Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech-nischen Universität Wien aufgestellt und zugänglich.

The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

DIPLOMARBEIT

Effizienzvergleich von Banken mittels DEA

Ausgeführt am Institut für Wirtschaftsmathematik der Technischen Universität Wien

unter der Anleitung von Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Alexander Mehlmann und Senior Lecturer Dipl.-Ing. Dr.techn. Josef Leopold Haunschmied als verantwortlich mitwirkenden Assistenten

> durch Sigrid Dannbauer 0604747 / 066405 Schönbrunnerstraße 99 / 19, 1050 Wien und Lisa Maria Hütthaler 0626727 / 066405 Weyregger Straße 54, 4852 Weyregg am Attersee

> > Wien, am 3. Oktober 2013

Kurzfassung des Aufgabenbereichs von Sigrid Dannbauer

Data Envelopment Analysis (DEA) ist eine spezielle Anwendung linearer Programmierung zur Messung der relativen Effizienz von Entscheidungseinheiten (DMUs). Die DMUs werden mittels In- und Outputs charakterisiert. Die DEA bestimmt die relativ effizienten Entscheidungseinheiten und gibt für die anderen DMUs ein Maß ihrer Ineffizienz an, wobei keine a priori Gewichtungen der verschiedenen Input und Outputdaten erforderlich sind, da diese im Rahmen des Verfahrens ermittelt werden.

Der Fokus dieser Diplomarbeit liegt in der Effizienzanalyse der 95 oberösterreichischen Raiffeisenbanken mittels des BCC-Modells.

Der ersten Teil dieser Arbeit konzentriert sich auf die Modellbildung, sowie die Wahl der Inputs und Outputs, welche in die Effizienzanalyse der 95 oberösterreichischen Raiffeisenbanken eingehen.

Der Effizienzauswertung der 95 oberösterreichischen Raiffeisenbanken ist der Profitabilitätsansatz zugrunde gelegt. Die hierbei verwendeten Inputs bilden der Personalaufwand, der Sachaufwand (+Afa) und der Nettoaufwand.

Als Outputs werden der Nettozinsertrag, Erträge aus Kredite und Beteiligungen, Dienstleistungserträge, sowie sonstige Erträge betrachtet.

Im zweiten Teil dieser Diplomarbeit, der Effizienzanalyse, wird die Effizienz der Raiffeisenbanken bei variablen (BCC-Modell) Skalenerträgen für die Jahre 2010, 2011 und 2012 ermittelt und die Ergebnisse der einzelnen Jahre werden auch untereinander verglichen und analysiert. Anschließend wird die Analyse mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012 durchgeführt.

Ermittelt werden jeweils der Effizienzwert, die Referenzmengen, sowie die Slacks. Für die ineffizienten DMUs werden die jeweiligen Projektionen ermittelt, welche die notwendige Verbesserung zur Erreichung einer effizienten Leistung angeben. Anschließend werden auch die Skaleneffizienz und die Skalenverläufe näher untersucht.

Kurzfassung des Aufgabenbereichs von Lisa Hütthaler

Unter genauerer Betrachtung des CCR-Modells wird in dieser Diplomarbeit die Effizienzauswertung der 95 selbstständigen Raiffeisenbanken in Oberösterreich durchgeführt.

Diese Analyse wird für die Jahre 2010, 2011 und 2012 gemacht und die Ergebnisse der einzelnen Jahre werden anschließend verglichen und analysiert. Auch wird die Effizienzbewertung mit den Durchschnittswerten der Inputs und Outputs der drei Jahre durchgeführt.

Ermittelt werden jeweils der Effizienzwert, die Referenzmengen, sowie die Slacks. Für die ineffizienten DMUs werden die jeweiligen Projektionen ermittelt, welche die notwendige Verbesserung zur Erreichung einer effizienten Leistung angeben. Anhand von repräsentativen Raiffeisenbanken werden die Ergebnisse näher erläutert.

Weiters wird eine Erweiterung der Analyse auf die Effizienzbewertung der 452 oberösterreichischen Raiffeisenbankfilialen in Ausblick gestellt.

In diesem Zusammenhang wird hier der Produktivitätsansatz näher beleuchtet, bei welchem eine Bankfiliale als Produzent von Bankdienstleistungen und Bankprodukten verstanden wird.

Anhand dieses Ansatzes werden die Inputs und Outputs auf Bankstellenebene konkretisiert.

Abstract of the activities from Sigrid Dannbauer

The Data Envelopment Analysis (DEA) is a special application of linear programming to measure the relative efficiency of decision making units (DMUs). The DMUs are characterized by inputs and outputs. The DEA determines the decision making units which are relatively efficient and for the other DMUs ascertains a measure of their inefficiency. No *a priori* weightings of the various input and output data are required, because they are determined in the process.

The focus of this thesis lies in the efficiency analysis of the 95 Upper Austrian Raiffeisen banks using the BCC model.

The first part of this thesis focuses on the modeling and the selection of inputs and outputs, which will be used in the efficiency analysis of the 95 Upper Austrian Raiffeisen banks. This analysis is based on the approach for profitability.

Personnel expenses, material expenses (+depreciation) and the net expense are considered as inputs.

The net interest income, the income from loans and investments, the income from services and other incomes are considered as outputs.

In the second part of this thesis – the efficiency analysis – the efficiency of the Raiffeisen banks is determined under the assumption of variable (BCC model) returns to scale for the years 2010, 2011 and 2012. The results of the single years will also be compared among each other.

The analysis is performed for the average values of the inputs and outputs for the years 2010, 2011 and 2012.

In each case, the efficiency value, the reference set and the slacks are determined. Also the projections are calculated for the inefficient DMUs, which indicate the required improvement to achieve efficient performance.

Furthermore, the scale efficiency and the returns to scale are studied in detail.

Abstract of the activities from Lisa Hütthaler

The focus of this thesis lies in the efficiency analysis of the 95 Upper Austrian Raiffeisen banks using Data Envelopment Analysis.

In the efficiency analysis, the efficiency of the Raiffeisen banks is determined under the assumption of constant (CCR model) returns to scale for the years 2010, 2011 and 2012. The results of the single years will also be compared among each other. The analysis is performed for the average values of the inputs and outputs for the years 2010, 2011 and 2012.

In each case, the efficiency value, the reference set and the slacks are determined. The projections are calculated for the inefficient DMUs, which indicate the required improvement to achieve efficient performance.

The results of the efficiency analysis will be explained with the help of some representative Raiffeisen banks.

Furthermore, an outlook of an extension, concerning the efficiency analysis of 452 Upper Austrian Raiffeisen bank branches, is given in this thesis.

In this context, the approach for productivity will be presented; In this approach, a bank branch is understood as a producer of banking services and banking products. Based on this approach, suitable inputs and outputs for such an efficiency analysis will be specified.

Inhaltsverzeichnis

1.	Einle	eitung	1
2.	Data	a Envelopment Analysis	5
	2.1.	Das Grundmodell	Ę
		2.1.1. Motivierende Beispiele	5
	2.2.	Das CCR-Modell	Ĝ
		2.2.1. Das duale Problem	12
		2.2.2. Slack-Vektoren	13
		2.2.3. Referenzmenge	16
		2.2.4. Verbesserung der Effizienz	17
		2.2.5. Das Outputorientierte CCR-Modell	18
		2.2.6. Discretionary und Non-Discretionary Inputs	20
	2.3.	Das BCC-Modell	21
		2.3.1. Das Inputorientierte BCC-Modell	23
		2.3.2. Referenzmenge	24
		2.3.3. Verbesserung der Effizienz	25
		2.3.4. Das Outputorientierte BCC-Modell	25
		2.3.5. Skalenerträge	26
		2.3.6. Most Productive Scale Size (MPSS)	28
		2.3.7. Zerlegung der Technischen Effizienz	30
	2.4.	Das Additive Modell	32
		2.4.1. Translationsinvarianz des Additiven Modells	34
	2.5.	Das SBM-Modell	37
		2.5.1. Mix-Effizienz	39
		2.5.2. Referenzmenge	40
		2.5.3. Verbesserung der Effizienz	40
	2.6.	Zusammenfassung	41
3.	Prol	plemstellung	43
	3.1.	Software	45
	3.2.	Wahl der Inputs und Outputs	46
		3.2.1. Einfluss der Anzahl der Inputs und Outputs	46
		3.2.2. Leistungsmodelle	47
4.	Met	hodik	5 1
	4.1.	Modellwahl	51
		Effizienzmaße	52
5.	Effiz	zienzanalyse der 95 oberösterreichischen Raiffeisenbanken	5 3
		Effizienzbewertung der 95 Raiffeisenbanken für das Jahr 2010	54

		5.1.1.	Inputorientiertes CCR-Modell	. 54
		5.1.2.	Inputorientiertes BCC-Modell	. 59
		5.1.3.	Skaleneffizienz und Skalenverläufe	. 62
	5.2.	Effizie	nzbewertung der 95 Raiffeisenbanken für das Jahr 2011	. 67
		5.2.1.	Inputorientiertes CCR-Modell	. 67
		5.2.2.	Inputorientiertes BCC-Modell	. 69
		5.2.3.	Skaleneffizienz und Skalenverläufe	
	5.3.		überstellung der Jahre 2010 und 2011	
	0.0.	5.3.1.	Inputorientiertes CCR-Modell	
		5.3.2.	Inputorientiertes BCC-Modell	
		5.3.3.	Skaleneffizienz und Skalenverläufe	
	5 4		nzbewertung der 95 Raiffeisenbanken für das Jahr 2012	
	J. 1.	5.4.1.	Inputorientiertes CCR-Modell	
		5.4.2.	Inputorientiertes BCC-Modell	
		5.4.3.	Skaleneffizienz und Skalenverläufe	
	5.5.		überstellung der Jahre 2010, 2011 und 2012	
	5.5.	5.5.1.	,	
		5.5.2.	-	
		5.5.2.	Skaleneffizienz und Skalenverläufe	
		5.5.4.		
			Nähere Betrachtung der DMU ₂₄	
	F 6	5.5.5.	Nähere Betrachtung der DMU ₄	. 96
	5.6.		enzbewertung der 95 Raiffeisenbanken mit den Durchschnitts-	05
			n der Inputs und Outputs der Jahre 2010, 2011 und 2012	
		5.6.1.	Inputorientiertes CCR-Modell	
		5.6.2.	Inputorientiertes BCC-Modell	
		5.6.3.	Skaleneffizienz und Skalenverläufe	. 100
6	Con	clusio i	und Ausblick	105
υ.	Con	ciusio (and Adsbrick	100
Αį	pend	lix		107
•	Α.	Modif	izierter Nettoaufwand	. 107
	В.	Korrel	ationsmatrizen	. 108
	C.		e Erläuterung der Input- und Outputkriterien	
		C.1.	Input- und Outputkriterien für die Effizienzanalyse der 95	
			oberösterreichischen Raiffeisenbanken	. 109
		C.2.	Input- und Outputkriterien für die Effizienzanalyse auf Bank-	
			stellenebene	. 111
	D.	Projek	ctionstabellen der inputorientierten Modelle	
		D.1.	Tabellen der Projektionen für die inputorientierten Modelle	
		2.1.	der 95 Raiffeisenbanken für das Jahr 2010	119
		D.2.	Tabellen der Projektionen für die inputorientierten Modelle	
		D.2.	der 95 Raiffeisenbanken für das Jahr 2011	117
		D.3.	Tabellen der Projektionen für die Inputorientierten Modelle	
		₽.0.	der 95 Raiffeisenbanken für das Jahr 2012	191
		D.4.	Tabellen der Projektionen für die Inputorientierten Model-	. 141
		D.T.	le der 95 Raiffeisenbanken mit den Durchschnittswerten der	
			Inputs und Outputs der Jahre 2010, 2011 und 2012	195
	E.	Outry	atorientierte Modelle	
		3 7 11 6 1 3 1	1001 CH0151 DE MOUEHE	1.7.2

E.1.	Outputorientierte Modelle der 95 Raiffeisenbanken für das		
	Jahr 2010	. 129	
E.2.	Outputorientierte Modelle der 95 Raiffeisenbanken für das		
	Jahr 2011	. 136	
E.3.	Outputorientierte Modelle der 95 Raiffeisenbanken für das		
	Jahr 2012	. 142	
E.4.	Outputorientierte Modelle der 95 Raiffeisenbanken mit den		
	Durchschnittswerten der Inputs und Outputs der Jahre 2010,		
	2011 und 2012	. 148	
E.5.	Projektionen für die Outputorientierten Modelle der 95 Raiff-		
	eisenbanken für das Jahr 2010	. 154	
E.6.	Projektionen für die Outputorientierten Modelle der 95 Raiff-		
	eisenbanken für das Jahr 2011	. 160	
E.7.	Projektionen für die Outputorientierten Modelle der 95 Raiff-		
	eisenbanken für das Jahr 2012	. 166	
E.8.	Projektionen für die Outputorientierten Modelle der 95 Raiff-		
	eisenbanken mit den Durchschnittswerten der Inputs und		
	Outputs der Jahre 2010, 2011 und 2012	. 172	
F. Sonsti	ges	. 178	
Abbildungsverzeichnis			
Tabellenver	zeichnis	. 180	
Literaturverzei	chnis	185	

Kapitelaufteilung

Kapitel 1: Sigrid Dannbauer und Lisa Hütthaler

- Kapitel 2.1: Sigrid Dannbauer und Lisa Hütthaler Kapitel 2.2: Lisa Hütthaler Kapitel 2.3: Sigrid Dannbauer Kapitel 2.4: Sigrid Dannbauer Kapitel 2.5: Lisa Hütthaler Kapitel 2.6: Sigrid Dannbauer und Lisa Hütthaler
- Kapitel 3.1: Sigrid Dannbauer und Lisa Hütthaler
- Kapitel 3.2.1: Sigrid Dannbauer
- Kapitel 3.2.2: Sigrid Dannbauer und Lisa Hütthaler

Kapitel 4: Sigrid Dannbauer

Kapitel 5.1.1: Lisa Hütthaler Kapitel 5.1.2: Sigrid Dannbauer Kapitel 5.1.3: Sigrid Dannbauer Kapitel 5.2.1: Lisa Hütthaler Kapitel 5.2.2: Sigrid Dannbauer Kapitel 5.2.3: Sigrid Dannbauer Kapitel 5.3.1: Lisa Hütthaler Kapitel 5.3.2: Sigrid Dannbauer Kapitel 5.3.3: Sigrid Dannbauer Kapitel 5.4.1: Lisa Hütthaler Kapitel 5.4.2: Sigrid Dannbauer Kapitel 5.4.3: Sigrid Dannbauer Kapitel 5.5.1: Lisa Hütthaler Kapitel 5.5.2: Sigrid Dannbauer Kapitel 5.5.3: Sigrid Dannbauer Kapitel 5.5.4: Sigrid Dannbauer und Lisa Hütthaler Kapitel 5.5.5: Sigrid Dannbauer und Lisa Hütthaler Kapitel 5.6.1: Lisa Hütthaler

Kapitel 6: Lisa Hütthaler

Kapitel 5.6.2: Sigrid Dannbauer Kapitel 5.6.3: Sigrid Dannbauer Appendix: Sigrid Dannbauer und Lisa Hütthaler

1. Einleitung

Die Effizienz ("do the things right") ist ein Maß für die Wirtschaftlichkeit und ist das Verhältnis zwischen dem erreichten Erfolg und dem dafür benötigten Einsatz. Das angestrebte Ziel ist es, mit möglichst geringem Aufwand einen gegebenen Ertrag zu erreichen bzw. mit gegebenem Aufwand einen möglichst großen Ertrag zu erreichen.

Effizienz geht auf den lateinischen Begriff efficere zurück, der mit "eine Tat ausführen" oder "zustande bringen" übersetzt wird und kann mathematisch folgendermaßen dargestellt werden:

$$Effizienz = \frac{Nutzen}{Aufwand}.$$

Eine fundierte Effizienzanalyse ist in der heutigen Zeit für jedes Unternehmen unabdingbar. Um sich auf einem Markt mit wachsender Konkurrenz zu behaupten, muss ein Unternehmen so effizient wie möglich sein. Gerade für kleinere und mittelgroße Unternehmen ist die Effizienz sehr wichtig, weil ihre Ressourcen im Vergleich zu globalen Unternehmen begrenzt sind.

Vor allem im Bereich der Finanzinstitute erlebte man in den letzten Jahren erhebliche Veränderungen aufgrund des technologischen Fortschritts, der reduzierten Informationskosten und der anhaltenden Überregulierung des Kapitalverkehrs und der Kapitalmärkte.

In dieser Arbeit wird die Data Envelopment Analysis (DEA) vorgestellt, die ein leistungsfähiges Instrument hierzu darstellt.

Durch die Möglichkeit, mittels DEA Leistungslücken zu quantifizieren und hieraus konkrete Handlungsempfehlungen abzuleiten, ergibt sich ein hoher Grad an Anwendbarkeit und damit eine entsprechende Akzeptanz in der Praxis. Es wird bei der DEA ausgewiesen, welche Parameter für festgestellte Leistungslücken verantwortlich sind und wie stark diese zu verändern wären, um Effizienz zu erreichen.

Das ursprüngliche Einsatzgebiet der DEA ist der "Non-Profit"-Sektor, da hier keine monetären Erfolge ausgewiesen werden. Daraus ergibt sich ein Gewichtungsproblem für die verwendeten In- und Outputfaktoren.

Welches Potential dieses Verfahren in sich birgt, zeigt die schnelle Verbreitung. Im Laufe der Zeit fanden auch in privatwirtschaftlichen Unternehmen, wie Kreditinstituten oder Industriebetrieben, Untersuchungen mit Hilfe der DEA statt, da in vielen Bereichen eine monetäre Größe in der Regel keine eindeutige Aussage über die Qualität von Unternehmensbereichen erlaubt. Genau diese Forderung nach einem Instrument für die Effizienzmessung der Mehrdimensionalität der Leis-

tungserbringung erfüllt die DEA.

Somit kam es innerhalb der letzten Jahre weltweit zu einer weitgefächerten Sammlung an DEA-Studien, um Performancemessungen durchzuführen und zwar in den unterschiedlichsten Sparten und Aufgabenbereichen, mit den unterschiedlichsten Datensätzen.

Die DEA wurde unter anderem auch dazu verwendet, um neue Einblicke in die betrieblichen Tätigkeiten von Unternehmen zu erhalten, die zuvor bereits anhand anderer Methoden bewertet wurden. Hier wurden mit Hilfe des Benchmark-Verfahrens der DEA in einigen der profitabelsten Firmen zahlreiche Ineffizienzquellen identifiziert, Firmen, die zuvor als Benchmarks¹ aufgrund ihrer hohen Profitabilität dienten.

Als Beispiel wollen wir hier das Paper "Managing Bank Productivity Using Data Envelopment Analysis (DEA)" von H. David Sherman und George Ladino aus dem Jahr 1995 anführen.

Untersucht wird in dieser Arbeit eine Bank, die im Folgenden Growth Bank genannt wird.

Die Manager der Growth Bank wollten das Filialsystem über die bestehenden 33 Filialen hinaus erweitern, um einen größeren geographischen Bereich abzudecken. Die Growth Bank setzte sich - unter Anwendung der DEA - die Verbesserung der Produktivität und des Profits ihrer Filialen zum Ziel, ohne dabei die Servicequalität zu senken. Sie hofften, auch Ressourcen für die zusätzlichen Filialen zu erwirtschaften, indem sie Kosten für das bestehende Netzwerk sparten.

Die Effizienzanalyse mittels DEA ergab, dass einige von den profitablen Filialen erhebliche Ineffizienzen aufwiesen.

Bei der Analyse wurden Personalkosten, Büroflächen, Betriebskosten und Miete als Inputs herangezogen. Die Outputs setzten sich aus Einzahlungen, Abhebungen, Reiseschecks², Kreditgeschäfte, neue Konten usw. zusammen.

Die DEA Ergebnisse zeigten, dass eine Filiale mehr als 2,5 Millionen Dollar an überschüssigen Betreuungskosten aufwies. Es stellte sich heraus, dass dieser Überschuss unbemerkt blieb, da die Filiale hohen Profit aufzeigte.

Im Gegensatz zu vielen Benchmarkingansätzen, die darauf angewiesen sind, dass der Manager beobachtet, vergleicht und die am besten zu praktizierende Technik identifiziert, hilft DEA dem User die besten Praktiken zu identifizieren, die zu komplex sind, um durch Beobachtung und herkömmliche analytische Techniken identifiziert zu werden. Schlussendlich ergab die Analyse eine jährliche Einsparmöglichkeit von über 6 Millionen Dollar für die gesamte Growth Bank.

Der erste Abschnitt der vorliegenden Arbeit umfasst die theoretischen Grundlagen

¹Unter dem Begriff Benchmark versteht man hier einen Referenz- oder Vergleichswert, mit dem sich andere Unternehmen vergleichen. Der Referenzwert gilt als der beste in seiner Branche oder im Vergleich mit allen anderen. (vgl. Camp (1989))

²An dieser Stelle sei bemerkt, dass das Paper 1995 publiziert wurde. Outputs wie Bankschecks und Reiseschecks würden bei aktuellen Analysen aufgrund des technologischen Fortschritts nicht mehr verwendet werden. Noch bis vor einigen Jahren war die Zahlung per Scheck für größere Beträge üblich. Auch heute ist ein Scheck zwar noch ein gültiges Zahlungsmittel, wird aber aufgrund der steigenden Anzahl an Betrugsfällen kaum mehr verwendet.

der DEA, welche im zweiten Abschnitt zur Bewertung der Effizienz herangezogen werden.

Der zweite Abschnitt dieser Arbeit beschäftigt sich mit der Bewertung und Effizienzanalyse der oberösterreichischen Raiffeisenbanken auf Gesamtbankebene mittels der DEA.

Grundprinzip der DEA

Die Objekte, deren Effizienz zu messen ist, werden in der DEA-Literatur meist unter der Bezeichnung Decision Making Unit (DMU) geführt.

Diese Bezeichnung soll verdeutlichen, dass DEA auf die verschiedensten Objekte im privaten und öffentlichen Sektor anwendbar ist, welche Entscheidungen bzgl. des Einsatzes von Inputs und Outputs treffen (vgl. Charnes et al. (1978)). In betriebswirtschaftlichen Analysen können DMUs zum Beispiel Bankfilialen, Krankenhäuser, Filialen von Supermärkten und Werke von Industriebetrieben darstellen. In der Technik können DMUs Formen, wie Flugzeuge, oder ihre Bestandteile, wie Düsenantriebe etc., annehmen.

DMUs können im weitesten Sinn als Systeme charakterisiert werden, die Inputs in Outputs transformieren.(vgl. Scheel (2000), S.12)

Unter dem Begriff Input versteht man den Einsatz aller materiellen und immateriellen Mittel und Leistungen in einem Betrieb (Aufwand) und unter dem Begriff Output versteht man den Nutzen, der aus den eingesetzten Inputs resultiert (Ertrag).

Voraussetzung für eine auf dem Vergleich von DMUs basierende Effizienzmessung ist, dass mit gleichen Mitteln die gleichen Ziele verfolgt werden. Dies bedeutet, dass alle DMUs, welche in einer Effizienzanalyse berücksichtigt werden sollen, durch die gleichen Outputs und Inputs charakterisiert werden können. Sie unterscheiden sich lediglich durch die Quantitäten, in denen sie Inputs einsetzen, bzw. Outputs erzeugen (vgl. Scheel (2000), S.13).

Die **Data Envelopment Analysis** ist eine auf linearer Optimierung basierende Technik zur Effizienzanalyse aus dem Bereich des Operations Research und stellt den bedeutendsten Vertreter nicht parametrischer Methoden der Effizienzanalyse dar.

Ein Vorteil der nicht parametrischen Verfahren ist, dass keine A-priori-Kenntnisse über funktionelle Zusammenhänge der betrachteten Inputs und Outputs notwendig sind. Besonders wichtig ist diese Eigenschaft, da eine Produktionsfunktion in realen, meist komplexen Situationen aufgrund fehlender Anhaltspunkte über den tatsächlichen Zusammenhang zwischen Inputs und Outputs kaum bekannt sein dürfte (vgl. Bauer et al. (2007), S.34). Bei der DEA wird stattdessen eine empirische Randproduktionsfunktion allein auf Basis der tatsächlich realisierten Inputund Outputkombinationen beobachteter DMUs gebildet.

Zur Beurteilung der Effizienz der Entscheidungseinheiten, wird jede DMU, die in

die Untersuchung einfließt, mit jeder anderen verglichen (vgl. Golany et al. (1990)).

Der Vergleich der DMUs kann bei der DEA über alle relevanten Input- und Outputfaktoren stattfinden, wodurch eine sinnvolle Effizienzbewertung in praktischen Situationen möglich wird, die durch mehrere Input- und Outputfaktoren gekennzeichnet sind. Hierbei ist zu betonen, dass die Inputs und Outputs nicht in Geldeinheiten angegeben werden müssen.

Der besondere Vorteil der DEA-Methodik liegt in der Transformation aller Inputs und Outputs in ein skalares Performancemaß in Form eines Effizienzwertes für die jeweiligen betrachteten DMUs (vgl. Bauer et al. (2007), S.37).

Die Stärken und Schwächen jeder Entscheidungseinheit werden bei der Effizienzbewertung bestmöglich widergespiegelt, da bei der DEA die Gewichte, anhand derer die Inputs und Outputs bewertet werden, für jede DMU individuell evaluiert werden. Durch dieses Prinzip wird es ermöglicht, den aktuellen Effizienzwert einer DMU so "wohlwollend" wie möglich auszuweisen, d.h. zu maximieren (vgl. Charnes et al. (1978), S.430). Jene Entscheidungseinheiten, deren maximales Verhältnis aus individuell gewichteten Inputs und Outputs von keiner anderen Einheit dominiert wird, werden als relativ effizient ausgewiesen (vgl. Charnes et al. (1997), S.6). Diesen DMUs wird dann ein Effizienzwert von 1 zugewiesen und sie bilden als Peergroup die Efficient Frontier, welche grafisch die bestpraktizierendsten Unternehmen verbindet und als Rand des technisch möglichen interpretiert wird. Diese DMUs werden auch als Vergleichsmaßstab für die restlichen DMUs herangezogen. Die Effizienzmessung anhand eines Vergleichs mit einer Referenz-DMU ermöglicht es, nicht nur das Ausmaß der Ineffizienz durch Bestimmung des Abstandes zur Efficient Frontier zu erkennen, sondern auch deren Quellen in Form von Verbesserungsmöglichkeiten bei jedem Input und Output zu bestimmen (vgl. Bauer et al. (2007), S.52). Aufgrund der Tatsache, dass als Referenzmaßstäbe die Leistungen von ähnlichen effizienten DMUs herangezogen werden, zeigen die DEA-Ergebnisse auch tatsächlich realisierbare Verbesserungspotentiale auf (vgl. Bürkle (1997), S.30).

2. Data Envelopment Analysis

In den folgenden Kapiteln werden das CCR-Modell (Kapitel 2.2), das BCC-Modell (Kapitel 2.3), das Additive Modell (Kapitel 2.4), sowie das SBM-Modell (Kapitel 2.5) im Detail erklärt. Diese Erläuterungen, sowie die in dieser Arbeit angeführten Beispiele, orientieren sich überwiegend an dem Buch von Cooper und Seiford (2000).

Die folgenden Notationen finden im Laufe dieser Arbeit immer wieder Anwendung und werden daher hier zusammenfassend angeführt, um einen besseren Überblick zu gewinnen:

Notation 2.1

- Für zwei Punkte $P = (p_x, p_y) \in \mathbb{R}^2$ und $A = (a_x, a_y) \in \mathbb{R}^2$ definieren wir d(P, A) als den Abstand zwischen den beiden Punkten P und A, das heißt $d(P, A) := \sqrt{(a_x p_x)^2 + (a_y p_y)^2}$.
- Für einen Punkt $P=(p_x,p_y)\in\mathbb{R}^2$ definieren wir |P| als den Abstand von P zum Ursprung, das heißt $|P|:=d(P,0)=\sqrt{p_x^2+p_y^2}$.
- Vektoren x werden fett geschrieben und ihre Komponenten werden mit (x_1, \ldots, x_n) bezeichnet.
- Wir schreiben x > 0, wenn jede Komponente von x größer 0 ist und $x \ge 0$, wenn jede Komponente von x größer oder gleich 0 ist.
- Wir nennen einen Vektor x semipositiv, wenn gilt $x \geq 0$ und $x \neq 0$.
- Für eine Matrix $X \in \mathbb{R}^{m \times n}$ bezeichnen wir mit x_{ij} $(i \in \{1, ..., m\}, j \in \{1, ..., n\})$ die Komponenten und mit $x_1, ..., x_n$ die Spalten der Matrix.

2.1. Das Grundmodell

Im Folgenden werden wir grundlegende Überlegungen anhand von illustrativen Beispielen behandeln, welche die Ausgangsbasis für jegliche Arten von DEA Modellen sind.

2.1.1. Motivierende Beispiele

Beispiel 2.2 (Beispiel 1 - Ein Input und ein Output):

Als Beispiel für diesen Fall gehen wir von sechs verschiedenen Filialen aus, die wir im Folgenden mit A bis F bezeichnen und betrachten die Anzahl der Angestellten als Input und die Verkäufe als Output. Als Maß an Produktivität kann dann das Verhältnis der Verkäufe pro Angestellte betrachtet werden.

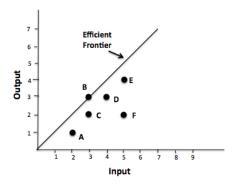


Abbildung 2.1.: Ein Input und ein Output

Das Output-Input-Verhältnis einer DMU entspricht in Abbildung 2.1 der Steigung der Geraden, welche jede DMU mit dem Ursprung verbindet.

Die Efficient Frontier ist im Fall von konstanten Skalenerträgen 3 – wie in der Abbildung dargestellt – eine Gerade, die aus dem Ursprung führend durch die DMU bzw. DMUs mit der größten Steigung verläuft, also mit dem höchsten Output-Input-Verhältnis. Die Efficient Frontier berührt also zumindest einen Punkt, in unserem Fall B, und alle anderen Punkte liegen auf oder unterhalb dieser Linie. Die Bezeichnung "Data Envelopment Analysis" resultiert aus der Tatsache, dass alle betrachteten Punkte von dieser Grenze umhüllt werden. 4

Dabei werden jene Punkte, welche auf der Efficient Frontier liegen, als effizient bewertet.

Im Fall unseres Beispiels erkennen wir anhand von Abbildung 2.1, dass die Filiale B effizient ist, da sie auf der Efficient Frontier liegt und F am ineffizientesten ist, da dieser Punkt am weitesten von der Frontier entfernt liegt. Das bedeutet, dass – verglichen mit B – alle anderen DMUs ineffizient sind. Die relative Effizienz einer ineffizienten DMU $P=(p_x,p_y)$ zur effizienten DMU $B=(b_x,b_y)$ kann folgendermaßen formuliert werden:

$$0 \le \frac{\frac{p_y}{p_x}}{\frac{b_y}{b_x}} \le 1.$$

Anhand dieser kann nun auch die Leistung ermittelt werden, die für eine ineffiziente DMU notwendig ist, um auf die Efficient Frontier zu gelangen und zwar entweder

³Nimmt man konstante Skalenerträge an, so wird unterstellt, dass bei Variation der Einsatzmengen das Verhältnis von Output zu Input und somit die Produktivität stets konstant bleibt. (vgl. Cantner et al. (2007))

⁴Es ist natürlich nicht besonders realistisch anzunehmen, dass sich die Efficient Frontier ins Unendliche mit derselben Steigung bewegt. Dieses Problem wird später noch durch die Einführung verschiedener DEA Modelle behandelt.

durch Reduktion der Inputs, was in unserem Beispiel die Entlassung von Mitarbeitern zur Folge hätte, bei gleich bleibenden Outputs (inputorientiert), oder durch Erhöhung der Outputs, d.h. eine Steigerung der Verkäufe, bei gleich bleibenden Inputs (outputorientiert).

Beispiel 2.3 (Beispiel 2 - Zwei Inputs und ein Output):

Im Beispiel mit zwei Inputs (x_1, x_2) und einem Output y wird der Output aller DMUs unter der Annahme von konstanten Skalenerträgen mit 1 vereinheitlicht und folglich die Inputwerte insofern normiert, dass diese genau einen Output von 1 erzielen (inputorientiert).

Es können nun jene DMUs, die weniger an Input benötigen, um eine Einheit an Output zu erzeugen, als effizienter beurteilt werden. Wir identifizieren daher in der folgenden Abbildung 2.2 jenes Geradenstück als Efficient Frontier, welche die DMUs C, D und E verbindet. Kein Punkt auf dieser Frontier kann einen Input verbessern, ohne den anderen zu verschlechtern.

Die vertikale Linie wird durch den letzten Punkt E der Efficient Frontier auf der x-Achse und die horizontale Linie durch den letzten Punkt C der Efficient Frontier auf der y-Achse begrenzt. Die dadurch entstehende Fläche wird als Production Possibility Set bezeichnet. Darunter versteht man die Menge aller Kombinationen von Inputs und Outputs, die technologisch realisierbare Produktionsmöglichkeiten darstellen.

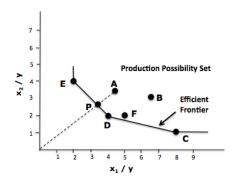


Abbildung 2.2.: Zwei Inputs und ein Output

Der Effizienzgrad einer ineffizienten Filiale wird wie folgt berechnet:

Zuerst wird eine Gerade vom Ursprung durch den betrachteten ineffizienten Punkt, zum Beispiel A, gelegt. Der Punkt, an dem diese Gerade die Efficient Frontier schneidet, wird mit P bezeichnet (Dies wird durch die strichlierte Linie in der obigen Abbildung 2.2 dargestellt). Der Punkt P liegt auf der Efficient Frontier zwischen zwei effizienten DMUs und diese beiden Punkte bilden die sogenannte $Referenzmenge^5$ für den beobachteten Datenpunkt.

 $^{^5}$ siehe Definition 2.2

Der Effizienzgrad der beobachteten DMU A ist nun definiert als $\frac{|P|}{|A|}$.

Die Referenzmengen der ineffizienten Filialen können voneinander abweichen. In der Abbildung ist zu erkennen, dass viele DMUs rund um D zusammenkommen, das bedeutet, dass D eine effiziente Filiale ist, die auch "repräsentativ" ist, während C und E zwar effizient sind, aber auf der Efficient Frontier weit entfernt von den anderen Beobachtungen liegen.

Eine Möglichkeit zur Verbesserung der Effizienz für die DMU A besteht darin, die Inputwerte so zu verändern, dass sie den Koordinaten von P entsprechen.

Beispiel 2.4 (Beispiel 3 - Ein Input und zwei Outputs):

In diesem Beispiel gehen wir von einem Input x und zwei Outputs (y_1, y_2) aus. In dem betrachteten Fall wird diesmal der Input mit 1 vereinheitlicht, d.h. die Outputwerte ergeben sich unter der Annahme, dass jede DMU einen Input von 1 aufweist (outputorientiert).

Die Efficient Frontier besteht in diesem Beispiel nun aus jenen Linien, welche B, E und F verbinden (siehe Abbildung 2.3).

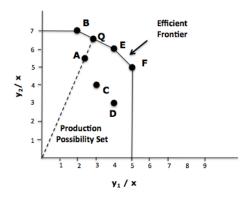


Abbildung 2.3.: Ein Input und zwei Outputs

Das Production Possibility Set ist in diesem Fall jener Bereich, welcher durch die Achsen und der Efficient Frontier begrenzt ist.

Der Grad der Ineffizienz der DMUs A, C und D wird analog zum Fall mit zwei Inputs und einem Output ermittelt. Der Effizienzgrad der beobachteten DMU A ist beispielsweise durch $\frac{|A|}{|Q|}$ definiert.

Um eine effiziente DMU zu erhalten, können wiederum die Outputs proportional so verändert werden, dass die Koordinatenwerte von Q erreicht werden.

2.2. Das CCR-Modell

Dieses Kapitel beschäftigt sich mit einem der elementarsten DEA Modelle, dem CCR-Modell, welches anfänglich von Charnes, Cooper und Rhodes 1978 aufgestellt und zu Ehren der Autoren benannt wurde. (vgl. Charnes et al. (1978))

Im Folgenden betrachten wir m Inputs und s Outputs, wobei die Input- und Outputdaten für DMU_j in einem Vektor $\boldsymbol{x_j} = (x_{1j}, x_{2j}, \ldots, x_{mj})$ bzw. $\boldsymbol{y_j} = (y_{1j}, y_{2j}, \ldots, y_{sj})$ zusammengefasst werden.

Dann können die Input
datenmatrix X und die Output datenmatrix Y für n DMUs,
 m Inputs und s Outputs folgendermaßen dargestellt werden:

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{pmatrix}, \quad Y = \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{s1} & y_{s2} & \cdots & y_{sn} \end{pmatrix}. \tag{2.1}$$

Vorerst verlangen wir positive Daten für die Input- und Outputwerte, d.h. $x_j > 0$, $y_j > 0$. Allerdings verlangen wir nicht, dass die Einheiten, in denen die unterschiedlichen Inputs und Outputs angegeben sind, übereinstimmen müssen. Einige können zum Beispiel Personenanzahlen, Grundflächen oder Ausgaben etc. enthalten. Dies resultiert aus der Verwendung eines äquiproportionalen Effizienzmaßes, mittels dessen für jede DMU eine relative Effizienz als prozentueller Anteil der maximal möglichen Performance ausgewiesen wird. Es erfolgt also keine Interpretation der Effizienzwerte in absoluten Maßeinheiten.

Die Berechnung des Effizienzwertes erfolgt durch die Maximierung des Quotienten aus der Summe der gewichteten Outputs und der Summe der gewichteten Inputs. Formal lässt sich dies in dem folgenden *Fractional Programming Problem*, kurz FP, darstellen.

$$(FP_{o}) \quad \max \quad \theta = \frac{u_{1}y_{1o} + u_{2}y_{2o} + \dots + u_{s}y_{so}}{v_{1}x_{1o} + v_{2}x_{2o} + \dots + v_{m}x_{mo}}$$

$$\text{s.t.} \quad \frac{u_{1}y_{1j} + \dots + u_{s}y_{sj}}{v_{1}x_{1j} + \dots + v_{m}x_{mj}} \le 1 \quad (j = 1, \dots, n)$$

$$v_{1}, v_{2}, \dots, v_{m} \ge 0$$

$$u_{1}, u_{2}, \dots, u_{s} \ge 0$$

$$(2.2)$$

Die Lösung von FP_o wird mit $\theta_o^* = \theta_o^*(\boldsymbol{v_o^*}, \boldsymbol{u_o^*})$ bezeichnet, wobei $\boldsymbol{v_o^*}$ und $\boldsymbol{u_o^*}$ die maximierenden Gewichte für die Input- und Outputwerte der DMU_o bezeichnen.

 $^{^6\}mathrm{Diese}$ Bedingung wird zu einem späteren Zeitpunkt in diesem Kapitel auf Seite12noch abgeschwächt.

Im Folgenden fixieren wir $o \in \{1, ..., n\}$ und schreiben θ^* statt θ_o^* .

In die Ermittlung des Effizienzwertes der zu bewertenden DMU_o fließen s mit u_r gewichtete Outputeinträge y_{ro} $(r=1,\ldots,s)$ und m mit v_i gewichtete Inputeinträge x_{io} $(i=1,\ldots,m)$ ein.

Wie bereits erwähnt, sind in der DEA keine A-priori-Vorgaben – mit Ausnahme der Nichtnegativität – über die Gewichtung der einzelnen Input- und Outputfaktoren notwendig, stattdessen werden die optimalen Gewichte v_i^* und u_r^* als Lösung des Programms bestimmt. Die Gewichte werden dabei für jede DMU so festgelegt, dass deren Effizienzwert θ maximal wird.⁷

Der auf diese Art und Weise ermittelte Effizienzwert wird mit denen jeder anderen der n beobachteten DMUs verglichen. Dies geschieht unter der Nebenbedingung, dass keine DMU mit den optimalen Gewichten der DMU_o einen Effizienzwert größer als 1 erreicht, d.h. der optimale Zielwert θ^* kann höchstens den Wert 1 annehmen.

Das FP wird für alle in der Analyse beobachteten DMUs durchlaufen, daher benötigen wir n Optimierungen, um die Effizienz jeder DMU zu bewerten.

Um aus dem obigen FP ein lineares Programm zu gewinnen, kann der Nenner aus der Hauptbedingung in (2.2) gleich 1 gesetzt werden, da Verhältniszahlen invariant sind, wenn Zähler und Nenner mit derselben Zahl multipliziert werden. Diese Umformung wird durch die erste Nebenbedingung in (2.3) ausgedrückt.

Wir erhalten schließlich folgendes Lineares Programm (LP), welches äquivalent zu FP ist:

$$(LP_{o}) \quad \max \quad \theta = u_{1}y_{1o} + u_{2}y_{2o} + \dots + u_{s}y_{so}$$
s.t.
$$v_{1}x_{1o} + \dots + v_{m}x_{mo} = 1$$

$$u_{1}y_{1j} + \dots + u_{s}y_{sj} \leq v_{1}x_{1j} + \dots + v_{m}x_{mj} \quad (j = 1, \dots, n) \quad (2.3)$$

$$v_{1}, v_{2}, \dots, v_{m} \geq 0$$

$$u_{1}, u_{2}, \dots, u_{s} \geq 0.$$

Mit dem Zeilenvektor \boldsymbol{v} für die Input-Multiplikatoren und dem Zeilenvektor \boldsymbol{u} für die Output-Multiplikatoren erhalten wir mit Vektor-Matrix Notation die folgende Multiplikatorform

$$\begin{array}{ll} (\mathrm{LP}_o) & \max & \boldsymbol{u}\boldsymbol{y_o} \\ & \mathrm{s.t.} & \boldsymbol{v}\boldsymbol{x_o} = 1 \\ & -\boldsymbol{v}\,\boldsymbol{X} + \boldsymbol{u}\boldsymbol{Y} \leq \boldsymbol{0} \\ & \boldsymbol{v} \geq \boldsymbol{0}, \ \boldsymbol{u} \geq \boldsymbol{0}. \end{array}$$

⁷Grafisch betrachtet bedeutet das Zulassen der bestmöglichen Gewichtungen für eine DMU, den Abstand zur Efficient Frontier zu minimieren. Dieser Abstand drückt den Grad der Ineffizienz aus. Daher werden für die Bestimmung des Effizienzwertes jene Gewichte verwendet, die eine DMU selbst wählen würde, um sich im besten Licht erscheinen zu lassen. (vgl. Bauer et al. (2007), S.46)

Theorem 2.5 (Einheitsinvarianz):

Die optimalen Werte für θ^* in den Hauptbedingungen von (2.2) und (2.3) sind unabhängig von den Einheiten, in denen die Inputs und Outputs gemessen werden, unter der Bedingung, dass diese Einheiten für alle DMUs gleich sind. Mathematisch bedeutet dies, dass, wenn x_{ij} und y_{rj} in den Hauptbedingungen von (2.2) und (2.3) durch $k_i x_{ij}$ und $c_r y_{rj}$ für gewisse $k_i, c_r > 0$ ersetzt werden, sich das zugehörige Optimum θ^* nicht ändert.

Beweis.

Um die Einheitsinvarianz in der Hauptbedingung von (2.2) zu beweisen, ersetzen wir zunächst die ursprünglichen y_{rj} und x_{ij} durch $c_r y_{rj}$ und $k_i x_{ij}$ für gewisse $c_r, k_i > 0$.

Dann erhalten wir für $u_r^{'} = u_r^*/c_r$ und $v_i^{'} = v_i^*/k_i$ eine Lösung zu dem transformierten Problem mit $\theta^{'} = \theta^*$. Ein optimaler Wert für das transformierte Problem muss daher $\theta^{'*} \geq \theta^*$ erfüllen.

Angenommen es gilt $\theta'^* > \theta^*$. Dann erfüllen $u_r = u_r'^* c_r$ und $v_i = v_i'^* k_i$ allerdings die ursprünglichen Nebenbedingungen. Also bildet die Annahme $\theta'^* > \theta^*$ einen Widerspruch zur Optimalität, die für θ^* unter diesen Bedingungen angenommen wurde. Daher muss $\theta'^* = \theta^*$ gelten, was die Invarianz in der Hauptbedingung von (2.2) beweist. Analoges gilt für (LP_o) .

Definition 2.6 (CCR-Effizienz):

Wir nennen die DMU_o CCR-effizient, falls $\theta^* = 1$ gilt und zumindest ein optimales Paar $(\boldsymbol{v}^*, \boldsymbol{u}^*)$ existiert, mit $\boldsymbol{v}^* > \boldsymbol{0}$ und $\boldsymbol{u}^* > \boldsymbol{0}$. Ansonsten ist DMU_o CCR-ineffizient.

Diese Definition steht im Einklang mit der Pareto-Koopmans-Effizienz, die wir in Kapitel 2.2.2 noch genauer behandeln werden. (vgl. Definition 2.13)

CCR-Ineffizienz bedeutet daher, dass entweder $\theta^* < 1$, oder $\theta^* = 1$ gilt und zumindest eine Komponente von $(\boldsymbol{v}^*, \boldsymbol{u}^*)$ gleich null für jede optimale Lösung von (LP_o) ist

Wir betrachten nun den Fall, dass DMU_o einen Wert $\theta^* < 1$ aufweist. Dann existiert in der zweiten Nebenbedingung von (2.3) zumindest eine DMU_j mit Inputs und Outputs x_j bzw. $y_j, j \in \{1, \ldots, n\}$, sodass das Gewicht (v^*, u^*) Gleichheit zwischen der linken und der rechten Seite erzeugt, da ansonsten θ^* vergrößert werden könnte.

Definition 2.7 (Referenzmenge):

Unter den obigen Voraussetzungen definieren wir

$$E_o = \left\{ j : \sum_{r=1}^s u_r^* y_{rj} = \sum_{i=1}^m v_i^* x_{ij} \right\}.$$

Wir bezeichnen E_o , bestehend aus CCR-effizienten DMUs, als Referenzmenge oder Peer Group für DMU $_o$.

Für eine effiziente DMU_o besteht E_o aus der DMU selbst. Die von E_o aufgespannte Menge wird als Efficient Frontier der DMU_o bezeichnet.

Im Folgenden lockern wir die Annahme von positiven zu semipositiven⁸ Input- und Outputwerten auf. Für semipositive Vektoren $\boldsymbol{x} \in \mathbb{R}^m$ und $\boldsymbol{y} \in \mathbb{R}^s$ nennen wir das Paar $(\boldsymbol{x}, \boldsymbol{y})$ Activity.

Definition 2.8 (Production Possibility Set):

Wir definieren das Production Possibility Set als die Menge

$$P = \{(\boldsymbol{x}, \boldsymbol{y}) \mid \exists \ \boldsymbol{\lambda} \in \mathbb{R}^n \text{ semipositiv mit } \boldsymbol{x} \geq X\boldsymbol{\lambda}, \ \boldsymbol{y} \leq Y\boldsymbol{\lambda}\}.$$

Bemerkung 2.9

Es ist leicht zu sehen, dass das Production Possibility Set die folgenden Eigenschaften erfüllt:

- 1. Die beobachteten Activities (x_j, y_j) (j=1,...,n) liegen in P.
- 2. Wenn eine Activity (x, y) zu P gehört, dann gehört auch die Activity (tx, ty) für jedes t > 0 zu P. Wir nennen diese Eigenschaft konstante Skalenerträge.
- 3. Für eine Activity (x, y) in P ist auch jede semipositive Activity (\bar{x}, \bar{y}) mit $\bar{x} \geq x$ und $\bar{y} \leq y$ in P enthalten. Das bedeutet, dass eine Activity, die in keiner Komponente mit weniger Input als x auskommt und in keiner Komponente mehr Output als y erzeugt, erreichbar ist.
- 4. Jede semipositive Linearkombination von Activities in P gehört ebenfalls zu P.

2.2.1. Das duale Problem

Gemäß dem Dualitätssatz der linearen Programmierung⁹ lässt sich das duale Problem von (LP_o), welches auch *Envelopmentform* von (LP_o) genannt wird, mit einer reellen Variable θ und einem nichtnegativen Vektor $\lambda = (\lambda_1, \dots, \lambda_n)^T$ von Variablen wie folgt ausdrücken:

(DLP_o) min
$$\theta$$

s.t. $\theta x_o \ge X\lambda$
 $Y\lambda \ge y_o$
 $\lambda > 0$. (2.4)

Die Lösung bezeichnen wir mit $\theta^* = \theta^*(\lambda^*)$.

Da $\theta = 1$, $\lambda_o = 1$, $\lambda_j = 0$ $(j \neq o)$ eine zulässige Wahl von Parametern für (DLP_o)

⁸siehe Notation 2.1

 $^{^9\}mathrm{Der}$ Dualitätssatz der linearen Programmierung kann im Anhang nachgelesen werden. (Satz 6.1)

ist, kann der optimale Effizienzwert θ^* keinen Wert größer als 1 annehmen. Weiters zwingt die Einschränkung in der zweiten Nebenbedingung von (2.4) λ dazu, aufgrund der semipositiven Annahme der Daten, ungleich null zu sein, da $y_o \geq 0$ und $y_o \neq 0$ erfüllt sein muss. Daher muss wegen der ersten Nebenbedingung in (2.4) die Variable θ größer als null sein.

Beim (DLP_o) wird der gewichtete Input der betrachteten DMU_o proportional bis an die Effizienzgrenze reduziert. Der Zielwert θ sagt dabei aus, dass eine Kombination aus mit λ_j gewichteten effizienten DMUs – eine sogenannte virtuelle DMU – existiert, die mindestens denselben Output erzeugt wie DMU_o und im Vergleich dazu aber nur das θ -fache der Inputs von DMU_o benötigt. Es handelt sich bei dem betrachteten Modell daher um die inputorientierte Version des CCR-Modells. In späterer Folge werden wir auch einen näheren Blick auf das outputorientierte

Die erhaltenen Werte für λ bestimmen also, mit welchem Anteil die effizienten DMUs in die virtuelle Referenz-DMU eingehen, mit der die beobachtete DMU_o verglichen wird. Jene effizienten DMUs, die ein $\lambda_j > 0$ aufweisen, bilden die Referenzmenge für die beobachtete DMU_o, wie wir in Definition 2.15 sehen werden.

2.2.2. Slack-Vektoren

CCR-Modell werfen.

Zusammenfassend gilt somit $\theta^* \in (0, 1]$.

Durch das bisher betrachtete Effizienzmaß werden Leistungslücken, welche keine proportionalen Verbesserungspotentiale aufweisen, nicht ausgewiesen.

Definition 2.10

Wir definieren die Input-Überschüsse $s^- \in \mathbb{R}^m$ und die Output-Defizite $s^+ \in \mathbb{R}^s$ einer ineffizienten DMU und nennen diese *Slack-*, *bzw. Schlupf-Vektoren*:

$$s^- = \theta x_o - X \lambda, \quad s^+ = Y \lambda - y_o,$$

wobei $s^- \geq 0$, $s^+ \geq 0$ für jede zulässige Wahl von Parametern (θ, λ) von (DLP_o) gelten muss.

Mit Hilfe des folgenden Zwei-Phasen LP Problems können nun mögliche Input-Überschüsse und Output-Defizite separat aufgedeckt werden. Hier erfolgt die Optimierung in zwei Schritten: In der ersten Phase wird die maximale proportionale Reduktion der Inputs berechnet, welche dann in der zweiten Phase durch eine Anpassung der Slacks ergänzt wird.

Phase I

Ziel der Phase I ist das Lösen von (DLP_o), um den optimalen Zielwert θ^* zu erhalten. Gemäß dem Dualitätssatz der Linearen Programmierung ist θ^* gleich dem optimalen Zielwert von (LP_o). θ^* liefert somit den CCR-Effizienzwert, auch Farrell-Effizienz genannt. Dieser Wert θ^* fließt in der folgenden Phase II von (DLP_o) ein.

Phase II

Um CCR-Effizienz zu erreichen, können wir mit dem in Phase 1 erlangten Wissen über θ^* das folgende LP lösen, wobei (λ, s^-, s^+) als Variablen dienen:

max
$$\omega = es^- + es^+$$

s.t. $s^- = \theta^* x_o - X\lambda$
 $s^+ = Y\lambda - y_o$
 $\lambda > 0, s^- > 0, s^+ > 0$

wobei e = (1, ..., 1) im Folgenden etwas schlampig als $e \in \mathbb{R}^m$ bzw. $e \in \mathbb{R}^s$ definiert wird, je nachdem ob der Vektor e mit s^- oder s^+ multipliziert wird.

Ziel der Phase II ist es, eine Lösung zu finden, die die Summe von Input-Überschüssen und Output-Defiziten maximiert, während $\theta = \theta^*$ gilt.

Definition 2.11 (Max-Slack Lösung, Zero-Slack Activity):

Eine optimale Lösung (λ^* , s^{-*} , s^{+*}) aus Phase II nennt man Max-Slack Lösung. Erfüllt die Max-Slack Lösung $s^{-*} = \mathbf{0}$ und $s^{+*} = \mathbf{0}$, so nennt man sie Zero-Slack.

Im Folgenden definieren wir CCR-Effizienz über die optimale Lösung $(\theta^*, \lambda^*, s^{-*}, s^{+*})$ der beiden LPs in Phase I und II. Siehe dazu auch das nachstehende Theorem 2.14, welches den Zusammenhang zur vorherigen Definition der CCR-Effizienz (Definition 2.6) näher erläutert.

Definition 2.12 (CCR-Effizienz):

Wir nennen die DMU_o CCR-effizient, falls eine optimale Lösung $(\theta^*, \lambda^*, s^{-*}, s^{+*})$ der beiden LPs in Phase I und II die Bedingungen

- (i) $\theta^* = 1$ und
- (ii) $s^{-*} = 0$ und $s^{+*} = 0$

erfüllt. Ansonsten nennen wir die DMU_o CCR-ineffizient.

Die Bedingung (i) in Definition 2.12 nennt man radiale Effizienz. Sie wird auch als technische Effizienz bezeichnet, da ein Wert $\theta^* < 1$ bedeutet, dass alle Inputs gleichzeitig reduziert werden können, ohne die verwendeten Verhältnisse zu ändern. Da $(1-\theta^*)$ die maximale anteilmäßige Reduktion angibt, die das Production Possibility Set zulässt, wird jede weitere Reduktion, die mit Slacks ungleich null assoziiert wird, zwangsläufig die Input Proportionen verändern. Daher werden Ineffizienzen, welche Slacks ungleich null aufweisen, die im obigen Zwei-Phasen-Verfahren identifiziert werden, als Gemischte Ineffizienzen bezeichnet.

Schwache Effizienz bezeichnet die durch das CCR-Modell ermittelte Effizienz, wenn

lediglich die erste Bedingung ($\theta^* = 1$) der CCR-Effizienz erfüllt ist, d.h. ohne Berücksichtigung der Slacks. Die beiden Bedingungen (i) und (ii) zusammen werden auch Pareto-Koopmans-Effizienz genannt, welche folgendermaßen formuliert werden kann:

Definition 2.13 (Pareto-Koopmans-Effizienz):

Eine DMU ist Pareto-Koopmans-effizient genau dann, wenn es nicht möglich ist, irgendeinen Input oder Output zu verbessern, ohne einen anderen Input oder Output zu verschlechtern.

Theorem 2.14

Die Definition der CCR-Effizienz in 2.12 ist äquivalent zur Definition der CCR-Effizienz in 2.6.

Beweis.

Die Vektoren v und u aus (LP_o) sind die entsprechenden dualen Variablen aus der ersten und zweiten Nebenbedingungen in (2.4) von (DLP_o) .

Die Slacks liefern für die optimalen Lösungen (v^*, u^*) bzw. $(\lambda^*, s^{-*}, s^{+*})$ des (LP_o) bzw. (DLP_o) die folgenden komplementären Schlupfbedingungen

$$v^*s^{-*} = 0$$
 und $u^*s^{+*} = 0$ (2.5)

$$s^- = \theta x_o - X \lambda$$
 und $s^+ = Y \lambda - y_o$.

Die Bedingung (2.5) bedeutet, dass, wenn irgendeine Komponente aus v^* bzw. u^* positiv ist, so muss auch die entsprechende Komponente von s^{-*} oder s^{+*} null sein und umgekehrt, wobei auch die Möglichkeit erlaubt ist, dass beide Komponenten gleichzeitig null sind.

Nun zeigen wir, dass Definition 2.12 äquivalent ist zur Definition 2.6. Dazu unterscheiden wir folgende Fälle:

- 1. Wenn $\theta^* < 1$ ist, dann ist DMU_o nach Definition 2.6 CCR-ineffizient, da (LP_o) und (DLP_o) denselben optimalen Zielwert θ^* haben.
- 2. Wenn $\theta^* = 1$ und die Max-Slack Lösung nicht Zero-Slack ist $(s^{-*} \neq 0)$ und/oder $s^{+*} \neq 0$), dann müssen, wegen der obigen ergänzenden Bedingungen, die Elemente von v^* oder u^* entsprechend den positiven Slacks null sein. Daher ist DMU_o nach Definition 2.6 CCR-ineffizient.
- 3. Und schließlich, wenn $\theta^* = 1$ und Zero-Slack ist, dann ist nach dem starken Theorem der Komplementarität (vgl. Sierksma (1993)) eine positive optimale Lösung $(\boldsymbol{v}^*, \boldsymbol{u}^*)$ für (LP_o) garantiert und daher ist DMU_o nach Definition 2.6 CCR-effizient.

Der umgekehrte Fall trifft aufgrund der ergänzenden Bedingungen und dem starken Theorem der Komplementarität zwischen (v^*, u^*) und (s^{-*}, s^{+*}) ebenfalls zu.

2.2.3. Referenzmenge

Die Referenzmenge bildet den Vergleichsmaßstab, der für die betrachtete ineffiziente DMU herangezogen wird. Daran orientiert sich dann auch die im anschließenden Kapitel 2.2.4 definierte Projektion, welche die notwendige Verbesserung zur Erreichung einer effizienten Leistung angibt (vgl. mit den beiden Gleichungen in (2.6)). Im Folgenden definieren wir die Referenzmenge über die Max-Slack Lösung:

Definition 2.15 (Referenzmenge):

Für eine ineffiziente DMU_o definieren wir die dazugehörige Referenzmenge E_o , basierend auf der Max-Slack Lösung, durch

$$E_o = \{j \mid \lambda_j^* > 0, \ j \in \{1, \dots, n\}\}.$$

Die in E_o enthaltenen DMUs sind CCR-effizient und auch jede semipositive Kombination von DMUs in E_o ist CCR-effizient.

Theorem 2.16

Die Definition der Referenzmenge in 2.7 ist äquivalent zur Definition der Referenzmenge in 2.15.

Beweis.

Die Äquivalenz der Definitionen 2.7 und 2.15 folgt unmittelbar aus der Bedingung $\lambda_i^* \left[\sum_{r=1}^s u_r^* y_{rj} - \sum_{i=1}^m v_i^* x_{ij} \right] = 0$ des Satzes vom komplementären Schlupf.

Jede optimale Lösung kann wie folgt dargestellt werden:

$$egin{aligned} heta^* oldsymbol{x_o} &= \sum_{j \in E_o} oldsymbol{x_j} \lambda_j^* + oldsymbol{s}^{-*} \ oldsymbol{y_o} &= \sum_{j \in E_o} oldsymbol{y_j} \lambda_j^* - oldsymbol{s}^{+*}. \end{aligned}$$

Dies kann folgendermaßen interpretiert werden:

$$oldsymbol{x_o} \geq heta^* oldsymbol{x_o} - oldsymbol{s^{-*}} = \sum_{j \in E_o} oldsymbol{x_j} \lambda_j^*.$$

Drückt man den obigen Zusammenhang in Worten aus, so erhalten wir: x_o ist größer oder gleich der Differenz aus der radialen Reduktion von x_o und der gemischten Ineffizienz. Diese Differenz entspricht einer positiven Kombination von beobachteten Inputwerten.

Weiters gilt folgender Zusammenhang für die Outputs:

$$oldsymbol{y_o} \leq oldsymbol{y_o} + oldsymbol{s^{+*}} = \sum_{j \in E_o} oldsymbol{y_j} \lambda_j^*.$$

In Worten bedeutet dies: y_o ist kleiner oder gleich der Summe der beobachteten Outputs und der Defizite. Diese Summe entspricht einer positiven Kombination von beobachteten Outputwerten.

2.2.4. Verbesserung der Effizienz

Die obigen Überlegungen zeigen, dass die Effizienz von (x_o, y_o) verbessert werden kann.

Dazu definieren wir zunächst Δx_o und Δy_o als die gesamten vorhandenen Inputüberschüsse bzw. Outputdefizite der DMU_o :

$$\Delta x_o := x_o - (\theta^* x_o - s^{-*}) = (1 - \theta^*) x_o + s^{-*}$$

 $\Delta y_o := s^{+*}.$

Somit ist eine Formel zur Verbesserung der Effizienz, die man CCR-Projektion¹⁰ nennt, gegeben durch:

$$\hat{\boldsymbol{x}}_{o} = \boldsymbol{x}_{o} - \Delta \boldsymbol{x}_{o} = \theta^{*} \boldsymbol{x}_{o} - \boldsymbol{s}^{-*} = \sum_{j \in E_{o}} \boldsymbol{x}_{j} \lambda_{j}^{*} \leq \boldsymbol{x}_{o}$$

$$\hat{\boldsymbol{y}}_{o} = \boldsymbol{y}_{o} + \Delta \boldsymbol{y}_{o} = \boldsymbol{y}_{o} + \boldsymbol{s}^{+*} = \sum_{j \in E_{o}} \boldsymbol{y}_{j} \lambda_{j}^{*} \geq \boldsymbol{y}_{o}.$$
(2.6)

 \hat{x}_o beschreibt dabei die Inputreduktion, die zur Erreichung einer effizienten Leistung erforderlich ist. Dabei werden die Inputwerte radial mit dem Verhältnis θ^* reduziert und etwaige Input-Überschüsse, die im Vektor s^{-*} erfasst sind, abgezogen.

 \hat{y}_o gibt an, wie viel mehr an Output produziert werden muss, um eine Leistung an der maximalen Produktionsgrenze zu erreichen. Der Punkt mit den Koordinaten (\hat{x}_o, \hat{y}_o) ist somit jener Punkt auf der *Efficient Frontier*, der verwendet wird, um die Leistung von DMU_o zu bewerten. Diese verbesserte Activity (\hat{x}_o, \hat{y}_o) ist CCR-effizient.

Die Verbesserung mittels den beiden Formeln in (2.6) wird unter Anwendung der Max-Slack Lösung erreicht. Wird eine andere Lösung (nicht die Max-Slack) herangezogen, ist die verbesserte Activity nicht notwendigerweise CCR-effizient.

Bemerkung 2.17

Wir nennen nun einige Gründe, weshalb das Lösen von (DLP_o) empfehlenswerter ist als das Lösen von (LP_o) :

• Die entsprechende Max-Slack Lösung kann unter der Anwendung von (LP_o) nicht gefunden werden, jedoch unter (DLP_o) schon.

¹⁰Obwohl empirische Untersuchungen die Einzigartigkeit der Referenzmenge für die meisten DMUs zeigen, könnte es mehrere Referenzmengen und Verbesserungspläne (Projektionen) geben, falls mehrere optimale Lösungen existieren.

- Die Interpretationen der Ergebnisse von (DLP_o) sind unkomplizierter und direkt anwendbar, weil die Lösungen als Inputs und Outputs gekennzeichnet werden, die den Originaldaten entsprechen, während die Multiplikatoren, die von den Lösungen von (LP_o) geliefert werden, Bewertungen von diesen beobachteten Werten repräsentieren.
 - Diese Werte sind natürlich auch aussagekräftig, dienen jedoch vor allem ergänzenden Analysen, nachdem eine Lösung von (DLP_o) erreicht wurde.
- Der rechnerische Aufwand von LP wächst proportional zur Anzahl der Einschränkungen. Normalerweise ist n (die Anzahl der DMUs) in der DEA deutlich größer als (m+s) (die Anzahl der Inputs und Outputs). Daher nimmt das Lösen von (LP_o) mit n Einschränkungen mehr Zeit in Anspruch, als (DLP_o) mit (m+s) Einschränkungen.

2.2.5. Das Outputorientierte CCR-Modell

Bis zu diesem Zeitpunkt haben wir uns hauptsächlich mit einem Modell beschäftigt, dessen Ziel es ist, die Inputs zu minimieren, während zumindest der gegebene Outputlevel produziert wird. Diese Art von Modell heißt inputorientiert. Das outputorientierte CCR-Modell hingegen versucht, die Outputs zu maximieren, während dabei nicht mehr als die beobachtete Menge an Inputs verwendet wird. Das outputorientierte Modell lässt sich daher folgendermaßen formulieren:

$$\begin{array}{ll} (\mathrm{DLPO}_o) & \max & \eta \\ & \mathrm{s.t.} & \boldsymbol{x_o} - \boldsymbol{X}\boldsymbol{\mu} \geq \boldsymbol{0} \\ & \eta \boldsymbol{y_o} - \boldsymbol{Y}\boldsymbol{\mu} \leq \boldsymbol{0} \\ & \boldsymbol{\mu} \geq \boldsymbol{0}. \end{array}$$

Eine optimale Lösung von $(DLPO_o)$ kann direkt von der optimalen Lösung des inputorientierten CCR-Modells aus (2.4) abgeleitet werden. Sei

$$\lambda = \frac{\mu}{\eta}, \quad \theta = \frac{1}{\eta}. \tag{2.7}$$

Dann wird (DLPO_o) zu

$$\begin{array}{ll} (\mathrm{DLP}_o) & \min & \theta \\ & \mathrm{s.t.} & \theta \boldsymbol{x_o} - X \boldsymbol{\lambda} \geq \boldsymbol{0} \\ & \boldsymbol{y_o} - Y \boldsymbol{\lambda} \leq \boldsymbol{0} \\ & \boldsymbol{\lambda} \geq \boldsymbol{0}, \end{array}$$

was dem inputorientierten CCR-Modell entspricht. Daher hängen die optimalen Lösungen der beiden Modelle folgendermaßen zusammen:

$$\eta^* = \frac{1}{\theta^*}, \qquad \boldsymbol{\mu}^* = \frac{\boldsymbol{\lambda}^*}{\theta^*}.$$

Die Slacks (t^-, t^+) des outputorientierten Modells werden folgendermaßen definiert:

$$X\boldsymbol{\mu} + \boldsymbol{t}^{-} = \boldsymbol{x}_{o}$$
$$Y\boldsymbol{\mu} - \boldsymbol{t}^{+} = \eta \boldsymbol{y}_{o}.$$

Diese Werte hängen ebenfalls mit der inputorientierten Version des CCR-Modells zusammen:

$$t^{-*} = rac{s^{-*}}{ heta^*}, \qquad t^{+*} \ = \ rac{s^{+*}}{ heta^*}.$$

Aus (2.7) und der Tatsache, dass $\theta^* \leq 1$ ist, folgt sofort, dass $\eta^* \geq 1$ gilt. Je größer η^* ist, desto weniger effizient ist die beobachtete DMU. θ^* drückt die Input-Reduktionsrate aus, während η^* die Output-Vergrößerungsrate beschreibt. Aus den obigen Verhältnissen können wir schließen, dass eine DMU im inputorientierten CCR-Modell genau dann effizient ist, wenn sie auch im outputorientierten CCR-Modell als effizient bewertet wird.

Das duale Problem von (DLPO_o) ist im folgenden Modell angeführt:

$$(LPO_o)$$
 min px_o
s.t. $qy_o = 1$
 $-pX + qY \le 0$
 $p \ge 0, q \ge 0.$

Korollar 2.18

Sei (v^*, u^*) eine optimale Lösung von (LP_o) . Wir erhalten eine optimale Lösung des outputorientierten Modells (LPO_o) durch

$$oldsymbol{p}^* = rac{oldsymbol{v}^*}{ heta^*}, \qquad oldsymbol{q}^* = rac{oldsymbol{u}^*}{ heta^*}.$$

Beweis.

Es ist klar, dass (p^*, q^*) für (LPO_o) zulässig ist. Seine Optimalität folgt aus der Gleichung

$$oldsymbol{p^*x_o} = rac{oldsymbol{v^*x_o}}{ heta^*} = \eta^*.$$

Die Verbesserung unter Verwendung des outputorientierten Modells wird ausgedrückt durch:

$$\hat{\boldsymbol{x}}_o = \boldsymbol{x}_o - \boldsymbol{t}^{-*}$$

$$\hat{\boldsymbol{y}}_o = \boldsymbol{\eta}^* \boldsymbol{y}_o + \boldsymbol{t}^{+*}.$$
(2.8)

Führt man dies einen Schritt weiter, so erkennt man, dass (LPO_o) zu folgendem Quotientenprogramm äquivalent ist:

$$\min \quad \frac{\pi x_o}{\rho y_o}$$
s.t.
$$\frac{\pi x_j}{\rho y_j} \ge 1 \quad (j = 1, \dots, n)$$

$$\pi \ge 0, \ \rho \ge 0.$$

Hier wurden Zähler und Nenner in der Hauptbedingung und der ersten Nebenbedingung von (2.2) vertauscht und folglich die Zielfunktion minimiert. Diese mathematische Transformation impliziert nicht, dass der Wahl der Modelle keine besondere Bedeutung zukommt, da unter anderem unterschiedliche Korrekturen mit Output-Maximierung und Input-Minimierung assoziiert werden können.

Da der Unterschied erheblich sein kann, ist die Wahl der Orientierung immer eine Überlegung wert. Schließlich gibt das inputorientierte Effizienzmaß an, um welchen Prozentsatz alle Inputs simultan unter Beibehaltung der aktuellen Proportionen gesenkt werden können, ohne dass dies eine Reduktion eines oder mehrerer Outputs mit sich führt. Im Gegensatz dazu beschreibt das outputorientierte Effizienzmaß um wie viel Prozent alle Outputs einer DMU gleichzeitig erhöht werden können, ohne einen oder mehrere Inputs erhöhen zu müssen (vgl. Scheel (2000), S.93).

Darüber hinaus werden wir später noch andere Modelle kennenlernen, bei denen Outputs maximiert und Inputs gleichzeitig minimiert werden, sodass für eine sinnvolle und aussagekräftige Effizienzanalyse auch weitere Auswahlen berücksichtigt werden müssen.

2.2.6. Discretionary und Non-Discretionary Inputs

Bis zu diesem Zeitpunkt haben wir angenommen, dass alle Inputs und Outputs nach Ermessen der Entscheidungsträger verändert werden können. Diese Variablen werden daher auch als *Discretionary Variable* bezeichnet.

Es ist aber ebenfalls darauf Rücksicht zu nehmen, dass einzelne Variablen mitunter nicht direkt von den Verantwortlichen zu beeinflussen sind. Diese Variablen bezeichnet man als Non-Discretionary Variablen, da sie nicht der Managementkontrolle unterliegen. Diese Non-Discretionary Variablen werden manchmal auch als environmental parameters bezeichnet, da sie häufig das Umfeld, in dem die DMUs operieren, beschreiben (vgl. Bauer et al. (2007), S.92). Diese dürfen zur Bestimmung des Effizienzmaßes nicht direkt herangezogen werden, da die Verantwortlichen sonst nicht im Stande wären, die auf dieser Basis abgeleiteten Zielgrößen zu realisieren

Im Zusammenhang mit der Untersuchung von Bankfilialen kann dies für die Lage, die Einwohnerdichte, oder dem durchschnittlichen Einkommen der Bevölkerung im Einzugsgebiet gelten.

Die oben beschriebene Situation kann mathematisch mit Hilfe der folgenden Mo-

difikation des CCR-Modells dargestellt werden.

min
$$\theta - \epsilon \left(\sum_{i \in D} s_i^- + \sum_{r=1}^s s_r^+ \right)$$

s.t. $\theta x_{io} = \sum_{j=1}^n x_{ij} \lambda_j + s_i^-, \ i \in D$
 $x_{io} = \sum_{j=1}^n x_{ij} \lambda_j + s_i^-, \ i \in ND$
 $y_{ro} = \sum_{j=1}^n y_{rj} \lambda_j - s_r^+, \ r = 1, \dots, s$
 $\lambda_j, s_i^-, s_r^+ \ge 0, \ \forall j, i, r.$ (2.9)

Hier beziehen sich die Symbole D und ND auf D iscretionary bzw. Non-Discretionary Inputs. Bei den Einschränkungen ist die Tatsache zu berücksichtigen, dass die Variable θ nicht auf die Non-Discretionary Inputs angewendet wird, da es nicht möglich ist, diese nach Ermessen des Managements zu ändern. Daher werden alle $x_{io}, i \in ND$ mit ihrem festen Wert in die Nebenbedingungen eingebunden. Wenn wir uns der Zielfunktion von (2.9) zuwenden, verwenden wir $\epsilon > 0$, um die Slackvariablen auf der zweiten Ebene abzuwickeln, wo sie auf eine Weise maximiert werden, die die vorher festgelegte Minimierung von θ in der ersten Ebene nicht durcheinanderbringt.

Dabei ist ϵ eine sogenannte nicht-archimedische Konstante (vgl. Charnes et al. (1978)).

Schließlich wollen wir anmerken, dass die Slacks $s_i^-, i \in ND$ in der Zielfunktion weggelassen werden. Daher werden die Non-Discretionary Inputs nicht direkt zur Bestimmung des Effizienzmaßes in der Zielfunktion von (2.9) aufgenommen und beeinflussen diese somit nicht direkt. Sie können dennoch die Effizienzbewertungen indirekt aufgrund ihrer Präsenz in den Einschränkungen beeinflussen.

2.3. Das BCC-Modell

Das BCC-Modell ist eine Erweiterung des CCR-Modells. Benannt nach seinen Entwicklern Banker, Charnes und Cooper unterscheidet es sich vom CCR-Modell in der Annahme von variablen Skalenerträgen, während das CCR-Modell auf der Annahme konstanter Skalenerträge beruht.

Beim BCC-Modell werden die Production Frontiers durch die konvexe Hülle jener Punkte, die die existierenden DMUs repräsentieren, aufgespannt. Die Frontiers haben stückweise lineare und konkave Merkmale, was zu variablen Skalenertragseigenschaften führt.

Variable Skalenerträge bedeuten, dass steigende, konstante und fallende Skalenerträge die Form der Produktionsfunktion bestimmen.

Allgemein spricht man von konstanten Skalenerträgen, wenn bei einer proportionalen Veränderung der Inputs um einen Faktor auch der Output um denselben Faktor ansteigt.

Liegen hingegen steigende Skalenerträge vor, so wächst der Output progressiv zur Erhöhung der Inputs.

Bei fallenden Skalenerträgen sinkt der Output degressiv zur Erhöhung der Inputs. Um den wesentlichen Unterschied zwischen dem CCR- und dem BCC-Modell zu veranschaulichen, wollen wir mit einem kleinen Beispiel starten:

Beispiel 2.19

In der folgenden Abbildung 2.4 werden vier DMUs dargestellt, A, B, C und D, wobei jede von ihnen jeweils einen Input und einen Output aufweist. Die Efficient Frontier des CCR-Modells wird durch die gestrichelte Linie dargestellt. Die Frontiers des BCC-Modells bestehen aus den durchgezogenen Linien, welche A, B und C verbinden.

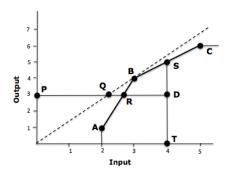


Abbildung 2.4.: Das BCC-Modell

Das Production Possibility Set enthält zusammen mit den beobachteten Input-Output Kombinatioen auch jene Activities, die einen Input-Überschuss und/oder ein Output-Defizit im Vergleich zu den beobachteten Kombinationen aufweisen.

A, B und C liegen auf den Frontiers und sind daher BCC-effizient. Jedoch ist nur B CCR-effizient, da sich diese DMU als Einzige auch auf der Efficient Frontier des CCR-Modells befindet.

Die folgenden Zahlenwerte können aus der Abbildung 2.4 abgelesen werden.

Wirft man einen näheren Blick auf Abbildung 2.4, so erkennt man, dass sich die BCC-Effizienz der DMU D nach dem inputorientierten Modell durch

$$\frac{d(P,R)}{d(P,D)} = \frac{\frac{8}{3}}{4} = \frac{2}{3}$$

berechnet.

Die CCR-Effizienz für die DMU D ist kleiner und berechnet sich durch

$$\frac{d(P,Q)}{d(P,D)} = \frac{\frac{9}{4}}{4} = \frac{9}{16}.$$

Im Allgemeinen überschreitet die CCR-Effizienz die BCC-Effizienz nicht.

Im outputorientierten BCC-Modell berechnet sich die Effizienz der DMU D durch

$$\frac{d(S,T)}{d(D,T)} = \frac{5}{3}.$$

Das Ergebnis bedeutet also, dass der ursprüngliche Outputwert der DMU D auf $\frac{5}{3} \cdot 3 = 5$ Einheiten vergrößert werden müsste, um Effizienz zu erreichen.

Die vergleichbare Steigerung für das outputorientierte CCR-Modell erhält man aus dem Kehrwert seiner Input-Ineffizienz, das heißt $1/\frac{9}{16} = \frac{16}{9}$.

Wie auch aus Abbildung 2.4 deutlich ersichtlich ist, ist hier also eine noch größere Steigerung erforderlich, um Effizienz zu erreichen. ¹¹

Im BCC-Modell lässt sich das Production Possibility Set P_B folgendermaßen definieren:

$$P_B = \{(x, y) | x \ge X\lambda, y \le Y\lambda, e\lambda = 1, \lambda \ge 0\},\$$

wobei X und Y wie in (2.1) gegeben sind, $\lambda \in \mathbb{R}^n$ und $e = (1, ..., 1) \in \mathbb{R}^{1 \times n}$ gilt. Das BCC-Modell unterscheidet sich vom CCR-Modell also nur in der Konvexitätsbedingung $e\lambda = \sum_{j=1}^n \lambda_j = 1$.

2.3.1. Das Inputorientierte BCC-Modell

Das inputorientierte BCC-Modell bewertet die Effizienz von $\mathrm{DMU}_o\ (o=1,\ldots,n)$ durch Lösen des folgenden linearen Programms (in Envelopmentform):

$$(BCC_o)$$
 min θ_B
s.t. $\theta_B x_o - X \lambda \ge 0$
 $Y \lambda \ge y_o$
 $e \lambda = 1$
 $\lambda \ge 0$,

wobei θ_B ein Skalar ist. Der optimale Wert wird mit θ_B^* bezeichnet.

Auch beim BCC-Modell können nun wieder mögliche Input-Überschüsse und Output-Defizite mit Hilfe eines Zwei-Phasen-Problems – ähnlich zum CCR-Modell – aufgedeckt werden. Das BCC-Modell unterscheidet sich vom CCR-Modell nur durch Hinzunahme der Bedingung $e\lambda=1$. Auf diese Weise wird sichergestellt, dass nur noch Einheiten mit gleichem Skalenvolumen verglichen werden. Dies hat zur Folge, dass eventuelle Skaleneffekte aus dem Effizienzwert herausgerechnet werden; Darauf werden wir in Kapitel 2.3.7 noch näher eingehen.

Aufgrund der zusätzlichen Bedingung $e\lambda = 1$ gilt $\theta^* \leq \theta_B^*$, wobei θ^* den optimalen Zielwert des CCR-Modells bezeichnet. Daher ist der zulässige Bereich des BCC-Modells eine Teilmenge des zulässigen Bereichs im CCR-Modell.

¹¹Dieser einfache Kehrwert-Zusammenhang gilt für das BCC-Modell nicht.

Die duale Multiplikatorform des linearen Programms (BCC_o) wird folgendermaßen ausgedrückt:

$$(DBCC_o)$$
 max $z = \boldsymbol{u}\boldsymbol{y_o} - u_o$
s.t. $\boldsymbol{v}\boldsymbol{x_o} = 1$
 $-\boldsymbol{v}\,\boldsymbol{X} + \boldsymbol{u}\boldsymbol{Y} - u_o\boldsymbol{e} \leq \boldsymbol{0}$
 $\boldsymbol{v} \geq \boldsymbol{0}, \ \boldsymbol{u} \geq \boldsymbol{0}, u_o \text{ vorzeichenfrei,}$

wobei z und u_o Skalare sind.

Der Unterschied zum CCR-Modell liegt in der Variablen u_o , welche die duale Variable in Verbindung mit der Nebenbedingung $e\lambda = 1$ darstellt. u_o kann positiv (wachsende Skalenerträge), negativ (fallende Skalenerträge) oder null (konstante Skalenerträge) sein.

Definition 2.20 (BCC-Effizienz):

Falls eine optimale Lösung $(\theta_B^*, \lambda^*, s^{-*}, s^{+*})$ im Zwei-Phasen-Verfahren des BCC-Modells $\theta_B^* = 1$ erfüllt und keine Slacks aufweist $(s^{-*} = \mathbf{0}, s^{+*} = \mathbf{0})$, so bezeichnet man die DMU_o als BCC-effizient, ansonsten nennt man sie BCC-ineffizient.

Bemerkung 2.21

Wie wir später in Theorem 2.29 sehen werden, gilt, dass jede CCR-effiziente DMU auch BCC-effizient ist. Die Umkehrung dieser Aussage gilt im Allgemeinen jedoch nicht.

2.3.2. Referenzmenge

Definition 2.22 (Referenzmenge):

Wir definieren die Referenzmenge E_o für eine BCC-ineffiziente DMU_o, basierend auf einer optimalen Lösung λ^* , durch

$$E_o = \{ j \in \{1, \dots, n\} | \lambda_j^* > 0 \}.$$

Jede DMU in E_o ist BCC-effizient.

Im Falle mehrfacher optimaler Lösungen können wir irgendeine auswählen, sodass

$$egin{aligned} heta_B^* oldsymbol{x_o} &= \sum_{j \in E_o} \lambda_j^* oldsymbol{x_j} + oldsymbol{s^{-*}} \ oldsymbol{y_o} &= \sum_{j \in E_o} \lambda_j^* oldsymbol{y_j} - oldsymbol{s^{+*}}. \end{aligned}$$

gilt.

2.3.3. Verbesserung der Effizienz

Die Verbesserung der Effizienz einer ineffizienten DMU wird durch die BCC-Projektion angegeben:

$$\hat{x}_o = \theta_B^* x_o - s^{-*},$$

 $\hat{y}_o = y_o + s^{+*}.$

Diese verbesserte Activity (\hat{x}_o, \hat{y}_o) ist dann BCC-effizient.

2.3.4. Das Outputorientierte BCC-Modell

Wir wenden uns nun dem outputorientierten BCC-Modell zu. Dieses kann wie folgt formuliert werden:

$$(BCCO_o)$$
 max η_B
s.t. $X\lambda \leq x_o$
 $\eta_B y_o - Y\lambda \leq 0$
 $e\lambda = 1$
 $\lambda \geq 0$.

Dies ist die Envelopmentform des outputorientierten BCC-Modells. Wie man sieht, entspricht das outputorientierte BCC-Effizienzmaß nicht wie im CCR-Modell dem Kehrwert des inputorientierten BCC-Effizienzmaßes.

Die zum obigen linearen Programm ($BCCO_o$) zugehörige duale (Multiplikator-) Form wird folgendermaßen ausgedrückt:

min
$$z = \boldsymbol{v}\boldsymbol{x}_o - v_o$$

s.t. $\boldsymbol{u}\boldsymbol{y}_o = 1$
 $\boldsymbol{v}X - \boldsymbol{u}Y - v_o\boldsymbol{e} \ge \boldsymbol{0}$
 $\boldsymbol{v} \ge \boldsymbol{0}, \ \boldsymbol{u} \ge \boldsymbol{0}, v_o$ vorzeichenfrei,

wobei v_o die duale Variable in Verbindung mit der Nebenbedingung $e\lambda=1$ im Envelopmentmodell ist.

Bemerkung 2.23

Wir werden in Kapitel 2.4.1 sehen, dass das inputorientierte BCC-Modell bezüglich Outputs, aber nicht bezüglich Inputs translationsinvariant ist und dass das ouputorientierte BCC-Modell invariant unter der Translation von Inputs, jedoch nicht unter der Translation von Outputs ist. Siehe dazu Definition 2.38 und Beispiel 2.39.

2.3.5. Skalenerträge

Wie bereits erwähnt, beruht das CCR-Modell auf der Annahme von konstanten Skalenerträgen, wohingegen das BCC-Modell auf der Unterstellung von variablen Skalenerträgen beruht.

Kenntnisse über Skalenerträge sind in jedem Fall wertvoll, daher werden in diesem Kapitel die Mittel näher erläutert, um durch DEA an dieses Wissen zu gelangen.

Falls eine DMU BCC-effizient ist, können wir anhand des Vorzeichens des Skalars u_o^* aus $(DBCC_o)$ die vorliegenden Skalenerträge bestimmen.

Theorem 2.24

Angenommen (x_o, y_o) liegt auf der Efficient Frontier des BCC-Modells. Dann bestimmen die folgenden Bedingungen die Skalenerträge an diesem Punkt:

- (i) Wachsende Skalenerträge treten bei (x_o, y_o) genau dann auf, wenn $u_o^* < 0$ für alle optimalen Lösungen gilt.
- (ii) Fallende Skalenerträge treten bei (x_o, y_o) genau dann auf, wenn $u_o^* > 0$ für alle optimalen Lösungen gilt.
- (iii) Konstante Skalenerträge treten bei (x_o, y_o) genau dann auf, wenn $u_o^* = 0$ in einer optimalen Lösung gilt.

Wir haben bisher den Begriff der "konstanten Skalenerträge" verwendet, um das CCR-Modell zu charakterisieren. Dies ist zwar technisch korrekt, aber ein wenig irreführend, da dieses Modell auch verwendet werden kann, um zu bestimmen, ob Skalenerträge wachsen oder fallen. Dies wird durch folgendes Theorem von Banker und Thrall (1992) erklärt.

Theorem 2.25

Sei (x_o, y_o) ein Punkt auf der Efficient Frontier des BCC-Modells. Indem wir ein CCR-Modell in Envelopmentform betrachten, um eine optimale Lösung $(\lambda_1^*, \ldots, \lambda_n^*)$ zu erhalten, kann der Skalenertrag an diesem Punkt mit folgenden Bedingungen bestimmt werden:

- 1. Für $\sum_{j=1}^{n} \lambda_{j}^{*} = 1$ in einer optimalen Lösung treten konstante Skalenerträge auf.
- 2. Für $\sum_{j=1}^{n} \lambda_{j}^{*} > 1$ in allen optimalen Lösungen treten fallende Skalenerträge auf
- 3. Für $\sum_{j=1}^n \lambda_j^* < 1$ in allen optimalen Lösungen treten wachsende Skalenerträge auf.

Oft wird das CCR-Modell für Skalenertragsanalysen dem BCC-Modell vorgezogen, da erstens das CCR-Modell allgemein weniger Einschränkungen aufweist und sich daher rechnerisch auch als etwas effizienter erweist.

Zweitens bieten die Lösungen dieses Modells unmittelbar mehr Information für die Verwendung von projektiven Formeln, wie zum Beispiel der Verbesserung der

Effizienz. Das folgende Korollar bezieht sich auf die Relation des CCR- und des BCC-Modells hinsichtlich der Charakterisierungen der Skalenerträge dieser beiden Modelle.

Korollar 2.26

- (i) $u_o^* > 0$ für alle optimalen Lösungen des BCC-Modells genau dann, wenn $\sum_{j=1}^n \lambda_j^* 1 > 0$ in allen optimalen Lösungen des entsprechenden CCR-Modells gilt.
- (ii) $u_o^* < 0$ für alle optimalen Lösungen des BCC-Modells genau dann, wenn $\sum_{j=1}^n \lambda_j^* 1 < 0$ in allen optimalen Lösungen des entsprechenden CCR-Modells gilt.
- (iii) $u_o^* = 0$ für eine optimale Lösung des BCC-Modells genau dann, wenn $\sum_{j=1}^n \lambda_j^* 1 = 0$ in einer optimalen Lösung des entsprechenden CCR-Modells gilt.

Die in diesem Unterkapitel bisher behandelten Theoreme und Korollare beziehen sich auf die Ermittlung der Skalenerträge für *BCC-effiziente* DMUs.

Das folgende Resultat verdeutlicht den Zusammenhang von BCC-projizierten Activities BCC-ineffizienter DMUs und deren Skalenerträge.

Theorem 2.27

Sei E_o die Referenzmenge einer BCC-ineffizienten DMU. Dann besteht E_o aus einer der folgenden Kombinationen von BCC-effizienten DMUs, wobei IRS, CRS und DRS für steigende, konstante und fallende Skalenerträge stehen.

- (i) Alle DMUs haben steigende Skalenerträge (IRS).
- (ii) E_o besteht aus einer Mischung von DMUs mit steigenden Skalenerträgen (IRS) und konstanten Skalenerträgen (CRS).
- (iii) Alle DMUs haben konstante Skalenerträge (CRS).
- (iv) E_o besteht aus einer Mischung von DMUs mit konstanten Skalenerträgen (CRS) und fallenden Skalenerträgen (DRS).
- (v) Alle DMUs haben fallende Skalenerträge (DRS).

Basierend auf diesen Beobachtungen, erhalten wir

Theorem 2.28

Sei (\hat{x}_o, \hat{y}_o) die BCC-projizierte Activity einer BCC-ineffizienten DMU (x_o, y_o) und sei E_o die Referenzmenge von (x_o, y_o) . Dann weist (\hat{x}_o, \hat{y}_o)

- 1. IRS auf, wenn E_o aus DMUs der Kategorien (i) oder (ii) des obigen Korollars besteht,
- 2. CRS auf, wenn E_o aus DMUs der Kategorie (iii) besteht und
- 3. DRS auf, wenn E_o aus DMUs der Kategorien (iv) oder (v) besteht.

2.3.6. Most Productive Scale Size (MPSS)

Um weitere Relationen zwischen den BCC- und den CCR-Modellen zu untersuchen, beginnen wir mit folgendem Theorem von Ahn et al. (1989).

Theorem 2.29

Eine DMU_o , die sich mit dem CCR-Modell als effizient erweist, wird sich auch mit dem dazugehörigen BCC-Modell als effizient erweisen und es treten konstante Skalenerträge bei DMU_o auf.

Beweis.

Ist eine DMU CCR-effizient, so erfüllt diese aufgrund der Definition 2.3 die Bedingung $\theta^* = 1$ und weist auch keine Slacks auf, das heißt $s^{-*} = \mathbf{0}$ und $s^{+*} = \mathbf{0}$. Wie bereits erwähnt, übersteigt die BCC-Effizienz die CCR-Effizienz im Allgemeinen und daher gilt in diesem Fall also auch $\theta^*_B = 1$. Es sind nun also beide Bedingungen in der obigen Definition 2.8 erfüllt und somit ist jede CCR-effiziente DMU auch BCC-effizient. Die Tatsache, dass CCR-effiziente DMUs konstante Skalenerträge aufweisen, wurde bereits in Kapitel 2.2 argumentiert.

Dieses Theorem spielt für das zugrunde liegende Thema dieses Unterkapitels eine wichtige Rolle. Wie bereits erwähnt wurde, ist das Gegenteil nicht unbedingt richtig. Eine DMU_o kann gleichzeitig als effizient durch ein BCC-Modell und als ineffizient durch ein CCR-Modell mit $\theta^* < \theta_B^*$ beschrieben werden.

Gilt jedoch $\theta^* = \theta_B^*$, so existiert zumindest ein alternatives optimales θ^* , für das $\sum_{j=1}^n \lambda_j^* = 1$ erfüllt ist.

Um Interpretationen zu erlangen, die wir in Beziehung zu unseren vorigen Diskussionen bezüglich den Returns to Scales setzen können, verwenden wir hier das Konzept von Banker et al. (1984) der *Most Productive Scale Size (MPSS)*, das wir mit dem Ausdruck

$$(\boldsymbol{x_o}\alpha, \boldsymbol{y_o}\beta)$$

einleiten.

 $(\boldsymbol{x_o}, \boldsymbol{y_o})$ symbolisieren Vektoren und ihre Komponenten entsprechen den Koordinaten des beurteilten Punktes, der auf der Efficient Frontier des BCC-Modells liegt. (α, β) sind Skalare, die Erweiterungs- oder Verkleinerungsfaktoren repräsentieren, je nachdem ob $\alpha, \beta > 1$ oder $\alpha, \beta < 1$ gilt. Hier spielt α die Rolle für die Inputs, die in den vorangegangenen Kapiteln θ zugewiesen wurde und das Skalar β spielt eine ähnliche Rolle für die Outputs.

Wir betrachten nun das folgende Quotientenprogramm:

$$(QP_{o}) \max \frac{\beta}{\alpha}$$
s.t. $\beta y_{o} \leq \sum_{j=1}^{n} y_{j} \lambda_{j}$,
$$\alpha x_{o} \geq \sum_{j=1}^{n} x_{j} \lambda_{j}$$
,
$$\sum_{j=1}^{n} \lambda_{j} = 1$$
,
$$\lambda_{1}, \dots \lambda_{n} \geq 0$$
,
$$\beta, \alpha \geq 0$$
. (2.10)

Optimale Lösungen bezeichnen wir mit β^* und α^* .

Mit den Vorgehensweisen aus den vorigen Kapiteln kann dieses Quotientenprogramm in ein gewöhnliches Lineares Programm transformiert werden, um Lösungen $\hat{\boldsymbol{x}}_{o} = \alpha \boldsymbol{x}_{o}$ und $\hat{\boldsymbol{y}}_{o} = \beta \boldsymbol{y}_{o}$ zu erhalten, die wir mit Punkten assoziieren können, welche MPSS sind.

Theorem 2.30

Eine notwendige Bedingung dafür, dass eine DMU_o mit Inputvektor $\boldsymbol{x_o}$ und Outputvektor $\boldsymbol{y_o}$ an der MPSS liegt, ist durch $\frac{\beta^*}{\alpha^*} = \max \frac{\beta}{\alpha} = 1$ in der Zielfunktion von (2.10) gegeben. In diesem Fall gilt also $\beta^* = \alpha^*$ und es liegen konstante Skalenerträge vor.

Bis jetzt sind wir in diesem Unterkapitel davon ausgegangen, dass die bewertete DMU auf der BCC-Efficient Frontier liegt.

Wenn es bloß von Interesse ist, dass eine DMU an der MPSS liegt, kann folgender Ansatz verwendet werden:

Definition 2.31 (MPSS):

 DMU_o ist MPSS, falls die beiden folgenden Bedingungen erfüllt sind:

- (i) $\frac{\beta^*}{\alpha^*} = 1$ und
- (ii) alle Slacks sind null.

Die Slacks werden auf analoge Weise zur Zwei-Phasen-Methode aus Kapitel 2.2.2 erfasst. Hier verwenden wir in der ersten Phase das QP 2.10, bzw. das zugehörige Lineare Programm, um eine Lösung $\frac{\beta^*}{\alpha^*}$ zu erhalten. Falls hier Slacks ungleich 0 auftreten, brauchen wir nicht weiter vorgehen.

Falls alle Slacks gleich 0 sind, nehmen wir an, dass auch kein alternatives Optimum Slacks ungleich 0 aufweist und wenden schließlich Phase 2 an. Hier werden $\beta = \beta^*$ und $\alpha = \alpha^*$ fixiert und die Slacks maximiert. Mit Hilfe der folgenden Formeln kann nun ein Punkt mit den Koordinaten x_{io}^* und y_{ro}^* erhalten werden, die MPSS sind.

$$\beta^* y_{ro} + s_r^{+*} = y_{ro}^* \quad r = 1, \dots, s,$$

 $\alpha^* x_{io} + s_i^{-*} = x_{io}^* \quad i = 1, \dots, m.$

2.3.7. Zerlegung der Technischen Effizienz

Bei ineffizienten DMUs stellt sich vor allem die Frage nach der Quelle der Ineffizienz: Wurde die Ineffizienz durch einen ineffizienten Betrieb der DMU selbst hervorgerufen, oder durch unvorteilhafte Konditionen, denen die DMU ausgesetzt ist?

Aus diesem Grund werfen wir im Folgenden einen näheren Blick auf die Vergleiche der (inputorientierten) CCR- und BCC-Effizienzwerte.

Das CCR-Modell geht von einem Production Possibility Set aus, das auf konstanten Skalenerträgen beruht, das heißt, es wird vorausgesetzt, dass die radiale Ausweitung und Reduktion aller beobachteten DMUs möglich ist, sowie deren nichtnegative Linearkombinationen. Daher wird der CCR-Effizienzwert auch als (global) technische Effizienz bezeichnet und im Folgenden mit TE abgekürzt.

Auf der anderen Seite nimmt das BCC-Modell an, dass das Production Possibility Set einer Konvexkombination der beobachteten DMUs unterliegt und der BCC-Effizienzwert wird auch (lokale) reine technische Effizienz bzw. kurz PTE (Pure Technical Efficiency) genannt.

Falls eine DMU einen Effizienzwert von 100% sowohl im BCC-Modell als auch im CCR-Modell erzielt, so operiert die DMU an der Most Productive Scale Size. Falls eine DMU zwar BCC-effizient ist, aber im inputorientierten CCR-Modell einen Effizienzwert kleiner als 100% aufweist, so operiert die DMU zwar lokal effizient, aber nicht global effizient, aufgrund der Skalengröße der DMU. Daher ist es sinnvoll, die Skaleneffizienz einer DMU über das Verhältnis dieser beiden Effizienzwerte zu charakterisieren.

Die folgenden Aussagen über die Skaleneffizienzen beziehen sich auf die inputorientierten Versionen der jeweiligen Modelle. Für die outputorientierte Skaleneffizienz kann analog vorgegangen werden, indem man die outputorientierten Effizienzwerte heranzieht.

Definition 2.32 (Skaleneffizienz):

Wir bezeichnen den CCR-Effizienzwert einer DMU mit θ^* und den BCC-Effizienzwert dieser DMU mit θ_B^* . Dann ist die Skaleneffizienz definiert durch

$$SE = \frac{\theta^*}{\theta_B^*}.$$

Aufgrund der Eigenschaften der Effizienzmaße aus dem CCR-Modell und dem BCC-Modell gilt $SE \in [0,1]$.

Ist SE=1, so ist die beobachtete DMU skaleneffizient, andernfalls ist sie skalenineffizient.

Wie bereits in Kapitel 2.3.5 besprochen wurde, informiert die Summe der λ_j^* des dualen CCR-Modells über die Art der Skalenineffizienzen, sie gibt also an, inwieweit eine Beobachtung von der optimalen Größe abweicht (vgl. Theorem 2.25).

Da das Effizienzmaß aus dem CCR-Modell Skaleneffekte nicht beachtet, wird es auch - wie bereits erwähnt wurde - als (globale) technische Effizienz bezeichnet. Es werden also die technische und die Skaleneffizienz simultan bewertet und gemeinsam durch den Effizienzwert ausgedrückt. Auf diese Weise ist keine Trennung der beiden Effizienzarten möglich. Wird eine DMU im CCR-Modell also als ineffizient bewertet, kann dies entweder auf technische Ineffizienz und/oder auf eine suboptimale Betriebsgröße zurückzuführen sein.

Auf der anderen Seite drückt das Effizienzmaß im BCC-Modell die (lokale) reine technische Effizienz unter variablen Skalenerträgen aus. Verwendet man nun diese Begriffe, so zeigt die Definition der Skaleneffizienz, dass sich die Effizienz in

$$TE = PTE \cdot SE$$

zerlegen lässt.

Diese Darstellung zeigt die Quelle der Ineffizienz auf, je nachdem, ob sie durch einen ineffizienten Betrieb (PTE), durch unvorteilhafte Bedingungen (also durch eine technisch nicht optimale Betriebsgröße), – ausgedrückt durch die Skaleneffizienz (SE) – oder durch beide hervorgerufen wird.

Beispiel 2.33

Im Single Input und Single Output Fall kann die Skaleneffizienz anhand von Abbildung 2.5 illustriert werden.

Betrachtet man die DMU A näher, so lässt sich entnehmen, dass es sich hierbei um eine BCC-effiziente DMU handelt, deren Skaleneffizienz gegeben ist durch

$$SE(A) = \theta^*(A) = \frac{d(L, M)}{d(L, A)} < 1.$$

Dies bedeutet, dass die DMU A zwar lokal effizient operiert (PTE=1) und die globale Ineffizienz (TE) durch die Skaleneffizienz (SE) verursacht wird.

Für die DMUs B und C ergibt sich eine Skaleneffizienz von 1, das heißt, dass diese DMUs an der Most Productive Scale Size arbeiten. Für die BCC-ineffiziente DMU E ergibt sich eine Skaleneffizienz von

$$SE(E) = \frac{d(P,Q)}{d(P,E)} \frac{d(P,E)}{d(P,R)} = \frac{d(P,Q)}{d(P,R)},$$

was äquivalent ist zur Skaleneffizienz der inputorientierten BCC-Projektion R. Die DMU E kann in

$$TE(E) = PTE(E) \cdot SE(E)$$

zerlegt werden, bzw. in

$$\frac{d(P,Q)}{d(P,E)} = \frac{d(P,R)}{d(P,E)} \frac{d(P,Q)}{d(P,R)}.$$

Die globale Ineffizienz von E wird daher sowohl durch den ineffizienten Betrieb von E, als auch durch unvorteilhafte Konditionen für die DMU E hervorgerufen.

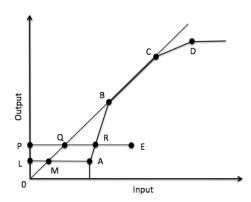


Abbildung 2.5.: Skaleneffizienz mit einem Input und einem Output

2.4. Das Additive Modell

Die vorhergehenden Modelle erforderten eine Unterscheidung zwischen inputorientierten und outputorientierten Modellen. In diesem Unterkapitel kombinieren wir nun beide Richtungen in einem einzigen Modell, dem sogenannten Additiven Modell.

Die zentrale Idee ist dabei die gleichzeitige Suche nach möglichen Einsparungspotentialen bei den Inputs und Steigerungspotentialen bei den Outputs, daher wird folgendes Ziel formuliert:

Es soll die Summe der absoluten Einsparpotentiale (über alle Inputs) und der absoluten Steigerungspotentiale (über alle Outputs) maximiert werden. Die Einschränkung auf proportionale Verbesserungsmöglichkeiten wird beim Additiven Modell also aufgehoben. Allerdings ermittelt das Additive Modell im Gegensatz zum CCR-Modell bzw. BCC-Modell kein Effizienzmaß, deshalb ist es mit diesem Modell nicht möglich, den Grad der Ineffizienz einer DMU zu messen.

Die mathematische Formulierung sieht dann wie folgt aus:

$$(ADD_o) \quad \max \quad z = es^- + es^+$$
s.t. $X\lambda + s^- = x_o$

$$Y\lambda - s^+ = y_o$$

$$e\lambda = 1$$

$$\lambda \ge 0, \ s^- \ge 0, \ s^+ \ge 0.$$
(2.11)

Das zugehörige duale Problem kann folgendermaßen ausgedrückt werden:

min
$$w = vx_o - uy_o + u_o$$

s.t. $vX - uY + u_oe \ge 0$
 $v \ge e, u \ge e$

Beispiel 2.34

Um die Vorgehensweise dieses Modells graphisch zu veranschaulichen, werfen wir einen näheren Blick auf Abbildung 2.6, in der vier DMUs A, B, C und D mit jeweils einem Input und einem Output dargestellt sind. Da das Modell (ADD_o) aufgrund der Nebenbedingungen in (2.11) dasselbe Production Possibility Set wie das BCC-Modell aufweist, setzt sich die Efficient Frontier aus den Liniensegmenten \overline{AB} und \overline{BC} zusammen.

Wir überlegen nun, wie sich der Effizienzwert der ineffizienten DMU D verbessern ließe.

Eine mögliche Verbesserung für D mit s^- und s^+ wird durch die Pfeile s^- und s^+ in der Abbildung 2.6 angedeutet.

Welche Richtung bevorzugt wird, hängt von der Slack-bezogenen Bedingung in der Zielfunktion von (2.11) ab. Die gestrichelte Linie zeigt an, dass der maximale Wert von $s^- + s^+$ bei B erreicht wird.

Es ist klar ersichtlich, dass dieses Modell die Input-Überschüsse und Output-Defizite gleichzeitig berücksichtigt, indem es an einem Punkt auf der Efficient Frontier angelangt, der von D am weitesten entfernt ist. ¹²

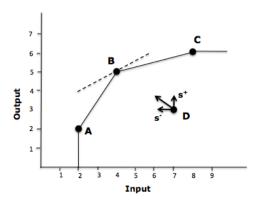


Abbildung 2.6.: Das Additive Modell

Definition 2.35 (ADD-effiziente DMU):

Wir nennen DMU_o ADD-effizient, wenn die Slacks s^{-*} und s^{+*} in 2.11 null sind.

Lemma 2.36 Die DMU_o ist genau dann ADD-effizient mit den Nebenbedingungen aus 2.11, wenn sie BCC-effizient ist.

¹²Diese Distanz der Slack-Vektoren s^- und s^+ wird in der ℓ_1 -Metrik gemessen (siehe Definition 6.2 im Anhang).

Auch "City-Block" Metrik genannt, ist es die Aufgabe der Zielfunktion in (2.11), die Distanz zu maximieren, welche anhand der Summe der Input- und Output-Slacks gemessen wird.

Beweis.

Ist DMU_o BCC-effizient, so sind aufgrund der Definition 2.20 alle Slacks im Zwei-Phasen-Verfahren des BCC-Modells gleich null. Somit ist DMU_o nach Definition 2.35 auch ADD-effizient.

Da das Modell (ADD_o) aufgrund der Nebenbedingungen in (2.11) dieselbe Efficient Frontier aufweist, wie auch das BCC-Modell, folgt umgekehrt aus Definition 2.20, dass eine Add-effiziente DMU auch BCC-effizient ist.

Die Effizienzauswertung θ^* wird nicht direkt gemessen, sie ist aber implizit in den Slacks s^{-*} und s^{+*} vorhanden.

Während θ^* nur Farrell- (=schwache) Effizienz widerspiegelt, liefert die Zielfunktion in (ADD_o) alle Ineffizienzen, welche das Modell in sowohl Inputs als auch Outputs ermitteln kann.

Bemerkung 2.37

Eine Variante, auf die wir hier nicht genauer eingehen werden, ist ein Additives Modell, welches die Bedingung $e\lambda = 1$ in (2.11) weglässt, um das Additive Modell auf das CCR-Production Possibility Set zu beziehen.

Mit den folgenden Formeln (*Projektion durch das Additive Modell*) lässt sich eine Verbesserung zu einer effizienten Activity erzielen:

$$\hat{x}_o = x_o - s^{-*},$$

 $\hat{y}_o = y_o + s^{+*}.$ (2.12)

Dabei ist (\hat{x}_o, \hat{y}_o) ADD-effizient und entspricht jenem Punkt auf der Efficient Frontier, der herangezogen wird, um DMU_o zu bewerten.

2.4.1. Translationsinvarianz des Additiven Modells

In vielen Anwendungen ist es geeignet, auch negative Daten in manchen Inputs oder Outputs zu behandeln.

Gegenstand der Studie von Brocket et al. (1998) war beispielsweise die Feststellung, ob Versicherungsgesellschaften auf Gegenseitigkeit mehr (oder weniger) effizient als ihre Stock-Ownership Counterparts sind. Daher war es hier notwendig, über die Annahme von semipositiven Daten hinauszugehen, um sowohl Verluste, als auch Gewinne zu behandeln, die als Outputs angesehen wurden.

Zu diesem Zweck dient die folgende Eigenschaft des Additiven Modells (ADD_o) , welche auch unter dem Begriff Translations invarianz bekannt ist.

Definition 2.38 (Translationsinvarianz):

Ein DEA Modell heißt translationsinvariant, falls durch die Translation der ursprünglichen Inputwerte x_{ij} $(i=1,\ldots,m,\ j=1,\ldots,n)$ und/oder Outputwerte y_{rj} $(r=1,\ldots,s,\ j=1,\ldots,n)$ ein neues Problem $(x_{ij}+\alpha_i,y_{rj}+\beta_r)$ auftritt, das dieselbe optimale Lösung für die Envelopmentform hat, wie das ursprüngliche Problem.

