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Abstract

As the approach of Model-Driven Engineering (MDE) is becoming mainstream in modern soft-
ware development practices, there is a growing variety of tools to support the lifecycle of model-
ing artifacts. Standards such as Meta-Object Facility (MOF) defined by the Object Management
Group (OMG) help to avoid information loss when trying to integrate multiple modeling tools
across their technical boundaries.

The Eclipse-based modeling tool SERAPIS by Sphinx IT Consulting defines a proprietary
meta-language which is not compliant to MOF or any other modeling standard. As a con-
sequence, metamodels specified in this meta-language and therefore also the instantiations of
these metamodels cannot be interchanged with existing tools based on standards such as MOF
which results in a vendor-lock for customers.

The contribution of this master thesis is to develop a transformation approach allowing to
translate metamodels and models from the SERAPIS technical space to the Eclipse Modeling
Framework (EMF), which employs the meta-language Ecore as the de facto standard corre-
sponding to MOF. The strategy to achieve this is based on an approach presented in the Ph.D.
thesis by Dr. Manuel Wimmer who suggests a semi-automatic transformation for metamodels
by mapping the corresponding meta-languages. Moreover, we specialize this approach to also
enable the automatic transformation of SERAPIS models based on the mappings of their meta-
models. The transformation approach developed in this work is implemented in the Eclipse IDE
in order to prove its feasibility and to evaluate the generated results.
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Kurzfassung

Da der Ansatz von Model-Driven Engineering (MDE) im Bereich der Softwareentwicklung im-
mer breitere Anwendung findet, nimmt auch die Bandbreite der verfügbaren Werkzeuge zur
Verwaltung der Modelle immer weiter zu. Standards wie Meta Object Facility (MOF) definiert
durch die Object Management Group (OMG) zielen darauf ab, Informationsverluste beim Über-
brücken technischer Grenzen im Rahmen unterschiedlicher Szenarien der Werkzeugintegration
zu vermeiden.

Das auf Eclipse basierende Modellierungswerkzeug SERAPIS der Firma Sphinx IT Con-
sulting verwendet eine proprietäre Metasprache, die weder zu MOF noch zu anderen Standards
kompatibel ist. Folglich können weder Metamodelle, welche in dieser Metasprache spezifiziert
werden, noch entsprechende Modelle mit anderen Modellierungswerkzeugen integriert werden,
was den Anwender solcher Modellierungswerkzeuge an den Hersteller der Werkzeuge bindet.

Der Beitrag dieser Masterarbeit bezieht sich auf die Untersuchung eines Transformationsan-
satzes, der es erlaubt, Metamodelle und Modelle aus SERAPIS in korrespondierende Modelle
des Eclipse Modeling Framework (EMF) zu transformieren, welches mit dem de facto Standard
Ecore eine MOF-konforme Metasprache einsetzt. Der Transformationsansatz wird dabei an die
Doktorarbeit von Dr. Manuel Wimmer angelehnt, der die halbautomatische Transformation von
Metamodellen anhand der Korrespondenzen ihrer definierenden Metasprachen beschreibt. Nach
demselben Prinzip wird auch eine Komponente entwickelt, die das Übersetzen von SERAPIS
Modellen ermöglicht. Der in dieser Arbeit untersuchte Transformationsansatz wurde implemen-
tiert und in die Eclipse IDE integriert, um einerseits die Machbarkeit zu zeigen und um anderer-
seits die Resultate der Transformation zu evaluieren.
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CHAPTER 1
Introduction

1.1 Motivation

As the requirements to modern software systems increase in quantity and complexity, the need
to adopt new approaches in software development emerges. Model-Driven Engineering (MDE)
is expected to increase productivity of the development process, improve the overall quality of
software and reduce both development time and costs.

Whether these claims are completely justified is not to be discussed in the scope of this work,
but as a matter of fact the model-driven approach introduces a couple of helpful aspects. For once
a model provides abstraction to the system under study and thereby improves communication
between the stakeholders of a software project and helps to avoid misunderstandings in the
assessment of requirements. A model is also comparably cheap to build and allows to take an
early glance at the final result of a project. Therefore, design flaws can be detected at an early
stage of the development process where the correction of defects is still inexpensive. As a model
evolves over time, it also represents the current state of a software project and thereby serves
documentation and planning purposes [21].

Once a model is created, the need for manipulation, refinement, and transformation emerges
from the design process. Various development tools provide different strengths and weaknesses
when it comes to these tasks which often makes it necessary to apply multiple tools in the
development process. As a consequence, avoiding information loss in order to support seamless
tool integration becomes a crucial objective in a model-driven software project [8].

On the sector of model-driven development a variety of tools is available for supporting the
modeling lifecycle. These tools often introduce their own metamodels and techniques for model
representation which is why the interchange of modeling data is complicated or not feasible at
all. In order to overcome the lack of interoperability, methods to bridge divergent metamod-
els and technical spaces have to be applied. In the context of MDE, tool integration can be
implemented by model transformation techniques [7].

The Object Management Group (OMG) [27] is a consortium with the goal to specify stan-
dards in the domain of information technology and software development. Next to others, stan-
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Figure 1.1: Outline of the transformation problem

dards such as Model-Driven Architecture (MDA) [22], Unified Modeling Language (UML) [24],
Meta-Object Facility (MOF) [23], or XML Metadata Interchange (XMI) [26] aim to unify the
model-driven development process and help to support tool integration.

As a framework based on the software development environment Eclipse [2], the Eclipse
Modeling Framework (EMF) aims to support the model-driven engineering process. The frame-
work adopts an XMI-based persistence strategy and, conforming to the definitions specified in
MDA, it adheres to an architecture which comprises three meta-layers [30]. EMF employs the
meta-language Ecore which is supported by a wide range of modeling tools and therefore can
be considered as a de-facto standard in MDE.

The Austrian company Sphinx IT Consulting [5] provides a modeling tool called
SERAPIS [11] which is based on Eclipse like EMF and also introduces three meta-layers
in its architecture. Despite the similarities to EMF, SERAPIS does not utilize Ecore [30] and
introduces a proprietary meta-language that is not compliant to existing standards instead. As a
consequence, SERAPIS-based models cannot be integrated with other development tools which
implies a vendor-lock.

The scope of this master thesis is to research and evaluate an approach to bridge the technical
boundaries between SERAPIS and EMF. Therefore, a method has to be determined that allows
to transform modeling artifacts such as the metamodel and the models from SERAPIS to EMF-
compliant counterparts. The decision for Ecore as the target meta-language is primarily based on
the fact that it is commonly supported by numerous tools, allowing a successful transformation
to bypass the vendor-lock.

Figure 1.1 depicts the overall transformation problem and shows that source and target mod-
els reside in different technical spaces. Designing appropriate transformation mechanisms usu-
ally involves implementing adapters that allow to access the modeling data in these technical
spaces. Transformation tools or frameworks, which might be used to implement these transfor-
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mations, are therefore required to provide a high degree of flexibility which is why not all of
them are suitable for this task.

The conformsTo-relation between model and metamodel depicted in Figure 1.1 states that the
model is defined by the metamodel and underlines that the existence of a valid model presumes
that it conforms to an adequate metamodel which resides within the same technical space as the
model. As a consequence, it is not sufficient to transfer only the model information to a different
technical space without taking the metamodel into consideration.

With respect to the implementation of a transformation process allowing to bridge a model
from one technical space to another, in a first step it becomes necessary to bridge also the meta-
model which the model conforms to. Transforming the metamodel implies to build a new meta-
model within the target technical space which corresponds to the source metamodel. This step
might entail a substantial amount of workload as the definition of the metamodel might become
very extensive.

As depicted in Figure 1.1 the relation between metamodel and meta-language equals to the
relation between model and metamodel which implies that the metamodel is defined by the meta-
language the same way as the model is defined by the metamodel. Consequently, the target meta-
language also plays an important role with respect to the transformation process in the sense that
it is required to provide a set of language features which matches the features of the source meta-
language. This is essential for it determines whether the target meta-language provides enough
expressiveness in order to create a sufficient metamodel within the target technical space.

In his Ph.D. thesis [31], as well as in further scientific research [29], Wimmer describes a
similar problem situation as depicted in Figure 1.1 in the context of Ecore and the XML technical
space. His transformation approach is based on the fact that technical spaces usually adhere to
an architecture with three meta-layers which corresponds to the problem discussed in this work.

Wimmer proposes to examine the source and target meta-languages first in order to detect
correspondences. From these correspondences rules and heuristics can be derived to map the
conforming source and target metamodels. Once this mapping is established, it can be applied
to automatically transform models specified in the source metamodel to models that conform to
the target metamodel. The approach of Wimmer still is semi-automatic as it suggests manual
refinement after the transformation step.

As the approach by Wimmer [31] proposes to generate the metamodel in a semi-automatic
process, it is not necessary to build the metamodel from scratch which would be error-prone and
time consuming. Moreover the approach is generic enough to transform different metamodels
defined by the same meta-language without having to adapt transformations. The approach is
not restricted to any specific transformation tools which simplifies its adaptation to individual
requirements. For these reasons the approach proposed by Wimmer is chosen as a model for the
work discussed in this master thesis.

1.2 Contribution

The modeling tool SERAPIS provides no compliance to existing standards such as those spec-
ified by the OMG or with other widely used frameworks such as EMF and its meta-language
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Ecore. The fact that SERAPIS employs its own technical space complicates tool integration
which implies a vendor-lock.

In a similar problem area, Wimmer [31] proposes a strategy to bridge technical spaces in
order to support tool integration scenarios. The contribution of this master thesis therefore is to
evaluate whether this approach can be applied to bridge the SERAPIS technical space to EMF.
Consequently, we identify and document possible adaptations of the approach by Wimmer to fit
the individual problem requirements stated in this master thesis.

In order to validate the correctness and feasibility of the approach, we provide an imple-
mentation consisting of two components which are developed and presented in this master the-
sis. The first component is a generator that transforms metamodels specified in the SERAPIS
meta-language to metamodels that comply to Ecore. The second component is a generator that
translates models specified by a SERAPIS metamodel to models which conform to the generated
Ecore metamodel.

As the meta-languages of both technical spaces are not compliant to each other, the most
important concern that goes along with the implementation is how to map metamodels defined
by SERAPIS to Ecore. As this issue is specific to the SERAPIS technical space, it is not covered
by the approach of Wimmer and therefore an individual solution has to be found.

As the SERAPIS modeling information is very complex, a complete transformation is not an
objective of the implementation. Instead a criteria catalogue is created to determine which data
is to be mapped. The implementation is also restricted to the unidirectional transformation of
metamodels and models, whereas further disciplines of model-driven development such as code
generation and additional refinements are not intended.

1.3 Outline

After an introductory discussion of basic state-of-the-art terms and concepts on the field
of model-driven software development, the master thesis starts with the presentation of the
SERAPIS modeling tool. The presentation comprises the user interface, modeling concepts,
and a detailed discussion of the models employed by SERAPIS. Subsequently, the results of a
former tool evaluation are examined in order to identify the issues of the modeling tool.

The next chapter depicts the architecture of the transformation process designed to bridge
models from SERAPIS to Ecore. Therefore, the semi-automatic metamodel transformation ap-
proach of Wimmer is presented and adapted to the SERAPIS technical space in form of a meta-
model generator. In addition, the architecture describes another component referred to as model
generator responsible for the transformation of models.

The following two chapters discuss the implementation of both metamodel and model gen-
erator in detail. The discussion comprises an evaluation of which modeling information is to be
included in the transformation process, challenges with the implementation of the generators,
and the solutions enabling a feasible transformation. At the end of each chapter the working
mechanics of the generators are demonstrated by examples.

In the last chapter the result of the master thesis is evaluated with respect to the feasibility
of the generation process and the quality of the generated modeling artifacts. The master thesis
finally presents the conclusion and an outlook to further related topics of research.
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CHAPTER 2
State of the art

The objective of this chapter is to take a glance at state-of-the-art concepts of Model-Driven
Engineering (MDE) related to the context of this master thesis. Therefore, a brief definition of
terms essential for the understanding of this work is provided. Subsequently, the results of an
extensive literature study constituting the related work are discussed.

2.1 Metamodeling and Model-Driven Engineering

In general, a model is described as a simplified view of reality. Its purpose is to provide ab-
straction while still being accurate enough to represent the characteristics and behavior of the
modeled system in order to make it understandable and predictive. In software development the
approach of MDE takes into account these features, and exploits the fact that analyzing a simpli-
fied model is significantly cheaper than analyzing the complex system under study. Therefore,
MDE suggests to develop the model initially and to subsequently generate software artifacts
such as source code [13].

Metamodel and Meta-metamodel

Similar to the well-known object-oriented concepts of inheritance and instantiation, the model-
driven approach also adheres to relations between models and the system they describe. The
relation representation maps a model to a real-world object while conformation determines the
conformity to another model [13].

The term metamodel is specified by the OMG as a model that defines the language for
expressing a model [23, p. 346]. So the metamodel can be considered on a higher abstraction
level providing the language to define a model. As a consequence, the model conforms to and
can be validated by the metamodel.

In addition the OMG specifies the term meta-metamodel as a model that defines the lan-
guage for expressing a metamodel [23, p. 346] and further states that the relationship between
a meta-metamodel and a metamodel is analogous to the relationship between a metamodel and
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Figure 2.1: Four layer metadata architecture by the OMG [23]

a model [23, p. 346]. Theoretically, there might be an infinite number of abstraction levels but
in practice further abstraction levels might not introduce significant benefits. As a reference, the
classical metamodeling framework of the OMG outlined in Figure 2.1 is based on the following
four layers:

M3 The meta-metamodel is an abstract language for describing metadata which is why in OMG
terms it is also called meta-language. The OMGs architecture proposes MOF as hard-
wired meta-metamodel.

M2 The metamodel layer is comprised of the metadata which are defined by the structure and
semantics specified on the meta-metamodel layer. A metamodel is an abstract language
for describing different kinds of data; that is, a language without a concrete syntax or
notation [23, p. 34]. As depicted in Figure 2.1, besides the UML metamodel, MOF also
supports an IDL (Interface Definition Language) metamodel which creates the specifica-
tion for a CORBA metadata service allowing to map the metadata to objects specified by
the CORBA IDL [23, p. 54].

M1 The model layer is comprised of the metadata described on the metamodel layer and is
informally aggregated as models.

M0 The information layer contains the actual data to be described.

Model-Driven Architecture

Model-Driven Architecture (MDA) is an architectural framework by the OMG with the objective
to support model-driven development. With the model-driven approach, the OMG aims to tackle
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interoperability issues resulting from different software platforms. In order to achieve this, MDA
suggests to distribute models to different abstraction levels so the development process can be
focused on requirements on a higher order without the necessity of taking into account platform-
specific details.

The Computational-Independent Model (CIM) presents the highest level of abstraction and
corresponds to the domain model in software engineering. The Platform-Independent Model
(PIM) contains no platform-specific information so its execution scope can be considered as
virtual machine. Only the Platform-Specific Model (PSM) defines the details for the target
platform which is why it is used to generate artifacts of software development such as executable
code [13].

Meta-Object Facility

An important standard specified by the OMG in the context of MDA is the Meta-Object Facil-
ity (MOF). In MDE [13] MOF is defined as an abstract, self-defined language and framework for
specifying, constructing, and managing technologically independent metamodels [13, p. 134].
The attribute of self-definition states that it is defined by its own language constructs. The fact
that MOF is self-defined makes it easier to be extended for future tasks and also shows that it is
expressive enough for practical metamodeling [23].

Initially MOF has been developed as an adaptation of the UML core in order to meet the
requirements of MDA and can be considered as a small set of concepts used to define a meta-
model. With the release of MOF 2.0 the two standards Essential MOF (EMOF) and Complete
MOF (CMOF) have been introduced. EMOF is a small subset of MOF being easier to imple-
ment while CMOF is more expressive due to its more complex language features which makes
it harder to implement [13].

XML Metadata Interchange

The XML Metadata Interchange (XMI) [26] standard is used to map meta-metamodels, meta-
models and models to XML documents and schemas. The structure of these documents is
straight-forward as it matches closely the hierarchy of the representing models which is probably
the reason for its popularity [30]. XMI is supported by a significant number of modeling tools
as an interchange format for MDE metadata [13].

Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a framework for the Eclipse extensible development
platform [30] with the purpose of supporting the model-driven software development process.
EMF is developed parallel to MDA and shares the same basic idea, but introduces its own meta-
language Ecore instead of MOF. As Ecore originates from UML like MOF, it is not surprising
that they share common concepts [13].

Figure 2.2 displays an essential subset of the Ecore meta-language. The concepts expressed
by this model might be recognized from object-oriented development [30].
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Figure 2.2: A subset of the Ecore meta-language [30]

EClass defines a modeled class and has an unbounded number of attributes an references. It
can have multiple supertypes in order to support inheritance.

EAttribute represents the data of an object which is defined by type and name.

EDataType corresponds to a primitive or complex type which is not modeled as an EClass.

EReference represents one side of an association between two classes. If the association is
bidirectionally navigable there is another reference at the opposite side. References are
typed like attributes with the restriction of referring to EClass only. As known from
UML they provide lower bounds and upper bounds in order to support multiplicities.

EStructuralFeatures

As elements of the Ecore meta-language, EAttributes and EReferences play an
essential role by specifying the very basic definition of complex data types. Both lan-
guage constructs are defined by name and type, and like EReference also EAttribute
specifies multiplicities. Because of these similarities Ecore aggregates them under a com-
mon base called EStructuralFeature. The relationship between EClass and the
EStructuralFeatures it defines is bidirectional, so references and attributes know which
class they belong to [30].

EPackages and EFactories

Providing a unique URI for identification, EPackages are used in Ecore to group classes and
data types that are related to each other which complies to the purpose of packages in Java.
For serialization of Ecore models, the packages name is used as document root and its XML
namespace is specified by the URI. Along with an EPackage, EMF provides an EFactory
implementation in order to allow the instantiation of classes contained in the package [30].
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EMF and Modeling Standards

As both EMF and standards of the OMG are subjects of this paper, their relationships are dis-
cussed in the following.

MOF Both Ecore and the Meta-Object Facility (MOF) are meta-languages and originate from
UML. Therefore, they share some similarities when it comes to defining classes and their fea-
tures. Both support inheritance, packages, and reflection but they differ in details of data types,
relationships, and associations [30].

XMI The XML Metadata Interchange (XMI) standard is the default serialization format of the
Eclipse Modeling Framework (EMF) as it provides an easily understandable document struc-
ture. Although using XMI every EMF-based model can be serialized, it is most appropriate for
serializing metamodels such as Ecore itself in which case the resulting document format is called
Ecore XMI and can be recognized by the .ecore file extension [30].

MDA EMF and the Model-Driven Architecture (MDA) standard share the key concepts of
model-driven code generation and serialization for data interchange. Nevertheless, MDA is
an architectural framework designed to work with multiple platforms while EMF is an actual
framework based on Java [30].

Technical Spaces

In model-driven software development the design decision for a certain modeling framework
also implies the technical space. The term technical space or technological space [19] is defined
as a working context with a set of associated concepts, body of knowledge, tools, required skills,
and possibilities [19, p. 1]. In other words, a technical space determines which technology is
available to represent the models. This includes file formats, data structures, and mechanisms to
transform and manipulate models.

