
Numeric Methods for
Configuration Management

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der technischen Wissenschaften

eingereicht von

Tanja Sisel
Matrikelnummer 0005351

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Gernot Salzer

Diese Dissertation haben begutachtet:

(Ao.Univ.Prof. Gernot Salzer) (Prof. Mira Balaban)

Wien, 27.08.2013
(Tanja Sisel)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Numeric Methods for
Configuration Management

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der technischen Wissenschaften

by

Tanja Sisel
Registration Number 0005351

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Gernot Salzer

The dissertation has been reviewed by:

(Ao.Univ.Prof. Gernot Salzer) (Prof. Mira Balaban)

Wien, 27.08.2013
(Tanja Sisel)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Tanja Sisel
Schrekergasse 46/4/12, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

First of all I want to thank the University of Technology of Vienna, who facilitated this thesis by
funding the research as an innovative ideas (“Innovative Ideen”) project.

Special thanks go to my “Doktorvater” (doctoral thesis supervisor) Gernot Salzer for placing
confidence in me and for continuously supporting and encouraging me in my efforts. I also want
to thank Ingo Feinerer for the numerous productive discussions (together with Gernot) that lead
to the results we published together.

My gratitude goes to my parents Christina and Dieter, who have supported me (financially
as well as emotionally) from the very beginning of my studies to the final version of this thesis.
I love you!

Furthermore I want to thank my dear friends Gregor and Cordi for helping me to relax when
I was stressed and tensed up. Thank you for being there for me! And of course thanks to
everybody else who cheered me up and helped me get through my studies and this thesis.

iii

Abstract

UML class diagrams play a central role in software engineering and are increasingly also used for
modelling (product) configuration systems. Although important, formal reasoning about class
diagrams is still rarely done. A main reason is that the expressive languages used to specify
models have a high computational complexity, which makes formal reasoning time-consuming
and expensive. Therefore we develop efficient methods tailored to specific tasks, focusing on
a limited range of UML elements and constraints. With this approach we are able to guide the
engineer through the design phase and to give immediate feedback after each change made to a
diagram.

We start by considering the reduction of multiplicities. Multiplicities are intervals restricting
the number of connected objects. Because of additional constraints (e.g. imposed by parallel as-
sociation chains) it may happen that the bounds of the intervals cannot be reached. As this may
be caused by some underlying misconception this situation should be detected and eliminated.
We discuss bounds on the number of connected objects and develop a method for composing
associations based on the translation of class diagrams to systems of linear inequalities. Further-
more, we introduce the concept of equality constraints that may lead to redundant multiplicities
and develop a formula for reducing these multiplicities. Finally, we present an algorithm for
reducing association chains and models with respect to equality constraints. We also discuss the
effects of equality constraints on the satisfiability of a model and its minimal instances.

In configuration management we are not only interested in models, but also in generating
instances (also called configurations). By solving the ILP problem formed by the system of
inequalities we obtain the number of objects per class required for a minimal instance, as well
as a range for the number of links for each association. In this thesis we present a method for
distributing the links between the objects, such that the resulting configuration is an instance
of the underlying model. We show how configuration completion and configuration repair can
be addressed by solving minimum cost flow problems for certain flow networks derived from
the model. This way we tackle the problem of reconfiguring legacy systems when requirements
change.

v

Kurzfassung

UML Klassendiagramme spielen eine zentrale Rolle im Bereich Software Engineering und wer-
den zunehmend auch für das Modellieren von (Produkt-)Konfigurationssystemen verwendet.
Eine Überprüfung formaler Eigenschaften wie der Konsistenz findet trotz ihrer Relevanz in
der Regel nicht statt, da diese Fragestellungen für die verwendeten Formalismen wegen deren
Ausdrucksstärke von hoher Komplexität und daher zeitintensiv sind. In dieser Dissertation be-
schränken wir uns daher auf ausgewählte UML Sprachelemente, die eine effiziente Behandlung
zulassen. Dadurch können Entwickler bereits während der Designphase durch kontinuierliche
Rückmeldungen unterstützt werden.

In der vorliegenden Arbeit betrachten wir zunächst die Reduktion von Multiplizitäten. Mul-
tiplizitäten beschränken die Anzahl verbundener Objekte. Aufgrund anderer Einschränkungen
(z.B. durch parallele Assoziationsketten) kommt es vor, dass diese Schranken gar nicht erreicht
werden können. Dieser Umstand weist auf mögliche Modellierungsfehler hin und sollte daher
vom System aufgezeigt werden. Wir entwickeln eine Methode um scharfe Multiplizitätsschran-
ken zu berechnen. Basierend auf einer Übersetzung von Klassendiagrammen in ein lineares
Ungleichungssystem beleuchten wir zuerst die Beschränkungen der Anzahl miteinander ver-
bundener Objekte sowie die Bedeutung von zusammengesetzten Assoziationen. Danach präsen-
tieren wir das Konzept von Assoziationsgleichungen (equality constraints), die zu redundanten
Multiplizitäten führen können, und entwickeln eine Formel zur Reduktion dieser Multiplizitä-
ten. Schlussendlich stellen wir einen Algorithmus zur Reduzierung von Assoziationsketten und
Modellen vor. Wir diskutieren außerdem, welche Auswirkungen derartige Gleichungen auf die
Erfüllbarkeit von Modellen und auf deren minimale Instanzen hat.

Im Configuration Management sind wir nicht nur an Modellen, sondern auch an der Generie-
rung von Instanzen (auch Konfigurationen genannt) interessiert. Das Lösen des Ungleichungs-
systems liefert die Anzahl der minimal benötigen Objekte pro Klasse sowie ein Intervall für die
Anzahl benötigter Links je Assoziation. Wir präsentieren eine Methode, mit der diese Links un-
ter den Objekten so aufgeteilt werden können, dass die resultierende Konfiguration eine Instanz
des zugrunde liegenden Modells ist. Durch das Lösen von Minimum Cost Flow Problemen in
speziellen Flussnetzwerken lassen sich dabei verschiedene Kriterien berücksichtigen. Insbeson-
dere sind Varianten dieser Netzwerke auch dazu geeignet, Konfigurationen zu vervollständigen
und zu reparieren. Diese Probleme treten etwa bei der Rekonfiguration von Altsystemen auf,
wenn sich Anforderungen ändern.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Aim of the work . 2
1.3 Contributions . 3
1.4 Structure of the work . 3

2 Models and their instances 5
2.1 Unified Modeling Language . 5
2.2 Basic Definitions . 7
2.3 Translation into linear inequalities . 9

3 Configuration Management 13
3.1 Definitions . 13
3.2 Challenges in Configuration Management . 14

4 Associations and Association Chains 21
4.1 Connected objects . 21
4.2 Composition of associations . 26

5 Reducing Multiplicities and Models 31
5.1 Motivation . 31
5.2 Equations over association chains . 32
5.3 Reducing multiplicities . 34
5.4 Reducing Models . 40

6 Effects of Equality Constraints 43
6.1 Satisfiability under equality constraints . 43
6.2 Minimal satisfying instance under equality constraints 46
6.3 Tree-generating equations . 49

7 Linking Objects with Netflow Algorithms 53
7.1 Motivation . 53
7.2 Flow Networks and the Minimum Cost Flow Problem 54
7.3 Distributing Links . 56

ix

7.4 Completing Configurations . 60
7.5 Repairing Configurations . 63
7.6 Priority Links . 65
7.7 Choosing the number of links . 72
7.8 Different costs – different results . 74
7.9 Can we get more for less? . 75

8 Related Work 79
8.1 Formalising UML Class Diagrams . 79
8.2 Configuration Management and Reconfiguration 81
8.3 Detecting Redundancies . 82

9 Conclusion 85

Bibliography 89

x

1 Introduction

The beginning of knowledge is the
discovery of something we do not
understand.

Frank Herbert

1.1 Motivation

This thesis was motivated by the limitations that our industrial partners experienced when using
standard UML tools in the field of configuration management. Configuration management is the
task of specifying admissible arrangements of functional units, finding setups that are optimal
according to some criteria, and maintaining them when requirements change. Functional units
may be software or hardware components or physical objects like computers or railway stations.
The specification of these arrangements can for example be done with UML class diagrams,
which basically consist of classes (which abstract components) and associations between them
(specifying the relation between the components). Class diagrams are mainly used in software
engineering, hence existing tools are especially designed to meet the needs of software engi-
neers. As configuration management has requirements different from software engineering, the
functionality offered by current UML tools does not suffice.

In contrast to software engineering, where instances are only generated at runtime and in
general do not exist independently from the model, instances in configuration management have
a life of their own. A house that has been built according to a specification may still exist long af-
ter the specification has been erased. In software engineering the question of finding the minimal
instantiation of a specification that satisfies all constraints is rarely asked, whereas in configu-
ration management finding a setup with fewer components is usually preferable. Furthermore,
instances shall be adapted with as few rearrangements as possible, if requirements change. If,
for example, components shall be added to a computer network, we will try to keep the existing
cables instead of rewiring the whole network to save costs. Another difference between software
engineering and configuration management is the variety of the so-called multiplicity constraints
imposed on the associations occurring in the diagrams. Multiplicities are intervals of positive
integers n..N specifying that each instance of a particular class has to be linked to at least n and
at most N instances of some other class. In software engineering they are mainly of the form
0..? (unrestricted), 1..? (at least one), 0..1 (at most one, optional), and 1..1 (exactly one). Speci-
fications in configuration management, on the other hand, may as well state that e.g. a computer

1

has to be connected to at least one and at most four printers, thus leading to a higher variability
regarding the multiplicities.

While UML tools offer the possibility to create and maintain diagrams (i.e. specifications)
and to automatically generate code, they do not offer any means to handle instances (i.e. config-
urations). The possibility to create and maintain instances, to check them against specifications
and to check the specifications themselves for inconsistencies is completely missing.

These unaddressed problems lead to a research programme that was started by Gernot Salzer
and Ingo Feinerer. Based on their basic results on formal verification of UML class diagrams
(see [17,20,21]), we developed theoretical foundations and core algorithms that can be integrated
into a tool offering the functionality required for configuration management.

1.2 Problem Statement and Aim of the work

The higher variability of multiplicities in configuration management permits over-restrictive
constraints, leading to unsatisfiable specifications, i.e. specifications that are not satisfiable by
any non-trivial configuration (= instance). In complex diagrams the reasons for the unsatisfia-
bility of a specification are not easy to detect. We would therefore like to be able to check the
satisfiability of specifications automatically.

Furthermore, we would like to create optimal configurations (e.g. containing the least num-
ber of objects) directly from the specification and to check whether a given configuration (for
example created by the user) satisfies all constraints imposed by the corresponding specification.
A routine performing this instance checking should as well provide feedback on the source of
the error, if a configuration is no satisfying instance of the specification.

To be able to maintain an existing system when requirements change, we need to find a con-
servative extension of a configuration. This means that we want to keep as many existing objects
and links as possible while constructing a configuration that satisfies all constraints imposed by
the (changed) specification. We call this problem the minimal repair problem.

For several real-life problems, we additionally need constraints to express that two parallel
relations (or chains of relations) lead to the same objects for each object of the starting class. This
is, for example, used to specify that the belongings of a specific person may only be stored in his
own storage. These additional constraints may influence the number of possible partner objects
for several classes that are part of this constraint. Hence, we might not be able to reach the
bounds of some multiplicities. As this hints at some underlying misconception, these multiplici-
ties should be detected and tightened (reducing multiplicities). Moreover, additional constraints
may as well influence the satisfiability of a specification. Therefore, we need to check whether
a specification is still satisfiable after adding such constraints (checking E-satisfiability).

Prior to this thesis, Gernot Salzer and Ingo Feinerer developed a numerical approach solving
some of the described problems. Their approach is to translate UML class diagrams into linear
inequalities and to use standard Integer Linear Programming (ILP) solvers. With this technique
we can check the satisfiability of a specification, compute the number of objects and links nec-
essary to build a minimal instance of the specification, and check whether a given configuration
satisfies all multiplicity constraints.

2

This thesis extends this approach. We investigate the influence of equality constraints and
develop methods for minimising multiplicities, for finding link distributions, and for completing
or repairing configurations. We use numerical reasoning to solve the problems. We compute
(minimal) instances and check the satisfiability of diagrams with ILP. For (re-)linking objects
(i.e. completing and repairing configurations) we use netflow algorithms.

1.3 Contributions

This thesis is part of a joint project with Gernot Salzer and Ingo Feinerer1. Many results were
developed or at least refined by all of us together in long discussions.

The basic method of reducing multiplicities was developed by Ingo Feinerer and Gernot
Salzer. Tanja Sisel improved and generalised the result and implemented the procedure in a
prototype called CLEWS2 [34]. This method was published at MODELS 2011 [22], with Tanja
Sisel presenting the results at the conference in Wellington, New Zealand.

The method of linking objects and repairing configurations via flow algorithms (see Chap-
ter 7) was mainly developed by Tanja Sisel and Ingo Feinerer (Flow networks were initially used
to distribute links uniformly between the objects of two classes [34]). Gernot Salzer contributed
to the formal presentation of the results and gave valuable feedback during the development of
the method. The results were published at ISMIS 2012 [19]. Tanja Sisel presented the work at
the conference in Macao, China. The more detailed concept of priority links presented in this
thesis was developed by Tanja Sisel. The considerations on how to choose the number of links
and the costs on the arcs, and on the more-for-less paradox were also done by Tanja Sisel.

The discussion of equations over association chains and their effects, as well as the concept
of tree-generating equations (see Chapter 6) were published at TASE 2013 [23]. Tanja Sisel,
Gernot Salzer and Ingo Feinerer contributed proportionally to the development of the theoretical
background, the used examples and the composition of the paper.

A further contribution of this thesis is the systematic and uniform presentation of all results
obtained within the project throughout the last four years, including proofs and examples that
had to be omitted from the papers for space reasons.

1.4 Structure of the work

This thesis is structured as follows.
Chapter 2 gives basic definitions and semantics of models (i.e. UML class diagrams) and

their instances.
In Chapter 3 we explain what Configuration Managements is about and which problems

occur in this domain, as well as our research programme.
Chapter 4 investigates properties of associations and their instantiations, relations, and in-

troduces the concept of associations chains.

1Gernot Salzer is the supervisor of this thesis, Ingo Feinerer was also involved in the development process.
2CLEWS: Class Editor With Semantics (www.logic.at/clews), originally developed by Gerhard Niederbrucker,

a former master student advised by Gernot Salzer.

3

Based on these properties, we develop a method for reducing multiplicities in Chapter 5.
For this purpose we first introduce equality constraints, and afterwards give a formula and a
procedure for tightening multiplicities within an association chain. Finally, we show how to
reduce models.

In Chapter 6 we consider the effects of adding equality constraints to a model. With the help
of examples we show why equality constraints influence the satisfiability of a model and how
to check the E-satisfiability of a model. We introduce a particular family of models, so-called
tree-generating models, and explain important properties of these models.

In Chapter 7 we explain how to use netflow algorithms to distribute links between objects
and how to extend and repair configurations. We also discuss how to set the costs of the arcs
accordingly and introduce different kinds of priority links.

Chapter 8 discusses related work and Chapter 9 critically reflects on the results of this thesis,
summarises them and gives an overview of open questions.

4

2 Models and their instances

The greatest challenge to any thinker
is stating the problem in a way that
will allow a solution.

Bertrand Russel

We start with a short introduction to UML class diagrams, which we use to model our prob-
lems. After defining some basic concepts, we show how models are translated into systems of
inequalities and how we can check satisfiability and construct minimal instances with the help
of these inequalities.

2.1 Unified Modeling Language

The Unified Modeling Language [36], UML, is a standardised modelling language in the form
of a collection of different diagram types. Diagrams are expressive and ideal to exchange ideas
and (domain) knowledge. Therefore UML is widespread and well-known in the domain of soft-
ware engineering and has a broad tool support. The goal of UML is to cover a broad range of
application areas. The provided diagram types meet various modelling demands. An overview
can be found in [30]. In this thesis we focus on UML class diagrams.

Class diagrams serve to abstract objects and their relationships. Typical application areas of
class diagrams are the design of databases and the design of object oriented software.

A class diagram basically consists of classes related by associations. UML class diagrams
provide several more features, but we will focus on these basic components, as these suffice for
many applications. A complete feature overview can be found in [36].

Classes model types of objects (or entities like “address”) that have specific attributes in
common. A class is identified by its name, for example “Person”. Additionally it has one or
more attributes, like “Name”, “Age”, and so on. Every instance of a class (for example in the
form of a record in a database or in the form of a physical object) has a concrete value for each
attribute, e.g. “Tom”. These attribute values characterise the instance.

Associations model relationships between objects represented by classes. An association
can be binary or n-ary, depending on the number of classes it relates. The most common one is
the binary association. A binary association C m..M⇒n..N D as depicted in Figure 2.1 consists
of two classes, C and D, an association name u, and multiplicities and uniqueness constraints at
each association end. The arrow indicates the orientation of the association. The multiplicities
are intervals over integers. The interval n..N restricts the number of partner objects (or the

5

number of links to partner objects) for each object of class C and the interval m..M those for
each object of class D, as UML adheres to a look-across policy. The so-called uniqueness-
attributes γ1 and γ2 can either be unique (which is the default in UML) or non-unique. The
multiplicities of an association end that is labelled unique restrict the number of partner objects,
whereas those of an association end labelled as non-unique restrict the number of links to
partner objects.

Additional constraints, like lower bounds on classes, can be defined using the Object Con-
straint Language (OCL, see [37]). Nevertheless, we will introduce our own notation to specify
the few additional constraints we need. On the one hand OCL constraints are rather bulky, and
on the other hand we only need a tiny fragment of OCL not justifying the introduction of another
formalism.

Lower bounds on classes give the minimally required number of objects for a class. A lower
bound of amin on class C means that in every valid instance of this model there have to be at
least amin objects of class C. Lower bounds are non-negative integer values. We will specify the
lower bound on the number of objects of a class by a static class attribute min (see Figure 2.2a),
instead of expressing it by an OCL constraint.

C D
m..M
γ1 u I

n..N
γ2

Figure 2.1: Naming conventions for binary associations.

Example 2.1. Figure 2.2 illustrates the effect of the multiplicity attributes unique and non-unique .
The model of the association in Figure 2.2a requires that there is at least one D-object, as stated
by the static class attribute min.

In Figure 2.2b the multiplicities on both association ends are tagged as unique . Starting with
d1, we need at least one C-object, c1 because of multiplicity 1..2, which in turn needs at least
three D-objects, d1, d2, and d3.

In Figure 2.2c, the multiplicities are non-unique . Starting again with the required object d1,
we need at least one link to a C-object, c1, which in turn needs at least three links to D-objects.
Since d1 can take another link, it suffices to add a second D-object.

C D
min:1

1..2
γ1 u I γ2

3..4

(a) Association

c1

d1

d2

d3

(b) Minimal instance for
γ1 = γ2 = unique

c1
d1

d2

(c) Minimal instance for
γ1 = γ2 = non-unique

Figure 2.2: Binary association with minimal solutions for unique and non-unique ends

6

2.2 Basic Definitions

We now introduce the basic concepts we need throughout the rest of this thesis.

Remark 2.2. The following definitions and chapters only consider unique-unique associations,
which are the default in UML. We therefore ignore the uniqueness-attributes described in the
previous section and assume that all associations are tagged as unique-unique . Associations
tagged as nonunique-nonunique will only be considered in Chapter 7.

Definition 2.3 (Model). A model M = (C,A) consists of a set C of classes and a setA of binary
associations. Classes and associations are represented by unique names. Each association u ∈ A
is of a specific type, type(u), of the form C m..M⇒n..N D, where C and D specify the classes
related by the association, and m, M , n, and N are natural numbers with 0 ≤ m ≤ M ,
0 ≤ n ≤ N and M,N ≥ 1. Expressions of the form n..N are called multiplicities and will be
interpreted as intervals. The values n and m are called lower bounds, N and M are called upper
bounds. The classes related by an association u are called the signature of u: sig(u) = (C,D).

Upper bounds may also be the symbol ∗ denoting infinity or more precisely an arbitrary, but
finite value. The multiplicity 0..∗may be omitted. Figure 2.1 shows the graphical representation
of an association u that is of type C m..M⇒n..N D.

Later on we will extend the definition of a model by equations.

Person

Carport

Car

1
u I 1..10

1
v

H
1..2

1
w I

1..3

Figure 2.3: Model of persons, their cars and carports.

Example 2.4 (Carport Example). Consider the model M in Figure 2.3 where each person can
have between one and ten cars and one or two carports, each carport has place for one to three
cars and each car has to be parked in a carport. For M we have C = {Car,Carport,Person},A =
{u, v, w} with u : Person 1..1⇒1..10 Car, v : Person 1..1⇒1..2 Carport, and w : Carport 1..1⇒1..3

Car.

A class defines the main characteristics of a specific type of objects (e.g. cars), whereas an
association specifies the properties of the possible connections (i.e. links) between the objects.
A link connects two objects belonging to distinct classes. Objects and the links connecting them
together form an instance.

Definition 2.5 (Instance). An instance I = (O,L) consists of a set O of objects and a set L of
links, with objects being represented by unique names. A link (o, p) ∈ L is an ordered pair of
objects related by the link.

7

p1

p2
persons

c1 c2 c3 cars

cp1

cp2

carports

Figure 2.4: Instance of the model in figure 2.3.

Example 2.6. The instance I = (O,L) in Figure 2.4 consists ofO = {p1, p2, c1, . . . , c8, cp1, cp2, cp3}
and L = {(p1, c1), (p2, c2), (p2, c3), (p1, cp1)(p2, cp2)(cp1, c1), (cp1, c2), (cp2, c3)}.

For some definitions, problem descriptions and problem solutions, it is convenient to parti-
tion the set of links into relations.

