approbierte Originalversion dieser
ertation ist in der Hauptbibliothek der
inischen Universitat Wien aufgestellt und
nglich.

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Virtual HW/SW Prototyping for
Design and Runtime Prediction of
Parallel Video Coding Systems

DISSERTATION
zur Erlangung des akademischen Grades
Doktor der technischen Wissenschaften
eingereicht von

Florian Seitner
Matrikelnummer 9925654

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: ao. Univ.-Prof. Mag. Dipl.-Ing. Dr.techn. Margrit Gelautz

Diese Dissertation haben begutachtet:

(ao. Univ.-Prof. Mag. Dipl.- (Univ.-Prof. Dipl.-
Ing. Dr.techn. Margrit Ing. Dr.techn. Bernhard
Gelautz) Rinner)

Wien, 10. Oktober 2013

(Florian Seitner)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbelit

Florian Seitner
Hietzinger Hauptstral3e 56/1/8, 1130 Wien

Hiermit erklare ich, dass ich diese Arbeit selbstandiga&st habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstdndig angegeben habe dask ich die Stellen der Arbeit -
einschlielich Tabellen, Karten und Abbildungen -, dieered Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fadl dingabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

First of all, | want to thank my supervisor Margrit Gelautz feer constant support and encour-
agement throughout the years that | spent as a PhD studeatfofgj@d my skills in research
and scientific writing and without her guidance, this workulebnot have been possible. | am
grateful to Bernhard Rinner who kindly agreed to be the sécewiewer of this thesis.

During my studies, | also had the pleasure to work with Mit¢iideyer. His feedback and
countless hours of joint work before various submissiondtiees proved to be of enormous
value for my research. | would like to thank Ralf Beuschelifdaroducing me to the field of
video coding and showing me the importance of structureensific working in an industrial
environment. | would also like to acknowledge Tom Wilson ffooofreading this thesis and for
supporting me in finding time to finish this thesis.

Many thanks go to all of my colleagues in the Interactive Me8istems Group and at
OnDemand Microelectronics who offered me the opporturdtynfiany interesting discussions
and a nice and productive working atmosphere.

| would like to thank the Austrian Federal Ministry of Tramsfy Innovation, and Technol-
ogy (BMVIT) for its financial support of this thesis under thE-IT project VENDOR (Project
no. 812429).

I would further like to express my thankfulness to my frienfi€lo not put any names, since
| am afraid to forget someone.) Their support and the alititgnjoy my life outside the pages
of my thesis were always a great source of inspiration. | @al$o like to thank my family,
especially my mother and father, who made it possible fororsiudy.

Finally, special thanks go to my beloved wife Julia for heppart and patience during all
these years. A thesis is like a marathon and she gave me supporthe first to the last
kilometer.

Abstract

The high computational demands of state-of-the-art vidmhng standards such as H.264 pose
serious challenges on embedded processor architecturestural way to tackle this problem is
the use of multi-processor systems. However, the efficiistilblition of complex video coding
algorithms among multiple processing units (PUs) is a mivat task. In order to use the avail-
able processing resources efficiently, an equally baladegdbution of the coding algorithm
onto the hardware units must be found. The system desigsetohzonsider data-dependency
issues as well as inter-communication and synchroniz&teiween the PUs. Furthermore, effi-
cient software design is necessary in order to satisfy theuree limitations in an embedded
environment, such as low computational power, small-sizeehip memories and low bus
bandwidth. A parallel video coding implementation for anbemidded system must be able to
work under these resource restrictions.

Being able to predict the resource requirements of a pavédleo coding application (VCA)
is therefore essential during the design of a video codistesy (VCS) considering these strict
requirements on runtime performance and resource usadethHsis contributes novel meth-
ods to support the complex design process of parallel VC$ ieaaly phase of system design
when highly critical decisions on hardware and softwareraagle. The contributions of this
thesis can be summarised as follows. (i) We proposétta-Driven Profiling(DDP) method
for analysing and visualizing the runtime complexity of a ¥CThis method maps traditional
runtime profilings onto the coding elements and functionatks of a video coding algorithm.
It enables the system designer to relate runtime complexity the application levels where
parallelisation takes place and introduces means for simgiythe workload distribution. (ii)
We demonstrate how to exploit DDPs for analysing compleaitg deriving essential informa-
tion for parallel system design. Assumptions about thegoerédnce of a VCA on a parallel
architecture can be made, potential problems in work baigridentified and complexity vari-
ations in the functional blocks of a VCA's video coding elertseanalysed. (iii) We introduce
the Partition Assessment Simulation (PAS) methodologyefabling the exploration of com-
plex parallel VCS designs. This methodology exploits tmecstral and functional similarities
of modern video coding algorithms for predicting a VCA's tiame on a “virtual” architecture.
(iv) We implement a simulator for the PAS concept. By modeiland simulating an existing
multi-processor platform, the PAS methodology is verifidd: demonstrate the flexibility of the
PAS to simulate complex parallel video coding platforms taneixplore new parallel designs for
functional as well as data-parallel H.264 decoder paniitig methods. We believe that the con-
tributed techniques enable system designers to addreshdlienges of parallel VCS design in
an intuitive and time-efficient way leading to applicatitailored and cost-competitive VCS.

\Y

Vi

Kurzfassung

Die hohen Anforderungen, die moderne Videokodierstardard die Rechenleistung stellen,
kénnen auf vielen Embedded-Architekturen nicht oder nogeschrankt gelést werden. Der
Einsatz von Multi-Prozessorsystemen und die Aufteilung Kledierung auf mehrere Prozes-
soren bieten hier eine elegante Losung. Der Entwurf vonllpéea Videokodiersystemen stellt
jedoch bei komplexen Algorithmen wie H.264 eine herausdforde Aufgabe dar. Es gilt hier,
eine gleichmaRige Aufteilung der Rechenschritte auf diiigbaren Prozessoren zu finden und
dabei bei der Partitionierung die hohe Anzahl an algorifuimén Abhéngigkeiten zwischen den
einzelnen Schritten zu beriicksichtigen. Des Weiteren emiaschitekturbedingte Ressourcen-
limits wie z. B. die SpeichergroRe berticksichtigt werden.

Diese Arbeit widmet sich der Performanceanalyse und -vedge von parallelen Video-
kodiersystemen. Der wissenschaftliche Beitrag dieseei\lomfasst zwei Methoden, um die
Laufzeit von Videokodieralgorithmen effizient zu analysie und bereits in friiheren Phasen
des Designprozesses Annahmen Uber die Eigenschaft demGgsems treffen zu kdnnen.
Die erste Methode, das Data-Driven Profiling (DDP), erndldles, die Laufzeit eines Videoko-
diersystems im Zusammenhang mit den zu verarbeitendem Ratanalysieren. Dabei werden
traditionelle Laufzeitprofile automatisch auf die Kodieraente und -schritte des Kodieralgo-
rithmus abgebildet. DDP gibt Aufschluss Uber die Laufzdig fur die Kodierung einzelner
Kodierelemente und funktionaler Kodierblocke aufgewénded und wie diese das Laufzeit-
verhalten von parallelen Videokodiersystemen beeinflusSé& zweite Methode, die Partition
Assessment Simulation (PAS), macht sich strukturelle unétfonale Charakteristika hybrider
Videokodieralgorithmen zunutze, um Laufzeitabschateaniir virtuelle Architekturen zur Vi-
deokodierung zu treffen. Diese Methode baut auf DDP sowiezkKpten der simulationsbasier-
ten Laufzeitvorhersage auf und ermdglicht bereits in diridgren Phase der Systementwicklung
das Ausprobieren unterschiedlicher Designvarianten asddhnelle Adaptieren von parallelen
Videokodiersystemen an Designvorgaben. Diese ArbeitHvedat eine konkrete Implementie-
rung fur das PAS Konzept und liefert mit Hilfe einer bestetemMultiprozessorarchitektur eine
Verifikation und Genauigkeitsanalyse. Die Flexibilitigue Designmdoglichkeiten zu erschlie-
Ren, wird anhand konkreter Beispiele demonstriert.

Die vorgestellten Techniken ermdglichen es, beim Designparallelen Videokodiersyste-
men gezielt und anwendungsspezifisch auf Komplexitat undtigte Hardwareresourcen ein-
zugehen. Bereits in einer frihen Phase des Designprozk8sasn Abschatzungen Uber das
Laufzeitverhalten des Designs gemacht und dadurch daddkhtwgsrisiko signifikant gesenkt
werden.

Vii

viii

Contents

[List of Figuresd xiii
[List of Tabled XV
|List of Abbreviations xviii

BAuansIQLmalm_and_quanmalmmLﬁLduaﬂdata 27

iX

B5.1 Dependencies between macroblocks 29
13.5.2__Functional oartltlonnhg 30

| i . Sis 39
[4.1 Data-driven orofiliﬂg 39

4.2 Automatic generation of data-driven profiles 41

1432 TestsequenCeso 50
l4.4 Experimental results for runtime analysis and visaditim 55
i i i nts 55
4.4.2 Complexity of processin i ks B58

5 Virtual prototyping of parallel video coding systems 63
5.1 _General aspects and designgoalsu... 63
B2 Concebt oo 64

%&aﬁon 5 6
5 2 7
.23 Simulation 73
[5.3 Implementation of the Partition Assessment Simulation. 75
5.3.1 _Time domains within PAS 75

Meneraﬂon based on data-driven profiling 76

I5.3.3 Rule-based specification of data-dependéncies 76

[Bibliography 105

Xii

List of Figures

3.4 H 264 |ntra Dredlctlon mod S e e e e e e 23

[3.5 Temporal prediction of macroblocks between frames. 24
13.6 __H.264 inter prediction macroblock partitioning. 24

3.7 GOP-COdINY. o ot 26

13.8__Visualisation of block edge deblocking '!gc H264.o 28
13.9 _Macroblock dependencies in H.264 dec ding 29

[3.10 Functional splitof an H.264 decadler. 30
&IMQ%MQMCh 31
3.12 Example of the Single-row splitting approach used withcores 31
[3.13 Inter-processor dependencies in a multi-core system 33
13.14 The Multi-column splitiing approach. 33
13.15_Example of the Multi-column splitting approach 33
[3.16 The Slice-parallel splitting approach 34
[3.17_Example of the Slice-parallel splitting approach ia fitocking versidn 34
[3.18 Example of the Slice-parallel splitting approach iafion-blocking version 34
w%m% 36
3.20 Example of the Diagonal splitting approach 36

ptittkpproaches 36

4.1 Data-driven profiling at macroblock level 41

42

44

. 48

|4.5 Floorplan and board of the SYVENm architecture. 49
l4.6 Visualization of test sequences used inwork. B51
4.7 GOP-Coding of a sequence with 25 frames. 52
l4.8 Bitrates of the 16 test sequences coded ata Y-PSNR of|40 db. 53
4.9 Dynamic variations in the decoding time of individualgrablocks. 57

4.10 Dynamic variations in the runtime of H.264's functibbbcksl 59
% isualization of runtime complexity for the individudBs of |/P/B-frames. 61

ig,g System specification inthe BAS 66
5.3 Simple dependency graph for two macroblocks’ decodiskst 68

wl%mmwn&mm%ks ------------ 69
5.5 Mapping of VCA graph onto hardware. 71

List of Tables

XV

Xvi

Abbreviations

Al ... Automatic Instrumentation

ASLI Automatic Source Level Instrumentation
BB Basic Block

CABAC Context Adaptive Binary Arithmetic Coding
CAVLC Context Adaptive Variable-Length Coding
CFG Control Flow Graph

DAG Directed Acylic Graph

aB decibel

DCC.......... Display Content Controller

DCT Discrete Cosine Transform

DDP Data-Driven Profiling

DDPL Data-Driven Profiling Library

DMA Direct Memory Access

DPCM Differential Pulse Code Modulation

DR Dependency Rules

FAF FIFO Assignment Function

FB Functional Block

FIFO First-In-First-Out buffer

fpsl frames per second

FSM Finite-state Machine

GOP Group Of Pictures

HVS Human Visual System

HW Hardware

ICACHE Instruction Cache

IDCT Inverse Discrete Cosine Transform

IEC International Electrotechnical Commissi
P ... Instrumented Profiling

ISO International Organization for Standaation
ISS Instruction-Set Simulator

ITU International Telecommunication Union
ITU-T International Telecommunication Union 48eommunication
kB kilobyte

LoP Level of Parallelisation

MAF Memory Access Function

XVii

MB Macroblock

MCP Motion-compensated prediction
mDDR Mobible Double Data Rate Memory
MoE Model of Execution

MSE Mean Square Error

MV ... Motion Vector

NAL Network Abstraction Layer

OcE Order of Execution

PAF Processor Assignment Function
PAS Partition Assessment Simulation
PDA Pushdown Automaton

PSNR Peak Signal-to-Noise Ratio

PU Processing Unit

QP Quantisation Parameter

RISC Reduced Instruction Set Computer
SBRP Simulation-based Runtime Prediction
SIMD Single Instruction Multiple Data
SIT Software Instrumentation Tool
SoC System-on-Chip

SRAM Shared Random-access Memory
STO Sequential Task Order
SW........... Software

TS ... Transport Stream

UbD Unique Identifier

VA ... Virtual Architecture

VCA Video Coding Application

VCL Video Coding Layer

VCS Video Coding System

VHDL Very High Speed Integrated Circuit Hardwaredoription Language
VHSIC Very High Speed Integrated Circuit
VLIW Very Long Instruction Word

VSD Virtual System Definition

Y-PSNR Peak Signal-to-Noise Ratio of the luma channe

CHAPTER

Introduction

1.1 Design of parallel video coding architectures

State-of-the-art video standards such as H.264 [ITU12aes in a wide range of industrial
and consumer applications. This includes for example aigélevision broadcasting, video
surveillance and video conferencing. Compared to pregeditteo coding standards such as
MPEG-2 and MPEG-4 SP/ASP, improved coding efficiency codddached by introducing
more advanced pixel processing algorithms (e.g. quaitet-motion estimation, integer-based
block transforms) as well as by the use of more sophisticatgorithms for predicting syntax
elements from neighbouring macroblocks (e.g. contexpzavariable-length coding). These
new coding tools result in significantly increased CPU andhony loads required for coding a
video stream. In environments of limited processing powehsas embedded systems, the high
computational demands pose a challenge for practical videliing implementations [FGO1].
Multi-core System-on-Chip (SoC) design provides an elegatution to overcome these per-
formance limitations.

A SoC design combines multiple components such as proseaadrmemories on a single
chip. The usage of existing and well-tested componentseziurce the costs and the developing
time and results in a short time-to-market. The programlinalif most SoCs allows later
modifications of the algorithm’s software which offers hitgxibility and is of prime importance
for video coding. For example, for adapting the software nvaenew extension of a video
standard becomes available or to run different video codiggrithms on the same platform.

The high computational demands of state-of-the-art vidmting application (VCAS) pose
serious challenges on current SoC architectures. A nataako tackle this problem is the use
of multi-core systems. However, the efficient distributioihvideo coding algorithms among
multiple processing units (PUs) is a non-trivial task. Feing the available processing re-
sources efficiently, an equally balanced distribution eftbding tasks onto the hardware units
must be found. The system designer has to consider datadipnissues as well as inter-
communication and synchronisation between the PUs. Huntire, the resource limitations in
an embedded environment such as low computational powatl-sired memories and low bus

1

Chapter 1. Introduction

bandwidth require an efficient software design. A parall€A/approach must be able to work
under these resource restrictions.

1.2 Motivation and objectives

A major source for uncertainty within most VCA designs istttiee software development and
partitioning is typically addressed at a late phase of the 8esign. At this stage, significant
resources already went into the system’s hardware desigjingggration and changes are ex-
pensive and only possible in a limited scope. However, fronatwhas been outlined above,
multiple questions arise already at early design phasesrofiti-core video processing system
when the components of the SoC design are chosen:

1. Can we reach the performance requirements of the VCA oavitable hardware?
2. What hardware is required by the VCA to handle a specifiofs@tieo streams?

3. What is the optimal VCA partitioning for using the arcloitere’s resources most effi-
ciently?

In previous work, the first two questions have been widelgwlised for single-core archi-
tectures. Various complexity estimation and runtime poiain techniques with their respective
advantages and disadvantages have been proposed. Wéeesdting complexity and runtime
estimation techniques and their strengths and weaknesskxadil in Sectioi 2. However, the
existing profiling techniques for single-core VCAs are oslytable to a limited extent for ad-
dressing multi-core SoC design for parallel video codingliaptions in an efficient way. They
typically provide coarse profiling information on the lardenctional blocks (e.g. the absolute
runtime spent in a decoding function and all sub-functidng)do not provide means for effi-
ciently analysing the runtime complexity of an VCA at thedewhere the parallelisation would
be implemented. This makes it hard to exploit the availabddiljng information when making
predictions about the single-core VCA runtime performamea multi-core architecture.

Addressing this weakness of existing profiling techniqesnie major objective of this the-
sis. We provide a method to efficiently derive runtime infation from single-core VCAs that
typically affects the system designers choice of parakligibon. For example, detailed execution
times for the video coding elements that are processedgltiznVCA execution and runtime
variation of individual functional blocks are provided. \iiéroduce a new complexity analysis
technique that equips system designers with a toolset taaxtuntime information at a level
where parallelisation will take place later on. We exterdlitional complexity estimation and
profiling techniques in a way that enables more detailedyaisabf a VCA's parallel execution
behaviour. A special focus shall be given to the hierardldata structures and functional blocks
of VCAs. They determine where parallelisation mechanisarshe integrated within the VCA
and must be considered carefully when analysing paralkdwion behaviour.

The third question above introduces the need for predidtiegruntime of “virtual” VCA
partitionings, which typically is not accurately possiblih traditional analytical models or too
time- and labor-intensive using existing hardware sinmotatechniques. Prediction techniques

2

1.3. Contributions

that base their runtime estimation on formal algorithm dedins (i.e. analytical runtime pre-
diction techniques) or runtime observations from singleedmplementations typically cannot
consider parallel task concurrency and inter-task depere® appropriately when estimating
the complexity of a VCA in a parallel architecture configizat More powerful prediction
techniques that can simulate the hardware and softwareitxedor virtual platforms typically
require an already partitioned VCA implementation. Estintathe runtime performance of a
parallel VCA's software partitioning without starting ttebor-intensive implementation work
is not possible. Furthermore, many simulation technigegsire circuit-based hardware sim-
ulation which is very time-intensive. These limitationsedo (i) labor- and time-intensive im-
plementation aspects and (ii) time-intensive simulatiotitithe possibilities to estimate parallel
VCA designs at an early stage of the design process.

This thesis tackles these problems in two steps. Firstiyilléntroduce a modelling tech-
nique that allows the system designer to describe a VCA inbatract way. We will combine
complexity estimatiomnd virtual prototypingtechniques for describing “virtual” architecture
configurations. A framework that allows virtual prototyginf abitrary software and hardware
architectures for video coding that overcomes the needripteémenting software or hardware
partitionings is developed. Secondly, a simulation framdwihat enables the simulation of this
“virtual” platform is introduced. It enables the systemidesr to obtain accurate estimates for
the runtime complexity of the VCA when decoding a video stiea

In summary, the capabilities of current runtime analysid pirediction techniques are typi-
cally not suitable for predicting the runtime behaviour ioigbe-core VCASs on a parallel archi-
tecture in an accurate and fast way. The techniques intestlircthis thesis equip the system
designer with a new toolset for tackling this problem andetduce the technological risk during
the system design.

1.3 Contributions

The methods and applications contributed in this work shkadible system designers to effi-
ciently explore the behaviour of VCAs on parallel hardwarehdectures. The main contribu-
tions of this thesis are summarized in the following:

e We investigate what information is provided by traditios&lgle-core profiling techniques
and introduce an innovative technique for mapping thisrinfation onto the functional
blocks and coding elements of VCAs. This Data Driven PrafiipDP) mapping tech-
nique enables the system designer to derive essentiafiafam on the VCA's execution
behaviour and for making assumptions about the runtimeuiainraof the VCA on a
parallel hardware platform.

e We introduce a modelling technique for describing VCAS’ iogdelements, functional
tasks and the data-dependencies between these tasks. ridrigat a high-level simu-
lation methodology, the Partition Assessment SimulatieAS), for the modelling and
simulation of parallel VCA hardware architectures. Thigimoelology estimates the per-
formance of a VCA for arbitrary virtual hardware and softevaonfigurations and enables
design space explorations of parallel video processingjtatures.

3

Chapter 1. Introduction

e We provide a simulator for analysing implementation aspeftthe PAS methodology.
We verify the methodology on an existing hardware architecand analyse its accuracy
for a real-world H.264 decoder scenario.

e We perform design space exploration for an H.264 decodeewaaldiate the runtime per-
formance of various decoder partitionings on a virtual &ecture.

We believe that the proposed high-level methods for estimpadihe computational complex-
ity of multi-core video coding systems is preferable oveistixg techniques, since these are
typically not suited for the complex nature of multi-coresgms. They can often not consider
the concurrency and inter-processor dependencies intteramulti-core systems. A valid alter-
native to our method is represented by the simulation-bpsediction techniques described in
Section Z.B. These methods can handle concurrency anepirteessor dependencies. How-
ever, for simulating the runtime behaviour of a parallel V,@#ese approaches typically require
a well-defined or completely implemented architecture apdrttioned software (i.e. low-level
specification of the interfaces and components). Due to #st amount of work that is re-
quired to implement each VCA partitioning approach, eaitjhHevel complexity estimations
are difficult to realize and the flexibility to explore manyffdient software designs is limited.
The methodology introduced in our work aims to enable fastgespace exploration and to
estimate complex multi-core video coding systems in a flextime- and labor-efficient way.

1.4 Resulting publications

The following publications in scientific journals and at &enences have resulted from the work
presented in this thesis:

Journals

e F. H. Seitner M. Bleyer, M. Gelautz, R. M. Beuschel: Evaluation of datagilel H.264
decoding approaches for strongly resource-restrictddtantures,Journal on Multimedia
Tools and ApplicationsSpringer, volume 53, issue 2, pages 431-457, 2011.

e F. H. Seitner M. Bleyer, M. Gelautz, R. M. Beuschel: Development of a Hig¥el sim-
ulation approach and its application to multi-core videoatting, [IEEE Transactions on
Circuits and Systems for Video Technologylume 19, issue 11, pages 1667-1679, 2009.

Conferences with proceedings

e F. H. Seitney M. Bleyer, R. Schreier, M. Gelautz: Evaluation of dataghiat splitting
approaches for H.264 decodingroc. of the 6th International Conference on Advances
in Mobile Computing and Multimedjgpages 40-49, Linz, 2008. (oral presentation)

e F. Seitner M. Bleyer, M. Gelautz: Development of multi-core video dding platforms
based on high-level architecture simulatioRspc. of the Junior Scientist Conference
pages 71-72, Vienna, 2008. (oral presentation)

4

1.5. Organization

e F. SeitnerJ. Meser, G. Schedelberger, A. Wasserbauer, M. Bleyer,dlauz, M. Schutti,
R. Schreier, P. Vaclavik, G. Krottendorfer, G. Truhlar, Bugrnfeind, P. Beham: Design
methodology for the SVENmM multimedia engiri&rpc. of the Austrochip 200®age 113,
Linz, 2008. (poster presentation)

e F. H. Seitner R. M. Schreier, M. Bleyer, M. Gelautz: A high-level simuatfor the
H.264/AVC decoding process in multicore systergtectronic Imaging SPIE, volume
6821, pages 5-16, San Jose, 2008. (oral presentation)

e F. H. SeitnerR. M. Schreier, M. Bleyer, M. Gelautz: A macroblock-levaladysis on the
dynamic behaviour of an H.264 decod#EE International Symposium on Consumer
Electronics pages 1-5, Dallas, 2007. (oral presentation)

Patents

e R. Schreier, F. SeitheMethod and apparatus for encoding and decoding of videasts,
US Patent Application number 20080152014, filed 12/2007.

Technical reports

e F. H. SeitnerR. M. Schreier, M. Bleyer, T. Albrecht, M. Gelautz: Analysif video algo-
rithms, FIT-IT Project VENDORWRP2.2, Vienna University of Technology, 2007.

e F. H. Seitner R. M. Schreier, M. Bleyer, T. Albrecht, M. Gelautz: Litena¢ survey of
state-of-the-art video algorithmB)T-IT Project VENDORWP2.1, Vienna University of
Technology, 2007.

1.5 Organization

The content of this thesis is organized into seven chapt&te current chapter provided a
general overview about the motivation and contributiongha$ work. In the following, we
briefly describe the chapters in the remainder of this theasisprovide links to the publications
listed before.

e In Chaptef 2 we provide an overview of existing complexittireation and runtime pro-
filing techniques. We discuss the individual techniques exylain their limits when it
comes to multi-core architecture design and design spgueration. The main text of
this chapter is taken from our published papers [SSBG11(HESR

e Chaptef B outlines the fundamentals of hybrid video codtagdards. In this chapter,
we derive the characteristics of hybrid video coding alpons and describe the design
challenges of parallel video coding systems. The main te#tie chapter is taken from
our published papers [SBSC08,SSBG11, SSEGO08], with maeslsl@and additional ex-
planations.

Chapter 1. Introduction

We exploit these characteristics in Chapier 4 to introduneval runtime profiling method.
It addresses various short-comings of traditional dyngodiling techniques and enables
the correlation of runtime complexity with specific codirgraents and functional blocks
of a hybrid video coding algorithm. This provides importargights into the complexity
and can be exploited for identifying bottlenecks and pagthallenges in the design of
parallel coding solutions at an early stage of the developnihe main text of this chapter
is primarily a compilation of our published papé€rs [SBSIEBRG11,SSBG09,SSBG07],
with additional results and experiments.

In Chaptef b, we introduce a virtual prototyping methodglape Partition Assessment
Simulation (PAS) technique. We explain the design goalsthedretic fundamentals and
describe an implementation of this prototyping concepte Train text of this chapter
is primarily a compilation of our published papers [SBSGE8BG11, SSBG09], with
additional details and explanations of the PAS concept @richplementation.

In Chaptef.b, we analyse the PAS in more detail and evaluatevexnify this technique’s
accuracy using a real-world H.264 decoder. We use the PA®dalelling a virtual VCS
for demonstrating the possibilities towards efficient desspace exploration using ex-
amples of functional as well as data-parallel partitionamproaches. The main text of
this chapter is primarily a compilation of our published eep[SSBG11, SSBG09], with
additional experiments and results.

Chapter ¥ provides conclusions and an outlook on future wdike main text of this
chapter is primarily a compilation of our published pap&SBG11, SSBG09].

CHAPTER

Prior work on complexity and runtime
estimation

Obtaining information about the runtime complexity of agalthm is typically highly im-
portant when developing the hardware or software compsniatt compute the algorithm’s
individual processing steps. Accurate performance aisaigpports important stages of a de-
velopment process such as the system design, optimisétioctjonal verification and testing.
For estimating runtime complexity, various predictionheicues have been developed. We can
divide the existing estimation techniques into three mgjoups: the analytical, the profiling-
based and the simulation-based approaches. In the SegibiB.2 and 2]3, we will describe
these technigues in more detail. Secfiod 2.4 provides arvieve of high-level design explo-
ration techniques. In Sectign 2.5, we put the techniquetriboted in this thesis in the context
of prior work.

2.1 Analytic runtime prediction

Based on the fundamentals of the Computational CompleXityofy [FHO3], advanced ana-
lytic methods for analysing an algorithm’s complexity hdexn introduced. For example, the
Static Algorithm Analysis[[PK89] and Worst Case Executiomé& (WCET) estimation [LM95,
MML97] have been evolved. These techniques analyse forefaditions of an algorithm, for
example its source code, for estimating the algorithm’s matational complexity.

Most theoretic complexity approaches describe the coritplekan Algorithm A using an
instance-base@omplexity measur&’4[-] [STOS]. This measure defines the complexity|z]
of an Algorithm A for an input instance. For each AlgorithmA, an input domairf2 containing
all possible input instancesis provided. For a finite input domain, this complexity measure
defines a2| dimensional vector (i.e. each element in this vector reprissthe complexity 4 [z]
of an input instance: € 2). Depending on the number of input instan¢@$, the effort for
estimating and describing an algorithm’s complexity stfgrvaries.

7

Chapter 2. Prior work on complexity and runtime estimation

For a more specific analysis of an algorithm’s complexity iput domain(2 is usually
viewed as the union of a set of sub-domaffis, 29, ...Q2,,}. Each sub-domaif; represents alll
input instances of sizé For example, in the context of sorting algorithrts, refers to the set
of all tuples containing elements.

Based on these sub-domains, the complexity of an algordhimoften described as a func-
tion of the input size of the problerd aims to solves. We can define a scdlar(n) which
summarizes the complexity4 [x] for all instancesr € ,. In our example with the sorting
algorithm, T’y (n) describes the complexity of sorting an input instance witblements. In
Theoretical Computer Sciencthie WCET is one of the most commonly used metrics for sum-
marizing the complexity of an algorithm. The WCET of Algtwit A can be derrived in the
following way:

WCETA(n) = maz Ta[z] (2.2)
zEQ,
It describes the maximal execution time of an Algoritinprocessing an input instance consist-
ing of a tuple ofn elements.

Runtime prediction based on static analysis measures hliplaghortcomings. First, the
execution paths of most algorithms depend on the data vafitbe input instances. For exam-
ple, input-dependent recursions and branches in an digodan causdynamicvariations in an
algorithm’s execution path and its runtime. Consequettigoretic complexity measures such
as the WCET do not necessarily reflect an algorithm’s runtirleaviour under real working
conditions [ST0B].

Second, analytical complexity predictions cannot easédybbund to a specific hardware
platform. The runtime of an algorithm depends on the prangsesources of the executing
platform (e.g. instruction set, processing pipeline, kloate). An algorithm that performs
well in theory not necessarily does this on a platform witlygital processing resources and
architectural limitations.

2.2 Runtime prediction based on dynamic profiling

Dynamic profiling aims to address the limitations of analgtiruntime prediction by observ-
ing the execution of an algorithm on a physicalerence platforrh Most hardware platforms
provide tools for observing program execution during mmatiand fomeasuringhe runtime of
executing programs. Prediction techniques based on dgnarrafiling exploit the knowledge
gained from theseomplexity measurementBased on observations of the execution behaviour
of a ProgramP on a reference platforn®, the system designer makes assumptions about the
program'’s execution behaviour.

Similar to the input domaif2 used in analytical runtime prediction, runtime measuremen
obtained via dynamic profiling aim to reflect the complexity & range of input instances. For
example, for a video decoder the bitrate of a coded inpuaistitypically has a strong impact on
the runtime complexity. This can be used for defining inpli-damains{2;, Q,, ..., ...} for

LIn the context of this work, we use the term program to refartalgorithm’s source code or binary represen-
tation on a physical hardware platform.

2.2. Runtime prediction based on dynamic profiling

(a) (b)
Figure 2.1: A simple control flow graph (CFG): Each node repnts a basic block (BB) of a
program. The directed edges between the nodes represguotripe from one BB to another
BB. (a) A CFG with three BBs: Blockl represents the first BB of the program. After Blagk
either Block B or Block C' are executed. BlocK' is the last BB executed within the program.
(b) A CFG with three blocks and a loop between Blotland B.

our VCA where each sub-domain represents the decoding eaitypbf video streams within a
well-defined bitrate range. For obtaining the runtime caxipy of a subdomaini2;, we would
profile multiple input streams within the domain’s bitratenge. The longest or average exe-
cution times a VCA requires to decode these streams wouletctdfie WCET and the average
runtime complexity for this input sub-domain, respectvel

In practice, dynamic profilers regard a program as a set ocBlecks (BBs). The term
Basic Block has been introduced by Allen [All70] and refaysatlinear sequence of program
instructions that has no jump instructions contained withi The first and last instructions of
each basic block are calleshtry pointandexit point respectively. For entering a BB, the entry
point of this BB may be entered from one or more exit pointsimithe program?