The decision for a modeling framework has to be taken very carefully as models are only
processable within the technical space a framework provides. As a result, technical boundaries
between different spaces have to be bridged if tool integration is a concern.

Different technical spaces such as MDA, EMF, XMI, and therefore XML have already been
discussed in this paper. Besides them, also programming languages introduce their own tech-
nical spaces as they can be used to define and manipulate models. The main benefit for using
programming languages in this context is that models can be actually executed while XML only
provides a data structure. On the other hand, programming languages lack the ability to separate
content and presentation. When it comes to model transformation, programming languages also
provide only insufficient mechanisms to enable traceability which describes the ability to keep
references between source and target models. Figure 2.3 compares some technical spaces in the
context of a four layer metadata architecture. An in-depth look at transformations with respect
to further technical spaces is provided by additional literature [10, 15, 16].
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2.2 Metamodel Derivation and Model Transformation

The following section provides a brief overview of topics which are related to the problem de-
scribed in the context of this master thesis. The overview starts with a short discussion of two
model transformation tools in order to determine their applicability with respect to the imple-
mentation of the SERAPIS2Ecore framework proposed in this thesis. As SERAPIS provides a
Java API for granting access to its modeling artifacts, a set of techniques for mapping Java to
Ecore is presented as the section continues.

Subsequently, the DTD2Ecore framework is presented as it tackles a problem which is very
closely related to the context of the SERAPIS to Ecore transformation. Finally recent research
efforts with respect to the transformation of models between SERAPIS and Ecore are discussed.

Model Transformation Tools

There is a wide range of tools providing different model transformation mechanisms with indi-
vidual strengths and limitations. Whether a model is to be synthesized for refinement, multiple
source models have to be merged to one single target model, or a model has to be integrated with
another tool, the choice of the adequate transformation tool depends on the desired outcome and
therefore the problem the transformation process tackles.
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In order to support the decision process, the literature study of Biehl [7] establishes a classifi-
cation scheme summarizing the problems that can be addressed by model transformation. In the
scope of this thesis not all of these classifications are relevant and therefore only the following
are discussed.

Change of metamodels This problem classification basically describes whether the source
metamodel is the same as the target metamodel. In this case these transformations are
called endogenous transformations or rephrasing transformations, and are usually applied
to change only specific parts of the processed model. If source and target metamodels
do not match, the transformation is called exogenous transformation or translation
transformation.

Supported technical spaces Source and target models may reside in different technical spaces
and therefore the knowledge of which ones are supported by a transformation tool can be
an important decision criteria.

The literature study [7] provides an overview of current model transformation languages,
tools, and standards. As SERAPIS and EMF provide contrary technological implementations
only transformation tools that allow exogenous transformation over different technical spaces
are discussed in the following.

Henshin is a joint project by various European research institutions, and provides a transforma-
tion language and a tool environment based on the Eclipse Modeling Framework (EMF).

The Henshin transformation language conforms to an EMF-based metamodel and applies
graph transformation concepts. For this purpose the language provides rules which consist
of left-hand side (LHS) and right-hand side (RHS) graphs and their mappings. First order
logical formulas over graph conditions can be defined in order to specify where the rules
are applied. The transformation language also provides control structures to determine the
application order of rules.

To support the transformation development, Henshin provides one tree-based editor gen-
erated by EMF and another graphical editor implemented using GMF. It also comes with
a runtime component which takes an EMF model as input and directly applies transfor-
mations. Besides that, Henshin provides an analyzing tool which simulates the transfor-
mation steps on a given model and extension points for additional model checkers [6].

Epsilon Transformation Language The Extensible Platform of Integrated Languages for
mOdelmaNagement (Epsilon) [17] is an Eclipse project that includes a set of task-specific
languages covering modeling aspects such as transformation, code generation, compari-
son, merging, and validation. The Epsilon Object Language (EOL) is a general-purpose
modeling language and provides a common base for all task-specific languages such as
the Epsilon Transformation Language (ETL) which covers the transformation aspect.
ETL is a hybrid model transformation language as it provides declarative rule-based
mechanisms but also imperative features.
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Besides the definition of source and target elements, ETL rules contain a block for EOL
statements called body to specify the mapping logic. It is also possible to execute external
code in order to access models that reside in different technical spaces. To control its ap-
plication, a rule can specify a guard consisting of EOL expressions that determine whether
its body is executed or not. Besides that, rules declared as greedy are applied whenever
possible while lazy rules have to be called explicitly. ETL rules are organized in modules
for reuse and support multiple inheritance [17].

According to the insight by this literature study, both Henshin and the Epsilon Transforma-
tion Language (ETL) seemingly have the potential to implement the SERAPIS2Ecore frame-
work. But as both frameworks, and probably those that have not been covered by this literature
study, would expect an implementation of adequate adapters for SERAPIS in the first place, their
inclusion into the development of the SERAPIS2Ecore framework would provide no significant
benefit compared to a manual implementation from scratch.

Mapping Java to Ecore

In order to implement the SERAPIS2Ecore framework, the first step is to create a corresponding
metamodel for SERAPIS in Ecore. This is a sophisticated task as building the metamodel from
scratch is to time-consuming and error prone due to its extent. As SERAPIS provides a Java API
to access its metamodels, existing automatic approaches are discussed in this context.

Deriving EMF Models from Java Source Code

The primary aim of the work dedicated to the derivation of EMF models from Java source
code [32] is to re-engineer user interfaces (UI) based on Java Swing API without having to
change the underlying business logic. The basic idea is to read UI information of existing appli-
cations and transform them into EMF-based models. In the next step, tools of EMF can be used
to apply modifications to the model and generate Java source code.

To allow model transformation, first an EMF metamodel that corresponds to the Java Swing
API has to be established. To achieve this, an automatic approach for deriving the metamodel
from the Java source code is described. The overall objective of the approach is simplicity in
the sense that the transformation requires no further intermediate steps or additional external
tools. For that reason, the article proposes to use the Java parser from Oracle which is utilized
by JavaDoc in order to generate API documentation files. The parser builds an in-memory graph
of the source code and executes doclets to inspect the graph and perform further actions.

The problem described in this article is tackled by implementing the transformation rules for
the Java-to-Ecore mapping as doclets. The parser builds a graph representing the Java Swing
API and executes the rules in order to determine the corresponding Ecore mapping. The doclets
additionally work as generators which instantiate metamodels in the form of Ecore XMI.

Some relevant assumptions and considerations on the mapping of Java to Ecore are listed in
the following for providing a general insight to this topic.

12



API Classes Mappings Metamodel

API Objects ModelAPI2MoL

conforms conforms

Figure 2.4: Conceptual overview of API2MoL [28]

• Visibility markers such as private, protected, or public do not need to be mapped as every
Ecore element has public visibility.

• Both languages contain predefined base types but also allow to introduce complex types
which makes the type mapping a sophisticated task.

• It is difficult to determine if an attribute in Java corresponds to an EReference or an
EAttribute in Ecore. An approach to this problem is to map all base types to attributes
and all complex types to references.

• For the sake of simplicity, getter and setter methods might not be included in the transfor-
mation process as they add no information value to the metamodel.

• Enumerations in Java can be detected easily when declared by the Enum language feature
but, when implemented as string constants there exists no heuristic for detection.

• Some classes or interfaces referenced by the Java application might not be a direct part of
the model. As they have to be represented in the model, in order to grant consistency they
can be organized in separate packages.

API2MoL

API to Metamodel Language (API2MoL) [28] is a Java-based framework developed by Atlan-
Mod [1] and Modelum [4] research groups and targets the integration of APIs into model-driven
software engineering.

The general objective of API2MoL is to derive a model representation from an existing
application based on the mappings between the API this application exposes and the metamodel
the models conforms to as displayed in Figure 2.4. For this purpose API2MoL provides its own
language to define the mappings for bridging the technical spaces. These mappings are designed
to work bidirectional so it is also possible to generate software artifacts from existing models.
The current implementation of the framework is restricted to Ecore metamodels and Java-based
APIs but an extension to other object-oriented programming languages would be feasible.

In case an API has to be bridged without an appropriate metamodel existing, API2MoL
provides a bootstrapping mechanism. Thereby, the framework discovers the API structure using
the Java Reflection API and creates both metamodel and mapping definitions [14].
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According to the API2MoL documentation [14] correctness, expressiveness, and complete-
ness of the API2MoL framework has been validated with various APIs such as Swing, SWT,
and JTwitter. As SERAPIS also provides a Java API in order to grant access to its metamodel,
the applicability of the API2MoL framework has been evaluated within the scope of this master
thesis. Unfortunately, this attempt has failed as the SERAPIS metamodel cannot be mapped to
Ecore directly as described in Chapter 5.

Java2Ecore

Java2Ecore [9] is a one-way translator for Java applications to Ecore models. The idea is to
derive Ecore conform models from Java classes by applying hard-wired Java-to-Ecore mapping
rules. While classes and attributes in Java can be mapped directly to Ecore other language
features have no counterpart which is why Java2Ecore only covers a subset of the Java language.
Additional modeling information can be added by annotations which has the downside that the
original Java code has to be manipulated in order to get translated.

Unfortunately, the project has been frozen and never exceeded the beta status which is why
it did not qualify for further evaluation in the first place [9].

The DTD2Ecore Framework

Within the scope of his Ph.D. thesis [31] Wimmer proposes a set of strategies for different tool
integration scenarios in the context of MDE. One of these scenarios describes a situation that
requires two separate technical spaces, namely DTD and EMF, to be bridged in order to allow
an interchange of models. Before the model transformation can be implemented, a metamodel
the corresponds to the source metamodel has to be created in the target technical space. As in
this case the metamodel cannot be recreated from scratch due to its extent, the work of Wimmer
describes a semi-automatic approach to generate the target metamodel as part of the DTD2Ecore
framework.

The approach suggests to use the correspondences of the meta-languages to derive transfor-
mation rules which are applied to automatically generate the target metamodel according to the
specifications of the source metamodel. Due to lack of expressiveness provided by the DTD lan-
guage constructs, the mapping of the meta-languages introduces ambiguities which can only be
resolved manually. As a consequence, the DTD2Ecore framework employs heuristics to identify
these ambiguities in the metamodel and mark the resulting elements for manual refinement.

The problem situation described in the Ph.D. thesis [31] matches the problem presented in
the context of this master thesis in the way that both scenarios require to bridge the boundaries
of different technical spaces and furthermore an automatic approach to generate the target meta-
model is required. Although the approach of Wimmer is presented along the use case of the
DTD2Ecore framework, it is to be considered as a more general approach for implementing
bridges on the M3 layer which is why it is adopted to the mapping between SERAPIS and Ecore
as described in Chapter 4.
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SERAPIS and Ecore

According to Sphinx, the idea of bridging the models of the proprietary technical space of
SERAPIS to a more common standard such as Ecore has already been discussed and evalu-
ated in the recent years. EMF is very popular and has a strong supporting community which is
why a wide variety of built-on tools exist. Gaining access to these tools is the overall benefit
expected from the result of the bridging attempt.

The inability to map the SERAPIS metamodel directly to Ecore is considered as the major
challenge when it comes to implementing a transformation approach, as this not only requires
in-depth knowledge about both meta-languages but furthermore requires to research a mapping
technique which exceeds the capabilities of most state-of-the-art transformation approaches. As
this task introduces a high degree of uncertainty with respect to the technical feasibility and the
amount of workload this effort entails, no actual attempt to design or implement a bridge to
Ecore has been made yet.
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CHAPTER 3
SERAPIS at a Glance

Sphinx IT Consulting located in Vienna is a medium-sized service contractor in the sector of
software development. To aid the process of software development, Sphinx provides a propri-
etary tool called SERAPIS which follows the concept of model-driven software engineering. In
that sense its architecture relies on three separate meta-layers including models, metamodels,
and a meta-language.

Unlike other modeling tools and frameworks which simply provide a meta-language and
leave the design of the individual metamodel to the customer, SERAPIS uses one core meta-
model which is extended to meet the customer requirements. According to the business model
of Sphinx, the product is not shipped to the customer in its entire scale, but instead it is tailored
to the individual requirements and then deployed.

SERAPIS is based on the Eclipse Rich Client Platform (RCP) which is an open tools plat-
form for supporting the development of desktop applications. The development tool comes with
a set of convenience features such as a wizard that aides the creation of new projects, a graphical
editor for model manipulation, and an explorer for presenting the project structure.

Besides Java code, SERAPIS can also generate SQL Data Definition Language (DDL)
scripts that define the database outline according to the model. If provided with a database
connection, it is also possible to have the database created automatically and evolved along with
the model. It is to be mentioned that this process can be reversed using the so-called Schema
Migrator. This feature analysis the database and derives models from the table definitions. This
reverse engineering method can help to save time when migrating existing projects. Although
this migration tool is designed to work fully automatically, it sure is advisable to put some effort
into further manual refinement as some derived data types and references might still need a little
adjustment. Besides that, SERAPIS also creates Entity Relationship (ER) diagrams along with
the transformation process to depict the model.

The product is composed by two independent modules that cover different tiers of software
development. The first one is focused on the presentation layer and therefore supports the design
of graphical user interfaces including forms, dialogues, and controls for both web and rich client
platforms. The second module allows to model the persistence layer by defining business ob-

17



Person

BookReservation

AuthorCustomer

1..*

1..*

0..1*

1

Figure 3.1: Library example model

jects, data transfer objects (DTO), and services. The persistence layer is expected to offer more
potential for code generation because it usually includes no business logic and, unlike a user
interface, it is mandatory for most software projects. For this reasons the scope of this master
thesis is restricted to the second module [11].

The outline in Figure 3.1 shows a strongly simplified model of a public library. It serves as an
example to illustrate different issues discussed in the scope of this master thesis. In this chapter
it is used to present the SERAPIS development environment and to discuss advanced aspects
of the modeling tool. Subsequently, the models of SERAPIS including the meta-language are
examined in detail as they are the key to the transformation approach according to [31]. The
chapter is concluded with the presentation of an evaluation of the SERAPIS modeling tool by
the Vienna University of Technology.

3.1 SERAPIS Modeling Tool

As mentioned before, Sphinx tailors the SERAPIS modeling tool to individual requirements
before its deployment, rendering the customer unable to autonomously apply further modifica-
tions. Nevertheless, SERAPIS still provides mechanisms to configure modeling projects in order
to customize the outcome of code generation. As the project configuration presumes a certain
amount of know-how, an in-depth look into this topic is to be provided here. Subsequently, the
user interface of the development environment is presented.

Project configuration

For building a new modeling project from scratch, SERAPIS provides a custom wizard that
creates an empty Eclipse project and assists the customer with the initial setup. Besides that,
it is also possible to add the modeling nature to an existing Eclipse project which basically has
the same outcome as the wizard to the effect that it creates a XML file for configuration named
.sxmemodel which looks as follows. The existence of this file is necessary for the development
environment to recognize the modeling aspect of the Eclipse project.
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<sxme:sxmemodel xmlns:sxme="http://www.sphinx.at/sxme/model">
<model folder="model" />
<generated folder="src-gen" />
<generatedjava folder="src-gen/java" />

</sxme:sxmemodel>

Listing 3.1: Content of the .sxmemodel file

Due to the volatile quality of generated code, isolation from manually written code is en-
sured in order to avoid information loss. Therefore, the configuration file specifies separate
source folders for generated artifacts. In addition, a central directory to hold the model defini-
tion is declared leaving the original project unaltered. Besides this basic project configuration,
SERAPIS offers more advanced mechanisms to customize the code generation listed as follows.

Storages With respect to the generation of database related scripts, storages can be defined
to represent access to existing databases. When provided with valid user credentials,
different database types such as IBM DB2, PostgreSQL, and Oracle can be accessed to
automatically deploy changes made to the model.

Deployment environments Storages can be grouped to deployment environments with the pur-
pose of testing, development, and production. Also database schemas can be declared here
to distinguish different deployment environments.

Build configurations SERAPIS provides generators which iterate the models allowing to create
a certain kind of output. For instance, the DDLBuilder is responsible for creating database
scripts while others generate Java classes for the persistence layer. These generators,
referred to as build steps, are grouped to build configurations so different types of artifacts
can be generated at the same time. The scope of a build configuration is always restricted
to a certain deployment environment.

Build strategies In order to generate code artifacts, build steps rely to additional parameters
which are usually specific to a certain project and therefore defined by the customer. For
instance, the DDLBuilder needs to be provided with naming conventions for tables and
views. For this purpose build strategies can be considered as a set of value assignments to
predefined parameters which are looked up by the build steps.

User Interface

As the SERAPIS modeling tool is based on Eclipse, it provides its own perspective to the cus-
tomer allowing to access the modeling features. Within this perspective not only the model can
be created and manipulated but it is also possible to adjust project configurations.

The model explorer in Figure 3.2 provides a tree view to the project structure of the library
example. Here the aforementioned deployment- and storage-related configurations can be per-
formed. Besides that, the explorer allows to manage the data types and the packages they are
assigned to. These packages comply to the Java packages in which the generated classes are
organized.
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Figure 3.2: Library example project structure in the model explorer

The model editor is used to manipulate all data types available within a project. By default,
the modeling environment provides a set of base types such as string, date, and integer. Complex
types are defined by the user and referred to as entities which can be composed of base types
and other complex types. They adhere to general object-oriented concepts such as inheritance or
aggregation, but they can also provide more language-specific properties to the effect that they
can be declared as serializable or marked as final.

Besides attributes, entities can also declare method signatures. In this case, the generated
code is contained in one abstract class which inherits to a concrete class providing the method
implementation. The abstract class is volatile, meaning that it is erased and rebuilt with every
launch of the generation process and therefore is contained by a source path different to the
location of the manually written code.

Figure 3.3 shows the entity Book of the library example represented in the model editor.
The view outlines the attributes declared by this entity stating their name and type. While
Author is a complex type and therefore an entity itself, Title and Language refer to the
string base type. The digits at the end of the types name indicate the maximum length of the
value a field can contain. These constraints are essential for the generation of database scripts
while they have no relevance to the generation of Java code.
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Figure 3.3: Entity Book of the library example in the model editor

ID and AuditInfo are technical attributes which are neither declared by the entity nor
inherited from a super type. The term technical attribute here refers to fields which are intended
to hold control information only, such as the time an entry has been created or which user has
performed the latest modification. Both ID and AuditInfo, which in turn is only a container
that holds a collection of technical attributes, are declared globally by a build strategy so they
can be managed centrally without having to re-declare them for every entity. Entities can change
the behavior of build strategies by overriding them.

3.2 Models in SERAPIS

SERAPIS adheres to a three-layer meta architecture including meta-language, metamodel, and
model. In order to evaluate whether the approach of Wimmer [31] can be applied to transform
the models, it is necessary to understand these meta layers.

Meta-language

The metamodel used by the SERAPIS modeling environment is based on a proprietary language
definition here referred to as the SERAPIS meta-language. Unlike Ecore, which provides a rich
set of language features allowing high flexibility with respect to the definition of metamodels,
the SERAPIS meta-language is tailored to the needs of the proprietary product.

