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Abstract

Atom chips consist of microscopic current carrying structures that generate magnetic
trapping potentials for ultracold neutral atoms. These atom chips provide a high design
flexibility of possible trap geometries, making the creation of highly anisotropic trapping
potentials feasible. The resulting magnetic traps are characterized by a high isolation
from the environment and are used to create degenerate, one-dimensional (1d) Bose
gases. On typical experimental time scales, these 1d Bose gases can be described as
practically closed quantum many-body systems. By applying a rapid quantum quench,
the many-body system is brought out of thermal equilibrium and the resulting dynamics
are studied via the statistical properties of matter-wave interference measurements. These
measured quantum statistical distributions reveal that thermalization of this effectively
integrable 1d Bose gas happens in a two-step process. First, the system rapidly dephases
to a prethermalized state, characterized by thermal-like correlation properties, which
are still distinctly different from the true thermal equilibrium state. Second, on a much
longer time scale, the measured distribution functions indicate a further decay to the
true thermal equilibrium state.

Furthermore, by studying a highly non-equilibrium system via matter-wave interfer-
ometry, the underlying multimode dynamics, characterizing one-dimensional quantum
systems, are revealed. This thesis shows that these dynamics are essential in establishing
the prethermalized state and that its properties are defined by the quantum shot noise of
the splitting process.

In particular, this thesis discusses the experimental setup used to obtain degenerate
1d Bose gases, summarizes thermometry methods applied throughout this work and
reports the first direct experimental observation of prethermalization in a multimode
system, generated by a fast, phase-coherent splitting of a 1d Bose gas into a symmetric
double-well potential. Finally, the long-time evolution of the non-equilibrium system is
studied in detail in the 1d/3d crossover regime, strongly indicating a complete relaxation
into the thermal equilibrium state. This work confirms that the observed relaxation time
scales can be attributed to two-body thermalizing collisions, lifting the integrability of
the system.

In conclusion, this work aims at improving the understanding of quantum thermalization
processes in integrable and nearly-integrable systems in the 1d and 1d/3d crossover
regimes. Apparently, the general paths to thermal equilibrium in nearly-integrable
systems are indirect and complex. This work provides an in depth experimental study
of the relaxation dynamics of a highly non-equilibrium system, thereby addressing
fundamental questions of ergodicity and thermalization in the context of nearly-integrable
quantum systems.
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Zusammenfassung

Sogenannte Atom Chips bestehen aus mikroskopisch kleinen, stromfithrenden Strukturen,
die magnetischen Fangpotentiale fiir ultrakalte, neutrale Atomen erzeugen. Diese Atom
Chips bieten eine hohe Flexibilitdt der moglichen Fallen-Geometrien, die die Erzeugung
von stark anisotropen, effektiv eindimensionalen Fangpotentialen erméglichen. Die resul-
tierenden magnetischen Fallen zeichnen sich durch eine hohe Isolation von der Umwelt
aus und werden verwendet um entartete, eindimensionale (1d) Bose Gase experimentell
zu realisieren. Auf typischen experimentellen Zeitskalen kénnen diese integrablen Systeme
als praktisch abgeschlossene Quanten-Vielteilchensystemen beschrieben werden. Durch
einen schnellen “Quantum-Quench” wird das Vielteilchensystem aus dem thermischen
Gleichgewicht gebracht und die daraus resultierende Dynamik mittels Materiewellen-
Interferenz untersucht. Die beobachtbare Dynamik zeigt, dass Thermalisierung dieses 1d
Bose Gases in einem zweistufigen Verfahren geschieht. Zuerst dephasiert das System in
einen prathermalisierten Zustand, der zwar durch thermische Eigenschaften kennzeichnet
ist, aber immer noch deutlich von dem wahren thermischen Gleichgewichtszustand ab-
weicht. Erst auf einer zweiten, viel langeren Zeitskala bringen Zwei-Korper-Streuprozesse
das System in den wahren thermischen Gleichgewichtszustand.

Diese Arbeit beschreibt den zur Erzeugung entarteter 1d Bose Gase verwendeten
Versuchsaufbau, fasst die verwendeten Thermometrie Methoden zusammen und diskutiert
ausfiihrlich die erste direkte experimentelle Beobachtung von Préthermalisierung in einem
multimodalen System. Weiters wird die Entwicklung des Nicht-Gleichgewichts-Systems
auf langen Zeitskalen ausfihrlich untersucht. Die experimentellen Beobachtungen zeigen
Angzeichen einer vollstdndigen Relaxierung in den thermischen Gleichgewichtszustand. Ein
Vergleich der gemessenen Thermalisierungsraten mit existierenden Relaxationsmodellen
zeigt dass Zweikorper Stosse den treibende Mechanismus im 1d/3d Ubergangsregime
darstellen.

Das Studium eines Nicht-Gleichgewichts-Systems mittels Materiewellen-Interferometrie
ermoglicht eine direkte Beobachtung der durch Multimoden Dynamik charakterisierten
eindimensionalen Quantensysteme und fihrt langfristig zu einem besseren Verstédndnis
der stattfindenden Thermalisierungsprozesse in integrablen Quanten-Systemen in 1d und
im 1d/3d Ubergangsregime.

13



Chapter 1.

Introduction

“A mind needs books as a sword needs a whetstone, if it is to keep its edge.”
- Tyrion to Jon

In 1995, tremendous experimental progress in cooling techniques of neutral atoms led
to the observation of Bose Einstein condensation in dilute gases | , ,

|. This was the starting point of a new, exciting research field of atomic physics.
Numerous experimental tools to probe and manipulate the ultracold atomic samples
were soon developed. These ultracold systems are characterized by precise experimental
control and high tuneability of fundamental parameters as well as their good isolation
from the environment. Due to this high amount of experimental control, these ultracold
gases were soon recognized as ideal test setups for more complicated systems of similar
physics in the sense of quantum simulators as originally proposed by Richard Feynman
in 1981 | , ]'. One of the most prominent examples coming from
condensed-matter physics is to apply ultracold gases to study superconductivity and
superfluidity.

At first, the community focused mainly on studying equilibrium physics or small
perturbations from equilibrium states, where the calculations can still be based on per-
turbation theory. Further experimental and theoretical efforts were needed to extend the
work towards non-equilibrium quantum physics |

i ) )

9 9 9 I 9 9 ]7

which are much harder to model theoretically due to the involved vastly different energy
scales [ |, resulting in the need to formulate truly non-equilibrium theory de-
scriptions [ |. From an experimental point of view, these ultracold systems are

!simulating one complex quantum system with another

14



1. Introduction

ideally suited to examine non-equilibrium physics due to their good isolation from environ-
ment, their low energy scales and resulting slow relaxation time scales on the order of milli-
seconds as well as the ability to reproducibly create well-defined far from equilibrium states
in the experiment. Furthermore, it became possible to realize lower dimensional systems.
Especially, one dimensional (1d) systems have been the playground of theorists throughout
the last century [ | and now started to become experimentally feasible in ul-
tracold atomic systems | , , |. These 1d systems
show a high complexity and rich phyble [ , , ) |
and open the path to study fundamental questions in well controlled setups. One of the
most intriguing questions in the context of quantum statistics is how a non-equilibrium

state relaxes towards thermal equilibrium | , |
The aim of this project is to study the relaxation dynamics of an isolated quantum
system and, specifically, to understand the pathways and limitations of thermalization in
a nearly integrable Bose gas in the 1d/3d crossover regime | , ,
|. In classical statistical mechanics, thermalization and ergodicity are generally

accepted fundamental concepts | , |. For the special class of
integrable and nearly-integrable systems, the inability to relax to a thermal state has been
understood in terms of the classical KAM theorem [ |. However, how the concept
of thermalization and how the lack thereof in integrable systems can be properly translated
into quantum physics is still elusive | | and has led to the formulation of
the eigenstate thermalization hypothesis (ETH) | ) , | and
the quantum ergodic theory | , |, both valid for nonintegrable

systems. Relaxation of integrable quantum many-body systems is constrained by the
many involved constants of motions and is expected to lead to dephased quasi-stationary
states, described by Generalized Gibbs Ensembles | |. How small deviations
from integrability affect the relaxation and may ultimately lead to thermalization is
an important unresolved question, which has triggered a lot of theoretical attention
[ , ) , , | but is still lacking experimental
studies so far.

Interestingly, classical | | and quantum | , | statistical
calculations of isolated systems predict that the resulting pathways towards true thermal
equilibrium, are indirect and complex. Roughly speaking, these pathways can be differ-
entiated into two time scales, originating from different underlying processes. The first
process being in general associated with dephasing, the second process being associated
with particle scattering.

Thus far, experimental studies of highly non-equilibrium quantum systems near an
integrable point are scarce and do not show the onset of thermalization | .
This thesis demonstrates that the relaxation of a nearly-integrable Bose gas indeed
consists of two processes. First, a rapid dephasing process establishes a prethermalized
state | , , ]. Second, on much longer time scales,
scattering processes establish the true thermal equilibrium.

The phenomenon of prethermalization was first introduced in 2004 by J. Berges
[ | in the context of high-energy heavy-ion physics and has since been suggested
for a large number of other systems, ranging from the dynamics in the early universe

15
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1. Introduction

| to ultracold systems | , , , ,
|. Prethermalization is characterized by the rapid establishment

)

of a quasi-steady state, where some observables already exhibit thermal-like properties.
Prethermalization is understood as a long-lived fixed-point | | during the evolu-
tion, which appears for a large set of initial conditions. This thesis discusses the first
direct observation of a prethermalized state and continues with the study of the long
time evolution to a thermal equilibrium state.

Structure of this thesis

This thesis is structured as follows:

Chapter 2 reviews the relevant theoretical background of weakly-interacting Bose
gases in one-dimension on which the following chapters will rely on.

Chapter 3 emphasizes the experimental techniques used to create a Bose condensed
atomic cloud in an effectively one-dimensional trapping geometry on an atom chip.
The chapter starts with a summary of the experimental setup, continues with the
cooling procedure needed to achieve degeneracy and concludes with an insight into
atom chip technology.

In chapter 4, the various thermometry methods relevant for this work are reviewed.
Thermal gases obey the Maxwell-Boltzmann momentum distributions in free ex-
pansion, partially condensed samples make bimodal fits necessary and, finally, in
the case of quasi-condensates the strength of inherent phase-fluctuations are used
to determine the temperature.

Chapter 5 presents the main result of this work, the first direct experimental
observation of the prethermalization phenomenon and the underlying multimode
dynamics present in one-dimensional quantum systems. The quantum quench
creating a well-defined initial state far away from equilibrium conditions is explained
in detail. Matter-wave interferometry is used to study the resulting relaxation to
the prethermalized state. In particular, the full quantum probability distributions
are used to characterize the evolution of the system. The evolution is well captured
by a Luttinger-Liquid model, which shows that the system dephases rapidly to a
prethermalized state, a state showing thermal-like properties for some observables,
yet distinctly different from true thermal equilibrium.

Chapter 6 studies the long-time evolution of the prethermalized system in the
1d/3d crossover regime, and reports on the results of this work in progress. If
thermalization is present in the 1d system, it is supposed to happen on a second
much longer time scale than the rapid prethermalization. By going from the truly
1d to the 1d/3d crossover regime, thermalization due to two-body processes is
expected to happen on experimentally accessible time scales and indeed a second
loss of correlations is observed. A comparison to a two-body thermalization model
shows qualitative agreement.
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1. Introduction

o In chapter 7, the conclusions of the present work are discussed. Finally, an outlook
of possible future research topics is presented.
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Chapter 2.

Theoretical Background

“First you guess. Don’t laugh, this is the most important step. Then you
compute the consequences. Compare the consequences to experiment. If it
disagrees with experiment, the guess is wrong. In that simple statement is

the key to science. It doesn’t matter how beautiful your guess is or how
smart you are or what your name is. If it disagrees with experiment, it’s
wrong. That’s all there is to it.”

- Richard P. Feynman, lecture at Cornell University 1964

Abstract

This chapter focuses on the theory description of weakly-interacting Bose gases in one-
dimension (1d). It starts with a derivation of temperature and interaction dependant
regimes of uniform Bose gases with contact like interactions. The following subsection
continues to extend the theoretical description to finite-size, harmonically trapped systems,
which is more adequate to capture the conditions found in the experiment. The necessary
ingredients for the successful, experimental realization of an effectively 1d system are
presented and the properties of a 1d quasi-condensate, formed in a 1d trap, are discussed
in detail. Going back to a homogeneous description, a Bogoliubov approach is introduced
to derive the strength of phase and density fluctuations. The next subsection introduces
a low-energy Luttinger Liquid description of a 1d Bose gas, which is finally used as a
tool to model the evolution of interference patterns between two quasi-condensates after a
rapid quantum quench.
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2. Theoretical Background

2.1. Regimes of uniform one-dimensional Bose Gases

Let’s assume, we want to describe a system of N interacting Bosons of mass m in one
dimension (1d). Furthermore, let’s include 2-body interactions through the inter-atomic
potential Vi (z; — zj). The most general form of a Hamiltonian for interacting Bosons
placed in an external potential V,,; can then be written as

N K2 9?
H=— Z [2m 022 +Vve:vt Zz + Z ‘/mt ) (21)

1<j=1

with the atomic mass m, the reduced Planck’s constant s and z; being the position of
the ith particle.

To describe a uniform system we choose V.z: (z) = 0. In the ultracold regime, we
further assume that the exact functional form of Vj,; (2) can be simplified by a repulsive,

delta-function (point-like) potential Vin (2) = $6 (2), which is intuitively true if the
1/3

relevant scattering lengths' are much smaller than the inter-particle distance Mg

2mh?
mkgT

found in [ |. Thus by neglecting the short range inter-atomic physics, we arrive
at the well-known Lieb-Liniger Hamiltonian | ) ].

and

the thermal deBroglie wavelength \gg = . A more stringent discussion can be

N 2 2 N
A he 0 g
- J 2.2
Zi: 2m 922 2 Z: (2:2)
where g > 0 is the 1d coupling constant in Jm. The Lieb-Liniger Hamiltonian has been
shown to be analytically solvable and integrable” using a Bethe-Ansatz | |. Its

eigenfunctions are linear combinations of plane waves.
The interaction strength is characterized by the Lieb-Liniger parameter

mg

=2 2.3

which is the ratio of the interaction energy o gn and the characteristic kinetic energy per
2,2

particle o< B2k2 k ET" [ ], with the linear density n, defined by N = [ ndz

and approx1mating the mean particle separation via r = n™!, resulting in the estimate

for the mean wavevector k = n. For v < 1, interactions are small, leading to the
weakly interacting regime, whereas v > 1 corresponds to the strongly interacting (Tonks-
Girardeau) regime, where high correlations are present. Counterintuitively, the interaction
strength in a 1d system scales inversely proportional to the linear density n, due to the

in the ultracold regime s-wave scattering processes are dominant as higher order scattering processes
are essentially frozen out [ ]. For ® Rb in the F = 2, mp = 2 state as ~ 5nm, which
is much smaller than typical experimental values of A\gp = 0.4 — 1.4pm (20 — 200nK). Typical
experimental densities are 10** cm ™3, which gives typical inter-particle separations of 200 nm.

2It should be noted that also Hamiltonians for other functional forms of interactions have been shown
to be integrable. One example being the interaction potential Vn: = g(z — z')72, studied by
[ ]. As already mentioned, most relevant for our experiment parameters will be contact-like
interactions, so we continue with the Lieb-Liniger Hamiltonian.

19



2. Theoretical Background

10 ~ T T T T L]
32 Y
9 10 %&e\\ 0(?/ T
2 06’43,\ ideal Bose gas
© 4 th ¢~ —2
C 107 po e, J 1
5 CJu\ -
Qe a .
D 10 1 i \_"1\ e 1
9 Y TN
B o : TN
210 F quasi—condensate
10_2 ” |_3 I_2 I_1 0 1 2
10 10 10 10 10 10 10

Lieb—Liniger parameter y

Figure 2.1.: State diagram of a uniform 1d Bose gas based on [IKheruntsyan 05,
Jacqgmin 11].  The blue circle illustrates typical experimental parameters of v ~
0.001 — 0.01 and t &~ 200 — 5000, with linear densities n ~ 20 — 130 pm ™' and temper-
atures T' ~ 20 — 300 nK.

kinetic energy scaling with oc n?.

To study the Lieb-Liniger model at finite temperature, it makes sense to define the
temperature scale according to the degeneracy temperature

h2n?
- 2mkp’

At the degeneracy temperature Ty, the thermal deBroglie wavelength Ap = i//2mmkpgT
becomes approximately equal to the mean particle separation 1/n and the 1d Bose
gas becomes degenerate in the sense that quantum effects like discrete level spacings,
quantum statistics and particle indistinguishability become visible.

The interplay between effects driven either by temperature or by interactions, creates
three distinct physical regimes with totally different behaviours. Fig. 2.1 shows the
state diagram of a uniform 1d Bose gas following [Kheruntsyan 05], with respect to the
reduced temperature parameter

Ty (2.4)

T 1
- Tuy?
and the Lieb-Liniger parameter . The three main regimes are, the strongly interacting
(dark grey area), the weakly interacting (light grey area) and the nearly ideal Bose gas
regime (white area). The different properties of these regimes are briefly discussed in the
following.

¢ (2.5)
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2. Theoretical Background

The nearly ideal Bose-gas regime

At sufficiently high temperatures T' (t > max (7_3/ 2, 1)), the temperature dominates
over the interaction strength. The interactions between atoms can be neglected and the
gas can be well described as an ideal Bose gas in 1d (white area in Fig. 2.1). In thermal
equilibrium, the mean occupation numbers of the momentum distribution are given by
the Bose-Einstein distribution

1

ng = (2.6)
C
e -1
with the chemical potential p = g—ff in the grand canonical ensemble. Each momentum
state has energy I = h;’f, wave vector k = Q%n with n = 0, 1, 2, .. and the energy

scale has been chosen such that the ground state energy Fy is zero. The population in
the ground state ng is then given by ng = (exp (—u/ksT) — 1)~ !, which means that the
chemical potential has to be negative to ensure ng > 0.

For |u| < kpT, the gas becomes degenerate and Bose-Einstein statistics apply, where
the ground state can be macroscopically occupied, but only in the 3d case (see below).
This subregime is sometimes referred to as the degenerate Bose gas regime | |-
Considering ;1 = — |u|, the ground state population is approximately given by ng =~
kaT) lul-

On the other hand, for |u| > kT , the gas is non-degenerate and classical statistics
apply. This is the classical ideal Bose gas subregime [ |]. The ground state
population is then approximated by the Boltzmann distribution ng =~ exp (— |u| /k5T).

By summing eq. 2.6 over all momentum states k, the excited state density n., can be
calculated as | |

Neg = >w1lBgl/2 (eks%T) , (2.7)
with the polylogarithmic function g, (z) = Zzozl z—i, the argument of gi/, being the
fugacity z = ekBLT and the thermal deBroglie wavelength Agp = 'nngQT Eq. 2.7 leads
to a stark difference to the 3d case, where ne, = )\3#93/2 (e’%%T) [ |. Due to

the different behaviour of g1, and gs/,, there is no BEC phase transition in 1d. In
3d, the excited state fraction saturates via lim,_,; <g3/2 (z)) = 2.612, and the ground

state becomes macroscopically populated. In 1d, lim, <g1/2 (z)) = oo and no true

Bose-Einstein phase transition is expected to occur in an ideal 1d Bose gas® (compare
Fig. C.1), in agreement with the Mermin-Wagner-Hohenberg theorem, which forbids the
existence of long-range order in 1d and 2d systems | ) |. Fig. 2.2

3 A similar argument can be found by considering the scaling behaviour of the density of states (DOS)
of an ideal, uniform Bose gas. In the 3d case DOS  VE, meaning that by lowering the temperature,
fewer states are accessible and the ground state population has to increase, whereas in the 1d case
DOS « 1/VE, a temperature decrease merely affects the population of the ground state.
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Figure 2.2.: Comparison of the polylogarithmic functions gi/, (2) and gs/, (2). Due to
the different asymptotic behaviour of g1/, and gs/,, there is no BEC phase transition in
1d.

shows a comparison between the two relevant polylogarithmic functions, calculated using
the numerical approximation presented in appendix C.

At high enough temperatures, eq. 2.6 can be approximated by the Boltzmann distribu-
tion

1 &
ngp, = ——e*BT. (2.8)
AdB
The condition ¢t = y~2 marks the border between two sub-regimes, the purely thermal
Bose gas (T' > T,;) and the quantum degenerate regime (7' < T,), where the occupation
numbers start to follow the Bose-Einstein distribution of eq. 2.6 [ ]
In the classical regime nAgp < 1 and follows eq. 2.8, whereas in the degenerate regime
nAgp > 1 is valid | .

The strongly interacting regime

According to Fig. 2.1, for v > 1 and ¢ < 1, at low density and low temperature,
interactions are dominant (dark grey area in Fig. 2.1). Due to strong repulsive interactions,
the atoms become impenetrable. This leads to a fermionization of the Bosons as two
atoms cannot occupy simultaneously the same position in space, mimicking the Pauli
exclusion principle of fermions. On the other hand, the momentum distribution stays
bosonic. This impenetrable, bosonic gas is often referred two as Tonks-Girardeau gas
[ , |, which so far cannot be reached by our atom chip experiments
due the requirement of very low densities and very high trap frequencies. The strongly-
interacting regime is accessible in optical lattice experiments | , ],
where a second lattice is used to increase the effective mass m to reach v > 100.

The weakly-interacting, quasi-condensate regime

For atom chip experiments, experimentally readily accessible is the weakly-interacting,
quasi-condensate regime, for v < 1 and t < y3/2 (T < /7 -Ty), where both the
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2. Theoretical Background

interaction strengths as well as the temperatures are moderate (light grey area in Fig.
2.1). In the quasi-condensate regime, density fluctuations are suppressed by the repulsive
interactions and phase fluctuations are dominant. As we will discuss in section 2.3
the source of these phase fluctuations can be either thermal or quantum noise, which
again leads to two sub-regimes. Above t = vy~ (T > v -T,) the phase fluctuations
are governed by thermal noise, therefore this is called the thermal quasi-condensate

regime | ]. For very low temperatures (T' < v - Ty), below t = y~!, the phase
fluctuations are dominated by quantum noise and we are in the quantum quasi-condensate
regime | |. Obviously, at T' = 0, quantum noise is the only remaining noise
source.

This thesis mainly focuses on the physics in the quasi-condensate regime. Thus, the
next chapter will go beyond the uniform description used so far and present a more
realistic discussion on the experimental realisation of the quasi-condensate regime in
atom chip traps and give analytic expressions for important parameters like the chemical
potential, the density profile etc.
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2. Theoretical Background

2.2. The trapped one-dimensional Bose gas

The previous section described the case of an infinitely long and uniform 1d Bose gas
with a constant linear density, which is not realistically achievable in an experiment. In
the experiment, an effectively 1d system is created out of an elongated 3d system. In the
following, the tight harmonic confinement is chosen to be in the x, y-direction, which will
be referred to as transverse directions. Additionally, there will always be a very shallow
harmonic confinement in the z-direction, referred to as longitudinal axis of the elongated,
“cigar-shaped” cloud. The trapping potential is given by the expression

1 1
V(r) = imthT (a:2 + y2> + imwfonng, (2.9)

which is a good approximation for ultracold atoms in atom chip traps, despite fragmenta-
tion induced effects (compare section 3.3).

To take the longitudinal finite size of the trapped, non-uniform 1d Bose gas into account,
the local density approximation (LDA) is used [ ]. For a smooth density profile,
the system can locally be described as a uniform gas with an effective chemical potential
1 (2) = po — V () and an interaction parameter v (z) = mg/h’n (), characterizing the
local properties of the gas. The linear density n (z) is obtained from the 3d density via
the integral

n(z) = //dmdyn(x,y,z). (2.10)

For low temperatures the LDA is easily valid in the central part of the atom cloud
and may still work at the edges of the cloud, as long as the density profile stays smooth.
At T = 0 the LDA breaks down at the sharp edges | |, where the healing
length? ¢ is on the order of % , such that a uniform description is not applicable
anymore.

2.2.1. The quasi-condensate regime
Creating an effectively one-dimensional system with harmonic traps

For the experimental realisation of an effectively one-dimensional (1d) system, a highly
anisotropic harmonic trapping potential is used with the transverse trap frequencies
wir = wr = wy much larger than the longitudinal trap frequency wjong = w:, as illustrated
in Fig. 2.3b. This leads to a thin elongated atomic cloud, being tightly confined in the
transverse direction. In this context, the idea of 1d-ness is purely meant in a quantum
mechanical sense. For a longitudinal confinement orders of magnitude lower than the
transverse confinement, the transverse degrees of freedom can be essentially “frozen out”
and only longitudinal excitations are being populated®. On the other hand. the extension
of the wave function still remains three-dimensional, and is given in the transverse

4The healing length ¢ is the correlation length of density fluctuations in the weakly-interacting quasi-
condensate regime.|
Stypical aspect ratios of 1:200 were used throughout this thesis.
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Figure 2.3.: (a) Harmonic trapping potentials and (b) state diagram of a trapped 1d
Bose gas. Based on [Petrov 00] using a longitudinal trap frequency of wipng = 27 x 7
Hz. The filled rectangle denotes the typical parameter space investigated in this thesis.

direction by the ground-state oscillator width as = ’/%}r [D.S. Petrov 04]. Also the
scattering process remains its 3d character, since for scattering length as the condition
as < ay is typically valid.

To effectively “freeze out” the transverse excitations, all relevant energy scales need to be
much smaller than the energy of the 1st transverse excited state [Das 03, Kheruntsyan 05,
Bouchoule 07]

p < Ty (2.11)

kpT < hwyr, (2.12)

with the chemical potential ;4 and the temperature T'. This means, only the ground state
with energy B = %hww + %hwy = hwy, in the transverse direction is macroscopically
populated. Therefore, the dynamics can happen only in the longitudinal direction,
where many different energy levels are populated, besides the ground state at energy
Eéong :%lemg. This is the so-called quasi-condensate regime, as the ground state is not
macroscopically populated in all three spatial directions. This kind of condensation in
finite sized traps was first discussed in [[Ketterle 96a] and appears only for an interacting
Bose gas. True condensation happens on a second step, at much colder temperatures,
when also the longitudinal ground state becomes macroscopically populated as depicted in
Fig. 2.3a. The idea of a quasi-condensation seems to go back to Popov et al. [Popov 72]
in the context of superfluidity Bose gases in in lower dimensions. Further experiments,
confirming the existence of a quasi-condensate are [Dettmer 01, Hugbart 05].

Fulfilling both criteria (eq. 2.11) needs strong experimental efforts. In practice,
experiments fulfil the slightly less strict criteria of u < hwy- and kT < fiwy,.. Fortunately,
going from 1d to 3d is a smooth crossover [Armijo 11b], thus already for temperatures
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T and chemical potentials  on the order of the transverse trapping frequency wy,, the
system shows 1d like behaviour.

Properties of the trapped quasi-condensate

First of all, one should be aware that a harmonically trapped degenerate gas samples
multiple regimes due to the longitudinal variations in density. Throughout this thesis,
we will refer to be in the quasi-condensate regime, where strictly speaking only the
main, central parts of the cloud are quasi-condensed, while the edges will be in the
thermal, ideal Bose gas domain, according to Fig. 2.3b. Experimental densities reported
throughout this work, will be the peak densities.

A quasi-condensate shows no true long-range order, as the phase keeps fluctuating
along the longitudinal direction, due to the many populated longitudinal modes. As
we will motivate later, longitudinal density fluctuations are suppressed by the repulsive
interactions [ |, which has been observed in | |. Simplified, the system
can be thought of as consisting of many phase domains along the longitudinal direction.
Inside each domain the local phase is approximately constant. As we will see in sec. 2.3,
the size of these domains is given by the phase correlation length Ap = TiZZ”T Once Ar
becomes similar to the system size L, full long-range order is established and we are in
the true condensate regime. The finite size helps us here to overcome the limitations
of the Mermin-Wagner-Hohenberg theorem | , | and establish
phase coherence throughout the system. Thus, to reach the true-condensate regime, with
almost no phase fluctuations present, the temperature needs to be below

2h2n
Ty = . 2.13
¢ mkglL ( )

The degeneracy temperature Ty of a trapped 1d gas with N atoms is given by | ]
kpTy = Nhwiong. (2.14)

under the condition that kgTy < fiws.. Otherwise eq. 2.4 should be applied locally.
However, a real macroscopic occupation of the transverse ground state is expected to
occur at a colder crossover temperature T, defined by | , ]

kT, = m(];[]\])hfwlong- (2.15)

In the thermodynamic limit, limy_.o T, — 0, therefore it is not a phase transition
but a smooth crossover. To get a true phase transition other trap geometries would be
needed | .

Thus, the thermal noise dominated quasi-condensate regime extends in the temperature
range of T, > T > T,. Below T quantum noise becomes dominant. This regime is
hardly reachable in current atom chip experiments due to the very low temperatures that
would be required. For typical experimental parameters, Ty is on the order of Tj; = 10nK
in the single trap. The lowest achieved temperatures so far were around 7' ~ 16 nK,
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almost entering the true condensate regime. However, when splitting the trap into two
equal parts (for more details please refer to sec. 5.2), T, drops to about T, = 5nK
per part, assuming the atom number is exactly halved. For 6000 atoms, the expected
crossover temperature is T, =~ 340 nK in our typical single trap configuration and drops
to T, = 100nK in the split trap.

The 1d coupling strength

In the experimentally realized parameter space, the scattering length as is much smaller
than the ground-state oscillator with a;, = /A/mw. For 8TRb in the fully stretched
(F =2, mp =2) state, the triplet s-wave scattering length is a; = 98.99a9 ~ 5nm
[ |, with ag being the Bohr radius. For transversal trap frequencies in the
range of 27 x (10® — 10%) Hz, a; = 340 — 100 nm.

In the weak confinement limit | | as < a4, the interactions remain a three-
dimensional (3d) character and the 1d coupling g can be related to the 3d coupling constant
g3a = 4mh%as/m of the Gross—Pitaevskii equation [ |. Following | I,
the 1d coupling constant g is given by g = 2i%/mayy. For as < ay-, the 1d scattering
length a14, for the 1d potential U (z) = 46 (z), can be approximated as aiq ~ af./as
[ | by taking the average of the 3d interaction over the transverse profile

/ngd (r)dr = % n(z)dz. (2.16)

T Ay

Finally, this leads to

B 252 N 2h2a,

maiyg  maj,

= 2haswyy. (2.17)

In cases where the weak confinement limit as < ay, is not fulfilled, confinement-induced
resonances due to the emergence of bound states can be observed | ) ]

The o - Parameter

Following the description introduced in | |, the chemical potential p and 1d
density profile n (z) of a quasi-condensate can be calculated analytically by using a local
density approximation and optimising the local width in the transverse direction in
terms of minimizing the local chemical potential p (z). The results have been shown to
work even in the dimensional crossover region (u < fuwy) | |. Key parameters
are expressed in terms of a numerical parameter a, which is given by the equation

[ ]

2
N%“t’”> (2.18)

o3 (a+5)? = <15 5

a’long

with the total number of condensed atoms N. For typical experimental parameters
0b<a<3
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Longitudinal Quasi-Condensate Radius

Once, evaluating « for a given atom number N via eq. 2.18, the longitudinal radius
R = L/2 of the quasi-condensate is then given by the simple expression

2
a
R=-1"9/q. (2.19)
2ayy

Longitudinal Density Profile

The longitudinal density profile n (z) can be calculated via®

« 22 22
n(z) = T6a. (1 - R2) (a (1 - R2> +4> . (2.20)

The main difference between 1d Thomas-Fermi profiles and eq. 2.20 are the calculated
peak densities, which are slightly higher following eq. 2.20, in good agreement with the
experimentally obtained profiles (compare Fig. 5.3).

Chemical Potential

The local chemical potential p (z) with respect to the trap bottom at Fo = hwy, is defined
by

w(n(z)) = hwy ( 1 +4asn (z) — 1) . (2.21)
For n(z)as < 1, eq. 2.21 can be approximated by © = gn (z), which is exactly the result
obtained in [ | for the weakly-interacting Bose-gas.

Eq. 2.17 to 2.21 will be used throughout this thesis to calculate linear peak densities
and chemical potentials with respect to two measured input parameters, namely the
atom number and trap frequencies. The above equations were reported in | |
and a thorough discussion can be found in | , |.

Splease note that in [ ] a prefactor of 1/4 is missing.
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2.3. Correlation properties of a homogeneous quasi-condensate

Now, we come back to the simpler homogeneous case. By adapting a Bogoliubov
description of elementary excitations to a quasi-condensate, we want to study the
correlation properties and the strength of phase and density fluctuations and to verify
the statements made in sec. 2.2.1. The derivation of density and phase fluctuations can
be found in | , , | and shall be outlined in the following.
In 3d, a Bogoliubov approach splits the many-body problem into a mean field (con-
densate) part and the quantized Bogoliubov elementary excitations [ |

b =W + 0. (2.22)

Here ¥ is the bosonic field operator, with the mean field component ¥y, being the
condensate wave function i.e. in 3d the result of the Gross-Pitaevskii equation

L0 h?
il Wo (r,1) = —%VQ + 930 Yo (1, )7 | To (r,t), (2.23)
with the 3d interaction parameter g3q = %. In eq. 2.22, 5 accounts for quantum and

thermal fluctuations in other modes than ¥q. ¢ annihilates a particle in the ground state.
Assuming ‘5@‘ < |ao| the field equations of motion can be solved perturbatively. The
quasi-condensate case is again special, as a quasi-condensate has a no macroscopically
occupied ground-state. However, it has been shown in [ | that the a priori
postulated weak density fluctuations help to circumvent this problem.