Definition 2.7 (Relation). A relation rel(u) or ru is the set of all links (i.e. object pairs) in-
stantiating an association u. Hence, each relation of an instance I = (O,L) is a subset of L.
Formally, rel(u) = assoc−1(u). We say that rel(u) is of type C m..M⇒n..N D if u is of this
type.

In general we assume that every instance is an instance of some model.

Definition 2.8 (Instance of a model). I is an instance of a model M, if it is well-typed regard-
ing M. This means:

• Every object o ∈ O is an instance of exactly one class C ∈ C, written as class(o) = C;
we say that o is a C-object.

• Every link l ∈ L is an instance of exactly one association u ∈ A, written as assoc(l) = u;
we call l a u-link.

• The links are well-typed: class(l) = sig(assoc(l)) holds for all links l ∈ L. (The function
class is extended to links by class(l) = class((o, p)) = (class(o), class(p)).)

We also use the class name C to refer to the set class−1(C) of all C-objects; hence o ∈ C is
another way of saying that o is aC-object. Accordingly, |C| = |class−1(C)| denotes the number
of C-objects.

Example 2.9. The instance I in Example 2.6 is an instance of the model M in Example 2.4
if we set class(pi) = Person, class(ci) = Car, class(cpi) = Carport, and assoc(pi, cj) = u
for i = 1 . . . 2 and j = 1 . . . 3, assoc(pi, cpj) = v for i, j = 1 . . . 2, and assoc(cpj , ci) = w
for j = 1 . . . 3, i = 1 . . . 2. Note that the links are well-typed; we have e.g. class((p1, c1)) =
(Person,Car) = sig(u) = sig(assoc(p1, c1))).

8

In the following chapters a central concept is the one of instances satisfying a specific model.
This is the case, if an instance respects all constraints imposed by the corresponding model.
For specifying whether multiplicity constraints are respected, we need to define the number of
connected objects: Let γD(o) = |{ p ∈ D | (o, p) for some (o, p) ∈ L}| be the number of D-
objects linked to the C-object o, and similarly let γC(p) be the number of C-objects linked to
the D-object p.

Definition 2.10 (Satisfying instance). An instance I satisfies a model M if it is an instance of M
and if all links respect the multiplicities of their association: For every association u ∈ A of type
C m..M⇒n..N D and all objects o ∈ C, p ∈ D we have n ≤ γD(o) ≤ N and m ≤ γC(p) ≤M .

Note that this definition corresponds to the multiplicity attribute unique , which is the default
in UML [36]. For a discussion of further attributes see [21, 22].

Example 2.11. The instance I in Example 2.6 is a satisfying instance of the model M in Exam-
ple 2.4 as it is an instance of M (see Example 2.9) and since all links respect the multiplicities.
E.g., for association w and object cp1 we have n = 1 ≤ γCar(cp1) = |{c1, c2}| = 2 ≤ 3 = N .

An interval a..A is tighter than another interval b..B, if either a > b and A ≤ B or a ≥ b
and A < B holds. A type T is weaker than or equal to a type T ′ (T ′ is stronger than or equal
to T), if every relation of type T ′ is also of type T . Since we do not consider hierarchies on
classes in this context, type T is weaker if its intervals contain those of T ′ (i.e. the intervals
of type T ′ are tighter than those of type T). This leads to the following lemma, which is used
implicitly throughout this thesis.

Lemma 2.12. Let ru be of type C m..M⇒n..N D. Then ru is also of type C m′..M ′⇒n′..N ′ D
for all m′ ≤ m, n′ ≤ n, M ′ ≥M , and N ′ ≥ N .

Example 2.13. The association v in Figure 2.5b has tighter bounds than association u in Fig-
ure 2.5a. Hence, every instance of v is also an instance of u, but not vice-versa. The instance in
Figure 2.6a satisfies both associations, whereas the one in Figure 2.6b only satisfies association
u. The second instance violates the multiplicity 2..2 from association v, as object d1 is only
connected to a single C-object.

C D
1..2

u I
1..4

(a) Association u.

C D
2..2

v I
1..2

(b) Association v is of a stronger type than u.

Figure 2.5: Models of two different associations between classes C and D.

2.3 Translation into linear inequalities

To allow a formal examination of models, we need to formalise them. One possible formalisation
of class diagrams is a translation to a system of inequalities (see [20, 32]). Each association is

9

c1

c2

d1

(a) Instance that also satisfies
association v.

c1 d1

(b) Instance that does not sat-
isfy association v.

Figure 2.6: Instances that satisfy association u from Figure 2.5.

translated independently from all other associations. A binary association as shown in Figure 2.1
is translated to the inequalities

Nx ≥ my My ≥ nx (2.1)

x ≥ c y ≥ d (2.2)

xy ≥ my xy ≥ nx (2.3)

where x and y are variables for the cardinalities of the classes C and D. The multiplicity
constraints are represented by the inequalities (2.1), while the inequalities (2.2) model the lower
bounds on the classes. The inequalities (2.3) ensure that there are enough objects to satisfy
the unique constraint. A model has a satisfying instance if and only if the inequalities are
solvable [21, 32].

The number ` of links required to build a satisfying instance is bounded by

max(nx,my) ≤ ` ≤ min(Nx,My, xy) .

Computing instances using ILP

The inequalities we obtain from the translation form a so-called ILP program. By solving it
we can efficiently check the satisfiability of the model (i.e. we can check whether a satisfy-
ing instance exists). At the same time, we obtain the number of objects and links required for
each class and association. Furthermore we know that an instance satisfies a model if the class
cardinalities satisfy the inequalities corresponding to the model. The translation is correct and
complete: For every satisfying instance there exists a corresponding solution of the inequalities,
and for every solution of the latter we can construct a valid satisfying instance by adding appro-
priate links (see [21] for a detailed discussion). Since the ILP solutions are closed under linear
combinations and the minimum operator, the minimal solution is unique.

For further applications of this approach (for instance generalisation to multiary associations
and other uniqueness attributes) see [16, 20].

10

Computer

min: 2

Switch2..20

u I
1..3

Figure 2.7: Example of a model: Every computer has to be connected to 1 to 3 switches, and
each switch must be connected to at least two and at most 20 computers. Each instance satisfying
this model has to consist of at least two computers.

Example 2.14. The model in Figure 2.7 corresponds to the inequalities

3x ≥ 2y 20y ≥ 1x

x ≥ 2 y ≥ 0

xy ≥ 2y xy ≥ 1x

and the number of links is bounded by max(1x, 2y) ≤ ` ≤ min(3x, 20y, xy). The minimal
solution of the inequalities is x = 2, y = 1 and we need at least ` = 2 links. This means that we
need at least two computers, one switch and two links between them.

So the ILP program above tells us whether a model admits any instances, and if so, how many
objects and links we need for a minimal instance. We now need to find a concrete distribution
of the links to build a complete satisfying instance of the model. Distributing the required
number of links uniformly among the objects yields one possible instance (see the discussion
on balanced sequences in [21]). A more flexible approach of distributing links is described in
Chapter 7.

11

3 Configuration Management

If the only tool you have is a
hammer, you tend to see every
problem as a nail.

Abraham Maslow

3.1 Definitions

Configuration management is the task of modelling, building and maintaining real life systems.
The components of such systems are functional units, which may be software, hardware or
other physical objects like computers or train stations. In configuration management we want to
specify admissible arrangements of functional units, set them up according to some criteria of
optimality and maintain them when requirements change.

A specification fixes general properties of objects and their relation to each other. In software
engineering, a specification is called a model. In our context specifications consist of a set of
classes C, a set of binary associations A, and later on also of a set of equations E .

A configuration in our sense is a collection of objects, partly related to each other, i.e. con-
nected by links. Configurations represent physical multi-part systems, like railway-systems,
computers or cars. Configurations are represented by a set of objects O and a set of links L.
A link is an ordered pair of objects, e.g. (c1, d2). A configuration can be an instance of some
specification. In software engineering, configurations correspond to instances.

A configuration is an instance of a specification, if each object is associated with a specific
class and each link is associated with a specific association, which corresponds to the definition
of ”Instance of a model” (see Section 2.2).

In configuration management configurations, unlike most instances in software engineer-
ing, exist independently from any specification, as they consist of real-life, physical objects or
functional units. As an example, consider a railway system built to satisfy a particular specifica-
tion. Even if the specification changes or does not exist anymore, the railway system with all its
components like train stations and rails remains.

Hence, it is necessary to maintain configurations, even if requirements change.

Example 3.1. Consider the railway control system depicted in Figure 3.1a. It consists of phys-
ical objects like train stations and computers. We model this system as a UML class diagram.
From this specification (see Figure 3.1b) we want to generate concrete instances that can then

13

Train Station Interlocking TrackSwitch

Computer Power Supply

1

0..∗
1

1..20

1

1..3

1..5

1..3

(a) The railway control system components modelled as classes and their relations
modelled as associations.

Train
Station

Interlocking Track
Switch

Computer Power
Supply

1

0..∗
1

1..20

1

1..3

1..5

1..3

(b) UML Class Diagram of the railway control system.

Figure 3.1: Railway Control System

be realised in real life. Furthermore, we want to check whether existing railway control systems
adhere to the corresponding specification and find ways to correct systems that do not comply
with the specification.

3.2 Challenges in Configuration Management

We now want to introduce our research programme by describing important challenges in the
domain of configuration management that were identified in [16] and [21].

The goal of our research is to find solutions to those problems connected with configuration
management and to provide algorithms that can be combined in a tool.

Usability

The overall intention is to maintain usability by hiding formal methods behind familiar user
interfaces, making formal specifications as intuitive as possible and providing comprehensible
feedback in cases of error. Formal methods, as useful as they are, have the problem of being
difficult to use. Most modellers are not familiar with them and furthermore do not have the time
to learn and apply them while modelling. Hence, it is preferable to hide the formal methods

14

behind a familiar user interface and to apply them in the background. A first step to solve
this challenge is to model specifications with UML class diagrams. Class diagrams are well-
known and hence do not force the users to deal with a new modelling formalism. We translate
the diagrams into inequalities in the background and do the formal reasoning hidden from the
user. Finally, we give feedback by highlighting errors or suggesting optimisations directly in
the diagram. Additionally, we provide a graphical interface to model configurations (instances).
This feature gives us the possibility to give feedback on errors in instances as well.

All problems described below should be solved having usability in mind.

Instance Checking

INSTANCE

Input: A model M, an instance I, and mappings class and assoc.
Question: Is the configuration I a satisfying instance of the model M with respect to class and
assoc?

This problem is basically solved by checking whether a given configuration satisfies all
constraints specified by the corresponding model M. The main constraints are multiplicities and
lower bounds of classes, but there can also be further constraints like equations over chains of
associations (see Chapter 5).

Usually checking constraints is computationally easy, as it can be done locally (i.e. whether
constraints like multiplicities are satisfied can be checked for each association separately). Instance-
checking can therefore be done automatically after each change by the user, as it only has to be
done for the affected parts. Thus, we can give immediate feedback to the user directly in the
instance by highlighting any parts that violate the model.

Example 3.2. Figure 3.3a is a satisfying instance of the model in Figure 3.2, if we set

• class(p1) = Person

• class(ci) = Computer for i = 1 . . . 3

• class(pri) = Printer for i = 1 . . . 2

• assoc(p1, ci) = u for i = 1 . . . 3

• assoc(ci, prj) = v for i = 1 . . . 3, j = 1 . . . 2.

If we add a fourth computer to the instance (see Figure 3.3b) it is no satisfying instance of the
model anymore, because person p1 now has four computers, which are too many.

Person
min:1

Computer Printer1
u I

2..3 1..2
v I

1

Figure 3.2: Model of persons, their computers and printers.

15

p1

c1

c3

c2

pr1

pr2

(a) Satisfying instance of the model.

p1

c1

c3

c2

c4

pr1

pr2

(b) Instance not satisfying the model.

Figure 3.3: 2 instances of the model in Figure 3.2.

Satisfiability and Consistency

SATISFIABILITY

Input: A model M.
Question: Is there an instance satisfying M?

A model is satisfiable, if the constraints specified by the model admit at least one satisfying
instance. For some constraints this problem might be of a high complexity. In description
logics, for example, checking the satisfiability of constraints is exponential or sometimes even
undecidable. As our goal is to develop a usable system, we decided to use a numerical approach,
which can only deal with constraints of limited expressivity, but allows us to give immediate
feedback. Checking satisfiability can be done in polynomial time by building a graph from the
inequalities and running a variant of the all-pairs-shortest-path algorithm by Floyd-Warshall. A
detailed description can be found in [21].

Example 3.3. The model in Figure 3.4 is unsatisfiable. To satisfy association u we need twice
as many D-objects as C-objects and at the same time we need twice as many C-objects as D-
objects to satisfy association v. Hence we cannot find any non-trivial instance (i.e. an instance
consisting of at least one object of some class) satisfying both associations simultaneously.

C D

1
u I

2

2
v I

1

Figure 3.4: Unsatisfiable model of two associations between the same classes.

16

CONSISTENCY

Input: A model M.
Question: For each class C, is there an instance satisfying the model M that contains at least
one object of class C?

An inconsistent class diagram is a diagram, where for some particular class there exists no
satisfying instance with at least one object of this class. Usually this is not intended and therefore
hints at some underlying error. Such situations occur because of over-restrictive constraints. By
adding a lower bound of (at least) one to each class in turn, checking consistency can be reduced
to checking satisfiability.

Example 3.4. The model in Figure 3.5 is inconsistent. The two associations between classes C
and D are unsatisfiable (see Example 3.3), but we still can find an instance satisfying the model.
As we have a lower bound of 0 on the number of D-objects connected to each E-object via
association w, an instance consisting only of E-objects is a non-trivial satisfying instance of the
model. The model is inconsistent, because we cannot find satisfying instances containing any
objects of classes C or D.

C D E

1
u I

2

2
v I

1

0..2

w I
1..4

Figure 3.5: Inconsistent model of three classes.

Minimal Instance Problem

MINIMAL INSTANCE

Input: A model M and an ordering < on instances.
Output: An instance satisfying M that is minimal w.r.t. ordering <.

To solve this problem, we need to find an instance of a given model that is minimal in some
sense. As configuration management deals with real-life systems, we want to reduce costs,
hence we search for the instance with lowest cost. Preferable instances might be the ones with
the least objects in total or per class. Furthermore, objects of certain classes might be more
cost effective than others and we therefore might prefer to choose more of them. We might as
well want to minimise the number of links between the objects or find the most cost-effective
link-distribution.

From the ILP program resulting from the translation of the model to inequalities we can
compute the minimally needed number of objects and links for each class and association. We
can even assign costs to classes and still get an optimal solution from the ILP solver. This is one
of the main advantages of our numerical approach.

17

Example 3.5. The instance of the model in Figure 3.2 that is minimal regarding the number of
objects is shown in Figure 3.6. It consists of one person p1, two computers c1 and c2 and one
printer pr1.

p1

c2

c1

pr1

Figure 3.6: Minimal instance of the model in Figure 3.2.

Minimal Repair

MINIMAL REPAIR

Input: A model (specification) M, an instance (configuration) I (in general not satisfying M),
an ordering < on instances, and a notion of similarity of instances.
Output: A <-minimal instance (configuration) I′ satisfying M that is similar to I.

Modifying physical systems (i.e. configurations) costs money. We therefore want to find a
conservative extension of the system, if requirements (i.e. the underlying specification) change.
In this case it is preferable to keep as many components and links from the old configuration
as possible to keep the adaption costs minimal. If, for example, a computer network needs to
be adapted because the minimally required number of computers changes, it is preferable to
leave the existing parts of the network as untouched as possible. A complete re-wiring of the
cables of the network would not be the best solution, even if the conservative extension leads to
a configuration that is not minimal in an absolute sense.

There is no unique definition of similarity of instances. It might, for example, be preferable
to change (add/delete) as few objects and links as possible or it might even be forbidden to delete
specific links (or any links at all).

This problem is discussed in more detail in sections 7.4 and 7.5.

Minimal Multiplicites

MINIMAL MULTIPLICITIES

Input: A model M.
Output: A model M′ equivalent to M, whose multiplicities are minimal among all models
equivalent to M.

It can happen that the bounds of some multiplicity n..N of a model are not reachable due
to other restrictions. In such cases, we can tighten the interval of these multiplicities to n′..N ′,
with n′ ≥ n and N ′ ≤ N . This reduction does not affect the instances satisfying all constraints
imposed by the model (i.e. the reduced model is equivalent to the original model).

18

Non-minimal multiplicities mirror the modeller’s fuzzy perception of the system he wants to
model and might even hint at some underlying misconception. Furthermore, reducing multiplic-
ities can also help to reveal that a model is not satisfiable when taking some equality constraints
into account. Hence, among all equivalent models we want to find the one with minimal multi-
plicities for all associations.

We deal with this problem in Chapter 5.

19

4 Associations and Association Chains

The important thing in science is not
so much to obtain new facts as to
discover new ways of thinking about
them.

Sir William Bragg

To get a feeling for associations and relations, we now investigate some basic properties of
associations and their corresponding relations and give some characteristics of the solutions of
the inequalities from the previous chapter. Furthermore we introduce the concept of composing
association chains. We partly published the results of this chapter in [23].

4.1 Connected objects

This section investigates the bounds on the number of objects connected to a specified number
of objects of another class via a specific unique-unique association.

For the following observations, consider the following binary association with the corre-
sponding inequalities (see (2.1) and (2.3) - we omit the lower bounds on classes for this pur-
pose).

C D
m..M

u I
n..N Nx ≥ my My ≥ nx (4.1)

xy ≥ my xy ≥ nx (4.2)

Note that the expression xy ≥ nx is equivalent to y ≥ n · sgn(x)1 or y ≥ n for x > 0. We
assume that m ≥ 1 and n ≥ 1, as we are only interested in D-objects that are connected to at
least one of the C-objects and vice versa. Hence, we set m = 1, if m = 0, which corresponds
to using max(m, 1) instead of m in the inequalities. The same holds for n.

First of all, we want to determine the number of D-objects, y, connected to a given number
x of C-objects via association u, where x is the total number of C-objects.

From the inequalities (4.1) we get

1The signum (or sign) function is defined by sgn(x) = 1 for x > 0, sgn(0) = 0, and sgn(x) = −1 for x < 0.

21

dmy
N
e ≤x ≤ bMy

n
c (4.3)

dnx
M
e ≤y ≤ bNx

m
c . (4.4)

As the number y of D-objects connected to a given number x of C-objects has to satisfy this
inequality as well as y ≥ n · sgn(x), it is bounded by

max(
⌈nx
M

⌉
, n · sgn(x)) ≤y ≤

⌊
Nx

m

⌋
(4.5)

The inverse direction (regarding the number of partner objects of class C for a given number
ofD-objects) is symmetric. We will use ∆n,M (x) to abbreviate the lower bound max(dn·xM e, n ·
sgn(x)).

Example 4.1. Consider the model in Figure 4.1. The instance in Figure 4.2a shows the maximal
number of connected D-objects, y, for two C-objects (c1 and c2), which is y = 4. This corre-
sponds to the upper bound for y in (4.5) for x = 2. We cannot connect more objects of class D
to the C-objects, because each D-object needs at least two connected C-objects.

C D
2..3

u I
1..4

Figure 4.1: Model of two classes.

So far we have assumed that x is the total number of objects of class C. As we might as well
be only interested in the number ofD-objects connected to a subset of all existingC-objects (i.e.
x is the number of a subset of all C-objects), we need to adapt the upper bound on the number
y of connected objects. In this case the upper bound is different, because the D-objects may
additionally be connected to other objects of class C. The following example illustrates this.

Example 4.2. Reconsider the model in Figure 4.1. Figure 4.2b shows an instance with two
additional objects of class C. We are still only interested in objects connected to c1 and c2. In
this instance we can connect 8D-objects to these twoC-objects. Hence, we get y = 8 for x = 2,
if the instance consists of more than x objects of class C. This value exceeds the upper bound
for y from (4.5).

Proposition 4.3. Given an association C m..M⇒n..N D. Let |C| be the number of C-objects
and |D| the number of D-objects. Furthermore, let O ⊆ obj(C) be a set of some C-objects,
and let r(O) := { p | o ∈ O, (o, p) ∈ r } =

⋃
o∈O γr(o) be the set of related D-objects, where

x = |O| is the number of objects in O and y = |r(O)| the number of related objects (1 ≤ x ≤
|C| and 1 ≤ y ≤ |D|). Then y is bounded by

max(
⌈nx
M

⌉
, n · sgn(x)) ≤ y ≤ Nx (4.6)

22

c1

c2

d1

d2

d3

d4

(a) Instance with 4 D-objects connected
to the C-objects c1 and c2.

c1

c2

c3

c4

d1

d2

d3

d4

d5

d6

d7

d8

(b) Instance with 8 D-objects connected
to the C-objects c1 and c2.

Figure 4.2: 2 instances of the model in Figure 4.1.

Proof. Regarding the upper bound we observe that a single C-object is linked to at most N
objects of class D. In the maximal case, the D-objects linked to distinct C-objects are pairwise
different, hence y is bounded from above by N · |O|. As x is only a subset of all existing C-
objects, the D-objects can be additionally linked to C-objects that are not in O and hence we
are not limited by the requirements of the D-objects (which need at least m objects of class C).

The lower bound follows directly from the inequalities (4.1) and (4.2).

The upper bound Nx is tight, i.e. the value can actually be reached by some satisfying
instance of the association (see Corollary 4.6).

Characterisation of solutions

We now characterise the solutions of the inequalities by deriving restrictions for the values of x
and y that yield a solution to the inequalities.

The inequalities (4.1) are equivalent to (4.4); hence y exists if x satisfies

bNx
m
c ≥ dnx

M
e .

Since bnxM + 1c ≥ dnxM e, rewriting this as

bNx
m
c ≥ bnx

M
+ 1c

23

still yields a sufficient condition for the existence of y. Omitting b c yields Nx
m ≥

nx
M + 1, which

can be rewritten as

x ≥ mM

MN −mn
.