In den folgenden Beispielen untersuchen wir das BCC-Modell und das additive Modell auf Translationsinvarianz.

Beispiel 2.39

Wir betrachten die Situation in Abbildung 2.7. Dort sieht man, dass die DMU D einen BCC-Effizienzwert von d(P,R)/d(P,D) aufweist. Dieses Verhältnis ist invariant, selbst dann, wenn alle Output-Werte um denselben Betrag verschoben werden. Dies wird durch die Verschiebung des Ursprungs von O auf O' dargestellt.

Es ist leicht einzusehen, dass das inputorientierte BCC-Modell allgemein bezüglich Outputs (aber nicht bezüglich Inputs) translationsinvariant ist.

Eine vergleichbare Argumentation zeigt, dass das outputorientierte BCC-Modell invariant unter der Translation von Inputs (jedoch nicht unter der Translation von Outputs) ist.

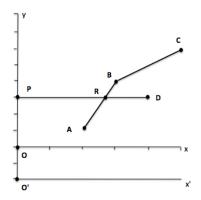


Abbildung 2.7.: Translation im BCC-Modell

Beispiel 2.40

Wir beziehen uns nun auf die Situation, die in Abbildung 2.8 dargestellt ist. Es ist auch hier leicht einzusehen, dass das Additive Modell translationsinvariant bezüglich den betrachteten Inputs und Outputs ist, da unter Anwendung von (ADD_o) die Effizienzauswertung nicht vom Ursprung des Koordinatensystems abhängt.

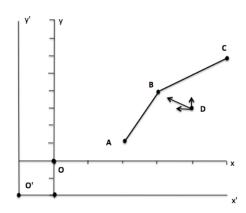


Abbildung 2.8.: Translation im Additiven Modell

Das folgende Resultat geht auf Ali und Seiford (1990) zurück.

Proposition 2.41

Das Additive Modell, gegeben durch (2.11), ist translationsinvariant.

Beweis.

Im Folgenden wird der Datensatz (X,Y) durch die Einführung beliebiger Konstanten $(\alpha_i:i=1,\ldots,m)$ und $(\beta_r:r=1,\ldots,s)$ translatiert, um neue Daten zu erhalten.

Dazu definieren wir für $j \in \{1, \dots, n\}, \, i \in \{1, \dots, m\}$ und $r \in \{1, \dots, s\}$

$$x'_{ij} = x_{ij} + \alpha_i$$
 $(i = 1, ..., m, j = 1, ..., n),$
 $y'_{rj} = y_{rj} + \beta_r$ $(r = 1, ..., s, j = 1, ..., n).$

Wir bemerken, dass Gleichung (2.11) nun geschrieben werden kann als

$$\sum_{j=1}^{n} (x'_{ij} - \alpha_i) \lambda_j + s_i^- = \sum_{j=1}^{n} x'_{ij} \lambda_j + s_i^- - \alpha_i = x'_{io} - \alpha_i.$$

Durch Umformung und Ausnützen der Konvexitätsbedingung $e\lambda = 1$ erhalten wir

$$\sum_{i=1}^{n} x'_{ij} \lambda_j + s_i^- = x'_{io}.$$

Hierbei handelt es sich um dieselben λ_j, s_i^- , die auch

$$\sum_{i=1}^{n} x_{ij} \lambda_j + s_i^- = x_{io}$$

genügen.

Ebenso werden dieselben λ_i, s_r^+ , für die

$$\sum_{j=1}^{n} y_{rj} \lambda_j - s_r^+ = y_{ro}$$

gilt, auch

$$\sum_{j=1}^{n} y'_{rj} \lambda_{j} - s_{r}^{+} = y'_{ro}$$

erfüllen.

Die obigen Gleichungen zeigen, dass, wenn $(\lambda^*, s^{-*}, s^{+*})$ eine optimale Lösung des ursprünglichen Problems ist, so ist sie auch optimal für das translatierte Problem und umgekehrt.

Schließlich erhalten wir auch

$$s_{i}^{-} = \sum_{j=1}^{n} x_{ij} \lambda_{j} - x_{io} = \sum_{j=1}^{n} x'_{ij} \lambda_{j} - x'_{io}$$

und

$$s_r^+ = \sum_{j=1}^n y_{rj} \lambda_j - y_{ro} = \sum_{j=1}^n y'_{rj} \lambda_j - y'_{ro}.$$

Wir sehen also, dass der Zielwert $z = es^- + es^+$ nicht beeinflusst wird.

Bemerkung 2.42

Das CCR-Modell ist nicht translationsinvariant, wie in Cooper und Seiford (2007) nachgelesen werden kann.

2.5. Das SBM-Modell

Im Additiven Modell besteht die Möglichkeit, sowohl Input- als auch Outputorientierung gemeinsam zu betrachten, das heißt, dass gleichzeitig Inputs reduziert und Outputs erhöht werden können.

Da es aber mit dem Additiven Modell nicht möglich ist, den Grad der Effizienz einer DMU zu messen, wird diese Schwäche durch das sogenannte Slack-Based Measure of Efficiency (SBM) aufgehoben, welches eine Erweiterung des ursprünglichen Additiven Modells darstellt.

Dabei wird das Effizienzmaß nicht direkt – wie z.B. der Wert θ^* im CCR-Modell – berechnet, sondern durch die Slacks indirekt ausgedrückt.

Eine zusätzliche Erweiterung des SBM-Modells im Vergleich zum ursprünglichen Additiven Modell ist die Eigenschaft der Einheitsinvarianz, d.h. die Unabhängigkeit der Maßeinheiten, in denen die Input- bzw. Outputwerte angegeben werden.

Allgemeiner ausgedrückt wollen wir also, dass dieses Maß dasselbe ist, wenn x_{ij} durch $k_i x_{ij}$ ersetzt wird und y_{rj} durch $c_r y_{rj}$ ersetzt wird, wobei k_i (i = 1, ..., m) und c_r (r = 1, ..., s) beliebige positive Konstanten sind.

Eine weitere Eigenschaft, die das SBM-Maß erfüllt, ist die Monotonie. Das bedeutet, dass das Maß monoton fallend in jedem Input- und Output-Slack ist. Dadurch

wird gesichert, dass eine Erhöhung der Inputs und/oder eine Reduzierung der Outputs keinesfalls zu einer Verbesserung des Effizienzwertes führt (vgl. Scheel (2000)).

Um die Effizienz einer DMU (x_o, y_o) zu bewerten, formulieren wir das folgende Fractional Programm in λ , s^- und s^+ :

(SBM) min
$$\rho = \frac{1 - \frac{1}{m} \sum_{i=1}^{m} s_{i}^{-} / x_{io}}{1 + \frac{1}{s} \sum_{r=1}^{s} s_{r}^{+} / y_{ro}}$$
s.t.
$$x_{o} = X\lambda + s^{-}$$

$$y_{o} = Y\lambda - s^{+}$$

$$\lambda > 0, \ s^{-} > 0, \ s^{+} > 0.$$
(2.13)

In diesem Modell treffen wir die Annahme, dass alle Inputwerte nichtnegativ sind. Für den Fall, dass $x_{io}=0$ gilt, wird der Term s_i^-/x_{io} in der Zielfunktion gelöscht. Falls $y_{io}\leq 0$ ist, ersetzen wir dies durch eine sehr kleine positive Zahl, sodass der Term s_r^+/y_{ro} auch sicher eine Minderung des Effizienzmaßes bedingt. Da der Zähler und der Nenner für jeden Eintrag in der Zielfunktion in denselben

Ebenfalls kann einfach gezeigt werden, dass ein Anstieg in s_i^- bzw. in s_r^+ diesen Zielwert in einer strikt monotonen Weise verkleinert.

Einheiten gemessen werden, erfüllt ρ die Eigenschaft der Einheitsinvarianz.

Proposition 2.43

Das SBM-Effizienzmaß ρ erfüllt $\rho \in [0, 1]$.

Beweis.

Um zu zeigen, dass diese Eigenschaft gilt, bemerken wir zunächst, dass $s_i^- \leq x_{io}$ für $i=1,\ldots,m$ gilt. Daraus erhalten wir $0 \leq s_i^-/x_{io} \leq 1$ für jedes i. Es folgt, dass

$$0 \le \frac{\sum_{i=1}^{m} s_i^{-} / x_{io}}{m} \le 1.$$

Diese Bedingung gilt nicht für Outputs, da ein Output-Defizit – dargestellt durch eine von null verschiedene Slack – den entsprechenden Betrag des erzeugten Outputs überschreiten kann. Auf jeden Fall gilt aber

$$0 \le \frac{\sum_{r=1}^{s} s_r^+ / y_{ro}}{s}.$$

Dies stellt also Verhältnisse von durchschnittlichen Input- und Output-Mix-Ineffizienzen dar, mit der oberen Grenze $\rho = 1$, die in der Zielfunktion von (2.13) nur erreicht wird, wenn die Slacks in allen Inputs und Outputs null sind.

Es handelt sich hierbei klarerweise um ein inputorientiertes Maß für Mix-Ineffizienzen mit rein technischen Ineffizienzen, die mit Lösungen ermittelt werden, für die

$$\theta^* = \frac{s_i^-}{x_{lo}} = \frac{s_l^-}{x_{lo}}$$
 für alle $i, l \in \{1, \dots, m\}$

gilt.

Zur Lösung des SBM-Modells verwenden wir das folgende lineare Programm, in welches (SBM) durch die Einführung eines Skalars t>0 transformiert werden kann:

(SBM-LP) min
$$\tau = t - \frac{1}{m} \sum_{i=1}^{m} S_i^- / x_{io}$$

s.t. $1 = t + \frac{1}{s} \sum_{r=1}^{s} S_r^+ / y_{ro}$
 $t \boldsymbol{x_o} = X \boldsymbol{\Lambda} + \boldsymbol{S}^-$
 $t \boldsymbol{y_o} = Y \boldsymbol{\Lambda} - \boldsymbol{S}^+$
 $\boldsymbol{\Lambda} \geq \boldsymbol{0}, \ \boldsymbol{S}^- \geq \boldsymbol{0}, \ \boldsymbol{S}^+ \geq \boldsymbol{0}, \ t > 0,$

wobei

$$S^- = ts^-, S^+ = ts^+ \text{ und } \Lambda = t\lambda \text{ gilt.}$$

Es sei $(\tau^*, t^*, \mathbf{\Lambda}^*, \mathbf{S}^{-*}, \mathbf{S}^{+*})$ eine optimale Lösung von (LP). Dann erhalten wir eine optimale Lösung für (SBM) durch

$$\rho^* = \tau^*, \ \lambda^* = \Lambda^*/t^*, \ s^{-*} = S^{-*}/t^*, \ s^{+*} = S^{+*}/t^*.$$
 (2.14)

Anhand dieser optimalen Lösung können wir folgendermaßen entscheiden, ob eine DMU SBM-effizient ist:

Definition 2.44 (SBM-Effizienz):

Eine DMU mit Input x_o und Output y_o heißt SBM-effizient, wenn $\rho^* = 1$ gilt.

Diese Bedingung ist äquivalent zu $s^{-*} = 0$ und $s^{+*} = 0$; das bedeutet, dass keine Input-Überschüsse und Output-Defizite in einer optimalen Lösung auftreten.

2.5.1. Mix-Effizienz

Die Zielfunktion in (2.13) kann in

$$\rho = \left(\frac{1}{m} \sum_{i=1}^{m} \frac{x_{io} - s_{i}^{-}}{x_{io}}\right) \left(\frac{1}{s} \sum_{r=1}^{s} \frac{y_{ro} + s_{r}^{+}}{y_{ro}}\right)^{-1}$$

transformiert werden. Dabei misst das Verhältnis $\frac{x_{io}-s_i^-}{x_{io}}$ die relative Reduktionsrate bzw. die Mix-Ineffizienzen der Inputs.

Ähnlich misst das Verhältnis $\frac{y_{ro}+s_r^+}{y_{ro}}$ im zweiten Term die relative proportionale Expansionsrate von Output r und $\frac{1}{s}\sum_{r=1}^s \frac{y_{ro}+s_r^+}{y_{ro}}$ beschreibt das durchschnittliche proportionale Verhältnis der Output-Ausweitung. Seine Inverse, also der zweite Term, misst die Output-Mix-Ineffizienz. Daher kann ρ als das Verhältnis zwischen durchschnittlichen Input-Mix-Ineffizienzen und Output-Mix-Ineffizienzen interpretiert werden.

Weiters erhalten wir das folgende Theorem:

Theorem 2.45

Falls DMU A die DMU B dominiert, in dem Sinne, dass $x_A \leq x_B$ und $y_A \geq y_B$ erfüllt sind, dann gilt $\rho_A^* \geq \rho_B^*$.

Bemerkung 2.46

 ρ^* ist nicht größer als die optimale Lösung des CCR-Modells θ^* , schließlich berücksichtigt das SBM *alle* Ineffizienzen, wohingegen θ^* nur die rein technischen Ineffizienzen berücksichtigt. Daraus ergibt sich, dass eine DMU $(\boldsymbol{x_o}, \boldsymbol{y_o})$ genau dann CCR-effizient ist, wenn sie SBM-effizient ist.

2.5.2. Referenzmenge

Definition 2.47 (Referenzmenge):

Für SBM-Modelle definieren wir die Referenzmenge für (x_o, y_o) , basierend auf λ^* aus (2.14), durch:

$$E_o = \left\{ j | \lambda_j^* > 0 \right\}.$$

An dieser Stelle bemerken wir, dass diese Definition analog zu den Darstellungen der Referenzmengen der vorhergehenden Modelle ist.

Ist die Lösung nicht eindeutig, so ist auch die Referenzmenge nicht eindeutig. In diesem Fall können wir für unseren Gebrauch eine beliebige daraus wählen.

2.5.3. Verbesserung der Effizienz

Eine SBM-ineffiziente DMU (x_o, y_o) kann folgendermaßen ausgedrückt werden:

$$x_o = X\lambda^* + s^{-*},$$

 $y_o = Y\lambda^* - s^{+*}.$

Die DMU (x_o, y_o) kann verbessert werden und wird effizient, indem die vorhandenen Input-Überschüsse gelöscht und die Output-Defizite erhöht werden. Dies kann mittels der sogenannten SBM-Projektion erzielt werden:

$$egin{aligned} \hat{x}_o &= x_o - s^{-*} \ \hat{y}_o &= y_o + s^{+*}. \end{aligned}$$

Diese sind für das Additive Modell dieselben (vergleiche mit den beiden Gleichungen in (2.12)).

Unter Verwendung von E_o kann (\hat{x}_o, \hat{y}_o) auch folgendermaßen ausdrückt werden:

$$egin{aligned} \hat{m{x}}_{m{o}} &= \sum_{j \in E_o} m{x}_j \lambda_j^* \ \hat{m{y}}_{m{o}} &= \sum_{j \in E_o} m{y}_j \lambda_j^*. \end{aligned}$$

Dies bedeutet, dass (\hat{x}_o, \hat{y}_o) – ein Punkt auf der Efficient Frontier – als positive Kombination von Elementen der Referenzmenge E_o ausgedrückt werden kann. Jedes dieser Elemente ist dann auch effizient.

2.6. Zusammenfassung

Im Folgenden wollen wir die Ergebnisse aus dem theoretischen Teil zusammenfassen.

Tabelle 2.1 zeigt die Zusammenfassung der Charakteristika der in dieser Arbeit vorgestellten Modelle.

semipos. steht kurz für semipositiv, liegt bei einem Modell keine Einschränkung für die entsprechenden Inputs (X) bzw. Outputs (Y) vor, so wird dies in der folgenden Tabelle mit frei gekennzeichnet.

Die Zeile θ^* gibt an, welche Werte das Effizienzmaß in den entsprechenden Modellen annehmen kann. Das Additive Modell besitzt kein Maß, um die Tiefe der Ineffizienz zu messen.

Die Zeilen *Trans.Invarianz* bzw. *Einheitsinvarianz* zeigen auf, welche Modelle translationsinvariant bzw. einheitsinvariant in den Inputs bzw. Outputs sind.

TE oder Mix gibt an, ob das Modell technische Effizienz oder Mix-Effizienz misst. Aus der letzten Zeile Skalenerträge kann abgelesen werden, ob das Modell konstanten $(konst.\ SE)$ oder variablen $(var.\ SE)$ Skalenerträgen unterliegt. Die Skalenerträge des Additiven Modells bzw. des SBM-Modells hängen von der Zusatzbedingung $e\lambda=1$ ab.

Modell	CCR-I	CCR-O	BCC-I	BCC-O	ADD	SBM
Daten X	semipos.	semipos.	semipos.	frei	frei	semipos.
Y	frei	frei	frei	semipos.	frei	frei
θ^*	[0, 1]	[0, 1]	(0, 1]	(0, 1]	_	[0, 1]
Trans. X	×	×	×	✓	√	×
Invarianz Y	×	×	\checkmark	×	\checkmark	×
Einheitsinvarianz	✓	✓	✓	✓	×	\checkmark
TE oder Mix	TE	TE	TE	TE	Mix	Mix
Skalenerträge	konst. SE	konst. SE	var. SE	var. SE	konst. (var.) SE	konst. (var.) SE

Tabelle 2.1.: Zusammenfassung der Charakteristika aller Modelle

3. Problemstellung

Finanzinstitute auf der ganzen Welt erlebten in den letzten Jahren aufgrund des technologischen Fortschrittes, der reduzierten Informationskosten, anhaltender Überregulierung, usw. erhebliche Veränderungen.

Aufgrund dieses Wechsels gehören Effizienzanalysen zur betrieblichen Praxis für Finanzinstitute, vor allem aber auch angesichts des zunehmenden Wettbewerbes innerhalb des Bankensektors.

Die Analyse des Effizienzniveaus von Banken ist sowohl aus makro- als auch aus mikroökonomischer Sicht von Bedeutung. Aus mikroökonomischer Perspektive ist die Frage der Bankeneffizienz angesichts des sich ständig verschärfenden Wettbewerbs relevant.

Aus der Sicht der Makroökonomie ist zu bedenken, dass die Effizienz des Bankensektors die Kosten der Finanzintermediation, sowie die allgemeine Stabilität der Finanzmärkte beeinflusst.

Durch Effizienzanalysen kann der Erfolg von Maßnahmen der Vergangenheit überprüft werden, woraus sich unter anderem Hinweise für zukünftige Entscheidungen ableiten lassen.

Die Ergebnisse einer Effizienzanalyse bedingen unter anderem (vgl. Scheel (2000), S.15)

- Reorganisation innerhalb einzelner DMUs: Ineffiziente DMUs müssen gegebenenfalls ihre Arbeitsabläufe und -organisation, aber unter anderem auch den Einsatz von Sachmitteln und Personal ändern.
- Neustrukturierung der DMU-Standorte bzw. der Einzugsbereiche:
 Die Struktur eines Filialnetzes insgesamt kann beispielsweise durch Ausnutzung von Größeneffekten verbessert werden, indem beispielsweise große DMUs aufgeteilt werden und/oder kleinere DMUs zusammengelegt werden.
- Definition von Projektionen und Benchmarks: Ineffiziente DMUs sollen zur Steigerung ihrer Effizienz konkrete Zielvorgaben für die entsprechenden Inputs und Outputs erhalten bzw. geeignete, vorbildliche DMUs (die sogenannten Benchmarks), an denen sie sich orientieren können.

Ein leistungsfähiges Instrument hierzu stellt die Data Envelopment Analysis (DEA) dar.

Ein großer Vorteil der Anwendung der DEA in der Praxis ist, dass sie problemlos mehrere Inputs und Outputs in die Effizienzanalyse einbeziehen kann und die Gewichtung der berücksichtigten Inputs und Outputs nicht a-priori festgelegt wird, da diese im Rahmen des Verfahrens objektiv ermittelt werden. Somit wird die Gefahr

der systematischen Verzerrung verringert.

Ein weiterer Vorteil ist, dass die DEA effiziente DMUs von den ineffizienten separiert und es keiner subjektiven Einschätzung Außenstehender bedarf, um eine mögliche Produktionsfunktion zu bestimmen. Jede betrachtete DMU wird einer eigenen individuellen Optimierung unterzogen.

Darüber hinaus bietet die DEA Informationen für Handlungsimplikationen. Verbesserungspotentiale werden nicht nur identifiziert, sondern auch quantifiziert. Dadurch können zukünftige Potentiale prognostiziert werden (siehe Projektionen).

Die DEA hat sich in den letzten Jahren immer mehr etabliert und wurde bereits erfolgreich für zahlreiche Effizienzanalysen in den unterschiedlichsten Branchen eingesetzt.

In unserer Arbeit werden wir die Effizienzanalyse der oberösterreichischen Raiffeisenbanken für die Jahre 2010, 2011 und 2012 durchführen.

Die Raiffeisen Bankengruppe Österreich besteht aus 513 selbstständigen lokalen Raiffeisenbanken mit insgesamt 2.223 Bankstellen, acht regional tätigen Landeszentralen und der Raiffeisen Zentralbank Österreich AG (RZB). Die RZB ist das Spitzeninstitut der Raiffeisen Bankengruppe Österreich und die Muttergesellschaft der Raiffeisenbank International (RBI).

Von diesen 513 selbstständigen Raiffeisenbanken fallen 95 auf das Land Oberösterreich, mit insgesamt 452 Bankstellen.

Als Entscheidungseinheiten (DMUs) der Effizienzanalyse werden die 95 oberösterreichischen Raiffeisenbanken gewählt.

Die folgende Abbildung zeigt einen Umriss des Landes Oberösterreichs, eingeteilt in seine Bezirke. Diese Grafik wurde uns mit freundlicher Genehmigung der Raiffeisenbankengruppe Oberösterreich zur Verfügung gestellt. Aus der darauffolgenden Tabelle kann entnommen werden, wie viele der 95 Raiffeisenbanken jeweils auf die einzelnen Bezirke fallen, sowie die Anzahl der dazugehörigen Filialen (Bankstellen)¹³.

Abbildung 3.1.: Bezirke des Landes Oberösterreich

44

¹³Die Daten stammen von der Homepage der Raiffeisen Bankengruppe Oberösterreich

Bezirk	# selbstständige Raiffeisenbanken	# Bankstellen
Braunau	10	46
Eferding	2	13
Freistadt	3	28
Gmunden	4	23
Grieskirchen	5	32
Kirchdorf	11	21
Linz Stadt & Land	7	50
Perg	4	24
Ried	6	30
Rohrbach	7	32
Schärding	3	24
Steyr Stadt & Land	6	33
Urfahr Umgebung	9	30
Vöcklabruck	11	38
Wels Stadt & Land	8	28

Tabelle 3.1.: Anzahl der selbstständigen Raiffeisenbanken und Bankstellen nach Bezirken, Stand 2013

3.1. Software

Mittlerweile gibt es bereits eine Vielzahl an verschiedenen Software Optionen, von denen sich sowohl kommerzielle als auch nicht kommerzielle zu brauchbaren Alternativen für allgemeine DEA Anwendungen entwickelt haben.

Wir haben uns bei unseren Berechnungen für Excel von Microsoft entschieden. Der Standard Microsoft Excel Solver verwendet eine grundlegende Implementation der Primal Simplex Methode, um LP-Probleme zu lösen. Da dieser Solver mit 200 Entscheidungsvariablen und 100 Nebenbedingungen limitiert ist, benötigten wir eine entsprechende Erweiterung des Standard Excel Solvers. Wir haben uns dabei für den Analytic Solver Platform der Firma Frontline Systems entschieden.

Der Analytic Solver Platform ist ein auf Excel basierender Solver für lineare Programmierungsprobleme und ein kompatibles Upgrade des Microsoft Excel Solvers. Der Vorteil hier im Vergleich zum Microsoft Excel Solver liegt sowohl in der Geschwindigkeit, als auch in der Kapazität dieses Solvers, da er LP-Probleme mit bis zu 8000 Variablen lösen kann. ¹⁴

 $^{^{14}\}mbox{Vergleiche}$ dazu die Homepage von Frontline Systems

3.2. Wahl der Inputs und Outputs

Der erste und wahrscheinlich auch einer der schwierigsten Schritte für die Effizienzbewertung ist es, zu entscheiden, welche Input- und Outputkriterien verwendet werden sollen.

Angenommen wir haben n DMUs: DMU₁, DMU₂,...,DMU_n.

Einige gemeinsame Inputs und Outputs für jede dieser n DMUs werden folgendermaßen ausgewählt:

- Die Kriterien (Inputs, Outputs und Wahl der DMUs) sollen das Interesse eines Analytikers oder eines Managers in jenen Komponenten widerspiegeln, die in die relativen Effizienzbewertungen der DMUs einfließen.
- Da grundsätzlich kleinere Inputbeträge (d.h. weniger ist besser) und größere Outputbeträge (d.h. mehr ist besser) wünschenswert sind, sollten die Effizienzauswertungen diesen Grundsatz widerspiegeln.
- Numerische Daten sind für jeden Input und Output vorhanden.
- Es ist auf eine korrekte *Periodenabgrenzung* zu achten. Wenn die betrachteten Inputs erst in der Folgeperiode zu Outputs führen, so sollten in der Effizienzanalyse stets die Outputs in der Periode t zu den entsprechenden Inputs in der Periode t-1 in Beziehung gesetzt werden (vgl. Scheel (2000), S.18).

3.2.1. Einfluss der Anzahl der Inputs und Outputs

Stellt man sich die Frage, welchen Einfluss die Anzahl der Inputs und Outputs im Modell hat, so würde man intuitiv wahrscheinlich annehmen, dass eine höhere Anzahl an Inputs und Outputs auch ein genaueres Ergebnis liefert. Dies ist in der Anwendung der DEA jedoch nicht der Fall.

Eine DMU ist in der DEA dann effizient, wenn sie die höchste partielle Effizienz bezüglich mindestens einer Input-Output-Kombination aufweist. Liegt nun eine höhere Anzahl an Inputs und Outputs vor, so steigt auch die Anzahl an partiellen Effizienzwerten und somit nimmt auch die Anzahl an effizienten DMUs zu. Dies bedeutet, dass die Aussagekraft eines Modells mit der Anzahl der Inputs und Outputs sinkt und somit das Effizienzmaß kein brauchbares Ergebnis liefert.

Doyle und Green (1991) schreiben dazu in ihrem Buch: "[...] everybody becomes 100% efficient in their own little micro-corner of the market".

Um diesem Problem zu entgehen, sollte die Anzahl der DMUs deutlich höher sein als die der Inputs und Outputs.

Aus diesem Grund werden in der Literatur gelegentlich Faustregeln in Bezug auf das Verhältnis der Anzahl der Parameter zur Anzahl der Beobachtungen angegeben.

Zwei gebräuchliche Faustregeln bei der Prüfung des Stichprobenumfanges finden sich bei Dyson et al. (2001) sowie bei Cooper, Seiford und Tone (2006).

Dyson et al. empfehlen, die Stichprobengröße zumindest doppelt so groß wie das

Produkt aus Input- und Output-Faktoren zu halten, während Cooper, Seiford und Tone mindestens das Produkt aller Input- und Output-Faktoren oder das Dreifache aus der Summe der Input- und Output-Faktoren als Stichprobengröße fordern.

Durch die Reduktion der Zahl der Variablen unterliegen die Effizienzwerte einer geringeren Verzerrung; dies hat zur Folge, dass eine stärkere Differenzierung der Beobachtungen im Hinblick auf deren Effizienz erreicht werden kann, wodurch eine tragfähige Basis für eine wirkungsvollere Optimierung der wirtschaftlichen Aktivitäten der beobachteten Banken gegeben ist.

Aufgrund der Heterogenität in der Wahl der Inputs und Outputs und einer weitgefächerten Sammlung an DEA-Analysen ist ein unmittelbarer Vergleich der Studien sehr schwierig.

Die Auswahl der Input- bzw. Outputkriterien erfolgt anhand der Aufgabenstellung. Natürlich ist man hier mangels Verfügbarkeit eingeschränkt.

In weiterer Folge werden die in Betracht gezogenen Inputs und Outputs einer Korrelationsanalyse unterzogen, da eine starke positive Korrelation (>0,9) zwischen zwei Input- und Outputkriterien auf ein ähnliches Beurteilungskriterium schließen lässt, und daher kann einer der beiden hochkorrelierten Inputs bzw. Outputs aus der nachstehenden Analyse ausgenommen werden, ohne die Ergebnisse grundlegend zu verfälschen.

3.2.2. Leistungsmodelle

Für eine theoretisch fundierte Auswahl der Input- und Outputkriterien müssen zuerst die Leistungsmodelle präzisiert werden. Im Zusammenhang mit der Effizienzbewertung im Bankbereich haben sich der Intermediationsansatz, der Produktivitätsansatz, sowie der Profitabilitätsansatz als die wesentlichen Ansätze etabliert.

• Intermediationsansatz

Studien, denen der Intermediationsansatz zugrunde liegt, betrachten Banken als Intermediäre zwischen Sparer und Kreditnehmer. Nach dieser Sichtweise sind die Kundengelder (Sicht- und Spareinlagen) Inputs, die in Outputs (die für die Kreditvergabe verfügbaren Mittel und sonstige Assets) transformiert werden. Diese enge Sichtweise der Leistungen einer Bank ist für managementorientierte Untersuchungen individueller Banken oder Bankfilialen weniger geeignet. Der Intermediationsansatz eignet sich vor allem für Untersuchungen, deren Fokus auf der gesamtwirtschaftlichen Betrachtung von Kreditinstituten liegt.

Aus diesem Grund konzentrieren wir uns in unserer Analyse auf den Profitabilitätsansatz.

• Profitabilitätsansatz

Unter Profitabilität versteht man den Anteil des Gewinns am Umsatz. Der Profitabilitätsansatz betrachtet als Outputs die durch die Transaktionen und Finanzdienstleistungen für die Filiale erwirtschafteten Erlöse und als Inputs entsprechend die eingesetzten Vertriebsressourcen. Durch das Berücksichti-

gen von Kosten und Erlösen wird verhindert, dass eine Bankfiliale, die eine höhere Qualität und folglich höhere Erlöse – bei einer geringeren Zahl von Transaktionen – erzielt, aufgrund der resultierenden höheren Kosten möglicherweise als ineffizient ausgewiesen wird.

Für die Effizienzbewertung der 95 selbstständigen Raiffeisenbanken ergeben sich die folgenden Inputs bzw. Outputs¹⁵, welche in Euro angegeben werden:

Inputs

- Personalaufwand (im Folgenden: I1)
- Sachaufwand + Afa (im Folgenden: I2)
- Nettoaufwand (im Folgenden: I3)

Outputs

- Nettozinsertrag (im Folgenden: O1)
- Erträge aus Kredite und Beteiligungen (im Folgenden: O2)
- Dienstleistungserträge (im Folgenden: O3)
- sonstige Erträge (im Folgenden: O4)

Die nachstehenden Korrelationsmatrizen wurden mithilfe der Excel Analyse-Funktion Korrelation ermittelt. Bei den Analyse-Funktionen handelt es sich um ein Add-In für Microsoft Excel. Dieses Add-In ist verfügbar, wenn Microsoft Office oder Excel installiert ist. Das Add-In kann jedoch erst verwendet werden, wenn es geladen wurde und befindet sich für Excel 2010 im Menü Daten unter Datenanalyse. ¹⁶ Obwohl die beiden Inputs Personalaufwand und Sachaufwand in allen drei beobachteten Zeiträumen (2010, 1011 und 2012) einen jeweils sehr hohen Korrelationswert (>0,98) aufweisen, wird dennoch keiner der beiden Inputs aus der Analyse genommen, da beide Kriterien maßgebliche Aufwendungen einer Bank darstellen. Eine weitere starke Korrelation weisen die Outputs Nettozinsertrag und Dienstleistungserträge in allen drei Beobachtungsjahren auf (>0,97).

Für die Akzeptanz dieser Berechnungen haben wir jedoch beschlossen, die hochkorrelierten Inputs und Outputs in der Analyse zu belassen, da die Anzahl der DMUs im Vergleich zu den Kriterien hinreichend groß sind und für die Raiffeisenlandesbank Oberösterreich eine Berechnung ohne Reduktion der Kriterien hilfreich war. Wir haben uns jedoch dafür interessiert, wie sich die Ergebnisse verändern, wenn man beispielsweise den Input Sachaufwand aus den Berechnungen nimmt. In diesem Fall werden weniger Raiffeisenbanken als effizient ausgewiesen; allgemein kommt es bei den meisten DMUs zu einem zumeist kleinen Rückgang der Effizienzwerte. Durch den Ausschluss des Inputs Sachaufwand sinkt beispielsweise im Jahr 2010 im inputorientierten CCR-Modell der durchschnittliche Effizienzwert von 90,3% auf 87,8%. In diesem Jahr liegt unter der Betrachtung aller Inputs und Outputs

¹⁵Eine nähere Erläuterung der ausgewählten Input- und Outputkriterien kann im Anhang C.1 nachgelesen werden.

¹⁶Vergleiche dazu mit der Homepage von Microsoft.

der kleinste Effizienzwert bei ca 74,4%, ohne dem Input Sachaufwand liegt das Minimum bei 69,3%.

Die paarweisen Korrelationen zwischen den Inputs bzw. Outputs nach dem Profitabilitätsansatz für das Jahr 2011 können aus den nachstehenden Korrelationsmatrizen abgelesen werden. Jene Korrelationsmatrizen für die Jahre 2010 und 2012 befinden sich im Anhang.

Tabelle 3.2.: Korrelationsmatrix der Inputs nach dem Profitabilitätsansatz für das Jahr 2011

	I1	I2	Ι3
I1	1		
I2	0,99	1	
I3	0,79	0,80	1

Tabelle 3.3.: Korrelationsmatrix der Outputs nach dem Profitabilitätsansatz für das Jahr 2011

	O1	O2	О3	O4
O1	1			
O2	0,88	1		
O3	0,97	0,90	1	
O4	0,72	0,69	0,72	1

Im Zuge der Anonymisierung der Daten werden die 95 Raiffeisenbanken in der nachstehenden Effizienzanalyse zufällig angeordnet mit $DMU_1, DMU_2, \dots, DMU_{95}$ bezeichnet.

Würde man in der Effizienzanalyse einen Schritt weiter gehen und anstelle der 95 Raiffeisenbanken ihre 452 Filialen auf Effizienz überprüfen, würde es sich hier als sinnvoll erweisen, dieser Analyse den Produktivitätsansatz zugrunde zu legen.

• Produktivitätsansatz

In der Volkswirtschaftslehre wird unter Produktivität das Mengenverhältnis zwischen dem, was produziert wird (Output), und den dafür beim Produktionsprozess eingesetzten Mitteln (Produktionsfaktoren - Input) verstanden. Beim Produktivitätsansatz wird eine Bankfiliale als Produzent von Bankdienstleistungen und Bankprodukten verstanden. Banken produzieren dem Verständnis nach Produkte für Kunden. Sie benutzen Kapital und Arbeit, um verschiedene Einlagen- und Kreditprodukte bereitzustellen.

Auf Bankstellenebene würden sich daher im Falle der 452 Raiffeisenfilialen folgende Input- und Outputkriterien eignen¹⁷:

¹⁷Eine genauere Beschreibung der Input- und Outputkriterien ist im Anhang C.2 zu finden.

Inputs

- Anzahl der Bankomaten
- Anzahl der Mitarbeiter
- Anzahl der Kontoauszugsdrucker
- Anzahl der ZVT Automaten¹⁸

Outputs

- Anzahl der Geldabhebungen bei den Bankomaten
- Anzahl der manuellen Geschäftsfälle
- Produktion Kreditkonten
- Produktion Sparkonten
- Produktion Depotkonten
- Produktion Girokonten
- Anzahl der Anwendungen Kontoserviceterminals + ZVT
- Anzahl der ELBA Anwendungen

 $[\]overline{\ ^{18}{\rm Die\ Abk\"{u}rzung\ ZVT\ steht\ f\"{u}r\ Zahlungsverkehrsterminal}}.$

4. Methodik

4.1. Modellwahl

Im Rahmen der Effizienzanalyse der 95 Raiffeisenbanken wurden für die DEA-Bewertung das CCR-Modell und das BCC-Modell ausgewählt.

Im Falle beider Modelle handelt es sich um radiale (proportionale) Modelle. Bei radialen Modellen wird das Effizienzverbesserungspotential einer DMU durch eine proportionale Reduzierung bzw. Erhöhung der Inputs bzw. Outputs angegeben (hier wird also das Verhältnis zwischen Inputs und Outputs nicht verändert).

Reicht diese proportionale Reduzierung bzw. Erhöhung der Input- bzw. Outputfaktoren nicht aus, werden zusätzlich Slacks (Inputüberschüsse und Outputdefizite) ermittelt, welche in die Berechnung für die notwendige Verbesserung der Inputs und Outputs miteinbezogen werden, um eine effiziente Leistung zu erlangen.

Wie bereits erwähnt wurde, basiert die Effizienzbewertung nach dem CCR-Modell auf der Annahme von konstanten Skalenerträgen, während das BCC-Modell von variablen Skalenerträgen ausgeht.

Die Annahme konstanter Skalenerträge kann mit der Kopierfähigkeit von Unternehmen begründet werden: Dies bedeutet, dass es beispielsweise möglich sein sollte, eine neue Filiale als Kopie einer bestehenden zu errichten und so mit doppeltem Input den doppelten Output zu erzielen¹⁹.

Die Wahl eines Production Possibility Set mit variablen Skalenerträgen liefert bei der Effizienzmessung einen eleganten Ansatz zur Berücksichtigung der Filialgröße. Hier wird der Vergleichsmaßstab für die Effizienzmessung einer einzelnen DMU aus DMUs mit ähnlicher Skalengröße gebildet (vgl. Scheel (2000), S.42).

Auf das Additive Modell wird im praktischen Teil unserer Arbeit nicht näher eingegangen. Obwohl das Additive Modell Input-Überschüsse und Output-Defizite gleichzeitig behandelt (und nicht zwischen Inputorientierung bzw. Outputorientierung unterscheiden muss) und auch zwischen effizienten und ineffizienten DMUs unterscheiden kann, liefert das Additive Modell keine Aussage über die Größe der Ineffizienz.

Es ist darauf zu achten, dass das input-, sowie das outputorientierte CCR-Modell und das inputorientierte BCC-Modell auf semipositive Inputs beschränkt sind. Die Outputs unterliegen hier keinen Einschränkungen.

Das outputorientierte BCC-Modell verlangt hingegen semipositive Outputs, die Inputs können hier aber frei gewählt werden.

¹⁹Natürlich lässt sich hier dagegen einwenden, dass eine solche Vervielfachung auch zusätzlichen administrativen, oder organisatorischen Aufwand mit sich führt, der vorher als Input unberücksichtigt blieb.

Liegen negative Inputdaten vor, so dürfen diese - mit Ausnahme des outputorientierten BCC-Modells - nicht ohne weiteres einer Translation unterzogen werden, um positive Inputs zu erreichen, da diese Modelle nicht translationsinvariant sind.

Der Input Nettoaufwand in der nachstehenden Analyse enthält sowohl negative als auch positive Einträge. Um diesen Input dennoch in die Effizienzbewertung der 95 Raiffeisenbanken miteinbeziehen zu können, muss dieser Input entsprechend modifiziert werden. Dies wird zu Beginn des nachstehenden Kapitels 5 näher geschildert.

4.2. Effizienzmaße

Anhand der Ergebnisse aus den unterschiedlichen Modellen ist es nun möglich, Aussagen über die technische Effizienz, die reine technische Effizienz und die Skaleneffizienz der 95 Raiffeisenbanken zu treffen.

Wie bereits in den vorangegangenen Kapiteln erwähnt wurde, beschreibt das CCR-Effizienz- maß die Technische Effizienz (TE), hingegen wird das BCC-Effizienzmaß, welches die Skaleneffekte berücksichtigt, als Reine Technische Effizienz (PTE - Pure Technical Efficiency) einer DMU definiert.

Der Vergleich des CCR-Modells mit dem BCC-Modell gibt uns Auskunft über die Skaleneffizienz (SE): Die Skaleneffizienz wird durch das Verhältnis der CCR-Effizienz zur BCC-Effizienz ermittelt.

Als grundlegende Ausrichtung spiegelt die Orientierung des Modells (ob inputoder outputorientiert) die verschiedenen Ausprägungen des ökonomischen Prinzips wider: einerseits das Erreichen eines möglichst hohen Ertrags (Output) mit den gegebenen Mitteln (Input) im Falle der Outputorientierung und andererseits das Erreichen eines gegebenen Ziels mit möglichst geringem Mittelaufwand im Falle der Inputorientierung.

Zwar werden in den folgenden Effizienzanalysen das CCR-Modell und das BCC-Modell sowohl input- als auch outputorientiert angeführt, unser Hauptaugenmerk liegt jedoch auf den Berechnungen und den Ergebnisinterpretationen der input-orientierten DEA-Modelle. Die outputorientierten Versionen können dem Anhang entnommen werden.

Der Grund für die Konzentration auf die Inputorientierung liegt darin, dass die Inputfaktoren von den Raiffeisenbanken besser gesteuert werden können, als die Outputs. Legt man den Schwerpunkt auf inputorientierte Modelle, so hat dies zur Folge, dass die ermittelten Verbesserungsvorschläge die Inputfaktoren (zum Beispiel Personalaufwand, Nettoaufwand, usw.) und nicht die Outputfaktoren (zum Beispiel Nettozinserträge, Dienstleistungserträge, usw.) betreffen.

5. Effizienzanalyse der 95 oberösterreichischen Raiffeisenbanken

In den folgenden Unterkapiteln werden die 95 Raiffeisenbanken des Landes Oberösterreich einer Effizienzanalyse für die Jahre 2010, 2011 und 2012, sowie für die Durchschnittswerte der Inputs und Outputs dieser drei Jahre unterzogen. Diese wird auf das inputorientierte CCR-Modell und BCC-Modell angewendet.

Ermittelt werden jeweils der Effizienzwert, die Referenzmengen, sowie die Slacks. Diese erlangten Ergebnisse werden weiters verwendet, um für die ineffizienten DMUs die jeweiligen Projektionen zu ermitteln, welche die notwendige Verbesserung zur Erreichung einer effizienten Leistung angeben.

Um eine bessere Einsicht in die Tabellenblätter zu erhalten, werden diese anhand von drei repräsentativen Raiffeisenbanken näher erklärt. Diese Erläuterungen befinden sich im Anschluss an die Tabellen des inputorientierten CCR-Modells für das Jahr 2010.

Mit Hilfe der CCR- und BCC-Effizienzwerte und der im inputorientierten CCR- Modell erlangten Werte für λ werden anschließend die Skaleneffizienz und die Skalenverläufe näher untersucht.

Da sowohl das inputorientierte, als auch das outputorientierte CCR-Modell, sowie das inputorientierte BCC-Modell nur semipositive Inputs zulassen, kann der Input Nettoaufwand nicht ohne weiteres in die Effizienzanalyse miteinbezogen werden, da dieser sowohl negative, als auch positive Werte enthält.

Die unterschiedlichen Vorzeichen im Input Nettoaufwand sind darauf zurückzuführen, dass je nach Einstufung des Kreditnehmers eine Rückstellung eines gewissen Anteils für eventuelle Kreditausfälle notwendig ist. Wenn aufgrund des Sorgfaltsprinzips zu viel Rückstellung gebildet wurde, (zum Beispiel durch eine zu vorsichtige Einschätzung der Vorjahre, durch eine Verbesserung der Sicherheiten, oder sich die wirtschaftliche Situation des Kreditnehmers verbessert hat) kann der Nettoaufwand um diesen Wert im nächsten Jahr korrigiert werden.

Daher betrachten wir für jene oben genannten Modelle, welche semipositive Inputs verlangen, einen modifizierten Nettoaufwand:

Der modifizierte Nettoaufwand setzt sich aus dem Dreijahres-Schnitt (2010-2012) des Nettoaufwands zusammen und jene Werte, die sich auch nach den drei Jahren nicht nivelliert haben, werden auf null gesetzt.

Die Tabelle 6.1 mit den modifizierten Werten des Nettoaufwands kann dem Anhang entnommen werden.

Wie man aus der Tabelle 6.1 entnehmen kann, muss der Nettoaufwand der DMU₃, DMU₆, DMU₁₁, DMU₂₆, DMU₃₃, DMU₃₄, DMU₃₅, DMU₇₈ und der DMU₈₂ auf null gesetzt werden, um semipositive Werte für den modifizierten Input des Nettoaufwands zu erhalten. Das negative Vorzeichen in der Tabelle deutet an, dass es sich hierbei um Ausgaben für die Raiffeisenbanken handelt. Für die Analyse wird der Betrag der Inputs herangezogen. In den folgenden Analysen wird stets genau angeführt, welche Inputs betrachtet werden. Der modifizierte Input 3 wird im Folgenden mit $I3^*$ bezeichnet, der Nettoaufwand mit den ursprünglichen Werten trägt nach wie vor die Bezeichnung I3.

5.1. Effizienzbewertung der 95 Raiffeisenbanken für das Jahr 2010

5.1.1. Inputorientiertes CCR-Modell

Im Rahmen des inputorientierten CCR-Modells werden die einzelnen Ergebnisse ausführlich interpretiert. Für die darauffolgenden Modellvarianten erfolgt die Interpretation der Werte analog.

Tabelle 5.1 zeigt die Ergebnisse des CCR-Modells bei Input-Orientierung, für das Jahr 2010. Daraus kann entnommen werden, dass die 24 Raiffeisenbanken mit den DMUs 1, 3, 6, 11, 18, 21, 26, 29, 32, 35, 37, 38, 45, 48, 50, 53, 58, 62, 68, 71, 72, 75, 76 und 78 als Farrell-effizient ($\theta^*=1$) klassifiziert werden. Dies entspricht einem Anteil von 25,26% aller 95 beobachteten Raiffeisenbanken. Diese DMUs operieren im Bereich konstanter Skalenerträge. Ihre Skalengröße ist bereits optimal in dem Sinne, dass simple Vergrößerungen oder Verkleinerungen die Produktivität nicht mehr erhöhen können.

Alle anderen Raiffeisenbanken werden als CCR-ineffizient eingestuft.

Ein Effizienzwert von z.B. 70% impliziert einen Grad der Ineffizienz, d.h. einen Abstand von der Efficient Frontier, von $(1 - \theta^*) = 30\%$. Dieser Wert gibt also den Prozentsatz an, um den *alle* Inputs gesenkt werden müssen, um effizient zu werden.

Die Slacks können aus den Spalten $s_1^{-*}-s_4^{+*}$ entnommen werden, wobei s_1^{-*} die Slacks für Input 1 bezeichnen und s_4^{+*} die Slacks für Output 4.

Da keine der 24 effizienten Raiffeisenbanken Slacks aufweisen, sind diese folglich nicht nur radial effizient bzw. Farrell-effizient, sondern auch CCR-effizient (bzw. Pareto-Koopmans-effizient).

Im Gegensatz dazu weist die DMU_{20} mit einem Effizienzwert von 74,44% im Jahr 2010 die höchste Ineffizienz auf, gefolgt von der DMU_{34} mit einem Effizienzwert

von 74,87%.

Die Spalte Benchmarks führt die entsprechenden Referenz-DMUs für die ineffizienten DMUs an, mit den zugehörigen Intensitäten (λ_j) , die den jeweiligen Beitrag der Referenzeinheit definieren, der zur Erreichung einer Leistung an der Effizienzgeraden für die ineffiziente Bank erforderlich ist. Die entsprechenden Werte für λ_j befinden sich in Klammern hinter den jeweiligen Referenz-DMUs.

Andererseits zeigt diese Spalte für die Pareto-Koopmans-effizienten DMUs die Anzahl der ineffizienten DMUs an, die diese DMU als Benchmark heranziehen.

Jene Raiffeisenbank, der die DMU_{78} zugewiesen wurde, wird mit 50 Mal als häufigste Referenzeinheit aufgerufen, gefolgt von DMU_{29} , die 39 Mal als Referenzeinheit herangezogen wird und DMU_{68} , die 30 Mal als Benchmark dient.

Eine hohe Verwendung bedeutet lediglich, dass sich viele ineffiziente Einheiten an den oben genannten Einheiten messen, da sie eine ähnliche Input- Outputkombination aufweisen und vergleichbare Stärken und Schwächen besitzen.

Tabelle 5.1.: Ergebnisse des inputorientierten CCR-Modells für das Jahr 2010

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	s ₃ ^{+*}	s_4^{+*}
3 100,00% 7 4 84,05% 21 (0,65) 45 (0,07) 48 (0,01) 58 (0,11) 0 0 182,73 0 5 96,05% 29 (0,16) 38 (0,15) 48 (0,20) 58 (0,33) 72 (1,29) 0 0 129,9 0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$5 96,05\% \qquad \qquad 29 \ (0,16) \ 38 \ (0,15) \ 48 \ (0,20) \ 58 \ (0,33) \ 72 \ (1,29) \qquad 0 \qquad \qquad 0 \qquad \qquad 129,9 \qquad 0$			
		57,61	0
6 100 00%	0	0	0
$7 \qquad 85,01\% \qquad \qquad 29 \ (1,30) \ 50 \ (1,01) \ 68 \ (1,95) \ 76 \ (2,19) \ 78 \ (1,30) \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$	0	0	70,32
$8 \qquad 85,90\% \qquad 45 \ (0,06) \ 48 \ (0,06) \ 58 \ (0,13) \ 68 \ (0,54) \ 72 \ (0,17) \ 78 \ (0,13) \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$	0	0	0
9 88,06% 29 (0,02) 76 (0,26) 78 (0,05) 0 23,18 0 0	10,05	0	11,31
10 85,62% 3 (0,02) 11 (0,14) 26 (0,05) 29 (0,09) 75 (0,57) 78 (0,73) 0 0 0	0	0	0
11 100,00% 19			
$12 \qquad 90{,}74\% \qquad 29 \ (0{,}01) \ 50 \ (0{,}02) \ 58 \ (0{,}53) \ 62 \ (0{,}06) \ 68 \ (1{,}08) \ 72 \ (0{,}94) \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$	0	0	0
$13 \qquad 85{,}54\% \qquad \qquad 29 \ (0{,}05) \ 58 \ (0{,}18) \ 62 \ (0{,}00) \ 68 \ (0{,}83) \ 76 \ (1{,}09) \qquad 0 \qquad 4{,}87 \qquad 0 \qquad 0$	0	0	0
14 82,40% 29 (0,02) 32 (0,00) 38 (0,06) 78 (0,25) 0 0 306,43 0	61,88	0	0
$15 \qquad 81,95\% \qquad 3 \ (0,02) \ 18 \ (0,05) \ 29 \ (0,12) \ 58 \ (0,06) \ 68 \ (0,13) \ 75 \ (0,02) \qquad 0 \qquad 0 \qquad 0$	0	0	0
16 88,92% 29 (0,17) 38 (0,01) 50 (0,58) 68 (0,70) 78 (0,65) 0 0 0 0	0	0	10,39
17 80,93% 48 (0,05) 58 (0,20) 62 (0,01) 68 (0,48) 72 (0,03) 0 9,59 0 0	0	0	0
18 100,00% 7			
19 83,90% 1 (4,72) 45 (0,29) 76 (0,85) 78 (1,01) 0 0 802,88 0	0	0	125
20 74,44% 11 (0,08) 32 (0,01) 45 (0,00) 78 (0,24) 0 0 0	0	21,48	10,06
21 100,00% 5			
22 89,52% 11 (0,38) 29 (0,08) 38 (0,10) 58 (0,05) 68 (0,36) 78 (0,79) 0 0 0	0	0	0
23 90,21% 21 (0,01) 62 (0,02) 68 (0,60) 72 (0,12) 76 (0,01) 0 0 37,48 0	0	0	0
24 83,00% 11 (0,07) 29 (0,02) 38 (0,05) 58 (0,01) 68 (0,20) 0 0 0	0	0	4,95
25 88,85% 48 (0,21) 68 (3,00) 72 (0,89) 75 (0,49) 78 (0,62) 0 19,62 0 0	0	0	0
26 100,00% 3			
27 88,53% 3 (0,15) 11 (0,37) 18 (0,32) 26 (0,16) 71 (0,41) 75 (0,15) 0 0 0	0	0	0
28 77,76% 45 (0,01) 48 (0,01) 58 (0,03) 68 (0,24) 72 (0,22) 78 (0,18) 0 0 0	0	0	0
29 100,00% 39			
	592,07	0	0
31 99,89% 21 (3,30) 48 (0,07) 62 (0,75) 76 (1,13) 0 161,93 2370,12 0	0	0	0
32 100,00% 12			
33 88,08% 35 (0,25) 78 (0,37) 0 3,44 0 34,96	0	14,94	0
34 74,87% 3 (0,27) 35 (0,14) 78 (1,16) 0 161,94 0 0	0	0	28,71
35 100,00%			
36 79,97% 29 (0,11) 58 (0,02) 62 (0,00) 68 (0,52) 75 (0,00) 0 0,3 0 0	0	0	0
37 100,00% 0			
38 100,00% 18			10.00
39 82,19% 29 (0,05) 68 (0,22) 76 (0,27) 78 (0,14) 0 171,74 0 0	0	0	16,39
40 95,70% 3 (0,15) 6 (0,01) 11 (0,05) 29 (0,01) 78 (0,07) 0 0 0 0	0	0	10,86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	37,66	0
	0	0	0
43 95,68% 11 (1,49) 29 (0,14) 45 (0,06) 48 (0,40) 58 (0,41) 78 (0,39) 0 0 0 0	0	0	7.16
44 92,98% 29 (0,03) 50 (0,27) 68 (0,12) 76 (0,19) 78 (0,18) 0 0 0	0	0	7,16
45 100,00% 12	^	_	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0
	0	0	0
48 100,00% 26	_	0	0
49 80,84% 29 (0,48) 48 (0,15) 58 (0,07) 34,14 0 231,8 21,53	0	0	0
50 100,00%	100 60	0	0
	108,62	0	0
	0	0	U
53 100,00% 0			

DMU	θ^*	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_3^{+*}	s_4^{+*}
54	97,90%	1 (0,27) 11 (0,10) 48 (0,01) 68 (0,02) 78 (0,29)	0	0	0	0	0	0,91	0
55	84,58%	6 (0,04) 11 (0,03) 29 (0,02) 78 (0,28)	0	0	0	0	7,46	0	6,63
56	84,98%	11 (0,20) 29 (0,02) 32 (0,00) 38 (0,13) 78 (0,13)	0	0	0	0	0	0	0,49
57	97,05%	1 (0,16) 11 (0,19) 48 (0,04) 68 (0,59) 78 (0,32)	0	0	0	0	0	46,51	0
58	100,00%	23							
59	98,30%	3 (0,77) 29 (0,43) 75 (0,73) 78 (0,02)	0	12,5	0	0	89,49	0	0
60	79,27%	38 (0,05) 50 (0,05) 68 (0,16) 72 (0,10) 78 (0,15)	0	0	50,95	0	0	0	0
61	81,38%	$11 \ (0,19) \ 38 \ (0,07) \ 45 \ (0,03) \ 58 \ (0,04) \ 68 \ (0,52) \ 78 \ (0,56)$	0	0	0	0	0	0	0
62	100,00%	6							
63	86,67%	29 (0,07) 38 (0,00) 58 (0,02) 68 (0,10) 72 (0,02) 78 (0,07)	0	0	0	0	0	0	0
64	86,59%	29 (0,84) 50 (0,65) 72 (2,19) 78 (1,77)	0	0	438,09	0	8,62	0	0
65	87,94%	$21 \ (0,37) \ 48 \ (0,27) \ 68 \ (2,41) \ 72 \ (0,63) \ 76 \ (0,47)$	0	0	160,12	0	0	0	0
66	79,76%	29 (0,03) 72 (0,38) 76 (0,06) 78 (0,02)	0	7,57	0	0	15,38	0	0
67	81,98%	21 (0,03) 68 (0,03) 76 (0,04) 78 (0,30)	0	6,57	0	0	0	0	8,55
68	100,00%	30							
69	88,09%	32 (0,02) 38 (0,12) 45 (0,08) 78 (0,16)	0	0	1,01	0	0	0	33,42
70	89,80%	1 (0,81) 68 (0,88) 72 (1,24) 76 (0,03) 78 (0,46)	0	0	183,3	0	0	0	0
71	100,00%	3							
72	100,00%	22							
73	93,03%	50 (0,09) 76 (0,68) 78 (0,21)	0	0	191,93	0	2,22	0	17,06
74	83,10%	29 (0,22) 32 (0,28) 38 (0,24) 48 (0,01) 78 (0,81)	0	0	373,02	0	0	0	0
75	100,00%	11							
76	100,00%	16							
77	97,48%	29 (0,15) 32 (1,65) 38 (1,47) 78 (1,45)	0	0	0	0	1618,84	0	176,08
78	100,00%	50							
79	84,01%	29 (0,06) 38 (0,05) 50 (0,11) 68 (0,06) 72 (0,21) 78 (0,14)	0	0	0	0	0	0	0
80	85,18%	29 (0,16) 38 (0,08) 48 (0,08) 58 (0,49) 72 (0,46) 78 (0,51)	0	0	0	0	0	0	0
81	89,67%	1 (0,28) 11 (0,73) 45 (0,04) 48 (0,03) 78 (0,00)	0	0	0	0	0	80,14	0
82	97,10%	11 (1,57) 78 (0,10)	188,02	0	0	0	474,22	0	9,7
83	97,85%	18 (0,33) 26 (0,02) 48 (0,03) 71 (0,02) 75 (0,06)	0	0	0	76,77	0	0	0
84	81,91%	29 (0,26) 38 (0,68) 50 (0,57) 58 (0,14) 72 (0,03)	0	0	467,46	0	0	0	0
85	86,73%	50 (0,40) 76 (0,72) 78 (1,43)	0	0	418,48	0	199,12	0	29,55
86	90,11%	29 (0,14) 50 (0,15) 72 (0,48) 76 (0,63) 78 (0,32)	0	0	0	0	93,65	0	0
87	84,87%	11 (0,06) 29 (0,02) 32 (0,01) 78 (0,29)	0	0	0	0	85,59	0	8,27
88	78,18%	11 (0,16) 18 (0,04) 48 (0,00) 58 (0,34) 68 (0,75)	0	0	0	0	0	38,21	0
89	79,08%	29 (0,65) 32 (0,08) 38 (1,36) 45 (0,14) 48 (0,50) 78 (0,43)	0	0	0	0	0	0	0
90	87,22%	48 (0,03) 58 (0,67) 68 (1,73) 72 (0,47) 75 (0,41) 78 (0,54)	0	0	0	0	0	0	0
91	90,33%	11 (0,02) 29 (0,06) 32 (0,24)	39,9	0	0	0	45,71	0	38,72
92	81,97%	11 (0,13) 29 (0,07) 32 (0,21)	11,95	0	0	0	63,17	0	7,24
93	94,55%	48 (0,30) 75 (0,21) 78 (1,46)	0	223,35	0	496,76	209,72	0	0
94	99,20%	29 (0.55) 45 (0.11) 48 (0.20) 58 (0.03)	294,67	0	59,23	0	0	0	0
95	81,79%	29 (0,12) 48 (0,01) 58 (0,05) 72 (0,06) 75 (0,06) 78 (0,14)	0	0	0	0	0	0	0
ø	90,25%								

Wie bereits in Kapitel 2.2.4 ausführlich beschrieben wurde, geben die CCR-Projektionen die notwendige Verbesserung der In- bzw. Outputs zur Erreichung einer effizienten Leistung im CCR-Modell an. Dabei werden die Inputwerte radial mit dem Verhältnis θ^* reduziert und etwaige Input-Überschüsse, die im Vektor \mathbf{s}^{-*} erfasst sind, abgezogen. Ähnliche Effizienz kann erreicht werden, indem die Outputwerte durch die Output-Defizite in \mathbf{s}^{+*} erweitert werden, sofern Defizite vorhanden sind. In dieser Analyse besteht der Vektor \mathbf{s}^{-*} aus den Komponenten s_1^{-*} , s_2^{-*} und s_3^{-*} und der Vektor \mathbf{s}^{+*} aus den Komponenten s_1^{+*} , s_2^{+*} , s_3^{+*} und s_4^{+*} .

In der Tabelle 6.6 können die Projektionen der Inputs und in der Tabelle 6.7 die der Outputs der ineffizienten DMUs für das Jahr 2010 abgelesen werden. Die beiden Tabellen sind im Anhang zu finden.

 $\widehat{I1}$ bezeichnet dabei die Projektion des inputorientierten CCR-Modells auf den Input 1 (also den verbesserten Input 1, um effiziente Leistung für die entsprechende DMU zu erhalten). Analog dazu sind $\widehat{I2}$, $\widehat{I3^*}$, $\widehat{O1}$, $\widehat{O2}$, $\widehat{O3}$ und $\widehat{O4}$ definiert. Die Projektionen wurden mittels den in Kapitel 2.2.4 beschriebenen Projektionen berechnet. Aus der Spalte Diff kann die Differenz zwischen dem neuen verbesserten Input bzw. Output zum ursprünglichen In- bzw. Output abgelesen werden und die Spalte in% gibt die jeweilige Verbesserung in Prozent an.

Um die einzelnen Werte aus Tabelle 5.1 und den beiden Projektionstabellen 6.6

und 6.7 näher zu erläutern, wird im Folgenden auf die DMU_1 , DMU_8 und DMU_9 genauer eingegangen. Aus der nachstehenden Tabelle 5.2 lässt sich leicht entnehmen, dass die DMU_1 CCR-effizient ist, die DMU_8 ineffizient ist und keine Slacks aufweist und die DMU_9 sowohl ineffizient ist als auch Slackwerte aufweist. Aufgrund ihrer unterschiedlichen Ergebnisse eignen sich diese drei DMU_8 sehr gut zur näheren Erläuterung, alle weiteren DMU_8 können je nach Ergebnis analog interpretiert werden.

Tabelle 5.2.: Ergebnisse des CCR-Modells bei Inputorientierung für DMU_1 , DMU_8 und DMU_9

DMU	θ^*	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_{3}^{+*}	s_4^{+*}
1	100,00%	7							
8	85,90%	45 (0,06) 48 (0,06) 58 (0,13) 68 (0,54) 72 (0,17) 78 (0,13)	0	0	0	0	0	0	0
9	88,06%	29 (0,02) 76 (0,26) 78 (0,05)	0	23,18	0	0	10,05	0	11,31

1. Nähere Betrachtung der DMU_1 - CCR-effizient

Das duale Problem liefert unter Anwendung des inputorientierten CCR-Modells folgende Werte für die DMU₁:

• Effizienzwert: $\theta^*=1$

• Intensitäten: $\lambda_1^* = 1$ und $\lambda_j^* = 0$ für $j = 2, \dots, 95$

• Slacks: $s_1^{-*} = s_2^{-*} = s_1^{+*} = s_2^{+*} = s_3^{+*} = s_4^{+*} = 0$

• Referenzmenge: $E_1 = \{1\}$

Da im Fall der DMU_1 $\theta^*=1$ erfüllt ist, handelt es sich hierbei um eine effiziente Raiffeisenbank. Weiters sind alle Slacks gleich null, also liegt hier sogar CCR-Effizienz vor. Da eine optimale Lösung bereits erreicht ist, müssen keine weiteren Schritte für eine Verbesserung eingeleitet werden.

2. Nähere Betrachtung der DMU₈ - ineffizient, keine Slacks

Für jene Raiffeisenbank, welcher die DMU_8 zugewiesen wurde, wurden mittels des dualen Problems des inputorientierten CCR-Modells folgende Werte ermittelt:

• Effizienzwert: $\theta^* = 0.859$

• Intensitäten: $\lambda_{45}^*=0.06,\ \lambda_{48}^*=0.06,\ \lambda_{58}^*=0.13,\ \lambda_{68}^*=0.54,\ \lambda_{72}^*=0.17,\ \lambda_{78}^*=0.13$ und $\lambda_j^*=0$ für $j=1,\ldots,95,\ j\neq45,48,58,68,72,78$

• Slacks: $s_1^{-*} = s_2^{-*} = s_1^{+*} = s_2^{+*} = s_3^{+*} = s_4^{+*} = 0$

• Referenzmenge: $E_8 = \{45, 48, 58, 68, 72, 78\}$

Aufgrund der vorliegenden Ergebnisse für die DMU₈ kann man erkennen, dass diese DMU aufgrund θ^* =0,859 ineffizient ist.

Um alle Ineffizienzen für diese Raiffeisenbank nun zu eliminieren, werden die Inputwerte radial im Verhältnis des Effizienzwertes reduziert (vergleiche mit

der ersten Gleichung in (2.6)). Da die DMU₈ keine Slacks aufweist, ist keine weitere Verbesserung erforderlich, um CCR-Effizienz zu erreichen.

Die Verbesserung der DMU $_8$ kann den beiden Projektionstabellen 6.6 und 6.7 entnommen werden.

Die CCR-Projektionen ergeben für diese DMU, dass der Input Personalaufwand einen Wert von 1081,48 Euro anstelle von 1259 Euro aufweisen sollte, der Input Sachaufwand + Afa von 691 Euro auf 593,57 Euro reduziert werden sollte und der modifizierte Nettoaufwand von 240,67 Euro auf 206,73 Euro verringert werden sollte, um ein effizientes Ergebnis im Rahmen der inputorientierten CCR-Bewertung zu erlangen. Dies entspricht einer Reduktion von jeweils 14,1% (1-0,859).

Als Referenzmaßstab zur Ermittlung des Effizienzwertes der $\mathrm{DMU_8}$ wird jene Einheit auf der Efficient Frontier herangezogen, die die Inputs im gleichen Verhältnis (d.h. mit denselben Gewichtungen) einsetzt wie $\mathrm{DMU_8}$ und somit strukturell identisch ist. So wird im Rahmen der DEA-Studie ausgeschlossen, dass die $\mathrm{DMU_8}$ mit einer effizienten Einheit verglichen wird, die einen ganz unterschiedlichen Input-Mix aufweist. Anhand der Referenzmenge werden mittels DEA die Passenden für die Effizienzbewertung ausgewählt.

An jenen sechs Raiffeisenbanken, welche die Referenzmenge E_8 bilden, orientiert sich also die betrachtete $\mathrm{DMU_8}$, um eine effiziente Leistung sicherzustellen. In anderen Worten bedeutet dies, dass diese $\mathrm{DMU_8}$ die virtuelle Benchmark auf der Efficient Frontier bilden, mit der die $\mathrm{DMU_8}$ verglichen wird. Die Werte für λ_j in Klammern hinter der jeweiligen Referenzeinheit $\mathrm{DMU_j}$ gibt an, mit welchem Anteil diese in die Benchmark eingeht.

Der Wert für $\lambda_{68}^* = 0,54$ ist deutlich höher als die restlichen λ_j ; dies bedeutet, dass die DMU₆₈ deutlich näher an der virtuellen Benchmark liegt, mit der die DMU₈ verglichen wird und somit auch deutlich näher zur DMU₈ ist, als die restlichen Benchmarks.

```
0,859 \cdot (\text{Input von DMU}_8) = 0,06 \cdot (\text{Input von DMU}_{45}) + 0,06 \cdot (\text{Input von DMU}_{48}) + 0,13 \cdot (\text{Input von DMU}_{58}) + 0,54 \cdot (\text{Input von DMU}_{68}) + 0,17 \cdot (\text{Input von DMU}_{72}) + 0,13 \cdot (\text{Input von DMU}_{78})
```

3. Nähere Betrachtung der DMU₉- ineffizient, Slacks

Das duale Problem liefert unter Anwendung des inputorientierten CCR-Modells folgende Werte für die DMU₉:

- Effizienzwert: $\theta^* = 0.8806$
- Intensitäten: $\lambda_{29}^* = 0.02$, $\lambda_{76}^* = 0.26$, $\lambda_{78}^* = 0.05$ und $\lambda_j^* = 0$ für $j = 1, \ldots, 95, j \neq 29, 76, 78$
- Slacks: $s_1^{-*} = s_3^{-*} = s_1^{+*} = s_3^{+*} = 0, s_2^{-*} = 23, 18, s_2^{+*} = 10, 05$ und $s_4^{+*} = 11, 31$
- Referenzmenge: $E_9 = \{29, 76, 78\}$

Wie sich aus den obigen Ergebnissen leicht ablesen lässt, ist DMU₉ ineffizient

 $(\theta^*{=}0{,}8806)$ und weist Slacks im Input I2, sowie in den Outputs O2 und O4 auf.

Aufgrund der Tatsache, dass die Raiffeisenbank mit der DMU_9 einen Effizienzwert von 0,8806 aufweist, müssen die Inputs radial im Verhältnis des Effizienzwertes reduziert werden, um ihre Effizienz zu verbessern.

Radiale Effizienzmaße zeigen jedoch nur Ineffizienzen an, die für alle Inputs bzw. Outputs gleichzeitig bestehen, nicht aber Änderungen am Input- oder Output-Mix. Hier werden also noch keine Verbesserungsmöglichkeiten bezüglich einzelner Parameter berücksichtigt, die über die gleichzeitig mögliche Verbesserung hinausgehen.

Daher müssen bei jenen Raiffeisenbanken wie der DMU₉, welche zusätzlich Slacks aufweisen, auch diese in den Projektionen berücksichtigt werden, damit die Raiffeisenbank schlussendlich Pareto–Koopmans-Effizienz erlangt. Die entsprechenden Slackwerte werden zusätzlich zur radialen Reduktion der Inputwerte subtrahiert und bei den Outputwerten werden die entsprechenden Slackwerte addiert. Dies führt bei der DMU₉ also zu folgender Verbesserung der Inputwerte bzw. Outputwerte (vergleiche Projektionen für das inputorientierte CCR-Modell):

$$\widehat{I1}$$
: 214, 63 = 0, 8806 · 250 - 0
 $\widehat{I2}$: 159, 16 = 0, 8806 · 196 - 23, 18
 $\widehat{I3}^*$: 515, 36 = 0, 8806 · 58 - 0
 $\widehat{O1}$: 334 = 334 + 0
 $\widehat{O2}$: 101, 55 = 86 + 10, 05
 $\widehat{O3}$: 162 = 162 + 0
 $\widehat{O4}$: 9, 47 = 2 + 11, 31

Die Differenz zwischen den verbesserten In- bzw. Outputs und den ursprünglichen Werten der DMU_9 , sowie die jeweilige Verbesserung in Prozent kann den beiden Projektionstabellen 6.6 und 6.7 entnommen werden.

5.1.2. Inputorientiertes BCC-Modell

Die Effizienzanalyse im vorangegangenen Unterkapitel ist von konstanten Skalenerträgen ausgegangen. Hierbei werden technische und Skaleneffizienz simultan bewertet und gemeinsam durch den Effizienzwert ausgedrückt. Auf diese Weise ist keine Trennung der beiden Arten von Effizienzen möglich. Eine Abweichung von der höchsten Produktivität kann auf technische Ineffizienz und/oder auf eine suboptimale Betriebsgröße zurückzuführen sein.

In diesem Unterkapitel soll daher die Annahme konstanter Skalenerträge aufgegeben und gezeigt werden, wie der Unternehmensvergleich bei Vorliegen nicht konstanter Skalenerträge durchgeführt werden kann. Die Unternehmensgröße, die bei

der Betrachtung unter konstanten Skalenerträgen unberücksichtigt bleibt, wird hier explizit als ein effizienzbestimmender Faktor in die Analyse einbezogen. Dies beinhaltet die Fälle steigender und sinkender Skalenerträge, schließt aber auch die Möglichkeit konstanter Skalenerträge mit ein. Man spricht daher von einer Analyse unter variablen Skalenerträgen.

Die folgende Tabelle zeigt die Ergebnisse des inputorientierten BCC-Modells für das Jahr 2010:

Tabelle 5.3.: Ergebnisse des inputorientierten BCC-Modells für das Jahr 2010

DMIT	Ω*	D 1 1	*	*	-*/10*\	_+*	_+*	_+*	
$\frac{\mathrm{DMU}}{1}$	θ_{B}^{*}	Benchmarks	s_1^{-*}	s_2^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_3^{+*}	s_4^{+*}
2	80,49%	31 (0,00) 38 (0,13) 45 (0,05) 62 (0,00) 76 (0,75) 78 (0,06)	0	0	149,78	0	0	0	0
3 4	100,00%	1 (0.18) 21 (0.62) 45 (0.05) 48 (0.01) 59 (0.12)	0	0	201.45	0	0	60.12	0
4 5	84,34% $96,37%$	1 (0,18) 21 (0,62) 45 (0,05) 48 (0,01) 58 (0,13) 29 (0,20) 38 (0,27) 48 (0,23) 58 (0,02) 62 (0,21) 72 (0,08)	0	0	201,45 $16,3$	0	0	$62,13 \\ 0$	0
6	100,00%	0							
7 8	100,00% 85,93%	45 (0,06) 48 (0,06) 58 (0,13) 62 (0,01) 68 (0,49) 72 (0,08) 78 (0,17)	0	0	0	0	0	0	0
9	100,00%	2							
10 11	89,41% 100,00%	26 (0,13) 48 (0,05) 53 (0,04) 59 (0,28) 78 (0,44) 93 (0,06)	0	0	0	0	9,28	0	0
12	95,13%	26 (0,12) 29 (0,04) 45 (0,05) 58 (0,37) 62 (0,18) 78 (0,23)	0	82,06	0	0	0	0	0
13 14	87,98% $92,60%$	21 (0,62) 29 (0,11) 38 (0,09) 62 (0,05) 78 (0,13)	0	36,05 0	0	0	107.51	0	23,45 0
14 15	92,60% 88,21%	24 (0,28) 50 (0,03) 54 (0,51) 68 (0,18) 11 (0,07) 29 (0,07) 58 (0,04) 63 (0,72) 68 (0,08) 83 (0,02)	$^{11,31}_{0}$	0	$367,21 \\ 0$	$0 \\ 71,57$	$107,51 \\ 0$	0	0
16	90,90%	29 (0,24) 38 (0,09) 45 (0,04) 53 (0,04) 78 (0,59)	0	46,96	0	0	0	0	31,34
17 18	82,29% 100,00%	1 (0,11) 37 (0,33) 48 (0,03) 58 (0,19) 68 (0,20) 72 (0,08) 76 (0,07)	0	0	0	0	0	0	0
19	91,83%	45 (0,66) 48 (0,03) 53 (0,15) 77 (0,17)	0	397,81	244,01	0	0	238,28	0
20	100,00%	1							
21 22	100,00% 94,41%	26 (0,16) 29 (0,08) 45 (0,07) 53 (0,05) 78 (0,64)	0	42,34	0	0	0	0	19,5
23	94,10%	1 (0,05) 9 (0,13) 37 (0,22) 50 (0,05) 68 (0,45) 72 (0,10)	0	0	36,55	0	0	0	0
24 25	100,00% 100,00%	$\frac{2}{2}$							
26	100,00%	12							
27	90,45%	3 (0,16) 26 (0,34) 48 (0,00) 58 (0,04) 71 (0,38) 75 (0,07)	0	36,56	0	0	0	0	0
28 29	80,10% 100,00%	1 (0,04) 50 (0,03) 54 (0,42) 58 (0,02) 68 (0,18) 72 (0,23) 83 (0,08) 21	0	0	0	0	U	U	0
30	92,66%	25 (0,07) 26 (0,12) 29 (0,46) 53 (0,08) 59 (0,17) 77 (0,11)	0	0	0	0	574,73	0	0
31 32	100,00% 100,00%	3							
33	100,00%	0							
34	83,27%	26 (0,32) 78 (0,68)	0	324,16	0	0	196,53	6,24	19,88
35 36	100,00% 83,79%	11 (0,00) 29 (0,07) 50 (0,01) 58 (0,02) 63 (0,44) 68 (0,46)	0	0	0	24,1	0	0	0
37	100,00%	4							
38 39	100,00% 82,25%	9 29 (0,02) 68 (0,72) 76 (0,25) 78 (0,01)	0	163,98	0	0	61,81	0	4,12
40	100,00%	1		100,50			01,01		4,12
41 42	99,11% 92,52%	37 (0,64) 48 (0,01) 54 (0,16) 68 (0,12) 78 (0,07)	0	17,16	0	0	0	52,34 0	0
43	100,00%	3 (0,04) 18 (0,28) 26 (0,37) 58 (0,08) 71 (0,23) 3	U	264,44	0	191,9	U	U	U
44	93,29%	29 (0,00) 50 (0,30) 68 (0,47) 72 (0,03) 76 (0,11) 78 (0,09)	0	0	0	0	42,12	0	0
45 46	100,00% 78,33%	15 29 (0,03) 38 (0,04) 48 (0,01) 58 (0,02) 68 (0,14) 72 (0,50) 78 (0,25)	0	0	0	0	0	0	0
47	81,12%	1 (0,15) 38 (0,03) 48 (0,12) 50 (0,09) 54 (0,59) 78 (0,02)	ő	ő	72,33	0	0	ő	0
48 49	100,00% 81,92%	19 29 (0,43) 48 (0,15) 50 (0,36) 58 (0,06)	62,54	0	159,2	68,48	0	0	0
50	100,00%	12	02,54	0	159,2	00,40	U		U
51	97,30%	7 (0,16) 25 (0,08) 48 (0,53) 59 (0,05) 77 (0,17)	86,56	0	0	0	111,99	0	0
52 53	88,24% 100,00%	26 (0,00) 48 (0,00) 58 (0,18) 59 (0,11) 71 (0,38) 78 (0,32) 9	0	0,2	0	0	0	0	0
54	100,00%	11							
55 56	100,00% 88,22%	11 (0,34) 32 (0,04) 38 (0,01) 50 (0,29) 54 (0,20) 68 (0,12)	0	0	13,1	0	0	0	0
57	98,74%	11 (0,19) 21 (0,07) 48 (0,04) 58 (0,05) 68 (0,16) 78 (0,49)	0	0	0	0	0	62,84	0
58	100,00%	19							
59 60	100,00% 87,16%	5 1 (0,36) 24 (0,24) 50 (0,03) 54 (0,10) 68 (0,26)	0	0	76,9	0	54,07	0	0
61	82,13%	21 (0,02) 26 (0,02) 45 (0,06) 58 (0,11) 78 (0,79)	Ő	1,32	0	Õ	0	0	18,94
62 63	100,00% 100,00%	$^{10}_{4}$							
64	100,00%	0							
65 66	93,40% 92,48%	43 (0,21) 45 (0,17) 48 (0,12) 53 (0,15) 62 (0,10) 78 (0,25)	0	248,04	0	0 86,78	$0 \\ 86,42$	$^{0}_{2,42}$	0
67	92,48%	1 (0,41) 9 (0,27) 37 (0,13) 72 (0,19) 0	U	0	0	00,78	00,42	2,42	U
68	100,00%	19							
69	90,66%	1 (0,09) 11 (0,16) 32 (0,10) 45 (0,03) 68 (0,63)	0	0	114,21	0	0	0	26,05

DMU	$ heta_B^*$	Benchmarks	s_{1}^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_{3}^{+*}	s_4^{+*}
70	93,05%	31 (0,03) 45 (0,06) 48 (0,06) 53 (0,35) 62 (0,08) 78 (0,42)	0	40,88	0	0	0	0	0
71	100,00%	3							
72	100,00%	11							
73	93,20%	50 (0,05) 68 (0,08) 76 (0,68) 78 (0,19)	0	0	202,71	0	11,03	0	15,91
74	84,52%	29 (0,16) 32 (0,15) 38 (0,39) 48 (0,03) 53 (0,22) 77 (0,05)	0	0	164,94	0	0	0	0
75	100,00%	1							
76	100,00%	5							
77	100,00%	4							
78	100,00%	25							
79	86,07%	29 (0,05) 50 (0,30) 54 (0,53) 63 (0,01) 68 (0,01) 72 (0,09)	0	0	0	0	6,12	0	0
80	87,63%	26 (0,06) 29 (0,15) 43 (0,12) 45 (0,04) 58 (0,15) 62 (0,18) 78 (0,29)	0	0	0	0	0	0	0
81	89,91%	1 (0,11) 11 (0,71) 45 (0,04) 48 (0,04) 68 (0,08) 78 (0,03)	0	0	0	0	0	87,26	0
82	99,52%	11 (0,48) 26 (0,16) 78 (0,37)	244	0	0	0	372,65	0	35,03
83	100,00%	3	_	_					
84	82,86%	29 (0,39) 31 (0,02) 38 (0,44) 45 (0,12) 58 (0,02)	0	0	574,48	0	0	0	27,45
85	90,91%	29 (0,09) 53 (0,71) 78 (0,20)	0	101,78	455,28	0	26,22	0	49,69
86	91,85%	29 (0,14) 62 (0,06) 72 (0,12) 78 (0,69)	0	78,98	128,49	0	118,05	0	0
87	97,46%	20 (0,25) 40 (0,04) 54 (0,31) 55 (0,01) 68 (0,39)	22,94	0	0	0	147,71	0	0
88	79,54%	11 (0,36) 18 (0,06) 21 (0,14) 58 (0,35) 78 (0,10)	0	0	0	0	0	27,95	6,65
89	100,00%	0							
90	99,69%	26 (0,04) 43 (0,78) 59 (0,14) 62 (0,04)	0	129,35	0	349,93	0	0	175,62
91	93,19%	11 (0,86) 32 (0,10) 54 (0,04)	18,61	0	172,01	0	174,8	0	12,56
92	85,80%	11 (0,24) 29 (0,02) 32 (0,13) 50 (0,36) 54 (0,26)	67,27	0	0	0	88,04	0	0
93	100,00%	1							
94	99,23%	29 (0,51) 32 (0,12) 45 (0,02) 48 (0,20) 58 (0,15)	273,4	0	73,01	0	0	0	0
95	86,28%	29 (0,10) 54 (0,05) 63 (0,42) 72 (0,15) 83 (0,28)	2,14	0	0	0	1,47	0	0
ø	$94,\!23\%$								

Wie sich aus den Ergebnissen ablesen lässt, weist das inputorientierte BCC-Model 43 DMUs als BCC effizient aus. Zusätzlich zu den obigen 24 CCR-effizienten DMUs (die somit klarerweise auch BCC-effizient sind) sind nun auch die DMUs 7, 9, 20, 24, 25, 31, 33, 40, 43, 54, 55, 59, 63, 64, 67, 77, 83, 89 und 93 BCC-effizient. Dies bedeutet, dass 45,26% aller 95 betrachteten Raiffeisenbanken BCC-effizient sind. Diese DMUs setzen also für eine gegebene Betriebsgröße Ressourcen verschwendungsfrei ein und produzieren maximalen Output.

Die Tatsache, dass im inputorientierten BCC-Modell mehr Raiffeisenbanken volle Effizienz aufweisen als im CCR-Modell, ist nicht weiter verwunderlich, schließlich passt sich die Efficient Frontier des BCC-Modells besser an die Daten an und somit werden mehr DMUs als effizient ausgewiesen, verglichen mit dem CCR-Modell. Da das BCC-Production Possibility Set vom CCR-Production Possibility Set umfasst wird, folgt daraus, dass jedes CCR-effiziente Unternehmen auch BCC-effizient ist.

Die DMU₉, die im CCR-Modell noch als ineffizient ausgegeben wurde, mit Slacks im Input 2, sowie in den Outputs 2 und 4 und daher zur näheren Erläuterung herangezogen wurde, erweist sich nun im BCC-Modell als BCC-effizient. Die niedrigsten Effizienzwerte weisen die DMU₄₆ mit 78,33% und die DMU₈₈ mit 79,54% auf.

Auch beim inputorientierten BCC-Modell werden die DMUs 78, 29 und 68 am häufigsten als Referenzeinheit für ineffiziente Raiffeisenbanken herangezogen. Aus den Projektionstabellen der Inputs und Outputs 6.8 und 6.9, die dem Anhang zu entnehmen sind, können die Projektionen für die ineffizienten Raiffeisenbanken abgelesen werden, die sich aus dem inputorientierten BCC-Modell ergeben.

5.1.3. Skaleneffizienz und Skalenverläufe

Da nun die Ergebnisse des inputorientierten CCR-Modells und jene des inputorientierten BCC-Modells vorliegen, kann somit auch die Skaleneffizienz bestimmt werden.

Der Teil der Effizienz, der sich auf die Betriebsgröße zurückführen lässt, wird unter dem Begriff der Skaleneffizienz angeführt (vergleiche Kapitel 2.3.7) und wird durch das Verhältnis der CCR-Effizienz zur BCC-Effizienz ermittelt.

Die Skaleneffizienz stellt eine technisch optimale Betriebsgröße für die zugrunde liegende Kombination von Inputs und Outputs dar. Könnte durch eine Veränderung der vorhandenen Betriebsgröße eine Einsparung in den Kosten realisiert werden, so wird ein Unternehmen als skalenineffizient bewertet.

Bei voneinander abweichenden Effizienzwerten verfügt die untersuchte Raiffeisenbank nicht über die optimale Betriebsgröße. Mit zunehmender Abweichung von der optimalen Betriebsgröße sinkt der Skaleneffizienzwert entsprechend.

Aus der nachstehenden Tabelle 5.4 können die Skaleneffizienzen und Skalenverläufe der 95 Raiffeisenbanken entnommen werden. Dabei bezeichnet θ^* bzw. θ_B^* den Effizienzwert aus dem inputorientierten CCR-Modell bzw. aus dem inputorientierten BCC-Modell.

Die Spalte *SE* gibt die Skaleneffizienz (in Prozent) der einzelnen DMUs an. Die Spalte *RTS* (Returns To Scale) zeigt die für die BCC-effizienten Raiffeisenbanken ermittelten Skalenverläufe, sowie die Skalenerträge der BCC-projizierten Activities der BCC-ineffizienten DMUs.

Die Skalenverläufe der BCC-effizienten DMUs wurden anhand von Theorem 2.25 ermittelt und die Skalenverläufe der BCC-projizierten Activities der BCC-ineffizienten DMUs können mit Hilfe von Theorem 2.27 und Theorem 2.28 identifiziert werden. Die grau untermalten Zeilen in Tabelle 5.4 heben die BCC-effizienten Raiffeisenbanken hervor.

DMU	$ heta^*$	$ heta_B^*$	SE	RTS
1	100,00%	100,00%	100,00%	CRS
2	79,97%	80,49%	99,35%	DRS
3	100,00%	100,00%	100,00%	CRS
4	84,05%	84,34%	99,66%	CRS
5	96,05%	96,37%	99,67%	CRS
6	100,00%	100,00%	100,00%	CRS
7	85,01%	100,00%	85,01%	DRS
8	85,90%	85,93%	99,97%	CRS
9	88,06%	100,00%	88,06%	IRS
10	85,62%	89,41%	95,76%	DRS
11	100,00%	100,00%	100,00%	CRS
12	90,74%	95,13%	95,39%	CRS
13	85,54%	87,98%	97,23%	CRS
14	82,40%	92,60%	88,98%	IRS
15	81,95%	88,21%	92,90%	IRS
16	88,92%	90,90%	97,82%	CRS
17	80,93%	82,29%	98,35%	CRS
18	100,00%	100,00%	100,00%	CRS
19	83,90%	91,83%	91,36%	DRS
20	74,44%	100,00%	74,44%	IRS
21	100,00%	100,00%	100,00%	CRS
22	89,52%	94,41%	94,82%	CRS
23	90,21%	94,10%	95,87%	IRS
24	83,00%	100,00%	83,00%	IRS
25	88,85%	100,00%	88,85%	DRS
26	100,00%	100,00%	100,00%	CRS

Tabelle 5.4.: Skaleneffizienz und Skalenverläufe 2010

DMU	θ^*	$ heta_B^*$	SE	RTS
27	88,53%	90,45%	97,88%	CRS
28	77,76%	80,10%	97,08%	IRS
29	100,00%	100,00%	100,00%	CRS
30	87,48%	92,66%	94,41%	DRS
31	99,89%	100,00%	99,89%	DRS
32 33	100,00% 88,08%	100,00% $100,00%$	100,00% $88,08%$	CRS IRS
34	74,87%	83,27%	89,91%	CRS
35	100,00%	100,00%	100,00%	CRS
36	79,97%	83,79%	95,44%	IRS
37	100,00%	100,00%	100,00%	CRS
38	100,00%	100,00%	100,00%	CRS
39	82,19%	82,25%	99,93%	CRS
40	95,70%	100,00%	95,70%	IRS
41	98,14%	99,11%	99,02%	IRS
42 43	86,63% 95,68%	92,52% 100,00%	93,63% 95,68%	CRS DRS
43	92,98%	93,29%	99,67%	CRS
45	100,00%	100,00%	100,00%	CRS
46	78,23%	78,33%	99,87%	CRS
47	79,55%	81,12%	98,06%	IRS
48	100,00%	100,00%	100,00%	CRS
49	80,84%	81,92%	98,68%	CRS
50	100,00%	100,00%	100,00%	CRS
51	87,59%	97,30%	90,02%	DRS
52	87,23%	88,24%	98,86%	DRS
53	100,00%	100,00%	100,00%	CRS
54 55	97,90% $84,58%$	100,00% 100,00%	97,90% $84,58%$	IRS IRS
56	84,98%	88,22%	96,33%	IRS
57	97,05%	98,74%	98,29%	CRS
58	100,00%	100,00%	100,00%	CRS
59	98,30%	100,00%	98,30%	DRS
60	79,27%	87,16%	90,95%	IRS
61	81,38%	$82,\!13\%$	99,09%	CRS
62	100,00%	100,00%	100,00%	CRS
63	86,67%	100,00%	86,67%	IRS
64	86,59%	100,00%	86,59%	DRS
65 66	$87,94\% \\ 79,76\%$	93,40% $92,48%$	94,15% $86,25%$	DRS IRS
67	81,98%	100,00%	81,98%	IRS
68	100,00%	100,00%	100,00%	CRS
69	88,09%	90,66%	97,17%	CRS
70	89,80%	93,05%	96,51%	DRS
71	100,00%	100,00%	100,00%	CRS
72	100,00%	100,00%	100,00%	CRS
73	93,03%	93,20%	99,82%	CRS
74	83,10%	84,52%	98,32%	DRS
75 76	100,00% 100,00%	100,00% $100,00%$	100,00% $100,00%$	CRS CRS
77	97,48%	100,00%	97,48%	DRS
78	100,00%	100,00%	100,00%	CRS
79	84,01%	86,07%	97,61%	IRS
80	85,18%	87,63%	97,20%	DRS
81	89,67%	89,91%	99,73%	CRS
82	97,10%	99,52%	97,57%	CRS
83	97,85%	100,00%	97,85%	IRS
84	81,91%	82,86%	98,85%	DRS
85	86,73%	90,91%	95,40%	CRS
86 87	90,11%	91,85%	98,11% 87,08%	CRS IRS
87 88	84,87% $78,18%$	97,46% $79,54%$	87,08% 98,29%	CRS
89	78,18%	100,00%	98,29% 79,08%	DRS
90	87,22%	99,69%	87,49%	DRS
91	90,33%	93,19%	96,93%	IRS
92	81,97%	85,80%	95,54%	IRS
93	94,55%	100,00%	94,55%	DRS
94	99,20%	99,23%	99,97%	CRS
95	81,79%	86,28%	94,80%	IRS

Aufgrund der Tatsache, dass $SE=\frac{\theta^*}{\theta_B^*}$ gilt, folgt offensichtlich eine Skaleneffizienz von 100%, falls die betrachtete DMU CCR-effizient ist (und folglich auch BCC-effizient ist). In diesem Fall arbeitet also die beobachtete Raiffeisenbank mit konstanten Skalenerträgen an der Efficient Frontier, im Bereich der Most Productive Scale Size (vgl. Kapitel 2.3.6). In diesem Bereich befinden sich jene 24 DMUs, die im inputorientierten CCR-Modell als Pareto–Koopmans-effizient ausgewiesen wurden.

Falls die untersuchte Raiffeisenbank BCC-effizient ist, jedoch bei der Analyse mittels des CCR-Modells einen Effizienzwert kleiner als 100% aufweist, so entspricht die Skaleneffizienz dem Effizienzwert, der sich aus dem CCR-Modell ergibt. Dies bedeutet also, dass in diesem Fall die beobachtete Raiffeisenbank an der BCC-Produktionsgrenze arbeitet und somit aus rein technischer Sicht effizient ist. Sie weist dennoch einen Skaleneffizienzwert auf, der einen Wert unter 100% annimmt, da diese Bank nicht im Bereich der MPSS arbeitet.

Tabelle 5.5 und Abbildung 5.1 zeigen den Verlauf der Skaleneffizienz jener DMUs, die als BCC-effizient ausgewiesen wurden, wobei die DMUs aufsteigend nach dem Skaleneffizienzwert geordnet sind.

Tabelle 5.5.: BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert für das Jahr 2010

DMU	$ heta_B^*$	SE
20	$\frac{\sigma_B}{100,00\%}$	74,44%
89	100,00%	74,44%
67		
24	100,00% $100,00%$	81,98% 83,00%
55	100,00%	84,58%
55 7	100,00%	85,01%
64	100,00%	86,59%
63	100,00%	86,67%
9	100,00%	88,06%
33	100,00%	88,08%
25	100,00%	88,85%
93	100,00%	94,55%
43	100,00%	95,68%
40	100,00%	95,08%
77	100,00%	97,48%
83	100,00%	97,48%
54	100,00%	97,90%
59	100,00%	98,30%
39 31	100,00%	98,30%
1		
3	100,00% $100,00%$	100,00% $100,00%$
3 6	100,00%	100,00%
11	100,00%	100,00%
18	100,00%	100,00%
21	100,00%	100,00%
26	100,00%	100,00%
29	100,00%	100,00%
32	100,00%	100,00%
35	100,00%	100,00%
37	100,00%	100,00%
38	100,00%	100,00%
36 45	100,00%	100,00%
48	100,00%	100,00%
50	100,00%	100,00%
53	100,00%	100,00%
58	100,00%	100,00%
58 62	100,00%	100,00%
68	100,00%	100,00%
71	100,00%	100,00%
72	100,00%	100,00%
72 75	100,00%	
76 76	100,00%	100,00% $100,00%$
76 78		
10	100,00%	100,00%

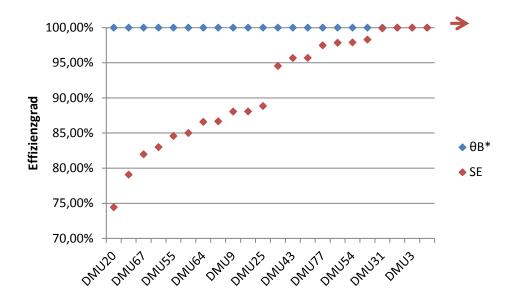


Abbildung 5.1.: Skalenverlauf der BCC-effizienten Raiffeisenbanken für das Jahr 2010

Bei jenen DMUs, bei denen Skalenineffizienzen vorhanden sind, ist die technische Ineffizienz $(1 - \theta^*)$ ausschließlich auf eine suboptimale Betriebsgröße zurückzuführen (SE).

Wie man aus Tabelle 5.5 und der Abb. 5.1 ablesen kann, weist die DMU_{20} die höchste Skalenineffizienz auf. Dies bedeutet, dass diese Raiffeisenbank die technisch suboptimalste Betriebsgröße für die gegebene Kombination von In- und Outputs aufweist. Da diese DMU BCC-effizient ist, bedeutet dies, dass die gesamte technische Ineffizienz auf die suboptimale Betriebsgröße zurückzuführen ist.

Die DMU_{20} ist auch jene DMU, die im inputorientierten CCR-Modell als ineffizienteste DMU ausgewiesen wurde.

Im Falle dieser Raiffeisenbank kann durch eine Veränderung der Betriebsgröße eine Kosteneinsparung realisiert werden und da keine Ineffizienzen bezüglich des Betriebes vorliegen ($\theta_B^* = 1$), kann dadurch auch volle technische Effizienz erzielt werden.

Die DMU₂₀ weist steigende Skalenerträge und somit eine zu kleine Betriebsgröße auf, da die Intensitäten im inputorientierten CCR-Modell für die DMU₂₀ $\sum_j \lambda_j = 0,33 < 1$ erfüllen.

Diese Raiffeisenbank müsste ihre Betriebsgröße daher vergrößern (etwa durch Zusammenlegung benachbarter Banken, die ebenfalls eine zu kleine Betriebsgröße aufweisen), um maximale Produktivität zu erreichen.

Im Gegensatz dazu weist beispielsweise die DMU_7 fallende Skalenerträge auf, wie aus Tabelle 5.4 entnommen werden kann. Durch eine Verkleinerung (z.B. Aufspaltung von großen in mehrere kleine Filialen, oder Verengung des Zuständigkeitsgebietes) kann hier sogar CCR-Effizienz erzielt werden, da die DMU_7 einen BCC-Effizienzwert von 100% aufweist.

Die folgende Abbildung 5.2 stellt den Verlauf der Skaleneffizienz aller im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken dar, wobei die DMUs absteigend nach Grad der BCC-Ineffizienz geordnet sind. Der Rang der einzelnen DMUs, welcher sich nach dem Grad der Ineffizienz richtet, kann aus Tabelle 5.6 abgelesen werden.

Tabelle 5.6.: BCC-ineffiziente DMUs, geordnet nach Grad der Ineffizienz

Rang	DMU	$ heta_B^*$	SE
1	46	78,33%	99,87%
2	88	79,54%	98,29%
3	28	80,10%	97,08%
4	2	80,49%	99,35%
5	47	81,12%	98,06%
6	49	81,92%	98,68%
7	61	82,13%	99,09%
8	39	82,25%	99,93%
9	17	82,29%	98,35%
10	84	82,86%	98,85%
11	34	83,27%	89,91%
12	36	83,79%	95,44%
13	4	84,34%	99,66%
14	74	84,52%	98,32%
15	92	85,80%	95,54%
16	8	85,93%	99,97%
17	79	86,07%	97,61%
18	95	86,28%	94,80%
19	60	87,16%	90,95%
20	80	87,63%	97,20%
21	13	87,98%	97,23%
22	15	88,21%	92,90%
23	56	88,22%	96,33%
24	52	88,24%	98,86%
25	10	89,41%	95,76%
26	81	89,91%	99,73%
27	27	90,45%	97,88%
28	69	90,66%	97,17%
29	16	90,90%	97,82%
30	85	90,91%	95,40%
31	19	91,83%	91,36%
32	86	91,85%	98,11%
33	66	92,48%	86,25%
34	42	92,52%	93,63%
35	14	92,60%	88,98%
36	30	92,66%	94,41%
37	70	93,05%	96,51%
38	91	93,19%	96,93%
39	73	93,20%	99,82%
40	44	93,29%	99,67%
41	65	93,40%	94,15%
42	23	94,10%	95,87%
43	22	94,41%	94,82%
44	12	95,13%	95,39%
45	5	96,37%	99,67%
46	51	97,30%	90,02%
47	87	97,46%	87,08%
48	57	98,74%	98,29%
49	41	99,11%	99,02%
50	94	99,23%	99,97%
51	82	99,52%	97,57%
52	90	99,69%	87,49%

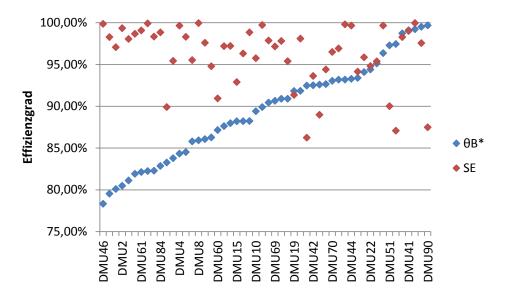


Abbildung 5.2.: Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken für das Jahr 2010

5.2. Effizienzbewertung der 95 Raiffeisenbanken für das Jahr 2011

Die nachstehenden Tabellen beinhalten je nach Modellwahl die entsprechenden Ergebnisse der Effizienzanalyse für das Jahr 2011. Im darauffolgenden Kapitel werden diese Resultate den erhaltenen Ergebnissen der Effizienzbewertung für das Jahr 2010 gegenübergestellt und näher analysiert.

Die Tabellen dieses Kapitels sind analog zu den Tabellen des vorigen Kapitels aufgebaut und auch die Interpretationen der Ergebnisse erfolgen analog zu jenen des Kapitels 5.1.

5.2.1. Inputorientiertes CCR-Modell

Aus Tabelle 5.7 kann entnommen werden, dass im Jahr 2011 die 17 Raiffeisenbanken mit den DMUs 1, 3, 11, 21, 26, 29, 32, 33, 45, 48, 53, 58, 59, 68, 71, 78 und 94 als CCR-effizient klassifiziert werden. Dies entspricht einem Anteil von beinahe 18% aller 95 beobachteten Raiffeisenbanken.

Die höchsten Ineffizienzen weisen im Jahr 2011 die DMU_{24} und die DMU_4 mit einem Effizienzwert von 64,87% bzw. 69,33% auf.

Die Ergebnisse des inputorientierten CCR-Modells für das Jahr 2011 zeigen weiters, dass die DMU_{11} mit 58 Mal am häufigsten als Referenzeinheit für ineffiziente Raiffeisenbanken herangezogen wird, gefolgt von der DMU_{68} , die 54 Mal als Bench-

mark aufgerufen wird.

Tabelle 5.7.: Ergebnisse des inputorientierten CCR-Modells für das Jahr 2011

DMU	θ^*	Benchmark	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_{3}^{+*}	s_4^{+*}
$\frac{1}{2}$	100,00% 84,63%	11 (0,89) 32 (0,03) 58 (0,1)	0 6) 25,89	0	449,24	0	171,48	0	0
3	100,00%	11 (0,09) 32 (0,03) 36 (0,1)	6	U	449,24	0	171,40	U	U
4	69,33%	11 (0,16) 29 (0,00) 32 (0,03) 58 (0,34) 68 (0,4		0	216,71	0	0	0	0
5 6	91,03% $99,35%$	29 (0,20) 32 (0,21) 48 (0,20) 58 (0,5 3 (0,38) 11 (0,45) 78 (0,9		0	98,95 0	0	153,09 $236,68$	0	0
7	89,91%	11 (3,74) 29 (0,82) 32 (0,67) 58 (0,8		0	99,95	0	1634,7	0	0
8	87,54%	11 (0,23) 32 (0,07) 45 (0,04) 48 (0,05) 58 (0,06) 68 (0,7)	9) 0	0	0	0	0	0	0
9	77,34%	11 (0,14) 29 (0,00) 32 (0,02) 68 (0,2)		0	23,65	0	44,91	0	0
10 11	82,87% $100,00%$	11 (1,49) 29 (0,12) 58 (0,15) 59 (0,02) 71 (0,4	58	U	0	U	308,36	U	0
12	88,43%	11 (0,32) 29 (0,17) 32 (0,13) 48 (0,01) 58 (0,40) 68 (0,6		0	0	0	0	0	0
13	72,71%	11 (0,02) 29 (0,03) 32 (0,05) 58 (0,16) 68 (1,6		0	73,39	0	0	0	0
14 15	80,08% $89.10%$	11 (0,21) 29 (0,01) 32 (0,08) 68 (0,1) 11 (0,09) 29 (0,17) 58 (0,04) 68 (0,0		0	281,32 0	0	$87,66 \\ 6,78$	0	$0 \\ 3,17$
16	88,02%	11 (1,14) 29 (0,08) 32 (0,10) 68 (1,2)		0	115,39	0	247,33	0	0,17
17	78,19%	29 (0,01) 48 (0,02) 58 (0,25) 68 (0,30) 71 (0,0	6) 0	0	0	3,49	0	0	0
18 19	97,50% $81,54%$	11 (1,33) 58 (0,0 11 (0,36) 32 (0,92) 68 (4,5		0	$ \begin{array}{c} 0 \\ 763,94 \end{array} $	303,17 0	0	50,53 $315,86$	0,71 $114,01$
20	75,05%	11 (0,30) 32 (0,92) 68 (4,9		0	003,94	0	20,81	18,18	1,89
21	100,00%	(-)- / (-)-	0						,
22	89,35%	11 (1,35) 29 (0,12) 32 (0,11) 48 (0,01) 68 (0,2)		0	0	0	18,25	0	0
23 24	89,35% $64,87%$	11 (0,14) 29 (0,04) 32 (0,02) 58 (0,00) 68 (0,3 48 (0,01) 58 (0,01) 68 (0,6		$\frac{0}{42,28}$	40,23 29,06	$0 \\ 22,55$	0	0	0
25	90,03%	11 (2,69) 29 (0,28) 32 (0,09) 48 (0,25) 94 (0,0	,	0	0	0	187,36	0	0
26	100,00%		0						
27 28	91,70% $77,97%$	3 (0,20) 11 (0,43) 29 (0,02) 68 (0,25) 71 (1,2 11 (0,36) 29 (0,02) 32 (0,04) 48 (0,00) 68 (0,2		0	0	98,25 0	$\frac{0}{38,53}$	0	0
29	100,00%		35	0	0	0	30,00	0	0
30	95,75%	11 (2,09) 32 (0,16) 58 (0,92) 94 (0,3	5) 57,44	0	0	0	1949,9	0	0
31	90,52%	48 (0,11) 58 (1,68) 68 (6,4		345,69	2592,6	0	0	420,47	0
32 33	100,00% 100,00%	4	15 0						
34	83,32%	3 (0,10) 11 (1,99) 78 (0,2	0	19,11	0	0	415,91	0	0
35	90,20%	3 (0,03) 11 (0,42) 78 (0,2		26,8	0	136,59	0	0	0
36 37	82,36%	11 (0,41) 29 (0,03) 58 (0,19) 71 (0,01) 94 (0,00) 11 (0,45) 48 (0,02) 58 (0,04) 68 (0,1)		0	0	164.15	170,05	24.5	0
38	97,81% $94,37%$	11 (0,43) 48 (0,02) 38 (0,04) 68 (0,1) 11 (2,69) 32 (0,2)		0	728,75	$164,15 \\ 0$	$0 \\ 50,58$	34,5 0	$_{16,5}^{0}$
39	77,34%	11 (0,56) 29 (0,00) 32 (0,03) 68 (0,1)	2) 0	0	40,42	0	56,61	0	0
40	97,16%	3 (0,16) 11 (0,13) 29 (0,00) 68 (0,14) 71 (0,0		0	0	0	48,91	0	0
41 42	94,15% 85,23%	11 (0,44) 48 (0,03) 58 (0,03) 68 (0,2 11 (1,52) 48 (0,02) 68 (0,54) 71 (0,6		$\frac{0}{27,56}$	0	122,04 $579,73$	0	82,63 0	0
43	91,02%	11 (2,68) 32 (0,19) 48 (0,25) 94 (0,3		0	0	0	7,8	0	0
44	88,50%	11 (0,37) 58 (0,06) 68 (0,4)	0) 0	0	83,03	0	104,22	0	0,87
45 46	100,00% 79,81%	11 (0,19) 29 (0,04) 32 (0,07) 48 (0,05) 68 (0,6	3 1) 0	0	0	0	82,43	0	0
47	79,81%	32 (0,03) 48 (0,08) 53 (0,11) 68 (0,6		0	77,83	0	46,78	0	0
48	100,00%		37		,				
49	79,53%	29 (0,41) 32 (0,08) 48 (0,16) 58 (0,01) 68 (0,2		0	191,41	0	0	0	0
50 51	99,22% $94,05%$	11 (0,64) 58 (0,06) 68 (0,0 11 (0,69) 29 (0,28) 32 (0,54) 48 (0,21) 94 (0,5		0	268,33 0	0	153,77 $375,87$	0	0,79 0
52	81,82%	48 (0,02) 68 (2,43) 71 (0,3		33,32	Ö	339,79	285,4	0	0
53	100,00%		14						
54 55	86,96% $83,52%$	48 (0,02) 53 (0,02) 68 (0,28) 78 (0,2 11 (0,54) 32 (0,00) 48 (0,01) 53 (0,01) 68 (0,0		$7,41 \\ 0$	0	0	13,61 $96,72$	0	0
56	85,42%	11 (0,34) 32 (0,00) 43 (0,01) 33 (0,01) 68 (0,01) 11 (0,31) 32 (0,15) 53 (0,03) 68 (0,01)		0	0	0	1,14	0	26,04
57	91,24%	11 (0,96) 32 (0,04) 53 (0,04)		0	0	0	0	21,22	6,85
58 59	100,00% 100,00%		32						
60	75,80%	11 (0,32) 29 (0,02) 32 (0,03) 68 (0,0	3) 0	0	87,02	0	9,43	0	0
61	77,43%	11 (0,96) 32 (0,12) 53 (0,14) 68 (0,1	7) 0	0	0	0	0	28,17	16,83
62	91,86%	29 (0,32) 48 (0,31) 58 (0,45) 68 (1,7			311,26	323,35	0	0	0
63 64	85,79% $92,76%$	11 (0,18) 29 (0,06) 32 (0,01) 48 (0,00) 58 (0,02) 94 (0,0 11 (0,17) 29 (0,85) 32 (0,84) 48 (0,23) 68 (1,4-		0	0	0	$0 \\ 479,51$	0	0 0
65	81,00%	11 (0,44) 32 (0,20) 45 (0,08) 48 (0,27) 58 (0,04) 68 (1,6)	9) 0	0	0	0	0	0	0
66	79,87%	11 (0,07) 29 (0,04) 32 (0,03) 48 (0,02) 68 (0,1		102.76	0	0	59,27	0	0
67 68	78,37% 100,00%	53 (0,03) 68 (0,09) 78 (0,2	5) 0 54	103,76	0	0	0	6,31	17,76
69	91,55%	11 (0,52) 32 (0,16) 68 (0,3		0	132,23	0	0	20,38	50,07
70	86,50%	32 (0,25) 48 (0,01) 53 (0,35) 68 (1,2	8) 0	0	22,57	0	133,89	0	0
71 72	100,00% 88,08%	48 (0,03) 53 (0,17) 68 (0,1	10 7) 0	66,29	18,61	0	6,15	0	0
73	93,91%	48 (0,03) 53 (0,17) 68 (0,1 53 (0,15) 68 (0,5)		303,56	271,32	0	0,15	$^{0}_{2,45}$	8,04
74	82,20%	11 (1,10) 32 (0,51) 58 (0,4)	6) 112,6	0	353,1	0	540,3	0	0
75 76	99,72%	29 (0,13) 48 (0,16) 68 (0,14) 71 (0,8		0	07.22	350,67	165,02	0	0
76 77	87,20% $91,94%$	53 (0,07) 68 (0,5 11 (8,59) 32 (1,33) 68 (0,8		29,43 0	97,32 1702,2	0	27,53 $2304,3$	0	0,98 $178,18$
78	100,00%		7		1.02,2	,		J	5,10
79	82,73%	11 (0,03) 29 (0,05) 32 (0,10) 48 (0,00) 68 (0,4		0	0	0	36,43	0	0
80 81	79,07% $88,07%$	29 (0,18) 32 (0,03) 48 (0,16) 58 (0,09) 68 (2,5 11 (0,91) 32 (0,08) 45 (0,00) 48 (0,00) 58 (0,00		0	76,35 0	0	0	$0 \\ 142,18$	0
82	97,84%	3 (0,04) 11 (1,6		0	0	0	481,58	0	2,18
83	87,59%	11 (0,47) 48 (0,04) 68 (0,2		8,93	0	$237,\!84$	0	3,07	0
					-				

DMU	$ heta^*$	Benchmarks	s_{1}^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_{3}^{+*}	s_{4}^{+*}
84	82,24%	29 (0,30) 58 (0,86) 94 (0,15)	0	0	984,3	148,84	558,11	0	0
85	91,08%	32 (0,51) 53 (0,06) 68 (1,18)	0	0	156,13	0	433	0	98,86
86	92,47%	11 (0,95) 32 (0,11) 68 (1,17)	0	0	119,69	0	362,43	0	29,48
87	82,63%	11 (0,24) 53 (0,09) 68 (0,04) 78 (0,10)	0	0	0	0	111,99	0	0,53
88	78,62%	11 (0,60) 48 (0,03) 58 (0,38) 68 (0,00)	0	0	0	68,9	0	35,53	0
89	74,47%	29 (0,58) 32 (0,88) 48 (0,33) 58 (0,02) 68 (6,37)	0	0	697,83	0	0	0	0
90	84,20%	11 (0,45) 29 (0,18) 48 (0,21) 58 (0,50) 68 (1,11) 71 (0,67)	0	0	0	0	0	0	0
91	83,80%	11 (0,69) 32 (0,15)	8,41	0	100,99	0	139,08	0	40,55
92	82,24%	11 (0,74) 29 (0,02) 32 (0,10) 58 (0,03)	0	0	112,71	0	200,19	0	0
93	88,35%	48 (0,26) 68 (1,07) 71 (0,31) 78 (0,81)	0	184,5	0	0	276,23	0	0
94	100,00%	8							
95	79,71%	11 (0,38) 29 (0,12) 32 (0,03) 48 (0,01) 94 (0,00)	0	0	0	0	58,04	0	0
ø	88,39%								

Die Tabelle 6.10 enthält die notwendigen Verbesserungen der Inputs der im Jahr 2011 als ineffizient ausgewiesenen DMUs, um CCR-Effizienz zu erlangen. Der Projektionstabelle 6.11 sind die notwendigen Verbesserungen der Outputs zu entnehmen. Beide Tabellen sind im Anhang zu finden.