BBs are usually the basic units a compiler works with durheydptimisation phase and also
enable profiling of the individual program regions. The peog is regarded as a graph where
the BBs form the graph’s nodes and the jumps between the BB#dhsitions between the
nodes. These graphs are called Control Flow Graphs (CF@&Ejgurd 2.1a and 2.1b, we show
two simple CFGs with three states each. In Figuré 2.1a, sitram from StateA to StateB as
well as to State” is possible. In Statds, only a transition to Stat€’ is possible. Figure2l1b
contains a loop where the Statdsand B can be executed multiple times before reaching the
final StateC.

The execution time of a Prograf is the sum of execution times of all its BBs multiplied
by the number of executions of the BBs. We can compute theuéinectimetp of ProgramP
that consists ofi BBs (B B;..BB,,) in the following way:

n
tp = Z tBB; * [BB; (2.2)
=1

2A BB Y that is entered after the execution of a BBis called asuccessoof BB X. BB Y is called the
predecessoof BB X.

Chapter 2. Prior work on complexity and runtime estimation

The termstgp, and fpp, refer to the execution time and the number of execution® 5,
respectively.

In practice, dynamic profiling techniques can be classifita two major groupsStatistical
andinstrumentedorofiling techniques. In the following sections, we deseribese techniques
in more detail.

2.2.1 Statistical profiling

In statistical profiling, the program counter (PC) of a peogris observed during the program’s
execution. The value of the PC represents the position wtherexecution of the program cur-
rently takes place. By sampling the PC in regular time irgks;vconclusions about the executed
parts of the program and the frequency at which these patexacuted can be derived. The
time interval between each sample (i.e. saenpling periodl’s) is typically known to the profil-
ing environment. It is measured in seconds and is the inadrdfae sampling frequency’s (i.e.
the number of samples taken per second):

1
= s

Based on the total number of samptes that lie within memory blocks assigned to a Pro-
gram P, we can estimate the total runtimg of this program:

Ts (2.3)

fp = TS *np (24)

In this estimation, each sample is counted as a peridd; geconds.

Since the memory location of each BB of the program is typidaiown, we can unambigu-
ously assign each PC sample to a BB. This allows us to derevaumber of samplesg, that
occurred within a blockB B; during the execution of and to estimate the total runtimf@Bi
spent inBB; during the program’s execution:

A ~ NBB;
tpp, =tp * - t
P

(2.5)

The factor":;fi is the percentage of the BB’s runtime on the total runtifpeis the total runtime
of ProgramP

Note thatipp, is statistically approximated and does not necessarilyesgmt the exact
runtime of BB;. Especially, when using a low sampling frequengy and when measuring
small and rarely executed BBs, the number of observed sanuale strongly vary between
measurements. Furthermore, no accurate information onutmber of executions of each BB
during the execution oP can be obtained by statistical profiling techniques.

2.2.2 Instrumented profiling

Instrumented Profiling (IP) techniques extend the targegam with additional program instruc-
tions [GKM82/BL94]. Instrumentatiorrefers to the task of inserting instructions for profiling

10

1

2
3
4
5
6
7
8
9
10
11
12

13
14

2.2. Runtime prediction based on dynamic profiling

Listing 2.1: Example of a dynamic runtime trace: For eaclhcatien of a function, the times
when the function is entered and exited are retrieved by itier.

CALL StartH264Decoder time = 1
CALL DecodeFrame time = 2
CALL DecodeMacroblock time = 1000
R.I:._l.'URN time = 10000
éALL DecodeMacroblock time = 10020
R;I:._l.'URN time = 23000
CALL DecodeMacroblock time = 23001
IR;I:;ﬁJRN time = 35000
RETURN time = 35001
RETURN time = 35002
Function name Calls | Gross runtime | Netruntime | Net runtime (Cycles/Call))
Cycles % | Cycles| % | Min. | Avg. Max.
StartH264Decoder| 1 35002 | 100.00 2 0.1 2 2 2
DecodeFrame 1 35000 99.9| 1019 2.8 1019 | 1019 1019
DecodeMacroblock 3 33981 97.1| 33981 | 97.1| 9001 | 11327 12981

Table 2.1: Dynamic profile: For a VCA consisting of three ftios, the table provides the
profiled gross and net runtimes. Additionally, the tablevshthe minimal, average and maximal
runtime for each function call. More details are provide®ectiod 2.2P.

purposes into a program. These instructions collect inédion about the behaviour of the pro-
gram during runtime such as the program’s execution pattrumented Profiling at BB level
can gather information about the time when a BB is entereckaited, the frequencypp, and
durationdgp, of a basic blockBB;.

The output of an instrumented profiler typically containdraam of recorded events such
as calls to the BBs of a program. This set of events is refdoets the profilersrace For a
more intuitive interpretation by the system designer, miogofiles typically maps the events
of a trace to the programfeinctional leveli.e. source code functions).

Listing[2.1 shows an example of a simple trace at functiomadliof a VCA. In this example,
the VCA consists of three functionStartH264DecodeDecodeFramendDecodeMacroblock
The trace provides insights when a functibne Fy ¢4 is called or left. We refer to functiof;
ascalleeand the function which callegl; ascaller.

Dynamic profilers typically provide a summary of a trace'setvations (i.e. therofile).

A functional profile of the trace from Listing 2.1 is given imfle[2.1. This table provides a
summarized complexity information that can be exploiteddptimising the VCA's computa-

tional expensive parts. For each function, informatiorhsag the number of function calls, the
absolute and relative runtime in cycles and percentageedbtial program runtime are typically

11

Chapter 2. Prior work on complexity and runtime estimation

obtained. Gross runtime (i.e. cumulative runtime of alldiions that occur during a function
execution), net runtime (=function’s gross runtime withauntime spent for sub-function exe-
cution) and statistical information on minimum, averagd avaximum runtime per function call
enable us to concentrate on runtime expensive functionsgitire optimisation. Time-intensive
optimisations (e.g. hardware-dependent code optimisatising assembler code) for functions
with insignificant complexity can be avoided.

However, placing profiling instructions inside a targetgreom can cause changes in the run-
time performance. Additional profiling instructions areeented during the program execution
which increases the runtime complexity. The increased murmbinstructions can further cause
changes in the platform’s instruction caching strategyrasdilt in significant changes in the to-
tal runtime. Modern architectures provide efficient hardwsupport for reducing the impact of
instrumentation on a program’s runtime. They provide djetistructions for tracing the pro-
gram’s execution with a minimal execution overhead. Furtteee, profiles have been evolved
that estimate the complexity overhead caused by the pmpfdird correct the profiling results
based on this.

Despite the advanced hardware support of instrumentedipgofthe additional profiling
instructions can have a significant impact on the compilegss and the resulting binary. Im-
pacts on the program runtime behaviour occur. For keepiisgifipact low, hybrid profiling
techniques based on statistical sampling (Se¢tionl2.2d JRare used in practice. This keeps
the instrumentation overhead low and results in more ateuatime measurments. For ex-
ample in gprof[[GKM82], instrumentation is used for coliegtthe information about function
frequency and function entry/exit times and statisticahgling for measuring the runtime.

Instrumentation of profiling instructions

For instrumentation, manual as well as automatic techsigxést. Manual Instrumentation
refers to the manual insertion of the profiling instructiont® a target program’s source code.
This is typically used for profiling and debugging specifiatpaof a program. The manual
insertion of profiling instructions can be highly labor- aimde-intensive and for more extensive
profiling, Automatic InstrumentatiofAl) technigues have evolved.

Al automatically inserts profiling instructions at relevgositions of the program. Various
Al techniques have been introduced that differ in the wayirtikertion of the profiling instruc-
tions into the program is doneAutomatic Source Level InstrumentatiohSLI) analyses the
source code of a program and inserts the profiling instrostéirectly into the program’s source
code (i.e. before the program’s compilation into binaryeodn example of ASLI has been in-
troduced by Ravasi and Mattavelli [RMO5]. They have devetbfhe Software Instrumentation
Tool (SIT) which extends traditional C source coddrtstrumentedC++ classes. This instru-
mentation provides detailed information on the number dgharetic and memory load/store
operations executed during a program’s execution.

In a similar spirit, the ATOMIUM tool [NCK"96] performs high-level transformation of C
code. The focus of this tool lies on memory analysis. Dia¢a Transfer and Storage Explo-
ration methodology (DTSE) is introduced. Based on this methodgplGgcode can be optimised
in terms of execution time, memory size and power consumptio

12

2.3. Simulation-based runtime prediction

Apart from Al of the program’s source code, techniques fatrummenting the binary of a
program exist. This instrumentation can take place dutiegcompiling [GS04] as well as the
binary linking [SE94] stages of a program. Furthermore,asigit binary analysis tools such as
Valgrind [NSQ7], PIN [LCM™05] and DynamoRIO[BGAQ3] exist that instrument programs at
runtime.

2.3 Simulation-based runtime prediction

In Simulation-based Runtime Prediction (SBRP)siaulator mimics the physical hardware
platform and its behaviour over time. This enables the aesigp model a hardware platform
before it is physically created and to simulate a programrgime execution on this “virtual”
platform. Since the hardware is simulated, very detailestolation of the program’s runtime
behaviour on this platform is possible.

The existing simulation approaches can be divided into feajor groupsHardware simu-
lation, instruction set simulatiortHW/SW-codesigandhigh-level simulation techniques

2.3.1 Hardware simulation techniques

For describing the hardware logic (i.e. the electronicuits), the design and the temporal
behaviour of a hardware design, Hardware Description Laggs (HDLS) are typically used.
Examples of HDLs are VHDL [VHD88], Verilod [TM91] and Systafarilog [SDFO06]. In con-
trast to software languages such as C, important charstatsrof HDL languages are (i) the
explicit notion of time and (ii) the capability to describencurrent events in a formal way. Both
characteristics are primary attributes of hardware antblereccurate specifications of circuits
and physical hardware blocks. A simulator interprets thmasdics of the HDL statements and
mimics the behaviour of a hardware design’s individualuibcover time.

The simulation of HDL descriptions allows the system desigo specify, test and verify
the hardware logic before the design is physically built.weeer, HDL simulations of com-
plex hardware designs are computationally very expensiddiene consuming. This limits the
ability to simulate the execution of complex software apgtiions on an HDL-based hardware
design simulator. Instruction Set Simulators are typycaibre suitable for this purpose.

2.3.2 Instruction set simulation

An Instruction Set Simulator (ISS) is a program that simegathe execution of a program on a
programmable processor. The system designer describaslthielual registers, the operations
and the decoding pipeline of this processor. The ISS minhies\tirtual” processor’s progress
over time by simulating the execution of the program’s ifdlinl instructions in the decoding
pipeline.
Compared to an HDL simulator, an ISS regards each registar@stual” variable. De-

tailed profilings about a program can be retrieved withootusating the underlying hardware
logic [CK94,WR96]. This reduces the simulation complextyd hence the simulation time

13

Chapter 2. Prior work on complexity and runtime estimation

significantly. The simulation at a higher level of abstractmakes ISS computationally less ex-
pensive than HDL simulations and more suitable for anatyaimd developing complex software
applications.

In [HS0Z], an accurate profiling tool based on ISS for fastacwlrate performance, power,
and memory access analysis of embedded systems is intehdlicis approach simulates hard-
ware and software at an instruction level which enables ¥péogation of different low-level
hardware configurations setups.

2.3.3 HW/SW-codesign

The flexibility of software (SW) design compared to hardw@i&V) implementations have re-
sulted in the development of advanced HW/SW-codesign ndsthoch as described in [KM96,
CLNT02,YYS"04, WPH"05]. These methods enable the systematic integratioringeand
verification of new HW design implementations. Verified SWplementations typically serve
as a starting point for HW/SW-Codesign techniques. Contpayea hardware design, imple-
menting a complex algorithm in software has multiple adages. This includes, for example,
a faster and more flexibe development using high-level progning languages and easier cor-
rection of design errors. One prime intention of HW/SW-Cgige is the systematic transition
from a functionally verified complex SW implementation to@responding HW design. This
is typically done in the following way:

First, the system designer verifies the functional coresgrof the SW implementation and
the individual functional components using e.g. an ISS otlar physical platform the SW can
be compiled and executed on. Second, one SW componenttatether is transferred into a
corresponding HDL description and simulated using a harewanulator. By connecting the
HW simulator with the simulation environment where the S\Wifiation has taken place, each
HW component can be tested in the context of the whole imphatien. The designer can
find differences between the software and hardware impl&atien and verify the correctness
of new HW blocks. For example, by comparing the data that éhamged via the interfaces
between the SW and the HW components or by comparing thesdstiveen the “pure” SW
and the HW/SW design.

Apart from verification and migration from SW to HW, HW/SWdmsign approaches ex-
ist that target the modelling of virtual prototypes for neystem designs. Examples are the
OVPsim simulator[[Agr09], the M5 simulator system [BDHB6] and the simulation platform
Simics [MCE"02/VAGO035]. Typically, multiple processor simulation mdslare connected with
each other. By simulating parallel execution and interqcamication of the SW components
running on these processors, these approaches mimic taléepaystem’s execution behaviour.
They predict the real protoype’s runtime behaviour and id@wmeans for efficiently developing
real-world design concepts. This enables evaluation aptovement of the design as well as
investigation of design alternatives before a real and esige prototype is built.

These simulators simulate the HW as well as the SW comporadritee system. How-
ever, these methods have two major shortcomings. Firssithelators often mimic the exact
behaviour of each HW component (i.e. processor pipelinehes memory subsystems, etc.).
This results in high computational complexity and limite fhossibilities for simulating many
HW and SW configurations. Second, each SW component has todbemented for its specific

14

2.4. High-level design exploration

target processor and requires an individual SW partitiphim each virtual design. This is time-
consuming and reduces the flexibility to explore many SWitpamings and different HW/SW
mappings.

2.4 High-level design exploration

High-level design exploration aims to reduce the desigorefbr complex systems by introduc-
ing abstract algorithm models that can be efficiently sineadand verified on virtual platforms.
The Ptolemy Il software environment [EJD3/Leel0] takes a step towards event-oriented mod-
eling of heterogeneous and embedded systems. This frafévamses on hierarchical descrip-
tion of complex heterogeneous systems. The main focus d¢érRyois the hierarchical struc-
turing and combining of multiple models into a heterogersesystem. This includes efficient
ways to define nested models and sub-models and the unarbidatinition of heterogeneous
systems using multiple simulation models.

In the context of high-level simulation and video coding trea of Reconfigurable Video
Coding (RVC) [CAM09, BEJ11] has evolved recently. The prime goal of RVC is implemen-
tation independency and retargetability of video codingpathms. It uses the CAL actor-
languagel|EJO3] for describing the functionality of a vidmaling algorithm in an abstract way
without taking into account any concrete implementatioas®l on a CAL high-level descrip-
tion, an automatic transformation into an implementatimmgluage such as C or SystemC and
further into a low-level representation is possible. Thistdes fast implementation of video
coding tools in a platform-independent way.

2.5 Partition Assessment Simulation in context of prior wok

In a spirit similar to Ptolemy, the Partition Assessment @ation (PAS) that is introduced in
this thesis uses an event-oriented modeling approach fimiaking the execution of parallel
architectures. The underlying concept behind PAS combiraehitional profiling techniques
and high-level modelling and simuation approaches foriolstg accurate runtime estimations
of complex and virtual multi-core VCSs. While more details the PAS will be provided in
Sectiong ¥ and]5, this section aims to set the PAS concepthietcontext of prior work.

The PAS can be seen as an extension of traditional dynanticneiprofiling and high-level
simulation techniques. The principle of traditional dyneprofiling techniques is extended in
a way that runtime complexity can be set in the context of a ¥@aAta structures, functional
blocks and the input data that is processed. A VCA and its-plateessing behaviour can be
defined in an abstract way and runtime profiling informatian be mapped onto these defini-
tions. Especially for data-intensive and parallel appiices such as multi-core video coding,
this technique can provide essential insights into a prarauntime behaviour.

In the context of high-level simulation, the availibilityf such a detailed runtime profiling
information opens up new means for estimating the runtinimaeur of virtual and distributed
VCAs. Multi-core HW platforms as well as VCAs can be desdiily high-level models. By
introducing means for simulating these models and by etipipthe obtained profiling infor-
mation, accurate runtime predictions become possibléoBming of many new virtual designs

15

Chapter 2. Prior work on complexity and runtime estimation

and exploration of different parallelisation approaches lse done without needing to adapt the
software design.

In contrast to CAL/RVC, PAS focuses only on modelling aspaxgsential to the parallel
execution behaviour of a VCS and less on detailed functideatription. This enables a clear
focus on high-level design aspects of parallel systemsouwitlthe need to specify low-level
functionality (i.e. below the level where the parallelisattakes place) and results in simplicity
and descriptive clarity. The PAS exploits available handwmarofiling information during the
high-level simulation and can make accurate runtime ptiedis without the need for a detailed
system description.

2.6 Summary

Various techniqgues for runtime estimation have been inited in previous works. These tech-
nigues can be grouped into analytical, profiling-based &ndlation-based methods.

Analytical estimation techniques enable performancenedgions without any concrete hard-
ware platform and only based on formal algorithm definitiddewever, they are not well-suited
for estimating dynamic and input-data dependent runtinmetieur of more complex video cod-
ing algorithms in an accurate way.

Statistical and instrumented profiling techniques can eskithis shortcoming but require
a reference platform where measurements can be obtaineslevdn these techniques are not
applicable for making runtime predictions for virtual aitelstures during the design phase since
at this stage no implementation exists.

Simulation techniques that model the hardware architecuad runtime behaviour in a de-
tailed (bit-accurate) way such as hardware simulation astitiction-set simulation techniques
can provide accurate runtime predictions in this case. Mewe¢he modelling of a VCS using
existing simulation techniques is typically too time-ims@/e to be usable for virtual prototyping
in early design stages. The focus of these simulation appesais on accurate modelling of the
functionality and less on obtaining runtime estimates iast fvay.

The PAS methodology introduced in this thesis tries to comleixisting profiling techniques
and the idea of simulated runtime estimation to provide a-hégel vitual prototyping solution.
Efficient runtime predictions become possible in a flexibkeywThis is essential for fast VCS
design, which has to address the short development cyctesl@j’s video coding applications.

16

CHAPTER

Characteristics of modern video coding
algorithms

In this chapter, the characteristics of state-of-the-ateée coding algorithms and architectures
are described. Understanding the fundamental structutprarcesses of VCAs and their impact
on the hardware architecture is essential for this workn#hbdes us to derive the methods for
performance profiling and simulation of virtual video caglsystems that are introduced in later
chapters. We focus on the video decoder design since pisatilen of this part of the coding
process is typically more challenging than the encoder. Sitles results from the fact that video
coding standards typically specify the decoding part (e@ding tools, maximum bitrate and
resolution, etc.) very precisely and place strong congsain the decoder. The encoder’s func-
tionality is rarely specified, which provides more flexityiliwhen implementing the encoder’s
design. Furthermore, decoder solutions are typicallytmtin consumer products and run on
computationally less powerful hardware. This results inghhdemand for computationally
efficient decoder solutions.

After a short historical overview odigital video codingin Section3.ll, characteristics of
modern video coding algorithms are introduced in Sedfi@h B/e use the H.264 video coding
standard for characterising the structure and mechanishybdd video coding. In Sectidn 3.3,
we describe how video data is typically structured in a l@gal way for achieving resource-
efficient data processing. Sectibn]3.4 provides more detail video coding tools available
in state-of-the-art video coding standards. In Sedtioh & describe various parallelisation
approaches for H.264 decoding and explain the challengparaflel decoder designs.

3.1 Historical development of digital video coding

In 1984, the H.120 video coding standard [ITU93] was intieth by the ITU-T (Interna-
tional Telecommunication Union - Telecommunication). sThoding standard was based on
DPCM (Differential Pulse Code Modulation) coding and aebikvideo compression by reduc-

17

Chapter 3. Characteristics of modern video coding algarith

ITU-T

H.120 H.261 H.263 | H.263+ |H.263++
Standards
Joint
ITU-T / MPEG H.262/ H.264 / MPEG-4 AVC
Standards MPEG-2 SVC [Mve
MPEG
MPEG-4
Standards MPEG-1 (Version 1/2)
SMPTE
Standards VC-1
DPCM g Hybrid Video Coding

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 —>
1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Figure 3.1: Historical development of international didj¥ideo coding standards based on the
overview in [BeulO].

ing short-term redundancy in the video signal. Even thohght.120 standard was extended in
1988 and 1993 by adding more advanced coding tools such agmmwmatmpensation, the high
computational complexity of DPCM at encoder and decoder @il low compression efficiency
led to the emerging of more advandeybrid video coding schemeghese hybrid schemes typ-
ically combine temporal prediction (i.e. inter-predictibetween frames) and local prediction
(i.e. intra-prediction inside a frame) for removing tenmgdaas well as spatial redundancy. This
scheme is referred to as hybrid video coding and builds thedation of most video coding
standards used today.

The concept of hybrid video coding was first applied in the@1.2TU88] video confer-
encing standard, which was released in 1988 by the ITU-Tdstalisation organisation. Con-
ceptual elements of this algorithm included hierarchidalicduring of video data into mac-
roblocks (MBs), MB-based motion compensation and transfas well as variable-length code
(VLC) entropy coding schemes. These techniques were fugtitended by the MPEG-1 video
standard (ISO/IEC 11172-2) by the International Orgaivndior Standardization (ISO) and the
International Electrotechnical Commission (IEC). The MBRE standard was released in 1992
by the ISO/IEC and used the same concepts and coding toolR6é4&.Hrhe major improvement
compared to H.261 was the introduction of half-pixel acteiemd bi-directional motion predic-
tion resulting in higher compression efficiency at the cdshareased processing complexity.

New tools for coding of interlaced images as well as highabdts and high resolution images
up toHigh Definition(i.e. 1920 x 1080 pixel) were introduced in the MPEG-2 stadd®MPEG-
2 is a joint standard of the 1ISO and ITU working groups andrretéto as ISO/IEC 13818-
3 [ITUOQ] and ITU-T H.262. In contrast to most video codingrefards, MPEG-2 was backward
compatible with its predecessor MPEG-1 (i.e. MPEG-2 derodepport decoding of MPEG-1
streams). MPEG-2 was widely accepted for media distribuéind broadcasting, for example
on Digital Versatile Discs (DVDs) and for Digital Video Brdeasting (DVB), and has been
used within a wide range of consumer and professional ptsdoc video storage and digital
broadcasting.

18

3.2. Concept of hybrid video coding

In 1995, the H.263 [ITUQO5] standard for video conferencipglacations was released. Es-
sential coding tools for video conferencing and low-b#rabding applications such as vari-
able prediction block sizes, advanced deblocking and fah&aror correction were introduced.
Later enhancements of H.263 were released in 1998 and in&tiD4re known as H.263+ and
H.263++, respectively.

The MPEG-4 standard [ISOD1] released in 1999 introducedla reinge of advanced coding
tools for describing and coding of mixed media formats suetawadio and video coding, 3D
graphics content, animation and fonts. Originally, videdling functionality was specified in
Part 2 of MPEG-4. This part provides two coding profiles, tivag@e Profile (SP) which targets
low bitrate scenarios and the Advanced Simple Profile (AGR)eting higher bitrate coding.
In 2003, the MPEG-4 Part 10 Advanced Video Coding standarsl mieased. This standard
has been jointly developed by ITU and ISO and is also known 264HAVC [ITU12]. The
primary development targets of H.264 were significant improents in coding efficiency, an
bit-exact match between encoding and decoding for avoidiifts between encoder/decoder
side and advanced error robustness. Due to the strong iempeus of H.264 in terms of coding
efficiency and its flexibility to address many applicationgls as low-bitrate and low-latency
transmission efficiently, H.264 has gained a dominant jprs@mongst current video standards.
This can be seen in its obligatory support in the Blu-raydaa and for DVB broadcasting and
as an HTML5 video standard.

Various amendments have been added to H.264 over the last Y& example, in 2007 the
Scalable Video Coding (SVC) amendment and in 2009 the MuéwMCoding (MVC) amend-
ment have been added. SVC provides coding capabilities264Ho efficiently encode video
signals at multiple spatial resolutions, multiple tempaesolutions and multiple quality lev-
els. This increases the flexibility when distributing cantever heterogeneous media channels
with different transmission capabilities or to displayidevices with strongly different display-
ing capabilities. MVC is targeting efficient coding of mpli video signals where redundancies
between the signals exist. An application for MVC would bding of stereoscopic 3D content
where streams for left and right eyes and from similar vigapositions are encoded simultane-
ously.

As a competing standard to H.264, the VC-1 video coding stahfSMPO06, KLO%, JBH(O8]
was released in 2006 by the Society of Motion Picture andvién Engineers (SMPTE) under
the name SMPTE 421M. Originally, VC-1 was based on Micrésaftindows Media Video 9
(WMV-9) codec [SHH 04] and is functionally equivalent to this codec. Next to 6#2it is one
of the obligatory standards used for coding video data oAr8judiscs.

Apart from international video standards, a wide range aional standards such as the
Audio and Video coding Standard of China (A{WY06//BJR"07] or open-source codecs such
asVP-8[BWX11] have been introduced. The majority of these stattslds based on a hybrid
coding scheme and uses similar coding tools too those mrdvidH.264 and VC-1.

3.2 Concept of hybrid video coding

In this section, the characteristics of hybrid video codafgprithms are explained. In the con-
text of this work, we use the H.264 video standard [ITU12] ésplaining the fundamental

19

Chapter 3. Characteristics of modern video coding algarith

H.264 Encoder

Prediction Residual Transformation

Entropy Codin
et Ot = 8

Spatial
Prediction Mode
Input Frame

Selectior
O () Ly| ranstormation [| |} Entropy Encoded
Frame "l Reorder + Quantisation Encoding | Bitstream

Motion Temporal !
—®| Estimation m Prediction

S{_4|

H.264 Decoder

Prediction Entropy Decoding

Temporal
Prediction

- Spatial
Prediction
Decoded Frame Entropy Encoded
n g | ————— |
Frame M Reorder Deblocking Decoding 19 Bitstream

Figure 3.2: H.264 encoding and decoding processes: The foajtional blocks of the encoder
can be divided into motion estimation, spatial and temppratliction, residual transformation
and quantisation, inverse quantisation and inverse wamsfframe deblocking and entropy en-
coding. The decoder contains a subset of the encoder’sidmattlocks: Entropy decoding,

inverse quantisation and inverse 2D transform, predidiat deblocking.

mechanisms underlying hybrid video coding. The strongcttiral similarities between hybrid
video coding algorithms make the results of this thesis ajgmicable to other standards such as
MPEG-2, VC-1 or AVS. Apart from structural similarity, H.26epresents the development of
video coding over the last three decades and belongs to thedffizient but also computation-
ally most demanding video coding algorithms available.sThakes parallelisation an attractive
option for H.264 encoder/decoder designs.

Figure[3.2 visualises the H.264 encoding and decoding psese The first stage of all hy-
brid video coding algorithms is the prediction of each frampixel values based on information
from neighbouring pixels within the same frame (i.e. spatiadiction) or neighbouring frames
(i.e. temporal prediction). Second, the encoder compieslifference between predicted and
original pixels and transforms thigsidual informatiorusing adiscrete cosine transford®CT).
This DCT transformation results in a spatial decorrelatiod an efficient represention of rele-
vant information in a few coefficents. After the DCT, all cligiénts are quantised. This step
aims to remove information the human visual system (HVS3ds kensitive to. Video coding al-
gorithms such as H.264 that typically lose information dgrihis quantisation are referred to as
lossy codingalgorithms. The rate control of an encoder is located atphésitisation stage since
adapting the “aggressiveness” of the quantisation endhbéesncoder to control the amount of

20

3.3. Hierarchical structuring of video coding elements

information that is discarded and the bitrate used for eimgpthe video data. Third, in the
reconstruction the coded residuals are inverse quantisgiheerse transformed. Accumulated
with the prediction data, this information is used for temgbprediction of future frames. H.264
uses a deblocking filter for removing blocking artifactshet boundaries between MBs. The fil-
ter aims to remove blocking artifacts while maintaining #iarpness of true edges. In H.264,
an advanced deblocking method was introduced, which isegethe subjective quality signifi-
cantly and results in a bit rate reduction of 5%-10% for thees@&bjective quality compared to
the non-filtered video. In contrast to previous standaitus,deblocking filter is applied within
the reconstruction loop of the en-/decoding process (EBi@) and is also referred to as
loop deblocking Fourth, the decoder uses an entropy coding algorithm fapwing statistical
redundancy within the coded elements of prediction andivesidata.

On the decoder side, these steps are done in a reverse oirdértHe decoder entropy de-
codes the coded bitstream and retrieves the residual iaf@mand the prediction information
from the encoded bitstream. Second, the decoder predicts MB’s pixel data using either
spatial or temporal prediction. Third, the predicted pixdébrmation is combined with the in-
verse quantised and inverse transformed residual infasmafs a last step, debocking of the
decoded frame removes blocking artifacts that occur atdngdos between neighbouring MBs.

It is important to note that video coding standards aim taensmteroperability and syntax
capability [SWO05] between encoding and decoding sidestlaatdall ITU-T and ISO/IEC JTC 1
video coding standards only specify the decoding processh Epecification typically includes
(i) a specification of all data structures and coding elesiknown to the video standard such as
slices and macroblocks and (ii) algorithmic desriptionshef coding tools that can be applied
to the individual data elements. In Sectigns 3.3[@and 3.4¢tlwo essential aspects of modern
video coding standards are explained in more detail.

3.3 Hierarchical structuring of video coding elements

For flexibility and the need to address different coding egagilon requirements, the H.264 video
coding standard specifies/aeo Coding Layer (VCLand a Network Abstraction Layer (NAL).
While the VCL defines the coding elements that are used foesgmting the video data in a hi-
erarchical way, the NAL defines how each VCL element (andtimidil header information)
can be formated into a data representation that is suitableetwork transmission. For paral-
lelisation the VCL is of prime importance since data-patedhtion is typically implemented by
parallel processing of multiple VCL coding elements.

Since H.201, the VCLs of all ITU-T and ISO/IEC JTC 1 video cuglstandards have been
based on block-based hybrid video coding schemes [SWO0E] V3L coding elements defined
in these standards are based on similar hierarchical stascts depicted in Figute 8.3. This
figure shows how H.264 divides each video sequence hiecalbhinto GOPS(Group of Pic-
tures), frames, slicesnacroblocks(MBs) and blocks. A GOP represents a set of consecutive
frames within a video.

Each frame is divided into squared regions of 16x16 pixdis,ntacroblockgMB). MBs
form the core coding elements of the H.264 standard and noolihg tools are defined in the

21

Chapter 3. Characteristics of modern video coding algarith

Video layer Video sequence
GOP layer GOP GOP GOP
Frame layer Frame 0 | | Frame 1 Frame2 || Frame3 || Frame 4 || FrameS | Frame N
Slice layer Slice 0 i) ¢ 16 Pixels 4 Pixels
Slice 1
Slice 2 —
Slice 3

Macroblock Block
layer
Figure 3.3: The H.264 video standard hierarchically stmes the video stream into multiple
layers. It divides the video stream into groups of framem g the Group-of-Pictures (GOPS).
Each frame can be divided into multiple slices. A slice cariusther divided into regions of
16x 16 pixels, namely the Macroblocks (MBs).

context of MBs. Each video frame can contain one or multitiiees whereas each slice repre-
sents a region within an image that can be coded indepegdsfrttie other frame’s slices.