We conclude that y exists and we can hence find a solution to the inequalities for an arbitrary
number x of C-objects if m < M or n < N , provided that x is large enough. This is formally
stated in the following lemma.

Lemma 4.4. Let m 6= M or n 6= N . Then the inequalities (4.1) are solvable for every x ≥
mM

MN−mn and for every y ≥ nN
MN−mn .

Note that in cases where both of the intervals have identical values for the lower and the
upper bound, we might not find a solution for every value x as stated in Proposition 4.4.

The next lemma shows that we can still find a solution for some values x, if m = M and
n = N . Furthermore, we can find a solution for some multiple of any value x.

Lemma 4.5. Let m = M and n = N , and let g = gcd(m,n).2 Then x, y is a solution of the
inequalities (4.1) if and only if x = m

g i and y = n
g i for some i > 0.

Proof. For m = M and n = N , the inequalities (4.1) are equivalent to n
g x = m

g y. Since the
coefficients are co-prime, x and y have to be of the form x = m

g i and y = n
g i for some i > 0.

Obviously each of these numbers is a solution.

Suppose we have z objects of class D. The following corollary allows us to conclude that it
is always possible to extend the given D-objects to a full instance by adding a suitable number
of C- and D-objects.

Corollary 4.6. Let C m..M⇒n..N D be an association such that C and D are distinct, and let
z > 0. Then, for some number d, there exists an instance with dz objects of class D satisfying
the association.

Proof. If m 6= M or n 6= N , then the inequalities corresponding to the association are solvable
for every y ≥ nN

MN−mn (Lemma 4.4); hence we may choose e.g. d = d nN
(MN−mn)z e. For

m = M and n = N the solutions for y are of the form n
g i (Lemma 4.5); hence we may choose

e.g. d = n
g .

Special Cases

An interesting case is the one where in a collection of C-objects one C-object is only connected
to the minimally required number n of D-objects via an association u of type C m..M⇒n..N

D. We want to know the maximal number of D-objects connected to all C-objects under this
condition. We will need this result to calculate the reduced lower bounds of multiplicities in
Chapter 5.

The number ` of links instantiating the association is bounded by

2The function gcd(m,n) returns the greatest common divisor of m and n.

24

nx ≤ ` ≤ N · (x− 1) + n (4.7)

my ≤ ` ≤My (4.8)

which leads to the inequality

my ≤ Nx+ (n−N) (4.9)

Hence we obtain the following result.

Proposition 4.7. Let C m..M⇒n..N D be an association and let x ≥ 1 be the number of C-
objects. Then the number y of D-objects connected to the x C-objects is bounded by

y ≤
⌊
Nx+ (n−N)

m

⌋
(4.10)

if one C-object is required to be connected to exactly n objects of class D.

In a similar manner we determine the minimal number of D-objects connected to a given
number of C-objects via an association u of type C m..M⇒n..N D, if one of those C-objects is
connected to the maximal possible number of D-objects (which is N). This result will be used
in Chapter 5 to calculate the reduced upper bounds of multiplicities.

The ` links instantiating this association are bounded by

n(x− 1) +N ≤ ` ≤ Nx (4.11)

my ≤ ` ≤My (4.12)

which leads to the inequality

n(x− 1) +N ≤My (4.13)

Moreover we want one C-object to actually use the upper bound of N , hence we require
y ≥ N .

We obtain the following result.

Proposition 4.8. Given an association C m..M⇒n..N D. Let x′ be the number of objects of
class C and x be the number of a specific subset of C-objects with 1 ≤ x ≤ x′. Then the
number y of D-objects connected to the x C-objects is bounded from below by

max(dnx+ (N − n)

M
e, N) ≤ y (4.14)

if one of those C-objects is connected to exactly N objects of class D.

25

4.2 Composition of associations

The concept of equations over association chains that we will deal with in Chapter 5 is based on
the composition of association chains. This section investigates basic definitions and properties
of relations instantiating such association chains.

Definition 4.9 (Association chain). An association chain is a sequence of associations ui of
type Ci−1 mi..Mi⇒ni..Ni Ci (for i = 1, . . . , k) such that the classes Ci are distinct from each
other (see Figure 4.3).

C0 C1 Ck−1 Ck
m1..M1

n1..N1

mk..Mk

nk..Nk

Figure 4.3: Association chain consisting of k associations.

Definition 4.10 (Composition of relations). The composition of two relations ru, rv (instantiat-
ing an association chain uv) is defined as ru ◦ rv = { (o, p) | (o, q) ∈ ru, (q, p) ∈ rv }.

In other words, the composition of two relations (the first between objects of classes C0 and
C1 and the second between objects of classesC1 andC2) can be defined as pairs of objects (o, p)
(o ∈ C0, p ∈ C2) that are connected via objects of the intermediate class C1.

Let ∆n,M (x) denote the expression max(dn·xM e, n · sgn(x)), which gives the minimal num-
ber of D-objects that x objects of class C have to be linked to in a satisfying instance. We can
now compute the type of a composed association as stated in the following proposition.

Proposition 4.11 (Composition of association types). Let ri be a relation of typeCi−1 mi..Mi⇒ni..Ni

Ci for i = 1, . . . , k. Then the composition r1 ◦ · · · ◦ rk is of type

C0 µk..
∏k

i=1Mi
⇒νk..

∏k
i=1Ni

Ck ,

where the lower bounds are defined by the recursions µ0 = ν0 = 1, µi = ∆mk−i+1,Nk−i+1
(µi−1),

and νi = ∆ni,Mi(νi−1), for i = 1, . . . , k.

Proof. Regarding the upper bounds, we see that applying the upper bound from Proposition 4.3
(i.e. the upper bound for the number of connected objects) repeatedly for one association after
the other within the association chain (starting from C0) yields the maximal number of partner
objects in each step. After k steps, we get the composed upper bound

∏k
i=1Ni.

Regarding the lower bound, like for the upper bound, we apply the lower bound from Propo-
sition 4.3 repeatedly (in total k times), yielding the minimal number of partner objects νk.

The inverse direction regarding the multiplicities νk..
∏k
i=1Mi is symmetric.

Figure 4.4 illustrates the composition of associations. It shows a chain of three associations
viewed as one composed association.

26

C0 C1 C2 C3
m1..M1 n1..N1

u
m2..M2 n2..N2

v
m3..M3 n3..N3

w

(a) Three associations . . .

C0 C3

µ3..
∏3

i=1Mi ν3..
∏3

i=1Ni

uvw

(b) . . . viewed as one.

Figure 4.4: Composition of three associations, with µ3 = ∆m1,N1(µ2), and ν3 = ∆n3,M3(ν2).

Example 4.12. Consider the association chain uvw depicted in Figure 4.5. The composed type
C0 a..A⇒b..B C3 is calculated as follows:

For the upper bounds we get

A =

3∏
i=1

Mi = 1 · 1 · 2 = 2 and B =

3∏
i=1

Ni = 3 · 4 · 3 = 36 .

The lower bounds are

a = µ3 = ∆m1,N1(∆m2,N2(∆m3,N3(1))) =

∆m1,N1(∆m2,N2(max(dm3·1
N3
e, m3 · sgn(1)))) =

∆m1,N1(∆m2,N2(max(d1·1
3 e, 1))) = ∆m1,N1(∆m2,N2(1)) =

∆m1,N1(max(d1·1
4 e, 1)) = ∆m1,N1(1) =

max(d1·1
3 e, 1) = 1

and

b = νi = ∆n3,M3(∆n2,M2(∆n1,M1(1))) =

∆n3,M3(∆n2,M2(max(dn1·1
M1
e, n1 · sgn(1)))) =

∆n3,M3(∆n2,M2(max(d1·1
1 e, 1))) = ∆n3,M3(∆n2,M2(1)) =

∆n3,M3(max(d2·1
1 e, 2)) = ∆n3,M3(2) =

max(d2·2
2 e, 2) = 2 .

Hence the composed association u ◦ v ◦ w is of type C0 1..2⇒2..36 C3.

C0 C1 C2 C3
1..1 1..3

u
1..1 2..4

v
1..2 2..3

w

Figure 4.5: Association chain with three associations.

27

Properties of composed associations

We now describe several properties of association chains of the following form:

C0 m1..M1⇒n1..N1 · · · mk..Mk
⇒nk..Nk

Ck

The first observation is that we can build a satisfying instance of the association chain containing
a multiple of an arbitrary number of objects of any class within the association chain.

Proposition 4.13. For every number z > 0 and i = 0, . . . , k there is a number d, such that there
exists an instance with dz objects of class Ci satisfying the association chain.

Proof. Starting from Ci, apply corollary 4.6 in both directions (in total k times).

This insight allows us to state that an instance of an association chain, where all objects
of one class (i.e. of one side of an association within the chain) are satisfied, can always be
extended to a satisfying instance of the whole chain.

Proposition 4.14. Let I be an instance of the association chain such that each Ci-object is
linked to at least ni+1 and at most Ni+1 different Ci+1-objects. Then I can be extended to a
satisfying instance, I∗, of the chain.

Proof. If each Ci+1-object is linked to at least mi and at most Mi different Ci-objects, I is
already a satisfying instance and we are done. Otherwise we have to augment I by further
objects and links to reach this situation.

Let εi+1 be the number of additional links that are required to link every Ci+1-object to at
least mi+1 Ci-objects. Consider the union of n =

∏k
i=1 ni renamed copies of instance I. In

total, the Ci+1-objects now need n · εi+1 additional links. Therefore we add x = n
ni+1
· εi+1

further Ci-objects and link each of them to ni+1 different Ci+1-objects. Let I′ be the instance
consisting of the copies of I and the additional Ci-objects and links.

It remains to satisfy the needs of the additional Ci-objects regarding links to Ci−1-objects.
By Proposition 4.13, there is a number d such that there is a satisfying instance I′′ of the chain
C0 ⇒ · · · ⇒ Ci with dx objects of class Ci. Therefore we take d copies of I′ and add I′′.
Repeating this step for every i we obtain I∗.

We can now show that the bounds stated in Proposition 4.11 are indeed tight. This means
that there is a satisfying instance where at least one object of the first class in the chain is linked
to as many objects of the last class as given by these bounds.

Proposition 4.15 (Tightness). Let C0 a..A⇒b..B Ck be the type obtained by composing a chain
of associations according to Proposition 4.11. Then the intervals a..A and b..B are tight, i.e.,
for each of the interval bounds a,A, b and B there is an instance satisfying the association
chain that contains a C0-object (resp. Ck-object) linked to this number of Ck-objects (resp.
C0-objects).

28

Proof. Given x objects of classCi, it is always possible to link them to ∆ni+1,Mi+1(x) objects of
classCi+1 such that eachCi-object has exactly ni+1 partners, by distributing the links uniformly
(see the discussion on balanced sequences in [21]). Iterating this step we see that a single C0-
object can be connected to b = νk Ck-objects. By Proposition 4.14 this partial instance can be
extended to a satisfying instance of the chain.

Although the bounds can be reached, it may happen that we can not construct an instance
for every value of the interval formed by the bounds.

Proposition 4.16 (Gaps). LetC0 m..M⇒n..N Ck be the composition of a chain of k associations
(as in Proposition 4.11). Then there may be values y, n < y < N , such that in no satisfying
instance of the association chain any C0-object is linked to exactly y objects of class Ck.

C0 C1 C2
1 1..2

u I
1 2

v I

Figure 4.6: A chain of two associations admitting only satisfying instances with an even number
of C2-objects.

Proof. Consider the association chain in Figure 4.6. The composed association is of type
C0 1..1⇒2..4 C2, but there does not exist a satisfying instance where some object of class C0 is
connected to exactly three objects of class C2. Each C0-object is connected to either two or four
C2-objects (see Figure 4.7).

c01 c11

c22

c21

(a) c01 connected to 2 C2-objects. . .

c01

c11

c12

c21

c22

c23

c24

(b) . . . or to 4 C2 objects.

Figure 4.7: Possible instances of the model in Figure 4.6 with 1 object of class C0.

Since the composition of relations is associative, one might expect that this property transfers
to the composition of associations. Maybe surprisingly at first sight, this is not the case.

Proposition 4.17. The composition of associations is not associative.

29

Proof. Consider the chain of three associations u, v, and w in Figure 4.8. Computing the com-
position uvw stepwise as (uv)w we obtain the association type C0 1..2⇒3..6 C3 (Figure 4.8(a)).
Computing it as u(vw) we obtain the type C0 1..2⇒2..6 C3 (Figure 4.8(b)), which is different
from the previous one.

C0 C1 C2 C3

(a) C0 C2

C0 C3

(b) C1 C3

C0 C3

1..1
u

3..3 1..1
v

2..2 2..2
w

1..1

1..1
uv

6..6

1..2
uvw

3..6

1..2
vw

1..2

1..2
uvw

2..6

Figure 4.8: Chain illustrating the non-associativity of association composition.

In this particular example the reason for the different results is the subchainC1 1⇒2 C2 2⇒1

C3; relations instantiating it have the composition type C1 1⇒1 C3 or C1 2⇒2 C3, but neither
1⇒2 nor 2⇒1. In the composed type C1 1..2⇒1..2 C3 this information is lost, leading to bounds
in u(vw) that are not tight. In general none of the composition orders is guaranteed to yield tight
lower bounds. Instead, the composition of a chain has to be done according to Proposition 4.11,
with the right-hand multiplicity computed from left to right and the left-hand one from right to
left.

30

5 Reducing Multiplicities and Models

Make everything as simple as
possible, but not simpler.

Albert Einstein

In this chapter we explain why non-minimal multiplicities should be detected and how
stricter bounds can be obtained.

5.1 Motivation

Reducing multiplicities means to find minimal multiplicities for associations. The problem of
finding minimal multiplicities was identified in [16] as a relevant issue. In complex diagrams
it may happen that the lower or upper bound of some multiplicities can never be reached due
to other restrictions. One possible reason is that there are several associations or association
chains between the same two classes. Thus, the parallel association chain may impose stronger
restrictions on the relationship between the two classes than some specific association u. If we
want all associations (or association chains) to hold simultaneously, we can hence reduce the
multiplicities of association u without changing the meaning of the model.

Person

Carport

Car

1
u I 1..10

1
v

H
1..2

1
w I

1..3

Figure 5.1: Model of persons, their cars and carports.

Consider again the Carport-example from Chapter 2 (see Figure 5.1) . The instance in Fig-
ure 5.2 is a satisfying instance of the model. Car c2 belongs to person p1, but is parked in carport
cp1, which belongs to person p2. In general, this will be an acceptable instance, but we can
imagine a different scenario as well. If we want to force persons to park their cars only in their
own carports, we need to specify this by adding additional constraints. In this case, we need to
equate the direct association Person-Car with the parallel association chain Person-Carport-Car
to guarantee that the cars directly connected to a person are the same as those connected via

31

p1

p2
persons

c1 c2 c3 c4 c5 c6 c7 c8

cars

cp1

cp2

cp3

carports

Figure 5.2: Instance where one car of person 2 is parked in his neighbour’s carport.

the relation instantiating the association chain. By adding this constraint, we can observe that a
person may now possess at most 6 cars, as each person may only have 2 carports, with 3 parking
slots each.

Detecting and eliminating such unreachable bounds provides valuable feedback to the user,
as they may hint at some underlying misconception. In configuration management, where we
deal with physical objects, reducing multiplicities can also save money. Suppose you uncover
that due to some constraint it is not possible to park 3 cars in any carport, but at most 2. Then
it suffices to build smaller, cheaper carports that only have 2 parking slots. Last, but not least
minimising multiplicities is even a means to detect that a model is not E-satisfiable (i.e. that
there does not exist any instance satisfying a given equation E).

5.2 Equations over association chains

To reduce multiplicities we have to extend the definition of models by a third component, namely
a set E of equations over association chains: M = (C,A, E).

An equation over A is of the form u1 · · ·uk = v1 · · · vl, where each ui and vj is of the form
a or a−1 for some association a. For an association a of type C m..M⇒n..N D the inverse
association a−1 has type D n..N⇒m..M C. In UML this corresponds to navigating along the
association in the opposite direction.

Example 5.1. We extend the formalisation of the model in Figure 5.1 by a set of equations.
Hence we have M = (C,A, E), where

C = {Car,Carport,Person} ,
A = {u : Person 1..1⇒1..10 Car,

v : Person 1..1⇒1..2 Carport,
w : Carport 1..1⇒1..3 Car } ,

E = {u = vw} .

32

Equations over association chains are constraints used to specify that objects reachable via
one association (chain) are the same that are reachable via some parallel association (chain).
Hence, the modeller can (and even has to) make his implicit assumptions explicit by adding
equality constraints.

Definition 5.2 (E-satisfying instance). An instance I E-satisfies a model M if I satisfies M and
if all equations in E are satisfied, i.e., for each u1 · · ·uk = v1 · · · vl ∈ E the composed relations
rel(u1) ◦ · · · ◦ rel(uk) and rel(v1) ◦ · · · ◦ rel(vl) are equal (as sets).

Example 5.3. According to Example 2.11, Figure 5.2 is a satisfying instance of the model in
Figure 5.1. It is not E-satisfying, however, if we want the equation (u = vw) ∈ E to hold: The
composed relation rel(v) ◦ rel(w) contains the pair (p1, c2), which does not occur in the relation
rel(u). The links violating the equation are highlighted in Figure 5.2. By deleting the object c2

and the corresponding links we obtain an E-satisfying instance.

Definition 5.4 (E-satisfiable model). A model M = (C,A, E) is E-satisfiable, if there exists
an instance that satisfies the model and respects all equality constraints specified in the set of
equations E .

Example 5.5. The model in Figure 5.3 is not E-satisfiable with E = {u = v}, as each C-object
has to be connected to 3 objects of class D via association u and to one or two D-objects via
association v. Hence, we cannot find a relation instantiating both associations at the same time.

C D

1 3
u I

1 1..2
v I

Figure 5.3: Two associations u and v between the same classes allowing no E-satisfying instance
for E = {u = v}.

The concept of equating associations or association chains can as well be expressed in the
Object Constraint Language (OCL) of UML.

Example 5.6. The constraint u = vw from Example 5.1 can be expressed in OCL as follows:

context Person:

inv: self->collect(p: Person | p.car)->asSet()
= self->collect(p: Person | p.carport)

->collect(c: Carport| c.car)->flatten()->asSet()

As this notation can become very cumbersome, we express the constraints in the more intu-
itive and simple notation of equations.

33

5.3 Reducing multiplicities

Reducing multiplicities is a three-step approach. First, we need to define some equation(s) as
part of the model. Then we calculate the composed type of the association chains for both
sides of each equation (as described in Section 4.2). Finally, we can reduce the multiplicities of
associations within the association chains.

The goal is to exploit the information encoded in equations like u = vw from Example 5.1
to tighten multiplicity bounds. In general we obtain two different composed association types
C0 m..M⇒n..N Ck and C0 m′..M ′⇒n′..N ′ Ck, one for each side of the equation, which by
the semantics of equations both characterise the relation instantiating the chains. Obviously a
relation satisfies both types if it satisfies the intersection type, as formally stated in Lemma 2.12.
We call the intersection type objective type and the corresponding interval objective interval. If
the intersection is empty (i.e. [max(n, n′)..min(N,N ′)] or [max(m,m′)..min(M,M ′)] leads
to an empty interval), then the equation is unsatisfiable and the model is not E-satisfiable. An
interval a..A is empty, if a > A. Two intervals a..A and b..B overlap, if their intersection
[max(a, b)..min(A,B)] is not empty.

Lemma 5.7. Given an equation U = V of two association chains between classes C0 and Ck,
let C0 au..Au⇒bu..Bu Ck and C0 av ..Av⇒bv ..Bv Ck be the type of the composition of the chains
U and V , respectively. Then the resulting intervals au..Au and av..Av have to be overlapping
(as well as bu..Bu and bv..Bv) for the model to be E-satisfiable.

Bounds from the objective interval (like min(M,M ′) and min(N,N ′)) obtained for the
whole chain can now be propagated to the individual associations within the association chains
to tighten the individual multiplicities. For the following sections, consider an association chain
of the form C0 m1..M1⇒n1..N1 · · · mk..Mk

⇒nk..Nk
Ck and an objective type C0 a..A⇒b..B Ck.

Lower Bounds

First, we investigate how to tighten the lower bounds of multiplicities within a chain of asso-
ciations. This means that we increase all lower bounds of an association chain that are not
reachable.

Basically we may increase the lower bounds of multiplicities as long as the composed bound
is smaller than b for all combinations of admissible relations. Suppose we want to find a tighter
bound n′i ≥ ni for association ui (which is of type Ci−1 mi..Mi⇒ni..Ni Ci). From our objective
interval we know that we need to reach at least b objects of class Ck. We choose the upper bound
Nj for all other associations uj , which means that each Cj−1-object is linked to the maximal
possible number of objects of class Cj . Furthermore we take the upper bound for all objects
of class Ci−1 but one. This single object shall be connected to the least possible objects of
class Ci. Hence we have to adapt the current lower bound ni, if it is still not possible to reach
the composed lower bound of b. The new lower bound n′i is therefore obtained by taking the
smallest value α for this single Ci−1-object such that the composed bound does not fall below b.

We use the result of Proposition 4.3 to maximise the connected objects for all associations
uj , j 6= i, as we only deal with a subset of all existing objects of each class. To maximise the
connected objects of association ui we use the result of Proposition 4.7. This proposition gives

34

us the upper bound of all Ci-objects connected to a specified number of objects of class Ci−1, if
one of the Ci−1-objects is connected to the minimally required objects.

