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Kurzfassung

In Bezug auf die Anzahl der Netzwerkknoten und die erforderliche Skalierbarkeit stoBen die
gegenwairtigen Internet-Technologien bereits an ihre Grenzen. Heutzutage sind ldngst nicht nur
mehr Computer, sondern auch Tablets, Smartphones und sogar kleinste Gerite, bis hinunter zu
Sensoren oder Aktoren mit dem Internet verbunden. Durch die breite Systemlandschaft entstand
in den letzten Jahren eine Vielzahl neuer Anwendungsgebiete, und damit verbunden eine Menge
neuer Technologien, wie zum Beispiel IPv6, ZigBee, 6LoWPAN, NFC oder RFID. Aus dem
Verbund dieser Technologien folgt das so genannte Internet of Things (1oT). Fiir dieses Internet
der Dinge ist es jedoch oft problematisch, einen Dienst (ein Service) im Internet zu addressieren,
da ein Client im Normalfall dafiir den genauen Bezeichner (URI) wissen muss.

Diese Masterarbeit stellt ein Konzept vor, das die starke Bindung zwischen Service und Ser-
ver lockert (unter Betrachtung von Sensor/Aktor Systemen). Hierfiir werden speziell Techniken
von IPv6 verwendet. Ein Client kann dabei eine nicht adressierte Anfrage an das Content Awa-
re Network stellen. Ein spezieller Router (Smart Router) empfingt das Paket und leitet es an
einen bestimmten Server weiter. Zu diesem Zweck beinhaltet die Anfrage ein Semantic Tag,
das von den einzelnen Netzwerkknoten interpretiert werden kann. Um die korrekte Zieladdres-
se zu bestimmen, befragt der Smart Router einen Resolver, der einen semantischen Reasoner
verwendet, um bekannte Fakten von einer Ontologie herzuleiten. Der Resolver wandelt die um
Fakten erweiterte Anfrage in eine spezielle Anfrage an einen Domain Server um. Nachdem die-
se aufgelost worden ist, wird sie an einen oder mehrere bestimmte Server weitergeleitet. Ein
solcher Server kann schlielich eine weitere, nicht adressierte Anfrage absenden, um bestimmte
Sensoren oder Aktoren anzusprechen. Zusitzlich zum inhaltsbasierten Weiterleiten von Anfra-
gen kann das Content Aware Network auch nicht addressierte Datenpakete korrekt routen, die
von Sensoren bzw. Aktoren nach einem bestimmten Ereignis gesendet werden (z.B. nach dem
Uberschreiten von bestimmten Schwellwerten).

Als Proof-of-Concept wurde ein Referenzsystem implementiert, das grundlegende Funktio-
nalitdten demonstriert. Das vorgestellte Konzept wurde in Bezug auf Performanz, Sicherheit und
Fehlertoleranz evaluiert. Der Durchsatz wurde anhand der benétigten Nachrichten gemessen und
mit einigen alternativen Ansitzen verglichen. Zum Schutz vor Angriffen wurde die Anwendbar-
keit von IPsec untersucht.






Abstract

Today’s Internet has reached its scalability limits with respect to the number of participants
and performance. Contemporary Internet devices are not just computers, but also tablets, smart
phones and even small devices, like sensors and actuators. A variety of new technologies is
inherent to these Internet appliances, like IPv6, ZigBee, 6LoWPAN, NFC or RFID. From the
combination of these technologies a new paradigm arises, the so called Internet of Things (10T).
The problem of all these new services is how a service can be addressed. Typically, a client has
to know the exact resource identifier (URI) in order to use a specific service hosted by a server
somewhere in the Internet.

This thesis provides a concept which relaxes the strong binding between service and server
by the use of IPv6 focusing on the addressing of sensors and actuators. A client can place
an unaddressed request to the so called content aware network. A special router, called smart
router, fetches the request and forwards it to a dedicated server, which is able to process the
request. To this end, the request contains a semantic tag which is interpretable by participating
network nodes. In order to determine the correct address of a server, the smart router inquires
a resolver. This resolver uses a semantic reasoner utilizing a smart routing ontology in order to
augment the request by known facts. The resolver converts the request to a more specific query
for a domain server. There can be several domain servers for a variety of domains. After the
initial primary request is sent to its target server, this server examines the request and performs
one or more secondary requests in order to set the corresponding actuators or to fetch current
values from sensors. This secondary request is also unaddressed and forwarded to the correct
network nodes by use of the inherent knowledge of the content aware network. In addition to
the correct routing of unaddressed client requests, the content aware network approach is also
able to route unaddressed data packets sent from sensor/actuator-units. Such a data packet can
be sent for example on the change of a node’s internal state (e.g. on the exceeding of certain
thresholds).

As a proof of concept, an elementary reference system is implemented. This implementa-
tion provides a reduced set of functionalities in order to evaluate the concept with respect to
performance, security and fault tolerance. The content aware network’s performance, measured
in the amount of messages, is compared to some theoretical alternative approaches. In order to
preserve security, IPsec is investigated.
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CHAPTER

Introduction

1.1 Motivation

We have reached an era where not only computers, but also smart phones, TVs, cars and even
smaller devices like temperature sensors are connected to the Internet. Typically, for retrieving
the desired content one has to know the exact URL on the Web. If someone does not know this
unique identifier, search engines must be used. Therefore, for getting the desired information
often an indirect way has to be taken. Then, when the desired data is found somewhere on the
Internet, it may not be in exactly the desired format. The user has to examine data from several
resources in order to aggregate all information to a required state.

Since these bypasses are not compliant to the user’s aim, it is natural to search for alterna-
tives. This master thesis handles the challenge of retrieving data from an IPv6 network by
not knowing the exact location of the information with a closer examination of S/A-systems
(Sensor/Actuator-System, i.e., a system which has the purpose of connecting sensors and actua-
tors to a set of network components). To this end, a user sends a dedicated unaddressed request
packet via its network interface. A special router (called smart router) catches the packet and
handles the request. It is even possible to inquire aggregated information from several sensors
(or to set multiple actuators at once) by a single request. The thesis also provides a reference
implementation of the provided concept based on standard PC hardware and several Java and C
programs.

For example, it is possible to use the provided technique in building automation systems or
on sensor buses in a car. While the the suggested concept’s field of application is dedicated to
S/A-systems, it is also possible to apply the concept in other areas.




1.2 Problem Statement

In the scope of the 1oT6 project [35]], a concept for a smart routing technique in IPv6 based
networks should be established. For this purpose, it should be possible not only to send packets
with dedicated source and receiver addresses, but also to send unaddressed packets which should
be routed based on the semantic tag of a packet. This semantic tag is a piece of machine-readable
information which describes the content of a network packet. According to the functionality of
a dedicated network component, such a component is able to understand and process a packet
compliant to its semantic tag. To this end, the concept should describe all needed network
components, as well as the techniques used for message exchange and semantic reasoning. Fur-
thermore, it should be possible to represent a real topological structure within the network to
augment semantic interpretation possibilities.

In addition to a self-contained concept, the thesis should provide an elementary reference imple-
mentation in order to evaluate and demonstrate the provided technique. The resulting network
should be auto-configurable and tolerant to faulty sensor nodes or broken network links.

1.3 Aim and Methodological Approach

The thesis provides the concept combined with an analysis and a reference implementation of a
content aware networking system. By the use of techniques acquired by this thesis, it should be
possible to augment the features of IPv6 by a complete new routing taxonomy. Instead of shifting
semantic interpretation of network packets to higher OSI layers, a full semantic processing of
such packets is performed at layers 3/4 (network layer, transport layer).

While there are cases of routing, where other factors (e.g. security, or QoS) matter, the
presented concept handles the task of finding a destination address to an unaddressed (semantic)
packet. Security issues are evaluated in the end of the thesis. The final result is a working system
of core functionality which serves as a reference design for the [oT6 project [35].

The initial step is an intensive literature research on the topics of Internet protocols, CCNs
(Content Centric Networks), smart routing and the Semantic Web. After this research, a tech-
nical concept is developed, containing necessary hardware and software components to build a
reference system. In this scope, available techniques are evaluated and an ontology is created.
This ontology represents typical components of a content aware network with a closer exam-
ination on S/A-systems in order to enable reasoning on the semantic tag of a network packet.
During the life cycle of the thesis, the created ontology gets augmented by more complex com-
ponents, properties and rules.

Afterwards, a reference network is implemented which consists of required hardware and
software components, like smart routers, resolvers, servers and clients. The thesis is concluded
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by an evaluation of the reference network. This evaluation discusses performance, security
and fault tolerance of the presented concept and compares the system with some alternative
approaches.

1.4 Structure of the Work

After a short introduction in Chapter[I] some state-of-the-art techniques are presented in Chap-
ter[2] This chapter summarizes several ubiquitous standards of the Internet of Things (IoT).

Chapter 3| explains the used technologies. It is shown by some examples how an OWL
ontology is built up, how Internet sockets are used, or how kernel modules are implemented.

The concept of a content aware network is introduced in Chapter @] First, some use cases
are defined. Starting from these use cases, needed network components and their interaction are
described. Sequence diagrams illustrate how client requests are handled, or how network nodes
are connected to the network and automatically configured.

Chapter [5 presents a reference implementation of the chosen concept. This reference imple-
mentation serves as a proof of concept and provides a basic set of features needed by a content
aware network. The chapter details all implemented components and packet types. The imple-
mentation’s message sequences are explained in the remainder of this chapter.

The presented concept and its reference implementation are evaluated in Chapter [6] This
chapter compares the content aware network to alternative approaches and discusses traffic
throughput and caching, as well as security and safety issues.

The thesis is concluded by a summary and an outlook of future work in Chapter |7}






CHAPTER

State of the Art

This chapter points out the limits of IPv4 and introduces some state of the art techniques on the
topics of network communication and Semantic Web.

2.1 Internet Oriented Visions

2.1.1 Limits of Current Internet Technology

In 2012, 2.4 billion people were connected to the Internet worldwide, compared to 361 million
back in 2000 [[18]] and there is still a rising tendency. Contributing to this large amount of Internet
users is certainly the still rising amount of smart phone users. Nevertheless, the set of available
IPv4 [21] addresses runs out in the next few years [20].

In addition to this shortage of IPv4 addresses, current Internet communication is generally
based on point-to-point connections. An Internet service is usually bound to a server with a fixed
address somewhere on the Internet. This means that a host needs to know the exact URL of the
server which provides a dedicated service. This attachment of service and server is no longer
appropriate.

Furthermore, binding a service to a specific server comes mostly with the price of single
point of failures. To avoid these, additional precautions in form of explicit redundancy must be
made, since current Internet communication does not provide techniques for a built-in redun-
dancy of services by default.




2.1.2 New Technologies
IPv6

In order to maintain Internet service despite the rapidly increasing number of Web-enabled de-
vices, a successor of IPv4 was developed, the Internet Protocol, Version 6 (IPv6) [[15]. With
the much bigger address space it is possible to connect even simple devices (e.g. freezers, tem-
perature sensors, electronic timetables at bus stops) to the Internet, enabling a whole new set of
possibilities. In contrast to a 32-bit IPv4 address, an IPv6 address is 128-bits wide. Therefore,
the IPv6 address space is 2”6 times larger than the address space of IPv4. The IPv6 packet header
is shown in Figure[2.1]

0 8 16 24 32

0 Version Traffic Class Flow Label

4 Payload Length Next Header Hop Limit

12
Source Address
16

20

24
28
Destination Address

32

36

Figure 2.1: IPv6 packet header.

Version (4 bits): The version field specifies the version of the IP protocol. In case of IPv6,
this field contains the constant 6.

Traffic class (8 bits): The traffic class field is used to classify packets in the manner of
QoS (quality-of-service).

Flow label (20 bits): The f1ow label field can be used to inform routers about subsequent
packets which should be sent over the same paths. This should avoid the reordering of
packets.



Payload length (16 bits): The payload length field contains the length of the [Pv6 packet’s
payload (in combination with all extension headers) in bytes.

Next header (8 bits): To specify the transport layer protocol, the next header field is used.
This field has the same function as the protocol field of the IPv4 header. In addition to
TCP (6) and UDP (17), the next header field can also specify protocols, like ESP (50) and
AH (51) which are used for secure communication via IPsec (see Section [2.1.2)

Hop limit (8 bits): The hop 1limit field replaces the IPv4’s TTL (time to live) field. It spec-
ifies how many routers the packet is allowed to pass, before it is discarded. Every router
has to decrement the value of this field by 1.

Source address (128 bits): The source address field contains the IPv6 address of the
packet’s sender.

Destination address (128 bits): The destination address field contains the IPv6 ad-
dress of the packet’s receiver.

In addition to longer addresses, IPv6 also provides a set of new features. One of them
is IPv6 multicasting which replaces the inflexible broadcasting functionality of IPv4. While
broadcasting reaches always all participants of a network, multicasting can be configured in a
way, such that only interested parties receive a multicast packet. To this end, an IPv6 device must
be added to a dedicated multicast group by just binding the corresponding multicast address to
one of its interfaces. Multicast addresses have the format FF00: : /8 (i.e., FE<x><y>: :<z>),
where FF indicates that this address is a multicast address. The next eight bits are reserved for
flags (x: 4 bits) and the scope (y: 4 bits). The remainder of the address (z) is used to identify
the multicast group. Important flag bit values are:

0b0000: permanent multicast address (assigned by the IANA)

0b0001: transient or dynamic assigned multicast address
The next four bits specify the scope of the multicast address. Some defined scopes are:

1: Node-local scope multicast addresses have the same functionality as the IPv4
loopback address (127.0.0.1). They never leave an interface.

2: Link-local scope multicast addresses are never forwarded by routers. These
addresses are used to address the local subnet.

e: Global scope multicast addresses. They can be routed world wide.

0, f: Reserved scopes.



Examples for predefined multicast addresses are:

All nodes: FF02::1

All routers: FF02::2

Similar to IPv6 multicasting is IPv6 anycasting. Anycasting can be used to increase a ser-
vice’s availability by adding equivalent servers to a network. Each server has the same IPv6
address assigned. The router tables only have shortest routes stored, so only the nearest server is
visible to a router. On the reception of an anycast packet, a router does a look-up in its routing
table and forwards the packet automatically to just one (the nearest) server. On the failure of one
server, the routes are automatically updated to an alternative server.

IPsec

As mentioned above, IPv6 also provides techniques to secure communication by encryption and
authentication by the use of IPsec [36]. IPsec is a protocol suite specified by the IETF to secure
network communication by authentication and encryption. Unlike SSL/TLS which is based
on the transport layer of TCP/IP, IPsec works directly on the network layer. IPsec can protect
communication paths

1. between two hosts,
2. between two security gateways, or

3. between a security gateway and a host.

Hosts implementing IPsec must support (1) and (3), while a security gateway must support
all three protection types.

IPsec creates a security boundary (see Figure in order to secure network communication.
For any packet, an IPsec enabled device has to decide if the packet should be discarded, by-
passed, or protected.

IPsec provides two protocols, to secure network communication, IP Authentication Header
(AH) [24]] and Encapsulating Security Payload (ESP) [25]. For an IPsec implementation, ESP
support is mandatory, while AH is optional. AH offers integrity and data origin authenticity,
while ESP also provides confidentiality. Both protocols can be used for access control by the use
of key distribution and the use of an SPD (Security Policy Database) which manages traffic flows.
In most cases, it is enough to support ESP. For key management and distribution, IKEv2 [3] is
proposed (but an implementation can also use other techniques for key management).
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Figure 2.2: Network protection by IPsec [36].

IPsec supports two modes of operation: In transport mode, the IPsec header is located be-
tween the IP header and the transport header. Therefore, protection is provided for next layer
protocols. Operating in tunnel mode, whole IP packets can be packed into the payload of an
IPsec packet. This mode is used to create virtual private networks (VPNs).

IPsec creates security functions by the use of security associations. A security association con-
tains a set of algorithms and keys to authenticate and encrypt a uni-directional traffic flow. For
bi-directional communication, two security associations are needed. There is also the possibil-
ity to define security associations for a multicast group. In addition, a participant may support
multiple security associations.

In order to describe the used protocols of a security association, an SADB (Security Associ-
ation Database) is used. An outgoing packet has to provide an SP I (Security Parameter Index).
Together with the destination address, an SPI uniquely identifies a security association con-
tained in the SADB for a specific packet. For incoming packets, a similar procedure is performed
to get decryption algorithms and keys from the SADB.

IEEE 802.15.4

IEEE 802.15.4 [28]] is a standard based on the physical layer and the media access control layer
of the OSI-model (see Figure [2.3). The standard is dedicated to Low-Rate Wireless Personal
Area Networks (LR-WPANS5). It is a basis of upper level standards, like ZigBee or 6LoWPAN
which describe higher OSI-layers, not contained in the specification of IEEE 802.15.4.
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Figure 2.3: IEEE 802.15.4 protocol stack.

IEEE 802.15.4 works on one of these three unlicensed frequency bands:

e Three channels in the 868.0-868.6 MHz band (Europe)
o Up to 30 channels in the 902-928 MHz band (North America)

e Up to 16 channels in the 2400-2483.5 MHz band (worldwide)

There are two types of network nodes defined, namely full function devices (FFD) and re-
duced function devices (RFD). An FFD is (in addition to normal operation) able to route packets.
If an FFD manages the whole network, it is called a PAN coordinator. An RFD is a very simple
device with low resources. Only elementary functions are implemented by an RFD in order to
communicate with FFDs.

IEEE 802.15.4 supports two different topologies, namely peer-to-peer and star networks.
Each of them needs at least one PAN coordinator. Peer-to-peer networks can create arbitrary
links between any devices in range, while star networks are bound to the star pattern.

ZigBee

ZigBee [28] describes the network and application layers on top of an IEEE 802.15.4 network
(see Figure [2.3). In contrast to Wi-Fi (IEEE 802.11), ZigBee networks can build hierarchical
wireless mesh networks. This means that it is possible to deliver packets entirely wirelessly by
multiple hops (e.g. a node sends a packet to another one which acts as a wireless router and
forwards the packet according to a routing policy. After a few hops, the packet arrives at its final
destination. The advantage of this approach is that far off destinations can be reached with low
power devices.
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To form a ZigBee network, a PAN coordinator must choose a channel which is free of
disturbances and interferences. Afterwards, arbitrary nodes can send beacon requests in order
to connect to the network. In the first phase, only the PAN coordinator answers the beacon, but
when the network also contains FFDs (ZigBee routers), it is also possible that such a device

responses to a beacon request.

6LoWPAN

IPv6 has the big drawback of a huge packet header. This means for small devices a severe over-
head of memory space and bandwidth. 6LoWPAN (IPv6 over Low power Wireless Personal
Area Networks) [27] provides a reduced IPv6 protocol stack optimized for low power wireless
networks (based on IEEE 802.15.4) where the resources are too limited for standard IPv6 net-
works (e.g. for home and building automation or entertainment systems).