Thus, for small density fluctuations and dominant phase fluctuations, the field operator
¥ can be defined, in a second quantization approach, as

Tt =\ /n(2) + 07 (2)e 9, (2.24)

with small fluctuations (d7) < n around the mean density n(z) = (UF (2) ¥ (2)) and
the phase operator ¢. The operators 67 and ¢ are conjugate [(Wz, é} =140 (2 —7') and
need to be coarse grained in space to avoid the divergence of # in small volume due to
quantum shot noise and to be able to properly define the phase operator qg [ .
Coarse graining here means the discretization of space into small cells of finite size.

Furthermore, only high energy excitations shall contribute to 6, with a momentum
cut-off defined by the condensate healing length £ = \/n% as ke = % The healing length
defines the length scale on which the condensate changes its density. The excitations can
be described as collective modes with momentum k&

T 1 PN 7 _—ikz
oy = ﬁ zk: (ukbkelkz — vkbze k ) , (2.25)

where E; creates the Bogoliubov quasi-particles, which are characterized by the coefficients
ug, V. These quasi-particle amplitudes fulfil u% — v,% = 1 and are connected to the
particle creation a;: and annihilation operators a via the Bogoliubov transformations
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Figure 2.4.: Measured Bogoliubov dispersion relation wj of a trapped ®"Rb BEC.
The transition from phononic (linear dispersion) to particle-like (quadratic dispersion)
excitations happens at the momentum cut-off k. = % Reproduced from | ].

b = upay + Z)kaT_k (2.26)

and

bl — ukaz + VpG_}, (2.27)

that eventually help to diagonalize the initial many-body Hamiltonian

2 7 T, s A A
= ;m/dzv\lf (Z)TV\I/ (2) + g;D /d lI,’r( )\I/T (Z/)V(Z—Z/)\I/(z)\li(z’), (2.28)

More details on the necessary approximations can be found in [ ].
In thermal equilibrium, the population ny in each Bogoliubov mode is specified by the
Bose distribution

s 1
ng = bLb = ——, (2.29)
ekBT —1
where, for ) = 2m ,
cx = hwy, = \/ B (Fx + 2gn) (2.30)

and gives rise to two regimes. For low k, the Bogoliubov dispersion relation of eq. 2.30 is
approximately linear wy ~ ck, with a speed of sound ¢ = /gn/m, which coincides with
the hydrodynamic result | ] = % = %%, where p = mn is the mass density,
P is the pressure and p = gn is the chemical potential. The repulsive character of the

interactions (¢ > 0) guarantees that wy € R. These low-energy excitations correspond to
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phonons, i.e. collective excitations of a large number of atoms, which was measured in
[ , |. For large k, the dispersion relation approaches the free particle
energy F and becomes quadratic. This corresponds to single-particle excitations with
velocities much larger then c¢. The transition from phononic to particle-like excitations
happens at the momentum cut-off k. = %, as confirmed by | | and plotted
in Fig. 2.4.

Using this Bogoliubov approach physical quantities of interest like the fluctuation
properties can be derived.

Coherence Properties and Correlation Functions

The normalized first order correlation function g(!) (z, 2’), determining the correlation
between separated positions z and 2’ of the Bose gas, is defined by

Tt (2) T (2
gV (z,7) = W (2.31)

Similar, the second order correlation function ¢(®) (z,2’), giving the probability of finding
a particle at z and simultaneously at 2/, is | ]

(0F (2) 0t () O () ¥ (2))

g? (2,2') = (2.32)
In terms of quantum optics, the first order correlation ¢ (z,2") gives the phase coherence
length of a laser and the second order correlation function ¢(® (z,2’) is a measure of the
intensity fluctuations of the laser field.

Due to the lack of long-range order, a quasi-condensate only exhibits second order
coherence (¢ (z,2') = 1), while the g(!) (z,2) is exponentially decaying, as we will
establish below. In contrast, a pure 3d BEC, having a constant, global phase, shows both
first (¢") (2, 2') = 1) and second order coherence | , .

In the ideal Bose gas regime, the g(!) (2, 2') starts at 1 (¢™) (0,0) =1 ), and decays
exponentially to 0 on a length scale of Ay5. For ¢ (z, 2'), one finds using Wick’s theorem
[ | and the commutation relation {\I/ (z), 0t (z’)} =0(z—2),

2

g? (z,2) =1+ ’g(l) (z,2")] (2.33)
which leads to bosonic bunching ¢ (0,0) = 2 at zero distances, as observed in
[ | for photons and in | | for a beam of ultracold atoms.

[ | measured the expected bunching behaviour for thermal atoms and, fur-
thermore, proofed that a phase-coherent 3d BEC has indeed a constant correlation
function. | | compared the bunching behaviour of bosons to the anti-bunching
of fermions, the latter having no classical analogue and thus can only be understood in
terms of quantum destructive interference. In quasi-condensates, bosonic bunching is
still present below the critical temperature, due to the lack of long-range phase coherence
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and the associated multimode nature of the source, as discussed in sec. 2.2.1. In this
context, correlation measurements have been performed in | | and led to the
establishment of a new thermometry method in the quasi-condensate regime, which will
be presented in sec. 4.3.

Density fluctuations

Following | , |, the density fluctuations dn can be expressed as
(65 2> Nai for quantum
2 3
n2 = %775 for kT < u thermal (2.34)
n d
%'y—% for kpT > u thermal

with the degeneracy temperature T, of a homogeneous system as defined by eq. 2.4. So
indeed for small enough temperatures 7' < Ty /7 (t < 7~3/2), the a priori assumption
of small density fluctuations (§7?) < n? is satisfied. Basically, this inequality gives
the definition of the quasi-condensate regime and dates back to | ]. Due to
their temperature dependence, the local density fluctuations can be used as a tool for
thermometry | | (see sec. 4.3).

Phase fluctuations

As we will see in chapter 5, probing the phase correlations has a high relevance for the
conducted experiments reported in this thesis. Therefore, the derivation of the phase
correlation length is presented in detail in the following.

To determine the characteristic length scale of the phase-fluctuations, let’s have again
a look at the first order correlation functions ¢(!) (z,2') of eq. 2.42. Using eq. 2.24,

g (z,2') can be further approximated according to | , | by
Vn(z)ei?:)=iel@) | (z’)> , .
D (2,0) ~ < ~ (i0E)710(0)) 2.35
As the Hamiltonian of eq. 2.2 is quadratic, Wicks theorem [ | <em¢> —e3 <(A¢)2>,
with A¢ = ¢ (2) — ¢ (0), can be applied and one finds
g (2,0) = o5 ((6(2)=6(0)*) (2.36)
To evaluate 3 <(q/) () — ¢ (0))2>, we follow the heuristic derivation of | | and
expand the local phase ¢ (z2) as
d(2) =2 > [¢ek cos (kz) + ¢gpsin (kz)] (2.37)
k>0

which leads to
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5 (6= 60)) = X G (cos (he) — 1P + Y. Rsin® (h2). (239)
k>0 k>0

For low-energy phonons, the local velocity v (z) is given by the velocity of a superfluid

v(z) = hV¢/m, and the kinetic energy term reads Lnh’k?¢3 /2m. Assuming high

enough temperatures such that the thermal mode population is large, classical statistics

can be applied and the equipartition theorem gives on average an energy of kBT per

quadratic degree of freedom, which gives for the phase fluctuation amplitudes
< k> Lnh2k2

Plugging this result into eq. 2.38 and using (cos (kz) — 1)? + sin? (kz) = 2 — 2cos (kz),
one finds

(2.39)

2 {(0(2) —0(0)?) = 2 BT 37 1= cos(z) (2.40)

k>0

Going from the discrete sum ) ;¢ to % fooo dk in the thermodynamic limit and using

L o 1— cos(kz)dk o

0 2 £Z results in

1 mkpT T
5<(¢<z>—¢<o>>2>: R (2.41)

leading to a pure exponential decay of the correlation function

g (2,0) = ¢, (2.42)
which defines the thermal phase correlation length A7 of a single quasi-condensate as

2h%n
mk BT '

Similar to density fluctuations, phase fluctuations can be used as a handy tool to
measure the temperature of quasi-condensates. This can be achieved by measuring the
phase correlation function of interfering quasi-condensates, thereby inferring Ar. However,
to determine the temperature of a single quasi-condensate, another method, relying on
density ripples in time of flight, is used heavily throughout this thesis. In fact, these
density ripples are produced by phase fluctuations present in the trapped system. The
details of this method will be presented in great detail in sec. 4.3.

Fig. 2.5 shows a comparison of phase and density fluctuations present in a quasi-
condensate of approximately 5000 atoms, placed in a standard trap as calculated via eq.
2.34 and 2.43. The density fluctuations include both quantum and thermal contributions.
The phase fluctuations include only thermal contributions. For the depicted parameter
set, the critical temperature T, (eq. 2.15) is on the order of T, ~ 290 nK and the total
longitudinal size L is approximately I = 100pm. As given by eq. 2.34, at u = kT,

(o)

T = (2.43)

density fluctuations become quadratically suppressed with temperature and tend
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Figure 2.5.: The normalized strength of density and phase fluctuations versus temperat-

ure is plotted at typical experimental parameters of n = 80um ™', wy = 27 x 2100 Hz

5A2
and wiong = 27 X 11 Hz. At pp = kT, density fluctuations <:2 become quadratically

suppressed with temperature and tend to the pure quantum noise level at T' = Tj,
where the true-condensate regime is reached.

~2
to the pure quantum noise level of <6T72 ) =/7=005at T =0K.
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2.4. Describing a 1d Bose Gas as a Luttinger Liquid

In this section, we want to simplify the Bogoliubov approach further by restricting us to
the linear, phononic part of the Bogoliubov spectrum at low-energy and treat the system
in terms of a quantum fluid approach. The respective formalism is called Tomonaga
Luttinger Liquid and has become a heavily used theoretical tool, which gives a universal
description of low-energy, many-body physics in 1d system with interactions. The current
form of the formalism goes back to the works of Haldane | , ]
and shall be outlined in the following.

2.4.1. The Luttinger Liquid Hamiltonian

At low temperatures, the Bose gas can be regarded to be in a liquid phase, where
only low-energy, phonon-like excitations are populated with a linear dispersion relation
wi = ck, as we have seen in Bogoliubov theory in sec. 2.3. This statement can be briefly
motivated by the following considerations. Introducing low-energy excitations into a
1d system of interacting Bosons will always lead to a collective response of the system,
due to the 1d constraints on particle motion and interaction | |. Therefore,
describing the system with respect to collective excitations leads to a linearisation of
the problem, where the collective excitations follow a linear (phononic) energy spectrum
in contrast to free bosons having a quadratic energy spectrum. In fact, this collective
nature of the excitations applies for fermionic as well as for bosonic systems and leads to
a so-called bosonization of the problem | |, which is, similar to Bogoliubov
theory, best represented with a continuous bosonic field operator

Gt (2, 8) = /p (z, t)e @D, (2.44)

with the density field p (, ¢) and the phase field ¢ (x, ¢) fulfilling the commutation relation
[p(x),d(2")] =id (x — a’). In second quantization, the Lieb-Liniger Hamiltonian of eq.
2.2 reads

. h2 PN f i araoa
i = Q/dzvquv\p+g/dz\11*\1/Tq/\p (2.45)
m

Applying eq. 2.44 and keeping only quadratic terms, thus omitting all higher order
contributions, leads to the Tomonaga-Luttinger Liquid (TLL) Hamiltonian | ]

i = % / dz [[;(V(b(z))Q + ;ﬁ?(z)} , (2.46)
with two phenomenological parameters ¢ and K. By adjusting these two parameters
to the specific problem, the TLL Hamiltonian is capable of describing the low-energy
behaviour of many different 1d systems, being either bosonic or fermionic, in the weakly
or strongly interacting regime. As will be shown later, ¢ represents the sound-velocity
and the so-called Luttinger parameter K represents the interaction strength of quantum
fluctuations. As we will see, the scaling of K with respect to the Lieb-Liniger parameter
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v will be given by K o y~1/2. The limit K — oo corresponds to a non-interacting Bose

gas. The other limit, K = 1, corresponds to a Tonks gas of impenetrable bosons.

Neglecting higher order terms in eq. 2.46 actually leads to a purely harmonic, integrable
theory, consisting of uncoupled harmonic oscillator modes with a linear dispersion relation.
The problem, given by the Lieb-Liniger Hamiltonian (eq. 2.2), has been linearised up
to a cut-off parameter and any unharmonic terms (beyond quadratic) are disregarded.
As discussed in the Bogoliubov description, this cut-off parameter for a condensed 1d
Bose gas will be given by the healing length £ as k. = % In the context of spin chains,
this linearisation leads to the separation of spin and charge waves, which is an ongoing
experimental effort | ]

In fact, the Luttinger Liquid can be regarded as a quantum hydrodynamics description
of a 1D system. One strength of the method is that it is not a mean field description, one
weakness being that it is inadequate to describe the high-energy structure | |
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2.5. Interference of two quasi-condensates described as
Luttinger Liquids

In the following, we intend to use the Tomonaga-Luttinger Liquid approach to model
the interference of quasi-condensates. Let’s consider the following situation that will be
relevant for the experiments reported in this thesis. Initially, a single quasi-condensate
shall be prepared that is in thermal equilibrium. At time ¢t = 0, the gas is rapidly
and phase-coherently split along the longitudinal direction. The splitting creates two
uncoupled separated quasi-condensates. The splitting acts like a matterwave beam
splitter, where each atom is in a superposition state of being in either one of the two gases.
As we will see later on, the rapid splitting process imprints strong, long-range correlations
into the system, which is in stark contrast to two independent thermal quasi-condensates.
This highly correlated system is allowed to freely evolve for a certain evolution time ¢,
after which the confinement is removed, resulting in the interference of the two gases.
Following | |, the dynamical evolution of these interference patterns can be
described by TLL theory, which is outlined in the following.

In the experiment, the interference measurement can be regarded as a homodyne
measurement that’s purpose is to give access to the relative phase profile, which is the
main experimental observable, probing the evolution of the created non-equilibrium state.

As we will see in chapter 5, the early evolution of the two quasi-condensates, after this
sudden quantum quench, is well captured by the purely harmonic TLL theory. Deviations
from the TLL predictions become visibly in the long-term evolution and are examined in
chapter 6.

2.5.1. Describing the Non-Equilibrium System

Let’s assume we have created a system of two uncoupled ultracold Bose-gases in the
quasi-condensate regime. Let’s further assume that the two gases can be described by
collective excitations, with only low-energy excitations being populated. The dispersion
relation is linearised up to the high energy cut-off k. = % and the 1d interaction strength
g is g = 2hwyras.

For each 1d Bose-gas, the Bosonic field operator can be expressed, similar to eq. 2.44,
as

Bl (2,8) = \Jpi + i (2, 1), (2.47)

now including small density fluctuations #; around the average, linear density p; and
small phase fluctuations Vgg. Similar to the Bogoliubov description, these variables are
again coarse-grained over a length scale larger than the spin healing length £&. The 4’s in
exponents will always denote complex number and should not be confused with integer
indices ¢ = 1,2 for the two gases. Assuming periodic boundary conditions and plugging
this Ansatz into the second quantized Hamiltonian of each subsystem
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)

I, = / dzl vl (2) v, (z)+g\1ﬂ (2) U (2) T, (2) O, (z)}, (2.48)

without any external potential V., (x) = 0, leads to the following low-energy effective
Hamiltonian

(2.49)

2m

= [ a [’m (Vi) + & (s (o)) + 22

The total Hamiltonian of the system being the sum of the two split parts of the system
f{tot = ffl + f{Q. (2.50)

In the experiment, the interference pattern can be recorded by switching off the
confinement and letting the two quasi-condensates interfere in free expansion. The local
phase of these interference fringes is a measure of the relative phase difference between
the left (1) and right (H2) gas. To be able to describe the interference measurements,
it is thus useful to switch to new variables. The local, relative degrees of freedom (DOF)
are

N

b (2) = 61 (2) — 2 (), (2.51)

Ny = (R — ng) /2 (2.52)
and the local, common DOF are

CZA)C (2) - QZA)I (Z) + &2 (Z) ) (2'53)

Ne = (ﬁl + ’flg) /2. (2.54)

The common and relative DOF are also referred to as symmetric and antisymmetric
DOFs or in context of electron systems as spin and charge DOFs. The new Hamiltonian
is then given by the sum of relative H,, common H. and interaction Hamiltonian Hj;,; as

Moy = Iy + I, + Hiy (2.55)
hQ (pl + ,02) 2 2
i, = / d [ o (Vdr) +gn? (2.56)
A R? (p1 + p2) 2 2
H. = /d [ v <V¢c> + gny (2.57)
ji - / dz {pl — P2 v@v(ﬁc] . (2.58)
4m

As can be seen in eq. 2.58, having the same average density p = p; = po in both
wells gives H;,; = 0, resulting in zero coupling between relative and common degrees
of freedom. Therefore, in a number balanced situation, the dynamics of common and
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relative DOFs are independent from one another. Under this condition, H, is sufficient

to describe the dynamics in the relative degrees of freedom, occurring after a sudden

quantum quench. These dynamics can then be probed by interference measurements.
Eq. 2.56 has again the form of a TLL Hamiltonian (compare eq. 2.46), as can be seen

= hCQ—K, with the relations ¢ = /22 for the sound velocity and

. m
K=" /0 = NG (2.59)

for the Luttinger parameter of the Bose gas. The TLL Hamiltonian consists of harmonic
oscillators | | and can be diagonalized by translating the problem into k-space,
using the Fourier transforms | ) |

by setting -

~ 1 ~ .
or(5) =% ijd)r,ke’ [q/)rk e <bik ~ by k) e ’“‘] (2.60)

k;éo

and

= \% Ek: T ™ o {ﬁr,k_o + kz: Vi (?’Ik + lA)ﬂ,k) eikT] , (2.61)
#0
with the total system size L and the bosonic ladder operators for creation Eik and
annihilation Br,k of collective harmonic modes with wave vector k = Qf”l, [=0,1,2, ...,
which fulfil the commutation relation [ZA)T,;C, Eik] = 1.

The TLL Hamiltonian in Fourier space is then given by [ ]

he K o1~ 12 m™ . 9
-5y T o] 7t (2.62)
with the equations of motion

d¢3 k cT

d;’ = =k (2.63)
dny. i cK
L et (2.64)
In terms of ladder operators, eq. 2.62 can be diagonalized to
hme 2

H.=>" hc|k|brkbm + S5 Mo (2.65)

k#0

The first term describes the phononic eigenenergy of each k-mode and the second term
represents the center of mass kinetic energy of the total system (k = 0 mode). Each
k-mode has a wavelength of A = 27 /k , a time scale of ~ 1/ch|k| and its energy oscillates
between the fluctuations of phase </A)T7k and density 7, (compare eq. 2.63 and 2.64). The
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population IA)LIA);C in each mode is conserved. The modes are uncoupled, which leads to
a dephasing of the modes over time. The &k = 0 mode leads to a global phase diffusion
due to interactions, which has been discussed extensively in literature, both theory wise
[ , , , , | as experiment wise
[ , , , |. Section 5.3 will show that it is exactly
the dephasing of harmonic oscillator modes, that describes the early rapid dynamics in a
phase-coherently split 1d condensate.

2.5.2. Initial State

In the context of TLL theory, we assume an infinitly-fast and phase-coherent splitting
process at t = 0. This rapid splitting creates a well-defined, non-thermal initial state
|1bo) of strong long-range correlations. All k-modes are in phase at ¢t = 0. Therefore, the
initial state is characterized by large relative density fluctuations 7, and small relative
phase fluctuations (£7'7k’ with the following expectation values | , ]

(o] 1 (2) A (27) [2bo) = %5 (z =2 (2.66)

(ol & (2) v (/) [th0) = 2;775 (= — 2, (2.67)

where p denotes the density in each gas p = p1 = po for a perfect symmetric splitting.
The squeezing parameter n accounts for an imperfect splitting process, resulting in a
squeezed initial state with too high (7 > 1) or too low (1 < 1) number fluctuations. By
decreasing the initial number fluctuations, the initial phase fluctuations will be increased
accordingly, keeping the area on the Bloch sphere constant.

The experimental splitting process and its connection to the TLL description is
discussed in detail in sec. 5.2.

2.5.3. Application

The Hamiltonian in eq. 2.65 can be solved analytically as shown in | ,

|. The results can be used to calculate the full probability distribution
functions (FDFs) of the two main observables of an interference pattern, namely the
relative phase ¢, and contrast C'. An extensive comparison between calculated and
measured FDFs in the time evolution after splitting a quasi-condensate will be presented
in chapter 5.
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Chapter 3.

The Experiment - Some Practical
Considerations

“There are two possible outcomes: if the result confirms the hypothesis, then
you’ve made a measurement. If the result is contrary to the hypothesis, then
you've made a discovery.”

- Enrico Fermi

Abstract

The experiments reported in this thesis were carried out with Rubidium-87 atoms in the
ultracold temperature regime (< mK). In this chapter, the experimental realisation of
cooling down to ultra-cold temperatures and achieving quantum degeneracy is discussed.
Section 3.1 presents an overview of the most relevant parts of the experimental setup.
Section 3.2 explains the experimental procedures, including tricks and tweaks, on how to
create a Bose-condensed sample, which is our starting point for studying the physics of
many-body quantum systems. Finally, typical technological problems of atom chips are
discussed in section 3.3.
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3.1. Experimental Setup Overview

This section features a brief presentation of the most important components of the
experimental setup. A more detailed description of the experimental setup may be found
in previous theses [vom Hagen 08, Gobel 08, Kuhnert 08, Gring 12a].

3.1.1. Vacuum System

Figure 3.1.: Vacuum setup and mounting of the atom chip. (a) Collection and science
chambers in their final setup, connected via a differential pumping tube. The atom
chip is mounted upside down in the center of the science chamber. (b) Similar view
of the vacuum setup, now with bias coils installed around the science chamber. (c)
Close-up of the science chamber, designed by the former PhD student Graf vom Hagen.
At the bottom, a 1 € coin gives an impression of the proportions. (d) Top of atom chip
mounting (38 x 39 mm), with the white Shapal™ (Shapal™ is a registered trademark of
Tokuyama Corporation, Tokyo, Japan) ceramic and the macroscopic copper structures.
(e) Side view of the atom chip mounting with a total height above the flange of 31
cm. Gold-coated atom chip on top. The “wings” are Kapton foils carrying copper
structures for additional radio-frequency and microwave manipulations of the ultracold
atoms.

The vacuum setup consists of two chambers, the science and the collection chambers,
connected via a differential pumping stage (compare Fig. 3.1a).
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The collection chamber houses the atomic dispenser sources', which are permanently
under operation. Thus, the typical pressure in the collection chamber is on the order of
108 mbar, which is maintained by an ion pump?.

A close-up of the, science chamber pre-installation is presented in Fig. 3.1c. This is the
chamber where the actual experiment takes place under UHV conditions at a pressure
of < 1 x 1071%mbar. The pressure level is maintained by the continuous action of an
ion pump? and the monthly activation of a Titanium sublimation pump. The special
design of the science chamber provides good optical access, especially in the transversal
direction. To date, four absorption imaging systems have been installed, two in the
transversal direction, one in the longitudinal direction and one in the vertical direction
(see section 3.1).

3.1.2. Atom Chip and Mounting

The science chamber houses the atom chip, whose surface faces vertically downward. The
atom chip is glued to a ceramic* mounting, containing macroscopic copper structures
and connections to the current feedthroughs. The whole mounting is UHV-compatible
and very rigid, to suppress mechanical vibrations. In contrast to other setups, there
is no water cooling installed in this mounting, so the atom chip is operated at room
temperature conditions®. The ceramic mounting acts as a heat sink for the generated
ohmic heat load of the microscopic atom chip structures, carrying currents of up to 1A,
as well as that of the macroscopic copper structures, which can carry a continuous current
of up to 60 A.

The atom chip structures are defined in a single layer of gold of 1.2 pm thickness on a
silicon substrate, covering an area of 29.7 x 35.7mm?. The central part of the chip is
coated with a transparent, 30 nm thick layer of SiOy. The coating protects the chip from
adsorption of Titanium or rubidium vapour, which has been reported in earlier setups
[ )

Conventional atom chips are made of gold, copper or silver. Gold is our material
of choice for the micro-structures. The micro-wires have to deal with high current
densities and high electric fields. Obviously, materials with a high electric and a high
heat conductivity are preferred. Even though gold has a slightly worse heat and electric
conductivity than copper or silver, it has been shown to feature a lower thermally
induced® magnetic noise amplitude (Johnson current noise) at a temperature of 300 K
| |. In this context, the term noise means AC fluctuations of the “static”
magnetic field of a metallic wire. Such fluctuations can cause trap loss (spin-flips),
population of excited states (heating) and coupling to the environment (dephasing,

dispensers for two atomic species are installed. First, commercial rubidium dispensers from SEAS
Getters, Inc. and second, home-built, enriched (*°K: 5,5%) potassium dispensers, which were not
under operation when taking data for this thesis.

*Varian 201/s Star-Cell ion pump

#Varian Star Cell 1501/s

“made of Shapal, due to its high heat conductivity of 100 Wm *K~!

®for normal metals Johnson current noise is not reduced at lower temperatures (see below)

Sbesides thermally induced noise, there is technical noise coming from the current supply stability
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Figure 3.2.: KRb atom chip schematics, not to scale. All values in pm. The coordinate
system has been chosen such that the y-axis points in the longitudinal and the x- and
z-axes in the radial directions of the microscopic atom chip trap. Details are discussed
in sec. 3.1.2.

decoherence). Interestingly, all three processes are proportional to the power spectrum
of the magnetic noise. Counter-intuitively, cooling normal metals does not lead to a
reduction of the thermally-induced magnetic noise, but rather to an increase at low
temperatures, the reason being the following: The power spectrum of the magnetic noise
is proportional to the ratio R =T/p | |, where T is the surface temperature of
the metal and p the surface resistivity, which scales linearly with 71" at high temperatures
(phonon scattering) and non-linear with 7" at low temperatures. In view of available
technology for the fabrication process (ease of evaporation, etching, electroplating) copper
and gold are somewhat equal. Gold becomes preferable to copper due to its high resistance
to corrosion and its high reflectivity (> 95 %), needed for the operation of mirror MOTs
[ : J-

The magnetic trap is formed by a DC-current-carrying straight trapping wire in
combination with a homogeneous bias field, which produces a 2d quadrupole confinement
along the wire. The trap is closed in the longitudinal direction by two sets of U-shaped
wire pairs.

The schematics of the atom chip are illustrated in figure 3.2. The two possible trapping
wires are depicted in the central region parallel to the y-axis. The main trapping wire
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is 100 pm wide and was used throughout the work on this thesis. The smaller trapping
wire has a width of 20 pm, allowing even higher trap anisotropies. Each trapping wire is
surrounded by a pair of smaller wires, the wires of each pair being respectively 30 um and
10 pm wide. These pairs are used to apply the radio-frequency dressing of the chip trap,
to generate a double-well potential in the radial x-direction. The longitudinal confinement
is provided by a set of 4 U-shaped wires, each 100 um wide. The dashed line depicts the
position of a copper H-shaped structure (beneath the atom chip), that is being 1 mm
thick. The straight leg of the H can be used to form a dimple trap. The other leg is
used to form the macroscopic copper-Z trap, which is slightly off-center with respect to
the four upper Us (as seen in Fig. 3.2). In principle, six different trap positions can
be realized using one of the trapping wires and different combinations of U structures.
Throughout the work of this thesis, only the trap closest to the copper-Z center was used.

It is actually the ohmic heating of the atom chip wires that limits the duration of the
chip traps to 2-3 seconds. Great care needs to be taken not to accidentally vaporize the
small gold structures and permanently damage the atom chip. Therefore, the resistance
of the wires is continuously monitored and, to be on the safe said, not allowed to increase
by more than 1% during one experimental cycle.

Custom built current drivers, supplied by 12V car batteries, are used to regulate the
chip currents with a maximum current of 2 A. To prevent any damage from malfunctioning
current drivers, additional resistors are connected in series, which limit the maximal
possible current flow close to the set value of each wire. Fast electronic switches allow
switch-off times below 10 us.

More details on the KRb atom chip and its fabrication process have been reported
elsewhere [ , ].

3.1.3. Bias Coils

Homogeneous magnetic bias fields are generated by three coil pairs in Helmholtz config-
uration | ]. These coils are made of hollow copper wires’, which are constantly
water-cooled, thereby stabilizing their temperature to 12°C. DC currents of up to 60 A
can be applied, generating magnetic field strengths of up to 166 G in the center of the
coil pairs. They closely surround the science chamber and are mounted on fiber-glass-
reinforced epoxy material®, as can be seen in Fig. 3.1b. Typical switch-off times for these
coils are below 50 s at a current of 5 A. The coils were manufactured by the in-house
workshop [ | and tested during the work presented in | |

The power-supplies’ of the bias coils are controlled in the constant voltage mode
via an analog channel of an ADwin'’ system. Using the constant.voltage mode of the
power-supplies to generate the static magnetic fields is preferable as the constant-current

"Wire-size: 4.4-4.45 mm; wire size with Kapton insulation layer: 4.6 mm; hole diameter: 2 mm; supplied
by S&W Wire Company http://www.swwireco.com/

8fiber-glass-reinforced epoxy EPG-GC-201, supplied and machined by Hippe, www.hippe.de

9 Agilent low noise laboratory power-supplies 665xA. Noise characteristics for 6651A between 20 Hz to
20 MHz: voltage rms = 300 pV and current rms = 25 mA.

1 ADwin-Pro, Jiger Messtechnik GmbH
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Figure 3.3.: " Rb Ds-line level scheme of the D-line with laser lock-points (reference)
and relevant optical transitions.

mode turns out to be noisier according to the specifications and according to heating rate
measurements in the magnetic trap. Even long-time temperature drifts were observable
in constant current mode. Thus, surprisingly the constant voltage mode turns out to
be better. Temperature drifts are suppressed by water cooling the bias coils and having
an air-conditioning present that stabilises room temperature to 1 °C and optical bench
temperature (flow box) to £0.5°C. The loffe field defining the trap bottom of the
magnetic trap needs to be stabilized as much as possible. To increase the stability of
the Ioffe field, a highly-temperature-stable 1 €2 resistor was added in series to the circuit,
increasing the total resistance almost by an order of magnitude. AC current noise and
DC current drifts are further minimized by this trick and the resistor can be used to
precisely monitor the Ioffe current as well, being one order of magnitude more sensitive
than a usual current clamp of 100 mV /A sensitivity.

Ambient stray fields are compensated by additional, non-water-cooled rectangular
copper coils, which are made of thin copper wire.

A set of three circular-shaped coil pairs, made of ribbon cable, are directly attached
around flanges of the DNCF40 viewports of the collection chamber. These coil pairs are
used to slightly shift the position of the collection MOT with respect to the resonant
transfer beam, thereby optimising the loading rate of the mirror MOT in the science
chamber.
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3.1.4. Laser System

The laser system consists of two home-built rubidium repumping diode lasers'! in a

master-slave setup (~40 mW optical power) and a commercial Ti:sapphire ring laser
system'? (~ 1.2W optical power) providing rubidium cooling, imaging and optical
pumping light. Both lasers are frequency stabilized to spectroscopy signals, where a
Pound-Drever-Hall lock is used for the Ti:sapphire ring laser and a lock-in method is
applied for the repumping master laser. Details on the locking schemes are presented in
[ ], the relevant lock-points for 87 Rb are illustrated in Fig. 3.3. Acousto-optical
modulators (AOMs) are used to precisely tune the laser frequencies in the MHz range to
the specific frequencies as required for different applications. These applications include
cooling and repumping for the collection and science MOTs respectively, optical pumping,
imaging, slicing'® and, last but not least, atomic transfer from collection to the science
MOT. The schematics of the laser system, installed on one optical bench, are drawn in
Fig. 3.4, here, for completeness, including the laser system intended for 4°K.

3.1.5. Imaging Systems

In total, four different absorption imaging systems have been installed, making it possible
to take images of the ultracold atoms from all three spatial directions. Fig. 3.5 shows a
3d CAD drawing of the science vacuum chamber with respect to the imaging directions,
which are labelled according to the axes of the cigar-shaped atom cloud, as introduced in
sec. 2.2. Therefore, longitudinal imaging, for instance, means that the imaging beam
propagates parallel to the longitudinal axis of the atom cloud. Thus, the beam integrates
along the longitudinal axis and the final image shows a 2d column density profile, with
the two remaining axes being the transverse directions. The atom chip and mounting
are shown in the center of the science chamber in Fig. 3.5. Gravity points downwards.
The chip surface faces vertically downward, so that the atoms do not hit the chip surface
after being released from the trap, but fall away from the chip surface under gravity.
As can be seen, the design of the science chamber has been optimised for the transversal
imaging direction, providing good optical access through the large vacuum viewports
(one a 10 mm-thick AR-coated quartz glass substrate, the other one being a 15 mm-thick
uncoated BK7 window, due to technical reasons | , , D.
The first lens of the high-resolution transversal imaging system is mounted on a motorized
translation stage'* outside the vacuum at a minimal distance to the window surface. The
distance between the atom cloud and first lens is approximately 48 mm resulting in a
numerical aperture of NA = 0.26. The home-built objective of the transverse imaging
system consists in total of four commercial lenses and has been designed by a former

" external-cavity laser in Littrow configuration

12Verdi V18 in combination with MBR (Monolithic Block Resonator) 110, Coherent, Inc.