Proposition 4.7 assumes that there is a total of x objects of class C (corresponding to class
Ci−1 here). Therefore, we need to satisfy all D-objects (corresponding to the Ci-objects) using
these Ci−1-objects. This is too restrictive in this scenario, because x is only the number of Ci−1-
objects connected to one specific C0-object. If there are more objects of class C0, we can get
more than x objects of class Ci−1 in total. Nevertheless we are only interested in the Ci-objects
connected to the x objects of class Ci−1. We therefore need to adapt the formula, resulting in the
following proposition. It gives a recursive formula for the calculation of a tighter lower bound
for relation ri.

Proposition 5.8. Let ri be a relation of type Ci−1 mi..Mi⇒ni..Ni Ci for i = 1, . . . , k. Suppose
r1 ◦ · · · ◦ rk is known to be of type C0 ⇒b..B Ck, i.e., each object of class C0 is known to be
related to at least b and at most B objects of class Ck. Then each relation ri is also of type
Ci−1 ⇒n′i..Ni

Ci, where n′i = min{α ≥ ni | fk(i, α) ≥ b }, and fk is defined recursively as

f0(i, α) = 1 (5.1)

fj(i, α) =

{
Nj · fj−1(i, α) for j 6= i

Nj · (fj−1(i, α)− 1) + α for j = i
(5.2)

.

To calculate the new value of the lower bound, n′i, of association ui, we start with one object
of class C0, i.e. f0(i, α) = 1 (formula (5.1)). We iteratively calculate fj(i, α) by formula (5.2)
for j = 1 . . . k. In each iteration we proceed to the next association by increasing j. We
calculate the required partner-objects (of class Cj) for all Cj−1-objects (the number of Cj−1-
objects corresponds to the value calculated in the previous step, i.e. fj−1(i, α)).

By rewriting the recursive formula for fk(i, α) from Proposition 5.8, we get an explicit
formula for the lower bound. First we combine the calculation for association ui with the calcu-
lation for all associations uj with j > i:

(Ni · (fi−1(i, α)− 1) + α) ·
k∏

j=i+1

Nj = fk(i, α) ≥ b .

Then we include all associations uj with j < i by replacing fj−1(i, α):

(Ni · (
i−1∏
j=1

Nj − 1) + α) ·
k∏

j=i+1

Nj = fk(i, α) ≥ b ,

which is the same as
k∏
j=1

Nj −
k∏
j=i

Nj + α ·
k∏

j=i+1

Nj ≥ b

and hence

α ≥
b+

∏k
j=iNj −

∏k
j=1Nj∏k

j=i+1Nj

.

35

The reduced lower bound of association ui, n′i, can thus be calculated using the explicit
formula

n′i = max

 b∏k
j=i+1Nj

+Ni −
i∏

j=1

Nj

 , ni
 . (5.3)

Upper Bounds

Now we want to investigate the tightening of the upper bounds. We want to decrease all upper
bounds of multiplicities within an association chain that are not reachable.

Similar to the lower bounds, we may reduce the upper bounds of multiplicities of single
associations as long as the composed upper bound is greater than B for all combinations of
admissible relations. Suppose we want to find a tighter bound N ′i ≤ Ni for relation ri. We
assume the lower bounds for all other relations rj , which corresponds to linking each Cj−1-
object to the minimal possible number of objects of class Cj . From (4.5) we know that the lower
bound on the connected objects for relation rj is ∆nj ,Mj . We choose max(dnx+(α−n)

M e, N)
partner objects of class Ci for x objects of Ci−1, which corresponds to the bound given in
Proposition 4.8. The new upper bound N ′i is obtained by taking the biggest value α such that
the composed bound does not exceed B.

Tightening of intervals

The following proposition summarises the insights of the previous subsections and gives formu-
las to calculate reduced upper and lower bounds for the multiplicities of a relation ri.

Proposition 5.9 (Reduction of multiplicities). Let ri be a relation of typeCi−1 mi..Mi⇒ni..Ni Ci
for i = 1, . . . , k. Suppose r1◦· · ·◦rk is known to be of typeC0 a..A⇒b..B Ck. Then each relation
ri is of type Ci−1 m′i..M

′
i
⇒n′i..N

′
i
Ci with the following new multiplicities:

n′i = max(d b∏k
j=i+1Nj

+Ni −
∏i
j=1Nje, ni) (5.4)

N ′i =

{
Ni if nj = 0 for some j = 1, . . . , k

max{α ≤ Ni | gk(i, α) ≤ B } otherwise
(5.5)

where gk is defined recursively as

g0(i, α) = 1 (5.6)

gj(i, α) =

{
max(nj , dnj ·gj−1(i,α)

Mj
e) for j 6= i

max(dnj ·(gj−1(i,α)−1)+α
Mj

e, α) for j = i
(5.7)

The new multiplicities m′i..M
′
i are defined symmetrically.

36

Proof. First, note that even though N ′i is defined as a maximum, it is in fact smaller than or
equal to Ni. Likewise, n′i is larger than or equal to ni. Therefore n′i..N

′
i potentially is a tighter

multiplicity than ni..Ni.
Second, observe that fk(i, α) essentially is the product of the upper boundsNj , with the only

exception that instead ofNi the potential lower bound ∆α,Mi is used for one of theCi−1-objects.
The explicit formula for n′i is obtained by solving the recursion given in Proposition 5.8.

Likewise, gk(i, α) is the composition of the lower bounds ∆nj ,Mj , with the only exception
that instead of ∆α,Mi the potential upper bound α is used for one Ci−1-object. Formula (5.7)
follows directly from (4.5) and Proposition 4.8.

To calculate gk(i, α) we need to start from α = Ni and proceed downwards, until we find
the first α such that gk falls below B. This poses a problem for large values of Ni.

Note that, unlike for the lower bound, it is not possible to derive an explicit formula for
reducing the upper bound of an association, due to rounding. By solving the recursive formula
for gk approximately, we obtain an estimate for N ′i . This value N?

i can be derived from gk(i, α)
as follows:

ni · (gi−1(i, α)− 1) + α)

Mi
·

k∏
j=i+1

nj
Mj

= gk(i, α) ≤ B .

If we replace gi−1(i, α) by its approximation,
∏i−1
j=1

nj

Mj
≤ gi−1(i, α), we still know that the

resulting expression is less or equal to gi(i, α):

ni · (
∏i−1
j=1

nj

Mj
− 1) + α)

Mi
·

k∏
j=i+1

nj
Mj

≤ gk(i, α) ≤ B ,

which can be rewritten as

(∏i
j=1 nj−ni·

∏i−1
j=1Mj∏i−1

j=1Mj
+ α

)
·
∏k
j=i+1 nj∏k

j=iMj

=

∏k
j=1 nj −

∏i−1
j=1Mj ·

∏k
j=i nj + α ·

∏i−1
j=1Mj ·

∏k
j=i+1 nj∏k

j=1Mj

≤ B.

Hence, we can calculate N?
i by the following formula:

37

N?
i =

⌊
B ·
∏k
j=1Mj +

∏i−1
j=1Mj ·

∏k
j=i nj −

∏k
j=1 nj + α ·

∏i−1
j=1Mj ·

∏k
j=i+1 nj∏i−1

j=1Mj ·
∏k
j=i+1 nj

⌋

=

B ·Mi ·
k∏

j=i+1

Mj

nj
+ ni ·

1−
i−1∏
j=1

nj
Mj

 .

The minimum of N?
i and Ni can be used as an initial value for α and hence the calculation

can be done efficiently even for large Ni.
Reducing multiplicities of single associations (instead of multiplicities of associations within

an association chain) is done by simply replacing the original interval by the stricter interval, i.e.
by the intersection of both types.

Modified bounds of one association within the association chain may allow us to further
reduce multiplicities of other associations of the chain. We therefore need to iterate the reduction
of intervals given in Proposition 5.9, until we reach a fixed point. The algorithm in Figure 5.4
repeats this calculation until no association can be reduced any further.

1: function CHAINREDUCTION(U , T)
2: Let U be an association chain of the form C0 m1..M1⇒n1..N1 · · · mk..Mk

⇒nk..Nk
Ck.

3: Let T be the association type C0 a..A⇒b..B Ck.
4: Unew ← U
5: repeat
6: Uold ← Unew
7: Let Unew be obtained from Uold by reducing the multiplicities w.r.t. type T (Proposition 5.9).
8: if m > M for some multiplicity m..M in Unew then
9: throw exception “unsatisfiable”

10: end if
11: until Unew = Uold
12: return Unew
13: end function

Figure 5.4: Reducing the multiplicities of an association chain

Proposition 5.10 (Chain reduction). Let U = C0 m1..M1⇒ · · · ⇒nk..Nk
Ck be an association

chain and T be the type C0 a..A⇒b..B Ck. If CHAINREDUCTION(U, T) in Figure 5.4 throws
an exception, then there is no instance satisfying simultaneously the multiplicities of U and T .
Otherwise CHAINREDUCTION(U, T) terminates and its result, U ′, has the property that the
relations r1, . . . , rk instantiate U and their composition is of type T if and only if they instanti-
ate U ′.

Proof. If the function throws an exception, some interval in the chain has been reduced to the
empty interval in the attempt to guarantee that the composed relation is of type T . This im-
plies that there is no non-trivial E-satisfying instance. Regarding termination, we observe that

38

the bounds of the new multiplicities in Proposition 5.9 are monotone with respect to the initial
bounds. Iterating the bound computation never increases the intervals, therefore the loop either
aborts with an exception or terminates with bounds that cannot be reduced any further. Propo-
sition 5.9 guarantees that each single iteration of the loop preserves satisfiability with respect to
U and T , therefore this property also holds on termination.

Example 5.11. Consider the model in Figure 5.1 with the additional constraint u = vw. It
contains the association Person-Car (u), which is of type Person 1..1⇒1..10 Car.

According to Proposition 4.11 the composed upper bounds of the association chain vw are
A =

∏k
i=1Mi = 1 · 1 = 1 and B =

∏k
i=1Ni = 2 · 3 = 6, and the composed lower bounds are

a = µ2 = ∆m1,N1(∆m2,N2(1))

= ∆m1,N1(max(dm2·1
N2
e, m2 · sgn(1)))

= ∆m1,N1(max(d1·1
3 e, 1 · 1))) = ∆m1,N1(1)

= max(dm1·1
N1
e, m1 · sgn(1))

= max(d1·1
2 e, 1 · sgn(1)) = 1 , and

b = ν2 = ∆n2,M2(∆n1,M1(1)) = ∆n2,M2(1) = 1 .

Hence, the composition uv is of type Person 1..1⇒1..6 Car. From the equation u = vw we know
that the association u is also of this type.

As the interval of the composed association is the stricter one, we replace the original interval
of u by the intersection of both intervals. After the reduction the association u is hence of type
Person 1..1⇒1..6 Car.

Person

Carport

Car

1
u I 1..2

1
v

H
1..2

1
w I

1..3

Figure 5.5: Model of persons, their cars and carports, where each person may possess at most
two cars.

Example 5.12. Now consider the model in Figure 5.5 with the additional constraint u = vw.
From Example 5.11 we know that the composition of the associations v and w is of type
Person 1..1⇒1..6 Car. According to equation u = vw the composed association is also of
type Person 1..1⇒1..2 Car, which is the type of association u.

We now propagate the stricter upper bound to the associations within the chain with the
formulas given in Proposition 5.9. First, we try to reduce the upper bound of association v
(which is the first association within the chain): N ′1 = max{α ≤ N1 | g2(1, α) ≤ 2 }. We

39

choose α = N1 = 2 and calculate g2(1, α):

g2(1, 2) = max(n2, d
n2 · g1(1, 2)

M2
e)

= max(1, d
1 ·max(dn1·(g0(1,2)−1)+2

M1
e, 2)

1
e)

= max(1, (max(d1 · (1− 1) + 2

1
e, 2)))

= max(1, (max(2, 2))) = max(1, 2) = 2 .

As g2(1, 2) ≤ 2, the current upper bound of association v can actually be reached and therefore
be maintained.

Next, we try to reduce the upper bound of association w (which is the second association
within the chain): N ′2 = max{α ≤ N2 | g2(2, α) ≤ 2 }. We choose α = N2 = 3 and calculate
g2(2, α):

g2(2, 3) = max(d1 · (g1(2, 3)− 1) + 3

1
e, 3)

= max(1 · (max(n1, d
n1 · g0(2, 3)

1
e)− 1) + 3), 3)

= max((1 · (max(1, d1 · 1
1
e)− 1) + 3), 3)

= max((1 · (1− 1) + 3), 3) = 3 .

As g2(2, 3) > 2, we have to decrease α. Choosing α = 2 results in g2(2, 2) = 2 and hence
N ′2 = 2.

After the reduction the association w is of type Person 1..1⇒1..2 Car.

5.4 Reducing Models

For a model M = (C,A, E) we want to find some kind of normal form, such that all in-
tervals range over values that can actually be reached in at least some E-satisfying instance.
Although we cannot achieve this (yet), we can at least reduce the intervals (with algorithm
CHAINREDUCTION), such that some unreachable values are eliminated.

Figure 5.6 specifies an algorithm for reducing the multiplicities of a model under an equa-
tion. It processes an equation E of the form U = V , computes the compositions for U and V ,
and calculates their intersection. This overlap is used to reduce the multiplicities of all associa-
tions within the chains U and V , until no further reductions are possible. If some multiplicity is
reduced to the empty interval, the algorithm returns the exception “unsatisfiable” to signal that
the model is not satisfiable with E. Otherwise the algorithm returns a new model consisting of
the reduced associations.

Definition 5.13 (Model equivalence). Two models M and M′ are equivalent if they have the
same E-satisfying instances.

40

1: function MODELREDUCTION(M, E)
2: Let E be an equation of the form u1 · · ·uk = v1 · · · vl.
3: Let M be a model containing the associations u1, . . . , uk, v1, . . . , vl.
4: Let U and V be the association chains corresponding to u1 · · ·uk and v1 · · · vl, respectively.
5: Unew, Vnew ← U, V
6: repeat
7: Uold, Vold ← Unew, Vnew
8: Let C a1..A1⇒b1..B1 D be the composition of Uold.
9: Let C a2..A2⇒b2..B2 D be the composition of Vold.

10: Let a..A = max(a1, a2)..min(A1, A2).
11: Let b..B = max(b1, b2)..min(B1, B2).
12: if a > A or b > B then
13: throw exception “unsatisfiable”
14: end if
15: Let T be the type C a..A⇒b..B D.
16: Unew ← CHAINREDUCTION(Uold, T)
17: Vnew ← CHAINREDUCTION(Vold, T)
18: until Unew = Uold and Vnew = Vold
19: Let Mnew be M with the associations in U and V

replaced by the reduced variants in Unew and Vnew.
20: return Mnew
21: end function

Figure 5.6: Reducing a model M with respect to an equation E

A model M′ obtained from M by MODELREDUCTION(M, E) is equivalent to the original
model M, as reducing multiplicities w.r.t. an equation E ∈ E does not influence the E-satisfying
instances. Nevertheless, in general the satisfying instances of M and M′ are not the same.

Proposition 5.14 (Model reduction). Let M = (C,A, E) be a model and E ∈ E be an equation.
If MODELREDUCTION(M, E) (Figure 5.6) throws an exception then M is not E-satisfiable.
Otherwise MODELREDUCTION(M, E) terminates and its result Mnew is equivalent to M.

Proof. If the function throws an exception, then some interval is empty after overlapping the
intervals of the composition of Uold and the composition of Vold. This implies there is no non-
trivial satisfying instance for both U and V at the same time.

Regarding termination, we distinguish two cases. In case of an exception the function aborts
immediately. Otherwise the function CHAINREDUCTION is called which is guaranteed to ter-
minate by Proposition 5.10. As the intervals a..A and b..B cannot grow by overlapping and
since composition and CHAINREDUCTION are monotone in their arguments the loop stops once
a fixed point is reached.

The result Mnew is equivalent to M as intervals of associations in U and V are only modified
due to calls of CHAINREDUCTION which is guaranteed to be equivalence preserving according

41

to Proposition 5.10.

If a model has more than one equality constraint, the algorithm has to be run for each of
them repeatedly (and alternating), until no more changes occur.

We call a model reduced, if all multiplicities are tightened by algorithm MODELREDUCTION.

Definition 5.15 (Reduced Model). A model M = (C,A, E) is reduced w.r.t. an equationE ∈ E ,
if its multiplicities are reduced w.r.t. the equality constraint E (i.e. MODELREDUCTION(M, E)
has been applied to the model). We call a model reduced, if it has been reduced w.r.t. all
equations in E , i.e. MODELREDUCTION(M, E) has been applied to the model for all E ∈ E .

Reduced models are the basis for the observations and applications introduced in Chapter 6.

42

6 Effects of Equality Constraints

Nobody really believes in equality
anyway.

Warren Farrell

In this chapter we discuss the effect of equations on models and their satisfying instances.
Checking satisfiability and computing minimal instances under equality constraints poses a

hard challenge as we cannot easily reuse existing techniques. Enumerating instances in order
to check the equations (“generate and test”) is expensive or even infeasible (e.g. on infinite
domains). To avoid this inefficient approach, we developed a more efficient technique that maps
E-satisfiability to satisfiability and is applicable to many situations. For this to work, we first
ensure that all intervals of multiplicities only range over values that can be realised in at least
some E-satisfying instances.

6.1 Satisfiability under equality constraints

Adding equations may affect the satisfiability of a model. We start with some observations
regarding the effect of equations.

A model M may be satisfiable, but not E-satisfiable. A necessary condition for a model to
be E-satisfiable with an equation U = V is that the compositions of the chains U and V result
in overlapping multiplicities.

The following example shows a model that is satisfiable, but not E-satisfiable, because the
intervals on both sides of the equation E do not overlap.

Example 6.1. Consider the following model:

C D

1
u I

2

2 v I 1..4

Figure 6.1 shows an instance satisfying M. Hence, the model is satisfiable. However, if we
add the equality constraint u = v, then M is not E-satisfiable: the association u requires one
C-object for each D-object whereas v assigns two objects. The instance in Figure 6.1 is not
E-satisfying the model, because c1 is connected to all four D-objects via relation v, but only to

43

d1 and d2 via relation u, thus violating the equality u = v. c2 violates the equality in a similar
way. Equating both sides results in an empty interval which rules out any non-trivial E-satisfying
instance.

c1

c2

d2

d1

d3

d4

Figure 6.1: Satisfying instance of the model from Example 6.1: Black edges are instantiations
of association u, dashed edges are instantiations of association v.

This behaviour occurs, if we need more objects for one association (chain) than are allowed
for the parallel one. In this case the intervals on both sides of the equation do not overlap and
we can not find any E-satisfying instances. However, overlapping intervals are not sufficient
to guarantee E-satisfiability. As the following example illustrates, there are models that are
satisfiable, but not E-satisfiable, although the multiplicities on both sides of the equation E
overlap.

Example 6.2. Consider the following model M:

C0 C1 C2
1

u I
1..2

1 3

w I

1 2

v I

It is satisfiable as there exists a satisfying instance (Figure 6.2). If we add the equality constraint
uv = w, then M is no longer E-satisfiable, although the intervals of the composition uv, which is
of type C0 1..1⇒2..4 C2 overlap with the intervals of association w (1..1 and 3..3). This happens,
because the chain uv only allows for two or four C2-objects for each single C0-object whereas
w assigns three objects. The composed association for chain U = uv is of type C0 1..1⇒2..4 C2,
the association V = w is of type C0 1..1⇒3..3 C2. The intervals 1..1 and 2..4 overlap with 1..1
and 3..3, respectively, but the model is still not E-satisfiable.

Such situations can occur, because although the bounds of our composed associations are
tight, there may still be values in between that are not realisable (see Proposition 4.16). If we try
to reduce the multiplicities of equated association chains that have no values in common (i.e. the
values allowed by one association chain correspond to the gaps of the other association chain),
we can reduce both sides alternately. As we are not able to find any value that satisfies both sides

44

c10

c20

c11

c21

c31

c12

c22

c32

c42

c52

c62

Figure 6.2: Instance satisfying the model M from Example 6.2: Black edges are instantiations
of associations u and v, dashed edges are instantiations of association w.

of the equation, we will finally end up with either an empty interval for at least one composed
association, or with intervals that are no longer overlapping.

Example 6.3. We apply Algorithm 5.6 to the model from Example 6.2 for the equation E =
(uv = w). We have Unew = U = uv and Vnew = V = w (line 5), hence the composed type
of Uold is C0 1..1⇒2..4 C2 (line 8) and the one of Vold is C0 1..1⇒3..3 C2 (line 9). Intersecting
the association chains we obtain a..A = 1..1 (line 10) and b..B = 2..3 (line 11). Since the
intervals overlap, CHAINREDUCTION reduces Uold with respect to the intersection type T :
C0 1..1⇒2..3 C2 (line 16); in particular, the multiplicity 1..2 of association u is reduced to 1..1.
Vold cannot be reduced with respect to T , hence we have Vnew = Vold (line 17). Since Unew has
been modified, the loop is repeated. Recalculating the composition uv in line 8 yields the new
type C0 1..1⇒2..2 C2. Since the multiplicity 2..2 does not overlap with 3..3 of w, the algorithm
throws an “unsatisfiable” exception (line 13). Consequently the model is E-unsatisfiable.

Checking E-satisfiability

From the previous chapter we can conclude that if a model M is E-satisfiable its reduced ver-
sion M′ has to be satisfiable. This is a consequence of the fact that reducing multiplicities
preserves E-satisfiability. Therefore a non-failing call to MODELREDUCTION is a necessary re-
quirement for M to be E-satisfiable. Our experiments and our futile search for counter-examples
suggest that it is also sufficient, leading to the following conjecture.

Conjecture 6.4. Let M′ be the model obtained from M by reducing all multiplicities with respect
to its equations. Then M′ is satisfiable iff M is E-satisfiable.

If this conjecture holds, we can systematically check the E-satisfiability of a model M =
(C,A, E) by first reducing all multiplicities in A under E to obtain the reduced model M′ and

45

then checking M′ for satisfiability. This method is sound as the reduced model M′ has the same
E-satisfying instances as M.