By careful inspection of packet headers, 6LoWPAN reduces the IPv6- and UDP headers to 7
bytes [34]]. The reduced 6LoWPAN packet header is illustrated in Figure 2.4]

0 8 16 24 32
S|P|A|P D \2 S
length TYP |E[N|cC|1 RES A E A DSN \
c|D|K]|C M R M
PAN id
destination
802.15.4
source

J

dispatch HC1 hop limit HC2
6LoWPAN

UDP source| UDP dest. checksum

application payload

CRC

Figure 2.4: 6LoWPAN packet header [34].

The version field of the IPv6 header is always 6 and the 1ength field is the equal to the
length field of the IEEE 802.15.4 minus the IPv6 header length. The fields flow label
and traffic class are never used. Hence, these four fields can be simply removed. Usu-
ally, the next header field points to either UDP or TCP. An 8-bit field is therefore a huge
waste, so it is replaced by 2-bits within the HC1 field of the 6LoWPAN header. In addition, IPv6
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addresses can be computed out of IEEE 802.15.4’s 64-bit MAC addresses [/]], which makes the
source and destination fields of the IPv6 header unnecessary. For the UDP header, the
length also can be computed out of the IEEE 802.15.4’s 1ength field, which saves again 2
bytes. In addition, in most cases 4-bits are sufficient for UDP port numbers, so source and
destination UDP port fields are shrinked to 4 bits.

6LoWPAN implementations are available for a variety of (embedded) operating systems (e.g. for
Contiki or TinyOS). Since 6LoWPAN is based on IPv6, there are many standards and protocols
available which can be used. Therefore, instead of starting from the beginning by implementing
a new protocol, a developer can use one of many existing, tested and working implementations.

2.2 Things Oriented Visions

2.2.1 Automated Life

Modern technology allows almost everything to be automated. For example, consider shipment
tracking. There is no human being involved when someone wants to retrieve the exact location
of his parcel. Another example would be the cashless payment method that comes with your
bank account. Again, no person is involved when you put your debit card into a ticket machine
in order to pay a train ticket. To enable such automated processes for everyday use, a variety of
technologies exist. This section describes two of them.

2.2.2 NFC

NFC (Near Field Communication) [29] is an international standard for short distance wireless
communication based on induction. The maximum data rate is 424kbit/s. A possible appli-
cation of NFC is cashless payment. Modern credit cards have a small non-powered NFC chip
included. In order to pay with such a card, it is no longer required to plug the card into a termi-
nal. The only thing to do is just holding the card near to an NFC enabled reading device. NFC
is also supported by high end smart phones. With such a smart phone, it is on the one hand
possible to exchange data with other devices (telephone numbers, Wi-Fi settings, etc.), but it is
also possible to use the smart phone for payment, like an NFC-enabled credit card. In addition,
there are so called NFC-tags. These small non-powered chips, which contain a unique identifier,
can be used for merchandise management systems, backtracking of shipped goods or similar
applications.

2.2.3 RFID

Similarly to NFC-tags, RFID (Radio Frequency Identification) provides short distance wireless
communication with powerless chips. The induction based RFID standard is used for authen-
tication systems. To this end, an RFID system consists of an RFID-tag which is connected to
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an antenna and an RFID reading device. The RFID-tag can be best compared to a key and the
reading device is the lock of a specific door. There are a lot of different designs of RFID-tags:
check cards, buttons, key tags, etc.

2.3 Semantic Oriented Visions

2.3.1 Content Awareness

First of all, the Semantic Oriented Visions have to deal with data collection, storage and address-
ing. Consider a set of resources which provide the same type of data, but differently formatted
(e.g. three temperature sensors, where one measures the temperature in Celsius, one in Fahren-
heit and the third one in Kelvin). The technologies included in the Semantic Oriented Visions
must be able to correctly combine the resources and make decisions based on the gained infor-
mation.

Furthermore, by the nature of the Internet’s inherent point-to-point strategy of network com-
munication, network technologies will have to deal with a large amount of traffic. Concern-
ing this, it is important that future Internet communication provides more intelligent routing
paradigms based on the semantic information of a packet. To this end, the Semantic Oriented
Visions present machine readable languages for processing a chunk of information by so called
semantic reasoners. Unfortunately present automatic semantic interpretation is only performed
at higher layers of the OSI-model, limiting the possibilities of smart routing.

A dedicated program should be able to make decisions based on semantic information. In
this context, Content Aware means that a machine is able to read and understand the meaning
of a piece of information. For instance, a router with semantic interpretation possibilities (i.e., a
smart router) should not only be able to route a packet based on its destination address, but also it
should be possible to make routing decisions based on the content of a network packet. Network
packets can be handled differently according to their type. Video streams can be processed with
a higher priority than emails, since a router is able to examine the internals of a network packet.
For this purpose, every packet must provide a piece of machine readable information, a so called
semantic tag. Whether the complete packet is interpretable by a component or just a part of it
depends on the application. To come back to the example, a video stream must only contain
some machine readable meta-information, while for an email it may be also interesting if the
mail body contains any keywords like urgent, or important.

2.3.2 Semantic Web

Today’s Web is full of semi-structured or unstructured data. For a machine it is hardly possible to
interpret and process the information contained in such chunks of human readable data. There-
fore, it is necessary to add some meaning (i.e., meta information) to this data. It is important to
structure information on the Web such that a piece of software can identify the type and meaning
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of it in a way to combine and augment it with information from other resources. An example
of such an application would be a smart search engine which is able to collect information from
search results of several Web pages into one structured list. Due to the interpretable information
it is possible to infer new facts and combine them in a machine readable search result.

The Semantic Web now provides the needed features to systematically interpret and process
content on the Web. Structured data, combined with its meta information is stored within one or
more ontologies. Due to the adding of meta information to data, the association of a service to
a dedicated server is relaxed. Several ontologies can be combined arbitrarily in order to create
new services. With redundant information within these ontologies, single point of failures can
be avoided implicitly.

With RDF and OWL [39], the W3C [6]] provides languages to build complex ontologies. There
are several reasoners [4] [30] to infer not directly encoded facts and relations. By the use of
query languages [40], it is possible to make decisions based on given ontologies.

For the use with S/A-systems several sensor and observation ontologies have been devel-
oped. These can be divided into more observation-centric respectively more sensor-centric
ontologies. While the main goal of observation-centric ontologies is the representation of mea-
surements, the focus of sensor-centric ontologies is the description of devices. The observation-
centric SENSEI [9]] ontology provides an information model to represent sensor values. To each
value several parameters, like type, date, origin, sensor id and accuracy can be stored. The
sensor-centric MMI Device Ontology [22]] was developed to represent oceanographic sensors
and samplers. It can be used to characterize devices in order to provide a discovery service of
available sensors to Web-applications.

2.3.3 Content Aware Networking Approaches
Content Centric Networking (CCN)

Content Centric Networking (CCN) also entitled as Named Data Networking (NDN) is presented
in [17]. CCN is a radically new approach of the way network communications should be estab-
lished. It distinguishes between two types of packets, namely interest and data packets (see
Figure [2.5). A data packet satisfies an interest packet, if the content name of the interest packet
equals the prefix of the content name of the data packet. Like the addressing scheme of IP, con-
tent names are hierarchical (e.g. /ThisRoom/projector is a valid content name). Content
validation can be established by providing digital signatures within data packets.

Every participant of the network is able to send an interest packet of a specific type. CCN
routers have to forward the interests according to the Forwarding Information Base (FIB) and
store them in a Pending Interest Table (PIT). Interest packets can then be answered by arbitrary
participants of the network by sending a corresponding data packet. It is possible that more
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Figure 2.5: CCN packet types [[17].

than one interest gets satisfied by one data packet. If an interest is satisfied, it is removed from a
router’s PIT. In addition, CCN routers cache data packets in so called Content Stores for a higher
throughput.

The steps for handling an interest packet are the following: On the reception of an interest
packet, a router has to perform a longest-match look-up for the content name on its Content
Store. If there is a match, this means that the router has cached a suitable data packet. There-
fore, the interest can be directly answered. Otherwise, a look-up in the router’s PIT is made to
determine if the router has already forwarded a similar request which was not satisfied yet. In
this case, the interest is added to the corresponding entry in the PIT. Only when no matching
entry in the Content Store or the PIT was found, the packet is forwarded according to the router’s
FIB. In this case, also a new entry is created in the PIT.

On the reception of a data packet, a router has to examine all pending interests. If there is
a match, the data packet must be forwarded to all belonging faces (i.e., network interfaces or
software processes). In addition, the data packet must be stored in the Content Store.

Unfortunately, the current reference implementation (CCNX) has some issues achieving the de-
sired performance. To this end, [19]] analyzes the performance of the CCNx implementation
and simplifies its forwarding structure. Optimized concepts, issues and principles are presented
which should increase the throughput of CCNx to up to 10 Gbps by the use of hardware accel-
eration.

Data-Oriented (and Beyond) Network Architecture' (DONA)

The "Data-Oriented (and Beyond) Network Architecture” (DONA) [[16] proposes to replace the
current DNS names with flat, self-certifying names and the DNS name resolution with a name-
based anycast primitive which is located above the IP layer. Rather than naming a server on
the Internet, some dedicated service or data is named by a pair of the cryptographic hash of the
publishers public key P and a human-readable label L. A client asking for data with the name
P:L eventually receives a triplet <data, public key, signature>. The client can
check if the data really comes from the supposed sender. While DONA suggests an interesting
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way of naming content on the Internet, its goal is not directly in the semantic representation of
the content itself.

2.4 Putting Everything Together

When considering all these new technologies, one can observe that through their ensemble, a
new paradigm of Internet communication arises: the so called Internet of Things (loT). It is ob-
vious that IoT does not stand for a particular technique, but for a set of strategies and concepts
to seize the interconnection of mostly low-power and resource-efficient Internet connected de-
vices. For example, for modern shipment tracking it is possible to trace a parcel by attaching
small tags on it (RFID- or NFC-tags). At any major location, this tag can be read. Since these
reading devices are connected to the Internet, a customer is able to retrieve the actual position
of the parcel. It is obvious that many technologies belonging to the IoT work in the background
with no human involvement. These systems shall not disturb, but help people in various situ-
ations. The IoT combines three visions of contemporary devices: First, there are the Internet
oriented visions. To this part protocol standards, like ZigBee or 6LoWPAN can be counted.
Then, there are the things oriented visions which contain techniques like NFC or RFID. Finally,
there are the semantic oriented visions [13]] which are mostly based on the Semantic Web.

In the scope of the IoT, many concepts and theories about the future Internet exist. One of
them is the Cognitive Net [26]. The Cognitive Net wants to extend the network infrastructure in
a way, such that whole network streams can be routed at once, instead of sending every packet
on its own path through the network. This should reduce routing overhead. In addition, it should
be possible to define priorities for data streams. For example, a high definition video stream
should have a higher priority than a file download. In the case of network overload, it should
also be possible to spontaneously form mesh-networks out of existing infrastructure which is
not primary used for Internet communication (like Bluetooth).

On the other hand, also projects exist which try to provide reference systems to serve as
recommendations for future Internet communication. One example is the IoT-A, the Internet of
Things - Architecture [33]]. Another one is the IoT6 project [35]] which is a European research
project and part of the 7th Framework Programme [5]]. The focus points of these projects are
the investigation of IPv6 and inherent techniques. They try to integrate all relevant technologies
(such as NFC, 6LoWPAN, ZigBee, Semantic Web, etc.) into one whole concept in order to seize
the jungle of uncoordinated standards, projects and programming techniques. These projects
must eventually deal with the semantic interpretation possibilities of a vast amount of different
network nodes, like sensors, actuators, etc.
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CHAPTER

Technologies

This chapter provides a description of used technologies and programming techniques. It should
serve as a rough manual in order to understand the subsequent chapters.

3.1 Sockets

3.1.1 Overview

Communication between two applications, hosted on either the same or on two different nodes,
is established by so called sockets. A socket is a bidirectional communication tunnel with two
ports, one for each application. In this context, a special consideration to Internet sockets is
taken. An Internet socket is used to communicate with a piece of software (a server or a client)
somewhere on a remote computer. There are three types of sockets: Datagram, stream and raw
sockets.

3.1.2 Socket Types
Datagram sockets

A datagram socket is used for connection-less communication, like it is used for UDP. It is
possible to communicate with a lot of network partners over one datagram socket, but there
is no assignment of messages to a dedicated communication cycle, since there is no message
stream.

Stream sockets

Connection-oriented communication is done via a stream socket. Such a socket establishes a
connection to a remote program, before communication is possible. Once a stream socket is
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opened, it can only be used for exact one communication stream (with one network partner).
Nevertheless, the big advantage of a stream socket is its assignment of messages to a dedicated
communication cycle.

Raw sockets

There may be some cases where neither datagram nor stream sockets provide the needed func-
tionality. Each of them may restrict the communication in a way, such that the desired behavior
cannot be fulfilled. In this case, a raw socket has to be used. A raw socket provides just mini-
mal functionality to the application side, which enables full access to all packet headers and the
possibility to implement an alternative transport layer.

3.1.3 How to Use a Socket

This section provides some examples for the use of datagram socket communication over IPv6.
The provided examples are all programmed in C on a Linux machine (Ubuntu 12.04.2 LTS),
but since socket communication is provided by the operating system through system calls, the
functions shall be similar in other programming languages.

Listing[3.1]shows a function to open a datagram socket. The function returns the ID (i.e., the
file descriptor) of the created socket. In order to use UDP over IPv6, the parameters PF_INET®6,
and SOCK_DGRAM must be applied to the socket () function. Next, a valid source address
structure must be bound to the socket (by using bind (). For this purpose, a specific port
and IPv6 address may be set. It is also possible (like in the example), to use O as port and
in6addr_any as IPv6 address. In this case the operating system uses any address of an arbi-
trary interface as source address and an arbitrary free UDP port. By calling get sockname ()
the actual socket address (IPv6 address in combination with an UDP port) can be determined.

int open(void) {
socklen_t sin6len;
int sock;
struct sockaddr_in6 src_addr;

sin6len = sizeof (struct sockaddr_in6);
sock = socket (PF_INET6, SOCK_DGRAM,O0) ;

if (sock < 0)
return sock;

memset(&src_addr, 0, sizeof(struct sockaddr_in6));

src_addr.sin6_port = htons (0); /+* any port */
src_addr.sin6_family = AF_INET6; /*x use IPv6 =x/
src_addr.sin6_addr = in6addr_any; /% any address assigned to this machine =/

/+* bind the socket to src_addr =/
bind (sock, (struct sockaddr *)&src_addr, sin6len);
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/* get the actual socket address x/
getsockname (sock, (struct sockaddr *)&src_addr, &sin6len);

return sock;

Listing 3.1: Create a datagram socket

Listing[3.2]demonstrates a function which can be used to receive data from a network socket.
The function uses recvfrom() to receive data from a specific socket. The function pro-
vides the received data in the pointer buf fer. The address of the packet’s sender is stored in

rx_src_addr.

size_t rcv(int sock, void xbuffer, size_t buffer_len, struct sockaddr_in6 xrx_src_addr)

{
socklen_t sin6len;
size_t rx_len;

sin6len = sizeof(struct sockaddr_in6);
/% fill buffer with received data =/
rx_len = recvfrom(sock, buffer, buffer_len, 0, (struct sockaddr x)rx_src_addr, &

sin6len) ;

/+* clear not used section of the buffer =/
memset (((uint8_t =x)buffer)+rx_len, 0, buffer_len—rx_len);

return rx_len;

Listing 3.2: Receive data from a datagram socket

Listing[3.3|provides a function to send data to a dedicated IPv6 address and port over an ex-
isting socket. To use IPv6 addresses, AF_INET 6 must be used as address family. inet_pton ()
is used to convert IPv4 or IPv6 addresses from text (string) to binary form. Finally sendto ()
is used to send the contents of buffer to the specified destination address over an existing
socket.

size_t send(int sock, char xdest_addr_s, int dest_port, void xbuffer, size_t buffer_len

) |
socklen_t sin6len;
struct sockaddr_in6 dest_addr;

sin6len = sizeof (struct sockaddr_in6);

/% clear destination address x/
memset(&dest_addr, 0, sizeof(dest_addr));

/x set destination address type to INET6 =x/
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dest_addr.sin6_family = AF_INET6;

/* the server IP address, in network byte order =x/
/* dest_addr_s contains the destination IPv6 address as string x/
inet_pton (AF_INET6, dest_addr_s, &dest_addr.sin6_addr);

/* the port we are going to send to, in network byte order =/
dest_addr.sin6_port = htons(dest_port);

/* buffer contains the data to send
return sendto (sock, buffer, buffer_len, 0, (struct sockaddr x*)&dest_addr, sin6len);

Listing 3.3: Send data over a datagram socket

Listing [3.4] closes an open socket by first calling shutdown () to stop communication in
both directions. The second argument specifies the direction: 2 must be used for both, receiving
and transmitting. Finally, close () destroys the file descriptor.

closeSocket(int sock) {
if (sock > 0) {
shutdown (sock, 2);
close (sock);

Listing 3.4: Close a datagram socket

3.2 Kernel Modules

3.2.1 Overview

Sometimes it is not enough to execute a program in user space. In this case, a kernel module can
be created. A kernel module has to be registered at the kernel. After the registration it allows
to execute code in kernel space. Kernel modules should be kept small and simple. They should
avoid too much dynamic memory allocation. Instead, static memory allocation should be pre-
ferred when possible.

Listing[3.5|shows an example of a simple kernel module. module_init () is used to register a
function which is called when the module is initialized (in this case init () ). module_exit ()
is used to register a function which is executed when the kernel module is unregistered. printk ()
can be used to print info and error messages to /var/log/kern.log.
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#include <linux/kernel.h>
#include <linux/module.h>

()

4 #define NAME "[kernel—demo] "
#define ERROR(args ...) printk (KERN_ERR NAME args)
#define MESSAGE(args ...) printk (KERN_INFO NAME args)

=2

8 static int __init init(void)

{
10 MESSAGE( "Hook registered\n");

2 /* return 0 for success*/
return 0;

14}

16 static void __exit exit(void)

{
18 MESSAGE( "Hook unregistered\n");

}

module_init(init);
22 module_exit(exit);

Listing 3.5: Demo kernel module (kdemo.c)

To build a kernel module, a special makefile has to be employed (see Listing [3.6). After
building the kernel module by calling make, the module can be registered at the kernel by calling
sudo insmod kdemo.ko. To unsubscribe the module, sudo rmmod kdemo.ko must
be executed. Listing[3.7]entails the output of the kernel module printed to /var/log/kern.log

obj—m += kdemo.o

§)

all:
4 make —C /1lib/modules/$(shell uname —r)/build M=$(PWD) modules

6 clean:
make —C /1lib/modules/$(shell uname —r)/build M=$(PWD) clean

Listing 3.6: Makefile for demo kernel module

I Aug 30 10:00:07 A kernel: [125563.395241] [kernel—demo] Hook registered
Aug 30 10:00:33 A kernel: [125590.071105] [kernel—demo] Hook unregistered

Listing 3.7: Log output of demo kernel module
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3.2.2 Netfilter

Netfilter hooks (see [23]], [[12] Chapter 19.3) implement the packet-filtering functionality in
Linux. They can be used to monitor, filter and manipulate network packets before they are
rerouted or arrive at the source application. Netfilter hooks have to be registered within kernel
modules. It is possible to attach a hook at five different positions of the Linux packet filtering
architecture (see Figure [3.1):

NF_INET PRE_ROUTING: This is the first possibility to register the hook. All routing code
is executed after this hook.