13The shadow of a line target can be imaged onto the atomic cloud, pumping unwanted parts (longitudinal
edges) into dark states for the subsequent absorption imaging. This was the first approach to probe
the longitudinal length dependence of interference fringe contrasts. See | , ]

HOowIS
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Figure 3.4.: Schematic drawing of the laser system as it is implemented on the optical
bench as of 01.2013, including the *°K laser system for completeness.
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Figure 3.5.: Directions of the imaging systems with respect to the science chamber.
The atom chip can be seen at the center.

diploma student [Stix 08] using ray tracing software'® and rigorously tested [Ciring 12a].
The high resolution transverse imaging was mainly intended for in situ measurements of
the longitudinal profile of the atom cloud. Currently, it is mainly used to measure the
temperature of the quasi-condensate, as discussed in chap. 4. A second overview imaging
system with a significantly bigger field of view is also installed in the transverse direction
(see table 3.1). It uses the same objective as the high resolution system, just with a
different final lens. It suffers from the mechanical vibrations of a flip mirror, which is
needed to redirect the light onto a pixelfly camera [Gring 12a]. However, it is only used
for optimisation purposes when a large field of view is needed.

Besides imaging the large transverse viewports are used for the optical pumping beam
and the two reflecting mirror MOT beams, reflecting at 45° on the gold surface of the atom
chip. The other two horizontal mirror MOT beams, closing the MOT confinement, are
paraxial to the longitudinal imaging direction, making the installation of the longitudinal
imaging difficult but not impossible [Gring 12a].

For the longitudinal imaging, the distance between atom cloud and first lens is approx-
imately 115 mm with a calculated N A = 0.09. It can be used to probe the longitudinally
integrated interference patterns, thus giving access only to global?! but not local prop-
erties of interfering quasi-condensates. It is mainly used to measure the total number
balance between the two (horizontal) wells of the double-well system, or for Stern-Gerlach

157EMAX, Focus Software Inc., Tucson AZ, USA
21 This limitation can be overcome by using an optical slicing method. See [Smith 13, Cring 12a]
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patterns, transverse
trap frequency

Imaging system transversal | transversal longitudinal vertical
(high (overview)
resolution)
Camera Andor'® pixelfly!” Andor'® Andor
EMCCD*®
magnification 12.39 £0.04 | 1.68 4+ 0.01 5.30 £ 0.02 7.92
(meas.)

NA (calc.) 0.260 < 0.260 0.096 0.090
field of view [mm?] 0.7x 1 4x5.3 2.5 x 1.67 1x1
depth of field [pm] 5.54+0.9 - - -

(meas.)
rms PSF width ~ 2resp. ~ - 3.5+0.3 3.7+£0.2
[1m] 3%

pixel to nm 1.05 3.84 2.45 2.02

local
mainly used for temperature,| overview number balance of prope:rtles
measurements of longitud- double well, Stern of fringe
inal trap Gerlach, global patterns

frequency properties of fringe

Table 3.1.: Parameters of installed imaging systems (01.2013)

type of experiments |

!

The chamber design is definitely not advantageous for the vertical imaging system,
with a rather small viewport at the bottom of the science chamber and a distance between
atom cloud and first lens of approximately 150 mm. Furthermore, the imaging beam
needs to be reflected on the atom chip, which generates a second image of the atom cloud
and perturbs the image due to the chip structures. To overcome these two problems the
imaging beam is focused in the object plane and slightly tilted, so that it passes only
once through the atoms and illuminates a small region of the atom chip. We call this
method spotlight imaging, which works astonishingly well. For more details the reader is
|. This imaging system is of particular importance for
this thesis as it gives access to relative phase fluctuations along the longitudinal length
of the fringe patterns, which are generated by a horizontally split double well (see sec.
5.2). Most of the experimentally obtained interference patterns presented in this thesis
have been recorded via this imaging system.

referred to |

19 Andor DV435-BV-958
20800y ICX285AL

2! Andor iXon DV887DCS-BV
22 9um: in situ, 3pm: in time-of-flight due to limited depth of field (see | D
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Table 3.1 gives a summary of the absorption imaging systems.

3.1.6. Experimental Control System and Data Acquisition

The central experimental control unit, where all strings converge, is an ADwin?? real-time
system, with a SHARC-DSP processor running at 80 MHz, 512 kB cache and 128 MB
RAM. It feeds 32 analog-output (16 bit), 8 analog-input (16 bit) and 64 digital channels
and thereby controlling all relevant equipment during the experimental cycle. Before the
start of each experimental cycle, the ADwin is programmed over a TCP/IP connection by
a commercial PC, running a user-friendly graphical interface under MATLAB | ]
The time resolution of the cycle is 25 ps.

Data acquisition is performed simultaneously via a second commercial PC again
running a MATLAB code, which acquires, displays and saves the current camera data.
All acquired data is stored for post-processing together with a protocol file containing all
settings of the control program.

Recently, an additional National Instruments analog-input card?*, with 16 channels
(16 bit) and 250 kS/s multichannel sampling rate, was installed and is mainly used for
monitoring purposes.

3.2. Experimental Cycle - A Brief How To Create a BEC

This section provides a conceptual point of view on how a quasi-condensate is created in
an atom chip setup. A brief overview of the experimental cycle in the current setup of
the so-called KRb experiment is presented, including some tricks and tweaks that are
usually hard to find in the literature. More detailed studies and explanations can be
found in the references. A more quantitative description can be found in [ ]
Details of the laser system and double-MOT setup have been discussed in detail in

[ ’ ’ ’ ]

3.2.1. Experimental Cycle: An Overview

The experiment runs 24/7 and is operated in cyclic operation, where each cycle can be
regarded as one measurement for a specific parameter set. Each experimental cycle lasts
for approximately 30-40 s. In short, the experimental cycle can be summarized into seven
main steps.

« Laser cooling in a Magneto-Optical Trap (MOT)
o Optical molasses
e Optical pumping and loading of macroscopic magnetic trap

e Evaporative pre-cooling in macroscopic magnetic trap

B AdWinPro, Jiger GmbH
24NT USB 6218 BNC
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o Transfer into microscopic chip trap
o Final evaporative cooling to quantum degeneracy
e Imaging

This is a very simplified recipe to get to quantum degeneracy. The real nuts and bolts
will be presented in the next sections.

3.2.2. Magneto-Optical Trapping (MOT)

In the current KRb experimental setup a two-chamber double-MOT setup is used, where a
collection MOT feeds a mirror MOT (mMOT) | , | (the MOT created
below the atom chip, where the gold chip surface acts as a mirror for the MOT beams)
via a resonant push beam [ |. The main advantage of the double-MOT setup
is the achievement of UHV conditions in the science chamber, housing the atom chip
and where the actual experiments are performed. The better the vacuum, the lower the
collision rate with background particles and the longer the lifetimes of the generated cold
and ultracold atom clouds. Depending on the alignment | |, typical loading
times up to saturation of the mMOT take between 15 to 30 seconds. The three-beam
retro-reflecting collection MOT is loaded within 2-4 seconds from the background pressure
(10~8 mbar) in the collection chamber, generated by atomic dispenser sources. For details
on laser-cooling and trapping the reader is referred to | | and references therein.

When the atom number in the mMOT has reached saturation, or when the atom
number is high enough to reach quantum degeneracy (a value that needs to be found
empirically), the mMOT needs to be mode-matched to the magnetic trap, such that
the position and extension of the mMOT is matched closer to the ones of the initial
magnetic trap. This is the compressed MOT (cMOT) stage. This means that the
mMOT is compressed to a much smaller volume and the distance to the chip is decreased
significantly. The magnetic bias fields are increased to move closer to the chip and to
increase the gradient of the magnetic quadrupole field for the mMOT. Simultaneously,
the power of the MOT beams is increased and the detuning slightly adjusted. Again
optimal settings need to be found empirically by optimising the atom number loaded into
the magnetic trap. Small misalignments of the magnetic quadrupole reduce the number
of trapped atoms significantly. In the current setup, the compression ramp takes 21 ms
and the atoms are held in the cMOT not longer than 1 ms. As the density is increased,
the MOT loss rate also increases and, furthermore, the atoms start to heat up in this
tighter trap. Thus, the duration of the cMOT should be rather short.

3.2.3. Optical Molasses

In order to further cool the atoms, the magnetic fields are completely switched off and the
atoms are held in an optical molasses field, providing frictional forces on the atoms and
applying the so-called Sisyphus cooling scheme. The main optimisation parameters are the
detuning and intensity of the laser beams, the molasses duration and the compensation
of ambient magnetic fields, which need to be found in an iterative process.
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Typical detunings (from the rubidium resonance) of the molasses cooling beams
(50 — 70 MHz) are significantly higher than for the MOT beams. As a rule of thumb, at
least 2 to 3 times the detuning of the MOT cooling beams (15 — 20 MHz). In order not
to pump the atoms into dark states, some repumping light needs to be applied as well.

Typical durations are on the order of some (~ 8) milliseconds.

As the molasses is very sensitive to any remaining ambient magnetic fields it can, in
fact, be used to minimize these stray fields using homogeneous bias fields (compensation
coils). Stray fields of unknown strength might inhibit the successful magnetic trapping of
the atoms. For the initial molasses alignment, the following procedure is recommended.
All counter-propagating laser beams need to be balanced in power and optimally aligned.
Set the molasses time to five seconds and monitor its expansion and movement on a
camera””. The magnetic compensation fields are optimal, when the molasses cloud does
not display any translatory movement at all and expands uniformly in all directions. If
there is still a magnetic stray field present, the molasses will be pushed in one or another
direction. On the other hand, if there is still a slight light force imbalance remaining
in the laser beams, due to power imbalance or beam misalignment, it should be almost
impossible to get a uniformly expanding molasses. Thus, an iterative alignment process
of the light fields and magnetic fields needs to be followed.

After this first rough optimisation process, the molasses can be fine tuned by minimizing
the ambient magnetic field further. This can be achieved by scanning the compensation
fields and minimizing the molasses temperature | |. As the field of view of our
pixelfly camera was not sufficiently huge to measure the molasses temperature and the
Firewire camera was not yet available, we never applied this fine tuning step. We typically
reached molasses temperature below 50 pK, well below the 8" Rb Doppler temperature
Tp = 146 K.

3.2.4. Optical Pumping

Neutral atoms with a magnetic moment ﬁ can be trapped in a weak magnetic field via
, as given by the linear Zeeman effect, with the

the potential U = —/Ié = Mmpryrip ‘é
Bohr magneton up, the Landé g-factor gr and the magnetic quantum number mp. The
magnetically trappable states are low-field seeking states, fulfilling grmp > 0, where the
atoms are trapped in the minimum of the magnetic field. High-field seeking states cannot
be trapped in a static magnetic trap according to the so-called Wing theorem | ],
which is an application of the Earnshaw theorem | | on magnetic fields. The
Wing theorem shows that Maxwell’s equations forbid local maxima in current-free space,
while local minima are possible. States with mp = 0 are not affected by the magnetic
fields and thus cannot be trapped magnetically.

At the end of the molasses stage, the states of the atoms have some arbitrary distribution
among the possible hyperfine states. To maximize the number of trappable atoms, an
optical pumping scheme is applied, transferring most of the atoms into the desired

*Tn the KRb setup, a Firewire camera from ImagingSource (DMK 21BF04) is used for MOT and
molasses monitoring
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trappable state, which in the case of Rb®" is either |F, mp) = |1, —1), or |2, 2) respectively.
In the KRb setup, the latter F' = 2 hyperfine state is used, meaning that the molasses
generates atoms distributed in the manifold of 5 Zeeman sub-levels. Therefore, a factor of 5
is the theoretical limit of an increase in trapped atom number by optimal optical pumping.
In reality, a factor of 4 is typically found to be achievable. To define a quantization axis for
the atoms, an external bias field, parallel to the optical pumping beam, is linearly ramped
up before the optical pumping pulse is applied. The atoms are pumped into the desired mpg
state by applying o -polarized light, resonant on the 5512, F' = 2> — ‘5P3/2, F' = 2>
Rb® transition | |. The circular polarization allows only Am = +1 transitions,
whereas the spontaneous decay of the excited state allows all three Amp = —1, 0, +1
transitions. Over the course of many excitations, the atoms accumulate in the fully
stretched ‘551 2, =2, mp = 2> state, which is a state dark to the o T-polarized light. As

there is a small probability of atoms decaying into the ‘55’1 20 = 1> state, a repumping

beam, resonant at the transition ‘5S1/2, F= 1> — ‘5P3/2, ' = 2>, needs to be applied

as well (similar to during the MOT phase), effectively creating a two-level system.

The efficiency of the pumping pulse is determined via measurements of the trapped
atoms in the subsequent magnetic trap. The main parameters are the correct timing,
the duration and intensity of the pulse as well as the o™-polarization of the light. Only
small intensities (50 tW /cm?) should be used to limit the momentum transfer onto the
atoms. After the optical pumping phase, all light sources are switched off via AOMs and
mechanical shutters and the atoms are loaded into the macroscopic magnetic trap.

3.2.5. Loading into the Macroscopic Copper-Z Magnetic Trap

The atoms are captured in a shallow Ioffe-Pritchard type magnetic trap [ I,
typically formed by a macroscopic Z-shaped copper structure in combination with
homogeneous bias fields, the bias fields being generated by the water-cooled bias coils in
Helmbholtz like configuration (compare sec. 3.1.3). The principle is illustrated in Fig. 3.6.
The remaining offset field at the minimum of the trapping potential is called the Ioffe
field and prevents Majorana spin flips of the trapped atoms. The magnetic moment j of
an atom follows adiabatically the magnetic field as long as the magnetic field change is
small compared to the Larmor frequency wrarmor = B/h. Thus, to fulfil the criterion

1dB
WLarmor > EE’ (31)
a loffe field needs to be applied. A good estimate for the remaining loss rate I' in a Ioffe
trap is given by I" o< exp (—2wWLarmor/Wir) | , |. Here, wy, is the transversal

trapping frequency as defined by the curvature of the harmonic potential, which is only a
good approximation at ultracold temperatures. At cold temperatures the Ioffe-Pritchard
potential is better approximated by a linear trap as can be seen in Fig. 3.10, which
actually gives even higher thermalization rates when modelling the evaporative cooling
process [ |:
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Figure 3.6.: Wire geometries for creating macroscopic magnetic traps. (a) Superimposing
the magnetic field of a straight, current carrying wire with a homogeneous external
bias field generates a 2D quadrupole trap along the wire. (b) Bending the wires
into a U shape generates a 3D quadrupole trap, which is used for the mMOT and
cMOT. (c) Z shaped structures generate a loffe-Pritchard like trap without a magnetic
zero, preventing Majorana spin flips. Red dots illustrate the position of the minimum
of the magnetic fields and blue solid lines current carrying structures. Based on
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The Larmor frequency of 8"Rb in the F' = 2 state scales with 1.4 MHz/G, making
transverse trapping frequencies in the kHz range easily possible. For realistic values of
Broffe > 0.1 G and wy, > 200 Hz the Majorana spin flip rate is negligible.

In order to further improve the mode-matching between the capturing magnetic trap
and the cMOT, two parallel Z-shaped copper structures are used simultaneously, to
generate a very shallow magnetic trap. According to their cross sections, these structures
are referred to as the big (1 x 2mm) and small (1 x 1 mm?) copper Z’s . The purpose of
the big copper Z is mainly to create a bigger trapping volume in the initial magnetic
trap. Mode-matching means that the position of the trap center should match as close as
possible the center of the optical molasses, which is adjusted with the parameters of the
cMOT (see sec. 3.2.2). Furthermore, the steepness of the magnetic trap is defined by the
molasses temperature (<50 pK) and the width of the molasses o; in the i-th direction by

[ ]
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kT

Wi = R (3.3)

mo;

A trap, that is too steep, results in heating of the atoms, a trap, that is too shallow,
leads to a decrease in phase-space density. An asymmetric trap cannot fulfil eq. 3.3 in all
directions, so one has to find a compromise with a slightly too steep transverse confinement
and a slightly too low longitudinal confinement. In our case, this initial “capturing” trap
has calculated trap frequencies of about wirans ~ 27 x 50Hz, wipng ~ 27 x 17 Hz and
a trap depth of 1.6 mK. The minimum of this trap is located 2.5mm below the chip
surface. We typically capture up to 7 x 107atoms in this first magnetic trap. The atoms
are heated in the loading process up to 300 uK. Immediately after the loading of the
magnetic trap is finished, the current in the big copper Z (Ipeqr = 70 A) is ramped down
in about 350 ms.

The resultant trap, formed solely by the combination of the small copper-Z structure
and the main bias field has a much too high Ioffe field (generated by the two legs of the
Z), which needs to be compensated. Typical desired Ioffe fields are on the order of one
Gauss, which are achieved by superimposing an additional, anti-parallel and homogeneous
IToffe bias field. In this way the so-called uncompressed magnetic Z trap is formed, with
typical trap frequencies of wirans = 27 x 126 Hz, wipng = 27 x 21 Hz , and is located
approximately 1 mm below the atom chip and has a typical trap depth of approximately
1.9mK. This small trap depth explains as well the need to pre-cool the atoms before they
can be caught in a magnetic trap, with an energy scaling given by up = kp - 67 pK/G.

In practice, loading atoms into the Ioffe-Pritchard type magnetic trap follows relatively
simple rule: Catch the untrapped cold atoms before they leave the trapping volume due
to gravity and ballistic expansion. In principle, the magnetic fields are ramped up as
fast as adiabatically possible. In reality, typical limitations are given by the inductivity
of the bias coils that generate the homogeneous bias fields. The voltage-controlled
power-supplies (compare sec. 3.1.3) are pre-charged, meaning that they are set to output
their maximum voltage, before a switch closes the electric circuit, in this way achieving
the highest possible dI/dt rates. In the KRb setup, the ramp up of the main bias field
takes approximately 2ms to 16.2 A, where the coils have 100 m2 resistance and 0.28 mH
inductance | |]. The ramp up of the copper-Z structure, which could be in
principle ramped up much faster for its negligible inductance, is done simultaneously.
Great care needs to be taken to flatten any over-shootings in the bias coil currents, at
the end of the ramp up. Any overshooting deforms the trap and might induce collective
oscillations, heating up the cold atoms.

Once the loading into the magnetic trap is finished, evaporative cooling could in-
principle be applied. However, the time available for the evaporative cooling process
is limited by the lifetime of the atoms in the magnetic trap. Therefore, high collision
rates are necessary for the evaporative cooling process to work sufficiently fast compared
to trap loss mechanisms. To increase the collision rates and thereby decrease the time
needed for re-thermalization, the magnetic trap needs to be compressed further.
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Figure 3.7.: In time-of-flight absorption images (top) of the first BECs created in the
copper-Z trap with the vertically integrated density profile (bottom).
(a) Bimodal density distribution with a significant thermal fraction (b) Almost pure
BEC of 3 x 10* atoms.

3.2.6. Pre-cooling and Compressing in the Macroscopic Copper-Z Magnetic
Trap

To achieve efficient and fast evaporative cooling of the thermal atoms to quantum
degeneracy, a sufficiently high collision rate is necessary. To increase the collision rate,
the copper-Z trap is further compressed within 2 seconds to wirans ~ 27 x 800 Hz,
Wiong ~ 2m X 24 Hz , a trap bottom of 700 kHz?® and a theoretical trap depth of 3.9 mK.
The actual trap depth is limited by atoms hitting the chip surface to approximately
1.5mK as the minimum of the absolute magnetic field is now 300 pm from the chip
surface (compare Fig. 3.10). Starting with the compression ramp, a radio-frequency
cooling knife is applied to start the evaporative cooling process [ .
Actually, it is already possible to achieve condensation in this compressed trap, with
typically 10° atoms in the condensed fraction. One of the first condensates in the KRb
setup is shown in Fig. 3.7. When the trapping potential is switched off suddenly and
sufficiently fast, the atoms expand ballistically and fall under gravity (Fig. 3.8). The
interaction energy of the condensed atoms is converted into kinetic energy | .
In the case of a strongly asymmetric trap, the condensed atoms expand predominantly
in the tightly confined direction as the initial acceleration after switch-off of the trap is
dictated by the gradient of the interaction energy and is inversely proportional to the
width of the condensate. The anisotropic expansion in time-of-flight (TOF) is an easy to

26 A Toffe field of 1 G gives for 3" Rb in the |F' = 2mp = 2) state a trap bottom of 700 kHz with respect
to rf transitions coupling the mg states.
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Figure 3.8.: Anisotropic condensate expansion in time-of-flight. The time-of-flight is
increased from left to right in steps of 1 ms, starting at 4 ms. Gravity is pointing
downwards in the vertical direction.

Figure 3.9.: Condensation of a thermal 8" Rb cloud in the copper-Z trap. Decreasing the
final rf-cooling frequency in steps of 10 kHz illustrates the drastic difference in isotropic
expansion of thermal clouds in 8 ms time of flight versus the anisotropic expansion of
BECs. Thus, absorption pictures already provide a plain signature of condensation.

use and clear signature of condensation, as illustrated in Fig. 3.9.

Creating a BEC already in the copper-Z trap is a good test for the magnetic trap settings,
especially to confirm that the compression is sufficient to allow eflicient evaporative pre-
cooling before loading the atoms into the atom chip trap. Furthermore, substantial
technical noise problems can thereby be ruled out, such as, for example, noise sources
emitting broad-band and/or peaked electro-magnetic radiation in the rf-domain (typically
ion gauges, all kinds of DC power supplies for network switches, shutters or translation
stages, etc.). Resonant rf-frequency couples the Zeeman sublevels and transfers the
atoms into untrapped states, severely increasing the atom loss rate and decreasing the
lifetime in the magnetic trap. Of course, measuring a long enough lifetime (say >10 s)
of thermal atoms in the magnetic trap | | is a necessary precondition before
trying condensation and helps to verify that the pressure is sufficiently low. Other
possible issues strongly affecting the lifetime in the magnetic trap and thereby preventing
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successful condensation, can be stray light leaking into the vacuum chamber or laser light
leaking through holes in burned shutter blades or through stalling shutters. To make the
point clear, any small amount of stray light is a severe problem (see section 6.1), where
the sensitivity level of power meters is typically not high enough. Instead photodiodes
can be mounted in the laser beam paths to make sure no laser light is leaking into the
MOT /imaging /etc. optics when the magnetic trapping is in effect. Stray light has to be
reduced to a minimum by protective covers around the vacuum chamber.

Once a BEC is successfully achieved, it is advisable to measure the lifetime of the BEC,
heating rates as well as take rf-spectroscopies of the condensate. All these measurements
can be later used as references. Here, the main idea is to find additional noise sources,
especially at 50 Hz and higher harmonics thereof resulting from possible ground loops
in your setup. For example, the width of the rf-spectroscopy is not only affected by the
chemical potential of the BEC, but also by the temperature of the remaining thermal
atoms, furthermore by power broadening of the rf transition and, last but not least, by
short term variations in the trap bottom (50 Hz from ground loops and power supply
ripple noise). Now, by applying short (~ 1 ms) spectroscopy rf-pulses a double-minimum
structure may be found, resolving the trap bottom oscillations at 50 Hz . In that way,
one finds an estimate of the amplitude of the trap bottom oscillations. On the other
hand, rf-pulses longer than the 20 ms period will average over the 50 Hz oscillations and
just lead to an increased width of the spectroscopy signal. Hunting and eliminating noise
sources and improvements to your setup will decrease the width of the rf-spectroscopy
signal. In April 2009, we found a FWHM width of approximately 10 kHz, in June 2009,
we found 6 kHz and in December 2011 we found an improvement to 2 — 3kHz. So clearly
our ongoing efforts in improving our setup and identifying and eliminating potential noise
sources were indeed successful. A list of the applied changes to the experimental setup is
out of the scope of this thesis and the reader is referred to the 16 KRb labbooks.

Another useful and obvious tip is to make use of your working BEC as a very sensitive
probe, when the experimental setup is modified and/or additional equipment is installed.
This means, whenever possible leave the experimental cycle running in the background,
continuously monitoring the atom number of the BEC. If a new ground-loop is created
in the process, you might find a change in trap bottom and thereby lose the BEC.

Concerning grounding considerations, one may recommend the books | ,

].

To be able to get into the quasi-condensate regime, very high trap anisotropies are
needed (sec. 2.2.1). This is where the atom chip comes into play, providing high transverse
and low longitudinal confinements, using microscopic chip structures. The atoms are
pre-cooled in the compressed copper Z-trap to T ~ 1 — 2 uK and N ~ 10° atoms within
6 seconds ready to be transferred afterwards into the microscopic atom chip trap.
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Figure 3.10.: Calculation of the trapping potential in the compressed copper-Z trap.
In the cold temperature regime, the trapping potentials can be approximated as
linear, which is even better suited for evaporative cooling [ ]. The harmonic
approximation becomes valid for ultracold temperatures. The asymmetry in the
z-direction is caused by gravity.

3.2.7. Transfer into the Microscopic Atom Chip Trap

Most of the experiments reported in this thesis were done in a highly anisotropic
trap of nearly harmonic confinement with measured®’ trap frequencies of wWirans
271 x (2100 & 100) Hz, wiong = 27 x (11 +1)Hz , a calculated trap depth of 300 pK and a
distance to the chip surface of 100 um. The magnetic trap is formed by a 100 pm-wide
gold trapping wire with a current of 808 mA creating, in combination with a homogeneous
bias field of 15 G, a 2d quadrupole confinement along the wire. The trap is closed in the
longitudinal direction by two sets of U pairs carrying 410 mA of current. In this way, the
trap closest to the copper-Z center was established (sec. 3.1.2).

The transfer from the copper-Z trap into the atom chip trap takes 600 ms. In the case
of good mode-matching during the loading process between the two traps, almost all the
atoms can be successfully transferred, as shown in Fig. 3.13. We still observe a heating
of the atoms by approximately 8 nK.

In this final chip trap we typically achieve quasi-condensates of 2000 - 10000 atoms, in
the temperature range of 20 — 100 nK. As the transverse energy scaling of this trap is
h“’i,% = 101 nK, we are in the effective 1d regime (as defined in sec. 2.2.1). Following
eq. 2.21, typical chemical potentials are in the range of 750 — 2000 Hz, again fulfilling
1 < Awirans. Changing the temperature and atom numbers within the specified ranges,
allows us to tune the phase correlation length A7 by one order of magnitude.

Fig. 3.11 shows a schematic summary of the magnetic trapping.

3.2.8. Final RF Cooling to degeneracy

A forced evaporative cooling technique is used to achieve condensation. The hot atoms
are removed from the trap by applying a rf-knife in the MHz range, which couples

"Trap frequencies are easily measured by exciting collective excitations of cloud size or position. In
our setup, we use a short triangular current-pulse in one of the U structures to excite longitudinal
oscillations and, similarly, a short triangular pulse in the main trapping wire to excite transverse
excitations.
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Figure 3.11.: Overview of the magnetic trapping cycle.

the Zeeman levels. By continuously removing the hottest atoms from the trap, the
phase-space density PSD can be increased by six orders of magnitude | .
The phase-space density is given by

orh? \ 2
PSD = p\3, = ) 3.4
PAiB P(kaT> (3.4)

The BEC transition occurs at PSD = gs/, (1) ~ 2.612, with the Bose-function g, (2) =
ey ;—: (see appendix C).

For evaporative cooling to work, thermalization times need to be short in comparison
to the lifetime of the sample. This means that the ratio of good collisions (elastic
collisions) needed for thermalization to bad collisions (inelastic collisions, background gas
collisions) leading to atom loss and a decrease in lifetime gives a measure of the efficiency
of evaporative cooling. The compressed Z trap (11s lifetime) and the chip trap provide
high enough elastic collision rates to successfully reach degeneracy. A detailed discussion
about trap lifetime and loss processes can be found in sec. 6.1.

Fig. 3.12 shows the forced rf-cooling ramp, which consists of several linear frequency
ramps. The rf-cooling starts in the compressed Z-trap, pre-cooling the atoms in 5.9s to
about 1 — 4K leaving up to 10% atoms in the trap. After loading into the atom chip
trap, the atoms are cooled down further, until degeneracy is reached, which happens
within 1340 ms. Finally, the rf-knife is held at a constant value for a duration of 20 ms.
This is done for two reasons. First, in order to average over the unavoidable 50 Hz
oscillations of the trap bottom (see 3.2.6), decreasing shot-to-shot fluctuations of the
atom number, and, second, to give the quasi-condensate some time to equilibrate. Several
ms should be more than enough for equilibration of this 1d system according to the
theoretical predictions of | | and if thermalization would need much more time,
then the evaporative cooling would have ceased to work so efficiently. The output of the
rf-generator is switched off and after waiting for an additional equilibration time of 10 ms
the experiments on the quasi-condensate can commence.
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Figure 3.12.: Frequency of the rf-cooling knife versus time. The atoms are pre-cooled in
the copper-Z trap before being loaded (within 600 ms) into the atom chip trap, where
they are finally cooled to quantum degeneracy. The corresponding trap bottom is
typically at 405kHz. Adapted from [ .

Evaporation ramps in the chip trap faster than 1340 ms are possible, but these fast
ramps lead to unwanted collective oscillations of the final quasi-condensate. These may
be remnant oscillations coming from the transfer into the chip trap, which get damped
in the thermal gas for sufficiently long evaporation ramps.

Fig. 3.13 shows the measured increase in phase-space density in the chip trap. Here
t = 0 ms is the end of the Z-trap. Almost 100% of the atoms are transferred within 600 ms
into the atom chip trap, but, due to the mismatch in trap-frequencies, the mode-matching
is not perfect and leads to a temperature increase of almost 8 pK.

Special care needs to be taken, that the final cooling ramp excites a minimum of dipole
and quadrupole modes in the condensate. Dipole modes are center-of-mass oscillations of
the condensate and quadrupole modes manifest themselves as breathing like oscillations
of the condensate width along the longitudinal direction [ |. It is quiet easy
to excite these excitations unintentionally in the longitudinal direction by a too fast
evaporative cooling scheme. Decreasing the speed of the cooling ramp often helps too
decrease the observed oscillation amplitudes. This can be easily understood in an intuitive
picture | |. At a specific value of the chemical potential, the rf cooling knife
removes trapped atoms. As the density is not constant throughout the harmonic trap,
the atoms are mainly removed at the axial-central, high-density region of the cloud. This
non-uniform effect leads to a perturbation of the longitudinal profile in comparison to the
unperturbed profile in thermal equilibrium. The more atoms are removed in a certain
time step, the higher the generated inward flux, which, eventually, increases the amplitude
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Figure 3.13.: Evolution of the 3d phase-space density (top), temperature (bottom,
circles) and atom numbers (bottom, squares) when loading from the copper-Z trap
(t = 0 ms) into the atom chip trap (¢ = 600 ms) and applying the final rf-cooling stage.
Adapted from | |. The dashed-dotted line (top graph) marks the 3d BEC
phase transition. The dashed lines are guides to the eye.

of breathing oscillations after stopping the evaporation process. Therefore, minimal
oscillations can be found when applying an exponentially decaying final evaporation stage
(compare sec 3.2.8 and | D.

The technical implementation goes as follows. The sinusoidal rf-frequency is generated
by a home-built DDS function generator’®, programmed by a micro-controller. The DDS
output is connected to a rf-switch?” and is fed through a bias-tee®” to the copper U
structure, acting as the antenna. As the resolution of the DDS source was not sufficient
enough it was recently replaced by a Tabor arbitrary waveform generator®! allowing more
versatile ramp schemes. Details of both setups can be found in | ]

28 AD9852

29Mini-Circuits ZX80-DR230-S+
39Mini-Circuits ZFBT-6GW+

31 Tabor WW1071
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3.2.9. Imaging

Finally, we come to the most important step, acquiring the experimental data. In order
to measure the atomic density distribution, an absorption picture [ | is taken,
measuring the attenuation of a resonant laser beam passing through the atom cloud. This
is usually done after several milliseconds of free time-of-flight, after a fast and sudden
switch-off of the confining potential. A short (75ns) resonant laser pulse passes through
the atom cloud and is imaged onto a CCD camera, recording the spatial distribution
of the intensity of the transmitted light. The interaction between atoms and photons
is destructive in the sense that the atoms are “blown” away from the trapping region,
leaving no atoms behind (see below). After 11 ms, a second reference picture of the
Gaussian imaging beam, with no atoms present, is recorded.

The intensity reduction of the transmitted intensity I (x,y) with respect to the reference
intensity Io (x,y) depends on the column density p(z,y) = [ p/ (@,y,2)dz. For small
intensities I < 0.1 X I4,¢ compared to the saturation intensity Is4¢, the intensity reduction
can be approximated by the Beer-Lambert law as | ]

I (z,y) = Io (z,y) - e 70P@Y), (3.5)

with the scattering cross-section ¢ = 2.906 x 10~? cm? for o-polarized light | .
The column density p (z,y) is then given by

oy I'(z,y)
py) =~ (00 (3.6)
which is a direct measure of the total number of atoms N = [ p(z,y) dzdy.