The strong hierarchical structuring of the video conteldved processing at various levels
of granularity. The size of the available memories (e.gemdl memories, processor caches)
and the requirements on the processing latency typicdilyeince at which level of granularity
the processing effectively can be implemented. Paradlidis often takes place at a MB level
since most architectures can process, transfer and s&se btocks of data in an efficient way
and within their architecure’s memory limitations.

3.4 Coding tools

Hybrid video coding standards today use a wide range of asehooding tools for coding VCL
elements such as MBs efficiently. This section providesef liescription of the most essential
coding tools used in the H.264 video standard. These towtsdince means for removing spatial
and temporal redundancies when representing video coatehénable efficient representation
of VCL elements such as MBs.

3.4.1 Spatial prediction

The concept behind spatial prediction is based on the fattpixels within the same frame,
especially if spatially close, often poses a high simjariEpatial techniques can exploit this
similarity and reducespatial redundancy Spatial prediction provides means for deriving a
pixel's information from other regions within the same femSpatial prediction is often re-
ferred to asntra predictionsince no referring to other frames of the video sequences talkee.

In H.264, a set ofntra prediction modess provided. Each mode describes a specific pattern

22

3.4. Coding tools

0 (DC) 1 (horizontal) 2 (vertical) 3 (plane)
K//
Mean | = |———> LU --ees //
@)
0 (vertical) 1 (horizontal) 2 (DC)
[1] [1] HEEEERN
: — Mean

3 (diagonal down-left) 4 (diagonal down-right) 5 (vertical-right)
1] 1] [L[
W/]
6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)
L[] J L [L[
/
//
/
~d /Y

(b)
Figure 3.4: H.264 intra-prediction modes for blocks of (x16 and (b) 4x4 pixel size.

to derive a MB's pixels of the border pixels of spatially agjat MBs (Figuré_314). For exam-
ple, the pixels of a 16x16 MB can be predicted using one of dliptien modes visualised in
Figure[3.4a (Intral6x16). Pixels from neighbouring matmoks are for example propagated
in a vertical, horizontal or diagonal direction. Apart frdrmral6x16, each MB can be divided
into smaller blocks of 4x4 pixels and predicted with additibprediction patterns visualised in
Figured 3.4b (Intra4x4). While Intra4x4 is more suitableffoe structures, Intral6x16 typically
provides a more efficient coding for large homogeneous nsgio

While in previous standards such as H.263 and MPEG-4/A3& jimediction has been done
in the transform domain (i.e. prediction of frequency caidfits), a paradigm change to intra
prediction in the spatial domain (i.e. prediction of luntiea/chrominance pixel information)
has been introduced in H.264.

3.4.2 Motion-compensated prediction

Motion-compensated prediction (MCP) aims to exploit thaikirity of consecutive frames
within a video sequence. Changes between consecutive draraaypically caused by object or

23

Chapter 3. Characteristics of modern video coding algarith

Reference Frame j
Current Frame
Current Frame

Reference Framei | .-¥ |Current

/" Reference Frame i ",1 Current

- =1 MB
£

(@) (b)

Figure 3.5: Temporal prediction of macroblocks betweercthreent frame and reference frames.
(a) Uni-directional temporal prediction between two framf) Bi-directional temporal predic-
tion between the current frame and two reference frames.

16x16 16x8 8x16 8x8
Macroblock
Types
8x8 8x4 4x8 4x4
8x8
Types

Figure 3.6: For temporal prediction, the macroblocks caditieled into smaller subblocks of
16x8, 8x16 or 8x8 pixels. For macroblocks with an 8x8 pamtitng, a further partitioning of
each 8x8 block into 8x4, 4x8 or 4x4 blocks is possible.

camera movement and the encoder estimates this moveméng dMEP. Thisinter-prediction
estimates the spatial displacement of each MB between frame describes this displacement
using motion vectors (MVs). This can be seen in Fiduré 3.5zreHa MB region in the current
frame is predicted based on a region in a reference framengse motion of a MB between
frames can be used for predicting the MB’s pixels. The MV isduas part of the inter-coding
representation of this MB.

An innovative extension of motion compensated predictiaa heerbi-directional predic-
tion. This coding tool has been available since MPEG-1 and inugiteseding standards and
enables the use of prediction signals from past and futamads. Bi-directional motion com-
pensation is visualised in Figure B.5b. Here, the prediatica MB in the current frame is based
on averaging the MCP signals from previous and future frames

Newer standards such as H.264 address the obvious factoliatris typically not the same
for all pixels of a MB by introducingrariable block size$or motion prediction and compensa-

24

3.4. Coding tools

tion. By usingmacroblock partitioninga MB can be divided into blocks of 8x8 or even down to
4x4 pixels with individual motion vectors for each blockgBie 3.6 visualises the MB partitions
available in H.264. Each MB can divided into smaller block4@x8, 8x16 or 8x8 pixels. Each
MB with 8x8 partitioning can be further partitioned into 8x4x8 and 4x4 blocks. The small
block sizes aim to describe very fine-structured motion ieffity and can increase the coding
efficiency significantly.

Apart from macroblock partitioning to target the motion afdistructures, most VCAs after
H.261 supporsub-pixel accurate motion compensatidrne motion of each block is estimated
on a full-, half- or quarter-pixel accurate position, whietables a more accurate motion repre-
sentation and typically results in a higher coding efficier@/hile for MPEG-1, MPEG-2 and
H.263 full- and half-pixel accuracy was provided, new stdd such as H.264 provide up to
quarter-pixel precision for MCP.

It should be noted that due to the large amount of temporalneahcy, inter-prediction
typically can achieve a higher compression efficiency thaatial prediction but at the cost of
higher computational complexity.

Slice types

Hybrid video coding frameworks such as H.264 typically pdevthree ways for coding the
slices of a frame:

1. Intra-coded slices (I-slices): In an I-slice, all MBs of the slice are intra-coded. This
avoids data dependency on MBs of other slices and enableslidgcof MBs within |-
Slices independently of other slices. This independeroeslthe decoder to use I-slices
as entry points into a coded bitstream or for recovering fa@nsmission errors.

2. Uni-directional predicted slices (P-slices): For predicting blocks in a P-slice, inter-
prediction between the current frame aneéference framand based on one MCP signal
can be used. In addition, all coding types of I-Slices can s®duor coding MBs in
P-slices.

3. Bi-directional predicted slices (B-slices): In addition to all coding types available in
P-slices, inter-prediction based on two MCP signals candeel dor predicting MBs in
B-slices.

Depending on the coding of the slices within a frame, the &asnreferred to as I-, P- or
B-frame. In terms of coding efficiency, P-frames typicalbhi&eve a reduction of 50% in data
rate compared to I-frames. B-frames typically achieve &driglata reduction than P-frames,
but at the costs of higher computational complexity.

Each GOP typically contains a set of |-, P- and B-coded fraamescan be decoded inde-
pendently of any previous GOP. The length and the codingtstre: of a GOP are not specified
by the standards and can be chosen by the encoder. The ctdic® is characterised by its
length and the type of prediction used for the individuahfes in the GOP. In Figufe 3.7, two
different GOP-codings are visualised. Figurd 3.7a repitsse|P-coded GOP structure with one

25

Chapter 3. Characteristics of modern video coding algarith

GOP GOP
SNNSNNN | NN
1 o I P P I P P P
(@)
GOP GOP

I

1]
0)

il

1 P
(©)
Figure 3.7: Different GOP-codings: Intra (1), predicted @hd bi-directional predicted (B)

frames are used for coding. (a) IP-Coding, (b) IBBP-CodWigw order and (c) IBBP-Coding:
Coding order. More details on the coding order are provide8laction 3.4.2.

I-frame at the start of each GOP and dependent P-framesvaftds. Figuré 317b represents a
IBBP-coding where bi-directional B-frames are used witthie GOP. It should be noted that in
order to use future frames as references in B-frame preditiie coding order must be adapted.
In Figure[3.Tc, this reordering of the coding order is vimel. Frames that are used for pre-
diction of other frames are encoded earlier in the bitstredhe decoder has to make sure that
these frames are encoded/decoded in the correct coding orde

Typically, the GOP-coding structure is chosen accordinthéovideo application. Aspects
that typically determine the choice of GOP-coding struetare, for example, compression effi-
ciency, quality, latency and error robustness. For ediing cutting applications, I-frame only

26

3.4. Coding tools

coding or IP-coding with short GOP sizes is often used. Thigides frequent entry points into
the coded bitstreams and enables fast cutting, fast badkeaward and quick previews. For
low-bitrate video conferencing applications, typicalligter compression efficiency and low
latency are targeted. For these applictions, longer IR@¢mkquences are often used. When
distributing high-resolution video content without theedeto meet low latency targets, com-
pression efficient coding orders based on B-frames (e.gP)BBe often used.

3.4.3 Transformation and quantisation of residual data

After the prediction, a spectral decomposition of the ordjiresidual data is typically done by
all hybrid video coding standards. This transforms pixsidweals into frequency components
and reduces spatial correlation between pixels. It conars relevant information in a few
significant transform coefficients that can be represengedféw variables and stored efficiently.
In H.264 spatial transform coding of the residuals is usad.cdntrast to preceeding coding
standards that have been using 8x8 block transforms, theftranation in H.264 is done on
4x4 blocks. For this transformation, H.264 uses a 2D DEI¥ discrete cosine transfomof the
following form:

1 1 1
1 -1 -2
-1 -1 1
-2 2 -1

(3.1)

— =N

It should be noted that H.264 uses this exattger transformH for the transformation of
4x4 pixel blocks. This transform has the significant advgetéat inverse-transformation mis-
match can be avoided. Furthermore, the transformation eaimputed using only a combina-
tion of additions, substractions and bit-shifting. Theperations can typcially be implemented
efficiently on most hardware architectures.

For quantisation of the resulting transform coefficients264 uses a quantisation param-
eter (QP) with values ranging from 0 to 51. QP controls thentjsation steps and has been
designed in a way that an increase of QP by a factor of sixtesuapproximately the doubling
of the bit rate. The rate control of the encoder selects thén®ch a way that the targeted
bitrates can be achieved.

3.4.4 Deblocking filter

The block-based coding of video content results in visiloléaats at the block boundaries. The
main causes are the block-based MCP and the block transfamdsespecially for low-bitrate
applications these artifacts become obvious. H.264 ioted an adaptive in-loop deblocking
filter that reduces blocking artifacts while retaining theugpness of true edges. For true edges,
the filtering would be turned off while artifical edges shob#&lfiltered.

For H.264, the decision whether filtering should be done ahathvfiltering strength is
applied is based on the coding mode of the filtered blocks (prgdiction type, number of
residuals, motion strength) and on the pixel samples tlealbaated at the filtering position. In

27

Chapter 3. Characteristics of modern video coding algarith

1

I?o ! p2

./\/p,

Figure 3.8: One-dimensional visualisation of a block edge tiypical situation where the H.264
deblocking filter would be turned on [LJI03].

Figure[3.8, this sample-based filtering is visualised. Tms-dimensional visualisation repre-
sents the filtering process across a border of two neightguriocks. The border is located
betweeny, andpy and four pixels from the left block and four pixels from thghi block are
used by the filter for determining the filtering strength. sfiltering is done on the vertical as
well as the horizontal borders of each MB.

In [LIL 03], a detailed description of this filter can be found. In¢batext of parallel video
coding it is important to note that the H.264 deblocking filtdroduces dependencies between
MBs. Furthermore, the filter is applied after the MCP of a MBI atross slice boundaries.
This can generate dependencies between MBs at the bordatioé$ and must be considered
in parallel decoding schemes.

3.4.5 Entropy coding

Entropy coding schemes such as Variable-Length Coding (Mak: advantage of the relative
probabilities of the possible values within our coded videpresentation and reduce statistical
redundancy. In H.264, two entropy coding algorithms havenbiacluded: Context-Adaptive
Variable Length Coding (CAVLC) and Context-Adaptive Bipakrithmetic Coding (CABAC).

The coding of the syntax elements using the CABAC arithmetiding scheme is typi-
cally 10-15% more efficient compared to CAVLC [SWO05] but cangtionally more demand-
ing as well. Both algorithms adapt to the data statisticagisither context-adaptive mapping
to different VLC tables (CAVLC) or adjusting of probabilitgstimates in a context-adaptive
way (CABAC).

3.5 Parallel video decoding

Despite the fact that parallel H.264 decoding has beentigeted in a large number of scientific
publications [HJKHOB, LHHO3, SYT04], parallelisation dfi$ algorithm is highly challenging.
Most of the H.264 coding tools strongly adapt to the videaennhand come at the cost of strong
variations in the runtime of the decodér [HIKHO3, SBSGO8lirtlrermore, the coding tools
in H.264 introduce a large number of data-dependenciesdegtthe individual VCL coding
elements. For an efficient parallelisation as well as wheudipting the runtime behaviour of a

28

3.5. Parallel video decoding

Frame n

Frame n-1

v
Current 0
MB

(@) (b) (©)

Figure 3.9: Macroblock dependencies in H.264 decoding.oWgrmean that the macroblock
at the origin of the arrow needs to be processed before degdbe other macroblock. (a)
Intra-prediction dependency. (b) Deblocking filter depamay. (c) Inter-prediction dependency.

v
> MB

parallel H.264 encoder or decoder, these runtime varigtéod dependencies must be resolved
appropriately.

In previous work, various approaches for parallelizing Hh&64 decoding process have
been introduced. Van der Tol et al. [vJG03] have investdjatethods for mapping the H.264
decoding process onto multiple cores. Functional spditthan H.264 decoder and the use of
MB pipelining at thread-level have been demonstrated inQCB5, CTGG04, SFLBQ7]. Zhao
et al. [ZLO6] exploit frame parallelism in the Wavefront teique. A hierarchical approach
working at group-of-picture and frame level is demonsttate [RGMO06E]. In [LLCW1(Q], a
parallel embedded H.264 decoder processes the video strearslice-level. The scalability of
H.264 for a data-parallel decoding approach operating erMB-level and on multiple frames
in parallel has been investigated by Meenderinck et al. [M29]. The same study introduces
an efficient technique for H.264 frame-level parallelisatithe 3D-Wave strategy.

These papers primarily focus on parallelisation in termalgbrithmic scalability. Upper
limits on the number of processors and frames processedratigdaare given. However, the
memory-restrictions of embedded environments make thgsmaches hardly usable for mo-
bile and embedded architectures. More resource-efficie24isplitting approaches have been
introduced in[[SSBG0B,SWC07,WP183]. The focus of these authors has been put on efficient
decoder implementations for embedded architectures.

In the following, we investigate the dependencies thatwideding tools generate between
MBs. This has a major impact on all parallelisation appreachAfter this section, we de-
scribe the two fundamental paradigms that parallel videmmder approaches can be based on:
Functional- and data-parallel partitioning.

3.5.1 Dependencies between macroblocks

Partitioning of a video decoder and distributing the MBsdit tasks onto multiple PUs is
challenging due to dependencies between spatially as wat#raporally neighbouring MBs.
These dependencies originate from three sources asaliedtm Figuré 319, and are described
as follows.

Firstly, in spatial prediction of the current MB, unfilterptkel information from up to four
spatially neighbouring MBs is used. These dependenciedeapieted in Figuré_3]9a. In gen-

29

Chapter 3. Characteristics of modern video coding algarith

H.264 Decoder

Processor 1 - Processor 2
Reconstruction

Prediction Entropy Decoding

- Spatial
Prediction
Decoded g | Frame Deblocking Entropy Encoded
Frame Reorder = Decoding 97| Bitstream

Reconstructor .~ Parser
» Data-Parallel Processing .~ Functional Splitting

Figure 3.10: Functional split of an H.264 decoder: Parsind entropy decoding tasks are
executed on one PU, pixel-based processing tasks suchdistiore and deblocking on another
PU.

eral, it is a good option to gather the current MB and its msfee MBs on the same PU to
avoid expensive inter-processor communication for résglthis dependency. For an efficient
parallelisation, this dependency must be addressed dgrefu

Secondly, the deblocking filter imposes additional spatependencies. For filtering the
outer edges of the current MB, up to four pixel rows/colummsrf the upper and left neigh-
bouring MBs are used as filter input. These MB dependencesismalised in Figure_3.9b. An
efficient parallelisation method will focus on avoiding $eedependencies having to be resolved
across individual processors.

The third MB dependency arises from the inter-predictiote Thter-prediction reads ref-
erence data from MBs of previously decoded frames. Obwpitsk required that processing
of these reference MBs has already been completed beforedinebe used for inter-prediction
of the current MB. This results in the temporal dependengjatied in Figuré_3.9c. In fact, the
current MB can depend on a rather large number of reference. MB264 allows splitting of
the current MB into small sub-blocks, for each of which a safgamotion vector is computed.
In P-slices, each inter-coded MB can contain up to 16 motawniors and point to one reference
frame. For bi-directionally predicted MBs in B-slices, aximum of 32 motion vectors and two
reference frames is possible.

3.5.2 Functional partitioning

In functionally partitioned decoding systems, the decgdasks such as parsing, motion com-
pensation or deblocking are executed on individual PUsicBjly, the individual coding tasks
of each MB are processed by one processor after the othermthiple PUs allow the next
MB'’s decoding tasks to be started before computation of tleeat MB has finished.

This splitting method has the advantage that each PU cantimeisgd for a certain task (e.g.
by adding task-specific hardware extensions) and minimeatsnstruction caches. In contrast
to data-dependent parallelisation, also strongly sedaldatks such as entropy decoding can be

30

3.5. Parallel video decoding

(2 Cores) (4 Cores) (8 Cores)
Figure 3.11: The Single-row splitting approach. The agssigmt of processors to macroblocks

is shown.

v11 E]] 1111171171 1111111

AEA|

\Z

t=2) (t=3) (t=238) (t =10) (t = 34)
Figure 3.12: Example of the Single-row splitting approacediwith two cores. Processed
macroblocks are shown at different instances of tirrietakes a constant value of 1 unit of time

to process a macroblock.

accelerated by this strategy. The disadvantages are lyparaunequal workload balancing and
high transfer rates for inter-communication. Figlre B.isualises a functionally split H.264
decoder. The parsing and entropy decoding task has begmeddio Processor 2, the pixel-
based processing tasks to Processor 1.

3.5.3 Data-parallel partitioning

As opposed to functional splitting methods, data-paralfstems do not distribute the functions,
but the macroblocks among multiple PUs. Figlre B.11 ilatss an example of data-parallel
stream decoding. This splitting strategy distributes zmntal lines of macroblocks among dif-
ferent processors. For efficient parallelisation, the M&%'e assignment algorithm has to ad-
dress the following issues:

e The data-dependencies between different PUs must be msitnaind data locality must
be exploited (i.e. supporting of caching strategies).

e The MB distribution onto the PUs must achieve an equal waiklbalancing.

e Generic MB core assignment for different frame sizes mugidssible.

Scalability in parallel systems requires minimal dataedefency between the PUs. A com-
promise between small memory size and data-dependenaiebeceeached by grouping the
MBs as described in_[vJGO3]. To support caching stratediesnaore global scale, the groups

31

Chapter 3. Characteristics of modern video coding algarith

of MBs assigned to one core must be aligned closely togetheaé¢h frame. By introducing
a centralised and constant MB assignment for each fransegtbbal caching issue can be ad-
dressed efficiently. Additionally, a constant MB assigntredlows the parsed MBs to be written
directly to the First-In-First-Out (FIFO) input buffers tie PUs executing the corresponding
reconstruction tasks.

However, introducing data-independencies for data-fghnatocessing support has its lim-
itations. First, increasing the number of independent-tideks reduces the coding efficiency
since similarities between blocks are not exploited. Sective encoder does not necessarily use
multiple slices for coding a frame and the availability dtek typically cannot be guaranteed
at the decoder side. Methods for data-parallel processing heen introduced that typically do
not need data-independent blocks. These methods speaifgegsing order for the data-blocks
that tries to minimize the dependencies between consetytivocessed data. An example is
thewavefrontmethod [MAJ 09/SSBG111, SSBG09]. Here, the data is divided into multpts
of macroblocks where each set is calledae Data-dependencies only exist between blocks
from different waves but not between blocks of the same w@emsequently, blocks in a wave
can be processed in parallel since they only depend on aatagdreviously processed waves.

In the following, we provide examples of the most commonlgdigiata-parallel decoding
approaches.

Single-row approach

To illustrate the Single-row (SR) approach, we give an eXxamyth two processors on an
image divided int® x 8 MBs in Figurd 3.1IP. LefV be the number of processors. Procegser
{0,--- , N — 1} is then responsible for decoding thyéh row of MBs if y mod N = i. In
this example, we assume that it takes a constant valuiauaft of time to process each MB. It
is, however, important to notice that this is a coarse owgbfication. In real video streams,
there are large variations in the processing times of idd&i MBs, which makes it difficult
to evaluate the effectivness of a parallelisation approachFigure[3.12, only PU is able to
decode MBs at time = 2, since all other MBs are blocked as a consequence of the depeies
illustrated in Figuré 319. After the first two MBs of Rolwhave been computed, the second core
can start processing the first MB of the second row, since épemdencies for this MB are
now resolved { = 3). The next interesting event occurstat= 8 when PU1 has finished
the computation of the first row. MBs of the second row haveaaly been computed and
therefore PUL can start decoding MBs of Ro#vthat are dependent on their upper neighbours.
Attime ¢t = 10 we obtain the same situation as at 2, where the first core unlocks the second
one. Finally, the whole frame has been decoded-at34.

The advantage of the Single-row approach lies in its sirtpliclt is very easy to split
the frame among the individual processors. There is only alsstart delay after which all
processors can effectively work. The potential downsidthisfapproach is that there are many
dependencies that need to be resolved across procesgpmasst borders. This has played no
role in our example where we have assumed constant progessi@ for each MB. It, however,
will be noticeable for real videos streams that contain MBsansiderably different runtime
characteristics. In fact, each MB processed by ¢atepends on its upper neighbours that are
processed by a different PiU- 1. If PU i — 1 fails to deliver these MBs at the right time, this

32

3.5. Parallel video decoding

coe W[TIN coel [T L]

s -l . o .. », ‘

Time Time
(a) (b)

Figure 3.13: The number of inter-processor dependencigsidsal for the overall performance
of the multi-core system. Rectangles represent MBs. A MBdthvindicates the required
processing time. Arrows between two MBs mean that procgssiithe MB which the arrow
points to can only start after the other MB has been decodajl A (arge number of inter-
processor dependencies slows down the system. (b) Due towhamount of inter-processor
dependencies, different running times of individual MB&dmae averaged out. This should
improve the overall performance.

ww ww

2
2
2
2
2
2
2
2

2 K1) 4
A3 3
A3 3
A3 3
2 KIEl 4
2 KIE] 4
223 3
3 3K

OO0 O OO OO
Qo0 Co Co o G0 o o

NN NN

NNNNNNNN

AR BRED

AAADMMDDDD

R Y Y PRSI Y P " p—

RS DY) DUNIPY Y PRI DU)

(2 Cores) (4 Cores) (8 Cores)
Figure 3.14: The Multi-column splitting approach.

IERENERN EENEREN 2| N

NN NN NN
NN NN NN

NN NN NN
NN NN NN

(t=4) (t =5) (t=28) (t = 36)
Figure 3.15: Example of the Multi-column splitting apprbac

willimmediately produce stalls at PU This behaviour is shown in Figure 3113(a). On the other
hand, this strong coupling of PUs can potentially lead to boffer requirements.

Multi-column approach

The Multi-column (MC) splitting strategy divides the fraiméo equally-sized columns as shown
in Figure[3.14. Letv denote the width of a multi-column that is typically derivied dividing
the number of MBs in a row by the number of processors. Monaé&dly, let N be the number
of processors. Processbis then responsible for decoding a MB of thth column ifiw <

x < (i+1)w. A similar method to partition the image has recently beappsed for the H.264
encoder in[[SWCQ7].

To illustrate the MC approach, we give an example with twapssors on an image divided

33

Chapter 3. Characteristics of modern video coding algarith

T 11711 1111
111 1T 1 0007 (11011101
11111111 22222222
22222222 HEEIEIRIEIRIEIE
2222222 °2EEEIREEIEIRIE
2222222204 44444414

(2 Cores) (4 Cores) (8 Cores)

Figure 3.16: The Slice-parallel splitting approach.

1
1
1

1]

oy Y ey

1
1
1
1
2
2
2
2

NN N N> [y ey
SIS — — (==
SIS — - =~
O SIS — | — | —[—
IS — — =~
MNISS — = ==
NN N N |

Co
~

(t = 26) (t =32) (t
Figure 3.17: Example of the Slice-parallel splitting agprie in the blocking version.

1

LSHOSHSH SN — | — | — | —
DSILSIRN O — | — | — | —
DSILSIERN O — | — | — | —
DSILSIRN O — | — | — | —
DSILSILN O — | — | — | —
DSILSINN O — | — | — | —
DSILSIEGN O — | — | — | —
OSHOSH SO — |— |— |—

t=1) (t=32)
Figure 3.18: Example of the Slice-parallel splitting agario in the non-blocking version.

into 8 x 8 MBs in Figure[3.1b. In this example, we assume that it takesrestant value of

1 unit of time to process each MB. Proces$dhereby starts processing the first row of MBs
until it hits the border to the MBs assigned to Process@r = 4). Since the dependency for
the leftmost MB of PL2 is now resolved, Processprcan finish decoding its first MB dt= 5.

We obtain a similar situation @t= 8. The dependencies of the leftmost MB of the second row

have been resolved, and Pltan therefore continue its work. Decoding of the frame idlfina
completed at = 36.

The basic idea behind using the Multi-column approach ishtaia a looser coupling of
processor dependencies. In fact, the processor assigioetdrs are significantly reduced in
comparison to the Single-row approach. One processor heaitdor the results of another one
only at the boundary of its multi-column. Within the multlomn, MB dependencies can be
resolved on the same processor. This should lead to redotereprocessor dependencies and

could therefore improve the overall runtime behaviour effiulti-core system as is depicted in
Figure[3.1B(b).

34

3.5. Parallel video decoding

Slice-parallel approach

The Slice-parallel (SP) is a widely-used splitting apploalkt is a 90-degree rotated version of
the Multi-column approach that divides the frame into es&a®ed rows. This method is depicted
in Figure[3.16. Formally spoken, l&étdenote the height of a multi-row. A MB of thgh row is
then assigned to PUIf ih <y < (i + 1)h.

The runtime behaviour of the SP approach is illustrated gufe[3.1V. Here, PU has to
wait for a relatively long time# = 26) until the dependencies for its first assigned MB are
resolved. While the first processor can complete its workhencurrent frame at = 32, it
still takes 26 units of time until the second PU finishes psso®y the remainder of the frame
att = 58. In the following, we refer to this approach as the blockitigesparallel technique.

In a recent work[[MMOQ8], a non-blocking encoder version of tBP approach has been
presented. The authors encode their video streams soitteabelders coincide with horizontal
lines in the frames. Since neither dependencies introdbgaatra-prediction nor dependencies
introduced by the deblocking filter occur across slice biadihe multi-rows can be processed
independently from each other.

Obviously, this non-blocking SP approach (NBSP) requiisrig full control over the en-
coder, which will not be the case for many applications. Fampleteness, we also give an
example of this approach in Figure 3.18. Here, both PUs cam gtocessing their assigned
MBs immediately { = 1) and finish decoding the complete frame at 32.

Diagonal approach

The Diagonal (DG) approach depicted in Figure B.19 reptsserother popular splitting method.
This processor assignment is obtained by dividing the firetdf MBs into equally-sized columns.
The assignments for the subsequent lines are then derivedtishifting the MB assignments
of the line above. This procedure leads to diagonal patterns

Figure[3.20 gives an example of the DG approach using twoessms. Here, the second
PU stalls until its dependencies become resolved bylRllt = 4. The first PU completes
computation of its first image partition at= 10. Unfortunately, it cannot directly start pro-
cessing the second patrtition, but has to wait forid resolve dependencies unti= 12. The
following images { = {13, 16, 18,20, 23, 24}) show situations where the first PU has to wait
for MBs decoded by PW. For legibility, we do not show subsequent states where omeegsor
blocks the other one, but directly proceed to the final rededived att = 43.

The Diagonal splitting method is regarded as an approadh'bspects” the dependency
patterns spanned by the intra-prediction and the deblgdiier. (Dependencies are shown in
Figure[3.9). We illustrate the idea behind the Diagonalttspj method in Figuré 3.21. The
figure compares the inter-processor dependencies inteddoy the Diagonal and the Multi-
column splitting techniques. The Diagonal method theeefmly shows dependencies on MBs
from its left neighbouring processor, which is in contrast for example, the Multi-column
method that contains dependencies on MBs of both neightpurlUs. These reduced inter-
processor dependencies could lead to an improved runtihmevtoeir of the multi-core system.

35

Chapter 3. Characteristics of modern video coding algarith

1
111
1.1
1

(2 Cores) (4 Cores) (8 Cores)
Figure 3.19: The Diagonal splitting approach.

—_ i

hE

t=18) (t=20) (=23 (t=24) (t=43)
Figure 3.20: Example of the Diagonal splitting approach.

@ (b)

Figure 3.21: Processor dependencies in the Diagonal antd-étlimn splitting approaches.
(a) In the Diagonal method, dependencies forRiiginate solely from MBs assigned to AU
PU 2 therefore never has to wait for P3J (b) In the Multi-column approach, MBs assigned to
PU2 are also dependent on Proces3as indicated by the dotted arrow.

3.6 Summary

In this chapter, we have described the historical developsnef hybrid video coding standards.
We have shown that modern hybrid video coding standards asithPEG-4/ASP, H.264 and
VC-1 share strong structural similarities and concepyusitinilar coding tools. Furthermore,
most hybrid video standards use similar hierarchical apdilements and VCL definitions for
representing video content. Understanding and exploitisgundamental architectural of mod-
ern video coding standards plays an essential role whergdd@A runtime analysis. It can

36

3.6. Summary

provide important insights into the runtime behaviour of @A/at the level where the paral-
lelisation would take place in a functional or data-patghartitioning. In Section 4, we will
exploit this for analysing the runtime performance of a V@4¢lation to its underlying algo-
rithm structure. Section] 5 will introduce a framework foisdebing VCAs in an abstract way
based on the structural similarity of hybrid video coding.

In addition, the current section has described splittingregches for distributing H.264 de-
coding tasks onto multiple PUs. We have introduced variaastfonal- as well as data-parallel
splitting approaches and outlined the challenges of regpldata-dependencies efficiently in
parallel decoder designs. The runtime performance of twidual VCA partitionings will
strongly vary for different architecture hardware (e.gminer and type of processors, transfer
buffer sizes) and the software implementation of the VCAisctional blocks. In Sectidd 6, we
will introduce techniques for quickly estimating the runé of different VCA partitionings at
an early stage of the design process. We will use severaleo¥ @A partitioning approaches
described in the current section in order to demonstrateriy@osed techniques.