NF_INET_LOCAL_IN: All incoming packets to this computer pass these hooks.

NF_INET_FORWARD: All packets which just pass this machine are passed to these hooks.
Before and after these hooks, the packets must pass the routing engine.

NF_INET_LOCAL_OUT: All outgoing packets which have their source at this computer must
pass these hooks.

NF_INET POST_ROUTING: All packets which are forwarded to other computers pass these
hooks.

Device driver
(input)
Device driver
CRC Check (output)
Consistency checks
NF_INET_PRE_ROUTING NF_INET_POST_ROUTING
Routing
Routing NF_INET_FORWARD

NF_INET_LOCAL_IN Higher layers NF_INET_LOCAL_OUT
- - = Local processes - - -

Figure 3.1: The packet filtering architecture of Linux [12].
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Listing[3.8|shows an example to register a netfilter hook within a kernel module. AF_INET6
is used to filter IPv6 packets. The priority is set to NF_IP6_PRI_FIRST which is the highest
possible priority (INT_MIN). Priorities are sorted in ascending order. hook_func () is the
function to call, when a packet passes the hook.

nfho . hook = hook_func; /% function to call =x/

nfho .hooknum = NF_INET_PRE_ROUTING; /% called right after packet received x/
nfho . pf = AF_INET6; /+ IPv6 packets x/

nfho. priority = NF_IP6_PRI_FIRST; /+* set to highest priority x*/
nf_register_hook(&nfho); /+* register hook =/

MESSAGE( "Hook registered\n");

Listing 3.8: Register a netfilter hook

Listing [3.9] shows a simple netfilter hook function which logs the source and destination
address of any IPv6 packetto /var/log/kern.log.

unsigned int hook_func(unsigned int hooknum, struct sk_buff xskb, const struct
net_device *in, const struct net_device *out, int (xokfn)(struct sk_buff x))

{
struct ipv6hdr xip_header;

ip_header = (struct ipv6hdr ) ipv6_hdr(skb);
if (!skb Il !ip_header) {
ERROR( "Problem during packet filtering!");

return NF_ACCEPT;
}

MESSAGE( "GOT packet from %pl6 to %pl6\n", &(ip_header—>saddr), &(ip_header —>daddr))

’

return NF_ACCEPT;

Listing 3.9: Netfilter hook function

3.2.3 Netlink

Kernel modules should be small and simple. Hence it is important for most applications to shift
functionality to the user space. To this end, a communication mechanism is needed, such that
a client program can exchange data with the kernel space. This functionality is provided by
netlink sockets [[11]].
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Kernel Module Functions

Listing[3.10]shows how to create a netlink socket on the kernel side. net 1ink_kernel_create ()

creates the socket and net1ink_register_notifier () registers an event notifier which
is used to get informed about netlink events (e.g. connection closed by user space program).
NETLINK_USER must be set to an arbitrary unique id. This id is used to reference to the cor-
rect netlink socket from the client program. n1_recv_msgqg is the name of the receive function.
When a connected process sends data to the kernel space, this function is called.

#define NETLINK_USER 31

// Notifier event of netlink socket
static struct notifier_block nl_notifier = { nl_event, NULL, 0 };

// Netlink socket
struct sock *nl_sk;

nl_sk = netlink_kernel_create(&init_net , NETLINK_USER, 0, nl_recv_msg, NULL,
THIS_MODULE) ;

// Setup netlink notifier
netlink_register_notifier(&nl_notifier);

Listing 3.10: Open a netlink socket (kernel space)

A registered event notifier (see Listing is a simple function with three arguments. The
second argument (event) contains the type of the raised event (e.g. NETLINK_URELEASE
when a client shuts down the connection). The third argument contains a pointer to a dedicated
netlink_notify structure which can be used to access information about the user space
application (PID and used protocol) which initiated the event.

static int nl_event(struct notifier_block =xthis, unsigned long event, void *ptr) ({
struct netlink_notify *n = ptr;

[...]

return NOTIFY_DONE;

Listing 3.11: Fetching netlink events (kernel space)

The registered receive function n1_recv_msg () (see Listing[3.12)) has exactly one argu-
ment which is used to access the received data and the PID of the sender process.
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static void nl_recv_msg(struct sk_buff xskb) {
struct nlmsghdr *nlh;
int user_pid;

nlh = (struct nlmsghdrx*)skb—>data;
MESSAGE( "Netlink received msg payload: %s\n", (char*)nlmsg_data(nlh));
user_pid = nlh—>nlmsg_pid; /% pid of sending process =/

}

Listing 3.12: Receive function for netlink sockets (kernel space)

Listing shows how to close a netlink socket from kernel side. For this purpose, the func-
tion netlink_kernel_release () must be called. In addition to closing the socket, the
netlink event notifier has to be unregistered by calling net 1ink_unregister_notifier ().

// close socket
netlink_kernel_release (nl_sk);

// unregister notifier

netlink_unregister_notifier(&nl_notifier);

Listing 3.13: Close a netlink socket (kernel space)

User Space Functions

To exchange data with a kernel module, a user space program also has to open a netlink socket
by calling socket () (see Listing [3.14). Netlink communication is done through a raw socket
(i.e., SOCK_RAW) with the communication domain PF_NETLINK. In order to communicate
with the correct kernel module, NETLINK_USER must be set to the same value in both, the
kernel module and the user space application. Source and destination socket addresses must be
bound to the AF_NETLINK address family. While for the source address the PID has to be set
to the correct ID of the user space process, the PID of the kernel module must be set to 0 by
definition. In order to communicate with exactly one kernel module (unicast), n1_groups of
the destination address must be set to 0.

#define NETLINK_USER 31

struct sockaddr_nl src_addr, dest_addr;
int sock_fd;

[...]

void netlink_create (void) {
sock_fd = socket(PF_NETLINK, SOCK RAW, NETLINK_USER) ;

if (sock_fd<0)
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return ;

memset(&src_addr, 0, sizeof (src_addr));
src_addr.nl_family = AF _NETLINK;
src_addr.nl_pid = getpid(); // self pid

bind (sock_fd, (struct sockaddrx*)&src_addr, sizeof(src_addr));

memset(&dest_addr, 0, sizeof(dest_addr));
dest_addr.nl_family = AF_NETLINK;
dest_addr.nl_pid = O0; // For Linux Kernel
dest_addr.nl_groups = 0; // unicast

Listing 3.14: Open a netlink socket (user space)

In order to send data to the kernel module, sendmsg () must be called (see Listing [3.15).
To this end, a n1msghdr structure must be filled with the correct destination address, data and
user PID.

#define MAX PAYLOAD 1024 // maximum payload size

struct iovec iov;

int sock_fd;

struct msghdr msg;

struct sockaddr_nl dest_addr;

void netlink_send (char *xdata) {
static struct nlmsghdr *nlh = (struct nlmsghdr x)malloc (NLMSG_SPACE(MAX PAYLOAD) ) ;

memset(nlh, 0, NLMSG_SPACE(MAX PAYLOAD) ) ;
nlh—>nlmsg_len = NLMSG_SPACE(MAX PAYLOAD) ;
nlh—>nlmsg_pid = getpid ();
nlh—>nlmsg_flags = 0;

strcpy ((char *)NLMSG_DATA(nlh), *data);

iov.iov_base = (void x*)nlh;
iov.iov_len = nlh—>nlmsg_len;

msg.msg_name = (void *)&dest_addr;
msg.msg_namelen = sizeof(dest_addr);
msg.msg_iov = &iov;

msg.msg_iovlen = 1;

sendmsg (sock_fd,&msg,0) ;

Listing 3.15: Send data to a kernel module over a netlink socket (user space)
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)

In order to receive data from the kernel side, recvmsg () must be called (see Listing[3.16).
The received data is then filled into a msghdr structure. By the use of NLMSG_DATA (), the

user space application can access a pointer to the data sent by the kernel module.
int sock_fd;

struct msghdr msg;

Losol

size_t netlink_rcv (char xxdata) {
struct nlmsghdr *nlh;
size_t size;

recvmsg (sock_fd, &msg, 0);

nlh = (nlmsghdr =)(msg.msg_iov—>iov_base);
size = nlh—>nlmsg_len — sizeof(struct nlmsghdr);

xdata = (char *)NLMSG DATA(nlh);

return size;

Listing 3.16: Receive data from a kernel module by a netlink socket (user space)

A netlink socket is closed like any other socket by calling close () (see Listing [3.17).

int sock_fd;

[...]

netlink_close (void) {
if (sock_fd > 0) {
close (sock_fd);
sock_fd = —1;

Listing 3.17: Close a netlink socket (user space)
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3.3 OWL (Web Ontology Language)

3.3.1 Overview

OWL [39]] which is developed by the W3C [6] is a language to define ontologies used by the Se-
mantic Web. OWL 2 is an extension of the original OWL language which augments expression
capabilities.

An OWL ontology consists of classes, object properties, data properties and instances. A class
contains meta information which is used by one or more instances. Classes and properties can
be defined hierarchically (with the possibility of polymorphism), which means that child classes
(respectively properties) inherit the characteristics from their parents.

An entity of a class is called instance. For example, a class can be Human, with two child
classes Man and Woman. Some instances can be Bob, and Alice. Bob is an instance of Man and
Alice is an instance of Woman.

Object properties are used to specify relations between instances. For example, the object
property marriedTo can be applied to Alice with the value Bob. Hence Alice is married to Bob.
For convenience, it is possible to specify such properties transitively or (which makes for this
example more sense) symmetric. A semantic reasoner can then infer derived properties from
such specifications.

Data properties are used to store some information to an instance. Consider the data property
age which is of type integer. Applied to Bob it may has the value 34 and applied to Alice it has
the value 30. Listing [3.18|shows the OWL ontology belonging to this example.

<?xml version="1.0"7>

<!DOCTYPE Ontology [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >
<!ENTITY xml "http://www.w3.o0rg/XML/1998/namespace" >
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf —schema#" >
<!ENTITY rdf "http://www.w3.0rg/1999/02/22 —rdf —syntax —ns#" >

<Ontology xmlns="http: //www.w3.0rg/2002/07/owl#"
xml:base="http: //www.semanticweb .org/people"
xmlns:rdfs="http: //www.w3.0rg/2000/01/rdf —schema#"
xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema#"
xmlns:rdf="http: //www.w3.0rg/1999/02/22 — rdf —syntax —ns#"
xmlns:xml="http: //www.w3.org/XML/1998/namespace"
ontologyIRI="http: //www.semanticweb.org/people">
<Prefix name="rdf" IRI="http://www.w3.0rg/1999/02/22 —rdf —syntax —ns#" />
<Prefix name="rdfs" IRI="http://www.w3.0rg/2000/01/rdf —schema#"/>
<Prefix name="xsd" IRI="http://www.w3.0rg/2001/XMLSchema#"/>
<Prefix name="owl" IRI="http://www.w3.0rg/2002/07/owl#"/>
<Declaration>
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<Class IRI="#Human"/>
</Declaration>
<Declaration>
<Class IRI="#Man"/>
</Declaration>
<Declaration>
<Class IRI="#Woman" />
</Declaration>
<Declaration>
<ObjectProperty IRI="#marriedTo"/>
</Declaration>
<Declaration>
<DataProperty IRI="#age"/>
</Declaration>
<Declaration>
<NamedIndividual IRI="#Alice"/>
</Declaration>
<Declaration>
<NamedIndividual IRI="#Bob"/>
</Declaration>
<SubClassOf>
<Class IRI="#Man"/>
<Class IRI="#Human"/>
</SubClassOf>
<SubClassOf>
<Class IRI="#Woman" />
<Class IRI="#Human"/>
</SubClassOf>
<ClassAssertion>
<Class IRI="#Woman" />
<NamedIndividual IRI="#Alice"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="#Man"/>
<NamedIndividual IRI="#Bob"/>
</ClassAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="#marriedTo"/>
<NamedIndividual IRI="#Alice"/>
<NamedIndividual IRI="#Bob"/>
</ ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty IRI="#age"/>
<NamedIndividual IRI="#Alice"/>
<Literal datatypelRI="&xsd;int">30</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>
<DataProperty IRI="#age"/>
<NamedIndividual IRI="#Bob"/>
<Literal datatypelRI="&xsd;int">34</Literal>
</DataPropertyAssertion>
<SymmetricObjectProperty>
<ObjectProperty IRI="#marriedTo"/>
</SymmetricObjectProperty>
<DataPropertyRange>
<DataProperty IRI="#age"/>
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<Datatype abbreviatedIRI="xsd:int"/>
</DataPropertyRange>
</Ontology>

<!— Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net —>

Listing 3.18: OWL file representing the relations between Bob and Alice

3.3.2 Syntax

OWL 2 can be expressed in a variety of syntaxes:

RDF/XML: Any tool that supports OWL has to support the RDF/XML-syntax. Among others,
it is used for data exchange between tools.

OWL/XML: The OWL/XML syntax is optimized for the use with XML tools. This syntax is
used in the scope of this thesis.

Functional syntax: With the functional syntax it is easier to express the formal structure of an
ontology.

Manchester syntax: The Manchester syntax is better readable for humans. In addition, it needs
less space as an XML based syntax.

Turtle: Turtle is an optional syntax which is not standardized by the OWL working group. This
syntax shall simplify the process of reading and writing RDF triples.

3.3.3 Profiles

OWL 2 also specifies subclasses of the language’s structural specification which are better suit-
able for some applications. These subclasses are called profiles [37]]. There are three kinds of
profiles:

OWL EL: With restricting OWL to OWL EL, polynomial time algorithms can be used for
standard reasoning purposes. OWL EL is mostly used for ontologies with lots of classes
and properties, where expressive power can be interchanged for better performance.

OWL QL: OWL QL enables the use of normal database technologies in order to perform con-
junctive queries in logarithmic space. OWL QL is suitable for lightweight (i.e., small
amount of classes and properties) ontologies, or where it is necessary to inquire data by
relational queries (e.g. by SQL). It is possible to inquire a huge amount of instances
relatively quickly.
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OWL RL: By the use of OWL RL, polynomial time reasoning is possible. Such algorithms
can be implemented by using standard rule languages. It is useful for simple structured
ontologies with a huge amount of individuals.

3.34 SPARQL

To query an ontology, SPARQL [40] can be used. Listing [3.19] demonstrates an example for
retrieving all marriedTo relations.

I PREFIX : <http://www.semanticweb.org/people#>
SELECT ?pl ?p2
3 WHERE
{
5 ?7pl a :Human .
?7p2 a :Human .
7 ?7pl :marriedTo ?p2 .
}

Listing 3.19: SPARQL query

The query applied to the ontology of Listing [3.18] returns the result shown in Table [3.1]
Therefore, the reasoner correctly concluded that Alice is married to Bob and Bob is married to
Alice.

pl p2
Alice Bob
Bob Alice

Table 3.1: Result of the SPARQL query.

3.3.5 SWRL

Finally, it is possible to augment the ontology by SWRL rules [41]]. Such a rule can be for
example:

Human(?pl), Human(?p2), Human(?p3),
brother(?pl, 7p2), child(?pl, ?7p3) —uncle(?p3, 7p2)

This rule means that, if there exists a human p1 which is has a brother p2 and a child p3,
then p2 is an uncle of p3. The left part is called the rule body and the part right of the arrow
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(—) is called the rule head. If all statements in the rule body are valid for a set of individuals,
then the statements in the rule head are also valid.

In general, ontologies augmented with SWRL rules are not decidable, but in practice, the use
of SWRL rules is restricted to DL-safe (Description Logic safe) rules. This subclass of SWRL
retains decidability. Any SWRL rule is DL-safe if the rule head contains only variables which
also occur in a datalog atom in the body [[14]]. Such a datalog atom is an atom with a predicate
symbol which is not specified as a class or property in any axiom within the ontology.

For example, the rule above is DL-safe, since p1, p2, and p3 are restricted to named indi-
viduals Human ( ?p<x>) . Hence, it is ensured that all variables are contained in datalog atoms.
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CHAPTER

Concept Specification

This chapter presents a concept for a content aware network. To this end, possible use cases are
defined from which all needed components are extracted. After describing these components,
their interaction is illustrated by the use of sequence diagrams.

4.1 Use Cases

4.1.1 Overview

In order to specify the components needed for the content aware network, some use cases are
defined which are shown in Figure d.1]

4.1.2 Temperature of a Room

Assume that a facility manager wants to know the temperature of a specific room. To this end,
he uses his computer to place a dedicated request to the content aware network.

Figure [4.2] illustrates the components needed to handle the temperature request. A special
device, called smart router, has to decide to which network node this request must be forwarded.
For this purpose, the smart router inquires a reasoning server, called resolver. The resolver then
infers (by the use of a dedicated domain server) that a specific environmental server provides
an exact and current temperature value of the requested room. After requesting this temperature
value, the environmental server does a second request in order to retrieve the current values
from all temperature sensors within the room. This request also reaches a smart router which
determines (due to its knowledge about connected network nodes) that this type of request must
be forwarded to one or more temperature sensors, located in the specified room. Since it is
possible that the location also contains a terrace with outside temperature sensors, these outside
sensors must be removed from the result set. Next, the smart router forwards the request to the
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Figure 4.1: Use Case diagram.

final result set of temperature sensors. After all sensors have reported their current values to

the environmental server, the server fuses these values by averaging and reports the result to the

facility manager’s computer.

Personal Computer Location Domain Server

Net of Smart Routers

Environmental Server

= W@Z

Temperature Sensor 1 Temperature Sensor x

Figure 4.2: Components involved in a temperature request.
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4.1.3 Weather in a City

Consider a user which wants to get a detailed weather report for his home city. The user takes
his tablet computer and places a weather request to the content aware network.

Personal Computer Location Domain Server
‘A A\

Environmental Server<:> o @

Net of Smart Routers

Wind Direction Sensor 1<:>
Wind Speed Sensor 1

Wind Direction Sensor x

7 Wind Speed Sensor x

v
Temperature Sensor 1

v
Humidity Sensor 1

Temperature Sensor x

Humidity Sensor x

Figure 4.3: Components involved in a weather request.

The components involved in handling the request are shown in Figure[d.3] As above, a smart
router receives the request and inquires a resolver in order to find a dedicated server which is
able to process the request. The resolver augments the request with known facts and uses a
location domain server in order to find a responsible server. Then, after forwarding the request
to this server, the server has to place several additional requests in order to inquire some sensors.
Weather is a concluded property which includes outside temperature, outside humidity, wind
speed and wind direction. For each of these properties, a secondary request has to be made.
After all sensors have reported their current values, the various sensor categories are fused and
the results are sent back to the user’s Tablet.