The essential elements of the SERAPIS meta-language are outlined in 3.4. The core of the
language definition is presented by Element which can be compared to the EClass construct
of Ecore. An Element is able to contain an unbound set of Properties which is a gener-
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Figure 3.4: SERAPIS meta-language

alization for all field types an Element can have, such as Value, Reference, Text, and
Enumeration. Values can be considered as attributes such as the EAttribute in Ecore
used to characterize and define the state of complex types. References on the other hand
represent compositions and relationships between complex types similar to EReference in
Ecore. Unlike Values and References, which can be matched directly to object-oriented
concepts, the Text property has to be considered separately for it defines information which
serves primarily documentation purposes and therefore has more relevance to the representation
inside the modeling tool. For instance, entities inherit Text properties for specifying comments
and descriptions so the model editor 3.3 provides input boxes allowing to assign values to these
documentation properties.

In the SERAPIS meta-language the functionality of enumerations is provided by (1) an el-
ement called Enum for constructing enumerations by defining Literals and (2) a field type
named Enumeration which is used to reference Enums. Originally in the SERAPIS meta-
language the construct Enum is also named Enumeration but for reasons of clarity here the
name Enum is introduced. However the functionality of enumerations in the SERAPIS meta-
language basically complies to the functionality of enumerations known from various program-
ming languages.

The characteristics of all language features provided by the SERAPIS meta-language, con-
sisting of elements such as Element and Enum, or field types such as Value, Reference,
Text, and Enumeration, are defined by an individual set of attributes listed in Table 3.1.
The attributes shared by the field types are aggregated in the abstract field type Property.

Metamodels

The SERAPIS modeling environment is based on a single metamodel which can be considered
as the default metamodel. It defines a consistent set of elements in order to cover general aspects
of development such as the definition of business objects, data types, and packages. Before the
modeling tool is deployed within a production environment, the default metamodel is modified
in order to meet specific requirements of the customer. Due to the fact that the metamodel
is tailored to meet individual domain-specific requirements, the language it specifies can be
considered as a Domain-Specific Modeling Language (DSML).
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Name Attribute Type Description
Element name String Name of the Element

super Element Declares a superclass
class Class Class representing the Element in Java
isAbstract Boolean Declares the Element as abstract
isSingleton Boolean Sets the instantiation behavior
isDisplayOnly Boolean Sets the Element editable in the model-

ing tool
isHidden Boolean Visibility setting for the modeling tool
isPSM Boolean Declares the Element as platform-

specific
transformer Class Java class for transforming the Element

to its platform-specific representation
icon URL Icon representing the Element in the

modeling tool
Property name String Name of the Property

isRequired Boolean Declares the Property as mandatory
isDisplayOnly Boolean Sets the Property editable in the mod-

eling tool
isHidden Boolean Visibility setting for the modeling tool
isPSM Boolean Declares the Property as platform-

specific
isUserSetting Boolean Determines the Property as a tool-

specific setting
Text lines Integer Number of lines in the content

editorId String The associated editor in the modeling tool
isLocalized Boolean Determines if the content is localized
isDescription Boolean Determines display settings in the model-

ing tool
Value class Class Class representing the Value in Java

default String Default value
isUpperCase Boolean Determines whether string values are

upper-case
hasListOfValues Boolean States if the Value refers to a list
unit String Unit for measuring the Value

Reference element Element The referenced Element
isComposition Boolean States if the target Element is a compo-

sition
delete String Sets the delete strategy

Enumeration enumeration Enum References an Enum
Enum name String Name of the Enum

literalList List<Literal> Associated Literals
Literal name String String representing the Literal

Table 3.1: SERAPIS meta-language attributes 23
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+Comment: Text
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Figure 3.5: SERAPIS metamodel
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The modeling features of SERAPIS are implemented and distributed to the customer in form
of Eclipse plugins, whereas the elements of the default metamodel and the elements individually
tailored to the domain-specific requirements are encapsulated in separate plugins. The elements
of each plugin are defined as extensions [3] in the plugin.xml file. In Eclipse, extensions are used
to specify contracts for providing access to contents between plugins. As a SERAPIS plugin is
loaded, the element definitions are de-serialized in order to allow access during runtime. The
elements designed to meet the individual requirements are configured to overwrite the elements
of the default metamodel in order to provide the domain-specific functionality without having to
alter the default metamodel. As an example, the code snippet in Listing 3.2 shows the definition
of the element Entity and three of the Properties it defines. The diagram in Figure 3.5
shows a small overview of the default metamodel element definitions. As the hierarchy contains
over 200 elements, only the most essential elements for specifying entities and their relationships
are depicted. There is no visual editor for manipulating the metamodel as known from EMF,
instead element alterations need to be performed directly in the plugins.xml file.

Models

Models created by the SERAPIS modeling tool reside in the folder model inside the Eclipse
project specified during project configuration. For each instantiation of an element defined in
the metamodel, a separate file is created in the file system. As a consequence, all methods and
fields of an entity are persisted in self-contained files. As a new element is instantiated and
persisted, the modeling environment generates a unique identifier which is used as reference by
related elements. This identifier is also included in the naming convention for the generated
files along with the extension esx. Although SERAPIS adheres to the XML notation in terms of
persistence, the fact that entities are dispersed among multiple files and referenced by artificial
identifiers practically makes the model unreadable for humans.

The code extraction in Listing 3.3 displays the XML notation for the element Book included
in the library example. Except for the primary key field and the other technical attributes, the
entity has no direct reference to its functional attributes and methods, instead it declares a Uni-
versally Unique Identifier (UUID) in order to be referred to. The listing further shows some
fields of type Value, Enumeration, and Reference which have been specified by the
metamodel respectively the meta-language. Here the field ShortDescription gives an ex-
ample how Text answers the purpose of documentation. In this case, the value of the field
is displayed as additional information textually describing the current entity inside the model
editor.

3.3 Issues of SERAPIS

In the year 2011 the Austrian Federal Ministry of the Interior (BMI) assigned the task of eval-
uating the versatility of the SERAPIS modeling tool to the Vienna University of Technology.
The resulting document presented a criteria catalogue which was subsequently used to evalu-
ate the SERAPIS modeling tool. After a comparison with other state-of-the-art modeling tools,
recommendations in terms of possibilities for future evolution steps have been made.
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<element
name="Entity"
super="EntityBase"
class="at.sphinx.sxme.informationmodel.

model.entity.IMEntity"
transformer="at.sphinx.sxme.informationmodel.

transformer.IMEntityTransformer"
icon="10_Source/icons/elements/entity.gif"
isAbstract="false"
isSingleton="false">

<value
name="Abbreviation"
class="at.sphinx.sxme.core.value.StringValue"
isRequired="true"
isDisplayOnly="false"
isHidden="false"
isUpperCase="true"/>

...
<enumeration

name="Type"
enumeration="EntityType"
isRequired="true"
isDisplayOnly="false"
isHidden="false"
default="ProductionData"/>

...
<reference

name="PrimaryKeyField"
element="EntityField"
isComposition="false"
isRequired="false"
isDisplayOnly="true"
isHidden="false"
isPSM="true"
delete="nullify"/>

...
</element>

Listing 3.2: Code excerpt of the plugin.xml file
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<?xml version="1.0" encoding="windows-1252"?>
<sxme:elements xmlns:sxme="http://www.sphinx.at/sxme">

<element display="Book"
model="ba67a429_dd55_40ad_ab46_08646049d1f0"
type="Entity"
uuid="e9164599_527e_40fd_a8b4_8a1eecd8c24b"
psm="false">

<localizedtext
name="ShortDescription"
computed="false">

<textstring
language="a36eeef6_5e2e_4de4_8bf2_60ff2698dcce">

Short description of the Book entity
</textstring>

</localizedtext>
...
<value name="IsAbstract"

value="false"
computed="true" />

<value name="Abbreviation"
value="BOOK"
computed="false" />

...
<enumeration

name="Type"
literal="ProductionData"
computed="true" />

...
<reference name="PrimaryKeyField"

display="ID : OID"
model=""
type="EntityField"
uuid="6535c580_5344_4fba_a9d8_53be2b6c5e38"
index="-1"
computed="true" />

...
</element>

</sxme:elements>

Listing 3.3: Excerpt of the Book element definition
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The evaluation is significant to this master thesis as it not only provides an in-depth look
into the mechanics of the modeling tool, but it also indicates the competitiveness on the sector
of MDE tools. Therefore the outcome of the evaluation and the resulting recommendations are
summarized as follows.

Criteria catalogue

The criteria catalogue covers the aspects of supported modeling languages, interoperability, and
code generation. In order to keep this summary compact, the criteria definition is presented
along with the tool assessment.

UML version Crucial to any modeling tool is the question which modeling languages it sup-
ports. Here the OMG suggests to use MOF-based languages such as UML. If this is the case
also the UML version is significant due to the improvements introduced with UML 2.0. The
SERAPIS metamodels tailored to customer requirements are not necessarily compliant to any
meta-language standard which causes a vendor-lock. The metamodel customized for the BMI
is only vaguely related to a subset of UML 1.4 while on the other hand its language features
introduce very little overhead.

Constraint languages Constraint languages such as the Object Constraint Language
(OCL) [25] allow to define requirements and restrictions to models in order to validate
and ensure their correctness. The SERAPIS modeling tool provides no support for languages of
that kind.

UML profiles UML profiles represent a light-weight approach to extend the UML metamodel
by domain-specific modeling concepts. Due to the lack of compliance to UML, the modeling
tool developed by the Sphinx IT-Consulting features neither UML profiles nor any comparable
mechanisms.

Metamodeling If UML profiles are not applicable, other mechanisms might allow the exten-
sion of an existing metamodel. As the capability to perform manipulations to the metamodel is
reserved to Sphinx IT-Consulting there is no way to apply extensions of any kind.

Abstraction levels In order to grant separation of platform-independent and platform-specific
definitions, modeling tools are suggested to adopt the paradigm of MDA which distinguishes
between PIM, PSM, and code. SERAPIS adheres to no such distinction as the metamodel is
already platform-specific due to the customization process. So on one hand it accurately meets
specific requirements, but on the other hand the adaptation to other platforms probably results in
much effort.

Markers Markers can be used to enrich modeling elements with platform-specific informa-
tion. As all platform-specific details are included in the metamodel it is not necessary for
SERAPIS to support appropriate mechanisms.
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Verification and validation In order to detect errors in a model at an early stage of devel-
opment, modeling tools are expected to provide mechanisms for verification and validation.
While verification checks the syntactical correctness of a model, validation refers to functional
requirements. SERAPIS provides features to ensure the correctness of the syntax but offers no
validation mechanism.

Modeling test cases In order to conduct software tests it is desirable to have the option to
model test cases. Although it would be feasible to have this feature implemented by Sphinx,
there is no out-of-the-box approach for this.

UI modeling Using models to specify user interfaces introduces an additional abstraction level
which allows to automatically generate different variants of implementations such as web-based
or rich clients. Here the evaluation by the Vienna University of Technology originally states that
SERAPIS provides no such features because the product deployed with the BMI includes only
the license for the persistence layer. As mentioned at the beginning of this chapter, SERAPIS
comprises a second module which actually allows to model user interfaces. As that module is
not in the scope of this master thesis, it has not been evaluated yet which is why only its existence
is to be mentioned here for the sake of completeness.

Model interchange Modeling tools are required to comply to well-defined interfaces such as
the XMI format in order to allow the loss-free interchange of model information. SERAPIS
provides no XMI support for importing or exporting models.

Multi-user support To enable concurrent development, modeling tools would benefit of fea-
tures to support version control and conflict management of models. Although the files created
in order to persist model information can be managed by external version control software, due
to the fragmentation and structure of the SERAPIS modeling artifacts it is virtually not feasible
to merge conflicting changes without being at risk to corrupt the model.

Forward engineering This term describes the transformation of the abstract specification
made by the model to the corresponding target language, usually resulting in executable code.
The SERAPIS modeling tool provides generators for Java and SQL DDL.

Reverse engineering In order to integrate existing projects, a modeling tool is required to
extract model definitions from code. The Schema Migrator integrated with SERAPIS can be
used to derive models from DDL definitions.

Transformation languages MDA suggests to specify the transformation logic from models to
code but also between models using model transformations usually based on specialized trans-
formation languages. SERAPIS features no support for such transformations, instead it exposes
the models using a Java API.
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Protection mechanisms Modeling tools necessarily allow partial generation leaving room
for manual implementations. To preserve these implementations from getting lost due to fur-
ther code generation, modeling tools are required to provide adequate protection mechanisms.
SERAPIS tackles this problem by initially creating specific implementation classes which are
not overwritten by further iterations of code generation.

Documentation A convenient modeling feature is the automatic generation of documentation
including textual descriptions and diagrams. With respect to this requirement SERAPIS allows
to generate ER diagrams depicting the model.

Comparison

Table 3.2 shows the comparison with other state-of-the-art modeling tools according to the pre-
sented criteria catalogue. This selection of reference software is only a subset of available tools
which implement the MDA standard.

Although SERAPIS lacks the ability to satisfy some evaluation criteria such as constraint
languages or the modeling of test cases, the fact has to be considered that it would be technically
feasible to remedy a major part of these deficiencies.

The conclusion of the evaluation points out potential for improvements with respect to future
evolution of the SERAPIS modeling tool. The first issue refers to the absence of mechanisms to
adapt the development environment to domain-specific modeling concepts. As the customer is
not provided with a light-weight approach such as UML profiles, the only way to achieve this is
to directly manipulate the metamodel which is reserved to Sphinx IT Consulting.

Basically the same problem can be observed with the code generation. The need to change
the output of the code generation process can emerge from various events such as the migration
to a new database system or programming framework. In this case, the customer is also required
to add changes directly to the source code which would be neither intuitive nor sustainable.
Instead, the evaluation document suggests to deploy a template-based approach as a common
solution to this problem.

The lack of interchangeability of the modeling information resulting in a vendor lock is the
main issue which is pointed out by the study. This problem can be tackled either by adopting a
standardized interchange format such as XMI or by creating new models from existing defini-
tions using model transformations. The observation concerning this issue is most significant to
this master thesis as it confirms the need for the transformation approach evaluated in this work.
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UML version Subset
1.4

1.5 1.5 1.4 1.4 1.4 1.4

Constraint languages - OAL ASL - OCL - OCL
UML profiles - - - - + + +
Metamodeling / - - + - - -

Model interchange - + + + + + -
Multi-user support + + + + + + -

Verification + + + - + / -
Validation + + + - + - -

Documentation + / / / / + -
Modeling test cases - / / / + + -

UI modeling + - - / / / -
Abstraction levels PSM aPIM aPIM PIM,

PSM
aPIM aPIM aPIM

Markers + + + + + + +
Forward Engineering Java,

SQL
DDL

C, C++ C,
C++,
Ada

J2EE J2EE,
.NET

C++,
Java,
CORBA

Struts,
Java,
EJB

Reverse Engineering SQL - - COBOL,
SQL,
IDL

EJB COM -

Protection mechanisms + - - + + + +
Transformation languages Java OAL ASL IC TPL JPython J VTL

Table 3.2: Comparison of SERAPIS and MDA modeling tools
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CHAPTER 4
Metamodel Bridging

This chapter briefly presents different integration strategies suggested by the Ph.D. thesis of
Wimmer [31] for bridging metamodels. The approach is discussed by taking a glance at the
different phases he introduces and by clarifying the terms of transformation rules and heuristics.
According to the insight gained from the suggestions, the approach is adapted in order to provide
an architecture for solving the transformation problem presented in the context of this master
thesis.

4.1 Metametamodel-based Transformation

The Ph.D. thesis of Wimmer [31] proposes strategies for tool integration with respect to model
interchange in the context of MDE. The contribution comprises approaches for integration sce-
narios based on mapping the concepts of different metamodels as depicted in Figure 4.1.

Part I of the contribution proposes a mining pattern for metamodels and models, whereas
the term mining pattern refers to the process of generating model-based representations out of
text-based descriptions [31, p. 10]. The mining pattern can be deployed on the M3 meta-layer
in order to bridge different meta-languages. The DTD2Ecore framework presented in the Ph.D.
thesis [31] implements this mining pattern to create Ecore-based metamodels from Document
Type Definitions (DTD).

Part II introduces a framework which allows to define mapping operators with the purpose
of increasing the level of abstraction when building metamodel bridges. The framework pro-
vides a high-level mapping view to describe the correspondences of metamodel elements, while
the transformation logic of the mapping operators is described at a more detailed level. As
an example, mapping operators resulting from the application of the framework are employed
by the CAR mapping language presented by Wimmer which is intended to resolve structural
heterogeneities of different metamodels.

Part III of the contribution proposes two concepts to implement roundtrip transformations
without taking the risk of information loss. The term roundtrip here refers to the bidirectional
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Figure 4.1: Contribution and supported integration scenarios by Wimmer [31]

bridging of metamodels. At first, the thesis describes AspectCar which is an aspect-oriented
extension for the CAR mapping language. The second approach called ProfileGen particularly
focuses on an integration scenario that features the bridging of domain-specific languages to
UML as these transformations are especially exposed to information loss.

As depicted in Figure 4.1, the framework for building mapping operators as well as the
suggested approaches for implementing roundtrip transformations refer to integration scenarios
which presume source and target metamodels to be defined by the same meta-language. The
mining pattern on the other hand, presented as a part of the contribution, actually allows to
bridge different meta-languages rendering it a potentially applicable strategy for tackling the
problem discussed in this master thesis.

From DTDs to Ecore-based Metamodels

Wimmer describes his metamodel bridging approach by the example of WebRatio, which is a
commercial tool with the focus on the development of web-based applications using the mod-
eling language WebML. The language concepts of WebML are partially defined in XML DTDs
and partially hard-wired in the WebRatio modeling tool. WebRatio uses an XML structure for
the persistence of models and consequently applies Extensible Stylesheet Language Transfor-
mations (XSLT) in order to generate code from these models.

DTDs provide less expressiveness, extensibility, and readability than MOF with respect to
describing modeling languages. Besides that, the development of XSL transformations with
respect to code generation is a sophisticated task. A metamodel-based approach adhering to
the concept of MDE would address these problems by allowing to apply adequate modeling
techniques such as QVT and ATL which is why the Ph.D. thesis of Wimmer [31] suggests to
establish a bridge between WebML and MOF.
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In order to implement this bridge, a MOF-based metamodel for WebML has to be created.
Due to the extent of the language, building the metamodel from scratch would be error-prone
and time-consuming which is why an automatic approach is needed to create the metamodel. To
bypass these deficiencies, the thesis [31] describes a mining pattern allowing to generate a MOF
conform metamodel from the existing language definitions of WebML.

The principle of the mining pattern is based on the fact that the architectures of the related
technical spaces employ at least three meta-layers including meta-languages which reside on the
M3 layer. From the correspondences of these meta-languages mappings can be derived which
are used to transform the source metamodel defined in the XML technical space to the target
model defined in the MOF technical space.