So far, so good. Now let’s have a look at the CCD detector itself and how to properly
apply eq. 3.6 to the actual counts in each pixel ¢ (i, 7), with the integer indices 7, j. The
counts in each pixel are given by the sum of three contributions. First, the actual signal,
where the detected photons are (according to the value of the quantum efficiency of the
camera) converted into photo-electrons. Second, thermally induced dark currents that
continuously build up charge. The number of these dark counts varies slightly in each
pixel and depends on the temperature and the exposure time. To decrease the dark
count level, the CCD chips are temperature stabilized and cooled to approximately -70°C.
Additionally, small exposure times are used. The third contribution is independent of
the exposure time and is called bias. It can be measured by setting the exposure time
to zero and basically depends on the read-out speed and the used electronics (analog
amplifiers, analog to digital conversion, etc.). Let ¢4 (4,7) be the number of dark counts
(including bias counts) of the pixel at position 4, j. To properly calibrate the atom
number measurement, the dark counts need to be measured by taking the average of
several dark images (with closed aperture) for the same exposure times as the usual
images. Then eq. 3.6 has to be rewritten as

p($7y)__11n<c(i’j)_<cd(i7j)>>' (37)

00 Co (7a]) - <Cd (77])>
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It is important to keep in mind that this calibration needs to be re-done every time
that the exposure time or the temperature of the CCD chip is changed. Another technical
noise source depends on the readout process, which has been discussed in detail in
[ ]

Concerning correct atom number calibration, there is another difficulty that needs
to be kept in mind. As we can see in eq. 3.7, the measured atom number depends
on the scattering cross-section og, which is dependent on the magnetic field axis (if
present) and polarisation of the imaging beam. The ideal imaging would take place at
zero magnetic field. Here it gets a bit tricky, as the experimental realisation is never
going to be ideal and small deviations from zero magnetic field are to be expected. For
such small deviations from zero, a magnetization axis pointing in an arbitrary direction is
introduced, which may severely change the value of the effective scattering-cross section
00, as the population of Zeeman levels gets redistributed | |. To circumvent this
problem it is helpful to apply a small (< 1G, wr, ® Qopticar) homogeneous magnetic field,
to properly define a polarisation axis with respect to the direction of the imaging beam
[ ]. If the number of absorbed photons per atom is sufficiently high (> 200), the
scattering-cross section oy is effectively altered by a constant factor o and reads o(, = aog
[ |. For circular polarized light and a parallel magnetisation axis av = 1, which
is what we have for the longitudinal imaging (see 3.1.5). For linear polarized light and a
perpendicular magnetization axis o = 0.54 | |, which applies for the transversal
imaging beam.

For 8"Rb, the hyperfine transition ’551/2, = 2> — )5P3/2, F = 3> is used for
absorption imaging (Fig. 3.3). At each photon scattering event, the recoil energy

Frec = h; 7];2 = % is transferred to the participating atom, accordingly adding the re-
coil temperature T;.. = 362nK and the respective recoil velocity v,e. = 277’% = 5.89 mm/s,
For a number of N scattering events per atom, the atom receives the velocity Nv,ec
in the direction of the laser beam and additional performs a random walk due to the
spontaneous emissions with a final velocity of v/ Nvye. pointing in a random direction and
eventually blurring the image. During the exposure time t.;, the number of scattering
events (excluding Doppler effect) can be approximated by N = g% - ter, with the
natural linewidth I' and the saturation intensity Isq. In the experiment, we typically
use Ip = 0.11,,; and an exposure time of t.;, = 75ps, which gives a number of N =~ 141
photons scattered per atom. This results in a total energy transfer of 50 mK (much
bigger than the trap depths of the chip trap of 300 pK) and the atoms travel a distance
of ~ 8.3mm in 11 ms before the reference image is taken, certainly leaving the depth of
field of the imaging system.

The time-of-flight is actually limited to > 2ms, since the fast switch-off of the magnetic
fields induces eddy currents in the vacuum steel chamber, lasting for about 2ms. During
this time the measured atom number in time-of-flight is uncertain, due to the unknown
Zeeman shift.

It is also possible to take in situ images, while the atoms are still trapped. There
are two disadvantages, though. First, the magnetic field gradients lead to a spatially
dependant Zeeman shift and thus to a spatially varying detuning of the imaging beam,
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Figure 3.14.: Picture of the experimental apparatus (12.2012)

which needs to be taken into account. Second, the trapped atom cloud might be optically
too dense, meaning that the imaging light gets fully absorbed locally, rendering the
detection of the trapped density profile impossible. This can be avoided by using higher
imaging intensities or by applying off-resonant imaging techniques.

To get the imaging system focused on the position of the atom cloud, a neat trick, as
presented in [Marte 03], was used, where the imaging light is detuned from resonance and
the dense BEC starts to act as a lens, effectively changing the recorded density profile.
This idea works even better when using a fringe pattern [Gring 12a], where the recorded
contrast is significantly altered when the system is out of focus.

Fig. 3.14 shows an image of the experimental apparatus, including the vacuum system
and current feedthroughs (top), Bias and compensation coils (middle), transverse imaging
system (lower right hand side) and MOT optics (lower left hand side) .

3.3. Fragmentation Problems

In reality, the current density in microscopic atom chip wires is not perfectly homogeneous
and the current does not follow a straight path along the wire. These small deviations affect
the local magnetic field and lead to corrugations of the magnetic potential. Especially
for very elongated cold atomic clouds, the longitudinal density profile can be disturbed.
Depending on the size of the corrugations and on the distance to the surface, these
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Figure 3.15.: Several condensates are generated simultaneously in fragmentation minima
along the trapping wire (parallel to horizontal direction of figure).

corrugations are even able to split up the elongated clouds into several separated fragments,
as in Fig. 3.15. Increasing the distance h from the wire helps, as wire roughnesses on
length scales s < h are averaged out [ .

There are two main reasons causing these fragmentation problems. First, inevitable
imperfections in the fabrication process lead to roughness on the surface and on the edges of
the microscopic wire structures, locally changing the current flow | , |-
Second, the internal granular structure, bulk inhomogeneities and defects in the metal
lead to scattering processes of the conducting electrons | ]

Unfortunately, the atom chip installed in the KRb setup turned out to be of intermediate
quality. It was the first new chip fabricated in Vienna at the ZMNS, applying the
knowledge and techniques developed for the previous chips, which were produced at the
Weizmann Institute. Fragmentation effects are reported to be worse, when compared
to the old Weizmann chips.. Fig. 3.16 shows the averaged density profile of ultracold
thermal atoms in short time-of-flight of 2 ms for the KRb chip. The effective trapping
potential (blue) can be inferred by assuming Boltzmann statistics. Huge deviations from
the fitted harmonic trapping potential (red line) can be seen below h = 90 pm. As seen in
Fig. 3.15, it is even possible to create several condensates, each condensed in a different
fragmentation minimum. Thus, it was concluded not to trap the atoms at the intended
h = 75um distance from the chip, but rather to work at A > 100 um, paying with a
decrease of transverse trap frequency.

To date, it is still unknown, why this new chip shows these strong fragmentation
issues. Wire roughness will be open for a serious investigation once the end of the chip
lifetime has been reached. As it is an extremely time consuming process®? to exchange
an atom chip once fully tested and built into an ultracold experiment, it did not was
not appropriate to address this issue immediately. We rather decided to move on and
get the most out of the existing, BEC-producing machine. At the moment, other groups
are setting up experiments specially designed for fast and efficient atom chip exchange
rates | |, hopefully further improving atom chip fabrication techniques in the
near future.

32exchanging an atom chip may take several month up to half a year. A rough collection of what needs
to be done: removal of optic boards, remove chip+mounting out of vacuum, fabricate new chip, build
new mounting head, mount new chip, bond new chip, test new chip under UHV conditions, marriage
of mounting and vacuum chamber, bake out of vacuum chamber, chip current death tests, get BEC
again....
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Figure 3.16.: Fragmentation effects versus distance to chip. Measurements of frag-
mentation effects along the longitudinal direction in the atom chip trap for different
distances h to the chip surface. Fragmentation is increased at smaller distances h
towards the chip surface. Thermal atoms at T = 1.5 pK are imaged after 2 ms time-of-
flight. (top) Averaged absorption picture of 50 realisations, where red denotes high
atom density. (center) Binned density profile along the vertical direction. (bottom)
Calculated trapping potential according to binned density profile in blue and har-
monic fit in red. (a) h = 120 um, wl = om x (12.82 £ 0.03)Hz (b) h = 95 pm,

) long '
wi = 2m x (8:20 £ 0.03)Hz (¢) h = 5lum, wit = 2 x (558 % 0.09) Hz (d)
h =25pm, wlyr =27 x (3.70 £ 0.20) Hz.

Another aspect of fragmentation is the following. Turning this bug into a feature, cold
atomic clouds have been used to map out the potential landscape along microscopic
structures, sensing magnetic fields and gaining insight into the local current density
and current flow | , |. Sensing magnetic fields with cold
and ultracold atoms provides high spatial resolution and good field sensitivity, bridging
the gap between high-field-sensitive but badly resolving SQUIDs on the one hand and
magnetic force microscopes with high spatial resolution but low-field-sensitivity on the
other hand, leading to new insights in the electronic transport properties [ |-
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Chapter 4.

Thermometry

“... began to suffer from the computer disease that anybody who works with
computers now knows about. It’s a very serious disease and it interferes
completely with the work. The trouble with computers is you 'play’ with
them.”

- Richard P. Feynman, Surely You're Joking, Mr. Feynman!

Abstract

This chapter focuses on measurement techniques for determining the temperature of
cold, ultracold and degenerate Bose gases. Starting with thermal gases obeying the
Mazwell-Boltzmann momentum distributions, density profiles in expansion are used as a
thermometer. Continuing with partially condensed clouds, where the thermal wings can
be used to infer the temperature, we finally end up with almost pure quasi-condensates,
where the temperature information is imprinted in the longitudinal phase and density
fluctuations. While other research groups make use of density fluctuations, or fits to
density profiles, we typically measure the temperature through phase correlations. For a
single cloud, these phase correlations are obtained by measuring the two-point correlations
i expansion and for two split clouds, the statistics of the interference contrasts provide
the necessary information.
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4.1. Thermal Bose Gas

4.1.1. Density Distributions In Situ

Starting with a hot Bose gas in thermal equilibrium a semi-classical approximation' can
be used, where the thermal deBroglie wavelength A\;p is assumed to be much smaller than
the average distance on which a particle changes its momentum. In this approximation,
one finds | |

. 1 p=V(7)

nen (750) = 393/ <€ FBT ) (4.1)
/\dB

for the in situ density distribution nyy, (i*; t = 0) of an ideal Bose gas at zero time-of-flight

(t = 0ms), where a 3d harmonic trapping potential V' (r) is included. This is the 3d

version of eq. 2.7, with the thermal deBroglie wavelength \gp = iZZQT for temperature

T and atomic mass m.

In the following, the temperature scale shall be defined with respect to a characteristic
temperature T,.. In highly anisotropic traps, T, is the crossover temperature of the quasi-
condensate, as defined in eq. 2.15. In 3d, isotropic, harmonic trapping confinements, T,

_ 1/3
is the critical temperature T, = % (%3)) / of the BEC phase transition | I,
1/3

with the mean trapping frequency w = (wywyw:)
C(2) =>o7_1m™* =g, (1) which gives ¢ (3) = 1.204.

For T > T., kgT > hw and p < %hzi Wi, EB% can be neglected and eq. 4.1 is
approximated by

and the Riemann zeta function

ngp (7 0) = )\?1) 93> (6 %pT > w?T?) (4.2)
dB
However, 3d profiles are hard to measure in the experiment. By taking an absorption
image, the distribution is integrated over one spatial direction as discussed in sec. 3.2.9.
Thus, by integrating along the x-direction, the 2d column density profile ny, (y, z,0) is
recorded on the CCD, which is given by? | ]

Nth (y’z;()) = fTﬂgQ <62’“TIY5L’T(W§T13+LU§T§)> , (43)
dB
A more convenient expression, involving experimentally easily accessible parameters,
can be derived by using the peak density n (0,0;0) and the in situ rms width o¢;, which
is defined by the temperature T and the respective trap frequencies w; as

0'071‘ R
)

(4.4)

mw

This results in the following fit function | |

ncluding quantum statistics.
2Unlike exponential functions, g3/> is not invariant under integration.
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Figure 4.1.: Measured transversal thermal density profiles in time-of-flight (blue dots)
in comparison to eq. 4.14 (cyan dashed line) and 4.13 (green dashed dotted line).
For T = 2pK > T, (a), the onset of bosonic enhancement is observed. For colder
temperatures T' =~ 700nK 2> T, (b), the Gaussian profile clearly underestimates the
peak density, which, in contrast, is well captured by bosonic enhancement.

2 2
0,0:0) [ ~zr—5z
nen (Y, 2;0) = n )gg (e 0y 2 o’z) (4.5)

for the 2d profile, where the 1/g2 (1) factor ensures proper normalization.
Furthermore, binning the image along the y-direction results in the 1d density profile
n, (2,0)

1 (0:0 — %
n, (2;0) = (};(1595/2 (6 ’ 8’2) . (4.6)

For T > T, the gas can be assumed to obey classical statistics (as in sec. 2.1) and eq.
4.2 approximates to a Gaussian density distribution of

N _ 22 B y2 _ 22
ng, (7;0) = e 203“6 203’”6 Qog’za (4.7)

(27T)3/2 00,200,400,

where N = [ ny, (r,0) dr is the total number of atoms. In this regime, the width of a
Gaussian fit function can be used to probe the temperature of a thermal Bose gas, with
the respective 1d profile given by

N 32

N¢p (Z, 0) = m - € 0,z (48)
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4.1.2. Density Distributions in Time-Of-Flight

Let’s assume the trap is switched-off at ¢ = 0, allowing the ideal Bose gas to freely
expand according to its initial momentum distribution f (p,7). Let’s further assume that
the gas is dilute enough that collisions during the expansion can be neglected. After a
certain time-of-flight ¢, the density distribution n (7;t) is recorded via absorption imaging.
n (7;t) is calculated by integrating over the momentum distribution at time ¢ given in
the classical limit as

24 2mV (r — pt/m
f(p,7,t) = exp <&) exp (_p - ka(:BT Pt/ )> . (4.9)

For T > T. one finds | |

and for T > T,

e ]
n(rt) = e’ng)\TH
dB

-1/2 xQ
(1) exp (_ 302 (1;w2t2)>] , (4.11)
T 1

where the Gaussian widths o2 (t) scale as

o2 (t) = af; (1+wit?), (4.12)

with the in situ width aai is given by eq 4.4. The 2d and 1d density profiles can be
calculated similarly as for the in situ case and the 1d profiles are given by

om)? 2
ngp (251) = (2n) s/ (6 2”2(“) (4.13)
AdB
and
N -
ne, (251) = ‘e 2030 (4.14)

(2m)"* 0 (1)
Fig. 4.1 shows thermal density profiles in time-of-flight in the two regimes T > T, and
Tz T..

4.2. Partially Condensed Bose Gas: Thermal Wings
Studying the isotropic (for t > w, 1) expansion of a thermal cloud, as given by eq.
4.12, can improve the accuracy of the temperature measurement with respect to in situ,

especially in the presence of a condensed fraction. The condensate fraction expands highly
anisotropically (see Fig. 3.8) due to the conversion of the interaction energy into kinetic
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Figure 4.2.: Partially condensed (40 %) longitudinal density profile in time-of-flight
(12ms) at a temperature of 7' =~ 450nK, and a total atom number of N = 30000.
(blue dots) experimental data, (solid, magenta curve) quasi-condensate profile in situ,
(dashed black curve) simulated quasi-condensate profile in time-of-flight, including
finite imaging resolution, (green, dashed-dotted curve) thermal Bose gas, (red dashed
curve) sum of thermal Bose gas and simulated quasi-condensate profile in time-of-flight.

energy. This strong difference, especially in the longitudinal expansion, can be used to
properly distinguish between condensed and thermal part, when comparing profiles taken

at different time-of-flights. In a highly anisotropic, harmonic trap, with the initial aspect

ratio 20 — ¢ = “on9 « 1 and the in situ Thomas-Fermi radii R; (0) = /2% the
Rlong (0) tr mw;

w

expansion of the condensate fraction follows the scaling laws | |

Rur (1) = Ryr (0) /1 + w22 (4.15)

Riong (t) = Riong (0) |1 + a®wy,t arctan (wyt) — a® In <\/1 + w?TtQ)] . (4.16)

In the long time limit, the aspect ratio is given by lim;_, % = %

Fig. 4.2 shows a the longitudinal density profile of a partially condensed Bose gas with
a large thermal background, which is used to estimate the temperature. The simulated
quasi-condensate profile (black, dashed line) includes the effects of the in situ phase
fluctuations (see sec. 4.3) and the finite imaging resolution. Both effects lead to a smooth
out of the sharp edges of the quasi-condensate profile.

For T' = T, and highly anisotropic, harmonic traps, the equation of state of an ideal
Bose gas can be used to derive the linear density profile along the axial direction of the
non-condensed fraction. By using a local density approximation and defining the local

chemical potential in the longitudinal potential V' (z) = %mwfongZQ as

0(z) = o=V (2). (4.17)

and averaging over the contributions of the transverse modes, the in situ linear density
profile nyy, (z;0) can be calculated as | ]
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o (3
o ()

This can be used to fit the in situ thermal wings of a partially condensed cloud and
estimate the temperature of the thermal fraction.

e (240) = 1 > jm ( (4.18)

4.3. Thermometry of pure Quasi-Condensates via Phase
Fluctuations

Measuring the temperature of a quasi-condensate via thermal wings becomes increasingly
difficult the smaller the thermal fraction gets. Naturally, for a pure quasi-condensate
one has to find other ways of thermometry. In this context, one can make use of the
thermally populated phase fluctuations | |-
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Figure 4.3.: Emergence of density ripples (vertical fringes) in expansion. The horizontal
fringes up to 8 ms are from the standing wave patterns of the imaging light below the
atom chip. A knife-edge is used to block parts of the imaging beam and thereby to
reduce the standing wave pattern for expansion times greater than 8 ms. A fringe-
removal image post-processing, as presented in | |, is to be implemented for
early expansion times.

As discussed in chapter 2.2.1, confined quasi-condensates lack a true-long range order

and show a fluctuating phase along the weakly confining axis defined by the thermal cor-
2

relation length Ay = 7323’}. However, in situ, density fluctuations are largely suppressed

by the repulsive interactions, as they are energetically not favourable (see eq. 2.34)
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[ , , |. As we have seen in chap. 2, these phase fluctuations
can be understood as thermally populated axial phonon-like excitations. Upon release
from the trap, the interaction energy rapidly deceases, the gas freely expands and the
local phase fluctuations are converted into a local velocity field | | as given
by the superfluid velocity | ]

v(z) = EV(ZJ (2). (4.19)

m

The velocity field leads to interference between different phase domains of the quasi-
condensate. Due to the randomness of the phase fluctuations the resulting interference
pattern differs from shot to shot and leads to fluctuations in the longitudinal density profile
in time-of-flight. Therefore, upon expansion, the initial phase fluctuations turn into ob-
servable density-fluctuations | |. These are the so-called density-ripples, which
are depicted in Fig. 4.3. As can be seen, the amplitude of the density-ripples depends
strongly on the expansion time. Furthermore, as the phase fluctuations are thermally
populated, the observed amplitudes strongly depend on temperature | |. It has
been shown, that the shape of density-density correlations is non-monotonic and strongly
depends on the thermal correlation length Az [ |. Thus the two-point
density correlation function can be used as a thermometry tool.

Motivated by the homogeneous theoretical description of | |, we simulate
a two-point density correlation function in time-of-flight for a finite-size system. By
comparing the simulated correlation functions to the averaged, experimental one, the
temperature of the quasi-condensate can be determined | |. This method will be
employed throughout this work to determine temperatures in the quasi-condensate regime.
An in depth description and application of this method can be found in | ], a
brief summary will be presented in the following.

4.3.1. Details of this thermometry method

In contrast to | |, we do not use the peak value of the correlation function
g® (x =0, t) at = 0, which contains the white noise contributions of the imaging noise,
but fit the whole shape of the ¢(®) function. In this context, ¢ denotes the time-of-flight.
Thus, we become independent on white imaging noise and remain only influenced by
residual fringe patterns in the absorption image, which are caused by diffraction at
dust particles® and interference effects®. It has been shown in | |, that these
additional fringe patterns can be computationally removed as well, a method which might
be applied for future temperature analyses in our experiment. For the thermometry
results used in this thesis, additional fringe patterns due to vibrations of the setup have
not been post processed as their influence at expansion times larger than 8 ms (Fig. 4.3a)

3Small mechanical vibrations lead to a shift of the diffraction patterns at dust particles between the
absorption and the reference picture

4Reflecting the imaging beam on the atom chip results in standing wave patterns (Fig. 4.3a), the atom
chip structures lead to additional patterns in the image, even when out of focus (coherent illumination,
Talbot effect). See | ].

75



4. Thermometry

seems marginal to the atomic signal.

Implementation

For a homogeneous system, the resulting density ripples spectrum in time-of-flight can
be calculated analytically as reported in | |. However, there is no analytic
model available so far that captures finite-size effects. Therefore, the expected ¢
function is numerically simulated in the following way. The density profile n (z) of
the quasi-condensate is calculated via eq. 2.20 and used to define the wave function
T (2) = /n (2)e’?). The in situ phase distribution ¢ (z) is simulated using a stochastic
Ornstein-Uhlenbeck process | , | according to | |. This
process is, for example, used to simulate random Brownian motion. Under the right
constraints | |, a phase distribution fulfilling first order coherence, as given by eq.
2.42, with a local thermal phase correlation length Ay (z) = Ar (n(2)) (eq. 2.43), can be
generated. Collisions during the expansion can be neglected, if the transverse confinement
is tight enough (u ~ fiwy, ), such that the transverse expansion happens considerably fast
(wi ) [ |. To model the ballistic expansion, the wave function is propagated

in time with exp (—%f—mt) The imaging resolution is accounted for by approximating
the airy pattern with a Gaussian point-spread-function [ |, which is convolved
with |¥ (z,t)|%. The convolution is calculated in k space by multiplying the respective
Fourier transforms and then taking the inverse Fourier transform to go back to position
space. This process is numerically faster than calculating the convolution in position
space. Finally, the expectation values are obtained by averaging over many realisations.

In summary, the simulation needs the following input parameters: the trap frequencies,
the time-of-flight ¢, the density profile n (z) and the point-spread-function (PSF) of the
imaging system. These input parameters are inferred via independent measurements.
Despite offsets, only the temperature is used as a free fit parameter. The theoretical
description is valid as long as we are in the quasi-condensate regime as defined in sec.
2.2.1.

The experimental ¢(?) is obtained by averaging over at least 50 absorption pictures.

Results

Fig. 4.4 shows a hot (red) and a cold (blue) g profile, where the dots represent the
experimental data and the solid lines show the fitted theory model. Both profiles have
been taken at the same expansion time, which mainly determines the position of the
minimum. As can be seen, the difference between the maximum at zero distance and the
minimum is significantly bigger for larger temperatures. That the ¢(®) function drops
below one can be understood in terms of conserved finite atom number. The probability
of finding two atoms simultaneously at shorter distances is increased, thereby decreasing
the probability to find pairs at larger distances | .

Fig. 4.5 shows the scaling of the ¢ function for different time-of-flights and different
PSF widths.

76



4. Thermometry

0 5 10 15 20
z [um]

Figure 4.4.: Averaged typical ¢(® correlation functions of density fluctuations in 12 ms

time of flight pictures, with the temperature as a free fit parameter. (red) T' = 78 +7nK,

(blue) T'= 29 +2nK, (filled dots) experimental data, (solid lines) theory fits (see text).
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Figure 4.5.: (a) ¢ (z,t) for different time-of-flights. (b) ¢ (z,t) for different PSF
widths.

Uncertainty of the Method

The relative fit error of this method is obtained by applying a bootstrapping algorithm
[ , |, where typically 150 sets of randomly selected pictures are gener-
ated, by random drawing with replacement. Each set is analysed and corresponds to one
artificial temperature measurement. The final temperature is then given by the mean and
the relative uncertainty by one standard deviation of these bootstrapped temperatures.
In this way, we find typical rms errors on the order of 10 — 20 %, which corresponds to
the relative error in temperature of this method. The systematic errors are expected to
be dominated by the uncertainty in the rms PSF width. A 5% standard deviation in
the PSF rms width already corresponds to 20 — 30 % systematic error. The absolute
errors are approximately twice as large as the relative errors. Throughout this thesis, the
relative errors are given and not the absolute ones.

The ideal PSF of the transversal high resolution imaging (compare table 3.1) has
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been determined thoroughly in a test setup of the imaging system | |, by three
independent methods®, giving similar results of approximately 2.0 pm in the longitudinal
direction and 2.5 pm in the transverse (gravity-) direction. The imaging system was
designed for in situ imaging and short time-of-flights. The density ripples are recorded in
12ms TOF, where the cloud size is bigger than the depth of field of the imaging system,
thus leading to a decrease in resolution. The final resolution is thus expected to be
larger and can be measured via the power spectrum of the density ripples as explained
in | |. At TOF = 12ms, the results suggest an effective PSF on the order of
3.00 £ 0.15 nm.

Another way of measuring the effective PSF would be to create a vertical double well
in order to get an interference pattern in the transversal imaging direction. For hot
quasi-condensates in equilibrium (compare sec. 4.4.1), the shape of the phase correlation
function is basically determined by the imaging resolution | | if \r < opsr and
thus can be used to accurately determine the PSF. However, it should be noted that
creating a balanced vertical double well is experimentally subtle (see sec. 5.2.2) due to
the gravity sag and the 1/r dependence of the rf-field and thus will be the prospect of
future efforts.

Applicable Temperature Range

The density ripples method is applicable in the thermal quasi-condensate regime (sec. 2.1)
and thus is limited to low temperatures by the crossover to the true condensate regime
at Ty as defined by eq. 2.13. The high temperature limit is given by the crossover to
the 3D regime above kT > hwy-, where transversally excited states become significantly
populated. In summary, these arguments lead to an applicable temperature range of
Ty <T < %. For our typical parameters this evaluates to 10nK <7 < 120nK

Other Thermometry Methods for Quasi-Condensates

Following eq. 2.34, the in situ density fluctuations scale with temperature and thus can
also be used for thermometry purposes. Probing in situ density fluctuations imposes
stringent requirements on the imaging quality and stability. The imaging resolution
needs to be close to the healing length (typically < 1pm), which is the characteristic
correlation length of the density fluctuations | |. A detailed discussion is left to
literature | , ) ].

Last, but not least, a modified YangYang model | , ]
can be used to calculate the temperature dependence in situ 1d density profile, a method
which even works well in the 1d/3d crossover [ ].

51st method: imaging a pinhole in the field of view. 2nd method: moving a knife edge through the
focal spot of the objective. 3nd method: resolving structures on a MetroChip calibration target,
manufactured by MetroBoost (www.metroboost.com)
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Density Ripple Thermometry of Two Split Condensates in Equilibrium

When creating two independent quasi-condensates in equilibrium, as explained in sec.
4.4.1, the density ripples method can be applied as well. In the current setup, we are
unable to measure the longitudinal density profile of one quasi-condensate separately and
thus can only measure the incoherent sum of the two density profiles. Nevertheless the
resulting ¢ can be used for thermometry. The resulting temperatures agree, within the
error bounds, with the ones obtained by fitting the squared contrast FDFs (see chapter
6).

4.4. Thermometry via Interference of two Independent
Quasi-Condensates in Thermal Equilibrium

The interference of two independent quasi-condensates gives a measure of the strength of
relative phase fluctuations. As we will see in this section, the distribution of the squared
contrast can be used for thermometry purposes. First of all, the equilibrium properties of
matter-wave interference patterns need to be discussed and the close relationship between
phase correlations and interference contrast need to be derived.

4.4.1. Creating the Equilibrium System

In order to understand the non-equilibrium dynamics that will be the topic of chapter 5
and to find out if the non-equilibrium state indeed relaxes to a thermal equilibrium state,
it is necessary to directly compare the results to such an equilibrium state, both theory
wise and experimental wise. In the experiment an equilibrium state can be generated by
the following procedure.

1. Generate an ultracold thermal cloud, close to the critical temperature in the nearly
ideal Bose gas regime. Then stop the evaporative cooling process.

2. Split the thermal sample by applying the same double-well potential as used for
the non-equilibrium state (see sec. 5.2).

3. Proceed with evaporative cooling into the quasi-condensate regime | ].

In this way, two completely independent quasi-condensates are formed, where both
relative and common degrees of freedom are populated by thermal and quantum phase
fluctuations and thus have the same temperature.

4.4.2. Phase Correlation Properties

Following eq. 2.35 and the obtained results thereafter and further assuming that the two
wells are independent and uncorrelated, the phase correlation function PCF (z,2") of the
resulting interference pattern for the phase ¢ (z) in one well and ¢s (2) in the other well,
is then given by [ ]
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PCF (2,7) = <ei[¢1(z)—¢1<z’>]ei[¢2(z’)—¢2(z)]>
~ <ei[¢>1(z)—¢1(z’)]><ei[¢z(z’)—¢2(z)]>

_‘zfz,| _‘zfz,| _2|zfz/|
~ e M e M =e
_\z—z/|
~ e o (4.20)

where the relative phase correlation length of an interference pattern Ay = ATT is exactly

one half of the phase correlation length Ar of a single condensate as given by eq. 2.43,

which finally results in the important expression | , |
h2n
Ao = . 4.21
= kT (4.21)

It is important to point out, that quantum phase fluctuations were not included in this
derivation as the quasi-condensates studied in this work merely reach close to the quantum
quasi-condensate regime as discussed in sec. 2.2.1. A complete numerical treatment,
including both thermal and quantum phase fluctuations in matter-wave interference, can
be found in [ .

4.4.3. Matter-wave Interference of two independent Quasi-Condensates

A short reminder is presented about interference pattern in thermal equilibrium. A
brief derivation of important properties, namely the contrast and the phase correlation
function and their relationship will be presented.

Similar to sec. 2.2.1, we assume a highly anisotropic harmonic trap with the transversal
trap frequencies w; = w, = ws and longitudinal trap frequency w. = wiong. The
interference pattern is recorded after a ballistic expansion of time ¢. The total wavefunction
¥, (r,t) in each well | |

i’i (Ta t) = d)(wvyvt) 7&1 (th) (422)

factorizes in a longitudinal part given in second quantized form as

Di (2,8) = 1/ fii (2, )€l (4.23)

and a transverse part given by the harmonic oscillator ground-state | ]
2
<:L' + g) + 92

¢ (2,y,0) o exp B — (4.24)

with the ground state size oy, = 4/ #’” In expansion, the width of the transverse density

profile scales as given by eq. 4.12. The total wave function is given by the sum of the
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two condensate wave functions as

Z&( ’t) - 1[}1 (Tv t) + &2 (’I", t) (425)
(

r
and the density distribution n (r,t) can be calculated as

~ 2 ~ 2 ~ 2 ~ ~
n () = | t)] = b ()| +[da (r8)] +2Re (b1 (1) B (1)) . (4.26)

The third term represents the interference between the two condensates, separated by a

distance M in the transverse plane, which evaluates to | |
712+y2 h o7
) 7t Pl o r-d
2Re <¢1 (ryt) g (r, 1‘)> =2e 7 )y (2,t) 1) (z,t) cos <m<7t2r0't2t) . (4.27)
d
For long expansion times ¢ > w;l, o X (mfir) and choosing d = | 0 | for the splitting
0

vector, one finds

m2+y2
2Re (’l/)l (r,t) w; (r, t)> =2 °%% \/f (2,t)cos <7;thl + 1 (2,1) — da (2, t)) \/ 2 (2, 1),
(4.28)
which leads to oscillations in the density profile at a wavevector %l. The distance between
adjacent maxima is given by the fringe spacing A = 2#% = %. The amplitude of these
oscillations is given by the contrast C, being the prefactor of the cosine term in eq. 4.27
normalized over the density profile. When integrating longitudinally over a length L, the

contrast is given by | ]

Celtd — 2 /dzqﬁ;r (z,t) o (2, 1) (4.29)

fide |[in 0+ [ (eo0)[ ]

- 7 dz [ (z,i) + g (2,1)] /dz\/me_i(él(zvt)—@(m)) o (2,1)
(4.30)

In the following, we assume that density fluctuations are strongly suppressed (7; = n;) ,
which is the case in the quasi-condensate regime (see sec. 2.3), that the densities are equal
in each well n1 = ng = n and that a homogeneous density n can be used. Under these
conditions, the denominator can be approximated by [; dz[h (z,t) + fg (2,1)] = 2Ln
and eq. 4.30 simplifies to

Cer? — 1/ dzei(91(0=62(2)) (4.31)
LJL
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NP
The mean squared contrast <‘C ‘ > can be related to the phase correlation function

PCF (z,2") of eq. 4.20 via the considerations

<

2> =01C = ﬁ /L /L dzdz' <1/JI (2) 2 (2) b (') 4y (z’)> (4.32)

— 1//dzdz’ <€_i[é1(z)_¢32(z)]6_i[¢;1(Z/)_<Z>2(Zl)]> (4.33)
LJL

A

C

L2
1
= LQ//dzdz/PCF (z,2). (4.34)
LJL

which underlines the close link between relative phase correlations and contrast. The
functional form of contrast versus L will be studied in the next section.

4.4.4. Contrast versus Integration Lengths

Using eq. 4.20 for the correlation function and integrating eq. 4.34 leads to the length
scale dependence of the mean squared contrast (C?(L)).

<C2(L)> = I%Q/L/Lclzdz'e_lzkﬂj/|
x 2 [)}? — </\£)>2 (1 — exp (—j;))] (4.35)

For L > Ay = ’\TT, one finds

(c*(n)) ~ % - ]\1% (4.36)

where Ny defines the number of relative phase domains within length L. This observation
coincides with a random walk argument, that by integrating over NN, uncorrelated
phase domains, the maximally observable contrast C' (L — 0) = 1 will be diminished by
approximately 1/,/Nyp. In other words, strong decay in the PC'F over length L leads to
a scrambling of the contrast C (L), whereas high phase coherence, meaning an almost
constant phase correlation function on length L, result in high values for the contrast
C(L).