37

CHAPTER

Data-driven runtime analysis

In this section, we analyse the runtime behaviour of an iegdt.264 decoder running on a
singlecore. By profiling a single-core VCA, important insights fontime optimisation can be
obtained. Starting from an initial VCA, the developer itaraly profiles the VCA and optimises
the functions with the highest potential for a runtime raguc While this optimisation on a
functional level is highly efficient for runtime optimisatis of single-core VCAs, exploiting
the obtained information when designing a parallel VCA is$ stvaightforward. To address
this stortcoming of functional profiling, we will introduce new analysis technique, the Data-
Driven Profiling (DDP) method. This method represents onedaatribution of this thesis and
puts traditional function profilings in the context with thetual VCL coding elements that are
processed during a VCA's execution. The complexity infdioraderived by DDP provides
insights into data-parallel complexity aspects of a VCA aad serve as an efficient tool during
parallel VCA design. Compared to an analysis on a functiteadl, it provides capabilities to
investigate the complexity of a VCA at the level where theafialization takes place (i.e. the
macroblock level for most VCAS).

The chapter is structured in the following way: In Secfiofil, 4ve introduce the concept
behind DDP and explain how traditional function traces camiapped onto the coding elements
specified by the H.264 coding standard. Sedfioh 4.2 deschibevy DDPs can be derived in an
automatic way. In Sectidn 4.3, we provide an overview of &g ¢nvironment used in context of
this thesis. We apply the DDP method in Secfiod 4.4 and detraaashow data-driven profiles
can be analysed before starting a parallel VCA design.

4.1 Data-driven profiling

Traditional dynamic profiles contain information about aA&Ccomplexity at a function level
(Chaptei 2.R). For each function of the VCA, a complexititistie based on different metrics
is provided. For example, the mean and average number aégsimg cycles spent in a specific
function. This information is typically sufficient for sitegcore optimisation.

39

Chapter 4. Data-driven runtime analysis

The idea behind DDP is to map the function traces obtaineimglarVCA's execution onto
the VCL coding elements. These elements represent the ggingelevels where the system
designer can introduce parallel processing mechanisms wasigning the parallel VCA. In
contrast to a traditional profiling, the VCA runtime can theEnanalysed directly at this level. In
this work, we investigate VCA processing at MB-level sincestrparallel VCA approaches im-
plement partitioning schemes at this level. However, theéhoas introduced in this work are not
restricted to MB-level analysis. Depending on the graryléinat is most suitable for analysing
a VCA's dynamic behaviour and integrating parallelisatinachanisms, different VCL coding
elements such as slices or frames can be used.

Afirst step towards macroblock-based profiling of an H.26zbder has been taken in [KEO5].
The authors determine the frequency of each macroblockgdstpe when decoding a video
stream. The authors interrelate the runtime complexityh wie macroblock frequency. How-
ever, complexity is only investigated at the frame levelr @ark extends this idea and provides
a generic framework for a detailed complexity analysis dmhiararchical levels of a VCL (e.g.
MB-, slices-, frame-level). This is essential for making@sptions about parallel VCA imple-
mentations.

This step towards a more data-focused representationdifitrzal profilings has numerous
advantages: First, the partitioning of the VCA and the iigtion of the workload to multiple
processors take place at this level. Runtime effects iaguitom varying workload and inter-
communication between PUs must be analysed at this progessiel. By carefully addressing
these variations (i.e. by introducing buffers between tlee@ssors), we can distribute the data
in a way that results in an efficient usage of the PUs.

Second, by analysing a VCA at VCL-level, complexity can bsigieed to specific posi-
tions within a frame and to frames in the video. This enalilessystem designer to interrelate
complexity with spatial and temporal positions within aadd Based on this information, ef-
ficient load-balancing methods for data-parallel codinigitsans where multiple video regions
and frames are processed in parallel could be developed.

Figure[4.1 visualises this concept for a VCA which procesbesvideo data one MB after
another. Function calls that occur during the processirg roficroblock) B; can be assigned
to the VCL coding elements (i.e. VCL mapping) within the vadgream such as MBS, slices
and frames.

Apart from assigning function calls to specific VCL codingmlents, the system designer
can define Functional Blocks (FBs) that represent majomgptéisks. Each function is assigned
to a single FBF'B; (i.e. mapping to FBs). For example in Figure]4.1, we have ehds
FBs (parse, predict, I DCT, deblock) that divide the H.264 decoding process idtiunctional
blocks. In the following, we will use the tertaskto refer to the execution of a specific FB of a
MB. Each task has a unique number (task ID) and representxtuaition of all function calls
that have been assigned to this MB’s FB. The computationaipbexity (e.g. the number of
cycles) of a task is the cumulated complexity of all functiatis that have been assigned to this
task.

This mapping of function calls to the individual MBs and tHassification into FBs can be
done easily for simple VCA structures. For example, let s that only a single function
call IntraPredictionrepresents the complete intra prediction FB of each magcland that this

40

4.2. Automatic generation of data-driven profiles

Profiling at function level Data-driven profile generation
Function traces Mapping to VCL Mapping to
(data-parallelism is exploited here) function blocks
Call DecodeSlice Slice 0
Call DecodeMacroblock Macroblock 0

Call ParseMacroblock Call ParseMacroblock parse
ACycles
Return ParseMacroblock Return ParseMacroblock

Call IntraPrediction Call IntraPrediction predict

- » B Cycles
Return IntraPrediction Return IntraPrediction

Input Call IDCT q Call IDCT q IDCT Data-driven
stream -~ Cyeles profile
Return IDCT Return IDCT € Cyeles
Call Deblock Call Deblock deblock
D Cycles
Return Deblock Return Deblock
Return DecodeMacroblock
Call DecodeMacroblock Macroblock 1
Ré‘:"'l‘ll‘l] DecodeMacroblock

Call DecodeMacroblock Macroblock N

Return DecodeMacroblock

Return DecodeSlice

Figure 4.1: Data-driven profiling: The function traces assigned to VCL coding elements and
further onto functional blocks. In this figure, four FBs hdeen defined: Parse, predict, IDCT
and deblock.

function is called exactly once per MB. If this function idled for every MB, then the process-
ing time for the third invocation of the functidmtraPredictionwill consequently represent the
time that MB3 spends for the FB “intra”. Table 4.1 provides an example oD@t MB level.
The function trace information that has been gathered guritraditional dynamic profiling is
mapped onto individual VCL coding elements, decoding FBbtasks. Each task specifies the
complexity of a MB'’s FB.

However, for more complex VCAs, mapping of the function #mdo individual FBs and
VCL coding elements is not straightforward. Each FB can isbias a large number of calls to
individual program functions. Each function can be calladtiple times, from within different
FBs (i.e. the same function is used by multiple FBs) and d&emiht hierarchy and recursion
levels. Furthermore, the FBs of a VCL coding element do neessarily occur sequentially.
For example, in many decoder implementations, the debigctif a frame is done after all the
frame’s MBs have been reconstructed. This makes it chatigrig determine the MB a function
call belongs to and, consequently, which task it should bigaed to. We will address this issue
in the next section where we introduce a method for assighinction traces to the specific FBs
and MB in an automatic way. This enables the generation of ©idPhighly complex VCAs.

4.2 Automatic generation of data-driven profiles

In this section, we will introduce a method for mapping thediion traces to the FBs of a
VCA's individual MBs. This method is conceptually similar the idea of pushdown automa-

41

Chapter 4. Data-driven runtime analysis

Table 4.1: Profile for the tasks of the decoder’s individwaldtional blocks: The table visualises
the extracted computation time in cycles for each MB andtional block executed during the
VCA's execution. The execution of a MB’s FB is representedaligisk with a unique task ID.

Task | #MB FB Complexity
11 0 parse 8730
T 0 IDCT 141
T3 0 intra 1057
T 0 deblock 8711
Ts 1 parse 12463
Ts 1 IDCT 510
T 1 intra 701
Ty 1 deblock 15734
Ty 2 parse 19122
T1o 2 IDCT 110
T 2 intra 1418
T2 2 deblock 13875

0/0 1/0

11 171
01 0/1 e
Figure 4.2: A state transition diagram of a simple state rnmachith an initial statey, and a final
stategs. It visualises a state machine consisting of three statdghanstate transitions. Each

transition has input/output events. The input events deter the conditions that have to be met
for a transition to another state. The output signals speifions caused by this transition.

tons (PDAS)|[Sip9/7]. PDAs are abstract machines that cacritbessequential behaviour in an
formal way. This provides a powerful and intuitive conceptdiescribe the VCL coding ele-
ment structure and the FBs of a VCA in a formal way. After afarieroduction to Finite State

Machines (FSMs) and PDAs, we will explain how we can descdbeplex VCA structures

and exploit these formal descriptions for automatic magihfunction traces to specific VCL
coding elements and FBs.

4.2.1 Finite State Machines and Pushdown Automatons

State machines have been used extensively in softwarengdsigexample for studying prob-
lems of algorithm computability [WSWW0O06] and for develogievent-driven software design
approaches [WWWO04]. State machines are formal models feeriéng sequential behaviour
in an abstract way. The basic concept of a state machine kasrteoduced in [Mea55,Moo56].

42

4.2. Automatic generation of data-driven profiles

Table 4.2: Transition table of the state machine visualinegeigure[4.2. For each control state
of the machine, the table specifies transition rules (one pel table row). In this example,
the machine consists of three staigsq; andgs. Each rule specifies which input transfers the
machine from the current state into another state. Furthexnthe rule determines the output
caused by this transition.

Condition Effect
Current state| Input | Next state| Output

‘) 0 9 0
90 1 Q1 1
a1 0) 1
Q1 1 q2 1
Q2 0 q1 1
92 1 q2 0

State machines assume that a system is in one of multiplébfmstatesand that the conditions
for changing into another state can be expressed in a foremal 8tarting from arnitial state
the fulfilling of certain conditions triggers the transiiido another state (i.estate transitioi.
Each condition is associated with an input event. A conditfomet when this input event oc-
curs. If there is only one possible transition for each irguent of a state, the state machine is
calleddeterministic

Figure[4.2 visualises a simple state machine usistage transition diagramSuch a state
machine with a finite number of states is called a FSM. For statie, specific input events can
trigger transitions from the current state to another sthtbe FSM. In addition, for each state
transition, output events can be specified.

Another common way to describe FSMs igansition table Table[4.2 defines the transition
table for the state machine of Figlrel4.2. A transition taioletains all stateg; | € Q of the
FSM. For each statg, the possible input events |y, € X; are defined. Each input event
results in a transitiony; : ¢; — ¢;+1 from the current state; to another state; ;. Note, that for
simplicity only simple input events have been used in Tali# k practice, also complex input
events triggered by multiple conditions are possible.

In comparison to FSMs, a PDA employs a stack in addition ttestand represents a more
powerful type of abstract machine than FSMs. The PDA can/pogitokens to/from this stack.
Compared to FSMs, this stack enables PDAs to exploit infiondrom previous states since
each transition condition can consider the current inpabtwvhe current state and tokens on the
stack.

4.2.2 Mapping profiling information to VCL and functional bl ocks

In order to process function traces in an automatic way, mdbidescription of the profiling
data is necessary. We use an abstract machine with multgaksdor representing the structure
of a VCA and a call/return stack. Each state either repregéet processing of a VCL coding

43

Chapter 4. Data-driven runtime analysis

CALL
decodeSlice

RETURN
predict

RETURN RETURN
decodeSlice decodeMB

RETURN
main RETURN
deblock

Figure 4.3: An example of a state transition diagram for a26H.decoder. The states represent
the processing of individual layers of the VCL (bright grey)d FBs (dark grey). Function calls
and returns can trigger transitions between states. Furtire, a call/return stack enables us
to consider also information from previous states in ttamsiconditions. Note that this is a
simplified version of an H.264 decoder. Typically, the stai@chine contains individual states
for the different macroblock types such as intra- and inteted macroblocks. This allows us to
distinguish between the individual decoding functions iffedent macroblock types.

element or of one of its FBs. Every time this VCL coding elebwrthis FB is processed during
the VCA's execution, the state machine goes into the cooredipg state. Figurle 4.3 visualises
the state transition diagram of an H.264 decoder implentiental he state machine consists of
initial/end states, states for representing the decodinggss of VCL coding elements (bright
grey) and states for representing the FBs of each VCL codergaent (dark grey). Note that the
designer can choose VCL elements and FBs of the H.264 dettatdre considers most suitable
for his VCA parallelisation strategy. We use the functiomates for defining the input events.
Depending on the current state, the occurence of a speadifitifun call/return and the tokens on
the stack can trigger the transition to another state. Foplggity, in this example a transition
from one state to another state can only be triggered by #esimgut event. In practice, more
complex VCA structures with function sharing between FBssted function calls, recursions
and complex function hierarchies can be addressed by thisoghe The usage of a call/return
stack and transition condition that can access all tokentherstack enables us to determine
state transitions in a deterministic way.

For each state transition, the specific time when this ttiansbccurred can be retrieved from
the function traces. Whenever a return state transitiorpr@@ous state is invoked in a state
the time difference between entering the stagtend leaving it can be retrieved. This time
represents the processing time that can be assigned toieufzartask using the assignment
described before. The total duration of a task can be retidyy summing the times of all
function calls that are associated with this task. We redahis cumulative time as the task’s
complexity(Column6 in Table[4.3B).

Apart from assigning function traces to FBs, we can map FBadividual VCL coding
elements. Note that in the state machine in Figurk 4.3, égessfor the decoding of individual

44

4.2. Automatic generation of data-driven profiles

Table 4.3: Macroblock-based H.264 profile information: Table visualises the information
that has been extracted from a function trace. Each functidiretrieved in the function trace
is assigned to a task. Each task represents a unique FB of 8\ wimming up the complexity
of all function calls assigned to a task, its complexity canrétrieved. Furthermore, coding
information such as the coding type and mode for each MB caxtracted from the function
traces and via instrumentation.

Trace information Macroblock-assigned profiling information
Function call | Instr. || Task | #MB FB Complexity | MB Coding Information
in Cycles Type Mode
parse(..) - T 0 parse 8730 - -
IDCT(..) - T 0 IDCT 141 - -
intralex16(..)| O T3 0 intra 1057 intraléx16| O
deblock(..) - Ty 0 deblock 8711 - -
parse(..) - T 1 parse 12463 - -
IDCT() - T 1 IDCT 510 - -
intradx4(..) 1 T 1 intra 701 intradx4 1
deblock(..) - Ty 1 deblock 15734 - -
parse(..) - Ty 2 parse 19122 - -
IDCT() - T1o 2 IDCT 110 - -
intralex16(..)| O T 2 intra 1418 intraléx16| O
deblock(..) - Tio 2 deblock 13875 - -

macroblocks and slices have been introduced. This enablesdetermine how often the state
machine has been in the MB decoding state. Every time thisistantered, a counter specifying
the current MB number is updated. This enables us to assanfeaction call to a specific MB
and all VCL coding elements which this MB is part of.

4.2.3 Extraction of coding information via function names

In addition to retrieving complexity information, we carsalretrieve more VCA-specific infor-
mation and assign it to the VCL coding elements and decodiskst For example, if individual
function names indicate the type of prediction used for dempa MB, these function names can
be used for determining each MB'’s coding type (e.g. a functidecode_intral6x16” for MBs
with “intral6x16” prediction). The complexity informaticof a task can be set in the context to
the coding tools applied in this task. Tablel4.3 providesxamgle. The retrieved MB coding
type (Column?) for each “intra” prediction task is extracted via the fuaontname (Columm).

A call to a function with name “Intral6x16” indicates thaetMB is intra-coded and uses intra
prediction for a whole 16x16 pixel block.

45

Chapter 4. Data-driven runtime analysis

4.2.4 Extraction of coding information via instrumentation

In addition to retrieving coding information via the furami name, we can also use instrumen-
tation to provide additional information about a VCA’s rimé behaviour. In our system, the
system designer can embed instrumentation instructiotieil' CA's reference code and derive
essential coding information as part of the function tr&@empared to extracting coding infor-
mation via function names (Sectibn 4.2.3), exploitingrmstentation has two advantages. First,
the system designer can gain information about a VCA's @lguoic internals that would not be
retrievable by observing the function calls/returns tretuored during the VCA's execution. For
example, let us assume that there is only one function foa idécoding of a MB. A designer
can only infer that the MB is intra-coded but could not gaifoimation about, for example, the
coding mode that is used for that specific MB. Second, we caieve complex information
such as the data-dependencies between VCL coding elementsnithin the VCA. In partic-
ular, in order to estimate the execution behaviour of palralbplication, knowledge about the
data-dependencies is important.

4.2.5 Implementation

We implemented a library using theerl scripting language [Wal00]. This language provides
a powerful text parsing functionality and is available fooshoperating systems. The library
which we will refer to as the data-driven profiling library IPL) generates a DDP in the fol-
lowing way: First, the user describes the VCA structure gighre functions provided by the
DDPL. The DDPL automatically generates an state machineaacmiresponding parser that
can map function traces via this state machine definitioncoSd, the designer provides the
function trace information retrieved with a conventionedfier to the DDPL. Third, the DDPL
remaps the profiling information into a DDP using the VCA'sthAct state machine description.

Definition of a state machine

The DDPL provides simple functions for defining a set of stat&ach state has an unique
identifier (UID) and a set of transitions that are associatétl this state. The user defines
a transition by specifying the source and destination statehis transition and the function
names that can trigger a transition between these states.

For each transition, one or multiple functions can be defin€dese function remap the
function trace profiling information when a transition otsuEach time a transition is triggered
by a function call/return, these functions are able to extpaofiling information from the func-
tion traces and update the DDP correspondingly. The DDPLuiges functions that support
this extraction process in an intuitive and efficient wayr &mample, the time between entering
and exiting a state can be retrieved. Furthermore, eacsitianfunction can create custom en-
tries in the DDP for storing data-specific information. Frample, an “intra” state’s transition
function can create an entry “coding” for a specific task aondesthe MB coding mode.

46

4.3. Profiling environment and test sequences

Mapping of function traces

After describing the VCA, the user has to provide the functi@ce profile to the DDPL. The
function traces/instrumentation messages are eithesfenand directly from the profiled appli-
cation’s process to the DDPL's process via process pipebnstored into a text file before being
passed on to the DDPL process. Using the state machine plémerithe DDPL reformats all
profiling information into a DDP representation and stotésto a database. This database con-
tains a detailed information about the tasks that occundutie VCA's execution and provides
a powerful starting point for analysing a VCA's complexity.

Merging of multiple DDPs

One drawback of using means of instrumentation is that thiitiadal instructions used for
generating profiling information can affect the runtime dagbur of the profiled application.
The DDPL addresses this issue by providing tools for mergingiiple DDPs. We can generate
(i) a DDP based on function traces and (ii) an instrumentatiased DDP for extracting coding
information separately and merge these profiles into aesiB@P. The user can select which
information shall be used from each individual DDP. The DDRBEs the tasks’ UIDs, which are
the same in both DDPs, for merging the selected sources. iBy ttee complexity information
from the DDP that has been generated without instrumentatiobiased complexity profiling
can be used in combination with detailed coding informatlerived by instrumentation.

4.3 Profiling environment and test sequences

In this section we describe the profiling environment thatded in this thesis. We generate a
conventional profile using function traces and instrumgona In the next section, we use the
state machine definition shown in Figlirel4.3 to generate a @™ this information.

4.3.1 Reference architecture

All the profiling results presented in this work are based nrembedded video processing
architecture. This reference architecture targets theiefiti processing of audio- and video-
based multimedia applications and represents a typicatddda platform used for video coding
purposes. This should enable the reader to transfer resultsonclusions of this thesis to other
hardware platforms.

Hardware platform

Figure[4.4 visualises the SoC architecture that has beehthuisrighout this work. The SVENm
multimedia platform[[SBGQ8] consists of two very long ingttion word (VLIW) video proces-
sors named CHILIs, an ARM9 processor and a display contamtater (DCC). All processors
run at 300 MHz and can execute independent program codeaiigiar

The CHILI is a RISC (i.e. Reduced Instruction Set Computegcpssor that can process
four instructions in parallel which can be any combinatid32-bit arithmetic instructions and

47

Chapter 4. Data-driven runtime analysis

mDDR Controller

[

(g]
§ § Core Memory DMA c DMAﬁ R'>:(”/:gx [
7 u ontroller
— a e e T— »IController]
Subsystem

ARM 926 3 ¢ t ¢ ¢ 1 0SD & > Display IF

i >
Fetch l.,l CHILICore Graphic

= = Unit L Acceleration

o 2 «» Camera IF

= I

= [a)

ARM926 DCC

Application 2 x CHILI Display Content

Processor Video Processor Controller

I
; Video Decode OSD

% Erocessmg Video Encode 2D/3D Graphics Acceleration
'_?_‘;dlg’ LCD Controller

-bemux TV Out

Camera IN

Figure 4.4: The structure of the SVENm architecture. The SWEonsists of two VLIW video
processors named CHILIs, an ARM processor and a displayoboontroller (DCC).

load-store operations. For parallel pixel operationsbit&IMD (i.e. single instruction multiple

data) instructions are provided. Each processor has aatedié4 kilobyte (kB) local memory
for fast data access and a 64 kB instruction cache. Datarnisféiaed by a direct memory
access (DMA) controller or via direct memory access betwtbenprocessor’s local memory
and 64 kB on-chip shared random-access memory (SRAM) asawdth the external mobile
double data rate memory (MDDR). For efficient program exenutach CHILI uses a 64 kB
instruction cache (ICACHE).

While the CHILI as a VLIW processor is designed for compuatagilly intensive video pro-
cessing tasks, the ARM9 processor architecture is moraldeaifor executing conditional code
(e.g. the multiplexing of transport streams (TS)). For imedire applications, the ARM9 can be
used for controlling the communication and synchronisatietween the individual processors.

A display content controller (DCC) handles the displayifighe video information on dis-
plays. It supports important displaying functions suchidsee scaling, color space conversion
and buffered/unbuffered display output. A DMA controlleipports the efficient data-fetching
and transferring between the processors’ and controltara memories/buffers and the external
memories.

H.264 decoder software

For this analysis, a commercial H.264/AVC decoder for endieedarchitectures has been adapted
to this platform. This decoder supports all features of the6d/AVC Main Profile such as B-

48

4.3. Profiling environment and test sequences

SVENm
Floorplan

(b)
Figure 4.5: SVENm architecture: (a) The floorplan of the SVithtchitecture. Approximately
half of SVENm is occupied by the two CHILI processors, the ARMcessor and the proces-
sors’ local memories. (b) A board with the SVENm multimedfapcattached at the board’s
centre.

frames and CABAC entropy coding. We started with a singledd implementation of the
H.264 decoder running on a PC platform. The decoder has lmapiled to run on a single
CHILI processor and been optimised in terms of memory usadesapport of DMA transfers.
Furthermore, the regular pixel-based processing funstwfinthe decoder (e.g., interpolation,
prediction) have been optimised at a low-level programnfmguage level to make use of the
SIMD processor commands. Intrinsic functions providedigy@HILI compiler have been used
for integrating assembly code instructions within the disrcsoftware’s C code.

Decoder profiling on SVENm

For generating traces of the H.264 decoder on the SVENmemrsderhardware, a single-core ISS
for the SVENm architecture is available. The simulator negrthe hardware behaviour of the
processors and memories on the SVENm platform and enaldésagcurate software runtime
profiling on this architecture. We have extended the ISS twige the time of each function
call and each function return that has occurred during tleewion of the H.264 decoder (Fig-
ure[4.1). Note that in this work we have used the CHILI profit@robtaining this information.
Nevertheless, this is no restriction of our approach, sprodilers for other platforms are, in
general, also able to provide this trace information.

Apart from function trace information, we have also instemnted our H.264 decoder to pro-
vide information on the coding process of the individual MBgy. prediction type and modes).
This information is extracted (i.e. profiled) and storedasapely from the complexity profiling
information and hence, does not alter the accuracy of thidgatacomplexity information.

49

Chapter 4. Data-driven runtime analysis

4.3.2 Testsequences

To analyse our decoder, we have selected 16 HD video seqi&ooe the Xiph.org test media
website [Xip13]. The sequences are visualised in Figurk Mi6re details on the individual
test sequences are provided in Apperidix A. In compiling tes set, we aimed to reach a
high diversity in the test sequences’ contents and to céaewhole complexity range of typical
H.264 sequences. In our test sequences, the recorded s@agda the amount of motion,
texturedness and motion patterns. This results in stronigtiams in the sequences’ bitrates and
the applied coding tools, and enables a detailed analysieealecoder’s runtime behaviour for
these scenarios.

All sequences are in progressive format with 720p resatugiee. 1280<720 pixels) and
have a length of 49 frames. For encoding the test streamsnalsesl the most commonly used
coding tools supported in the main profile of the H.264 steshdd/ith the exception of interlaced
coding, all main profile coding tools such as |-, P- and Beslias well as weighted prediction are
supported. The test sequences are encoded using the JMitddeel[Joi13] with parameters
chosen as follows: H.264 main profile, 720p, GOP size 12 feahiB, VLC, deblocking active,
all prediction modes allowed, SR +/-16 pixels, 5 referemaenes. Figuré 4l7a afhd #.7b show
the displaying and the coding order of the first 25 frames dP&tcoded sequence when using
a GOP size of 12 frames, respectively. We describe the cadfitite test sequences in detail in
the following sections.

Image quality metric

In this work, we use the Peak Signal-to-Noise Ratio (PSNRfeasuring the image quality.
The PSNR is defined by the Mean Squared Error (MSE) betweeariti@al framel,,;, and
the decompressed franig...q.. The MSE is defined in the following way:

1 r Yy o o
MSE = — D Moriglis §) = Taecode (i,)| (4.1)

In this equationy andy represent the width and the hight of the image, respectivihe ab-
solute differences between pixdls.i; (i, 7) in the original frame and pixelf;ccoqc (4, j) in the
decompressed frame are summed up. The indiaeslj specify the horizontal and vertical po-
sitions within the frame, respectively. The MSE computesaierage pixel difference occurring
in a frame. Using the MSE, the PSNR is defined as:

MAX? MAX;
PSNR =10- L) =20- — 4.2
SNR =10 lole(MSE) 0 - logio <\/M—SE> (4.2)

where M AX; denotes the maximum possible signal value (i.e. in the casehit RGB
pixel values,255). The PSNR is measured in decibels (dB) and typically rargaeen20
and40 dB.

Since the human eye is more sensitive to brightness/inyetigin to color, only the PSNR
between the luma channels (Y-PSNR) is typically used fotigueomparison. Hence, in the
extent of this thesis the term “PSNR” always refers to theSNIR value.

50

4.3. Profiling environment and test sequences

) W(Bluesky_) ; (Crowdrun) 7 (7 uckstakeoff)
| ttotree) ‘ (Oldtowncros)

(Pedestrian) (Riverbed)

i ﬁ'/ .
(Sunflower)

Figure 4.6: The 16 test sequences used in work. We use thgeerses for analysing the
runtime behaviour of an H.264 decoder. Furthermore, weuat@lthe high-level simulation
methodology developed in this work using this test set.

A video encoder typically adjusts the coding process to esklspecific requirements or
limitations targeted by the different applications. Thisbles, for example, specific bandwidth
limitations, visual quality requirements or transmissiatency limits to be met.

For evaluating the complexity estimation techniques psepdn the extent of this thesis, the
test sequences must enable the analysis of the decoddifseurehaviour over a wide range of
complexity scenarios and for different coding tools. Orienprparameter of the test sequences
that affects decoding complexity in a significant way is tleeo stream’s bitrate. The higher
the bitrate of the coded video stream, the higher the numbédeo coding elements that must
be processed by the decoder and hence the higher the decaggirne complexity. Hence, one
prime focus when generating the test sequences for this thes to represent a wide range of
test streams with different bitrates.

It should be noted that the amount of texturedness and mwitbin the scene strongly influ-
ences the bitrate, and thus multiple sequences coded \eitbatine quantisation parameter (QP)
settings do not necessarily have the same PSNR quality. rfiadrling a better comparison be-
tween test sequences and their runtime complexity at thedéecwe have chosen a QP setup for
each sequence that achieves a constant PSNR qualitydB. We have adjusted the values of
the quantisation parameters QP> and QR that are responsible for quantisation of |-, P- and

51

Chapter 4. Data-driven runtime analysis

00000000001

Figure 4.7: GOP-Coding of an IPB-coded sequence with 25dsand a GOP size of 12 frames:
(a) IPB-Coding: View order and (b) IPB-Coding: Coding order

B-frames, respectively, so that each individual frame efdbquence exhibits a PSNR of approx-
imately 40 dB. On one hand this enforces video coding at a constant ghdguiality of40 dB.

On the other hand, bitrates variations due to differentextnivill still occur. In the following,
we will describe this normalization of the PSNR quality aedulting bitrates in detail.

Normalised and average bitrates

In this thesis, we use the normalised bitrand the average bitrate for data rate comparison.
The normalised bitrate of a video stream describes the average number of bits ussetbfing
a pixel in a compressed video file. The normalised bitragecalculated in the following way:

b . .
r= pr— bits/pixel (4.3)

In this equationp refers to the file sizex andy to the frame width and height, respectively,
and N to the number of frames stored in this file.

The average bitrat®& refers to the average number of bits used for storing a semfovideo
material. It is calculated by dividing the file sizdy the timet (in seconds) of the video:

rxxxy*x N

b
R= 7 bits/second = bits/second (4.4)

We can observe that the average bitrRtean be derived from the normalised bitrateln the
following, the term “Bitrate” always refers to the averagedie R.
Coding and bitrates of the test sequences

At a Y-PSNR of approximatelyl0 dB, the test sequences have average bitrates between 1.8
and 57.7 MBit/s (Figuré_418). The bitrate is an indicator tteg amount of texture and motion

52

4.3. Profiling environment and test sequences

0

=

o 50

Z

)

o

g 0 a,

RS 5 o & © o & .
SR Q)é@\‘\\?* F @ PSP F® S
§O@§®Qb®9 QO.(\\O & \AQ}(§\\0$\(§_O Q’OS >
I S S N\ & € <
N

Figure 4.8: Bitrates for the 16 test sequences at a Y-PSNR db4

occurring in a sequence. The corresponding settings fagubhatisation parameters for the first
25 frames of each test sequence as well as resulting bifaateach individual frame are found
in Table[4.4. The sequences are sorted according to themgeditrateR.

In the sequences with low bitrates such as “Sunflower”, i&t&t, “Bluesky” and “Pedes-
trian”, intra-coded frames are causing most of the totaldilemb. These sequences contain
simple texture patterns such as the blue sky in the “Blueskguence and inter-coded frames
can be coded highly efficiently. For example for the “Blu€skgquence, this results in low
average bitrates &f.3 MBit/s (Figure[4.8) and constant and low bitrates of arot®@ 100 and
50 KBits for |-, P- and B-frames, respectively.

In the “Riverbed” sequence, high and similar data rates eavbserved for P- and B-frames.
Despite the fact that the sequence contains little textheamotion prediction fails to efficiently
predict the complex water flow. This results in a high numbéntoa-coded MBs in inter-coded
frames as well as a high number of residuals for inter-cod&s.M

“Shields” and “Stockholm” are both moderately textured.eTorizontal movement in the
“Shields” sequence as well as the zooming operation of theecain the “Stockholm” sequence
result in a slightly higher motion activity than in the “Bus&quence. The higher texturedness
and motion activity for the “Shields” and “Stockholm” seaques lead to bitrates of 18.8 and
25.6 MBit/s, respectively.