Unfortunately the problem of computing E-satisfying instances can not be reduced to the
one of computing satisfying instances by reducing multiplicities. As the following example
illustrates, the reduced model M′ may still have satisfying instances which are no E-satisfying
instances of M (and M′).

Example 6.5. Consider the following model M = (C,A, {uv = w}):

C0 C1 C2
1 1..2

u I

1 1..2

w I

1 1..3

v I

Reducing this model leads to a model M′ where v is of typeC1 1..1⇒1..2 C2. There are instances
of the association chain uv which cannot be extended to an E-satisfying instance of M′ (see
Figure 6.3a). Adding further links does not lead to an E-satisfying instance, because the equation
uv = w is violated by object c3

2, which is linked to c1
0 via uv, but to c2

0 via w. As the objects
c1

0 and c2
0 are already linked with the maximal number of partner objects of class C2 via w, and

each object of class C2 and C1 must have exactly one partner object of class C1 (via v) and C0

(via u), respectively, we are stuck. However, we can find an E-satisfying instance for M′ by
relinking the existing objects accordingly: we replace the link between c1

0 and c2
1 with a link

between c2
0 and c2

1 (see the bold edge in Figure 6.3b).

c10

c20

c11

c21

c31

c22

c12

c32

c42

(a) Satisfying instance of the model.

c1
0

c2
0

c1
1

c2
1

c3
1

c2
2

c1
2

c3
2

c4
2

(b) E-satisfying instance of the model.

Figure 6.3: Satisfying instances of the model M from Example 6.5: Black edges are instantia-
tions of associations u and v, dashed edges are instantiations of association w.

6.2 Minimal satisfying instance under equality constraints

We observed that not every satisfying instance of a reduced model is also an E-satisfying in-
stance. The same holds for the minimal satisfying instance and the minimal E-satisfying instance

46

of a non-reduced model: the minimal satisfying instance of a model M is not necessarily iden-
tical to the minimal E-satisfying instance of M. In general, the minimal E-satisfying instance
will be larger regarding the number of required objects and links.

Example 6.6. Consider the following model M:

C0 C1 C2
1 1..5

u I
1 1..5

w I

1..2 2..5

v I

Suppose we need at least two objects of each classC0 andC2 (e.g. required by a user constraint),
and we are given the equality constraint uv = w. Then the minimal satisfying instance for M
(Figure 6.4a) is not E-satisfying as each C0-object is connected to two different C2-objects via
the composed relation ru ◦ rv but only to one C2-object via relation rw. In contrast, the minimal
E-satisfying instance for M under uv = w needs four objects of class C2 (Figure 6.4b).

c1
0

c2
0 c2

1

c1
1 c1

2

c2
2

(a) Minimal satisfying instance.

c1
0

c2
0

c1
1

c2
1

c3
1

c4
1

c1
2

c2
2

c3
2

c4
2

(b) Minimal instance satisfying uv = w.

Figure 6.4: Satisfying instances of the model M from Example 6.7: Black edges are instantia-
tions of associations u and v, dashed edges are instantiations of association w.

In general, it does not help to reduce the model w.r.t to an equation E to ensure that the
minimal satisfying instance is identical to the minimal E-satisfying instance (concerning the
number of objects per class).

Example 6.7. The minimal instance E-satisfying the model in Figure 6.5 is larger than the
minimal instance that only satisfies the model (see Figure 6.6). The model cannot be reduced
any further w.r.t. the equation u1u2u3 = v. The intersection of both sides of the equation is of
type C0 1..1⇒2..5 C3. The upper bound of each association within the association chain u1u2u3

can be reached by choosing the lower bounds of both other associations, resulting in a total
of four objects of class C3 connected to a single C0-object. This number does not exceed the

47

upper bound of the intersection type and is thus a valid result. The same holds for each lower
bound when combined with the upper bounds of the two remaining associations. As the model is
already reduced w.r.t. the equation u1u2u3 = v, we cannot find a minimal E-satisfying instance
of a model by generating the minimal satisfying instance for the reduced model and rearranging
the links accordingly.

C0 C1 C2 C3
1 1..2

u1 I
1 1..2

u2 I
1 2

u3 I
1 3..5

v I

Figure 6.5: Model reduced w.r.t. the equation u1u2u3 = v.

c1
0

c2
0 c2

1

c1
1 c1

2

c2
2

c3
2

c1
3

c2
3

c3
3

c4
3

c5
3

c6
3

(a) Minimal satisfying instance.

c1
0

c2
0 c2

1

c1
1

c1
2

c2
2

c3
2

c4
2

c1
3

c2
3

c3
3

c4
3

c5
3

c6
3

c7
3

c8
3

(b) Minimal instance satisfying the equation
u1u2u3 = v.

Figure 6.6: Satisfying instances of the model in Figure 6.5: Black edges are instantiations of
associations ui, dashed edges are instantiations of association v.

Nevertheless, we conjecture that for reduced models M with an equation E that only con-
tains chains of at most two associations, for some minimal satisfying instance I of M there
exists a minimal E-satisfying instance I′ that is identical to I. This does not hold for arbitrary
minimal instances, as the objects may be linked in a different way.

Example 6.8. Consider the model M′ obtained by reducing the model from Example 6.7 w.r.t.
the equation uv = w:

C0 C1 C2
1 1..5

u I
1 2..5

w I

1..2 2..5

v I

48

The association w is now of type C0 1..1⇒2..5 C2. The minimal satisfying instance for M
(Figure 6.4a) is not satisfying M′, as each C0-object needs two different C2-objects via relation
rw, as well as via the composed relation ru ◦ rv. The minimal E-satisfying instance depicted in
Figure 6.4b is thus also the minimal satisfying instance of M′.

We have not yet been able to find any counterexample to this assumption.

6.3 Tree-generating equations

Although we could not yet prove or disprove Conjecture 6.4, we are able to prove a result for
a restricted family of models, which is of practical relevance. We call the type of equality
constraints that characterise this family of models tree-generating.

Definition 6.9 (tree-generating). An association chain C0 m1..M1⇒n1..N1 · · · mk..Mk
⇒nk..Nk

Ck is one-many if mi = Mi = 1 for all i = 1, . . . , k. An equation U = V is tree-generating
if the association chains U and V are one-many. A model M = (C,A, E) is tree-generating,
if C and A are the sets of classes and associations occurring in E and all equations in E are
tree-generating.

Person

Carport

Car

1
u I 1..10

1
v

H
1..2

1
w I

1..3

Figure 6.7: Model of persons, their cars and carports.

Example 6.10. Consider the model depicted in Figure 6.7. Both association chains vw and u
are one-many, therefore the equation u = vw and hence also the model are tree-generating.

A satisfying instance of a one-many association chain containing exactly one C0-object is a
tree with this C0-object at its root. Every non-trivial satisfying instance of a one-many associa-
tion chain consists of one or more such trees. Each C0-object that is part of a satisfying instance
of a one-many association chain C0 m1..M1⇒n1..N1 · · · mk..Mk

⇒nk..Nk
Ck is the root of a tree.

If we consider the tree as a directed graph, C0 is the starting node. Thus, for each tree-generating
equation we obtain two trees starting at the same C0-object.

Reducing upper bounds for tree-generating equations

For tree-generating equations, we can give an explicit formula for reducing the upper bounds of
multiplicities within an association chain. We start with the formula for gi(i, α) from Proposi-
tion 5.9, combined with the calculation for all associations uj with j > i:

49

ni · (gi−1(i, α)− 1) + α) ·
k∏

j=i+1

nj = gk(i, α) ≤ B .

Note that this formula differs from the general case, because we have Mi = 1 for all i.
Now we include all associations uj with j < i by replacing gj−1(i, α):

ni · (
i−1∏
j=1

nj − 1) + α) ·
k∏

j=i+1

nj = gk(i, α) ≤ B ,

which can be rewritten as

k∏
j=1

nj + (α− ni) ·
k∏

j=i+1

nj ≤ B.

and hence

α ≤

⌊
B +

∏k
j=i nj −

∏k
j=1 nj∏k

j=i+1 nj

⌋
.

The reduced upper bound N ′i of association ui, can thus be calculated using the explicit
formula

N ′i = min

B · k∏
j=i+1

1

nj
+ ni −

i∏
j=1

nj , Ni

 . (6.1)

E-satisfiability under tree-generating equations

For tree-generating models (i.e. consisting only of association chains that form one or more tree-
generating equations), we can check E-satisfiability with the help of the inequalities we get from
the model (see Section 2.3).

Proposition 6.11. Let M = (C,A, E) be a model such that E = (U=V) in E is a tree-
generating equation and C and A are the sets of classes and associations occurring in E. Let
C be the initial class of the association chains U and V . Then M is E-satisfiable if and only if
both, U and V , have a satisfying instance with |C| = 1 and all classes occurring in both chains
are of the same cardinality.

The existence of such instances can be checked by solving the corresponding inequalities
for |C| = 1.

50

p1

p2
persons

c1 c3 c4 c5 c6 c7 c8

cars

cp1

cp2

cp3

carports

Figure 6.8: Instance where every car is parked in the carport of the person it belongs to.

Proof. Due to the multiplicities 1..1 at one association end all E-satisfying instances of M are
forests with single C-objects as root. Therefore both chains have a satisfying instance with the
same cardinality of shared classes. On the other hand, given such instances for a single C-object
we identify the objects of shared classes and obtain an E-satisfying instance for one C-object.
By taking the union of |C| independent copies we obtain an E-satisfying instance of M.

We now want to check whether our Carport-example (Example 5.1) is in fact E-satisfiable.

Example 6.12. For the model M = (C,A, E) in Figure 6.7, we compute the reduced model M′

with respect to u = vw (Figure 5.6), which tightens the interval 1..10 to 1..6 in the association u
(Example 5.11). If MODELREDUCTION had failed, we would have concluded that the model is
not E-satisfiable. Since the equation u = vw ∈ E is tree-generating (Example 6.10), we apply
Proposition 6.11. Obviously both chains, u and vw, admit instances with one person and one
to six cars. Therefore M is E-satisfiable. We obtain a satisfiable instance for M′ by taking the
instance from Figure 5.2 and deleting the object c2 and all corresponding links. The resulting
instance is shown in Figure 6.8).

Minimal Instances under tree-generating equality constraints

The minimal E-satisfying instance and the minimal satisfying instance are not even identical for
reduced tree-generating models. Reconsider the model in Figure 6.5, which is tree-generating.
In Example 6.7 we observed that the minimal E-satisfying instance of the model is larger than
the minimal instance that only satisfies the model (see Figure 6.6).

51

7 Linking Objects with Netflow
Algorithms

If the facts don’t fit the theory,
change the facts.

Albert Einstein

This chapter shows how to distribute links and how to repair configurations (i.e. instances)
with the help of flow networks. As this is a relevant topic in the field of configuration manage-
ment, we will mainly use the term “configuration” as a synonym for “instance” (see Chapter 3).

Note that UML distinguishes between unique and non-unique associations (or mixed as-
sociations where one association end is unique and the other one is non-unique). The multi-
plicities of an association end labelled as unique restrict the number of partner objects, whereas
those of an association end labelled as non-unique restrict the number of links to (not necessar-
ily distinct) partner objects. In this chapter we will consider both types of uniqueness constraints
(but no mixed associations). This approach does not include equality constraints. Hence a model
is defined as M = (C,A) (see Chapter 2). We consider only single associations. The approach
can be extended to models consisting of more than one association by composing the results (i.e.
the link distributions), as the distribution of links is compositional.

7.1 Motivation

Suppose a company has a network of computers connected by switches. Each switch can be
connected to between one and 20 computers and each computer has to be connected to one
switch.

Computer Switch
1..20

1..1

Now the company grows and we need additional computers. At some point, we have to buy
additional switches. Furthermore, we want to build a failure-safe network and therefore force
each computer to be connected to two or three switches, instead of only one. Of course, we want
to do as little rewiring as possible, but at the same time keep the number of switches as small as
possible to reduce the costs.

53

Computer Switch
1..20

2..3

Later, the company wants to replace all switches by a new model that has only 12 ports. The
replaced switches would now need to serve up to 20 computers, which is too much for 12 ports.
Furthermore, the company wants to reduce the number of switches a computer is connected to,
thus forcing each computer to be connected to exactly 2 switches. In this scenario, we have to
remove some wires and/or rewire them, again trying to keep as many existing wires as possible.

Computer Switch
1..12

2..2

For such changing requirements, a tool that gives us the minimally required switches for our
network and also computes a conservative rewiring would be very helpful, i.e., reconfiguration
and configuration repair is of central importance.

As mentioned in Chapter 3, one of the challenges in configuration management is the task
of completing or repairing configurations when requirements change. This happens if either the
specification changes, or objects and/or links are added to or deleted from an existing config-
uration. In these cases we need to find a conservative, but still cost-effective extension of the
configuration.

When checking the satisfiability of a UML class diagram with the help of an ILP-solver, we
get the number of objects of each class needed for a minimal instance of the model and a lower
and an upper bound for the number of links to instantiate the associations. How to distribute
those links still needs to be discussed. Our approach to finding a link distribution such that
the corresponding configuration satisfies a given specification is to solve a minimum cost flow
on an adequate network. As the distribution of links is compositional, we can deal with each
association separately.

The advantages of flow networks are:

• We may use the same ILP solvers we used for the formal verification and optimisation of
models.

• Minimum cost flow problems are solvable in polynomial time.

• The method is applicable to configuration completion and repair.

• The approach is highly flexible.

We start by introducing flow networks and the minimum cost flow problem, which we will
use in the following sections to distribute links in various applications.

7.2 Flow Networks and the Minimum Cost Flow Problem

Flow networks are used to model problems like the transportation problem, where goods are
sent from origins to destinations via routes that have certain capacities and costs. Origins and

54

destinations are modelled as nodes and routes as directed edges between the nodes. Goods are
represented by units that flow along paths from origins to destinations. Flow networks model
physical networks like oil pipelines or communication or electrical networks, but can as well be
used for more abstract applications like scheduling problems. Typical problems are to maximise
the flow through a network (Maximum Flow Problem) or to minimise the cost (Minimum Cost
Flow). A detailed overview can be found in [1].

Formally, a flow network is a directed graph (V,E), where V is a set of nodes (or vertices)
andE ⊆ V ×V ×N is a set of directed edges (or arcs) [1]. Each edge (i, j, p) is identified by its
starting node i, its destination node j and a value p, denoting that it is edge number p between
nodes i and j. If there is only one edge between nodes i and j, we will write (i, j) instead of
(i, j, 1). Every node i has a value b(i) assigned. A source is a node i with a supply b(i) > 0,
whereas a target (also called destination or sink) is a node i with a demand b(i) < 0. Transit
nodes are nodes with neither supply nor demand, i.e., we have b(i) = 0 for all transit nodes i.
Furthermore, in a flow network we have lower and upper bounds, lij and uij , on the flow over
each edge (i, j), and a cost cij for transporting one unit of flow along the edge (i, j). In the case
of multiple edges we write lpij , u

p
ij and cpij . A flow is a function f : E 7→ N; we will use fij

instead of f((i, j)) for single edges and likewise fpij instead of f((i, j, p)) for multiple edges. A
flow is feasible if it satisfies the following constraints∑

{(j,p):(i,j,p)∈E}

fpij −
∑

{(j,p):(j,i,p)∈E}

fpji = b(i) for all i ∈ V (7.1)

lpij ≤ f
p
ij ≤ u

p
ij for all (i, j, p) ∈ E . (7.2)

fpij is integer for all (i, j, p) ∈ E (7.3)

The constraints in (7.1) specify that the flow leaving a node (the outflow) minus the one
entering it (the inflow) has to equal the supply or demand at that node; they are called mass
balance constraints. The constraints in (7.2), called the flow bound constraints, require that
the flow along each edge is within the given bounds (lower bound lpij and capacity upij). The
integrality constraints in (7.3) force all flows to be integer valued. Furthermore we assume that
all data (capacities, costs and supplies/demands) are integral.

Subject to the constraints (7.1)- (7.3), the Minimum Cost Flow problem minimises the total
costs,

∑
(i,j,p)∈E c

p
ijf

p
ij .

MINCOSTFLOW

Input: A flow network with values b(i), lpij , u
p
ij , and cpij for all i ∈ V and all (i, j, p) ∈ E.

Output: A feasible flow f such that
∑

(i,j,p)∈E c
p
ijf

p
ij is minimal.

Minimal cost flows can be computed in polynomial time [1]. One approach that fits our
framework particularly well is to map the problem to integer linear programming. This way we
can use the same tools for solving the inequalities of section 2.3 and for computing minimal
flows.

Throughout this thesis, we specify flow networks with all necessary properties in graphical
form. Each arc of the network is labelled as depicted in Figure 7.1, where

55

• lij is the lower capacity of edge (i, j) from node i to node j

• uij is the upper capacity of edge (i, j)

• cij is the cost of sending one unit of flow from node i to node j.
This component is omitted if it is the same for all (i, j) ∈ E.

If the capacity bounds of an edge are 0 and∞, the edge may be labelled as (cij).

i j
(lij , uij , cij)

Figure 7.1: Labelling of arrow from node i to node j

A node i is labelled with i if it is a transit node (i.e. it has neither a supply nor a demand of
flow), and by i[+b] or i[−b] if it has a supply or demand of b units of flow.

For multiple edges between a pair of objects (i, j) we label each edge (i, j, p) with lpij , u
p
ij

and cpij (according to the definition).

7.3 Distributing Links

LINKDISTRIBUTION is the task of finding a set of links L such that I = (O,L) is a (minimal)
instance satisfying a given model M. The set of objects O instantiating M is part of the input.

LINKDISTRIBUTION

Input: a model M and a set of objects O
Output: a set of links L, such that the instance (configuration) I = (O,L) satisfies M (and is
optimal in a sense to be specified)

A minimal satisfying instance for a model can be constructed as follows:

1. Translate the model to inequalities forming an ILP problem (see Section 2.3).

2. Solve this ILP problem to determine the minimal number of objects necessary for a satis-
fying instance. Fix the number of links between the given bounds (e.g. choose the smallest
number).

3. Solve the corresponding netflow problem for each association to arrange the links in an
admissible way.

Figure 7.2b shows a flow network corresponding to an instance of the association in Fig-
ure 7.2a with c̄ C-objects, d̄ D-objects and ` links. The source node s is connected to every
node ci and each node dj is connected to the target node t. Furthermore there exists an edge
from each node ci to every dj . The cost cij is left unspecified (or can be set to zero) for all
edges (i, j). The general notation conventions are described in section 7.2. The lower and upper

56

C D
m..M
γ1 u I

n..N
γ2

(a) Binary association.

s[`]

c1

cc̄

d1

dd̄

t[-`]

(l s
1
, u
s1
)

(lsc̄ , u
sc̄)

(0, U)

(0, U
)

(0
, U

)

(0, U)

(l1t , u
1t)

(l d̄t
, u d̄

t
)

(b) 4-layered flow network to distribute links for association u.

Figure 7.2: Association and its corresponding flow network for c̄ D-objects and d̄ D-objects.

bounds for the capacities of edges from node s to nodes ci are given as lsi and usi and those of
edges from nodes dj to node t as ljt and ujt.

To ensure that the links are distributed correctly (i.e. respecting the constraints imposed by
the underlying model), we have to choose the number of links and the capacities of the edges
accordingly:

• Use the inequalities from Section 2.3 to find bounds for the number of links: `min ≤ ` ≤
`max

• Select one particular `, e.g. the minimal one, and use it as supply at node s and as demand
at node t

• Capacity bounds from ci to dj : for all i, j fix a lower bound of zero for the flow from ci
to dj and an upper bound of U = 1 for γ1 = γ2 = unique and of U = ` for γ1 = γ2 =
nonunique .

Note that the upper bounds on edges between the C- and D-objects (U) are different for
unique-unique and nonunique-nonunique associations (i.e. γ1 = γ2 = unique resp. γ1 =
γ2 = nonunique). For the unique case, we chooseU = 1, as there can be only one link between
each pair of objects. If we have a nonunique-nonunique association, there can be more than
one link between each pair of objects, namely at most min(N,M). We choose U = `, as we
will restrict the flow to the allowed value by setting usi and ujt accordingly. The lower and
upper capacity bounds of edges leaving s and of those entering t depend on whether we want a
uniform link distribution or not. We will investigate both cases in the following subsections.

57

A flow of fij on arc (i, j) means that we have to place fij links between objects ci and dj in
the corresponding configuration.

Definition 7.1 (Link distribution corresponding to a flow). The link distribution corresponding
to a flow f is the distribution containing fij links between objects ci and dj .

The link distribution for a model M = (C,A) is obtained by calculating the link distribution
of each association in A.

Uniform Link Distribution

If we want to build a minimal instance without any further restrictions on the objects and links,
we can distribute the links uniformly among the objects. This particular network was proposed
in [34].

To ensure that the links are uniformly distributed, we have to choose the capacities of the
edges in the flow network accordingly (see Figure 7.3):

• Choose lsi = b `c̄c and usi = d `c̄e

• Choose ljt = b `
d̄
c and ujt = d `

d̄
e

s[`]

c1

cc̄

d1

dd̄

t[-`]

(b
`
c̄
c, d
`
c̄
e)

(b `
c̄ c, d `

c̄ e)

(0, U)

(0, U
)

(0
, U

)

(0, U)

(b `
d̄ c, d `

d̄ e)

(b
`
d̄
c, d
`
d̄
e)

Figure 7.3: Flow network for uniform link distribution.

By dividing the links by the number of C-objects (c̄), we distribute the links uniformly
between all C-objects. As we are only dealing with integers, we might need to round the result,
thus giving us the rounded result as bounds for the number of links for each object (the rounded
down result as a lower bound and the rounded up result as an upper bound). We do the same for
the D-objects.

