U.

] <kt —5)- (e +1) (6.3

We simply write . (z) := ., 5 y(2) if no confusion about the involved operators A and B and the space
Y can arise.

Remark 6.2. Condition (6.3) and the growth condition (A3) immediately imply points (3) and (4) from
Definition 5.3.

We show that .7 (x) # & for all z € HL.

6.1 Weak stability of the set of solutions

Definition 6.3. We denote by

= U~ LY ([0, 00); H) = C([0,00); X') A LY

loc([07 (X)),H)
for any 1 < ¢ < 0.
Lemma 6.4. For any x in H and any Q € ./(z), we have Q(Uy) =1 for all 1 < ¢ < .

Proof. Condition (6.3) implies that

Qfued : ess supu(r)ls = o)) =0
T€|s,t

for a.e. t > s> 0,ie. Q(Usy)=1. Since U, < Uy we have Q(U,) =1 for all 1 < g < o0. O

Lemma 6.5. We have Z(Uy) € Pu(l).

6See end of proof of proposition 6.7.
"The function w > SUp,.eps,¢ 1€()|5(w) is measurable: Let K := {x € X||z|m = 1}, 7 € [s,¢] and let rp, — r with r, €

[s,t] m Q. Then, we have |[{(r)|lm = supyer x/<€(T), Z)x = Supye g limpendé(rn), ) < limy, sup,{&(rn), x) = limy [|€(rn)|u-
Thus, it is enough to take the supremum over the countable set [s,t] n Q.
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Proof. Let v € L (0,00;H) and t € (0,00). There exists a sequence t, — t such that u(t,) € H. Since
[u(ty)llm < ¢ < oo for all n € N we have

u(t,) = h in H

for some subsequence and some h € H. By continuity we have u(t,) — u(¢) in X’ and consequently u(t) = h
and therefore u(t) € H. Thus, u(¢t) € H for all ¢ > 0. O

Proposition 6.6. Let A, : H — X' and B, : H — Ly(U,H) satisfy the conditions (A1)-(A3) with the

same constants K1, ko, v, 7 and q as A and B. Assume that
A, (hy) —A(R) in o(X)Y) (6.4)
and
B (hn)lg = B*(h)|g in Ls(Y; U) (6.5)

whenever h, — h in H. Let z, — x in H and Q, € .7, Bm?(xn) and assume Q,, — Q in PU,), where
g=2isasin (A2). Then, Q€ YA’By(a:). In particular, the set

{(z,p) [z e H and p € 7y py(r)}
is closed in H x Z(U,).

Proof. Step 1. We have to show that Q satisfies Definition 5.3 and (6.3) with initial condition z. By
Skorohod’s theorem, there exists a probability space (O, F,P) and U, valued random variables (Yy,)nen and
Y such that

PoY, '=Q, PoY '=Q
and
Y, - Y in U, P—a.e.
Step 2. Since Q € Z(U,,) we have Q € Py (U), thus (1) from Definition 5.3 is satisfied. Next, we have

Q) = a]) = B([Y (0) = 2]) = P([ | [¥a(0) = 2]) > 1 = 3 Qu([£(0) # 2]) = 1,

neN neN

thus (2) of Definition 5.3 is satisfied.
Step 3. We show (6.3). Fix p > 2 and define for 0 < s <t

st i= s Jur)lh + [ 2,00

res,t]

where Z, is as in (6.3). We show that 7,(s,t;-) : U, — [0, 0] is lower semi-continuous. Let u, — u in U,
and assume without loss of generality that K := liminfy_,., 7,(s,t; ux) < co. By passing to a subsequence,
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we can assume that 7,(s,t;u,) — K as n — 00, Since uy|[sq — ul[sq in LI(s,t;H) as n — o0, we can

assume u,(r) — u(r) in H for a.e.r € [s,t], passing to a subsequence once more if necessary. Since Z is

lower semicontinuous, we have by Fatou’s lemma®

t
liminf 7, (s, t; up) = hmlnf sup |ug, ()| % +lirrlri)i£ff ||un(r)|‘%_22(un(r))dr

n—oC — TE[‘? t]

t
> sup hmlnf un (r) |5 + J hmlnf llen (7 )Hﬁ)ﬂ_Qlimian(un(r))dr
re[s,t] "% n—o0

> s ulr)l + juu B2 (u(r)) dr
TES

= 7,(s,t;u).

Thus, 7,(s,t,-) is lower semicontinuous.
Fix T > 0. We have Y,, —» Y in L%(0,T;H) pointwise P-a.e. in O. Consequently, we have Y¥;, — Y in
L%(0,T; H) in measure with respect to P. By (6.3) we have for any p > 1

) S TIE[ sup [[Yo(s)|%] < const(T) (6.6)

0<s<T

T
Vol rao iy = | W)l d)
Thus, Theorem 3.31 yields
Y, =Y in LP(O, F,P; L0, T;H)) = L1(0,T; L (O, F,P; H))

for any p > 1.
Now, fix p > 2. By passing to subsequence, we obtain a Lebesgue null set Ny € (0, 00) such that

E[[Yn(s) = Y(s)[f] — 0 (6.7)

for all s € (0,00)\No. Let N,, be the exceptional set in condition (6.3) for Q, and let N := [, 5o N,. Fix
s € (0,00)\NV and t > s. We need to show that

EC[ry (s, t:€)|Gs] < kp(t = 8)(€(s) g + 1),

which is equivalent to the relation

E°[7,(s,t:€)9(6)] < kp(t — $)E[(J(s) [ + 1)g(€)]

for any Gs-measurable, bounded and continuous function g : Uy, — [0,00). Since ¢(¥,,) — ¢g(Y) P-a.e. in O,

8With the same argumentation as in Footnote 7 on page 54, it is enough to take to supremum SUP,.efs,¢1 |un(r) [ only over
a countable and dens subset I of [s,t]; in particular sup,c(s ¢ lun(r)|% is measurable. Furthermore, we can choose I C [s,t]
such that un(r) — u(r) in H for any r € I. This shows sup,.¢[s ¢ liminfn—o [Jun(r)|f = sup,eps.¢ lu()IE-
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the boundedness of g implies ¢g(Y;,) — ¢g(Y) in L"(O,P) for all 1 <r < 0. Now we get

E®[ry (s, £:€)9(6)] = EF[rp(s, ;Y )g(Y)]
hmlanE [7(s,t;Y0)g(Yo)]

n—o

= lim inf E@[7,(s, t;€)g(¢)]

<y (¢ — 5) liminf B2 [(J€(s) [ + 1)g(€)]
= k(¢ — ) liminf B[ (Y, ()] + Dg(Ya)].
By (6.7), we can choose a subsequence such that Y,,(s) — Y(s) P-a.e. in O and ||Y,(s)|x < ¢ for some
€ LP(O,P) and all n € N. Thus, (||Y,(s)|%+1)g(Yn) < (¢ + 1))+ € L*(O,P), and therefore (| Y, (s)[5 +
Dg(Y,) = (JY(s)|5 + 1)g(Y) in L' (O, P) by Lebesgue’s theorem.
Thus,
kp(t — ) lim inf EX[(| Y,y (s) 12 + 1)g(Ya)] = kp(t — )EF[(Y ()] + ()]
= kp(t = )EC[([€(s) Iy + 1)g(&)]
Step 4. Fix y € Y. We show that

My (1) = Cu(t), 4y — Cu(0), ) — f (Au(s)), 5 ds (6.8)

is a (G;)-martingale. For R > 0 let xg € CZ(R) be any function satisfying xg(t) = t for all [t| < R, xr(t) =0
for all |t| = 2R, 0 < xg(t) <2t for t > 0 and 0 > xg(t) = 2t for t < 0. For n € N and R > 0 define

Aty 1) = xa(Cu(), )
At ) 5= Cul), )
and
e = [ (A (), ) ds
i) = [ A1) s
n () = f (An(uls)), 1) ds,
) = f (A(u(s)), 9 ds,
for all ¢ >0 and u € U,. We show

At Y,) = At Y)in LY(O,F,P) as n — o (6.9)
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and
w(t,Y;,) — pu(t,Y)in L' (O, F,P) as n — . (6.10)

Since for all ¢ = 0 we have Y,,(¢,-) = Y (¢,-) in X', P—a.e. in O, we also have Ar(t,Y,) = Ar(t,Y) in R,
P-a.e. in O. Since Ag is bounded, Lebesgue’s theorem yields

lim Ag(t,Y,) = Ar(t,Y)in LY (O, F,P). (6.11)

n—>oxL

Furthermore, we have

sup EF|A(t,Y) — Ar(t, Ya)| < sup EF[IAE, Vo) [Ipae, vy > m1

neN neN

Nl

1
< Jlylmsup E¥ [V (8) 712 sup EF [Ijx ey, )1=r1] 2 -
neN neN
By (6.3) for Q,, we get on the one hand
sup E°[Ya ()] < sup ka2 (t) (|2 & + 1) < const(?),
ne ne

and on the other hand

EF[IA(t, Y,)[?
sup EF [[ja ey, = R1] = ilégpﬂ/\(t, Y,)| > R] < sup ETIAC ¥)[T)

neN neN R2
EP[|[Y; (t) 7]

< [l sup < L const(t)
= H neN R2 = R2 .
Consequently, we have
lim sup [[Ar(t,Yn) — A(t, Ya)| 21 (0,7p) = 0. (6.12)

R—%0 peN

In the same way, we deduce limg_,, Ar(t,Y) = A(¢,Y) in LY(O,F,P), since (6.3) holds for Q by the
preceding step. Now, Lemma 1.13 implies (6.9).
We show that

lim ph(t,Yy,) = pr(t,Y) in LY(O, F,P). (6.13)

n—oC

for any ¢ > 0. Let N € O be the P-null set such that V;,(w) — Y (w) in U, for all w e O\N. Let w € O\N.
We show that

13 (8, Y (@) = pr(t,Y (@) (6.14)

as n — oo. This holds if and only if every subsequence (nj) contains a subsequence (nj;) such that
,u;;kj (t,Ynkj (w)) = pr(t,Y(w)). Since Y, (w) — Y(w) in U, implies Y,,(w) — Y (w) in L(0,¢; H), any sub-
sequence Y, (w) contains a subsequence Yo, (w) such that Yo, (w)(s) = Y(w)(s) in H for a.e. s € (0,t). By
(6.4) we have XR(<Ankj (Ynkj (@)(5)), 1)) = Xr({A(Y (w)(s)),y)) for a.e. s € (0,t). Lebesgue’s convergence

theorem now yields XR((Ank,j (Ynkj (W)(4), ) = xr((A(Y (w)(+)),y)) in L*(0,t), and thus u;;k’ (t, Ynkj (w)) —
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ur(t, Y (w)). Therefore, (6.14) holds. Now, Lebesgue’s theorem yields (6.13).
Next, we show that

m sup [pg(t, Vo) — 1" (¢, Vo) p10,7p) = 0. (6.15)

PR
By the definition of xyr and Holder’s inequality, we have
EX |1 (1, Yn) — (8, V)|
t
< EFL| KAL) a3 aptor ]
< ylx [An (Yol 2 (0,0 x0, asopixry [L[ica, (v (o)1= R Lo (0,6) x 0, ds@p).

We can estimate the terms on the right hand side in the following way: By the growth condition (A3) and
(6.3), we have

t -~
||An(Yn)||z’v((07t)><o7ds@]p;xl) < KZ]EQH [J’() <1 + Hg(S)H% + 22(5(8))> dS]
<k (t Fths () (2l + 1) + ka(B)([nl? + 1))
< const(t).

On the other hand, we have

t

H]I[KAWL(YIL(S))’Z/NZR]HZ'V’((O,t)XO,ds®[P’) = L P[|<AH(YH(8))’y>| = R] ds

< | FEIALT ) eyl ds

1
.
S R 140 (Yo)llZv 0.6y x 0, ds@pix) ||y||m, ((0,t)x O, ds®P;X)

< Leonst(t)
X RCOTLS .

Thus, we have
EP " (1, Ya) = (6, Ya)| S e R
where the constant ¢ is independent of R and n. This shows (6.15). A similar calculation shows
Jim, pr(t,Y) = pu(t,Y) in LY(O, F,P). (6.16)

Combining (6.13), (6.15) and (6.16), Lemma 1.13 implies (6.10).
Consequently, by definition of M,, we have

M (t,Y,) = My(t,Y) in L'(O, F,P) as n — oo, (6.17)
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where M,} denotes the process defined in (6.8) with A replaced by A,. Let t > s > 0 and let g : Uy — R
be any Gg-measurable, continuous and bounded function. Lebesgue’s theorem implies g(Y,) — ¢(Y) in
Lr(O,F,P) as n — o for any p € [1,00), and by the uniform boundedness of ¢g(Y;,), we also have this
convergence in the weak-star topology of L* (O, F,P). Thus,

EC[(M,(t) — My(s))g] = E°[(M,(t,Y) = M,y(5,Y))g(Y)]
= lim ET[(M;(t,Yn) — My (s, Yn))g(Yn)]

= lim E@[(M(t,€) — M} (s,€))g(¢)]

n—oo

=0,
where the last equality follows from Definition 5.3 for Q,,. This relation is equivalent to

EC[M, (1)|G] = M,y(s).

Step 5. We show that M, (t) is square integrable with respect to Q. By BDG’s inequality and the growth
condition (A3), we have for any p > 1

EP[MP(,Y,)%] < <nEPKJ‘HBﬁ(Y%Cﬂ)@DH%dsV1
< <aHprEP‘[|U3 DIZ 5 5]

< C2||y||2”E]P[f0 (2(1 + [Yu(s) %)) ds]

V/A\

t

o [ 14 BTV o) s
0

where ¢y, ¢o and ¢3 are independent of n. Relation (6.3) for Q,, yields

E[|Ya(8) 5] < kap(®)([Ya(O)JFF +1) < ¢ (6.18)

where ¢ is independent of n € N and s < t. Consequently, M,'(t,Y},) is uniformly bounded in L*’(O, F,P)
for any p = 1. Now, (6.17) and Theorem 3.31 imply

M (t,Y,) = My(t,Y) in L*(O, F,P) as n — oo. (6.19)

Step 6. Fix y € Y. We show that

M, (t,u) = M,(t,u) J | B* (u(s))(y)|2 ds (6.20)
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is a martingale with respect to Q. Define

P, (s,w) == By (Ya(s,w))(y)
D(s,w) := B*(Y(s,w))(y).

Let T > 0 and N € O be the P-null set such that Y, (-,w) - Y (-,w) in L9(0,T;H) as n — oo for all w ¢ N,
and fix w € O\N. We show that

®,(-,w) = @(-,w) in U in measure with respect to dt|,r7- (6.21)
This holds if and only if any subsequence (®,,, ) contains a subsequence (<I>nk ) such that P, (w) = P(-,w)
in U pointwise a.e. in (0,T). Since Y,(-,w) — Y (-,w) in L9(0,T;H), for any subsequence (ng) there
is a subsequence (ny,) such that Ynkj(-,w) — Y (-,w) in H, pointwise a.e. in (0,7). By (6.5) we have

P, (s,w) = ®(s,w) in U for a.e. s € (0,T). Thus, (6.21) holds. Furthermore, by the growth condition
(A3) we have

T T .
19,y = | IBEOR (@D ds < wgllhs | (1+ V(s lf)? ds

< (14 [Ya (s w0 1) < const(w).
Thus, Theorem 3.31 yields
®,(-,w) > @(-,w) in L"(0,T;1) (6.22)
for all r < g and P-a.e. we O.

By the growth condition (A3) and (6.18), we have w — ®,,(s,w) bounded in L?(O, F,P;U) uniformly in
n and s for all p > 1, and in particular, we have

[P0 e ((0,7)x 0, dt@F;v) < € (6.23)
Relations (6.22) and (6.23) imply the following relations:
<w — @n(-,w)> - (w — @(-,w)) in L"(0,7T;U) in measure w.r.t. P,

190l e 0 ;Lm0 70)) < c.

Thus, Theorem 3.31 yields
o, —» @ in LP(O,P; L"(0,T; 1))
for any p > 1, and in particular, we have

®,, —» ¢ in measure w.r.t. dit ®P. (6.24)
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Thus, by applying Theorem 3.31 once more, relations (6.23) and (6.24) imply
®, — ® in L*((0,T) x O, dt ® P; U)
In particular, we have
N (t,Yy,) = Ny(t,Y) in LY(O, F,P)

for all ¢+ > 0, where 91 denotes the process defined in (6.20) with B replaced by B,. Now, for t > s, by
calculating EQ[(M, (¢) — M, (s))g] for all continuous, bounded, Gs-measurable functions g, exactly as in step
5, we deduce that 91, is a martingale with respect to Q.

Condition (5) from Definition 5.3 follows now by combining steps 4, 5 and 6. O

6.2 Existence of solutions

Proposition 6.7. Assume dimH < 00. Then, for any x € H the set 7 (z) is non-empty.

2

X’ and all spaces are equipped with the
e RN. By Theorem 5.12, there exists a
martingale solution @ with initial condition z. Thus, our task is to show that Q satisfies condition (6.3).
We set T := .

Define

Proof. Without loss of generality, we assume H = X = RY
euclidean norm, denoted by |z| = |z|g = ||z|x = |z|x for

8

N
M(t,u) := Z M., (t,u)e;
i=1
where e; denotes the i-th unit vector and M, is defined in Definition 5.3, (5). Now, we have

ft) =z +f0 A(E(r) dr + M(1,€)

and (M (t))s=0 is a continuous, R -valued, (G;)-martingale with respect to Q. By polarization, the covariation

RNXN

operator process M) in is uniquely determined by symmetry and the values 7 {M Y = (M, ) for

all 2 € RY. Thus, the covariation operator process of M is given by

KMH(t,u) = L B(u(s))B* (u(s)) ds.

t
0

Lemma (4.39) implies that (Sé A% (&(r)) dr)¢=o is a semimartingale, and since the set of semimartingales is a

Since r — A(&(r)) is continuous, the process (§, A(£(r)) dr)=o is continuous and of finite variation. Thus,

vector space, the process (£(t)):=0 is also a semimartingale.
We use Ito’s formula on the function F : RY — R, F(z) = |z|P for p > 2. Using Lemmata (4.43) and
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(4.44), we obtain after a lengthy but straight forward calculation the following formula:
Ol
1O + pL E(r)[E@r) P2 g (r) + p(p — 2) L £ (r)€ (r)|E(r) P 1d(e", €7)(r)
t
[l P ). 60) =
0
¢ ¢
EOP + [ 160IPAEW. 0D+ [ IOP2IBEDIE, nam dr

+p(p —2) JO E)PHBH(E(r)Em)E dr + MP)(2,€)

where M(?) is a continuous, R-valued, (G;)-martingale with respect to Q, whose quadratic variation process
can be estimated by

t
M@t u) = (MP)(s,u) < pQJ’ |u(r)[** =2 | B(u(r))|7, w r) dr-
Fix s > 0 and p = 2, and let

g(t) :=E°[ sup [¢(r)[?|Gs]

re(s,t]

for ¢t > s. Using the estimate
aP + 2P~ < 2(xP +1) (6.25)

for all > 0, we have by BDG’s inequality for conditional expectation (Lemma 4.32), growth condition (A3)
and Young’s inequality
0]

o]

EC| sup MW (r,&) — MP)(s,¢)|

re(s,t]

o.| " | ([ emr B g o)

2

£ rOE@[(j P25 + D ar )

(6.25) 0 » t 3
< cELaw K0l (j(|§(r>|ﬁ+1>dr) G.]
rels, s
Young 1

<" Solt)+ 5CEEL[ (s()P + 1) arlg.)