“Parkjoy” and “Parkrun” are the two sequences with the hijheverage bitrates in our
testset. In the “Parkjoy” sequence, the fast moving treestitm > 32 pixels for some parts) in
the foreground result in bad results for the motion predictnd frequent temporal occlusions
of the strongly textured background. The encoder usesidggasive intra-coded macroblocks
for these blocks which also explains the high bitrate anch&aizes for this sequence. For the
“Parkrun” sequence, the fine structures of the trees ansirdjaffects result in a bad prediction
and high residual information in this region. The backgebimthe “Parkrun” sequence contains
strong texture patterns and a strong horizontal motion wattious temporal occlusions. This
leads to the highest bitrate in our test set (50.8 MBiIt/s).

Despite similar PSNR values for all the sequences, stronatiams in the bitrates can be ob-
served. In the next section, we exploit information avdédab DDPs for analysing the decoding
complexity for these sequences at a MB-level.

53

Chapter 4. Data-driven runtime analysis

Table 4.4: Detailed size and quantisation values for thedtsgrames of each test sequence. For
the first two GOPs of each sequence, the size of the encodeddrand the used quantisation
value (QP) are shown. The frames are provided in coding amtthe horizontal axis represents
the frame index. All I-frames are highlighted as black bars.

(Sunflower) (Station2)

QP Size [KBi
S
w88
Bk o883
E
QP Size [KBit]
@
e w 2
BRE o 8

Frame index mee index

(Rushhour) (Bluesky)

QP ¢ [KBit]
—
pow 38
2R8 =88
E |
1)
QP Size [KBit]
”
808 o 8

10
Frame index Frame index

(Pedestrian) (Oldtowncross)

QP [KBit]
»
T 5
BRE o 2
E E
QP Size [KBit]
20 s g

10
Frame index Frame index

(Intotree) (Tractor)

QP Size[
w
spe o 2
I
QP Size [KBit]
www 28
spe S8

Frame index Frame index

(Bus) (Rlverbed)

QP Size [KBit]
w2
sre o 8
I |

QP Size [KBit]
ppe 53
2pg (28

l- rame index Frame index

(Shlelds) (Crowdrun)

z 22000
e [TITTE PR T P [N AR MR R AR AR
: :
B 00 5 10 15 20 25 B 00 5 10 15 20 25
N 3UE N 30&

25 25
< 20 < 20 - - | |

0 5 10 15 20 25 0 5 15 20 25
Frame index l-rdmc index
(Duckstakeoff) (Stockholm)

Size [KBit]
=)
2

- g

ize [KBil
s
]
g8

-2

50 5 10 15 20 25 @0 5 10 15 20 25
N JOE - zuf
25 25
o o
20 20 HE | |
0 5 10 15 20 25 0 5 10 5 20 25

Frame index Frame index

(Parkjoy) (Parkrun)

Size [KBit]
=
=35
28

=33

Size [KBit]

[~}
S
S
- 3

P
PN W
Sung
S

QP
P w
338

10 15
Frame index Frame index

54

4.4. Experimental results for runtime analysis and vistatlon

4.4 Experimental results for runtime analysis and visualiation

This section provides functional runtime profilings resuitir the H.264 decoder running on the
reference architecture described in Sedtion 4.3.1. Onerraan is to gain information about the

complexity and the dynamic runtime variations for the mdjlarcks of the H.264 decoder for

the 16 test sequences. Using the dynamic profiler for oureefe architecture, we can extract
detailed information about the runtime complexity of th6#t decoder’s individual MBs.

4.4.1 Complexity of processing VCL coding elements

The information obtained from DDPs enables us to intereetantime complexity with the
decoding process of individual VCL coding elements. Thisdsential when designing data-
parallel partitioning approaches, since differencesédicoding complexity of individual VCL
coding elements affect the efficiency when distributing wegkload onto multiple cores and,
consequently, the overall runtime. Furthermore, it deteesithe need for buffers for compen-
sating workload differences.

Table[4.5 provides an example of a MB-based DDP complexifilprg. For all frames of
the individual test sequences, the complexity for proogssiBs has been extracted. The figure
provides the average, minimum and maximum processing @xitplof the MBs decoded in
the respective frames. Furthermore, the standard deaviafithe MBs’ decoding complexity is
visualised by the red lines.

We can see that the average complexity for processing a MH sequences is similar
between |- and P-frames, but higher for B-frames. We canrebdbat the complexity of se-
guences such as the “Bus”, “Parkjoy”, “Parkrun” and “Croumshows constant standard de-
viations throughout all frames and for different frame typ€&he “Riverbed” sequence posesses
a very low variation in complexity and shows nearly the saorgime complexity for I-, P- and
B-frames. In contrast to this, low-bitrate sequences ssctsanflower” and “Station2” show
stronger variations in the complexity between differeatrie types. Especially within B-frames
a strong variation between MB decoding complexity seemsxist.eIn a data-parallel VCA
implementation that works on a slice or frame level, vaoiadiin the decoding complexity will
probably affect the parallelisation efficiency strongebew decoding low-bitrate sequences.

Looking at the minimum and maximum complexity (black linesg can see that throughout
all sequences MBs with the lowest/highest complexity ocliuring the decoding of B-frames.
These MBs with exceptionally high runtime will - similar tbet already observed variations
- affect the performance when decoding B-frames in a datalphway and result in a less
efficient load balancing or/and the need for larger memofffebsito compensate complexity
variations.

Figure[4.9 provides more detailed information on the MBsating complexity for the
individual MBs. The complexity distributions shown in tHigure outline that the decoding
complexity of individual macroblocks increases with highérates for all sequences. The im-
portant point in Figuré 419, however, lies in the dynamicadwebur of macroblocks. It can be
clearly seen that cycle counts are very different amongiddal macroblock coding types and
video sequences. As is also shown in the figure, this obsenvean still be made when consid-
ering the classes of |-, B- and P-macroblocks alone.

55

Chapter 4. Data-driven runtime analysis

Table 4.5: The decoding complexity of each macroblock gasignificantly during the de-
coding. The blue line in each sequence plot shows the averfaipe macroblocks’ decoding
complexity in clock cycles for each frame (i.e. 3600 macooks). Additionally, the standard
deviation and the minimum/maximum macroblock decoding mlemity for each frame are in-
dicated by the red and black lines, respectively. Frameag and24 are I-frames, Frames 5,
7,9, 11, 14, 16, 18, 20, 22 and24 are B-frames and the remaining frames are P-frames.

(Sunflower) (Station2)
g x 10° g x 10°
8 8
250 _ AAVAVARALAVA/AVAVAS 25 AN AA
P AAAAANARY 1 AAAAAAAASAAT
50 n 1 50 " ~— e — 1
£0 5 10 15 20 25 £0 5 20 25
© Time samples [Frames] © Time samples [Frames]
(Rushhour) (Bluesky)
g x 10* g x 10*
£ WW\N\/ e 5 /\/\/\/\/\W\/W
£% 5 20 25 £% 5 10 15 20 25
© Time samples [Frames] © Time samples [Frames]
(Pedestrian) (Oldtowncross)
g x 10* g x 10*
25 L AVAVAALA AV AV S AVA AN AVAND A SVA N
z = 297 AN AAATAT
50 5 10 15 20 25 50 5 10 15 20 25
© Time samples [Frames] © Time samples [Frames]
(Intotree) (Tractor)
g x 10° g
> ‘/\/\/\/\/\W\/W s
a———————— ——— a
£0 5 10 15 20 25 3
© Time samples [Frames] © Time samples [Frames]
(Bus) (Riverbed)
g x 10° g x 10°
T A A RN A A N AN N AVA VA VAN VAV YA YA Y
%G —7/\/‘\/\/\/_/\/\/ s %G = ‘ — ‘ =
£0 5 10 15 20 25 £0 5 10 15 20 25
© Time samples [Frames] © Time samples [Frames]
(Shields) (Crowdrun)
g x 10* g x 10*
S A AN A A A P A AN A7 e
2 — N AN A A A AANAAL N A 2 — ~ e~
H 5% INANANAATANAZNANAY e
£% 5 10 15 20 25 £% 5 10 15 20 25
© Time samples [Frames] © Time samples [Frames]
(Duckstakeoff) (Stockholm)
g x 10° g x 10°
8 | = : i i ‘ § | = ———""— —""— - — —
3 GO 5 10 15 20 25 3 GO 5 10 15 20 25
© Time samples [Frames] © Time samples [Frames]
(Parkjoy) (Parkrun)
% 5 10 15 20 s £ % 5 10 15 20 25

Time samples [Frames] Time samples [Frames]

56

Bin count

Bin count

Bin count

Bin count

4.4, Experimental results for runtime analysis and viszation

(Sunflower)

Cgmple:ity [C)fscles/MaB]>< 10140
(Pedestrian)
x 10
3.5
3
2.5

2 4 6 8
Complexity [Cycles/MB], 1¢*

w
o

= N
R VR)

o
@

=

2 4 6 8 10
Complexity [Cycles/MB], 1o*

(Duckstakeoff)

x 10

w
[

= [N
R R S)

o
o

o

2 4 6 8 10
Complexity [Cycles/MB], 1¢*

(Station2)
x 10"
l-MBs
39 P-MBs
3 HlB-VBs
25
€
E
3 2
<
@ 1.5
1
0.5
%

2 4 6 8 10
Complexity [Cycles/MB], 1o*

(Oldtowncross)

x 10

3.5 l-MBs
EHP-MBs
3 ElB-VBs
=25
€
3
3 2
<
@ 1.5
1
0.5
0 2 4 6 8 10
Complexity [Cycles/MB], 1¢*
(Riverbed)
x10°
Il -VBs
3% EP-VBs

Bin count
N
o

ERS < N N}

o
o

EB-MBs

% 2 4 6 8 10
Complexity [Cycles/MB], 1¢*
(Stockholm)

x10°
Il -VBs
33 EEP-VBs
3 EB-VBs
25
€
5
3 2
<
@15
4
0.5
%

2 4 6 8 10
Complexity [Cycles/MB], 1¢*

Bin count

Bin count

Bin count

Bin count

w
w o

I
o

- o N

o
o

=

[[d w
PN o w @

o
5

=L

N ~ w
o N o w o

= Ind w
- ;N o w o

o
@

0

(Rushhour)

2 4 6 8 10
Complexity [Cycles/MB], 1o*

(Intotree)

2 4 6 8 10
Complexity [Cycles/MB], 1¢*

(Shields)

2 4 6 8 10
Complexity [Cycles/MB], 1¢*

(Parkjoy)

2 4 6 8 10
Complexity [Cycles/MB]y 1¢*

Bin count
I N @
[I R R

o
@

: Ind w
o N o w o

Bin count

x 10

Bin count
= ~ @
N U S TR

o
o

Bin count
N w
o w o

EES S N N}

S
5

=~

=2

(Bluesky)

2 4 6 8 10
Complexity [Cycles/MB], 1¢*

(Tractor)

2 4 6 8 10
Complexity [Cycles/MB]y 1¢*

(Crowdrun)

2 4 6 8 10
Complexity [Cycles/MB], 1o*

(Parkrun)

2 4 6 8 10
Complexity [Cycles/MB], 1o*

Figure 4.9: Dynamic variations in the execution times of itdividual macroblocks in the
H.264 decoding process. Histogram bins plot the number afroldocks having similar run-
times. The colours indicate the contributions of macrokdofrom |-, P- and B-slices to the
overall bin counts. Histograms are shown for 25 frames ofs#giences in Table 4.6. These
sequences are IPB coded with the Group of Pictures (GOPpsirg 11. It is observed that the
runtimes of macroblocks vary considerably within a seqaenthis observation is also made
when considering |-, P- and B-macroblocks separately.

57

Chapter 4. Data-driven runtime analysis

For low-bitrate sequences such as “Sunflower’, “Rushhond ‘@luesky’, we can see in
the complexity distribution of each sequence a clusteredmof low-complexity MBs and a
peak around approximately 40000 cycles. This peak correlspto the variations observed
in Section 4,411 and represents MBs coded by 16x16 predictiodes with large amounts of
residual information. The parsing of this residual infotima accounts for most of these MBs’
decoding complexity and results in similar computatior@hplexity amongst all coding types.
For higher bitrates, the peaks within the distributionadgear and other prediction modes (e.g.
based on 4x4 blocks) are more intensively used.

4.4.2 Complexity of processing functional blocks

Figure[4.10 shows the average and the standard deviatibwe ofihtime complexity the individ-
ual decoding functions require for processing a MB. We haesiged the decoding functions
into the FBs of Figure_3]2. The entropy decoding is therebggegtwith the parsing block, since
these functions are tightly connected during runtime.

For most sequences, only a small part of the runtime is spetiteol DCT and the prediction.
The main reason for this is that the regular pixel-basedatjopers such as inverse transformation,
spatial and temporal pixel prediction are well supportedh®y CHILI processor architecture.
The SIMD instructions in combination with the VLIW architace allow the processing of 8
image pixels in one clock cycle. In combination with DMA ted@rs and fast pixel data transfers,
the pixel-based operations can be tackled efficiently.

However, conditional code execution does not benefit siamfly from the VLIW/SIMD
architecture. Highly conditional parts of the H.264 suchtesentropy coding and deblocking
therefore do not perform well. This can be seen in the profitesults. For all sequences, most
of the decoding time is used for parsing (i.e. bit parsing emiopy coding) and deblocking.

We can see in Figure_4.110 that the average runtime for parsiogrrelated with the se-
quences’ bitrates visualised in Figlrel4.8. For sequenddshigh bitrates such as Stockholm
and Parkrun, the average runtime for the entropy decodismisficantly higher than for low-
bitrate sequences. For example, between the “Sunflowedes®g with an average bitrate of
1.8 MBit/s and the “Parkrun” sequence with an average bitrat&7df MBit/s an increase in
runtime by a factor o6 (i.e. 5000 cycles compared t80000 cycles per MB) can be observed.

Variations in the execution times of the decoding functiani$ result in a highly dynamic
system when developing parallel decoders and will impaetpirallel execution of the H.264
decoder. The variations in the runtime become visible winatyaing the standard deviation in
the decoder’s runtime profilings. We can see that for all miajoctional blocks of the decoder,
runtime variations occur. Especially, the entropy codingd the deblocking are highly sensitive
to the bitrate of input data. The bitrate has significant iotpa the complexity of these decoding
blocks. For sequences with high bitrates, we can observifisant runtime variation for the
parser functions. For example, the average runtime per MBh® “Parkrun” sequence with
57.7 MBit/s shows variations of +/-20000 cycles/MB. Comparedhis, significantly smaller
runtime variations of approximately600 cycles/MB are observed for the “Sunflow” sequence
with 1.8 MBit/s average bitrate.

For pixel-based decoder blocks such as IDCT and predicimall runtime variations can be
observed. However, we can see that in relation to the aveteriene, these runtime variations

58

4.4, Experimental results for runtime analysis and viszation

(Sunflower) (Station2) (Rushhour) (Bluesky)

4 4 4

5x 10 5x 10 5x 10 X 10
@ @ oy T 4
g 4 g 4 s 4 2
3 3 3 2
9 9 2 o2
S 3 S 3 S 3 E
9 S S S
z z z 2
é 2| é 2| ; 2| z) 2]
=3 =3 = s
s s 3 £
S 1 L] S 1 . S 1 L] S 1 1
f . t . ') H .
0 — 0 — 0 — o s
f & & & & f & L& & f & L& S & L&
& & ¢ o° PLEROEN \ooé}o PRSI #° & o ¢ ¢ o‘z&o
(Pedestrian) (Oldtowncross) (Intotree) (Tractor)
4 4 4 4
X 10 5x 10 5x 10 5x 10
o 4 o 4 o 4 o 4
] < < <
2 2 2 2
o2 o o o
S 3 S 3 S 3 S 3
S S S S
2 z z z
£ 2 g2 g 2 g2
o2 o o o
=4 =y =3 =y
£ g 3 5
S 1 + W 81 + + 31 + 81 +
0 n L) - n [- 0 [] n - n L} .
@ GRS ¢ AN @ & & ¢ XN @ & & ¢ AN @ & &
Q#ﬂ \o(’ & \Q\O @&" < & \Qo & & &S Qq,«e \o(’ & & ™ beﬂa \Qo & & °

(Bus) (Riverbed) (Shields) (Crowdrun)

sx 10° gx 10° 5x 10° gx 10°
oy @ oy @
g 4 g 4 g 4 g 4
2 2 2 2
2 3 23 2 3 23
o o o o
> > > >
= 2 % 2 = 2 % 2
3 i 3 i
= a = a
£ £ £ £
81 81 + 81 81
o = a " o [+ . o [I T o s . "
¢ N @ & & ¢ AN @ & &+ ¢ N @ & & e AN @ & &+
& & & & & & & & &
Q < Q '
(Duckstakeoff) (Stockholm) (Parkjoy) (Parkrun)
5x 10° 5x10° 5x 10° 5x10°
@ 4 o 4 @ 4 o 4
= = = =
2 H 2 H
S 3 S 3 S 3 S 3
o o o o
> > > >
% 2 < 2 = 2 < 2
3 3 3 3
= a = a
£, ! £ ! £, + £ +
o o o o
0 + - [] o ¥ - M 0 M - L] + - L]
F & L& F & L& F &L &S F & L&
& & & ¢ »° PRSI £ & O ¢ ¢ £° PRI &S
S S S

Figure 4.10: Dynamic variations in the execution times efithdividual decoding functions in
the H.264 decoding process. The decoder is divided into inetional blocks, namely parsing,
inverse DCT, intra prediction, inter prediction and deklag. The bars plot mean complexity
and standard deviation for each of the decoding blocks.dlbserved that runtime complexities
of individual decoding functions considerably vary wittdrsequence due to different runtime
behaviour of individual macroblocks.

59

Chapter 4. Data-driven runtime analysis

can become relatively strong for high-bitrate sequencels as the “Riverbed” and “Duckstake-
off”. For example, the runtime of the “Riverbed” sequendata block shows a standard devi-
ation of approximatels0 percent of the average runtime (i#00/4000 cycles/MB compared
to 2500 cycles/MB average runtime).

The knowledge about the average runtime and runtime vangif an H.264 decoder pro-
vides us with means for roughly estimating the decoder’tability for running on multiple
cores. However, estimating the runtime of a partitionedodec based on the dynamic profil-
ings is not straightforward. An extended profiling methoak forovides more suitable means for
multi-core runtime estimation is introduced in the nextisec

4.4.3 Analysing complexity within individual subregions d a frame

We have seen in Sectién 3.b.3 that data-parallel VCA smditiartitions the processing tasks by
assigning subregions of a frame to different PUs. By anadytie coding information available
within the DDPs, the coding complexity of individual subi@mts of a frame can be derived.
An example of how coding information can be interrelatechwfite runtime complexity is pro-
vided in Figurd 4.111. This figure visualises the MBs’ decgdiomplexity for3 frames of the
“Parkjoy” sequence. It should be noted that in Figure 4. btlirg information about the po-
sition of each MB within each frame has been extracted. Foh &B, the bitrate, the total
runtime, the runtime for parser, IDCT, prediction and dekiog FBs are visualised. The com-
plexity has been normalised and white represents regiotiishigh complexity and black with
low complexity. We can see that most of the total runtime jrP- and B-frames is used for
decoding the bright and textured regions in the backgroergl trees). For frame regions with
a high bitrate, a high runtime in the parser FB and a high totaime can be observed. This
indicates that the parsing FB'’s complexity highly corretatvith the image structure.

The IDCT FB shows an interesting behaviour amongst |-, P-Bufichmes. While for I-
frames nearly the same time is required for the IDCT FB of aBdvbf the frame, stronger
differences between individual regions can be observed’foand B-frames. In the P- and
B-frames, strong differences between low textured regand highly-textured regions can be
observed.

In I-frames, the prediction of textured regions requirgggicantly more runtime than for
untextured regions. This results from the strong compfedifferences between the individ-
ual intra prediction modes. In B-frames, the runtimes aneilair between the frame’s MBs.
However, a few MBs with high complexity occur in the texturegions while a slightly lower
runtime can be observed in the untextured regions. In Pesammoderate runtime is spent for
the textured regions in the background while little runtisieequired for the untextured regions
in the foreground. Single MBs within the frame with very higimtime can be observed.

Apart from the top and left border, the deblocking filter'srgaexity shows a very uniform
complexity distribution for the I-frame. In the P-frame mo$the runtime is spent on filtering
the textured areas of the frame. This is in contrast to theaBys where a high runtime is
dedicated to processing untextured regions.

60

4.4, Experimental results for runtime analysis and viszation

Total runtime Bitrate Source

Parser runtime

IDCT runtime

Prediction runtime

Deblock runtime

Figure 4.11: The runtime complexity for individual MBs oPIB-frames: For each frame, the
bitrate, total runtime complexity and the complexity of g IDCT, prediction and deblocking
FBs for each MB are visualised. Bright pixels indicate regiwvith a high bitrate/computational
complexity. Dark values macroblocks with a low bitrate/ldiog time.

61

Chapter 4. Data-driven runtime analysis

4.5 Summary

In this chapter, we have introduced the Data-Driven Prgfilimethod which maps traditional
runtime profiling information onto the VCL coding elementsddunctional blocks of a VCA.
This provides means for estimating a parallel VCA's comipyelsehaviour and for parallel VCA
designing and enables the system designer to investigitalcaspects such as variations in the
processing time of each coding element and individual fonet blocks of the VCA. Further-
more, it enables the extraction of VCA-specific coding infation such as the coding tools used
when processing specific VCL coding elements.

After describing the test setup used throughout this thegithave demonstrated three ways
of exploiting DDPs for analysing complexity and derivingsestial information for parallel
system design. First, we have demonstrated how complexitymation about the processed
VCL coding elements can already highlight potential proidein load-balancing for frame-
and slice-based data-parallel approaches at an earlyndetsige. Second, we have shown how
complexity variations in the FBs of a VCA can be analysed.sThbvides a starting point for
implementing functional partitioning techniques. For @esirating the above contributions, we
have exploited runtime profilings of an H.264 decoder toys®the dynamic runtime variations
in the decoder’s functional blocks. We have shown that thime as well as the runtime
variations for the individual H.264 decoder blocks inceeagth the bitrate. Decoding blocks
with a large amount of conditional code such as the entroppdiag and the deblocking are
more sensitive to bitrate changes than pixel-based bloditdrd, we have extracted coding
information which determines the progam flow of a VCA and eipH this information to
determine the processing time for individual image regidisilar to the complexity analysis
for VCL coding elements, these insights support the dedigfficient data-parallel partitioning
approaches.

Overall, the capability to analyse and visualise the ruateamplexity of VCL coding ele-
ments and functional blocks provides an essential tooldioalfel VCA design and when target-
ing an equal workload distribution in data-parallel anddtional-partitioned designs. We will
exploit DDPs in Chaptédrl5 for the development of a novel muiticessor simulation approach.

62

CHAPTER

Virtual prototyping of parallel video
coding systems

In this chapter, we introduce a high-level simulation metiogy for complex VCAs. This
methodology represents a main contribution of this thasikenables estimation of the VCAs
parallel runtime behaviour on virtual hardware architeesu Sectioft 5|1 describes the aspects
and design goals that such a simulation method has to focuSamtior 5.2 introduces our new
concept. The assumptions underlying this concept andhiidiions are described. Sectionl5.3
describes the concept’s implementation.

5.1 General aspects and design goals

A methodology for estimating the runtime of a partitioned AGn a virtual platform has to
address various aspects. According to Holzmann et al. [HotBe design process of a formal
model must address three aspects efficienbgcriptive clarity modelling poweandanalytical
power. These criteria are considered as the prime indicatorhéotduality” of a formal model.

Descriptive clarityin the context of virtual prototyping requires that clead amtuitive mod-
elling of the virtual system and the VCA's execution is pbisi The conceptual simplicity of
building a VCA model has a major impact on the modelling psscelt influences the ease
and flexibility of the system designer to specify a virtual X@Especially for rapid design ex-
plorations, descriptive clarity is of prime importance.€eldffort involved in modelling a VCA
partitioning will typically influence the number of parttiing approaches the system designer
can consider in his analysis.

Themodelling powenf such a method must enable the system designer to desaittecd
system without restricting the designer’s creative freed®escribing the system’s underlying
processes in an accurate and technically feasible way isreet; Consequently, the modelling
has to cover all aspects that influence the total executibavieur and time of a virtual VCA.

63

Chapter 5. Virtual prototyping of parallel video coding sm®s

Partition Assessment Simulation (PAS)

(1) Specification (2) Characterization (3) Simulation

Task
- Complexity
- Scheduling
- Runtime behaviour
I —) N
Data-Flow - (omp!&.xlly
=> - Transfer volume

- Transfer volume => ~Memory requirements
- Memory requirements

Hardware Description

Hardware Resources

- Processing power

Figure 5.1: The Partition Assessment Simulation (PAS) ¢anulate virtual multi-core plat-
forms running VCAs. First, an abstract description of a VO#d dhe system’s hardware is
provided. Second, the system’s runtime behaviour is spécifiy providing information about
complexity, execution order and communication betweekstaghird, the PAS uses this infor-
mation to estimate the runtime behaviour of the VCA runningtas virtual coding platform.
Approximations of the VCA's performance (e.g., complexityemory accesses, etc.) are derived
without the need to fully implement the hardware or the VCdétware.

This includes, for example, defining and describing the \&aasks and task-interdependencies
and setting the VCA's model in context of a virtual HW architee (e.g. SW/HW mapping).

The investigation of dynamic runtime aspects in a paralfstean cannot be done based
on static analysis. Hence, tlamalytical powerof a suitable method is strongly related to the
method’s capability to simulate the system’s behaviourennmdntime. It must be able to (i)
simulate such a system design and (ii) automatically dewiktransform the resulting simulator
information into a human-interpretable representatianthke following, we present a concept
that aims to address the conceptual objectives stated above

5.2 Concept

In this chapter, we propose a high-level modelling apprdhelh enables system designers to
specify a VCAssystemin an abstract way. It supports the specification of virtualtircore
coding platforms and can derive the runtime behaviour of &ViGhning on this platform in an
automatic way. The design of our methodology provides méareldressing important aspects
of design space exploration in the context of parallel videding systems:

1. Means to describe the high-level functionality of a vidggaplication (i.e. modelling of
computational tasks) must be provided. In our work, the dofapecific aspects of video
coding shall be addressed.

2. A simulation mechanism for mimicking the systemparallel runtime behaviour based on
this formal description is necessary. Hardware-relatgebets such as scheduling, data
exchange and notation of time must be supported.

64

5.2. Concept

3. Means shall be provided that allow the designer to integtaowledge about the runtime
behaviour of VCA tasks on similar hardware (e.g. gained widilng) within this model.

4. Adaptation of traditional complexity estimation and fiiheg techniques for extracting a
VCA's runtime information that is typically available dag the system design.

5. The simulation results regarding the performance of gydenust be transformed into a
human-readable representation.

The idea behind our methodology, which we refer to asPdmgition Assessment Simulation
(PAS) is that a VCA running on a multi-core architecture exectitessame tasks as its single-
core implementation. However, in multi-core systems theilfel processing resources enable
the concurrent execution of these tasks. This results iffereit execution order of the tasks.
The PAS simulates parallel processing, changing execatider, and estimates the implications
on the VCAs runtime. Figuré Bl1 illustrates the three majarts of the PAS: Specification,
characterisation and simulation.

System specificatianThe system designer defines virtual hardware resourcdsasupro-
cessing units (PUs) and memories, the computational tésitsate executed during a VCA's
execution and the dependencies between these tasks.

Characterisation Information about the VCA's tasks complexity and the exa@of data
between tasks is provided. This expert knowledge can oftedebived from profilings of the
VCA running on single-core platforms. For System-on-CHgoC) architectures which are
typically built from existing components, this enables aptit the SoC'’s simulation in context
to hardware profilings from its already available singleecoomponents.

Simulation: The PAS combines this information to set the tasks in theestrof this new
virtual system. It determines the impact on the individaaks’ runtime in a system with differ-
ent hardware resources and software partitioning.

Using abstract models for describing hardware and softweamelts in high flexibility when
doing design space explorations. This includes the evatluaf unknown hardware configura-
tions as well as software partitionings. For example, leassmume that we want to test a new
multi-core hardware system. In this case, the system desigmy needs to reformulate the
description of the hardware and update the mapping of tks taghe given processing cores.

In the following, Sectioh 5.2]11 introduces a method basedemendency grapter describ-
ing the tasks and inter-task dependencies of a VCA effigievite extend this method in such a
way that the mapping of tasks onto specific HW units and harelwesources (e.g. processors
and memories) can be described. Sections15.2.2and 5.2a8rekpw hardware profiling infor-
mation is used to characterize this virtual system and hawilsition of such a system can be
done, respectively.

5.2.1 System specification

Specifying a VCA's system within the PAS can be divided imarfstages (Figure 5.2). First,
a formal representation that describes a VCAs executidratieur in an abstract (i.e. HW
independent) way and down to a level of parallelisation (LwRere parallel coding approaches
shall be implemented. This step involves the definition ef tfisks that are executed during

65

Chapter 5. Virtual prototyping of parallel video coding s3y1®s

Task Definition Unstructured tasks
(a) Parse Intra IDCT Deblock l:l D l:l
o oo

Time
Task
Dependencies

Data-flow Definition

Single-processor decoding
(tasks in sequential order)

(b) Parse Intra IDCT Deblock
= —=

{m

Time

Mapping tasks to
abstract hardware

Parallel decoding

Processing Resources . .
(with processor dependencies)

Processor 1 Processor 2

(C) Parse Intra IDCT Deblock Proc. 1 D:I:l
Proc. 2 . ' .-

Time
Resource
Constraints
Data Communication Resources P'arallel decod_lng
(with buffer constraints)
d Processor 1 Processor 2
() Parse Intra IDCT Deblock Proc. 1 [.:l:l

Proc. 2 . I ..

Time

B Stalls due to buffer limitations

Figure 5.2: System specification in the PAS: (a) The desigeénes the coding tasks that are
executed during the coding of a video stream in an abstragt i@ The dataflow and the
resulting dependencies between these tasks are specifjethg tasks are mapped onto an ab-
stract hardware platform. (d) The communication resouficesFIFOs) for the communciation
between tasks on different processors are included in @eisys description.

the coding of a video stream and the dependencies betwesa tifigks. This is visualised in
Figured5.2(a) arld3.2(b), respectively.

For data-driven applications such as VCAs, tasks can tipite derived from the FBs
of the VCA. Each task reflects the execution of a FB for a paldicVCL coding element.
For example, a task could be the intra prediction of a maoabl If the system designer is
interested in investigating partitioning approaches fdeeoder working at a slice level, the FBs
and consequently the tasks are defined at a LoP that remekerdecoding steps for individual
slices. In our methodology the system designer models thetHBa LoP that can describe
the parallel processing of a decoder’s partitioning apgnea. This modelling at LoP has the
advantage that partitioning approaches can be descriibdwiproviding knowledge about the
internal functionality of the underlying tasks themselv@dhis avoids the time-intensive task
of modelling a detailed algorithm functionality that takelace inside the task. At the same
time it does not place any limitation on the parallelisatitzelf since the FB granularity can be

66

5.2. Concept

increased arbitrarily.

After specifying tasks and dependencies, a virtual systefimition (VSD) is defined (Fig-
ure[5.2(c)). The tasks are assignatapped to virtual processing resources in this VSD. This
allocates the tasks to physical processing resources aadrdees where the processing of the
individual tasks takes place. In Figurel5.2(d), resourcesimulating the communciation be-
tween the VCA's tasks on different processors are specifigtairmour VSD. This allows the
PAS to consider inter-processor communication during yiséesn’s simulation.