The mining pattern depicted in Figure 4.2 is described in terms of a semi-automatic approach
which is based on two phases. During the first phase a component referred to as metamodel gen-
erator applies the non-ambiguous transformation rules resulting from the meta-language cor-
respondences to automatically generate an initial version of the WebML metamodel. Due to
deficiencies resulting from the limited expressiveness of DTD, transformation rules are not suf-
ficient to map the meta-languages. Therefore, an additional set of heuristics is applied along with
the generation process. The second phase allows to manually validate the resulting metamodel
in order to apply refinements if necessary.

Rule DTD Concept Ecore Concept
R2 XMLAttribute EAttribute

XMLAttribute.name EAttribute.name
(1) XMLStringAtt, NMTOKEN(S),

IDREF(S)
EAttribute.eAttributeType=EString

(2) ID EAttribute.eAttributeType=EString,
EAttribute.id=true

(3) XMLEnumAtt add EEnum
EEnum.name= XMLEnumAtt.name+”_ENUM”
for each XMLEnumLiteral add EEnumLiteral
EAttribute.eAttributeType=EEnum

Table 4.1: Attribute rule of the DTD2Ecore framework [31]
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As an example, Table 4.1 displays the rule for mapping attributes in the DTD2Ecore frame-
work. XMLAttributes and their names can be mapped directly using EAttributes.
XMLStringAtt, NMTOKEN, NMTOKENS, IDREF, IDREFS, and ID are handled as string
types (1) whereas the corresponding EAttribute for an ID is additionally tagged as such (2).
As both DTD and Ecore allow to specify enumerations and literals, the definition of an adequate
rule is straightforward (3).

DTD Concept Ecore Concept
If XMLEnumAtt has two
XMLEnumLiterals and XMLEnumAtt
is one of {true, false}, {1, 0}, {on,
off}, {yes, no}

then
EAttribute.eAttributeType=EBoolean
annotate with «Validate Boolean»

else if XMLEnumAtt has two
XMLEnumLiterals

then
annotate EEnum with two EEnumLiterals with
«Resolve possible Boolean type manually»

Table 4.2: Example heuristic of the DTD2Ecore framework [31]

As mentioned before, the expressiveness of DTD is limited in comparison with Ecore which
is why the mapping of these meta-languages cannot be expressed completely using transforma-
tion rules. These deficiencies for instance include the absence of a grouping mechanism and the
inability to define inheritance relations. In order to address these deficiencies, Wimmer intro-
duces heuristics to be applied in addition to the transformation rules.

Table 4.2 displays a heuristic that is based on the fact that DTD only provides a limited
set of data types. While Strings are the most common data types, a Boolean can only
be expressed using an Enumeration with two Literals to define a negative and a posi-
tive value. The heuristic applies to each Enumeration in order to examine the number of
Literals and their naming conventions. Once a potential Boolean definition is recognized,
the corresponding Ecore element is annotated to tag it for further refinement.

This example shows how heuristics use annotations in order to mark the need for manual
intervention during the second phase of the transformation process. Furthermore, it shows how
the effectiveness of heuristics depends on the adequate application of naming conventions.

4.2 Transforming SERAPIS to Ecore

The initial situation described in this master thesis is related to the problem approach of the
DTD2Ecore framework presented in the Ph.D. thesis of Wimmer [31]. The persistence strategies
for models of both SERAPIS and WebRatio are based on proprietary XML notations, and the
metamodels of both modeling tools are to extensive in order to be recreated from scratch. As the
main difference, SERAPIS introduces a custom meta-language while WebRatio employs DTD
in order to define metamodels. However, this has no effect on the transformation approach as
both meta-languages are not compliant to MOF which is why each tool effectively introduces
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its own technical space. As a result, both commercial modeling tools suffer from a lack of
compliance to existing standards in terms of tool integration.

The goal of this master thesis is to research and evaluate an approach for establishing a bridge
from the SERAPIS technical space to the EMF technical space. As the transformation approach
described in terms of the DTD2Ecore framework applies to the problem situation presented in
this master thesis, the approach of Wimmer will be adopted as a model to this work.

With respect to the problem discussed in this master thesis, the main achievement of the
DTD2Ecore framework is to provide a generic approach which allows to semi-automatically
create a target metamodel corresponding to a source metamodel by identifying correspondences
between the source and the target meta-languages they conform to. As mentioned before, the
component responsible for the generation of the target metamodel is the metamodel generator.

Once the metamodel has been created successfully, it can be used to generate conforming
models from existing source models. In order to provide this functionality, the framework will
be extended by another component consequently referred to as model generator. The design of
this component is related to the basic concept for model transformation as described in the work
of Czarnecki and Helsen [12].

Figure 4.3 depicts the architecture of the SERAPIS2Ecore framework as an adaptation of the
DTD2Ecore framework to the SERAPIS technical space. According to the approach described in
the Ph.D. thesis of Wimmer [31], the correspondences between the SERAPIS meta-language and
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Ecore are identified in order to derive transformation rules. The metamodel generator reads the
SERAPIS metamodel and applies these transformation rules in order to generate a corresponding
metamodel which conforms to Ecore.

The metamodel generator is also designed to apply heuristics allowing to tag elements with
annotations indicating the need for further refinement. The necessity to identify heuristics de-
pends on whether it is possible to map the language concepts of SERAPIS and Ecore by applying
non-ambiguous transformation rules only. In this case, there would be no need to include heuris-
tics which would consequently render the phase for manual validation redundant. The mapping
of the meta-languages introduces the main uncertainty as it directly affects the feasibility of the
transformation approach which is why the following discussion of the metamodel generator in
Chapter 5 emphasizes this issue.

The model generator has been introduced to the SERAPIS2Ecore framework to read mod-
els from existing SERAPIS projects and to generate corresponding models which comply to
the metamodel provided by the metamodel generator. In order to implement this transforma-
tion, the component first determines which language concepts have been specified by the source
metamodel to define the elements of the source model. Afterwards, the corresponding language
concepts specified by the target metamodel have to be identified to instantiate model elements
corresponding to the source model elements. Chapter 6 provides a more detailed view on the
mechanics of the model generator.
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CHAPTER 5
Metamodel Transformation

Before a model defined by the SERAPIS modeling tool can be transformed to an Ecore-conform
model, an adequate metamodel which is used to instantiate the target model has to be created
using the Ecore language features. In this context, the Ph.D. thesis of Wimmer [31] describes
a semi-automatic approach that suggests to provide mappings between the corresponding meta-
languages which are employed to generate the target metamodel according to the existing defi-
nitions of the source metamodel.

This chapter describes how the approach suggested by Wimmer is employed to generate
an Ecore-based metamodel from the metamodel defined by the SERAPIS meta-language. Be-
fore the transformation process can be examined in detail, the elements of the SERAPIS meta-
language which should be included in the transformation have to be identified. Therefore, a
set of modeling concepts is discussed which is used to evaluate the relevance of the language
elements with respect to the target metamodel.

The mapping of the SERAPIS meta-language to Ecore comprises the major part of the whole
transformation process. This chapter presents a first approach for the language mapping and
consequently identifies its flaws. By applying the concept of EMF Profiles [20] the mapping
approach is enhanced in order to provide a mapping for the complete set of SERAPIS meta-
language features. Subsequently, the effects of the enhanced mapping approach to the archi-
tecture of the metamodel transformation and the component responsible for the implementation,
referred to as metamodel generator, are presented briefly. Finally, the transformation mechanism
of the metamodel generator is demonstrated by an example.

5.1 Type Mapping

Compared to Ecore, the meta-language employed by the SERAPIS modeling tool provides a
rather small set of language concepts. The core element which contains all other elements
specified in the language definition is referred to as Element. The main characteristics of
Elements are specified by the Properties they declare. Property is a common su-
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perclass for Value, Reference, Text, and Enumeration. Values can contain prim-
itive data types while References are used to map relationships to complex types such as
Elements. Text elements are special Properties which allow to declare textual informa-
tion usually for documentation purposes. Furthermore, the SERAPIS meta-language allows to
define Enums which are equal to the eponymous concept of other languages such as Ecore and
Java. Enumerations are declared by Elements in order to reference Enum definitions.

Besides the relationships between these elements, the SERAPIS meta-language furthermore
defines individual attributes for each element to specify the semantics. For instance, Element
introduces an attribute called super which optionally points to another Element in order to
map an inheritance-relation. On the M3 meta-layer the language elements Element, Enum,
Enumeration, Value, Reference, and Text can be considered as classes known from
object-oriented programming languages while their attributes match the fields they declare.

Once a metamodel is created using the SERAPIS meta-language, the elements are instanti-
ated and their attributes are assigned with concrete values. As mentioned before, the customiza-
tion of the SERAPIS modeling tool for a certain case of application does not require a new
metamodel to be built from scratch, instead the default metamodel is extended and modified to
meet the customer requirements.

An examination of the default metamodel reveals that the definitions it provides are not fully
restricted to the specification of models, furthermore it comprises information that is specific
to the modeling environment. Probably this information has been introduced for practical rea-
sons as the modeling tool has evolved over time, but with respect to the original purpose of a
metamodel, which is to provide a specification for models, this information can be considered
as redundant.

In the context of bridging the SERAPIS metamodel to the EMF technical space it is recom-
mendable to exclude this information from further processing. As the definition of this informa-
tion results from the meta-language, this can be achieved with little effort simply by eliminating
it from the language mapping. In this context, the general question emerges which language
concepts of the SERAPIS meta-language should be considered in the transformation process.

Answering this question calls for a detailed examination of the available language concepts
which is why a short clarification of modeling concepts is to be presented as follows. In order
to determine whether a language element should be considered in the mapping process, it is
sufficient to evaluate the attributes it defines according to the presented concepts as the absence
of any significant attributes would also render the corresponding element obsolete.

Redundant modeling concepts As a rule, the metamodel is designed with the goal to include
essential information only, in order to keep it simple and therefore maintainable and un-
derstandable. The SERAPIS meta-language provides a small set of attributes which are
mainly used to enrich the resulting models with information that could be derived from
other attributes. This information is actually added for reasons of convenience and can
be considered as redundant. This aspect determines the redundancy of an attribute by
examining whether it is possible to derive its value from other attributes.

Tool-specific modeling concepts The SERAPIS meta-language defines a complete set of ele-
ments necessary to create a metamodel which in turn provides a specification for models.
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As mentioned before, not all of the attributes defined by the SERAPIS meta-language
are explicitly necessary to provide further specifications for models, instead they provide
functionality which is specific to the modeling tool only. This aspect tries to determine
the significance of an attribute with respect to metamodeling, assuming that tool-specific
attributes are to be excluded from the transformation process.

Functional significant modeling concepts Some few attributes are neither redundant nor com-
pletely tool-specific, but still it is necessary to examine whether these attributes can be
expected to introduce essential information with respect to tool integration. This aspect
focuses on the functional significance of attributes in order to determine whether the pro-
vided information could be of interest for further modeling applications.

Table 5.1 shows the evaluation of the attributes in order to determine whether they are to be
considered with respect to mapping the meta-languages. The result shows that every element of
the SERAPIS meta-language is necessary to create a complete metamodel while a considerably
high number of attributes has been skipped for providing only tool-specific functionality. Lines
and IsUpperCase on the other hand are the only attributes to be declared as redundant for this
information can be retrieved by examining the actual value assigned to these fields.

In further detail, the result has shown that the functional significance of an attribute correlates
with the assessment of whether it is tool-specific. Although this outcome was to be expected,
the attributes Lines and IsDescription are exceptions for they cannot be considered as
tool-specific but still lack functional significance.

5.2 Mapping the SERAPIS Meta-language to Ecore

The feasibility of finding correspondences between two meta-languages depends on whether
their language elements can be mapped to each other. For some elements it might be possible to
identify clear and distinct counterparts within the target language. In this case, non-ambiguous
transformation rules can be derived in order to implement the mapping. Some elements on the
other hand might not be expressed in another language without introducing ambiguities which
is why Wimmer suggests in his Ph.D. thesis to apply heuristics followed by manual validation
in order to resolve the resulting conflicts.

For the sake of simplicity, straight-forward mappings between SERAPIS and Ecore are pre-
ferred which is why subsequently the potential transformation rules R1 to R4 are identified.
Therefore, the SERAPIS meta-language is examined in order to find matching language con-
structs in Ecore.

R1 EClass is the obvious choice for mapping Element as both elements inherently share
a common set of attributes and can be considered as main elements in terms of building
a metamodel. Both elements are instantiated to specify complex types which are defined
by their fields and the references they define to qualify the relationships between each
other. For this purpose, Element defines Properties in SERAPIS while EClass
defines EStructuralFeatures in Ecore. With respect to inheritance, Ecore exceeds
the requirements of the SERAPIS meta-language by allowing EClass to have multiple
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Attribute Element Redundant Tool-
specific

Functional
significant

Included in
mapping

name Element,
Property,
Enum,
Literal

no no yes yes

super Element no no yes yes
class Element,

Value
no yes no no

isAbstract Element no no yes yes
isSingleton Element no no yes yes
isDisplayOnly Element,

Property
no yes no no

isHidden Element,
Property

no yes no no

isPSM Element,
Property

no yes no no

transformer Element no yes no no
icon Element no yes no no
isRequired Property no no yes yes
isUserSetting Property no yes no no
lines Text yes no no no
editorId Text no yes no no
isLocalized Text no no yes yes
isDescription Text no no no no
default Value no no yes yes
isUpperCase Value yes no yes no
hasListOfValues Value no no yes yes
unit Value no yes no no
element Reference no no yes yes
isComposition Reference no no yes yes
delete Reference no yes no no
enumeration Enumeration no no yes yes
literalList Enum no no yes yes

Table 5.1: Evaluation of the attributes provided by SERAPIS meta-language
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Rule SERAPIS Concept Ecore Concept
R1 Element EClass

EClass.interface=false
Element.name EClass.name
Element.super EClass.eSuperTypes
Element.isAbstract EClass.abstract

R2 Reference EReference
EReference.upperBound = 1

Reference.isRequired if Reference.isRequired
EReference.lowerBound = 1

else
EReference.lowerBound = 0

Reference.name EReference.name
Reference.isComposition EReference.containment
Reference.element EReference.eType

R3 Enum EEnum
Enum.name EEnum.name
Enum.literalList for each Literal add EEnumLiteral

R4 Literal EEnumLiteral
Literal.name EEnumLiteral.name

EEnumLiteral.value = # of Literal

Table 5.2: Mapping between the SERAPIS meta-language and Ecore

super types while Element only supports single inheritance. Unlike Ecore, the SERAPIS
meta-language does not master the concept of interfaces which is why the corresponding
attribute of EClass is always set to false.

R2 Reference is used to point to complex types namely Elements in terms of
the SERAPIS meta-language. This behavior corresponds to the characteristics of
EReference in Ecore, as implied by the naming convention. A Reference can
only point to one single Element at a time as the main difference to EReference
which supports various combinations of multiplicities. Of course this has no effect to the
mapping as Ecore provides at least the same level of expressiveness, but as a result the
upper bound of EReference can be initially set to 1. The isRequired attribute is
mapped to EReference by setting its lowerBound to 1 in case it is true.

R3 and R4 The mapping between Enumeration and EEnum becomes obvious consider-
ing the fact that they serve the very same functional purpose. For representing values,
both language elements employ literals namely Literal respectively EEnumLiteral
which allow for a non-ambiguous mapping. The main difference between both enumera-
tion concepts is that EEnumLiteral allows to explicitly assign an integer representation
to its value while Literal only allows to assign its name as a string value. In order to
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provide a valid value assignment to EEnumLiteral, its integer representation is chosen
according to the position of the corresponding Literal occurrence in the definition of
the Enumeration it belongs to.

The mapping of the SERAPIS meta-language and Ecore is implemented by applying the
transformation rules described in Table 5.2. These rules are applied during the phase of auto-
matic generation due to their non-ambiguous nature. Unfortunately, the rules cover only a small
set of the SERAPIS language concepts so far. The major part of the attributes is still missing,
and no adequate mapping mechanisms for the language elements Enumeration, Value, and
Text have been found so far.

At a first glance, modeling the missing language elements in Ecore appears to be the most
natural approach to tackle this problem. As an example, the following code snippet shows
the Ecore definition of the language element Value. To provide the missing counterpart, the
approach employs an instance of EClass with the same name as the corresponding element.
The attributes name and hasListOfValues are mapped by EAttribute conforming to
specifications of the SERAPIS meta-language in terms of name and data type.

<eClassifiers xsi:type="ecore:EClass"
name="Value">

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="name"
eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="hasListOfValues"
eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

...
</eClassifiers>

Listing 5.1: Ecore definition of the language element Value

Due to this simple and intuitive approach, it becomes possible to create the missing elements
including all their attributes. Clearly the main benefit in this case is that the mapping between
both meta-languages introduces no ambiguities as the design of the elements in Ecore exactly
matches the specifications of SERAPIS. With respect to implementing the transformation mech-
anism, this approach still has three major flaws.

Missing attributes in EClass and EReference The transformation rules in Table 5.2 show
the mapping of the language elements Element, Reference, Enum, and Literal.
While Enum and consequently Literal can be expressed entirely in Ecore, the map-
pings in R1 and R2 are missing attributes such as IsSingleton and isComposition.
The reason for this is that the language definition of Ecore obviously provides no adequate
language features to map these attributes. Apparently the only way to add the missing at-
tributes would be to manipulate the Ecore language which is actually no option.
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Meta-layer transition As mentioned before, the mapping of SERAPIS and Ecore is based on
the correspondences between both meta-languages. In a three meta-layer architecture
these correspondences conceptually refer to the M3 layer while the actual transformation
targets the metamodel residing on the M2 layer. Accordingly, the rules displayed in Ta-
ble 5 map elements of both meta-languages while the application of the rules refers to
the instances of those elements. Consequently, the language elements specified on the
right-hand side of the rule are instantiated in order to create the target metamodel. The in-
stantiation implies the transition of a model from one abstract meta-layer to another more
concrete layer. With respect to this transition of meta-layers, the aforementioned approach
to create the missing language elements by instantiation of EClass introduces a concep-
tual issue, as the generated metamodel consequently resides within the wrong meta-layer.
The aforementioned approach already results in one meta-level transition while the trans-
formation process requires to pass another abstraction level. As a consequence, the result-
ing metamodel actually corresponds to a model on the M1 meta-layer.

Meta-layer merge Another concern that goes along with the meta-layer transition problem
is that Ecore language elements are used to map one set of elements specified by the
SERAPIS meta-language while at the same time their instances provide the mapping for
the rest of the SERAPIS language elements. As a result, the mapping spans two meta-
layers within the architecture of Ecore, rendering it also impossible to match the generated
metamodel to one certain meta-layer.

Please note that addressing all of these issues is beyond the scope of this master thesis.
Solving the problem in terms of the missing attributes in EClass and EReference for once
is not necessarily essential to the feasibility of the metamodel transformation. Nevertheless,
a solution to this issue would be desirable as the objective of the transformation is to avoid
information loss.

Also the issue with respect to the meta-layer merge is a conceptual deficiency which has no
effect to the feasibility of the language mapping. From the architectural point of view however,
this might have a negative effect to the understandability of the transformation approach which
is why a solution would still be desirable.