5.2.2. Inputorientiertes BCC-Modell

Folgende Ergebnisse wurden für das Jahr 2011 mit Hilfe des inputorientierten BCC-Modells erzielt:

Tabelle 5.8.: Ergebnisse des inputorientierten BCC-Modells für das Jahr 2011

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DMU	θ_B^*	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_3^{+*}	s_4^{+*}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100,00%	10							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			11 (0,77) 32 (0,05) 58 (0,18)	19,19	0	424,31	0	173,84	0	5,69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	100,00%	1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		29 (0,21) 32 (0,22) 45 (0,00) 48 (0,19) 58 (0,32) 59 (0,07)	0	0	137,71	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			• • • • • • • • • • • • • • • • • • •							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	19,56	0	0	0	0	6,94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										22,52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-						0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										56,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	0	0	90,2	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ů –							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	211,25	291,39	0	0	234,57	66,88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			*							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										3,05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-					0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	69,26	19,26	95,93	0	14,33	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·				_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	0	0	0	38	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			*		45.00			11.40	101.15	40.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										48,93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										11,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	0	0	0	120,15	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			*	0	0	100.0	0	0	0	150.47
40 100,00% 8 41 96,71% 11 (0,07) 33 (0,04) 37 (0,76) 48 (0,01) 68 (0,12) 0 0,5 0 0 0 57,79										150,47
$41 96,71\% \qquad \qquad 11 \ (0,07) \ 33 \ (0,04) \ 37 \ (0,76) \ 48 \ (0,01) \ 68 \ (0,12) \qquad 0 \qquad 0,5 \qquad 0 \qquad 0 \qquad 0 \qquad 57,79$			1 (0,04) 9 (0,39) 11 (0,52) 32 (0,01) 50 (0,04)	0	0	25,46	0	39,06	0	0
			11 (0.07) 22 (0.04) 27 (0.76) 49 (0.01) 62 (0.10)	0	0.5	^	0	^	E7 70	0
42 90,4970 20 (0,39) 27 (0,01) 48 (0,00) 58 (0,08) 71 (0,51) 0 188,9 0 297.31 0 0										0
43 100,00% 0				U	188,9	U	297,31	U	0	U
·			· · · · · · · · · · · · · · · · · · ·	0	0	0	0	27 21	0	0,74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11 (0,14) 40 (0,12) 50 (0,54) 56 (0,01) 68 (0,38)	U	U	U	U	21,21	U	0,74
40 100,0070 9	40	100,00%	9							

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DMU	θ_B^*	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_3^{+*}	s_4^{+*}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			11 (0,19) 29 (0,02) 32 (0,06) 48 (0,05) 58 (0,03) 68 (0,64)						0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	0	75,91	0	64,56	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	0	105 50	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				U	U	105,50	U	U	U	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	252.75	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				U	252,75	0	U	0	U	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	6.97	0	0	38 51	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				- ,					, -	.,-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	86,14%	9 (0,46) 11 (0,13) 37 (0,18) 48 (0,01) 50 (0,22)	18,92	0	47,91	0	0	0	0
$\begin{array}{c} 63 & 96,39\% \\ 64 & 100,00\% \\ 66 & 100,00\% \\ 66 & 89,70\% \\ 66 & 89,70\% \\ 66 & 91,52\% \\ 69 & 91,67\% \\ 70 & 90,00\% \\ 70 & 20 & 100,00\% \\ 80 & 91,67\% \\ 70 & 80,55\% \\ 80 & 20 & 100,00\% \\ 80 & 100,00\%$	61	80,90%	11 (0,54) 26 (0,04) 32 (0,06) 53 (0,27) 58 (0,09)	0	0	0	0	0	46,55	23,07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	100,00%	Ó							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	96,39%	9 (0,40) 11 (0,27) 40 (0,21) 48 (0,01) 50 (0,11)	7,76	0	0	123,19	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64	100,00%	0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	0	0	12,22	31,94	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· ·							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			29 (0,07) 45 (0,03) 48 (0,00) 53 (0,72) 58 (0,06) 68 (0,11)	0	0	103,28	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 (0.04) 72 (0.06) 62 (0.01)	0	74.04	0.07	0	105.05	2.02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				32,73	U	209,00	U	U	U	55,69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·	0	27.28	100.75	0	81.76	27.28	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 (0,14) 9 (0,17) 00 (0,09)	0	21,20	100,15	0	01,70	21,20	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	0	0	0	104 73	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0						., .	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	94,12%	11 (0,15) 33 (0,22) 37 (0,40) 48 (0,02) 68 (0,22)	0	8,74	0	195,15	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	83,42%	29 (0,25) 58 (0,44) 59 (0,29) 94 (0,02)	0	0	1166,38	84,89	236,04	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	93,32%	29 (0,09) 32 (0,34) 53 (0,37) 68 (0,20)	0	0	243,79	0	239,71	0	107,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11 (0,59) 26 (0,00) 48 (0,03) 58 (0,38)	0	1,02	0	66,01	0	35,32	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0							
93 97,88% 6 (0,39) 26 (0,15) 29 (0,02) 48 (0,27) 53 (0,16) 0 363,58 0 0 121,66 0 0 94 100,00% 2 95 81,43% 11 (0,22) 40 (0,34) 48 (0,03) 50 (0,00) 58 (0,20) 68 (0,21) 0 0 0 0 240,05 0 0										
94 100,00% 95 81,43% 11 (0,22) 40 (0,34) 48 (0,03) 50 (0,00) 58 (0,20) 68 (0,21) 0 0 0 240,05 0 0										
95 81,43% 11 (0,22) 40 (0,34) 48 (0,03) 50 (0,00) 58 (0,20) 68 (0,21) 0 0 0 0 240,05 0			6 (0,39) 26 (0,15) 29 (0,02) 48 (0,27) 53 (0,16)	0	363,58	0	0	121,66	0	Ü
			11 (0.22) 40 (0.24) 48 (0.02) 50 (0.00) 58 (0.20) 62 (0.21)	0	0	0	0	240.05	0	0
	95 Ø	93,55%	11 (0,22) 40 (0,34) 48 (0,03) 50 (0,00) 58 (0,20) 68 (0,21)	0	0	0	0	240,05	0	

Wie sich aus den Ergebnissen in Tabelle 5.8 ablesen lässt, weist das inputorientierte BCC-Model 39 DMUs als BCC effizient aus. Zusätzlich zu den obigen 17 CCR-effizienten DMUs sind nun auch die DMUs 6, 7, 9, 18, 20, 25, 27, 30, 31, 37, 40, 43, 50, 51, 62, 64, 67, 75, 77, 82, 89 und 90 BCC-effizient. Dies entspricht einem Anteil von circa <math>41% aller 95 betrachteten Raiffeisenbanken.

Als ineffizienteste DMU erweist sich im Jahr 2011 – bewertet nach dem inputorientierten BCC-Modell – die DMU $_4$. Diese weist Ineffizienzen von über 30% auf. Die Ursachen dieser starken Ineffizienzen der DMU $_4$ wird später noch in Kapitel 5.5.5 näher erläutert.

Auch beim inputorientierten BCC-Modell werden die DMUs 11 und 68 mit jeweils 30 Aufrufen am häufigsten als Referenzeinheit für ineffiziente Raiffeisenbanken herangezogen.

Aus der Tabelle 6.12 können die Projektionen der Inputs der ineffizienten DMUs für das Jahr 2011 abgelesen werden und aus 6.13 sind die Projektionen der Outputs

zu entnehmen. Beide Tabellen sind im Anhang zu finden.

5.2.3. Skaleneffizienz und Skalenverläufe

Aus der nachstehenden Tabelle 5.9 können die Skaleneffizienzen der 95 Raiffeisenbanken für das Jahr 2011 entnommen werden, sowie die für die BCC-effizienten Raiffeisenbanken ermittelten Verläufe der Skalenerträge und auch die Skalenverläufe der BCC-projizierten Activities der BCC-ineffizienten DMUs. Auch hier heben die grau markierten Zeilen die BCC-effizienten Raiffeisenbanken hervor.

Tabelle 5.9.: Skaleneffizienz und Skalenverläufe 2011

DMU	$ heta^*$	$ heta_B^*$	SE	RTS
1	100,00%	100,00%	100,00%	CRS
2	84,63%	84,64%	99,99%	CRS
3	100,00%	100,00%	100,00%	CRS
4	69,33%	69,40%	99,90%	IRS
5	91,03%	91,51%	99,48%	CRS
6	99,35%	100,00%	99,35%	DRS
7	89,91%	100,00%	89,91%	DRS
8	87,54%	89,04%	98,32%	CRS
9	77,34%	100,00%	77,34%	IRS
10	82,87%	87,48%	94,73%	DRS
11	100,00%	100,00%	100,00%	CRS
12	88,43%	90,99%	97,19%	CRS
13	72,71%	80,13%	90,74%	CRS
14	80,08%	90,04%	88,94%	IRS
15	89,10%	92,73%	96,09%	IRS
16	88,02%	92,16%	95,51%	CRS
17	78,19%	81,38%	96,08%	IRS
18	97,50%	100,00%	97,50%	DRS
19	81,54%	93,29%	87,40%	DRS
20	75,05%	100,00%	75,05%	IRS
21	100,00%	100,00%	100,00%	CRS
22	89,35%	94,03%	95,02%	CRS
23	89,35%	95,66%	93,40%	IRS
24	64,87%	79,14%	81,97%	IRS
25	90,03%	100,00%	90,03%	DRS
26	100,00%	100,00%	100,00%	CRS
27	91,70%	100,00%	91,70%	DRS
28	77,97%	80,68%	96,64%	IRS
29	100,00%	100,00%	100,00%	CRS
30	95,75%	100,00%	95,75%	DRS
31	90,52%	100,00%	90,52%	DRS
32	100,00%	100,00%	100,00%	CRS
33	100,00%	100,00%	100,00%	CRS
34	83,32%	97,89%	85,12%	DRS
35	90,20%	98,38%	91,69%	CRS
36	82,36%	84,46%	97,51%	IRS
37	97,81%	100,00%	97,81%	IRS
38	94,37%	98,98%	95,34%	DRS
39	77,34%	81,80%	94,55%	IRS
40	97,16%	100,00%	97,16%	IRS
41	94,15%	96,71%	97,35%	IRS
42	85,23%	96,49%	88,33%	DRS
43	91,02%	100,00%	91,02%	DRS
44	88,50%	89,44%	98,95%	IRS
45	100,00%	100,00%	100,00%	CRS
46	79,81%	79,89%	99,90%	CRS
47	72,63%	73,29%	99,10%	CRS
48	100,00%	100,00%	100,00%	CRS
49	79,53%	79,63%	99,87%	IRS
50	99,22%	100,00%	99,22%	IRS
51	94,05%	100,00%	94,05%	DRS
52	81,82%	91,71%	89,22%	DRS
53	100,00%	100,00%	100,00%	CRS
54	86,96%	94,86%	91,67%	IRS
55	83,52%	99,96%	83,55%	IRS
56	85,42%	91,00%	93,87%	IRS
57	91,24%	91,94%	99,24%	CRS
58	100,00%	100,00%	100,00%	CRS
59	100,00%	100,00%	100,00%	CRS
60	75,80%	86,14%	88,00%	IRS
61	77,43%	80,90%	95,71%	CRS
62	91,86%	100,00%	91,86%	DRS
63	85,79%	96,39%	89,00%	IRS
64	92,76%	100,00%	92,76%	DRS
65	81,00%	89,70%	90,30%	CRS

DMU	θ^*	$ heta_B^*$	SE	RTS
66	79,87%	91,52%	87,27%	IRS
67	78,37%	100,00%	78,37%	IRS
68	100,00%	100,00%	100,00%	CRS
69	91,55%	91,67%	99,87%	CRS
70	86,50%	89,59%	96,55%	CRS
71	100,00%	100,00%	100,00%	CRS
72	88,08%	95,53%	92,20%	CRS
73	93,91%	97,43%	96,39%	CRS
74	82,20%	84,19%	97,64%	DRS
75	99,72%	100,00%	99,72%	DRS
76	87,20%	94,58%	92,20%	IRS
77	91,94%	100,00%	91,94%	DRS
78	100,00%	100,00%	100,00%	CRS
79	82,73%	83,79%	98,73%	IRS
80	79,07%	89,88%	87,97%	CRS
81	88,07%	88,82%	99,16%	CRS
82	97,84%	100,00%	97,84%	DRS
83	87,59%	94,12%	93,06%	IRS
84	82,24%	83,42%	98,59%	CRS
85	91,08%	93,32%	97,60%	CRS
86	92,47%	96,51%	95,81%	CRS
87	82,63%	94,62%	87,33%	IRS
88	78,62%	78,71%	99,89%	CRS
89	74,47%	100,00%	74,47%	DRS
90	84,20%	100,00%	84,20%	DRS
91	83,80%	85,96%	97,49%	IRS
92	82,24%	82,42%	99,78%	IRS
93	88,35%	97,88%	90,26%	DRS
94	100,00%	100,00%	100,00%	CRS
95	79,71%	81,43%	97,89%	IRS

Tabelle 5.10 und Abbildung 5.3 zeigen den Verlauf der Skaleneffizienz jener DMUs, die als BCC-effizient ausgewiesen wurden, wobei die DMUs aufsteigend nach dem Skaleneffizienzwert geordnet sind.

Auch hier ist analog zu Tabelle 5.5 bei jenen DMUs, bei denen Skalenineffizienzen vorhanden sind, die technische Ineffizienz $(1 - \theta^*)$ ausschließlich auf eine suboptimale Betriebgsgröße zurückzuführen (SE).

Tabelle 5.10.: BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert für das Jahr 2011

DMU	$ heta_B^*$	SE
89	100,00%	74,47%
20	100,00%	75,05%
9	100,00%	77,34%
67	100,00%	78,37%
90	100,00%	84,20%
7	100,00%	89,91%
25	100,00%	90,03%
31	100,00%	90,52%
43	100,00%	91,02%
27	100,00%	91,70%
62	100,00%	91,86%
77	100,00%	91,94%
64	100,00%	92,76%
51	100,00%	94,05%
30	100,00%	95,75%
40	100,00%	97,16%
18	100,00%	97,50%
37	100,00%	97,81%
82	100,00%	$97,\!84\%$
50	100,00%	99,22%
6	100,00%	99,35%
75	100,00%	99,72%
1	100,00%	100,00%
3	100,00%	100,00%
11	100,00%	100,00%
21	100,00%	100,00%
26	100,00%	100,00%
29	100,00%	100,00%
32	100,00%	100,00%
33	100,00%	100,00%
45	100,00%	100,00%
48	100,00%	100,00%
53	100,00%	100,00%
58	100,00%	100,00%
59	100,00%	100,00%

DMU	θ_B^*	SE
68	100,00%	100,00%
71	100,00%	100,00%
78	100,00%	100,00%
94	100,00%	100,00%

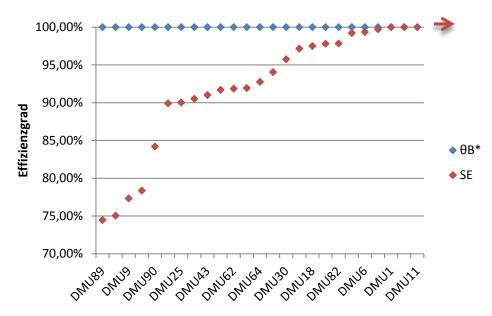


Abbildung 5.3.: Skalenverlauf der BCC-effizienten Raiffeisenbanken für das Jahr 2011

Wie sich aus Tabelle 5.9 ablesen lässt, weist im Jahr 2011 die DMU $_{89}$ mit einer Skaleneffizienz von 74,47% die suboptimalste Betriebsgröße auf. Die gesamte Ineffizienz dieser DMU ist auf die Skalenineffizienz zurückzuführen.

Die DMU_{89} weist eine zu große Betriebsgröße auf (DRS) und müsste ihre Betriebsgröße daher verkleinern, um maximale Produktivität zu erreichen.

Die folgende Abbildung 5.4 stellt den Verlauf der Skaleneffizienz aller ineffizienten Raiffeisenbanken dar, wobei die DMUs absteigend nach dem Grad der BCC-Ineffizienz geordnet sind. Der jeweilige Rang der einzelnen DMUs kann aus Tabelle 5.11 abgelesen werden.

Tabelle 5.11.: Ineffiziente Raiffeisenbanken 2011, geordnet nach dem Grad der Ineffizienz

Rang	DMU	$ heta_B^*$	SE
1	4	69,40%	99,90%
2	47	73,29%	99,10%
3	88	78,71%	99,89%
4	24	79,14%	81,97%
5	49	79,63%	99,87%
6	46	79,89%	99,90%
7	13	80,13%	90,74%
8	28	80,68%	96,64%
9	61	80,90%	95,71%
10	17	81,38%	96,08%
11	95	81,43%	97,89%
12	39	81,80%	94,55%
13	92	82,42%	99,78%

Rang	DMU	$ heta_B^*$	SE
14	84	83,42%	98,59%
15	79	83,79%	98,73%
16	74	84,19%	97,64%
17	36	84,46%	97,51%
18	2	84,64%	99,99%
19	91	85,96%	97,49%
20	60	86,14%	88,00%
21	10	87,48%	94,73%
22	81	88,82%	99,16%
23	8	89,04%	98,32%
24	44	89,44%	98,95%
25	70	89,59%	96,55%
26	65	89,70%	90,30%
27	80	89,88%	87,97%
28	14	90,04%	88,94%
29	12	90,99%	97,19%
30	56	91,00%	93,87%
31	5	91,51%	99,48%
32	66	91,52%	87,27%
33	69	91,67%	99,87%
34	52	91,71%	89,22%
35	57	91,94%	99,24%
36	16	92,16%	95,51%
37	15	92,73%	96,09%
38	19	93,29%	87,40%
39	85	93,32%	97,60%
40	22	94,03%	95,02%
41	83	94,12%	93,06%
42	76	94,58%	92,20%
43	87	94,62%	87,33%
44	54	94.86%	91,67%
45	72	95,53%	92,20%
46	23	95,66%	93,40%
47	63	96,39%	89,00%
48	42	96,49%	88,33%
49	86	96,51%	95,81%
50	41	96,71%	97,35%
51	73	97,43%	96,39%
52	93	97,88%	90,26%
53	34	97,89%	85,12%
54	35	98,38%	91,69%
55	38	98,98%	95,34%
56	55	99,96%	83,55%
	33	33,3070	00,0070

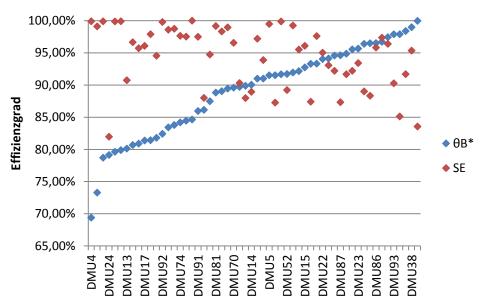


Abbildung 5.4.: Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken für das Jahr 2011

Im Jahr 2011 wurde – bewertet nach dem inputorientierten CCR-Modell – die DMU $_{24}$ mit einem Effizienzwert von 64,87% als ineffizienteste Raiffeisenbank ausgewiesen.

Um die Ursache dieser starken Ineffizienz ausfindig zu machen, zerlegen wir die Skaleneffizienz der DMU₂₄ in $\theta^* = \theta_B^* \cdot SE$ und erhalten $0,649 = 0,791 \cdot 0,820$.

Die technische Ineffizienz $(1 - \theta^*)$ ist also sowohl auf einen ineffizienten Betrieb (θ_B^*) , als auch auf eine suboptimale Betriebsgröße (SE) zurückzuführen.

Da θ_B^* die Effizienz eines Betriebes im Vergleich zu den besten Betrieben gleicher Größe angibt, kann diese als Einsparungspotential, das kurzfristig erreicht werden kann, interpretiert werden.

Hingegen spiegelt die technische Effizienz eine langfristige Perspektive wider, da eventuell eine Änderung der Betriebsgröße notwendig ist, um die gesamte Ineffizienz zu beseitigen.

5.3. Gegenüberstellung der Jahre 2010 und 2011

In diesem Kapitel werden die signifikanten Unterschiede zwischen den einzelnen Ergebnissen der oben betrachteten Modelle näher erläutert.

5.3.1. Inputorientiertes CCR-Modell

Vergleicht man die Ergebnisse des inputorientierten CCR-Modells für die Jahre 2010 und 2011, so sieht man, dass es zu einem leichten Rückgang der CCR-effizienten Raiffeisenbanken gekommen ist. Nur mehr 17 DMUs erweisen sich im Jahr 2011 als Pareto-Koopmans-effizient, im Vergleich dazu gab es im Vorjahr noch 24 CCR-effiziente Raiffeisenbanken.

Die DMUs 6, 18, 35, 37, 38, 50, 62, 72, 75 und 76 weisen zwar nach wie vor sehr hohe Effizienzwerte auf, (außer der DMU $_{72}$ und der DMU $_{76}$ liegen ihre Effizienmaße alle über 90%) jedoch verlieren sie an CCR-Effizienz. Dafür weisen die Raiffeisenbanken mit den DMUs 33, 59 und 94 nun CCR-Effizienz auf, obwohl sie im Jahr zuvor kein derart hohes Effizienzniveau genossen haben.

Der durchschnittliche CCR-Effizienzwert liegt im Jahr 2010 bei 90,25% und fällt im Jahr 2011 auf 88,39%. Die Durchschnittwerte lassen sich jeweils aus der letzten Zeile der entsprechenden Tabellen entnehmen.

Die ineffizientesten Raiffeisenbanken für das Jahr 2011 – bewertet nach dem inputorientierten CCR-Modell – sind die DMUs 24 und 4. Beide weisen Ineffizienzen von mehr als 30% auf. Im Vergleich dazu erzielten die DMU $_{24}$ und die DMU $_{4}$ im Jahr 2010 noch einen Effizienzwert von 83% bzw. 84,05%. Eine nähere Untersuchung dieser beiden DMUs kann in den Kapiteln 5.5.4 und 5.5.5 nachgelesen werden. Als ineffizienteste Raiffeisenbank für das Jahr 2010 erwies sich im inputorientierten

CCR-Modell die DMU₂₀ mit einem Effizienzwert von 74,44%, im Jahr 2011 liegt der Effizienzwert der DMU₂₀ bei 75,05%.

5.3.2. Inputorientiertes BCC-Modell

Auch im Ergebnis des inputorientierten BCC-Modells kommt es im Jahr 2011 verglichen mit jenen des Jahres 2010 zu einem leichten Rückgang der BCC-effizienten Raiffeisenbanken. 2010 wurden 43 Raiffeisenbanken als BCC-effizient ausgewiesen, im Jahr 2011 sind es nur mehr 39.

Zehn der im Jahr 2010 ausgewiesenen BCC-effizienten DMUs (DMU $_{24}$, DMU $_{35}$, DMU $_{38}$, DMU $_{54}$, DMU $_{55}$, DMU $_{63}$, DMU $_{72}$, DMU $_{76}$, DMU $_{83}$ und DMU $_{93}$) verlieren ihre volle Effizienz, hingegen kommen zu den 33 verbliebenen BCC-effizienten DMUs des Jahres 2010 die DMUs 27, 30, 51, 82, 90 und 94 hinzu, wie aus den Tabellen 5.3 und 5.8 abgelesen werden kann.

Der durchschnittliche BCC-Effizienzwert liegt im Jahr 2010 bei 94,23% und fällt im Jahr 2011 auf 93,55%.

Als ineffizienteste DMU erweist sich im Jahr 2011 – bewertet nach dem inputorientierten BCC-Modell – die DMU $_4$. Diese weist Ineffizienzen von über 30% auf. Im Vergleich dazu ergab das inputorientierte BCC-Modell im Jahr 2010 für die DMU $_4$ noch einen Effizienzwert von 84,34%. Eine genauere Untersuchung der DMU $_4$ ist in Kapitel 5.5.5 gegeben.

5.3.3. Skaleneffizienz und Skalenverläufe

Im Jahr 2011 erweisen sich weniger Raiffeisenbanken als skaleneffizient, verglichen mit dem Jahr 2010. Dieses Ergebnis beruht auf der Konstruktion der Skaleneffizienz, welche durch $SE = \frac{\theta^*}{\theta_B^*}$ definiert ist. Da bereits erwähnt wurde, dass es zu einem Rückgang der CCR-effizienten Raiffeisenbanken gekommen ist, beeinflusst diese Verminderung auch die skaleneffizienten DMUs.

5.4. Effizienzbewertung der 95 Raiffeisenbanken für das Jahr 2012

Die Tabellen dieses Kapitels sind analog zu den Tabellen der vorigen Kapitel aufgebaut und auch die Interpretationen der Ergebnisse erfolgen analog.

Dieses Kapitel enthält die Ergebnisse der Effizienzanalyse für das Jahr 2012. Auch hier unterliegt die Effizienzbewertung wieder denselben Modellen, wie auch jene zuvor.

5.4.1. Inputorientiertes CCR-Modell

Aus Tabelle 5.12 kann entnommen werden, dass im Jahr 2012 etwa 25% der 95 Raiffeisenbanken als CCR-effizient ausgewiesen wurden. Hierbei handelt es sich um die 24 Raiffeisenbanken mit den DMUs 1, 3, 11, 18, 26, 29, 31, 32, 37, 40, 45, 48, 53, 54, 57, 58, 68, 71, 73, 78, 82, 83, 93 und 94.

Den niedrigsten Effizienzwert weist im Jahr 2012 die DMU $_4$ mit einem Effizienzwert von 76,62% auf.

Die DMU_{29} wird mit 51 Mal am häufigsten für ineffiziente DMUs aufgerufen, um eine Verbesserung zu erzielen.

Tabelle 5.12.: Ergebnisse des inputorientierten CCR-Modells für das Jahr 2012

DMU		Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_{3}^{+*}	s_4^{+*}
	1 100,00% 2 85,28%	$\begin{array}{c} 0 \\ 29 \ (0,21) \ 32 \ (0,01) \ 45 \ (0,06) \end{array}$	27,03	0	325,09	0	0	0	20,95
	3 100,00%	2							
	4 76,62% 5 94,72%	29 (0,07) 48 (0,01) 54 (0,05) 58 (0,39) 29 (0,24) 45 (0,09) 48 (0,17) 58 (0,13) 94 (0,28)	0	11,86 0	241,84 $124,87$	0	0	0	0
	6 99,34%	3 (0,49) 11 (0,40) 78 (0,80)	0	166,44	0	0	271,45	0	0
	7 90,83%	29 (1,63) 45 (0,05) 53 (1,10) 58 (0,23)	0	0	184,88	0	0	0	162,5
	8 88,23% 9 92,82%	29 (0,06) 53 (0,08) 54 (0,49) 58 (0,31) 29 (0,04) 53 (0,04) 73 (0,06)	0	112,55 $20,95$	35,86 $3,84$	0	0	0	$0 \\ 13,41$
1		29 (0,14) 54 (0,76) 58 (0,05) 71 (1,07)	0	180,77	0	0	0	0	59,4
1		21							
1		29 (0,10) 53 (0,09) 58 (0,40) 71 (0,20) 93 (0,00) 94 (0,21) 29 (0,13) 53 (0,02) 54 (0,89) 58 (0,28)	0	96,03	$0 \\ 111,57$	0	0	0	0
1		29 (0,03) 32 (0,05) 53 (0,02) 94 (0,05)	0	0	253,44	0	33,46	0	0
1		29 (0,20) 40 (0,16)	0	32,96	0	65,05	19,26	0	10,5
1		29 (0,23) 53 (0,30) 58 (0,22) 73 (0,09) 11 (0,09) 29 (0,04) 53 (0,04) 58 (0,20) 71 (0,06) 94 (0,03)	0	46,29 0	0	0	0	0	33,55 0
1		0		U	0			0	U
1		31 (0,03) 45 (0,59) 48 (0,02) 53 (0,79) 58 (0,14)	0	0	361,12	0	0	0	0
2 2	,	11 (0,17) 53 (0,02) 54 (0,33) 31 (0,00) 53 (0,11) 58 (0,36)	0	$0 \\ 144$	$0 \\ 13,14$	0	20,52 0	37,64 0	14,44 $26,71$
2		11 (1,36) 29 (0,05) 45 (0,05) 53 (0,15) 58 (0,01) 94 (0,06)	0	0	0	0	0	0	0
2		29 (0,04) 53 (0,05) 58 (0,09) 73 (0,07)	0	29,31	0	0	0	0	5,13
2 2		11 (0,12) 29 (0,03) 45 (0,03) 58 (0,01) 94 (0,02) 11 (0,02) 53 (0,26) 57 (0,42) 71 (1,08) 82 (0,26) 94 (0,44)	16,68 0	0	0	0	0	0	0
2		11 (0,02) 00 (0,20) 01 (0,42) 11 (1,00) 02 (0,20) 04 (0,44)		0	Ŭ.	Ü	0	· ·	Ü
2		40 (1,18) 58 (0,02) 71 (1,33)	0	547,06	0	57,26	0	0	91,28
$\frac{2}{2}$		11 (0,32) 29 (0,04) 32 (0,02) 53 (0,04) 82 (0,01) 94 (0,02) 51	0	0	0	0	0	0	0
3		29 (0,46) 32 (0,18) 53 (0,47) 82 (0,52) 94 (0,19)	0	0	0	0	282,47	0	0
3		3							
3		12 11 (0,20) 78 (0,41)	6,63	0	0	0	47,88	42,78	0
3		3 (0,12) 11 (1,29) 78 (0,47) 82 (0,23)	0,03	0	0	0	188,04	0	0
3		11 (0,02) 78 (0,63)	0	5,4	0	193,7	0	18,91	0
3		11 (0,26) 29 (0,15) 45 (0,00) 58 (0,01)	0,35	0	0	0	0	0	15,08
3		29 (0,13) 45 (0,15) 53 (0,46) 58 (0,28)	0	0	413,19	0	0	0	47,19
3		29 (0,05) 45 (0,00) 53 (0,10) 58 (0,06) 68 (0,08)	0	0	0	0	0	0	18,81
4		11 (0,19) 57 (0,36) 58 (0,03) 93 (0,00)	0	14,04	0	0	0	37,86	0
4		11 (0,13) 57 (0,33) 53 (0,03) 53 (0,03) 11 (1,31) 58 (0,07) 71 (0,93)	0	46,06	0	383,88	0	0	35,25
4		32 (0,06) 53 (0,19) 57 (2,00) 82 (0,13) 93 (0,07) 94 (0,44)	0	0	0	0	0	0	0
4		29 (0,07) 53 (0,10) 58 (0,06) 73 (0,02) 24	0	0	36,69	0	0	0	19,65
4	,	29 (0,07) 53 (0,14) 58 (0,05) 71 (0,01) 93 (0,03) 94 (0,07)	0	0	0	0	0	0	0
4		32 (0,02) 45 (0,01) 53 (0,13) 93 (0,09) 94 (0,09)	0	0	84,16	0	0	0	0
4		12 29 (0,45) 48 (0,38)	0	44,63	205,34	395,65	286,84	0	0
5		29 (0,06) 45 (0,00) 53 (0,11) 58 (0,04)	0	0	209,3	0	0	0	13,49
5		29 (0,65) 48 (0,43) 53 (0,19) 54 (2,49) 58 (0,05)	0	0	327,42	0	0	0	0
5 5		29 (0,12) 40 (1,01) 58 (0,11) 71 (0,51) 45	0	51,27	0	14,05	0	0	0
5		15							
5		11 (0,30) 54 (0,27) 71 (0,06)	0	2,41	0	0	49,54	0	5,32
5 5		11 (0,28) 29 (0,02) 32 (0,04) 45 (0,05) 53 (0,03) 94 (0,02) 6	0	0	0	0	0	0	0
5		38							
5		29 (0,58) 40 (1,36) 71 (1,43)	0	336,34	0	483,67	119,07	0	0
6		29 (0,02) 48 (0,00) 53 (0,08) 54 (0,09) 58 (0,07) 11 (0,29) 31 (0,01) 45 (0,02) 53 (0,14) 57 (0,08) 68 (1,19)	0	0	$74,13 \\ 0$	0	0	0	0
6		11 (0,29) 31 (0,01) 43 (0,02) 33 (0,14) 37 (0,08) 68 (1,19) 29 (0,35) 48 (0,47) 58 (0,71)	0	104,94	259,04	562,22	0	0	0
6	81,08%	29 (0,07) 54 (0,10) 58 (0,03) 71 (0,05)	0	7,2	0	0	0	0	3,17
6	,	29 (0,72) 53 (1,29) 93 (0,06) 94 (0,48) 29 (0,07) 45 (0,17) 53 (0,21) 58 (0,26) 93 (0,36) 94 (0,01)	0	0	369,46 0	0	$^{22,66}_{0}$	0	0
6		29 (0,05) 48 (0,04) 53 (0,06)	0	39,08	13,22	0	25,55	0	0
6		11 (0,18) 54 (0,44)	0	14,27	0	0	29,72	10,03	13,39
6		29 (0,03) 45 (0,12) 53 (0,13) 58 (0,01)	0	0	43	0	0	0	28,8
7		29 (0,03) 48 (0,12) 53 (0,13) 58 (0,01) 29 (0,01) 48 (0,15) 53 (0,41) 54 (1,50)	0	100,39	199,33	0	0	0	20,0
7	1 100,00%	14							
7		45 (0,01) 53 (0,15) 57 (0,02) 58 (0,00) 93 (0,01) 94 (0,03) 5	0	0	0	0	0	0	0
7		29 (0,17) 32 (0,40) 45 (0,07) 53 (0,11) 94 (0,22)	0	0	238,73	0	0	0	0
7	5 91,57%	29 (0,22) 54 (0,21) 71 (0,71) 93 (0,09)	0	125,81	0	0	84,67	0	0
7		29 (0,04) 53 (0,03) 58 (0,02) 73 (0,32)	0	$74,4 \\ 0$	0 46.75	0	1827.88	0	7,85
7		29 (0,39) 45 (1,37) 53 (1,31) 4	U	U	46,75	U	1827,88	U	111,06
7	9 84,75%	29 (0,07) 45 (0,03) 48 (0,00) 53 (0,08) 93 (0,00) 94 (0,03)	0	0	0	0	0	0	0
8		29 (0,19) 48 (0,08) 54 (2,18) 58 (0,33) 11 (0,68) 32 (0,09) 53 (0,03) 57 (0,26)	$0 \\ 30,39$	$178,18 \\ 0$	90,47	0	0	$0 \\ 114,63$	0
8		7 (0,08) 32 (0,09) 33 (0,03) 37 (0,20)	50,59	U	0	U	U	114,00	U
8	3 100,00%	0		4.5.					
8		29 (0,80) 48 (0,18) 58 (0,05) 29 (0,03) 45 (0,32) 53 (0,23)	0	13,83 0	1181,08 16,84	$201,42 \\ 0$	$0 \\ 532,38$	0	$0 \\ 14,97$
8		29 (0,07) 45 (0,00) 53 (0,45) 58 (0,15)	0	0	49,63	0	0 0	0	61,6
- 8		11 (0,32) 53 (0,07) 54 (0,17)	0	0	0	0	113,95	22,08	1,5

DMU	$ heta^*$	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_{3}^{+*}	s_{4}^{+*}
88	79,03%	11 (0,33) 26 (0,05) 29 (0,00) 58 (0,41)	20,38	0	0	0	0	0	3,97
89	83,37%	29 (0,16) 32 (0,06) 45 (0,67) 53 (0,57) 94 (1,34)	0	0	146,25	0	0,01	0	0
90	86,09%	29 (0,15) 54 (1,75) 58 (0,73) 71 (0,57) 93 (0,15)	0	182,41	0	0	0	0	0
91	80,69%	32 (0,03) 45 (0,11) 53 (0,01) 82 (0,21)	0	0	0	0	105,73	0	10,82
92	80,88%	29 (0,05) 32 (0,10) 45 (0,05) 53 (0,08) 82 (0,05)	0	0	0	0	42,95	0	0
93	100,00%	11							
94	100,00%	20							
95	84,65%	11 (0,07) 29 (0,10) 53 (0,05) 58 (0,03) 71 (0,10) 94 (0,04)	0	0	0	0	0	0	0
ø	91,30%								

Der Tabelle 6.14 sind die Projektionen der Inputs der ineffizienten DMUs für das Jahr 2012 zu entnehmen und in 6.15 sind die Projektionen der Outputs zu finden. Beide Tabellen sind im Anhang nachzuschlagen

5.4.2. Inputorientiertes BCC-Modell

Die Tabelle 5.13 zeigt die Ergebnisse des inputorientierten BCC-Modells für das Jahr 2012. Die Projektionender Inputs und Outputs des inputorientierten BCC-Modells für das Jahr 2012 sind den Tabellen 6.16 und 6.17 aus dem Anhang zu entnehmen.

Tabelle 5.13.: Ergebnisse des inputorientierten BCC-Modells für das Jahr 2012

	0.1.								_ +	_ * (T o +)		_L _u		
DMU	$ heta_B^*$					Benc	hmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_3^{+*}	s_4^{+*}
1	100,00%						9							
2	88,87%		2	4(0,45) 2	9(0,17)	58 (0,01)	68 (0,37)	43,08	0	413,61	0	0	0	17,67
3	100,00%						3							
4	78,63%						83 (0,20)	0	0	251,8	30	0	0	0
5	94,79%	29 (0,21) 45	(0,07) 4	8 (0,15) 5	4 (0,10)	58 (0,15)	94 (0,31)	0	0	142,47	0	0	0	0
6	100,00%						3							
7	100,00%						3							
8	88,24%	29	(0,06) 5	3 (0,07) 5	4 (0,52)	58 (0,31)	73(0,04)	0	111,02	25,63	0	0	0	0
9	100,00%						10							
10	86,69%	6	(0,04) 2	6 (0,22) 2	9 (0,22)	53 (0,05)	71 (0,46)	0	295,08	0	0	0	0	7,25
11	100,00%						6							
12	81,71%	29 (0,10) 53 (0,08) 54	(0,02) 5	8 (0,40) 7	1(0,20)	93 (0,00)	94 (0,21)	0	0	0	0	0	0	0
13	90,49%	29	(0,14) 4	8 (0,01) 5	3 (0,09)	54 (0,45)	58 (0,31)	0	102,36	91,52	0	0	0	0
14	88,09%				1(0,28)	24(0,70)	94(0,02)	14,04	0	304,68	6,62	104,68	0	0
15	96,20%				9 (0,51)	29(0,15)	40 (0,35)	0	13,33	0	126	16,62	0	3,5
16	92,31%	29	(0,23) 5	3(0,27)5	4 (0,18)	58(0,21)	73 (0,12)	0	42,65	0	0	0	0	35,55
17	82,44%	24 (0,05) 29	(0,03) 5	8 (0,12) 6	8 (0,42)	83 (0,37)	94 (0,02)	0	0	25,28	0	0	0	0
18	100,00%						1							
19	88,96%	31	(0,08) 4	5(0,32)4	8 (0,05)	53 (0,34)	77 (0,21)	0	0	273,53	0	0	149,55	0
20	100,00%						2							
21	99,79%	9	(0,06) 3	1 (0,01) 5	4 (0,56)	58 (0,27)	73 (0,10)	0	128,84	0	0	0	0	33,46
22	96,61%	11 (0,41) 26						0	0	0	0	0	0	4,69
23	93.83%						66 (0,10)	0	8,81	8	0	0	0	0
24	100,00%		. , ,				6							
25	99.86%	7	(0.03) 2	6 (0,40) 2	9 (0,15)	64 (0,15)	93 (0,27)	134,88	0	0	0	28,84	0	0
26	100,00%		. , ,		. , ,		12							
27	93,99%		3 (0,51)	6 (0,06) 2	6 (0,22)	29 (0,06)	71 (0.15)	0	656,68	0	0	0	0	11,36
28	87,99%	1 (0,03) 24	$(0.28)^{'}6$	8 (0,60) 7	1 (0.02)	82 (0,04)	94 (0.03)	0	0	0	0	50.38	0	0
29	100,00%	(-,)	(-, -,	. (-,,	(-,-,	- (-,-)	36					,		
30	91,67%	26 (0,36) 29	(0.22) 4	5 (0.05) 5	3 (0.10)	64 (0.25)		0	0	0	0	648,27	0	0
31	100,00%	(-,,	(-, ,	. (-,,	- (-, -,	- (-, -,	9					, -		
32	100,00%						6							
33	100,00%						0							
34	100,00%						Õ							
35	100,00%						Õ							
36	86,67%	24	(0.34) 2	9 (0 10) 4	0 (0.37)	58 (0.00)	68 (0,19)	10,25	0	0	0	0	0	14,48
37	100,00%		(0,01) 2	0 (0,10) 1	0 (0,01)	0,00)	00 (0,10)	10,20					· ·	11,10
38	91,24%	29	(0.13) 3	1 (0.00) 4	5 (0.16)	53 (0.46)	58 (0,25)	0	0	406,18	0	0	0	47,62
39	86,13%						73 (0,08)	ő	ő	0	0	15,43	0	7,18
40	100,00%		(0,20) 2	(0,00) 0	1 (0,10)	00 (0,01)	7	Ü				10,10	· ·	.,10
41	100,00%						Ó							
42	98,79%	3	(0.28) 1	8 (0.11) 2	6 (0.33)	58 (0.09)	71 (0,18)	0	137,1	0	152,16	0	0	0
43	100,00%	3	(0,20) 1	0 (0,11) 2	0 (0,00)	0,00	11 (0,10)	Ü	101,1	0	102,10	0	0	0
44	99,44%	Ω	(0.34) 2	9 (0.05) 5	0 (0 08)	68 (0.30)	73 (0,15)	0	0	0	0	4,46	0	5,37
45	100.00%	9	(0,04) 2	o (0,00) o	0 (0,00)	00 (0,39)	10	0	0	U	U	4,40	0	5,51
46	88,16%	20	(0.04) 5	3 (0,01) 5	1 (0.84)	03 (0 00)		0	0	22,52	0	14,99	0	0
47	88,41%						94 (0,12)	0	0	105,32	0	68,51	0	0
48	100,00%	1	(0,00) 0	0 (0,00) 0	· (U,21)	0,00)	J-4 (U,US)	0	0	100,32	U	00,01	U	U
49	85,52%			2	9 (0.43)	48 (0.37)	66 (0,20)	0	34,46	203,61	418,43	279,39	0	0
-13	00,0270			- 2	0 (0,40)	10 (0,37)	00 (0,20)	0	34,40	203,01	410,40	213,33	0	

DMU	θ_B^*	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s ₁ +*	s_{2}^{+*}	s_{3}^{+*}	s_4^{+*}
50	100,00%	3	•			•			•
51	94,23%	7 (0,18) 31 (0,01) 48 (0,38) 62 (0,09) 64 (0,34)	0	68,51	0	191,3	0	0	0
52	91,34%	3 (0,13) 26 (0,00) 29 (0,14) 58 (0,09) 71 (0,63)	0	65,07	0	0	0	0	14,56
53	100,00%	23							
54	100,00%	17							
55	100,00%	1 (0.11) 00 (0.05) 00 (0.01) 00 (0.01) 04 (0.00)	15.50		F0.05			_	
56	87,48%	1 (0,11) 32 (0,05) 68 (0,81) 82 (0,01) 94 (0,02)	17,76	0	56,07	0	0	0	0
57 58	100,00% 100,00%	$\overset{1}{24}$							
59	100,00%	24 1							
60	84,80%	1 (0,11) 9 (0,29) 50 (0,10) 54 (0,20) 68 (0,15) 83 (0,15)	0	0	74,23	0	0	0	0
61	81,93%	11 (0,67) 26 (0,06) 31 (0,02) 45 (0,01) 53 (0,23) 58 (0,02)	0	0	0	0	0	0	9,44
62	100,00%	11 (0,01) 20 (0,00) 01 (0,02) 10 (0,01) 00 (0,20) 00 (0,02)			<u> </u>				0,11
63	90,25%	9 (0,14) 24 (0,07) 40 (0,53) 58 (0,00) 83 (0,25)	0	0	29,89	2,88	0	0	0
64	100,00%	3							
65	86,75%	26 (0,02) 29 (0,09) 31 (0,01) 45 (0,17) 53 (0,20) 58 (0,15) 93 (0,35)	0	0	0	0	0	0	0
66	100,00%								
67	97,94%	11 (0,04) 20 (0,75) 40 (0,16) 54 (0,01) 55 (0,05)	0	22,73	0	0	11,72	0	0
68	100,00%	18							
69	96,12%	32 (0,01) 45 (0,07) 53 (0,07) 68 (0,86)	0	0	126,35	0	38,15	0	14,35
70	93,71%	29 (0,04) 48 (0,17) 53 (0,63) 54 (0,08) 58 (0,08)	0	121,3	133,58	0	0	0	0
71	100,00%	9	_						
72	93,98%	1 (0,60) 9 (0,10) 53 (0,05) 54 (0,19) 68 (0,07)	0	0	14,39	0	72,57	0	0
73	100,00%	7			041.05			_	
74	81,73%	29 (0,17) 32 (0,40) 45 (0,07) 53 (0,11) 68 (0,02) 94 (0,22)	0	0	241,85	0	0	0	0
75 76	92,49%	6 (0,11) 29 (0,22) 53 (0,02) 71 (0,55) 93 (0,11)	0	109,7	0	0	$^{45,04}_{0}$	0	0
76	96,86% 100,00%	9 (0,67) 29 (0,01) 54 (0,06) 58 (0,02) 73 (0,24)	U	61,89	11,52	U	U	U	U
78	100,00%								
79	88,23%	1 (0,55) 29 (0,07) 40 (0,03) 50 (0,04) 68 (0,32)	0	0	41,17	0	62,24	0	0
80	84,61%	26 (0,04) 29 (0,26) 31 (0,02) 53 (0,29) 58 (0,26) 93 (0,13)	0	224,06	0	0	02,24	0	0
81	97,67%	11 (0.62) 26 (0.02) 32 (0.10) 53 (0.03) 57 (0.24)	21,9	0	0	ő	0	119,12	0
82	100,00%	3	,-					,	
83	100,00%	4							
84	89,87%	29 (0,81) 31 (0,01) 48 (0,18) 58 (0,00)	0	10,82	1170,44	202,93	0	0	0
85	87,55%	29 (0,01) 45 (0,30) 53 (0,19) 68 (0,50)	0	0	60,89	0	566,72	0	6
86	90,47%	29 (0,06) 53 (0,39) 54 (0,00) 58 (0,11) 68 (0,21) 73 (0,23)	0	0	0	0	0	0	55,6
87	90,96%	1 (0,06) 11 (0,15) 20 (0,29) 54 (0,27) 68 (0,23)	0	0	0	0	157,25	33,15	0
88	79,09%	11 (0,55) 29 (0,00) 40 (0,03) 58 (0,41) 71 (0,01)	49,8	0	0	18,52	0	0	0
89	100,00%	0							
90	96,78%	7 (0,05) 26 (0,41) 29 (0,16) 31 (0,06) 59 (0,09) 93 (0,22)	0	378,58	0	0	0	0	0
91	82,72%	32 (0,09) 68 (0,73) 82 (0,19)	22,18	0	126,64	0	43,99	0	5,79
92	82,83%	29 (0,01) 32 (0,11) 53 (0,02) 68 (0,83) 94 (0,04)	0	0	66,39	0	104,23	0	0
93	100,00%	8							
94	100,00%	11							
95	87,85%	1 (0,45) 29 (0,10) 40 (0,39) 68 (0,04) 71 (0,00) 94 (0,02)	0	0	0	0	18,71	0	0
ø	94,46%								

Aus den Ergebnissen in Tabelle 5.13 lässt sich ablesen, dass im Jahr 2012 das inputorientierte BCC-Model ca. 44% der 95 Raiffeisenbanken (dies entspricht 42 DMUs)
als BCC effizient ausweist. Zusätzlich zu den 24 CCR-effizienten DMUs sind auch
die DMUs 6, 7, 9, 20, 24, 33, 34, 35, 41, 43, 50, 55, 59, 62, 64, 66, 77 und 89 BCCeffizient.

Im Jahr 2012 erweist sich im inputorientierten BCC-Modell die DMU $_4$ mit einem Effizienzwert von 78,63% als ineffizienteste Raiffeisenbank, gefolgt von der DMU $_{88}$ mit einem Effizienzwert von 79,09%.

Im Jahr 2012 erweist sich die DMU₂₉ mit 36 Aufrufen als häufigste Referenzeinheit.

5.4.3. Skaleneffizienz und Skalenverläufe

Aus der nachstehenden Tabelle 5.14 können die Skaleneffizienzen der 95 Raiffeisenbanken für das Jahr 2012 entnommen werden, sowie die für die BCC-effizienten Raiffeisenbanken ermittelten Verläufe der Skalenerträge und auch die Skalenverläufe der BCC-projizierten Activities der BCC-ineffizienten DMUs. Auch hier heben die grau markierten Zeilen die BCC-effizienten Raiffeisenbanken hervor.

Auffallend hier ist die DMU₁₂. Diese Raiffeisenbank erweist sich als skaleneffizient, obwohl sie weder CCR-effizient, noch BCC-effizient ist.

Zerlegt man die Skaleneffizienz in $\theta^* = \theta_B^* \cdot SE$, so erhält man für die DMU₁₂ 0,817 = 0,817*1.

Da die DMU_{12} eine technisch optimale Betriebsgröße aufweist, ist die Quelle der technischen Ineffizienz ausschließlich auf einen ineffizienten Betrieb der DMU_{12} zurückzuführen.

Die suboptimalste Betriebsgröße zeigt im Jahr 2012 die DMU $_{67}$ mit einem Skaleneffizienzwert von 82,63% auf. Wie aus Tabelle 5.14 entnommen werden kann, weist diese DMU auch kleine Ineffizienzen bezüglich ihres Betriebes auf.

Die DMU_{67} weist eine zu kleine Betriebsgröße auf und müsste diese daher vergrößern, um die Skalenineffizienzen zu beseitigen.

Im Jahr 2012 wurde – bewertet nach dem inputorientierten CCR-Modell – die DMU_4 mit einem Effizienzwert von 76,62% als ineffizienteste Raiffeisenbank ausgewiesen.

Die Ursachen dieser starken Ineffizienzen der DMU_4 werden später noch in Kapitel 5.5.5 näher erläutert.

DMU θ^* θ_B^* SERTS 100,00% 100,00 85,28% 100,00%88,87% 100,00%95,96% IRS 100,00% CRS 97,44% 99,93%IRS CRS 99,34% 100,00% 99.34% DRS 90,83% 100,00% 90,83% DRS 88.23% 99.99% CRS 92,82% 100,00% 92,82% 94.35% DRS 100,00% 100,00% 100,00% 90,42% 77,51% 92,77% 92,25% 90,49% 88,09% 99,92% 87,99% IRS 14 96,20% 92,31% 96,43% 99,94% 16 CRS 97,00% 100,00% 100,00% 18 19 100.00% CRS DRS 88,96% 100,00% 82,15% 83,86% 20 21 22 83.86% IRS 99,79% 96,61% 99,24% 97,65% CRS 94,34% 23 24 89,81% 87,88% 93,83% 100,00% 95,72% 87,88% IRS IRS 25 26 27 28 99,86% 100,00%93,75% 100,00% DRS 100,00% CRS 87,79% 84,24% 93,99% 87,99% 93,40% 95,74% DRS IRS 29 30 100,00% 86,57% 100,00%91,67%CRS DRS 100,00% 94,44% 31 32 100,00% 100,00%100,00% 100,00% 100,00% 100,00% CRS CRS 33 34 91,63%92,57%100,00% 100,00% 91,63% 92,57% IRS 100,00% 100,00% 86,67% 100,00% 91,24% 35 36 97,31% 81,71%97,31% 94,28%IRS 37 38 $\frac{100,00\%}{91,19\%}$ 100,00% 99,95% CRS CRS

86.13%

100,00%

100,00% 98,79% 100,00%

100,00%

88,16% 88,41% 96.74%

97,02% 92,20%

95,55% 96,92% 100,00%

97.83%

100,00%

Tabelle 5.14.: Skaleneffizienz und Skalenverläufe 2012

39

40

41

43 44

45 46 83.32%

 $\frac{97,02\%}{91,08\%}$

95,55% 96,38%

100,00% 87,22% 86,49%

100,00%

IRS

CRS

IRS

DRS

CRS CRS

DMU	$ heta^*$	$ heta_B^*$	SE	RTS
48	100,00%	100,00%	100,00%	CRS
49	85,24%	85,52%	99,67%	IRS
50	96,69%	100,00%	96,69%	IRS
51	86,85%	94,23%	92,17%	DRS
52	91,04%	91,34%	99,67%	CRS
53	100,00%	100,00%	100,00%	CRS
54	100,00%	100,00%	100,00%	CRS
55	86,07%	100,00%	86,07%	IRS
56	84,82%	87,48%	96,96%	CRS
57	100,00%	100,00%	100,00%	CRS
58	100,00%	100,00%	100,00%	CRS
59	95,50%	100,00%	95,50%	DRS
60	78,92%	$84,\!80\%$	93,07%	IRS
61	80,23%	81,93%	97,93%	CRS
62	99,37%	100,00%	99,37%	DRS
63	81,08%	90,25%	89,84%	IRS
64	94,11%	100,00%	94,11%	DRS
65	86,28%	86,75%	99,46%	CRS
66	94,62%	100,00%	94,62%	IRS
67	80,93%	97,94%	82,63%	IRS
68	100,00%	100,00%	100,00%	CRS
69	95,01%	$96,\!12\%$	98,85%	CRS
70	93,55%	93,71%	99,83%	CRS
71	100,00%	100,00%	100,00%	CRS
72	89,15%	93,98%	94,86%	IRS
73	100,00%	100,00%	100,00%	CRS
74	81,71%	81,73%	99,98%	CRS
75	91,57%	92,49%	99,01%	DRS
76	93,72%	96,86%	96,76%	IRS
77	92,10%	100,00%	92,10%	DRS
78	100,00%	100,00%	100,00%	CRS
79	84,75%	88,23%	96,06%	IRS
80	83,19%	84,61%	98,32%	CRS
81	97,25%	97,67%	99,57%	CRS
82	100,00%	100,00%	100,00%	CRS
83	100,00%	100,00%	100,00%	CRS
84	89,85%	89,87%	99,98%	CRS
85	87,25%	87,55%	99,66%	CRS
86	90,17%	90,47%	99,67%	CRS
87	82,65%	90,96%	90,86%	IRS
88	79,03%	79,09%	99,92%	CRS
89	83,37%	100,00%	83,37%	DRS
90	86,09%	96,78%	88,95%	DRS
91	80,69%	82,72%	97,55%	CRS
92	80,88%	82,83%	97,65%	CRS
93	100,00%	100,00%	100,00%	CRS
94	100,00%	100,00%	100,00%	CRS
95	84,65%	87,85%	96,36%	CRS

Tabelle 5.15 und Abbildung 5.5 zeigen den Verlauf der Skaleneffizienz jener DMUs, die als BCC-effizient ausgewiesen wurden, wobei die DMUs aufsteigend nach dem Skaleneffizienzwert geordnet sind.

Tabelle 5.15.: BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert für das Jahr 2012

DMU	$ heta_B^*$	SE
89	100,00%	83,37%
20	100,00%	83,86%
55	100,00%	86,07%
24	100,00%	87,88%
7	100,00%	90,83%
33	100,00%	91,63%
77	100,00%	92,10%
34	100,00%	92,57%
9	100,00%	92,82%
64	100,00%	94,11%
66	100,00%	94,62%
59	100,00%	95,50%
43	100,00%	95,55%
50	100,00%	96,69%
41	100,00%	97,02%
35	100,00%	97,31%
6	100,00%	99,34%

DMU	$ heta_B^*$	SE
62	100,00%	99,37%
1	100,00%	100,00%
3	100,00%	100,00%
11	100,00%	100,00%
18	100,00%	100,00%
26	100,00%	100,00%
29	100,00%	100,00%
31	100,00%	100,00%
32	100,00%	100,00%
37	100,00%	100,00%
40	100,00%	100,00%
45	100,00%	100,00%
48	100,00%	100,00%
53	100,00%	100,00%
54	100,00%	100,00%
57	100,00%	100,00%
58	100,00%	100,00%
68	100,00%	100,00%
71	100,00%	100,00%
73	100,00%	100,00%
78	100,00%	100,00%
82	100,00%	100,00%
83	100,00%	100,00%
93	100,00%	100,00%
94	100,00%	100,00%

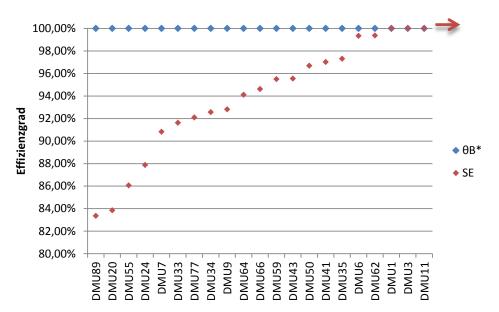


Abbildung 5.5.: Skalenverlauf der BCC-effizienten Raiffeisenbanken für das Jahr 2012

Abbildung 5.6 zeigt den Verlauf der Skaleneffizienz all jener DMUs, die im BCC-Modell als ineffizient eingestuft wurden, aufsteigend geordnet nach dem Grad der BCC-Effizienz. Der jeweilige Rang der ineffizienten DMUs kann aus der nachstehenden Tabelle 5.16 abgelesen werden.

Tabelle 5.16.: Skaleneffizienz ohne BCC-effiziente DMUs

Rang	DMU	$ heta_B^*$	${ m SE}$
1	4	78,63%	97,44%
2	88	79,09%	99,92%
3	12	81,71%	100,00%
4	74	81,73%	99,98%
5	61	81,93%	97,93%
6	17	82,44%	97,00%
7	91	82,72%	97,55%
8	92	82,83%	97,65%
9	80	84,61%	98,32%
10	60	84,80%	93,07%

Rang	DMU	$ heta_B^*$	SE
11	49	85,52%	99,67%
12	39	86,13%	96,74%
13	36	86,67%	94,28%
14	10	86,69%	94,35%
15	65	86,75%	99,46%
16	56	87,48%	96,96%
17	85	87,55%	99,66%
18	95	87,85%	96,36%
19	28	87,99%	95,74%
20	14	88,09%	87,99%
21	46	88,16%	98,93%
22	79	88,23%	96,06%
23	8	88,24%	99,99%
24	47	88,41%	97,83%
25	2	88,87%	95,96%
26	19	88,96%	92,34%
27	84	89,87%	99,98%
28	63	90,25%	89,84%
29	86	90,47%	99,67%
30	13	90,49%	99,92%
31	87	90,96%	90,86%
32	38	91,24%	99,95%
33	52	91,34%	99,67%
34	30	91,67%	94,44%
35	16	92,31%	99,94%
36	75	92,49%	99,01%
37	70	93,71%	99,83%
38	23	93,83%	95,72%
39	72	93,98%	94,86%
40	27	93,99%	93,40%
42	51	94,23%	92,17%
43	5	94,79%	99,93%
44	69	96,12%	98,85%
45	15	96,20%	96,43%
46	22	96,61%	97,65%
47	90	96,78%	88,95%
48	76	96,86%	96,76%
49	81	97,67%	99,57%
50	67	97,94%	82,63%
51	42	98,79%	92,20%
52	44	99,44%	96,92%
53	21	99,79%	99,24%
54	25	99,86%	93,75%
04	25	99,80%	93,75%

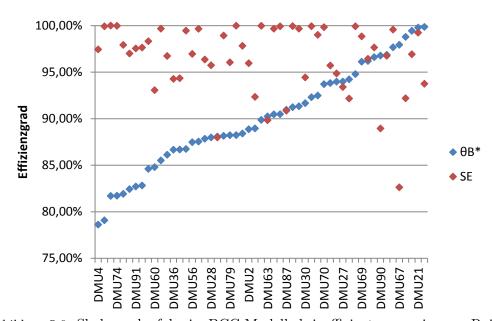


Abbildung 5.6.: Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken für das Jahr 2012

5.5. Gegenüberstellung der Jahre 2010, 2011 und 2012

5.5.1. Inputorientiertes CCR-Modell

Wie bereits erwähnt wurde, werden im Jahr 2010 24 Raiffeisenbanken als CCR-effizient ausgewiesen. Im Jahr 2011 fällt die Anzahl der CCR-effizienten DMUs auf 17, im Jahr 2012 werden wieder 24 Raiffeisenbanken als CCR-effizient ausgewiesen. Alle drei Jahre CCR-Effizienz weisen 13 dieser CCR-effizienten DMUs (1, 3, 11, 26, 29, 32, 45, 48, 53, 58, 68, 71 und 78) auf.

In den Jahren 2010 und 2012 werden die DMUs 18 und 37 als CCR-effizient ausgewiesen. Im Jahr 2011 erlangen diese beiden DMUs zwar nicht CCR-Effizienz, dennoch erreichen DMU $_{18}$ und DMU $_{37}$ Effizienzwerte über 97%.

In den Jahren 2011 und 2012 erweist sich die DMU_{94} als CCR-effizient. Im Jahr 2010 fällt ihr Effizienzwert auf 99.2%.

Im Jahr 2012 sind die DMUs 31, 40, 54, 57, 73, 82, 83 und 93 das erste Mal CCR-effizient, zeigen jedoch in den beiden Jahren zuvor bereits sehr hohe Effizienzwerte auf.

In den Jahren 2010 und 2011 wird die DMU_{21} zwar als CCR-effizient eingestuft, jedoch verliert diese Raiffeisenbank im Jahr 2012 mit einem Effizienzwert von 99,03% an CCR-Effizienz.

5.5.2. Inputorientiertes BCC-Modell

Im Jahr 2010 werden insgesamt 43 DMUs als BCC-effizient ausgewiesen, im Jahr 2011 erlangen 39 Raiffeisenbanken BCC-Effizienz und im Jahr 2012 liegt die Zahl der BCC-effizienten DMUs bei 42.

Zu den 13 DMUs, die in jedem Jahr CCR-Effizienz aufweisen und somit auch in jedem Jahr BCC-effizient sind, halten auch die DMUs 6, 7, 9, 18, 20, 31, 33, 37, 40, 43, 50, 59, 62, 64, 77 und 89 ihre BCC-Effizienz von 2010 bis 2012.

In den Jahren 2010 und 2012, nicht jedoch im Jahr 2011, erweisen sich die DMUs 24, 35, 54, 55, 83 und 93 als BCC-effizient klassifiziert.

Die DMU_{82} wird nur in den Jahren 2011 und 2012 als BCC-effizient klassifiziert, die DMUs 34, 41, 57, 66 und 73 werden im Jahr 2012 zum ersten Mal als BCC-effizient ausgewiesen.

In den Jahren 2010 und 2011 zeigen sich zwar die DMUs 21, 25, 67 und 75 BCC-effizient, jedoch verlieren diese vier Raiffeisenbanken im Jahr 2012 ihre BCC-Effizienz; sie weisen dennoch sehr hohe Effizienzwerte auf.

Betrachtet man die erhaltenen BCC- und CCR-effizienten DMUs der Jahre 2010, 2011 und 2012 für den Single Input Personalaufwand und Single Output Dienstleistungserträge, so erkennt man, dass sich die meisten CCR-effizienten DMUs im

unteren Drittel der Efficient Frontier ansammeln (also bei einem Personalaufwand zwischen 400 und 4000 TEuro) und somit vor allem kleine und mittelgroße Raiffeisenbanken im Bereich der MPSS arbeiten.

Bei Raiffeisenbanken, die einen sehr hohen Personalaufwand aufweisen, können die resultierenden Ineffizienzen beispielsweise dadurch begründet werden, dass bei zu großen Betriebsgrößen der persönliche Kundenkontakt zumeist verloren geht. Die folgenden Diagramme zeigen die BCC- und CCR-effizienten DMUs der Jahre 2010, 2011 und 2012 für den Single Input Personalaufwand und den Single Output Dienstleistungserträge, wobei die BCC-effizienten DMUs blau und die CCR-effizienten DMUs rot gekennzeichnet sind.

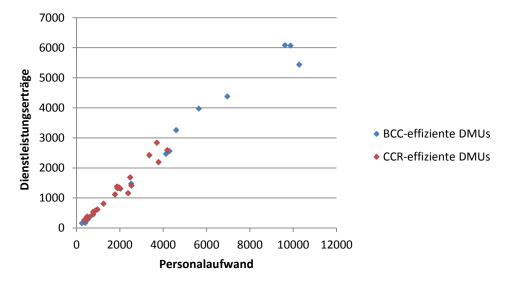


Abbildung 5.7.: 2010

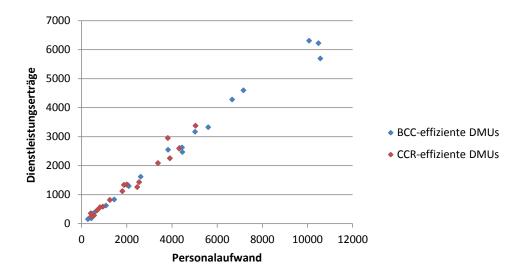


Abbildung 5.8.: 2011

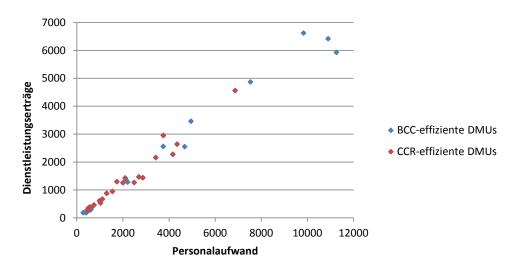


Abbildung 5.9.: 2012

5.5.3. Skaleneffizienz und Skalenverläufe

Tabelle 5.17 führt die Skaleneffizienzen der Jahre 2010, 2011 und 2012 an, geordnet nach dem Durchschnittswert der Skaleneffizienzen dieser drei Jahre.

Tabelle 5.17.: Skaleneffizienz 2010, 2011, 2012

Rang	DMU	SE_2010	SE_2011	SE_2012	Ø Wert
-	1	100,00%	100,00%	100,00%	100,00%
_	3	100,00%	100,00%	100,00%	100,00%
_	11	100,00%	100,00%	100,00%	100,00%
_	26	100,00%	100,00%	100,00%	100,00%
_	29	100,00%	100,00%	100,00%	100,00%
_	32	100,00%	100,00%	100,00%	100,00%
-	45	100,00%	100,00%	100,00%	100,00%

Rang	DMU	SE_2010	SE_2011	SE_2012	Ø Wert
_	48 53	100,00% 100,00%	100,00% 100,00%	100,00% 100,00%	100,00% 100,00%
-	58	100,00%	100,00%	100,00%	100,00%
_	68	100,00%	100,00%	100,00%	100,00%
-	71	100,00%	100,00%	100,00%	100,00%
-	78	100,00%	100,00%	100,00%	100,00%
14	94	99,97%	100,00%	100,00%	99,99%
15 16	21	100,00%	100,00%	99,24%	99,75%
16 17	5 75	99,67% $100,00%$	99,48% $99,72%$	99,93% $99,01%$	99,69% $99,58%$
18	46	99,87%	99,90%	98,93%	99,57%
19	6	100,00%	99,35%	99,34%	99,56%
20	81	99,73%	99,16%	99,57%	99,49%
21	8	99,97%	98,32%	99,99%	99,42%
22	49	98,68%	99,87%	99,67%	99,41%
23	88	98,29%	99,89%	99,92%	99,37%
24 25	37 57	100,00% $98,29%$	97,81% $99,24%$	100,00% $100,00%$	99,27% $99,18%$
26	18	100,00%	97,50%	100,00%	99,17%
27	84	98,85%	98,59%	99,98%	99,14%
28	4	99,66%	99,90%	97,44%	99,00%
29	73	99,82%	96,39%	100,00%	98,73%
30	74	98,32%	97,64%	99,98%	98,64%
31	50	100,00%	99,22%	96,69%	98,64%
32	69 44	97,17%	99,87% $98,95%$	98,85%	98,63%
33 34	82	99,67% $97,57%$	98,95% 97,84%	96,92% $100.00%$	98,51% $98,47%$
34 35	2	97,57% 99,35%	97,84%	95,96%	98,47%
36	38	100,00%	95,34%	99,95%	98,43%
37	47	98,06%	99,10%	97,83%	98,33%
38	59	98,30%	100,00%	95,50%	97,93%
39	86	98,11%	95,81%	99,67%	$97,\!86\%$
40	41	99,02%	97,35%	97,02%	97,80%
41	16	97,82%	95,51%	99,94%	97,75%
42 43	92 70	95,54% $96,51%$	99,78% $96,55%$	97,65% $99,83%$	97,65% $97,63%$
44	40	95,70%	97,16%	100,00%	97,62%
45	61	99,09%	95,71%	97,93%	97,57%
46	85	95,40%	97,60%	99,66%	97,55%
47	12	95,39%	97,19%	100,00%	97,52%
48	79	97,61%	98,73%	96,06%	97,47%
49	91	96,93%	97,49%	97,55%	97,32%
50	17	98,35%	96,08%	97,00%	97,14%
51 52	62 39	100,00% $99,93%$	91,86% $94,55%$	99,37% $96,74%$	97,08% $97,07%$
53	83	97,85%	93,06%	100,00%	96,97%
54	31	99,89%	90,52%	100,00%	96,80%
55	54	97,90%	91,67%	100,00%	96,52%
56	28	97,08%	96,64%	95,74%	96,49%
57	95	94,80%	97,89%	96,36%	96,35%
58	35	100,00%	91,69%	97,31%	96,33%
59 60	76	100,00% $97,23%$	92,20%	96,76% $99,92%$	96,32%
61	13 52	98,86%	90,74% $89,22%$	99,67%	95,96% $95,91%$
62	22	94,82%	95,02%	97,65%	95,83%
63	36	95,44%	97,51%	94,28%	95,74%
64	56	96,33%	93,87%	96,96%	95,72%
35	72	100,00%	92,20%	94,86%	95,69%
66	15	92,90%	96,09%	96,43%	95,14%
67 60	23	95,87% $95,76%$	93,40%	95,72%	95,00% $94,95%$
68 69	10 93	95,76% 94,55%	94,73% $90.26%$	94,35% 100.00%	94,95% $94.94%$
70	30	94,41%	95,75%	94,44%	94,87%
71	65	94,15%	90,30%	99,46%	94,64%
72	80	97,20%	87,97%	98,32%	94,50%
73	27	97,88%	91,70%	93,40%	94,33%
74	43	95,68%	91,02%	95,55%	94,08%
75	77	97,48%	91,94%	92,10%	93,84%
76	33	88,08%	100,00% $94,05%$	91,63% $92,17%$	93,24%
77 78	51 42	90,02% $93,63%$	94,05% 88,33%	92,17% 92,20%	92,08% $91,39%$
79	64	86,59%	92,76%	94,11%	91,15%
80	25	88,85%	90,03%	93,75%	90,88%
81	60	90,95%	88,00%	93,07%	90,67%
82	19	91,36%	87,40%	92,34%	90,37%
83	66	86,25%	87,27%	94,62%	89,38%
84	34	89,91%	85,12%	92,57%	89,20%
85 86	$\frac{14}{7}$	88,98%	88,94%	87,99%	88,64%
86 °7	7	85,01%	89,91% 89,00%	90,83%	88,58%
87 88	63 87	$86,67\% \\ 87,08\%$	89,00% 87,33%	89,84% $90,86%$	88,50% $88,42%$
oo 89	90	87,49%	84,20%	88,95%	86,88%
90	9	88,06%	77,34%	92,82%	86,07%
	55	84,58%	83,55%	86,07%	84,73%
91					
	24	83,00%	81,97%	87,88%	84,28%
91 92 93 94	24 67 89	83,00% 81,98% 79,08%	81,97% 78,37% 74,47%	82,63% 83,37%	84,28% 80,99% 78,97%

Aus Tabelle 5.17 kann entnommen werden, dass das Jahr 2012 überwiegend höhere Skaleneffizienzwerte als die Vorjahre 2010 und 2011 aufweist. Das Jahr 2012 weist mit 25 Raiffeisenbanken auch die meisten skaleneffizienten DMUs auf, verglichen mit dem Jahr 2010 (24 skaleneffiziente DMUs) und dem Jahr 2011 (17 skaleneffiziente DMUs).

Jene 13 Raiffeisenbanken mit den DMUs 1, 3, 11, 26, 29, 32, 45, 48, 53, 58, 68, 71 und 78 sind in jedem Jahr skaleneffizient. Diese Raiffeisenbanken weisen über den gesamten Beobachtungszeitraum keine Ineffizienzen bezüglich ihrer optimalen Betriebsgröße, noch bezüglich ihres Betriebes auf.

Abbildung 5.10 zeigt den Verlauf der Skaleneffizienzen der Jahre 2010, 2011 und 2012, geordnet nach dem Durchschnittswert der Skaleneffizienzen dieser drei Jahre.

Abbildung 5.10.: Skaleneffizienzverlauf der Jahre 2010, 2011 und 2012, geordnet nach dem Durchschnittswert der Skaleneffizienzen dieser drei Jahre

Abbildung 5.11 zeigt zusammenfassend die Anzahl der skalen-, CCR- und BCC-effizienten DMUs für die Jahre 2010, 2011 und 2012 und Tabelle 5.18 führt zusammenfassend die durchschnittlichen Effizienzen der Raiffeisenbanken, bewertet nach dem inputorientierten CCR-Modell und BCC-Modell, an.

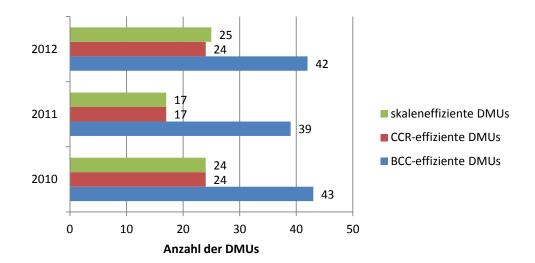


Abbildung 5.11.: Gegenüberstellung der Jahre 2010, 2011 und 2012

Tabelle 5.18.: Durchschnittliche Effizienzen der 95 Raiffeisenbanken

	CCR	BCC
2010	90,25	94,23
2011	88,39	$93,\!55$
2012	91,3	$94,\!46$

Abbildung 5.12 zeigt die Entwicklung der Skaleneffizienz- und der BCC-Effizienzwerte der zehn ineffizientesten DMUs, die aus dem inputorientierten CCR-Modell für das Jahr 2011 resultierten. Die DMUs 9 und 89 weisen trotz der niedrigen CCR-Effizienzwerte in jedem Jahr BCC-Effizienz auf.

Wie sich aus Abbildung 5.12 ablesen lässt, ist bei DMU_9 und DMU_{89} die technische Ineffizienz ausschließlich auf eine technisch nicht optimale Betriebsgröße für die hier betrachtete Kombination der In- und Outputs zurückzuführen.

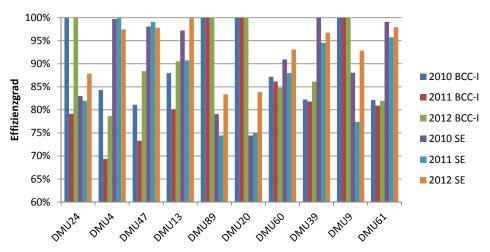


Abbildung 5.12.: Entwicklung der zehn ineffizientesten DMUs aus dem inputorientierten CCR-Modell für das Jahr 2011

Die Tabellen 5.19 und 5.20 zeigen die prozentuelle Veränderung der Effizienzwerte aus dem inputorientierten CCR-Modell bzw. aus dem inputorientierten BCC-Modell von 2010 auf 2011 und von 2011 auf 2012. Hier ist vor allem die starke Schwankung des Effizienzwertes der DMU $_{24}$ auffällig, die im anschließenden Kapitel 5.5.4 ausführlich diskutiert wird.

Tabelle 5.19.: prozentuelle Veränderung der Effizienzwerte aus dem inputorientierten CCR-Modell von 2010 auf 2011 und von 2011 auf 2012

DMU	2010-2011	2011-2012
1	0	0
2	5,83	0,77
3	0	0
4	-17,51	10,51
5	-5,23	4,054
6	-0,65	-0,01
7	5,76	1,02
8	1,91	0,79
9	-12,17	20,02
10	-3,21	-1,30
11	0	0
12	-2,55	-7,60
13	-15,00	24,36
14	-2,82	-3,21
15	8,72	4,12
16	-1,01	4,81
17	-3,39	2,28
18	-2,5	2,56
19	-2,81	0,75
20	0,82	11,74
21	0	-0,97
22	-0,19	5,58
23	-0,95	0,51
$\begin{array}{c} 24 \\ 25 \end{array}$	-21,84 1,33	35,47
26	0	3,99 0
27	3,58	-4,26
28	0,27	8,042
29	0,27	0
30	9,45	-9,59
31	-9,38	10,47
32	0	0
33	13,53	-8,37
34	11,29	11,10
35	-9,8	7.88
36	2,99	-0,79
	2,00	0,.0

DMU 2010-2011 2011-2012 37 -2,19 2,24 38 -5,63 -3,37 39 -5,90 7,73 40 1,53 2,92 41 -4,07 3,05 42 -1,62 6,86 43 -4,87 4,98 44 -4,82 8,90 45 0 0 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4			
38 -5,63 -3,37 39 -5,90 7,73 40 1,53 2,92 41 -4,07 3,05 42 -1,62 6,86 43 -4,87 4,98 44 -4,82 8,90 45 0 0 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 8 0	DMU	2010-2011	2011-2012
39 -5,90 7,73 40 1,53 2,92 41 -4,07 3,05 42 -1,62 6,86 43 -4,87 4,98 44 -4,82 8,90 45 0 0 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02			
40			
41 -4,07 3,05 42 -1,62 6,86 43 -4,87 4,98 44 -4,82 8,90 45 0 0 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89			
42			
43 -4,87 4,98 44 -4,82 8,90 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70			
44 -4,82 8,90 45 0 0 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0			
45 0 0 46 2,02 9,28 47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 <			
46			
47 -8,70 19,08 48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0			
48 0 0 49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92			
49 -1,62 7,18 50 -0,78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 -0,60 75			
50 -0.78 -2,55 51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08			
51 7,38 -7,66 52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 -0,60 75 -0,28 -8,17 76 -12,8 7,48 77			
52 -6,20 11,27 53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 -0,60 75 -0,28 -8,17 76 -12,8			
53 0 0 54 -11,17 15,00 55 -1,25 3,05 56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 -0,60 75 -0,28 -8,17 76 -12,8 7,48 77 -5,68			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
56 0,52 -0,70 57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 -0,60 75 -0,28 -8,17 76 -12,8 7,48 77 -5,68 0,17 78 0 0 79 -1,52 2,44 80 -7,17			
57 -5,99 9,60 58 0 0 59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 <t>-0,60 75 -0,28 -8,17 76 -12,8 7,48 77 -5,68 0,17 78 0 0 79 -1,52 2,44 80 -7,17 5,21 81 -1,78</t>			
59 1,73 -4,5 60 -4,38 4,12 61 -4,85 3,62 62 -8,14 8,18 63 -1,02 -5,49 64 7,13 1,46 65 -7,89 6,52 66 0,14 18,47 67 -4,40 3,27 68 0 0 69 3,93 3,78 70 -3,67 8,15 71 0 0 72 -11,92 1,21 73 0,95 6,48 74 -1,08 -0,60 75 -0,28 -8,17 76 -12,8 7,48 77 -5,68 0,17 78 0 0 79 -1,52 2,44 80 -7,17 5,21 81 -1,78 10,42 82 0,76 2,21 83 -10,49 </td <td>57</td> <td>-5,99</td> <td>9,60</td>	57	-5,99	9,60
60			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	1,73	-4,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
78 0 0 79 -1,52 2,44 80 -7,17 5,21 81 -1,78 10,42 82 0,76 2,21 83 -10,49 14,17 84 0,40 9,25 85 5,02 -4,21 86 2,62 -2,49 87 -2,64 0,02 88 0,56 0,52 89 -5,83 11,95 90 -3,46 2,24 91 -7,23 -3,71 92 0,33 -1,65 93 -6,56 13,19 94 0,81 0	77		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10,42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
87			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
94 0,81 0			
-2,01 0,20			
		-, -, -	-,

Tabelle 5.20.: prozentuelle Veränderung der Effizienzwerte aus dem inputorientierten BCC-Modell von 2010 auf 2011 und von 2011 auf 2012

DMU	2010-2011	2011-2012
1	0	0
2	5,16	5,00
3	0	0
4	-17,71	13,30
5	-5,04	3,58
6	0	0
7	0	0
8	3,62	-0,90
9	0	0
10	-2,16	-0,90
11	0	0
12	-4,35	-10,20
13	-8,92	12,93
14	-2,76	-2,17
15	5,12	3,74
16	1,39	0,16
17	-1,11	1,30
18	0	0
19	1,59	-4,64
20	0	0
21	0	-0,21

DMU	2010-2011	2011-2012
22 23	-0,40 1,66	2,74 -1,91
24	-20,86	26,36
25 26	0	-0,14 0
27	10,56	-6,01
28 29	0,72 0	9,06 0
30	7,92	-8,33
31	0	0
32 33	0	0
34	17,56	2,16
35 36	-1,62 0,80	1,65 2,62
37	0	0
38	-1,02	-7,82
39 40	-0,55 0	5,29 0
41	-2,42	3,40
42 43	4,29 0	2,38 0
44	-4,13	11,18
45	0	0
46 47	1,99 -9,65	10,35 20,63
48	0	0
49 50	-2,80 0	7,40
51	2,77	-5,77
52	3,93	-0,40
53 54	0 -5,14	0 5,42
55	-0,04	0,04
56 57	3,15 -6,89	-3,87 8,77
58	0	0
59	0	0
60 61	-1,17 -1,50	-1,56 1,27
62	0	0
63 64	-3,61 0	-6,37 0
65	-3,96	-3,29
66	-1,04 0	9,27
67 68	0	-2,06 0
69	1,11	4,85
70 71	-3,72 0	4,60 0
72	-4,47	-1,63
73 74	4,54 -0,39	2,64 -2,92
75	0	-7,51
76	-5,42	2,41
77 78	0	0
79	-2,65	5,30
80 81	2,57 -1,21	-5,86 9,96
82	0,48	0
83	-5,88	6,25
84 85	0,68 2,65	7,73 -6,18
86	5,07	-6,26
87 88	-2,91 -1,04	-3,87 0,48
89	0	0
90	0,31	-3,22
91 92	-7,76 -3,94	-3,77 0,50
93	-2,12	2,17
94 95	0,78 -5,62	0 7,88
- 50	-0,02	1,00

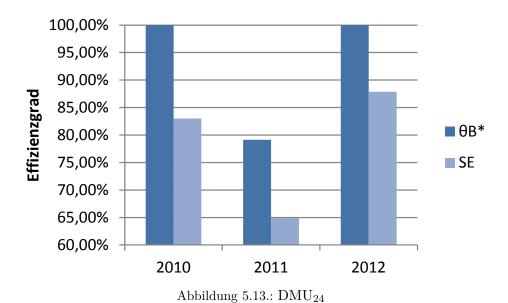
5.5.4. Nähere Betrachtung der DMU_{24}

Wie aus den Tabellen 5.1, 5.7 und 5.12 hervorgeht, ergibt sich für die DMU₂₄, der im Vorjahr 2011 mit 64,87% noch der niedrigste Effizienzwert nach dem inputorientierten CCR-Modell zugewiesen wurde, im Jahr 2012 nun für das inputorientierte CCR-Modell ein Effizienzwert von 87,88%. Im Vergleich dazu lag der Effizienzwert

der DMU_{24} im Jahr 2010 bei 83%.

Bewertet nach dem inputorientierten BCC-Modell weist die DMU_{24} in den Jahren 2010 und 2012 BCC-Effizienz auf, im Jahr 2011 liegt ihr Effizienzwert bei 79,14%.

Wir werfen im Folgenden nun einen näheren Blick auf die Skaleneffizienz der ${\rm DMU}_{24}$ und erhalten für die Jahre 2010, 2011 und 2012:


- $2010: 0,830 = 1 \cdot 0,830$
- $2011: 0,649 = 0,791 \cdot 0,820$
- $2012: 0,879 = 1 \cdot 0,879$

Betrachtet man die Zerlegung der Skaleneffizienz der DMU_{24} für die Jahre 2010 und 2012, so erkennt man, dass die technische Ineffizienz ausschließlich auf die Skalenineffizienzen zurückzuführen ist. Um die gesamte Ineffizienz zu beseitigen, ist also eine Änderung in der Betriebsgröße notwendig.

Im Jahr 2011 fällt der CCR-Effizienzwert der DMU $_{24}$ auf 64,87%. In diesem Jahr weist die DMU $_{24}$ zusätzlich zur suboptimalen Betriebsgröße auch Ineffizienzen bezüglich des Betriebes auf.

Um die Ineffizienzen bezüglich der Betriebsgröße zu beseitigen, müsste die DMU_{24} ihre Betriebsgröße ausweiten, da sie steigende Skalenerträge aufweist.

Die folgende Abbildung 5.13 zeigt zusammenfassend die BCC- und Skaleneffizienzwerte der DMU₂₄ für die Jahre 2010, 2011 und 2012.

Nach Rücksprache mit der Raiffeisenlandesbank Oberösterreich über die starken Effizienzschwankungen der DMU₂₄ berichtete man uns darüber, dass die Bank 2011 umgebaut wurde und über einen Zubau ein zusätzliches Beratungszimmer geschaffen wurde. Der nicht aktivierte Teil wurde sofort in den Sachaufwand genommen,

weshalb dieser im Jahr 2011 auch um 70% höher ausfällt, als im Vorjahr 2010.

5.5.5. Nähere Betrachtung der DMU₄

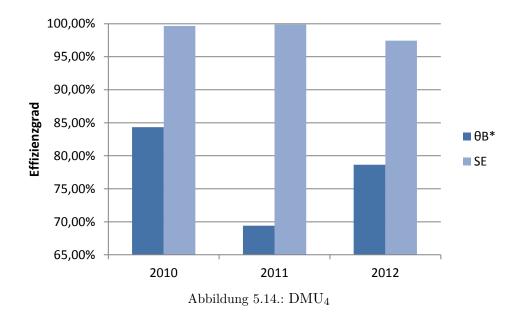
Im Jahr 2012 erweist sich die DMU_4 im inputorientierten CCR-Modell als ineffizienteste Raiffeisenbank mit einem Effizienzwert von 76,62%.

Bereits im Jahr 2011 wurde die DMU $_4$ anhand des inputorientierten CCR-Modells mit einem Effizienzwert von 69,33% als zweitineffizienteste Raiffeisenbank bewertet.

Im Jahr 2010 fiel die DMU₄ nicht durch ihre starke Ineffizienz auf; hier erzielte sie im inputorientierten CCR-Modell einen Effizienzwert von über 84%.

Auch im inputorientierten BCC-Modell erweist sich die DMU_4 für das Jahr 2012 mit einem Effizienzwert von 78,63% als ineffizienteste Raiffeisenbank.

Jedoch trotz des verhältnismäßig niedrigen Effizienzwertes zeigt diese DMU im Jahr 2012 auch im inputorientierten BCC-Modell eine Verbesserung, verglichen mit ihrer Ineffizienz aus dem Vorjahr 2011.


Bereits im Jahr 2011 wurde die $\mathrm{DMU_4}$ mit Hilfe des inputorientierten BCC-Modells als ineffizienteste Raiffeisenbank bewertet, mit einem Effizienzwert von 69,40%. Im Jahr 2010 verhielt sich die $\mathrm{DMU_4}$ unauffällig und erreichte im inputorientierten BCC-Modell einen Effizienzwert von über 84%.

Zerlegen wir nun die Skaleneffizienz der DMU₄ in $\theta^* = \theta_B^* \cdot SE$, so erhalten wir für die Jahre 2010, 2011 und 2012:

- $2010: 0,841 = 0,843 \cdot 0,997$
- $2011: 0,693 = 0,694 \cdot 0,999$
- $2012: 0,766 = 0,786 \cdot 0,974$

Bezüglich der $\mathrm{DMU_4}$ lässt sich daraus also entnehmen, dass die technische Ineffizienz kaum durch Skalenineffizienzen hervorgerufen wird, da SE in jedem Jahr sehr hohe Werte erzielt, sondern vielmehr Ineffizienzen bezüglich des Betriebes für eine hohe technische Ineffizienz verantwortlich sind.

Die folgende Abbildung 5.14 zeigt zusammenfassend die BCC- und Skaleneffizienzwerte der DMU $_4$ für die Jahre 2010, 2011 und 2012.

Bezüglich der DMU_4 informierte uns die Raiffeisenlandesbank Oberösterreich darüber, dass es hier Ende 2011 zu einer Ablöse des Geschäftsleiters kam, da die Bank jahrelang eine überdurchschnittlich hohe Ausleihungsquote²⁰ hatte und das Finanzierungsrisiko laut Revision zu optimistisch eingeschätzt wurde.

Durch die Nachbesetzung des Geschäftsleiters kam es 2011 zu einem höheren Personalaufwand (aufgrund der Einarbeitungsphase und der Kundenübergabe an den neuen Geschäftsleiter).

Im Folgejahr 2012 kam es unter dem neuen Geschäftsleiter zu einer leichten Korrektur der Geschäftspolitik und zu einer höheren Dotierung der Risikovorsorge (Nettoaufwand).

96

 $^{^{20}\}mathrm{Die}$ Ausleihungsquote stellt das Verhältnis der Ausleihungen zu den Ersteinlagen dar.

5.6. Effizienzbewertung der 95 Raiffeisenbanken mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012

5.6.1. Inputorientiertes CCR-Modell

Tabelle 5.21.: Ergebnisse des inputorientierten CCR-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	θ^*	Benchmarks	s_1^{-*}	s ₂ -*	$s_3^{-*}(I3^*)$	s_1^{+*}	s ₂ +*	s_3^{+*}	s_{4}^{+*}
1	100,00%	2			<u> </u>		~~~~~		•
2	82,27%	11 (0,20) 29 (0,09) 32 (0,06) 68 (0,70)	0	0	389,48	0	0	0	3,97
3 4	100,00% $74,70%$	21 (0.02) 45 (0.01) 49 (0.02) 59 (0.25) 69 (0.72)	0	0	206.05	0	0	0	0
4 5	94,70%	31 (0,02) 45 (0,01) 48 (0,02) 58 (0,25) 68 (0,73) 29 (0,30) 32 (0,17) 48 (0,25) 58 (0,29) 68 (0,13)	0	0	206,05 161,16	0	0	0	0
6	96,60%	3 (0,51) 78 (1,06)	0	2,49	0	0	184,12	0	13,55
7	88,78%	29 (1,18) 32 (0,52) 50 (0,52) 68 (5,63)	ő	0	0,01	0	696,33	ő	4,15
8	86,08%	29 (0,01) 48 (0,07) 58 (0,08) 68 (1,60)	0	7,28	88,34	0	0	0	0
9	84,89%	48 (0,00) 68 (0,48)	0	13,27	32,17	0	60,18	0	0
10	82,25%	29 (0,12) 48 (0,01) 68 (1,50) 71 (0,96)	0	1,55	0	0	172,36	0	0
11 12	100,00% 86,78%	30 29 (0,18) 32 (0,06) 48 (0,07) 58 (0,40) 68 (0,98)	0	0	8,39	0	0	0	0
13	84,39%	29 (0,09) 48 (0,02) 58 (0,11) 68 (1,68)	0	79,48	136,82	0	0	0	0
14	80,89%	29 (0,05) 32 (0,07) 48 (0,00) 53 (0,05)	0	0	268,19	0	27,67	0	Ö
15	87,01%	11 (0,00) 29 (0,17) 68 (0,29)	0	0	0	72,86	0	0	2,45
16	90,34%	29 (0,16) 32 (0,05) 53 (0,11) 68 (1,98)	0	0	70,13	0	112,75	0	0
17 18	79,26% $99,99%$	11 (0,03) 29 (0,03) 32 (0,00) 48 (0,03) 58 (0,20) 68 (0,37)	0	0	0	0	0	$0 \\ 26,46$	0 0
19	84,24%	$\begin{array}{c} 11\ (1,28)\ 37\ (0,12)\ 58\ (0,03) \\ 31\ (0,02)\ 45\ (0,46)\ 53\ (0,73)\ 68\ (2,44) \end{array}$	0	$^{2,4}_{0}$	684,62	$275,11 \\ 0$	0	165,02	0
20	77,91%	11 (0,15) 53 (0,05) 68 (0,00) 78 (0,12)	0	ő	0	0	ŏ	23,29	9,88
21	100,00%	0						-, -	- ,
22	92,05%	11 (0,63) 29 (0,08) 32 (0,11) 48 (0,01) 68 (0,84) 78 (0,38)	0	0	0	0	0	0	0
23	89,52%	29 (0,03) 48 (0,01) 58 (0,00) 68 (0,62)	0	9,23	48,28	0	0	0	0
24 25	76,58% $90,50%$	29 (0,02) 48 (0,01) 58 (0,01) 68 (0,51) 11 (0,91) 29 (0,34) 32 (0,06) 48 (0,26) 68 (0,36) 78 (1,11)	0	10,78 0	$33,79 \\ 0$	0	0	0	0
26	100,00%	11 (0,91) 29 (0,34) 32 (0,00) 48 (0,20) 08 (0,30) 78 (1,11)	U	0	U	U	0	U	U
27	88,21%	3 (0,35) 11 (0,40) 68 (0,65) 71 (0,80)	0	145,1	0	92	0	0	0
28	80,65%	11 (0,03) 29 (0,03) 32 (0,03) 48 (0,01) 68 (0,33) 78 (0,18)	0	0	0	0	0	0	0
29	100,00%	47							
30	90,56%	11 (1,30) 29 (0,55) 32 (0,34) 78 (0,28) 94 (0,11)	0	0	0	0	857,25	0	0
31 32	100,00% 100,00%	2 35							
33	91,70%	78 (0,55)	0	0,73	0	67,86	5,71	35,92	0
34	84,45%	3 (0,24) 78 (1,45)	0	37,6	0	0	79,02	0	54,66
35	96,63%	11 (0,36) 78 (0,36)	0	27,68	0	209,12	0	8,67	0
36	81,86%	11 (0,33) 29 (0,13) 58 (0,01) 68 (0,05)	0	0	16,47	0	0	0	7,12
37	100,00%	2			400 50	0		0	4.04
38 39	97,31% $77,94%$	11 (0,91) 29 (0,05) 32 (0,32) 68 (1,93) 48 (0,00) 53 (0,01) 68 (1,01)	0	$0 \\ 31,65$	638,58 31,75	0	$0 \\ 74,58$	0	4,94 0
40	98,71%	3 (0,18) 11 (0,06) 29 (0,00) 68 (0,20)	0	0	0	0	35,19	0	1,68
41	96,64%	11 (0,39) 37 (0,23) 48 (0,03) 58 (0,03)	0	17,71	Ō	0	0	51,49	0
42	88,48%	11 (1,27) 48 (0,00) 68 (0,77) 71 (0,69)	0	72,12	0	521,24	0	0	0
43	94,70%	11 (2,46) 32 (0,14) 48 (0,30) 58 (0,08) 94 (0,33)	41,55	0	0	0	0	0	0
44	93,03%	29 (0,02) 32 (0,01) 50 (0,18) 68 (0,74)	0	0	26,01	0	52,25	0	0
45 46	100,00% 83,02%	29 (0,08) 32 (0,01) 48 (0,05) 53 (0,12) 68 (0,37)	0	0	9,91	0	0	0	0
47	80,11%	29 (0,02) 32 (0,01) 48 (0,03) 53 (0,12) 68 (0,34)	0	0	85,31	0	0	0	0
48	100,00%	43			,-				
49	81,02%	29 (0,48) 48 (0,23)	0	9,04	221,96	101,68	61,45	0	0
50	100,00%	3			22.25	_			
51 52	89,47% 89,02%	29 (0,63) 32 (0,37) 48 (0,41) 53 (0,39) 3 (0,06) 29 (0,16) 68 (0,59) 71 (0,52)	0	0 88,69	82,32 0	$0 \\ 22,37$	9,7	0	0
53	100,00%	3 (0,00) 29 (0,10) 68 (0,59) 71 (0,52)	U	00,09	0	22,31	U	U	U
54	97,61%	48 (0,02) 53 (0,05) 68 (0,23) 78 (0,28)	0	13,93	0	0	0	4,5	0
55	85,65%	11 (0,20) 29 (0,00) 53 (0,00) 68 (0,18) 78 (0,20)	0	0	0	0	62,1	0	0
56	86,22%	11 (0,21) 29 (0,01) 32 (0,12) 68 (0,36)	0	0	19,59	0	0	0	3,6
57	97,19%	1 (0,09) 11 (0,95) 32 (0,03) 48 (0,04) 53 (0,01)	0	0	0	0	0	36,5	0
58 59	100,00% 96,01%	$\begin{array}{c} 20 \\ 3 \ (0.35) \ 29 \ (0.61) \ 71 \ (1.33) \end{array}$	0	48,68	0	323,53	74,09	0	0
60	79,01%	29 (0,02) 32 (0,03) 48 (0,01) 53 (0,03) 68 (0,37)	0	40,00	69,25	o2o,oo 0	14,09	0	0
61	80,73%	1 (0,04) 11 (0,77) 45 (0,05) 53 (0,18) 68 (0,35)	0	0	0	0	0	4,64	0
62	99,73%	29 (0,38) 48 (0,38) 58 (0,70)	0	224,63	289,7	174,65	0	0	0
63	84,54%	11 (0,07) 29 (0,07) 32 (0,01) 48 (0,01) 58 (0,01) 68 (0,14)	0	0	0	0	0	0	0
64	92,18%	29 (1,00) 32 (0,20) 48 (0,22) 53 (1,00)	0	0	310,07	0	36,9	0	0
65 66	84,62% $85,92%$	29 (0,01) 32 (0,09) 48 (0,33) 53 (0,02) 68 (3,20) 29 (0,02) 48 (0,04) 68 (0,41)	0	$0 \\ 12,3$	187,3 20,58	0	0 88,67	0	0
67	81,44%	53 (0,04) 68 (0,09) 78 (0,25)	0	49,21	20,38	0	00,07	5,01	13,85
68	100,00%	57		,				-,01	,00
69	93,17%	32 (0,15) 45 (0,03) 53 (0,01) 68 (0,71)	0	0	75,42	0	0	0	32,79
70	90,97%	48 (0,13) 53 (0,47) 68 (1,48)	0	36,79	178,96	0	79,39	0	0
71	100,00%	8							

DMU	θ^*	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_3^{+*}	s_4^{+*}
72	94,69%	48 (0,05) 53 (0,12) 68 (0,32)	0	28,86	24,1	0	44,91	0	0
73	97,99%	53 (0,11) 68 (0,64)	0	140,19	290,41	0	30,42	0	3,22
74	82,25%	11 (0,06) 29 (0,27) 32 (0,67) 58 (0,00) 68 (0,33)	0	0	230,13	0	0	0	0
75	98,79%	29 (0,17) 48 (0,12) 71 (0,86)	0	48,88	0	218,38	143,13	0	0
76	97,99%	48 (0,01) 53 (0,03) 68 (0,67)	0	77,69	116,26	0	49,56	0	0
77	95,75%	29 (0,00) 32 (2,07) 50 (3,33) 68 (5,78)	0	0	0,06	0	1577,31	0	139,28
78	100,00%	14							
79	85,23%	29 (0,08) 32 (0,04) 48 (0,01) 53 (0,06) 68 (0,30)	0	0	32,05	0	0	0	0
80	83,67%	29 (0,23) 48 (0,17) 58 (0,10) 68 (2,35)	0	82,66	103,69	0	0	0	0
81	92,24%	11 (0,92) 32 (0,06) 45 (0,02) 48 (0,02)	13,59	0	0	0	0	117,76	0
82	100,00%	1							
83	96,87%	11 (0,30) 48 (0,04) 68 (0,30) 71 (0,10)	0	5,26	0	197,48	0	0	0
84	83,72%	29 (0,63) 32 (0,11) 48 (0,04) 58 (0,28) 68 (0,02)	0	0	1026,65	0	0	0	0
85	89,19%	32 (0,22) 53 (0,28) 68 (1,65)	0	0	337,87	0	349,98	0	20,73
86	90,84%	29 (0,05) 32 (0,01) 53 (0,20) 68 (1,74)	0	0	111,75	0	200,52	0	0
87	83,18%	11 (0,19) 53 (0,09) 68 (0,05) 78 (0,13)	0	0	0	0	97,58	0	3,41
88	77,58%	11 (0,55) 48 (0,01) 58 (0,39) 68 (0,07)	0	2,92	0	0	0	14,7	0
89	80,15%	29 (0,65) 32 (0,92) 48 (0,45) 58 (0,23) 68 (4,70)	0	0	720,56	0	0	0	0
90	85,69%	29 (0,18) 48 (0,22) 58 (0,29) 68 (3,43) 71 (0,29)	0	0	0	262,72	0	0	0
91	85,38%	11 (0,08) 29 (0,05) 32 (0,24) 82 (0,02)	0	0	0	0	50,24	0	43,31
92	82,33%	11 (0,05) 29 (0,06) 32 (0,21) 68 (0,22)	0	0	0	0	81,75	0	11,11
93	100,00%	0							
94	100,00%	2							
95	82,13%	11 (0,10) 29 (0,15) 32 (0,02) 48 (0,02) 68 (0,04) 78 (0,12)	0	0	0	0	0	0	0

Betrachtet man die Durchschnittswerte der Jahre 2010, 2011 und 2012, so kann aus Tabelle 5.21 entnommen werden, dass in diesem Fall 20 Raiffeisenbanken als CCR-effizient klassifiziert werden. Hierbei handelt es sich um die DMUs 1, 3, 11, 21, 26, 29, 31, 32, 37, 45, 48, 50, 53, 58, 68, 71, 78, 82, 93 und 94. Dies entspricht einem Anteil von circa 21% aller 95 beobachteten Raiffeisenbanken.

Die niedrigsten Effizienzwerte ergeben sich für die DMU₄ mit 74,70% und die DMU₂₄ mit einem Effizienzwert von 76,58%.

Aus Tabelle 5.21 kann weiters entnommen werden, dass die DMU $_{68}$ mit 57 Aufrufen am häufigsten als Referenzeinheit für ineffiziente Raiffeisenbanken fungiert. Die Projektionen des inputorientierten CCR-Modells für die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012 sind den Tabellen 6.18 und 6.19 aus dem Anhang zu entnehmen.