High-level algorithm description

As mentioned in the previous section, the first step in ouretlimd) approach is to specify all
tasks that occur at the LoP of a VCA. Specifying the tasks dmwte LoP has a significant
impact on the modelling complexity and hence on the metlogydd suitability for fast proto-
typing. On the modelling side, no detailed information abihie internal functionality of the
individual tasks has to be provided. This significantly reskithe amount of information that is
required when modelling a VCA's system. On the simulatiatesthe PAS can consider each
task asatomicsince no parallelisation inside a task takes place. Th@wallus to introduce
the following two simplifications that affect the way our etlology describes and simulates
parallel VCA systems:

First, we can assume that a task’s execution cannot beupted nor distributed to multiple
processors (i.eatomic execution Each task is considered as a sequence of instructiongsthat
performed for a VCL coding element and once started by a peing unit (PU) is executed by
this PU without an interruption till the end. It should be exdt that in a physical system hard-
ware interrupts (e.g. for task scheduling or error handllcan occur during a task’s execution.
However, in a complex real-time VCA design, task schedutiag only be exploited in a very
limited scope and the impact of task scheduling on the ruaiarformance can typically be
neglected.

Second, we make the simplification that a PU requires apmabaly the same number of
computational instructions and the same duration for ekega specific task, no matter whether
the PU is the only PU in the system or part of a multi-procesgstem.

Based on these assumptions, the execution offashn be specified by the task’s start time
timestqrt (1) and end timeime,,,4(T") with

timeenq(T) > timegare(T) (5.1)

The task’s duratiorluration(T') is the time that passes (i.e. the difference) between stdrt a
end times:

duration(T') = timeeng(T') — timesiart(T'), duration(T") > 0 (5.2)

Let us assume that a VCA's execution consists of the indalidxecutions of the VCA's
tasksT)..Tn. The total duration of this VCA running on a single PU is thensof these tasks’
durations:

67

Chapter 5. Virtual prototyping of parallel video coding sm®s

T Ts

@ #@
T2 4 T Ts T4 Tr
@ t@

Ta Ts

deblock P{ deblock

Figure 5.3: The figure visualises a dependency graph betimeemacroblocks’ decoding tasks:
In this example, a simple video stream consistin@ &Bs is decoded. Each executed task is
represented as a vertex. The directed edges represenipineddacies between the tasks.

duration(VCA) = Z duration(T5;) (5.3)
i=1..N

The exchange of data between tasks (i.e. damflow results in data-dependencies and
determines the tasks’ execution order and start/end tifees simulating a VCA's execution,
these data-dependencies must be considered.

For describing a VCAs dataflow in the PAS, we define a set of eddpncies
D = {D1,D,,...,D)}. Each dependency); € D describes a data-dependency between
two tasks and is of the following form:

D;:T, — Ty (5.4)

In Equation(5.4, Dependendy; determines that task, depends on taskK,. This means that
the execution of;, cannot be started unfill, has been finished:

Dj T, = Ty = timesiart(Ty) > timeenq(1,) (5.5)

For describing tasks and data-dependencies of a \Mefendency graphsrovide a pow-
erful and flexible concept. Figufe 5.3 shows an example ofpenigency graph of a simple
decoder VCA. Each vertex in this dependency graph represetatsk of our VCA. A directed
edge between two tasks represents a dependency. It irltbatiethe execution of the task this
edge is directed to cannot start before the other task hasflvéghed.

Each taski, in such a dependency graph represents a part of a VCA's bvenéime and is
executed at a specific time intervalifesiart (15,);timeenq(Ty)]. A cycle in our graph would
mean that tasi,, depends on itself and can only be executed after it has fihishkis is not

68

5.2. Concept

Ta

deblock

(@) (b)

Figure 5.4: Sequential task order for a macroblock’s dewptisks: Figures (a) and (b) visu-
alise two possible orders of executions of thdecoding tasks of Macroblock The vertices
representing the start and end tasks in this order of exgrate marked by a double and a black
circle, respectively.

possible for time-sequential programs. Hence, a VCA's ddpacy graph cannot contain cycles
and can always be treated aP@ected Acylic Graph(DAG). Efficient algorithms for solving
DAGs are available. In Sectign 5.2.3 we will explain, how BAES exploits this for simulating a
virtual system based on DAGs.

It is important to note, that while a VCA's dependency grajgfires exactly which tasks
must be executed before all data dependencies of dtamte solved, no uniqu@rder of Exe-
cution (OoE) is derivable from such a DAG. For example, in Fiduré &feer taskl; has been
executed two task®, andT; could be executed which shows the ambiguity in this degoript

For describing a single-core VCA's execution in a deterstiaiway, we introduce the term
sequential task ordeSTOs). Each STO is a sequential list of tasks that detesraneunique
and sequential order between these tasks and defines a ithit8crexecution path that is
taken during the VCA's execution. For our example in Figu/® With a single MB and four
tasksT}.. Ty, two STOs are possible:

STOl T =Ty — T3 — Ty (56)

ST02 : T1 — T3 — T2 — T4 (57)

Figures 5.l4a and 5.4b visualise the two STOs in Equafionssd5.7, respectively. The
solid arrows define the OoE which clearly states which taskecuted after a dependency is
resolved. An STO can be seen as a DAG where each task onlydpsodiata for another single

69

Chapter 5. Virtual prototyping of parallel video coding sm®s

task (i.e. for each task;, only a single dependendy; : T; — T exists). The STO typically

depends on the VCA's implementation for a specific platford & defined consciously or not
by the system designer during the software developmeng siigs will become more obvious
in the next section when abstract hardware resources aeel addur VCA model.

Abstract hardware resources

Next to a VCA's dataflow and the execution order between {ag&snust be able to describe the
hardware components of our platform in an abstract way. $e c&a parallel platfrom, multiple
processing units (PUs) are available. We defirpazessor sefy 4 = {Py, P, ..., Py} that
contains all PUSP; 5, of avirtual architecture(VA). For each of the VCA's task, aassign-
mentA; : T; — PU; is defined which assigns tagkto PU P;.

Connecting the VCA's tasks with hardware resources intteduphysical limitations into
our VCA description. The assignmedt; : 7; — P; determines that for computing tagk,
computational resources of the assigned Blare used and that the execution of a tédskan
only take place while?; is not executing another task (i.e. no parallel task exeoutih a single
PU). In the following, we writ€l’; ; to refer to taskl; that is executed on process#y.

Task execution order

While for single-core VCAs the choice of the STO does notrdhie VCA's overall runtime, in

a parallel environment with multiple STOs (i.e. one for epobcessor), dependencies between
tasks of different STOs can have a significant impact on trexadlvruntime. For formally
describing the execution order of a VCA in multi-processavimnments, we define Models
of Executions (MoEs). For a VCA running ol PUs, the MoE is a set of STO§;, .., Sy, that
defines an STO for each PU. The MoE determines the executithinvé VCA on a parallel
system in a unique way and independently of the underlyimgviare.

Figured5.ba and 5.5b visualise the mapping of the VCA grapin fFigurd 5.B ont@ PUs
(i.e. 2 MoEs). In Figuré 5.ba, the decoding tasks\édfB; have been assigned to A?) and the
tasks ofM B, to P,. This represents the case of a data-parallel decoding agipré&iguré 5J5b
shows a functional decoder partitioning where plagserdecoding tasks have been assigned to
PU P;. The solid edges indicate the STOs for PRisand P,. The dotted edges indicate data
dependencies between tasks of different PUs. Each STO defiatart and end task for each
PU. A PU stops the execution of his part of the VCA when all $ablat have been assigned to it
have been executed. The first task of each STO can either diepemo other task of the VCA
(i.e. the VCAs initial task) or tasks from other STOs.

Data communication between tasks

No physical limitations on the communication between taskd PUs have been considered so
far. For describing read and write transfers between tagksise FIFO communication buffers
Each VCA contains a set of FIFQs € {F..Fx } where K specifies the number of FIFOs of
this VCA. Each FIFO can be used to pass on data from one tagkother. For parallel task
execution on multiple PUs, communication buffers are dsdem task running on PUWP; can

70

5.2. Concept

Pi P2

P

deblock

deblock

Figure 5.5: The figure visualises the mapping of a VCA's grapto a platform with multiple
PUs: (a) The decoding tasks 8f B; and M B, are assigned to PUB;, and P, respectively.
This represents a data-parallel macroblock decoding aphra(b) A functional partitioning of
the decoder assigns the parser tasks of both MBs t@Pahd the remaining tasks 1.

(b)

store its results for dependent tasks of other PUs that drgat@ble to process this dat#®;
can continue executing its assigned tasks. Without comeation buffers, it would have to stall

71

Chapter 5. Virtual prototyping of parallel video coding sm®s

until all dependent tasks have read the data (i.e. all dep@mlencies are solved).
Within our VCA description we assign two FIFOs, an input andatput FIFO, to each task
T;.

T — (Ena Fout), F{in,out} eFr (5.8)

We refer to the input and output FIFOs of taBkas F;,, (7;) and Fy,.(1;), respectively. Task
T; reads its input data fronk;, (7;) and writes its results té,,,(7;). A data-dependency;
between two tasks is solved by passing on data between tmseusing a shared FIFO:

Dj: T, = Ty = Fou(To) = Fin(Tp) (5.9)

While FIFO communication is obviously necessary for ddsieg data communication be-
tween tasks of different PUs, also sequential VCA execufian running on a single-PU)
requires a model for describing the data exchange betweks. th a single-PU scenario such a
model allows us to describe the storage of data that is tge karbe kept in processor registers
until the next task is able to process it. For example, a tagkgrocesses a whole image will
store the image data in a local memory buffer where consextasks can access it.

5.2.2 Characterisation

After the specification of the VCS’s components, tmaracterisationtakes place. In this step,
the VCA's tasks are set in context of physical hardware. €hily, the PAS supports the follow-
ing task information that is considered during simulation:

e Processing timeDuration of a task for executing on its assigned processor.
e Transfer sizeAmount of data that is exchanged between the dependerst task

e Transfer times Times required for transferring input data to a task andwdting the
task’s results to an output buffer.

For specifying how long a task is processed by a specific Porriration on each task’s com-
plexity must be provided to the PAS.

In Chaptef5.2]1, we have introduced the term duration. Vet designer specifies the
processing duratioduration,(T;, P;) of a taskT; running on PUP; by using either clock
cycles or seconds, for example:

durationy,(T;, P;) = 2500 cycles = % seconds (5.10)
whereclock(P;) refers to the clock rate of PB;. Depending on the physical hardware the PU
is based on (e.g. processor type, hardware extensions tleécduration of tasi; can vary. For
a VCS with N PUs, the PAS allows the system designer to specify the tdsiation for each
PU individually.

The PAS uses the FIFO communication buffers to specify thengonication behaviour be-
tween tasks. Since in a real-world scenario FIFO bufferdimited in the amount of information

72

5.2. Concept

they can store, the system designer assigbsfi@r sizesize(F}) (e.g. in bytes or number of
MBs) to each FIFOF;. This size determines the maximal amount of data that caridoeds
within this buffer.

A task can store its result data in its output FIFO if suffitispace within the buffer is
available. Similar to dependencies, we define a set of woitelitionsC' = C..C . Each write
conditionC}, determines an output resource that is required by afafk writing its results to
its assigned output FIF®,,;(T;):

Ck: : 3ize(ﬂ7 Fout(Ti)) < free(Fout(Ti)) (511)

In Equation[5.1 size(T;, Fout(T7)) refers, for example, to the number of bytes that task
writes into its output FIFQF,,.(7;) and free(F,..(T;)) to the amount of free memory in this
FIFO. TaskT; has to stall if one of his write conditions cannot be fulfillgg. task; cannot
write its results into its output buffer due to insufficienemory).

Next to the memory requirements also the transfer time fmirgi/loading a block of data
to/from a FIFO has to be provided. In the PAS, we specify ttal rdurationduration,.(T;)
that it takes task; to read its input data from its input FIF®;,(7;). In the same way we
specify a write duratioduration,,(T;) for writing the task’s output to its corresponding output
FIFO F, (T5).

5.2.3 Simulation

Based on the specification and characterisation of the Vig&lation of the runtime be-
haviour and estimation of the overall runtime can be donés 3éction explains how the depen-
dency graphs that build the foundation of our VCA descripttan be resolved efficiently.

In a realistic multi-core VCA, the tasks will strongly degkean each other. These depen-
dencies stem from the simple fact that one task usually néedeesults of one or more other
tasks as an input. The proposed PAS is capable of computngvtirall runtime correctly with
respect to such dependencies. The basic algorithm to adisbntipis simulation is introduced
in Figure[5.6. In the example of Figure b.6, we only considav@core system. However, the
algorithm can easily be extended to handle an arbitrary urmbprocessors. We go into more
detail on the algorithm in the following.

The algorithm of Figure 516 maintains three different kindisets. First, a sef; represents
all tasks that have been executed on processoSecond, we use sefs to keep track of all
those tasks that are already completed at a specific instdrizee ¢. Third, for each task™ a
dependency sdbr is introduced, which is a list of all tasks that already nemtié computed
before we can start execution of the tgsk

The main loop of the algorithm (Lines 16-43) is iterated allitasks have been executed.
For each processor, we determine the tasthat shall be executed next (Line 24). This task
can only be executed if its dependencies are already rekole therefore iterate through the
dependency list df” (Lines 28-33) to check whether all depending tasks aredreaamber of
the finished task lisF; at the current time. If this is the case]” can be executed. We addto
the list of finished tasks at time+ duration,(1') and removel” from the list of tasks that are

73

Chapter 5. Virtual prototyping of parallel video coding sm®s

Il lists of tasks that are executed on two processors
Ti={T11,T21, -, Tu1};

To={T12,T22, - ,Tny2};

Il list of tasks finished attimey 1, - - - , tnaz
Fo=Fi==Fr =0

I specify intra dependencies (just shown for proce$3or
DT1,1 = @;

Dr,, ={T11};

NG RrwhR

9::

10: Dz, , ={T11, , Toy—11};

11: // add an inter-dependency (e.g, task 3 of processor
12: // needs to wait for tasky of processor™)

13: DTS,I = DTS,I U TQ,Q;

14: // the current time

15: t =1;

16: // loop while there are still tasks that need to be processed
17: while 71 # O A T3 # 0 do

18: [/l tasks that are already finished at time 1 are also
19: [/l already finished at time

20: Fi=Fe UFi_q;

21: [/ for both processors

22: fori=1to2do

23: I/l access the first entry in the task list of procesBor
24: T="T1];

25: /I check if all dependencies far are resolved

26: dependencies_resolved = true;

27: /I go through the dependency list'bf

28: for j = 1to|Dr|do

29: Il check if the task on whicli’ depends has already finished at titne
30: if Dr[j] ¢ F: then

31: dependencies_resolved = false;

32: end if

33: end for

34: /I in case that all dependencies are resolved

35: if dependencies_resolved == tiilhen

36: Il addT to list of finished tasks at time+ duration,(T")
3r: ‘Ft+du7'ationp(T) = ‘Ft+du7'ationp(T) UTs

38: I/l removeT from the task list

39: T.=T —T,

40: end if

41: end for

42 t=t+1;

43: end while

44: | computed execution time of the multi-core system
45: return ¢

Figure 5.6: Algorithm for simulating parallel task exeautiin a VCA. A detailed explanation
is given in the text.

74

5.3. Implementation of the Partition Assessment Simuratio

still waiting for execution (Lines 37-39). After the algtinm has left the main loop, the overall
computation is determined from the value of the varial{leine 45).

It is important to note that the algorithm in Figurel5.6 onbynsiders read-dependencies
between tasks so far. For addressing FIFO buffer limitatiand their impact on the overall
processing time, we can extend this algorithm by adding aitiadal iteration after Lines 28-
33 for validating that the data resulting from a task can higtevrto the task’s output FIFO.

5.3 Implementation of the Partition Assessment Simulation

In this section, the implementation aspects of the PAS aseriteed. Sectiof 5.3.1 outlines
how time and complexity are treated within the PAS. In SedBa3.2, we describe how the
PAS can exploit information from DDPs to automatically sfetasks and dependencies. Sec-
tion [5.3.4 focuses on the implementation aspects relatadttteal hardware prototyping and
VCA partitioning onto a multi-processor platform. The siation of our VCS is explained in
Sectior5.3b.

5.3.1 Time domains within PAS

The general understanding of time and complexity in theedrtf a multi-core platform is of
great importance. In areal-world VCA running on a multi-gessor platform, it affects essential
aspects such as the processing time required to executk artdge synchronisation between
the PUs.

The PAS implementation differentiates betwdecal timeandglobal time The PAS con-
siders each PU in the VCS as an independent system with itsomahtime system and its local
time counter. Whenever a PU executes a task, the PU’s lonal ¢ounter is incremented by
the duration of this task and corresponding data transieedi The local time countéf,.q; ;
indicates until which time the PW’; has been simulated by the PAS and what simulation data
(e.g. the start and end time of all tasks that have been ecttilltt;,.,; ;) is available.

The global timet ;5. WOrks as reference to coordinate the individual componehtsur
VCS during the simulation. Each value of a PU's local timerdeucan be mapped to the global
time and vice versa:

tlocal,i <~ tglobal (512)

This also enables the translation between different Idoaé tsystems. For example, the
local timet;,.q,; Of @ PUP; can be translated into the global time and then further irtxal
time t;,¢41,; Of another PUP;:

75local,i = 75global = 75local,j (513)

The ability to translate between local and global time emsbis to analyse a VCS at a spe-
cific global timet ;. This enables the PAS to address an essential aspect ofigonaakessor
execution behaviour: the synchronisation between taski#ffefent PUs. For example, consid-
ering a scenario with two tasks and7; running on two different PU%;, andP,,,, respectively,

75

Chapter 5. Virtual prototyping of parallel video coding sm®s

if 7; depends or}, then in order to evaluate whether this dependency is redplthe time
when the results frord; become available must be known in relation to the local tigstesn
of PUP,.

Since FIFO buffers can be used by tasks of different PUs amherjuently, within multiple
local time systems, global time values are used to deschirges in the fill status of a FIFO.
The translation from global into local time systems enable$o determine the fill status of a
FIFO at each PU and to consider this when simulating taskugxecon this PU.

5.3.2 Task generation based on data-driven profiling

In the previous chapter, a simple VCA with a small number ofdMRd tasks was used to outline
the concept behind our modelling methodology. Howeveilcaipreal-world VCAs have large
numbers of tasks and dependencies, and so a manual spexifenadl characterisation becomes
intractable. In the PAS, means for automatically deriving tasks of a VCA from a DDP are
provided. Three major steps are automatically done by tHg: PA

1. Task specification Generation of VCA tasks from the DDP based on profiling rules
2. Complexity characterisationAssignment of complexity information to individual tasks

3. Coding characterisation Assignment of application-specific coding attributestsas
MB, slice and frame number to individual tasks.

Exploiting the information available in a VCAs DDP enables to map the VCAs com-
plexity onto specific tasks. We can use this information tmauatically retrieve the vertices of
our dependency graph from these profilings. For each taskamirofiled runtime complexity
greater tha cycles, a PAS task is created. The PAS stores all informétiaiis required by the
PAS for the VCS simulation in a data structure. After the endtic task specification, this struc-
ture contains information about the task processing dwndtiuration,(7;)) and VCA-specific
coding information such as the MB/slice/frame number tisk ta processing.

5.3.3 Rule-based specification of data-dependencies

Specifying the dependencies of a VCA in an efficient and sammatic way is supported by
the PAS. The designer can provide dependency rules (DRsii¢isaribe the relation between
a VCA'’s tasks and enable the PAS to automatically introdas& tlependencies into a VCA's
dependency graph.

In general, all DRs use the FB type and the coding informatioa task for specifying the
relation between the VCA's tasks. For example in the H.2Gbder, the entropy decoding of a
MB always has to be done before the MB'’s intra-predictionnétg if the functional type (e.g.
“entropy” or “intra”) of the tasks is known from the DDPs, a D&t formalizing this task relation
can be created. An example of how such a DR would be specifigslialised in Equation 5.14.
In the PAS, task§,, andT, are considered as structures that contain coding infoomatich as
the MB numbefT’,.mb and functional blockd’. fb:

76

5.3. Implementation of the Partition Assessment Simuratio

DR(Ty,Ty) : (To.mb=Tpmb) A
(Ty.fb="entropy’) A (5.14)
(Ty.fb ="intra) = D:T,— T

After specifying the VCA's tasks using the DDP, the PAS usesdefined DRs for automat-
ically specifying all VCA dependencies. It is important tot@ that the number of dependencies
(and hence the number of required DRs) strongly dependseogrdnularity where the paral-
lelisation takes place. For example, in a slice-based Hd2@éder partitioning, few dependen-
cies, mostly between slices of consecutive frames (i.er-otediction), exist. For a MB-based
decoder partitioning, a larger number of DRs must be spedcifiedescribe the dependencies
between the tasks. Apart from parallelisation granulagtso the VCA's underlying coding al-
gorithm’s complexity has a direct impact on the number ofessary DRs. Depending on the
number of coding tools supported by a coding algorithm, theunt of data dependencies can
strongly vary.

5.3.4 Partitioning of video coding application

For describing a virtual hardware platform, the PUs and thmraunication FIFOs must be
specified. An abitrary number of PUs can be created withirPth8. For each PU, a local time
counter is maintained by the PAS. During the simulation of @Sy this counter specifies the
time this PU has been simulated so far. The FIFOs for dathagge between tasks are created
by specifying the number of FIFOs and the size of each FIFO.

After the specification, the mapping of our VCA's tasks otite hardware platform is done.
The PAS supports this software-hardware mapping by thyaestgf functions:

e Processor Assignment Functions (PAFs) for assignmenskéto PUs
e FIFO Assignment Functions (FAFs) for assignment of task&k®s

e Memory Access Functions (MAFs) for describing the trangfehaviour between tasks
and FIFOs

These functions can be defined in the PAS using the Matlaklbigh language syntax, which
results in a high flexibility when adapting the virtual haate and software architecture to new
partitioning approaches.

Processor and FIFO assignment

PAFs enable the assignment of the VCA's tasks to PUs aftetafies and dependencies have
been specified. Similar to wildcards, each PAF searchea$tistwith specific coding attributes
(e.g. MB number, coding type) and assigns these tasks tac#isg®J. This enables an efficient
and abitrary partitioning of the VCA onto the PUs. For exammlata-parallel and functional
partitionings of the VCA can be defined by assighing MBs of digalar:

e slice/frame/frame row/frame column to a PU

77

Chapter 5. Virtual prototyping of parallel video coding sm®s

e function type (e.g. “entropy’,intra’) to a PU

e coding type (e.g. intra coded) to a PU

The flexibility of this assignment enables fast partitigniof the VCA. For simulating dif-
ferent partitionings of the VCA, only the adaptation of th&H8 is necessary. The PAS can
automatically derive the new VCS and provide a runtime estiion for this new partitioning.

Each task within the VCA description has to be assigned topatiand output FIFO that
enables the PAS to model data transfer behaviour betweks t&milar to PAFs, this assign-
ment is done using FAFs and uses coding information for asgigasks with specific codings
to the same FIFO. It should be noted that PAFs and FAFs neeadgcisdormation for assigning
the tasks to PUs and FIFOs. Consequently, these rules eeguiearly characterisation of the
tasks before an automatic assignment can take place.

Memory Access Behaviour

The PAS supports the modelling of the MAFs for describingdata transfer behaviour between
FIFO and tasks on a specific PU. The PAS provides linear mddelsstimating the transfer
time of moving data between FIFOs and PUs as well as more exmpbdels that can describe
abstract caching behaviour of task data. For example, alnfmdestimating the time required
for executing a DMA data transfer could have the followingiio

B T;.s12€0ut
~ transfer_rate(T;.fifoout, T;.pid)

duration, (T;) + latency(T;. fifoout) (5.15)
In this equation, task; writes its output data to its assigned output FIFDfifo,:. The
duration this write transfer requires is estimated baseti®task’s output data’s siZ.sizeq,
the transfer rate between the executingBlid and its output FIFO. Furthermore, the model
assumes that a latenéytency(T;.fifoo) for initiating a data transfer to the output FIFO
occurs. For each task, the PAS automatically finds the quoreing MAFs by analysing the
task’s assigned PU and FIFOs and computes the read and wragah for transferring data
to/from the task.

Based on the available task information, more complex MAdrstme defined that also con-
sider caching strategies and data cache sizes based on $hsirRAlations. This makes it pos-
sible, for example, to estimate how well data locality capleited for a partitioned decoder

mapping.

5.3.5 Simulation process

The example in Figure 5.7 will be used to depict the simutaipproach. In this figure, four

MBs are decoded on two processing units. The processingcbf8 consists of a parsing and
entropy decoding task and a reconstruction task that pesfatl pixel reconstructions based on
the parsed MB bitstream information. In this example, alspay tasks are executed on pro-
cessorP;, and all pixel reconstruction tasks on procesBgrwhich corresponds to a functional
decoder splitting.

78

5.3. Implementation of the Partition Assessment Simuratio

Tia T2 T3 Taa
parse & @ parse & parse &
entropy p{ entropy p{ entropy Pl entropy
decoty Q(W @ding \ decoding
P>
v T2 v T2 v T32 v Ta2

A

\ ;@h ;@h o ff reconstruct
'w v pixels v pixels

Figure 5.7: Functional partitioning of four macroblocksorfeach macroblock two decoding
tasks, “parse & entropy decoding” and “reconstruct pixekl'e executed. The parsing and
reconstructing tasks are executed on procesBpend P, respectively.

Figure[5.8 illustrates how the PAS simulation works for #gmample. The decoding process
of the first three MBs is shown in six simulation steps. Prece#; executes the first decoding
taskT7 ; (i.e. parsing and entropy decoding) and writes the resniliSEO F;. In this example,
the buffer size off} is limited to one macroblock. ProcessBr reads the results from FIFB,;
and applies the pixel reconstruction téBk». Internally, the PAS maintains a list for each PU
and FIFO buffer. It stores the states and the filling levelsaith PU and FIFO. The simulator
sequentially processes one macroblock decoding taskaaftther.

The PAS uses the task assignment to determine the PU exgeutiacoding task. It evalu-
ates when this PU can start to execute a task. In Figure Hi8as indicated by the white marker
(S). The processor’s execution counter is increased byagiestduration. The black marker (E)
indicates the end of a task. At this point the processor hahéd the task execution and written
its results to the output buffer FIF®,. At this stage, the PAS does not know when the data is
removed by another task and marks the state of Hif-@s occupied.

In Figure[5.8b, processdp, reads the MB data from FIF®; and frees the occupied mem-
ory in this FIFO. During the decoding of a MB, functional dagencies between the decod-
ing tasks and data dependencies between the individual MBt é\We have presented MB
dependencies for the H.264 codec in Seclion 8.5.1. In FiGufik, a read stall due to data-
dependencies is illustrated. Processbrcannot start its decoding operations simultaneously
with processorP;, but has to wait until the required data becomes availabtedarinput buffer.
The PAS uses the algorithm description for detecting thasl igall. The start of the task execu-
tion is delayed automatically.

In Figure[5.8c, the second MB is executed by proceg3oand written to FIFOF;. Af-
ter processoi, has finished its decoding operations farB;, it readsM By and executes it
(Figure[5.8d).

Until now only the impact of computational complexity on ouulti-core decoding system
has been considered. Additionally, the PAS checks for bgifee constraints. For each task,

79

Chapter 5. Virtual prototyping of parallel video coding s3y1®s

(c)

(d)

(e)

®

Processor P1

FIFO F1 | !

tim
Processor P2 T

time
Processor Pi ﬂ

[0
FIFO Fi | I]

time
Processor P2 T r

Tme
Processor P1 W

i
FIFO Fi | I Y

time
Processor P2 T T

Gme
Processor P1 W

me
FIFO Fi | "

1

ime
Processor P2 > T

[
Processor P1
FIFO F1

Processor P2

Processor Pi

FIFO Fi

Processor P2

time

Figure 5.8: Visualisation of the internal simulation prsgén the PAS. The figure shows the
execution states and buffer levels of two PUs and one FIFEpectively. Three MBs are pro-
cessed on two individual PUs. For each MB, one task is exdauid”?, and one onP,. After
partially decoding each MB, processf writes the results to FIF@?. For simplicity, the
FIFO’s maximum size is set to 1 macroblock. Proced3oreads the MBs from this buffer and
computes the remaining decoding tasks. A detailed expéanit given in the text.

80

5.4. Summary

limitations in the buffer communication (e.g., write ssadlue to insufficient buffer sizes) can be
considered using the FAFs and MAFs. For example, the patasigrequires a certain amount
of free memory for writing its results into an output bufféhe decision space can be explored
by specifying how much memory is required and how the datsstes influences the runtime
using MAFs (e.g., “What happens in the case of insufficiefffiglb®” or “How does the memory
access latency influence the decoder’s runtime?”).

Figure[5.8e visualises a case where insufficient buffer adlave and a write stall occurs.
Since FIFOF; has a maximum size of 1, procesggrcannot write the results of decoding MB
immediately. It has to wait until processés has read\/ B, and freed the occupied memory in
FIFO Fy. A write stall occurs in this case. After finishing Bs, processoli?, readsiM Bz from
FIFO F; and decodes it. Afted B3 could be written to FIFCF, processot”; continues with
the next MB.

For determining write stalls between tasks, the PAS intgricamputes the amount of data
which is exchanged between dependent tasks. It uses thelefssed communication FIFOs
and connects the tasks to these FIFOs. For each task, howdatets read/written to a FIFO is
specified. This information can be extracted from the dece®deurce code (e.g. “the deblock-
ing task reads X bytes”). For each FIFO, the PAS maintainst afiall read and write operations
that occur throughout the execution of VCA. This enabled?#h8 to automatically compute the
FIFO levels for each point in time throughout the VCA's extimol. The PAS delays a task if
insufficient memory for writing the task’s results is avala

Using the MAFs, the time a task requires for reading/writiaga FIFO can be specified. It
facilitates modelling of different memory properties sasread and write duration, latency and
access time. The PAS delays the writing tasks automatibakgd on the MAFs.

5.4 Summary

In this chapter, we have introduced general aspects angrdgeals for VCA partitioning. The
flexibility and descriptive clarity for modelling VCAs to ffierent hardware partitionings and
to exploit available knowledge (e.g. from hardware profifinalgorithm knowledge, etc.) are
considered as the prime requirements of such a partitiomimpgoach. We have introduced the
PAS concept for describing a VCA in an abstract way and forpimgpthe VCA onto a virtual
hardware platform. During a specification step, informatim the VCA structure, the virtual
hardware platform and the partitioning is defined. The attarésation step introduces informa-
tion about runtime complexity, transfer behaviour and alsconstraints. The last stage, the
simulation, combines all this information to estimate thistime as well as the memaory transfer
behaviour of our application.

An implementation of the PAS has been provided. It enablé¢aildd analysis of imple-
mentation aspects of our proposed concept such as concsmemation. We have provided
functionality for fast generation of VCA descriptions frddDPs. Furthermore, mechanisms
for assigning tasks to PUs and FIFOs have been introduceéeéhale the system developer to
describe complex platforms and VCAs with low effort.