/N

590+ 563 [ (o) + D

where C; = 4/2p? and Cy = 2./raC = 8+/2K2p>.
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Furthermore, we have

EOIE = 1O +p [ I ACD. D+ IO IBENI, s O
#alo=2) [ 1) B EONEDE dr + M (7,9 - P (5,8
P e+ [ 1601 (= 20+ 00+ w1+ €O ) dr
=2 [ 101 (14 160 ar + 97, 6) = (s,
- [ 2D ar+ Ca [ GO + D+ M6 - M0 s.0),
where C3 = 2pr1 + 2p(p — 1)ks.

Combining the last two relations, taking first the supremum over 7 € [s,t] in the last equation and then
the conditional expectation with respect to G, we get

o0) < 16— B[ Z,(E0) a6 + 390+ [ o)+ Dar (6.26)

where 7, is as in (6.1). Consequently, we have

t
o) < 20)1E + 2, | (9l) + 1)
and, by applying Grownwall’s inequality, we get
9(t) <exp(27,(t — ) (21€(s) [ + 27p(t — 5)) < 2exp(3yp(t — 8))([€(s)[F + 1)

and this combined with (6.26) yields

ga>+-E@[f Z,(E(r) drlG.] < ga>+-pE@[f Z,(€(r)) drlG.]

t

< 590+ [ o)+ 1)dr + I
< 2Jes)IE + 1) expE(t = 9) + 2166 + D(exp@n(t - ) - 1)
e = ) + EG)IR
< (44l — ) exp(3y(t — )(ECIE + 1)
< Ryl =)&) + 1)
Thus, (6.3) holds. O

Finally, we can show the existence of solutions:

Theorem 6.8. Let H be a separable Hilbert space and let A and B satisfy the assumption (A1)-(A3). Then,
for any x € H, the set .7 (x) is non-empty. In particular, there exists a martingale solution to equation (5.7).
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Proof. We use Galerkin’s approximation. Let
H, :=span{b; : i=1,....,n} =X

where b,, is the orthonormal basis of H defined at the beginning of this section. Let

P, :H - H
be the orthogonal projection onto H,,. We set xz,, := P,(x) and we define the operators

A, :=P,0A
and

B, :=P,0oB.

Then, the operators A, and B, satisfy assumptions (A1)-(A3) with the same constants x1, k2, v, ¥ and ¢
as A and B. Consider the equation

du(t) = Ap(u(t)) dt + By, (u(t)) dWy, (6.27)
u(0) = x,. (6.28)

in H,,. Since dimH,, < oo, there exists a martingale solution Q,, satisfying (6.3), i.e. Q,, € L4, B, m, (Tn)-
The measures Q,, are probability measures on C([0,00);H,,), but we can assume Q,, € Z(U,) by letting
Qn(A) :=Qn(A N C([0,00);H,)) for Ae G = B(C([0,);X")). Since {b,}nen is an orthonormal basis of H,
we have for all m > n

M, (t,0) = Cult), b — Cu(0), b — f (A(u(s)), b ds = 0

and since ker B} (u(s)) = (ranB,,(u(s)))* 2 H}, we have B*(u(s))(by) = 0 and thus

My, Y(tu) = 0 = f 1B (u(s))(b) [ ds.

Thus, (5) from Definition 5.3 holds for Q,, with Y =Y. Thus, we have Q, € Sa, B, 7(Tn)-
We show that (Qy,)nen is tight in Z(U,). By (6.3) we have

T
E% [ sup [£(t)]u + f Z(&(r) dr] < e1ko(T)(ah +1) < ¢
te[0,T] 0

where ¢; and cs are independent of n. Thus, by Lemma 4.23, it is sufficient to show that for some 3, ¢ > 0

independent of n we have

1€() = £(s) s

EQ~
[oss<tsT |t —s|?

I<e (6.29)
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We set
My (t,u) == > My, (t,u)b;,

then, similar to the proof of Proposition 6.7, we have

) =z, + fA ) dr + My(¢,) Qp —a.e.

for all n € N. We estimate the terms on the right hand side.
We show

EQ" |: sup ” SS An(f(’l’)) fl'rX’:l <ec

=2
0<s<t<T |t — 3| 5

for some ¢ > 0 independent of n. By Jensen’s inequality, we have

T
EQ”[ sup 1||J dT|X,] < E@n“ [ An(§(r)x dr]
0<s<t<T t - 3 0

and by (A3) and (6.3) we get

s [ CJAE) I ar| <o | | ' (141601 + 260D)) ar | < const(z: ).

Thus, (6.31) follows. Next, we show

M,(t, &) — M, /
]EQ"[ sup ” n( 7£) ?(575)“X
0<s<t<T [t —s|2

Exactly as in the proof of Proposition 6.7 we deduce that

Yt ) = f Bo(u(s)) B (u(s)ds Q- a.c.

| Mo (t,u)— My, (s,u) |2
[t—s]

Let Q := {(t,5) € [0,T]?|s < t} and let f(t,s,u):=

Iz Then, we have for all ¢ >

M 2q a
I flLa(@xu, dt®ds @ dQ,) (JJ E%~ [ ¢, €)|t—s|‘§ Ol ]dtd)
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We have forall0 < s <t<T and neN

E@n[Mna,f)—Mn(s,&)ﬁf < const(q)E@n[(f||B(s<r>>%2<w>dr)q]

Jensen t
< const(q)|t — st J ECn [3(5(7‘))”2(&1}11)] dr
(43) '
< const(q)|t — s J EQ [5(7")”]%11(1 + 1] dr
(6.3) 2q
< const(q, T)|t — s|(|zn |y +1)

and therefore

M (t,€) = Ma(s, ) [0

Qn
£ s

I<cela?+1)

where « := sup,,cy |z |%. Thus, we have
Iflze(@xu, dt@ds@dg) < ¢
where c is independent of n and q. Since | f|La(Qxu, at@as@de) = || (@xu, at@ds®dag) as ¢ — © we have

esssup |f(t,s,u)| <c
(t,5,u)eQxU

and therefore

nl=

< 00.

EQ”[ sup | M (t, &) — Mn(sag)”X'] < esssup |f(L s, )|

1
0ss<t<T [t —s|2 (t,5,u)EQxU

The estimates (6.31) and (6.32) together with relation (6.30) imply (6.29). Thus, (Q,)nen is tight in

Z(U,) and, for a suitable subsequence, we have
Q. —~Q in ‘@(Uq)

Proposition 6.6 now yields Q € .#(x), provided we can show (6.4) and (6.5). Let h,, — h in H. Since P,
is H-self adjoin and P,y = y for all n > N, for some N, € N, we have

Finally, we have B} (hy,)y = B*(h,)Pnry = B*(hy)y for all n > N, and by the demicontinuity of B, i.e.
assumption (A1), relation (6.5) holds. O

7 Solution to the Markov Problem

The key tool to show the existence of a.s. martingale Markov solutions is the notation of Markov families
and pre-Markov families. Especially the latter is a rather abstract definition, but we will show in the last
section of this part, that the set .#(x) constructed in the previous section is in fact a pre-Markov family.
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Then it is clear from the definition that the proof of existence of a.s. martingale Markov solutions is finished,
provided we can show that any pre-Markov family admits a Markov selection. This abstract Markov selection
Theorem was proved in [13].

7.1 Abstract Markov and pre-Markov families

Let X and Y be separable Banach spaces such that Y < X continuously and densely and let ¢/ := C([0, «0); X).
We consider U as path space and use the notations from the preliminaries.

Definition 7.1. A family (P,),ey S Py (U) is called almost sure Markov family iff
(1) for each A € G the mapping
y— Py(A)
is B(Y)/B(R) measurable;

(2) for each y € Y there exists a Lebesgue null set T, < (0, 00) such that for all ¢ € (0,00)\T}, and s >t we
have

Py (1G) (u) = Py © e,
where both sides are considered as probability measures on U?, see section 4.3.

Remark 7.2. A family (Qg).em of probability measures, where Q, is a martingale solutions of equation (5.7)

with initial value z, is an a.s. martingale Markov solution iff it is an a.s. Markov family.

In order to introduce pre-Markov families, we start with the following lemma.

Lemma 7.3. Lett >0, Pe 2U) and let Q : U — PU) (resp. Q : U — P(U')) be a map such that
(1) for any A€ G (resp. Ae Gt), the mapping
u > Q(u)(A)
is G¢/B(R) measurable;

(2) for P-a.e. welU we have

Qu)({veU]ulpy = vljo,g}) =1,

resp.
Qu)({v e U |u(t) = v(t)}) = 1.
Then, there is a unique probability measure P®; Q € Z(U) such that

P ®; Q|gt = P|gt (71)
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and the mapping (u, A) — Q(u)(4) is a r.c.p.d. of P®; Q with respect to G, i.e.
(P®: Q)(-|Ge)(u) = Q(u) (7.2)

for P®; Q-a.e. u €U, where the left hand side is considered as a probability measure on U (resp. U*).

Proof. We show the version for Q) : U — P (U), the other version follows similar. The mapping u — Q(u)(A)
is G;/B(R) measurable by assumption. Thus, we can define

P®: Q(A) := E[Q(-)(A)].

It is routine to check that P ®; @ defines a probability measure on (U, G). If A € G, then v € A if and only
if {veU |ulp,g =vloyg} S A by Lemma 4.19. Thus, Q,(A) = 14(u) for P-a.e. u € U, and consequently we
get

E'[Q()(A)] = E7[La] = P(A),

i.e. (7.1) holds. For A€ G and C € G; we have

JCP®t Q(A|IG)dP®, Q =P®; Q(An C)
— EF[Q()(A ~ O)]
=JQmmwmm>
C

=LQ@MW&Q@@

where the last equality holds, since u — Q(u)(A) is G;/B(R) measurable and P|g, = P ®: Q|g,- Thus, we
know that Q(u) is a conditional probability measure of P ®; Q with respect to G;. Since Q(u) € Z(U) for
any u € Y and u — Q(u)(A) is G; measurable by assumption for any A € G, @ is regular. We conclude that
(7.2) holds.

Finally, the uniqueness follows from Lemma 3.27. O

Definition 7.4. A family {©,},ev € C(Py(Uf)) is called an almost sure pre-Markov family iff for each y € Y
and P € ©,, there exists a Lebesgue null set T, p < (0, ) such that for all ¢ € (0,0)\T} p there is a P—null
set N € G, such that

(1) The mapping
yr— ey

is B(Y)/B(C(Zx(U))) measurable;
(2) We have P({v e |v(0) =y}) =1forall ye Y and all P € O,;

(3) (Disintegration) For all u € U\N

u(t)eY
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and there is a regular version P(:|G;)(+) of the conditional probability distribution, such that
P(:|Ge)(u) 0 Uy € Oy p),
where the isomorphism ¥; ' : U — U* is given by ¥, (u)(s) = u(s — t).
(4) (Reconstruction) Let
Q:U— 22U
be any mapping such that the following conditions are satisfied:
(a) For any u € U\N we have u(t) e Y, Q(u)e Py(U) and
Q(u) o ;! € Oyp);
(b) For any A € G, the mapping
u = Q(u)(A)

is G¢/B(R) measurable;
(c) For any u e U\N

Qu)({v el : ult) = v()}) = 1.
Then

P®; Q € ("')y
Remark 7.5. In the context of the disintegration property, the notation P(-|G;)(u) always denotes a r.c.p.d.
enjoying the properties in (3) in the preceding Definition.

Definition 7.6. We call a pre-Markov family (©,),ey regular iff ©, is convex for all y € Y.

7.2 Abstract Markov Selections

In this subsection we prove that a regular pre-Markov family (©,)ycy admits a Markov selection, i.e. there
exists a Markov family (Qy),evy such that Q, € ©, for all y € Y. Until the end of this subsection, fix a
regular pre-Markov family (0,),ey.
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Definition 7.7. Let f € Cp(X,R) and A > 0. We define the following functions:

oL
La(t,u) = J e fu(s)) ds t=>0,ueld
t
T A(B) := E7[Ly(0,)] Pe 2(U)
My x0(y) = sup Jra(P) yeyY
PO,
Erae(y) = {Pe Oy |Jra(P) = Myxe(y)} yey

Proposition 7.8. For all f € Cy(X) and A > 0, the family (Efx,0(y))yey is a reqular pre-Markov family.

Proof. Step 1. Jy, is linear? and continuous with respect to the weak topology. Since ©, is a convex and
weakly compact subset of Py (U), the set =  o(y) is non-empty, convex and weakly compact. In particular,
we have 25 o(y) € C(Py(U)). Finally, (2) from Definition 7.4 is satisfied, since Z¢ 5 o(y) S O,.

Step 2. We show that y — Z 5 o(y) is B(Y)/B(C(Py(U))) measurable. Per definition, that mapping

Y= @y
is B(Y)/B(C(Zy(U))) measurable. Thus, we need to show that
K oK) :={Pe K|Js(P) = sup J;»(Q)}
QeK

is B(C(2y(U)))/B(C(Py(U))) measurable. Let U € Py(U) be an open set. It is sufficient to show that

o ({x vk cul) e e

since by Lemma 1.9 the system of sets of this form is a generator for B(C(Py(U))). We have
ot ({K e C(Zy(U)) ‘K c U}) = {K‘K c U} v {K‘K NU°# Fand sup Jpa(P) < SupJf’)\(]P’)}.
PeK AU® PeK

The set {K | K € U} < C(Py(U)) is open. Next, we have

{Kel(ZvMU))| Sup Jra(B) < sp = | JIK | K S {P|Jsa(P) < s —¢}}

>0
and since by continuity of J; x, the set {P | J¢ x(P) < s — €} is open in Py (U), the right hand side is open in
C(Zy(U)). Thus,

K — sup Jy A\ (P) (7.3)
PeK

9To be more precise: the set Py (U) is a convex and weakly closed subset of the space M(U), where M(U) denotes the set of all
signed real-valued finite measures p on (U, G). We can prolong the functional J¢ x to M(U) by letting J¢ (1) := § L 2 (0, -) dp.
Now Jy » is linear and weakly continuous.
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is continuous and in particular B(C(Zy(U)))/B(R) measurable. We have
{Ke C(2yU)) ‘K NnU® # @} = {K Kc U} e B(C(Zy(U)))

and it is easy to see, that K — K nU° is B(C(Py(U)))/B(C(Py(U))) measurable on {K € C(Py(U)) | K n
U¢ # @&}. Therefore, the mapping

Kw— sup J;A(P)
PeKnU®c

is measurable. Thus, we have

{K‘K NU°# Fand sup JyrA(P) <sup Jf,A(IP’)} € B(C(Zy(U))).
PeKnU*® PeK

Step 3. We prove the disintegration property of Definition 7.4. Fix y € Y, P € Z5,,0(y) and

t € (0,00)\T, p, where T, p and N denote the corresponding exceptional null sets in the definition of the

disintegration property of ©,. Let'®

Nz = {ue N°[P(V7()|Ge)(u) ¢ Epne(ul®))}-

By the disintegration property for © we have N € G; and P(N) = 0. By Lemma 1.10 we have Ny € G;. The
disintegration property follows, provided we can show P(Ny) = 0.

First, we apply Theorem 3.32 to the mapping y — =7 0. Since Z(U) is a complete and separable
metric space and =y ) o S Py(U) is non-empty and compact, and therefore closed, for all y € Y, we are left
to show that

AU) = {er

Errey) nU # Q} € B(Y) (7.4)

for all open sets U € Py (U). But this is an easy consequence from Lemma 1.9 and the measurability of the

mapping y — Z¢ )\ e(y) since

AlU) = {ye Y‘Em,e(y) ¢ UC} = {ye Y

= r0y) S UC} 2 (K € C(P2U) | K S U},

Therefore (7.4) holds. Thus, there is a measurable selection 1 : Y — Py (U) such that 7, € =y » o(y) for all
yeY.

For B € G and u € U let 7,(B) := {v € B|v|jgyq = uljo,q}.- Then, it is routine to check that A —
Nu(t) © Y¢ 0 7, (A) defines a probability measure on (U, G). We define the probability measures

P(|gt)(u) for u ¢ N u N2
Q(u) := Nuy © Ve o, forue Ny
Ou for ue N,

for all uw € U, where §,, denotes the Dirac distribution with pole u. We show that () satisfies the conditions

10P(.|G:) denotes a r.c.p.d. such that (3) of Definition 7.4 holds for ©.
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of the reconstruction property for © with P and ¢ and with the exceptional P-null set N. Condition (a) for
P(:|G:)(u) follows from the disintegration property for ©. Furthermore, direct calculations show

Nugry © Wi 0Ty 0 Ut =4y € Epno(u(t) S Oy
and
Nu(r) © Ve oy € Py(U).

Thus, (a) is satisfied on N2. Since N € G, and Nz € Gy, it is sufficient to show condition (b) on the three
sets (N U N2)¢, Ns and N separately. Obviously, (b) holds on (N u N5)¢ and on N. To show (b) on No,
by Lemma 5.11 it is enough to show the measurability for all A € £, where £ is the generator of G from
Theorem 4.21. For v e U let

u(s) fors<t

v(s) fort<s.