4.1.4 Fire Alarm

For a sensor, there can be one or more threshold values. If such a value is exceeded, the sensor
sends an unaddressed alert message of a predefined severity level. Like in the examples above,
the content aware network has to handle the alert and forward it to all corresponding network
nodes. Figure 4.4 shows all components needed to handle temperature alerts.
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Figure 4.4: Components involved in handling temperature alert messages.

Now assume that two temperature sensors have exceeded their threshold values. Each single
sensor sends an alert message which is finally forwarded to a dedicated building automation
server. This server is able to cache alerts. Since the two alerts were within a specific period, the
server has to alert a global fire alarm for the location to which these sensors belong to.

4.1.5 Light Control

Assume that someone wants to turn on all lights at his location. For this purpose, a request is
sent to the content aware network by the use of a smart phone. According to the configuration,
the meaning of the term location is either determined by a location property or by other facts
(i.e., location of the client’s subnet). Figure i.5]shows the components which are involved in
handling this request.

As above, a smart router catches the packet and forwards its semantic tag to a resolver. The
resolver then determines (by the use of a dedicated domain server) the required network address
which is in this case the address of a building automation server. After forwarding the request to
this server, the server then generates another request in order to switch on all lights in the given
domain.
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Smart Phone Topology Domain Server

Net of Smart Routers

Building Automation Serve W @

Light Actuator 1 Light Actuator x

Figure 4.5: Components needed to turn on all lights within a specific domain.

4.1.6 Acquiring Information from Legacy Systems

Already available systems do not provide machine readable semantic data needed by a content
aware network. For this purpose, a special device called legacy gateway is used (see Figure [4.6).
The content aware network can access such a gateway like any other S/A-unit. The gateway
takes control over protocol translations and configuration handling. A gateway can host one or
more legacy sensors or actuators.

Net of Smart Routers

Figure 4.6: Components needed to connect legacy S/A-systems.
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4.2 Component Specification

4.2.1 System Structure

Based on the use cases in Section[4.1] a content aware network must contain several components
in order to provide the required functionality. Figure 4.7] shows the structure of such a typical
content aware network. The various network components of the Figure are explained in the
following subsections.

Building A

| Environmental Server | I Topology I
Client 3 Domain Server
Light Actuator 1
Resolver
Client 1

Z Client 2
\

( Internet )

N

N Y,
Client 5 o
Building B
| BA Server | |

Temp. Sensor 4
Light Actuator 3
Tomp. Sensor 3 - Location
Domain Server
Legacy Gateway
Temp. Sensor 1
proprietary |IEEE 802.15.4

protocol

Light Actuator 2 @

Figure 4.7: Typical network structure.

4.2.2 Client

A client is a participant of the network, sending either requests as standard IPv6 packets or as
unaddressed packets which contain a semantic content description. A client may be a standard
PC, a tablet computer, a mobile phone or any other networking device.

In the case of unaddressed requests, a client attaches a semantic tag to the packet, which con-
tains its own IPv6 address and port, a random message id and an XML-formatted query. This
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query specifies the domain of the request (subject), as well as some properties to which the final
S/A-units must match.

An example for an XML-formatted query sent from a client is shown in Listing (names-
paces are omitted):

<query>
<subject>Vienna<subject>
<properties>
<property type="object" name="temperature" />
</properties>
</query>

Listing 4.1: XML-formatted query sent from a client

4.2.3 Smart Router

In addition to "normal" routing, a smart router is capable of handling unaddressed packets.
These unaddressed packets are packets which should be routed according to their semantics,
instead of specifying a dedicated destination address. In general, there are following cases for
the use of unaddressed packets

Primary requests: A primary request is sent from clients (see Section f.2.2)) to the content
aware network. Packets sent in the scope of a primary request are called primary query
packets. An example for such a request is get the current temperature in Vienna. Primary
query packets are always forwarded to dedicated servers (see Section [#.2.7).

Secondary requests: These requests are sent from a server in order to process a primary re-
quest. Packets sent in the scope of a secondary request are called secondary query pack-
ets. An example for such a request is get the current values from all temperature sensors
within a specific building. A secondary query packet is always routed to a set of on de-
mand S/A-units (see Section |4.2.4).

Data packets: These packets are sent from a multicasting S/A-unit when its internal state changes
(e.g. when the measured value exceeds a specific threshold value)

By combining above types of unaddressed packets, there are two different strategies for
handling such packets:

Information pull strategy: The information pull strategy is used for client requests. It specifies
the combination of a primary and a set of corresponding secondary requests.

Information push strategy: The information push strategy is used to handle data packets sent
from S/A-units.
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While data packets are sent from S/A-units, a query packet is mostly used to request se-
mantic information (e.g. aggregating or fusing sensor values, topology information, etc.). A
smart router processes query packets, as well as data packets and forwards them to the correct
destination. There may be more than one network node handling a specific packet type. In this
case, either one of the destinations has to be chosen by the smart router, or the packet has to be
forwarded to all nodes according to the packet information.

In order to be able to forward unaddressed packets, a smart router must have knowledge about
connected network nodes within its domain. For this purpose, other network nodes have to report
their aliveness to the content aware network in a predefined interval. This is done by sending a
connect message which contains the node’s (maybe already extended) XML-formatted configu-
ration (see Listing 4.2). A smart router may also augment such a configuration by known facts
(e.g. specify in which room a device is located). Finally this augmented configuration must be
forwarded to interested servers.

In addition to normal routing tables, a smart router must provide the following tables:

CNT: The CNT (Connected Nodes Table) stores configurations of connected network nodes.
On the reception of a connect message, the smart router stores the augmented config-
uration in this table. On the reception of secondary requests, this table is used to find
appropriate S/A-units which match the request’s semantic tag. To this end, a reasoner
may be used to augment the semantic tag of the request. Table entries are of the format
<address, timestamp, configuration>, where the configuration field con-
tains XML-formatted settings from S/A-units. The table gets updated on the reception of
connect messages of new or already connected nodes. Outdated entries are removed on
every look-up, where each entry is checked against its timestamp. Since connect messages
are sent in periodic intervals, the timestamp field should always contain the latest value
for online nodes. Hence, old entries can be simply detected and removed. In this case,
a (negative) connect message must be sent in order to inform other network components
about the offline node.

ERT: The ERT (Executed Request Table) keeps track of already processed requests. This table
is needed, since a smart router forwards all secondary requests to its neighbor routers. A
smart router cannot know, if one of these other routers has already received the request.
The table entries have the format <source address, message id>. On the re-
ception of a secondary request, the entries are checked. A matching entry indicates that
the smart router has already processed the request, which means that it can be discarded. If
no matching entry is found, the request is processed, and the source address and message
id are stored in the ERT. The table has to be implemented as a ring buffer. This implicitly
removes outdated entries.
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Finally, a smart router may be used for address assignment of connected network nodes. For
this purpose, NDP or DHCPv6 may be utilized.

4.2.4 S/A-Unit

An S/A-unit (sensor/actuator unit) is a network node which contains one or more sensors or ac-
tuators. An S/A-unit may have a default configuration encoded as machine readable XML-data.
This configuration may be augmented by smart routers or dedicated servers (e.g., an environ-
mental server may extend the configuration of some temperature sensors). While a dedicated
server configures an S/A-unit’s behavior (e.g. threshold values, units, etc.), a smart router ex-
tends the configuration by known facts (such as the location).

Depending on its configuration, the behavior of a connected S/A-unit can be one of the
following:

On demand: The network node is idle by default. Only when another network component in-
quires the node’s state, an answer (in form of a response packet) is sent to this component.
This behavior is used by the information pull strategy.

(Periodic) multicast: A network node configured as a periodic multicasting device reports its
state in (equidistant or non-equidistant) intervals. The report is caught by the nearest
smart router which can then forward the information to a dedicated source by inquiring a
reasoner. This behavior is used by the information push strategy.

It is also possible that a component implements both types of behaviors (e.g. temperature sensor:
periodic multicasting is used for fire alarms and on demand behavior is used for handling client
requests).

An example for a configuration of a temperature sensor is shown in Listing 4.2| (namespaces
are omitted).

<configuration>
<connect>
<connected>true</connected>
<interval type="seconds">180</interval>
</connect>
<actuators />
<sensors>
<sensor>
<type>temperature</type>
<unit>Celsius</unit>
<range>
<min>—50.0</min>
<max>50.0</max>
</range>
<accuracy type="double">0.5</accuracy>
<behavior>
<onDemand />
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</behavior>
</sensor>
</sensors>
<net>
<ip version="6">fe80::1234</ip>
<port type="UDP">1234</port>
</net>
<location outside="true">
<city>Vienna</city>
<coordinates>
<latitude>48.2004993</latitude>
<longitude>16.3708093</longitude>
</coordinates>
</location>
</configuration>

Listing 4.2: XML configuration of a temperature sensor

The connect field specifies if the node is already connected and defines the interval for
sending connect messages (see Section[4.3.2)). In addition, the S/A-unit’s configuration includes
several sensor or actuator entries, one for each sensor or actuator. These fields specify
specific properties of a sensor or actuator. Some of these properties may be modified by a
dedicated server (e.g., behavior), but some of them are specific to an S/A-type and cannot
be modified (e.g. range or accuracy). The net field contains network specific settings,
like the IP address and port. Finally, the location is stored in the 1ocation field. net and
location can be initially set by a smart router to some default settings, but a dedicated server
is able to change these settings to more specific values. If some property is not known (e.g. the
location after the initial power-up of an S/A-unit), the corresponding field is left empty. This
indicates that a smart router or a dedicated server has to augment these fields with some default
settings. For instance, a default location can be determined by the location of the nearest smart
router. Therefore, this smart router appends its own location to the configuration when receiving
a dedicated connect packet.

4.2.5 Resolver

A resolver has the purpose of augmenting requests. A resolver inquires an ontology by using a
semantic reasoner. Such a reasoner is able to infer not directly encoded facts (e.g. transitively
defined locations, where a network node is situated). For this purpose, a resolver has knowl-
edge about a smart routing ontology. Communication with a resolver is done by anycasting (see
Section [2.1.2). After the detection of the type of request, the resolver augments the (maybe
incomplete) XML-formatted request by known facts. To this end, the resolver uses a semantic
reasoner (e.g. this reasoner can be queried by the use of SPARQL queries). After the known
facts are added, the request is transformed to a query for a specific domain server. For example,
the resolver detects that Vienna is an outside location and therefore augments the initial request
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temperature in Vienna to the complete request outside temperature in Vienna and forwards it to
a location domain server.

In addition, a resolver is also interested in connect packets sent from other network nodes (S/A-
units, servers or legacy gateways) of specific types. Such connect packets are then transformed
to instructions for domain servers in order to update their databases.

4.2.6 Domain Server

A domain server has knowledge about a specific domain. There can be many domain servers for
a variety of domains. A domain server always handles detailed requests which were augmented
by a resolver before. Like with resolvers, communication with domain servers of a dedicated
type is done by anycasting (see Section[2.1.2)). There are two possibilities to implement a domain
server:

Passive domain server: The resolver adds all known facts to a request. Hence, the domain
server does not need reasoning to process a request. A passive domain server can be a
simple database server which can be queried by the use of SQL.

Active domain server: The resolver has only knowledge about a minimum ontology which is
used to augment requests by obvious facts. This ontology can be extended by several
domain ontologies which are then used to complete a request (i.e., returning a set of IPv6
addresses) by a dedicated domain server.

Since the resolver needs already a semantic reasoner to augment requests, in most cases
the passive variant is sufficient. Only in special cases, where the resolver’s ontology does not
provide all needed meta information, active domain servers are needed. Examples for (passive)
domain servers are:

Topology domain server: A topology domain server has detailed knowledge about the network
topology. An example for a request, which a topology domain server is able to process is:
all temperature sensors within a specific subnet.

A (simplified) SQL query can look like:

SELECT node.ipvb6address

FROM node

WHERE node.type = ’temperatureSensor’
AND node.netId = ’<ID>’
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Location domain server: A location domain server is able to process requests about a specific
location. To this end, such a server exactly knows which network node is situated in a
specific location. Location domain servers are able to process requests like outside tem-
perature of Vienna, or weather of Vienna.

A (simplified) SQL query can look like:

SELECT node.ipv6address

FROM node
WHERE node.type = ’environmentalServer’
AND locatedIn (node.ipv6address, 'Vienna’) = 1

Here, locatedIn () is a stored procedure which checks recursively if the server is lo-
cated in a specific location.

4.2.7 Server

A server handles addressed or unaddressed primary requests. The server has detailed informa-
tion about the semantics of a specific primary query packet. With this information the server
then may send a secondary request. This request eventually reaches a set of sensors or actuators.
In the case of aggregating sensor values, the server applies a fusing function on the current sen-
sor values as specified by the semantics of the request (e.g. an averaging function). In the case
of actuators, the server forwards the desired actuator states to these nodes. Finally, the server
sends back the requested information to the client.

An example for a request to an environmental server is outside temperature of Vienna. To this
end, the server detects that it has to query outside temperature sensors located in Vienna and sub-
mits therefore the (secondary) request outside temperatureSensor of Vienna. In most cases, the
secondary request has the same object properties as the primary request, but a different subject
specified.

A more complex example is the request weather of Vienna, where a server has to query not
only temperature sensors, but also humidity, wind speed and wind direction sensors by sending
dedicated secondary requests.

In order to keep track of the membership of responses from secondary requests to primary re-
quests, any server must contain at least following tables:

PRT: The PRT (Pending Request Table) stores the semantic tag of received primary requests.
The table’s entries have the format <message id, request>, where the request
field contains all information from the primary request (i.e., source address, port and se-
mantic tag). When all S/A-units have sent their responses to the server, the corresponding
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entry in the PRT is used to find the origin of the primary request (i.e., the client). At this
point the entry is removed and the final response is sent to the requesting client.

SART: The SART (S/A Response Table) contains responses from S/A-units. Its entries have the
format <message id, response>. When all values belonging to a specific primary
request are received, or after a specific timeout, the corresponding entries of this table
are fused. To this end, all responses have the same message 1id as the initial primary
request. After fusing the values and sending the result back to the client, the corresponding
entries of this table are removed.

To register the server at other components, it has to send a connect message containing its
configuration in predefined intervals to the content aware network. An example for an XML-
formatted configuration for a server is shown in Listing

<configuration>
<connect>
<connected>true</connected>
<interval type="seconds">180</interval>
</connect>
<acceptedPropertySets>
<propertySet>
<properties>
<property type="object" name="temperature" />
</properties>
<allowsAdditionalProperties value="true" />
</propertySet>
</acceptedQueries>
<net>
<ip version="6">fe80::5678</ip>
<port type="UDP">1212</port>
</net>
<location>
<building>Building A</building>
<room>E(1.23</room>
</location>
</configuration>

Listing 4.3: XML configuration of an environmental server

The fields connect, net and location have the same meaning as in Listing The
entry acceptedPropertySets describes which types of client queries are accepted by this
server. To this end, the field allowsAdditionalProperties specifies whether a client’s
query can contain additional property fields, like

<property type="data" name="isOutside" />.
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By sending connect packets containing such configurations, a domain server is able to find ded-
icated servers which are able to handle a specific client request.

4.2.8 Legacy Gateway

To connect legacy systems to the network, a legacy gateway is used. A legacy gateway is repre-
sented to the outer port as a normal S/A-unit. Internally it resolves the communication for one
or more legacy systems. A legacy gateway has therefore the capability of minimal routing. In
addition, it adds semantics to the connected systems.

The configuration of a legacy gateway is done like the configuration of a normal S/A-unit. To
this end, the legacy gateway must support a default configuration for its connected sensors and
actuators. This configuration must entail all default information for the connected S/A-types
(e.g. type, unit, range, etc.). Since a simple sensor or actuator does not support a semantic
configuration, the legacy gateway must map the behavior of its connected S/As to match the
configuration. This includes for example unit conversion and S/A monitoring (i.e., periodic
polling of S/A states) for the use of the information push strategy.

Possible default configurations can be stored in a file, or, for larger configuration sets, in
a database. Therefore, the only thing which has to be done manually is to specify the types
of connected sensors and actuators. The corresponding default configuration is then fetched
from this database. In addition to the normal configuration of an S/A-unit, like in Listing[#.2] a
configuration for a legacy gateway must also contain protocol information (i.e., information for
communicating with sensors or actuators)

To resolve requests, a legacy gateway has to check the packet’s semantic tag. In the case of
actuators, it has to set all its matching actuators to the requested state and send a corresponding
response message. In the case of sensors, all matching sensor values must be fused according
to the gateway’s internal configuration (e.g. by averaging, retrieving maximum or minimum
values) and the result has to be sent back to the requesting server.

4.3 Networking

4.3.1 Overview

This section deals with used network protocols, packet types, the behavior of network compo-
nents, and the techniques used for content aware smart routing.
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To enable semantic parsing of network packets, several packet types are specified:

e Connect packet

Configuration packet

Query packet

e Response packet

Data packet

Connect packets are sent from S/A-units, servers and legacy gateways after an initial power
up or (to report about a network node’s liveness) in predefined time intervals. A connect packet
comprises the node’s type, as well as an XML-based configuration. This configuration can be
augmented by a smart router or a server. If a server alters the configuration of a network node, it
sends a configuration packet to this unit. The payload of this packet contains also such an XML
configuration. After receiving a configuration packet, a network node has to modify its internal
state according to this configuration. This may result in sending a new connect packet in order
to inform other network components about the node’s modified configuration.

Query, Data and Response packets are used for common operation. Query packets contain-
ing primary requests are used for the information pull strategy. They are mostly sent by a client
which is requesting some data from the content aware network. Secondary requests are sent by
servers in order to process primary requests. Replies to any kind of requests are sent as response
packets which contain an XML-formatted payload. Data packets are used for the information
push strategy. They are sent by an S/A-unit after the appearance of a dedicated event to provide
some information to the content aware network. In order to reference to the correct message
sequence, requesting and data packets have to support a unique message identifier (message id).
All subsequent packets (responses, derived requests, etc.) have to use this message id.

4.3.2 Connecting (Content Aware) Network Nodes

If a new content aware network node (S/A-unit, server or legacy gateway) is connected to the
network, a special protocol has to be employed in order to register this component at other net-
work nodes. In general, this protocol sequence must be performed in predefined intervals.

On the initial power-up, the new network node first gets its network address assigned by the
auto-configuration feature of IPv6. Afterwards, it sends its factory defined configuration to the
content aware network as shown in Figure 48] (1). The first smart router catches the packet and
augments the configuration by known facts (e.g. the router’s location). The smart router stores
the newly connected node in its CNT (Connected Nodes Table). Now the smart router forwards
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the semantic tag of the connect packet to a resolver in order to find interested servers (2). The
resolver extends the request by known properties (gained from its ontology), transforms it to an
SQL query and forwards it to a dedicated topology domain server (3). The topology domain
server returns a set of IPv6 addresses of interested servers to the smart router (4) which then
forwards the connect packet to these addresses (5). In addition, the resolver has to inform the
domain servers about the newly connected node in order to update their databases (not shown in
the figure). Finally, the servers may also modify the node’s configuration and send it back to the
smart router (6), which forwards it to the node (7).