81

CHAPTER

Concept verification and design space
exploration results

In this chapter, we use the PAS methodoloy for modellingotegireal-world partitioning sce-
narios of H.264 decoders. We verify the PAS methodology asmahstrate its usage in the
following way. First, we use the PAS for modelling a singtaee decoder running on one core
of an existing dual-core reference architecture (Seétidih Gecond, we derive function traces
of a single-core decoder running on this architecture inti®e®.2. By calibrating the PAS
model according to these hardware profiles, we can modelatiware characteristics of our
architecture within the PAS. In Sectién 6.3, we verify thages of the PAS using a dual-core
H.264 decoder running on this reference architecture. Bypasing the runtime behaviour of
the reference dual-core decoder system with the PAS siioalaf the same VCS, the accuracy
of the PAS is estimated. Third, we demonstrate how the PA®eapplied for fast design space
explorations in Section G.4.

6.1 Specification of a dual-core video coding system

For this evaluation, the same reference architecture asided in Chapter 4.311 has been used
(Figure[4.4). The decoding in this VCS works as follows: TheM processor receives the
compressed video data as an MPEG-2 transport stream. dcexthe compressed H.264 video
data and writes it to the external mMDDR memory via DMA transf@ne CHILI processor uses
DMA transfers for fetching the H.264 video data into the tofaster 64 kB local data memory
and starts decoding it. This PU executes all parsing ane@niecoding tasks. The results
of this process are stored into a shared memory (SRAM). TbenseCHILI processor reads
the data from the SRAM and executes the reconstruction taekse it writes the results into
the external DDR memory. This reconstruction includes edélpmanipulation tasks such as
prediction and deblocking. The decoded pixel informat®iransferred via DMA to the DCCs
framebuffer memories. These framebuffer memories aréddaan the external MDDR memory.

83

Chapter 6. Concept verification and design space explanatsults

System specification and characterisation of tasks

In the first step, we profile a single-core decoder and gend»BtPs obtained as explained in
Chaptef4.B. Based on the DDPs we can specify the tasks of 6& i an automatic way.
During the DDP-based task specification, complexity infation of each task for the individual
PUs is obtained as well. After the assignment of a task to asPkhown (i.e. the task has
been assigned to a PU of our architecture), the complexityrimation from the specific DDP
obtained on this PU serves as the processing duration oaskeduring the PAS simulation.

The second step consists of defining the available PUs ardddf our system. One ARM
processor for transport stream multiplexing and two CHItdgessors for executing the com-
putationally intensive video processing tasks are defifreotthermore, communication FIFOs
(mDDR, SRAM and local processor memories) for data exchévegween the tasks are speci-
fied according to the reference architecture.

Before starting the exploration of new designs, we have librege the PAS to match the
characteristics of our reference hardware. This procedeeplained in the next section.

6.2 Characterisation of virtual hardware

After specifying the structure of our VCS, we calibrate theé¥according to the target hardware.
This step includes characterisation of the PUs and memangfier behaviour. Characterisation
of the PUs is done by specifying the clock rate of the proassaihin our VCS. In this case, a
clock rate of 300 MHz of our reference system has been used.

For characterizing the memory access behaviour of our V@&ave to calibrate the mem-
ory transfer times of the PAS to fit the transfer times of ofenence architecture. For obtaining
these transfer times from the DDP of the single-core H.2@&bder, we assign all tasks of the
VCA to a single CHILI processor and adjusted the memory moadél both, the PAS simu-
lated single-core decoder and the single-core decodelgutafih a CHILI processor have ap-
proximately the same execution runtime. Remember the iequatovided in Sectioh 5.3.4 for
describing the memory write access behaviour as a lineatiumof the amount of transferred
data, the transfer rate and the latency introduced by fimitiga memory transfer:

T;.s1z€out

durati T;) =
uration, (T;) transfer_rate(T;. fifoout, T;.pid)

+ latency(T;. fifoout) (6.1)

For specifying a memory model for our concept verificatior,have assumed thabytes (32
bits) per clock cycle can be transferred over the 32-bit Hataof our system (i.e. a transfer rate
of 4 bytes per clock cycle) and that a fixed latency for initiatihg memory transfer is required.
We have specified the duration of memory read and write teagsising the following equations:

duration,(T;) = % + latency(T;. fifoin) (6.2)
. T;.512€0ut .
duration,(T;) = — + latency(T;. fifoout) (6.3)

84

6.2. Characterisation of virtual hardware

(Absolute runtime)

[JPAS(MMI)
o7 I pAs (M)
gl B PAS (MM3)
g S I Hardware
23 I rAS (MM4)
(Runtime difference)

2
= < 6
e= 4 r [1PAS(MMI)
8g 2r] pAS (MM2)
T (2) L I PAS (MM3) [
€2 4L I PAS (MM4)
D _6 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P R N S . s \8’ $ Q & &

\Q@ \$0\ %&o@\&% &@ &}o (\‘66&@ 2 X o &\1& a@ &‘;
& T VS ¢ T
¥
QQ

Figure 6.1: Calibration of the PAS memory models: The PA8rag are calibrated according
to the single-core profilings. The absolute runtime and éhative runtime difference between
the HW single-core implementation and the PAS results afibbration are provided.

For specifying a realistic latency, four different memorgaels (MM1-4) with different laten-
cies have been compared against the hardware profilingsekatenciegatency(T;. fif oip jout)
of 4, 7, 9 and 16 cycles for memory models MM1, MM2, MM3 and MMdvk been set, re-
spectively. It should be noted that the memory model can bended if more information on
the hardware is available.

Figure[6.1 shows the comparison between the simulated andeélasured runtime after the
calibration. The absolute runtime obtained for each maalglsualised forl6 test sequences.
Furthermore, the runtime difference between the PAS sitedisingle-core decoder runtime and
the measured runtime are provided. Of all four MMs, MM1 dixs the memory access be-
haviour with the lowest transfer time for moving data betwt#e PUs and the FIFOs and MM4
the memory model with the slowest memory transfer. We casrgbghat MM3 shows the best
aproximation with a maximal runtime difference of less tloae percent between measured and
estimated runtime. On average, MM3 has runtime differernddess than one percent. The
highest differences can be observed for the “Station2” eecgl with close to two percent.

The information from DDPs and PAS simulation enable us to gam® the measured and
the simulated runtime behaviour in more detail. Figlresa®@6.8 show the relative and the
absolute difference between measured and simulated rargirer time. This enables us to
estimate the cumulative error that is introduced by our rhokiethis detailed analysis we can
see thatM M3 performs well and shows the smallest cumulative error offthe MMs. In

85

Chapter 6. Concept verification and design space explanatsults

(Sunflower) (Station2) (Rushhour) (Bluesky)
PAS (ML) PAS (MM1)| PAS (MM1)| PAS (ML)
PAS (MM2) PAS (MM2) PAS (MM2) PAS (MM2)
5| PAS (MM3) 5 PAS (MM3) 5 PAS (MM3) 5| PAS (MM3)
W PAS (MM4) PAS (MM4) WPAS (MM4) W PAS (MM4)
— Hardware — Hardware — Hardware — Hardware
S g g S
= 0 = o = o = 0
e e e e
fir i i fir
-5 -5 -5 -5
% 1 2 3 4 % 1 2 3 4 10 1 2 3 4 % 1 2 3 4
Time [Cycles] x10° Time [Cycles] x10° Time [Cycles] x10° Time [Cycles] x10°
(Pedestrian) (Oldtowncross) (Intotree) (Tractor)
PAS (MM1) PAS (MM1)| PAS (MM1)| PAS (MM1)
PAS (MM2) PAS (MM2) PAS (MM2) PAS (MM2)
5 PAS (MM3) 5 PAS (MM3) 5 PAS (MM3) 5 PAS (MM3)
B PAS (MM4) B PAS (MM4) B PAS (MM4) B PAS (MM4)
—Hardware —Hardware —Hardware —Hardware
= O = 0 — 0 = Of
e e e e
i i i i
-5 -5 -5 -5
% 1 2 3 4 1% 1 2 3 4 1% 1 2 3 4 % 1 2 3 4
Time [Cycles] x10° Time [Cycles] x 10° Time [Cycles] x10° Time [Cycles] x10°
(Bus) (Riverbed) (Shields) (Crowdrun)
PAS (MM1) PAS (MM1)| PAS (MM1)| PAS (MM1)
PAS (MM2) PAS (MM2) PAS (MM2) PAS (MM2)
5 PAS (MM3) 5 PAS (MM3) 5 PAS (MM3) 5 PAS (MM3)
B PAS (MM4) B PAS (MM4) I PAS (MM4) B PAS (MM4)
—Hardware —Hardware —Hardware —Hardware
g g £ Dossssssssns g
= 0 = 0 — 0 — 0
e e e e
i i i i
-5 -5 -5 -5
% 1 2 3 4 1% 1 2 3 4 1% 1 2 3 4 % 1 2 3 4
Time [Cycles] x10° Time [Cycles] x 10° Time [Cycles] x10° Time [Cycles] x10°
(Duckstakeoff) (Stockholm) (Parkjoy) (Parkrun)
PAS (ML) PAS (MM1)| PAS (MM1)| PAS (MML)
PAS (MM2) PAS (MM2) PAS (MM2) PAS (MM2)
5| PAS (MM3) 5 PAS (MM3) 5 PAS (MM3) 5| PAS (MM3)
W PAS (MM4) BPAS (MM4) WPAS (MM4) W PAS (MM4)
— Hardware — Hardware — Hardware — Hardware
g g z =
= = = o =
e e e e
fir i i fir

-5

-5

-1

1 2 3 4
Time [Cycles] X 10

o

10 1 2 3 4
Time [Cycles] x10°

10 1 2 3 4
Time [Cycles] x10°

-5

= 1 2 3 4
Time [Cycles] x10°

Figure 6.2: Calibration of the PAS memory model: Relativetime difference in percent be-
tween estimated and measured runtime over time ftifferent memory models.

Figure[6.2, it can be observed that for all MMs and test steetin® cumulative error stays nearly
constant after an initialisation phase of approximately 10® cycles runtime. This indicates
that using linear MMs within our PAS is sufficient for desanidp the runtime behaviour of our
reference single-core decoder. In the following, we L$é/; for characterising the memory
access behaviour in our VCS.

86

6.3. Verification using a functional dual-core decoder tiplg

(Sunflower) (Station2) (Rushhour) (Bluesky)

8

x 10 x 10 x 10 x 10

PAS (MML) PAS (MML PAS (MML PAS (MML
15 PAS (MM2) 15 PAS (MM2 15 PAS (MM2 15 PAS (MM2
PAS (MM3) PAS (MM3) PAS (MM3) PAS (MM3)
1 I PAS (MM4) 1 B PAS (MM4) 1 B PAS (MM4) 1 B PAS (MM4)
o — Hardware iy —Hardware iy —Hardware iy —Hardware
2 os 2 o5 2 o5 2 o5
> > > >
A i | < [E———
g 0 g O £ O g O
a a a a
-0.5| -0.5| -0.5| -0.5|
-1 -1 -1 -1
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°
x10° x10° x10° x10°
PAS (MML) PAS (MML PAS (MML PAS (MML
15 PAS (MM2) 15 PAS (MM2 15 PAS (MM2 15 PAS (MM2
PAS (MM3) PAS (MM3) PAS (MM3) PAS (MM3)
1 I PAS (MM4) 1 B PAS (MM4) 1 B PAS (MM4) 1 B PAS (MM4)
o — Hardware iy —Hardware iy —Hardware iy —Hardware
2 2 2 5 2 5
S S S S
> > > >
€2 <X <X <X
£] g O g O
a a a a
-0.5| -0.5|
-1 -1
1 2 3 4 0 1 2 3 4 0 1 2 3 4 1 2 3 4
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°
x10° x10° x10° x10°
PAS (MML) PAS (MML PAS (MML PAS (MML
15 PAS (MM2) 15 PAS (MM2 15 PAS (MM2 15 PAS (MM2
PAS (MM3) PAS (MM3) PAS (MM3) PAS (MM3)
1 I PAS (MM4) 1 B PAS (MM4) 1 B PAS (MM4) 1 B PAS (MM4)
o — Hardware iy —Hardware iy —Hardware iy —Hardware
2 2 o5 2 o5 2 o5
> > > >
€2 <X <X <X
£ g O g O g O
a a a a
-0.5| -0.5| -0.5|
-1 -1 -1
1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°
x10° x10° x10° x10°
PAS (MM1) PAS (MM1)] PAS (MM1)] PAS (MM1)]
15 PAS (MM2) 15 PAS (MM2)| 15 PAS (MM2)| 15 PAS (MM2)|
PAS (MM3) PAS (MM3) PAS (MM3) PAS (MM3)
1 B PAS (MMJ4) 1 I PAS (MM4) 1 I PAS (MM4) 1 I PAS (MM4)
7 — Hardware 7 — Hardware 7 — Hardware 7 — Hardware
S oos S o5 S o) S o)
S ES ES ES
g 9 e O e O e 0
a a A A
-05] -0.5| -0.5| -0.5|
-1 -1 -1 -1
1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°

Figure 6.3: Calibration of the PAS memory model: Absolutetime difference in clock cycles
between estimated and measured runtime over tim¢ different memory models.

6.3 \Verification using a functional dual-core decoder spliing

After calibrating the PAS, we have evaluated the differebetveen a measured and a PAS-
predicted dual-core decoder runtime behaviour. The degggliocess o016 test sequences was
simulated using the PAS. This enabled us to determine theraoyg of the PAS simulator for
the simulated VCS for these test sequences. Flgule 6.4da®ea comparison between the HW-
profiled and the PAS-simulated results. In this figure, theralV runtime is visualised for (i)
the measured single-core decoder runtime, (ii) the runtireasured for the dual-core decoder

87

Chapter 6. Concept verification and design space explanatsults

(Absolute runtime)

6000

Il HW single-core
I HW dual-core
[1PAS dual-core
[JHW single-core/2

4000

2000

Runtime [MCycles]

(Relative runtime difference)

Il PAS dual-core
[JHW single-core/2

e

©

£

=

= 0

> 5 Q $ INIINS & S &
g & & ¢ oS & & & foéo & F & & \&\é‘\\ e
< & ¢ & & & & o N SRRSO
5 § F L P FE FONNE SR ¥
o) < RS RSy 7 F ®

H R 0\b

2 3

Figure 6.4: Verification of the PAS simulator: The figure po®s the absolute runtime of the
single-core HW implementation, the dual-core HW impleraéoh, the PAS estimation and

a simple estimation technique. This simple estimationregke divides the runtime by the

number of cores (e.g. for two cores by a facto2pfFurthermore, the relative runtime difference
between the dual-core HW implementation and PAS estimatetime as well as the simple

estimation technique is provided. In both figures, the PABnasion clearly outperforms the

simple estimation technique.

implementation, (iii) the estimated runtime derived frdme PAS simulation and (iv) a runtime

estimation based on a simple estimation technique. Thinasbn technique assumes that the
workload can be divided equally amongst all available PUs @imides the runtime measured

for the single-core implementation by the number of avédldtiJs.

An average relative error of around.5 percent and a maximal relative error of arourddh
percent can be observed for the PAS over ifig¢est sequences. This clearly outperforms the
simple estimation technique that assumes that both PUsdbadée” the tasks equally amongst
them and reduce the runtime by 50%. This assumption is nethdaf addressing differences
in the balancing between the individual PUs. This can bergbsgein Figurd 6.4 in the large
relative runtime difference of on avera@g percent for all test sequences.

It can be noted that for sequences with higher bitrates sactParkrun”, “Parkjoy” and
“Stockholm”, the PAS provides better estimations betwzand13.5 percent than for sequences
with lower bitrates where higher relative differences oftopl8.5 percent can be observed.
This indicates that the PAS model describes the dynamiovimmireof our decoding system less
accurately for low bitrate scenarios.

Figured 6.b anf 616 provide the relative and absolute diffeg between measured and es-

88

6.3. Verification using a functional dual-core decoder tiplg

(Sunflower) (Station2) (Rushhour) (Bluesky)
30 30 30 30
HW (SC/2)| HW (SC/2) HW (SC/2) HW (SC/2)|
20| —HW (DC) 20| —HW (DC) 20| —HW (DC) 20| —HW (DC)
g 10- g i g 10- g 10-
g o g o g o g o
i]] i
-10| -10] -10] -10|
-20] -20| 20 -20]
5 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25
Time [Cycles] x10° Time [Cycles] % 10° Time [Cycles] % 10° Time [Cycles] x10°
(Pedestrian) (Oldtowncross) (Intotree) (Tractor)
30 30, 30, 30
HW (SC/2)| HW (SC/2) HW (SC/2) HW (SC/2)|
B PAS BPAS PAS B PAS
20| —HW (DC) 20 —HW (DC) 20 —HW (DC) 20| —HW (DC)

0! 0|

10- ”
0| e o
i}
-10 -10 -10 -10

Error [%]
Error [%]
Error [%]

-20 -20 -20 -20
05 1 15 2 25 05 1 15 2 25 115 2 25 0 05 1 15 2 25
Time [Cycles] x10° Time [Cycles] x10° Time [Cycles] x10° Time [Cycles] x10°
(Bus) (Riverbed) (Shields) (Crowdrun)
30 30 30 30
HW (SC/2) HW (SC/2) HW (SC/2) HW (SC/2)
MPAS MPAS WPAS MPAS
20 —HW (DC) 20 —HW (DC) 20 —HW (DC) 20 —HW (DC)

3 10
0‘“ g O eee——— 0 -vvv——— of
i
-10| -10 -10 -10|

10

Error [%]
Error [%]
Error [%]

-20 -20 -20 -20
05 1 15 2 25 05 1 15 2 25 115 2 25 0 115 2 25
Time [Cycles] x10° Time [Cycles] x10° Time [Cycles] x10° Time [Cycles] x10°
(Duckstakeoff) (Stockholm) (Parkjoy) (Parkrun)
30 30 30 30
HW (SC/2)| HW (SC12)| HW (SC72)| HW (SC/2)|
BPAS BPAS BPAS BPAS
20 —HW (DC) 20 —HW (DC) 20 —HW (DC) 20 —HW (DC)

10|

10y

Error [%]
Error [%]
Error [%]
Error [%]

0| 0 0 0|
mvu —low -10, —10

05

25 0

05 1 15 2 25
% 10° Time [Cycles]

1 15 2 25 0 05 1 15 2 25 0 05 1 15 2
Time [Cycles] x10° Time [Cycles] % 10° Time [Cycles] x10°

Figure 6.5: Verification of the PAS simulator: The figure sisaWe relative runtime difference
between the runtime HW(DC) measured on a dual-core systentuhtime estimations by the
PAS and a simple runtime estimation HW(SC/2) that dividesrtintime measured on a single-
core system by the number of available cores.

timated runtime, respectively. For each MB, we have meastlre time when the decoding of
this MB has been finished and compared it with the time eséithly the PAS. We can see in
Figure[6.5 that the simple estimation technique, in generabo optimistic and underestimates
the runtime by typically more tha20%. The PAS tends to slightly underestimate the runtime for
high-bitrate sequences but provides good estimations &atemate and high-bitrate sequences
with a relative error of not larger thalB.5%. For sequences with very low bitrates such as

89

Chapter 6. Concept verification and design space explanatsults

1 15 2
Time [Cylces] x10°

1 15 2
Time [Cylces] x10°

1 15 2
Time [Cylces] x10°

(Sunflower) (Station2) (Rushhour) (Bluesky)
x10° x10° x10° x10°
3 B PAS 3 BEPAS 3 B PAS 3 BEPAS
— HW (DC) —HW (DC) — HW (DC) —HW (DC)
2| 2 2| 2
E 1 g‘ 1 E 1 g‘ 1
S0 S0 S0 S0
[S) o [S) o
£-1 £-1 E-1 £-1
8 IS 8 &
-2) -2 -2) -2
-3 -3 -3 -3
-4 -4 -4 -4
0 0.5 1 15 2 25 0 05 1 15 2 25 0 0.5 1 15 2 25 0 05 1 15 2 25
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°
(Pedestrian) (Oldtowncross) (Intotree) (Tractor)
x10° x10° x10° x10°
B PAS BEPAS B PAS BEPAS
3 —HW (D) 3 —HW (DC) 3 —HW (D) 3 —HW (DC)
2| 2 2| 2
] 1‘ g1 ‘ i ‘ g ‘
S0 S0 S0 S0
S o S o
£-1 E-1 E-1 E-1
8 & 8 &
-2) -2 -2) -2
-3 -3 -3 -3
-4 -4 -4 -4
0 0.5 1 15 2 25 0 05 1 15 2 25 0 0.5 1 15 2 25 0 1 15 2 25
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°
(Bus) (Riverbed) (Shields) (Crowdrun)
x10° x10° x10° x10°
B PAS BEPAS B PAS BEPAS
3 —HW (D) 3 —HW (DC) 3 —HW (D) 3 —HW (DC)
2| 2 2| 2
E 1 g‘ 1 E 1 g‘ 1
2 o osnene@lil S S o S o
[©) ©) g e——. &)
£-1 £-1 E-1 £-1
8 IS 8 IS
-2) -2 -2) -2
-3 -3 -3 -3
-4 -4 -4 -4
0 1 15 2 25 0 1 15 2 25 0 1 15 2 25 0 1 15 2 25
Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10° Time [Cylces] x10°
(Duckstakeoff) (Stockholm) (Parkjoy) (Parkrun)
x10° x10° x10° x10°
B PAS BEPAS B PAS BEPAS
3 —HW (DC)| 3 —HW (DC) 3 —HW (DC)| 3 —HW (DC)
2| 2 2] 2
E 1 g‘ 1 E 1 g‘ 1
S o S0 S o S0
) o) o
£-1 £-1 E-1 £-1
8 & 8 &
-2) -2 -2) -2
-3 -3 -3 -3
-4 -4 -4 -4
0 05 25 0 05 25 0 05 25 0 05 25

1 15 2
Time [Cylces] x10°

Figure 6.6: Verification of the PAS simulator: The figure skdive absolute runtime difference
between the runtime HW(DC) measured on a dual-core systdrthamuntime estimated by the
PAS.

“Sunflower” and “Pedestrian”, the PAS tends to overestintaeauntime by up td8.5%, which
means that it still outperforms the simple estimation téspla for these streams. It can be con-
cluded that on all test sequences the PAS outperforms thaesestimation technique in terms
of accuracy.

Looking at the absolute runtime differences between PAShandware-measured runtimes
in Figure[6.6, we can observe a strong “stair” effect for Hiifinate sequences such as the

90

6.4. Design space exploration

“Crowdrun”, the “Dukstakeoff”, “Stockholm”, “Parkjoy” ah “Parkrun” sequences. Between
the consecutive frames, strong increases of the cumulakigelute runtime error occur. The
pattern indicates that during specific phases of the degautincess the estimation works less
effectively which results in a stronger drift during the$mpes. In this case, it seems that the run-
time prediction works less well for B-frames, which coireidith the locations of the increased
drifts. This effect between two consecutive frames caneatliserved for the other sequences
with lower bitrates, which indicates that the model canrettgstimate all coding options that
are typically used during B-frames when coding high-béngtieo sequences. Furthermore, for
sequences with moderate bitrates such as “Tractor” andé@litross”, stronger changes of the
absolute runtime error can be observed at frames where a G@Pamd the decoding process
that takes place at the end of GOPs could be further refineds provides room for further
increasing the PAS accuracy. However, for this work an @eeralative error of percent is
precise enough to start design space explorations. Thiglaieed in the following section.

6.4 Design space exploration

In this section, exploration of design space is demonstiayantroducing a functional partition-
ing of our single-core reference H.264 decoder and evailgdtie bottlenecks in the resulting
system (Section 6.4.1). In Section 614.2, this VCS is pani&d further using the multi-column
partitioning scheme introduced in Section 3.5.3. For dpsee clarity, we use only four test
sequences (“Bus”, “Shields”, “Stockholm” and “Parkrun®rfdemonstrating the steps of the
design space exploration.

6.4.1 Functional partitioning

Typically, we start exploring a system from a single-coreating system. This system runs on
a single CHILI processor and with a performancesef 10 frames per second (fps) according
to our profilings and the calibrated PAS single-core simotat\We start the exploration of our
decoder development by moving the computationally-complarsing and entropy decoding
tasks onto a second CHILI PU. The remaining tasks are ex@cautehe first PU. The two PUs
are connected by a buffer that can hold one line of MBs §eMBs for a horizontal resolution
of 1280 pixels and16 pixels width per MB). We use the PAS for estimating the perfance of
the two-core system. Figufe_6.7a shows the frame ratediresfilom the individual decoder
partitionings. For evaluating the results, the optimahfearate increase is also visualised. In
this context, optimal means that the performance of a systates linearly with the number of
cores (i.e. two processors would result in doubling the &aate).

The functional partitioning into parser and reconstru¢ix¥R) significantly reduces the run-
time complexity of all 4 sequences. It can be noted that sempsewith higher bitrates such as
the “Stockholm” and the “Parkrun” sequences benefit monmmftiois functional splitting. Fig-
ure[6.Tb an@ 6]7¢ show the usage for the parsing and the tasoctien cores and the complexity
for the parsing and the complete decoding process in cyelesgrond, respectively. The high
usage ofl00% of the reconstructor processor compared to the parsellfdrtast sequences
shows that the reconstructor represents the bottleneckirirsystem. Low-bitrate sequences

91

Chapter 6. Concept verification and design space explanatsults

(Bus) (Shields) (Stockholm) (Parkrun)
—O—Virtual decoder —O~— Virtual d‘ecoder‘ —O~ Virtual decoder —O~— Virtual d‘ecoder‘
— Theoretical optimum —— Theoretical optimum —— Theoretical optimum —— Theoretical optimum
30 30 30 30
o
2
8
3
g 20 20 20 20
8
£
s
* 10 10 10 10
0 00— 0— 0—s
I EE R R A - SN T I I S
TR QY ¥ QXU QT QT ¥ QXU QT QT ¥ QXU QT QT ¥
@)

Parser/Recon Usage [%]

100 100 100 100

80 80 80 80

60 60 60 60

40 40 40 40

20 20 20 20

—O—Parser
——Recon,

—O—Parser
——Recon.

—O—Parser
—O—Recon.

—O—Parser
—O—Recon.

9 9 5
x 10° x 10 x 10 % 10
—O— Total complexity —O~ Total complexity —O— Total complexity —O— Total complexity
8 —O— Parser complexity 8 —O—Parser complexity 8 —O— Parser complexity 8 —O— Parser complexity
—— Theoretical optimum —— Theoretical optimum —— Theoretical optimum —=— Theoretical optimum
o
]
$ 6 6 6 6
S
8
g 4 4 4 4
=3
&
© 2 2 2 2
0 0 0 0
P R P B I
< o QY QT QY ¥ QTR G T
(©)

Figure 6.7: Runtime of the simulated decoder partitionipgraaches. (a) The frames per sec-
ond achieved for various approaches are provided: theestwgke decoder (SC), the functional
split decoder into one parser and one reconstructor coe)(fne parser and data-parallel par-
titionings of the reconstructor onto up to four cores (P+H2R3R, P+4R) and an extended CHILI
processor with improved parsing combined with a data-fgnadrtitioning of the reconstructor
onto four cores (Px+4R). (b) The usage of the cores runniegotirsing and the reconstruc-
tion tasks. The average usage for all available recongtrucbres is shown. (c) The absolute
runtime complexity for real-time decoding of thesequences in clock cycles per second.

such as “Bus” and “Shields” only have a moderate parser ushgpproximately40 percent
while a stronger parser usage of more tid@rpercent can be observed for the high-bitrate se-
quence “Parkrun”.

The slow reconstructor and the limited buffering betweeanttto cores result in write stalls
at the parser side. We have various options for using thepsusomputational resources more
efficiently. Firstly, we can improve the reconstructor pemfiance by moving it onto multiple

92

6.4. Design space exploration

processing units. Secondly, we can move additional tasks the reconstructor (e.g., the filter
strength calculation from the deblocking) to the parsingecorhirdly, we could increase the
buffer sizes between parser and reconstructor. All thréiemmgcan easily be evaluated with the
PAS. In the next section, we follow the first option, whichtie most interesting approach in the
context of multi-core architecture design.

6.4.2 Data-parallel partitioning

Functional partitioning of the decoder reveals that themstructor is the bottleneck in our cur-
rent system. By using a data-parallel decoding approashptiit of the decoding process can
be computed on multiple processing units. In this work, wethe multi-column approach in-

troduced in Section 3.5.3. Each frame is partitioned intdiced regions. Each of the regions
is assigned to an individual processing unit. The recoostm tasks for the MBs in this region

are performed on this processing unit. This approach reguonsideration of the H.264 mac-
roblock dependencies. Each processing unit can start hétld¢coding when all dependencies
to neighbouring regions have been resolved.

Figure[6.7a shows the increase in frame rate that is achieitbdeach additional recon-
structor core. Adding a second reconstructor (P+2R) slyangreases the frame rates for all
sequences according to our simulation results. For the™ B&ields” and “Stockholm” se-
guences, the frame rate nearly doubles compared to thersreiith one parser and one recon-
structor. Figuré_6]7b shows the core usage for the parsiregasw the reconstruction cores. For
scenarios with more than one reconstructor, the averagge wdall reconstruction cores is pro-
vided. We can observe that for the “Stockholm” and the “Ramkisequences, the parsing core
becomes the bottleneck in our decoder. For the “Parkruniiesgees, only around5 percent
of the reconstructors’ execution time is effectively useddecoding. The parsing core runs at
nearly100 percent processor usage.

For three reconstructor cores (P+3R), the performancéfisigmtly improves for the “Bus”
sequence. The performance for the other sequences doanprote significantly due to the
high bitrates and more extensive parsing complexity ofdlsegjuences and the resulting stalling
times caused by the slow parsing. The average reconstusage is betwees0 and80 percent.
For4 reconstruction cores (P+4R), this decreases further aydetweent0 and60 percent of
the reconstructors’ execution time is used for decodingstas

Figure[6.Tc shows the complexity for the parsing and the ¢emmmecoding process in cy-
cles per second. The parsing complexity in the final confiijpmaequires approximately.25
GCycles per second and determines the runtime of our degagistem. Overall, the PAS sim-
ulations indicate that more thancores for the reconstruction do not improve the performance
of the system significantly. Only for low-bitrate sequena@performance increase can be ob-
served. The system designer can choose a system desigrotisidears this already (i.e. cost
optimisation) or concentrate on the parsing part of theesgghat is the obvious bottleneck of
the current system. For example, the functionality of thesg@acan be split onto more cores for
improved concurrent processing.

93

Chapter 6. Concept verification and design space explanatsults

6.4.3 Alternative processor for parsing

For evaluating how a faster parser influences such a systeextanded CHILI core for hard-
ware accelerated parsing was evaluated in the P+4R sets@d RPxThis extended CHILI pro-
cessor provides hardware-acceleration for the bistreaisingpand the entropy decoding. It
should be noted that for simulating heterogeneous ar¢hies with different types of pro-
cessing units, the PAS uses multiple DDPs as input, and ti&dafability to merge DDPs is
exploited. In this case, two DDPs were used for deriving dewxity profilings. One DDP was
generated from a single-core H.264 decoder running on aalo@HILI and one DDP from
the same decoder on an extended CHILI PU. Depending on winicfegsor constellation was
simulated, one or the other DDP was used for the PAS simulatio

Overall, we can observe a strong reduction in the parsing itirfrigurd 6.17c and a significant
impact on the frame rates (Figurel6.7a). However, the haehaecelerated parser increases the
frame rate more for sequences with high bitrates such asRthektun” sequence. Figuke 6.7b
shows that a similar core usage between parser and recdnsttores and hence a good balance
is achieved in this system setup.