The link distribution corresponding to a feasible flow in this network is a uniform distribution
satisfying the association. By computing a feasible flow for each association of a model and
taking the composition of all corresponding link distributions, we get a configuration satisfying
the model.

58

At this point the use of flow networks is not yet an advance, since it is always possible to
construct a satisfying configuration by distributing the links uniformly among the objects using
balanced sequences (see [34] and [21] for a detailed description of this approach). However, by
using different capacity bounds and non-zero costs we are able to model various scenarios in the
next sections.

General link distribution

As described above, we can use netflow algorithms to distribute links uniformly among a given
set of objects. So far, links had no costs assigned (or all links had the same cost). However,
in reality this might not be the case. A uniform distribution of links in a scenario where links
between some pairs of objects are cheaper than others might lead to a solution that is not optimal
concerning the costs. Hence, we would like to adapt the approach to be able to deal with different
types of links.

In fact, a uniform distribution of links is more restrictive than necessary. It is sufficient to
ensure that the multiplicities of the association we deal with are not violated. So we need to find
an instantiation of our network from Figure 7.2b that ensures the multiplicities are respected.
We have to adapt the capacities accordingly (see Figure 7.3):

• Choose lsi = n and usi = N

• Choose ljt = m and ujt = M ,

where (n,N) are the multiplicities restricting the number of (links to) partner objects of each
C-object and (m,M) are the multiplicities restricting the number of (links to) partner objects of
each D-object (see Figure 7.2a).

s[`]

c1

cc̄

d1

dd̄

t[-`]

(n
,N

)

(n,N
)

(0, U)

(0, U
)

(0
, U

)

(0, U)

(m
,M

)

(m
,M

)

Figure 7.4: Flow network for general link distribution.

Using this network, we can state that the link distribution corresponding to a feasible flow
in the flow network of each association of a model together form a satisfying instance of the
model and that the link distributions for each association of a satisfying instance correspond to
a feasible flow in the respective flow network.

59

Proposition 7.2. For a given model let Na be the network corresponding to each association a
(as described above), with arbitrary costs. Then an instance satisfies the model if and only if all
corresponding flows in the networks Na are feasible.

Proof. In a network Na corresponding to an association a the flow entering each node of class
C has to respect the flow bounds n,N . This guarantees that, for a feasible flow in the network,
the number of D-objects connected to each C-object lies between n and N , which corresponds
to the restrictions imposed by the multiplicities. The flow leaving each node of class D has to
respect the flow bounds m,M . For a feasible flow, each D-object is therefore connected to at
least m and as most M C-objects. This interval corresponds to the multiplicities restricting the
number of partner objects for each D-object.

The link distribution corresponding to a feasible flow in the network Na hence results in an
instantiation of association a that satisfies the specification.

The link distribution of each association is independent from the link distributions of all
other associations of the model. Combining the link distributions corresponding to a feasible
flow in each network Na therefore leads to an instance that satisfies the model.

Thus, we can solve the LINKDISTRIBUTION problem by first computing a valid number
of objects for each class and a number of links for each association with ILP and afterwards
solving a minimum cost flow problem for each association on the corresponding network. The
link distributions corresponding to a feasible flow in the network of each association together
form the link distribution of the configuration.

Example 7.3. Consider the following nonunique-nonunique association:

C D
1..2
nonunique

nonunique

3..4

By solving the corresponding inequalities with ILP we obtain the minimally required number of
objects for both classes and a range for the number of links: one object of classC and two objects
of class D and [`min, `max] = [3, 4]. As we are interested in building the minimal instance, we
choose the number of links to distribute as ` = `min = 3. The corresponding flow network is
depicted in Figure 7.5. Solving a MINCOSTFLOW problem on this network results in the flow
f11 = f12 = f13 = 1. The link distribution corresponding to this flow contains one link from
object c1 to each object of class D. The resulting minimal instance is depicted in Figure 7.6.

In the following sections, we discuss several variations of the LINKDISTRIBUTION problem.

7.4 Completing Configurations

To complete a configuration (i.e. an instance) means to extend an existing configuration (without
modifying the existing objects and links), such that it becomes a satisfying instance of a given
model.

60

s[+3] c1

d1

d2

d3

t[−3]
(3, 4, 0)

(0,
3, 1

)

(0, 3, 1)

(0, 3, 1)

(1, 2, 0)

(1, 2, 0)

(1,
3, 0

)

Figure 7.5: Flow network for finding a link distribution. The minimal cost is obtained for the
flow f11 = f12 = f13 = 1.

c1 d2

d1

d3

Figure 7.6: Minimal instance of the association in Example 7.3.

CONFIGURATIONCOMPLETION

Input: a model M and a configuration I = (O,L) that is an instance of M
Output: a (minimal) configuration I′ = (O ∪O′,L ∪ L′) that satisfies M

Such problems arise when an existing configuration shall be extended, for example by adding
additional computers to an existing network. They also arise when the model changes, e.g. by
requiring that more computers have to participate in the network. Of course, this results in an
extension of the existing configuration as well, as the minimal instance changes. The aim here
is to maintain the current configuration and to just extend it such that it satisfies the model. It is
usually not desirable to view the problem as the search for a minimal instance of the new model,
as this might lead to a complete rearrangement of the old components and links.

In our framework of ILP and flow networks this problem can be solved as follows.

1. Solve the inequalities corresponding to the model M to determine the number of objects
and links (interval [`min, `max]) required by a minimal instance or by an instance contain-
ing at least the objects in O.

2. If more objects are needed than available inO, add an appropriate number, givingOnew =
O ∪O′.

3. For the number of links, `, take the minimum of `min (computed in the first step) and |L|.

61

4. Construct a flow network as described in Figure 7.2b. IfL contains l links between objects
ci and dj , set the lower bound of the corresponding edge in the network to l. In the case
of the attribute unique this means that the lower as well as the upper bound on this edge
will be 1. Additionally, reduce the flow bounds on the edges to nodes ci and from nodes
dj by l.

If this results in a negative lower bound on some edge, there is no extension containing
the original network, no matter how many other objects or links we add. In this case we
need to repair the configuration instead (see Section 7.5).

5. If a feasible flow exists, solve a MINCOSTFLOW problem on the network and the problem
is solved: We have found a minimal extension of the original configuration satisfying the
new model.

If no feasible flow exists, increase ` and repeat this step. If no costs are used on the edges,
then binary search can be used to find the minimal ` leading to a solvable flow problem.

If there is no feasible flow for any value ` up to the upper bound computed by ILP, then
there is no extension with the computed number of objects that contains the original con-
figuration.

Example 7.4. Consider the following nonunique-nonunique association:

C D
1..2
nonunique

nonunique

3..4

Let the configuration I = (O,L) be an instance of this association with O = {c1, c2, d1, d2}
and L = {(c1, d1), (c1, d2), (c2, d1))} (see Figure 7.7a). By solving the corresponding in-
equalities with ILP we obtain a new set of objects O ∪ O′ = {c1, c2, d1, d2, d3} and a range
for the number of links: [`min, `max] = [6, 6]. In this case there is only one possible value
for the number of links: ` = 6. The corresponding flow network is depicted in Figure 7.8.
Edges between nodes that represent linked objects (e.g. edge (c1, d1)) have a lower capac-
ity bound of 1, thus forcing the flow algorithm to maintain these links. All edges between
nodes ci and dj have cost 1, but could as well have any other (non-negative) cost assigned.
As long as all edges that represent possible links have the same cost, every pair of objects
will be selected with the same probability. Solving a MINCOSTFLOW problem on this net-
work results in the flow f1,1 = f1,2 = f1,3 = f2,1 = f2,2 = f3,3 = 1. The link distri-
bution corresponding to this flow contains one link from each C-object to each D-object, i.e.
L ∪ L′ = {(c1, d1), (c1, d2), (c1, d3), (c2, d1), (c2, d2), (c2, d3)}. The resulting configuration
(see Figure 7.7b) is a satisfying instance of the association.

If the above procedure fails to find an extension, we can increase the number of objects
beyond the minimum computed by the ILP. In the computer network example (see Section 7.1
this could mean that we have to buy another switch in order to avoid recabling the existing
network. However, if the cost of new components exceeds the cost of changing links, it is
preferable to weaken the constraint that the original configuration has to be maintained by all
means. This leads to the problem of configuration repair that can also be addressed in our
framework.

62

c1

c2 d2

d1

(a) Configuration not satisfying
the association.

c1

c2

d2

d1

d3

(b) Configuration (after comple-
tion) satisfying the model.

Figure 7.7: Instances of the association in Example 7.4.

s[+6]

c1

c2

d1

d2

d3

t[−6]

(3,
4, 0

)

(3, 4, 0)

(1, 6, 1)

(1, 6, 1)(0, 6, 1)

(1
, 6
, 1

)

(0, 6
, 1)

(0, 6, 1)

(1, 2, 0)

(1, 2, 0)

(1,
2, 0

)

Figure 7.8: Flow network for completing the configuration in Figure 7.7a.

7.5 Repairing Configurations

To repair a configuration means to change a configuration with as few changes as possible such
that it becomes a satisfying instance of a given model. The approach described in this section is
one possibility to tackle the MINIMALREPAIR problem stated in Section 3.2.

CONFIGURATIONREPAIR

Input: a model M and a configuration I = (O,L) that is an instance of M
Output: a configuration I′ = (O ∪O′,L′) satisfying M such that L ∩ L′ is maximal.

In the worst case the procedure for extending configurations as described in the previous
section leads to an unsatisfiable problem, as existing links must not be removed from the con-
figuration.

A more moderate way to preserve existing links is to keep the capacity bounds unchanged
and adapt the costs instead. By using negative costs for existing links, any algorithm for solving
the minimal cost flow problem will try to use those arcs, as this reduces the overall costs. This
approach has the advantage that an existing link can be removed if keeping it makes the problem
unfeasible.

63

To solve the CONFIGURATIONREPAIR problem we start with the first three steps of the
procedure in the last section, but continue with a different network.

1.–3. See Section 7.4 on configuration completion.

4. Construct a flow network as described in Figure 7.2b. In the unique case, assign cost
cex (e.g. -1) to edges that correspond to links in L, and cost cstd (e.g. 1) to all other edges.
In the non-unique case the situation is more complex, as some but not all of the possible
links between two objects may exist, i.e., in general we have two so-called link priorities.
Therefore, if L contains l links between objects ci and dj , introduce two edges between
the nodes ci and dj . The first edge between ci and dj is labelled with (0, l, cex), and the
second one with (0,max(U − l, 0),cstd).

5. A feasible flow always exists (Proposition 7.2). Hence the MINCOSTFLOW problem can
be solved, resulting in a configuration that resembles the original one but satisfies the
model.

Strictly speaking, this procedure does not solve CONFIGURATIONREPAIR literally, as there is
no guarantee that the number of links shared with the original is maximal. We can approach the
solution, however, by increasing ` within the bounds computed by ILP, and we can increase the
penalty of introducing new links by decreasing costs for existing links and increasing costs for
new ones. In Section 7.8 we will have a closer look at the effect of choosing different costs when
repairing configurations.

Example 7.5. Consider the following unique-unique association and the configuration I =
(O,L) with O = {c1, c2, d1, d2} and L = {(c1, d1), (c1, d2), (c2, d1), (c2, d2)}, which is a
satisfying instance of the association:

C D
1..2

unique

unique

2..3

c1

c2 d2

d1

If we want to add a third C-object c3 to I, we have to add another D-object as well. This
follows from Inequality (4.5), which states that the number of D-objects connected to x = 3
C-objects has to be at least max(

⌈
nx
M

⌉
, n · sgn(x)) = max(

⌈
2·3
2

⌉
, 2 · sgn(3)) = max(3, 2) = 3.

c2

c1

c3

d2

d1

d3

If we are not allowed to remove any existing links at all (as was the case for CONFIGU-
RATIONCOMPLETION in the previous section), we can only connect c3 to d3, as d1 and d2 are

64

already connected to the maximally allowed number of C-objects. Therefore, we would have to
add a fourth D-object, d4, and connect c3 to d3 and d4,resulting in the following configuration:

c2

c1

c3

d2

d1

d3

d4

If redirecting existing links is preferable to adding additional objects, we use the CONFIGURA-
TIONREPAIR approach described in this chapter. We already determined the new set of objects:
O ∪ O′ = {c1, c2, c3, d1, d2, d3}. The range for the number of links is [`min, `max] = [6, 6],
hence the only possible value for the number of links is ` = 6. The corresponding flow network
is depicted in Figure 7.9. Edges between nodes that represent linked objects (e.g. edge (c1, d1))
are assigned a negative cost (in this case −1), all other edges between nodes ci and dj have cost
1, but could as well have any other (non-negative) cost assigned. All edges between C- and
D-nodes have a lower capacity bound of 0, thus not forcing the flow algorithm to choose any
specific edge. One possible result of solving a MINCOSTFLOW problem on this network is the
flow f11 = f12 = f21 = f23 = f31 = f33 = 1. The link distribution corresponding to this
flow contains the following links: L′ = {(c1, d1), (c1, d2), (c2, d2), (c2, d3), (c3, d1), (c3, d3))}.
The link (c2, d1) is removed from the original configuration and the links (c2, d3), (c3, d1) and
(c3, d3) are added. The resulting configuration is a satisfying instance of the association:

c2

c1

c3

d2

d1

d3

Note that we can influence the order in which existing links are removed by setting the costs
accordingly.

To solve the CONFIGURATIONREPAIR problem for nonunique-nonunique associations we
introduce two edges between some pairs of nodes. This procedure is a special case of priority
links. The following section deals with priority links in general.

7.6 Priority Links

If the cost for links between the same pair of objects varies with the number of links, we need
to attach different priorities to them. We call links with priorities attached to them priority links.

65

s[+6]

c1

c2

c3

d1

d2

d3

t[−6]

(3,
4, 0

)

(3, 4, 0)

(3, 4, 0)

(0, 1,−1)

(−1)
(1)

(−1)

(−1)
(1)

(1
)

(1)

(0, 1, 1)

(1, 2, 0)

(1, 2, 0)

(1,
2, 0

)

Figure 7.9: Flow network for repairing the configuration given in Example 7.5. Edge labels (1)
and (−1) are abbreviations for (0, 1, 1) and (0, 1,−1).

Suppose the first h1 links between objects ci and dj have cost c1
ij , the next h2 links have cost c2

ij ,
and so on.

This scenario can be transferred to flow networks by varying the flow costs on an arc between
two nodes i and j with the amount of flow. In the network, the first h1 units of flow between
nodes ci and dj can be sent for cost c1

ij , the next h2 units for cost c2
ij , and so on. Such situations

can be modelled by convex cost functions.

Convex Cost Functions

In cases, where the flow cost on an arc between two nodes i and j varies with the amount of
flow, we have to use convex cost functions.

Although it is also possible to use concise functions, where the costs of arcs are given in a
functional form, we will only deal with piecewise linear costs. The reason is that we use flow
algorithms to calculate links between objects, hence our data are integral.

In piecewise linear models, the cost on each arc, Cij(fij), consists of k linear segments.
A piecewise linear function is specified by its breakpoints 0 = d0

ij < d1
ij < d2

ij < . . . and the
slopes of the linear segments between successive breakpoints [1]. cpij is the linear cost coefficient
of the interval from dp−1

ij to dpij . Without loss of generality we assume that c1
ij < c2

ij < · · · < ckij .

The corresponding optimisation problem (for single arcs between all node pairs (i, j) ∈ A)
was formulated by Ahuja et al in [1]:

Minimise
∑

(i,j)∈E

Cij(fij) (7.4)

subject to the constraints (7.1), (7.2), and (7.3) (see Section 7.2).
Piecewise linear costs can be understood as multiple arcs between a pair of objects. For

k linear segments for the cost of edge (i, j) we use k arcs from node i to node j, each arc
corresponding to a segment. In Figure 7.10 the first h1 units of flow can be sent for cost c1ij , the
next h2 units for cost c2ij , and so on. Finally, the last hk units can be sent for cost ckij .

66

i j

(0, h1, c
1
ij)

(0, h2, c
2
ij)

(0, hk, c
k
ij)

Figure 7.10: Illustration of k cost segments between nodes i and j.

Types of Priority Links

Three different types of constraints might occur in our flow networks.

• General priority links: There exist different priorities for links in general, not depending
on specific C- orD-objects. This scenario occurs e.g. if a few cables are in store (they can
be used for free) and the rest has to be purchased (costing money). It is irrelevant which
objects get connected by the free cables.

• Object-related priority links: There exist different priorities for links connected to a spe-
cific C-object. As an example consider a switch with cables connected to it (but not
connected to any specific computer). The links are related to a specific C-object, but not
to a specific D-object.

• Object-pair-related priority links: In this case there are different priorities per pair of
objects (ci, dj). This occurs if, for example, some links already exist between two objects
ci and dj , which should be maintained, if possible. Hence, they are assigned low cost.

Such constraints can either be modelled by convex cost functions or by introducing addi-
tional network layers and additional arcs. We will use the second approach to demonstrate how
the different types of priority links can be integrated into a flow network.

General Priority Links

To model general priority links, an additional network layer is introduced. This layer consists
of one node C that represents all existing C-objects and is placed between the source s and the
ci-nodes. For each priority class we add one arc from s to C with the corresponding cost and
capacity. All ci-nodes are connected to C with capacity bounds n and N and cost 0. Figure 7.11
depicts the corresponding network.

This type of links only reduces the overall cost of each solution by a constant value. The
order of the solutions (regarding the costs) and hence the solution of the minimal cost flow are
not influenced.

67

s c

c1

c2

cp

(0, h1, c
1
ij)

(0, hk, c
k
ij)

(n
,N
, 0

)

(n,
N,

0)

(n,N, 0)

Figure 7.11: Several link priorities for all C-objects

Object-related Priority Links

Object-related priority links from a node ci are modelled by an additional node c′i in front of ci.
There are multiple edges between c′i and ci (one for each priority class). By connecting s with c′i
by an edge with capacity bounds of n and N we ensure that the multiplicities are still satisfied
for object ci. The resulting network is shown in Figure 7.12. The first h1 units of flow via ci
have cost c1ij , the next h2 units have cost c2ij , and so on. It does not matter to which D-node the
units of flow are directed. The flow via node ci is bounded from above by h1 + · · ·+ hk as well
as by the multiplicity N and from below by the multiplicity n.

s c′i ci

d1

d2

dp

(n,N, 0)

(0, h1, c
1
ij)

(0, hk, c
k
ij)

(0
, `
, 0

)

(0,
`, 0

)

(0, `, 0)

Figure 7.12: Several link priorities per object: links from an object ci are associated with differ-
ent costs.

Example 7.6. Suppose we have a switch with 20 ports and two network cables that are already
connected to some of the ports (but lose on the other end). If we want to connect 4 computers
to the switch, we will first use the two connected cables, as this causes no costs. As we need to
connect two more computers to the switch, we have to buy further cables (or at least fetch them
from the store, which costs time).

The flow network in Figure 7.12 is applied to this example as follows:

• ci . . . switch

• d1 . . . d4 . . . computers

68

• N = 20 . . . ports of the switch

• n = 1 . . . each switch has to be connected to at least one computer

• m = M = 1 . . . each computer has to be connected to exactly one switch

• h1 = 2 . . . two connected network cables

• h2 = `− h1 . . . cables we have to buy (or fetch from the store)
(in any case we need to buy at most ` cables, as this is the total flow in the network, i.e.
the total number of cables to connect)

• ` . . . number of links to distribute - we take the minimally required number of links, i.e.
the total number of cables to connect; in this example we have ` = 4

Figure 7.13 illustrates the corresponding flow network. Two units of flow can be transported
from ci to any D-node (i.e. from the switch to any computer) at cost c1ij (e.g. c1ij = 0) and the
rest (at most min(N − 2, `− 2) units of flow) at cost c2ij (e.g. c2ij = 1).

s[+4] c′i ci

d1

d2

d3

d4

t[−4]
(1, 20, 0)

(0, 2, c1ij)

(0, 2, c2ij)

(0,
`, 0

)

(0, `, 0)

(0, `, 0)
(0, `, 0)

(1, 1, 0)

(1, 1, 0)

(1, 1,
0)

(1
, 1
, 0

)

Figure 7.13: Links from switch ci to computers d1 . . . dk can have different costs.

Object-pair-related Priority Links

Object-pair-related priority links, on the other hand, do not need additional network layers. We
simply add one arc from ci to dj for each priority class of links between objects ci and dj . The
network in Figure 7.14 distinguishes k different classes of links between particular objects ci
and dj . The first h1 units of flow from ci to dj can be transported at cost c1ij , the next h2 units
for cost c2ij and so on. If there are further D-nodes that have different classes of links to ci, we
connect them to ci by multiple arcs as well and set the capacities and costs accordingly. All
other D-nodes are connected to ci with only one link at standard cost cstd . The same holds for
dj and other C-nodes. The flow from node ci to node dj is bounded as for object-related priority
links.

One particular application of this approach is CONFIGURATIONREPAIR with nonunique-
nonunique associations and existing links (for the general procedure see Section 7.5). For

69

s ci dj
(n,N, 0)

(0, h1, c
1
ij)

(0, hk, c
k
ij)

Figure 7.14: Several link priorities per pair of objects: links from object ci to object dj have
different costs.

unique-unique associations, we only have one priority class per pair of objects, as each arc has
a capacity of one. We therefore simply choose the cost of each arc accordingly. Hence we only
need object-pair-related priority links for nonunique-nonunique associations (and only if there
are more than one different priority links between some pairs of objects (ci, dj)).

C D
1..2
nonunique

nonunique

1..2

Figure 7.15: A nonunique-nonunique association.