Clearly the problem concerning the meta-layer transition appears more severe as the ab-
sence of an appropriate metamodel renders the whole model transformation impossible. As the
nature of this problem is not related to potential ambiguities that might have been introduced
along with the mapping of the meta-languages, the problem cannot be tackled by heuristics or
manual validation. In a more general sense, a possible solution needs to provide a way to lift
the instantiated Ecore language elements by one meta-layer. Here the EMF Profiles [20] project
might provide an approach to achieve this.

5.3 EMF Profiles

Domain-Specific Modeling Languages (DSMLs) are modeling languages which are tailored to
the domain-specific requirements in order to support the process of software development by
introducing an additional level of abstraction. In terms of evolution, DSMLs provide only a
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small degree of flexibility because changes in the requirements usually result in modifying both
the syntax and the components of the modeling environments which are specific to language.

One of the main reasons for the success of UML is that it provides a profile mechanism
to dodge this problem. A lot of UML tools support this lightweight and language-inherent
extension mechanism by allowing the user to create custom profiles as well as by providing pre-
defined profiles. Due to the success of this mechanism, some of the profiles have been specified
as standard by the OMG.

On the one hand, DSMLs can be built from scratch and therefore allow full flexibility with
the design of the modeling language, but it also becomes necessary to provide an adequate mod-
eling environment which has to be considered in terms of evolution. On the other hand, the
lightweight approach of UML profiles provides only an extension mechanism without actually
allowing to change an existing metamodel. The extension mechanism suggested by EMF Pro-
files [20] adapts UML profiles to extend existing DSMLs in order to combine the advantages of
both languages aiming for the benefits described as follows.

Lightweight language extension The UML profiling mechanism is referred to as lightweight,
as it allows to introduce new language features without the need to re-create the existing
modeling environment or the modeling language from scratch. Using UML profiles, new
language concepts can be created and evaluated quickly while preserving the structure of
the modeling language they extend.

Dynamic model extension UML profiles allow to dynamically extend existing models while
preserving the extended model elements. As the additional profile information is stored
aside the model, the original model instance is not polluted. One model element can even
be extended by multiple stereotypes at the same time which conforms to having multiple
types.

Preventing metamodel pollution Modeling information that is not domain-specific can be sep-
arated by using UML profiles in order to keep the original domain metamodel clean. As
an example, the elements of a domain model are extended with the results of a model
review which is used to evaluate the domain model. In this case, the model review is not a
part of the domain model which is why this information is not supposed to be mixed into
the domain model.

Model-based representation Information introduced by a profile can be accessed and pro-
cessed like regular model information. Therefore, it is possible to reuse model engineering
technologies on profile applications and to check their validity against the profile defini-
tion which is equal to checking the validity of models with the metamodels they conform
to.

The objective of EMF Profiles is to adapt the idea of UML profiles to other modeling lan-
guages in order to provide extension capabilities with the aforementioned benefits. Although
the contribution mainly focuses on EMF for currently being one of the most popular modeling
framework, the approach is designed to be applicable to arbitrary modeling languages.
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From UML Profiles to EMF Profiles

The UML package Profiles is a part of the UML specification and resides on the M3 meta-
layer as depicted in Figure 5.1. Instances of the meta-language package Profiles are defined
on the same meta-layer as the UML metamodel which is M2. As a consequence, Profiles
can be instantiated in order to build a profile application the same way as the UML metamodel
is instantiated.

M
3

UML

Core Profiles
«import»

M
2 UML aProfile

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

«extend»

M
1 aUML

Model
aProfile
Application

«extend»

Figure 5.1: UML architecture [20]

To adapt the idea of the UML profiling mechanism to EMF, a metamodel referred to as
Profile MM (Figure 5.2) first is designed in terms of Ecore. This metamodel corresponds
to the UML package Profile in the sense that it also allows to specify profiles including
stereotypes and tagged values. In order to apply a specific profile (in the figure referred to as
aProfile) to arbitrary models, a profile application (aProfile Application) is created
by instantiating the profile and assigning concrete values to the tagged values it defines.

Unlike UML, the meta-language Ecore, which resides on the M3 meta-layer of EMF, pro-
vides no native support for a profiling mechanism. In order to instantiate profiles in EMF like
in UML, it would be necessary to extend Ecore on the same meta-layer which is no option as
this would entail an intervention with the implementation of EMF. Therefore, ProfileMM is
defined on the M2 meta-layer while aProfile consequently is defined on M1 as depicted in
Figure 5.2. The main problem here is that EMF does not allow to instantiate the instance of a
metamodel. As a result, it is not possible to instantiate the stereotypes defined by aProfile
as the profile resides on M1.

In order to tackle this problem, providing aProfile with the capability of being instan-
tiated, it is necessary to lift aProfile to the M2 meta-layer. To achieve this, the extension
mechanism [20] suggests two strategies described as follows.

47



Meta-level lifting by transformation This strategy, as depicted in column (a) in Figure 5.2,
suggests to automatically create a metamodel (in the figure referred to as aProfile as
MM) on M2 corresponding to the profile on M1 by applying model-to-model transforma-
tion based on the mapping of the language concepts between EMF Profile and Ecore. The
generation process creates a corresponding EClass for each Stereotype while each
TaggedValue is mapped to an EStructuralFeature. The generated metamodel
can be instantiated as is usual for being a regular instance of Ecore.

Meta-level lifting by inheritance The second strategy is based on the instantiation capabilities
of the language element EClass residing on the M3 meta-layer. Instances of EClass
are the only elements of a metamodel which can be instantiated in order to create an object
on the M1 meta-layer. As depicted in column (b) in Figure 5.2, this capability is exploited
in order to allow the direct instantiation of specific profiles residing on M1. In particular,
Stereotype being a part of ProfileMM is specified as a specialization of EClass.
As a consequence, the instantiation capabilities are granted to aProfile which in turn
can be instantiated to create stereotype applications.

( ) M t l l Lifti (b) M t l l Lifti

M
3

(a) Metalevel Lifting
by Transformation

Profile Definition
(b) Metalevel Lifting

by Inheritance

Ecore
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«instanceOf»

M
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«instanceOf»

Profile MM
«transformedTo»

«instanceOf»

«inheritsFrom»

M
1

aProfile
aProfile

Application
aProfile

Application

«instanceOf»

Figure 5.2: EMF profile architecture strategies [20]

According to the second strategy, aProfile and its instance aProfileApplication
reside within the same meta-layer which implies that a profile can be considered as an entity
with two facets with respect to meta-layers. Therefore, the EMF profiles framework favors the
second strategy as this approach allows both to define and instantiate the profile by using the
same artifact. When considered as an instance of ProfileMM, a profile is assigned to the M1
meta-layer. At the same time it is also plausible to locate a profile on the M2 meta-layer, for the
stereotypes it contains are indirect instances of EClass.
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The EMF Profile Metamodel

Figure 5.3 shows the metamodel for specifying the profile modeling language of the EMF Pro-
files framework. The language features are divided among packages which are subsequently
merged to build the complete EMF Profile language.

Standard EMF Profile

As suggested by the second strategy for meta-level lifting, Stereotype is specified as
a subclass of the EClass language element to inherit its instantiation capability. Due to
this inheritance relation, Stereotype furthermore is allowed to contain EAttributes
and EReferences which is why no additional element has to be introduced to the profile
metamodel in order to implement the concept of tagged values.

Extension allows to apply stereotypes to metaclasses by specifying an EClass as the
base meta-class for the stereotype. LowerBound and UpperBound can be used to define
restrictions defining how many instances of the base meta-class a specific stereotype must be
applied to. The relationships redefined and subsetted are employed by Extension in
order to map the UML language concept of Associations.

In order to provide stereotype applications with a reference to the model elements they are
applied to, the metamodel package ProfileApplication introduces the language element
StereotypeApplication. This class is automatically set as a superclass for each stereo-
type whenever a profile is saved. Consequently the reference appliedTo is inherited allowing
to refer arbitrary EObjects.

Generic Profiles

This language feature allows to reuse a profile specification for several DSMLs. Instead of ex-
tending concrete metaclasses, the approach of generic profiles suggests stereotypes to extend
so-called generic types. These types can be considered as placeholders which makes them inde-
pendent of a concrete meta-language. Generic types are bound to concrete meta-classes accord-
ing to the actual DSML the profile is applied to. As a profile can provide an arbitrary number of
bindings, the specification can be applied to a set of DSMLs.

Meta Profiles

Unlike generic profiles, this approach aims to reuse profiles for all DSMLs without the need to
specify an extension for each DSML. Therefore, stereotypes must not refer to a specific meta-
model, instead they must be applicable to any given model element independent of its metaclass.
To achieve this, instead of directly extending a meta-class, stereotypes refer to EClass for all
model elements are indirect instances of EClass [20].

5.4 Extending Ecore with Additional SERAPIS Concepts

To recall, the main problem concerning the mapping between the meta-languages of SERAPIS
and Ecore is that the language elements provided by Ecore are not sufficient to cover all ele-
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Figure 5.3: Excerpt of the EMF Profile metamodel [20]

ments of the SERAPIS meta-language. The intuitive attempt to tackle this problem is to model
the missing elements by employing instances of EClass. As a result, the missing language def-
initions are specified by a metamodel on the M2 meta-layer, instead of the M3 meta-layer where
Ecore resides. As a consequence to this problem, an approach is needed to lift the metamodel to
the M3 meta-layer.

As mentioned before, the goal of the EMF Profiles framework is to provide a lightweight
extension mechanism for Ecore-based domain-specific modeling languages. Analogously to the
problem discussed in terms of mapping the meta-languages, the approach initially suggested to
create the desired extensions by modeling them in Ecore using instances of EClass. As a result,
the EMF Profiles framework faces the same problem as the mapping between SERAPIS and
Ecore. To overcome this problem, the framework presents two strategies to lift the metamodel.

As both problem domains are strongly related to each other, it seems obvious to employ
the EMF Profiles framework to implement an extension for Ecore in order to map the missing
SERAPIS language features. The modeling language provided by the framework not only allows
to model the desired extensions by establishing profiles, furthermore it provides features to reuse
these profiles with different modeling languages. However, as the work presented in this master
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thesis is scoped to a single modeling language, namely the SERAPIS meta-language, these
additional features for reusing profiles are not subject of further research.

Due to the fact that an additional metamodel, such as the one provided by the EMF Profiles
framework, would introduce to much complexity to the SERAPIS2Ecore framework, it is not
desirable to apply the EMF Profiles framework with its full functionality. As a consequence,
only the concept presented along the framework is adopted in this master thesis, instead of
employing the framework itself. This has no effect to the solution of the mapping problem, as
the presented strategies for meta-level lifting can be considered as the essential contribution.

The documentation of the EMF Profiles framework [20] presents two strategies for meta-
level lifting, namely by transformation and by inheritance. For the implementation of the frame-
work the latter strategy is favored, as it allows the specification of the profile and its instantiation
to be defined within the same artifact. Although it is not essential to the SERAPIS2Ecore
framework, this quality helps to keep the implementation of the framework compact and there-
fore benefits maintainability and understandability. As specializations of EClass can contain
EAttributes and EReferences, the favored strategy furthermore allows to map the UML
concept of tagged values without additional effort. Considering the attributes of the SERAPIS
meta-language to be mapped by Ecore as tagged values, this strategy clearly benefits the archi-
tecture of the SERAPIS2Ecore framework in terms of simplicity. Taking these benefits into
account, the strategy favored by the EMF Profiles framework also seems the suitable mapping
strategy providing a solution to the problem addressed in this thesis.

The EMF Profiles framework introduces a profiling mechanism to modeling languages
which are based on Ecore. Consequently, the Profiles metamodel, as depicted in Figure 5.3,
is designed to provide this feature to a set of languages covering their individual requirements.
The architecture of EMF Profiles therefore adheres to a generic approach in order to be em-
ployed by a set of potentially unknown modeling languages. The mapping of meta-languages as
discussed in this chapter however concerns only two concrete languages, namely the SERAPIS
meta-language and Ecore. Both languages provide well-known features and as the overall trans-
formation process is conceived to work unidirectional, it suffices to extend Ecore with the miss-
ing language elements of the SERAPIS meta-language. As a result, there is no need to take into
account the applicability to other languages which is why the mapping approach discussed in this
chapter can remain less complex than the concept suggested by the EMF Profiles framework.

Due to the insight gained, the first approach to map the missing elements of the SERAPIS
meta-language as described in the Section 5.2 is enhanced with the second meta-level lifting
strategy presented by the EMF Profiles framework. Consequently, the SERAPIS meta-language
elements modeled in Ecore are specified to directly extend EClass with the effect that these
elements are granted with the instantiation capability. Due to the fact that the language ele-
ments conceptually reside on the same meta-layer as the Ecore meta-language, the meta-layer
transition issue can be can considered as solved.

According to the rules presented in Table 5.2, some elements of the SERAPIS meta-language
can be mapped directly to corresponding elements of Ecore while other SERAPIS language
elements are modeled using instances of EClass. As described in the context of the meta-
layer merge issue, the metamodel spanning two meta-layers is not a desirable outcome from the
architectural point of view. Due to the enhancement introduced by the EMF Profiles framework,
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this issue is also solved as the modeled elements henceforth conceptually reside on the same
meta-layer as the Ecore meta-language, thanks to meta-level lifting strategy. Consequently, it is
possible to reuse some of the rules depicted in Table 5.2 while also modeling additional elements
in Ecore.

The approach also allows to solve the issue of the missing attributes in EClass and
EReference as the subtypes of EClass can be defined to contain an arbitrary set of at-
tributes. With the remaining issues solved, a metamodel which maps the elements of the
SERAPIS meta-language is designed in Ecore. The class diagram in Figure 5.4 depicts the
SerapisEcore metamodel extending the original Ecore metamodel.

<ecore:EPackage xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
name="serapisEcore"
nsURI="http://tuwien.ac.at/serapisecore/extension"
nsPrefix="serapisEcore">

<eClassifiers xsi:type="ecore:EClass"
name="Element"
eSuperTypes="platform:[...]//EClass">

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="Singleton"
eType="ecore:EDataType [...]#//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass"

name="Property"
abstract="true"
eSuperTypes="platform:[...]//EAttribute">

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="isRequired"
eType="ecore:EDataType [...]#//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass"

name="Value"
eSuperTypes="#//Property">

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="Default"
eType="ecore:EDataType [...]#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="ListOfValues"
eType="ecore:EDataType [...]#//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass"

name="Text"
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eSuperTypes="#//Property">
<eStructuralFeatures xsi:type="ecore:EAttribute"

name="Localized"
eType="ecore:EDataType [...]#//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass"

name="Reference"
eSuperTypes="#//Property">

<eStructuralFeatures xsi:type="ecore:EReference"
name="Element"
eType="#//Element"/>

<eStructuralFeatures xsi:type="ecore:EAttribute"
name="Composition"
eType="ecore:EDataType platform:[...]//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass"

name="Enumeration"
eSuperTypes="#//Property">

<eStructuralFeatures xsi:type="ecore:EReference"
name="Enumeration"
eType="ecore:EClass platform: [...]//EEnum"/>

</eClassifiers>
</ecore:EPackage>

Listing 5.2: SerapisEcore: Ecore definition of the SERAPIS metamodel

The XML notation presented in Listing 5.2, showing the Ecore definition of the Ser-
apisEcore metamodel, has been stripped of namespaces and package definitions for reasons
of clarity. As in the code definition depicted, Element has been declared to be a subtype
of EClass in order to gain its instantiation capability. Properties on the other hand are
specializations of EAttribute as they can not only be instantiated, furthermore they are
EStructuralFeatures and as such Properties can be added to EClasses respec-
tively Elements. This behavior is intended as Properties answer the same purpose in the
SERAPIS meta-language as EAttributes in Ecore.

The new mapping approach theoretically provides enough flexibility to model the complete
set of SERAPIS meta-language features in Ecore, including the attributes which have not been
determined by the clarification of modeling concepts as necessary for tool integration. Never-
theless, it is still intended to take into account the native attributes provided by the Ecore meta-
language with respect to the language mapping. For instance, inheritance relations in Ecore
are indicated by the eSuperTypes attribute of the EClass element. Instead of modeling
a corresponding counterpart for the super attribute in Element, it obviously is preferable
to match it to the existing eSuperTypes attribute for it actually allows to provide a correct
inheritance mapping. This also applies to the name attribute which is used to identify types
and isAbstract indicating whether a type can be instantiated. As the functionality of the
Enum element provided by both meta-languages overlap in functionality, the metamodel also
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Figure 5.4: The SerapisEcore metamodel extending Ecore
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provides no additional definition. Table 5.3 summarizes the new transformation rules affected
by the improvements introduced along with the meta-level lifting approach of the EMF Profiles
framework. It is to be noticed that the revised transformation rules target the SerapisEcore
metamodel extending Ecore in order to access the new modeling features.

For the sake of simplicity, the names of the elements modeled in SerapisEcore correspond
to the element names of the SERAPIS meta-language. As a main benefit, it becomes easier to
identify the corresponding counterpart for an element in the context of the transformation pro-
cess. Due to the fact that every element of the SERAPIS meta-language can be non-ambiguously
matched to another element of the metamodel defined in Ecore which adheres to the same nam-
ing convention and data structure, there is no further need to explicitly define transformation
rules.

The transformation approach of Wimmer suggests the definition and application of heuristics
to respond to ambiguities in the language mapping. As the approach based on EMF Profiles
allows a complete non-ambiguous mapping, there is no need to define heuristics. Consequently,
it is not necessary to introduce a phase for manual intervention which strongly simplifies the
transformation approach and allows for an automatic generation of the target metamodel.

Rule SERAPIS Concept SerapisEcore Concept
R0 *.name *.name
R1 Element ElementM extends EClass

ElementM.interface=false
Element.super ElementM.eSuperTypes
Element.isAbstract ElementM.abstract

R2 Property PropertyM extends EAttribute
Property.isRequired if Property.isRequired

PropertyM.lowerBound = 1
else

PropertyM.lowerBound = 0
R3 Enum EEnum

Enum.literalList for each Literal add EEnumLiteral
R4 Literal EEnumLiteral

EEnumLiteral.value = # of Literal
R5 Enumeration EnumerationM extends PropertyM

Enumeration.enumeration EnumerationM.enum

Table 5.3: Mapping between the SERAPIS meta-language and SerapisEcore

R0 As depicted in Figure 5.4, EClass, EEnum, and EAttribute extend ENamedElement
which provides the name attribute. Due to the fact that the SERAPIS meta-language can
be built entirely in Ecore either by mapping these elements or by extending them, every
element of the SerapisEcore metamodel is granted with a name attribute. Consequently,
the mapping of this attribute is aggregated into one single rule.
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R1 This rule has changed only slightly, except that Element is mapped to ElementM which
is defined in the SerapisEcore metamodel to extend EClass in order to inherit its in-
stantiation capability. To recall, the missing attributes of Element are not explicitly
displayed among the transformation rules as they are mapped to their eponymous counter-
parts in ElementM , rendering it redundant to introduce particular rules for them. Notice
also that the prefix M on the right-hand side part of the rules has been introduced only for
reasons of clarity.

R2 Instead of mapping Reference to EReference, this rule is revised to map Property
to PropertyM which extends EAttribute in order to gain its instantiation capability
and its ability to be attached to EClass respectively ElementM . As Property is the
common supertype for all field types in the SERAPIS meta-language, also their counter-
parts in the SerapisEcore metamodel inherit these capabilities. Notice that the field types
Value, Reference, Text, and Enumeration are modeled entirely as new elements
of the SerapisEcore metamodel which is why there is no need for additional transforma-
tion rules.