Let A € £ and assume that u|jo4 € Aljo4- Then, for any v € A with v(t) = u(t), we have o € A. Since
Nu(e)({v € U [v(0) # u(t)}) = 0 by (2) from Definition 7.4, we get

Nu(t) © Ve 0 T (A) = nupy({v e U | Iw e 7,(A4) : w(s) = v(s —t) for all s >t and w(t) = u(t)})
= Nu)({v eU | Fw € 7, (A) = w(s) =v(s —t) for all s >t and w(s) = u(s) for s < t})

)(
)(
=nuy({veUd|Iwe A : w(s) =v(s—1) for all s >t and w(s) = u(s) for s < t})
)(
)(

VoWV

{fvelU|Fwe A : w(s) =v(s—t) for all s > t})
Uy (A)).

_nu
= Nu(t

On the other hand, if A € & with u|[ ¢ Al[o,¢], then we have
Nu(ty © Vi 0 Tu(A) = Ny(ry © Vi () = 0.
Now, we have
={ue N |uljo4 € Aljo,q} € G,

and u — 1,5 (V¢ (A)) is G \B(R) measurable on M, since u +— u(t) is G;\B(Y) measurable and y + 1, (V;(A))
is measurable, since 7 is a measurable selection. Thus (b) is satisfied on Ns. Finally, (c) is obviously satisfied

in all three cases.
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Thus, we have P®, Q € O, and we get
Ia®) = Miaoly) > JaFerQ)
W[ el as) + BRI
= Jpa(P) —EF[Lya(t, )] + EF®C[Lya(t,)]
AN L L Ly A(t u)P(dulGr) (v)P(dv)
+[ [ 2ot e @uigoeEa)
2 @ = [ [ Liatwpaig)epa)
+ 1[1 Ju Lsa(t,u) Q(v)(du)P(dv).

where ¢ denotes the canonical process. Since by definition of @ we have P(du|G;)(v) = Q(v)(du) for v ¢ NUN;
and P(N) = 0, this yields

0z JNZ ( L Laalbyu) G 0 e T“)(d“)>P(d”) - sz ( L Lyalt, u)P(du|Qt)(v)>P(dv).
We have

f Lya(t,u) (Mo o Ve o) (du) = 67”[ Ly (0, W) (14 0 ¥e)(du)
u

{weld | wlio,s1=v][0.41}
= e_MJ Ly A(0,u) 1y (du)
{weld | w(0)=v(t)}
= eiM JZ/I Lf’)\(ov u) M (t) (du)a
for any v € No, where the first equality holds, since
nv(t) l¢] \I/t o Tv({w eU | w|[07t] = 'U|[07t]}c) =0
and

To(t) © Vo7, (A) = No(t) © U (A)

for any measurable A € {w € U |w|joy = vl[o,}, and where the last equality holds, since 7, ({w €
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U|w(0) =v(t)}) =1 by (2) from Definition 7.4. Now, we get

0 | (f Lea(0,0) mude) = | Lya(0 wtu)ﬂ»(dum)(v))l@(dv)
N \Ju u
= [ (st - 1B G P,
On the other hand, since by Definition v € N, implies P(¥;*(-)|G;)(v) € O,1)\Esa,0(v(t)), we have
Tra(P(T7 ()G (v) < Myae(w(t) = Jra(nuw)-
The last two inequalities yield
P(N2) = 0.

Step 4. We show the reconstruction property of Definition 7.4. Let y € Y, P € Z¢ 5 o(y), t € (0,00)\T, p
and Q : U — P(U") be a mapping satisfying the assumptions (4a)-(4c) from Definition 7.4 with the family
(Z24x0(y))yey, and denote by N the corresponding null set. We have P ®, @ € ©, by the reconstruction
property for (©,)ycv. Now, we get

t

Ja(P® Q) — EF[ f pE)ds) L BRI (1]

0

_ EP®:Qlg, |:EP®tQ[Lf’)\(t, )|gt]]
(7.1),(7-2) EP [EQ(')[Lf,A(t, )]]
S RGO e R
u
eJtJ TrA(P(1Ge) () 0 U7 )P(du)
u
= J (J Lf,)\(mu)[P’(du|gt)(U))P(d’U)
u u

= E*[Lya(t )]

_ JiA(P) —EF[ j e f(¢(s)) ds]

0

where the fifth equality follows from the fact that on the one hand we have Q(u) o ¥, ' € Z; 5 o(u(t)), due
to Definition 7.4, (4), and on the other hand P(-|G;)(u) o ¥, € Z; 5 o(u(t)), due to Definition 7.4, (3), and
thus

Tra(Q(u) o Uyh) = Myxe(u(t)) = Jra(P(1Ge) (u) 0 T).
Consequently, we have

TP @t Q) = Jra(P) = My x0(y).

75



and therefore

P®: Qe Zfroly).

We can now prove the following crucial Theorem:

Theorem 7.9. Let (O,)ycy be a regular pre-Markov family. Then, there exists a Markov selection (Qy)yey
for ©, i.e. (Qy)yev is a Markov family such that Q, € ©,, for all ye Y.

Proof. Step 1. Let T <€ Cp(X;R) be countable and dense, and let (A, f,) be an enumeration of (Q N
(0,00)) x T. For each y € Y let Z¢(y) := O, and define inductively

EnJrl(y) = Efn,/\mEn (y)

where =/, 1, =, (y) is defined in Definition 7.7. By Proposition 7.8, the families (Z,,11(y))yey are regular a.s.

pre-Markov families. Let

Ze(y) = () Enly)-

neN

Step 2. We show that (Z,,(y))yey is a regular a.s. pre-Markov family. First, since =, (y) is a closed
subset of a compact set, it is compact, and since (Z,(y))nen enjoys the finite intersection property, Z(y)
is not empty. Thus, we have Z,.(y) € C(Py(U)). For any y € Y and € > 0 let K, := B.(Z,(y))¢, where
B, denotes the ball with radius ¢ with respect to the metric de. For any fixed ¢ > 0 and y € Y, the
sequence (=2, (y) N K)nen is a family of closed sets with empty intersection. Thus, for some N € N, we have
(Mn<n En(y) N Kc = & and consequently de(Z,(y), Ex(y)) < € for n > N. It follows that =, — =, in
C(Py(U)) pointwise in Y, and thus, the mapping y — Z..(y) is measurable.

The disintegration property follows since P € =, (y) implies P € Z,(y) for all n € N. Thus we have
P(U; ()G (w) € Zn(y(t)) for t € (0,00\T,p, and u € U\N,, for some null sets T, p,, and N, and thus
P(T;1()|G)(w) € Zo(y(t)) for t € (0,00)\ U, e Typn and u € U\, ;e Vo The reconstruction property
follows similarly. Thus, 2. (y) is an a.s. pre-Markov family. As the intersection of convex sets, 2. (y) is
convex. Thus, (2, (y))yey is a regular a.s. pre-Markov family.

Step 3. Fix y € Y and probability measures P, Q € Z..(y) and let T}, p and T}, ¢ be the respective null-sets
in Definition 7.4. Let T :=TypuTyo. Fix 0 <t < ... <t, € (0,0)\T, let F := A, ({{(t,) : 1 <i < n})
and assume P|r = Q|r. We show that for some A € F with P(4) = Q(A) = 0 we have

P(|F)(u) 0 W3 € Eop (u(tn))

S (7.5)
Q(-[F)(u) o Wy " € B (ultn))
forall ug¢ A. 11
By the disintegration property, there is a P—null set Np € U such that
u(t,) €Y (7.6)

1By the second part of Theorem 3.24, this does not depend on the choice of the r.c.p.d.’s, although the exceptional set A
may depend on the choice.
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and
B(|G:, )(u) 0 U, € o (u(t)). (7.7)

for all u ¢ Np
Since F € G, , there is a P-null set B} € F such that

Puﬂww3LMWM@WMWHw

for all u ¢ Bj.
Since {,, P(Np|F)(u)P(du) = P(Np) = 0 , there is a P-null set B € F such that

P(Np|F)(u) = 0

for all u ¢ B3.

Finally, Lemma 3.26 yields a P-null set Bj € F such that P({v : v(t,) # u(t,)}|F)(u) = 0 for any u ¢ Bj.
Let Bp := B]}% U Bﬂ% U B]}Bh.

For u ¢ Bp we get

P(|F)(u) o W7t = JNO P(Ge, ) (v) 0 Wi 'P(dv] F) (u)

P
-| P11, )(0) o U5 P(dv|F)(w)
NEA{v:v(tn)=u(tn)}
If ue B n{v : v(t,) ¢ Y}, then this implies P(-|F)(u) o ¥; " = 0 since (7.6) implies N§ n {v : v(t,) =
u(tn)} = &. But since P(:|F)(:) is a r.c.d.p., we conclude B n {v : v(t,) ¢ Y} = &.
If wue Bg n{v : v(t,) € Y}, then we have for all ve N§ n{v : v(t,) = u(t,)}
P(|Ge,)(v) 0 U7 ! € Eor(v(tn)) = Eoc (u(tn)).

Since for v ¢ Bp we have

MW@=LW%MWMHM
Lemma 3.7 implies
P(-|F)(u) o \Il,;1 € o (u(ty)).

We can repeat the above argumentation to obtain the corresponding result for Q with some Q-null sets
Ng € G and Bg € F. Let A:= Bp u Bg. Since P and Q agree on F, we have

and (7.5) follows for u € A°.
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Step 4. We show that for all y € Y, all probability measures P, Q € =Z.,(y) and all bounded measurable
functions f: X — R we have

E°[f(£(t)] = EC[f((1)] (7.8)

for all ¢ > 0. By Definition of Z,,(y) and Z,(y) we have

[ emm et ar= [ e foteon)| a

0 0

for all g€ Q n (0,00) and ¢ € T. The uniqueness of the Laplace transform implies

E*[0(£(1))] = E[w(£(1))]

and by approximation we obtain (7.8).

Step 5. Fix y € Y. We show that =, (y) contains only one element. Let P,Q € 2. (y). It is sufficient
to show that the canonical process has the same finite dimensional distribution under P and Q. Thus, we
need to show that P71 o (£(t1),...,E(tn)) = QT o (£(t1), ..., &(ty)) for any n e Nand 0 < ¢ < ... < t,,. By
continuity, it is enough to show this in the case t; € B for all 1 < i < n, where B is dense in (0,00); in
particular, we can assume t; ¢ T' =T, p U T}, 0. The assertion follows when we can show that
B[ [ fu(e )] = B[ ] file ] (7.9)

i=1

i=1

for any bounded measurable functions f; : X — R.

By the preceding step, (7.9) holds for n = 1.

Assume that (7.9) holds for all ¢; < ... < t,, for some n € N and let 0 < ¢; < ... < t,41 such that t; ¢ T
and let F := A,({&(t;) |1 < i < n}). Then we have P|z = Q|#. Let A be the corresponding P-null and
Q-null set from step 3. We need to show that

EP[Hfz t))E [fas1(€(tns) |J-"] [lj ))EY fn+1(€(tn+1))|]:]]

i.e.

Liﬁfi(u(m) ([ fntottmraln@ e - | ﬁﬁ-(u(ti))( [ frrtettmapl ) et

Ui=1

Thus, it is sufficient to show that

f Fotr (0(tas1) P(do] F) (u j Fors1 (0t 41)) Q] F) (1)

for all u ¢ A.
Now Step 4, with P and Q replaced by P(+|F)(u)o ¥, ' and Q(-|F)(u)o ¥, ", yields the desired conclusion,
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since

L Fa1 (0(tn 1) P(dv]F) () = EFCPIVE 4 (u(tgr — ).

Step 6. Conclusion. Let Q, be the unique element of =, (y). Since d 5, ) (P, Q) = dc({P}, {Q}), we have
Py(U) = C(Pv(U)), where the embedding is isometrical, and thus, the mapping y — Q, is B(Y)/B(Pv(U))
measurable. Since for all A € G the mapping Q — Q(A) is weakly continuous and therefore measurable, the
mapping y — Qy(A) is B(Y)/B(R) measurable.

Point (2) of Definition 7.1 follows immediately from the disintegration property for E.. O

7.3 Martingale solutions to the Markov problem

We return to the notations of Section 6. In particular, we have the Gelfand triple X < H < X', where the
embeddings are compact, and a fixed countable dimensional and dense subspace Y < X. From Proposition
6.8 we know that .(x) is non-empty for all x € H. We show that the family (./(z))em is a regular a.s.
pre-Markov family, then Theorem 7.9 implies the existence of a Markov selection and thus the existence of

an a.s. martingale solution to the Markov Problem associated with (5.7).

Proposition 7.10. Let (x,)neny € H with x,, — x in H and let P,, € #(x,,). Then there exists a subsequence
such that P, — P in P(U) for some P e ¥ (x).

Proof. Step 1. Weak convergence in &7 (U,,) implies weak convergence in &?(U). Thus, we need only to show
that (P, )nen is tight in &?(U,), where ¢ is as in (A2), since then P,, — P in &(U,) for some subsequence,
and P € . (z) by Proposition 6.6. Let (by,)nen be the orthonormal basis of H defined at the beginning of the
previous section and let P,, be the corresponding orthogonal projection onto span{bs, ...,b,}. For all n € N
let

ve
M, (t,u) := Z My, (t,u)by, — xp,
k=1

where My, are as in Definition 5.3.
Step 2. We show that M, is a continuous, H-valued (G;);>o-martingale starting at zero a.e. with respect
to P, whose covariation operator process is given by

¢
KM )(t,u) = J,O B(u(s))B* (u(s)) ds. (7.10)
Let M (t,u) := >, My, (t,u)by, — Pray. Then M™ is a continuous, H-valued (G;)-martingale with

respect to P,,. By applying the BDG’s inequality, we get

] s M 4,€) = M4 O] "¢ o j EP» ZHB* ) (b) 3] ds
te

= CIIZ | B*(€)(®r) B2 (0,7 xut; )
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and since

D3

o0
|B*(¢ Z |B*(€)Or)T = [B* (O, mu) € L'((0.T) x U dt @Py)

k=l

and Y,_, | B*(€)(bx)|§ — 0 as I,m — oo pointwise in (0,T") x U, Lebesgue’s theorem yields
[ Z 1B*(€) (o) IF | 21 (0,7 xuus de@pr) = O

as [,m — oo. Thus, (M"

n

)men is a fundamental sequence in L*(U,P,; C([0,T]; H)), and since M™ — M,,
pointwise in (0,7) x U, we also have this convergence in L?(U,P,;C([0,T];H)). Consequently, M, is
a continuous, H-valued (G;)¢>o-martingale with respect to P,. Furthermore, Sg (u(s))B*(u(s))ds is a

bounded and symmetric operator and

t

(jB B ) ds)onby = [ 1B ()b 3 ds

SR D) st

Since these properties characterise the covariance operator uniquely, we have proved (7.10).
Step 3. Definition 5.3, (5), and the preceding step imply

CE(t), by = (o + fA Dds + Mo(t,€).bny P —ace,

for all m € N, and consequently we have

t
&) =an + J A(&(s))ds + M, (t,€) P, —a.e.

0
Exactly as (6.31) in the proof of Proposition 6.8, we deduce that

EQH[ . ||SZAn(5<r>)§rX/] -

=2
0<s<t<T |t — 5| Bl

and exactly as (6.32) in the proof of Proposition 6.8, we deduce that

Bor[ sup Mt = Mals, O

0<s<t<T |t —s|2

| < const(T, B)

Indeed, the only difference between the current situation and Proposition 6.8 is that now the dimension of
H is allowed to be infinite, but this does not effect the proof. Exactly as in Proposition 6.8, we deduce that
(P,)nen is tight. O
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Theorem 7.11. Let A and B satisfy (A1)-(A3). Then there exists an a.s. martingale solution to the
Markov problem associated with (5.7).

Proof. We show that the family (. (x))zen is a regular a.s. pre-Markov family. Then Theorem 7.9 yields the
existence of a Markov selection, and it follows directly by definition that any Markov selection of (7 (x)).en
is an a.s. martingale Markov solution.

Step 1. Lemma 6.5 implies . (x) € Pu(U). The compactness of .7 (x) in L (U) follows immediately
from Proposition 7.10 by letting x,, = x for all n € N. Thus, we have . (z) € C(Xu(U)) for all x € H. We
show that the mapping © — () is B(Y)/B(C(Zu(U)) measurable. This holds, provided we can show that

T{KeC(ZyU)|KcCU}) ={zeH|S(z) S U}

is open in H for any open U © Py(U), or equivalently that {zx € H|.”(z) nU® # &} is closed. Thus, assume
Zn € H such that .(x,) nU¢ # & for n € N, and let z,, — x in H. Choose P, € .#(x,) n U¢. Then, at
least for some subsequence, we have P, — P in Py (U) for some P € ./(x) by Proposition 7.10, and P € U,
since U*€ is closed. Consequently, .7 (x) n U€ is non-empty, and this yields the desired conclusion. Thus, (1)
of Definition 7.4 is satisfied. Definition 7.4, (2), follows from Definition 5.3, (2), since any P € .(x) is a
martingale solution with initial value z.

For the remaining steps (i.e. the disintegration and the reconstruction property) let x € H and Q € .7 (z).
We set T, g := T, where T denotes the exceptional null set in Definition 6.1 of .’(z). Fix t € (0,0)\T} .

Step 2. We show that the family (.%(z)).em satisfies the disintegration property. We show that there
is a Q-null set N € G; such that Q(¥, (})|G:)(u) € #(u(t)) for all u € U\N, i.e. we need to show (1), (2)
and (5) from Definition 5.3 and (6.3), since (3) and (4) from Definition 5.3 are immediate consequences from
(6.3).

Definition 5.3, (1) holds, since we have

J Q(¥; *({v|v(s) e H for all s = 0})|G:)(v)Q(du) = Q({v|v(s) € H for all s > 0}) =1
and consequently, there is a Q-null set N7 € G; such that

Q(¥; *({v|v(s) e H for all s = 0})|G¢)(u) =1,

ie. &is Q(U;()|G;)(u)-concentrated on the paths with values in H, for all u ¢ Nj.
Definition 5.3, (2), follows, since by Lemma 3.26 there is a Q-null set N € G, such that

QT ({fv e U [v(0) = u(t)})IGe) (u) = QE) = u(®)|Ge)(w) =1

for any u ¢ No.

Definition 5.3, (5), at least for all u € U\ N3, where N5 € G; is some Q-null set, follows immediately from
Theorem 4.25.