Eq. 4.35 shows, that by measuring the contrast on different length scales, the phase
correlation length A4 becomes accessible. Determining the correlation length in this
scheme has one important advantage in comparison to other methods®. Eq. 4.35 does not
depend on density, which makes the determination of Ay only dependant on the imaging
resolution and the contrast fit uncertainties. This fact will be of further use in sec. 5.9,
where, based on eq. 4.35, a fit formula is derived, which includes the finite resolution of

50nce the temperature and density are known, Ay can be derived using eq. 4.21.
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Figure 4.6.: Equilibrium squared contrast distributions for different integration lengths
(see sec. 5.4). The equilibrium OU theory (blue solid lines) is fitted to the experimental
distributions (black bars) resulting in a temperature of Toy = 57 & §3nK, which is in
good agreement with the measured density ripples temperature of Tpr = 48 £ 5nK.

the imaging system.

4.4.5. Measuring the Equilibrium Temperature via Contrast Statistics

As shown in | |, the shape of the squared contrast distributions P (C’Q) are
highly dependant on temperature and integration length scale. This fact can be used to
determine the temperature of the equilibrium system. The equilibrium distributions can
be either calculated in the TLL framework or by using the stochastic Ornstein-Uhlenbeck
(OU) process. The OU process has already been introduced in sec. 4.3 to calculate
equilibrium density-density go functions of inhomogeneous, trapped quasi-condensates.
In a similar fashion, the squared contrast statistics can be calculated starting from the
thermal phase profiles generated by the OU process. The main advantage of the OU
description in comparison to the equilibrium TLL model is that the inhomogeneous
density distribution in the trap is taken into account, which is beyond the homogeneous
TLL model. A further advantage is the comparatively faster computation speed.

Fig. 4.6 shows measured equilibrium distributions (black bars) and the resulting OU
fits (blue solid lines) in comparison. The resulting temperatures agree within the error
bounds. A detailed discussion on squared contrast distributions and the fitting procedure
is presented in sec. 5.7.
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Chapter 5.

Prethermalization

“I suppose there’ll be a war now, hmm? All that running around and
shooting at one another. You would have thought sooner or later it’d go out
of fashion.”

- Londo Mollari

Abstract

This chapter focuses on the prethermalization phenomenon, its prediction, its properties
and discusses the first direct experimental evidence. As a commonly agreed definition of
prethermalization has not yet emerged in literature, the discussion starts by reviewing the
concept of prethermalization given by Berges et al.

The starting point of the experimental study is the creation of a highly non-equilibrium
and well isolated quantum-many body system. The resulting dynamics are studied via
matter-wave interferometry, where the contrast is the primary observable of interest. The
contrast statistics are probed via full quantum probability distributions also known as full
distribution functions (FDFs). These FDFs allow the detailed characterisation of the
non-equilibrium dynamics leading to a prethermalized state. Furthermore, the FDFs reveal
the intrinsic multi-mode nature of the many-body system. The dynamical evolution of the
non-equilibrium system can be well described by the Tomonaga Luttinger Liquid (TLL)
formalism, presented in chapter 2. Comparing the FDFs to the TLL predictions shows
that the system dephases rapidly to a prethermalized state, a state showing thermal-like
properties for some observables (like correlation functions), yet distinctly different from
true thermal equilibrium. Finally, the decay of the mean contrast versus integration
length is used as an independent measurement to determine the prethermal correlation
properties.
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5. Prethermalization

5.1. Definition

A clear and common definition of prethermalization has not yet emerged in literature.
The term appears to be used slightly different by various fields, originally coming from
the high-energy community.

The phenomenon of prethermalization was first introduced in 2004 by J. Berges in the
context of high-energy heavy-ion physics. At that time, experiments at RHIC! aiming at
the production of quark-gluon plasma, yielded collisional data that suggested a rapid
thermalization after the collision, much faster than standard QCD predictions | |
To explain these observations, Berges et al suggested that not a complete thermalization
of all quantities is necessary, but that reaching the equilibrium equation of state on a
faster time scale is already sufficient. Full thermalization of all quantities happens on a
second much longer time scale.

The first definition of prethermalization given by Berges et al reads as | ]

“Prethermalization is a universal far-from-equilibrium phenomenon which
describes the very rapid establishment of an almost constant ratio of pressure
over energy density (equation of state), as well as a kinetic temperature based
on average kinetic energy. The phenomenon occurs on time scales dramatically
shorter than the thermal equilibration time. As a consequence, prethermalized
quantities approximately take on their final thermal values already at a time
when the occupation numbers of individual momentum modes still show strong
deviations from the late-time Bose-Einstein or Fermi-Dirac distribution.”

These findings affect theories on the evolution of the early universe. In | I,
Podolsky et al find a similar prethermalization effect after preheating of the early universe,
where the thermal equation of state is closely, but not exactly reached, due to the effects
of additional inflation components and the expansion of the early universe.
In the cold and ultracold atoms community, prethermalization is understood as a
transient - on the way to full thermalization - quasi-steady state [ , ,
|. Having certain quantities already reaching their final equilibrium values,
seems to be commonly regarded of less importance. In | |, Kollar et al study the
effects of integrability on the prethermalization plateau and show that the prethermalized
quasi-steady state can under certain conditions be described by a Generalized Gibbs
ensemble which was introduced by | , |. In difference to the usual Gibbs
ensemble, where the Gibbs exponent contains conserved energy, the Gibbs exponent of the
generalized ensemble, contains a linear combination of the conserved quantities, thereby
introducing a large number of Lagrange multipliers that account for the large number
of constants of motion of integrable systems. Kollar et al found, that an integrable
system decays to non-thermal steady states in the long-time limit, which are actually
prethermalized states that never decay. For a nearly integrable system prethermalization
plateaus are observed, that subsequently further relax to thermal equilibrium values. In
this picture, the lifetime of the prethermalized state should increase when coming closer

!Relativistic Heavy Ion Collider at Brookhaven National Laboratory, US
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and closer to an integrable point. It remains unclear what this means for non-integrable
systems. However, | | show that even a non-integrable system may show
prethermalization and that non-thermal states in integrable systems and prethermalized
states in non-integrable systems can be related in the Generalized Gibbs ensemble picture.
A collection of intuitive statements on how to understand prethermalization |
| are listed in the following:

o Thermalization means the complete loss of memory of the initial state, whereas
prethermalization means only a partial loss of memory has happened.

o Prethermalization happens on time scales much shorter than thermalization. Thus,
prethermalization is characterised by the emergence of different relaxation time
scales for different observables.

e Prethermalization is the formation of non-thermal states on intermediate time
scales.

o In the prethermalized state, several important features already look similar to
thermal equilibrium.

o The prethermalized state is a quasi-stationary state that persists for long (sometimes
infinite) time scales.

o The prethermalized state is a partial-fixed point in the space of correlation functions.

The topic of prethermalization has already gathered a lot of interest from the theoretical
side, but lacking experimental realisations so far. Experimentally, one of the most
prominent problems is to produce repeatedly and well controlled the (almost) same
initial, far from equilibrium, quantum-many body state. In | | a Newton
cradle like experiment of arrays of 1D Bose gases, in an optical lattice trap, was realized.
The results showed no signs of thermalization, even for thousands of collisions. The
residual slow dynamics of the momentum distribution which is observed is mainly due to
the anharmonicity of the dipole trap. As there is no relaxation happening, no distinct
relaxation time scales are measurable.

To my knowledge, the first direct experimental observation of the prethermalization
phenomenon has been achieved in our setup | | in an atom chip trap. Atom
chip traps have the advantage of producing single, highly anisotropic traps in the 1d
regime. In contrast to the optical lattice experiments in [ |, where only
averaged quantities of many 1d tubes are measurable, we do not have to average over
many realisations for slightly different parameters (density, trap frequencies) in one
experimental run. In general, atom chips provide well controlled and well isolated single-
realisations of 1d Bose gases, that can be brought into a far from equilibrium situation
with high reproducibility. Relaxation happens on easily measurable time scales on the
order of several ms, compared to condensate lifetimes of up to one second (compare sec.
6.1). The good isolation from the environment, thus enables to probe the intrinsic loss
of coherence within a quantum many-body system itself, rather than the decoherence
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or loss of information into the environment. Together with lots of theoretical efforts
and experimental improvements, we were able to characterize the transient states of the
evolution of the non-equilibrium system in great detail, unmasking the emergence of a
prethermalized state. The details shall be presented in the next subsections.

5.2. Creating the non-equilibrium system

The following procedure is applied to bring a well-isolated many-body quantum system
out of equilibrium and to study its subsequent time evolution and relaxation dynamics.

1. creation of an equilibrium quasi-condensate

2. fast, phase-coherent splitting of the quasi-condensate into two uncoupled Bose gases
of similar densities, thereby creating two almost identical “phase-copies”

3. wait for different evolution times, before taking absorption images of the interference
patterns in time-of-flight

5.2.1. Creating the initial quasi-condensate in thermal equilibrium

Evaporative Cooling is used to create an almost pure quasi-condensate without any
significant thermal fraction. Special care needs to be taken, that the final cooling ramp
excites a minimum of dipole and quadrupole modes in the condensate (see sec. 3.2.8).
Before the final switch-off procedure of the rf knife, it makes sense, to hold the rf knife at
its final value for at least several tens of ms (depends on collision rate), to make sure that
a thermal equilibrium can be reached. This makes even more sense, as the thermalization
mechanisms in a 1d quasi-condensate are not well understood so far. Currently, a detailed
survey of thermalization during and after rf evaporation in 1d quasi-condensates is in
progress | |. This constant rf-knife also averages over 50 Hz fluctuations, the
technical noise stemming from the main power grid, and thereby increases the shot to
shot atom number stability.

5.2.2. Coherent Splitting Process

In order to phase-coherently and adiabatically split the quasi-condensate, radio-frequency
dressed state adiabatic potentials are used to form a double-well potential in the transverse
direction of the cloud | ]. The amplitude of the dressing rf is
linearly ramped up in typically 17 ms. The frequency is kept constant, red detuned with
respect to the mp—o — mp—1 transition. Typical detunings with respect to the trap
bottom are on the order of 20 — 30 kHz. 17 ms is slow compared to the transverse trap
frequency of wy. = 27w x 1.4kHz in the standard trap and does not lead to additional
collective excitations in the system. Splitting too fast can result in oscillations in the
transverse direction. Splitting too slow does not result in phase-coherent splitting,
meaning that the longitudinal excitations present in the unsplit system would uncouple
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Figure 5.1.: Simulation of the double-well potential in RWA approximation following
[ ]. (a) Rabi frequency versus peak-to-peak rf current. Insets show dressed
state potentials for the same scale as in (b). The barrier actually starts to form at rf
currents larger than 35mA,,. (b) Dressed state potentials for a linear increase of rf
peak-to-peak current in steps of 10 mA,,, from 0 to 50mA,.

at different times. The evolution of the k-modes would then start at different times and
some modes would be dephasing earlier than others | ]

Fig. 5.1 shows a simulation of the dressed state potentials in rotating-wave approx-
imation (RWA), following | |, for increasing rabi-frequencies i.e. increasing rf
currents in the two parallel, 30 pm wide chip wires as schematically depicted in Fig. 5.2
and Fig. 3.2. The barrier forms rather close to the end of the splitting ramp. The actual
decoupling, going from finite to zero tunnel coupling, happens on a much shorter time

scale and was measured to happen within less than 0.5ms | |, whereas the
theoretical description presented in section 2.5 assumes an infinitely fast splitting. The
remaining tunnel coupling J was estimated to be J < 27 x 0.1 Hz | | at a

splitting distance of d = 2.8 um. To be on the safe side, it was experimentally verified
that any residual tunnel coupling has no effects on the reported physics in this thesis.
This was confirmed by comparing the obtained results for even larger splitting distances
and barrier heights at the same ramp rates. Following [ |, the tunnel coupling
can be estimated within a simple two-mode model, using the single particle ground states
of the two harmonic wells. The tunnel coupling then scales exponentially with the square

. . 2 . .
of the splitting distance J o exp (—a% ), with the ground state size ay- = mf}t . No
tr T

significant dependence on splitting distance was found for d > 2.8 pm. In conclusion, a
significant tunnel coupling between the two wells seems highly unlikely.

To realize an almost perfect symmetric splitting process, the single trap is split in the
horizontal direction, perpendicular to gravity and approximately parallel to the atom chip
surface. This ensures, that there aren’t any asymmetries generated between the two wells
by either the gravitational sag nor by the 1/r dependence of the rf fields, throughout the
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Figure 5.2.: Schematic drawing of the rf induced horizontal double-well setup. The
100 pm wide central wire creating the static trap is enclosed by two 30 pm rf current
carrying wires, acting as chip based rf antennas. Together they create a vertical
oscillating rf field. As potential minima form where both static and rf fields are parallel
a horizontal double-well is created. The chip was designed for an optimal trapping
distance of 75um. To decrease the strong fragmentation effects discussed in section
3.3, it was decided to trap the atoms at a distance of approximately 100 pm. Values in
pm. Not to scale.

whole splitting process. This can hardly be achieved for a vertical splitting process. Thus
being able to measure the fringe pattern across the vertical (gravity) direction represents
an essential improvement compared to earlier experimental setups [Hofferberth 07].

For a typical rf current of 49mA,,,, a simulation of the dressed state DW potential
gives the following parameters: a splitting distance of 3.2 pnm, a simulated barrier height
of 3.9kHz, compared of the typical range of the chemical potential ; of 400 — 800 Hz, a
distance to the chip of 108 pm, a rf Rabi coupling frequency of 103kHz and a transverse
trap frequency of 27 x 1376 Hz, which is in good agreement with the experimental data.

In order to avoid collective longitudinal excitations, great care was taken in the
positioning of the minimum of the chip trap with respect to the fragmentation problems
as explained in section 3.3. By slightly imbalancing the current through the upper and
lower U pairs, creating the longitudinal confinement, the trap minimum can be shifted
along the trapping wire. This was done in such a way that the trap minimum coincides
with a fragmentation minimum, resulting in a nice harmonic confinement. When applying
the rf potentials the longitudinal trap confinement is smoothly changed and is minimally
disturbed by the fragmentation. Furthermore, the trap frequencies have been chosen
such that, before and after splitting the total longitudinal length of the cloud remains
almost the same (compare Tab. 5.1 and Fig. 5.3), again inhibiting longitudinal collective
excitations.
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Figure 5.3.: Calculated and measured density profiles before and after splitting. (a)
longitudinal density profile of unsplit trap for N = 4000 atoms (solid red), longitudinal
density profile in one single well (dashed green) of the double-well trap for Ny, = 4000
atoms. (b) measured longitudinal trap profiles before (blue squares) and after (magenta
circles) splitting in comparison to the respective calculated profiles. The calculated
peak densities are in good agreement to the measured data. The widths before and
after splitting are almost identical leading to minimized breathing oscillations.

5.2.3. Release process

In the experiment, the switch-off process of the double-well trap turns out to be a crucial
step, strongly affecting the maximally observable contrasts. The rf currents are not
switch-off immediately by an rf-switch, but instead they are linearly ramped down via the
rf generator, typically within 5 rf cycles, which corresponds to t,qmp =~ 12.8 us at an rf
frequency of v,y = 390kHz. The corresponding static fields are switched-off within much
less than 10 ps. The observable contrasts of the resulting interference patterns depend
crucially on the timing (rf phase at switch-off) and the duration of this ramp down of
the rf-currents with respect to the switch-off of the static fields. A too fast switch-off
leads to a projection of the mp states into the F' = 2 manifold | |, which
can be detected by applying Stern-Gerlach type measurements [ |. During
the switch-off, residual magnetic field gradients induce a phase shift in the interference
patterns of the different mp states, which results into a blurring of the summed up
interference fringes. Therefore, great care has to be taken to optimize the rf ramp down
duration and the rf phase at switch-off | ].

Please also note that the recorded interference contrast strongly depends on the
detuning of the imaging beam, which can even lead to an enhancement of contrast

[ J-

5.2.4. Why does the splitting create a non-equilibrium situation?

As there have been debates and discussions why this is a non-equilibrium system, a
collection of arguments and point of views are presented here.
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The Luttinger Liquid picture: symmetric and anti-symmetric modes

As discussed in sec. 2.2.1, before splitting, the initial equilibrium quasi-condensate has a
longitudinally fluctuating phase caused by the population of longitudinal excited states
in the gas. These excitations are thermally populated with an exponentially decaying
correlation function (eq. 2.42) and a thermal phase correlation length given by eq. 2.43.
By phase-coherently splitting the quasi-condensate, almost perfect correlation between
the relative longitudinal phase profiles of the two halves of the split system is created.
As we have seen in sec. 2.5, the excitations of the split system can be described by
anti-symmetric (relative) and symmetric (common) degrees of freedom (DOF). The
anti-symmetric DOF are defined by the difference in phase and density between the
two well, whereas the symmetric DOF are determined by the respective sums. Let’s
focus on the phase dynamics. After splitting, the phase profiles of the two halves are
almost identical and hence the anti-symmetric degree shows almost perfect correlations
as illustrated in Fig. 5.4. This means that, nearly all the excitations of the phase are
initially stored in the symmetric mode, which is essentially thermally populated. The
anti-symmetric mode is initially only populated by the quantum noise of the splitting
process, which according to eq. 2.66 and eq. 2.67, results mainly in density fluctuations.
Actually, this quantum shot noise populates the initial relative density fluctuations.

In conclusion, this initial state is very much unlike the thermal equilibrium state of
two independently created quasi-condensates, where the symmetric and anti-symmetric
modes both share the same thermal population.

The energy picture

The splitting prepares a superposition for each atom being in the left or right well.
In thermal equilibrium for two independent condensates the atoms would be localized
in one of the wells. Due to this splitting Poissonian quantum noise is induced which
scales as V/N. This results in the imprint of local, relative density fluctuations along
the condensate, which would be suppressed for a thermal quasi-condensate as derived in
section 2.3. In the realm of the relative DOF, the Hamiltonian given by eq. 2.65 applies.
In conclusion, the initial state after splitting is highly out of equilibrium as the energy is
mainly stored in the density fluctuations.

The dephasing process | | leads to an equipartition of this energy between
the two quadratic DOF of the Hamiltonian of eq. 2.65. In this sense the dephasing
can be understood as the thermalization process of the relative degrees, leading to a
thermal equilibrium state of the relative modes. This quantum thermal equilibrium state
is meant in the sense of [ |, meaning that the ergodic hypothesis (phase space
and time averages are the same) holds at almost all times. As the TLL theory describes
an integrable and further harmonic system, the dephased modes will be able to rephase
at some later time, breaking the equilibrium for some short time intervals.

In conclusion, the dephasing describes the thermal equilibration in the relative DOF,
which is the prethermalized state of the complete system of common and relative DOF.
Yet true thermal equilibrium between common and relative DOF is not achieved. Only
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Figure 5.4.: Schematic drawing of the splitting process and subsequent evolution. At

te = 0, the gas is phase-coherently split into two atom clouds, creating a constant
relative phase profile Ap (z,0) =~ 0. This means that the population of the phase
fluctuations in the anti-symmetric degrees of freedom (DOF) are practically zero and
that nearly all of the thermally populated phase fluctuations before splitting are now
stored in the symmetric DOF. Therefore, symmetric and anti-symmetric DOF are
strongly out of equilibrium.
In the experiment, the relative phase profile along the clouds can be measured via
matterwave-interference fringes in time of flight, which according to the above state-
ments show straight interference fringes at t. = 0. Integrating the fringe patterns over
specific integration lengths L then leads to a high fringe visibilities. In the course of
the evolution (te > 0), the amount of relative phase fluctuations increases and the
observable fringe visibilities decrease. Therefore, the dynamics of the non-equilibrium
system can be experimentally studied via interference measurements.
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higher-order processes, which are not captured by Luttinger-Liquid theory may lead to a
mixing of the symmetric and anti-symmetric modes connecting the two states.

Parameters before and after the quench

typical
transverse trap longitudinal peak Luttinger | total longit-
frequency trap frequency | density | Parameter udinal
wyy [kHz] Wiong |Hz] 14 K length [pm]
[am ]
Unsplit | o 9140.1) | 27 x (11 % 1) 89.6 34.2 106
Trap
Sl (1440.0) | 27 x (7T +1) 435 29.2 107
Trap

Table 5.1.: Typical trap parameters before and after splitting. Measured values for
trap frequencies. A total atom number of 6000 atoms, which is typical for many
measurements, was used as the reference to calculate the density nq4 and total longit-
udinal length following | | and estimate the Luttinger parameter K. Unless
otherwise noted this trap configuration has been used.

Before the splitting, there are N atoms in the condensate. After splitting, the atom
number in each well is ~ N/2. This reduces the density and thus changes the Luttinger
Liquid parameter K given by eq. 2.59. Table 5.1 gives relevant system parameters before
and after the splitting.

5.3. Properties of the Prethermalized State

The following sections will present experimental data that led to the achievement of the
first direct experimental observation of prethermalization in the evolution of a many-body
quantum system, well isolated from the environment.

In order to facilitate the discussions and spare unnecessary repetitions the main
properties of the prethermalized state, in the context of matter-wave interferometry, are
summarized below [ , , , , ].

As discussed in sec. 2.5.2, the fast, phase-coherent splitting creates an initial state, with
small relative phase correlations, but strong density fluctuations. As the density term
in the Hamiltonian 2.65 is independent on the wavenumber k, all k¥ modes receive the
same amount of energy Fyp;, as determined by the quantum shot noise of the splitting
process. As discussed in 5.2.4, energy is transferred into the phase DOF over time and
phase fluctuations grow with evolution time t.. Finally, in the prethermalized state, the
energy is equipartitioned | | between the phase and density DOF. This leads to
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the scaling of population of each k-mode as

nk:% :%l' (5.1)
EK hcs k
For a system in thermal equilibrium, the mode population is given by the Bose-Einstein
distribution which can be approximated for low momentum modes as

B 1 _kpT1
"~ exp (hesk/kpT) —1 7 hes k

ng (5.2)

Therefore, the fast splitting process populates the modes with a 1/k scaling, with an
effective temperature of the prethermalized state T)c, with Fyp;y = kpTpre. In summary,
in the prethermalized state, the effective temperature of relative DOF is given by T,
whereas the thermally populated common modes inherit the initial temperature of the
unsplit gas Tj,, with T, # T,r.. This dynamical evolution is summarized in table 5.2.
The dynamics leading to full thermal equilibrium meaning the temperature of common
mode equals the temperature in the relative modes is beyond the TLL framework. In
the integrable TLL description, the prethermalized state is the final state of the system,
assuming a perfectly symmetric splitting process. Observing a further evolution in the
experiment due to a slight breaking of integrability will be the topic of chapter 6.

common relative
Ey E, Ey E,
initial | 22lm | Eslin | L0 | ~ EpT.
kT; kpT; kBT, kTpr
prethermal | =Ejin Bsin R R
kBTf kBTf kBTf kBTf
thermal 5 5 5 5

Table 5.2.: Energy distribution between common and relative modes, where F,, denotes
the energy in the density fluctuations and Fy4 the energy in the phase fluctuations.
The final, thermal equilibrium temperature 7 is assumed to be given by the sum of
initial T}, and prethermalized Ty temperature as T = (Tin + Tpre) /2.

According to | | the prethermalized temperature 7}, can be calculated as,
mc2  gn
kBTpTe == Esplit == T == 7 == ﬁpasz. (53)

As the prethermalized temperature originates from the quantum shot noise of the splitting
process, the prethermalized temperature scales proportional to the chemical potential
B=gn.

In conclusion, the prethermalized state shows thermal like mode population scaling
and thermal-like correlation functions in the relative DOF, with an assigned effective
temperature 7). This temperature is completely independent on the initial temperature
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of the unsplit system.

5.4. The Contrast as an observable

5.4.1. Information encoded in the Contrast: What do we learn?

What can we learn by measuring the contrast of a matter-wave interference pattern?
What physics affect the value of the contrast on specific length scales and how can this
be related to the Luttinger Liquid picture?

As we have seen in section 2.5, the split 1d Bose gas can be described by a Tomonaga-
Luttinger Liquid (TLL) approach, which consists of collective modes with linear dispersion
relation. In Fourier space, these collective excitations can be described by a set of
uncoupled harmonic oscillators, i.e. phonons of momentum k = 27/, corresponding to
sound-waves modulating the relative density 7,(z) and phase fields ¢, (z) of the TLL
Hamiltonian given by eq. 2.56. The amplitude of these excitations is given by the
population of the k-mode.

In this context, the experimentally measured interference patterns are used to probe
the local relative phase ¢.(r) = ¢1(z) — ¢a(2) between the two coherently-split gases.
The strength of these phase fluctuations directly affect the contrast of the integrated line
profile. The choice of a variable integration length L acts as a filter for the effects of
the different excitations in the system. For a given integration length I, sound-waves
with wavelengths A < L produce strong fluctuations of the relative phase br (z) within
L while modes with wavelengths A > I have approximatively no effect on (13(2), apart
from a global phase shift of the mean <g§r(z)> The contrast C(L) of the integrated
interference pattern is therefore mainly influenced by the sound-waves with wavelength
shorter than L. Thus, measuring the contrast C (L) for different length scales L along the
cloud, allows one to directly probe population of excitations on different energy scales.
Furthermore, measuring the contrast for different evolution times C(L,t.) then probes
the dynamics of the phase fluctuations as well.

Fig. 5.5 shows two exemplary fringe patterns at different evolution times t.. At short
evolution times, just after the splitting, there are almost no phase fluctuations present
and the fringes form almost straight lines along the longitudinal z-direction, leading
to high contrasts C (L) on all length scales L. For longer evolution times, the phase
fluctuations are increased, resulting in a “wiggly” shape of the fringe pattern. The
integrated contrasts C' (L) becomes highly dependant on the length scale L. At short
integration lengths, high contrasts can be found, while for longer integration lengths,
approaching the system size, the observed contrasts are highly diminished, which is a
direct consequence of increased relative phase fluctuations. This means that long length
scales start to loose the memory of the initial state and the long-range phase correlations
start to decay.

5.4.2. Extracting the Contrast

The following procedure is used to measure the contrast of an interference picture.
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Figure 5.5.: Probing the Contrast along the longitudinal direction. Measuring the

contrast on different length scales provides information about the correlations still
present in the system. Out of many of these pictures, the squared contrast distributions
(squared FDFs) can be built, see for example Fig. 5.13. The correlation properties
are accessible by studying the shape of the squared contrast distribution functions
P (C (L)2> (see section 5.7) or by looking at the C2 (L) decay (see section 5.9). This
figure provides a phenomenological insight into the physics.
(a) At short evolution times, just after the splitting, there are almost no phase
fluctuations present and the fringes form almost straight lines along the longitudinal
z-direction. When integrating along the z-direction, the resulting line profiles show high
fringe visibilities on all length scales and the contrast is almost not length dependent.
(b) For moderate evolution times in the prethermalized state, the phase fluctuations are
increased resulting in a “wiggly” shape of the fringe pattern. The integrated contrast
becomes highly dependant on the length scale.

By integrating longitudinally over a length L, a line profile (Fig. 5.5) can be extracted
from the matter-wave interference pattern, from which a contrast C' (L) can be obtained
by fitting a sine function and a Gaussian profile. The contrast is the height of the
interference fringes relative to the height of the Gaussian background and is extracted,
following eq. 4.26 to 4.28, using the fit function

F(@) = A - exp (-W) - (1 +C (L) cos (2”(“";500) } ¢(L))> 6

where o is the rms radius of the Gaussian profile, A is the fringe spacing and ¢ (L) is the
phase of the interference fringes relative to the peak at zy of the Gaussian profile.

5.4.3. Measuring the Contrast during the Splitting Ramp

When measuring the contrast at different fringe spacings during the end of the splitting
ramp, the influence of the finite imaging resolution has to be accounted for.
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Figure 5.6.: Fringe spacing and splitting distance in the final part of the splitting ramp.

(a) Measured fringe spacing A versus evolution time t.. The dashed line is a guide to
the eye.
(b) Calculated splitting distance d versus evolution time t., using A = %. Tunnel
coupling between the two Bose gases becomes negligible at t. = Oms as shown in
[ ]. The tunnel coupling, given by the overlap of the wave functions between
the two wells is very sensitive to the chemical potential and thus on small atom number
variations and further to the barrier height of the double well potential. The 2ms
further increase in splitting distance ensures a reproducible zero tunnel coupling and
thus zero phase-locking for different initial conditions of the experiment, like atom
number and temperature. The dashed lines are linear fits.

As explained in sec. 5.2.2, the condensate is phase coherently split within 17 ms. In
order to reproducibly create the same non-equilibrium state of two completely decoupled
condensates, we split significantly further than just to the decoupling point in time at
15 + 0.5 ms. This means that the interesting relaxation dynamics already start 2 0.5
ms before the end of the splitting ramp.

In this final part of the splitting ramp the splitting distance dg;; between the two
clouds increases linearly with ramp time as illustrated in Fig. 5.6. The resulting
fringe spacing A of the interference pattern in 16 ms time-of-flight t7or decreases as
Afringe = h - tror/mdspir | , ]. When measuring the contrast
during the splitting ramp at different fringe spacings, the maximal measurable contrast
scales with the fringe spacing, according to the finite resolution of the vertical imaging
system. Thus, to be able to compare the measured contrasts at different fringe spacings,
a rescaling factor has to be applied. This rescaling takes mainly the point spread function
(PSF) of the imaging system into account. To include the effects of other noise sources, a
detailed simulation of the vertical imaging was performed, including the measured PSF,
the finite cloud size in time of flight and imaging shot noise. Furthermore, as the imaging
beam is reflected on the atom chip, stray light generated by the chip structures was also
taken into account. The simulated absorption pictures were analysed using our standard
fringe fitting code applying the fit function of eq. 5.4. The results are shown in Fig. 5.7
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Figure 5.7.: Scaling of Contrast with respect to fringe spacing and splitting distance. (a)
Maximal measurable contrast versus fringe spacing. (green, solid) modulation transfer
function, (blue, circles) detailed simulation of the absorption imaging, including the
point spread function of 3.8 pm Gaussian rms width, shot noise, finite cloud size in time
of flight and stray light generated by chip structures. The result of the simulations are
used to rescale the measured contrast in case of varying fringe spacings. (b) Maximal
measurable contrast versus splitting distance.

The grey shaded areas denote typical fringe spacings and splitting distances, respect-
ively.
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Figure 5.8.: Time evolution of the mean contrast for the integration lengths from top
to bottom L = 18 um (blue), 40 um (green), 60 um (red) and 110 um (black). The
splitting ramp ends at t. = 2 ms as shown in Fig. 5.6. Tunnel coupling between the
two Bose gases becomes negligible at t. = 0 ms.

(a) without PSF correction.
(b) including PSF correction.
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and qualitatively agree with the simple MTF prediction. This rescaling procedure is used
to study the time evolution of the mean contrast.

5.4.4. Time Evolution of the Mean Contrast

Fig. 5.8a shows the time evolution of the mean contrast for various integration lengths
L without taking the imaging effects into account. Fig. 5.8b shows the rescaled mean
contrast. By comparing the two, it becomes obvious that the fast initial decrease in
contrast on all length scales stems from the decrease in fringe spacing A and is mainly
governed by the finite resolution of the imaging system. The really interesting physics,
namely the contrast decay due to the evolution of the non-equilibrium state, becomes
apparent when correcting for the imaging resolution.

Still we do not measure 100 % contrast at zero evolution time, which may result from
several reasons. The finite splitting time used in the experiment results in an uncertainty
on the point in time where the two quasi-condensates decouple. This uncertainty
is approximately +0.5ms large. During this time the fast dephasing of high energy
excitations contributes to a reduction of contrast. Moreover, technical imperfections
reduce the contrast, mainly the residual projection of atoms to other Zeeman states during
the switch off of the trapping potential as well as slight misalignments of the imaging
optics. On all length scales, the maximum contrast that we detect is approximately
85 + 3 %. This leads to a necessary rescaling factor of the theory.

The rescaling of the contrast is actually only important when looking at the mean
values. When measuring full distribution functions of contrast or squared contrast, the
distributions are normalized to the mean contrast and are thus not affected by finite
imaging resolution and other noise sourced. Also the C'(L) plots presented in section 5.9
are renormalized to the smallest measurable length scale.

Fig. 5.9 compares the evolution of the measured mean contrast (C'(L)) on different
length scales (data points) with the predictions from the TLL theory (solid lines). To
account for the non-perfect splitting, the theory is rescaled by a single common factor
r = 0.85, common for all times and all integration lengths, in line with the maximum
contrast that we detect of approximately 85 + 3%. The high agreement between data
and theory is very convincing. Fig. 5.9 shows that the observed time scales for relaxation
are different for different length scales. For short integration lengths the decay of the
mean contrast settles at much earlier evolution times t. than for long length scales.
This is a direct evidence of the multimode nature of the dynamics, leading to a length
scale dependant relaxation time scale, which according to the TLL theory scales as
trelar = L/4c | |, with the sound velocity ¢ of the homogeneous theory. In
this context t,ejqs is defined as three times the e~! decay time scale. Furthermore,
after this first, very rapid decay within less than 10 ms, the dynamical evolution of the
non-equilibrium system seems to come to an end. The natural question coming up, is
this already the thermal equilibrium state of the system? If this would be true, how does
this fit to the harmonic TLL theory only predicting the dephasing of k-modes and unable
to couple between relative and common degrees of freedom?