5.6.2. Inputorientiertes BCC-Modell

Tabelle 5.22.: Ergebnisse des inputorientierten BCC-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	$ heta_B^*$	Benchmarks	s_{1}^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_{2}^{+*}	s_{3}^{+*}	s_4^{+*}
1	100,00%	13							_
2	82,29%	11 (0,10) 29 (0,09) 32 (0,08) 58 (0,01) 68 (0,72)	0	0	371,04	0	0	0	6,58
3	100,00%	3							
4	74,77%	31 (0,02) 45 (0,01) 48 (0,02) 53 (0,01) 58 (0,26) 68 (0,69)	0	0	203,18	0	0	0	0
5	94,27%	29 (0,31) 32 (0,14) 45 (0,03) 48 (0,25) 53 (0,01) 58 (0,26)	0	0	138,96	0	0	0	0
6	100,00%	1							
7	100,00%	0							
8	88,09%	29 (0,02) 31 (0,02) 48 (0,05) 53 (0,12) 58 (0,15) 68 (0,64)	0	16,27	0	0	0	0	0
9	100,00%	5							
10	88,06%	6 (0,16) 26 (0,21) 29 (0,24) 53 (0,00) 78 (0,32) 93 (0,07)	0	107,43	0	0	0	0	0
11	100,00%	17							
12	87,61%	26 (0,02) 29 (0,16) 31 (0,00) 48 (0,05) 53 (0,20) 58 (0,57)	0	6,96	0	0	0	0	0
13	86,28%	29 (0,12) 31 (0,04) 53 (0,11) 58 (0,11) 68 (0,61)	0	73,07	0	0	0	0	6,73
14	91,05%	1 (0,46) 9 (0,09) 40 (0,03) 50 (0,42)	54,46	0	252,22	0	82,23	0	0
15	91,95%	29 (0,09) 40 (0,60) 48 (0,00) 50 (0,13) 58 (0,01) 68 (0,16)	0	0	0	107,26	0	0	0
16	92,09%	29 (0,22) 31 (0,01) 53 (0,37) 58 (0,09) 68 (0,31)	0	4,32	0	0	0	0	38,53
17	82,33%	1 (0,21) 40 (0,31) 48 (0,02) 50 (0,04) 58 (0,21) 68 (0,21)	0	0	0	31,07	0	0	0
18	100,00%	1							
19	91,29%	31 (0,03) 45 (0,57) 53 (0,22) 77 (0,18)	0	218,5	213,11	0	0	216,63	0
20	100,00%	1							

5.6. Effizienzbewertung der 95 Raiffeisenbanken mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	$ heta_B^*$	Benchmarks	s_1^{-*}	s_{2}^{-*}	$s_3^{-*}(I3^*)$	s_1^{+*}	s_2^{+*}	s_3^{+*}	s_4^{+*}
21	100,00%	11 (0.26) 26 (0.12) 20 (0.04) 52 (0.25) 59 (0.21) 79 (0.02)	0	0	0				
22 23	94,72% $93,96%$	11 (0,26) 26 (0,13) 29 (0,04) 53 (0,35) 58 (0,21) 78 (0,02) 9 (0,26) 48 (0,01) 50 (0,13) 68 (0,60)	0	0	$0 \\ 14,85$	$\frac{0}{55,06}$	$0 \\ 0,22$	0	$^{9,64}_{0}$
24	84,62%	1 (0,15) 9 (0,38) 37 (0,05) 68 (0,42)	0	0	26,37	72,69	0,22	2,59	0
25	100,00%	0							
26 27	100,00%	2 (0.22) 26 (0.28) 59 (0.00) 50 (0.08) 71 (0.41)	0	260.49	0	21.40	0	0	0
28	94,62% 84,02%	3 (0,22) 26 (0,28) 58 (0,00) 59 (0,08) 71 (0,41) 1 (0,21) 11 (0,29) 40 (0,16) 48 (0,02) 50 (0,11) 68 (0,22)	0	260,48 0	0	31,49 0	$0 \\ 47,51$	0	0 0
29	100,00%	27			0		41,01		
30	95,36%	26 (0,30) 29 (0,40) 43 (0,14) 64 (0,05) 77 (0,11)	8,17	0	0	0	783,12	0	0
31 32	100,00% 100,00%	9 15							
33	100,00%	0							
34	94,99%	26 (0,37) 78 (0,63)	0	185,08	0	0	302,67	20,03	34,01
35	100,00%	0							
36 37	85,77% 100,00%	11 (0,20) 29 (0,06) 40 (0,55) 50 (0,15) 58 (0,03)	12,52	0	0	0	0	0	1,28
38	99,04%	29 (0,15) 32 (0,19) 45 (0,27) 53 (0,19) 68 (0,21)	0	0	276,68	0	0	0	61,89
39	77,96%	29 (0,00) 48 (0,00) 53 (0,01) 68 (0,98)	0	32,2	31,22	0	70,97	0	0
40	100,00%	10							
$\frac{41}{42}$	99,46% $96,15%$	1 (0,06) 11 (0,14) 37 (0,65) 48 (0,01) 54 (0,12) 68 (0,02) 3 (0,11) 18 (0,12) 26 (0,36) 58 (0,09) 71 (0,33)	0	$0 \\ 200,03$	0	$0 \\ 222,11$	0	$54,5 \\ 0$	0
43	100,00%	2	U	200,03	0	222,11	U	U	0
44	93,19%	11 (0,01) 29 (0,01) 32 (0,00) 48 (0,00) 50 (0,31) 68 (0,67)	0	0	0	0	45,55	0	0
45	100,00%	11			^		00.50		0
46 47	83,80% 81,21%	29 (0,05) 32 (0,04) 48 (0,07) 50 (0,03) 53 (0,03) 68 (0,79) 1 (0,27) 32 (0,00) 48 (0,10) 50 (0,40) 53 (0,08) 68 (0,14)	0	0	0	0	80,58 $14,09$	0	0
48	100,00%	26	0		0	0	14,03	0	0
49	81,54%	29 (0,44) 48 (0,23) 50 (0,16) 68 (0,17)	0	0	192,24	182,2	88,23	0	0
50	100,00%	16							
51 52	96,47% $90,69%$	43 (0,03) 45 (0,04) 48 (0,27) 64 (0,56) 77 (0,01) 94 (0,10) 26 (0,01) 29 (0,17) 58 (0,05) 71 (0,67) 78 (0,10)	$94,9 \\ 0$	$0 \\ 115,73$	0	0	0	0	$0 \\ 20,87$
53	100,00%	20 (0,01) 29 (0,17) 38 (0,03) 71 (0,07) 78 (0,10)	U	110,73	U	U	U	U	20,67
54	100,00%	2							
55	100,00%	0							
56 57	88,61% $98,09%$	1 (0,28) 11 (0,65) 32 (0,04) 68 (0,03) 11 (0,89) 26 (0,01) 32 (0,01) 45 (0,01) 48 (0,05) 53 (0,03)	0	0	94,85 0	0	$48,42 \\ 0$	$0 \\ 42,41$	$^{2,87}_{0}$
58	100,00%	20	U	U	U	U	U	42,41	U
59	100,00%	1							
60	85,75%	1 (0,32) 9 (0,23) 40 (0,02) 50 (0,36) 68 (0,07)	18,19	0	0	0,33	0	0	0
61 62	83,31% 100,00%	11 (0,53) 26 (0,02) 45 (0,02) 53 (0,29) 58 (0,15)	0	0	0	0	0	38,83	12,2
63	96,67%	1 (0,26) 40 (0,62) 50 (0,11) 58 (0,01) 94 (0,00)	13,24	0	0	60,39	0	0	0
64	100,00%	2							
65	90,32%	26 (0,16) 29 (0,05) 31 (0,08) 48 (0,25) 53 (0,39) 58 (0,05)	0	48,33	0	0 70	0	0	0
66 67	95,11% 100,00%	9 (0,70) 40 (0,13) 48 (0,04) 50 (0,02) 68 (0,10)	0	0	0	23,72	53,02	0	0
68	100,00%	28							
69	93,47%	1 (0,08) 11 (0,04) 32 (0,15) 45 (0,02) 68 (0,70)	0	0	91,13	0	0	0	34,25
70	92,05%	29 (0,06) 31 (0,03) 48 (0,09) 53 (0,63) 68 (0,19)	0	43,06	61,36	0	0	0	0
$\frac{71}{72}$	100,00% 100,00%	0							
73	100,00%	0							
74	82,47%	29 (0,29) 32 (0,63) 45 (0,04) 53 (0,04) 68 (0,00)	0	0	188,42	0	0	0	7,27
75 76	99,69% 100,00%	3 (0,30) 29 (0,15) 48 (0,16) 71 (0,39)	0	43,78	0	114,58	107,83	0	0
77	100,00%	3							
78	100,00%	4							
79	87,34%	11 (0,26) 29 (0,02) 40 (0,01) 48 (0,03) 50 (0,36) 68 (0,31)	0	170.00	0	0	64,5	0	0
80 81	88,39% $92,44%$	26 (0,10) 29 (0,22) 31 (0,03) 48 (0,11) 53 (0,25) 58 (0,29) 11 (0,89) 26 (0,01) 32 (0,06) 45 (0,02) 48 (0,02)	$0 \\ 10,17$	172,98 0	0	0	0	$0 \\ 119,53$	0
82	100,00%	0	10,11		0			110,00	
83	100,00%	0							
84	83,91%	29 (0,63) 32 (0,04) 45 (0,05) 48 (0,03) 58 (0,19) 94 (0,05)	0	0	1007,7	0	106.76	0	0
85 86	89,32% $92,49%$	29 (0,10) 32 (0,14) 53 (0,55) 68 (0,20) 29 (0,13) 53 (0,37) 68 (0,50)	0	$0 \\ 23,38$	342,33 85,04	0	106,76 $17,52$	0	56,83 $32,03$
87	95,20%	1 (0,13) 11 (0,20) 20 (0,33) 54 (0,17) 68 (0,17)	0	23,38	0	0	165,3	14,87	0
88	77,67%	11 (0,57) 21 (0,02) 48 (0,01) 58 (0,39) 68 (0,02)	0	1,87	0	0	0	13,06	0
89	100,00%	0							
90 91	100,00% 87,13%	1 (0,04) 11 (0,86) 32 (0,10)	24,76	0	155,61	0	158,05	0	16,31
92	83,53%	1 (0,05) 11 (0,45) 32 (0,11) 50 (0,37) 94 (0,02)	3,04	0	155,61	0	138,03 $117,39$	0	0
93	100,00%	1 (0,00) 11 (0,10) 02 (0,11) 00 (0,01) 01 (0,02)	-,				.,	, i	
94	100,00%	5	_				15.00	_	_
95	86,06%	11 (0,19) 29 (0,07) 40 (0,55) 48 (0,03) 50 (0,14) 94 (0,02)	0	0	0	0	17,29	0	0

Wendet man das inputorientierte BCC-Modell auf die Durchschnittswerte der Jahre 2010, 2011 und 2012 an, so werden 43 DMUs als BCC-effizient bewertet, wie aus Tabelle 5.22 abgelesen werden kann. Dies entspricht einem Anteil von circa 45% aller 95 bewerteten Raiffeisenbanken. Zusätzlich zu den 20 CCR-effizienten DMUs sind auch die DMUs 6, 7, 9, 18, 20, 25, 33, 35, 40, 43, 54, 55, 59, 62, 64, 67, 72, 73, 76, 77, 83, 89 und 90 BCC-effizient.

Als ineffizienteste Raiffeisenbank bewertet das inputorientierten BCC-Modell die DMU_4 mit einem Effizienzwert von 74,677%.

Am häufigsten als Referenzeinheit für ineffiziente DMUs wird mit 28 Aufrufen die $\rm DMU_{68}$ herangezogen.

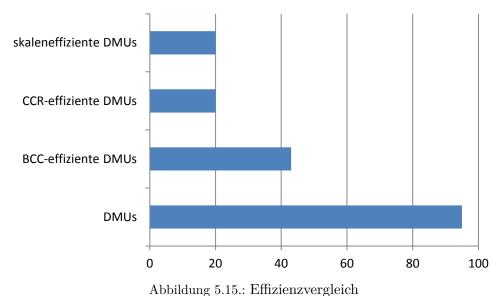
Die Projektionen des inputorientierten BCC-Modells für die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012 sind den Tabellen 6.20 und 6.21 aus dem Anhang zu entnehmen.

5.6.3. Skaleneffizienz und Skalenverläufe

Aus der nachstehenden Tabelle 5.23 können die Skaleneffizienzen der 95 Raiffeisenbanken entnommen werden, angewendet auf die Durchschnittswerte der betrachteten Inputs und Outputs, sowie die für die BCC-effizienten Raiffeisenbanken ermittelten Verläufe der Skalenerträge und auch die Skalenverläufe der BCC-projizierten Activities der BCC-ineffizienten DMUs. Auch hier heben die grau markierten Zeilen die BCC-effizienten Raiffeisenbanken hervor.

Tabelle 5.23.: Skaleneffizienz und Skalenverläufe der Durchschnittswerte der Inputs und Outputs

DMU	θ^*	θ_B^*	SE	RTS
1	100,00%	100,00%	100,00%	CRS
2	82,27%	82,29%	99,98%	CRS
3	100,00%	100,00%	100,00%	CRS
4	74,70%	74,77%	99,91%	CRS
5	94,21%	94,27%	99,94%	CRS
6	96,60%	100,00%	96,60%	DRS
7	88,78%	100,00%	88,78%	DRS
8	86,08%	88,09%	97,72%	CRS
9	84,89%	100,00%	84,89%	IRS
10	82,25%	88,06%	93,40%	DRS
11	100,00%	100,00%	100,00%	CRS
12	86,78%	87,61%	99,05%	CRS
13	84,39%	86,28%	97,81%	CRS
14	80,89%	91,05%	88,84%	IRS
15	87,01%	91.95%	94,63%	IRS
16	90,34%	92,09%	98,10%	CRS
17	79,26%	82,33%	96,27%	IRS
18	99,99%	100,00%	99,99%	DRS
19	84,24%	91,29%	92,28%	DRS
20	77,91%	100,00%	77,91%	IRS
21	100,00%	100,00%	100,00%	CRS
22	92,05%	94,72%	97,18%	CRS
23	89,52%	93,96%	95,27%	IRS
24	76,58%	84,62%	90,50%	IRS
25	90,50%	100,00%	90,50%	DRS
26	100,00%	100,00%	100,00%	CRS
27	88,21%	94,62%	93,23%	DRS
28	80,65%	84,02%	95,99%	IRS
29	100,00%	100,00%	100,00%	CRS
30	90,56%	95,36%	94,97%	DRS
31	100,00%	100,00%	100,00%	CRS
32	100,00%	100,00%	100,00%	CRS
33	91,70%	100,00%	91,70%	IRS
34	84,45%	94,99%	88,90%	CRS
35	96,63%	100,00%	96,63%	IRS
36	81,86%	85,77%	95,44%	IRS
37	100,00%	100,00%	100,00%	CRS
38	97,31%	99,04%	98,25%	CRS
39	77,94%	77,96%	99,97%	CRS
40	98,71%	100,00%	98,71%	IRS
41	96,64%	99,46%	97,16%	IRS
42	88,48%	96,15%	92,02%	DRS
43	94,70%	100,00%	94,70%	DRS
44	93,03%	93,19%	99,83%	CRS
45	100,00%	100,00%	100,00%	CRS


5.6. Effizienzbewertung der 95 Raiffeisenbanken mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	θ^*	θ_B^*	SE	RTS
46	83,02%	83,80%	99,07%	CRS
47	80,11%	81,21%	98,65%	CRS
48	100,00%	100,00%	100,00%	CRS
49	81,02%	81,54%	99,36%	CRS
50	100,00%	100,00%	100,00%	CRS
51	89,47%	96,47%	92,74%	DRS
52	89,02%	90,69%	98,16%	CRS
53	100,00%	100,00%	100,00%	CRS
54 55	97,61% $85,65%$	100,00% $100,00%$	97,61% 85,65%	IRS IRS
56	86,22%	88,61%	97,30%	CRS
56 57	97,19%	98,09%	99,08%	CRS
58	100,00%	100,00%	100,00%	CRS
59	96,01%	100,00%	96,01%	DRS
60	79,01%	85,75%	92,14%	IRS
61	80,73%	83,31%	96,90%	CRS
62	99,73%	100,00%	99,73%	DRS
63	84,54%	96,67%	87,45%	IRS
64	92,18%	100,00%	92,18%	DRS
65	84,62%	90,32%	93,69%	CRS
66	85,92%	95,11%	90,34%	IRS
67	81,44%	100,00%	81,44%	IRS
68	100,00%	100,00%	100,00%	CRS
69	93,17%	93,47%	99,68%	CRS
70	90,97%	92,05%	98,83%	CRS
71	100,00%	100,00%	100,00%	CRS
72	94,69%	100,00%	94,69%	IRS
73	97,99%	100,00%	97,99%	IRS
74	82,25%	82,47%	99,73%	CRS
75 76	98,79%	99,69%	99,10%	CRS
76 77	97,99% 95,75%	100,00% $100,00%$	97,99% 95,75%	IRS DRS
78	100,00%	100,00%	100,00%	CRS
79	85,23%	87,34%	97,58%	IRS
80	83,67%	88,39%	94,66%	CRS
81	92,24%	92,44%	99,78%	CRS
82	100,00%	100,00%	100,00%	CRS
83	96,87%	100,00%	96,87%	IRS
84	83,72%	83,91%	99,77%	CRS
85	89,19%	89,32%	99,85%	CRS
86	90,84%	92,49%	98,22%	CRS
87	83,18%	95,20%	87,37%	IRS
88	77,58%	77,67%	99,88%	CRS
89	80,15%	100,00%	80,15%	DRS
90	85,69%	100,00%	85,69%	DRS
91	85,38%	87,13%	97,99%	CRS
92	82,33%	83,53%	98,56%	CRS
93	100,00%	100,00%	100,00%	CRS
94	100,00%	100,00%	100,00%	CRS
95	82,13%	86,06%	95,43%	IRS

Wie aus Abbildung 5.15 abgelesen werden kann, werden 20 DMUs als CCR-effizient und skaleneffizient ausgewiesen und 43 DMUs erreichen BCC-Effizienz. Jene 20 DMUs, die als CCR-effizient eingestuft wurden, weisen klarerweise konstante Skalenverläufe auf und arbeiten daher im MPSS-Bereich.

Da die Anzahl der skaleneffizienten DMUs gleich der Anzahl der CCR-effizienten DMUs ist, taucht unter der Betrachtung der Durchschnittswerte keine DMU auf, deren technische Ineffizienz einzig und allein auf einen ineffizienten Betrieb zurückzuführen ist.

Umgekehrt ist die technische Effizienz jener 23 BCC-effizienten DMUs, die nicht CCR-effizient sind, alleine auf eine suboptimale Betriebsgröße zurückzuführen, da in diesem Fall $\theta_B^*=1$ gilt. Für diese DMUs ist daher kein Einsparungspotential gegeben, das kurzfristig erreicht werden kann, da eine Änderung der Betriebsgröße notwendig ist, um die Ineffizienzen zu eliminieren.

Tiobildung 0.10.. Emzionz vorgioion

Tabelle 5.24 und Abbildung 5.16 zeigen den Verlauf der Skaleneffizienz jener DMUs, die als BCC-effizient ausgewiesen wurden, wobei die DMUs aufsteigend nach dem Skaleneffizienzwert geordnet sind.

Die darauffolgende Abbildung 5.17 stellt den Verlauf der Skaleneffizienz aller BCC-ineffizienten Raiffeisenbanken dar, wobei die DMUs absteigend nach Grad der BCC-Ineffizienz geordnet sind. Der jeweilige Rang der einzelnen DMUs kann aus Tabelle 5.25 abgelesen werden.

Tabelle 5.24.: BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	$ heta_B^*$	SE	
20	100,00%	77,91%	
89	100,00%	80,15%	
67	100,00%	81,44%	
9	100,00%	84,89%	
55	100,00%	85,65%	
90	100,00%	85,69%	
7	100,00%	88,78%	
25	100,00%	90,50%	
33	100,00%	91,70%	
64	100,00%	92,18%	
72	100,00%	94,69%	
43	100,00%	94,70%	
77	100,00%	95,75%	
59	100,00%	96,01%	
6	100,00%	96,60%	
35	100,00%	96,63%	
83	100,00%	96,87%	
54	100,00%	97,61%	
73	100,00%	97,99%	
76	100,00%	97,99%	
40	100,00%	98,71%	
62	100,00%	99,73%	
18	100,00%	99,99%	
1	100,00%	100,00%	
3	100,00%	100,00%	
11	100,00%	100,00%	
21	100,00%	100,00%	
26	100,00%	100,00%	
29	100,00%	100,00%	

DMU	$ heta_B^*$	SE	
31	100,00%	100,00%	
32	100,00%	100,00%	
37	100,00%	100,00%	
45	100,00%	100,00%	
48	100,00%	100,00%	
50	100,00%	100,00%	
53	100,00%	100,00%	
58	100,00%	100,00%	
68	100,00%	100,00%	
71	100,00%	100,00%	
78	100,00%	100,00%	
82	100,00%	100,00%	
93	100,00%	100,00%	
94	100,00%	100,00%	

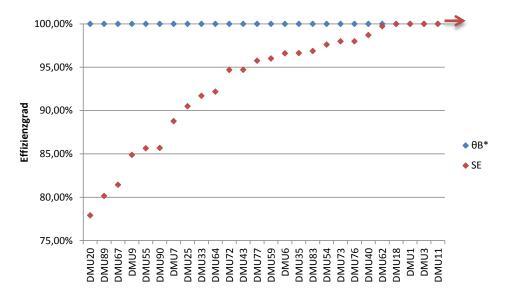


Abbildung 5.16.: Skalenverlauf der BCC-effizienten Raiffeisenbanken, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

Wie sich aus Tabelle 5.23 ablesen lässt, weist die DMU₂₀ mit 77,91% die niedrigste Skaleneffizienz auf. Ihre gesamte technische Ineffizienz ist auf eine suboptimale Betriebsgröße zurückzuführen.

Die DMU_{20} weist eine zu kleine Betriebsgröße auf und müsste ihre Betriebsgröße daher vergrößern, um maximale Produktivität zu erreichen.

Tabelle 5.25.: Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	θ_B^*	SE
4	74,77%	99,91%
88	77,67%	99,88%
39	77,96%	99,97%
47	81,21%	98,65%
49	81,54%	99,36%
2	82,29%	99,98%
17	82,33%	96,27%
74	82,47%	99,73%
61	83,31%	96,90%
92	83,53%	98,56%

DMU	$ heta_B^*$	SE	_
46	83,80%	99,07%	_
84	83,91%	99,77%	
28	84,02%	95,99%	
24	84,62%	90,50%	
60	85,75%	92,14%	
36	85,77%	95,44%	
95	86,06%	95,43%	
13	86,28%	97,81%	
91	87,13%	97,99%	
79	87,34%	97,58%	
12	87,61%	99,05%	
10	88,06%	93,40%	
8	88,09%	97,72%	
80	88,39%	94,66%	
56	88,61%	97,30%	
85	89,32%	99,85%	
65	90,32%	93,69%	
52	90,69%	98,16%	
14	91,05%	88,84%	
19	91,29%	92,28%	
15	91,95%	94,63%	
70	92,05%	98,83%	
16	92,09%	98,10%	
81	92,44%	99,78%	
86	92,49%	98,22%	
44	93,19%	99,83%	
69	93,47%	99,68%	
23	93,96%	95,27%	
5	94,27%	99,94%	
27	94,62%	93,23%	
22	94,72%	97,18%	
34	94,99%	88,90%	
66	95,11%	90,34%	
87	95,20%	87,37%	
30	95,36%	94,97%	
42	96,15%	92,02%	
51	96,47%	92,74%	
63	96,67%	87,45%	
57	98,09%	99,08%	
38	99,04%	98,25%	
41	99,46%	97,16%	
75	99,69%	99,10%	_

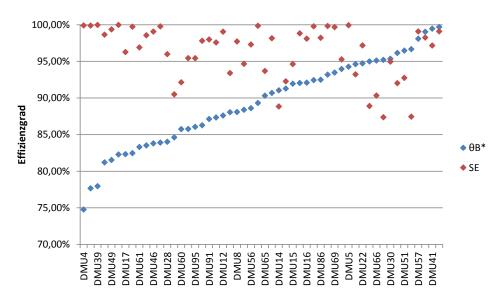


Abbildung 5.17.: Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

6. Conclusio und Ausblick

Das Ziel der Raiffeisenlandesbank war es, das Bankensystem in Oberösterreich zu verbessern. Um die Effizienz der oberösterreichischen Raiffeisenbanken zu analysieren haben wir das Prinzip der Data Envelopment Analysis verwendet. Die DEA-Auswertung erfolgte anhand von zwei Modellvarianten, dem CCR- und dem BCC-Modell, sowohl input- als auch outputorientiert.

Da es aber im Bankenbereich sinnvoller ist, wenn sich die Verbesserungsvorschläge auf die Inputfaktoren (Personalaufwand, Sachaufwand + Afa und Nettoaufwand) beziehen (diese können von den Raiffeisenbanken besser gesteuert werden), haben wir in dieser Arbeit unser Hauptaugenmerk auf die Ergebnisse der inputorientierten DEA-Modelle gelegt.

Bei der Effizienzanalyse der 95 selbstständigen Banken in Oberösterreich ist sehr auffällig, dass die Effizienzwerte aller Banken über den gesamten Beobachtungszeitraum über 69% betragen. Auch die durchschnittlichen Effizienzwerte liegen in jedem Jahr bei mehr als 88%. In allen drei Jahren beträgt die Anzahl der CCReffizienten Raiffeisenbanken immer über 18%; die der BCC-effizienten sogar in jedem Beobachtungsjahr mehr als 41%. Dieser Blick auf die gesamte Analyse zeigt also sehr deutlich, dass die Raiffeisenbanken in Oberösterreich insgesamt gute Ergebnisse bezüglich der Effizienz erzielen.

Jene Raiffeisenbank, der die DMU₄ zugewiesen wurde, wird am häufigsten als ineffizienteste Bank beurteilt. Im Jahr 2010 erbrachte diese DMU noch gute Ergebnisse mit über 84% in beiden Modellen. Im zweiten Beobachtungsjahr fiel die Raiffeisenbank auf Effizienzwerte unter 70%. Im Jahr 2012 ist DMU₄ zwar in beiden Modellen die ineffizienteste Raiffeisenbank, zeigt jedoch mit Effizienzwerten von 76% und 78% schon eine Verbesserung. Da der Wert der Skaleneffizienz in jedem der drei Beobachtungsjahre sehr hoch ist, sind die Ineffizienzen bezüglich des Betriebes für eine hohe technische Ineffizienz verantwortlich. Im Jahr 2012 kam es unter einem neuen Geschäftsleiter zu einer leichten Korrektur der Geschäftspolitik.

Die Analyse mit beiden Modellen ergibt, dass die Raiffeisenbanken mit den DMUs 1, 3, 11, 26, 29, 32, 45, 48, 53, 58, 68, 71 und 78 in jedem der drei Beobachtungsjahre effizient sind.

Diese 13 der insgesamt 95 betrachteten Raiffeisenbanken sind daher in jedem Jahr skaleneffizient und weisen somit über den gesamten Beobachtungszeitraum weder Ineffizienzen bezüglich ihrer Betriebsgröße noch bezüglich ihres Betriebes auf.

In dieser Arbeit haben wir die Effizienz der 95 selbstständigen Raiffeisenbanken bewertet. Ein Erweiterungsvorschlag wäre die Analyse der 452 Filialen der Raiffeisenbank in Oberösterreich. Anstelle des Profitabilitätsansatzes wäre dabei der Produktivitätsansatz als zugrunde liegendes Leistungsmodell sinnvoll.

Da nicht jede Bankfiliale Aufgaben wie ihre Buchhaltung, Gehaltsabrechnung, Kreditcontrolling, Marketing, Geschäftsleitung, Innenrevision usw. übernimmt, fallen in den selbstständigen Banken zusätzlich zu den Bankstellenkosten die gesamten Overheadkosten²¹ an. Bei einem Effizienzvergleich müsste man diese Kosten auf alle Bankfilialen aufteilen und da es in diesem Fall keine eindeutige Aufschlüsselung gibt, führt diese Position immer zu einer gewissen Unschärfe.

Aus diesem Grund hätten wir bei der Analyse auf Bankstellenebene für die Inputkriterien die Anzahl der Bankomaten, der Mitarbeiter, der Kontoauszugsdrucker sowie der ZVT Automaten verwendet. Als Outputkriterien würden sich die Anzahl der Geldabhebungen bei den Bankomaten, der Anwendungen des Kontoserviceterminals + ZVT und der manuellen Geschäftsfälle, die Produktion an Kreditkonten, Sparkonten, Depotkonten und Girokonten sowie die Anzahl der ELBA Anwendungen als sinnvoll erwiesen.

106

²¹Overheadkosten sind Betriebskosten im Bankbetrieb (Gemeinkosten), die dem Bereich der Geschäftsleitung zuzuordnen sind und daher keinem einzelnen Kostenträger (Bankleistung oder Gruppe von Bankleistungen) zugerechnet werden können.

Appendix

A. Modifizierter Nettoaufwand

Tabelle 6.1.: modifizierter Nettoaufwand

DMU	Nettoaufwand 2010	Nettoaufwand 2011	Nettoaufwand 2012	3-Jahres-Schnitt	modifizierter Nettoaufwand $(I3^*)$
$\frac{DMU}{1}$	-127	-38	-69	J-James-Schiller	-78
2	-1271	-410	-201	-627,33	-627,33
3 4	333 -618	95 -214	109 -846	179 -559,33	0
5	-618 -818	-214 -760	-593	-723,67	-559,33 -723,67
6	697	9	-77	209,67	0
7	-1514	-1059	-2223	-1598,67	-1598,67
8	2	-409	-315	-240,67	-240,67
9 10	-36 -72	-52 -188	-86 -188	-58 -149,33	-58 $-149,33$
11	123	176	38	112,33	0
12	-474	-741	-51	-422	-422
13	141	-361	-811	-343,67	-343,67
14 15	-357 -210	-953 -134	-58 11	-456 -111	-456 -111
16	-311	-420	-251	-327,33	-327,33
17	-145	-76	-222	-147,67	-147,67
18	-46	-35	35	-15,33	-15,33
19 20	-3084 -18	-1866 3	-1500 -36	-2150 -17	-2150 -17
21	-16 -73	-434	-36 -24	-177	-17 -177
22	-485	112	-208	-193,67	-193,67
23	-157	-113	-30	-100	-100
24	-62	-106	-102	-90 -391,67	-90 -391,67
25 26	-427 -341	-580 8	-168 339	-391,07	-391,07
27	-92	-67	57	-34	-34
28	-62	-75	-87	-74,67	-74,67
29	-184	-482	-849	-505	-505
30 31	-1082 -8468	-696 -1518	-400 -1517	-726 -3834,33	-726 -3834,33
32	-515	-1639	-564	-906	-906
33	65	83	221	123	0
34	134	-173	46	2,33	0
35 36	104 13	11 -155	48 -174	54,33 -105,33	-105,33
37	-77	55	-59	-27	-27
38	-2113	-564	-474	-1050,33	-1050,33
39	-188	-86	2	-90,67	-90,67
40 41	102 -67	-95 22	-30 -47	-7,67 -30,67	-7,67 -30,67
42	113	-80	-147	-38	-38
43	-582	-392	-563	-512,33	-512,33
44	-138	-62	-198	-132,67	-132,67
45 46	-1663 -192	-1758 -115	-1792 -164	-1737,67 -157	-1737,67 -157
47	-192	-113	-400	-257	-157
48	-152	-897	-221	-423,33	-423,33
49	-735	-470	-872	-692,33	-692,33
50 51	-265 -1224	-337 -1174	-274 -966	-292 -1121,33	-292 -1121,33
52	-1224 -71	-237	-54	-1121,33	-1121,33 -120,67
53	-259	-296	-185	-246,67	-246,67
54	-95	35	-23	-27,67	-27,67
55 56	-80 -148	13 -247	39 -130	-9,33 -175	-9,33 -175
56 57	-148 -73	-24 <i>1</i> -53	-130 -34	-175 -53,33	-175 -53,33
58	-354	-446	-284	-361,33	-361,33
59	-158	-82	-759	-333	-333
60	-127	-174	-209	-170 187.67	-170 197.67
61 62	-415 -706	-98 -1136	-50 -851	-187,67 -897,67	-187,67 -897,67
63	-57	-168	35	-63,33	-63,33
64	-1110	-1542	-1681	-1444,33	-1444,33
65 66	-655 29	-439	-797 -247	-630,33 -74	-630,33 -74
66 67	-44	-4 -1	-247	-74 -15	-74 -15

DMU	Nettoaufwand 2010	Nettoaufwand 2011	Nettoaufwand 2012	3-Jahres-Schnitt	modifizierter Nettoaufwand $(I3^*)$
68	-80	-7	-18	-35	-35
69	-49	-484	-410	-314,33	-314,33
70	-426	-235	-658	-439,67	-439,67
71	-119	72	20	-9	-9
72	-288	7	7	-91,33	-91,33
73	-229	-403	-412	-348	-348
74	-3358	-216	-17	-1197	-1197
75	-158	-120	-166	-148	-148
76	-319	-24	-119	-154	-154
77	-3343	-3244	-2994	-3193,67	-3193,67
78	-148	230	133	71,67	0
79	-93	-147	-243	-161	-161
80	-593	-394	-469	-485,33	-485,33
81	-26	-297	-4	-109	-109
82	151	309	38	166	0
83	-34	38	-87	-27,67	-27,67
84	-3746	-771	-1093	-1870	-1870
85	-1328	-444	-466	-746	-746
86	-143	-285	-413	-280,33	-280,33
87	-23	-37	-23	-27,67	-27,67
88	-84	-224	-262	-190	-190
89	-4941	-2920	-813	-2891,33	-2891,33
90	-359	-389	-701	-483	-483
91	-328	-331	-185	-281,33	-281,33
92	-231	-350	-236	-272,33	-272,33
93	-544	197	-158	-168,33	-168,33
94	-625	-557	-685	-622,33	-622,33
95	-283	69	-139	-117,67	-117,67

B. Korrelationsmatrizen

Die folgenden Tabellen beschreiben die paarweisen Korrelationen zwischen den Inputs bzw. Outputs nach dem Profitabilitätsansatz für das Jahr 2010 und 2012.

Tabelle 6.2.: Korrelationsmatrix der Inputs nach dem Profitabilitätsansatz für das Jahr 2010

	I1	I2	Ι3
I 1	1		
I2	0,98	1	
I3	$0,\!64$	0,68	1

Tabelle 6.3.: Korrelationsmatrix der Outputs nach dem Profitabilitätsansatz für das Jahr 2010

O1	O2	О3	O4
1			
0,89	1		
0,97	0,92	1	
0,74	0,77	0,75	1
	1 0,89 0,97	1 0,89 1 0,97 0,92	1 0,89 1 0,97 0,92 1

Tabelle 6.4.: Korrelationsmatrix der Inputs nach dem Profitabilitätsansatz für das Jahr 2012

	I1	I2	I3
I1	1		
I2	0,99	1	
I3	0,78	0,79	1

Tabelle 6.5.: Korrelationsmatrix der Outputs nach dem Profitabilitätsansatz für das Jahr 2012

	O1	O2	О3	O4
O1	1			
O2	0,74	1		
O3	0,97	0,77	1	
O4	0,67	0,51	0,70	1

C. Nähere Erläuterung der Input- und Outputkriterien

C.1. Input- und Outputkriterien für die Effizienzanalyse der 95 oberösterreichischen Raiffeisenbanken

Personal aufwand:

Der Personalaufwand setzt sich aus allen im Rahmen der Mitarbeiterentlohnung anfallenden Kosten zusammen. Alle diese Kosten werden in der Bilanz verbucht und ausgewiesen. Zur besseren Vergleichbarkeit werden sie meist in Relation zu einer Bezugsgröße (in % zur durchschnittlichen Bilanzsumme) dargestellt. Sie beinhalten folgende Hauptgruppen:

- Löhne und Gehälter
- gesetzliche soziale Abgaben
- sonstige Sozialaufwendungen und
- Dotation Abfertigung und Pensionsrückstellungen.

Sachaufwand:

Der Sachaufwand enthält alle für die Aufrechterhaltung des Bankbetriebs notwendigen Kosten. Insbesondere:

• Bürobetrieb

- EDV
- Miete
- Hausbetrieb
- Instandhaltung
- Versicherung
- Verwaltung und
- Werbung.

Afa:

Afa steht als Kurzform für Absetzung für Abnutzung und bezeichnet die steuerrechtlich zu ermittelnde Wertminderung von Anlagevermögen.

Netto aufwand/Kreditrisiko:

Diese Position besteht einerseits aus den tatsächlich angefallenen Forderungsabschreibungen auf Kreditforderungen und andererseits aus vorsorglich angesetzten Einzelwertberichtigungen bei sich wirtschaftlich verschlechternden Kunden.

Nettozinser trag:

Der Nettozinsertrag beschreibt die Differenz zwischen eingenommen Kreditzinsen (Zinsertrag) und den angefallenen Kosten für Einlagen (Zinsaufwand).

$Dienstleistungsertr\"{a}ge:$

Die Dienstleistungserträge bestehen aus den Einnahmen aus dem Dienstleistungsgeschäft in den Hauptsparten

- Zahlungsverkehr
- Wertpapier
- Bausparen und
- Versicherungen.

C.2. Input- und Outputkriterien für die Effizienzanalyse auf Bankstellenebene

ZVT Automaten:

Das ZahlungsVerkehrsTerminal bietet umfangreiche Funktionen zur Abwicklung des Zahlungsverkehrs. Bei diesem Automat können eine Kontostandsabfrage, ein Kontoauszugsdruck, sowie Überweisungen durchgeführt werden. Es können sowohl Inlands- und SEPA Überweisungen als auch Terminüberweisungen durchgeführt werden.

Anzahl der Geldabhebungen bei den Bankomaten:

Diese Größe besteht aus der Anzahl der Geldausgabeautomaten im Foyer bzw. Indoor. Ein Geldausgabeautomate bietet folgende Funktionen:

- Geldausgabe inklusive Notenauswahl
- Kontostandsabfrage
- Elektronische Geldbörse (Quick) laden oder entladen
- Handywertkarte laden
- Kontoauszugsdruck (nicht bei allen Geräten verfügbar)

Anzahl der manuellen Geschäftsfälle:

Diese Anzahl setzt sich aus folgenden Bestandteilen zusammen:

- Anzahl der Geschäftsfälle in BAR
- Anzahl der "unbaren" Geschäftsfälle

Produktion Kreditkonten

Die Produktion der Kreditkonten setzt sich aus der Anzahl der Kreditkonten, der Darlehen- und Einmalkreditkonten, der Wechselkonten und der Fremdwährungskreditkonten zusammen, welche seit dem 1.1. des Jahres hinzugekommen sind.

Produktion Sparkonten:

Diese Größe setzt sich aus folgenden Faktoren zusammen, welche seit dem 1.1. des Jahres hinzugekommen sind:

- Anzahl der Basissparkonten
- Anzahl der gebundenen Sparkonten
- Summe der Vermögenssparkonten
- Anzahl der Erfolgssparkonten

Produktion Girokonten:

Die Produktion der Girokonten setzt sich aus den Sichteinlagekonten, den Termineinlagekonten und des Fremdwährungskonten, die seit dem 1.1. des Jahres hinzugekommen sind, zusammen.

D. Projektionstabellen der inputorientierten Modelle

D.1. Tabellen der Projektionen für die inputorientierten Modelle der 95 Raiffeisenbanken für das Jahr 2010

D.1.1. Tabellen der Projektionen für das inputorientierte CCR-Modell

Tabelle 6.6.: Projektionen der Inputs des input
orientierten CCR-Modells für das Jahr $2010\,$

DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	79,97%	878,87	-220,13	-20,03	556,59	-139,41	-20,03	128,03	-499,30	-79,59
4	84,05%	1047,26	-198,74	-15,95	655,59	-124,41	-15,95	287,39	-271,94	-48,62
5	96,05%	2712,45	-111,55	-3,95	1506,06	-61,94	-3,95	565,18	-158,48	-21,90
7	85,01%	8175,41	-1441,59	-14,99	4577,79	-807,21	-14,99	1359,03	-239,64	-14,99
8	85,90%	1081,48	-177,52	-14,10	593,57	-97,43	-14,10	206,73	-33,93	-14,10
9	88,06%	220,15	-29,85	-11,94	149,42	-46,58	-23,77	51,07	-6,93	-11,94
10	85,62%	2387,09	-400,91	-14,38	1280,02	-214,98	-14,38	127,86	-21,47	-14,38
12	90,74%	2226,76	-227,24	-9,26	1254,03	-127,97	-9,26	382,92	-39,08	-9,26
13	85,54%	1343,83	-227,17	-14,46	856,52	-150,48	-14,94	293,97	-49,69	-14,46
14	82,40%	430,95	-92,05	-17,60	233,19	-49,81	-17,60	69,31	-386,69	-84,80
15	81,95%	743,29	-163,71	-18,05	378,61	-83,39	-18,05	90,96	-20,04	-18,05
16	88,92%	1825,53	-227,47	-11,08	1001,24	-124,76	-11,08	291,06	-36,27	-11,08
17	80,93%	755,08	-177,92	-19,07	410,44	-108,56	-20,92	119,51	-28,16	-19,07
19	83,90%	4343,50	-833,50	-16,10	2537,14	-486,86	-16,10	1000,97	-1149,03	-53,44
20	74,44%	300,74	-103,26	-25,56	163,02	-55,98	-25,56	12,65	-4,35	-25,56
22	89,52%	1759,96	-206,04	-10,48	933,69	-109,31	-10,48	173,37	-20,30	-10,48
23	90,21%	420,38	-45,62	-9,79	254,39	-27,61	-9,79	52,73	-47,27	-47,27
24	83,00%	365,20	-74,80	-17,00	188,41	-38,59	-17,00	74,70	-15,30	-17,00
25	88,85%	3813,44	-478,56	-11,15	2225,62	-301,38	-11,93	348,00	-43,67	-11,15
27	88,53%	2258,40	-292,60	-11,47	1149,12	-148,88	-11,47	30,10	-3,90	-11,47
28	77,76%	501,55	-143,45	-22,24	292,38	-83,62	-22,24	58,06	-16,61	-22,24
30	87,48%	4167,55	-596,45	-12,52	2113,52	-302,48	-12,52	590,99	-135,01	-18,60
31	99,89%	5637,79	-6,21	-0,11	3998,49	-166,51	-4,00	1460,00	-2374,34	-61,92
33	88,08%	460,66	-62,34	-11,92	269,61	-40,39	-13,03	0,00	0,00	0,00
34	74,87%	1607,46	-539,54	-25,13	916,19	-523,81	-36,38	0,00	0,00	0,00
36	79,97%	706,14	-176,86	-20,03	373,16	-93,84	-20,09	84,24	-21,10	-20,03
39	82,19%	516,15	-111,85	-17,81	313,18	-276,82	-46,92	74,52	-16,15	-17,81
40	95,70%	466,06	-20,94	-4,30	250,73	-11,27	-4,30	7,34	-0,33	-4,30
41	98,14%	505,42	-9,58	-1,86	264,72	-49,28	-15,69	30,10	-0,57	-1,86
42	86,63%	2044,47	-315,53	-13,37	1097,08	-314,92	-22,30	32,92	-5,08	-13,37
43	95,68%	3951,58	-178,42	-4,32	2028,42	-91,58	-4,32	490,20	-22,13	-4,32
44	92,98%	506,74	-38,26	-7,02	304,97	-23,03	-7,02	123,35	-9,31	-7,02
46	78,23%	815,16	-226,84	-21,77	474,07	-131,93	-21,77	122,82	-34,18	-21,77
47	79,55%	754,13	-193,87	-20,45	431,16	-110,84	-20,45	149,59	-107,41	-41,79
49	80,84%	2246,36	-574,64	-20,37	1147,93	-272,07	-19,16	327,88	-364,45	-52,64
51	87,59%	4699,20	-665,80	-12,41	2526,97	-358,03	-12,41	626,86	-494,48	-44,10
52	87,23%	1604,16	-234,84	-12,77	871,43	-127,57	-12,77	105,26	-15,41	-12,77
54	97,90%	479,71	-10,29	-2,10	270,20	-5,80	-2,10	27,09	-0,58	-2,10
55	84,58%	402,60	-73,40	-15,42	219,91	-40,09	-15,42	7,89	-1,44	-15,42

DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
56	84,98%	656,90	-116,10	-15,02	333,12	-58,88	-15,02	148,72	-26,29	-15,02
57	97,05%	870,54	-26,46	-2,95	488,16	-14,84	-2,95	51,76	-1,57	-2,95
59	98,30%	4520,82	-78,18	-1,70	2399,78	-54,22	-2,21	327,34	-5,66	-1,70
60	79,27%	405,07	-105,93	-20,73	229,88	-60,12	-20,73	83,81	-86,19	-50,70
61	81,38%	1226,40	-280,60	-18,62	664,06	-151,94	-18,62	152,72	-34,94	-18,62
63	86,67%	443,75	-68,25	-13,33	231,41	-35,59	-13,33	54,89	-8,44	-13,33
64	86,59%	6026,66	-933,34	-13,41	3328,52	-515,48	-13,41	812,56	-631,78	-43,74
65	87,94%	2546,74	-349,26	-12,06	1616,34	-221,66	-12,06	394,20	-236,14	-37,46
66	79,76%	335,79	-85,21	-20,24	208,58	-62,42	-23,03	59,02	-14,98	-20,24
67	81,98%	315,62	-69,38	-18,02	191,00	-50,00	-20,75	12,30	-2,70	-18,02
69	88,09%	806,02	-108,98	-11,91	413,14	-55,86	-11,91	275,89	-38,45	-12,23
70	89,80%	1763,67	-200,33	-10,20	1085,68	-123,32	-10,20	211,52	-228,15	-51,89
73	93,03%	475,38	-35,62	-6,97	351,65	-26,35	-6,97	131,81	-216,19	-62,12
74	83,10%	2834,54	-576,46	-16,90	1447,60	-294,40	-16,90	621,69	-575,31	-48,06
77	97,48%	9626,15	-248,85	-2,52	4773,60	-123,40	-2,52	3113,19	-80,48	-2,52
79	84,01%	647,72	-123,28	-15,99	357,88	-68,12	-15,99	135,26	-25,74	-15,99
80	85,18%	2545,18	-442,82	-14,82	1357,77	-236,23	-14,82	413,41	-71,93	-14,82
81	89,67%	903,87	-104,13	-10,33	443,87	-51,13	-10,33	97,74	-11,26	-10,33
82	97,10%	1288,87	-232,13	-15,26	596,19	-17,81	-2,90	0,00	0,00	0,00
83	97,85%	588,08	-12,92	-2,15	307,25	-6,75	-2,15	27,07	-0,59	-2,15
84	81,91%	3201,04	-706,96	-18,09	1634,10	-360,90	-18,09	1064,26	-805,74	-43,09
85	86,73%	1700,78	-260,22	-13,27	1062,44	$-162,\!56$	-13,27	228,53	-517,47	-69,37
86	90,11%	1319,21	-144,79	-9,89	814,59	-89,41	-9,89	252,61	-27,72	-9,89
87	84,87%	421,80	-75,20	-15,13	226,60	-40,40	-15,13	23,48	-4,19	-15,13
88	78,18%	1147,68	-320,32	-21,82	593,39	-165,61	-21,82	148,54	-41,46	-21,82
89	79,08%	8127,05	-2149,95	-20,92	4211,80	-1114,20	-20,92	2286,47	-604,87	-20,92
90	87,22%	3633,59	-532,41	-12,78	1994,72	-292,28	-12,78	421,27	-61,73	-12,78
91	90,33%	873,34	-137,66	-13,62	410,10	-43,90	-9,67	254,13	-27,20	-9,67
92	81,97%	879,88	-208,12	-19,13	413,13	-90,87	-18,03	223,23	-49,10	-18,03
93	94,55%	2384,55	-137,45	-5,45	1374,55	-315,46	-18,67	159,16	-9,17	-5,45
94	99,20%	3013,65	-321,35	-9,64	1539,58	-12,42	-0,80	558,12	-64,21	-10,32
95	81,79%	820,35	-182,65	-18,21	429,40	-95,60	-18,21	96,24	-21,43	-18,21

Tabelle 6.7.: Projektionen der Outputs des input
orientierten CCR-Modells für das Jahr $2010\,$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 0,00 0,00 19,81 0,00 565,50 0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 19,81 0,00 565,50 0,00 0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,81 0,00 565,50 0,00 0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 565,50 0,00 0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	565,50 0,00 0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 0,00 0,00 12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 $0,00$ $12,67$ $0,00$ $45,96$ $100,60$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 $12,67$ $0,00$ $45,96$ $100,60$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,67 0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00 45,96 100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45,96 $100,60$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38,28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00
$44 \qquad 759,00 \qquad 0,00 \qquad 0,00 \qquad 222,00 \qquad 0,00 \qquad 0,00 \qquad 369,00 \qquad 0,00 \qquad 0,00 \qquad 26,16 \qquad 7,16$	0,00
	0,00
46 1223 00 0 00 0 358 00 0 00 564 00 0 00 97 00 0 00	37,68
40 1223,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00
47 1103,00 0,00 0,00 389,00 0,00 0,00 446,00 0,00 0,00 145,00 0,00	0,00
49 $2467,53$ $21,53$ $0,88$ $998,00$ $0,00$ $0,00$ $1620,00$ $0,00$ $0,00$ $227,00$ $0,00$	0,00
51 6529,00 0,00 0,00 1968,62 108,62 5,84 3038,00 0,00 0,00 650,00 0,00	0,00
52 1881,00 0,00 0,00 783,00 0,00 0,00 1116,00 0,00 0,00 116,00 0,00	0,00
54 $783,00$ $0,00$ $0,00$ $224,00$ $0,00$ $0,00$ $299,91$ $0,91$ $0,30$ $46,00$ $0,00$	0,00
55 $628,00$ $0,00$ $0,00$ $146,46$ $7,46$ $5,37$ $271,00$ $0,00$ $0,00$ $26,63$ $6,63$	33,15
56 952,00 0,00 0,00 340,00 0,00 0,00 436,00 0,00 0,00 28,49 0,49	1,75
57 1325,00 0,00 0,00 457,00 0,00 0,00 558,51 46,51 9,08 76,00 0,00	0,00
59 4558,00 0,00 0,00 1722,49 89,49 5,48 3258,00 0,00 0,00 321,00 0,00	0,00
$60 \qquad 638,00 \qquad 0,00 \qquad 0,00 \qquad 196,00 \qquad 0,00 \qquad 0,00 \qquad 279,00 \qquad 0,00 \qquad 0,00 \qquad 27,00 \qquad 0,00$	0,00
61 1885,00 0,00 0,00 650,00 0,00 0,00 821,00 0,00 0,00 60,00 0,00	0,00
$63 \qquad 548,00 \qquad 0,00 \qquad 0,00 \qquad 205,00 \qquad 0,00 \qquad 0,00 \qquad 328,00 \qquad 0,00 \qquad 0,00 \qquad 24,00 \qquad 0,00$	0,00
64 8258,00 0,00 0,00 2293,62 8,62 0,38 4379,00 0,00 0,00 514,00 0,00	0,00
65 3623,00 0,00 0,00 1505,00 0,00 0,00 1663,00 0,00 0,00 334,00 0,00	0,00
$66 \qquad 480,00 \qquad 0,00 \qquad 0,00 \qquad 124,38 \qquad 15,38 \qquad 14,11 \qquad 240,00 \qquad 0,00 \qquad 0,00 \qquad 46,00 \qquad 0,00$	

Appendix

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
67	553,00	0,00	0,00	132,00	0,00	0,00	213,00	0,00	0,00	22,55	8,55	61,07
69	1218,00	0,00	0,00	467,00	0,00	0,00	522,00	0,00	0,00	44,42	33,42	303,82
70	2830,00	0,00	0,00	826,00	0,00	0,00	1178,00	0,00	0,00	201,00	0,00	0,00
73	827,00	0,00	0,00	211,22	2,22	1,06	340,00	0,00	0,00	30,06	17,06	131,23
74	4173,00	0,00	0,00	1202,00	0,00	0,00	1899,00	0,00	0,00	182,00	0,00	0,00
77	14811,00	0,00	0,00	4369,84	1618,84	58,85	6071,00	0,00	0,00	588,08	176,08	42,74
79	913,00	0,00	0,00	278,00	0,00	0,00	464,00	0,00	0,00	49,00	0,00	0,00
80	3073,00	0,00	0,00	1440,00	0,00	0,00	1790,00	0,00	0,00	218,00	0,00	0,00
81	1206,00	0,00	0,00	530,00	0,00	0,00	528,14	80,14	17,89	64,00	0,00	0,00
82	1688,00	0,00	0,00	703,22	474,22	207,08	768,00	0,00	0,00	30,70	9,70	46,19
83	645,77	76,77	13,49	320,00	0,00	0,00	369,00	0,00	0,00	54,00	0,00	0,00
84	4128,00	0,00	0,00	1695,00	0,00	0,00	2300,00	0,00	0,00	137,00	0,00	0,00
85	2962,00	0,00	0,00	670,12	199,12	42,28	1175,00	0,00	0,00	119,55	29,55	32,83
86	1925,00	0,00	0,00	528,65	93,65	21,53	958,00	0,00	0,00	112,00	0,00	0,00
87	665,00	0,00	0,00	166,59	85,59	105,67	283,00	0,00	0,00	28,27	8,27	41,35
88	1253,00	0,00	0,00	845,00	0,00	0,00	815,21	38,21	4,92	28,00	0,00	0,00
89	10850,00	0,00	0,00	4158,00	0,00	0,00	5437,00	0,00	0,00	781,00	0,00	0,00
90	4333,00	0,00	0,00	2165,00	0,00	0,00	2568,00	0,00	0,00	257,00	0,00	0,00
91	1259,00	0,00	0,00	341,71	45,71	15,44	538,00	0,00	0,00	59,72	38,72	184,38
92	1237,00	0,00	0,00	359,17	63,17	21,34	547,00	0,00	0,00	55,24	7,24	15,08
93	3556,76	496,76	16,23	1000,72	209,72	26,51	1476,00	0,00	0,00	416,00	0,00	0,00
94	3487,00	0,00	0,00	1425,00	0,00	0,00	2108,00	0,00	0,00	312,00	0,00	0,00
95	962,00	0,00	0,00	362,00	0,00	0,00	599,00	0,00	0,00	63,00	0,00	0,00

D.1.2. Tabellen der Projektionen für das inputorientierte BCC-Modell

Tabelle 6.8.: Projektionen der Inputs des input
orientierten BCC-Modells für das Jahr $2010\,$

2 80,49% 884,69 -214,41 -19,51 560,21 -135,79 -19,61 355,16 -272,17 -43,39 4 84,34% 1050,88 -195,12 -15,66 657,85 -122,15 -15,66 270,29 289,04 -51,68 5 96,37% 2721,49 -102,51 -3,63 161,10 -60,92 -14,07 108,86 -14,07 108,86 -14,07 108,84 -10,81 40,08 -14,07 108,94 -14,07 108,94 -10,81 40,08 -14,01 10,59 136,68 -10,81 401,45 -20,55 -10,59 136,68 -10,81 401,45 -20,55 -10,59 136,68 -10,59 135,62 -10,59 11,59 -11,50 110,59 11,59 11,59 11,59 11,59 11,59 11,59 11,49 11,50 11,50 11,50 11,59 11,59 11,50 11,59 11,50 11,59 11,50 11,50 11,50 11,50 11,50 11,50 11,	DMU	θ_B^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
5 96,37% 2721,49 -102,51 -3,63 1511,08 -56,92 -14,07 206,80 -33,86 -14,07 10 89,41% 2492,75 -295,25 -10,59 133,68 -10,159 133,52 -10,59 133,68 -10,61 401,45 -20,55 -4,87 13 87,98% 1382,17 -188,83 -12,02 849,91 -157,60 302,36 -41,31 -12,02 14 92,60% 472,99 -50,01 -9,66 26,06 -29,40 -7,40 55,05 -400,95 -87,93 15 88,21% 800,06 -10,944 -11,79 407,53 -54,47 -11,79 97,91 -13,00 -11,79 16 99,90 166,18 -186,82 -9,10 976,57 -149,43 -13,27 297,55 -297,99 -9,10 17 82,29% 767,77 -165,23 17,71 427,09 -9,191 -17,71 121,51 -26,15 -17,71 19 <td< td=""><td>2</td><td>80,49%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2	80,49%									
8 85,93% 1081,86 177,14 -14,07 593,78 97,22 -14,07 206,80 -33,86 14,07 10 89,41% 2492,75 -295,25 -1.05 91 336,68 -158,32 -10,59 12 95,13% 2334,49 -119,51 -4,87 1232,64 -149,36 -10,81 401,45 -20,55 -4,87 13 87,98% 1382,17 -188,83 -12,02 849,91 -157,09 -15,60 302,36 -41,31 -12,02 14 92,60% 472,99 -50,01 -9,56 262,06 -20,94 -7,40 55,05 -400,95 -87,93 15 88,21% 800,06 -106,94 -11,79 407,53 -54,47 -11,79 97,91 -13,09 -11,79 17 82,29% 767,77 -165,23 -17,71 427,09 -91,91 -17,71 121,51 -26,15 -17,71 19 91,83% 4754,04 -42,96 -8,17 2379,13 -644,87 -21,33 173,03 4 -119,67 -19,52 22 94,41% 1856,10 -109,90 -5,59 942,36 -10,64 -5,90 57,55 -42,45 -42,45 27 90,45% 2307,38 -243,62 -9,55 113,748 -106,52 -12,37 30,75 -3,25 -9,55 28 80,10% 516,65 -128,36 -19,90 301,18 -74,82 -19,90 59,81 -14,86 -19,90 30 92,66% 4414,32 -349,68 -7,34 2233,67 -177,33 -7,34 672,17 -53,29 -7,34 49,22 -9,55 16,53 -11,47 -17,75 221,39 -25,15 16,53 -11,47 -17,75 221,30 -25,27 -32,25 -10,55 14,94 -19,18 -19,19 14,17,17 14,15 14,15 -10,10 14,16 -19,											
10 89.41% 2492.75 -295.25 -10.59 1336.68 -158.32 -10.59 133.52 -15.81 -10.59 12 95.13% 2334.49 -119.51 -4.87 123.264 -149.36 -10.81 401.45 -20.55 -4.87 138 2.17 -188.83 -12.02 849.91 -157.09 -15.60 302.36 -41.31 -12.02 14 92.60% 472.99 -50.01 -9.56 260.66 -20.94 -7.40 302.36 -41.31 -12.02 14 92.60% 800.06 -106.94 -11.79 407.53 -54.47 -11.79 97.91 -13.09 -11.79 16 90.90% 1866.18 -186.82 -9.10 976.57 -149.43 -13.27 207.55 -20.79 -9.10 17 82.29% 767.77 -165.23 -17.71 427.09 -91.91 -17.71 121.51 -26.15 -17.71 19 91.83% 4754.04 -422.96 -8.17 2379.13 -644.87 -21.33 1730.34 -419.67 -19.52 22 94.41% 1856.10 -109.90 -5.59 942.36 -10.64 -9.65 182.84 -10.83 -5.59 23 94.10% 438.51 -27.49 -5.90 265.36 -16.64 -5.90 57.55 -42.45 -42.45 -27.95 207.35 -2.35 207.35 -2.35 20.35 3.00 136.65 -128.36 -19.90 301.18 -74.82 -19.90 59.81 -14.86 -19.90 30.266% 4141.32 -349.68 -7.34 2238.67 -177.33 -7.34 672.71 -35.29 -7.34 34 83.27% 1787.81 -359.19 -16.73 874.93 -565.07 -39.24 0.00 0.00 0.00 36 83.79% 739.87 -143.13 -16.21 391.30 -75.70 -16.21 88.26 -17.07 -16.21 99.11% 510.42 -4.58 -0.89 294.05 -19.95 -6.35 30.39 -0.27 -0.89 42 92.52% 2183.47 -176.53 -7.48 1041.94 -370.06 -26.21 35.16 -2.84 -7.48 49 93.29% 508.43 -36.57 -6.71 30.59 -2.20 1.6.71 123.36 -8.90 -6.71 47.68 13.12 -2.16.75 133.59 -2.21.47 120.85 -1.17.65 68 82.24 162.27 3-21.47 1.18.88 430.67 -10.77.90 -2.70 1.23.66 -2.84 -7.48 13.12 -12.88 24.42 -572.58 20.30 1163.26 -256.74 -18.08 407.96 -284.37 -41.07 56 88.24% 681.94 -9.06 6.71.78 668.86 -147.14 -18.03 154.13 -33.54 -17.79 -16.21 93.30 -75.79 -16.21 93.76 -8.90 -6.71 56.88 24% 681.94 -9.06 66.86 -147.14 -18.03 154.13 -33.54 -17.65 69 90.66% 88.22% 681.94 -9.16 6.60 6.86 6.92.48% 389.34 -31.66 6.7.52 250.62 -20.38 -7.52 68.44 -5.56 6.067 -1.26 69 90.66% 88.22% 681.94 -9.10 6.11.78 31.89 31.66 6.95 73.30 31.20 7.70 -2.20 30 -1.71.79 -1.20 99.50 -1.33 154.13 -33.54 -17.65 99.50 90.96% 383.17 -6.69.83 17.14 1653.66 -6.94 -1.17.14 -1.17.30 -1.26 6.95 99.50 90.96% 383.17 -6.98 30.90 -1.17.14 -1.17.89 -1.17.14 -1.17.89 -1.17.99											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-177,14				-14,07			
13 87,98% 1382,17 -188,83 -12,02 849,91 -157,09 -15,60 302,36 -41,31 -12,02 15 88,21% 800,06 -106,94 -11,79 407,53 -54,47 -11,79 97,91 -13,09 -11,79 16 90,90% 1866,18 -16,62 -9,10 976,57 -149,43 -13,27 297,55 -29,79 -9,10 17 82,29% 767,77 -165,23 -17,71 427,09 -9,191 -17,71 121,51 -26,15 -17,71 19 91,833 4754,04 -422,96 -8,17 2379,13 -644,87 -21,33 1730,34 -419,67 -19,52 23 94,10% 438,51 -27,49 -5,90 265,36 -16,64 -5,90 57,55 -24,45 -29,55 137,48 -160,52 -12,37 30,75 -32,25 -9,55 28 80,10% 516,65 -128,36 -19,90 301,18 -74,82 -19,90 59,81	10	89,41%	2492,75	-295,25	-10,59	1336,68	-158,32	-10,59	133,52	-15,81	-10,59
$\begin{array}{c} 14 & 92,60\% & 472,99 & -50,01 & -9,56 & 262,06 & -20,94 & -7,40 & 55,05 & -400,95 & -87,93 \\ 15 & 88,21\% & 800,06 & -106,94 & -11,79 & 97,95 & -149,43 & -13,27 & 297,95 & -29,79 & -9,10 \\ 16 & 90,90\% & 1866,18 & -186,82 & -9,10 & 976,57 & -149,43 & -13,27 & 297,55 & -29,79 & -9,10 \\ 17 & 82,29\% & 767,77 & -165,23 & -17,71 & 427,09 & -9,191 & -17,71 & 121,51 & -26,15 & -17,71 \\ 19 & 91,83\% & 4754,04 & -422,96 & -8,17 & 237,913 & -644,87 & -21,33 & 1730,34 & -419,67 & -19,52 \\ 22 & 94,41\% & 1856,10 & -109,90 & -5,59 & 942,36 & -100,64 & -9,65 & 182,84 & -10,83 & -5,59 \\ 23 & 94,10\% & 438,51 & -27,49 & -5,90 & 265,36 & -16,64 & -5,90 & 57,55 & -42,45 & -42,45 \\ 27 & 90,45\% & 2307,38 & -243,62 & -9,55 & 1137,48 & -160,52 & -12,37 & 30,75 & -3,25 & -9,55 \\ 28 & 80,10\% & 516,65 & -128,36 & -7,34 & 2238,67 & -177,33 & -7,34 & 672,71 & -53,29 & -7,34 \\ 30 & 92,66\% & 4414,32 & -349,668 & -7,34 & 2238,67 & -177,33 & -7,34 & 672,71 & -53,29 & -7,34 \\ 39 & 82,25\% & 739,87 & -143,13 & -16,21 & 391,30 & -75,70 & -16,21 & 88,26 & -17,07 & -16,21 \\ 49 & 99,11\% & 510,42 & -4,58 & -0,89 & 294,05 & -19,95 & -6,55 & 30,39 & -0,27 & -0,89 \\ 42 & 92,52\% & 516,53 & -136,57 & -6,71 & 305,99 & -22,01 & -6,71 & 122,98 & -34,02 & -21,67 \\ 46 & 78,33\% & 816,20 & -225,80 & -216,67 & -47,68 & -13,32 & -12,67 & 122,98 & -34,02 & -21,67 \\ 49 & 81,12\% & 769,02 & -178,98 & -18,88 & 439,67 & -102,33 & -18,88 & 136,15 & -120,85 & -47,02 \\ 49 & 81,92\% & 2248,42 & -752,58 & -20,30 & 116,326 & -256,74 & -18,08 & 407,96 & -284,37 & -10,07 \\ 51 & 97,30\% & 513,59 & -231,42 & -4,31 & 2807,11 & -77,90 & -10,89 & -34,02 & -27,0 \\ 52 & 88,24\% & 1622,73 & -216,27 & -11,76 & 881,32 & -117,68 & -11,78 & 141,29 & -33,72 & -19,57 \\ 68 & 82,2\% & 681,94 & -31,66 & -7,52 & 250,62 & -26,67 & -18,08 & 407,96 & -284,37 & -10,09 \\ 99,6\% & 38,6\% & 3238,17 & -669,83 & -17,18 & -17,87 & -17,28 & -17,24 & -12,48 & -17,27 & -17,29 & -33,49 \\ 99,96\% & 126,073 & -216,27 & -116,62 & -10,48 & -10,09 & -10,09 & -10,09 \\ 99,96\% & 134,48 & -10,48 & -10,48 & -10,48 & -10,48$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
92 85,80% 866,23 -221,77 -20,38 432,43 -71,57 -14,20 233,66 -38,67 -14,20											
94 99,23% 3035,88 -299,12 -8,97 1540,05 -11,95 -0,77 544,53 -77,80 -12,50	94	99,23%	3035,88	-299,12	-8,97	1540,05	-11,95	-0,77	544,53	-77,80	-12,50
95 86,28% 863,25 -139,75 -13,93 452,97 -72,03 -13,72 101,52 -16,14 -13,72	95										

Tabelle 6.9.: Projektionen der Outputs des input
orientierten BCC-Modells für das Jahr $2010\,$

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
2	1382,00	0,00	0,00	508,00	0,00	0,00	605,00	0,00	0,00	47,00	0,00	0,00
4	1321,00	0,00	0,00	819,00	0,00	0,00	712,13	62,13	9,56	47,00	0,00	0,00
5	3312,00	0,00	0,00	1447,00	0,00	0,00	1841,00	0,00	0,00	370,00	0,00	0,00
8	1427,00	0,00	0,00	687,00	0,00	0,00	715,00	0,00	0,00	103,00	0,00	0,00
10	2956,00	0,00	0,00	956,28	9,28	0,98	1636,00	0,00	0,00	215,00	0,00	0,00
12	2601,00	0,00	0,00	1461,00	0,00	0,00	1604,00	0,00	0,00	159,00	0,00	0,00
13	1798,00	0,00	0,00	826,00	0,00	0,00	988,00	0,00	0,00	74,45	23,45	45,98
14	679,00	0,00	0,00	233,51	107,51	85,33	296,00	0,00	0,00	27,00	0,00	0,00
15	868,57	71,57	8,98	371,00	0,00	0,00	551,00	0,00	0,00	36,00	0,00	0,00
16	2591,00	0,00	0,00	805,00	0,00	0,00	1325,00	0,00	0,00	113,34	31,34	38,22
17	840,00	0,00	0,00	538,00	0,00	0,00	522,00	0,00	0,00	63,00	0,00	0,00
19	6957,00	0,00	0,00	2505,00	0,00	0,00	2926,28	238,28	8,86	272,00	0,00	0,00
22	2589,00	0,00	0,00	851,00	0,00	0,00	1198,00	0,00	0,00	109,50	19,50	21,67
23	597,00	0,00	0,00	252,00	0,00	0,00	299,00	0,00	0,00	26,00	0,00	0,00
27	2496,00	0,00	0,00	1075,00	0,00	0,00	1432,00	0,00	0,00	130,00	0,00	0,00
28	750,00	0,00	0,00	257,00	0,00	0,00	339,00	0,00	0,00	51,00	0,00	0,00
30	5314,00	0,00	0,00	1623,73	574,73	54,79	3023,00	0,00	0,00	252,00	0,00	0,00
34	2391,00	0,00	0,00	790,53	196,53	33,09	1088,24	6,24	0,58	94,88	19,88	26,51
36	878,10	24,10	2,82	361,00	0,00	0,00	526,00	0,00	0,00	29,00	0,00	0,00

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in %
39	758,00	0,00	0,00	298,81	61,81	26,08	375,00	0,00	0,00	15,12	4,12	37,45
41	641,00	0,00	0,00	296,00	0,00	0,00	320,34	52,34	19,53	50,00	0,00	0,00
42	2380,90	191,90	8,77	1121,00	0,00	0,00	1335,00	0,00	0,00	97,00	0,00	0,00
44	759,00	0,00	0,00	264,12	42,12	18,97	369,00	0,00	0,00	19,00	0,00	0,00
46	1223,00	0,00	0,00	358,00	0,00	0,00	564,00	0,00	0,00	87,00	0,00	0,00
47	1103,00	0,00	0,00	389,00	0,00	0,00	446,00	0,00	0,00	145,00	0,00	0,00
49	2514,48	68,48	2,80	998,00	0,00	0,00	1620,00	0,00	0,00	227,00	0,00	0,00
51	6529,00	0,00	0,00	1971,99	111,99	6,02	3038,00	0,00	0,00	650,00	0,00	0,00
52	1881,00	0,00	0,00	783,00	0,00	0,00	1116,00	0,00	0,00	116,00	0,00	0,00
56	952,00	0,00	0,00	340,00	0,00	0,00	436,00	0,00	0,00	28,00	0,00	0,00
57	1325,00	0,00	0,00	457,00	0,00	0,00	574,84	62,84	12,27	76,00	0,00	0,00
60	638,00	0,00	0,00	250,07	54,07	27,59	279,00	0,00	0,00	27,00	0,00	0,00
61	1885,00	0,00	0,00	650,00	0,00	0,00	821,00	0,00	0,00	78,94	18,94	31,57
65	3623,00	0,00	0,00	1505,00	0,00	0,00	1663,00	0,00	0,00	334,00	0,00	0,00
66	566,78	86,78	18,08	195,42	86,42	79,28	242,42	2,42	1,01	46,00	0,00	0,00
69	1218,00	0,00	0,00	467,00	0,00	0,00	522,00	0,00	0,00	37,05	26,05	236,82
70	2830,00	0,00	0,00	826,00	0,00	0,00	1178,00	0,00	0,00	201,00	0,00	0,00
73	827,00	0,00	0,00	220,03	11,03	5,28	340,00	0,00	0,00	28,91	15,91	122,38
74	4173,00	0,00	0,00	1202,00	0,00	0,00	1899,00	0,00	0,00	182,00	0,00	0,00
79	913,00	0,00	0,00	284,12	6,12	2,20	464,00	0,00	0,00	49,00	0,00	0,00
80	3073,00	0,00	0,00	1440,00	0,00	0,00	1790,00	0,00	0,00	218,00	0,00	0,00
81	1206,00	0,00	0,00	530,00	0,00	0,00	535,26	87,26	19,48	64,00	0,00	0,00
82	1688,00	0,00	0,00	601,65	372,65	162,73	768,00	0,00	0,00	56,03	35,03	166,81
84	4128,00	0,00	0,00	1695,00	0,00	0,00	2300,00	0,00	0,00	164,45	27,45	20,04
85	2962,00	0,00	0,00	497,22	26,22	$5,\!57$	1175,00	0,00	0,00	139,69	49,69	55,21
86	1925,00	0,00	0,00	553,05	118,05	27,14	958,00	0,00	0,00	112,00	0,00	0,00
87	665,00	0,00	0,00	228,71	147,71	182,36	283,00	0,00	0,00	20,00	0,00	0,00
88	1253,00	0,00	0,00	845,00	0,00	0,00	804,95	27,95	3,60	34,65	6,65	23,75
90	4682,93	349,93	8,08	2165,00	0,00	0,00	2568,00	0,00	0,00	432,62	175,62	68,33
91	1259,00	0,00	0,00	470,80	174,80	59,05	538,00	0,00	0,00	33,56	12,56	59,81
92	1237,00	0,00	0,00	384,04	88,04	29,74	547,00	0,00	0,00	48,00	0,00	0,00
94	3487,00	0,00	0,00	1425,00	0,00	0,00	2108,00	0,00	0,00	312,00	0,00	0,00
95	962,00	0,00	0,00	363,47	1,47	0,41	599,00	0,00	0,00	63,00	0,00	0,00

D.2. Tabellen der Projektionen für die inputorientierten Modelle der 95 Raiffeisenbanken für das Jahr 2011

D.2.1. Tabellen der Projektionen für das inputorientierte CCR-Modell

Tabelle 6.10.: Projektionen der Inputs des input
orientierten CCR-Modells für das Jahr $2011\,$

DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	84,63%	980,36	-208,64	-17,55	479,85	-87,15	-15,37	81,67	-545,66	-86,98
4	69,33%	1017,76	-450,24	-30,67	531,76	-235,24	-30,67	171,08	-388,26	-69,41
5	91,03%	2737,27	-269,73	-8,97	1412,79	-139,21	-8,97	559,80	-163,86	-22,64
6 7	99,35% $89,91%$	1979,73 9053,94	-105,27 -1016,06	-5,05 -10,09	1013,37 4573,72	-6,63 -513,28	-0.65 -10.09	0,00 $1337,41$	0,00 $-261,26$	0,00 $-16,34$
8	87,54%	1082,87	-154,13	-10,09	625,04	-88,96	-10,09	210,68	-201,20	-10,34
9	77,34%	215,01	-62,99	-22,66	123,74	-36,26	-22,66	21,21	-36,79	-63,44
10	82,87%	2405,72	-497,28	-17,13	1221,50	-252,50	-17,13	123,75	-25,58	-17,13
12	88,43%	2223,13	-290,87	-11,57	1177,00	-154,00	-11,57	373,17	-48,83	-11,57
13	72,71%	1224,44	-459,56	-27,29	759,09	-284,91	-27,29	176,49	-167,18	-48,64
14	80,08%	442,84	-110,16	-19,92	222,62	-55,38	-19,92	83,84	-372,16	-81,61
15	89,10%	780,52	-95,48	-10,90	426,79	-52,21	-10,90	98,90	-12,10	-10,90
16 17	88,02% $78,19%$	1858,10 759,22	-252,90 -211,78	-11,98 -21,81	1050,08 407,37	-142,92 -113,63	-11,98 -21,81	172,73 $115,46$	-154,60 -32,21	-47,23 -21,81
18	97,50%	993,38	-86,62	-8,02	493,35	-113,65	-21,51	14,95	-0,38	-21,51
19	81,54%	4430,07	-1002,93	-18,46	2510,62	-568,38	-18,46	989,17	-1160,83	-53,99
20	75,05%	308,34	-119,66	-27,96	162,11	-53,89	-24,95	12,76	-4,24	-24,95
22	89,35%	1791,47	-213,53	-10,65	931,03	-110,97	-10,65	173,04	-20,63	-10,65
23	89,35%	430,67	-51,33	-10,65	251,07	-29,93	-10,65	49,12	-50,88	-50,88
24	64,87%	297,10	-160,90	-35,13	210,71	-179,29	-45,97	29,32	-60,68	-67,42
25	90,03%	3899,20	-431,80	-9,97	2045,48	-226,52	-9,97	352,62	-39,05	-9,97
27 28	91,70% $77,97%$	2397,04 539,55	-216,96 -152,45	-8,30 -22,03	1226,03 291,61	-110,97 -82,39	-8,30 -22,03	$31,18 \\ 58,22$	-2,82 -16,45	-8,30 -22,03
30	95,75%	4751,13	-132,43	-5,39	2259,70	-100,30	-4,25	695,15	-30,86	-4,25
31	90,52%	6031,35	-631,65	-9,48	3594,65	-758,35	-17,42	878,29	-2956,04	-77,09
34	83,32%	1772,22	-354,78	-16,68	888,24	-200,76	-18,43	0,00	0,00	0,00
35	90,20%	561,95	-61,05	-9,80	287,10	-60,90	-17,50	0,00	0,00	0,00
36	82,36%	784,89	-168,11	-17,64	392,03	-83,97	-17,64	86,75	-18,58	-17,64
37	97,81%	482,20	-10,80	-2,19	255,28	-5,72	-2,19	26,41	-0,59	-2,19
38	94,37%	2592,89	-175,11	-6,33	1250,40 260,64	-74,60	-5,63	262,45	-787,88	-75,01
39 40	77,34% $97,16%$	507,35 490,66	-148,65 -14,34	-22,66 -2,84	257,47	-76,36 -7,53	-22,66 -2,84	$29,70 \\ 7,45$	-60,97 -0,22	-67,24 -2,84
41	94,15%	507,47	-31,53	-5,85	279,63	-17,33	-5,85	28,87	-1,79	-5,85
42	85,23%	2081,32	-360,68	-14,77	1094,92	-222,08	-16,86	32,39	-5,61	-14,77
43	91,02%	3960,99	-498,01	-11,17	1957,84	-193,16	-8,98	466,33	-46,01	-8,98
44	88,50%	524,81	-68,20	-11,50	298,25	-38,76	-11,50	34,38	-98,29	-74,09
46	79,81%	826,83	-209,17	-20,19	481,25	-121,75	-20,19	125,30	-31,70	-20,19
47	72,63%	729,93	-275,07	-27,37	460,47	-173,53	-27,37	108,83	-148,17	-57,65
49	79,53%	2273,76	-585,24	-20,47	1273,28	-327,72	-20,47	359,20	-333,13	-48,12
50 51	99,22% $94,05%$	554,64 $5270,56$	-4,36 -333,44	-0,78 -5,95	274,84 2578,85	-2,16 -163,15	-0,78 -5,95	21,39 $1054,61$	-270,61 -66,72	-92,67 -5,95
52	81,82%	1514,49	-336,51	-18,18	993,52	-261,48	-20,83	98,73	-21,94	-18,18
54	86,96%	454,80	-68,20	-13,04	270,86	-49,14	-15,36	24,06	-3,61	-13,04
55	83,52%	428,46	-84,54	-16,48	220,49	-43,51	-16,48	7,80	-1,54	-16,48
56	85,42%	697,03	-118,97	-14,58	339,97	-58,03	-14,58	149,49	-25,52	-14,58
57	91,24%	841,94	-107,06	-11,28	419,70	-40,30	-8,76	48,66	-4,67	-8,76
60	75,80%	407,80	-130,20	-24,20	206,93	-66,07	-24,20	41,84	-128,16	-75,39
61 62	77,43% 91,86%	1279,14 $3514,56$	-372,86 -311,44	-22,57 -8,14	660,48 2052,15	-192,52 -181,85	-22,57 -8,14	145,31 $513,34$	-42,36 -384,33	-22,57 -42,81
63	85,79%	449,54	-74,46	-14,21	233,35	-38,65	-14,21	54,33	-9,00	-14,21
64	92,76%	6644,40	-518,60	-7,24	3574,97	-279,03	-7,24	1339,76	-104,57	-7,24
65	81,00%	2585,52	-606,48	-19,00	1506,60	-353,40	-19,00	510,57	-119,76	-19,00
66	79,87%	369,80	-93,20	-20,13	205,27	-51,73	-20,13	59,10	-14,90	-20,13
67	78,37%	337,77	-93,23	-21,63	190,91	-185,09	-49,23	11,76	-3,24	-21,63
69 70	91,55%	888,04	-81,97	-8,45	448,60	-41,41	-8,45	155,54	-158,79	-50,52
$\frac{70}{72}$	86,50% 88,08%	1792,28 458,02	-279,72 -61,98	-13,50 -11,92	1038,87 280,75	-162,14 $-113,25$	-13,50 -28,74	357,74 $61,84$	-81,93 -29,50	-18,63 -32,30
73	93,91%	458,02	-61,98 -31,18	-11,92 -6,09	312,49	-113,25 -343,51	-28,74 -52,36	55,49	-29,50 -292,51	-32,30 -84,06
74	82,20%	2927,17	-770,83	-20,84	1372,74	-297,26	-17,80	630,83	-566,17	-47,30
75	99,72%	2029,30	-5,70	-0,28	1097,92	-3,08	-0,28	147,59	-0,41	-0,28
76	87,20%	356,65	-52,35	-12,80	243,51	-69,49	-22,20	36,97	-117,03	-75,99
77	91,94%	9639,91	-845,09	-8,06	4692,62	-411,38	-8,06	1234,09	-1959,58	-61,36
79	82,73%	662,67	-138,33	-17,27	369,80	-77,20	-17,27	133,20	-27,80	-17,27
80	79,07%	2340,47	-619,53	-20,93	1477,82	-391,18	-20,93	307,40	-177,93	-36,66
81 82	88,07% $97,84%$	935,30 1230,97	-126,70 -211,03	-11,93 -14,63	454,44 612,48	-61,56 -13,52	-11,93 -2,16	96,00 0,00	-13,00 0,00	-11,93 0,00
82 83	97,84% 87,59%	514,15	-211,03 -72,85	-14,63	288,88	-13,52 $-51,12$	-2,16 -15,04	24,23	-3,43	-12,41
84	82,24%	3250,95	-702,05	-12,41	1637,40	-353,60	-17,76	553,59	-1316,41	-70,40
85	91,08%	1905,39	-186,61	-8,92	1000,06	-97,94	-8,92	523,33	-222,67	-29,85
86	92,47%	1409,24	-114,76	-7,53	798,02	-64,98	-7,53	139,53	-140,80	-50,23
87	82,63%	432,98	-91,02	-17,37	237,15	-49,85	-17,37	22,86	-4,81	-17,37
88	78,62%	1195,81	-325,19	-21,38	592,01	-160,99	-21,38	149,38	-40,62	-21,38
89	74,47%	7868,50	-2697,50 702,47	-25,53	4614,16	-1581,84	-25,53	1455,35	-1435,99 76 21	-49,67
90 91	84,20% $83,80%$	3743,53 856,41	-702,47 -175,59	-15,80 -17,01	2051,11 405,59	-384,89 -78,41	-15,80 -16,20	406,69 $134,77$	-76,31 -146,57	-15,80 -52,10
91	00,0070	000,41	-110,08	-17,01	400,09	-10,41	-10,20	104,11	-140,07	-02,10

DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
92	82,24%	891,48	-192,52	-17,76	433,40	-93,60	-17,76	111,26	-161,08	-59,15
93	88,35%	2219,35	-292,65	-11,65	1298,90	-380,10	-22,64	148,72	-19,61	-11,65
95	79,71%	836,96	-213,05	-20,29	442,39	-112,61	-20,29	93,79	-23,87	-20,29

Tabelle 6.11.: Projektionen der Outputs des input
orientierten CCR-Modells für das Jahr $2011\,$

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2	1397,00	0,00	0,00	640,48	171,48	36,56	669,00	0,00	0,00	32,00	0,00	0,00
4 5	1326,00 3472,00	$0,00 \\ 0,00$	0,00 0,00	771,00 1530,09	0,00 $153,09$	$0,00 \\ 11,12$	739,00 1823,00	0,00 0,00	0,00 0,00	38,00 359,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
6	2665,00	0,00	0,00	782,68	236,68	43,35	1296,00	0,00	0,00	103,00	0,00	0,00
7	12144,00	0,00	0,00	4771,65	1634,65	52,11	6310,00	0,00	0,00	511,00	0,00	0,00
8	1705,00	0,00	0,00	682,00	0,00	0,00	750,00	0,00	0,00	104,00	0,00	0,00
9	361,00	0,00	0,00	129,91	44,91	52,84	158,00	0,00	0,00	9,00	0,00	0,00
10 12	3152,00	0,00	0,00	1302,36	$308,36 \\ 0,00$	31,02	1674,00	0,00	0,00 0,00	116,00	0,00	$0,00 \\ 0,00$
13	2914,00 1885,00	0,00 0,00	0,00 0,00	1338,00 842,00	0,00	$0,00 \\ 0,00$	1609,00 974,00	0,00 0,00	0,00	123,00 48,00	$0,00 \\ 0,00$	0,00
14	717,00	0,00	0,00	216,66	87,66	67,95	290,00	0,00	0,00	33,00	0,00	0,00
15	890,00	0,00	0,00	347,78	6,78	1,99	595,00	0,00	0,00	42,17	3,17	8,13
16	2918,00	0,00	0,00	1054,33	247,33	30,65	1369,00	0,00	0,00	79,00	0,00	0,00
17	928,49	3,49	0,38	559,00	0,00	0,00	554,00	0,00	0,00	46,00	0,00	0,00
18 19	1520,17 7681,00	303,17 0,00	24,91 0,00	604,00 2391,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	677,53	50,53	8,06 $11,27$	23,71	0,71 $114,01$	$3,09 \\ 50,67$
20	522,00	0,00	0,00	149,81	20,81	16,13	3118,86 204,18	315,86 18,18	9,77	339,01 13,89	1,89	15,75
22	2664,00	0,00	0,00	919,25	18,25	2,03	1244,00	0,00	0,00	98,00	0,00	0,00
23	642,00	0,00	0,00	237,00	0,00	0,00	328,00	0,00	0,00	20,00	0,00	0,00
24	516,55	22,55	4,56	212,00	0,00	0,00	250,00	0,00	0,00	19,00	0,00	0,00
25	5497,00	0,00	0,00	1924,36	187,36	10,79	2613,00	0,00	0,00	422,00	0,00	0,00
27 28	2896,25 853,00	$98,25 \\ 0,00$	3,51 $0,00$	1112,00 295,53	$0,00 \\ 38,53$	$0,00 \\ 14,99$	1621,00 381,00	0,00 0,00	0,00 0,00	165,00 28,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
30	6096,00	0,00	0,00	2944,91	1949,91	195,97	3170,00	0,00	0,00	265,00	0,00	0,00
31	8480,00	0,00	0,00	4716,00	0,00	0,00	4702,47	420,47	9,82	275,00	0,00	0,00
34	2662,00	0,00	0,00	949,91	415,91	77,89	1193,00	0,00	0,00	54,00	0,00	0,00
35	855,59	136,59	19,00	267,00	0,00	0,00	370,00	0,00	0,00	26,00	0,00	0,00
36 37	987,00	0,00	0,00	522,05	170,05	48,31	556,00	0,00	0,00	28,00	0,00	0,00
38	726,15 4162,00	164,15 0,00	29,21 0,00	302,00 1369,58	0,00 $50,58$	$0,00 \\ 3,83$	331,50 1676,00	$34,50 \\ 0,00$	0,00	33,00 135,50	$0,00 \\ 16,50$	$0,00 \\ 13,87$
39	816,00	0,00	0,00	290,61	56,61	24,19	347,00	0,00	0,00	19,00	0,00	0,00
40	576,00	0,00	0,00	220,91	48,91	28,44	346,00	0,00	0,00	15,00	0,00	0,00
41	784,04	122,04	18,44	314,00	0,00	0,00	352,63	82,63	30,60	42,00	0,00	0,00
42	3003,73	579,73	23,92	1145,00	0,00	0,00	1433,00	0,00	0,00	120,00	0,00	0,00
43 44	5717,00 810,00	0,00 0,00	0,00 0,00	1962,80 360,22	7,80 $104,22$	0,40 $40,71$	2472,00 394,00	0,00 0,00	0,00 0,00	484,00 12,87	$0,00 \\ 0,87$	$0,00 \\ 7,25$
46	1296,00	0,00	0,00	440,43	82,43	23,03	585,00	0,00	0,00	95,00	0,00	0,00
47	1272,00	0,00	0,00	362,78	46,78	14,80	500,00	0,00	0,00	120,00	0,00	0,00
49	2818,00	0,00	0,00	944,00	0,00	0,00	1625,00	0,00	0,00	295,00	0,00	0,00
50	816,00	0,00	0,00	354,77	153,77	76,50	381,00	0,00	0,00	13,79	0,79	6,08
51	7011,00	0,00	0,00	2203,87	375,87	20,56	3328,00	0,00	0,00	676,00	0,00	0,00
52 54	2414,79 757,00	339,79 0,00	16,38 0,00	966,40 206,61	285,40 $13,61$	$41,91 \\ 7,05$	1211,00 309,00	0,00 0,00	0,00 0,00	91,00 49,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
55	682,00	0,00	0,00	244,72	96,72	65,35	290,00	0,00	0,00	19,00	0,00	0,00
56	1176,00	0,00	0,00	314,14	1,14	0,36	433,00	0,00	0,00	60,04	26,04	76,59
57	1364,00	0,00	0,00	448,00	0,00	0,00	555,22	21,22	3,97	35,85	6,85	23,62
60	610,00	0,00	0,00	206,43	9,43	4,79	279,00	0,00	0,00	21,00	0,00	0,00
61 62	2164,00 4604,35	$0,00 \\ 323,35$	$0,00 \\ 7,55$	616,00 2045,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	835,17 2551,00	$28,17 \\ 0,00$	$3,49 \\ 0,00$	77,83 454,00	16,83 0,00	$27,59 \\ 0,00$
63	571,00	0,00	0,00	217,00	0,00	0,00	321,00	0,00	0,00	27,00	0,00	0,00
64	9254,00	0,00	0,00	2823,51	479,51	20,46	4600,00	0,00	0,00	727,00	0,00	0,00
65	4123,00	0,00	0,00	1486,00	0,00	0,00	1703,00	0,00	0,00	410,00	0,00	0,00
66	530,00	0,00	0,00	174,27	59,27	51,54	259,00	0,00	0,00	41,00	0,00	0,00
67 69	571,00 1474,00	0,00 0,00	0,00 0,00	128,00 455,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	221,31 581,38	6,31 $20,38$	2,93 3,63	25,76 62,07	17,76 $50,07$	$222,00 \\ 417,25$
70	3268,00	0,00	0,00	785,89	133,89	20,54	1213,00	0,00	0,00	158,00	0,00	0,00
72	854,00	0,00	0,00	163,15	6,15	3,92	295,00	0,00	0,00	65,00	0,00	0,00
73	916,00	0,00	0,00	219,00	0,00	0,00	352,45	2,45	0,70	31,04	8,04	34,96
74	4327,00	0,00	0,00	1673,30	540,30	47,69	1869,00	0,00	0,00	208,00	0,00	0,00
75 76	2486,67	350,67	$16,42 \\ 0,00$	902,02 202,53	165,02 $27,53$	22,39	1345,00 283,00	0,00	0,00 0,00	309,00 16,98	0,00	0,00
76 77	665,00 15635,00	$0,00 \\ 0,00$	0,00	5007,29	27,53 $2304,29$	15,73 $85,25$	6226,00	$0,00 \\ 0,00$	0,00	569,18	0,98 $178,18$	6,13 $45,57$
79	1017,00	0,00	0,00	321,43	36,43	12,78	476,00	0,00	0,00	50,00	0,00	0,00
80	3477,00	0,00	0,00	1363,00	0,00	0,00	1792,00	0,00	0,00	258,00	0,00	0,00
81	1453,00	0,00	0,00	528,00	0,00	0,00	612,18	142,18	30,25	46,00	0,00	0,00
82	1882,00	0,00	0,00	705,58	481,58	214,99	836,00	0,00	0,00	29,18	2,18	8,07
83 84	818,84 3533,84	237,84 148,84	40,94 4,40	305,00 2012,11	0,00 $558,11$	$0,00 \\ 38,38$	355,07 $2344,00$	3,07 $0,00$	0,87 0,00	50,00 172,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
85	3317,00	0,00	0,00	878,00	433,00	97,30	1235,00	0,00	0,00	185,86	98,86	113,63
86	2358,00	0,00	0,00	841,43	362,43	75,66	1023,00	0,00	0,00	60,48	29,48	95,10
87	750,00	0,00	0,00	182,99	111,99	157,73	284,00	0,00	0,00	26,53	0,53	2,04
88	1514,90	68,90	4,76	878,00	0,00	0,00	826,53	35,53	4,49	63,00	0,00	0,00
89 90	12092,00 4790,00	$0,00 \\ 0,00$	0,00 0,00	4004,00 2192,00	0,00 0,00	$0,00 \\ 0,00$	5697,00 2631,00	0,00 0,00	0,00 0,00	828,00 392,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
90 91	1392,00	0,00	0,00	424,08	139,08	48,80	538,00	0,00	0,00	58,55	40,55	225,28
92	1370,00	0,00	0,00	469,19	200,19	74,42	585,00	0,00	0,00	50,00	0,00	0,00
93	3369,00	0,00	0,00	1053,23	276,23	35,55	1444,00	0,00	0,00	387,00	0,00	0,00
95	1093,00	0,00	0,00	378,04	58,04	18,14	601,00	0,00	0,00	54,00	0,00	0,00

D.2.2. Tabellen der Projektionen für das inputorientierte BCC-Modell

Tabelle 6.12.: Projektionen der Inputs des input
orientierten BCC-Modells für das Jahr $2011\,$

DMU	$ heta_B^*$	$\widehat{I1}$	Diff	in $\%$	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	84,64%	987,18	-201,82	-16,97	479,91	-87,09	-15,36	106,66	-520,67	-83,00
4	69,40%	1018,79	-449,21	-30,60	532,30	-234,70	-30,60	159,02	-400,32	-71,57
5 8	91,51% 89,04%	2751,71 1101,42	-255,29 -135,58	-8,49 -10,96	1420,24 635,75	-131,76 -78,25	-8,49 -10,96	524,52 $214,29$	-199,15 -26,38	-27,52 -10,96
10	87,48%	2539,54	-363,46	-10,96	1269,90	-78,23	-10,96	130,64	-20,38 -18,70	-10,90
12	90,99%	2287,49	-226,51	-9,01	1209,90	-129,59	-9,74	383,98	-38,02	-9,01
13	80,13%	1349,39	-334,61	-19,87	771,07	-272,93	-26,14	275,38	-68,29	-19,87
14	90,04%	487,80	-65,20	-11,79	250,31	-27,69	-9,96	163,35	-292,65	-64,18
15	92,73%	812,31	-63,69	-7,27	444,18	-34,82	-7,27	102,93	-8,07	-7,27
16	92,16%	1945,50	-165,50	-7,84	1099,47	-93,53	-7,84	280,13	-47,20	-14,42
17	81,38%	790,20	-180,80	-18,62	423,99	-97,01	-18,62	120,17	-27,50	-18,62
19	93,29%	5068,45	-364,55	-6,71	2661,15	-417,85	-13,57	1714,35	-435,66	-20,26
22	94,03%	1885,30	-119,70	-5,97	979,79	-62,21	-5,97	182,10	-11,56	-5,97
23	95,66%	461,08	-20,92	-4,34	268,80	-12,20	-4,34	95,66	-4,34	-4,34
24	79,14%	362,46	-95,54	-20,86	239,39	-150,61	-38,62	51,97	-38,03	-42,26
28	80,68%	558,31	-133,69	-19,32	301,74	-72,26	-19,32	60,24	-14,43	-19,32
34	97,89%	2082,12	-44,88	-2,11	1018,69	-70,31	-6,46	0,00	0,00	0,00
35	98,38%	612,91	-10,09	-1,62	317,27	-30,73	-8,83	0,00	0,00	0,00
36 38	84,46% $98,98%$	804,90 2739,77	-148,10 -28,23	-15,54 -1,02	402,03 1311,49	-73,97 -13,51	-15,54 -1,02	88,96 873,32	-16,37 $-177,01$	-15,54 -16,85
39	81,80%	536,61	-28,23	-18,20	275,67	-13,31	-18,20	48,71	-41,96	-16,85
41	96,71%	521,27	-119,39	-3,29	286,73	-10,27	-3,46	29,66	-41,90	-3,29
42	96,49%	2356,29	-85,71	-3,51	1081,87	-235,13	-17,85	36,67	-1,33	-3,51
44	89,44%	530,38	-62,62	-10,56	301,41	-35,59	-10,56	118,66	-14,01	-10,56
46	79,89%	827,66	-208,34	-20,11	481,74	-121,26	-20,11	125,43	-31,57	-20,11
47	73,29%	736,56	-268,44	-26,71	464,66	-169,34	-26,71	112,45	-144,55	-56,25
49	79,63%	2276,62	-582,38	-20,37	1274,88	-326,12	-20,37	385,75	-306,59	-44,28
52	91,71%	1697,55	-153,45	-8,29	898,21	-356,79	-28,43	110,66	-10,00	-8,29
54	94,86%	496,12	-26,88	-5,14	296,58	-23,42	-7,32	26,24	-1,42	-5,14
55	99,96%	512,79	-0,21	-0,04	263,89	-0,11	-0,04	9,33	0,00	-0,04
56	91,00%	742,56	-73,44	-9,00	362,18	-35,82	-9,00	159,25	-15,75	-9,00
57	91,94%	853,58	-95,42	-10,05	422,92	-37,08	-8,06	49,03	-4,30	-8,06
60	86,14%	444,51	-93,49	-17,38	235,16	-37,84	-13,86	98,53	-71,47	-42,04
61 63	80,90% $96,39%$	1336,47 497,32	-315,53 -26,68	-19,10 -5,09	690,08 262,18	-162,92 -9,82	-19,10 -3,61	151,82 61,05	-35,84 -2,29	-19,10 -3,61
65	89,70%	2863,22	-328,78	-10,30	1542,27	-9,62 -317,73	-17,08	565,41	-2,29 -64,92	-10,30
66	91,52%	423,74	-326,76	-8,48	235,21	-21,79	-8,48	67,72	-6,28	-8,48
69	91,67%	889,20	-80,80	-8,33	449,18	-40,82	-8,33	157,38	-156,95	-49,93
70	89,59%	1856,30	-215,70	-10,41	1075,98	-125,02	-10,41	290,62	-149,05	-33,90
72	95,53%	496,76	-23,24	-4,47	301,75	-92,25	-23,41	87,18	-4,15	-4,55
73	97,43%	498,84	-13,16	-2,57	345,11	-310,89	-47,39	51,70	-296,30	-85,14
74	84,19%	3060,60	-637,40	-17,24	1405,97	-264,03	-15,81	748,20	-448,80	-37,49
76	94,58%	386,83	-22,17	-5,42	268,76	-44,24	-14,14	44,90	-109,10	-70,84
79	83,79%	671,16	-129,84	-16,21	374,54	-72,46	-16,21	134,90	-26,10	-16,21
80	89,88%	2660,45	-299,55	-10,12	1429,52	-439,48	-23,51	436,22	-49,12	-10,12
81	88,82%	943,27	-118,73	-11,18	458,31	-57,69	-11,18	96,81	-12,19	-11,18
83	94,12%	552,48	-34,52	-5,88	311,27	-28,73	-8,45	26,04	-1,63	-5,88
84	83,42%	3297,59	-655,41	-16,58	1660,89	-330,11	-16,58	393,57	-1476,43	-78,95
85 ee	93,32%	1952,25	-139,75	-6,68	1024,65	-73,35	-6,68	452,38	-293,62	-39,36
86 87	96,51%	1470,81	-53,19	-3,49	832,88	-30,12	-3,49	259,22	-21,11	-7,53 5.29
87 88	94,62% $78,71%$	495,81 1197,18	-28,19 -323,82	-5,38 -21,29	271,56 591,67	-15,44 -161,33	-5,38 -21,43	26,18 $149,55$	-1,49 -40,45	-5,38 -21,29
91	85,96%	873,64	-323,82	-21,29	416,05	-101,33	-21,43 -14,04	241,83	-40,45	-21,29
92	82,42%	893,43	-190,57	-17,58	434,35	-92,65	-17,58	223,69	-48,65	-14,04
93	97,88%	2458,75	-53,25	-2,12	1279,83	-399,17	-23,77	164,76	-3,57	-2,12
95	81,43%	855,02	-194,99	-18,57	451,94	-103,06	-18,57	95,82	-21,85	-18,57

Tabelle 6.13.: Projektionen der Outputs des input
orientierten BCC-Modells für das Jahr $2011\,$

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2	1397,00	0,00	0,00	642,84	173,84	37,07	669,00	0,00	0,00	37,69	5,69	17,78
4	1326,00	0,00	0,00	771,00	0,00	0,00	739,00	0,00	0,00	38,00	0,00	0,00
5	3472,00	0,00	0,00	1377,00	0,00	0,00	1823,00	0,00	0,00	359,00	0,00	0,00
8	1705,00	0,00	0,00	682,00	0,00	0,00	750,00	0,00	0,00	104,00	0,00	0,00
10	3152,00	0,00	0,00	994,00	0,00	0,00	1674,00	0,00	0,00	122,94	6,94	5,98
12	2914,00	0,00	0,00	1338,00	0,00	0,00	1609,00	0,00	0,00	123,00	0,00	0,00
13	1885,00	0,00	0,00	842,00	0,00	0,00	974,00	0,00	0,00	70,52	22,52	46,92
14	717,00	0,00	0,00	168,46	39,46	30,59	290,00	0,00	0,00	33,00	0,00	0,00
15	1009,07	119,07	13,38	544,91	203,91	59,80	595,00	0,00	0,00	39,00	0,00	0,00
16	2918,00	0,00	0,00	807,00	0,00	0,00	1369,00	0,00	0,00	135,20	56,20	71,14
17	1015,20	90,20	9,75	559,00	0,00	0,00	554,00	0,00	0,00	46,00	0,00	0,00
19	7681,00	0,00	0,00	2391,00	0,00	0,00	3037,57	234,57	8,37	291,88	66,88	29,72
22	2664,00	0,00	0,00	901,00	0,00	0,00	1244,00	0,00	0,00	101,05	3,05	3,11
23	715,67	73,67	11,48	237,00	0,00	0,00	328,00	0,00	0,00	20,00	0,00	0,00
24	589,93	95,93	19,42	212,00	0,00	0,00	264,33	14,33	5,73	19,00	0,00	0,00

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
28	853,00	0,00	0,00	295,00	38,00	14,79	381,00	0,00	0,00	28,00	0,00	0,00
34	2662,00	0,00	0,00	545,48	11,48	2,15	1294,17	101,17	8,48	102,93	48,93	90,61
35	908,54	189,54	26,36	282,36	15,36	5,75	370,00	0,00	0,00	37,90	11,90	45,77
36	987,00	0,00	0,00	472,15	120,15	34,13	556,00	0,00	0,00	28,00	0,00	0,00
38	4162,00	0,00	0,00	1319,00	0,00	0,00	1676,00	0,00	0,00	269,47	150,47	126,45
39	816,00	0,00	0,00	273,06	39,06	16,69	347,00	0,00	0,00	19,00	0,00	0,00
41	662,00	0,00	0,00	314,00	0,00	0,00	327,79	57,79	21,40	42,00	0,00	0,00
42	2721,31	297,31	12,27	1145,00	0,00	0,00	1433,00	0,00	0,00	120,00	0,00	0,00
44	810,00	0,00	0,00	283,21	27,21	10,63	394,00	0,00	0,00	12,74	0,74	6,17
46	1296,00	0,00	0,00	471,20	113,20	31,62	585,00	0,00	0,00	95,00	0,00	0,00
47	1272,00	0,00	0,00	380,56	64,56	20,43	500,00	0,00	0,00	120,00	0,00	0,00
49	2818,00	0,00	0,00	944,00	0,00	0,00	1625,00	0,00	0,00	295,00	0,00	0,00
52	2075,00	0,00	0,00	681,00	0,00	0,00	1211,00	0,00	0,00	91,00	0,00	0,00
54	757,00	0,00	0,00	231,51	38,51	19,95	309,00	0,00	0,00	49,00	0,00	0,00
55	682,00	0,00	0,00	200,66	52,66	35,58	290,00	0,00	0,00	20,54	1,54	8,11
56	1176,00	0,00	0,00	323,28	10,28	3,28	446,52	13,52	3,12	57,15	23,15	68,09
57	1364,00	0,00	0,00	448,00	0,00	0,00	558,18	24,18	4,53	36,80	7,80	26,90
60	610,00	0,00	0,00	197,00	0,00	0,00	279,00	0,00	0,00	21,00	0,00	0,00
61	2164,00	0,00	0,00	616,00	0,00	0,00	853,55	46,55	5,77	84,07	23,07	37,82
63	694,19	123,19	21,57	217,00	0,00	0,00	321,00	0,00	0,00	27,00	0,00	0,00
65	4123,00	0,00	0,00	1486,00	0,00	0,00	1703,00	0,00	0,00	410,00	0,00	0,00
66	542,22	12,22	2,31	146,94	31,94	27,77	259,00	0,00	0,00	41,00	0,00	0,00
69	1474,00	0,00	0,00	455,00	0,00	0,00	577,60	16,60	2,96	64,71	52,71	439,25
70	3268,00	0,00	0,00	652,00	0,00	0,00	1213,00	0,00	0,00	158,00	0,00	0,00
72	854,00	0,00	0,00	262,65	105,65	67,29	298,93	3,93	1,33	65,00	0,00	0,00
73	916,00	0,00	0,00	306,61	87,61	40,00	402,28	52,28	14,94	23,00	0,00	0,00
74	4327,00	0,00	0,00	1133,00	0,00	0,00	1869,00	0,00	0,00	263,69	55,69	26,77
76	665,00	0,00	0,00	256,76	81,76	46,72	310,28	27,28	9,64	16,00	0,00	0,00
79	1017,00	0,00	0,00	389,73	104,73	36,75	476,00	0,00	0,00	50,00	0,00	0,00
80	3477,00	0,00	0,00	1363,00	0,00	0,00	1792,00	0,00	0,00	258,00	0,00	0,00
81	1453,00	0,00	0,00	528,00	0,00	0,00	617,26	147,26	31,33	46,00	0,00	0,00
83	776,15	195,15	33,59	305,00	0,00	0,00	352,00	0,00	0,00	50,00	0,00	0,00
84	3469,89	84,89	2,51	1690,04	236,04	16,23	2344,00	0,00	0,00	172,00	0,00	0,00
85	3317,00	0,00	0,00	684,71	239,71	$53,\!87$	1235,00	0,00	0,00	194,70	107,70	123,79
86	2358,00	0,00	0,00	573,80	94,80	19,79	1023,00	0,00	0,00	117,85	86,85	280,16
87	750,00	0,00	0,00	246,54	175,54	247,24	315,67	31,67	11,15	26,00	0,00	0,00
88	1512,01	66,01	4,57	878,00	0,00	0,00	826,32	35,32	4,47	63,00	0,00	0,00
91	1392,00	0,00	0,00	373,33	88,33	30,99	538,00	0,00	0,00	64,18	46,18	256,56
92	1370,00	0,00	0,00	454,41	185,41	68,93	585,00	0,00	0,00	50,00	0,00	0,00
93	3369,00	0,00	0,00	898,66	121,66	15,66	1444,00	0,00	0,00	387,00	0,00	0,00
95	1093,00	0,00	0,00	560,05	240,05	75,02	601,00	0,00	0,00	54,00	0,00	0,00

D.3. Tabellen der Projektionen für die Inputorientierten Modelle der 95 Raiffeisenbanken für das Jahr 2012

D.3.1. Tabellen der Projektionen für das inputorientierte CCR-Modell

Tabelle 6.14.: Projektionen der Inputs des input
orientierten CCR-Modells für das Jahr $2012\,$