Finally, we show (6.3). We apply Theorem 4.24 to

Xar= s €O+ [ Z(cr

refa,b]
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and

Yo = kp(b—a)- ([¢(a)l + 1),

for (a,b) € D := {(e,8) € [0,00) | < B}. It is easy to check that the conditions for X and Y are satisfied
with respect to Q, and consequently there is a Q-null set Ny € G; such that (6.3) holds for u ¢ Ny.

Finally, N := Ny U Ny u N3 U Ny € G, is the desired null set.

Step 3. We show that the family (.(z)).en satisfies the reconstruction property. Let Q : U — 2(U)
be a mapping satisfying (4a)-(4c) from Definition 7.4. We need to show that Q ®; Q € .7 (x).

Definition 5.3, (1) holds, since

Q@ Q({v|v(s) € H for all s > 0}) & L Qu)({v|v(s) € H for all s > 01)Q®; Q(du) = 1.

Definition 5.3, (2) holds, since Q ®; Q|g, = Q|g,-

We show Definition 5.3, (5). Since Q|g, = Q®:Q|g,, (5) holds up to time ¢. By (a) from the reconstruction
property we know that Q(u) o U, ! satisfies (5). Since by Definition of Q ®; Q we have Q®; Q(-|G;) = Q(u),
we know that (5) holds for Q ®; Q(:|G¢) o ¥;'. By Theorem 4.25, (2) = (1) we know that (5) holds for
Q®: Q at least on (¢,00). We conclude that (5) holds on (0, o).

Finally, we show (6.3). For s < ¢, (6.3) holds since Q|g, = Q ®; @|g,- By (a) from the reconstruction
property we know that Q(u) o W, ! satisfies (6.3). By Theorem 4.24, (2) = (1) we know that (6.3) holds for
Q®: Q) if s > t. O
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Part 111

Compressible Equations

8 Introduction

8.1 Deterministic equations

We consider the deterministic compressible Navier-Stokes equations driven by a bounded external force
feL”((0,T) x Q;R3):

op | .
N + div(pu) = 0, (8.1)
0
% +div(pu ® u) + Vp(p) — div. = pf, (8.2)
together with the no-slip boundary condition
ulog =0 (8.3)

and initial conditions for the density and the momentum

p(0,.) = po, (8.4)

(pu)(0,.) = qo. (8.5)
The symbol . denotes the viscous stress tensor
2

S =v(Vu + Vul — 3 div ul) + pdivul, v>0,71>0, (8.6)

p:[0,T] x Q — R the density, u : [0,7] x Q — R3 the velocity and p = p(p) the pressure. We always assume
for the pressure p the following conditions:
/
P (p) (8.7)

p e C[0,0) n C?(0,00), p(0) = 0, p'(p) > 0 for p > 0, and lim === = p.,
p—% P

3
for some v > 3 and py, > 0.
As in the incompressible case, existence or uniqueness of smooth solutions is not known in general.
Instead, one can show the existence of so-called finite-energy weak solutions. The term ,finite-energy” refers

to the fact that the solution satisfies an energy inequality: the change of total energy
Lo o
E(t) = | golul* + Qo) az, (8.8)

where 1plu|? is the kinetic energy density and
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is the internal energy density for isentropic fluid flows, is bounded from above by the power resulting from

external force and dissipation

J pf -u—L(Vu) : Vudz,
Q

see [10], Section 1, or [6] for physical details. This is a-priori not clear for weak solutions; as shown below,

smooth solutions always satisfy an energy equality. Next, we give the precise definition of those solutions,

the motivation for this definition can be found below.

Definition 8.1. We call a pair (u, p) finite-energy weak solution of (8.1)-(8.5), iff

(1)

(6)

(7)

p€ L™(0,T;L7(Q)), p=0;

ue L2(0,T; Wy (2, R?));

The equation of continuity (8.1) holds in D’((0,T) x R?), where u and p are prolonged by zero on
R3\Q;

The momentum equation (8.2) holds in D'((0,T) x §);

The renormalized equation of continuity

(b(p))

o+ div(b(p)u) + (¥'(p)p = b(p)) div(u) = 0 (8.9)

holds in D'((0,T) x R?) for all
be C(R) with ¥'(z) = 0 for all z > M (where the constant M > 0 depands on b), (8.10)

where p and v are again prolonged by zero outside 2;

p€ Cyu([0,T], L7(2)) and (pu) € C\([0,T], L%(Q,R?’)) and the initial conditions (8.4) and (8.5) hold

in these spaces;

1
loc

The energy is locally integrable, i.e. E € L} .([0,T)), and the energy inequality

%E(t) + fﬂ S (Vu) : Vude < Jﬂpf ~udx. (8.11)

holds in D/([0,T)).

Remark 8.2. The choice of the spaces in (6) in the preceding Definition can be motivated in the following way:

Let (p,u) be any pair of functions satisfying all conditions in the above Definition except possibly (6). Then it

can be shown (see [11]), that this already implies p € C,,([0,T], L7 (2)) and (pu) € Cw([O,T],L%(Q,]R?’)).

Remark 8.3. If (p,u) is a solution in the sense of Definition 8.1, then p € C([0,7],L'(2)). This can be
proved via regularization, see first part of Section 9.6.
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Remark 8.4. If the equation of continuity holds in D’((0,T) x R?), then we have the additional boundary

condition
(pu) -7 =10 on 0.

Furthermore, a simple calculation shows that the total mass SQ pdx is constant in time. This does not follow
from the equation of continuity in D’((0,T) x Q), if p is not known to be square integrable.

Remark 8.5. If (p,u) is a solution in the sense of Definition 8.1, then (8.9) holds for all b € C1([0, 0))
satisfying

B (p)p < c(1+p?).

This follows immediately by applying Lebesgue’s Theorem to the sequence b, (p) and ),(p)p, where b, is any
sequence satisfying (8.10), such that |b,| < [b], [b},| < |V'|, bn — b and b, — ¥, both pointwise in [0, o).

In the following, we motivate the preceding definition. We start by motivating the renormalized equation
of continuity: Let b: R — R satisfy (8.10) and assume that (p,u) is a smooth solution of the compressible
Navier-Stokes System. Then, by multiplying the equation of continuity (8.1) by ¥'(p) we get

0= %b’(p) + pdiv(w)b' (p) + Vb(p) - u
= a(béf ) pdiv(u)b (p) + div(b(p)u) — b(p) div(u)

- @ + div(b(p)u) + (V' (p)p — b(p)) div(u),

which is (8.9). Thus, smooth solutions satisfy the renormalized equation of continuity. In fact, the renormal-
ized equation of continuity can be deduced from the equation of continuity as soon as p € L*((0,T) x ),
see [10], Section 10.18.

We use the same strategy to motivate the energy inequality, i.e. we show that it is satisfied by any
smooth solution. Thus, assume (u, p) is a smooth solution of the Navier-Stokes equations and consider the
momentum equation (8.2), which, by direct calculation, yields for ¢ = 1,2,3

o(puy;) 1 ddivu

N + div(puu) + pi(p) —vAu, — (n + §V) pr ofi.

By multiplying this equation by wu;, summing up over i = 1,2, 3 and integrating over 2 we deduce

1 :
J’ pf -udzx =J’ dpu) u + div(puu)u; + Vp(p) - u — vu; Au; — (n + fu)adﬂui dz,
Q O ot 3 (3:51

where the implicit summation convention is used. Using the equation of continuity, we obtain by a direct

calculation the following three formulas: first we have

2
f dpv) -u + div(puu)u; — vu; Au; da = f 10(p|u| ) — 1@
Q

1
2 : 2 2
— — —div —v|Vu|~d
o 5~ 71 5 71 [ul 5 di (pu)|ul® — v|Vul* dz,

85



secondly, a little bit lengthy but straight forward calculation shows

9Q(p)

+ div(upQ'(p)) dz = f QL) dz,

Vp(p) - udzx =
L (v) =

and finally we have

J 6d1vuui de = J (div(udivu) + div(u)Q) dr = J diV(U)2 dz.
o Oz Q @

Thus, we get

_ 15(P|U|2) 0Q(p) _Jl @ : 2 2 1 ; 2
Jgpf ud:U—J92 T dx L2\ + div(pu) | |ul® + v|Vul +(77+3V)d1v(u) dz

0 1
_ 2B +f VIVl + (0 + ~v) div(w)? da.
ot Q 3
Again by direct calculation, we deduce

0

&E(t) +I[Q§’(Vu) :Vudr = prf-udw

for any smooth solution. Consequently, smooth solutions even satisfy the energy equality.
The next Lemma about @ will be helpful later.

Lemma 8.6. Suppose that the pressure p satisfies (8.7), then the function p — Q(p) is a continuously
differentiable function mapping [0, 0) onto [0,00) and satisfying Q(0) = 0 and Q'(p) > 0. Furthermore,

there exists constants cq, ca, di, do = 0 such that

c1p(p) —di < Q(p) < cap(p) + d2

Proof. @ is obviously continuously differentiable and p(z) > 0 for z > 0 yields @Q’(z) > 0. We get

L~

P p(z) g
limQ(p) = lim hem —p(0) = 0.

p—0 p—0

D I=

To see the last statement let zp > 1 be such that for all p > zo we have p'(p) € (3pp” ™%, 2pp?™1).
Now by continuity we have Q(p) < K for all p < 2 for some K > 0. For p > zy we get

20 / P 3
Qp) < pf AN pf gPr? T dz
z

1 Z0

*p'(2) 3 px -1
- PR gy 2 P (v _ 01y
L . z+ 55 1(;) pz0 )
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A similar calculation shows the other inequality.
O

We have the following existence result of weak solutions to the deterministic compressible Navier-Stokes

equations:

Theorem 8.7. Let Q € R3 be a bounded Lipschitz domain and let f € L*((0,T) x ). Assume that the

pressure p satisfies (8.7) for some 'y>% and assume that the initial condition satisfy:

laP*

Po € LV(QL po=0,q€ Ll(QaRS)a
Po

e L'(Q). (8.12)
Then, for any T > 0, there exists a finite-energy weak solution (p,u) such that p € C([0,T], L*(R?)) and the

total mass is constant in time, i.e.

JQ p(t)dz = M. (8.13)

The original proof of this theorem in [11] requires some smoothness of the boundary 02, which were

relaxed to Lipschitz domains in [22].

8.2 Stochastic equations

In the whole part let (O, B,P) be some topological probability space, i.e. O is a topological space, B is the
Borel algebra on O and P is a regular probability measure. The compressible Navier-Stokes equations driven

by a stochastic noise w can formally be written as

dp +div(pu)dt =0 (8.14)
d(pu) + (div(pu @ u) + Vp(p) — div.) dt = pdw (8.15)

where the unknown random variables p : [0,7] x @ x O > R and u : [0,T] x  x O — R? are the density
and the velocity, the given random variable w : [0,T] x Q x O — R3 is the stochastic noise and .# denotes
the viscous stress defined in (8.6). We always assume that the pressure p = p(p) satisfies (8.7) for a certain
v > 3. We also assume the initial and boundary conditions (8.3)-(8.5), where the initial conditions (8.4)
and (8.5) are random variables.

The compressible case is more complicated then the incompressible case and the mathematical theory of
these equations is far from being complete. In particular, the only successful approach so far to get solutions
to the compressible stochastic Navier-Stokes equations was done in [9]. The basic idea is to consider the
equations path wise, i.e. we fix any w € O, and show the existence of a weak solution. Then, we obtain for
a.e. w a non-empty set of solutions. In the second step we show that there exists a measurable selection and
thus a random variable (p, u) satisfying that Navier-Stokes system for a.e. w € O.

The major problem is that in most relevant situations the paths of the noise process are not differentiable,

or even not continuous, with respect to the time variable (important examples are Lévy processes, see section
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10.2). In those situations, Theorem 8.7 can not be applied directly, because the resulting force f = d,w is

not a function any more. In order to solve this problem we start with a slightly different definition of a weak

solution then Definition 8.1, which, as shown below, is in fact equivalent to Definition 8.1 in the case when

w is bounded and differentiable with respect to t.

Definition 8.8. We call a pair (p,u) a finite-energy weak solution of (8.14), (8.15), iff

p(+, - w) € C([0,T], L*(R2)) n Cu([0,T], L7 (2)) and p = 0 for a.e. w € O;

u(-, - w) € L2(0,T; Wy * (Q,R?)) for a.e. we O

pul-, -, w) € L*(0,T; L3771 (0, R?)) and p(u — w)(-, -, w) € Cop([0, T], L777 (2, R?)) for a.e. w € O;
the following weak formulation of the renormalized equation of continuity

T
J J (p—i—b(p))g—f + (p+b(p))u-Vedzdt
0 Jae (8.16)

T
~ [ [ @b diva pdzar = [ (oo +b(00)(0.) do
0 Q Q

holds for all b satisfying (8.10), ¢ € CZ([0,T) x Q) and a.e. w € O;

the following weak formulation of the momentum equation

T
J. fp(u—w)-a—c'o+pu®u:Vgo+p(p)div<pdxdt
0 Ja ot (8.17)

:LTJQy(Vu):Vgp+pu-V(w-@)dxdt—Lq-w(O,-)dw

holds for all p € CZ([0,T) x Q,R3) and a.e. w € O;

the following weak formulation of the energy inequality

_JT?fJQE(t)dxdt+LTz/JLY(Vu):Vudxdt

0
2
<u0) [ 514 Qo) da (5.19)

T
1
+J wf Z(Vu) : Vw — pu ®u : Vw — p(p) divw + 5puV|w|2dwdt
o Jo
where
— 1
B() = | Folu— i)+ Qo) ds

holds for all p € CZ([0,T)), ¢ = 0 and a.e. we O.

Remark 8.9. The statement of Remark 8.5 still holds for Definition 8.8.
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Remark 8.10. Definition 8.8 for finite-energy weak solutions to the stochastic Navier-Stokes equations can
also be seen as a modified definition for finite-energy weak solutions to the deterministic Navier-Stokes
equations (8.1)-(8.5), by identifying the noise w, the initial conditions (pg, ¢) and the solution (p,u) with the
respective constant random variables on O. From now on, we will do so without further comment.

The motivation for Definition 8.8 is contained in the following Theorem:

Theorem 8.11. Let f € L*(0,T, WH*(Q)) and define

w(t,x) := f: f(s,x)ds

i.e. f= 0w and w(0,-) = 0. Then, (p,u) is a solution in the sense of Definition 8.1 if and only if it is a

solution in the sense of Definition 8.8.

Proof. Let (p,u) be a solution in the sense of Definition 8.1. Points (1) and (2) of Definition 8.8 follow
immediately. The assertion about pu(:,-,w) in (3) of Definition 8.8 follows by (6) from Definition 8.1. To see
the condition about p(u — w) in (3) of Definition 8.8, by (6) from Definition 8.1 we have left to show that

pw e Cy([0,T], L7577 (2, R3)).

By Sobolev embedding we have w € C([0,T] x ©,R?), and since p € C([0,T], L*(£2)), the assertion follows.
We show (4) from Definition 8.8. Points (3) and (5) of Definition 8.1 are equivalent to

J J p+b(p)) 5 + (p+b(p)u- Vedrdt
R3
T
- L JRg (V' (p)p —b(p)) divu pdzdy — lfw (po + b(p0)) (0, -) dz
for all ¢ € CZ([0,T) x R?). Since u and p are prolonged by zero on R3\Q and since {¢|po1)x0 : ¢ €

C*([0,T) x R®)} = CZ([0,T) x Q), this is equivalent to (8.16).
We show the momentum equation. Point (4) in Definition 8.1 is equivalent to:

J f pu - +pu®u Ve + p(p) dive) dz dt

S (8.19)
= ,[ ,[ S (Vu) Vgo—p—w -goda:dt—j qo - ¢(0,-)dz
0 Ja ot Q
for all ¢ € CZ([0,T) x Q;R3). Using the identity
0 <P
p 675 -pdadt = d:c dt — pw dx dt
(8.20)

J qu V(w-p dmdt—f Jpw — dxdt

for all o € CX([0,T) x Q;R3), we deduce (8.17).
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Finally, we show the energy inequality. The energy inequality in (7) in Definition 8.1 is equivalent to

f J —plul* +Q(p )dm—dt+j Qy Vu) : Vudzy dt
< (0 )J 1|q|2+on dx—i—J Jp Cudz dt

for all v € CX([0,T)), ¥ > 0. By approximation in the space W12((0,T) x ) we deduce that (8.19) and
(8.20) hold with ¢ = w) as test function for any ¢ € CZ([0,T)). Consequently,

J’ J <pu — +pu®u:Vw+p(p )divw—y(Vu):Vw> daep dt

_ wde?? _JTJ ow

Jofﬁpu wdxat dt . Qpat wip da dt
T T

——L Jqu-wdzaazfdt—L fﬂ%pu-V(w-cp)dzdt

and these relations combined yield (8.18).
The other direction follows by inverting the arguments. O

9 Equations driven by irregular force

9.1 Introduction and convergence results

In this section we show the existence of solutions to the deterministic compressible Navier-Stokes equations
driven by noises w with low regularity with respect to the time variable. The main result of this section is

the following Theorem:

Theorem 9.1. Let Q be a bounded Lipschitz domain in R3. Suppose that the pressure p satisfies (8.7) and
the initial values satisfy (8.12). Suppose further that w € L*(0,T; Wy ™ (Q,R3)). Then the Navier-Stokes

system admits a weak solution in the sense of Definition 8.8.

To prove this Theorem, we approximate the irregular noise w by smooth functions w, in such a way,
that at least a subsequence of the corresponding sequence of weak solutions converges to a weak solution of
the problem driven by w. Now, as shown below, the energy inequality yields uniform boundedness on the
sequence of solutions, provided the sequence w,, is bounded in L™ (0, T} VVO1 *(Q,R3)); consequently, we will
restrict our attention to functions w in this space. From now on, to the end of the proof of Theorem 9.1, fix
we L*(0,T; W™ (2, R3)) and a sequence {w, }nen S C*([0,T] x €, R3) satisfying

lwnl 1 0, 0w2 > @) < R (9.1)

wy, — w in LY(0,T; WHH(Q,R)). (9.2)
for some constant R > 0. We can choose a subsequence such that w,, - w and Vw,, —» Vw a.e. in (0,T) x Q,
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and by the Lebesgue’s theorem, we get
w, — w in L9(0, T; W5 (, R))
for all 1 < g, s,< 0. Next, let

¥ if v >3,

oty ify<3.