Network Node Smart Router Resolver Domain Server Server

| 1:connect '

Figure 4.8: Messages sent after connecting a new S/A-unit.

In addition to this initial sequence, a connect packet is sent in predefined intervals in order to
report about a node’s liveness. As above, the node may get reconfigured by one or more servers.
Finally it is possible that a server sends just a configuration message to a (already connected)
node (e.g. because of a modification of the network topology).

4.3.3 Behavior of S/A-units
Information Pull Strategy

The information pull strategy is used for unaddressed requests (e.g. when a client requests the
temperature of a room). It is distinguished between primary and secondary requests. All mes-
sages sent in the scope of this strategy can be counted to either one of these requests. While a
primary request is sent initially by a client requesting information from the content aware net-
work, a secondary request is initiated by a server in succession to a primary request.
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Figure shows the sequence of all relevant messages needed by the information pull strat-
egy. First, the client sends an unaddressed primary request to the content aware network (1).
The nearest smart router detects the request and reroutes its semantic tag to a resolver (2). Next,
the resolver extends the request with known facts from its ontology. After determining the cor-
rect domain, the resolver transforms the request in order to forward it to a dedicated domain
server (3). Then, the domain server processes the request. Afterwards, the result, containing a
set of server IPv6 addresses, is returned as a response packet to the smart router (4). To conclude
the primary request, the smart router forwards the primary request to all of the servers contained
in the response packet’s payload (5).

Client Smart Router Resolver Domain Server Server S/A-unit
I I I I I I
—L Primary Request
1: query ’ _L | | ' |

I I
I I
o |

I S I g I

Secondary Retlxuest

< | 6: query. |

| 7:query |
| | |- & responze _

— I I I I

< _10: response

Figure 4.9: Messages sent in the information pull strategy.

After receiving and parsing a primary request, a server sends an associated secondary request
(6). This request retrieves all relevant S/A-units. The next smart router forwards this secondary
request to the desired S/A-units (7), as well as to other connected smart routers (not shown in the
figure) which recursively forward the request. To this end, the smart router may use a resolver,
as in the steps (2-4), if the request needs to be augmented (not shown in the figure). After
performing the tasks specified in the packet, the S/A-units return the result to the corresponding
server (8). In the case of sensor nodes, the server aggregates the results of all units (e.g. by
averaging) and returns the aggregated result (9), which is forwarded to the client by the next
smart router (10). In the case of actuator nodes, the server sends an acknowledgement (9),
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which is also forwarded to the client by the next smart router (10).

Information Push Strategy

The information push strategy (see Figure 4.10) is used by S/A-units for multicasting of state
changes (e.g. for threshold alerts of sensor nodes). To this end, an S/A-unit sends an unaddressed
data packet to the content aware network (1). The next smart router catches the packet and
forwards its semantic tag to a resolver (2). The resolver augments the semantic tag by known
facts from its ontology and forwards it to a (topology) domain server (3). After the (topology)
domain server returns the addresses (4), the smart router reroutes the initial data packet to all
addresses contained in the resolver’s response (5). According to the type of the data packet and
the server’s configuration, the server may execute some tasks, initiates state changes of other
S/A-nodes (by sending a secondary request like in the information pull strategy), reports the
state change to other systems, or simply caches the S/A-unit’s current state for faster responding
to future primary requests.

S/A-unit Smart Router Resolver Domain Server Server

L
1: data ' | |

Figure 4.10: Messages sent in the information push strategy.

4.3.4 Range of Recipients

The range of recipients of an unaddressed packet can be limited by the following techniques:

Filtering properties: By the use of filtering properties, a resolver can limit the range of recipi-
ents naturally (i.e., using the locatedIn property)

Hop limit: The hop limit field of the IPv6 header replaces the TTL (time to live) field of the
IPv4 header. It specifies how many routers the packet is allowed to pass before it has to
reach its destination. Hence, an unaddressed packet’s recipients can easily be limited by
the amount of hops (i.e., all temperature sensors within a maximum hop distance of 3).
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(Semantic) Hop count: This custom field is similar to the hop limit field mentioned above. The
difference is that it is zero when an unaddressed packet is initially sent from an arbitrary
network node. The value is incremented at each smart router by one, so the decision-
making of dropping or allowing packets is not done at the sender but within the network
infrastructure.

4.4 Sensor Fusion

4.4.1 Overview

Fusion of sensor values at dedicated servers can be done in different ways. One of the simplest
forms is averaging. The problem of calculating the mean of a set of sensor values is that wrong
measured values distort the result. To this end, more sophisticated fusing functions can be
applied.

4.4.2 Confidence-Weighted Averaging

Confidence-weighted averaging [8]] is based on (positive valued) penalties for unrealistic obser-
vations, which is done by the use of a confidence marker. This confidence marker is calculated
by the reciprocal value of the statistical variance of a sensor. In the best case, the variance is
0, which means that the observation has the highest confidence. Following formula calculates a
confidence-weighted mean of a set of sensor values:

i i

_ 1=1"1V[S,]

T fused = En 1
i=1 VS]]

Here, n is the number of sensors, V [S;] is the variance and x; is the measured value of
sensor ¢. Although it represents the best case, a variance of zero (i.e., V [S;] = 0) should not
be used in order to avoid division-by-zero issues. For best results, heterogeneous sensors (i.e.,
sensors, which measure the same quantity in a different way) should be used.

The problem of confidence-weighted averaging is the determination of a sensor’s variance.
A solution to this is to perform several observations subsequently and calculate the empirical
variance from these measurements by the typical formula:

1
2 _ 2
Uﬁn—lg (z; —T)
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On the one hand, this means that for a single sensor value multiple observations must be
performed. On the other hand, a single faulty sensor which always provides the same (wrong)
value does not get penalized.
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4.4.3 Adaptive Algorithm

The adaptive algorithm provides another possible fusing function. This iterative algorithm first
calculates the mean of all observations. Next, the measurement with the highest deviation is
discarded. In the next iteration only the remaining sensor values are fused. The total amount of
iterations can be either limited hard coded, or the algorithm stops, when the largest deviation is
lower than a specified maximum value m. Figure [d.11]shows an example of four sensor values.
Since x4 has the largest deviation from the mean x4,4, the sensor value is discarded in the first
iteration. In the next iteration, all sensor values are within the specified maximum interval 2 - m.
Therefore, the calculated average value is accurate enough and the algorithm stops.

X1 X3 X2 Xavg X4
Iteration1 <« % P
2*m
X1 X3 Xavg X2
Iteration 2 ¢ ¢ >
2*m

Figure 4.11: Adaptive algorithm - x4 is discarded.

The advantage of this algorithm is its simplicity, but it may take some iterations before a
highly accurate solution is found.
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CHAPTER

Reference System Implementation

This chapter deals with implementation details of the reference system. The reference system
provides an elementary set of features needed for Content Aware Networking. The implementa-
tion is based on a set of standard PC applications programmed in C and Java.

5.1 Proof-of-Concept

The concept describes in a very general manner how a content aware network is able to process
unaddressed packets. While for the purpose of a proof of concept some not absolutely necessary
features are omitted, some other restrictions are made in advantage to the performance of the
network.

Since for the functional principle of the content aware network it makes no difference if the
information push or pull strategy is used, only the more complex information pull strategy is
implemented. To add the functionality of the information push strategy, just another packet type
(data packets) must be supported by the network components.

The reference system uses an ontology which describes all needed (meta-)information (see
Appendix[A]). The resolver also includes the functionality of the domain servers. While for large
real-life networks it is feasible to separate these components for more flexibility, the reference
implementation provides just a small set of locations and network nodes. Therefore, it is not
necessary to add extra domain servers. As a side effect, this simplification also reduces the
amount of transmitted network packets and hence the overhead of the content aware network.

The concept requires that also servers and legacy gateways send connect packets. In the case
of the reference implementation, these connect packets are limited to S/A-units. The topology of
smart routers and servers is stored within the ontology and can hence be used for reasoning by
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the resolver. In addition, in the reference implementation connect packets are only processed by
smart routers. Therefore, the forwarding of connect packets to servers is not implemented.

To make use of the reference implementation, a smart (demo) temperature sensor is imple-
mented, providing random values. Since no other S/A-units are implemented, semantic tags are
not encoded in XML, but directly encoded in the packet headers in a way that is more space ef-
ficient than XML. In addition, client requests are not encoded in XML, but there are fixed fields
to add one subject and one object property. For the purpose of flexibility, the concept allows
multiple object properties in one primary request. In general, this can also be achieved by spec-
ifying concluding object properties within the used ontology and is therefore not implemented.
One possibility to specify concluding properties is by the use of SWRL rules. For example, the
following rule can be used to request a fused temperature value which must be highly accurate:

Location(?loc), Server(?serv),
temperature(?loc, ?serv),

highAccuracy(?serv) —highAccuracyTemperature(?loc, ?serv)

5.2 Semantic Representation

To facilitate fast responses to unaddressed packets, a special language has to be employed. For
this purpose, OWL [39] [38] is chosen. OWL is an XML-based language for defining ontologies
which is standardized by W3C [6]. In addition, there are several reasoners (e.g. FaCT++ [30],
Pellet [4]) and query languages (e.g. DL Query [32]], SPARQL [40]) available. For the purpose
of smart routing, a resolver contains a semantic reasoner to access OWL ontologies.

Appendix [A] contains the ontology used by the reference system implementation. Since the
implementation’s resolver also includes features of the concept’s domain servers, the ontology
contains also domain specific data. Figure [5.1] shows the class hierarchy used in the ontology.
In general there are two super classes, namely Location and Networknode. A location can be
more specified as Room, Building, or City. A location may be inside another location, which is
specified by the locatedIn object property (see Figure[5.2). By its nature, this property is recur-
sively specified. For this property there also exists an inverse (locatedInInv) which references
all child locations. A network node may be a server, a sensor, an actuator or a smart router.
A network node may also be within a specific location. Therefore, it may have specified the
locatedIn property as well. In addition, a network node has a network address, defined by the
ipvbaddress data property and a network node can be connected to one or more other network
nodes, which is specified by the connectedTo object property. In order to get the right server
or S/A-unit for a specific request type and location, some additional object properties are de-
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fined: temperature and humidity retrieve a temperature or a humidity server for a given location,
while temperatureSensor and humiditySensor retrieve sensor nodes which are able to measure

temperature.
Thing
Location Networknode
Building City Room  Actuator  Router Server Sensor
LightSwitch TemperatureSensor
Figure 5.1: Class definitions contained in the ontology.
topObjectProperty
network location fusedValue physical Value

connectedTo locatedIn locatedInlnv humidity temperature humiditySensor temperatureSensor

Figure 5.2: Object properties contained in the ontology.
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topDataProperty

network location

ipvbaddress isOutside

Figure 5.3: Data properties contained in the ontology.

In addition to the representation of spatial and topological properties of locations and net-
work nodes, this file also include SWRL rules used by the reasoner. Such a rule is for example:

Location(?loc), Location(?super Loc),
Server(?serv), locatedIn(?loc, ?super Loc),

temperature(?super Loc, ?serv) —temperature(?loc, ?serv)

This rule implements a transitive relation for the temperature property based on the
locatedIn property. For non-transitive properties no such rule is required.

5.3 Smart Packet Types

5.3.1 Common General Header

For a controlled message exchange several smart packet types are defined. All of them have a
common general header which is shown in Figure [5.4]

1 2 2 1

message type | source port ‘message id | hop count

Figure 5.4: Common semantic header of 6 bytes length.

The message type field defines the type of the smart packet. Possible values are:

1: connect packet
2: query packet
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3: response packet sent from a resolver

4: response packet sent from a server

5: response packet sent from an S/A-unit
other: undefined

The source port field is set to the receiving port of the source of the packet. It is used
by the receiver to answer a packet. The message 1id field, which should be set to an arbitrary
16-bit number, is used to reference to requests sent from a client by several components of the
system. After the client has set the message id for its query packet, all related packets should
use the same message id. The hop count field (see Section 4.3.4)) should be set initially to 0
for each packet. Every smart router increments this value by 1 in order to count how many smart
routers the packet has passed yet. Network components, such as smart routers or servers may
accept or deny packets with hop counts larger than a specific value.

5.3.2 Connect Packet

A connect packet is sent from an S/A-unit after an initial power up, as well as after a change of
its configuration. In addition, an S/A-unit may send connect packets in predefined intervals to
refresh the smart routers’ CNTs. The header of a connect packet consists of the common general
header (see Figure[5.4)) and the additional fields shown in Figure[5.5]

6 1 1

\ common header | node type \ origin address length (x)‘

X y
’ origin address ‘ configuration ‘

Figure 5.5: Semantic header of connect packets.

The node type field defines the type of the connected S/A-unit. The following node types
are possible:

1: sensor node
2: actuator node
other: undefined

The next two fields origin address length and origin address specify the
IPv6 address of the connected S/A-unit in abbreviated string formatted notation. This notation
is used instead of the binary representation due to less space requirements for short addresses and
better readability when observing message exchanges with a protocol sniffer. These fields are
required, since forwarding packets of smart routers results in sending new packets. Therefore,
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the original IPv6 source address field contains the address of the forwarding router. Due to the
fact that smart routers may want to know from which other router a packet was forwarded, this
approach has been chosen.

Unlike to the concept’s XML-formatted configuration, for the actual implementation, the
configuration field has the format shown in Figure [5.6]

1 X 1
object property length (x) ‘ object property ‘ is outside

1 y
‘ location length (| location ‘

Figure 5.6: Configuration of a temperature sensor.

The fields object property length and object property define the accepted
object property value. This value is specific to a type of S/A (e.g. in the reference implementa-
tion temperatureSensor is used for getting current values from temperature sensors).

The remaining fields may be left empty by an S/A-unit and will be overwritten during the
configuration process: is outside defines if the node is inside or outside of a building and
location is set to a string representing the place where an S/A-unit is located (e.g. "Vienna",
"Office").

5.3.3 Query Packet

There are two main types of query packets, namely primary and secondary query packets.

Unaddressed primary query packets are sent in the scope of initial requests (i.e., primary re-
quests), like tuples <object property, location>(e.g. <temperature, Vienna>
to inquire the current temperature value of Vienna) or triples <object property, location,
value> (e.g. <light, Office, on> to setall lights in the Office to the state "on").

Usually unaddressed secondary query packets are always sent from servers in the scope of a
secondary request in order to address a set of S/A-units.

Additionally there are types of query packets used by smart routers to communicate with a
resolver. These packets are property, sub location and connected nodes requests. A property
request is used to get supported properties of a server, a sub location request retrieves all child
locations belonging to a location, and a connected nodes request lists all connected network
components of a specific type (servers, smart routers, resolvers, etc.) which are connected to a
specific network component. The header of a query packet is shown in Figure
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6 1 X
| common header | request type | request | ---

1 y
. ] origin address length (y)‘ origin address ‘

Figure 5.7: Semantic header of query packets.

As mentioned above, there are five kinds of supported request types of query packets:

primary request
secondary request
property request

sub locations request

DR

connected nodes request
other: undefined

According to the concept, the query field contains XML-formatted data, but for the purpose
of less space and resource requirements, the query field in the implementation is of the format
specified in Figure[5.8]

1 X

’ subject length x| subject

1 y
. ’ object property length (y)‘ object property | ---

Figure 5.8: Request field of query packets.

The fields subject length and subject specify the subject this request is about
(e.g. alocation like Vienna) whereas the fields object property length and object
property specify a restriction of destination nodes (e.g. temperature for fused temperature
values).

The fields origin address length and origin address store the IPv6 address
in abbreviated string notation of the sender of the request. Like above, the address is not stored
in binary form because of better readability and less space requirements for short addresses.

5.3.4 Response Packet

Replies to query packets are sent as response packets. The packet header of a response packet is
shown in Figure [5.9]
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6 1 X
common header | response data length x| response data

Figure 5.9: Semantic header of response packets.

According to the concept, the response data shall be XML-formatted, but for the purpose of
less space and resource requirements, data records are divided by special characters. E.g. this is
used by the implementation of the resolver when a request of IPv6 addresses delivers multiple
results.

5.4 Network Components

5.4.1 Smart Router

The configuration of a smart router for standard IP packets is done by Linux iptables, provided
by the packet filtering framework Netfilter [23]] (like for "normal"” routers). The additional smart
routing paradigm is provided by a custom software component. This software component con-
sists of two sub-assemblies: A kernel module (written in C) and a user space application (written
in C++).

Kernel Module

The kernel module implements a Netfilter Hook [23]] to catch all semantic packets (see Sec-
tion[3.2.2). The hook is registered at NF_ INET_PRE_ROUTING in order to filter all incoming
packets. A semantic packet is always an IPv6 packet sent to a dedicated UDP port (in the case
of the used configuration: 4444), no matter which destination the packet has (in fact the desti-
nation is not known by the sender). If a semantic packet is found, it is marked as NF_STOLEN,
which means that the packet is accepted but not forwarded to its destination (which is in fact not
known yet). The stolen packet is then sent to the user space application by the use of Netlink
Sockets [[11]].

User Space Application

The user space application receives all semantic packets from the kernel module. According to
the packet type, one of the following procedures is applied (see Figures[5.10]and [5.T1):

Connect packets: When receiving a connect packet, missing semantic information of the packet
is augmented by known facts (such as 1location, isOutside). Then the newly con-
nected S/A-unit is stored in a special table called CNT (Connected Nodes Table). Potential
existing entries may get overwritten.
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Geceive connect packeD
Gugment semantic informatiorD

Gtore (overwrite) in CNT)

Figure 5.10: Activity diagram for processing connect packets on smart routers.

Primary requests: In the first step, primary requests (i.e., primary query packets) are forwarded
to a dedicated IPv6 anycast address [10] to which all resolvers are listening. According to
the principle of anycasting only the nearest resolver receives the packet.

Depending on the object property and the subject (see Section the re-
solver answers with the addresses of one or multiple servers which are able to handle the
request. Finally, the request is forwarded to these addresses.

Secondary requests: First, the smart router does a lookup in its ERT (Executed Request Table).
If the secondary query packet (identified by its message id) was already processed be-
fore, it is discarded. Otherwise the request is stored in the ERT.

Next, the request is forwarded to all neighbor smart routers (these may also be smart
routers where one or more ordinary routers are between). The addresses of these routers
are determined by sending a connected nodes request to a resolver. While it would be pos-
sible to use a dedicated IPv6 multicast address (f£02 : : <x>) to which all smart routers
are listening, this approach was chosen because of a greater flexibility (e.g. the ontology
can contain rules such that the reasoner automatically limits the set of router addresses).
Finally, the request is forwarded to all connected S/A-units which match the semantic tag
of the request. These addresses are determined by a lookup in the CNT.

In contrast to the concept, where table entries of the CNT are of the format <address,
timestamp, configuration>,inthereducedimplementation, instead of XML-formatted
data, the configuration contains the fields subject, object propertyandis outside.
The reference system does not remove outdated entries. Therefore, the timestamp field is not
needed.
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already proccessed?

discard packet

forward to servers Gsk resolver for connected routers)

Geceive addresses of routers)

forward to routers

Gookup for S/A-units in CN'I)

Gorwa rd to S/A-units)

Figure 5.11: Activity diagram for processing requests on smart routers.