2 85,28% 1044,09 2-211,91 -16,87 515,09 -88,91 -14,72 209,90 417,43 -66,62	DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
5 94,72% 2859,60 - 159,40 - 2,628 1441,64 - 80,36 - 5,28											
6 99,34% 2112,96 -14,04 -9,17 479,51 -174,69 -13,98							-183,47				
8 88,23% 1179,64 157,36 -11,77 62,211 -215,89 24,59 176,48 149 .26,67 9 22,82% 255,26 119,75 -17,18 1141,49 -33,52 -19,15 50,004 -5,00 -5,00 13,80 13,81 93,81 94,82 148,81 9 .56,60 -5,00 -18,80 148,81 9 .56,60 148,81 9 .56,60 148,81 9 .56,60 148,81 9 .56,60 148,81 9 .56,60 148,81 9 .56,60 148,81 9 .56,60 144,91 147,75,1% 482,11 139,89 -22,49 192,40 190,01 199,17 -144,49 -42,04 14 77,51% 482,11 139,89 -22,49 124,00 -65,00 22,49 100,01 29,77 -8,03 -7,23 16 92,25% 189,43 159,57 -7,75 10 143,18 -137,82 -11,67 301,97 -8,03 -7,23 18 21,57 4,57 19											
8 88,23% 1179,64 -157,36 -11,77 662,11 -215,89 -24,59 176,48 -64,19 -26,67 99,28% 252,526 -19,75 -7,18 -141,49 -33,52 -19,15 50,00 -13,20 10 81,79% 2398,08 -533,92 -18,21 1252,19 -499,81 -28,53 -22,14 -27,19 -18,21 121,19 -499,81 -28,53 -22,14 -27,19 -18,21 121,19 -499,81 -28,53 -22,14 -27,19 -18,21 -27,18 -18,29 -28,14 -27,19 -28,1					-0,66						
9 92,82% 255,26 -19,75 -7,18											
10											
13 18,171%											
13											
14 77,51% 482,11 -139,89 -22,49 224,00 -65,00 -22,49 100,01 355,99 -78,07 15 92,77% 838,64 -65,36 -7,23 424,40 -66,60 -13,92 102,001 355,99 -78,07 16 92,25% 1899,43 -159,57 -7,75 1043,18 -137,82 -11,67 301,97 -25,37 -7,75 17 79,97% 800,50 -20,05 -20,03 419,84 -105,16 -20,03 118,90 -22,58 20,03 19 84,15% 4662,83 -1013,17 -17,85 2491,61 -541,39 -17,85 1405,11 -744,90 -34,65 20 83,86% 336,28 -64,72 -16,14 190,36 -36,64 -16,14 14,66 -8,39 49,03% 865,54 -8,46 -0.97 486,82 -150,18 -22,58 162,14 -14,86 -8,39 80,81% 449,17 -14,95 -14,95 -14,95 -14,96											
16 92,75% 838,64 -65,36 -7,23 424,40 -68,60 -13,92 102,97 -8,03 -7,23 16 92,25% 1899,43 -159,57 -7,75 1043,18 -137,82 -11,67 301,97 -25,37 -7,25 1043,18 -137,82 -11,67 301,97 -25,37 -7,25 1043,18 -137,82 -11,67 301,97 -25,37 -7,25 1043,18 -17,85 140,11 -744,90 -34,65 20 83,86% 336,28 -64,72 -16,14 19,84 -105,16 -20,03 118,09 -25,88 -20,03 19 82,15% 4662,83 -1013,17 -17,85 2491,61 -541,39 -17,85 140,11 -744,90 -34,65 20 83,86% 336,28 -64,72 -16,14 19,936 -36,64 -16,14 14,26 -2,74 -16,14 12,29 14,14 -14,86 -3,83 22 94,34% 1917,93 -115,07 -5,66 963,21 -57,79 -5,66 182,71 -10,96 -5,66 193,21 -74,49 -15,62 195,09 -20,10 -12,12 14,14 -14,86 -8,39 14,14 -14,86 -8,39 14,14 -14,86 -15,14 -14,14 -14,14,14 -14,											
16 92,25% 1899,43 -159,57 -7,75 1043,18 -137,82 -11,67 301,97 -25,37 -7,75 179,97% 300,50 -20,050 -20,03 419,84 -105,16 -20,03 118,09 -29,58 -20,03 118,09 -29,58 -20,03 118,09 -29,58 -20,03 118,09 -29,58 -20,03 118,09 -29,58 -20,03 118,09 -29,58 -20,03 -20,98 -20,03 -20,98 -20,03 -20,98 -20,03 -20,98 -20,03 -20,98 -20,03 -20,98 -20,03 -20,99 -20,58 -20,03 -20,99 -20,58 -20,03 -20,99 -20,58 -20,03 -20,99 -20,58 -20,03 -20,99											
19 82,15% 4662,83 -1013,17 -17,85 2491,61 -541,39 -17,85 1405,11 -14,26 -2,74 -16,14 19,36 -36,64 -16,14 14,26 -2,74 -16,14 19,36 -36,64 -16,14 14,26 -2,74 -16,14 19,36 -36,64 -16,14 14,26 -2,74 -16,14 19,36 -36,64 -16,14 14,26 -2,74 -16,14 19,36 -36,64 -16,14 14,26 -2,74 -16,14 19,36 -36,64 -16,14 14,26 -2,74 -16,14 14,26 -2,26 -2,26			1899.43								
19 82,15% 4662,83 -1013,17 -17,85 2491,61 -541,39 -17,85 1405,11 -744,90 -34,65 21 99,03% 863,54 -8,46 -0,97 486,82 -15,01,8 -23,58 162,14 -14,86 -8,39 -8,46 -8,49 -8,48 -15,10,18 -23,58 162,14 -14,86 -8,39 -8,48 -15,10,18 -23,58 162,14 -14,86 -8,39 -8,48 -15,29 -10,91 -10,19 -10,											
20 83,86% 336,28 -64,72 -16,14 190,36 -36,64 -16,14 14,26 -2,74 -16,14 21 99,03% 863,54 -8,66 -0,97 486,52 -150,18 -23,55 162,14 -14,86 -8,39 22 94,34% 1917,93 -115,07 -5,66 963,21 -57,79 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,66 182,71 -10,96 -5,68 182,71 -10,96 182,71 -10,96 -5,68 182,71 -10,96 182,	19			-1013,17	-17,85						-34,65
22 94,34% 1917,93 -115,07 -5,66 93.21 -57,79 -5,66 182,71 -10,96 -5,66 23 89,81% 439,17 -10,91 942,81 -60,19 -19,86 89,81 -10,19 -10,19 242,81 -60,19 -19,86 89,81 -10,19 -10,19 242,81 -60,19 -112,12 79,09 -10,91 -12,12 25 93,62% 4247,54 -289,46 -6,38 205,964 -140,36 -6,38 366,68 -24,99 -6,38 27 87,79% 2362,43 -328,57 -12,21 1203,47 -79,05 -39,46 29,85 -4,15 -12,21 28 84,24% 617,48 -115,52 -15,76 303,26 -56,74 -15,76 29,85 -4,15 -12,21 33 91,63% 553,23 -57,77 -9,46 280,39 -25,61 -8,37 0,00 0,00 0,00 0,00 34 92,67% 2039,32 -163,68 -7,43 986,80 -79,20 -7,43 0,00 0,00 0,00 0,00 35 97,31% 636,41 -17,59 -2,99 327,40 -14,60 -4,27 0,00 0,00 0,00 0,00 36 81,71% 791,42 -177,58 -18,33 394,66 -88,34 -18,29 86,07 -19,27 -18,29 38 91,19% 2543,29 -245,11 -14,60 -88,34 -18,29 86,07 -19,27 -18,29 41,19 -10,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19	20	83,86%	336,28	-64,72	-16,14	190,36	-36,64	-16,14	14,26	-2,74	-16,14
23 89.81% 439.17 -49.83 -10.19 242.81 -60.19 -19.86 89.81 -10.19 -10.19 24 87.88% 402.51 -74.49 -15.62 195.09 -26.91 -12.12 12.25 93.62% 4247.54 -289.46 -6.38 2059.64 -140.36 -6.38 366.68 -24.99 -6.38 87.79% 2362.43 -328.57 -12.21 120.347 -790.53 -39.65 29.85 -4.15 -12.21 120.347 -790.53 -39.65 29.85 -4.15 -12.21 120.347 -790.53 -39.65 29.85 -4.15 -12.21 120.347 -790.53 -39.65 29.85 -4.15 -12.21 120.347 -790.53 -39.65 29.85 -4.15 -12.22 120.347 -790.53 -39.65 29.85 -4.15 -12.22 120.347 -790.53 -39.65 29.85 -4.15 -12.22 120.347 -790.53 -39.65 29.85 -4.15 -12.22 120.34 29.25 -12.35 29.25 -12.35 29.			863,54							-14,86	
24 87.88% 402.51 -74.49 -15.62 195.09 -26.91 -12.12 79.09 -10.91 -12.12 25 93.62% 4247.54 -289.46 -3.88 2059.64 -140.36 -6.38 266.88 -24.99 -6.38 267 87.79% 2362.43 -328.57 -12.21 1203.47 -790.53 -39.65 29.55 -4.15 -12.21 28.42.4% 617.48 -115.52 -15.76 30.36 -6.74 -15.76 62.90 -11.77 -15.76 30.86.57% 4615.91 -716.09 -13.43 2276.79 -353.21 -13.43 628.50 -97.50 -13.43 33 91.63% 553.23 -57.77 -9.66 28.09 -25.77 -7.43 0.00 0.00 0.00 0.00 34 92.57% 2039.32 -163.68 -7.43 986.80 -79.20 -7.43 0.00 0.00 0.00 0.00 35 97.31% 636.41 -17.59 -2.99 327.40 -14.60 -4.27 0.00 0.00 0.00 0.00 36 81.71% 791.42 -177.58 -18.83 394.66 -88.34 -18.29 86.07 -19.27 -18.29 81.99% 2543.29 -245.71 -8.81 1377.88 -133.12 -8.81 39.89 81.99% 2543.29 -245.71 -16.68 288.29 -57.71 -16.68 75.54 -15.12 -16.68 19.55% 466.95 57.87 -17.14 -2.98 261.50 -22.50 -7.92 29.75 -0.91 -2.98 42 91.08% 2597.95 -225.05 -8.92 1141.62 -162.38 -12.45 34.61 -3.39 -8.92 44 96.38% 582.14 -21.86 -3.62 319.98 -12.02 -3.62 91.17 -41.49 -31.28 46 87.22% 970.76 -44.52 90.00 -3.97.37 -4.45 489.53 -22.80 -4.45 46 86.89% 889.98 -139.02 -13.51 477.42 -74.58 -13.51 138.12 -18.88 -46.26 49.85 248 2610.05 -445.195 -14.76 144.28 -30.07 -21.73.31 384.80 -30.75.3 44.42 50.66 69.9% 518.26 -17.74 -3.31 287.17 -9.83 -3.31 73.03 -218.97 -74.99 55.56 68.09% 518.26 -17.74 -3.31 287.17 -9.83 -3.31 73.03 -218.97 -74.99 55.56 68.09% 518.26 -17.74 -3.31 287.17 -9.83 -3.31 73.03 -218.97 -74.99 55.56 68.07% 438.10 -7.09.0 -13.09 20.77.58 -17.18 30.98 -61.02 -15.18 148.44 -26.57 -15.18 60.23% 1363.11 -33.58 91.77.75 8.26 91.04 -146.96 -13.76 109.85 -10.81 8.96 69.55.56 44.33 -127.97 -15.18 30.98 -61.02 -15.18 148.44 -26.57 -15.18 60.23% 1363.11 -33.58 91.77.75 8.26 91.04 -146.96 -13.76 109.85 -10.81 -8.96 69.50% 424.43 -12.75 -12.88 20.77 -12.49 91.17.78 13.18 150.2 -14.99 -45.00 60.03 -10.99 -10.18 14.82 -10.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26.57 -15.18 14.84 -26											
25 93,62% 4247,54 -289,46 -6,38 2059,64 -140,36 -6,38 366,68 -24,99 -6,38 27 87,79% 2362,43 -328,57 -12,21 120,347 -790,53 -39,65 28,62,85 -4,15 -12,22 120,347 -790,53 -39,65 29,55 -4,15 -12,22 120,347 -790,53 -39,65 29,55 -4,15 -12,22 120,347 -790,53 -39,65 29,55 -4,15 -12,22 120,33 39,16,33 16,34 16,3 16,3 16,3 16,3 16,3 16,3 16,3 16,3											
27 87,79% 2362,43 -328,57 -12,21 1203,47 -790,53 -39,65 29,8 -4,15 -12,21 28 84,24% 617,48 -115,52 -15,76 30,26 -56,74 -15,76 62,90 -11,77 -15,76 30,86,57% 4615,91 -716,09 -13,43 2276,79 -353,21 -13,43 628,50 -97,50 -13,43 39,63% 553,23 -57,77 -9,6 280,39 -25,61 -8,37 -0,00 0,00 0,00 0,00 34 92,57% 2039,32 -163,68 -7,43 986,80 -79,20 -7,43 0,00 0,00 0,00 0,00 35 97,31% 636,41 -17,59 -2,69 327,40 -14,60 -4,27 0,00 0,00 0,00 0,00 36 81,71% 791,42 -177,58 -18,33 394,66 -88,34 -18,29 86,07 -19,27 -18,29 245,71 -8,81 1377,88 -133,12 -8,81 39,32% 521,58 -104,42 -16,68 288,29 -57,71 -16,68 75,54 -15,12 -16,68 42 91,08% 2297,95 -225,05 -8,92 1141,62 -162,38 -12,45 34,61 -3,39 -8,92 43 95,55% 4466,96 -228,04 -4,45 299,63 -97,37 -4,45 489,3 -228,00 -41,45 496,38 -8,84 496,38 -8,82 44 496,38 -8,82 44 496,38 -8,82 44 496,38 -8,82 44 496,38 -8,82 44 496,38 -8,82 44 496,38 -8,82 44 496,38 -8,89 8 -139,02 -13,51 477,42 -74,58 -13,51 138,12 -118,88 -46,26 49 85,24% 2610,05 -416,195 -147,6 1434,28 -30,07 -2 17,33 138,12 -118,88 -46,26 48,89 51 18,86 -17,74 -3,31 287,17 -9,83 -3,31 73,03 -218,97 -74,99 55,56 44,82% 715,03 -179,55 -15,18 30,98 -61,02 -15,18 148,44 -26,57 -15,18 60,23% 120,14 146,96 -13,76 109,85 -10,81 89,96 15,86 -78,99 421,43 -112,75 -13,18 207,77 -44,93 -13,15 166,66 44,82% 715,03 -127,97 -15,18 30,98 -61,02 -15,18 148,44 -26,57 -15,18 60,23% 136,11 12,35 9-5,56% 424,33 -127,97 -15,18 30,98 -61,02 -15,18 148,44 -26,57 -15,18 60,23% 136,11 12,35 9-5,56% 424,33 -127,97 -15,18 30,98 -61,02 -15,18 148,44 -26,57 -15,18 60,23% 136,11 12,35 9-7,35 9-											
28 84,24% 617,48 -115,52 -15,76 303,26 -56,74 -15,76 62,90 -11,77 -15,76 30 86,57% 4615,91 -716,09 -13,31 22,67% -8,37 0,00 0,00 0,00 34 92,57% 2039,32 -17,77 -9,46 280,39 -25,61 -8,37 0,00 0,00 0,00 36 81,71% 636,41 -17,59 -2,69 327,40 -14,60 -4,27 0,00 0,00 0,00 38 91,19% 2543,29 -245,71 -8,81 1377,88 -133,12 -8,81 544,61 -505,72 -48,15 49 91,08% 2529,79 -225,05 -8,92 141,62 -162,38 -12,46 -15,12 -16,68 49 91,08% 2529,75 -8,92 141,62 -162,38 -12,46 489,53 -22,80 -45,15 -45,15 -46,68 29,75 -9,91 -29,8 43 95,584											
30 86,57% 4615,91 -716,09 -13,43 2276,79 -353,21 -13,43 628,50 -97,50 -13,43 39,63% 553,23 -57,77 -9,46 220,39 -25,61 -8,37 -0,00 0,00 0,00 0,00 34 92,57% 2039,32 -163,68 -7,43 986,80 -79,20 -7,43 0,00 0,00 0,00 0,00 36 81,71% 791,42 -177,58 -18,33 394,66 -88,34 -18,29 86,07 -19,27 -18,29 39 11,19% 2543,29 -245,71 -8,81 137,788 -133,12 -8,81 544,61 -505,72 -481,53 9 83,32% 521,58 -104,42 -16,68 288,29 -57,71 -16,68 75,54 -15,12 -48,68 41 97,02% 557,87 -17,14 -2,98 261,50 -22,50 -7,92 29,75 -0,91 -2,98 42 91,08% 2297,95 -225,05 -3,62 31141,62 -162,38 -12,45 34,61 -3,39 -8,92 43 95,55% 4466,96 -208,04 -4,45 2090,63 -97,37 -4,45 489,53 -22,80 -4,45 46 87,22% 970,76 -142,24 -12,78 518,09 -75,91 -12,78 136,94 -20,06 -12,78 49 85,24% 2610,05 -451,95 -14,76 1434,28 -300,72 -17,33 384,80 -307,53 -44,42 50,69 518,26 -17,74 -3,31 287,17 -9,83 -3,31 564,64 -474,88 -42,35 59 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 564,64 -474,88 -42,35 58 8,07% 438,10 -70,90 -13,93 231,70 -40,30 -14,82 8,83 136,1 178,98 5 12,97 -71,99 95,56 84,82% 715,03 122,97 -15,18 340,98 -610,2 -15,18 148,44 -26,67 -15,18 59 95,50% 4726,30 -222,71 -4,50 2394,01 -465,00 -16,26 318,02 -14,99 -45,60 60 78,92% 4726,30 -222,71 -4,50 2394,01 -465,00 -16,26 318,02 -14,99 -45,60 60 78,92% 4726,30 -222,71 -4,50 2394,01 -465,00 -16,26 318,02 -14,99 -45,60 60 78,92% 421,43 112,57 -21,08 240,71 -64,99 -13,75 518,85 -68,07% 421,43 112,57 -21,08 240,71 -64,99 -13,75 518,55 -24,40 -29,93 78 30,33 136,31 -335,89 -19,77 77 726,88 -179,12 -19,77 150,66 -371,01 -19,77 16,99 -37		87,79%		-328,57							
33 91,63% 553,23 5-7,77 9,46 220,39 -25,61 -8,37 0,00 0,00 0,00 35 97,31% 636,41 -17,59 -2,69 327,40 -14,60 -4,27 0,00 0,00 0,00 0,00 36 81,71% 791,42 -177,58 -18,33 394,66 88,34 -18,29 86,07 -19,27 -18,25 38 91,19% 2543,29 -245,71 -8,81 1377,88 -133,12 -8,81 544,61 -505,72 -48,15 39 83,32% 521,58 -104,42 -16,68 288,29 -57,71 -16,68 75,54 -15,12 -16,68 41 97,02% 557,87 -17,14 -2,98 261,50 -22,50 -7,92 29,75 -0,91 -2,98 42 91,08% 2297,95 -225,05 -8,92 1141,62 -162,38 -12,45 34,61 -3,39 -8,92 446,96 -208,04 -4,45 290,03 -97,37 -4,45 489,53 -22,80 -4,45 49 96,38% 552,14 -21,86 -3,62 319,98 -12,02 -3,62 91,17 -41,49 -31,28 46 87,22% 970,76 -142,24 -12,78 518,09 -75,91 -12,78 136,94 -20,06 -12,78 47 86,49% 889,98 -139,02 -13,51 477,42 -74,58 -13,51 138,12 -118,88 -46,26 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 63,694 -20,07,53 -44,5 50 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 646,46 -474,88 -43,55 524,43 -795,58 -176,15 -8,96 921,04 -146,96 -13,76 199,85 -10,81 8,96 61 80,23% 715,03 -127,97 -15,18 340,98 -61,02 -15,18 148,44 -26,57 -15,18 59 59,50% 421,43 -112,57 -21,08 240,71 -64,29 -21,08 80,33 -12,47 -45,59 240,41 -12,57 -21,08 240,71 -64,29 -21,08 80,33 -12,49 -45,60 61 80,23% 376,14 -22,59 -46,63 2075,24 -118,76 -22,11 -45,60 299,37% 3721,41 -23,59 -40,63 2075,24 -118,76 -5,41 632,97 -264,70 -29,49 61 80,23% 376,34 -12,79 -15,18 340,98 -61,02 -15,18 148,44 -26,57 -15,18 66 94,62% 406,87 -22,18 -44,50 -44											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
35 97,31% 636,41 -17,59 -2,69 327,40 -14,60 -4,27 0,00 0,00 0,00 0,00 36 81,71% 791,42 -177,58 -18,33 394,66 -8,834 -18,29 86,07 -19,27 -18,29 38 91,19% 2543,29 -245,71 -8,81 1377,88 -133,12 -8,81 544,61 -505,72 -48,15 39 83,32% 521,58 -104,42 -16,68 288,29 -57,71 -16,68 75,54 -15,12 -16,68 41 97,02% 557,87 -17,14 -2,98 261,50 -22,50 7,92 29,75 -0,91 -2,98 42 91,08% 2297,95 -225,05 -8,92 1141,62 -162,38 -12,45 34,61 -33,39 -8,92 44 96,38% 582,14 -21,86 -3,62 319,98 -12,02 -3,62 91,17 -41,49 -31,28 46 87,22% 970,76 -142,24 -12,78 518,09 -75,91 -12,78 136,44 -20,66 -12,78 47 86,49% 889,98 -139,02 -13,51 477,42 -74,58 -13,51 138,12 -118,88 -46,26 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 384,80 -307,53 -44,42 59,66% 5254,34 -795,58 -13,15 2970,27 -44,97,3 -13,15 646,46 -474,88 -42,35 59 91,04% 1789,85 -176,15 -8,96 921,04 -146,96 -13,76 109,85 -10,81 89,95 58,60% 4726,30 -222,71 -4,50 234,01 41,82 8,03 -13,30 -13,39 13,39 56 84,82% 715,03 -12,77 -15,18 340,98 -61,02 -15,18 148,44 -26,65 -15,18 60,93% 4726,30 -222,71 -4,50 230,40 14,82 8,03 -13,30 -13,39 13,39 1363,11 -33,589 -19,77 726,88 -179,12 -19,77 150,56 -37,10 -19,77 62 99,37% 3721,41 -23,59 -0,63 2075,24 -118,76 -5,41 632,97 -264,70 -29,49 64 94,11% 7083,66 -443,34 -13,35 -19,97 -77,99 98,03 360,95 -85,05 -19,07 204,24 -66,57 -54,31 -13,51 -13,51 -13,51 -14,50 -23,40 -44,60 -13,76 -24,36 -14,99 -45,00 69 94,62% 406,87 -23,13 -5,38 228,69 -54,31 -19,19 56,80 -17,20 -23,24 -19,77 29,89 -13,72 56,89 -19,77 79,88 -17,19 -19,19 56,80 -17,20 -23,24 -19,07 79,15,15 -18,18 -18,29 -17,19 -15,18 -18,29 -17,19 -15,18 -18,29 -17,19 -15,18 -18,29 -17,19 -15,18 -18,29 -17,19 -15,18 -18,29 -19,17 71,19 -15,18 -18,29 -19,17 71,19 -15,18 -18,29 -19,19 -15,18 -19,19 -											
36 81,71% 791,42 -177,58 -18,33 394,66 -88,34 -18,29 86,07 -19,27 -18,29 38 91,19% 2543,29 -245,71 -8,81 1377,88 -133,12 -8,81 544,61 -505,72 -48,15 39 83,32% 521,58 -104,42 -16,68 288,29 -57,71 -16,68 75,54 -15,12 -16,68 41 97,02% 557,87 -17,14 -2,98 261,50 -22,50 -7,92 29,75 -0,91 -2,98 42 91,08% 2297,95 -225,05 -8,92 114,62 -16,238 -12,45 34,61 -3,39 -8,92 43 95,55% 4466,96 -208,04 -4,45 2090,63 -97,37 -4,45 489,53 -22,80 -4,45 496,58% 582,14 -21,86 -3,62 319,98 -12,02 -3,62 91,17 -41,49 -31,28 46 87,22% 970,76 -142,24 -12,78 518,09 -75,91 -12,78 136,94 -20,06 -12,78 47 86,49% 889,98 -139,02 -13,51 477,42 -74,58 -13,51 138,12 -118,88 -46,26 49 85,24% 2610,05 -451,95 -14,76 1434,28 -300,72 -17,33 384,80 -307,53 -44,45 50 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 73,03 -218,97 74,99 51 86,85% 5254,43 -795,58 -13,15 2970,27 -449,73 -13,15 646,46 -474,88 -42,35 52 91,04% 1789,85 -176,15 -8,96 921,04 -146,96 -13,76 109,85 -10,81 -8,96 55 86,07% 438,10 -70,00 -13,93 231,70 -40,30 -14,82 8,03 -1,30 -13,93 56 84,82% 715,03 -12,79 -15,18 340,98 -61,02 -15,18 148,44 -26,57 -15,18 59 95,50% 421,43 -112,57 -21,08 240,71 -64,29 -21,08 60,3 -10,99,7 -64,69 99,50% 421,43 -112,57 -21,08 240,71 -64,29 -21,08 60,3 -10,99,7 -64,69 99,37% 3721,41 -23,59 -0,63 2075,24 -118,76 -5,41 63,297 -264,70 -29,49 69 95,50% 406,87 -23,13 -5,38 228,69 -54,31 -19,19 75 56,80 -17,10 -19,77 12,68 -19,17 77 150,56 -37,10 -19,77 12,68 -19,17 77 150,56 -37,10 -19,77 12,68 -19,17 7 15,18 -14,18 -2,28 11,18 -2,28 1											
38 91,19% 2543,29 -245,71 -8,81 1377,88 -133,12 -8,81 544,61 -505,72 -48,15 39 83,32% 521,58 -104,42 -16,68 288,29 -57,71 -16,68 75,54 -15,12 -16,68 41 97,02% 557,87 -17,14 -2,98 261,50 -22,50 -7,92 29,75 -0,91 -2,98 42 91,08% 2297,95 -225,05 -8,92 1141,62 -162,38 -12,45 34,61 -3,39 -8,92 43 95,55% 4466,96 -208,04 -4,45 2090,63 -97,37 -4,45 489,53 -22,80 -44,5 44 96,38% 582,14 -21,86 -3,62 319,98 -12,02 -3,62 91,17 -41,49 -31,28 46 87,22% 970,76 -142,24 -12,78 518,09 -75,91 -12,78 136,94 -20,06 -12,78 47 86,49% 889,98 -139,02 -13,51 477,42 -74,58 -13,51 138,12 -118,88 -46,26 98,524% 2610,05 -451,95 -14,76 143,28 -300,72 -17,33 384,80 -307,53 -44,42 50 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 73,03 -218,97 -74,99 51 86,88% 5254,43 -795,58 -13,15 2970,27 -449,73 -13,15 646,46 -474,88 -42,35 52 91,04% 1789,85 -176,15 -8,96 921,04 -146,96 -13,76 109,85 -10,81 -8,96 55 86,07% 438,10 -70,90 -13,39 321,70 -40,30 -14,82 8,03 -13,01 -13,39 356 84,82% 715,03 -127,97 -15,18 340,98 -61,02 -15,18 148,44 -26,57 -15,18 59 95,50% 4726,30 -222,71 -4,50 2394,01 -465,90 -16,26 318,02 -14,99 -4,50 61 80,23% 1363,11 -335,89 -19,77 726,88 -179,12 -19,77 150,56 -37,10 -19,77 62 99,37% 3721,41 -23,59 -0,63 2075,24 118,76 -5,41 632,97 -264,70 -29,49 63 81,08% 443,51 -103,49 -18,92 2075,24 -118,76 -5,41 632,97 -264,70 -29,49 69 95,01% 899,74 -47,26 -49,9 464,60 -24,40 -4,99 95,00% 80,95 -85,05 -19,07 204,24 -65,76 -24,36 12,14 -2,86 -19,07 79 93,55% 203,84 -138,16 -6,45 -19,08 50,07 -18,05 -17,59 -17,59 -18,67 99,50% 89,74 -47,26 -49,9 464,60 -24,40 -4,99 255,65 -58,69 -18,67 79 92,10% 100343,0 -860,71 -7,90 5136,42 -40,50 -22,36 14,33 -9,67 -6,28 99,50% 406,74 -27,26 -6,28 233,00 -95,00 -28,96 144,33 -9,67 -6,28 99,50% 103,43 -18,68 -18,67 -19,10 -19,57 92,10% 10034,30 -860,71 -7,90 5136,42 -40,50 -28,96 144,33 -9,67 -6,28 99,78 406,74 -27,26 -6,28 233,00 -95,00 -28,96 144,33 -9,67 -6,28 99,78 406,74 -27,26 -6,28 233,00 -95,00 -28,96 144,33 -9,67 -6,28 99,50% 144,33 -9,67 -6,28 99,50% 144,33 -9,67 -6,28 99,50% 144,40 -9,99 -10,63											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c} 43 & 95,55\% \\ 4466,96 & -208,04 \\ 44 & 96,38\% \\ 582,14 & -21,866 \\ -36,62 \\ 319,98 & -12,02 \\ -12,78 \\ 47 & 86,49\% \\ 889,98 & -139,02 \\ -13,51 \\ -14,76 \\ -142,24 \\ -12,78 \\ -13,51 \\ -147,76 \\ -142,24 \\ -12,78 \\ -13,51 \\ -147,76 \\ -142,24 \\ -12,78 \\ -13,51 \\ -147,76 \\ -142,24 \\ -12,78 \\ -13,51 \\ -147,76 \\ -143,28 \\ -13,51 \\ -147,76 \\ -143,28 \\ -300,72 \\ -17,33 \\ -13,31 \\ -112,51 \\ -13,31 \\ -13,31 \\ -13,31 \\ -13,31 \\ -13,31 \\ -13,31 \\ -21,33 \\ -21,34 \\ -21,33 \\ -21,34 \\ $											
46 87,22% 970,76 -142,24 -12,78 518,09 -75,91 -12,78 136,94 -20,06 -12,78 47 86,49% 889,98 -139,02 -13,51 477,42 -74,58 -13,51 138,12 -118,88 -46,26 49 85,24% 2610,05 -451,95 -14,76 1434,28 -300,72 -17,33 384,80 -307,53 -44,42 50 96,69% 518,26 -17,74 -3,31 287,17 -9,83 -3,31 73,03 -218,97 -74,99 51 86,85% 5254,43 -795,58 -13,15 2970,27 -449,73 -13,15 1646,46 -474,88 42,35 52 91,04% 1789,85 -176,15 -8,96 921,04 -146,96 -13,76 109,85 -10,81 -8,96 55 86,07% 438,10 -70,90 -13,93 231,70 -40,30 -14,82 8,03 -1,30 -13,93 56 84,82% 715,03 -127,97 -15,18 340,98 -61,02 -15,18 148,44 -26,57 -15,18 59 95,50% 4726,30 -222,71 -4,50 2394,01 -665,00 -16,26 318,02 -14,99 -4,50 60 78,92% 421,43 -112,57 -21,08 240,71 -64,29 -21,08 60,03 -10,99,7 64,69 61 80,23% 1363,11 -335,89 -19,77 726,88 -179,12 -19,77 150,56 -37,10 -19,77 62 99,37% 3721,41 -23,59 -0,63 2075,24 -118,76 -5,41 632,97 -264,70 -29,49 63 81,08% 443,51 -103,49 -18,92 231,18 -62,82 -21,37 51,35 -11,98 -18,92 64 94,11% 7083,66 -443,34 -5,89 3777,58 -236,42 -5,89 989,80 -454,53 -31,47 65 86,28% 2842,93 -452,07 -13,72 1567,71 -249,29 -13,72 543,85 -86,48 13,72 66 94,62% 406,87 -23,13 -5,38 228,69 -54,31 -19,19 56,80 -17,20 -23,24 67 89,93% 360,95 -85,05 -19,07 204,24 -65,76 -24,36 12,14 -2,86 -18,67 79 95,55% 203,84 -138,16 -64,55 122,98 -192,11 -13,51 211,98 -227,69 -51,79 72 89,15% 508,16 -61,85 10,85 283,50 -34,50 -10,85 81,42 -9,91 10,85 79 84,75% 700,88 1-12,61 -15,05 38,23 75 91,57% 2060,33 -18,66 -64,85 10,85 283,50 -34,50 -10,85 81,42 -9,91 10,85 80 83,19% 2621,32 -529,68 -16,81 103,85 283,50 -34,50 -10,85 81,42 -9,91 10,85 80 83,19% 2621,32 -529,68 -16,81 103,85 283,50 -34,50 -10,82 81,42 -9,91 10,85 80 83,19% 2621,32 -529,68 16,61 12,15 103,38 116,67,8 182,9 73,34 -457,66 -38,23 75 91,57% 2060,33 -18,66 -61,56 12,91 -19,77 15,55 80 83,19% 2621,32 -529,68 -16,61 10,85 283,50 -34,50 -10,85 81,42 -9,91 10,85 80 83,19% 2621,32 -529,68 16,61 13,72 29,89 20,10 -10,85 81,42 -9,91 10,85 80 80,97% 3084,66 -60,85 10,85 20,85 20,85 20,85 20,85 20,85 20,85 20,85 20,85 20,8											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	87,22%	970,76	-142,24	-12,78	518,09	-75,91	-12,78	136,94	-20,06	-12,78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	86,49%	889,98	-139,02	-13,51	477,42	-74,58	-13,51	138,12	-118,88	-46,26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								10.77			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											-18 92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-13.72						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-19,19			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-65,76				-19,07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		95,01%	899,74			464,60	-24,40	-4,99	255,65	-58,69	-18,67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2003,84				-192,11				-51,79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-10,85			-10,85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
91 80,69% 921,48 -220,52 -19,31 413,13 -98,87 -19,31 227,01 -54,33 -19,31											
			921,48						227,01		
		80,88%	917,18	-216,82	-19,12	437,56	-103,44	-19,12	220,26	-52,07	-19,12
95 84,65% 849,89 -154,11 -15,35 432,56 -78,44 -15,35 99,60 -18,06 -15,35	95	84,65%	849,89	-154,11	-15,35	432,56	-78,44	-15,35	99,60	-18,06	-15,35

Tabelle 6.15.: Projektionen der Outputs des input
orientierten CCR-Modells für das Jahr $2012\,$

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2	1216,00	0,00	0,00	494,00	0,00	0,00	771,00	0,00	0,00	54,95	20,95	61,62
4	1137,00	0,00	0,00	793,00	0,00	0,00	763,00	0,00	0,00	58,00	0,00	0,00
5	3174,00	0,00	0,00	1436,00	0,00	0,00	1910,00	0,00	0,00	364,00	0,00	0,00
6 7	2307,00 11492,00	0,00 0,00	0,00 0,00	862,45 3578,00	$271,45 \\ 0,00$	$45,93 \\ 0,00$	1377,00 6621,00	0,00 0,00	0,00 0,00	102,00 552,50	0,00 $162,50$	$0,00 \\ 41,67$
8	1552,00	0,00	0,00	753,00	0,00	0,00	851,00	0,00	0,00	70,00	0,00	0,00
9	362,00	0,00	0,00	90,00	0,00	0,00	184,00	0,00	0,00	16,41	13,41	447,00
10	2811,00	0,00	0,00	1073,00	0,00	0,00	1688,00	0,00	0,00	210,40	59,40	39,34
12	2500,00	0,00	0,00	1265,00	0,00	0,00	1533,00	0,00	0,00	184,00	0,00	0,00
13	1890,00	0,00	0,00	875,00	0,00	0,00	1086,00	0,00	0,00	93,00	0,00	0,00
14	600,00	0,00	0,00	187,46	33,46	21,73	302,00	0,00	0,00	40,00	0,00	0,00
15	892,05	65,05	7,87	340,26	19,26	6,00	653,00	0,00	0,00	46,50	10,50	29,17
16	2581,00	0,00	0,00	885,00	0,00	0,00	1379,00	0,00	0,00	115,55	33,55	40,91
17	954,00	0,00	0,00	516,00	0,00	0,00	569,00	0,00	0,00	50,00	0,00	0,00
19 20	7291,00 519,00	0,00	0,00	2758,00 150,52	0,00	$0,00 \\ 15,78$	2908,00 216,64	0,00	0,00	262,00 21,44	0,00	0,00
21	1141,00	0,00 0,00	0,00 0,00	666,00	0,52 0,00	0,00	618,00	$37,64 \\ 0,00$	0,00	42,71	$14,44 \\ 26,71$	206,29 $166,94$
22	2654,00	0,00	0,00	945,00	0,00	0,00	1227,00	0,00	0,00	90,00	0,00	0,00
23	578,00	0,00	0,00	251,00	0,00	0,00	320,00	0,00	0,00	24,13	5,13	27,00
24	500,00	0,00	0,00	223,00	0,00	0,00	271,00	0,00	0,00	21,00	0,00	0,00
25	5049,00	0,00	0,00	1698,00	0,00	0,00	2693,00	0,00	0,00	437,00	0,00	0,00
27	2531,26	57,26	2,31	1011,00	0,00	0,00	1621,00	0,00	0,00	196,28	91,28	86,93
28	811,00	0,00	0,00	268,00	0,00	0,00	404,00	0,00	0,00	31,00	0,00	0,00
30	5954,00	0,00	0,00	1558,47	282,47	22,14	3098,00	0,00	0,00	300,00	0,00	0,00
33	725,00	0,00	0,00	253,88	47,88	23,24	344,78	42,78	14,17	32,00	0,00	0,00
34 35	2536,00	0,00 $193,70$	$0,00 \\ 30,65$	883,04 273,00	0,00	$27,06 \\ 0,00$	1281,00 396,91	$0,00 \\ 18,91$	$0,00 \\ 5,00$	70,00 45,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
36	825,70 907,00	0,00	0,00	360,00	0,00	0,00	588,00	0,00	0.00	38,08	15,08	65,57
38	3757,00	0,00	0,00	1338,00	0,00	0,00	1717,00	0,00	0,00	144,19	47,19	48,65
39	745,00	0,00	0,00	246,00	0,00	0,00	368,00	0,00	0,00	30,81	18,81	156,75
41	686,00	0,00	0,00	334,00	0,00	0,00	315,86	37,86	13,62	43,00	0,00	0,00
42	2764,88	383,88	16,12	1174,00	0,00	0,00	1514,00	0,00	0,00	146,25	35,25	31,76
43	5403,00	0,00	0,00	2065,00	0,00	0,00	2551,00	0,00	0,00	508,00	0,00	0,00
44	795,00	0,00	0,00	268,00	0,00	0,00	422,00	0,00	0,00	35,65	19,65	122,81
46	1272,00	0,00	0,00	396,00	0,00	0,00	655,00	0,00	0,00	104,00	0,00	0,00
47	1219,00	0,00	0,00	325,00	0,00	0,00	534,00	0,00	0,00	138,00	0,00	0,00
49 50	2802,65 742,00	395,65	16,44	1133,84	286,84	33,87	1795,00	0,00	0,00	456,00	0,00	0,00
50 51	6623,00	0,00 0,00	0,00 0,00	213,00 2233,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	370,00 3619,00	0,00 0,00	0,00 0,00	33,49 705,00	$^{13,49}_{0,00}$	$67,45 \\ 0,00$
52	1904,05	14,05	0,74	829,00	0,00	0,00	1287,00	0,00	0,00	116,00	0,00	0,00
55	605,00	0,00	0,00	213,54	49,54	30,21	283,00	0,00	0,00	25,32	5,32	26,60
56	988,00	0,00	0,00	369,00	0,00	0,00	439,00	0,00	0,00	33,00	0,00	0,00
59	5056,67	483,67	10,58	1956,07	119,07	6,48	3462,00	0,00	0,00	337,00	0,00	0,00
60	617,00	0,00	0,00	212,00	0,00	0,00	294,00	0,00	0,00	29,00	0,00	0,00
61	2039,00	0,00	0,00	753,00	0,00	0,00	860,00	0,00	0,00	55,00	0,00	0,00
62	4047,22	562,22	16,13	2274,00	0,00	0,00	2558,00	0,00	0,00	570,00	0,00	0,00
63	506,00	0,00	0,00	212,00	0,00	0,00	334,00	0,00	0,00	29,17	3,17	12,19
64	9696,00	0,00	0,00	2487,66	22,66	0,92	4870,00	0,00	0,00	639,00	0,00	0,00
65 66	3801,00 530,00	0,00 0,00	0,00 0,00	1483,00 154,55	$0,00 \\ 25,55$	$0,00 \\ 19,81$	1784,00 277,00	0,00 0,00	0,00 0,00	398,00 56,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
67	543,00	0,00	0,00	169,72	25,55 29,72	$\frac{19,81}{21,23}$	277,00	10,03	4,48	23,39	13,39	133,90
69	1371,00	0,00	0,00	475,00	0,00	0,00	574,00	0,00	0,00	46,80	28,80	160,00
70	3237,00	0,00	0,00	722,00	0,00	0,00	1252,00	0,00	0,00	280,00	0,00	0,00
72	818,00	0,00	0,00	179,00	0,00	0,00	313,00	0,00	0,00	52,00	0,00	0,00
74	3961,00	0,00	0,00	1288,00	0,00	0,00	1895,00	0,00	0,00	218,00	0,00	0,00
75	2314,00	0,00	0,00	853,67	84,67	11,01	1454,00	0,00	0,00	223,00	0,00	0,00
76	580,00	0,00	0,00	174,00	0,00	0,00	291,00	0,00	0,00	22,85	7,85	52,33
77	15121,00	0,00	0,00	5298,88	1827,88	52,66	6417,00	0,00	0,00	515,06	111,06	27,49
79	935,00	0,00	0,00	303,00	0,00	0,00	481,00	0,00	0,00	52,00	0,00	0,00
80	3422,00	0,00	0,00	1419,00	0,00	0,00	1849,00	0,00	0,00	243,00	0,00	0,00
81 84	1487,00 3794,42	$0,00 \\ 201,42$	$0,00 \\ 5,61$	542,00 1531,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	622,63 2655,00	114,63 0,00	$22,56 \\ 0,00$	53,00 350,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
85	3028,00	0,00	0,00	1121,38	532,38	90,39	1240,00	0,00	0,00	95,97	14,97	18,48
86	2299,00	0,00	0,00	579,00	0,00	0,00	971,00	0,00	0,00	97,60	61,60	171,11
87	736,00	0,00	0,00	200,95	113,95	130,98	296,08	22,08	8,06	24,50	1,50	6,52
88	1367,00	0,00	0,00	918,00	0,00	0,00	814,00	0,00	0,00	41,97	3,97	10,45
89	11934,00	0,00	0,00	4506,01	0,01	0,00	5927,00	0,00	0,00	862,00	0,00	0,00
90	4705,00	0,00	0,00	2266,00	0,00	0,00	2688,00	0,00	0,00	363,00	0,00	0,00
91	1238,00	0,00	0,00	436,73	105,73	31,94	552,00	0,00	0,00	29,82	10,82	56,95
92	1295,00	0,00	0,00	384,95	42,95	12,56	565,00	0,00	0,00	45,00	0,00	0,00
95	1008,00	0,00	0,00	371,00	0,00	0,00	607,00	0,00	0,00	65,00	0,00	0,00

D.3.2. Tabellen der Projektionen für das inputorientierte BCC-Modell

Tabelle 6.16.: Projektionen der Inputs des input
orientierten BCC-Modells für das Jahr $2012\,$

DMU	θ_B^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	88,87%	1073,13	-182,87	-14,56	536,77	-67,23	-11,13	143,90	-483,43	-77,06
4	78,63%	1047,35	-284,65	-21,37	577,14	-156,86	-21,37	188,00	-371,33	-66,39
5	94,79%	2861,71	-157,29	-5,21	1442,70	-79,30	-5,21	543,49	-180,17	-24,90
8	88,24%	1179,77	-157,23	-11,76	663,73	-214,27	-24,40	186,73	-53,93	-22,41
10	86,69%	2541,75	-390,25	-13,31	1223,73	-528,27	-30,15	129,46	-19,88	-13,31
12	81,71%	2193,10	-490,90	-18,29	1116,16	-249,84	-18,29	344,82	-77,18	-18,29
13	90,49%	1485,85	-156,15	-9,51	818,83	-199,17	-19,57	219,46	-124,20	-36,14
14	88,09%	533,88	-88,12	-14,17	254,58	-34,42	-11,91	97,01	-358,99	-78,73
15	96,20%	869,65	-34,35	-3,80	460,94	-32,06	-6,50	106,78	-4,22	-3,80
16	92,31%	1900,66	-158,34	-7,69	1047,53	-133,47	-11,30	302,16	-25,17	-7,69
17	82,44%	825,22	-175,78	-17,56	432,81	-92,19	-17,56	96,46	-51,21	-34,68
19	88,96%	5049,37	-626,63	-11,04	2698,16	-334,84	-11,04	1639,11	-510,89	-23,76
21	99,79%	870,17	-1,83	-0,21	506,82	-130,18	-20,44	176,63	-0,37	-0,21
22	96,61%	1964,08	-68,92	-3,39	986,39	-34,61	-3,39	187,10	-6,57	-3,39
23	93,83%	458,83	-30,17	-6,17	275,49	-27,51	-9,08	85,83	-14,17	-14,17
25	99,86%	4395,77	-141,23	-3,11	2196,92	-3,08	-0,14	391,12	-0,55	-0,14
27	93,99%	2529,27	-161,73	-6,01	1217,48	-776,52	-38,94	31,96	-2,04	-6,01
28	87,99%	644,97	-88,03	-12,01	316,76	-43,24	-12,01	65,70	-8,97	-12,01
30	91,67%	4887,84	-444,16	-8,33	2410,92	-219,08	-8,33	665,52	-60,48	-8,33
36	86,67%	829,58	-139,42	-14,39	418,62	-64,38	-13,33	91,29	-14,04	-13,33
38	91,24%	2544,68	-244,32	-8,76	1378,64	-132,36	-8,76	552,14	-498,19	-47,43
39	86,13%	539,17	-86,83	-13,87	298,01	-47,99	-13,87	78,09	-12,58	-13,87
42	98,79%	2492,47	-30,53	-1,21	1151,12	-152,88	-11,72	37,54	-0,46	-1,21
44	99,44%	600,62	-3,38	-0,56	330,14	-1,86	-0,56	131,92	-0,74	-0,56
46	88,16%	981,22	-131,78	-11,84	523,67	-70,33	-11,84	115,89	-41,11	-26,18
47	88,41%	909,74	-119,26	-11,59	488,02	-63,98	-11,59	121,89	-135,11	-52,57
49	85,52%	2618,62	-443,38	-14,48	1449,31	-285,69	-16,47	388,47	-303,86	-43,89
51	94,23%	5700,92	-349,09	-5,77	3154,16	-265,84	-7,77	1056,63	-64,70	-5,77
52	91,34%	1795,74	-170,26	-8,66	910,44	-157,56	-14,75	110,22	-10,45	-8,66
56	87,48%	719,70	-123,30	-14,63	351,67	-50,33	-12,52	97,02	-77,98	-44,56
60	84,80%	452,83	-81,17	-15,20	258,64	-46,36	-15,20	69,93	-100,07	-58,86
61	81,93%	1391,99	-307,01	-18,07	742,29	-163,71 -28,67	-18,07	153,76	-33,91	-18,07
63	90,25%	493,67 2858,41	-53,33	-9,75	265,34	-26,67	-9,75	27,27	-36,07	-56,94
65 67	86,75% $97,94%$	436,81	-436,59	-13,25	1576,25		-13,25	546,81 14,69	-83,52 -0,31	-13,25
69	97,94% 96,12%	910,26	-9,19 -36,74	-2,06	241,71 470,03	-28,29 -18,97	-10,48		-138,55	-2,06 -44,08
70	93,71%	2007,27	-30,74	-3,88 -6,29	1211,26	-10,97	-3,88 -14,82	175,79 278,43	-161,24	-36,67
70	93,71%	535,69	-34,73	-6,29	298,86	-210,74	-6,02	71,45	-101,24	-30,07
74	81,73%	3088,58	-690,42	-18,27	1415,56	-316,44	-18,27	736,46	-460,54	-38,47
74 75	92,49%	2081,03	-168,98	-7,51	1100,07	-207,93	-15,27	136,89	-400,54	-36,47 -7,51
76	96,86%	420,37	-13,63	-3,14	255,81	-72,19	-22,01	137,64	-16,36	-10,62
76 79	88,23%	729,66	-13,03	-3,14	375,86	-72,19	-22,01	100,88	-60,12	-10,62
80	84,61%	2666,06	-484,94	-15,39	1477,45	-533,55	-26,53	410,64	-74,69	-15,39
81	97,67%	1108,14	-48,86	-4,22	509,84	-12,16	-2,33	106,46	-2,54	-2,33
84	89,87%	3537,28	-398,72	-10,13	1845,89	-220,11	-10,65	510,13	-1359,87	-72,72
85	87,55%	1994,39	-283,61	-12,45	1006,83	-143,18	-12,45	592,23	-153,77	-20,61
86	90.47%	1434,85	-151,15	-9,53	830,51	-87,49	-9,53	253,62	-26,72	-9,53
87	90,96%	515,74	-51,26	-9,04	282,89	-28,11	-9,04	25,17	-20,72	-9,04
88	79,09%	1159,49	-369,51	-24,17	606,62	-160,38	-20,91	150,27	-39,73	-20,91
90	96,78%	4317,36	-143,64	-3,22	2218,03	-464,97	-17,33	467,45	-15,55	-3,22
91	82,72%	922,48	-219,52	-19,22	423,53	-88,47	-17,28	106,08	-175,25	-62,29
92	82,83%	939,29	-194,71	-17,17	448,11	-92,89	-17,17	159,18	-113,15	-41,55
95	87,85%	882,01	-121,99	-12,15	448,91	-62,09	-12,15	103,37	-14,30	-12,15
	51,0070	002,01	121,00	-12,10	440,01	-02,00	-12,10	100,01	-14,00	12,10

Tabelle 6.17.: Projektionen der Outputs des input
orientierten BCC-Modells für das Jahr $2012\,$

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
2	1216,00	0,00	0,00	494,00	0,00	0,00	771,00	0,00	0,00	51,67	17,67	51,97
4	1167,00	30,00	2,64	793,00	0,00	0,00	763,00	0,00	0,00	58,00	0,00	0,00
5	3174,00	0,00	0,00	1436,00	0,00	0,00	1910,00	0,00	0,00	364,00	0,00	0,00
8	1552,00	0,00	0,00	753,00	0,00	0,00	851,00	0,00	0,00	70,00	0,00	0,00
10	2811,00	0,00	0,00	1073,00	0,00	0,00	1688,00	0,00	0,00	158,25	7,25	4,80
12	2500,00	0,00	0,00	1265,00	0,00	0,00	1533,00	0,00	0,00	184,00	0,00	0,00
13	1890,00	0,00	0,00	875,00	0,00	0,00	1086,00	0,00	0,00	93,00	0,00	0,00
14	606,62	6,62	1,10	258,68	104,68	67,97	302,00	0,00	0,00	40,00	0,00	0,00
15	953,00	126,00	15,24	337,62	16,62	5,18	653,00	0,00	0,00	39,50	3,50	9,72
16	2581,00	0,00	0,00	885,00	0,00	0,00	1379,00	0,00	0,00	117,55	35,55	43,35
17	954,00	0,00	0,00	516,00	0,00	0,00	569,00	0,00	0,00	50,00	0,00	0,00
19	7291,00	0,00	0,00	2758,00	0,00	0,00	3057,55	149,55	5,14	262,00	0,00	0,00
21	1141,00	0,00	0,00	666,00	0,00	0,00	618,00	0,00	0,00	49,46	33,46	209,13
22	2654,00	0,00	0,00	945,00	0,00	0,00	1227,00	0,00	0,00	94,69	4,69	5,21
23	578,00	0,00	0,00	251,00	0,00	0,00	320,00	0,00	0,00	19,00	0,00	0,00
25	5049,00	0,00	0,00	1726,84	28,84	1,70	2693,00	0,00	0,00	437,00	0,00	0,00
27	2474,00	0,00	0,00	1011,00	0,00	0,00	1621,00	0,00	0,00	116,36	11,36	10,82
28	811,00	0,00	0,00	318,38	50,38	18,80	404,00	0,00	0,00	31,00	0,00	0,00

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
30	5954,00	0,00	0,00	1924,27	648,27	50,80	3098,00	0,00	0,00	300,00	0,00	0,00
36	907,00	0,00	0,00	360,00	0,00	0,00	588,00	0,00	0,00	37,48	14,48	62,96
38	3757,00	0,00	0,00	1338,00	0,00	0,00	1717,00	0,00	0,00	144,62	47,62	49,09
39	745,00	0,00	0,00	261,43	15,43	6,27	368,00	0,00	0,00	19,18	7,18	59,83
42	2533,16	152,16	6,39	1174,00	0,00	0,00	1514,00	0,00	0,00	111,00	0,00	0,00
44	795,00	0,00	0,00	272,46	4,46	1,66	422,00	0,00	0,00	21,37	5,37	33,56
46	1272,00	0,00	0,00	410,99	14,99	3,79	655,00	0,00	0,00	104,00	0,00	0,00
47	1219,00	0,00	0,00	393,51	68,51	21,08	534,00	0,00	0,00	138,00	0,00	0,00
49	2825,43	418,43	17,38	1126,39	279,39	32,99	1795,00	0,00	0,00	456,00	0,00	0,00
51	6814,30	191,30	2,89	2233,00	0,00	0,00	3619,00	0,00	0,00	705,00	0,00	0,00
52	1890,00	0,00	0,00	829,00	0,00	0,00	1287,00	0,00	0,00	130,56	14,56	12,55
56	988,00	0,00	0,00	369,00	0,00	0,00	439,00	0,00	0,00	33,00	0,00	0,00
60	617,00	0,00	0,00	212,00	0,00	0,00	294,00	0,00	0,00	29,00	0,00	0,00
61	2039,00	0,00	0,00	753,00	0,00	0,00	860,00	0,00	0,00	64,44	9,44	17,16
63	508,88	2,88	0,57	212,00	0,00	0,00	334,00	0,00	0,00	26,00	0,00	0,00
65	3801,00	0,00	0,00	1483,00	0,00	0,00	1784,00	0,00	0,00	398,00	0,00	0,00
67	543,00	0,00	0,00	151,72	11,72	8,37	224,00	0,00	0,00	10,00	0,00	0,00
69	1371,00	0,00	0,00	513,15	38,15	8,03	574,00	0,00	0,00	32,35	14,35	79,72
70	3237,00	0,00	0,00	722,00	0,00	0,00	1252,00	0,00	0,00	280,00	0,00	0,00
72	818,00	0,00	0,00	251,57	72,57	40,54	313,00	0,00	0,00	52,00	0,00	0,00
74	3961,00	0,00	0,00	1288,00	0,00	0,00	1895,00	0,00	0,00	218,00	0,00	0,00
75	2314,00	0,00	0,00	814,04	45,04	5,86	1454,00	0,00	0,00	223,00	0,00	0,00
76	580,00	0,00	0,00	174,00	0,00	0,00	291,00	0,00	0,00	15,00	0,00	0,00
79	935,00	0,00	0,00	365,24	62,24	20,54	481,00	0,00	0,00	52,00	0,00	0,00
80	3422,00	0,00	0,00	1419,00	0,00	0,00	1849,00	0,00	0,00	243,00	0,00	0,00
81	1487,00	0,00	0,00	542,00	0,00	0,00	627,12	119,12	23,45	53,00	0,00	0,00
84	3795,93	202,93	5,65	1531,00	0,00	0,00	2655,00	0,00	0,00	350,00	0,00	0,00
85	3028,00	0,00	0,00	1155,72	566,72	96,22	1240,00	0,00	0,00	87,00	6,00	7,41
86	2299,00	0,00	0,00	579,00	0,00	0,00	971,00	0,00	0,00	91,60	55,60	154,44
87	736,00	0,00	0,00	244,25	157,25	180,75	307,15	33,15	12,10	23,00	0,00	0,00
88	1385,52	18,52	1,35	918,00	0,00	0,00	814,00	0,00	0,00	38,00	0,00	0,00
90	4705,00	0,00	0,00	2266,00	0,00	0,00	2688,00	0,00	0,00	363,00	0,00	0,00
91	1238,00	0,00	0,00	374,99	43,99	13,29	552,00	0,00	0,00	24,79	5,79	30,47
92	1295,00	0,00	0,00	446,23	104,23	30,48	565,00	0,00	0,00	45,00	0,00	0,00
95	1008,00	0,00	0,00	389,71	18,71	5,04	607,00	0,00	0,00	65,00	0,00	0,00

D.4. Tabellen der Projektionen für die Inputorientierten Modelle der 95 Raiffeisenbanken mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012

D.4.1. Tabellen der Projektionen für das inputorientierte CCR-Modell

Tabelle 6.18.: Projektionen der Inputs des inputorientierten CCR-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	82,27%	971,88	-209,45	-17,73	511,99	-110,34	-17,73	126,63	-500,71	-79,82
4	74,70%	1007,45	-341,21	-25,30	567,97	-192,36	-25,30	211,77	-347,56	-62,14
5	94,21%	2779,20	-170,81	-5,79	1457,74	-89,59	-5,79	520,61	-203,06	-28,06
6 7	96,60% 88,78%	2007,67 8734,18	-70,66 -1103,82	-3,40 -11,22	1062,04 4643,19	-39,96 -586,81	-3,63 -11,22	0,00 $1419,29$	0,00 -179,38	0,00 $-11,22$
8	86,08%	1099,82	-1105,82	-11,22	647,79	-113,21	-11,22	118,83	-121,84	-50,63
9	84,89%	227,22	-40,44	-15,11	136,99	-40,01	-22,61	17,07	-40,93	-70,58
10	82,25%	2364,14	-510,19	-17,75	1292,79	-280,88	-17,85	122,83	-26,51	-17,75
12	86,78%	2213,47	-337,20	-13,22	1179,92	-179,75	-13,22	357,82	-64,18	-15,21
13	84,39%	1377,53	-254,81	-15,61	783,83	-239,17	-23,38	153,20	-190,47	-55,42
14	80,89%	457,84	-108,16	-19,11	229,19	-54,15	-19,11	100,67	-355,33	-77,92
15	87,01%	779,32	-116,35	-12,99	415,91	-62,09	-12,99	96,58	-14,42	-12,99
16 17	90,34% $79,26%$	1873,95 767,50	-200,38 -200,83	-9,66 -20,74	1053,97 413,47	-112,70 -108,19	-9,66 -20,74	225,58 $117,04$	-101,75 -30,63	-31,08 -20,74
18	99,99%	1050,23	-200,83	-20,74	508,22	-108,19	-20,74	15,33	0,00	-0,01
19	84,24%	4573,11	-855,56	-15,76	2565,39	-479,94	-15,76	1126,54	-1023,46	-47,60
20	77,91%	320,21	-90,79	-22,09	171,92	-48,75	-22,09	13,24	-3,76	-22,09
22	92,05%	1842,23	-159,11	-7,95	953,02	-82,31	-7,95	178,27	-15,40	-7,95
23	89,52%	428,80	-50,20	-10,48	249,18	-39,48	-13,68	41,24	-58,76	-58,76
24	76,58%	350,99	-107,34	-23,42	203,39	-76,28	-27,27	35,13	-54,87	-60,96
25	90,50%	3969,93	-416,73	-9,50	2111,37	-221,64	-9,50	354,46	-37,21	-9,50
27	88,21%	2309,93	-308,74	-11,79	1215,98	-327,02	-21,19	29,99	-4,01	-11,79
28 30	80,65% $90,56%$	556,49 4563,62	-133,52 -475,71	-19,35 -9,44	298,41 2235,62	-71,60 -233,04	-19,35 -9,44	60,22 657,47	-14,45 -68,53	-19,35 -9,44
33	90,36% $91,70%$	514,74	-46,59	-8,30	278,04	-255,96	-9,44 -8,54	0,00	0,00	0,00
34	84,45%	1823,28	-335,72	-15,55	974,39	-223,94	-18,69	0,00	0,00	0,00
35	96,63%	592,34	-20,66	-3,37	303,76	-39,24	-11,44	0,00	0,00	0,00
36	81,86%	765,39	-169,61	-18,14	389,11	-86,23	-18,14	69,76	-35,58	-33,78
38	97,31%	2605,96	-72,04	-2,69	1329,25	-36,75	-2,69	383,50	-666,83	-63,49
39	77,94%	496,22	-140,45	-22,06	299,08	-125,26	-29,52	38,92	-51,75	-57,08
40	98,71%	493,55	-6,45	-1,29	261,91	-3,42	-1,29	7,57	-0,10	-1,29
41	96,64%	524,76	-18,24	-3,36	270,60	-27,73	-9,30	29,64	-1,03	-3,36
42 43	88,48% $94,70%$	2160,39 4145,45	-281,28 -275,88	-11,52 -6,24	1117,35 2038,89	-226,99 -114,11	-16,88 -5,30	33,62 485,18	-4,38 -27,15	-11,52 -5,30
43	93,03%	540,19	-40,47	-6,24 -6,97	309,17	-114,11	-5,30 -6,97	97,41	-35,26	-5,50 -26,58
46	83,02%	883,06	-180,61	-16,98	498,95	-102,05	-16,98	120,43	-36,57	-23,29
47	80,11%	796,29	-197,71	-19,89	461,43	-114,57	-19,89	120,57	-136,43	-53,08
49	81,02%	2360,92	-553,08	-18,98	1275,40	-309,94	-19,55	338,97	-353,36	-51,04
51	89,47%	5075,63	-597,37	-10,53	2698,12	-317,55	-10,53	920,94	-200,40	-17,87
52	89,02%	1678,32	-207,01	-10,98	897,06	-210,28	-18,99	107,42	-13,25	-10,98
54	97,61%	495,53	-12,13	-2,39	282,15	-21,18	-6,98	27,01	-0,66	-2,39
55	85,65%	427,68	-71,65	-14,35	227,26	-38,08	-14,35	7,99	-1,34	-14,35
56 57	86,22% $97,19%$	698,96 929,78	-111,71 -26,88	-13,78 -2,81	342,58 461,33	-54,75 -13,34	-13,78 -2,81	131,30 51,83	-43,71 -1,50	-24,97 -2,81
59	96,01%	4669,61	-194,06	-3,99	2430,62	-151,72	-5,88	319,71	-13,29	-3,99
60	79,01%	416,91	-110,76	-20,99	228,60	-60,73	-20,99	65,07	-104,93	-61,73
61	80,73%	1307,29	-312,05	-19,27	692,93	-165,40	-19,27	151,50	-36,16	-19,27
62	99,73%	3633,83	-9,84	-0,27	1953,14	-230,53	-10,56	605,54	-292,12	-32,54
63	84,54%	446,09	-81,58	-15,46	234,74	-42,93	-15,46	53,54	-9,79	-15,46
64	92,18%	6652,32	-564,34	-7,82	3598,71	-305,29	-7,82	1021,32	-423,02	-29,29
65	84,62%	2646,63	-481,04	-15,38	1555,60	-282,74	-15,38	346,09	-284,25	-45,09
66 67	85,92% $81,44%$	376,33 342,59	-61,67 -78,08	-14,08 -18,56	219,97 191,58	-50,36 -104,09	-18,63 -35,20	43,00 $12,22$	-31,00 -2,78	-41,89 -18,56
69	93,17%	342,59 879,52	-78,08 -64,48	-18,56 -6,83	191,58 449,70	-104,09	-35,20 -6,83	217,44	-2,78 -96,89	-18,56
70	90,97%	1873,38	-185,96	-9,03	1125,20	-152,13	-11,91	221,00	-218,66	-49,73
72	94,69%	498,07	-27,93	-5,31	299,40	-47,27	-13,64	62,38	-28,95	-31,70
73	97,99%	511,51	-10,49	-2,01	306,97	-149,36	-32,73	50,60	-297,40	-85,46
74	82,25%	2985,13	-644,21	-17,75	1410,31	-304,35	-17,75	754,40	-442,60	-36,98
75	98,79%	2033,76	-24,91	-1,21	1085,89	-62,78	-5,47	146,21	-1,79	-1,21
76	97,99%	394,57	-8,09	-2,01	237,51	-84,16	-26,16	34,64	-119,36	-77,50
77 79	95,75%	9975,55	-442,78 -118,11	-4,25	4971,98	-220,69	-4,25	3057,88 105,17	-135,79	-4,25
79 80	85,23% 83,67%	681,56 2537,71	-118,11 -495,29	-14,77 -16,33	369,05 1444,04	-63,95 -380,63	-14,77 -20,86	302,39	-55,83 -182,94	-34,68 -37,69
81	92,24%	978,60	-495,29 -97,06	-9,02	471,35	-39,65	-7,76	100,54	-8,46	-7,76
83	96,87%	570,56	-18,44	-3,13	307,31	-15,36	-4,76	26,80	-0,87	-3,13
84	83,72%	3292,15	-640,18	-16,28	1688,91	-328,42	-16,28	538,91	-1331,09	-71,18
85	89,19%	1882,21	-228,13	-10,81	1032,52	-125,14	-10,81	327,49	-418,51	-56,10
86	90,84%	1385,01	-139,66	-9,16	813,02	-81,98	-9,16	142,90	-137,43	-49,02
87	83,18%	440,30	-89,03	-16,82	239,84	-48,50	-16,82	23,01	-4,65	-16,82
88	77,58%	1168,35	-337,65	-22,42	586,43	-173,24	-22,80	147,40	-42,60	-22,42
89	80,15%	8576,05	-2123,95	-19,85	4520,46	-1119,54	-19,85	1596,84	-1294,49	-44,77

DMU	θ^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
90	85,69%	3734,08	-623,58	-14,31	2115,40	-353,27	-14,31	413,88	-69,12	-14,31
91	85,38%	906,45	-155,22	-14,62	412,67	-70,66	-14,62	240,20	-41,13	-14,62
92	82,33%	907,28	-194,72	-17,67	431,41	-92,59	-17,67	224,21	-48,12	-17,67
95	82,13%	836,90	-182,10	-17,87	435,56	-94,77	-17,87	96,64	-21,03	-17,87

Tabelle 6.19.: Projektionen der Outputs des input
orientierten CCR-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
$\frac{DWO}{2}$	1331,67	0,00	0,00	490,33	0,00	0,00	681,67	0,00	0,00	41,64	3,97	10,54
4	1261,33	0,00	0,00	794,33	0,00	0,00	717,33	0,00	0,00	47,67	0,00	0,00
5	3319,33	0,00	0,00	1420,00	0,00	0,00	1858,00	0,00	0,00	364,33	0,00	0,00
6	2466,67	0,00	0,00	744,45	184,12	32,86	1327,67	0,00	0,00	112,88	13,55	13,64
7	11454,67	0,00	0,00	4115,33	696,33	20,37	6338,33	0,00	0,00	422,82	4,15	0,99
8	1561,33 352,33	0,00 0,00	0,00	707,33	0,00	0,00	772,00 168,00	0,00	0,00	92,33	0,00	0,00
9 10	2973,00	0,00	0,00 0,00	147,18 1177,03	60,18 $172,36$	69,17 $17,16$	1666,00	0,00 0,00	0,00 0,00	4,67 160,67	$0,00 \\ 0,00$	$0,00 \\ 0,00$
12	2671,67	0,00	0,00	1354,67	0,00	0,00	1582,00	0,00	0,00	155,33	0,00	0,00
13	1857,67	0,00	0,00	847,67	0,00	0,00	1016,00	0,00	0,00	64,00	0,00	0,00
14	665,33	0,00	0,00	164,00	27,67	20,30	296,00	0,00	0,00	33,33	0,00	0,00
15	910,86	72,86	8,69	344,33	0,00	0,00	599,67	0,00	0,00	39,45	2,45	6,62
16	2696,67	0,00	0,00	945,08	112,75	13,55	1357,67	0,00	0,00	81,00	0,00	$0,00 \\ 0,00$
17 18	906,33 1420,11	0,00 $275,11$	0,00 $24,03$	537,67 615,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	548,33 665,46	0,00 $26,46$	$0,00 \\ 4,14$	53,00 25,67	$0,00 \\ 0,00$	0,00
19	7309,67	0,00	0,00	2551,33	0,00	0,00	2964,69	165,02	5,89	253,00	0,00	0,00
20	514,33	0,00	0,00	128,33	0,00	0,00	202,29	23,29	13,01	19,55	9,88	102,21
22	2635,67	0,00	0,00	899,00	0,00	0,00	1223,00	0,00	0,00	92,67	0,00	0,00
23	605,67	0,00	0,00	246,67	0,00	0,00	315,67	0,00	0,00	21,67	0,00	0,00
24	493,67	0,00	0,00	214,00	0,00	0,00	258,33	0,00	0,00	15,67	0,00	0,00
$\frac{25}{27}$	5264,67 2681,33	0,00 92,00	$0,00 \\ 3,55$	1772,67 1066,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	2622,00 1558,00	0,00 0,00	0,00 0,00	437,00 133,33	$0,00 \\ 0,00$	$0,00 \\ 0,00$
28	804,67	0,00	0,00	260,67	0,00	0,00	374,67	0,00	0,00	36,67	0,00	0,00
30	5788,00	0,00	0,00	1963,92	857,25	77,46	3097,00	0,00	0,00	272,33	0,00	0,00
33	800,53	67,86	9,26	197,04	5,71	2,98	328,59	35,92	12,27	39,67	0,00	0,00
34	2529,67	0,00	0,00	686,69	79,02	13,00	1185,33	0,00	0,00	120,99	54,66	82,40
35	878,45	209,12	31,24	274,00	0,00	0,00	375,67	8,67	2,36	31,00	0,00	0,00
36	916,00	0,00	0,00	357,67	0,00	0,00	556,67 $1692,67$	0,00	0,00	33,79	7,12	$26,70 \\ 4,72$
38 39	3850,00 773,00	0,00 0,00	0,00 0,00	1359,33 313,58	$0,00 \\ 74,58$	$0,00 \\ 31,21$	363,33	0,00 0,00	0,00 0,00	109,61 14,00	4,94 0,00	0,00
40	531,33	0,00	0,00	213,19	35,19	19,77	340,67	0,00	0,00	15,68	1,68	12,00
41	663,00	0,00	0,00	314,67	0,00	0,00	323,49	51,49	18,93	45,00	0,00	0,00
42	2852,57	521,24	22,36	1146,67	0,00	0,00	1427,33	0,00	0,00	109,33	0,00	0,00
43	5300,00	0,00	0,00	2101,00	0,00	0,00	2497,00	0,00	0,00	486,00	0,00	0,00
44	788,00	0,00	0,00	300,92	52,25	21,01	395,00	0,00	0,00	15,67	0,00	0,00
46 47	1263,67	0,00 0,00	0,00 0,00	370,67	0,00	$0,00 \\ 0,00$	601,33 493,33	0,00 0,00	0,00 0,00	95,33	$0,00 \\ 0,00$	0,00
49	1198,00 2658,68	101,68	3,98	343,33 991,12	$0,00 \\ 61,45$	6,61	1680,00	0,00	0,00	134,33 326,00	0,00	$0,00 \\ 0,00$
51	6721,00	0,00	0,00	1983,37	9,70	0,49	3328,33	0,00	0,00	677,00	0,00	0,00
52	1971,04	22,37	1,15	764,33	0,00	0,00	1204,67	0,00	0,00	107,67	0,00	0,00
54	785,33	0,00	0,00	211,00	0,00	0,00	320,17	4,50	1,43	47,33	0,00	0,00
55	638,33	0,00	0,00	212,43	62,10	41,31	281,33	0,00	0,00	19,67	0,00	0,00
56 57	1038,67	0,00	0,00	340,67	0,00	0,00	436,00	0,00	0,00	35,27	3,60	11,37
57 59	1306,33 5057,86	0,00 $323,53$	0,00 6,83	497,33 1913,09	$0,00 \\ 74,09$	$0,00 \\ 4,03$	562,83 3366,33	$36,50 \\ 0,00$	6,93 0,00	69,33 315,33	$0,00 \\ 0,00$	$0,00 \\ 0,00$
60	621,67	0,00	0,00	201,67	0,00	0,00	284,00	0,00	0,00	25,67	0,00	0,00
61	2029,33	0,00	0,00	673,00	0,00	0,00	833,97	4,64	0,56	58,67	0,00	0,00
62	4000,32	174,65	4,57	2140,67	0,00	0,00	2511,00	0,00	0,00	495,00	0,00	0,00
63	541,67	0,00	0,00	211,33	0,00	0,00	327,67	0,00	0,00	25,67	0,00	0,00
64	9069,33	0,00	0,00	2401,57	36,90	1,56	4616,33	0,00	0,00	626,67	0,00	0,00
65	3849,00	0,00	0,00	1491,33	0,00	0,00	1716,67	0,00	0,00	380,67	0,00	0,00
66 67	513,33 555,67	0,00 0,00	0,00 0,00	206,34 133,33	$88,67 \\ 0,00$	75,36 $0,00$	258,67 $222,34$	0,00 5,01	0,00 $2,31$	47,67 $24,52$	0,00 $13,85$	0,00 $129,84$
69	1354,33	0,00	0,00	465,67	0,00	0,00	552,33	0,00	0,00	46,46	32,79	239,93
70	3111,67	0,00	0,00	812,72	79,39	10,83	1214,33	0,00	0,00	213,00	0,00	0,00
72	812,67	0,00	0,00	212,24	44,91	26,84	314,00	0,00	0,00	71,67	0,00	0,00
73	867,33	0,00	0,00	245,09	30,42	14,17	354,33	0,00	0,00	24,22	3,22	15,33
74 75	4153,67	0,00	0,00	1207,67	0,00	0,00	1887,67	0,00	0,00	202,67	0,00	0,00
75 76	2323,38 630,33	218,38 0,00	0,37 0,00	888,13 227,23	143,13 $49,56$	$\frac{19,21}{27,89}$	1375,00 281,33	0,00 0,00	0,00 0,00	256,33 17,33	$0,00 \\ 0,00$	$0,00 \\ 0,00$
77	15189,00	0,00	0,00	4552,31	1577,31	53,02	6238,00	0,00	0,00	541,61	139,28	34,62
79	955,00	0,00	0,00	288,67	0,00	0,00	473,67	0,00	0,00	50,33	0,00	0,00
80	3324,00	0,00	0,00	1407,33	0,00	0,00	1810,33	0,00	0,00	239,67	0,00	0,00
81	1382,00	0,00	0,00	533,33	0,00	0,00	593,09	117,76	24,77	54,33	0,00	0,00
83	774,15	197,48	34,25	312,67	0,00	0,00	367,33	0,00	0,00	54,33	0,00	0,00
84	3702,00	0,00	0,00	1560,00	0,00	0,00	2433,00	0,00	0,00	219,67	0,00	0,00
85 86	3102,33 2194,00	0,00 0,00	0,00 0,00	851,65 698,19	349,98 200,52	69,76 $40,29$	1216,67 984,00	0,00 0,00	0,00 0,00	106,73 59,67	0,73 0,00	$^{24,10}_{0,00}$
87	717,00	0,00	0,00	177,25	97,58	122,49	280,33	0,00	0,00	26,41	3,41	14,83
88	1355,33	0,00	0,00	880,33	0,00	0,00	808,70	14,70	1,85	43,00	0,00	0,00
89	11625,33	0,00	0,00	4222,67	0,00	0,00	5687,00	0,00	0,00	823,67	0,00	0,00
90	4872,05	262,72	5,70	2207,67	0,00	0,00	2629,00	0,00	0,00	337,33	0,00	0,00
91	1296,33	0,00	0,00	354,24	50,24	16,53	542,67	0,00	0,00	62,64	43,31	224,02
92 95	1300,67 1021,00	0,00 0,00	0,00 0,00	384,08 351,00	$81,75 \\ 0,00$	$\frac{27,04}{0,00}$	565,67 602,33	0,00 0,00	0,00 0,00	58,78 60,67	0,00	$23,31 \\ 0,00$
90	1021,00	0,00	0,00	331,00	0,00	0,00	002,33	0,00	0,00	00,07	0,00	0,00

D.4.2. Tabellen der Projektionen für das inputorientierte BCC-Modell

Tabelle 6.20.: Projektionen der Inputs des inputorientierten BCC-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	θ_B^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	82,29%	972,12	-209,21	-17,71	512,12	-110,22	-17,71	145,19	-482,14	-76,86
4	74,77%	1008,40	-340,27	-25,23	568,50	-191,83	-25,23	215,03	-344,30	-61,56
5	94,27%	2780,97	-169,04	-5,73	1458,67	-88,66	-5,73	543,24	-180,43	-24,93
8	88,09%	1125,50	-152,17	-11,91	654,09	-106,91	-14,05	212,00	-28,66	-11,91
10	88,06%	2531,14	-343,20	-11,94	1278,34	-295,33	-18,77	131,50	-17,83	-11,94
12	87,61%	2234,64	-316,03	-12,39	1184,24	-175,42	-12,90	369,71	-52,29	-12,39
13	86,28%	1408,38	-223,96	-13,72	809,57	-213,43	-20,86	296,52	-47,15	-13,72
14	91,05%	460,88	-105,12	-18,57	257,98	-25,36	-8,95	162,97	-293,03	-64,26
15	91,95%	823,57	-72,10	-8,05	439,52	-38,48	-8,05	102,06	-8,94	-8,05
16	92,09%	1910,25	-164,08	-7,91	1070,06	-96,60	-8,28	301,44	-25,89	-7,91
17	82,33%	797,23	-171,10	-17,67	429,49	-92,18	-17,67	121,57	-26,09	-17,67
19	91,29%	4955,83	-472,84	-8,71	2561,58	-483,75	-15,88	1749,63	-400,38	-18,62
22	94,72%	1895,66	-105,67	-5,28	980,67	-54,67	-5,28	183,44	-10,23	-5,28
23	93,96%	450,07	-28,93	-6,04	271,23	-17,44	-6,04	79,11	-20,89	-20,89
24	84,62%	387,84	-70,49	-15,38	236,65	-43,01	-15,38	49,79	-40,21	-44,68
27	94,62%	2477,78	-140,88	-5,38	1199,51	-343,49	-22,26	32,17	-1,83	-5,38
28	84,02%	579,74	-110,26	-15,98	310,87	-59,13	-15,98	62,73	-11,93	-15,98
30	95,36%	4797,34	-242,00	-4,80	2354,12	-114,55	-4,64	692,31	-33,69	-4,64
34	94,99%	2050,83	-108,17	-5,01	953,22	-245,12	-20,45	0,00	0,00	0,00
36	85,77%	789,43	-145,57	-15,57	407,69	-67,64	-14,23	90,34	-14,99	-14,23
38	99,04%	2652,29	-25,71	-0,96	1352,89	-13,11	-0,96	763,57	-286,76	-27,30
39	77,96%	496,35	-140,32	-22,04	298,61	-125,72	-29,63	39,46	-51,20	-56,47
41	99,46%	540,07	-2,93	-0,54	296,72	-1,61	-0,54	30,50	-0,17	-0,54
42	96,15%	2347,66	-94,00	-3,85	1092,55	-251,79	-18,73	36,54	-1,46	-3,85
44	93,19%	541,12	-39,54	-6,81	309,70	-22,63	-6,81	123,63	-9,03	-6,81
46	83,80%	891,35	-172,31	-16,20	503,64	-97,36	-16,20	131,57	-25,43	-16,20
47	81,21%	807,23	-186,77	-18,79	467,77	-108,23	-18,79	208,71	-48,29	-18,79
49	81,54%	2376,08	-537,92	-18,46	1292,68	-292,65	-18,46	372,29	-320,04	-46,23
51	96,47%	5377,84	-295,16	-5,20	2909,21	-106,45	-3,53	1081,75	-39,58	-3,53
52	90,69%	1709,81	-175,52	-9,31	888,51	-218,82	-19,76	109,43	-11,23	-9,31
56	88,61%	718,33	-92,33	-11,39	352,08	-45,26	-11,39	60,22	-114,78	-65,59
57	98,09%	938,39	-18,27	-1,91	465,60	-9,07	-1,91	52,31	-1,02	-1,91
60	85,75%	434,28	-93,38	-17,70	248,10	-41,23	-14,25	145,78	-24,23	-14,25
61	83,31%	1349,07	-270,27	-16,69	715,08	-143,26	-16,69	156,35	-31,32	-16,69
63	96,67%	496,86	-30,81	-5,84	268,42	-9,25	-3,33	61,22	-2,11	-3,33
65	90,32%	2824,91	-302,76	-9,68	1612,05	-226,28	-12,31	569,32	-61,02	-9,68
66	95,11%	416,58	-21,42	-4,89	257,11	-13,22	-4,89	70,38	-3,62	-4,89
69	93,47%	882,36	-61,64	-6,53	451,15	-31,52	-6,53	202,68	-111,66	-35,52
70	92,05%	1895,62	-163,72	-7,95	1132,73	-144,61	-11,32	343,35	-96,31	-21,91
74	82,47%	2993,11	-636,22	-17,53	1414,09	-300,58	-17,53	798,75	-398,25	-33,27
75	99,69%	2052,28	-6,38	-0,31	1101,33	-47,34	-4,12	147,54	-0,46	-0,31
79	87,34%	698,43	-101,24	-12,66	378,18	-54,82	-12,66	140,62	-20,38	-12,66
80	88,39%	2680,87	-352,13	-11,61	1439,84	-384,82	-21,09	428,99	-56,35	-11,61
81	92,44%	984,18	-91,49	-8,51	472,37	-38,63	-7,56	100,76	-8,24	-7,56
84	83,91%	3299,62	-632,71	-16,09	1692,74	-324,59	-16,09	561,42	-1308,58	-69,98
85	89,32%	1884,95	-225,38	-10,68	1034,03	-123,64	-10,68	324,00	-422,00	-56,57
86	92,49%	1410,16	-114,50	-7,51	804,41	-90,59	-10,12	174,24	-106,09	-37,85
87	95,20%	503,93	-25,41	-4,80	274,49	-13,84	-4,80	26,34	-1,33	-4,80
88	77,67%	1169,71	-336,29	-22,33	588,16	-171,50	-22,58	147,57	-42,43	-22,33
91	87,13%	900,27	-161,40	-15,20	421,13	-62,21	-12,87	89,52	-191,82	-68,18
92	83,53%	917,46	-184,54	-16,75	437,70	-86,30	-16,47	227,48	-44,85	-16,47
95	86,06%	876,95	-142,05	-13,94	456,40	-73,93	-13,94	101,26	-16,40	-13,94

Tabelle 6.21.: Projektionen der Outputs des inputorientierten BCC-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
2	1331,67	0,00	0,00	490,33	0,00	0,00	681,67	0,00	0,00	44,25	6,58	17,47
4	1261,33	0,00	0,00	794,33	0,00	0,00	717,33	0,00	0,00	47,67	0,00	0,00
5	3319,33	0,00	0,00	1420,00	0,00	0,00	1858,00	0,00	0,00	364,33	0,00	0,00
8	1561,33	0,00	0,00	707,33	0,00	0,00	772,00	0,00	0,00	92,33	0,00	0,00
10	2973,00	0,00	0,00	1004,67	0,00	0,00	1666,00	0,00	0,00	160,67	0,00	0,00
12	2671,67	0,00	0,00	1354,67	0,00	0,00	1582,00	0,00	0,00	155,33	0,00	0,00
13	1857,67	0,00	0,00	847,67	0,00	0,00	1016,00	0,00	0,00	70,73	6,73	10,52
14	665,33	0,00	0,00	218,56	82,23	60,32	296,00	0,00	0,00	33,33	0,00	0,00
15	945,26	107,26	12,80	344,33	0,00	0,00	599,67	0,00	0,00	37,00	0,00	0,00
16	2696,67	0,00	0,00	832,33	0,00	0,00	1357,67	0,00	0,00	119,53	38,53	47,57
17	937,40	31,07	3,43	537,67	0,00	0,00	548,33	0,00	0,00	53,00	0,00	0,00
19	7309,67	0,00	0,00	2551,33	0,00	0,00	3016,30	216,63	7,74	253,00	0,00	0,00
22	2635,67	0,00	0,00	899,00	0,00	0,00	1223,00	0,00	0,00	102,31	9,64	10,40
23	660,73	55,06	9,09	246,89	0,22	0,09	315,67	0,00	0,00	21,67	0,00	0,00
24	566,36	72,69	14,72	214,00	0,00	0,00	260,92	2,59	1,00	15,67	0,00	0,00

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
27	2620,82	31,49	1,22	1066,00	0,00	0,00	1558,00	0,00	0,00	133,33	0,00	0,00
28	804,67	0,00	0,00	308,18	47,51	18,23	374,67	0,00	0,00	36,67	0,00	0,00
30	5788,00	0,00	0,00	1889,79	783,12	70,76	3097,00	0,00	0,00	272,33	0,00	0,00
34	2529,67	0,00	0,00	910,34	302,67	49,81	1205,36	20,03	1,69	100,34	34,01	51,27
36	916,00	0,00	0,00	357,67	0,00	0,00	556,67	0,00	0,00	27,95	1,28	4,80
38	3850,00	0,00	0,00	1359,33	0,00	0,00	1692,67	0,00	0,00	166,56	61,89	59,13
39	773,00	0,00	0,00	309,97	70,97	29,69	363,33	0,00	0,00	14,00	0,00	0,00
41	663,00	0,00	0,00	314,67	0,00	0,00	326,50	54,50	20,04	45,00	0,00	0,00
42	2553,44	222,11	9,53	1146,67	0,00	0,00	1427,33	0,00	0,00	109,33	0,00	0,00
44	788,00	0,00	0,00	294,22	45,55	18,32	395,00	0,00	0,00	15,67	0,00	0,00
46	1263,67	0,00	0,00	451,25	80,58	21,74	601,33	0,00	0,00	95,33	0,00	0,00
47	1198,00	0,00	0,00	357,42	14,09	4,10	493,33	0,00	0,00	134,33	0,00	0,00
49	2739,20	182,20	7,13	1017,90	88,23	9,49	1680,00	0,00	0,00	326,00	0,00	0,00
51	6721,00	0,00	0,00	1973,67	0,00	0,00	3328,33	0,00	0,00	677,00	0,00	0,00
52	1948,67	0,00	0,00	764,33	0,00	0,00	1204,67	0,00	0,00	128,54	20,87	19,38
56	1038,67	0,00	0,00	389,09	48,42	14,21	436,00	0,00	0,00	34,54	2,87	9,06
57	1306,33	0,00	0,00	497,33	0,00	0,00	568,74	42,41	8,06	69,33	0,00	0,00
60	622,00	0,33	0,05	201,67	0,00	0,00	284,00	0,00	0,00	25,67	0,00	0,00
61	2029,33	0,00	0,00	673,00	0,00	0,00	868,16	38,83	4,68	70,87	12,20	20,80
63	602,06	60,39	11,15	211,33	0,00	0,00	327,67	0,00	0,00	25,67	0,00	0,00
65	3849,00	0,00	0,00	1491,33	0,00	0,00	1716,67	0,00	0,00	380,67	0,00	0,00
66	537,05	23,72	4,62	170,69	53,02	45,06	258,67	0,00	0,00	47,67	0,00	0,00
69	1354,33	0,00	0,00	465,67	0,00	0,00	552,33	0,00	0,00	47,92	34,25	250,61
70	3111,67	0,00	0,00	733,33	0,00	0,00	1214,33	0,00	0,00	213,00	0,00	0,00
74	4153,67	0,00	0,00	1207,67	0,00	0,00	1887,67	0,00	0,00	209,94	7,27	3,59
75	2219,58	114,58	5,44	852,83	107,83	14,47	1375,00	0,00	0,00	256,33	0,00	0,00
79	955,00	0,00	0,00	353,17	64,50	22,34	473,67	0,00	0,00	50,33	0,00	0,00
80	3324,00	0,00	0,00	1407,33	0,00	0,00	1810,33	0,00	0,00	239,67	0,00	0,00
81	1382,00	0,00	0,00	533,33	0,00	0,00	594,86	119,53	25,15	54,33	0,00	0,00
84	3702,00	0,00	0,00	1560,00	0,00	0,00	2433,00	0,00	0,00	219,67	0,00	0,00
85	3102,33	0,00	0,00	608,43	106,76	21,28	1216,67	0,00	0,00	142,83	56,83	66,08
86	2194,00	0,00	0,00	515,19	17,52	3,52	984,00	0,00	0,00	91,70	32,03	53,68
87	717,00	0,00	0,00	244,97	165,30	207,49	295,20	14,87	5,30	23,00	0,00	0,00
88	1355,33	0,00	0,00	880,33	0,00	0,00	807,06	13,06	1,64	43,00	0,00	0,00
91	1296,33	0,00	0,00	462,05	158,05	51,99	542,67	0,00	0,00	35,64	16,31	84,36
92	1300,67	0,00	0,00	419,72	117,39	38,83	565,67	0,00	0,00	47,67	0,00	0,00
95	1021,00	0,00	0,00	368,29	17,29	4,93	602,33	0,00	0,00	60,67	0,00	0,00

E. Outputorientierte Modelle

E.1. Outputorientierte Modelle der 95 Raiffeisenbanken für das Jahr 2010

E.1.1. Outputorientiertes CCR-Modell

Das outputorientierte CCR-Modell, angewendet auf die 95 Raiffeisenbanken, liefert die folgenden Ergebnisse:

Tabelle 6.22.: Ergebnisse des outputorientierten CCR-Modells für das Jahr 2010

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
1 2	100,00%	7	0	0	407.05	0	0	0	0
3	125,05% $100,00%$	1 (0,48) 68 (1,24) 72 (0,07) 76 (0,47) 78 (0,12)	U	U	467,25	U	U	U	U
4	118,98%	21 (0,77) 45 (0,09) 48 (0,02) 58 (0,13)	0	0	217,42	0	0	68,55	0
5 6	104,11% 100,00%	29 (0,17) 38 (0,16) 48 (0,21) 58 (0,35) 72 (1,34)	0	0	135,24	0	0	0	0
7	117,64%	29 (1,53) 50 (1,19) 68 (2,29) 76 (2,58) 78 (1,53)	0	0	0	0	0	0	82,73
8	116,42%	45 (0,07) 48 (0,07) 58 (0,16) 68 (0,63) 72 (0,20) 78 (0,15)	0	0	0	0	0	0	0
9 10	113,56% $116,79%$	29 (0,03) 76 (0,29) 78 (0,06) 3 (0,03) 11 (0,16) 26 (0,06) 29 (0,10) 75 (0,67) 78 (0,85)	0	$^{26,32}_{0}$	0	0	$^{11,41}_{0}$	0	12,85
11	100,00%	19	0	0	0	0	0		
12	110,21%	29 (0,02) 50 (0,03) 58 (0,58) 62 (0,07) 68 (1,19) 72 (1,04)	0	0	0	0	0	0	0
13 14	116,91% $121,36%$	29 (0,06) 58 (0,22) 62 (0,00) 68 (0,97) 76 (1,28) 29 (0,02) 32 (0,00) 38 (0,07) 78 (0,31)	0	$^{5,7}_{0}$	0 371,9	0	$0 \\ 75,1$	0	0
15	122,02%	3 (0,02) 18 (0,07) 29 (0,14) 58 (0,08) 68 (0,16) 75 (0,03)	ő	0	0	0	0	0	ő
16	112,45%	29 (0,19) 38 (0,01) 50 (0,66) 68 (0,79) 78 (0,73)	0	0	0	0	0	0	11,69
17 18	123,56% $100,00%$	$48 \ (0,06) \ 58 \ (0,24) \ 62 \ (0,01) \ 68 \ (0,59) \ 72 \ (0,04)$	U	11,85	U	U	U	U	U
19	119,19%	1 (5,63) 45 (0,34) 76 (1,01) 78 (1,20)	0	0	956,96	0	0	0	148,99
20 21	134,34% 100,00%	11 (0,10) 32 (0,01) 45 (0,00) 78 (0,32)	0	0	0	0	0	28,85	13,51
22	111,71%	11 (0,42) 29 (0,08) 38 (0,11) 58 (0,06) 68 (0,40) 78 (0,88)	0	0	0	0	0	0	0
23	110,85%	21 (0,01) 62 (0,02) 68 (0,67) 72 (0,14) 76 (0,01)	0	0	41,54	0	0	0	0
24 25	120,48% $112,55%$	11 (0,08) 29 (0,02) 38 (0,06) 58 (0,01) 68 (0,24) 48 (0,24) 68 (3,38) 72 (1,00) 75 (0,55) 78 (0,70)	0	$0 \\ 22.09$	0	0	0	0	$_{0}^{5,97}$
26	100,00%	3	0	22,03	0	0	0		
27	112,95%	3 (0,17) 11 (0,42) 18 (0,36) 26 (0,18) 71 (0,46) 75 (0,16)	0	0	0	0	0	0	0
28 29	128,59% $100,00%$	45 (0,01) 48 (0,02) 58 (0,04) 68 (0,30) 72 (0,28) 78 (0,24)	0	0	0	0	0	0	0
30	114,31%	29 (0,90) 32 (0,20) 38 (0,04) 78 (0,95)	0	0	50,42	0	676,81	0	0
31	100,11%	21 (3,30) 48 (0,07) 62 (0,75) 76 (1,13)	0	162,11	2372,74	0	0	0	0
32 33	100,00% $113,53%$	35 (0,28) 78 (0,42)	0	3,91	0	39,69	0	16,96	0
34	133,56%	3 (0,36) 35 (0,19) 78 (1,55)	0	216,29	ő	0	0	0	38,34
35	100,00%	20 (0.14) 70 (0.02) 62 (0.00) 62 (0.66) 77 (0.00)	0	0.4	0	0	0	0	0
36 37	125,04% $100,00%$	29 (0,14) 58 (0,03) 62 (0,00) 68 (0,66) 75 (0,00)	U	0,4	0	0	0	0	0
38	100,00%	18							
39 40	121,67% $104,49%$	29 (0,06) 68 (0,27) 76 (0,32) 78 (0,18) 3 (0,16) 6 (0,01) 11 (0,05) 29 (0,02) 78 (0,07)	0	208,97 0	0	0	0	0	19,94 $11,35$
41	101,89%	11 (0,24) 18 (0,11) 48 (0,05) 68 (0,24)	0	44,26	0	0	0	38,38	0
42	115,44%	3 (0,10) 18 (1,30) 68 (0,36) 71 (0,60)	0	145,62	0	161,34	0	0	0
43 44	104,52% $107,54%$	11 (1,56) 29 (0,14) 45 (0,06) 48 (0,42) 58 (0,42) 78 (0,41) 29 (0,03) 50 (0,29) 68 (0,12) 76 (0,20) 78 (0,19)	0	0	0	0	0	0	$_{7,7}^{0}$
45	100,00%	12	0		0	0	0	0	1,1
46	127,83%	29 (0,03) 38 (0,05) 48 (0,00) 58 (0,06) 72 (0,69) 78 (0,39)	0	0	0	0	0	0	0
47 48	125,70% $100,00%$	1 (0,02) 45 (0,06) 48 (0,14) 72 (0,24) 78 (0,27) 26	0	0	68,94	0	0	0	0
49	123,70%	29 (0,59) 48 (0,18) 58 (0,09)	42,23	0	286,74	26,63	0	0	0
50 51	100,00% $114,17%$	29 (0,51) 32 (0,26) 48 (0,53) 78 (1,80)	0	0	405.66	0	124	0	0
51 52	114,17% $114,64%$	18 (0,39) 29 (0,05) 58 (0,01) 68 (0,77) 75 (0,41) 78 (0,15)	0	0	405,66 0	0	0	0	0
53	100,00%	0			-				
54 55	102,15% $118,23%$	1 (0,28) 11 (0,10) 48 (0,01) 68 (0,02) 78 (0,30) 6 (0,04) 11 (0,04) 29 (0,02) 78 (0,34)	0	0	0	0	$_{8,82}^{0}$	0,93	$_{7,84}^{0}$
56	117,68%	11 (0,24) 29 (0,02) 32 (0,00) 38 (0,16) 78 (0,16)	0	0	0	0	0	0	0,58
57	103,04%	1 (0,16) 11 (0,19) 48 (0,05) 68 (0,61) 78 (0,33)	0	0	0	0	0	47,93	0
58 59	100,00% $101,72%$	3 (0,79) 29 (0,44) 75 (0,74) 78 (0,02)	0	12,71	0	0	91,03	0	0
60	126,15%	38 (0,07) 50 (0,06) 68 (0,20) 72 (0,13) 78 (0,19)	0	0	64,27	0	0	0	0
61	122,88%	11 (0,23) 38 (0,09) 45 (0,03) 58 (0,04) 68 (0,64) 78 (0,68)	0	0	0	0	0	0	0
62 63	100,00% $115,38%$	29 (0,08) 38 (0,01) 58 (0,02) 68 (0,12) 72 (0,02) 78 (0,08)	0	0	0	0	0	0	0
64	115,49%	29 (0,97) 50 (0,75) 72 (2,53) 78 (2,05)	0	0	505,94	0	9,96	0	0
65 66	113,71% $125,37%$	21 (0,42) 48 (0,31) 68 (2,74) 72 (0,71) 76 (0,54) 29 (0,04) 72 (0,48) 76 (0,07) 78 (0,02)	0	0 40	182,08 0	0	10.28	0	0
67	125,37% $121,99%$	29 (0,04) 72 (0,48) 76 (0,07) 78 (0,02) 21 (0,04) 68 (0,04) 76 (0,04) 78 (0,37)	0	9,49 8,01	0	0	$19,28 \\ 0$	0	10,43
68	100,00%	30							, ,

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
69	113,52%	32 (0,02) 38 (0,14) 45 (0,09) 78 (0,19)	0	0	1,14	0	0	0	37,94
70	111,36%	1 (0,90) 68 (0,98) 72 (1,38) 76 (0,03) 78 (0,51)	0	0	204,13	0	0	0	0
71	100,00%	3							
72	100,00%	22							
73	107,50%	50 (0,10) 76 (0,74) 78 (0,22)	0	0	206,31	0	2,38	0	18,34
74	120,34%	29 (0,26) 32 (0,34) 38 (0,29) 48 (0,01) 78 (0,98)	0	0	448,89	0	0	0	0
75	100,00%	11							
76	100,00%	16							
77	102,59%	29 (0,15) 32 (1,70) 38 (1,50) 78 (1,49)	0	0	0	0	1660,78	0	180,64
78	100,00%	50							
79	119,03%	29 (0,07) 38 (0,06) 50 (0,14) 68 (0,07) 72 (0,25) 78 (0,17)	0	0	0,01	0	0	0	0
80	117,40%	29 (0,18) 38 (0,09) 48 (0,10) 58 (0,57) 72 (0,54) 78 (0,59)	0	0	0	0	0	0	0
81	111,52%	1 (0,31) 11 (0,81) 45 (0,04) 48 (0,04) 78 (0,00)	0	0	0	0	0	89,38	0
82	102,98%	11 (1,62) 78 (0,11)	193,63	0	0	0	488,37	0	9,99
83	102,19%	18 (0,34) 26 (0,02) 48 (0,03) 71 (0,02) 75 (0,06)	0	0	0	78,45	0	0	0
84	122,08%	29 (0,31) 38 (0,83) 50 (0,69) 58 (0,17) 72 (0,04)	0	0	570,68	0	0	0	0
85	115,30%	50 (0,46) 76 (0,83) 78 (1,65)	0	0	482,49	0	229,58	0	34,07
86	110,97%	29 (0,15) 50 (0,16) 72 (0,53) 76 (0,70) 78 (0,36)	0	0	0	0	103,92	0	0
87	117,83%	11 (0,08) 29 (0,03) 32 (0,01) 78 (0,34)	0	0	0	0	100,86	0	9,74
88	127,90%	11 (0,20) 18 (0,06) 48 (0,00) 58 (0,43) 68 (0,96)	0	0	0	0	0	48,87	0
89	126,45%	29 (0,82) 32 (0,10) 38 (1,72) 45 (0,18) 48 (0,63) 78 (0,54)	0	0	0	0	0	0	0
90	114,66%	48 (0,04) 58 (0,77) 68 (1,99) 72 (0,54) 75 (0,47) 78 (0,62)	0	0	0	0	0	0	0
91	110,71%	11 (0,02) 29 (0,07) 32 (0,27)	44,18	0	0	0	50,6	0	42,86
92	122,00%	11 (0,16) 29 (0,08) 32 (0,25)	14,58	0	0	0	77,07	0	8,83
93	105,76%	48 (0,32) 75 (0,22) 78 (1,54)	0	236,21	0	525,38	221,8	0	0
94	100,80%	29 (0,55) 45 (0,11) 48 (0,20) 58 (0,03)	297,04	0	59,7	0	0	0	0
95	122,26%	29 (0,15) 48 (0,01) 58 (0,06) 72 (0,07) 75 (0,07) 78 (0,17)	0	0	0	0	0	0	0
ø	111,65%								

Es ist hier nicht weiter verwunderlich, dass das outputorientierte CCR-Modell dieselben Raiffeisenbanken wie das inputorientierte CCR-Modell als effizient ausweist, schließlich ergibt sich der Effizienzwert für das outputorientierte CCR-Modell aus dem Kehrwert des Effizienzwertes des inputorientierten CCR-Modells.

Daher und aufgrund der Tatsache, dass der Effizienzwert des inputorientierten Modells $\theta^* \leq 1$ ist, erfüllt der Effizienzwert des outputorientierten Modells $\eta^* \geq 1$. Je höher der Wert von η^* ist, desto weniger effizient ist die betrachtete DMU.

 θ^* drückt die Inputreduktionsrate aus, während η^* die Outputvergrößerungsrate beschreibt.

Auch die Slacks für das outputorientierte CCR-Modell lassen sich direkt aus jenen des inputorientierten CCR-Modells ableiten. Schließlich gilt:

$$t^{-*} = \frac{s^{-*}}{\theta^*}, \qquad t^{+*} = \frac{s^{+*}}{\theta^*},$$

wobei t^{-*} und t^{+*} die Slack-Vektoren für das outputorientierte CCR-Modell und s^{-*} und s^{+*} die Slack-Vektoren des inputorientierten CCR-Modells bezeichnen; θ^* ist der Effizienzwert des inputorientierten CCR-Modells.

Die Tabellen 6.34 und 6.35 im Anhang E.5.1 zeigen die Projektionen für das outputorientierte CCR-Modell, welche anhand der Formeln in 2.8 berechnet wurden.

E.1.2. Outputorientiertes BCC-Modell mit den drei Inputs I1, I2, $I3^*$

Das outputorientierte BCC-Modell mit den Inputs $I1,\ I2$ und dem modifizierten Input $I3^*$ liefert die folgenden Ergebnisse:

Tabelle 6.23.: Ergebnisse des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2010

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
1 2	100,00% 123,39%	21 (0,38) 31 (0,01) 38 (0,13) 45 (0,01) 78 (0,48)	0	23,4	381,71	0	0	0	0
3 4	100,00% 118,91%	21 (0,76) 45 (0,09) 48 (0,02) 58 (0,14)	0	2,55	216,2	0	0	68,73	0
5	103,76% 100,00%	29 (0,21) 38 (0,29) 48 (0,24) 58 (0,01) 62 (0,22) 72 (0,04)	0	0	13,16	0	0	0	0
7 8	100,00% 116,22%	21 (0,03) 45 (0,07) 48 (0,07) 58 (0,15) 62 (0,03) 68 (0,38) 78 (0,28)	0	0	0	0	0	0	0
9	100,00% $110,13%$	26 (0,19) 48 (0,04) 53 (0,08) 59 (0,28) 78 (0,29) 93 (0,13)	0	0	0	0	23,7	0	0
11 12	100,00% $104,61%$	10 26 (0,15) 29 (0,05) 45 (0,05) 58 (0,36) 62 (0,19) 78 (0,20)	0	92,85	0	0	0	0	0
13 14	112,89% $112,39%$	21 (0,42) 29 (0,05) 38 (0,06) 62 (0,20) 78 (0,27) 11 (0,10) 50 (0,13) 54 (0,56) 68 (0,22)	$0 \\ 10,1$	29,63 0	$0 \\ 395,02$	0	$0 \\ 118,43$	0	$76,75 \\ 0$
15 16	115,55% $109,19%$	11 (0,06) 29 (0,10) 58 (0,05) 63 (0,60) 68 (0,14) 83 (0,06) 29 (0,28) 38 (0,02) 45 (0,08) 53 (0,12) 78 (0,51)	0	$ \begin{array}{c} 0 \\ 52,92 \end{array} $	0	$69,5 \\ 0$	0	0	$0 \\ 39,42$
17 18	123,27% 100,00%	21 (0,04) 37 (0,07) 48 (0,05) 58 (0,25) 68 (0,48) 72 (0,11)	0	6,66	0	0	0	0	0
19 20	108,11% 100,00%	45 (0,70) 48 (0,04) 53 (0,06) 77 (0,21)	0	$447,\!57$	241,89	0	0	275,21	0
21 22	100,00%	2C (0.10) 20 (0.00) 45 (0.00) 53 (0.00) 70 (0.57)	0	40.00	0	0	0	0	20.0
23	105,12% 108,41%	26 (0,18) 29 (0,08) 45 (0,08) 53 (0,09) 78 (0,57) 9 (0,01) 37 (0,15) 68 (0,63) 72 (0,17) 76 (0,04)	0	49,23 0	$ \begin{array}{c} 0 \\ 52,27 \end{array} $	$0 \\ 15,84$	0	0	20,2 0
24 25	100,00% 100,00%	0 2							
26 27	100,00% $109,67%$	13 3 (0,21) 26 (0,42) 48 (0,02) 58 (0,04) 71 (0,24) 75 (0,08)	0	56,58	0	0	0	0	0
28 29	127,88% $100,00%$	29 (0,01) 48 (0,04) 50 (0,08) 54 (0,05) 68 (0,55) 72 (0,12) 78 (0,16) 25	0	0	0	0	0	0	0
30 31	106,85% $100,00%$	25 (0,05) 26 (0,14) 29 (0,35) 53 (0,04) 59 (0,30) 77 (0,13) 3	0	0	0	0	599,77	0	0
32 33	100,00% 100,00%	6							
34 35	113,50% 100,00%	26 (0,44) 78 (0,56)	0	419	0	0	301,71	59,08	19,84
36	122,64%	29 (0,12) 50 (0,03) 58 (0,02) 63 (0,16) 68 (0,63) 83 (0,05)	0	0	0	17,3	0	0	0
37 38	100,00% 100,00%	4 9							
39 40	121,63% $100,00%$	29 (0,05) 68 (0,53) 76 (0,32) 78 (0,10) 0	0	204,76	0	0	32,99	0	13,39
41 42	101,01% $107,53%$	37 (0,64) 48 (0,01) 54 (0,14) 68 (0,13) 78 (0,08) 3 (0,04) 18 (0,21) 26 (0,43) 58 (0,09) 71 (0,23)	0	17,1 $295,81$	0	$0 \\ 218,02$	0	53,18 0	0
43 44	100,00% 107,38%	3 29 (0,01) 50 (0,31) 68 (0,40) 76 (0,15) 78 (0,13)	0	0	0	0	33,27	0	0,74
45 46	100,00% $127,55%$	15 29 (0,04) 38 (0,05) 48 (0,01) 58 (0,01) 62 (0,04) 72 (0,39) 78 (0,45)	0	0	0	0	0	0	0
47 48	124,56% 100,00%	1 (0,30) 38 (0,06) 48 (0,15) 50 (0,09) 54 (0,23) 78 (0,17)	0	0	70,51	0	0	0	0
49 50	123,06% 100,00%	29 (0,57) 48 (0,18) 50 (0,17) 58 (0,08) 13	55,6	0	250,45	49,01	0	0	0
51 52	101,88% 111,98%	7 (0,21) 25 (0,06) 48 (0,56) 59 (0,01) 77 (0,16)	111 0	0	0	0	136,78 0	0	0
53	100,00%	26 (0,05) 48 (0,01) 58 (0,18) 59 (0,14) 71 (0,28) 78 (0,34) 10	U	19,86	U	U	U	0	U
54 55	100,00% 100,00%	10 1							
56 57	114,42% $101,20%$	11 (0,36) 32 (0,03) 38 (0,05) 50 (0,29) 54 (0,18) 68 (0,04) 78 (0,04) 11 (0,21) 21 (0,08) 48 (0,04) 58 (0,05) 68 (0,13) 78 (0,50)	0	0 0	0 0	0	0 0	63,08	0
58 59	100,00% 100,00%	18 5							
60 61	122,34% $117,97%$	11 (0,01) 50 (0,23) 54 (0,53) 68 (0,17) 78 (0,06) 26 (0,08) 29 (0,01) 45 (0,09) 58 (0,05) 78 (0,76)	0	$\frac{0}{32,36}$	81,43 0	0	$^{2,54}_{0}$	0	$0 \\ 21,72$
62 63	100,00% 100,00%	10 3							
64 65	100,00% 106,46%	43 (0,25) 45 (0,18) 48 (0,13) 53 (0,19) 62 (0,09) 78 (0,15)	0	273,47	0	0	0	0	0
66	115,13%	1 (0,07) 9 (0,21) 37 (0,31) 50 (0,05) 72 (0,36)	0	0	0	12,51	71,08	0	0
67 68	100,00% 100,00%	0 18							00.1
69 70	111,01% 106,99%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$_{58,04}^{0}$	$99,24 \\ 0$	0	0	0	28,4 0
71 72	100,00% $100,00%$	3 8							
73 74	107,25% $117,49%$	$\begin{array}{c} 29 \; (0.01) \; 50 \; (0.01) \; 76 \; (0.76) \; 78 \; (0.23) \\ 29 \; (0.14) \; 32 \; (0.05) \; 38 \; (0.49) \; 48 \; (0.07) \; 53 \; (0.14) \; 77 \; (0.12) \end{array}$	0	0 0	225,23 $135,25$	0	1,82 0	0	$19,65 \\ 0$
75 76	100,00% 100,00%	1							
77	100,00%	5							

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t ₃ ^{+*}	t_{4}^{+*}
78	100,00%	29				•			•
79	117,51%	29 (0,06) 48 (0,01) 50 (0,37) 54 (0,29) 68 (0,05) 72 (0,05) 78 (0,15)	0	0	0	0	0	0	0
80	112,86%	26 (0,19) 29 (0,15) 43 (0,05) 45 (0,06) 58 (0,07) 62 (0,29) 78 (0,20)	0	0	0	0	0	0	0
81	110,74%	11 (0,74) 45 (0,05) 48 (0,05) 58 (0,02) 68 (0,06) 78 (0,09)	0	0	0	0	0	107,55	0
82	100,46%	11 (0,47) 26 (0,16) 78 (0,37)	245	0	0	0	373,68	0	35,37
83	100,00%	3							
84	119,04%	29 (0,52) 31 (0,04) 38 (0,13) 45 (0,28) 77 (0,02)	0	0	744,53	0	0	0	51,33
85	109,63%	29 (0,11) 53 (0,86) 78 (0,03)	0	111,85	478,42	0	12,06	0	55,4
86	108,57%	29 (0,13) 53 (0,01) 62 (0,09) 78 (0,77)	0	81,24	133,08	0	152,82	0	0
87	105,05%	20 (0,12) 54 (0,38) 55 (0,09) 68 (0,41)	25,3	0	0	0	152,28	0	2,51
88	123,23%	18 (0,17) 21 (0,12) 26 (0,05) 58 (0,46) 78 (0,20)	0	0	0	0	0	65,26	17,94
89	100,00%	0							
90	100,23%	26 (0,03) 43 (0,80) 59 (0,15) 62 (0,03)	0	130,53	0	356,47	0	0	178,22
91	107,91%	11 (0,87) 29 (0,00) 32 (0,12)	16,6	0	167,11	0	179,23	0	14,83
92	118,22%	11 (0,30) 29 (0,03) 32 (0,18) 50 (0,32) 54 (0,18)	55,5	0	0	0	102,96	0	0
93	100,00%	1							
94	100,78%	29 (0,51) 32 (0,11) 45 (0,03) 48 (0,20) 58 (0,15)	277	0	72,65	0	0	0	0
95	118,18%	29 (0,15) 50 (0,01) 54 (0,12) 63 (0,20) 68 (0,02) 72 (0,16) 83 (0,34)	0	0	0	0	0	0	0
ø	106,86%								

Es werden dieselben DMUs als BCC-effizient ausgewiesen, welche auch im inputorientierten BCC-Modell als effizient bewertet werden. Schließlich hat die auf den Output fokussierte Bewertung keinen Einfluss auf die Efficient Frontier. Alle anderen Ergebnisse (Slacks, Referenzeinheiten,...) weichen jedoch von den Ergebnissen des inputorientierten BCC-Modells ab.