Define a modified pressure by
Pn(2) := p(2) + 6,2°,

where 6§, := %, and let @,, be the corresponding function in the energy inequality with p replaced by p,.
Then, p,, satisfies the assumptions (8.7) with « replaced by 8. We note for future use that we have g > v

and

6y 28
Tv—6  [+2

Let ¢y, co, dq, do be the constants from Lemma 8.6 for p. A simple calculation shows

Qulp) = p fl “p) |5 2y,

22

=4%m+p%3%7@&4*U

< max{cs, Hp(p) + 5np3) +dy

1
£8—1
= é\‘2pn(p) + d27

where the constants ¢3 and do do not depend on n. A similar calculation shows the other inequality. Thus,
replacing v by S, the functions p, and @Q,, satisfy Lemma 8.6 with constants that do not depend on n.
Moreover, fix initial conditions pg and ¢ satisfying 8.12 and let (u,, p,) be any sequence of weak solutions
of the compressible Navier-Stokes system with the pressure p,, driven by the noise w,, in the sense of
Definition 8.8, whose existence is guaranteed by Theorem 8.7 and Theorem 8.11. We begin by deriving

uniform bounds on the sequence of solutions and consequently existence of a weakly convergent subsequence.

Lemma 9.2. We have, at least for a suitable subsequence,

Pn =P in Cy([0,T]; L7(©2)), (9-3)
Uy — U in L2(0,T; Wy 2 (9, R3)). (9.4)

Furthermore, for all b € C}(R) satisfying (8.10), there is a function b(p) € Cy, ([0, T]; LP(Q)) for all p < o0,

91



such that

b(pn) — b(p) in Cy([0,T]; LP(2)) for all 1 < p < o0.,

b(pn)un — b(p)u in L*((0,T) x ),

(9.6)

passing again to a subsequence if necessary. As a consequence, the following convergences hold for a suitable

subsequence
Prlly = PU in L0, T; W~ 12(Q,R3)),
Prln — PU in L*(0,T; L%(Q,R?’)),
PrnWy — PW in L0, T; W=L7(Q,R3))
P (it = wy) = plu — w) in C,y([0, T]; L7 (2, R?)),
Prln @ Up — pu @ u in L2(0,T;L43%(Q,]R3X3))7

for any 1 < g < 0 and some r < 2. In particular, (p,u), prolonged by zero outside 2, solve

% +div(pu) =0
u|aQ =0
p(0) = po

in D'((0,T) x R3).

Proof. Step 1. We show that the energy

Eat) = ( j Sonlunl? + @ulpn) o)1)

is uniformly bounded in n and a.e. t € (0,7"). The energy inequality yields for a.e. t € (0,7)

E,(t) = (JQ %pnwn —wy|* + Qn(pn) dz)(t)

(9.12)

t
. 1
< b +J f y(Vun) : (an - vun) — Pnln ®un : vwn _pn(pn) dlv(w"l) + §pnunv|w”|2 dzdt
0 JQ

where b := sup,,y SQ 1la? + Qn(po)de = SQ %ﬂ +Q1(po)dz. We can estimate the terms on the right hand

2 po
side in the following way:

(1) We have

PO

t t
f f (V) : Vu, dedt > ”f [Vun|7z(q) dz
0 JQ 0
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and by (9.1)

t t
f L (V) : Vo da dt < f 17 (V) |11 () [ V0 | o e
0 0
t
< const(R, Q) f |- (Vun)|lp2 o) dt
0

and consequently

t
J J L (Vuy) : (Vwy, — Vuy,)dz dt < const(R, ).
0 Jo

(2) By (9.1) we have

¢ t
|J J Py, @ Uy, : Vw, dedt| < const(R,Q)J J P ltin]? da dt.
0 Ja 0 Ja

(3) By Lemma 8.6 we have
t t
| J’ J Dn(pn) div w, dz| < const(p, R, ) + const(p, R, §2) J’ Qn(pn) dz dt.
0 Jo 0 Ja

(4) Since the total mass is constant in time, we have
lon(t, )z () = M for all t € [0, T]
and by the estimate

Pn for |u,| <1
pn|un| <
pnlunl?  for |u,| > 1

we get

L ¢
J J’ — Pty V|wy|* do dt < const(R)(J J P+ Pn|tn|? dz dt),
0Ja?2 0 Ja

¢
< const(R, M)(1 +J f pnltin|? dzdt).
0 Jo

Summing up these results, we obtain
_ t
E.(t)<b +J c1 + caEn(s)ds
0

where the constants c¢; and ¢, do not depend on n or t.
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Finally, we have

1 1
| gontn = wa PO = 5 | ol PO = 2000 w0 0) + pulun P (0)
Q Q

> const(M, R) + const(M, R)f Pt () d.
Q

for all t € (0,T) and therefore

t

E,(t) <cz+caB,(t) <cs+ J ce + crEn(t) dt
0

where the constants to not depend on n or t.

Now, Grownwall’s inequality can be used to obtain

esssup E,(t) < ¢ (9.13)
te(0,T)

where c is independent of n.
Step 2. We show (9.3). By (9.13) we have

INPrtinl L= 0,1;02(0,R3)) < C1, (9.14)
1Qn (o)L= 0,7:01 (02)) < c2, (9.15)

where the latter yields
lonllze 0,707 (0)) < €3, (9.16)

where all constants are independent of n. Thus, for a suitable subsequence, we have
pn—p in L*(0,T; L7 (). (9.17)
To finish the proof of (9.3) let ¢ € CX(Q2) and let
V(1) = | pu(t)gda.

Then, ¥, is continuous by (1) of Definition 8.8. We use Ascoli’s theorem to show that {¥,, } ey is pre-compact
in C([0,T];R). We have

()] < lpnle 0,10 @pllell @) < €

and this shows the uniform boundedness. To see that {¥,} is equicontinuous, we use the equation of
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continuity (8.16) to deduce

[, (0n(0 = pulsg s = |”pnun Vo dzdr]
< [ Wl Iarlm @IVl 2,
S

< |t — s,

(Q.R?)

where the constant ¢ is independent of n, ¢ and s. This shows that {¥,,} is equicontinuous, and consequently
pre-compact in C([0,T];R). Furthermore, if ¥,,, — ¥ in C([0,T]) for some subsequence, then we have

W)= [ o ds
Q
by (9.17), i.e. ¥, has only a single accumulation point in C([0,71]), and consequently
W, = [ pOpds i O(l0.7).
Q
Now, let ¢ € L7 (Q) and {@n nen © C7 () such that ¢, — ¢ in LY (Q). Then, the above yields
f pnpr Az — f per dz in C([0,T1])
Q Q
for any fixed k € N. Moreover, we have
L lon () pr — POl dz < [lpn ()] 2v@)ller = €l ) < cller — ¢l @)
where c is independent of n and ¢, and therefore
lim sup || [ pniprdz — fﬂ pre dz|c o,y = 0.

k=% peN 9]

Now, Lemma 1.13 yields
JQ pu()p dz — L p()edx in C([0,T7])

for all ¢ € L7 (Q), and this finishes the proof of (9.3).

Step 3. To show (9.4), we estimate the terms in the energy inequality similar as above to deduce
t
H’U,n”LQ(o’T;WOly?(Q;Rg)) < CIJO JQ Z(Vuy,) : Vu, dz dt
t
< ¢ (En(t) +b+ ,[ f S (Vuy) : Vw, — ppiiy, @ uy : Vw, dedt
0 Jo

T
. 1
+f J —p(pp) div(wy,) + 2pnunV|wn|2dmdtdmdt>
0 Jo

< o
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where the constants do not depend on n. By passing to a subsequence, we have (9.4).
Step 4. We show (9.5). Let

X i= {be CI(R) : b satisfies (8.10)] "

For the whole step fix 1 < p < o0 and g :=p'. For be X and ¢ € CF(Q) define

[, o] (1) = <jﬂ b(ow)p da)(1).

We use Ascoli’s theorem to show that the sequence (Uy[b, ¢])ken is pre-compact in C([0,T7]; R). Obvi-

ously, we have |U[b, ¢](t)| < ¢ for some ¢ independent of k and t. We can use the renormalized equation of

<
continuity to deduce for 0 < s <t < T

], @n) = bon(sN)odal <1 [ blpnyun¥eo+ (F(o)on = bpn) dive, it

t
< f IbCon) | 2| 2 [ Vel Lo + b (pn) pr = b(pn) 22 | div tn | L2 o] o

<t —s)

where the constant ¢ does not depend on ¢, s or n, and this shows the equicontinuity of W [b, ¢].

Next, we choose countable and dense subsets X € X and ) < L9(Q). Since for all b € X, the sequence
b(pk) is bounded uniformly in L*(0,T; L9(Q)), it is sequentially pre-compact in the weak star topology, and
by Theorem 1.2, there exists a subsequence independent of b € X, such that

b(pn,) = b(p) in L*(0,T; L7(%2)) (9.18)
for all b € X. We pass to this subsequence.

Since {U[b, ¢]}ken is sequentially pre-compact in C([0,T]) for any fixed b € X and ¢ € 9), by Theorem
1.2 there exists a further subsequence (again independently of b and ) such that

Ui[b, 0] = ¥[b, ¢] in C([0,T]) (9.19)

for all (b, ) € X x Q) and for some functions ¥[b, ¢] € C([0,T]). We pass to this subsequence.
Combining (9.18) and (9.19), we deduce

Vb e(0) = | PO ds

for all be X and ¢ € ), i.e. we have

| ponyeds ~ | Wlede w cqo.7)
Q Q

By interpolation and Lemma 1.13, we infer that the last relation holds for all p € LI(Q), exactly as in
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step 2, and consequently we have
b(pr) = b(p) in Cy([0,TT; L (), as k — o0

for all b e X.
Finally, let b € X and b, — b in C}(R) with {b,,}nen € X. The estimate

sup by (p(t)) = b (p(8)) | Lo () < Sup lim inf ||, (pr(2)) — b (pr (D)l Lo (22)
t€[0,T7] tefo,1] k=%

< meas(Q)7 by — b | L= ()

shows that b, (p) converges strong in L™ (0,T; LP(2)). We denote the limit by b(p). Then we have for any
peLQ)

j H(p)pde = lim j ba(0)p da
Q n—xL Q

= lim lim bn(pk)godx

n—L k—o0

= klgn b(pk)p da
where all limits are in C([0,T]) and where the swap of the limits in n and k is allowed, because the limit in
n is uniformly in k. This finishes the proof of (9.5).
Step 5. We show (9.6) by applying Lemma 1.17 to f,, = b(p,) and g, = wu,. By the preceding
steps, we have b(p,) — b(p) and u,, — u, both in L?((0,T) x Q). We show that 0;b(p,) is bounded in
L0, T; W=51(€)). Let

K :={pe C((0,T) x N [lelp200,mwz 1) < -
By the renormalized equation of continuity (8.16), we get

0b(pn)

0
I |20, 7w -5.1(02)) —SUP| b(pn) sDdacdt|
ot
peK

= sup |J’ J, —b(pn)un Ve dadt
Q

weK

+ L JQ(b/(,On)Pn —b(pp)) divuy e dz dt|

The first line on the right hand side is bounded in n since u, is bounded in L2((0,7) x ) and since by
Sobolev embedding, we have |Vl 2(o,1r)xq;rs) < ¢ for all ¢ € K and some c independent of . A similar

argument shows that the second line is bounded. Since | - |z10,7;w-3.1(0)) < C| - | 22(0,75w 3.1 (02)), We get

0b(py,)

[ o I o,7w-s1(0)) <
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Next, we show

lim Sug ”Un(' +&, ) — unHLz((O’T)XQ’RS) =0. (920)

|€1—0 ne
Let & := %5. Then, we have the following estimate for all n € N and r € (0, 7))

€]

Jun(- + &, 1) —un(-, T)||%2(Q)R3) = JQ | Vi (- + A, 7)éE AN da
0

l¢| X
<J f |V, (- + A, )| dA da
QJo
€l o
= JO Hvun( + A£7T)||L2(Q,R3><3) dx
< L€l un () [f1 20 m3)-

Thus,

[un(-+&,-) = unH%Q((O,T)xQ,]W) < |§|”unHL2(O7T;W1‘2(Q,R3)) < cl¢]

where c is independent of n € N. This shows (9.20). Now, Lemma 1.17 yields

b(pn)tn — b(p)u in D'((0,T) x ). (9.21)
For all b € C}(R) satisfying (8.10) we have

16(on)unllL2 0,1y x0) < €

and thus b(p,)u, is weakly pre-compact in L?((0,7T) x €2). Since by relation (9.21) every L2 ((0,7) x Q)
accumulation point agrees with b(p)u, this shows (9.6).

Step 6. We show (9.8). Let by, € C} (R) such that by(z) = x for all x < k, by(z) = 2k for all x > 3k and
by concave. Then, we have for all 1 < a <, 8:=(2)" and all fixed ¢ € (0,T)

15(on(®)) = pa(®) oy < f pu(t) da
[on (t)>k]

S ZAON P PO P2t

1

< a7 (ymeas([pn(t) = k)7

Since meas([pn (t) = k]) < £|pn(t)] (), the right hand side is tends to zero uniformly in n and t as k — 0,
i.e. we have

Jlim sup [[b(pn) = pnll L= (0,750 (0)) = 0, (9:22)
L neN
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and in particular we have
lim sup ku(pn) - pn”La(((],T)xQ) = 0. (923)
k=% peN

Since by the preceding step, we have

lim bk(pn) = m in L(vj;((OvT) X Q),

n—aC

Lemma 1.13 yields for all 1 < a <«

lim by(p) = p in L*((0,T) x Q), (9.24)

k—oC

and since

1ok ()| L (0.1:27 (2)) < li’?iigrc}f 16k (P) | L= (0.7:27 (02)) < li’?ii;}f lelze o,r:07 () < ¢
we also have
br(p) = p in L7(0,T; L%(2)) (9:25)

for any 1 < a < 7.
We use Lemma 1.13 once more on the sequence by, (p,)u,, in the Banach space L((0,T) x ). First, the
preceding step implies that

lim by, (pn)tn = br(p)u in L ((0,T) x Q)

n—w

and by choosing a = 6’ = ¢ < v in (9.25), we deduce

lim by (p)u = pu in L*((0,T) x Q)

k—w

since u € L?(0,T; L°(2)) by Sobolev embedding. Finally, we have for all ¢ <o <~

”bk(pn)un - pnunHLl((O,T)xQ) < Cku(Pn)Un - pnun||L2(0 T-Luﬁifés(g))
< o] br(pn) = pullL2o0. i @) llunll L2 (0,15 (9))

where by (9.22) the right hand side tends to zero uniformly in n as k — 0o. The last three relations are

enough for Lemma 1.13 to yield
lim ppu, = pu in LL((0,T) x Q).
n—a

We now infer (9.8) by the estimate

”p"u”||L2(o,T;LT2i%(Q)) < |IWenlzz o127 @) [ VPnunl L2 0,7y x )5

where the right hand side is bounded in n by (9.14) and (9.16).
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Step 7. We show (9.10). First, we have
Pn(tn —wy) = p(u—w) in D'((0,T) x ) (9.26)

by the preceding step and the strong convergence of w,,.
Now, let ¢ € CF(Q2) and

¥ (0) 1= | pu®lualt) = w, (D) s

We use Ascoli’s theorem to prove that {¥,} is pre-compact in C([0, 7). By (9.26), the sequence {U,, () }nen
is uniformly bounded for any fixed ¢t € [0,7]. Now, the momentum equation (8.17) yields

t
U (t) — Un(s) = J JQ — Putin @ Uy : Vo —p(pn) divep
+7(Vuy) : Vo + ppug - V(wy, - @) dadr.

an since we have

lpntin @ un Lo rsxsy < a1 by (9.14),
lp(pn)lLr) < c2 by (9.3) and (8.7),
|7 (Vun)l| L2 (o roxs) < c3 by (9.4),
[onunll | 22 —— by (9.3) and (9.14)

we get
(W (t) = Wn(s)] < cft — 5]
where the constant c is independent of n, ¢ and s. Consequently,
v, — JQ plu —w)pdx

uniformly on [0,7]. By approximation, exactly as in step 2, Lemma 1.13 yields that
J pn(un —wn)<Pd$ - J p(u—w)godx
Q Q

uniformly on [0,T] for all p € (L%(Q))’
Step 8. In order to show (9.7) and (9.9), we first show for a.e. t € (0,T)

() (t) — (pu)(t)in L7 (Q), (9.27)
(pn1wn)(£) = (pw)(t) in L3¥7(Q). (9.28)
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To see this, fix p € (L%(Q))’ = L%(Q) By (9.10) we conclude for any ¢ € (0,7T)

f (Pt — ) (D) dz — j (p(u— w))(B)pde. (9.29)
Q Q

Since wy,(t) — w(t) pointwise in Q for a.e. t € (0,7T), the Dominated convergence theorem yields for a.e.
te(0,7)

wn () = w(t)p in LV (),
and further

| a0gds ~ [ po)®p s,
Q Q

Thus, (9.28) holds and, together with (9.29), this implies (9.27).

Since % > %, the embedding L%(Q) — W~=12(Q) is compact, and therefore

(Paun)(t) = (pu)(t) in W2(Q)
for a.e. t € (0,7, and since

H(pnun)(t)”W*LQ(Q) < ”(pnun)(t) HL%(Q) < ”pn(t)HL‘f(Q) ”un(t)||L2(Q) <¢

where c is independent of ¢, Lebesgue’s theorem yields (9.7). The same argumentation shows relation (9.9),
2y
where we choose r < 2 such that L>+1 () — W~17(Q) is still compact, i.e.

6y
5y —3°

Step 9. We show (9.11). First, we have

| pntin @ “nHL (

20,1507 (QRIA)) NPl (0,722 @) lINPrtnl L= 01,020 r2)) [un | L2 0,7:28 (2. R3))»

where the right hand side is bounded by (9.14), (9.16) and the continuity of the Sobolev embedding
W12(Q) — L5(2). Thus we can pass to a weakly convergent subsequence. To identify the limit, we
show that ppu, ® u, — pu®u in D'((0,T) x Q). By applying Lemma 1.17 to the sequence f,, := p,u’, and
gn = ul, for any 1 < 4,7 < 3, where u?, € L2(0,T; W12(£2)) denotes the i-th component of u,,. We know
already that both sequences are weakly convergent:

fa = pul in L*(0,T; L3¥7(2)) by (9.8)
gn — v’ in L*(0,T; L5(Q)) by (9.4).