5.4.2 Resolver

The resolver is implemented in Java. It uses the OWL API [31] in combination with the Pellet
reasoner [4] to access the ontology listed in Appendix [Al The resolver is used for processing
various semantic requests, like property, sub location and connected nodes requests (see Sec-
tion[5.3.3). Since there are no domain servers in the reference implementation, the resolver also
implements the functionality of location and topology domain servers. To this end, the ontology
utilized here also contains servers and smart routers.
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Resolvers listen to a dedicated IPv6 anycast address. This ensures that a query packet is al-
ways sent to the nearest resolver. If the nearest resolver is disconnected, the anycasting principle
automatically updates routing tables to other resolvers.

5.4.3 Server

In order to provide elementary functionality, an Environmental Server is implemented, which is
able to handle temperature requests (i.e., a request where the object property is temperature)
by fusing multiple sensor values. The environmental server is also implemented in Java.

®
v

recelve primary reques

( parse request ,
( store in PRT }

send secondary req ues

timeout reached?A

[no]\/[yeS] l

lookup and remove primary request in PRT

receive response

store in SART

Cookup and remove responses from SAR‘I)

Gend result to cIienD

Figure 5.12: Activity diagram for processing primary requests on (environmental) servers.
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Figure [5.12)illustrates the sequence of typical activities a (environmental) server has to pro-
cess on the reception of a primary request. First, the server parses the request and stores it in its
PRT (Pending Request Table). Afterwards, a secondary request with the same subject, but with
a replaced object property (e.g. temperature becomes temperatureSensor) is gener-
ated. This request is then sent to the nearest smart router. Afterwards, a timeout is specified.
During this interval responses from S/A-units are stored within the server’s SART (Sensor/Actu-
ator Response Table). By reaching the timeout, the sensor values are fetched from the SART and
the corresponding pending request is fetched from the PRT. Now, the sensor values are fused
and sent back to the client (which is determined by considering the semantic tag of the pending
primary request).

5.4.4 S/A-Unit

In order to make use of the reference system, a demo temperature sensor is implemented. This
Java application waits for temperatureSensor requests (i.e., a request where the object property
is temperatureSensor) typically sent from a server. When such a request is received, a
random temperature value is generated and the sender’s address is extracted from the query
packet. Finally, a response packet containing the (generated) temperature value is sent back to
the source address.

5.4.5 Client

The client (implemented as a Java application) is used to access the content aware network. It
waits for two keyboard inputs, namely a subject and an object property. With these two inputs a
primary request is generated. Afterwards this request is sent to the network (without specifying
a specific receiver’s IPv6 address but with setting the UDP port to 4444), which initiates a
sequence of message exchanges (see Section [5.5.3)) within the content aware network. After the
network has proceeded the request, the client receives a response packet containing the results
(e.g. a fused temperature value).

5.5 Message Exchange

5.5.1 Protocols

For the message exchange between the network components, standard UDP packets over IPv6
connections are used. The payload of such a packet consists of the common general semantic
header (see Section [5.3.1]) followed by the semantic header for the dedicated packet type (see
Sections [5.3.2][5.3.3] [5.3.4). The packet is concluded by an optional payload of various length.
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5.5.2 Connecting New Sensor Nodes

The (reduced) sequence of messages transmitted after connecting a new S/A-unit is shown in
Figure[5.13] First, the S/A-unit sends a connect packet to the network (1). The next smart router
catches the packet and augments the semantic tag by known facts (such as 1ocation). If some
fact is not known yet, the smart router can optionally request this fact from a resolver (2) (e.g.
the location of the router). The resolver then answers to this request either with the requested
fact or with an error message (3). Finally, the smart router stores the augmented semantic tag in
its CNT for processing future secondary requests.

S/A-unit Smart Router Resolver

1: connect ] |
|:| I

optional

|
|
|
|
I
Figure 5.13: Messages sent after connecting a new S/A-unit.

5.5.3 Handling Client Requests

Figure [5.14] shows a typical sequence of UDP messages after a client has initiated a primary
request. After a primary query packet is sent by the client (1), the next smart router catches
the packet and queries a resolver for one or more server addresses (2). Next, the resolver an-
swers either with a set of IPv6 addresses or with an error message if no address was found (3).
Afterwards, the smart router forwards the primary request to these (server) addresses (4).

A server which received a primary request then initiates a secondary request (5). Like before,
the next smart router fetches the request and forwards it to the connected S/A-units which match
the semantic tag of the request (6). In addition, the request is forwarded to the connected smart
routers (not shown in the figure), which also reroute the request to their connected S/A-units
and smart routers (see Section [5.4.1). Every S/A-unit sends the result of the request (packed
in a response packet) back to the requesting server (7). After fusing all responses at the server,
the final result is sent back to the client (8). In contrast to the concept, where the final response
is also caught by a smart router, the response message of the implementation is transparent to
smart routers, since it is sent as an ordinary UDP message with a dedicated receiver.
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Figure 5.14: Messages sent during the cycle of a client request.

5.6 Component Description

5.6.1 System Structure

Figure [5.15]|shows the interaction of the most important components included in the system.

5.6.2 Packet Types

These common classes are needed by all network participants and are implemented in C++ and
in Java.

SmartPacket

This class is used to represent the common general header (see Section [5.3.1). It is the super
class of all other packet types. It entails all needed fields and provides convenience methods to
parse and create a binary representation of a packet.

SmartConnectPacket

This class is an inherited class from SmartPacket. It adds all specific fields needed for a
connect packet (see Section[5.3.2) and extends the convenience methods.
SmartRequestPacket

The SmartRequestPacket is also inherited from SmartPacket. It adds the fields re-
quired for a query packet (see Section[5.3.3)) and provides adapted convenience methods.
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Figure 5.15:

Component interaction.
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SmartResponsePacket

Like the classes before, SmartPacket is the parent class of SmartResponsePacket. This
class adds a field for the response data, as well as augmented convenience methods.

5.6.3 C/C++ (SmartRouter)
RouterKS

RouterKSs is a kernel module used by a smart router, which filters unaddressed UDP packets
from the network stream by implementing a netfilter hook and forwards them to the user space
application by the use of netlink sockets.

RouterUS

The class RouterUS is the main class of the smart router’s user space application. It is used to
handle connect packets, primary and secondary requests. The class contains following important
members:

Netlink *netlink
Reference to a netlink object in order to receive fetched packets from the kernel module.

Udp6 *udp
Reference to a Udp6 object, which is used for sending and receiving UDP packets over a
IPv6 connection.

list<SmartConnectPacket x> connected nodes
List of all directly connected S/A-units (equals to the concept’s CNT).

list<uintl1l6_t> pendingRequests
List of all processed secondary requests (equals to the concept’s ERT)

Netlink

This class is used to establish a netlink socket between the user space application and the kernel
module. Methods for receiving (rcv () ) and sending (snd () ) are provided.
Udp6

This class is used to handle a datagram socket for sending (send () ) and receiving (rcv ())
UDP packets by the use of an underlying IPv6 connection.
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5.6.4 Java (Client, Resolver, EnvironmentalServer, TemperatureSensor)
UDPServer

This is an abstract super class used to create a server which accepts UDP packets. To this end,
the class contains a DatagramSocket. The server continually listens on a datagram socket
for new packets by the use of an abstract method 1istenSocket (). UDP Messages can be
sent by the use of convenience methods, accepting either SmartPacket objects, strings, or
byte arrays.

OWLWrapper

The OWLWrapper is used to access the OWL API. It has access to the ontology by the use of
an instance of OWLOntology, as well as to the Pellet reasoner (PelletReasoner). The
wrapper transforms requests of several types to queries for the Pellet reasoner.

Resolver

This class is the main class for the Resolver. It inherits the functionality of UDPServer. It
waits for requests addressed to the resolver’s anycast address and processes them by the use of
an instance of OWLWrapper. For this purpose, the resolver examines the request type
field of the received packet and calls the corresponding method of the OWLWrapper instance.

EnvironmentalServer

This is the environmental server’s main class. It is also derived from UDPServer and waits for
primary requests. This class contains following important member variables:

protected ConcurrentHashMap<Integer, Request> pendingRequests
This hash map contains all pending primary request (equal to the concept’s PRT).

protected ConcurrentHashMap<Integer,
CopyOnWriteArrayList<SmartResponsePacket» pendingResponses
This array list entails all responses from S/A-units (equal to the concept’s SART).

On the reception of a primary request, the SmartRequestPacket is wrapped inaRequest
and stored in the pendingRequests map. In addition, a timeout is specified by the use of a
Timer object.

Request

This class acts as a container for a SmartRequestPacket. In addition to the packet, origin
address and port are stored, since they are not part of a SmartRequestPacket.
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TimeoutTask

The class TimeoutTask is needed in order to initiate the fusing function of the EnvironmentalServer
on the arrival of the timeout’s deadline. To this end, it has access to the EnvironmentalServer.

TemperatureSensor

The class TemperatureSensor implements an S/A-unit handling temperature requests. On
the reception of a secondary request, a random temperature value is created and returned to the
requesting node (i.e., the requesting server). TemperatureSensor is also derived from the
UDPServer.

Client

This is a simple single class program which reads in a subject and an object property from the
console and initiates a primary request. Afterwards, it waits for the reception of the server’s
response packet, containing a fused sensor value.
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CHAPTER

Evaluation

This chapter evaluates the presented concept and its reference implementation with respect to
performance, security and fault tolerance. Since not all features are implemented in the reference
system, some distinctions are made between the concept and the implemented system when
needed.

6.1 Alternative Approaches

6.1.1 Overview

In order to discuss the content aware network approach, it is necessary to know how alternative
(classical or content aware) systems would be implemented. Depending on the knowledge of
the client, several approaches are possible:

The integrated server approach: Like in the presented concept a dedicated server is responsi-
ble for fusing sensor values or propagating target states to actuator nodes. All requests are
directly addressed to the integrated server. Therefore, this approach eliminates the need
for smart routers and resolvers.

The domain server approach: A domain server has also the capabilities of dedicated servers.
Therefore, a (domain) server can directly process primary requests and create the corre-
sponding secondary requests, instead of first forwarding the request to a dedicated server.

The multicasting approach: For the multicasting approach no dedicated server is used. S/A-
units of a dedicated type listen to the same IPv6 multicast address. A client has (hard
coded) knowledge about various multicast groups. Therefore, by sending one multicast
message, all S/A-units can be addressed at once. Sensor fusion is done at the client appli-
cation.
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6.1.2 The Integrated Server Approach

The integrated server approach merges the functionalities of resolver, domain server, smart
router and all servers into one network component, called integrated server. This multi-functional
device takes control over all tasks of a content aware network in both, the information pull and
information push strategies. Each major task, the reception of a client request, the collection of
sensor values, the distribution of actuator target states, as well as the handling of data packets
is performed directly by the integrated server. Since all communication belonging to the con-
tent aware network is done with this device, IPv6 anycasting can be used instead of fetching
matching packets out of the network traffic at (smart) routers.

An integrated server can be either responsible for all S/A-units or only for a specific type of
S/A-units. The difference is that for the first case only one anycast address exists for all servers,
and for the second case a multicast address exists for each server type. This means that a client
must have knowledge about all possible server types and must address a request correctly to one
of the predefined anycast addresses.

Client Server S/A-Unit

- Lresponse

Aresponse _
LN

Figure 6.1: Message sequence of the information pull strategy in the scope of the integrated
server approach.

Figure|6.1|shows the sequence of messages sent by the information pull strategy in the scope
of the integrated server approach. After a primary request (1), the integrated server parses the
request, infers semantic information by using a reasoner and then initiates a secondary request to
all matching S/A-units (2). Since the server manages connected S/A-units on its own, S/A-units
can be addressed directly by their own IPv6 addresses. When all S/A-units have returned their
response to the integrated server (3), the server fuses these responses according to a predefined
policy and returns the result to the client (4).
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The information push strategy is simplified to exactly one message (see Figure [6.2), namely
the data packet, sent from an S/A-unit.

S/A-Unit Server

Figure 6.2: Message sequence of the information push strategy in the scope of the integrated
server approach.

This approach gets along with just one content aware network component. This component
comprises the entire functionality needed by a content aware network, which reduces network
traffic. This implies, however, that the device must be extremely powerful in order to manage the
computation intensive tasks of reasoning and sensor fusion. Just one type of component must
handle all messages, even in large networks with thousands of messages. Another drawback of
this approach is that a client has to know the exact (anycast) address of the integrated server.
Especial in case of the variant with dedicated integrated servers, a client must send a request to
the exact anycast address belonging to the intended type of integrated servers.

6.1.3 The Domain Server Approach

The domain server approach eliminates the need of dedicated servers. All detailed request han-
dling and sensor fusion is done at the specific domain server. This server directly handles pri-
mary requests and data packets.

Figure [6.3]shows the sequence of messages sent in the scope of the domain server approach
when a client initiates a primary request (in the scope of the information pull strategy). After
the client requested information from the content aware network (1), the nearest smart router
forwards this request to the next resolver (2). Like in the chosen concept, the resolver completes
primary requests by using its ontology. The difference now is that the completed request is
directly processed by the corresponding domain server (3), instead of forwarding it to a dedicated
server. For this purpose, the whole primary request has to be forwarded, not just a transformed
query (e.g. an SQL query). The (domain) server then can use a detailed database to handle the
request. With this information, the server is able to send a secondary request in order to address
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the corresponding S/A-units (4). From there the message sequence is the same as in the chosen

concept.
Client Smart Router Resolver Server S/A-unit
I I I I I
1 _L | Primary IRequest |
1. query ’
I I I
2. query
] I
3: quen
I I
4 se el Secondary Relquest
| 5: query
| |2 IEUREE
< - - - - 7: response _ _| _________ |
< _8: response_ _ _ | || |

Figure 6.3: Message sequence of the information pull strategy in the scope of the domain server
approach.

Like in the information pull strategy, data packets (1) in the scope of the information push
strategy (see Figure[6.4)) are directly forwarded to a resolver (2) which augments the data packets
by the use of its ontology. Afterwards, the resolver forwards this augmented data packet to a
domain server (3) which is directly able to handle the type of packet.

This approach includes the functionality of the dedicated servers directly into domain servers.
For a typical network, there may be a few domains, but a lot of different services. Therefore, it
is better to put the specific processing of packets into dedicated network servers, instead of im-
plementing this functionality in an "all-in-one" domain server. In addition, it is possible that for
a single service multiple domains are of interest. By the use of this approach, a workaround has
to be made by implementing the same service many times at different kinds of domain servers.
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2: data
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Figure 6.4: Message sequence of the information push strategy in the scope of the domain server
approach.

6.1.4 The Multicasting Approach

The multicasting approach only uses clients and S/A-units. All functionalities needed to fuse
sensor values are provided by the client itself. The ability to address multiple S/A-units at once
is inherited from IPv6 multicasting by the definition of several multicast groups for each single
type of S/A-unit. This approach is only usable for the information pull strategy, since no server
is available for handling data packets in the scope of the information push strategy. When this
feature is needed, a dedicated server must be added to the network.

Client S/A-Unit

Figure 6.5: Message sequence of the information pull strategy in the scope of the multicasting
approach.
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Figure[6.5]shows the sequence of messages sent in the scope of the information pull strategy
by the multicasting approach. A client directly sends a request to a set of S/A-units by address-
ing the packet to the correct multicast group (1). Every addressed S/A-unit returns its response
directly to the client (2). Finally, the client itself interprets and fuses the received results on its
own.

The big drawback of this approach is the lack of flexibility. It is hardly possible to limit the
set of receivers according to predefined properties. The only techniques which can be used are
defining several multicast groups and using the hop limit field of the IPv6 header. Never-
theless, this approach is useful to compare the presented concept with.

6.2 Performance

6.2.1 Number of Packets

Figure [6.6] shows a typical network topology when using the integrated server approach. As-
sume that the client wants to know the average temperature of all sensor nodes. The client must
therefore send a dedicated request to the integrated server. This server has knowledge about
all temperature sensors within a predefined network segment. Next, the server has to send four
separate requests to these sensor nodes. Every node puts its current value into a response packet
and returns it to the server. Finally, the integrated server fuses the values and returns the result
to the client.

Integrated Server

Temp. Sensor 1

Temp. Sensor 2

Temp. Sensor 4

Temp. Sensor 3

Client

Figure 6.6: Network structure of the integrated server approach.
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In total there are

Mintegrated = 242%xn=2x (1 —|—’I’L)

packets sent (where 7 is the amount of sensor nodes), when using this approach. According
to this equation, Mptegrated = 10 messages are sent in a network with four matching S/A-units
when using the integrated server approach.

Figure[6.7]shows the setup of a typical network when the domain server approach is used. When
requesting information from this network, a client has to send a primary request. This request
is then forwarded to the nearest resolver by the next smart router. The resolver adds semantic
information to the request and forwards it to a dedicated server, which initiates a secondary re-
quest. This secondary request is then split up at the network’s smart routers in order to arrive
at all corresponding S/A-units. After the S/A-units have reported their results to the server, the
server fuses the results and sends a response packet back to the client.

Environmental Server

Temp. Sensor 2
Temp. Sensor 4

Temp. Sensor 1

Temp. Sensor 3

Figure 6.7: Network structure of the domain server approach.

Client Resolver

At a first glance, there are

Mdomain = 6+2x*n

messages sent in the scope of the information pull strategy when using this approach (where
n is the amount of sensor nodes). Since the client’s request is caught by the nearest smart router,
in an optimal content aware network (a network, where no classic routers exist), the first two
messages concern different network links. Therefore, the two messages can be combined in the
formula above. In addition, the secondary request can be compared to IP multicasting, since the
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request is only sent once and then split up at the smart routers. This means that a secondary
request passes a single network segment just once. Finally, the server’s response is in fact only
one message, instead of two (7, 8). Therefore, the formula above can be simplified:

Mdomain,opt = 5+mn

For the example of four matching S/A-units (see Figure @, Mdomain,opt = 9, Which is
slightly better than m;,,¢cgrateqd = 10. For n > 3 this approach requires fewer messages than the
integrated server approach, since

Mintegrated — Mdomain,opt = 2+2x%n— (5 + n) =n—3

Figure [6.8] shows a typical network topology when using the multicast approach. By using
the multicast approach, a client sends its request directly to all S/A-units by specifying the cor-
rect multicast address. Afterwards, every S/A-unit returns its current value straightforward to
the client which finally fuses these values.

Temp. Sensor 1
Temp. Sensor 2

Temp. Sensor 4

Temp. Sensor 3

Client

Figure 6.8: Network structure of the multicast approach.

Therefore, there are

Mumulticast = 1+n

messages sent in total when using this approach (where n is, like above, the amount of
sensor nodes). It is obvious that (for the price of less flexibility) this approach needs half as
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much messages compared to the integrated server approach. In addition, this approach needs
constantly 4 messages less than the domain server approach. For the example of four matching
S/A-units (see Figure[6.8), mnuiticast = 5 messages are sent when using the multicast approach.