Aus den Tabellen 6.36 und 6.37, die im Anhang E.5.2 zu finden sind, können die Ergebnisse der Projektionen für das outputorientierte BCC-Modell nachgeschlagen werden.

E.1.3. Outputorientiertes BCC-Modell mit den drei Inputs I1, I2, I3

Da das outputorientierte BCC-Modell keine Einschränkungen bezüglich der Inputs fordert, kann der Nettoaufwand (I3) auch unverändert in die Analyse miteinbezogen werden. Die Ergebnisse für das outputorientierte BCC-Modell können aus Tabelle 6.24 abgelesen werden:

Tabelle 6.24.: Ergebnisse des BCC-Modells bei Output-Orientierung mit den drei Inputs $I1,\,I2$ und I3 für das Jahr 2010

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3)$	t ₁ +*	t_{2}^{+*}	t_3^{+*}	t_4^{+*}
1	100,00%	4	1	- 2	3 (- /	1			- 4
2	123,39%	21 (0,38) 31 (0,01) 38 (0,13) 45 (0,01) 78 (0,48)	0	23,4	821,11	0	0	0	0
3	100,21%	6 (0,54) 21 (0,21) 29 (0,18) 40 (0,07)	0	43,35	0	478,21	0	0	13,85
4 5	118,91% $103,75%$	21 (0,76) 45 (0,09) 48 (0,02) 58 (0,14)	0	$^{2,55}_{0}$	365,81 0	0	0	68,73 0	0
6	103,75%	29 (0,21) 38 (0,27) 48 (0,24) 58 (0,02) 62 (0,22) 72 (0,01) 78 (0,04) 16	U	U	U	U	U	U	U
7	100,00%	10							
8	109,29%	6 (0,11) 11 (0,41) 21 (0,27) 45 (0,04) 48 (0,09) 58 (0,07) 78 (0,01)	0	0	0	0	0	0	0
9	100,00%	3							
10	117,02%	6 (0,24) 29 (0,38) 45 (0,05) 48 (0,12) 53 (0,20) 62 (0,01)	0	39,83	0	0	0	0	0
11 12	100,00%	6 (0.02) 21 (0.26) 20 (0.12) 45 (0.12) 58 (0.22) 62 (0.24)	0	0	0	0	0	0	13,46
13	108,08% $101,19%$	6 (0,03) 21 (0,26) 29 (0,12) 45 (0,12) 58 (0,22) 62 (0,24) 6 (0,40) 21 (0,38) 45 (0,02) 58 (0,20)	0	137,28	0	0	0	61,93	8,81
14	112,39%	11 (0,10) 50 (0,13) 54 (0,56) 68 (0,22)	10,08	0	264,27	0	118,43	01,50	0,01
15	117,64%	29 (0,08) 48 (0,00) 50 (0,61) 58 (0,07) 83 (0,24)	29,18	ő	0	33,86	0	Ö	Õ
16	109,14%	29 (0,28) 38 (0,01) 45 (0,08) 53 (0,12) 78 (0,51)	0	52,84	0	0	0	0	40,2
17	122,76%	21 (0,05) 40 (0,02) 48 (0,06) 58 (0,20) 62 (0,01) 68 (0,65)	0	0	0	36,26	0	0	0
18 19	105,75% $108,11%$	11 (0,45) 21 (0,07) 29 (0,02) 58 (0,18) 68 (0,21) 78 (0,07)	0	0	1206.16	0	0	0	0,29
20	108,11%	45 (0,70) 48 (0,04) 53 (0,06) 77 (0,21)	0	447,57	1206,16	U	U	275,21	U
21	100,00%	18							
22	110,93%	29 (0,15) 38 (0,05) 45 (0,15) 53 (0,12) 78 (0,54)	0	11,03	0	0	0	0	24,87
23	108,41%	9 (0,01) 37 (0,15) 68 (0,63) 72 (0,17) 76 (0,04)	0	0	34,52	15,84	0	0	0
24	100,00%	2							
25 26	100,00% 100,00%	0							
27	120,58%	6 (0,40) 29 (0,15) 45 (0,14) 48 (0,03) 58 (0,21) 62 (0,02) 78 (0,04)	0	0	0	0	0	0	0
28	124,18%	6 (0,00) 40 (0,22) 48 (0,05) 68 (0,50) 72 (0,03) 78 (0,20)	Õ	4,63	Ō	0	0	0	0
29	100,00%	33							
30	110,82%	29 (0,67) 48 (0,02) 59 (0,05) 62 (0,08) 77 (0,17)	0	0	309,82	0	587,36	0	0
31	100,00%	5							
32 33	100,00% 100,00%	6							
34	126,25%	6 (0,56) 21 (0,01) 45 (0,10) 53 (0,33)	0	303,12	0	0	0	0,83	31,02
35	100,00%	1		000,12				0,00	01,02
36	118,66%	6 (0,05) 21 (0,01) 29 (0,07) 40 (0,41) 48 (0,01) 58 (0,06) 68 (0,39)	0	0	0	0	0	0	0
37	100,00%	$\frac{2}{2}$							
38 39	100,00%	10	0	100 10	0	0	05.61	0	14.00
40	122,07% $100,00%$	29 (0,05) 68 (0,45) 76 (0,40) 78 (0,10)	0	196,19	0	0	25,61	0	14,89
41	107,06%	1 (0,48) 11 (0,02) 21 (0,08) 35 (0,17) 37 (0,23) 48 (0,02)	0	0	0	0	0	24,51	0
42	108,54%	6 (0,45) 58 (0,37) 90 (0,18)	0	187,76	0	87,59	0	117,31	3,31
43	100,00%	0							
44	106,34%	29 (0,02) 50 (0,05) 68 (0,68) 72 (0,03) 76 (0,15) 78 (0,07)	0	0	0	0	64,17	0	0
45 46	100,00% 127,12%	29 (0,05) 48 (0,02) 62 (0,05) 68 (0,15) 72 (0,18) 78 (0,55)	0	1,6	0	0	0	0	0
47	124,56%	1 (0,31) 29 (0,00) 38 (0,06) 48 (0,15) 50 (0,08) 54 (0,23) 78 (0,17)	0	1,0	0	0	0	0	0
48	100,00%	29							
49	123,06%	29 (0,57) 48 (0,18) 50 (0,17) 58 (0,08)	55,63	0	528,95	49,01	0	0	0
50	100,00%	9							
51 52	104,08% $116,27%$	7 (0,03) 31 (0,01) 48 (0,52) 64 (0,20) 77 (0,24) 89 (0,01)	0	0	0	$314,67 \\ 0$	0	0	0
53	116,27%	6 (0,15) 21 (0,16) 29 (0,17) 48 (0,04) 58 (0,16) 62 (0,05) 78 (0,28)	U	U	0	U	U	U	U
54	100,00%	9							
55	107,25%	11 (0,01) 24 (0,33) 54 (0,52) 68 (0,14)	2,57	0	0	0	82,08	0	5,95
56	114,40%	11 (0,29) 29 (0,01) 32 (0,06) 38 (0,03) 50 (0,23) 54 (0,14) 68 (0,25)	0	0	0	0	0	0	0
57	102,28%	1 (0,08) 11 (0,32) 21 (0,13) 45 (0,02) 48 (0,04) 78 (0,41)	0	0	0	0	0	36,43	0
58 59	100,00% 100,00%	17							
60	122,17%	11 (0,00) 29 (0,00) 50 (0,19) 54 (0,55) 68 (0,21) 78 (0,05)	0	0	0	0	6,61	0	0
61	122,01%	21 (0,08) 29 (0,05) 38 (0,04) 45 (0,13) 62 (0,01) 78 (0,70)	0	0	0	0	0	0	23,82
62	100,00%	14							
63	100,00%	0							
64	100,00%	6 (0.07) 21 (0.01) 45 (0.20) 40 (0.10) 52 (0.20) 62 (0.20)	0	227.04	^	0	0	0	0
65 66	108,99% 100,00%	6 (0,07) 21 (0,01) 45 (0,28) 48 (0,18) 53 (0,26) 62 (0,20)	0	227,94	0	0	0	0	0
67	101,41%	9 (0,51) 11 (0,06) 33 (0,05) 54 (0,38)	0	0	0	0	29,49	21,21	6,79
68	100,00%	16					-,	-,	- ,
69	108,54%	11 (0,57) 21 (0,06) 45 (0,04) 68 (0,06) 78 (0,27)	0	0	0	0	0	5,06	26,5
70	106,82%	31 (0,00) 45 (0,09) 48 (0,06) 53 (0,43) 62 (0,12) 78 (0,30)	0	75,45	0	0	0	0	0
71	107,69%	6 (0,01) 29 (0,14) 48 (0,07) 62 (0,03) 68 (0,60) 78 (0,14)	0	23,89	0	0	0	0	0

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
72	100,00%	7							
73	106,14%	29 (0,00) 68 (0,21) 76 (0,56) 78 (0,24)	0	20,33	0	0	20,12	0	15,95
74	117,49%	29 (0,14) 32 (0,05) 38 (0,49) 48 (0,07) 53 (0,14) 77 (0,12)	0	0	1839,47	0	0	0	0
75	100,00%	0							
76	100,00%	4							
77	100,00%	5							
78	100,00%	25							
79	115,43%	29 (0,07) 40 (0,22) 48 (0,00) 54 (0,24) 68 (0,17) 72 (0,16) 78 (0,15)	0	0	0	0	0	0	0
80	116,82%	29 (0,29) 38 (0,01) 45 (0,18) 48 (0,05) 58 (0,11) 62 (0,20) 78 (0,16)	0	0	0	0	0	0	0
81	111,65%	1 (0,07) 11 (0,76) 21 (0,02) 45 (0,06) 48 (0,04) 78 (0,05)	0	0	0	0	0	95,09	0
82	101,67%	6 (0,21) 11 (0,65) 29 (0,01) 32 (0,14)	229,3	0	0	0	301,88	0	35,53
83	100,00%	1							
84	119,04%	29 (0,52) 31 (0,04) 38 (0,13) 45 (0,28) 77 (0,02)	0	0	2478,13	0	0	0	51,33
85	109,63%	29 (0,11) 53 (0,86) 78 (0,03)	0	111,85	1080,32	0	12,06	0	55,4
86	107,73%	6 (0,02) 29 (0,19) 48 (0,03) 72 (0,02) 78 (0,74)	0	115,64	0	0	96,5	0	0
87	103,25%	9 (0,17) 11 (0,23) 20 (0,10) 24 (0,11) 54 (0,38)	0	0	0	0	151,29	0	2,53
88	120,91%	6 (0,12) 11 (0,24) 21 (0,18) 45 (0,02) 58 (0,44)	0	0	0	0	0	79,44	12,25
89	100,00%	1							
90	100,00%	1							
91	107,91%	11 (0,87) 29 (0,00) 32 (0,12)	16,56	0	370,8	0	179,23	0	14,83
92	118,36%	11 (0,17) 29 (0,02) 32 (0,20) 50 (0,51) 54 (0,09)	67,78	0	0	0	82,47	0	0
93	109,03%	31 (0,01) 48 (0,26) 53 (0,38) 62 (0,35)	0	148,22	88,01	0	400,43	0	0
94	100,78%	29 (0,51) 32 (0,11) 45 (0,03) 48 (0,20) 58 (0,15)	277	0	340,54	0	0	0	0
95	120,04%	29 (0,12) 48 (0,05) 50 (0,82) 58 (0,02)	26,75	0	30,77	3,68	0	0	0
ø	107,41%								

In den Tabellen 6.38 und 6.39 im Anhang E.5.3 können die Projektionen des outputorientierten BCC-Modells mit den drei Inputs I1, I2 und I3 für das Jahr 2010 abgelesen werden.

Wirft man einen näheren Blick auf die Tabellen 6.23 und 6.24, so erkennt man, dass das outputorientierte BCC-Modell unter Verwendung des ursprünglichen Nettoaufwands I3 nur mehr 39 DMUs als BCC-effizient aufweist, im Gegensatz zum outputorientierten BCC-Modell mit den drei Inputs I1, I2 und $I3^*$; hier wurden 43 Raiffeisenbanken für BCC-effizient erklärt.

Die DMU $_{66}$ und die DMU $_{90}$, die im outputorientierten BCC-Modell, angewendet auf die Inputs I1, I2 und I3, als BCC-effizient ausgewiesen werden, sind im outputorientierten BCC-Modell mit den drei Inputs I1, I2 und $I3^*$ nicht einmal Farrell-effizient, da sie einen Effizienzwert ungleich 100% aufweisen. Sie enthalten zudem nun auch Slacks in In- bzw. Outputs.

Jene Raiffeisenbanken mit den DMUs 3, 18, 55, 67, 71 und 93 werden im outputorientierten BCC-Modell mit dem modifizierten Nettoaufwand $I3^*$ zusätzlich als BCC-effizient ausgewertet, im Gegensatz zum outputorientierten BCC-Modell mit dem ursprünglichen Input I3.

Die Tatsache, dass es zu einer kleinen Änderung in der Ausgabe der effizienten DMUs kommt, ist nicht weiter verwunderlich, schließlich unterscheiden sich die beiden obigen Versionen des outputorientierten BCC-Modells im Input Nettoaufwand.

Wie bereits erwähnt wurde, müssen die Inputs semipositive Daten aufweisen, um das input- und outputorientierte CCR-Modell, sowie das inputorientierte BCC-Modell anwenden zu können.

Um den Nettoaufwand in die Effizienzanalyse einbinden zu können, wurde dieser Input daher aufgrund der Wünsche der Raiffeisenlandesbank Oberösterreich entsprechend Tabelle 6.1 modifiziert. Man sollte sich hier stets vor Augen halten, dass die Betrachtung eines modifizierten Nettoaufwandes einige DMUs besser stellt und somit das Ergebnis leicht verfälscht wird.

Die Methode der DEA erlaubt es, den Erfolg einer Positionierung als Abstand zwischen der Efficient Frontier und den einzelnen DMUs, welche sich innerhalb des Production Possibility Sets befinden, zu bestimmen. Anzumerken ist hier allerdings, dass die Efficient Frontier nur anhand tatsächlicher Realisationen ermittelt wird. Hier liegt auch der große Nachteil nichtparametrischer Verfahren, wie etwa der DEA; der deterministische Charakter nichtparametrischer Verfahren ist für eine größere Sensitivität von DEA-Effizienzwerten bezüglich Daten- bzw. Messfehler und Ausreißer verantwortlich. Schließlich wird jede DMU, die nicht tatsächlich auf der Efficient Frontier liegt, als ineffizient ausgewertet.

Problematisch ist die Existenz eines Messfehlers besonders für die auf der Efficient Frontier gelegenen DMUs, da die Effizienzwerte sämtlicher Untersuchungsobjekte, die sich mit dieser DMU direkt oder in Kombination vergleichen, dann ebenso fehlerhaft sind (vgl. Berger und Humphrey (1997)). Die Forderung einer hohen Datenqualität gilt in besonderem Maße für die DEA, um Messfehler auszuschließen.

E.2. Outputorientierte Modelle der 95 Raiffeisenbanken für das Jahr 2011

E.2.1. Outputorientiertes CCR-Modell

Die folgende Tabelle zeigt die Resultate der Effizienzbewertung für das Jahr 2011 unter Anwendung des outputorientierten CCR-Modells:

Tabelle 6.25.: Ergebnisse des outputorientierten CCR-Modells für das Jahr 2011

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t ₁ +*	t ₂ +*	t ₃ +*	$t_{\scriptscriptstyle A}^{+*}$
1	100,00%	Denominarks	ι_1	ι_2	ι_3 (13)	ι_1	ι_2	ι_3	ι_4
2	118,17%	11 (1,05) 32 (0,03) 58 (0,19)	30,6	0	530,85	0	202,63	0	0
3	100,00%	6							
4	144,24%	11 (0,23) 29 (0,00) 32 (0,05) 58 (0,50) 68 (0,60)	0	0	312,59	0	0	0	0
5 6	109,85% $100,65%$	29 (0,22) 32 (0,23) 48 (0,22) 58 (0,56) 3 (0,38) 11 (0,46) 78 (0,97)	92,32	0	108,7 0	0	168,17 $238,23$	0	0
7	111,22%	11 (4,16) 29 (0,91) 32 (0,74) 58 (0,98)	0	0	111,16	0	1818,04	0	0
8	114,23%	11 (0,26) 32 (0,08) 45 (0,05) 48 (0,06) 58 (0,07) 68 (0,90)	0	0	0	0	0	0	0
9	129,31%	11 (0,18) 29 (0,00) 32 (0,02) 68 (0,26)	0	0	30,58	0	58,07	0	0
10	120,67%	11 (1,79) 29 (0,15) 58 (0,18) 59 (0,02) 71 (0,55)	0	0	0	0	372,1	0	0
11 12	100,00% 113,09%	58 11 (0,37) 29 (0,19) 32 (0,15) 48 (0,01) 58 (0,45) 68 (0,71)	0	0	0	0	0	0	0
13	137,53%	11 (0,03) 29 (0,13) 32 (0,13) 43 (0,01) 36 (0,43) 68 (0,11) 11 (0,03) 29 (0,05) 32 (0,07) 58 (0,22) 68 (2,22)	0	0	100,94	0	0	0	0
14	124,87%	11 (0,27) 29 (0,01) 32 (0,10) 68 (0,15)	0	0	351,29	0	109,46	0	0
15	112,24%	11 (0,10) 29 (0,19) 58 (0,04) 68 (0,01)	0	0	0	0	7,6	0	3,56
16 17	113,61%	11 (1,30) 29 (0,09) 32 (0,11) 68 (1,43)	0	0	131,09	0	280,99 0	0	0
18	127,90% $102,56%$	29 (0,02) 48 (0,02) 58 (0,32) 68 (0,39) 71 (0,08) 11 (1,36) 58 (0,04)	61,15	0	0	4,47 $310,93$	0	51,82	0,73
19	122,64%	11 (0,45) 32 (1,12) 68 (5,57)	01,10	0	936,92	0	ő	387,38	139,82
20	133,25%	11 (0,42) 53 (0,07)	17,15	0	0	0	27,72	24,22	2,52
21	100,00%	0							
22	111,93%	11 (1,51) 29 (0,13) 32 (0,12) 48 (0,01) 68 (0,30)	0	0	0	0	20,43	0	0
23 24	111,93% $154,15%$	11 (0,16) 29 (0,04) 32 (0,02) 58 (0,01) 68 (0,36) 48 (0,02) 58 (0,01) 68 (0,97)	0	$0 \\ 65,17$	45,02 $44,79$	$0 \\ 34,77$	0	0	0
25	111,07%	11 (2,99) 29 (0,31) 32 (0,10) 48 (0,27) 94 (0,05)	0	05,17	0	0	208,11	0	0
26	100,00%	0					,		
27	109,06%	3 (0,22) 11 (0,47) 29 (0,02) 68 (0,28) 71 (1,33)	0	0	0	107,15	0	0	0
28 29	128,26% 100,00%	11 (0,47) 29 (0,02) 32 (0,06) 48 (0,00) 68 (0,33)	0	0	0	0	49,41	0	0
30	100,00%	35 11 (2,18) 32 (0,17) 58 (0,96) 94 (0,36)	59,99	0	0	0	2036,52	0	0
31	110,47%	48 (0,12) 58 (1,86) 68 (7,10)	05,55	381,87	2863,93	0	0	464,49	0
32	100,00%	45							
33	100,00%	0					100.10		
34 35	120,01% $110,87%$	3 (0,12) 11 (2,39) 78 (0,26) 3 (0,03) 11 (0,46) 78 (0,26)	0	$\frac{22,93}{29,71}$	0	$0 \\ 151,44$	499,16 0	0	0
36	110,87% $121,42%$	11 (0,50) 29 (0,04) 58 (0,23) 71 (0,01) 94 (0,01)	0	29,71	0	151,44	206,47	0	0
37	102,24%	11 (0,47) 48 (0,02) 58 (0,04) 68 (0,12)	0	0	ő	167,83	0	35,28	0
38	105,97%	11 (2,85) 32 (0,31)	20,42	0	772,24	0	53,6	0	17,48
39	129,30%	11 (0,72) 29 (0,00) 32 (0,04) 68 (0,16)	0	0	52,26	0	73,19	0	0
40 41	102,93% 106,21%	3 (0,16) 11 (0,13) 29 (0,01) 68 (0,14) 71 (0,01) 11 (0,47) 48 (0,03) 58 (0,03) 68 (0,23)	0	0	0	$0 \\ 129,62$	50,34	0 87,77	0
42	117,33%	11 (0,47) 48 (0,03) 58 (0,03) 68 (0,23) 11 (1,78) 48 (0,02) 68 (0,63) 71 (0,72)	0	32,34	0	680,22	0	01,11	0
43	109,86%	11 (2,94) 32 (0,21) 48 (0,27) 94 (0,33)	107,21	0	0	0	8,57	0	0
44	112,99%	11 (0,42) 58 (0,06) 68 (0,46)	0	0	93,81	0	117,76	0	0,99
45	100,00%	3		0	^	0	100.05		
46 47	125,29% $137,69%$	11 (0,24) 29 (0,05) 32 (0,09) 48 (0,06) 68 (0,77) 32 (0,04) 48 (0,11) 53 (0,15) 68 (0,92)	0	0	$0 \\ 107,16$	0	$103,27 \\ 64,41$	0	0
48	100,00%	32 (0,04) 48 (0,11) 55 (0,15) 68 (0,32)	U	U	107,10	U	04,41		U
49	125,73%	29 (0,52) 32 (0,10) 48 (0,20) 58 (0,01) 68 (0,26)	0	0	240,67	0	0	0	0
50	100,79%	11 (0,65) 58 (0,06) 68 (0,00)	0	0	270,45	0	154,98	0	0,8
51 52	106,33%	11 (0,74) 29 (0,30) 32 (0,57) 48 (0,23) 94 (0,57)	0	40.72	0	415.20	399,67	0	0
52 53	122,22% 100,00%	48 (0,03) 68 (2,97) 71 (0,46) 14	0	40,72	0	415,29	348,82	0	0
54	114,99%	48 (0,02) 53 (0,02) 68 (0,33) 78 (0,31)	0	8,52	0	0	15,65	0	0
55	119,73%	11 (0,65) 32 (0,00) 48 (0,01) 53 (0,01) 68 (0,05)	0	0	0	0	115,81	0	0
56	117,07%	11 (0,36) 32 (0,18) 53 (0,04) 68 (0,11)	0	0	0	0	1,34	0	30,48
57 58	109,60% 100,00%	$11 (1,05) 32 (0,05) 53 (0,04) \\ 32$	26,23	0	0	0	0	23,26	7,51
58 59	100,00%	32 1							
60	131,93%	11 (0,43) 29 (0,03) 32 (0,04) 68 (0,04)	0	0	114,8	0	12,45	0	0
61	129,16%	11 (1,24) 32 (0,15) 53 (0,18) 68 (0,23)	0	0	0	0	0	36,39	21,74
62	108,86%	29 (0,34) 48 (0,34) 58 (0,49) 68 (1,90)	0	0	338,84	352	0	0	0
63 64	116,57% $107,80%$	11 (0,21) 29 (0,07) 32 (0,01) 48 (0,00) 58 (0,02) 94 (0,01) 11 (0,18) 29 (0,91) 32 (0,91) 48 (0,25) 68 (1,55)	0	0	0	0	$0 \\ 516,92$	0	0
65	107,80% $123,46%$	11 (0,18) 29 (0,91) 32 (0,91) 48 (0,25) 68 (1,55) 11 (0,54) 32 (0,24) 45 (0,10) 48 (0,34) 58 (0,04) 68 (2,09)	0	0	0	0	010,92	0	0
66	125,20%	11 (0,09) 29 (0,05) 32 (0,04) 48 (0,02) 68 (0,16)	0	0	0	0	74,21	0	0
67	127,59%	53 (0,04) 68 (0,12) 78 (0,32)	0	132,39	0	0	0	8,05	22,67
68	100,00%	11 (0.57) 20 (0.17) 62 (0.22)	^	_	44444	^	^	00.00	F 4 00
69 70	109,23% $115,61%$	$\begin{array}{c} 11 \ (0.57) \ 32 \ (0.17) \ 68 \ (0.33) \\ 32 \ (0.29) \ 48 \ (0.01) \ 53 \ (0.40) \ 68 \ (1.48) \end{array}$	0	0	144,44 $26,1$	0	$0 \\ 154,79$	$^{22,26}_{0}$	54,69 0
70	100,00%	10	U	U	20,1	U	104,13	U	U
72	113,53%	48 (0,03) 53 (0,20) 68 (0,19)	0	75,26	21,13	0	6,98	0	0
									-

E. Outputorientierte Modelle

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
73	106,48%	53 (0,16) 68 (0,53)	0	323,23	288,91	0	0	2,61	8,56
74	121,66%	11 (1,34) 32 (0,62) 58 (0,57)	136,97	0	429,57	0	657,32	0	0
75	100,28%	29 (0,13) 48 (0,16) 68 (0,14) 71 (0,86)	0	0	0	351,67	165,48	0	0
76	114,67%	53 (0,08) 68 (0,66)	0	33,75	111,6	0	31,57	0	1,13
77	108,77%	11 (9,34) 32 (1,45) 68 (0,90)	0	0	1851,44	0	2506,36	0	193,8
78	100,00%	7							
79	120,87%	11 (0,04) 29 (0,07) 32 (0,12) 48 (0,00) 68 (0,52)	0	0	0	0	44,04	0	0
80	126,48%	29 (0,22) 32 (0,04) 48 (0,21) 58 (0,11) 68 (3,17)	0	0	96,57	0	0	0	0
81	113,55%	11 (1,04) 32 (0,09) 45 (0,00) 48 (0,00) 58 (0,05)	0	0	0	0	0	161,44	0
82	102,21%	3 (0,04) 11 (1,71)	183,85	0	0	0	492,21	0	2,23
83	114,16%	11 (0,53) 48 (0,04) 68 (0,28)	0	10,19	0	271,53	0	3,51	0
84	121,60%	29 (0,36) 58 (1,04) 94 (0,18)	0	0	1196,93	180,99	678,67	0	0
85	109,79%	32 (0,56) 53 (0,07) 68 (1,29)	0	0	171,42	0	475,38	0	108,54
86	108,14%	11 (1,03) 32 (0,12) 68 (1,27)	0	0	129,44	0	391,95	0	31,88
87	121,02%	11 (0,29) 53 (0,10) 68 (0,05) 78 (0,12)	0	0	0	0	135,53	0	0,64
88	127,19%	11 (0,76) 48 (0,04) 58 (0,48) 68 (0,01)	0	0	0	87,63	0	45,19	0
89	134,27%	29 (0,78) 32 (1,18) 48 (0,44) 58 (0,02) 68 (8,56)	0	0	936,99	0	0	0	0
90	118,76%	11 (0,54) 29 (0,22) 48 (0,25) 58 (0,60) 68 (1,32) 71 (0,79)	0	0	0	0	0	0	0
91	119,33%	11 (0,83) 32 (0,18)	10,04	0	120,51	0	165,96	0	48,39
92	121,60%	11 (0,90) 29 (0,02) 32 (0,12) 58 (0,03)	0	0	137,05	0	243,42	0	0
93	113,18%	48 (0,29) 68 (1,22) 71 (0,35) 78 (0,92)	0	208,82	0	0	312,64	0	0
94	100,00%	8							
95	125,46%	11 (0,47) 29 (0,16) 32 (0,04) 48 (0,01) 94 (0,00)	0	0	0	0	72,82	0	0
ø	114,26%						·		

E.2.2. Outputorientiertes BCC-Modell mit den Inputs I1, I2, $I3^*$

Die Ergebnisse für das outputorientierte BCC-Modell mit den drei Inputs I1, I2, $I3^*$ für das Jahr 2011 können aus der nachstehenden Tabelle abgelesen werden:

Tabelle 6.26.: Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs $I1,\ I2,\ I3^*$ für das Jahr 2011

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_{2}^{+*}	t_3^{+*}	t_4^{+*}
1 2	100,00% 118,10%	8 11 (0,64) 32 (0,10) 58 (0,26)	6,77	0	442,07	0	210,9	0	20,2
3	100,00%	1							
$\frac{4}{5}$	141,44% $107,83%$	29 (0,01) 45 (0,02) 53 (0,11) 58 (0,56) 68 (0,30) 29 (0,17) 32 (0,19) 45 (0,04) 48 (0,20) 58 (0,26) 59 (0,14)	0	0	287,82 $169,5$	0	0	0	$_{0}^{7,39}$
6 7	100,00% 100,00%	$\frac{4}{0}$							
8	111,26%	11 (0,08) 21 (0,03) 45 (0,06) 48 (0,05) 53 (0,16) 58 (0,17) 68 (0,45)	0	0	0	0	0	0	0
9	100,00% 113,28%	8 6 (0,27) 11 (0,07) 26 (0,30) 29 (0,24) 53 (0,12)	0	30,76	0	0	0	0	10,53
11	100,00%	28							
12 13	108,27% $122,19%$	26 (0,07) 29 (0,19) 45 (0,06) 48 (0,00) 53 (0,19) 58 (0,49) 29 (0,10) 45 (0,08) 53 (0,14) 58 (0,28) 68 (0,39)	0	21,42 $111,73$	0	0	0	0	$^{0}_{33,6}$
14	115,33%	1 (0,00) 9 (0,58) 32 (0,08) 48 (0,00) 50 (0,34)	0	0	253,14	0	46,34	0	0
15 16	108,36% $107,96%$	29 (0,03) 40 (0,39) 48 (0,01) 58 (0,21) 68 (0,36) 29 (0,22) 45 (0,02) 53 (0,48) 58 (0,15) 68 (0,13)	0	0	0 8,03	109,56 0	$193,75 \\ 0$	0	62,71
17	126,72%	40 (0,26) 48 (0,03) 50 (0,01) 58 (0,33) 68 (0,38)	0	0	0	19,09	0,72	0	0
18 19	100,00% 106,31%	45 (0,59) 53 (0,16) 77 (0,25)	0	244,22	293,37	0	0	271,73	63,82
20 21	100,00% 100,00%	1							
22	105,75%	11 (0,00) 26 (0,18) 29 (0,07) 53 (0,33) 58 (0,20) 68 (0,23)	0	0	0	0	0	0	4,45
$\frac{23}{24}$	105,98% $154,10%$	9 (0,21) 11 (0,15) 40 (0,03) 48 (0,01) 50 (0,24) 68 (0,36) 48 (0,02) 58 (0,01) 68 (0,97)	0	64,92	$0 \\ 44,9$	70,74 $35,77$	0	$_{0,3}^{0}$	0
25	100,00%	1		04,32	44,3	35,77		0,3	0
26 27	100,00% 100,00%	12							
28	127,74%	11 (0,53) 32 (0,03) 48 (0,01) 50 (0,08) 58 (0,03) 68 (0,33)	0	0	0	0	84,11	0	0
29 30	100,00% 100,00%	$\frac{22}{1}$							
31	100,00%	0							
32 33	100,00% 100,00%	$\begin{array}{c} 19 \\ 5 \end{array}$							
34 35	101,72% 103,52%	6 (0,98) 11 (0,53) 33 (0,47)	0	53,14	0	197.16	32,15 $22,25$	$^{104,67}_{0}$	48,67
36	119,96%	11 (0,39) 40 (0,29) 48 (0,01) 50 (0,01) 58 (0,27) 68 (0,04)	0	$27,32 \\ 0$	0	$187,16 \\ 0$	22,25 $231,67$	0	8,08 0
37 38	100,00% 100,94%	3 29 (0,08) 32 (0,65) 45 (0,10) 58 (0,16) 77 (0,00)	0	0	167,45	0	0	0	148,15
39	127,73%	1 (0,12) 11 (0,78) 32 (0,01) 50 (0,02) 68 (0,06)	0	0	63,49	0	83	0	0
40 41	100,00% 104,73%	8 11 (0,14) 37 (0,70) 48 (0,02) 58 (0,00) 68 (0,14)	0	0	0	13,05	0	62,47	0
42	103,31%	26 (0,41) 27 (0,03) 48 (0,01) 58 (0,08) 71 (0,47)	ő	195,65	0	312,09	ő	0	ő
43 44	100,00% 112,83%	11 (0,28) 50 (0,21) 58 (0,05) 68 (0,46)	0	0	36,77	0	85,11	0	0,82
45	100,00%	12							
$\frac{46}{47}$	124,45% $136,05%$	11 (0,15) 29 (0,07) 32 (0,07) 48 (0,06) 53 (0,07) 68 (0,59) 29 (0,02) 48 (0,10) 53 (0,22) 68 (0,65)	0	$_{3,46}^{0}$	$0 \\ 124,33$	0	52,18 $14,24$	0	0 0
48 49	100,00% 125,37%	28 29 (0,52) 32 (0,06) 48 (0,20) 53 (0,06) 58 (0,05) 68 (0,12)	0	0	256,16	0	0	0	0
50	100,00%	29 (0,52) 52 (0,00) 48 (0,20) 53 (0,00) 58 (0,05) 68 (0,12)	U	U	250,10	U	U	U	U
51 52	100,00% 108,21%	3 (0,03) 6 (0,19) 11 (0,40) 26 (0,01) 29 (0,24) 71 (0,13)	0	286,67	0	0	0	0	0
53	100,00%	22							
54 55	108,05% $100,08%$	1 (0,08) 33 (0,44) 48 (0,02) 68 (0,43) 78 (0,04) 11 (0,19) 20 (0,44) 33 (0,16) 40 (0,19) 68 (0,01)	0	0	0	0	49,45 $52,89$	$9,35 \\ 0$	$0 \\ 1,49$
56	111,75%	1 (0,16) 9 (0,31) 11 (0,37) 32 (0,16)	0	0	0	0	20,96	8,27	30,96
57 58	107,43% 100,00%	11 (0,87) 26 (0,03) 32 (0,05) 53 (0,05) 28	11,59	0	0	0	0	31,14	10,04
59	100,00%	3							
60 61	123,22% $120,60%$	9 (0,22) 11 (0,20) 37 (0,17) 48 (0,01) 50 (0,40) 11 (0,35) 26 (0,09) 32 (0,05) 53 (0,38) 58 (0,14)	$^{7,86}_{0}$	0	32,09 0	0	0	$0 \\ 70,57$	$\frac{0}{31,86}$
62	100,00%	i i i i i i i i i i i i i i i i i i i	F 07	0	0	104.15	0	·	
63 64	105,12% $100,00%$	9 (0,33) 11 (0,29) 40 (0,24) 48 (0,01) 50 (0,13)	5,27	0	0	124,15	0	0	0
65 66	109,94% 112,58%	25 (0,04) 26 (0,20) 29 (0,03) 45 (0,25) 48 (0,26) 53 (0,21) 9 (0,47) 40 (0,36) 48 (0,03) 50 (0,10) 68 (0,04)	0	150,57 0	0	0 3,59	0 39,58	0	0
67	100,00%	Ó	0	U	0	3,09	33,30	0	U
68 69	100,00% 109,09%	30 11 (0.49) 32 (0.18) 45 (0.01) 68 (0.32)	0	0	121,75	0	0	16,89	58,71
70	110,87%	29 (0,09) 45 (0,07) 48 (0,00) 53 (0,77) 58 (0,01) 68 (0,06)	0	0	80,34	0	0	0	0
71 72	100,00% 105,37%	1 (0.93) 48 (0.00) 53 (0.07)	0	78,99	0,89	0	101,04	1,54	0
73	103,04%	1 (0,05) 53 (0,07) 68 (0,88)	0	302,82	295,01	0	83,25	50,86	0
74 75	117,07% 100,00%	30 (0,01) 32 (0,68) 59 (0,26) 77 (0,05) 0	98,41	0	335,88	0	0	0	70,04
76	109,29%	1 (0,17) 9 (0,00) 68 (0,83)	0	22,17	111,7	0	100,37	31,82	0

E. Outputorientierte Modelle

DMU	η_B^*	Benchmarks	t_{1}^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_{2}^{+*}	t_3^{+*}	t_{4}^{+*}
77	100,00%	3							
78	100,00%	1							
79	120,02%	11 (0,11) 32 (0,07) 48 (0,02) 50 (0,11) 58 (0,11) 68 (0,58)	0	0	0	0	159,03	0	0
80	109,62%	26 (0,13) 29 (0,26) 45 (0,11) 48 (0,12) 53 (0,17) 58 (0,21)	0	291,69	0	0	0	0	0
81	110,38%	11 (0,77) 26 (0,03) 32 (0,08) 53 (0,04) 58 (0,08)	0	0	0	0	0	169,9	1,71
82	100,00%	0							
83	108,74%	11 (0,27) 33 (0,16) 37 (0,31) 48 (0,03) 68 (0,24)	0	10,31	0	223,54	0	0	0
84	118,81%	29 (0,29) 58 (0,23) 59 (0,48)	0	0	1480,01	90,9	48,52	0	13,02
85	106,94%	29 (0,10) 32 (0,35) 53 (0,43) 68 (0,12)	0	0	268,74	0	238,67	0	115,98
86	103,48%	29 (0,14) 32 (0,12) 53 (0,28) 68 (0,46)	0	0	15,51	0	89,13	0	90,25
87	108,56%	1 (0,19) 9 (0,15) 11 (0,40) 33 (0,14) 68 (0,11)	0	0	0	0	206,42	33,21	0
88	124,25%	11 (0,42) 26 (0,06) 48 (0,03) 58 (0,49)	0	16,21	0	27,1	0	45,7	0
89	100,00%	0							
90	100,00%	0							
91	119,32%	11 (0,82) 32 (0,18) 58 (0,00)	9,57	0	118,77	0	166,12	0	48,79
92	121,25%	11 (0,80) 29 (0,03) 32 (0,14) 58 (0,03)	0	0	119,51	0	224,46	0	5,79
93	101,84%	6 (0,35) 26 (0,18) 29 (0,02) 48 (0,27) 53 (0,17)	0	376,52	0	0	146,75	0	0
94	100,00%	0							
95	124,23%	11 (0,40) 29 (0,04) 40 (0,13) 48 (0,03) 58 (0,20) 68 (0,19)	0	0	0	0	269,64	0	0
ø	$108,\!21\%$								

E.2.3. Outputorientiertes BCC-Modell mit den drei Inputs I1, I2, I3

Die Ergebnisse für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3$ für das Jahr 2011 können aus der nachstehenden Tabelle abgelesen werden:

Tabelle 6.27.: Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
$\frac{1}{2}$	100,00% 118,10%	11 11 (0,64) 32 (0,10) 58 (0,26)	6,77	0	240,98	0	210,9	0	20,2
3	100,00%		٠,,,		210,00		210,0		
4 5	139,35% $107,79%$	11 (0,33) 29 (0,01) 31 (0,03) 53 (0,06) 58 (0,47) 68 (0,11) 29 (0,17) 32 (0,18) 38 (0,01) 45 (0,04) 48 (0,20) 58 (0,25) 59 (0,14)	0	0	0	0	0	0	$0,45 \\ 0$
6	107,79%	29 (0,12) 30 (0,01) 32 (0,03) 53 (0,15) 59 (0,05) 82 (0,61) 94 (0,02)	0	0	0	0	0	0	0
7	100,00%	1							
8	111,79% 100,00%	32 (0,01) 45 (0,06) 48 (0,05) 53 (0,15) 58 (0,17) 68 (0,56)	0	0	111,97	0	0	0	0
9 10	115,99%	11 (0,09) 26 (0,26) 29 (0,32) 38 (0,05) 53 (0,18) 82 (0,10)	0	0	0	0	0	0	12,64
11	100,00%	36							
12 13	109,71% $122,69%$	29 (0,22) 32 (0,03) 45 (0,08) 53 (0,18) 58 (0,49) 29 (0,12) 31 (0,09) 45 (0,07) 53 (0,03) 68 (0,69)	0	0	167,84 $29,9$	0	0	0	9,08 $25,05$
14	115,33%	1 (0.00) 9 (0.58) 32 (0.08) 48 (0.00) 50 (0.34)	0	0	681,55	0	46,34	0	25,05
15	108,45%	11 (0,16) 48 (0,02) 50 (0,09) 58 (0,26) 68 (0,48)	0	0	0	206,81	281,55	0	0
16	107,96%	29 (0,22) 45 (0,02) 53 (0,48) 58 (0,15) 68 (0,13)	0	0	72,71	120.07	0	0	62,71
17 18	125,15% $114,20%$	11 (0,39) 29 (0,01) 48 (0,03) 58 (0,26) 68 (0,32) 11 (0,72) 32 (0,02) 58 (0,26)	$\frac{0}{42,96}$	$_{0}^{5,87}$	$0 \\ 11,29$	139,87 0	$\begin{array}{c} 0 \\ 36,43 \end{array}$	0	$_{7,1}^{0}$
19	106,19%	31 (0,02) 45 (0,57) 53 (0,17) 77 (0,25)	0	231,33	0	0	0	280,35	62,02
20	111,30%	1 (0,02) 9 (0,70) 11 (0,27) 32 (0,00)	25,4	0	0	0	35,65	42,68	0
21 22	100,00% 100,00%	$0 \\ 2$							
23	106,11%	9 (0,13) 11 (0,06) 37 (0,10) 48 (0,01) 50 (0,34) 68 (0,37)	0	0	0	57,39	0	0	0
24	154,10%	48 (0,02) 58 (0,01) 68 (0,97)	0	64,92	78,72	35,77	0	0,3	0
25 26	102,18% 100,00%	7 (0,04) 29 (0,18) 31 (0,04) 43 (0,45) 48 (0,05) 53 (0,16) 64 (0,08)	0	0	0	0	0	0	0
27	107,74%	22 (0,08) 29 (0,06) 31 (0,02) 48 (0,03) 58 (0,13) 59 (0,28) 78 (0,41)	0	0	0	0	0	0	0
28	127,79%	11 (0,41) 29 (0,01) 32 (0,04) 48 (0,01) 50 (0,22) 68 (0,31)	0	0	0	0	38,59	0	0
29 30	100,00% 100,00%	$\begin{array}{c} 25 \\ 1 \end{array}$							
31	100,00%	12							
32	100,00%	23							
33 34	100,00% 115,96%	11 (0,10) 29 (0,15) 38 (0,25) 53 (0,22) 82 (0,28)	0	0	0	0	133,39	0	47 59
35	121,18%	11 (0,10) 29 (0,13) 38 (0,23) 33 (0,22) 82 (0,28) 11 (0,47) 48 (0,02) 50 (0,13) 58 (0,02) 68 (0,36)	0	0	0	108,07	52,31	0	47,53 0
36	120,30%	11 (0,37) 48 (0,01) 50 (0,28) 58 (0,26) 68 (0,08)	0	0	0	$52,\!25$	230,09	0	0
37	100,00%	6 7							
38 39	100,00% 127,73%	1 (0,12) 11 (0,78) 32 (0,01) 50 (0,02) 68 (0,06)	0	0	194,36	0	83	0	0
40	100,00%	Ó							
41	107,65%	1 (0,20) 11 (0,09) 37 (0,59) 48 (0,01) 58 (0,02) 68 (0,09)	0	0	0	0	0	51,04	0
42 43	112,01% 100,00%	11 (0,50) 26 (0,02) 31 (0,08) 58 (0,09) 59 (0,21) 93 (0,09)	0	0	0	180,9	0	0	0
44	112,83%	11 (0,28) 50 (0,21) 58 (0,05) 68 (0,46)	0	0	14,75	0	85,11	0	0,82
45	100,00%	11 (0.00) 00 (0.07) 20 (0.00) 40 (0.00) 72 (0.00) 62 (0.47)	0	0	0	0	FO 00	0	0
46 47	123,86% $133,35%$	11 (0,28) 29 (0,07) 32 (0,03) 48 (0,06) 53 (0,09) 68 (0,47) 29 (0,02) 48 (0,10) 53 (0,17) 68 (0,53) 78 (0,18)	0	$0 \\ 20,12$	0	0	50,28 $11,23$	0	0
48	100,00%	29		20,12			11,20		
49	124,96%	11 (0,14) 29 (0,51) 32 (0,00) 38 (0,03) 48 (0,21) 53 (0,07) 58 (0,03)	0	0	0	0	0	0	0
50 51	100,00% 100,00%	$\begin{smallmatrix}12\\0\end{smallmatrix}$							
52	116,20%	29 (0,34) 31 (0,01) 53 (0,13) 68 (0,51)	0	170,31	6,82	0	0	0	3,33
53	100,00%	24		_ ^-			00.00		
54 55	106,72% $112,04%$	1 (0,15) 33 (0,48) 48 (0,01) 68 (0,32) 78 (0,05) 9 (0,51) 11 (0,44) 32 (0,01) 48 (0,00) 50 (0,03)	$^{0}_{2,65}$	$^{7,95}_{0}$	0	0	39,28 $81,05$	0	0
56	111,83%	1 (0,17) 9 (0,35) 11 (0,32) 32 (0,17)	2,03	0	0	0	12,71	3,49	34,19
57	111,64%	11 (0,87) 32 (0,11) 38 (0,00) 45 (0,01) 53 (0,00)	0	0	0	0	0	10,66	21,73
58 59	100,00% 100,00%	$\begin{array}{c} 24 \\ 6 \end{array}$							
60	123,22%	9 (0,22) 11 (0,20) 37 (0,17) 48 (0,01) 50 (0,40)	7,86	0	64,84	0	0	0	0
61	119,88%	11 (0,50) 26 (0,12) 38 (0,03) 45 (0,05) 53 (0,31)	0	0	0	0	0	53,3	20,71
62 63	100,63% 106,06%	29 (0,41) 31 (0,14) 45 (0,14) 48 (0,26) 58 (0,05) 9 (0,16) 11 (0,06) 37 (0,23) 48 (0,01) 50 (0,51) 68 (0,02)	0	0	$228,78 \\ 0$	491,4 $123,52$	0	0	0
64	100,00%	1				120,02			
65	106,04%	31 (0,15) 43 (0,23) 48 (0,18) 53 (0,11) 78 (0,19) 93 (0,14)	0	0	0	0	0	68,71	0
66 67	108,86% $135,34%$	1 (0,23) 9 (0,44) 11 (0,23) 37 (0,08) 48 (0,02) 53 (0,01) 68 (0,96) 78 (0,03)	0	$ \begin{array}{c} 0 \\ 67,69 \end{array} $	0	101,55 0	108,17 $128,59$	$0 \\ 80,17$	$_{1,1}^{0}$
68	100,00%	27		01,03	0	3	120,03	50,11	1,1
69	109,09%	11 (0,49) 32 (0,18) 45 (0,01) 68 (0,32)	0	0	251,37	0	0	16,89	58,71
70 71	107,93% 100,00%	22 (0,21) 29 (0,03) 31 (0,02) 48 (0,00) 53 (0,70) 59 (0,01) 93 (0,03)	0	0	0	0	0	0	0
72	100,00%	0							
73	103,04%	1 (0,05) 53 (0,07) 68 (0,88)	0	302,82	372,83	0	83,25	50,86	0
74 75	107,96% 100,00%	26 (0,47) 43 (0,22) 53 (0,29) 77 (0,01) 0	180,8	0	0	0	242,9	17,08	0
76	100,00%	1 (0,17) 9 (0,00) 68 (0,83)	0	22,17	11,73	0	100,37	31,82	0
	,=-,0	- (0,, 0 (0,00)		-,	,		,	,~=	

$E.\ Output$ orientierte Modelle

DMU	η_B^*	Benchmarks	t_1^{-*}	t_2^{-*}	$t_3^{-*}(I3)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
77	100,00%	2							
78	100,00%	6							
79	120,00%	11 (0,26) 29 (0,04) 32 (0,05) 48 (0,02) 50 (0,21) 68 (0,42)	0	0	0	0	63,68	0	0
80	110,06%	29 (0,25) 31 (0,17) 48 (0,11) 53 (0,04) 78 (0,35) 93 (0,08)	0	81,95	0	0	0	0	0
81	113,25%	11 (0,80) 32 (0,12) 45 (0,02) 58 (0,05)	0	0	175,72	0	0	148,97	9,47
82	100,00%	3							
83	113,29%	1 (0,13) 11 (0,34) 33 (0,08) 37 (0,10) 48 (0,03) 68 (0,32)	0	0	0	260,11	0	0	0
84	118,81%	29 (0,29) 58 (0,23) 59 (0,48)	0	0	487,82	90,9	48,52	0	13,02
85	105,81%	11 (0,13) 29 (0,05) 32 (0,09) 38 (0,28) 53 (0,45)	0	0	0	0	315,69	0	60,71
86	103,39%	11 (0,11) 29 (0,14) 32 (0,09) 53 (0,31) 68 (0,36)	0	0	0	0	83,65	0	85,2
87	111,85%	1 (0,56) 9 (0,17) 11 (0,24) 32 (0,03)	0	0	0	0	202,21	4,26	19,08
88	128,48%	11 (0,42) 31 (0,00) 43 (0,03) 45 (0,02) 48 (0,02) 58 (0,51)	0	0	0	0	0	19,28	0
89	100,00%	0							
90	100,00%	0							
91	119,32%	11 (0,82) 32 (0,18) 58 (0,00)	9,57	0	181,46	0	166,12	0	48,79
92	121,25%	11 (0,80) 29 (0,03) 32 (0,14) 58 (0,03)	0	0	234,44	0	224,46	0	5,79
93	100,00%	4							
94	100,00%	1							
95	123,42%	11 (0,83) 29 (0,10) 48 (0,03) 58 (0,01) 68 (0,03)	0	0	0	106,93	144,43	0	0
ø	109,47%						-		

E.3. Outputorientierte Modelle der 95 Raiffeisenbanken für das Jahr 2012

E.3.1. Outputorientiertes CCR-Modell

Die folgende Tabelle zeigt die Resultate der Effizienzbewertung für das Jahr 2012, unter Anwendung des outputorientierten CCR-Modells:

Tabelle 6.28.: Ergebnisse des outputorientierten CCR-Modells für das Jahr 2012

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t ₂ +*	t_3^{+*}	t_4^{+*}
1	100,00%	0	T	<u> </u>	-3 ()		<u> </u>		- 4
2	117,26%	29 (0,24) 32 (0,01) 45 (0,07)	31,7	0	381,21	0	0	0	24,56
3 4	100,00% $130,52%$	29 (0,10) 48 (0,02) 54 (0,07) 58 (0,51)	0	15,48	315,65	0	0	0	0
5	105,58%	29 (0,25) 45 (0,09) 48 (0,18) 58 (0,13) 94 (0,29)	0	0	131,84	0	0	0	0
6	100,66%	3 (0,49) 11 (0,41) 78 (0,81)	0	167,55	0	0	273,25	0	0
7	110,10%	29 (1,79) 45 (0,06) 53 (1,21) 58 (0,26)	0	0	203,55	0	0	0	178,91
8	113,35% $107,73%$	29 (0,07) 53 (0,09) 54 (0,56) 58 (0,35) 29 (0,04) 53 (0,05) 73 (0,07)	0	127,57 $22,57$	40,65 $4,14$	0	0	0	$0 \\ 14,45$
10	122,27%	29 (0,18) 54 (0,93) 58 (0,06) 71 (1,31)	0	221,02	0	0	0	0	72,63
11	100,00%	21							
12	122,39% $110.59%$	29 (0,12) 53 (0,11) 58 (0,49) 71 (0,24) 93 (0,00) 94 (0,25)	0	100.0	102.20	0	0	0	0
13 14	110,59% $129,02%$	29 (0,14) 53 (0,03) 54 (0,98) 58 (0,31) 29 (0,04) 32 (0,07) 53 (0,03) 94 (0,06)	0	$^{106,2}_{0}$	123,39 $326,98$	0	$0 \\ 43,17$	0	0
15	107,79%	29 (0,22) 40 (0,18)	ő	35,53	0	70,11	20,76	ő	11,32
16	108,40%	29 (0,25) 53 (0,33) 58 (0,24) 73 (0,10)	0	50,18	0	0	0	0	36,37
17	125,05%	11 (0,11) 29 (0,04) 53 (0,05) 58 (0,25) 71 (0,08) 94 (0,04)	0	0	0	0	0	0	0
18 19	100,00% $121,73%$	31 (0,04) 45 (0,71) 48 (0,03) 53 (0,96) 58 (0,17)	0	0	439,59	0	0	0	0
20	119,25%	11 (0,20) 53 (0,02) 54 (0,40)	0	0	0	0	24,47	44,88	17,22
21	100,98%	31 (0,00) 53 (0,11) 58 (0,37)	0	145,41	13,26	0	0	0	26,97
22	106,00%	11 (1,44) 29 (0,05) 45 (0,05) 53 (0,16) 58 (0,01) 94 (0,06)	0	0	0	0	0	0	0
23 24	111,34% $113,80%$	29 (0,04) 53 (0,05) 58 (0,10) 73 (0,08) 11 (0,14) 29 (0,04) 45 (0,03) 58 (0,01) 94 (0,02)	$0 \\ 18,98$	32,63 0	0	0	0	0	$_{0}^{5,71}$
25	106,82%	11 (0,14) 23 (0,04) 43 (0,03) 38 (0,01) 34 (0,02) 11 (0,02) 53 (0,27) 57 (0,45) 71 (1,16) 82 (0,28) 94 (0,47)	0	0	0	0	0	0	0
26	100,00%	1							
27	113,91%	40 (1,34) 58 (0,03) 71 (1,52)	0	623,14	0	65,22	0	0	103,97
28 29	118,71% 100,00%	11 (0,38) 29 (0,05) 32 (0,03) 53 (0,04) 82 (0,01) 94 (0,02) 51	0	0	0	0	0	0	0
30	115,51%	29 (0,53) 32 (0,21) 53 (0,55) 82 (0,60) 94 (0,21)	0	0	0	0	326,28	0	0
31	100,00%	3					,		
32	100,00%	12							
33	109,13%	11 (0,22) 78 (0,44)	$^{7,24}_{0}$	0	0	0	52,25	46,68	0
34 35	108,03% $102,77%$	3 (0,13) 11 (1,40) 78 (0,51) 82 (0,25) 11 (0,02) 78 (0,65)	0	$0 \\ 5,55$	0	199,05	203,13 0	$0 \\ 19,43$	0
36	122,39%	11 (0,31) 29 (0,19) 45 (0,00) 58 (0,01)	0,43	0	0	0	Ö	0	18,45
37	100,00%	Ů							
38	109,67%	29 (0,14) 45 (0,17) 53 (0,50) 58 (0,31)	0	0	453,13	0	0	0	51,75
39 40	120,02% $100,00%$	29 (0,06) 45 (0,00) 53 (0,12) 58 (0,07) 68 (0,09)	0	0	0	0	0	0	22,58
41	103,07%	11 (0,19) 57 (0,37) 58 (0,03) 93 (0,00)	0	14,47	0	0	0	39,02	0
42	109,80%	11 (1,43) 58 (0,08) 71 (1,02)	0	50,58	0	421,5	0	0	38,7
43	104,66%	32 (0,06) 53 (0,20) 57 (2,10) 82 (0,13) 93 (0,07) 94 (0,46)	0	0	0	0	0	0	0
44 45	103,76% 100,00%	29 (0,07) 53 (0,10) 58 (0,07) 73 (0,03) 24	0	0	38,07	0	0	0	20,38
46	114,66%	29 (0,08) 53 (0,16) 58 (0,06) 71 (0,02) 93 (0,04) 94 (0,08)	0	0	0	0	0	0	0
47	115,62%	32 (0,02) 45 (0,02) 53 (0,15) 93 (0,10) 94 (0,10)	0	0	97,3	0	0	0	0
48	100,00%	20 (0.52) 48 (0.44)	0	E0.25	240.00	464.14	226 40	0	0
49 50	117,31% $103,42%$	29 (0,52) 48 (0,44) 29 (0,06) 45 (0,00) 53 (0,11) 58 (0,04)	0	52,35	240,88 $216,47$	464,14 0	336,49 0	0	13,96
51	115,14%	29 (0,75) 48 (0,50) 53 (0,22) 54 (2,86) 58 (0,06)	0	ő	376,99	ő	Ö	ő	0
52	109,84%	29 (0,13) 40 (1,11) 58 (0,12) 71 (0,56)	0	56,31	0	15,43	0	0	0
53 54	100,00% 100,00%	45 15							
54 55	116,18%	11 (0,34) 54 (0,31) 71 (0,07)	0	2,79	0	0	57,55	0	6,18
56	117,90%	11 (0,33) 29 (0,02) 32 (0,05) 45 (0,06) 53 (0,03) 94 (0,02)	0	0	0	ő	0	0	0
57	100,00%	6							
58 59	100,00% $104,71%$	38	0	250.10	0	506 47	194.60	0	0
60	104,71% $126,70%$	29 (0,61) 40 (1,42) 71 (1,50) 29 (0,03) 48 (0,00) 53 (0,10) 54 (0,12) 58 (0,09)	0	$352,19 \\ 0$	93,93	506,47 0	$124,68 \\ 0$	0	0
61	124,65%	11 (0,36) 31 (0,01) 45 (0,03) 53 (0,18) 57 (0,11) 68 (1,48)	0	0	0	0	0	0	0
62	100,63%	29 (0,36) 48 (0,47) 58 (0,71)	0	105,6	260,68	565,77	0	0	0
63	123,34%	29 (0,09) 54 (0,13) 58 (0,04) 71 (0,06)	0	8,88	202.57	0	0	0	3,91
64 65	106,25% $115,90%$	29 (0,76) 53 (1,37) 93 (0,07) 94 (0,51) 29 (0,08) 45 (0,20) 53 (0,24) 58 (0,30) 93 (0,41) 94 (0,01)	0	0	392,57 0	0	$^{24,07}_{0}$	0	0
66	105,68%	29 (0,06) 48 (0,04) 53 (0,06)	0	41,3	13,97	0	27,01	0	0
67	123,57%	11 (0,23) 54 (0,54)	0	$17,\!64$	0	0	36,73	12,39	16,55
68	100,00%	20 (0.02) 47 (0.10) 70 (0.14) 70 (0.02)	^	_	45.00	^	^	^	20.22
69 70	105,25% $106,90%$	29 (0,03) 45 (0,12) 53 (0,14) 58 (0,01) 29 (0,02) 48 (0,16) 53 (0,44) 54 (1,61)	0	$0 \\ 107,31$	45,26 $213,08$	0	0	0	30,32 0
70	100,00%	29 (0,02) 48 (0,10) 53 (0,44) 54 (1,01)	U	101,01	213,00	U	0	0	U
72	112,17%	45 (0,02) 53 (0,17) 57 (0,02) 58 (0,00) 93 (0,02) 94 (0,03)	0	0	0	0	0	0	0
									_

E. Outputorientierte Modelle

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
73	100,00%	5							
74	122,38%	29 (0,21) 32 (0,49) 45 (0,09) 53 (0,14) 94 (0,27)	0	0	292,17	0	0	0	0
75	109,20%	29 (0,23) 54 (0,23) 71 (0,77) 93 (0,09)	0	137,39	0	0	92,46	0	0
76	106,71%	29 (0,04) 53 (0,03) 58 (0,02) 73 (0,34)	0	79,39	0	0	0	0	8,38
77	108,58%	29 (0,43) 45 (1,48) 53 (1,42)	0	0	50,76	0	1984,64	0	$120,\!58$
78	100,00%	4							
79	118,00%	29 (0,09) 45 (0,04) 48 (0,00) 53 (0,09) 93 (0,01) 94 (0,03)	0	0	0	0	0	0	0
80	120,21%	29 (0,23) 48 (0,10) 54 (2,62) 58 (0,40)	0	214,19	108,76	0	0	0	0
81	102,83%	11 (0,69) 32 (0,10) 53 (0,03) 57 (0,26)	31,25	0	0	0	0	117,87	0
82	100,00%	7							
83	100,00%	0							
84	111,29%	29 (0,89) 48 (0,20) 58 (0,06)	0	15,39	1314,45	224,16	0	0	0
85	114,61%	29 (0,04) 45 (0,37) 53 (0,26)	0	0	19,3	0	610,15	0	17,16
86	110,91%	29 (0,08) 45 (0,00) 53 (0,50) 58 (0,16)	0	0	55,04	0	0	0	68,32
87	120,99%	11 (0,38) 53 (0,09) 54 (0,21)	0	0	0	0	137,87	26,72	1,81
88	126,54%	11 (0,41) 26 (0,07) 29 (0,00) 58 (0,52)	25,79	0	0	0	0	0	5,03
89	119,95%	29 (0,19) 32 (0,07) 45 (0,80) 53 (0,68) 94 (1,61)	0	0	175,43	0	0	0	0
90	116,16%	29 (0,17) 54 (2,03) 58 (0,85) 71 (0,66) 93 (0,17)	0	211,88	0	0	0	0	0
91	123,94%	32 (0,04) 45 (0,14) 53 (0,01) 82 (0,26)	0	0	0	0	131,04	0	13,41
92	123,63%	29 (0,06) 32 (0,12) 45 (0,06) 53 (0,10) 82 (0,06)	0	0	0	0	53,1	0	0
93	100,00%	11							
94	100,00%	20							
95	118,13%	11 (0,08) 29 (0,12) 53 (0,06) 58 (0,03) 71 (0,12) 94 (0,05)	0	0	0	0	0	0	0
ø	$110,\!23\%$								

E.3.2. Outputorientiertes BCC-Modell mit den Inputs I1, I2, $I3^*$

Die Ergebnisse für das outputorientierte BCC-Modell mit den drei Inputs I1, I2, $I3^*$, sowie die Projektionen für das Jahr 2012 können aus den Tabellen 6.29, sowie 6.48 und 6.49 abgelesen werden:

Tabelle 6.29.: Ergebnisse des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2012

$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 98,2 0 17,49 0 0 0 0 210,05 0 0 28,83 0	0 0 0 0 0 0 4,11 37,46 0 0 33,58 6,02 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 98,2 0 17,49 0 0 0 0 210,05 0 0 28,83 0	0 0 0 0 0 4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 98.2 0 0 17,49 0 0 0 0 0 210,05 0 0 0 28,83 0	0 0 0 4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 98,2 0 17,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 98,2 0 17,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 98,2 0 17,49 0 0 0 0 0 0 210,05 0 0 0 0 28,83 0	0 0 4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17,49 0 0 0 0 0 0 210,05 0 0 0 0 28,83 0	4,11 37,46 0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 210,05 0 0 0 0 0 0 28,83 0 0 0	0 0 33,58 6,02 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 210,05 0 0 0 0 0 0 28,83 0 0 0	0 33,58 6,02 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33,58 6,02 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 28,83 0 0 0	6,02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 28,83 0 0 0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
29 100,00% 39 30 108,27% 26 (0,40) 29 (0,21) 45 (0,00) 53 (0,05) 64 (0,28) 77 (0,06) 0 0 0 0 31 100,00% 9 32 100,00% 6 33 100,00% 0	47,43 0	3,68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	637,52 0	0
34 100.00%		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	16,73
37 100,00% 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & 0 \\ 11,53 & 0 \end{array}$	54,15 $15,53$
$egin{array}{cccccccccccccccccccccccccccccccccccc$		
42 101,13% 3 (0,28) 18 (0,10) 26 (0,34) 58 (0,10) 71 (0,18) 0 139,96 0 156,29 43 100,00% 1	0 0	0
$44 100,60\% \qquad \qquad 9 \ (0,33) \ 29 \ (0,05) \ 50 \ (0,07) \ 68 \ (0,39) \ 73 \ (0,16) \qquad 0 \qquad \qquad 0 \qquad \qquad 0$	4,59 0	5,51
45 100,00% 13 46 113,82% 29 (0,05) 53 (0,04) 54 (0,78) 93 (0,01) 94 (0,12) 0 0 22,12 0	3,09 0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60,42 0	0
·	334,83 0	0
$51 103,62\% \qquad \qquad 7 \ (0,24) \ 31 \ (0,00) \ 48 \ (0,44) \ 64 \ (0,26) \ 89 \ (0,06) \qquad 0 120,35 \qquad 0 280,14$	0 0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	5,39
54 100,00% 15 $55 100,00% 0$		
56 115,87% 32 (0,08) 45 (0,01) 57 (0,02) 68 (0,87) 94 (0,04) 3,12 0 41,4 0 57 100,00%	0 0	0
58 100,00% 23		
59 100,00% 2 60 121,63% 9 (0,11) 29 (0,01) 54 (0,45) 58 (0,00) 68 (0,29) 83 (0,14) 0 0 131,29 0	0 0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	18,78
$63 113,33\% \qquad \qquad 9 \; (0,12) \; 29 \; (0,01) \; 40 \; (0,53) \; 58 \; (0,00) \; 68 \; (0,05) \; 83 \; (0,28) \qquad 0 \qquad \qquad 0 \qquad \qquad 34,81 \qquad 0$	0 0	0
64 100,00% 5 65 113,93% 29 (0,14) 31 (0,04) 43 (0,10) 45 (0,14) 53 (0,23) 64 (0,01) 93 (0,35) 0 0 0	0 0	0
66 100,00% 3 67 104,15% 11 (0,07) 20 (0,73) 40 (0,15) 54 (0,05) 0 23,1 0 0	15,96 0	0,74
68 100,00% 18 69 104,14% 32 (0,00) 45 (0,08) 53 (0,07) 68 (0,85) 0 0 122,91 0	45,32 0	15,27
$70 106,70\% \qquad \qquad 29 \ (0,04) \ 31 \ (0,00) \ 48 \ (0,18) \ 53 \ (0,69) \ 58 \ (0,09) \qquad 0 130,33 \qquad 137,44 \qquad 0$	0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76,37 0	0
73 100,00% 6 74 122,21% 29 (0,06) 32 (0,14) 45 (0,45) 94 (0,36) 5,8 0 42,8 0		0

E. Outputorientierte Modelle

DMU	η_B^*	Benchmarks	t_1^{-*}	t_2^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
75	107,42%	6 (0,22) 29 (0,24) 53 (0,01) 71 (0,40) 93 (0,13)	0	98,41	0	0	21,06	0	0
76	103,54%	9 (0,64) 29 (0,01) 54 (0,04) 58 (0,02) 73 (0,29)	0	64,55	0,12	0	0	0	0
77	100,00%	$\frac{2}{2}$							
78	100,00%	0							
79	114,48%	29 (0,03) 53 (0,00) 54 (0,27) 68 (0,63) 94 (0,07)	0	0	71,46	0	54,18	0	0
80	115,90%	26 (0,10) 29 (0,34) 31 (0,05) 53 (0,30) 58 (0,06) 93 (0,14)	0	288,87	0	0	0	0	0
81	102,22%	11 (0,61) 26 (0,02) 32 (0,10) 53 (0,03) 57 (0,23)	19,07	0	0	0	0	123,52	0
82	100,00%	4							
83	100,00%	3							
84	108,30%	29 (0,67) 48 (0,11) 62 (0,11) 64 (0,09) 94 (0,02)	0	0	1246,16	410,08	0	0	0
85	114,34%	29 (0,02) 45 (0,35) 53 (0,23) 68 (0,40)	0	0	54,37	0	636,11	0	9,97
86	110,65%	29 (0,07) 53 (0,45) 58 (0,13) 68 (0,17) 73 (0,17)	0	0	17,93	0	0	0	63,42
87	114,32%	11 (0,17) 53 (0,01) 54 (0,38) 68 (0,44)	0	0	. 0	0	190,79	54,59	0,11
88	126,53%	11 (0,40) 26 (0,07) 29 (0,00) 58 (0,52) 82 (0,01)	24,41	0	0	0	0	0	4,97
89	100,00%	1							,
90	102,83%	7 (0,07) 26 (0,41) 29 (0,09) 31 (0,06) 59 (0,14) 93 (0,22)	0	365,66	0	0	0	0	0
91	122,39%	32 (0,11) 45 (0,02) 68 (0,60) 82 (0,27)	0	0	123,58	ő	40,42	0	9,01
92	121,57%	29 (0,03) 32 (0,15) 53 (0,05) 68 (0,74) 94 (0,03)	0	ő	64,42	0	89,26	ő	0,01
93	100,00%	23 (0,00) 02 (0,10) 03 (0,00) 03 (0,14) 34 (0,00)		Ů	04,42	Ů	03,20	Ů	Ü
94	100,00%	14							
95	115,37%	1 (0,50) 29 (0,14) 40 (0,22) 68 (0,07) 71 (0,06) 94 (0,01)	0	0	0	0	23,18	0	0
ø	106,57%	1 (0,50) 29 (0,14) 40 (0,22) 08 (0,07) 71 (0,00) 94 (0,01)	U	0	0	U	23,10	0	
ø	100,5770								

E.3.3. Outputorientiertes BCC-Modell mit den drei Inputs I1, I2, I3

Die Ergebnisse für das outputorientierte BCC-Modell mit den drei Inputs I1, I2, I3, sowie die Projektionen für das Jahr 2012 können aus den Tabellen 6.30, sowie 6.50 und 6.51 abgelesen werden:

Tabelle 6.30.: Ergebnisse des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr
 2012

11.0.1.15	DMU	η_B^*	Benchmarks	t_1^{-*}	t_2^{-*}	$t_3^{-*}(I3)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
4 125,0776, 9 (0.00) 29 (0.07) 48 (0.01) 58 (0.02) 90 (0.02) 90 (0.01) 90 (0.01) 90 (0.00) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	113,51%		68,98	0	0	0	0		
6 106,70% 3 (0.05) 29 (0.13) 53 (0.22) 78 (0.14) 0 120,99 0 0 0 110,08 0 5,49 7 1 100,00% 3 (0.05) 54 (0.04) 54 (0.47) 58 (0.39) 0 120,87 122,76 0 0 0 0 0 0 0 0 0 1 100,00% 3 (0.05) 54 (0.04) 50 (0.05) 54 (0.04) 58 (0.05) 54 (0.04) 58 (0.05) 54 (0.04) 58 (0.05) 54 (0.04) 58 (0.05) 54 (0.04) 58 (0.05) 54 (4	128,97%	9 (0,20) 29 (0,07) 48 (0,01) 58 (0,52) 66 (0,20)							
8 113,338	6	106,70%								
10	8	113,33%	29 (0,07) 48 (0,00) 53 (0,10) 54 (0,47) 58 (0,36)	0	128,87	122,76	0	0	0	0
12	10	117,08%	3 (0,35) 26 (0,16) 29 (0,26) 31 (0,02) 53 (0,18) 93 (0,04)	0	256,19	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	112,05%								
16	14	114,90%								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	106,20%								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	102,48%	11 (0,68) 26 (0,07) 33 (0,10) 58 (0,13) 71 (0,02)	0	0	0	156,05	0	0	7,42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	106,19%								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	104,77%								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	100,00%	4	0	0	0	102,03	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	100,00%	13	0	605.0	0	0	0	0	1.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	115,95%	24 (0,08) 29 (0,00) 68 (0,81) 82 (0,06) 94 (0,05)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	104,05%	7 (0,11) 25 (0,12) 26 (0,53) 53 (0,05) 64 (0,19)	0	54,75	0	0	768,03	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	100,00%	7							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	105,97%	3 (0,04) 26 (0,24) 29 (0,09) 53 (0,15) 78 (0,48)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	117,30%	24 (0,41) 29 (0,14) 40 (0,22) 68 (0,23) 82 (0,00)	5,08	0	0	0	0	0	18,92
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	107,40%	26 (0,08) 29 (0,16) 31 (0,02) 45 (0,11) 53 (0,51) 58 (0,12)	0	0	0	0	0	0	58,05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	100,00%	8							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	114,05%								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44		9 (0,24) 29 (0,04) 50 (0,35) 58 (0,01) 68 (0,26) 73 (0,10)	0	0	0	0	0	0	6,11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	0	8,69	0	3,09	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 (0,59) 53 (0,08) 54 (0,17) 93 (0,07) 94 (0,09) 9	0	0	266,3	0	60,42	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			29 (0,52) 48 (0,44) 66 (0,04) 1	0	50,31	323,1	468,4	334,83	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·	0	0	162,45	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11 (0,54) 26 (0,11) 31 (0,03) 45 (0,01) 53 (0,30) 58 (0,01)	0	0	0	0	0	0	18,74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		103,52%	33 (0,26) 40 (0,46) 54 (0,20) 58 (0,01) 68 (0,08) 71 (0,00) 5	0	0	0	133,28	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	115,20%	29 (0,14) 31 (0,03) 45 (0,23) 53 (0,18) 64 (0,02) 93 (0,40)	0	0	100,54	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	117,75%		0	6,4	0	0	4,96	13,84	16,96
71 100,00% 8	69	104,14%	32 (0,00) 45 (0,08) 53 (0,07) 68 (0,85)							
			1 (0,38) 33 (0,22) 48 (0,00) 53 (0,03) 54 (0,37)	0	0	0	0	59,2	7,01	0
73 100,00% 3	73	100,00%	3							0

E. Outputorientierte Modelle

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
75	106,64%	3 (0,28) 29 (0,20) 53 (0,08) 71 (0,31) 93 (0,14)	0	115,53	0	0	28,45	0	0
76	103,12%	9 (0,64) 29 (0,02) 54 (0,23) 58 (0,02) 73 (0,10)	0	65,75	0	0	0	0	4,38
77	100,00%	1							
78	100,00%	5							
79	114,48%	29 (0,03) 53 (0,00) 54 (0,27) 68 (0,63) 94 (0,07)	0	0	150,79	0	54,18	0	0
80	117,35%	3 (0,04) 26 (0,05) 29 (0,37) 31 (0,06) 53 (0,34) 93 (0,14)	0	251,77	0	0	0	0	0
81	100,61%	11 (0,50) 26 (0,04) 32 (0,11) 33 (0,15) 53 (0,01) 57 (0,19)	0	0	0	0	0	127,02	0
82	100,00%	5							
83	100,00%	3							
84	108,30%	29 (0,67) 48 (0,11) 62 (0,11) 64 (0,09) 94 (0,02)	0	0	243,27	410,08	0	0	0
85	113,90%	29 (0,01) 45 (0,22) 53 (0,35) 68 (0,08) 82 (0,33)	0	0	0	0	309,85	0	14,36
86	110,65%	29 (0,07) 53 (0,45) 58 (0,13) 68 (0,17) 73 (0,17)	0	0	155,78	0	0	0	63,42
87	116,30%	1 (0,08) 33 (0,02) 53 (0,03) 54 (0,19) 68 (0,68)	0	0	0	0	188	43,82	0
88	128,03%	11 (0,42) 29 (0,03) 45 (0,03) 58 (0,52)	60,88	0	45,3	0	0	0	4,18
89	100,00%	1							
90	110,86%	25 (0,27) 29 (0,35) 31 (0,10) 53 (0,06) 64 (0,11) 93 (0,12)	0	266,51	0	0	0	0	0
91	122,39%	32 (0,11) 45 (0,02) 68 (0,60) 82 (0,27)	0	0	85,73	0	40,42	0	9,01
92	121,57%	29 (0,03) 32 (0,15) 53 (0,05) 68 (0,74) 94 (0,03)	0	0	82,03	0	89,26	0	0
93	100,00%	13							
94	100,00%	11							
95	115,25%	1 (0,41) 29 (0,12) 40 (0,20) 68 (0,12) 71 (0,13) 94 (0,01)	0	0	0	0	24,73	0	0
ø	106,79%								

E.4. Outputorientierte Modelle der 95 Raiffeisenbanken mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012

E.4.1. Outputorientiertes CCR-Modell

Tabelle 6.31.: Ergebnisse des outputorientierten CCR-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

	*	D 1 1	,-*	,-*	,=*/T0*\	,+*	,+*	,+*	t_4^{+*}
DMU	η^*	Benchmarks	t_1^{-*}	t_2^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4
2	100,00% $121,56%$	11 (0,24) 29 (0,11) 32 (0,08) 68 (0,85)	0	0	473,44	0	0	0	4,83
3	100,00%	7	U	U	470,44	0	0	U	4,00
4	133,87%	31 (0,02) 45 (0,02) 48 (0,02) 58 (0,33) 68 (0,98)	0	0	275,82	0	0	0	0
5	106,14%	29 (0,32) 32 (0,18) 48 (0,27) 58 (0,30) 68 (0,14)	0	0	171,07	0	0	0	0
6	103,52%	3 (0,52) 78 (1,10)	0	2,58	0	0	190,6	0	14,03
7	112,64%	29 (1,33) 32 (0,59) 50 (0,58) 68 (6,34)	0	0	0,04	0	784,34	0	4,67
8	116,17%	29 (0,01) 48 (0,09) 58 (0,09) 68 (1,86)	0	8,46	102,62	0	0	0	0
9 10	117,80% $121,58%$	48 (0,00) 68 (0,57) 29 (0,14) 48 (0,01) 68 (1,83) 71 (1,16)	0	15,63 $1,89$	37,9 0	0	70,9 $209,55$	0	0
11	100,00%	30		1,00	0	0	203,00		
12	115,23%	29 (0,21) 32 (0,07) 48 (0,08) 58 (0,46) 68 (1,13)	0	0	9,67	0	0	0	0
13	118,49%	29 (0,10) 48 (0,03) 58 (0,13) 68 (1,99)	0	94,17	162,12	0	0	0	0
14	123,63%	29 (0,06) 32 (0,09) 48 (0,00) 53 (0,07)	0	0	331,56	0	34,2	0	0
15	114,93%	3 (0,00) 11 (0,00) 29 (0,20) 68 (0,33)	0	0	0	83,73	0	0	2,82
16 17	110,69% $126,16%$	29 (0,18) 32 (0,06) 53 (0,12) 68 (2,19) 11 (0,04) 29 (0,04) 32 (0,00) 48 (0,04) 58 (0,26) 68 (0,46)	0	0	77,64 0	0	$^{124,81}_{0}$	0	0
18	100,01%	11 (0,04) 29 (0,04) 32 (0,00) 48 (0,04) 38 (0,20) 68 (0,40) 11 (1,28) 37 (0,12) 58 (0,03)	0	2,4	0	275,13	0	26,46	0
19	118,71%	31 (0,02) 45 (0,54) 53 (0,87) 68 (2,89)	0	0	812,72	0	ő	195,9	ő
20	128,36%	11 (0,19) 53 (0,07) 68 (0,00) 78 (0,16)	0	0	0	0	0	29,9	12,68
21	100,00%	0							
22	108,63%	11 (0,69) 29 (0,09) 32 (0,12) 48 (0,01) 68 (0,91) 78 (0,41)	0	0	0	0	0	0	0
23	111,70%	29 (0,03) 48 (0,01) 58 (0,00) 68 (0,70)	0	10,32	53,93	0	0	0	0
$\frac{24}{25}$	130,59% $110,50%$	29 (0,02) 48 (0,01) 58 (0,02) 68 (0,67) 11 (1,01) 29 (0,38) 32 (0,07) 48 (0,29) 68 (0,40) 78 (1,23)	0	$^{14,07}_{0}$	$44,12 \\ 0$	0	0	0	0
26	100,00%	11 (1,01) 29 (0,38) 32 (0,07) 48 (0,29) 68 (0,40) 78 (1,23)	U	U	0	U	0	U	U
27	113,37%	3 (0,39) 11 (0,46) 68 (0,74) 71 (0,91)	0	164,5	0	104,3	0	0	0
28	124,00%	11 (0,03) 29 (0,04) 32 (0,04) 48 (0,01) 68 (0,41) 78 (0,22)	0	0	0	0	0	0	0
29	100,00%	47							
30	110,42%	$11 \ (1,43) \ 29 \ (0,61) \ 32 \ (0,38) \ 78 \ (0,31) \ 94 \ (0,12)$	0	0	0	0	946,59	0	0
31	100,00%	2							
32 33	100,00% 109,05%	$\frac{35}{78(0,60)}$	0	0,8	0	74	6,23	39,17	0
34	118,42%	3 (0.28) 78 (1.72)	0	44,53	0	0	93,58	0	64,72
35	103,49%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ő	28,65	ő	216,42	0	8,97	0 1,1 2
36	$122,\!15\%$	11 (0,41) 29 (0,16) 58 (0,01) 68 (0,06)	0	0	20,12	0	0	0	8,7
37	100,00%	2							
38	102,76%	11 (0,93) 29 (0,05) 32 (0,33) 68 (1,98)	0	0	656,22	0	0	0	5,08
39 40	128,31% $101,31%$	48 (0,00) 53 (0,01) 68 (1,29) 3 (0,18) 11 (0,06) 29 (0,00) 68 (0,20)	0	$^{40,61}_{0}$	40,74 0	0	95,69	0	0
41	101,31%	11 (0,40) 37 (0,24) 48 (0,03) 58 (0,03)	0	18,32	0	0	35,65	53,28	$^{1,7}_{0}$
42	113,01%	11 (0,40) 37 (0,24) 48 (0,03) 38 (0,03) 11 (1,44) 48 (0,00) 68 (0,88) 71 (0,77)	0	81,51	0	589,08	0	0	0
43	105,59%	11 (2,60) 32 (0,15) 48 (0,31) 58 (0,08) 94 (0,35)	43,87	0	ő	0	ŏ	ő	ő
44	107,49%	29 (0,02) 32 (0,01) 50 (0,20) 68 (0,79)	0	0	27,96	0	56,16	0	0
45	100,00%	5							
46	120,46%	29 (0,10) 32 (0,02) 48 (0,06) 53 (0,15) 68 (0,45)	0	0	11,94	0	0	0	0
47 48	124,83% 100,00%	29 (0,03) 32 (0,03) 48 (0,13) 53 (0,15) 68 (0,43) 43	0	0	106,49	0	0	0	0
49	123,43%	29 (0,59) 48 (0,28)	0	11,16	273,95	125,5	75,84	0	0
50	100,00%	3		11,10	210,00	120,0	10,01		
51	111,77%	29 (0,71) 32 (0,41) 48 (0,46) 53 (0,44)	0	0	92,01	0	10,84	0	0
52	112,34%	3 (0,07) 29 (0,18) 68 (0,66) 71 (0,59)	0	99,63	0	25,13	0	0	0
53	100,00%	49 (0.09) 53 (0.05) 69 (0.93) 79 (0.99)	0	14.07		0		4.01	
54 55	102,44% $116,76%$	48 (0,02) 53 (0,05) 68 (0,23) 78 (0,29) 11 (0,24) 29 (0,00) 53 (0,00) 68 (0,21) 78 (0,23)	0	$^{14,27}_{0}$	0	0	$0 \\ 72,51$	$^{4,61}_{0}$	0
56	115,76%	11 (0,24) 29 (0,00) 33 (0,00) 68 (0,21) 78 (0,23) 11 (0,25) 29 (0,01) 32 (0,14) 68 (0,42)	0	0	22,72	0	0	0	4,18
57	102,90%	1 (0,09) 11 (0,98) 32 (0,03) 48 (0,04) 53 (0,01)	0	0	0	0	ő	37,56	0
58	100,00%	20							
59	104,16%	3 (0,36) 29 (0,63) 71 (1,38)	0	50,7	0	336,99	77,17	0	0
60	126,57%	29 (0,03) 32 (0,04) 48 (0,01) 53 (0,04) 68 (0,47)	0	0	87,65	0	0	0	0
61	123,87%	1 (0,05) 11 (0,95) 45 (0,07) 53 (0,23) 68 (0,43)	0	0	200.5	175.12	0	5,75	0
62 63	100,28% $118,29%$	29 (0,38) 48 (0,38) 58 (0,70) 11 (0,09) 29 (0,09) 32 (0,01) 48 (0,01) 58 (0,01) 68 (0,17)	0	$^{225,25}_{0}$	290,5 0	175,13 0	0	0	0
64	108,49%	29 (1,08) 32 (0,01) 48 (0,01) 58 (0,01) 68 (0,11)	0	0	336,39	0	40,03	0	0
65	118,17%	29 (0,02) 32 (0,10) 48 (0,40) 53 (0,03) 68 (3,78)	ő	0	221,33	0	0	0	ő
66	116,39%	29 (0,03) 48 (0,05) 68 (0,47)	0	14,32	23,95	0	103,21	0	0
67	122,79%	53 (0,04) 68 (0,11) 78 (0,31)	0	60,43	0	0	0	6,16	17
68	100,00%	57	^	_	00.05	^	^	^	05.0
69 70	107,33% $109,93%$	32 (0,16) 45 (0,03) 53 (0,01) 68 (0,77)	0	0 40 44	80,95	0	0 87.27	0	35,2
70 71	109,93%	48 (0,14) 53 (0,51) 68 (1,63) 8	U	40,44	196,73	0	87,27	U	0
72	105,61%	48 (0,05) 53 (0,13) 68 (0,34)	0	30,48	25,45	0	47,43	0	0
73	102,05%	53 (0,12) 68 (0,65)	ő	143,07	296,37	Õ	31,04	0	3,28

$E.\ Output$ orientierte Modelle

DMU	η^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
74	121,57%	11 (0,07) 29 (0,33) 32 (0,81) 58 (0,00) 68 (0,40)	0	0	279,77	0	0	0	0
75	101,23%	29 (0,18) 48 (0,12) 71 (0,87)	0	49,48	0	221,06	144,89	0	0
76	102,05%	48 (0,01) 53 (0,04) 68 (0,69)	0	79,28	118,65	0	50,58	0	0
77	104,44%	29 (0,00) 32 (2,17) 50 (3,48) 68 (6,03)	0	0	0,02	0	1647,25	0	145,46
78	100,00%	14							
79	117,32%	29 (0,09) 32 (0,04) 48 (0,02) 53 (0,08) 68 (0,35)	0	0	37,61	0	0	0	0
80	119,51%	29 (0,27) 48 (0,20) 58 (0,11) 68 (2,81)	0	98,79	123,92	0	0	0	0
81	108,42%	11 (1,00) 32 (0,06) 45 (0,02) 48 (0,03)	14,73	0	0	0	0	127,67	0
82	100,00%	1							
83	103,23%	11 (0,31) 48 (0,04) 68 (0,31) 71 (0,10)	0	5,43	0	203,87	0	0	0
84	119,45%	29 (0,75) 32 (0,13) 48 (0,05) 58 (0,33) 68 (0,03)	0	0	1226,29	0	0	0	0
85	112,12%	32 (0,25) 53 (0,32) 68 (1,85)	0	0	378,82	0	392,39	0	23,25
86	110,09%	29 (0,05) 32 (0,01) 53 (0,22) 68 (1,91)	0	0	123,02	0	220,75	0	0
87	120,22%	11 (0,22) 53 (0,10) 68 (0,06) 78 (0,15)	0	0	0	0	117,31	0	4,1
88	128,89%	11 (0,70) 48 (0,01) 58 (0,50) 68 (0,09)	0	3,77	0	0	0	18,94	0
89	124,77%	29 (0,81) 32 (1,15) 48 (0,56) 58 (0,29) 68 (5,86)	0	0	899,03	0	0	0	0
90	116,70%	29 (0,22) 48 (0,26) 58 (0,34) 68 (4,00) 71 (0,34)	0	0	0	306,59	0	0	0
91	117,12%	11 (0,09) 29 (0,06) 32 (0,28) 82 (0,02)	0	0	0	0	58,85	0	50,73
92	121,47%	11 (0,07) 29 (0,07) 32 (0,25) 68 (0,26)	Õ	Ö	Õ	Ö	99,3	Õ	13,5
93	100,00%	0					, -		
94	100,00%	$\overset{\circ}{2}$							
95	121,75%	$11\ (0,12)\ 29\ (0,18)\ 32\ (0,02)\ 48\ (0,02)\ 68\ (0,05)\ 78\ (0,15)$	0	0	0	0	0	0	0

E.4.2. Outputorientiertes BCC-Modell mit den drei Inputs I1, I2, $I3^{*}$

Tabelle 6.32.: Ergebnisse des output
orientierten BCC-Modells mit den drei Inputs $I1,\ I2,\ I3^*,$ angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	η_B^*	Benchmarks	t_1^{-*}	t_2^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
1 2 3	100,00% $121,11%$ $100,00%$	7 29 (0,12) 32 (0,09) 45 (0,03) 53 (0,01) 68 (0,76)	0	0	405,46	0	0	0	13,61
4 5	132,86% $105,88%$	31 (0,03) 45 (0,00) 48 (0,01) 53 (0,08) 58 (0,40) 68 (0,48) 29 (0,33) 32 (0,10) 45 (0,08) 48 (0,26) 58 (0,20) 94 (0,04)	0	0	240,41 $129,46$	0	0	0	0
6 7 8	100,00% 100,00% 112,97%	29 (0,02) 31 (0,02) 48 (0,05) 53 (0,17) 58 (0,23) 68 (0,52)	0	28,07	0	0	0	0	0
9	100,00% 112,36%	6 (0,22) 26 (0,27) 29 (0,25) 53 (0,03) 78 (0,14) 93 (0,09)	0	127,16	0	0	0	0	0
11 12	100,00% 111,84%	15 26 (0,09) 29 (0,20) 31 (0,02) 48 (0,06) 53 (0,15) 58 (0,48)	0	17,76	0	0	0	0	0
13 14	115,21% $113,48%$	29 (0,14) 31 (0,04) 53 (0,17) 58 (0,19) 68 (0,47) 1 (0,43) 32 (0,01) 48 (0,00) 50 (0,56)	$ \begin{array}{c} 0 \\ 46,35 \end{array} $	95,16 0	$0 \\ 247,78$	0 0	$^{0}_{86,56}$	0 0	$^{11,84}_{0}$
15 16	109,78% 108,31%	29 (0,12) 40 (0,55) 48 (0,00) 50 (0,12) 58 (0,01) 68 (0,20) 29 (0,23) 31 (0,01) 53 (0,42) 58 (0,14) 68 (0,20)	0	$0 \\ 10,49$	0	111,32	0 0 0	0 0 0	43,96
17 18 19	124,42% 100,00% 108,37%	29 (0,01) 40 (0,21) 48 (0,04) 50 (0,03) 58 (0,26) 68 (0,44) 94 (0,01) 31 (0,16) 45 (0,28) 53 (0,31) 77 (0,25)	0	86,56	170,39	0	0	314,09	0
20 21	100,00% 100,00%	1 0		00,00	110,00			011,00	
22 23	105,25% $108,22%$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	0 0	$0 \\ 41,09$	$ \begin{array}{c} 0 \\ 64,24 \end{array} $	$0 \\ 19,97$	0 0	$^{13,18}_{0}$
24 25 26	126,71% $100,00%$ $100,00%$	9 (0,16) 48 (0,01) 68 (0,82) 76 (0,01) 1 14	0	0	45,63	66,52	6,5	0	0
27 28	105,07% 121,84%	3 (0,29) 26 (0,31) 48 (0,01) 59 (0,08) 71 (0,31) 11 (0,37) 29 (0,01) 32 (0,01) 48 (0,03) 50 (0,10) 68 (0,48)	0	279,83 0	0	$31,24 \\ 0$	0 63,89	0	0
29 30	100,00% 104,02%	26 (0,34) 29 (0,37) 43 (0,06) 64 (0,14) 77 (0,10)	52,66	0	0	0	764,1	0	0
31 32 33	100,00% 100,00% 100,00%	11 18 0							
34 35	104,13% 100,00%	26 (0,41) 78 (0,59) 0	0	201,61	0	0	331,07	30,08	34,04
36 37	118,40% 100,00%	$11\ (0,29)\ 29\ (0,10)\ 40\ (0,44)\ 50\ (0,14)\ 58\ (0,03)$ 1	9	0	0	0	0	0	3,75
38 39	100,96% 127,11%	29 (0,15) 32 (0,19) 45 (0,27) 53 (0,19) 68 (0,20) 29 (0,03) 53 (0,06) 68 (0,91)	0	$ \begin{array}{c} 0 \\ 49,25 \end{array} $	278,45 30,84	0	0 39,34	0	62,67 5,69
40 41 42	100,00% 100,74% 103,77%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$0 \\ 211,94$	0	0 237,4	0	54,98 0	0
43 44	100,00% 107,49%	1 29 (0,02) 32 (0,01) 50 (0,15) 68 (0,82)	0	0	38,06	0	58,89	0	0,39
45 46 47	100,00% 119,86% 124,30%	12 29 (0,08) 32 (0,03) 48 (0,07) 50 (0,04) 53 (0,09) 68 (0,68) 29 (0,00) 32 (0,02) 48 (0,14) 50 (0,37) 53 (0,13) 68 (0,34)	0	0	0 26,32	0	$47,71 \\ 0$	0	0
48 49	100,00% 123,20%	28 29 (0,57) 48 (0,28) 68 (0,14)	0	5,1	277,74	163,15	95,16	0	0
50 51	100,00% 102,93%	7 (0,01) 29 (0,03) 31 (0,00) 45 (0,06) 48 (0,31) 64 (0,59)	171,22	0	0	0	0	0	0
52 53 54	109,42% $100,00%$ $100,00%$	26 (0,05) 29 (0,20) 58 (0,04) 71 (0,63) 78 (0,08) 22 2	0	140,86	0	0	0	0	15,89
55 56	100,00% 115,07%	1 (0,08) 11 (0,47) 32 (0,10) 50 (0,09) 68 (0,26)	0	0	43,06	0	20,01	0	0
57 58	101,71% 100,00%	11 (0,89) 26 (0,02) 32 (0,01) 45 (0,01) 48 (0,05) 53 (0,03) 16	0	0	0	0	0	44,08	0
59 60 61	100,00% 123,25% 117,83%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	13,8 0	0 63,8	0 20,66
62 63	100,00% 104,49%	1 (0,24) 40 (0,63) 50 (0,11) 58 (0,01) 94 (0,01)	9,8	0	0	52,81	0	0	0
64 65	100,00% 109,25%	25 (0,13) 26 (0,14) 29 (0,02) 31 (0,10) 48 (0,24) 53 (0,36)	0	45,73	0	0	0	0	0
66 67 68	106,87% 100,00% 100,00%	9 (0,62) 40 (0,08) 48 (0,05) 50 (0,04) 68 (0,22) 0 27	0	0	0	36,12	70,67	0	0
69 70	107,26% 108,50%	1 (0,02) 32 (0,16) 45 (0,03) 53 (0,00) 68 (0,78) 29 (0,07) 31 (0,04) 48 (0,09) 53 (0,69) 68 (0,11)	0	0 46	83,48 53,4	0	0	0	$35,71 \\ 0$
71 72	100,00% 100,00%	4 0							
73 74 75	100,00% 118,98% 100,29%	$\begin{array}{c} 0 \\ 29 \ (0,23) \ 32 \ (0,53) \ 45 \ (0,07) \ 77 \ (0,07) \ 94 \ (0,09) \\ 3 \ (0,30) \ 29 \ (0,15) \ 48 \ (0,16) \ 71 \ (0,38) \end{array}$	20,49	0 43,81	198,06 0	0 112,96	0 107,48	0	0
76 77	100,00% 100,00%	3 (0,30) 23 (0,10) 45 (0,10) 11 (0,30)	3	13,01		112,00	101,40		
78 79	100,00% $115,56%$	5 11 (0,12) 29 (0,04) 32 (0,03) 48 (0,03) 50 (0,26) 68 (0,51)	0	0	0	0	64,19	0	0

$E. \ Output orientier te \ Modelle$

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3^*)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
80	111,30%	26 (0,18) 29 (0,26) 31 (0,05) 48 (0,12) 53 (0,21) 58 (0,17)	0	205,56	0	0	0	0	0
81	107,51%	11 (0,86) 26 (0,03) 32 (0,06) 45 (0,02) 48 (0,02)	0,61	0	0	0	0	133,84	0
82	100,00%	0							
83	100,00%	0							
84	116,28%	29 (0,73) 31 (0,05) 45 (0,05) 48 (0,01) 94 (0,15)	85,2	0	1115,88	0	0	0	0
85	111,95%	29 (0,13) 32 (0,15) 53 (0,65) 68 (0,08)	0	0	383,7	0	94,33	0	67,36
86	107,96%	29 (0,15) 53 (0,41) 68 (0,44)	0	27,47	89,2	0	4,66	0	37,16
87	107,25%	1 (0,14) 11 (0,26) 20 (0,17) 54 (0,19) 68 (0,24)	0	0	0	0	192,02	26,27	0
88	125,05%	11 (0,29) 26 (0,05) 53 (0,01) 58 (0,52) 78 (0,13)	0	12,88	0	0	0	41,27	0
89	100,00%	0							
90	100,00%	0							
91	115,72%	11 (0,84) 29 (0,01) 32 (0,14)	18,97	0	144,39	0	159,09	0	23,46
92	121,10%	11 (0,43) 29 (0,03) 32 (0,18) 48 (0,00) 50 (0,31) 68 (0,05)	0	0	0	0	121,83	0	0
93	100,00%	1							
94	100,00%	6							
95	117,85%	11 (0,29) 29 (0,11) 40 (0,42) 48 (0,03) 50 (0,14) 94 (0,00)	0	0	0	0	26,72	0	0

E.4.3. Outputorientiertes BCC-Modell mit den drei Inputs I1, I2, I3

Tabelle 6.33.: Ergebnisse des output
orientierten BCC-Modells mit den drei Inputs $I1,\ I2,\ I3,$ angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	η_B^*	Benchmarks	t_1^{-*}	t_2^{-*}	$t_3^{-*}(I3)$	t ₁ +*	t_2^{+*}	t_3^{+*}	t_4^{+*}
1 2 3	100,00% 121,11% 100,00%	12 29 (0,12) 32 (0,09) 45 (0,03) 53 (0,01) 68 (0,76)	0	0	405,46	0	0	0	13,61
4 5	132,86% $105,88%$	31 (0,03) 45 (0,00) 48 (0,01) 53 (0,08) 58 (0,40) 68 (0,48) 29 (0,33) 32 (0,10) 45 (0,08) 48 (0,26) 58 (0,20) 94 (0,04)	0	0	240,41 $129,46$	0	0	0	0
6 7 8	100,00% 100,00% 112,97%	4 1 29 (0,02) 31 (0,02) 48 (0,05) 53 (0,17) 58 (0,23) 68 (0,52)	0	28,07	0	0	0	0	0
9	100,00% 114,68%	6 (0,29) 26 (0,20) 29 (0,27) 48 (0,04) 53 (0,13) 58 (0,07)	0	114,67	0	0	0	0	0
11 12	100,00% 111,85%	24 26 (0,09) 29 (0,20) 31 (0,02) 48 (0,06) 53 (0,15) 58 (0,48)	0	17,66	0	0	0	0	0
13 14	115,21% $113,48%$	29 (0,14) 31 (0,04) 53 (0,17) 58 (0,19) 68 (0,47) 1 (0,43) 32 (0,01) 48 (0,00) 50 (0,56)	$ \begin{array}{c} 0 \\ 46,35 \end{array} $	$95,17 \\ 0$	$0 \\ 247,78$	0	$ \begin{array}{c} 0 \\ 86,56 \end{array} $	0	$^{11,84}_{0}$
15 16	109,78% 108,31%	29 (0,12) 40 (0,55) 48 (0,00) 50 (0,12) 58 (0,01) 68 (0,20) 29 (0,23) 31 (0,01) 53 (0,42) 58 (0,14) 68 (0,20)	0	$0 \\ 10,49$	0	111,32	0	0	43,96
17 18 19	124,43% $110,52%$ $108,37%$	11 (0,03) 29 (0,01) 40 (0,21) 48 (0,04) 50 (0,06) 58 (0,26) 68 (0,39) 11 (0,74) 29 (0,03) 50 (0,02) 58 (0,20) 31 (0,16) 45 (0,28) 53 (0,31) 77 (0,25)	$15,26 \\ 0$	0	3,92	0 0 0	0 0 0	$0 \\ 0 \\ 314,09$	$\begin{smallmatrix} 0\\1,71\\0\end{smallmatrix}$
20 21	101,02% 100,00%	1 (0,04) 9 (0,72) 11 (0,22) 33 (0,02)	28,19	86,56 0	170,39 0	0	37,58	57,2	0
22 23	105,66% $108,22%$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	$0 \\ 41,09$	$0 \\ 64,24$	$0 \\ 19,97$	0	$^{11,25}_{0}$
24 25	126,71% $100,00%$	9 (0,16) 48 (0,01) 68 (0,82) 76 (0,01) 1	0	0	45,63	66,52	6,5	0	0
26 27 28	100,00% 109,20% 122,24%	11 3 (0,23) 6 (0,25) 26 (0,21) 29 (0,11) 48 (0,04) 58 (0,16) 11 (0,27) 29 (0,01) 48 (0,02) 50 (0,33) 68 (0,23) 78 (0,14)	0	244,42 0	0	0	0 18,67	0	0
29 30	100,00% 104,03%	26 (0,34) 29 (0,37) 43 (0,06) 64 (0,14) 77 (0,10)	52,8	0	0	0	763,91	0	0
31 32	100,00% 100,00%	11 14							
33 34	100,00% 115,69%	3 6 (0,53) 26 (0,07) 29 (0,02) 53 (0,31) 58 (0,06)	0	45,89	0	0	0	0	45,06
35 36 37	104,86% 118,56% 100,00%	11 (0,11) 33 (0,35) 48 (0,00) 68 (0,37) 78 (0,17) 11 (0,25) 29 (0,09) 40 (0,38) 50 (0,24) 58 (0,04)	$^{0}_{12,31}$	5,77 0	0	187,79 0	0	0	$_{3,78}^{0}$
38 39	100,96% 127,11%	29 (0,15) 32 (0,19) 45 (0,27) 53 (0,19) 68 (0,20) 29 (0,03) 53 (0,06) 68 (0,91)	0	$0 \\ 49,25$	278,45 30,84	0	0 39,34	0	62,67 5,69
40 41	100,00% $105,32%$	1 (0,27) 11 (0,14) 37 (0,46) 48 (0,01) 58 (0,01) 68 (0,10)	0	0	0	0	0	44,72	0
42 43 44	109,15% 100,00% 107,49%	3 (0,34) 6 (0,08) 11 (0,02) 26 (0,25) 48 (0,03) 58 (0,29) 29 (0,02) 32 (0,01) 50 (0,15) 68 (0,82)	0	158,35	38,06	0	58,89	0	0,39
45 46	100,00% 119,87%	29 (0,07) 48 (0,07) 50 (0,22) 53 (0,10) 68 (0,39) 78 (0,15)	0	0	0	0	8,97	0	0
47 48	124,30% 100,00%	29 (0,00) 32 (0,02) 48 (0,14) 50 (0,37) 53 (0,13) 68 (0,34) 34	0	0	26,32	0	0	0	0
49 50 51	123,20% 100,00% 102,93%	29 (0,57) 48 (0,28) 68 (0,14) 18 7 (0,01) 29 (0,03) 31 (0,00) 45 (0,06) 48 (0,31) 64 (0,59)	171,22	5,1	277,74	163,15	95,16	0	0
52 53	112,57% $100,00%$	3 (0,11) 11 (0,11) 29 (0,25) 48 (0,02) 58 (0,12) 78 (0,38)	0	122,25	0	0	ő	0	0
54 55	100,00% 109,59%	1 (0,24) 9 (0,33) 11 (0,38) 40 (0,01) 50 (0,05)	2,15	0	0	0	91,54	0	0
56 57 58	115,07% 104,85% 100,00%	1 (0,08) 11 (0,47) 32 (0,10) 50 (0,09) 68 (0,26) 1 (0,18) 11 (0,70) 32 (0,05) 45 (0,03) 48 (0,03) 53 (0,01) 22	0	0	95,84 0	0	20,01	0 19,73	0
59 60	100,00% $123,34%$	0 1 (0,31) 11 (0,05) 48 (0,00) 50 (0,52) 68 (0,08) 78 (0,05)	0	0	0	0	0,09	0	0
61 62 63	119,94% 100,00% 104,49%	11 (0,40) 26 (0,04) 45 (0,05) 53 (0,35) 58 (0,16) 0 1 (0,24) 40 (0,63) 50 (0,11) 58 (0,01) 94 (0,01)	9,8	0	0	52,81	0	37,9	20,03
64 65	100,00% 109,26%	25 (0.13) 26 (0.14) 29 (0.02) 31 (0.10) 48 (0.24) 53 (0.36)	0	45,55	0	0	0	0	0
66 67	106,87% $109,56%$	9 (0,62) 40 (0,08) 48 (0,05) 50 (0,04) 68 (0,22) 9 (0,32) 33 (0,17) 68 (0,51)	0 0	$0 \\ 43,05$	0 0	$36,12 \\ 0$	70,67 $69,35$	$\underset{42,47}{\overset{0}{}}$	$^{0}_{1,24}$
68 69 70	100,00% 107,26% 108,50%	32 1 (0,02) 32 (0,16) 45 (0,03) 53 (0,00) 68 (0,78) 29 (0,07) 31 (0,04) 48 (0,09) 53 (0,69) 68 (0,11)	0	0 46	83,48 53,4	0	0	0	35,71 0
71 72	100,69% 100,00%	3 (0,09) 11 (0,60) 29 (0,10) 48 (0,08) 68 (0,13)	0	0	0	78,93	35,29	0	0
73 74	100,00% 118,98%	29 (0,23) 32 (0,53) 45 (0,07) 77 (0,07) 94 (0,09)	20,49	0	198,06	0	0	0	0
75 76 77	102,25% $100,00%$ $100,00%$	3 (0,31) 29 (0,22) 48 (0,19) 68 (0,27) 1 3	0	27,57	0	113,62	108,9	0	0
78 79	100,00% 115,75%	11 (0,06) 29 (0,04) 48 (0,02) 50 (0,52) 68 (0,11) 78 (0,24)	0	0	0	0	6,1	0	0