We have proved in step 4 that the sequence g, satisfies the properties needed in Lemma 1.17. Finally, we

can show that <{* is bounded in L?(0,T; W~ 3(Q)). Let K := {p € CZ((0,T) x Q)| Il 20, 7w 1 )
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then the momentum equation yields

0fn JTJ dp
—_ V=31 = su nUn —— da dt
[ ot HLZ(O,T,W 3.1(Q)) we£| o QP ot |
T
= Sup f f (=pntin @ up : Vo — p(pp) div ) dz dt+
veK [ Jo Ja

Own

T
JJ&”(Vun):Vgp—pn ~pdrdt
o Ja ot
c

<

Note, that the estimation of the right hand side makes no trouble in view of the estimates already obtained
and the uniform boundedness of 2= in L2(0,T; W ~1(Q)); the latter can be proved exactly as in step 4

ot

by replacing b(p,,) with p, and replacing the renormalized equation of continuity with the not renormalized

equation.

Step 10. Finally, the relations inferred in this theorem are enough to pass to the limit in the distributional
formulation of the (not renormalized) equation of continuity to deduce that (9.12) holds. Moreover, the
boundary condition follows from u(t) € W, *(Q,R?) and the initial condition p(0) = py follows from py =
pu(0) = p(0) in L,(0). o

9.2 Estimation of the pressure

In this section we show that the pressure p,(p,) is bounded in some L*((0,T) x 2) and consequently there
exists a weakly convergent subsequence. Then, the crucial point is to identify the weak limit of p,(p,) as

p(p), to which the next three subsections are devoted.

Proposition 9.3. There exists o, ¢ > 0 independent of n such that for all n € N we have

|pn(pn)pp | 21 ((0,T)xQ) < C

Consequently, p,(pn) is bounded in L1((0,T) x Q) and therefore, passing to a subsequence if necessary,

Pnlpn) = p(p) in LI((0,T) x Q), (9.30)

whereq=1+%.

Proof. Let (£c)ce(0,17 be any fixed smoothing sequence and define

Pr, 1= &e * pn.

Furthermore, fix ¢ € C*(0,T) with 0 < ¢ < 1 and b € C*(R) satisfying b(0) = 0 and b(z) = 2 for all z > 1,
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where a > 0 is arbitrary, satisfying

v 2v-—3 7—1}

< min{—
ozmln{27 3 5

(9.31)

Since p,(t) is bounded in LY(€2) uniformly in n and ¢, we have p¢ (¢) is bounded in L7(2) uniformly in n, ¢
and e. Consequently, b(p,(t)) is bounded in La () uniformly in n, ¢ and e. In particular, b is bounded in
Lr(Q) for

2y 3y |

€{2, ——
P {77_1,27_3

uniformly in n, ¢ and e. Moreover, by Remark 8.5, the renormalized equation of continuity holds for b.

We consider test functions of the form
¢lt.) = v(OB| )
in the equations (8.16), (8.17), where we denote for f € L'(Q)

1
<f>~:f—mfgfd%

and where the Bogovskii operator B is defined in Theorem 2.15. Using Lemma 2.29 we obtain, after a lengthy
but straightforward calculation, the following formula (see also [12]):

J f Ypn (pn)b(ps) dz dt =
0 Q
T
J | pnlpn)da | b(p;,)dadt+
0 Q Q
1 (T .
(n+ gl/) L fQ Pb(ps) div uy, dz dt—
T
[} [ upntin =) - R e+
0 Q
T
I/J f YV uy, : VB[{b(p5,))] dx dt—
0 Q
T
J J Ypptn @ uy, = B[K(ps,))] da dt+
0 Q
T
| | ot =) B2 =¥ (05055 divu ) do e
L 0 bpn (tn = wn) - B[Grb (p))] da di
J J Ypn(un — wy) - B(div (b(pf, )un )] da dt—
0 Q

T
j J, Pnln * v(wn ’ QO) dzdt
0 Q
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Where r¢ — 0 in L%(0, T} LB%(Q)) as e — 0 for any fixed n. We can estimate the terms on the right hand
side in the following way:

(1) By (9.15) and Lemma 8.6, the first integral on the right hand side is bounded uniformly in n, € and
1, where the latter follows from 0 < ¢ < 1.

(2) Next, we have

T
| f L Bb(p%) divn da d] < el div 202 0G5 |22 (0.7 x
0

where the right hand side is again bounded uniformly of n, € and .
(3) By virtue of Hélder’s inequality, Theorem 2.15 and Sobolev embedding, we can estimate the third
integral as follows:

|J J g Pr(tn = wn) - BICO(p7,))] da di]
<01J. | 1l)|||,0n( Up — Wy )| 2o ||B[<b(p;)>]|| "
0

Ly+1(Q) -t (Q

T
oY 1
< —_ 2 ¥ n N .
X CIL | ot |<pn”L“/(Q)\/pnun“L2(Q) + Hpn“L Hw H 7(9 R3 >||b(p")L7211 dt

@)

Now, by using (9.3), (9.14) and (9.31) we can estimate the latter by

16(ps5) dt<c JT|a¢|dt+c
(Q,R3) Pl B ) TP S 2 0 Ot 3

T
ov
1 [ 15110l o 1Bz + Donlir @l 2,

(4) Similarly, we can estimate the fourth term by

T
| f L WV - VBIO(5)Y] da dt] < ¢ Vaun | 20,7 e [0 |2 0.1y x

where the latter is bounded uniformly in n, € and .

(5) Again by Hoélder’s inequality, the fifth term can be estimated to

T T
| j j ptin @ty < BIC(pS)] dardt] < e j 190 2 1 2y 165 L 0y

where g = 25—13 By (9.3), (9.4) and Sobolev embedding, this is again bounded uniformly in n, € and 1.
(6) To estimate the sixth term define

6
r= 7 7qzmax{l,7

3y !
5y —6

_ 37

6}7 p = max{2, 5
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Then we have

[ ] ontann = wa) - B2 = ¥ (05055 div )] daa
LU0 e (9.32)

< CL [onll () lun = wall Lo (o) IBIC(b(p7) = b/ (p5)p5) div un )]l (o) dt

Now, by continuity of the Sobolev embedding W4(Q2) — L"(2) we have

IBI(b(p5,) = ' (p5,)p5,) divun)]ll-o) < ea| BIL(b(p5,) = b (p5)p5,) div un)]lwraey
< el (b(p5) = V' (p5,)p5,) div | Lo
< es|b(pr,) = 0" (05,) Pl Lo o) | div un | 2 (o)

And consequently, by Sobolev embedding, (9.3), (9.4) and the assumptions on b and «, the right hand
side of (9.32) is bounded uniformly in n,e and 1. Note, that b'(z)z = ab(z) for all z > 1, and thus, b'(pS )05,
is bounded in LP((0,T) x ) uniformly in n and e.

(7) Similar, the seventh term can be estimated to

T T
| f j Ppn (1t — wn) - BIGreH (05))] de dt]| < ¢ j 9l eyt — o e el e
0 0
S é||r6”L2(O,T;L‘Z(Q))7

with

(8) By Holder’s inequality and the continuity of the Sobolev embedding W4(Q)) — L"(£2), where q and

r are as in (6), we have

T T
| f Lwn(un—wn)-Bde (b(p% )] da ] < e f 9l ey lltn = wnll o ey 0G0 am | e s
T
<e j 19l e — sy et | oy 1605 ey s

where p is as in (6), and by (9.3), (9.4), (9.1), the assumption on o and Sobolev embedding, the right hand
side is again bounded uniformly in n, € and .
(9) Finally, we have
T T .
| R O L ey R T P e P e e

and the right hand side is bounded uniformly in n and e.
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Summing up these results, we obtain

T T 01/)
f " f P(pa)b(p5) dz dt < (1 + |75 | p20.mie(ay) + f 12 ar)
0 Q o Ot
with
28
5= B+2

where the constant c is independent of n and e.
Now, choose a sequence 9, € CZ(0,T) with v, — 1in L'(0,T) and Sg |%1f| dt < K for some constant K
to obtain

T
J L p(pn)b(py) dzdt < (1 + |ryllzzo,;L(2))
0

And finally letting ¢ — 0 and using Fatou’s lemma, we conclude

J ' j P(pa)blpa) dudt < ¢

0

for some ¢ independent of n.
O

Remark 9.4. The estimate (7) in the preceding proof is the reason for introducing the artificial pressure term
5np”.

For later use, we show the following immediate consequences:

Corollary 9.5. We have

p(pn) — p(p) in LI((0,T) x Q), (9.33)

where ¢ > 1 is as in the preceding Proposition.

Proof. Since p(p,) = pn(pn) — 2p5, it is enough to show that
(P
—ph—0in L((0,T) x Q).
n

Let f, := n_%pn. Then, we have

In7 fullro,myx) = lenllLomxa) < c

and consequently, f,, — 0 in L'((0,7) x ), and in particular, we have this convergence in measure with
respect to the Lebesgue measure. Since

I frllLoago,myxa) < ¢
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for some ¢ > 1 by the preceding Proposition, Theorem 3.31 implies f,, — 0 in L?((0,T) x ). O

Corollary 9.6. The functions (p,u) solve the following equation:

T
0 N
J Jp(u—w)-a—f+pu®u:V<p+p(p)div<pdwdt
0 (9.34)

:fjﬂy(w&):Vsoﬂm-V(w-w)dxdt—LCI'@(Ov')dgf

for all o € CZ([0,T) x Q;R3).

Proof. Relations (9.3) - (9.11) and Proposition 9.3 together with (9.2) are sufficient to pass to the limit in
the weak formulation of the momentum equation (8.17) and consequently we obtain (9.34).
O

9.3 Stability of the effective viscous flux

With (9.34) in mind, the major task left is to show that the weak limit p(p) is in fact equal to p(p). In a

first step we prove the so-called weak stability of the effective viscous flux:

Proposition 9.7. We have for all b€ C}(R) satisfying (8.10)

PIOG0) — (3 + )b Qv = p(p) 5(2) — (5 + m)b(p) div u (9.35)

where p(p) denotes the weak limit of p(p,) in LI((0,T) x Q) for some q¢ > 1 as in Theorem 9.3 and

Pn(pn)b(pn) — p(p)b(p) in L*((0,T) x Q), (9.36)
b(p) div u in L*((0,T) x Q), (9.37)

b(pn) — b(p) in Cyu([0,T]; LP(Q2)) for all 1 < p < oo. (9.38)

b(py) div u,, —

for a certain o > 1, again passing to a subsequence if necessary.

We start with the following Lemma:

Lemma 9.8. There exists a subsequence of (py,un) such that (9.36)-(9.38) and

b(pn)un — b(p)u in L*((0,T) x Q) (9.39)
(b (pn)pn = blpn)) divun, — (V' (p)p — b(p)) divu in L*((0,T) x Q) (9.40)

hold for all b e CL(R) satisfying (8.10).
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Proof. Relations (9.38) and (9.39) have been proved in Lemma 9.2. Relations (9.36), (9.37) and (9.40) for
all b e C}(R) satisfying (8.10), can be shown similar to Step 4 in the proof of Lemma 9.2: Let

Cy (R)

X :={be CL(R) : b satisfies (8.10)}

and choose a countable and dense subset ¥ € X. The usual estimates and Theorem 1.2 yield that there is
a subsequence such that all three relations hold for all b € Y. For an arbitrary b € X, approximation yields

the desired conclusion.
O

We now pass to the subsequence described in the Lemma above. To prove Proposition 9.7, we use test

functions of the form

on(t, ) = (£)0(x) Al€b(pn)]

where ¢ € C(0,T), 9, € CF (), be C*[0, ) satisfying (8.10) and the inverse divergence A is defined in

Definition 2.20, in the momentum equation (8.17), and test functions of the form

o(t, ) = (1) () A[Eb(p)]

in the limit equation (9.34). We need the following Lemmata:

Lemma 9.9. We have for all 1 < p,q < o0:

A[€b(pn)] = A[€b(p) in L*(0,T; Wh9(Q,R%)),
A[€b(pn)] — A[€D(p) in LP(0, T; C(Q,R%)),

ALV (pn)pn = b(pn)) divun] — A[(V'(p)p — b(p)) divu] in L*(0, T; WH*(Q, R?)),

—_

passing to a subsequence if necessary.

Proof. Since A : LP(Q) — C(Q;R3) is a compact operator for all p = 3 and £b(p,,)(t) — &b(p)(t) in LP(£2)
for all t € [0,T] we get A[¢b(pn(t))] = A[€b(p)(t)] in C(Q,R?) and Lebesgue’s theorem yields the second

relation.
By Corollary 2.24 we have A : L4(Q2) — W4(Q) continuously and therefore

IALED (o)l o 0,7:w 10 (2,r3)) < I1€0(Pn) | L (0,7;L0(02,R3)) < €

for all ¢ > 1 and this shows the first relation.
The statement about A[(V'(pn)pn — b(pr)) divu,] follows similar. O

Lemma 9.10. We have

8,:b(p) + div(b(p)u) + (V' (p)p —b(p))divu =0  in D'([0,T) x R3) (9.41)
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for all b e C'([0,0)) satisfying (8.10).

Proof. This follows immediately by passing to the limit in the renormalized equation of continuity (8.16).
O

Lemma 9.11. The limit equation (9.34) and the momentum equation (8.17) are satisfied respectively with

@ and p, as test functions.

Proof. To prove the statement concerning ¢,,, it is sufficient to show ¢, € WH2((0,T) x Q). By Theorem
2.24 we have ¢, € L*(0,T; WhH%(Q)), thus it is left to show 0.A[b(p,)] € L?((0,T) x Q,R3). For g =
(gi)izl’g,g € C?(((LT) X Q;R?’) we have

@ AIED ()] f | Atebio - aigazar
where {.,.) : D' x D — R denotes the duality product for distributions.
We have d;A[v] = A[d;v] and 0., A[v] = A[0,,v] whenever v € C1((0,T) x Q). Indeed, the first statement
follows immediately from the differentiability of integrals with respect to a parameter, the second follows

from the fact, that differentiation is a multiplier operator (0., ~ —i¢;) and thus commutates with A. Thus,
by Theorem 2.23 and by using the renormalized equation of continuity (8.16), we get

T T ‘
—f f A[Eb(p)] - 09 dar it :f f b(pn)ds (€Ai(g'))) da dt
0o Jo 0o Jo
T
=J J E(V' (pn)pn — b(pn) divuy,) Ai(g") dzdt
0o Jo
T
[ o (€9 A + Ve Al doct
J J [ £V (pn)pn — b(pn) divun)] -gdxdt
J J div(A[b(pn)unt]) - g + A[b(pn)un - VE] - gdaz dt
Because of div(A[b(pn)uné]) = b(pn)uné, the last integral shows
A[Eb(pn)] = A| £ (b (pn)pn — b(pn) div Un)] — b(pn)un€ — Ab(pn)us - VE] € L*((0,T) x Q) (9.42)

and this shows ¢, € W12((0,7T) x Q).
Finally, we show the statement concerning . By the previous Lemma we have

A[¢b(p)] € L0, T; W2 (€ R3)).
Furthermore, we can estimate the right hand side of (9.42) in the usual way to deduce that 0;A[¢b(py,)] is

bounded in L2((0,T) x Q). Since A[¢b(p,)] — A[£b(p)] in D'((0,T) x Q) we have 3, A[¢b(p,n)] — 0 A[Eb(p)]

109



in D'((0,T) x ), and this is enough to infer that any accumulation point of 9;.A[£b(p,)] in the weak-
L%((0,T) x Q) topology agrees with 0;A[¢b(p)]. We deduce 0,.A[¢b(p,)] — 0:.A[€b(p)] in L2((0,T) x ©2). In
particular we get d; A[¢b(p)] € L2((0,T) x Q). O

Finally, we can prove Theorem 9.7.
Proof of Theorem 9.7. Step 1. We use

en(t, ) = P()0() A[£(pn)]

as test functions in the momentum equation (8.17)

O0on
J Jpn Up — Wy) - e "t Pty @ Uy Vo, + pulpn) div g, dodt

(9.43)
J L (Vuy) : Voo + pptg - V(wy, - @) de dt.
Q
Similar, we use
p(t, x) = p(1)9(x) A[Eb(p)]
as a test function in the limit equation (9.34)
J f (u—w —+pu®u Vo + p(p) div o da dt

(9.44)

=J J L (Vu) : Vo + pu - V(w - @) de dt.
Q

We show, that in fact most of the terms in the momentum equation converge to their counterparts in the

limit equation. Then we infer that the remaining parts in the momentum equation converge to the remaining

parts in limit equation, and this will be precisely the statement of the theorem.

Step 2. By straight forward calculations, we obtain the following formulas:

J J Py, - &On dz dt —J JQ 9= ;Pntin A[€b(pn)] — D pntin - 0;A[ED(pp)ul,] d dt+
Jo jQ — Y ppuy, - (.A[b(pn)un -VE + ALV (pn)pn — b(pn)) div un]) dxdt
=: 24: Ti1

f f U - —dxdt=j (pru A[€b(p)] — D pu - 6; A[€b(p)ui] da dt+

0

jo j —9pu - (Ab(p)u - V€] + A[W () — b(p)) div ) da
=1
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By Lemma 9.9 and (9.7) we have T} — TTC1 for k € {1,4}. By Lemma 9.8 and Corollary 2.24 we have
T — TT)} Thus, only the behaviour of the term Ty for n — 00 remains unclear.

T Opn 0
fo L - 2% it = f f Dpnn - (5 ATeb(pn)] + 0 ATEbpn)u]) dr

f f Ipnwn - (— A[b(py)un - VE] + ALV (pn)pn — b(pn)) div u,]) dz dt

g ((— AT V1 + AT p = S divad ) d

g
,[ f pw - — dx dt = JTJ ( A[¢b(p)] + waiA[fb(p)ui]) dz dt
L
4
2

By Lemma 9.9 and (9.9) we have T — Ti,f for k € {1,4}. By Lemma 9.8 and Corollary 2.24 we have
T2 — T2. Thus, the behaviour of the term T3 for n — o0 remains unclear.

T T
J J Prln @ Uy : Vo, drdt =J, J’ YIpptn @ up, : VA[EV(pr)] dz dt+
0 Ja 0 Ja
T
|0, #palin @) s (Algbio)) @ V9) o
0 Ja
2
- Zle

T
J f YIpu@u : VA[ED(p)] dz dt+
0 JQ

T
J J pu®u: Veodrdt
o Ja

T
JO L Yplu®u) : (A[Eb(p)] ® V) dz dt

By Lemma 9.9 and (9.11) we have T3 — Tig’ as n — o0. Thus, the behaviour of the term T} for n — oo
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remains unclear.