Now consider the example of requesting the average temperature when using the chosen concept
(with the use of domain servers), respectively the concept’s reference implementation (without
the use of domain servers) provided by this thesis. According to Figure [4.9] the following mes-
sage sequence is executed during the information pull strategy when considering the general
concept:

First, the client sends an unaddressed temperature request. This request is caught by the next
smart router which has to reroute it (send a new packet) to a resolver. This resolver augments the
request and then forwards it to a dedicated domain server. The next packet sent is the response to
the smart router. Finally, the smart router forwards the initial primary request to a dedicated sen-
sor which then initiates a corresponding secondary request. At the next smart router this request
is split up and sent to all matching S/A-units within the specified range. After the responses of
the S/A-units are sent back to the server, the server aggregates the values and returns the fused
value to the client.

At a first glance, following formula is valid for the amount of messages:

Meconcept = 8+2x*n

But this formula is not exact, because some messages are in fact the same but sent over
different network links. Consider the messages (1) and (5). The first one is the request sent
from the client to the smart router. Since the smart router is the first router, to which the packet
is passed, in an ideal content aware network (one, where no classical routers exist), this packet
goes over exactly one network link. Since (5) is the same message as (1), but only forwarded
by the smart router, these two messages concern a single network link at most one time. The
same argument can be applied with (6) and (7). In addition, since the secondary request is in fact
similar to multicasting, the combination of (6) and (7) affects a single network link at least one
time. Finally, (9) and (10) are in fact also just one message. Therefore, this optimized formula
is valid for the amount of messages when considering the presented concept:

Mconcept,opt = 6+n

Finally, consider the information pull strategy of the implemented reference system (see
Figure [5.14). Since this system does not contain any domain servers, a resolver can directly
respond to a request initiated from a smart router. This reduces the amount of messages again
by 1. Therefore, the final formula which is valid for the reference system is:

Myef opt = dS+n
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It is obvious that in case of larger systems with more S/A-units, the reference system pro-
duces less network traffic than the integrated server approach (the break-even point is at n = 3),
while the domain server approach needs the same amount of messages regardless of the amount
of S/A-units. Compared to the multicasting approach, the reference system constantly needs 4
more UDP messages. But for the price of these four messages, the system becomes a lot more
flexible and convenient to the user.

Now consider the case, where the client request involves multiple S/A-types (e.g. requesting
information about the current wind conditions involves wind speed and wind direction sensors).
The formulas for the various approaches are listed below, where s; is the amount of units of
S/A-type i and n is the total amount of S/A-units (i.e., n = > s;). t specifies the amount of
different S/A-types involved in the request.

Monult integrated =~ = 2% (1 + Z Si) = 2x(1+4+n)
Mmult, domain,opt = 4+1+ Z S; = 4+t+n
Mmult,multicast = T+ Z S; = t+n
Monult,conceptopt = D+ 1T+ Z S; = H4+t+n
Muultrefopt = 4+E+ Z 8 = 44+t+n

It is obvious that the integrated server approach needs the same amount of messages re-
gardless of the amount of involved S/A-types. The domain server approach, the multicasting
approach, as well as the chosen concept’s approach and the reference system need ¢ — 1 more
messages, where ¢ is the amount of S/A-types.

For measured quantities which change slowly, an S/A-unit may be configured as a periodic mul-
ticasting device. By the use of the configuration’s inherent information push strategy, a server
can be informed about state changes. This state information can be stored for future client re-
quests. Hence, in this case there is no need for additional secondary requests. A client’s request
is therefore reduced to the following constant amount of messages:

Mpush,concept,opt

Mpush,ref,opt = 4
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6.2.2 Caching

In order to increase network performance, network nodes may cache information gained from
previously sent packets. In this section, caching at various network components is discussed.

For a smart router it is feasible to cache any topology information received from a resolver
(respectively domain server). For this purpose, a smart router may contain a special table to
store destination addresses to semantic tags. Such a table is of the format <hash (t), a>,
where t is the semantic tag of a query packet and a is a set of IPv6 addresses of interested
network nodes. hash () is a hash function, providing a unique identifier for each semantic tag.

At a first glance, it is also possible to store results of primary requests at smart routers. Since
every sequence of messages belonging to a dedicated primary request must provide the same
message 1d, a smart router can implement the following functionality: On the reception of
a primary request, the hash of the request’s semantic tag (t) is stored in a dedicated request
table. When the response belonging to a previously stored request reaches the smart router, this
response (r) is added to the corresponding entry of the request table. The request table may have
the format <hash (t), r>. To this end, a smart router must also examine the semantic tag of
response packets. Since only the nearest smart router receives a client’s primary request, it only
makes sense for smart routers on network segments containing clients to employ this caching
technique.

On closer examination, this caching technique has a big drawback when processing state
change requests (i.e., requests where any states of actuators have to be changed). Caching such
requests can result in missed state changes: Consider a system with two smart routers. Assume
that smart router 1 processes (and therefore caches) the request set all lights in the Office to "on".
Now, smart router 2 gets the request to set all lights "off". Since smart router 1 has cached the
first request, a final request, intended to set the lights "on" again would actually result in doing
nothing.

This problem can also be found in shared memory multiprocessor systems under the term
cache coherency 2. Various protocols are available to maintain coherency, like Synapse, Berke-
ley, or Illinois. They are all based on updating remote caches at the modification of a processor’s
own cache. For the case of smart routing, this would mean an overhead in terms of network pack-
ets. But in most cases additional message sequences burn up the increase of performance gained
from caching primary requests. Therefore, smart routers should only cache requests where no
actuators must be set. To this end, a smart router would have to have detailed knowledge about
the content of a (primary) request. But this knowledge is predestined to resolvers and servers.
Giving a smart router the possibility to fully examine the contents of query packets would result
in too much computational overhead. Hence, this caching technique is not directly applicable.

81



Another possibility to cache information is at resolvers. Using a semantic reasoner can be
resource intensive for large ontologies. Instead of always inquiring an ontology for the same
requests, processed requests can be cached. When receiving the same request again, a resolver
can therefore respond faster. This type of cache is valid as long as the used ontologies are not
altered. A resolver must therefore keep track on the modification of the ontology and clear its
cache right after any change.

Caching at passive domain servers makes no sense, since contemporary database systems al-
ready provide high performance caches. On the other hand, for active domain servers the same
caching techniques which are possible for resolvers can be applied.

Finally, a server can cache results of previous secondary requests. When receiving a primary
request, the server must examine which type of secondary requests should be applied. In the
case of just requesting current values from sensor nodes, the server can cache processed re-
quests. Since the server has already knowledge about the internals of a query packet (compared
to a smart router), the drawbacks mentioned above do not come into effect.

In addition, a server can cache data packets sent from S/A-units in the scope of the informa-
tion push strategy. By the knowledge of the current state of these S/A-units, there is no need to
send additional secondary requests to process a primary request.

6.2.3 Timeouts

The reference implementation’s environmental server waits for a predefined time for responses
of S/A-units before sensor values are averaged and sent back to the client. It is hard to specify
a minimum timeout, because IP network communication can not be exactly timed. Therefore,
the timeout has to be set to the worst case, which results in always waiting for the worst case
deadline. There are two possibilities to get better average case results:

1. According to the concept, a smart router forwards the configuration of connected S/A-
units to all interested servers. Therefore, a dedicated server would know how many S/A-
units exist of a specific type. When requesting the state of a set of S/A-units, the server
knows exactly, when all S/A-units have reported their current values. A timeout is only
needed as a backup, when an S/A-unit failed.

2. When forwarding a secondary request, a smart router can report the amount of recipients
to the requesting server. Since there might be more than one smart router which forwards
the request to different S/A-units, a server must be able to handle and aggregate such
reports of several smart routers.
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6.3 Security

6.3.1 Overview

Like any distributed system, a content aware network is vulnerable to attacks and intrusion at-
tempts. To secure network communication against such threats, possible attack scenarios are
discussed. Finally, a solution is presented which handles the discussed vulnerabilities.

The basic concepts of security are Confidentiality, Integrity, and Availability. These three prin-
ciples are called the CIA-Triad [1]] (see Figure [6.9).

services

Availability
Figure 6.9: The CIA-Triad.

Confidentiality is about the protection of private data from viewing by non-authorized parties.
Confidentiality is necessary to maintain privacy. Absolute secrecy of personal passwords
is a requirement for confidentiality.

Integrity is about the protection of private data against unauthorized modification or deletion.
To this end, not just prevention against undesirable modification of data must be provided,
but also mechanisms to reverse changes.

Availability is the third part of the CIA-Triad. Availability is about the possibility to access
personal data at any time when it is needed.
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6.3.2 Vulnerabilities

Man-in-the-Middle

A Man-in-the-Middle attack can be performed by a manipulated router. The router seems to act

like a normal smart router, but in reality it eavesdrops or manipulates network communication.

Such a router can harm a content aware network concerning any principle of the CIA-Triad.

According to the segment to which such a component is attached, several vulnerabilities exist:

Client 1

Infected Router
Infected Router

Infected Router

(a) The manipulated router (b) The manipulated router is (c) The manipulated router is
is located inside the content located between the client and located between an S/A-unit
aware network. the content aware network. and the content aware network.

(a)

(b)

(©
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Figure 6.10: Man-in-the-Middle attack variants

If the manipulated router is located inside the content aware network (see Figure [6.10a)),
the device affects a whole set of network participants. It is possible to eavesdrop, manip-
ulate or drop any type of network packets, even data packets (e.g. consider a manipulated
or even dropped data packet which is sent due to a fire alarm)

If the manipulated router is attached directly between a client and the content aware net-
work (see Figure [6.10b), the device may eavesdrop, manipulate or drop primary requests
or responses to primary requests.

Located on a segment between an S/A-unit and the rest of the content aware network (see
Figure[6.10d]), a manipulated router may manipulate current values or configurations. Like



in (a), it is also possible to compromise data packets in the scope of the information pull
strategy.

Malicious Resolver (or Domain Server)

Malicious resolvers or domain servers can affect the availability and the integrity of a content
aware network. Any request to such a device can be manipulated in a way, such that no or wrong
results are returned. In the case of returning no data, the content aware network is simply not
able to process unaddressed packets. Therefore, the network’s availability is harmed. In the case
of topology requests, it is even possible to return IP addresses of other malicious components,
which affects the network’s integrity.

Malicious Server

A malicious server can affect the system’s integrity by reporting wrong results to primary re-
quests. In addition, a malicious server may send unauthorized secondary requests, which can be
used for setting wrong actuator states or eavesdropping sensor values.

Malicious S/A-Unit

Malicious S/A-units mainly affect the system’s integrity. Considering the information pull strat-
egy, a malicious sensor node may return fake current values to secondary requests, resulting in
incorrect fused values. A malicious actuator node may set its state arbitrarily, which can be fatal
for some systems (e.g. consider a malicious actuator node which regulates a valve in a nuclear
power plant).

When the information push strategy is considered, a malicious S/A-unit may send wrong
data packets, which can result in unintended behavior of servers and other network nodes (e.g.
a wrong fire alarm).

Furthermore, a malicious S/A-unit can also harm the system’s confidentiality, since such
nodes can also be used to eavesdrop the internal state of sensors and actuators.

6.3.3 Preserving Security
Requirements

In order to secure a content aware network, it is required to encrypt network communication.
If all communication is encrypted, it is harder to perform attacks and intrusion attempts. In
addition, only authorized participants of the network shall be allowed to send packets. Messages,
sent from unauthorized network components must be dropped immediately at smart routers.
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IPsec

It is possible to use IPsec (see Section [2.1.2)) for securing packet transmissions and component
authentication to build a secure content aware network. To this end, IPsec’s transport mode in
combination with ESP can be utilized. In order to only encrypt traffic belonging to the con-
tent aware network, correct selectors (see [36] Section 4.4.1.1.) have to be used. For primary
requests, it is enough to select UDP packets with the dedicated destination port 4444. Since
communication with resolvers (and domain servers) is done by IPv6 anycasting, selectors for
resolver requests and responses can be bound to the corresponding anycast address. All other
selectors for the other network nodes have to be applied to the specific combination of source
and destination IPv6 addresses and UDP ports.

Since [Psec supports not only encryption, but also authenticity (with the help of protocols
like IKEv2), not only modification threats can be handled, but also a component’s identity can
be verified. This is done by signing messages with the sender’s private key. Through distributing
anode’s public key to other participants of the network, a receiver can check if a specific packet
was sent by a trusted sender.

What remains is the elimination of availability threats. Since for the availability of a system
it makes no difference, whether a malicious network nodes cuts a network connection or a benign
node fails, the experiences of Section[@ can also be used to handle availability threats.

6.4 Safety and Fault Tolerance

6.4.1 Definition

Fault tolerance means that a system should maintain its functionality despite of a maximum set
of potential malfunctions. In contrast to security which is about the protection of a system from
the outer world, safety deals with the handling of unintended behavior of system components
(e.g. protection from software bugs or hardware errors). To this end, possible faults of a content
aware network are discussed.

6.4.2 Broken Network Links

In general, IP networks provide multiple routes between pairs of network participants. A routing
table contains entries for every possible path. Due to routing protocols, these entries are contin-
uously updated. Therefore, in the case of broken network links, automatically alternative paths
are chosen by a router. Since a content aware network is based on standard IPv6 communication,
this powerful feature is already built in.
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6.4.3 Broken (Smart) Routers

In case of a dead router, all network nodes directly connected to this router are cut off from the
network. All other network nodes can be accessed by alternative routes, if there exists one. A
solution to this problem can be found in adding multiple servers, resolvers and S/A-units (which
handle the same tasks) to different segments of the network. In case of a separation of two
parts of the network due to the failure of a smart router, there are multiple network components
available in both separated network segments in order to maintain the functionality.

6.4.4 Broken Resolver (or Domain Server)

Communication with resolvers (and domain servers) is done by anycasting, which is a feature
provided by IPv6. Therefore, all resolvers are listening to the same IPv6 address. By the prin-
ciple of anycasting, a packet sent to such an address arrives only at one destination. Since this
feature automatically detects online network participants belonging to a dedicated anycast group,
it is simply possible to add x resolvers to the network in order tolerate x — 1 dead resolvers. For
domain servers of a specific type the same argumentation holds.

6.4.5 Broken Server

The content aware network natively supports multiple servers responsible for the same primary
requests. According to the semantic tag of a packet, a smart router has to forward the packet
to one out of all available servers. Since all network nodes have to send connect packets in
predefined intervals, a smart router detects an offline server by checking a timestamp field in
its CNT. Therefore, by just providing multiple servers for the same tasks, primary requests can
simply be handled by an alternative server.

Data packets sent during the information push strategy, have to be forwarded to all interested
servers. For particular cases, it would be beneficial to use redundant servers handling the same
data packets. These servers have to communicate with each other in order to make sure that the
tasks to be performed only get executed once. In the case of two redundant servers this can be
done by selecting one of them as master and the other one as slave server. On the reception of a
data packet, the master server has to inform the slave server that it is alive and able to perform
the intended tasks. If this message does not arrive at the slave server until a predefined deadline,
the slave server assumes that the master is dead and executes the tasks on its own.

6.4.6 Broken S/A-Unit

Dead sensor nodes are not problematic, when multiple sensor nodes of a specific type are avail-
able, since sensor values are fused at servers. Therefore, the worst case scenario for broken
sensor nodes is that a server does not receive data from all sensors, resulting in fusing the values
from less sensors.
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Dead actuator nodes can be handled also by redundant nodes. In this case it is important for
secondary requests to specify absolute target values (e.g. set the target temperature to +25 °C),
instead of relative values (e.g. increase the target temperature by +5 °C).

In general, faulty S/A-units can be detected by TMR (Triple Modular Redundancy) (see Fig-
ure [6.TT)). Instead of just providing one S/A-unit for a specific purpose, a set of three redundant
units is provided. By voting it is possible to detect one faulty S/A-unit when the other two are
working correctly.

S/A-unit B

Figure 6.11: TMR in S/A-units.

Since a dedicated server can implement sophisticated fusing functions, which detect wrong
sensor values (see Section {.4)), it is not necessary to implement TMR for sensor nodes. For
instance, the adaptive algorithm automatically removes sensor values where the deviation from
the mean is larger than a specified interval. A server can keep track of such faulty sensor values
and, in case of repetition, a system administrator can be informed about the broken sensor node.

6.5 On the Way to a Complete Ontology

The provided ontology (see Appendix [A) is optimized for the use of the reference system. A
real-life ontology must have some modifications. In general, there is no need for instances of
network nodes within in the ontology, since these are provided by dedicated domain servers. On
the other hand, additional properties must be provided for specific cases (e.g., there must be the
possibility to restrict a request to a minimal accuracy, or to specify all cities within a certain
range).

In general, the resolver’s smart-routing ontology is used to augment a request’s object properties
by some inferred properties fetched from the request’s subject. In contrast to the implementation,
this request does not need to be completely resolved to a destination address. The destination
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address is found by converting the augmented request to a dedicated format which is readable
by a domain server (e.g. SQL for passive domain servers).

When needed, this smart-routing ontology can be augmented by more sophisticated on-
tologies which can be interpreted by active domain servers or even dedicated servers. Such
additional ontologies can be observation-centric (like SENSEI [9]]), sensor-centric (like the MMI
Device Ontology [22]), or a combination of the both. By the use of such an ontology it is possible
to combine physical sensor values in order to obtain virtual sensor values or measurements over
time. A virtual sensor is a sensor with no direct observation possibilities. The sensor value is
virtually (by software) gained by the fusion of several other sensor types. An example of virtual
sensing is the determination of a car’s position within a tunnel by the use of the last received
GPS coordinates and the car’s speed and direction of movement. Measurement over time can be
used for example to get average values within a specific time interval (e.g. average temperature
of Vienna in July).

The process of resolving a request to a certain set of network addresses can be divided into
several parts. First, the resolver must parse the request. Afterwards, the ontology must be in-
quired by the use of a semantic reasoner. This reasoner must initially find the corresponding
instance to the request’s subject within the ontology. Next, the subject’s object properties are
used to augment the request. Finally, the resolver converts the request to a dedicated query for a
domain server.

Now, this server either queries a database (passive domain server), or inquires an extended
ontology (active domain server). In the first case, a simple SQL query provided by the reasoner
delivers the correct set of addresses. In the second case, the extended ontology must also contain
instances of objects (e.g. servers) in order to obtain the needed addresses.

6.6 Interpreting Natural Language

In the actual concept client requests are based on a subject in combination with some object
properties and an optional target state to set actuators (e.g. for the subject Vienna and the ob-
ject property temperature, a client wants to receive the current outside temperature of the city
Vienna). For more flexibility, a preliminary stage within a resolver could parse simple English
phrases, like get temperature in Vienna, where the subject Vienna and the object property tem-
perature are extracted. For this purpose, the set of accepted phrases should be kept simple in
order to preserve a minimum of required performance. For actuators, such a phrase could be
set emergency lights in Building A to "on". The keyword set indicates that this request is des-
ignated to set some actuators. Therefore, the subject Building A, the object properties light and
emergency and the target state on are extracted from the phrase.