$E. \ Output orientier te \ Modelle$

DMU	η_B^*	Benchmarks	t_1^{-*}	t_{2}^{-*}	$t_3^{-*}(I3)$	t_1^{+*}	t_2^{+*}	t_3^{+*}	t_4^{+*}
80	111,31%	26 (0,18) 29 (0,27) 31 (0,05) 48 (0,12) 53 (0,21) 58 (0,17)	0	205,36	0	0	0	0	0
81	110,07%	1 (0,16) 11 (0,69) 32 (0,08) 45 (0,06) 48 (0,01)	20,58	0	0	0	0	108,8	0
82	100,00%	0							
83	101,26%	1 (0,31) 11 (0,19) 40 (0,26) 48 (0,03) 58 (0,01) 68 (0,20)	0	0	0	211,94	0	0	0
84	116,28%	29 (0,73) 31 (0,05) 45 (0,05) 48 (0,01) 94 (0,15)	85,2	0	1115,88	0	0	0	0
85	111,95%	29 (0,13) 32 (0,15) 53 (0,65) 68 (0,08)	0	0	383,7	0	94,33	0	67,36
86	107,96%	29 (0,15) 53 (0,41) 68 (0,44)	0	27,47	89,2	0	4,66	0	37,16
87	111,44%	1 (0,61) 11 (0,25) 53 (0,01) 68 (0,13)	0	0	0	0	213,46	9,88	15,61
88	128,10%	11 (0,35) 26 (0,02) 45 (0,01) 48 (0,00) 53 (0,06) 58 (0,56)	0	0	0	0	0	28,89	0
89	100,00%	0							
90	100,00%	0							
91	115,72%	11 (0,84) 29 (0,01) 32 (0,14)	18,97	0	239,19	0	159,09	0	23,46
92	121,25%	11 (0,35) 29 (0,03) 32 (0,19) 50 (0,42) 68 (0,01)	0	0	0	0	106,4	0	0,85
93	100,00%	0							
94	100,00%	5							
95	118,15%	11 (0,25) 29 (0,11) 40 (0,37) 48 (0,03) 50 (0,23) 94 (0,01)	0	0	0	0	21,16	0	0

E.5. Projektionen für die Outputorientierten Modelle der 95 Raiffeisenbanken für das Jahr 2010

E.5.1. Projektionen für das outputorientierte CCR-Modell

Tabelle 6.34.: Projektionen der Inputs des output
orientierten CCR-Modells für das Jahr $2010\,$

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	125,05%	1099,00	0,00	0,00	696,00	0,00	0,00	160,08	-467,25	-74,48
4 5	118,98% $104,11%$	1246,00	$0,00 \\ 0,00$	0,00 0,00	780,00 1568,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	341,91 588,43	-217,42 -135,24	-38,87 -18,69
7	104,11% $117,64%$	2824,00 9617,00	0,00	0,00	5385,00	0,00	0,00	1598,67	0,00	0,00
8	116,42%	1259,00	0,00	0,00	691,00	0,00	0,00	240,67	0,00	0,00
9	113,56%	250,00	0,00	0,00	169,68	-26,32	-13,43	58,00	0,00	0,00
10	116,79%	2788,00	0,00	0,00	1495,00	0,00	0,00	149,33	0,00	0,00
12	110,21%	2454,00	0,00	0,00	1382,00	0,00	0,00	422,00	0,00	0,00
13	116,91%	1571,00	0,00	0,00	1001,30	-5,70	-0,57	343,67	0,00	0,00
14	121,36%	523,00	0,00	0,00	283,00	0,00	0,00	84,10	-371,90	-81,56
15 16	122,02%	907,00	0,00	0,00	462,00	0,00	0,00	111,00	0,00	0,00
17	112,45% $123,56%$	2053,00 933,00	0,00 0,00	$0,00 \\ 0,00$	1126,00 507,15	0,00 -11,85	0,00 $-2,28$	327,33 147,67	$0,00 \\ 0,00$	0,00 0,00
19	119,19%	5177,00	0,00	0,00	3024,00	0,00	0,00	1193,04	-956,96	-44,51
20	134,34%	404,00	0,00	0,00	219,00	0,00	0,00	17,00	0,00	0,00
22	111,71%	1966,00	0,00	0,00	1043,00	0,00	0,00	193,67	0,00	0,00
23	110,85%	466,00	0,00	0,00	282,00	0,00	0,00	58,46	-41,54	-41,54
24	120,48%	440,00	0,00	0,00	227,00	0,00	0,00	90,00	0,00	0,00
25	112,55%	4292,00	0,00	0,00	2504,91	-22,09	-0,87	391,67	0,00	0,00
27 28	112,95% $128,59%$	2551,00 645,00	0,00 0,00	0,00 0,00	1298,00 376,00	0,00 0,00	$0,00 \\ 0,00$	$34,00 \\ 74,67$	$0,00 \\ 0,00$	0,00 0,00
30	114,31%	4764,00	0,00	0,00	2416,00	0,00	0,00	675,58	-50,42	-6,94
31	100,11%	5644,00	0,00	0,00	4002,89	-162,11	-3,89	1461,59	-2372,74	-61,88
33	113,53%	523,00	0,00	0,00	306,09	-3,91	-1,26	0,00	0,00	0,00
34	133,56%	2147,00	0,00	0,00	1223,71	-216,29	-15,02	0,00	0,00	0,00
36	125,04%	883,00	0,00	0,00	466,60	-0,40	-0,09	105,33	0,00	0,00
39	121,67%	628,00	0,00	0,00	381,03	-208,97	-35,42	90,67	0,00	0,00
40	104,49%	487,00	0,00	0,00	262,00	0,00	0,00	7,67	0,00	0,00
41	101,89%	515,00	0,00	0,00	269,74	-44,26	-14,10	30,67	0,00	0,00
42 43	115,44% $104,52%$	2360,00 4130,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	1266,38 2120,00	$^{-145,62}_{0,00}$	$^{-10,31}_{0,00}$	38,00 $512,33$	$0,00 \\ 0,00$	$0,00 \\ 0,00$
44	107,54%	545,00	0,00	0,00	328,00	0,00	0,00	132,67	0,00	0,00
46	127,83%	1042,00	0,00	0,00	606,00	0,00	0,00	157,00	0,00	0,00
47	125,70%	948,00	0,00	0,00	542,00	0,00	0,00	188,06	-68,94	-26,82
49	123,70%	2778,77	-42,23	-1,50	1420,00	0,00	0,00	405,59	-286,74	-41,42
51	114,17%	5365,00	0,00	0,00	2885,00	0,00	0,00	715,67	-405,66	-36,18
52	114,64%	1839,00	0,00	0,00	999,00	0,00	0,00	120,67	0,00	0,00
54 55	102,15% $118,23%$	490,00 476,00	0,00	0,00	276,00 260,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	27,67 9,33	$0,00 \\ 0,00$	$0,00 \\ 0,00$
56	117,68%	773,00	0,00	0,00	392,00	0,00	0,00	175,00	0,00	0,00
57	103,04%	897,00	0,00	0,00	503,00	0,00	0,00	53,33	0,00	0,00
59	101,72%	4599,00	0,00	0,00	2441,29	-12,71	-0,52	333,00	0,00	0,00
60	$126,\!15\%$	511,00	0,00	0,00	290,00	0,00	0,00	105,73	-64,27	-37,81
61	$122,\!88\%$	1507,00	0,00	0,00	816,00	0,00	0,00	187,67	0,00	0,00
63	115,38%	512,00	0,00	0,00	267,00	0,00	0,00	63,33	0,00	0,00
64 65	115,49% $113,71%$	6960,00	0,00 0,00	0,00	3844,00 1838,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	938,39 448,25	-505,94 -182,08	-35,03 -28,89
66	113,71% $125,37%$	2896,00 421,00	0,00	0,00	261,51	-9,49	-3,50	74,00	0,00	0,00
67	121,99%	385,00	0,00	0,00	232,99	-8,01	-3,32	15,00	0,00	0,00
69	113,52%	915,00	0,00	0,00	469,00	0,00	0,00	313,19	-1,14	-0,36
70	111,36%	1964,00	0,00	0,00	1209,00	0,00	0,00	235,54	-204,13	-46,43
73	107,50%	511,00	0,00	0,00	378,00	0,00	0,00	141,69	-206,31	-59,28
74	120,34%	3411,00	0,00	0,00	1742,00	0,00	0,00	748,11	-448,89	-37,50
77	102,59%	9875,00	0,00	0,00	4897,00	0,00	0,00	3193,67	0,00	0,00
79 80	119,03% $117,40%$	771,00 2988,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	426,00 1594,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	160,99 485,33	-0,01 0,00	-0,01 0,00
81	117,40% $111,52%$	1008,00	0,00	0,00	495,00	0,00	0,00	109,00	0,00	0,00
82	102,98%	1327,37	-193,63	-12,73	614,00	0,00	0,00	0,00	0,00	0,00
83	102,19%	601,00	0,00	0,00	314,00	0,00	0,00	27,67	0,00	0,00
84	122,08%	3908,00	0,00	0,00	1995,00	0,00	0,00	1299,32	-570,68	-30,52
85	115,30%	1961,00	0,00	0,00	1225,00	0,00	0,00	263,51	-482,49	-64,68
86	110,97%	1464,00	0,00	0,00	904,00	0,00	0,00	280,33	0,00	0,00
87	117,83%	497,00	0,00	0,00	267,00	0,00	0,00	27,67	0,00	0,00
88	127,90%	1468,00	0,00	0,00	759,00	0,00	0,00	190,00 2891,33	0,00	0,00
89 90	126,45% $114,66%$	10277,00 4166,00	0,00 0,00	$0,00 \\ 0,00$	5326,00 2287,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	483,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$
91	110,71%	966,82	-44,18	-4,37	454,00	0,00	0,00	281,33	0,00	0,00
92	122,00%	1073,42	-14,58	-1,34	504,00	0,00	0,00	272,33	0,00	0,00
93	105,76%	2522,00	0,00	0,00	1453,79	-236,21	-13,98	168,33	0,00	0,00
94	100,80%	3037,96	-297,04	-8,91	1552,00	0,00	0,00	562,63	-59,70	-9,59
95	122,26%	1003,00	0,00	0,00	525,00	0,00	0,00	117,67	0,00	0,00

Tabelle 6.35.: Projektionen der Outputs des output
orientierten CCR-Modells für das Jahr $2010\,$

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2	1728,19	346,19	25,05	635,25	127,25	25,05	756,55	151,55	25,05	58,77	11,77	25,05
4	1571,73	250,73	18,98	974,45	155,45	18,98	841,92	191,92	29,53	55,92	8,92	18,98
5	3448,12	136,12	4,11	1506,47	59,47	4,11	1916,67	75,67	4,11	385,21	15,21	4,11
7	12620,42	1892,42	17,64	4166,81	624,81	17,64	7157,22	1073,22	17,64	500,35	145,35	40,94
8 9	1661,31 379,29	$234,31 \\ 45,29$	16,42 $13,56$	799,81 109,07	$\frac{112,81}{23,07}$	16,42 $26,83$	832,40 183,97	$117,40 \\ 21,97$	$16,42 \\ 13,56$	119,91 15,12	$16,91 \\ 13,12$	16,42 $656,06$
10	3452,31	496,31	16,79	1106,00	159,00	16,79	1910,68	274,68	16,79	251,10	36,10	16,79
12	2866,56	265,56	10,73	1610,17	149,17	10,73	1767,77	163,77	10,21	175,23	16,23	10,73
13	2102,04	304,04	16,91	965,68	139,68	16,91	1155,07	167,07	16,91	59,62	8,62	16,91
14	824,03	145,03	21,36	228,01	102,01	80,96	359,23	63,23	21,36	32,77	5,77	21,36
15	972,50	175,50	22,02	452,69	81,69	22,02	672,33	121,33	22,02	43,93	7,93	22,02
16	2913,58	322,58	12,45	905,22	100,22	12,45	1489,96	164,96	12,45	103,90	21,90	26,71
17	1037,90	197,90	23,56	664,75	126,75	23,56	644,98	122,98	23,56	77,84	14,84	23,56
19	8292,05	1335,05	19,19	2985,71	480,71	19,19	3203,83	515,83	19,19	473,19	201,19	73,97
20	674,39	172,39	34,34	169,27	43,27	34,34	259,91	87,91	51,11	26,94	16,94	169,44
22 23	2892,17 661,77	303,17 $64,77$	11,71 $10,85$	950,65 279,34	99,65 $27,34$	$11,71 \\ 10,85$	1338,29 331,44	140,29 $32,44$	$11,71 \\ 10,85$	100,54 28,82	10,54 $2,82$	$11,71 \\ 10,85$
24	586,74	99,74	20,48	249,39	42,39	20,48	306,02	52,44	20,48	14,40	7,40	10,83
25	5906,62	658,62	12,55	2119,32	236,32	12,55	2881,28	321,28	12,55	508,73	56,73	12,55
27	2819,23	323,23	12,95	1214,21	139,21	12,95	1617,44	185,44	12,95	146,84	16,84	12,95
28	964,43	214,43	28,59	330,48	73,48	28,59	435,92	96,92	28,59	65,58	14,58	28,59
30	6074,43	760,43	14,31	1875,92	826,92	78,83	3455,59	432,59	14,31	288,06	36,06	14,31
31	7143,85	7,85	0,11	3969,36	4,36	0,11	3978,37	4,37	0,11	491,54	0,54	0,11
33	842,35	135,35	19,14	212,30	25,30	13,53	342,79	55,79	19,44	35,19	4,19	13,53
34	3193,42	802,42	33,56	793,35	199,35	33,56	1445,12	363,12	33,56	138,51	63,51	84,68
36	1067,84	213,84	25,04	451,39	90,39	25,04	657,71	131,71	25,04	36,26	7,26	25,04
39 40	922,26 532,90	164,26 $22,90$	21,67 $4,49$	288,36 182,86	51,36 7,86	$21,67 \\ 4,49$	456,26 334,37	81,26 14,37	$21,67 \\ 4,49$	33,32 21,80	$\frac{22,32}{11,80}$	202,94 $117,99$
40	653,11	12,11	1,89	301,59	5,59	1,89	311,45	43,45	16,21	50,95	0,94	1,89
42	2688,32	499,32	22,81	1294,08	173,08	15,44	1541,12	206,12	15,44	111,98	14,98	15,44
43	4996,06	216,06	4,52	2386,19	103,19	4,52	2579,55	111,55	4,52	487,06	21,06	4,52
44	816,23	57,23	7,54	238,74	16,74	7,54	396,82	27,82	7,54	28,13	9,13	48,07
46	1563,36	340,36	27,83	457,63	99,63	27,83	720,96	156,96	27,83	111,21	24,21	27,83
47	1386,47	283,47	25,70	488,97	99,97	25,70	560,62	114,62	25,70	182,27	37,27	25,70
49	3052,33	606,33	24,79	1234,53	236,53	23,70	2003,94	383,94	23,70	280,80	53,80	23,70
51	7454,16	925,16	14,17	2247,56	387,56	20,84	3468,48	430,48	14,17	742,11	92,10	14,17
52	2156,38	275,38	14,64	897,63	114,63	14,64	1279,38	163,38	14,64	132,98	16,98	14,64
54 55	799,83 742,48	16,83	$^{2,15}_{18,23}$	228,82	4,82	2,15	306,36 320,40	7,36 $49,40$	$^{2,46}_{18,23}$	46,99	0,99	2,15
56	1120,31	114,48 $168,31$	17,68	173,16 400,11	34,16 $60,11$	24,58 $17,68$	513,08	77,08	17,68	31,49 33,53	$11,49 \\ 5,53$	57,43 $19,75$
57	1365,28	40,28	3,04	470,89	13,89	3,04	575,49	63,49	12,40	78,31	2,31	3,04
59	4636,40	78,40	1,72	1752,12	119,12	7,29	3314,04	56,04	1,72	326,52	5,52	1,72
60	804,84	166,84	26,15	247,25	51,25	26,15	351,96	72,96	26,15	34,06	7,06	26,15
61	2316,29	431,29	22,88	798,72	148,72	22,88	1008,84	187,84	22,88	73,73	13,73	22,88
63	632,28	84,28	15,38	236,53	31,53	15,38	378,45	50,45	15,38	27,69	3,69	15,38
64	9537,16	1279,16	15,49	2648,91	363,91	15,93	5057,31	678,31	15,49	593,62	79,62	15,49
65	4119,71	496,71	13,71	1711,34	206,34	13,71	1891,00	228,00	13,71	379,79	45,79	13,71
66	601,78	121,78	25,37	155,93	46,93	43,06	300,89	60,89	25,37	57,67	11,67	25,37
67 69	674,60 1382,67	121,60 $164,67$	21,99 $13,52$	161,03 530,14	29,03 $63,14$	21,99 $13,52$	259,84 592,57	46,84 $70,57$	21,99 $13,52$	27,51 50,43	13,51 $39,43$	96,49 $358,43$
70	3151,49	321,49	11,36	919,83	93,83	11,36	1311,82	133,82	11,36	223,83	22,83	11,36
73	889,03	62,03	7,50	227,06	18,06	8,64	365,50	25,50	7,50	32,32	19,32	148,58
74	5021,79	848,79	20,34	1446,49	244,49	20,34	2285,26	386,26	20,34	219,02	37,02	20,34
77	15194,60	383,60	2,59	4483,03	1732,03	62,96	6228,24	157,24	2,59	603,31	191,31	46,43
79	1086,74	173,74	19,03	330,90	52,90	19,03	552,30	88,30	19,03	58,32	9,32	19,03
80	3607,70	534,70	17,40	1690,56	250,56	17,40	2101,46	311,46	17,40	255,93	37,93	17,40
81	1344,93	138,93	11,52	591,06	61,06	11,52	588,99	140,99	31,47	71,37	7,37	11,52
82	1738,30	50,30	2,98	724,19	495,19	216,24	790,89	22,89	2,98	31,62	10,62	50,55
83	659,91	90,91	15,98	327,01	7,01	2,19	377,08	8,08	2,19	55,18	1,18	2,19
84	5039,46	911,46	22,08	2069,26	374,26	22,08	2807,84	507,84	22,08	167,25	30,25	22,08
85 86	3415,19 2136,17	453,19 $211,17$	15,30 $10,97$	772,64 586,64	301,64 $151,64$	64,04 $34,86$	1354,78 1063,09	179,78 105,09	15,30 $10,97$	137,84 124,29	47,84 $12,29$	53,16 $10,97$
87	783,57	118,57	17,83	196,30	151,04 $115,30$	142,35	333,46	50,46	17,83	33,31	13,31	66,53
88	1602,59	349,59	27,90	1080,76	235,76	27,90	1042,65	265,65	34,19	35,81	7,81	27,90
89	13719,83	2869,83	26,45	5257,79	1099,79	26,45	6875,09	1438,09	26,45	987,57	206,57	26,45
90	4968,22	635,22	14,66	2482,39	317,39	14,66	2944,47	376,47	14,66	294,68	37,68	14,66
91	1393,84	134,84	10,71	378,30	82,30	27,80	595,62	57,62	10,71	66,11	45,11	214,81
92	1509,14	272,14	22,00	438,19	142,19	48,04	667,34	120,34	22,00	67,39	19,39	40,40
93	3761,64	701,64	22,93	1058,36	267,36	33,80	1561,02	85,02	5,76	439,96	23,96	5,76
94	3514,90	27,90	0,80	1436,40	11,40	0,80	2124,86	16,86	0,80	314,50	2,50	0,80
95	1176,14	214,14	22,26	442,58	80,58	22,26	732,34	133,34	22,26	77,02	14,02	22,26

E.5.2. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3^*$

Tabelle 6.36.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2010

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	123,39%	1099,00	0,00	0,00	672,60	-23,40	-3,36	245,62	-381,71	-60,85
4	118,91%	1246,00	0,00	0,00	777,45	-2,55	-0,33	343,13	-216,20	-38,65
5	103,76%	2824,00	0,00	0,00	1568,00	0,00	0,00	710,51	-13,16	-1,82
8	116,22%	1259,00	0,00	0,00	691,00	0,00	0,00	240,67	0,00	0,00
10	$110,\!13\%$	2788,00	0,00	0,00	1495,00	0,00	0,00	149,33	0,00	0,00
12	104,61%	2454,00	0,00	0,00	1289,15	-92,85	-6,72	422,00	0,00	0,00
13	$112,\!89\%$	1571,00	0,00	0,00	977,37	-29,63	-2,94	343,67	0,00	0,00
14	112,39%	512,92	-10,08	-1,93	283,00	0,00	0,00	60,98	-395,02	-86,63
15	115,55%	907,00	0,00	0,00	462,00	0,00	0,00	111,00	0,00	0,00
16	109,19%	2053,00	0,00	0,00	1073,08	-52,92	-4,70	327,33	0,00	0,00
17	$123,\!27\%$	933,00	0,00	0,00	512,34	-6,66	-1,28	147,67	0,00	0,00
19	108,11%	5177,00	0,00	0,00	2576,43	-447,57	-14,80	1908,11	-241,89	-11,25
22	105,12%	1966,00	0,00	0,00	993,77	-49,23	-4,72	193,67	0,00	0,00
23	108,41%	466,00	0,00	0,00	282,00	0,00	0,00	47,73	-52,27	-52,27
27	109,67%	2551,00	0,00	0,00	1241,42	-56,58	-4,36	34,00	0,00	0,00
28	127,88%	645,00	0,00	0,00	376,00	0,00	0,00	74,67	0,00	0,00
30	106,85%	4764,00	0,00	0,00	2416,00	0,00	0,00	726,00	0,00	0,00
34	113,50%	2147,00	0,00	0,00	1021,00	-419,00	-29,10	0,00	0,00	0,00
36	122,64%	883,00	0,00	0,00	467,00	0,00	0,00	105,33	0,00	0,00
39	121,63%	628,00	0,00	0,00	385,24	-204,76	-34,71	90,67	0,00	0,00
41	101,01%	515,00	0,00	0,00	296,90	-17,10	-5,45	30,67	0,00	0,00
42	107,53%	2360,00	0,00	0,00	1116,19	-295,81	-20,95	38,00	0,00	0,00
44	107,38%	545,00	0,00	0,00	328,00	0,00	0,00	132,67	0,00	0,00
46	127,55%	1042,00	0,00	0,00	606,00	0,00	0,00	157,00	0,00	0,00
47	124,56%	948,00	0,00	0,00	542,00	0,00	0,00	186,49	-70,51	-27,44
49	123,06%	2765,37	-55,63	-1,97	1420,00	0,00	0,00	441,88	-250,45	-36,17
51	101,88%	5253,85	-111,15	-2,07	2885,00	0,00	0,00	1121,33	0,00	0,00
52	111,98%	1839,00	0,00	0,00	979,14	-19,86	-1,99	120,67	0,00	0,00
56	114,42%	773,00	0,00	0,00	392,00	0,00	0,00	175,00	0,00	0,00
57	101,20%	897,00	0,00	0,00	503,00	0,00	0,00	53,33	0,00	0,00
60	122,34%	511,00	0,00	0,00	290,00	0,00	0,00	88,57	-81,43	-47,90
61	117,97%	1507,00	0,00	0,00	783,64	-32,36	-3,97	187,67	0,00	0,00
65	106,46%	2896,00	0,00	0,00	1564,53	-273,47	-14,88	630,33	0,00	0,00
66	115,13%	421,00	0,00	0,00	271,00	0,00	0,00	74,00	0,00	0,00
69	111,01%	915,00	0,00	0,00	469,00	0,00	0,00	215,09	-99,24	-31,57
70 73	106,99%	1964,00	0,00	$0,00 \\ 0,00$	1150,96	-58,04	-4,80	439,67	0,00	0,00
73 74	107,25% $117,49%$	511,00 3411,00	0,00		378,00	0,00	0,00 $0,00$	122,77	-225,23	-64,72
79	117,49% $117,51%$	771,00	0,00 0,00	$0,00 \\ 0,00$	1742,00 426,00	$0,00 \\ 0,00$	0,00	1061,75 161,00	-135,25 $0,00$	-11,30 0,00
80	117,31% $112,86%$	2988,00	0,00	0,00	1594,00	0,00	0,00	485,33	0,00	0,00
81	110,74%	1008,00	0.00	0,00	495,00	0,00	0,00	109,00	0,00	0,00
82	100,46%	1275,52	-245,48	-16,14	614,00	0.00	0,00	0,00	0,00	0,00
84	119,04%	3908,00	0,00	0,00	1995,00	0,00	0,00	1125,47	-744,53	-39,81
85	109,63%	1961,00	0,00	0,00	1113,15	-111,85	-9,13	267,58	-444,55	-64,13
86	109,03% $108,57%$	1464,00	0,00	0,00	822,76	-81,24	-9,13 -8,99	147,25	-133,08	-47,47
87	105,05%	471,70	-25,30	-5,09	267,00	0,00	0,00	27,67	0,00	0,00
88	103,03% $123,23%$	1468.00	0,00	0,00	759,00	0,00	0,00	190,00	0,00	0,00
90	123,23% $100,23%$	4166,00	0,00	0,00	2156,47	-130,53	-5,71	483,00	0,00	0,00
91	107,91%	994,44	-16,56	-1,64	454,00	0,00	0,00	114,22	-167,11	-59,40
92	118,22%	1032,46	-55,54	-5,10	504,00	0,00	0,00	272,33	0,00	0,00
94	100,78%	3058,00	-277,00	-8,31	1552,00	0,00	0,00	549,68	-72,65	-11,67
95	118,18%	1003,00	0,00	0.00	525,00	0,00	0,00	117,67	0,00	0.00
	110,1070	1000,00	0,00	0,00	020,00	0,00	0,00	111,01	0,00	0,00

Tabelle 6.37.: Projektionen der Outputs des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2010

Ι	OMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
	2	1705,25	323,25	23,39	626,82	118,82	23,39	746,51	141,51	23,39	57,99	10,99	23,39
	4	1570,80	249,80	18,91	973,87	154,87	18,91	841,65	191,65	29,48	55,89	8,89	18,91
	5	3436,53	124,53	3,76	1501,41	54,41	3,76	1910,22	69,22	3,76	383,91	13,91	3,76
	8	1658,46	231,46	16,22	798,43	111,43	16,22	830,97	115,97	16,22	119,71	16,71	16,22
	10	3255,44	299,44	10,13	1066,63	119,63	12,63	1801,73	165,73	10,13	236,78	21,78	10,13
	12	2720,91	119,91	4,61	1528,35	67,35	4,61	1677,94	73,94	4,61	166,33	7,33	4,61
	13	2029,76	231,76	12,89	932,47	106,47	12,89	1115,35	127,35	12,89	134,32	83,32	163,38
	14	763,13	84,13	12,39	260,04	134,04	106,38	332,67	36,67	12,39	30,35	3,35	12,39
	15	990,43	193,43	24,27	428,69	57,69	15,55	636,68	85,68	15,55	41,60	5,60	15,55
	16	2829,11	238,11	9,19	878,98	73,98	9,19	1446,77	121,77	9,19	128,96	46,96	57,26
	17	1035,47	195,47	23,27	663,19	125,19	23,27	643,47	121,47	23,27	77,66	14,66	23,27
	19	7521,21	564,21	8,11	2708,16	203,16	8,11	3181,21	493,21	18,35	294,06	22,06	8,11
	22	2721,56	132,56	5,12	894,57	43,57	5,12	1259,34	61,34	5,12	114,81	24,81	27,56
	23	663,05	66,05	11,06	273,19	21,19	8,41	324,15	25,15	8,41	28,19	2,19	8,41
	27	2737,36	241,36	9,67	1178,95	103,95	9,67	1570,47	138,47	9,67	142,57	12,57	9,67
	28	959,10	209,10	27,88	328,65	71,65	27,88	433,51	94,51	27,88	65,22	14,22	27,88
	30	5678,01	364,01	6,85	1720,63	671,63	64,03	3230,08	207,08	6,85	269,26	17,26	6,85

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
34	2713,79	322,79	13,50	975,90	381,90	64,29	1287,15	205,15	18,96	104,97	29,97	39,95
36	1064,65	210,65	24,67	442,73	81,73	22,64	645,09	119,09	22,64	35,57	6,57	22,64
39	921,96	163,96	21,63	321,25	84,25	35,55	456,11	81,11	21,63	26,77	15,77	143,36
41	647,47	6,47	1,01	298,99	2,99	1,01	323,89	55,89	20,85	50,51	0,51	1,01
42	2571,85	382,85	17,49	1205,41	84,41	7,53	1435,53	100,53	7,53	104,30	7,30	7,53
44	815,01	56,01	7,38	271,65	49,65	22,37	396,23	27,23	7,38	21,14	2,14	11,27
46	1559,94	336,94	27,55	456,63	98,63	27,55	719,38	155,38	27,55	110,97	23,97	27,55
47	1373,90	270,90	$24,\!56$	484,54	95,54	24,56	555,54	109,54	$24,\!56$	180,61	35,61	24,56
49	3059,06	613,06	25,06	1228,14	230,14	23,06	1993,57	373,57	23,06	279,35	52,35	23,06
51	6651,75	122,75	1,88	2031,75	171,75	9,23	3095,11	57,11	1,88	662,22	12,22	1,88
52	2106,34	225,34	11,98	876,80	93,80	11,98	1249,70	133,70	11,98	129,90	13,90	11,98
56	1089,28	137,28	14,42	389,03	49,03	14,42	498,87	62,87	14,42	32,04	4,04	14,42
57	1340,90	15,90	1,20	462,48	5,48	1,20	581,22	69,22	13,52	76,91	0,91	1,20
60	780,53	142,53	22,34	242,33	46,33	23,64	341,33	62,33	22,34	33,03	6,03	22,34
61	2223,73	338,73	17,97	766,81	116,81	17,97	968,53	147,53	17,97	92,50	32,50	54,17
65	3857,05	234,05	6,46	1602,22	97,22	6,46	1770,43	107,43	6,46	355,58	21,58	6,46
66	565,13	85,13	17,74	196,57	87,57	80,34	276,31	36,31	15,13	52,96	6,96	15,13
69	1352,10	134,10	11,01	518,42	51,42	11,01	579,47	57,47	11,01	40,61	29,61	269,19
70	3027,82	197,82	6,99	883,74	57,74	6,99	1260,34	82,34	6,99	215,05	14,05	6,99
73	886,96	59,96	7,25	225,97	16,97	8,12	364,65	24,65	7,25	33,59	20,59	158,40
74	4902,86	729,86	17,49	1412,23	210,23	17,49	2231,14	332,14	17,49	213,83	31,83	17,49
79	1072,87	159,87	17,51	326,68	48,68	17,51	545,25	81,25	17,51	57,58	8,58	17,51
80	3468,19	395,19	12,86	1625,18	185,18	12,86	2020,19	230,19	12,86	246,03	28,03	12,86
81	1335,52	129,52	10,74	586,92	56,92	10,74	603,67	155,67	34,75	70,87	6,87	10,74
82	1695,76	7,76	0,46	603,73	374,73	$163,\!64$	771,53	3,53	0,46	56,47	35,47	168,89
84	4913,97	785,97	19,04	2017,73	322,73	19,04	2737,92	437,92	19,04	214,41	77,41	56,51
85	3247,24	285,24	9,63	528,42	57,42	12,19	1288,15	113,15	9,63	154,07	64,07	71,19
86	2089,97	164,97	8,57	625,10	190,10	43,70	1040,10	82,10	8,57	121,60	9,60	8,57
87	698,58	33,58	5,05	237,37	156,37	193,05	297,29	14,29	5,05	23,52	3,52	17,60
88	1544,07	291,07	23,23	1041,29	196,29	23,23	1022,76	245,76	31,63	52,44	24,44	87,30
90	4699,44	366,44	8,46	2169,98	4,98	0,23	2573,91	5,91	0,23	435,81	178,81	69,58
91	1358,59	99,59	7,91	498,64	202,64	68,46	580,56	42,56	7,91	37,49	16,49	78,53
92	1462,38	225,38	18,22	452,89	156,89	53,00	646,66	99,66	18,22	56,75	8,75	18,22
94	3514,20	27,20	0,78	1436,12	11,12	0,78	2124,44	16,44	0,78	314,43	2,43	0,78
95	1136,89	174,89	18,18	427,81	65,81	18,18	707,90	108,90	18,18	74,45	11,45	18,18

E.5.3. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3$

Tabelle 6.38.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr 2010

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3}$	Diff	in %
2	123,39%	1099,00	0,00	0,00	672,60	-23,40	-3,36	449,89	-821,11	-64,60
3	100,21%	1958,00	0,00	0,00	1034,65	-43,35	-4,02	-333,00	0,00	0,00
4	118,91%	1246,00	0,00	0,00	777,45	-2,55	-0,33	252,19	-365,81	-59,19
5	103,75%	2824,00	0,00	0,00	1568,00	0,00	0,00	818,00	0,00	0,00
8	109,29%	1259,00	0,00	0,00	691,00	0,00	0,00	-2,00	0,00	0,00
10 12	117,02%	2788,00	0,00	0,00	1455,17	-39,83	-2,66	72,00	0,00	$0,00 \\ 0,00$
13	108,08% $101,19%$	2454,00 1571,00	0,00	0,00	1382,00 869,72	0,00 -137,28	0,00 -13,63	474,00 -141,00	0,00 0,00	0,00
14	101,19% $112,39%$	512,92	-10,08	-1,93	283,00	0,00	0,00	92,73	-264,27	-74,03
15	117,64%	877,82	-29,18	-3,22	462,00	0,00	0,00	210,00	0,00	0,00
16	109,14%	2053,00	0,00	0,00	1073,16	-52,84	-4,69	311.00	0,00	0,00
17	122,76%	933,00	0,00	0,00	519,00	0,00	0,00	145,00	0,00	0,00
18	105,75%	964,00	0,00	0,00	492,00	0,00	0,00	46,00	0,00	0,00
19	108,11%	5177,00	0,00	0,00	2576,43	-447,57	-14,80	1877,84	-1206,16	-39,11
22	110,93%	1966,00	0,00	0,00	1031,97	-11,03	-1,06	485,00	0,00	0,00
23	108,41%	466,00	0,00	0,00	282,00	0,00	0,00	122,48	-34,52	-21,99
27	120,58%	2551,00	0,00	0,00	1298,00	0,00	0,00	92,00	0,00	0,00
28	124,18%	645,00	0,00	0,00	371,37	-4,63	-1,23	62,00	0,00	0,00
30	110,82%	4764,00	0,00	0,00	2416,00	0,00	0,00	772,18	-309,82	-28,63
34	126,25%	2147,00	0,00	0,00	1136,88	-303,12	-21,05	-134,00	0,00	0,00
36	118,66%	883,00	0,00	0,00	467,00	0,00	0,00	-13,00	0,00	0,00
39	122,07%	628,00	0,00	0,00	393,81	-196,19	-33,25	188,00	0,00	0,00
41	107,06%	515,00	0,00	0,00	314,00	0,00	0,00	67,00	0,00	0,00
42	108,54%	2360,00	0,00	0,00	1224,24	-187,76	-13,30	-113,00	0,00	0,00
44	106,34%	545,00	0,00	0,00	328,00	0,00	0,00	138,00	0,00	0,00
46	$127,\!12\%$	1042,00	0,00	0,00	604,40	-1,60	-0,26	192,00	0,00	0,00
47	124,56%	948,00	0,00	0,00	542,00	0,00	0,00	262,00	0,00	0,00
49	123,06%	2765,37	-55,63	-1,97	1420,00	0,00	0,00	206,05	-528,95	-71,97
51	104,08%	5365,00	0,00	0,00	2885,00	0,00	0,00	1224,00	0,00	0,00
52	116,27%	1839,00	0,00	0,00	999,00	0,00	0,00	71,00	0,00	0,00
55	107,25%	473,43	-2,57	-0,54	260,00	0,00	0,00	80,00	0,00	0,00
56	114,40%	773,00	0,00	0,00	392,00	0,00	0,00	148,00	0,00	0,00
57	102,28%	897,00	0,00	0,00	503,00	0,00	0,00	73,00	0,00	0,00
60 61	122,17%	511,00 1507,00	0,00 0,00	0,00	290,00	0,00	0,00	127,00	0,00 0,00	$0,00 \\ 0,00$
65	122,01% $108,99%$	2896,00	0,00	0,00	816,00 1610,06	0,00 $-227,94$	0,00 $-12,40$	415,00 655,00	0,00	0,00
67	108,99%	385,00	0,00	0,00	241,00	0,00	0,00	44.00	0,00	0,00
69	101,41%	915,00	0,00	0,00	469,00	0,00	0,00	49,00	0,00	0,00
70	106,82%	1964,00	0,00	0,00	1133,55	-75,45	-6,24	426,00	0,00	0,00
71	107,69%	1246,00	0,00	0,00	683,11	-23,89	-3,38	119,00	0,00	0,00
73	106,14%	511,00	0,00	0,00	357,67	-20,33	-5,38	229,00	0,00	0,00
74	117,49%	3411,00	0,00	0,00	1742,00	0,00	0,00	1518,53	-1839,47	-54,78
79	115,43%	771,00	0,00	0,00	426,00	0,00	0,00	93,00	0,00	0,00
80	116,82%	2988,00	0,00	0,00	1594,00	0,00	0,00	593,00	0,00	0,00
81	111,65%	1008,00	0,00	0,00	495,00	0,00	0,00	26,00	0,00	0,00
82	101,67%	1291,70	-229,30	-15,08	614,00	0,00	0,00	-151,00	0,00	0,00
84	119,04%	3908,00	0,00	0,00	1995,00	0,00	0,00	1267,87	-2478,13	-66,15
85	109,63%	1961,00	0,00	0,00	1113,15	-111,85	-9,13	247,68	-1080,32	-81,35
86	107,73%	1464,00	0,00	0,00	788,36	-115,64	-12,79	143,00	0,00	0,00
87	103,25%	497,00	0,00	0,00	267,00	0,00	0,00	23,00	0,00	0,00
88	120,91%	1468,00	0,00	0,00	759,00	0,00	0,00	84,00	0,00	0,00
91	107,91%	994,44	-16,56	-1,64	454,00	0,00	0,00	-42,80	-370,80	-113,05
92	$118,\!36\%$	1020,22	-67,78	-6,23	504,00	0,00	0,00	231,00	0,00	0,00
93	109,03%	2522,00	0,00	0,00	1541,78	-148,22	-8,77	455,99	-88,01	-16,18
94	100,78%	3058,00	-277,00	-8,31	1552,00	0,00	0,00	284,46	-340,54	-54,49
95	120,04%	976,25	-26,75	-2,67	525,00	0,00	0,00	252,23	-30,77	-10,87

Tabelle 6.39.: Projektionen der Outputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr 2010

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
2	1705,25	323,25	23,39	626,82	118,82	23,39	746,51	141,51	23,39	57,99	10,99	23,39
3	2297,02	482,02	26,56	706,48	1,48	0,21	1355,84	2,84	0,21	91,01	14,01	18,20
4	1570,80	249,80	18,91	973,87	154,87	18,91	841,65	191,65	29,48	55,89	8,89	18,91
5	3436,20	124,20	3,75	1501,26	54,26	3,75	1910,04	69,04	3,75	383,88	13,88	3,75
8	1559,57	132,57	9,29	750,82	63,82	9,29	781,42	66,42	9,29	112,57	9,57	9,29
10	3459,11	503,11	17,02	1108,18	161,18	17,02	1914,45	278,45	17,02	251,59	36,59	17,02
12	2811,16	210,16	8,08	1579,05	118,05	8,08	1733,60	129,60	8,08	185,31	26,31	16,55
13	1819,40	21,40	1,19	835,83	9,83	1,19	1061,69	73,69	7,46	60,42	9,42	18,46
14	763,13	84,13	12,39	260,04	134,04	106,38	332,67	36,67	12,39	30,35	3,35	12,39
15	971,45	174,45	21,89	436,44	65,44	17,64	648,20	97,20	17,64	42,35	6,35	17,64
16	2827,82	236,82	9,14	878,58	73,58	9,14	1446,11	121,11	9,14	129,69	47,69	58,16
17	1067,44	227,44	27,08	660,45	122,45	22,76	640,81	118,81	22,76	77,34	14,34	22,76
18	1125,18	61,18	5,75	633,44	34,44	5,75	653,54	35,54	5,75	27,79	1,79	6,87

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
19	7521,21	564,21	8,11	2708,16	203,16	8,11	3181,21	493,21	18,35	294,06	22,06	8,11
22	2871,98	282,98	10,93	944,01	93,01	10,93	1328,94	130,94	10,93	124,71	34,71	38,56
23	663,05	66,05	11,06	273,19	21,19	8,41	324,15	25,15	8,41	28,19	2,19	8,41
27	3009,68	513,68	20,58	1296,24	221,24	20,58	1726,71	294,71	20,58	156,75	26,75	20,58
28	931,35	181,35	24,18	319,14	62,14	24,18	420,97	81,97	24,18	63,33	12,33	24,18
30	5888,97	574,97	10,82	1749,86	700,86	66,81	3350,09	327,09	10,82	279,27	27,27	10,82
34	3018,64	627,64	26,25	749,93	155,93	26,25	1366,86	284,86	26,33	125,71	50,71	67,61
36	1013,36	159,36	18,66	428,36	67,36	18,66	624,15	98,15	18,66	34,41	5,41	18,66
39	925,29	167,29	22,07	314,92	77,92	32,88	457,76	82,76	22,07	28,32	17,32	157,43
41	686,25	45,25	7,06	316,90	20,90	7,06	311,43	43,43	16,21	53,53	3,53	7,06
42	2463,53	274,53	12,54	1216,73	95,73	8,54	1566,32	231,32	17,33	108,59	11,59	11,95
44	807,12	48,12	6,34	300,24	78,24	35,25	392,39	23,39	6,34	20,20	1,20	6,34
46	1554,68	331,68	27,12	455,09	97,09	27,12	716,96	152,96	27,12	110,59	23,59	27,12
47	1373,90	270,90	24,56	484,54	95,54	24,56	555,54	109,54	24,56	180,61	35,61	24,56
49	3059,06	613,06	25,06	1228,14	230,14	23,06	1993,57	373,57	23,06	279,35	52,35	23,06
51	7110,05	581,05	8,90	1935,89	75,89	4,08	3161,95	123,95	4,08	676,52	26,52	4,08
52	2187,04	306,04	16,27	910,39	127,39	16,27	1297,57	181,57	16,27	134,87	18,87	16,27
55	673,53	45,53	7,25	231,16	92,16	66,30	290,65	19,65	7,25	27,40	7,40	37,00
56	1089,09	137,09	14,40	388,96	48,96	14,40	498,78	62,78	14,40	32,03	4,03	14,40
57	1355,21	30,21	2,28	467,42	10,42	2,28	560,10	48,10	9,40	77,73	1,73	2,28
60	779,44	141,44	22,17	246,06	50,06	25,54	340,85	61,85	22,17	32,99	5,99	22,17
61	2299,89	414,89	22,01	793,07	143,07	22,01	1001,70	180,70	22,01	97,03	37,03	61,71
65	3948,71	325,71	8,99	1640,30	135,30	8,99	1812,50	149,50	8,99	364,03	30,03	8,99
67	560,80	7,80	1,41	163,35	31,35	23,75	237,21	24,21	11,37	20,99	6,99	49,91
69	1322,02	104,02	8,54	506,88	39,88	8,54	571,64	49,64	9,51	38,44	27,44	249,45
70	3023,01	193,01	6,82	882,33	56,33	6,82	1258,34	80,34	6,82	214,71	13,71	6,82
71	1580,89	112,89	7,69	605,22	43,22	7,69	871,21	62,21	7,69	122,77	8,77	7,69
73	877,78	50,78	6,14	241,95	32,95	15,77	360,88	20,88	6,14	29,75	16,75	128,83
74	4902,86	729,86	17,49	1412,23	210,23	17,49	2231,14	332,14	17,49	213,83	31,83	17,49
79	1053,88	140,88	15,43	320,90	42,90	15,43	535,60	71,60	15,43	56,56	$7,\!56$	15,43
80	3589,88	516,88	16,82	1682,21	242,21	16,82	2091,08	301,08	16,82	254,67	36,67	16,82
81	1346,50	140,50	11,65	591,75	61,75	11,65	595,28	147,28	32,88	71,46	7,46	11,65
82	1716,19	28,19	1,67	534,70	305,70	133,50	780,83	12,83	1,67	56,88	35,88	170,86
84	4913,97	785,97	19,04	2017,73	322,73	19,04	2737,92	437,92	19,04	214,41	77,41	56,51
85	3247,24	285,24	9,63	528,42	57,42	12,19	1288,15	113,15	9,63	154,07	64,07	71,19
86	2073,80	148,80	7,73	565,13	130,13	29,91	1032,05	74,05	7,73	120,66	8,66	7,73
87	686,61	21,61	3,25	234,92	153,92	190,03	292,20	9,20	3,25	23,18	3,18	15,90
88	1515,00	262,00	20,91	1021,69	176,69	20,91	1018,91	241,91	31,13	46,10	18,10	64,66
91	1358,59	99,59	7,91	498,64	202,64	68,46	580,56	42,56	7,91	37,49	16,49	78,53
92	1464,11	227,11	18,36	432,82	136,82	46,22	647,43	100,43	18,36	56,81	8,81	18,36
93	3336,32	276,32	9,03	1262,86	471,86	59,65	1609,28	133,28	9,03	453,56	37,56	9,03
94	3514,20	27,20	0,78	1436,12	11,12	0,78	2124,44	16,44	0,78	314,43	2,43	0,78
95	1158,46	196,46	20,42	434,54	72,54	20,04	719,04	120,04	20,04	75,63	12,63	20,04

E.6. Projektionen für die Outputorientierten Modelle der 95 Raiffeisenbanken für das Jahr 2011

E.6.1. Projektionen für das outputorientierte CCR-Modell

Tabelle 6.40.: Projektionen der Inputs des output
orientierten CCR-Modells für das Jahr 2011

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	118,17%	1158,40	-30,60	-2,57	567,00	0,00	0,00	96,48	-530,85	-84,62
4	144,24%	1468,00	0,00	0,00	767,00	0,00	0,00	246,74	-312,59	-55,89
5	109,85%	3007,00	0,00	0,00	1552,00	0,00	0,00	614,97	-108,70	-15,02
6	100,65%	1992,68	-92,32	-4,43	1020,00	0,00	0,00	0,00	0,00	0,00
7	111,22%	10070,00	0,00	0,00	5087,00	0,00	0,00	1487,51	-111,16	-6,95
8	114,23%	1237,00	0,00	0,00	714,00	0,00	0,00	240,67	0,00	0,00
9 10	129,31% $120,67%$	278,00 2903,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	160,00 1474,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	27,42 $149,33$	-30,58 0,00	-52,72 0,00
12	113,09%	2514,00	0,00	0,00	1331,00	0,00	0,00	422,00	0,00	0,00
13	137,53%	1684,00	0,00	0,00	1044,00	0,00	0,00	242,73	-100,94	-29,37
14	124,87%	553,00	0,00	0,00	278,00	0,00	0,00	104,71	-351,29	-77,04
15	112,24%	876,00	0,00	0,00	479,00	0,00	0,00	111,00	0,00	0,00
16	113,61%	2111,00	0,00	0,00	1193,00	0,00	0,00	196,24	-131,09	-40,05
17	127,90%	971,00	0,00	0,00	521,00	0,00	0,00	147,67	0,00	0,00
18	102,56%	1018,85	-61,15	-5,66	506,00	0,00	0,00	15,33	0,00	0,00
19	122,64%	5433,00	0,00	0,00	3079,00	0,00	0,00	1213,08	-936,92	-43,58
20	133,25%	410,85	-17,15	-4,01	216,00	0,00	0,00	17,00	0,00	0,00
22	111,93%	2005,00	0,00	0,00	1042,00	0,00	0,00	193,67	0,00 $-45,02$	0,00
23 24	111,93% $154,15%$	482,00 458,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	281,00 324,83	0,00 $-65,17$	0,00 $-16,71$	54,98 $45,21$	-45,02 -44,79	-45,02 -49,77
25	111,07%	4331,00	0,00	0,00	2272,00	0,00	0,00	391,67	0,00	0,00
27	109,06%	2614,00	0,00	0,00	1337,00	0,00	0,00	34,00	0,00	0,00
28	128,26%	692,00	0,00	0,00	374,00	0,00	0,00	74,67	0,00	0,00
30	104,44%	4962,01	-59,99	-1,19	2360,00	0,00	0,00	726,00	0,00	0,00
31	110,47%	6663,00	0,00	0,00	3971,13	-381,87	-8,77	970,40	-2863,93	-74,69
34	120,01%	2127,00	0,00	0,00	1066,07	-22,93	-2,11	0,00	0,00	0,00
35	110,87%	623,00	0,00	0,00	318,29	-29,71	-8,54	0,00	0,00	0,00
36	121,42%	953,00	0,00	0,00	476,00	0,00	0,00	105,33	0,00	0,00
37	102,24%	493,00	0,00	0,00	261,00	0,00	0,00	27,00	0,00	0,00
38	105,97%	2747,58	-20,42	-0,74	1325,00	0,00	0,00	278,09	-772,24	-73,52
39	129,30%	656,00	0,00	0,00	337,00	0,00	0,00	38,41	-52,26	-57,64
40 41	102,93% $106,21%$	505,00 539,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	265,00 297,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	7,67 $30,67$	$0,00 \\ 0,00$	$0,00 \\ 0,00$
42	117,33%	2442,00	0,00	0,00	1284,66	-32,34	-2,46	38,00	0,00	0,00
43	109,86%	4351,79	-107,21	-2,40	2151,00	0,00	0,00	512,33	0,00	0,00
44	112,99%	593.00	0,00	0,00	337,00	0,00	0,00	38,86	-93,81	-70,71
46	125,29%	1036,00	0,00	0,00	603,00	0,00	0,00	157,00	0,00	0,00
47	137,69%	1005,00	0,00	0,00	634,00	0,00	0,00	149,84	-107,16	-41,70
49	125,73%	2859,00	0,00	0,00	1601,00	0,00	0,00	451,66	-240,67	-34,76
50	100,79%	559,00	0,00	0,00	277,00	0,00	0,00	21,55	-270,45	-92,62
51	106,33%	5604,00	0,00	0,00	2742,00	0,00	0,00	1121,33	0,00	0,00
52	122,22%	1851,00	0,00	0,00	1214,28	-40,72	-3,24	120,67	0,00	0,00
54	114,99%	523,00	0,00	0,00	311,48	-8,52	-2,66	27,67	0,00	0,00
55 56	119,73%	513,00 816,00	0,00	0,00	264,00 398,00	0,00	0,00	9,33	0,00	0,00
57	117,07% $109,60%$	922,77	0,00 $-26,23$	0,00 -2,76	460,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	175,00 53,33	$0,00 \\ 0,00$	$0,00 \\ 0,00$
60	131,93%	538,00	0,00	0,00	273,00	0,00	0,00	55,20	-114,80	-67,53
61	129,16%	1652,00	0,00	0,00	853,00	0,00	0,00	187,67	0,00	0,00
62	108,86%	3826,00	0,00	0,00	2234,00	0,00	0,00	558,83	-338,84	-37,75
63	116,57%	524,00	0,00	0,00	272,00	0,00	0,00	63,33	0,00	0,00
64	107,80%	7163,00	0,00	0,00	3854,00	0,00	0,00	1444,33	0,00	0,00
65	123,46%	3192,00	0,00	0,00	1860,00	0,00	0,00	630,33	0,00	0,00
66	125,20%	463,00	0,00	0,00	257,00	0,00	0,00	74,00	0,00	0,00
67	127,59%	431,00	0,00	0,00	243,61	-132,39	-35,21	15,00	0,00	0,00
69	109,23%	970,00	0,00	0,00	490,00	0,00	0,00	169,89	-144,44	-45,95
70 72	115,61% $113,53%$	2072,00 520,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	1201,00	0,00	0,00	413,57 $70,20$	-26,10 -21,13	-5,94 -23,14
73	106,48%	512,00	0,00	0,00	318,74 332,77	-75,26 -323,23	-19,10 -49,27	59,09	-21,13	-23,14
74	121,66%	3561,03	-136,97	-3,70	1670,00	0,00	0,00	767,43	-429,57	-35,89
75	100,28%	2035,00	0,00	0,00	1101,00	0,00	0,00	148.00	0,00	0,00
76	114,67%	409,00	0,00	0,00	279,25	-33,75	-10,78	42,40	-111,60	-72,47
77	108,77%	10485,00	0,00	0,00	5104,00	0,00	0,00	1342,23	-1851,44	-57,97
79	120,87%	801,00	0,00	0,00	447,00	0,00	0,00	161,00	0,00	0,00
80	$126,\!48\%$	2960,00	0,00	0,00	1869,00	0,00	0,00	388,76	-96,57	-19,90
81	113,55%	1062,00	0,00	0,00	516,00	0,00	0,00	109,00	0,00	0,00
82	102,21%	1258,15	-183,85	-12,75	626,00	0,00	0,00	0,00	0,00	0,00
83	114,16%	587,00	0,00	0,00	329,81	-10,19	-3,00	27,67	0,00	0,00
84	121,60%	3953,00	0,00	0,00	1991,00	0,00	0,00	673,07	-1196,93	-64,01
85	109,79%	2092,00	0,00	0,00	1098,00	0,00	0,00	574,58	-171,42	-22,98
86 87	108,14% $121,02%$	$1524,00 \\ 524,00$	$0,00 \\ 0,00$	$0,00 \\ 0,00$	863,00 287,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	150,89 $27,67$	-129,44 0,00	-46,17 $0,00$
88	127,02% $127,19%$	1521,00	0,00	0,00	753,00	0,00	0,00	190,00	0,00	0,00
89	134,27%	10566,00	0,00	0,00	6196,00	0,00	0,00	1954,34	-936,99	-32,41
90	118,76%	4446,00	0,00	0,00	2436,00	0,00	0,00	483,00	0,00	0,00
91	119,33%	1021,96	-10,04	-0,97	484,00	0,00	0,00	160,82	-120,51	-42,84

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
92	121,60%	1084,00	0,00	0,00	527,00	0,00	0,00	135,28	-137,05	-50,32
93	113,18%	2512,00	0,00	0,00	1470,18	-208,82	-12,44	168,33	0,00	0,00
95	125,46%	1050,00	0,00	0,00	555,00	0,00	0,00	117,67	0,00	0,00

Tabelle 6.41.: Projektionen der Outputs des output
orientierten CCR-Modells für das Jahr 2011

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2	1650,83	253,83	18,17	756,85	287,85	61,37	790,56	121,56	18,17	37,81	5,81	18,17
4 5	1912,62 3813,99	586,62 $341,99$	44,24 $9,85$	1112,09 1680,80	341,09 303,80	44,24 $22,06$	1065,93 2002,57	326,93 179,57	44,24 $9,85$	54,81 394,36	$16,81 \\ 35,36$	$44,24 \\ 9,85$
6	2682,32	17,32	0,65	787,78	241,78	44,28	1304,42	8,42	0,65	103,67	0,67	0,65
7	13506,56	1362,56	11,22	5307,01	2170,01	69,17	7017,98	707,98	11,22	568,33	57,33	11,22
8	1947,62	242,62	14,23	779,05	97,05	14,23	856,73	106,73	14,23	118,80	14,80	14,23
9	466,81	105,81	29,31	167,98	82,98	97,63	204,31	46,31	29,31	11,64	2,64	29,31
10	3803,52	651,52	20,67	1571,56	577,56	58,10	2020,02	346,02	20,67	139,98	23,98	20,67
12	3295,44	381,44	13,09	1513,14	175,14	13,09	1819,62	210,62	13,09	139,10	16,10	13,09
13 14	2592,44 895,32	707,44	37,53 $24,87$	$1158,00 \\ 270,54$	$316,00 \\ 141,54$	37,53 $109,72$	1339,54 $362,12$	$365,54 \\ 72,12$	$37,53 \\ 24,87$	66,01 41,21	$^{18,01}_{8,21}$	37,53 $24,87$
15	998,94	178,32 $108,94$	12,24	390,34	49,34	14,47	667,83	72,12	12,24	47,33	8,33	21,37
16	3315,14	397,14	13,61	1197,82	390,82	48,43	1555,32	186,32	13,61	89,75	10,75	13,61
17	1187,55	262,55	28,38	714,96	155,96	27,90	708,57	154,57	27,90	58,83	12,83	27,90
18	1559,09	342,09	28,11	619,46	15,46	2,56	694,87	67,87	10,82	24,32	1,32	5,73
19	9419,98	1738,98	22,64	2932,32	541,32	22,64	3824,98	1021,98	36,46	415,76	190,76	84,78
20	695,57	173,57	33,25	199,61	70,61	54,74	272,07	86,07	46,27	18,51	6,51	54,25
22 23	2981,82 718,59	$317,82 \\ 76,59$	11,93 11,93	1028,92 $265,27$	$127,92 \\ 28,27$	$14,20 \\ 11,93$	1392,41 367,13	$148,41 \\ 39,13$	11,93 11,93	109,69 22,39	$^{11,69}_{2,39}$	11,93
24	796,27	302,27	61,19	326,80	114,80	54,15	385,38	135,38	54,15	29,29	10,29	11,93 $54,15$
25	6105,52	608,52	11,07	2137,40	400,40	23,05	2902,26	289,26	11,07	468,72	46,72	11,07
27	3158,65	360,65	12,89	1212,75	100,75	9,06	1767,86	146,86	9,06	179,95	14,95	9,06
28	1094,06	241,06	28,26	379,04	122,04	47,49	488,67	107,67	28,26	35,91	7,91	28,26
30	6366,66	270,66	4,44	3075,70	2080,70	209,12	3310,75	140,75	4,44	276,77	11,77	4,44
31	9367,86	887,86	10,47	5209,77	493,77	10,47	5194,82	912,82	21,32	303,79	28,79	10,47
34 35	3194,67	532,67 $229,60$	20,01	1140,01 $296,02$	606,01	113,49	1431,72	238,72	20,01	64,81	10,81	20,01
36	948,60 1198,42	211,42	31,93 $21,42$	633,87	29,02 $281,87$	10,87 $80,08$	410,22 675,10	40,22 $119,10$	10,87 $21,42$	28,83 34,00	2,83 6,00	10,87 $21,42$
37	742,42	180,42	32,10	308,76	6,76	2,24	338,93	41,93	14,12	33,74	0,74	2,24
38	4410,47	248,47	5,97	1451,34	132,34	10,03	1776,06	100,06	5,97	143,58	24,58	20,66
39	1055,09	239,09	29,30	375,75	141,75	60,58	448,67	101,67	29,30	24,57	5,57	29,30
40	592,88	16,88	2,93	227,38	55,38	32,20	356,14	10,14	2,93	15,44	0,44	2,93
41	832,73	170,73	25,79	333,50	19,50	6,21	374,54	104,54	38,72	44,61	2,61	6,21
42 43	3524,30	1100,30	45,39	1343,43	198,43	17,33 $10,30$	1681,34	248,34	17,33	140,80 531,72	20,80 $47,72$	17,33 $9,86$
43	6280,70 915,22	563,70 $105,22$	9,86 $12,99$	2156,33 407,01	201,33 $151,01$	58,99	2715,74 445,18	243,74 $51,18$	9,86 12,99	14,55	2,55	21,24
46	1623,76	327,76	25,29	551,81	193,81	54,14	732,95	147,95	25,29	119,03	24,03	25,29
47	1751,42	479,42	37,69	499,51	183,51	58,07	688,45	188,45	37,69	165,23	45,23	37,69
49	3543,07	725,07	25,73	1186,89	242,89	25,73	2043,11	418,11	25,73	370,90	75,90	25,73
50	822,45	6,45	0,79	357,57	156,57	77,89	384,01	3,01	0,79	13,90	0,90	6,94
51	7454,80	443,80	6,33	2343,38	515,38	28,19	3538,66	210,66	6,33	718,79	42,79	6,33
52 54	2951,36 870,47	876,36 $113,47$	42,23 $14,99$	1181,14 237,58	500,14 $44,58$	73,44 $23,10$	1480,08 $355,32$	269,08 46,32	22,22 $14,99$	111,22 56,35	$20,22 \\ 7,35$	22,22 $14,99$
55	816,56	134,56	19,73	293,01	145,01	97,98	347,22	57,22	19,73	22,75	3,75	19,73
56	1376,74	200,74	17,07	367,77	54,77	17,50	506,91	73,91	17,07	70,28	36,28	106,72
57	1494,94	130,94	9,60	491,01	43,01	9,60	608,52	$74,\!52$	13,96	39,29	10,29	35,50
60	804,77	194,77	31,93	272,35	75,35	38,25	368,08	89,08	31,93	27,71	6,71	31,93
61	2795,02	631,02	29,16	795,63	179,63	29,16	1078,71	271,71	33,67	100,53	39,53	64,80
62	5012,30	731,30	17,08	2226,19	181,19	8,86	2777,02	226,02	8,86	494,22	40,22	8,86
63 64	665,61 9975,81	94,61 $721,81$	16,57 $7,80$	252,96 3043,75	35,96 $699,75$	16,57 $29,85$	374,19 4958,80	53,19 358,80	$\frac{16,57}{7,80}$	31,47 783,71	4,47 $56,71$	$^{16,57}_{7,80}$
65	5090,26	967,26	23,46	1834,62	348,62	23,46	2102,52	399,52	23,46	506,19	96,19	23,46
66	663,56	133,56	25,20	218,19	103,19	89,73	324,27	65,27	25,20	51,33	10,33	25,20
67	728,54	157,54	27,59	163,32	35,32	27,59	282,37	67,37	31,33	32,88	24,88	310,97
69	1610,05	136,05	9,23	497,00	42,00	9,23	635,04	74,04	13,20	67,80	55,80	464,98
70 72	3778,13	510,13	15,61	908,57	256,57	39,35	1402,35	189,35	15,61	182,66	24,66	15,61
72 73	969,55 975,36	115,55 $59,36$	13,53 6,48	185,22 233,19	28,22 $14,19$	$17,98 \\ 6,48$	334,91 375,29	39,91 $25,29$	13,53 $7,23$	73,79 33,05	8,79 $10,05$	13,53 $43,70$
73 74	5264,23	937,23	21,66	2035,73	902,73	79,68	2273,83	404,83	21,66	253,05	45,05	21,66
75	2493,65	357,65	16,74	904,54	167,54	22,73	1348,77	3,77	0,28	309,87	0,87	0,28
76	762,56	97,56	14,67	232,24	57,24	32,71	324,52	41,52	14,67	19,48	3,48	21,73
77	17006,19	1371,19	8,77	5446,41	2743,41	101,50	6772,02	546,02	8,77	619,09	228,09	58,34
79	1229,25	212,25	20,87	388,52	103,52	36,32	575,34	99,34	20,87	60,44	10,44	20,87
80	4397,71	920,71	26,48	1723,92	360,92	26,48	2266,52	474,52	26,48	326,32	68,32	26,48
81 82	1649,88 1923,59	196,88 $41,59$	13,55 $2,21$	599,54 721,16	71,54 $497,16$	13,55 $221,95$	695,13 854,48	225,13 18,48	$47,90 \\ 2,21$	52,23 29,83	6,23 $2,83$	13,55 $10,47$
83	934,80	353,80	60,89	348,19	43,19	14,16	405,35	53,35	$\frac{2,21}{15,16}$	57,08	7,08	14,16
84	4297,15	912,15	26,95	2446,73	992,73	68,28	2850,30	506,30	21,60	209,15	37,15	21,60
85	3641,73	324,73	9,79	963,95	518,95	116,62	1355,91	120,91	9,79	204,06	117,06	134,55
86	2549,94	191,94	8,14	909,94	430,94	89,97	1106,27	83,27	8,14	65,40	34,40	110,98
87	907,65	157,65	21,02	221,45	150,45	211,91	343,70	59,70	21,02	32,11	6,11	23,48
88	1926,80	480,80	33,25	1116,73	238,73	27,19	1051,26	260,26	32,90	80,13	17,13	27,19
89 90	16235,93 5688,60	4143,93 898,60	34,27 $18,76$	5376,17 2603,22	1372,17 $411,22$	34,27 $18,76$	7649,36 3124,58	1952,36 493,58	34,27 $18,76$	1111,76 465,54	283,76 $73,54$	34,27 $18,76$
90 91	1661,07	269,07	19,33	506,05	$\frac{411,22}{221,05}$	77,56	642,00	104,00	19,33	69,87	$\frac{73,54}{51,87}$	288,16
92	1665,92	295,92	21,60	570,52	301,52	112,09	711,36	126,36	21,60	60,80	10,80	21,60
93	3813,03	444,03	13,18	1192,05	415,05	53,42	1634,32	190,32	13,18	438,01	51,01	13,18
95	1371,28	278,28	25,46	474,29	154,29	48,22	754,01	153,01	25,46	67,75	13,75	25,46

E.6.2. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3^*$

Tabelle 6.42.: Projektionen der Inputs des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2011

$_{ m DMU}$	η^*	$\widehat{I1}$	Diff	in $\%$	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	118,10%	1182,23	-6,77	-0,57	567,00	0,00	0,00	185,26	-442,07	-70,47
4	141,44%	1468,00	0,00	0,00	767,00	0,00	0,00	271,51	-287,82	-51,46
5	107,83%	3007,00	0,00	0,00	1552,00	0,00	0,00	554,17	-169,50	-23,42
8	111,26%	1237,00	0,00	0,00	714,00	0,00	0,00	240,67	0,00	0,00
10	113,28%	2903,00	0,00	0,00	1443,24	-30,76	-2,09	149,33	0,00	0,00
12	108,27%	2514,00	0,00	0,00	1309,58	-21,42	-1,61	422,00	0,00	0,00
13	122,19%	1684,00	0,00	0,00	932,27	-111,73	-10,70	343,67	0,00	0,00
14	115,33%	553,00	0,00	0,00	278,00	0,00	0,00	202,86	-253,14	-55,51
15	108,36%	876,00	0,00	0,00	479,00	0,00	0,00	111,00	0,00	0,00
16	107,96%	2111,00	0,00	0,00	1193,00	0,00	0,00	319,30	-8,03	-2,45
17	126,72%	971,00	0,00	0,00	521,00	0,00	0,00	147,67	0,00	0,00
19	106,31%	5433,00	0,00	0,00	2834,78	-244,22	-7,93	1856,63	-293,37	-13,65
22	105,75%	2005,00	0,00	0,00	1042,00	0,00	0,00	193,67	0,00	0,00
23	105,98%	482,00	0,00	0,00	281,00	0,00	0,00	100,00	0,00	0,00
24	154,10%	458,00	0,00	0,00	325,08	-64,92	-16,65	45,10	-44,90	-49,89
28	127,74%	692,00	0,00	0,00	374,00	0,00	0,00	74,67	0,00	0,00
34	101,72%	2127,00	0,00	0,00	1035,86	-53,14	-4,88	0,00	0,00	0,00
35	103,52%	623,00	0,00	0,00	320,68	-27,32	-7,85	0,00	0,00	0,00
36	119,96%	953,00	0,00	0,00	476,00	0,00	0,00	105,33	0,00	0,00
38 39	100,94% $127,73%$	2768,00 656,00	0,00	0,00	1325,00 337,00	0,00	0,00	882,88	-167,45	-15,94 -70,03
39 41	127,73% $104,73%$	539,00	0,00	$0,00 \\ 0,00$		0,00	0,00	27,18 30,67	-63,49 0,00	0,00
			$0,00 \\ 0,00$	0,00	297,00	0,00	0,00	38,00		
42	103,31% $112,83%$	2442,00 593,00		0,00	1121,35 337,00	-195,65	-14,86	38,00 95,90	0,00	0,00
44 46	112,83% $124,45%$	1036,00	0,00 0,00	0,00	603,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	95,90 157,00	-36,77 $0,00$	-27,72 0,00
47	136,05%		0,00		630,54		-0,55	132,67		
49	125,37%	1005,00 2859,00	0,00	0,00 0,00	1601,00	-3,46 0,00		436,17	-124,33 -256,16	-48,38 -37,00
52	108,21%	1851,00	0,00	0,00	968,33		0,00 $-22,84$	120,67	0,00	0,00
52 54	108,21%	523,00	0,00	0,00	320,00	-286,67 $0,00$	0,00	27,67	0,00	0,00
55	100,08%	513,00	0,00	0,00	264,00	0,00	0,00	9,33	0,00	0,00
56	111,75%	816,00	0,00	0,00	398,00	0,00	0,00	175,00	0,00	0,00
57	107,43%	937,41	-11,59	-1,22	460,00	0,00	0,00	53,33	0,00	0,00
60	123,22%	530,14	-7,86	-1,46	273,00	0,00	0,00	137,91	-32,09	-18,88
61	120,60%	1652,00	0,00	0,00	853,00	0,00	0,00	187,67	0,00	0,00
63	105,12%	518,73	-5,27	-1,01	272,00	0,00	0,00	63,33	0,00	0,00
65	109,94%	3192,00	0,00	0,00	1709,43	-150,57	-8,10	630,33	0,00	0,00
66	112,58%	463,00	0,00	0,00	257,00	0,00	0,00	74,00	0,00	0,00
69	109,09%	970,00	0,00	0,00	490,00	0,00	0,00	192,58	-121,75	-38,73
70	110,87%	2072,00	0,00	0,00	1201,00	0,00	0,00	359,33	-80,34	-18,27
72	105,37%	520,00	0,00	0,00	315,01	-78,99	-20,05	90,44	-0,89	-0,97
73	103,04%	512,00	0,00	0,00	353,18	-302,82	-46,16	52,99	-295,01	-84,77
74	117,07%	3599,59	-98,41	-2,66	1670,00	0,00	0,00	861,12	-335,88	-28,06
76	109,29%	409,00	0,00	0,00	290,83	-22,17	-7,08	42,30	-111,70	-72,53
79	120,02%	801,00	0,00	0,00	447,00	0,00	0,00	161,00	0,00	0,00
80	109,62%	2960,00	0,00	0,00	1577,31	-291,69	-15,61	485,33	0,00	0,00
81	110,38%	1062,00	0,00	0,00	516,00	0,00	0,00	109,00	0,00	0,00
83	108,74%	587,00	0,00	0,00	329,69	-10,31	-3,03	27,67	0,00	0,00
84	118,81%	3953,00	0,00	0,00	1991,00	0,00	0,00	389,99	-1480,01	-79,14
85	106,94%	2092,00	0,00	0,00	1098,00	0,00	0,00	477,26	-268,74	-36,02
86	103,48%	1524,00	0,00	0,00	863,00	0,00	0,00	264,82	-15,51	-5,53
87	108,56%	524,00	0,00	0,00	287,00	0,00	0,00	27,67	0,00	0,00
88	124,25%	1521,00	0,00	0,00	736,79	-16,21	-2,15	190,00	0,00	0,00
91	119,32%	1022,43	-9,57	-0,93	484,00	0,00	0,00	162,56	-118,77	-42,22
92	121,25%	1084,00	0,00	0,00	527,00	0,00	0,00	152,82	-119,51	-43,88
93	101,84%	2512,00	0,00	0,00	1302,48	-376,52	-22,43	168,33	0,00	0,00
95	124,23%	1050,00	0,00	0,00	555,00	0,00	0,00	117,67	0,00	0,00

Tabelle 6.43.: Projektionen der Outputs des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2011

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
2	1649,86	252,86	18,10	764,79	295,79	63,07	790,09	121,09	18,10	57,99	25,99	81,23
4	1875,49	549,49	41,44	1090,50	319,50	41,44	1045,24	306,24	41,44	61,14	23,14	60,89
5	3743,86	271,86	7,83	1484,82	107,82	7,83	1965,74	142,74	7,83	387,11	28,11	7,83
8	1896,98	191,98	11,26	758,79	76,79	11,26	834,45	84,45	11,26	115,71	11,71	11,26
10	3570,59	418,59	13,28	1126,00	132,00	13,28	1896,31	222,31	13,28	141,93	25,93	22,36
12	3154,99	240,99	8,27	1448,65	110,65	8,27	1742,06	133,06	8,27	133,17	10,17	8,27
13	2303,28	418,28	22,19	1028,84	186,84	22,19	1190,13	216,13	22,19	92,25	44,25	92,19
14	826,92	109,92	15,33	195,12	66,12	51,25	334,46	44,46	15,33	38,06	5,06	15,33
15	1073,96	183,96	20,67	563,26	222,26	65,18	644,74	49,74	8,36	42,26	3,26	8,36
16	3150,27	232,27	7,96	871,24	64,24	7,96	1477,97	108,97	7,96	148,00	69,00	87,34
17	1191,25	266,25	28,78	709,08	150,08	26,85	702,03	148,03	26,72	58,29	12,29	26,72
19	8165,67	484,67	6,31	2541,87	150,87	6,31	3251,60	448,60	16,00	303,02	78,02	34,67
22	2817,18	153,18	5,75	952,81	51,81	5,75	1315,53	71,53	5,75	108,09	10,09	10,29

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
23	751,13	109,13	17,00	251,17	14,17	5,98	347,61	19,61	5,98	21,20	1,20	5,98
24	797,02	303,02	61,34	326,69	114,69	54,10	385,55	135,55	54,22	29,28	10,28	54,10
28	1089,62	236,62	27,74	412,40	155,40	60,47	486,69	105,69	27,74	35,77	7,77	27,74
34	2707,79	45,79	1,72	575,33	41,33	7,74	1318,19	125,19	10,49	103,60	49,60	91,85
35	931,47	212,47	29,55	298,65	31,65	11,85	383,02	13,02	3,52	35,00	9,00	34,60
36	1184,01	197,01	19,96	653,93	301,93	85,78	666,98	110,98	19,96	33,59	5,59	19,96
38	4201,12	39,12	0,94	1331,40	12,40	0,94	1691,75	15,75	0,94	268,27	149,27	125,44
39	1042,28	226,28	27,73	381,89	147,89	63,20	443,22	96,22	27,73	24,27	5,27	27,73
41	706,36	44,36	6,70	328,85	14,85	4,73	345,24	75,24	27,87	43,99	1,99	4,73
42	2816,32	392,32	16,19	1182,90	37,90	3,31	1480,43	47,43	3,31	123,97	3,97	3,31
44	913,92	103,92	12,83	373,95	117,95	46,08	444,55	50,55	12,83	14,36	2,36	19,66
46	1612,87	316,87	24,45	497,71	139,71	39,03	728,03	143,03	24,45	118,23	23,23	24,45
47	1730,56	458,56	36,05	444,16	128,16	$40,\!56$	680,25	180,25	36,05	163,26	43,26	36,05
49	3532,93	714,93	25,37	1183,49	239,49	25,37	2037,26	412,26	25,37	369,84	74,84	25,37
52	2245,36	170,36	8,21	736,91	55,91	8,21	1310,42	99,42	8,21	98,47	7,47	8,21
54	817,94	60,94	8,05	257,99	64,99	33,67	343,22	34,22	11,08	52,94	3,94	8,05
55	682,55	0,55	0,08	201,01	53,01	35,82	290,23	0,23	0,08	20,51	1,51	7,92
56	1314,18	138,18	11,75	370,74	57,74	18,45	492,15	59,15	13,66	68,96	34,96	102,81
57	1465,35	101,35	7,43	481,29	33,29	7,43	604,82	70,82	13,26	41,19	12,19	42,05
60	751,64	141,64	23,22	242,74	45,74	23,22	343,78	64,78	23,22	25,88	4,88	23,22
61	2609,78	445,78	20,60	742,90	126,90	20,60	1043,81	236,81	29,34	105,43	44,43	72,83
63	724,39	153,39	26,86	228,11	11,11	5,12	337,44	16,44	5,12	28,38	1,38	5,12
65	4532,83	409,83	9,94	1633,71	147,71	9,94	1872,28	169,28	9,94	450,75	40,75	9,94
66	600,26	70,26	13,26	169,05	54,05	47,00	291,58	32,58	12,58	46,16	5,16	12,58
69	1607,99	133,99	9,09	496,36	41,36	9,09	628,88	67,88	12,10	71,80	59,80	498,34
70	3623,23	355,23	10,87	722,87	70,87	10,87	1344,85	131,85	10,87	175,17	17,17	10,87
72	899,86	45,86	5,37	266,47	109,47	69,73	312,38	17,38	5,89	68,49	3,49	5,37
73	943,85	27,85	3,04	308,91	89,91	41,05	411,50	61,50	17,57	23,70	0,70	3,04
74	5065,62	738,62	17,07	1326,40	193,40	17,07	2188,04	319,04	17,07	313,55	105,55	50,74
76	726,78	61,78	9,29	291,63	116,63	$66,\!64$	341,11	58,11	20,53	17,49	1,49	9,29
79	1220,60	203,60	20,02	501,09	216,09	75,82	571,30	95,30	20,02	60,01	10,01	20,02
80	3811,49	334,49	9,62	1494,12	131,12	9,62	1964,39	172,39	9,62	282,82	24,82	9,62
81	1603,82	150,82	10,38	582,81	54,81	10,38	688,69	218,69	46,53	52,48	6,48	14,10
83	855,32	274,32	47,22	331,66	26,66	8,74	382,76	30,76	8,74	54,37	4,37	8,74
84	4112,62	727,62	21,50	1776,02	322,02	22,15	2784,91	440,91	18,81	217,37	45,37	26,38
85	3547,20	230,20	6,94	714,55	269,55	$60,\!57$	1320,71	85,71	6,94	209,02	122,02	140,25
86	2440,06	82,06	3,48	584,80	105,80	22,09	1058,60	35,60	3,48	122,33	91,33	294,61
87	814,20	64,20	8,56	283,50	212,50	299,29	341,52	57,52	20,25	28,23	2,23	8,56
88	1823,76	377,76	26,12	1090,92	212,92	24,25	1028,52	237,52	30,03	78,28	15,28	24,25
91	1660,93	268,93	19,32	506,18	221,18	77,61	641,94	103,94	19,32	70,27	52,27	290,38
92	1661,13	291,13	21,25	550,62	281,62	104,69	709,31	124,31	21,25	66,42	16,42	32,83
93	3430,99	61,99	1,84	938,05	161,05	20,73	1470,57	26,57	1,84	394,12	7,12	1,84
95	1357,83	264,83	24,23	667,18	347,18	108,49	746,62	145,62	24,23	67,08	13,08	24,23

E.6.3. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3$

Tabelle 6.44.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr 2011

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3}$	Diff	in %
2	118,10%	1182,23	-6,77	-0,57	567,00	0,00	0,00	169,02	-240,98	-58,78
4	139,35%	1468,00	0,00	0,00	767,00	0,00	0,00	214,00	0,00	0,00
5	107,79%	3007,00	0,00	0,00	1552,00	0,00	0,00	760,00	0,00	0,00
6 8	103,11%	2085,00	0,00	0,00	1020,00	0,00	0,00	-9,00	0,00	0,00
10	111,79% $115,99%$	1237,00 2903,00	0,00	0,00	714,00 1474,00	0,00 $0,00$	$0,00 \\ 0,00$	297,03 188,00	-111,97 0,00	-27,38 0,00
12	115,99% $109,71%$	2514,00	0,00	0,00	1331,00	0,00	0,00	573,16	-167,84	-22,65
13	122,69%	1684,00	0,00	0,00	1044,00	0,00	0,00	331,10	-29,90	-8,28
14	115,33%	553,00	0,00	0,00	278,00	0,00	0,00	271,45	-681,55	-71,52
15	108,45%	876,00	0,00	0,00	479,00	0,00	0,00	134,00	0,00	0,00
16	107,96%	2111,00	0,00	0,00	1193,00	0,00	0,00	347,29	-72,71	-17,31
17	125,15%	971,00	0,00	0,00	515,13	-5,87	-1,13	76,00	0,00	0,00
18	114,20%	1037,04	-42,96	-3,98	506,00	0,00	0,00	23,71	-11,29	-32,26
19	106,19%	5433,00	0,00	0,00	2847,67	-231,33	-7,51	1866,00	0,00	0,00
20	111,30%	402,60	-25,40	-5,93	216,00	0,00	0,00	-3,00	0,00	0,00
23	106,11%	482,00	0,00	0,00	281,00	0,00	0,00	113,00	0,00	0,00
24	154,10%	458,00	0,00	0,00	325,08	-64,92	-16,65	27,28	-78,72	-74,26
25	102,18%	4331,00	0,00	0,00	2272,00	0,00	0,00	580,00	0,00	0,00
27	107,74%	2614,00	0,00	0,00	1337,00	0,00	0,00	67,00	0,00	0,00
28	127,79%	692,00	0,00	0,00	374,00	0,00	0,00	75,00	0,00	0,00
34	115,96%	2127,00	0,00	0,00	1089,00	0,00	0,00	173,00	0,00	0,00
35	121,18%	623,00	0,00	0,00	348,00	0,00	0,00	-11,00	0,00	0,00
36	120,30%	953,00	0,00	0,00	476,00	0,00	0,00	155,00	0,00	0,00
39	127,73%	656,00	0,00	0,00	337,00	0,00	0,00	-108,36	-194,36	-226,00
41	107,65%	539,00	0,00	0,00	297,00	0,00	0,00	-22,00	0,00	0,00
42	112,01%	2442,00	0,00	0,00	1317,00	0,00	0,00	80,00	0,00	0,00
44	112,83%	593,00	0,00	0,00	337,00	0,00	0,00	47,25	-14,75	-23,79
46 47	123,86% $133,35%$	1036,00 1005,00	0,00 0,00	0,00 0,00	603,00 613,88	0,00 $-20,12$	0,00 -3,17	115,00 109,00	0,00 0,00	$0,00 \\ 0,00$
49	124,96%	2859,00	0,00	0,00	1601,00	0,00	0,00	470,00	0,00	0,00
52	116,20%	1851,00	0,00	0,00	1084,69	-170,31	-13,57	230,18	-6,82	-2,88
54	106,72%	523,00	0,00	0,00	312,05	-7,95	-2,48	-35,00	0,00	0,00
55	112,04%	510,35	-2,65	-0,52	264,00	0,00	0,00	-13,00	0,00	0,00
56	111,83%	816,00	0,00	0,00	398,00	0,00	0,00	247,00	0,00	0,00
57	111,64%	949,00	0,00	0,00	460,00	0,00	0,00	53,00	0,00	0,00
60	123,22%	530,14	-7,86	-1,46	273,00	0,00	0,00	109,16	-64,84	-37,26
61	119,88%	1652,00	0,00	0,00	853,00	0,00	0,00	98,00	0,00	0,00
62	100,63%	3826,00	0,00	0,00	2234,00	0,00	0,00	907,22	-228,78	-20,14
63	106,06%	524,00	0,00	0,00	272,00	0,00	0,00	168,00	0,00	0,00
65	106,04%	3192,00	0,00	0,00	1860,00	0,00	0,00	439,00	0,00	0,00
66	108,86%	463,00	0,00	0,00	257,00	0,00	0,00	4,00	0,00	0,00
67	135,34%	431,00	0,00	0,00	308,31	-67,69	-18,00	1,00	0,00	0,00
69	109,09%	970,00	0,00	0,00	490,00	0,00	0,00	232,63	-251,37	-51,94
70	107,93%	2072,00	0,00	0,00	1201,00	0,00	0,00	235,00	0,00	0,00
73	103,04%	512,00	0,00	0,00	353,18	-302,82	-46,16	30,17	-372,83	-92,51
74	107,96%	3517,20	-180,80	-4,89	1670,00	0,00	0,00	216,00	0,00	0,00
76	109,29%	409,00	0,00	0,00	290,83	-22,17	-7,08	12,27	-11,73	-48,88
79	120,00%	801,00	0,00	0,00	447,00	0,00	0,00	147,00	0,00	0,00
80	110,06%	2960,00	0,00	0,00	1787,05	-81,95	-4,38	394,00	0,00	0,00
81	113,25%	1062,00	0,00	0,00	516,00	0,00	0,00	121,28	-175,72	-59,16
83	113,29%	587,00	0,00	0,00	340,00	0,00	0,00	-38,00	0,00	0,00
84	118,81%	3953,00	0,00	0,00	1991,00	0,00	0,00	283,18	-487,82	-63,27
85	105,81%	2092,00	0,00	0,00	1098,00	0,00	0,00	444,00	0,00	0,00
86 87	103,39%	1524,00	0,00	0,00	863,00	0,00	0,00	285,00	0,00	0,00
87 88	111,85%	524,00 $1521,00$	0,00	0,00	287,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	37,00 $224,00$	0,00	$0,00 \\ 0,00$
88 91	128,48% $119,32%$	1022,43	0,00 -9,57	0,00 -0,93	753,00 484,00	0,00	0,00	149,54	0,00 -181,46	-54,82
92	119,32% $121,25%$	1022,43	0,00	0,00	527,00	0,00	0,00	115,56	-181,46	-66,98
95	121,23% $123,42%$	1050,00	0,00	0,00	555,00	0,00	0,00	-69,00	0,00	0,00
30	140,44/0	2000,00	0,00	0,00	555,00	0,00	0,00	-00,00	0,00	0,00

Tabelle 6.45.: Projektionen der Outputs des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr 2011

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in %
2	1649,86	252,86	18,10	764,79	295,79	63,07	790,09	121,09	18,10	57,99	25,99	81,23
4	1847,78	521,78	39,35	1074,39	303,39	39,35	1029,80	290,80	39,35	53,40	15,40	40,53
5	3742,47	270,47	7,79	1484,27	107,27	7,79	1965,01	142,01	7,79	386,97	27,97	7,79
6	2747,88	82,88	3,11	562,98	16,98	3,11	1336,31	40,31	3,11	106,20	3,20	3,11
8	1906,02	201,02	11,79	762,41	80,41	11,79	838,43	88,43	11,79	116,26	12,26	11,79
10	3656,00	504,00	15,99	1152,94	158,94	15,99	1941,67	267,67	15,99	147,19	31,19	26,89
12	3196,95	282,95	9,71	1467,92	129,92	9,71	1765,23	156,23	9,71	144,02	21,02	17,09
13	2312,71	427,71	22,69	1033,05	191,05	22,69	1195,00	221,00	22,69	83,94	35,94	74,88
14	826,92	109,92	15,33	195,12	66,12	51,25	334,46	44,46	15,33	38,06	5,06	15,33
15	1172.02	282.02	31.69	651.36	310.36	91.02	645.28	50.28	8.45	42.30	3.30	8.45

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
16	3150,27	232,27	7,96	871,24	64,24	7,96	1477,97	108,97	7,96	148,00	69,00	87,34
17	1297,51	372,51	40,27	699,59	140,59	25,15	693,33	139,33	25,15	57,57	11,57	25,15
18	1389,81	172,81	14,20	726,20	122,20	20,23	716,03	89,03	14,20	33,37	10,37	45,07
19	8156,45	475,45	6,19	2539,00	148,00	6,19	3256,86	453,86	16,19	300,95	75,95	33,75
20	580,99	58,99	11,30	179,23	50,23	38,94	249,70	63,70	34,25	13,36	1,36	11,30
23	738,62	96,62	15,05	251,48	14,48	6,11	348,04	20,04	6,11	21,22	1,22	6,11
24	797,02	303,02	61,34	326,69	114,69	54,10	385,55	135,55	54,22	29,28	10,28	54,10
25	5616,83	119,83	2,18	1774,87	37,87	2,18	2669,96	56,96	2,18	431,20	9,20	2,18
27	3014,57	216,57	7,74	1198,07	86,07	7,74	1746,47	125,47	7,74	177,77	12,77	7,74
28	1090,05	237,05	27,79	367,01	110,01	42,81	486,88	105,88	27,79	35,78	7,78	27,79
34	3086,86	424,86	15,96	752,62	218,62	40,94	1383,40	190,40	15,96	110,15	56,15	103,98
35	979,35	260,35	36,21	375,86	108,86	40,77	448,37	78,37	21,18	31,51	5,51	21,18
36	1239,61	252,61	25,59	653,55	301,55	85,67	668,87	112,87	20,30	33,68	5,68	20,30
39	1042,28	226,28	27,73	381,89	147,89	63,20	443,22	96,22	27,73	24,27	5,27	27,73
41	712,64	50,64	7,65	338,02	24,02	7,65	341,70	71,70	26,55	45,21	3,21	7,65
42	2896,02	472,02	19,47	1282,51	137,51	12,01	1605,10	172,10	12,01	134,41	14,41	12,01
44	913,92	103,92	12,83	373,95	117,95	46,08	444,55	50,55	12,83	14,36	2,36	19,66
46	1605,23	309,23	23,86	493,70	135,70	37,90	724,58	139,58	23,86	117,67	22,67	23,86
47 49	1696,21	424,21	33,35	432,62	116,62	36,90	666,75	166,75	33,35	160,02	40,02	33,35 $24,96$
52	3521,37	703,37	24,96	1179,62	235,62	24,96	2030,60 1407,18	405,60	24,96	368,63	73,63	19,86
52 54	2411,15 807,87	336,15 50,87	16,20 $6,72$	791,32 $245,25$	110,32 $52,25$	$\frac{16,20}{27,07}$	329,76	196,18 20,76	16,20 $6,72$	109,07 52,29	$\frac{18,07}{3,29}$	6,72
55	764,11	82,11	12,04	245,25	98,87	66,80	324,92	34,92	12,04	21,29	2,29	12,04
56	1315,12	139,12	11,83	362,74	49,74	15,89	487,71	54,71	12,64	72,21	38,21	112,39
57	1513,12 $1522,77$	158,77	11,64	500,15	52,15	11,64	606,82	72,82	13,64	54,11	25,11	86,57
60	751,64	141,64	23,22	242,74	45,74	23,22	343,78	64,78	23,22	25,88	4,88	23,22
61	2594,20	430,20	19,88	738,46	122,46	19,88	1020,73	213,73	26,48	93,84	32,84	53,83
62	4799,37	518,37	12,11	2057,88	12,88	0,63	2567,07	16,07	0,63	456,86	2,86	0,63
63	729,12	158,12	27,69	230,15	13,15	6,06	340,45	19,45	6,06	28,64	1,64	6,06
65	4372,03	249,03	6,04	1575,75	89,75	6,04	1874,57	171,57	10,07	434,76	24,76	6,04
66	678,51	148,51	28,02	233,36	118,36	102,92	281,95	22,95	8,86	44,63	3,63	8,86
67	772,79	201,79	35,34	301,83	173,83	135,80	371,15	156,15	72,63	11,93	3,93	49,09
69	1607,99	133,99	9,09	496,36	41,36	9,09	628,88	67,88	12,10	71,80	59,80	498,34
70	3527,15	259,15	7,93	703,70	51,70	7,93	1309,19	96,19	7,93	170,53	12,53	7,93
73	943,85	27,85	3,04	308,91	89,91	41,05	411,50	61,50	17,57	23,70	0,70	3,04
74	4671,43	344,43	7,96	1466,09	333,09	29,40	2034,85	165,85	8,87	224,56	16,56	7,96
76	726,78	61,78	9,29	291,63	116,63	66,64	341,11	58,11	20,53	17,49	1,49	9,29
79	1220,40	203,40	20,00	405,68	120,68	42,34	571,20	95,20	20,00	60,00	10,00	20,00
80	3826,79	349,79	10,06	1500,12	137,12	10,06	1972,28	180,28	10,06	283,95	25,95	10,06
81	1645,52	192,52	13,25	597,96	69,96	13,25	681,25	211,25	44,95	61,57	15,57	33,84
83	918,32	337,32	58,06	345,53	40,53	13,29	398,78	46,78	13,29	56,65	6,65	13,29
84	4112,62	727,62	21,50	1776,02	322,02	22,15	2784,91	440,91	18,81	217,37	45,37	26,38
85	3509,72	192,72	5,81	786,54	341,54	76,75	1306,75	71,75	5,81	152,76	65,76	75,59
86	2437,94	79,94	3,39	578,89	99,89	20,85	1057,68	34,68	3,39	117,25	86,25	278,23
87	838,88	88,88	11,85	281,62	210,62	296,65	321,91	37,91	13,35	48,16	22,16	85,23
88	1857,82	411,82	28,48	1128,05	250,05	$28,\!48$	1035,56	244,56	30,92	80,94	17,94	28,48
91	1660,93	268,93	19,32	506,18	221,18	77,61	641,94	103,94	19,32	70,27	52,27	290,38
92	1661,13	291,13	21,25	550,62	281,62	104,69	709,31	124,31	21,25	66,42	16,42	32,83
95	1455,91	362,91	33,20	539,37	219,37	68,55	741,75	140,75	23,42	66,65	12,65	23,42

E.7. Projektionen für die Outputorientierten Modelle der 95 Raiffeisenbanken für das Jahr 2012

E.7.1. Projektionen für das outputorientierte CCR-Modell

Tabelle 6.46.: Projektionen der Inputs des output
orientierten CCR-Modells für das Jahr $2012\,$

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	117,26%	1224,30	-31,70	-2,52	604,00	0,00	0,00	246,12	-381,21	-60,77
4 5	130,52% $105,58%$	1332,00 3019,00	0,00	$0,00 \\ 0,00$	718,52	-15,48	$^{-2,11}_{0,00}$	243,68 591,83	-315,65 -131,84	-56,43 -18,22
6	100,66%	2127,00	0,00	0,00	1522,00 1082,45	0,00 -167,55	-13,40	0,00	0,00	0,00
7	110,10%	9827,00	0,00	0,00	5218,00	0,00	0,00	1395,12	-203,55	-12,73
8	113,35%	1337,00	0,00	0,00	750,43	-127,57	-14,53	200,02	-40,65	-16,89
9	107,73%	275,00	0,00	0,00	152,43	-22,57	-12,90	53,86	-4,14	-7,14
10	$122,\!27\%$	2932,00	0,00	0,00	1530,98	-221,02	-12,62	149,33	0,00	0,00
12	$122,\!39\%$	2684,00	0,00	0,00	1366,00	0,00	0,00	422,00	0,00	0,00
13	110,59%	1642,00	0,00	0,00	911,80	-106,20	-10,43	220,28	-123,39	-35,90
14	129,02%	622,00	0,00	0,00	289,00	0,00	0,00	129,02	-326,98	-71,71
15 16	107,79% $108,40%$	904,00 2059,00	0,00 0,00	0,00 0,00	457,47 1130,82	-35,53 -50,18	-7,21 -4,25	111,00 327,33	0,00 0,00	0,00 0,00
17	125,05%	1001,00	0,00	0,00	525,00	0,00	0,00	147,67	0,00	0,00
19	121,73%	5676,00	0,00	0,00	3033,00	0,00	0,00	1710,41	-439,59	-20,45
20	119,25%	401,00	0,00	0,00	227,00	0,00	0,00	17,00	0,00	0,00
21	100,98%	872,00	0,00	0,00	491,59	-145,41	-22,83	163,74	-13,26	-7,49
22	106,00%	2033,00	0,00	0,00	1021,00	0,00	0,00	193,67	0,00	0,00
23	111,34%	489,00	0,00	0,00	270,37	-32,63	-10,77	100,00	0,00	0,00
24	113,80%	458,02	-18,98	-3,98	222,00	0,00	0,00	90,00	0,00	0,00
25	106,82%	4537,00	0,00	0,00	2200,00	0,00	0,00	391,67	0,00	0,00
27 28	113,91% $118,71%$	2691,00	0,00 0,00	0,00 0,00	1370,86 360,00	-623,14 $0,00$	-31,25 0,00	34,00 74,67	0,00 0,00	0,00
30	115,51%	733,00 5332,00	0,00	0,00	2630,00	0,00	0,00	726,00	0,00	0,00
33	109,13%	603,76	-7,24	-1,18	306,00	0,00	0,00	0,00	0,00	0,00
34	108,03%	2203,00	0,00	0,00	1066,00	0,00	0,00	0,00	0,00	0,00
35	102,77%	654,00	0,00	0,00	336,45	-5,55	-1,62	0,00	0,00	0,00
36	$122,\!39\%$	968,57	-0,43	-0,04	483,00	0,00	0,00	105,33	0,00	0,00
38	109,67%	2789,00	0,00	0,00	1511,00	0,00	0,00	597,20	-453,13	-43,14
39	120,02%	626,00	0,00	0,00	346,00	0,00	0,00	90,67	0,00	0,00
41	103,07%	575,00	0,00	0,00	269,53	-14,47	-5,10	30,67	0,00	0,00
42 43	109,80% $104,66%$	2523,00	0,00 0,00	0,00 0,00	1253,42	-50,58 0,00	-3,88 0,00	38,00	0,00 0,00	$0,00 \\ 0,00$
43	104,66% $103,76%$	4675,00 604,00	0,00	0,00	2188,00 332,00	0,00	0,00	512,33 94,60	-38,07	-28,70
46	114,66%	1113,00	0,00	0,00	594,00	0,00	0,00	157.00	0,00	0,00
47	115,62%	1029,00	0,00	0,00	552,00	0,00	0,00	159,70	-97,30	-37,86
49	117,31%	3062,00	0,00	0,00	1682,65	-52,35	-3,02	451,45	-240,88	-34,79
50	103,42%	536,00	0,00	0,00	297,00	0,00	0,00	75,53	-216,47	-74,13
51	115,14%	6050,00	0,00	0,00	3420,00	0,00	0,00	744,34	-376,99	-33,62
52	109,84%	1966,00	0,00	0,00	1011,69	-56,31	-5,27	120,67	0,00	0,00
55	116,18%	509,00	0,00	0,00	269,21	-2,79	-1,03	9,33	0,00	0,00
56 59	117,90% $104,71%$	843,00 4949,00	0,00	$0,00 \\ 0,00$	402,00 2506,81	0,00 $-352,19$	0,00 $-12,32$	175,00 333,00	0,00 0,00	$0,00 \\ 0,00$
60	126,70%	534,00	0,00	0,00	305,00	0,00	0,00	76,07	-93,93	-55,25
61	124,65%	1699,00	0,00	0,00	906,00	0,00	0,00	187,67	0,00	0,00
62	100,63%	3745,00	0,00	0,00	2088,40	-105,60	-4,81	636,99	-260,68	-29,04
63	123,34%	547,00	0,00	0,00	285,12	-8,88	-3,02	63,33	0,00	0,00
64	106,25%	7527,00	0,00	0,00	4014,00	0,00	0,00	1051,76	-392,57	-27,18
65	115,90%	3295,00	0,00	0,00	1817,00	0,00	0,00	630,33	0,00	0,00
66	105,68%	430,00	0,00	0,00	241,70	-41,30	-14,59	60,03	-13,97	-18,88
67 69	123,57% $105,25%$	446,00 947,00	0,00 0,00	0,00 0,00	252,36 489,00	-17,64	-6,53 0,00	15,00 269,07	0,00 $-45,26$	0,00 -14,40
69 70	105,25% $106,90%$	947,00 2142,00	0,00	0,00	489,00 1314,69	0,00 -107,31	-7,55	269,07 $226,59$	-45,26 -213,08	-14,40 -48,46
70	112,17%	570,00	0,00	0,00	318,00	0,00	0,00	91,33	0,00	0,00
74	122,38%	3779,00	0,00	0,00	1732,00	0,00	0,00	904.83	-292,17	-24,41
75	109,20%	2250,00	0,00	0,00	1170,61	-137,39	-10,50	148,00	0,00	0,00
76	106,71%	434,00	0,00	0,00	248,61	-79,39	-24,20	154,00	0,00	0,00
77	108,58%	10895,00	0,00	0,00	5577,00	0,00	0,00	3142,91	-50,76	-1,59
79	118,00%	827,00	0,00	0,00	426,00	0,00	0,00	161,00	0,00	0,00
80	120,21%	3151,00	0,00	0,00	1796,81	-214,19	-10,65	376,57	-108,76	-22,41
81 84	102,83% $111,29%$	1125,75 3936,00	-31,25 0,00	-2,70 0,00	522,00 2050,61	0,00 -15,39	0,00 -0,74	109,00 555,55	0,00 -1314,45	0,00 -70,29
84 85	111,29%	2278,00	0,00	0,00	1150,00	0,00	0,00	726,70	-1314,45	-70,29 -2,59
86	110,91%	1586,00	0,00	0,00	918,00	0,00	0,00	225,29	-55,04	-19,63
87	120,99%	567,00	0,00	0,00	311,00	0,00	0,00	27,67	0,00	0,00
88	126,54%	1503,21	-25,79	-1,69	767,00	0,00	0,00	190,00	0,00	0,00
89	119,95%	11257,00	0,00	0,00	5398,00	0,00	0,00	2715,90	-175,43	-6,07
90	116,16%	4461,00	0,00	0,00	2471,12	-211,88	-7,90	483,00	0,00	0,00
91	123,94%	1142,00	0,00	0,00	512,00	0,00	0,00	281,33	0,00	0,00
92	123,63%	1134,00	0,00	0,00	541,00	0,00	0,00	272,33	0,00	0,00
95	118,13%	1004,00	0,00	0,00	511,00	0,00	0,00	117,67	0,00	0,00

Tabelle 6.47.: Projektionen der Outputs des output
orientierten CCR-Modells für das Jahr 2012

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2	1425,88	209,88	17,26	579,26	85,26	17,26	904,07	133,07	17,26	64,43	30,43	89,50
4	1484,01	347,01	30,52	1035,02	242,02	30,52	995,87	232,87	30,52	75,70	17,70	30,52
5	3351,11	177,11	5,58	1516,13	80,13	5,58	2016,58	106,58	5,58	384,31	20,31	5,58
6	2322,23	15,23	0,66	868,15	277,15	46,90	1386,09	9,09	0,66	102,67	0,67	0,66
7 8	12652,69 1759,19	1160,69 $207,19$	10,10 $13,35$	3939,38 853,53	361,38 100,53	10,10 $13,35$	7289,72 964,61	668,72 $113,61$	10,10 $13,35$	608,30 79,35	$218,30 \\ 9,35$	55,97 $13,35$
9	389,98	27,98	7,73	96,96	6,96	7,73	198,22	14,22	7,73	17,68	14,68	489,40
10	3437,01	626,01	22,27	1311,96	238,96	22,27	2063,92	375,92	22,27	257,26	106,26	70,37
12	3059,75	559,75	22,39	1548,23	283,23	22,39	1876,24	343,24	22,39	225,20	41,20	22,39
13	2090,15	200,15	10,59	967,66	92,66	10,59	1201,01	115,01	10,59	102,85	9,85	10,59
14	774,12	174,12	29,02	241,86	87,86	57,05	389,64	87,64	29,02	51,61	11,61	29,02
15	961,53	134,53	16,27	366,77	45,77	14,26	703,87	50,87	7,79	50,12	14,12	39,23
16	2797,80	216,80	8,40	959,34	74,34	8,40	1494,84	115,84	8,40	125,26	43,26	52,75
17	1192,98	238,98	25,05	645,26	129,26	25,05	711,53	142,53	25,05	62,53	12,53	25,05
19 20	8875,33	1584,33	21,73	3357,31	599,31	21,73	3539,91	631,91	21,73	318,93	56,93	21,73
20	618,91 1152,18	99,91 11,18	19,25 0,98	179,50 672,53	$49,50 \\ 6,53$	$38,07 \\ 0,98$	258,34 624,06	79,34 6,06	$44,32 \\ 0,98$	25,57 43,13	$\frac{18,57}{27,13}$	265,25 $169,54$
22	2813,24	159,24	6,00	1001,70	56,70	6,00	1300,62	73,62	6,00	95,40	5,40	6,00
23	643,55	65,55	11,34	279,46	28,46	11,34	356,29	36,29	11,34	26,86	7,86	41,39
24	569,00	69,00	13,80	253,77	30,77	13,80	308,40	37,40	13,80	23,90	2,90	13,80
25	5393,34	344,34	6,82	1813,80	115,80	6,82	2876,66	183,66	6,82	466,80	29,80	6,82
27	2883,35	409,35	16,55	1151,63	140,63	13,91	1846,48	225,48	13,91	223,58	118,58	112,93
28	962,74	151,74	18,71	318,14	50,14	18,71	479,59	75,59	18,71	36,80	5,80	18,71
30	6877,47	923,47	15,51	1800,19	524,19	41,08	3578,50	480,50	15,51	346,53	46,53	15,51
33	791,19	66,19	9,13	277,06	71,06	34,49	376,25	74,25	24,59	34,92	2,92	9,13
34 35	2739,64 848,56	203,64	8,03	953,94	258,94	$37,26 \\ 2,77$	1383,86 407,90	102,86 29,90	8,03	75,62	5,62	$^{8,03}_{2,77}$
36	1110,08	216,56 $203,08$	34,27 $22,39$	280,56 440,60	7,56 $80,60$	22,39	719,65	131,65	7,91 $22,39$	46,25 46,60	$^{1,25}_{23,60}$	102,61
38	4120,30	363,30	9,67	1467,38	129,38	9,67	1883,03	166,03	9,67	158,13	61,13	63,02
39	894,15	149,15	20,02	295,25	49,25	20,02	441,67	73,67	20,02	36,98	24,98	208,19
41	707,06	21,06	3,07	344,25	10,25	3,07	325,55	47,55	17,11	44,32	1,32	3,07
42	3035,84	654,84	27,50	1289,05	115,05	9,80	1662,37	148,37	9,80	160,58	49,58	44,66
43	5654,78	251,78	4,66	2161,23	96,23	4,66	2669,88	118,88	4,66	531,67	23,67	4,66
44	824,89	29,89	3,76	278,08	10,08	3,76	437,87	15,87	3,76	36,98	20,98	131,14
46	1458,48	186,48	14,66	454,05	58,05	14,66	751,02	96,02	14,66	119,25	15,25	14,66
47 49	1409,41	190,41	15,62	375,77	50,77	15,62	617,41	83,41	15,62	159,56	21,56	15,62
50	3287,79 767,38	880,79 25,38	$36,59 \\ 3,42$	1330,11 220,28	$483,11 \\ 7,28$	$57,04 \\ 3,42$	2105,71 382,65	310,71 $12,65$	$17,31 \\ 3,42$	534,93 34,64	78,93 $14,64$	17,31 $73,22$
51	7625,72	1002,72	15,14	2571,08	338,08	15,14	4166,92	547,92	15,14	811,74	106,74	15,14
52	2091,41	201,41	10,66	910,57	81,57	9,84	1413,64	126,64	9,84	127,41	11,41	9,84
55	702,89	97,89	16,18	248,09	84,09	51,27	328,79	45,79	16,18	29,42	9,42	47,08
56	1164,85	176,85	17,90	435,05	66,05	17,90	517,58	78,58	17,90	38,91	5,91	17,90
59	5294,86	721,86	15,79	2048,20	211,20	11,50	3625,06	163,06	4,71	352,87	15,87	4,71
60	781,74	164,74	26,70	268,60	56,60	26,70	372,50	78,50	26,70	36,74	7,74	26,70
61	2541,61	502,61	24,65	938,61	185,61	24,65	1071,99	211,99	24,65	68,56	13,56	24,65
62 63	4072,73	587,73	16,86	2288,33	14,33	0,63 $23,34$	2574,12 411,96	16,12	0,63	573,59	$^{3,59}_{9,98}$	$0,63 \\ 38,38$
64	624,10 10302,00	118,10 606,00	23,34 $6,25$	261,48 2643,13	49,48 $178,13$	$\frac{23,34}{7,23}$	5174,38	77,96 $304,38$	23,34 $6,25$	35,98 678,94	39,94	6,25
65	4405,36	604,36	15,90	1718,80	235,80	15,90	2067,66	283,66	15,90	461,28	63,28	15,90
66	560,10	30,10	5,68	163,34	34,34	26,62	292,73	15,73	5,68	59,18	3,18	5,68
67	670,99	127,99	23,57	209,73	69,73	49,81	289,19	65,19	29,10	28,91	18,91	189,07
69	1442,98	71,98	5,25	499,94	24,94	5,25	604,14	30,14	5,25	49,27	31,27	173,69
70	3460,35	223,35	6,90	771,82	49,82	6,90	1338,39	86,39	6,90	299,32	19,32	6,90
72	917,55	99,55	12,17	200,78	21,78	12,17	351,09	38,09	12,17	58,33	6,33	12,17
74	4847,47	886,47	22,38	1576,25	288,25	22,38	2319,10	424,10	22,38	266,79	48,79	22,38
75 76	2526,89	212,89	9,20	932,21	163,21	21,22	1587,77	133,77	9,20	243,52	20,52	9,20
77	618,92 16418,38	38,92 1297,38	6,71	185,68	11,68 $2282,45$	6,71 $65,76$	310,53	19,53 550,58	6,71	24,39 559,24	9,39 $155,24$	62,58
79	1103,30	168,30	8,58 18,00	5753,45 357,54	54,54	18,00	6967,58 567,58	86,58	8,58 18,00	61,36	9,36	38,43 18,00
80	4113,59	691,59	20,21	1705,78	286,78	20,21	2222,68	373,68	20,21	292,11	49,11	20,21
81	1529,08	42,08	2,83	557,34	15,34	2,83	640,25	132,25	26,03	54,50	1,50	2,83
84	4222,81	629,81	17,53	1703,85	172,85	11,29	2954,75	299,75	11,29	389,52	39,52	11,29
85	3470,39	442,39	14,61	1285,20	696,20	118,20	1421,16	181,16	14,61	109,99	28,99	35,80
86	2549,82	250,82	10,91	642,17	63,17	10,91	1076,94	105,94	10,91	108,25	72,25	200,69
87	890,49	154,49	20,99	243,13	156,13	179,46	358,23	84,23	30,74	29,64	6,64	28,86
88	1729,80	362,80	26,54	1161,64	243,64	26,54	1030,04	216,04	26,54	53,12	15,12	39,78
89 90	14314,83	2380,83	19,95	5404,95	898,95	19,95	7109,44	1182,44	19,95	1033,97	171,97 58.66	19,95
90 91	5465,33 1534,38	760,33 296,38	16,16 $23,94$	2632,19 541,28	366,19 $210,28$	16,16 $63,53$	3122,38 684,15	434,38 $132,15$	16,16 $23,94$	421,66 36,96	58,66 $17,96$	16,16 $94,52$
92	1601,01	306,01	23,63	475,91	133,91	39,16	698,51	133,51	23,63	55,63	10,63	23,63
95	1190,75	182,75	18,13	438,26	67,26	18,13	717,05	110,05	18,13	76,78	11,78	18,13