R3 and R4 As the enumeration concept is sufficiently mapped by Ecore, there is no need for a
modification of these rules.

R5 This rule has been added in order to avoid confusion resulting from naming conflicts,
as the attribute used to specify which Enum an entity field of type Enumeration
refers to is also named enumeration. Consequently, this rule maps the attribute
Enumeration.enumeration to EnumerationM .enum whereas EnumerationM
is a subclass of PropertyM .

5.5 Metamodel Generator

As the initial approach for meta-language mapping failed to provide a complete set of transfor-
mation rules for SERAPIS and Ecore, the meta-level lifting concept of EMF Profiles was intro-
duced in order to provide an enhanced mapping strategy to cover all elements of the SERAPIS
meta-language. An intermediate metamodel referred to as SerapisEcore extending the Ecore
meta-language was employed allowing to design custom language elements with instantiation
capabilities.

As depicted in Figure 5.5, the enhancement of the mapping approach presented in this chap-
ter introduced a change to the initial architecture of the metamodel transformation approach.
Instead of being a direct instance of the Ecore meta-language, the target metamodel generated
by the transformation process now corresponds to the SerapisEcore metamodel. However, this
does not affect the standard conformity as SerapisEcore conforms to Ecore for being an ex-
tension of the meta-language. Therefore, the generated metamodel is still indirectly conform to
Ecore and EMF.

The metamodel generator is the component responsible for implementing the entire transfor-
mation process between the SERAPIS meta-language and Ecore. The component generates an
Ecore-conform metamodel which is used by the model generator to transform model instances
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Figure 5.5: Enhanced metamodel transformation approach

of the SERAPIS metamodel. As mentioned before, the business model of Sphinx proposes to
provide one default metamodel which is modified adhering to individual requirements. Conse-
quently, each customer employs exactly one metamodel which is why it is sufficient to apply the
metamodel generator only once within the development environment of the customer while the
model generator is applied within the scope of a single modeling project.

As a first step of the transformation process, the metamodel generator reads the SERAPIS
metamodel and examines the elements it provides. The transformation rules R1 to R5 are exam-
ined by the generator in order to identify a corresponding counterpart in Ecore for each source
element of the SERAPIS metamodel. If no adequate rule can be retrieved, the generator as-
sumes that the Ecore extension SerapisEcore provides a matching language element with the
same name as the source element. The target element in Ecore then is instantiated according to
the value assignments of the source element. The metamodel generator creates the target meta-
model in one automatic generation step and needs no further input or intervention due to the
complete non-ambiguous language mapping provided by the enhanced mapping approach.

In order to demonstrate the mechanics of the metamodel generator, the excerpt of the
SERAPIS metamodel, defining the Entity element displayed in Listing 3.2, is used as an
example for the transformation of elements from the SERAPIS meta-language to Ecore. For the
sake of completeness, this example is enhanced by the definition of an Enumeration which
is referenced by Entity.

Table 5.4 shows Entity as an instance of the SERAPIS meta-language element Element
and its counterpart defined by the SerapisEcore metamodel in Ecore. As a first step of the
transformation, the metamodel generator applies rule R1 of Table 5.3 in order to create an in-
stance of ElementM which is modeled in the SerapisEcore metamodel. In the resulting Ecore
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<element
name="Entity"
super="EntityBase"
class="at.sphinx.sxme.

informationmodel.model.
entity.IMEntity"

transformer="at.sphinx.
sxme.informationmodel.
transformer.
IMEntityTransformer"

icon="10_Source/icons/
elements/entity.gif"

isAbstract="false"
isSingleton="false">
...

</element>

<eClassifiers
xsi:type="s2e:Element"
name="Entity"
eSuperTypes="#//EntityBase"
Class="class at.sphinx.sxme.

informationmodel.model.
entity.IMEntity">

...
</eClassifiers>

Table 5.4: Transformation example for Element

definition the elements EClass, EDataType, and EEnum are notated as EClassifier for
being extensions of this element as depicted in Figure 5.4, whereas the type attribute refers to
the actual subtype. In this example the value of the type attribute declares the EClassifier
as ElementM for it is designed to extend EClass.

According to rule R0, the name attribute can be mapped directly while the supertype and
the declaration of ElementM as abstract is mapped to native attributes according to rule R1.
As false is the default value of boolean fields in Ecore, there is no need for the resulting XML
notation of the EClassifier to explicitly declare Entity as not abstract. The attributes
class, transformer, and icon are excluded from the transformation process according
to the evaluation presented in Table 5.1. EClass provides no native attribute allowing it to be
declared as a singleton which is why ElementM of the SerapisEcore metamodel introduces an
additional attribute for this purpose. As the Entity element is not specified as a singleton, the
corresponding attribute is not explicitly stated in the definition of the resulting EClassifier.

Table 5.5 displays an instance of Value named Abbreviation, which is a field of the
Element-instance Entity depicted in Table 5.4 and its corresponding definition in Ecore.
In the SERAPIS meta-language Value is defined as a subtype of Property which is the
abstract supertype for all fields an Element can have. There is no need to define an explicit
transformation rule for Value as it is modeled in Ecore and therefore mapped to the eponymous
element of the SerapisEcore metamodel, here referred to as ValueM . Rule R2 describes the
mapping of Property stating that ValueM indirectly inherits from EAttribute.
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<value
name="Abbreviation"
class="at.sphinx.sxme.core.
value.StringValue"

isRequired="true"
isDisplayOnly="false"
isHidden="false"
isUpperCase="true"/>

<eStructuralFeatures
xsi:type="s2e:Value"
name="Abbreviation"
lowerBound="1"
eType="ecore:EDataType

[...]//EString"/>

Table 5.5: Transformation example for Value

From the Value definition in the example, the metamodel generator creates an instance
of ValueM which is notated in XML as EStructuralFeature for it is the super-
type of EAttributes and EReferences. Analogously to EClassifier, the actual
type of an EStructuralFeature is distinguished by the type attribute which refer-
ences Value for being a subtype of EAttribute. The name attribute is inherited from
EAttribute and therefore can be mapped directly according to rule R0. The attribute
isRequired on the other hand is mapped by setting the lowerBound attribute of the
generated EStructuralFeature to 1. The rest of the attributes is not translated according
to the evaluation depicted in Table 5.1.

<enumeration
name="Type"
enumeration="EntityType"
isRequired="true"
isDisplayOnly="false"
isHidden="false"
default="ProductionData"/>

<eStructuralFeatures
xsi:type="s2e:Enumeration"
name="Type"
lowerBound="1"
eType="ecore:

EDataType [...]//EString"
Enum="#//EntityType"
default="ProductionData"/>

Table 5.6: Transformation example for Enumeration

In Table 5.6 an Enumeration named Type, which is a field of the Element-instance
Entity, and the corresponding notation in Ecore is depicted. The field references an Enum
named EntityType which is declared as depicted in Table 5.8.

Enumeration is mapped to its corresponding counterpart in the SerapisEcore metamodel
referred to as EnumerationM which is modeled in Ecore. EnumerationM is designed to
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provide exactly the same attributes as Enumeration with the only exception specified in rule
R5 which states that the attribute enumeration is mapped to attribute enum in the target
element.

In the first step the metamodel generator creates an instance of EnumerationM which is
also a subtype of PropertyM and therefore inherits from EAttribute. As a consequence,
according to transformation rule R2 the lowerBound attribute is set to 1 as the isRequired
attribute of the Enumeration definition is set to true. The name attribute is set according
to rule R0, and default is mapped directly while the rest of the attributes is excluded from the
transformation process as stated in Table 5.1.

<reference
name="PrimaryKeyField"
element="EntityField"
isComposition="false"
isRequired="false"
isDisplayOnly="true"
isHidden="false"
isPSM="true"
delete="nullify"/>

<eStructuralFeatures
xsi:type="s2e:Reference"
name="PrimaryKeyField"
eType="ecore:EDataType

[...]//EString"
Element="#//EntityField"/>

Table 5.7: Transformation example for Reference

Table 5.7 shows the definition of a Reference field declared by the Element-instance
Entity and its corresponding definition in Ecore. As there is no specific transformation rule,
the metamodel generator assumes the existence of an eponymous language element in the Ser-
apisEcore metamodel, here referred to as ReferenceM, and instantiates it. As ReferenceM
is a subtype of PropertyM , isRequired is processed according to R2 although it does not
occur in the target definition for its value is set to false. The attributes name and element are
mapped directly while the remaining attributes are not included in the transformation process.

The example in Table 5.8 shows the definition of an Enum named EntityType and its
counterpart in Ecore. The metamodel generator first considers transformation rule R3 and instan-
tiates the corresponding EEnum using Ecore. For each Literal the Enum contains, the gen-
erator creates an EEnumLiteral. Rule R4 specifies the construction of the EEnumLiteral
whereas its value attribute is assigned according to at which position the Literal is defined
by the Enum.
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<enumeration
name="EntityType">

<literal
name="ConfigurationData"/>

<literal
name="MasterData" />

<literal
name="ProductionData"/>

</enumeration>

<eClassifiers
xsi:type="ecore:EEnum"
name="EntityType">

<eLiterals
name="ConfigurationData"/>

<eLiterals
name="MasterData"
value="1"/>

<eLiterals
name="ProductionData"
value="2"/>

</eClassifiers>

Table 5.8: Transformation example for Enum
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CHAPTER 6
Model Transformation

At the beginning of this chapter, an adequate approach for the transformation problem with
respect to SERAPIS and Ecore is researched. As a first step, essential features necessary for
grouping and describing transformation approaches are presented. Based on these features, the
requirements of the SERAPIS2Ecore model-to-model transformation approach are evaluated.
With regard to the result of this evaluation, a set of existing transformation approaches is dis-
cussed and the most appropriate match for the requirements of the SERAPIS2Ecore framework
is chosen as a foundation for the reference architecture.

The next section takes a glance at the structural design of the SERAPIS model definition
in order to determine the expected outcome of the transformation process. The objective is to
identify potentially redundant model information which can be excluded from the transformation
process. The examination of the SERAPIS model definition also includes observations with
respect to linguistic and ontological instantiation which is discussed within the scope of the
subsequent section.

At the end of this chapter, the final architecture of the SERAPIS2Ecore model transforma-
tion is summarized. This enhanced version includes some minor improvements resulting from
observations made with the architecture of the metamodel transformation, presented in the pre-
vious chapter. In the context of this summary, the model generator, which is the component
responsible for the actual implementation of the model transformation, is discussed in detail.
Additionally, the running example is used to demonstrate the exact working mechanics of the
generator.

6.1 Model-to-Model Transformation

In order to find an adequate approach for the transformation of models defined by SERAPIS
to Ecore-based models, the first objective is to understand the overall transformation problem.
The transformation process generally refers to various modeling artifacts residing on differ-
ent meta-layers and software components which are responsible for the execution of the actual
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Figure 6.1: Basic concepts of model transformation [12]

transformation. The transformation problem comprises the question which of these modeling
artifacts and transformation components are relevant for the transformation process and how the
relationships between them are to be defined.

The work of Czarnecki and Helsen [12] describes a blueprint for a general model transfor-
mation approach, helpful to understand the transformation problem stated in the context of this
master thesis. The architecture depicted in Figure 6.1 comprises the concrete source and target
models residing on the M1 meta-layer and the metamodels they conform to. The transforma-
tion definition, stating the mapping between source and target elements, refers to the metamodel
definition while the actual transformation is applied to the concrete model instances. The archi-
tecture specifies a single component referred to as transformation engine which is responsible
for the execution of the transformation definition. In general, the transformation is designed to
be applicable to multiple source and target models. Besides that, it is possible that the transfor-
mation definition refers to the same metamodel both as source and as target.

As the overall model transformation problem has been discussed, an actual approach which
is to be applied in order to implement the transformation from SERAPIS models to Ecore-based
models has to be chosen. Therefore, the various existing approaches are characterized in order
to evaluate their applicability with respect to the transformation problem discussed in this master
thesis. The work of Czarnecki and Helsen [12] furthermore presents the following set of features
allowing to characterize a transformation approach.

Specification Specification refers to the existence of mechanisms for providing pre- and post-
conditions such as those expressed by OCL. This mechanism describes relations between
source and target models by defining functions which can be executable in some cases. In
this context, the QVT specification distinguishes between the potentially non-executable
relation definition and its implementation which can be executed in order to evaluate the
relation.
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Transformation rules Transformation rules can be considered as the most fine-grained unit of
a transformation. A rule generally refers to specific domains which are responsible for
accessing different models. As a transformation rule usually consists of a left-hand side
(LHS) and a right-hand side (RHS) definition, it refers to at least two domains. Rules with
multiple input domains are referred to as n-way transformations. Optionally, rules can be
enhanced with application conditions which can be evaluated in order to determine their
applicability.

Rule application control Rule application control covers the two aspects scheduling and loca-
tion determination. Scheduling describes mechanisms to define the order of rule applica-
tions. Rules can be called implicitly when their application conditions evaluate positively,
or explicitly to provide the user with the full control of their application. Additional
scheduling strategies such as rule iteration mechanisms, providing recursion, looping,
fixpoint iteration, or phasing which determines the applicability of transformation rules
according to defined phases, can be applied to determine the application order. Location
determination refers to a strategy for specifying the model element a rule is applied to. As
a rule can have multiple matches within its source scope, it is necessary to apply a strategy
for determining the exact location of an element within the model. For instance, such a
strategy may traverse the model according to its containment hierarchy.

Rule organization The term rule organization refers to the structuring and composition of
transformation rules. For once, this includes modularity mechanisms allowing to orga-
nize rules into packages which in turn can be imported in order to access their content.
Furthermore, reuse mechanisms describe the ability to compose a rule of one or more other
rules. This includes inheritance mechanisms between rules respectively packages. Finally,
rules can also be organized according to an organizational structure which refers to the
structure of the elements provided by a language definition. One approach for instance
suggests to define one rule for each target element type and to nest the rules according to
containment hierarchy specified by the target metamodel.

Source-target relationship This feature describes whether source and target of a transforma-
tion refer to the same model instance. While some transformation approaches propose
the creation of new models as well as the update of existing models, other approaches
are restricted to in-place transformation expecting both source and target model to be the
same. ATL for instance mainly allows to create new target models as separate instances
of the source model with the effect that in-place transformations need to be simulated by
an automatic copy mechanism.

Incrementality Target-incrementality which is also referred to as change propagation defines
the capability of a transformation approach to modify an existing target model according
to updates of the source model. Potential implementations usually create the necessary
target elements according to the definition of the source model. During further transfor-
mation iterations, differences in the source model are derived, for instance by examination
of traceability links in order to consequently update the target model. The objective of a
transformation approach in terms of source-incrementality is to minimize the extent of the

65



source model that has to be re-examined once it has changed. Enhancements with regard
to this change impact analysis especially affect the transformation performance with large-
scaled models. The final aspect of the incrementality feature refers to the preservation of
user edits in the target. A common scenario requires to apply incremental transformations
to target models which have been manually modified between transformation iterations.
In this case, it is essential to preserve these modifications from getting lost during the
transformation process.

Directionality This feature describes whether transformations can be executed in one direction
(unidirectional) or multiple directions (multidirectional). Unidirectional transformations
create or update one target model based on one source model. Accordingly, these trans-
formations are based on unidirectional rules with one input model and one output model.
Multidirectional transformations on the other hand can be implemented either by multidi-
rectional rules or by multiple several complementary unidirectional rules, providing one
rule for each direction.

Tracing The general objective of tracing is to track runtime information resulting from trans-
formation execution. For instance, this includes traceability links which are used to track
the mapping between source and target domains. To capture traceability links, the source
elements necessary to create a target element are recorded for each transformation rule.
Trace information is necessary to determine how modifications to one model would af-
fect other related models which is referred to as impact analysis. Besides further uses
for model synchronization, trace information is useful for debugging models by mapping
the stepwise execution of a transformation implementation, and debugging transformation
rules themselves. Although some transformation approaches provide a native tracing sup-
port, tracing information can be captured generally within any element of the target model
which is why this feature can be implemented manually with any approach.

The approach necessary for the transformation from SERAPIS to Ecore can be characterized
as a simple unidirectional transformation approach with the single objective to provide a direct
mapping for elements specified in one meta-language to another meta-language. As the logic
applied in the context of a transformation rule therefore basically is restricted to a copy mech-
anism, there is no need to express pre- and post-conditions with the effect that the feature of
specification introduces no essential requirements with respect to the SERAPIS2Ecore model
transformation.

As presented in the previous chapter, the meta-level lifting mechanism proposed by the
EMF Profiles project allows for a complete and direct mapping between the meta-languages
of SERAPIS and EMF. The metamodel generator creates an Ecore-based copy of a metamodel
specified by the SERAPIS meta-language. This component therefore also determines the map-
ping assignments between the resulting metamodels residing on the M2 meta-layer. This map-
ping information is essential for the model-to-model transformation problem described in this
chapter, as it defines the rules for the model transformation on the M1 meta-layer. Therefore, the
outcome of the metamodel generation process comprises transformation rules which are applied
in the context of the model-to-model generation. As a consequence, the feature of transforma-
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tion rules only refers to the application of predefined rules, providing no mechanism to define
individual ad-hoc rules.

For the model-to-model transformation logic is reduced to a direct-copy mechanism, the
model elements involved in the transformation process can be considered as equally biased in
terms of their priority which is why there is no need for an explicit scheduling of rules. Loca-
tion determination, being the second aspect of the feature rule application control, needs to be
achieved by identifying the source elements according to their unique element names.

Especially when creating large-scale transformations, the feature of rule organization com-
prises valuable mechanisms to manage and reuse transformation rules in order to achieve under-
standability and avoid redundancies in rule definitions. As the model-to-model transformation
approach of the SERAPIS2Ecore framework is essentially based on automatically generated
rules, there is no need to provide readability by organizing transformation rules into modules
or packages. For the same reason, reusing transformation rules is not a desirable objective as it
would only introduce additional complexity to the generation of rules while providing no explicit
benefit with respect to their application.

Both SERAPIS meta-language and Ecore rely on different modeling artifacts and imple-
mentations which are not necessarily compliant to each other. As a result, both meta-languages
adhere to different technical spaces with the effect that complying models are also implicitly sep-
arated by these technical boundaries. With respect to the feature of source-target relationship,
the SERAPIS2Ecore model transformation approach therefore only needs to consider transfor-
mations where source and target models are not the same.

The ability to update an existing target model according to modifications of the source
model, while at the same time preserving manual changes in the target model, definitely can
be considered as a desirable feature of any model-to-model transformation approach. Also to
the SERAPIS2Ecore model transformation approach this ability would introduce a valuable
benefit, as it seems to be very likely that changes, either resulting from the evolution of the source
models or from improvements applied to the transformation component, need to be propagated.
However, although it would be desirable to implement this feature, incrementality is not in the
scope of this master thesis and therefore not included in the architecture of the transformation
approach.