LT Jﬂpn(pn)divwn dz dt :JTJ wpn(pn)(ﬂgb(pn) + VY- A[gb(pn)o de dt

2
LT
T o B
Jo J'Qp(ﬂ) divpdz dt =J J (19£b + V9 - A[gb(p)o de dt
17

By (9.30) and Lemma 9.9 we have T4 — T as n — oo. Thus, the behaviour of the term T} for n — o

remains unclear.
T T
J J S (Vuy) : Vo, dzdt :J f L (Vuy) : (VI @ A[Eb(pn)]) dao dt+
0 Ja 0 Jo
T
J J’ PI&(n + %V) div uy, b(p,) do dt+
0 ; Q
QJ J vipy(VVI) 1 (un ® A[b(pr)]) da dt+
0 Ja
T
QJ J v div u, VO - A[Eb(pyr)] dz dt+
0 Ja
T
QJ f vip€b(pyn,) VU - uy, da dt
Q

T5

K3

Mo o

Il
—-

7

LTJQY(VU) : Vodadt —J

T
J PIE(n + %V) divub(p) dz dt+
0 Q

S

f L (V) : (VI @ A[Eb(p)]) de dt+

T
2J J VH(TVD) ¢ (u® A[EB0)]) de dt+
0 Jo
T
QJ J vip divu Vo - A[¢b(p)] de dt+
Q
T —
QJ J vipéb(p) VY - udx dt
0 Jo
5
ST
i=1
By (9.4) we have . (Vu,) — % (Vu), divu, — divu and u, — u in L*((0,T) x ). These relations

together with Lemma 9.9 imply T} — T" as n — o for k € {1,3,4}. Relation (9.39) immediately implies
TP — T2 as n — 0. Thus, the behaviour of the term TJ for n — oo remains unclear. Note at this point
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that the statement of Proposition 9.7 is precisely
I —>T714—T725 as n — .

Finally, we have:

0 Jo 0 Ja
T
|, | o (At T, )) ara
=: 22: Ti6
r T
f J pu - V(w - @)dzdt =f f Yipu - (w - VA[E(p)]) du dt+
0 Ja 0 Ja

J Ypu - (A[Eb(p)] - V(Yw)) da dt
0o Jo

From Lemma 9.9 we infer

for all a.e.t € (0,T). Since
Vw, — Vw a.e. in (0,T) x Q
we have
V(wpV)(t) = V(wd)(t) a.e. in
for a.e. t € (0,T), and by Lebesgue’s theorem we infer for a.e. t € (0,7)
V(w,9)(t) = V(wd)(t) in LI(Q).

This gives rise to

(A[Eb(on)IV (wa?)) () = (ALED(P)IV (w)) (2) in L7 (%),
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for a.e. t € (0,T). Since
H(A[éb(pn)]V(wnﬁ))(t)IIL%(Q) SIALb IO 22y [V (@R (@) <
for a.e. t € (0,T), Lebesgue’s theorem yields
A[Eb(p)]V (wn9) — A[Eb(P)]V (wd)  in L2(0,T; L77(Q))
and since by Lemma 9.2
Prln — PU in L*(0,T; L%(Q))

we deduce T9 — Tiz6 as n — 0.
Step 4. We show that T — T? — T} — T? as n — oo. Thus, we have to show

T
Jim . (0 L P (U Ri 5 [€b(pn)ug ] — wpul Ri i [€6(pn)]) da dt =
jo v L P90 (W R: S [ED(p '] — ' Ry 5 [€5(p)]) da .

where the double Riesz operators R, ; are defined in Definition 2.20. We have

f puld R {[€b(p)ui] dz = f Ri i [pu 0l JEb(p ot
Q Q
| s B d = | Roslovad B
Q Q

and consequently, we have to show

T
im || (R [0paud)6b(pn) — Ipntih Ras[€b(pa)]) dardt =
Q

n—xL 0

T (9.45)
L ¥ L ! (R [9pu7 €b(p) — 9pu R 5[€b(p)]) da

By (9.27) we have for a.e. t€ (0,7
(Bpnul)(t) — (Ipu?)(t) in L7771 (Q),

and by (9.38) we have for a.e. t € (0,7

Eb(pn(t)) — €b(p(t)) in LP(S2)

for all 1 < p < o0. By virtue of Lemma 2.25 we have for a.e. t € (0,7)

Z(t) == (Ri[9pnu]€b(pn) — Vpnuf, Rii[€b(pn)]) (8) — Z(t) := (Ri;[9pu’1€b(p) — Ipu’ R ;[€b(p)]) (2)
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in LP(Q) for all p < 2 Using the usual bounds on p, and w, and the continuity of the double Riesz

y+1
operator R; ; we deduce that Z,, is bounded in LP(Q) for all p < 2—7 uniformly in ¢ € (0,7) and n.
Now, choose p such that g <p< 2+1, this is pos51ble since fy > % From the above results and the

compactness of the Sobolev embedding LP(Q2) — W~12(Q), we deduce for a.e. t € (0,T)
Z,(t) = Z(t) in W12(Q).
and consequently, by Lebesgue’s Theorem,
Z, — Zin L*(0,T; W 12(Q)).

This, together with (9.4) gives rise to (9.45).
Step 5. We show T2 + T8 —TZ + TS. Thus, we have to show

tm [ v j Dputtn - (VALED (o )] — VALED(pn)Jun) da dt =

" o (9.46)
J @ZJJ ﬁpw VA [b(p)u'] — V.A[fb(p)]u) dx dt

We can use Lemma 2.9 to deduce that
= VA[€b(pn)uy,] = VA[ED(pn)] - un
is bounded in L2(0,T; W14(R3 R?)) for any 1 < q < 2. Indeed, a direct calculation shows

div(Wy) = Ri,; [gb(/’n)]aju; = &b(pn) div uy,
curl(W,,) = 0.
By the continuity of the Riesz operator R;; we have R; ;[£b(p,)] bounded in L*(R) for all 1 < s < o
uniformly in ¢ € (0,7). Consequently, R; ;[£b(p,)]0;u’, is bounded in L?(R) uniformly in ¢ € (0,7 for
1 < ¢ < 2. Since £b(p,,) divu, is bounded in L?(0,T;L4(R)) for 1 < ¢ < 2, Lemma 2.9 yields that W,, is
bounded in L?(0,T; W4(R3,R3)). Thus, we have
W, = VA;[€b(p)u'] = VA[Eb(p)]u in L2(0,T;W9(R%R?)),

since by continuity of the double Riesz transform this convergence holds in L% ((0,T") x £2) for any 1 < ¢ < 2.
This, together with (9.9), shows (9.46).
Step 6. To sum up the above results, we have proved

4 4 2 2 5
T+ Y TP+ T+ T - ZTS ZTﬁ ZT DITZ4 Y TP+ T+ Y TP+ ) 19
=1 1=1 1=1 3 3 i ]
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and, equations (9.43) and (9.44) in mind, we deduce
S —>TT4—T725 as n — 0.

We have proved Theorem 9.7. O

9.4 The renormalized solution

The goal of this subsection is to show the following result:
Proposition 9.12. The limit functions u and p solve the renormalized equation of continuity (8.16).

Since Proposition 9.1 states that

0
67[2 +div(pu) =0
’u,|pQ = 0
p(0) = po
in D'((0,T) x R?), our task is to show
J J ——i—b (p)u-Vodadt
(9.47)
J J (t'(p)p — b(p)) divu ¢ dzdy — f b(po)p
for all p € CZ([0,T) x Q) and all b satisfying (8.10).
To show this, we introduce the following family of cut-off functions
z
Ti(z) := kF(E) (9.48)

where T' € C*(R) is an arbitrary concave function satisfying
I'(z) = z for z < land I'(2) = 2 for z > 3.

We can use Proposition 9.7 to prove the following Lemma:

Lemma 9.13. There is a constant ¢ independent of k such that
limsup |Cx(pn) = Tr(p) | 2r+1(0,1)x0) < ¢

n—>aL

for all k € N.
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Proof. Since I'(z) < z, we have

c1(p(2) = p(y))(Ti(2) = Tu(y)) + 2 = |Ti(2) = Tu(y)™

for all y,z > 0 and some constants c¢1,co > 0 independent of y, z and k. Furthermore, since z — p(z) is

convex and z — I'y(z) is concave, we have

[ [ @0 - sonrato) - T asar > .

Therefore, we get

limsup [Tk (pn) — Tx(p) ”Zﬁl((o T)xQ)

n—

< limsup f | @0 =) Tt ~Tito >>dwdt+c2+c1f | G0 = p(o)) (Tutp) = Tio)

n—oo

T
= ¢ lim J P(pn)Tk(pn) — p(p) Ti(p) dz dt + c2
~ Q

T PR
< lim f f Pa(0n)Tk(pn) — P(2) Tn(p) de dt + ca.
Q

By virtue of Proposition 9.7, we obtain

1 lim J f Po(p)Ck(pn) — P(0) Ta(p) da dt + ¢

n—x

n—oL

4
=cl(§u+77 hmf f div u, Ty (pp) — divul'y(p) dz dt + ¢

= ¢ ( V+’I7 hmj f Ti(pn) — Tr(p) + Tr(p) — Tr(p)) divu, dz dt + co

n—

4
< 2a1(3v + ) sup I div wn || £2((0,7)x02) thup ITx(on) = TPl 20,7y x0) + C2-
ne

Since sup,,ey | div un [ 2¢0,1yx0) < cand |+ 2(o,1yx0) < €ll*lLr+1(¢(0,7)x ), this yields the desired conclusion.
O

Furthermore, we can show strong convergence of the sequence I'y(p):

Lemma 9.14. We have

ITk(pn) = pullLacomyxa) <c- k777

for any q = 1 and any fized k € N. Moreover, we have

Ti(p) — p in LP((0,T) x Q), as k >

forall1 <p<~.
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Proof. Since (9.38) implies I'y,(pn) — T'x(p) in LP((0,T) x Q), we have

ITk(p) = pllLe(o.r)x0) < hnrrilgf ITk(on) = PullLe(0,1)x0)

and since I'y(z) = z for all z < k and z < T'p(z) < 2z for all z > k, we have the following estimates:

T
1
Hrk(pn) - pn”ip((o)T)XQ) < k’pJ;) JQ |%pn|p]l[%pn21] dz dt

Tt
< ka J‘Q |%pn|v]1[%p7121] dx dt

< kpivHPﬂ”Zv((o,T)ny

< kp—’Y -c

for some ¢ independent of k. This show the first assertion. If v > p, then the right hand side tends to zero
uniformly in n as k — oo, and this shows the second assertion.

O
Proof of Proposition 9.12. By Lemma 9.10 we have
8T%(p) + div(Ta(p)u) + (TL(0)p — Tx(p)) dive = 0 in D([0,T) x B?)
Let (§c)ee(0,1] be a smoothing sequence. By Lemma 2.29 we get
Orle # Ti(p) + div(ée = Tr(p) u) + & = (T4 (p)p — Tr(p)) divu) = r¥ in D'([0,T) x R?) (9.49)

where for any fixed k we have r* — 0 in L2(0,T;L%(9)) for any ¢ < 2 as ¢ — 0. Now, fix any function
b satisfying (8.10). Since & * Tx(p)(t) € C(R®) for all ¢ € [0,7] and u € L2(0,T; W, *(Q)), we have
div(ée # T(p)u) € L2((0,T) x Q). The terms & # (T (p)p — T'x(p)) divu) and r¥ are obviously integrable
functions on (0,7) x Q. Thus, ¢;& = Tx(p) € L1((0,T) x Q), and therefore & = T'(p) € WHL((0,T) x Q).

Consequently, equation (9.49) holds in the sense of weak derivatives and in particular we are allowed to

multiply the above equation with (& * Tk(p)). A straight forward calculation yields

O1b(€c # Ty(p)) + div(b(&e = Tk (p))u) + (b’(fe # Tr(p)(Ec # Tr(p)) — b(&e # Fk(p))> divy =

(9.50)
= V(& # Tk(p)) (& * (Ti(p)p — Ti(p)) divu) + V(& # Ta(p))re
in D'([0,T) x R?) and by letting ¢ — 0 we get
0tb(Tr(p)) + div(b(Tr(p))u) + (V' (Ti(p))Tr(p) = b(T(p))) divu =
(9.51)

V' (Tr(p))(Th(p)p = Ti(p)) div w)
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in D'([0, T) x R3).

By the strong convergence of I';(p) in LP((0,T") x ), the left hand side of (9.51) tends to

0:b(p) + div(b(p)u) + (¥'(p)p = b(p)) divu

in D'([0,T) x R?) as k — oo. Thus, relation (9.51) yields the desired conclusion, provided we can show

b (Tk(p) (T (p)p — Ti(p)) divu) — 0 in L'((0,T) x )

as k — oo.
Let M = 0 be such that b'(z) = 0 for all z > M. Denote

Qi :=|Tk(p) < M] < (0,T) x Q.

Then we have

T
|| | ST =T ) e

< I¥lze00m | jQ 7o) — T(p) div ul de dt
k
< [ £ (0,00) sup ln 20, 7w 2 (s im nf [T () pn = Tr(pn)ll L2 (Qu).
ne -
Corollary 3.30 implies that

”F;c(pn)pn - Fk(pn)HLz(Qk).

« 11—«
< ”F;c(pn)pn - Fk(pn)HLl(Qk)‘”F;c(pn)pn - Fk(pn)Hgﬂﬁl)(Qk)

where a = 72—*1
Y

(9.52)

(9.53)

We can estimate the right hand side of this inequality in the following way: On the one hand, we have

tim inf [T (pn) pn = Tk (pn) |1 (u). < liminf ([T (pn) = Donlrr@u) + lon = Telpn) 1 @)

(9.54)

< liminf (|T%(pn) = UL @) lonllzv(@u) + lon = Trlpn)l 1))

< inf(|pn o, ryxe) + D

<ec- k'Y
where the estimate

IT%(pn) = Ul (g, < B

can be proved exactly as the estimate |pn, — Ti(pn)|L1(q,) < k' in Lemma 9.14.
On the other hand, since I'} (2)z < T'x(z), we have
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”F:’c(pn)pn - Fk(pn)HL”H“l(Qk)
< Tk(on) v+ (Qu)

< Tk(pn) = Tr(P)l Lr+1(@u) + ITk(0) = T(P) [ Lr+1(@u) + 1T (P) L+ (1)
_1
< [Trlpn) = Tr(p)|Lr+2 @iy + ITk(0) = Th(p) [ r+1(Qu) + Mmeas(2) 757,

where the last inequality follows from the Definition of Q. By Lemma 9.13, we get

liminf [Cx(pn) = Tr(p)| 21 (Qu) + Tk(p) = Trlp)lLaw1(Quy < 2limsup [Tk(pn) — Li(p) |10 < €
Thus, we have

lim inf [T (pn) pn = Th(pn) [ L2+1(qu) < € (9.55)

where ¢ is independent of k.
Relations (9.54) and (9.55) together with (9.53) imply (9.52). This completes the proof of Proposition
9.12. O

9.5 Strong convergence of the density

In this section we can finally show the following crucial result:

Proposition 9.15. For a suitable subsequence, we have
pn — pin L*((0,T) x Q)

for n — oo.

Proof. We begin by introducing a family of functions

zlog(z) for0<z<k

*T
zlog(k)—i—zj %ds for z > k
k

Lk(Z) =
where the functions I'y(2) = kI'(%) are defined in (9.48). Then, we have L, € C*([0,0)) and Ly is convex,
since

I“/
=M>O, for £ < z.
z

1
Li(z) = ~> 0, for 0 < z < k, and Lj(2)

Furthermore, since L} (z) = log(k) + % for all z > 3k, we can write L;, in the form
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where 8; € R and by, satisfies (8.10). Finally, since 0 < I'y(s) < s, it follows directly from the Definition that
exp(—1) < Lg(2) < zlog(z).
Define the double sequence

Fok := Li(pn) — Li(p)

for n, k € N.
Step 1. lim,_,, F,, ;. By virtue of (9.3) and (9.38) we have

lim Li(pn) = Li(p) in Cy([0,T7]; L7(2)). (9.57)

n—oc

Thus, we have

lim F, = Li(p) — Li(p)

n—>aL

Step 2. limy_,, lim,,—,o F,, 5. Since (pn,u,) and (p, u) are renormalized solutions, we have

0t Li(pn) + div(Lk(pn)tn) + Ti(pn) divu, =0
0Ly (p) + div(Li(p)u) + T'k(p) divu =0

in D'([0,T) x R?).

Passing to the limit n — oo in the difference of the weak formulations of these two equations, we obtain

[ (Z0-nw) @
_[ Li(p)u — Li(p)u | - Vo da dt + t Th(p) divu — Tx(p) divu | drdt
0 JQ 0 JQ

for all ¢ € D(Q) and all ¢t € [0,T], where Li(p)u and I'y(p) divu denote the weak limits as in Proposition
9.7. The particular choice of ¢ =1 yields

| @G- Lo
= f JQFk(p)divud:vdt—Jot Lmdxdt.