To answer the last question a large number of measurements at different initial
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Figure 5.9.: Time evolution of the mean contrast compared to TLL theory for the same
data as in Fig. 5.8b. To account for the non-perfect splitting, the theory is rescaled by
a common factor of 0.82. The grey shaded area denotes the steady-state after the fast
evolution.
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Figure 5.10.: Mean Contrast Decay of L = 110pum at different initial temperatures
T;n. Within the errorbars the decay is independent on the initial temperature in
agreement with the TLL prediction and in contrast to typical thermalization theories
[ , , , |. Dashed lines are guides to the eye.

temperatures have been performed. Henceforth, initial temperature Tj, refers to the
temperature of the unsplit gas, as measured before applying the splitting. If this fast
relaxation process indeed leads to full thermal equilibrium, one would typically expect to
find a high temperature dependence, which is true for most of thermalization theories
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for 1d quasi-condensates | ) , , |. A detailed
discussion is postponed to chapter 6. Fig. 5.10 shows the time evolution of the mean
contrast for data sets in the temperature range of 20 to 130 nK, for I, = 110 pm, which
are identical within the errorbars. This observation strongly supports the TLL picture.

As we have seen, there is a lot of information contained in the mean contrast. But it
remains unclear if this steady state is to be identified as the thermal equilibrium state of
the system or if a further subsequent evolution on a probably much larger time scale is
to be expected. To be able to address this topic, the contrast and phase statistics shall
be measured and used to determine the nature of the observed steady state as well as the
multimode physics behind the relaxation dynamics. To this end, the measured contrast
distributions will be compared to the calculated thermal equilibrium distributions of sec.
4.4, first of all, to see if they are thermal and, second, to check that they show the correct
temperatures. This will be the topic of the following sections.

5.5. Measuring joint FDFs

The joint Full probability Distribution Functions (joint FDFs) are a handy, phenomeno-
logical tool to illustrate the dynamics of contrast and phase simultaneously on a circular
statistics representation. Basically, they show the joint probability distributions of the
phase distributions and contrast distributions, which can be calculated numerically us-
ing the TLL description | | and are easily compared to the experimentally
measured distributions. Fig. 5.11 illustrates how the joint FDFs are being obtained
from of the measured data. Each integrated line profile gives a contrast and phase pair
{C(L),¢ (L)}, which is plotted on a polar plot, where the contrast is represented in the
radial direction and the phase in the azimuthal direction, respectively. The resulting
contrast and phase pairs of many repeated realisations are collected in a scatter plot as
depicted in Fig. 5.11e. Finally, to give a measure of the probability of finding a certain
contrast and phase pair, the scatter plot is converted to a polar density plot.

Measuring these joint FDFs puts high constraints on the experiment. The experiment
needs to run very stable and very reproducible to generate a sufficient amount of repeated
realisations at the same parameters. Here the most obvious main parameter is density
of the degenerate Bose gas, which needs to be kept constant, at least, during the data
acquisition time. Other important parameters are the mean and spread of the number
balance between the two wells, as well as preparation of the non-equilibrium state (see
section 5.2) and the stability of the switch-off process of the dressed-state trap.

5.5.1. Effects of Number Imbalance

Let’s now focus on the effects of number imbalance between the two double-wells. A
number imbalance leads to a global phase shift of the interference pattern that scales
linearly with time. Due to technical noise sources we find a additional statistical
broadening of the imbalance distribution beyond the Poissonian quantum splitting noise
as defined by v/N. This results in a broadening of the phase distribution, which needs to
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Figure 5.11.: Measuring joint FDFs. (a) Schematic plot of single and symmetric-double-
well potential. (b) After switching off the trap, the two matter-waves expand and
overlap. The resulting fringe pattern is probed via the vertical absorption imaging
system, giving access to the relative phase fluctuations in the longitudinal direction.
The contrast, being measured on different integration length scales L, is directly
affected by the strength of the local phase fluctuations (c). Short integration lengths
are affected by the population of high k-mode, whereas long integration length are
affected by the population of all k-modes. (d) For a specific evolution time t., the
phase ¢ (L) and contrast C (L) are extracted from the fit function 5.4 and plot on
a polar plot. Repeating the experiment many times results in the scatter plot (e),
which is finally converted to a polar density plot, with red denoting high probability of
finding a specific contrast, phase pair. Figure from [[KXuhnert 13], copyright APS.

be included when comparing the measured and calculated joint FDFs from theory and
experiment.

The global phase shift A® (¢.) due to number imbalance can be calculated using the
following considerations. The net number difference AN = N; — Ny in each shot leads
to a difference in chemical potential Ay between the two wells. This chemical potential
difference

Ap = py — po = hwyy <\/1 +4dan; — 1+ 4asng) (5.5)
leads to a time dependant global phase shift of [LLewenstein 96, Javanainen 99, Schumm 05a]

t
AD(t.) = EEAM ~ 2tewyr (N1 — n2) (5.6)
The nett mean imbalance between left and right well results in a global phase rotation
of the distribution by A® (t.). To compare measured and calculated joint FDFs the
experimental global phase drift is rotated back so that the phase distributions are always
centered at zero degrees.
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In conclusion, additional technical noise broadening the imbalance distribution leads
to a broadening of the phase distribution, heavily affecting properties like the coherence
factor ¥ = Re{% [; dzexp (—id, — ACI))]

5.5.2. Measuring Number Imbalance

The number imbalance is determined independently for each scan, by using the longit-
udinal imaging system. As the resolution of the imaging is inadequate to resolve the
double-well splitting distance (2.8 — 3.8 pm), the number imbalance needs to be measured
in expansion. Thus, the dressed-state trap is switched off slightly earlier than the static
trap, such that the two clouds receive a small nett velocity kick towards each other. The
static trap is switched off before the two clouds collide. After release from the trap, the
clouds expand and do not interact anymore with each other, due to low density. After
some time of flight (12-16 ms) the absorption image is taken and shows two distinct clouds.
To determine the atom number between left and right well, the position of each cloud is
obtained via a Gaussian fit and the region of interest positioned likewise. The crucial
part is to get the timing of the rf currents ramp down correct. Standard rf ramp down
procedure lasts for about 5 cycles (section 5.2.3). For the number balance measurement,
the number of ramp down cycles is increased to 20 or 25 cycles, which corresponds to
53-67 ps for an rf frequency of v,y = 375kHz. Typically, a mean number imbalance of
% < 1% is obtained in the experiment, with rms standard deviations in the
range of 4% to 6 %. A more detailed discussion will be presented in | ]

5.5.3. Fit Uncertainty

Another effect, broadening the distributions of contrast and phase, is the uncertainty
of the fit parameters of eq. 5.4 itself. This effect needs to be taken into account by
convolving the calculated distributions with the normally distributed fitting uncertainties
of phase ¢ and contrast C. Typical rms fit errors for the contrasts are +6 % for L = 6 pm
to £3% for L = 110 pm and respectively for the phase £13° for L = 6 pm decreasing to
+7° for L = 110 pm.

5.6. Joint FDF Results

Fig. 5.12 shows the measured FDFs of 140 repeats at increasing evolution times t. and at
different integration length scales L. Furthermore the FDFs are compared to the result
of the harmonic TLL model discussed in section 2.5. The initial temperature before
splitting Tj, of this data set was measured, using the density ripples method discussed
in sec. 4.3, to be T}, = 20 &+ 2 nK. A measured number balance rms width of 5% was
included in the theory distributions as discussed in the previous section.

The three main observations of Fig. 5.12 are the following. First, for the shortest
evolution time (1.5 ms) the high contrasts and small phase spreads demonstrate the
coherence of the splitting process for all lengths L. Second, as time evolves, two distinct
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Figure 5.12.: Joint FDFs of phase and contrast for the following parameters: T =
204+2nK, n =42+ 5pum~t, K = 28.6 + 1.8, 144 repeats. The calculated theory FDFs
are marked in the top row with a T. A detailed discussion is given in the main text.
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regimes emerge, which are a direct consequence of the multimode nature of 1d Bose
gases. For long integration length L, the phase randomizes and contrast strongly decays,
resulting in a disk-like structure in the FDF plots. For short integration lengths a
different behaviour is observed: the phase randomizes, but the contrast almost does not
decay (compare Fig. 5.9), forming a ring shape in the FDF. Third, the dynamics show a
two-step process. The system evolves quickly for the first 10 ms and then seems to settle
into an apparent steady state.

Let’s first discuss the dynamical evolution of the system into this prethermalized
stationary state in the LL picture. During the dynamics, the energy of each harmonic
oscillator mode k oscillates between the fluctuations in density and fluctuations in phase,
driven by (s-wave scattering) interactions between the atoms. This results in a harmonic
time dependence of the fluctuation strength with a period of 7/cg|k|, where c; is the speed
of sound. For short evolution times, all phase fluctuation amplitudes grow in magnitude,
which leads to a scrambling of the relative phase g?)s(z) along the longitudinal direction.
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This results in an initial rapid decrease of the interference contrast C'. For longer times,
the oscillations in different £ modes dephase and the system reaches a quasi-steady state
as seen in Fig. 5.12 and also in the mean contrast evolution in Fig. 5.9.

Moreover, these dynamics lead to two distinct length-scale-dependent regimes of
relaxation, separated by a smooth crossover.

For short integration lengths L, the contrast C (L) is influenced only by very few,
sparsely populated modes with high momenta. Modes with wavelength A = 27 /k > L
only lead to an overall phase evolution, but not to contrast reduction. The FDF evolves
to a ring shape. This is the phase diffusion regime.

For long integration lengths I there are many significantly populated modes satisfying
A = 27/k < L and their dynamics leads to a randomization of the phase within the
integration length, the integrated contrast decays and FDF evolves to a shrinking disk-like
structure. This is the contrast decay regime.

The crossover length scale separating the two regimes can be calculated analytically in
the framework of the TTL theory as

2

lo = 4KL1;tt§h 2 h ’ (5.7)
T mg — Maswy

which gives for the data set of Fig. 5.12 at wy = 27 x 1400 £+ 80 Hz a value of
lp = 15.8 £ 0.9 pm. Interestingly, oy is independent on the density of the system and

scales only with the 1d interaction strength ¢g~!.
Section 5.9 will show how to independently measure the effective correlation length,
separating the two regimes. In the next section the squared contrast distributions will be

studied in detail and sec. 5.8 will discuss the distributions of the relative phase.

5.7. Contrast squared FDF Results

The good agreement between experiment and theory in the joint distributions can mainly
be used to get a phenomenological insight into the non-equilibrium dynamics. To take a
more quantitative approach, the distributions of the squared contrast are studied in this
section. These squared contrast probability distributions or full distribution functions
(FDFs) give the probability P (C?) dC? of finding a value of C? in the interval between C?
to C? + dC?. Actually, these squared contrast FDFs provide information about all even,
higher-order correlations in the system, through the moments (C?™) = [ C*™ P (C?) dC*
and thereby measure the non-equilibrium state of the system in great detail | ]

Using P (C?) instead of P (C)

As discussed in | |, the contrast distribution P (C') stays always peaked, even
in the uncorrelated case, whereas the shape of the squared contrast distribution P (C?)
changes drastically from peaked, in the highly correlated case, to exponentially decaying,
in the uncorrelated case. This is due to the fact that P (C) o C exp (—C?) and therefore
always stays of Gaussian shape with P (C' =0) = 0. A constrained that can be neatly
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circumvented by plotting P (C?) o exp (—C?), which fulfils P(C? = 0) # 0. In this
context uncorrelated refers to an correlation length A being much smaller than integration
length L. Therefore it is preferably to study the P (C?) distributions in the following.

Using the normalized squared contrast C?/ (C?)?

The absolute value of the contrast is affected by various systematic effects. Experimental
imperfections in the splitting (see sec. 5.2.2) as well as in the release process (see sec.
5.2.3) strongly affect the maximally measurable contrast. Furthermore, the finite optical
resolution in combination with slight optical misalignments reduce the observable contrast.
In order to discard these systematic effects, it makes sense to renormalise the squared
contrast distributions by their mean <C2> value and then properly compare the resulting
distributions to the relevant theory.

Results
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Figure 5.13.: Squared Contrast FDFs for the same data set as in Fig. 5.12, with the
following parameters:T = 20 +2nK, n = 42 £ 5pm~!, K = 28.6 + 1.8, 144 repeats.
Experimental distributions (histograms) are compared to TLL theory (solid red lines).
A detailed discussion is given in the main text.
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Fig. 5.13 compares the measured distributions with the TLL theory. The solid
red line depicts the TLL prediction without any fit parameters for the independently
measured input parameters mean peak density n = 42 = 5pm~! and transverse trap
frequency wy, = 2w x (1400 £ 100) Hz determining the coupling strength g = 2hiwy,as
(secondary parameters are the initial temperature Tj, = 20 £ 2nK and number imbalance
Nimpar = 1 £5%). The red shaded area denotes the rms error bounds with respect to the
uncertainties of the input parameters. The black histogram bars show the distribution
of the experimental data. To achieve satisfactory statistics, 144 repeats have been
accumulated at each evolution time ..

At early times, the probability distributions are peaked on all length scales, which
verifies that a highly correlated, phase-coherent non-equilibrium state has been created
by the fast splitting process.

Similar to the observations made for the joint FDFs and for the decay of the mean
contrast, we find that the dynamical evolution strongly depends on the probed length-
scale. During the coarse of the evolution the shape of the FDFs changes most strongly
on long length scales from peaked, Gumbel-like to an exponential decay, which is related
to the loss of phase-correlations on long length scales. Exponentially decaying FDFs
is exactly what one expects if the phase correlation length is much smaller than the
integration length and thus the binning over L samples over a large number of random
phase domains, in essence similar to a random walk.

For short integration lengths, the contrast FDFs stay peaked at all times. Once more,
a crossover can be observed at intermediate length scales.

Once again, the rapid, initial evolution is visible, which leads to the quasi-steady,
prethermalized state for evolution times f. > 10 ms.

The agreement between theory and experiment has improved in comparison to the
results published in | | by taking the maximal measurable contrast of 85 + 3%
into account and by further convolving the calculated distributions with the uncertainty
of the fitting (one standard deviation of fit uncertainty corresponds typically to £6 %
at 6 pm, £3% at 110 um ). This effectively smears out the sharp decay towards 100 %
contrast at early evolution times.

The remaining small discrepancy of the distributions between theory and experiment
for early times is likely to be the result of an inaccurate description of the system for
high-energy excitations. The Tomonaga-Luttinger theory used to obtain the distributions
is valid only at low energies and for evolution times t. > h/u ~ 1 ms, and thus the theory
is unable to capture the dynamics at short times which is dominated by high-energy
excitations. In addition, the theory assumes a fast splitting process which results in large
particle number fluctuations in the initial state. The experiment splits the system in
a finite time and thus the initial state may differ slightly from the assumptions of the
theory.

Overall, the TLL predictions fit remarkably well to the data. This leads to the
conclusion that the TLL description captures the physics of the initial evolution very
well and the dynamics are driven by the dephasing of harmonic k-modes.

In the TLL framework, the initial fast evolution and the prethermalized state should
both be independent on the initial temperature, which is exactly what one finds when
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Figure 5.14.: Squared contrast FDFs for a data set at higher initial temperature, with
the following parameters: 7 = 103 £ 15nK, n = 45+ 5pm~!, K = 29.6 + 1.7, 300
repeats. Experimental distributions (histograms) are compared to TLL theory (solid
red lines).

comparing Fig. 5.13 taken at T' = 20+2nK and Fig. 5.14 for a data set of T' = 103+15nK.
The prethermalized state is only defined by the quantum shot noise introduced by the
splitting process.

After dephasing, the system is in the prethermalized state, which is a quasi-stationary
state in the course of thermalization. Whether true thermal equilibrium is going to be
reached at some later stage remains unclear. Fig. 5.15, shows the contrast squared FDFs
for t. = 23 ms to t. = 183 ms, i.e. the subsequent evolution following Fig. 5.14. The TLL
theory (solid red line) predicts no further time evolution, whereas the experimental data
shows a further decay of correlation, or in other words a further loss of information, which
is clearly an effect beyond the TLL description. This means that either higher-order
anharmonic terms, omitted by the TLL Hamiltonian of eq. 2.56, become relevant that
may lead to a coupling between relative and common degrees of freedom on the long time
evolution, or that the “near” integrability of the experimental system is broken far enough
such that 3d thermalization processes might come into effect. Both processes would lead
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Figure 5.15.: Squared Contrast FDFs for the same data set as in Fig. 5.14, with the
following parameters: T = 103 £ 150K, n =45+ 5um~!, K = 29.6 & 1.7, 300 repeats.
Experimental distributions (histograms) are compared to TLL theory (solid red lines).
A detailed discussion is given in the main text.

to a second much longer time scale for the relaxation towards thermal equilibrium. This
topic will be treated in chapter 6.

The issue of observing possible revivals of the phase coherence in the experiment is an
ongoing topic will be treated elsewhere | ].

In conclusion, the TLL theory is able to explain the early evolution up to te ~
30 ms, which consists of an initial rapid dephasing process that leads to the emergence
of a prethermalized, temperature-independent state. For higher evolution times, the
experimental data shows a further loss of correlations on a much longer time scale, which
is not covered by the TLL theory.
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5.7.1. Measuring the Temperature of the Relative Degrees of Freedom

As we have seen in sec. 5.3, the prethermalized state is expected have thermal-like
correlation functions. Therefore, in the spirit of sec. 4.4.5, equilibrium P (02) can be
fitted to the experimentally measured squared contrast FDFs, to probe the emergence of
thermal like distributions and obtain the effective temperature 7, of the prethermalized
state. Finally, the predicted scaling of Tpre (eq. 5.3) is to be verified.

The effective temperature at each evolution time t. is determined by fitting the
calculated equilibrium distributions to the experimental distributions with the tem-
perature being the only free fit parameter. As a figure of merit, the x? value is used

[ : ]

XQ—Z(OZEiEl)’ (5.8)

i
where O; are the observed counts and F; are the expected counts of the P (CQ) distribu-
tion.
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Figure 5.16.: Reduced-y? comparison between non-equilibrium TLL theory (blue
squares) and thermal equilibrium OU theory (green circles) to the measured data of
Fig. 5.13. For early evolution times, the equilibrium theory shows worse agreement
than the TLL distributions.

Fig. 5.16, compares the results of the reduced x? test for the non-equilibrium TLL
theory (blue squares) and equilibrium OU theory (green circles) with respect to the
experimentally obtained distributions of Fig. 5.13. The reduced x? is given by x2 = x2/n,
with n being the number of degrees of freedom, defined by by the number of observations
N and the number of fit parameters as n = N — Ny;; — 1. A reduced x2 value close
to one means that the null hypothesis cannot be rejected [ ]. For x2 > 1 the
observed agreement between experiment and theory is not statistically relevant. For
early evolution times t. < 10ms, we find that the observed distributions are non-thermal
and the TLL predictions explain the data much better. In the prethermalized state, for
te > 10ms both non-equilibrium and equilibrium theory show similar y? values close
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Figure 5.17.: Scaling of the prethermalized Temperature T}, versus peak density n
(a) and initial temperature Tj, (b). The black solid lines correspond to the TLL
predictions, which are in good agreement with the obtained data (blue squares) over a
wide parameter range, despite a small offset (see text) from the linear fit (dashed blue
line).

to one, demonstrating that the prethermalized state has indeed thermal-like properties
and that it makes sense to assign an effective temperature T, to the relative degrees of
freedom.

5.7.2. Results

Additional data sets at varying peak densities in the range of n = 10 — 70 um™~" have
been acquired, to probe the linear scaling of T}, with density n as given by eq. 5.3. Fig.
5.17a shows a collection of these measurements, which are in good agreement with theory.

Furthermore, in order to verify that 7). is indeed independent on the initial temper-
ature T;,, many data sets have been acquired, spanning a wide range of temperatures in
the thermal quasi-condensate regime T;,, = 20 — 120nK. The results, shown in Fig. 5.17b,
confirm that 7}, is indeed constant. To correct for small variations in peak densities n
from scan to scan, the measured 7, is renormalized by the prefactor 27]1‘3—3.

In both graphs, the ~ 20 % offset to higher temperatures is probably due to the effects
of the finite splitting time. The theoretic description presented in [ | assumes
an infinitely fast splitting process, so that the coupling vanishes simultaneously for all k
modes, independent on their energy. Due to the quantum noise of the splitting process,
each k-mode receives the same amount of energy given by Fgyir = %, independent of
k and the population of modes scales as 1/k%. If the splitting is not fast enough, the
initial mode population will deviate from 1/k?, which, eventually, will produce a squeezed
initial state resulting in the observed offset of Tj..

In conclusion, the contrast distributions are a neat tool to analyze the non-equilibrium

dynamics.
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Figure 5.18.: Phase FDFs for the same data set as in Fig. 5.13 and Fig. 5.12.
Experimental distributions (histograms) are compared to TLL theory (solid red lines).
The initial distributions are peaked on all length scales as expected for a phase-coherent
splitting process with an initial width defined by the quantum shot noise. Once the
prethermalized state is reached at t. > 10 ms the phase is uniformly distributed.

5.8. Relative Phase FDF Results

Fig. 5.18, shows the probability distributions of the relative phase ¢ (L) for the same
data set as Fig. 5.13 and Fig. 5.12. For short evolution times the distributions are peaked
on all length scales, which verifies that the splitting process is indeed phase-coherent.
The initial width is given by the quantum shot noise of the splitting process and as
it turns out, mainly by technical noise sources. The shot noise generates a Poissonian
number balance distribution between the wells which needs to be convolved with the
additional normally-distributed imbalance due to technical fluctuations from shot to shot.
The initial number balance distributions are measured following the procedure explained
in sec. 5.2.3. The further evolution of the phase distributions is governed by the TLL
physics, where due to the effects of the initial imbalance noise, the width of the phase
distribution increases almost independently from the probed length scale, diametrically
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Figure 5.19.: Phase spread versus time for I = 6um (green, open squares) and

L = 110um (blue, filled squares) the data of Fig. 5.13. The respective circles
connected via the dashed line correspond to the TLL calculation. The black dashed
line corresponds to the limit of a random phase distribution. shot noise generates a
Poissonian number balance distribution between the wells which needs to be convolved
with the additional normally-distributed imbalance due to technical fluctuations from
shot to shot. The initial distribution of number balance is measured, following the
procedure explained at the beginning of this section, to be AN/N = 1+5%. The
further evolution of the phase distributions is governed by the TLL physics.

opposite to the evolution of the squared contrast FDFs of Fig. 5.13. Therefore, the two
regimes of relaxation are not observable with the information of the phase FDFs alone.
The relative phases are randomly distributed, once the prethermalized state is reached
(te = 10ms).

Fig. 5.19, compares the measured phase spread at 6 pm (green, filled squares) and at
L =110um (blue, filled squares) with the TLL results (respective circles) at increasing
evolution times. The phase spread is calculated as one circular standard deviation, which
is defined in | | as

Ap=1/2(1-R), (5.9)

where R is the length of the mean vector of a set of N phases ¢; and thus given by

R = % Zévzl ¢'®i=%) with p = arg <Z§V:1 ei%'). The circular standard deviation lies

between [0, \/i] rad = [0, 81.03] °. Once again, convincing agreement is found when
including the measured number balance of AN/N =1 +5%. Both plotted length scales
show very similar behaviour and become close to a uniform distribution, at times earlier
than t. = 10 ms.

In conclusion, the phase is not a good observable to study the multimode nature of the
system. This is mainly due to the effects of technical noise in the splitting process, that
eventually lead to a significant broadening of the phase distributions that scramble the
multimode physics. On the other hand, the contrast is a much more robust observable

113
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than the phase, as it is not affected by the technical imbalance noise of the splitting
process.

5.9. Contrast Decay versus Integration Length

So far, we have probed the system via the measurement of contrast and phase statistics
and compared the results to the TLL theory. In this way, we basically probed the
correlation properties of the dynamics or in other words the loss of memory of the
initial state. One drawback of the TLL calculations is their intrinsic dependence on
many parameters, especially on the density of the system. To get an independent
measurement on the resulting prethermalized state compared to the TLL results it would
be advantageous to probe the crossover length scale [y, which is a characteristic property
of the prethermalized state, that does not depend on density as seen in eq. 5.7. As
we have seen in sec. 4.4.4 and eq. 4.35, the thermal phase correlation length becomes
experimentally measurable by studying the contrast decay (C? (L)) versus the integration
length L. According to the properties of the prethermalized state, this (C? (L)) decay
should be independent on the initial temperature T;,;; and be thermal-like in form with
an effective correlation length A.s¢ being equal to the crossover length lo.

The equivalence of the crossover length-scale [y and the effective thermal correlation
length M.y of the relative phase field in the prethermalized state can be understood in
the following way. In the case of two uncoupled quasi-condensates at thermal equilibrium
(temperature T'), the thermal phase correlation length Ay is given by eq. 4.21. Because of
the rapid splitting process, the energy initially stored in the system is equally distributed
between the different modes | |. This equipartition of energy results in thermal-
like correlations of the prethermalized state, characterized by the effective temperature
kpT.;; = (H|i—0) = pg/2. with the 1d coupling constant g (eq. 2.17). The effective
thermal correlation length can thus be identified with Acrr = h?p/mkpT. ;s = 2h*/myg,
and is equivalent to the crossover length scale [p.

In conclusion, by measuring (C? (L)), an independent estimation of the prethermal
correlation length [y is obtained, without the need of using any input parameters like
the density n or the coupling strength g. Thereby the (C? (L)) decay is a completely
independent measurement, which can be used to verify the non-equilibrium nature of the
prethermalized state.

5.9.1. Taking Finite Imaging Resolution into Account

As discussed in sec. 5.3, the prethermalized state has thermal like properties and correla-
tions. In particular, the relative phase correlation function PCF(z,2") = (exp(id(z1) —
uﬁ(zQ))) as defined in eq. 2.35 is given by a thermal-like exponentially decaying form
PCF(z) x exp(—2z/lp), similar to eq. 4.20, with the characteristic length scale being
equal to the crossover length scale lp, as shown in | |. In this context [, sep-
arates the phase diffusion and contrast decay regime and thereby governs the dynamical
evolution to and the properties of the prethermalized state.
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Figure 5.20.: C (L) decay versus integration length scale in the prethermalized state
(te > 10ms). Green circles correspond to the measured data, whereas the solid black
line is a fit using eq. 5.12. The measured data has been normalized to the value at
C?(L = 6m). (a) The resulting fitted correlation lengths are )\g}tf =15.7+0.9pm

at an initial temperature of Tj,;; = 20 £ 2nK (a) and /\g}tf = 15.4 &+ 0.8 pm at initial
temperature of T;,;; = 103+ 15nK (b). This is in stark contrast to the expected phase
correlation length for the thermal equilibrium case. In thermal equilibrium, phase

correlation lengths of ~ 11 pm (a) and = 2pum (b) would be instead expected.

Similar to eq. 4.35, we find for the mean integrated squared contrast

<C2(L)> = % /L/Ldzdz’ PCF(z,7) =2R [ZLO - (ZL°>2 (1 — exp (—i))} (5.10)

where R = e 5/47 is a reduction of the interference contrast due to the contributions
of high energy excitations (of wavelength smaller than the healing length £ = 27 /k.
[ ]). For typical experimental parameters one finds R = e~ /4K ~ 1. Thus
the effective phase correlation length A4, given by eq. 4.21, is equal to the crossover
length scale lg and we simplify to lo = Ay = A. However, eq. 5.10 does not include the
finite resolution of the imaging system and, therefore, does not represent the measured
data.

To include the finite imaging resolution, the PCFE has to be convolved with the
correlation function of the imaging PSF, which results in

1 2_ z O 22 z O
PCF(z) = 2 fl——— Nerfe | — + — 1 5.11
(2) 2\/%@ (er (20 )\)+€ erc(20+)\)+ ), (5.11)
where erf and erfc denote the error function and the complementary error function,

respectively and o is the rms width of the PSF. Finally, the length-scale dependence of
the measured integrated squared contrast C?(L) evaluates to

NN
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A2 a2 o L L o L o L
2 _ 5 -5 X -~ _ 9, e )
C (L) = \/87 QeA [4erf< ) 2e” X <€7f (2 )\) +1> 2ex (erf()\ + 5 ) 1) +

AL, o2 L 8¢ o2 ([ L2
+ € 2Zerf <20> + )\\;7?6 2z <e 7 — 1) — 4]. (5.12)

Given the object space pixel size of the vertical imaging system (2pm) and the rms PSF
width of 3.8 pm, the minimum integration length which can be probed via the vertical
imaging system (see sec. 3.1.5) is conservatively estimated as L. = 6um. To account
for the contrast reduction resulting from the contributions of the excitations within
this integration length, the experimental data as well as the theory are normalized by
the value of C?(L = 6 pm). Finally, the correlation length is obtained by fitting the
experimental data to eq. 5.12 with A being the single free parameter. Fig. 5.20a shows
a fit to the data set at T = 20 + 2nK, resulting in an effective correlation length of
lo=Aefr = 15.7£0.9um and Fig. 5.20b shows a fit to the data set at 7" = 103 & 15nK
yielding lop = Acyy = 15.4 £0.8um. Both fit results are in good agreement with the
calculated value of Iy = 15.8 &£ 0.9 um, which is temperature independent.

>

5.9.2. Comparison of Thermal and Prethermal Correlation Lengths

Fig. 5.21 shows a comparison of prethermal Ap.. = 2h? /mg and thermal phase correlation
lengths Ay = h%n/mkgT. As we have seen in section 5.6, while the prethermalized
system reveals thermal-like correlations, its correlation length depends only on the 1d
coupling constant g. This is in stark contrast to a system of two quasi-condensates
at thermal equilibrium, where Ay is a function of density and temperature as given
by eq. 4.21. To reveal this difference experimentally, the initial temperature Tj,; of
the quasi-condensate before splitting is varied and the resulting correlation length is
measured by fitting eq. 5.12. The temperature before splitting, T, is obtained through
density ripples measurements. The results (blue squares) confirm the independence of
the prethermalized state on the initial temperature Tj,;;, having a constant effective
correlation length A.ry, which is equal to the crossover length scale lg, as observed in
sec. 5.6. The equilibrium data (green circles and cyan triangles) shows the expected
temperature scaling of A\, as given by eq. 4.21, where the mean density 7 = (ngcans) of all
data sets was used. To account for slight variations of the density, the equilibrium data
points have been rescaled to this mean density in. The green data was obtained similar to
the prethermalized data, by fitting eq. 5.12. The cyan data was extracted from density
ripples measurements of the prethermalized state, which measure the temperature of both
the relative and common degrees of freedom simultaneously. The resulting temperature
should be given by T' = (T}e; + Teom) /2. The correlation length is then derived from the
measured temperature and density. Accessing solely the common degrees of freedom is
not possible in the current experimental setup as one would need to measure the second
order correlation function go of each gas independently. The density ripples data scales
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Figure 5.21.: Comparison of prethermal and thermal phase correlation lengths. The
blue squares (prethermalized state) and green circles (thermal equilibrium state) have
been obtained using the fit function given in eq. 5.12. The cyan diamonds have been
derived from temperature measurements (via the density ripples method) of additional
non-equilibrium data sets, where the corresponding fringe patterns were not recorded.
Both cyan and green data are in agreement with the thermal phase correlation length
Ag o< 1/T of eq. 4.21 (black dashed line). In contrast, the prethermalized data shows
no temperature dependence within the errorbars and is in good agreement with the
calculated crossover length scale o = 15.8 £ 0.9 pm (red solid line). The shaded areas
depict two standard deviations of the calculated values. Errorbars denote one standard
deviation.

according to Ay, with the tendency of slightly higher correlation lengths than expected,
which fits to the described intuitive picture above. These results support the view that
while the relative degrees of freedom are merely populated by the quantum shot noise of
the splitting process, the common degrees of freedom store the thermal energy given by
Tinit- To reach full thermal equilibrium, a coupling between common and relative DOF
is needed that leads to a transfers of thermal energy into the relative modes. This will
be the topic of the next chapter.

5.10. Summary

In conclusion, this chapter presented a detailed survey of the non-equilibrium dynamics
that follow a rapid quantum quench of a nearly integrable, 1d system of weakly inter-
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acting Bosons. The resulting dynamics were probed through the quantum probability
distributions (full distribution functions) of the relative phase and contrast of matter-wave
interference patterns. The distributions of the relative phase turn out to be governed by
technical noise in the splitting process, that eventually leads to a significant broadening
of the phase distributions. Therefore they are not ideally suited to study the multimode
nature of the system. On the other hand, the contrast is a much more robust observable
than the phase, as it is much less affected by the technical imbalance noise of the splitting
process. The distributions of the squared contrast were used to probe the resulting
dynamics and further to determine the nature of the emerging quasi-steady state.

The observations fiercely support the theoretical description via a Luttinger Liquid
formalism and the interpretation that the rapid initial loss of coherence does not lead to
a thermal equilibrium state, as was initially believed in [ |, but that the
system instead dephases to a prethermalized state, determined by the splitting process
and not by the initial temperature T;,.

The properties of this prethermalized state were studied in great detail. Being defined
by the quantum noise of the fast splitting process, the prethermalized state shows
thermal like mode population scaling and thermal-like correlation functions in the relative
degrees of freedom, which makes it possible to assign an effective temperature T .
This temperature is completely independent on the initial temperature of the unsplit
system. Tpye is rather defined by the energy introduced by the fast splitting process as

kBTyre = Foplit = m;g = %. Therefore the memory of the initial non-equilibrium state
remains partially conserved, characterized by still observing two unequal temperatures in
the relative and common degrees of freedom T}.c; # Teom- The equilibration of these two
degrees of freedom on a second, much longer time scale will be the topic of chapter 6.

Moreover, the multimode-nature of the observed dynamics leads to two distinct,
length-scale-dependent regimes of relaxation, which are separated by a smooth crossover.
The phase diffusion regime and the contrast decay regime. The critical length scale [y
separating these two regimes has been identified as the prethermal correlation length
= 3%27 which actually determines the early time dynamics and only depends on
the 1d coupling strength ¢ of the Lieb-Liniger Hamiltonian.