The SERAPIS meta-language and its related models are not compliant to any existing stan-
dards in model-driven software development which is why the objective of this master thesis
is to provide a bridge to EMF allowing SERAPIS models to be accessed by a wider variety of
modeling tools. On the other hand, a transformation in the opposite way, namely from EMF
to the SERAPIS technical space, is expected to provide no practical benefit. Consequently, the
directionality of the model-to-model transformation approach in terms of the SERAPIS2Ecore
framework is defined to be unidirectional.

As mentioned before, it is not intended to provide an update mechanism for existing tar-
get models with the transformation approach researched in this master thesis. Consequently,
features for model synchronization and impact analysis, which are strongly related to the imple-
mentation of the traceability feature, can be considered as redundant. The current version of the
transformation is not provided with a traceability feature, but an adequate implementation could
be realized at any later point of time.
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As the features essential to characterize the approach for the SERAPIS2Ecore model trans-
formation have been discussed and evaluated, the next step is to provide an overview of actual
transformation approaches in order to pick an approach which is applicable to the transformation
problem presented in this chapter. Therefore, the work of Czarnecki and Helsen [12] outlines
and discusses various approaches for model-to-text and model-to-model transformation. As the
transformation problem tackled in this chapter is scoped to model-to-model transformation, this
is the only category to be presented as follows.

Direct-manipulation approaches Direct-manipulation approaches provide an internal model
representation and the capability to manipulate the model by exposing an API. Usually,
these approaches are designed as object-oriented frameworks which also provide the ca-
pability for organizing transformation rules. The implementation of the rules and features
such as scheduling or tracing is not within the scope of these frameworks and therefore
remains to the user. Besides building required features from scratch, external libraries
and frameworks may be included in order to adapt the transformation process. For direct-
manipulation provides only very limited support to the user, it can be considered as the
most low-level approach.

Structure-driven approaches The execution of the structure-driven approach comprises two
phases. During the first phase the elements of the target model and their hierarchical
structure are created while the second phase is responsible for setting the attributes and
references. The strategy for both application and scheduling of transformation rules is
provided by the framework while the user can focus on implementing the rules. Structure-
driven approaches have been developed with respect to certain kinds of applications, such
as the generation of database schemas from UML models which (1) employ transforma-
tions with a one-to-one and one-to-many mapping between source and target elements and
(2) require no iteration in the context of the rule application strategy.

Operational approaches Operational approaches are similar to direct-manipulation ap-
proaches except that they provide more support for model transformation. Therefore,
usually metamodeling formalisms, such as the query language OCL, are extended with
imperative constructs in order to allow for expressing computations. The resulting ex-
tended executable language becomes an actual object-oriented programming system once
combined with a meta-language such as MOF or Ecore.

Template-based approaches This approach is based on templates which are models with em-
bedded metacode. This metacode is specified by annotations which are used to define
expressions, conditions, and iterations. Once a template is instantiated, the variable parts
of the target model are computed by the metacode. Templates are defined by the con-
crete syntax of the target language which helps the user to predict the outcome of the
transformation. As another benefit, template-based approaches enable an iterative devel-
opment process by providing the user with the capability to create a sample of the target
model in order to derive a template. Although these transformation approaches provide
no native tracing mechanisms, it is easily possible to encode tracing information within
the templates.
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Relational approaches Relational approaches employ constraints to define relations between
source and target element types. Although these relations are non-executable by defini-
tion, the declarative constraints can be extended with executable semantics. Relational
approaches generally require source and target models to be separated strictly. Unlike im-
perative transformation approaches such as direct-manipulation, elements are created im-
plicitly by these approaches. Relational approaches provide multidirectionality, different
types of incrementality, and are especially suitable for model synchronization scenarios.

Graph-transformation-based approaches This category of transformation approaches is
based on graph transformation theory and employs typed, attributed, and labeled graphs.
These graphs can be considered as a formal representation of simplified class models.
Rules employed by graph-transformation comprise a LHS pattern, which is matched
to the source model, and a RHS pattern replacing the matched result in order to create
the target model. For computing target attribute values, rules are required to provide
additional logic. As models can be considered as graphs, these approaches seem to be an
obvious choice for model transformations.

Hybrid approaches Hybrid approaches allow to mix the techniques of different transformation
approaches in order to meet individual requirements. The assembly of different techniques
can be achieved either by combining composites of several approaches, for instance rela-
tions and operational mappings, or on the level of transformation rules. Considering the
numerous different applications of model-to-model transformation, it is very likely for an
approach to be hybrid.

Considering the evaluation of the feature requirements for the SERAPIS2Ecore model
transformation, it becomes clear that the model transformation problem presented in this chapter
can be tackled with a very small extent of functionality. The source models need to be accessed
somehow while the target technical space is expected to provide a mechanism for creating mod-
els. Here the SERAPIS modeling environment conveniently provides an API in order to access
modeling artifacts. Also EMF provides an API to dynamically create and modify metamod-
els and models based on the Ecore meta-language. As the approach furthermore is required
to employ only a simple direct-copy mechanism, no complex logic or pre- and post-conditions
need to be expressed. Considering the absence of any further sophisticated feature requirements,
such as traceability or incrementality, the direct-manipulation approach seems the best fit for its
simplicity and the minimal functional overhead.

In order to provide an implementation for the SERAPIS2Ecore model transformation, the
existence of an actual framework which adheres to the concept of direct-manipulation transfor-
mation is to be identified. A potentially applicable framework is required to provide adapters
to access both source and target technical spaces in order to read the artifacts resulting from
the SERAPIS modeling tool and to create Ecore-based artifacts, so custom transformation rules
based on these adapters can be implemented. Due to the lack of support for the SERAPIS tech-
nical space with existing model-driven software development tools, it is not very likely to find a
framework which provides the desired capabilities. As a consequence, the absence of a suitable
existing framework requires the direct-manipulation approach for the SERAPIS2Ecore model
transformation to be implemented from scratch.
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6.2 Transformation Objectives

As mentioned in the introduction, the objective of this master thesis is not to implement a com-
plete transformation of all modeling information provided by the SERAPIS modeling tool. As
described in Chapter 5, partial information of the metamodel lacks significance with respect to
a possible migration to other modeling tools which is why this redundant information has been
eliminated from the transformation process.

Also in the context of model transformation neither it is intended nor does it make sense to
provide a complete mapping for the modeling information. However, while the modification
in terms of the metamodel transformation referred to the limitation of certain elements and
attributes defined by the metamodel, the modification with the model transformation is more
focused on a structural level. The following paragraphs describe these modifications in the form
of transformation objectives in detail.

Simplifying References

Models created by the SERAPIS modeling tool are persisted as XML strings in the file system,
whereas each instantiated element of the metamodel is stored within a separate file. Conse-
quently, even elements which functionally belong together, such as an Entity and all the
EntityFields it comprises, are spread among different files. For referencing each other, a
unique identifier referred to as UUID is assigned to each element. These identifiers also deter-
mine the name of the file used to persist an element in order to avoid naming conflicts.

As a result, models can grow very big with respect to the number of files they allocate in
the file system as they evolve. Certainly, due to low prices of storage the extent of a modeling
project is not to be considered as an essential factor, but this circumstance inconveniently affects
the practical application of the SERAPIS modeling tool in another way. Due to the distribution
of interrelated elements, a modification in one model element can cause changes in numerous
other files. Considering that not only the model definition files but also the source files resulting
from code generation reside in the same modeling project, a slight change of a the model can
result in hundreds of modified files. Additionally, due to the fact that the model files are named
by UUIDs, which have no functional meaning, it becomes virtually impossible to manually
merge multiple changes within a model.

The SERAPIS modeling tool assigns unique identifiers in order to avoid confusion due to
naming conflicts when referencing model elements. In a SERAPIS model, Entities are
always assigned to a single package and it is not allowed for multiple eponymous Entities to
reside within the same package. The name of a package combined with the name of an Entity
therefore must suffice to uniquely reference an Entity instead of using the UUID.

As a consequence, the objective of the model transformation is to simplify references by
replacing the UUID assignments with a unique combination of the name of the target Entity
and the package it resides in. Additionally, the model in the target technical space resulting from
the transformation process is designed to contain all model elements within a single file. These
measures aim to make models more understandable and consequently enable a manual merge of
model changes.
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Removing Redundant Model Information

Not all of the model elements defined by the SERAPIS metamodel are actually persisted as mod-
eling artifacts, as the majority of the elements inside the inheritance hierarchy are specified as
abstract. From the remaining elements a substantial part of the metamodel serves the purpose to
specify tool-specific model information. Among others, this includes build configurations defin-
ing the usage of the code generators shipped with the modeling tool and model configurations
which are used to store additional meta-information about the model.

Examining the model definition of the library example presented in Chapter 3 shows that
basically all information which is not tool-specific is comprised by instances of the metamodel
elements Entity and EntityField. This is not surprising, as the instances of Entity,
such as Book described in Listing 3.3, represent the business objects in models of the SERAPIS
modeling tool. EntityFields are instantiated in order to describe the properties of business
objects such as the example depicted in Listing 6.1 representing the property Title of Book.

With respect to identifying essential information for the model transformation, the tool-
specific model information is not expected to provide any benefit in the context of tool-
integration. Furthermore, the model-specific information is comprised by the instances of
Entities and EntityFields. As a consequence, the implementation of the model
transformation is designed to focus on instances of the mentioned metamodel elements.

Eliminating Attributes Resulting from Linguistic Instantiation

Before describing the next transformation objective, it is necessary to look more closely at the
term instantiation. According to the article of Kühne [18], instantiation relationships can be
differentiated between ontological instantiation and linguistic instantiation. Ontological instan-
tiation describes an instantiation-relation between two model elements based on their meaning.
Linguistic instantiation on the other hand refers to an instantiation-relation between a model
element and a linguistic type which specifies a language to define this element.

The example displayed in Figure 6.2 shows the different relationships based on ontological
and linguistic instantiation. The model displayed on the lower left is an ontological instance
of the model shown on the upper left for the elements of both models are related in terms of
their meaning as Frankfurt, Munich, Darmstadt, and Nürnberg are concrete Cities connected
by the Roads A3, A5, and A9. The upper right model on the other hand describes linguistic
types specifying a language allowing for an arbitrary Class to have Associations. Conse-
quently, the element City defined in the upper left model inherits the capability of specifying
associations referred to as Roads. Clearly the elements described by both upper models imply
no relationship in terms of their meaning.

Models created by the SERAPIS modeling tool are also the result of both ontological
and linguistic instantiation. This becomes clear when examining the fields declared by the
EntityField-instance in Listing 6.1. As an example, the EntityField-instance Title
contains a Value in order to specify its instance-name. This instance-name is indicated by the
string assigned to the attribute name provided by the Value. As depicted in Figure 6.3, the
metamodel element EntityField inherits this Value from the element NamedElement.
In addition, the same Value also provides the attribute computed in order to determine
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<?xml version="1.0" encoding="windows-1252"?>
<sxme:elements xmlns:sxme="http://www.sphinx.at/sxme">

<element
display="Title : String80"
model="ba67a429_dd55_40ad_ab46_08646049d1f0"
type="EntityField"
uuid="cb591076_bd70_4c2a_9ccc_f87dd7c8d500"
psm="false">

...
<value

name="Name"
value="Title"
computed="false" />

...
<reference

name="Type"
display="String80"
model=""
type="StringType"
uuid="01a032f1_d39e_41c2_b549_78d6f72f5874"
index="-1"
computed="false" />

...
<reference

name="Entity"
display="Book"
model=""
type="Entity"
uuid="e9164599_527e_40fd_a8b4_8a1eecd8c24b"
index="5"
computed="true" />

...
</element>

</sxme:elements>

Listing 6.1: Excerpt of the Title model element definition
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Figure 6.2: Example for linguistic and ontological instantiation [18]

whether its contents are derived from another Value. As depicted in the figure, the Value also
is an instance of the Java class ModelValue from which it indirectly inherits this attribute.

The instantiation-relation between EntityField and Title is ontological as the mean-
ing of an EntityField is to be an actual field of an Entity, the same way as Title is
a field of Book. On the other hand, the Value provided by Title is a linguistic instance of
ModelValue, as this class is a Java type and therefore only specifies the language to create a
valid Value without considering its meaning.

As the attributes of model elements resulting from linguistic instantiation are not defined in
the SERAPIS metamodel, it is also not possible for the metamodel generator to consider them
when creating the target metamodel in Ecore. Therefore, instances of the target metamodel lack
of these attribute definitions which is why they cannot be included in the model transformation
as well. Consequently, this transformation objective states that only attributes resulting from
ontological instantiation are considered in the context of model transformation.

6.3 Model Generator

The model generator is a component which implements the model transformation between
SERAPIS and EMF. The generator reads an existing SERAPIS model and creates a correspond-
ing counterpart in the target model for each element of the source model. In order to determine
which type is to be instantiated, the generator looks up the type of the source element in the
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Figure 6.3: Linguistic and ontological instantiation in SERAPIS

source metamodel and matches it to the target metamodel. Therefore, the metamodels in both
technical spaces need to be mapped to each other, allowing the generator to retrieve the matching
type for each source element.

As discussed in the previous chapter, the meta-languages SERAPIS and Ecore are mapped
by both transformation rules and naming conventions allowing the metamodel generator to find
the matching correspondence for each type. As the model transformation basically faces the
same problem on a different abstraction layer, it is also feasible to adopt this strategy for map-
ping the metamodels. However, the mapping problem is strongly simplified with respect to the
model transformation due to the fact that the elements created by the metamodel generator are
instantiated exactly with same names as the elements in the source metamodel. Consequently, it
is possible for the model generator to map the elements of both metamodels only by their name
attributes without the need for transformation rules.

In the SERAPIS modeling tool, instances of metamodel elements provide a type attribute in
order to keep track of the metamodel element they adhere to. As an example, the type attribute
of the Title element depicted in Listing 6.1 reveals that it is an instance of EntityField.
As a benefit, the model generator can directly query the model instance for its type in order to
find the matching counterpart in the target metamodel without the need to consult the source
metamodel. Due to the fact that the model generator needs to consider neither the SERAPIS
metamodel nor any transformation rules, its architecture can be simplified as depicted in Fig-
ure 6.4. According to the final architecture, the model generator is implemented to start the
transformation process with reading the necessary model elements. As required by the trans-
formation objectives, only the elements of type Entity and EntityField are considered.
Depending on the value of the type attribute, the model generator then instantiates the corre-
sponding element in the target metamodel SerapisEcore. In order to simplify the references
between model elements, all occurrences of UUIDs are replaced by a combination of the pack-
age and the name of the target element. All generated elements are contained within a single
artifact in order to avoid the distribution of the model over multiple files.
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<serapisEcore:Entity
ShortDescription=

"Short description of
the Book entity"

Name="Book"
Package=

"ac.at.tuwien.serapis2ecore.
example.bookstore.model"

IsAbstract="false"
IsFinal="false"
IsSingleton="false"
Abbreviation="BOOK"
PersistenceName="BOOK"
Type="ProductionData"
PrimaryKeyField="Book.ID"
AuditInfoField="Book.AuditInfo"
...
/>

Listing 6.2: The model element Book in Ecore

<serapisEcore:EntityField
Name="Title"
IsRequired="true"
Type=
"ac.at.tuwien.serapis2ecore.
example.bookstore.base.String80"

PersistenceName="TITLE"
Entity=

"ac.at.tuwien.serapis2ecore.
example.bookstore.model.Book"

...
/>

Listing 6.3: The model element Title in Ecore
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Figure 6.4: Simplified architecture of the model generator

To demonstrate the working mechanics of the model generator, Listing 6.2 shows the trans-
formation result of the Entity-instance Book, and Listing 6.3 displays the transformation
result of Title which is an instance of EntityField representing a field of Book. Due to
the extent of the definitions, the listings present only a subset of the attributes provided by each
element. The following paragraphs describe the exact transformation logic for each field type an
Entity can declare.

Value

In SERAPIS models Values such as name, isAbstract, isFinal, isSingleton,
abbreviation, and persistenceName are designed to represent simple types such as
strings or boolean variables. Value definitions as the one depicted as follows consist of a
name, an actual value, and an additional attribute computed resulting from linguistic in-
stantiation. As the transformation objectives suggest to eliminate attributes such as the latter
one, only name and value need to be transformed. The transformation of Values therefore
is simple as the remaining two attributes build a natural key-value pair and therefore can be used
to specify an attribute with the same name and value in the generated target element as depicted
in Listings 6.2 and 6.3.

<value
name="IsAbstract"
value="false"
computed="true" />

Reference

References represent pointers to complex types such as Entities in order to map rela-
tionships between elements. The following example displays a Reference defined by the
EntityField-instance Title referring Book as the Entity it belongs to. References
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such as package, primaryKeyField, auditInfoField, Title.type, and entity
are using UUIDs in order to specify their target. According to the transformation objectives, the
unique identifier is to be replaced by the name of the Entity combined with the name of the
package in which it resides. Unfortunately, the package is not included in the reference, and
the name of the target Entity is stored in the display attribute which results from linguistic
instantiation. Consequently, the implementation of the model generator is required to handle
the transformation of references different from other attributes. The generator uses the UUID to
look up the target Entity, retrieves its package, and combines the names of both elements in
order to provide a string which can be used as the new unique identifier. The model generator
specifies the generated element to provide an attribute named after the reference and assigns the
derived identifier as value.

<reference
name="Entity"
display="Book"
model=""
type="Entity"
uuid="e9164599_527e_40fd_a8b4_8a1eecd8c24b"
index="5"
computed="true" />

Enumeration

Enumerations such as Book.type are very similar to Values with respect to the trans-
formation process as they also provide a natural key-value pair by the attributes name and
literal.

<enumeration
name="Type"
literal="ProductionData"
computed="true" />

Text

Text provides additional documentation and comments such as the attribute shortDescription
of Book. The definition depicted as follows seems complex at a first glance, but both attributes
computed and language result from linguistic instantiation and therefore are not considered
with respect to the transformation. Consequently, the model generator only needs to consider
the name and the content of textstring in order to create a corresponding attribute within
the generated target element.

<localizedtext
name="ShortDescription"
computed="false">

<textstring

77



language="a36eeef6_5e2e_4de4_8bf2_60ff2698dcce">
Short description of the Book entity

</textstring>
</localizedtext>
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CHAPTER 7
Evaluation

The aim of this chapter is to evaluate the outcome of this master thesis which comprises the
model transformation architecture and the implementations of both model and metamodel gen-
erator. The first question to be researched refers to the feasibility of the metamodel generation.
The transformation approach proposed by Wimmer allows for an automatic generation of the
metamodel but requires both source and target meta-languages to be mapped at first. The map-
ping of the SERAPIS meta-language to Ecore is considered as the most significant challenge in
the context of this master thesis due to the differences with respect to features and expressiveness
provided by both meta-languages. Therefore, the first question examines which measures were
adopted in order to achieve a feasible mapping between both meta-languages.

The second question aims to examine the quality of the generated artifacts. Here the term
quality refers to the information comprised by the generated metamodels and models rendering
the avoidance of information loss as the highest priority of the transformation process. Conse-
quently, source and target models are compared in order to determine the ability of the imple-
mented generators to transform model information without losing significant details.