E.7.2. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3^*$

Tabelle 6.48.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2012

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	113,57%	1194,37	-61,63	-4,91	604,00	0,00	0,00	149,88	-477,45	-76,11
4	128,97%	1332,00	0,00	0,00	734,00	0,00	0,00	254,05	-305,28	-54,58
5	105,54%	3019,00	0,00	0,00	1522,00	0,00	0,00	582,90	-140,77	-19,45
8	113,33%	1337,00	0,00	0,00	749,13	-128,87	-14,68	204,18	-36,49	-15,16
10	113,93%	2932,00	0,00	0,00	1426,21	-325,79	-18,60	149,33	0,00	0,00
12	121,47%	2684,00	0,00	0,00	1366,00	0,00	0,00	422,00	0,00	0,00
13	110,49%	1642,00	0,00	0,00	902,88	-115,12	-11,31	248,96	-94,71	-27,56
14	116,70%	613,67	-8,33	-1,34	289,00	0,00	0,00	99,72	-356,28	-78,13
15	104,18%	904,00	0,00	0,00	477,82	-15,18	-3,08	111,00	0,00	0,00
16	108,36%	2059,00	0,00	0,00	1132,84	-48,16	-4,08	327,33	0,00	0,00
17	123,60%	1001,00	0,00	0,00	525,00	0,00	0,00	145,43	-2,24	-1,52
19	110,55%	5676,00	0,00	0,00	3033,00	0,00	0,00	1852,76	-297,24	-13,83
21 22	100,22%	872,00	0,00	0,00	507,80	-129,20	-20,28	177,00	0,00	0,00
	103,35%	2033,00	0,00	0,00	1021,00	0,00	0,00	193,67	0,00	0,00
23	107,35%	489,00	0,00	0,00	290,37	-12,63	-4,17	87,10	-12,90	-12,90
25	100,10%	4400,70	-136,30	-3,00	2200,00	0,00	0,00	391,67 34,00	0,00	0,00
27	105,81%	2691,00	0,00	0,00	1291,98	-702,02	-35,21		0,00	0,00
28	115,95%	733,00	0,00	0,00	360,00	0,00	0,00	67,51	-7,16	-9,59
30	108,27%	5332,00	0,00	0,00	2630,00	0,00	0,00	726,00	0,00	0,00
36	117,19%	952,81	-16,19	-1,67	483,00	0,00	$0,00 \\ 0,00$	105,33	0,00	0,00
38 39	109,30% $117,39%$	2789,00 626,00	0,00	0,00	1511,00 346,00	$0,00 \\ 0,00$	0,00	640,20 90,67	-410,13 0,00	-39,05 0,00
42								38,00		0,00
	101,13%	2523,00	0,00	0,00	1164,04	-139,96	-10,73		0,00	
44 46	100,60% $113,82%$	604,00 1113,00	0,00	0,00	332,00 594,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	132,67 134,88	0,00 $-22,12$	0,00 -14,09
47	113,63%	1029,00	0,00	0,00	552,00	0,00	0,00	139,57	-117,43	-14,09
49	117,25%	3062,00	0,00	0,00	1684,69	-50,31	-2,90	451,92	-240,41	-45,69
51	103,62%	6050,00	0,00	0,00	3299,65	-120,35	-3,52	1121,33	0,00	0,00
52	103,02%	1966,00	0,00	0,00	987,28	-80,72	-3,52 -7,56	120,67	0,00	0,00
56 56	115,87%	839,88	-3,12	-0,37	402,00	0,00	0,00	133,60	-41,40	-23,66
60	121,63%	534,00	0.00	0.00	305,00	0,00	0,00	38,71	-131,29	-77,23
61	120,40%	1699,00	0,00	0,00	906,00	0,00	0,00	187,67	0,00	0,00
63	113,33%	547,00	0,00	0,00	294,00	0,00	0,00	28,52	-34,81	-54,96
65	113,93%	3295,00	0,00	0,00	1817,00	0,00	0,00	630,33	0,00	0,00
67	104,15%	446,00	0,00	0,00	246,90	-23,10	-8,56	15,00	0,00	0,00
69	104,14%	947,00	0,00	0,00	489,00	0,00	0,00	191,42	-122,91	-39,10
70	106,70%	2142,00	0,00	0,00	1291,67	-130,33	-9,17	302,23	-137,44	-31,26
72	107,51%	570,00	0,00	0,00	318,00	0,00	0,00	69,22	-22,11	-24,21
74	122,21%	3773,20	-5,80	-0,15	1732,00	0,00	0,00	1154,20	-42,80	-3,58
75	107,42%	2250,00	0,00	0,00	1209,59	-98,41	-7,52	148,00	0,00	0,00
76	103,54%	434,00	0,00	0,00	263,45	-64,55	-19,68	153,88	-0,12	-0,08
79	114,48%	827,00	0,00	0,00	426,00	0,00	0,00	89,54	-71,46	-44,39
80	115,90%	3151,00	0,00	0,00	1722,13	-288,87	-14,36	485,33	0,00	0,00
81	102,22%	1137,93	-19,07	-1,65	522,00	0,00	0,00	109,00	0,00	0,00
84	108,30%	3936,00	0,00	0,00	2066,00	0,00	0,00	623,84	-1246,16	-66,64
85	114,34%	2278,00	0,00	0,00	1150,00	0,00	0,00	691,63	-54,37	-7,29
86	110,65%	1586,00	0,00	0,00	918,00	0,00	0,00	262,40	-17,93	-6,40
87	114,32%	567,00	0,00	0,00	311,00	0,00	0,00	27,67	0,00	0,00
88	126,53%	1504,59	-24,41	-1,60	767,00	0,00	0,00	190,00	0,00	0,00
90	102,83%	4461,00	0,00	0,00	2317,34	-365,66	-13,63	483,00	0,00	0,00
91	122,39%	1142,00	0,00	0,00	512,00	0,00	0,00	157,75	-123,58	-43,93
92	121,57%	1134,00	0,00	0,00	541,00	0,00	0,00	207,91	-64,42	-23,65
95	$115,\!37\%$	1004,00	0,00	0,00	511,00	0,00	0,00	117,67	0,00	0,00

Tabelle 6.49.: Projektionen der Outputs des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3^*$ für das Jahr 2012

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in $\%$
2	1381,01	165,01	13,57	561,04	67,04	13,57	875,62	104,62	13,57	56,51	22,51	66,22
4	1492,31	355,31	31,25	1022,73	229,73	28,97	984,04	221,04	28,97	74,80	16,80	28,97
5	3349,84	175,84	5,54	1515,55	79,55	5,54	2015,81	105,81	5,54	384,17	20,17	5,54
8	1758,88	206,88	13,33	853,37	100,37	13,33	964,44	113,44	13,33	79,33	9,33	13,33
10	3202,57	391,57	13,93	1222,47	149,47	13,93	1923,14	235,14	13,93	172,03	21,03	13,93
12	3036,75	536,75	21,47	1536,60	271,60	21,47	1862,14	329,14	21,47	223,50	39,50	21,47
13	2088,26	198,26	10,49	966,79	91,79	10,49	1199,92	113,92	10,49	102,76	9,76	10,49
14	700,20	100,20	16,70	277,92	123,92	80,47	352,43	50,43	16,70	46,68	6,68	16,70
15	988,83	161,83	19,57	351,91	30,91	9,63	680,30	27,30	4,18	41,61	5,61	15,60
16	2796,77	215,77	8,36	958,99	73,99	8,36	1494,28	115,28	8,36	126,32	44,32	54,04
17	1179,14	225,14	23,60	637,78	121,78	23,60	703,28	134,28	23,60	61,80	11,80	23,60
19	8060,20	769,20	10,55	3048,97	290,97	10,55	3424,84	516,84	17,77	289,64	27,64	10,55
21	1143,51	2,51	0,22	667,47	1,47	0,22	619,36	1,36	0,22	49,62	33,62	210,10
22	2742,91	88,91	3,35	976,66	31,66	3,35	1268,10	41,10	3,35	99,04	9,04	10,04
23	620,48	42,48	7,35	269,45	18,45	7,35	343,52	23,52	7,35	20,40	1,40	7,35
25	5054,05	5,05	0,10	1728,53	30,53	1,80	2695,69	2,69	0,10	437,44	0,44	0,10

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
27	2617,74	143,74	5,81	1069,74	58,74	5,81	1715,18	94,18	5,81	114,78	9,78	9,31
28	940,35	129,35	15,95	358,18	90,18	33,65	468,44	64,44	15,95	35,94	4,94	15,95
30	6446,40	492,40	8,27	2019,05	743,05	58,23	3354,20	256,20	8,27	324,81	24,81	8,27
36	1062,91	155,91	17,19	421,88	61,88	17,19	689,08	101,08	17,19	43,68	20,68	89,93
38	4106,40	349,40	9,30	1462,43	124,43	9,30	1876,68	159,68	9,30	160,17	63,17	65,12
39	874,56	129,56	17,39	300,31	54,31	22,08	432,00	64,00	17,39	29,62	17,62	146,81
42	2564,20	183,20	7,69	1187,27	13,27	1,13	1531,11	17,11	1,13	112,25	1,25	1,13
44	799,77	4,77	0,60	274,20	6,20	2,31	424,53	2,53	0,60	21,61	5,61	35,04
46	1447,79	175,79	13,82	453,82	57,82	14,60	745,52	90,52	13,82	118,37	14,37	13,82
47	1385,15	166,15	13,63	429,72	104,72	32,22	606,78	72,78	13,63	156,81	18,81	13,63
49	3290,61	883,61	36,71	1327,94	480,94	56,78	2104,64	309,64	17,25	534,66	78,66	17,25
51	7142,89	519,89	7,85	2313,83	80,83	3,62	3750,01	131,01	3,62	730,52	25,52	3,62
52	2049,14	159,14	8,42	898,80	69,80	8,42	1395,37	108,37	8,42	131,16	15,16	13,07
56	1144,80	156,80	15,87	427,56	58,56	15,87	508,67	69,67	15,87	38,24	5,24	15,87
60	750,46	133,46	21,63	257,86	45,86	21,63	357,59	63,59	21,63	35,27	6,27	21,63
61	2454,96	415,96	20,40	906,61	153,61	20,40	1035,44	175,44	20,40	85,00	30,00	54,55
63	573,45	67,45	13,33	240,26	28,26	13,33	378,52	44,52	13,33	29,47	3,47	13,33
65	4330,48	529,48	13,93	1689,58	206,58	13,93	2032,51	248,51	13,93	453,44	55,44	13,93
67	565,53	22,53	4,15	161,77	21,77	15,55	233,30	9,30	4,15	11,16	1,16	11,55
69	1427,76	56,76	4,14	539,99	64,99	13,68	597,76	23,76	4,14	34,02	16,02	88,97
70	3453,88	216,88	6,70	770,37	48,37	6,70	1335,88	83,88	6,70	298,76	18,76	6,70
72	879,43	61,43	7,51	268,81	89,81	50,17	336,51	23,51	7,51	55,91	3,91	7,51
74	4840,74	879,74	22,21	2080,70	792,70	61,55	2315,88	420,88	22,21	266,42	48,42	22,21
75	2485,70	171,70	7,42	847,12	78,12	10,16	1561,89	107,89	7,42	239,55	16,55	7,42
76	600,53	20,53	3,54	180,16	6,16	3,54	301,30	10,30	3,54	15,53	0,53	3,54
79	1070,39	135,39	14,48	401,05	98,05	32,36	550,65	69,65	14,48	59,53	7,53	14,48
80	3966,10	544,10	15,90	1644,62	225,62	15,90	2142,99	293,99	15,90	281,64	38,64	15,90
81	1520,01	33,01	2,22	554,03	12,03	2,22	642,80	134,80	26,53	54,18	1,18	2,22
84	4301,30	708,30	19,71	1658,07	127,07	8,30	2875,37	220,37	8,30	379,05	29,05	8,30
85	3462,22	434,22	14,34	1309,57	720,57	122,34	1417,82	177,82	14,34	102,59	21,59	26,65
86	2543,84	244,84	10,65	640,66	61,66	10,65	1074,41	103,41	10,65	103,25	67,25	186,82
87	841,40	105,40	14,32	290,25	203,25	233,62	367,83	93,83	34,24	26,40	3,40	14,80
88	1729,67	362,67	26,53	1161,55	243,55	26,53	1029,95	215,95	26,53	53,05	15,05	39,61
90	4838,15	133,15	2,83	2330,13	64,13	2,83	2764,07	76,07	2,83	373,27	10,27	2,83
91	1515,19	277,19	22,39	445,53	114,53	34,60	675,59	123,59	22,39	32,26	13,26	69,81
92	1574,33	279,33	21,57	505,03	163,03	47,67	686,87	121,87	21,57	54,71	9,71	21,57
95	1162,93	154,93	15,37	451,20	80,20	21,62	700,30	93,30	15,37	74,99	9,99	15,37

E.7.3. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs $I1,\ I2,\ I3$

Tabelle 6.50.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr 2012

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3}$	Diff	in %
2	113,51%	1187,02	-68,98	-5,49	604,00	0,00	0,00	201,00	0,00	0,00
4	128,97%	1332,00	0,00	0,00	734,00	0,00	0,00	274,95	-571,05	-67,50
5	105,41%	3019,00	0,00	0,00	1522,00	0,00	0,00	593,00	0,00	0,00
6	106,70%	2127,00	0,00	0,00	1129,01	-120,99	-9,68	77,00	0,00	0,00
8	113,33%	1337,00	0,00	0,00	749,13	-128,87	-14,68	192,24	-122,76	-38,97
10	117,08%	2932,00	0,00	0,00	1495,81	-256,19	-14,62	188,00	0,00	0,00
12 13	112,05% $110,49%$	2684,00	0,00	0,00	1366,00	0,00 $-115,12$	0,00	51,00 263,80	0,00	0,00
13	110,49% $114,90%$	1642,00 573,13	-48,87	-7,86	902,88 289,00	0,00	-11,31 $0,00$	263,80 58,00	-547,20 0,00	-67,47 $0,00$
16	106,20%	2059,00	0,00	0,00	1117,56	-63,44	-5,37	251,00	0,00	0,00
17	123,60%	1001,00	0,00	0,00	525,00	0,00	0,00	161,03	-60,97	-27,46
18	102,48%	1107,00	0,00	0,00	534,00	0,00	0,00	-35,00	0,00	0,00
19	110,03%	5676,00	0,00	0,00	3033,00	0,00	0,00	1500,00	0,00	0,00
20	106,19%	401,00	0,00	0,00	227,00	0,00	0,00	36,00	0,00	0,00
22	104,77%	2033,00	0,00	0,00	1021,00	0,00	0,00	208,00	0,00	0,00
23	101,13%	489,00	0,00	0,00	303,00	0,00	0,00	30,00	0,00	0,00
27	107,53%	2691,00	0,00	0,00	1308,10	-685,90	-34,40	-57,00	0,00	0,00
28	115,95%	733,00	0,00	0,00	360,00	0,00	0,00	56,38	-30,62	-35,20
30	104,05%	5332,00	0,00	0,00	2575,25	-54,75	-2,08	400,00	0,00	0,00
34	105,97%	2203,00	0,00	0,00	1066,00	0,00	0,00	-46,00	0,00	0,00
35	106,09%	654,00	0,00	0,00	342,00	0,00	0,00	-48,00	0,00	0,00
36	117,30%	963,92	-5,08	-0,52	483,00	0,00	0,00	174,00	0,00	0,00
37	103,60%	502,00	0,00	0,00	282,00	0,00	0,00	59,00	0,00	0,00
38	107,40%	2789,00	0,00	0,00	1511,00	0,00	0,00	474,00	0,00	0,00
39	113,10%	626,00	0,00	0,00	346,00	0,00	0,00	-2,00	0,00	0,00
41	100,95%	534,86	-40,14	-6,98	284,00	0,00	0,00	47,00	0,00	0,00
42	114,05%	2523,00	0,00	0,00	1304,00	0,00	0,00	147,00	0,00	0,00
44	100,67%	604,00	0,00	0,00	332,00	0,00	0,00	198,00	0,00	0,00
46	113,82%	1113,00	0,00	0,00	594,00	0,00	0,00	155,31	-8,69	-5,30
47	113,63%	1029,00	0,00	0,00	552,00	0,00	0,00	133,70	-266,30	-66,58
49	117,25%	3062,00	0,00	0,00	1684,69	-50,31	-2,90	548,90	-323,10	-37,05
51	102,02%	6050,00	0,00	0,00	3273,52	-146,48	-4,28	966,00	0,00	0,00
52	106,35%	1966,00	0,00	0,00	1022,89	-45,11	-4,22	54,00	0,00	0,00
55	108,47%	509,00	0,00	0,00	272,00	0,00	0,00	-39,00	0,00	0,00
56	115,87%	839,88	-3,12	-0,37	402,00	0,00	0,00	94,86	-35,14	-27,03
60	121,63%	534,00	0,00	0,00	305,00	0,00	0,00	46,55	-162,45	-77,73
61	120,43%	1699,00	0,00	0,00	906,00	0,00	0,00	50,00	0,00	0,00
63	103,52%	547,00	0,00	0,00	294,00	0,00	0,00	-35,00	0,00	0,00
65 67	115,20% $117,75%$	3295,00 446,00	0,00 0,00	$0,00 \\ 0,00$	1817,00 263,60	0,00 -6,40	0,00 $-2,37$	696,46	-100,54 0,00	$^{-12,61}_{0,00}$
								0,00		
69 70	104,14% $106,70%$	947,00 $2142,00$	$0,00 \\ 0,00$	$0,00 \\ 0,00$	489,00 1291,67	0,00 -130,33	0,00 -9,17	177,11 $229,10$	-232,89 -428,90	-56,80 -65,18
72	102,69%	570,00	0,00	0,00	318,00	0,00	0,00	-7,00	0,00	0,00
74	112,65%	3779,00	0,00	0,00	1732,00	0,00	0,00	17,00	0,00	0,00
75	106,64%	2250,00	0,00	0,00	1192,47	-115,53	-8,83	166,00	0,00	0,00
76	103,12%	434,00	0,00	0,00	262,25	-65,75	-20,05	119,00	0,00	0,00
79	114,48%	827,00	0,00	0,00	426,00	0,00	0,00	92,21	-150,79	-62,05
80	117,35%	3151,00	0,00	0,00	1759,23	-251,77	-12,52	469,00	0,00	0,00
81	100,61%	1157,00	0,00	0,00	522,00	0,00	0,00	4,00	0,00	0,00
84	108,30%	3936,00	0,00	0,00	2066,00	0,00	0,00	849,73	-243,27	-22,26
85	113,90%	2278,00	0,00	0,00	1150,00	0,00	0,00	466,00	0,00	0,00
86	110,65%	1586,00	0,00	0,00	918,00	0,00	0,00	257,22	-155,78	-37,72
87	116,30%	567,00	0,00	0,00	311,00	0,00	0,00	23,00	0,00	0,00
88	128,03%	1468,12	-60,88	-3,98	767,00	0,00	0,00	216,70	-45,30	-17,29
90	110,86%	4461,00	0,00	0,00	2416,49	-266,51	-9,93	701,00	0,00	0,00
91	122,39%	1142,00	0,00	0,00	512,00	0,00	0,00	99,27	-85,73	-46,34
92	$121,\!57\%$	1134,00	0,00	0,00	541,00	0,00	0,00	153,97	-82,03	-34,76
95	$115,\!25\%$	1004,00	0,00	0,00	511,00	0,00	0,00	139,00	0,00	0,00

Tabelle 6.51.: Projektionen der Outputs des output
orientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$ für das Jahr 2012

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in %
2	1380,28	164,28	13,51	560,74	66,74	13,51	875,16	104,16	13,51	55,00	21,00	61,77
4	1492,31	355,31	31,25	1022,73	229,73	28,97	984,04	221,04	28,97	74,80	16,80	28,97
5	3345,71	171,71	5,41	1513,69	77,69	5,41	2013,33	103,33	5,41	383,69	19,69	5,41
6	2461,57	154,57	6,70	740,68	149,68	25,33	1469,26	92,26	6,70	114,32	12,32	12,08
8	1758,88	206,88	13,33	853,37	100,37	13,33	964,44	113,44	13,33	79,33	9,33	13,33
10	3291,12	480,12	17,08	1256,27	183,27	17,08	1976,31	288,31	17,08	176,79	25,79	17,08
12	2801,25	301,25	12,05	1417,43	152,43	12,05	1717,73	184,73	12,05	206,17	22,17	12,05
13	2088,26	198,26	10,49	966,79	91,79	10,49	1199,92	113,92	10,49	102,76	9,76	10,49
14	689,40	89,40	14,90	278,44	124,44	80,80	347,00	45,00	14,90	45,96	5,96	14,90
16	2741,02	160,02	6,20	939,87	54,87	6,20	1464,50	85,50	6,20	126,91	44,91	54,77
17	1179,14	225,14	23,60	637,78	121,78	23,60	703,28	134,28	23,60	61.80	11,80	23,60

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
18	1338,67	184,67	16,00	657,92	15,92	2,48	688,67	16,67	2,48	36,11	8,11	28,98
19	8022,29	731,29	10,03	3034,63	276,63	10,03	3421,31	513,31	17,65	288,28	26,28	10,03
20	551,13	32,13	6,19	182,96	52,96	40,74	257,01	78,01	43,58	9,86	2,86	40,90
22	2780,60	126,60	4,77	990,08	45,08	4,77	1285,53	58,53	4,77	94,29	4,29	4,77
23	687,16	109,16	18,89	253,84	2,84	1,13	323,62	3,62	1,13	19,21	0,21	1,13
27	2660,29	186,29	7,53	1087,13	76,13	7,53	1743,06	122,06	7,53	114,85	9,85	9,38
28	940,35	129,35	15,95	358,18	90,18	33,65	468,44	64,44	15,95	35,94	4,94	15,95
30	6195,14	241,14	4,05	2095,71	819,71	64,24	3223,47	125,47	4,05	312,15	12,15	4,05
34	2687,40	151,40	5,97	905,84	210,84	30,34	1357,48	76,48	5,97	121,27	51,27	73,24
35	772,50	140,50	22,23	289,63	16,63	6,09	401,02	23,02	6,09	47,74	2,74	6,09
36	1063,91	156,91	17,30	422,28	62,28	17,30	689,72	101,72	17,30	45,90	22,90	99,56
37	687,17	151,17	28,20	325,30	11,30	3,60	303,55	10,55	3,60	31,08	1,08	3,60
38	4035,02	278,02	7,40	1437,01	99,01	7,40	1844,06	127,06	7,40	162,23	65,23	67,25
39 41	842,60	97,60	13,10	288,92	42,92	17,45	416,21	48,21	13,10	33,71	21,71	0,93 0,95
42	742,92 $2715,53$	56,92 334,53	8,30 14,05	337,17 1338,95	3,17 $164,95$	0,95 $14,05$	306,77 $1726,72$	28,77 $212,72$	10,35 $14,05$	43,41 126,60	0,41	14,05
44	800,33	5,33	0.67	269,80	1,80	0.67	424,83	2,83	0.67	22,22	$^{15,60}_{6,22}$	38,86
46	1447,79	175,79	13,82	453,82	57,82	14,60	745,52	90,52	13,82	118,37	14,37	13,82
47	1385,15	166,15	13,63	429,72	104,72	32,22	606,78	72,78	13,63	156,81	18,81	13,63
49	3290,61	883,61	36,71	1327,94	480,94	56,78	2104,64	309,64	17,25	534,66	78,66	17,25
51	6897,25	274,25	4,14	2308,08	75,08	3,36	3692,10	73,10	2,02	719,24	14,24	2,02
52	2010,02	120,02	6,35	881,64	52,64	6,35	1368,72	81,72	6,35	123,37	7,37	6,35
55	656,24	51,24	8,47	217,58	53,58	32,67	306,97	23,97	8,47	21,69	1,69	8,47
56	1144,80	156,80	15,87	427,56	58,56	15,87	508,67	69,67	15,87	38,24	5,24	15,87
60	750,46	133,46	21,63	257,86	45,86	21,63	357,59	63,59	21,63	35,27	6,27	21,63
61	2455,57	416,57	20,43	906,84	153,84	20,43	1035,70	175,70	20,43	84,98	29,98	54,50
63	657,09	151,09	29,86	219,46	7,46	3,52	345,76	11,76	3,52	26,92	0,92	3,52
65	4378,75	577,75	15,20	1708,42	225,42	15,20	2055,17	271,17	15,20	458,50	60,50	15,20
67	639,38	96,38	17,75	169,81	29,81	21,29	277,60	53,60	23,93	28,74	18,74	187,35
69	1427,76	56,76	4,14	539,99	64,99	13,68	597,76	23,76	4,14	34,02	16,02	88,97
70	3453,88	216,88	6,70	770,37	48,37	6,70	1335,88	83,88	6,70	298,76	18,76	6,70
72	840,00	22,00	2,69	243,02	64,02	35,76	328,43	15,43	4,93	53,40	1,40	2,69
74	4462,07	501,07	12,65	1568,23	280,23	21,76	2134,72	239,72	12,65	245,58	27,58	12,65
75	2467,65	153,65	6,64	848,51	79,51	10,34	1550,55	96,55	6,64	237,81	14,81	6,64
76	598,10	18,10	3,12	179,43	5,43	3,12	300,08	9,08	3,12	19,85	4,85	32,32
79	1070,39	135,39	14,48	401,05	98,05	32,36	550,65	69,65	14,48	59,53	7,53	14,48
80	4015,72	593,72	17,35	1665,20	246,20	17,35	2169,80	320,80	17,35	285,16	42,16	17,35
81	1496,07	9,07	0,61	545,31	3,31	0,61	638,12	130,12	25,61	53,32	0,32	0,61
84	4301,30	708,30	19,71	1658,07	127,07	8,30	2875,37	220,37	8,30	379,05	29,05	8,30
85	3448,89	420,89	13,90	980,72	391,72	66,51	1412,36	172,36	13,90	106,62	25,62	31,63
86	2543,84	244,84	10,65	640,66	61,66	10,65	1074,41	103,41	10,65	103,25	67,25	186,82
87	855,97	119,97	16,30	289,18	202,18	232,39	362,48	88,48	32,29	26,75	3,75	16,30
88	1750,17	383,17	28,03	1175,32	257,32	28,03	1042,16	228,16	28,03	52,83	14,83	39,03
90	5215,96	510,96	10,86	2512,09	246,09	10,86	2979,92	291,92	10,86	402,42	39,42	10,86
91	1515,19	277,19	22,39	445,53	114,53	34,60	675,59	123,59	22,39	32,26	13,26	69,81
92	1574,33	279,33	21,57	505,03	163,03	47,67	686,87	121,87	21,57	54,71	9,71	21,57
95	1161,72	153,72	15,25	452,31	81,31	21,92	699,57	92,57	15,25	74,91	9,91	15,25

E.8. Projektionen für die Outputorientierten Modelle der 95 Raiffeisenbanken mit den Durchschnittswerten der Inputs und Outputs der Jahre 2010, 2011 und 2012

E.8.1. Projektionen für das outputorientierte CCR-Modell

Tabelle 6.52.: Projektionen der Inputs des outputorientierten CCR-Modells, angewendet auf die Durchschnittwerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

2 121,56% 1181,33 0,00 0,00 622,33 0,00 0,00 153,88 -473,44 7-5,47 4 133,8776 1348,67 0,00 0,00 0,00 154,73 295,00 0,00 0,00 156,73 20 0,00 0,00 157,73 25,64 1 161,174 295,00 0,00 0,00 157,73 20,00 0,00 0,00 157,73 20,00 0,00 15	DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
5 106,14% 2950,00 0,00 0,00 1547,33 0,00 0,00 552,66 1,710,7 223,64 5 112,64% 9888,00 0,00 0,00 1,00 5230,00 0,00 1588,03 0,00 0,00 0,00 1 7 112,64% 9888,00 0,00 0,00 1,00 5230,00 0,00 1,00 1588,03 0,00 0,00 0,00 1 9 117,80% 267,67 0,00 0,00 1,00 151,37 1,89 0,012 149,33 0,00 0,00 1 121,158% 2874,33 0,00 0,00 1,00 159,67 0,00 0,00 141,33 0,07 0,00 0,00 1 131 118,49% 1632,33 0,00 0,00 0,00 288,83 0,94,17 0,921 181,55 162,12 471,11 1 122,63% 566,00 0,00 0,00 0,00 478,00 0,00 141,44 433,16 7-27,11 1 112,63% 895,67 0,00 0,00 478,00 0,00 141,44 433,16 7-27,11 1 112,63% 895,67 0,00 0,00 478,00 0,00 141,44 433,16 7-27,11 1 114,93% 895,67 0,00 0,00 478,00 0,00 147,00 0,00 1 118,191,191,191,191,191,191,191,191,191,											
6 103,52% 2078,33 0,00 0,00 1099,42 -2,58 -0,23 0,00 0,00 0,00 0,00 7 7 112,64% 8383,00 0,00 0,00 752,54 -8,46 -1,11 138,05 -102,62 -126,634 116,17% 1277,67 0,00 0,00 752,54 -8,46 -1,11 138,05 -102,62 -126,634 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,62 -126,134 111,138,05 -102,63 -126,134 111,138,05 -102,63 -126,134 111,138,05 -102,63 -126,134 111,138,05 -102,63 -126,134 111,138,05 -102,63 -126,134 111,138,05 -102,63 -126,134 111,138,05 -102,63 -126,134 111,138,05 -126,134 111,134,134,134 111,134,134,134,134 111,134,134,134,134 111,134,134,134,134,134,134,134,134,134,		133,87%									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
8 116,17% 1277,67 0.00 0.00 752,54 -8,46 -1,11 138,05 -102,62 -42,64 10 121,58% 2874,33 0.00 0.00 1571,78 -1,89 -0,12 149,33 0.00 0.00 66,34 10 121,58% 2874,33 0.00 0.00 0.00 1350,67 0.00 0.00 0.00 136,07 0.00 0.00 141,33 0.00 0.00 136,07 0.00 0.00 141,33 0.00 0.00 141,33 162,07 0.00 0.00 141,33 0.00 0.00 0.00 141,33 0.00 0.00 141,33 0.00 0.00 0.00 141,33 0.00 0.00 0.00 141,33 0.00 0.00 0.00 141,33 0.00 0.00 0.00 141,09 0.00 0.00 141,09 0.00 0.00 141,09 0.00 0.00 141,09 0.00 0.00 0.00 141,09 0.00 0.00 0.00 141,09 0.00											
117,80% 267,67 0,00 0,00 161,37 -15,63 -8,83 20,10 -37,90 -66,34 10 121,58% 2574,33 0,00 0,00 0,00 359,67 0,00 0,00 412,33 -9,67 -2,29 13 184,9% 1832,33 0,00 0,00 0,00 298,83 -94,17 -9,21 181,55 -162,12 -47,17 14 144,9% 83,687 0,00 0,00 0,00 0,00 0,00 0,00 0,00 15 101,09% 2074,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 16 101,09% 2074,33 0,00 0,00 576,00 0,00 0,00 147,67 0,00 0,00 18 100,01% 1050,33 0,00 0,00 508,27 -2,40 -0,47 15,33 0,00 0,00 19 118,71% 5428,67 0,00 0,00 3045,33 0,00 0,00 337,28 -812,72 -37,80 20 128,36% 411,00 0,00 0,00 2333,00 0,00 0,00 337,28 -812,72 -37,80 21 108,53% 2001,33 0,00 0,00 2333,00 0,00 0,00 313,078 -812,72 -37,80 22 108,63% 201,33 0,00 0,00 2333,00 0,00 0,00 313,078 -812,72 -37,80 23 110,59% 438,687 0,00 0,00 2333,00 0,00 0,00 319,67 0,00 0,00 24 110,37% 2618,67 0,00 0,00 2333,00 0,00 0,00 319,67 0,00 0,00 25 110,36% 438,687 0,00 0,00 3378,50 -164,50 -104,50 -14,50 -106,50 -14,40 -104,50 -104,50 -14,40 -104,50 -104,50 -14,40 -104,50 -104,50 -14,40 -104,50 -104,50 -14,40 -104,50 -104,50 -104,50 -14,50 -104,											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15										
18	16			0,00	0,00					-77,64	
19											
20 128,36% 411,00 0,00 0,00 1203,33 0,00 0,00 17,00 0,00 0,00 23 111,70% 479,00 0,00 0,00 1233,31 0,00 0,00 1035,33 0,00 0,00 0,00 1378,35 -10,32 -3,88 46,07 0,00 0,00 255,10 -14,07 -5,03 45,88 -44,12 -19,02 25 110,50% 4386,67 0,00 0,00 1378,56 -164,50 -10,66 34,00 0,00 0,00 233,30 0,00 0,00 0,00 391,67 0,00 0,00 25 110,42% 5039,33 0,00 0,00 2468,67 0,00 0,00 0,00 74,67 0,00 0,00 30 110,42% 5039,33 0,00 0,00 2468,67 0,00 0,00 74,67 0,00 0,00 0,00 33 109,00% 561,33 0,00 0,00 1153,80 -44,53 -3,72 0,00 0,00 0,00 33 109,00% 561,33 0,00 0,00 1153,80 -44,53 -3,72 0,00 0,00 0,00 35 103,49% 613,00 0,00 0,00 476,33 0,00 0,00 476,33 0,00 0,00 381,21 52,15% 335,00 0,00 0,00 476,33 0,00 0,00 381,35 528,65 8,35 0,00 0,00 0,00 381,21,215% 335,00 0,00 0,00 341,35 528,65 8,35 0,00 0,00 0,00 476,33 0,00 0,00 383,72 -40,61 9,57 49,38 -40,74 4,93 40 101,31% 500,00 0,00 0,00 383,72 -40,61 9,57 49,38 -40,74 44,93 40 101,31% 500,00 0,00 0,00 256,33 0,00 0,00 381,43 528,65 8,35 0,00 0,00 0,00 44 101,31% 500,00 0,00 0,00 256,33 0,00 0,00 0,00 124,33 40,00 0,00 0,00 44,00 0,00 0,00 126,33 0,00 0,00 147,46 41,49											
22 108,63% 2001,33 0,00 0,00 1033,33 0,00 0,00 193,67 0,00 0,00 233,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00											
23 111,70% 479,00 0,00 0,00 278,35 -10,32 -3,58 46,07 53,93 -53,93 25,93 25 110,50% 458,33 0,00 0,00 265,60 -14,07 -5,03 45,88 -44,12 -49,92 25 110,50% 4386,67 0,00 0,00 1378,50 -164,50 -10,66 34,00 0,00 0,00 0,00 31,67 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0											
24 130,59% 458,33 0,00 0,00 265,60 -14,07 -5,03 45,88 -44,12 -49,02 25 110,50% 4386,67 0,00 0,00 2333,00 0,00 0,00 391,67 0,00 0,00 28 114,07% 690,00 0,00 0,00 370,00 0,00 0,00 74,67 0,00 0,00 3114,02% 5039,33 0,00 0,00 2466,67 0,00 0,00 74,67 0,00 0,00 0,00 3114,02% 5039,33 0,00 0,00 330,00 0,00 0,00 726,00 0,00 0,00 0,00 313,00 0,00 313,00 0,00 313,00 0,00 313,00 0,00 0											
25 110,50%											
$\begin{array}{c} 27 113.37\% \\ 28 124.00\% \\ 690,00 0.00 0.00 370,00 0.00 0.00 0.00 \\ 30 110.42\% \\ 5093,33 0.00 0.00 0.02 468.67 0.00 0.00 726.00 0.00 0.00 \\ 31 110.42\% \\ 5093,33 0.00 0.00 0.00 2468.67 0.00 0.00 726.00 0.00 0.00 \\ 34 118.42\% 2159,00 0.00 0.00 1153.80 -24.65 -8.35 \\ 103.49\% 613.00 0.00 0.00 1153.80 -24.65 -8.35 \\ 103.49\% 935.00 0.00 0.00 1153.80 -24.65 -8.35 \\ 2678,00 0.00 0.00 0.01 346.33 -22.65 -8.35 \\ 39 128.31\% 636.67 0.00 0.00 0.04 346.33 0.00 0.00 341.1 -656.22 -62.48 \\ 39 128.31\% 636.67 0.00 0.00 383.72 -40.61 -9.57 49.93 -40.74 -44.93 \\ 40 101.31\% 550.00 0.00 0.00 285.33 0.00 0.00 341.1 -656.22 -62.48 \\ 41 103.48\% 543.00 0.00 0.00 280.01 -18.32 -6.14 30.67 0.00 0.00 \\ 42 113.01\% 5441.67 0.00 0.00 1262.82 -81.51 -6.06 38.00 0.00 0.00 \\ 44 107.49\% 4377.46 -43.87 -0.99 2153.00 0.00 0.00 512.33 0.00 0.00 \\ 46 120.46\% 1063.67 0.00 0.00 601.00 0.00 0.00 145.06 -11.94 -7.61 \\ 47 124.83\% 2944.00 0.00 0.00 576.00 0.00 0.00 145.06 -11.94 -7.61 \\ 49 123.43\% 2914.00 0.00 0.00 1674.17 -11.16 -0.70 418.38 -273.95 -39.57 \\ 51 111.77\% 5673.00 0.00 0.00 1007.70 -99.63 -9.00 120.92 -9.20 $											
$\begin{array}{c} 28 & 124,00\% & 690,00 & 0.00 & 0.00 & 370,00 & 0.00 & 0.00 & 74,67 & 0.00 & 0.00 \\ 303 & 110,42\% & 5613,3 & 0.00 & 0.00 & 303,20 & -0.80 & -0.26 & 0.00 & 0.00 & 0.00 \\ 318 & 118,42\% & 2159,00 & 0.00 & 0.00 & 1153,80 & -44,53 & -3.72 & 0.00 & 0.00 & 0.00 \\ 35 & 103,49\% & 613,00 & 0.00 & 0.00 & 314,35 & -28,65 & -8.35 & 0.00 & 0.00 & 0.00 \\ 36 & 122,15\% & 935,00 & 0.00 & 0.00 & 314,35 & -28,65 & -8.35 & 0.00 & 0.00 & 0.00 \\ 38 & 102,76\% & 2678,00 & 0.00 & 0.00 & 1366,00 & 0.00 & 0.00 & 394,11 & -656,22 & -62,48 \\ 39 & 128,31\% & 500,00 & 0.00 & 0.00 & 265,33 & 0.00 & 0.00 & 394,11 & -656,22 & -62,48 \\ 40 & 101,31\% & 500,00 & 0.00 & 0.00 & 265,33 & 0.00 & 0.00 & 7,67 & 0.00 & 0.00 \\ 41 & 103,48\% & 543,00 & 0.00 & 0.00 & 265,33 & 0.00 & 0.00 & 7,67 & 0.00 & 0.00 \\ 42 & 113,01\% & 2441,67 & 0.00 & 0.00 & 1262,82 & -81,51 & -6.06 & 38,00 & 0.00 & 0.00 \\ 44 & 107,49\% & 580,67 & 0.00 & 0.00 & 332,33 & 0.00 & 0.00 & 104,71 & -27,96 & -21,08 \\ 46 & 120,46\% & 1063,67 & 0.00 & 0.00 & 576,00 & 0.00 & 104,71 & -27,96 & -21,08 \\ 49 & 123,33\% & 994,00 & 0.00 & 0.00 & 576,00 & 0.00 & 0.00 & 150,51 & -106,49 & -41,44 \\ 49 & 123,43\% & 994,00 & 0.00 & 0.00 & 576,00 & 0.00 & 0.00 & 150,51 & -106,49 & -41,44 \\ 49 & 123,43\% & 994,00 & 0.00 & 0.00 & 576,00 & 0.00 & 0.00 & 150,51 & -106,49 & -41,44 \\ 49 & 123,43\% & 994,00 & 0.00 & 0.00 & 3015,67 & 0.00 & 0.00 & 1029,32 & -92.01 & -8,21 \\ 52 & 112,34\% & 1885,33 & 0.00 & 0.00 & 107,70 & -99,63 & -9.00 & 1029,32 & -92.01 & -8,21 \\ 51 & 111,77\% & 5673,00 & 0.00 & 0.00 & 307,33 & 0.00 & 0.00 & 152,28 & -22,72 & 12,98 \\ 57 & 102,90\% & 810,67 & 0.00 & 0.00 & 289,06 & 14,27 & -4,70 & 27,67 & 0.00 & 0.00 \\ 55 & 116,76\% & 499,33 & 0.00 & 0.00 & 253,163 & -50,70 & -1,96 & 333,00 & 0.00 & 0.00 \\ 56 & 115,98\% & 810,67 & 0.00 & 0.00 & 253,163 & -50,70 & -1,96 & 333,00 & 0.00 & 0.00 \\ 60 & 126,57\% & 527,67 & 0.00 & 0.00 & 585,33 & 0.00 & 0.00 & 187,67 & 0.00 & 0.00 \\ 60 & 126,57\% & 527,67 & 0.00 & 0.00 & 256,61 & -14,32 & -5.30 & 50,05 & -2.35,5 \\ 70 & 109,93\% & 259,53 & 0.00 & 0.00 & 133,36 & -$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			561,33					-0,26			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2159,00								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c} 39 & 128,31\% & 636,67 & 0.00 & 0.00 & 383,72 & -40,61 & -9,57 & 49,93 & -40,74 & -44,93 \\ 40 & 101,31\% & 500,00 & 0.00 & 0,00 & 265,33 & 0.00 & 0.00 & 7,67 & 0.00 & 0.00 \\ 41 & 103,48\% & 543,00 & 0.00 & 0.00 & 1262,82 & -81,51 & -6,166 & 38,00 & 0.00 & 0.00 \\ 42 & 113,01\% & 2441,67 & 0.00 & 0.00 & 1262,82 & -81,51 & -6,06 & 38,00 & 0.00 & 0.00 \\ 43 & 105,59\% & 4377,46 & -43,87 & -0,99 & 2153,00 & 0.00 & 0.00 & 512,33 & 0.00 & 0.00 \\ 44 & 107,49\% & 580,67 & 0.00 & 0.00 & 601,00 & 0.00 & 0.00 & 104,71 & -27,96 & -21,08 \\ 46 & 120,46\% & 1063,67 & 0.00 & 0.00 & 601,00 & 0.00 & 0.00 & 145,06 & -11,94 & -7,61 \\ 47 & 124,83\% & 994,00 & 0.00 & 0.00 & 576,00 & 0.00 & 0.00 & 150,51 & -106,49 & -41,44 \\ 49 & 123,43\% & 2914,00 & 0.00 & 0.00 & 1574,17 & -11,16 & -0,70 & 418,38 & -273,95 & -39,57 \\ 51 & 111,77\% & 5673,00 & 0.00 & 0.00 & 3015,67 & 0.00 & 0.00 & 1029,32 & -92,01 & -8,21 \\ 52 & 112,34\% & 1885,33 & 0.00 & 0.00 & 1007,70 & -99,63 & -9.00 & 120,67 & 0.00 & 0.00 \\ 54 & 102,44\% & 507,67 & 0.00 & 0.00 & 289,66 & -14,27 & -4,70 & 27,67 & 0.00 & 0.00 \\ 55 & 116,76\% & 499,33 & 0.00 & 0.00 & 265,33 & 0.00 & 0.00 & 152,28 & -22,72 & -12,98 \\ 57 & 102,90\% & 956,67 & 0.00 & 0.00 & 397,33 & 0.00 & 0.00 & 53,33 & 0.00 & 0.00 \\ 59 & 104,16\% & 4863,67 & 0.00 & 0.00 & 289,33 & 0.00 & 0.00 & 53,33 & 0.00 & 0.00 \\ 60 & 126,57\% & 527,67 & 0.00 & 0.00 & 289,33 & 0.00 & 0.00 & 82,35 & -87,65 & 51,56 \\ 61 & 123,87\% & 1619,33 & 0.00 & 0.00 & 283,163 & 50,70 & -1,96 & 333,00 & 0.00 & 0.00 \\ 62 & 100,28\% & 3643,67 & 0.00 & 0.00 & 283,33 & 0.00 & 0.00 & 82,35 & 87,65 & 51,56 \\ 61 & 183,49\% & 7216,67 & 0.00 & 0.00 & 235,143 & 50,00 & 0.00 & 82,35 & 87,65 & 51,56 \\ 61 & 118,19\% & 3127,67 & 0.00 & 0.00 & 235,24 & -60,43 & 20,44 & 15,00 & 0.00 & 0.00 \\ 64 & 108,49\% & 7216,67 & 0.00 & 0.00 & 235,24 & -60,43 & 20,44 & 15,00 & 0.00 & 0.00 \\ 69 & 107,33\% & 944,00 & 0.00 & 0.00 & 235,24 & -60,43 & 20,44 & 15,00 & 0.00 & 0.00 \\ 61 & 102,05\% & 522,00 & 0.00 & 0.00 & 174,67 & 0.00 & 0.00 & 313,36 & -0.02 & 0.00 \\ 77 & 109,93\% & 2059,33 & 0.00 $		122,15%									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c} 41 103,48\% 543,00 0,00 0,00 280,01 -18,32 -6,14 30,67 0,00 0,00 \\ 42 113,01\% 2441,67 0,00 0,00 1262,82 -81,51 -6,66 38,00 0,00 0,00 \\ 43 105,59\% 4377,46 -43,87 -0,99 2153,00 0,00 0,00 0,00 512,33 0,00 0,00 \\ 44 107,49\% 580,67 0,00 0,00 332,33 0,00 0,00 104,71 -27,96 -21,08 \\ 46 120,46\% 1063,67 0,00 0,00 0,00 601,00 0,00 0,00 145,06 -11,94 -7,61 \\ 47 124,83\% 994,00 0,00 0,00 576,00 0,00 0,00 150,51 -106,49 -41,44 \\ 49 123,43\% 2914,00 0,00 0,00 1574,17 -11,16 -0,70 418,38 -273,95 -39,57 \\ 51 111,77\% 5673,00 0,00 0,00 3015,67 0,00 0,00 1029,32 -92,01 -8,21 \\ 52 112,34\% 1885,33 0,00 0,00 1007,70 -99,63 -9,00 120,67 0,00 0,00 \\ 54 102,44\% 585,67 0,00 0,00 289,06 -14,27 -4,70 27,67 0,00 0,00 \\ 55 116,76\% 499,33 0,00 0,00 265,33 0,00 0,00 9,33 0,00 0,00 \\ 56 115,98\% 810,67 0,00 0,00 397,33 0,00 0,00 152,28 -22,72 -12,98 \\ 57 102,90\% 956,67 0,00 0,00 474,67 0,00 0,00 53,33 0,00 0,00 \\ 60 126,57\% 527,67 0,00 0,00 289,33 0,00 0,00 82,35 87,65 51,56 \\ 61 123,87\% 1619,33 0,00 0,00 289,33 0,00 0,00 82,35 87,65 51,56 \\ 61 123,87\% 1619,33 0,00 0,00 858,33 0,00 0,00 82,35 87,65 51,56 \\ 61 183,49\% 7216,67 0,00 0,00 277,67 0,00 0,00 82,35 87,65 51,56 \\ 61 118,17\% 3127,67 0,00 0,00 235,24 -60,43 20,44 15,00 0,00 221,33 32,36 \\ 67 122,79\% 420,67 0,00 0,00 235,24 -60,43 20,44 15,00 0,00 221,33 32,36 \\ 67 122,79\% 420,67 0,00 0,00 235,24 -60,43 20,44 15,00 0,00 323,38 80,95 22,75 \\ 70 109,93\% 2059,33 0,00 0,00 138,33 0,00 0,00 00,00 313,36 -0,00 0,00 313,36 -0,00 0,00 00,00 313,36 -0,00 0,00 00,00 313,36 -0,00 0,00 00,00 313,36 -0,00 0,00 00,00 313,36 -0,00 0,00 $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c} 43 105, 59\% \\ 44 107, 49\% \\ 580, 67 0,00 \\ 0,$											
$\begin{array}{c} 44 & 107,49\% \\ 46 & 120,46\% \\ 1063,67 & 0,00 & 0,00 & 601,00 & 0,00 \\ 47 & 124,83\% \\ 994,00 & 0,00 & 0,00 & 576,00 & 0,00 & 0,00 \\ 150,31 & -106,49 & -41,44 \\ 49 & 123,43\% \\ 2914,00 & 0,00 & 0,00 & 1574,17 & -11,116 & -0,70 \\ 1111,77\% & 5673,00 & 0,00 & 0,00 & 3015,67 & 0,00 & 0,00 & 120,67 & 0,00 \\ 52 & 112,34\% & 1885,33 & 0,00 & 0,00 & 1007,70 & -99,63 & -9,00 & 120,67 & 0,00 & 0,00 \\ 54 & 102,44\% & 507,67 & 0,00 & 0,00 & 289,06 & -14,27 & -4,70 & 27,67 & 0,00 & 0,00 \\ 55 & 116,76\% & 499,33 & 0,00 & 0,00 & 265,33 & 0,00 & 0,00 & 9,33 & 0,00 & 0,00 \\ 56 & 115,98\% & 810,67 & 0,00 & 0,00 & 474,67 & 0,00 & 0,00 & 152,28 & -22,72 & -12,98 \\ 57 & 102,90\% & 956,67 & 0,00 & 0,00 & 289,33 & 0,00 & 0,00 & 53,33 & 0,00 & 0,00 \\ 60 & 126,57\% & 527,67 & 0,00 & 0,00 & 289,33 & 0,00 & 0,00 & 53,33 & 0,00 & 0,00 \\ 61 & 123,87\% & 1619,33 & 0,00 & 0,00 & 285,33 & 0,00 & 0,00 & 187,67 & 0,00 & 0,00 \\ 62 & 100,28\% & 3643,67 & 0,00 & 0,00 & 277,67 & 0,00 & 0,00 & 187,67 & 0,00 & 0,00 \\ 63 & 118,29\% & 527,67 & 0,00 & 0,00 & 277,67 & 0,00 & 0,00 & 63,33 & 0,00 & 0,00 \\ 64 & 108,49\% & 7216,67 & 0,00 & 0,00 & 277,67 & 0,00 & 0,00 & 63,33 & 0,00 & 0,00 \\ 65 & 118,17\% & 3127,67 & 0,00 & 0,00 & 286,10 & -14,32 & -5,30 & 50,05 & -23,95 & -32,36 \\ 67 & 122,79\% & 420,67 & 0,00 & 0,00 & 286,67 & 0,00 & 0,00 & 100,00 & 231,38 & -80,95 & -25,75 \\ 70 & 109,93\% & 2059,33 & 0,00 & 0,00 & 1236,89 & -40,44 & -3,17 & 242,94 & -196,73 & -44,75 \\ 72 & 105,61\% & 526,00 & 0,00 & 0,00 & 133,26 & -143,07 & -31,35 & 51,63 & -296,37 & -85,16 \\ 74 & 121,57\% & 3629,33 & 0,00 & 0,00 & 1236,89 & -40,44 & -3,17 & 242,94 & -196,73 & -44,75 \\ 77 & 104,44\% & 10418,33 & 0,00 & 0,00 & 1236,89 & -40,44 & -3,17 & 242,94 & -196,73 & -44,75 \\ 77 & 104,44\% & 10418,33 & 0,00 & 0,00 & 1236,89 & -40,44 & -3,17 & 242,94 & -196,73 & -44,75 \\ 77 & 104,44\% & 10418,33 & 0,00 & 0,00 & 1236,89 & -40,44 & -3,17 & 242,94 & -196,73 & -44,75 \\ 77 & 104,44\% & 10418,33 & 0,00 & 0,00 & 1236,89 & -40,44 & -3,17 & 242,94 & -196,73 & -44,75 \\ 77 & 104,44\% & 10418,33 & 0,00 & 0,00 & 1$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47								150,51		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									53 33		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	100,28%	3643,67			1958,42					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		105,61%									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		102,05%									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									917,23		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		101,23%	2058,67						148,00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											-77,05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0,00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-98,79		361,41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
88 128,89% 1506,00 0,00 0,00 755,90 -3,77 -0,50 190,00 0,00 0,00									27.67		
		124,77%	10700,00	0,00	0,00	5640,00	0,00	0,00	1992,30	-899,03	-31,09

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
90	116,70%	4357,67	0,00	0,00	2468,67	0,00	0,00	483,00	0,00	0,00
91	117,12%	1061,67	0,00	0,00	483,33	0,00	0,00	281,33	0,00	0,00
92	121,47%	1102,00	0,00	0,00	524,00	0,00	0,00	272,33	0,00	0,00
95	121,75%	1019,00	0,00	0,00	530,33	0,00	0,00	117,67	0,00	0,00

Tabelle 6.53.: Projektionen der Outputs des output
orientierten CCR-Modells, angewendet auf die Durchschnittwerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
2 4	1618,77 1688,55	287,11 427,21	21,56 33,87	596,05 1063,37	105,72 $269,04$	21,56 33,87	828,63 960,29	146,97 242,96	21,56 $33,87$	50,62 63,81	12,95 $16,14$	34,38 33,87
5	3523,14	203,81	6,14	1507,19	87,19	6,14	1972,08	114,08	6,14	386,70	22,37	6,14
6	2553,49	86,83	3,52	770,66	210,32	37,54	1374,40	46,73	3,52	116,86	17,53	17,64
7	12902,54	1447,87	12,64	4635,50	1216,50	35,58	7139,50	801,17	12,64	476,26	57,59	13,76
8	1813,80	252,47	16,17	821,71	114,38	16,17	896,83	124,83	16,17	107,26	14,93	16,17
9 10	415,05 $3614,57$	62,72 $641,57$	17,80 $21,58$	173,39 1431,02	86,39 $426,36$	99,29 $42,44$	197,90 $2025,52$	$29,90 \\ 359,52$	$17,80 \\ 21,58$	5,50 195,34	$0,83 \\ 34,67$	$17,80 \\ 21,58$
12	3078,56	406,89	15,23	1560,98	206,32	15,23	1822,94	240,94	15,23	178,99	23,66	15,23
13	2201,15	343,48	18,49	1004,40	156,73	18,49	1203,86	187,86	18,49	75,83	11,83	18,49
14	822,55	157,22	23,63	202,75	66,42	48,72	365,94	69,94	23,63	41,21	7,88	23,63
15	1046,84	208,84	24,92	395,74	51,41	14,93	689,20	89,53	14,93	45,34	8,34	22,55
16 17	2984,94	288,27	10,69	1046,12	213,79	25,69	1502,80 691,78	145,13 $143,44$	10,69	89,66	8,66	10,69 $26,16$
18	$1143,43 \\ 1420,24$	237,10 $275,24$	26,16 $24,04$	678,32 615,06	0,06	$26,16 \\ 0,01$	665,52	26,52	$26,16 \\ 4,15$	66,86 25,67	13,86 $0,00$	0,01
19	8677,31	1367,64	18,71	3028,69	477,35	18,71	3519,38	719,72	25,71	300,34	47,34	18,71
20	660,20	145,86	28,36	164,73	36,40	28,36	259,66	80,66	45,06	25,09	15,42	159,53
22	2863,12	227,46	8,63	976,58	77,58	8,63	1328,54	105,54	8,63	100,66	8,00	8,63
23	676,53	70,86	11,70	275,53	28,86	11,70	352,60	36,93	11,70	24,20	2,54	11,70
24 25	644,68 5817,46	151,01 $552,79$	30,59 $10,50$	279,46 1958,80	65,46 $186,13$	30,59 $10,50$	337,36 2897,31	79,02 $275,31$	30,59 $10,50$	20,46 482,89	4,79 $45,89$	30,59 $10,50$
27	3039,83	450,49	17,40	1208,52	142,52	13,37	1766,30	208,30	13,37	151,16	17,83	13,37
28	997,79	193,12	24,00	323,23	$62,\!56$	24,00	464,59	89,92	24,00	45,47	8,80	24,00
30	6391,11	603,11	10,42	2168,57	1061,90	95,96	3419,71	322,71	10,42	300,71	28,38	10,42
33	872,97	140,31	19,15	214,88	23,55	12,31	358,32	65,66	22,43	43,26	3,59	9,05
34 35	2995,63 909,11	465,96 $239,78$	$18,42 \\ 35,82$	813,18 283,56	$205,51 \\ 9,56$	$33,82 \\ 3,49$	1403,67 388,78	218,34 $21,78$	$18,42 \\ 5,93$	143,27 32,08	76,94 $1,08$	$115,99 \\ 3,49$
36	1118,89	202,89	22,15	436,89	79,22	22,15	679,97	123,30	22,15	41,27	14,61	54,78
38	3956,26	106,26	2,76	1396,85	37,52	2,76	1739,38	46,72	2,76	112,64	7,97	7,61
39	991,84	218,84	28,31	402,35	163,35	68,35	466,19	102,86	28,31	17,96	3,96	28,31
40	538,29	6,96	1,31	215,98	37,98	21,34	345,13	4,46	1,31	15,88	1,88	13,45
$\frac{41}{42}$	686,07 $3223,72$	23,07 892,39	$3,48 \\ 38,28$	325,62 1295,85	10,95 $149,18$	3,48 $13,01$	334,75 1613,03	62,75 $185,70$	23,07 $13,01$	46,57 123,56	$^{1,57}_{14,22}$	$3,48 \\ 13,01$
43	5596,27	296,27	5,59	2218,45	117,45	5,59	2636,58	139,58	5,59	513,17	27,17	5,59
44	847,02	59,02	7,49	323,45	74,79	30,07	424,59	29,59	7,49	16,84	1,17	7,49
46	1522,21	258,55	20,46	446,51	75,84	20,46	724,37	123,03	20,46	114,84	19,51	20,46
47	1495,46	297,46	24,83	428,58	85,25	24,83	615,83	122,49	24,83	167,69	33,35	24,83
49 51	3281,61 7512,06	724,61 $791,06$	28,34	1223,33 2216,81	293,66 $243,14$	31,59 $12,32$	2073,62 3720,08	393,62 391,74	23,43	402,38 756,68	76,38 $79,68$	23,43 $11,77$
52	2214,26	265,60	11,77 $13,63$	858,65	94,32	12,34	1353,32	148,66	11,77 $12,34$	120,95	13,29	12,34
54	804,50	19,16	2,44	216,15	5,15	2,44	327,98	12,31	3,90	48,49	1,15	2,44
55	745,32	106,98	16,76	248,04	97,71	64,99	328,48	47,15	16,76	22,96	3,30	16,76
56	1204,65	165,98	15,98	395,11	54,44	15,98	505,67	69,67	15,98	40,91	9,24	29,18
57 59	1344,22 $5268,27$	37,88 $533,94$	2,90 11,28	511,76 1992,67	14,42 $153,67$	2,90 8,36	579,16 3506,37	52,82 $140,04$	$10,04 \\ 4,16$	71,34 328,45	$^{2,01}_{13,12}$	$^{2,90}_{4,16}$
60	786,84	165,18	26,57	255,25	53,58	26,57	359,46	75,46	26,57	32,49	6,82	26,57
61	2513,74	484,40	23,87	833,65	160,65	23,87	1033,05	203,71	24,56	72,67	14,00	23,87
62	4011,51	185,84	4,86	2146,66	5,99	0,28	2518,03	7,03	0,28	496,39	1,39	0,28
63	640,74	99,07	18,29	249,99	38,65	18,29	387,60	59,93	18,29	30,36	4,69	18,29
64 65	9839,32 4548,36	769,99 699,36	8,49 $18,17$	2605,46 1762,31	240,79 $270,98$	10,18 $18,17$	5008,26 2028,59	391,93 311,92	$8,49 \\ 18,17$	679,87 449,83	53,20 $69,17$	$8,49 \\ 18,17$
66	597,47	84,14	16,39	240,16	122,50	104,10	301,06	42,40	16,39	55,48	7,81	16,39
67	682,30	126,64	22,79	163,72	30,39	22,79	273,02	55,69	25,62	30,10	19,43	182,17
69	1453,61	99,27	7,33	499,80	34,13	7,33	592,82	40,49	7,33	49,87	36,20	264,89
70 70	3420,66	308,99	9,93	893,42	160,09	21,83	1334,92	120,58	9,93	234,15	21,15	9,93
72 73	858,26 885,11	45,59 $17,78$	5,61 $2,05$	224,15 250,11	56,82 $35,44$	33,95 $16,51$	331,62 361,60	17,62 $7,26$	5,61 $2,05$	75,69 24,71	$\frac{4,02}{3,71}$	$^{5,61}_{17,67}$
73 74	5049,61	895,95	2,05 $21,57$	1468,16	260,49	21,57	2294,84	407,17	2,05 $21,57$	24,71	43,72	21,57
75	2351,95	246,95	11,73	899,05	154,05	20,68	1391,91	16,91	1,23	259,49	3,15	1,23
76	643,26	12,92	2,05	231,89	54,22	30,52	287,10	5,77	2,05	17,69	0,36	2,05
77	15863,39	674,39	4,44	4754,34	1779,34	59,81	6514,97	276,97	4,44	565,66	163,32	40,59
79 80	1120,41 $3972,51$	165,41 $648,51$	17,32 $19,51$	338,66 1681,90	50,00 274.57	17,32	555,71 2163,53	82,04 $353,20$	17,32	59,05	8,72 $46,76$	17,32 $19,51$
80 81	1498,36	116,36	8,42	578,24	$274,57 \\ 44,91$	$^{19,51}_{8,42}$	643,03	167,69	19,51 $35,28$	286,43 58,91	40,70 $4,57$	8,42
83	799,16	222,50	38,58	322,77	10,10	3,23	379,20	11,86	3,23	56,09	1,75	3,23
84	4422,04	720,04	19,45	1863,42	303,42	19,45	2906,22	473,22	19,45	262,39	42,73	19,45
85	3478,34	376,00	12,12	954,86	453,19	90,34	1364,13	147,46	12,12	119,67	33,67	39,15
86 87	2415,37	221,37 $144,98$	10,09 $20,22$	768,63 213,09	270,96 $133,42$	54,45 167.47	1083,29 337,02	99,29 56,68	10,09 $20,22$	65,69	6,02 8.75	10,09 $38,05$
87 88	861,98 1746,89	391,56	28,89	1134,66	254,33	167,47 $28,89$	1042,33	248,33	31,28	31,75 55,42	8,75 $12,42$	38,05 28,89
89	14504,93	2879,60	24,77	5268,62	1045,95	24,77	7095,67	1408,67	24,77	1027,69	204,02	24,77
90	5685,68	1076,35	23,35	2576,35	368,68	16,70	3068,04	439,04	16,70	393,67	56,33	16,70
91	1518,27	221,93	17,12	414,89	110,89	36,48	635,57	92,90	17,12	73,37	54,04	279,52
92 95	1579,92 1243,07	279,25	21,47	466,54 427,34	164,21 76.34	54,31	687,12	121,45 $131,01$	21,47	71,40	23,73	49,79 $21,75$
90	1243,07	222,07	21,75	421,34	76,34	21,75	733,34	131,01	21,75	73,86	13,20	41,10

E.8.2. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs I1, I2, $I3^{*}$

Tabelle 6.54.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\ I2,\ I3^*,$ angewendet auf die Durchschnittwerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3^*}$	Diff	in %
2	121,11%	1181,33	0,00	0,00	622,33	0,00	0,00	221,87	-405,46	-64,63
4	$132,\!86\%$	1348,67	0,00	0,00	760,33	0,00	0,00	318,92	-240,41	-42,98
5	$105,\!88\%$	2950,00	0,00	0,00	1547,33	0,00	0,00	594,21	-129,46	-17,89
8	112,97%	1277,67	0,00	0,00	732,93	-28,07	-3,69	240,67	0,00	0,00
10	$112,\!36\%$	2874,33	0,00	0,00	1446,51	-127,16	-8,08	149,33	0,00	0,00
12	111,84%	2550,67	0,00	0,00	1341,91	-17,76	-1,31	422,00	0,00	0,00
13	$115,\!21\%$	1632,33	0,00	0,00	927,84	-95,16	-9,30	343,67	0,00	0,00
14	113,48%	519,65	-46,35	-8,19	283,33	0,00	0,00	208,22	-247,78	-54,34
15	109,78%	895,67	0,00	0,00	478,00	0,00	0,00	111,00	0,00	0,00
16	108,31%	2074,33	0,00	0,00	1156,18	-10,49	-0,90	327,33	0,00	0,00
17	$124,\!42\%$	968,33	0,00	0,00	521,67	0,00	0,00	147,67	0,00	0,00
19	$108,\!37\%$	5428,67	0,00	0,00	2958,77	-86,56	-2,84	1979,61	-170,39	-7,93
22	$105,\!25\%$	2001,33	0,00	0,00	1035,33	0,00	0,00	193,67	0,00	0,00
23	108,22%	479,00	0,00	0,00	288,67	0,00	0,00	58,91	-41,09	-41,09
24	126,71%	458,33	0,00	0,00	279,67	0,00	0,00	44,37	-45,63	-50,70
27	$105,\!07\%$	2618,67	0,00	0,00	1263,17	-279,83	-18,14	34,00	0,00	0,00
28	$121,\!84\%$	690,00	0,00	0,00	370,00	0,00	0,00	74,67	0,00	0,00
30	$104,\!02\%$	4986,67	-52,66	-1,04	2468,67	0,00	0,00	726,00	0,00	0,00
34	$104,\!13\%$	2159,00	0,00	0,00	996,72	-201,61	-16,82	0,00	0,00	0,00
36	118,40%	926,00	-9,00	-0,96	475,33	0,00	0,00	105,33	0,00	0,00
38	100,96%	2678,00	0,00	0,00	1366,00	0,00	0,00	771,88	-278,45	-26,51
39	$127,\!11\%$	636,67	0,00	0,00	375,08	-49,25	-11,61	59,83	-30,84	-34,01
41	100,74%	543,00	0,00	0,00	298,33	0,00	0,00	30,67	0,00	0,00
42	103,77%	2441,67	0,00	0,00	1132,39	-211,94	-15,77	38,00	0,00	0,00
44	107,49%	580,67	0,00	0,00	332,33	0,00	0,00	94,61	-38,06	-28,69
46	119,86%	1063,67	0,00	0,00	601,00	0,00	0,00	157,00	0,00	0,00
47	$124,\!30\%$	994,00	0,00	0,00	576,00	0,00	0,00	230,68	-26,32	-10,24
49	123,20%	2914,00	0,00	0,00	1580,23	-5,10	-0,32	414,59	-277,74	-40,12
51	102,93%	5501,78	-171,22	-3,02	3015,67	0,00	0,00	1121,33	0,00	0,00
52	109,42%	1885,33	0,00	0,00	966,47	-140,86	-12,72	120,67	0,00	0,00
56	$115,\!07\%$	810,67	0,00	0,00	397,33	0,00	0,00	131,94	-43,06	-24,61
57	101,71%	956,67	0,00	0,00	474,67	0,00	0,00	53,33	0,00	0,00
60	$123,\!25\%$	527,67	0,00	0,00	289,33	0,00	0,00	170,00	0,00	0,00
61	117,83%	1619,33	0,00	0,00	858,33	0,00	0,00	187,67	0,00	0,00
63	104,49%	517,87	-9,80	-1,86	277,67	0,00	0,00	63,33	0,00	0,00
65	109,25%	3127,67	0,00	0,00	1792,60	-45,73	-2,49	630,33	0,00	0,00
66	106,87%	438,00	0,00	0,00	270,33	0,00	0,00	74,00	0,00	0,00
69	107,26%	944,00	0,00	0,00	482,67	0,00	0,00	230,85	-83,48	-26,56
70	108,50%	2059,33	0,00	0,00	1231,33	-46,00	-3,60	386,27	-53,40	-12,15
74	118,98%	3608,84	-20,49	-0,56	1714,67	0,00	0,00	998,94	-198,06	-16,55
75	100,29%	2058,67	0,00	0,00	1104,86	-43,81	-3,81	148,00	0,00	0,00
79	115,56%	799,67	0,00	0,00	433,00	0,00	0,00	161,00	0,00	0,00
80	$111,\!30\%$	3033,00	0,00	0,00	1619,11	$-205,\!56$	-11,27	485,33	0,00	0,00
81	107,51%	1075,06	-0,61	-0,06	511,00	0,00	0,00	109,00	0,00	0,00
84	116,28%	3847,13	-85,20	-2,17	2017,33	0,00	0,00	754,12	-1115,88	-59,67
85	111,95%	2110,33	0,00	0,00	1157,67	0,00	0,00	362,30	-383,70	-51,43
86	107,96%	1524,67	0,00	0,00	867,53	-27,47	-3,07	191,13	-89,20	-31,82
87	107,25%	529,33	0,00	0,00	288,33	0,00	0,00	27,67	0,00	0,00
88	125,05%	1506,00	0,00	0,00	746,79	-12,88	-1,70	190,00	0,00	0,00
91	115,72%	1042,70	-18,97	-1,79	483,33	0,00	0,00	136,94	-144,39	-51,32
92	121,10%	1102,00	0,00	0,00	524,00	0,00	0,00	272,33	0,00	0,00
95	117,85%	1019,00	0,00	0,00	530,33	0,00	0,00	117,67	0,00	0,00

Tabelle 6.55.: Projektionen der Outputs des outputorientierten BCC-Modells mit den drei Inputs I1, I2, $I3^*$, angewendet auf die Durchschnittwerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	O1	Diff	in $\%$	$\widetilde{O2}$	Diff	in $\%$	O3	Diff	in $\%$	O4	Diff	in $\%$
2	1612,78	281,11	21,11	593,84	103,51	21,11	825,57	143,90	21,11	59,23	21,56	57,24
4	1675,81	414,47	32,86	1055,35	261,02	32,86	953,05	235,72	32,86	63,33	15,66	32,86
5	3514,51	195,18	5,88	1503,50	83,50	5,88	1967,25	109,25	5,88	385,76	21,42	5,88
8	1763,84	202,50	12,97	799,07	91,74	12,97	872,13	100,13	12,97	104,31	11,98	12,97
10	3340,46	367,46	12,36	1128,84	124,18	12,36	1871,92	205,92	12,36	180,53	19,86	12,36
12	2987,99	316,33	11,84	1515,06	160,39	11,84	1769,31	187,31	11,84	173,72	18,39	11,84
13	2140,22	282,55	15,21	976,60	128,93	15,21	1170,53	154,53	15,21	85,57	21,57	33,71
14	755,02	89,69	13,48	241,27	104,94	76,97	335,90	39,90	13,48	37,83	4,49	13,48
15	1031,28	193,28	23,06	378,01	33,68	9,78	658,31	58,65	9,78	40,62	3,62	9,78
16	2920,76	224,09	8,31	901,50	69,17	8,31	1470,49	112,82	8,31	131,69	50,69	62,58
17	1127,66	221,33	24,42	668,96	131,30	24,42	682,24	133,90	24,42	65,94	12,94	24,42
19	7921,49	611,82	8,37	2764,88	213,55	8,37	3348,09	548,42	19,59	274,18	21,18	8,37
22	2774,04	138,37	5,25	946,20	47,20	5,25	1287,21	64,21	5,25	110,71	18,05	19,47

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
23	719,69	114,03	18,83	286,91	40,25	16,32	341,61	25,95	8,22	23,45	1,78	8,22
24	692,05	198,38	40,18	277,66	63,66	29,75	327,33	69,00	26,71	19,85	4,18	26,71
27	2751,85	162,52	6,28	1120,05	54,05	5,07	1636,99	78,99	5,07	140,09	6,76	5,07
28	980,41	175,74	21,84	381,49	120,82	46,35	456,49	81,83	21,84	44,67	8,01	21,84
30	6020,68	232,68	4,02	1915,25	808,59	73,07	3221,50	124,50	4,02	283,28	10,95	4,02
34	2634,14	104,48	4,13	963,83	356,17	58,61	1264,37	79,03	6,67	103,11	36,78	55,45
36	1084,54	168,54	18,40	423,48	65,81	18,40	659,09	102,43	18,40	35,32	8,66	32,46
38	3886,96	36,96	0,96	1372,38	13,05	0,96	1708,92	16,25	0,96	168,34	$63,\!67$	60,84
39	982,56	209,56	27,11	343,13	104,13	43,57	461,83	98,50	27,11	23,49	9,49	67,75
41	667,91	4,91	0,74	317,00	2,33	0,74	328,99	56,99	20,95	45,33	0,33	0,74
42	2656,62	325,29	13,95	1189,90	43,23	3,77	1481,14	53,81	3,77	113,46	4,12	3,77
44	847,02	59,02	7,49	326,18	77,52	31,17	424,59	29,59	7,49	17,23	1,56	9,98
46	1514,63	250,96	19,86	491,99	121,32	32,73	720,76	119,42	19,86	114,27	18,93	19,86
47	1489,11	291,11	24,30	426,76	83,43	24,30	613,21	119,88	24,30	166,98	32,64	24,30
49	3313,37	756,37	29,58	1240,51	310,84	33,44	2069,76	389,76	23,20	401,63	75,63	23,20
51	6917,93	196,93	2,93	2031,50	57,83	2,93	3425,85	97,52	2,93	696,84	19,84	2,93
52	2132,23	183,56	9,42	836,33	72,00	9,42	1318,15	113,48	9,42	133,70	26,03	24,18
56	1195,19	156,53	15,07	412,02	71,35	20,94	501,71	65,71	15,07	36,44	4,77	15,07
57	1328,67	22,34	1,71	505,84	8,50	1,71	579,41	53,08	10,08	70,52	1,19	1,71
60	766,20	144,54	23,25	262,35	60,69	30,09	350,03	66,03	23,25	31,63	5,97	23,25
61	2391,16	361,83	17,83	793,00	120,00	17,83	1041,00	211,67	25,52	89,79	31,12	53,05
63	618,80	77,13	14,24	220,82	9,49	4,49	342,38	14,71	4,49	26,82	1,15	4,49
65	4205,03	356,03	9,25	1629,28	137,95	9,25	1875,46	158,79	9,25	415,88	35,21	9,25
66	584,72	71,39	13,91	196,42	78,75	66,93	276,44	17,77	6,87	50,94	3,27	6,87
69	1452,66	98,32	7,26	499,47	33,81	7,26	592,43	40,10	7,26	50,37	36,70	268,55
70	3376,16	264,49	8,50	795,67	62,33	8,50	1317,55	103,22	8,50	231,11	18,11	8,50
74	4942,03	788,37	18,98	1436,88	229,22	18,98	2245,95	358,28	18,98	241,13	38,47	18,98
75	2224,06	119,06	5,66	854,64	109,64	14,72	1378,99	3,99	0,29	257,08	0,74	0,29
79	1103,60	148,60	15,56	397,77	109,11	37,80	547,37	73,70	15,56	58,17	7,83	15,56
80	3699,61	375,61	11,30	1566,36	159,03	11,30	2014,90	204,57	11,30	266,75	27,08	11,30
81	1485,79	103,79	7,51	573,39	40,05	7,51	644,87	169,54	35,67	58,41	4,08	7,51
84	4304,69	602,69	16,28	1813,97	253,97	16,28	2829,09	396,09	16,28	255,43	35,76	16,28
85	3473,06	370,73	11,95	655,95	154,28	30,75	1362,06	145,39	11,95	163,64	77,64	90,28
86	2368,64	174,64	7,96	541,94	44,27	8,90	1062,33	78,33	7,96	101,58	41,91	70,24
87	768,98	51,98	7,25	277,46	197,80	$248,\!28$	326,93	46,59	16,62	24,67	1,67	7,25
88	1694,84	339,51	25,05	1100,86	220,52	25,05	1034,17	240,17	30,25	53,77	10,77	25,05
91	1500,12	203,78	15,72	510,88	206,88	68,05	627,97	85,31	15,72	45,83	26,50	137,06
92	1575,11	274,44	21,10	487,96	185,62	61,40	685,02	119,36	21,10	57,72	10,06	21,10
95	1203,25	182,25	17,85	440,37	89,37	25,46	709,85	107,52	17,85	71,50	10,83	17,85

E.8.3. Projektionen für das outputorientierte BCC-Modell mit den drei Inputs I1, I2, I3

Tabelle 6.56.: Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\,I2,\,I3$, angewendet auf die Durchschnittwerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DMU	η^*	$\widehat{I1}$	Diff	in %	$\widehat{I2}$	Diff	in %	$\widehat{I3}$	Diff	in %
2	121,11%	1181,33	0,00	0,00	622,33	0,00	0,00	221,87	-405,46	-64,63
4	132,86%	1348,67	0,00	0,00	760,33	0,00	0,00	318,92	-240,41	-42,98
5	105,88%	2950,00	0,00	0,00	1547,33	0,00	0,00	594,21	-129,46	-17,89
8	112,97%	1277,67	0,00	0,00	732,93	-28,07	-3,69	240,67	0,00	0,00
10	114,68%	2874,33	0,00	0,00	1459,00	-114,67	-7,29	149,33	0,00	0,00
12	111,85%	2550,67	0,00	0,00	1342,01	-17,66	-1,30	422,00	0,00	0,00
13 14	115,21%	1632,33	0,00	0,00	927,83	-95,17	-9,30	343,67	0,00	0,00
15	113,48% $109,78%$	519,65 895,67	-46,35 0,00	-8,19 0,00	283,33 478,00	$0,00 \\ 0,00$	$0,00 \\ 0,00$	208,22 111,00	-247,78 0,00	-54,34 $0,00$
16	109,78%	2074,33	0,00	0,00	1156,18	-10,49	-0,90	327,33	0,00	0,00
17	124,43%	968,33	0,00	0,00	521,67	0,00	0,00	147,67	0,00	0,00
18	110,52%	1035,07	-15,26	-1,45	510,67	0,00	0,00	11,41	-3,92	-25,57
19	108,37%	5428,67	0,00	0,00	2958,77	-86,56	-2,84	1979,61	-170,39	-7,93
20	101,02%	382,81	-28,19	-6,86	220,67	0,00	0,00	17,00	0,00	0,00
22	105,66%	2001,33	0,00	0,00	1035,33	0,00	0,00	193,67	0,00	0,00
23	108,22%	479,00	0,00	0,00	288,67	0,00	0,00	58,91	-41,09	-41,09
24	126,71%	458,33	0,00	0,00	279,67	0,00	0,00	44,37	-45,63	-50,70
27	109,20%	2618,67	0,00	0,00	1298,58	-244,42	-15,84	34,00	0,00	0,00
28	122,24%	690,00	0,00	0,00	370,00	0,00	0,00	74,67	0,00	0,00
30	104,03%	4986,53	-52,80	-1,05	2468,67	0,00	0,00	726,00	0,00	0,00
34	115,69%	2159,00	0,00	0,00	1152,44	-45,89	-3,83	-2,33	0,00	0,00
35	$104,\!86\%$	613,00	0,00	0,00	337,23	-5,77	-1,68	-54,33	0,00	0,00
36	118,56%	922,69	-12,31	-1,32	475,33	0,00	0,00	105,33	0,00	0,00
38	100,96%	2678,00	0,00	0,00	1366,00	0,00	0,00	771,88	-278,45	-26,51
39	127,11%	636,67	0,00	0,00	375,08	-49,25	-11,61	59,83	-30,84	-34,01
41	105,32%	543,00	0,00	0,00	298,33	0,00	0,00	30,67	0,00	0,00
42	109,15%	2441,67	0,00	0,00	1185,98	-158,35	-11,78	38,00	0,00	0,00
44	107,49%	580,67	0,00	0,00	332,33	0,00	0,00	94,61	-38,06	-28,69
46 47	119,87% $124,30%$	1063,67 994,00	$0,00 \\ 0,00$	0,00 0,00	601,00 576,00	0,00	$0,00 \\ 0,00$	157,00 230,68	0,00 $-26,32$	0,00 $-10,24$
49	124,30% $123,20%$	2914,00	0,00	0,00	1580,23	0,00 -5,10	-0,32	414,59	-20,32 -277,74	-10,24
51	102,93%	5501,78	-171,22	-3,02	3015,67	0,00	0,00	1121,33	0,00	0,00
52	102,93% $112,57%$	1885,33	0,00	0,00	985,08	-122,25	-11,04	120,67	0,00	0,00
55	109,59%	497,18	-2,15	-0,43	265,33	0,00	0,00	9,33	0,00	0,00
56	115,07%	810,67	0,00	0,00	397,33	0,00	0,00	79,16	-95,84	-54,77
57	104,85%	956,67	0,00	0,00	474,67	0,00	0,00	53,33	0,00	0,00
60	123,34%	527,67	0,00	0,00	289,33	0,00	0,00	170,00	0,00	0,00
61	119,94%	1619,33	0,00	0,00	858,33	0,00	0,00	187,67	0,00	0,00
63	104,49%	517,87	-9,80	-1,86	277,67	0,00	0,00	63,33	0,00	0,00
65	109,26%	3127,67	0,00	0,00	1792,78	-45,55	-2,48	630,33	0,00	0,00
66	106,87%	438,00	0,00	0,00	270,33	0,00	0,00	74,00	0,00	0,00
67	109,56%	420,67	0,00	0,00	252,62	-43,05	-14,56	15,00	0,00	0,00
69	$107,\!26\%$	944,00	0,00	0,00	482,67	0,00	0,00	230,85	-83,48	-26,56
70	108,50%	2059,33	0,00	0,00	1231,33	-46,00	-3,60	386,27	-53,40	-12,15
71	100,69%	1262,33	0,00	0,00	660,33	0,00	0,00	9,00	0,00	0,00
74	118,98%	3608,84	-20,49	-0,56	1714,67	0,00	0,00	998,94	-198,06	-16,55
75	102,25%	2058,67	0,00	0,00	1121,10	-27,57	-2,40	148,00	0,00	0,00
79	115,75%	799,67	0,00	0,00	433,00	0,00	0,00	161,00	0,00	0,00
80	111,31%	3033,00	0,00	0,00	1619,31	-205,36	-11,25	485,33	0,00	0,00
81 83	110,07% $101,26%$	1055,09 589,00	-20,58 0,00	-1,91 0,00	511,00 322,67	$0,00 \\ 0,00$	0,00 0,00	109,00 27,67	0,00 0,00	$0,00 \\ 0,00$
83 84	101,26% $116,28%$	3847,13	-85,20	-2,17	2017,33	0,00	0,00	754,12	-1115,88	-59,67
84 85	110,28% $111,95%$	2110,33	0,00	0,00	1157,67	0,00	0,00	362,30	-383,70	-59,67 -51,43
86	107,96%	1524,67	0,00	0,00	867,53	-27,47	-3,07	191,13	-89,20	-31,43
87	111,44%	529,33	0,00	0,00	288,33	0,00	0,00	27,67	0,00	0,00
88	128,10%	1506,00	0,00	0,00	759,67	0,00	0,00	190,00	0,00	0,00
91	115,72%	1042,70	-18,97	-1,79	483,33	0,00	0,00	42,14	-239,19	-85,02
92	121,25%	1102,00	0,00	0,00	524,00	0,00	0,00	272,33	0,00	0,00
95	118,15%	1019,00	0,00	0,00	530,33	0,00	0.00	117,67	0,00	0,00
	,70	,.0	0,00	,	555,50	-,	-,	,	,	0,00

Tabelle 6.57.: Projektionen der Outputs des outputorientierten BCC-Modells mit den drei Inputs $I1,\ I2,\ I3,$ angewendet auf die Durchschnittwerte der Inputs und Outputs der Jahre 2010, 2011 und 2012

DN	1U	$\widehat{O1}$	Diff	in $\%$	$\widehat{O2}$	Diff	in $\%$	$\widehat{O3}$	Diff	in $\%$	$\widehat{O4}$	Diff	in %
	2	1612,78	281,11	21,11	593,84	103,51	21,11	825,57	143,90	21,11	59,23	21,56	57,24
	4	1675,81	414,47	32,86	1055,35	261,02	32,86	953,05	235,72	32,86	63,33	15,66	32,86
	5	3514,51	195,18	5,88	1503,50	83,50	5,88	1967,25	109,25	5,88	385,76	21,42	5,88
	8	1763,84	202,50	12,97	799,07	91,74	12,97	872,13	100,13	12,97	104,31	11,98	12,97
	10	3409,44	436,44	14,68	1152,15	147,49	14,68	1910,57	244,57	14,68	184,25	23,59	14,68
	12	2988,26	316,59	11,85	1515,19	160,53	11,85	1769,47	187,47	11,85	173,74	18,41	11,85

DMU	$\widehat{O1}$	Diff	in %	$\widehat{O2}$	Diff	in %	$\widehat{O3}$	Diff	in %	$\widehat{O4}$	Diff	in %
13	2140,22	282,55	15,21	976,60	128,93	15,21	1170,53	154,53	15,21	85,57	21,57	33,71
14	755,02	89,69	13,48	241,27	104,94	76,97	335,90	39,90	13,48	37,83	4,49	13,48
15	1031,28	193,28	23,06	378,01	33,68	9,78	658,31	58,65	9,78	40,62	3,62	9,78
16	2920,76	224,09	8,31	901,50	69,17	8,31	1470,49	112,82	8,31	131,69	50,69	$62,\!58$
17	1127,75	221,42	24,43	669,02	131,35	24,43	682,29	133,96	24,43	65,95	12,95	24,43
18	1265,45	120,45	10,52	679,70	64,70	10,52	706,22	67,22	10,52	30,08	4,41	17,18
19	7921,49	611,82	8,37	2764,88	213,55	8,37	3348,09	548,42	19,59	274,18	21,18	8,37
20	519,58	5,25	1,02	167,22	38,89	30,30	238,03	59,03	32,98	9,77	0,10	1,02
22	2784,85	149,18	5,66	949,88	50,88	5,66	1292,22	69,22	5,66	109,16	16,49	17,80
23	719,69	114,03	18,83	286,91	40,25	16,32	341,61	25,95	8,22	23,45	1,78	8,22
24	692,05	198,38	40,18	277,66	63,66	29,75	327,33	69,00	26,71	19,85	4,18	26,71
27	2827,55	238,22	9,20	1164,07	98,07	9,20	1701,34	143,34	9,20	145,60	12,27	9,20
28	983,62	178,96	22,24	337,31	76,64	29,40	457,99	83,33	22,24	44,82	8,15	22,24
30	6021,26	233,26	4,03	1915,18	808,51	73,06	3221,81	124,81	4,03	283,31	10,98	$4,03 \\ 83,62$
34	2926,57	396,90	15,69	703,01	95,34	15,69	1371,31	185,98	15,69	121,80	55,47	
35	889,65	220,32	32,92	287,32	13,32 66,38	4,86	384,84	17,84	4,86	32,51	1,51	4,86 $32,74$
36 38	1086,01 3886,96	170,01 36,96	18,56 0,96	424,05 1372,38	13,05	$18,56 \\ 0,96$	659,98 1708,92	103,32 $16,25$	18,56 $0,96$	35,40 168,34	$8,73 \\ 63,67$	60,84
39	982,56	209,56	27,11	343,13	104,13		461,83	98,50	27,11	23,49	9,49	67,75
41	698,27	35,27	5,32	331,41	16,74	$43,57 \\ 5,32$	331,19	59,19	$\frac{27,11}{21,76}$	47,39	2,39	5,32
42	2544,65	213,32	9,15	1251,59	104,92	9,15	1557,93	130,60	9,15	119,34	10,00	9,15
44	847,02	59,02	7,49	326,18	77,52	31,17	424,59	29,59	7,49	17,23	1,56	9,13
46	1514,76	251,09	19,87	453,29	82,62	22,29	720,82	119,48	19,87	114,28	18,94	19,87
47	1489,11	291,11	24,30	426,76	83,43	24,30	613,21	119,88	24,30	166,98	32,64	24,30
49	3313,37	756,37	29,58	1240,51	310,84	33,44	2069,76	389,76	23,20	401,63	75,63	23,20
51	6917,93	196,93	2,93	2031,50	57,83	2,93	3425,85	97,52	2,93	696,84	19,84	2,93
52	2193,61	244,95	12,57	860,41	96,08	12,57	1356,09	151,43	12,57	121,20	13,53	12,57
55	699,55	61,22	9,59	256,29	105,96	70,48	308,31	26,98	9,59	21,55	1,89	9,59
56	1195,19	156,53	15,07	412,02	71,35	20,94	501,71	65,71	15,07	36,44	4,77	15,07
57	1369,69	63,36	4,85	521,45	24,12	4,85	571,59	45,26	8,60	72,70	3,36	4,85
60	766,76	145,10	23,34	248,83	47,16	23,38	350,29	66,29	23,34	31,66	5,99	23,34
61	2433,98	404,65	19,94	807,20	134,20	19,94	1032,60	203,27	24,51	90,39	31,73	54,08
63	618,80	77,13	14,24	220,82	9,49	4,49	342,38	14,71	4,49	26,82	1,15	4,49
65	4205,42	356,42	9,26	1629,43	138,10	9,26	1875,63	158,96	9,26	415,92	35,25	9,26
66	584,72	71,39	13,91	196,42	78,75	66,93	276,44	17,77	6,87	50,94	3,27	6,87
67	608,79	53,12	9,56	215,43	82,10	61,57	280,58	63,25	29,10	12,93	2,26	21,19
69	1452,66	98,32	7,26	499,47	33,81	7,26	592,43	40,10	7,26	50,37	36,70	268,55
70	3376,16	264,49	8,50	795,67	62,33	8,50	1317,55	103,22	8,50	231,11	18,11	8,50
71	1536,92	88,92	6,14	602,17	39,17	6,96	841,10	5,76	0,69	120,49	0,83	0,69
74	4942,03	788,37	18,98	1436,88	229,22	18,98	2245,95	358,28	18,98	241,13	38,47	18,98
75	2265,98	160,98	7,65	870,66	125,66	16,87	1405,94	30,94	2,25	262,10	5,77	2,25
79	1105,41	150,41	15,75	340,23	51,57	17,86	$548,\!27$	74,60	15,75	58,26	7,93	15,75
80	3699,94	375,94	11,31	1566,50	159,17	11,31	2015,08	204,75	11,31	266,77	27,11	11,31
81	1521,17	139,17	10,07	587,04	53,71	10,07	632,00	156,67	32,96	59,80	5,47	10,07
83	795,87	219,21	38,01	316,61	3,94	1,26	371,96	4,63	1,26	55,02	0,68	1,26
84	4304,69	602,69	16,28	1813,97	253,97	16,28	2829,09	396,09	16,28	255,43	35,76	16,28
85	3473,06	370,73	11,95	655,95	154,28	30,75	1362,06	145,39	11,95	163,64	77,64	90,28
86	2368,64	174,64	7,96	541,94	44,27	8,90	1062,33	78,33	7,96	101,58	41,91	70,24
87	799,02	82,02	11,44	302,24	222,57	279,38	322,28	41,95	14,96	41,24	18,24	79,31
88	1736,18	380,85	28,10	1127,71	247,37	28,10	1046,00	252,00	31,74	55,08	12,08	28,10
91	1500,12	203,78	15,72	510,88	206,88	68,05	627,97	85,31	15,72	45,83	26,50	137,06
92 95	1577,06	276,39	21,25	472,98	170,65	56,44	685,87	120,20	21,25	58,65	10,98	23,03
95	1206,31	185,31	18,15	435,87	84,87	24,18	711,66	109,32	18,15	71,68	11,01	18,15

F. Sonstiges

Satz 6.1 (Dualitätssatz der Linearen Programmierung): ²²

- (i) Wenn in einem primal-dualen Paar von linearen Programmen entweder das primale oder das duale Problem eine optimale Lösung aufweist, so besitzt auch das andere Problem eine optimale Lösung und die beiden optimalen Zielwerte sind gleich.
- (ii) Wenn entweder das primale oder das duale Problem eine unbegrenzte Lösung hat, so besitzt das andere Problem keine mögliche Lösung.
- (iii) Wenn entweder das primale oder das duale Problem keine Lösung hat, dann hat auch das andere Problem entweder keine Lösung oder seine Lösung ist unbegrenzt.

Definition 6.2 (ℓ_1 -Metrik): ²³

Die ℓ_1 -Metrik ist definiert durch

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

²²vgl. Cooper und Seiford (2007), S.445

²³vgl. Wilken (2007), S.24

Abbildungsverzeichnis

2.1.	Ein Input und ein Output	6
2.2.	Zwei Inputs und ein Output	7
2.3.	Ein Input und zwei Outputs	8
2.4.	Das BCC-Modell	22
2.5.	Skaleneffizienz mit einem Input und einem Output	32
2.6.	Das Additive Modell	33
2.7.	Translation im BCC-Modell	35
2.8.	Translation im Additiven Modell	36
3.1.	Bezirke des Landes Oberösterreich	44
5.1.	Skalenverlauf der BCC-effizienten Raiffeisenbanken für das Jahr 2010	65
5.2.	Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiff-	
	eisenbanken für das Jahr 2010	67
5.3.	Skalenverlauf der BCC-effizienten Raiffeisenbanken für das Jahr 2011	73
5.4.	Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiff-	
	eisenbanken für das Jahr 2011	74
5.5.	Skalenverlauf der BCC-effizienten Raiffeisenbanken für das Jahr 2012	83
5.6.	Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiff-	
	eisenbanken für das Jahr 2012	84
5.7.	2010	86
5.8.	2011	87
5.9.	2012	87
5.10.	Skaleneffizienzverlauf der Jahre 2010, 2011 und 2012, geordnet nach	
	dem Durchschnittswert der Skaleneffizienzen dieser drei Jahre	89
	Gegenüberstellung der Jahre 2010, 2011 und 2012	90
5.12.	Entwicklung der zehn ineffizientesten DMUs aus dem inputorientier-	
	ten CCR-Modell für das Jahr 2011	91
	DMU_{24}	94
	DMU ₄	96
	Effizienzvergleich	102
5.16.	Skalenverlauf der BCC-effizienten Raiffeisenbanken, angewendet auf	
	die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011	
	und 2012	103
5.17.	Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiff-	
	eisenbanken, angewendet auf die Durchschnittswerte der Inputs und	
	Outputs der Jahre 2010, 2011 und 2012	104

Tabellenverzeichnis

2.1.	Zusammenfassung der Charakteristika aller Modelle	41
3.1.	Anzahl der selbstständigen Raiffeisenbanken und Bankstellen nach Bezirken, Stand 2013	45
3.2.	Korrelationsmatrix der Inputs nach dem Profitabilitätsansatz für das Jahr 2011	49
3.3.	Korrelationsmatrix der Outputs nach dem Profitabilitätsansatz für das Jahr 2011	49
5.1. 5.2.	Ergebnisse des inputorientierten CCR-Modells für das Jahr 2010 Ergebnisse des CCR-Modells bei Inputorientierung für DMU_1,DMU_8 und DMU_9	55 57
5.3. 5.4.	Ergebnisse des inputorientierten BCC-Modells für das Jahr 2010	60
5.5.	BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert für das Jahr 2010	64
5.6.	BCC-ineffiziente DMUs, geordnet nach Grad der Ineffizienz	66
5.7.	Ergebnisse des inputorientierten CCR-Modells für das Jahr 2011	68
5.8.	Ergebnisse des inputorientierten BCC-Modells für das Jahr 2011	69
5.9.	Skaleneffizienz und Skalenverläufe 2011	71
5.10.	BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert für das Jahr 2011	7 2
5.11.	Ineffiziente Raiffeisenbanken 2011, geordnet nach dem Grad der Ineffizienz	73
5.12.	Ergebnisse des inputorientierten CCR-Modells für das Jahr 2012 $$	78
	Ergebnisse des inputorientierten BCC-Modells für das Jahr 2012	79
	Skaleneffizienz und Skalenverläufe 2012	81
	BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert für	
F 10	das Jahr 2012	82
	Skaleneffizienz ohne BCC-effiziente DMUs	83
	Skaleneffizienz 2010, 2011, 2012	87
	Durchschnittliche Effizienzen der 95 Raiffeisenbanken	90
5.19.	prozentuelle Veränderung der Effizienzwerte aus dem inputorientier-	0.1
- 00	ten CCR-Modell von 2010 auf 2011 und von 2011 auf 2012	91
5.20.	prozentuelle Veränderung der Effizienzwerte aus dem inputorientier-	00
F 01	ten BCC-Modell von 2010 auf 2011 und von 2011 auf 2012	92
5.21.	Ergebnisse des inputorientierten CCR-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011	
	und 2012	97

5.22.	Ergebnisse des inputorientierten BCC-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012	. 98
5.23.	Skaleneffizienz und Skalenverläufe der Durchschnittswerte der Inputs und Outputs	
5.24.	BCC-effiziente DMUs, geordnet nach dem Skaleneffizienzwert, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012	. 102
5.25.	Skalenverlauf der im BCC-Modell als ineffizient ausgewiesenen Raiffeisenbanken, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011 und 2012	. 103
6.1.	modifizierter Nettoaufwand	. 107
6.2.	1	100
6.3.	Jahr 2010	. 108
0.0.	das Jahr 2010	. 108
6.4.	Korrelationsmatrix der Inputs nach dem Profitabilitätsansatz für das Jahr 2012	. 109
6.5.	Korrelationsmatrix der Outputs nach dem Profitabilitätsansatz für das Jahr 2012	. 109
6.6.	Projektionen der Inputs des inputorientierten CCR-Modells für das Jahr 2010	. 112
6.7.	Projektionen der Outputs des inputorientierten CCR-Modells für das Jahr 2010	. 113
6.8.	Projektionen der Inputs des inputorientierten BCC-Modells für das Jahr 2010	. 115
6.9.	Projektionen der Outputs des inputorientierten BCC-Modells für das Jahr 2010	. 115
6.10.	Projektionen der Inputs des inputorientierten CCR-Modells für das Jahr 2011	. 117
6.11.	Projektionen der Outputs des inputorientierten CCR-Modells für das Jahr 2011	. 118
6.12.	Projektionen der Inputs des inputorientierten BCC-Modells für das Jahr 2011	. 119
6.13.	Projektionen der Outputs des inputorientierten BCC-Modells für das Jahr 2011	. 119
6.14.	Projektionen der Inputs des inputorientierten CCR-Modells für das Jahr 2012	. 121
6.15.	Projektionen der Outputs des inputorientierten CCR-Modells für das Jahr 2012	. 122
6.16.	Projektionen der Inputs des inputorientierten BCC-Modells für das Jahr 2012	. 123
6.17.	Projektionen der Outputs des inputorientierten BCC-Modells für das Jahr 2012	123

6.18. Projektionen der Inputs des inputorientierten CCR-Modells, angewendet auf die Durchschnittswerte der Inputs und Outputs der Jahre	
2010, 2011 und 2012	125
6.19. Projektionen der Outputs des inputorientierten CCR-Modells, an-	
gewendet auf die Durchschnittswerte der Inputs und Outputs der	
Jahre 2010, 2011 und 2012	126
6.20. Projektionen der Inputs des inputorientierten BCC-Modells, ange-	
wendet auf die Durchschnittswerte der Inputs und Outputs der Jahre	
2010, 2011 und 2012	127
6.21. Projektionen der Outputs des inputorientierten BCC-Modells, an-	
gewendet auf die Durchschnittswerte der Inputs und Outputs der	105
Jahre 2010, 2011 und 2012	
6.22. Ergebnisse des outputorientierten CCR-Modells für das Jahr 2010	129
6.23. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs	101
$I1, I2, I3^*$ für das Jahr 2010	131
6.24. Ergebnisse des BCC-Modells bei Output-Orientierung mit den drei	199
Inputs I1, I2 und I3 für das Jahr 2010	
6.25. Ergebnisse des outputorientierten CCR-Modells für das Jahr 2011 .	130
6.26. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs $I1, I2, I3^*$ für das Jahr 2011	120
6.27. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs	130
I1, I2, I3	140
6.28. Ergebnisse des outputorientierten CCR-Modells für das Jahr 2012	
6.29. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs	1 12
$I1, I2, I3^*$ für das Jahr 2012	144
6.30. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs	
I1, I2, I3 für das Jahr 2012	146
6.31. Ergebnisse des outputorientierten CCR-Modells, angewendet auf die	
Durchschnittswerte der Inputs und Outputs der Jahre 2010, 2011	
und 2012	148
6.32. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs	
$I1,I2,I3^*,\mathrm{angewendet}$ auf die Durchschnittswerte der Inputs und	
Outputs der Jahre 2010, 2011 und 2012	150
6.33. Ergebnisse des outputorientierten BCC-Modells mit den drei Inputs	
I1, I2, I3, angewendet auf die Durchschnittswerte der Inputs und	
Outputs der Jahre 2010, 2011 und 2012	152
6.34. Projektionen der Inputs des outputorientierten CCR-Modells für das	1
Jahr 2010	154
6.35. Projektionen der Outputs des outputorientierten CCR-Modells für das Jahr 2010	155
	196
6.36. Projektionen der Inputs des outputorientierten BCC-Modells mit den drei Inputs I1, I2, I3* für das Jahr 2010	156
6.37. Projektionen der Outputs des outputorientierten BCC-Modells mit	19(
den drei Inputs $I1$, $I2$, $I3^*$ für das Jahr 2010	156
6.38. Projektionen der Inputs des outputorientierten BCC-Modells mit	100
den drei Inputs I1, I2, I3 für das Jahr 2010	158
1 / / / / · · · · · · · · · · · · · · ·	

6.39. Projektionen der Outputs des outputorientierten BCC-Modells mit den drei Inputs I1, I2, I3 für das Jahr 2010	150
6.40. Projektionen der Inputs des outputorientierten CCR-Modells für das	. 100
Jahr 2011	. 160
6.41. Projektionen der Outputs des outputorientierten CCR-Modells für	. 100
das Jahr 2011	. 161
6.42. Projektionen der Inputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1$, $I2$, $I3^*$ für das Jahr 2011	. 162
6.43. Projektionen der Outputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1$, $I2$, $I3^*$ für das Jahr 2011	. 162
6.44. Projektionen der Inputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1, I2, I3$ für das Jahr 2011	. 164
6.45. Projektionen der Outputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1, I2, I3$ für das Jahr 2011	. 164
6.46. Projektionen der Inputs des outputorientierten CCR-Modells für das	
Jahr 2012	. 166
6.47. Projektionen der Outputs des outputorientierten CCR-Modells für	
das Jahr 2012	. 167
6.48. Projektionen der Inputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1$, $I2$, $I3^*$ für das Jahr 2012	. 168
6.49. Projektionen der Outputs des outputorientierten BCC-Modells mit	4.00
den drei Inputs I1, I2, I3* für das Jahr 2012	. 168
6.50. Projektionen der Inputs des outputorientierten BCC-Modells mit	170
den drei Inputs I1, I2, I3 für das Jahr 2012	. 170
6.51. Projektionen der Outputs des outputorientierten BCC-Modells mit	170
den drei Inputs I1, I2, I3 für das Jahr 2012	. 170
wendet auf die Durchschnittwerte der Inputs und Outputs der Jahre	
2010, 2011 und 2012	179
6.53. Projektionen der Outputs des outputorientierten CCR-Modells, an-	. 112
gewendet auf die Durchschnittwerte der Inputs und Outputs der	
Jahre 2010, 2011 und 2012	. 173
6.54. Projektionen der Inputs des outputorientierten BCC-Modells mit	, _
den drei Inputs $I1$, $I2$, $I3^*$, angewendet auf die Durchschnittwerte	
der Inputs und Outputs der Jahre 2010, 2011 und 2012	. 174
6.55. Projektionen der Outputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1$, $I2$, $I3^*$, angewendet auf die Durchschnittwerte	
der Inputs und Outputs der Jahre 2010, 2011 und 2012	. 174
6.56. Projektionen der Inputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1,\ I2,\ I3,$ angewendet auf die Durchschnittwerte	
der Inputs und Outputs der Jahre 2010, 2011 und 2012 $\ \ldots \ \ldots$. 176
6.57. Projektionen der Outputs des outputorientierten BCC-Modells mit	
den drei Inputs $I1,\ I2,\ I3,$ angewendet auf die Durchschnittwerte	
der Inputs und Outputs der Jahre 2010, 2011 und 2012	. 176

Literaturverzeichnis

Taesik Ahn, Victor Arnold, Abraham Charnes, and William W Cooper. Dea and ratio efficiency analyses for public institutions of higher learning in texas. *Research in Governmental and Nonprofit Accounting*, 5(2):165–185, 1989.

Rajiv D Banker, Abraham Charnes, and William W Cooper. Some models for estimating technical and scale inefficiencies in data envelopment analysis. *Management science*, 30(9):1078–1092, 1984.

Rajiv D Banker and Robert M Thrall. Estimation of returns to scale using data envelopment analysis. *European Journal of Operational Research*, 62(1):74–84, 1992.

Hans H Bauer, Matthias Staat, and Maik Hammerschmidt. *Marketingeffizienz: Messung und Steuerung mit der DEA; Konzept und Einsatz in der Praxis*. Vahlen, 2007.

Allen N Berger and David B Humphrey. Efficiency of financial institutions: International survey and directions for future research. European journal of operational research, 98(2):175–212, 1997.

Patrick L Brockett, William W Cooper, Linda L Golden, John J Rousseau, and Yuying Wang. Dea evaluations of the efficiency of organizational forms and distribution systems in the us property and liability insurance industry. *International Journal of Systems Science*, 29(11):1235–1247, 1998.

Brigitte Bürkle. Effizienzmessung im Gesundheitswesen: Möglichkeiten und Grenzen der data envelopment analysis, dargestellt anhand von Anwendungen aus dem Krankenhausbereich. Forschungsgruppe Medizinökonomie am Lehrstuhl für Betriebswirtschaftslehre und Operationsresearch der Univ., 1997.

Robert C Camp. Benchmarking: the search for industry best practices that lead to superior performance. 1989.

Uwe Cantner, Jens Krüger, and Horst Hanusch. Produktivitätsundeffizienzanalyse. 2007.

Abraham Charnes, William Cooper, Airs Y Lewin, and Lawrence M Seiford. Data envelopment analysis theory, methodology and applications. *Journal of the Operational Research Society*, 48(3):332–333, 1997.

Abraham Charnes, William W Cooper, and Edwardo Rhodes. Measuring the efficiency of decision making units. European journal of operational research, 2(6):429–444, 1978.

William W Cooper and Lawrence M Seiford. Tone kaoru (eds.), data envelopment

analysis: A comprehensive text with models, applications, references, and deasolver software, 2007.

JR Doyle and RH Green. Comparing products using data envelopment analysis. *Omega*, 19(6):631–638, 1991.

Harald Dyckhoff. Betriebliche Produktion/Operating Production: Theoretische Grundlagen Einer Umweltorientierten Produktionswirtschaft/Theoretical Foundations of an Environmentally Oriented Production Economy. Springer DE, 1994.

Boaz Golany, David B Learner, Fred Y Phillips, and John J Rousseau. Managing service productivity: the data envelopment analysis perspective. *Computers, Environment and Urban Systems*, 14(2):89–102, 1990.

Agha Iqbal Ali and Lawrence M Seiford. Translation invariance in data envelopment analysis. *Operations Research Letters*, 9(6):403–405, 1990.

Microsoft. Laden der analysefunktionen. http://office.microsoft.com/de-at/excel-help/, June 2013.

Raiffeisen Landesbank Oberösterreich. Raiffeisen oberösterreich. http://www.rlbooe.at, June 2013.

Holger Scheel. Effizienzmaße der Data Envelopment Analysis. Dt. Univ.-Verlag, 2000.

H David Sherman and George Ladino. Managing bank productivity using data envelopment analysis (dea). *Interfaces*, 25(2):60–73, 1995.

G Sierksma. Multiplicity, degeneracy, and the strong complementary slackness theorem of linear programming. Working papers, Groningen State, Institute of Economic Research-, 1993.

Frontline Systems. Analytic solver platform. http://www.solver.com/analytic-solver-platform, August 2013.

Robert M Thrall. Duality, classification and slacks in dea. *Annals of Operations Research*, 66(2):109–138, 1996.

Robert Wilken. Dynamisches Benchmarking: Ein Verfahren Auf Basis Der Data Envelopment Analysis. Springer DE, 2007.