Example 7.7. Consider the model in Figure 7.15 and a configuration with two objects per class
and a total of four links. Suppose that neighbouring objects (with the same index) may be linked
at cost 1, while other links have a cost of 2 (see Figure 7.16 for the corresponding flow network).
This example illustrates why a uniform distribution of links does not always result in an optimal
solution. In this case, a uniform distribution of links (connecting every C-object with every
D-object) results in a total cost of 6, while the minimal cost of 4 is obtained by double links
between neighbouring objects (i.e. a flow of 2 units from ci to di for i = 1, 2), as shown in
Figure 7.17.

s[+4]

c1

c2

d1

d2

t[−4]

(1,
2, 0

)

(1, 2, 0)

(0, 2, 1)
(0, 2, 2)

(0
, 2
, 2

)

(0, 2, 1)

(1, 2, 0)

(1,
2, 0

)

Figure 7.16: Flow network corresponding to an instance of the association in Figure 7.15 with
two objects per class. The minimal cost of 4 is obtained for the flow f(c1, d1) = f(c2, d2) = 2
and f(c1, d2) = f(c2, d1) = 0.

70

c1

c2 d2

d1

Figure 7.17: Satisfying instance of the association in Figure 7.15 with double links between c1

and d1 and between c2 and d2.

The following example illustrates how the CONFIGURATIONREPAIR problem can be solved
for a nonunique-nonunique association.

Example 7.8. Consider a configuration I = (O,L) with two objects of classC and three objects
of classD and some existing links: O = {c1, c2, d1, d2, d3} andL = {(c1, d1), (c1, d1), (c2, d3)}
(see Figure 7.19a). I is an instance of the following nonunique-nonunique association:

C D
1..3

u I
2..4

The first link between objects c2 and d3 and the first two links between objects c1 and d1 have
a cost of 0, all other links have a costs of 1. The corresponding network for finding a satisfying
instance of the association is shown in Figure 7.18.

From the ILP-solver we get a range for the number of links: [`min, `max] = [3, 8]. As
we want to maintain existing links, but still find a minimal solution, we take the minimum
of `min and |L| (the number of existing links). Hence we distribute ` = 3 links. The link
distribution corresponding to the solution of the minimum cost flow problem will either be L′ =
{(c1, d1), (c1, d2), (c2, d3)} (see Figure 7.19b) or L′ = {(c1, d1), (c2, d2), (c2, d3)} with a total
cost of 1. One existing link is removed, because otherwise the flow on the arc from d2 to t
would not be feasible (a flow of zero on an arc with a lower bound of one). Translated to the
corresponding configuration the object d2 would have no link to any C-object, thus violating the
multiplicity 1..3.

By choosing ` = 4 we can maintain all existing links and satisfy all D-objects: L′ =
{(c1, d1), (c1, d1), (c2, d2), (c2, d3)} (see Figure 7.19c). The total cost is the same as for ` = 3.

Combinations of Priority Link Types

In scenarios where both object-related and object-pair-related priority links occur, we have to
combine the two approaches in a common network.

Suppose there are k different link priorities for object ci, leading to a flow network F like in
Figure 7.12. Additionally, there are xi,j links between objects ci and dj . We add an arc from c′1
to d1 with capacity xij and costs cex to the flow network F . The resulting network is shown in
Figure 7.20.

If the object-related and the object-pair-related priorities occur at the same time, but for
independent C-objects ci and co, we use the procedure for object-related priority links for object

71

s[+`]

c1

c2

d1

d2

d3

t[−`]

(2,
4, 0

)

(2, 4, 0)

(0, 2, 0)

(0, `−2, 1)

(0, 1, 0)

(0, `−1, 1)

(1, 3, 0)

(1, 3, 0)

(1,
3, 0

)

Figure 7.18: Flow network with links of different priority between specific pairs of objects.
Unlabeled arcs have the following constraints: (0, `, 1).

c1

c2

d2

d1

d3

(a) Configuration not satisfying the
model.

c1

c2

d2

d1

d3

(b) Configuration satisfying the
model with ` = 3 links.

c1

c2

d2

d1

d3

(c) Configuration satisfying the
model with ` = 4 links.

Figure 7.19: Instances of the model in Example 7.8.

ci (i.e. add node c′i) and in addition the procedure for object-pair-related priority links for object
co (i.e. add multiple links).

7.7 Choosing the number of links

The ILP-solver gives us an interval for the number of links that can be used to construct a
configuration satisfying the given model: ` ∈ [`min, `max]. To determine an appropriate number
of links `, we have to investigate the general structure of this problem.

For the LINKDISTRIBUTION problem, where we start from an empty set of links, we can
choose any ` within the interval. In general, we are interested in minimising costs and therefore
choose the minimal value `min.

When dealing with CONFIGURATIONCOMPLETION or CONFIGURATIONREPAIR, choosing
the minimal `might not result in the optimal solution. If we choose the minimum of `min and the
number of existing links |L| for `, we might need to remove more existing links than if we chose

72

c′i ci

d1

d2

dj

(0, h1, c
1
ij)

(0, hk, c
k
ij)

(0, xij , cex)

(0,
`, 0

)

(0, `, 0)

(0, `, 0)

Figure 7.20: Links from ci to D-objects have different costs, and there are xij existing links
between ci and dj . (Nodes s and t omitted)

more links. We have seen in Example 7.8 that choosing ` = `min +1 results in a link distribution
that maintains all links, whereas ` = `min leads to deleting one existing link. Depending on the
costs of relinking and adding new links, choosing ` > `min might therefore be preferable.

In the case of CONFIGURATIONCOMPLETION (where we have to keep all existing links)
there might not even be a solution with ` = `min.

Example 7.9. Reconsider the configuration from Example 7.8. We cannot create a satisfying
instance with ` = `min = 3 without removing an existing link. We need to remove one link
between c1 and d1 to be able to connect d2 to either c1 or c2.

We can test whether an instance of a nonunique-nonunique association is extendable at all
by running a minimal cost flow algorithm with a supply of `max units. If there is no solution
with `max links, the configuration is not extendable without removing any existing links.

Lemma 7.10. Let M be a model containing a nonunique-nonunique association, I be a sat-
isfying instance with ` links and `max be the maximal possible number of links as computed by
the ILP-solver (` < `max). Then we can always extend I to a satisfying instance of M with `max

links.

Proof. The maximal number of links `max of an instance of the association in Figure 7.2a is
`max = min(yM, xN), where x is the number of objects of class C and y the number of objects
of class D.

If ` does not equal `max, there is still at least one C-object ci and one D-object dj that
is not maximally linked. Therefore we can add a link between ci and dj . As we have a
nonunique-nonunique association, it does not matter if there already exists a link between
ci and dj .

Lemma 7.10 implies that we can use a binary search to find the solution with the minimally
required number of links, if there is a solution with `max links.

73

For unique-unique associations, we cannot simply link two arbitrary objects ci and dj . If
they are already linked, it is not possible to place an additional link between them. Therefore,
we cannot always extend an instance of a unique-unique association to an instance with `max

links, as the following example shows. This means that in the unique-unique case there are
repair problems that can be solved with less than `max links, but not with `max links,

C D
1..2

unique

unique

1..2

Figure 7.21: Specification of a unique-unique association.

Example 7.11. Let M be the model shown in Figure 7.21 and I = (O,L) an instance satisfying
M with O = {a1, a2, a3, b1, b2, b3} and L = {(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b3)} (see
Figure 7.22a). The maximum number of links is `max = 6 and the current number of links is
` = 5. We cannot add another link to I without either violating the uniqueness constraint (by
connecting a3 and b3 a second time) or violating some upper bounds (by connecting any of the
other objects).

Figure 7.22b shows that a satisfying instance of M with `max = 6 links indeed does exist.
But this instance cannot be constructed by extending the configuration given in Figure 7.22a.

c1

c2

c3

d2

d1

d3

(a) Instance with ` links

c1

c2

c3

d2

d1

d3

(b) Instance with maximal number of links.

Figure 7.22: Instances of specification shown in Figure 7.21 with 3 objects of classes C and D

7.8 Different costs – different results

How we set the costs of existing and of new links depends on what the user wants to achieve.
There are different ways of handling existing links when repairing configurations.

One possibility is to choose positive costs for both existing and new links, but with lower
costs for existing links than for new links. In this case the minimum cost flow algorithm will
prefer redirecting an existing link over maintaining all links and adding a new one.

74

Another possibility is to set the costs for existing links to zero and the costs for new links to
a positive value. In this scenario keeping all links and adding a new link incurs the same costs
as redirecting an existing link.

A third way of setting the costs is to choose negative costs for existing links (e.g. cex = −1)
and positive costs for new links (e.g. cstd> 0). In this case it is more efficient to keep existing
links and add new links than to redirect an existing link. This approach can result in a network
where choosing more links results in a lower total cost, as we have negative costs for existing
links. The following example illustrates this behaviour.

Example 7.12. Consider the configuration I in Figure 7.23. It is an instance of the association
in Figure 7.21. To extend I to a satisfying instance of the association, we build the flow network
shown in Figure 7.24 and solve a minimum cost flow problem.

For ` = 3 we have to delete one of the links connected to c1: either (c1, d1) or (c1, d2).
Then we can add one link to d3: either (c1, d3) or (c2, d3). Hence, one possible result of the
MinCostFlow algorithm is: f1,1 = 1, f1,3 = 1, f2,2 = 1, with a total cost of −1. The resulting
configuration can be seen in Figure 7.25a.

For ` = 4, we can keep all existing links and just add a new link from c2 to d3. This results in
a total cost of −2. The corresponding configuration is shown in Figure 7.25a. The configuration
with four links is cheaper than the one with three links, hence we get more (links) for less (cost).

c1

c2 d2

d1

d3

Figure 7.23: Nonsatisfying instance of the association shown in Figure 7.21 with 2 objects of
class C and 3 objects of class D.

As we have negative costs for existing links, we can get more links for less cost. The next
section investigates if this can also happen for non-negative costs.

7.9 Can we get more for less?

The More-for-less Paradox

In some situations something counter-intuitive happens: it is cheaper to transport more flow.
This happens not only if we have negative cost on some arcs, but also if there are only positive
costs. This is called the more-for-less paradox or transportation paradox and was first described
by Charnes and Klingman [13] and Szwarc [41], but had already been noticed before.

75

s[+`]

c1

c2

d2

d1

d3

t[−`]

(1,
2, 0

)

(1, 2, 0)

(0, 1,
−1)

(0; 1− 1)(0, 1, 1)

(0
, 1
, 1

)

(0,
1,−1)

(0, 1, 1)

(1, 2, 0)

(1, 2, 0)

(1
, 2
, 0

)

Figure 7.24: 4-layered graph to distribute links for the association shown in Figure 7.21 with 2
objects of class C and 3 objects of class D and existing links (see Figure 7.23).

c1

c2 d2

d1

d3

(a) Instance with 3 links.

c1

c2 d2

d1

d3

(b) Instance with 4 links.

Figure 7.25: Satisfying instances of the specification shown in Figure 7.21

Charnes and Klingman defined the more-for-less paradox as follows: “given an optimal
solution to a distribution problem, it is possible in certain instances to ship more total goods for
less total cost even if we ship at least the same amount from each origin, and at least the same
amount to each destination, and all the costs are non-negative” [13].

Example 7.13. Consider the transportation network given in Figure 7.26. Node s1 has a supply
of two units, node s2 a supply of three units, node d1 a demand of two units and d2 a demand of
three units. The optimal solution of the resulting transportation problem is shown in Figure 7.26a
and has a total cost of 10. If we increase the supply at s1 and the demand of d2 by one, we get
the transportation problem in Figure 7.26b with a total cost of 9. The total cost has decreased by
one, although we send more goods (flow) through the transportation network.

76

s1[+2]

s2[+3]

d1[−2]

d2[−3]

(1,0)
(1,2)

(2,2)

(4,1)

(a) Network with a total flow of 5 and a total
cost of 10.

s1[+3]

s2[+3]

d1[−3]

d2[−3]

(1,0)
(1,3)

(2,3)

(4,0)

(b) Network with a total flow of 6 and a total
cost of 9.

Figure 7.26: Example of the more-for-less paradox for transportation problems. Numbers in
square brackets give the supply (positive) or demand (negative) of a node, black numbers on
arcs give the costs, red numbers the flow on the arc.

How about our flow networks?

The more-for-less paradox so far has only been described for networks with multiple sources
and sinks. This paradoxical behaviour cannot happen with the networks we deal with, as we
only have one source and one sink.

Proposition 7.14. In a flow network with one source and one target and with only non-negative
costs on each edge, the more-for-less paradox cannot occur.

Proof. Consider all possible paths from the unique source to the unique target. Sending a unit
of flow over any of these paths incurs a non-negative cost, which is the sum of costs for all edges
on the path. Therefore the total cost of a flow increases monotonically with the flow.

77

8 Related Work

The skill of writing is to create a
context in which other people can
think.

Edwin Schlossberg

This chapter gives an overview on related research in the areas of formalisation of UML

Class Diagrams, configuration management, reconfiguration and redundancy detection.

8.1 Formalising UML Class Diagrams

As UML class diagrams play a central role in the design and specification of software, databases
and ontologies, CASE (Computer Aided Software Engineering) tools should reveal syntax errors
and provide feedback concerning errors, redundancies and inconsistencies [10]. To provide these
additional features, the class diagrams have to be formalised. Formalising UML class diagrams
is hence the basis for the methods presented in this thesis, as we introduce solutions to some of
these challenges.

There are several approaches to translate the semantics of UML diagrams into a language
suitable to perform formal reasoning; formal languages like Object-Z [31], Alloy [2], or de-
scription logic [11] have been used to reason about UML diagrams.

Choosing expressive formal languages to formalise the semantics of a UML class diagram
has the advantage that these basic logics can handle different types of constraints. The speci-
fications can hence contain all of these types of constraints simultaneously. For instance, the
semantics of multiplicities specified in the class diagram and of constraints written in OCL can
be expressed in the same first-order logic. Moreover, there exist well-developed reasoning tech-
niques and theorem provers for these logics, which can be used for satisfiability and consis-
tency checking. Calvanese et al. show in [12] that frame languages, semantic data models and
object-oriented data models can be translated to a description logic called ALUNI and that
satisfiability and subsumption of models can be checked in this framework.

The downside of these expressive, flexible languages is the high computational complex-
ity of reasoning tasks. For example, checking the consistency of ALUNI-specifications is
EXPTIME-complete (see [7]). Recently DL-Lite [3,4] was introduced to address these complex-
ity issues, with an emphasis on finite models [39].

Our approach of translating relevant fragments of class diagrams into an ILP formulation
is based on the idea of obtaining polynomial-time algorithms for particular subsets of UML

79

class diagrams and OCL constraints. This technique was inspired by Lenzerini and Nobili who
introduced a translation from ER diagrams to inequalities [32]. Feinerer and Salzer adapted this
approach for UML class diagrams [17, 20] and extended and generalised the result [21], leading
to a formal semantics for UML class diagrams (or at least of certain aspects thereof) and to
polynomial procedures for reasoning tasks like consistency checking.

Balaban and Maraee [8] build on the approach by Lenzerini and Nobili as well and introduce
algorithms for checking the (finite) satisfiability of UML class diagrams with class hierarchy con-
straints. They consider class hierarchies with generalisation constraints (overlapping/disjoint
and complete/incomplete). They propose an efficient reduction of such diagrams to diagrams
without class hierarchies, which replaces each hierarchy constraint by a linear number of ad-
ditional associations. After reducing the diagram they can apply an algorithm introduced by
Lenzerini and Nobili [32] to check the satisfiability of the diagram in polynomial time. The
described procedure is called FiniteSat. In the presence of generalisation constraints they add an
additional inequality for each constraint. The reduction as well as the introduction of the addi-
tional inequalities are linear in the size of the diagram. Moreover, Balaban et al. give a thorough
discussion on reasoning with UML class diagrams in [10]. They give a summary of previous
work on solving inconsistency and finite satisfiability and present a pattern-based approach for
explaining and repairing correctness problems. The problems identified in this paper (which are
inconsistencies, redundancies and abstraction errors) correspond to some of the problems found
in the domain of configuration management by Falkner et al. [16].

In [9] Balaban and Maraee describe a translation from description logics (in particular ALC)
to UML class diagrams. By running their FiniteSat algorithm on these class diagrams they are
able to check the finite satisfiability of atomic, primitive knowledge bases of description logics.

Richters and Gogolla [38] support the UML design phase by validating UML models and
OCL constraints. Validation, in contrast to verification, does not show the correctness of a model
in a formal sense. It can nevertheless reveal constraints that are too strong or too weak by
comparing system snapshots (i.e. simulated instances of the model) to the model. If either
reasonable snapshots do not fulfil the constraints or unreasonable snapshots do fulfil them, the
model has to be adapted.

Egyed [15] presents an approach for instant consistency checking for UML diagrams. He
investigates sets of consistency rules and how changes need to be propagated for efficient eval-
uation. Contrary to our intention, he checks whether diagrams of different type are consistent to
each other. Consider, for example, a class diagram specifying the structure of a system, a state-
chart diagram defining the behaviour of its classes and a sequence diagram describing processes
within the system. Consistency rules are used to define conditions that have to be fulfilled by the
models. The sequence diagram may e.g. only contain methods specified for the class invoking it
(i.e. the class diagram has to contain the method in the respective class). Models violating these
consistency rules are inconsistent. The presented method builds a scope for each rule, containing
all model elements that affect its truth value. If a model element is changed, all rules containing
this element in their scopes have to be revaluated. The presented method performed well on
realistic examples in tests, requiring only a few milliseconds on average per model change.

80

8.2 Configuration Management and Reconfiguration

Domain experts often have difficulties using formal knowledge representation languages to spec-
ify product configuration systems. Felfernig, Friedrich et al. tackle this knowledge acquisition
bottleneck in [24] by introducing UML configuration models. They add domain-specific mod-
elling concepts with the help of stereotypes, the extension mechanism of UML, and define a
mapping from these concepts to logical sentences, which can be transformed to different rep-
resentations used by configuration tools. This mapping defines the semantics of the newly in-
troduced concepts. The resulting product models (or configuration models) consist of classes,
generalisation and aggregation (which are standard UML concepts) combined with requires- and
incompatible-relations (which are domain-specific concepts) and OCL constraints. Additional
customisations are ports (i.e. connection points) and connection relations, as well as resources
that can be contributed or consumed by components. Both concepts are modelled by stereotyped
classes and associations. The results are implemented in a prototype that uses the standard UML

CASE-tool Rational Rose. The described approach leads to a significant reduction of time and
costs for the development and maintenance of product configuration systems. In [26] Felfernig,
Friedrich et al present translation rules from these UML configuration models to a corresponding
OIL representation. With this approach they are able to provide a knowledge acquisition frontend
based on UML thus facilitating the generation of configuration systems. Complex constraints
that cannot be represented graphically are defined in languages such as OIL. The translation can
be used to check the consistency of UML configuration models with the help of the reasoning
support for Semantic Web ontology languages. The presented concepts are also implemented in
a configuration knowledge acquisition workbench. In [25] the authors show how the UML can
be employed to automatically construct configuration knowledge bases and how to diagnose and
correct them with the help of positive and negative example configurations (i.e. examples that
should be accepted resp. rejected by the knowledge base). They also discuss the diagnosis of
inconsistent user requirements during product configuration (e.g. because feasible capabilities
are exceeded). Additionally they describe an approach for reconfiguration, where they identify
and remove elements of a configuration, such that the remaining parts of the configuration can
be completed to a configuration satisfying all constraints.

As these papers show, the use of UML for modelling configuration problems is already es-
tablished.

Aschinger et al. [5] have recently introduced LOCO, a declarative logical formalism for
expressing configuration problems, which is a fragment of classical First Order Logic with exis-
tential counting quantifiers. They focus on describing configuration problems by a set of logical
sentences. In this formalism the knowledge engineer only needs to specify the possible num-
ber of connections between two component kinds. Based on the translation from multiplicities
to linear inequalities presented in [16] they infer finite bounds on the number of components.
These bounds are needed to transform a problem model specified in LOCO into e.g. SAT. In [6]
the language is extended and the authors discuss complexity results and present a prototypical
implementation of LOCO.

The tasks of repairing existing configurations and the reconfiguration of established (legacy)
systems have already a long tradition in knowledge-based configuration. In [40] Stumptner and

81

Wotawa present a model-based approach for reconfiguration. They use diagnosis mechanisms to
find a set of configuration elements, such that altering this set yields a consistent configuration.
This diagnosis process can provide an indication of where to start. The model on which the
diagnosis is based contains an element for any entity that possesses a separate behaviour. Thus
also an attribute may be a model element, if the system’s correct behaviour depends on the value
of the attribute. This approach does not only need a system description, but also observations
about the component behaviour. The found diagnoses represent possible configurations that do
not contradict the observations. From these configurations the ones providing the desired func-
tionalities, so-called suitable configurations, are obtained by applying filter conditions. The two
major factors identified for reconfiguration of an incorrect configuration are altered requirements
and legacy systems.

Männistö et al. [33] introduce an abstract conceptual model for reconfiguration. In addition
to the information needed for representing configuration knowledge they define a reconfigura-
tion model, which consists of reconfiguration operations (containing a precondition that controls
the applicability of the operation and an action) and reconfiguration invariants that specify cor-
rectness conditions for configurations. The authors formalise the reconfiguration process as a
sequence of reconfiguration operations leading to a configuration that fulfils a set of conditions
expressing new requirements. Additionally, they describe different modes of reconfiguration,
ranging from non at all over project-based (i.e. individual) to automatic reconfiguration.

Friedrich et al. [27] present an approach for reconfiguration using answer set program-
ming(ASP). They treat reconfiguration as an adapted configuration problem by specifying a
reconfiguration problem as a set of (adapted) requirements, transformation rules and a legacy
configuration to be reconfigured. Depending on the choice of modification costs, the prob-
lem solver will find different solutions. The authors also give several modelling patterns and
evaluation results, which show that the ASPbased approach is feasible for an interesting set of
reconfiguration problem instances.