7.1 Feasibility

In order to evaluate how this master thesis contributes a feasible mapping for the SERAPIS meta-
language to Ecore, the steps of finding a technical solution to the mapping problem are depicted
in this section. The mapping of the SERAPIS language element Element to the Ecore element
EClass provides a running example to illustrate this process based on trial and error.

The first and most obvious step with finding a feasible mapping for both meta-languages is
to determine whether it is possible to identify direct correspondences between the elements both
languages provide. Table 7.1 shows that EClass natively provides attributes to match a subset
of the features required by Element such a naming, inheritance, and abstraction. However,
the ability to specify the attribute isSingleton is restricted to the SERAPIS meta-language
element Element only.
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SERAPIS Ecore
Element EClass

EClass.interface=false
Element.name EClass.name
Element.super EClass.eSuperTypes
Element.isAbstract EClass.abstract
Element.isSingleton -

Table 7.1: Correspondences between Element and EClass

SERAPIS Ecore
Element ElementM

Element.name ElementM.name
Element.super ElementM.super
Element.isAbstract ElementM.isAbstract
Element.isSingleton ElementM.isSingleton

Table 7.2: Correspondences between Element and ElementM

In order to avoid information loss with respect to the transformation process, an adequate
approach to map the isSingleton attribute is to be found. Due to the fact that EClass pro-
vides no native candidate, the only option is to model an element here referred to as ElementM
which is specified to provide the missing attribute. As depicted in Table 7.2, the modeled ele-
ment ElementM is defined to represent an exact mirror for the attributes of Element.

Although this approach allows for a complete mapping of Element to Ecore, it introduces
a major flaw as ElementM is modeled by instantiating EClass and therefore resides on the
wrong meta-layer. Instead of M3, where also the SERAPIS meta-language resides, the instance
of EClass is located on the M2 meta-layer whereas, from the architectural point of view, it is
considered as a part of the metamodel instead of the meta-language.

As EMF adheres to a three-layer architecture, it only supports the instantiation of the meta-
language Ecore to create a compliant metamodel and another instantiation of the metamodel to
derive a model. As the approach of mapping Element to the modeled ElementM already
requires an instantiation of EClass, metamodel elements instantiated from ElementM would
respectively lose their instantiation capability in order to create compliant models.

SERAPIS Ecore
Element ElementM extends EClass

Element.name EClass.name
Element.super EClass.eSuperTypes
Element.isAbstract EClass.abstract
Element.isSingleton ElementM.isSingleton

Table 7.3: Correspondences between Element and ElementM extending EClass
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Here the introduction of the meta-level lifting approach proposed by EMF Profiles helps
to overcome this problem for it allows to architecturally lift ElementM to the M3 meta-layer.
This is achieved by specifying ElementM to extend EClass allowing to inherit its instantia-
tion capabilities. Consequently, ElementM resides on the same meta-layer as Element and
therefore allows for a valid mapping of the SERAPIS meta-language element as depicted in Ta-
ble 7.3. As a further benefit, ElementM also inherits the naming, inheritance, and abstraction
features which can be used for the mapping instead of modeling them.

The sum of all steps described in this section lead to an approach capable of sufficiently
mapping the SERAPIS meta-language to Ecore. Although it is not possible to prove that this
is the only feasible mapping approach or the most efficient one, each step towards the mapping
solution is plausible and comprehensible. This renders the approach not only a good choice for
solving the problem described in the context of this master thesis, but furthermore allows for a
potential adaptation to similar problem scenarios.

7.2 Quality

The quality of the generated artifacts can be determined by the completeness of information
transformed by the generators. The first artifact to be examined is the metamodel resulting from
the metamodel generator. In the next step, a model derived from the metamodel and generated by
the model generator is inspected. As both artifacts result from an automatic generation process,
a manual review is considered as the most adequate tool for the evaluation which is performed
based on a representative case study.

Metamodel

In order to evaluate the completeness of the generated metamodel, it is neither possible nor nec-
essary to examine each of the over 200 elements defined by the SERAPIS metamodel. Instead,
it is sufficient to compare only one element of the SERAPIS metamodel with its generated coun-
terpart as the mechanics and the rules applied by the metamodel generator have the same impact
to every element.

The element Type, depicted in Figure 3.5 as a superclass of Entity, is used as an exam-
ple to evaluate the completeness of the metamodel transformation. Subclasses of the abstract
class Type inherit the ability to define inheritance-relations, specify packages they belong to,
state whether they are serializable, and define additional textual attributes for documentation
purposes.

Table 7.4 shows the definition of Type and the resulting notation in Ecore. The name, the
superclass, and the declaration as abstract are mapped to the native counterparts provided by
EClass while isSingleton is mapped directly to the eponymous attribute. As class and
icon are intentionally excluded from the transformation process, the generated result suffers
no loss of information.
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<element
name="Type"
super=

"GeneratedArtefactElement"
class=

"at.sphinx.sxme.
informationmodel.
model.IMType"

icon=
"10_Source/icons/
elements/type.gif"

isAbstract="true"
isSingleton="true">
...

</element>

<eClassifiers
xsi:type=

"serapisEcore:Element"
name="Type"
abstract="true"
eSuperTypes=
"#//GeneratedArtefact
Element"

isSingleton="true">
...

</eClassifiers>

Table 7.4: Transformation of Type

<reference
name="SuperType"
element="Type"
isComposition="true"
isRequired="false"
isDisplayOnly="false"
isHidden="false"
delete="inhibit"/>

<reference
name="Package"
element="Package"
isComposition="false"
isRequired="true"
isDisplayOnly="false"
isHidden="false"
delete="inhibit"/>

<eStructuralFeatures
xsi:type=

"serapisEcore:Reference"
name="SuperType"
eType="ecore:EDataType

[...]//EString"
Element="#//Type"
IsComposition="true"/>

<eStructuralFeatures
xsi:type=

"serapisEcore:Reference"
name="Package"
lowerBound="1"
eType="ecore:EDataType

[...]//EString"
Element="#//Package"/>

Table 7.5: Transformation of SuperType and Package
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<value
name="IsSerializable"
class=

"at.sphinx.sxme.
core.value.BooleanValue"

isRequired="true"
isDisplayOnly="false"
isHidden="false"
default="false"/>

<eStructuralFeatures
xsi:type=

"serapisEcore:Value"
name="IsSerializable"
lowerBound="1"
eType="ecore:EDataType

[...]//EString"
Default="false"/>

Table 7.6: Transformation of IsSerializable

The notations depicted in Table 7.5 refer to SuperType and Package, two References
defined by Type. In both elements the attributes name and element are mapped while
isDisplayOnly, isHidden, and delete are eliminated during the transformation pro-
cess. The attribute isComposition is only defined by the Reference named SuperType
for it has assigned the value true. IsRequired on the other hand has no direct counterpart in
the generated target definitions, instead the attribute lowerBound is set to 1. As all attributes
which have been determined to be involved in the generation process are transformed properly,
there is no indication of information loss with respect to References.

Table 7.6 shows the source definition of a Value in the SERAPIS metamodel and the gen-
erated target definition in Ecore. The transformation of the Value named IsSerializable
seems complete for it misses only the attributes class, isDisplayOnly, and isHidden
which are specified to be ignored by the metamodel generator.

The Text elements named Label and Tooltip depicted in Table 7.7 are defined
by Type for the purpose of documentation. Except for name, isLocalized, and
isRequired, no further attributes are defined to be covered by the metamodel generator
which is why the transformation of Text elements can be considered as complete.

In conclusion the manual review has shown that the transformation process causes no loss of
information, assuming that this information has been determined to provide a benefit to the re-
sulting metamodel. Although the evaluation presented in this section provides only one element
as a running example, the manual review has become an integrated part of the implementation
process of the metamodel generator which is why in practice the evaluation covers numerous
elements in order to ensure the completeness of the metamodel.

Model

The evaluation of the generated model follows the same principle as the evaluation of the gen-
erated metamodel. As the model generator also transforms each model element according to the
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<text
name="Label"
lines="1"
isLocalized="true"
isDescription="false"
isRequired="true"
isDisplayOnly="false"
isHidden="false"
isPSM="false"/>

<text
name="Tooltip"
lines="1"
isLocalized="true"
isDescription="false"
isRequired="false"
isDisplayOnly="false"
isHidden="false
isPSM="false"/>

<eStructuralFeatures
xsi:type=

"serapisEcore:Text"
name="Label"
lowerBound="1"
eType=

"ecore:EDataType
[...]//EString"

Localized="true"/>
<eStructuralFeatures

xsi:type=
"serapisEcore:Text"

name="Tooltip"
eType=

"ecore:EDataType
[...]//EString"

Localized="true"/>

Table 7.7: Transformation of Label and Tooltip

same rules, it is sufficient to manually review only one element in detail. Listing 7.1 depicts the
definition of the model element Customer which is a part of the library model and serves as
an example to evaluate the completeness of the transformation.

At a first glance, the generated Ecore-definition of Customer notated in Listing 7.2 appears
relatively small compared to the extent of the element definition in SERAPIS. This is due to the
fact that a substantial part of the attributes defined in the SERAPIS model results from linguistic
instantiation and therefore is eliminated by the transformation process as these attributes are not
specified in the metamodel.

The type attribute in the outer XML tag element in the SERAPIS definition of
Customer specifies the model element to be an Entity which is why the model gener-
ator instantiates an Entity of the SerapisEcore metamodel as depicted in the first line of
Listing 7.2. None of the other attributes specified in this XML tag are considered in the
transformation process as they result from linguistic instantiation.

The element contains numerous Properties of type Text, Value, Reference, and
Enumeration. For each of these Properties the generated target Entity is specified to
provide an attribute according to the name of the Property it is mapping. The retrieval of the
values assigned to these attributes depends on the type of the Properties.

The values assigned to Properties of type Text such as ShortDescription are
stored within the textstring tag. The attributes computed and language are not speci-
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fied to be a part of the target model which is why the transformation process loses no information
as only the content of textstring needs to be transformed.

Values such as Name provide an attribute value to hold their actual value while
Enumerations such as Type specify literal for the same purpose. Processing these
attributes is sufficient to allow for a complete transformation as the attribute computed is
ignored with both Values and Enumerations.

References are not transformed based on a single attribute which is responsible for hold-
ing the actual value, instead the UUID is used to look up the target element. The value assigned
to the mapped attribute is derived from the name of the target element and the package it re-
sides in. As this value is sufficient to unambiguously qualify a reference to another element, the
transformation with respect to References is considered to lose no information.

Although the generated model appears much simpler than the source model, the manual
review indicates that the transformation process provides a complete mapping for information
considered as essential.

<?xml version="1.0" encoding="windows-1252"?>
<sxme:elements xmlns:sxme="http://www.sphinx.at/sxme">

<element display="Customer"
model="ba67a429_dd55_40ad_ab46_08646049d1f0"
type="Entity"
uuid="52cb7a20_dbf5_44d5_96e9_5b88a7d5e303"
psm="false">

<localizedtext name="ShortDescription"
computed="false">

<textstring
language="a36eeef6_5e2e_4de4_8bf2_60ff2698dcce">

Library Customer
</textstring>

</localizedtext>
<localizedtext name="AnalysisDescription"

computed="true" />
<localizedtext name="DesignDescription"

computed="true" />
<localizedtext name="Comment" computed="true" />
<value name="Name" value="Customer"

computed="false" />
<reference name="SuperType" display="Person" model=""

type="Entity"
uuid="21eb8177_3970_4e2a_a8f2_0ae5dc2db988"
index="-1" computed="false" />

<reference name="Package"
display="ac.at.tuwien.serapis2ecore.
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example.bookstore.model"
model="" type="Package"
uuid="20056580_178d_41b1_a4c6_6e14cb439772"
index="-1" computed="true" />

<value name="IsSerializable" value="false"
computed="true" />

<localizedtext name="Label" computed="true" />
<localizedtext name="Tooltip" computed="true" />
<value name="IsAbstract" value="false" computed="true" />
<value name="IsFinal" value="false" computed="true" />
<value name="IsSingleton" value="false" computed="true" />
<value name="HasManualCode" value="false"

computed="true" />
<value name="HasManualCodeHidden"

value="false" computed="true" />
<localizedtext name="LabelPlural" computed="true" />
<value name="HasManualDaoCode"

value="false" computed="true" />
<value name="HasManualDaoCodeHidden"

value="false" computed="true" />
<value name="HasManualServiceCode"

value="false" computed="true" />
<value name="HasManualServiceCodeHidden"

value="false" computed="true" />
<value name="Abbreviation" value="CUST"

computed="true" />
<value name="PersistenceName"

value="CUSTOMER" computed="true" />
<enumeration name="Type"

literal="ProductionData" computed="true" />
<value name="IsTimeDependent" value="false"

computed="true" />
<value name="IsHistorized" value="false"

computed="true" />
<value name="MinVolume" value="" computed="true" />
<value name="AvgVolume" value="" computed="true" />
<value name="MaxVolume" value="" computed="true" />
<value name="VolumeVolatility" value="" computed="true" />
<reference name="PrimaryKeyField" display="" model=""

type="" uuid="" index="-1" computed="true" />
<reference name="EntityKeyField" display="" model=""

type="" uuid="" index="-1" computed="true" />
<reference name="VersionNoField" display="" model=""
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type="" uuid="" index="-1" computed="true" />
<reference name="AuditInfoField" display="" model=""

type="" uuid="" index="-1" computed="true" />
<reference name="HistoryIntervalField" display="" model=""

type="" uuid="" index="-1" computed="true" />
<reference name="ValidIntervalField" display="" model=""

type="" uuid="" index="-1" computed="true" />
</element>

</sxme:elements>

Listing 7.1: Definition of model Customer in SERAPIS

<serapisEcore:Entity
ShortDescription="Library Customer"
AnalysisDescription=""
DesignDescription=""
Comment=""
Name="Customer"
IsSerializable="false"
Label=""
Tooltip=""
SuperType="ac.at.tuwien.serapis2ecore.

example.bookstore.model.Person"
Package="ac.at.tuwien.serapis2ecore.

example.bookstore.model"
IsAbstract="false"
IsFinal="false"
IsSingleton="false"
HasManualCode="false"
HasManualCodeHidden="false"
LabelPlural=""
HasManualDaoCode="false"
HasManualDaoCodeHidden="false"
HasManualServiceCode="false"
HasManualServiceCodeHidden="false"
Abbreviation="CUST"
PersistenceName="CUSTOMER"
Type="ProductionData"
IsTimeDependent="false"
IsHistorized="false"
MinVolume=""
AvgVolume=""
MaxVolume=""
VolumeVolatility=""
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PrimaryKeyField=""
EntityKeyField=""
VersionNoField=""
AuditInfoField=""
HistoryIntervalField=""
ValidIntervalField=""/>

Listing 7.2: Definition of model Customer in Ecore
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CHAPTER 8
Conclusion

This final chapter concludes this master thesis as it summarizes the contribution of this thesis
and gives a brief outlook to further related topics of research.

8.1 Contributions of the Thesis

In this master thesis, we presented the SERAPIS modeling tool and the three-layer architecture
it is based on, comprising meta-language, metamodels, and models. We discussed issues of
the proprietary tool, underlining the necessity to bridge models to the more standard-conform
technical space of EMF in order to overcome the vendor-lock. With respect to building this
bridge, a semi-automatic approach allowing to transform metamodels between two technical
spaces based on the correspondences of the meta-languages both metamodels comply to was
discussed. We adopted this approach in form of a metamodel generator allowing to transform
metamodels specified by the SERAPIS meta-language to Ecore. The adoption of this semi-
automatic approach proposed by Wimmer proved a valuable asset as it allowed to significantly
streamline the process of creating the target metamodel.

The major challenge of this master thesis was to find correspondences between the SERAPIS
meta-language and Ecore with respect to the design of the metamodel generator. Due to the
distinct expressiveness of the features provided by both meta-languages, it was impossible to
achieve a direct mapping between the elements of both languages. Only the insight gained from
the meta-level lifting approach contributed by the EMF Profiles project rendered the establish-
ment of an adequate mapping technique possible.

Subsequently, we extended the architecture of the bridge between SERAPIS and EMF with
a model generator responsible for transforming existing models to the target technical space.
Although the working principle of the model generator corresponds to the metamodel generator,
except for concerning a different meta-layer, the design of the model generator was much simpler
as it was possible to directly match the metamodels of both technical spaces.

A successful implementation of both model and metamodel generator in Java helped to
evaluate the feasibility of the designed transformation architecture. In addition, we reviewed the
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generated modeling artifacts manually in order to determine the completeness of the transformed
information. The reviews revealed that the quality of the generated results matches the objectives
established in the context of the design process.

In conclusion, the insights gained from the metamodel transformation approach of Wimmer
and the meta-level lifting approach of the EMF Profiles project constitute a valuable knowledge
in the field of model-driven engineering allowing a wide variety of applications with respect
to tool integration scenarios as presented in the context of the SERAPIS modeling tool. The
major contribution of this master thesis is constituted by the combination of the knowledge
gained from these existing approaches in order to enable a successful bridging of two different
technical spaces such as SERAPIS and EMF.

8.2 Outlook

With the models successfully transformed to the EMF technical space, the only remaining is-
sue concerns the functionality of generating code from the transformed artifacts. The SERAPIS
modeling tool comes with a set of code generators allowing to generate Java code and SQL
DDL definitions from models. Usually a substantial amount of effort is put into developing
these generators as they need to be adapted to the individual requirements of a customer. For
instance, special code generators for producing Java code might be developed allowing to gener-
ate certain programming constructs for converting, retrieving, or instantiating business objects.
Consequently, the logic merged into the implementation of the generators can be considered as
something that is worth to be preserved in a tool integration scenario as presented in this master
thesis.

The code generators of the SERAPIS modeling tool are designed to inspect the Java objects,
representing the model elements at runtime, in order to derive executable code. The rules for
deriving this code are hard-wired into the logic of the generators which are implemented in Java
as well. As EMF is also based on Java, it would be possible to import the libraries containing
the generators in order to reuse their functionality with the models transformed to the EMF
technical space. As the code generators are expecting the processed Java objects to represent
model elements of the SERAPIS technical space, converters would be needed to match the
structure of the Java objects representing the Ecore model elements to their counterparts in
SERAPIS.

The approach described to reuse the SERAPIS code generators could be implemented with-
out much effort as a converter would be required to provide only a one-to-one mapping between
the attributes of two Java objects without considering any kind of business logic. Alternatively,
due to the simple nature of the converting mechanism it would also probably be feasible to create
these converters along with the transformation process of SERAPIS models to Ecore.

Reusing the functionality of the code generators by applying this approach preserves cus-
tomers from losing substantial effort spent into the adaptation of the SERAPIS modeling tool in
the case of an integration with EMF. This approach especially provides benefits on a short-term
basis as it allows to quickly get back into production after the tool integration.

In the long term, reusing the code generators provided by SERAPIS however could cause
inconveniences with respect to future modifications of the generation process. Changing the out-

90



come of the generation results in the manipulation of the rules implemented in the Java source
code of the generator. This interference with the interiors of the generation logic is less flexible
than applying a template-based code generation approach for instance. Therefore, it is recom-
mendable to take into account the limited flexibility when reusing the code generators.
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