Finally, an independent estimation of the prethermal correlation length lg was obtained,
by measuring the (C? (L)) decay, thereby verifying the non-equilibrium nature of the
prethermalized state in contrast to measurements performed at thermal equilibrium

conditions, without applying the quantum quench.

)\pre = lo

118



Chapter 6.

Going beyond Prethermalization: Is
there Thermalization in the long
time evolution?

With the first link, the chain is forged. The first speech censored, the first
thought forbidden, the first freedom denied, chains us all irrevocably.

- Judge Aaron Satie

Abstract

The chapter starts with an in depth study of the heating and atom loss rate in the experi-
mental setup, confirming that external heating mechanisms can practically be neglected
on the experimentally probed time scales, thus allowing to study the long-time evolution
of the non-equilibrium system. This long-time evolution shows signs of a further second
relaxation process, happening after the establishment of the prethermalized state. This
further loss of correlations happens on a second much slower time scale than the deph-
asing to the prethermalized state and might be attributed to relaxation towards the true
thermal equilibrium state, characterized by a complete loss of information of the initial
conditions. Once more, the contrast squared FDFs are used to determine the effective
temperature of the relative degrees of freedom. The corresponding time evolution of the
effective temperature is compared to a thermalization model based on two-body scattering
involving transversally excited states. The model shows qualitative agreement, but slightly
underestimates the observed relazation rates.
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6. Going beyond Prethermalization: Is there Thermalization in the long time evolution?

6.1. Heating and Loss Processes

Ultracold gases trapped in optical or magnetic traps have shown a remarkable good
isolation from the environment [ , , |. These ultracold
experiments allow the study of essentially closed quantum systems, where almost no
information is leaking into the external world. In this context, environment is a very
broad concept, essentially referring to the whole universe with the ultracold sample being
the only exception. Transfer of information of a quantum state to the environment may
lead to the collapse to an eigenstate | , , .

In the long time evolution, when extending the evolution times beyond several tens
of milliseconds, coupling to the environment may become relevant. Coupling to the
noisy environment may induce unwanted heating | | and decoherence of the
ultracold sample. Technical noise and inherent physical processes result in atom loss.
Eventually, heating and atom loss limit the experimentally accessible time scales. In the
following, we want to study the processes that lead to heating and atom loss in atom
chip traps and find out which are the most dominant ones.

6.1.1. Heating

At first, let’s look at possible sources of heating an ultracold sample trapped in a magnetic
potential. A small coupling to the environment (which is usually at room temperature)
may lead to energy transfer to the ultracold sample.

A simple model

In a simple 1d-harmonic oscillator model, this energy transfer leads to transitions between
ground and excited vibrational states. These excitations are a result of fluctuations of
the trap minimum or of the trap frequency. Changes in the position Ax of the trap
minimum lead to a force F' = mw?Az, exciting the first excited state at a transition
rate o1 oc w39 (w) | |, where S, (w) = 2f_oooo drexp (iwt) (x (t +71)x (t)) is
the fluctuation spectrum of the trap minimum and w is the trap frequency. Fluctuations
in the trap frequency Aw exert a force F = mwAwz? and lead to excitations of the
second excited state at a transition rate ['g_o x w25, (2w) [ ] proportional to the
frequency noise spectrum S, (2w), where parametric heating is strongest at the second
harmonic component of the noise spectrum | |. These stochastic fluctuations are
mainly caused by either technical noise or thermally induced noise, which are discussed
in the following.

Noise sources inducing heating

Technical noise is generated by uncorrelated fluctuations in the currents of the trapping
wires, the bias and compensation coils. This noise randomly shifts the position of the trap
minimum and alters the trap frequency, thereby heating the ultracold sample | ]
The effects of technical noise can be reduced by correlating the current fluctuations in the
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6. Going beyond Prethermalization: Is there Thermalization in the long time evolution?

different devices [ | and by decreasing the noise amplitudes (usage of low-noise
power-supplies, current feedback loops, etc.).

Thermally induced Johnson current noise cannot be simply decreased by cooling the
conducting metal as discussed in sec. 3.1.2. It has rather to be regarded as a material
property, which can be improved by a proper selection of the current carrying metals or

alloys | |, or by applying superconducting currents for example.
Other noise sources include current shot noise [ ) | and light
induced heating [ |. For light induced heating, the probability of momentum

transfer Ak is given by the Debye-Waller factor Py_,o o exp (—Ak?ad) ~ exp (—n?), with
the Lamb-Dicke parameter n = 2T”a() being the ratio of the ground-state size ag of the
trap and the photon wavelength A, assuming Ak = k. To reduce light induced heating,
the vacuum chamber needs to be properly protected from stray light sources by using
blackout materials and mechanical optical shutters.

Last but not least, all above near field effects from current carrying wires have been
shown to be orders of magnitudes larger compared to magnetic black-body radiation
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Figure 6.1.: Estimating heating rates in undressed traps. Density Ripples temperature
versus evolution time t.. A linear fit gives a heating rate of ~ 300 nK/s in the undressed
trap.

Measured Heating Rates

To decrease the technical noise level the chip current drivers are connected to free
floating batteries, which help to drastically decrease 50 Hz contributions. Other groups
use commercially available low-noise current supplies' and report satisfactory results
[ |. Fortunately, applying rf-dressing to the trap acts as a stabilising mechanism
to the Ioffe field, which is then defined by the Rabi coupling Q of the dressed potential
V =mpgrupV A2 + Q2 at positions of zero detuning A. Therefore, when measuring the

!Keithley Programmable DC Power Supply 2200-32-3
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Figure 6.2.: Estimating heating rates in equilibrium system in the dressed trap.
(a) Temperature measured via density ripples method starting at Tpg, initiar = 404 nK
and Nipitiar = 6000 atoms. Within the errorbars there is no heating observable.
(b) Temperature inferred from Contrast squared FDFs for another data set with the
initial parameters Tpg, initiar = 27 = 7nK and Njpitiqr = 4200 atoms. Again, within
the errorbars there is no heating observable.
(c) Temperature measured via density ripples method for another data set with the
initial parameters TpR, initiat = 60 £ 8K and Njpitiqr =~ 5300 atoms.
(d) Temperature inferred from Contrast squared FDFs of same data set as in (c).
Within the errorbars both methods give comparable temperatures.

temperature in the equilibrium trap, no heating could be observed over several hundreds
of ms, whereas density ripple measurements in the pure (undressed) magnetic trap (Fig.
6.1) show a heating rate on the order of ~ 300nK/s?.

Fig. 6.2 shows measurements of the equilibrium double-well system versus time, trying
to measure possible heating rates, introduced by technical noise or by atom loss. The

%as measured by 20120810
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equilibrium system is prepared by first splitting a thermal atom cloud. In a second step
the two thermal clouds are cooled further into the quasi-condensate regime. After finishing
the cooling procedure, the completely independent and uncoupled quasi-condensates are
kept trapped for various hold times, before taking interference pictures in time-of-flight
and building the contrast squared FDFs. The shape of the FDFs are then again used to
extract the temperature of the gas. As can be seen, several data sets do not find any
signs of heating over several hundreds of milliseconds, neither by using the FDFs, nor by
probing the density ripples in time-of-flight.

Conclusion

Concerning the non-equilibrium quasi-condensate, heating may result in collective and
quasiparticle excitations, leading to a break down of the low-energy, purely phononic
Luttinger Liquid description. As we were reproducibly unable to find any heating in the
dressed equilibrium system with all measurement methods at hand?, a long-time study of
the non-equilibrium temperature evolution becomes possible and we can experimentally
address the topic of full thermalization in the nearly-integrable non-equilibrium system.

6.1.2. Atom Loss
General Considerations

One main problem when looking at the long-time evolution of the non-equilibrium system
is the inherent atom loss out of the magnetic trap.

A decreasing atom number obviously changes the 1d density n, and thereby affects
important parameters like the thermal correlation length A7, the sound velocity ¢; and
last but not least the collision and thermalization rates. The main problem of atom loss
is the reduced signal to noise ratio in the absorption images, which eventually limits
experimentally accessible time scales.

The effective Temperature T¢ s of the prethermalized state is not affected by atom
loss as it is defined by the quantum shot noise of the splitting process (see section 5.3).
Therefore, it is set by the current atom number at the moment of splitting and remains
well-defined throughout time evolution. Being independent on atom loss as well as being
independent on thermal fluctuations of the initial state is actually a very unique feature
of the prethermalization phenomenon, relying totally on quantum noise.

Furthermore, atom loss might affect the population of the longitudinal modes. We have
to make the important assumption that atoms are lost independently on their energy
i.e. longitudinal mode they occupy such that the distribution of mode population is
effectively kept unchanged. If, for example predominantly high energy modes would be
depleted by atom loss, the system would be effectively cooled similar as in evaporative
cooling. In a sense this would be a thermal quantum quench, with unknown affects to
the time evolution of the contrast squared FDFs (section 5.6). The long time dynamics
would be changed drastically. However, there are no signs of energy-dependant atom loss

3density-ripples temperature and relative temperature measured via FDFs
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in the density ripple temperature evolution, nor in the FDF evolutions of the equilibrium
system (compare Fig. 6.2). Therefore, the atom loss probably only leads to uniform
changes of the longitudinal mode population and does not affect the FDF shapes.

Let’s now focus on the reasons for atom loss. Atoms continuously leave the trap due
to several processes. These processes can be classified by the number of participating
trapped atoms into 1, 2- and 3-body processes. One-body processes include collisions with
the hot (300 K) background gas, which easily eject the atoms from the magnetic trap (trap
depths < mK), Majorana spin flips and spin flips due to ambient rf noise fields as well as
through energy transfer from ambient resonant stray light. For the applied Ioffe-Pritchard
like traps, with a Ioffe field on the order of By ~ 0.57 G(400 kHz), the rate of Majorana
spin flips (sec. 3.2.5) can be neglected. Technical noise, generating AC fluctuations in
the magnetic fields, may also induce spin flips into untrapped states | |. The
1-body loss rate is mainly set by the pressure and technical noise sources generating a
broad noise spectrum in the rf domain. 2-body spin-exchange collisions are not allowed
for rubidium in the fully stretched state |F' = 2, mp = 2) as total F' and mp need to be
conserved. Dipolar relaxation, coming from interactions between nuclear and electric
dipole moments of the colliding atoms, is usually neglectable| |. Three-body
collisions lead to the formation of untrapped diatomic molecules, where the third atom
receives a fraction of the binding energy. This energy is typically much larger than the
trap depths confining the atoms, thus all three participating atoms leave the trap. The
2- and 3-body inelastic collision rates play an important role in the condensation process,
where, for example, the unexpectedly high 2-body dipolar relaxation rate prevented the
first attempts of condensation of caesium atoms in the late 90s (three orders larger than
expected [ ], due to a second-order spin enhancement | D-

Atom Loss Model

In the following, we want to find out which processes are predominantly responsible for
the observed atom loss in our setup and if there is still room for future improvements. Fig.
6.3 shows the measured scaling of density loss rate versus initial density nsq (t = 0). Here,
the density loss rate was determined for evolution times t. > 60 ms, by a linear fit to
the density evolution® in the non-equilibrium split system. The rates in the equilibrium
system are comparable. The results are plotted in Fig. 6.3 together with a fit function
f(n) = an + bn?, assuming only 1- and 3-body processes. The coefficients a and b give
estimates of the 1- and 3- body loss coefficients 7, and Ls.

Now, let’s have a closer look by writing down the rate equation. In the absence of
two-body losses the atom loss rate % can be written as | |

dN

TN =L [ a0 @ (6.1)

with the background collision rate 7, and the 3-body recombination rate coefficient Ls.
The 1/e lifetime 7 due to background collisions is then given by the inverse of ;. Using
the definition (n3, (r,t)) = ﬁ [, (r,t)dr | ] eq. 6.1 can be rewritten as

4The linear fit is in good agreement with the data at long times (t. > 60 ms)
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Y, = 0.4+0.2 Hz
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Figure 6.3.: Density loss versus initial density. The solid red line is a fit of the function
f(n) = an +bn?® and leads to the following estimates: L3 = (1.6 £ 0.5) x 10729 cmFs~!
and 7, = 0.4 = 0.2 Hz. Errorbars are one standard deviation of fit uncertainty.

%% = —m — L3 <n§d (7, t)> : (6.2)
The spatial integral of eq. 6.2 can be easily calculated for a 3d BEC. For all three-
dimensions the atoms are in the ground-state, which, for non-interacting bosons in a
harmonic potential, results in a Gaussian density distribution of the form nsq (v, y, 2;t) =

n3q0 (t) - exp (Zi:x,y,z (;3)) [ , |. Under this assumption one
ﬁDdS 2
) J 3 (rt) dPr 30 (1)
<n3d (r, t)> = T = i (6.3)
[ n3a (r,t) dr V/33
In case of a quasi-condensate, we have to assume, according to section 2.2.1, that
the ground-state is only occupied in the two transverse directions and to evaluate the

density profile along the longitudinal direction eq.2.20 needs to be applied. The density
profile is then given by nsq (z,y, 2;t) = ngonyo - €xp (Zi:z,y (%)) ny (z;t). In the

range of our typical trap frequency the longitudinal averaged density <n2 (z,t)) scales
as (n?(z,t)) = 1.8394 - n2 ; ~ ¥n? ;. Here and in the following, we assume that the 1d
linear peak density n,o = max (n (z)) of the quasi-condensate (see section 2.2.1) and the

)
3d peak density n3q0 = max (nsq (¢,y, 2)) can be related via the ground state oscillator
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Figure 6.4.: Estimating 1- and 3-body loss rate in dressed trap. (a) Following eq.6.5,
the slope of the linear fit is equal to the negative 3-body loss rate Ls. For the presented
data, a value of Lz = (1.9 £ 0.4) x 10729 cm® ™! is found for 3" Rb(F = 2, mp = 2).
(b) Estimating the background collision rate 5, by comparing the time evolution of the
measured 1d peak density 7. (t) to the result of eq.6.7 for three different values of
7 = 0, 0.4, 0.8 Hz (from top to bottom) using L3 = (1.9 +0.4) x 1072 cm®~!. Best
agreement is found for 7, = 0.8 Hz. Errorbars are one standard deviation of the mean.

width a = ,/mf)fr through the simple expression n.o = naz, - N340 | |. This

leads to the following expression for a quasi-condensate

3 3 2 2 2
2 f N34 (7", t) d’r Nz,0"y,0 11 2 11 nz0
rt)) = ~ cnio () = — . 6.4
<n3d(r, )> [ n3q (r,t) dr V32 6 nz0 () 18 w2ay. (6.4)
Now, eq.6.2 can be written in integral form as
N 11
In No =Yt — 18L3/n§d70dt. (6.5)

Plotting lnNﬂO + Yt against % i n%djﬂdt should give a straight line, whose slope is
the negative of the three body coefficient Ls. Fig. 6.4a shows such a plot for the atom
loss in the double-well, which gives L§memsed — (1,9 +0.4) x 1072 cmSs~! based on the
estimated value v, = 0.8 Hz for the one-body loss (see below). The error on L3 is given
by one standard deviation of the fit uncertainty and does not include any statistics nor
systematics. The result for L3 is in good agreement with experimentally L§ondensed —
(2.234£0.11) x 10729 cm® ™! | ] and theoretically Lgndensed = 1.9x 10729 cmbSs!
[ ] obtained values for 8" Rb(F = 2, mp = 2). The value of L3 is not supposed to
be significantly reduced by the 1d confinement as the Lieb-Liniger interaction parameter
~v = 0.003 is fairly small [ ]. Why it is difficult to measure 7, in an atom chip
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6. Going beyond Prethermalization: Is there Thermalization in the long time evolution?

setup and how the estimated value of 7, = 0.8 Hz is obtained will be discussed in
the next paragraph. On first sight 7, = 0.8 Hz appears to be fairly large, and gives
a respective lifetime of only 7 = 1.25s for the quasi-condensate in the dressed trap.
However, condensate lifetimes on the order of 7 = 500 ms have been reported for similar
atom chip setups in undressed traps [ |. Still there might be room for
improvement.

To determine the number loss due to background collisions one usually plots the long-
time evolution of the natural log of the atom number. At long-times (tens of seconds)
the slope of the expected linear scaling gives the background loss rate. Deviations form
the linear scaling at small times are then due to the three-body loss. In an atom chip
setup, the limitations on extending the trapping time are quiet stringent due to the ohmic
heating of the atom chip wires as already discussed in section 3.1.2. In the current setup,
the chip trap time after condensation cannot be increased above one second. At these
short times available, the 3-body loss rate is not distinguishable from 1-body loss rate.
Thus one has to find an alternative.

One alternative is to look directly at the 1d density evolution with time. For the
transverse directions we use again the rather unsophisticated model of non-interacting
bosons occupying the ground state. The 3d density can then be written as nsq (x,y, z,t) =
nznyn (t) = n2n, (t). Then, the rate equation 6.1 can be approximately written as

dn L3
R (66)

tr
and can be solved analytically, which gives

[SIES

Vb
n, (t) = . 6.7
z() L +€2%t‘<%+ ¥b> ( )
Ty M=o

2,4
Ty,

Fig. 6.4b shows the time evolution of the linear density for three different values of
v = 0, 0.4, 0.8 for fixed L3 in comparison to experimentally obtained data. Clearly,
the three-body rate alone is insufficient to account for the observed density loss, which
suggests a background rate on the order of 7, =~ 0.8 Hz. Starting from the values found
by Fig. 6.3, the correct combination of Lg and 73 can be found iteratively using Fig. 6.4a
to get L3, which is less sensitive on changes in 7, and Fig. 6.4b to finally get ;.

It is interesting to note that already this simplistic model delivers competitive results
for the 3-body loss rate Ls. More elaborate models make use of Thomas-Fermi profiles in
the transversal directions to properly include the effects of interactions, which is out of
the scope of this work. The main objective of this discussion was to get a good estimate
of the background collision rate .

The expected collision rate v;, between atoms and background gas is approximately
given by

Yog = NMbgUbgTs (6.8)
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where the mean relative velocity v, for a thermal gas at temperature T is given by

Vpg = 4/ Sfrff, under the assumption that the relative velocity is given by the hot

(T = 300 K) background particle and vgy < Upg.
Assuming the background gas consists mainly of hydrogen molecules this can be
approximated by | |

D o
10~ mbar 1 nm?’

At a background pressure® of p = 10719 mbar and at typical collision cross sections of
(Rb—Hz)

Yog = 4.8 x 1073

(6.9)

ORb—H, = 3nm? | | for rubidium-hydrogen collisions, one calculates Vhg

1.4 x 1072 Hz, which is two orders of magnitude less than what we observe. Collisions
between rubidium and helium have similar cross sections of ogy_fe = 2nm? | ]

éfb_HQ) = 6.8 x 1073 Hz. Collisions with hot rubidium
atoms have one order of magnitude higher cross sections of ogy_ gy = 25nm? | |
and give rates of 7556_%) = 8.4 x 1072 Hz, which are still by one order less than what
we have found above. Therefore, the background pressure does not seem to be the only

limiting factor for the lifetime of the ultracold sample.

and give even smaller rates of ~

Conclusion

The current value for the one-body loss rate in the experimental setup is given by
vp = 0.8 Hz. This is a rather high value compared to magnetic traps without atom chips
[ , , | and leads to comparatively small lifetimes of 7 = 1.25s.
However, atom chip trap experiments have reported similar values [ | in
undressed magnetic traps, the reasons being elusive so far. Comparisons of loss rates
between currently active experimental setups are to be brought under way. In the current
setup, the calculated rates of background gas collisions suggest that there is still much
room for improvement. In principle, an increase in the lifetime 7 on the order of one
magnitude seems easily possible. This might be achieved by further reduction of technical
noise sources or using a different Ioffe field. Lifetime improvement will be the topic of
future efforts.

®as measured by an Bayard-Alpert-type ion gauge in the pumping chamber
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6.2. Long Time Evolution

Now, that we have understood the early time multimode dynamics, leading to a preth-
ermalized state, we want to address the long time evolution. As we have already seen
in Fig. 5.15, for substantial longer evolution times t. on the order of several hundred
milliseconds a distinct deviation from the prethermalized squared contrast FDFEs becomes
visible. So far, it remains unclear if this additional evolution on a second much longer time
scale has intrinsic (thermalization) or extrinsic (coupling to the environment) reasons.
This will be discussed in the following.

6.2.1. Long time Evolution of the Mean Contrast

Let’s again start with the most simple observable, the mean contrast (C (t.)). Similar
to Fig 5.9, Fig. 6.5 depicts the long time evolution of the T'= 20 4+ 2nK data set (blue
squares) for the longest integration length I = 110 pm. The rapid initial decay up to
te ~ 10 ms has been attributed to the dephasing process (time domain I), which establishes
the prethermalized quasi-steady state (time domain II), characterized by almost constant
mean contrast up to t. ~ 40ms. Compared to the initial dynamics the prethermalized
state is quiet long lived. Ultimately, the contrast starts to decreases slowly with evolution
time (time domain IIT), where a linear fit (dashed blue) gives a slope of approximately
—8%/100ms, clearly distinct from the practically constant TLL prediction (dashed
black). This second, slow evolution could be attributed to thermalization processes that
are not covered by the harmonic TLL theory or by a coupling to the noisy environment
(see sec. 6.1) generating an increasing thermal background for instance.

0.8}
Aozt
‘» 0.6}
s
€ 0.5f .
8 |- 7
- 0.4} Eii"'-'::; ----------------------------------
o e
02F1 I 1

01 0 50 100 150 200 250

evolution time te [ms]

Figure 6.5.: Mean contrast evolution for long times for the longest integration length
L =110 pm. After the rapid initial decay, the mean contrast (blue squares) shows a
further decrease on a second much longer time scale, which is not predicted by the
TLL model (black dashed). The dashed blue line is a linear fit to slow decrease of the
mean contrast in time domains II and III.
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Figure 6.6.: Measuring the correlation loss on long time scales via fitting to the
C (L) decay for the same data set as in Fig. 5.14 with the following parameters:
Tin =103+ 150K, n =45 £ 5um~!, K = 29.6 £ 1.7, 300 repeats.

(a) Evolution of the fitted correlation length Ag; (blue circles), compared to the
crossover length [y (green line) and the calculated thermal correlation length Ay (T)
(red line), assuming equipartition between all degrees of freedom leading to a final
temperature of Ty = (Ty, + Tpre) /2, with Tpre = 15.8nK. Dashed blue line is a guide
to the eye.

(b) Measured (data points) and fitted C' (L) decays (solid lines) for increasing evolution
times t.. The upper dotted black line and grey shaded area corresponds to the
calculated prethermalized correlation length lg. The lower dotted black line and dashed
area, corresponds to the estimated equilibrium correlation lengthAy (7).

(a+b) Error bars denote one standard deviation. Shaded areas denote two standard
deviations.

To get more insight, we want to study if this contrast decrease coincides with an
intrinsic loss of correlations. An increasing thermal background would just add an overall
offset of the C' (L) dependence and thereby merely affect the correlations, but decreasing
the absolute value of the contrast. Therefore, the time evolution of the effective correlation
length X is studied in the following, where A is determined via the fitting function of eq.
5.12.

6.2.2. Long Time Evolution of the Effective Correlation Length

Fig. 6.6 studies the correlation loss on long time scales for the same data set as in Fig.
5.14, applying the C (L) fit function of eq. 5.12. In the dephasing time domain ¢, < 10ms,
the fit formula should actually be not applicable, as the system has not yet reached the
thermal-like prethermalized state. To demonstrate the high amount of initial correlations
after the splitting and their obvious decay towards the prethermalized correlation length
lo = X (Tpre) = Afit, the early times C (L) data are plotted additionally in Fig. 6.6b,
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Figure 6.7.: Similar to Fig. 6.6, the correlation loss on long time scales is measured for a
data set with extended evolution times, with the following parameters: T;, = 69+11nK,
n =27+ 7pm~ !, K =23+ 3, 150 repeats. After ¢, ~ 300ms, thermal equilibrium
correlations seem to be reached, without any further evolution within the error bounds.
(a-+b) Strictly speaking the fit function of eq. 5.12 is only valid for thermal-like
correlations, so for t, 2 10ms. Error bars denote one standard deviation. Shaded
areas denote two standard deviations.

keeping in mind that the resulting fit values Agy (t. < 10ms) in Fig. 6.6a are not to
be regarded as an effective thermal correlation length. Once the prethermalized state
has been reached, the FDFs are of thermal-like form (Fig. 5.16) and A becomes a
proper measure of the correlation length of the system. After the initial rapid loss of
correlations, the prethermalized state shows an almost constant correlation length equal
to the calculated value of I = 15.8 £ 0.9 pm (eq. 5.7). The prethermalized correlations
last for approximately 40 ms, leading to a bunching of C (L) curves in Fig. 6.6b. For
times t. 2 50ms, the correlation length starts an abrupt decrease towards the estimated
thermal equilibrium value given by the equipartition of thermal energy between all
four degrees of freedom (see tab. 5.2), equilibrating the temperature of the relative
modes T;..; with the temperature of the common modes T,.,. As we do not observe any
cooling induced by the splitting process (T (t. < 0) =T (t. = 0)), the final equilibrium
temperature can be estimated as [ |

Trel + Tcom _ Tpre + ,Tzn
2 2 ’

h2n

which is used to calculate the correlation length Ay (T7) = kT of the thermal equilib-

Ty = (6.10)

rium state in Fig. 6.6. Both figures support the interpretation that the second loss of
correlations might be attributed to an intrinsic, slow relaxation towards thermal equi-
librium conditions. Increasing the thermal fraction by external, technical noise sources,
for instance, should not affect the C' (L) shapes. Therefore, studying the C (L) decay is
better than just looking at the time evolution of the mean contrast, as in Fig. 6.5.
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Figure 6.8.: Comparison of loss of correlations for a hot (red squares) and cold data
(blue circles) with respect to the calculated value of Iy (green horizontal line and shaded
area). Error bars correspond to one standard deviation. The prethermalized plateau is
only visible for the cold data set. The hot data set rapidly decays towards thermal
equilibrium.

To make the case stronger, Fig. 6.7 examines a data set extended up to t. = 520 ms.
Fig. 6.7b suggests, that once the thermal state has been reached (at t. ~ 300ms),
the C (L) evolution settles®. The slightly slower relaxation to equilibrium values in
comparison to Fig. 6.6, can be attributed by the colder initial temperature of this data
set (see figure captions). The reason for the outlier at ¢, ~ 50 ms is unclear, but could be
a sign of a revival of correlations. An in depth analysis of phase revivals will be covered
in | .

Fig. 6.8 compares the evolution of the correlation length for an extremely hot (kpT;, =~
4.5 X hwy,) and a cold (kpTi, < fuwwyy) data set. Whereas the cold data set shows clear
features of prethermalized intermediate state, the hot data set rapidly decays towards
thermal equilibrium. This conceptually different behaviour shall be rigorously studied in
the following section.

In conclusion, the long time evolution of the measured correlation lengths shows signs
of thermalization, motivating a further study. To this end, probing thermalization in an
effectively 1d system turns out to be hard due to the extensively long equilibration times
needed. To accelerate the thermalization rates and thereby be able to probe their scaling,
we will go to the 1d/3d crossover regime in the following.

SHowever, this settling can also be understood in terms of finite imaging resolution, which results in a
lower bound for measurable correlation lengths of ~ 2pum.
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6.3. Probing Thermalization in the 1d/3d Crossover

Here and throughout this thesis, a system being in the true thermal equilibrium means
that, apart from conserved quantities like the initial energy, a complete loss of memory
of the initial state has happened and that the relaxation is irreversible in character.

Quantum thermalization and the emergence of ergodicity in a closed, interacting
quantum system is generally far less understood than thermalization in classical statistical
mechanics | |. Furthermore, following the KAM theorem | I,
thermalization is not to be expected in truly integrable systems where the final state has
to be described via a generalized Gibbs ensemble (GGE), as defined by the many constants
of motion | , ]. On the other hand, small perturbations from
integrability may lead to the establishment of true thermalization. In a purely 1d system,
these perturbations may arise from higher-order (>2) scattering processes | .
Interestingly, classical | | and quantum | | statistical calculations of
isolated systems predict that the resulting pathways towards true thermal equilibrium,
are indirect and complex. Roughly speaking, these pathways can be differentiated into
two time scales, originating from different underlying processes. The first process being
in general associated with dephasing, the second process being associated with particle
scattering.

For much longer evolution times, the experimental data shows a deviation from the
harmonic TLL theory (Fig. 5.15 and Fig. 6.5) combined with a loss of correlations (sec.
6.2.2). However if and how true thermal equilibrium is reached remains elusive.

Thermalization of highly non-equilibrium quantum systems near an integrable point
is experimentally an unresolved question [ , |. Theoretically, the
equilibration of a non-integrable system close to an integrable point has been studied
extensively in [ |, which predicts the duration of the system, staying trapped in
this fixed point of its evolution, | , | to increase when getting closer
to integrable conditions and to finally extend to infinity in the pure integrable case,
thus being unable to reach thermal equilibrium. In this context, we want to lift the
integrability on purpose by going into the 1d/3d crossover regime, study how this affects
the prethermalized state and see if the quantum system shows signs of true thermalization.

6.3.1. Processes leading to Thermalization

In elongated 3d systems, thermalization mainly depends on the two-body elastic collision
rate. The probability of exciting higher transverse states drops exponentially, by a factor

2wty

exp (— kBTm> [ |, the colder and the more 1d the system gets. However, higher

excited states are necessary for thermalization to occur (Fig. 6.9). Let’s consider a
homogeneous 1d system in the longitudinal direction with frozen out transverse degrees
of freedom of an harmonic oscillator (wy.). If two atoms, of longitudinal momenta p;
and po and mass m, collide, they can merely exchange their momenta, but a transfer of
arbitrary momenta is impossible. Thus, the momentum distribution remains unchanged.
This can be seen by the following considerations.

Case 1: 1 + Fo < hwyy: Say the momentum of atom 1 changes by € > 0, such that
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Figure 6.9.: Schematic plot of transverse energy levels fiwy, (thick horizontal lines) with
longitudinal energy levels hwjong (thin horizontal lines) deplcted on top for simplicity
(not to scale). The colored atoms take part in the collision. For Fy + Foy < hwy, (top),
the two atoms may only exchange their longitudinal momenta, rendering thermalization

impossible. For ) + Fo 2 fuwwy, (bottom), one of the colliding atoms can be excited
into the transverse 15
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excited state, which, by undergoing a second collision with a
different atom, leads to a redistribution of longitudinal momenta and thereby acts as a
thermalization process in the longitudinal degrees of freedom

p1 — p1 + €. According to momentum conservation py + pe = pj + ph, the momentum of
atom 2 is changed by ps — ps — €. Inserting this into energy conservation leads to

Pl +ps=pi++p;+e,

which shows that € = 0 and thus no change of values of p1, po is possible in the purely
1d case (kT < hwy).

(6.11)

Case 2: E1 + F9 2 Awg: On the other hand, when two colliding atoms have enough

kinetic energy, such that one of them (let’s assume atom #2) is excited into a higher
transverse state, the picture changes dramatically.

N
i1+ Fy=— 4+ 2% =— = + hw =F + FE! 6.12
1+ 52 2m+2m 2m+<2m+ tr) 1+ ( )

p1 + p2 = p| + py + Ik,

134



6. Going beyond Prethermalization: Is there Thermalization in the long time evolution?

The values of momenta are now subject to change with pj # p1 and/or ph # po.

Furthermore, considering that the excited atom undergoes a second collision with a 3rd
atom leads to

15 s Py P}
El+EBEs= |2 +h =2 22 40 phhy Y 6.13
2T B3 <2m + w”) + 2m 2m + 2m 2+ B ( )
ph + p3 + hk = ply + ph, (6.14)

de-exciting atom #2 and redistributing the transverse energy hwy, into the longitudinal
energy states of atoms 2 and 3. This process, enables a redistribution of momenta in the
1d direction, such that an initially non-equilibrium momentum distribution may relax
into a thermal one.

In summary, thermalizing two-body collisions are strongly suppressed the more one-
dimensional (in energy-scales) a system is [ |, resulting in thermalization time
scales that are inaccessible by current experiments. In this context, we want to study
thermalization in the 1d/3d crossover by on purpose breaking the 1d criteria and thus
allowing two-body collisions, populating transverse excited states, to slowly lift the
integrability of the system. Possible relevant thermalization mechanisms, populating
transverse excited states really or virtually, are reviewed in the following.

Two-Body Thermalization Rate

Following | | the two-body thermalization rate can be written as
3 2hw
T® ~ 0.93na2(| 2t <— ”) 6.15
)| T e (- 2 (615)
with the 1d density in each well n and the initial Temperature T;,. The prefactor
of 0.93 has been determined numerically for a trapped system | ]. The 1/e

thermalization time 7 is then given by the inverse of the thermalization rate ™ =
1 /F(Q). This formula is valid for a non-degenerate gas and neglects any suppression
of thermalization imposed by correlations (more relevant in the strongly interacting
case v > 1) or enhancements due to bosonic amplification [ | of scattering
into thermally-populated, transverse-excited states. Furthermore, the non-degenerate
Bogoliubov excitation spectrum is neglected, which is likewise expected to lead to further
acceleration of thermalization [ , .