We tackle the problem of reconfiguration in a different way by using an ILP solver and
netflow algorithms. This approach only deals with multiplicity constraints, but has the advantage
of providing a means for building configurations from scratch and for reconfiguration with the
same approach.

8.3 Detecting Redundancies

Detecting redundancies was identified as a relevant problem that requires formal reasoning, not
only in configuration management [16, 21] but also in UML class diagrams themselves [10].

Dullea and Song [14] analyse redundant relationships in entity relationship models. They
argue that the fact that a relationship r is parallel to a composite relationship does not neces-
sarily imply that r is redundant. An additional semantic constraint is necessary to ensure the
redundancy. The authors consider minimum and maximum cardinality constraints for one-to-
one, one-to-many, and many-to-many multiplicity types. They perform an exhaustive case study
for combinations of these multiplicity types with a focus on binary associations. They investi-
gate types of composite relationships that rule out redundancies (e.g. so-called fan relationships
consisting of one relationship with maximum cardinalities of M : 1 and one with 1 : M). Based

82

on this case study they develop a set of heuristics for two paths that are part of a cyclic path.
They present several rules defining whether these relationship paths are redundant to each other
or not.

Our work differs considerably from this approach since we investigate multiplicities speci-
fied by concrete intervals [n..N], where both n and N may be any integers satisfying N ≥ n ≥
0, instead of generic one-to-one (1:1), one-to-many (1:N), and many-to-many (M:N) multiplici-
ties.

Even though equality constraints on association chains are a natural extension of class dia-
grams and often implicitly occur in the modelling phase, we are not aware of further research
into this direction.

In the context of association chains checks for inconsistent or reducible multiplicities are
of interest [22]. The composition of association chains can lead to multiplicity intervals where
not every value of the interval can be reached. Hartmann discusses a formal representation
of such multiplicities with gaps, so called int-cardinality constraints in [28] and also considers
the consistency of these constraints. In [29] Hartmann considers the interaction of cardinality
constraints with key and functional dependencies. This approach allows one to solve consistency
and implication problems, but it does not seem to offer a method for tightening cardinalities.

83

9 Conclusion

Always and never are two words you
should always remember never to
use.

Wendell Johnson

In this thesis we presented solutions to some of the problems identified in the domain of
configuration management. It summarises the results of our research of the past three years and
gives more details on the underlying theory of the main achievements.

We gave an in-depth analysis of the number of objects of some class D connected to a
number of objects of another class C via a specific association. Based on these results we
developed formulas for calculating the multiplicities of a composed association. This means that
we view a chain of k associations from an initial class C0 to a final class Ck as one composed
association from C0 to Ck.

We then extended UML class diagrams by equations over association chains, so-called equal-
ity constraints, to express additional properties of relations instantiating associations and associ-
ation chains. We used these equality constraints to detect redundant multiplicity bounds, i.e. val-
ues that are not reachable due to the multiplicity constraints imposed by the parallel association
chain. We described how to derive tighter bounds for individual multiplicities and developed an
algorithm to reduce all multiplicities of a given model, thus leading to a reduced model. The re-
sults have partly been implemented in a prototype that is available from [35]. The system has the
flavour of a spreadsheet program, since it re-checks the consistency of specifications and config-
urations as well as the redundancy of multiplicities with every change, highlighting inconsisten-
cies and redundancies as an immediate feedback. Additionally, we have implemented a Prolog
prototype [18] to conduct further experiments. This thesis focused on unique-unique associa-
tions only, but results on composing nonunique-nonunique associations have been published
in [22]. Reducing multiplicities for nonunique-nonunique still remains an open issue. For
this purpose we first need to investigate the meaning of equations over nonunique-nonunique
association (chains).

In the context of composed associations we also detected the existence of multiplicity in-
tervals, where not every value of the interval can be realised. We showed that our approach of
equating associations and reducing multiplicities can detect the unsatisfiability of models where
the intervals on both sides of the equation have no common values. We have not yet investigated
approaches to find gaps in intervals that do have common values. Combining Hartmann’s ap-

85

proach of int-cardinality constraints (see [28]) with our approach of composing associations and
dealing with equality constraints seems to be a promising extension.

Moreover, we discussed the effects of equality constraints concerning satisfiability and min-
imal instances. Based on examples we demonstrated that the minimal E-satisfying instance
of a model is not always identical to the minimal E-satisfying instance. In general the lat-
ter will be larger. We introduced a special family of models that is characterised by so-called
tree-generating equations. For these models we were able to derive an explicit formula for
the reduction of the upper multiplicity bound. We also showed that the E-satisfiability can be
checked using the inequalities we get from the model for specific subcases of this family. Un-
fortunately the minimal instance and the minimal E-satisfying instance are not even identical
for tree-generating models. Further research has to be done to find out how much larger an E-
satisfying instance can get in the worst case. Our next aim is to search for a (dis)proof of the
conjecture that E-satisfiability can be reduced to satisfiability by our method.

Furthermore, we introduced a method for distributing links between objects, such that the
link distribution satisfies a given model. We use minimum cost flow algorithms to accomplish
this task. This approach can as well be used to solve the problem of reconfiguration, which
is a central challenge when dealing with long-lived component systems. We also investigated,
how the choice of costs in the flow network influences the reconfiguration result. Nevertheless
we still need to continue the research in this area. Another important open issue is how to
proceed when the repair process fails. Our aim is to obtain information about bottlenecks from
the failed reconfiguration attempts and to develop a semi-automated procedure that includes the
user in the reconfiguration process. We also have not yet found a solution for (re-)distributing
links in the presence of equality constraints. Another question to be investigated is whether
our approach (especially the method for reconfiguration) can be integrated with more general
approaches developed for the task of reconfiguration of product configuration systems.

With our numerical approach we could already build a framework for solving several prob-
lems. By translating UML class diagrams into linear inequalities and solving the resulting ILP

problem with a solver we can check the consistency and satisfiability of a model and check
whether instances satisfy a model. Additionally the ILP solver calculates the number of objects
of each class needed to form a minimal instance and gives a range for the number of links for
each association. The links can then be distributed between the objects with the help of netflow
algorithms as described in this thesis. As most ILP solvers can solve netflow algorithms, we
can generate a complete configuration using only one tool. Reconfiguration (i.e. adding and
deleting objects from a given configuration and rearranging links) can also be solved via netflow
algorithms. Furthermore, we can compute the type of composed associations and find minimal
multiplicities based on the inequalities.

As a next step we will investigate further classes of constraints as seen in large-scale applica-
tions of our industrial projects partners which can be efficiently handled within our framework.
For example we are planning on integrating the reduction from diagrams containing ISA con-
straints to diagrams without such constraints presented by Balaban and Maraee [8] with our
approach to be able to handle ISA constraints as well.

Apart from the few enhancements already described above, we currently think that the limits
of this numerical approach are (nearly) reached. Using expressive formal languages (e.g. first

86

order logics) on the other hand poses other limitations, as most problems in first-order logic are
undecidable. This means that currently mainly user-guided semi-automated procedures exist,
with the users having to be trained in the underlying theory since they have to interfere with
the system when it gets stuck. As our numerical approach allows for efficient (automated)
reasoning about and optimisation of UML class diagrams, while translating models to symbolic
logic frequently leads to algorithms of high complexity – a complexity that often is not inherent
in the original problem but is introduced by using (too) expressive languages, our vision is to
develop a hybrid system. Basic constraints can thus be handled by our approach and the results
can be used as a starting point for approaches with a higher computational complexity. One step
into this direction has already been done by Aschinger et al. [5], who build on our translation
into inequalities to infer bounds on the number of components. The bounds are e.g. needed
to formulate a SAT problem. Hybrid systems can thus benefit from the advantages of both
worlds and limit their downsides. We take advantage of the efficiency of numerical methods
for the limited range of basic UML elements and constraints that these methods are suited for.
Further elements and constraints can then be handled by other formal languages, trading in low
complexity of reasoning tasks for the high expressiveness of those formalisms.

In [18] Feinerer (who is also part of our research team) argued about the benefits and draw-
backs of declarative formalisms like Prolog for configuration systems. To solve the problems
the author proposes hybrid systems, combining the effective strategy of “generate and test” with
external tools specialised on specific tasks like instance generation. These parts from the ex-
ternal tools can then be combined to a configuration, which can be tested for validity by the
declarative framework. One of the next aims clearly is to further extend this approach (and the
corresponding Prolog implementation as well, as long as this seems sensible) to build a powerful
framework for configuration management.

87

Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows – theory,
algorithms and applications. Prentice Hall, 1993.

[2] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On challenges of
model transformation from UML to Alloy. Software and System Modeling, 9(1):69–86,
2010.

[3] Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev. Reasoning over extended ER models. In Christine Parent and
et al., editors, Proc. Conceptual Modeling ER 2007, volume 4801 of LNCS, pages 277–
292. Springer, 2007.

[4] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev.
Adding weight to DL-Lite. In Bernardo Cuenca Grau and et al., editors, DL 2009, volume
477 of CEUR Workshop, 2008.

[5] Markus Aschinger, Conrad Drescher, and Georg Gottlob. Introducing LoCo, a logic for
configuration problems. In Proceedings of LoCoCo 2011, Perugia, Italy, 2011.

[6] Markus Aschinger, Conrad Drescher, and Heribert Vollmer. Loco – a logic for configura-
tion problems. In Proceedings of the 20th European Conference on Artificial Intelligence,
ECAI 2012, 2012.

[7] Franz Baader and et al., editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[8] Mira Balaban and Azzam Maraee. Consistency of UML class diagrams with hierarchy
constraints. In Proc. NGITS2006, volume 4032 of LNCS, pages 71–82. Springer, 2006.

[9] Mira Balaban and Azzam Maraee. A uml-based method for deciding finite satisfiability in
description logics. In Description Logics, 2008.

[10] Mira Balaban, Azzam Maraee, and Arnon Sturm. Management of correctness problems in
uml class diagrams towards a pattern-based approach. IJISMD, 1(4):24–47, 2010.

[11] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML class
diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

89

[12] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based represen-
tation formalisms. Journal of Artificial Intelligence Research, 11:199–240, 1999.

[13] A. Charnes and D. Klingman. The more for less paradox in the distribution model. Cahiers
du Centre d’Etudes de Recherche Operationelle, 13(1):11–22, 1971.

[14] James Dullea and Il-Yeol Song. An analysis of cardinality constraints in redundant rela-
tionships. In Proceedings of CIKM ’97, pages 270–277. ACM, 1997.

[15] Alexander Egyed. Instant consistency checking for the UML. In ICSE ’06: Proceeding
of the 28th international conference on Software engineering, pages 381–390, New York,
NY, USA, 2006. ACM Press.

[16] Andreas Falkner, Ingo Feinerer, Gernot Salzer, and Gottfried Schenner. Computing product
configurations via UML and integer linear programming. Int. J. Mass Cust., 3(4), 2010.

[17] Ingo Feinerer. A Formal Treatment of UML Class Diagrams as an Efficient Method for
Configuration Management. Dissertation, Vienna University of Technology, 2007.

[18] Ingo Feinerer. Towards hybrid techniques for efficient declarative configuration. In Wolf-
gang Mayer and Patrick Albert, editors, Proc. ECAI2012 Workshop on Configuration,
pages 21–24, 2012.

[19] Ingo Feinerer, Gerhard Niederbrucker, Gernot Salzer, and Tanja Sisel. Configuration re-
pair via flow networks. In Li Chen, Alexander Felfernig, Jiming Liu, and Zbigniew W.
Ras, editors, Foundations of Intelligent Systems – 20th International Symposium, ISMIS
2012, Macau, China, December 4–7, 2012. Proceedings, volume 7661 of Lecture Notes in
Computer Science, pages 321–330. Springer, 2012.

[20] Ingo Feinerer and Gernot Salzer. Consistency and minimality of UML class specifications
with multiplicities and uniqueness constraints. In Proceedings of the 1st IEEE/IFIP In-
ternational Symposium on Theoretical Aspects of Software Engineering, June 6–8, 2007,
Shanghai, China, pages 411–420. IEEE Computer Society Press, 2007.

[21] Ingo Feinerer and Gernot Salzer. Numeric semantics of class diagrams with multiplicity
and uniqueness constraints. Software and Systems Modeling, 2013. To appear.

[22] Ingo Feinerer, Gernot Salzer, and Tanja Sisel. Reducing multiplicities in class diagrams.
In Jon Whittle, Tony Clark, and Thomas Kühne, editors, Model Driven Engineering Lan-
guages and Systems, 14th International Conference, MODELS 2011, Wellington, New
Zealand, October 16–21, 2011. Proceedings, volume 6981 of Lecture Notes in Computer
Science, pages 379–393. Springer-Verlag, October 2011.

[23] Ingo Feinerer, Gernot Salzer, and Tanja Sisel. Class diagrams with equated association
chains. In 7th International Symposium on Theoretical Aspects of Software Engineering,
TASE 2013, July 1-3, 2013, Birmingham, UK. IEEE Computer Society, 2013. To appear.

90

[24] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. UML as domain specific
language for the construction of knowledge-based configuration systems. International
Journal of Software Engineering and Knowledge Engineering, 10(4):449–469, 2000.

[25] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. Conceptual modeling for
configuration of mass-customizable products. AI in Engineering, 15(2):165–176, 2001.

[26] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus Stumptner, and Markus
Zanker. Uml as knowledge acquisition frontend for semantic web configuration knowledge
bases. In Michael Schroeder and Gerd Wagner, editors, RuleML, volume 60 of CEUR
Workshop Proceedings. CEUR-WS.org, 2002.

[27] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner, Alois Haselböck, Gottfried
Schenner, and Herwig Schreiner. (re)configuration based on model generation. In Conrad
Drescher, Inês Lynce, and Ralf Treinen, editors, Proceedings of LoCoCo 2011, volume 65
of EPTCS, pages 26–35, 2011.

[28] Sven Hartmann. On the consistency of int-cardinality constraints. In Tok Wang Ling and
et al., editors, Conceptual Modeling - ER ’98, volume 1507 of LNCS, pages 150–163,
1998.

[29] Sven Hartmann. On interactions of cardinality constraints, key, and functional dependen-
cies. In Klaus-Dieter Schewe and Bernhard Thalheim, editors, Proceedings of FoIKS2000,
volume 1762 of LNCS, pages 136–155. Springer, 2000.

[30] M. Hitz, G. Kappel, E. Kapsammer, and W. Retschitzegger. UML @ Work, Objektorien-
tierte Modellierung mit UML 2. dpunkt.verlag, 3. edition, 2005 (in German).

[31] Soon-Kyeong Kim and David A. Carrington. Formalizing the UML class diagram using
Object-Z. In Robert B. France and et al., editors, Proc. UML’99, volume 1723 of LNCS,
pages 83–98, 1999.

[32] Maurizio Lenzerini and Paolo Nobili. On the satisfiability of dependency constraints in
entity-relationship schemata. Information Systems, 15(4):453–461, 1990.

[33] Tomi Männistö, Timo Soininen, Juha Tiihonen, and Reijo Sulonen. Framework and con-
ceptual model for reconfiguration. Technical report, AAAI Conf. Workshop, AAAI Press,
1999.

[34] Gerhard Niederbrucker. A numeric semantics for UML class diagrams: Methods and tools.
Master’s thesis, Technische Universität Wien, 2010.

[35] Gerhard Niederbrucker and Tanja Sisel. Clews Website, 2011. http://www.logic.
at/clews.

[36] Object Management Group. Unified Modeling Language 2.4.1, 2011. www.omg.org/
spec/UML/2.4.1/.

91

http://www.logic.at/clews
http://www.logic.at/clews
www.omg.org/spec/UML/2.4.1/
www.omg.org/spec/UML/2.4.1/

[37] Object Management Group. Object Constraint Language 2.3.1, 2012. www.omg.org/
spec/OCL/2.3.1/.

[38] Mark Richters and Martin Gogolla. Validating UML models and OCL constraints. In
Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The Unified Modeling
Language. Advancing the Standard. Third International Conference, York, UK, October
2000, Proceedings, volume 1939 of LNCS, pages 265–277. Springer, 2000.

[39] Riccardo Rosati. Finite model reasoning in DL-Lite. In Sean Bechhofer and et al., editors,
Proceedings of ESWC2008, volume 5021 of LNCS, pages 215–229. Springer, 2008.

[40] Markus Stumptner and Franz Wotawa. Model-based reconfiguration. In In Proceedings
Artificial Intelligence in Design, pages 45–64. Kluwer Academic Publishers, 1998.

[41] W. Szwarc. The transportation paradox. Naval Res. Logist. Quarterly, 18(1):185–202,
1971.

92

www.omg.org/spec/OCL/2.3.1/
www.omg.org/spec/OCL/2.3.1/

Curriculum Vitae

Personal Data

Name: Tanja Sisel

Date of Birth: August 27th 1981, Vienna

Address: Schrekergasse 46/4/12
1160 Wien
Österreich

E-Mail: tenza@gmx.at

Education

September 1987 – June 1993

 Friedrich Eymann Waldorfschule, 1130 Wien
(Primary and Secondary School)

September 1993 – June 1995

 BRG 17 Parhammerplatz, 1170 Wien
(Secondary School)

September 1995 – June 2000

 ORG für Leistungssport Maroltingergasse, 1160 Wien
(5-jährig, Sportart: Eiskunstlauf)
(Secondary School for competitive sports – figure skating)

June 2000

 Matura mit Auszeichnung
(Graduation with distinction)

Sept. 2000 – Feb. 2003

 Vienna University of Technology (TU Wien)
Informatik und Wirtschaftsinformatik, Diplomstudien
(Studies of Computer Science and Business Informatics)

March 2003 – Sept. 2005

 Vienna University of Technology (TU Wien)
Bakkalaurea technicae (B.Sc.) in Medicine and Computer
Science (“Medizinische Informatik”)

October 2005 – July 2009

 Vienna University of Technology (TU Wien)
Diplom-Ingenieurin (M.Sc.) in Medicine and Computer
Science (“Medizinische Informatik”) with distinction (mit
Auszeichnung)

September 2009 - Now

 Vienna University of Technology (TU Wien)
Doktoratsstudium der technischen Wissenschaften, Informatik
(PhD-Studies, Computer Science)

Additional Education and grants

August 1999

 Cannes, Frankreich
”Diplôm de Langue Francaise“

2009 Forschungsstipendium der TU Wien

April 2011 Poster-presentation at conference “Einsteins in the City”,
New York, funded by TU Wien

Publications and Theses

Tanja Sisel. Development of a Glycan-Binding Protein Database-Platform.
Master’s thesis, Vienna University of Technology, 2009

Ingo Feinerer, Gernot Salzer, and Tanja Sisel. Reducing multiplicities in class diagrams.
In Jon Whittle, Tony Clark, and Thomas Kühne, editors, Model Driven Engineering Languages
and Systems, 14th International Conference, MODELS 2011, Wellington, New
Zealand, October 16–21, 2011. Proceedings, volume 6981 of Lecture Notes in Computer
Science, pages 379–393. Springer-Verlag, October 2011.

Ingo Feinerer, Gerhard Niederbrucker, Gernot Salzer, and Tanja Sisel. Configuration repair
via flow networks. In Li Chen, Alexander Felfernig, Jiming Liu, and Zbigniew W.
Ras, editors, Foundations of Intelligent Systems – 20th International Symposium, ISMIS
2012, Macau, China, December 4–7, 2012. Proceedings, volume 7661 of Lecture Notes in
Computer Science, pages 321–330. Springer, 2012.

Ingo Feinerer, Gernot Salzer, and Tanja Sisel. Class diagrams with equated association
chains. In 7th International Symposium on Theoretical Aspects of Software Engineering,
TASE 2013, July 1-3, 2013, Birmingham, UK. IEEE Computer Society, 2013.

Talks

„Reducing multiplicities in class diagrams“, MODELS 2011 Conference, Wellington
(Neuseeland), Oktober 2011

„Configuration repair via flow networks“, ISMIS 2012 Conference, Macao (China), Dez. 2012

Professional Experience

February 2001 – April 2010

 Fritsch, Chiari & Partner (FCP), Wien
 Part-time employment, IT department
(Development of database-applications with MS Access)

April 2010 – March 2013 TU Wien, Universitäts-Assistentin
(Predoc), Institute for Computer Languages, Theory and Logic
Group

April 2013 – May 2013 TU Wien, Project Assistant, Institute for Computer Languages,
Theory and Logic Group

Main projects

Database-application for the financial management of a project (for the “ÖBB”)

Database-application for the administration and evaluation of “Telecom-Austria”-invoices

Database- application for the valuation of structural damages of residential buildings (for “Wiener
Wohnen”)

Several applications for internal usage (e.g. password-management)

Private Activities

Competitive Figure Skating (1988-1999)

Formation dancing (latin-american dances, 1999-2007)

Volunteer at “Dancer Against Cancer” (charity ball for “Österreichische Krebshilfe”) since 2007

	Introduction
	Motivation
	Problem Statement and Aim of the work
	Contributions
	Structure of the work

	Models and their instances
	Unified Modeling Language
	Basic Definitions
	Translation into linear inequalities

	Configuration Management
	Definitions
	Challenges in Configuration Management

	Associations and Association Chains
	Connected objects
	Composition of associations

	Reducing Multiplicities and Models
	Motivation
	Equations over association chains
	Reducing multiplicities
	Reducing Models

	Effects of Equality Constraints
	Satisfiability under equality constraints
	Minimal satisfying instance under equality constraints
	Tree-generating equations

	Linking Objects with Netflow Algorithms
	Motivation
	Flow Networks and the Minimum Cost Flow Problem
	Distributing Links
	Completing Configurations
	Repairing Configurations
	Priority Links
	Choosing the number of links
	Different costs – different results
	Can we get more for less?

	Related Work
	Formalising UML Class Diagrams
	Configuration Management and Reconfiguration
	Detecting Redundancies

	Conclusion
	Bibliography