&9






CHAPTER

Conclusion

This chapter provides a short summary and an outlook of future work on the topic of content
aware networking.

7.1 Summary

In the scope of this thesis, a concept for content aware networking (with a focus on S/A-systems)
in IPv6 networks is presented. In this context, content aware means that network components
have the capability to parse and process packets according to their semantic meaning. The ad-
vantage of this approach is the presented routing mechanism which is not based on destination
addresses but on the semantic tag of a network packet which is interpretable by a piece of soft-
ware. In order to make decisions based on such a semantic tag, techniques provided by the
Semantic Web are used. Semantic reasoning helps augmenting information by known, but not
directly encoded facts. To this end, ontologies, stored in OWL files, are used.

The concept distinguishes between the information pull and the information push strategy. The
information pull strategy is used to handle client requests. Such a request can be for example the
query of the current temperature of a specific location. To this end, the content aware network
resolves this (unaddressed) primary request and forwards it to a dedicated environmental server.
The environmental server then generates a secondary request in order to address all temperature
sensors belonging to the requested location. When all sensors have reported their current values,
the server averages these values and reports the result to the client.

The information push strategy is used for event messages, sent from S/A-units. If an S/A-
unit has to report a change of its state, it sends an unaddressed data packet to the network. By
interpreting the semantic tag of this packet, the network forwards this packet to a set of inter-
ested servers which may then perform further actions (e.g. setting actuators, or forwarding the
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information to other systems).

In order to provide the feature of smart, content based routing, several network components
are presented which are additional to standard networking devices. A smart router has - apart
from normal routing of standard IP packets - the capability of detecting and fetching packets
belonging to the content aware network. A resolver is another network component which has
access to an ontology containing meta-information of the network. With the help of a semantic
reasoner, a resolver can augment information contained in semantic tags. After extending the
semantic tag of a network packet and transforming it to a dedicated query, it is then forwarded
to a specific domain server. This domain server has full knowledge about a the packet’s domain.
With this knowledge it is able to return IPv6 addresses of dedicated servers which can handle the
packet. Such servers can process client requests of the information pull strategy or data packets
of the information push strategy. For this purpose, these servers can access a set of S/A-units
(i.e., network components which contain sensors and/or actuators).

The thesis also provides a reference implementation of the presented concept. This reference
implementation is a proof of concept with elementary functionality. For this purpose, some fea-
tures of the concept are simplified (e.g. the functionality of domain servers is included in the
resolvers).

The experiences found in the implementation of this reference system can be used to imple-
ment a complete content aware network which provides all features of the presented concept. To
this end, the thesis provides a full evaluation of both, the concept and the reference implemen-
tation. This evaluation discusses the approach with respect to performance, security, safety and
fault tolerance. In addition, advantages and disadvantages of some alternative approaches are
presented.

7.2 Future Work

The actual reference system provides elementary functionality needed by the information pull
strategy. The next step would be implementing a full system containing all presented network
components, where the semantic tags are completely encoded in XML. This full system should
also implement the information push strategy.

In order to secure network traffic, IPsec can be utilized. As the evaluation (see Section [6.3])
shows, IPsec’s transport mode in combination with ESP would fit the needs of a secure content
aware network.

Caching at smart routers, resolvers and servers can increase throughput. To this end, con-
ventional caching techniques may have to be adapted. Since information in S/A-systems is often
short-lived, it would need to be investigated, whether caching of specific information is feasible.

Adding a human interface which is able to parse English phrases would help to increase the

92



usability of a content aware network. To preserve a minimum level of performance, accepted
phrases must be kept small and simple.

The reference implementation is based on sending UDP packets. One further step is to
shift semantic interpretation to lower levels of the OSI-model. Enabling semantic interpretation
on lower levels enables a whole set of new possibilities (e.g. instead of defining a dedicated
UDP port for semantic packets, a new protocol family can be defined). Also, replacing IP with
wireless technologies, like 6LoWPAN or ZigBee, is worth of further investigation.
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APPENDIX

OWL Ontology Used for the Reference
System

<?xml version="1.0"7>

()

4 <!DOCTYPE Ontology [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >

6 <!ENTITY xml "http://www.w3.o0rg/XML/1998/namespace" >
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf—schema#" >
8 <!ENTITY rdf "http://www.w3.0rg/1999/02/22 —rdf —syntax —ns#" >
1>

10

12 <Ontology xmlns="http: //www.w3.0rg/2002/07/owl#"
xml:base="http: //www.iot6.eu/2013/routing#"

14 xmlns:rdfs="http: //www.w3.0rg/2000/01/rdf —schema#"
xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema#"
16 xmlns:rdf="http: //www.w3.0rg/1999/02/22 —rdf —syntax —ns#"
xmlns:xml="http: //www.w3.org/XML/1998/namespace"
18 ontologyIRI="http: //www.i0ot6 .eu/2013/routing#">
<Prefix name="" IRI="http://www.iot6.eu/2013/routing#"/>
20 <Prefix name="owl" IRI="http://www.w3.0rg/2002/07/owl#"/>
<Prefix name="rdf" IRI="http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#" />
22 <Prefix name="xml" IRI="http://www.w3.o0rg/XML/1998/namespace"/>
<Prefix name="xsd" IRI="http://www.w3.0rg/2001/XMLSchema#" />
24 <Prefix name="rdfs" IRI="http://www.w3.0rg/2000/01/rdf —schema#" />
<Annotation>
26 <AnnotationProperty abbreviatedIRI="rdfs:label"/>
<Literal datatypelRI="&rdf;PlainLiteral">Smart Routing Ontology</Literal>
28 </Annotation>
<Annotation>
30 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>
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36

38

40

44

46

48

66

74

76

78

80

96

<Literal datatypelRI="&rdf;PlainLiteral ">OWL ontology

Literal>

</ Annotation>
<Declaration>

<Class IRI="Actuator"/>
</Declaration>
<Declaration>

<Class IRI="Building"/>
</Declaration>
<Declaration>

<Class IRI="City"/>
</Declaration>
<Declaration>

<Class IRI="HumiditySensor"/>
</Declaration>
<Declaration>

<Class IRI="LightSwitch"/>
</Declaration>
<Declaration>

<Class IRI="Location"/>
</Declaration>
<Declaration>

<Class IRI="Networknode"/>
</Declaration>
<Declaration>

<Class IRI="Room"/>
</Declaration>
<Declaration>

<Class IRI="Router"/>
</Declaration>
<Declaration>

<Class IRI="Sensor"/>
</Declaration>
<Declaration>

<Class IRI="Server"/>
</Declaration>
<Declaration>

<Class IRI="TemperatureSensor"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="connectedTo"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="fusedValue"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="humidity"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="humiditySensor"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="locatedIn"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="locatedInlnv"/>

for smart routing</



90

92

94

96

98

100

102

104

114

116

118

120

122

124

126

136

138

140

</Declaration>
<Declaration>
<ObjectProperty
</Declaration>
<Declaration>
<ObjectProperty
</Declaration>
<Declaration>
<ObjectProperty
</Declaration>
<Declaration>
<ObjectProperty
</Declaration>
<Declaration>
<ObjectProperty
</Declaration>
<Declaration>

IRI="location"/>

IRI="network" />

IRI="physicalValue"/>

IRI="temperature"/>

IRI="temperatureSensor"/>

<DataProperty IRI="ipv6address"/>

</Declaration>
<Declaration>

<DataProperty IRI="isOutside"/>

</Declaration>
<Declaration>

<DataProperty IRI="location"/>

</Declaration>
<Declaration>

<DataProperty IRI="network"/>

</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>
<NamedIndividual
</Declaration>
<Declaration>

IRI="BuildingA" />

IRI="BuildingB" />

IRI="EnvironmentalServerLinz"/>

IRI="EnvironmentalServerVienna"/>

IRI="Linz"/>

IRI="Office" />

IRI="Routerl"/>

IRI="Router2"/>

IRI="Router3"/>
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142 <NamedIndividual IRI="Router4"/>
</Declaration>

144 <Declaration>
<NamedIndividual IRI="Shop"/>
146 </Declaration>
<Declaration>
148 <NamedIndividual IRI="StorageRoom"/>
</Declaration>
150 <Declaration>
<NamedIndividual IRI="Vienna"/>
152 </Declaration>
<SubClassOf>
154 <Class IRI="Actuator"/>
<Class IRI="Networknode"/>
156 </SubClassOf>
<SubClassOf>
158 <Class IRI="Building"/>
<Class IRI="Location"/>
160 </SubClassOf>
<SubClassOf>
162 <Class IRI="City"/>
<Class IRI="Location"/>
164 </SubClassOf>
<SubClassOf>
166 <Class IRI="HumiditySensor"/>
<Class IRI="Sensor"/>
168 </SubClassOf>
<SubClassOf>
170 <Class IRI="LightSwitch"/>
<Class IRI="Actuator"/>
172 </SubClassOf>
<SubClassOf>
174 <Class IRI="Room"/>
<Class IRI="Location"/>
176 </SubClassOf>
<SubClassOf>
178 <Class IRI="Router"/>
<Class IRI="Networknode"/>
180 </SubClassOf>
<SubClassOf>
182 <Class IRI="Sensor"/>
<Class IRI="Networknode"/>
184 </SubClassOf>
<SubClassOf>
186 <Class IRI="Server"/>
<Class IRI="Networknode"/>
188 </SubClassOf>
<SubClassOf>
190 <Class IRI="TemperatureSensor"/>
<Class IRI="Sensor"/>
192 </SubClassOf>
<ClassAssertion>
194 <Class IRI="Building"/>
<NamedIndividual IRI="BuildingA"/>
196 </ClassAssertion>
<ClassAssertion>
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206

208

210

220
222

224

242

244

246

248

<Class IRI="Building"/>
<NamedIndividual IRI="BuildingB"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Server"/>
<NamedIndividual IRI="EnvironmentalServerLinz"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Server"/>
<NamedIndividual IRI="EnvironmentalServerVienna"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="City"/>
<NamedIndividual IRI="Linz"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Room"/>
<NamedIndividual IRI="Office"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Router"/>
<NamedIndividual IRI="Routerl"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Router"/>
<NamedIndividual IRI="Router2"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Router"/>
<NamedIndividual IRI="Router3"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Router"/>
<NamedIndividual IRI="Router4"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Room"/>
<NamedIndividual IRI="Shop"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="Room"/>
<NamedIndividual IRI="StorageRoom"/>
</ClassAssertion>
<ClassAssertion>
<Class IRI="City"/>
<NamedIndividual IRI="Vienna"/>
</ClassAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="BuildingA"/>
<NamedIndividual IRI="Linz"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="BuildingB"/>
<NamedIndividual IRI="Vienna"/>
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260

262

264

266

268

270

272

274

276

278

280

284

286

288

290

292

294

296

298

100

</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="EnvironmentalServerLinz"/>
<NamedIndividual IRI="BuildingA"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="EnvironmentalServerVienna"/>
<NamedIndividual IRI="BuildingB"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="temperature"/>
<NamedIndividual IRI="Linz"/>
<NamedIndividual IRI="EnvironmentalServerLinz"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="Office"/>
<NamedIndividual IRI="BuildingA"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Routerl"/>
<NamedIndividual IRI="Router4"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Routerl"/>
<NamedIndividual IRI="Router3"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Routerl"/>
<NamedIndividual IRI="Router2"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="Routerl"/>
<NamedIndividual IRI="Office"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router2"/>
<NamedIndividual IRI="Router4"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router2"/>
<NamedIndividual IRI="Routerl"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="Router2"/>
<NamedIndividual IRI="BuildingA"/>
</ ObjectPropertyAssertion>



314

316

318

320

<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router3"/>
<NamedIndividual IRI="Router4"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router3"/>
<NamedIndividual IRI="Routerl"/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="Router3"/>
<NamedIndividual IRI="Shop"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router4"/>
<NamedIndividual IRI="Router2"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router4"/>
<NamedIndividual IRI="Router3"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="connectedTo"/>
<NamedIndividual IRI="Router4"/>
<NamedIndividual IRI="Routerl"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="Router4"/>
<NamedIndividual IRI="BuildingB"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="Shop"/>
<NamedIndividual IRI="BuildingB"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="locatedIn"/>
<NamedIndividual IRI="StorageRoom"/>
<NamedIndividual IRI="Vienna"/>
</ ObjectPropertyAssertion>
<ObjectPropertyAssertion>
<ObjectProperty IRI="temperature"/>
<NamedIndividual IRI="Vienna"/>
<NamedIndividual IRI="EnvironmentalServerVienna"/>
</ ObjectPropertyAssertion>
<DataPropertyAssertion>
<DataProperty IRI="isOutside"/>
<NamedIndividual IRI="BuildingA"/>
<Literal datatypelRI="&xsd;boolean">false</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>
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368

370

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

418

420
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<DataProperty IRI="isOutside"/>

<NamedIndividual IRI="BuildingB"/>

<Literal datatypelRI="&xsd;boolean">false</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="ipv6address"/>

<NamedIndividual IRI="EnvironmentalServerLinz"/>

<Literal datatypelRI="&xsd;string">fe80::150</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="ipv6address"/>

<NamedIndividual IRI="EnvironmentalServerVienna"/>

<Literal datatypelRI="&xsd;string">fe80::150</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="isOutside"/>

<NamedIndividual IRI="Linz"/>

<Literal datatypelRI="&xsd;boolean">true</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="isOutside"/>

<NamedIndividual IRI="Office"/>

<Literal datatypelRI="&xsd;boolean">false</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="ipv6address"/>

<NamedIndividual IRI="Routerl"/>

<Literal datatypelRI="&xsd;string">fe80::221:6aff:fe6a:dbc</Literal>

</DataPropertyAssertion>
<DataPropertyAssertion>
<DataProperty IRI="ipv6address"/>
<NamedIndividual IRI="Router2"/>

<Literal datatypelRI="&xsd;string">fe80::221:6aff:fe6b:dbc</Literal>

</DataPropertyAssertion>
<DataPropertyAssertion>
<DataProperty IRI="ipv6address"/>
<NamedIndividual IRI="Router3"/>

<Literal datatypelRI="&xsd;string">fe80::221:6aff:fe6c:dbc</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI="ipv6address"/>
<NamedIndividual IRI="Router4"/>

<Literal datatypelRI="&xsd;string">fe80::221:6aff:fe6d:dbc</Literal>

</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="isOutside"/>

<NamedIndividual IRI="Shop"/>

<Literal datatypelRI="&xsd;boolean">false</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="isOutside"/>

<NamedIndividual IRI="StorageRoom"/>

<Literal datatypelRI="&xsd;boolean">false</Literal>
</DataPropertyAssertion>
<DataPropertyAssertion>

<DataProperty IRI="isOutside"/>



422

424

426

428

430

432

438

440

442

444

446

448

460

462

464

466

468

470

472

474

476

<NamedIndividual IRI="Vienna"/>

<Literal datatypelRI="&xsd;boolean">true</Literal>

</DataPropertyAssertion>
<SubObjectPropertyOf>

<ObjectProperty IRI="connectedTo"/>

<ObjectProperty IRI="network"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI="humidity"/>

<ObjectProperty IRI="fusedValue"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI="humiditySensor"/>

<ObjectProperty IRI="physicalValue"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI="locatedIn"/>

<ObjectProperty IRI="location"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI="locatedInInv"/>

<ObjectProperty IRI="location"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI="temperature"/>

<ObjectProperty IRI="fusedValue"/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI="temperatureSensor"/>

<ObjectProperty IRI="physicalValue"/>
</SubObjectPropertyOf>
<InverseObjectProperties>

<ObjectProperty IRI="locatedInInv"/>

<ObjectProperty IRI="locatedIn"/>
</InverseObjectProperties>
<SymmetricObjectProperty>

<ObjectProperty IRI="connectedTo"/>
</SymmetricObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI="locatedIn"/>
</TransitiveObjectProperty>
<ObjectPropertyDomain>

<ObjectProperty IRI="connectedTo"/>

<Class IRI="Networknode"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="humiditySensor"/>

<Class IRI="Location"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="temperature"/>

<Class IRI="Location"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="temperatureSensor"/>

<Class IRI="Location"/>
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480

482

484

486

488

490

492

494

496

498

500

502

504

506
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</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty IRI="connectedTo"/>
<Class IRI="Networknode"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty IRI="humiditySensor"/>
<Class IRI="HumiditySensor"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty IRI="locatedIn"/>
<Class IRI="Location"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty IRI="temperature"/>
<Class IRI="Server"/>
</ObjectPropertyRange>
<ObjectPropertyRange>
<ObjectProperty IRI="temperatureSensor"/>
<Class IRI="TemperatureSensor"/>
</ObjectPropertyRange>
<SubDataPropertyOf>
<DataProperty IRI="ipv6address"/>
<DataProperty IRI="network"/>
</SubDataPropertyOf>
<SubDataPropertyOf>
<DataProperty IRI="isOutside"/>
<DataProperty IRI="location"/>
</SubDataPropertyOf>
<SubDataPropertyOf>
<DataProperty IRI="network"/>
<DataProperty abbreviatedIRI="owl:topDataProperty"/>
</SubDataPropertyOf>
<DataPropertyDomain>
<DataProperty IRI="ipv6address"/>
<DataSomeValuesFrom>
<DataProperty IRI="ipv6address"/>
<Datatype abbreviatedIRI="xsd:string"/>
</DataSomeValuesFrom>
</DataPropertyDomain>
<DataPropertyRange>
<DataProperty IRI="isOutside"/>
<Datatype abbreviatedIRI="xsd:boolean"/>
</DataPropertyRange>
<DLSafeRule>
<Body>
<ClassAtom>
<Class IRI="Location"/>
<Variable IRI="urn:swrl#loc"/>
</ClassAtom>
<ClassAtom>
<Class IRI="Location"/>
<Variable IRI="urn:swrl#superLoc"/>
</ClassAtom>
<ClassAtom>
<Class IRI="Server"/>
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<Variable IRI="urn:swrl#serv"/>
</ClassAtom>
<ObjectPropertyAtom>
<ObjectProperty IRI="locatedIn"/>
<Variable IRI="urn:swrl#loc"/>
<Variable IRI="urn:swrl#superLoc"/>
</ObjectPropertyAtom>
<ObjectPropertyAtom>
<ObjectProperty IRI="temperature"/>
<Variable IRI="urn:swrl#superLoc"/>
<Variable IRI="urn:swrl#serv"/>
</ObjectPropertyAtom>
</Body>
<Head>
<ObjectPropertyAtom>
<ObjectProperty IRI="temperature"/>
<Variable IRI="urn:swrl#loc"/>
<Variable IRI="urn:swrl#serv"/>
</ObjectPropertyAtom>
</Head>
</DLSafeRule>
</Ontology>

<!— Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net —>

Listing A.1: OWL file representing spatial semantics (functional syntax)
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