Virtual Three-Body Thermalization Rate

For kpT < 2hwy, the two-body thermalization rate is exponentially “frozen” out as the
energy of two colliding atoms is insufficient to excite transverse excited state. In this
regime, only three-body collisions may lead to transverse excitations that are needed to
effectively break the integrability of the Lieb-Liniger Hamiltonian (eq. 2.2) and thereby
support thermalization | |, with a temperature independent rate of
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Figure 6.10.: (a) Calculated two- (solid lines) and three-body (green dashed line)
thermalization rates for various temperatures, according to eq. 6.15 and 6.16. From
top to bottom: T = 100, 75, 50, 25nK. The grey shaded area depicts the typical
experimental parameter range. (b) Calculated two- (blue solid line), three-body
(green dashed line) and thermalization rates for typical experimental parameters
(n =40 pm~1). The three body rate (I'®) ~ 0.5 Hz) starts to exceed the two-body rate
below ~ 30nK. The purely 1d models of | | (black dotted) and | ]
(red dotted-dashed) are plotted for comparison and predict much higher thermalization
rates.

4
r® = 2.04%71%;. (6.16)

Similar to the two-body, rate this formula applies to a non-degenerate gas. As indicated
in Fig. 6.10b, the 3-body rate is in the typical experimental parameter range practically
negligible in comparison to the two-body rate.

Damping and mixing of phononic modes in 1d

Even in a truly 1d case equilibration and thermalization mechanisms have been suggested
and shall be briefly mentioned for completeness. As discussed in sec. 2.5, a number
imbalance between left and right gas leads to a coupling of common and relative modes,
resulting in an energy transfer. Here and throughout this work, this effect is minimized
by an almost perfect symmetric splitting with typical experimental number imbalances
of less than 1 %. Other sources resulting in a coupling of relative and common DOF are
higher order contributions which are neglected by the approximations used to derive the
Luttinger Hamiltonian (see sec. 2.4). These higher order contributions are studied in

detail in [ ]. Stimming et al predict that the results of | | contain an
over-damping of phononic modes | | and derive slightly smaller thermalization
rates.
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Figure 6.11.: Breaking integrability on purpose by increasing the initial temperature
Tin far above 1 x fuwy, = 70nK. Errorbars correspond to one standard deviation.
Dashed lines are exponential saturation fits following eq. 6.17. On long time scales, the
resulting time evolution of the effective relative temperature Ty strongly depends on
the initial temperature T;,.

6.3.2. Breaking Integrability

Integrability is lifted by raising the initial temperature Tj,, such that the 1d criteria
kpTin < hws, is not fulfilled anymore and the two-body collision rate is significantly en-
hanced. This is experimentally much easier (applying small changes to the rf evaporation
ramp) than increasing the density n such that the second criteria p < fuvy, is sufficiently
broken. In this context, the initial temperature T;, is used to tune the dimensionality of
the system and Tj, is raised so far that even transverse excited states become significantly
populated. The data of Fig. 6.11 has been taken in the temperature range of 70 to
320nK (1 — 4.5 hwy,). Similar to sec. 4.4.4, the squared contrast decay versus integration
lengths are used to determine the relative phase correlation length, which is then used to
calculate the temperature of the relative modes T,¢; following eq. 4.21. The temperature
of the common mode is assumed to be equal to the initial temperature before splitting
Tin = Teom. Clearly, the more the system gets towards 3d, the faster the increase in
relative temperature after the quantum quench at ¢ = Oms, in accordance with Fig. 6.8.
The dashed lines are exponential fits according to the model described below. As can be
seen, the lifetime of the prethermalized state decreases drastically to practically zero at
large temperatures.

137



6. Going beyond Prethermalization: Is there Thermalization in the long time evolution?

Time Evolution Model for T'(t.)

The time evolution of the FDF temperature is modelled via exponential saturation to the
final temperature 7. To describe the thermalization process the following fit function is
used.

T (te) = (Ty = Tyre) (1= €77%) + Ty, (6.17)

with an unknown thermalization rate I' and the final temperature again defined as
Tf - (,Tzn + Tpre) /2

Determining the Initial Temperature

The initial temperature T;, of the single gas is measured via density-density correlations
in time-of-flight, as described in sec. 4.3, which works reliably up to T;, ~ 200nK. For
larger temperatures, fits to the thermal wings are used (see sec. 4.2).

6.3.3. Results: Squared Contrast FDFs in the 1d/3d Crossover

Similar to the correlation length results the FDFs show a further evolution at longer time
scales, which is highly dependent on the initial temperature T;,. The following figures
show the drastic difference in the time evolution and relaxation dynamics of the squared
contrast FDFs for two different initial temperatures T, in the effectively 1d regime and
in the 1d/3d crossover regime. The initial temperature is used to tune the dimensionality
of the system.

On the border of the effectively 1d regime, the long-time evolution consists of three,
clearly distinct dynamical states, as visible in Fig. 6.12. The three states are the initial
highly coherent state, the intermediate prethermalized state an a further thermal-like
state of even less coherence. For t, = Oms the initial state shows high coherence
throughout all integration lengths leading to the peaked distributions, which are actually
non-thermal (x? test with equilibrium distributions fails, see sec. 5.7.1). The intermediate
prethermalized state has already lost some amount of coherence. A subsequent further
loss of coherence results in an unknown thermal-like state at an arbitrary evolution time
of t. = 120 ms, which probably lies on the pathway to full thermal equilibrium of the
system.

A data set at much higher temperature, deep in the 1d/3d crossover regime, shows a
much faster evolution of the FDF shapes, as illustrated in Fig. 6.13. The initial state is
very similar to the one above, however, the prethermalized state is practically not-at-all
visible anymore.

Summarizing these observations, in the effectively 1d, nearly-integrable regime, the
pathway towards thermal equilibrium suggests to be a two-step process with an inter-
mediate, long-lived prethermalized state. Integrability seems to be slightly broken in
the experimental realisation, leading to a second decay of correlations on a much longer
time-scale that might end up in the thermal equilibrium state characterized by having
equal temperature in common and relative modes (T¢; = Teom). On the other hand,
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Figure 6.12.: Squared contrast FDFs for a cold temperature set with the following
parameters: T}, = 73 £ 10nK(~ 1 X hwy,), nag = 4.3 x 1014 cm™3. At 12ms, the FDF
data agrees with the prethermalized state. At much longer times (152ms), we find a
further increase of the relative temperature, which might be attributed to equilibration
or even thermalization.

6 um 18 um 30 uym 40 pm 60 pm 110 um

S

N
)]
[=)

-
o
(=)

B

sw Q

50

a8

20

sw ¢gl

FFF

MUOEL=1 Mug9

Occurences Occurences Occurence

00123 30 1 2 30 1 2
Normahzed Squared Contrast, c?%<c?

w

Figure 6.13.: Squared contrast FDFs for a hot data set with the following parameters:
Tin = 320 £ 50 nK(~ 4.5 X fiwyy ), ngg = 6.2 X 104 ¢cm™3. This hot data set starts with
the same initial state (peaked FDFs) as Fig. 6.12, but shows a much faster dynamics.
It does not establish the prethermalized temperature at 12ms, but a much higher
temperature of T'= 60nK and continues to heat up for much longer times.
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Figure 6.14.: Final temperature Ty = (T (te > 150 ms)) (blue circles) versus the sum
of measured initial T}, and calculated prethermalized T}, temperatures. The black
solid line has a slope of % according to the equipartition of energy between common
and relative modes T = (Tin + Tpre) /2 . The shaded area depicts the expected scaling
according to the finite imaging resolution in the experiment, which is the result of
a numerical simulation based phase profiles created by the Ornstein-Uhlenbeck as
discussed in sec. 4.3. The data shows good agreement to simulation results. The point
at highest temperature is off due to its much higher density in respect to the other
data points.

breaking integrability on purpose by a high enough initial temperature changes the picture
dramatically, such that only one time scale of relaxations is visible. In the following,
we want to compare the acquired data to existing thermalization theories, to verify the
above statements. To do so, the correlation length is determined using the fit formula of
eq. 5.12. The relative temperature is then calculated using eq. 4.21. Fitting the contrast
decay rather than the FDEFs is slightly more robust (less statistical samples are needed
as mean values are fitted rather than distribution functions) and computationally much
faster than fitting the FDF data to obtain the relative temperatures.

6.3.4. Results: Temperature Evolution of the Relative Degrees of Freedom

First of let us verify the assumption that the final equilibrium temperature is given by
T = (Tin + Tpre) /2. For the data in Fig. 6.14, Ty (blue circles) is estimated by taking
the average of the fitted temperatures for . > 150ms and plotted versus the sum of
the measured initial temperature T;, (before splitting) and calculated prethermalized
temperature Tpre = Tpre (0 (t =0ms)) = ng/2. The data shows good agreement to
simulation results (grey shaded area), which takes the finite imaging resolution into
account and starts to deviate at ~ 100 nK from the % slope.

6.3.5. Results: Evolution of Density Ripples Temperature

To examine the thermal energy in the system after splitting, the density ripples are used
to determine the temperature just after the splitting process for evolution times t. smaller
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Figure 6.15.: Measured density ripples temperature after splitting Ty =
<TJE£R) (te €10, 40] ms)> (blue circles) versus the initial temperature T3, before split-
ting. Within experimental accuracy T is equal to Tj,.
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Figure 6.16.: Final density ripples temperature Ty = <T}5R) (te > 150 ms)> (blue

circles) versus the sum of measured initial 7j, and calculated prethermalized T
temperature. The data shows good agreement to the equipartition of energy between
common and relative modes according to Tt = (Ti, + Tpre) /2 (black solid line).

than 40 ms. The measured g9 functions are compared to the calculated incoherent-sum of
the simulated thermal phase fluctuations in the two gases’. In the prethermalized state,
the measured go are dominated by the temperature in the common mode, as Tpre < Teom
in the observed data range. The results are plotted in Fig. 6.15. As can be seen,
the temperature after splitting Ts = <T}3R) (te € [0, 40] ms)> is basically equivalent to
the measured initial temperature T;, = Ti(nDR) before splitting. This suggests that the
common mode is likewise out of equilibrium after splitting. Furthermore, Fig. 6.15 shows
the strong temperature dependence of the common modes, which is in stark contrast to
the temperature independent scaling of the relative modes (Fig. 5.17b). Once more, this

"Correlations only show minor affects to the shape of the g functions.
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confirms that, by splitting, the common modes receive the thermal energy of the initial
gas, in contrast to the relative modes, which are merely populated by the quantum noise
of the splitting process.

Fig. 6.16 shows the measured final temperature Ty = <T}5R) (te > 180 ms)> in com-
parison to the sum of calculated prethermalized temperature T},. and measured initial
temperature T;,. It demonstrates that the common mode cools down for large evolution

times, such that the scaling of eq. 6.10 is established.

6.3.6. Results: Time Evolution of the Relative Temperature

Fig. 6.17 compares the time evolution of many different data sets at different initial
temperatures and densities with an exponential temperature increase following the model
of eq. 6.17, where the two-body thermalization rate of eq. 6.15 is used. No free fit
parameter is used. The relative temperature T,¢ (fe) increases faster when the system
goes more and more away from the 1D regime, and settles at long times to Ty . The
exponential dependence of the two-body rate I'® is well captured, and fair agreement
between theory and experiment is found.

Fig. 6.18 shows the temperature scaling of the fitted thermalization rates using the
model of eq. 6.17 in comparison to several suggested thermalization models that were
discussed in sec. 6.3.1. The data shows best qualitative agreement to the two-body rate
(solid blue line). Let me note that virtual three-body rates I'®) are practically negligible
in the presented parameter range (I'® ~ 0.50 Hz). In the 1d regime (T}, < 70nK), the

data clearly does not support the quantum decoherence model by | |, which
predicts a much faster increase of the thermalization rates. In this regime, the data is in
qualitative agreement with the two-body scattering model of eq. 6.15 [ . In

the 1d/3d crossover regime, the data follows the trend of the two-body model.

In Fig. 6.19, the thermalization rates are plotted versus the initial correlation lengths
A (Tin)- Once again, the data points show fair agreement to the 1d model of | |
(red dashed line) as well as to the two-body model. The absolute values are in favour
for the two-body rate (blue solid line). Once again, the model by | | (green
dotted-dashed line) can be ruled out.

Finally, Fig. 6.20 studies the density scaling of the fitted thermalization rates for two
different temperature ranges, now only comparing to the two-body model (I‘(Q) X N1g)
and to the model of Stimming et al. (I" nfdQ) The nff scaling of the 1d model of
[ | is not reproduced. The data is in qualitative agreement with the linear
density scaling of the two-body theory. This suggests that for temperatures above 1d
(Tin > 70nK) the two-body model is an appropriate description.

6.3.7. Conclusions

In the long time evolution of this nearly-integrable system, further dynamics set in after
the prethermalized state has been established. The common mode temperature decreases,
while the relative mode temperature increases. Both temperatures equilibrate to a final
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Figure 6.17.: Comparing the time evolution of the relative temperature (data points)
to the calculated two-body thermalization rate T (solid line) for a variety of initial
parameters. The dashed vertical lines correspond to 7 =1/ I'®). Over a wide parameter
range, the two-body rate shows good agreement with the data. Exponential fits
following eq. 6.17 are used to derive the data for Fig. 6.18.
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Figure 6.18.: Temperature scaling of the measured thermalization rates (filled squares)
in comparison to three theory models: damping of phonons due to two body collisions
(solid blue), damping due to non-linearities in 1D | ] (dashed red) and the
quantum decoherence model of [ | (dotted green). The latter two models
are valid for 1D systems only. In the 1d regime (7}, < 70nK), the strong increase in
thermalization rate suggested by the quantum decoherence model is not supported by
the data. The data is in qualitative agreement with the two-body model. In the 1d/3d
crossover regime (T, > 70nK), transverse excitations are becoming more relevant and
the Stimming theory should not be applicable anymore. The observed thermalization
rates are slightly higher than the calculated two-body rates, which has to be expected
as the two-body theory is for a non-degenerate Bose gas. Thus the observed increased
thermalisation rates might be attributed to Bosonic amplification [ ]. The
shaded areas depict the rms deviation according to the density spread of the different
data sets.

temperature, which is defined by the sum of initial and prethermalized temperatures,
divided by two.

The observed dynamics of the relative degrees of freedom are in fair agreement to
a two-body collisional model, populating higher excited transverse states and thereby
lifting integrability. The collisions lead to a damping and mixing of phononic modes
which is necessary for the system to be able to relax towards thermal equilibrium. In
this context, further theoretical and experimental efforts are ongoing and may, in future,
lead to a full understanding of the relaxation dynamics of a split quasi-condensate in the
1d/3d crossover regime as well as in the purely 1d regime.

In conclusion, the presented results strongly encourage the viewpoint that we are ob-
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Figure 6.19.: Measured thermalization rates versus initial phase correlation length
A (Tip). The shaded areas depict the rms deviation according to the density spread of
the different data sets.
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Figure 6.20.
The two figures show the scaling of the thermalization rate with density in the temperature
range of < T >~ 70 — 80nK (a) and < T >~ 140 — 320nK (b). For both plots the
trend follows the linear density scaling of the two-body model (solid blue) rather than
the nff scaling of the 1d model of | | (red dashed). The shaded areas depict
the uncertainties due to the temperature spread.

serving thermalization of an isolated, many-body quantum system in the 1d/3d crossover
regime. The intermediate prethermalization phenomenon becomes more pronounced, the
more 1d and integrable the system gets. On the other hand, the observed thermalization
rates increase the more 3d the system gets, eventually blurring the prethermalized state.

Apparently, thermalization of this isolated quantum system can be understood in
terms of two processes as illustrated in Fig. 6.21. First, dephasing of excitations and
second, damping of these excitations due to an effective phonon-phonon scattering.
In the 1d regime, the dephasing process establishes the observed prethermalized state
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Figure 6.21.: The matter-wave interference experiment measures the correlations in the
relative phase field (relative DOF), which is described by phononic modes. The loss
of correlations over time can be attributed to two processes. First, the dephasing of
phononic modes rapidly establishes a prethermalized state, where the mode populations
are conserved. Second, damping and mixing of phononic modes alters the mode
populations such that a thermal equilibrium state can be achieved.

typically on much shorter time scales than two-body scattering processes need to establish
thermal equilibrium. Together, these two processes seem to form the general path to
thermalization in a nearly integrable system, and the specific system under investigation
provides an example where the damping and mixing of phononic modes is mediated via
two-body collisions.
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Chapter 7.

Conclusion and Outlook

Begriffe, welche sich bei der Ordnung der Dinge als niitzlich erwiesen haben,
erlangen Uber uns leicht eine solche Autoritdt, dass wir ihres irdischen
Ursprungs vergessen und sie als unabénderliche Gegebenheiten hinnehmen.
Sie werden dann zu “Denkgewohnheiten”, “Gegeben a priori” usw.
gestempelt. Der Weg des wissenschaftlichen Fortschritts wird durch solche
Irrtiimer oft fiir langere Zeit ungangbar gemacht. Es ist deshalb durchaus
keine miiflige Spielerei, wenn wir darin gelibt werden, die lingst geldufigen
Begriffe zu analysieren und zu zeigen, von welchen Umstédnden ihre
Berechtigung und Brauchbarkeit abhéngt, wie sie im einzelnen aus den
Gegebenheiten der Erfahrung herausgewachsen sind. Dadurch wird ihre
allzugrofle Autoritit gebrochen.

- A. Einstein, Nachruf auf Ernst Mach, Physikalische Zeitschrift 17 (1916)

7.1. Conclusion

How classical statistical mechanics and the concept of thermalization can be extended
into quantum mechanics is an ongoing issue, as it is unclear how unitary time evol-
utions may transform an initially pure quantum state into a mixed state in thermal

equilibrium | , , |. This problem lead to the formulation
of the quantum ergodic theorem | , |, the (ETH) | ,

, , | and quantum Darwinism | |. The ETH
has been verified numerically for many different quantum systems far from integrable
points | ) ) , |]. On the other hand, the ETH is not

supposed to work in integrable and nearly integrable systems | , ,
|. In this context, the emergence of the second law of thermodynamics in an
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isolated quantum system has been studied in | |. In this context, this thesis
studies the time evolution of a well isolated, non-equilibrium, quantum many-body
system in the 1d and the 1d/3d crossover regimes. How this system of weakly-interacting
Bosons inherently looses information about the highly-correlated initial state is ex-
amined and the resulting relaxation dynamics are studied in detail. In contrast to
the simple classical view of one relaxation time scale establishing the thermal equi-
librium state, the non-equilibrium dynamics reveal the existence of an intermediate,
steady-state in the coarse of the evolution. This state, preserving a high amount of
correlations and and thereby the memory of the initial state, has been identified as a
prethermalized state, which is essentially a thermal-fixed point of the relaxation process
[ ) , , ) |. A fixed-point in the evolution
means that for a wide range of different initial parameters, the system always relaxes to
the same state, characterized by the same amount of correlation . As it was shown in this
work, these prethermal correlations are indeed independent over wide parameter ranges
of the initial temperatures or densities of the system. Furthermore, the source of this
prethermalized state is found to be of intrinsic quantum nature. The mechanism behind
the first part of the evolution is identified as the dephasing of a multimode system in
good agreement with calculations based on a Tomonaga Luttinger Liquid description.

In the final part of this work, the question how quantum and initial thermal energy
can eventually equilibrate is analysed. To be able to address this topic on experimentally
accessible time scales, the integrability of the system is lifted on purpose. A second
relaxation time scale, much longer than the time scale needed for dephasing, is observed.
This second loss of correlations is interpreted as the final part of the thermalization
process, which is mediated through two-body scattering processes. These scattering
processes are populating transverse excited states, thereby breaking the integrability
of the initial 1d system. In the 1d/3d crossover regime, the observed relaxation is in
qualitative agreement with calculated two-body rates [ , .

In conclusion, the thermalization of an almost integrable system happens on two
different time scales. The first time scale given by multimode dephasing establishing a
prethermalized state with thermal-like correlations, which is yet much more correlated
than the thermal equilibrium state. The second time scale depends on the rate of
integrability breaking mechanisms, which are, on experimentally realizable time scales,
given by the rate of two-body collision of high enough energy, such that higher transverse
modes are populated.

The results of this work are highly relevant for many areas of physics, from the dynamics

of the early universe | |, condensed matter physics [ , ,
| to classical | | and quantum statistical mechanics | | and
quantum chaos | | and will be of high importance through stimulating

ongoing efforts on developing a universal non-equilibrium theory framework [ ].
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Figure 7.1.: Measuring the local relative phase profiles ¢ (z) just after splitting (top)
and in the prethermalized state (bottom). Instead of measuring the contrast at different
integration lengths L, the first order (PCF) PCF (z,2") = (exp (i¢ (2) —i¢ (2'))) can
be used to locally measure the correlation properties and thereby study how the loss
of information spreads in the system.

7.2. Outlook

As it happens so frequently in science and research, successfully answering some initial
questions, imperatively raises many more, previously unanticipated, resulting questions.
The experimental observation of prethermalization in the coarse of the non-equilibrium
evolution of a nearly-integrable, many-body system opens up many new research paths.
Just a view shall be highlighted in the following.

One unresolved question is how the non-equilibrium system locally establishes the
prethermalized state. This is currently under investigation by measuring the phase
correlation function (PCF) of the interference patterns. Fig. 7.1, shows phase profiles
obtained just after splitting (top row) and in the prethermalized state (bottom row). The
PCF can be calculated by taking the average (exp (i¢ (z) — i¢ (2'))) of many pictures,
probing the local correlations at distance |z — 2’|. Just after splitting the relative
phase ¢ (z) is almost constant resulting in a flat PCF shape, whereas the PCF of the
prethermalized state should show a thermal like PCF and thus be exponentially decaying.
How the initially flat PCF evolves into the prethermal PCF is studied in detail in
[ |. The perspectives of this new observable are of wide range. As the PCF
probes the local correlation properties, it will be a very good measure of the sound
velocity, of possible revivals of correlations and, furthermore, opens up a new, sensitive
observable for studying the loss of correlations in the long-time evolution leading to full
thermalization.

It has been argued that the prethermalized state can be described as a generalized Gibbs
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Figure 7.2.: Virtual three-body thermalization rate according to | |, for three

different atom numbers (from top to bottom: 12000, 9000, 6000).

ensemble, but an unambiguous experimental identification is still missing. The reason is
quit simple. The prethermalized state created so far, has thermal-like properties as the
fast splitting process populates the modes with a 1/k scaling. It would be very interesting
to create a prethermalized state with unique non-thermal properties in the relative degrees
of freedom. If this non-thermal state would be indeed long-lived, this would verify the
generalized Gibbs ensemble picture. However, to be able to experimentally create such
a non-thermal fixed state, further theoretical understanding of the splitting process is
needed. To that end, a calculation, reliably modelling the splitting process, is a necessary
precondition.

Other perspectives, following recent publications | |, are studying the emer-
gence of thermal solitons in the non-equilibrium system in comparison to the number
of solitons in the equilibrium system. These dark and sometimes shallow solitons can
be probed via the phase profiles, where they lead to phase kinks. However, a satisfying
differentiation of solitons to simple phase slips, resulting from density ripples, is not yet
available.

Establishing a quasi-steady prethermalized state in the evolution of a non-equilibrium
system, raises the question under which conditions the system shows a further relaxation
towards thermal equilibrium i.e. fills the complete phase space on the respective energy
shell. We have been able to address this question in the 1d/3d crossover regime, where
the two-body excitation rate is sufficiently fast enough to lead to thermalization on
experimental time scales (< 500ms). For truly 1d and integrable system parameters,
further studies are needed to probe other possible thermalization mechanisms, three-body
virtual excitations for instance. Currently, the expected three-body time scales are on the
order of several seconds, which is beyond reach of the experiment. As shown in Fig. 7.2,
by increasing the transverse trapping frequency by a factor of two as well as the atom
number by a factor of three, the calculated three-body rates become > 3Hz (< 333 ms)
and should thereby be observable by the experiment. Such an increase in trap frequency
is in principle feasible in the current setup, by making use of the second, much smaller
(20 pm wide) trapping wire (sec. 3.1.2) and will certainly be the topic of future efforts.

Other possibilities of studying thermalization processes and heat exchange mechanisms
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include the addition of a second species acting as a heat bath for the non-equilibrium
system. In this context, the current setup has already the advantage of built-in potassium
dispensers and a set up laser system for fermionic ° K. Due to the different Rabi couplings
species selective trap geometries are possible | ]. To this end the °K can act as
a heat bath for the 87 Rb, being split into a double-well potential, or vice versa.

Furthermore, 4° K attractively interacts with 87 Rb. This attractive interaction makes it
possible to control the resulting double well-potential of the 7 Rb species with the number
of fermions and create a very precisely controllable small tunnel coupling between the
two wells. Additionally, the temperature would be well defined by the prethermalized
temperature T, which is determined by the number of 8TRb atoms. As, the coupled sys-
tem is a realisation of the Sine-Gordon Hamiltonian, this opens up many new fascinating
perspectives, like studying Sine-Gordon dynamics in a very well-controlled two-species
system, where both temperatures and couplings are defined by atom numbers.

Certainly, the addition of “°K will lead to a huge manifold of upcoming research
proposals, like the formation of bright solitons [ | and studying charge density
separation [ , |, just to name a few.
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Appendix A.

Relevant Nature Constants

Symbol Value Unit

Speed of light in vacuum c 299 792458 [Mohr 08] ms~!
Planck constant h 6.62606896(33) x 10734 [Mohr 08] Js
reduced Planck constant h=4 1.054571628(53) x 1073* [Mohr 05] Js

Boltzmann constant kp 1.3806504(24) x 1072 [Mohr 08]  JK™!

Earth Standard Gravity g 9.80665 [Taylor O8] ms 2

Bohr magneton UB 927.400968(20) x 10~26[\ohr 08]  JT!
Bohr radius ap 5.2917720859(36) x 10~ [Mohr 08] m
Sli{al?ctf;ipr}ztls;lg‘?ge as = a2, 98.99(2) x ag [van Kempen 02] m
atomic mass unit amu 1.660538921(73) x 10727 [Mohr 03] kg

8TRb Atomic Mass m 86.909180520(20) [Steck 01] amu
Wayvelength (Vacuum) ARb 780.241209686(13) [Steck 01] nm

“'Rb Dy -line Frequency wo o7 - 384.2304844685(62) [Steck 01]  THz
Transition Energy Fuwo 1.589049439(58) [Steck 01] eV

Table A.1l.: Nature Constants
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Appendix B.

Useful Conversions

To
From kHz eV aJ nK
1kHz 1 4136 x 10712 [ 6.626 x 10713 | 4.799 x 10%
leV 2.418 x 1011 1 1.602 x 10~1 | 1.160 x 1013
1aJ 1.509 x 1012 6.242 x 10° 1 7.241 x 10713
1nK 2.084 x 1072 | 8.621 x 10714 | 1.381 x 10~ 14 1
1G 1400 5.790 x 1079 | 8.764 x 1019 | 6.719 x 10*
Im/s | 4.150 x 10731 | 4.509 x 1077 | 7.223 x 107° | 1.992 x 10~
87 _ _
Rb [mp =2, I =2) Wiy 27 x 1400 5.790 x 10712 1 9.276 x 10~ | 6.719 x 10!
Wiong 2 x 7 2.895 x 1071 [ 4.638 x 1071 | 3.359 x 107!

Table B.1.: Useful Conversions. Based on: F = hy = kgT = %va, e=1.602x10"1].
Additionally the respective values of typical trap frequencies wy,, wiong of the double

well trap are given.
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Appendix C.

Bose-Einstein functions g, ()

C.1. Enhanced Computation of the Polylogarithmic /
Bose-Einstein Function

The polylogarithmic function g, (z) also known in Literature as the de Jonquiére’s
function or Bose Einstein function is of high relevance in the context of degenerate
Bose or Fermi gases. Integrals of the form fOoo dm% = I'(n) gn (2) appear quiet
often as for example for an ideal 3d Bose gas the Bose Einstein phase transition occurs

when the phase-space density is given by PSD = nA\3; = g3 /2 (1) = 2.612, with the
thermal de Broglie wavelength A\gp = (27rh2 /mkpT) 172 Other prominent examples are
the occupation of the excited states. For a trapped Fermi gas, the Fermi Temperature
Tr and the fugacity £ relate via g3 (§) = —%(TF/T)3, with the temperature T .

The polylogarithmic or Bose-Einstein function is defined for a complex number |z| <
I, neR] , |

=k 2 23
gn(z)zzﬁ:z+2—n+3—n+... (C.1)
k=1

However easy this function can be implemented in a numerical code, it is demanding
long computation times. Approximations enabling numerically efficient computations
have been reported for g3/ and g5/, in | |, with an accuracy up to 16 digits.

A full closed form approximation, with variable base n, is given by | |. This
approximation still computes reasonably fast and is easy to implement in e.g. MATLAB
environments. As this is very useful and appears to be pretty unknown in the ultracold
atoms community, it shall be briefly presented in the following.
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C. Bose-Einstein functions g, ()

C.2. How to calculate g, (z) reasonably fast

For |z| > 0.55 (correct up to 4 digits) | I:

_ 4b0b4 2 bobs _ 4bibs\ 3 (b3 _ 2bgbs b1bys _ 2b3by
F(l—n)+bo a<bl >+ (2 + 7, Tbs > @ (6 10561 1 7by 7bs )

gn (2) = - 10 b 2 b
al=n L +az: 4 +a? 71;12 +a? 105411;1 +at 84611)0
(C.2)
with b; = ¢ (n —4) and
2n—1

(1+3627 55" 4 315375 + 1120478{" + 1890 575" + 1512675 + 4627"5("))

o (14362 4 3153" +11204™ + 1890 5™ 4 1512 6™ + 462 7™)

(C.3)
with 5, ) Zk 1 kﬂ ~ being defined as the partial sums of eq. C.1.
For large negative n eq. C.3 does not give correct results but can be used in conjunction
with the following expression

¢ (1 —n)=a"2""T (n) cos <n27r> ¢(n). (C.4)
5 5
_9_3(2) _9_5/2(2)
H—9_,2) H—9_5,2)
3 9_,(2) | 3 9_2)
- 94(2) _ 9,,(2)
N N
e 2f{—9,() 1o 21—93,(2)
1 _gz(z) 95/2(2)
0 0
-1 - . . H -1 : Z . . .
-2 -15 -1 -05 0 0.5 1 -2 -15 -1 -05 0 0.5 1
z z
Figure C.1.: Bose-Einstein functions g, (z) for integer bases n = —3, =2, ..., +2 (left)
and non-integer bases n = —5/2, —3/2,..., +3/2 (right) calculated using the closed form

approximations. Whereas g, (1) = 2.612, g/, () diverges for z — 1.

For |z| < 0.55 (correct up to 10 digits) [ |:
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C. Bose-Einstein functions g, ()

gn (2) = —2 (C.5)

denom

nom = 643597 — 27456 875 » 4 48048 7S 22 — 44352675 2B 4 .

- +231005"S{ 24 — 67204755 25 4 1008 375 26 — 64275 .7 (C.6)
denom = 64359™ — 27456 8"z + 48048 7" 22 — 443526" 23 + . ..

... +231005"2% — 67204™2° + 1008 372°% — 642727 4 28 (C.7)

A MATLAB implementation can be provided upon request’.

kuhnert@ati.ac.at
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Appendix D.

Error Estimation via Bootstrapping

The error of the density ripples as well as of the C' (L) measurement is estimated by a
bootstrapping method [Hughes 10]. For simplicity only the latter case shall be discussed
in the following.

Bootstrapping means that the acquired data, in our case the C; (L) data of N absorption
pictures, for ¢ = 1...N, is randomly sampled with replacement. Each bootstrapped
sample (C (L)),, consists of N randomly selected pictures. The mean of these N random
samples gives the bootstrapped data (C' (L)), to be fitted by eq. 5.12, where (C (L)), =

n
<Cmndz'([1,N},N) (L)> and randi([1, N], N) generates N random integers in the interval
[1, N]. Fig. D.1la and Fig. D.1b show the distribution of 1000 bootstrapped samples (blue
bars) for the two different data sets of Fig. 5.20, which are indeed normally distributed
as tested by fitting a Gaussian distribution (solid red line). This fact ensures that the
bootstrapping works and sufficient bootstrapping samples have been generated. The rms
fit errors are typically much smaller than the obtained uncertainties of the bootstrapping
method and are therefore neglected.

In summary, the bootstrapping helps to properly include the statistical shot to shot
fluctuations of the experiment in the error estimate, which are not part of the rms fit
erTors.
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D. Error Estimation via Bootstrapping

150 150
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Figure D.1.: Bootstrapped distributions of Fig. 5.20 (a) and (b) respectively. To
determine the statistical uncertainty of the fit, the distribution of 1000 bootstrapped
samples (blue bars) is used, which is shown to be normally distributed (red solid line).
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Appendix E.

List of Publications

The following publications are related to the work presented in this thesis:

Relazxation and Prethermalization in an Isolated Quantum System

M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. E. Mazets,
D. Adu Smith, E. Demler and J. Schmiedmayer

Science, 337, 1318-1322 (2012)

Multimode dynamics and emergence of a characteristic length-scale in a one-
dimensional quantum system

M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler,
D. Adu Smith and J. Schmiedmayer

Phys. Rev. Lett., 110, 090405 (2013)

Prethermalization Revealed by the Relaxation Dynamics of Full Distribution Func-
tions

D. Adu Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer, R. Geiger, T. Kitagawa,
I. E. Mazets, E. Demler and J. Schmiedmayer

New J. Phys. 15 075011 (2013)

Prethermalization in one-dimensional Bose gases: description by a stochastic
Ornstein-Uhlenbeck process

T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, D. Adu Smith, I. E. Mazets
and J. Schmiedmayer

The European Physical Journal Special Topics, 217, 43-53, (2013)

Local emergence of thermal correlations in an isolated quantum many-body system
T. Langen, R. Geiger, M. Kuhnert, B. Rauer and J. Schmiedmayer
Nat. Phys. 9, 640-643 (2013)
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