6.5 Summary

In this section, we have demonstrated how virtual architest can be simulated within the
PAS. We have proposed a virtual model of a VCS using the PASgact high-level descrip-
tion language. This model has been calibrated using prg$iirom existing single core decoder
implementations. The calibrated model has been verifiethumn existing hardware implemen-
tation and its accuracy has been determined. On averagdataeeprediction error ofi1.5
percent could be observed fof test sequences.

We have used PAS for exploring new functional and data-lgh@écoder partitionings and
for predicting the runtime behaviour of these parallel gesi First, we distributed a single-core
decoder’s parsing and reconstruction functionalitie® @wb PUs (i.e. functional partitioning).
A PAS simulation of this design idendified the execution @& thconstruction tasks as the bot-
tleneck. By introducing additional PUs for data-parallebgessing of the reconstruction tasks,
this bottleneck was resolved. We demonstrated that addgirtg 8 PUs for the computational
intensive reconstruction tasks results in a significantoperance increase for this design and a
frame rate of up td 7 fps can be achieved. Finally, we replaced the parsing PUisndisign
with a hardware-accelerated PU that is more suitable faopytdecoding tasks and demon-
strated that this new design can achieve real-time perfiocené.e. 25 fps) for all test sequences
and a high average usage of arows; for all PUs.

94

CHAPTER

Conclusions and future work

7.1 Conclusions

When making design decisions on a parallel video codingegystarchitecture (i.e. hardware
platform and VCA software partitioning), accurate runtipredictions for VCAs provide an
essential means to base these decisions on. This thesi®hesntrated on runtime predic-
tion techniques for estimating the performance of pardi@As at early stages of the system
design. The DDP and PAS methodologies introduced in thisisimombine existing profiling
techniques and simulation-based runtime prediction teigeomeans for efficiently modelling
parallel VCSs and for estimating their runtime. The sohsiprovided in this thesis have tack-
led two important aspects, namely: (i) analysis of the dyicamehaviour of single-core VCAs
in the context of parallel system design and (ii) the runtipnediction of virtual multi-core
architectures running parallel VCA implementations.

7.1.1 Analysis of VCA runtime behaviour

We have described the strong structural similarities amteptually similar coding tools that
are shared amongst modern hybrid video coding standartisasuld.264 and VC-1. Based on
the similar hierarchical coding elements and VCL defingidar representing video content,
we have proposed the Data-Driven Profiling (DDP) analysikrigue for deriving information
from single-core VCA implementations. We have shown thatftmdamental similarity be-
tween hybrid video coding algorithms can be exploited foppiag of VCA runtime profilings
onto the hierarchical data structures and functional [dafla video coding algorithm. This en-
ables detailed analysis of dynamic runtime aspects of a MC&ontext of the processed video
data. For example, critical aspects such as variationsdrptbcessing time of each coding
element and individual functional blocks of the VCA can beeistigated.

Knowing the complexity of individual parts of a VCA and beiable to analyse complexity
in relation to the processed data structures within a VCAviges important insights into dy-
namic runtime aspects of a VCA on a functional as well as aldatd. We have demonstrated

95

Chapter 7. Conclusions and future work

three ways of exploiting DDPs for analysing complexity amdiving essential information for
parallel system design. First, we have demonstrated howplenity information about the pro-
cessed VCL coding elements can already highlight poteptiablems in work balancing for
frame- and slice-based data-parallel approaches in anaesign stage. For example, we have
extracted information on the dynamic runtime complexitydifferent MB codings (i.e. I/P/B-
predicted). Second, we have shown how complexity variationthe FBs of a VCA's video
coding elements can be analysed. This provides a startingfpoimplementing well-balanced
functional partitioning techniques. For demonstratirgabove contributions, we have exploited
runtime profilings of an H.264 decoder for analysing the dyitaruntime variations in the de-
coder’s functional blocks. We have shown that the runtimevel as the runtime variations
for the individual H.264 decoder FBs increase with the bitraDecoding blocks with a large
amount of conditional code such as the entropy decodinglendeblocking are more sensitive
to bitrate changes than pixel-based FBs. Third, we havaee coding information which de-
termines the progam flow of a VCA and exploited this informatio determine the processing
time of individual image regions. We have shown how this iinfation supports data-parallel
partitioning where the decoding tasks for image and vidgores are distributed amongst mul-
tiple processors and knowledge about the dynamic behawvittine VCA provides an intuitive
means for choosing the best partitioning.

7.1.2 Modelling and simulation of virtual architectures

We have introduced the PAS simulation technique and dematedtthat this technique can
estimate the performance of abitrary system configuratignere a VCA is distributed onto
multiple processors in an accurate way. It enables the riiogleind simulation of virtual video
coding architectures without the need for implementingpéellel hardware or VCA software.
PAS combines DDP and simulation-based runtime estimatigmedict the runtime of a virtual
architecture.

We have demonstrated that PAS enables the exploration gflegmparallel VCS designs in
an early stage of the design process and to quickly adaptrexsolutions to new applications
and system requirements. Based on this PAS concept, a simbkes been implemented. By
analysing the PAS results for a range of complex test seggeiicould be shown that the PAS’s
runtime prediction on average deviates only by around 11frs#h the real implementation’s
runtime.

PAS addresses two core requirements of system design atiptgrnamely high flexibility
and low time effort due to modelling and simulation. We haeendnstrated the flexibility of
our technigue to describe complex designs and to exploredesigns in a time-efficient way.
We have provided examples of functional-partitioned ad a®ldata-parallel H.264 decoding
approaches and have shown that no low-level algorithmtjawitig is required for the design
exploration. The ability to quickly adapt a model to a specdCA partitioning or a HW archi-
tecture has been demonstrated. It has be shown that the PASgtdight the bottlenecks of a
parallel H.264 decoder design before partitioning it ontouwdti-core platform. Starting from a
single-core H.264 decoder withFPS, we have exploited the PAS methodology for designing a
strongly parallel real-time H.264 decoder design that cdivel betweer25 and30 FPS.

96

7.2. Open topics for future research

We believe that the results of this thesis open up new pdiisibito explore parallel system
designs in an early design phase and provide novel toolsstersydesigners to optimise the
complex development processes of parallel video codingtisols. The contributed techniques
can address the design challenges of parallel VCS effigiani reduce the development time
and the risk of design errors significantly.

7.2 Open topics for future research

In this thesis we have demonstrated that the PAS providesratecmeans for design space
exploration and runtime prediction of virtual and parall€S. However, there are various areas
and open topics that can be addressed in future research:

¢ In this thesis we have exploited the structural similasitié video coding algorithms for
design space explorations of VCAs. The proposed technicudad be generalised further
to be applicable for additional block- or pixel-based imagecessing algorithms. In this
context, algorithm simulation at pixel-level could be istigated.

e Another focus of future research could be on the analysisistieg architectures with
high core counts. By using our high-level simulator, we doestimate the complex be-
haviour of such architectures. We could derive accurateetsddr the PAS that describe
the strong interaction between the individual componentuch a system in an efficient
way. For example, the impacts of memory bandwidth limitagiand hierarchical mem-
ory structures on the system’s performance could be arthipsgetail. This could further
refine the PAS methodology and result in a more accuratemnenprediction.

e Furthermore, we could extend the PAS to address the emeagaayof Reconfigurable
Video Coding (RVC). The technigues and methods provided\b@ Bould allow the PAS
to derive the algorithm structure in an automatic way. On loaied, this can reduce the
effort of modelling a VCA in the PAS significantly. On the otheand, this opens up a
powerful simulation framework to RVC design applications.

97

APPENDIX

Detailed description of test sequences

This chapter provides a detailed description of the indigldtest sequences used throughout
this thesis. The variety of these sequences in terms of gbat@bles us to test the techniques
introduced in this thesis over a wide range of content typdsshow the potential of our methods
to analyse and estimate the decoding behaviour for thesesegs.

99

Appendix A. Detailed description of test sequences

Sequence 1: Bluesky
In this sequence, a rotating camera records two tre

from below. A weakly textured, blue sky is visible be f

tree provide most of the video’s texture while the treeg
leaves appear dark and slightly blurred. :

Sequence 2: Bus _
The sequence contains slow global camera motion.

vehicles move on the street from the right to the left with
moderate speed. Partial and full occlusions between the
vehicles occur. The sky at the top-left is low textured iz
contrast to the moderately textured buildings and velj
cles. \

Sequence 3: Crowdrun
A crowd runs towards the camera and leaves the sc4

at the bottom and bottom-left sides of the picture. Whi
the upper half of the frame contains little motion, ma
local movements caused by the individual runners a
pear in the bottom half of the frame. The sequencqii
texture concentrates around the centre (e.g. trees) and
the bottom half of the frame (e.g. runners).

Sequence 4: Duckstakeoff
In this sequence, multiple swimming ducks cause co

into the air, additional disturbances at the water surfa Ce
occur. The fast moving wings of the birds are blurred §

Table A.1: Test sequences 1 to 4.

100

Sequence 5: Intotree
The sequence shows a house next to a natural area Wi

trees. The camera moves above the scenery and ta
a slow turn to the right towards the trees. The trees ai@s
highly textured and cause most of the scene’s textu
The house and the sky are only weakly textured.

Sequence 6: Oldtowncross
A town is recorded from above. While the camera di-

rection stays constant, a moderate camera transitio
the left occurs. Most of the texture is caused by t
buildings. The low textured sky stays static during t
sequence.

Sequence 7: Parkjoy
A natural and highly textured scenery with a high nu

ber of occlusions is recorded. The camera moves
the right and keeps track of the moving people at t
other side of the river. A tree in the foreground of th
scene moves across the picture and occludes parts of
scenery.

Sequence 8: Parkrun

A slowly moving camera moves horizontally to the rig
and follows a runner at the other side of the river. T
scenery is strongly textured due to fine structured treg$a
and the meadow. The top quarter of each frame is or@‘
moderately textured. i

Table A.2: Test sequences 5 to 8.

101

Appendix A. Detailed description of test sequences

Sequence 9: Pedestrian
The sequence shows a pedestrian area recorded wi

static camera. Pedestrians and cyclists cross the sce
and a high number of occlusions occur between the
The camera is focusing on the buildings in the bac
ground. The moving objects in the front are out of foc
and blurred.

Sequence 10: Riverbed
A riverbed and a complex moving water surface witfg

strong reflections is shown. On the surface fine motio
due to the wind and the river motion can be seen. T
water surface reflects a grey and untextured sky.

Sequence 11: Rushhour
A static camera in the center of the street records t

lanes of passing cars. In one lane, the cars move towa
the camera. In the other lane, they move away from t
camera. The camera focuses on the closer cars and
background is blurred. The hot and moving air caus
optical disturbances.

Sequence 12: Shields
A slowly moving camera tracks a man in an indo

scenery. The man moves to the left and shows fine t
tured shields hanging on the wall. The motion clear
separates the moving man from the shields in the ba
ground.

Table A.3: Test sequences 9to 12.

102

Sequence 13: Station2 s
This sequence shows multiple railway tracks and a mag¥

ing train. The camera zooms out and the scene appeg
blurred and out of focus.

Sequence 14: Stockholm T —
The city of Stockholm is recorded from above. Th

camera slowly moves from the left to the right reveal
ing new buildings and streets. In contrast to the high
textured buildings and streets, the sky is only weak
textured.

Sequence 15: Sunflower
A randomly moving camera records a bee sitting on

sunflower. While the sunflower appears clear and in f
cus, the fast moving bee is blurred.

Sequence 16: Tractor
The sequence shows a tractor moving through a fiefd

The camera is focused on the tractor and follows i
movements. The field behind the tractor appears au
of focus and blurred.

Table A.4: Test sequences 13 to 16.

103

[Agr09]

[AII70]

[BDH+06]

[BEJ*11]

[BeulO]

[BGAO3]

[BIR+07]

[BLO4]

[BWX11]

[CAMO9]

Bibliography

Priya Agrawal. Hybrid simulation framework for wiral prototyping using OVP,
SystemC & SCML.: A feasibility study. Master’s thesis, Indilnstitute of Tech-
nology Delhi, 2009.

Frances E. Allen. Control flow analysis. Proceedings of the ACM Symposium
on Compiler Optimizatioyvolume 5, number 7, pages 1-19, 1970.

Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, KeV. Lim, Ali G. Saidi,
and Steven K. Reinhardt. The M5 simulator: Modeling netwedrkystemslEEE
Micro, 26:52—60, 2006.

Shuvra S. Bhattacharyya, Johan Eker, J6rn W. Janneclst@the Lucarz, Marco
Mattavelli, and Mickael Raulet. Overview of the MPEG recguafiable video
coding frameworkJournal of Signal Processing Syster68:251-263, 2011.

Ralf M. BeuschelVideo compression systems for low-latency applicatid?sD
thesis, University of Ulm, Faculty of Engineering and Congpiscience, 2010.

Derek Bruening, Timothy Garnett, and Saman Amangise. An infrastructure for
adaptive dynamic optimization. IRroceedings of the IEEE International Sympo-
sium on Code Generation and Optimizatigages 265-275, 2003.

Roland A. Burger, Giovanni Jacovoni, Cliff Reader, XiagFu, Xiaodong Yang,
and Wang Hui. A survey of digital TV standards chinaPimceedings of the 2nd
International Conference on Communications and Netwgrkin Ching pages

687-696, 2007.

Thomas Ball and James R. Larus. Optimally profilinglaracing programsACM
Transactions on Programming Languages and Systé6(4):1319-1360, 1994.

Jim Bankoski, Paul Wilkins, and Yaowu Xu. Techniaalerview of VP8, an open
source video codec for the web. Poceedings of the IEEE International Confer-
ence on Multimedia and Exppages 1-6, 2011.

Lucarz Christophe, IThab Amer, and Marco MattaveRieconfigurable video cod-
ing: Objectives and technologies. Rroceedings of the IEEE International Con-
ference on Image Processinmages 749-752, 2009.

105

Bibliography

[CHC*05]

[CK94]

[CLN*02]

[CTGGO4]

[EJO3]

[EJLT03]

[FGO1]

[FHO3]

[GKM82]

[GS04]

[HIKHO3]

[Hol91]

To-Wei Chen, Yu-Wen Huang, Tung-Chien Chen, Yu-Han CHehuan-Yung
Tsai, and Liang-Gee Chen. Architecture design of H.264/A\éCoder with hy-
brid task pipelining for high definition videos. Froceedings of the IEEE Inter-
national Symposium on Circuits and Systepagyes 2931-2934, 2005.

Bob Cmelik and David Keppel. Shade: a fast instructset simulator for execu-
tion profiling. InProceedings of the ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systepeges 128—-137, 1994.

Wander O. Cesario, Damien Lyonnard, Gabriela Nicolestanick Paviot,
Sungjoo Yoo, Ahmed A.Jerraya, Lovic Gauthier, and MarioZ=Nava. Multi-
processor SoC platforms: A component-based design agprt&EE Journal of
Design and Test of Computetkd(6):52-63, 2002.

Yen-Kuang Chen, Xinmin Tian, Steven Ge, and Milolkar. Towards efficient
multi-level threading of H.264 encoder on Intel hyper-tudimg architectures. In
Proceedings of the IEEE International Parallel and Distribd Processing Sym-
posium volume 1, pages 63—-72, 2004.

Johan Eker and Jorn Janneck. CAL language reportifigagion of the CAL
actor language. Technical Report UCB/ERL M03/48, Univgref California at
Berkeley, 2003.

Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiabjun Jozsef Ludvig,
Sonia Sachs, and Yuhong Xiong. Taming heterogeneity - thkeiyy approach.
In Proceedings of the IEEEolume 91, number 1, pages 127-144, January 2003.

Jolon Faichney and Ruben Gonzalez. Video coding fabite handheld confer-
encing.Journal of Multimedia Tools and Application$3(2):165-176, 2001.

Lance Fortnow and Steve Homer. A short history of cataponal complexity.
Bulletin of the European Association for Theoretical Cotepiscience 80:95—
133, 2003.

Susan L. Graham, Peter B. Kessler, and Marshall KKikick. gprof: a call graph
execution profiler. IrProceedings of the ACM SIGPLAN Symposium on Compiler
Construction pages 120-126, 1982.

Brian J. Gough and Richard M. StallmaAn Introduction to GCC Network
Theory Ltd., 2004.

Michael Horowitz, Anthony Joch, Faouzi Kossentimnd Antti Hallapuro.
H.264/AVC baseline profile decoder complexity analydISEE Transactions on
Circuits and Systems for Video Technolpy(7):704—716, 2003.

Gerard J. HolzmanrDesign and validation of computer protocoRrentice-Hall,
1991.

106

Bibliography

[HS09]

[1SO01]

[ITUSS]

[ITU93]

[ITU00]

[ITUOS]

[ITU12]

[JBHO8]

[Joi13]

[KFO5]

[KLO7]

[KM96]

[LCM+05]

[LeelO]

Heiko Hubert and Benno Stabernack. Profiling-basadiware/software co-
exploration for the design of video coding architecturédSEE Transactions on
Circuits and Systems for Video Technolpo$9(11):1680 —1691, 2009.

International Standard ISO/IEC 14496-2, Coding of audisdal objects — Part
2: Visual ISO/IEC, 2001.

ITU-T Recommendation H.261: Video codec for audiovisualises at p x 384
kbit/s. ITU-T, November 1988.

ITU-T Recommendation H.120: Codecs for videoconferengegigg primary dig-
ital group transmissionITU-T, March 1993.

International Standard ISO/IEC 13818-2, Information tealogy - generic cod-
ing of moving pictures and associated audio informatiorded ITU-T, March
2000.

ITU-T Recommendation H.263, Infrastructure of audiovisevices - coding of
moving video: video coding for low bit rate communicatibRU-T, January 2005.

ITU-T Recommendation H.264, Advanced video coding forrgeaediovisual
services (ITU Rec. H.264 | ISO/IEC 14496-10)TU-T and ISO/IEC, January
2012.

Lee Jae-Beom and Kalva Hafhe VC-1 and H.264 Video Compression Standards
for Broadband Video ServiceSpringer, 2008.

Joint Model software for H.264/AVC. http://iphome.hhi.de/suehring/tml/
09/05/2013.

Hari Kalva and Borko Furht. Complexity estimation thie H.264 coded video
bitstreams.Computer Journal48(5):504-513, 2005.

Hari Kalva and Jae-Beom Lee. The VC-1 video codingdtxd. IEEE MultiMe-
dia, 14(4):88-91, 2007.

Peter Voigt Knudsen and Jan Madsen. Pace: A dynanagnamming algorithm
for hardware/software partitioning. Proceedings of the International Workshop
on Hardware-Software Co-Desigpages 85-92, 1996.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patitfuk Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazetlvd?in: building
customized program analysis tools with dynamic instruigom. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Languagsidn and
Implementationpages 190-200, 2005.

Edward A. Lee. Disciplined heterogeneous modeling Proceedings of the
ACM/IEEE 13th International Conference on Model Driven Eegring, Lan-
guages, and Systemsages 273-287, 2010.

107

Bibliography

[LHHO3]

[LIL+03]

[LLCW10]

[LMO5]

[MAJ+09]

[MCE*02]

[Mea55]

[MMOS]

[MML97]

[Mo056]

[NCK*96]

[NS07]

Ville Lappalainen, Antti Hallapuro, and Timo D. Hé&itdinen. Complexity of
optimized H.26L video decoder implementatioliEE Transactions on Circuits
and Systems for Video Technolpd®(7):717-725, 2003.

Peter List, Anthony Joch, Jani Lainema, Gisle Bjontegaand Marta Kar-
czewicz. Adaptive deblocking filtedlEEE Transactions on Circuits and Systems
for Video Technologyl3(7):614-619, 2003.

Li-Juo Lin, Kuei-Chun Liu, Tse-Min Chen, and Werl#& Wang. Data partition
analyses for video decoders on PAC Duo platform.Ptoceedings of the IEEE
Asia Pacific Conference On Circuits and Systepages 568-571, 2010.

Yau-Tsun S. Li and Sharad Malik. Performance analysi embedded software
using implicit path enumeration. IRroceedings of the 32nd ACM/IEEE Design
Automation Conferen¢@ages 456—461, 1995.

Cor H. Meenderinck, Arnaldo Azevedo, Ben H.H. Juurlidkauricio Alvarez
Mesa, and Alex Ramirez. Parallel scalability of video desssdJournal of Signal
Processing System3:173-194, 2009.

Peter S. Magnusson, Magnus Christensson, Jesper dfskianiel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreasstédt, and Bengt
Werner. Simics: A full system simulation platfortEEE Computer35(2):50-58,
2002.

George H. Mealy. A method for synthesizing seqardircuits. Bell System
Technical Journal34(5):1045-1079, 1955.

Tatsuji Moriyoshi and Shigeki Miura. Real-time H.2&ncoder with deblocking
filter parallelization. InProceedings of the IEEE International Conference on
Consumer Electronigpages 63—64, 2008.

Sharad Malik, Margaret Martonosi, and Yau-Tsun\&e Li. Static timing analy-
sis of embedded software. Rroceedings of the 34th ACM/IEEE Design Automa-
tion Conferencgpages 147-152, 1997.

Edward F. Moore. Gedanken-experiments on segalemtachines. Automata
Studies, Annals of Mathematical Studies, Princeton UsityePress34:129-153,
1956.

Lode Nachtergaele, Francky Catthoor, Bhanu KapoofaBtianssens, and Dennis
Moolenaar. Low power storage exploration for h.263 videcodeer. InProceed-
ings of the 9th Workshop on VLSI Signal Processpages 115-124, 1996.

Nicholas Nethercote and Julian Seward. Valgrindraanework for heavyweight
dynamic binary instrumentation. Proceedings of the 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementagiages 89-100,
2007.

108

Bibliography

[PK89] Peter P. Puschner and Christian Koza. Calculatiegithximum execution time
of real-time programsJournal of Real-Time Systenig2):159-176, 1989.

[RGMO06] A. Rodriguez, Alejandro Gonzalez, and Manuel P. iabres. Hierarchical par-
allelization of an H.264/AVC video encoder. Rroceedings of the International
Symposium on Parallel Computing in Electrical Engineeripgges 363-368,
2006.

[RMO5] Massimo Ravasi and Marco Mattavelli. High abstrastievel complexity analysis
and memory architecture simulations for multimedia algponis. IEEE Transac-
tions on Circuits and Systems for Video Techno]ddy(5):673—684, 2005.

[SBGO08] Florian H. Seitner, Michael Bleyer, and Margrit @atiz. Development of multi-
core video decoding platforms based on high-level architecsimulations. In
Proceedings of the Junior Scientist Conferenuages 71-72, 2008.

[SBSGO08] Florian H. Seitner, Michael Bleyer, Ralf M. Sclereand Margrit Gelautz. Evalu-
ation of data-parallel splitting approaches for H.264 diog. InProceedings of
the 6th International Conference on Advances in Mobile Qatimng and Multime-
dia, pages 40-49, 2008.

[SDFO06] Stuart Sutherland, Simon Davidmann, and PeterekBakstemVerilog for design:
a guide to using SystemVerilog for hardware design and niegledpringer, 2006.

[SE94] Amitabh Srivastava and Alan Eustace. Atom: a systembdilding customized
program analysis tools. IRroceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementatigeiges 196—205, 1994.

[SFLBO7] Klaus Schéffmann, Markus Fauster, Oliver Lampid d.aszlo Bészérmenyi. An
evaluation of parallelization concepts for baseline-peofiompliant H.264/AVC
decoders. IrProceedings of the 13th International Euro-Par ConferennePar-
allel Processingpages 782—-791, 2007.

[SHHT04] Sridhar Srinivassan, Pohsiang Hsu, Tom Holcomb, Kunakdsjee, Shankar L.
Regunathan, Bruce Lin, Jie Liang, Ming-Chieh Lee, and J®&ithas-Corbera.
Windows Media Video 9. overview and applicationkurnal of Signal Process-
ing: Image Communicatiqri9(9):851-875, 2004.

[Sip97] Michael Sipserintroduction to the theory of computatioRWS Publishing Com-
pany, 1997.

[SMP06] SMPTE Standard 421M: VC-1 compressed video bitstream toama decoding
process SMPTE, August 2006.

[SSBGO07] Florian H. Seitner, Ralf M. Schreier, Michael Béeyand Margrit Gelautz. A
macroblock-level analysis on the dynamic behaviour of &6H decoder. IfPro-
ceedings of the IEEE International Symposium on Consunestighics pages
1-5, 2007.

109

Bibliography

[SSBGO08] Florian H. Seitner, Ralf M. Schreier, Michael Bleyand Margrit Gelautz. A
high-level simulator for the H.264/AVC decoding processrialti-core systems.
In Proceedings of the SPIE Multimedia on Mobile Devjogdume 6821, pages
5-16, 2008.

[SSBGO09] Florian H. Seitner, Ralf M. Schreier, Michael Bdeyand Margrit Gelautz. De-
velopment of a high-level simulation approach and its aagion to multi-core
video decoding.IEEE Transactions on Circuits and Systems for Video Teehnol
ogy, 19(11):1667-1679, 2009.

[SSBG11] Florian H. Seitner, Ralf M. Schreier, Michael Béeyand Margrit Gelautz. Evalu-
ation of data-parallel H.264 decoding approaches for gtyoresource-restricted
architectures. Journal on Multimedia Tools and Applications3(2):431-457,
2011.

[STO9] Daniel A. Spielman and Shang-Hua Teng. Smoothedysisal an attempt to
explain the behavior of algorithms in practic€Communications of the ACM
52(10):76-84, 2009.

[SWO05] Gary J. Sullivan and Thomas Wiegand. Video compoessifrom concepts to the
H.264/AVC standard. IfProceedings of the IEEPpages 18—-31, 2005.

[SWCO07] Shuwei Sun, Dong Wang, and Shuming Chen. A highlyiefit parallel algo-
rithm for H.264 encoder based on macro-block region partitin Proceedings of
the 3rd International Conference on High Performance Cotimguand Commu-
nications pages 577-585, 2007.

[SYTO04] Tse-Tsung Shih, Chia-Lin Yang, and Yi-Shin Tung. Mload characterization of
the H.264/AVC decoder. IRroceedings of the 5th IEEE Pacific-Rim Conference
on Multimedia pages 957-966, 2004.

[TMO91] Donald E. Thomas and Philip R. Moorbi{he VERILOG Hardware Description
Language Kluwer Academic Publishers, 1991.

[VAGO5] Francisco J. Villa, Manuel E. Acacio, and Jose M. Gar Evaluating ia-32 web
servers through simics: a practical experiendeurnal of System Architectyre
51(4):251-264, 2005.

[VHD88] IEEE Standard VHDL language reference manu&EE Press, 1988.

[vJGO3] Erik B. van der Tol, Egbert G.T. Jaspers, and Rob Hd&blom. Mapping of
H.264 decoding on a multiprocessor architecture.Ptaceedings of the SPJE
volume 5022, pages 707-718, 2003.

[Wal00] Larry Wall. Programming Perl O'Reilly & Associates, 2000.

110

Bibliography

[WPH*03] Shih-Hao Wang, Wen-hsiao Peng, Yuwen He, Guan-yi Lireré¥i Lin, Shih-
chien Chang, Chung-neng Wang, and Tihao Chiang. A plattoased MPEG-4
Advanced Video Coding (AVC) decoder with block-level pipétg. In Proceed-
ings of the 2003 Joint Conference of the 4th Internationahf@ence on Informa-
tion, Communications and Signal Processing and the 4thfieaRim Conference
on Multimedia volume 1, pages 51-55, 2003.

[WPH*05] Shih-Hao Wang, Wen-Hsiao Peng, Yuwen He, Guan-Yi Ling@xYi Lin, Shih-
Chien Chang, Chung-Neng Wang, and Tihao Chiang. A softlwardware co-
implementation of MPEG-4 Advanced Video Coding (AVC) deeodith block
level pipelining.Journal of VLSI Signal Processing Systedi(1):93-110, 2005.

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: fast f&dble machine sim-
ulation. InProceedings of the ACM SIGMETRICS International Confezenic
Measurement and Modeling of Computer Systgrages 68—79, 1996.

[WSWWO06] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagnat, Reter Wolstenholme.
Modeling Software with Finite State Machines: A Practicapfoach Auerbach
Publications, 2006.

[WWWO04] Ferdinand Wagner, Thomas Wagner, and Peter Wdistere. Closing the gap
between software modelling and code. IEEE International Conference on the
Engineering of Computer-Based Systepages 52-59, 2004.

[WZ06] Xin-Fu Wang and De-Bin Zhao. Performance comparisfivVS and H.264/AVC
video coding standardsJournal of Computer Science and Technology:310—
314, 2006.

[Xip13] Xiph.org video test mediahttp://media.xiph.org/video/derf29/09/2013.

[YYST04] Mohamed-Wassim Youssef, Sungjoo Yoo, Arif Sasongkonidta Paviot, and
Ahmed A. Jerraya. Debugging HW/SW interface for MPSoC: widacoder sys-
tem design case study. Rroceedings of the 41st ACM/IEEE Design Automation
Conferencepages 908-913, 2004.

[ZLO6] Zhuo Zhao and Ping Liang. A highly efficient paralldéyarithm for H.264 video
encoder. IProceedings of the 31st IEEE International Conference couAtics,
Speech, and Signal Processimgplume 5, pages 489-492, May 2006.

111

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Design of parallel video coding architectures
	Motivation and objectives
	Contributions
	Resulting publications
	Organization

	Prior work on complexity and runtime estimation
	Analytic runtime prediction
	Runtime prediction based on dynamic profiling
	Statistical profiling
	Instrumented profiling

	Simulation-based runtime prediction
	Hardware simulation techniques
	Instruction set simulation
	HW/SW-codesign

	High-level design exploration
	Partition Assessment Simulation in context of prior work
	Summary

	Characteristics of modern video coding algorithms
	Historical development of digital video coding
	Concept of hybrid video coding
	Hierarchical structuring of video coding elements
	Coding tools
	Spatial prediction
	Motion-compensated prediction
	Transformation and quantisation of residual data
	Deblocking filter
	Entropy coding

	Parallel video decoding
	Dependencies between macroblocks
	Functional partitioning
	Data-parallel partitioning

	Summary

	Data-driven runtime analysis
	Data-driven profiling
	Automatic generation of data-driven profiles
	Finite State Machines and Pushdown Automatons
	Mapping profiling information to VCL and functional blocks
	Extraction of coding information via function names
	Extraction of coding information via instrumentation
	Implementation

	Profiling environment and test sequences
	Reference architecture
	Test sequences

	Experimental results for runtime analysis and visualization
	Complexity of processing VCL coding elements
	Complexity of processing functional blocks
	Analysing complexity within individual subregions of a frame

	Summary

	Virtual prototyping of parallel video coding systems
	General aspects and design goals
	Concept
	System specification
	Characterisation
	Simulation

	Implementation of the Partition Assessment Simulation
	Time domains within PAS
	Task generation based on data-driven profiling
	Rule-based specification of data-dependencies
	Partitioning of video coding application
	Simulation process

	Summary

	Concept verification and design space exploration results
	Specification of a dual-core video coding system
	Characterisation of virtual hardware
	Verification using a functional dual-core decoder splitting
	Design space exploration
	Functional partitioning
	Data-parallel partitioning
	Alternative processor for parsing

	Summary

	Conclusions and future work
	Conclusions
	Analysis of VCA runtime behaviour
	Modelling and simulation of virtual architectures

	Open topics for future research

	Detailed description of test sequences
	Bibliography