0

By Proposition 9.7 we get

4 P me—
(zv+ n)f f T'(p) divudz dt
3 0 Jo

~ [ [ T - T s et + Gu+n) [ | ThG) divudedr
0 JQ 0 JQ

4 L
> (gy—i—n)f f Tk(p) divudazdt,
0 Jo
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where the last inequality holds, since

Ltfﬂfk(p)p(p)—m(p) p(p) dadt = hmff (P (pw) — P(2)) () das It

n—oC

> lim J J p(pn) — p(p))Ti(pn) da dt

n—xL

Therefore, we have

L(Lk(p) - J J Ti(p) — Tr(p)) div udz dt. (9.58)

By Definition of I'y, we have I';,(p) — p point wise in (0,7) x  and by Lemma 9.14 we have I'y(p) — p

point wise in (0,7") x 2, where the latter holds at least for some subsequence. Since by Lemma 9.13 we have

ITk(p) = Tkl(p) | 2o+1 (0,7 x0) < €,

and since v + 1 > 2, Lemma 3.31 yields 'y (p) — T'k(p) — 0 in L2((0,T) x ), and thus, the right hand side
of (9.58) tends to zero as k — 0.
On the other hand, since Lj are convex functions, we have

L(Lm — Lu(p)(t)dz > 0

and consequently

(Li(p) — Li(p))(t) = 0 in L' (Q) as k — oo (9.59)
for all ¢ € [0,T]. Thus, we have proved

lim lim F, x(t) =0 in L' (Q)

k—o0 n—oC

O

Step 3. Convergence limy_,., F), . Since Ly(z) — zlog(z) for all z > 0, we have F,,  — p,, log(p,) —
plog( ) point wise in (0,T) x Q for any fixed n as k — oo. Furthermore, we have (p,, log(py,))(t) bounded in
L*(Q) for all 1 < a <« uniformly in n and a.e.t € (0,T'), and consequently, Lj(py)(t) is bounded in L*(£2)

uniformly in k, n and a.e.t € (0,T). In particular, Lebesgue’s theorem yields

lim i = (palog(pn) — plog(p)) (1) in L°(2)

forany 1 < a <.
Step 4. Convergence lim,,_,, limy_,, F}, ;. Since p, log(p,) — plog(p) is uniformly bounded in L¥(2)
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for any 1 < a < 7y, we have

lim lim F,x(t) = (plog(p) — plog(p))(t) weakly in L*(Q2)

n—9w k—oC

for some function plog(p) € L¥(£2), passing to a subsequence if necessary.
Step 5. Our goal is to show plog(p) = plog(p). To show this, we can use Lemma 1.13 on the Banach
space L'(Q). Thus, we have to show that

lim sup || F, x — pn log(pn) — plog(p)] L1 (a)(t) = 0. (9.60)

k=% peN

Since
z — |Lg(2) — zlog(z)| = zlog(z) — Li(2)
is convex, we have

| Lk (pn) = pulog pulLr() = [ Li(p) — plog pllL1(q)-

Thus, it is sufficient to show

lim SuP”Lk(pn) Pn 10g(pn)”L1(Q)(t) =0. (9.61)

k=% pneN

Let

Let 1 < 8 <~ and let zg > 1 be such that log(z) < 2°~! for all z > 2y and let k > 2. Since Lj(z) = zlog 2
for all z < k and Li(z) < zlogz for all z > k, we have

sup || L (pn) — pnlog(pn)llLr(@)(t) < sup f pn log py dz,
neN N Py

ne

where ¢ > 0 is independent of n, and this shows the desired conclusion. Thus, by virtue of Lemma 1.13 we

get plog(p) = plog(p).
Since z — zlog(z) is strictly convex, Lemma 1.16 implies

pult) = p(t) i L'(Q)
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for all t € (0,7), and since p,(t) is bounded in L'(Q) uniformly in n and ¢, Lebesgue’s theorem yields

pn—p  in L*((0,T)xQ).

9.6 Conclusion

We can finish the proof of Theorem 9.1. To show p € C([0,T]; L'(2)), choose a smoothing sequence (§e)ee(o,1]

and define p, := & # p. Then p. is smooth in the space variables for all e. By Lemma 2.29 we have
aﬁe s (= : / 3
¥ +div(peu) =1 in D'((0,T) x R?)

with r. = 0 in L1((0,7T) x Q). Now, we have for ¢, € (0,1]

0 . .
~1pe = psl + div(ulpe — psl) = sgnlpe — ps)re —rs) in D(0,T) x R?)

and by using ¢ = p(t) € CF(0,T) as test function we deduce
0 oy
ot lpe — ps|da = | sgn(pe — ps)(re —rs)dz  in D'(0,T).
Q Q

Since p.(0) = ps(0) we get

T
swp | o= poldo < | [ Ir = raldeat,
te[0,7] Jo 0 Ja

where the right hand side tends to 0 as €,0 — oo and consequently (pc)cg(0,1] is a fundamental sequence in
C([0,T]; L*()). Since p. — p in L'((0,T) x Q) we have p. — p in C([0,T]; L*(2)) and in particular we
have p € C([0,T]; L(Q)).

In view of Lemma 9.2, we have proven that the limit functions (p, u) satisfy (1)-(3) from Definition 8.8.

By Lemma 9.12, the limit functions satisfy (4) from Definition 8.8.

Passing to a subsequence for the last time, we can assume p,, — p a.e. in (0,7) x Q. Consequently, we
have p(pn) — p(p) in L'(R) and consequently p(p) = p(p). The limit equation (9.34) then gives rise to (5)
from Definition 8.8.

Finally, since @,, — @ locally uniformly on [0,00) and p, — p a.e. in (0,T") x Q, we have Q,,(pn) — Q(p)
a.e. (0,7) x Q. Since by Lemma 8.6 and Proposition 9.3, we have @, (p,) bounded in L((0,T) x ),
Theorem 3.31 yields @, (pn) — Q(p) in L"((0,T) x Q) for all » < ¢g. Now, it is routine to check that all
terms in the weak formulation of the energy inequality converge to their respective counterparts.

Theorem 9.1 has been proved.
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10 Equations driven by stochastic force

10.1 General results

We return to the stochastic Navier-Stokes equations. Recall that the initial data (pg, q) and the noise w are
random variables on some regular topological probability space (O, B,P). Assume that the initial data and

the noise are of the form

(po,q) : O —C
w:0—->W

for some spaces C and W and the solution (p,u) is of the form
(pu) : O — X

for a suitable space X. We start by giving an explicit description of those function spaces in such a way that
on the one hand Theorem 9.1 yields the existence of solutions u(.,.,w) for a.e. w € O and consequently a

mapping (see proof below)
M:CxW — 2%,

where 2% denotes the power set of X', mapping (deterministic) initial data and (deterministic) noise to the
non-empty set of solutions. On the other hand, we choose the spaces C, W and X in such a way that
Corollary 3.33 yields a measurable selection of M.

We motivate and define the spaces for the initial data. First observe, that by writing

q
q = \/Po—F—
\F\/Po

the conditions (8.12) imply
2y
qe L1 (Q;R?).

Thus, in order for Theorem 9.1 to yield solutions, we need the function space for the initial value (pg, q) to

satisfy
Cc LV(Q) x LAt (Q).

For Corollary 3.33 to yield a measurable selection, we need the multivalued mapping M to have a closed
graph; in particular assume a sequence of initial conditions (pf}, ¢") that converge in C to (po, ¢) and assume
for each member of this sequence a solution (p",u™). Then the sequence of solutions has to converge in
X to a solution with the initial conditions (pg,q). Recalling the first part of the proof of Lemma 9.2 (see
also below) it is necessary to assume that the initial Energy is bounded, i.e. we assume there exists some
constant E such that

LlgP

E(po,q) := JQ 5 +Qlpo)dz < E

Po
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for all (po, q) € C. Finally, we assume the natural condition that the total mass does not depend on w € O,
i.e. we assume there exists some constant M > 0 such that

fpodIZM
Q

for all (po, q) € C, and, of course, the assumption that pg is non-negative. Therefore, we arrive at the following
definition:

C = {(po,q) € L(Q) x L>¥1(Q) | (8.12) is satisfied, | podz = M, E(po,q) < E}. (10.1)
Q

2
Note that C is a convex and closed subset of L7(Q) x L3+T (Q).
Next, we introduce the space W for the noise w. In accordance to Theorem 9.1, we assume

W< L*(0,T; Wy ™ (€, R%)). (10.2)

As shown below, it is not necessary that W inherits the norm of L*(0,T; W(}’”(Q,R:s)); in particular, for
the multi-valued mapping M to be closed, it would be sufficient to assume that VW carries a topology T,
which is finer than the weak-star topology of this space, and which has the property that convergence in
T implies the existence of some a.e. convergent subsequence. But on the other hand, we need W to be a
complete and separable metric space. Thus, we suppose that W carries a complete and separable metric dyy
such that

. o w, 2w in L*(0,T; Wy ™ (2, R3)),
wy, — w in d, implies

(10.3)
3 a subsequene, such that w,, — w a.e. in (0,T) x §.

Example 10.1. For a Banach space E # {0} the space L*(0,T;F) is never separable, but the space
C([0,T]; E) is separable iff E is separable. Thus, if the process w is continuous with respect to the time
variable, a possible choice for W is to start with some separable Banach space E continuously embedded
into W&’%(Q;RS), say, for example, F = Wg’p(Q;R:S) where 1 < k,p < o0 and k — % > 1, and consider
C([0,T7]; E). In the next section we shall see that one can even consider the space D([0,T7; E) of cadlag
functions.

Finally, we introduce the Space X for the solution (p, ). This is easy, because in accordance to Definition
8.8 we can define X as the Banach space

X := C([0,T); L*()) x L*(0,T; Wy *(Q; R?)). (10.4)

We are now ready to state and prove the main result of part 2 of this theses:

Theorem 10.2. Let Q € R? be a bounded Lipschitz domain and let C, X and W be the spaces defined above,
and suppose W carries an arbitrary complete and separable metric satisfying (10.3). Suppose further that
the pressure satisfies (8.7). Let

(po,q) : O —C
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and
w:0—>W

be random wvariables, where all spaces carry their respective Borel algebras. Then, there exists a random

variable
(pyu): O > X

satisfying the Navier-Stokes system in the sense of Definition 8.8.

Proof. We define the multi valued mapping

CxW—2%
(po,q,w) — {(p,a) € X|(p,u)is a solution}

assigning to each triple (po, ¢, W) € C x W the set of solution in the sense of Definition 8.8, where 2% denotes
the power set. By Theorem 9.1 the set M(po, ¢, W) is non-empty for all (pp,q, W) € C x W. We show the

existence of a measurable selection M of M, i.e. a measurable mapping
M:CxW—-X

such that M(po, q, W) € M(po,q,w). Corollary 3.33 yields such a measurable selection, provided we can
show that M posses a closed graph. Therefore, let (pf, ¢, w™, p™, u"™)pneny € C x W x X be a sequence such
that (p™,u™) € M(pg, ¢",w™) for all n and

(pg”qn’wnvpn’un) - (ﬁba&awaﬁaﬁ) in C X W X X'

Our task is to show, that (p, @) is a solution of the Navier-Stokes equation with initial condition (g, ¢) and
noise w. By passing to a subsequence, we can assume all five convergences pointwise a.e. in 2 respectively
a.e. in (0,7T) x 2. Moreover, we can assume Vu, — Vu and Vw, — Vw a.e. in (0,T) x 2. Our assumptions
on W, C and X are precisely what we need to repeat almost verbatim the the proof of Lemma 9.2. Indeed,
there are only three differences between Lemma 9.2 and the present situation, which could cause trouble:
first, in the present situation, the initial data may depend on n, secondly, w is not as regular as in Lemma
9.2, and finally, we do not have the artificial pressure term (represented through the § quantities). But the
facts that the initial data (pj,¢™) is bounded in L7(€) x L%(Q) and the initial energy is bounded are
clearly enough to overcome the first problem, and neither the regularity of w nor the artificial pressure term
have been use in the proof. In particular, we deduce that p™ is bounded in L*(0,T; L7(Q?)). Now, this is
clearly enough to infer that all quantities in the weak formulation of the equation of continuity (8.16), the
equation of momentum (8.17) and the energy inequality (8.18) converge to their respective counterparts.
Thus, we have shown that (p, %) is a solution, and this yields the claimed closeness of the graph of M and
consequently the existence of a measurable selection M.

Finally, if (po, ¢, w) is a C x W-valued random variable, we can define the desired solution:

(pvu) CZMO(pQ,q,U/) 0 X
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10.2 Application: Lévy processes

In this section we apply Theorem 10.2 to Lévy processes. The hardest part, i.e. the choice of W, can be
done due to the following preliminaries.

Let E be an separable Banach space. We consider the Space of cadlag functions D([0,T]; E). Since
cadlag functions are always bounded, one may consider the uniform norm on this space, but D([0,T]; F) is
not separable with this norm. One possibility to overcome this problem is to consider the Skorokhod metric
on the space D([0,T]; E). The idea of this metric is as follows. Two functions x,y € D([0,T]; E) are ,near to
each other” in the uniform metric, if the graph of x can be carried onto the graph of y by a uniformly small
perturbation in the space coordinates (i.e. in E) while the time coordinate is kept fixed. The Skorokhod
metric on the other hand also allows uniformly small perturbations in the time variable ¢. To make this
idea concrete, we introduce the set A of strictly increasing, bijective and continuous mappings form [0, 7]
to [0,T]. In particular we have A(0) = 0 and A(T) = T for all A € A. Note that (A,0) is a group. Now we
define for ,y € D([0,T]; E) the metric

d(z,y) :=inf{e > 0 : IX € Asuch that |A(t) — t| < e and |z(t) — y(A(t))||g < € for all ¢ € [0,T]}.

One can easily check, that this defines a metric on D([0,T; E).
We sketch the proof that d is a separable metric: One can consider the (countable) set of those cadlag
functions of the form

K
Z ng[ak_l,ak)
k=1

with K € N, a;, € Q and ¢, € F for some fixed countable and dense subset F' € E. Since each z € D([0,T]; E)
has only finitely many jumps ,higher” then ¢ for all § > 0, the set of those functions is dense with respect to
the Skorokhod metric.

The problem is that this metric is not complete. But there is a complete metric dy such that d and dy
induce the same topology . We define for A € A

At) = Als)

L(\) :=sup P—

s#t

log

and for z,y € D([0,T]; E)
do(x,y) := inf {e >0 ‘ X € A such that L(A\) < e and |z(¢t) —y(A(?t))|g <€ for all t € [O,T]}.

Note, that the case L(\) = oo is allowed; those A € A do not play a role in the definition of dy. On the other
hand, if A : [0,1] — [0, 1] such that A(0) = 0 and A(1) = 1, then L(\) < co implies A € A.

Lemma 10.3. The metrics dg and d induce the same topology. In particular, dy is separable.

Proof. Denote the induced topologies by 7 and 7.
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Step 1. We show T < 7. Let do(z,y) < e < 1. Then we have for some A € A

At
log(1 — 2¢) < —e < log % < e < log(1 + 2¢)

and consequently |log$ — log %| < 2e. Since % < 1 and % < 1 and %log(m) > 1 for = € [0, 1], this

implies |A(t) — t| < 2¢T and therefore

if do(z,y) < i. Consequently, we have T C Ty.
Step 2. We show Ty € 7. Assume d(z,y) < € < £. For I < [0,T] and z € D([0,T]; E) define

S:(I) :=sup{|z(s) = 2(t)|e | s, ¢ € I}

and for § > 0 define

1<igr

T.(9) := inf{ max S.([tic1,t:))|reN, 0=ty <..<t, =T and t; —t;—1 > dfor all z}
We show that there is some A € A such that
lz(#) = y(A(D)le < Tule) + € (10.5)
and
LX) < 4e. (10.6)

for all ¢ € [0,T]. Choose 0 =ty < ... < t, = T such that S,([t;_1,%;)) < Tx(e) + € and t; — t;_1 > € for all
1 <i < r, and choose p € A such that supg,<r [|2(t) —y(u(t))| e < € and supg<,<r |1(t) —t| < €2. Define A
to agree with u at t; for all 1 <4 <7 and to be linear between them. Then A € A and therefore 1o\ € A,
and since u~! o A(t;) = t;, we have [t;_1,t;) = (1= o A)([ti_1,t:)). Thus, we get

|=(t) —y(A(B)le < () o AW)|E + Ja(u™" o A1) — y(\®) &
= [«(t) oAl + [x(A#) = y(uo AD)le
To(€) + €% < Ty(e) +e.

—x(p!
— (™!

/N

and thus, (10.5) holds.
Since A(t;) = p(t;) we have

|()\(tl) — )\(tifl)) — (tl — ti,1)| < 262 < QE(tl — tifl).
Because A is linear between t; jand ¢; this relation holds for all s,¢ € [0,1]:

[(A() = A(s)) = (¢ = )| < 2€(t = s),
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and consequently

log(1 — 2¢) < log < log(1 + 2¢)

A(t) — A(s)
t—s

and since € < 1 we deduce L()) < 4e, and thus (10.6) holds.

Relations (10.5) and (10.6) imply do(x,y) < 4e + T,(¢). Now fix x € D([0,T]; E) an let B%(x) be the
open ball with center x and radius € with respect to dg. Choose § < % such that 46 + T,,(6) < e. Then we
have Bg(z) € B (x) and consequently 7o S 7. O

Lemma 10.4. The metric dy is complete.

Proof. Let (z,,)nen be a fundamental sequence and assume without loss of generality do(xy, xn11) < 277
Choose uy, € A such that

1
SUp [l2n (1) = Zn1 (kn ()l e < 57

and

Define v)* € A by

m . _
Vp = Mn4+m+1 0 fntm © .- O fn+1 O fn.-

Then we have

Mn+m+1 (t)
T

Prtm+1(t)

t
s el

. t
—vy'|eqom) =sup ltntme1(t) —t] = ngpl < ngp |log —log T'

T
=T sgp |10g fin+m+1(t) —logt| < T - L(Mn+m+1) < nrm+1

and therefore we have
vpt — Ay in C([0,T7]).

for some A, € C([0,T]).
The limit A, satisfies A, (0) = 0 and A\, (T) = T. Since L(Ao u) < L(A) + L(u) for all A\, u € A, we have
for all s,t € [0,T], s # ¢

o (t) = vy (s)

v
log = — SLW™) < L(pn) + oo+ Litnem) <

anl :
By letting m — oo be deduce L(\,) < 2,1%1 < o0 an therefore A, € A. Since A\, = A\, 11 0 pp, we have

1

sup lyA (1) = Ynar (M1 ()6 = sup [9(8) = g1 (pn(s))e < 5

Consequently, x,, o A\,;! — x uniformly in [0, T] for some z € D([0,T]; E), an together with L(\,) — 0 we
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have do(zp,z) — 0. O

With this preliminaries we return to the problem of showing the existence of solutions to the Navier-Stokes
equation with Lévy noise. In view of Theorem 10.2 we define

E = WyP(Q)
where 1 < k,p < o0 and

3
k——->1.
p

Thus, F is a separable Banach space and we have the continuous and compact embedding
E < Wy (Q).
Now, let the space W be defined by
W= D([0,T]; E)

equipped with the metric dy constructed above. One can easily check, that W satisfies the conditions (10.2)
and (10.3).
Therefore, Theorem 10.2 yields

Corollary 10.5. Let Q < R® be a bounded Lipschitz domain. Let the pressure p satisfy (8.7), let the
initial condition be a C-valued random variable and let w be an E-valued Lévy process. Then the stochastic
Navier-Stokes equations admit a solution (p,u) in the sense of Definition 8.8.
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